MyArxiv
Computer Vision and Pattern Recognition
DGS-LRM: Real-Time Deformable 3D Gaussian Reconstruction From Monocular Videos
We introduce the Deformable Gaussian Splats Large Reconstruction Model (DGS-LRM), the first feed-forward method predicting deformable 3D Gaussian splats from a monocular posed video of any dynamic scene. Feed-forward scene reconstruction has gained significant attention for its ability to rapidly create digital replicas of real-world environments. However, most existing models are limited to static scenes and fail to reconstruct the motion of moving objects. Developing a feed-forward model for dynamic scene reconstruction poses significant challenges, including the scarcity of training data and the need for appropriate 3D representations and training paradigms. To address these challenges, we introduce several key technical contributions: an enhanced large-scale synthetic dataset with ground-truth multi-view videos and dense 3D scene flow supervision; a per-pixel deformable 3D Gaussian representation that is easy to learn, supports high-quality dynamic view synthesis, and enables long-range 3D tracking; and a large transformer network that achieves real-time, generalizable dynamic scene reconstruction. Extensive qualitative and quantitative experiments demonstrate that DGS-LRM achieves dynamic scene reconstruction quality comparable to optimization-based methods, while significantly outperforming the state-of-the-art predictive dynamic reconstruction method on real-world examples. Its predicted physically grounded 3D deformation is accurate and can readily adapt for long-range 3D tracking tasks, achieving performance on par with state-of-the-art monocular video 3D tracking methods.
comment: Project page: https://hubert0527.github.io/dgslrm/
PlayerOne: Egocentric World Simulator
We introduce PlayerOne, the first egocentric realistic world simulator, facilitating immersive and unrestricted exploration within vividly dynamic environments. Given an egocentric scene image from the user, PlayerOne can accurately construct the corresponding world and generate egocentric videos that are strictly aligned with the real scene human motion of the user captured by an exocentric camera. PlayerOne is trained in a coarse-to-fine pipeline that first performs pretraining on large-scale egocentric text-video pairs for coarse-level egocentric understanding, followed by finetuning on synchronous motion-video data extracted from egocentric-exocentric video datasets with our automatic construction pipeline. Besides, considering the varying importance of different components, we design a part-disentangled motion injection scheme, enabling precise control of part-level movements. In addition, we devise a joint reconstruction framework that progressively models both the 4D scene and video frames, ensuring scene consistency in the long-form video generation. Experimental results demonstrate its great generalization ability in precise control of varying human movements and worldconsistent modeling of diverse scenarios. It marks the first endeavor into egocentric real-world simulation and can pave the way for the community to delve into fresh frontiers of world modeling and its diverse applications.
comment: Project page: https://playerone-hku.github.io/
Text-Aware Image Restoration with Diffusion Models
Image restoration aims to recover degraded images. However, existing diffusion-based restoration methods, despite great success in natural image restoration, often struggle to faithfully reconstruct textual regions in degraded images. Those methods frequently generate plausible but incorrect text-like patterns, a phenomenon we refer to as text-image hallucination. In this paper, we introduce Text-Aware Image Restoration (TAIR), a novel restoration task that requires the simultaneous recovery of visual contents and textual fidelity. To tackle this task, we present SA-Text, a large-scale benchmark of 100K high-quality scene images densely annotated with diverse and complex text instances. Furthermore, we propose a multi-task diffusion framework, called TeReDiff, that integrates internal features from diffusion models into a text-spotting module, enabling both components to benefit from joint training. This allows for the extraction of rich text representations, which are utilized as prompts in subsequent denoising steps. Extensive experiments demonstrate that our approach consistently outperforms state-of-the-art restoration methods, achieving significant gains in text recognition accuracy. See our project page: https://cvlab-kaist.github.io/TAIR/
comment: Project page: https://cvlab-kaist.github.io/TAIR/
Chain-of-Action: Trajectory Autoregressive Modeling for Robotic Manipulation
We present Chain-of-Action (CoA), a novel visuo-motor policy paradigm built upon Trajectory Autoregressive Modeling. Unlike conventional approaches that predict next step action(s) forward, CoA generates an entire trajectory by explicit backward reasoning with task-specific goals through an action-level Chain-of-Thought (CoT) process. This process is unified within a single autoregressive structure: (1) the first token corresponds to a stable keyframe action that encodes the task-specific goals; and (2) subsequent action tokens are generated autoregressively, conditioned on the initial keyframe and previously predicted actions. This backward action reasoning enforces a global-to-local structure, allowing each local action to be tightly constrained by the final goal. To further realize the action reasoning structure, CoA incorporates four complementary designs: continuous action token representation; dynamic stopping for variable-length trajectory generation; reverse temporal ensemble; and multi-token prediction to balance action chunk modeling with global structure. As a result, CoA gives strong spatial generalization capabilities while preserving the flexibility and simplicity of a visuo-motor policy. Empirically, we observe CoA achieves the state-of-the-art performance across 60 RLBench tasks and 8 real-world manipulation tasks.
Hearing Hands: Generating Sounds from Physical Interactions in 3D Scenes CVPR 2025
We study the problem of making 3D scene reconstructions interactive by asking the following question: can we predict the sounds of human hands physically interacting with a scene? First, we record a video of a human manipulating objects within a 3D scene using their hands. We then use these action-sound pairs to train a rectified flow model to map 3D hand trajectories to their corresponding audio. At test time, a user can query the model for other actions, parameterized as sequences of hand poses, to estimate their corresponding sounds. In our experiments, we find that our generated sounds accurately convey material properties and actions, and that they are often indistinguishable to human observers from real sounds. Project page: https://www.yimingdou.com/hearing_hands/
comment: CVPR 2025, Project page: https://www.yimingdou.com/hearing_hands/ , Code: https://github.com/Dou-Yiming/hearing_hands/
EditInspector: A Benchmark for Evaluation of Text-Guided Image Edits
Text-guided image editing, fueled by recent advancements in generative AI, is becoming increasingly widespread. This trend highlights the need for a comprehensive framework to verify text-guided edits and assess their quality. To address this need, we introduce EditInspector, a novel benchmark for evaluation of text-guided image edits, based on human annotations collected using an extensive template for edit verification. We leverage EditInspector to evaluate the performance of state-of-the-art (SoTA) vision and language models in assessing edits across various dimensions, including accuracy, artifact detection, visual quality, seamless integration with the image scene, adherence to common sense, and the ability to describe edit-induced changes. Our findings indicate that current models struggle to evaluate edits comprehensively and frequently hallucinate when describing the changes. To address these challenges, we propose two novel methods that outperform SoTA models in both artifact detection and difference caption generation.
A Shortcut-aware Video-QA Benchmark for Physical Understanding via Minimal Video Pairs
Existing benchmarks for assessing the spatio-temporal understanding and reasoning abilities of video language models are susceptible to score inflation due to the presence of shortcut solutions based on superficial visual or textual cues. This paper mitigates the challenges in accurately assessing model performance by introducing the Minimal Video Pairs (MVP) benchmark, a simple shortcut-aware video QA benchmark for assessing the physical understanding of video language models. The benchmark is comprised of 55K high-quality multiple-choice video QA examples focusing on physical world understanding. Examples are curated from nine video data sources, spanning first-person egocentric and exocentric videos, robotic interaction data, and cognitive science intuitive physics benchmarks. To mitigate shortcut solutions that rely on superficial visual or textual cues and biases, each sample in MVP has a minimal-change pair -- a visually similar video accompanied by an identical question but an opposing answer. To answer a question correctly, a model must provide correct answers for both examples in the minimal-change pair; as such, models that solely rely on visual or textual biases would achieve below random performance. Human performance on MVP is 92.9\%, while the best open-source state-of-the-art video-language model achieves 40.2\% compared to random performance at 25\%.
InterActHuman: Multi-Concept Human Animation with Layout-Aligned Audio Conditions
End-to-end human animation with rich multi-modal conditions, e.g., text, image and audio has achieved remarkable advancements in recent years. However, most existing methods could only animate a single subject and inject conditions in a global manner, ignoring scenarios that multiple concepts could appears in the same video with rich human-human interactions and human-object interactions. Such global assumption prevents precise and per-identity control of multiple concepts including humans and objects, therefore hinders applications. In this work, we discard the single-entity assumption and introduce a novel framework that enforces strong, region-specific binding of conditions from modalities to each identity's spatiotemporal footprint. Given reference images of multiple concepts, our method could automatically infer layout information by leveraging a mask predictor to match appearance cues between the denoised video and each reference appearance. Furthermore, we inject local audio condition into its corresponding region to ensure layout-aligned modality matching in a iterative manner. This design enables the high-quality generation of controllable multi-concept human-centric videos. Empirical results and ablation studies validate the effectiveness of our explicit layout control for multi-modal conditions compared to implicit counterparts and other existing methods.
comment: TL;DR: The first multi-person dialogue video generation method from pairs of reference image and audio via explicit layout-aligned condition injection. See project page https://zhenzhiwang.github.io/interacthuman/ for more details
V-JEPA 2: Self-Supervised Video Models Enable Understanding, Prediction and Planning
A major challenge for modern AI is to learn to understand the world and learn to act largely by observation. This paper explores a self-supervised approach that combines internet-scale video data with a small amount of interaction data (robot trajectories), to develop models capable of understanding, predicting, and planning in the physical world. We first pre-train an action-free joint-embedding-predictive architecture, V-JEPA 2, on a video and image dataset comprising over 1 million hours of internet video. V-JEPA 2 achieves strong performance on motion understanding (77.3 top-1 accuracy on Something-Something v2) and state-of-the-art performance on human action anticipation (39.7 recall-at-5 on Epic-Kitchens-100) surpassing previous task-specific models. Additionally, after aligning V-JEPA 2 with a large language model, we demonstrate state-of-the-art performance on multiple video question-answering tasks at the 8 billion parameter scale (e.g., 84.0 on PerceptionTest, 76.9 on TempCompass). Finally, we show how self-supervised learning can be applied to robotic planning tasks by post-training a latent action-conditioned world model, V-JEPA 2-AC, using less than 62 hours of unlabeled robot videos from the Droid dataset. We deploy V-JEPA 2-AC zero-shot on Franka arms in two different labs and enable picking and placing of objects using planning with image goals. Notably, this is achieved without collecting any data from the robots in these environments, and without any task-specific training or reward. This work demonstrates how self-supervised learning from web-scale data and a small amount of robot interaction data can yield a world model capable of planning in the physical world.
comment: 48 pages, 19 figures
AnimateAnyMesh: A Feed-Forward 4D Foundation Model for Text-Driven Universal Mesh Animation
Recent advances in 4D content generation have attracted increasing attention, yet creating high-quality animated 3D models remains challenging due to the complexity of modeling spatio-temporal distributions and the scarcity of 4D training data. In this paper, we present AnimateAnyMesh, the first feed-forward framework that enables efficient text-driven animation of arbitrary 3D meshes. Our approach leverages a novel DyMeshVAE architecture that effectively compresses and reconstructs dynamic mesh sequences by disentangling spatial and temporal features while preserving local topological structures. To enable high-quality text-conditional generation, we employ a Rectified Flow-based training strategy in the compressed latent space. Additionally, we contribute the DyMesh Dataset, containing over 4M diverse dynamic mesh sequences with text annotations. Experimental results demonstrate that our method generates semantically accurate and temporally coherent mesh animations in a few seconds, significantly outperforming existing approaches in both quality and efficiency. Our work marks a substantial step forward in making 4D content creation more accessible and practical. All the data, code, and models will be open-released.
comment: Project Page: https://animateanymesh.github.io/AnimateAnyMesh/
ReSim: Reliable World Simulation for Autonomous Driving
How can we reliably simulate future driving scenarios under a wide range of ego driving behaviors? Recent driving world models, developed exclusively on real-world driving data composed mainly of safe expert trajectories, struggle to follow hazardous or non-expert behaviors, which are rare in such data. This limitation restricts their applicability to tasks such as policy evaluation. In this work, we address this challenge by enriching real-world human demonstrations with diverse non-expert data collected from a driving simulator (e.g., CARLA), and building a controllable world model trained on this heterogeneous corpus. Starting with a video generator featuring a diffusion transformer architecture, we devise several strategies to effectively integrate conditioning signals and improve prediction controllability and fidelity. The resulting model, ReSim, enables Reliable Simulation of diverse open-world driving scenarios under various actions, including hazardous non-expert ones. To close the gap between high-fidelity simulation and applications that require reward signals to judge different actions, we introduce a Video2Reward module that estimates a reward from ReSim's simulated future. Our ReSim paradigm achieves up to 44% higher visual fidelity, improves controllability for both expert and non-expert actions by over 50%, and boosts planning and policy selection performance on NAVSIM by 2% and 25%, respectively.
comment: Project page: https://opendrivelab.com/ReSim
Efficient Part-level 3D Object Generation via Dual Volume Packing
Recent progress in 3D object generation has greatly improved both the quality and efficiency. However, most existing methods generate a single mesh with all parts fused together, which limits the ability to edit or manipulate individual parts. A key challenge is that different objects may have a varying number of parts. To address this, we propose a new end-to-end framework for part-level 3D object generation. Given a single input image, our method generates high-quality 3D objects with an arbitrary number of complete and semantically meaningful parts. We introduce a dual volume packing strategy that organizes all parts into two complementary volumes, allowing for the creation of complete and interleaved parts that assemble into the final object. Experiments show that our model achieves better quality, diversity, and generalization than previous image-based part-level generation methods.
comment: Code: https://github.com/NVlabs/PartPacker Project Page: https://research.nvidia.com/labs/dir/partpacker/
Vectorized Region Based Brush Strokes for Artistic Rendering
Creating a stroke-by-stroke evolution process of a visual artwork tries to bridge the emotional and educational gap between the finished static artwork and its creation process. Recent stroke-based painting systems focus on capturing stroke details by predicting and iteratively refining stroke parameters to maximize the similarity between the input image and the rendered output. However, these methods often struggle to produce stroke compositions that align with artistic principles and intent. To address this, we explore an image-to-painting method that (i) facilitates semantic guidance for brush strokes in targeted regions, (ii) computes the brush stroke parameters, and (iii) establishes a sequence among segments and strokes to sequentially render the final painting. Experimental results on various input image types, such as face images, paintings, and photographic images, show that our method aligns with a region-based painting strategy while rendering a painting with high fidelity and superior stroke quality.
Reinforcing Spatial Reasoning in Vision-Language Models with Interwoven Thinking and Visual Drawing
As textual reasoning with large language models (LLMs) has advanced significantly, there has been growing interest in enhancing the multimodal reasoning capabilities of large vision-language models (LVLMs). However, existing methods primarily approach multimodal reasoning in a straightforward, text-centric manner, where both reasoning and answer derivation are conducted purely through text, with the only difference being the presence of multimodal input. As a result, these methods often encounter fundamental limitations in spatial reasoning tasks that demand precise geometric understanding and continuous spatial tracking-capabilities that humans achieve through mental visualization and manipulation. To address the limitations, we propose drawing to reason in space, a novel paradigm that enables LVLMs to reason through elementary drawing operations in the visual space. By equipping models with basic drawing operations, including annotating bounding boxes and drawing auxiliary lines, we empower them to express and analyze spatial relationships through direct visual manipulation, meanwhile avoiding the performance ceiling imposed by specialized perception tools in previous tool-integrated reasoning approaches. To cultivate this capability, we develop a three-stage training framework: cold-start training with synthetic data to establish basic drawing abilities, reflective rejection sampling to enhance self-reflection behaviors, and reinforcement learning to directly optimize for target rewards. Extensive experiments demonstrate that our model, named VILASR, consistently outperforms existing methods across diverse spatial reasoning benchmarks, involving maze navigation, static spatial reasoning, video-based reasoning, and multi-view-based reasoning tasks, with an average improvement of 18.4%.
Kvasir-VQA-x1: A Multimodal Dataset for Medical Reasoning and Robust MedVQA in Gastrointestinal Endoscopy
Medical Visual Question Answering (MedVQA) is a promising field for developing clinical decision support systems, yet progress is often limited by the available datasets, which can lack clinical complexity and visual diversity. To address these gaps, we introduce Kvasir-VQA-x1, a new, large-scale dataset for gastrointestinal (GI) endoscopy. Our work significantly expands upon the original Kvasir-VQA by incorporating 159,549 new question-answer pairs that are designed to test deeper clinical reasoning. We developed a systematic method using large language models to generate these questions, which are stratified by complexity to better assess a model's inference capabilities. To ensure our dataset prepares models for real-world clinical scenarios, we have also introduced a variety of visual augmentations that mimic common imaging artifacts. The dataset is structured to support two main evaluation tracks: one for standard VQA performance and another to test model robustness against these visual perturbations. By providing a more challenging and clinically relevant benchmark, Kvasir-VQA-x1 aims to accelerate the development of more reliable and effective multimodal AI systems for use in clinical settings. The dataset is fully accessible and adheres to FAIR data principles, making it a valuable resource for the wider research community. Code and data: https://github.com/Simula/Kvasir-VQA-x1 and https://huggingface.co/datasets/SimulaMet/Kvasir-VQA-x1
Canonical Latent Representations in Conditional Diffusion Models
Conditional diffusion models (CDMs) have shown impressive performance across a range of generative tasks. Their ability to model the full data distribution has opened new avenues for analysis-by-synthesis in downstream discriminative learning. However, this same modeling capacity causes CDMs to entangle the class-defining features with irrelevant context, posing challenges to extracting robust and interpretable representations. To this end, we identify Canonical LAtent Representations (CLAReps), latent codes whose internal CDM features preserve essential categorical information while discarding non-discriminative signals. When decoded, CLAReps produce representative samples for each class, offering an interpretable and compact summary of the core class semantics with minimal irrelevant details. Exploiting CLAReps, we develop a novel diffusion-based feature-distillation paradigm, CaDistill. While the student has full access to the training set, the CDM as teacher transfers core class knowledge only via CLAReps, which amounts to merely 10 % of the training data in size. After training, the student achieves strong adversarial robustness and generalization ability, focusing more on the class signals instead of spurious background cues. Our findings suggest that CDMs can serve not just as image generators but also as compact, interpretable teachers that can drive robust representation learning.
comment: 45 pages,41 figures
Vision Generalist Model: A Survey
Recently, we have witnessed the great success of the generalist model in natural language processing. The generalist model is a general framework trained with massive data and is able to process various downstream tasks simultaneously. Encouraged by their impressive performance, an increasing number of researchers are venturing into the realm of applying these models to computer vision tasks. However, the inputs and outputs of vision tasks are more diverse, and it is difficult to summarize them as a unified representation. In this paper, we provide a comprehensive overview of the vision generalist models, delving into their characteristics and capabilities within the field. First, we review the background, including the datasets, tasks, and benchmarks. Then, we dig into the design of frameworks that have been proposed in existing research, while also introducing the techniques employed to enhance their performance. To better help the researchers comprehend the area, we take a brief excursion into related domains, shedding light on their interconnections and potential synergies. To conclude, we provide some real-world application scenarios, undertake a thorough examination of the persistent challenges, and offer insights into possible directions for future research endeavors.
comment: Accepted by International Journal of Computer Vision (IJCV)
Outside Knowledge Conversational Video (OKCV) Dataset -- Dialoguing over Videos
In outside knowledge visual question answering (OK-VQA), the model must identify relevant visual information within an image and incorporate external knowledge to accurately respond to a question. Extending this task to a visually grounded dialogue setting based on videos, a conversational model must both recognize pertinent visual details over time and answer questions where the required information is not necessarily present in the visual information. Moreover, the context of the overall conversation must be considered for the subsequent dialogue. To explore this task, we introduce a dataset comprised of $2,017$ videos with $5,986$ human-annotated dialogues consisting of $40,954$ interleaved dialogue turns. While the dialogue context is visually grounded in specific video segments, the questions further require external knowledge that is not visually present. Thus, the model not only has to identify relevant video parts but also leverage external knowledge to converse within the dialogue. We further provide several baselines evaluated on our dataset and show future challenges associated with this task. The dataset is made publicly available here: https://github.com/c-patsch/OKCV.
UniPre3D: Unified Pre-training of 3D Point Cloud Models with Cross-Modal Gaussian Splatting CVPR 2025
The scale diversity of point cloud data presents significant challenges in developing unified representation learning techniques for 3D vision. Currently, there are few unified 3D models, and no existing pre-training method is equally effective for both object- and scene-level point clouds. In this paper, we introduce UniPre3D, the first unified pre-training method that can be seamlessly applied to point clouds of any scale and 3D models of any architecture. Our approach predicts Gaussian primitives as the pre-training task and employs differentiable Gaussian splatting to render images, enabling precise pixel-level supervision and end-to-end optimization. To further regulate the complexity of the pre-training task and direct the model's focus toward geometric structures, we integrate 2D features from pre-trained image models to incorporate well-established texture knowledge. We validate the universal effectiveness of our proposed method through extensive experiments across a variety of object- and scene-level tasks, using diverse point cloud models as backbones. Code is available at https://github.com/wangzy22/UniPre3D.
comment: Accepted to CVPR 2025
Sampling Theory for Super-Resolution with Implicit Neural Representations
Implicit neural representations (INRs) have emerged as a powerful tool for solving inverse problems in computer vision and computational imaging. INRs represent images as continuous domain functions realized by a neural network taking spatial coordinates as inputs. However, unlike traditional pixel representations, little is known about the sample complexity of estimating images using INRs in the context of linear inverse problems. Towards this end, we study the sampling requirements for recovery of a continuous domain image from its low-pass Fourier samples by fitting a single hidden-layer INR with ReLU activation and a Fourier features layer using a generalized form of weight decay regularization. Our key insight is to relate minimizers of this non-convex parameter space optimization problem to minimizers of a convex penalty defined over an infinite-dimensional space of measures. We identify a sufficient number of Fourier samples for which an image realized by an INR is exactly recoverable by solving the INR training problem. To validate our theory, we empirically assess the probability of achieving exact recovery of images realized by low-width single hidden-layer INRs, and illustrate the performance of INRs on super-resolution recovery of continuous domain phantom images.
comment: arXiv admin note: text overlap with arXiv:2405.18410
CausalVQA: A Physically Grounded Causal Reasoning Benchmark for Video Models NeurIPS2025
We introduce CausalVQA, a benchmark dataset for video question answering (VQA) composed of question-answer pairs that probe models' understanding of causality in the physical world. Existing VQA benchmarks either tend to focus on surface perceptual understanding of real-world videos, or on narrow physical reasoning questions created using simulation environments. CausalVQA fills an important gap by presenting challenging questions that are grounded in real-world scenarios, while focusing on models' ability to predict the likely outcomes of different actions and events through five question types: counterfactual, hypothetical, anticipation, planning and descriptive. We designed quality control mechanisms that prevent models from exploiting trivial shortcuts, requiring models to base their answers on deep visual understanding instead of linguistic cues. We find that current frontier multimodal models fall substantially below human performance on the benchmark, especially on anticipation and hypothetical questions. This highlights a challenge for current systems to leverage spatial-temporal reasoning, understanding of physical principles, and comprehension of possible alternatives to make accurate predictions in real-world settings.
comment: 35 pages, 3 figures, Submitted to NeurIPS2025 benchmark track
LEO-VL: Towards 3D Vision-Language Generalists via Data Scaling with Efficient Representation
Developing 3D-VL generalists capable of understanding 3D scenes and following natural language instructions to perform a wide range of tasks has been a long-standing goal in the 3D-VL community. Despite recent progress, 3D-VL models still lag behind their 2D counterparts in capability and robustness, falling short of the generalist standard. A key obstacle to developing 3D-VL generalists lies in data scalability, hindered by the lack of an efficient scene representation. We propose LEO-VL, a 3D-VL model built upon condensed feature grid (CFG), an efficient scene representation that bridges 2D perception and 3D spatial structure while significantly reducing token overhead. This efficiency unlocks large-scale training towards 3D-VL generalist, for which we curate over 700k high-quality 3D-VL data spanning four domains of real-world indoor scenes and five tasks such as captioning and dialogue. LEO-VL achieves state-of-the-art performance on a variety of 3D QA benchmarks, including SQA3D, MSQA, and Beacon3D. Ablation studies confirm the efficiency of our representation, the importance of task and scene diversity, and the validity of our data curation principle. Furthermore, we introduce SceneDPO, a novel post-training objective that enhances the robustness of 3D-VL models. We hope our findings contribute to the advancement of scalable and robust 3D-VL generalists.
comment: Project page: https://leo-vl.github.io
Fluoroscopic Shape and Pose Tracking of Catheters with Custom Radiopaque Markers
Safe navigation of steerable and robotic catheters in the cerebral vasculature requires awareness of the catheters shape and pose. Currently, a significant perception burden is placed on interventionalists to mentally reconstruct and predict catheter motions from biplane fluoroscopy images. Efforts to track these catheters are limited to planar segmentation or bulky sensing instrumentation, which are incompatible with microcatheters used in neurointervention. In this work, a catheter is equipped with custom radiopaque markers arranged to enable simultaneous shape and pose estimation under biplane fluoroscopy. A design measure is proposed to guide the arrangement of these markers to minimize sensitivity to marker tracking uncertainty. This approach was deployed for microcatheters smaller than 2mm OD navigating phantom vasculature with shape tracking errors less than 1mm and catheter roll errors below 40 degrees. This work can enable steerable catheters to autonomously navigate under biplane imaging.
comment: 8 pages, 5 figures, accepted in Robotics and Automation Letters
HadaNorm: Diffusion Transformer Quantization through Mean-Centered Transformations
Diffusion models represent the cutting edge in image generation, but their high memory and computational demands hinder deployment on resource-constrained devices. Post-Training Quantization (PTQ) offers a promising solution by reducing the bitwidth of matrix operations. However, standard PTQ methods struggle with outliers, and achieving higher compression often requires transforming model weights and activations before quantization. In this work, we propose HadaNorm, a novel linear transformation that extends existing approaches and effectively mitigates outliers by normalizing activations feature channels before applying Hadamard transformations, enabling more aggressive activation quantization. We demonstrate that HadaNorm consistently reduces quantization error across the various components of transformer blocks, achieving superior efficiency-performance trade-offs when compared to state-of-the-art methods.
comment: 4 Pages, 5 Figures
From Intention to Execution: Probing the Generalization Boundaries of Vision-Language-Action Models
One promise that Vision-Language-Action (VLA) models hold over traditional imitation learning for robotics is to leverage the broad generalization capabilities of large Vision-Language Models (VLMs) to produce versatile, "generalist" robot policies. However, current evaluations of VLAs remain insufficient. Traditional imitation learning benchmarks are unsuitable due to the lack of language instructions. Emerging benchmarks for VLAs that incorporate language often come with limited evaluation tasks and do not intend to investigate how much VLM pretraining truly contributes to the generalization capabilities of the downstream robotic policy. Meanwhile, much research relies on real-world robot setups designed in isolation by different institutions, which creates a barrier for reproducibility and accessibility. To address this gap, we introduce a unified probing suite of 50 simulation-based tasks across 10 subcategories spanning language instruction, vision, and objects. We systematically evaluate several state-of-the-art VLA architectures on this suite to understand their generalization capability. Our results show that while VLM backbones endow VLAs with robust perceptual understanding and high level planning, which we refer to as good intentions, this does not reliably translate into precise motor execution: when faced with out-of-distribution observations, policies often exhibit coherent intentions, but falter in action execution. Moreover, finetuning on action data can erode the original VLM's generalist reasoning abilities. We release our task suite and evaluation code to serve as a standardized benchmark for future VLAs and to drive research on closing the perception-to-action gap. More information, including the source code, can be found at https://ai4ce.github.io/INT-ACT/
comment: Under review
Structural-Spectral Graph Convolution with Evidential Edge Learning for Hyperspectral Image Clustering
Hyperspectral image (HSI) clustering assigns similar pixels to the same class without any annotations, which is an important yet challenging task. For large-scale HSIs, most methods rely on superpixel segmentation and perform superpixel-level clustering based on graph neural networks (GNNs). However, existing GNNs cannot fully exploit the spectral information of the input HSI, and the inaccurate superpixel topological graph may lead to the confusion of different class semantics during information aggregation. To address these challenges, we first propose a structural-spectral graph convolutional operator (SSGCO) tailored for graph-structured HSI superpixels to improve their representation quality through the co-extraction of spatial and spectral features. Second, we propose an evidence-guided adaptive edge learning (EGAEL) module that adaptively predicts and refines edge weights in the superpixel topological graph. We integrate the proposed method into a contrastive learning framework to achieve clustering, where representation learning and clustering are simultaneously conducted. Experiments demonstrate that the proposed method improves clustering accuracy by 2.61%, 6.06%, 4.96% and 3.15% over the best compared methods on four HSI datasets. Our code is available at https://github.com/jhqi/SSGCO-EGAEL.
MetricHMR: Metric Human Mesh Recovery from Monocular Images
We introduce MetricHMR (Metric Human Mesh Recovery), an approach for metric human mesh recovery with accurate global translation from monocular images. In contrast to existing HMR methods that suffer from severe scale and depth ambiguity, MetricHMR is able to produce geometrically reasonable body shape and global translation in the reconstruction results. To this end, we first systematically analyze previous HMR methods on camera models to emphasize the critical role of the standard perspective projection model in enabling metric-scale HMR. We then validate the acceptable ambiguity range of metric HMR under the standard perspective projection model. Finally, we contribute a novel approach that introduces a ray map based on the standard perspective projection to jointly encode bounding-box information, camera parameters, and geometric cues for End2End metric HMR without any additional metric-regularization modules. Extensive experiments demonstrate that our method achieves state-of-the-art performance, even compared with sequential HMR methods, in metric pose, shape, and global translation estimation across both indoor and in-the-wild scenarios.
Only-Style: Stylistic Consistency in Image Generation without Content Leakage
Generating images in a consistent reference visual style remains a challenging computer vision task. State-of-the-art methods aiming for style-consistent generation struggle to effectively separate semantic content from stylistic elements, leading to content leakage from the image provided as a reference to the targets. To address this challenge, we propose Only-Style: a method designed to mitigate content leakage in a semantically coherent manner while preserving stylistic consistency. Only-Style works by localizing content leakage during inference, allowing the adaptive tuning of a parameter that controls the style alignment process, specifically within the image patches containing the subject in the reference image. This adaptive process best balances stylistic consistency with leakage elimination. Moreover, the localization of content leakage can function as a standalone component, given a reference-target image pair, allowing the adaptive tuning of any method-specific parameter that provides control over the impact of the stylistic reference. In addition, we propose a novel evaluation framework to quantify the success of style-consistent generations in avoiding undesired content leakage. Our approach demonstrates a significant improvement over state-of-the-art methods through extensive evaluation across diverse instances, consistently achieving robust stylistic consistency without undesired content leakage.
CEM-FBGTinyDet: Context-Enhanced Foreground Balance with Gradient Tuning for tiny Objects
Tiny object detection (TOD) reveals a fundamental flaw in feature pyramid networks: high-level features (P5-P6) frequently receive zero positive anchors under standard label assignment protocols, leaving their semantic representations untrained due to exclusion from loss computation. This creates dual deficiencies: (1) Stranded high-level features become semantic dead-ends without gradient updates, while (2) low-level features lack essential semantic context for robust classification. We propose E-FPN-BS that systematically converts wasted high-level semantics into low-level feature enhancements. To address these issues, we propose E-FPN-BS, a novel architecture integrating multi-scale feature enhancement and adaptive optimization. First, our Context Enhancement Module(CEM) employs dual-branch processing to align and compress high-level features for effective global-local fusion. Second, the Foreground-Background Separation Module (FBSM) generates spatial gating masks that dynamically amplify discriminative regions. To address gradient imbalance across object scales, we further propose a Dynamic Gradient-Balanced Loss (DCLoss) that automatically modulates loss contributions via scale-aware gradient equilibrium. Extensive experiments across multiple benchmark datasets demonstrate the outstanding performance and generalization ability of our approach.
EquiCaps: Predictor-Free Pose-Aware Pre-Trained Capsule Networks
Learning self-supervised representations that are invariant and equivariant to transformations is crucial for advancing beyond traditional visual classification tasks. However, many methods rely on predictor architectures to encode equivariance, despite evidence that architectural choices, such as capsule networks, inherently excel at learning interpretable pose-aware representations. To explore this, we introduce EquiCaps (Equivariant Capsule Network), a capsule-based approach to pose-aware self-supervision that eliminates the need for a specialised predictor for enforcing equivariance. Instead, we leverage the intrinsic pose-awareness capabilities of capsules to improve performance in pose estimation tasks. To further challenge our assumptions, we increase task complexity via multi-geometric transformations to enable a more thorough evaluation of invariance and equivariance by introducing 3DIEBench-T, an extension of a 3D object-rendering benchmark dataset. Empirical results demonstrate that EquiCaps outperforms prior state-of-the-art equivariant methods on rotation prediction, achieving a supervised-level $R^2$ of 0.78 on the 3DIEBench rotation prediction benchmark and improving upon SIE and CapsIE by 0.05 and 0.04 $R^2$, respectively. Moreover, in contrast to non-capsule-based equivariant approaches, EquiCaps maintains robust equivariant performance under combined geometric transformations, underscoring its generalisation capabilities and the promise of predictor-free capsule architectures.
comment: 19 pages, 11 Figures, 13 Tables
The Less You Depend, The More You Learn: Synthesizing Novel Views from Sparse, Unposed Images without Any 3D Knowledge
We consider the problem of generalizable novel view synthesis (NVS), which aims to generate photorealistic novel views from sparse or even unposed 2D images without per-scene optimization. This task remains fundamentally challenging, as it requires inferring 3D structure from incomplete and ambiguous 2D observations. Early approaches typically rely on strong 3D knowledge, including architectural 3D inductive biases (e.g., embedding explicit 3D representations, such as NeRF or 3DGS, into network design) and ground-truth camera poses for both input and target views. While recent efforts have sought to reduce the 3D inductive bias or the dependence on known camera poses of input views, critical questions regarding the role of 3D knowledge and the necessity of circumventing its use remain under-explored. In this work, we conduct a systematic analysis on the 3D knowledge and uncover a critical trend: the performance of methods that requires less 3D knowledge accelerates more as data scales, eventually achieving performance on par with their 3D knowledge-driven counterparts, which highlights the increasing importance of reducing dependence on 3D knowledge in the era of large-scale data. Motivated by and following this trend, we propose a novel NVS framework that minimizes 3D inductive bias and pose dependence for both input and target views. By eliminating this 3D knowledge, our method fully leverages data scaling and learns implicit 3D awareness directly from sparse 2D images, without any 3D inductive bias or pose annotation during training. Extensive experiments demonstrate that our model generates photorealistic and 3D-consistent novel views, achieving even comparable performance with methods that rely on posed inputs, thereby validating the feasibility and effectiveness of our data-centric paradigm. Project page: https://pku-vcl-geometry.github.io/Less3Depend/ .
3D-Aware Vision-Language Models Fine-Tuning with Geometric Distillation
Vision-Language Models (VLMs) have shown remarkable performance on diverse visual and linguistic tasks, yet they remain fundamentally limited in their understanding of 3D spatial structures. We propose Geometric Distillation, a lightweight, annotation-free fine-tuning framework that injects human-inspired geometric cues into pretrained VLMs without modifying their architecture. By distilling (1) sparse correspondences, (2) relative depth relations, and (3) dense cost volumes from off-the-shelf 3D foundation models (e.g., MASt3R, VGGT), our method shapes representations to be geometry-aware while remaining compatible with natural image-text inputs. Through extensive evaluations on 3D vision-language reasoning and 3D perception benchmarks, our method consistently outperforms prior approaches, achieving improved 3D spatial reasoning with significantly lower computational cost. Our work demonstrates a scalable and efficient path to bridge 2D-trained VLMs with 3D understanding, opening up wider use in spatially grounded multimodal tasks.
Leveraging Depth and Language for Open-Vocabulary Domain-Generalized Semantic Segmentation
Open-Vocabulary semantic segmentation (OVSS) and domain generalization in semantic segmentation (DGSS) highlight a subtle complementarity that motivates Open-Vocabulary Domain-Generalized Semantic Segmentation (OV-DGSS). OV-DGSS aims to generate pixel-level masks for unseen categories while maintaining robustness across unseen domains, a critical capability for real-world scenarios such as autonomous driving in adverse conditions. We introduce Vireo, a novel single-stage framework for OV-DGSS that unifies the strengths of OVSS and DGSS for the first time. Vireo builds upon the frozen Visual Foundation Models (VFMs) and incorporates scene geometry via Depth VFMs to extract domain-invariant structural features. To bridge the gap between visual and textual modalities under domain shift, we propose three key components: (1) GeoText Prompts, which align geometric features with language cues and progressively refine VFM encoder representations; (2) Coarse Mask Prior Embedding (CMPE) for enhancing gradient flow for faster convergence and stronger textual influence; and (3) the Domain-Open-Vocabulary Vector Embedding Head (DOV-VEH), which fuses refined structural and semantic features for robust prediction. Comprehensive evaluation on these components demonstrates the effectiveness of our designs. Our proposed Vireo achieves the state-of-the-art performance and surpasses existing methods by a large margin in both domain generalization and open-vocabulary recognition, offering a unified and scalable solution for robust visual understanding in diverse and dynamic environments. Code is available at https://github.com/anonymouse-9c53tp182bvz/Vireo.
IntPhys 2: Benchmarking Intuitive Physics Understanding In Complex Synthetic Environments
We present IntPhys 2, a video benchmark designed to evaluate the intuitive physics understanding of deep learning models. Building on the original IntPhys benchmark, IntPhys 2 focuses on four core principles related to macroscopic objects: Permanence, Immutability, Spatio-Temporal Continuity, and Solidity. These conditions are inspired by research into intuitive physical understanding emerging during early childhood. IntPhys 2 offers a comprehensive suite of tests, based on the violation of expectation framework, that challenge models to differentiate between possible and impossible events within controlled and diverse virtual environments. Alongside the benchmark, we provide performance evaluations of several state-of-the-art models. Our findings indicate that while these models demonstrate basic visual understanding, they face significant challenges in grasping intuitive physics across the four principles in complex scenes, with most models performing at chance levels (50%), in stark contrast to human performance, which achieves near-perfect accuracy. This underscores the gap between current models and human-like intuitive physics understanding, highlighting the need for advancements in model architectures and training methodologies.
Dataset of News Articles with Provenance Metadata for Media Relevance Assessment
Out-of-context and misattributed imagery is the leading form of media manipulation in today's misinformation and disinformation landscape. The existing methods attempting to detect this practice often only consider whether the semantics of the imagery corresponds to the text narrative, missing manipulation so long as the depicted objects or scenes somewhat correspond to the narrative at hand. To tackle this, we introduce News Media Provenance Dataset, a dataset of news articles with provenance-tagged images. We formulate two tasks on this dataset, location of origin relevance (LOR) and date and time of origin relevance (DTOR), and present baseline results on six large language models (LLMs). We identify that, while the zero-shot performance on LOR is promising, the performance on DTOR hinders, leaving room for specialized architectures and future work.
Learning to Align: Addressing Character Frequency Distribution Shifts in Handwritten Text Recognition
Handwritten text recognition aims to convert visual input into machine-readable text, and it remains challenging due to the evolving and context-dependent nature of handwriting. Character sets change over time, and character frequency distributions shift across historical periods or regions, often causing models trained on broad, heterogeneous corpora to underperform on specific subsets. To tackle this, we propose a novel loss function that incorporates the Wasserstein distance between the character frequency distribution of the predicted text and a target distribution empirically derived from training data. By penalizing divergence from expected distributions, our approach enhances both accuracy and robustness under temporal and contextual intra-dataset shifts. Furthermore, we demonstrate that character distribution alignment can also improve existing models at inference time without requiring retraining by integrating it as a scoring function in a guided decoding scheme. Experimental results across multiple datasets and architectures confirm the effectiveness of our method in boosting generalization and performance. We open source our code at https://github.com/pkaliosis/fada.
comment: 17 pages, 10 figures, Under Review
OctoNav: Towards Generalist Embodied Navigation
Embodied navigation stands as a foundation pillar within the broader pursuit of embodied AI. However, previous navigation research is divided into different tasks/capabilities, e.g., ObjNav, ImgNav and VLN, where they differ in task objectives and modalities, making datasets and methods are designed individually. In this work, we take steps toward generalist navigation agents, which can follow free-form instructions that include arbitrary compounds of multi-modal and multi-capability. To achieve this, we propose a large-scale benchmark and corresponding method, termed OctoNav-Bench and OctoNav-R1. Specifically, OctoNav-Bench features continuous environments and is constructed via a designed annotation pipeline. We thoroughly craft instruction-trajectory pairs, where instructions are diverse in free-form with arbitrary modality and capability. Also, we construct a Think-Before-Action (TBA-CoT) dataset within OctoNav-Bench to provide the thinking process behind actions. For OctoNav-R1, we build it upon MLLMs and adapt it to a VLA-type model, which can produce low-level actions solely based on 2D visual observations. Moreover, we design a Hybrid Training Paradigm (HTP) that consists of three stages, i.e., Action-/TBA-SFT, Nav-GPRO, and Online RL stages. Each stage contains specifically designed learning policies and rewards. Importantly, for TBA-SFT and Nav-GRPO designs, we are inspired by the OpenAI-o1 and DeepSeek-R1, which show impressive reasoning ability via thinking-before-answer. Thus, we aim to investigate how to achieve thinking-before-action in the embodied navigation field, to improve model's reasoning ability toward generalists. Specifically, we propose TBA-SFT to utilize the TBA-CoT dataset to fine-tune the model as a cold-start phrase and then leverage Nav-GPRO to improve its thinking ability. Finally, OctoNav-R1 shows superior performance compared with previous methods.
comment: 31 pages, 25 figures
DynaSplat: Dynamic-Static Gaussian Splatting with Hierarchical Motion Decomposition for Scene Reconstruction
Reconstructing intricate, ever-changing environments remains a central ambition in computer vision, yet existing solutions often crumble before the complexity of real-world dynamics. We present DynaSplat, an approach that extends Gaussian Splatting to dynamic scenes by integrating dynamic-static separation and hierarchical motion modeling. First, we classify scene elements as static or dynamic through a novel fusion of deformation offset statistics and 2D motion flow consistency, refining our spatial representation to focus precisely where motion matters. We then introduce a hierarchical motion modeling strategy that captures both coarse global transformations and fine-grained local movements, enabling accurate handling of intricate, non-rigid motions. Finally, we integrate physically-based opacity estimation to ensure visually coherent reconstructions, even under challenging occlusions and perspective shifts. Extensive experiments on challenging datasets reveal that DynaSplat not only surpasses state-of-the-art alternatives in accuracy and realism but also provides a more intuitive, compact, and efficient route to dynamic scene reconstruction.
MMME: A Spontaneous Multi-Modal Micro-Expression Dataset Enabling Visual-Physiological Fusion
Micro-expressions (MEs) are subtle, fleeting nonverbal cues that reveal an individual's genuine emotional state. Their analysis has attracted considerable interest due to its promising applications in fields such as healthcare, criminal investigation, and human-computer interaction. However, existing ME research is limited to single visual modality, overlooking the rich emotional information conveyed by other physiological modalities, resulting in ME recognition and spotting performance far below practical application needs. Therefore, exploring the cross-modal association mechanism between ME visual features and physiological signals (PS), and developing a multimodal fusion framework, represents a pivotal step toward advancing ME analysis. This study introduces a novel ME dataset, MMME, which, for the first time, enables synchronized collection of facial action signals (MEs), central nervous system signals (EEG), and peripheral PS (PPG, RSP, SKT, EDA, and ECG). By overcoming the constraints of existing ME corpora, MMME comprises 634 MEs, 2,841 macro-expressions (MaEs), and 2,890 trials of synchronized multimodal PS, establishing a robust foundation for investigating ME neural mechanisms and conducting multimodal fusion-based analyses. Extensive experiments validate the dataset's reliability and provide benchmarks for ME analysis, demonstrating that integrating MEs with PS significantly enhances recognition and spotting performance. To the best of our knowledge, MMME is the most comprehensive ME dataset to date in terms of modality diversity. It provides critical data support for exploring the neural mechanisms of MEs and uncovering the visual-physiological synergistic effects, driving a paradigm shift in ME research from single-modality visual analysis to multimodal fusion. The dataset will be publicly available upon acceptance of this paper.
DreamCS: Geometry-Aware Text-to-3D Generation with Unpaired 3D Reward Supervision
While text-to-3D generation has attracted growing interest, existing methods often struggle to produce 3D assets that align well with human preferences. Current preference alignment techniques for 3D content typically rely on hardly-collected preference-paired multi-view 2D images to train 2D reward models, when then guide 3D generation -- leading to geometric artifacts due to their inherent 2D bias. To address these limitations, we construct 3D-MeshPref, the first large-scale unpaired 3D preference dataset, featuring diverse 3D meshes annotated by a large language model and refined by human evaluators. We then develop RewardCS, the first reward model trained directly on unpaired 3D-MeshPref data using a novel Cauchy-Schwarz divergence objective, enabling effective learning of human-aligned 3D geometric preferences without requiring paired comparisons. Building on this, we propose DreamCS, a unified framework that integrates RewardCS into text-to-3D pipelines -- enhancing both implicit and explicit 3D generation with human preference feedback. Extensive experiments show DreamCS outperforms prior methods, producing 3D assets that are both geometrically faithful and human-preferred. Code and models will be released publicly.
ComfyUI-R1: Exploring Reasoning Models for Workflow Generation
AI-generated content has evolved from monolithic models to modular workflows, particularly on platforms like ComfyUI, enabling customization in creative pipelines. However, crafting effective workflows requires great expertise to orchestrate numerous specialized components, presenting a steep learning curve for users. To address this challenge, we introduce ComfyUI-R1, the first large reasoning model for automated workflow generation. Starting with our curated dataset of 4K workflows, we construct long chain-of-thought (CoT) reasoning data, including node selection, workflow planning, and code-level workflow representation. ComfyUI-R1 is trained through a two-stage framework: (1) CoT fine-tuning for cold start, adapting models to the ComfyUI domain; (2) reinforcement learning for incentivizing reasoning capability, guided by a fine-grained rule-metric hybrid reward, ensuring format validity, structural integrity, and node-level fidelity. Experiments show that our 7B-parameter model achieves a 97\% format validity rate, along with high pass rate, node-level and graph-level F1 scores, significantly surpassing prior state-of-the-art methods that employ leading closed-source models such as GPT-4o and Claude series. Further analysis highlights the critical role of the reasoning process and the advantage of transforming workflows into code. Qualitative comparison reveals our strength in synthesizing intricate workflows with diverse nodes, underscoring the potential of long CoT reasoning in AI art creation.
comment: Work in progress. Try it out in ComfyUI-Copilot https://github.com/AIDC-AI/ComfyUI-Copilot
Accurate and efficient zero-shot 6D pose estimation with frozen foundation models
Estimating the 6D pose of objects from RGBD data is a fundamental problem in computer vision, with applications in robotics and augmented reality. A key challenge is achieving generalization to novel objects that were not seen during training. Most existing approaches address this by scaling up training on synthetic data tailored to the task, a process that demands substantial computational resources. But is task-specific training really necessary for accurate and efficient 6D pose estimation of novel objects? To answer No!, we introduce FreeZeV2, the second generation of FreeZe: a training-free method that achieves strong generalization to unseen objects by leveraging geometric and vision foundation models pre-trained on unrelated data. FreeZeV2 improves both accuracy and efficiency over FreeZe through three key contributions: (i) a sparse feature extraction strategy that reduces inference-time computation without sacrificing accuracy; (ii) a feature-aware scoring mechanism that improves both pose selection during RANSAC-based 3D registration and the final ranking of pose candidates; and (iii) a modular design that supports ensembles of instance segmentation models, increasing robustness to segmentation masks errors. We evaluate FreeZeV2 on the seven core datasets of the BOP Benchmark, where it establishes a new state-of-the-art in 6D pose estimation of unseen objects. When using the same segmentation masks, FreeZeV2 achieves a remarkable 8x speedup over FreeZe while also improving accuracy by 5%. When using ensembles of segmentation models, FreeZeV2 gains an additional 8% in accuracy while still running 2.5x faster than FreeZe. FreeZeV2 was awarded Best Overall Method at the BOP Challenge 2024.
comment: Technical report
Q-SAM2: Accurate Quantization for Segment Anything Model 2
The Segment Anything Model 2 (SAM2) has gained significant attention as a foundational approach for promptable image and video segmentation. However, its expensive computational and memory consumption poses a severe challenge for its application in resource-constrained scenarios. In this paper, we propose an accurate low-bit quantization method for efficient SAM2, termed Q-SAM2. To address the performance degradation caused by the singularities in weight and activation distributions during quantization, Q-SAM2 introduces two novel technical contributions. We first introduce a linear layer calibration method for low-bit initialization of SAM2, which minimizes the Frobenius norm over a small image batch to reposition weight distributions for improved quantization. We then propose a Quantization-Aware Training (QAT) pipeline that applies clipping to suppress outliers and allows the network to adapt to quantization thresholds during training. Our comprehensive experiments demonstrate that Q-SAM2 allows for highly accurate inference while substantially improving efficiency. Both quantitative and visual results show that our Q-SAM2 surpasses existing state-of-the-art general quantization schemes, especially for ultra-low 2-bit quantization. While designed for quantization-aware training, our proposed calibration technique also proves effective in post-training quantization, achieving up to a 66% mIoU accuracy improvement over non-calibrated models.
comment: 20 pages
Inverting Black-Box Face Recognition Systems via Zero-Order Optimization in Eigenface Space
Reconstructing facial images from black-box recognition models poses a significant privacy threat. While many methods require access to embeddings, we address the more challenging scenario of model inversion using only similarity scores. This paper introduces DarkerBB, a novel approach that reconstructs color faces by performing zero-order optimization within a PCA-derived eigenface space. Despite this highly limited information, experiments on LFW, AgeDB-30, and CFP-FP benchmarks demonstrate that DarkerBB achieves state-of-the-art verification accuracies in the similarity-only setting, with competitive query efficiency.
Hierarchical Image Matching for UAV Absolute Visual Localization via Semantic and Structural Constraints
Absolute localization, aiming to determine an agent's location with respect to a global reference, is crucial for unmanned aerial vehicles (UAVs) in various applications, but it becomes challenging when global navigation satellite system (GNSS) signals are unavailable. Vision-based absolute localization methods, which locate the current view of the UAV in a reference satellite map to estimate its position, have become popular in GNSS-denied scenarios. However, existing methods mostly rely on traditional and low-level image matching, suffering from difficulties due to significant differences introduced by cross-source discrepancies and temporal variations. To overcome these limitations, in this paper, we introduce a hierarchical cross-source image matching method designed for UAV absolute localization, which integrates a semantic-aware and structure-constrained coarse matching module with a lightweight fine-grained matching module. Specifically, in the coarse matching module, semantic features derived from a vision foundation model first establish region-level correspondences under semantic and structural constraints. Then, the fine-grained matching module is applied to extract fine features and establish pixel-level correspondences. Building upon this, a UAV absolute visual localization pipeline is constructed without any reliance on relative localization techniques, mainly by employing an image retrieval module before the proposed hierarchical image matching modules. Experimental evaluations on public benchmark datasets and a newly introduced CS-UAV dataset demonstrate superior accuracy and robustness of the proposed method under various challenging conditions, confirming its effectiveness.
comment: 8 pages, 6 figures
Class Similarity-Based Multimodal Classification under Heterogeneous Category Sets
Existing multimodal methods typically assume that different modalities share the same category set. However, in real-world applications, the category distributions in multimodal data exhibit inconsistencies, which can hinder the model's ability to effectively utilize cross-modal information for recognizing all categories. In this work, we propose the practical setting termed Multi-Modal Heterogeneous Category-set Learning (MMHCL), where models are trained in heterogeneous category sets of multi-modal data and aim to recognize complete classes set of all modalities during test. To effectively address this task, we propose a Class Similarity-based Cross-modal Fusion model (CSCF). Specifically, CSCF aligns modality-specific features to a shared semantic space to enable knowledge transfer between seen and unseen classes. It then selects the most discriminative modality for decision fusion through uncertainty estimation. Finally, it integrates cross-modal information based on class similarity, where the auxiliary modality refines the prediction of the dominant one. Experimental results show that our method significantly outperforms existing state-of-the-art (SOTA) approaches on multiple benchmark datasets, effectively addressing the MMHCL task.
ELBO-T2IAlign: A Generic ELBO-Based Method for Calibrating Pixel-level Text-Image Alignment in Diffusion Models
Diffusion models excel at image generation. Recent studies have shown that these models not only generate high-quality images but also encode text-image alignment information through attention maps or loss functions. This information is valuable for various downstream tasks, including segmentation, text-guided image editing, and compositional image generation. However, current methods heavily rely on the assumption of perfect text-image alignment in diffusion models, which is not the case. In this paper, we propose using zero-shot referring image segmentation as a proxy task to evaluate the pixel-level image and class-level text alignment of popular diffusion models. We conduct an in-depth analysis of pixel-text misalignment in diffusion models from the perspective of training data bias. We find that misalignment occurs in images with small sized, occluded, or rare object classes. Therefore, we propose ELBO-T2IAlign, a simple yet effective method to calibrate pixel-text alignment in diffusion models based on the evidence lower bound (ELBO) of likelihood. Our method is training-free and generic, eliminating the need to identify the specific cause of misalignment and works well across various diffusion model architectures. Extensive experiments on commonly used benchmark datasets on image segmentation and generation have verified the effectiveness of our proposed calibration approach.
Vision Matters: Simple Visual Perturbations Can Boost Multimodal Math Reasoning
Despite the rapid progress of multimodal large language models (MLLMs), they have largely overlooked the importance of visual processing. In a simple yet revealing experiment, we interestingly find that language-only models, when provided with image captions, can achieve comparable or even better performance than MLLMs that consume raw visual inputs. This suggests that current MLLMs may generate accurate visual descriptions but fail to effectively integrate them during reasoning. Motivated by this, we propose a simple visual perturbation framework that enhances perceptual robustness without requiring algorithmic modifications or additional training data. Our approach introduces three targeted perturbations: distractor concatenation, dominance-preserving mixup, and random rotation, that can be easily integrated into existing post-training pipelines including SFT, DPO, and GRPO. Through extensive experiments across multiple datasets, we demonstrate consistent improvements in mathematical reasoning performance, with gains comparable to those achieved through algorithmic changes. Additionally, we achieve competitive performance among open-source 7B RL-tuned models by training Qwen2.5-VL-7B with visual perturbation. Through comprehensive ablation studies, we analyze the effectiveness of different perturbation strategies, revealing that each perturbation type contributes uniquely to different aspects of visual reasoning. Our findings highlight the critical role of visual perturbation in multimodal mathematical reasoning: better reasoning begins with better seeing. Our code is available at https://github.com/YutingLi0606/Vision-Matters.
comment: Technical Report
MPFNet: A Multi-Prior Fusion Network with a Progressive Training Strategy for Micro-Expression Recognition
Micro-expression recognition (MER), a critical subfield of affective computing, presents greater challenges than macro-expression recognition due to its brief duration and low intensity. While incorporating prior knowledge has been shown to enhance MER performance, existing methods predominantly rely on simplistic, singular sources of prior knowledge, failing to fully exploit multi-source information. This paper introduces the Multi-Prior Fusion Network (MPFNet), leveraging a progressive training strategy to optimize MER tasks. We propose two complementary encoders: the Generic Feature Encoder (GFE) and the Advanced Feature Encoder (AFE), both based on Inflated 3D ConvNets (I3D) with Coordinate Attention (CA) mechanisms, to improve the model's ability to capture spatiotemporal and channel-specific features. Inspired by developmental psychology, we present two variants of MPFNet--MPFNet-P and MPFNet-C--corresponding to two fundamental modes of infant cognitive development: parallel and hierarchical processing. These variants enable the evaluation of different strategies for integrating prior knowledge. Extensive experiments demonstrate that MPFNet significantly improves MER accuracy while maintaining balanced performance across categories, achieving accuracies of 0.811, 0.924, and 0.857 on the SMIC, CASME II, and SAMM datasets, respectively. To the best of our knowledge, our approach achieves state-of-the-art performance on the SMIC and SAMM datasets.
AtmosMJ: Revisiting Gating Mechanism for AI Weather Forecasting Beyond the Year Scale
The advent of Large Weather Models (LWMs) has marked a turning point in data-driven forecasting, with many models now outperforming traditional numerical systems in the medium range. However, achieving stable, long-range autoregressive forecasts beyond a few weeks remains a significant challenge. Prevailing state-of-the-art models that achieve year-long stability, such as SFNO and DLWP-HPX, have relied on transforming input data onto non-standard spatial domains like spherical harmonics or HEALPix meshes. This has led to the prevailing assumption that such representations are necessary to enforce physical consistency and long-term stability. This paper challenges that assumption by investigating whether comparable long-range performance can be achieved on the standard latitude-longitude grid. We introduce AtmosMJ, a deep convolutional network that operates directly on ERA5 data without any spherical remapping. The model's stability is enabled by a novel Gated Residual Fusion (GRF) mechanism, which adaptively moderates feature updates to prevent error accumulation over long recursive simulations. Our results demonstrate that AtmosMJ produces stable and physically plausible forecasts for about 500 days. In quantitative evaluations, it achieves competitive 10-day forecast accuracy against models like Pangu-Weather and GraphCast, all while requiring a remarkably low training budget of 5.7 days on a V100 GPU. Our findings suggest that efficient architectural design, rather than non-standard data representation, can be the key to unlocking stable and computationally efficient long-range weather prediction.
The Four Color Theorem for Cell Instance Segmentation ICML 2025
Cell instance segmentation is critical to analyzing biomedical images, yet accurately distinguishing tightly touching cells remains a persistent challenge. Existing instance segmentation frameworks, including detection-based, contour-based, and distance mapping-based approaches, have made significant progress, but balancing model performance with computational efficiency remains an open problem. In this paper, we propose a novel cell instance segmentation method inspired by the four-color theorem. By conceptualizing cells as countries and tissues as oceans, we introduce a four-color encoding scheme that ensures adjacent instances receive distinct labels. This reformulation transforms instance segmentation into a constrained semantic segmentation problem with only four predicted classes, substantially simplifying the instance differentiation process. To solve the training instability caused by the non-uniqueness of four-color encoding, we design an asymptotic training strategy and encoding transformation method. Extensive experiments on various modes demonstrate our approach achieves state-of-the-art performance. The code is available at https://github.com/zhangye-zoe/FCIS.
comment: Accepted at ICML 2025
Non-Contact Health Monitoring During Daily Personal Care Routines
Remote photoplethysmography (rPPG) enables non-contact, continuous monitoring of physiological signals and offers a practical alternative to traditional health sensing methods. Although rPPG is promising for daily health monitoring, its application in long-term personal care scenarios, such as mirror-facing routines in high-altitude environments, remains challenging due to ambient lighting variations, frequent occlusions from hand movements, and dynamic facial postures. To address these challenges, we present LADH (Long-term Altitude Daily Health), the first long-term rPPG dataset containing 240 synchronized RGB and infrared (IR) facial videos from 21 participants across five common personal care scenarios, along with ground-truth PPG, respiration, and blood oxygen signals. Our experiments demonstrate that combining RGB and IR video inputs improves the accuracy and robustness of non-contact physiological monitoring, achieving a mean absolute error (MAE) of 4.99 BPM in heart rate estimation. Furthermore, we find that multi-task learning enhances performance across multiple physiological indicators simultaneously. Dataset and code are open at https://github.com/McJackTang/FusionVitals.
Training-Free Voice Conversion with Factorized Optimal Transport
This paper introduces Factorized MKL-VC, a training-free modification for kNN-VC pipeline. In contrast with original pipeline, our algorithm performs high quality any-to-any cross-lingual voice conversion with only 5 second of reference audio. MKL-VC replaces kNN regression with a factorized optimal transport map in WavLM embedding subspaces, derived from Monge-Kantorovich Linear solution. Factorization addresses non-uniform variance across dimensions, ensuring effective feature transformation. Experiments on LibriSpeech and FLEURS datasets show MKL-VC significantly improves content preservation and robustness with short reference audio, outperforming kNN-VC. MKL-VC achieves performance comparable to FACodec, especially in cross-lingual voice conversion domain.
comment: Interspeech 2025
CHIP: A multi-sensor dataset for 6D pose estimation of chairs in industrial settings
Accurate 6D pose estimation of complex objects in 3D environments is essential for effective robotic manipulation. Yet, existing benchmarks fall short in evaluating 6D pose estimation methods under realistic industrial conditions, as most datasets focus on household objects in domestic settings, while the few available industrial datasets are limited to artificial setups with objects placed on tables. To bridge this gap, we introduce CHIP, the first dataset designed for 6D pose estimation of chairs manipulated by a robotic arm in a real-world industrial environment. CHIP includes seven distinct chairs captured using three different RGBD sensing technologies and presents unique challenges, such as distractor objects with fine-grained differences and severe occlusions caused by the robotic arm and human operators. CHIP comprises 77,811 RGBD images annotated with ground-truth 6D poses automatically derived from the robot's kinematics, averaging 11,115 annotations per chair. We benchmark CHIP using three zero-shot 6D pose estimation methods, assessing performance across different sensor types, localization priors, and occlusion levels. Results show substantial room for improvement, highlighting the unique challenges posed by the dataset. CHIP will be publicly released.
comment: Technical report
Towards Practical Alzheimer's Disease Diagnosis: A Lightweight and Interpretable Spiking Neural Model
Early diagnosis of Alzheimer's Disease (AD), especially at the mild cognitive impairment (MCI) stage, is vital yet hindered by subjective assessments and the high cost of multimodal imaging modalities. Although deep learning methods offer automated alternatives, their energy inefficiency and computational demands limit real-world deployment, particularly in resource-constrained settings. As a brain-inspired paradigm, spiking neural networks (SNNs) are inherently well-suited for modeling the sparse, event-driven patterns of neural degeneration in AD, offering a promising foundation for interpretable and low-power medical diagnostics. However, existing SNNs often suffer from weak expressiveness and unstable training, which restrict their effectiveness in complex medical tasks. To address these limitations, we propose FasterSNN, a hybrid neural architecture that integrates biologically inspired LIF neurons with region-adaptive convolution and multi-scale spiking attention. This design enables sparse, efficient processing of 3D MRI while preserving diagnostic accuracy. Experiments on benchmark datasets demonstrate that FasterSNN achieves competitive performance with substantially improved efficiency and stability, supporting its potential for practical AD screening. Our source code is available at https://github.com/wuchangw/FasterSNN.
comment: 11 pages, 5 figures
Adding simple structure at inference improves Vision-Language Compositionality
Dual encoder Vision-Language Models (VLM) such as CLIP are widely used for image-text retrieval tasks. However, those models struggle with compositionality, showing a bag-of-words-like behavior that limits their retrieval performance. Many different training approaches have been proposed to improve the vision-language compositionality capabilities of those models. In comparison, inference-time techniques have received little attention. In this paper, we propose to add simple structure at inference, where, given an image and a caption: i) we divide the image into different smaller crops, ii) we extract text segments, capturing objects, attributes and relations, iii) using a VLM, we find the image crops that better align with text segments obtaining matches, and iv) we compute the final image-text similarity aggregating the individual similarities of the matches. Based on various popular dual encoder VLMs, we evaluate our approach in controlled and natural datasets for VL compositionality. We find that our approach consistently improves the performance of evaluated VLMs without any training, which shows the potential of inference-time techniques. The results are especially good for attribute-object binding as shown in the controlled dataset. As a result of an extensive analysis: i) we show that processing image crops is actually essential for the observed gains in performance, and ii) we identify specific areas to further improve inference-time approaches.
Reasoning Models Are More Easily Gaslighted Than You Think
Recent advances in reasoning-centric models promise improved robustness through mechanisms such as chain-of-thought prompting and test-time scaling. However, their ability to withstand misleading user input remains underexplored. In this paper, we conduct a systematic evaluation of three state-of-the-art reasoning models, i.e., OpenAI's o4-mini, Claude-3.7-Sonnet and Gemini-2.5-Flash, across three multimodal benchmarks: MMMU, MathVista, and CharXiv. Our evaluation reveals significant accuracy drops (25-29% on average) following gaslighting negation prompts, indicating that even top-tier reasoning models struggle to preserve correct answers under manipulative user feedback. Built upon the insights of the evaluation and to further probe this vulnerability, we introduce GaslightingBench-R, a new diagnostic benchmark specifically designed to evaluate reasoning models' susceptibility to defend their belief under gaslighting negation prompt. Constructed by filtering and curating 1,025 challenging samples from the existing benchmarks, GaslightingBench-R induces even more dramatic failures, with accuracy drops exceeding 53% on average. Our findings reveal fundamental limitations in the robustness of reasoning models, highlighting the gap between step-by-step reasoning and belief persistence.
CINeMA: Conditional Implicit Neural Multi-Modal Atlas for a Spatio-Temporal Representation of the Perinatal Brain
Magnetic resonance imaging of fetal and neonatal brains reveals rapid neurodevelopment marked by substantial anatomical changes unfolding within days. Studying this critical stage of the developing human brain, therefore, requires accurate brain models-referred to as atlases-of high spatial and temporal resolution. To meet these demands, established traditional atlases and recently proposed deep learning-based methods rely on large and comprehensive datasets. This poses a major challenge for studying brains in the presence of pathologies for which data remains scarce. We address this limitation with CINeMA (Conditional Implicit Neural Multi-Modal Atlas), a novel framework for creating high-resolution, spatio-temporal, multimodal brain atlases, suitable for low-data settings. Unlike established methods, CINeMA operates in latent space, avoiding compute-intensive image registration and reducing atlas construction times from days to minutes. Furthermore, it enables flexible conditioning on anatomical features including GA, birth age, and pathologies like ventriculomegaly (VM) and agenesis of the corpus callosum (ACC). CINeMA supports downstream tasks such as tissue segmentation and age prediction whereas its generative properties enable synthetic data creation and anatomically informed data augmentation. Surpassing state-of-the-art methods in accuracy, efficiency, and versatility, CINeMA represents a powerful tool for advancing brain research. We release the code and atlases at https://github.com/m-dannecker/CINeMA.
comment: Work currently under revision for IEEE TMI
VideoMat: Extracting PBR Materials from Video Diffusion Models
We leverage finetuned video diffusion models, intrinsic decomposition of videos, and physically-based differentiable rendering to generate high quality materials for 3D models given a text prompt or a single image. We condition a video diffusion model to respect the input geometry and lighting condition. This model produces multiple views of a given 3D model with coherent material properties. Secondly, we use a recent model to extract intrinsics (base color, roughness, metallic) from the generated video. Finally, we use the intrinsics alongside the generated video in a differentiable path tracer to robustly extract PBR materials directly compatible with common content creation tools.
Self-Supervised Multi-Part Articulated Objects Modeling via Deformable Gaussian Splatting and Progressive Primitive Segmentation
Articulated objects are ubiquitous in everyday life, and accurate 3D representations of their geometry and motion are critical for numerous applications. However, in the absence of human annotation, existing approaches still struggle to build a unified representation for objects that contain multiple movable parts. We introduce DeGSS, a unified framework that encodes articulated objects as deformable 3D Gaussian fields, embedding geometry, appearance, and motion in one compact representation. Each interaction state is modeled as a smooth deformation of a shared field, and the resulting deformation trajectories guide a progressive coarse-to-fine part segmentation that identifies distinct rigid components, all in an unsupervised manner. The refined field provides a spatially continuous, fully decoupled description of every part, supporting part-level reconstruction and precise modeling of their kinematic relationships. To evaluate generalization and realism, we enlarge the synthetic PartNet-Mobility benchmark and release RS-Art, a real-to-sim dataset that pairs RGB captures with accurately reverse-engineered 3D models. Extensive experiments demonstrate that our method outperforms existing methods in both accuracy and stability.
A Cytology Dataset for Early Detection of Oral Squamous Cell Carcinoma
Oral squamous cell carcinoma OSCC is a major global health burden, particularly in several regions across Asia, Africa, and South America, where it accounts for a significant proportion of cancer cases. Early detection dramatically improves outcomes, with stage I cancers achieving up to 90 percent survival. However, traditional diagnosis based on histopathology has limited accessibility in low-resource settings because it is invasive, resource-intensive, and reliant on expert pathologists. On the other hand, oral cytology of brush biopsy offers a minimally invasive and lower cost alternative, provided that the remaining challenges, inter observer variability and unavailability of expert pathologists can be addressed using artificial intelligence. Development and validation of robust AI solutions requires access to large, labeled, and multi-source datasets to train high capacity models that generalize across domain shifts. We introduce the first large and multicenter oral cytology dataset, comprising annotated slides stained with Papanicolaou(PAP) and May-Grunwald-Giemsa(MGG) protocols, collected from ten tertiary medical centers in India. The dataset is labeled and annotated by expert pathologists for cellular anomaly classification and detection, is designed to advance AI driven diagnostic methods. By filling the gap in publicly available oral cytology datasets, this resource aims to enhance automated detection, reduce diagnostic errors, and improve early OSCC diagnosis in resource-constrained settings, ultimately contributing to reduced mortality and better patient outcomes worldwide.
comment: 7 pages, 2 figurs
HopaDIFF: Holistic-Partial Aware Fourier Conditioned Diffusion for Referring Human Action Segmentation in Multi-Person Scenarios
Action segmentation is a core challenge in high-level video understanding, aiming to partition untrimmed videos into segments and assign each a label from a predefined action set. Existing methods primarily address single-person activities with fixed action sequences, overlooking multi-person scenarios. In this work, we pioneer textual reference-guided human action segmentation in multi-person settings, where a textual description specifies the target person for segmentation. We introduce the first dataset for Referring Human Action Segmentation, i.e., RHAS133, built from 133 movies and annotated with 137 fine-grained actions with 33h video data, together with textual descriptions for this new task. Benchmarking existing action recognition methods on RHAS133 using VLM-based feature extractors reveals limited performance and poor aggregation of visual cues for the target person. To address this, we propose a holistic-partial aware Fourier-conditioned diffusion framework, i.e., HopaDIFF, leveraging a novel cross-input gate attentional xLSTM to enhance holistic-partial long-range reasoning and a novel Fourier condition to introduce more fine-grained control to improve the action segmentation generation. HopaDIFF achieves state-of-the-art results on RHAS133 in diverse evaluation settings. The code is available at https://github.com/KPeng9510/HopaDIFF.git.
comment: The code is available at https://github.com/KPeng9510/HopaDIFF.git
DGAE: Diffusion-Guided Autoencoder for Efficient Latent Representation Learning
Autoencoders empower state-of-the-art image and video generative models by compressing pixels into a latent space through visual tokenization. Although recent advances have alleviated the performance degradation of autoencoders under high compression ratios, addressing the training instability caused by GAN remains an open challenge. While improving spatial compression, we also aim to minimize the latent space dimensionality, enabling more efficient and compact representations. To tackle these challenges, we focus on improving the decoder's expressiveness. Concretely, we propose DGAE, which employs a diffusion model to guide the decoder in recovering informative signals that are not fully decoded from the latent representation. With this design, DGAE effectively mitigates the performance degradation under high spatial compression rates. At the same time, DGAE achieves state-of-the-art performance with a 2x smaller latent space. When integrated with Diffusion Models, DGAE demonstrates competitive performance on image generation for ImageNet-1K and shows that this compact latent representation facilitates faster convergence of the diffusion model.
Using Sign Language Production as Data Augmentation to enhance Sign Language Translation
Machine learning models fundamentally rely on large quantities of high-quality data. Collecting the necessary data for these models can be challenging due to cost, scarcity, and privacy restrictions. Signed languages are visual languages used by the deaf community and are considered low-resource languages. Sign language datasets are often orders of magnitude smaller than their spoken language counterparts. Sign Language Production is the task of generating sign language videos from spoken language sentences, while Sign Language Translation is the reverse translation task. Here, we propose leveraging recent advancements in Sign Language Production to augment existing sign language datasets and enhance the performance of Sign Language Translation models. For this, we utilize three techniques: a skeleton-based approach to production, sign stitching, and two photo-realistic generative models, SignGAN and SignSplat. We evaluate the effectiveness of these techniques in enhancing the performance of Sign Language Translation models by generating variation in the signer's appearance and the motion of the skeletal data. Our results demonstrate that the proposed methods can effectively augment existing datasets and enhance the performance of Sign Language Translation models by up to 19%, paving the way for more robust and accurate Sign Language Translation systems, even in resource-constrained environments.
FedVLMBench: Benchmarking Federated Fine-Tuning of Vision-Language Models
Vision-Language Models (VLMs) have demonstrated remarkable capabilities in cross-modal understanding and generation by integrating visual and textual information. While instruction tuning and parameter-efficient fine-tuning methods have substantially improved the generalization of VLMs, most existing approaches rely on centralized training, posing challenges for deployment in domains with strict privacy requirements like healthcare. Recent efforts have introduced Federated Learning (FL) into VLM fine-tuning to address these privacy concerns, yet comprehensive benchmarks for evaluating federated fine-tuning strategies, model architectures, and task generalization remain lacking. In this work, we present \textbf{FedVLMBench}, the first systematic benchmark for federated fine-tuning of VLMs. FedVLMBench integrates two mainstream VLM architectures (encoder-based and encoder-free), four fine-tuning strategies, five FL algorithms, six multimodal datasets spanning four cross-domain single-task scenarios and two cross-domain multitask settings, covering four distinct downstream task categories. Through extensive experiments, we uncover key insights into the interplay between VLM architectures, fine-tuning strategies, data heterogeneity, and multi-task federated optimization. Notably, we find that a 2-layer multilayer perceptron (MLP) connector with concurrent connector and LLM tuning emerges as the optimal configuration for encoder-based VLMs in FL. Furthermore, current FL methods exhibit significantly higher sensitivity to data heterogeneity in vision-centric tasks than text-centric ones, across both encoder-free and encoder-based VLM architectures. Our benchmark provides essential tools, datasets, and empirical guidance for the research community, offering a standardized platform to advance privacy-preserving, federated training of multimodal foundation models.
HSENet: Hybrid Spatial Encoding Network for 3D Medical Vision-Language Understanding
Automated 3D CT diagnosis empowers clinicians to make timely, evidence-based decisions by enhancing diagnostic accuracy and workflow efficiency. While multimodal large language models (MLLMs) exhibit promising performance in visual-language understanding, existing methods mainly focus on 2D medical images, which fundamentally limits their ability to capture complex 3D anatomical structures. This limitation often leads to misinterpretation of subtle pathologies and causes diagnostic hallucinations. In this paper, we present Hybrid Spatial Encoding Network (HSENet), a framework that exploits enriched 3D medical visual cues by effective visual perception and projection for accurate and robust vision-language understanding. Specifically, HSENet employs dual-3D vision encoders to perceive both global volumetric contexts and fine-grained anatomical details, which are pre-trained by dual-stage alignment with diagnostic reports. Furthermore, we propose Spatial Packer, an efficient multimodal projector that condenses high-resolution 3D spatial regions into a compact set of informative visual tokens via centroid-based compression. By assigning spatial packers with dual-3D vision encoders, HSENet can seamlessly perceive and transfer hybrid visual representations to LLM's semantic space, facilitating accurate diagnostic text generation. Experimental results demonstrate that our method achieves state-of-the-art performance in 3D language-visual retrieval (39.85% of R@100, +5.96% gain), 3D medical report generation (24.01% of BLEU-4, +8.01% gain), and 3D visual question answering (73.60% of Major Class Accuracy, +1.99% gain), confirming its effectiveness. Our code is available at https://github.com/YanzhaoShi/HSENet.
comment: 27 pages, 9 figures. arXiv admin note: text overlap with arXiv:2410.14200 by other authors
ECAM: A Contrastive Learning Approach to Avoid Environmental Collision in Trajectory Forecasting IJCNN 2025
Human trajectory forecasting is crucial in applications such as autonomous driving, robotics and surveillance. Accurate forecasting requires models to consider various factors, including social interactions, multi-modal predictions, pedestrian intention and environmental context. While existing methods account for these factors, they often overlook the impact of the environment, which leads to collisions with obstacles. This paper introduces ECAM (Environmental Collision Avoidance Module), a contrastive learning-based module to enhance collision avoidance ability with the environment. The proposed module can be integrated into existing trajectory forecasting models, improving their ability to generate collision-free predictions. We evaluate our method on the ETH/UCY dataset and quantitatively and qualitatively demonstrate its collision avoidance capabilities. Our experiments show that state-of-the-art methods significantly reduce (-40/50%) the collision rate when integrated with the proposed module. The code is available at https://github.com/CVML-CFU/ECAM.
comment: IJCNN 2025
Consistent Story Generation with Asymmetry Zigzag Sampling
Text-to-image generation models have made significant progress in producing high-quality images from textual descriptions, yet they continue to struggle with maintaining subject consistency across multiple images, a fundamental requirement for visual storytelling. Existing methods attempt to address this by either fine-tuning models on large-scale story visualization datasets, which is resource-intensive, or by using training-free techniques that share information across generations, which still yield limited success. In this paper, we introduce a novel training-free sampling strategy called Zigzag Sampling with Asymmetric Prompts and Visual Sharing to enhance subject consistency in visual story generation. Our approach proposes a zigzag sampling mechanism that alternates between asymmetric prompting to retain subject characteristics, while a visual sharing module transfers visual cues across generated images to %further enforce consistency. Experimental results, based on both quantitative metrics and qualitative evaluations, demonstrate that our method significantly outperforms previous approaches in generating coherent and consistent visual stories. The code is available at https://github.com/Mingxiao-Li/Asymmetry-Zigzag-StoryDiffusion.
comment: 17 pages, 9. figures
SemanticSplat: Feed-Forward 3D Scene Understanding with Language-Aware Gaussian Fields
Holistic 3D scene understanding, which jointly models geometry, appearance, and semantics, is crucial for applications like augmented reality and robotic interaction. Existing feed-forward 3D scene understanding methods (e.g., LSM) are limited to extracting language-based semantics from scenes, failing to achieve holistic scene comprehension. Additionally, they suffer from low-quality geometry reconstruction and noisy artifacts. In contrast, per-scene optimization methods rely on dense input views, which reduces practicality and increases complexity during deployment. In this paper, we propose SemanticSplat, a feed-forward semantic-aware 3D reconstruction method, which unifies 3D Gaussians with latent semantic attributes for joint geometry-appearance-semantics modeling. To predict the semantic anisotropic Gaussians, SemanticSplat fuses diverse feature fields (e.g., LSeg, SAM) with a cost volume representation that stores cross-view feature similarities, enhancing coherent and accurate scene comprehension. Leveraging a two-stage distillation framework, SemanticSplat reconstructs a holistic multi-modal semantic feature field from sparse-view images. Experiments demonstrate the effectiveness of our method for 3D scene understanding tasks like promptable and open-vocabulary segmentation. Video results are available at https://semanticsplat.github.io.
AD^2-Bench: A Hierarchical CoT Benchmark for MLLM in Autonomous Driving under Adverse Conditions
Chain-of-Thought (CoT) reasoning has emerged as a powerful approach to enhance the structured, multi-step decision-making capabilities of Multi-Modal Large Models (MLLMs), is particularly crucial for autonomous driving with adverse weather conditions and complex traffic environments. However, existing benchmarks have largely overlooked the need for rigorous evaluation of CoT processes in these specific and challenging scenarios. To address this critical gap, we introduce AD^2-Bench, the first Chain-of-Thought benchmark specifically designed for autonomous driving with adverse weather and complex scenes. AD^2-Bench is meticulously constructed to fulfill three key criteria: comprehensive data coverage across diverse adverse environments, fine-grained annotations that support multi-step reasoning, and a dedicated evaluation framework tailored for assessing CoT performance. The core contribution of AD^2-Bench is its extensive collection of over 5.4k high-quality, manually annotated CoT instances. Each intermediate reasoning step in these annotations is treated as an atomic unit with explicit ground truth, enabling unprecedented fine-grained analysis of MLLMs' inferential processes under text-level, point-level, and region-level visual prompts. Our comprehensive evaluation of state-of-the-art MLLMs on AD^2-Bench reveals accuracy below 60%, highlighting the benchmark's difficulty and the need to advance robust, interpretable end-to-end autonomous driving systems. AD^2-Bench thus provides a standardized evaluation platform, driving research forward by improving MLLMs' reasoning in autonomous driving, making it an invaluable resource.
GLD-Road:A global-local decoding road network extraction model for remote sensing images
Road networks are crucial for mapping, autonomous driving, and disaster response. While manual annotation is costly, deep learning offers efficient extraction. Current methods include postprocessing (prone to errors), global parallel (fast but misses nodes), and local iterative (accurate but slow). We propose GLD-Road, a two-stage model combining global efficiency and local precision. First, it detects road nodes and connects them via a Connect Module. Then, it iteratively refines broken roads using local searches, drastically reducing computation. Experiments show GLD-Road outperforms state-of-the-art methods, improving APLS by 1.9% (City-Scale) and 0.67% (SpaceNet3). It also reduces retrieval time by 40% vs. Sat2Graph (global) and 92% vs. RNGDet++ (local). The experimental results are available at https://github.com/ucas-dlg/GLD-Road.
Enhancing Human-Robot Collaboration: A Sim2Real Domain Adaptation Algorithm for Point Cloud Segmentation in Industrial Environments
The robust interpretation of 3D environments is crucial for human-robot collaboration (HRC) applications, where safety and operational efficiency are paramount. Semantic segmentation plays a key role in this context by enabling a precise and detailed understanding of the environment. Considering the intense data hunger for real-world industrial annotated data essential for effective semantic segmentation, this paper introduces a pioneering approach in the Sim2Real domain adaptation for semantic segmentation of 3D point cloud data, specifically tailored for HRC. Our focus is on developing a network that robustly transitions from simulated environments to real-world applications, thereby enhancing its practical utility and impact on a safe HRC. In this work, we propose a dual-stream network architecture (FUSION) combining Dynamic Graph Convolutional Neural Networks (DGCNN) and Convolutional Neural Networks (CNN) augmented with residual layers as a Sim2Real domain adaptation algorithm for an industrial environment. The proposed model was evaluated on real-world HRC setups and simulation industrial point clouds, it showed increased state-of-the-art performance, achieving a segmentation accuracy of 97.76%, and superior robustness compared to existing methods.
comment: Preprint, Journal of Intelligent & Robotic Systems
3DGeoDet: General-purpose Geometry-aware Image-based 3D Object Detection
This paper proposes 3DGeoDet, a novel geometry-aware 3D object detection approach that effectively handles single- and multi-view RGB images in indoor and outdoor environments, showcasing its general-purpose applicability. The key challenge for image-based 3D object detection tasks is the lack of 3D geometric cues, which leads to ambiguity in establishing correspondences between images and 3D representations. To tackle this problem, 3DGeoDet generates efficient 3D geometric representations in both explicit and implicit manners based on predicted depth information. Specifically, we utilize the predicted depth to learn voxel occupancy and optimize the voxelized 3D feature volume explicitly through the proposed voxel occupancy attention. To further enhance 3D awareness, the feature volume is integrated with an implicit 3D representation, the truncated signed distance function (TSDF). Without requiring supervision from 3D signals, we significantly improve the model's comprehension of 3D geometry by leveraging intermediate 3D representations and achieve end-to-end training. Our approach surpasses the performance of state-of-the-art image-based methods on both single- and multi-view benchmark datasets across diverse environments, achieving a 9.3 mAP@0.5 improvement on the SUN RGB-D dataset, a 3.3 mAP@0.5 improvement on the ScanNetV2 dataset, and a 0.19 AP3D@0.7 improvement on the KITTI dataset. The project page is available at: https://cindy0725.github.io/3DGeoDet/.
comment: Accepted by IEEE Transactions on Multimedia
AngleRoCL: Angle-Robust Concept Learning for Physically View-Invariant T2I Adversarial Patches
Cutting-edge works have demonstrated that text-to-image (T2I) diffusion models can generate adversarial patches that mislead state-of-the-art object detectors in the physical world, revealing detectors' vulnerabilities and risks. However, these methods neglect the T2I patches' attack effectiveness when observed from different views in the physical world (i.e., angle robustness of the T2I adversarial patches). In this paper, we study the angle robustness of T2I adversarial patches comprehensively, revealing their angle-robust issues, demonstrating that texts affect the angle robustness of generated patches significantly, and task-specific linguistic instructions fail to enhance the angle robustness. Motivated by the studies, we introduce Angle-Robust Concept Learning (AngleRoCL), a simple and flexible approach that learns a generalizable concept (i.e., text embeddings in implementation) representing the capability of generating angle-robust patches. The learned concept can be incorporated into textual prompts and guides T2I models to generate patches with their attack effectiveness inherently resistant to viewpoint variations. Through extensive simulation and physical-world experiments on five SOTA detectors across multiple views, we demonstrate that AngleRoCL significantly enhances the angle robustness of T2I adversarial patches compared to baseline methods. Our patches maintain high attack success rates even under challenging viewing conditions, with over 50% average relative improvement in attack effectiveness across multiple angles. This research advances the understanding of physically angle-robust patches and provides insights into the relationship between textual concepts and physical properties in T2I-generated contents.
Gaussian Herding across Pens: An Optimal Transport Perspective on Global Gaussian Reduction for 3DGS
3D Gaussian Splatting (3DGS) has emerged as a powerful technique for radiance field rendering, but it typically requires millions of redundant Gaussian primitives, overwhelming memory and rendering budgets. Existing compaction approaches address this by pruning Gaussians based on heuristic importance scores, without global fidelity guarantee. To bridge this gap, we propose a novel optimal transport perspective that casts 3DGS compaction as global Gaussian mixture reduction. Specifically, we first minimize the composite transport divergence over a KD-tree partition to produce a compact geometric representation, and then decouple appearance from geometry by fine-tuning color and opacity attributes with far fewer Gaussian primitives. Experiments on benchmark datasets show that our method (i) yields negligible loss in rendering quality (PSNR, SSIM, LPIPS) compared to vanilla 3DGS with only 10% Gaussians; and (ii) consistently outperforms state-of-the-art 3DGS compaction techniques. Notably, our method is applicable to any stage of vanilla or accelerated 3DGS pipelines, providing an efficient and agnostic pathway to lightweight neural rendering.
comment: 18 pages, 8 figures
Athena: Enhancing Multimodal Reasoning with Data-efficient Process Reward Models
We present Athena-PRM, a multimodal process reward model (PRM) designed to evaluate the reward score for each step in solving complex reasoning problems. Developing high-performance PRMs typically demands significant time and financial investment, primarily due to the necessity for step-level annotations of reasoning steps. Conventional automated labeling methods, such as Monte Carlo estimation, often produce noisy labels and incur substantial computational costs. To efficiently generate high-quality process-labeled data, we propose leveraging prediction consistency between weak and strong completers as a criterion for identifying reliable process labels. Remarkably, Athena-PRM demonstrates outstanding effectiveness across various scenarios and benchmarks with just 5,000 samples. Furthermore, we also develop two effective strategies to improve the performance of PRMs: ORM initialization and up-sampling for negative data. We validate our approach in three specific scenarios: verification for test time scaling, direct evaluation of reasoning step correctness, and reward ranked fine-tuning. Our Athena-PRM consistently achieves superior performance across multiple benchmarks and scenarios. Notably, when using Qwen2.5-VL-7B as the policy model, Athena-PRM enhances performance by 10.2 points on WeMath and 7.1 points on MathVista for test time scaling. Furthermore, Athena-PRM sets the state-of-the-art (SoTA) results in VisualProcessBench and outperforms the previous SoTA by 3.9 F1-score, showcasing its robust capability to accurately assess the correctness of the reasoning step. Additionally, utilizing Athena-PRM as the reward model, we develop Athena-7B with reward ranked fine-tuning and outperforms baseline with a significant margin on five benchmarks.
Revisit What You See: Disclose Language Prior in Vision Tokens for Efficient Guided Decoding of LVLMs
Large Vision-Language Models (LVLMs) have demonstrated remarkable performance across various multimodal tasks by integrating visual perception with language understanding. However, conventional decoding strategies of LVLMs often fail to successfully utilize visual information, leading to visually ungrounded responses. While various approaches have been proposed to address this limitation, they typically require additional training, multi-step inference procedures, or external model dependencies. This paper introduces ReVisiT, a simple yet effective decoding method that references vision tokens to guide the text generation process in LVLMs. Our approach leverages the semantic information embedded within vision tokens by projecting them into the text token distribution space, and dynamically selecting the most relevant vision token at each decoding step through constrained divergence minimization. This selected vision token is then used to refine the output distribution to better incorporate visual semantics. Experiments on three LVLM hallucination benchmarks with two recent LVLMs demonstrate that ReVisiT consistently enhances visual grounding with minimal computational overhead. Moreover, our method achieves competitive or superior results relative to state-of-the-art baselines while reducing computational costs for up to $2\times$.
comment: Code available at https://github.com/bscho333/ReVisiT
HAIF-GS: Hierarchical and Induced Flow-Guided Gaussian Splatting for Dynamic Scene
Reconstructing dynamic 3D scenes from monocular videos remains a fundamental challenge in 3D vision. While 3D Gaussian Splatting (3DGS) achieves real-time rendering in static settings, extending it to dynamic scenes is challenging due to the difficulty of learning structured and temporally consistent motion representations. This challenge often manifests as three limitations in existing methods: redundant Gaussian updates, insufficient motion supervision, and weak modeling of complex non-rigid deformations. These issues collectively hinder coherent and efficient dynamic reconstruction. To address these limitations, we propose HAIF-GS, a unified framework that enables structured and consistent dynamic modeling through sparse anchor-driven deformation. It first identifies motion-relevant regions via an Anchor Filter to suppresses redundant updates in static areas. A self-supervised Induced Flow-Guided Deformation module induces anchor motion using multi-frame feature aggregation, eliminating the need for explicit flow labels. To further handle fine-grained deformations, a Hierarchical Anchor Propagation mechanism increases anchor resolution based on motion complexity and propagates multi-level transformations. Extensive experiments on synthetic and real-world benchmarks validate that HAIF-GS significantly outperforms prior dynamic 3DGS methods in rendering quality, temporal coherence, and reconstruction efficiency.
Generalized Gaussian Entropy Model for Point Cloud Attribute Compression with Dynamic Likelihood Intervals
Gaussian and Laplacian entropy models are proved effective in learned point cloud attribute compression, as they assist in arithmetic coding of latents. However, we demonstrate through experiments that there is still unutilized information in entropy parameters estimated by neural networks in current methods, which can be used for more accurate probability estimation. Thus we introduce generalized Gaussian entropy model, which controls the tail shape through shape parameter to more accurately estimate the probability of latents. Meanwhile, to the best of our knowledge, existing methods use fixed likelihood intervals for each integer during arithmetic coding, which limits model performance. We propose Mean Error Discriminator (MED) to determine whether the entropy parameter estimation is accurate and then dynamically adjust likelihood intervals. Experiments show that our method significantly improves rate-distortion (RD) performance on three VAE-based models for point cloud attribute compression, and our method can be applied to other compression tasks, such as image and video compression.
DCIRNet: Depth Completion with Iterative Refinement for Dexterous Grasping of Transparent and Reflective Objects
Transparent and reflective objects in everyday environments pose significant challenges for depth sensors due to their unique visual properties, such as specular reflections and light transmission. These characteristics often lead to incomplete or inaccurate depth estimation, which severely impacts downstream geometry-based vision tasks, including object recognition, scene reconstruction, and robotic manipulation. To address the issue of missing depth information in transparent and reflective objects, we propose DCIRNet, a novel multimodal depth completion network that effectively integrates RGB images and depth maps to enhance depth estimation quality. Our approach incorporates an innovative multimodal feature fusion module designed to extract complementary information between RGB images and incomplete depth maps. Furthermore, we introduce a multi-stage supervision and depth refinement strategy that progressively improves depth completion and effectively mitigates the issue of blurred object boundaries. We integrate our depth completion model into dexterous grasping frameworks and achieve a $44\%$ improvement in the grasp success rate for transparent and reflective objects. We conduct extensive experiments on public datasets, where DCIRNet demonstrates superior performance. The experimental results validate the effectiveness of our approach and confirm its strong generalization capability across various transparent and reflective objects.
Marrying Autoregressive Transformer and Diffusion with Multi-Reference Autoregression
We introduce TransDiff, the first image generation model that marries Autoregressive (AR) Transformer with diffusion models. In this joint modeling framework, TransDiff encodes labels and images into high-level semantic features and employs a diffusion model to estimate the distribution of image samples. On the ImageNet 256x256 benchmark, TransDiff significantly outperforms other image generation models based on standalone AR Transformer or diffusion models. Specifically, TransDiff achieves a Fr\'echet Inception Distance (FID) of 1.61 and an Inception Score (IS) of 293.4, and further provides x2 faster inference latency compared to state-of-the-art methods based on AR Transformer and x112 faster inference compared to diffusion-only models. Furthermore, building on the TransDiff model, we introduce a novel image generation paradigm called Multi-Reference Autoregression (MRAR), which performs autoregressive generation by predicting the next image. MRAR enables the model to reference multiple previously generated images, thereby facilitating the learning of more diverse representations and improving the quality of generated images in subsequent iterations. By applying MRAR, the performance of TransDiff is improved, with the FID reduced from 1.61 to 1.42. We expect TransDiff to open up a new frontier in the field of image generation.
TinySplat: Feedforward Approach for Generating Compact 3D Scene Representation
The recent development of feedforward 3D Gaussian Splatting (3DGS) presents a new paradigm to reconstruct 3D scenes. Using neural networks trained on large-scale multi-view datasets, it can directly infer 3DGS representations from sparse input views. Although the feedforward approach achieves high reconstruction speed, it still suffers from the substantial storage cost of 3D Gaussians. Existing 3DGS compression methods relying on scene-wise optimization are not applicable due to architectural incompatibilities. To overcome this limitation, we propose TinySplat, a complete feedforward approach for generating compact 3D scene representations. Built upon standard feedforward 3DGS methods, TinySplat integrates a training-free compression framework that systematically eliminates key sources of redundancy. Specifically, we introduce View-Projection Transformation (VPT) to reduce geometric redundancy by projecting geometric parameters into a more compact space. We further present Visibility-Aware Basis Reduction (VABR), which mitigates perceptual redundancy by aligning feature energy along dominant viewing directions via basis transformation. Lastly, spatial redundancy is addressed through an off-the-shelf video codec. Comprehensive experimental results on multiple benchmark datasets demonstrate that TinySplat achieves over 100x compression for 3D Gaussian data generated by feedforward methods. Compared to the state-of-the-art compression approach, we achieve comparable quality with only 6% of the storage size. Meanwhile, our compression framework requires only 25% of the encoding time and 1% of the decoding time.
Urban1960SatSeg: Unsupervised Semantic Segmentation of Mid-20$^{th}$ century Urban Landscapes with Satellite Imageries
Historical satellite imagery, such as mid-20$^{th}$ century Keyhole data, offers rare insights into understanding early urban development and long-term transformation. However, severe quality degradation (e.g., distortion, misalignment, and spectral scarcity) and annotation absence have long hindered semantic segmentation on such historical RS imagery. To bridge this gap and enhance understanding of urban development, we introduce $\textbf{Urban1960SatBench}$, an annotated segmentation dataset based on historical satellite imagery with the earliest observation time among all existing segmentation datasets, along with a benchmark framework for unsupervised segmentation tasks, $\textbf{Urban1960SatUSM}$. First, $\textbf{Urban1960SatBench}$ serves as a novel, expertly annotated semantic segmentation dataset built on mid-20$^{th}$ century Keyhole imagery, covering 1,240 km$^2$ and key urban classes (buildings, roads, farmland, water). As the earliest segmentation dataset of its kind, it provides a pioneering benchmark for historical urban understanding. Second, $\textbf{Urban1960SatUSM}$(Unsupervised Segmentation Model) is a novel unsupervised semantic segmentation framework for historical RS imagery. It employs a confidence-aware alignment mechanism and focal-confidence loss based on a self-supervised learning architecture, which generates robust pseudo-labels and adaptively prioritizes prediction difficulty and label reliability to improve unsupervised segmentation on noisy historical data without manual supervision. Experiments show Urban1960SatUSM significantly outperforms existing unsupervised segmentation methods on Urban1960SatSeg for segmenting historical urban scenes, promising in paving the way for quantitative studies of long-term urban change using modern computer vision. Our benchmark and supplementary material are available at https://github.com/Tianxiang-Hao/Urban1960SatSeg.
Provoking Multi-modal Few-Shot LVLM via Exploration-Exploitation In-Context Learning CVPR 2025
In-context learning (ICL), a predominant trend in instruction learning, aims at enhancing the performance of large language models by providing clear task guidance and examples, improving their capability in task understanding and execution. This paper investigates ICL on Large Vision-Language Models (LVLMs) and explores the policies of multi-modal demonstration selection. Existing research efforts in ICL face significant challenges: First, they rely on pre-defined demonstrations or heuristic selecting strategies based on human intuition, which are usually inadequate for covering diverse task requirements, leading to sub-optimal solutions; Second, individually selecting each demonstration fails in modeling the interactions between them, resulting in information redundancy. Unlike these prevailing efforts, we propose a new exploration-exploitation reinforcement learning framework, which explores policies to fuse multi-modal information and adaptively select adequate demonstrations as an integrated whole. The framework allows LVLMs to optimize themselves by continually refining their demonstrations through self-exploration, enabling the ability to autonomously identify and generate the most effective selection policies for in-context learning. Experimental results verify the superior performance of our approach on four Visual Question-Answering (VQA) datasets, demonstrating its effectiveness in enhancing the generalization capability of few-shot LVLMs.
comment: 10 pages, 6 figures, CVPR 2025
Optimizing Cooperative Multi-Object Tracking using Graph Signal Processing
Multi-Object Tracking (MOT) plays a crucial role in autonomous driving systems, as it lays the foundations for advanced perception and precise path planning modules. Nonetheless, single agent based MOT lacks in sensing surroundings due to occlusions, sensors failures, etc. Hence, the integration of multiagent information is essential for comprehensive understanding of the environment. This paper proposes a novel Cooperative MOT framework for tracking objects in 3D LiDAR scene by formulating and solving a graph topology-aware optimization problem so as to fuse information coming from multiple vehicles. By exploiting a fully connected graph topology defined by the detected bounding boxes, we employ the Graph Laplacian processing optimization technique to smooth the position error of bounding boxes and effectively combine them. In that manner, we reveal and leverage inherent coherences of diverse multi-agent detections, and associate the refined bounding boxes to tracked objects at two stages, optimizing localization and tracking accuracies. An extensive evaluation study has been conducted, using the real-world V2V4Real dataset, where the proposed method significantly outperforms the baseline frameworks, including the state-of-the-art deep-learning DMSTrack and V2V4Real, in various testing sequences.
comment: 2025 IEEE International Conference on Multimedia and Expo Workshops, 3DMM - 3D Multimedia Analytics, Search and Generation
Evidential Deep Learning with Spectral-Spatial Uncertainty Disentanglement for Open-Set Hyperspectral Domain Generalization
Open-set domain generalization(OSDG) for hyperspectral image classification presents significant challenges due to the presence of unknown classes in target domains and the need for models to generalize across multiple unseen domains without target-specific adaptation. Existing domain adaptation methods assume access to target domain data during training and fail to address the fundamental issue of domain shift when unknown classes are present, leading to negative transfer and reduced classification performance. To address these limitations, we propose a novel open-set domain generalization framework that combines four key components: Spectrum-Invariant Frequency Disentanglement (SIFD) for domain-agnostic feature extraction, Dual-Channel Residual Network (DCRN) for robust spectral-spatial feature learning, Evidential Deep Learning (EDL) for uncertainty quantification, and Spectral-Spatial Uncertainty Disentanglement (SSUD) for reliable open-set classification. The SIFD module extracts domain-invariant spectral features in the frequency domain through attention-weighted frequency analysis and domain-agnostic regularization, while DCRN captures complementary spectral and spatial information via parallel pathways with adaptive fusion. EDL provides principled uncertainty estimation using Dirichlet distributions, enabling the SSUD module to make reliable open-set decisions through uncertainty-aware pathway weighting and adaptive rejection thresholding. Experimental results on three cross-scene hyperspectral classification tasks show that our approach achieves performance comparable to state-of-the-art domain adaptation methods while requiring no access to the target domain during training. The implementation will be made available at https://github.com/amir-khb/SSUDOSDG upon acceptance.
Harmonizing and Merging Source Models for CLIP-based Domain Generalization
CLIP-based domain generalization aims to improve model generalization to unseen domains by leveraging the powerful zero-shot classification capabilities of CLIP and multiple source datasets. Existing methods typically train a single model across multiple source domains to capture domain-shared information. However, this paradigm inherently suffers from two types of conflicts: 1) sample conflicts, arising from noisy samples and extreme domain shifts among sources; and 2) optimization conflicts, stemming from competition and trade-offs during multi-source training. Both hinder the generalization and lead to suboptimal solutions. Recent studies have shown that model merging can effectively mitigate the competition of multi-objective optimization and improve generalization performance. Inspired by these findings, we propose Harmonizing and Merging (HAM), a novel source model merging framework for CLIP-based domain generalization. During the training process of the source models, HAM enriches the source samples without conflicting samples, and harmonizes the update directions of all models. Then, a redundancy-aware historical model merging method is introduced to effectively integrate knowledge across all source models. HAM comprehensively consolidates source domain information while enabling mutual enhancement among source models, ultimately yielding a final model with optimal generalization capabilities. Extensive experiments on five widely used benchmark datasets demonstrate the effectiveness of our approach, achieving state-of-the-art performance.
TOGA: Temporally Grounded Open-Ended Video QA with Weak Supervision
We address the problem of video question answering (video QA) with temporal grounding in a weakly supervised setup, without any temporal annotations. Given a video and a question, we generate an open-ended answer grounded with the start and end time. For this task, we propose TOGA: a vision-language model for Temporally Grounded Open-Ended Video QA with Weak Supervision. We instruct-tune TOGA to jointly generate the answer and the temporal grounding. We operate in a weakly supervised setup where the temporal grounding annotations are not available. We generate pseudo labels for temporal grounding and ensure the validity of these labels by imposing a consistency constraint between the question of a grounding response and the response generated by a question referring to the same temporal segment. We notice that jointly generating the answers with the grounding improves performance on question answering as well as grounding. We evaluate TOGA on grounded QA and open-ended QA tasks. For grounded QA, we consider the NExT-GQA benchmark which is designed to evaluate weakly supervised grounded question answering. For open-ended QA, we consider the MSVD-QA and ActivityNet-QA benchmarks. We achieve state-of-the-art performance for both tasks on these benchmarks.
A Novel Lightweight Transformer with Edge-Aware Fusion for Remote Sensing Image Captioning
Transformer-based models have achieved strong performance in remote sensing image captioning by capturing long-range dependencies and contextual information. However, their practical deployment is hindered by high computational costs, especially in multi-modal frameworks that employ separate transformer-based encoders and decoders. In addition, existing remote sensing image captioning models primarily focus on high-level semantic extraction while often overlooking fine-grained structural features such as edges, contours, and object boundaries. To address these challenges, a lightweight transformer architecture is proposed by reducing the dimensionality of the encoder layers and employing a distilled version of GPT-2 as the decoder. A knowledge distillation strategy is used to transfer knowledge from a more complex teacher model to improve the performance of the lightweight network. Furthermore, an edge-aware enhancement strategy is incorporated to enhance image representation and object boundary understanding, enabling the model to capture fine-grained spatial details in remote sensing images. Experimental results demonstrate that the proposed approach significantly improves caption quality compared to state-of-the-art methods.
A High-Quality Dataset and Reliable Evaluation for Interleaved Image-Text Generation
Recent advancements in Large Multimodal Models (LMMs) have significantly improved multimodal understanding and generation. However, these models still struggle to generate tightly interleaved image-text outputs, primarily due to the limited scale, quality and instructional richness of current training datasets. To address this, we introduce InterSyn, a large-scale multimodal dataset constructed using our Self-Evaluation with Iterative Refinement (SEIR) method. InterSyn features multi-turn, instruction-driven dialogues with tightly interleaved imagetext responses, providing rich object diversity and rigorous automated quality refinement, making it well-suited for training next-generation instruction-following LMMs. Furthermore, to address the lack of reliable evaluation tools capable of assessing interleaved multimodal outputs, we introduce SynJudge, an automatic evaluation model designed to quantitatively assess multimodal outputs along four dimensions: text content, image content, image quality, and image-text synergy. Experimental studies show that the SEIR method leads to substantially higher dataset quality compared to an otherwise identical process without refinement. Moreover, LMMs trained on InterSyn achieve uniform performance gains across all evaluation metrics, confirming InterSyn's utility for advancing multimodal systems.
ODG: Occupancy Prediction Using Dual Gaussians
3D occupancy provides fine-grained 3D geometry and semantics for scene understanding which is critical for autonomous driving. Most existing methods, however, carry high compute costs, requiring dense 3D feature volume and cross-attention to effectively aggregate information. More recent works have adopted Bird's Eye View (BEV) or sparse points as scene representation with much reduced cost, but still suffer from their respective shortcomings. More concretely, BEV struggles with small objects that often experience significant information loss after being projected to the ground plane. On the other hand, points can flexibly model little objects in 3D, but is inefficient at capturing flat surfaces or large objects. To address these challenges, in this paper, we present a novel 3D occupancy prediction approach, ODG, which combines BEV and sparse points based representations. We propose a dual-branch design: a query-based sparse points branch and a BEV branch. The 3D information learned in the sparse points branch is shared with the BEV stream via cross-attention, which enriches the weakened signals of difficult objects on the BEV plane. The outputs of both branches are finally fused to generate predicted 3D occupancy. We conduct extensive experiments on the Occ3D-nuScenes and Occ3D-Waymo benchmarks that demonstrate the superiority of our proposed ODG. Moreover, ODG also delivers competitive inference speed when compared to the latest efficient approaches.
Noise Conditional Variational Score Distillation
We propose Noise Conditional Variational Score Distillation (NCVSD), a novel method for distilling pretrained diffusion models into generative denoisers. We achieve this by revealing that the unconditional score function implicitly characterizes the score function of denoising posterior distributions. By integrating this insight into the Variational Score Distillation (VSD) framework, we enable scalable learning of generative denoisers capable of approximating samples from the denoising posterior distribution across a wide range of noise levels. The proposed generative denoisers exhibit desirable properties that allow fast generation while preserve the benefit of iterative refinement: (1) fast one-step generation through sampling from pure Gaussian noise at high noise levels; (2) improved sample quality by scaling the test-time compute with multi-step sampling; and (3) zero-shot probabilistic inference for flexible and controllable sampling. We evaluate NCVSD through extensive experiments, including class-conditional image generation and inverse problem solving. By scaling the test-time compute, our method outperforms teacher diffusion models and is on par with consistency models of larger sizes. Additionally, with significantly fewer NFEs than diffusion-based methods, we achieve record-breaking LPIPS on inverse problems.
Synthetic Human Action Video Data Generation with Pose Transfer
In video understanding tasks, particularly those involving human motion, synthetic data generation often suffers from uncanny features, diminishing its effectiveness for training. Tasks such as sign language translation, gesture recognition, and human motion understanding in autonomous driving have thus been unable to exploit the full potential of synthetic data. This paper proposes a method for generating synthetic human action video data using pose transfer (specifically, controllable 3D Gaussian avatar models). We evaluate this method on the Toyota Smarthome and NTU RGB+D datasets and show that it improves performance in action recognition tasks. Moreover, we demonstrate that the method can effectively scale few-shot datasets, making up for groups underrepresented in the real training data and adding diverse backgrounds. We open-source the method along with RANDOM People, a dataset with videos and avatars of novel human identities for pose transfer crowd-sourced from the internet.
SRPL-SFDA: SAM-Guided Reliable Pseudo-Labels for Source-Free Domain Adaptation in Medical Image Segmentation
Domain Adaptation (DA) is crucial for robust deployment of medical image segmentation models when applied to new clinical centers with significant domain shifts. Source-Free Domain Adaptation (SFDA) is appealing as it can deal with privacy concerns and access constraints on source-domain data during adaptation to target-domain data. However, SFDA faces challenges such as insufficient supervision in the target domain with unlabeled images. In this work, we propose a Segment Anything Model (SAM)-guided Reliable Pseudo-Labels method for SFDA (SRPL-SFDA) with three key components: 1) Test-Time Tri-branch Intensity Enhancement (T3IE) that not only improves quality of raw pseudo-labels in the target domain, but also leads to SAM-compatible inputs with three channels to better leverage SAM's zero-shot inference ability for refining the pseudo-labels; 2) A reliable pseudo-label selection module that rejects low-quality pseudo-labels based on Consistency of Multiple SAM Outputs (CMSO) under input perturbations with T3IE; and 3) A reliability-aware training procedure in the unlabeled target domain where reliable pseudo-labels are used for supervision and unreliable parts are regularized by entropy minimization. Experiments conducted on two multi-domain medical image segmentation datasets for fetal brain and the prostate respectively demonstrate that: 1) SRPL-SFDA effectively enhances pseudo-label quality in the unlabeled target domain, and improves SFDA performance by leveraging the reliability-aware training; 2) SRPL-SFDA outperformed state-of-the-art SFDA methods, and its performance is close to that of supervised training in the target domain. The code of this work is available online: https://github.com/HiLab-git/SRPL-SFDA.
comment: 18 pages, 4 figures. Accepted for publication in Neurocomputing
Improving Out-of-Distribution Detection via Dynamic Covariance Calibration
Out-of-Distribution (OOD) detection is essential for the trustworthiness of AI systems. Methods using prior information (i.e., subspace-based methods) have shown effective performance by extracting information geometry to detect OOD data with a more appropriate distance metric. However, these methods fail to address the geometry distorted by ill-distributed samples, due to the limitation of statically extracting information geometry from the training distribution. In this paper, we argue that the influence of ill-distributed samples can be corrected by dynamically adjusting the prior geometry in response to new data. Based on this insight, we propose a novel approach that dynamically updates the prior covariance matrix using real-time input features, refining its information. Specifically, we reduce the covariance along the direction of real-time input features and constrain adjustments to the residual space, thus preserving essential data characteristics and avoiding effects on unintended directions in the principal space. We evaluate our method on two pre-trained models for the CIFAR dataset and five pre-trained models for ImageNet-1k, including the self-supervised DINO model. Extensive experiments demonstrate that our approach significantly enhances OOD detection across various models. The code is released at https://github.com/workerbcd/ooddcc.
Do Multiple Instance Learning Models Transfer? ICML 2025
Multiple Instance Learning (MIL) is a cornerstone approach in computational pathology (CPath) for generating clinically meaningful slide-level embeddings from gigapixel tissue images. However, MIL often struggles with small, weakly supervised clinical datasets. In contrast to fields such as NLP and conventional computer vision, where transfer learning is widely used to address data scarcity, the transferability of MIL models remains poorly understood. In this study, we systematically evaluate the transfer learning capabilities of pretrained MIL models by assessing 11 models across 21 pretraining tasks for morphological and molecular subtype prediction. Our results show that pretrained MIL models, even when trained on different organs than the target task, consistently outperform models trained from scratch. Moreover, pretraining on pancancer datasets enables strong generalization across organs and tasks, outperforming slide foundation models while using substantially less pretraining data. These findings highlight the robust adaptability of MIL models and demonstrate the benefits of leveraging transfer learning to boost performance in CPath. Lastly, we provide a resource which standardizes the implementation of MIL models and collection of pretrained model weights on popular CPath tasks, available at https://github.com/mahmoodlab/MIL-Lab
comment: ICML 2025 (Spotlight). 20 pages, 8 figures
SkipVAR: Accelerating Visual Autoregressive Modeling via Adaptive Frequency-Aware Skipping
Recent studies on Visual Autoregressive (VAR) models have highlighted that high-frequency components, or later steps, in the generation process contribute disproportionately to inference latency. However, the underlying computational redundancy involved in these steps has yet to be thoroughly investigated. In this paper, we conduct an in-depth analysis of the VAR inference process and identify two primary sources of inefficiency: step redundancy and unconditional branch redundancy. To address step redundancy, we propose an automatic step-skipping strategy that selectively omits unnecessary generation steps to improve efficiency. For unconditional branch redundancy, we observe that the information gap between the conditional and unconditional branches is minimal. Leveraging this insight, we introduce unconditional branch replacement, a technique that bypasses the unconditional branch to reduce computational cost. Notably, we observe that the effectiveness of acceleration strategies varies significantly across different samples. Motivated by this, we propose SkipVAR, a sample-adaptive framework that leverages frequency information to dynamically select the most suitable acceleration strategy for each instance. To evaluate the role of high-frequency information, we introduce high-variation benchmark datasets that test model sensitivity to fine details. Extensive experiments show SkipVAR achieves over 0.88 average SSIM with up to 1.81x overall acceleration and 2.62x speedup on the GenEval benchmark, maintaining model quality. These results confirm the effectiveness of frequency-aware, training-free adaptive acceleration for scalable autoregressive image generation. Our code is available at https://github.com/fakerone-li/SkipVAR and has been publicly released.
MIRAGE: Multimodal foundation model and benchmark for comprehensive retinal OCT image analysis
Artificial intelligence (AI) has become a fundamental tool for assisting clinicians in analyzing ophthalmic images, such as optical coherence tomography (OCT). However, developing AI models often requires extensive annotation, and existing models tend to underperform on independent, unseen data. Foundation models (FMs), large AI models trained on vast unlabeled datasets, have shown promise in overcoming these challenges. Nonetheless, available FMs for ophthalmology lack extensive validation, especially for segmentation tasks, and focus on a single imaging modality. In this context, we propose MIRAGE, a novel multimodal FM for the analysis of OCT and scanning laser ophthalmoscopy (SLO) images. Additionally, we propose a new evaluation benchmark with OCT/SLO classification and segmentation tasks. The comparison with general and specialized FMs and segmentation methods shows the superiority of MIRAGE in both types of tasks, highlighting its suitability as a basis for the development of robust AI systems for retinal OCT image analysis. Both MIRAGE and the evaluation benchmark are publicly available: https://github.com/j-morano/MIRAGE.
Adapting Vision-Language Foundation Model for Next Generation Medical Ultrasound Image Analysis
Medical ultrasonography is an essential imaging technique for examining superficial organs and tissues, including lymph nodes, breast, and thyroid. It employs high-frequency ultrasound waves to generate detailed images of the internal structures of the human body. However, manually contouring regions of interest in these images is a labor-intensive task that demands expertise and often results in inconsistent interpretations among individuals. Vision-language foundation models, which have excelled in various computer vision applications, present new opportunities for enhancing ultrasound image analysis. Yet, their performance is hindered by the significant differences between natural and medical imaging domains. This research seeks to overcome these challenges by developing domain adaptation methods for vision-language foundation models. In this study, we explore the fine-tuning pipeline for vision-language foundation models by utilizing large language model as text refiner with special-designed adaptation strategies and task-driven heads. Our approach has been extensively evaluated on six ultrasound datasets and two tasks: segmentation and classification. The experimental results show that our method can effectively improve the performance of vision-language foundation models for ultrasound image analysis, and outperform the existing state-of-the-art vision-language and pure foundation models. The source code of this study is available at https://github.com/jinggqu/NextGen-UIA.
Video-CoT: A Comprehensive Dataset for Spatiotemporal Understanding of Videos Based on Chain-of-Thought
Video content comprehension is essential for various applications, ranging from video analysis to interactive systems. Despite advancements in large-scale vision-language models (VLMs), these models often struggle to capture the nuanced, spatiotemporal details essential for thorough video analysis. To address this gap, we introduce Video-CoT, a groundbreaking dataset designed to enhance spatiotemporal understanding using Chain-of-Thought (CoT) methodologies. Video-CoT contains 192,000 fine-grained spa-tiotemporal question-answer pairs and 23,000 high-quality CoT-annotated samples, providing a solid foundation for evaluating spatiotemporal understanding in video comprehension. Additionally, we provide a comprehensive benchmark for assessing these tasks, with each task featuring 750 images and tailored evaluation metrics. Our extensive experiments reveal that current VLMs face significant challenges in achieving satisfactory performance, high-lighting the difficulties of effective spatiotemporal understanding. Overall, the Video-CoT dataset and benchmark open new avenues for research in multimedia understanding and support future innovations in intelligent systems requiring advanced video analysis capabilities. By making these resources publicly available, we aim to encourage further exploration in this critical area. Project website:https://video-cot.github.io/ .
Gaussian2Scene: 3D Scene Representation Learning via Self-supervised Learning with 3D Gaussian Splatting
Self-supervised learning (SSL) for point cloud pre-training has become a cornerstone for many 3D vision tasks, enabling effective learning from large-scale unannotated data. At the scene level, existing SSL methods often incorporate volume rendering into the pre-training framework, using RGB-D images as reconstruction signals to facilitate cross-modal learning. This strategy promotes alignment between 2D and 3D modalities and enables the model to benefit from rich visual cues in the RGB-D inputs. However, these approaches are limited by their reliance on implicit scene representations and high memory demands. Furthermore, since their reconstruction objectives are applied only in 2D space, they often fail to capture underlying 3D geometric structures. To address these challenges, we propose Gaussian2Scene, a novel scene-level SSL framework that leverages the efficiency and explicit nature of 3D Gaussian Splatting (3DGS) for pre-training. The use of 3DGS not only alleviates the computational burden associated with volume rendering but also supports direct 3D scene reconstruction, thereby enhancing the geometric understanding of the backbone network. Our approach follows a progressive two-stage training strategy. In the first stage, a dual-branch masked autoencoder learns both 2D and 3D scene representations. In the second stage, we initialize training with reconstructed point clouds and further supervise learning using the geometric locations of Gaussian primitives and rendered RGB images. This process reinforces both geometric and cross-modal learning. We demonstrate the effectiveness of Gaussian2Scene across several downstream 3D object detection tasks, showing consistent improvements over existing pre-training methods.
Geometric deep learning for local growth prediction on abdominal aortic aneurysm surfaces
Abdominal aortic aneurysms (AAAs) are progressive focal dilatations of the abdominal aorta. AAAs may rupture, with a survival rate of only 20\%. Current clinical guidelines recommend elective surgical repair when the maximum AAA diameter exceeds 55 mm in men or 50 mm in women. Patients that do not meet these criteria are periodically monitored, with surveillance intervals based on the maximum AAA diameter. However, this diameter does not take into account the complex relation between the 3D AAA shape and its growth, making standardized intervals potentially unfit. Personalized AAA growth predictions could improve monitoring strategies. We propose to use an SE(3)-symmetric transformer model to predict AAA growth directly on the vascular model surface enriched with local, multi-physical features. In contrast to other works which have parameterized the AAA shape, this representation preserves the vascular surface's anatomical structure and geometric fidelity. We train our model using a longitudinal dataset of 113 computed tomography angiography (CTA) scans of 24 AAA patients at irregularly sampled intervals. After training, our model predicts AAA growth to the next scan moment with a median diameter error of 1.18 mm. We further demonstrate our model's utility to identify whether a patient will become eligible for elective repair within two years (acc = 0.93). Finally, we evaluate our model's generalization on an external validation set consisting of 25 CTAs from 7 AAA patients from a different hospital. Our results show that local directional AAA growth prediction from the vascular surface is feasible and may contribute to personalized surveillance strategies.
Autonomous Imagination: Closed-Loop Decomposition of Visual-to-Textual Conversion in Visual Reasoning for Multimodal Large Language Models
Under pure textual modality, Large Language Models (LLMs) have demonstrated remarkable success in complex reasoning tasks by decomposing them into simpler sub-problems. However, Multimodal Large Language Models (MLLMs) still struggle with some seemingly straightforward visual tasks, such as counting and solving jigsaw puzzles. We argue that these tasks challenge the ability of visual-to-textual conversion, where MLLMs convert visual information perceived from the input scene, to textual information for further reasoning and generating the answer. If the complexity of the visual input is beyond the perceptual capability of the MLLMs, without decomposing this conversion process, simply scaling inference-time reasoning cannot solve the task because it repeatedly encounters the same perceptual bottleneck. We propose an approach, autonomous imagination, to enable MLLMs to iteratively modify visual inputs (e.g. isolating objects, rearranging puzzle pieces) into intermediate visual states, decomposing visual-to-textual conversion into closed-loop visual modification steps. We show that, without any retraining, MLLMs can now solve tasks initially beyond their perceptual capability, highlighting that closed-loop visual modification can be an effective way of decomposing the visual reasoning task into solvable substeps. Project page: https://future-item.github.io/autoimagine-site/
ClimateViz: A Benchmark for Statistical Reasoning and Fact Verification on Scientific Charts
Scientific fact-checking has mostly focused on text and tables, overlooking scientific charts, which are key for presenting quantitative evidence and statistical reasoning. We introduce ClimateViz, the first large-scale benchmark for scientific fact-checking using expert-curated scientific charts. ClimateViz contains 49,862 claims linked to 2,896 visualizations, each labeled as support, refute, or not enough information. To improve interpretability, each example includes structured knowledge graph explanations covering trends, comparisons, and causal relations. We evaluate state-of-the-art multimodal language models, including both proprietary and open-source systems, in zero-shot and few-shot settings. Results show that current models struggle with chart-based reasoning: even the best systems, such as Gemini 2.5 and InternVL 2.5, reach only 76.2 to 77.8 percent accuracy in label-only settings, far below human performance (89.3 and 92.7 percent). Explanation-augmented outputs improve performance in some models. We released our dataset and code alongside the paper.
Beyond Calibration: Physically Informed Learning for Raw-to-Raw Mapping
Achieving consistent color reproduction across multiple cameras is essential for seamless image fusion and Image Processing Pipeline (ISP) compatibility in modern devices, but it is a challenging task due to variations in sensors and optics. Existing raw-to-raw conversion methods face limitations such as poor adaptability to changing illumination, high computational costs, or impractical requirements such as simultaneous camera operation and overlapping fields-of-view. We introduce the Neural Physical Model (NPM), a lightweight, physically-informed approach that simulates raw images under specified illumination to estimate transformations between devices. The NPM effectively adapts to varying illumination conditions, can be initialized with physical measurements, and supports training with or without paired data. Experiments on public datasets like NUS and BeyondRGB demonstrate that NPM outperforms recent state-of-the-art methods, providing robust chromatic consistency across different sensors and optical systems.
RecipeGen: A Step-Aligned Multimodal Benchmark for Real-World Recipe Generation
Creating recipe images is a key challenge in food computing, with applications in culinary education and multimodal recipe assistants. However, existing datasets lack fine-grained alignment between recipe goals, step-wise instructions, and visual content. We present RecipeGen, the first large-scale, real-world benchmark for recipe-based Text-to-Image (T2I), Image-to-Video (I2V), and Text-to-Video (T2V) generation. RecipeGen contains 26,453 recipes, 196,724 images, and 4,491 videos, covering diverse ingredients, cooking procedures, styles, and dish types. We further propose domain-specific evaluation metrics to assess ingredient fidelity and interaction modeling, benchmark representative T2I, I2V, and T2V models, and provide insights for future recipe generation models. Project page is available now.
comment: This is an extended version of arXiv:2503.05228
Lingshu: A Generalist Foundation Model for Unified Multimodal Medical Understanding and Reasoning
Multimodal Large Language Models (MLLMs) have demonstrated impressive capabilities in understanding common visual elements, largely due to their large-scale datasets and advanced training strategies. However, their effectiveness in medical applications remains limited due to the inherent discrepancies between data and tasks in medical scenarios and those in the general domain. Concretely, existing medical MLLMs face the following critical limitations: (1) limited coverage of medical knowledge beyond imaging, (2) heightened susceptibility to hallucinations due to suboptimal data curation processes, (3) lack of reasoning capabilities tailored for complex medical scenarios. To address these challenges, we first propose a comprehensive data curation procedure that (1) efficiently acquires rich medical knowledge data not only from medical imaging but also from extensive medical texts and general-domain data; and (2) synthesizes accurate medical captions, visual question answering (VQA), and reasoning samples. As a result, we build a multimodal dataset enriched with extensive medical knowledge. Building on the curated data, we introduce our medical-specialized MLLM: Lingshu. Lingshu undergoes multi-stage training to embed medical expertise and enhance its task-solving capabilities progressively. Besides, we preliminarily explore the potential of applying reinforcement learning with verifiable rewards paradigm to enhance Lingshu's medical reasoning ability. Additionally, we develop MedEvalKit, a unified evaluation framework that consolidates leading multimodal and textual medical benchmarks for standardized, fair, and efficient model assessment. We evaluate the performance of Lingshu on three fundamental medical tasks, multimodal QA, text-based QA, and medical report generation. The results show that Lingshu consistently outperforms the existing open-source multimodal models on most tasks ...
comment: Technical Report, 53 pages, 25 tables, and 16 figures
Human-like object concept representations emerge naturally in multimodal large language models
Understanding how humans conceptualize and categorize natural objects offers critical insights into perception and cognition. With the advent of Large Language Models (LLMs), a key question arises: can these models develop human-like object representations from linguistic and multimodal data? In this study, we combined behavioral and neuroimaging analyses to explore the relationship between object concept representations in LLMs and human cognition. We collected 4.7 million triplet judgments from LLMs and Multimodal LLMs (MLLMs) to derive low-dimensional embeddings that capture the similarity structure of 1,854 natural objects. The resulting 66-dimensional embeddings were stable, predictive, and exhibited semantic clustering similar to human mental representations. Remarkably, the dimensions underlying these embeddings were interpretable, suggesting that LLMs and MLLMs develop human-like conceptual representations of objects. Further analysis showed strong alignment between model embeddings and neural activity patterns in brain regions such as EBA, PPA, RSC, and FFA. This provides compelling evidence that the object representations in LLMs, while not identical to human ones, share fundamental similarities that reflect key aspects of human conceptual knowledge. Our findings advance the understanding of machine intelligence and inform the development of more human-like artificial cognitive systems.
comment: Published on Nature Machine Intelligence
MedMoE: Modality-Specialized Mixture of Experts for Medical Vision-Language Understanding
Different medical imaging modalities capture diagnostic information at varying spatial resolutions, from coarse global patterns to fine-grained localized structures. However, most existing vision-language frameworks in the medical domain apply a uniform strategy for local feature extraction, overlooking the modality-specific demands. In this work, we present MedMoE, a modular and extensible vision-language processing framework that dynamically adapts visual representation based on the diagnostic context. MedMoE incorporates a Mixture-of-Experts (MoE) module conditioned on the report type, which routes multi-scale image features through specialized expert branches trained to capture modality-specific visual semantics. These experts operate over feature pyramids derived from a Swin Transformer backbone, enabling spatially adaptive attention to clinically relevant regions. This framework produces localized visual representations aligned with textual descriptions, without requiring modality-specific supervision at inference. Empirical results on diverse medical benchmarks demonstrate that MedMoE improves alignment and retrieval performance across imaging modalities, underscoring the value of modality-specialized visual representations in clinical vision-language systems.
Spectral Image Tokenizer
Image tokenizers map images to sequences of discrete tokens, and are a crucial component of autoregressive transformer-based image generation. The tokens are typically associated with spatial locations in the input image, arranged in raster scan order, which is not ideal for autoregressive modeling. In this paper, we propose to tokenize the image spectrum instead, obtained from a discrete wavelet transform (DWT), such that the sequence of tokens represents the image in a coarse-to-fine fashion. Our tokenizer brings several advantages: 1) it leverages that natural images are more compressible at high frequencies, 2) it can take and reconstruct images of different resolutions without retraining, 3) it improves the conditioning for next-token prediction -- instead of conditioning on a partial line-by-line reconstruction of the image, it takes a coarse reconstruction of the full image, 4) it enables partial decoding where the first few generated tokens can reconstruct a coarse version of the image, 5) it enables autoregressive models to be used for image upsampling. We evaluate the tokenizer reconstruction metrics as well as multiscale image generation, text-guided image upsampling and editing.
Fine-Grained Spatially Varying Material Selection in Images
Selection is the first step in many image editing processes, enabling faster and simpler modifications of all pixels sharing a common modality. In this work, we present a method for material selection in images, robust to lighting and reflectance variations, which can be used for downstream editing tasks. We rely on vision transformer (ViT) models and leverage their features for selection, proposing a multi-resolution processing strategy that yields finer and more stable selection results than prior methods. Furthermore, we enable selection at two levels: texture and subtexture, leveraging a new two-level material selection (DuMaS) dataset which includes dense annotations for over 800,000 synthetic images, both on the texture and subtexture levels.
Understanding Long Videos with Multimodal Language Models ICLR 2025
Large Language Models (LLMs) have allowed recent LLM-based approaches to achieve excellent performance on long-video understanding benchmarks. We investigate how extensive world knowledge and strong reasoning skills of underlying LLMs influence this strong performance. Surprisingly, we discover that LLM-based approaches can yield surprisingly good accuracy on long-video tasks with limited video information, sometimes even with no video specific information. Building on this, we explore injecting video-specific information into an LLM-based framework. We utilize off-the-shelf vision tools to extract three object-centric information modalities from videos, and then leverage natural language as a medium for fusing this information. Our resulting Multimodal Video Understanding (MVU) framework demonstrates state-of-the-art performance across multiple video understanding benchmarks. Strong performance also on robotics domain tasks establish its strong generality. Code: https://github.com/kahnchana/mvu
comment: 17 pages (main paper), 7 pages appendix. ICLR 2025 conference paper
HRTR: A Single-stage Transformer for Fine-grained Sub-second Action Segmentation in Stroke Rehabilitation
Stroke rehabilitation often demands precise tracking of patient movements to monitor progress, with complexities of rehabilitation exercises presenting two critical challenges: fine-grained and sub-second (under one-second) action detection. In this work, we propose the High Resolution Temporal Transformer (HRTR), to time-localize and classify high-resolution (fine-grained), sub-second actions in a single-stage transformer, eliminating the need for multi-stage methods and post-processing. Without any refinements, HRTR outperforms state-of-the-art systems on both stroke related and general datasets, achieving Edit Score (ES) of 70.1 on StrokeRehab Video, 69.4 on StrokeRehab IMU, and 88.4 on 50Salads.
TerraMind: Large-Scale Generative Multimodality for Earth Observation
We present TerraMind, the first any-to-any generative, multimodal foundation model for Earth observation (EO). Unlike other multimodal models, TerraMind is pretrained on dual-scale representations combining both token-level and pixel-level data across modalities. On a token level, TerraMind encodes high-level contextual information to learn cross-modal relationships, while on a pixel level, TerraMind leverages fine-grained representations to capture critical spatial nuances. We pretrained TerraMind on nine geospatial modalities of a global, large-scale dataset. In this paper, we demonstrate that (i) TerraMind's dual-scale early fusion approach unlocks a range of zero-shot and few-shot applications for Earth observation, (ii) TerraMind introduces "Thinking-in-Modalities" (TiM) -- the capability of generating additional artificial data during finetuning and inference to improve the model output -- and (iii) TerraMind achieves beyond state-of-the-art performance in community-standard benchmarks for EO like PANGAEA. The pretraining dataset, the model weights, and our code are open-sourced under a permissive license.
RS-MTDF: Multi-Teacher Distillation and Fusion for Remote Sensing Semi-Supervised Semantic Segmentation
Semantic segmentation in remote sensing images is crucial for various applications, yet its performance is heavily reliant on large-scale, high-quality pixel-wise annotations, which are notoriously expensive and time-consuming to acquire. Semi-supervised semantic segmentation (SSS) offers a promising alternative to mitigate this data dependency. However, existing SSS methods often struggle with the inherent distribution mismatch between limited labeled data and abundant unlabeled data, leading to suboptimal generalization. To alleviate this issue, we attempt to introduce the Vision Foundation Models (VFMs) pre-trained on vast and diverse datasets into the SSS task since VFMs possess robust generalization capabilities that can effectively bridge this distribution gap and provide strong semantic priors for SSS. Inspired by this, we introduce RS-MTDF (Multi-Teacher Distillation and Fusion), a novel framework that leverages the powerful semantic knowledge embedded in VFMs to guide semi-supervised learning in remote sensing. Specifically, RS-MTDF employs multiple frozen VFMs (e.g., DINOv2 and CLIP) as expert teachers, utilizing feature-level distillation to align student features with their robust representations. To further enhance discriminative power, the distilled knowledge is seamlessly fused into the student decoder. Extensive experiments on three challenging remote sensing datasets demonstrate that RS-MTDF consistently achieves state-of-the-art performance. Notably, our method outperforms existing approaches across various label ratios on LoveDA and secures the highest IoU in the majority of semantic categories. These results underscore the efficacy of multi-teacher VFM guidance in significantly enhancing both generalization and semantic understanding for remote sensing segmentation. Ablation studies further validate the contribution of each proposed module.
MVTamperBench: Evaluating Robustness of Vision-Language Models
Multimodal Large Language Models (MLLMs), are recent advancement of Vision-Language Models (VLMs) that have driven major advances in video understanding. However, their vulnerability to adversarial tampering and manipulations remains underexplored. To address this gap, we introduce \textbf{MVTamperBench}, a benchmark that systematically evaluates MLLM robustness against five prevalent tampering techniques: rotation, masking, substitution, repetition, and dropping; based on real-world visual tampering scenarios such as surveillance interference, social media content edits, and misinformation injection. MVTamperBench comprises ~3.4K original videos, expanded into over ~17K tampered clips covering 19 distinct video manipulation tasks. This benchmark challenges models to detect manipulations in spatial and temporal coherence. We evaluate 45 recent MLLMs from 15+ model families. We reveal substantial variability in resilience across tampering types and show that larger parameter counts do not necessarily guarantee robustness. MVTamperBench sets a new benchmark for developing tamper-resilient MLLM in safety-critical applications, including detecting clickbait, preventing harmful content distribution, and enforcing policies on media platforms. We release all code, data, and benchmark to foster open research in trustworthy video understanding. Code: https://amitbcp.github.io/MVTamperBench/ Data: https://huggingface.co/datasets/Srikant86/MVTamperBench
Traveling Waves Integrate Spatial Information Through Time
Traveling waves of neural activity are widely observed in the brain, but their precise computational function remains unclear. One prominent hypothesis is that they enable the transfer and integration of spatial information across neural populations. However, few computational models have explored how traveling waves might be harnessed to perform such integrative processing. Drawing inspiration from the famous "Can one hear the shape of a drum?" problem -- which highlights how normal modes of wave dynamics encode geometric information -- we investigate whether similar principles can be leveraged in artificial neural networks. Specifically, we introduce convolutional recurrent neural networks that learn to produce traveling waves in their hidden states in response to visual stimuli, enabling spatial integration. By then treating these wave-like activation sequences as visual representations themselves, we obtain a powerful representational space that outperforms local feed-forward networks on tasks requiring global spatial context. In particular, we observe that traveling waves effectively expand the receptive field of locally connected neurons, supporting long-range encoding and communication of information. We demonstrate that models equipped with this mechanism solve visual semantic segmentation tasks demanding global integration, significantly outperforming local feed-forward models and rivaling non-local U-Net models with fewer parameters. As a first step toward traveling-wave-based communication and visual representation in artificial networks, our findings suggest wave-dynamics may provide efficiency and training stability benefits, while simultaneously offering a new framework for connecting models to biological recordings of neural activity.
SpikeSMOKE: Spiking Neural Networks for Monocular 3D Object Detection with Cross-Scale Gated Coding
Low energy consumption for 3D object detection is an important research area because of the increasing energy consumption with their wide application in fields such as autonomous driving. The spiking neural networks (SNNs) with low-power consumption characteristics can provide a novel solution for this research. Therefore, we apply SNNs to monocular 3D object detection and propose the SpikeSMOKE architecture in this paper, which is a new attempt for low-power monocular 3D object detection. As we all know, discrete signals of SNNs will generate information loss and limit their feature expression ability compared with the artificial neural networks (ANNs).In order to address this issue, inspired by the filtering mechanism of biological neuronal synapses, we propose a cross-scale gated coding mechanism(CSGC), which can enhance feature representation by combining cross-scale fusion of attentional methods and gated filtering mechanisms.In addition, to reduce the computation and increase the speed of training, we present a novel light-weight residual block that can maintain spiking computing paradigm and the highest possible detection performance. Compared to the baseline SpikeSMOKE under the 3D Object Detection, the proposed SpikeSMOKE with CSGC can achieve 11.78 (+2.82, Easy), 10.69 (+3.2, Moderate), and 10.48 (+3.17, Hard) on the KITTI autonomous driving dataset by AP|R11 at 0.7 IoU threshold, respectively. It is important to note that the results of SpikeSMOKE can significantly reduce energy consumption compared to the results on SMOKE. For example,the energy consumption can be reduced by 72.2% on the hard category, while the detection performance is reduced by only 4%. SpikeSMOKE-L (lightweight) can further reduce the amount of parameters by 3 times and computation by 10 times compared to SMOKE.
ContentV: Efficient Training of Video Generation Models with Limited Compute
Recent advances in video generation demand increasingly efficient training recipes to mitigate escalating computational costs. In this report, we present ContentV, an 8B-parameter text-to-video model that achieves state-of-the-art performance (85.14 on VBench) after training on 256 x 64GB Neural Processing Units (NPUs) for merely four weeks. ContentV generates diverse, high-quality videos across multiple resolutions and durations from text prompts, enabled by three key innovations: (1) A minimalist architecture that maximizes reuse of pre-trained image generation models for video generation; (2) A systematic multi-stage training strategy leveraging flow matching for enhanced efficiency; and (3) A cost-effective reinforcement learning with human feedback framework that improves generation quality without requiring additional human annotations. All the code and models are available at: https://contentv.github.io.
comment: Project Page: https://contentv.github.io
ImageChain: Advancing Sequential Image-to-Text Reasoning in Multimodal Large Language Models
Reasoning over sequences of images remains a challenge for multimodal large language models (MLLMs). While recent models incorporate multi-image data during pre-training, they still struggle to recognize sequential structures, often treating images independently. This work introduces ImageChain, a framework that enhances MLLMs with sequential reasoning capabilities over image data by modeling visual sequences as a multi-turn conversation. In ImageChain, images are interleaved with corresponding textual descriptions to form a controlled dialogue that explicitly captures temporal dependencies and narrative progression. Our method optimizes for the task of next-scene description, where the model generates a context-aware description of an upcoming scene based on preceding visual and textual cues. We demonstrate that our approach improves performance on the next-scene description task -- achieving an average improvement from 3.7% to 19% in SimRate, a metric that quantifies semantic similarity to human-annotated ground truths. Moreover, ImageChain achieves robust zero-shot out-of-domain performance in applications ranging from comics to robotics. Extensive experiments validate that instruction-tuning in a multimodal, multi-turn conversation design is key to bridging the gap between static image understanding and temporally-aware reasoning.
comment: Code, dataset, and checkpoints are publicly available at https://github.com/danaesavi/ImageChain; v2: added human annotation study to validate SimRate
One Pic is All it Takes: Poisoning Visual Document Retrieval Augmented Generation with a Single Image
Multi-modal retrieval augmented generation (M-RAG) is instrumental for inhibiting hallucinations in large multi-modal models (LMMs) through the use of a factual knowledge base (KB). However, M-RAG introduces new attack vectors for adversaries that aim to disrupt the system by injecting malicious entries into the KB. In this paper, we present the first poisoning attack against M-RAG targeting visual document retrieval applications where the KB contains images of document pages. We propose two attacks, each of which require injecting only a single adversarial image into the KB. Firstly, we propose a universal attack that, for any potential user query, influences the response to cause a denial-of-service (DoS) in the M-RAG system. Secondly, we present a targeted attack against one or a group of user queries, with the goal of spreading targeted misinformation. For both attacks, we use a multi-objective gradient-based adversarial approach to craft the injected image while optimizing for both retrieval and generation. We evaluate our attacks against several visual document retrieval datasets, a diverse set of state-of-the-art retrievers (embedding models) and generators (LMMs), demonstrating the attack effectiveness in both the universal and targeted settings. We additionally present results including commonly used defenses, various attack hyper-parameter settings, ablations, and attack transferability.
comment: 19 pages, 7 figures
Unseen Visual Anomaly Generation
Visual anomaly detection (AD) presents significant challenges due to the scarcity of anomalous data samples. While numerous works have been proposed to synthesize anomalous samples, these synthetic anomalies often lack authenticity or require extensive training data, limiting their applicability in real-world scenarios. In this work, we propose Anomaly Anything (AnomalyAny), a novel framework that leverages Stable Diffusion (SD)'s image generation capabilities to generate diverse and realistic unseen anomalies. By conditioning on a single normal sample during test time, AnomalyAny is able to generate unseen anomalies for arbitrary object types with text descriptions. Within AnomalyAny, we propose attention-guided anomaly optimization to direct SD attention on generating hard anomaly concepts. Additionally, we introduce prompt-guided anomaly refinement, incorporating detailed descriptions to further improve the generation quality. Extensive experiments on MVTec AD and VisA datasets demonstrate AnomalyAny's ability in generating high-quality unseen anomalies and its effectiveness in enhancing downstream AD performance.
comment: 8 pages excluding supplementary
Video2BEV: Transforming Drone Videos to BEVs for Video-based Geo-localization
Existing approaches to drone visual geo-localization predominantly adopt the image-based setting, where a single drone-view snapshot is matched with images from other platforms. Such task formulation, however, underutilizes the inherent video output of the drone and is sensitive to occlusions and viewpoint disparity. To address these limitations, we formulate a new video-based drone geo-localization task and propose the Video2BEV paradigm. This paradigm transforms the video into a Bird's Eye View (BEV), simplifying the subsequent \textbf{inter-platform} matching process. In particular, we employ Gaussian Splatting to reconstruct a 3D scene and obtain the BEV projection. Different from the existing transform methods, \eg, polar transform, our BEVs preserve more fine-grained details without significant distortion. To facilitate the discriminative \textbf{intra-platform} representation learning, our Video2BEV paradigm also incorporates a diffusion-based module for generating hard negative samples. To validate our approach, we introduce UniV, a new video-based geo-localization dataset that extends the image-based University-1652 dataset. UniV features flight paths at $30^\circ$ and $45^\circ$ elevation angles with increased frame rates of up to 10 frames per second (FPS). Extensive experiments on the UniV dataset show that our Video2BEV paradigm achieves competitive recall rates and outperforms conventional video-based methods. Compared to other competitive methods, our proposed approach exhibits robustness at lower elevations with more occlusions.
Using Shapley interactions to understand how models use structure ACL 2025
Language is an intricately structured system, and a key goal of NLP interpretability is to provide methodological insights for understanding how language models represent this structure internally. In this paper, we use Shapley Taylor interaction indices (STII) in order to examine how language and speech models internally relate and structure their inputs. Pairwise Shapley interactions measure how much two inputs work together to influence model outputs beyond if we linearly added their independent influences, providing a view into how models encode structural interactions between inputs. We relate the interaction patterns in models to three underlying linguistic structures: syntactic structure, non-compositional semantics, and phonetic coarticulation. We find that autoregressive text models encode interactions that correlate with the syntactic proximity of inputs, and that both autoregressive and masked models encode nonlinear interactions in idiomatic phrases with non-compositional semantics. Our speech results show that inputs are more entangled for pairs where a neighboring consonant is likely to influence a vowel or approximant, showing that models encode the phonetic interaction needed for extracting discrete phonemic representations.
comment: Published in ACL 2025
TSVC:Tripartite Learning with Semantic Variation Consistency for Robust Image-Text Retrieval AAAI 2025
Cross-modal retrieval maps data under different modality via semantic relevance. Existing approaches implicitly assume that data pairs are well-aligned and ignore the widely existing annotation noise, i.e., noisy correspondence (NC). Consequently, it inevitably causes performance degradation. Despite attempts that employ the co-teaching paradigm with identical architectures to provide distinct data perspectives, the differences between these architectures are primarily stemmed from random initialization. Thus, the model becomes increasingly homogeneous along with the training process. Consequently, the additional information brought by this paradigm is severely limited. In order to resolve this problem, we introduce a Tripartite learning with Semantic Variation Consistency (TSVC) for robust image-text retrieval. We design a tripartite cooperative learning mechanism comprising a Coordinator, a Master, and an Assistant model. The Coordinator distributes data, and the Assistant model supports the Master model's noisy label prediction with diverse data. Moreover, we introduce a soft label estimation method based on mutual information variation, which quantifies the noise in new samples and assigns corresponding soft labels. We also present a new loss function to enhance robustness and optimize training effectiveness. Extensive experiments on three widely used datasets demonstrate that, even at increasing noise ratios, TSVC exhibits significant advantages in retrieval accuracy and maintains stable training performance.
comment: This paper has been accepted to the Main Track of AAAI 2025. It contains 9 pages, 7 figures, and is relevant to the areas of cross-modal retrieval and machine learning. The work presents a novel approach in robust image-text retrieval using a tripartite learning framework
SMMT: Siamese Motion Mamba with Self-attention for Thermal Infrared Target Tracking
Thermal infrared (TIR) object tracking often suffers from challenges such as target occlusion, motion blur, and background clutter, which significantly degrade the performance of trackers. To address these issues, this paper pro-poses a novel Siamese Motion Mamba Tracker (SMMT), which integrates a bidirectional state-space model and a self-attention mechanism. Specifically, we introduce the Motion Mamba module into the Siamese architecture to ex-tract motion features and recover overlooked edge details using bidirectional modeling and self-attention. We propose a Siamese parameter-sharing strate-gy that allows certain convolutional layers to share weights. This approach reduces computational redundancy while preserving strong feature represen-tation. In addition, we design a motion edge-aware regression loss to improve tracking accuracy, especially for motion-blurred targets. Extensive experi-ments are conducted on four TIR tracking benchmarks, including LSOTB-TIR, PTB-TIR, VOT-TIR2015, and VOT-TIR 2017. The results show that SMMT achieves superior performance in TIR target tracking.
Decoupling the Image Perception and Multimodal Reasoning for Reasoning Segmentation with Digital Twin Representations
Reasoning Segmentation (RS) is a multimodal vision-text task that requires segmenting objects based on implicit text queries, demanding both precise visual perception and vision-text reasoning capabilities. Current RS approaches rely on fine-tuning vision-language models (VLMs) for both perception and reasoning, but their tokenization of images fundamentally disrupts continuous spatial relationships between objects. We introduce DTwinSeger, a novel RS approach that leverages Digital Twin (DT) representation as an intermediate layer to decouple perception from reasoning. Innovatively, DTwinSeger reformulates RS as a two-stage process, where the first transforms the image into a structured DT representation that preserves spatial relationships and semantic properties and then employs a Large Language Model (LLM) to perform explicit reasoning over this representation to identify target objects. We propose a supervised fine-tuning method specifically for LLM with DT representation, together with a corresponding fine-tuning dataset Seg-DT, to enhance the LLM's reasoning capabilities with DT representations. Experiments show that our method can achieve state-of-the-art performance on two image RS benchmarks and three image referring segmentation benchmarks. It yields that DT representation functions as an effective bridge between vision and text, enabling complex multimodal reasoning tasks to be accomplished solely with an LLM.
comment: This work was submitted without the consent of all co-authors. We request withdrawal until all parties agree
XMeCap: Meme Caption Generation with Sub-Image Adaptability
Humor, deeply rooted in societal meanings and cultural details, poses a unique challenge for machines. While advances have been made in natural language processing, real-world humor often thrives in a multi-modal context, encapsulated distinctively by memes. This paper poses a particular emphasis on the impact of multi-images on meme captioning. After that, we introduce the \textsc{XMeCap} framework, a novel approach that adopts supervised fine-tuning and reinforcement learning based on an innovative reward model, which factors in both global and local similarities between visuals and text. Our results, benchmarked against contemporary models, manifest a marked improvement in caption generation for both single-image and multi-image memes, as well as different meme categories. \textsc{XMeCap} achieves an average evaluation score of 75.85 for single-image memes and 66.32 for multi-image memes, outperforming the best baseline by 6.75\% and 8.56\%, respectively. This research not only establishes a new frontier in meme-related studies but also underscores the potential of machines in understanding and generating humor in a multi-modal setting.
comment: Accepted to ACM Multimedia 2024
LLM2TEA: Agentic AI Designer Finds Innovative Objects with Generative Evolutionary Multitasking
In this paper, we introduce LLM-driven MultiTask Evolutionary Algorithm (LLM2TEA), the first agentic AI designer within a generative evolutionary multitasking (GEM) framework that promotes the crossover and synergy of designs from multiple domains, leading to innovative solutions that transcend individual disciplines. Of particular interest is the discovery of objects that are not only innovative but also conform to the physical specifications of the real world in science and engineering. LLM2TEA comprises a large language model to initialize a population of genotypes (defined by text prompts) describing the objects of interest, a text-to-3D generative model to produce phenotypes from these prompts, a classifier to interpret the semantic representations of the objects, and a physics simulation model to assess their physical properties. We propose several novel LLM-based multitask evolutionary operators to guide the search toward the discovery of high-performing practical objects. Experimental results in conceptual design optimization validate the effectiveness of LLM2TEA, revealing from 97\% to 174\% improvement in the diversity of innovative objects compared to the present text-to-3D generative model baseline. In addition, more than 73\% of the generated designs have better physical performance than the top 1\% percentile of the designs generated in the baseline. Moreover, LLM2TEA generates designs that are not only aesthetically creative but also functional in real-world applications. Several of these designs have been successfully 3D-printed, emphasizing the proposed approach's capacity to transform AI-generated outputs into tangible physical objects. The designs produced by LLM2TEA meets practical requirements while showcasing creative and innovative features, underscoring its potential applications in complex design optimization and discovery.
comment: This work has been submitted to the IEEE for review
HoliSafe: Holistic Safety Benchmarking and Modeling with Safety Meta Token for Vision-Language Model
Despite emerging efforts to enhance the safety of Vision-Language Models (VLMs), current approaches face two main shortcomings. 1) Existing safety-tuning datasets and benchmarks only partially consider how image-text interactions can yield harmful content, often overlooking contextually unsafe outcomes from seemingly benign pairs. This narrow coverage leaves VLMs vulnerable to jailbreak attacks in unseen configurations. 2) Prior methods rely primarily on data-centric tuning, with limited architectural innovations to intrinsically strengthen safety. We address these gaps by introducing a holistic safety dataset and benchmark, HoliSafe, that spans all five safe/unsafe image-text combinations, providing a more robust basis for both training and evaluation. We further propose SafeLLaVA, a novel VLM augmented with a learnable safety meta token and a dedicated safety head. The meta token encodes harmful visual cues during training, intrinsically guiding the language model toward safer responses, while the safety head offers interpretable harmfulness classification aligned with refusal rationales. Experiments show that SafeLLaVA, trained on HoliSafe, achieves state-of-the-art safety performance across multiple VLM benchmarks. Additionally, the HoliSafe benchmark itself reveals critical vulnerabilities in existing models. We hope that HoliSafe and SafeLLaVA will spur further research into robust and interpretable VLM safety, expanding future avenues for multimodal alignment.
comment: Project page: https://youngwanlee.github.io/holisafe
AugGen: Synthetic Augmentation Can Improve Discriminative Models
The increasing reliance on large-scale datasets in machine learning poses significant privacy and ethical challenges, particularly in sensitive domains such as face recognition (FR). Synthetic data generation offers a promising alternative; however, most existing methods depend heavily on external datasets or pre-trained models, increasing complexity and resource demands. In this paper, we introduce AugGen, a self-contained synthetic augmentation technique. AugGen strategically samples from a class-conditional generative model trained exclusively on the target FR dataset, eliminating the need for external resources. Evaluated across 8 FR benchmarks, including IJB-C and IJB-B, our method achieves 1-12% performance improvements, outperforming models trained solely on real data and surpassing state-of-the-art synthetic data generation approaches, while using less real data. Notably, these gains often exceed those from architectural modifications, underscoring the value of synthetic augmentation in data-limited scenarios. Our findings demonstrate that carefully integrated synthetic data can both mitigate privacy constraints and substantially enhance discriminative performance in face recognition. Paper website: https://parsa-ra.github.io/auggen/.
Question-Aware Gaussian Experts for Audio-Visual Question Answering CVPR 2025
Audio-Visual Question Answering (AVQA) requires not only question-based multimodal reasoning but also precise temporal grounding to capture subtle dynamics for accurate prediction. However, existing methods mainly use question information implicitly, limiting focus on question-specific details. Furthermore, most studies rely on uniform frame sampling, which can miss key question-relevant frames. Although recent Top-K frame selection methods aim to address this, their discrete nature still overlooks fine-grained temporal details. This paper proposes QA-TIGER, a novel framework that explicitly incorporates question information and models continuous temporal dynamics. Our key idea is to use Gaussian-based modeling to adaptively focus on both consecutive and non-consecutive frames based on the question, while explicitly injecting question information and applying progressive refinement. We leverage a Mixture of Experts (MoE) to flexibly implement multiple Gaussian models, activating temporal experts specifically tailored to the question. Extensive experiments on multiple AVQA benchmarks show that QA-TIGER consistently achieves state-of-the-art performance. Code is available at https://aim-skku.github.io/QA-TIGER/
comment: CVPR 2025. Code is available at https://github.com/AIM-SKKU/QA-TIGER
Holistic Uncertainty Estimation For Open-Set Recognition
Accurate uncertainty estimation is a critical challenge in open-set recognition, where a probe biometric sample may belong to an unknown identity. It can be addressed through sample quality estimation via probabilistic embeddings. However, the low variance of probabilistic embedding only partly implies a low identification error probability: an embedding of a sample could be close to several classes in a gallery, thus yielding high uncertainty despite high sample quality. We propose HolUE - a holistic uncertainty estimation method based on a Bayesian probabilistic model; it is aware of two sources of ambiguity in the open-set recognition system: (1) the gallery uncertainty caused by overlapping classes and (2) the uncertainty of embeddings. Challenging open-set recognition datasets, such as IJB-C for the image domain and VoxBlink for the audio domain, serve as a testbed for our method. We also provide a new open-set recognition protocol for the identification of whales and dolphins. In all cases, HolUE better identifies recognition errors than alternative uncertainty estimation methods, including those based solely on sample quality.
Technical Report for Ego4D Long-Term Action Anticipation Challenge 2025 CVPR
In this report, we present a novel three-stage framework developed for the Ego4D Long-Term Action Anticipation (LTA) task. Inspired by recent advances in foundation models, our method consists of three stages: feature extraction, action recognition, and long-term action anticipation. First, visual features are extracted using a high-performance visual encoder. The features are then fed into a Transformer to predict verbs and nouns, with a verb-noun co-occurrence matrix incorporated to enhance recognition accuracy. Finally, the predicted verb-noun pairs are formatted as textual prompts and input into a fine-tuned large language model (LLM) to anticipate future action sequences. Our framework achieves first place in this challenge at CVPR 2025, establishing a new state-of-the-art in long-term action prediction. Our code will be released at https://github.com/CorrineQiu/Ego4D-LTA-Challenge-2025.
comment: The champion solution for the Ego4D Long-Term Action Anticipation Challenge at the CVPR EgoVis Workshop 2025
Fourier-Modulated Implicit Neural Representation for Multispectral Satellite Image Compression
Multispectral satellite images play a vital role in agriculture, fisheries, and environmental monitoring. However, their high dimensionality, large data volumes, and diverse spatial resolutions across multiple channels pose significant challenges for data compression and analysis. This paper presents ImpliSat, a unified framework specifically designed to address these challenges through efficient compression and reconstruction of multispectral satellite data. ImpliSat leverages Implicit Neural Representations (INR) to model satellite images as continuous functions over coordinate space, capturing fine spatial details across varying spatial resolutions. Furthermore, we introduce a Fourier modulation algorithm that dynamically adjusts to the spectral and spatial characteristics of each band, ensuring optimal compression while preserving critical image details.
comment: Accepted to IGARSS 2025 (Oral)
BiCo-Fusion: Bidirectional Complementary LiDAR-Camera Fusion for Semantic- and Spatial-Aware 3D Object Detection
3D object detection is an important task that has been widely applied in autonomous driving. To perform this task, a new trend is to fuse multi-modal inputs, i.e., LiDAR and camera. Under such a trend, recent methods fuse these two modalities by unifying them in the same 3D space. However, during direct fusion in a unified space, the drawbacks of both modalities (LiDAR features struggle with detailed semantic information and the camera lacks accurate 3D spatial information) are also preserved, diluting semantic and spatial awareness of the final unified representation. To address the issue, this letter proposes a novel bidirectional complementary LiDAR-camera fusion framework, called BiCo-Fusion that can achieve robust semantic- and spatial-aware 3D object detection. The key insight is to fuse LiDAR and camera features in a bidirectional complementary way to enhance the semantic awareness of the LiDAR and the 3D spatial awareness of the camera. The enhanced features from both modalities are then adaptively fused to build a semantic- and spatial-aware unified representation. Specifically, we introduce Pre-Fusion consisting of a Voxel Enhancement Module (VEM) to enhance the semantic awareness of voxel features from 2D camera features and Image Enhancement Module (IEM) to enhance the 3D spatial awareness of camera features from 3D voxel features. We then introduce Unified Fusion (U-Fusion) to adaptively fuse the enhanced features from the last stage to build a unified representation. Extensive experiments demonstrate the superiority of our BiCo-Fusion against the prior arts. Project page: https://t-ys.github.io/BiCo-Fusion/.
comment: Accepted by IEEE Robotics and Automation Letters (RA-L)
SmartEraser: Remove Anything from Images using Masked-Region Guidance
Object removal has so far been dominated by the mask-and-inpaint paradigm, where the masked region is excluded from the input, leaving models relying on unmasked areas to inpaint the missing region. However, this approach lacks contextual information for the masked area, often resulting in unstable performance. In this work, we introduce SmartEraser, built with a new removing paradigm called Masked-Region Guidance. This paradigm retains the masked region in the input, using it as guidance for the removal process. It offers several distinct advantages: (a) it guides the model to accurately identify the object to be removed, preventing its regeneration in the output; (b) since the user mask often extends beyond the object itself, it aids in preserving the surrounding context in the final result. Leveraging this new paradigm, we present Syn4Removal, a large-scale object removal dataset, where instance segmentation data is used to copy and paste objects onto images as removal targets, with the original images serving as ground truths. Experimental results demonstrate that SmartEraser significantly outperforms existing methods, achieving superior performance in object removal, especially in complex scenes with intricate compositions.
comment: Project at: https://longtaojiang.github.io/smarteraser.github.io/
ProbDiffFlow: An Efficient Learning-Free Framework for Probabilistic Single-Image Optical Flow Estimation
This paper studies optical flow estimation, a critical task in motion analysis with applications in autonomous navigation, action recognition, and film production. Traditional optical flow methods require consecutive frames, which are often unavailable due to limitations in data acquisition or real-world scene disruptions. Thus, single-frame optical flow estimation is emerging in the literature. However, existing single-frame approaches suffer from two major limitations: (1) they rely on labeled training data, making them task-specific, and (2) they produce deterministic predictions, failing to capture motion uncertainty. To overcome these challenges, we propose ProbDiffFlow, a training-free framework that estimates optical flow distributions from a single image. Instead of directly predicting motion, ProbDiffFlow follows an estimation-by-synthesis paradigm: it first generates diverse plausible future frames using a diffusion-based model, then estimates motion from these synthesized samples using a pre-trained optical flow model, and finally aggregates the results into a probabilistic flow distribution. This design eliminates the need for task-specific training while capturing multiple plausible motions. Experiments on both synthetic and real-world datasets demonstrate that ProbDiffFlow achieves superior accuracy, diversity, and efficiency, outperforming existing single-image and two-frame baselines.
comment: 18 pages, 13 figures, accepted by Frontiers of Computer Science (FCS)
Genesis: Multimodal Driving Scene Generation with Spatio-Temporal and Cross-Modal Consistency
We present Genesis, a unified framework for joint generation of multi-view driving videos and LiDAR sequences with spatio-temporal and cross-modal consistency. Genesis employs a two-stage architecture that integrates a DiT-based video diffusion model with 3D-VAE encoding, and a BEV-aware LiDAR generator with NeRF-based rendering and adaptive sampling. Both modalities are directly coupled through a shared latent space, enabling coherent evolution across visual and geometric domains. To guide the generation with structured semantics, we introduce DataCrafter, a captioning module built on vision-language models that provides scene-level and instance-level supervision. Extensive experiments on the nuScenes benchmark demonstrate that Genesis achieves state-of-the-art performance across video and LiDAR metrics (FVD 16.95, FID 4.24, Chamfer 0.611), and benefits downstream tasks including segmentation and 3D detection, validating the semantic fidelity and practical utility of the generated data.
NeRF-CA: Dynamic Reconstruction of X-ray Coronary Angiography with Extremely Sparse-views
Dynamic three-dimensional (4D) reconstruction from two-dimensional X-ray coronary angiography (CA) remains a significant clinical problem. Existing CA reconstruction methods often require extensive user interaction or large training datasets. Recently, Neural Radiance Field (NeRF) has successfully reconstructed high-fidelity scenes in natural and medical contexts without these requirements. However, challenges such as sparse-views, intra-scan motion, and complex vessel morphology hinder its direct application to CA data. We introduce NeRF-CA, a first step toward a fully automatic 4D CA reconstruction that achieves reconstructions from sparse coronary angiograms. To the best of our knowledge, we are the first to address the challenges of sparse-views and cardiac motion by decoupling the scene into the moving coronary artery and the static background, effectively translating the problem of motion into a strength. NeRF-CA serves as a first stepping stone for solving the 4D CA reconstruction problem, achieving adequate 4D reconstructions from as few as four angiograms, as required by clinical practice, while significantly outperforming state-of-the-art sparse-view X-ray NeRF. We validate our approach quantitatively and qualitatively using representative 4D phantom datasets and ablation studies. To accelerate research in this domain, we made our codebase public: https://github.com/kirstenmaas/NeRF-CA.
MIMO: Controllable Character Video Synthesis with Spatial Decomposed Modeling
Character video synthesis aims to produce realistic videos of animatable characters within lifelike scenes. As a fundamental problem in the computer vision and graphics community, 3D works typically require multi-view captures for per-case training, which severely limits their applicability of modeling arbitrary characters in a short time. Recent 2D methods break this limitation via pre-trained diffusion models, but they struggle for pose generality and scene interaction. To this end, we propose MIMO, a novel framework which can not only synthesize character videos with controllable attributes (i.e., character, motion and scene) provided by simple user inputs, but also simultaneously achieve advanced scalability to arbitrary characters, generality to novel 3D motions, and applicability to interactive real-world scenes in a unified framework. The core idea is to encode the 2D video to compact spatial codes, considering the inherent 3D nature of video occurrence. Concretely, we lift the 2D frame pixels into 3D using monocular depth estimators, and decompose the video clip to three spatial components (i.e., main human, underlying scene, and floating occlusion) in hierarchical layers based on the 3D depth. These components are further encoded to canonical identity code, structured motion code and full scene code, which are utilized as control signals of synthesis process. The design of spatial decomposed modeling enables flexible user control, complex motion expression, as well as 3D-aware synthesis for scene interactions. Experimental results demonstrate effectiveness and robustness of the proposed method.
comment: Project Page: https://menyifang.github.io/projects/MIMO/index.html
Temporal-Guided Spiking Neural Networks for Event-Based Human Action Recognition
This paper explores the promising interplay between spiking neural networks (SNNs) and event-based cameras for privacy-preserving human action recognition (HAR). The unique feature of event cameras in capturing only the outlines of motion, combined with SNNs' proficiency in processing spatiotemporal data through spikes, establishes a highly synergistic compatibility for event-based HAR. Previous studies, however, have been limited by SNNs' ability to process long-term temporal information, essential for precise HAR. In this paper, we introduce two novel frameworks to address this: temporal segment-based SNN (\textit{TS-SNN}) and 3D convolutional SNN (\textit{3D-SNN}). The \textit{TS-SNN} extracts long-term temporal information by dividing actions into shorter segments, while the \textit{3D-SNN} replaces 2D spatial elements with 3D components to facilitate the transmission of temporal information. To promote further research in event-based HAR, we create a dataset, \textit{FallingDetection-CeleX}, collected using the high-resolution CeleX-V event camera $(1280 \times 800)$, comprising 7 distinct actions. Extensive experimental results show that our proposed frameworks surpass state-of-the-art SNN methods on our newly collected dataset and three other neuromorphic datasets, showcasing their effectiveness in handling long-range temporal information for event-based HAR.
LEMUR Neural Network Dataset: Towards Seamless AutoML
Neural networks are fundamental in artificial intelligence, driving progress in computer vision and natural language processing. High-quality datasets are crucial for their development, and there is growing interest in datasets composed of neural networks themselves to support benchmarking, automated machine learning (AutoML), and model analysis. We introduce LEMUR, an open source dataset of neural network models with well-structured code for diverse architectures across tasks such as object detection, image classification, segmentation, and natural language processing. LEMUR is primarily designed to provide a rich source of structured model representations and associated performance data, enabling the fine-tuning of large language models for AutoML applications. Leveraging Python and PyTorch, LEMUR enables seamless extension to new datasets and models while maintaining consistency. It integrates an Optuna-powered framework for evaluation, hyperparameter optimization, statistical analysis, and graphical insights. LEMUR VR extension enables the seamless deployment of models in virtual reality, optimizing their performance on resource-constrained devices. Providing tools for model evaluation, preprocessing, and database management, LEMUR supports researchers and practitioners in developing, testing, and analyzing neural networks. It offers an API that delivers comprehensive information about neural network models and their complete performance statistics with a single request, which can be used in experiments with code-generating large language models. The LEMUR and its plugins are accessible as open source projects under the MIT license at https://github.com/ABrain-One/nn-dataset, https://github.com/ABrain-One/nn-plots and https://github.com/ABrain-One/nn-vr.
Dynamic Negative Guidance of Diffusion Models ICLR 2025
Negative Prompting (NP) is widely utilized in diffusion models, particularly in text-to-image applications, to prevent the generation of undesired features. In this paper, we show that conventional NP is limited by the assumption of a constant guidance scale, which may lead to highly suboptimal results, or even complete failure, due to the non-stationarity and state-dependence of the reverse process. Based on this analysis, we derive a principled technique called Dynamic Negative Guidance, which relies on a near-optimal time and state dependent modulation of the guidance without requiring additional training. Unlike NP, negative guidance requires estimating the posterior class probability during the denoising process, which is achieved with limited additional computational overhead by tracking the discrete Markov Chain during the generative process. We evaluate the performance of DNG class-removal on MNIST and CIFAR10, where we show that DNG leads to higher safety, preservation of class balance and image quality when compared with baseline methods. Furthermore, we show that it is possible to use DNG with Stable Diffusion to obtain more accurate and less invasive guidance than NP.
comment: Paper accepted at ICLR 2025 (poster). Our implementation is available at https://github.com/FelixKoulischer/Dynamic-Negative-Guidance.git
DeepMultiConnectome: Deep Multi-Task Prediction of Structural Connectomes Directly from Diffusion MRI Tractography
Diffusion MRI (dMRI) tractography enables in vivo mapping of brain structural connections, but traditional connectome generation is time-consuming and requires gray matter parcellation, posing challenges for large-scale studies. We introduce DeepMultiConnectome, a deep-learning model that predicts structural connectomes directly from tractography, bypassing the need for gray matter parcellation while supporting multiple parcellation schemes. Using a point-cloud-based neural network with multi-task learning, the model classifies streamlines according to their connected regions across two parcellation schemes, sharing a learned representation. We train and validate DeepMultiConnectome on tractography from the Human Connectome Project Young Adult dataset ($n = 1000$), labeled with an 84 and 164 region gray matter parcellation scheme. DeepMultiConnectome predicts multiple structural connectomes from a whole-brain tractogram containing 3 million streamlines in approximately 40 seconds. DeepMultiConnectome is evaluated by comparing predicted connectomes with traditional connectomes generated using the conventional method of labeling streamlines using a gray matter parcellation. The predicted connectomes are highly correlated with traditionally generated connectomes ($r = 0.992$ for an 84-region scheme; $r = 0.986$ for a 164-region scheme) and largely preserve network properties. A test-retest analysis of DeepMultiConnectome demonstrates reproducibility comparable to traditionally generated connectomes. The predicted connectomes perform similarly to traditionally generated connectomes in predicting age and cognitive function. Overall, DeepMultiConnectome provides a scalable, fast model for generating subject-specific connectomes across multiple parcellation schemes.
comment: 15 pages, 5 figures
MCA-Bench: A Multimodal Benchmark for Evaluating CAPTCHA Robustness Against VLM-based Attacks
As automated attack techniques rapidly advance, CAPTCHAs remain a critical defense mechanism against malicious bots. However, existing CAPTCHA schemes encompass a diverse range of modalities -- from static distorted text and obfuscated images to interactive clicks, sliding puzzles, and logic-based questions -- yet the community still lacks a unified, large-scale, multimodal benchmark to rigorously evaluate their security robustness. To address this gap, we introduce MCA-Bench, a comprehensive and reproducible benchmarking suite that integrates heterogeneous CAPTCHA types into a single evaluation protocol. Leveraging a shared vision-language model backbone, we fine-tune specialized cracking agents for each CAPTCHA category, enabling consistent, cross-modal assessments. Extensive experiments reveal that MCA-Bench effectively maps the vulnerability spectrum of modern CAPTCHA designs under varied attack settings, and crucially offers the first quantitative analysis of how challenge complexity, interaction depth, and model solvability interrelate. Based on these findings, we propose three actionable design principles and identify key open challenges, laying the groundwork for systematic CAPTCHA hardening, fair benchmarking, and broader community collaboration. Datasets and code are available online.
comment: 31 pages, 8 figures
Plug-and-Play image restoration with Stochastic deNOising REgularization
Plug-and-Play (PnP) algorithms are a class of iterative algorithms that address image inverse problems by combining a physical model and a deep neural network for regularization. Even if they produce impressive image restoration results, these algorithms rely on a non-standard use of a denoiser on images that are less and less noisy along the iterations, which contrasts with recent algorithms based on Diffusion Models (DM), where the denoiser is applied only on re-noised images. We propose a new PnP framework, called Stochastic deNOising REgularization (SNORE), which applies the denoiser only on images with noise of the adequate level. It is based on an explicit stochastic regularization, which leads to a stochastic gradient descent algorithm to solve ill-posed inverse problems. A convergence analysis of this algorithm and its annealing extension is provided. Experimentally, we prove that SNORE is competitive with respect to state-of-the-art methods on deblurring and inpainting tasks, both quantitatively and qualitatively.
Exploring Test-Time Adaptation for Object Detection in Continually Changing Environments
Real-world application models are commonly deployed in dynamic environments, where the target domain distribution undergoes temporal changes. Continual Test-Time Adaptation (CTTA) has recently emerged as a promising technique to gradually adapt a source-trained model to continually changing target domains. Despite recent advancements in addressing CTTA, two critical issues remain: 1) Fixed thresholds for pseudo-labeling in existing methodologies lead to low-quality pseudo-labels, as model confidence varies across categories and domains; 2) Stochastic parameter restoration methods for mitigating catastrophic forgetting fail to preserve critical information effectively, due to their intrinsic randomness. To tackle these challenges for detection models in CTTA scenarios, we present AMROD, featuring three core components. Firstly, the object-level contrastive learning module extracts object-level features for contrastive learning to refine the feature representation in the target domain. Secondly, the adaptive monitoring module dynamically skips unnecessary adaptation and updates the category-specific threshold based on predicted confidence scores to enable efficiency and improve the quality of pseudo-labels. Lastly, the adaptive randomized restoration mechanism selectively reset inactive parameters with higher possibilities, ensuring the retention of essential knowledge. We demonstrate the effectiveness of AMROD on four CTTA object detection tasks, where AMROD outperforms existing methods, especially achieving a 3.2 mAP improvement and a 20\% increase in efficiency on the Cityscapes-to-Cityscapes-C CTTA task. The code of this work is available at https://github.com/ShileiCao/AMROD.
Diffusion-based Adversarial Purification from the Perspective of the Frequency Domain
The diffusion-based adversarial purification methods attempt to drown adversarial perturbations into a part of isotropic noise through the forward process, and then recover the clean images through the reverse process. Due to the lack of distribution information about adversarial perturbations in the pixel domain, it is often unavoidable to damage normal semantics. We turn to the frequency domain perspective, decomposing the image into amplitude spectrum and phase spectrum. We find that for both spectra, the damage caused by adversarial perturbations tends to increase monotonically with frequency. This means that we can extract the content and structural information of the original clean sample from the frequency components that are less damaged. Meanwhile, theoretical analysis indicates that existing purification methods indiscriminately damage all frequency components, leading to excessive damage to the image. Therefore, we propose a purification method that can eliminate adversarial perturbations while maximizing the preservation of the content and structure of the original image. Specifically, at each time step during the reverse process, for the amplitude spectrum, we replace the low-frequency components of the estimated image's amplitude spectrum with the corresponding parts of the adversarial image. For the phase spectrum, we project the phase of the estimated image into a designated range of the adversarial image's phase spectrum, focusing on the low frequencies. Empirical evidence from extensive experiments demonstrates that our method significantly outperforms most current defense methods.
SceneEval: Evaluating Semantic Coherence in Text-Conditioned 3D Indoor Scene Synthesis
Despite recent advances in text-conditioned 3D indoor scene generation, there remain gaps in the evaluation of these methods. Existing metrics primarily assess the realism of generated scenes by comparing them to a set of ground-truth scenes, often overlooking alignment with the input text - a critical factor in determining how effectively a method meets user requirements. We present SceneEval, an evaluation framework designed to address this limitation. SceneEval includes metrics for both explicit user requirements, such as the presence of specific objects and their attributes described in the input text, and implicit expectations, like the absence of object collisions, providing a comprehensive assessment of scene quality. To facilitate evaluation, we introduce SceneEval-500, a dataset of scene descriptions with annotated ground-truth scene properties. We evaluate recent scene generation methods using SceneEval and demonstrate its ability to provide detailed assessments of the generated scenes, highlighting strengths and areas for improvement across multiple dimensions. Our results show that current methods struggle at generating scenes that meet user requirements, underscoring the need for further research in this direction.
comment: Expanded dataset to 500 annotated scene descriptions with new scene types; added validation via extended manual evaluation and a new user study; clarified distinctions from prior metrics; included results using an open-source VLM; stated intent to release code and data; corrected terminology and typos. 24 pages with 8 figures and 6 tables
ByteMorph: Benchmarking Instruction-Guided Image Editing with Non-Rigid Motions
Editing images with instructions to reflect non-rigid motions, camera viewpoint shifts, object deformations, human articulations, and complex interactions, poses a challenging yet underexplored problem in computer vision. Existing approaches and datasets predominantly focus on static scenes or rigid transformations, limiting their capacity to handle expressive edits involving dynamic motion. To address this gap, we introduce ByteMorph, a comprehensive framework for instruction-based image editing with an emphasis on non-rigid motions. ByteMorph comprises a large-scale dataset, ByteMorph-6M, and a strong baseline model built upon the Diffusion Transformer (DiT), named ByteMorpher. ByteMorph-6M includes over 6 million high-resolution image editing pairs for training, along with a carefully curated evaluation benchmark ByteMorph-Bench. Both capture a wide variety of non-rigid motion types across diverse environments, human figures, and object categories. The dataset is constructed using motion-guided data generation, layered compositing techniques, and automated captioning to ensure diversity, realism, and semantic coherence. We further conduct a comprehensive evaluation of recent instruction-based image editing methods from both academic and commercial domains.
comment: Website: https://boese0601.github.io/bytemorph Dataset: https://huggingface.co/datasets/ByteDance-Seed/BM-6M Benchmark: https://huggingface.co/datasets/ByteDance-Seed/BM-Bench Code: https://github.com/ByteDance-Seed/BM-code Demo: https://huggingface.co/spaces/Boese0601/ByteMorph-Demo
Sim-to-Real Causal Transfer: A Metric Learning Approach to Causally-Aware Interaction Representations CVPR 2025
Modeling spatial-temporal interactions among neighboring agents is at the heart of multi-agent problems such as motion forecasting and crowd navigation. Despite notable progress, it remains unclear to which extent modern representations can capture the causal relationships behind agent interactions. In this work, we take an in-depth look at the causal awareness of these representations, from computational formalism to real-world practice. First, we cast doubt on the notion of non-causal robustness studied in the recent CausalAgents benchmark. We show that recent representations are already partially resilient to perturbations of non-causal agents, and yet modeling indirect causal effects involving mediator agents remains challenging. To address this challenge, we introduce a metric learning approach that regularizes latent representations with causal annotations. Our controlled experiments show that this approach not only leads to higher degrees of causal awareness but also yields stronger out-of-distribution robustness. To further operationalize it in practice, we propose a sim-to-real causal transfer method via cross-domain multi-task learning. Experiments on pedestrian datasets show that our method can substantially boost generalization, even in the absence of real-world causal annotations. We hope our work provides a new perspective on the challenges and pathways towards causally-aware representations of multi-agent interactions. Our code is available at https://github.com/vita-epfl/CausalSim2Real.
comment: CVPR 2025
Directing Mamba to Complex Textures: An Efficient Texture-Aware State Space Model for Image Restoration IJCAI 2025
Image restoration aims to recover details and enhance contrast in degraded images. With the growing demand for high-quality imaging (\textit{e.g.}, 4K and 8K), achieving a balance between restoration quality and computational efficiency has become increasingly critical. Existing methods, primarily based on CNNs, Transformers, or their hybrid approaches, apply uniform deep representation extraction across the image. However, these methods often struggle to effectively model long-range dependencies and largely overlook the spatial characteristics of image degradation (regions with richer textures tend to suffer more severe damage), making it hard to achieve the best trade-off between restoration quality and efficiency. To address these issues, we propose a novel texture-aware image restoration method, TAMambaIR, which simultaneously perceives image textures and achieves a trade-off between performance and efficiency. Specifically, we introduce a novel Texture-Aware State Space Model, which enhances texture awareness and improves efficiency by modulating the transition matrix of the state-space equation and focusing on regions with complex textures. Additionally, we design a {Multi-Directional Perception Block} to improve multi-directional receptive fields while maintaining low computational overhead. Extensive experiments on benchmarks for image super-resolution, deraining, and low-light image enhancement demonstrate that TAMambaIR achieves state-of-the-art performance with significantly improved efficiency, establishing it as a robust and efficient framework for image restoration.
comment: Accepted by the 34th International Joint Conference on Artificial Intelligence (IJCAI 2025)
MedChat: A Multi-Agent Framework for Multimodal Diagnosis with Large Language Models
The integration of deep learning-based glaucoma detection with large language models (LLMs) presents an automated strategy to mitigate ophthalmologist shortages and improve clinical reporting efficiency. However, applying general LLMs to medical imaging remains challenging due to hallucinations, limited interpretability, and insufficient domain-specific medical knowledge, which can potentially reduce clinical accuracy. Although recent approaches combining imaging models with LLM reasoning have improved reporting, they typically rely on a single generalist agent, restricting their capacity to emulate the diverse and complex reasoning found in multidisciplinary medical teams. To address these limitations, we propose MedChat, a multi-agent diagnostic framework and platform that combines specialized vision models with multiple role-specific LLM agents, all coordinated by a director agent. This design enhances reliability, reduces hallucination risk, and enables interactive diagnostic reporting through an interface tailored for clinical review and educational use. Code available at https://github.com/Purdue-M2/MedChat.
comment: 7 pages, 6 figures. Accepted to the 2025 IEEE 8th International Conference on Multimedia Information Processing and Retrieval (MIPR)
Image and Video Processing
Sampling Theory for Super-Resolution with Implicit Neural Representations
Implicit neural representations (INRs) have emerged as a powerful tool for solving inverse problems in computer vision and computational imaging. INRs represent images as continuous domain functions realized by a neural network taking spatial coordinates as inputs. However, unlike traditional pixel representations, little is known about the sample complexity of estimating images using INRs in the context of linear inverse problems. Towards this end, we study the sampling requirements for recovery of a continuous domain image from its low-pass Fourier samples by fitting a single hidden-layer INR with ReLU activation and a Fourier features layer using a generalized form of weight decay regularization. Our key insight is to relate minimizers of this non-convex parameter space optimization problem to minimizers of a convex penalty defined over an infinite-dimensional space of measures. We identify a sufficient number of Fourier samples for which an image realized by an INR is exactly recoverable by solving the INR training problem. To validate our theory, we empirically assess the probability of achieving exact recovery of images realized by low-width single hidden-layer INRs, and illustrate the performance of INRs on super-resolution recovery of continuous domain phantom images.
comment: arXiv admin note: text overlap with arXiv:2405.18410
A Cytology Dataset for Early Detection of Oral Squamous Cell Carcinoma
Oral squamous cell carcinoma OSCC is a major global health burden, particularly in several regions across Asia, Africa, and South America, where it accounts for a significant proportion of cancer cases. Early detection dramatically improves outcomes, with stage I cancers achieving up to 90 percent survival. However, traditional diagnosis based on histopathology has limited accessibility in low-resource settings because it is invasive, resource-intensive, and reliant on expert pathologists. On the other hand, oral cytology of brush biopsy offers a minimally invasive and lower cost alternative, provided that the remaining challenges, inter observer variability and unavailability of expert pathologists can be addressed using artificial intelligence. Development and validation of robust AI solutions requires access to large, labeled, and multi-source datasets to train high capacity models that generalize across domain shifts. We introduce the first large and multicenter oral cytology dataset, comprising annotated slides stained with Papanicolaou(PAP) and May-Grunwald-Giemsa(MGG) protocols, collected from ten tertiary medical centers in India. The dataset is labeled and annotated by expert pathologists for cellular anomaly classification and detection, is designed to advance AI driven diagnostic methods. By filling the gap in publicly available oral cytology datasets, this resource aims to enhance automated detection, reduce diagnostic errors, and improve early OSCC diagnosis in resource-constrained settings, ultimately contributing to reduced mortality and better patient outcomes worldwide.
comment: 7 pages, 2 figurs
HopaDIFF: Holistic-Partial Aware Fourier Conditioned Diffusion for Referring Human Action Segmentation in Multi-Person Scenarios
Action segmentation is a core challenge in high-level video understanding, aiming to partition untrimmed videos into segments and assign each a label from a predefined action set. Existing methods primarily address single-person activities with fixed action sequences, overlooking multi-person scenarios. In this work, we pioneer textual reference-guided human action segmentation in multi-person settings, where a textual description specifies the target person for segmentation. We introduce the first dataset for Referring Human Action Segmentation, i.e., RHAS133, built from 133 movies and annotated with 137 fine-grained actions with 33h video data, together with textual descriptions for this new task. Benchmarking existing action recognition methods on RHAS133 using VLM-based feature extractors reveals limited performance and poor aggregation of visual cues for the target person. To address this, we propose a holistic-partial aware Fourier-conditioned diffusion framework, i.e., HopaDIFF, leveraging a novel cross-input gate attentional xLSTM to enhance holistic-partial long-range reasoning and a novel Fourier condition to introduce more fine-grained control to improve the action segmentation generation. HopaDIFF achieves state-of-the-art results on RHAS133 in diverse evaluation settings. The code is available at https://github.com/KPeng9510/HopaDIFF.git.
comment: The code is available at https://github.com/KPeng9510/HopaDIFF.git
Generalized Gaussian Entropy Model for Point Cloud Attribute Compression with Dynamic Likelihood Intervals
Gaussian and Laplacian entropy models are proved effective in learned point cloud attribute compression, as they assist in arithmetic coding of latents. However, we demonstrate through experiments that there is still unutilized information in entropy parameters estimated by neural networks in current methods, which can be used for more accurate probability estimation. Thus we introduce generalized Gaussian entropy model, which controls the tail shape through shape parameter to more accurately estimate the probability of latents. Meanwhile, to the best of our knowledge, existing methods use fixed likelihood intervals for each integer during arithmetic coding, which limits model performance. We propose Mean Error Discriminator (MED) to determine whether the entropy parameter estimation is accurate and then dynamically adjust likelihood intervals. Experiments show that our method significantly improves rate-distortion (RD) performance on three VAE-based models for point cloud attribute compression, and our method can be applied to other compression tasks, such as image and video compression.
An Interpretable Two-Stage Feature Decomposition Method for Deep Learning-based SAR ATR
Synthetic aperture radar automatic target recognition (SAR ATR) has seen significant performance improvements with deep learning. However, the black-box nature of deep SAR ATR introduces low confidence and high risks in decision-critical SAR applications, hindering practical deployment. To address this issue, deep SAR ATR should provide an interpretable reasoning basis $r_b$ and logic $\lambda_w$, forming the reasoning logic $\sum_{i} {{r_b^i} \times {\lambda_w^i}} =pred$ behind the decisions. Therefore, this paper proposes a physics-based two-stage feature decomposition method for interpretable deep SAR ATR, which transforms uninterpretable deep features into attribute scattering center components (ASCC) with clear physical meanings. First, ASCCs are obtained through a clustering algorithm. To extract independent physical components from deep features, we propose a two-stage decomposition method. In the first stage, a feature decoupling and discrimination module separates deep features into approximate ASCCs with global discriminability. In the second stage, a multilayer orthogonal non-negative matrix tri-factorization (MLO-NMTF) further decomposes the ASCCs into independent components with distinct physical meanings. The MLO-NMTF elegantly aligns with the clustering algorithms to obtain ASCCs. Finally, this method ensures both an interpretable reasoning process and accurate recognition results. Extensive experiments on four benchmark datasets confirm its effectiveness, showcasing the method's interpretability, robust recognition performance, and strong generalization capability.
Fourier-Modulated Implicit Neural Representation for Multispectral Satellite Image Compression
Multispectral satellite images play a vital role in agriculture, fisheries, and environmental monitoring. However, their high dimensionality, large data volumes, and diverse spatial resolutions across multiple channels pose significant challenges for data compression and analysis. This paper presents ImpliSat, a unified framework specifically designed to address these challenges through efficient compression and reconstruction of multispectral satellite data. ImpliSat leverages Implicit Neural Representations (INR) to model satellite images as continuous functions over coordinate space, capturing fine spatial details across varying spatial resolutions. Furthermore, we introduce a Fourier modulation algorithm that dynamically adjusts to the spectral and spatial characteristics of each band, ensuring optimal compression while preserving critical image details.
comment: Accepted to IGARSS 2025 (Oral)
NeRF-CA: Dynamic Reconstruction of X-ray Coronary Angiography with Extremely Sparse-views
Dynamic three-dimensional (4D) reconstruction from two-dimensional X-ray coronary angiography (CA) remains a significant clinical problem. Existing CA reconstruction methods often require extensive user interaction or large training datasets. Recently, Neural Radiance Field (NeRF) has successfully reconstructed high-fidelity scenes in natural and medical contexts without these requirements. However, challenges such as sparse-views, intra-scan motion, and complex vessel morphology hinder its direct application to CA data. We introduce NeRF-CA, a first step toward a fully automatic 4D CA reconstruction that achieves reconstructions from sparse coronary angiograms. To the best of our knowledge, we are the first to address the challenges of sparse-views and cardiac motion by decoupling the scene into the moving coronary artery and the static background, effectively translating the problem of motion into a strength. NeRF-CA serves as a first stepping stone for solving the 4D CA reconstruction problem, achieving adequate 4D reconstructions from as few as four angiograms, as required by clinical practice, while significantly outperforming state-of-the-art sparse-view X-ray NeRF. We validate our approach quantitatively and qualitatively using representative 4D phantom datasets and ablation studies. To accelerate research in this domain, we made our codebase public: https://github.com/kirstenmaas/NeRF-CA.
DeepMultiConnectome: Deep Multi-Task Prediction of Structural Connectomes Directly from Diffusion MRI Tractography
Diffusion MRI (dMRI) tractography enables in vivo mapping of brain structural connections, but traditional connectome generation is time-consuming and requires gray matter parcellation, posing challenges for large-scale studies. We introduce DeepMultiConnectome, a deep-learning model that predicts structural connectomes directly from tractography, bypassing the need for gray matter parcellation while supporting multiple parcellation schemes. Using a point-cloud-based neural network with multi-task learning, the model classifies streamlines according to their connected regions across two parcellation schemes, sharing a learned representation. We train and validate DeepMultiConnectome on tractography from the Human Connectome Project Young Adult dataset ($n = 1000$), labeled with an 84 and 164 region gray matter parcellation scheme. DeepMultiConnectome predicts multiple structural connectomes from a whole-brain tractogram containing 3 million streamlines in approximately 40 seconds. DeepMultiConnectome is evaluated by comparing predicted connectomes with traditional connectomes generated using the conventional method of labeling streamlines using a gray matter parcellation. The predicted connectomes are highly correlated with traditionally generated connectomes ($r = 0.992$ for an 84-region scheme; $r = 0.986$ for a 164-region scheme) and largely preserve network properties. A test-retest analysis of DeepMultiConnectome demonstrates reproducibility comparable to traditionally generated connectomes. The predicted connectomes perform similarly to traditionally generated connectomes in predicting age and cognitive function. Overall, DeepMultiConnectome provides a scalable, fast model for generating subject-specific connectomes across multiple parcellation schemes.
comment: 15 pages, 5 figures
Plug-and-Play image restoration with Stochastic deNOising REgularization
Plug-and-Play (PnP) algorithms are a class of iterative algorithms that address image inverse problems by combining a physical model and a deep neural network for regularization. Even if they produce impressive image restoration results, these algorithms rely on a non-standard use of a denoiser on images that are less and less noisy along the iterations, which contrasts with recent algorithms based on Diffusion Models (DM), where the denoiser is applied only on re-noised images. We propose a new PnP framework, called Stochastic deNOising REgularization (SNORE), which applies the denoiser only on images with noise of the adequate level. It is based on an explicit stochastic regularization, which leads to a stochastic gradient descent algorithm to solve ill-posed inverse problems. A convergence analysis of this algorithm and its annealing extension is provided. Experimentally, we prove that SNORE is competitive with respect to state-of-the-art methods on deblurring and inpainting tasks, both quantitatively and qualitatively.
Coil2Coil: Self-supervised MR image denoising using phased-array coil images
Denoising of magnetic resonance images is beneficial in improving the quality of low signal-to-noise ratio images. Recently, denoising using deep neural networks has demonstrated promising results. Most of these networks, however, utilize supervised learning, which requires large training images of noise-corrupted and clean image pairs. Obtaining training images, particularly clean images, is expensive and time-consuming. Hence, methods such as Noise2Noise (N2N) that require only pairs of noise-corrupted images have been developed to reduce the burden of obtaining training datasets. In this study, we propose a new self-supervised denoising method, Coil2Coil (C2C), that does not require the acquisition of clean images or paired noise-corrupted images for training. Instead, the method utilizes multichannel data from phased-array coils to generate training images. First, it divides and combines multichannel coil images into two images, one for input and the other for label. Then, they are processed to impose noise independence and sensitivity normalization such that they can be used for the training images of N2N. For inference, the method inputs a coil-combined image (e.g., DICOM image), enabling a wide application of the method. When evaluated using synthetic noise-added images, C2C shows the best performance against several self-supervised methods, reporting comparable outcomes to supervised methods. When testing the DICOM images, C2C successfully denoised real noise without showing structure-dependent residuals in the error maps. Because of the significant advantage of not requiring additional scans for clean or paired images, the method can be easily utilized for various clinical applications.
comment: 9 pages, 5figures
Towards a Sampling Theory for Implicit Neural Representations
Implicit neural representations (INRs) have emerged as a powerful tool for solving inverse problems in computer vision and computational imaging. INRs represent images as continuous domain functions realized by a neural network taking spatial coordinates as inputs. However, unlike traditional pixel representations, little is known about the sample complexity of estimating images using INRs in the context of linear inverse problems. Towards this end, we study the sampling requirements for recovery of a continuous domain image from its low-pass Fourier coefficients by fitting a single hidden-layer INR with ReLU activation and a Fourier features layer using a generalized form of weight decay regularization. Our key insight is to relate minimizers of this non-convex parameter space optimization problem to minimizers of a convex penalty defined over an infinite-dimensional space of measures. We identify a sufficient number of samples for which an image realized by a width-1 INR is exactly recoverable by solving the INR training problem, and give a conjecture for the general width-$W$ case. To validate our theory, we empirically assess the probability of achieving exact recovery of images realized by low-width single hidden-layer INRs, and illustrate the performance of INR on super-resolution recovery of more realistic continuous domain phantom images.
comment: IEEE Asilomar 2024
Neuromorphic Optical Tracking and Imaging of Randomly Moving Targets through Strongly Scattering Media
Tracking and acquiring simultaneous optical images of randomly moving targets obscured by scattering media remains a challenging problem of importance to many applications that require precise object localization and identification. In this work we develop an end-to-end neuromorphic optical engineering and computational approach to demonstrate how to track and image normally invisible objects by combining an event detecting camera with a multistage neuromorphic deep learning strategy. Photons emerging from dense scattering media are detected by the event camera and converted to pixel-wise asynchronized spike trains - a first step in isolating object-specific information from the dominant uninformative background. Spiking data is fed into a deep spiking neural network (SNN) engine where object tracking and image reconstruction are performed by two separate yet interconnected modules running in parallel in discrete time steps over the event duration. Through benchtop experiments we demonstrate tracking and imaging randomly moving objects in dense turbid media as well as image reconstruction of spatially stationary but optically dynamic objects. Standardized character sets serve as representative proxies for geometrically complex objects, underscoring the method's generality. The results highlight the advantages of a fully neuromorphic approach in meeting a major imaging technology with high computational efficiency and low power consumption.
comment: 26 pages, 6 figures
Multimedia
Learning Quality from Complexity and Structure: A Feature-Fused XGBoost Model for Video Quality Assessment ICME 2025
This paper presents a novel approach for reduced-reference video quality assessment (VQA), developed as part of the recent VQA Grand Challenge. Our method leverages low-level complexity and structural information from reference and test videos to predict perceptual quality scores. Specifically, we extract spatio-temporal features using Video Complexity Analyzer (VCA) and compute SSIM values from the test video to capture both texture and structural characteristics. These features are aggregated through temporal pooling, and residual features are calculated by comparing the original and distorted feature sets. The combined features are used to train an XGBoost regression model that estimates the overall video quality. The pipeline is fully automated, interpretable, and highly scalable, requiring no deep neural networks or GPU inference. Experimental results on the challenge dataset demonstrate that our proposed method achieves competitive correlation with subjective quality scores while maintaining a low computational footprint. The model's lightweight design and strong generalization performance suit real-time streaming quality monitoring and adaptive encoding scenarios.
comment: ICME 2025
Incorporating Linguistic Constraints from External Knowledge Source for Audio-Visual Target Speech Extraction
Audio-visual target speaker extraction (AV-TSE) models primarily rely on target visual cues to isolate the target speaker's voice from others. We know that humans leverage linguistic knowledge, such as syntax and semantics, to support speech perception. Inspired by this, we explore the potential of pre-trained speech-language models (PSLMs) and pre-trained language models (PLMs) as auxiliary knowledge sources for AV-TSE. In this study, we propose incorporating the linguistic constraints from PSLMs or PLMs for the AV-TSE model as additional supervision signals. Without introducing any extra computational cost during inference, the proposed approach consistently improves speech quality and intelligibility. Furthermore, we evaluate our method in multi-language settings and visual cue-impaired scenarios and show robust performance gains.
comment: Accepted by Interspeech 2025
HopaDIFF: Holistic-Partial Aware Fourier Conditioned Diffusion for Referring Human Action Segmentation in Multi-Person Scenarios
Action segmentation is a core challenge in high-level video understanding, aiming to partition untrimmed videos into segments and assign each a label from a predefined action set. Existing methods primarily address single-person activities with fixed action sequences, overlooking multi-person scenarios. In this work, we pioneer textual reference-guided human action segmentation in multi-person settings, where a textual description specifies the target person for segmentation. We introduce the first dataset for Referring Human Action Segmentation, i.e., RHAS133, built from 133 movies and annotated with 137 fine-grained actions with 33h video data, together with textual descriptions for this new task. Benchmarking existing action recognition methods on RHAS133 using VLM-based feature extractors reveals limited performance and poor aggregation of visual cues for the target person. To address this, we propose a holistic-partial aware Fourier-conditioned diffusion framework, i.e., HopaDIFF, leveraging a novel cross-input gate attentional xLSTM to enhance holistic-partial long-range reasoning and a novel Fourier condition to introduce more fine-grained control to improve the action segmentation generation. HopaDIFF achieves state-of-the-art results on RHAS133 in diverse evaluation settings. The code is available at https://github.com/KPeng9510/HopaDIFF.git.
comment: The code is available at https://github.com/KPeng9510/HopaDIFF.git
Dynamic Sub-region Search in Homogeneous Collections Using CLIP
Querying with text-image-based search engines in highly homogeneous domain-specific image collections is challenging for users, as they often struggle to provide descriptive text queries. For example, in an underwater domain, users can usually characterize entities only with abstract labels, such as corals and fish, which leads to low recall rates. Our work investigates whether recall can be improved by supplementing text queries with position information. Specifically, we explore dynamic image partitioning approaches that divide candidates into semantically meaningful regions of interest. Instead of querying entire images, users can specify regions they recognize. This enables the use of position constraints while preserving the semantic capabilities of multimodal models. We introduce and evaluate strategies for integrating position constraints into semantic search models and compare them against static partitioning approaches. Our evaluation highlights both the potential and the limitations of sub-region-based search methods using dynamic partitioning. Dynamic search models achieve up to double the retrieval performance compared to static partitioning approaches but are highly sensitive to perturbations in the specified query positions.
comment: 18 pages, 4 figures, 5 tables
Teaching Physical Awareness to LLMs through Sounds ICML 2025
Large Language Models (LLMs) have shown remarkable capabilities in text and multimodal processing, yet they fundamentally lack physical awareness--understanding of real-world physical phenomena. In this work, we present ACORN, a framework that teaches LLMs physical awareness through sound, focusing on fundamental physical phenomena like the Doppler effect, multipath effect, and spatial relationships. To overcome data scarcity, ACORN introduce a physics-based simulator combining real-world sound sources with controlled physical channels to generate diverse training data. Using this simulator, we build AQA-PHY, a comprehensive Audio Question-Answer dataset, and propose an audio encoder that processes both magnitude and phase information. By connecting our audio encoder to state-of-the-art LLMs, we demonstrate reasonable results in both simulated and real-world tasks, such as line-of-sight detection, Doppler effect estimation, and Direction-of-Arrival estimation, paving the way for enabling LLMs to understand physical world.
comment: ICML 2025
Multi-Modal Multi-Task Federated Foundation Models for Next-Generation Extended Reality Systems: Towards Privacy-Preserving Distributed Intelligence in AR/VR/MR
Extended reality (XR) systems, which consist of virtual reality (VR), augmented reality (AR), and mixed reality (XR), offer a transformative interface for immersive, multi-modal, and embodied human-computer interaction. In this paper, we envision that multi-modal multi-task (M3T) federated foundation models (FedFMs) can offer transformative capabilities for XR systems through integrating the representational strength of M3T foundation models (FMs) with the privacy-preserving model training principles of federated learning (FL). We present a modular architecture for FedFMs, which entails different coordination paradigms for model training and aggregations. Central to our vision is the codification of XR challenges that affect the implementation of FedFMs under the SHIFT dimensions: (1) Sensor and modality diversity, (2) Hardware heterogeneity and system-level constraints, (3) Interactivity and embodied personalization, (4) Functional/task variability, and (5) Temporality and environmental variability. We illustrate the manifestation of these dimensions across a set of emerging and anticipated applications of XR systems. Finally, we propose evaluation metrics, dataset requirements, and design tradeoffs necessary for the development of resource-aware FedFMs in XR. This perspective aims to chart the technical and conceptual foundations for context-aware privacy-preserving intelligence in the next generation of XR systems.
comment: 16 pages, 4 Figures, 8 Tables
Computation and Language
From Judgment to Interference: Early Stopping LLM Harmful Outputs via Streaming Content Monitoring
Though safety alignment has been applied to most large language models (LLMs), LLM service providers generally deploy a subsequent moderation as the external safety guardrail in real-world products. Existing moderators mainly practice a conventional full detection, which determines the harmfulness based on the complete LLM output, causing high service latency. Recent works pay more attention to partial detection where moderators oversee the generation midway and early stop the output if harmfulness is detected, but they directly apply moderators trained with the full detection paradigm to incomplete outputs, introducing a training-inference gap that lowers the performance. In this paper, we explore how to form a data-and-model solution that natively supports partial detection. For the data, we construct FineHarm, a dataset consisting of 29K prompt-response pairs with fine-grained annotations to provide reasonable supervision for token-level training. Then, we propose the streaming content monitor, which is trained with dual supervision of response- and token-level labels and can follow the output stream of LLM to make a timely judgment of harmfulness. Experiments show that SCM gains 0.95+ in macro F1 score that is comparable to full detection, by only seeing the first 18% of tokens in responses on average. Moreover, the SCM can serve as a pseudo-harmfulness annotator for improving safety alignment and lead to a higher harmlessness score than DPO.
comment: 22 pages, 7 figures, and 9 tables
Flipping Against All Odds: Reducing LLM Coin Flip Bias via Verbalized Rejection Sampling
Large language models (LLMs) can often accurately describe probability distributions using natural language, yet they still struggle to generate faithful samples from them. This mismatch limits their use in tasks requiring reliable stochasticity, such as Monte Carlo methods, agent-based simulations, and randomized decision-making. We investigate this gap between knowledge and sampling in the context of Bernoulli distributions. We introduce Verbalized Rejection Sampling (VRS), a natural-language adaptation of classical rejection sampling that prompts the LLM to reason about and accept or reject proposed samples. Despite relying on the same Bernoulli mechanism internally, VRS substantially reduces sampling bias across models. We provide theoretical analysis showing that, under mild assumptions, VRS improves over direct sampling, with gains attributable to both the algorithm and prompt design. More broadly, our results show how classical probabilistic tools can be verbalized and embedded into LLM workflows to improve reliability, without requiring access to model internals or heavy prompt engineering.
comment: Technical Report v1 (21 pages, 14 figures)
Large Language Models for Toxic Language Detection in Low-Resource Balkan Languages
Online toxic language causes real harm, especially in regions with limited moderation tools. In this study, we evaluate how large language models handle toxic comments in Serbian, Croatian, and Bosnian, languages with limited labeled data. We built and manually labeled a dataset of 4,500 YouTube and TikTok comments drawn from videos across diverse categories, including music, politics, sports, modeling, influencer content, discussions of sexism, and general topics. Four models (GPT-3.5 Turbo, GPT-4.1, Gemini 1.5 Pro, and Claude 3 Opus) were tested in two modes: zero-shot and context-augmented. We measured precision, recall, F1 score, accuracy and false positive rates. Including a short context snippet raised recall by about 0.12 on average and improved F1 score by up to 0.10, though it sometimes increased false positives. The best balance came from Gemini in context-augmented mode, reaching an F1 score of 0.82 and accuracy of 0.82, while zero-shot GPT-4.1 led on precision and had the lowest false alarms. We show how adding minimal context can improve toxic language detection in low-resource settings and suggest practical strategies such as improved prompt design and threshold calibration. These results show that prompt design alone can yield meaningful gains in toxicity detection for underserved Balkan language communities.
comment: 8 pages
Step-by-step Instructions and a Simple Tabular Output Format Improve the Dependency Parsing Accuracy of LLMs
Recent advances in large language models (LLMs) have enabled impressive performance in various tasks. However, standard prompting often struggles to produce structurally valid and accurate outputs, especially in dependency parsing. We propose a novel step-by-step instruction strategy, where universal part-of-speech tagging precedes the prediction of syntactic heads and dependency labels, and a simplified CoNLL-U like output format, our method achieves state-of-the-art accuracy on Universal Dependencies datasets across 17 languages without hallucination or contamination. We further show that multilingual fine-tuning simultaneously improves cross-language generalization performance. Our results highlight the effectiveness of explicit reasoning steps in LLM-based parsing and offer a scalable, format-consistent alternative to bracket-based approaches.
comment: 9 pages, 2 figures, accepted for SyntaxFest 2025
When Detection Fails: The Power of Fine-Tuned Models to Generate Human-Like Social Media Text ACL
Detecting AI-generated text is a difficult problem to begin with; detecting AI-generated text on social media is made even more difficult due to the short text length and informal, idiosyncratic language of the internet. It is nonetheless important to tackle this problem, as social media represents a significant attack vector in online influence campaigns, which may be bolstered through the use of mass-produced AI-generated posts supporting (or opposing) particular policies, decisions, or events. We approach this problem with the mindset and resources of a reasonably sophisticated threat actor, and create a dataset of 505,159 AI-generated social media posts from a combination of open-source, closed-source, and fine-tuned LLMs, covering 11 different controversial topics. We show that while the posts can be detected under typical research assumptions about knowledge of and access to the generating models, under the more realistic assumption that an attacker will not release their fine-tuned model to the public, detectability drops dramatically. This result is confirmed with a human study. Ablation experiments highlight the vulnerability of various detection algorithms to fine-tuned LLMs. This result has implications across all detection domains, since fine-tuning is a generally applicable and realistic LLM use case.
comment: to appear in ACL Findings
Resa: Transparent Reasoning Models via SAEs
How cost-effectively can we elicit strong reasoning in language models by leveraging their underlying representations? We answer this question with Resa, a family of 1.5B reasoning models trained via a novel and efficient sparse autoencoder tuning (SAE-Tuning) procedure. This method first trains an SAE to capture reasoning abilities from a source model, and then uses the trained SAE to guide a standard supervised fine-tuning process to elicit such abilities in a target model, all using verified question-answer data without any reasoning traces. Notably, when applied to certain base models before further RL post-training, SAE-Tuning retains >97% of its RL-trained counterpart's reasoning performance while reducing training costs by >2000x to roughly \$1 and training time by >450x to around 20 minutes. Furthermore, when applied to lightly RL-trained models (e.g., within 1 hour on 2 GPUs), it enables reasoning performance such as 43.33% Pass@1 on AIME24 and 90% Pass@1 on AMC23 for only around \$1 additional cost. Surprisingly, the reasoning abilities extracted via SAEs are potentially both generalizable and modular. Generality means abilities extracted from one dataset still elevate performance on a larger and overlapping corpus. Modularity means abilities extracted from Qwen or Qwen-Math can be attached to the R1-Distill model at test time, without any retraining, and yield comparable gains. Extensive ablations validate these findings and all artifacts are fully open-sourced.
Outside Knowledge Conversational Video (OKCV) Dataset -- Dialoguing over Videos
In outside knowledge visual question answering (OK-VQA), the model must identify relevant visual information within an image and incorporate external knowledge to accurately respond to a question. Extending this task to a visually grounded dialogue setting based on videos, a conversational model must both recognize pertinent visual details over time and answer questions where the required information is not necessarily present in the visual information. Moreover, the context of the overall conversation must be considered for the subsequent dialogue. To explore this task, we introduce a dataset comprised of $2,017$ videos with $5,986$ human-annotated dialogues consisting of $40,954$ interleaved dialogue turns. While the dialogue context is visually grounded in specific video segments, the questions further require external knowledge that is not visually present. Thus, the model not only has to identify relevant video parts but also leverage external knowledge to converse within the dialogue. We further provide several baselines evaluated on our dataset and show future challenges associated with this task. The dataset is made publicly available here: https://github.com/c-patsch/OKCV.
Query-Focused Retrieval Heads Improve Long-Context Reasoning and Re-ranking
Recent work has identified retrieval heads (Wu et al., 2025b), a subset of attention heads responsible for retrieving salient information in long-context language models (LMs), as measured by their copy-paste behavior in Needle-in-a-Haystack tasks. In this paper, we introduce QRHEAD (Query-Focused Retrieval Head), an improved set of attention heads that enhance retrieval from long context. We identify QRHEAD by aggregating attention scores with respect to the input query, using a handful of examples from real-world tasks (e.g., long-context QA). We further introduce QR- RETRIEVER, an efficient and effective retriever that uses the accumulated attention mass of QRHEAD as retrieval scores. We use QR- RETRIEVER for long-context reasoning by selecting the most relevant parts with the highest retrieval scores. On multi-hop reasoning tasks LongMemEval and CLIPPER, this yields over 10% performance gains over full context and outperforms strong dense retrievers. We also evaluate QRRETRIEVER as a re-ranker on the BEIR benchmark and find that it achieves strong zero-shot performance, outperforming other LLM-based re-rankers such as RankGPT. Further analysis shows that both the querycontext attention scoring and task selection are crucial for identifying QRHEAD with strong downstream utility. Overall, our work contributes a general-purpose retriever and offers interpretability insights into the long-context capabilities of LMs.
VerIF: Verification Engineering for Reinforcement Learning in Instruction Following
Reinforcement learning with verifiable rewards (RLVR) has become a key technique for enhancing large language models (LLMs), with verification engineering playing a central role. However, best practices for RL in instruction following remain underexplored. In this work, we explore the verification challenge in RL for instruction following and propose VerIF, a verification method that combines rule-based code verification with LLM-based verification from a large reasoning model (e.g., QwQ-32B). To support this approach, we construct a high-quality instruction-following dataset, VerInstruct, containing approximately 22,000 instances with associated verification signals. We apply RL training with VerIF to two models, achieving significant improvements across several representative instruction-following benchmarks. The trained models reach state-of-the-art performance among models of comparable size and generalize well to unseen constraints. We further observe that their general capabilities remain unaffected, suggesting that RL with VerIF can be integrated into existing RL recipes to enhance overall model performance. We have released our datasets, codes, and models to facilitate future research at https://github.com/THU-KEG/VerIF.
comment: 16 pages, 8 figures
Aspect-Based Opinion Summarization with Argumentation Schemes
Reviews are valuable resources for customers making purchase decisions in online shopping. However, it is impractical for customers to go over the vast number of reviews and manually conclude the prominent opinions, which prompts the need for automated opinion summarization systems. Previous approaches, either extractive or abstractive, face challenges in automatically producing grounded aspect-centric summaries. In this paper, we propose a novel summarization system that not only captures predominant opinions from an aspect perspective with supporting evidence, but also adapts to varying domains without relying on a pre-defined set of aspects. Our proposed framework, ASESUM, summarizes viewpoints relevant to the critical aspects of a product by extracting aspect-centric arguments and measuring their salience and validity. We conduct experiments on a real-world dataset to demonstrate the superiority of our approach in capturing diverse perspectives of the original reviews compared to new and existing methods.
comment: Accepted by ArgMining 2025
PersonaLens: A Benchmark for Personalization Evaluation in Conversational AI Assistants ACL 2025
Large language models (LLMs) have advanced conversational AI assistants. However, systematically evaluating how well these assistants apply personalization--adapting to individual user preferences while completing tasks--remains challenging. Existing personalization benchmarks focus on chit-chat, non-conversational tasks, or narrow domains, failing to capture the complexities of personalized task-oriented assistance. To address this, we introduce PersonaLens, a comprehensive benchmark for evaluating personalization in task-oriented AI assistants. Our benchmark features diverse user profiles equipped with rich preferences and interaction histories, along with two specialized LLM-based agents: a user agent that engages in realistic task-oriented dialogues with AI assistants, and a judge agent that employs the LLM-as-a-Judge paradigm to assess personalization, response quality, and task success. Through extensive experiments with current LLM assistants across diverse tasks, we reveal significant variability in their personalization capabilities, providing crucial insights for advancing conversational AI systems.
comment: Accepted to ACL 2025 Findings
The Emergence of Abstract Thought in Large Language Models Beyond Any Language
As large language models (LLMs) continue to advance, their capacity to function effectively across a diverse range of languages has shown marked improvement. Preliminary studies observe that the hidden activations of LLMs often resemble English, even when responding to non-English prompts. This has led to the widespread assumption that LLMs may "think" in English. However, more recent results showing strong multilingual performance, even surpassing English performance on specific tasks in other languages, challenge this view. In this work, we find that LLMs progressively develop a core language-agnostic parameter space-a remarkably small subset of parameters whose deactivation results in significant performance degradation across all languages. This compact yet critical set of parameters underlies the model's ability to generalize beyond individual languages, supporting the emergence of abstract thought that is not tied to any specific linguistic system. Specifically, we identify language-related neurons-those are consistently activated during the processing of particular languages, and categorize them as either shared (active across multiple languages) or exclusive (specific to one). As LLMs undergo continued development over time, we observe a marked increase in both the proportion and functional importance of shared neurons, while exclusive neurons progressively diminish in influence. These shared neurons constitute the backbone of the core language-agnostic parameter space, supporting the emergence of abstract thought. Motivated by these insights, we propose neuron-specific training strategies tailored to LLMs' language-agnostic levels at different development stages. Experiments across diverse LLM families support our approach.
Attention Head Embeddings with Trainable Deep Kernels for Hallucination Detection in LLMs
We present a novel approach for detecting hallucinations in large language models (LLMs) by analyzing the probabilistic divergence between prompt and response hidden-state distributions. Counterintuitively, we find that hallucinated responses exhibit smaller deviations from their prompts compared to grounded responses, suggesting that hallucinations often arise from superficial rephrasing rather than substantive reasoning. Leveraging this insight, we propose a model-intrinsic detection method that uses distributional distances as principled hallucination scores, eliminating the need for external knowledge or auxiliary models. To enhance sensitivity, we employ deep learnable kernels that automatically adapt to capture nuanced geometric differences between distributions. Our approach outperforms existing baselines, demonstrating state-of-the-art performance on several benchmarks. The method remains competitive even without kernel training, offering a robust, scalable solution for hallucination detection.
Causal Sufficiency and Necessity Improves Chain-of-Thought Reasoning
Chain-of-Thought (CoT) prompting plays an indispensable role in endowing large language models (LLMs) with complex reasoning capabilities. However, CoT currently faces two fundamental challenges: (1) Sufficiency, which ensures that the generated intermediate inference steps comprehensively cover and substantiate the final conclusion; and (2) Necessity, which identifies the inference steps that are truly indispensable for the soundness of the resulting answer. We propose a causal framework that characterizes CoT reasoning through the dual lenses of sufficiency and necessity. Incorporating causal Probability of Sufficiency and Necessity allows us not only to determine which steps are logically sufficient or necessary to the prediction outcome, but also to quantify their actual influence on the final reasoning outcome under different intervention scenarios, thereby enabling the automated addition of missing steps and the pruning of redundant ones. Extensive experimental results on various mathematical and commonsense reasoning benchmarks confirm substantial improvements in reasoning efficiency and reduced token usage without sacrificing accuracy. Our work provides a promising direction for improving LLM reasoning performance and cost-effectiveness.
Advancing Exchange Rate Forecasting: Leveraging Machine Learning and AI for Enhanced Accuracy in Global Financial Markets
The prediction of foreign exchange rates, such as the US Dollar (USD) to Bangladeshi Taka (BDT), plays a pivotal role in global financial markets, influencing trade, investments, and economic stability. This study leverages historical USD/BDT exchange rate data from 2018 to 2023, sourced from Yahoo Finance, to develop advanced machine learning models for accurate forecasting. A Long Short-Term Memory (LSTM) neural network is employed, achieving an exceptional accuracy of 99.449%, a Root Mean Square Error (RMSE) of 0.9858, and a test loss of 0.8523, significantly outperforming traditional methods like ARIMA (RMSE 1.342). Additionally, a Gradient Boosting Classifier (GBC) is applied for directional prediction, with backtesting on a $10,000 initial capital revealing a 40.82% profitable trade rate, though resulting in a net loss of $20,653.25 over 49 trades. The study analyzes historical trends, showing a decline in BDT/USD rates from 0.012 to 0.009, and incorporates normalized daily returns to capture volatility. These findings highlight the potential of deep learning in forex forecasting, offering traders and policymakers robust tools to mitigate risks. Future work could integrate sentiment analysis and real-time economic indicators to further enhance model adaptability in volatile markets.
comment: Accepted in MECON 2025
Dataset of News Articles with Provenance Metadata for Media Relevance Assessment
Out-of-context and misattributed imagery is the leading form of media manipulation in today's misinformation and disinformation landscape. The existing methods attempting to detect this practice often only consider whether the semantics of the imagery corresponds to the text narrative, missing manipulation so long as the depicted objects or scenes somewhat correspond to the narrative at hand. To tackle this, we introduce News Media Provenance Dataset, a dataset of news articles with provenance-tagged images. We formulate two tasks on this dataset, location of origin relevance (LOR) and date and time of origin relevance (DTOR), and present baseline results on six large language models (LLMs). We identify that, while the zero-shot performance on LOR is promising, the performance on DTOR hinders, leaving room for specialized architectures and future work.
Error-Guided Pose Augmentation: Enhancing Rehabilitation Exercise Assessment through Targeted Data Generation
Effective rehabilitation assessment is essential for monitoring patient progress, particularly in home-based settings. Existing systems often face challenges such as data imbalance and difficulty detecting subtle movement errors. This paper introduces Error-Guided Pose Augmentation (EGPA), a method that generates synthetic skeleton data by simulating clinically relevant movement mistakes. Unlike standard augmentation techniques, EGPA targets biomechanical errors observed in rehabilitation. Combined with an attention-based graph convolutional network, EGPA improves performance across multiple evaluation metrics. Experiments demonstrate reductions in mean absolute error of up to 27.6 percent and gains in error classification accuracy of 45.8 percent. Attention visualizations show that the model learns to focus on clinically significant joints and movement phases, enhancing both accuracy and interpretability. EGPA offers a promising approach for improving automated movement quality assessment in both clinical and home-based rehabilitation contexts.
comment: 6 pages, 1 figure. To appear in Intelligent Methods, Systems, and Applications 2025
EmoNet-Voice: A Fine-Grained, Expert-Verified Benchmark for Speech Emotion Detection
The advancement of text-to-speech and audio generation models necessitates robust benchmarks for evaluating the emotional understanding capabilities of AI systems. Current speech emotion recognition (SER) datasets often exhibit limitations in emotional granularity, privacy concerns, or reliance on acted portrayals. This paper introduces EmoNet-Voice, a new resource for speech emotion detection, which includes EmoNet-Voice Big, a large-scale pre-training dataset (featuring over 4,500 hours of speech across 11 voices, 40 emotions, and 4 languages), and EmoNet-Voice Bench, a novel benchmark dataset with human expert annotations. EmoNet-Voice is designed to evaluate SER models on a fine-grained spectrum of 40 emotion categories with different levels of intensities. Leveraging state-of-the-art voice generation, we curated synthetic audio snippets simulating actors portraying scenes designed to evoke specific emotions. Crucially, we conducted rigorous validation by psychology experts who assigned perceived intensity labels. This synthetic, privacy-preserving approach allows for the inclusion of sensitive emotional states often absent in existing datasets. Lastly, we introduce Empathic Insight Voice models that set a new standard in speech emotion recognition with high agreement with human experts. Our evaluations across the current model landscape exhibit valuable findings, such as high-arousal emotions like anger being much easier to detect than low-arousal states like concentration.
CoRT: Code-integrated Reasoning within Thinking
Large Reasoning Models (LRMs) like o1 and DeepSeek-R1 have shown remarkable progress in natural language reasoning with long chain-of-thought (CoT), yet they remain inefficient or inaccurate when handling complex mathematical operations. Addressing these limitations through computational tools (e.g., computation libraries and symbolic solvers) is promising, but it introduces a technical challenge: Code Interpreter (CI) brings external knowledge beyond the model's internal text representations, thus the direct combination is not efficient. This paper introduces CoRT, a post-training framework for teaching LRMs to leverage CI effectively and efficiently. As a first step, we address the data scarcity issue by synthesizing code-integrated reasoning data through Hint-Engineering, which strategically inserts different hints at appropriate positions to optimize LRM-CI interaction. We manually create 30 high-quality samples, upon which we post-train models ranging from 1.5B to 32B parameters, with supervised fine-tuning, rejection fine-tuning and reinforcement learning. Our experimental results demonstrate that Hint-Engineering models achieve 4\% and 8\% absolute improvements on DeepSeek-R1-Distill-Qwen-32B and DeepSeek-R1-Distill-Qwen-1.5B respectively, across five challenging mathematical reasoning datasets. Furthermore, Hint-Engineering models use about 30\% fewer tokens for the 32B model and 50\% fewer tokens for the 1.5B model compared with the natural language models. The models and code are available at https://github.com/ChengpengLi1003/CoRT.
comment: work in progress
Regularizing Learnable Feature Extraction for Automatic Speech Recognition
Neural front-ends are an appealing alternative to traditional, fixed feature extraction pipelines for automatic speech recognition (ASR) systems since they can be directly trained to fit the acoustic model. However, their performance often falls short compared to classical methods, which we show is largely due to their increased susceptibility to overfitting. This work therefore investigates regularization methods for training ASR models with learnable feature extraction front-ends. First, we examine audio perturbation methods and show that larger relative improvements can be obtained for learnable features. Additionally, we identify two limitations in the standard use of SpecAugment for these front-ends and propose masking in the short time Fourier transform (STFT)-domain as a simple but effective modification to address these challenges. Finally, integrating both regularization approaches effectively closes the performance gap between traditional and learnable features.
comment: Accepted at Interspeech 2025
Do LLMs Give Psychometrically Plausible Responses in Educational Assessments? ACL 2025
Knowing how test takers answer items in educational assessments is essential for test development, to evaluate item quality, and to improve test validity. However, this process usually requires extensive pilot studies with human participants. If large language models (LLMs) exhibit human-like response behavior to test items, this could open up the possibility of using them as pilot participants to accelerate test development. In this paper, we evaluate the human-likeness or psychometric plausibility of responses from 18 instruction-tuned LLMs with two publicly available datasets of multiple-choice test items across three subjects: reading, U.S. history, and economics. Our methodology builds on two theoretical frameworks from psychometrics which are commonly used in educational assessment, classical test theory and item response theory. The results show that while larger models are excessively confident, their response distributions can be more human-like when calibrated with temperature scaling. In addition, we find that LLMs tend to correlate better with humans in reading comprehension items compared to other subjects. However, the correlations are not very strong overall, indicating that LLMs should not be used for piloting educational assessments in a zero-shot setting.
comment: Accepted for publication at the 20th Workshop on Innovative Use of NLP for Building Educational Applications (BEA) at ACL 2025
ComfyUI-R1: Exploring Reasoning Models for Workflow Generation
AI-generated content has evolved from monolithic models to modular workflows, particularly on platforms like ComfyUI, enabling customization in creative pipelines. However, crafting effective workflows requires great expertise to orchestrate numerous specialized components, presenting a steep learning curve for users. To address this challenge, we introduce ComfyUI-R1, the first large reasoning model for automated workflow generation. Starting with our curated dataset of 4K workflows, we construct long chain-of-thought (CoT) reasoning data, including node selection, workflow planning, and code-level workflow representation. ComfyUI-R1 is trained through a two-stage framework: (1) CoT fine-tuning for cold start, adapting models to the ComfyUI domain; (2) reinforcement learning for incentivizing reasoning capability, guided by a fine-grained rule-metric hybrid reward, ensuring format validity, structural integrity, and node-level fidelity. Experiments show that our 7B-parameter model achieves a 97\% format validity rate, along with high pass rate, node-level and graph-level F1 scores, significantly surpassing prior state-of-the-art methods that employ leading closed-source models such as GPT-4o and Claude series. Further analysis highlights the critical role of the reasoning process and the advantage of transforming workflows into code. Qualitative comparison reveals our strength in synthesizing intricate workflows with diverse nodes, underscoring the potential of long CoT reasoning in AI art creation.
comment: Work in progress. Try it out in ComfyUI-Copilot https://github.com/AIDC-AI/ComfyUI-Copilot
Fine-Tuning Large Audio-Language Models with LoRA for Precise Temporal Localization of Prolonged Exposure Therapy Elements
Prolonged Exposure (PE) therapy is an effective treatment for post-traumatic stress disorder (PTSD), but evaluating therapist fidelity remains labor-intensive due to the need for manual review of session recordings. We present a method for the automatic temporal localization of key PE fidelity elements -- identifying their start and stop times -- directly from session audio and transcripts. Our approach fine-tunes a large pre-trained audio-language model, Qwen2-Audio, using Low-Rank Adaptation (LoRA) to process focused 30-second windows of audio-transcript input. Fidelity labels for three core protocol phases -- therapist orientation (P1), imaginal exposure (P2), and post-imaginal processing (P3) -- are generated via LLM-based prompting and verified by trained raters. The model is trained to predict normalized boundary offsets using soft supervision guided by task-specific prompts. On a dataset of 313 real PE sessions, our best configuration (LoRA rank 8, 30s windows) achieves a mean absolute error (MAE) of 5.3 seconds across tasks. We further analyze the effects of window size and LoRA rank, highlighting the importance of context granularity and model adaptation. This work introduces a scalable framework for fidelity tracking in PE therapy, with potential to support clinician training, supervision, and quality assurance.
comment: 5 pages, 2 figures
Adding simple structure at inference improves Vision-Language Compositionality
Dual encoder Vision-Language Models (VLM) such as CLIP are widely used for image-text retrieval tasks. However, those models struggle with compositionality, showing a bag-of-words-like behavior that limits their retrieval performance. Many different training approaches have been proposed to improve the vision-language compositionality capabilities of those models. In comparison, inference-time techniques have received little attention. In this paper, we propose to add simple structure at inference, where, given an image and a caption: i) we divide the image into different smaller crops, ii) we extract text segments, capturing objects, attributes and relations, iii) using a VLM, we find the image crops that better align with text segments obtaining matches, and iv) we compute the final image-text similarity aggregating the individual similarities of the matches. Based on various popular dual encoder VLMs, we evaluate our approach in controlled and natural datasets for VL compositionality. We find that our approach consistently improves the performance of evaluated VLMs without any training, which shows the potential of inference-time techniques. The results are especially good for attribute-object binding as shown in the controlled dataset. As a result of an extensive analysis: i) we show that processing image crops is actually essential for the observed gains in performance, and ii) we identify specific areas to further improve inference-time approaches.
Inv-Entropy: A Fully Probabilistic Framework for Uncertainty Quantification in Language Models
Large language models (LLMs) have transformed natural language processing, but their reliable deployment requires effective uncertainty quantification (UQ). Existing UQ methods are often heuristic and lack a probabilistic foundation. This paper begins by providing a theoretical justification for the role of perturbations in UQ for LLMs. We then introduce a dual random walk perspective, modeling input-output pairs as two Markov chains with transition probabilities defined by semantic similarity. Building on this, we propose a fully probabilistic framework based on an inverse model, which quantifies uncertainty by evaluating the diversity of the input space conditioned on a given output through systematic perturbations. Within this framework, we define a new uncertainty measure, Inv-Entropy. A key strength of our framework is its flexibility: it supports various definitions of uncertainty measures, embeddings, perturbation strategies, and similarity metrics. We also propose GAAP, a perturbation algorithm based on genetic algorithms, which enhances the diversity of sampled inputs. In addition, we introduce a new evaluation metric, Temperature Sensitivity of Uncertainty (TSU), which directly assesses uncertainty without relying on correctness as a proxy. Extensive experiments demonstrate that Inv-Entropy outperforms existing semantic UQ methods. The code to reproduce the results can be found at https://github.com/UMDataScienceLab/Uncertainty-Quantification-for-LLMs.
Is Fine-Tuning an Effective Solution? Reassessing Knowledge Editing for Unstructured Data
Unstructured Knowledge Editing (UKE) is crucial for updating the relevant knowledge of large language models (LLMs). It focuses on unstructured inputs, such as long or free-form texts, which are common forms of real-world knowledge. Although previous studies have proposed effective methods and tested them, some issues exist: (1) Lack of Locality evaluation for UKE, and (2) Abnormal failure of fine-tuning (FT) based methods for UKE. To address these issues, we first construct two datasets, UnKEBench-Loc and AKEW-Loc (CF), by extending two existing UKE datasets with locality test data from the unstructured and structured views. This enables a systematic evaluation of the Locality of post-edited models. Furthermore, we identify four factors that may affect the performance of FT-based methods. Based on these factors, we conduct experiments to determine how the well-performing FT-based methods should be trained for the UKE task, providing a training recipe for future research. Our experimental results indicate that the FT-based method with the optimal setting (FT-UKE) is surprisingly strong, outperforming the existing state-of-the-art (SOTA). In batch editing scenarios, FT-UKE shows strong performance as well, with its advantage over SOTA methods increasing as the batch size grows, expanding the average metric lead from +6.78% to +10.80%
Query-Level Uncertainty in Large Language Models
It is important for Large Language Models to be aware of the boundary of their knowledge, the mechanism of identifying known and unknown queries. This type of awareness can help models perform adaptive inference, such as invoking RAG, engaging in slow and deep thinking, or adopting the abstention mechanism, which is beneficial to the development of efficient and trustworthy AI. In this work, we propose a method to detect knowledge boundaries via Query-Level Uncertainty, which aims to determine if the model is able to address a given query without generating any tokens. To this end, we introduce a novel and training-free method called \emph{Internal Confidence}, which leverages self-evaluations across layers and tokens. Empirical results on both factual QA and mathematical reasoning tasks demonstrate that our internal confidence can outperform several baselines. Furthermore, we showcase that our proposed method can be used for efficient RAG and model cascading, which is able to reduce inference costs while maintaining performance.
comment: In Progress
Intent Factored Generation: Unleashing the Diversity in Your Language Model
Obtaining multiple meaningfully diverse, high quality samples from Large Language Models for a fixed prompt remains an open challenge. Current methods for increasing diversity often only operate at the token-level, paraphrasing the same response. This is problematic because it leads to poor exploration on reasoning problems and to unengaging, repetitive conversational agents. To address this we propose Intent Factored Generation (IFG), factorising the sampling process into two stages. First, we sample a semantically dense intent, e.g., a summary or keywords. Second, we sample the final response conditioning on both the original prompt and the intent from the first stage. This allows us to use a higher temperature during the intent step to promote conceptual diversity, and a lower temperature during the final generation to ensure the outputs are coherent and self-consistent. Additionally, we find that prompting the model to explicitly state its intent for each step of the chain-of-thought before generating the step is beneficial for reasoning tasks. We demonstrate our method's effectiveness across a diverse set of tasks. We show this method improves both pass@k and Reinforcement Learning from Verifier Feedback on maths and code tasks. For instruction-tuning, we combine IFG with Direct Preference Optimisation to increase conversational diversity without sacrificing reward. Finally, we achieve higher diversity while maintaining the quality of generations on a general language modelling task, using a new dataset of reader comments and news articles that we collect and open-source. In summary, we present a simple method of increasing the sample diversity of LLMs while maintaining performance. This method can be implemented by changing the prompt and varying the temperature during generation, making it easy to integrate into many algorithms for gains across various applications.
Bridging the Gap Between Open-Source and Proprietary LLMs in Table QA SemEval-2025
This paper presents a system developed for SemEval 2025 Task 8: Question Answering (QA) over tabular data. Our approach integrates several key components: text-to-SQL and text-to-code generation modules, a self-correction mechanism, and a retrieval-augmented generation (RAG). Additionally, it includes an end-to-end (E2E) module, all orchestrated by a large language model (LLM). Through ablation studies, we analyzed the effects of different parts of our pipeline and identified the challenges that are still present in this field. During the evaluation phase of the competition, our solution achieved an accuracy of 80%, resulting in a top-13 ranking among the 38 participating teams. Our pipeline demonstrates a significant improvement in accuracy for open-source models and achieves a performance comparable to proprietary LLMs in QA tasks over tables. The code is available at GitHub repository.
comment: Accepted for publication at the 19th International Workshop on Semantic Evaluation (SemEval-2025), to be held in conjunction with ACL 2025. 15 pages, 5 figures
Learning Efficient and Generalizable Graph Retriever for Knowledge-Graph Question Answering
Large Language Models (LLMs) have shown strong inductive reasoning ability across various domains, but their reliability is hindered by the outdated knowledge and hallucinations. Retrieval-Augmented Generation mitigates these issues by grounding LLMs with external knowledge; however, most existing RAG pipelines rely on unstructured text, limiting interpretability and structured reasoning. Knowledge graphs, which represent facts as relational triples, offer a more structured and compact alternative. Recent studies have explored integrating knowledge graphs with LLMs for knowledge graph question answering (KGQA), with a significant proportion adopting the retrieve-then-reasoning paradigm. In this framework, graph-based retrievers have demonstrated strong empirical performance, yet they still face challenges in generalization ability. In this work, we propose RAPL, a novel framework for efficient and effective graph retrieval in KGQA. RAPL addresses these limitations through three aspects: (1) a two-stage labeling strategy that combines heuristic signals with parametric models to provide causally grounded supervision; (2) a model-agnostic graph transformation approach to capture both intra- and inter-triple interactions, thereby enhancing representational capacity; and (3) a path-based reasoning strategy that facilitates learning from the injected rational knowledge, and supports downstream reasoner through structured inputs. Empirically, RAPL outperforms state-of-the-art methods by $2.66\%-20.34\%$, and significantly reduces the performance gap between smaller and more powerful LLM-based reasoners, as well as the gap under cross-dataset settings, highlighting its superior retrieval capability and generalizability. Codes are available at: https://github.com/tianyao-aka/RAPL.
comment: 32 pages, 28 figures
Using Sign Language Production as Data Augmentation to enhance Sign Language Translation
Machine learning models fundamentally rely on large quantities of high-quality data. Collecting the necessary data for these models can be challenging due to cost, scarcity, and privacy restrictions. Signed languages are visual languages used by the deaf community and are considered low-resource languages. Sign language datasets are often orders of magnitude smaller than their spoken language counterparts. Sign Language Production is the task of generating sign language videos from spoken language sentences, while Sign Language Translation is the reverse translation task. Here, we propose leveraging recent advancements in Sign Language Production to augment existing sign language datasets and enhance the performance of Sign Language Translation models. For this, we utilize three techniques: a skeleton-based approach to production, sign stitching, and two photo-realistic generative models, SignGAN and SignSplat. We evaluate the effectiveness of these techniques in enhancing the performance of Sign Language Translation models by generating variation in the signer's appearance and the motion of the skeletal data. Our results demonstrate that the proposed methods can effectively augment existing datasets and enhance the performance of Sign Language Translation models by up to 19%, paving the way for more robust and accurate Sign Language Translation systems, even in resource-constrained environments.
Modeling Probabilistic Reduction using Information Theory and Naive Discriminative Learning
This study compares probabilistic predictors based on information theory with Naive Discriminative Learning (NDL) predictors in modeling acoustic word duration, focusing on probabilistic reduction. We examine three models using the Buckeye corpus: one with NDL-derived predictors using information-theoretic formulas, one with traditional NDL predictors, and one with N-gram probabilistic predictors. Results show that the N-gram model outperforms both NDL models, challenging the assumption that NDL is more effective due to its cognitive motivation. However, incorporating information-theoretic formulas into NDL improves model performance over the traditional model. This research highlights a) the need to incorporate not only frequency and contextual predictability but also average contextual predictability, and b) the importance of combining information-theoretic metrics of predictability and information derived from discriminative learning in modeling acoustic reduction.
comment: Submitted to Interspeech 2025
Benchmarking Debiasing Methods for LLM-based Parameter Estimates
Large language models (LLMs) offer an inexpensive yet powerful way to annotate text, but are often inconsistent when compared with experts. These errors can bias downstream estimates of population parameters such as regression coefficients and causal effects. To mitigate this bias, researchers have developed debiasing methods such as Design-based Supervised Learning (DSL) and Prediction-Powered Inference (PPI), which promise valid estimation by combining LLM annotations with a limited number of expensive expert annotations. Although these methods produce consistent estimates under theoretical assumptions, it is unknown how they compare in finite samples of sizes encountered in applied research. We make two contributions: First, we study how each method's performance scales with the number of expert annotations, highlighting regimes where LLM bias or limited expert labels significantly affect results. Second, we compare DSL and PPI across a range of tasks, finding that although both achieve low bias with large datasets, DSL often outperforms PPI on bias reduction and empirical efficiency, but its performance is less consistent across datasets. Our findings indicate that there is a bias-variance tradeoff at the level of debiasing methods, calling for more research on developing metrics for quantifying their efficiency in finite samples.
Effective Red-Teaming of Policy-Adherent Agents
Task-oriented LLM-based agents are increasingly used in domains with strict policies, such as refund eligibility or cancellation rules. The challenge lies in ensuring that the agent consistently adheres to these rules and policies, appropriately refusing any request that would violate them, while still maintaining a helpful and natural interaction. This calls for the development of tailored design and evaluation methodologies to ensure agent resilience against malicious user behavior. We propose a novel threat model that focuses on adversarial users aiming to exploit policy-adherent agents for personal benefit. To address this, we present CRAFT, a multi-agent red-teaming system that leverages policy-aware persuasive strategies to undermine a policy-adherent agent in a customer-service scenario, outperforming conventional jailbreak methods such as DAN prompts, emotional manipulation, and coercive. Building upon the existing tau-bench benchmark, we introduce tau-break, a complementary benchmark designed to rigorously assess the agent's robustness against manipulative user behavior. Finally, we evaluate several straightforward yet effective defense strategies. While these measures provide some protection, they fall short, highlighting the need for stronger, research-driven safeguards to protect policy-adherent agents from adversarial attacks
Memorization in Language Models through the Lens of Intrinsic Dimension
Language Models (LMs) are prone to memorizing parts of their data during training and unintentionally emitting them at generation time, raising concerns about privacy leakage and disclosure of intellectual property. While previous research has identified properties such as context length, parameter size, and duplication frequency, as key drivers of unintended memorization, little is known about how the latent structure modulates this rate of memorization. We investigate the role of Intrinsic Dimension (ID), a geometric proxy for the structural complexity of a sequence in latent space, in modulating memorization. Our findings suggest that ID acts as a suppressive signal for memorization: compared to low-ID sequences, high-ID sequences are less likely to be memorized, particularly in overparameterized models and under sparse exposure. These findings highlight the interaction between scale, exposure, and complexity in shaping memorization.
From Symbolic to Neural and Back: Exploring Knowledge Graph-Large Language Model Synergies
Integrating structured knowledge from Knowledge Graphs (KGs) into Large Language Models (LLMs) enhances factual grounding and reasoning capabilities. This survey paper systematically examines the synergy between KGs and LLMs, categorizing existing approaches into two main groups: KG-enhanced LLMs, which improve reasoning, reduce hallucinations, and enable complex question answering; and LLM-augmented KGs, which facilitate KG construction, completion, and querying. Through comprehensive analysis, we identify critical gaps and highlight the mutual benefits of structured knowledge integration. Compared to existing surveys, our study uniquely emphasizes scalability, computational efficiency, and data quality. Finally, we propose future research directions, including neuro-symbolic integration, dynamic KG updating, data reliability, and ethical considerations, paving the way for intelligent systems capable of managing more complex real-world knowledge tasks.
comment: To-appear as a book chapter
Towards Open Foundation Language Model and Corpus for Macedonian: A Low-Resource Language ACL
The increase in technological adoption worldwide comes with demands for novel tools to be used by the general population. Large Language Models (LLMs) provide a great opportunity in this respect, but their capabilities remain limited for low-resource languages, restricting applications in countries where such languages are spoken. We create several resources to facilitate the adoption of LLMs and to support research advancements for Macedonian. We collect the largest Macedonian corpus to date, consisting of 40GB of textual data and totaling 3.5B words. To support conversational applications, we collect a 106k-instance instruction dataset, carefully built to be culturally grounded. For evaluation, we construct a Macedonian evaluation suite covering seven benchmarks. Finally, we train domestic-yak, a state-of-the-art 8B-parameter model, on our curated datasets and evaluate it against eight baseline models using the newly constructed benchmark suite. Our model outperforms all existing models in the 8B parameter range across all benchmarks, and achieves performance comparable to models up to 10x larger. Furthermore, a qualitative analysis with native speakers reveals that our model is preferred over larger counterparts, receiving higher ratings for grammatical correctness and cultural appropriateness. All datasets, code, and model weights are openly released, setting a foundation for advancing LLMs in similarly underrepresented languages. These resources are publicly available at github.com/LVSTCK for source code, and at huggingface.co/LVSTCK for pretrained model weights and data.
comment: Camera-ready version accepted at SlavNLP-2025@ACL
Gender Bias in English-to-Greek Machine Translation
As the demand for inclusive language increases, concern has grown over the susceptibility of machine translation (MT) systems to reinforce gender stereotypes. This study investigates gender bias in two commercial MT systems, Google Translate and DeepL, focusing on the understudied English-to-Greek language pair. We address three aspects of gender bias: i) male bias, ii) occupational stereotyping, and iii) errors in anti-stereotypical translations. Additionally, we explore the potential of prompted GPT-4o as a bias mitigation tool that provides both gender-explicit and gender-neutral alternatives when necessary. To achieve this, we introduce GendEL, a manually crafted bilingual dataset of 240 gender-ambiguous and unambiguous sentences that feature stereotypical occupational nouns and adjectives. We find persistent gender bias in translations by both MT systems; while they perform well in cases where gender is explicitly defined, with DeepL outperforming both Google Translate and GPT-4o in feminine gender-unambiguous sentences, they are far from producing gender-inclusive or neutral translations when the gender is unspecified. GPT-4o shows promise, generating appropriate gendered and neutral alternatives for most ambiguous cases, though residual biases remain evident.
comment: Accepted at GITT 2025 (MT Summit)
MEDUSA: A Multimodal Deep Fusion Multi-Stage Training Framework for Speech Emotion Recognition in Naturalistic Conditions
SER is a challenging task due to the subjective nature of human emotions and their uneven representation under naturalistic conditions. We propose MEDUSA, a multimodal framework with a four-stage training pipeline, which effectively handles class imbalance and emotion ambiguity. The first two stages train an ensemble of classifiers that utilize DeepSER, a novel extension of a deep cross-modal transformer fusion mechanism from pretrained self-supervised acoustic and linguistic representations. Manifold MixUp is employed for further regularization. The last two stages optimize a trainable meta-classifier that combines the ensemble predictions. Our training approach incorporates human annotation scores as soft targets, coupled with balanced data sampling and multitask learning. MEDUSA ranked 1st in Task 1: Categorical Emotion Recognition in the Interspeech 2025: Speech Emotion Recognition in Naturalistic Conditions Challenge.
comment: Accepted at Interspeech 2025
KG-Infused RAG: Augmenting Corpus-Based RAG with External Knowledge Graphs
Retrieval-Augmented Generation (RAG) improves factual accuracy by grounding responses in external knowledge. However, existing methods typically rely on a single source, either unstructured text or structured knowledge. Moreover, they lack cognitively inspired mechanisms for activating relevant knowledge. To address these issues, we propose KG-Infused RAG, a framework that integrates KGs into RAG systems to implement spreading activation, a cognitive process that enables concept association and inference. KG-Infused RAG retrieves KG facts, expands the query accordingly, and enhances generation by combining corpus passages with structured facts, enabling interpretable, multi-source retrieval grounded in semantic structure. We further improve KG-Infused RAG via preference learning on sampled key stages in the pipeline. Experiments on five QA benchmarks show that KG-Infused RAG consistently outperforms vanilla RAG (by 3.8% to 13.8%). Additionally, when integrated into Self-RAG, KG-Infused RAG brings further performance gains, demonstrating its effectiveness and versatility as a plug-and-play enhancement module for corpus-based RAG methods.
Athena: Enhancing Multimodal Reasoning with Data-efficient Process Reward Models
We present Athena-PRM, a multimodal process reward model (PRM) designed to evaluate the reward score for each step in solving complex reasoning problems. Developing high-performance PRMs typically demands significant time and financial investment, primarily due to the necessity for step-level annotations of reasoning steps. Conventional automated labeling methods, such as Monte Carlo estimation, often produce noisy labels and incur substantial computational costs. To efficiently generate high-quality process-labeled data, we propose leveraging prediction consistency between weak and strong completers as a criterion for identifying reliable process labels. Remarkably, Athena-PRM demonstrates outstanding effectiveness across various scenarios and benchmarks with just 5,000 samples. Furthermore, we also develop two effective strategies to improve the performance of PRMs: ORM initialization and up-sampling for negative data. We validate our approach in three specific scenarios: verification for test time scaling, direct evaluation of reasoning step correctness, and reward ranked fine-tuning. Our Athena-PRM consistently achieves superior performance across multiple benchmarks and scenarios. Notably, when using Qwen2.5-VL-7B as the policy model, Athena-PRM enhances performance by 10.2 points on WeMath and 7.1 points on MathVista for test time scaling. Furthermore, Athena-PRM sets the state-of-the-art (SoTA) results in VisualProcessBench and outperforms the previous SoTA by 3.9 F1-score, showcasing its robust capability to accurately assess the correctness of the reasoning step. Additionally, utilizing Athena-PRM as the reward model, we develop Athena-7B with reward ranked fine-tuning and outperforms baseline with a significant margin on five benchmarks.
Revisit What You See: Disclose Language Prior in Vision Tokens for Efficient Guided Decoding of LVLMs
Large Vision-Language Models (LVLMs) have demonstrated remarkable performance across various multimodal tasks by integrating visual perception with language understanding. However, conventional decoding strategies of LVLMs often fail to successfully utilize visual information, leading to visually ungrounded responses. While various approaches have been proposed to address this limitation, they typically require additional training, multi-step inference procedures, or external model dependencies. This paper introduces ReVisiT, a simple yet effective decoding method that references vision tokens to guide the text generation process in LVLMs. Our approach leverages the semantic information embedded within vision tokens by projecting them into the text token distribution space, and dynamically selecting the most relevant vision token at each decoding step through constrained divergence minimization. This selected vision token is then used to refine the output distribution to better incorporate visual semantics. Experiments on three LVLM hallucination benchmarks with two recent LVLMs demonstrate that ReVisiT consistently enhances visual grounding with minimal computational overhead. Moreover, our method achieves competitive or superior results relative to state-of-the-art baselines while reducing computational costs for up to $2\times$.
comment: Code available at https://github.com/bscho333/ReVisiT
You Are What You Say: Exploiting Linguistic Content for VoicePrivacy Attacks INTERSPEECH 2025
Speaker anonymization systems hide the identity of speakers while preserving other information such as linguistic content and emotions. To evaluate their privacy benefits, attacks in the form of automatic speaker verification (ASV) systems are employed. In this study, we assess the impact of intra-speaker linguistic content similarity in the attacker training and evaluation datasets, by adapting BERT, a language model, as an ASV system. On the VoicePrivacy Attacker Challenge datasets, our method achieves a mean equal error rate (EER) of 35%, with certain speakers attaining EERs as low as 2%, based solely on the textual content of their utterances. Our explainability study reveals that the system decisions are linked to semantically similar keywords within utterances, stemming from how LibriSpeech is curated. Our study suggests reworking the VoicePrivacy datasets to ensure a fair and unbiased evaluation and challenge the reliance on global EER for privacy evaluations.
comment: 5 pages, 6 figures, 1 table, accepted at INTERSPEECH 2025
ReasonMed: A 370K Multi-Agent Generated Dataset for Advancing Medical Reasoning
Though reasoning-based large language models (LLMs) have excelled in mathematics and programming, their capabilities in knowledge-intensive medical question answering remain underexplored. To address this, we introduce ReasonMed, the largest medical reasoning dataset, comprising 370k high-quality examples distilled from 1.7 million initial reasoning paths generated by various LLMs. ReasonMed is constructed through a \textit{multi-agent verification and refinement process}, where we design an \textit{Error Refiner} to enhance the reasoning paths by identifying and correcting error-prone steps flagged by a verifier. Leveraging ReasonMed, we systematically investigate best practices for training medical reasoning models and find that combining detailed Chain-of-Thought (CoT) reasoning with concise answer summaries yields the most effective fine-tuning strategy. Based on this strategy, we train ReasonMed-7B, which sets a new benchmark for sub-10B models, outperforming the prior best by 4.17\% and even exceeding LLaMA3.1-70B on PubMedQA by 4.60\%.
comment: 24 pages, 6 figures, 7 tables
TransXSSM: A Hybrid Transformer State Space Model with Unified Rotary Position Embedding
Transformers exhibit proficiency in capturing long-range dependencies, whereas State Space Models (SSMs) facilitate linear-time sequence modeling. Notwithstanding their synergistic potential, the integration of these architectures presents a significant challenge, primarily attributable to a fundamental incongruity in their respective positional encoding mechanisms: Transformers rely on explicit Rotary Position Embeddings (RoPE), while SSMs leverage implicit positional representations via convolutions. This divergence often precipitates discontinuities and suboptimal performance. To address this impediment, we propose a unified rotary position embedding (\textbf{\ourRoPE}) methodology, thereby establishing a consistent positional encoding framework for both self-attention and state-space components. Using this \ourRoPE, we introduce \textbf{\model}, a hybrid architecture that coherently integrates the Transformer and SSM layers under this unified positional encoding scheme. At a 4K sequence length, \model exhibits training and inference speeds that are \textbf{42.3\% and 29.5\% faster}, respectively, relative to standard Transformer models. It also delivers higher accuracy: under comparable settings, it surpasses a Transformer baseline by over 4\% on language modeling benchmarks. \model furthermore scales more effectively: \model-1.3B gains \textbf{7.22\%} in average accuracy over its 320M version (versus about 6\% gains for equivalent Transformers or SSMs). Our results show that unified positional encoding resolves positional incompatibility in hybrid models, enabling efficient, high-performance long-context modeling.
Give Me FP32 or Give Me Death? Challenges and Solutions for Reproducible Reasoning
Large Language Models (LLMs) are now integral across various domains and have demonstrated impressive performance. Progress, however, rests on the premise that benchmark scores are both accurate and reproducible. We demonstrate that the reproducibility of LLM performance is fragile: changing system configuration such as evaluation batch size, GPU count, and GPU version can introduce significant difference in the generated responses. This issue is especially pronounced in reasoning models, where minor rounding differences in early tokens can cascade into divergent chains of thought, ultimately affecting accuracy. For instance, under bfloat16 precision with greedy decoding, a reasoning model like DeepSeek-R1-Distill-Qwen-7B can exhibit up to 9% variation in accuracy and 9,000 tokens difference in response length due to differences in GPU count, type, and evaluation batch size. We trace the root cause of this variability to the non-associative nature of floating-point arithmetic under limited numerical precision. This work presents the first systematic investigation into how numerical precision affects reproducibility in LLM inference. Through carefully controlled experiments across various hardware, software, and precision settings, we quantify when and how model outputs diverge. Our analysis reveals that floating-point precision -- while critical for reproducibility -- is often neglected in evaluation practices. Inspired by this, we develop a lightweight inference pipeline, dubbed LayerCast, that stores weights in 16-bit precision but performs all computations in FP32, balancing memory efficiency with numerical stability. Code is available at https://github.com/nanomaoli/llm_reproducibility.
Bridging Online Behavior and Clinical Insight: A Longitudinal LLM-based Study of Suicidality on YouTube Reveals Novel Digital Markers
Suicide remains a leading cause of death in Western countries, underscoring the need for new research approaches. As social media becomes central to daily life, digital footprints offer valuable insight into suicidal behavior. Focusing on individuals who attempted suicide while uploading videos to their channels, we investigate: How do suicidal behaviors manifest on YouTube, and how do they differ from expert knowledge? We applied complementary approaches: computational bottom-up, hybrid, and expert-driven top-down, on a novel longitudinal dataset of 181 YouTube channels from individuals with life-threatening attempts, alongside 134 control channels. In the bottom-up approach, we applied LLM-based topic modeling to identify behavioral indicators. Of 166 topics, five were associated with suicide-attempt, with two also showing temporal attempt-related changes ($p<.01$) - Mental Health Struggles ($+0.08$)* and YouTube Engagement ($+0.1$)*. In the hybrid approach, a clinical expert reviewed LLM-derived topics and flagged 19 as suicide-related. However, none showed significant attempt-related temporal effects beyond those identified bottom-up. Notably, YouTube Engagement, a platform-specific indicator, was not flagged by the expert, underscoring the value of bottom-up discovery. In the top-down approach, psychological assessment of suicide attempt narratives revealed that the only significant difference between individuals who attempted before and those attempted during their upload period was the motivation to share this experience: the former aimed to Help Others ($\beta=-1.69$, $p<.01$), while the latter framed it as part of their Personal Recovery ($\beta=1.08$, $p<.01$). By integrating these approaches, we offer a nuanced understanding of suicidality, bridging digital behavior and clinical insights. * Within-group changes in relation to the suicide attempt.
Towards Bridging the Reward-Generation Gap in Direct Alignment Algorithms
Direct Alignment Algorithms (DAAs), such as Direct Preference Optimization (DPO) and Simple Preference Optimization (SimPO), have emerged as efficient alternatives to Reinforcement Learning from Human Feedback (RLHF) algorithms for aligning large language models (LLMs) with human preferences. However, DAAs suffer from a fundamental limitation we identify as the "reward-generation gap" -- a misalignment between optimization objectives during training and actual generation performance during inference. In this paper, we find a contributor to the reward-generation gap is the mismatch between the inherent importance of prefix tokens during the LLM generation process and how this importance is reflected in the implicit reward functions of DAAs. To bridge the gap, we introduce a simple yet effective approach called Prefix-Oriented Equal-length Training (POET), which truncates both preferred and dispreferred responses to match the shorter one's length. Training with POET, where both responses in each sample are truncated to equal length, resulting in diverse truncated lengths across samples, the optimization of DAAs objective is implicitly constrained to converge across all positions, thus paying more attention to prefix tokens than the standard DAAs. We conduct experiments with DPO and SimPO, two representative DAAs, demonstrating that POET improves over their standard implementations, achieving up to 15.6 points in AlpacaEval 2 and overall improvements across downstream tasks. Our results highlight the importance of addressing the misalignment between reward optimization and generation performance in DAAs.
Learning Obfuscations Of LLM Embedding Sequences: Stained Glass Transform
The high cost of ownership of AI compute infrastructure and challenges of robust serving of large language models (LLMs) has led to a surge in managed Model-as-a-service deployments. Even when enterprises choose on-premises deployments, the compute infrastructure is typically shared across many teams in order to maximize the return on investment. In both scenarios the deployed models operate only on plaintext data, and so enterprise data owners must allow their data to appear in plaintext on a shared or multi-tenant compute infrastructure. This results in data owners with private or sensitive data being hesitant or restricted in what data they use with these types of deployments. In this work we introduce the Stained Glass Transform, a learned, stochastic, and sequence dependent transformation of the word embeddings of an LLM which information theoretically provides privacy to the input of the LLM while preserving the utility of model. We theoretically connect a particular class of Stained Glass Transforms to the theory of mutual information of Gaussian Mixture Models. We then calculate a-postiori privacy estimates, based on mutual information, and verify the privacy and utility of instances of transformed embeddings through token level metrics of privacy and standard LLM performance benchmarks.
comment: Submitted to IEEE S&P 2026
UniToMBench: Integrating Perspective-Taking to Improve Theory of Mind in LLMs NAACL
Theory of Mind (ToM), the ability to understand the mental states of oneself and others, remains a challenging area for large language models (LLMs), which often fail to predict human mental states accurately. In this paper, we introduce UniToMBench, a unified benchmark that integrates the strengths of SimToM and TOMBENCH to systematically improve and assess ToM capabilities in LLMs by integrating multi-interaction task designs and evolving story scenarios. Supported by a custom dataset of over 1,000 hand-written scenarios, UniToMBench combines perspective-taking techniques with diverse evaluation metrics to better stimulate social cognition in LLMs. Through evaluation, we observe that while models like GPT-4o and GPT-4o Mini show consistently high accuracy in tasks involving emotional and belief-related scenarios, with results usually above 80%, there is significant variability in their performance across knowledge-based tasks. These results highlight both the strengths and limitations of current LLMs in ToM-related tasks, underscoring the value of UniToMBench as a comprehensive tool for future development. Our code is publicly available here: https://github.com/Shamant/unifiedtombenchmark.
comment: Accepted at Conference of the North American Chapter of the Association for Computational Linguistics, Student Research Workshop 2025 (NAACL SRW 2025)
OWSM-Biasing: Contextualizing Open Whisper-Style Speech Models for Automatic Speech Recognition with Dynamic Vocabulary
Speech foundation models (SFMs), such as Open Whisper-Style Speech Models (OWSM), are trained on massive datasets to achieve accurate automatic speech recognition. However, even SFMs struggle to accurately recognize rare and unseen words. While contextual biasing (CB) is a promising approach to improve recognition of such words, most CB methods are trained from scratch, resulting in lower performance than SFMs due to the lack of pre-trained knowledge. This paper integrates an existing CB method with OWSM v3.1 while freezing its pre-trained parameters. By leveraging the knowledge embedded in SFMs, the proposed method enables effective CB while preserving the advantages of SFMs, even with a small dataset. Experimental results show that the proposed method improves the biasing word error rate (B-WER) by 11.6 points, resulting in a 0.9 point improvement in the overall WER while reducing the real-time factor by 7.5% compared to the non-biasing baseline on the LibriSpeech 100 test-clean set.
comment: Accepted to Interspeech 2025
GigaChat Family: Efficient Russian Language Modeling Through Mixture of Experts Architecture ACL-2025
Generative large language models (LLMs) have become crucial for modern NLP research and applications across various languages. However, the development of foundational models specifically tailored to the Russian language has been limited, primarily due to the significant computational resources required. This paper introduces the GigaChat family of Russian LLMs, available in various sizes, including base models and instruction-tuned versions. We provide a detailed report on the model architecture, pre-training process, and experiments to guide design choices. In addition, we evaluate their performance on Russian and English benchmarks and compare GigaChat with multilingual analogs. The paper presents a system demonstration of the top-performing models accessible via an API, a Telegram bot, and a Web interface. Furthermore, we have released three open GigaChat models in open-source (https://huggingface.co/ai-sage), aiming to expand NLP research opportunities and support the development of industrial solutions for the Russian language.
comment: ACL-2025 System Demo
Improved Supervised Fine-Tuning for Large Language Models to Mitigate Catastrophic Forgetting
Supervised Fine-Tuning (SFT), while enhancing large language models(LLMs)' instruction-following capabilities and domain-specific task adaptability, often diminishes their general capabilities. Moreover, due to the inaccessibility of original pre-training data, catastrophic forgetting tends to be exacerbated when third-party practitioners implement SFT on open-sourced models. To address this challenge, we propose a novel, more cost-effective SFT method which could effectively reduce the risk of catastrophic forgetting without access to original SFT data. Our approach begins by reconstructing the likely SFT instruction distribution of the base model, followed by a multi-model screening process to select optimal data, which is then mixed with new data for SFT. Experimental results demonstrate that our method preserves generalization capabilities in general domains while improving task-specific performance.
Hidden in Plain Sight: Evaluation of the Deception Detection Capabilities of LLMs in Multimodal Settings ACL 2025
Detecting deception in an increasingly digital world is both a critical and challenging task. In this study, we present a comprehensive evaluation of the automated deception detection capabilities of Large Language Models (LLMs) and Large Multimodal Models (LMMs) across diverse domains. We assess the performance of both open-source and commercial LLMs on three distinct datasets: real life trial interviews (RLTD), instructed deception in interpersonal scenarios (MU3D), and deceptive reviews (OpSpam). We systematically analyze the effectiveness of different experimental setups for deception detection, including zero-shot and few-shot approaches with random or similarity-based in-context example selection. Our results show that fine-tuned LLMs achieve state-of-the-art performance on textual deception detection tasks, while LMMs struggle to fully leverage cross-modal cues. Additionally, we analyze the impact of auxiliary features, such as non-verbal gestures and video summaries, and examine the effectiveness of different prompting strategies, including direct label generation and chain-of-thought reasoning. Our findings provide key insights into how LLMs process and interpret deceptive cues across modalities, highlighting their potential and limitations in real-world deception detection applications.
comment: Accepted to ACL 2025 Main Conference
A Call for Collaborative Intelligence: Why Human-Agent Systems Should Precede AI Autonomy
Recent improvements in large language models (LLMs) have led many researchers to focus on building fully autonomous AI agents. This position paper questions whether this approach is the right path forward, as these autonomous systems still have problems with reliability, transparency, and understanding the actual requirements of human. We suggest a different approach: LLM-based Human-Agent Systems (LLM-HAS), where AI works with humans rather than replacing them. By keeping human involved to provide guidance, answer questions, and maintain control, these systems can be more trustworthy and adaptable. Looking at examples from healthcare, finance, and software development, we show how human-AI teamwork can handle complex tasks better than AI working alone. We also discuss the challenges of building these collaborative systems and offer practical solutions. This paper argues that progress in AI should not be measured by how independent systems become, but by how well they can work with humans. The most promising future for AI is not in systems that take over human roles, but in those that enhance human capabilities through meaningful partnership.
PGDA-KGQA: A Prompt-Guided Generative Framework with Multiple Data Augmentation Strategies for Knowledge Graph Question Answering
Knowledge Graph Question Answering (KGQA) is a crucial task in natural language processing that requires reasoning over knowledge graphs (KGs) to answer natural language questions. Recent methods utilizing large language models (LLMs) have shown remarkable semantic parsing capabilities but are limited by the scarcity of diverse annotated data and multi-hop reasoning samples. Traditional data augmentation approaches are focus mainly on single-hop questions and prone to semantic distortion, while LLM-based methods primarily address semantic distortion but usually neglect multi-hop reasoning, thus limiting data diversity. The scarcity of multi-hop samples further weakens models' generalization. To address these issues, we propose PGDA-KGQA, a prompt-guided generative framework with multiple data augmentation strategies for KGQA. At its core, PGDA-KGQA employs a unified prompt-design paradigm: by crafting meticulously engineered prompts that integrate the provided textual content, it leverages LLMs to generate large-scale (question, logical form) pairs for model training. Specifically, PGDA-KGQA enriches its training set by: (1) generating single-hop pseudo questions to improve the alignment of question semantics with KG relations; (2) applying semantic-preserving question rewriting to improve robustness against linguistic variations; (3) employing answer-guided reverse path exploration to create realistic multi-hop questions. By adopting an augment-generate-retrieve semantic parsing pipeline, PGDA-KGQA utilizes the augmented data to enhance the accuracy of logical form generation and thus improve answer retrieval performance. Experiments demonstrate that outperforms state-of-the-art methods on standard KGQA datasets, achieving improvements on WebQSP by 2.8%, 1.2%, and 3.1% and on ComplexWebQuestions by 1.8%, 1.1%, and 2.4% in F1, Hits@1, and Accuracy, respectively.
comment: 13 pages, 7 figures, 5 tables
Token Constraint Decoding Improves Robustness on Question Answering for Large Language Models
Large Language Models (LLMs) have demonstrated impressive performance on multiple-choice question answering (MCQA) benchmarks, yet they remain highly vulnerable to minor input perturbations. In this paper, we introduce and evaluate Token Constraint Decoding (TCD). This simple yet effective inference-time algorithm enforces alignment between token-level predictions to enhance robustness in noisy settings. Through extensive experiments on CommonsenseQA, MMLU, and MMLU-Pro, we show that TCD, especially when paired with prompt engineering (PE) fixes, significantly restores performance degraded by input noise, yielding up to +39\% absolute gains for weaker models like Gemma3 1B. Penalty sweep analyses further reveal that TCD implicitly regularizes overconfident outputs, with different models requiring distinct penalty schedules to maximize resilience. Our findings establish TCD as a practical, model-agnostic approach for improving reasoning stability under real-world imperfections and pave the way for more reliable deployment of LLMs in safety-critical or user-facing applications.
A Hierarchical Probabilistic Framework for Incremental Knowledge Tracing in Classroom Settings
Knowledge tracing (KT) aims to estimate a student's evolving knowledge state and predict their performance on new exercises based on performance history. Many realistic classroom settings for KT are typically low-resource in data and require online updates as students' exercise history grows, which creates significant challenges for existing KT approaches. To restore strong performance under low-resource conditions, we revisit the hierarchical knowledge concept (KC) information, which is typically available in many classroom settings and can provide strong prior when data are sparse. We therefore propose Knowledge-Tree-based Knowledge Tracing (KT$^2$), a probabilistic KT framework that models student understanding over a tree-structured hierarchy of knowledge concepts using a Hidden Markov Tree Model. KT$^2$ estimates student mastery via an EM algorithm and supports personalized prediction through an incremental update mechanism as new responses arrive. Our experiments show that KT$^2$ consistently outperforms strong baselines in realistic online, low-resource settings.
comment: 24 pages, 4 figures
Comparing human and LLM politeness strategies in free production
Polite speech poses a fundamental alignment challenge for large language models (LLMs). Humans deploy a rich repertoire of linguistic strategies to balance informational and social goals -- from positive approaches that build rapport (compliments, expressions of interest) to negative strategies that minimize imposition (hedging, indirectness). We investigate whether LLMs employ a similarly context-sensitive repertoire by comparing human and LLM responses in both constrained and open-ended production tasks. We find that larger models ($\ge$70B parameters) successfully replicate key preferences from the computational pragmatics literature, and human evaluators surprisingly prefer LLM-generated responses in open-ended contexts. However, further linguistic analyses reveal that models disproportionately rely on negative politeness strategies even in positive contexts, potentially leading to misinterpretations. While modern LLMs demonstrate an impressive handle on politeness strategies, these subtle differences raise important questions about pragmatic alignment in AI systems.
comment: 25 pages, 5 figures
Binary classification for perceived quality of headlines and links on worldwide news websites, 2018-2024
The proliferation of online news enables potential widespread publication of perceived low-quality news headlines/links. As a result, we investigated whether it was possible to automatically distinguish perceived lower-quality news headlines/links from perceived higher-quality headlines/links. We evaluated twelve machine learning models on a binary, balanced dataset of 57,544,214 worldwide news website links/headings from 2018-2024 (28,772,107 per class) with 115 extracted linguistic features. Binary labels for each text were derived from scores based on expert consensus regarding the respective news domain quality. Traditional ensemble methods, particularly the bagging classifier, had strong performance (88.1% accuracy, 88.3% F1, 80/20 train/test split). Fine-tuned DistilBERT achieved the highest accuracy (90.3%, 80/20 train/test split) but required more training time. The results suggest that both NLP features with traditional classifiers and deep learning models can effectively differentiate perceived news headline/link quality, with some trade-off between predictive performance and train time.
CoLMbo: Speaker Language Model for Descriptive Profiling
Speaker recognition systems are often limited to classification tasks and struggle to generate detailed speaker characteristics or provide context-rich descriptions. These models primarily extract embeddings for speaker identification but fail to capture demographic attributes such as dialect, gender, and age in a structured manner. This paper introduces CoLMbo, a Speaker Language Model (SLM) that addresses these limitations by integrating a speaker encoder with prompt-based conditioning. This allows for the creation of detailed captions based on speaker embeddings. CoLMbo utilizes user-defined prompts to adapt dynamically to new speaker characteristics and provides customized descriptions, including regional dialect variations and age-related traits. This innovative approach not only enhances traditional speaker profiling but also excels in zero-shot scenarios across diverse datasets, marking a significant advancement in the field of speaker recognition.
COGENT: A Curriculum-oriented Framework for Generating Grade-appropriate Educational Content
While Generative AI has demonstrated strong potential and versatility in content generation, its application to educational contexts presents several challenges. Models often fail to align with curriculum standards and maintain grade-appropriate reading levels consistently. Furthermore, STEM education poses additional challenges in balancing scientific explanations with everyday language when introducing complex and abstract ideas and phenomena to younger students. In this work, we propose COGENT, a curriculum-oriented framework for generating grade-appropriate educational content. We incorporate three curriculum components (science concepts, core ideas, and learning objectives), control readability through length, vocabulary, and sentence complexity, and adopt a ``wonder-based'' approach to increase student engagement and interest. We conduct a multi-dimensional evaluation via both LLM-as-a-judge and human expert analysis. Experimental results show that COGENT consistently produces grade-appropriate passages that are comparable or superior to human references. Our work establishes a viable approach for scaling adaptive and high-quality learning resources.
comment: BEA 2025
Taming SQL Complexity: LLM-Based Equivalence Evaluation for Text-to-SQL
The rise of Large Language Models (LLMs) has significantly advanced Text-to-SQL (NL2SQL) systems, yet evaluating the semantic equivalence of generated SQL remains a challenge, especially given ambiguous user queries and multiple valid SQL interpretations. This paper explores using LLMs to assess both semantic and a more practical "weak" semantic equivalence. We analyze common patterns of SQL equivalence and inequivalence, discuss challenges in LLM-based evaluation.
comment: 8 pages
DIVE into MoE: Diversity-Enhanced Reconstruction of Large Language Models from Dense into Mixture-of-Experts ACL 2025
Large language models (LLMs) with the Mixture-of-Experts (MoE) architecture achieve high cost-efficiency by selectively activating a subset of the parameters. Despite the inference efficiency of MoE LLMs, the training of extensive experts from scratch incurs substantial overhead, whereas reconstructing a dense LLM into an MoE LLM significantly reduces the training budget. However, existing reconstruction methods often overlook the diversity among experts, leading to potential redundancy. In this paper, we come up with the observation that a specific LLM exhibits notable diversity after being pruned on different calibration datasets, based on which we present a Diversity-Enhanced reconstruction method named DIVE. The recipe of DIVE includes domain affinity mining, pruning-based expert reconstruction, and efficient retraining. Specifically, the reconstruction includes pruning and reassembly of the feed-forward network (FFN) module. After reconstruction, we efficiently retrain the model on routers, experts and normalization modules. We implement DIVE on Llama-style LLMs with open-source training corpora. Experiments show that DIVE achieves training efficiency with minimal accuracy trade-offs, outperforming existing pruning and MoE reconstruction methods with the same number of activated parameters.
comment: ACL 2025
Same Task, Different Circuits: Disentangling Modality-Specific Mechanisms in VLMs
Vision-Language models (VLMs) show impressive abilities to answer questions on visual inputs (e.g., counting objects in an image), yet demonstrate higher accuracies when performing an analogous task on text (e.g., counting words in a text). We investigate this accuracy gap by identifying and comparing the \textit{circuits} - the task-specific computational sub-graphs - in different modalities. We show that while circuits are largely disjoint between modalities, they implement relatively similar functionalities: the differences lie primarily in processing modality-specific data positions (an image or a text sequence). Zooming in on the image data representations, we observe they become aligned with the higher-performing analogous textual representations only towards later layers, too late in processing to effectively influence subsequent positions. To overcome this, we patch the representations of visual data tokens from later layers back into earlier layers. In experiments with multiple tasks and models, this simple intervention closes a third of the performance gap between the modalities, on average. Our analysis sheds light on the multi-modal performance gap in VLMs and suggests a training-free approach for reducing it.
Comparing human and LLM proofreading in L2 writing: Impact on lexical and syntactic features
This study examines the lexical and syntactic interventions of human and LLM proofreading aimed at improving overall intelligibility in identical second language writings, and evaluates the consistency of outcomes across three LLMs (ChatGPT-4o, Llama3.1-8b, Deepseek-r1-8b). Findings show that both human and LLM proofreading enhance bigram lexical features, which may contribute to better coherence and contextual connectedness between adjacent words. However, LLM proofreading exhibits a more generative approach, extensively reworking vocabulary and sentence structures, such as employing more diverse and sophisticated vocabulary and incorporating a greater number of adjective modifiers in noun phrases. The proofreading outcomes are highly consistent in major lexical and syntactic features across the three models.
UD-KSL Treebank v1.3: A semi-automated framework for aligning XPOS-extracted units with UPOS tags
The present study extends recent work on Universal Dependencies annotations for second-language (L2) Korean by introducing a semi-automated framework that identifies morphosyntactic constructions from XPOS sequences and aligns those constructions with corresponding UPOS categories. We also broaden the existing L2-Korean corpus by annotating 2,998 new sentences from argumentative essays. To evaluate the impact of XPOS-UPOS alignments, we fine-tune L2-Korean morphosyntactic analysis models on datasets both with and without these alignments, using two NLP toolkits. Our results indicate that the aligned dataset not only improves consistency across annotation layers but also enhances morphosyntactic tagging and dependency-parsing accuracy, particularly in cases of limited annotated data.
SWE-Flow: Synthesizing Software Engineering Data in a Test-Driven Manner ICML2025
We introduce **SWE-Flow**, a novel data synthesis framework grounded in Test-Driven Development (TDD). Unlike existing software engineering data that rely on human-submitted issues, **SWE-Flow** automatically infers incremental development steps directly from unit tests, which inherently encapsulate high-level requirements. The core of **SWE-Flow** is the construction of a Runtime Dependency Graph (RDG), which precisely captures function interactions, enabling the generation of a structured, step-by-step *development schedule*. At each step, **SWE-Flow** produces a partial codebase, the corresponding unit tests, and the necessary code modifications, resulting in fully verifiable TDD tasks. With this approach, we generated 16,061 training instances and 2,020 test instances from real-world GitHub projects, creating the **SWE-Flow-Eval** benchmark. Our experiments show that fine-tuning open model on this dataset significantly improves performance in TDD-based coding. To facilitate further research, we release all code, datasets, models, and Docker images at [Github](https://github.com/Hambaobao/SWE-Flow).
comment: Accepted by ICML2025
Towards Reliable Proof Generation with LLMs: A Neuro-Symbolic Approach
Large language models (LLMs) struggle with formal domains that require rigorous logical deduction and symbolic reasoning, such as mathematical proof generation. We propose a neuro-symbolic approach that combines LLMs' generative strengths with structured components to overcome this challenge. As a proof-of-concept, we focus on geometry problems. Our approach is two-fold: (1) we retrieve analogous problems and use their proofs to guide the LLM, and (2) a formal verifier evaluates the generated proofs and provides feedback, helping the model fix incorrect proofs. We demonstrate that our method significantly improves proof accuracy for OpenAI's o1 model (58%-70% improvement); both analogous problems and the verifier's feedback contribute to these gains. More broadly, shifting to LLMs that generate provably correct conclusions could dramatically improve their reliability, accuracy and consistency, unlocking complex tasks and critical real-world applications that require trustworthiness.
comment: long paper
Can LLMs Ground when they (Don't) Know: A Study on Direct and Loaded Political Questions ACL
Communication among humans relies on conversational grounding, allowing interlocutors to reach mutual understanding even when they do not have perfect knowledge and must resolve discrepancies in each other's beliefs. This paper investigates how large language models (LLMs) manage common ground in cases where they (don't) possess knowledge, focusing on facts in the political domain where the risk of misinformation and grounding failure is high. We examine the ability of LLMs to answer direct knowledge questions and loaded questions that presuppose misinformation. We evaluate whether loaded questions lead LLMs to engage in active grounding and correct false user beliefs, in connection to their level of knowledge and their political bias. Our findings highlight significant challenges in LLMs' ability to engage in grounding and reject false user beliefs, raising concerns about their role in mitigating misinformation in political discourse.
comment: Preprint accepted at ACL Main Conference 2025
AdversariaL attacK sAfety aLIgnment(ALKALI): Safeguarding LLMs through GRACE: Geometric Representation-Aware Contrastive Enhancement- Introducing Adversarial Vulnerability Quality Index (AVQI)
Adversarial threats against LLMs are escalating faster than current defenses can adapt. We expose a critical geometric blind spot in alignment: adversarial prompts exploit latent camouflage, embedding perilously close to the safe representation manifold while encoding unsafe intent thereby evading surface level defenses like Direct Preference Optimization (DPO), which remain blind to the latent geometry. We introduce ALKALI, the first rigorously curated adversarial benchmark and the most comprehensive to date spanning 9,000 prompts across three macro categories, six subtypes, and fifteen attack families. Evaluation of 21 leading LLMs reveals alarmingly high Attack Success Rates (ASRs) across both open and closed source models, exposing an underlying vulnerability we term latent camouflage, a structural blind spot where adversarial completions mimic the latent geometry of safe ones. To mitigate this vulnerability, we introduce GRACE - Geometric Representation Aware Contrastive Enhancement, an alignment framework coupling preference learning with latent space regularization. GRACE enforces two constraints: latent separation between safe and adversarial completions, and adversarial cohesion among unsafe and jailbreak behaviors. These operate over layerwise pooled embeddings guided by a learned attention profile, reshaping internal geometry without modifying the base model, and achieve up to 39% ASR reduction. Moreover, we introduce AVQI, a geometry aware metric that quantifies latent alignment failure via cluster separation and compactness. AVQI reveals when unsafe completions mimic the geometry of safe ones, offering a principled lens into how models internally encode safety. We make the code publicly available at https://anonymous.4open.science/r/alkali-B416/README.md.
Confidence Is All You Need: Few-Shot RL Fine-Tuning of Language Models
Large language models (LLMs) excel at reasoning, yet post-training remains critical for aligning their behavior with task goals. Existing reinforcement learning (RL) methods often depend on costly human annotations or external reward models. We propose Reinforcement Learning via Self-Confidence (RLSC), which uses the model's own confidence as reward signals-eliminating the need for labels, preference models, or reward engineering. Applied to Qwen2.5-Math-7B with only 16 samples per question and 10 or 20 training steps, RLSC improves accuracy by +13.4% on AIME2024, +21.2% on MATH500, +21.7% on Minerva Math, +20.8% on Olympiadbench, and +9.7% on AMC23. RLSC provides a simple, scalable post-training method for inference models, requiring only a small number of samples and unlabelled supervision.
SAFEFLOW: A Principled Protocol for Trustworthy and Transactional Autonomous Agent Systems
Recent advances in large language models (LLMs) and vision-language models (VLMs) have enabled powerful autonomous agents capable of complex reasoning and multi-modal tool use. Despite their growing capabilities, today's agent frameworks remain fragile, lacking principled mechanisms for secure information flow, reliability, and multi-agent coordination. In this work, we introduce SAFEFLOW, a new protocol-level framework for building trustworthy LLM/VLM-based agents. SAFEFLOW enforces fine-grained information flow control (IFC), precisely tracking provenance, integrity, and confidentiality of all the data exchanged between agents, tools, users, and environments. By constraining LLM reasoning to respect these security labels, SAFEFLOW prevents untrusted or adversarial inputs from contaminating high-integrity decisions. To ensure robustness in concurrent multi-agent settings, SAFEFLOW introduces transactional execution, conflict resolution, and secure scheduling over shared state, preserving global consistency across agents. We further introduce mechanisms, including write-ahead logging, rollback, and secure caches, that further enhance resilience against runtime errors and policy violations. To validate the performances, we built SAFEFLOWBENCH, a comprehensive benchmark suite designed to evaluate agent reliability under adversarial, noisy, and concurrent operational conditions. Extensive experiments demonstrate that agents built with SAFEFLOW maintain impressive task performance and security guarantees even in hostile environments, substantially outperforming state-of-the-art. Together, SAFEFLOW and SAFEFLOWBENCH lay the groundwork for principled, robust, and secure agent ecosystems, advancing the frontier of reliable autonomy.
comment: Former versions either contain unrelated content or cannot be properly converted to PDF
AraReasoner: Evaluating Reasoning-Based LLMs for Arabic NLP
Large language models (LLMs) have shown remarkable progress in reasoning abilities and general natural language processing (NLP) tasks, yet their performance on Arabic data, characterized by rich morphology, diverse dialects, and complex script, remains underexplored. This paper presents a comprehensive benchmarking study of multiple reasoning-focused LLMs, with a special emphasis on the newly introduced DeepSeek models, across a suite of fifteen Arabic NLP tasks. We experiment with various strategies, including zero-shot, few-shot, and fine-tuning. This allows us to systematically evaluate performance on datasets covering a range of applications to examine their capacity for linguistic reasoning under different levels of complexity. Our experiments reveal several key findings. First, carefully selecting just three in-context examples delivers an average uplift of over 13 F1 points on classification tasks-boosting sentiment analysis from 35.3% to 87.5% and paraphrase detection from 56.1% to 87.0%. Second, reasoning-focused DeepSeek architectures outperform a strong GPT o4-mini baseline by an average of 12 F1 points on complex inference tasks in the zero-shot setting. Third, LoRA-based fine-tuning yields up to an additional 8 points in F1 and BLEU compared to equivalent increases in model scale. The code is available at https://anonymous.4open.science/r/AraReasoner41299
Societal AI Research Has Become Less Interdisciplinary
As artificial intelligence (AI) systems become deeply embedded in everyday life, calls to align AI development with ethical and societal values have intensified. Interdisciplinary collaboration is often championed as a key pathway for fostering such engagement. Yet it remains unclear whether interdisciplinary research teams are actually leading this shift in practice. This study analyzes over 100,000 AI-related papers published on ArXiv between 2014 and 2024 to examine how ethical values and societal concerns are integrated into technical AI research. We develop a classifier to identify societal content and measure the extent to which research papers express these considerations. We find a striking shift: while interdisciplinary teams remain more likely to produce societally-oriented research, computer science-only teams now account for a growing share of the field's overall societal output. These teams are increasingly integrating societal concerns into their papers and tackling a wide range of domains - from fairness and safety to healthcare and misinformation. These findings challenge common assumptions about the drivers of societal AI and raise important questions. First, what are the implications for emerging understandings of AI safety and governance if most societally-oriented research is being undertaken by exclusively technical teams? Second, for scholars in the social sciences and humanities: in a technical field increasingly responsive to societal demands, what distinctive perspectives can we still offer to help shape the future of AI?
ClimateViz: A Benchmark for Statistical Reasoning and Fact Verification on Scientific Charts
Scientific fact-checking has mostly focused on text and tables, overlooking scientific charts, which are key for presenting quantitative evidence and statistical reasoning. We introduce ClimateViz, the first large-scale benchmark for scientific fact-checking using expert-curated scientific charts. ClimateViz contains 49,862 claims linked to 2,896 visualizations, each labeled as support, refute, or not enough information. To improve interpretability, each example includes structured knowledge graph explanations covering trends, comparisons, and causal relations. We evaluate state-of-the-art multimodal language models, including both proprietary and open-source systems, in zero-shot and few-shot settings. Results show that current models struggle with chart-based reasoning: even the best systems, such as Gemini 2.5 and InternVL 2.5, reach only 76.2 to 77.8 percent accuracy in label-only settings, far below human performance (89.3 and 92.7 percent). Explanation-augmented outputs improve performance in some models. We released our dataset and code alongside the paper.
Guidelines for Fine-grained Sentence-level Arabic Readability Annotation ACL 2025
This paper presents the annotation guidelines of the Balanced Arabic Readability Evaluation Corpus (BAREC), a large-scale resource for fine-grained sentence-level readability assessment in Arabic. BAREC includes 69,441 sentences (1M+ words) labeled across 19 levels, from kindergarten to postgraduate. Based on the Taha/Arabi21 framework, the guidelines were refined through iterative training with native Arabic-speaking educators. We highlight key linguistic, pedagogical, and cognitive factors in determining readability and report high inter-annotator agreement: Quadratic Weighted Kappa 81.8% (substantial/excellent agreement) in the last annotation phase. We also benchmark automatic readability models across multiple classification granularities (19-, 7-, 5-, and 3-level). The corpus and guidelines are publicly available.
comment: Accepted at LAW-XIX at ACL 2025
Speech Synthesis By Unrolling Diffusion Process using Neural Network Layers
This work introduces UDPNet, a novel architecture designed to accelerate the reverse diffusion process in speech synthesis. Unlike traditional diffusion models that rely on timestep embeddings and shared network parameters, UDPNet unrolls the reverse diffusion process directly into the network architecture, with successive layers corresponding to equally spaced steps in the diffusion schedule. Each layer progressively refines the noisy input, culminating in a high-fidelity estimation of the original data, \(x_0\). Additionally, we redefine the learning target by predicting latent variables instead of the conventional \(x_0\) or noise \(\epsilon_0\). This shift addresses the common issue of large prediction errors in early denoising stages, effectively reducing speech distortion. Extensive evaluations on single- and multi-speaker datasets demonstrate that UDPNet consistently outperforms state-of-the-art methods in both quality and efficiency, while generalizing effectively to unseen speech. These results position UDPNet as a robust solution for real-time speech synthesis applications. Sample audio is available at https://onexpeters.github.io/UDPNet.
comment: 10 pages
Phonology-Guided Speech-to-Speech Translation for African Languages
We present a prosody-guided framework for speech-to-speech translation (S2ST) that aligns and translates speech \emph{without} transcripts by leveraging cross-linguistic pause synchrony. Analyzing a 6{,}000-hour East African news corpus spanning five languages, we show that \emph{within-phylum} language pairs exhibit 30--40\% lower pause variance and over 3$\times$ higher onset/offset correlation compared to cross-phylum pairs. These findings motivate \textbf{SPaDA}, a dynamic-programming alignment algorithm that integrates silence consistency, rate synchrony, and semantic similarity. SPaDA improves alignment $F_1$ by +3--4 points and eliminates up to 38\% of spurious matches relative to greedy VAD baselines. Using SPaDA-aligned segments, we train \textbf{SegUniDiff}, a diffusion-based S2ST model guided by \emph{external gradients} from frozen semantic and speaker encoders. SegUniDiff matches an enhanced cascade in BLEU (30.3 on CVSS-C vs.\ 28.9 for UnitY), reduces speaker error rate (EER) from 12.5\% to 5.3\%, and runs at an RTF of 1.02. To support evaluation in low-resource settings, we also release a three-tier, transcript-free BLEU suite (M1--M3) that correlates strongly with human judgments. Together, our results show that prosodic cues in multilingual speech provide a reliable scaffold for scalable, non-autoregressive S2ST.
Lingshu: A Generalist Foundation Model for Unified Multimodal Medical Understanding and Reasoning
Multimodal Large Language Models (MLLMs) have demonstrated impressive capabilities in understanding common visual elements, largely due to their large-scale datasets and advanced training strategies. However, their effectiveness in medical applications remains limited due to the inherent discrepancies between data and tasks in medical scenarios and those in the general domain. Concretely, existing medical MLLMs face the following critical limitations: (1) limited coverage of medical knowledge beyond imaging, (2) heightened susceptibility to hallucinations due to suboptimal data curation processes, (3) lack of reasoning capabilities tailored for complex medical scenarios. To address these challenges, we first propose a comprehensive data curation procedure that (1) efficiently acquires rich medical knowledge data not only from medical imaging but also from extensive medical texts and general-domain data; and (2) synthesizes accurate medical captions, visual question answering (VQA), and reasoning samples. As a result, we build a multimodal dataset enriched with extensive medical knowledge. Building on the curated data, we introduce our medical-specialized MLLM: Lingshu. Lingshu undergoes multi-stage training to embed medical expertise and enhance its task-solving capabilities progressively. Besides, we preliminarily explore the potential of applying reinforcement learning with verifiable rewards paradigm to enhance Lingshu's medical reasoning ability. Additionally, we develop MedEvalKit, a unified evaluation framework that consolidates leading multimodal and textual medical benchmarks for standardized, fair, and efficient model assessment. We evaluate the performance of Lingshu on three fundamental medical tasks, multimodal QA, text-based QA, and medical report generation. The results show that Lingshu consistently outperforms the existing open-source multimodal models on most tasks ...
comment: Technical Report, 53 pages, 25 tables, and 16 figures
Human-like object concept representations emerge naturally in multimodal large language models
Understanding how humans conceptualize and categorize natural objects offers critical insights into perception and cognition. With the advent of Large Language Models (LLMs), a key question arises: can these models develop human-like object representations from linguistic and multimodal data? In this study, we combined behavioral and neuroimaging analyses to explore the relationship between object concept representations in LLMs and human cognition. We collected 4.7 million triplet judgments from LLMs and Multimodal LLMs (MLLMs) to derive low-dimensional embeddings that capture the similarity structure of 1,854 natural objects. The resulting 66-dimensional embeddings were stable, predictive, and exhibited semantic clustering similar to human mental representations. Remarkably, the dimensions underlying these embeddings were interpretable, suggesting that LLMs and MLLMs develop human-like conceptual representations of objects. Further analysis showed strong alignment between model embeddings and neural activity patterns in brain regions such as EBA, PPA, RSC, and FFA. This provides compelling evidence that the object representations in LLMs, while not identical to human ones, share fundamental similarities that reflect key aspects of human conceptual knowledge. Our findings advance the understanding of machine intelligence and inform the development of more human-like artificial cognitive systems.
comment: Published on Nature Machine Intelligence
Qwen3 Embedding: Advancing Text Embedding and Reranking Through Foundation Models
In this work, we introduce the Qwen3 Embedding series, a significant advancement over its predecessor, the GTE-Qwen series, in text embedding and reranking capabilities, built upon the Qwen3 foundation models. Leveraging the Qwen3 LLMs' robust capabilities in multilingual text understanding and generation, our innovative multi-stage training pipeline combines large-scale unsupervised pre-training with supervised fine-tuning on high-quality datasets. Effective model merging strategies further ensure the robustness and adaptability of the Qwen3 Embedding series. During the training process, the Qwen3 LLMs serve not only as backbone models but also play a crucial role in synthesizing high-quality, rich, and diverse training data across multiple domains and languages, thus enhancing the training pipeline. The Qwen3 Embedding series offers a spectrum of model sizes (0.6B, 4B, 8B) for both embedding and reranking tasks, addressing diverse deployment scenarios where users can optimize for either efficiency or effectiveness. Empirical evaluations demonstrate that the Qwen3 Embedding series achieves state-of-the-art results across diverse benchmarks. Notably, it excels on the multilingual evaluation benchmark MTEB for text embedding, as well as in various retrieval tasks, including code retrieval, cross-lingual retrieval and multilingual retrieval. To facilitate reproducibility and promote community-driven research and development, the Qwen3 Embedding models are publicly available under the Apache 2.0 license.
CASPER: A Large Scale Spontaneous Speech Dataset
The success of large language models has driven interest in developing similar speech processing capabilities. However, a key challenge is the scarcity of high-quality spontaneous speech data, as most existing datasets contain scripted dialogues. To address this, we present a novel pipeline for eliciting and recording natural dialogues and release our dataset with 100+ hours of spontaneous speech. Our approach fosters fluid, natural conversations while encouraging a diverse range of topics and interactive exchanges. Unlike traditional methods, it facilitates genuine interactions, providing a reproducible framework for future data collection. This paper introduces our dataset and methodology, laying the groundwork for addressing the shortage of spontaneous speech data. We plan to expand this dataset in future stages, offering a growing resource for the research community.
Low-resource domain adaptation while minimizing energy and hardware resource consumption
Training Large Language Models (LLMs) is costly in terms of energy, hardware, and annotated data, often resulting in a positionality rooted in predominant cultures and values (Santy et al., 2023). Domain adaptation has emerged as a promising strategy to better align models with diverse cultural and value contexts (Hershcovich et al., 2022), but its computational cost remains a significant barrier, particularly for research groups lacking access to large-scale infrastructure. In this paper, we evaluate how the use of different numerical precision formats and data parallelization strategies impacts both training speed (as a proxy to energy and hardware consumption) and model accuracy, with the goal of facilitating domain adaptation in low-resource environments. Our findings are relevant to any setting where energy efficiency, accessibility, or limited hardware availability are key concerns.
comment: A shorter version of this work was accepted as a two-page abstract for presentation at the Widening Natural Language Processing (WiNLP) 2023 Workshop. That version was not publicly released, and this is the first public version of the work
TACTIC: Translation Agents with Cognitive-Theoretic Interactive Collaboration
Machine translation has long been a central task in natural language processing. With the rapid advancement of large language models (LLMs), there has been remarkable progress in translation quality. However, fully realizing the translation potential of LLMs remains an open challenge. Recent studies have explored multi-agent systems to decompose complex translation tasks into collaborative subtasks, showing initial promise in enhancing translation quality through agent cooperation and specialization. Nevertheless, existing multi-agent translation frameworks largely neglect foundational insights from cognitive translation studies. These insights emphasize how human translators employ different cognitive strategies, such as balancing literal and free translation, refining expressions based on context, and iteratively evaluating outputs. To address this limitation, we propose a cognitively informed multi-agent framework called TACTIC, which stands for T ranslation A gents with Cognitive- T heoretic Interactive Collaboration. The framework comprises six functionally distinct agents that mirror key cognitive processes observed in human translation behavior. These include agents for drafting, refinement, evaluation, scoring, context reasoning, and external knowledge gathering. By simulating an interactive and theory-grounded translation workflow, TACTIC effectively leverages the full capacity of LLMs for high-quality translation. Experimental results on diverse language pairs from the FLORES-200 and WMT24 benchmarks show that our method consistently achieves state-of-the-art performance. Using DeepSeek-V3 as the base model, TACTIC surpasses GPT-4.1 by an average of +0.6 XCOMET and +1.18 COMETKIWI-23. Compared to DeepSeek-R1, it further improves by +0.84 XCOMET and +2.99 COMETKIWI-23. Code is available at https://github.com/weiyali126/TACTIC.
comment: 20 pages, 4 figures, Under review. Code: https://github.com/weiyali126/TACTIC
Mitigating Posterior Salience Attenuation in Long-Context LLMs with Positional Contrastive Decoding
While Large Language Models (LLMs) support long contexts, they struggle with performance degradation within the context window. Current solutions incur prohibitive training costs, leaving statistical behaviors and cost-effective approaches underexplored. From the decoding perspective, we identify the Posterior Salience Attenuation (PSA) phenomenon, where the salience ratio correlates with long-text performance degradation. Notably, despite the attenuation, gold tokens still occupy high-ranking positions in the decoding space. Motivated by it, we propose the training-free Positional Contrastive Decoding (PCD) that contrasts the logits derived from long-aware attention with those from designed local-aware attention, enabling the model to focus on the gains introduced by large-scale short-to-long training. Through the analysis of long-term decay simulation, we demonstrate that PCD effectively alleviates attention score degradation. Experimental results show that PCD achieves state-of-the-art performance on long-context benchmarks.
Sentence-level Reward Model can Generalize Better for Aligning LLM from Human Preference
Learning reward models from human preference datasets and subsequently optimizing language models via reinforcement learning has emerged as a fundamental paradigm for aligning LLMs with human preferences. The performance of the reward model plays a crucial role in the effectiveness of alignment. Previous reward models operate at a coarse-grained level, requiring the generation of a complete response to obtain a reward value. The sparse reward may present challenges for downstream reinforcement learning. While recent efforts have attempted to learn token-level reward models, the lack of explicit semantic information makes it difficult to model the credit of every individual token. In this paper, we propose assigning scores to every sentence, introducing an intermediate-grained reward model. By segmenting the complete response into sentences and applying differential operations to reward output at the start and end positions of each sentence, we can effectively model the rewards of sentences. Moreover, a novel attention mechanism is introduced to aggregate the scores of all sentences into a response-level score, which allows it to be trained using the Bradley-Terry model. On common benchmarks, our method outperforms the response-level reward model by 2.7% on RewardBench (for reward modeling evaluation) and surpasses all baselines on AlpacaEval (for alignment evaluation).
CC-RAG: Structured Multi-Hop Reasoning via Theme-Based Causal Graphs
Understanding cause and effect relationships remains a formidable challenge for Large Language Models (LLMs), particularly in specialized domains where reasoning requires more than surface-level correlations. Retrieval-Augmented Generation (RAG) improves factual accuracy, but standard RAG pipelines treat evidence as flat context, lacking the structure required to model true causal dependencies. We introduce Causal-Chain RAG (CC-RAG), a novel approach that integrates zero-shot triple extraction and theme-aware graph chaining into the RAG pipeline, enabling structured multi-hop inference. Given a domain specific corpus, CC-RAG constructs a Directed Acyclic Graph (DAG) of triples and uses forward/backward chaining to guide structured answer generation. Experiments on two real-world domains: Bitcoin price fluctuations and Gaucher disease, show that CC-RAG outperforms standard RAG and zero-shot LLMs in chain similarity, information density, and lexical diversity. Both LLM-as-a-Judge and human evaluations consistently favor CC-RAG. Our results demonstrate that explicitly modeling causal structure enables LLMs to generate more accurate and interpretable responses, especially in specialized domains where flat retrieval fails.
Auditing Black-Box LLM APIs with a Rank-Based Uniformity Test
As API access becomes a primary interface to large language models (LLMs), users often interact with black-box systems that offer little transparency into the deployed model. To reduce costs or maliciously alter model behaviors, API providers may discreetly serve quantized or fine-tuned variants, which can degrade performance and compromise safety. Detecting such substitutions is difficult, as users lack access to model weights and, in most cases, even output logits. To tackle this problem, we propose a rank-based uniformity test that can verify the behavioral equality of a black-box LLM to a locally deployed authentic model. Our method is accurate, query-efficient, and avoids detectable query patterns, making it robust to adversarial providers that reroute or mix responses upon the detection of testing attempts. We evaluate the approach across diverse threat scenarios, including quantization, harmful fine-tuning, jailbreak prompts, and full model substitution, showing that it consistently achieves superior statistical power over prior methods under constrained query budgets.
Trustworthy AI: Safety, Bias, and Privacy -- A Survey
The capabilities of artificial intelligence systems have been advancing to a great extent, but these systems still struggle with failure modes, vulnerabilities, and biases. In this paper, we study the current state of the field, and present promising insights and perspectives regarding concerns that challenge the trustworthiness of AI models. In particular, this paper investigates the issues regarding three thrusts: safety, privacy, and bias, which hurt models' trustworthiness. For safety, we discuss safety alignment in the context of large language models, preventing them from generating toxic or harmful content. For bias, we focus on spurious biases that can mislead a network. Lastly, for privacy, we cover membership inference attacks in deep neural networks. The discussions addressed in this paper reflect our own experiments and observations.
Language Models Resist Alignment: Evidence From Data Compression ACL2025
Large language models (LLMs) may exhibit unintended or undesirable behaviors. Recent works have concentrated on aligning LLMs to mitigate harmful outputs. Despite these efforts, some anomalies indicate that even a well-conducted alignment process can be easily circumvented, whether intentionally or accidentally. Does alignment fine-tuning yield have robust effects on models, or are its impacts merely superficial? In this work, we make the first exploration of this phenomenon from both theoretical and empirical perspectives. Empirically, we demonstrate the $\mathbf{elasticity}$ of post-alignment models, i.e., the tendency to revert to the behavior distribution formed during the pre-training phase upon further fine-tuning. Leveraging compression theory, we formally deduce that fine-tuning disproportionately undermines alignment relative to pre-training, potentially by orders of magnitude. We validate the presence of elasticity through experiments on models of varying types and scales. Specifically, we find that model performance declines rapidly before reverting to the pre-training distribution, after which the rate of decline drops significantly. Furthermore, we further reveal that elasticity positively correlates with the increased model size and the expansion of pre-training data. Our findings underscore the need to address the inherent elasticity of LLMs to mitigate their resistance to alignment. The model weight and code are available at pku-lm-resist-alignment.github.io.
comment: Accepted by ACL2025 Main
7B Fully Open Source Moxin-LLM/VLM -- From Pretraining to GRPO-based Reinforcement Learning Enhancement
Recently, Large Language Models (LLMs) have undergone a significant transformation, marked by a rapid rise in both their popularity and capabilities. Leading this evolution are proprietary LLMs like GPT-4 and GPT-o1, which have captured widespread attention in the AI community due to their remarkable performance and versatility. Simultaneously, open-source LLMs, such as LLaMA, have made great contributions to the ever-increasing popularity of LLMs due to the ease to customize and deploy the models across diverse applications. Although open-source LLMs present unprecedented opportunities for innovation and research, the commercialization of LLMs has raised concerns about transparency, reproducibility, and safety. Many open-source LLMs fail to meet fundamental transparency requirements by withholding essential components like training code and data, which may hinder further innovations on LLMs. To mitigate this issue, we introduce Moxin 7B, a fully open-source LLM developed, adhering to principles of open science, open source, open data, and open access. We release the pre-training code and configurations, training and fine-tuning datasets, and intermediate and final checkpoints, aiming to make continuous commitments to fully open-source LLMs. After pre-training the base model, we finetune the Moxin Base model with SOTA post-training framework and instruction data to obtain Moxin Instruct model. To improve the reasoning capability, we further finetune our Instruct model with chain-of-thought data distilled from DeepSeek R1, and then use Group Relative Policy Optimization (GRPO) following DeepSeek R1 to finetune our model, leading to the Moxin Reasoning model. Moreover, we develop our vision language model based on our Moxin model. Experiments show that our models achieve superior performance in various evaluations such as zero-shot evaluation, few-shot evaluation, and CoT evaluation.
Let's Fuse Step by Step: A Generative Fusion Decoding Algorithm with LLMs for Robust and Instruction-Aware ASR and OCR
We propose "Generative Fusion Decoding" (GFD), a novel shallow fusion framework designed to integrate large language models (LLMs) into cross-modal text recognition systems for automatic speech recognition (ASR) and optical character recognition (OCR). We derive the necessary formulations to enable GFD to operate across mismatched token spaces of different models by calculating likelihood at the byte level, thereby enabling seamless fusion and synchronous progression during the decoding process. GFD is plug-and-play by design, making it readily compatible with various auto-regressive models without the need for any re-training. GFD proves effective for general ASR and OCR tasks through intermediate and frequent interactions with LLMs, surpassing cascaded methods in English and Mandarin benchmarks. In addition, GFD transfers in-context learning abilities of LLMs and allows for adaptive ASR in instruction-aware and long-context settings, yielding significant WER reductions of up to 17.7\%.
LLM-BT-Terms: Back-Translation as a Framework for Terminology Standardization and Dynamic Semantic Embedding
The rapid expansion of English technical terminology presents a significant challenge to traditional expert-based standardization, particularly in rapidly developing areas such as artificial intelligence and quantum computing. Manual approaches face difficulties in maintaining consistent multilingual terminology. To address this, we introduce LLM-BT, a back-translation framework powered by large language models (LLMs) designed to automate terminology verification and standardization through cross-lingual semantic alignment. Our key contributions include: (1) term-level consistency validation: by performing English -> intermediate language -> English back-translation, LLM-BT achieves high term consistency across different models (such as GPT-4, DeepSeek, and Grok). Case studies demonstrate over 90 percent of terms are preserved either exactly or semantically; (2) multi-path verification workflow: we develop a novel pipeline described as Retrieve -> Generate -> Verify -> Optimize, which supports both serial paths (e.g., English -> Simplified Chinese -> Traditional Chinese -> English) and parallel paths (e.g., English -> Chinese / Portuguese -> English). BLEU scores and term-level accuracy indicate strong cross-lingual robustness, with BLEU scores exceeding 0.45 and Portuguese term accuracy reaching 100 percent; (3) back-translation as semantic embedding: we reinterpret back-translation as a form of dynamic semantic embedding that uncovers latent trajectories of meaning. In contrast to static embeddings, LLM-BT offers transparent, path-based embeddings shaped by the evolution of the models. This reframing positions back-translation as an active mechanism for multilingual terminology standardization, fostering collaboration between machines and humans - machines preserve semantic integrity, while humans provide cultural interpretation.
comment: 23 pages
CaLMQA: Exploring culturally specific long-form question answering across 23 languages ACL 2025
Despite rising global usage of large language models (LLMs), their ability to generate long-form answers to culturally specific questions remains unexplored in many languages. To fill this gap, we perform the first study of textual multilingual long-form QA by creating CaLMQA, a dataset of 51.7K culturally specific questions across 23 different languages. We define culturally specific questions as those that refer to concepts unique to one or a few cultures, or have different answers depending on the cultural or regional context. We obtain these questions by crawling naturally-occurring questions from community web forums in high-resource languages, and by hiring native speakers to write questions in under-resourced, rarely-studied languages such as Fijian and Kirundi. Our data collection methodologies are translation-free, enabling the collection of culturally unique questions like "Kuber iki umwami wa mbere w'uburundi yitwa Ntare?" (Kirundi; English translation: "Why was the first king of Burundi called Ntare (Lion)?"). We evaluate factuality, relevance and surface-level quality of LLM-generated long-form answers, finding that (1) for many languages, even the best models make critical surface-level errors (e.g., answering in the wrong language, repetition), especially for low-resource languages; and (2) answers to culturally specific questions contain more factual errors than answers to culturally agnostic questions -- questions that have consistent meaning and answer across many cultures. We release CaLMQA to facilitate future research in cultural and multilingual long-form QA.
comment: 46 pages, 26 figures. Accepted as a main conference paper at ACL 2025. Code and data available at https://github.com/2015aroras/CaLMQA . Dataset expanded to 51.7K questions
Standard Language Ideology in AI-Generated Language
Standard language ideology is reflected and reinforced in language generated by large language models (LLMs). We present a faceted taxonomy of open problems that illustrate how standard language ideology manifests in AI-generated language, alongside implications for minoritized language communities and society more broadly. We introduce the concept of standard AI-generated language ideology, a process through which LLMs position "standard" languages--particularly Standard American English (SAE)--as the linguistic default, reinforcing the perception that SAE is the most "appropriate" language. We then discuss ongoing tensions around what constitutes desirable system behavior, as well as advantages and drawbacks of generative AI tools attempting, or refusing, to imitate different English language varieties. Rather than prescribing narrow technical fixes, we offer three recommendations for researchers, practitioners, and funders that focus on shifting structural conditions and supporting more emancipatory outcomes for diverse language communities.
Discovering Forbidden Topics in Language Models
Refusal discovery is the task of identifying the full set of topics that a language model refuses to discuss. We introduce this new problem setting and develop a refusal discovery method, Iterated Prefill Crawler (IPC), that uses token prefilling to find forbidden topics. We benchmark IPC on Tulu-3-8B, an open-source model with public safety tuning data. Our crawler manages to retrieve 31 out of 36 topics within a budget of 1000 prompts. Next, we scale the crawler to a frontier model using the prefilling option of Claude-Haiku. Finally, we crawl three widely used open-weight models: Llama-3.3-70B and two of its variants finetuned for reasoning: DeepSeek-R1-70B and Perplexity-R1-1776-70B. DeepSeek-R1-70B reveals patterns consistent with censorship tuning: The model exhibits "thought suppression" behavior that indicates memorization of CCP-aligned responses. Although Perplexity-R1-1776-70B is robust to censorship, IPC elicits CCP-aligned refusals answers in the quantized model. Our findings highlight the critical need for refusal discovery methods to detect biases, boundaries, and alignment failures of AI systems.
The Remarkable Robustness of LLMs: Stages of Inference?
We investigate the robustness of Large Language Models (LLMs) to structural interventions by deleting and swapping adjacent layers during inference. Surprisingly, models retain 72-95% of their original top-1 prediction accuracy without any fine-tuning. We find that performance degradation is not uniform across layers: interventions to the early and final layers cause the most degradation, while the model is remarkably robust to dropping middle layers. This pattern of localized sensitivity motivates our hypothesis of four stages of inference, observed across diverse model families and sizes: (1) detokenization, where local context is integrated to lift raw token embeddings into higher-level representations; (2) feature engineering, where task- and entity-specific features are iteratively refined; (3) prediction ensembling, where hidden states are aggregated into plausible next-token predictions; and (4) residual sharpening, where irrelevant features are suppressed to finalize the output distribution. Synthesizing behavioral and mechanistic evidence, we provide a framework for interpreting depth-dependent computations in LLMs.
comment: For Github code see https://github.com/vdlad/Remarkable-Robustness-of-LLMs. Send all correspondence to the first author
Advancing Decoding Strategies: Enhancements in Locally Typical Sampling for LLMs
This chapter explores advancements in decoding strategies for large language models (LLMs), focusing on enhancing the Locally Typical Sampling (LTS) algorithm. Traditional decoding methods, such as top-k and nucleus sampling, often struggle to balance fluency, diversity, and coherence in text generation. To address these challenges, Adaptive Semantic-Aware Typicality Sampling (ASTS) is proposed as an improved version of LTS, incorporating dynamic entropy thresholding, multi-objective scoring, and reward-penalty adjustments. ASTS ensures contextually coherent and diverse text generation while maintaining computational efficiency. Its performance is evaluated across multiple benchmarks, including story generation and abstractive summarization, using metrics such as perplexity, MAUVE, and diversity scores. Experimental results demonstrate that ASTS outperforms existing sampling techniques by reducing repetition, enhancing semantic alignment, and improving fluency.
comment: This is the accepted but pre-reviewed version of the chapter that has been accepted for publication in the Springer volume 'Decision-Making in Computational Intelligence-Based Systems,' edited by Witold Pedrycz, Gilberto Rivera, Rose Ma Rodriguez, and Salvador Ibarra Martinez. The chapter is 39 pages long, and it contains 2 figures and 6 tables. This is NOT the final camera-ready version
TableEval: A Real-World Benchmark for Complex, Multilingual, and Multi-Structured Table Question Answering
LLMs have shown impressive progress in natural language processing. However, they still face significant challenges in TableQA, where real-world complexities such as diverse table structures, multilingual data, and domain-specific reasoning are crucial. Existing TableQA benchmarks are often limited by their focus on simple flat tables and suffer from data leakage. Furthermore, most benchmarks are monolingual and fail to capture the cross-lingual and cross-domain variability in practical applications. To address these limitations, we introduce TableEval, a new benchmark designed to evaluate LLMs on realistic TableQA tasks. Specifically, TableEval includes tables with various structures (such as concise, hierarchical, and nested tables) collected from four domains (including government, finance, academia, and industry reports). Besides, TableEval features cross-lingual scenarios with tables in Simplified Chinese, Traditional Chinese, and English. To minimize the risk of data leakage, we collect all data from recent real-world documents. Considering that existing TableQA metrics fail to capture semantic accuracy, we further propose SEAT, a new evaluation framework that assesses the alignment between model responses and reference answers at the sub-question level. Experimental results have shown that SEAT achieves high agreement with human judgment. Extensive experiments on TableEval reveal critical gaps in the ability of state-of-the-art LLMs to handle these complex, real-world TableQA tasks, offering insights for future improvements. We make our dataset available here: https://github.com/wenge-research/TableEval.
ImageChain: Advancing Sequential Image-to-Text Reasoning in Multimodal Large Language Models
Reasoning over sequences of images remains a challenge for multimodal large language models (MLLMs). While recent models incorporate multi-image data during pre-training, they still struggle to recognize sequential structures, often treating images independently. This work introduces ImageChain, a framework that enhances MLLMs with sequential reasoning capabilities over image data by modeling visual sequences as a multi-turn conversation. In ImageChain, images are interleaved with corresponding textual descriptions to form a controlled dialogue that explicitly captures temporal dependencies and narrative progression. Our method optimizes for the task of next-scene description, where the model generates a context-aware description of an upcoming scene based on preceding visual and textual cues. We demonstrate that our approach improves performance on the next-scene description task -- achieving an average improvement from 3.7% to 19% in SimRate, a metric that quantifies semantic similarity to human-annotated ground truths. Moreover, ImageChain achieves robust zero-shot out-of-domain performance in applications ranging from comics to robotics. Extensive experiments validate that instruction-tuning in a multimodal, multi-turn conversation design is key to bridging the gap between static image understanding and temporally-aware reasoning.
comment: Code, dataset, and checkpoints are publicly available at https://github.com/danaesavi/ImageChain; v2: added human annotation study to validate SimRate
Product of Experts with LLMs: Boosting Performance on ARC Is a Matter of Perspective ICML 2025
The Abstraction and Reasoning Corpus (ARC-AGI) poses a significant challenge for large language models (LLMs), exposing limitations in their abstract reasoning abilities. In this work, we leverage task-specific data augmentations throughout the training, generation, and scoring phases, and employ a depth-first search algorithm to generate diverse, high-probability candidate solutions. Furthermore, we utilize the LLM not only as a generator but also as a scorer, using its output probabilities to select the most promising solutions. Our method achieves a score of 71.6% (286.5/400 solved tasks) on the public ARC-AGI evaluation set, demonstrating state-of-the-art performance among publicly available approaches. While concurrent closed-source work has reported higher scores, our method distinguishes itself through its transparency, reproducibility, and remarkably low inference cost, averaging only around 2ct per task on readily available hardware (we assume a price of 36ct/hour for a Nvidia 4090 GPU).
comment: ICML 2025 camera-ready; 15 pages, 6 figures, 5 tables
Crafting Customisable Characters with LLMs: Introducing SimsChat, a Persona-Driven Role-Playing Agent Framework
Large Language Models (LLMs) demonstrate remarkable ability to comprehend instructions and generate human-like text, enabling sophisticated agent simulation beyond basic behavior replication. However, the potential for creating freely customisable characters remains underexplored. We introduce the Customisable Conversation Agent Framework, which employs LLMs to simulate real-world characters through personalised characteristic feature injection, enabling diverse character creation according to user preferences. We propose the SimsConv dataset, comprising 68 customised characters and 13,971 multi-turn role-playing dialogues across 1,360 real-world scenes. Characters are initially customised using pre-defined elements (career, aspiration, traits, skills), then expanded through personal and social profiles. Building on this, we present SimsChat, a freely customisable role-playing agent incorporating various realistic settings and topic-specified character interactions. Experimental results on both SimsConv and WikiRoleEval datasets demonstrate SimsChat's superior performance in maintaining character consistency, knowledge accuracy, and appropriate question rejection compared to existing models. Our framework provides valuable insights for developing more accurate and customisable human simulacra. Our data and code are publicly available at https://github.com/Bernard-Yang/SimsChat.
One Pic is All it Takes: Poisoning Visual Document Retrieval Augmented Generation with a Single Image
Multi-modal retrieval augmented generation (M-RAG) is instrumental for inhibiting hallucinations in large multi-modal models (LMMs) through the use of a factual knowledge base (KB). However, M-RAG introduces new attack vectors for adversaries that aim to disrupt the system by injecting malicious entries into the KB. In this paper, we present the first poisoning attack against M-RAG targeting visual document retrieval applications where the KB contains images of document pages. We propose two attacks, each of which require injecting only a single adversarial image into the KB. Firstly, we propose a universal attack that, for any potential user query, influences the response to cause a denial-of-service (DoS) in the M-RAG system. Secondly, we present a targeted attack against one or a group of user queries, with the goal of spreading targeted misinformation. For both attacks, we use a multi-objective gradient-based adversarial approach to craft the injected image while optimizing for both retrieval and generation. We evaluate our attacks against several visual document retrieval datasets, a diverse set of state-of-the-art retrievers (embedding models) and generators (LMMs), demonstrating the attack effectiveness in both the universal and targeted settings. We additionally present results including commonly used defenses, various attack hyper-parameter settings, ablations, and attack transferability.
comment: 19 pages, 7 figures
Emphasising Structured Information: Integrating Abstract Meaning Representation into LLMs for Enhanced Open-Domain Dialogue Evaluation
Automatic open-domain dialogue evaluation has attracted increasing attention, yet remains challenging due to the complexity of assessing response appropriateness. Traditional evaluation metrics, typically trained with true positive and randomly selected negative responses, tend to assign higher scores to responses that share greater content similarity with contexts. However, adversarial negative responses, despite possessing high lexical overlap with contexts, can be semantically incongruous. Consequently, existing metrics struggle to effectively evaluate such responses, resulting in low correlations with human judgments. While recent studies have demonstrated the effectiveness of Large Language Models (LLMs) for open-domain dialogue evaluation, they still face challenges in handling adversarial negative examples. We propose a novel evaluation framework that integrates Abstract Meaning Representation (AMR) enhanced domain-specific language models (SLMs) with LLMs. Our SLMs explicitly incorporate AMR graph information through a gating mechanism for enhanced semantic representation learning, while both SLM predictions and AMR knowledge are integrated into LLM prompts for robust evaluation. Extensive experiments on open-domain dialogue evaluation tasks demonstrate the superiority of our method compared to state-of-the-art baselines. Our comprehensive ablation studies reveal that AMR graph information contributes substantially more to performance improvements. Our framework achieves strong correlations with human judgments across multiple datasets, establishing a new benchmark for dialogue evaluation. Our code and data are publicly available.
Unveiling the Hidden: Movie Genre and User Bias in Spoiler Detection ECML
Spoilers in movie reviews are important on platforms like IMDb and Rotten Tomatoes, offering benefits and drawbacks. They can guide some viewers' choices but also affect those who prefer no plot details in advance, making effective spoiler detection essential. Existing spoiler detection methods mainly analyze review text, often overlooking the impact of movie genres and user bias, limiting their effectiveness. To address this, we analyze movie review data, finding genre-specific variations in spoiler rates and identifying that certain users are more likely to post spoilers. Based on these findings, we introduce a new spoiler detection framework called GUSD (The code is available at https://github.com/AI-explorer-123/GUSD) (Genre-aware and User-specific Spoiler Detection), which incorporates genre-specific data and user behavior bias. User bias is calculated through dynamic graph modeling of review history. Additionally, the R2GFormer module combines RetGAT (Retentive Graph Attention Network) for graph information and GenreFormer for genre-specific aggregation. The GMoE (Genre-Aware Mixture of Experts) model further assigns reviews to specialized experts based on genre. Extensive testing on benchmark datasets shows that GUSD achieves state-of-the-art results. This approach advances spoiler detection by addressing genre and user-specific patterns, enhancing user experience on movie review platforms.
comment: ECML PKDD 2025
Writing-Zero: Bridge the Gap Between Non-verifiable Tasks and Verifiable Rewards
Reinforcement learning with verifiable rewards (RLVR) has enabled large language models (LLMs) to achieve remarkable breakthroughs in reasoning tasks with objective ground-truth answers, such as mathematics and code generation. However, a significant gap remains for non-verifiable tasks, like creative writing and open-ended dialogue, where quality assessment is inherently subjective and lacks definitive references. Existing approaches for these domains often rely on scalar reward models trained with human preferences, which suffer from limited generalization and are prone to reward hacking, such as over-explanation and length bias. In this work, we propose a unified RLVR-based training paradigm that bridges the gap between non-verifiable tasks and verifiable rewards. We introduce a writing-principle-based pairwise Generative Reward Model (GenRM) and a novel Bootstrapped Relative Policy Optimization (BRPO) algorithm. The pairwise writing GenRM leverages self-principled critique to transform subjective assessments into reliable, verifiable rewards, while BRPO enables dynamic, reference-free pairwise comparison by leveraging a bootstrapped response as temporary reference from within group rollouts during RL training. Our approach empowers LLMs to develop robust writing capabilities without supervised fine-tuning, as demonstrated by Writing-Zero, which shows consistent improvement and strong resistance to reward hacking compared to scalar reward baselines. Furthermore, our method achieves competitive results on both in-house and open-source writing benchmarks. Our findings suggest the potential to unify rule-based, reference-based, and reference-free reward modeling under the RLVR framework, thus paving the way for a comprehensive and scalable RL training paradigm applicable across all language tasks.
Steps are all you need: Rethinking STEM Education with Prompt Engineering
Few shot and Chain-of-Thought prompting have shown promise when applied to Physics Question Answering Tasks, but are limited by the lack of mathematical ability inherent to LLMs, and are prone to hallucination. By utilizing a Mixture of Experts (MoE) Model, along with analogical prompting, we are able to show improved model performance when compared to the baseline on standard LLMs. We also survey the limits of these prompting techniques and the effects they have on model performance. Additionally, we propose Analogical CoT prompting, a prompting technique designed to allow smaller, open source models to leverage Analogical prompting, something they have struggled with, possibly due to a lack of specialist training data.
Using Shapley interactions to understand how models use structure ACL 2025
Language is an intricately structured system, and a key goal of NLP interpretability is to provide methodological insights for understanding how language models represent this structure internally. In this paper, we use Shapley Taylor interaction indices (STII) in order to examine how language and speech models internally relate and structure their inputs. Pairwise Shapley interactions measure how much two inputs work together to influence model outputs beyond if we linearly added their independent influences, providing a view into how models encode structural interactions between inputs. We relate the interaction patterns in models to three underlying linguistic structures: syntactic structure, non-compositional semantics, and phonetic coarticulation. We find that autoregressive text models encode interactions that correlate with the syntactic proximity of inputs, and that both autoregressive and masked models encode nonlinear interactions in idiomatic phrases with non-compositional semantics. Our speech results show that inputs are more entangled for pairs where a neighboring consonant is likely to influence a vowel or approximant, showing that models encode the phonetic interaction needed for extracting discrete phonemic representations.
comment: Published in ACL 2025
Knowledge Graphs are all you need: Leveraging KGs in Physics Question Answering
This study explores the effectiveness of using knowledge graphs generated by large language models to decompose high school-level physics questions into sub-questions. We introduce a pipeline aimed at enhancing model response quality for Question Answering tasks. By employing LLMs to construct knowledge graphs that capture the internal logic of the questions, these graphs then guide the generation of subquestions. We hypothesize that this method yields sub-questions that are more logically consistent with the original questions compared to traditional decomposition techniques. Our results show that sub-questions derived from knowledge graphs exhibit significantly improved fidelity to the original question's logic. This approach not only enhances the learning experience by providing clearer and more contextually appropriate sub-questions but also highlights the potential of LLMs to transform educational methodologies. The findings indicate a promising direction for applying AI to improve the quality and effectiveness of educational content.
LogProber: Disentangling confidence from contamination in LLM responses
In machine learning, contamination refers to situations where testing data leak into the training set. The issue is particularly relevant for the evaluation of the performance of Large Language Models (LLMs), which are generally trained on gargantuan, and generally opaque, corpora of text scraped from the world wide web. Developing tools to detect contamination is therefore crucial to be able to fairly and properly track the evolution of the performance of LLMs. To date, only a few recent studies have attempted to address the issue of quantifying and detecting contamination in short text sequences, such as those commonly found in benchmarks. However, these methods have limitations that can sometimes render them impractical.In the present paper, we introduce LogProber, a novel, efficient algorithm that we show to be able to detect contamination in a black box setting that tries to tackle some of these drawbacks by focusing on the familiarity with the question rather than the answer. Here, we explore the properties of the proposed method in comparison with concurrent approaches, identify its advantages and limitations, and illustrate how different forms of contamination can go undetected depending on the design of the detection algorithm.
MindForge: Empowering Embodied Agents with Theory of Mind for Lifelong Cultural Learning
Embodied agents powered by large language models (LLMs), such as Voyager, promise open-ended competence in worlds such as Minecraft. However, when powered by open-weight LLMs they still falter on elementary tasks after domain-specific fine-tuning. We propose MindForge, a generative-agent framework for cultural lifelong learning through explicit perspective taking. We introduce three key innovations: (1) a structured theory of mind representation linking percepts, beliefs, desires, and actions; (2) natural inter-agent communication; and (3) a multi-component memory system. Following the cultural learning framework, we test MindForge in both instructive and collaborative settings within Minecraft. In an instructive setting with GPT-4, MindForge agents powered by open-weight LLMs significantly outperform their Voyager counterparts in basic tasks yielding $3\times$ more tech-tree milestones and collecting $2.3\times$ more unique items than the Voyager baseline. Furthermore, in fully \textit{collaborative} settings, we find that the performance of two underachieving agents improves with more communication rounds, echoing the Condorcet Jury Theorem. MindForge agents demonstrate sophisticated behaviors, including expert-novice knowledge transfer, collaborative problem solving, and adaptation to out-of-distribution tasks through accumulated cultural experiences.
LLM2TEA: Agentic AI Designer Finds Innovative Objects with Generative Evolutionary Multitasking
In this paper, we introduce LLM-driven MultiTask Evolutionary Algorithm (LLM2TEA), the first agentic AI designer within a generative evolutionary multitasking (GEM) framework that promotes the crossover and synergy of designs from multiple domains, leading to innovative solutions that transcend individual disciplines. Of particular interest is the discovery of objects that are not only innovative but also conform to the physical specifications of the real world in science and engineering. LLM2TEA comprises a large language model to initialize a population of genotypes (defined by text prompts) describing the objects of interest, a text-to-3D generative model to produce phenotypes from these prompts, a classifier to interpret the semantic representations of the objects, and a physics simulation model to assess their physical properties. We propose several novel LLM-based multitask evolutionary operators to guide the search toward the discovery of high-performing practical objects. Experimental results in conceptual design optimization validate the effectiveness of LLM2TEA, revealing from 97\% to 174\% improvement in the diversity of innovative objects compared to the present text-to-3D generative model baseline. In addition, more than 73\% of the generated designs have better physical performance than the top 1\% percentile of the designs generated in the baseline. Moreover, LLM2TEA generates designs that are not only aesthetically creative but also functional in real-world applications. Several of these designs have been successfully 3D-printed, emphasizing the proposed approach's capacity to transform AI-generated outputs into tangible physical objects. The designs produced by LLM2TEA meets practical requirements while showcasing creative and innovative features, underscoring its potential applications in complex design optimization and discovery.
comment: This work has been submitted to the IEEE for review
Reasoning Language Models: A Blueprint
Reasoning language models (RLMs), also known as Large Reasoning Models (LRMs), such as OpenAI's o1 and o3, DeepSeek-R1, and Alibaba's QwQ, have redefined AI's problem-solving capabilities by extending LLMs with advanced reasoning mechanisms. Yet, their high costs, proprietary nature, and complex architectures - uniquely combining reinforcement learning (RL), search heuristics, and LLMs - present accessibility and scalability challenges. To address these, we propose a comprehensive blueprint that organizes RLM components into a modular framework, based on a survey and analysis of all RLM works. This blueprint incorporates diverse reasoning structures (chains, trees, graphs, and nested forms), reasoning strategies (e.g., Monte Carlo Tree Search, Beam Search), RL concepts (policy, value models and others), supervision schemes (Outcome-Based and Process-Based Supervision), and other related concepts (e.g., Test-Time Compute, Retrieval-Augmented Generation, agent tools). We also provide detailed mathematical formulations and algorithmic specifications to simplify RLM implementation. By showing how schemes like LLaMA-Berry, QwQ, Journey Learning, and Graph of Thoughts fit as special cases, we demonstrate the blueprint's versatility and unifying potential. To illustrate its utility, we introduce x1, a modular implementation for rapid RLM prototyping and experimentation. Using x1 and a literature review, we provide key insights, such as multi-phase training for policy and value models, and the importance of familiar training distributions. Finally, we discuss scalable RLM cloud deployments and we outline how RLMs can integrate with a broader LLM ecosystem. Our work demystifies RLM construction, democratizes advanced reasoning capabilities, and fosters innovation, aiming to mitigate the gap between "rich AI" and "poor AI" by lowering barriers to RLM design and experimentation.
Beyond Bradley-Terry Models: A General Preference Model for Language Model Alignment ICML 2025
Modeling human preferences is crucial for aligning foundation models with human values. Traditional reward modeling methods, such as the Bradley-Terry (BT) reward model, fall short in expressiveness, particularly in addressing intransitive preferences. In this paper, we introduce preference embedding, an approach that embeds responses into a latent space to capture intricate preference structures efficiently, achieving linear query complexity. Additionally, we propose preference score-based General Preference Optimization (GPO), which generalizes reward-based reinforcement learning from human feedback (RLHF). Experimental results show that our General Preference embedding Model (GPM) consistently outperforms the BT reward model on the RewardBench benchmark and effectively models cyclic preferences where any BT reward model behaves like a random guess. Furthermore, evaluations on downstream tasks such as AlpacaEval2.0, following the language model post-training with GPO and our general preference model, reveal performance improvements over BT models. These findings indicate that our method may enhance the alignment of foundation models with nuanced human values. The code is available at https://github.com/general-preference/general-preference-model.
comment: Accepted to the 42nd International Conference on Machine Learning (ICML 2025)
Retrofitting Large Language Models with Dynamic Tokenization
Current language models (LMs) use a fixed, static subword tokenizer. This default choice typically results in degraded efficiency and language capabilities, especially in languages other than English. To address this issue, we challenge the static design and propose retrofitting LMs with dynamic tokenization: a way to dynamically decide on token boundaries based on the input text via a subword-merging algorithm inspired by byte-pair encoding. We merge frequent subword sequences in a batch, then apply a pre-trained embedding-prediction hypernetwork to compute the token embeddings on-the-fly. For encoder-style models (e.g., XLM-R), this on average reduces token sequence lengths by >20% across 14 languages while degrading performance by less than 2%. The same method applied to pre-filling and scoring in decoder-style models (e.g., Mistral-7B) results in minimal performance degradation at up to 17% reduction in sequence length. Overall, we find that dynamic tokenization can mitigate the limitations of static tokenization by substantially improving inference speed and promoting fairness across languages, enabling more equitable and adaptable LMs.
CROW: Eliminating Backdoors from Large Language Models via Internal Consistency Regularization ICML 2025
Large Language Models (LLMs) are vulnerable to backdoor attacks that manipulate outputs via hidden triggers. Existing defense methods--designed for vision/text classification tasks--fail for text generation. We propose Internal Consistency Regularization (CROW), a defense leveraging the observation that backdoored models exhibit unstable layer-wise hidden representations when triggered, while clean models show smooth transitions. CROW enforces consistency across layers via adversarial perturbations and regularization during finetuning, neutralizing backdoors without requiring clean reference models or trigger knowledge--only a small clean dataset. Experiments across Llama-2 (7B, 13B), CodeLlama (7B, 13B), and Mistral-7B demonstrate CROW's effectiveness: it achieves significant reductions in attack success rates across diverse backdoor strategies (sentiment steering, targeted refusal, code injection) while preserving generative performance. CROW's architecture-agnostic design enables practical deployment.
comment: Accepted at ICML 2025, 20 pages
AskToAct: Enhancing LLMs Tool Use via Self-Correcting Clarification
Large language models (LLMs) have demonstrated remarkable capabilities in tool learning. In real-world scenarios, user queries are often ambiguous and incomplete, requiring effective clarification. However, existing interactive clarification approaches face two critical limitations: reliance on manually constructed datasets, which inherently constrains training data scale and diversity, and lack of error correction mechanisms during multi-turn clarification, leading to error accumulation that compromises both accuracy and efficiency. We present AskToAct, which addresses these challenges by exploiting the structural mapping between queries and their tool invocation solutions. Our key insight is that tool parameters naturally represent explicit user intents. By systematically removing key parameters from queries while retaining them as ground truth, we enable automated construction of high-quality training data. We further enhance model robustness through error-correction pairs and selective masking, enabling dynamic error detection during clarification interactions. Comprehensive experiments demonstrate that AskToAct significantly outperforms existing approaches, achieving above 57% accuracy in recovering critical unspecified intents and enhancing clarification efficiency by an average of 10.46% while maintaining high accuracy in tool invocation. Our framework exhibits robust performance across different model architectures and successfully generalizes to entirely unseen APIs without additional training, achieving performance comparable to GPT-4o with substantially fewer computational resources.
MAGIC-VQA: Multimodal And Grounded Inference with Commonsense Knowledge for Visual Question Answering ACL 2025
Visual Question Answering (VQA) requires reasoning across visual and textual modalities, yet Large Vision-Language Models (LVLMs) often lack integrated commonsense knowledge, limiting their robustness in real-world scenarios. To address this, we introduce MAGIC-VQA, a novel framework that enhances VQA by systematically integrating commonsense knowledge with LVLMs. MAGIC-VQA employs a three-stage process: (1) Explicit Knowledge Integration from external sources, (2) By-Type Post-Processing for contextual refinement, and (3) Implicit Knowledge Augmentation using a Graph Neural Network (GNN) for structured reasoning. While GNNs bring greater depth to structured inference, they enable superior relational inference beyond LVLMs. MAGIC-VQA bridges a key gap by unifying commonsensse knowledge with LVLM-driven reasoning, eliminating the need for extensive pre-training or complex prompt tuning. Our framework achieves state-of-the-art performance on benchmark datasets, significantly improving commonsense reasoning in VQA.
comment: Findings of ACL 2025
Style over Substance: Distilled Language Models Reason Via Stylistic Replication
Specialized reasoning language models (RLMs) have demonstrated that scaling test-time computation through detailed reasoning traces significantly enhances performance. Although these traces effectively facilitate knowledge distillation into smaller, instruction-tuned models, the precise nature of transferred reasoning remains unclear. In this study, we investigate to what extent distilled models internalize replicated stylistic patterns during reasoning. To this end, we systematically analyze reasoning traces, identifying structural and lexical patterns that characterize successful reasoning. We then introduce two new datasets -- a dataset of emergent reasoning traces and a synthetic dataset explicitly constructed to replicate these stylistic patterns -- to precisely examine their influence on distilled models' reasoning capabilities. We find that models trained on the synthetic traces achieve comparable performance, indicating that distilled reasoning abilities rely significantly on surface-level patterns. Surprisingly, we observe an increase in performance even when the synthetic traces are altered to lead to the wrong answer. Our findings highlight how stylistic patterns can be leveraged to efficiently enhance LM reasoning across diverse model families.
Assessment of Evolving Large Language Models in Upper Secondary Mathematics
Large language models (LLMs) have shown increasing promise in educational settings, yet their mathematical reasoning has been considered evolving. This study evaluates the mathematical capabilities of various LLMs using the Finnish matriculation examination, a high-stakes digital test for upper secondary education. Initial tests yielded moderate performance corresponding to mid-range grades, but later evaluations demonstrated substantial improvements as the language models evolved. Remarkably, some models achieved near-perfect or perfect scores, matching top student performance and qualifying for university admission. Our findings highlight the rapid advances in the mathematical proficiency of LLMs and illustrate their potential as underlying tools to support learning and teaching in a variety of ways.
NTPP: Generative Speech Language Modeling for Dual-Channel Spoken Dialogue via Next-Token-Pair Prediction ICML 2025
Inspired by the impressive capabilities of GPT-4o, there is growing interest in enabling speech language models (SLMs) to engage in natural, fluid spoken interactions with humans. Recent advancements have led to the development of several SLMs that demonstrate promising results in this area. However, current approaches have yet to fully exploit dual-channel speech data, which inherently captures the structure and dynamics of human conversation. In this work, we systematically explore the use of dual-channel speech data in the context of modern large language models, and introduce a novel generative modeling paradigm, Next-Token-Pair Prediction (NTPP), to enable speaker-independent dual-channel spoken dialogue learning using decoder-only architectures for the first time. We evaluate our approach on standard benchmarks, and empirical results show that our proposed method, NTPP, significantly improves the conversational abilities of SLMs in terms of turn-taking prediction, response coherence, and naturalness. Moreover, compared to existing methods, NTPP achieves substantially lower inference latency, highlighting its practical efficiency for real-time applications.
comment: Accepted by ICML 2025
Decoding Knowledge Attribution in Mixture-of-Experts: A Framework of Basic-Refinement Collaboration and Efficiency Analysis ACL 2025
The interpretability of Mixture-of-Experts (MoE) models, especially those with heterogeneous designs, remains underexplored. Existing attribution methods for dense models fail to capture dynamic routing-expert interactions in sparse MoE architectures. To address this issue, we propose a cross-level attribution algorithm to analyze sparse MoE architectures (Qwen 1.5-MoE, OLMoE, Mixtral-8x7B) against dense models (Qwen 1.5-7B, Llama-7B, Mistral-7B). Results show MoE models achieve 37% higher per-layer efficiency via a "mid-activation, late-amplification" pattern: early layers screen experts, while late layers refine knowledge collaboratively. Ablation studies reveal a "basic-refinement" framework--shared experts handle general tasks (entity recognition), while routed experts specialize in domain-specific processing (geographic attributes). Semantic-driven routing is evidenced by strong correlations between attention heads and experts (r=0.68), enabling task-aware coordination. Notably, architectural depth dictates robustness: deep Qwen 1.5-MoE mitigates expert failures (e.g., 43% MRR drop in geographic tasks when blocking top-10 experts) through shared expert redundancy, whereas shallow OLMoE suffers severe degradation (76% drop). Task sensitivity further guides design: core-sensitive tasks (geography) require concentrated expertise, while distributed-tolerant tasks (object attributes) leverage broader participation. These insights advance MoE interpretability, offering principles to balance efficiency, specialization, and robustness.
comment: ACL 2025
Explaining word embeddings with perfect fidelity: Case study in research impact prediction
Best performing approaches for scholarly document quality prediction are based on embedding models, which do not allow direct explanation of classifiers as distinct words no longer correspond to the input features for model training. Although model-agnostic explanation methods such as Local interpretable model-agnostic explanations (LIME) can be applied, these produce results with questionable correspondence to the ML model. We introduce a new feature importance method, Self-model Rated Entities (SMER), for logistic regression-based classification models trained on word embeddings. We show that SMER has theoretically perfect fidelity with the explained model, as its prediction corresponds exactly to the average of predictions for individual words in the text. SMER allows us to reliably determine which words or entities positively contribute to predicting impactful articles. Quantitative and qualitative evaluation is performed through five diverse experiments conducted on 50.000 research papers from the CORD-19 corpus. Through an AOPC curve analysis, we experimentally demonstrate that SMER produces better explanations than LIME for logistic regression.
MOSAIC: Multiple Observers Spotting AI Content ACL 2025
The dissemination of Large Language Models (LLMs), trained at scale, and endowed with powerful text-generating abilities, has made it easier for all to produce harmful, toxic, faked or forged content. In response, various proposals have been made to automatically discriminate artificially generated from human-written texts, typically framing the problem as a binary classification problem. Early approaches evaluate an input document with a well-chosen detector LLM, assuming that low-perplexity scores reliably signal machine-made content. More recent systems instead consider two LLMs and compare their probability distributions over the document to further discriminate when perplexity alone cannot. However, using a fixed pair of models can induce brittleness in performance. We extend these approaches to the ensembling of several LLMs and derive a new, theoretically grounded approach to combine their respective strengths. Our experiments, conducted with various generator LLMs, indicate that this approach effectively leverages the strengths of each model, resulting in robust detection performance across multiple domains. Our code and data are available at https://github.com/BaggerOfWords/MOSAIC .
comment: ACL 2025 Findings, code can be found at https://github.com/BaggerOfWords/MOSAIC
Meaningless is better: hashing bias-inducing words in LLM prompts improves performance in logical reasoning and statistical learning
This paper introduces a novel method, referred to as "hashing", which involves masking potentially bias-inducing words in large language models (LLMs) with hash-like meaningless identifiers to reduce cognitive biases and reliance on external knowledge. The method was tested across three sets of experiments involving a total of 490 prompts. Statistical analysis using chi-square tests showed significant improvements in all tested scenarios, which covered LLama, ChatGPT, Copilot, Gemini and Mixtral models. In the first experiment, hashing decreased the fallacy rate in a modified version of the "Linda" problem aimed at evaluating susceptibility to cognitive biases. In the second experiment, it improved LLM results on the frequent itemset extraction task. In the third experiment, we found hashing is also effective when the Linda problem is presented in a tabular format rather than text, indicating that the technique works across various input representations. Overall, the method was shown to improve bias reduction and incorporation of external knowledge. Despite bias reduction, hallucination rates were inconsistently reduced across types of LLM models. These findings suggest that masking bias-inducing terms can improve LLM performance, although its effectiveness is model- and task-dependent.
Unable to Forget: Proactive lnterference Reveals Working Memory Limits in LLMs Beyond Context Length
Information retrieval in Large Language Models (LLMs) is increasingly recognized as intertwined with generation capabilities rather than mere lookup. While longer contexts are often assumed to improve retrieval, the effects of intra-context interference remain understudied. To address this, we adapt the proactive interference (PI) paradigm from cognitive science, where earlier information disrupts recall of newer updates. In humans, susceptibility to such interference is inversely linked to working memory capacity. We introduce PI-LLM, an evaluation that sequentially streams semantically related key-value updates and queries only the final values. Although these final values are clearly positioned just before the query, LLM retrieval accuracy declines log-linearly toward zero as interference accumulates; errors arise from retrieving previously overwritten values. Attempts to mitigate interference via prompt engineering (e.g., instructing models to ignore earlier input) yield limited success. These findings reveal a fundamental constraint on LLMs' ability to disentangle interference and flexibly manipulate information, suggesting a working memory bottleneck beyond mere context access. This calls for approaches that strengthen models' ability to suppress irrelevant content during retrieval.
Convert Language Model into a Value-based Strategic Planner ACL 2025
Emotional support conversation (ESC) aims to alleviate the emotional distress of individuals through effective conversations. Although large language models (LLMs) have obtained remarkable progress on ESC, most of these studies might not define the diagram from the state model perspective, therefore providing a suboptimal solution for long-term satisfaction. To address such an issue, we leverage the Q-learning on LLMs, and propose a framework called straQ*. Our framework allows a plug-and-play LLM to bootstrap the planning during ESC, determine the optimal strategy based on long-term returns, and finally guide the LLM to response. Substantial experiments on ESC datasets suggest that straQ* outperforms many baselines, including direct inference, self-refine, chain of thought, finetuning, and finite state machines.
comment: 13 pages, 6 figures, Accepted by ACL 2025 Industry Track
Multi-Party Supervised Fine-tuning of Language Models for Multi-Party Dialogue Generation IJCNN 2025
Large Language Models (LLM) are usually fine-tuned to participate in dyadic or two-party dialogues, which can not adapt well to multi-party dialogues (MPD), which hinders their applications in such scenarios including multi-personal meetings, discussions and daily communication. Previous LLM-based researches mainly focus on the multi-agent framework, while their base LLMs are still pairwisely fine-tuned. In this work, we design a multi-party fine-tuning framework (MuPaS) for LLMs on the multi-party dialogue datasets, and prove such a straightforward framework can let the LLM align with the multi-party conversation style efficiently and effectively. We also design two training strategies which can convert MuPaS into the MPD simulator. Substantial experiments show that MuPaS can achieve state-of-the-art multi-party response, higher accuracy of the-next-speaker prediction, higher human and automatic evaluated utterance qualities, and can even generate reasonably with out-of-distribution scene, topic and role descriptions. The MuPaS framework bridges the LLM training with more complicated multi-party applications, such as conversation generation, virtual rehearsal or meta-universe.
comment: Accepted by IJCNN 2025
EnrichEvent: Enriching Social Data with Contextual Information for Emerging Event Extraction
Social platforms have emerged as crucial platforms for distributing information and discussing social events, offering researchers an excellent opportunity to design and implement novel event detection frameworks. Identifying unspecified events and detecting events without prior knowledge enables governments, aid agencies, and experts to respond swiftly and effectively to unfolding situations, such as natural disasters, by assessing severity and optimizing aid delivery. Social data is characterized by misspellings, incompleteness, word sense ambiguation, and irregular language. While discussing an ongoing event, users share different opinions and perspectives based on their prior experience, background, and knowledge. Prior works primarily leverage tweets' lexical and structural patterns to capture users' opinions and views about events. In this study, we propose an end-to-end novel framework, EnrichEvent, to identify unspecified events from streaming social data. In addition to lexical and structural patterns, we leverage contextual knowledge of the tweets to enrich their representation and gain a better perspective on users' opinions about events. Compared to our baselines, the EnrichEvent framework achieves the highest values for Consolidation outcome with an average of 87% vs. 67% and the lowest for Discrimination outcome with an average of 10% vs. 16%. Moreover, the Trending Data Extraction module in the EnrichEvent framework improves efficiency by reducing Runtime by up to 50% by identifying and discarding irrelevant tweets within message blocks, making the framework highly scalable for processing streaming data. Our source code and dataset are available in our official replication package.
comment: Iran J Comput Sci (2025)
CiteFusion: An Ensemble Framework for Citation Intent Classification Harnessing Dual-Model Binary Couples and SHAP Analyses
Understanding the motivations underlying scholarly citations is essential to evaluate research impact and pro-mote transparent scholarly communication. This study introduces CiteFusion, an ensemble framework designed to address the multi-class Citation Intent Classification task on two benchmark datasets: SciCite and ACL-ARC. The framework employs a one-vs-all decomposition of the multi-class task into class-specific binary sub-tasks, leveraging complementary pairs of SciBERT and XLNet models, independently tuned, for each citation intent. The outputs of these base models are aggregated through a feedforward neural network meta-classifier to reconstruct the original classification task. To enhance interpretability, SHAP (SHapley Additive exPlanations) is employed to analyze token-level contributions, and interactions among base models, providing transparency into the classification dynamics of CiteFusion, and insights about the kind of misclassifications of the ensem-ble. In addition, this work investigates the semantic role of structural context by incorporating section titles, as framing devices, into input sentences, assessing their positive impact on classification accuracy. CiteFusion ul-timately demonstrates robust performance in imbalanced and data-scarce scenarios: experimental results show that CiteFusion achieves state-of-the-art performance, with Macro-F1 scores of 89.60% on SciCite, and 76.24% on ACL-ARC. Furthermore, to ensure interoperability and reusability, citation intents from both datasets sche-mas are mapped to Citation Typing Ontology (CiTO) object properties, highlighting some overlaps. Finally, we describe and release a web-based application that classifies citation intents leveraging the CiteFusion models developed on SciCite.
comment: Submitted to Scientometrics Journal
CiteFix: Enhancing RAG Accuracy Through Post-Processing Citation Correction
Retrieval Augmented Generation (RAG) has emerged as a powerful application of Large Language Models (LLMs), revolutionizing information search and consumption. RAG systems combine traditional search capabilities with LLMs to generate comprehensive answers to user queries, ideally with accurate citations. However, in our experience of developing a RAG product, LLMs often struggle with source attribution, aligning with other industry studies reporting citation accuracy rates of only about 74% for popular generative search engines. To address this, we present efficient post-processing algorithms to improve citation accuracy in LLM-generated responses, with minimal impact on latency and cost. Our approaches cross-check generated citations against retrieved articles using methods including keyword + semantic matching, fine tuned model with BERTScore, and a lightweight LLM-based technique. Our experimental results demonstrate a relative improvement of 15.46% in the overall accuracy metrics of our RAG system. This significant enhancement potentially enables a shift from our current larger language model to a relatively smaller model that is approximately 12x more cost-effective and 3x faster in inference time, while maintaining comparable performance. This research contributes to enhancing the reliability and trustworthiness of AI-generated content in information retrieval and summarization tasks which is critical to gain customer trust especially in commercial products.
Rethinking Text-based Protein Understanding: Retrieval or LLM?
In recent years, protein-text models have gained significant attention for their potential in protein generation and understanding. Current approaches focus on integrating protein-related knowledge into large language models through continued pretraining and multi-modal alignment, enabling simultaneous comprehension of textual descriptions and protein sequences. Through a thorough analysis of existing model architectures and text-based protein understanding benchmarks, we identify significant data leakage issues present in current benchmarks. Moreover, conventional metrics derived from natural language processing fail to accurately assess the model's performance in this domain. To address these limitations, we reorganize existing datasets and introduce a novel evaluation framework based on biological entities. Motivated by our observation, we propose a retrieval-enhanced method, which significantly outperforms fine-tuned LLMs for protein-to-text generation and shows accuracy and efficiency in training-free scenarios. Our code and data can be seen at https://github.com/IDEA-XL/RAPM.
Raising the Bar: Investigating the Values of Large Language Models via Generative Evolving Testing ICML 2025
Warning: Contains harmful model outputs. Despite significant advancements, the propensity of Large Language Models (LLMs) to generate harmful and unethical content poses critical challenges. Measuring value alignment of LLMs becomes crucial for their regulation and responsible deployment. Although numerous benchmarks have been constructed to assess social bias, toxicity, and ethical issues in LLMs, those static benchmarks suffer from evaluation chronoeffect, in which, as models rapidly evolve, existing benchmarks may leak into training data or become saturated, overestimating ever-developing LLMs. To tackle this problem, we propose GETA, a novel generative evolving testing approach based on adaptive testing methods in measurement theory. Unlike traditional adaptive testing methods that rely on a static test item pool, GETA probes the underlying moral boundaries of LLMs by dynamically generating test items tailored to model capability. GETA co-evolves with LLMs by learning a joint distribution of item difficulty and model value conformity, thus effectively addressing evaluation chronoeffect. We evaluated various popular LLMs with GETA and demonstrated that 1) GETA can dynamically create difficulty-tailored test items and 2) GETA's evaluation results are more consistent with models' performance on unseen OOD and i.i.d. items, laying the groundwork for future evaluation paradigms.
comment: ICML 2025
Persona-judge: Personalized Alignment of Large Language Models via Token-level Self-judgment ACL
Aligning language models with human preferences presents significant challenges, particularly in achieving personalization without incurring excessive computational costs. Existing methods rely on reward signals and additional annotated data, limiting their scalability and adaptability to diverse human values. To address these challenges, we introduce Persona-judge, a novel discriminative paradigm that enables training-free personalized alignment with unseen preferences. Instead of optimizing policy parameters through external reward feedback, Persona-judge leverages the intrinsic preference judgment capabilities of the model. Specifically, a draft model generates candidate tokens conditioned on a given preference, while a judge model, embodying another preference, cross-validates the predicted tokens whether to be accepted. Experimental results demonstrate that Persona-judge, using the inherent preference evaluation mechanisms of the model, offers a scalable and computationally efficient solution to personalized alignment, paving the way for more adaptive customized alignment. Our code is available here.
comment: ACL Finding
Revisiting Self-Consistency from Dynamic Distributional Alignment Perspective on Answer Aggregation ACL 2025
Self-consistency improves reasoning by aggregating diverse stochastic samples, yet the dynamics behind its efficacy remain underexplored. We reframe self-consistency as a dynamic distributional alignment problem, revealing that decoding temperature not only governs sampling randomness but also actively shapes the latent answer distribution. Given that high temperatures require prohibitively large sample sizes to stabilize, while low temperatures risk amplifying biases, we propose a confidence-driven mechanism that dynamically calibrates temperature: sharpening the sampling distribution under uncertainty to align with high-probability modes, and promoting exploration when confidence is high. Experiments on mathematical reasoning tasks show this approach outperforms fixed-diversity baselines under limited samples, improving both average and best-case performance across varying initial temperatures without additional data or modules. This establishes self-consistency as a synchronization challenge between sampling dynamics and evolving answer distributions.
comment: ACL 2025 Findings
Irony Detection, Reasoning and Understanding in Zero-shot Learning
The generalisation of irony detection faces significant challenges, leading to substantial performance deviations when detection models are applied to diverse real-world scenarios. In this study, we find that irony-focused prompts, as generated from our IDADP framework for LLMs, can not only overcome dataset-specific limitations but also generate coherent, human-readable reasoning, transforming ironic text into its intended meaning. Based on our findings and in-depth analysis, we identify several promising directions for future research aimed at enhancing LLMs' zero-shot capabilities in irony detection, reasoning, and comprehension. These include advancing contextual awareness in irony detection, exploring hybrid symbolic-neural methods, and integrating multimodal data, among others.
GenARM: Reward Guided Generation with Autoregressive Reward Model for Test-time Alignment ICLR 2025
Large Language Models (LLMs) exhibit impressive capabilities but require careful alignment with human preferences. Traditional training-time methods finetune LLMs using human preference datasets but incur significant training costs and require repeated training to handle diverse user preferences. Test-time alignment methods address this by using reward models (RMs) to guide frozen LLMs without retraining. However, existing test-time approaches rely on trajectory-level RMs which are designed to evaluate complete responses, making them unsuitable for autoregressive text generation that requires computing next-token rewards from partial responses. To address this, we introduce GenARM, a test-time alignment approach that leverages the Autoregressive Reward Model--a novel reward parametrization designed to predict next-token rewards for efficient and effective autoregressive generation. Theoretically, we demonstrate that this parametrization can provably guide frozen LLMs toward any distribution achievable by traditional RMs within the KL-regularized reinforcement learning framework. Experimental results show that GenARM significantly outperforms prior test-time alignment baselines and matches the performance of training-time methods. Additionally, GenARM enables efficient weak-to-strong guidance, aligning larger LLMs with smaller RMs without the high costs of training larger models. Furthermore, GenARM supports multi-objective alignment, allowing real-time trade-offs between preference dimensions and catering to diverse user preferences without retraining. Our project page is available at: https://genarm.github.io.
comment: Published at the Thirteenth International Conference on Learning Representations (ICLR 2025)
AcTracer: Active Testing of Large Language Model via Multi-Stage Sampling
Performance evaluation plays a crucial role in the development life cycle of large language models (LLMs). It estimates the model's capability, elucidates behavior characteristics, and facilitates the identification of potential issues and limitations, thereby guiding further improvement. Given that LLMs' diverse task-handling abilities stem from large volumes of training data, a comprehensive evaluation also necessitates abundant, well-annotated, and representative test data to assess LLM performance across various downstream tasks. However, the demand for high-quality test data often entails substantial time, computational resources, and manual efforts, sometimes causing the evaluation to be inefficient or impractical. To address these challenges, researchers propose active testing, which estimates the overall performance by selecting a subset of test data. Nevertheless, the existing active testing methods tend to be inefficient, even inapplicable, given the unique new challenges of LLMs (e.g., diverse task types, increased model complexity, and unavailability of training data). To mitigate such limitations and expedite the development cycle of LLMs, in this work, we introduce AcTracer, an active testing framework tailored for LLMs that strategically selects a small subset of test data to achieve a more accurate performance estimation for LLMs. AcTracer utilizes both internal and external information from LLMs to guide the test sampling process, reducing variance through a multi-stage pool-based active selection. Our experiment results demonstrate that AcTracer achieves state-of-the-art performance compared to existing methods across various tasks.
comment: To appear in ACM Transactions on Software Engineering and Methodology (2025)
Self-Steering Optimization: Autonomous Preference Optimization for Large Language Models
The key to effective alignment lies in high-quality preference data. Recent research has focused on automated alignment, which involves developing alignment systems with minimal human intervention. However, prior research has predominantly focused on developing data generation methods, while insufficient attention has been paid to quality control mechanisms, which often produce inaccurate and unhelpful data, leading to unpredictable benefits during iterative optimization. In this paper, we present Self-Steering Optimization ($SSO$), an algorithm that autonomously generates high-quality preference data, eliminating manual annotation requirements. $SSO$ employs a specialized optimization objective to build a data generator from the policy model itself, which is used to produce accurate and on-policy data. We demonstrate $SSO$'s effectiveness through comprehensive experiments on two series of models: Llama 3 and Qwen 2. Our evaluation across diverse benchmarks shows that $SSO$ consistently outperforms baselines in human preference alignment and reward optimization. Further analysis validates $SSO$ as a scalable framework for preference optimization, benefiting the advancement in automated alignment techniques.
Rethinking Diverse Human Preference Learning through Principal Component Analysis
Understanding human preferences is crucial for improving foundation models and building personalized AI systems. However, preferences are inherently diverse and complex, making it difficult for traditional reward models to capture their full range. While fine-grained preference data can help, collecting it is expensive and hard to scale. In this paper, we introduce Decomposed Reward Models (DRMs), a novel approach that extracts diverse human preferences from binary comparisons without requiring fine-grained annotations. Our key insight is to represent human preferences as vectors and analyze them using Principal Component Analysis (PCA). By constructing a dataset of embedding differences between preferred and rejected responses, DRMs identify orthogonal basis vectors that capture distinct aspects of preference. These decomposed rewards can be flexibly combined to align with different user needs, offering an interpretable and scalable alternative to traditional reward models. We demonstrate that DRMs effectively extract meaningful preference dimensions (e.g., helpfulness, safety, humor) and adapt to new users without additional training. Our results highlight DRMs as a powerful framework for personalized and interpretable LLM alignment. Our code is available at https://github.com/amandaluof/DRMs.
comment: 14 pages
Value Portrait: Assessing Language Models' Values through Psychometrically and Ecologically Valid Items ACL 2025
The importance of benchmarks for assessing the values of language models has been pronounced due to the growing need of more authentic, human-aligned responses. However, existing benchmarks rely on human or machine annotations that are vulnerable to value-related biases. Furthermore, the tested scenarios often diverge from real-world contexts in which models are commonly used to generate text and express values. To address these issues, we propose the Value Portrait benchmark, a reliable framework for evaluating LLMs' value orientations with two key characteristics. First, the benchmark consists of items that capture real-life user-LLM interactions, enhancing the relevance of assessment results to real-world LLM usage. Second, each item is rated by human subjects based on its similarity to their own thoughts, and correlations between these ratings and the subjects' actual value scores are derived. This psychometrically validated approach ensures that items strongly correlated with specific values serve as reliable items for assessing those values. Through evaluating 44 LLMs with our benchmark, we find that these models prioritize Benevolence, Security, and Self-Direction values while placing less emphasis on Tradition, Power, and Achievement values. Also, our analysis reveals biases in how LLMs perceive various demographic groups, deviating from real human data.
comment: This paper has been accepted for publication at ACL 2025
Code-Switching Curriculum Learning for Multilingual Transfer in LLMs ACL 2025
Large language models (LLMs) now exhibit near human-level performance in various tasks, but their performance drops drastically after a handful of high-resource languages due to the imbalance in pre-training data. Inspired by the human process of second language acquisition, particularly code-switching$\unicode{x2014}$the practice of language alternation in a conversation$\unicode{x2014}$we propose code-switching curriculum learning (CSCL) to enhance cross-lingual transfer for LLMs. CSCL mimics the stages of human language learning by progressively training models with a curriculum consisting of 1) token-level code-switching, 2) sentence-level code-switching, and 3) monolingual corpora. Using Qwen 2 as our underlying model, we demonstrate the efficacy of the CSCL in improving language transfer to Korean, achieving significant performance gains compared to monolingual continual pre-training methods. Ablation studies reveal that both token- and sentence-level code-switching significantly enhance cross-lingual transfer and that curriculum learning amplifies these effects. We also extend our findings into various languages, including Japanese (high-resource) and Indonesian (low-resource), and using two additional models (Gemma 2 and Phi 3.5). We further show that CSCL mitigates spurious correlations between language resources and safety alignment, presenting a robust, efficient framework for more equitable language transfer in LLMs. We observe that CSCL is effective for low-resource settings where high-quality, monolingual corpora for language transfer are hardly available.
comment: To appear in Findings of ACL 2025
Code-Switching Red-Teaming: LLM Evaluation for Safety and Multilingual Understanding ACL 2025
As large language models (LLMs) have advanced rapidly, concerns regarding their safety have become prominent. In this paper, we discover that code-switching in red-teaming queries can effectively elicit undesirable behaviors of LLMs, which are common practices in natural language. We introduce a simple yet effective framework, CSRT, to synthesize codeswitching red-teaming queries and investigate the safety and multilingual understanding of LLMs comprehensively. Through extensive experiments with ten state-of-the-art LLMs and code-switching queries combining up to 10 languages, we demonstrate that the CSRT significantly outperforms existing multilingual red-teaming techniques, achieving 46.7% more attacks than standard attacks in English and being effective in conventional safety domains. We also examine the multilingual ability of those LLMs to generate and understand codeswitching texts. Additionally, we validate the extensibility of the CSRT by generating codeswitching attack prompts with monolingual data. We finally conduct detailed ablation studies exploring code-switching and propound unintended correlation between resource availability of languages and safety alignment in existing multilingual LLMs.
comment: To appear in ACL 2025
DREsS: Dataset for Rubric-based Essay Scoring on EFL Writing ACL 2025
Automated essay scoring (AES) is a useful tool in English as a Foreign Language (EFL) writing education, offering real-time essay scores for students and instructors. However, previous AES models were trained on essays and scores irrelevant to the practical scenarios of EFL writing education and usually provided a single holistic score due to the lack of appropriate datasets. In this paper, we release DREsS, a large-scale, standard dataset for rubric-based automated essay scoring with 48.9K samples in total. DREsS comprises three sub-datasets: DREsS_New, DREsS_Std., and DREsS_CASE. We collect DREsS_New, a real-classroom dataset with 2.3K essays authored by EFL undergraduate students and scored by English education experts. We also standardize existing rubric-based essay scoring datasets as DREsS_Std. We suggest CASE, a corruption-based augmentation strategy for essays, which generates 40.1K synthetic samples of DREsS_CASE and improves the baseline results by 45.44%. DREsS will enable further research to provide a more accurate and practical AES system for EFL writing education.
comment: To appear in ACL 2025. arXiv admin note: text overlap with arXiv:2310.05191
Chem42: a Family of chemical Language Models for Target-aware Ligand Generation
Revolutionizing drug discovery demands more than just understanding molecular interactions - it requires generative models that can design novel ligands tailored to specific biological targets. While chemical Language Models (cLMs) have made strides in learning molecular properties, most fail to incorporate target-specific insights, restricting their ability to drive de-novo ligand generation. Chem42, a cutting-edge family of generative chemical Language Models, is designed to bridge this gap. By integrating atomic-level interactions with multimodal inputs from Prot42, a complementary protein Language Model, Chem42 achieves a sophisticated cross-modal representation of molecular structures, interactions, and binding patterns. This innovative framework enables the creation of structurally valid, synthetically accessible ligands with enhanced target specificity. Evaluations across diverse protein targets confirm that Chem42 surpasses existing approaches in chemical validity, target-aware design, and predicted binding affinity. By reducing the search space of viable drug candidates, Chem42 could accelerate the drug discovery pipeline, offering a powerful generative AI tool for precision medicine. Our Chem42 models set a new benchmark in molecule property prediction, conditional molecule generation, and target-aware ligand design. The models are publicly available at huggingface.co/inceptionai.
MMREC: LLM Based Multi-Modal Recommender System
The importance of recommender systems is growing rapidly due to the exponential increase in the volume of content generated daily. This surge in content presents unique challenges for designing effective recommender systems. Key among these challenges is the need to effectively leverage the vast amounts of natural language data and images that represent user preferences. This paper presents a novel approach to enhancing recommender systems by leveraging Large Language Models (LLMs) and deep learning techniques. The proposed framework aims to improve the accuracy and relevance of recommendations by incorporating multi-modal information processing and by the use of unified latent space representation. The study explores the potential of LLMs to better understand and utilize natural language data in recommendation contexts, addressing the limitations of previous methods. The framework efficiently extracts and integrates text and image information through LLMs, unifying diverse modalities in a latent space to simplify the learning process for the ranking model. Experimental results demonstrate the enhanced discriminative power of the model when utilizing multi-modal information. This research contributes to the evolving field of recommender systems by showcasing the potential of LLMs and multi-modal data integration to create more personalized and contextually relevant recommendations.
Enhancing Code LLMs with Reinforcement Learning in Code Generation: A Survey
Reinforcement learning (RL) has emerged as a powerful paradigm for enhancing large language models (LLMs) in code generation and optimization. This survey systematically reviews RL-driven techniques across the code development lifecycle, from compiler-level optimizations and resource allocation strategies to end-to-end code synthesis frameworks. We first examine classical and modern RL algorithms -- spanning policy gradients, actor-critic methods, human-feedback alignment, and preference-based optimization -- and their adaptations to the unique challenges of code generation, such as sparse and delayed rewards. Next, we analyze key benchmarks, datasets, and evaluation metrics that drive progress in RL-augmented Code LLMs. Finally, we identify open problems, including the need for richer feedback sources, support for low-level and domain-specific languages, and methods to reduce computational overhead. By consolidating current insights and outlining future directions, this work aims to guide researchers and practitioners in leveraging RL to produce more robust, efficient, and human-aligned code generation systems.
Measuring What Makes You Unique: Difference-Aware User Modeling for Enhancing LLM Personalization ACL
Personalizing Large Language Models (LLMs) has become a critical step in facilitating their widespread application to enhance individual life experiences. In pursuit of personalization, distilling key preference information from an individual's historical data as instructional preference context to customize LLM generation has emerged as a promising direction. However, these methods face a fundamental limitation by overlooking the inter-user comparative analysis, which is essential for identifying the inter-user differences that truly shape preferences. To address this limitation, we propose Difference-aware Personalization Learning (DPL), a novel approach that emphasizes extracting inter-user differences to enhance LLM personalization. DPL strategically selects representative users for comparison and establishes a structured standard to extract meaningful, task-relevant differences for customizing LLM generation. Extensive experiments on real-world datasets demonstrate that DPL significantly enhances LLM personalization. We release our code at https://github.com/SnowCharmQ/DPL.
comment: 2025 ACL Findings
Unlocking General Long Chain-of-Thought Reasoning Capabilities of Large Language Models via Representation Engineering ACL 2025
Recent advancements in long chain-of-thoughts(long CoTs) have significantly improved the reasoning capabilities of large language models(LLMs). Existing work finds that the capability of long CoT reasoning can be efficiently elicited by tuning on only a few examples and can easily transfer to other tasks. This motivates us to investigate whether long CoT reasoning is a general capability for LLMs. In this work, we conduct an empirical analysis for this question from the perspective of representation. We find that LLMs do encode long CoT reasoning as a general capability, with a clear distinction from vanilla CoTs. Furthermore, domain-specific representations are also required for the effective transfer of long CoT reasoning. Inspired by these findings, we propose GLoRE, a novel representation engineering method to unleash the general long CoT reasoning capabilities of LLMs. Extensive experiments demonstrate the effectiveness and efficiency of GLoRE in both in-domain and cross-domain scenarios.
comment: ACL 2025
Modality-Balancing Preference Optimization of Large Multimodal Models by Adversarial Negative Mining
The task adaptation and alignment of Large Multimodal Models (LMMs) have been significantly advanced by instruction tuning and further strengthened by recent preference optimization. Yet, most LMMs still suffer from severe modality imbalance during reasoning, i.e., outweighing language prior biases over visual inputs, which bottlenecks their generalization to downstream tasks and causes hallucinations. However, existing preference optimization approaches for LMMs do not focus on restraining the internal biases of their Large Language Model (LLM) backbones when curating the training data. Moreover, they heavily rely on offline data and lack the capacity to explore diverse responses adaptive to dynamic distributional shifts during training. Meanwhile, Group Relative Policy Optimization (GRPO), a recent method using online-generated data and verified rewards to improve reasoning capabilities, remains largely underexplored in LMM alignment. In this paper, we propose a novel preference learning framework, Modality-Balancing Preference Optimization (MBPO), to address the modality imbalance in LMMs. MBPO constructs a more effective offline preference dataset by generating hard negatives, i.e., rejected responses misled by LLM biases due to limited usage of visual information, through adversarial perturbation of input images. Moreover, MBPO leverages the easy-to-verify nature of close-ended tasks to generate online responses with verified rewards. GRPO is then employed to train the model with offline-online hybrid data. Extensive experiments demonstrate that MBPO can enhance LMM performance on challenging vision-language tasks and effectively reduce hallucinations.
DecIF: Improving Instruction-Following through Meta-Decomposition
Instruction-following has emerged as a crucial capability for large language models (LLMs). However, existing approaches often rely on pre-existing documents or external resources to synthesize instruction-following data, which limits their flexibility and generalizability. In this paper, we introduce DecIF, a fully autonomous, meta-decomposition guided framework that generates diverse and high-quality instruction-following data using only LLMs. DecIF is grounded in the principle of decomposition. For instruction generation, we guide LLMs to iteratively produce various types of meta-information, which are then combined with response constraints to form well-structured and semantically rich instructions. We further utilize LLMs to detect and resolve potential inconsistencies within the generated instructions. Regarding response generation, we decompose each instruction into atomic-level evaluation criteria, enabling rigorous validation and the elimination of inaccurate instruction-response pairs. Extensive experiments across a wide range of scenarios and settings demonstrate DecIF's superior performance on instruction-following tasks. Further analysis highlights its strong flexibility, scalability, and generalizability in automatically synthesizing high-quality instruction data.
comment: We release the source code and SFT data in this version
Automatic Pseudo-Harmful Prompt Generation for Evaluating False Refusals in Large Language Models
Safety-aligned large language models (LLMs) sometimes falsely refuse pseudo-harmful prompts, like "how to kill a mosquito," which are actually harmless. Frequent false refusals not only frustrate users but also provoke a public backlash against the very values alignment seeks to protect. In this paper, we propose the first method to auto-generate diverse, content-controlled, and model-dependent pseudo-harmful prompts. Using this method, we construct an evaluation dataset called PHTest, which is ten times larger than existing datasets, covers more false refusal patterns, and separately labels controversial prompts. We evaluate 20 LLMs on PHTest, uncovering new insights due to its scale and labeling. Our findings reveal a trade-off between minimizing false refusals and improving safety against jailbreak attacks. Moreover, we show that many jailbreak defenses significantly increase the false refusal rates, thereby undermining usability. Our method and dataset can help developers evaluate and fine-tune safer and more usable LLMs. Our code and dataset are available at https://github.com/umd-huang-lab/FalseRefusal
LID Models are Actually Accent Classifiers: Implications and Solutions for LID on Accented Speech
Prior research indicates that LID model performance significantly declines on accented speech; however, the specific causes, extent, and characterization of these errors remain under-explored. (i) We identify a common failure mode on accented speech whereby LID systems often misclassify L2 accented speech as the speaker's native language or a related language. (ii) We present evidence suggesting that state-of-the-art models are invariant to permutations of short spans of speech, implying they classify on the basis of short phonotactic features indicative of accent rather than language. Our analysis reveals a simple method to enhance model robustness to accents through input chunking. (iii) We present an approach that integrates sequence-level information into our model without relying on monolingual ASR systems; this reduces accent-language confusion and significantly enhances performance on accented speech while maintaining comparable results on standard LID.
comment: Accepted at Interspeech 2025
Human-Computer Interaction
SRLAgent: Enhancing Self-Regulated Learning Skills through Gamification and LLM Assistance
Self-regulated learning (SRL) is crucial for college students navigating increased academic demands and independence. Insufficient SRL skills can lead to disorganized study habits, low motivation, and poor time management, undermining learners ability to thrive in challenging environments. Through a formative study involving 59 college students, we identified key challenges students face in developing SRL skills, including difficulties with goal-setting, time management, and reflective learning. To address these challenges, we introduce SRLAgent, an LLM-assisted system that fosters SRL skills through gamification and adaptive support from large language models (LLMs). Grounded in Zimmermans three-phase SRL framework, SRLAgent enables students to engage in goal-setting, strategy execution, and self-reflection within an interactive game-based environment. The system offers real-time feedback and scaffolding powered by LLMs to support students independent study efforts. We evaluated SRLAgent using a between-subjects design, comparing it to a baseline system (SRL without Agent features) and a traditional multimedia learning condition. Results showed significant improvements in SRL skills within the SRLAgent group (p < .001, Cohens d = 0.234) and higher engagement compared to the baselines. This work highlights the value of embedding SRL scaffolding and real-time AI support within gamified environments, offering design implications for educational technologies that aim to promote deeper learning and metacognitive skill development.
comment: 14 pages
Stakeholder Participation for Responsible AI Development: Disconnects Between Guidance and Current Practice
Responsible AI (rAI) guidance increasingly promotes stakeholder involvement (SHI) during AI development. At the same time, SHI is already common in commercial software development, but with potentially different foci. This study clarifies the extent to which established SHI practices are able to contribute to rAI efforts as well as potential disconnects -- essential insights to inform and tailor future interventions that further shift industry practice towards rAI efforts. First, we analysed 56 rAI guidance documents to identify why SHI is recommended (i.e. its expected benefits for rAI) and uncovered goals such as redistributing power, improving socio-technical understandings, anticipating risks, and enhancing public oversight. To understand why and how SHI is currently practised in commercial settings, we then conducted an online survey (n=130) and semi-structured interviews (n=10) with AI practitioners. Our findings reveal that SHI in practice is primarily driven by commercial priorities (e.g. customer value, compliance) and several factors currently discourage more rAI-aligned SHI practices. This suggests that established SHI practices are largely not contributing to rAI efforts. To address this disconnect, we propose interventions and research opportunities to advance rAI development in practice.
comment: Published at the 2025 ACM Conference on Fairness, Accountability, and Transparency FAccT'25
Investigating the Perception of Translational Shape-Changing Haptic Interfaces
Shape-changing haptic interfaces (SCHIs) are a promising and emerging field. However, compared to more established stimulus modalities, such as vibration, there is sparse literature on the perception of dynamic shapes. Furthermore, the influence of properties such as grasp types and displacement magnitude/direction has not been formally evaluated. This work attempts to initiate a formal perceptual evaluation of SCHIs via a psychophysical user study involving a 1-DOF translational shape-changing interface that can move its body with 1.25-micrometer resolution. Participants completed a Method of Constant Stimulus study while holding the device with three different grasps. Stimuli direction occurred both toward and away from the thumb, while the standard stimuli varied between small (0.48 mm) and large (6 mm). Our results indicate that translational SCHIs should maximize the translation magnitude rather than the number of fingers in contact. We also demonstrated how to apply our findings to real-world applications via a simple 'paddle game', where we compared conventional linear mapping with non-linear mapping derived from our perceptual experiment outcomes between the device position and its represented value. Results indicate that the non-linear mapping was more effective, with improved error distribution. We hope this work inspires further formal perceptual investigation into other SCHI morphologies.
comment: 7 pages, 8 figures. Accepted version to appear in: Proceedings of the IEEE World Haptics Conference (WHC), 2025
Fine-Tuning Large Audio-Language Models with LoRA for Precise Temporal Localization of Prolonged Exposure Therapy Elements
Prolonged Exposure (PE) therapy is an effective treatment for post-traumatic stress disorder (PTSD), but evaluating therapist fidelity remains labor-intensive due to the need for manual review of session recordings. We present a method for the automatic temporal localization of key PE fidelity elements -- identifying their start and stop times -- directly from session audio and transcripts. Our approach fine-tunes a large pre-trained audio-language model, Qwen2-Audio, using Low-Rank Adaptation (LoRA) to process focused 30-second windows of audio-transcript input. Fidelity labels for three core protocol phases -- therapist orientation (P1), imaginal exposure (P2), and post-imaginal processing (P3) -- are generated via LLM-based prompting and verified by trained raters. The model is trained to predict normalized boundary offsets using soft supervision guided by task-specific prompts. On a dataset of 313 real PE sessions, our best configuration (LoRA rank 8, 30s windows) achieves a mean absolute error (MAE) of 5.3 seconds across tasks. We further analyze the effects of window size and LoRA rank, highlighting the importance of context granularity and model adaptation. This work introduces a scalable framework for fidelity tracking in PE therapy, with potential to support clinician training, supervision, and quality assurance.
comment: 5 pages, 2 figures
Patterns of Patterns III
Building on earlier installments, this paper re-examines the PLACARD pattern. We report on a series of workshops where PLACARD was used to scaffold collaborative reflection, speculative inquiry, and stimulate design pattern generation. These accounts are enriched by a comparison case: virtual workshops carried out with simple AI-based chatbots. We discuss limitations and lessons learned from both the human and multi-agent settings. We conclude by outlining a future development strategy at the intersection of AI agents, design patterns, and institutional governance.
comment: 18 pages; submitted to Pattern Languages of Programs 2025
A Call for Collaborative Intelligence: Why Human-Agent Systems Should Precede AI Autonomy
Recent improvements in large language models (LLMs) have led many researchers to focus on building fully autonomous AI agents. This position paper questions whether this approach is the right path forward, as these autonomous systems still have problems with reliability, transparency, and understanding the actual requirements of human. We suggest a different approach: LLM-based Human-Agent Systems (LLM-HAS), where AI works with humans rather than replacing them. By keeping human involved to provide guidance, answer questions, and maintain control, these systems can be more trustworthy and adaptable. Looking at examples from healthcare, finance, and software development, we show how human-AI teamwork can handle complex tasks better than AI working alone. We also discuss the challenges of building these collaborative systems and offer practical solutions. This paper argues that progress in AI should not be measured by how independent systems become, but by how well they can work with humans. The most promising future for AI is not in systems that take over human roles, but in those that enhance human capabilities through meaningful partnership.
"I Said Things I Needed to Hear Myself": Peer Support as an Emotional, Organisational, and Sociotechnical Practice in Singapore
Peer support plays a vital role in expanding access to mental health care by providing empathetic, community-based support outside formal clinical systems. As digital platforms increasingly mediate such support, the design and impact of these technologies remain under-examined, particularly in Asian contexts. This paper presents findings from an interview study with 20 peer supporters in Singapore, who operate across diverse online, offline, and hybrid environments. Through a thematic analysis, we unpack how participants start, conduct, and sustain peer support, highlighting their motivations, emotional labour, and the sociocultural dimensions shaping their practices. Building on this grounded understanding, we surface design directions for culturally responsive digital tools that scaffold rather than supplant relational care. Drawing insights from qualitative accounts, we offer a situated perspective on how AI might responsibly augment peer support. This research contributes to human-centred computing by articulating the lived realities of peer supporters and proposing design implications for trustworthy and context-sensitive AI in mental health.
"Is This Really a Human Peer Supporter?": Misalignments Between Peer Supporters and Experts in LLM-Supported Interactions
Mental health is a growing global concern, prompting interest in AI-driven solutions to expand access to psychosocial support. Peer support, grounded in lived experience, offers a valuable complement to professional care. However, variability in training, effectiveness, and definitions raises concerns about quality, consistency, and safety. Large Language Models (LLMs) present new opportunities to enhance peer support interactions, particularly in real-time, text-based interactions. We present and evaluate an AI-supported system with an LLM-simulated distressed client, context-sensitive LLM-generated suggestions, and real-time emotion visualisations. 2 mixed-methods studies with 12 peer supporters and 5 mental health professionals (i.e., experts) examined the system's effectiveness and implications for practice. Both groups recognised its potential to enhance training and improve interaction quality. However, we found a key tension emerged: while peer supporters engaged meaningfully, experts consistently flagged critical issues in peer supporter responses, such as missed distress cues and premature advice-giving. This misalignment highlights potential limitations in current peer support training, especially in emotionally charged contexts where safety and fidelity to best practices are essential. Our findings underscore the need for standardised, psychologically grounded training, especially as peer support scales globally. They also demonstrate how LLM-supported systems can scaffold this development--if designed with care and guided by expert oversight. This work contributes to emerging conversations on responsible AI integration in mental health and the evolving role of LLMs in augmenting peer-delivered care.
Human-like object concept representations emerge naturally in multimodal large language models
Understanding how humans conceptualize and categorize natural objects offers critical insights into perception and cognition. With the advent of Large Language Models (LLMs), a key question arises: can these models develop human-like object representations from linguistic and multimodal data? In this study, we combined behavioral and neuroimaging analyses to explore the relationship between object concept representations in LLMs and human cognition. We collected 4.7 million triplet judgments from LLMs and Multimodal LLMs (MLLMs) to derive low-dimensional embeddings that capture the similarity structure of 1,854 natural objects. The resulting 66-dimensional embeddings were stable, predictive, and exhibited semantic clustering similar to human mental representations. Remarkably, the dimensions underlying these embeddings were interpretable, suggesting that LLMs and MLLMs develop human-like conceptual representations of objects. Further analysis showed strong alignment between model embeddings and neural activity patterns in brain regions such as EBA, PPA, RSC, and FFA. This provides compelling evidence that the object representations in LLMs, while not identical to human ones, share fundamental similarities that reflect key aspects of human conceptual knowledge. Our findings advance the understanding of machine intelligence and inform the development of more human-like artificial cognitive systems.
comment: Published on Nature Machine Intelligence
From Simple Sensors to Complex Context: Insights for HabiTech
We relate our previous as well as ongoing research in the domain of smart homes to the concept of HabiTech. HabiTech can benefit from existing approaches and findings in a broader context of whole buildings or communities within. Along with data comes context of data capture and data interpretation in different dimensions (spatial, temporal, social). For defining what is 'community' proximity plays a crucial role in context, both spatially as well as socially. A participatory approach for research in living in sensing environments is promising to address complexity as well as interests of different stakeholders. Often it is the complex context that makes even simple sensor data sensitive, i.e. in terms of privacy. When it comes to handle shared data then concepts from the physical world for shared spaces might be related back to the data domain.
comment: CHI24 Extended Abstracts, Workshop HabiTech, May 11, 2024, Honolulu, HI, USA 2024. 4 pages, 5 figures
Bridging the Gap Between LLMs and Human Intentions: Progresses and Challenges in Instruction Understanding, Intention Reasoning, and Reliable Generation
Large language models (LLMs) have demonstrated exceptional capabilities in understanding and generation. However, when interacting with human instructions in real-world scenarios, LLMs still face significant challenges, particularly in accurately capturing and comprehending human instructions and intentions. This paper focuses on three challenges in LLM-based text generation tasks: instruction understanding, intention reasoning, and Reliable Dialog Generation. Regarding human complex instruction, LLMs have deficiencies in understanding long contexts and instructions in multi-round conversations. For intention reasoning, LLMs may have inconsistent command reasoning, difficulty reasoning about commands containing incorrect information, difficulty understanding user ambiguous language commands, and a weak understanding of user intention in commands. Besides, In terms of Reliable Dialog Generation, LLMs may have unstable generated content and unethical generation. To this end, we classify and analyze the performance of LLMs in challenging scenarios and conduct a comprehensive evaluation of existing solutions. Furthermore, we introduce benchmarks and categorize them based on the aforementioned three core challenges. Finally, we explore potential directions for future research to enhance the reliability and adaptability of LLMs in real-world applications.
comment: 19 pages, 11 figures
AAD-LLM: Neural Attention-Driven Auditory Scene Understanding ACL 2025
Auditory foundation models, including auditory large language models (LLMs), process all sound inputs equally, independent of listener perception. However, human auditory perception is inherently selective: listeners focus on specific speakers while ignoring others in complex auditory scenes. Existing models do not incorporate this selectivity, limiting their ability to generate perception-aligned responses. To address this, we introduce Intention-Informed Auditory Scene Understanding (II-ASU) and present Auditory Attention-Driven LLM (AAD-LLM), a prototype system that integrates brain signals to infer listener attention. AAD-LLM extends an auditory LLM by incorporating intracranial electroencephalography (iEEG) recordings to decode which speaker a listener is attending to and refine responses accordingly. The model first predicts the attended speaker from neural activity, then conditions response generation on this inferred attentional state. We evaluate AAD-LLM on speaker description, speech transcription and extraction, and question answering in multitalker scenarios, with both objective and subjective ratings showing improved alignment with listener intention. By taking a first step toward intention-aware auditory AI, this work explores a new paradigm where listener perception informs machine listening, paving the way for future listener-centered auditory systems. Demo and code available: https://aad-llm.github.io.
comment: Accepted by ACL 2025 Main Conference
Computer Vision and Pattern Recognition
VIKI-R: Coordinating Embodied Multi-Agent Cooperation via Reinforcement Learning
Coordinating multiple embodied agents in dynamic environments remains a core challenge in artificial intelligence, requiring both perception-driven reasoning and scalable cooperation strategies. While recent works have leveraged large language models (LLMs) for multi-agent planning, a few have begun to explore vision-language models (VLMs) for visual reasoning. However, these VLM-based approaches remain limited in their support for diverse embodiment types. In this work, we introduce VIKI-Bench, the first hierarchical benchmark tailored for embodied multi-agent cooperation, featuring three structured levels: agent activation, task planning, and trajectory perception. VIKI-Bench includes diverse robot embodiments, multi-view visual observations, and structured supervision signals to evaluate reasoning grounded in visual inputs. To demonstrate the utility of VIKI-Bench, we propose VIKI-R, a two-stage framework that fine-tunes a pretrained vision-language model (VLM) using Chain-of-Thought annotated demonstrations, followed by reinforcement learning under multi-level reward signals. Our extensive experiments show that VIKI-R significantly outperforms baselines method across all task levels. Furthermore, we show that reinforcement learning enables the emergence of compositional cooperation patterns among heterogeneous agents. Together, VIKI-Bench and VIKI-R offer a unified testbed and method for advancing multi-agent, visual-driven cooperation in embodied AI systems.
comment: Project page: https://faceong.github.io/VIKI-R/
MagCache: Fast Video Generation with Magnitude-Aware Cache
Existing acceleration techniques for video diffusion models often rely on uniform heuristics or time-embedding variants to skip timesteps and reuse cached features. These approaches typically require extensive calibration with curated prompts and risk inconsistent outputs due to prompt-specific overfitting. In this paper, we introduce a novel and robust discovery: a unified magnitude law observed across different models and prompts. Specifically, the magnitude ratio of successive residual outputs decreases monotonically and steadily in most timesteps while rapidly in the last several steps. Leveraging this insight, we introduce a Magnitude-aware Cache (MagCache) that adaptively skips unimportant timesteps using an error modeling mechanism and adaptive caching strategy. Unlike existing methods requiring dozens of curated samples for calibration, MagCache only requires a single sample for calibration. Experimental results show that MagCache achieves 2.1x and 2.68x speedups on Open-Sora and Wan 2.1, respectively, while preserving superior visual fidelity. It significantly outperforms existing methods in LPIPS, SSIM, and PSNR, under comparable computational budgets.
comment: Project Page: https://zehong-ma.github.io/MagCache
Cosmos-Drive-Dreams: Scalable Synthetic Driving Data Generation with World Foundation Models
Collecting and annotating real-world data for safety-critical physical AI systems, such as Autonomous Vehicle (AV), is time-consuming and costly. It is especially challenging to capture rare edge cases, which play a critical role in training and testing of an AV system. To address this challenge, we introduce the Cosmos-Drive-Dreams - a synthetic data generation (SDG) pipeline that aims to generate challenging scenarios to facilitate downstream tasks such as perception and driving policy training. Powering this pipeline is Cosmos-Drive, a suite of models specialized from NVIDIA Cosmos world foundation model for the driving domain and are capable of controllable, high-fidelity, multi-view, and spatiotemporally consistent driving video generation. We showcase the utility of these models by applying Cosmos-Drive-Dreams to scale the quantity and diversity of driving datasets with high-fidelity and challenging scenarios. Experimentally, we demonstrate that our generated data helps in mitigating long-tail distribution problems and enhances generalization in downstream tasks such as 3D lane detection, 3D object detection and driving policy learning. We open source our pipeline toolkit, dataset and model weights through the NVIDIA's Cosmos platform. Project page: https://research.nvidia.com/labs/toronto-ai/cosmos_drive_dreams
comment: Xuanchi Ren, Yifan Lu, Tianshi Cao, Ruiyuan Gao: Equal contribution. Only the core contributors are listed. The full list of contributors can be found in Appendix A of this paper
Autoregressive Semantic Visual Reconstruction Helps VLMs Understand Better
Typical large vision-language models (LVLMs) apply autoregressive supervision solely to textual sequences, without fully incorporating the visual modality into the learning process. This results in three key limitations: (1) an inability to utilize images without accompanying captions, (2) the risk that captions omit critical visual details, and (3) the challenge that certain vision-centric content cannot be adequately conveyed through text. As a result, current LVLMs often prioritize vision-to-language alignment while potentially overlooking fine-grained visual information. While some prior works have explored autoregressive image generation, effectively leveraging autoregressive visual supervision to enhance image understanding remains an open challenge. In this paper, we introduce Autoregressive Semantic Visual Reconstruction (ASVR), which enables joint learning of visual and textual modalities within a unified autoregressive framework. We show that autoregressively reconstructing the raw visual appearance of images does not enhance and may even impair multimodal understanding. In contrast, autoregressively reconstructing the semantic representation of images consistently improves comprehension. Notably, we find that even when models are given continuous image features as input, they can effectively reconstruct discrete semantic tokens, resulting in stable and consistent improvements across a wide range of multimodal understanding benchmarks. Our approach delivers significant performance gains across varying data scales (556k-2M) and types of LLM bacbones. Specifically, ASVR improves LLaVA-1.5 by 5% in average scores across 14 multimodal benchmarks. The code is available at https://github.com/AlenjandroWang/ASVR.
Princeton365: A Diverse Dataset with Accurate Camera Pose
We introduce Princeton365, a large-scale diverse dataset of 365 videos with accurate camera pose. Our dataset bridges the gap between accuracy and data diversity in current SLAM benchmarks by introducing a novel ground truth collection framework that leverages calibration boards and a 360-camera. We collect indoor, outdoor, and object scanning videos with synchronized monocular and stereo RGB video outputs as well as IMU. We further propose a new scene scale-aware evaluation metric for SLAM based on the the optical flow induced by the camera pose estimation error. In contrast to the current metrics, our new metric allows for comparison between the performance of SLAM methods across scenes as opposed to existing metrics such as Average Trajectory Error (ATE), allowing researchers to analyze the failure modes of their methods. We also propose a challenging Novel View Synthesis benchmark that covers cases not covered by current NVS benchmarks, such as fully non-Lambertian scenes with 360-degree camera trajectories. Please visit https://princeton365.cs.princeton.edu for the dataset, code, videos, and submission.
Diffuse and Disperse: Image Generation with Representation Regularization
The development of diffusion-based generative models over the past decade has largely proceeded independently of progress in representation learning. These diffusion models typically rely on regression-based objectives and generally lack explicit regularization. In this work, we propose \textit{Dispersive Loss}, a simple plug-and-play regularizer that effectively improves diffusion-based generative models. Our loss function encourages internal representations to disperse in the hidden space, analogous to contrastive self-supervised learning, with the key distinction that it requires no positive sample pairs and therefore does not interfere with the sampling process used for regression. Compared to the recent method of representation alignment (REPA), our approach is self-contained and minimalist, requiring no pre-training, no additional parameters, and no external data. We evaluate Dispersive Loss on the ImageNet dataset across a range of models and report consistent improvements over widely used and strong baselines. We hope our work will help bridge the gap between generative modeling and representation learning.
DIsoN: Decentralized Isolation Networks for Out-of-Distribution Detection in Medical Imaging
Safe deployment of machine learning (ML) models in safety-critical domains such as medical imaging requires detecting inputs with characteristics not seen during training, known as out-of-distribution (OOD) detection, to prevent unreliable predictions. Effective OOD detection after deployment could benefit from access to the training data, enabling direct comparison between test samples and the training data distribution to identify differences. State-of-the-art OOD detection methods, however, either discard training data after deployment or assume that test samples and training data are centrally stored together, an assumption that rarely holds in real-world settings. This is because shipping training data with the deployed model is usually impossible due to the size of training databases, as well as proprietary or privacy constraints. We introduce the Isolation Network, an OOD detection framework that quantifies the difficulty of separating a target test sample from the training data by solving a binary classification task. We then propose Decentralized Isolation Networks (DIsoN), which enables the comparison of training and test data when data-sharing is impossible, by exchanging only model parameters between the remote computational nodes of training and deployment. We further extend DIsoN with class-conditioning, comparing a target sample solely with training data of its predicted class. We evaluate DIsoN on four medical imaging datasets (dermatology, chest X-ray, breast ultrasound, histopathology) across 12 OOD detection tasks. DIsoN performs favorably against existing methods while respecting data-privacy. This decentralized OOD detection framework opens the way for a new type of service that ML developers could provide along with their models: providing remote, secure utilization of their training data for OOD detection services. Code will be available upon acceptance at: *****
Fine-Grained Spatially Varying Material Selection in Images
Selection is the first step in many image editing processes, enabling faster and simpler modifications of all pixels sharing a common modality. In this work, we present a method for material selection in images, robust to lighting and reflectance variations, which can be used for downstream editing tasks. We rely on vision transformer (ViT) models and leverage their features for selection, proposing a multi-resolution processing strategy that yields finer and more stable selection results than prior methods. Furthermore, we enable selection at two levels: texture and subtexture, leveraging a new two-level material selection (DuMaS) dataset which includes dense annotations for over 800,000 synthetic images, both on the texture and subtexture levels.
Do MIL Models Transfer? ICML 2025
Multiple Instance Learning (MIL) is a cornerstone approach in computational pathology (CPath) for generating clinically meaningful slide-level embeddings from gigapixel tissue images. However, MIL often struggles with small, weakly supervised clinical datasets. In contrast to fields such as NLP and conventional computer vision, where transfer learning is widely used to address data scarcity, the transferability of MIL models remains poorly understood. In this study, we systematically evaluate the transfer learning capabilities of pretrained MIL models by assessing 11 models across 21 pretraining tasks for morphological and molecular subtype prediction. Our results show that pretrained MIL models, even when trained on different organs than the target task, consistently outperform models trained from scratch. Moreover, pretraining on pancancer datasets enables strong generalization across organs and tasks, outperforming slide foundation models while using substantially less pretraining data. These findings highlight the robust adaptability of MIL models and demonstrate the benefits of leveraging transfer learning to boost performance in CPath. Lastly, we provide a resource which standardizes the implementation of MIL models and collection of pretrained model weights on popular CPath tasks, available at https://github.com/mahmoodlab/MIL-Lab
comment: ICML 2025 (Spotlight). 20 pages, 8 figures
SDTagNet: Leveraging Text-Annotated Navigation Maps for Online HD Map Construction
Autonomous vehicles rely on detailed and accurate environmental information to operate safely. High definition (HD) maps offer a promising solution, but their high maintenance cost poses a significant barrier to scalable deployment. This challenge is addressed by online HD map construction methods, which generate local HD maps from live sensor data. However, these methods are inherently limited by the short perception range of onboard sensors. To overcome this limitation and improve general performance, recent approaches have explored the use of standard definition (SD) maps as prior, which are significantly easier to maintain. We propose SDTagNet, the first online HD map construction method that fully utilizes the information of widely available SD maps, like OpenStreetMap, to enhance far range detection accuracy. Our approach introduces two key innovations. First, in contrast to previous work, we incorporate not only polyline SD map data with manually selected classes, but additional semantic information in the form of textual annotations. In this way, we enrich SD vector map tokens with NLP-derived features, eliminating the dependency on predefined specifications or exhaustive class taxonomies. Second, we introduce a point-level SD map encoder together with orthogonal element identifiers to uniformly integrate all types of map elements. Experiments on Argoverse 2 and nuScenes show that this boosts map perception performance by up to +5.9 mAP (+45%) w.r.t. map construction without priors and up to +3.2 mAP (+20%) w.r.t. previous approaches that already use SD map priors. Code is available at https://github.com/immel-f/SDTagNet
Do Concept Replacement Techniques Really Erase Unacceptable Concepts?
Generative models, particularly diffusion-based text-to-image (T2I) models, have demonstrated astounding success. However, aligning them to avoid generating content with unacceptable concepts (e.g., offensive or copyrighted content, or celebrity likenesses) remains a significant challenge. Concept replacement techniques (CRTs) aim to address this challenge, often by trying to "erase" unacceptable concepts from models. Recently, model providers have started offering image editing services which accept an image and a text prompt as input, to produce an image altered as specified by the prompt. These are known as image-to-image (I2I) models. In this paper, we first use an I2I model to empirically demonstrate that today's state-of-the-art CRTs do not in fact erase unacceptable concepts. Existing CRTs are thus likely to be ineffective in emerging I2I scenarios, despite their proven ability to remove unwanted concepts in T2I pipelines, highlighting the need to understand this discrepancy between T2I and I2I settings. Next, we argue that a good CRT, while replacing unacceptable concepts, should preserve other concepts specified in the inputs to generative models. We call this fidelity. Prior work on CRTs have neglected fidelity in the case of unacceptable concepts. Finally, we propose the use of targeted image-editing techniques to achieve both effectiveness and fidelity. We present such a technique, AntiMirror, and demonstrate its viability.
Efficient Medical Vision-Language Alignment Through Adapting Masked Vision Models
Medical vision-language alignment through cross-modal contrastive learning shows promising performance in image-text matching tasks, such as retrieval and zero-shot classification. However, conventional cross-modal contrastive learning (CLIP-based) methods suffer from suboptimal visual representation capabilities, which also limits their effectiveness in vision-language alignment. In contrast, although the models pretrained via multimodal masked modeling struggle with direct cross-modal matching, they excel in visual representation. To address this contradiction, we propose ALTA (ALign Through Adapting), an efficient medical vision-language alignment method that utilizes only about 8% of the trainable parameters and less than 1/5 of the computational consumption required for masked record modeling. ALTA achieves superior performance in vision-language matching tasks like retrieval and zero-shot classification by adapting the pretrained vision model from masked record modeling. Additionally, we integrate temporal-multiview radiograph inputs to enhance the information consistency between radiographs and their corresponding descriptions in reports, further improving the vision-language alignment. Experimental evaluations show that ALTA outperforms the best-performing counterpart by over 4% absolute points in text-to-image accuracy and approximately 6% absolute points in image-to-text retrieval accuracy. The adaptation of vision-language models during efficient alignment also promotes better vision and language understanding. Code is publicly available at https://github.com/DopamineLcy/ALTA.
comment: TMI 2025
Rethinking Range-View LiDAR Segmentation in Adverse Weather
LiDAR segmentation has emerged as an important task to enrich multimedia experiences and analysis. Range-view-based methods have gained popularity due to their high computational efficiency and compatibility with real-time deployment. However, their generalized performance under adverse weather conditions remains underexplored, limiting their reliability in real-world environments. In this work, we identify and analyze the unique challenges that affect the generalization of range-view LiDAR segmentation in severe weather. To address these challenges, we propose a modular and lightweight framework that enhances robustness without altering the core architecture of existing models. Our method reformulates the initial stem block of standard range-view networks into two branches to process geometric attributes and reflectance intensity separately. Specifically, a Geometric Abnormality Suppression (GAS) module reduces the influence of weather-induced spatial noise, and a Reflectance Distortion Calibration (RDC) module corrects reflectance distortions through memory-guided adaptive instance normalization. The processed features are then fused and passed to the original segmentation pipeline. Extensive experiments on different benchmarks and baseline models demonstrate that our approach significantly improves generalization to adverse weather with minimal inference overhead, offering a practical and effective solution for real-world LiDAR segmentation.
ADAM: Autonomous Discovery and Annotation Model using LLMs for Context-Aware Annotations
Object detection models typically rely on predefined categories, limiting their ability to identify novel objects in open-world scenarios. To overcome this constraint, we introduce ADAM: Autonomous Discovery and Annotation Model, a training-free, self-refining framework for open-world object labeling. ADAM leverages large language models (LLMs) to generate candidate labels for unknown objects based on contextual information from known entities within a scene. These labels are paired with visual embeddings from CLIP to construct an Embedding-Label Repository (ELR) that enables inference without category supervision. For a newly encountered unknown object, ADAM retrieves visually similar instances from the ELR and applies frequency-based voting and cross-modal re-ranking to assign a robust label. To further enhance consistency, we introduce a self-refinement loop that re-evaluates repository labels using visual cohesion analysis and k-nearest-neighbor-based majority re-labeling. Experimental results on the COCO and PASCAL datasets demonstrate that ADAM effectively annotates novel categories using only visual and contextual signals, without requiring any fine-tuning or retraining.
ORIDa: Object-centric Real-world Image Composition Dataset CVPR 2025
Object compositing, the task of placing and harmonizing objects in images of diverse visual scenes, has become an important task in computer vision with the rise of generative models. However, existing datasets lack the diversity and scale required to comprehensively explore real-world scenarios. We introduce ORIDa (Object-centric Real-world Image Composition Dataset), a large-scale, real-captured dataset containing over 30,000 images featuring 200 unique objects, each of which is presented across varied positions and scenes. ORIDa has two types of data: factual-counterfactual sets and factual-only scenes. The factual-counterfactual sets consist of four factual images showing an object in different positions within a scene and a single counterfactual (or background) image of the scene without the object, resulting in five images per scene. The factual-only scenes include a single image containing an object in a specific context, expanding the variety of environments. To our knowledge, ORIDa is the first publicly available dataset with its scale and complexity for real-world image composition. Extensive analysis and experiments highlight the value of ORIDa as a resource for advancing further research in object compositing.
comment: Accepted at CVPR 2025
Data Augmentation For Small Object using Fast AutoAugment
In recent years, there has been tremendous progress in object detection performance. However, despite these advances, the detection performance for small objects is significantly inferior to that of large objects. Detecting small objects is one of the most challenging and important problems in computer vision. To improve the detection performance for small objects, we propose an optimal data augmentation method using Fast AutoAugment. Through our proposed method, we can quickly find optimal augmentation policies that can overcome degradation when detecting small objects, and we achieve a 20% performance improvement on the DOTA dataset.
comment: Accepted and published in the USB Proceedings of the 20th International Conference on Modeling Decisions for Artificial Intelligence (MDAI 2023), Ume{\aa}, Sweden, June 19--22, 2023, ISBN 978-91-527-7293-5, pp.\ 12--21
Segment Concealed Objects with Incomplete Supervision
Incompletely-Supervised Concealed Object Segmentation (ISCOS) involves segmenting objects that seamlessly blend into their surrounding environments, utilizing incompletely annotated data, such as weak and semi-annotations, for model training. This task remains highly challenging due to (1) the limited supervision provided by the incompletely annotated training data, and (2) the difficulty of distinguishing concealed objects from the background, which arises from the intrinsic similarities in concealed scenarios. In this paper, we introduce the first unified method for ISCOS to address these challenges. To tackle the issue of incomplete supervision, we propose a unified mean-teacher framework, SEE, that leverages the vision foundation model, ``\emph{Segment Anything Model (SAM)}'', to generate pseudo-labels using coarse masks produced by the teacher model as prompts. To mitigate the effect of low-quality segmentation masks, we introduce a series of strategies for pseudo-label generation, storage, and supervision. These strategies aim to produce informative pseudo-labels, store the best pseudo-labels generated, and select the most reliable components to guide the student model, thereby ensuring robust network training. Additionally, to tackle the issue of intrinsic similarity, we design a hybrid-granularity feature grouping module that groups features at different granularities and aggregates these results. By clustering similar features, this module promotes segmentation coherence, facilitating more complete segmentation for both single-object and multiple-object images. We validate the effectiveness of our approach across multiple ISCOS tasks, and experimental results demonstrate that our method achieves state-of-the-art performance. Furthermore, SEE can serve as a plug-and-play solution, enhancing the performance of existing models.
comment: IEEE TPAMI
Cross-Spectral Body Recognition with Side Information Embedding: Benchmarks on LLCM and Analyzing Range-Induced Occlusions on IJB-MDF
Vision Transformers (ViTs) have demonstrated impressive performance across a wide range of biometric tasks, including face and body recognition. In this work, we adapt a ViT model pretrained on visible (VIS) imagery to the challenging problem of cross-spectral body recognition, which involves matching images captured in the visible and infrared (IR) domains. Recent ViT architectures have explored incorporating additional embeddings beyond traditional positional embeddings. Building on this idea, we integrate Side Information Embedding (SIE) and examine the impact of encoding domain and camera information to enhance cross-spectral matching. Surprisingly, our results show that encoding only camera information - without explicitly incorporating domain information - achieves state-of-the-art performance on the LLCM dataset. While occlusion handling has been extensively studied in visible-spectrum person re-identification (Re-ID), occlusions in visible-infrared (VI) Re-ID remain largely underexplored - primarily because existing VI-ReID datasets, such as LLCM, SYSU-MM01, and RegDB, predominantly feature full-body, unoccluded images. To address this gap, we analyze the impact of range-induced occlusions using the IARPA Janus Benchmark Multi-Domain Face (IJB-MDF) dataset, which provides a diverse set of visible and infrared images captured at various distances, enabling cross-range, cross-spectral evaluations.
SSS: Semi-Supervised SAM-2 with Efficient Prompting for Medical Imaging Segmentation
In the era of information explosion, efficiently leveraging large-scale unlabeled data while minimizing the reliance on high-quality pixel-level annotations remains a critical challenge in the field of medical imaging. Semi-supervised learning (SSL) enhances the utilization of unlabeled data by facilitating knowledge transfer, significantly improving the performance of fully supervised models and emerging as a highly promising research direction in medical image analysis. Inspired by the ability of Vision Foundation Models (e.g., SAM-2) to provide rich prior knowledge, we propose SSS (Semi-Supervised SAM-2), a novel approach that leverages SAM-2's robust feature extraction capabilities to uncover latent knowledge in unlabeled medical images, thus effectively enhancing feature support for fully supervised medical image segmentation. Specifically, building upon the single-stream "weak-to-strong" consistency regularization framework, this paper introduces a Discriminative Feature Enhancement (DFE) mechanism to further explore the feature discrepancies introduced by various data augmentation strategies across multiple views. By leveraging feature similarity and dissimilarity across multi-scale augmentation techniques, the method reconstructs and models the features, thereby effectively optimizing the salient regions. Furthermore, a prompt generator is developed that integrates Physical Constraints with a Sliding Window (PCSW) mechanism to generate input prompts for unlabeled data, fulfilling SAM-2's requirement for additional prompts. Extensive experiments demonstrate the superiority of the proposed method for semi-supervised medical image segmentation on two multi-label datasets, i.e., ACDC and BHSD. Notably, SSS achieves an average Dice score of 53.15 on BHSD, surpassing the previous state-of-the-art method by +3.65 Dice. Code will be available at https://github.com/AIGeeksGroup/SSS.
What Limits Virtual Agent Application? OmniBench: A Scalable Multi-Dimensional Benchmark for Essential Virtual Agent Capabilities ICML 2025
As multimodal large language models (MLLMs) advance, MLLM-based virtual agents have demonstrated remarkable performance. However, existing benchmarks face significant limitations, including uncontrollable task complexity, extensive manual annotation with limited scenarios, and a lack of multidimensional evaluation. In response to these challenges, we introduce OmniBench, a self-generating, cross-platform, graph-based benchmark with an automated pipeline for synthesizing tasks of controllable complexity through subtask composition. To evaluate the diverse capabilities of virtual agents on the graph, we further present OmniEval, a multidimensional evaluation framework that includes subtask-level evaluation, graph-based metrics, and comprehensive tests across 10 capabilities. Our synthesized dataset contains 36k graph-structured tasks across 20 scenarios, achieving a 91\% human acceptance rate. Training on our graph-structured data shows that it can more efficiently guide agents compared to manually annotated data. We conduct multidimensional evaluations for various open-source and closed-source models, revealing their performance across various capabilities and paving the way for future advancements. Our project is available at https://omni-bench.github.io/.
comment: Accepted by ICML 2025 (Oral)
Socratic-MCTS: Test-Time Visual Reasoning by Asking the Right Questions
Recent research in vision-language models (VLMs) has centered around the possibility of equipping them with implicit long-form chain-of-thought reasoning -- akin to the success observed in language models -- via distillation and reinforcement learning. But what about the non-reasoning models already trained and deployed across the internet? Should we simply abandon them, or is there hope for a search mechanism that can elicit hidden knowledge and induce long reasoning traces -- without any additional training or supervision? In this paper, we explore this possibility using a Monte Carlo Tree Search (MCTS)-inspired algorithm, which injects subquestion-subanswer pairs into the model's output stream. We show that framing reasoning as a search process -- where subquestions act as latent decisions within a broader inference trajectory -- helps the model "connect the dots" between fragmented knowledge and produce extended reasoning traces in non-reasoning models. We evaluate our method across three benchmarks and observe consistent improvements. Notably, our approach yields a 2% overall improvement on MMMU-PRO, including a significant 9% gain in Liberal Arts.
Inherently Faithful Attention Maps for Vision Transformers
We introduce an attention-based method that uses learned binary attention masks to ensure that only attended image regions influence the prediction. Context can strongly affect object perception, sometimes leading to biased representations, particularly when objects appear in out-of-distribution backgrounds. At the same time, many image-level object-centric tasks require identifying relevant regions, often requiring context. To address this conundrum, we propose a two-stage framework: stage 1 processes the full image to discover object parts and identify task-relevant regions, while stage 2 leverages input attention masking to restrict its receptive field to these regions, enabling a focused analysis while filtering out potentially spurious information. Both stages are trained jointly, allowing stage 2 to refine stage 1. Extensive experiments across diverse benchmarks demonstrate that our approach significantly improves robustness against spurious correlations and out-of-distribution backgrounds.
SkipVAR: Accelerating Visual Autoregressive Modeling via Adaptive Frequency-Aware Skipping
Recent studies on Visual Autoregressive (VAR) models have highlighted that high-frequency components, or later steps, in the generation process contribute disproportionately to inference latency. However, the underlying computational redundancy involved in these steps has yet to be thoroughly investigated. In this paper, we conduct an in-depth analysis of the VAR inference process and identify two primary sources of inefficiency: step redundancy and unconditional branch redundancy. To address step redundancy, we propose an automatic step-skipping strategy that selectively omits unnecessary generation steps to improve efficiency. For unconditional branch redundancy, we observe that the information gap between the conditional and unconditional branches is minimal. Leveraging this insight, we introduce unconditional branch replacement, a technique that bypasses the unconditional branch to reduce computational cost. Notably, we observe that the effectiveness of acceleration strategies varies significantly across different samples. Motivated by this, we propose SkipVAR, a sample-adaptive framework that leverages frequency information to dynamically select the most suitable acceleration strategy for each instance. To evaluate the role of high-frequency information, we introduce high-variation benchmark datasets that test model sensitivity to fine details. Extensive experiments show SkipVAR achieves over 0.88 average SSIM with up to 1.81x overall acceleration and 2.62x speedup on the GenEval benchmark, maintaining model quality. These results confirm the effectiveness of frequency-aware, training-free adaptive acceleration for scalable autoregressive image generation. Our code is available at https://github.com/fakerone-li/SkipVAR and has been publicly released.
Hyperbolic Dual Feature Augmentation for Open-Environment
Feature augmentation generates novel samples in the feature space, providing an effective way to enhance the generalization ability of learning algorithms with hyperbolic geometry. Most hyperbolic feature augmentation is confined to closed-environment, assuming the number of classes is fixed (\emph{i.e.}, seen classes) and generating features only for these classes. In this paper, we propose a hyperbolic dual feature augmentation method for open-environment, which augments features for both seen and unseen classes in the hyperbolic space. To obtain a more precise approximation of the real data distribution for efficient training, (1) we adopt a neural ordinary differential equation module, enhanced by meta-learning, estimating the feature distributions of both seen and unseen classes; (2) we then introduce a regularizer to preserve the latent hierarchical structures of data in the hyperbolic space; (3) we also derive an upper bound for the hyperbolic dual augmentation loss, allowing us to train a hyperbolic model using infinite augmentations for seen and unseen classes. Extensive experiments on five open-environment tasks: class-incremental learning, few-shot open-set recognition, few-shot learning, zero-shot learning, and general image classification, demonstrate that our method effectively enhances the performance of hyperbolic algorithms in open-environment.
comment: arXiv admin note: text overlap with arXiv:2207.03824, arXiv:2304.11855 by other authors
MIRAGE: Multimodal foundation model and benchmark for comprehensive retinal OCT image analysis
Artificial intelligence (AI) has become a fundamental tool for assisting clinicians in analyzing ophthalmic images, such as optical coherence tomography (OCT). However, developing AI models often requires extensive annotation, and existing models tend to underperform on independent, unseen data. Foundation models (FMs), large AI models trained on vast unlabeled datasets, have shown promise in overcoming these challenges. Nonetheless, available FMs for ophthalmology lack extensive validation, especially for segmentation tasks, and focus on a single imaging modality. In this context, we propose MIRAGE, a novel multimodal FM for the analysis of OCT and scanning laser ophthalmoscopy (SLO) images. Additionally, we propose a new evaluation benchmark with OCT/SLO classification and segmentation tasks. The comparison with general and specialized FMs and segmentation methods shows the superiority of MIRAGE in both types of tasks, highlighting its suitability as a basis for the development of robust AI systems for retinal OCT image analysis. Both MIRAGE and the evaluation benchmark are publicly available: https://github.com/j-morano/MIRAGE.
WetCat: Automating Skill Assessment in Wetlab Cataract Surgery Videos
To meet the growing demand for systematic surgical training, wetlab environments have become indispensable platforms for hands-on practice in ophthalmology. Yet, traditional wetlab training depends heavily on manual performance evaluations, which are labor-intensive, time-consuming, and often subject to variability. Recent advances in computer vision offer promising avenues for automated skill assessment, enhancing both the efficiency and objectivity of surgical education. Despite notable progress in ophthalmic surgical datasets, existing resources predominantly focus on real surgeries or isolated tasks, falling short of supporting comprehensive skill evaluation in controlled wetlab settings. To address these limitations, we introduce WetCat, the first dataset of wetlab cataract surgery videos specifically curated for automated skill assessment. WetCat comprises high-resolution recordings of surgeries performed by trainees on artificial eyes, featuring comprehensive phase annotations and semantic segmentations of key anatomical structures. These annotations are meticulously designed to facilitate skill assessment during the critical capsulorhexis and phacoemulsification phases, adhering to standardized surgical skill assessment frameworks. By focusing on these essential phases, WetCat enables the development of interpretable, AI-driven evaluation tools aligned with established clinical metrics. This dataset lays a strong foundation for advancing objective, scalable surgical education and sets a new benchmark for automated workflow analysis and skill assessment in ophthalmology training. The dataset and annotations are publicly available in Synapse https://www.synapse.org/Synapse:syn66401174/files.
comment: 9 pages, 6 figures
Product of Experts for Visual Generation
Modern neural models capture rich priors and have complementary knowledge over shared data domains, e.g., images and videos. Integrating diverse knowledge from multiple sources -- including visual generative models, visual language models, and sources with human-crafted knowledge such as graphics engines and physics simulators -- remains under-explored. We propose a Product of Experts (PoE) framework that performs inference-time knowledge composition from heterogeneous models. This training-free approach samples from the product distribution across experts via Annealed Importance Sampling (AIS). Our framework shows practical benefits in image and video synthesis tasks, yielding better controllability than monolithic methods and additionally providing flexible user interfaces for specifying visual generation goals.
comment: Project page: https://product-of-experts.github.io/
DiscoVLA: Discrepancy Reduction in Vision, Language, and Alignment for Parameter-Efficient Video-Text Retrieval CVPR 2025
The parameter-efficient adaptation of the image-text pretraining model CLIP for video-text retrieval is a prominent area of research. While CLIP is focused on image-level vision-language matching, video-text retrieval demands comprehensive understanding at the video level. Three key discrepancies emerge in the transfer from image-level to video-level: vision, language, and alignment. However, existing methods mainly focus on vision while neglecting language and alignment. In this paper, we propose Discrepancy Reduction in Vision, Language, and Alignment (DiscoVLA), which simultaneously mitigates all three discrepancies. Specifically, we introduce Image-Video Features Fusion to integrate image-level and video-level features, effectively tackling both vision and language discrepancies. Additionally, we generate pseudo image captions to learn fine-grained image-level alignment. To mitigate alignment discrepancies, we propose Image-to-Video Alignment Distillation, which leverages image-level alignment knowledge to enhance video-level alignment. Extensive experiments demonstrate the superiority of our DiscoVLA. In particular, on MSRVTT with CLIP (ViT-B/16), DiscoVLA outperforms previous methods by 1.5% in R@1, reaching a final score of 50.5% R@1. The code is available at https://github.com/LunarShen/DsicoVLA.
comment: CVPR 2025
StreamSplat: Towards Online Dynamic 3D Reconstruction from Uncalibrated Video Streams
Real-time reconstruction of dynamic 3D scenes from uncalibrated video streams is crucial for numerous real-world applications. However, existing methods struggle to jointly address three key challenges: 1) processing uncalibrated inputs in real time, 2) accurately modeling dynamic scene evolution, and 3) maintaining long-term stability and computational efficiency. To this end, we introduce StreamSplat, the first fully feed-forward framework that transforms uncalibrated video streams of arbitrary length into dynamic 3D Gaussian Splatting (3DGS) representations in an online manner, capable of recovering scene dynamics from temporally local observations. We propose two key technical innovations: a probabilistic sampling mechanism in the static encoder for 3DGS position prediction, and a bidirectional deformation field in the dynamic decoder that enables robust and efficient dynamic modeling. Extensive experiments on static and dynamic benchmarks demonstrate that StreamSplat consistently outperforms prior works in both reconstruction quality and dynamic scene modeling, while uniquely supporting online reconstruction of arbitrarily long video streams. Code and models are available at https://github.com/nickwzk/StreamSplat.
Spatial Transcriptomics Expression Prediction from Histopathology Based on Cross-Modal Mask Reconstruction and Contrastive Learning
Spatial transcriptomics is a technology that captures gene expression levels at different spatial locations, widely used in tumor microenvironment analysis and molecular profiling of histopathology, providing valuable insights into resolving gene expression and clinical diagnosis of cancer. Due to the high cost of data acquisition, large-scale spatial transcriptomics data remain challenging to obtain. In this study, we develop a contrastive learning-based deep learning method to predict spatially resolved gene expression from whole-slide images. Evaluation across six different disease datasets demonstrates that, compared to existing studies, our method improves Pearson Correlation Coefficient (PCC) in the prediction of highly expressed genes, highly variable genes, and marker genes by 6.27%, 6.11%, and 11.26% respectively. Further analysis indicates that our method preserves gene-gene correlations and applies to datasets with limited samples. Additionally, our method exhibits potential in cancer tissue localization based on biomarker expression.
comment: 20 pages, 7 figures
Adapting Vision-Language Foundation Model for Next Generation Medical Ultrasound Image Analysis
Medical ultrasonography is an essential imaging technique for examining superficial organs and tissues, including lymph nodes, breast, and thyroid. It employs high-frequency ultrasound waves to generate detailed images of the internal structures of the human body. However, manually contouring regions of interest in these images is a labor-intensive task that demands expertise and often results in inconsistent interpretations among individuals. Vision-language foundation models, which have excelled in various computer vision applications, present new opportunities for enhancing ultrasound image analysis. Yet, their performance is hindered by the significant differences between natural and medical imaging domains. This research seeks to overcome these challenges by developing domain adaptation methods for vision-language foundation models. In this study, we explore the fine-tuning pipeline for vision-language foundation models by utilizing large language model as text refiner with special-designed adaptation strategies and task-driven heads. Our approach has been extensively evaluated on six ultrasound datasets and two tasks: segmentation and classification. The experimental results show that our method can effectively improve the performance of vision-language foundation models for ultrasound image analysis, and outperform the existing state-of-the-art vision-language and pure foundation models. The source code of this study is available at \href{https://github.com/jinggqu/NextGen-UIA}{GitHub}.
CulturalFrames: Assessing Cultural Expectation Alignment in Text-to-Image Models and Evaluation Metrics
The increasing ubiquity of text-to-image (T2I) models as tools for visual content generation raises concerns about their ability to accurately represent diverse cultural contexts. In this work, we present the first study to systematically quantify the alignment of T2I models and evaluation metrics with respect to both explicit as well as implicit cultural expectations. To this end, we introduce CulturalFrames, a novel benchmark designed for rigorous human evaluation of cultural representation in visual generations. Spanning 10 countries and 5 socio-cultural domains, CulturalFrames comprises 983 prompts, 3637 corresponding images generated by 4 state-of-the-art T2I models, and over 10k detailed human annotations. We find that T2I models not only fail to meet the more challenging implicit expectations but also the less challenging explicit expectations. Across models and countries, cultural expectations are missed an average of 44% of the time. Among these failures, explicit expectations are missed at a surprisingly high average rate of 68%, while implicit expectation failures are also significant, averaging 49%. Furthermore, we demonstrate that existing T2I evaluation metrics correlate poorly with human judgments of cultural alignment, irrespective of their internal reasoning. Collectively, our findings expose critical gaps, providing actionable directions for developing more culturally informed T2I models and evaluation methodologies.
Video-CoT: A Comprehensive Dataset for Spatiotemporal Understanding of Videos Based on Chain-of-Thought
Video content comprehension is essential for various applications, ranging from video analysis to interactive systems. Despite advancements in large-scale vision-language models (VLMs), these models often struggle to capture the nuanced, spatiotemporal details essential for thorough video analysis. To address this gap, we introduce Video-CoT, a groundbreaking dataset designed to enhance spatiotemporal understanding using Chain-of-Thought (CoT) methodologies. Video-CoT contains 192,000 fine-grained spa-tiotemporal question-answer pairs and 23,000 high-quality CoT-annotated samples, providing a solid foundation for evaluating spatiotemporal understanding in video comprehension. Additionally, we provide a comprehensive benchmark for assessing these tasks, with each task featuring 750 images and tailored evaluation metrics. Our extensive experiments reveal that current VLMs face significant challenges in achieving satisfactory performance, high-lighting the difficulties of effective spatiotemporal understanding. Overall, the Video-CoT dataset and benchmark open new avenues for research in multimedia understanding and support future innovations in intelligent systems requiring advanced video analysis capabilities. By making these resources publicly available, we aim to encourage further exploration in this critical area. Project website:https://video-cot.github.io/ .
HiSin: Efficient High-Resolution Sinogram Inpainting via Resolution-Guided Progressive Inference
High-resolution sinogram inpainting is essential for computed tomography reconstruction, as missing high-frequency projections can lead to visible artifacts and diagnostic errors. Diffusion models are well-suited for this task due to their robustness and detail-preserving capabilities, but their application to high-resolution inputs is limited by excessive memory and computational demands. To address this limitation, we propose HiSin, a novel diffusion based framework for efficient sinogram inpainting via resolution-guided progressive inference. It progressively extracts global structure at low resolution and defers high-resolution inference to small patches, enabling memory-efficient inpainting. It further incorporates frequency-aware patch skipping and structure-adaptive step allocation to reduce redundant computation. Experimental results show that HiSin reduces peak memory usage by up to 31.25% and inference time by up to 18.15%, and maintains inpainting accuracy across datasets, resolutions, and mask conditions.
HunyuanVideo-HOMA: Generic Human-Object Interaction in Multimodal Driven Human Animation
To address key limitations in human-object interaction (HOI) video generation -- specifically the reliance on curated motion data, limited generalization to novel objects/scenarios, and restricted accessibility -- we introduce HunyuanVideo-HOMA, a weakly conditioned multimodal-driven framework. HunyuanVideo-HOMA enhances controllability and reduces dependency on precise inputs through sparse, decoupled motion guidance. It encodes appearance and motion signals into the dual input space of a multimodal diffusion transformer (MMDiT), fusing them within a shared context space to synthesize temporally consistent and physically plausible interactions. To optimize training, we integrate a parameter-space HOI adapter initialized from pretrained MMDiT weights, preserving prior knowledge while enabling efficient adaptation, and a facial cross-attention adapter for anatomically accurate audio-driven lip synchronization. Extensive experiments confirm state-of-the-art performance in interaction naturalness and generalization under weak supervision. Finally, HunyuanVideo-HOMA demonstrates versatility in text-conditioned generation and interactive object manipulation, supported by a user-friendly demo interface. The project page is at https://anonymous.4open.science/w/homa-page-0FBE/.
Flow Diverse and Efficient: Learning Momentum Flow Matching via Stochastic Velocity Field Sampling
Recently, the rectified flow (RF) has emerged as the new state-of-the-art among flow-based diffusion models due to its high efficiency advantage in straight path sampling, especially with the amazing images generated by a series of RF models such as Flux 1.0 and SD 3.0. Although a straight-line connection between the noisy and natural data distributions is intuitive, fast, and easy to optimize, it still inevitably leads to: 1) Diversity concerns, which arise since straight-line paths only cover a fairly restricted sampling space. 2) Multi-scale noise modeling concerns, since the straight line flow only needs to optimize the constant velocity field $\bm v$ between the two distributions $\bm\pi_0$ and $\bm\pi_1$. In this work, we present Discretized-RF, a new family of rectified flow (also called momentum flow models since they refer to the previous velocity component and the random velocity component in each diffusion step), which discretizes the straight path into a series of variable velocity field sub-paths (namely ``momentum fields'') to expand the search space, especially when close to the distribution $p_\text{noise}$. Different from the previous case where noise is directly superimposed on $\bm x$, we introduce noise on the velocity $\bm v$ of the sub-path to change its direction in order to improve the diversity and multi-scale noise modeling abilities. Experimental results on several representative datasets demonstrate that learning momentum flow matching by sampling random velocity fields will produce trajectories that are both diverse and efficient, and can consistently generate high-quality and diverse results. Code is available at https://github.com/liuruixun/momentum-fm.
A PDE-Based Image Dehazing Method via Atmospheric Scattering Theory
This paper presents a novel partial differential equation (PDE) framework for single-image dehazing. By integrating the atmospheric scattering model with nonlocal regularization and dark channel prior, we propose the improved PDE: \[ -\text{div}\left(D(\nabla u)\nabla u\right) + \lambda(t) G(u) = \Phi(I,t,A) \] where $D(\nabla u) = (|\nabla u| + \epsilon)^{-1}$ is the edge-preserving diffusion coefficient, $G(u)$ is the Gaussian convolution operator, and $\lambda(t)$ is the adaptive regularization parameter based on transmission map $t$. We prove the existence and uniqueness of weak solutions in $H_0^1(\Omega)$ using Lax-Milgram theorem, and implement an efficient fixed-point iteration scheme accelerated by PyTorch GPU computation. The experimental results demonstrate that this method is a promising deghazing solution that can be generalized to the deep model paradigm.
comment: report
HomographyAD: Deep Anomaly Detection Using Self Homography Learning
Anomaly detection (AD) is a task that distinguishes normal and abnormal data, which is important for applying automation technologies of the manufacturing facilities. For MVTec dataset that is a representative AD dataset for industrial environment, many recent works have shown remarkable performances. However, the existing anomaly detection works have a limitation of showing good performance for fully-aligned datasets only, unlike real-world industrial environments. To solve this limitation, we propose HomographyAD, a novel deep anomaly detection methodology based on the ImageNet-pretrained network, which is specially designed for actual industrial dataset. Specifically, we first suggest input foreground alignment using the deep homography estimation method. In addition, we fine-tune the model by self homography learning to learn additional shape information from normal samples. Finally, we conduct anomaly detection based on the measure of how far the feature of test sample is from the distribution of the extracted normal features. By applying our proposed method to various existing AD approaches, we show performance enhancement through extensive experiments.
Landsat-Bench: Datasets and Benchmarks for Landsat Foundation Models
The Landsat program offers over 50 years of globally consistent Earth imagery. However, the lack of benchmarks for this data constrains progress towards Landsat-based Geospatial Foundation Models (GFM). In this paper, we introduce Landsat-Bench, a suite of three benchmarks with Landsat imagery that adapt from existing remote sensing datasets -- EuroSAT-L, BigEarthNet-L, and LC100-L. We establish baseline and standardized evaluation methods across both common architectures and Landsat foundation models pretrained on the SSL4EO-L dataset. Notably, we provide evidence that SSL4EO-L pretrained GFMs extract better representations for downstream tasks in comparison to ImageNet, including performance gains of +4% OA and +5.1% mAP on EuroSAT-L and BigEarthNet-L.
Gaussian2Scene: 3D Scene Representation Learning via Self-supervised Learning with 3D Gaussian Splatting
Self-supervised learning (SSL) for point cloud pre-training has become a cornerstone for many 3D vision tasks, enabling effective learning from large-scale unannotated data. At the scene level, existing SSL methods often incorporate volume rendering into the pre-training framework, using RGB-D images as reconstruction signals to facilitate cross-modal learning. This strategy promotes alignment between 2D and 3D modalities and enables the model to benefit from rich visual cues in the RGB-D inputs. However, these approaches are limited by their reliance on implicit scene representations and high memory demands. Furthermore, since their reconstruction objectives are applied only in 2D space, they often fail to capture underlying 3D geometric structures. To address these challenges, we propose Gaussian2Scene, a novel scene-level SSL framework that leverages the efficiency and explicit nature of 3D Gaussian Splatting (3DGS) for pre-training. The use of 3DGS not only alleviates the computational burden associated with volume rendering but also supports direct 3D scene reconstruction, thereby enhancing the geometric understanding of the backbone network. Our approach follows a progressive two-stage training strategy. In the first stage, a dual-branch masked autoencoder learns both 2D and 3D scene representations. In the second stage, we initialize training with reconstructed point clouds and further supervise learning using the geometric locations of Gaussian primitives and rendered RGB images. This process reinforces both geometric and cross-modal learning. We demonstrate the effectiveness of Gaussian2Scene across several downstream 3D object detection tasks, showing consistent improvements over existing pre-training methods.
RS-MTDF: Multi-Teacher Distillation and Fusion for Remote Sensing Semi-Supervised Semantic Segmentation
Semantic segmentation in remote sensing images is crucial for various applications, yet its performance is heavily reliant on large-scale, high-quality pixel-wise annotations, which are notoriously expensive and time-consuming to acquire. Semi-supervised semantic segmentation (SSS) offers a promising alternative to mitigate this data dependency. However, existing SSS methods often struggle with the inherent distribution mismatch between limited labeled data and abundant unlabeled data, leading to suboptimal generalization. We propose that Vision Foundation Models (VFMs), pre-trained on vast and diverse datasets, possess robust generalization capabilities that can effectively bridge this distribution gap and provide strong semantic priors for SSS. Inspired by this, we introduce RS-MTDF (Multi-Teacher Distillation and Fusion), a novel framework that leverages the powerful semantic knowledge embedded in VFMs to guide semi-supervised learning in remote sensing. Specifically, RS-MTDF employs multiple frozen VFMs (\textit{e.g.}, DINOv2 and CLIP) as expert teachers, utilizing feature-level distillation to align student features with their robust representations. To further enhance discriminative power, the distilled knowledge is seamlessly fused into the student decoder. Extensive experiments on three challenging remote sensing datasets (ISPRS Potsdam, LoveDA, and DeepGlobe) demonstrate that RS-MTDF consistently achieves state-of-the-art performance. Notably, our method outperforms existing approaches across various label ratios on LoveDA and secures the highest IoU in the majority of semantic categories. These results underscore the efficacy of multi-teacher VFM guidance in significantly enhancing both generalization and semantic understanding for remote sensing segmentation. Ablation studies further validate the contribution of each proposed module.
Normalized Radon Cumulative Distribution Transforms for Invariance and Robustness in Optimal Transport Based Image Classification
The Radon cumulative distribution transform (R-CDT), is an easy-to-compute feature extractor that facilitates image classification tasks especially in the small data regime. It is closely related to the sliced Wasserstein distance and provably guaranties the linear separability of image classes that emerge from translations or scalings. In many real-world applications, like the recognition of watermarks in filigranology, however, the data is subject to general affine transformations originating from the measurement process. To overcome this issue, we recently introduced the so-called max-normalized R-CDT that only requires elementary operations and guaranties the separability under arbitrary affine transformations. The aim of this paper is to continue our study of the max-normalized R-CDT especially with respect to its robustness against non-affine image deformations. Our sensitivity analysis shows that its separability properties are stable provided the Wasserstein-infinity distance between the samples can be controlled. Since the Wasserstein-infinity distance only allows small local image deformations, we moreover introduce a mean-normalized version of the R-CDT. In this case, robustness relates to the Wasserstein-2 distance and also covers image deformations caused by impulsive noise for instance. Our theoretical results are supported by numerical experiments showing the effectiveness of our novel feature extractors as well as their robustness against local non-affine deformations and impulsive noise.
InceptionMamba: An Efficient Hybrid Network with Large Band Convolution and Bottleneck Mamba
Within the family of convolutional neural networks, InceptionNeXt has shown excellent competitiveness in image classification and a number of downstream tasks. Built on parallel one-dimensional strip convolutions, however, it suffers from limited ability of capturing spatial dependencies along different dimensions and fails to fully explore spatial modeling in local neighborhood. Besides, inherent locality constraints of convolution operations are detrimental to effective global context modeling. To overcome these limitations, we propose a novel backbone architecture termed InceptionMamba in this study. More specifically, the traditional one-dimensional strip convolutions are replaced by orthogonal band convolutions in our InceptionMamba to achieve cohesive spatial modeling. Furthermore, global contextual modeling can be achieved via a bottleneck Mamba module, facilitating enhanced cross-channel information fusion and enlarged receptive field. Extensive evaluations on classification and various downstream tasks demonstrate that the proposed InceptionMamba achieves state-of-the-art performance with superior parameter and computational efficiency. The source code will be available at https://github.com/Wake1021/InceptionMamba.
Geometric deep learning for local growth prediction on abdominal aortic aneurysm surfaces
Abdominal aortic aneurysms (AAAs) are progressive focal dilatations of the abdominal aorta. AAAs may rupture, with a survival rate of only 20\%. Current clinical guidelines recommend elective surgical repair when the maximum AAA diameter exceeds 55 mm in men or 50 mm in women. Patients that do not meet these criteria are periodically monitored, with surveillance intervals based on the maximum AAA diameter. However, this diameter does not take into account the complex relation between the 3D AAA shape and its growth, making standardized intervals potentially unfit. Personalized AAA growth predictions could improve monitoring strategies. We propose to use an SE(3)-symmetric transformer model to predict AAA growth directly on the vascular model surface enriched with local, multi-physical features. In contrast to other works which have parameterized the AAA shape, this representation preserves the vascular surface's anatomical structure and geometric fidelity. We train our model using a longitudinal dataset of 113 computed tomography angiography (CTA) scans of 24 AAA patients at irregularly sampled intervals. After training, our model predicts AAA growth to the next scan moment with a median diameter error of 1.18 mm. We further demonstrate our model's utility to identify whether a patient will become eligible for elective repair within two years (acc = 0.93). Finally, we evaluate our model's generalization on an external validation set consisting of 25 CTAs from 7 AAA patients from a different hospital. Our results show that local directional AAA growth prediction from the vascular surface is feasible and may contribute to personalized surveillance strategies.
Enhancing Synthetic CT from CBCT via Multimodal Fusion: A Study on the Impact of CBCT Quality and Alignment
Cone-Beam Computed Tomography (CBCT) is widely used for real-time intraoperative imaging due to its low radiation dose and high acquisition speed. However, despite its high resolution, CBCT suffers from significant artifacts and thereby lower visual quality, compared to conventional Computed Tomography (CT). A recent approach to mitigate these artifacts is synthetic CT (sCT) generation, translating CBCT volumes into the CT domain. In this work, we enhance sCT generation through multimodal learning, integrating intraoperative CBCT with preoperative CT. Beyond validation on two real-world datasets, we use a versatile synthetic dataset, to analyze how CBCT-CT alignment and CBCT quality affect sCT quality. The results demonstrate that multimodal sCT consistently outperform unimodal baselines, with the most significant gains observed in well-aligned, low-quality CBCT-CT cases. Finally, we demonstrate that these findings are highly reproducible in real-world clinical datasets.
comment: Data is open source. Code will be provided on acceptance. Paper currently under review
SceneSplat++: A Large Dataset and Comprehensive Benchmark for Language Gaussian Splatting
3D Gaussian Splatting (3DGS) serves as a highly performant and efficient encoding of scene geometry, appearance, and semantics. Moreover, grounding language in 3D scenes has proven to be an effective strategy for 3D scene understanding. Current Language Gaussian Splatting line of work fall into three main groups: (i) per-scene optimization-based, (ii) per-scene optimization-free, and (iii) generalizable approach. However, most of them are evaluated only on rendered 2D views of a handful of scenes and viewpoints close to the training views, limiting ability and insight into holistic 3D understanding. To address this gap, we propose the first large-scale benchmark that systematically assesses these three groups of methods directly in 3D space, evaluating on 1060 scenes across three indoor datasets and one outdoor dataset. Benchmark results demonstrate a clear advantage of the generalizable paradigm, particularly in relaxing the scene-specific limitation, enabling fast feed-forward inference on novel scenes, and achieving superior segmentation performance. We further introduce GaussianWorld-49K a carefully curated 3DGS dataset comprising around 49K diverse indoor and outdoor scenes obtained from multiple sources, with which we demonstrate the generalizable approach could harness strong data priors. Our codes, benchmark, and datasets will be made public to accelerate research in generalizable 3DGS scene understanding.
comment: 15 pages, codes, data and benchmark will be released
PhyBlock: A Progressive Benchmark for Physical Understanding and Planning via 3D Block Assembly
While vision-language models (VLMs) have demonstrated promising capabilities in reasoning and planning for embodied agents, their ability to comprehend physical phenomena, particularly within structured 3D environments, remains severely limited. To close this gap, we introduce PhyBlock, a progressive benchmark designed to assess VLMs on physical understanding and planning through robotic 3D block assembly tasks. PhyBlock integrates a novel four-level cognitive hierarchy assembly task alongside targeted Visual Question Answering (VQA) samples, collectively aimed at evaluating progressive spatial reasoning and fundamental physical comprehension, including object properties, spatial relationships, and holistic scene understanding. PhyBlock includes 2600 block tasks (400 assembly tasks, 2200 VQA tasks) and evaluates models across three key dimensions: partial completion, failure diagnosis, and planning robustness. We benchmark 21 state-of-the-art VLMs, highlighting their strengths and limitations in physically grounded, multi-step planning. Our empirical findings indicate that the performance of VLMs exhibits pronounced limitations in high-level planning and reasoning capabilities, leading to a notable decline in performance for the growing complexity of the tasks. Error analysis reveals persistent difficulties in spatial orientation and dependency reasoning. Surprisingly, chain-of-thought prompting offers minimal improvements, suggesting spatial tasks heavily rely on intuitive model comprehension. We position PhyBlock as a unified testbed to advance embodied reasoning, bridging vision-language understanding and real-world physical problem-solving.
TraGraph-GS: Trajectory Graph-based Gaussian Splatting for Arbitrary Large-Scale Scene Rendering
High-quality novel view synthesis for large-scale scenes presents a challenging dilemma in 3D computer vision. Existing methods typically partition large scenes into multiple regions, reconstruct a 3D representation using Gaussian splatting for each region, and eventually merge them for novel view rendering. They can accurately render specific scenes, yet they do not generalize effectively for two reasons: (1) rigid spatial partition techniques struggle with arbitrary camera trajectories, and (2) the merging of regions results in Gaussian overlap to distort texture details. To address these challenges, we propose TraGraph-GS, leveraging a trajectory graph to enable high-precision rendering for arbitrarily large-scale scenes. We present a spatial partitioning method for large-scale scenes based on graphs, which incorporates a regularization constraint to enhance the rendering of textures and distant objects, as well as a progressive rendering strategy to mitigate artifacts caused by Gaussian overlap. Experimental results demonstrate its superior performance both on four aerial and four ground datasets and highlight its remarkable efficiency: our method achieves an average improvement of 1.86 dB in PSNR on aerial datasets and 1.62 dB on ground datasets compared to state-of-the-art approaches.
ClimateViz: A Benchmark for Statistical Reasoning and Fact Verification on Scientific Charts
Scientific fact-checking has mostly focused on text and tables, overlooking scientific charts, which are key for presenting quantitative evidence and statistical reasoning. We introduce ClimateViz, the first large-scale benchmark for scientific fact-checking using expert-curated scientific charts. ClimateViz contains 49,862 claims linked to 2,896 visualizations, each labeled as support, refute, or not enough information. To improve interpretability, each example includes structured knowledge graph explanations covering trends, comparisons, and causal relations. We evaluate state-of-the-art multimodal language models, including both proprietary and open-source systems, in zero-shot and few-shot settings. Results show that current models struggle with chart-based reasoning: even the best systems, such as Gemini 2.5 and InternVL 2.5, reach only 76.2 to 77.8 percent accuracy in label-only settings, far below human performance (89.3 and 92.7 percent). Explanation-augmented outputs improve performance in some models. We released our dataset and code alongside the paper.
ArrowPose: Segmentation, Detection, and 5 DoF Pose Estimation Network for Colorless Point Clouds
This paper presents a fast detection and 5 DoF (Degrees of Freedom) pose estimation network for colorless point clouds. The pose estimation is calculated from center and top points of the object, predicted by the neural network. The network is trained on synthetic data, and tested on a benchmark dataset, where it demonstrates state-of-the-art performance and outperforms all colorless methods. The network is able to run inference in only 250 milliseconds making it usable in many scenarios. Project page with code at arrowpose.github.io
comment: 6 pages, 5 figures, 4 tables
MoSiC: Optimal-Transport Motion Trajectory for Dense Self-Supervised Learning
Dense self-supervised learning has shown great promise for learning pixel- and patch-level representations, but extending it to videos remains challenging due to the complexity of motion dynamics. Existing approaches struggle as they rely on static augmentations that fail under object deformations, occlusions, and camera movement, leading to inconsistent feature learning over time. We propose a motion-guided self-supervised learning framework that clusters dense point tracks to learn spatiotemporally consistent representations. By leveraging an off-the-shelf point tracker, we extract long-range motion trajectories and optimize feature clustering through a momentum-encoder-based optimal transport mechanism. To ensure temporal coherence, we propagate cluster assignments along tracked points, enforcing feature consistency across views despite viewpoint changes. Integrating motion as an implicit supervisory signal, our method learns representations that generalize across frames, improving robustness in dynamic scenes and challenging occlusion scenarios. By initializing from strong image-pretrained models and leveraging video data for training, we improve state-of-the-art by 1% to 6% on six image and video datasets and four evaluation benchmarks. The implementation is publicly available at our GitHub repository: https://github.com/SMSD75/MoSiC/tree/main
comment: preprint
VReST: Enhancing Reasoning in Large Vision-Language Models through Tree Search and Self-Reward Mechanism ACL 2025
Large Vision-Language Models (LVLMs) have shown exceptional performance in multimodal tasks, but their effectiveness in complex visual reasoning is still constrained, especially when employing Chain-of-Thought prompting techniques. In this paper, we propose VReST, a novel training-free approach that enhances Reasoning in LVLMs through Monte Carlo Tree Search and Self-Reward mechanisms. VReST meticulously traverses the reasoning landscape by establishing a search tree, where each node encapsulates a reasoning step, and each path delineates a comprehensive reasoning sequence. Our innovative multimodal Self-Reward mechanism assesses the quality of reasoning steps by integrating the utility of sub-questions, answer correctness, and the relevance of vision-language clues, all without the need for additional models. VReST surpasses current prompting methods and secures state-of-the-art performance across three multimodal mathematical reasoning benchmarks. Furthermore, it substantiates the efficacy of test-time scaling laws in multimodal tasks, offering a promising direction for future research.
comment: Accepted by ACL 2025 main
CanadaFireSat: Toward high-resolution wildfire forecasting with multiple modalities
Canada experienced in 2023 one of the most severe wildfire seasons in recent history, causing damage across ecosystems, destroying communities, and emitting large quantities of CO2. This extreme wildfire season is symptomatic of a climate-change-induced increase in the length and severity of the fire season that affects the boreal ecosystem. Therefore, it is critical to empower wildfire management in boreal communities with better mitigation solutions. Wildfire probability maps represent an important tool for understanding the likelihood of wildfire occurrence and the potential severity of future wildfires. The massive increase in the availability of Earth observation data has enabled the development of deep learning-based wildfire forecasting models, aiming at providing precise wildfire probability maps at different spatial and temporal scales. A main limitation of such methods is their reliance on coarse-resolution environmental drivers and satellite products, leading to wildfire occurrence prediction of reduced resolution, typically around $\sim 0.1${\deg}. This paper presents a benchmark dataset: CanadaFireSat, and baseline methods for high-resolution: 100 m wildfire forecasting across Canada, leveraging multi-modal data from high-resolution multi-spectral satellite images (Sentinel-2 L1C), mid-resolution satellite products (MODIS), and environmental factors (ERA5 reanalysis data). Our experiments consider two major deep learning architectures. We observe that using multi-modal temporal inputs outperforms single-modal temporal inputs across all metrics, achieving a peak performance of 60.3% in F1 score for the 2023 wildfire season, a season never seen during model training. This demonstrates the potential of multi-modal deep learning models for wildfire forecasting at high-resolution and continental scale.
comment: 34 pages, 11 figures
ATAS: Any-to-Any Self-Distillation for Enhanced Open-Vocabulary Dense Prediction
Vision-language models such as CLIP have recently propelled open-vocabulary dense prediction tasks by enabling recognition of a broad range of visual concepts. However, CLIP still struggles with fine-grained, region-level understanding, hindering its effectiveness on these dense prediction tasks. We identify two pivotal factors required to address this limitation: semantic coherence and fine-grained vision-language alignment. Current adaptation methods often improve fine-grained alignment at the expense of semantic coherence, and often rely on extra modules or supervised fine-tuning. To overcome these issues, we propose Any-to-Any Self-Distillation (ATAS), a novel approach that simultaneously enhances semantic coherence and fine-grained alignment by leveraging own knowledge of a model across all representation levels. Unlike prior methods, ATAS uses only unlabeled images and an internal self-distillation process to refine representations of CLIP vision encoders, preserving local semantic consistency while sharpening local detail recognition. On open-vocabulary object detection and semantic segmentation benchmarks, ATAS achieves substantial performance gains, outperforming baseline CLIP models. These results validate the effectiveness of our approach and underscore the importance of jointly maintaining semantic coherence and fine-grained alignment for advanced open-vocabulary dense prediction.
MAMBO: High-Resolution Generative Approach for Mammography Images
Mammography is the gold standard for the detection and diagnosis of breast cancer. This procedure can be significantly enhanced with Artificial Intelligence (AI)-based software, which assists radiologists in identifying abnormalities. However, training AI systems requires large and diverse datasets, which are often difficult to obtain due to privacy and ethical constraints. To address this issue, the paper introduces MAMmography ensemBle mOdel (MAMBO), a novel patch-based diffusion approach designed to generate full-resolution mammograms. Diffusion models have shown breakthrough results in realistic image generation, yet few studies have focused on mammograms, and none have successfully generated high-resolution outputs required to capture fine-grained features of small lesions. To achieve this, MAMBO integrates separate diffusion models to capture both local and global (image-level) contexts. The contextual information is then fed into the final patch-based model, significantly aiding the noise removal process. This thoughtful design enables MAMBO to generate highly realistic mammograms of up to 3840x3840 pixels. Importantly, this approach can be used to enhance the training of classification models and extended to anomaly detection. Experiments, both numerical and radiologist validation, assess MAMBO's capabilities in image generation, super-resolution, and anomaly detection, highlighting its potential to enhance mammography analysis for more accurate diagnoses and earlier lesion detection.
comment: 21 pages, 14 figures, 7 tables
LLaVA-c: Continual Improved Visual Instruction Tuning
Multimodal models like LLaVA-1.5 achieve state-of-the-art visual understanding through visual instruction tuning on multitask datasets, enabling strong instruction-following and multimodal performance. However, multitask learning faces challenges such as task balancing, requiring careful adjustment of data proportions, and expansion costs, where new tasks risk catastrophic forgetting and need costly retraining. Continual learning provides a promising alternative to acquiring new knowledge incrementally while preserving existing capabilities. However, current methods prioritize task-specific performance, neglecting base model degradation from overfitting to specific instructions, which undermines general capabilities. In this work, we propose a simple but effective method with two modifications on LLaVA-1.5: spectral-aware consolidation for improved task balance and unsupervised inquiry regularization to prevent base model degradation. We evaluate both general and task-specific performance across continual pretraining and fine-tuning. Experiments demonstrate that LLaVA-c consistently enhances standard benchmark performance and preserves general capabilities. For the first time, we show that task-by-task continual learning can achieve results that match or surpass multitask joint learning. The code will be publicly released.
Beyond Calibration: Physically Informed Learning for Raw-to-Raw Mapping
Achieving consistent color reproduction across multiple cameras is essential for seamless image fusion and Image Processing Pipeline (ISP) compatibility in modern devices, but it is a challenging task due to variations in sensors and optics. Existing raw-to-raw conversion methods face limitations such as poor adaptability to changing illumination, high computational costs, or impractical requirements such as simultaneous camera operation and overlapping fields-of-view. We introduce the Neural Physical Model (NPM), a lightweight, physically-informed approach that simulates raw images under specified illumination to estimate transformations between devices. The NPM effectively adapts to varying illumination conditions, can be initialized with physical measurements, and supports training with or without paired data. Experiments on public datasets like NUS and BeyondRGB demonstrate that NPM outperforms recent state-of-the-art methods, providing robust chromatic consistency across different sensors and optical systems.
Enhancing Video Memorability Prediction with Text-Motion Cross-modal Contrastive Loss and Its Application in Video Summarization
Video memorability refers to the ability of videos to be recalled after viewing, playing a crucial role in creating content that remains memorable. Existing models typically focus on extracting multimodal features to predict video memorability scores but often fail to fully utilize motion cues. The representation of motion features is compromised during the fine-tuning phase of the motion feature extractor due to a lack of labeled data. In this paper, we introduce the Text-Motion Cross-modal Contrastive Loss (TMCCL), a multimodal video memorability prediction model designed to enhance the representation of motion features. We tackle the challenge of improving motion feature representation by leveraging text description similarities across videos to establish positive and negative motion sample sets for a given target. This enhancement allows the model to learn similar feature representations for semantically related motion content, resulting in more accurate memorability predictions. Our model achieves state-of-the-art performance on two video memorability prediction datasets. Moreover, the potential applications of video memorability prediction have been underexplored. To address this gap, we present Memorability Weighted Correction for Video Summarization (MWCVS), using video memorability prediction to reduce subjectivity in video summarization labels. Experimental results on two video summarization datasets demonstrate the effectiveness of MWCVS, showcasing the promising applications of video memorability prediction.
Time Series Representations for Classification Lie Hidden in Pretrained Vision Transformers
Time series classification is a fundamental task in healthcare and industry, yet the development of time series foundation models (TSFMs) remains limited by the scarcity of publicly available time series datasets. In this work, we propose Time Vision Transformer (TiViT), a framework that converts time series into images to leverage the representational power of frozen Vision Transformers (ViTs) pretrained on large-scale image datasets. First, we theoretically motivate our approach by analyzing the 2D patching of ViTs for time series, showing that it can increase the number of label-relevant tokens and reduce the sample complexity. Second, we empirically demonstrate that TiViT achieves state-of-the-art performance on standard time series classification benchmarks by utilizing the hidden representations of large OpenCLIP models. We explore the structure of TiViT representations and find that intermediate layers with high intrinsic dimension are the most effective for time series classification. Finally, we assess the alignment between TiViT and TSFM representation spaces and identify a strong complementarity, with further performance gains achieved by combining their features. Our findings reveal yet another direction for reusing vision representations in a non-visual domain.
Orientation Matters: Making 3D Generative Models Orientation-Aligned
Humans intuitively perceive object shape and orientation from a single image, guided by strong priors about canonical poses. However, existing 3D generative models often produce misaligned results due to inconsistent training data, limiting their usability in downstream tasks. To address this gap, we introduce the task of orientation-aligned 3D object generation: producing 3D objects from single images with consistent orientations across categories. To facilitate this, we construct Objaverse-OA, a dataset of 14,832 orientation-aligned 3D models spanning 1,008 categories. Leveraging Objaverse-OA, we fine-tune two representative 3D generative models based on multi-view diffusion and 3D variational autoencoder frameworks to produce aligned objects that generalize well to unseen objects across various categories. Experimental results demonstrate the superiority of our method over post-hoc alignment approaches. Furthermore, we showcase downstream applications enabled by our aligned object generation, including zero-shot object orientation estimation via analysis-by-synthesis and efficient arrow-based object rotation manipulation.
comment: Project Page: https://xdimlab.github.io/Orientation_Matters
SurfR: Surface Reconstruction with Multi-scale Attention 3DV 2025
We propose a fast and accurate surface reconstruction algorithm for unorganized point clouds using an implicit representation. Recent learning methods are either single-object representations with small neural models that allow for high surface details but require per-object training or generalized representations that require larger models and generalize to newer shapes but lack details, and inference is slow. We propose a new implicit representation for general 3D shapes that is faster than all the baselines at their optimum resolution, with only a marginal loss in performance compared to the state-of-the-art. We achieve the best accuracy-speed trade-off using three key contributions. Many implicit methods extract features from the point cloud to classify whether a query point is inside or outside the object. First, to speed up the reconstruction, we show that this feature extraction does not need to use the query point at an early stage (lazy query). Second, we use a parallel multi-scale grid representation to develop robust features for different noise levels and input resolutions. Finally, we show that attention across scales can provide improved reconstruction results.
comment: Accepted in 3DV 2025
MOSAIC-F: A Framework for Enhancing Students' Oral Presentation Skills through Personalized Feedback
In this article, we present a novel multimodal feedback framework called MOSAIC-F, an acronym for a data-driven Framework that integrates Multimodal Learning Analytics (MMLA), Observations, Sensors, Artificial Intelligence (AI), and Collaborative assessments for generating personalized feedback on student learning activities. This framework consists of four key steps. First, peers and professors' assessments are conducted through standardized rubrics (that include both quantitative and qualitative evaluations). Second, multimodal data are collected during learning activities, including video recordings, audio capture, gaze tracking, physiological signals (heart rate, motion data), and behavioral interactions. Third, personalized feedback is generated using AI, synthesizing human-based evaluations and data-based multimodal insights such as posture, speech patterns, stress levels, and cognitive load, among others. Finally, students review their own performance through video recordings and engage in self-assessment and feedback visualization, comparing their own evaluations with peers and professors' assessments, class averages, and AI-generated recommendations. By combining human-based and data-based evaluation techniques, this framework enables more accurate, personalized and actionable feedback. We tested MOSAIC-F in the context of improving oral presentation skills.
comment: Accepted in LASI Spain 25: Learning Analytics Summer Institute Spain 2025
RoboSwap: A GAN-driven Video Diffusion Framework For Unsupervised Robot Arm Swapping
Recent advancements in generative models have revolutionized video synthesis and editing. However, the scarcity of diverse, high-quality datasets continues to hinder video-conditioned robotic learning, limiting cross-platform generalization. In this work, we address the challenge of swapping a robotic arm in one video with another: a key step for crossembodiment learning. Unlike previous methods that depend on paired video demonstrations in the same environmental settings, our proposed framework, RoboSwap, operates on unpaired data from diverse environments, alleviating the data collection needs. RoboSwap introduces a novel video editing pipeline integrating both GANs and diffusion models, combining their isolated advantages. Specifically, we segment robotic arms from their backgrounds and train an unpaired GAN model to translate one robotic arm to another. The translated arm is blended with the original video background and refined with a diffusion model to enhance coherence, motion realism and object interaction. The GAN and diffusion stages are trained independently. Our experiments demonstrate that RoboSwap outperforms state-of-the-art video and image editing models on three benchmarks in terms of both structural coherence and motion consistency, thereby offering a robust solution for generating reliable, cross-embodiment data in robotic learning.
ECMNet:Lightweight Semantic Segmentation with Efficient CNN-Mamba Network
In the past decade, Convolutional Neural Networks (CNNs) and Transformers have achieved wide applicaiton in semantic segmentation tasks. Although CNNs with Transformer models greatly improve performance, the global context modeling remains inadequate. Recently, Mamba achieved great potential in vision tasks, showing its advantages in modeling long-range dependency. In this paper, we propose a lightweight Efficient CNN-Mamba Network for semantic segmentation, dubbed as ECMNet. ECMNet combines CNN with Mamba skillfully in a capsule-based framework to address their complementary weaknesses. Specifically, We design a Enhanced Dual-Attention Block (EDAB) for lightweight bottleneck. In order to improve the representations ability of feature, We devise a Multi-Scale Attention Unit (MSAU) to integrate multi-scale feature aggregation, spatial aggregation and channel aggregation. Moreover, a Mamba enhanced Feature Fusion Module (FFM) merges diverse level feature, significantly enhancing segmented accuracy. Extensive experiments on two representative datasets demonstrate that the proposed model excels in accuracy and efficiency balance, achieving 70.6% mIoU on Cityscapes and 73.6% mIoU on CamVid test datasets, with 0.87M parameters and 8.27G FLOPs on a single RTX 3090 GPU platform.
comment: 16 pages, 2 figures, 4 tables
Biologically Inspired Deep Learning Approaches for Fetal Ultrasound Image Classification
Accurate classification of second-trimester fetal ultrasound images remains challenging due to low image quality, high intra-class variability, and significant class imbalance. In this work, we introduce a simple yet powerful, biologically inspired deep learning ensemble framework that-unlike prior studies focused on only a handful of anatomical targets-simultaneously distinguishes 16 fetal structures. Drawing on the hierarchical, modular organization of biological vision systems, our model stacks two complementary branches (a "shallow" path for coarse, low-resolution cues and a "detailed" path for fine, high-resolution features), concatenating their outputs for final prediction. To our knowledge, no existing method has addressed such a large number of classes with a comparably lightweight architecture. We trained and evaluated on 5,298 routinely acquired clinical images (annotated by three experts and reconciled via Dawid-Skene), reflecting real-world noise and variability rather than a "cleaned" dataset. Despite this complexity, our ensemble (EfficientNet-B0 + EfficientNet-B6 with LDAM-Focal loss) identifies 90% of organs with accuracy > 0.75 and 75% of organs with accuracy > 0.85-performance competitive with more elaborate models applied to far fewer categories. These results demonstrate that biologically inspired modular stacking can yield robust, scalable fetal anatomy recognition in challenging clinical settings.
comment: 16 pages, 2 figures, 3 tables
A Probability-guided Sampler for Neural Implicit Surface Rendering ECCV 2024
Several variants of Neural Radiance Fields (NeRFs) have significantly improved the accuracy of synthesized images and surface reconstruction of 3D scenes/objects. In all of these methods, a key characteristic is that none can train the neural network with every possible input data, specifically, every pixel and potential 3D point along the projection rays due to scalability issues. While vanilla NeRFs uniformly sample both the image pixels and 3D points along the projection rays, some variants focus only on guiding the sampling of the 3D points along the projection rays. In this paper, we leverage the implicit surface representation of the foreground scene and model a probability density function in a 3D image projection space to achieve a more targeted sampling of the rays toward regions of interest, resulting in improved rendering. Additionally, a new surface reconstruction loss is proposed for improved performance. This new loss fully explores the proposed 3D image projection space model and incorporates near-to-surface and empty space components. By integrating our novel sampling strategy and novel loss into current state-of-the-art neural implicit surface renderers, we achieve more accurate and detailed 3D reconstructions and improved image rendering, especially for the regions of interest in any given scene.
comment: Accepted in ECCV 2024
HSG-12M: A Large-Scale Spatial Multigraph Dataset
Existing graph benchmarks assume non-spatial, simple edges, collapsing physically distinct paths into a single link. We introduce HSG-12M, the first large-scale dataset of $\textbf{spatial multigraphs}-$graphs embedded in a metric space where multiple geometrically distinct trajectories between two nodes are retained as separate edges. HSG-12M contains 11.6 million static and 5.1 million dynamic $\textit{Hamiltonian spectral graphs}$ across 1401 characteristic-polynomial classes, derived from 177 TB of spectral potential data. Each graph encodes the full geometry of a 1-D crystal's energy spectrum on the complex plane, producing diverse, physics-grounded topologies that transcend conventional node-coordinate datasets. To enable future extensions, we release $\texttt{Poly2Graph}$: a high-performance, open-source pipeline that maps arbitrary 1-D crystal Hamiltonians to spectral graphs. Benchmarks with popular GNNs expose new challenges in learning from multi-edge geometry at scale. Beyond its practical utility, we show that spectral graphs serve as universal topological fingerprints of polynomials, vectors, and matrices, forging a new algebra-to-graph link. HSG-12M lays the groundwork for geometry-aware graph learning and new opportunities of data-driven scientific discovery in condensed matter physics and beyond.
comment: 39 pages, 13 figures, 3 tables. Code & pipeline: [https://github.com/sarinstein-yan/Poly2Graph] Dataset: [https://github.com/sarinstein-yan/HSG-12M] Dataset released under CC BY 4.0
SAMSelect: A Spectral Index Search for Marine Debris Visualization using Segment Anything
This work proposes SAMSelect, an algorithm to obtain a salient three-channel visualization for multispectral images. We develop SAMSelect and show its use for marine scientists visually interpreting floating marine debris in Sentinel-2 imagery. These debris are notoriously difficult to visualize due to their compositional heterogeneity in medium-resolution imagery. Out of these difficulties, a visual interpretation of imagery showing marine debris remains a common practice by domain experts, who select bands and spectral indices on a case-by-case basis informed by common practices and heuristics. SAMSelect selects the band or index combination that achieves the best classification accuracy on a small annotated dataset through the Segment Anything Model. Its central assumption is that the three-channel visualization achieves the most accurate segmentation results also provide good visual information for photo-interpretation. We evaluate SAMSelect in three Sentinel-2 scenes containing generic marine debris in Accra, Ghana, and Durban, South Africa, and deployed plastic targets from the Plastic Litter Project. This reveals the potential of new previously unused band combinations (e.g., a normalized difference index of B8, B2), which demonstrate improved performance compared to literature-based indices. We describe the algorithm in this paper and provide an open-source code repository that will be helpful for domain scientists doing visual photo interpretation, especially in the marine field.
Data-Efficient Challenges in Visual Inductive Priors: A Retrospective
Deep Learning requires large amounts of data to train models that work well. In data-deficient settings, performance can be degraded. We investigate which Deep Learning methods benefit training models in a data-deficient setting, by organizing the "VIPriors: Visual Inductive Priors for Data-Efficient Deep Learning" workshop series, featuring four editions of data-impaired challenges. These challenges address the problem of training deep learning models for computer vision tasks with limited data. Participants are limited to training models from scratch using a low number of training samples and are not allowed to use any form of transfer learning. We aim to stimulate the development of novel approaches that incorporate prior knowledge to improve the data efficiency of deep learning models. Successful challenge entries make use of large model ensembles that mix Transformers and CNNs, as well as heavy data augmentation. Novel prior knowledge-based methods contribute to success in some entries.
Towards Class-wise Fair Adversarial Training via Anti-Bias Soft Label Distillation
Adversarial Training (AT) is widely recognized as an effective approach to enhance the adversarial robustness of Deep Neural Networks. As a variant of AT, Adversarial Robustness Distillation (ARD) has shown outstanding performance in enhancing the robustness of small models. However, both AT and ARD face robust fairness issue: these models tend to display strong adversarial robustness against some classes (easy classes) while demonstrating weak adversarial robustness against others (hard classes). This paper explores the underlying factors of this problem and points out the smoothness degree of soft labels for different classes significantly impacts the robust fairness from both empirical observation and theoretical analysis. Based on the above exploration, we propose Anti-Bias Soft Label Distillation (ABSLD) within the Knowledge Distillation framework to enhance the adversarial robust fairness. Specifically, ABSLD adaptively reduces the student's error risk gap between different classes, which is accomplished by adjusting the class-wise smoothness degree of teacher's soft labels during the training process, and the adjustment is managed by assigning varying temperatures to different classes. Additionally, as a label-based approach, ABSLD is highly adaptable and can be integrated with the sample-based methods. Extensive experiments demonstrate ABSLD outperforms state-of-the-art methods on the comprehensive performance of robustness and fairness.
comment: arXiv admin note: text overlap with arXiv:2312.05508
Transformers Meet Hyperspectral Imaging: A Comprehensive Study of Models, Challenges and Open Problems
Transformers have become the architecture of choice for learning long-range dependencies, yet their adoption in hyperspectral imaging (HSI) is still emerging. We reviewed more than 300 papers published up to 2025 and present the first end-to-end survey dedicated to Transformer-based HSI classification. The study categorizes every stage of a typical pipeline-pre-processing, patch or pixel tokenization, positional encoding, spatial-spectral feature extraction, multi-head self-attention variants, skip connections, and loss design-and contrasts alternative design choices with the unique spatial-spectral properties of HSI. We map the field's progress against persistent obstacles: scarce labeled data, extreme spectral dimensionality, computational overhead, and limited model explainability. Finally, we outline a research agenda prioritizing valuable public data sets, lightweight on-edge models, illumination and sensor shifts robustness, and intrinsically interpretable attention mechanisms. Our goal is to guide researchers in selecting, combining, or extending Transformer components that are truly fit for purpose for next-generation HSI applications.
Diversity-Guided MLP Reduction for Efficient Large Vision Transformers
Transformer models achieve excellent scaling property, where the performance is improved with the increment of model capacity. However, large-scale model parameters lead to an unaffordable cost of computing and memory. We analyze popular transformer architectures and find that multilayer perceptron (MLP) modules take up the majority of model parameters. To this end, we focus on the recoverability of the compressed models and propose a Diversity-Guided MLP Reduction (DGMR) method to significantly reduce the parameters of large vision transformers with only negligible performance degradation. Specifically, we conduct a Gram-Schmidt weight pruning strategy to eliminate redundant neurons of MLP hidden layer, while preserving weight diversity for better performance recover during distillation. Compared to the model trained from scratch, our pruned model only requires 0.06\% data of LAION-2B (for the training of large vision transformers) without labels (ImageNet-1K) to recover the original performance. Experimental results on several state-of-the-art large vision transformers demonstrate that our method achieves a more than 57.0\% parameter and FLOPs reduction in a near lossless manner. Notably, for EVA-CLIP-E (4.4B), our method accomplishes a 71.5\% parameter and FLOPs reduction without performance degradation. The source code and trained weights are available at https://github.com/visresearch/DGMR.
Generating Vision-Language Navigation Instructions Incorporated Fine-Grained Alignment Annotations
Vision-Language Navigation (VLN) enables intelligent agents to navigate environments by integrating visual perception and natural language instructions, yet faces significant challenges due to the scarcity of fine-grained cross-modal alignment annotations. Existing datasets primarily focus on global instruction-trajectory matching, neglecting sub-instruction-level and entity-level alignments critical for accurate navigation action decision-making. To address this limitation, we propose FCA-NIG, a generative framework that automatically constructs navigation instructions with dual-level fine-grained cross-modal annotations. In this framework, an augmented trajectory is first divided into sub-trajectories, which are then processed through GLIP-based landmark detection, crafted instruction construction, OFA-Speaker based R2R-like instruction generation, and CLIP-powered entity selection, generating sub-instruction-trajectory pairs with entity-landmark annotations. Finally, these sub-pairs are aggregated to form a complete instruction-trajectory pair. The framework generates the FCA-R2R dataset, the first large-scale augmentation dataset featuring precise sub-instruction-sub-trajectory and entity-landmark alignments. Extensive experiments demonstrate that training with FCA-R2R significantly improves the performance of multiple state-of-the-art VLN agents, including SF, EnvDrop, RecBERT, and HAMT. Incorporating sub-instruction-trajectory alignment enhances agents' state awareness and decision accuracy, while entity-landmark alignment further boosts navigation performance and generalization. These results highlight the effectiveness of FCA-NIG in generating high-quality, scalable training data without manual annotation, advancing fine-grained cross-modal learning in complex navigation tasks.
Hierarchical Neural Collapse Detection Transformer for Class Incremental Object Detection
Recently, object detection models have witnessed notable performance improvements, particularly with transformer-based models. However, new objects frequently appear in the real world, requiring detection models to continually learn without suffering from catastrophic forgetting. Although Incremental Object Detection (IOD) has emerged to address this challenge, these existing models are still not practical due to their limited performance and prolonged inference time. In this paper, we introduce a novel framework for IOD, called Hier-DETR: Hierarchical Neural Collapse Detection Transformer, ensuring both efficiency and competitive performance by leveraging Neural Collapse for imbalance dataset and Hierarchical relation of classes' labels.
Towards Cross-Subject EMG Pattern Recognition via Dual-Branch Adversarial Feature Disentanglement
Cross-subject electromyography (EMG) pattern recognition faces significant challenges due to inter-subject variability in muscle anatomy, electrode placement, and signal characteristics. Traditional methods rely on subject-specific calibration data to adapt models to new users, an approach that is both time-consuming and impractical for large-scale, real-world deployment. This paper presents an approach to eliminate calibration requirements through feature disentanglement, enabling effective cross-subject generalization. We propose an end-to-end dual-branch adversarial neural network that simultaneously performs pattern recognition and individual identification by disentangling EMG features into pattern-specific and subject-specific components. The pattern-specific components facilitate robust pattern recognition for new users without model calibration, while the subject-specific components enable downstream applications such as task-invariant biometric identification. Experimental results demonstrate that the proposed model achieves robust performance on data from unseen users, outperforming various baseline methods in cross-subject scenarios. Overall, this study offers a new perspective for cross-subject EMG pattern recognition without model calibration and highlights the proposed model's potential for broader applications, such as task-independent biometric systems.
comment: 6 pages, 3 figures. This work has been accepted for presentation at the IEEE Engineering in Medicine and Biology Conference (EMBC) 2025
From Pixels to Graphs: using Scene and Knowledge Graphs for HD-EPIC VQA Challenge
This report presents SceneNet and KnowledgeNet, our approaches developed for the HD-EPIC VQA Challenge 2025. SceneNet leverages scene graphs generated with a multi-modal large language model (MLLM) to capture fine-grained object interactions, spatial relationships, and temporally grounded events. In parallel, KnowledgeNet incorporates ConceptNet's external commonsense knowledge to introduce high-level semantic connections between entities, enabling reasoning beyond directly observable visual evidence. Each method demonstrates distinct strengths across the seven categories of the HD-EPIC benchmark, and their combination within our framework results in an overall accuracy of 44.21% on the challenge, highlighting its effectiveness for complex egocentric VQA tasks.
comment: Technical report for the HD-EPIC VQA Challenge 2025 (1st place)
Convergence of Spectral Principal Paths: How Deep Networks Distill Linear Representations from Noisy Inputs
High-level representations have become a central focus in enhancing AI transparency and control, shifting attention from individual neurons or circuits to structured semantic directions that align with human-interpretable concepts. Motivated by the Linear Representation Hypothesis (LRH), we propose the Input-Space Linearity Hypothesis (ISLH), which posits that concept-aligned directions originate in the input space and are selectively amplified with increasing depth. We then introduce the Spectral Principal Path (SPP) framework, which formalizes how deep networks progressively distill linear representations along a small set of dominant spectral directions. Building on this framework, we further demonstrate the multimodal robustness of these representations in Vision-Language Models (VLMs). By bridging theoretical insights with empirical validation, this work advances a structured theory of representation formation in deep networks, paving the way for improving AI robustness, fairness, and transparency.
comment: arXiv admin note: text overlap with arXiv:2503.22720
TrajFlow: Multi-modal Motion Prediction via Flow Matching
Efficient and accurate motion prediction is crucial for ensuring safety and informed decision-making in autonomous driving, particularly under dynamic real-world conditions that necessitate multi-modal forecasts. We introduce TrajFlow, a novel flow matching-based motion prediction framework that addresses the scalability and efficiency challenges of existing generative trajectory prediction methods. Unlike conventional generative approaches that employ i.i.d. sampling and require multiple inference passes to capture diverse outcomes, TrajFlow predicts multiple plausible future trajectories in a single pass, significantly reducing computational overhead while maintaining coherence across predictions. Moreover, we propose a ranking loss based on the Plackett-Luce distribution to improve uncertainty estimation of predicted trajectories. Additionally, we design a self-conditioning training technique that reuses the model's own predictions to construct noisy inputs during a second forward pass, thereby improving generalization and accelerating inference. Extensive experiments on the large-scale Waymo Open Motion Dataset (WOMD) demonstrate that TrajFlow achieves state-of-the-art performance across various key metrics, underscoring its effectiveness for safety-critical autonomous driving applications. The code and other details are available on the project website https://traj-flow.github.io/.
DCD: A Semantic Segmentation Model for Fetal Ultrasound Four-Chamber View
Accurate segmentation of anatomical structures in the apical four-chamber (A4C) view of fetal echocardiography is essential for early diagnosis and prenatal evaluation of congenital heart disease (CHD). However, precise segmentation remains challenging due to ultrasound artifacts, speckle noise, anatomical variability, and boundary ambiguity across different gestational stages. To reduce the workload of sonographers and enhance segmentation accuracy, we propose DCD, an advanced deep learning-based model for automatic segmentation of key anatomical structures in the fetal A4C view. Our model incorporates a Dense Atrous Spatial Pyramid Pooling (Dense ASPP) module, enabling superior multi-scale feature extraction, and a Convolutional Block Attention Module (CBAM) to enhance adaptive feature representation. By effectively capturing both local and global contextual information, DCD achieves precise and robust segmentation, contributing to improved prenatal cardiac assessment.
LiftVSR: Lifting Image Diffusion to Video Super-Resolution via Hybrid Temporal Modeling with Only 4$\times$RTX 4090s
Diffusion models have significantly advanced video super-resolution (VSR) by enhancing perceptual quality, largely through elaborately designed temporal modeling to ensure inter-frame consistency. However, existing methods usually suffer from limited temporal coherence and prohibitively high computational costs (e.g., typically requiring over 8 NVIDIA A100-80G GPUs), especially for long videos. In this work, we propose LiftVSR, an efficient VSR framework that leverages and elevates the image-wise diffusion prior from PixArt-$\alpha$, achieving state-of-the-art results using only 4$\times$RTX 4090 GPUs. To balance long-term consistency and efficiency, we introduce a hybrid temporal modeling mechanism that decomposes temporal learning into two complementary components: (i) Dynamic Temporal Attention (DTA) for fine-grained temporal modeling within short frame segment ($\textit{i.e.}$, low complexity), and (ii) Attention Memory Cache (AMC) for long-term temporal modeling across segments ($\textit{i.e.}$, consistency). Specifically, DTA identifies multiple token flows across frames within multi-head query and key tokens to warp inter-frame contexts in the value tokens. AMC adaptively aggregates historical segment information via a cache unit, ensuring long-term coherence with minimal overhead. To further stabilize the cache interaction during inference, we introduce an asymmetric sampling strategy that mitigates feature mismatches arising from different diffusion sampling steps. Extensive experiments on several typical VSR benchmarks have demonstrated that LiftVSR achieves impressive performance with significantly lower computational costs.
comment: Project page: https://kopperx.github.io/projects/liftvsr
Robust Visual Localization via Semantic-Guided Multi-Scale Transformer
Visual localization remains challenging in dynamic environments where fluctuating lighting, adverse weather, and moving objects disrupt appearance cues. Despite advances in feature representation, current absolute pose regression methods struggle to maintain consistency under varying conditions. To address this challenge, we propose a framework that synergistically combines multi-scale feature learning with semantic scene understanding. Our approach employs a hierarchical Transformer with cross-scale attention to fuse geometric details and contextual cues, preserving spatial precision while adapting to environmental changes. We improve the performance of this architecture with semantic supervision via neural scene representation during training, guiding the network to learn view-invariant features that encode persistent structural information while suppressing complex environmental interference. Experiments on TartanAir demonstrate that our approach outperforms existing pose regression methods in challenging scenarios with dynamic objects, illumination changes, and occlusions. Our findings show that integrating multi-scale processing with semantic guidance offers a promising strategy for robust visual localization in real-world dynamic environments.
Plug-and-Play Linear Attention for Pre-trained Image and Video Restoration Models
Multi-head self-attention (MHSA) has become a core component in modern computer vision models. However, its quadratic complexity with respect to input length poses a significant computational bottleneck in real-time and resource constrained environments. We propose PnP-Nystra, a Nystr\"om based linear approximation of self-attention, developed as a plug-and-play (PnP) module that can be integrated into the pre-trained image and video restoration models without retraining. As a drop-in replacement for MHSA, PnP-Nystra enables efficient acceleration in various window-based transformer architectures, including SwinIR, Uformer, and RVRT. Our experiments across diverse image and video restoration tasks, including denoising, deblurring, and super-resolution, demonstrate that PnP-Nystra achieves a 2-4x speed-up on an NVIDIA RTX 4090 GPU and a 2-5x speed-up on CPU inference. Despite these significant gains, the method incurs a maximum PSNR drop of only 1.5 dB across all evaluated tasks. To the best of our knowledge, we are the first to demonstrate a linear attention functioning as a training-free substitute for MHSA in restoration models.
comment: 6 pages, 1 pseudo-code, 3 figure panels, 2 plot panels, 7 tables, 24 references
FEDTAIL: Federated Long-Tailed Domain Generalization with Sharpness-Guided Gradient Matching ICML 2025
Domain Generalization (DG) seeks to train models that perform reliably on unseen target domains without access to target data during training. While recent progress in smoothing the loss landscape has improved generalization, existing methods often falter under long-tailed class distributions and conflicting optimization objectives. We introduce FedTAIL, a federated domain generalization framework that explicitly addresses these challenges through sharpness-guided, gradient-aligned optimization. Our method incorporates a gradient coherence regularizer to mitigate conflicts between classification and adversarial objectives, leading to more stable convergence. To combat class imbalance, we perform class-wise sharpness minimization and propose a curvature-aware dynamic weighting scheme that adaptively emphasizes underrepresented tail classes. Furthermore, we enhance conditional distribution alignment by integrating sharpness-aware perturbations into entropy regularization, improving robustness under domain shift. FedTAIL unifies optimization harmonization, class-aware regularization, and conditional alignment into a scalable, federated-compatible framework. Extensive evaluations across standard domain generalization benchmarks demonstrate that FedTAIL achieves state-of-the-art performance, particularly in the presence of domain shifts and label imbalance, validating its effectiveness in both centralized and federated settings. Code: https://github.com/sunnyinAI/FedTail
comment: Accepted at ICML 2025 Workshop on Collaborative and Federated Agentic Workflows CFAgentic @ ICML'25
MLVTG: Mamba-Based Feature Alignment and LLM-Driven Purification for Multi-Modal Video Temporal Grounding
Video Temporal Grounding (VTG), which aims to localize video clips corresponding to natural language queries, is a fundamental yet challenging task in video understanding. Existing Transformer-based methods often suffer from redundant attention and suboptimal multi-modal alignment. To address these limitations, we propose MLVTG, a novel framework that integrates two key modules: MambaAligner and LLMRefiner. MambaAligner uses stacked Vision Mamba blocks as a backbone instead of Transformers to model temporal dependencies and extract robust video representations for multi-modal alignment. LLMRefiner leverages the specific frozen layer of a pre-trained Large Language Model (LLM) to implicitly transfer semantic priors, enhancing multi-modal alignment without fine-tuning. This dual alignment strategy, temporal modeling via structured state-space dynamics and semantic purification via textual priors, enables more precise localization. Extensive experiments on QVHighlights, Charades-STA, and TVSum demonstrate that MLVTG achieves state-of-the-art performance and significantly outperforms existing baselines.
Context-aware TFL: A Universal Context-aware Contrastive Learning Framework for Temporal Forgery Localization
Most research efforts in the multimedia forensics domain have focused on detecting forgery audio-visual content and reached sound achievements. However, these works only consider deepfake detection as a classification task and ignore the case where partial segments of the video are tampered with. Temporal forgery localization (TFL) of small fake audio-visual clips embedded in real videos is still challenging and more in line with realistic application scenarios. To resolve this issue, we propose a universal context-aware contrastive learning framework (UniCaCLF) for TFL. Our approach leverages supervised contrastive learning to discover and identify forged instants by means of anomaly detection, allowing for the precise localization of temporal forged segments. To this end, we propose a novel context-aware perception layer that utilizes a heterogeneous activation operation and an adaptive context updater to construct a context-aware contrastive objective, which enhances the discriminability of forged instant features by contrasting them with genuine instant features in terms of their distances to the global context. An efficient context-aware contrastive coding is introduced to further push the limit of instant feature distinguishability between genuine and forged instants in a supervised sample-by-sample manner, suppressing the cross-sample influence to improve temporal forgery localization performance. Extensive experimental results over five public datasets demonstrate that our proposed UniCaCLF significantly outperforms the state-of-the-art competing algorithms.
Re-Thinking the Automatic Evaluation of Image-Text Alignment in Text-to-Image Models
Text-to-image models often struggle to generate images that precisely match textual prompts. Prior research has extensively studied the evaluation of image-text alignment in text-to-image generation. However, existing evaluations primarily focus on agreement with human assessments, neglecting other critical properties of a trustworthy evaluation framework. In this work, we first identify two key aspects that a reliable evaluation should address. We then empirically demonstrate that current mainstream evaluation frameworks fail to fully satisfy these properties across a diverse range of metrics and models. Finally, we propose recommendations for improving image-text alignment evaluation.
MARMOT: Masked Autoencoder for Modeling Transient Imaging
Pretrained models have demonstrated impressive success in many modalities such as language and vision. Recent works facilitate the pretraining paradigm in imaging research. Transients are a novel modality, which are captured for an object as photon counts versus arrival times using a precisely time-resolved sensor. In particular for non-line-of-sight (NLOS) scenarios, transients of hidden objects are measured beyond the sensor's direct line of sight. Using NLOS transients, the majority of previous works optimize volume density or surfaces to reconstruct the hidden objects and do not transfer priors learned from datasets. In this work, we present a masked autoencoder for modeling transient imaging, or MARMOT, to facilitate NLOS applications. Our MARMOT is a self-supervised model pretrianed on massive and diverse NLOS transient datasets. Using a Transformer-based encoder-decoder, MARMOT learns features from partially masked transients via a scanning pattern mask (SPM), where the unmasked subset is functionally equivalent to arbitrary sampling, and predicts full measurements. Pretrained on TransVerse-a synthesized transient dataset of 500K 3D models-MARMOT adapts to downstream imaging tasks using direct feature transfer or decoder finetuning. Comprehensive experiments are carried out in comparisons with state-of-the-art methods. Quantitative and qualitative results demonstrate the efficiency of our MARMOT.
Enhancing Motion Dynamics of Image-to-Video Models via Adaptive Low-Pass Guidance
Recent text-to-video (T2V) models have demonstrated strong capabilities in producing high-quality, dynamic videos. To improve the visual controllability, recent works have considered fine-tuning pre-trained T2V models to support image-to-video (I2V) generation. However, such adaptation frequently suppresses motion dynamics of generated outputs, resulting in more static videos compared to their T2V counterparts. In this work, we analyze this phenomenon and identify that it stems from the premature exposure to high-frequency details in the input image, which biases the sampling process toward a shortcut trajectory that overfits to the static appearance of the reference image. To address this, we propose adaptive low-pass guidance (ALG), a simple fix to the I2V model sampling procedure to generate more dynamic videos without compromising per-frame image quality. Specifically, ALG adaptively modulates the frequency content of the conditioning image by applying low-pass filtering at the early stage of denoising. Extensive experiments demonstrate that ALG significantly improves the temporal dynamics of generated videos, while preserving image fidelity and text alignment. Especially, under VBench-I2V test suite, ALG achieves an average improvement of 36% in dynamic degree without a significant drop in video quality or image fidelity.
comment: Preprint. Under review. Project page available at http://choi403.github.io/ALG
SakugaFlow: A Stagewise Illustration Framework Emulating the Human Drawing Process and Providing Interactive Tutoring for Novice Drawing Skills
While current AI illustration tools can generate high-quality images from text prompts, they rarely reveal the step-by-step procedure that human artists follow. We present SakugaFlow, a four-stage pipeline that pairs diffusion-based image generation with a large-language-model tutor. At each stage, novices receive real-time feedback on anatomy, perspective, and composition, revise any step non-linearly, and branch alternative versions. By exposing intermediate outputs and embedding pedagogical dialogue, SakugaFlow turns a black-box generator into a scaffolded learning environment that supports both creative exploration and skills acquisition.
comment: 5 pages, 1 figure; accepted as a paper to the Generative AI and HCI (GenAICHI) workshop at CHI 2025 (Yokohama, 27 Apr 2025)
Boosting Gradient Leakage Attacks: Data Reconstruction in Realistic FL Settings
Federated learning (FL) enables collaborative model training among multiple clients without the need to expose raw data. Its ability to safeguard privacy, at the heart of FL, has recently been a hot-button debate topic. To elaborate, several studies have introduced a type of attacks known as gradient leakage attacks (GLAs), which exploit the gradients shared during training to reconstruct clients' raw data. On the flip side, some literature, however, contends no substantial privacy risk in practical FL environments due to the effectiveness of such GLAs being limited to overly relaxed conditions, such as small batch sizes and knowledge of clients' data distributions. This paper bridges this critical gap by empirically demonstrating that clients' data can still be effectively reconstructed, even within realistic FL environments. Upon revisiting GLAs, we recognize that their performance failures stem from their inability to handle the gradient matching problem. To alleviate the performance bottlenecks identified above, we develop FedLeak, which introduces two novel techniques, partial gradient matching and gradient regularization. Moreover, to evaluate the performance of FedLeak in real-world FL environments, we formulate a practical evaluation protocol grounded in a thorough review of extensive FL literature and industry practices. Under this protocol, FedLeak can still achieve high-fidelity data reconstruction, thereby underscoring the significant vulnerability in FL systems and the urgent need for more effective defense methods.
comment: Accepted to Usenix Security 2025
Better Reasoning with Less Data: Enhancing VLMs Through Unified Modality Scoring
The application of visual instruction tuning and other post-training techniques has significantly enhanced the capabilities of Large Language Models (LLMs) in visual understanding, enriching Vision-Language Models (VLMs) with more comprehensive visual language datasets. However, the effectiveness of VLMs is highly dependent on large-scale, high-quality datasets that ensure precise recognition and accurate reasoning. Two key challenges hinder progress: (1) noisy alignments between images and the corresponding text, which leads to misinterpretation, and (2) ambiguous or misleading text, which obscures visual content. To address these challenges, we propose SCALE (Single modality data quality and Cross modality Alignment Evaluation), a novel quality-driven data selection pipeline for VLM instruction tuning datasets. Specifically, SCALE integrates a cross-modality assessment framework that first assigns each data entry to its appropriate vision-language task, generates general and task-specific captions (covering scenes, objects, style, etc.), and evaluates the alignment, clarity, task rarity, text coherence, and image clarity of each entry based on the generated captions. We reveal that: (1) current unimodal quality assessment methods evaluate one modality while overlooking the rest, which can underestimate samples essential for specific tasks and discard the lower-quality instances that help build model robustness; and (2) appropriately generated image captions provide an efficient way to transfer the image-text multimodal task into a unified text modality.
RadioDUN: A Physics-Inspired Deep Unfolding Network for Radio Map Estimation
The radio map represents the spatial distribution of spectrum resources within a region, supporting efficient resource allocation and interference mitigation. However, it is difficult to construct a dense radio map as a limited number of samples can be measured in practical scenarios. While existing works have used deep learning to estimate dense radio maps from sparse samples, they are hard to integrate with the physical characteristics of the radio map. To address this challenge, we cast radio map estimation as the sparse signal recovery problem. A physical propagation model is further incorporated to decompose the problem into multiple factor optimization sub-problems, thereby reducing recovery complexity. Inspired by the existing compressive sensing methods, we propose the Radio Deep Unfolding Network (RadioDUN) to unfold the optimization process, achieving adaptive parameter adjusting and prior fitting in a learnable manner. To account for the radio propagation characteristics, we develop a dynamic reweighting module (DRM) to adaptively model the importance of each factor for the radio map. Inspired by the shadowing factor in the physical propagation model, we integrate obstacle-related factors to express the obstacle-induced signal stochastic decay. The shadowing loss is further designed to constrain the factor prediction and act as a supplementary supervised objective, which enhances the performance of RadioDUN. Extensive experiments have been conducted to demonstrate that the proposed method outperforms the state-of-the-art methods. Our code will be made publicly available upon publication.
SECOND: Mitigating Perceptual Hallucination in Vision-Language Models via Selective and Contrastive Decoding
Despite significant advancements in Vision-Language Models (VLMs), the performance of existing VLMs remains hindered by object hallucination, a critical challenge to achieving accurate visual understanding. To address this issue, we propose SECOND: Selective and Contrastive Decoding, a novel approach that enables VLMs to effectively leverage multi-scale visual information with an object-centric manner, closely aligning with human visual perception. SECOND progressively selects and integrates multi-scale visual information, facilitating a more precise interpretation of images. By contrasting these visual information iteratively, SECOND significantly reduces perceptual hallucinations and outperforms a wide range of benchmarks. Our theoretical analysis and experiments highlight the largely unexplored potential of multi-scale application in VLMs, showing that prioritizing and contrasting across scales outperforms existing methods.
Image Demoiréing Using Dual Camera Fusion on Mobile Phones ICME 2025
When shooting electronic screens, moir\'e patterns usually appear in captured images, which seriously affects the image quality. Existing image demoir\'eing methods face great challenges in removing large and heavy moir\'e. To address the issue, we propose to utilize Dual Camera fusion for Image Demoir\'eing (DCID), \ie, using the ultra-wide-angle (UW) image to assist the moir\'e removal of wide-angle (W) image. This is inspired by two motivations: (1) the two lenses are commonly equipped with modern smartphones, (2) the UW image generally can provide normal colors and textures when moir\'e exists in the W image mainly due to their different focal lengths. In particular, we propose an efficient DCID method, where a lightweight UW image encoder is integrated into an existing demoir\'eing network and a fast two-stage image alignment manner is present. Moreover, we construct a large-scale real-world dataset with diverse mobile phones and monitors, containing about 9,000 samples. Experiments on the dataset show our method performs better than state-of-the-art methods. Code and dataset are available at https://github.com/Mrduckk/DCID.
comment: ICME 2025
MedMoE: Modality-Specialized Mixture of Experts for Medical Vision-Language Understanding
Different medical imaging modalities capture diagnostic information at varying spatial resolutions, from coarse global patterns to fine-grained localized structures. However, most existing vision-language frameworks in the medical domain apply a uniform strategy for local feature extraction, overlooking the modality-specific demands. In this work, we present MedMoE, a modular and extensible vision-language processing framework that dynamically adapts visual representation based on the diagnostic context. MedMoE incorporates a Mixture-of-Experts (MoE) module conditioned on the report type, which routes multi-scale image features through specialized expert branches trained to capture modality-specific visual semantics. These experts operate over feature pyramids derived from a Swin Transformer backbone, enabling spatially adaptive attention to clinically relevant regions. This framework produces localized visual representations aligned with textual descriptions, without requiring modality-specific supervision at inference. Empirical results on diverse medical benchmarks demonstrate that MedMoE improves alignment and retrieval performance across imaging modalities, underscoring the value of modality-specialized visual representations in clinical vision-language systems.
An Adaptive Method Stabilizing Activations for Enhanced Generalization
We introduce AdaAct, a novel optimization algorithm that adjusts learning rates according to activation variance. Our method enhances the stability of neuron outputs by incorporating neuron-wise adaptivity during the training process, which subsequently leads to better generalization -- a complementary approach to conventional activation regularization methods. Experimental results demonstrate AdaAct's competitive performance across standard image classification benchmarks. We evaluate AdaAct on CIFAR and ImageNet, comparing it with other state-of-the-art methods. Importantly, AdaAct effectively bridges the gap between the convergence speed of Adam and the strong generalization capabilities of SGD, all while maintaining competitive execution times. Code is available at https://github.com/hseung88/adaact.
How Much To Guide: Revisiting Adaptive Guidance in Classifier-Free Guidance Text-to-Vision Diffusion Models
With the rapid development of text-to-vision generation diffusion models, classifier-free guidance has emerged as the most prevalent method for conditioning. However, this approach inherently requires twice as many steps for model forwarding compared to unconditional generation, resulting in significantly higher costs. While previous study has introduced the concept of adaptive guidance, it lacks solid analysis and empirical results, making previous method unable to be applied to general diffusion models. In this work, we present another perspective of applying adaptive guidance and propose Step AG, which is a simple, universally applicable adaptive guidance strategy. Our evaluations focus on both image quality and image-text alignment. whose results indicate that restricting classifier-free guidance to the first several denoising steps is sufficient for generating high-quality, well-conditioned images, achieving an average speedup of 20% to 30%. Such improvement is consistent across different settings such as inference steps, and various models including video generation models, highlighting the superiority of our method.
Complex-Valued Holographic Radiance Fields
Modeling the full properties of light, including both amplitude and phase, in 3D representations is crucial for advancing physically plausible rendering, particularly in holographic displays. To support these features, we propose a novel representation that optimizes 3D scenes without relying on intensity-based intermediaries. We reformulate 3D Gaussian splatting with complex-valued Gaussian primitives, expanding support for rendering with light waves. By leveraging RGBD multi-view images, our method directly optimizes complex-valued Gaussians as a 3D holographic scene representation. This eliminates the need for computationally expensive hologram re-optimization. Compared with state-of-the-art methods, our method achieves 30x-10,000x speed improvements while maintaining on-par image quality, representing a first step towards geometrically aligned, physically plausible holographic scene representations.
comment: 28 pages, 21 figures
OneIG-Bench: Omni-dimensional Nuanced Evaluation for Image Generation
Text-to-image (T2I) models have garnered significant attention for generating high-quality images aligned with text prompts. However, rapid T2I model advancements reveal limitations in early benchmarks, lacking comprehensive evaluations, for example, the evaluation on reasoning, text rendering and style. Notably, recent state-of-the-art models, with their rich knowledge modeling capabilities, show promising results on the image generation problems requiring strong reasoning ability, yet existing evaluation systems have not adequately addressed this frontier. To systematically address these gaps, we introduce OneIG-Bench, a meticulously designed comprehensive benchmark framework for fine-grained evaluation of T2I models across multiple dimensions, including prompt-image alignment, text rendering precision, reasoning-generated content, stylization, and diversity. By structuring the evaluation, this benchmark enables in-depth analysis of model performance, helping researchers and practitioners pinpoint strengths and bottlenecks in the full pipeline of image generation. Specifically, OneIG-Bench enables flexible evaluation by allowing users to focus on a particular evaluation subset. Instead of generating images for the entire set of prompts, users can generate images only for the prompts associated with the selected dimension and complete the corresponding evaluation accordingly. Our codebase and dataset are now publicly available to facilitate reproducible evaluation studies and cross-model comparisons within the T2I research community.
ArchiLense: A Framework for Quantitative Analysis of Architectural Styles Based on Vision Large Language Models
Architectural cultures across regions are characterized by stylistic diversity, shaped by historical, social, and technological contexts in addition to geograph-ical conditions. Understanding architectural styles requires the ability to describe and analyze the stylistic features of different architects from various regions through visual observations of architectural imagery. However, traditional studies of architectural culture have largely relied on subjective expert interpretations and historical literature reviews, often suffering from regional biases and limited ex-planatory scope. To address these challenges, this study proposes three core contributions: (1) We construct a professional architectural style dataset named ArchDiffBench, which comprises 1,765 high-quality architectural images and their corresponding style annotations, collected from different regions and historical periods. (2) We propose ArchiLense, an analytical framework grounded in Vision-Language Models and constructed using the ArchDiffBench dataset. By integrating ad-vanced computer vision techniques, deep learning, and machine learning algo-rithms, ArchiLense enables automatic recognition, comparison, and precise classi-fication of architectural imagery, producing descriptive language outputs that ar-ticulate stylistic differences. (3) Extensive evaluations show that ArchiLense achieves strong performance in architectural style recognition, with a 92.4% con-sistency rate with expert annotations and 84.5% classification accuracy, effec-tively capturing stylistic distinctions across images. The proposed approach transcends the subjectivity inherent in traditional analyses and offers a more objective and accurate perspective for comparative studies of architectural culture.
SpatialLLM: A Compound 3D-Informed Design towards Spatially-Intelligent Large Multimodal Models CVPR 2025
Humans naturally understand 3D spatial relationships, enabling complex reasoning like predicting collisions of vehicles from different directions. Current large multimodal models (LMMs), however, lack of this capability of 3D spatial reasoning. This limitation stems from the scarcity of 3D training data and the bias in current model designs toward 2D data. In this paper, we systematically study the impact of 3D-informed data, architecture, and training setups, introducing SpatialLLM, a large multi-modal model with advanced 3D spatial reasoning abilities. To address data limitations, we develop two types of 3D-informed training datasets: (1) 3D-informed probing data focused on object's 3D location and orientation, and (2) 3D-informed conversation data for complex spatial relationships. Notably, we are the first to curate VQA data that incorporate 3D orientation relationships on real images. Furthermore, we systematically integrate these two types of training data with the architectural and training designs of LMMs, providing a roadmap for optimal design aimed at achieving superior 3D reasoning capabilities. Our SpatialLLM advances machines toward highly capable 3D-informed reasoning, surpassing GPT-4o performance by 8.7%. Our systematic empirical design and the resulting findings offer valuable insights for future research in this direction. Our project page is available at: https://3d-spatial-reasoning.github.io/spatial-llm/
comment: CVPR 2025 highlight
SpatialReasoner: Towards Explicit and Generalizable 3D Spatial Reasoning
Despite recent advances on multi-modal models, 3D spatial reasoning remains a challenging task for state-of-the-art open-source and proprietary models. Recent studies explore data-driven approaches and achieve enhanced spatial reasoning performance by fine-tuning models on 3D-related visual question-answering data. However, these methods typically perform spatial reasoning in an implicit manner and often fail on questions that are trivial to humans, even with long chain-of-thought reasoning. In this work, we introduce SpatialReasoner, a novel large vision-language model (LVLM) that addresses 3D spatial reasoning with explicit 3D representations shared between multiple stages--3D perception, computation, and reasoning. Explicit 3D representations provide a coherent interface that supports advanced 3D spatial reasoning and improves the generalization ability to novel question types. Furthermore, by analyzing the explicit 3D representations in multi-step reasoning traces of SpatialReasoner, we study the factual errors and identify key shortcomings of current LVLMs. Results show that our SpatialReasoner achieves improved performance on a variety of spatial reasoning benchmarks, outperforming Gemini 2.0 by 9.2% on 3DSRBench, and generalizes better when evaluating on novel 3D spatial reasoning questions. Our study bridges the 3D parsing capabilities of prior visual foundation models with the powerful reasoning abilities of large language models, opening new directions for 3D spatial reasoning.
comment: Project page: https://spatial-reasoner.github.io
SMCD: High Realism Motion Style Transfer via Mamba-based Diffusion
Motion style transfer is a significant research direction in the field of computer vision, enabling virtual digital humans to rapidly switch between different styles of the same motion, thereby significantly enhancing the richness and realism of movements. It has been widely applied in multimedia scenarios such as films, games, and the metaverse. However, most existing methods adopt a two-stream structure, which tends to overlook the intrinsic relationship between content and style motions, leading to information loss and poor alignment. Moreover, when handling long-range motion sequences, these methods fail to effectively learn temporal dependencies, ultimately resulting in unnatural generated motions. To address these limitations, we propose a Unified Motion Style Diffusion (UMSD) framework, which simultaneously extracts features from both content and style motions and facilitates sufficient information interaction. Additionally, we introduce the Motion Style Mamba (MSM) denoiser, the first approach in the field of motion style transfer to leverage Mamba's powerful sequence modelling capability. Better capturing temporal relationships generates more coherent stylized motion sequences. Third, we design a diffusion-based content consistency loss and a style consistency loss to constrain the framework, ensuring that it inherits the content motion while effectively learning the characteristics of the style motion. Finally, extensive experiments demonstrate that our method outperforms state-of-the-art (SOTA) methods qualitatively and quantitatively, achieving more realistic and coherent motion style transfer.
Multimodal Unsupervised Domain Generalization by Retrieving Across the Modality Gap
Domain generalization (DG) is an important problem that learns a model which generalizes to unseen test domains leveraging one or more source domains, under the assumption of shared label spaces. However, most DG methods assume access to abundant source data in the target label space, a requirement that proves overly stringent for numerous real-world applications, where acquiring the same label space as the target task is prohibitively expensive. For this setting, we tackle the multimodal version of the unsupervised domain generalization (MUDG) problem, which uses a large task-agnostic unlabeled source dataset during finetuning. Our framework does not explicitly assume any relationship between the source dataset and target task. Instead, it relies only on the premise that the source dataset can be accurately and efficiently searched in a joint vision-language space. We make three contributions in the MUDG setting. Firstly, we show theoretically that cross-modal approximate nearest neighbor search suffers from low recall due to the large distance between text queries and the image centroids used for coarse quantization. Accordingly, we propose paired k-means, a simple clustering algorithm that improves nearest neighbor recall by storing centroids in query space instead of image space. Secondly, we propose an adaptive text augmentation scheme for target labels designed to improve zero-shot accuracy and diversify retrieved image data. Lastly, we present two simple but effective components to further improve downstream target accuracy. We compare against state-of-the-art name-only transfer, source-free DG and zero-shot (ZS) methods on their respective benchmarks and show consistent improvement in accuracy on 20 diverse datasets. Code is available: https://github.com/Chris210634/mudg
Revisiting Reweighted Risk for Calibration: AURC, Focal Loss, and Inverse Focal Loss
Several variants of reweighted risk functionals, such as focal losss, inverse focal loss, and the Area Under the Risk-Coverage Curve (AURC), have been proposed in the literature and claims have been made in relation to their calibration properties. However, focal loss and inverse focal loss propose vastly different weighting schemes. In this paper, we revisit a broad class of weighted risk functions commonly used in deep learning and establish a principled connection between these reweighting schemes and calibration errors. We show that minimizing calibration error is closely linked to the selective classification paradigm and demonstrate that optimizing a regularized variant of the AURC naturally leads to improved calibration. This regularized AURC shares a similar reweighting strategy with inverse focal loss, lending support to the idea that focal loss is less principled when calibration is a desired outcome. Direct AURC optimization offers greater flexibility through the choice of confidence score functions (CSFs). To enable gradient-based optimization, we introduce a differentiable formulation of the regularized AURC using the SoftRank technique. Empirical evaluations demonstrate that our AURC-based loss achieves competitive class-wise calibration performance across a range of datasets and model architectures.
GigaSLAM: Large-Scale Monocular SLAM with Hierarchical Gaussian Splats
Tracking and mapping in large-scale, unbounded outdoor environments using only monocular RGB input presents substantial challenges for existing SLAM systems. Traditional Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS) SLAM methods are typically limited to small, bounded indoor settings. To overcome these challenges, we introduce GigaSLAM, the first RGB NeRF / 3DGS-based SLAM framework for kilometer-scale outdoor environments, as demonstrated on the KITTI, KITTI 360, 4 Seasons and A2D2 datasets. Our approach employs a hierarchical sparse voxel map representation, where Gaussians are decoded by neural networks at multiple levels of detail. This design enables efficient, scalable mapping and high-fidelity viewpoint rendering across expansive, unbounded scenes. For front-end tracking, GigaSLAM utilizes a metric depth model combined with epipolar geometry and PnP algorithms to accurately estimate poses, while incorporating a Bag-of-Words-based loop closure mechanism to maintain robust alignment over long trajectories. Consequently, GigaSLAM delivers high-precision tracking and visually faithful rendering on urban outdoor benchmarks, establishing a robust SLAM solution for large-scale, long-term scenarios, and significantly extending the applicability of Gaussian Splatting SLAM systems to unbounded outdoor environments. GitHub: https://github.com/DengKaiCQ/GigaSLAM.
k-NN as a Simple and Effective Estimator of Transferability
How well can one expect transfer learning to work in a new setting where the domain is shifted, the task is different, and the architecture changes? Many transfer learning metrics have been proposed to answer this question. But how accurate are their predictions in a realistic new setting? We conducted an extensive evaluation involving over 42,000 experiments comparing 23 transferability metrics across 16 different datasets to assess their ability to predict transfer performance. Our findings reveal that none of the existing metrics perform well across the board. However, we find that a simple k-nearest neighbor evaluation -- as is commonly used to evaluate feature quality for self-supervision -- not only surpasses existing metrics, but also offers better computational efficiency and ease of implementation.
Mitigating Prior Shape Bias in Point Clouds via Differentiable Center Learning
Masked autoencoding and generative pretraining have achieved remarkable success in computer vision and natural language processing, and more recently, they have been extended to the point cloud domain. Nevertheless, existing point cloud models suffer from the issue of information leakage due to the pre-sampling of center points, which leads to trivial proxy tasks for the models. These approaches primarily focus on local feature reconstruction, limiting their ability to capture global patterns within point clouds. In this paper, we argue that the reduced difficulty of pretext tasks hampers the model's capacity to learn expressive representations. To address these limitations, we introduce a novel solution called the Differentiable Center Sampling Network (DCS-Net). It tackles the information leakage problem by incorporating both global feature reconstruction and local feature reconstruction as non-trivial proxy tasks, enabling simultaneous learning of both the global and local patterns within point cloud. Experimental results demonstrate that our method enhances the expressive capacity of existing point cloud models and effectively addresses the issue of information leakage.
StereoVAE: A lightweight stereo-matching system using embedded GPUs
We present a lightweight system for stereo matching through embedded GPUs. It breaks the trade-off between accuracy and processing speed in stereo matching, enabling our embedded system to further improve the matching accuracy while ensuring real-time processing. The main idea of our method is to construct a tiny neural network based on variational auto-encoder (VAE) to upsample and refinement a small size of coarse disparity map, which is first generated by a traditional matching method. The proposed hybrid structure cannot only bring the advantage of traditional methods in terms of computational complexity, but also ensure the matching accuracy under the impact of neural network. Extensive experiments on the KITTI 2015 benchmark demonstrate that our tiny system exhibits high robustness in improving the accuracy of the coarse disparity maps generated by different algorithms, while also running in real-time on embedded GPUs.
comment: Will revise part of the contents
TinyLLaVA-Video: Towards Smaller LMMs for Video Understanding with Group Resampler
Video behavior recognition and scene understanding are fundamental tasks in multimodal intelligence, serving as critical building blocks for numerous real-world applications. Through large multimodal models (LMMs) have achieved remarkable progress in video understanding, most existing open-source models rely on over 7B parameters and require large-scale datasets for training, making them resource-intensive and inaccessible to many researchers. Furthermore, lightweight models face persistent challenges in effectively processing long visual sequences and temporal understanding. In this work, we introduce TinyLLaVA-Video, a lightweight yet powerful video understanding model with approximately 3.6B parameters. The cornerstone of our design is the video-level group resampler, a novel mechanism that significantly reduces and controls the number of visual tokens at the video level. Unlike traditional image-level resampler, our approach effectively mitigates redundancy while enhancing temporal comprehension, leading to improved performance on video-based tasks. In addition, TinyLLaVA-Video demonstrates exceptional efficiency, requiring only one day of training on 8 A100-40G GPUs. It surpasses several existing 7B-parameter models on multiple benchmarks. We believe this work provides a valuable foundation for future research on lightweight video understanding models. The code and weights is available at https://github.com/ZhangXJ199/TinyLLaVA-Video.
comment: code and training recipes are available at https://github.com/ZhangXJ199/TinyLLaVA-Video
Delving into RL for Image Generation with CoT: A Study on DPO vs. GRPO
Recent advancements underscore the significant role of Reinforcement Learning (RL) in enhancing the Chain-of-Thought (CoT) reasoning capabilities of large language models (LLMs). Two prominent RL algorithms, Direct Preference Optimization (DPO) and Group Relative Policy Optimization (GRPO), are central to these developments, showcasing different pros and cons. Autoregressive image generation, also interpretable as a sequential CoT reasoning process, presents unique challenges distinct from LLM-based CoT reasoning. These encompass ensuring text-image consistency, improving image aesthetic quality, and designing sophisticated reward models, rather than relying on simpler rule-based rewards. While recent efforts have extended RL to this domain, these explorations typically lack an in-depth analysis of the domain-specific challenges and the characteristics of different RL strategies. To bridge this gap, we provide the first comprehensive investigation of the GRPO and DPO algorithms in autoregressive image generation, evaluating their in-domain performance and out-of-domain generalization, while scrutinizing the impact of different reward models on their respective capabilities. Our findings reveal that GRPO and DPO exhibit distinct advantages, and crucially, that reward models possessing stronger intrinsic generalization capabilities potentially enhance the generalization potential of the applied RL algorithms. Furthermore, we systematically explore three prevalent scaling strategies to enhance both their in-domain and out-of-domain proficiency, deriving unique insights into efficiently scaling performance for each paradigm. We hope our study paves a new path for inspiring future work on developing more effective RL algorithms to achieve robust CoT reasoning in the realm of autoregressive image generation. Code is released at https://github.com/ZiyuGuo99/Image-Generation-CoT
comment: Code is released at https://github.com/ZiyuGuo99/Image-Generation-CoT
ZigzagPointMamba: Spatial-Semantic Mamba for Point Cloud Understanding
State Space models (SSMs) such as PointMamba enable efficient feature extraction for point cloud self-supervised learning with linear complexity, outperforming Transformers in computational efficiency. However, existing PointMamba-based methods depend on complex token ordering and random masking, which disrupt spatial continuity and local semantic correlations. We propose ZigzagPointMamba to tackle these challenges. The core of our approach is a simple zigzag scan path that globally sequences point cloud tokens, enhancing spatial continuity by preserving the proximity of spatially adjacent point tokens. Nevertheless, random masking undermines local semantic modeling in self-supervised learning. To address this, we introduce a Semantic-Siamese Masking Strategy (SMS), which masks semantically similar tokens to facilitate reconstruction by integrating local features of original and similar tokens. This overcomes the dependence on isolated local features and enables robust global semantic modeling. Our pre-trained ZigzagPointMamba weights significantly improve downstream tasks, achieving a 1.59% mIoU gain on ShapeNetPart for part segmentation, a 0.4% higher accuracy on ModelNet40 for classification, and 0.19%, 1.22%, and 0.72% higher accuracies respectively for the classification tasks on the OBJ-BG, OBJ-ONLY, and PB-T50-RS subsets of ScanObjectNN.
CAD-Llama: Leveraging Large Language Models for Computer-Aided Design Parametric 3D Model Generation
Recently, Large Language Models (LLMs) have achieved significant success, prompting increased interest in expanding their generative capabilities beyond general text into domain-specific areas. This study investigates the generation of parametric sequences for computer-aided design (CAD) models using LLMs. This endeavor represents an initial step towards creating parametric 3D shapes with LLMs, as CAD model parameters directly correlate with shapes in three-dimensional space. Despite the formidable generative capacities of LLMs, this task remains challenging, as these models neither encounter parametric sequences during their pretraining phase nor possess direct awareness of 3D structures. To address this, we present CAD-Llama, a framework designed to enhance pretrained LLMs for generating parametric 3D CAD models. Specifically, we develop a hierarchical annotation pipeline and a code-like format to translate parametric 3D CAD command sequences into Structured Parametric CAD Code (SPCC), incorporating hierarchical semantic descriptions. Furthermore, we propose an adaptive pretraining approach utilizing SPCC, followed by an instruction tuning process aligned with CAD-specific guidelines. This methodology aims to equip LLMs with the spatial knowledge inherent in parametric sequences. Experimental results demonstrate that our framework significantly outperforms prior autoregressive methods and existing LLM baselines.
ARGUS: Hallucination and Omission Evaluation in Video-LLMs
Video large language models have not yet been widely deployed, largely due to their tendency to hallucinate. Typical benchmarks for Video-LLMs rely simply on multiple-choice questions. Unfortunately, VideoLLMs hallucinate far more aggressively on freeform text generation tasks like video captioning than they do on multiple choice verification tasks. To address this weakness, we propose ARGUS, a VideoLLM benchmark that measures freeform video captioning performance. By comparing VideoLLM outputs to human ground truth captions, ARGUS quantifies dual metrics. First, we measure the rate of hallucinations in the form of incorrect statements about video content or temporal relationships. Second, we measure the rate at which the model omits important descriptive details. Together, these dual metrics form a comprehensive view of video captioning performance.
comment: Project page with all the artifacts: https://ruchitrawal.github.io/argus
Enhancing Safety of Foundation Models for Visual Navigation through Collision Avoidance via Repulsive Estimation
We propose CARE (Collision Avoidance via Repulsive Estimation), a plug-and-play module that enhances the safety of vision-based navigation without requiring additional range sensors or fine-tuning of pretrained models. While recent foundation models using only RGB inputs have shown strong performance, they often fail to generalize in out-of-distribution (OOD) environments with unseen objects or variations in camera parameters (e.g., field of view, pose, or focal length). Without fine-tuning, these models may generate unsafe trajectories that lead to collisions, requiring costly data collection and retraining. CARE addresses this limitation by seamlessly integrating with any RGB-based navigation system that outputs local trajectories, dynamically adjusting them using repulsive force vectors derived from monocular depth maps. We evaluate CARE by combining it with state-of-the-art vision-based navigation models across multiple robot platforms. CARE consistently reduces collision rates (up to 100%) without sacrificing goal-reaching performance and improves collision-free travel distance by up to 10.7x in exploration tasks.
comment: 16 pages, 6 figures
A Culturally-Aware Benchmark for Person Re-Identification in Modest Attire
Person Re-Identification (ReID) is a fundamental task in computer vision with critical applications in surveillance and security. Despite progress in recent years, most existing ReID models often struggle to generalize across diverse cultural contexts, particularly in Islamic regions like Iran, where modest clothing styles are prevalent. Existing datasets predominantly feature Western and East Asian fashion, limiting their applicability in these settings. To address this gap, we introduce Iran University of Science and Technology Person Re-Identification (IUST_PersonReId), a dataset designed to reflect the unique challenges of ReID in new cultural environments, emphasizing modest attire and diverse scenarios from Iran, including markets, campuses, and mosques. Experiments on IUST_PersonReId with state-of-the-art models, such as Semantic Controllable Self-supervised Learning (SOLIDER) and Contrastive Language-Image Pretraining Re-Identification (CLIP-ReID), reveal significant performance drops compared to benchmarks like Market1501 and Multi-Scene MultiTime (MSMT17), specifically, SOLIDER shows a drop of 50.75% and 23.01% Mean Average Precision (mAP) compared to Market1501 and MSMT17 respectively, while CLIP-ReID exhibits a drop of 38.09% and 21.74% mAP, highlighting the challenges posed by occlusion and limited distinctive features. Sequence-based evaluations show improvements by leveraging temporal context, emphasizing the dataset's potential for advancing culturally sensitive and robust ReID systems. IUST_PersonReId offers a critical resource for addressing fairness and bias in ReID research globally.
Fighting Fire with Fire (F3): A Training-free and Efficient Visual Adversarial Example Purification Method in LVLMs
Recent advances in large vision-language models (LVLMs) have showcased their remarkable capabilities across a wide range of multimodal vision-language tasks. However, these models remain vulnerable to visual adversarial attacks, which can substantially compromise their performance. Despite their potential impact, the development of effective methods for purifying such adversarial examples has received relatively limited attention. In this paper, we introduce F3, a novel adversarial purification framework that employs a counterintuitive "fighting fire with fire" strategy: intentionally introducing simple perturbations to adversarial examples to mitigate their harmful effects. Specifically, F3 leverages cross-modal attentions derived from randomly perturbed adversary examples as reference targets. By injecting noise into these adversarial examples, F3 effectively refines their attention, resulting in cleaner and more reliable model outputs. Remarkably, this seemingly paradoxical approach of employing noise to counteract adversarial attacks yields impressive purification results. Furthermore, F3 offers several distinct advantages: it is training-free and straightforward to implement, and exhibits significant computational efficiency improvements compared to existing purification methods. These attributes render F3 particularly suitable for large-scale industrial applications where both robust performance and operational efficiency are critical priorities. The code will be made publicly available.
comment: 14 pages, 5 figures
VIST-GPT: Ushering in the Era of Visual Storytelling with LLMs?
Visual storytelling is an interdisciplinary field combining computer vision and natural language processing to generate cohesive narratives from sequences of images. This paper presents a novel approach that leverages recent advancements in multimodal models, specifically adapting transformer-based architectures and large multimodal models, for the visual storytelling task. Leveraging the large-scale Visual Storytelling (VIST) dataset, our VIST-GPT model produces visually grounded, contextually appropriate narratives. We address the limitations of traditional evaluation metrics, such as BLEU, METEOR, ROUGE, and CIDEr, which are not suitable for this task. Instead, we utilize RoViST and GROOVIST, novel reference-free metrics designed to assess visual storytelling, focusing on visual grounding, coherence, and non-redundancy. These metrics provide a more nuanced evaluation of narrative quality, aligning closely with human judgment.
Autonomous Imagination: Closed-Loop Decomposition of Visual-to-Textual Conversion in Visual Reasoning for Multimodal Large Language Models
Under pure textual modality, Large Language Models (LLMs) have demonstrated remarkable success in complex reasoning tasks by decomposing them into simpler sub-problems. However, Multimodal Large Language Models (MLLMs) still struggle with some seemingly straightforward visual tasks, such as counting and solving jigsaw puzzles. We argue that these tasks challenge the ability of visual-to-textual conversion, where MLLMs convert visual information perceived from the input scene, to textual information for further reasoning and generating the answer. If the complexity of the visual input is beyond the perceptual capability of the MLLMs, without decomposing this conversion process, simply scaling inference-time reasoning cannot solve the task because it repeatedly encounters the same perceptual bottleneck. We propose an approach, autonomous imagination, to enable MLLMs to iteratively modify visual inputs (e.g. isolating objects, rearranging puzzle pieces) into intermediate visual states, decomposing visual-to-textual conversion into closed-loop visual modification steps. We show that, without any retraining, MLLMs can now solve tasks initially beyond their perceptual capability, highlighting that closed-loop visual modification can be an effective way of decomposing the visual reasoning task into solvable substeps. Project page: https://future-item.github.io/autoimagine-site/
From Generation to Generalization: Emergent Few-Shot Learning in Video Diffusion Models
Video Diffusion Models (VDMs) have emerged as powerful generative tools, capable of synthesizing high-quality spatiotemporal content. Yet, their potential goes far beyond mere video generation. We argue that the training dynamics of VDMs, driven by the need to model coherent sequences, naturally pushes them to internalize structured representations and an implicit understanding of the visual world. To probe the extent of this internal knowledge, we introduce a few-shot fine-tuning framework that repurposes VDMs for new tasks using only a handful of examples. Our method transforms each task into a visual transition, enabling the training of LoRA weights on short input-output sequences without altering the generative interface of a frozen VDM. Despite minimal supervision, the model exhibits strong generalization across diverse tasks, from low-level vision (for example, segmentation and pose estimation) to high-level reasoning (for example, on ARC-AGI). These results reframe VDMs as more than generative engines. They are adaptable visual learners with the potential to serve as the backbone for future foundation models in vision.
comment: 27 pages, 23 figures, 9 tables. Project page: https://pabloacuaviva.github.io/Gen2Gen/
Visualization of a multidimensional point cloud as a 3D swarm of avatars
This paper proposes an innovative technique for representing multidimensional datasets using icons inspired by Chernoff faces. Our approach combines classical projection techniques with the explicit assignment of selected data dimensions to avatar (facial) features, leveraging the innate human ability to interpret facial traits. We introduce a semantic division of data dimensions into intuitive and technical categories, assigning the former to avatar features and projecting the latter into a four-dimensional (or higher) spatial embedding. The technique is implemented as a plugin for the open-source dpVision visualization platform, enabling users to interactively explore data in the form of a swarm of avatars whose spatial positions and visual features jointly encode various aspects of the dataset. Experimental results with synthetic test data and a 12-dimensional dataset of Portuguese Vinho Verde wines demonstrate that the proposed method enhances interpretability and facilitates the analysis of complex data structures.
comment: 26 pages, 13 figures
EAM: Enhancing Anything with Diffusion Transformers for Blind Super-Resolution
Utilizing pre-trained Text-to-Image (T2I) diffusion models to guide Blind Super-Resolution (BSR) has become a predominant approach in the field. While T2I models have traditionally relied on U-Net architectures, recent advancements have demonstrated that Diffusion Transformers (DiT) achieve significantly higher performance in this domain. In this work, we introduce Enhancing Anything Model (EAM), a novel BSR method that leverages DiT and outperforms previous U-Net-based approaches. We introduce a novel block, $\Psi$-DiT, which effectively guides the DiT to enhance image restoration. This block employs a low-resolution latent as a separable flow injection control, forming a triple-flow architecture that effectively leverages the prior knowledge embedded in the pre-trained DiT. To fully exploit the prior guidance capabilities of T2I models and enhance their generalization in BSR, we introduce a progressive Masked Image Modeling strategy, which also reduces training costs. Additionally, we propose a subject-aware prompt generation strategy that employs a robust multi-modal model in an in-context learning framework. This strategy automatically identifies key image areas, provides detailed descriptions, and optimizes the utilization of T2I diffusion priors. Our experiments demonstrate that EAM achieves state-of-the-art results across multiple datasets, outperforming existing methods in both quantitative metrics and visual quality.
comment: The company audit did not pass, there are some mistake in paper
Zero-Shot Gaze-based Volumetric Medical Image Segmentation CVPR 2025
Accurate segmentation of anatomical structures in volumetric medical images is crucial for clinical applications, including disease monitoring and cancer treatment planning. Contemporary interactive segmentation models, such as Segment Anything Model 2 (SAM-2) and its medical variant (MedSAM-2), rely on manually provided prompts like bounding boxes and mouse clicks. In this study, we introduce eye gaze as a novel informational modality for interactive segmentation, marking the application of eye-tracking for 3D medical image segmentation. We evaluate the performance of using gaze-based prompts with SAM-2 and MedSAM-2 using both synthetic and real gaze data. Compared to bounding boxes, gaze-based prompts offer a time-efficient interaction approach with slightly lower segmentation quality. Our findings highlight the potential of using gaze as a complementary input modality for interactive 3D medical image segmentation.
comment: Accepted to MMFM-BIOMED Workshop @ CVPR 2025
Cracking the Code of Hallucination in LVLMs with Vision-aware Head Divergence ACL2025
Large vision-language models (LVLMs) have made substantial progress in integrating large language models (LLMs) with visual inputs, enabling advanced multimodal reasoning. Despite their success, a persistent challenge is hallucination-where generated text fails to accurately reflect visual content-undermining both accuracy and reliability. Existing methods focus on alignment training or decoding refinements but primarily address symptoms at the generation stage without probing the underlying causes. In this work, we investigate the internal mechanisms driving hallucination in LVLMs, with an emphasis on the multi-head attention module. Specifically, we introduce Vision-aware Head Divergence (VHD), a metric that quantifies the sensitivity of attention head outputs to visual context. Based on this, our findings reveal the presence of vision-aware attention heads that are more attuned to visual information; however, the model's overreliance on its prior language patterns is closely related to hallucinations. Building on these insights, we propose Vision-aware Head Reinforcement (VHR), a training-free approach to mitigate hallucination by enhancing the role of vision-aware attention heads. Extensive experiments demonstrate that our method achieves superior performance compared to state-of-the-art approaches in mitigating hallucinations, while maintaining high efficiency with negligible additional time overhead.
comment: ACL2025
Dense Geometry Supervision for Underwater Depth Estimation
The field of monocular depth estimation is continually evolving with the advent of numerous innovative models and extensions. However, research on monocular depth estimation methods specifically for underwater scenes remains limited, compounded by a scarcity of relevant data and methodological support. This paper proposes a novel approach to address the existing challenges in current monocular depth estimation methods for underwater environments. We construct an economically efficient dataset suitable for underwater scenarios by employing multi-view depth estimation to generate supervisory signals and corresponding enhanced underwater images. we introduces a texture-depth fusion module, designed according to the underwater optical imaging principles, which aims to effectively exploit and integrate depth information from texture cues. Experimental results on the FLSea dataset demonstrate that our approach significantly improves the accuracy and adaptability of models in underwater settings. This work offers a cost-effective solution for monocular underwater depth estimation and holds considerable promise for practical applications.
NaturalBench: Evaluating Vision-Language Models on Natural Adversarial Samples NeurIPS 24
Vision-language models (VLMs) have made significant progress in recent visual-question-answering (VQA) benchmarks that evaluate complex visio-linguistic reasoning. However, are these models truly effective? In this work, we show that VLMs still struggle with natural images and questions that humans can easily answer, which we term natural adversarial samples. We also find it surprisingly easy to generate these VQA samples from natural image-text corpora using off-the-shelf models like CLIP and ChatGPT. We propose a semi-automated approach to collect a new benchmark, NaturalBench, for reliably evaluating VLMs with 10,000 human-verified VQA samples. Crucially, we adopt a $\textbf{vision-centric}$ design by pairing each question with two images that yield different answers, preventing blind solutions from answering without using the images. This makes NaturalBench more challenging than previous benchmarks that can be solved with commonsense priors. We evaluate 53 state-of-the-art VLMs on NaturalBench, showing that models like LLaVA-OneVision, Cambrian-1, Llama3.2-Vision, Molmo, Qwen2-VL, and even GPT-4o lag 50%-70% behind human performance (over 90%). We analyze why NaturalBench is hard from two angles: (1) Compositionality: Solving NaturalBench requires diverse visio-linguistic skills, including understanding attribute bindings, object relationships, and advanced reasoning like logic and counting. To this end, unlike prior work that uses a single tag per sample, we tag each NaturalBench sample with 1 to 8 skill tags for fine-grained evaluation. (2) Biases: NaturalBench exposes severe biases in VLMs, as models often choose the same answer regardless of the image. Lastly, we apply our benchmark curation method to diverse data sources, including long captions (over 100 words) and non-English languages like Chinese and Hindi, highlighting its potential for dynamic evaluations of VLMs.
comment: Accepted to NeurIPS 24; We open-source our dataset at: https://huggingface.co/datasets/BaiqiL/NaturalBench ; Project page at: https://linzhiqiu.github.io/papers/naturalbench/
CASE: Contrastive Activation for Saliency Estimation
Saliency methods are widely used to visualize which input features are deemed relevant to a model's prediction. However, their visual plausibility can obscure critical limitations. In this work, we propose a diagnostic test for class sensitivity: a method's ability to distinguish between competing class labels on the same input. Through extensive experiments, we show that many widely used saliency methods produce nearly identical explanations regardless of the class label, calling into question their reliability. We find that class-insensitive behavior persists across architectures and datasets, suggesting the failure mode is structural rather than model-specific. Motivated by these findings, we introduce CASE, a contrastive explanation method that isolates features uniquely discriminative for the predicted class. We evaluate CASE using the proposed diagnostic and a perturbation-based fidelity test, and show that it produces faithful and more class-specific explanations than existing methods.
comment: 9 pages, 5 figures. Submitted to IEEE Transactions on Neural Networks and Learning Systems (TNNLS)
RecipeGen: A Step-Aligned Multimodal Benchmark for Real-World Recipe Generation
Creating recipe images is a key challenge in food computing, with applications in culinary education and multimodal recipe assistants. However, existing datasets lack fine-grained alignment between recipe goals, step-wise instructions, and visual content. We present RecipeGen, the first large-scale, real-world benchmark for recipe-based Text-to-Image (T2I), Image-to-Video (I2V), and Text-to-Video (T2V) generation. RecipeGen contains 26,453 recipes, 196,724 images, and 4,491 videos, covering diverse ingredients, cooking procedures, styles, and dish types. We further propose domain-specific evaluation metrics to assess ingredient fidelity and interaction modeling, benchmark representative T2I, I2V, and T2V models, and provide insights for future recipe generation models. Project page is available now.
comment: This is an extended version of arXiv:2503.05228
Multimodal Rationales for Explainable Visual Question Answering CVPR
Visual Question Answering (VQA) is a challenging task of predicting the answer to a question about the content of an image. Prior works directly evaluate the answering models by simply calculating the accuracy of predicted answers. However, the inner reasoning behind the predictions is disregarded in such a "black box" system, and we cannot ascertain the trustworthiness of the predictions. Even more concerning, in some cases, these models predict correct answers despite focusing on irrelevant visual regions or textual tokens. To develop an explainable and trustworthy answering system, we propose a novel model termed MRVQA (Multimodal Rationales for VQA), which provides visual and textual rationales to support its predicted answers. To measure the quality of generated rationales, a new metric vtS (visual-textual Similarity) score is introduced from both visual and textual perspectives. Considering the extra annotations distinct from standard VQA, MRVQA is trained and evaluated using samples synthesized from some existing datasets. Extensive experiments across three EVQA datasets demonstrate that MRVQA achieves new state-of-the-art results through additional rationale generation, enhancing the trustworthiness of the explainable VQA model. The code and the synthesized dataset are released under https://github.com/lik1996/MRVQA2025.
comment: Accepted to CVPR workshops 2025
Just Project! Multi-Channel Despeckling, the Easy Way
Reducing speckle fluctuations in multi-channel SAR images is essential in many applications of SAR imaging such as polarimetric classification or interferometric height estimation. While single-channel despeckling has widely benefited from the application of deep learning techniques, extensions to multi-channel SAR images are much more challenging. This paper introduces MuChaPro, a generic framework that exploits existing single-channel despeckling methods. The key idea is to generate numerous single-channel projections, restore these projections, and recombine them into the final multi-channel estimate. This simple approach is shown to be effective in polarimetric and/or interferometric modalities. A special appeal of MuChaPro is the possibility to apply a self-supervised training strategy to learn sensor-specific networks for single-channel despeckling.
Adaptive path planning for efficient object search by UAVs in agricultural fields
This paper presents an adaptive path planner for object search in agricultural fields using UAVs. The path planner uses a high-altitude coverage flight path and plans additional low-altitude inspections when the detection network is uncertain. The path planner was evaluated in an offline simulation environment containing real-world images. We trained a YOLOv8 detection network to detect artificial plants placed in grass fields to showcase the potential of our path planner. We evaluated the effect of different detection certainty measures, optimized the path planning parameters, investigated the effects of localization errors, and different numbers of objects in the field. The YOLOv8 detection confidence worked best to differentiate between true and false positive detections and was therefore used in the adaptive planner. The optimal parameters of the path planner depended on the distribution of objects in the field. When the objects were uniformly distributed, more low-altitude inspections were needed compared to a non-uniform distribution of objects, resulting in a longer path length. The adaptive planner proved to be robust against localization uncertainty. When increasing the number of objects, the flight path length increased, especially when the objects were uniformly distributed. When the objects were non-uniformly distributed, the adaptive path planner yielded a shorter path than a low-altitude coverage path, even with a high number of objects. Overall, the presented adaptive path planner allowed finding non-uniformly distributed objects in a field faster than a coverage path planner and resulted in a compatible detection accuracy. The path planner is made available at https://github.com/wur-abe/uav_adaptive_planner.
EVA: An Embodied World Model for Future Video Anticipation
Video generation models have made significant progress in simulating future states, showcasing their potential as world simulators in embodied scenarios. However, existing models often lack robust understanding, limiting their ability to perform multi-step predictions or handle Out-of-Distribution (OOD) scenarios. To address this challenge, we propose the Reflection of Generation (RoG), a set of intermediate reasoning strategies designed to enhance video prediction. It leverages the complementary strengths of pre-trained vision-language and video generation models, enabling them to function as a world model in embodied scenarios. To support RoG, we introduce Embodied Video Anticipation Benchmark(EVA-Bench), a comprehensive benchmark that evaluates embodied world models across diverse tasks and scenarios, utilizing both in-domain and OOD datasets. Building on this foundation, we devise a world model, Embodied Video Anticipator (EVA), that follows a multistage training paradigm to generate high-fidelity video frames and apply an autoregressive strategy to enable adaptive generalization for longer video sequences. Extensive experiments demonstrate the efficacy of EVA in various downstream tasks like video generation and robotics, thereby paving the way for large-scale pre-trained models in real-world video prediction applications. The video demos are available at \hyperlink{https://sites.google.com/view/icml-eva}{https://sites.google.com/view/icml-eva}.
LMPOcc: 3D Semantic Occupancy Prediction Utilizing Long-Term Memory Prior from Historical Traversals
Vision-based 3D semantic occupancy prediction is critical for autonomous driving, enabling unified modeling of static infrastructure and dynamic agents. In practice, autonomous vehicles may repeatedly traverse identical geographic locations under varying environmental conditions, such as weather fluctuations and illumination changes. Existing methods in 3D occupancy prediction predominantly integrate adjacent temporal contexts. However, these works neglect to leverage perceptual information, which is acquired from historical traversals of identical geographic locations. In this paper, we propose Longterm Memory Prior Occupancy (LMPOcc), the first 3D occupancy prediction methodology that exploits long-term memory priors derived from historical traversal perceptual outputs. We introduce a plug-and-play architecture that integrates long-term memory priors to enhance local perception while simultaneously constructing global occupancy representations. To adaptively aggregate prior features and current features, we develop an efficient lightweight Current-Prior Fusion module. Moreover, we propose a model-agnostic prior format to ensure compatibility across diverse occupancy prediction baselines. LMPOcc achieves state-of-the-art performance validated on the Occ3D-nuScenes benchmark, especially on static semantic categories. Additionally, experimental results demonstrate LMPOcc's ability to construct global occupancy through multi-vehicle crowdsourcing.
Lingshu: A Generalist Foundation Model for Unified Multimodal Medical Understanding and Reasoning
Multimodal Large Language Models (MLLMs) have demonstrated impressive capabilities in understanding common visual elements, largely due to their large-scale datasets and advanced training strategies. However, their effectiveness in medical applications remains limited due to the inherent discrepancies between data and tasks in medical scenarios and those in the general domain. Concretely, existing medical MLLMs face the following critical limitations: (1) limited coverage of medical knowledge beyond imaging, (2) heightened susceptibility to hallucinations due to suboptimal data curation processes, (3) lack of reasoning capabilities tailored for complex medical scenarios. To address these challenges, we first propose a comprehensive data curation procedure that (1) efficiently acquires rich medical knowledge data not only from medical imaging but also from extensive medical texts and general-domain data; and (2) synthesizes accurate medical captions, visual question answering (VQA), and reasoning samples. As a result, we build a multimodal dataset enriched with extensive medical knowledge. Building on the curated data, we introduce our medical-specialized MLLM: Lingshu. Lingshu undergoes multi-stage training to embed medical expertise and enhance its task-solving capabilities progressively. Besides, we preliminarily explore the potential of applying reinforcement learning with verifiable rewards paradigm to enhance Lingshu's medical reasoning ability. Additionally, we develop MedEvalKit, a unified evaluation framework that consolidates leading multimodal and textual medical benchmarks for standardized, fair, and efficient model assessment. We evaluate the performance of Lingshu on three fundamental medical tasks, multimodal QA, text-based QA, and medical report generation. The results show that Lingshu consistently outperforms the existing open-source multimodal models on most tasks ...
comment: Technical Report, 53 pages, 25 tables, and 16 figures
Meta-Adaptive Prompt Distillation for Few-Shot Visual Question Answering
Large Multimodal Models (LMMs) often rely on in-context learning (ICL) to perform new tasks with minimal supervision. However, ICL performance, especially in smaller LMMs, is inconsistent and does not always improve monotonically with increasing examples. We hypothesize that this occurs due to the LMM being overwhelmed by additional information present in the image embeddings, which is not required for the downstream task. To address this, we propose a meta-learning approach that provides an alternative for inducing few-shot capabilities in LMMs, using a fixed set of soft prompts that are distilled from task-relevant image features and can be adapted at test time using a few examples. To facilitate this distillation, we introduce an attention-mapper module that can be easily integrated with the popular LLaVA v1.5 architecture and is jointly learned with soft prompts, enabling task adaptation in LMMs under low-data regimes with just a few gradient steps. Evaluation on the VL-ICL Bench shows that our method consistently outperforms ICL and related prompt-tuning approaches, even under image perturbations, improving task induction and reasoning across visual question answering tasks.
Human-Aligned Image Models Improve Visual Decoding from the Brain ICML 2025
Decoding visual images from brain activity has significant potential for advancing brain-computer interaction and enhancing the understanding of human perception. Recent approaches align the representation spaces of images and brain activity to enable visual decoding. In this paper, we introduce the use of human-aligned image encoders to map brain signals to images. We hypothesize that these models more effectively capture perceptual attributes associated with the rapid visual stimuli presentations commonly used in visual brain data recording experiments. Our empirical results support this hypothesis, demonstrating that this simple modification improves image retrieval accuracy by up to 21% compared to state-of-the-art methods. Comprehensive experiments confirm consistent performance improvements across diverse EEG architectures, image encoders, alignment methods, participants, and brain imaging modalities
comment: Accepted to ICML 2025
Human-like object concept representations emerge naturally in multimodal large language models
Understanding how humans conceptualize and categorize natural objects offers critical insights into perception and cognition. With the advent of Large Language Models (LLMs), a key question arises: can these models develop human-like object representations from linguistic and multimodal data? In this study, we combined behavioral and neuroimaging analyses to explore the relationship between object concept representations in LLMs and human cognition. We collected 4.7 million triplet judgments from LLMs and Multimodal LLMs (MLLMs) to derive low-dimensional embeddings that capture the similarity structure of 1,854 natural objects. The resulting 66-dimensional embeddings were stable, predictive, and exhibited semantic clustering similar to human mental representations. Remarkably, the dimensions underlying these embeddings were interpretable, suggesting that LLMs and MLLMs develop human-like conceptual representations of objects. Further analysis showed strong alignment between model embeddings and neural activity patterns in brain regions such as EBA, PPA, RSC, and FFA. This provides compelling evidence that the object representations in LLMs, while not identical to human ones, share fundamental similarities that reflect key aspects of human conceptual knowledge. Our findings advance the understanding of machine intelligence and inform the development of more human-like artificial cognitive systems.
comment: Published on Nature Machine Intelligence
Everything Can Be Described in Words: A Simple Unified Multi-Modal Framework with Semantic and Temporal Alignment
While multi-modal learning has advanced significantly, current approaches often create inconsistencies in representation and reasoning of different modalities. We propose UMaT, a theoretically-grounded framework that unifies visual and auditory inputs as structured text for large language models, addressing semantic alignment, temporal synchronization, and efficient sparse information retrieval. It significantly improves state-of-the-art Long Video Question Answering accuracy (up to 13.7%, and 16.9% on long videos) via redundancy minimization and structured textual representation for unified multi-modal reasoning
The Face of Populism: Examining Differences in Facial Emotional Expressions of Political Leaders Using Machine Learning
Populist rhetoric employed on online media is characterized as deeply impassioned and often imbued with strong emotions. The aim of this paper is to empirically investigate the differences in affective nonverbal communication of political leaders. We use a deep-learning approach to process a sample of 220 YouTube videos of political leaders from 15 different countries, analyze their facial expressions of emotion and then examine differences in average emotion scores representing the relative presence of 6 emotional states (anger, disgust, fear, happiness, sadness, and surprise) and a neutral expression for each frame of the YouTube video. Based on a sample of manually coded images, we find that this deep-learning approach has 53-60\% agreement with human labels. We observe statistically significant differences in the average score of negative emotions between groups of leaders with varying degrees of populist rhetoric.
comment: Version 4.0: Annotation study added, supplementary information extended
ATI: Any Trajectory Instruction for Controllable Video Generation
We propose a unified framework for motion control in video generation that seamlessly integrates camera movement, object-level translation, and fine-grained local motion using trajectory-based inputs. In contrast to prior methods that address these motion types through separate modules or task-specific designs, our approach offers a cohesive solution by projecting user-defined trajectories into the latent space of pre-trained image-to-video generation models via a lightweight motion injector. Users can specify keypoints and their motion paths to control localized deformations, entire object motion, virtual camera dynamics, or combinations of these. The injected trajectory signals guide the generative process to produce temporally consistent and semantically aligned motion sequences. Our framework demonstrates superior performance across multiple video motion control tasks, including stylized motion effects (e.g., motion brushes), dynamic viewpoint changes, and precise local motion manipulation. Experiments show that our method provides significantly better controllability and visual quality compared to prior approaches and commercial solutions, while remaining broadly compatible with various state-of-the-art video generation backbones. Project page: https://anytraj.github.io/.
A Survey of the Self Supervised Learning Mechanisms for Vision Transformers
Vision Transformers (ViTs) have recently demonstrated remarkable performance in computer vision tasks. However, their parameter-intensive nature and reliance on large amounts of data for effective performance have shifted the focus from traditional human-annotated labels to unsupervised learning and pretraining strategies that uncover hidden structures within the data. In response to this challenge, self-supervised learning (SSL) has emerged as a promising paradigm. SSL leverages inherent relationships within the data itself as a form of supervision, eliminating the need for manual labeling and offering a more scalable and resource-efficient alternative for model training. Given these advantages, it is imperative to explore the integration of SSL techniques with ViTs, particularly in scenarios with limited labeled data. Inspired by this evolving trend, this survey aims to systematically review SSL mechanisms tailored for ViTs. We propose a comprehensive taxonomy to classify SSL techniques based on their representations and pre-training tasks. Additionally, we discuss the motivations behind SSL, review prominent pre-training tasks, and highlight advancements and challenges in this field. Furthermore, we conduct a comparative analysis of various SSL methods designed for ViTs, evaluating their strengths, limitations, and applicability to different scenarios.
comment: 40 Pages, 4 Figures, 7 Tables
How Do Images Align and Complement LiDAR? Towards a Harmonized Multi-modal 3D Panoptic Segmentation ICML
LiDAR-based 3D panoptic segmentation often struggles with the inherent sparsity of data from LiDAR sensors, which makes it challenging to accurately recognize distant or small objects. Recently, a few studies have sought to overcome this challenge by integrating LiDAR inputs with camera images, leveraging the rich and dense texture information provided by the latter. While these approaches have shown promising results, they still face challenges, such as misalignment during data augmentation and the reliance on post-processing steps. To address these issues, we propose Image-Assists-LiDAR (IAL), a novel multi-modal 3D panoptic segmentation framework. In IAL, we first introduce a modality-synchronized data augmentation strategy, PieAug, to ensure alignment between LiDAR and image inputs from the start. Next, we adopt a transformer decoder to directly predict panoptic segmentation results. To effectively fuse LiDAR and image features into tokens for the decoder, we design a Geometric-guided Token Fusion (GTF) module. Additionally, we leverage the complementary strengths of each modality as priors for query initialization through a Prior-based Query Generation (PQG) module, enhancing the decoder's ability to generate accurate instance masks. Our IAL framework achieves state-of-the-art performance compared to previous multi-modal 3D panoptic segmentation methods on two widely used benchmarks. Code and models are publicly available at .
comment: Accepted at the 2025 International Conference on Machine Learning (ICML)
Flexible Tool Selection through Low-dimensional Attribute Alignment of Vision and Language
Flexible tool selection reflects a complex cognitive ability that distinguishes humans from other species, yet computational models that capture this ability remain underdeveloped. We developed a framework using low-dimensional attribute representations to bridge visual tool perception and linguistic task understanding. We constructed a comprehensive dataset (ToolNet) containing 115 common tools labeled with 13 carefully designed attributes spanning physical, functional, and psychological properties, paired with natural language scenarios describing tool usage. Visual encoders (ResNet or ViT) extract attributes from tool images while fine-tuned language models (GPT-2, LLaMA, DeepSeek) derive required attributes from task descriptions. Our approach achieves 74% accuracy in tool selection tasks-significantly outperforming direct tool matching (20%) and smaller multimodal models (21%-58%), while approaching performance of much larger models like GPT-4o (73%) with substantially fewer parameters. Ablation studies revealed that manipulation-related attributes (graspability, hand-relatedness, elongation) consistently prove most critical across modalities. This work provides a parameter-efficient, interpretable solution that mimics human-like tool cognition, advancing both cognitive science understanding and practical applications in tool selection tasks.
An Explainable Vision Transformer with Transfer Learning Combined with Support Vector Machine Based Efficient Drought Stress Identification
Early detection of drought stress is critical for taking timely measures for reducing crop loss before the drought impact becomes irreversible. The subtle phenotypical and physiological changes in response to drought stress are captured by non-invasive imaging techniques and these imaging data serve as valuable resource for machine learning methods to identify drought stress. While convolutional neural networks (CNNs) are in wide use, vision transformers (ViTs) present a promising alternative in capturing long-range dependencies and intricate spatial relationships, thereby enhancing the detection of subtle indicators of drought stress. We propose an explainable deep learning pipeline that leverages the power of ViTs for drought stress detection in potato crops using aerial imagery. We applied two distinct approaches: a synergistic combination of ViT and support vector machine (SVM), where ViT extracts intricate spatial features from aerial images, and SVM classifies the crops as stressed or healthy and an end-to-end approach using a dedicated classification layer within ViT to directly detect drought stress. Our key findings explain the ViT model's decision-making process by visualizing attention maps. These maps highlight the specific spatial features within the aerial images that the ViT model focuses as the drought stress signature. Our findings demonstrate that the proposed methods not only achieve high accuracy in drought stress identification but also shedding light on the diverse subtle plant features associated with drought stress. This offers a robust and interpretable solution for drought stress monitoring for farmers to undertake informed decisions for improved crop management.
comment: 33 pages, 7 figures, 8 tables
Mixture of Decoding: An Attention-Inspired Adaptive Decoding Strategy to Mitigate Hallucinations in Large Vision-Language Models ACL 2025
Large Vision-Language Models (LVLMs) have exhibited impressive capabilities across various visual tasks, yet they remain hindered by the persistent challenge of hallucinations. To address this critical issue, we propose Mixture of Decoding (MoD), a novel approach for hallucination mitigation that dynamically adapts decoding strategies by evaluating the correctness of the model's attention on image tokens. Specifically, MoD measures the consistency between outputs generated from the original image tokens and those derived from the model's attended image tokens, to distinguish the correctness aforementioned. If the outputs are consistent, indicating correct attention, MoD employs a complementary strategy to amplify critical information. Conversely, if the outputs are inconsistent, suggesting erroneous attention, MoD utilizes a contrastive strategy to suppress misleading information. Extensive experiments demonstrate that MoD significantly outperforms existing decoding methods across multiple mainstream benchmarks, effectively mitigating hallucinations in LVLMs. The code is available at https://github.com/xlchen0205/MoD.
comment: Accepted to Findings of ACL 2025
Dual Attention Residual U-Net for Accurate Brain Ultrasound Segmentation in IVH Detection
Intraventricular hemorrhage (IVH) is a severe neurological complication among premature infants, necessitating early and accurate detection from brain ultrasound (US) images to improve clinical outcomes. While recent deep learning methods offer promise for computer-aided diagnosis, challenges remain in capturing both local spatial details and global contextual dependencies critical for segmenting brain anatomies. In this work, we propose an enhanced Residual U-Net architecture incorporating two complementary attention mechanisms: the Convolutional Block Attention Module (CBAM) and a Sparse Attention Layer (SAL). The CBAM improves the model's ability to refine spatial and channel-wise features, while the SAL introduces a dual-branch design, sparse attention filters out low-confidence query-key pairs to suppress noise, and dense attention ensures comprehensive information propagation. Extensive experiments on the Brain US dataset demonstrate that our method achieves state-of-the-art segmentation performance, with a Dice score of 89.04% and IoU of 81.84% for ventricle region segmentation. These results highlight the effectiveness of integrating spatial refinement and attention sparsity for robust brain anatomy detection. Code is available at: https://github.com/DanYuan001/BrainImgSegment.
comment: 10 pages,6 figures and 3 tables
MedVersa: A Generalist Foundation Model for Medical Image Interpretation
Current medical AI systems are often limited to narrow applications, hindering widespread adoption. We present MedVersa, a generalist foundation model trained on tens of millions of compiled medical instances. MedVersa unlocks generalist learning from multimodal inputs and outputs, representing the first example of a generalist model reaching competitive performance with leading specialized solutions across a variety of medical imaging scenarios. MedVersa achieves state-of-the-art performance in nine tasks, sometimes outperforming counterparts by over 10%. Radiologist evaluation shows MedVersa-generated reports get superior performance in 95% of normal studies, while matching or exceeding human reports in 71% of cases overall. User studies showed notable reductions in report writing time and discrepancies with the use of MedVersa. Our findings underscore the value of flexible, multimodal AI systems in advancing medical image interpretation and supporting clinical expertise.
comment: Technical study
From Pixels to Predicates: Learning Symbolic World Models via Pretrained Vision-Language Models
Our aim is to learn to solve long-horizon decision-making problems in complex robotics domains given low-level skills and a handful of short-horizon demonstrations containing sequences of images. To this end, we focus on learning abstract symbolic world models that facilitate zero-shot generalization to novel goals via planning. A critical component of such models is the set of symbolic predicates that define properties of and relationships between objects. In this work, we leverage pretrained vision language models (VLMs) to propose a large set of visual predicates potentially relevant for decision-making, and to evaluate those predicates directly from camera images. At training time, we pass the proposed predicates and demonstrations into an optimization-based model-learning algorithm to obtain an abstract symbolic world model that is defined in terms of a compact subset of the proposed predicates. At test time, given a novel goal in a novel setting, we use the VLM to construct a symbolic description of the current world state, and then use a search-based planning algorithm to find a sequence of low-level skills that achieves the goal. We demonstrate empirically across experiments in both simulation and the real world that our method can generalize aggressively, applying its learned world model to solve problems with a wide variety of object types, arrangements, numbers of objects, and visual backgrounds, as well as novel goals and much longer horizons than those seen at training time.
MegaLoc: One Retrieval to Place Them All
Retrieving images from the same location as a given query is an important component of multiple computer vision tasks, like Visual Place Recognition, Landmark Retrieval, Visual Localization, 3D reconstruction, and SLAM. However, existing solutions are built to specifically work for one of these tasks, and are known to fail when the requirements slightly change or when they meet out-of-distribution data. In this paper we combine a variety of existing methods, training techniques, and datasets to train a retrieval model, called MegaLoc, that is performant on multiple tasks. We find that MegaLoc (1) achieves state of the art on a large number of Visual Place Recognition datasets, (2) impressive results on common Landmark Retrieval datasets, and (3) sets a new state of the art for Visual Localization on the LaMAR datasets, where we only changed the retrieval method to the existing localization pipeline. The code for MegaLoc is available at https://github.com/gmberton/MegaLoc
comment: Tech Report
STeP: A Framework for Solving Scientific Video Inverse Problems with Spatiotemporal Diffusion Priors
Reconstructing spatially and temporally coherent videos from time-varying measurements is a fundamental challenge in many scientific domains. A major difficulty arises from the sparsity of measurements, which hinders accurate recovery of temporal dynamics. Existing image diffusion-based methods rely on extracting temporal consistency directly from measurements, limiting their effectiveness on scientific tasks with high spatiotemporal uncertainty. We address this difficulty by proposing a plug-and-play framework that incorporates a learned spatiotemporal diffusion prior. Due to its plug-and-play nature, our framework can be flexibly applied to different video inverse problems without the need for task-specific design and temporal heuristics. We further demonstrate that a spatiotemporal diffusion model can be trained efficiently with limited video data. We validate our approach on two challenging scientific video reconstruction tasks: black hole video reconstruction and dynamic MRI. While baseline methods struggle to provide temporally coherent reconstructions, our approach achieves significantly improved recovery of the spatiotemporal structure of the underlying ground truth videos.
Multimedia
Diversity-Guided MLP Reduction for Efficient Large Vision Transformers
Transformer models achieve excellent scaling property, where the performance is improved with the increment of model capacity. However, large-scale model parameters lead to an unaffordable cost of computing and memory. We analyze popular transformer architectures and find that multilayer perceptron (MLP) modules take up the majority of model parameters. To this end, we focus on the recoverability of the compressed models and propose a Diversity-Guided MLP Reduction (DGMR) method to significantly reduce the parameters of large vision transformers with only negligible performance degradation. Specifically, we conduct a Gram-Schmidt weight pruning strategy to eliminate redundant neurons of MLP hidden layer, while preserving weight diversity for better performance recover during distillation. Compared to the model trained from scratch, our pruned model only requires 0.06\% data of LAION-2B (for the training of large vision transformers) without labels (ImageNet-1K) to recover the original performance. Experimental results on several state-of-the-art large vision transformers demonstrate that our method achieves a more than 57.0\% parameter and FLOPs reduction in a near lossless manner. Notably, for EVA-CLIP-E (4.4B), our method accomplishes a 71.5\% parameter and FLOPs reduction without performance degradation. The source code and trained weights are available at https://github.com/visresearch/DGMR.
Teaching Physical Awareness to LLMs through Sounds ICML 2025
Large Language Models (LLMs) have shown remarkable capabilities in text and multimodal processing, yet they fundamentally lack physical awareness--understanding of real-world physical phenomena. In this work, we present ACORN, a framework that teaches LLMs physical awareness through sound, focusing on fundamental physical phenomena like the Doppler effect, multipath effect, and spatial relationships. To overcome data scarcity, ACORN introduce a physics-based simulator combining real-world sound sources with controlled physical channels to generate diverse training data. Using this simulator, we build AQA-PHY, a comprehensive Audio Question-Answer dataset, and propose an audio encoder that processes both magnitude and phase information. By connecting our audio encoder to state-of-the-art LLMs, we demonstrate reasonable results in both simulated and real-world tasks, such as line-of-sight detection, Doppler effect estimation, and Direction-of-Arrival estimation, paving the way for enabling LLMs to understand physical world.
comment: ICML 2025
Context-aware TFL: A Universal Context-aware Contrastive Learning Framework for Temporal Forgery Localization
Most research efforts in the multimedia forensics domain have focused on detecting forgery audio-visual content and reached sound achievements. However, these works only consider deepfake detection as a classification task and ignore the case where partial segments of the video are tampered with. Temporal forgery localization (TFL) of small fake audio-visual clips embedded in real videos is still challenging and more in line with realistic application scenarios. To resolve this issue, we propose a universal context-aware contrastive learning framework (UniCaCLF) for TFL. Our approach leverages supervised contrastive learning to discover and identify forged instants by means of anomaly detection, allowing for the precise localization of temporal forged segments. To this end, we propose a novel context-aware perception layer that utilizes a heterogeneous activation operation and an adaptive context updater to construct a context-aware contrastive objective, which enhances the discriminability of forged instant features by contrasting them with genuine instant features in terms of their distances to the global context. An efficient context-aware contrastive coding is introduced to further push the limit of instant feature distinguishability between genuine and forged instants in a supervised sample-by-sample manner, suppressing the cross-sample influence to improve temporal forgery localization performance. Extensive experimental results over five public datasets demonstrate that our proposed UniCaCLF significantly outperforms the state-of-the-art competing algorithms.
TimeWak: Temporal Chained-Hashing Watermark for Time Series Data
Synthetic time series generated by diffusion models enable sharing privacy-sensitive datasets, such as patients' functional MRI records. Key criteria for synthetic data include high data utility and traceability to verify the data source. Recent watermarking methods embed in homogeneous latent spaces, but state-of-the-art time series generators operate in real space, making latent-based watermarking incompatible. This creates the challenge of watermarking directly in real space while handling feature heterogeneity and temporal dependencies. We propose TimeWak, the first watermarking algorithm for multivariate time series diffusion models. To handle temporal dependence and spatial heterogeneity, TimeWak embeds a temporal chained-hashing watermark directly within the real temporal-feature space. The other unique feature is the $\epsilon$-exact inversion, which addresses the non-uniform reconstruction error distribution across features from inverting the diffusion process to detect watermarks. We derive the error bound of inverting multivariate time series and further maintain high watermark detectability. We extensively evaluate TimeWak on its impact on synthetic data quality, watermark detectability, and robustness under various post-editing attacks, against 5 datasets and baselines of different temporal lengths. Our results show that TimeWak achieves improvements of 61.96% in context-FID score, and 8.44% in correlational scores against the state-of-the-art baseline, while remaining consistently detectable.
How Do Images Align and Complement LiDAR? Towards a Harmonized Multi-modal 3D Panoptic Segmentation ICML
LiDAR-based 3D panoptic segmentation often struggles with the inherent sparsity of data from LiDAR sensors, which makes it challenging to accurately recognize distant or small objects. Recently, a few studies have sought to overcome this challenge by integrating LiDAR inputs with camera images, leveraging the rich and dense texture information provided by the latter. While these approaches have shown promising results, they still face challenges, such as misalignment during data augmentation and the reliance on post-processing steps. To address these issues, we propose Image-Assists-LiDAR (IAL), a novel multi-modal 3D panoptic segmentation framework. In IAL, we first introduce a modality-synchronized data augmentation strategy, PieAug, to ensure alignment between LiDAR and image inputs from the start. Next, we adopt a transformer decoder to directly predict panoptic segmentation results. To effectively fuse LiDAR and image features into tokens for the decoder, we design a Geometric-guided Token Fusion (GTF) module. Additionally, we leverage the complementary strengths of each modality as priors for query initialization through a Prior-based Query Generation (PQG) module, enhancing the decoder's ability to generate accurate instance masks. Our IAL framework achieves state-of-the-art performance compared to previous multi-modal 3D panoptic segmentation methods on two widely used benchmarks. Code and models are publicly available at .
comment: Accepted at the 2025 International Conference on Machine Learning (ICML)
Over-the-Air Learning-based Geometry Point Cloud Transmission
This paper presents novel solutions for the efficient and reliable transmission of point clouds over wireless channels for real-time applications. We first propose SEmatic Point cloud Transmission (SEPT) for small-scale point clouds, which encodes the point cloud via an iterative downsampling and feature extraction process. At the receiver, SEPT decoder reconstructs the point cloud with latent reconstruction and offset-based upsampling. A novel channel-adaptive module is proposed to allow SEPT to operate effectively over a wide range of channel conditions. Next, we propose OTA-NeRF, a scheme inspired by neural radiance fields. OTA-NeRF performs voxelization to the point cloud input and learns to encode the voxelized point cloud into a neural network. Instead of transmitting the extracted feature vectors as in SEPT, it transmits the learned neural network weights in an analog fashion along with few hyperparameters that are transmitted digitally. At the receiver, the OTA-NeRF decoder reconstructs the original point cloud using the received noisy neural network weights. To further increase the bandwidth efficiency of the OTA-NeRF scheme, a fine-tuning algorithm is developed, where only a fraction of the neural network weights are retrained and transmitted. Noticing the poor generality of the OTA-NeRF schemes, we propose an alternative approach, termed OTA-MetaNeRF, which encodes different input point clouds into the latent vectors with shared neural network weights. Extensive numerical experiments confirm that the proposed SEPT, OTA-NeRF and OTA-MetaNeRF schemes achieve superior or comparable performance over the conventional approaches, where an octree-based or a learning-based point cloud compression scheme is concatenated with a channel code. Finally, the run-time complexities are evaluated to verify the capability of the proposed schemes for real-time communications.
comment: 17 pages, accepted to IEEE JSAC SI on Intelligent Communications for Real-Time Computer Vision (Comm4CV)
StereoVAE: A lightweight stereo-matching system using embedded GPUs
We present a lightweight system for stereo matching through embedded GPUs. It breaks the trade-off between accuracy and processing speed in stereo matching, enabling our embedded system to further improve the matching accuracy while ensuring real-time processing. The main idea of our method is to construct a tiny neural network based on variational auto-encoder (VAE) to upsample and refinement a small size of coarse disparity map, which is first generated by a traditional matching method. The proposed hybrid structure cannot only bring the advantage of traditional methods in terms of computational complexity, but also ensure the matching accuracy under the impact of neural network. Extensive experiments on the KITTI 2015 benchmark demonstrate that our tiny system exhibits high robustness in improving the accuracy of the coarse disparity maps generated by different algorithms, while also running in real-time on embedded GPUs.
comment: Will revise part of the contents
EVA: An Embodied World Model for Future Video Anticipation
Video generation models have made significant progress in simulating future states, showcasing their potential as world simulators in embodied scenarios. However, existing models often lack robust understanding, limiting their ability to perform multi-step predictions or handle Out-of-Distribution (OOD) scenarios. To address this challenge, we propose the Reflection of Generation (RoG), a set of intermediate reasoning strategies designed to enhance video prediction. It leverages the complementary strengths of pre-trained vision-language and video generation models, enabling them to function as a world model in embodied scenarios. To support RoG, we introduce Embodied Video Anticipation Benchmark(EVA-Bench), a comprehensive benchmark that evaluates embodied world models across diverse tasks and scenarios, utilizing both in-domain and OOD datasets. Building on this foundation, we devise a world model, Embodied Video Anticipator (EVA), that follows a multistage training paradigm to generate high-fidelity video frames and apply an autoregressive strategy to enable adaptive generalization for longer video sequences. Extensive experiments demonstrate the efficacy of EVA in various downstream tasks like video generation and robotics, thereby paving the way for large-scale pre-trained models in real-world video prediction applications. The video demos are available at \hyperlink{https://sites.google.com/view/icml-eva}{https://sites.google.com/view/icml-eva}.
RAVEN: Query-Guided Representation Alignment for Question Answering over Audio, Video, Embedded Sensors, and Natural Language
Multimodal question answering (QA) often requires identifying which video, audio, or sensor tokens are relevant to the question. Yet modality disagreements are common: off-camera speech, background noise, or motion outside the field of view often mislead fusion models that weight all streams equally. We present RAVEN, a unified QA architecture whose core is QuART, a query-conditioned cross-modal gating module that assigns scalar relevance scores to each token across modalities, enabling the model to amplify informative signals and suppress distractors before fusion. RAVEN is trained through a three-stage pipeline comprising unimodal pretraining, query-aligned fusion, and disagreement-oriented fine-tuning -- each stage targeting a distinct challenge in multi-modal reasoning: representation quality, cross-modal relevance, and robustness to modality mismatch. To support training and evaluation, we release AVS-QA, a dataset of 300K synchronized Audio--Video-Sensor streams paired with automatically generated question-answer pairs. Experimental results on seven multi-modal QA benchmarks -- including egocentric and exocentric tasks -- show that RAVEN achieves up to 14.5\% and 8.0\% gains in accuracy compared to state-of-the-art multi-modal large language models, respectively. Incorporating sensor data provides an additional 16.4\% boost, and the model remains robust under modality corruption, outperforming SOTA baselines by 50.23\%. Our code and dataset are available at https://github.com/BASHLab/RAVEN.
Computation and Language
Same Task, Different Circuits: Disentangling Modality-Specific Mechanisms in VLMs
Vision-Language models (VLMs) show impressive abilities to answer questions on visual inputs (e.g., counting objects in an image), yet demonstrate higher accuracies when performing an analogous task on text (e.g., counting words in a text). We investigate this accuracy gap by identifying and comparing the \textit{circuits} - the task-specific computational sub-graphs - in different modalities. We show that while circuits are largely disjoint between modalities, they implement relatively similar functionalities: the differences lie primarily in processing modality-specific data positions (an image or a text sequence). Zooming in on the image data representations, we observe they become aligned with the higher-performing analogous textual representations only towards later layers, too late in processing to effectively influence subsequent positions. To overcome this, we patch the representations of visual data tokens from later layers back into earlier layers. In experiments with multiple tasks and models, this simple intervention closes a third of the performance gap between the modalities, on average. Our analysis sheds light on the multi-modal performance gap in VLMs and suggests a training-free approach for reducing it.
Autoregressive Semantic Visual Reconstruction Helps VLMs Understand Better
Typical large vision-language models (LVLMs) apply autoregressive supervision solely to textual sequences, without fully incorporating the visual modality into the learning process. This results in three key limitations: (1) an inability to utilize images without accompanying captions, (2) the risk that captions omit critical visual details, and (3) the challenge that certain vision-centric content cannot be adequately conveyed through text. As a result, current LVLMs often prioritize vision-to-language alignment while potentially overlooking fine-grained visual information. While some prior works have explored autoregressive image generation, effectively leveraging autoregressive visual supervision to enhance image understanding remains an open challenge. In this paper, we introduce Autoregressive Semantic Visual Reconstruction (ASVR), which enables joint learning of visual and textual modalities within a unified autoregressive framework. We show that autoregressively reconstructing the raw visual appearance of images does not enhance and may even impair multimodal understanding. In contrast, autoregressively reconstructing the semantic representation of images consistently improves comprehension. Notably, we find that even when models are given continuous image features as input, they can effectively reconstruct discrete semantic tokens, resulting in stable and consistent improvements across a wide range of multimodal understanding benchmarks. Our approach delivers significant performance gains across varying data scales (556k-2M) and types of LLM bacbones. Specifically, ASVR improves LLaVA-1.5 by 5% in average scores across 14 multimodal benchmarks. The code is available at https://github.com/AlenjandroWang/ASVR.
Router-R1: Teaching LLMs Multi-Round Routing and Aggregation via Reinforcement Learning
The rapid emergence of diverse large language models (LLMs) has spurred the development of LLM routers that assign user queries to the most suitable model. However, existing LLM routers typically perform a single-round, one-to-one mapping (\textit{i.e.}, assigning each query to a single model in isolation), which limits their capability to tackle complex tasks that demand the complementary strengths of multiple LLMs. In this paper, we present \textbf{Router-R1}, a reinforcement learning (RL)-based framework that formulates multi-LLM routing and aggregation as a sequential decision process. Router-R1 instantiates the router itself as a capable LLM, leveraging its reasoning ability to interleave "think" actions (internal deliberation) with "route" actions (dynamic model invocation), and integrates each response into its evolving context. To guide learning, we employ a lightweight rule-based reward comprising format rewards, final outcome rewards, and a novel cost reward for performance and cost trade-off optimization, opening a pathway toward optimizing performance-cost tradeoffs via RL. Router-R1 also conditions only on simple model descriptors such as pricing, latency, and example performance, enabling strong generalization to unseen model selection. Experiments on seven general and multi-hop QA benchmarks show that Router-R1 outperforms over several strong baselines, achieving superior performance while maintaining robust generalization and cost management.Code is available at https://github.com/ulab-uiuc/Router-R1.
comment: Code is available at https://github.com/ulab-uiuc/Router-R1
e3: Learning to Explore Enables Extrapolation of Test-Time Compute for LLMs
Test-time scaling offers a promising path to improve LLM reasoning by utilizing more compute at inference time; however, the true promise of this paradigm lies in extrapolation (i.e., improvement in performance on hard problems as LLMs keep "thinking" for longer, beyond the maximum token budget they were trained on). Surprisingly, we find that most existing reasoning models do not extrapolate well. We show that one way to enable extrapolation is by training the LLM to perform in-context exploration: training the LLM to effectively spend its test time budget by chaining operations (such as generation, verification, refinement, etc.), or testing multiple hypotheses before it commits to an answer. To enable in-context exploration, we identify three key ingredients as part of our recipe e3: (1) chaining skills that the base LLM has asymmetric competence in, e.g., chaining verification (easy) with generation (hard), as a way to implement in-context search; (2) leveraging "negative" gradients from incorrect traces to amplify exploration during RL, resulting in longer search traces that chains additional asymmetries; and (3) coupling task difficulty with training token budget during training via a specifically-designed curriculum to structure in-context exploration. Our recipe e3 produces the best known 1.7B model according to AIME'25 and HMMT'25 scores, and extrapolates to 2x the training token budget. Our e3-1.7B model not only attains high pass@1 scores, but also improves pass@k over the base model.
Comparing human and LLM proofreading in L2 writing: Impact on lexical and syntactic features
This study examines the lexical and syntactic interventions of human and LLM proofreading aimed at improving overall intelligibility in identical second language writings, and evaluates the consistency of outcomes across three LLMs (ChatGPT-4o, Llama3.1-8b, Deepseek-r1-8b). Findings show that both human and LLM proofreading enhance bigram lexical features, which may contribute to better coherence and contextual connectedness between adjacent words. However, LLM proofreading exhibits a more generative approach, extensively reworking vocabulary and sentence structures, such as employing more diverse and sophisticated vocabulary and incorporating a greater number of adjective modifiers in noun phrases. The proofreading outcomes are highly consistent in major lexical and syntactic features across the three models.
Learning to Reason Across Parallel Samples for LLM Reasoning
Scaling test-time compute brings substantial performance gains for large language models (LLMs). By sampling multiple answers and heuristically aggregate their answers (e.g., either through majority voting or using verifiers to rank the answers), one can achieve consistent performance gains in math domains. In this paper, we propose a new way to leverage such multiple sample set. We train a compact LLM, called Sample Set Aggregator (SSA), that takes a concatenated sequence of multiple samples and output the final answer, optimizing it for the answer accuracy with reinforcement learning. Experiments on multiple reasoning datasets show that SSA outperforms other test-time scaling methods such as reward model-based re-ranking. Our approach also shows a promising generalization ability, across sample set sizes, base model families and scales, and tasks. By separating LLMs to generate answers and LLMs to analyze and aggregate sampled answers, our approach can work with the outputs from premier black box models easily and efficiently.
UD-KSL Treebank v1.3: A semi-automated framework for aligning XPOS-extracted units with UPOS tags
The present study extends recent work on Universal Dependencies annotations for second-language (L2) Korean by introducing a semi-automated framework that identifies morphosyntactic constructions from XPOS sequences and aligns those constructions with corresponding UPOS categories. We also broaden the existing L2-Korean corpus by annotating 2,998 new sentences from argumentative essays. To evaluate the impact of XPOS-UPOS alignments, we fine-tune L2-Korean morphosyntactic analysis models on datasets both with and without these alignments, using two NLP toolkits. Our results indicate that the aligned dataset not only improves consistency across annotation layers but also enhances morphosyntactic tagging and dependency-parsing accuracy, particularly in cases of limited annotated data.
SWE-Flow: Synthesizing Software Engineering Data in a Test-Driven Manner ICML2025
We introduce **SWE-Flow**, a novel data synthesis framework grounded in Test-Driven Development (TDD). Unlike existing software engineering data that rely on human-submitted issues, **SWE-Flow** automatically infers incremental development steps directly from unit tests, which inherently encapsulate high-level requirements. The core of **SWE-Flow** is the construction of a Runtime Dependency Graph (RDG), which precisely captures function interactions, enabling the generation of a structured, step-by-step *development schedule*. At each step, **SWE-Flow** produces a partial codebase, the corresponding unit tests, and the necessary code modifications, resulting in fully verifiable TDD tasks. With this approach, we generated 16,061 training instances and 2,020 test instances from real-world GitHub projects, creating the **SWE-Flow-Eval** benchmark. Our experiments show that fine-tuning open model on this dataset significantly improves performance in TDD-based coding. To facilitate further research, we release all code, datasets, models, and Docker images at [Github](https://github.com/Hambaobao/SWE-Flow).
comment: Accepted by ICML2025
Employing self-supervised learning models for cross-linguistic child speech maturity classification
Speech technology systems struggle with many downstream tasks for child speech due to small training corpora and the difficulties that child speech pose. We apply a novel dataset, SpeechMaturity, to state-of-the-art transformer models to address a fundamental classification task: identifying child vocalizations. Unlike previous corpora, our dataset captures maximally ecologically-valid child vocalizations across an unprecedented sample, comprising children acquiring 25+ languages in the U.S., Bolivia, Vanuatu, Papua New Guinea, Solomon Islands, and France. The dataset contains 242,004 labeled vocalizations, magnitudes larger than previous work. Models were trained to distinguish between cry, laughter, mature (consonant+vowel), and immature speech (just consonant or vowel). Models trained on the dataset outperform state-of-the-art models trained on previous datasets, achieved classification accuracy comparable to humans, and were robust across rural and urban settings.
comment: To be published in Interspeech 2025. 5 pages, 2 figures. For associated Github repository, see https://github.com/spoglab-stanford/w2v2-pro-sm/tree/main/speechbrain/recipes/W2V2-LL4300-Pro-SM
SwS: Self-aware Weakness-driven Problem Synthesis in Reinforcement Learning for LLM Reasoning
Reinforcement Learning with Verifiable Rewards (RLVR) has proven effective for training large language models (LLMs) on complex reasoning tasks, such as mathematical problem solving. A prerequisite for the scalability of RLVR is a high-quality problem set with precise and verifiable answers. However, the scarcity of well-crafted human-labeled math problems and limited-verification answers in existing distillation-oriented synthetic datasets limit their effectiveness in RL. Additionally, most problem synthesis strategies indiscriminately expand the problem set without considering the model's capabilities, leading to low efficiency in generating useful questions. To mitigate this issue, we introduce a Self-aware Weakness-driven problem Synthesis framework (SwS) that systematically identifies model deficiencies and leverages them for problem augmentation. Specifically, we define weaknesses as questions that the model consistently fails to learn through its iterative sampling during RL training. We then extract the core concepts from these failure cases and synthesize new problems to strengthen the model's weak areas in subsequent augmented training, enabling it to focus on and gradually overcome its weaknesses. Without relying on external knowledge distillation, our framework enables robust generalization byempowering the model to self-identify and address its weaknesses in RL, yielding average performance gains of 10.0% and 7.7% on 7B and 32B models across eight mainstream reasoning benchmarks.
comment: Reinforcement Learning; Large Language Models; LLM Reasoning
Naturalistic Language-related Movie-Watching fMRI Task for Detecting Neurocognitive Decline and Disorder SC
Early detection is crucial for timely intervention aimed at preventing and slowing the progression of neurocognitive disorder (NCD), a common and significant health problem among the aging population. Recent evidence has suggested that language-related functional magnetic resonance imaging (fMRI) may be a promising approach for detecting cognitive decline and early NCD. In this paper, we proposed a novel, naturalistic language-related fMRI task for this purpose. We examined the effectiveness of this task among 97 non-demented Chinese older adults from Hong Kong. The results showed that machine-learning classification models based on fMRI features extracted from the task and demographics (age, gender, and education year) achieved an average area under the curve of 0.86 when classifying participants' cognitive status (labeled as NORMAL vs DECLINE based on their scores on a standard neurcognitive test). Feature localization revealed that the fMRI features most frequently selected by the data-driven approach came primarily from brain regions associated with language processing, such as the superior temporal gyrus, middle temporal gyrus, and right cerebellum. The study demonstrated the potential of the naturalistic language-related fMRI task for early detection of aging-related cognitive decline and NCD.
comment: 5 pages,3 figures, accepted by ISCSLP 2024
FROST-EMA: Finnish and Russian Oral Speech Dataset of Electromagnetic Articulography Measurements with L1, L2 and Imitated L2 Accents
We introduce a new FROST-EMA (Finnish and Russian Oral Speech Dataset of Electromagnetic Articulography) corpus. It consists of 18 bilingual speakers, who produced speech in their native language (L1), second language (L2), and imitated L2 (fake foreign accent). The new corpus enables research into language variability from phonetic and technological points of view. Accordingly, we include two preliminary case studies to demonstrate both perspectives. The first case study explores the impact of L2 and imitated L2 on the performance of an automatic speaker verification system, while the second illustrates the articulatory patterns of one speaker in L1, L2, and a fake accent.
comment: Accepted in Interspeech 2025
Atomic-to-Compositional Generalization for Mobile Agents with A New Benchmark and Scheduling System
Autonomous agents powered by multimodal large language models have been developed to facilitate task execution on mobile devices. However, prior work has predominantly focused on atomic tasks -- such as shot-chain execution tasks and single-screen grounding tasks -- while overlooking the generalization to compositional tasks, which are indispensable for real-world applications. This work introduces UI-NEXUS, a comprehensive benchmark designed to evaluate mobile agents on three categories of compositional operations: Simple Concatenation, Context Transition, and Deep Dive. UI-NEXUS supports interactive evaluation in 20 fully controllable local utility app environments, as well as 30 online Chinese and English service apps. It comprises 100 interactive task templates with an average optimal step count of 14.05. Experimental results across a range of mobile agents with agentic workflow or agent-as-a-model show that UI-NEXUS presents significant challenges. Specifically, existing agents generally struggle to balance performance and efficiency, exhibiting representative failure modes such as under-execution, over-execution, and attention drift, causing visible atomic-to-compositional generalization gap. Inspired by these findings, we propose AGENT-NEXUS, a lightweight and efficient scheduling system to tackle compositional mobile tasks. AGENT-NEXUS extrapolates the abilities of existing mobile agents by dynamically decomposing long-horizon tasks to a series of self-contained atomic subtasks. AGENT-NEXUS achieves 24% to 40% task success rate improvement for existing mobile agents on compositional operation tasks within the UI-NEXUS benchmark without significantly sacrificing inference overhead. The demo video, dataset, and code are available on the project page at https://ui-nexus.github.io.
Step-Audio-AQAA: a Fully End-to-End Expressive Large Audio Language Model
Large Audio-Language Models (LALMs) have significantly advanced intelligent human-computer interaction, yet their reliance on text-based outputs limits their ability to generate natural speech responses directly, hindering seamless audio interactions. To address this, we introduce Step-Audio-AQAA, a fully end-to-end LALM designed for Audio Query-Audio Answer (AQAA) tasks. The model integrates a dual-codebook audio tokenizer for linguistic and semantic feature extraction, a 130-billion-parameter backbone LLM and a neural vocoder for high-fidelity speech synthesis. Our post-training approach employs interleaved token-output of text and audio to enhance semantic coherence and combines Direct Preference Optimization (DPO) with model merge to improve performance. Evaluations on the StepEval-Audio-360 benchmark demonstrate that Step-Audio-AQAA excels especially in speech control, outperforming the state-of-art LALMs in key areas. This work contributes a promising solution for end-to-end LALMs and highlights the critical role of token-based vocoder in enhancing overall performance for AQAA tasks.
comment: 12 pages, 3 figures
Pre-trained Language Models Learn Remarkably Accurate Representations of Numbers
Pretrained language models (LMs) are prone to arithmetic errors. Existing work showed limited success in probing numeric values from models' representations, indicating that these errors can be attributed to the inherent unreliability of distributionally learned embeddings in representing exact quantities. However, we observe that previous probing methods are inadequate for the emergent structure of learned number embeddings with sinusoidal patterns. In response, we propose a novel probing technique that decodes numeric values from input embeddings with near-perfect accuracy across a range of open-source LMs. This proves that after the sole pre-training, LMs represent numbers with remarkable precision. Finally, we find that the embeddings' preciseness judged by our probe's accuracy explains a large portion of LM's errors in elementary arithmetic, and show that aligning the embeddings with the pattern discovered by our probe can mitigate these errors.
Can LLMs Ground when they (Don't) Know: A Study on Direct and Loaded Political Questions ACL
Communication among humans relies on conversational grounding, allowing interlocutors to reach mutual understanding even when they do not have perfect knowledge and must resolve discrepancies in each other's beliefs. This paper investigates how large language models (LLMs) manage common ground in cases where they (don't) possess knowledge, focusing on facts in the political domain where the risk of misinformation and grounding failure is high. We examine the ability of LLMs to answer direct knowledge questions and loaded questions that presuppose misinformation. We evaluate whether loaded questions lead LLMs to engage in active grounding and correct false user beliefs, in connection to their level of knowledge and their political bias. Our findings highlight significant challenges in LLMs' ability to engage in grounding and reject false user beliefs, raising concerns about their role in mitigating misinformation in political discourse.
comment: Preprint accepted at ACL Main Conference 2025
FaithfulRAG: Fact-Level Conflict Modeling for Context-Faithful Retrieval-Augmented Generation
Large language models (LLMs) augmented with retrieval systems have demonstrated significant potential in handling knowledge-intensive tasks. However, these models often struggle with unfaithfulness issues, generating outputs that either ignore the retrieved context or inconsistently blend it with the LLM`s parametric knowledge. This issue is particularly severe in cases of knowledge conflict, where the retrieved context conflicts with the model`s parametric knowledge. While existing faithful RAG approaches enforce strict context adherence through well-designed prompts or modified decoding strategies, our analysis reveals a critical limitation: they achieve faithfulness by forcibly suppressing the model`s parametric knowledge, which undermines the model`s internal knowledge structure and increases the risk of misinterpreting the context. To this end, this paper proposes FaithfulRAG, a novel framework that resolves knowledge conflicts by explicitly modeling discrepancies between the model`s parametric knowledge and retrieved context. Specifically, FaithfulRAG identifies conflicting knowledge at the fact level and designs a self-thinking process, allowing LLMs to reason about and integrate conflicting facts before generating responses. Extensive experiments demonstrate that our method outperforms state-of-the-art methods. The code is available at https:// github.com/DeepLearnXMU/Faithful-RAG
comment: Qinggang Zhang and Zhishang Xiang contributed equally to this work. Corresponding author: Jinsong Su
Can A Gamer Train A Mathematical Reasoning Model?
While large language models (LLMs) have achieved remarkable performance in various tasks including mathematical reasoning, their development typically demands prohibitive computational resources. Recent advancements have reduced costs for training capable models, yet even these approaches rely on high-end hardware clusters. In this paper, we demonstrate that a single average gaming GPU can train a solid mathematical reasoning model, by integrating reinforcement learning and memory optimization techniques. Specifically, we train a 1.5B parameter mathematical reasoning model on RTX 3080 Ti of 16GB memory that achieves comparable or better performance on mathematical reasoning benchmarks than models several times larger, in resource-constrained environments. Our results challenge the paradigm that state-of-the-art mathematical reasoning necessitates massive infrastructure, democratizing access to high-performance AI research. https://github.com/shinandrew/YouronMath.
Socratic-MCTS: Test-Time Visual Reasoning by Asking the Right Questions
Recent research in vision-language models (VLMs) has centered around the possibility of equipping them with implicit long-form chain-of-thought reasoning -- akin to the success observed in language models -- via distillation and reinforcement learning. But what about the non-reasoning models already trained and deployed across the internet? Should we simply abandon them, or is there hope for a search mechanism that can elicit hidden knowledge and induce long reasoning traces -- without any additional training or supervision? In this paper, we explore this possibility using a Monte Carlo Tree Search (MCTS)-inspired algorithm, which injects subquestion-subanswer pairs into the model's output stream. We show that framing reasoning as a search process -- where subquestions act as latent decisions within a broader inference trajectory -- helps the model "connect the dots" between fragmented knowledge and produce extended reasoning traces in non-reasoning models. We evaluate our method across three benchmarks and observe consistent improvements. Notably, our approach yields a 2% overall improvement on MMMU-PRO, including a significant 9% gain in Liberal Arts.
PropMEND: Hypernetworks for Knowledge Propagation in LLMs
Knowledge editing techniques for large language models (LLMs) can inject knowledge that is later reproducible verbatim, but they fall short on propagating that knowledge: models cannot answer questions that require reasoning with the injected knowledge. We present a hypernetwork-based approach for knowledge propagation, named PropMEND, where we meta-learn how to modify gradients of a language modeling loss to encourage injected information to propagate. Our approach extends the meta-objective of MEND [29] so that gradient updates on knowledge are transformed to enable answering multi-hop questions involving that knowledge. We show improved performance on the RippleEdit dataset, showing almost 2x accuracy on challenging multi-hop questions whose answers are not explicitly stated in the injected fact. We further introduce a new dataset, Controlled RippleEdit, to evaluate the generalization of our hypernetwork, testing knowledge propagation along relations and entities unseen during hypernetwork training. PropMEND still outperforms existing approaches in unseen entity-relation pairs, yet the performance gap decreases substantially, suggesting future work in propagating knowledge to a wide range of relations.
comment: Under review
Dialect Normalization using Large Language Models and Morphological Rules
Natural language understanding systems struggle with low-resource languages, including many dialects of high-resource ones. Dialect-to-standard normalization attempts to tackle this issue by transforming dialectal text so that it can be used by standard-language tools downstream. In this study, we tackle this task by introducing a new normalization method that combines rule-based linguistically informed transformations and large language models (LLMs) with targeted few-shot prompting, without requiring any parallel data. We implement our method for Greek dialects and apply it on a dataset of regional proverbs, evaluating the outputs using human annotators. We then use this dataset to conduct downstream experiments, finding that previous results regarding these proverbs relied solely on superficial linguistic information, including orthographic artifacts, while new observations can still be made through the remaining semantics.
comment: 19 pages, 18 figures, to be published in the Findings of the Association for Computational Linguistics 2025
From Legal Texts to Defeasible Deontic Logic via LLMs: A Study in Automated Semantic Analysis
We present a novel approach to the automated semantic analysis of legal texts using large language models (LLMs), targeting their transformation into formal representations in Defeasible Deontic Logic (DDL). We propose a structured pipeline that segments complex normative language into atomic snippets, extracts deontic rules, and evaluates them for syntactic and semantic coherence. Our methodology is evaluated across various LLM configurations, including prompt engineering strategies, fine-tuned models, and multi-stage pipelines, focusing on legal norms from the Australian Telecommunications Consumer Protections Code. Empirical results demonstrate promising alignment between machine-generated and expert-crafted formalizations, showing that LLMs - particularly when prompted effectively - can significantly contribute to scalable legal informatics.
PlantBert: An Open Source Language Model for Plant Science
The rapid advancement of transformer-based language models has catalyzed breakthroughs in biomedical and clinical natural language processing; however, plant science remains markedly underserved by such domain-adapted tools. In this work, we present PlantBert, a high-performance, open-source language model specifically tailored for extracting structured knowledge from plant stress-response literature. Built upon the DeBERTa architecture-known for its disentangled attention and robust contextual encoding-PlantBert is fine-tuned on a meticulously curated corpus of expert-annotated abstracts, with a primary focus on lentil (Lens culinaris) responses to diverse abiotic and biotic stressors. Our methodology combines transformer-based modeling with rule-enhanced linguistic post-processing and ontology-grounded entity normalization, enabling PlantBert to capture biologically meaningful relationships with precision and semantic fidelity. The underlying corpus is annotated using a hierarchical schema aligned with the Crop Ontology, encompassing molecular, physiological, biochemical, and agronomic dimensions of plant adaptation. PlantBert exhibits strong generalization capabilities across entity types and demonstrates the feasibility of robust domain adaptation in low-resource scientific fields. By providing a scalable and reproducible framework for high-resolution entity recognition, PlantBert bridges a critical gap in agricultural NLP and paves the way for intelligent, data-driven systems in plant genomics, phenomics, and agronomic knowledge discovery. Our model is publicly released to promote transparency and accelerate cross-disciplinary innovation in computational plant science.
AdversariaL attacK sAfety aLIgnment(ALKALI): Safeguarding LLMs through GRACE: Geometric Representation-Aware Contrastive Enhancement- Introducing Adversarial Vulnerability Quality Index (AVQI)
Adversarial threats against LLMs are escalating faster than current defenses can adapt. We expose a critical geometric blind spot in alignment: adversarial prompts exploit latent camouflage, embedding perilously close to the safe representation manifold while encoding unsafe intent thereby evading surface level defenses like Direct Preference Optimization (DPO), which remain blind to the latent geometry. We introduce ALKALI, the first rigorously curated adversarial benchmark and the most comprehensive to date spanning 9,000 prompts across three macro categories, six subtypes, and fifteen attack families. Evaluation of 21 leading LLMs reveals alarmingly high Attack Success Rates (ASRs) across both open and closed source models, exposing an underlying vulnerability we term latent camouflage, a structural blind spot where adversarial completions mimic the latent geometry of safe ones. To mitigate this vulnerability, we introduce GRACE - Geometric Representation Aware Contrastive Enhancement, an alignment framework coupling preference learning with latent space regularization. GRACE enforces two constraints: latent separation between safe and adversarial completions, and adversarial cohesion among unsafe and jailbreak behaviors. These operate over layerwise pooled embeddings guided by a learned attention profile, reshaping internal geometry without modifying the base model, and achieve up to 39% ASR reduction. Moreover, we introduce AVQI, a geometry aware metric that quantifies latent alignment failure via cluster separation and compactness. AVQI reveals when unsafe completions mimic the geometry of safe ones, offering a principled lens into how models internally encode safety. We make the code publicly available at https://anonymous.4open.science/r/alkali-B416/README.md.
Advancing STT for Low-Resource Real-World Speech
Swiss German is a low-resource language represented by diverse dialects that differ significantly from Standard German and from each other, lacking a standardized written form. As a result, transcribing Swiss German involves translating into Standard German. Existing datasets have been collected in controlled environments, yielding effective speech-to-text (STT) models, but these models struggle with spontaneous conversational speech. This paper, therefore, introduces the new SRB-300 dataset, a 300-hour annotated speech corpus featuring real-world long-audio recordings from 39 Swiss German radio and TV stations. It captures spontaneous speech across all major Swiss dialects recorded in various realistic environments and overcomes the limitation of prior sentence-level corpora. We fine-tuned multiple OpenAI Whisper models on the SRB-300 dataset, achieving notable enhancements over previous zero-shot performance metrics. Improvements in word error rate (WER) ranged from 19% to 33%, while BLEU scores increased between 8% and 40%. The best fine-tuned model, large-v3, achieved a WER of 17.1% and a BLEU score of 74.8. This advancement is crucial for developing effective and robust STT systems for Swiss German and other low-resource languages in real-world contexts.
comment: Conference: HCI International 2025, 20 pages, 4 figures
CulturalFrames: Assessing Cultural Expectation Alignment in Text-to-Image Models and Evaluation Metrics
The increasing ubiquity of text-to-image (T2I) models as tools for visual content generation raises concerns about their ability to accurately represent diverse cultural contexts. In this work, we present the first study to systematically quantify the alignment of T2I models and evaluation metrics with respect to both explicit as well as implicit cultural expectations. To this end, we introduce CulturalFrames, a novel benchmark designed for rigorous human evaluation of cultural representation in visual generations. Spanning 10 countries and 5 socio-cultural domains, CulturalFrames comprises 983 prompts, 3637 corresponding images generated by 4 state-of-the-art T2I models, and over 10k detailed human annotations. We find that T2I models not only fail to meet the more challenging implicit expectations but also the less challenging explicit expectations. Across models and countries, cultural expectations are missed an average of 44% of the time. Among these failures, explicit expectations are missed at a surprisingly high average rate of 68%, while implicit expectation failures are also significant, averaging 49%. Furthermore, we demonstrate that existing T2I evaluation metrics correlate poorly with human judgments of cultural alignment, irrespective of their internal reasoning. Collectively, our findings expose critical gaps, providing actionable directions for developing more culturally informed T2I models and evaluation methodologies.
The impact of fine tuning in LLaMA on hallucinations for named entity extraction in legal documentation
The extraction of information about traffic accidents from legal documents is crucial for quantifying insurance company costs. Extracting entities such as percentages of physical and/or psychological disability and the involved compensation amounts is a challenging process, even for experts, due to the subtle arguments and reasoning in the court decision. A two-step procedure is proposed: first, segmenting the document identifying the most relevant segments, and then extracting the entities. For text segmentation, two methodologies are compared: a classic method based on regular expressions and a second approach that divides the document into blocks of n-tokens, which are then vectorized using multilingual models for semantic searches (text-embedding-ada-002/MiniLM-L12-v2 ). Subsequently, large language models (LLaMA-2 7b, 70b, LLaMA-3 8b, and GPT-4 Turbo) are applied with prompting to the selected segments for entity extraction. For the LLaMA models, fine-tuning is performed using LoRA. LLaMA-2 7b, even with zero temperature, shows a significant number of hallucinations in extractions which are an important contention point for named entity extraction. This work shows that these hallucinations are substantially reduced after finetuning the model. The performance of the methodology based on segment vectorization and subsequent use of LLMs significantly surpasses the classic method which achieves an accuracy of 39.5%. Among open-source models, LLaMA-2 70B with finetuning achieves the highest accuracy 79.4%, surpassing its base version 61.7%. Notably, the base LLaMA-3 8B model already performs comparably to the finetuned LLaMA-2 70B model, achieving 76.6%, highlighting the rapid progress in model development. Meanwhile, GPT-4 Turbo achieves the highest accuracy at 86.1%.
Measuring Data Science Automation: A Survey of Evaluation Tools for AI Assistants and Agents
Data science aims to extract insights from data to support decision-making processes. Recently, Large Language Models (LLMs) are increasingly used as assistants for data science, by suggesting ideas, techniques and small code snippets, or for the interpretation of results and reporting. Proper automation of some data-science activities is now promised by the rise of LLM agents, i.e., AI systems powered by an LLM equipped with additional affordances--such as code execution and knowledge bases--that can perform self-directed actions and interact with digital environments. In this paper, we survey the evaluation of LLM assistants and agents for data science. We find (1) a dominant focus on a small subset of goal-oriented activities, largely ignoring data management and exploratory activities; (2) a concentration on pure assistance or fully autonomous agents, without considering intermediate levels of human-AI collaboration; and (3) an emphasis on human substitution, therefore neglecting the possibility of higher levels of automation thanks to task transformation.
Paths to Causality: Finding Informative Subgraphs Within Knowledge Graphs for Knowledge-Based Causal Discovery KDD 2025
Inferring causal relationships between variable pairs is crucial for understanding multivariate interactions in complex systems. Knowledge-based causal discovery -- which involves inferring causal relationships by reasoning over the metadata of variables (e.g., names or textual context) -- offers a compelling alternative to traditional methods that rely on observational data. However, existing methods using Large Language Models (LLMs) often produce unstable and inconsistent results, compromising their reliability for causal inference. To address this, we introduce a novel approach that integrates Knowledge Graphs (KGs) with LLMs to enhance knowledge-based causal discovery. Our approach identifies informative metapath-based subgraphs within KGs and further refines the selection of these subgraphs using Learning-to-Rank-based models. The top-ranked subgraphs are then incorporated into zero-shot prompts, improving the effectiveness of LLMs in inferring the causal relationship. Extensive experiments on biomedical and open-domain datasets demonstrate that our method outperforms most baselines by up to 44.4 points in F1 scores, evaluated across diverse LLMs and KGs. Our code and datasets are available on GitHub: https://github.com/susantiyuni/path-to-causality
comment: Accepted at KDD 2025 (full research paper)
AraReasoner: Evaluating Reasoning-Based LLMs for Arabic NLP
Large language models (LLMs) have shown remarkable progress in reasoning abilities and general natural language processing (NLP) tasks, yet their performance on Arabic data, characterized by rich morphology, diverse dialects, and complex script, remains underexplored. This paper presents a comprehensive benchmarking study of multiple reasoning-focused LLMs, with a special emphasis on the newly introduced DeepSeek models, across a suite of fifteen Arabic NLP tasks. We experiment with various strategies, including zero-shot, few-shot, and fine-tuning. This allows us to systematically evaluate performance on datasets covering a range of applications to examine their capacity for linguistic reasoning under different levels of complexity. Our experiments reveal several key findings. First, carefully selecting just three in-context examples delivers an average uplift of over 13 F1 points on classification tasks-boosting sentiment analysis from 35.3% to 87.5% and paraphrase detection from 56.1% to 87.0%. Second, reasoning-focused DeepSeek architectures outperform a strong GPT o4-mini baseline by an average of 12 F1 points on complex inference tasks in the zero-shot setting. Third, LoRA-based fine-tuning yields up to an additional 8 points in F1 and BLEU compared to equivalent increases in model scale. The code is available at https://anonymous.4open.science/r/AraReasoner41299
EDINET-Bench: Evaluating LLMs on Complex Financial Tasks using Japanese Financial Statements
Financial analysis presents complex challenges that could leverage large language model (LLM) capabilities. However, the scarcity of challenging financial datasets, particularly for Japanese financial data, impedes academic innovation in financial analytics. As LLMs advance, this lack of accessible research resources increasingly hinders their development and evaluation in this specialized domain. To address this gap, we introduce EDINET-Bench, an open-source Japanese financial benchmark designed to evaluate the performance of LLMs on challenging financial tasks including accounting fraud detection, earnings forecasting, and industry prediction. EDINET-Bench is constructed by downloading annual reports from the past 10 years from Japan's Electronic Disclosure for Investors' NETwork (EDINET) and automatically assigning labels corresponding to each evaluation task. Our experiments reveal that even state-of-the-art LLMs struggle, performing only slightly better than logistic regression in binary classification for fraud detection and earnings forecasting. These results highlight significant challenges in applying LLMs to real-world financial applications and underscore the need for domain-specific adaptation. Our dataset, benchmark construction code, and evaluation code is publicly available to facilitate future research in finance with LLMs.
Enhancing Accuracy and Maintainability in Nuclear Plant Data Retrieval: A Function-Calling LLM Approach Over NL-to-SQL
Retrieving operational data from nuclear power plants requires exceptional accuracy and transparency due to the criticality of the decisions it supports. Traditionally, natural language to SQL (NL-to-SQL) approaches have been explored for querying such data. While NL-to-SQL promises ease of use, it poses significant risks: end-users cannot easily validate generated SQL queries, and legacy nuclear plant databases -- often complex and poorly structured -- complicate query generation due to decades of incremental modifications. These challenges increase the likelihood of inaccuracies and reduce trust in the approach. In this work, we propose an alternative paradigm: leveraging function-calling large language models (LLMs) to address these challenges. Instead of directly generating SQL queries, we define a set of pre-approved, purpose-specific functions representing common use cases. Queries are processed by invoking these functions, which encapsulate validated SQL logic. This hybrid approach mitigates the risks associated with direct NL-to-SQL translations by ensuring that SQL queries are reviewed and optimized by experts before deployment. While this strategy introduces the upfront cost of developing and maintaining the function library, we demonstrate how NL-to-SQL tools can assist in the initial generation of function code, allowing experts to focus on validation rather than creation. Our study includes a performance comparison between direct NL-to-SQL generation and the proposed function-based approach, highlighting improvements in accuracy and maintainability. This work underscores the importance of balancing user accessibility with operational safety and provides a novel, actionable framework for robust data retrieval in critical systems.
comment: 44th Annual CNS Conference and the 49th Annual CNS/CNA Student Conference, Westin Harbour Castle Hotel, Toronto, ON, Canada, June 8-11, 2025
Factors affecting the in-context learning abilities of LLMs for dialogue state tracking
This study explores the application of in-context learning (ICL) to the dialogue state tracking (DST) problem and investigates the factors that influence its effectiveness. We use a sentence embedding based k-nearest neighbour method to retrieve the suitable demonstrations for ICL. The selected demonstrations, along with the test samples, are structured within a template as input to the LLM. We then conduct a systematic study to analyse the impact of factors related to demonstration selection and prompt context on DST performance. This work is conducted using the MultiWoZ2.4 dataset and focuses primarily on the OLMo-7B-instruct, Mistral-7B-Instruct-v0.3, and Llama3.2-3B-Instruct models. Our findings provide several useful insights on in-context learning abilities of LLMs for dialogue state tracking.
comment: Accepted to Interspeech 2025
Unlocking the Potential of Large Language Models in the Nuclear Industry with Synthetic Data
The nuclear industry possesses a wealth of valuable information locked away in unstructured text data. This data, however, is not readily usable for advanced Large Language Model (LLM) applications that require clean, structured question-answer pairs for tasks like model training, fine-tuning, and evaluation. This paper explores how synthetic data generation can bridge this gap, enabling the development of robust LLMs for the nuclear domain. We discuss the challenges of data scarcity and privacy concerns inherent in the nuclear industry and how synthetic data provides a solution by transforming existing text data into usable Q&A pairs. This approach leverages LLMs to analyze text, extract key information, generate relevant questions, and evaluate the quality of the resulting synthetic dataset. By unlocking the potential of LLMs in the nuclear industry, synthetic data can pave the way for improved information retrieval, enhanced knowledge sharing, and more informed decision-making in this critical sector.
Towards Secure and Private Language Models for Nuclear Power Plants
This paper introduces a domain-specific Large Language Model for nuclear applications, built from the publicly accessible Essential CANDU textbook. Drawing on a compact Transformer-based architecture, the model is trained on a single GPU to protect the sensitive data inherent in nuclear operations. Despite relying on a relatively small dataset, it shows encouraging signs of capturing specialized nuclear vocabulary, though the generated text sometimes lacks syntactic coherence. By focusing exclusively on nuclear content, this approach demonstrates the feasibility of in-house LLM solutions that align with rigorous cybersecurity and data confidentiality standards. Early successes in text generation underscore the model's utility for specialized tasks, while also revealing the need for richer corpora, more sophisticated preprocessing, and instruction fine-tuning to enhance domain accuracy. Future directions include extending the dataset to cover diverse nuclear subtopics, refining tokenization to reduce noise, and systematically evaluating the model's readiness for real-world applications in nuclear domain.
Consistent Paths Lead to Truth: Self-Rewarding Reinforcement Learning for LLM Reasoning
Recent advances of Reinforcement Learning (RL) have highlighted its potential in complex reasoning tasks, yet effective training often relies on external supervision, which limits the broader applicability. In this work, we propose a novel self-rewarding reinforcement learning framework to enhance Large Language Model (LLM) reasoning by leveraging the consistency of intermediate reasoning states across different reasoning trajectories. Our key insight is that correct responses often exhibit consistent trajectory patterns in terms of model likelihood: their intermediate reasoning states tend to converge toward their own final answers (high consistency) with minimal deviation toward other candidates (low volatility). Inspired by this observation, we introduce CoVo, an intrinsic reward mechanism that integrates Consistency and Volatility via a robust vector-space aggregation strategy, complemented by a curiosity bonus to promote diverse exploration. CoVo enables LLMs to perform RL in a self-rewarding manner, offering a scalable pathway for learning to reason without external supervision. Extensive experiments on diverse reasoning benchmarks show that CoVo achieves performance comparable to or even surpassing supervised RL. Our code is available at https://github.com/sastpg/CoVo.
Societal AI Research Has Become Less Interdisciplinary
As artificial intelligence (AI) systems become deeply embedded in everyday life, calls to align AI development with ethical and societal values have intensified. Interdisciplinary collaboration is often championed as a key pathway for fostering such engagement. Yet it remains unclear whether interdisciplinary research teams are actually leading this shift in practice. This study analyzes over 100,000 AI-related papers published on ArXiv between 2014 and 2024 to examine how ethical values and societal concerns are integrated into technical AI research. We develop a classifier to identify societal content and measure the extent to which research papers express these considerations. We find a striking shift: while interdisciplinary teams remain more likely to produce societally-oriented research, computer science-only teams now account for a growing share of the field's overall societal output. These teams are increasingly integrating societal concerns into their papers and tackling a wide range of domains - from fairness and safety to healthcare and misinformation. These findings challenge common assumptions about the drivers of societal AI and raise important questions. First, what are the implications for emerging understandings of AI safety and governance if most societally-oriented research is being undertaken by exclusively technical teams? Second, for scholars in the social sciences and humanities: in a technical field increasingly responsive to societal demands, what distinctive perspectives can we still offer to help shape the future of AI?
Improved LLM Agents for Financial Document Question Answering
Large language models (LLMs) have shown impressive capabilities on numerous natural language processing tasks. However, LLMs still struggle with numerical question answering for financial documents that include tabular and textual data. Recent works have showed the effectiveness of critic agents (i.e., self-correction) for this task given oracle labels. Building upon this framework, this paper examines the effectiveness of the traditional critic agent when oracle labels are not available, and show, through experiments, that this critic agent's performance deteriorates in this scenario. With this in mind, we present an improved critic agent, along with the calculator agent which outperforms the previous state-of-the-art approach (program-of-thought) and is safer. Furthermore, we investigate how our agents interact with each other, and how this interaction affects their performance.
comment: 12 pages, 5 figures
Multi-Teacher Language-Aware Knowledge Distillation for Multilingual Speech Emotion Recognition INTERSPEECH 2025
Speech Emotion Recognition (SER) is crucial for improving human-computer interaction. Despite strides in monolingual SER, extending them to build a multilingual system remains challenging. Our goal is to train a single model capable of multilingual SER by distilling knowledge from multiple teacher models. To address this, we introduce a novel language-aware multi-teacher knowledge distillation method to advance SER in English, Finnish, and French. It leverages Wav2Vec2.0 as the foundation of monolingual teacher models and then distills their knowledge into a single multilingual student model. The student model demonstrates state-of-the-art performance, with a weighted recall of 72.9 on the English dataset and an unweighted recall of 63.4 on the Finnish dataset, surpassing fine-tuning and knowledge distillation baselines. Our method excels in improving recall for sad and neutral emotions, although it still faces challenges in recognizing anger and happiness.
comment: Accepted to INTERSPEECH 2025 conference
Explainable Compliance Detection with Multi-Hop Natural Language Inference on Assurance Case Structure
Ensuring complex systems meet regulations typically requires checking the validity of assurance cases through a claim-argument-evidence framework. Some challenges in this process include the complicated nature of legal and technical texts, the need for model explanations, and limited access to assurance case data. We propose a compliance detection approach based on Natural Language Inference (NLI): EXplainable CompLiance detection with Argumentative Inference of Multi-hop reasoning (EXCLAIM). We formulate the claim-argument-evidence structure of an assurance case as a multi-hop inference for explainable and traceable compliance detection. We address the limited number of assurance cases by generating them using large language models (LLMs). We introduce metrics that measure the coverage and structural consistency. We demonstrate the effectiveness of the generated assurance case from GDPR requirements in a multi-hop inference task as a case study. Our results highlight the potential of NLI-based approaches in automating the regulatory compliance process.
ConfPO: Exploiting Policy Model Confidence for Critical Token Selection in Large Language Model Preference Optimization ICML 2025
We introduce ConfPO, a method for preference learning in Large Language Models (LLMs) that identifies and optimizes preference-critical tokens based solely on the training policy's confidence, without requiring any auxiliary models or compute. Unlike prior Direct Alignment Algorithms (DAAs) such as Direct Preference Optimization (DPO), which uniformly adjust all token probabilities regardless of their relevance to preference, ConfPO focuses optimization on the most impactful tokens. This targeted approach improves alignment quality while mitigating overoptimization (i.e., reward hacking) by using the KL divergence budget more efficiently. In contrast to recent token-level methods that rely on credit-assignment models or AI annotators, raising concerns about scalability and reliability, ConfPO is simple, lightweight, and model-free. Experimental results on challenging alignment benchmarks, including AlpacaEval 2 and Arena-Hard, demonstrate that ConfPO consistently outperforms uniform DAAs across various LLMs, delivering better alignment with zero additional computational overhead.
comment: ICML 2025
ClimateViz: A Benchmark for Statistical Reasoning and Fact Verification on Scientific Charts
Scientific fact-checking has mostly focused on text and tables, overlooking scientific charts, which are key for presenting quantitative evidence and statistical reasoning. We introduce ClimateViz, the first large-scale benchmark for scientific fact-checking using expert-curated scientific charts. ClimateViz contains 49,862 claims linked to 2,896 visualizations, each labeled as support, refute, or not enough information. To improve interpretability, each example includes structured knowledge graph explanations covering trends, comparisons, and causal relations. We evaluate state-of-the-art multimodal language models, including both proprietary and open-source systems, in zero-shot and few-shot settings. Results show that current models struggle with chart-based reasoning: even the best systems, such as Gemini 2.5 and InternVL 2.5, reach only 76.2 to 77.8 percent accuracy in label-only settings, far below human performance (89.3 and 92.7 percent). Explanation-augmented outputs improve performance in some models. We released our dataset and code alongside the paper.
Brevity is the soul of sustainability: Characterizing LLM response lengths ACL 2025
A significant portion of the energy consumed by Large Language Models (LLMs) arises from their inference processes; hence developing energy-efficient methods for inference is crucial. While several techniques exist for inference optimization, output compression remains relatively unexplored, with only a few preliminary efforts addressing this aspect. In this work, we first benchmark 12 decoder-only LLMs across 5 datasets, revealing that these models often produce responses that are substantially longer than necessary. We then conduct a comprehensive quality assessment of LLM responses, formally defining six information categories present in LLM responses. We show that LLMs often tend to include redundant or additional information besides the minimal answer. To address this issue of long responses by LLMs, we explore several simple and intuitive prompt-engineering strategies. Empirical evaluation shows that appropriate prompts targeting length reduction and controlling information content can achieve significant energy optimization between 25-60\% by reducing the response length while preserving the quality of LLM responses.
comment: Accepted to appear at the ACL 2025 findings
RuleReasoner: Reinforced Rule-based Reasoning via Domain-aware Dynamic Sampling
Rule-based reasoning has been acknowledged as one of the fundamental problems in reasoning, while deviations in rule formats, types, and complexity in real-world applications pose severe challenges. Recent studies have shown that large reasoning models (LRMs) have remarkable reasoning capabilities, and their performance is substantially enhanced by reinforcement learning (RL). However, it remains an open question whether small reasoning models (SRMs) can learn rule-based reasoning effectively with robust generalization across diverse tasks and domains. To address this, we introduce Reinforced Rule-based Reasoning, a.k.a. RuleReasoner, a simple yet effective method to conduct rule-based reasoning via a wide collection of curated tasks and a novel domain-aware dynamic sampling approach. Specifically, RuleReasoner resamples each training batch by updating the sampling weights of different domains based on historical rewards. This facilitates domain augmentation and flexible online learning schedules for RL, obviating the need for pre-hoc human-engineered mix-training recipes used in existing methods. Empirical evaluations on in-distribution (ID) and out-of-distribution (OOD) benchmarks reveal that RuleReasoner outperforms frontier LRMs by a significant margin ($\Delta$4.1% average points on eight ID tasks and $\Delta$10.4% average points on three OOD tasks over OpenAI-o1). Notably, our approach also exhibits higher computational efficiency compared to prior dynamic sampling methods for RL.
comment: 22 pages, 10 figures, 8 tables
Summarization for Generative Relation Extraction in the Microbiome Domain
We explore a generative relation extraction (RE) pipeline tailored to the study of interactions in the intestinal microbiome, a complex and low-resource biomedical domain. Our method leverages summarization with large language models (LLMs) to refine context before extracting relations via instruction-tuned generation. Preliminary results on a dedicated corpus show that summarization improves generative RE performance by reducing noise and guiding the model. However, BERT-based RE approaches still outperform generative models. This ongoing work demonstrates the potential of generative methods to support the study of specialized domains in low-resources setting.
TableDreamer: Progressive and Weakness-guided Data Synthesis from Scratch for Table Instruction Tuning ACL 2025
Despite the commendable progress of recent LLM-based data synthesis methods, they face two limitations in generating table instruction tuning data. First, they can not thoroughly explore the vast input space of table understanding tasks, leading to limited data diversity. Second, they ignore the weaknesses in table understanding ability of the target LLM and blindly pursue the increase of data quantity, resulting in suboptimal data efficiency. In this paper, we introduce a progressive and weakness-guided data synthesis framework tailored for table instruction tuning, named TableDreamer, to mitigate the above issues. Specifically, we first synthesize diverse tables and related instructions as seed data, and then perform an iterative exploration of the input space under the guidance of the newly identified weakness data, which eventually serve as the final training data for fine-tuning the target LLM. Extensive experiments on 10 tabular benchmarks demonstrate the effectiveness of the proposed framework, which boosts the average accuracy of Llama3.1-8B-instruct by 11.62% (49.07% to 60.69%) with 27K GPT-4o synthetic data and outperforms state-of-the-art data synthesis baselines which use more training data. The code and data is available at https://github.com/SpursGoZmy/TableDreamer
comment: 27 pages, 19 figures, Findings of ACL 2025
MEMETRON: Metaheuristic Mechanisms for Test-time Response Optimization of Large Language Models
Large language models (LLMs) are increasingly used for both open-ended and structured tasks, yet their inference-time behavior is still largely dictated by heuristic decoding strategies such as greedy search, sampling, or reranking. These methods provide limited control and do not explicitly optimize for task-specific objectives. We introduce MEMETRON, a task-agnostic framework that formulates LLM decoding as a discrete black-box optimization problem. MEMETRON leverages hybrid metaheuristic algorithms, GENETRON and ANNETRON, to search the response space, guided by reward models and contextual operations performed by the LLM itself. This approach enables efficient discovery of high-reward responses without requiring model retraining or gradient access. The framework is modular and generalizes across diverse tasks, requiring only a reward function and lightweight prompt templates. We evaluate our framework on the critical human preference alignment task and demonstrate that it significantly outperforms standard decoding and reranking methods, highlighting its potential to improve alignment without model retraining.
Approaching Dialogue State Tracking via Aligning Speech Encoders and LLMs
In this work, we approach spoken Dialogue State Tracking (DST) by bridging the representation spaces of speech encoders and LLMs via a small connector module, with a focus on fully open-sourced and open-data components (WavLM-large, OLMo). We focus on ablating different aspects of such systems including full/LoRA adapter fine-tuning, the effect of agent turns in the dialogue history, as well as fuzzy matching-based output post-processing, which greatly improves performance of our systems on named entities in the dialogue slot values. We conduct our experiments on the SpokenWOZ dataset, and additionally utilize the Speech-Aware MultiWOZ dataset to augment our training data. Ultimately, our best-performing WavLM + connector + OLMo-1B aligned models achieve state of the art on the SpokenWOZ test set (34.66% JGA), and our system with Gemma-2-9B-instruct further surpasses this result, reaching 42.17% JGA on SpokenWOZ test.
comment: Accepted to Interspeech 2025
RAISE: Enhancing Scientific Reasoning in LLMs via Step-by-Step Retrieval
Scientific reasoning requires not only long-chain reasoning processes, but also knowledge of domain-specific terminologies and adaptation to updated findings. To deal with these challenges for scientific reasoning, we introduce RAISE, a step-by-step retrieval-augmented framework which retrieves logically relevant documents from in-the-wild corpus. RAISE is divided into three steps: problem decomposition, logical query generation, and logical retrieval. We observe that RAISE consistently outperforms other baselines on scientific reasoning benchmarks. We analyze that unlike other baselines, RAISE retrieves documents that are not only similar in terms of the domain knowledge, but also documents logically more relevant.
Hateful Person or Hateful Model? Investigating the Role of Personas in Hate Speech Detection by Large Language Models
Hate speech detection is a socially sensitive and inherently subjective task, with judgments often varying based on personal traits. While prior work has examined how socio-demographic factors influence annotation, the impact of personality traits on Large Language Models (LLMs) remains largely unexplored. In this paper, we present the first comprehensive study on the role of persona prompts in hate speech classification, focusing on MBTI-based traits. A human annotation survey confirms that MBTI dimensions significantly affect labeling behavior. Extending this to LLMs, we prompt four open-source models with MBTI personas and evaluate their outputs across three hate speech datasets. Our analysis uncovers substantial persona-driven variation, including inconsistencies with ground truth, inter-persona disagreement, and logit-level biases. These findings highlight the need to carefully define persona prompts in LLM-based annotation workflows, with implications for fairness and alignment with human values.
Dense Retrievers Can Fail on Simple Queries: Revealing The Granularity Dilemma of Embeddings
This work focuses on an observed limitation of text encoders: embeddings may not be able to recognize fine-grained entities or events within the semantics, resulting in failed dense retrieval on even simple cases. To examine such behaviors, we first introduce a new evaluation dataset in Chinese, named CapRetrieval, whose passages are image captions, and queries are phrases inquiring entities or events in various forms. Zero-shot evaluation suggests that encoders may fail on these fine-grained matching, regardless of training sources or model sizes. Aiming for enhancement, we proceed to finetune encoders with our proposed data generation strategies, which obtains the best performance on CapRetrieval. Within this process, we further identify an issue of granularity dilemma, a challenge for embeddings to express fine-grained salience while aligning with overall semantics. Our dataset, code and models in this work are publicly released at https://github.com/lxucs/CapRetrieval.
CounselBench: A Large-Scale Expert Evaluation and Adversarial Benchmark of Large Language Models in Mental Health Counseling
Large language models (LLMs) are increasingly proposed for use in mental health support, yet their behavior in realistic counseling scenarios remains largely untested. We introduce CounselBench, a large-scale benchmark developed with 100 mental health professionals to evaluate and stress-test LLMs in single-turn counseling. The first component, CounselBench-EVAL, contains 2,000 expert evaluations of responses from GPT-4, LLaMA 3, Gemini, and online human therapists to real patient questions. Each response is rated along six clinically grounded dimensions, with written rationales and span-level annotations. We find that LLMs often outperform online human therapists in perceived quality, but experts frequently flag their outputs for safety concerns such as unauthorized medical advice. Follow-up experiments show that LLM judges consistently overrate model responses and overlook safety issues identified by human experts. To probe failure modes more directly, we construct CounselBench-Adv, an adversarial dataset of 120 expert-authored counseling questions designed to trigger specific model issues. Evaluation across 2,880 responses from eight LLMs reveals consistent, model-specific failure patterns. Together, CounselBench establishes a clinically grounded framework for benchmarking and improving LLM behavior in high-stakes mental health settings.
The Geometries of Truth Are Orthogonal Across Tasks
Large Language Models (LLMs) have demonstrated impressive generalization capabilities across various tasks, but their claim to practical relevance is still mired by concerns on their reliability. Recent works have proposed examining the activations produced by an LLM at inference time to assess whether its answer to a question is correct. Some works claim that a "geometry of truth" can be learned from examples, in the sense that the activations that generate correct answers can be distinguished from those leading to mistakes with a linear classifier. In this work, we underline a limitation of these approaches: we observe that these "geometries of truth" are intrinsically task-dependent and fail to transfer across tasks. More precisely, we show that linear classifiers trained across distinct tasks share little similarity and, when trained with sparsity-enforcing regularizers, have almost disjoint supports. We show that more sophisticated approaches (e.g., using mixtures of probes and tasks) fail to overcome this limitation, likely because activation vectors commonly used to classify answers form clearly separated clusters when examined across tasks.
Neighbors and relatives: How do speech embeddings reflect linguistic connections across the world?
Investigating linguistic relationships on a global scale requires analyzing diverse features such as syntax, phonology and prosody, which evolve at varying rates influenced by internal diversification, language contact, and sociolinguistic factors. Recent advances in machine learning (ML) offer complementary alternatives to traditional historical and typological approaches. Instead of relying on expert labor in analyzing specific linguistic features, these new methods enable the exploration of linguistic variation through embeddings derived directly from speech, opening new avenues for large-scale, data-driven analyses. This study employs embeddings from the fine-tuned XLS-R self-supervised language identification model voxlingua107-xls-r-300m-wav2vec, to analyze relationships between 106 world languages based on speech recordings. Using linear discriminant analysis (LDA), language embeddings are clustered and compared with genealogical, lexical, and geographical distances. The results demonstrate that embedding-based distances align closely with traditional measures, effectively capturing both global and local typological patterns. Challenges in visualizing relationships, particularly with hierarchical clustering and network-based methods, highlight the dynamic nature of language change. The findings show potential for scalable analyses of language variation based on speech embeddings, providing new perspectives on relationships among languages. By addressing methodological considerations such as corpus size and latent space dimensionality, this approach opens avenues for studying low-resource languages and bridging macro- and micro-level linguistic variation. Future work aims to extend these methods to underrepresented languages and integrate sociolinguistic variation for a more comprehensive understanding of linguistic diversity.
comment: 27 pages, 11 figures (+5 supplementary), submitted to PLOS One
Efficient Post-Training Refinement of Latent Reasoning in Large Language Models
Reasoning is a key component of language understanding in Large Language Models. While Chain-of-Thought prompting enhances performance via explicit intermediate steps, it suffers from sufficient token overhead and a fixed reasoning trajectory, preventing step-wise refinement. Recent advances in latent reasoning address these limitations by refining internal reasoning processes directly in the model's latent space, without producing explicit outputs. However, a key challenge remains: how to effectively update reasoning embeddings during post-training to guide the model toward more accurate solutions. To overcome this challenge, we propose a lightweight post-training framework that refines latent reasoning trajectories using two novel strategies: 1) Contrastive reasoning feedback, which compares reasoning embeddings against strong and weak baselines to infer effective update directions via embedding enhancement; 2) Residual embedding refinement, which stabilizes updates by progressively integrating current and historical gradients, enabling fast yet controlled convergence. Extensive experiments and case studies are conducted on five reasoning benchmarks to demonstrate the effectiveness of the proposed framework. Notably, a 5\% accuracy gain on MathQA without additional training.
CoMuMDR: Code-mixed Multi-modal Multi-domain corpus for Discourse paRsing in conversations ACL
Discourse parsing is an important task useful for NLU applications such as summarization, machine comprehension, and emotion recognition. The current discourse parsing datasets based on conversations consists of written English dialogues restricted to a single domain. In this resource paper, we introduce CoMuMDR: Code-mixed Multi-modal Multi-domain corpus for Discourse paRsing in conversations. The corpus (code-mixed in Hindi and English) has both audio and transcribed text and is annotated with nine discourse relations. We experiment with various SoTA baseline models; the poor performance of SoTA models highlights the challenges of multi-domain code-mixed corpus, pointing towards the need for developing better models for such realistic settings.
comment: Accepted at ACL Findings 2025 (16 pages: 5 pages main content + 3 pages references + 8 pages appendix)
DRAGged into Conflicts: Detecting and Addressing Conflicting Sources in Search-Augmented LLMs
Retrieval Augmented Generation (RAG) is a commonly used approach for enhancing large language models (LLMs) with relevant and up-to-date information. However, the retrieved sources can often contain conflicting information and it remains unclear how models should address such discrepancies. In this work, we first propose a novel taxonomy of knowledge conflict types in RAG, along with the desired model behavior for each type. We then introduce CONFLICTS, a high-quality benchmark with expert annotations of conflict types in a realistic RAG setting. CONFLICTS is the first benchmark that enables tracking progress on how models address a wide range of knowledge conflicts. We conduct extensive experiments on this benchmark, showing that LLMs often struggle to appropriately resolve conflicts between sources. While prompting LLMs to explicitly reason about the potential conflict in the retrieved documents significantly improves the quality and appropriateness of their responses, substantial room for improvement in future research remains.
Integration of Old and New Knowledge for Generalized Intent Discovery: A Consistency-driven Prototype-Prompting Framework IJCAI 2025
Intent detection aims to identify user intents from natural language inputs, where supervised methods rely heavily on labeled in-domain (IND) data and struggle with out-of-domain (OOD) intents, limiting their practical applicability. Generalized Intent Discovery (GID) addresses this by leveraging unlabeled OOD data to discover new intents without additional annotation. However, existing methods focus solely on clustering unsupervised data while neglecting domain adaptation. Therefore, we propose a consistency-driven prototype-prompting framework for GID from the perspective of integrating old and new knowledge, which includes a prototype-prompting framework for transferring old knowledge from external sources, and a hierarchical consistency constraint for learning new knowledge from target domains. We conducted extensive experiments and the results show that our method significantly outperforms all baseline methods, achieving state-of-the-art results, which strongly demonstrates the effectiveness and generalization of our methods. Our source code is publicly available at https://github.com/smileix/cpp.
comment: 9 pages, 2 figures, 7 tables, IJCAI 2025
EtiCor++: Towards Understanding Etiquettical Bias in LLMs ACL
In recent years, researchers have started analyzing the cultural sensitivity of LLMs. In this respect, Etiquettes have been an active area of research. Etiquettes are region-specific and are an essential part of the culture of a region; hence, it is imperative to make LLMs sensitive to etiquettes. However, there needs to be more resources in evaluating LLMs for their understanding and bias with regard to etiquettes. In this resource paper, we introduce EtiCor++, a corpus of etiquettes worldwide. We introduce different tasks for evaluating LLMs for knowledge about etiquettes across various regions. Further, we introduce various metrics for measuring bias in LLMs. Extensive experimentation with LLMs shows inherent bias towards certain regions.
comment: Accepted at ACL Findings 2025, 22 pages (9 pages main content + 4 pages references + 9 pages appendix)
Fairness is Not Silence: Unmasking Vacuous Neutrality in Small Language Models
The rapid adoption of Small Language Models (SLMs) for on-device and resource-constrained deployments has outpaced our understanding of their ethical risks. To the best of our knowledge, we present the first large-scale audit of instruction-tuned SLMs spanning 0.5 to 5 billion parameters-an overlooked "middle tier" between BERT-class encoders and flagship LLMs. Our evaluation includes nine open-source models from the Qwen 2.5, LLaMA 3.2, Gemma 3, and Phi families. Using the BBQ benchmark under zero-shot prompting, we analyze both utility and fairness across ambiguous and disambiguated contexts. This evaluation reveals three key insights. First, competence and fairness need not be antagonistic: Phi models achieve F1 scores exceeding 90 percent while exhibiting minimal bias, showing that efficient and ethical NLP is attainable. Second, social bias varies significantly by architecture: Qwen 2.5 models may appear fair, but this often reflects vacuous neutrality, random guessing, or evasive behavior rather than genuine ethical alignment. In contrast, LLaMA 3.2 models exhibit stronger stereotypical bias, suggesting overconfidence rather than neutrality. Third, compression introduces nuanced trade-offs: 4-bit AWQ quantization improves F1 scores in ambiguous settings for LLaMA 3.2-3B but increases disability-related bias in Phi-4-Mini by over 7 percentage points. These insights provide practical guidance for the responsible deployment of SLMs in applications demanding fairness and efficiency, particularly benefiting small enterprises and resource-constrained environments.
Re-Thinking the Automatic Evaluation of Image-Text Alignment in Text-to-Image Models
Text-to-image models often struggle to generate images that precisely match textual prompts. Prior research has extensively studied the evaluation of image-text alignment in text-to-image generation. However, existing evaluations primarily focus on agreement with human assessments, neglecting other critical properties of a trustworthy evaluation framework. In this work, we first identify two key aspects that a reliable evaluation should address. We then empirically demonstrate that current mainstream evaluation frameworks fail to fully satisfy these properties across a diverse range of metrics and models. Finally, we propose recommendations for improving image-text alignment evaluation.
Efficient Context Selection for Long-Context QA: No Tuning, No Iteration, Just Adaptive-$k$
Retrieval-augmented generation (RAG) and long-context language models (LCLMs) both address context limitations of LLMs in open-domain question answering (QA). However, optimal external context to retrieve remains an open problem: fixing the retrieval size risks either wasting tokens or omitting key evidence. Existing adaptive methods like Self-RAG and Self-Route rely on iterative LLM prompting and perform well on factoid QA, but struggle with aggregation QA, where the optimal context size is both unknown and variable. We present Adaptive-$k$ retrieval, a simple and effective single-pass method that adaptively selects the number of passages based on the distribution of the similarity scores between the query and the candidate passages. It does not require model fine-tuning, extra LLM inferences or changes to existing retriever-reader pipelines. On both factoid and aggregation QA benchmarks, Adaptive-$k$ matches or outperforms fixed-$k$ baselines while using up to 10x fewer tokens than full-context input, yet still retrieves 70% of relevant passages. It improves accuracy across five LCLMs and two embedding models, highlighting that dynamically adjusting context size leads to more efficient and accurate QA.
comment: 26 pages, 16 tables, 5 figures
Detecting Harmful Memes with Decoupled Understanding and Guided CoT Reasoning
Detecting harmful memes is essential for maintaining the integrity of online environments. However, current approaches often struggle with resource efficiency, flexibility, or explainability, limiting their practical deployment in content moderation systems. To address these challenges, we introduce U-CoT+, a novel framework for harmful meme detection. Instead of relying solely on prompting or fine-tuning multimodal models, we first develop a high-fidelity meme-to-text pipeline that converts visual memes into detail-preserving textual descriptions. This design decouples meme interpretation from meme classification, thus avoiding immediate reasoning over complex raw visual content and enabling resource-efficient harmful meme detection with general large language models (LLMs). Building on these textual descriptions, we further incorporate targeted, interpretable human-crafted guidelines to guide models' reasoning under zero-shot CoT prompting. As such, this framework allows for easy adaptation to different harmfulness detection criteria across platforms, regions, and over time, offering high flexibility and explainability. Extensive experiments on seven benchmark datasets validate the effectiveness of our framework, highlighting its potential for explainable and low-resource harmful meme detection using small-scale LLMs. Codes and data are available at: https://anonymous.4open.science/r/HMC-AF2B/README.md.
A Survey on Large Language Models for Mathematical Reasoning
Mathematical reasoning has long represented one of the most fundamental and challenging frontiers in artificial intelligence research. In recent years, large language models (LLMs) have achieved significant advances in this area. This survey examines the development of mathematical reasoning abilities in LLMs through two high-level cognitive phases: comprehension, where models gain mathematical understanding via diverse pretraining strategies, and answer generation, which has progressed from direct prediction to step-by-step Chain-of-Thought (CoT) reasoning. We review methods for enhancing mathematical reasoning, ranging from training-free prompting to fine-tuning approaches such as supervised fine-tuning and reinforcement learning, and discuss recent work on extended CoT and "test-time scaling". Despite notable progress, fundamental challenges remain in terms of capacity, efficiency, and generalization. To address these issues, we highlight promising research directions, including advanced pretraining and knowledge augmentation techniques, formal reasoning frameworks, and meta-generalization through principled learning paradigms. This survey tries to provide some insights for researchers interested in enhancing reasoning capabilities of LLMs and for those seeking to apply these techniques to other domains.
Olica: Efficient Structured Pruning of Large Language Models without Retraining ICML 2025
Most existing structured pruning methods for Large Language Models (LLMs) require substantial computational and data resources for retraining to reestablish the corrupted correlations, making them prohibitively expensive. To address this, we propose a pruning framework for LLMs called Orthogonal decomposition and Linear Calibration (Olica), which eliminates the need for retraining. A key observation is that the multi-head attention (MHA) layer depends on two types of matrix products. By treating these matrix products as unified entities and applying principal component analysis (PCA), we extract the most important information to compress LLMs without sacrificing accuracy or disrupting their original structure. Consequently, retraining becomes unnecessary. A fast decomposition method is devised, reducing the complexity of PCA by a factor of the square of the number of attention heads. Additionally, to mitigate error accumulation problem caused by pruning the feed-forward network (FFN) layer, we introduce a linear calibration method to reconstruct the residual errors of pruned layers using low-rank matrices. By leveraging singular value decomposition (SVD) on the solution of the least-squares problem, these matrices are obtained without requiring retraining. Extensive experiments show that the proposed Olica is efficient in terms of data usage, GPU memory, and running time, while delivering superior performance across multiple benchmarks.
comment: Accepted to ICML 2025
Low-resource domain adaptation while minimizing energy and hardware resource consumption
Training Large Language Models (LLMs) is costly in terms of energy, hardware, and annotated data, often resulting in a positionality rooted in predominant cultures and values (Santy et al., 2023). Domain adaptation has emerged as a promising strategy to better align models with diverse cultural and value contexts (Hershcovich et al., 2022), but its computational cost remains a significant barrier, particularly for research groups lacking access to large-scale infrastructure. In this paper, we evaluate how the use of different numerical precisions and data parallelization strategies impacts both training speed (as a proxy to energy and hardware consumption) and model accuracy, with the goal of facilitating domain adaptation in low-resource environments. Our findings are relevant to any setting where energy efficiency, accessibility, or limited hardware availability are key concerns.
comment: A shorter version of this work was accepted as a two-page abstract for presentation at the Widening Natural Language Processing (WiNLP) 2023 Workshop. That version was not publicly released, and this is the first public version of the work
CAF-I: A Collaborative Multi-Agent Framework for Enhanced Irony Detection with Large Language Models ICML 2025
Large language model (LLM) have become mainstream methods in the field of sarcasm detection. However, existing LLM methods face challenges in irony detection, including: 1. single-perspective limitations, 2. insufficient comprehensive understanding, and 3. lack of interpretability. This paper introduces the Collaborative Agent Framework for Irony (CAF-I), an LLM-driven multi-agent system designed to overcome these issues. CAF-I employs specialized agents for Context, Semantics, and Rhetoric, which perform multidimensional analysis and engage in interactive collaborative optimization. A Decision Agent then consolidates these perspectives, with a Refinement Evaluator Agent providing conditional feedback for optimization. Experiments on benchmark datasets establish CAF-I's state-of-the-art zero-shot performance. Achieving SOTA on the vast majority of metrics, CAF-I reaches an average Macro-F1 of 76.31, a 4.98 absolute improvement over the strongest prior baseline. This success is attained by its effective simulation of human-like multi-perspective analysis, enhancing detection accuracy and interpretability.
comment: ICML 2025 Workshop on Collaborative and Federated Agentic Workflows
Know-MRI: A Knowledge Mechanisms Revealer&Interpreter for Large Language Models
As large language models (LLMs) continue to advance, there is a growing urgency to enhance the interpretability of their internal knowledge mechanisms. Consequently, many interpretation methods have emerged, aiming to unravel the knowledge mechanisms of LLMs from various perspectives. However, current interpretation methods differ in input data formats and interpreting outputs. The tools integrating these methods are only capable of supporting tasks with specific inputs, significantly constraining their practical applications. To address these challenges, we present an open-source Knowledge Mechanisms Revealer&Interpreter (Know-MRI) designed to analyze the knowledge mechanisms within LLMs systematically. Specifically, we have developed an extensible core module that can automatically match different input data with interpretation methods and consolidate the interpreting outputs. It enables users to freely choose appropriate interpretation methods based on the inputs, making it easier to comprehensively diagnose the model's internal knowledge mechanisms from multiple perspectives. Our code is available at https://github.com/nlpkeg/Know-MRI. We also provide a demonstration video on https://youtu.be/NVWZABJ43Bs.
Large Language Models Have Intrinsic Meta-Cognition, but Need a Good Lens
Previous research has primarily focused on the cognitive error detection capabilities of Large Language Models (LLMs), often prompting them to analyze mistakes in reasoning chains. However, few studies have examined the meta-cognitive abilities of LLMs (e.g., their self-awareness of step errors), which are crucial for their reliability. While studies on LLM self-evaluation present some measures, such as perplexity, which can reflect the answer correctness and be viewed as the lens of meta-cognition, they lack step-level analysis and adaptation. This paper studies the evaluation of LLM meta-cognition using the current lenses and how to improve these lenses. Specifically, we propose AutoMeco, an Automated Meta-cognition Evaluation framework for benchmarking the existing lenses. Furthermore, a training-free Markovian Intrinsic Reward Adjustment strategy, MIRA, is proposed to boost current meta-cognition lenses. Experimental results on three mathematical reasoning datasets and three LLMs show the reasonableness of AutoMeco by comparing it with Best-of-N verification. Moreover, the meta-cognition ability of LLMs can be better evaluated using MIRA.
comment: Preprint
TACTIC: Translation Agents with Cognitive-Theoretic Interactive Collaboration
Machine translation has long been a central task in natural language processing. With the rapid advancement of large language models (LLMs), there has been remarkable progress in translation quality. However, fully realizing the translation potential of LLMs remains an open challenge. Recent studies have explored multi-agent systems to decompose complex translation tasks into collaborative subtasks, showing initial promise in enhancing translation quality through agent cooperation and specialization. Nevertheless, existing multi-agent translation frameworks largely neglect foundational insights from cognitive translation studies. These insights emphasize how human translators employ different cognitive strategies, such as balancing literal and free translation, refining expressions based on context, and iteratively evaluating outputs. To address this limitation, we propose a cognitively informed multi-agent framework called TACTIC, which stands for T ranslation A gents with Cognitive- T heoretic Interactive Collaboration. The framework comprises six functionally distinct agents that mirror key cognitive processes observed in human translation behavior. These include agents for drafting, refinement, evaluation, scoring, context reasoning, and external knowledge gathering. By simulating an interactive and theory-grounded translation workflow, TACTIC effectively leverages the full capacity of LLMs for high-quality translation. Experimental results on diverse language pairs from the FLORES-200 and WMT24 benchmarks show that our method consistently achieves state-of-the-art performance. Using DeepSeek-V3 as the base model, TACTIC surpasses GPT-4.1 by an average of +0.6 XCOMET and +1.18 COMETKIWI-23. Compared to DeepSeek-R1, it further improves by +0.84 XCOMET and +2.99 COMETKIWI-23. Code is available at https://github.com/weiyali126/TACTIC.
comment: 20 pages, 4 figures, Under review. Code: https://github.com/weiyali126/TACTIC
mSTEB: Massively Multilingual Evaluation of LLMs on Speech and Text Tasks
Large Language models (LLMs) have demonstrated impressive performance on a wide range of tasks, including in multimodal settings such as speech. However, their evaluation is often limited to English and a few high-resource languages. For low-resource languages, there is no standardized evaluation benchmark. In this paper, we address this gap by introducing mSTEB, a new benchmark to evaluate the performance of LLMs on a wide range of tasks covering language identification, text classification, question answering, and translation tasks on both speech and text modalities. We evaluated the performance of leading LLMs such as Gemini 2.0 Flash and GPT-4o (Audio) and state-of-the-art open models such as Qwen 2 Audio and Gemma 3 27B. Our evaluation shows a wide gap in performance between high-resource and low-resource languages, especially for languages spoken in Africa and Americas/Oceania. Our findings show that more investment is needed to address their under-representation in LLMs coverage.
comment: working paper
Reinforcement Learning Teachers of Test Time Scaling
Training reasoning language models (LMs) with reinforcement learning (RL) for one-hot correctness inherently relies on the LM being able to explore and solve its task with some chance at initialization. Furthermore, a key use case of reasoning LMs is to act as teachers for distilling new students and cold-starting future RL iterations rather than being deployed themselves. From these considerations, we introduce a new framework that avoids RL's exploration challenge by training a new class of Reinforcement-Learned Teachers (RLTs) focused on yielding the most effective downstream distillation. RLTs are prompted with both the question and solution to each problem, and tasked to simply "connect-the-dots" with detailed explanations tailored for their students. We train RLTs with dense rewards obtained by feeding each explanation to the student and testing its understanding of the problem's solution. In practice, the raw outputs of a 7B RLT provide higher final performance on competition and graduate-level tasks than existing distillation and cold-starting pipelines that collect and postprocess the reasoning traces of orders of magnitude larger LMs. Furthermore, RLTs maintain their effectiveness when training larger students and when applied zero-shot to out-of-distribution tasks, unlocking new levels of efficiency and re-usability for the RL reasoning framework.
comment: Preprint
Reinforce LLM Reasoning through Multi-Agent Reflection ICML
Leveraging more test-time computation has proven to be an effective way to boost the reasoning capabilities of large language models (LLMs). Among various methods, the verify-and-improve paradigm stands out for enabling dynamic solution exploration and feedback incorporation. However, existing approaches often suffer from restricted feedback spaces and lack of coordinated training of different parties, leading to suboptimal performance. To address this, we model this multi-turn refinement process as a Markov Decision Process and introduce DPSDP (Direct Policy Search by Dynamic Programming), a reinforcement learning algorithm that trains an actor-critic LLM system to iteratively refine answers via direct preference learning on self-generated data. Theoretically, DPSDP can match the performance of any policy within the training distribution. Empirically, we instantiate DPSDP with various base models and show improvements on both in- and out-of-distribution benchmarks. For example, on benchmark MATH 500, majority voting over five refinement steps increases first-turn accuracy from 58.2% to 63.2% with Ministral-based models. An ablation study further confirms the benefits of multi-agent collaboration and out-of-distribution generalization.
comment: International Conference on Machine Learning (ICML), 2025
EIFBENCH: Extremely Complex Instruction Following Benchmark for Large Language Models
With the development and widespread application of large language models (LLMs), the new paradigm of "Model as Product" is rapidly evolving, and demands higher capabilities to address complex user needs, often requiring precise workflow execution which involves the accurate understanding of multiple tasks. However, existing benchmarks focusing on single-task environments with limited constraints lack the complexity required to fully reflect real-world scenarios. To bridge this gap, we present the Extremely Complex Instruction Following Benchmark (EIFBENCH), meticulously crafted to facilitate a more realistic and robust evaluation of LLMs. EIFBENCH not only includes multi-task scenarios that enable comprehensive assessment across diverse task types concurrently, but also integrates a variety of constraints, replicating complex operational environments. Furthermore, we propose the Segment Policy Optimization (SegPO) algorithm to enhance the LLM's ability to accurately fulfill multi-task workflow. Evaluations on EIFBENCH have unveiled considerable performance discrepancies in existing LLMs when challenged with these extremely complex instructions. This finding underscores the necessity for ongoing optimization to navigate the intricate challenges posed by LLM applications.
comment: 24 pages
Draft-based Approximate Inference for LLMs
Optimizing inference for long-context Large Language Models (LLMs) is increasingly important due to the quadratic compute and linear memory complexity of Transformers. Existing approximation methods, such as key-value (KV) cache dropping, sparse attention, and prompt compression, typically rely on rough predictions of token or KV pair importance. We propose a novel framework for approximate LLM inference that leverages small draft models to more accurately predict the importance of tokens and KV pairs. Specifically, we introduce two instantiations of our proposed framework: (i) SpecKV, which leverages a draft output to accurately assess the importance of each KV pair for more effective KV cache dropping, and (ii) SpecPC, which uses the draft model's attention activations to identify and discard unimportant prompt tokens. To the best of our knowledge, this is the first work to use draft models for approximate LLM inference acceleration, extending their utility beyond traditional lossless speculative decoding. We motivate our methods with theoretical and empirical analyses, and show a strong correlation between the attention patterns of draft and target models. Extensive experiments on long-context benchmarks show that our methods consistently achieve higher accuracy than existing baselines, while preserving the same improvements in memory usage, latency, and throughput. Our code is available at https://github.com/furiosa-ai/draft-based-approx-llm.
Mitigating Posterior Salience Attenuation in Long-Context LLMs with Positional Contrastive Decoding
While Large Language Models (LLMs) support long contexts, they struggle with performance degradation within the context window. Current solutions incur prohibitive training costs, leaving statistical behaviors and cost-effective approaches underexplored. From the decoding perspective, we identify the Posterior Salience Attenuation (PSA) phenomenon, where the salience ratio correlates with long-text performance degradation. Notably, despite the attenuation, gold tokens still occupy high-ranking positions in the decoding space. Motivated by it, we propose the training-free Positional Contrastive Decoding (PCD) that contrasts the logits derived from long-aware attention with those from designed local-aware attention, enabling the model to focus on the gains introduced by large-scale short-to-long training. Through the analysis of long-term decay simulation, we demonstrate that PCD effectively alleviates attention score degradation. Experimental results show that PCD achieves state-of-the-art performance on long-context benchmarks.
CC-RAG: Structured Multi-Hop Reasoning via Theme-Based Causal Graphs
Understanding cause and effect relationships remains a formidable challenge for Large Language Models (LLMs), particularly in specialized domains where reasoning requires more than surface-level correlations. Retrieval-Augmented Generation (RAG) improves factual accuracy, but standard RAG pipelines treat evidence as flat context, lacking the structure required to model true causal dependencies. We introduce Causal-Chain RAG (CC-RAG), a novel approach that integrates zero-shot triple extraction and theme-aware graph chaining into the RAG pipeline, enabling structured multi-hop inference. Given a domain specific corpus, CC-RAG constructs a Directed Acyclic Graph (DAG) of triples and uses forward/backward chaining to guide structured answer generation. Experiments on two real-world domains: Bitcoin price fluctuations and Gaucher disease, show that CC-RAG outperforms standard RAG and zero-shot LLMs in chain similarity, information density, and lexical diversity. Both LLM-as-a-Judge and human evaluations consistently favor CC-RAG. Our results demonstrate that explicitly modeling causal structure enables LLMs to generate more accurate and interpretable responses, especially in specialized domains where flat retrieval fails.
DEAL: Disentangling Transformer Head Activations for LLM Steering
Inference-time steering aims to alter the response characteristics of large language models (LLMs) without modifying their underlying parameters. A critical step in this process is the identification of internal modules within LLMs that are associated with the target behavior. However, current approaches to module selection often depend on superficial cues or ad-hoc heuristics, which can result in suboptimal or unintended outcomes. In this work, we propose a principled causal-attribution framework for identifying behavior-relevant attention heads in transformers. For each head, we train a vector-quantized autoencoder (VQ-AE) on its attention activations, partitioning the latent space into behavior-relevant and behavior-irrelevant subspaces, each quantized with a shared learnable codebook. We assess the behavioral relevance of each head by quantifying the separability of VQ-AE encodings for behavior-aligned versus behavior-violating responses using a binary classification metric. This yields a behavioral relevance score that reflects each head discriminative capacity with respect to the target behavior, guiding both selection and importance weighting. Experiments on seven LLMs from two model families and five behavioral steering datasets demonstrate that our method enables more accurate inference-time interventions, achieving superior performance on the truthfulness-steering task. Furthermore, the heads selected by our approach exhibit strong zero-shot generalization in cross-domain truthfulness-steering scenarios.
comment: Preprint
Text Embeddings Should Capture Implicit Semantics, Not Just Surface Meaning
This position paper argues that the text embedding research community should move beyond surface meaning and embrace implicit semantics as a central modeling goal. Text embedding models have become foundational in modern NLP, powering a wide range of applications and drawing increasing research attention. Yet, much of this progress remains narrowly focused on surface-level semantics. In contrast, linguistic theory emphasizes that meaning is often implicit, shaped by pragmatics, speaker intent, and sociocultural context. Current embedding models are typically trained on data that lacks such depth and evaluated on benchmarks that reward the capture of surface meaning. As a result, they struggle with tasks requiring interpretive reasoning, speaker stance, or social meaning. Our pilot study highlights this gap, showing that even state-of-the-art models perform only marginally better than simplistic baselines on implicit semantics tasks. To address this, we call for a paradigm shift: embedding research should prioritize more diverse and linguistically grounded training data, design benchmarks that evaluate deeper semantic understanding, and explicitly frame implicit meaning as a core modeling objective, better aligning embeddings with real-world language complexity.
How Much To Guide: Revisiting Adaptive Guidance in Classifier-Free Guidance Text-to-Vision Diffusion Models
With the rapid development of text-to-vision generation diffusion models, classifier-free guidance has emerged as the most prevalent method for conditioning. However, this approach inherently requires twice as many steps for model forwarding compared to unconditional generation, resulting in significantly higher costs. While previous study has introduced the concept of adaptive guidance, it lacks solid analysis and empirical results, making previous method unable to be applied to general diffusion models. In this work, we present another perspective of applying adaptive guidance and propose Step AG, which is a simple, universally applicable adaptive guidance strategy. Our evaluations focus on both image quality and image-text alignment. whose results indicate that restricting classifier-free guidance to the first several denoising steps is sufficient for generating high-quality, well-conditioned images, achieving an average speedup of 20% to 30%. Such improvement is consistent across different settings such as inference steps, and various models including video generation models, highlighting the superiority of our method.
Evaluating LLMs Across Multi-Cognitive Levels: From Medical Knowledge Mastery to Scenario-Based Problem Solving ICML 2025
Large language models (LLMs) have demonstrated remarkable performance on various medical benchmarks, but their capabilities across different cognitive levels remain underexplored. Inspired by Bloom's Taxonomy, we propose a multi-cognitive-level evaluation framework for assessing LLMs in the medical domain in this study. The framework integrates existing medical datasets and introduces tasks targeting three cognitive levels: preliminary knowledge grasp, comprehensive knowledge application, and scenario-based problem solving. Using this framework, we systematically evaluate state-of-the-art general and medical LLMs from six prominent families: Llama, Qwen, Gemma, Phi, GPT, and DeepSeek. Our findings reveal a significant performance decline as cognitive complexity increases across evaluated models, with model size playing a more critical role in performance at higher cognitive levels. Our study highlights the need to enhance LLMs' medical capabilities at higher cognitive levels and provides insights for developing LLMs suited to real-world medical applications.
comment: 20 pages, 11 figures. Accepted by ICML 2025
Wait, We Don't Need to "Wait"! Removing Thinking Tokens Improves Reasoning Efficiency
Recent advances in large reasoning models have enabled complex, step-by-step reasoning but often introduce significant overthinking, resulting in verbose and redundant outputs that hinder efficiency. In this study, we examine whether explicit self-reflection, signaled by tokens such as "Wait" and "Hmm", is necessary for advanced reasoning. We propose NoWait, a simple yet effective approach that disables explicit self-reflection by suppressing these tokens during inference. Extensive experiments on ten benchmarks across textual, visual, and video reasoning tasks show that NoWait reduces chain-of-thought trajectory length by up to 27%-51% in five R1-style model series, without compromising model utility. NoWait thus offers a plug-and-play solution for efficient and utility-preserving multimodal reasoning.
Silencing Empowerment, Allowing Bigotry: Auditing the Moderation of Hate Speech on Twitch ACL 2025
To meet the demands of content moderation, online platforms have resorted to automated systems. Newer forms of real-time engagement($\textit{e.g.}$, users commenting on live streams) on platforms like Twitch exert additional pressures on the latency expected of such moderation systems. Despite their prevalence, relatively little is known about the effectiveness of these systems. In this paper, we conduct an audit of Twitch's automated moderation tool ($\texttt{AutoMod}$) to investigate its effectiveness in flagging hateful content. For our audit, we create streaming accounts to act as siloed test beds, and interface with the live chat using Twitch's APIs to send over $107,000$ comments collated from $4$ datasets. We measure $\texttt{AutoMod}$'s accuracy in flagging blatantly hateful content containing misogyny, racism, ableism and homophobia. Our experiments reveal that a large fraction of hateful messages, up to $94\%$ on some datasets, $\textit{bypass moderation}$. Contextual addition of slurs to these messages results in $100\%$ removal, revealing $\texttt{AutoMod}$'s reliance on slurs as a moderation signal. We also find that contrary to Twitch's community guidelines, $\texttt{AutoMod}$ blocks up to $89.5\%$ of benign examples that use sensitive words in pedagogical or empowering contexts. Overall, our audit points to large gaps in $\texttt{AutoMod}$'s capabilities and underscores the importance for such systems to understand context effectively.
comment: Accepted to ACL 2025 (main) conference
SAFEFLOW: A Principled Protocol for Trustworthy and Transactional Autonomous Agent Systems
Recent advances in large language models (LLMs) and vision-language models (VLMs) have enabled powerful autonomous agents capable of complex reasoning and multi-modal tool use. Despite their growing capabilities, today's agent frameworks remain fragile, lacking principled mechanisms for secure information flow, reliability, and multi-agent coordination. In this work, we introduce SAFEFLOW, a new protocol-level framework for building trustworthy LLM/VLM-based agents. SAFEFLOW enforces fine-grained information flow control (IFC), precisely tracking provenance, integrity, and confidentiality of all the data exchanged between agents, tools, users, and environments. By constraining LLM reasoning to respect these security labels, SAFEFLOW prevents untrusted or adversarial inputs from contaminating high-integrity decisions. To ensure robustness in concurrent multi-agent settings, SAFEFLOW introduces transactional execution, conflict resolution, and secure scheduling over shared state, preserving global consistency across agents. We further introduce mechanisms, including write-ahead logging, rollback, and secure caches, that further enhance resilience against runtime errors and policy violations. To validate the performances, we built SAFEFLOWBENCH, a comprehensive benchmark suite designed to evaluate agent reliability under adversarial, noisy, and concurrent operational conditions. Extensive experiments demonstrate that agents built with SAFEFLOW maintain impressive task performance and security guarantees even in hostile environments, substantially outperforming state-of-the-art. Together, SAFEFLOW and SAFEFLOWBENCH lay the groundwork for principled, robust, and secure agent ecosystems, advancing the frontier of reliable autonomy.
JuStRank: Benchmarking LLM Judges for System Ranking ACL 2025
Given the rapid progress of generative AI, there is a pressing need to systematically compare and choose between the numerous models and configurations available. The scale and versatility of such evaluations make the use of LLM-based judges a compelling solution for this challenge. Crucially, this approach requires first to validate the quality of the LLM judge itself. Previous work has focused on instance-based assessment of LLM judges, where a judge is evaluated over a set of responses, or response pairs, while being agnostic to their source systems. We argue that this setting overlooks critical factors affecting system-level ranking, such as a judge's positive or negative bias towards certain systems. To address this gap, we conduct the first large-scale study of LLM judges as system rankers. System scores are generated by aggregating judgment scores over multiple system outputs, and the judge's quality is assessed by comparing the resulting system ranking to a human-based ranking. Beyond overall judge assessment, our analysis provides a fine-grained characterization of judge behavior, including their decisiveness and bias.
comment: ACL 2025
High-Throughput Phenotyping of Clinical Text Using Large Language Models
High-throughput phenotyping automates the mapping of patient signs to standardized ontology concepts and is essential for precision medicine. This study evaluates the automation of phenotyping of clinical summaries from the Online Mendelian Inheritance in Man (OMIM) database using large language models. Due to their rich phenotype data, these summaries can be surrogates for physician notes. We conduct a performance comparison of GPT-4 and GPT-3.5-Turbo. Our results indicate that GPT-4 surpasses GPT-3.5-Turbo in identifying, categorizing, and normalizing signs, achieving concordance with manual annotators comparable to inter-rater agreement. Despite some limitations in sign normalization, the extensive pre-training of GPT-4 results in high performance and generalizability across several phenotyping tasks while obviating the need for manually annotated training data. Large language models are expected to be the dominant method for automating high-throughput phenotyping of clinical text.
comment: Submitted to IEEE-EMBS International Conference on Biomedical and Health Informatics, Houston TX
Towards Reliable Proof Generation with LLMs: A Neuro-Symbolic Approach
Large language models (LLMs) struggle with formal domains that require rigorous logical deduction and symbolic reasoning, such as mathematical proof generation. We propose a neuro-symbolic approach that combines LLMs' generative strengths with structured components to overcome this challenge. As a proof-of-concept, we focus on geometry problems. Our approach is two-fold: (1) we retrieve analogous problems and use their proofs to guide the LLM, and (2) a formal verifier evaluates the generated proofs and provides feedback, helping the model fix incorrect proofs. We demonstrate that our method significantly improves proof accuracy for OpenAI's o1 model (58%-70% improvement); both analogous problems and the verifier's feedback contribute to these gains. More broadly, shifting to LLMs that generate provably correct conclusions could dramatically improve their reliability, accuracy and consistency, unlocking complex tasks and critical real-world applications that require trustworthiness.
comment: long paper
Mechanistic Decomposition of Sentence Representations
Sentence embeddings are central to modern NLP and AI systems, yet little is known about their internal structure. While we can compare these embeddings using measures such as cosine similarity, the contributing features are not human-interpretable, and the content of an embedding seems untraceable, as it is masked by complex neural transformations and a final pooling operation that combines individual token embeddings. To alleviate this issue, we propose a new method to mechanistically decompose sentence embeddings into interpretable components, by using dictionary learning on token-level representations. We analyze how pooling compresses these features into sentence representations, and assess the latent features that reside in a sentence embedding. This bridges token-level mechanistic interpretability with sentence-level analysis, making for more transparent and controllable representations. In our studies, we obtain several interesting insights into the inner workings of sentence embedding spaces, for instance, that many semantic and syntactic aspects are linearly encoded in the embeddings.
DefenderBench: A Toolkit for Evaluating Language Agents in Cybersecurity Environments
Large language model (LLM) agents have shown impressive capabilities in human language comprehension and reasoning, yet their potential in cybersecurity remains underexplored. We introduce DefenderBench, a practical, open-source toolkit for evaluating language agents across offense, defense, and cybersecurity knowledge-based tasks. DefenderBench includes environments for network intrusion, malicious content detection, code vulnerability analysis, and cybersecurity knowledge assessment. It is intentionally designed to be affordable and easily accessible for researchers while providing fair and rigorous assessment. We benchmark several state-of-the-art (SoTA) and popular LLMs, including both open- and closed-weight models, using a standardized agentic framework. Our results show that Claude-3.7-sonnet performs best with a DefenderBench score of 81.65, followed by Claude-3.7-sonnet-think with 78.40, while the best open-weight model, Llama 3.3 70B, is not far behind with a DefenderBench score of 71.81. DefenderBench's modular design allows seamless integration of custom LLMs and tasks, promoting reproducibility and fair comparisons. An anonymized version of DefenderBench is available at https://github.com/microsoft/DefenderBench.
Quamba2: A Robust and Scalable Post-training Quantization Framework for Selective State Space Models
State Space Models (SSMs) are emerging as a compelling alternative to Transformers because of their consistent memory usage and high performance. Despite this, scaling up SSMs on cloud services or limited-resource devices is challenging due to their storage requirements and computational power. To overcome this, quantizing SSMs with low bit-width data formats can reduce model size and benefit from hardware acceleration. As SSMs are prone to quantization-induced errors, recent efforts have focused on optimizing a particular model or bit-width for efficiency without sacrificing performance. However, distinct bit-width configurations are essential for different scenarios, like W4A8 for boosting large-batch decoding speed, and W4A16 for enhancing generation speed in short prompt applications for a single user. To this end, we present Quamba2, compatible with W8A8, W4A8, and W4A16 for both Mamba1 and Mamba2 backbones, addressing the growing demand for SSM deployment on various platforms. Based on the channel order preserving and activation persistence of SSMs, we propose an offline approach to quantize inputs of a linear recurrence in 8-bit by sorting and clustering for input $x$, combined with a per-state-group quantization for input-dependent parameters $B$ and $C$. To ensure compute-invariance in the SSM output, we rearrange weights offline according to the clustering sequence. The experiments show that Quamba2-8B outperforms two state-of-the-art SSM quantization methods and delivers 1.3$\times$ and 3$\times$ speed-ups in the pre-filling and generation stages, respectively, while offering 4$\times$ memory reduction with only a $1.6\%$ average accuracy drop. The evaluation on MMLU shows the generalizability and robustness of our framework. The code and quantized models will be released at: https://github.com/enyac-group/Quamba.
PrisonBreak: Jailbreaking Large Language Models with Fewer Than Twenty-Five Targeted Bit-flips
We introduce a new class of attacks on commercial-scale (human-aligned) language models that induce jailbreaking through targeted bitwise corruptions in model parameters. Our adversary can jailbreak billion-parameter language models with fewer than 25 bit-flips in all cases$-$and as few as 5 in some$-$using up to 40$\times$ less bit-flips than existing attacks on computer vision models at least 100$\times$ smaller. Unlike prompt-based jailbreaks, our attack renders these models in memory 'uncensored' at runtime, allowing them to generate harmful responses without any input modifications. Our attack algorithm efficiently identifies target bits to flip, offering up to 20$\times$ more computational efficiency than previous methods. This makes it practical for language models with billions of parameters. We show an end-to-end exploitation of our attack using software-induced fault injection, Rowhammer (RH). Our work examines 56 DRAM RH profiles from DDR4 and LPDDR4X devices with different RH vulnerabilities. We show that our attack can reliably induce jailbreaking in systems similar to those affected by prior bit-flip attacks. Moreover, our approach remains effective even against highly RH-secure systems (e.g., 46$\times$ more secure than previously tested systems). Our analyses further reveal that: (1) models with less post-training alignment require fewer bit flips to jailbreak; (2) certain model components, such as value projection layers, are substantially more vulnerable than others; and (3) our method is mechanistically different than existing jailbreaks. Our findings highlight a pressing, practical threat to the language model ecosystem and underscore the need for research to protect these models from bit-flip attacks.
comment: Pre-print
DiffLM: Controllable Synthetic Data Generation via Diffusion Language Models ACL 2025
Recent advancements in large language models (LLMs) have significantly enhanced their knowledge and generative capabilities, leading to a surge of interest in leveraging LLMs for high-quality data synthesis. However, synthetic data generation via prompting LLMs remains challenging due to LLMs' limited understanding of target data distributions and the complexity of prompt engineering, especially for structured formatted data. To address these issues, we introduce DiffLM, a controllable data synthesis framework based on variational autoencoder (VAE), which further (1) leverages diffusion models to reserve more information of original distribution and format structure in the learned latent distribution and (2) decouples the learning of target distribution knowledge from the LLM's generative objectives via a plug-and-play latent feature injection module. As we observed significant discrepancies between the VAE's latent representations and the real data distribution, the latent diffusion module is introduced into our framework to learn a fully expressive latent distribution. Evaluations on seven real-world datasets with structured formatted data (i.e., Tabular, Code, and Tool data) demonstrate that DiffLM generates high-quality data, with performance on downstream tasks surpassing that of real data by 2%-7% in certain cases. Data and code are available at https://github.com/bytedance/DiffLM.
comment: 21 pages, 9 figures, Accepted by ACL 2025, Findings
AnnaAgent: Dynamic Evolution Agent System with Multi-Session Memory for Realistic Seeker Simulation
Constrained by the cost and ethical concerns of involving real seekers in AI-driven mental health, researchers develop LLM-based conversational agents (CAs) with tailored configurations, such as profiles, symptoms, and scenarios, to simulate seekers. While these efforts advance AI in mental health, achieving more realistic seeker simulation remains hindered by two key challenges: dynamic evolution and multi-session memory. Seekers' mental states often fluctuate during counseling, which typically spans multiple sessions. To address this, we propose AnnaAgent, an emotional and cognitive dynamic agent system equipped with tertiary memory. AnnaAgent incorporates an emotion modulator and a complaint elicitor trained on real counseling dialogues, enabling dynamic control of the simulator's configurations. Additionally, its tertiary memory mechanism effectively integrates short-term and long-term memory across sessions. Evaluation results, both automated and manual, demonstrate that AnnaAgent achieves more realistic seeker simulation in psychological counseling compared to existing baselines. The ethically reviewed and screened code can be found on https://github.com/sci-m-wang/AnnaAgent.
Enhancing Arabic Automated Essay Scoring with Synthetic Data and Error Injection
Automated Essay Scoring (AES) plays a crucial role in assessing language learners' writing quality, reducing grading workload, and providing real-time feedback. The lack of annotated essay datasets inhibits the development of Arabic AES systems. This paper leverages Large Language Models (LLMs) and Transformer models to generate synthetic Arabic essays for AES. We prompt an LLM to generate essays across the Common European Framework of Reference (CEFR) proficiency levels and introduce and compare two approaches to error injection. We create a dataset of 3,040 annotated essays with errors injected using our two methods. Additionally, we develop a BERT-based Arabic AES system calibrated to CEFR levels. Our experimental results demonstrate the effectiveness of our synthetic dataset in improving Arabic AES performance. We make our code and data publicly available.
A Decomposition-Based Approach for Evaluating and Analyzing Inter-Annotator Disagreement
We propose a novel method to conceptually decompose an existing annotation into separate levels, allowing the analysis of inter-annotators disagreement in each level separately. We suggest two distinct strategies in order to actualize this approach: a theoretically-driven one, in which the researcher defines a decomposition based on prior knowledge of the annotation task, and an exploration-based one, in which many possible decompositions are inductively computed and presented to the researcher for interpretation and evaluation. Utilizing a recently constructed dataset for narrative analysis as our use-case, we apply each of the two strategies to demonstrate the potential of our approach in testing hypotheses regarding the sources of annotation disagreements, as well as revealing latent structures and relations within the annotation task. We conclude by suggesting how to extend and generalize our approach, as well as use it for other purposes.
Poro 34B and the Blessing of Multilinguality
The pretraining of state-of-the-art large language models now requires trillions of words of text, which is orders of magnitude more than available for the vast majority of languages. While including text in more than one language is an obvious way to acquire more pretraining data, multilinguality is often seen as a curse, and most model training efforts continue to focus near-exclusively on individual large languages. We believe that multilinguality can be a blessing: when the lack of training data is a constraint for effectively training larger models for a target language, augmenting the dataset with other languages can offer a way to improve over the capabilities of monolingual models for that language. In this study, we introduce Poro 34B, a 34 billion parameter model trained for 1 trillion tokens of Finnish, English, and programming languages, and demonstrate that a multilingual training approach can produce a model that substantially advances over the capabilities of existing models for Finnish and excels in translation, while also achieving competitive performance in its class for English and programming languages. We release the model parameters, scripts, and data under open licenses at https://huggingface.co/LumiOpen/Poro-34B.
Fusing Bidirectional Chains of Thought and Reward Mechanisms A Method for Enhancing Question-Answering Capabilities of Large Language Models for Chinese Intangible Cultural Heritage
The rapid development of large language models (LLMs) has provided significant support and opportunities for the advancement of domain-specific LLMs. However, fine-tuning these large models using Intangible Cultural Heritage (ICH) data inevitably faces challenges such as bias, incorrect knowledge inheritance, and catastrophic forgetting. To address these issues, we propose a novel training method that integrates a bidirectional chains of thought and a reward mechanism. This method is built upon ICH-Qwen, a large language model specifically designed for the field of intangible cultural heritage. The proposed method enables the model to not only perform forward reasoning but also enhances the accuracy of the generated answers by utilizing reverse questioning and reverse reasoning to activate the model's latent knowledge. Additionally, a reward mechanism is introduced during training to optimize the decision-making process. This mechanism improves the quality of the model's outputs through structural and content evaluations with different weighting schemes. We conduct comparative experiments on ICH-Qwen, with results demonstrating that our method outperforms 0-shot, step-by-step reasoning, knowledge distillation, and question augmentation methods in terms of accuracy, Bleu-4, and Rouge-L scores on the question-answering task. Furthermore, the paper highlights the effectiveness of combining the bidirectional chains of thought and reward mechanism through ablation experiments. In addition, a series of generalizability experiments are conducted, with results showing that the proposed method yields improvements on various domain-specific datasets and advanced models in areas such as Finance, Wikidata, and StrategyQA. This demonstrates that the method is adaptable to multiple domains and provides a valuable approach for model training in future applications across diverse fields.
comment: We want to withdraw this paper due to data usage permission issues identified after submission. We discovered that our use of certain intangible cultural heritage materials required additional community permissions and institutional ethical approvals that were not obtained
Position: Editing Large Language Models Poses Serious Safety Risks ICML 2025
Large Language Models (LLMs) contain large amounts of facts about the world. These facts can become outdated over time, which has led to the development of knowledge editing methods (KEs) that can change specific facts in LLMs with limited side effects. This position paper argues that editing LLMs poses serious safety risks that have been largely overlooked. First, we note the fact that KEs are widely available, computationally inexpensive, highly performant, and stealthy makes them an attractive tool for malicious actors. Second, we discuss malicious use cases of KEs, showing how KEs can be easily adapted for a variety of malicious purposes. Third, we highlight vulnerabilities in the AI ecosystem that allow unrestricted uploading and downloading of updated models without verification. Fourth, we argue that a lack of social and institutional awareness exacerbates this risk, and discuss the implications for different stakeholders. We call on the community to (i) research tamper-resistant models and countermeasures against malicious model editing, and (ii) actively engage in securing the AI ecosystem.
comment: Accepted at ICML 2025
Confidence Is All You Need: Few-Shot RL Fine-Tuning of Language Models
Large language models (LLMs) excel at reasoning, yet post-training remains critical for aligning their behavior with task goals. Existing reinforcement learning (RL) methods often depend on costly human annotations or external reward models. We propose Reinforcement Learning via Self-Confidence (RLSC), which uses the model's own confidence as reward signals-eliminating the need for labels, preference models, or reward engineering. Applied to Qwen2.5-Math-7B with only 16 samples per question and 10 or 20 training steps, RLSC improves accuracy by +13.4% on AIME2024, +21.2% on MATH500, +21.7% on Minerva Math, +20.8% on Olympiadbench, and +9.7% on AMC23. RLSC provides a simple, scalable post-training method for inference models, requiring only a small number of samples and unlabelled supervision.
Cross-lingual Transfer in Programming Languages: An Extensive Empirical Study
Large language models (LLMs) have achieved state-of-the-art performance in various software engineering tasks, including error detection, clone detection, and code translation, primarily leveraging high-resource programming languages like Python and Java. However, many critical languages, such as COBOL, as well as emerging languages, such as Rust and Swift, remain low-resource due to limited openly available code. This scarcity hampers the training and effectiveness of LLMs for these languages, increasing software maintenance costs and stifling innovation. Addressing this gap, we investigate the potential of transfer learning to enhance LLM performance on low-resource programming languages by leveraging data from high-resource counterparts. Our extensive empirical study evaluates transferability across 10 to 41 programming languages and five key tasks: code generation, clone detection, code repair, solution domain classification, and error detection. Additionally, we develop a performance prediction model to guess the best source languages for a given target and task, and analyze the features that influence transfer performance. We further replicate a representative subset of experiments with a larger model to test the generalizability of our conclusions to contemporary large-scale LLMs. Our findings demonstrate that cross-lingual transfer significantly outperforms zero-shot learning, with effectiveness varying based on both source and target languages. Furthermore, our model reliably predicts successful transfer sources by considering linguistic and dataset-specific features, offering practical guidance for data acquisition and model training. This work contributes to the development of LLM-driven tools for low-resource programming languages and provides insights into the characteristics that facilitate transfer across language pairs.
comment: Published in Transactions on Machine Learning Research (06/2025) 26 pages, 5 figures, 10 tables
Delving into RL for Image Generation with CoT: A Study on DPO vs. GRPO
Recent advancements underscore the significant role of Reinforcement Learning (RL) in enhancing the Chain-of-Thought (CoT) reasoning capabilities of large language models (LLMs). Two prominent RL algorithms, Direct Preference Optimization (DPO) and Group Relative Policy Optimization (GRPO), are central to these developments, showcasing different pros and cons. Autoregressive image generation, also interpretable as a sequential CoT reasoning process, presents unique challenges distinct from LLM-based CoT reasoning. These encompass ensuring text-image consistency, improving image aesthetic quality, and designing sophisticated reward models, rather than relying on simpler rule-based rewards. While recent efforts have extended RL to this domain, these explorations typically lack an in-depth analysis of the domain-specific challenges and the characteristics of different RL strategies. To bridge this gap, we provide the first comprehensive investigation of the GRPO and DPO algorithms in autoregressive image generation, evaluating their in-domain performance and out-of-domain generalization, while scrutinizing the impact of different reward models on their respective capabilities. Our findings reveal that GRPO and DPO exhibit distinct advantages, and crucially, that reward models possessing stronger intrinsic generalization capabilities potentially enhance the generalization potential of the applied RL algorithms. Furthermore, we systematically explore three prevalent scaling strategies to enhance both their in-domain and out-of-domain proficiency, deriving unique insights into efficiently scaling performance for each paradigm. We hope our study paves a new path for inspiring future work on developing more effective RL algorithms to achieve robust CoT reasoning in the realm of autoregressive image generation. Code is released at https://github.com/ZiyuGuo99/Image-Generation-CoT
comment: Code is released at https://github.com/ZiyuGuo99/Image-Generation-CoT
In Praise of Stubbornness: An Empirical Case for Cognitive-Dissonance Aware Continual Update of Knowledge in LLMs
Through systematic empirical investigation, we uncover a fundamental and concerning property of Large Language Models: while they can safely learn facts that don't contradict their knowledge, attempting to update facts with contradictory information triggers catastrophic corruption of unrelated knowledge. Unlike humans, who naturally resist contradictory information, these models indiscriminately accept contradictions, leading to devastating interference, destroying up to 80% of unrelated knowledge even when learning as few as 10-100 contradicting facts. To understand whether this interference could be mitigated through selective plasticity, we experiment with targeted network updates, distinguishing between previously used (stubborn) and rarely used (plastic) neurons. We uncover another asymmetry: while sparing frequently-used neurons significantly improves retention of existing knowledge for non-contradictory updates (98% vs 93% with standard updates), contradictory updates trigger catastrophic interference regardless of targeting strategy. This effect which persists across tested model scales (GPT-2 to GPT-J-6B), suggests a fundamental limitation in how neural networks handle contradictions. Finally, we demonstrate that contradictory information can be reliably detected (95%+ accuracy) using simple model features, offering a potential protective mechanism. These findings motivate new architectures that can, like humans, naturally resist contradictions rather than allowing destructive overwrites.
Optimized Text Embedding Models and Benchmarks for Amharic Passage Retrieval ACL 2025
Neural retrieval methods using transformer-based pre-trained language models have advanced multilingual and cross-lingual retrieval. However, their effectiveness for low-resource, morphologically rich languages such as Amharic remains underexplored due to data scarcity and suboptimal tokenization. We address this gap by introducing Amharic-specific dense retrieval models based on pre-trained Amharic BERT and RoBERTa backbones. Our proposed RoBERTa-Base-Amharic-Embed model (110M parameters) achieves a 17.6% relative improvement in MRR@10 and a 9.86% gain in Recall@10 over the strongest multilingual baseline, Arctic Embed 2.0 (568M parameters). More compact variants, such as RoBERTa-Medium-Amharic-Embed (42M), remain competitive while being over 13x smaller. Additionally, we train a ColBERT-based late interaction retrieval model that achieves the highest MRR@10 score (0.843) among all evaluated models. We benchmark our proposed models against both sparse and dense retrieval baselines to systematically assess retrieval effectiveness in Amharic. Our analysis highlights key challenges in low-resource settings and underscores the importance of language-specific adaptation. To foster future research in low-resource IR, we publicly release our dataset, codebase, and trained models at https://github.com/kidist-amde/amharic-ir-benchmarks.
comment: 10 pages (excl. refs/appendix), 10 figures. Accepted to ACL 2025 Findings. Kidist and Yosef contributed equally to this work. Public resources: https://github.com/kidist-amde/amharic-ir-benchmarks
TextAtari: 100K Frames Game Playing with Language Agents
We present TextAtari, a benchmark for evaluating language agents on very long-horizon decision-making tasks spanning up to 100,000 steps. By translating the visual state representations of classic Atari games into rich textual descriptions, TextAtari creates a challenging test bed that bridges sequential decision-making with natural language processing. The benchmark includes nearly 100 distinct tasks with varying complexity, action spaces, and planning horizons, all rendered as text through an unsupervised representation learning framework (AtariARI). We evaluate three open-source large language models (Qwen2.5-7B, Gemma-7B, and Llama3.1-8B) across three agent frameworks (zero-shot, few-shot chain-of-thought, and reflection reasoning) to assess how different forms of prior knowledge affect performance on these long-horizon challenges. Four scenarios-Basic, Obscured, Manual Augmentation, and Reference-based-investigate the impact of semantic understanding, instruction comprehension, and expert demonstrations on agent decision-making. Our results reveal significant performance gaps between language agents and human players in extensive planning tasks, highlighting challenges in sequential reasoning, state tracking, and strategic planning across tens of thousands of steps. TextAtari provides standardized evaluation protocols, baseline implementations, and a framework for advancing research at the intersection of language models and planning. Our code is available at https://github.com/Lww007/Text-Atari-Agents.
comment: 51 pages, 39 figures
Generative Psycho-Lexical Approach for Constructing Value Systems in Large Language Models ACL 2024
Values are core drivers of individual and collective perception, cognition, and behavior. Value systems, such as Schwartz's Theory of Basic Human Values, delineate the hierarchy and interplay among these values, enabling cross-disciplinary investigations into decision-making and societal dynamics. Recently, the rise of Large Language Models (LLMs) has raised concerns regarding their elusive intrinsic values. Despite growing efforts in evaluating, understanding, and aligning LLM values, a psychologically grounded LLM value system remains underexplored. This study addresses the gap by introducing the Generative Psycho-Lexical Approach (GPLA), a scalable, adaptable, and theoretically informed method for constructing value systems. Leveraging GPLA, we propose a psychologically grounded five-factor value system tailored for LLMs. For systematic validation, we present three benchmarking tasks that integrate psychological principles with cutting-edge AI priorities. Our results reveal that the proposed value system meets standard psychological criteria, better captures LLM values, improves LLM safety prediction, and enhances LLM alignment, when compared to the canonical Schwartz's values.
comment: Accepted at ACL 2024 Main
Big Help or Big Brother? Auditing Tracking, Profiling, and Personalization in Generative AI Assistants
Generative AI (GenAI) browser assistants integrate powerful capabilities of GenAI in web browsers to provide rich experiences such as question answering, content summarization, and agentic navigation. These assistants, available today as browser extensions, can not only track detailed browsing activity such as search and click data, but can also autonomously perform tasks such as filling forms, raising significant privacy concerns. It is crucial to understand the design and operation of GenAI browser extensions, including how they collect, store, process, and share user data. To this end, we study their ability to profile users and personalize their responses based on explicit or inferred demographic attributes and interests of users. We perform network traffic analysis and use a novel prompting framework to audit tracking, profiling, and personalization by the ten most popular GenAI browser assistant extensions. We find that instead of relying on local in-browser models, these assistants largely depend on server-side APIs, which can be auto-invoked without explicit user interaction. When invoked, they collect and share webpage content, often the full HTML DOM and sometimes even the user's form inputs, with their first-party servers. Some assistants also share identifiers and user prompts with third-party trackers such as Google Analytics. The collection and sharing continues even if a webpage contains sensitive information such as health or personal information such as name or SSN entered in a web form. We find that several GenAI browser assistants infer demographic attributes such as age, gender, income, and interests and use this profile--which carries across browsing contexts--to personalize responses. In summary, our work shows that GenAI browser assistants can and do collect personal and sensitive information for profiling and personalization with little to no safeguards.
Iterative Corpus Refinement for Materials Property Prediction Based on Scientific Texts ECML
The discovery and optimization of materials for specific applications is hampered by the practically infinite number of possible elemental combinations and associated properties, also known as the `combinatorial explosion'. By nature of the problem, data are scarce and all possible data sources should be used. In addition to simulations and experimental results, the latent knowledge in scientific texts is not yet used to its full potential. We present an iterative framework that refines a given scientific corpus by strategic selection of the most diverse documents, training Word2Vec models, and monitoring the convergence of composition-property correlations in embedding space. Our approach is applied to predict high-performing materials for oxygen reduction (ORR), hydrogen evolution (HER), and oxygen evolution (OER) reactions for a large number of possible candidate compositions. Our method successfully predicts the highest performing compositions among a large pool of candidates, validated by experimental measurements of the electrocatalytic performance in the lab. This work demonstrates and validates the potential of iterative corpus refinement to accelerate materials discovery and optimization, offering a scalable and efficient tool for screening large compositional spaces where reliable data are scarce or non-existent.
comment: 9 pages, 5 figures, 2 tables, accepted at ECMLPKDD 2025
VIST-GPT: Ushering in the Era of Visual Storytelling with LLMs?
Visual storytelling is an interdisciplinary field combining computer vision and natural language processing to generate cohesive narratives from sequences of images. This paper presents a novel approach that leverages recent advancements in multimodal models, specifically adapting transformer-based architectures and large multimodal models, for the visual storytelling task. Leveraging the large-scale Visual Storytelling (VIST) dataset, our VIST-GPT model produces visually grounded, contextually appropriate narratives. We address the limitations of traditional evaluation metrics, such as BLEU, METEOR, ROUGE, and CIDEr, which are not suitable for this task. Instead, we utilize RoViST and GROOVIST, novel reference-free metrics designed to assess visual storytelling, focusing on visual grounding, coherence, and non-redundancy. These metrics provide a more nuanced evaluation of narrative quality, aligning closely with human judgment.
Summarizing Speech: A Comprehensive Survey
Speech summarization has become an essential tool for efficiently managing and accessing the growing volume of spoken and audiovisual content. However, despite its increasing importance, speech summarization remains loosely defined. The field intersects with several research areas, including speech recognition, text summarization, and specific applications like meeting summarization. This survey not only examines existing datasets and evaluation protocols, which are crucial for assessing the quality of summarization approaches, but also synthesizes recent developments in the field, highlighting the shift from traditional systems to advanced models like fine-tuned cascaded architectures and end-to-end solutions. In doing so, we surface the ongoing challenges, such as the need for realistic evaluation benchmarks, multilingual datasets, and long-context handling.
Self-Training Elicits Concise Reasoning in Large Language Models ACL 2025
Chain-of-thought (CoT) reasoning has enabled large language models (LLMs) to utilize additional computation through intermediate tokens to solve complex tasks. However, we posit that typical reasoning traces contain many redundant tokens, incurring extraneous inference costs. Upon examination of the output distribution of current LLMs, we find evidence on their latent ability to reason more concisely, relative to their default behavior. To elicit this capability, we propose simple fine-tuning methods which leverage self-generated concise reasoning paths obtained by best-of-N sampling and few-shot conditioning, in task-specific settings. Our combined method achieves a 30% reduction in output tokens on average, across five model families on GSM8K and MATH, while maintaining average accuracy. By exploiting the fundamental stochasticity and in-context learning capabilities of LLMs, our self-training approach robustly elicits concise reasoning on a wide range of models, including those with extensive post-training. Code is available at https://github.com/TergelMunkhbat/concise-reasoning
comment: 26 pages, 10 figures, 23 tables. Accepted to Findings of ACL 2025
Compositional Causal Reasoning Evaluation in Language Models
Causal reasoning and compositional reasoning are two core aspirations in AI. Measuring the extent of these behaviors requires principled evaluation methods. We explore a unified perspective that considers both behaviors simultaneously, termed compositional causal reasoning (CCR): the ability to infer how causal measures compose and, equivalently, how causal quantities propagate through graphs. We instantiate a framework for the systematic evaluation of CCR for the average treatment effect and the probability of necessity and sufficiency. As proof of concept, we demonstrate CCR evaluation for language models in the LLama, Phi, and GPT families. On a math word problem, our framework revealed a range of taxonomically distinct error patterns. CCR errors increased with the complexity of causal paths for all models except o1.
An Analysis of Hyper-Parameter Optimization Methods for Retrieval Augmented Generation
Finding the optimal Retrieval-Augmented Generation (RAG) configuration for a given use case can be complex and expensive. Motivated by this challenge, frameworks for RAG hyper-parameter optimization (HPO) have recently emerged, yet their effectiveness has not been rigorously benchmarked. To address this gap, we present a comprehensive study involving 5 HPO algorithms over 5 datasets from diverse domains, including a new one collected for this work on real-world product documentation. Our study explores the largest HPO search space considered to date, with three evaluation metrics as optimization targets. Analysis of the results shows that RAG HPO can be done efficiently, either greedily or with random search, and that it significantly boosts RAG performance for all datasets. For greedy HPO approaches, we show that optimizing model selection first is preferable to the prevalent practice of optimizing according to RAG pipeline order.
Cracking the Code of Hallucination in LVLMs with Vision-aware Head Divergence ACL2025
Large vision-language models (LVLMs) have made substantial progress in integrating large language models (LLMs) with visual inputs, enabling advanced multimodal reasoning. Despite their success, a persistent challenge is hallucination-where generated text fails to accurately reflect visual content-undermining both accuracy and reliability. Existing methods focus on alignment training or decoding refinements but primarily address symptoms at the generation stage without probing the underlying causes. In this work, we investigate the internal mechanisms driving hallucination in LVLMs, with an emphasis on the multi-head attention module. Specifically, we introduce Vision-aware Head Divergence (VHD), a metric that quantifies the sensitivity of attention head outputs to visual context. Based on this, our findings reveal the presence of vision-aware attention heads that are more attuned to visual information; however, the model's overreliance on its prior language patterns is closely related to hallucinations. Building on these insights, we propose Vision-aware Head Reinforcement (VHR), a training-free approach to mitigate hallucination by enhancing the role of vision-aware attention heads. Extensive experiments demonstrate that our method achieves superior performance compared to state-of-the-art approaches in mitigating hallucinations, while maintaining high efficiency with negligible additional time overhead.
comment: ACL2025
NaturalBench: Evaluating Vision-Language Models on Natural Adversarial Samples NeurIPS 24
Vision-language models (VLMs) have made significant progress in recent visual-question-answering (VQA) benchmarks that evaluate complex visio-linguistic reasoning. However, are these models truly effective? In this work, we show that VLMs still struggle with natural images and questions that humans can easily answer, which we term natural adversarial samples. We also find it surprisingly easy to generate these VQA samples from natural image-text corpora using off-the-shelf models like CLIP and ChatGPT. We propose a semi-automated approach to collect a new benchmark, NaturalBench, for reliably evaluating VLMs with 10,000 human-verified VQA samples. Crucially, we adopt a $\textbf{vision-centric}$ design by pairing each question with two images that yield different answers, preventing blind solutions from answering without using the images. This makes NaturalBench more challenging than previous benchmarks that can be solved with commonsense priors. We evaluate 53 state-of-the-art VLMs on NaturalBench, showing that models like LLaVA-OneVision, Cambrian-1, Llama3.2-Vision, Molmo, Qwen2-VL, and even GPT-4o lag 50%-70% behind human performance (over 90%). We analyze why NaturalBench is hard from two angles: (1) Compositionality: Solving NaturalBench requires diverse visio-linguistic skills, including understanding attribute bindings, object relationships, and advanced reasoning like logic and counting. To this end, unlike prior work that uses a single tag per sample, we tag each NaturalBench sample with 1 to 8 skill tags for fine-grained evaluation. (2) Biases: NaturalBench exposes severe biases in VLMs, as models often choose the same answer regardless of the image. Lastly, we apply our benchmark curation method to diverse data sources, including long captions (over 100 words) and non-English languages like Chinese and Hindi, highlighting its potential for dynamic evaluations of VLMs.
comment: Accepted to NeurIPS 24; We open-source our dataset at: https://huggingface.co/datasets/BaiqiL/NaturalBench ; Project page at: https://linzhiqiu.github.io/papers/naturalbench/
Guidelines for Fine-grained Sentence-level Arabic Readability Annotation ACL 2025
This paper presents the annotation guidelines of the Balanced Arabic Readability Evaluation Corpus (BAREC), a large-scale resource for fine-grained sentence-level readability assessment in Arabic. BAREC includes 69,441 sentences (1M+ words) labeled across 19 levels, from kindergarten to postgraduate. Based on the Taha/Arabi21 framework, the guidelines were refined through iterative training with native Arabic-speaking educators. We highlight key linguistic, pedagogical, and cognitive factors in determining readability and report high inter-annotator agreement: Quadratic Weighted Kappa 81.8% (substantial/excellent agreement) in the last annotation phase. We also benchmark automatic readability models across multiple classification granularities (19-, 7-, 5-, and 3-level). The corpus and guidelines are publicly available.
comment: Accepted at LAW-XIX at ACL 2025
How transformers learn structured data: insights from hierarchical filtering
Understanding the learning process and the embedded computation in transformers is becoming a central goal for the development of interpretable AI. In the present study, we introduce a hierarchical filtering procedure for data models of sequences on trees, allowing us to hand-tune the range of positional correlations in the data. Leveraging this controlled setting, we provide evidence that vanilla encoder-only transformers can approximate the exact inference algorithm when trained on root classification and masked language modeling tasks, and study how this computation is discovered and implemented. We find that correlations at larger distances, corresponding to increasing layers of the hierarchy, are sequentially included by the network during training. By comparing attention maps from models trained with varying degrees of filtering and by probing the different encoder levels, we find clear evidence of a reconstruction of correlations on successive length scales corresponding to the various levels of the hierarchy, which we relate to a plausible implementation of the exact inference algorithm within the same architecture.
comment: 17 pages, 12 figures
Speech Synthesis By Unrolling Diffusion Process using Neural Network Layers
This work introduces UDPNet, a novel architecture designed to accelerate the reverse diffusion process in speech synthesis. Unlike traditional diffusion models that rely on timestep embeddings and shared network parameters, UDPNet unrolls the reverse diffusion process directly into the network architecture, with successive layers corresponding to equally spaced steps in the diffusion schedule. Each layer progressively refines the noisy input, culminating in a high-fidelity estimation of the original data, \(x_0\). Additionally, we redefine the learning target by predicting latent variables instead of the conventional \(x_0\) or noise \(\epsilon_0\). This shift addresses the common issue of large prediction errors in early denoising stages, effectively reducing speech distortion. Extensive evaluations on single- and multi-speaker datasets demonstrate that UDPNet consistently outperforms state-of-the-art methods in both quality and efficiency, while generalizing effectively to unseen speech. These results position UDPNet as a robust solution for real-time speech synthesis applications. Sample audio is available at https://onexpeters.github.io/UDPNet/.
comment: 10 pages
How Malicious AI Swarms Can Threaten Democracy
Advances in AI portend a new era of sophisticated disinformation operations. While individual AI systems already create convincing -- and at times misleading -- information, an imminent development is the emergence of malicious AI swarms. These systems can coordinate covertly, infiltrate communities, evade traditional detectors, and run continuous A/B tests, with round-the-clock persistence. The result can include fabricated grassroots consensus, fragmented shared reality, mass harassment, voter micro-suppression or mobilization, contamination of AI training data, and erosion of institutional trust. With democratic processes worldwide increasingly vulnerable, we urge a three-pronged response: (1) platform-side defenses -- always-on swarm-detection dashboards, pre-election high-fidelity swarm-simulation stress-tests, transparency audits, and optional client-side "AI shields" for users; (2) model-side safeguards -- standardized persuasion-risk tests, provenance-authenticating passkeys, and watermarking; and (3) system-level oversight -- a UN-backed AI Influence Observatory.
comment: 8 pages, 1 figure
Can Large Language Models Invent Algorithms to Improve Themselves?: Algorithm Discovery for Recursive Self-Improvement through Reinforcement Learning NAACL 2025
Large Language Models (LLMs) have achieved remarkable capabilities, yet their improvement methods remain fundamentally constrained by human design. We present Self-Developing, a framework that enables LLMs to autonomously discover, implement, and refine their own improvement algorithms. Our approach employs an iterative cycle where a seed model generates algorithmic candidates as executable code, evaluates their effectiveness, and uses Direct Preference Optimization to recursively improve increasingly sophisticated improvement strategies. We demonstrate this framework through model merging, a practical technique for combining specialized models. Self-Developing successfully discovered novel merging algorithms that outperform existing human-designed algorithms. On mathematical reasoning benchmarks, the autonomously discovered algorithms improve the seed model's GSM8k performance by 6\% and exceed human-designed approaches like Task Arithmetic by 4.3\%. Remarkably, these algorithms exhibit strong generalization, achieving 7.4\% gains on out-of-domain models without re-optimization. Our findings demonstrate that LLMs can transcend their training to invent genuinely novel optimization techniques. This capability represents a crucial step toward a new era where LLMs not only solve problems but autonomously develop the methodologies for their own advancement.
comment: Accepted at NAACL 2025 (main)
Phonology-Guided Speech-to-Speech Translation for African Languages
We present a prosody-guided framework for speech-to-speech translation (S2ST) that aligns and translates speech \emph{without} transcripts by leveraging cross-linguistic pause synchrony. Analyzing a 6{,}000-hour East African news corpus spanning five languages, we show that \emph{within-phylum} language pairs exhibit 30--40\% lower pause variance and over 3$\times$ higher onset/offset correlation compared to cross-phylum pairs. These findings motivate \textbf{SPaDA}, a dynamic-programming alignment algorithm that integrates silence consistency, rate synchrony, and semantic similarity. SPaDA improves alignment $F_1$ by +3--4 points and eliminates up to 38\% of spurious matches relative to greedy VAD baselines. Using SPaDA-aligned segments, we train \textbf{SegUniDiff}, a diffusion-based S2ST model guided by \emph{external gradients} from frozen semantic and speaker encoders. SegUniDiff matches an enhanced cascade in BLEU (30.3 on CVSS-C vs.\ 28.9 for UnitY), reduces speaker error rate (EER) from 12.5\% to 5.3\%, and runs at an RTF of 1.02. To support evaluation in low-resource settings, we also release a three-tier, transcript-free BLEU suite (M1--M3) that correlates strongly with human judgments. Together, our results show that prosodic cues in multilingual speech provide a reliable scaffold for scalable, non-autoregressive S2ST.
BiasGuard: A Reasoning-enhanced Bias Detection Tool For Large Language Models ACL 2025
Identifying bias in LLM-generated content is a crucial prerequisite for ensuring fairness in LLMs. Existing methods, such as fairness classifiers and LLM-based judges, face limitations related to difficulties in understanding underlying intentions and the lack of criteria for fairness judgment. In this paper, we introduce BiasGuard, a novel bias detection tool that explicitly analyzes inputs and reasons through fairness specifications to provide accurate judgments. BiasGuard is implemented through a two-stage approach: the first stage initializes the model to explicitly reason based on fairness specifications, while the second stage leverages reinforcement learning to enhance its reasoning and judgment capabilities. Our experiments, conducted across five datasets, demonstrate that BiasGuard outperforms existing tools, improving accuracy and reducing over-fairness misjudgments. We also highlight the importance of reasoning-enhanced decision-making and provide evidence for the effectiveness of our two-stage optimization pipeline.
comment: ACL 2025 findings
FairMT-Bench: Benchmarking Fairness for Multi-turn Dialogue in Conversational LLMs ICLR 2025
The growing use of large language model (LLM)-based chatbots has raised concerns about fairness. Fairness issues in LLMs can lead to severe consequences, such as bias amplification, discrimination, and harm to marginalized communities. While existing fairness benchmarks mainly focus on single-turn dialogues, multi-turn scenarios, which in fact better reflect real-world conversations, present greater challenges due to conversational complexity and potential bias accumulation. In this paper, we propose a comprehensive fairness benchmark for LLMs in multi-turn dialogue scenarios, \textbf{FairMT-Bench}. Specifically, we formulate a task taxonomy targeting LLM fairness capabilities across three stages: context understanding, user interaction, and instruction trade-offs, with each stage comprising two tasks. To ensure coverage of diverse bias types and attributes, we draw from existing fairness datasets and employ our template to construct a multi-turn dialogue dataset, \texttt{FairMT-10K}. For evaluation, GPT-4 is applied, alongside bias classifiers including Llama-Guard-3 and human validation to ensure robustness. Experiments and analyses on \texttt{FairMT-10K} reveal that in multi-turn dialogue scenarios, current LLMs are more likely to generate biased responses, and there is significant variation in performance across different tasks and models. Based on this, we curate a challenging dataset, \texttt{FairMT-1K}, and test 15 current state-of-the-art (SOTA) LLMs on this dataset. The results show the current state of fairness in LLMs and showcase the utility of this novel approach for assessing fairness in more realistic multi-turn dialogue contexts, calling for future work to focus on LLM fairness improvement and the adoption of \texttt{FairMT-1K} in such efforts.
comment: ICLR 2025 spotlight
Lingshu: A Generalist Foundation Model for Unified Multimodal Medical Understanding and Reasoning
Multimodal Large Language Models (MLLMs) have demonstrated impressive capabilities in understanding common visual elements, largely due to their large-scale datasets and advanced training strategies. However, their effectiveness in medical applications remains limited due to the inherent discrepancies between data and tasks in medical scenarios and those in the general domain. Concretely, existing medical MLLMs face the following critical limitations: (1) limited coverage of medical knowledge beyond imaging, (2) heightened susceptibility to hallucinations due to suboptimal data curation processes, (3) lack of reasoning capabilities tailored for complex medical scenarios. To address these challenges, we first propose a comprehensive data curation procedure that (1) efficiently acquires rich medical knowledge data not only from medical imaging but also from extensive medical texts and general-domain data; and (2) synthesizes accurate medical captions, visual question answering (VQA), and reasoning samples. As a result, we build a multimodal dataset enriched with extensive medical knowledge. Building on the curated data, we introduce our medical-specialized MLLM: Lingshu. Lingshu undergoes multi-stage training to embed medical expertise and enhance its task-solving capabilities progressively. Besides, we preliminarily explore the potential of applying reinforcement learning with verifiable rewards paradigm to enhance Lingshu's medical reasoning ability. Additionally, we develop MedEvalKit, a unified evaluation framework that consolidates leading multimodal and textual medical benchmarks for standardized, fair, and efficient model assessment. We evaluate the performance of Lingshu on three fundamental medical tasks, multimodal QA, text-based QA, and medical report generation. The results show that Lingshu consistently outperforms the existing open-source multimodal models on most tasks ...
comment: Technical Report, 53 pages, 25 tables, and 16 figures
Exploring the Escalation of Source Bias in User, Data, and Recommender System Feedback Loop
Recommender systems are essential for information access, allowing users to present their content for recommendation. With the rise of large language models (LLMs), AI-generated content (AIGC), primarily in the form of text, has become a central part of the content ecosystem. As AIGC becomes increasingly prevalent, it is important to understand how it affects the performance and dynamics of recommender systems. To this end, we construct an environment that incorporates AIGC to explore its short-term impact. The results from popular sequential recommendation models reveal that AIGC are ranked higher in the recommender system, reflecting the phenomenon of source bias. To further explore the long-term impact of AIGC, we introduce a feedback loop with realistic simulators. The results show that the model's preference for AIGC increases as the user clicks on AIGC rises and the model trains on simulated click data. This leads to two issues: In the short term, bias toward AIGC encourages LLM-based content creation, increasing AIGC content, and causing unfair traffic distribution. From a long-term perspective, our experiments also show that when AIGC dominates the content ecosystem after a feedback loop, it can lead to a decline in recommendation performance. To address these issues, we propose a debiasing method based on L1-loss optimization to maintain long-term content ecosystem balance. In a real-world environment with AIGC generated by mainstream LLMs, our method ensures a balance between AIGC and human-generated content in the ecosystem. The code and dataset are available at https://github.com/Yuqi-Zhou/Rec_SourceBias.
Meta-Adaptive Prompt Distillation for Few-Shot Visual Question Answering
Large Multimodal Models (LMMs) often rely on in-context learning (ICL) to perform new tasks with minimal supervision. However, ICL performance, especially in smaller LMMs, is inconsistent and does not always improve monotonically with increasing examples. We hypothesize that this occurs due to the LMM being overwhelmed by additional information present in the image embeddings, which is not required for the downstream task. To address this, we propose a meta-learning approach that provides an alternative for inducing few-shot capabilities in LMMs, using a fixed set of soft prompts that are distilled from task-relevant image features and can be adapted at test time using a few examples. To facilitate this distillation, we introduce an attention-mapper module that can be easily integrated with the popular LLaVA v1.5 architecture and is jointly learned with soft prompts, enabling task adaptation in LMMs under low-data regimes with just a few gradient steps. Evaluation on the VL-ICL Bench shows that our method consistently outperforms ICL and related prompt-tuning approaches, even under image perturbations, improving task induction and reasoning across visual question answering tasks.
Length-Induced Embedding Collapse in PLM-based Models ACL 2025
Text embeddings from PLM-based models enable a wide range of applications, yet their performance often degrades on longer texts. In this paper, we introduce a phenomenon we call Length Collapse, where embeddings of longer texts tend to cluster together. This clustering results in a distributional inconsistency between the embeddings of short and long texts. We further investigate how these differences contribute to the performance decline observed with longer texts across various downstream tasks. Through a rigorous theoretical analysis of the self-attention mechanism, which acts as a low-pass filter in PLM-based models, we demonstrate that as text length increases, the strength of low-pass filtering intensifies, causing embeddings to retain more low-frequency components. As a result, input token features become more similar, leading to clustering and ultimately the collapse of embeddings for longer texts. To address this issue, we propose a simple method, TempScale, which mitigates the Length Collapse phenomenon. By narrowing the gap in low-pass filtering rates between long and short texts, TempScale ensures more consistent embeddings across different text lengths. This approach leads to performance improvements of 0.94% on MTEB and 1.10% on LongEmbed, which focuses specifically on long-context retrieval, providing strong evidence for the validity of our analysis. The source code is available at https://github.com/Yuqi-Zhou/Length_Collapse.
comment: Accepted by ACL 2025
A Survey on Long Text Modeling with Transformers
Modeling long texts has been an essential technique in the field of natural language processing (NLP). With the ever-growing number of long documents, it is important to develop effective modeling methods that can process and analyze such texts. However, long texts pose important research challenges for existing text models, with more complex semantics and special characteristics. In this paper, we provide an overview of the recent advances on long texts modeling based on Transformer models. Firstly, we introduce the formal definition of long text modeling. Then, as the core content, we discuss how to process long input to satisfy the length limitation and design improved Transformer architectures to effectively extend the maximum context length. Following this, we discuss how to adapt Transformer models to capture the special characteristics of long texts. Finally, we describe four typical applications involving long text modeling and conclude this paper with a discussion of future directions. Our survey intends to provide researchers with a synthesis and pointer to related work on long text modeling.
The BS-meter: A ChatGPT-Trained Instrument to Detect Sloppy Language-Games
What can we learn about language from studying how it is used by ChatGPT and other large language model (LLM)-based chatbots? In this paper, we analyse the distinctive character of language generated by ChatGPT, in relation to questions raised by natural language processing pioneer, and student of Wittgenstein, Margaret Masterman. Following frequent complaints that LLM-based chatbots produce "slop," or even "bullshit," in the sense of Frankfurt's popular monograph On Bullshit, we conduct an empirical study to contrast the language of 1,000 scientific publications with typical text generated by ChatGPT. We then explore whether the same language features can be detected in two well-known contexts of social dysfunction: George Orwell's critique of political speech, and David Graeber's characterisation of bullshit jobs. Using simple hypothesis-testing methods, we demonstrate that a statistical model of sloppy bullshit can reliably relate the Frankfurtian artificial bullshit of ChatGPT to the political and workplace functions of bullshit as observed in natural human language.
A Hybrid Architecture with Efficient Fine Tuning for Abstractive Patent Document Summarization
Automatic patent summarization approaches that help in the patent analysis and comprehension procedure are in high demand due to the colossal growth of innovations. The development of natural language processing (NLP), text mining, and deep learning has notably amplified the efficacy of text summarization models for abundant types of documents. Summarizing patent text remains a pertinent challenge due to the labyrinthine writing style of these documents, which includes technical and legal intricacies. Additionally, these patent document contents are considerably lengthier than archetypal documents, which complicates the process of extracting pertinent information for summarization. Embodying extractive and abstractive text summarization methodologies into a hybrid framework, this study proposes a system for efficiently creating abstractive summaries of patent records. The procedure involves leveraging the LexRank graph-based algorithm to retrieve the important sentences from input parent texts, then utilizing a Bidirectional Auto-Regressive Transformer (BART) model that has been fine-tuned using Low-Ranking Adaptation (LoRA) for producing text summaries. This is accompanied by methodical testing and evaluation strategies. Furthermore, the author employed certain meta-learning techniques to achieve Domain Generalization (DG) of the abstractive component across multiple patent fields.
comment: Accepted Paper in the 8th International Research Conference on Smart Computing and Systems Engineering, University of Kelaniya, Sri Lanka. (Pending Publication)
Evaluation is All You Need: Strategic Overclaiming of LLM Reasoning Capabilities Through Evaluation Design
Reasoning models represented by the Deepseek-R1-Distill series have been widely adopted by the open-source community due to their strong performance in mathematics, science, programming, and other domains. However, our study reveals that their benchmark evaluation results are subject to significant fluctuations caused by various factors. Subtle differences in evaluation conditions can lead to substantial variations in results. Similar phenomena are observed in other open-source inference models fine-tuned based on the Deepseek-R1-Distill series, as well as in the QwQ-32B model, making their claimed performance improvements difficult to reproduce reliably. Therefore, we advocate for the establishment of a more rigorous paradigm for model performance evaluation and present our empirical assessments of the Deepseek-R1-Distill series models.
Human-like object concept representations emerge naturally in multimodal large language models
Understanding how humans conceptualize and categorize natural objects offers critical insights into perception and cognition. With the advent of Large Language Models (LLMs), a key question arises: can these models develop human-like object representations from linguistic and multimodal data? In this study, we combined behavioral and neuroimaging analyses to explore the relationship between object concept representations in LLMs and human cognition. We collected 4.7 million triplet judgments from LLMs and Multimodal LLMs (MLLMs) to derive low-dimensional embeddings that capture the similarity structure of 1,854 natural objects. The resulting 66-dimensional embeddings were stable, predictive, and exhibited semantic clustering similar to human mental representations. Remarkably, the dimensions underlying these embeddings were interpretable, suggesting that LLMs and MLLMs develop human-like conceptual representations of objects. Further analysis showed strong alignment between model embeddings and neural activity patterns in brain regions such as EBA, PPA, RSC, and FFA. This provides compelling evidence that the object representations in LLMs, while not identical to human ones, share fundamental similarities that reflect key aspects of human conceptual knowledge. Our findings advance the understanding of machine intelligence and inform the development of more human-like artificial cognitive systems.
comment: Published on Nature Machine Intelligence
LLaSE-G1: Incentivizing Generalization Capability for LLaMA-based Speech Enhancement ACL2025
Recent advancements in language models (LMs) have demonstrated strong capabilities in semantic understanding and contextual modeling, which have flourished in generative speech enhancement (SE). However, many LM-based SE approaches primarily focus on semantic information, often neglecting the critical role of acoustic information, which leads to acoustic inconsistency after enhancement and limited generalization across diverse SE tasks. In this paper, we introduce LLaSE-G1, a LLaMA-based language model that incentivizes generalization capabilities for speech enhancement. LLaSE-G1 offers the following key contributions: First, to mitigate acoustic inconsistency, LLaSE-G1 employs continuous representations from WavLM as input and predicts speech tokens from X-Codec2, maximizing acoustic preservation. Second, to promote generalization capability, LLaSE-G1 introduces dual-channel inputs and outputs, unifying multiple SE tasks without requiring task-specific IDs. Third, LLaSE-G1 outperforms prior task-specific discriminative and generative SE models, demonstrating scaling effects at test time and emerging capabilities for unseen SE tasks. Additionally, we release our code and models to support further research in this area.
comment: ACL2025 main, Codes available at https://github.com/Kevin-naticl/LLaSE-G1
Qwen3 Embedding: Advancing Text Embedding and Reranking Through Foundation Models
In this work, we introduce the Qwen3 Embedding series, a significant advancement over its predecessor, the GTE-Qwen series, in text embedding and reranking capabilities, built upon the Qwen3 foundation models. Leveraging the Qwen3 LLMs' robust capabilities in multilingual text understanding and generation, our innovative multi-stage training pipeline combines large-scale unsupervised pre-training with supervised fine-tuning on high-quality datasets. Effective model merging strategies further ensure the robustness and adaptability of the Qwen3 Embedding series. During the training process, the Qwen3 LLMs serve not only as backbone models but also play a crucial role in synthesizing high-quality, rich, and diverse training data across multiple domains and languages, thus enhancing the training pipeline. The Qwen3 Embedding series offers a spectrum of model sizes (0.6B, 4B, 8B) for both embedding and reranking tasks, addressing diverse deployment scenarios where users can optimize for either efficiency or effectiveness. Empirical evaluations demonstrate that the Qwen3 Embedding series achieves state-of-the-art results across diverse benchmarks. Notably, it excels on the multilingual evaluation benchmark MTEB for text embedding, as well as in various retrieval tasks, including code retrieval, cross-lingual retrieval and multilingual retrieval. To facilitate reproducibility and promote community-driven research and development, the Qwen3 Embedding models are publicly available under the Apache 2.0 license.
Textual Unlearning Gives a False Sense of Unlearning
Language Models (LMs) are prone to ''memorizing'' training data, including substantial sensitive user information. To mitigate privacy risks and safeguard the right to be forgotten, machine unlearning has emerged as a promising approach for enabling LMs to efficiently ''forget'' specific texts. However, despite the good intentions, is textual unlearning really as effective and reliable as expected? To address the concern, we first propose Unlearning Likelihood Ratio Attack+ (U-LiRA+), a rigorous textual unlearning auditing method, and find that unlearned texts can still be detected with very high confidence after unlearning. Further, we conduct an in-depth investigation on the privacy risks of textual unlearning mechanisms in deployment and present the Textual Unlearning Leakage Attack (TULA), along with its variants in both black- and white-box scenarios. We show that textual unlearning mechanisms could instead reveal more about the unlearned texts, exposing them to significant membership inference and data reconstruction risks. Our findings highlight that existing textual unlearning actually gives a false sense of unlearning, underscoring the need for more robust and secure unlearning mechanisms.
SHARE: Shared Memory-Aware Open-Domain Long-Term Dialogue Dataset Constructed from Movie Script
Shared memories between two individuals strengthen their bond and are crucial for facilitating their ongoing conversations. This study aims to make long-term dialogue more engaging by leveraging these shared memories. To this end, we introduce a new long-term dialogue dataset named SHARE, constructed from movie scripts, which are a rich source of shared memories among various relationships. Our dialogue dataset contains the summaries of persona information and events of two individuals, as explicitly revealed in their conversation, along with implicitly extractable shared memories. We also introduce EPISODE, a long-term dialogue framework based on SHARE that utilizes shared experiences between individuals. Through experiments using SHARE, we demonstrate that shared memories between two individuals make long-term dialogues more engaging and sustainable, and that EPISODE effectively manages shared memories during dialogue. Our dataset and code are available at https://github.com/e1kim/SHARE.
Beyond Induction Heads: In-Context Meta Learning Induces Multi-Phase Circuit Emergence ICML 2025
Transformer-based language models exhibit In-Context Learning (ICL), where predictions are made adaptively based on context. While prior work links induction heads to ICL through a sudden jump in accuracy, this can only account for ICL when the answer is included within the context. However, an important property of practical ICL in large language models is the ability to meta-learn how to solve tasks from context, rather than just copying answers from context; how such an ability is obtained during training is largely unexplored. In this paper, we experimentally clarify how such meta-learning ability is acquired by analyzing the dynamics of the model's circuit during training. Specifically, we extend the copy task from previous research into an In-Context Meta Learning setting, where models must infer a task from examples to answer queries. Interestingly, in this setting, we find that there are multiple phases in the process of acquiring such abilities, and that a unique circuit emerges in each phase, contrasting with the single-phases change in induction heads. The emergence of such circuits can be related to several phenomena known in large language models, and our analysis lead to a deeper understanding of the source of the transformer's ICL ability.
comment: Accepted to ICML 2025
Flexible Tool Selection through Low-dimensional Attribute Alignment of Vision and Language
Flexible tool selection reflects a complex cognitive ability that distinguishes humans from other species, yet computational models that capture this ability remain underdeveloped. We developed a framework using low-dimensional attribute representations to bridge visual tool perception and linguistic task understanding. We constructed a comprehensive dataset (ToolNet) containing 115 common tools labeled with 13 carefully designed attributes spanning physical, functional, and psychological properties, paired with natural language scenarios describing tool usage. Visual encoders (ResNet or ViT) extract attributes from tool images while fine-tuned language models (GPT-2, LLaMA, DeepSeek) derive required attributes from task descriptions. Our approach achieves 74% accuracy in tool selection tasks-significantly outperforming direct tool matching (20%) and smaller multimodal models (21%-58%), while approaching performance of much larger models like GPT-4o (73%) with substantially fewer parameters. Ablation studies revealed that manipulation-related attributes (graspability, hand-relatedness, elongation) consistently prove most critical across modalities. This work provides a parameter-efficient, interpretable solution that mimics human-like tool cognition, advancing both cognitive science understanding and practical applications in tool selection tasks.
Understand User Opinions of Large Language Models via LLM-Powered In-the-Moment User Experience Interviews
Which large language model (LLM) is better? Every evaluation tells a story, but what do users really think about current LLMs? This paper presents CLUE, an LLM-powered interviewer that conducts in-the-moment user experience interviews, right after users interact with LLMs, and automatically gathers insights about user opinions from massive interview logs. We conduct a study with thousands of users to understand user opinions on mainstream LLMs, recruiting users to first chat with a target LLM and then be interviewed by CLUE. Our experiments demonstrate that CLUE captures interesting user opinions, e.g., the bipolar views on the displayed reasoning process of DeepSeek-R1 and demands for information freshness and multi-modality. Our code and data are at https://github.com/cxcscmu/LLM-Interviewer.
Mixture of Decoding: An Attention-Inspired Adaptive Decoding Strategy to Mitigate Hallucinations in Large Vision-Language Models ACL 2025
Large Vision-Language Models (LVLMs) have exhibited impressive capabilities across various visual tasks, yet they remain hindered by the persistent challenge of hallucinations. To address this critical issue, we propose Mixture of Decoding (MoD), a novel approach for hallucination mitigation that dynamically adapts decoding strategies by evaluating the correctness of the model's attention on image tokens. Specifically, MoD measures the consistency between outputs generated from the original image tokens and those derived from the model's attended image tokens, to distinguish the correctness aforementioned. If the outputs are consistent, indicating correct attention, MoD employs a complementary strategy to amplify critical information. Conversely, if the outputs are inconsistent, suggesting erroneous attention, MoD utilizes a contrastive strategy to suppress misleading information. Extensive experiments demonstrate that MoD significantly outperforms existing decoding methods across multiple mainstream benchmarks, effectively mitigating hallucinations in LVLMs. The code is available at https://github.com/xlchen0205/MoD.
comment: Accepted to Findings of ACL 2025
Understanding Bias Reinforcement in LLM Agents Debate ICML 2025
Large Language Models $($LLMs$)$ solve complex problems using training-free methods like prompt engineering and in-context learning, yet ensuring reasoning correctness remains challenging. While self-correction methods such as self-consistency and self-refinement aim to improve reliability, they often reinforce biases due to the lack of effective feedback mechanisms. Multi-Agent Debate $($MAD$)$ has emerged as an alternative, but we identify two key limitations: bias reinforcement, where debate amplifies model biases instead of correcting them, and lack of perspective diversity, as all agents share the same model and reasoning patterns, limiting true debate effectiveness. To systematically evaluate these issues, we introduce $\textit{MetaNIM Arena}$, a benchmark designed to assess LLMs in adversarial strategic decision-making, where dynamic interactions influence optimal decisions. To overcome MAD's limitations, we propose $\textbf{DReaMAD}$ $($$\textbf{D}$iverse $\textbf{Rea}$soning via $\textbf{M}$ulti-$\textbf{A}$gent $\textbf{D}$ebate with Refined Prompt$)$, a novel framework that $(1)$ refines LLM's strategic prior knowledge to improve reasoning quality and $(2)$ promotes diverse viewpoints within a single model by systematically modifying prompts, reducing bias. Empirical results show that $\textbf{DReaMAD}$ significantly improves decision accuracy, reasoning diversity, and bias mitigation across multiple strategic tasks, establishing it as a more effective approach for LLM-based decision-making.
comment: ICML 2025
CASPER: A Large Scale Spontaneous Speech Dataset
The success of large language models has driven interest in developing similar speech processing capabilities. However, a key challenge is the scarcity of high-quality spontaneous speech data, as most existing datasets contain scripted dialogues. To address this, we present a novel pipeline for eliciting and recording natural dialogues and release our dataset with 100+ hours of spontaneous speech. Our approach fosters fluid, natural conversations while encouraging a diverse range of topics and interactive exchanges. Unlike traditional methods, it facilitates genuine interactions, providing a reproducible framework for future data collection. This paper introduces our dataset and methodology, laying the groundwork for addressing the shortage of spontaneous speech data. We plan to expand this dataset in future stages, offering a growing resource for the research community.
P-React: Synthesizing Topic-Adaptive Reactions of Personality Traits via Mixture of Specialized LoRA Experts ACL 2025
Personalized large language models (LLMs) have attracted great attention in many applications, such as emotional support and role-playing. However, existing works primarily focus on modeling explicit character profiles, while ignoring the underlying personality traits that truly shape behaviors and decision-making, hampering the development of more anthropomorphic and psychologically-grounded AI systems. In this paper, we explore the modeling of Big Five personality traits, which is the most widely used trait theory in psychology, and propose P-React, a mixture of experts (MoE)-based personalized LLM. Particularly, we integrate a Personality Specialization Loss (PSL) to better capture individual trait expressions, providing a more nuanced and psychologically grounded personality simulacrum. To facilitate research in this field, we curate OCEAN-Chat, a high-quality, human-verified dataset designed to train LLMs in expressing personality traits across diverse topics. Extensive experiments demonstrate the effectiveness of P-React in maintaining consistent and real personality.
comment: Accepted to ACL 2025 Findings
DISCO Balances the Scales: Adaptive Domain- and Difficulty-Aware Reinforcement Learning on Imbalanced Data
Large Language Models (LLMs) are increasingly aligned with human preferences through Reinforcement Learning from Human Feedback (RLHF). Among RLHF methods, Group Relative Policy Optimization (GRPO) has gained attention for its simplicity and strong performance, notably eliminating the need for a learned value function. However, GRPO implicitly assumes a balanced domain distribution and uniform semantic alignment across groups - assumptions that rarely hold in real-world datasets. When applied to multi-domain, imbalanced data, GRPO disproportionately optimizes for dominant domains, neglecting underrepresented ones and resulting in poor generalization and fairness. We propose Domain-Informed Self-Consistency Policy Optimization (DISCO), a principled extension to GRPO that addresses inter-group imbalance with two key innovations. Domain-aware reward scaling counteracts frequency bias by reweighting optimization based on domain prevalence. Difficulty-aware reward scaling leverages prompt-level self-consistency to identify and prioritize uncertain prompts that offer greater learning value. Together, these strategies promote more equitable and effective policy learning across domains. Extensive experiments across multiple LLMs and skewed training distributions show that DISCO improves generalization, outperforms existing GRPO variants by 5% on Qwen3 models, and sets new state-of-the-art results on multi-domain alignment benchmarks.
comment: 13 pages, 3 figures
RLHS: Mitigating Misalignment in RLHF with Hindsight Simulation
While Reinforcement Learning from Human Feedback (RLHF) has shown promise in aligning generative AI, we present empirical evidence that it can also cause severe, systematic misalignment. We hypothesize that this stems from evaluator feedback depending on downstream outcome predictions (foresight) that can be influenced by the AI's output, inducing Goodhart's law dynamics. We present a theoretical analysis showing that conditioning evaluator feedback on downstream observations (hindsight) inhibits this effect by decoupling the alignment signal from potentially compromised predictions--crucially, the result holds even if the observed outcomes are sampled from the AI's own world model. Building on this insight, we introduce Reinforcement Learning from Hindsight Simulation (RLHS), which presents plausible simulated outcomes to evaluators before eliciting feedback. We validate RLHS across three consultancy settings--marketplace interactions, restaurant recommendations, and online course advising--using both online (PPO) and offline (DPO) fine-tuning methods, and show that it substantially improves alignment over RLHF in experiments and human evaluations. We perform post-hoc benchmark evaluations on TruthfulQA, HaluEval, and TrustLLM, finding that even after single-task fine-tuning, RLHF misalignment persists, whereas RLHS consistently outperforms baselines and demonstrates robust alignment generalization. The project webpage and code are available at https://rl-hindsight.github.io.
comment: 27 pages, 18 figures
Exploring SSL Discrete Speech Features for Zipformer-based Contextual ASR
Self-supervised learning (SSL) based discrete speech representations are highly compact and domain adaptable. In this paper, SSL discrete speech features extracted from WavLM models are used as additional cross-utterance acoustic context features in Zipformer-Transducer ASR systems. The efficacy of replacing Fbank features with discrete token features for modelling either cross-utterance contexts (from preceding and future segments), or current utterance's internal contexts alone, or both at the same time, are demonstrated thoroughly on the Gigaspeech 1000-hr corpus. The best Zipformer-Transducer system using discrete tokens based cross-utterance context features outperforms the baseline using utterance internal context only with statistically significant word error rate (WER) reductions of 0.32% to 0.41% absolute (2.78% to 3.54% relative) on the dev and test data. The lowest published WER of 11.15% and 11.14% were obtained on the dev and test sets. Our work is open-source and publicly available at https://github.com/open-creator/icefall/tree/master/egs/gigaspeech/Context\_ASR.
comment: Accepted by Interspeech 2025
TL;DR: Too Long, Do Re-weighting for Efficient LLM Reasoning Compression
Large Language Models (LLMs) have recently achieved remarkable progress by leveraging Reinforcement Learning and extended Chain-of-Thought (CoT) techniques. However, the challenge of performing efficient language reasoning--especially during inference with extremely long outputs--has drawn increasing attention from the research community. In this work, we propose a dynamic ratio-based training pipeline that does not rely on sophisticated data annotations or interpolation between multiple models. We continuously balance the weights between the model's System-1 and System-2 data to eliminate redundant reasoning processes while preserving the model's reasoning capability. We validate our approach across models on DeepSeek-R1-Distill-7B and DeepSeek-R1-Distill-14B and on a diverse set of benchmarks with varying difficulty levels. Our method significantly reduces the number of output tokens by nearly 40% while maintaining the accuracy of the reasoning. Our code and data will be available soon.
Sentence-level Reward Model can Generalize Better for Aligning LLM from Human Preference
Learning reward models from human preference datasets and subsequently optimizing language models via reinforcement learning has emerged as a fundamental paradigm for aligning LLMs with human preferences. The performance of the reward model plays a crucial role in the effectiveness of alignment. Previous reward models operate at a coarse-grained level, requiring the generation of a complete response to obtain a reward value. The sparse reward may present challenges for downstream reinforcement learning. While recent efforts have attempted to learn token-level reward models, the lack of explicit semantic information makes it difficult to model the credit of every individual token. In this paper, we propose assigning scores to every sentence, introducing an intermediate-grained reward model. By segmenting the complete response into sentences and applying differential operations to reward output at the start and end positions of each sentence, we can effectively model the rewards of sentences. Moreover, a novel attention mechanism is introduced to aggregate the scores of all sentences into a response-level score, which allows it to be trained using the Bradley-Terry model. On common benchmarks, our method outperforms the response-level reward model by 2.7% on RewardBench (for reward modeling evaluation) and surpasses all baselines on AlpacaEval (for alignment evaluation).
Auditing Black-Box LLM APIs with a Rank-Based Uniformity Test
As API access becomes a primary interface to large language models (LLMs), users often interact with black-box systems that offer little transparency into the deployed model. To reduce costs or maliciously alter model behaviors, API providers may discreetly serve quantized or fine-tuned variants, which can degrade performance and compromise safety. Detecting such substitutions is difficult, as users lack access to model weights and, in most cases, even output logits. To tackle this problem, we propose a rank-based uniformity test that can verify the behavioral equality of a black-box LLM to a locally deployed authentic model. Our method is accurate, query-efficient, and avoids detectable query patterns, making it robust to adversarial providers that reroute or mix responses upon the detection of testing attempts. We evaluate the approach across diverse threat scenarios, including quantization, harmful fine-tuning, jailbreak prompts, and full model substitution, showing that it consistently achieves superior statistical power over prior methods under constrained query budgets.
RAVEN: Query-Guided Representation Alignment for Question Answering over Audio, Video, Embedded Sensors, and Natural Language
Multimodal question answering (QA) often requires identifying which video, audio, or sensor tokens are relevant to the question. Yet modality disagreements are common: off-camera speech, background noise, or motion outside the field of view often mislead fusion models that weight all streams equally. We present RAVEN, a unified QA architecture whose core is QuART, a query-conditioned cross-modal gating module that assigns scalar relevance scores to each token across modalities, enabling the model to amplify informative signals and suppress distractors before fusion. RAVEN is trained through a three-stage pipeline comprising unimodal pretraining, query-aligned fusion, and disagreement-oriented fine-tuning -- each stage targeting a distinct challenge in multi-modal reasoning: representation quality, cross-modal relevance, and robustness to modality mismatch. To support training and evaluation, we release AVS-QA, a dataset of 300K synchronized Audio--Video-Sensor streams paired with automatically generated question-answer pairs. Experimental results on seven multi-modal QA benchmarks -- including egocentric and exocentric tasks -- show that RAVEN achieves up to 14.5\% and 8.0\% gains in accuracy compared to state-of-the-art multi-modal large language models, respectively. Incorporating sensor data provides an additional 16.4\% boost, and the model remains robust under modality corruption, outperforming SOTA baselines by 50.23\%. Our code and dataset are available at https://github.com/BASHLab/RAVEN.
TPP-LLM: Modeling Temporal Point Processes by Efficiently Fine-Tuning Large Language Models
Temporal point processes (TPPs) are widely used to model the timing and occurrence of events in domains such as social networks, transportation systems, and e-commerce. In this paper, we introduce TPP-LLM, a novel framework that integrates large language models (LLMs) with TPPs to capture both the semantic and temporal aspects of event sequences. Unlike traditional methods that rely on categorical event type representations, TPP-LLM directly utilizes the textual descriptions of event types, enabling the model to capture rich semantic information embedded in the text. While LLMs excel at understanding event semantics, they are less adept at capturing temporal patterns. To address this, TPP-LLM incorporates temporal embeddings and employs parameter-efficient fine-tuning (PEFT) methods to effectively learn temporal dynamics without extensive retraining. This approach improves both predictive accuracy and computational efficiency. Experimental results across diverse real-world datasets demonstrate that TPP-LLM outperforms state-of-the-art baselines in sequence modeling and event prediction, highlighting the benefits of combining LLMs with TPPs.
Human-Computer Interaction
WIP: Large Language Model-Enhanced Smart Tutor for Undergraduate Circuit Analysis
This research-to-practice work-in-progress (WIP) paper presents an AI-enabled smart tutor designed to provide homework assessment and feedback for students in an undergraduate circuit analysis course. We detail the tutor's design philosophy and core components, including open-ended question answering and homework feedback generation. The prompts are carefully crafted to optimize responses across different problems. The smart tutor was deployed on the Microsoft Azure platform and is currently in use in an undergraduate circuit analysis course at the School of Electrical and Computer Engineering in a large, public, research-intensive institution in the Southeastern United States. Beyond offering personalized instruction and feedback, the tutor collects student interaction data, which is summarized and shared with the course instructor. To evaluate its effectiveness, we collected student feedback, with 90.9% of responses indicating satisfaction with the tutor. Additionally, we analyze a subset of collected data on preliminary circuit analysis topics to assess tutor usage frequency for each problem and identify frequently asked questions. These insights help instructors gain real-time awareness of student difficulties, enabling more targeted classroom instruction. In future work, we will release a full analysis once the complete dataset is available after the Spring 2025 semester. We also explore the potential applications of this smart tutor across a broader range of engineering disciplines by developing improved prompts, diagram-recognition methods, and database management strategies, which remain ongoing areas of research.
comment: Accepted to 2025 Frontiers in Education (FIE) Conference
Implementing Keyword Spotting on the MCUX947 Microcontroller with Integrated NPU
This paper presents a keyword spotting (KWS) system implemented on the NXP MCXN947 microcontroller with an integrated Neural Processing Unit (NPU), enabling real-time voice interaction on resource-constrained devices. The system combines MFCC feature extraction with a CNN classifier, optimized using Quantization Aware Training to reduce model size with minimal accuracy drop. Experimental results demonstrate a 59x speedup in inference time when leveraging the NPU compared to CPU-only execution, achieving 97.06% accuracy with a model size of 30.58 KB, demonstrating the feasibility of efficient, low-power voice interfaces on embedded platforms.
comment: 4 pages
Help or Hindrance: Understanding the Impact of Robot Communication in Action Teams
The human-robot interaction (HRI) field has recognized the importance of enabling robots to interact with teams. Human teams rely on effective communication for successful collaboration in time-sensitive environments. Robots can play a role in enhancing team coordination through real-time assistance. Despite significant progress in human-robot teaming research, there remains an essential gap in how robots can effectively communicate with action teams using multimodal interaction cues in time-sensitive environments. This study addresses this knowledge gap in an experimental in-lab study to investigate how multimodal robot communication in action teams affects workload and human perception of robots. We explore team collaboration in a medical training scenario where a robotic crash cart (RCC) provides verbal and non-verbal cues to help users remember to perform iterative tasks and search for supplies. Our findings show that verbal cues for object search tasks and visual cues for task reminders reduce team workload and increase perceived ease of use and perceived usefulness more effectively than a robot with no feedback. Our work contributes to multimodal interaction research in the HRI field, highlighting the need for more human-robot teaming research to understand best practices for integrating collaborative robots in time-sensitive environments such as in hospitals, search and rescue, and manufacturing applications.
comment: This is the author's original submitted version of the paper accepted to the 2025 IEEE International Conference on Robot and Human Interactive Communication (RO-MAN). \c{opyright} 2025 IEEE. Personal use of this material is permitted. For any other use, please contact IEEE
Human-Robot Teaming Field Deployments: A Comparison Between Verbal and Non-verbal Communication
Healthcare workers (HCWs) encounter challenges in hospitals, such as retrieving medical supplies quickly from crash carts, which could potentially result in medical errors and delays in patient care. Robotic crash carts (RCCs) have shown promise in assisting healthcare teams during medical tasks through guided object searches and task reminders. Limited exploration has been done to determine what communication modalities are most effective and least disruptive to patient care in real-world settings. To address this gap, we conducted a between-subjects experiment comparing the RCC's verbal and non-verbal communication of object search with a standard crash cart in resuscitation scenarios to understand the impact of robot communication on workload and attitudes toward using robots in the workplace. Our findings indicate that verbal communication significantly reduced mental demand and effort compared to visual cues and with a traditional crash cart. Although frustration levels were slightly higher during collaborations with the robot compared to a traditional cart, these research insights provide valuable implications for human-robot teamwork in high-stakes environments.
comment: This is the author's original submitted version of the paper accepted to the 2025 IEEE International Conference on Robot and Human Interactive Communication (RO-MAN). \c{opyright} 2025 IEEE. Personal use of this material is permitted. For any other use, please contact IEEE
From Fads to Classics -- Analyzing Video Game Trend Evolutions through Steam Tags
The video game industry deals with a fast-paced, competitive and almost unpredictable market. Trends of genres, settings and modalities change on a perpetual basis, studios are often one big hit or miss away from surviving or perishing, and hitting the pulse of the time has become one of the greatest challenges for industrials, investors and other stakeholders. In this work, we aim to support the understanding of video game trends over time based on data-driven analysis, visualization and interpretation of Steam tag evolutions. We confirm underlying groundwork that trends can be categorized in short-lived fads, contemporary fashions, or stable classics, and derived that the surge of a trend averages at about four years in the realm of video games. After using industrial experts to validate our findings, we deliver visualizations, insights and an open approach of deciphering shifts in video game trends.
Advancing STT for Low-Resource Real-World Speech
Swiss German is a low-resource language represented by diverse dialects that differ significantly from Standard German and from each other, lacking a standardized written form. As a result, transcribing Swiss German involves translating into Standard German. Existing datasets have been collected in controlled environments, yielding effective speech-to-text (STT) models, but these models struggle with spontaneous conversational speech. This paper, therefore, introduces the new SRB-300 dataset, a 300-hour annotated speech corpus featuring real-world long-audio recordings from 39 Swiss German radio and TV stations. It captures spontaneous speech across all major Swiss dialects recorded in various realistic environments and overcomes the limitation of prior sentence-level corpora. We fine-tuned multiple OpenAI Whisper models on the SRB-300 dataset, achieving notable enhancements over previous zero-shot performance metrics. Improvements in word error rate (WER) ranged from 19% to 33%, while BLEU scores increased between 8% and 40%. The best fine-tuned model, large-v3, achieved a WER of 17.1% and a BLEU score of 74.8. This advancement is crucial for developing effective and robust STT systems for Swiss German and other low-resource languages in real-world contexts.
comment: Conference: HCI International 2025, 20 pages, 4 figures
Communicating Through Avatars in Industry 5.0: A Focus Group Study on Human-Robot Collaboration
The integration of collaborative robots (cobots) in industrial settings raises concerns about worker well-being, particularly due to reduced social interactions. Avatars - designed to facilitate worker interactions and engagement - are promising solutions to enhance the human-robot collaboration (HRC) experience. However, real-world perspectives on avatar-supported HRC remain unexplored. To address this gap, we conducted a focus group study with employees from a German manufacturing company that uses cobots. Before the discussion, participants engaged with a scripted, industry-like HRC demo in a lab setting. This qualitative approach provided valuable insights into the avatar's potential roles, improvements to its behavior, and practical considerations for deploying them in industrial workcells. Our findings also emphasize the importance of personalized communication and task assistance. Although our study's limitations restrict its generalizability, it serves as an initial step in recognizing the potential of adaptive, context-aware avatar interactions in real-world industrial environments.
comment: Accepted LBW at CHIWORK 2025
Stop Misusing t-SNE and UMAP for Visual Analytics
Misuses of t-SNE and UMAP in visual analytics have become increasingly common. For example, although t-SNE and UMAP projections often do not faithfully reflect true distances between clusters, practitioners frequently use them to investigate inter-cluster relationships. In this paper, we bring this issue to the surface and comprehensively investigate why such misuse occurs and how to prevent it. We conduct a literature review of 114 papers to verify the prevalence of the misuse and analyze the reasonings behind it. We then execute an interview study to uncover practitioners' implicit motivations for using these techniques -- rationales often undisclosed in the literature. Our findings indicate that misuse of t-SNE and UMAP primarily stems from limited discourse on their appropriate use in visual analytics. We conclude by proposing future directions and concrete action items to promote more reasonable use of DR.
comment: 9 pages
MOSAIC-F: A Framework for Enhancing Students' Oral Presentation Skills through Personalized Feedback
In this article, we present a novel multimodal feedback framework called MOSAIC-F, an acronym for a data-driven Framework that integrates Multimodal Learning Analytics (MMLA), Observations, Sensors, Artificial Intelligence (AI), and Collaborative assessments for generating personalized feedback on student learning activities. This framework consists of four key steps. First, peers and professors' assessments are conducted through standardized rubrics (that include both quantitative and qualitative evaluations). Second, multimodal data are collected during learning activities, including video recordings, audio capture, gaze tracking, physiological signals (heart rate, motion data), and behavioral interactions. Third, personalized feedback is generated using AI, synthesizing human-based evaluations and data-based multimodal insights such as posture, speech patterns, stress levels, and cognitive load, among others. Finally, students review their own performance through video recordings and engage in self-assessment and feedback visualization, comparing their own evaluations with peers and professors' assessments, class averages, and AI-generated recommendations. By combining human-based and data-based evaluation techniques, this framework enables more accurate, personalized and actionable feedback. We tested MOSAIC-F in the context of improving oral presentation skills.
comment: Accepted in LASI Spain 25: Learning Analytics Summer Institute Spain 2025
Towards Cross-Subject EMG Pattern Recognition via Dual-Branch Adversarial Feature Disentanglement
Cross-subject electromyography (EMG) pattern recognition faces significant challenges due to inter-subject variability in muscle anatomy, electrode placement, and signal characteristics. Traditional methods rely on subject-specific calibration data to adapt models to new users, an approach that is both time-consuming and impractical for large-scale, real-world deployment. This paper presents an approach to eliminate calibration requirements through feature disentanglement, enabling effective cross-subject generalization. We propose an end-to-end dual-branch adversarial neural network that simultaneously performs pattern recognition and individual identification by disentangling EMG features into pattern-specific and subject-specific components. The pattern-specific components facilitate robust pattern recognition for new users without model calibration, while the subject-specific components enable downstream applications such as task-invariant biometric identification. Experimental results demonstrate that the proposed model achieves robust performance on data from unseen users, outperforming various baseline methods in cross-subject scenarios. Overall, this study offers a new perspective for cross-subject EMG pattern recognition without model calibration and highlights the proposed model's potential for broader applications, such as task-independent biometric systems.
comment: 6 pages, 3 figures. This work has been accepted for presentation at the IEEE Engineering in Medicine and Biology Conference (EMBC) 2025
Exploring the Convergence of HCI and Evolving Technologies in Information Systems
Modern technology driven information systems are part of our daily lives. However, this deep integration poses new challenges to the human computer interaction (HCI) professionals. With the rapid growth of mobile and cloud computing and the Internet of Things (IoT), the demand for HCI specialists to design user-friendly and adaptable interfaces has never been more pressing. Especially for diverse user groups such as children, the elderly and people with disabilities who need interfaces tailored to their needs regardless of time and location. This study reviewed 50 recent papers on HCI interface design for modern information systems. The goal is to see how well these methods address the demands of current technology. The findings show that most HCI design methods are still based on old desktop models and do not support mobile users and location-based services well. Most existing interface design guidelines do not align with the flexibility and dynamism of emerging technologies. The goal of this study is to improve interface design by combining agile methodologies with human-centered design principles. Future studies should also incorporate both qualitative and quantitative approaches, particularly in the context of cloud-based technologies and organizational information systems. This approach aims to bridge the gap between current interface design practices and the changing technological landscape.
comment: Accepted in CITIC 2025
Guidelines for Gaze-based Neural Preliminary Diagnosis
Neural disorders refer to any condition affecting the nervous system and that influence how individuals perceive and interact with the world. Traditional neural diagnoses rely on cumbersome, time-consuming, or subjective methods, such as clinical interviews, behavioural observations, or medical imaging. Eye tracking is an attractive alternative because analysing eye movements, such as fixations and saccades, can provide more objective insights into brain function and cognitive processing by capturing non-verbal and unconscious responses. Despite its potential, existing gaze-based studies presented seemingly contradictory findings. They are dispersed across diverse fields, requiring further research to standardise protocols and expand their application, particularly as a preliminary indicator of neural processes for differential diagnosis. Therefore, this paper outlines the main agreed-upon findings and provides a systematisation of knowledge and key guidelines towards advancing gaze-based neural preliminary diagnosis.
Rethinking Citation of AI Sources in Student-AI Collaboration within HCI Design Education
The growing integration of AI tools in student design projects presents an unresolved challenge in HCI education: how should AI-generated content be cited and documented? Traditional citation frameworks -- grounded in credibility, retrievability, and authorship -- struggle to accommodate the dynamic and ephemeral nature of AI outputs. In this paper, we examine how undergraduate students in a UX design course approached AI usage and citation when given the freedom to integrate generative tools into their design process. Through qualitative analysis of 35 team projects and reflections from 175 students, we identify varied citation practices ranging from formal attribution to indirect or absent acknowledgment. These inconsistencies reveal gaps in existing frameworks and raise questions about authorship, assessment, and pedagogical transparency. We argue for rethinking AI citation as a reflective and pedagogical practice; one that supports metacognitive engagement by prompting students to critically evaluate how and why they used AI throughout the design process. We propose alternative strategies -- such as AI contribution statements and process-aware citation models that better align with the iterative and reflective nature of design education. This work invites educators to reconsider how citation practices can support meaningful student--AI collaboration.
comment: 8 pages, EduCHI 2025: 7th Annual Symposium on HCI Education, Bloomington, IN, USA, July 2025
Hybrid Reasoning for Perception, Explanation, and Autonomous Action in Manufacturing
Industrial processes must be robust and adaptable, as environments and tasks are often unpredictable, while operational errors remain costly and difficult to detect. AI-based control systems offer a path forward, yet typically depend on supervised learning with extensive labelled datasets, which limits their ability to generalize across variable and data-scarce industrial settings. Foundation models could enable broader reasoning and knowledge integration, but rarely deliver the quantitative precision demanded by engineering applications. Here, we introduceControl and Interpretation of Production via Hybrid Expertise and Reasoning (CIPHER): a vision-language-action (VLA) model framework aiming to replicate human-like reasoning for industrial control, instantiated in a commercial-grade 3D printer. It integrates a process expert, a regression model enabling quantitative characterization of system states required for engineering tasks. CIPHER also incorporates retrieval-augmented generation to access external expert knowledge and support physics-informed, chain-of-thought reasoning. This hybrid architecture exhibits strong generalization to out-of-distribution tasks. It interprets visual or textual inputs from process monitoring, explains its decisions, and autonomously generates precise machine instructions, without requiring explicit annotations. CIPHER thus lays the foundations for autonomous systems that act with precision, reason with context, and communicate decisions transparently, supporting safe and trusted deployment in industrial settings.
SakugaFlow: A Stagewise Illustration Framework Emulating the Human Drawing Process and Providing Interactive Tutoring for Novice Drawing Skills
While current AI illustration tools can generate high-quality images from text prompts, they rarely reveal the step-by-step procedure that human artists follow. We present SakugaFlow, a four-stage pipeline that pairs diffusion-based image generation with a large-language-model tutor. At each stage, novices receive real-time feedback on anatomy, perspective, and composition, revise any step non-linearly, and branch alternative versions. By exposing intermediate outputs and embedding pedagogical dialogue, SakugaFlow turns a black-box generator into a scaffolded learning environment that supports both creative exploration and skills acquisition.
comment: 5 pages, 1 figure; accepted as a paper to the Generative AI and HCI (GenAICHI) workshop at CHI 2025 (Yokohama, 27 Apr 2025)
EMG-Driven Stiffness-Modulating Palpation for Telerehabilitation
In this work, we introduce HJ-Pal, a lightweight wearable haptic device that leverages EMG-driven honeycomb jamming to render muscle activation as kinesthetic feedback, enabling remote palpation for small muscle assessment in telerehabilitation.
comment: Accepted by the Workshop on Human-Robot Contact and Manipulation (HRCM 2025) at RSS Conference 2025
AI Tutors vs. Tenacious Myths: Evidence from Personalised Dialogue Interventions in Education
Misconceptions in psychology and education persist despite clear contradictory evidence, resisting traditional correction methods. This study investigated whether personalised AI dialogue could effectively correct these stubborn beliefs. In a preregistered experiment (N = 375), participants holding strong psychology misconceptions engaged in one of three interventions: (1) personalised AI dialogue targeting their specific misconception, (2) generic textbook-style refutation, or (3) neutral AI dialogue (control). Results showed that personalised AI dialogue produced significantly larger immediate belief reductions compared to both textbook reading and neutral dialogue. This advantage persisted at 10-day follow-up but diminished by 2 months, where AI dialogue and textbook conditions converged while both remained superior to control. Both AI conditions generated significantly higher engagement and confidence than textbook reading, demonstrating the motivational benefits of conversational interaction. These findings demonstrate that AI dialogue can accelerate initial belief correction through personalised, interactive engagement that disrupts the cognitive processes maintaining misconceptions. However, the convergence of effects over time suggests brief interventions require reinforcement for lasting change. Future applications should integrate AI tutoring into structured educational programs with spaced reinforcement to sustain the initial advantages of personalised dialogue.
comment: Originally posted as https://doi.org/10.31234/osf.io/x4wqh_v1
Augmented Reality User Interfaces for First Responders: A Scoping Literature Review
During the past decade, there has been a significant increase in research focused on integrating AR User Interfaces into public safety applications, particularly for first responders in the domains of Emergency Medical Services, Firefighting, and Law Enforcement. This paper presents the results of a scoping review involving the application of AR user interfaces in the public safety domain and applies an established systematic review methodology to provide a comprehensive analysis of the current research landscape, identifying key trends, challenges, and gaps in the literature. This review includes peer-reviewed publications indexed by the major scientific databases up to April 2025. A basic keyword search retrieved 1,751 papers, of which 90 were deemed relevant for this review. An in-depth analysis of the literature allowed the development of a faceted taxonomy that categorizes AR user interfaces for public safety. This classification lays a solid foundation for future research, while also highlighting key design considerations, challenges, and gaps in the literature. This review serves as a valuable resource for researchers and developers, offering insights that can drive further advances in the field.
comment: 19 pages, 4 figures, 8 tables
Beyond the Hype: Mapping Uncertainty and Gratification in AI Assistant Use
This paper examines the gap between the promises and real-world performance of emerging AI personal assistants. Drawing on interviews with early adopters of devices like Rabbit R1 and Humane AI Pin, as well as services like Ohai and Docus, we map user experiences through the lens of Uses and Gratifications and Uncertainty Reduction Theory. We identify three core types of user uncertainty, functional, interactional, and social, and explore how each disrupts different user gratifications. We show that while marketing hype fuels initial adoption, unmet expectations often result in frustration or abandonment. Our findings highlight the importance of transparency, task-specific design, and user control over contextual memory and personalization. We provide design and policy recommendations, including user-facing explainability tools and calls for regulatory benchmarks such as CI Bench, to guide ethical and interpretable AI integration. Our study offers actionable insights for creating more usable, trustworthy, and socially aligned AI assistants.
"How do you even know that stuff?": Barriers to expertise sharing among spreadsheet users SC
Spreadsheet collaboration provides valuable opportunities for learning and expertise sharing between colleagues. Sharing expertise is essential for the retention of important technical skillsets within organisations, but previous studies suggest that spreadsheet experts often fail to disseminate their knowledge to others. We suggest that social norms and beliefs surrounding the value of spreadsheet use significantly influence user engagement in sharing behaviours. To explore this, we conducted 31 semi-structured interviews with professional spreadsheet users from two separate samples. We found that spreadsheet providers face challenges in adapting highly personalised strategies to often subjective standards and evaluating the appropriate social timing of sharing. In addition, conflicted self-evaluations of one's spreadsheet expertise, dismissive normative beliefs about the value of this knowledge, and concerns about the potential disruptions associated with collaboration can further deter sharing. We suggest these observations reflect the challenges of long-term learning in feature-rich software designed primarily with initial learnability in mind. We therefore provide implications for design to navigate this tension. Overall, our findings demonstrate how the complex interaction between technology design and social dynamics can shape collaborative learning behaviours in the context of feature-rich software.
comment: Accepted at CSCW 2025
Show Me Your Best Side: Characteristics of User-Preferred Perspectives for 3D Graph Drawings
The visual analysis of graphs in 3D has become increasingly popular, accelerated by the rise of immersive technology, such as augmented and virtual reality. Unlike 2D drawings, 3D graph layouts are highly viewpoint-dependent, making perspective selection critical for revealing structural and relational patterns. Despite its importance, there is limited empirical evidence guiding what constitutes an effective or preferred viewpoint from the user's perspective. In this paper, we present a systematic investigation into user-preferred viewpoints in 3D graph visualisations. We conducted a controlled study with 23 participants in a virtual reality environment, where users selected their most and least preferred viewpoints for 36 different graphs varying in size and layout. From this data, enriched by qualitative feedback, we distil common strategies underlying viewpoint choice. We further analyse the alignment of user preferences with classical 2D aesthetic criteria (e.g., Crossings), 3D-specific measures (e.g., Node-Node Occlusion), and introduce a novel measure capturing the perceivability of a graph's principal axes (Isometric Viewpoint Deviation). Our data-driven analysis indicates that Stress, Crossings, Gabriel Ratio, Edge-Node Overlap, and Isometric Viewpoint Deviation are key indicators of viewpoint preference. Beyond our findings, we contribute a publicly available dataset consisting of the graphs and computed aesthetic measures, supporting further research and the development of viewpoint evaluation measures for 3D graph drawing.
Understanding Human-AI Trust in Education
As AI chatbots become increasingly integrated in education, students are turning to these systems for guidance, feedback, and information. However, the anthropomorphic characteristics of these chatbots create ambiguity regarding whether students develop trust toward them as they would a human peer or instructor, based in interpersonal trust, or as they would any other piece of technology, based in technology trust. This ambiguity presents theoretical challenges, as interpersonal trust models may inappropriately ascribe human intentionality and morality to AI, while technology trust models were developed for non-social technologies, leaving their applicability to anthropomorphic systems unclear. To address this gap, we investigate how human-like and system-like trusting beliefs comparatively influence students' perceived enjoyment, trusting intention, behavioral intention to use, and perceived usefulness of an AI chatbot - factors associated with students' engagement and learning outcomes. Through partial least squares structural equation modeling, we found that human-like and system-like trust significantly influenced student perceptions, with varied effects. Human-like trust more strongly predicted trusting intention, while system-like trust better predicted behavioral intention and perceived usefulness. Both had similar effects on perceived enjoyment. Given the partial explanatory power of each type of trust, we propose that students develop a distinct form of trust with AI chatbots (human-AI trust) that differs from human-human and human-technology models of trust. Our findings highlight the need for new theoretical frameworks specific to human-AI trust and offer practical insights for fostering appropriately calibrated trust, which is critical for the effective adoption and pedagogical impact of AI in education.
Real-Time Confidence Detection through Facial Expressions and Hand Gestures
Real-time face orientation recognition is a cutting-edge technology meant to track and analyze facial movements in virtual environments such as online interviews, remote meetings, and virtual classrooms. As the demand for virtual interactions grows, it becomes increasingly important to measure participant engagement, attention, and overall interaction. This research presents a novel solution that leverages the Media Pipe Face Mesh framework to identify facial landmarks and extract geometric data for calculating Euler angles, which determine head orientation in real time. The system tracks 3D facial landmarks and uses this data to compute head movements with a focus on accuracy and responsiveness. By studying Euler angles, the system can identify a user's head orientation with an accuracy of 90\%, even at a distance of up to four feet. This capability offers significant enhancements for monitoring user interaction, allowing for more immersive and interactive virtual ex-periences. The proposed method shows its reliability in evaluating participant attentiveness during online assessments and meetings. Its application goes beyond engagement analysis, potentially providing a means for improving the quality of virtual communication, fostering better understanding between participants, and ensuring a higher level of interaction in digital spaces. This study offers a basis for future developments in enhancing virtual user experiences by integrating real-time facial tracking technologies, paving the way for more adaptive and interactive web-based platform.
comment: Accepted in MECON 2025
Designing conflict-based communicative tasks in Teaching Chinese as a Foreign Language with ChatGPT
In developing the teaching program for a course in Oral Expression in Teaching Chinese as a Foreign Language at the university level, the teacher designs communicative tasks based on conflicts to encourage learners to engage in interactive dynamics and develop their oral interaction skills. During the design of these tasks, the teacher uses ChatGPT to assist in finalizing the program. This article aims to present the key characteristics of the interactions between the teacher and ChatGPT during this program development process, as well as to examine the use of ChatGPT and its impacts in this specific context.
comment: in French language
LeanTutor: A Formally-Verified AI Tutor for Mathematical Proofs
We present LeanTutor, a Large Language Model (LLM)-based tutoring system for math proofs. LeanTutor interacts with the student in natural language, formally verifies student-written math proofs in Lean, generates correct next steps, and provides the appropriate instructional guidance. LeanTutor is composed of three modules: (i) an autoformalizer/proof-checker, (ii) a next-step generator, and (iii) a natural language feedback generator. The first module faithfully autoformalizes student proofs into Lean and verifies proof accuracy via successful code compilation. If the proof has an error, the incorrect step is identified. The next-step generator module outputs a valid next Lean tactic for incorrect proofs via LLM-based candidate generation and proof search. The feedback generator module leverages Lean data to produce a pedagogically-motivated natural language hint for the student user. To evaluate our system, we introduce PeanoBench, a human-written dataset derived from the Natural Numbers Game, consisting of 371 Peano Arithmetic proofs, where each natural language proof step is paired with the corresponding logically equivalent tactic in Lean. The Autoformalizer correctly formalizes 57% of tactics in correct proofs and accurately identifies the incorrect step in 30% of incorrect proofs. In generating natural language hints for erroneous proofs, LeanTutor outperforms a simple baseline on accuracy and relevance metrics.
Silencing Empowerment, Allowing Bigotry: Auditing the Moderation of Hate Speech on Twitch ACL 2025
To meet the demands of content moderation, online platforms have resorted to automated systems. Newer forms of real-time engagement($\textit{e.g.}$, users commenting on live streams) on platforms like Twitch exert additional pressures on the latency expected of such moderation systems. Despite their prevalence, relatively little is known about the effectiveness of these systems. In this paper, we conduct an audit of Twitch's automated moderation tool ($\texttt{AutoMod}$) to investigate its effectiveness in flagging hateful content. For our audit, we create streaming accounts to act as siloed test beds, and interface with the live chat using Twitch's APIs to send over $107,000$ comments collated from $4$ datasets. We measure $\texttt{AutoMod}$'s accuracy in flagging blatantly hateful content containing misogyny, racism, ableism and homophobia. Our experiments reveal that a large fraction of hateful messages, up to $94\%$ on some datasets, $\textit{bypass moderation}$. Contextual addition of slurs to these messages results in $100\%$ removal, revealing $\texttt{AutoMod}$'s reliance on slurs as a moderation signal. We also find that contrary to Twitch's community guidelines, $\texttt{AutoMod}$ blocks up to $89.5\%$ of benign examples that use sensitive words in pedagogical or empowering contexts. Overall, our audit points to large gaps in $\texttt{AutoMod}$'s capabilities and underscores the importance for such systems to understand context effectively.
comment: Accepted to ACL 2025 (main) conference
AI as Decision-Maker: Ethics and Risk Preferences of LLMs
Large Language Models (LLMs) exhibit surprisingly diverse risk preferences when acting as AI decision makers, a crucial characteristic whose origins remain poorly understood despite their expanding economic roles. We analyze 50 LLMs using behavioral tasks, finding stable but diverse risk profiles. Alignment tuning for harmlessness, helpfulness, and honesty significantly increases risk aversion, causally increasing risk aversion confirmed via comparative difference analysis: a ten percent ethics increase cuts risk appetite two to eight percent. This induced caution persists against prompts and affects economic forecasts. Alignment enhances safety but may also suppress valuable risk taking, revealing a tradeoff risking suboptimal economic outcomes. With AI models becoming more powerful and influential in economic decisions while alignment grows increasingly critical, our empirical framework serves as an adaptable and enduring benchmark to track risk preferences and monitor this crucial tension between ethical alignment and economically valuable risk-taking.
Big Help or Big Brother? Auditing Tracking, Profiling, and Personalization in Generative AI Assistants
Generative AI (GenAI) browser assistants integrate powerful capabilities of GenAI in web browsers to provide rich experiences such as question answering, content summarization, and agentic navigation. These assistants, available today as browser extensions, can not only track detailed browsing activity such as search and click data, but can also autonomously perform tasks such as filling forms, raising significant privacy concerns. It is crucial to understand the design and operation of GenAI browser extensions, including how they collect, store, process, and share user data. To this end, we study their ability to profile users and personalize their responses based on explicit or inferred demographic attributes and interests of users. We perform network traffic analysis and use a novel prompting framework to audit tracking, profiling, and personalization by the ten most popular GenAI browser assistant extensions. We find that instead of relying on local in-browser models, these assistants largely depend on server-side APIs, which can be auto-invoked without explicit user interaction. When invoked, they collect and share webpage content, often the full HTML DOM and sometimes even the user's form inputs, with their first-party servers. Some assistants also share identifiers and user prompts with third-party trackers such as Google Analytics. The collection and sharing continues even if a webpage contains sensitive information such as health or personal information such as name or SSN entered in a web form. We find that several GenAI browser assistants infer demographic attributes such as age, gender, income, and interests and use this profile--which carries across browsing contexts--to personalize responses. In summary, our work shows that GenAI browser assistants can and do collect personal and sensitive information for profiling and personalization with little to no safeguards.
Self-driving technologies need the help of the public: A narrative review of the evidence
If public trust is lost in a new technology early in its life cycle it can take much more time for the benefits of that technology to be realised. Eventually tens-of-millions of people will collectively have the power to determine self-driving technology success of failure driven by their perception of risk, data handling, safety, governance, accountability, benefits to their life and more. This paper reviews the evidence on safety critical technology covering trust, engagement, and acceptance. The paper takes a narrative review approach concluding with a scalable model for self-driving technology education and engagement. The paper find that if a mismatch between the publics perception and expectations about self driving systems emerge it can lead to misuse, disuse, or abuse of the system. Furthermore we find from the evidence that industrial experts often misunderstand what matters to the public, users, and stakeholders. However we find that engagement programmes that develop approaches to defining the right information at the right time, in the right format orientated around what matters to the public creates the potential for ever more sophisticated conversations, greater trust, and moving the public into a progressive more active role of critique and advocacy. This work has been undertaken as part of the Partners for Automated Vehicle Education (PAVE) United Kingdom programme.
Visualization of a multidimensional point cloud as a 3D swarm of avatars
This paper proposes an innovative technique for representing multidimensional datasets using icons inspired by Chernoff faces. Our approach combines classical projection techniques with the explicit assignment of selected data dimensions to avatar (facial) features, leveraging the innate human ability to interpret facial traits. We introduce a semantic division of data dimensions into intuitive and technical categories, assigning the former to avatar features and projecting the latter into a four-dimensional (or higher) spatial embedding. The technique is implemented as a plugin for the open-source dpVision visualization platform, enabling users to interactively explore data in the form of a swarm of avatars whose spatial positions and visual features jointly encode various aspects of the dataset. Experimental results with synthetic test data and a 12-dimensional dataset of Portuguese Vinho Verde wines demonstrate that the proposed method enhances interpretability and facilitates the analysis of complex data structures.
comment: 26 pages, 13 figures
LMRPA: Large Language Model-Driven Efficient Robotic Process Automation for OCR
This paper introduces LMRPA, a novel Large Model-Driven Robotic Process Automation (RPA) model designed to greatly improve the efficiency and speed of Optical Character Recognition (OCR) tasks. Traditional RPA platforms often suffer from performance bottlenecks when handling high-volume repetitive processes like OCR, leading to a less efficient and more time-consuming process. LMRPA allows the integration of Large Language Models (LLMs) to improve the accuracy and readability of extracted text, overcoming the challenges posed by ambiguous characters and complex text structures.Extensive benchmarks were conducted comparing LMRPA to leading RPA platforms, including UiPath and Automation Anywhere, using OCR engines like Tesseract and DocTR. The results are that LMRPA achieves superior performance, cutting the processing times by up to 52\%. For instance, in Batch 2 of the Tesseract OCR task, LMRPA completed the process in 9.8 seconds, where UiPath finished in 18.1 seconds and Automation Anywhere finished in 18.7 seconds. Similar improvements were observed with DocTR, where LMRPA outperformed other automation tools conducting the same process by completing tasks in 12.7 seconds, while competitors took over 20 seconds to do the same. These findings highlight the potential of LMRPA to revolutionize OCR-driven automation processes, offering a more efficient and effective alternative solution to the existing state-of-the-art RPA models.
comment: 10 pages , 1 figure , 1 algorithm
The BS-meter: A ChatGPT-Trained Instrument to Detect Sloppy Language-Games
What can we learn about language from studying how it is used by ChatGPT and other large language model (LLM)-based chatbots? In this paper, we analyse the distinctive character of language generated by ChatGPT, in relation to questions raised by natural language processing pioneer, and student of Wittgenstein, Margaret Masterman. Following frequent complaints that LLM-based chatbots produce "slop," or even "bullshit," in the sense of Frankfurt's popular monograph On Bullshit, we conduct an empirical study to contrast the language of 1,000 scientific publications with typical text generated by ChatGPT. We then explore whether the same language features can be detected in two well-known contexts of social dysfunction: George Orwell's critique of political speech, and David Graeber's characterisation of bullshit jobs. Using simple hypothesis-testing methods, we demonstrate that a statistical model of sloppy bullshit can reliably relate the Frankfurtian artificial bullshit of ChatGPT to the political and workplace functions of bullshit as observed in natural human language.
Human-like object concept representations emerge naturally in multimodal large language models
Understanding how humans conceptualize and categorize natural objects offers critical insights into perception and cognition. With the advent of Large Language Models (LLMs), a key question arises: can these models develop human-like object representations from linguistic and multimodal data? In this study, we combined behavioral and neuroimaging analyses to explore the relationship between object concept representations in LLMs and human cognition. We collected 4.7 million triplet judgments from LLMs and Multimodal LLMs (MLLMs) to derive low-dimensional embeddings that capture the similarity structure of 1,854 natural objects. The resulting 66-dimensional embeddings were stable, predictive, and exhibited semantic clustering similar to human mental representations. Remarkably, the dimensions underlying these embeddings were interpretable, suggesting that LLMs and MLLMs develop human-like conceptual representations of objects. Further analysis showed strong alignment between model embeddings and neural activity patterns in brain regions such as EBA, PPA, RSC, and FFA. This provides compelling evidence that the object representations in LLMs, while not identical to human ones, share fundamental similarities that reflect key aspects of human conceptual knowledge. Our findings advance the understanding of machine intelligence and inform the development of more human-like artificial cognitive systems.
comment: Published on Nature Machine Intelligence
Understand User Opinions of Large Language Models via LLM-Powered In-the-Moment User Experience Interviews
Which large language model (LLM) is better? Every evaluation tells a story, but what do users really think about current LLMs? This paper presents CLUE, an LLM-powered interviewer that conducts in-the-moment user experience interviews, right after users interact with LLMs, and automatically gathers insights about user opinions from massive interview logs. We conduct a study with thousands of users to understand user opinions on mainstream LLMs, recruiting users to first chat with a target LLM and then be interviewed by CLUE. Our experiments demonstrate that CLUE captures interesting user opinions, e.g., the bipolar views on the displayed reasoning process of DeepSeek-R1 and demands for information freshness and multi-modality. Our code and data are at https://github.com/cxcscmu/LLM-Interviewer.
Speech to Reality: On-Demand Production using Natural Language, 3D Generative AI, and Discrete Robotic Assembly
We present a system that transforms speech into physical objects using 3D generative AI and discrete robotic assembly. By leveraging natural language input, the system makes design and manufacturing more accessible to individuals without expertise in 3D modeling or robotic programming. While current generative AI models can produce a wide range of 3D digital assets, AI-generated meshes are not directly suitable for robotic fabrication and do not account for fabrication constraints. To address this, we contribute a workflow that integrates natural language processing, 3D generative AI, and discrete robotic assembly. The system automatically analyzes and modifies AI-generated geometry to meet physical constraints, such as component count, overhangs, and connectivity, and produces a feasible robotic assembly sequence and toolpath. The results are demonstrated through the assembly of various objects, ranging from chairs to shelves, which are prompted via speech and realized within 5 minutes using a robotic arm.
comment: This work has been submitted to the IEEE for possible publication. An updated version will replace this version
From Pen to Prompt: How Creative Writers Integrate AI into their Writing Practice
Creative writing is a deeply human craft, yet AI systems using large language models (LLMs) offer the automation of significant parts of the writing process. So why do some creative writers choose to use AI? Through interviews and observed writing sessions with 18 creative writers who already use AI regularly in their writing practice, we find that creative writers are intentional about how they incorporate AI, making many deliberate decisions about when and how to engage AI based on their core values, such as authenticity and craftsmanship. We characterize the interplay between writers' values, their fluid relationships with AI, and specific integration strategies -- ultimately enabling writers to create new AI workflows without compromising their creative values. We provide insight for writing communities, AI developers and future researchers on the importance of supporting transparency of these emerging writing processes and rethinking what AI features can best serve writers.
Mixed Reality Tele-Ultrasound over 750 km: A Feasibility Study
To address the lack of access to ultrasound in remote communities, previous work introduced human teleoperation, a mixed reality and haptics-based tele-ultrasound system. In this approach, a novice takes the role of a cognitive robot controlled remotely by an expert through mixed reality. In this manuscript we summarize new developments to this system and describe a feasibility study assessing its use for long-distance remote abdominal ultrasound examinations. To provide simple but effective haptic feedback, we used an ellipsoid model of the patient with its parameters calibrated using our system's position and force sensors. We tested the system in Skidegate, Haida Gwaii, Canada, with the experts positioned 754 km away in Vancouver, Canada. We performed 11 total scans with 10 novices and 2 sonographers. The sonographers were tasked with acquiring 5 target images in the epigastric region. The image acquisition quality was assessed by 2 radiologists. We collected alignment data and the novices completed task load and usability questionnaires. Both the novices and sonographers provided written and verbal feedback to inform future design iterations. 92% of the acquired images had sufficient quality for interpretation by both radiologists. The mean task load reported by the novices was below reference values reported in literature and the usability was unanimously positive. No correlation was found between image quality and the follower's alignment error with the virtual transducer. Overall, we show that human teleoperation enables sonographers to perform remote abdominal ultrasound imaging with high performance, even across large distances and with novice followers. Future work will compare human teleoperation to conventional, robotic and tele-mentored ultrasound.
comment: 8 pages, 11 figures
Image and Video Processing
Diver-Robot Communication Dataset for Underwater Hand Gesture Recognition
In this paper, we present a dataset of diving gesture images used for human-robot interaction underwater. By offering this open access dataset, the paper aims at investigating the potential of using visual detection of diving gestures from an autonomous underwater vehicle (AUV) as a form of communication with a human diver. In addition to the image recording, the same dataset was recorded using a smart gesture recognition glove. The glove uses elastomer sensors and on-board processing to determine the selected gesture and transmit the command associated with the gesture to the AUV via acoustics. Although this method can be used under different visibility conditions and even without line of sight, it introduces a communication delay required for the acoustic transmission of the gesture command. To compare efficiency, the glove was equipped with visual markers proposed in a gesture-based language called CADDIAN and recorded with an underwater camera in parallel to the glove's onboard recognition process. The dataset contains over 30,000 underwater frames of nearly 900 individual gestures annotated in corresponding snippet folders. The dataset was recorded in a balanced ratio with five different divers in sea and five different divers in pool conditions, with gestures recorded at 1, 2 and 3 metres from the camera. The glove gesture recognition statistics are reported in terms of average diver reaction time, average time taken to perform a gesture, recognition success rate, transmission times and more. The dataset presented should provide a good baseline for comparing the performance of state of the art visual diving gesture recognition techniques under different visibility conditions.
comment: 28 pages, 12 figures (Elsevier Computer Networks Journal)
HiSin: Efficient High-Resolution Sinogram Inpainting via Resolution-Guided Progressive Inference
High-resolution sinogram inpainting is essential for computed tomography reconstruction, as missing high-frequency projections can lead to visible artifacts and diagnostic errors. Diffusion models are well-suited for this task due to their robustness and detail-preserving capabilities, but their application to high-resolution inputs is limited by excessive memory and computational demands. To address this limitation, we propose HiSin, a novel diffusion based framework for efficient sinogram inpainting via resolution-guided progressive inference. It progressively extracts global structure at low resolution and defers high-resolution inference to small patches, enabling memory-efficient inpainting. It further incorporates frequency-aware patch skipping and structure-adaptive step allocation to reduce redundant computation. Experimental results show that HiSin reduces peak memory usage by up to 31.25% and inference time by up to 18.15%, and maintains inpainting accuracy across datasets, resolutions, and mask conditions.
A PDE-Based Image Dehazing Method via Atmospheric Scattering Theory
This paper presents a novel partial differential equation (PDE) framework for single-image dehazing. By integrating the atmospheric scattering model with nonlocal regularization and dark channel prior, we propose the improved PDE: \[ -\text{div}\left(D(\nabla u)\nabla u\right) + \lambda(t) G(u) = \Phi(I,t,A) \] where $D(\nabla u) = (|\nabla u| + \epsilon)^{-1}$ is the edge-preserving diffusion coefficient, $G(u)$ is the Gaussian convolution operator, and $\lambda(t)$ is the adaptive regularization parameter based on transmission map $t$. We prove the existence and uniqueness of weak solutions in $H_0^1(\Omega)$ using Lax-Milgram theorem, and implement an efficient fixed-point iteration scheme accelerated by PyTorch GPU computation. The experimental results demonstrate that this method is a promising deghazing solution that can be generalized to the deep model paradigm.
comment: report
POLARON: Precision-aware On-device Learning and Adaptive Runtime-cONfigurable AI acceleration
The increasing complexity of AI models requires flexible hardware capable of supporting diverse precision formats, particularly for energy-constrained edge platforms. This work presents PARV-CE, a SIMD-enabled, multi-precision MAC engine that performs efficient multiply-accumulate operations using a unified data-path for 4/8/16-bit fixed-point, floating point, and posit formats. The architecture incorporates a layer adaptive precision strategy to align computational accuracy with workload sensitivity, optimizing both performance and energy usage. PARV-CE integrates quantization-aware execution with a reconfigurable SIMD pipeline, enabling high-throughput processing with minimal overhead through hardware-software co-design. The results demonstrate up to 2x improvement in PDP and 3x reduction in resource usage compared to SoTA designs, while retaining accuracy within 1.8% FP32 baseline. The architecture supports both on-device training and inference across a range of workloads, including DNNs, RNNs, RL, and Transformer models. The empirical analysis establish PARVCE incorporated POLARON as a scalable and energy-efficient solution for precision-adaptive AI acceleration at edge.
Enhancing Synthetic CT from CBCT via Multimodal Fusion: A Study on the Impact of CBCT Quality and Alignment
Cone-Beam Computed Tomography (CBCT) is widely used for real-time intraoperative imaging due to its low radiation dose and high acquisition speed. However, despite its high resolution, CBCT suffers from significant artifacts and thereby lower visual quality, compared to conventional Computed Tomography (CT). A recent approach to mitigate these artifacts is synthetic CT (sCT) generation, translating CBCT volumes into the CT domain. In this work, we enhance sCT generation through multimodal learning, integrating intraoperative CBCT with preoperative CT. Beyond validation on two real-world datasets, we use a versatile synthetic dataset, to analyze how CBCT-CT alignment and CBCT quality affect sCT quality. The results demonstrate that multimodal sCT consistently outperform unimodal baselines, with the most significant gains observed in well-aligned, low-quality CBCT-CT cases. Finally, we demonstrate that these findings are highly reproducible in real-world clinical datasets.
comment: Data is open source. Code will be provided on acceptance. Paper currently under review
MAMBO: High-Resolution Generative Approach for Mammography Images
Mammography is the gold standard for the detection and diagnosis of breast cancer. This procedure can be significantly enhanced with Artificial Intelligence (AI)-based software, which assists radiologists in identifying abnormalities. However, training AI systems requires large and diverse datasets, which are often difficult to obtain due to privacy and ethical constraints. To address this issue, the paper introduces MAMmography ensemBle mOdel (MAMBO), a novel patch-based diffusion approach designed to generate full-resolution mammograms. Diffusion models have shown breakthrough results in realistic image generation, yet few studies have focused on mammograms, and none have successfully generated high-resolution outputs required to capture fine-grained features of small lesions. To achieve this, MAMBO integrates separate diffusion models to capture both local and global (image-level) contexts. The contextual information is then fed into the final patch-based model, significantly aiding the noise removal process. This thoughtful design enables MAMBO to generate highly realistic mammograms of up to 3840x3840 pixels. Importantly, this approach can be used to enhance the training of classification models and extended to anomaly detection. Experiments, both numerical and radiologist validation, assess MAMBO's capabilities in image generation, super-resolution, and anomaly detection, highlighting its potential to enhance mammography analysis for more accurate diagnoses and earlier lesion detection.
comment: 21 pages, 14 figures, 7 tables
Biologically Inspired Deep Learning Approaches for Fetal Ultrasound Image Classification
Accurate classification of second-trimester fetal ultrasound images remains challenging due to low image quality, high intra-class variability, and significant class imbalance. In this work, we introduce a simple yet powerful, biologically inspired deep learning ensemble framework that-unlike prior studies focused on only a handful of anatomical targets-simultaneously distinguishes 16 fetal structures. Drawing on the hierarchical, modular organization of biological vision systems, our model stacks two complementary branches (a "shallow" path for coarse, low-resolution cues and a "detailed" path for fine, high-resolution features), concatenating their outputs for final prediction. To our knowledge, no existing method has addressed such a large number of classes with a comparably lightweight architecture. We trained and evaluated on 5,298 routinely acquired clinical images (annotated by three experts and reconciled via Dawid-Skene), reflecting real-world noise and variability rather than a "cleaned" dataset. Despite this complexity, our ensemble (EfficientNet-B0 + EfficientNet-B6 with LDAM-Focal loss) identifies 90% of organs with accuracy > 0.75 and 75% of organs with accuracy > 0.85-performance competitive with more elaborate models applied to far fewer categories. These results demonstrate that biologically inspired modular stacking can yield robust, scalable fetal anatomy recognition in challenging clinical settings.
comment: 16 pages, 2 figures, 3 tables
DCD: A Semantic Segmentation Model for Fetal Ultrasound Four-Chamber View
Accurate segmentation of anatomical structures in the apical four-chamber (A4C) view of fetal echocardiography is essential for early diagnosis and prenatal evaluation of congenital heart disease (CHD). However, precise segmentation remains challenging due to ultrasound artifacts, speckle noise, anatomical variability, and boundary ambiguity across different gestational stages. To reduce the workload of sonographers and enhance segmentation accuracy, we propose DCD, an advanced deep learning-based model for automatic segmentation of key anatomical structures in the fetal A4C view. Our model incorporates a Dense Atrous Spatial Pyramid Pooling (Dense ASPP) module, enabling superior multi-scale feature extraction, and a Convolutional Block Attention Module (CBAM) to enhance adaptive feature representation. By effectively capturing both local and global contextual information, DCD achieves precise and robust segmentation, contributing to improved prenatal cardiac assessment.
Plug-and-Play Linear Attention for Pre-trained Image and Video Restoration Models
Multi-head self-attention (MHSA) has become a core component in modern computer vision models. However, its quadratic complexity with respect to input length poses a significant computational bottleneck in real-time and resource constrained environments. We propose PnP-Nystra, a Nystr\"om based linear approximation of self-attention, developed as a plug-and-play (PnP) module that can be integrated into the pre-trained image and video restoration models without retraining. As a drop-in replacement for MHSA, PnP-Nystra enables efficient acceleration in various window-based transformer architectures, including SwinIR, Uformer, and RVRT. Our experiments across diverse image and video restoration tasks, including denoising, deblurring, and super-resolution, demonstrate that PnP-Nystra achieves a 2-4x speed-up on an NVIDIA RTX 4090 GPU and a 2-5x speed-up on CPU inference. Despite these significant gains, the method incurs a maximum PSNR drop of only 1.5 dB across all evaluated tasks. To the best of our knowledge, we are the first to demonstrate a linear attention functioning as a training-free substitute for MHSA in restoration models.
comment: 6 pages, 1 pseudo-code, 3 figure panels, 2 plot panels, 7 tables, 24 references
Designing lensless imaging systems to maximize information capture
Mask-based lensless imaging uses an optical encoder (e.g. a phase or amplitude mask) to capture measurements, then a computational decoding algorithm to reconstruct images. In this work, we evaluate and design encoders based on the information content of their measurements using mutual information estimation. With this approach, we formalize the object-dependent nature of lensless imaging and study the interdependence between object sparsity, encoder multiplexing, and noise. Our analysis reveals that optimal encoder designs should tailor encoder multiplexing to object sparsity for maximum information capture, and that all optimally-encoded measurements share the same level of sparsity. Using mutual information-based optimization, we design information-optimal encoders with improved downstream reconstruction performance. We validate the benefits of reduced multiplexing for dense, natural images by evaluating experimental lensless imaging systems directly from captured measurements, without the need for image formation models, reconstruction algorithms, or ground truth images. Our comprehensive analysis establishes design and engineering principles for improving lensless imaging systems, and offers a model for the study of general multiplexing systems, especially those with object-dependent performance.
comment: 23 pages, 10 figures
The RSNA Lumbar Degenerative Imaging Spine Classification (LumbarDISC) Dataset
The Radiological Society of North America (RSNA) Lumbar Degenerative Imaging Spine Classification (LumbarDISC) dataset is the largest publicly available dataset of adult MRI lumbar spine examinations annotated for degenerative changes. The dataset includes 2,697 patients with a total of 8,593 image series from 8 institutions across 6 countries and 5 continents. The dataset is available for free for non-commercial use via Kaggle and RSNA Medical Imaging Resource of AI (MIRA). The dataset was created for the RSNA 2024 Lumbar Spine Degenerative Classification competition where competitors developed deep learning models to grade degenerative changes in the lumbar spine. The degree of spinal canal, subarticular recess, and neural foraminal stenosis was graded at each intervertebral disc level in the lumbar spine. The images were annotated by expert volunteer neuroradiologists and musculoskeletal radiologists from the RSNA, American Society of Neuroradiology, and the American Society of Spine Radiology. This dataset aims to facilitate research and development in machine learning and lumbar spine imaging to lead to improved patient care and clinical efficiency.
An Explainable Deep Learning Framework for Brain Stroke and Tumor Progression via MRI Interpretation
Early and accurate detection of brain abnormalities, such as tumors and strokes, is essential for timely intervention and improved patient outcomes. In this study, we present a deep learning-based system capable of identifying both brain tumors and strokes from MRI images, along with their respective stages. We have executed two groundbreaking strategies involving convolutional neural networks, MobileNet V2 and ResNet-50-optimized through transfer learning to classify MRI scans into five diagnostic categories. Our dataset, aggregated and augmented from various publicly available MRI sources, was carefully curated to ensure class balance and image diversity. To enhance model generalization and prevent overfitting, we applied dropout layers and extensive data augmentation. The models achieved strong performance, with training accuracy reaching 93\% and validation accuracy up to 88\%. While ResNet-50 demonstrated slightly better results, Mobile Net V2 remains a promising option for real-time diagnosis in low resource settings due to its lightweight architecture. This research offers a practical AI-driven solution for early brain abnormality detection, with potential for clinical deployment and future enhancement through larger datasets and multi modal inputs.
comment: Accepted in MECON 2025
Low-Rank Augmented Implicit Neural Representation for Unsupervised High-Dimensional Quantitative MRI Reconstruction
Quantitative magnetic resonance imaging (qMRI) provides tissue-specific parameters vital for clinical diagnosis. Although simultaneous multi-parametric qMRI (MP-qMRI) technologies enhance imaging efficiency, robustly reconstructing qMRI from highly undersampled, high-dimensional measurements remains a significant challenge. This difficulty arises primarily because current reconstruction methods that rely solely on a single prior or physics-informed model to solve the highly ill-posed inverse problem, which often leads to suboptimal results. To overcome this limitation, we propose LoREIN, a novel unsupervised and dual-prior-integrated framework for accelerated 3D MP-qMRI reconstruction. Technically, LoREIN incorporates both low-rank prior and continuity prior via low-rank representation (LRR) and implicit neural representation (INR), respectively, to enhance reconstruction fidelity. The powerful continuous representation of INR enables the estimation of optimal spatial bases within the low-rank subspace, facilitating high-fidelity reconstruction of weighted images. Simultaneously, the predicted multi-contrast weighted images provide essential structural and quantitative guidance, further enhancing the reconstruction accuracy of quantitative parameter maps. Furthermore, our work introduces a zero-shot learning paradigm with broad potential in complex spatiotemporal and high-dimensional image reconstruction tasks, further advancing the field of medical imaging.
Foundation Models in Medical Imaging -- A Review and Outlook
Foundation models (FMs) are changing the way medical images are analyzed by learning from large collections of unlabeled data. Instead of relying on manually annotated examples, FMs are pre-trained to learn general-purpose visual features that can later be adapted to specific clinical tasks with little additional supervision. In this review, we examine how FMs are being developed and applied in pathology, radiology, and ophthalmology, drawing on evidence from over 150 studies. We explain the core components of FM pipelines, including model architectures, self-supervised learning methods, and strategies for downstream adaptation. We also review how FMs are being used in each imaging domain and compare design choices across applications. Finally, we discuss key challenges and open questions to guide future research.
Variable Rate Learned Wavelet Video Coding using Temporal Layer Adaptivity ICIP2025
Learned wavelet video coders provide an explainable framework by performing discrete wavelet transforms in temporal, horizontal, and vertical dimensions. With a temporal transform based on motion-compensated temporal filtering (MCTF), spatial and temporal scalability is obtained. In this paper, we introduce variable rate support and a mechanism for quality adaption to different temporal layers for a higher coding efficiency. Moreover, we propose a multi-stage training strategy that allows training with multiple temporal layers. Our experiments demonstrate Bj{\o}ntegaard Delta bitrate savings of at least -32% compared to a learned MCTF model without these extensions. Training and inference code is available at: https://github.com/FAU-LMS/Learned-pMCTF.
comment: 6 pages, 5 figures, ICIP2025
Dual Attention Residual U-Net for Accurate Brain Ultrasound Segmentation in IVH Detection
Intraventricular hemorrhage (IVH) is a severe neurological complication among premature infants, necessitating early and accurate detection from brain ultrasound (US) images to improve clinical outcomes. While recent deep learning methods offer promise for computer-aided diagnosis, challenges remain in capturing both local spatial details and global contextual dependencies critical for segmenting brain anatomies. In this work, we propose an enhanced Residual U-Net architecture incorporating two complementary attention mechanisms: the Convolutional Block Attention Module (CBAM) and a Sparse Attention Layer (SAL). The CBAM improves the model's ability to refine spatial and channel-wise features, while the SAL introduces a dual-branch design, sparse attention filters out low-confidence query-key pairs to suppress noise, and dense attention ensures comprehensive information propagation. Extensive experiments on the Brain US dataset demonstrate that our method achieves state-of-the-art segmentation performance, with a Dice score of 89.04% and IoU of 81.84% for ventricle region segmentation. These results highlight the effectiveness of integrating spatial refinement and attention sparsity for robust brain anatomy detection. Code is available at: https://github.com/DanYuan001/BrainImgSegment.
comment: 10 pages,6 figures and 3 tables
The Efficacy of Semantics-Preserving Transformations in Self-Supervised Learning for Medical Ultrasound
Data augmentation is a central component of joint embedding self-supervised learning (SSL). Approaches that work for natural images may not always be effective in medical imaging tasks. This study systematically investigated the impact of data augmentation and preprocessing strategies in SSL for lung ultrasound. Three data augmentation pipelines were assessed: (1) a baseline pipeline commonly used across imaging domains, (2) a novel semantic-preserving pipeline designed for ultrasound, and (3) a distilled set of the most effective transformations from both pipelines. Pretrained models were evaluated on multiple classification tasks: B-line detection, pleural effusion detection, and COVID-19 classification. Experiments revealed that semantics-preserving data augmentation resulted in the greatest performance for COVID-19 classification - a diagnostic task requiring global image context. Cropping-based methods yielded the greatest performance on the B-line and pleural effusion object classification tasks, which require strong local pattern recognition. Lastly, semantics-preserving ultrasound image preprocessing resulted in increased downstream performance for multiple tasks. Guidance regarding data augmentation and preprocessing strategies was synthesized for practitioners working with SSL in ultrasound.
comment: 17 pages, 12 figures, 18 tables, Submitted to Medical Image Analysis
UKAN-EP: Enhancing U-KAN with Efficient Attention and Pyramid Aggregation for 3D Multi-Modal MRI Brain Tumor Segmentation
Gliomas are among the most common malignant brain tumors and are characterized by considerable heterogeneity, which complicates accurate detection and segmentation. Multi-modal MRI is the clinical standard for glioma imaging, but variability across modalities and high computational complexity hinder effective automated segmentation. In this paper, we propose UKAN-EP, a novel 3D extension of the original 2D U-KAN model for multi-modal MRI brain tumor segmentation. While U-KAN integrates Kolmogorov-Arnold Network (KAN) layers into a U-Net backbone, UKAN-EP further incorporates Efficient Channel Attention (ECA) and Pyramid Feature Aggregation (PFA) modules to enhance inter-modality feature fusion and multi-scale feature representation. We also introduce a dynamic loss weighting strategy that adaptively balances the Cross-Entropy and Dice losses during training. We evaluate UKAN-EP on the 2024 BraTS-GLI dataset and compare it against strong baselines including U-Net, Attention U-Net, and Swin UNETR. Results show that UKAN-EP achieves superior segmentation performance while requiring substantially fewer computational resources. An extensive ablation study further demonstrates the effectiveness of ECA and PFA, as well as the limited utility of self-attention and spatial attention alternatives. Code is available at https://github.com/TianzeTang0504/UKAN-EP.
Computer Vision and Pattern Recognition
StableMTL: Repurposing Latent Diffusion Models for Multi-Task Learning from Partially Annotated Synthetic Datasets
Multi-task learning for dense prediction is limited by the need for extensive annotation for every task, though recent works have explored training with partial task labels. Leveraging the generalization power of diffusion models, we extend the partial learning setup to a zero-shot setting, training a multi-task model on multiple synthetic datasets, each labeled for only a subset of tasks. Our method, StableMTL, repurposes image generators for latent regression. Adapting a denoising framework with task encoding, per-task conditioning and a tailored training scheme. Instead of per-task losses requiring careful balancing, a unified latent loss is adopted, enabling seamless scaling to more tasks. To encourage inter-task synergy, we introduce a multi-stream model with a task-attention mechanism that converts N-to-N task interactions into efficient 1-to-N attention, promoting effective cross-task sharing. StableMTL outperforms baselines on 7 tasks across 8 benchmarks.
comment: Code is available at https://github.com/astra-vision/StableMTL
4DGT: Learning a 4D Gaussian Transformer Using Real-World Monocular Videos
We propose 4DGT, a 4D Gaussian-based Transformer model for dynamic scene reconstruction, trained entirely on real-world monocular posed videos. Using 4D Gaussian as an inductive bias, 4DGT unifies static and dynamic components, enabling the modeling of complex, time-varying environments with varying object lifespans. We proposed a novel density control strategy in training, which enables our 4DGT to handle longer space-time input and remain efficient rendering at runtime. Our model processes 64 consecutive posed frames in a rolling-window fashion, predicting consistent 4D Gaussians in the scene. Unlike optimization-based methods, 4DGT performs purely feed-forward inference, reducing reconstruction time from hours to seconds and scaling effectively to long video sequences. Trained only on large-scale monocular posed video datasets, 4DGT can outperform prior Gaussian-based networks significantly in real-world videos and achieve on-par accuracy with optimization-based methods on cross-domain videos. Project page: https://4dgt.github.io
comment: Project page: https://4dgt.github.io
Vision Transformers Don't Need Trained Registers
We investigate the mechanism underlying a previously identified phenomenon in Vision Transformers -- the emergence of high-norm tokens that lead to noisy attention maps. We observe that in multiple models (e.g., CLIP, DINOv2), a sparse set of neurons is responsible for concentrating high-norm activations on outlier tokens, leading to irregular attention patterns and degrading downstream visual processing. While the existing solution for removing these outliers involves retraining models from scratch with additional learned register tokens, we use our findings to create a training-free approach to mitigate these artifacts. By shifting the high-norm activations from our discovered register neurons into an additional untrained token, we can mimic the effect of register tokens on a model already trained without registers. We demonstrate that our method produces cleaner attention and feature maps, enhances performance over base models across multiple downstream visual tasks, and achieves results comparable to models explicitly trained with register tokens. We then extend test-time registers to off-the-shelf vision-language models to improve their interpretability. Our results suggest that test-time registers effectively take on the role of register tokens at test-time, offering a training-free solution for any pre-trained model released without them.
comment: Project page and code: https://avdravid.github.io/test-time-registers
Play to Generalize: Learning to Reason Through Game Play
Developing generalizable reasoning capabilities in multimodal large language models (MLLMs) remains challenging. Motivated by cognitive science literature suggesting that gameplay promotes transferable cognitive skills, we propose a novel post-training paradigm, Visual Game Learning, or ViGaL, where MLLMs develop out-of-domain generalization of multimodal reasoning through playing arcade-like games. Specifically, we show that post-training a 7B-parameter MLLM via reinforcement learning (RL) on simple arcade-like games, e.g. Snake, significantly enhances its downstream performance on multimodal math benchmarks like MathVista, and on multi-discipline questions like MMMU, without seeing any worked solutions, equations, or diagrams during RL, suggesting the capture of transferable reasoning skills. Remarkably, our model outperforms specialist models tuned on multimodal reasoning data in multimodal reasoning benchmarks, while preserving the base model's performance on general visual benchmarks, a challenge where specialist models often fall short. Our findings suggest a new post-training paradigm: synthetic, rule-based games can serve as controllable and scalable pre-text tasks that unlock generalizable multimodal reasoning abilities in MLLMs.
comment: Project Page: https://yunfeixie233.github.io/ViGaL/
GUI-Reflection: Empowering Multimodal GUI Models with Self-Reflection Behavior
Multimodal Large Language Models (MLLMs) have shown great potential in revolutionizing Graphical User Interface (GUI) automation. However, existing GUI models mostly rely on learning from nearly error-free offline trajectories, thus lacking reflection and error recovery capabilities. To bridge this gap, we propose GUI-Reflection, a novel framework that explicitly integrates self-reflection and error correction capabilities into end-to-end multimodal GUI models throughout dedicated training stages: GUI-specific pre-training, offline supervised fine-tuning (SFT), and online reflection tuning. GUI-reflection enables self-reflection behavior emergence with fully automated data generation and learning processes without requiring any human annotation. Specifically, 1) we first propose scalable data pipelines to automatically construct reflection and error correction data from existing successful trajectories. While existing GUI models mainly focus on grounding and UI understanding ability, we propose the GUI-Reflection Task Suite to learn and evaluate reflection-oriented abilities explicitly. 2) Furthermore, we built a diverse and efficient environment for online training and data collection of GUI models on mobile devices. 3) We also present an iterative online reflection tuning algorithm leveraging the proposed environment, enabling the model to continuously enhance its reflection and error correction abilities. Our framework equips GUI agents with self-reflection and correction capabilities, paving the way for more robust, adaptable, and intelligent GUI automation, with all data, models, environments, and tools to be released publicly.
comment: Project Page at https://penghao-wu.github.io/GUI_Reflection/
Self Forcing: Bridging the Train-Test Gap in Autoregressive Video Diffusion
We introduce Self Forcing, a novel training paradigm for autoregressive video diffusion models. It addresses the longstanding issue of exposure bias, where models trained on ground-truth context must generate sequences conditioned on their own imperfect outputs during inference. Unlike prior methods that denoise future frames based on ground-truth context frames, Self Forcing conditions each frame's generation on previously self-generated outputs by performing autoregressive rollout with key-value (KV) caching during training. This strategy enables supervision through a holistic loss at the video level that directly evaluates the quality of the entire generated sequence, rather than relying solely on traditional frame-wise objectives. To ensure training efficiency, we employ a few-step diffusion model along with a stochastic gradient truncation strategy, effectively balancing computational cost and performance. We further introduce a rolling KV cache mechanism that enables efficient autoregressive video extrapolation. Extensive experiments demonstrate that our approach achieves real-time streaming video generation with sub-second latency on a single GPU, while matching or even surpassing the generation quality of significantly slower and non-causal diffusion models. Project website: http://self-forcing.github.io/
comment: Project website: http://self-forcing.github.io/
Hidden in plain sight: VLMs overlook their visual representations
Language provides a natural interface to specify and evaluate performance on visual tasks. To realize this possibility, vision language models (VLMs) must successfully integrate visual and linguistic information. Our work compares VLMs to a direct readout of their visual encoders to understand their ability to integrate across these modalities. Across a series of vision-centric benchmarks (e.g., depth estimation, correspondence), we find that VLMs perform substantially worse than their visual encoders, dropping to near-chance performance. We investigate these results through a series of analyses across the entire VLM: namely 1) the degradation of vision representations, 2) brittleness to task prompt, and 3) the language model's role in solving the task. We find that the bottleneck in performing these vision-centric tasks lies in this third category; VLMs are not effectively using visual information easily accessible throughout the entire model, and they inherit the language priors present in the LLM. Our work helps diagnose the failure modes of open-source VLMs, and presents a series of evaluations useful for future investigations into visual understanding within VLMs.
comment: Project page: https://hidden-plain-sight.github.io/
Dreamland: Controllable World Creation with Simulator and Generative Models
Large-scale video generative models can synthesize diverse and realistic visual content for dynamic world creation, but they often lack element-wise controllability, hindering their use in editing scenes and training embodied AI agents. We propose Dreamland, a hybrid world generation framework combining the granular control of a physics-based simulator and the photorealistic content output of large-scale pretrained generative models. In particular, we design a layered world abstraction that encodes both pixel-level and object-level semantics and geometry as an intermediate representation to bridge the simulator and the generative model. This approach enhances controllability, minimizes adaptation cost through early alignment with real-world distributions, and supports off-the-shelf use of existing and future pretrained generative models. We further construct a D3Sim dataset to facilitate the training and evaluation of hybrid generation pipelines. Experiments demonstrate that Dreamland outperforms existing baselines with 50.8% improved image quality, 17.9% stronger controllability, and has great potential to enhance embodied agent training. Code and data will be made available.
comment: Project Page: https://metadriverse.github.io/dreamland/
ZeroVO: Visual Odometry with Minimal Assumptions
We introduce ZeroVO, a novel visual odometry (VO) algorithm that achieves zero-shot generalization across diverse cameras and environments, overcoming limitations in existing methods that depend on predefined or static camera calibration setups. Our approach incorporates three main innovations. First, we design a calibration-free, geometry-aware network structure capable of handling noise in estimated depth and camera parameters. Second, we introduce a language-based prior that infuses semantic information to enhance robust feature extraction and generalization to previously unseen domains. Third, we develop a flexible, semi-supervised training paradigm that iteratively adapts to new scenes using unlabeled data, further boosting the models' ability to generalize across diverse real-world scenarios. We analyze complex autonomous driving contexts, demonstrating over 30% improvement against prior methods on three standard benchmarks, KITTI, nuScenes, and Argoverse 2, as well as a newly introduced, high-fidelity synthetic dataset derived from Grand Theft Auto (GTA). By not requiring fine-tuning or camera calibration, our work broadens the applicability of VO, providing a versatile solution for real-world deployment at scale.
Dynamic View Synthesis as an Inverse Problem
In this work, we address dynamic view synthesis from monocular videos as an inverse problem in a training-free setting. By redesigning the noise initialization phase of a pre-trained video diffusion model, we enable high-fidelity dynamic view synthesis without any weight updates or auxiliary modules. We begin by identifying a fundamental obstacle to deterministic inversion arising from zero-terminal signal-to-noise ratio (SNR) schedules and resolve it by introducing a novel noise representation, termed K-order Recursive Noise Representation. We derive a closed form expression for this representation, enabling precise and efficient alignment between the VAE-encoded and the DDIM inverted latents. To synthesize newly visible regions resulting from camera motion, we introduce Stochastic Latent Modulation, which performs visibility aware sampling over the latent space to complete occluded regions. Comprehensive experiments demonstrate that dynamic view synthesis can be effectively performed through structured latent manipulation in the noise initialization phase.
comment: Project Page: https://inverse-dvs.github.io/
Audio-Sync Video Generation with Multi-Stream Temporal Control
Audio is inherently temporal and closely synchronized with the visual world, making it a naturally aligned and expressive control signal for controllable video generation (e.g., movies). Beyond control, directly translating audio into video is essential for understanding and visualizing rich audio narratives (e.g., Podcasts or historical recordings). However, existing approaches fall short in generating high-quality videos with precise audio-visual synchronization, especially across diverse and complex audio types. In this work, we introduce MTV, a versatile framework for audio-sync video generation. MTV explicitly separates audios into speech, effects, and music tracks, enabling disentangled control over lip motion, event timing, and visual mood, respectively -- resulting in fine-grained and semantically aligned video generation. To support the framework, we additionally present DEMIX, a dataset comprising high-quality cinematic videos and demixed audio tracks. DEMIX is structured into five overlapped subsets, enabling scalable multi-stage training for diverse generation scenarios. Extensive experiments demonstrate that MTV achieves state-of-the-art performance across six standard metrics spanning video quality, text-video consistency, and audio-video alignment. Project page: https://hjzheng.net/projects/MTV/.
Aligning Text, Images, and 3D Structure Token-by-Token
Creating machines capable of understanding the world in 3D is essential in assisting designers that build and edit 3D environments and robots navigating and interacting within a three-dimensional space. Inspired by advances in language and image modeling, we investigate the potential of autoregressive models for a new modality: structured 3D scenes. To this end, we propose a unified LLM framework that aligns language, images, and 3D scenes and provide a detailed ''cookbook'' outlining critical design choices for achieving optimal training and performance addressing key questions related to data representation, modality-specific objectives, and more. We evaluate performance across four core 3D tasks -- rendering, recognition, instruction-following, and question-answering -- and four 3D datasets, synthetic and real-world. We extend our approach to reconstruct complex 3D object shapes by enriching our 3D modality with quantized shape encodings, and show our model's effectiveness on real-world 3D object recognition tasks. Project webpage: https://glab-caltech.github.io/kyvo/
comment: Project webpage: https://glab-caltech.github.io/kyvo/
MADFormer: Mixed Autoregressive and Diffusion Transformers for Continuous Image Generation
Recent progress in multimodal generation has increasingly combined autoregressive (AR) and diffusion-based approaches, leveraging their complementary strengths: AR models capture long-range dependencies and produce fluent, context-aware outputs, while diffusion models operate in continuous latent spaces to refine high-fidelity visual details. However, existing hybrids often lack systematic guidance on how and why to allocate model capacity between these paradigms. In this work, we introduce MADFormer, a Mixed Autoregressive and Diffusion Transformer that serves as a testbed for analyzing AR-diffusion trade-offs. MADFormer partitions image generation into spatial blocks, using AR layers for one-pass global conditioning across blocks and diffusion layers for iterative local refinement within each block. Through controlled experiments on FFHQ-1024 and ImageNet, we identify two key insights: (1) block-wise partitioning significantly improves performance on high-resolution images, and (2) vertically mixing AR and diffusion layers yields better quality-efficiency balances--improving FID by up to 75% under constrained inference compute. Our findings offer practical design principles for future hybrid generative models.
Generative Modeling of Weights: Generalization or Memorization?
Generative models, with their success in image and video generation, have recently been explored for synthesizing effective neural network weights. These approaches take trained neural network checkpoints as training data, and aim to generate high-performing neural network weights during inference. In this work, we examine four representative methods on their ability to generate novel model weights, i.e., weights that are different from the checkpoints seen during training. Surprisingly, we find that these methods synthesize weights largely by memorization: they produce either replicas, or at best simple interpolations, of the training checkpoints. Current methods fail to outperform simple baselines, such as adding noise to the weights or taking a simple weight ensemble, in obtaining different and simultaneously high-performing models. We further show that this memorization cannot be effectively mitigated by modifying modeling factors commonly associated with memorization in image diffusion models, or applying data augmentations. Our findings provide a realistic assessment of what types of data current generative models can model, and highlight the need for more careful evaluation of generative models in new domains. Our code is available at https://github.com/boyazeng/weight_memorization.
comment: Project page at https://boyazeng.github.io/weight_memorization
UA-Pose: Uncertainty-Aware 6D Object Pose Estimation and Online Object Completion with Partial References CVPR 2025
6D object pose estimation has shown strong generalizability to novel objects. However, existing methods often require either a complete, well-reconstructed 3D model or numerous reference images that fully cover the object. Estimating 6D poses from partial references, which capture only fragments of an object's appearance and geometry, remains challenging. To address this, we propose UA-Pose, an uncertainty-aware approach for 6D object pose estimation and online object completion specifically designed for partial references. We assume access to either (1) a limited set of RGBD images with known poses or (2) a single 2D image. For the first case, we initialize a partial object 3D model based on the provided images and poses, while for the second, we use image-to-3D techniques to generate an initial object 3D model. Our method integrates uncertainty into the incomplete 3D model, distinguishing between seen and unseen regions. This uncertainty enables confidence assessment in pose estimation and guides an uncertainty-aware sampling strategy for online object completion, enhancing robustness in pose estimation accuracy and improving object completeness. We evaluate our method on the YCB-Video, YCBInEOAT, and HO3D datasets, including RGBD sequences of YCB objects manipulated by robots and human hands. Experimental results demonstrate significant performance improvements over existing methods, particularly when object observations are incomplete or partially captured. Project page: https://minfenli.github.io/UA-Pose/
comment: CVPR 2025
PairEdit: Learning Semantic Variations for Exemplar-based Image Editing
Recent advancements in text-guided image editing have achieved notable success by leveraging natural language prompts for fine-grained semantic control. However, certain editing semantics are challenging to specify precisely using textual descriptions alone. A practical alternative involves learning editing semantics from paired source-target examples. Existing exemplar-based editing methods still rely on text prompts describing the change within paired examples or learning implicit text-based editing instructions. In this paper, we introduce PairEdit, a novel visual editing method designed to effectively learn complex editing semantics from a limited number of image pairs or even a single image pair, without using any textual guidance. We propose a target noise prediction that explicitly models semantic variations within paired images through a guidance direction term. Moreover, we introduce a content-preserving noise schedule to facilitate more effective semantic learning. We also propose optimizing distinct LoRAs to disentangle the learning of semantic variations from content. Extensive qualitative and quantitative evaluations demonstrate that PairEdit successfully learns intricate semantics while significantly improving content consistency compared to baseline methods. Code will be available at https://github.com/xudonmao/PairEdit.
Rethinking Cross-Modal Interaction in Multimodal Diffusion Transformers
Multimodal Diffusion Transformers (MM-DiTs) have achieved remarkable progress in text-driven visual generation. However, even state-of-the-art MM-DiT models like FLUX struggle with achieving precise alignment between text prompts and generated content. We identify two key issues in the attention mechanism of MM-DiT, namely 1) the suppression of cross-modal attention due to token imbalance between visual and textual modalities and 2) the lack of timestep-aware attention weighting, which hinder the alignment. To address these issues, we propose \textbf{Temperature-Adjusted Cross-modal Attention (TACA)}, a parameter-efficient method that dynamically rebalances multimodal interactions through temperature scaling and timestep-dependent adjustment. When combined with LoRA fine-tuning, TACA significantly enhances text-image alignment on the T2I-CompBench benchmark with minimal computational overhead. We tested TACA on state-of-the-art models like FLUX and SD3.5, demonstrating its ability to improve image-text alignment in terms of object appearance, attribute binding, and spatial relationships. Our findings highlight the importance of balancing cross-modal attention in improving semantic fidelity in text-to-image diffusion models. Our codes are publicly available at \href{https://github.com/Vchitect/TACA}
Rethinking Crowd-Sourced Evaluation of Neuron Explanations
Interpreting individual neurons or directions in activations space is an important component of mechanistic interpretability. As such, many algorithms have been proposed to automatically produce neuron explanations, but it is often not clear how reliable these explanations are, or which methods produce the best explanations. This can be measured via crowd-sourced evaluations, but they can often be noisy and expensive, leading to unreliable results. In this paper, we carefully analyze the evaluation pipeline and develop a cost-effective and highly accurate crowdsourced evaluation strategy. In contrast to previous human studies that only rate whether the explanation matches the most highly activating inputs, we estimate whether the explanation describes neuron activations across all inputs. To estimate this effectively, we introduce a novel application of importance sampling to determine which inputs are the most valuable to show to raters, leading to around 30x cost reduction compared to uniform sampling. We also analyze the label noise present in crowd-sourced evaluations and propose a Bayesian method to aggregate multiple ratings leading to a further ~5x reduction in number of ratings required for the same accuracy. Finally, we use these methods to conduct a large-scale study comparing the quality of neuron explanations produced by the most popular methods for two different vision models.
CXR-LT 2024: A MICCAI challenge on long-tailed, multi-label, and zero-shot disease classification from chest X-ray
The CXR-LT series is a community-driven initiative designed to enhance lung disease classification using chest X-rays (CXR). It tackles challenges in open long-tailed lung disease classification and enhances the measurability of state-of-the-art techniques. The first event, CXR-LT 2023, aimed to achieve these goals by providing high-quality benchmark CXR data for model development and conducting comprehensive evaluations to identify ongoing issues impacting lung disease classification performance. Building on the success of CXR-LT 2023, the CXR-LT 2024 expands the dataset to 377,110 chest X-rays (CXRs) and 45 disease labels, including 19 new rare disease findings. It also introduces a new focus on zero-shot learning to address limitations identified in the previous event. Specifically, CXR-LT 2024 features three tasks: (i) long-tailed classification on a large, noisy test set, (ii) long-tailed classification on a manually annotated "gold standard" subset, and (iii) zero-shot generalization to five previously unseen disease findings. This paper provides an overview of CXR-LT 2024, detailing the data curation process and consolidating state-of-the-art solutions, including the use of multimodal models for rare disease detection, advanced generative approaches to handle noisy labels, and zero-shot learning strategies for unseen diseases. Additionally, the expanded dataset enhances disease coverage to better represent real-world clinical settings, offering a valuable resource for future research. By synthesizing the insights and innovations of participating teams, we aim to advance the development of clinically realistic and generalizable diagnostic models for chest radiography.
comment: 17 pages, 3 figures
Real-time Localization of a Soccer Ball from a Single Camera
We propose a computationally efficient method for real-time three-dimensional football trajectory reconstruction from a single broadcast camera. In contrast to previous work, our approach introduces a multi-mode state model with $W$ discrete modes to significantly accelerate optimization while preserving centimeter-level accuracy -- even in cases of severe occlusion, motion blur, and complex backgrounds. The system operates on standard CPUs and achieves low latency suitable for live broadcast settings. Extensive evaluation on a proprietary dataset of 6K-resolution Russian Premier League matches demonstrates performance comparable to multi-camera systems, without the need for specialized or costly infrastructure. This work provides a practical method for accessible and accurate 3D ball tracking in professional football environments.
comment: 13 pages, 4 figures
OneIG-Bench: Omni-dimensional Nuanced Evaluation for Image Generation
Text-to-image (T2I) models have garnered significant attention for generating high-quality images aligned with text prompts. However, rapid T2I model advancements reveal limitations in early benchmarks, lacking comprehensive evaluations, for example, the evaluation on reasoning, text rendering and style. Notably, recent state-of-the-art models, with their rich knowledge modeling capabilities, show promising results on the image generation problems requiring strong reasoning ability, yet existing evaluation systems have not adequately addressed this frontier. To systematically address these gaps, we introduce OneIG-Bench, a meticulously designed comprehensive benchmark framework for fine-grained evaluation of T2I models across multiple dimensions, including prompt-image alignment, text rendering precision, reasoning-generated content, stylization, and diversity. By structuring the evaluation, this benchmark enables in-depth analysis of model performance, helping researchers and practitioners pinpoint strengths and bottlenecks in the full pipeline of image generation. Specifically, OneIG-Bench enables flexible evaluation by allowing users to focus on a particular evaluation subset. Instead of generating images for the entire set of prompts, users can generate images only for the prompts associated with the selected dimension and complete the corresponding evaluation accordingly. Our codebase and dataset are now publicly available to facilitate reproducible evaluation studies and cross-model comparisons within the T2I research community.
CyberV: Cybernetics for Test-time Scaling in Video Understanding
Current Multimodal Large Language Models (MLLMs) may struggle with understanding long or complex videos due to computational demands at test time, lack of robustness, and limited accuracy, primarily stemming from their feed-forward processing nature. These limitations could be more severe for models with fewer parameters. To address these limitations, we propose a novel framework inspired by cybernetic principles, redesigning video MLLMs as adaptive systems capable of self-monitoring, self-correction, and dynamic resource allocation during inference. Our approach, CyberV, introduces a cybernetic loop consisting of an MLLM Inference System, a Sensor, and a Controller. Specifically, the sensor monitors forward processes of the MLLM and collects intermediate interpretations, such as attention drift, then the controller determines when and how to trigger self-correction and generate feedback to guide the next round. This test-time adaptive scaling framework enhances frozen MLLMs without requiring retraining or additional components. Experiments demonstrate significant improvements: CyberV boosts Qwen2.5-VL-7B by 8.3% and InternVL3-8B by 5.5% on VideoMMMU, surpassing the competitive proprietary model GPT-4o. When applied to Qwen2.5-VL-72B, it yields a 10.0% improvement, achieving performance even comparable to human experts. Furthermore, our method demonstrates consistent gains on general-purpose benchmarks, such as VideoMME and WorldSense, highlighting its effectiveness and generalization capabilities in making MLLMs more robust and accurate for dynamic video understanding. The code is released at https://github.com/marinero4972/CyberV.
SpaCE-10: A Comprehensive Benchmark for Multimodal Large Language Models in Compositional Spatial Intelligence
Multimodal Large Language Models (MLLMs) have achieved remarkable progress in various multimodal tasks. To pursue higher intelligence in space, MLLMs require integrating multiple atomic spatial capabilities to handle complex and dynamic tasks. However, existing benchmarks struggle to comprehensively evaluate the spatial intelligence of common MLLMs from the atomic level to the compositional level. To fill this gap, we present SpaCE-10, a comprehensive benchmark for compositional spatial evaluations. In SpaCE-10, we define 10 atomic spatial capabilities, which are combined to form 8 compositional capabilities. Based on these definitions, we propose a novel hierarchical annotation pipeline to generate high-quality and diverse question-answer (QA) pairs. With over 150+ hours of human expert effort, we obtain over 5k QA pairs for 811 real indoor scenes in SpaCE-10, which covers various evaluation settings like point cloud input and multi-choice QA. We conduct an extensive evaluation of common MLLMs on SpaCE-10 and find that even the most advanced MLLM still lags behind humans by large margins. Through our careful study, we also draw several significant findings that benefit the MLLM community. For example, we reveal that the shortcoming of counting capability greatly limits the compositional spatial capabilities of existing MLLMs. The evaluation code and benchmark datasets are available at https://github.com/Cuzyoung/SpaCE-10.
SlideCoder: Layout-aware RAG-enhanced Hierarchical Slide Generation from Design
Manual slide creation is labor-intensive and requires expert prior knowledge. Existing natural language-based LLM generation methods struggle to capture the visual and structural nuances of slide designs. To address this, we formalize the Reference Image to Slide Generation task and propose Slide2Code, the first benchmark with difficulty-tiered samples based on a novel Slide Complexity Metric. We introduce SlideCoder, a layout-aware, retrieval-augmented framework for generating editable slides from reference images. SlideCoder integrates a Color Gradient-based Segmentation algorithm and a Hierarchical Retrieval-Augmented Generation method to decompose complex tasks and enhance code generation. We also release SlideMaster, a 7B open-source model fine-tuned with improved reverse-engineered data. Experiments show that SlideCoder outperforms state-of-the-art baselines by up to 40.5 points, demonstrating strong performance across layout fidelity, execution accuracy, and visual consistency. Our code is available at https://github.com/vinsontang1/SlideCoder.
Reinforcing Multimodal Understanding and Generation with Dual Self-rewards
Building upon large language models (LLMs), recent large multimodal models (LMMs) unify cross-model understanding and generation into a single framework. However, LMMs still struggle to achieve accurate image-text alignment, prone to generating text responses contradicting the visual input or failing to follow the text-to-image prompts. Current solutions require external supervision (e.g., human feedback or reward models) and only address unidirectional tasks-either understanding or generation. In this work, based on the observation that understanding and generation are inverse dual tasks, we introduce a self-supervised dual reward mechanism to reinforce the understanding and generation capabilities of LMMs. Specifically, we sample multiple outputs for a given input in one task domain, then reverse the input-output pairs to compute the dual likelihood of the model as self-rewards for optimization. Extensive experimental results on visual understanding and generation benchmarks demonstrate that our method can effectively enhance the performance of the model without any external supervision, especially achieving remarkable improvements in text-to-image tasks.
Creating a Historical Migration Dataset from Finnish Church Records, 1800-1920
This article presents a large-scale effort to create a structured dataset of internal migration in Finland between 1800 and 1920 using digitized church moving records. These records, maintained by Evangelical-Lutheran parishes, document the migration of individuals and families and offer a valuable source for studying historical demographic patterns. The dataset includes over six million entries extracted from approximately 200,000 images of handwritten migration records. The data extraction process was automated using a deep learning pipeline that included layout analysis, table detection, cell classification, and handwriting recognition. The complete pipeline was applied to all images, resulting in a structured dataset suitable for research. The dataset can be used to study internal migration, urbanization, and family migration, and the spread of disease in preindustrial Finland. A case study from the Elim\"aki parish shows how local migration histories can be reconstructed. The work demonstrates how large volumes of handwritten archival material can be transformed into structured data to support historical and demographic research.
Decoupling the Image Perception and Multimodal Reasoning for Reasoning Segmentation with Digital Twin Representations
Reasoning Segmentation (RS) is a multimodal vision-text task that requires segmenting objects based on implicit text queries, demanding both precise visual perception and vision-text reasoning capabilities. Current RS approaches rely on fine-tuning vision-language models (VLMs) for both perception and reasoning, but their tokenization of images fundamentally disrupts continuous spatial relationships between objects. We introduce DTwinSeger, a novel RS approach that leverages Digital Twin (DT) representation as an intermediate layer to decouple perception from reasoning. Innovatively, DTwinSeger reformulates RS as a two-stage process, where the first transforms the image into a structured DT representation that preserves spatial relationships and semantic properties and then employs a Large Language Model (LLM) to perform explicit reasoning over this representation to identify target objects. We propose a supervised fine-tuning method specifically for LLM with DT representation, together with a corresponding fine-tuning dataset Seg-DT, to enhance the LLM's reasoning capabilities with DT representations. Experiments show that our method can achieve state-of-the-art performance on two image RS benchmarks and three image referring segmentation benchmarks. It yields that DT representation functions as an effective bridge between vision and text, enabling complex multimodal reasoning tasks to be accomplished solely with an LLM.
Mimicking or Reasoning: Rethinking Multi-Modal In-Context Learning in Vision-Language Models
Vision-language models (VLMs) are widely assumed to exhibit in-context learning (ICL), a property similar to that of their language-only counterparts. While recent work suggests VLMs can perform multimodal ICL (MM-ICL), studies show they often rely on shallow heuristics -- such as copying or majority voting -- rather than true task understanding. We revisit this assumption by evaluating VLMs under distribution shifts, where support examples come from a dataset different from the query. Surprisingly, performance often degrades with more demonstrations, and models tend to copy answers rather than learn from them. To investigate further, we propose a new MM-ICL with Reasoning pipeline that augments each demonstration with a generated rationale alongside the answer. We conduct extensive and comprehensive experiments on both perception- and reasoning-required datasets with open-source VLMs ranging from 3B to 72B and proprietary models such as Gemini 2.0. We conduct controlled studies varying shot count, retrieval method, rationale quality, and distribution. Our results show limited performance sensitivity across these factors, suggesting that current VLMs do not effectively utilize demonstration-level information as intended in MM-ICL.
Squeeze3D: Your 3D Generation Model is Secretly an Extreme Neural Compressor
We propose Squeeze3D, a novel framework that leverages implicit prior knowledge learnt by existing pre-trained 3D generative models to compress 3D data at extremely high compression ratios. Our approach bridges the latent spaces between a pre-trained encoder and a pre-trained generation model through trainable mapping networks. Any 3D model represented as a mesh, point cloud, or a radiance field is first encoded by the pre-trained encoder and then transformed (i.e. compressed) into a highly compact latent code. This latent code can effectively be used as an extremely compressed representation of the mesh or point cloud. A mapping network transforms the compressed latent code into the latent space of a powerful generative model, which is then conditioned to recreate the original 3D model (i.e. decompression). Squeeze3D is trained entirely on generated synthetic data and does not require any 3D datasets. The Squeeze3D architecture can be flexibly used with existing pre-trained 3D encoders and existing generative models. It can flexibly support different formats, including meshes, point clouds, and radiance fields. Our experiments demonstrate that Squeeze3D achieves compression ratios of up to 2187x for textured meshes, 55x for point clouds, and 619x for radiance fields while maintaining visual quality comparable to many existing methods. Squeeze3D only incurs a small compression and decompression latency since it does not involve training object-specific networks to compress an object.
A Comparative Study of U-Net Architectures for Change Detection in Satellite Images
Remote sensing change detection is essential for monitoring the everchanging landscapes of the Earth. The U-Net architecture has gained popularity for its capability to capture spatial information and perform pixel-wise classification. However, their application in the Remote sensing field remains largely unexplored. Therefore, this paper fill the gap by conducting a comprehensive analysis of 34 papers. This study conducts a comparison and analysis of 18 different U-Net variations, assessing their potential for detecting changes in remote sensing. We evaluate both benefits along with drawbacks of each variation within the framework of this particular application. We emphasize variations that are explicitly built for change detection, such as Siamese Swin-U-Net, which utilizes a Siamese architecture. The analysis highlights the significance of aspects such as managing data from different time periods and collecting relationships over a long distance to enhance the precision of change detection. This study provides valuable insights for researchers and practitioners that choose U-Net versions for remote sensing change detection tasks.
Speedy Deformable 3D Gaussian Splatting: Fast Rendering and Compression of Dynamic Scenes
Recent extensions of 3D Gaussian Splatting (3DGS) to dynamic scenes achieve high-quality novel view synthesis by using neural networks to predict the time-varying deformation of each Gaussian. However, performing per-Gaussian neural inference at every frame poses a significant bottleneck, limiting rendering speed and increasing memory and compute requirements. In this paper, we present Speedy Deformable 3D Gaussian Splatting (SpeeDe3DGS), a general pipeline for accelerating the rendering speed of dynamic 3DGS and 4DGS representations by reducing neural inference through two complementary techniques. First, we propose a temporal sensitivity pruning score that identifies and removes Gaussians with low contribution to the dynamic scene reconstruction. We also introduce an annealing smooth pruning mechanism that improves pruning robustness in real-world scenes with imprecise camera poses. Second, we propose GroupFlow, a motion analysis technique that clusters Gaussians by trajectory similarity and predicts a single rigid transformation per group instead of separate deformations for each Gaussian. Together, our techniques accelerate rendering by $10.37\times$, reduce model size by $7.71\times$, and shorten training time by $2.71\times$ on the NeRF-DS dataset. SpeeDe3DGS also improves rendering speed by $4.20\times$ and $58.23\times$ on the D-NeRF and HyperNeRF vrig datasets. Our methods are modular and can be integrated into any deformable 3DGS or 4DGS framework.
comment: Project Page: https://speede3dgs.github.io/
WeThink: Toward General-purpose Vision-Language Reasoning via Reinforcement Learning
Building on the success of text-based reasoning models like DeepSeek-R1, extending these capabilities to multimodal reasoning holds great promise. While recent works have attempted to adapt DeepSeek-R1-style reinforcement learning (RL) training paradigms to multimodal large language models (MLLM), focusing on domain-specific tasks like math and visual perception, a critical question remains: How can we achieve the general-purpose visual-language reasoning through RL? To address this challenge, we make three key efforts: (1) A novel Scalable Multimodal QA Synthesis pipeline that autonomously generates context-aware, reasoning-centric question-answer (QA) pairs directly from the given images. (2) The open-source WeThink dataset containing over 120K multimodal QA pairs with annotated reasoning paths, curated from 18 diverse dataset sources and covering various question domains. (3) A comprehensive exploration of RL on our dataset, incorporating a hybrid reward mechanism that combines rule-based verification with model-based assessment to optimize RL training efficiency across various task domains. Across 14 diverse MLLM benchmarks, we demonstrate that our WeThink dataset significantly enhances performance, from mathematical reasoning to diverse general multimodal tasks. Moreover, we show that our automated data pipeline can continuously increase data diversity to further improve model performance.
Diffuse Everything: Multimodal Diffusion Models on Arbitrary State Spaces ICML 2025
Diffusion models have demonstrated remarkable performance in generating unimodal data across various tasks, including image, video, and text generation. On the contrary, the joint generation of multimodal data through diffusion models is still in the early stages of exploration. Existing approaches heavily rely on external preprocessing protocols, such as tokenizers and variational autoencoders, to harmonize varied data representations into a unified, unimodal format. This process heavily demands the high accuracy of encoders and decoders, which can be problematic for applications with limited data. To lift this restriction, we propose a novel framework for building multimodal diffusion models on arbitrary state spaces, enabling native generation of coupled data across different modalities. By introducing an innovative decoupled noise schedule for each modality, we enable both unconditional and modality-conditioned generation within a single model simultaneously. We empirically validate our approach for text-image generation and mixed-type tabular data synthesis, demonstrating that it achieves competitive performance.
comment: Accepted to ICML 2025. Code available at https://github.com/KevinRojas1499/Diffuse-Everything
GaussianVAE: Adaptive Learning Dynamics of 3D Gaussians for High-Fidelity Super-Resolution
We present a novel approach for enhancing the resolution and geometric fidelity of 3D Gaussian Splatting (3DGS) beyond native training resolution. Current 3DGS methods are fundamentally limited by their input resolution, producing reconstructions that cannot extrapolate finer details than are present in the training views. Our work breaks this limitation through a lightweight generative model that predicts and refines additional 3D Gaussians where needed most. The key innovation is our Hessian-assisted sampling strategy, which intelligently identifies regions that are likely to benefit from densification, ensuring computational efficiency. Unlike computationally intensive GANs or diffusion approaches, our method operates in real-time (0.015s per inference on a single consumer-grade GPU), making it practical for interactive applications. Comprehensive experiments demonstrate significant improvements in both geometric accuracy and rendering quality compared to state-of-the-art methods, establishing a new paradigm for resolution-free 3D scene enhancement.
Video Unlearning via Low-Rank Refusal Vector
Video generative models democratize the creation of visual content through intuitive instruction following, but they also inherit the biases and harmful concepts embedded within their web-scale training data. This inheritance creates a significant risk, as users can readily generate undesirable and even illegal content. This work introduces the first unlearning technique tailored explicitly for video diffusion models to address this critical issue. Our method requires 5 multi-modal prompt pairs only. Each pair contains a "safe" and an "unsafe" example that differ only by the target concept. Averaging their per-layer latent differences produces a "refusal vector", which, once subtracted from the model parameters, neutralizes the unsafe concept. We introduce a novel low-rank factorization approach on the covariance difference of embeddings that yields robust refusal vectors. This isolates the target concept while minimizing collateral unlearning of other semantics, thus preserving the visual quality of the generated video. Our method preserves the model's generation quality while operating without retraining or access to the original training data. By embedding the refusal direction directly into the model's weights, the suppression mechanism becomes inherently more robust against adversarial bypass attempts compared to surface-level input-output filters. In a thorough qualitative and quantitative evaluation, we show that we can neutralize a variety of harmful contents, including explicit nudity, graphic violence, copyrights, and trademarks. Project page: https://www.pinlab.org/video-unlearning.
EgoM2P: Egocentric Multimodal Multitask Pretraining
Understanding multimodal signals in egocentric vision, such as RGB video, depth, camera poses, and gaze, is essential for applications in augmented reality, robotics, and human-computer interaction. These capabilities enable systems to better interpret the camera wearer's actions, intentions, and surrounding environment. However, building large-scale egocentric multimodal and multitask models presents unique challenges. Egocentric data are inherently heterogeneous, with large variations in modality coverage across devices and settings. Generating pseudo-labels for missing modalities, such as gaze or head-mounted camera trajectories, is often infeasible, making standard supervised learning approaches difficult to scale. Furthermore, dynamic camera motion and the complex temporal and spatial structure of first-person video pose additional challenges for the direct application of existing multimodal foundation models. To address these challenges, we introduce a set of efficient temporal tokenizers and propose EgoM2P, a masked modeling framework that learns from temporally aware multimodal tokens to train a large, general-purpose model for egocentric 4D understanding. This unified design supports multitasking across diverse egocentric perception and synthesis tasks, including gaze prediction, egocentric camera tracking, and monocular depth estimation from egocentric video. EgoM2P also serves as a generative model for conditional egocentric video synthesis. Across these tasks, EgoM2P matches or outperforms specialist models while being an order of magnitude faster. We will fully open-source EgoM2P to support the community and advance egocentric vision research. Project page: https://egom2p.github.io/
CrosswalkNet: An Optimized Deep Learning Framework for Pedestrian Crosswalk Detection in Aerial Images with High-Performance Computing
With the increasing availability of aerial and satellite imagery, deep learning presents significant potential for transportation asset management, safety analysis, and urban planning. This study introduces CrosswalkNet, a robust and efficient deep learning framework designed to detect various types of pedestrian crosswalks from 15-cm resolution aerial images. CrosswalkNet incorporates a novel detection approach that improves upon traditional object detection strategies by utilizing oriented bounding boxes (OBB), enhancing detection precision by accurately capturing crosswalks regardless of their orientation. Several optimization techniques, including Convolutional Block Attention, a dual-branch Spatial Pyramid Pooling-Fast module, and cosine annealing, are implemented to maximize performance and efficiency. A comprehensive dataset comprising over 23,000 annotated crosswalk instances is utilized to train and validate the proposed framework. The best-performing model achieves an impressive precision of 96.5% and a recall of 93.3% on aerial imagery from Massachusetts, demonstrating its accuracy and effectiveness. CrosswalkNet has also been successfully applied to datasets from New Hampshire, Virginia, and Maine without transfer learning or fine-tuning, showcasing its robustness and strong generalization capability. Additionally, the crosswalk detection results, processed using High-Performance Computing (HPC) platforms and provided in polygon shapefile format, have been shown to accelerate data processing and detection, supporting real-time analysis for safety and mobility applications. This integration offers policymakers, transportation engineers, and urban planners an effective instrument to enhance pedestrian safety and improve urban mobility.
Diffusion Counterfactual Generation with Semantic Abduction
Counterfactual image generation presents significant challenges, including preserving identity, maintaining perceptual quality, and ensuring faithfulness to an underlying causal model. While existing auto-encoding frameworks admit semantic latent spaces which can be manipulated for causal control, they struggle with scalability and fidelity. Advancements in diffusion models present opportunities for improving counterfactual image editing, having demonstrated state-of-the-art visual quality, human-aligned perception and representation learning capabilities. Here, we present a suite of diffusion-based causal mechanisms, introducing the notions of spatial, semantic and dynamic abduction. We propose a general framework that integrates semantic representations into diffusion models through the lens of Pearlian causality to edit images via a counterfactual reasoning process. To our knowledge, this is the first work to consider high-level semantic identity preservation for diffusion counterfactuals and to demonstrate how semantic control enables principled trade-offs between faithful causal control and identity preservation.
comment: Proceedings of the 42nd International Conference on Machine Learning, Vancouver, Canada
Spatio-Temporal State Space Model For Efficient Event-Based Optical Flow
Event cameras unlock new frontiers that were previously unthinkable with standard frame-based cameras. One notable example is low-latency motion estimation (optical flow), which is critical for many real-time applications. In such applications, the computational efficiency of algorithms is paramount. Although recent deep learning paradigms such as CNN, RNN, or ViT have shown remarkable performance, they often lack the desired computational efficiency. Conversely, asynchronous event-based methods including SNNs and GNNs are computationally efficient; however, these approaches fail to capture sufficient spatio-temporal information, a powerful feature required to achieve better performance for optical flow estimation. In this work, we introduce Spatio-Temporal State Space Model (STSSM) module along with a novel network architecture to develop an extremely efficient solution with competitive performance. Our STSSM module leverages state-space models to effectively capture spatio-temporal correlations in event data, offering higher performance with lower complexity compared to ViT, CNN-based architectures in similar settings. Our model achieves 4.5x faster inference and 8x lower computations compared to TMA and 2x lower computations compared to EV-FlowNet with competitive performance on the DSEC benchmark. Our code will be available at https://github.com/AhmedHumais/E-STMFlow
FreeGave: 3D Physics Learning from Dynamic Videos by Gaussian Velocity CVPR 2025
In this paper, we aim to model 3D scene geometry, appearance, and the underlying physics purely from multi-view videos. By applying various governing PDEs as PINN losses or incorporating physics simulation into neural networks, existing works often fail to learn complex physical motions at boundaries or require object priors such as masks or types. In this paper, we propose FreeGave to learn the physics of complex dynamic 3D scenes without needing any object priors. The key to our approach is to introduce a physics code followed by a carefully designed divergence-free module for estimating a per-Gaussian velocity field, without relying on the inefficient PINN losses. Extensive experiments on three public datasets and a newly collected challenging real-world dataset demonstrate the superior performance of our method for future frame extrapolation and motion segmentation. Most notably, our investigation into the learned physics codes reveals that they truly learn meaningful 3D physical motion patterns in the absence of any human labels in training.
comment: CVPR 2025. Code and data are available at: https://github.com/vLAR-group/FreeGave
VIVAT: Virtuous Improving VAE Training through Artifact Mitigation
Variational Autoencoders (VAEs) remain a cornerstone of generative computer vision, yet their training is often plagued by artifacts that degrade reconstruction and generation quality. This paper introduces VIVAT, a systematic approach to mitigating common artifacts in KL-VAE training without requiring radical architectural changes. We present a detailed taxonomy of five prevalent artifacts - color shift, grid patterns, blur, corner and droplet artifacts - and analyze their root causes. Through straightforward modifications, including adjustments to loss weights, padding strategies, and the integration of Spatially Conditional Normalization, we demonstrate significant improvements in VAE performance. Our method achieves state-of-the-art results in image reconstruction metrics (PSNR and SSIM) across multiple benchmarks and enhances text-to-image generation quality, as evidenced by superior CLIP scores. By preserving the simplicity of the KL-VAE framework while addressing its practical challenges, VIVAT offers actionable insights for researchers and practitioners aiming to optimize VAE training.
Egocentric Event-Based Vision for Ping Pong Ball Trajectory Prediction CVPR
In this paper, we present a real-time egocentric trajectory prediction system for table tennis using event cameras. Unlike standard cameras, which suffer from high latency and motion blur at fast ball speeds, event cameras provide higher temporal resolution, allowing more frequent state updates, greater robustness to outliers, and accurate trajectory predictions using just a short time window after the opponent's impact. We collect a dataset of ping-pong game sequences, including 3D ground-truth trajectories of the ball, synchronized with sensor data from the Meta Project Aria glasses and event streams. Our system leverages foveated vision, using eye-gaze data from the glasses to process only events in the viewer's fovea. This biologically inspired approach improves ball detection performance and significantly reduces computational latency, as it efficiently allocates resources to the most perceptually relevant regions, achieving a reduction factor of 10.81 on the collected trajectories. Our detection pipeline has a worst-case total latency of 4.5 ms, including computation and perception - significantly lower than a frame-based 30 FPS system, which, in the worst case, takes 66 ms solely for perception. Finally, we fit a trajectory prediction model to the estimated states of the ball, enabling 3D trajectory forecasting in the future. To the best of our knowledge, this is the first approach to predict table tennis trajectories from an egocentric perspective using event cameras.
comment: IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Nashville (TN), USA, 2025; 5th International Workshop on Event-Based Vision
LogoSP: Local-global Grouping of Superpoints for Unsupervised Semantic Segmentation of 3D Point Clouds CVPR 2025
We study the problem of unsupervised 3D semantic segmentation on raw point clouds without needing human labels in training. Existing methods usually formulate this problem into learning per-point local features followed by a simple grouping strategy, lacking the ability to discover additional and possibly richer semantic priors beyond local features. In this paper, we introduce LogoSP to learn 3D semantics from both local and global point features. The key to our approach is to discover 3D semantic information by grouping superpoints according to their global patterns in the frequency domain, thus generating highly accurate semantic pseudo-labels for training a segmentation network. Extensive experiments on two indoor and an outdoor datasets show that our LogoSP surpasses all existing unsupervised methods by large margins, achieving the state-of-the-art performance for unsupervised 3D semantic segmentation. Notably, our investigation into the learned global patterns reveals that they truly represent meaningful 3D semantics in the absence of human labels during training.
comment: CVPR 2025. Code and data are available at: https://github.com/vLAR-group/LogoSP
SAM2Auto: Auto Annotation Using FLASH
Vision-Language Models (VLMs) lag behind Large Language Models due to the scarcity of annotated datasets, as creating paired visual-textual annotations is labor-intensive and expensive. To address this bottleneck, we introduce SAM2Auto, the first fully automated annotation pipeline for video datasets requiring no human intervention or dataset-specific training. Our approach consists of two key components: SMART-OD, a robust object detection system that combines automatic mask generation with open-world object detection capabilities, and FLASH (Frame-Level Annotation and Segmentation Handler), a multi-object real-time video instance segmentation (VIS) that maintains consistent object identification across video frames even with intermittent detection gaps. Unlike existing open-world detection methods that require frame-specific hyperparameter tuning and suffer from numerous false positives, our system employs statistical approaches to minimize detection errors while ensuring consistent object tracking throughout entire video sequences. Extensive experimental validation demonstrates that SAM2Auto achieves comparable accuracy to manual annotation while dramatically reducing annotation time and eliminating labor costs. The system successfully handles diverse datasets without requiring retraining or extensive parameter adjustments, making it a practical solution for large-scale dataset creation. Our work establishes a new baseline for automated video annotation and provides a pathway for accelerating VLM development by addressing the fundamental dataset bottleneck that has constrained progress in vision-language understanding.
PolyVivid: Vivid Multi-Subject Video Generation with Cross-Modal Interaction and Enhancement
Despite recent advances in video generation, existing models still lack fine-grained controllability, especially for multi-subject customization with consistent identity and interaction. In this paper, we propose PolyVivid, a multi-subject video customization framework that enables flexible and identity-consistent generation. To establish accurate correspondences between subject images and textual entities, we design a VLLM-based text-image fusion module that embeds visual identities into the textual space for precise grounding. To further enhance identity preservation and subject interaction, we propose a 3D-RoPE-based enhancement module that enables structured bidirectional fusion between text and image embeddings. Moreover, we develop an attention-inherited identity injection module to effectively inject fused identity features into the video generation process, mitigating identity drift. Finally, we construct an MLLM-based data pipeline that combines MLLM-based grounding, segmentation, and a clique-based subject consolidation strategy to produce high-quality multi-subject data, effectively enhancing subject distinction and reducing ambiguity in downstream video generation. Extensive experiments demonstrate that PolyVivid achieves superior performance in identity fidelity, video realism, and subject alignment, outperforming existing open-source and commercial baselines.
F2Net: A Frequency-Fused Network for Ultra-High Resolution Remote Sensing Segmentation
Semantic segmentation of ultra-high-resolution (UHR) remote sensing imagery is critical for applications like environmental monitoring and urban planning but faces computational and optimization challenges. Conventional methods either lose fine details through downsampling or fragment global context via patch processing. While multi-branch networks address this trade-off, they suffer from computational inefficiency and conflicting gradient dynamics during training. We propose F2Net, a frequency-aware framework that decomposes UHR images into high- and low-frequency components for specialized processing. The high-frequency branch preserves full-resolution structural details, while the low-frequency branch processes downsampled inputs through dual sub-branches capturing short- and long-range dependencies. A Hybrid-Frequency Fusion module integrates these observations, guided by two novel objectives: Cross-Frequency Alignment Loss ensures semantic consistency between frequency components, and Cross-Frequency Balance Loss regulates gradient magnitudes across branches to stabilize training. Evaluated on DeepGlobe and Inria Aerial benchmarks, F2Net achieves state-of-the-art performance with mIoU of 80.22 and 83.39, respectively. Our code will be publicly available.
Diffusion models under low-noise regime
Recent work on diffusion models proposed that they operate in two regimes: memorization, in which models reproduce their training data, and generalization, in which they generate novel samples. While this has been tested in high-noise settings, the behavior of diffusion models as effective denoisers when the corruption level is small remains unclear. To address this gap, we systematically investigated the behavior of diffusion models under low-noise diffusion dynamics, with implications for model robustness and interpretability. Using (i) CelebA subsets of varying sample sizes and (ii) analytic Gaussian mixture benchmarks, we reveal that models trained on disjoint data diverge near the data manifold even when their high-noise outputs converge. We quantify how training set size, data geometry, and model objective choice shape denoising trajectories and affect score accuracy, providing insights into how these models actually learn representations of data distributions. This work starts to address gaps in our understanding of generative model reliability in practical applications where small perturbations are common.
R3D2: Realistic 3D Asset Insertion via Diffusion for Autonomous Driving Simulation
Validating autonomous driving (AD) systems requires diverse and safety-critical testing, making photorealistic virtual environments essential. Traditional simulation platforms, while controllable, are resource-intensive to scale and often suffer from a domain gap with real-world data. In contrast, neural reconstruction methods like 3D Gaussian Splatting (3DGS) offer a scalable solution for creating photorealistic digital twins of real-world driving scenes. However, they struggle with dynamic object manipulation and reusability as their per-scene optimization-based methodology tends to result in incomplete object models with integrated illumination effects. This paper introduces R3D2, a lightweight, one-step diffusion model designed to overcome these limitations and enable realistic insertion of complete 3D assets into existing scenes by generating plausible rendering effects-such as shadows and consistent lighting-in real time. This is achieved by training R3D2 on a novel dataset: 3DGS object assets are generated from in-the-wild AD data using an image-conditioned 3D generative model, and then synthetically placed into neural rendering-based virtual environments, allowing R3D2 to learn realistic integration. Quantitative and qualitative evaluations demonstrate that R3D2 significantly enhances the realism of inserted assets, enabling use-cases like text-to-3D asset insertion and cross-scene/dataset object transfer, allowing for true scalability in AD validation. To promote further research in scalable and realistic AD simulation, we will release our dataset and code, see https://research.zenseact.com/publications/R3D2/.
M2Restore: Mixture-of-Experts-based Mamba-CNN Fusion Framework for All-in-One Image Restoration
Natural images are often degraded by complex, composite degradations such as rain, snow, and haze, which adversely impact downstream vision applications. While existing image restoration efforts have achieved notable success, they are still hindered by two critical challenges: limited generalization across dynamically varying degradation scenarios and a suboptimal balance between preserving local details and modeling global dependencies. To overcome these challenges, we propose M2Restore, a novel Mixture-of-Experts (MoE)-based Mamba-CNN fusion framework for efficient and robust all-in-one image restoration. M2Restore introduces three key contributions: First, to boost the model's generalization across diverse degradation conditions, we exploit a CLIP-guided MoE gating mechanism that fuses task-conditioned prompts with CLIP-derived semantic priors. This mechanism is further refined via cross-modal feature calibration, which enables precise expert selection for various degradation types. Second, to jointly capture global contextual dependencies and fine-grained local details, we design a dual-stream architecture that integrates the localized representational strength of CNNs with the long-range modeling efficiency of Mamba. This integration enables collaborative optimization of global semantic relationships and local structural fidelity, preserving global coherence while enhancing detail restoration. Third, we introduce an edge-aware dynamic gating mechanism that adaptively balances global modeling and local enhancement by reallocating computational attention to degradation-sensitive regions. This targeted focus leads to more efficient and precise restoration. Extensive experiments across multiple image restoration benchmarks validate the superiority of M2Restore in both visual quality and quantitative performance.
comment: 13 pages, 8 figures, 3 tables
Self-Cascaded Diffusion Models for Arbitrary-Scale Image Super-Resolution
Arbitrary-scale image super-resolution aims to upsample images to any desired resolution, offering greater flexibility than traditional fixed-scale super-resolution. Recent approaches in this domain utilize regression-based or generative models, but many of them are a single-stage upsampling process, which may be challenging to learn across a wide, continuous distribution of scaling factors. Progressive upsampling strategies have shown promise in mitigating this issue, yet their integration with diffusion models for flexible upscaling remains underexplored. Here, we present CasArbi, a novel self-cascaded diffusion framework for arbitrary-scale image super-resolution. CasArbi meets the varying scaling demands by breaking them down into smaller sequential factors and progressively enhancing the image resolution at each step with seamless transitions for arbitrary scales. Our novel coordinate-guided residual diffusion model allows for the learning of continuous image representations while enabling efficient diffusion sampling. Extensive experiments demonstrate that our CasArbi outperforms prior arts in both perceptual and distortion performance metrics across diverse arbitrary-scale super-resolution benchmarks.
Looking Beyond Visible Cues: Implicit Video Question Answering via Dual-Clue Reasoning
Video Question Answering (VideoQA) aims to answer natural language questions based on the given video, with prior work primarily focusing on identifying the duration of relevant segments, referred to as explicit visual evidence. However, explicit visual evidence is not always directly available, particularly when questions target symbolic meanings or deeper intentions, leading to significant performance degradation. To fill this gap, we introduce a novel task and dataset, $\textbf{I}$mplicit $\textbf{V}$ideo $\textbf{Q}$uestion $\textbf{A}$nswering (I-VQA), which focuses on answering questions in scenarios where explicit visual evidence is inaccessible. Given an implicit question and its corresponding video, I-VQA requires answering based on the contextual visual cues present within the video. To tackle I-VQA, we propose a novel reasoning framework, IRM (Implicit Reasoning Model), incorporating dual-stream modeling of contextual actions and intent clues as implicit reasoning chains. IRM comprises the Action-Intent Module (AIM) and the Visual Enhancement Module (VEM). AIM deduces and preserves question-related dual clues by generating clue candidates and performing relation deduction. VEM enhances contextual visual representation by leveraging key contextual clues. Extensive experiments validate the effectiveness of our IRM in I-VQA tasks, outperforming GPT-4o, OpenAI-o3, and fine-tuned VideoChat2 by $0.76\%$, $1.37\%$, and $4.87\%$, respectively. Additionally, IRM performs SOTA on similar implicit advertisement understanding and future prediction in traffic-VQA. Datasets and codes are available for double-blind review in anonymous repo: https://github.com/tychen-SJTU/Implicit-VideoQA.
comment: Preprint
Incorporating Uncertainty-Guided and Top-k Codebook Matching for Real-World Blind Image Super-Resolution
Recent advancements in codebook-based real image super-resolution (SR) have shown promising results in real-world applications. The core idea involves matching high-quality image features from a codebook based on low-resolution (LR) image features. However, existing methods face two major challenges: inaccurate feature matching with the codebook and poor texture detail reconstruction. To address these issues, we propose a novel Uncertainty-Guided and Top-k Codebook Matching SR (UGTSR) framework, which incorporates three key components: (1) an uncertainty learning mechanism that guides the model to focus on texture-rich regions, (2) a Top-k feature matching strategy that enhances feature matching accuracy by fusing multiple candidate features, and (3) an Align-Attention module that enhances the alignment of information between LR and HR features. Experimental results demonstrate significant improvements in texture realism and reconstruction fidelity compared to existing methods. We will release the code upon formal publication.
Identifiable Object Representations under Spatial Ambiguities
Modular object-centric representations are essential for *human-like reasoning* but are challenging to obtain under spatial ambiguities, *e.g. due to occlusions and view ambiguities*. However, addressing challenges presents both theoretical and practical difficulties. We introduce a novel multi-view probabilistic approach that aggregates view-specific slots to capture *invariant content* information while simultaneously learning disentangled global *viewpoint-level* information. Unlike prior single-view methods, our approach resolves spatial ambiguities, provides theoretical guarantees for identifiability, and requires *no viewpoint annotations*. Extensive experiments on standard benchmarks and novel complex datasets validate our method's robustness and scalability.
Image Reconstruction as a Tool for Feature Analysis
Vision encoders are increasingly used in modern applications, from vision-only models to multimodal systems such as vision-language models. Despite their remarkable success, it remains unclear how these architectures represent features internally. Here, we propose a novel approach for interpreting vision features via image reconstruction. We compare two related model families, SigLIP and SigLIP2, which differ only in their training objective, and show that encoders pre-trained on image-based tasks retain significantly more image information than those trained on non-image tasks such as contrastive learning. We further apply our method to a range of vision encoders, ranking them by the informativeness of their feature representations. Finally, we demonstrate that manipulating the feature space yields predictable changes in reconstructed images, revealing that orthogonal rotations (rather than spatial transformations) control color encoding. Our approach can be applied to any vision encoder, shedding light on the inner structure of its feature space. The code and model weights to reproduce the experiments are available in GitHub.
comment: 23 pages, 14 figures
Re-ranking Reasoning Context with Tree Search Makes Large Vision-Language Models Stronger ICML 2025
Recent advancements in Large Vision Language Models (LVLMs) have significantly improved performance in Visual Question Answering (VQA) tasks through multimodal Retrieval-Augmented Generation (RAG). However, existing methods still face challenges, such as the scarcity of knowledge with reasoning examples and erratic responses from retrieved knowledge. To address these issues, in this study, we propose a multimodal RAG framework, termed RCTS, which enhances LVLMs by constructing a Reasoning Context-enriched knowledge base and a Tree Search re-ranking method. Specifically, we introduce a self-consistent evaluation mechanism to enrich the knowledge base with intrinsic reasoning patterns. We further propose a Monte Carlo Tree Search with Heuristic Rewards (MCTS-HR) to prioritize the most relevant examples. This ensures that LVLMs can leverage high-quality contextual reasoning for better and more consistent responses. Extensive experiments demonstrate that our framework achieves state-of-the-art performance on multiple VQA datasets, significantly outperforming In-Context Learning (ICL) and Vanilla-RAG methods. It highlights the effectiveness of our knowledge base and re-ranking method in improving LVLMs. Our code is available at https://github.com/yannqi/RCTS-RAG.
comment: ICML 2025 Spotlight. 22 pages, 16 figures
Design and Evaluation of Deep Learning-Based Dual-Spectrum Image Fusion Methods
Visible images offer rich texture details, while infrared images emphasize salient targets. Fusing these complementary modalities enhances scene understanding, particularly for advanced vision tasks under challenging conditions. Recently, deep learning-based fusion methods have gained attention, but current evaluations primarily rely on general-purpose metrics without standardized benchmarks or downstream task performance. Additionally, the lack of well-developed dual-spectrum datasets and fair algorithm comparisons hinders progress. To address these gaps, we construct a high-quality dual-spectrum dataset captured in campus environments, comprising 1,369 well-aligned visible-infrared image pairs across four representative scenarios: daytime, nighttime, smoke occlusion, and underpasses. We also propose a comprehensive and fair evaluation framework that integrates fusion speed, general metrics, and object detection performance using the lang-segment-anything model to ensure fairness in downstream evaluation. Extensive experiments benchmark several state-of-the-art fusion algorithms under this framework. Results demonstrate that fusion models optimized for downstream tasks achieve superior performance in target detection, especially in low-light and occluded scenes. Notably, some algorithms that perform well on general metrics do not translate to strong downstream performance, highlighting limitations of current evaluation practices and validating the necessity of our proposed framework. The main contributions of this work are: (1)a campus-oriented dual-spectrum dataset with diverse and challenging scenes; (2) a task-aware, comprehensive evaluation framework; and (3) thorough comparative analysis of leading fusion methods across multiple datasets, offering insights for future development.
comment: 11 pages, 13 figures
Language-Vision Planner and Executor for Text-to-Visual Reasoning
The advancement in large language models (LLMs) and large vision models has fueled the rapid progress in multi-modal visual-text reasoning capabilities. However, existing vision-language models (VLMs) to date suffer from generalization performance. Inspired by recent development in LLMs for visual reasoning, this paper presents VLAgent, an AI system that can create a step-by-step visual reasoning plan with an easy-to-understand script and execute each step of the plan in real time by integrating planning script with execution verifications via an automated process supported by VLAgent. In the task planning phase, VLAgent fine-tunes an LLM through in-context learning to generate a step-by-step planner for each user-submitted text-visual reasoning task. During the plan execution phase, VLAgent progressively refines the composition of neuro-symbolic executable modules to generate high-confidence reasoning results. VLAgent has three unique design characteristics: First, we improve the quality of plan generation through in-context learning, improving logic reasoning by reducing erroneous logic steps, incorrect programs, and LLM hallucinations. Second, we design a syntax-semantics parser to identify and correct additional logic errors of the LLM-generated planning script prior to launching the plan executor. Finally, we employ the ensemble method to improve the generalization performance of our step-executor. Extensive experiments with four visual reasoning benchmarks (GQA, MME, NLVR2, VQAv2) show that VLAgent achieves significant performance enhancement for multimodal text-visual reasoning applications, compared to the exiting representative VLMs and LLM based visual composition approaches like ViperGPT and VisProg, thanks to the novel optimization modules of VLAgent back-engine (SS-Parser, Plan Repairer, Output Verifiers). Code and data will be made available upon paper acceptance.
Trend-Aware Fashion Recommendation with Visual Segmentation and Semantic Similarity
We introduce a trend-aware and visually-grounded fashion recommendation system that integrates deep visual representations, garment-aware segmentation, semantic category similarity and user behavior simulation. Our pipeline extracts focused visual embeddings by masking non-garment regions via semantic segmentation followed by feature extraction using pretrained CNN backbones (ResNet-50, DenseNet-121, VGG16). To simulate realistic shopping behavior, we generate synthetic purchase histories influenced by user-specific trendiness and item popularity. Recommendations are computed using a weighted scoring function that fuses visual similarity, semantic coherence and popularity alignment. Experiments on the DeepFashion dataset demonstrate consistent gender alignment and improved category relevance, with ResNet-50 achieving 64.95% category similarity and lowest popularity MAE. An ablation study confirms the complementary roles of visual and popularity cues. Our method provides a scalable framework for personalized fashion recommendations that balances individual style with emerging trends. Our implementation is available at https://github.com/meddjilani/FashionRecommender
Difference Inversion: Interpolate and Isolate the Difference with Token Consistency for Image Analogy Generation CVPR 2025
How can we generate an image B' that satisfies A:A'::B:B', given the input images A,A' and B? Recent works have tackled this challenge through approaches like visual in-context learning or visual instruction. However, these methods are typically limited to specific models (e.g. InstructPix2Pix. Inpainting models) rather than general diffusion models (e.g. Stable Diffusion, SDXL). This dependency may lead to inherited biases or lower editing capabilities. In this paper, we propose Difference Inversion, a method that isolates only the difference from A and A' and applies it to B to generate a plausible B'. To address model dependency, it is crucial to structure prompts in the form of a "Full Prompt" suitable for input to stable diffusion models, rather than using an "Instruction Prompt". To this end, we accurately extract the Difference between A and A' and combine it with the prompt of B, enabling a plug-and-play application of the difference. To extract a precise difference, we first identify it through 1) Delta Interpolation. Additionally, to ensure accurate training, we propose the 2) Token Consistency Loss and 3) Zero Initialization of Token Embeddings. Our extensive experiments demonstrate that Difference Inversion outperforms existing baselines both quantitatively and qualitatively, indicating its ability to generate more feasible B' in a model-agnostic manner.
comment: Published at CVPR 2025
Flow-Anything: Learning Real-World Optical Flow Estimation from Large-Scale Single-view Images
Optical flow estimation is a crucial subfield of computer vision, serving as a foundation for video tasks. However, the real-world robustness is limited by animated synthetic datasets for training. This introduces domain gaps when applied to real-world applications and limits the benefits of scaling up datasets. To address these challenges, we propose \textbf{Flow-Anything}, a large-scale data generation framework designed to learn optical flow estimation from any single-view images in the real world. We employ two effective steps to make data scaling-up promising. First, we convert a single-view image into a 3D representation using advanced monocular depth estimation networks. This allows us to render optical flow and novel view images under a virtual camera. Second, we develop an Object-Independent Volume Rendering module and a Depth-Aware Inpainting module to model the dynamic objects in the 3D representation. These two steps allow us to generate realistic datasets for training from large-scale single-view images, namely \textbf{FA-Flow Dataset}. For the first time, we demonstrate the benefits of generating optical flow training data from large-scale real-world images, outperforming the most advanced unsupervised methods and supervised methods on synthetic datasets. Moreover, our models serve as a foundation model and enhance the performance of various downstream video tasks.
ArchiLense: A Framework for Quantitative Analysis of Architectural Styles Based on Vision Large Language Models
Architectural cultures across regions are characterized by stylistic diversity, shaped by historical, social, and technological contexts in addition to geograph-ical conditions. Understanding architectural styles requires the ability to describe and analyze the stylistic features of different architects from various regions through visual observations of architectural imagery. However, traditional studies of architectural culture have largely relied on subjective expert interpretations and historical literature reviews, often suffering from regional biases and limited ex-planatory scope. To address these challenges, this study proposes three core contributions: (1) We construct a professional architectural style dataset named ArchDiffBench, which comprises 1,765 high-quality architectural images and their corresponding style annotations, collected from different regions and historical periods. (2) We propose ArchiLense, an analytical framework grounded in Vision-Language Models and constructed using the ArchDiffBench dataset. By integrating ad-vanced computer vision techniques, deep learning, and machine learning algo-rithms, ArchiLense enables automatic recognition, comparison, and precise classi-fication of architectural imagery, producing descriptive language outputs that ar-ticulate stylistic differences. (3) Extensive evaluations show that ArchiLense achieves strong performance in architectural style recognition, with a 92.4% con-sistency rate with expert annotations and 84.5% classification accuracy, effec-tively capturing stylistic distinctions across images. The proposed approach transcends the subjectivity inherent in traditional analyses and offers a more objective and accurate perspective for comparative studies of architectural culture.
SpikeSMOKE: Spiking Neural Networks for Monocular 3D Object Detection with Cross-Scale Gated Coding
Low energy consumption for 3D object detection is an important research area because of the increasing energy consumption with their wide application in fields such as autonomous driving. The spiking neural networks (SNNs) with low-power consumption characteristics can provide a novel solution for this research. Therefore, we apply SNNs to monocular 3D object detection and propose the SpikeSMOKE architecture in this paper, which is a new attempt for low-power monocular 3D object detection. As we all know, discrete signals of SNNs will generate information loss and limit their feature expression ability compared with the artificial neural networks (ANNs).In order to address this issue, inspired by the filtering mechanism of biological neuronal synapses, we propose a cross-scale gated coding mechanism(CSGC), which can enhance feature representation by combining cross-scale fusion of attentional methods and gated filtering mechanisms.In addition, to reduce the computation and increase the speed of training, we present a novel light-weight residual block that can maintain spiking computing paradigm and the highest possible detection performance. Compared to the baseline SpikeSMOKE under the 3D Object Detection, the proposed SpikeSMOKE with CSGC can achieve 11.78 (+2.82, Easy), 10.69 (+3.2, Moderate), and 10.48 (+3.17, Hard) on the KITTI autonomous driving dataset by AP|R11 at 0.7 IoU threshold, respectively. It is important to note that the results of SpikeSMOKE can significantly reduce energy consumption compared to the results on SMOKE. For example,the energy consumption can be reduced by 72.2% on the hard category, while the detection performance is reduced by only 4%. SpikeSMOKE-L (lightweight) can further reduce the amount of parameters by 3 times and computation by 10 times compared to SMOKE.
Language Embedding Meets Dynamic Graph: A New Exploration for Neural Architecture Representation Learning
Neural Architecture Representation Learning aims to transform network models into feature representations for predicting network attributes, playing a crucial role in deploying and designing networks for real-world applications. Recently, inspired by the success of transformers, transformer-based models integrated with Graph Neural Networks (GNNs) have achieved significant progress in representation learning. However, current methods still have some limitations. First, existing methods overlook hardware attribute information, which conflicts with the current trend of diversified deep learning hardware and limits the practical applicability of models. Second, current encoding approaches rely on static adjacency matrices to represent topological structures, failing to capture the structural differences between computational nodes, which ultimately compromises encoding effectiveness. In this paper, we introduce LeDG-Former, an innovative framework that addresses these limitations through the synergistic integration of language-based semantic embedding and dynamic graph representation learning. Specifically, inspired by large language models (LLMs), we propose a language embedding framework where both neural architectures and hardware platform specifications are projected into a unified semantic space through tokenization and LLM processing, enabling zero-shot prediction across different hardware platforms for the first time. Then, we propose a dynamic graph-based transformer for modeling neural architectures, resulting in improved neural architecture modeling performance. On the NNLQP benchmark, LeDG-Former surpasses previous methods, establishing a new SOTA while demonstrating the first successful cross-hardware latency prediction capability. Furthermore, our framework achieves superior performance on the cell-structured NAS-Bench-101 and NAS-Bench-201 datasets.
comment: 9 pages, 3 figures
ETA: Efficiency through Thinking Ahead, A Dual Approach to Self-Driving with Large Models ICCV 2025
How can we benefit from large models without sacrificing inference speed, a common dilemma in self-driving systems? A prevalent solution is a dual-system architecture, employing a small model for rapid, reactive decisions and a larger model for slower but more informative analyses. Existing dual-system designs often implement parallel architectures where inference is either directly conducted using the large model at each current frame or retrieved from previously stored inference results. However, these works still struggle to enable large models for a timely response to every online frame. Our key insight is to shift intensive computations of the current frame to previous time steps and perform a batch inference of multiple time steps to make large models respond promptly to each time step. To achieve the shifting, we introduce Efficiency through Thinking Ahead (ETA), an asynchronous system designed to: (1) propagate informative features from the past to the current frame using future predictions from the large model, (2) extract current frame features using a small model for real-time responsiveness, and (3) integrate these dual features via an action mask mechanism that emphasizes action-critical image regions. Evaluated on the Bench2Drive CARLA Leaderboard-v2 benchmark, ETA advances state-of-the-art performance by 8% with a driving score of 69.53 while maintaining a near-real-time inference speed at 50 ms.
comment: ICCV 2025 submission. For code, see https://github.com/opendrivelab/ETA
ReverB-SNN: Reversing Bit of the Weight and Activation for Spiking Neural Networks ICML2024
The Spiking Neural Network (SNN), a biologically inspired neural network infrastructure, has garnered significant attention recently. SNNs utilize binary spike activations for efficient information transmission, replacing multiplications with additions, thereby enhancing energy efficiency. However, binary spike activation maps often fail to capture sufficient data information, resulting in reduced accuracy. To address this challenge, we advocate reversing the bit of the weight and activation for SNNs, called \textbf{ReverB-SNN}, inspired by recent findings that highlight greater accuracy degradation from quantizing activations compared to weights. Specifically, our method employs real-valued spike activations alongside binary weights in SNNs. This preserves the event-driven and multiplication-free advantages of standard SNNs while enhancing the information capacity of activations. Additionally, we introduce a trainable factor within binary weights to adaptively learn suitable weight amplitudes during training, thereby increasing network capacity. To maintain efficiency akin to vanilla \textbf{ReverB-SNN}, our trainable binary weight SNNs are converted back to standard form using a re-parameterization technique during inference. Extensive experiments across various network architectures and datasets, both static and dynamic, demonstrate that our approach consistently outperforms state-of-the-art methods.
comment: Accpeted by ICML2024
Consistent Video Editing as Flow-Driven Image-to-Video Generation
With the prosper of video diffusion models, down-stream applications like video editing have been significantly promoted without consuming much computational cost. One particular challenge in this task lies at the motion transfer process from the source video to the edited one, where it requires the consideration of the shape deformation in between, meanwhile maintaining the temporal consistency in the generated video sequence. However, existing methods fail to model complicated motion patterns for video editing, and are fundamentally limited to object replacement, where tasks with non-rigid object motions like multi-object and portrait editing are largely neglected. In this paper, we observe that optical flows offer a promising alternative in complex motion modeling, and present FlowV2V to re-investigate video editing as a task of flow-driven Image-to-Video (I2V) generation. Specifically, FlowV2V decomposes the entire pipeline into first-frame editing and conditional I2V generation, and simulates pseudo flow sequence that aligns with the deformed shape, thus ensuring the consistency during editing. Experimental results on DAVIS-EDIT with improvements of 13.67% and 50.66% on DOVER and warping error illustrate the superior temporal consistency and sample quality of FlowV2V compared to existing state-of-the-art ones. Furthermore, we conduct comprehensive ablation studies to analyze the internal functionalities of the first-frame paradigm and flow alignment in the proposed method.
comment: 16 pages, 12 figures
Fine-Grained Motion Compression and Selective Temporal Fusion for Neural B-Frame Video Coding
With the remarkable progress in neural P-frame video coding, neural B-frame coding has recently emerged as a critical research direction. However, most existing neural B-frame codecs directly adopt P-frame coding tools without adequately addressing the unique challenges of B-frame compression, leading to suboptimal performance. To bridge this gap, we propose novel enhancements for motion compression and temporal fusion for neural B-frame coding. First, we design a fine-grained motion compression method. This method incorporates an interactive dual-branch motion auto-encoder with per-branch adaptive quantization steps, which enables fine-grained compression of bi-directional motion vectors while accommodating their asymmetric bitrate allocation and reconstruction quality requirements. Furthermore, this method involves an interactive motion entropy model that exploits correlations between bi-directional motion latent representations by interactively leveraging partitioned latent segments as directional priors. Second, we propose a selective temporal fusion method that predicts bi-directional fusion weights to achieve discriminative utilization of bi-directional multi-scale temporal contexts with varying qualities. Additionally, this method introduces a hyperprior-based implicit alignment mechanism for contextual entropy modeling. By treating the hyperprior as a surrogate for the contextual latent representation, this mechanism implicitly mitigates the misalignment in the fused bi-directional temporal priors. Extensive experiments demonstrate that our proposed codec outperforms state-of-the-art neural B-frame codecs and achieves comparable or even superior compression performance to the H.266/VVC reference software under random-access configurations.
Adaptive Blind Super-Resolution Network for Spatial-Specific and Spatial-Agnostic Degradations
Prior methodologies have disregarded the diversities among distinct degradation types during image reconstruction, employing a uniform network model to handle multiple deteriorations. Nevertheless, we discover that prevalent degradation modalities, including sampling, blurring, and noise, can be roughly categorized into two classes. We classify the first class as spatial-agnostic dominant degradations, less affected by regional changes in image space, such as downsampling and noise degradation. The second class degradation type is intimately associated with the spatial position of the image, such as blurring, and we identify them as spatial-specific dominant degradations. We introduce a dynamic filter network integrating global and local branches to address these two degradation types. This network can greatly alleviate the practical degradation problem. Specifically, the global dynamic filtering layer can perceive the spatial-agnostic dominant degradation in different images by applying weights generated by the attention mechanism to multiple parallel standard convolution kernels, enhancing the network's representation ability. Meanwhile, the local dynamic filtering layer converts feature maps of the image into a spatially specific dynamic filtering operator, which performs spatially specific convolution operations on the image features to handle spatial-specific dominant degradations. By effectively integrating both global and local dynamic filtering operators, our proposed method outperforms state-of-the-art blind super-resolution algorithms in both synthetic and real image datasets.
comment: IEEE TRANSACTIONS ON IMAGE PROCESSING
NOVA3D: Normal Aligned Video Diffusion Model for Single Image to 3D Generation ICME 2025
3D AI-generated content (AIGC) has made it increasingly accessible for anyone to become a 3D content creator. While recent methods leverage Score Distillation Sampling to distill 3D objects from pretrained image diffusion models, they often suffer from inadequate 3D priors, leading to insufficient multi-view consistency. In this work, we introduce NOVA3D, an innovative single-image-to-3D generation framework. Our key insight lies in leveraging strong 3D priors from a pretrained video diffusion model and integrating geometric information during multi-view video fine-tuning. To facilitate information exchange between color and geometric domains, we propose the Geometry-Temporal Alignment (GTA) attention mechanism, thereby improving generalization and multi-view consistency. Moreover, we introduce the de-conflict geometry fusion algorithm, which improves texture fidelity by addressing multi-view inaccuracies and resolving discrepancies in pose alignment. Extensive experiments validate the superiority of NOVA3D over existing baselines.
comment: 8 pages, 7 figures, accepted by ICME 2025
OpenSplat3D: Open-Vocabulary 3D Instance Segmentation using Gaussian Splatting
3D Gaussian Splatting (3DGS) has emerged as a powerful representation for neural scene reconstruction, offering high-quality novel view synthesis while maintaining computational efficiency. In this paper, we extend the capabilities of 3DGS beyond pure scene representation by introducing an approach for open-vocabulary 3D instance segmentation without requiring manual labeling, termed OpenSplat3D. Our method leverages feature-splatting techniques to associate semantic information with individual Gaussians, enabling fine-grained scene understanding. We incorporate Segment Anything Model instance masks with a contrastive loss formulation as guidance for the instance features to achieve accurate instance-level segmentation. Furthermore, we utilize language embeddings of a vision-language model, allowing for flexible, text-driven instance identification. This combination enables our system to identify and segment arbitrary objects in 3D scenes based on natural language descriptions. We show results on LERF-mask and LERF-OVS as well as the full ScanNet++ validation set, demonstrating the effectiveness of our approach.
ProSplat: Improved Feed-Forward 3D Gaussian Splatting for Wide-Baseline Sparse Views
Feed-forward 3D Gaussian Splatting (3DGS) has recently demonstrated promising results for novel view synthesis (NVS) from sparse input views, particularly under narrow-baseline conditions. However, its performance significantly degrades in wide-baseline scenarios due to limited texture details and geometric inconsistencies across views. To address these challenges, in this paper, we propose ProSplat, a two-stage feed-forward framework designed for high-fidelity rendering under wide-baseline conditions. The first stage involves generating 3D Gaussian primitives via a 3DGS generator. In the second stage, rendered views from these primitives are enhanced through an improvement model. Specifically, this improvement model is based on a one-step diffusion model, further optimized by our proposed Maximum Overlap Reference view Injection (MORI) and Distance-Weighted Epipolar Attention (DWEA). MORI supplements missing texture and color by strategically selecting a reference view with maximum viewpoint overlap, while DWEA enforces geometric consistency using epipolar constraints. Additionally, we introduce a divide-and-conquer training strategy that aligns data distributions between the two stages through joint optimization. We evaluate ProSplat on the RealEstate10K and DL3DV-10K datasets under wide-baseline settings. Experimental results demonstrate that ProSplat achieves an average improvement of 1 dB in PSNR compared to recent SOTA methods.
PIG: Physically-based Multi-Material Interaction with 3D Gaussians
3D Gaussian Splatting has achieved remarkable success in reconstructing both static and dynamic 3D scenes. However, in a scene represented by 3D Gaussian primitives, interactions between objects suffer from inaccurate 3D segmentation, imprecise deformation among different materials, and severe rendering artifacts. To address these challenges, we introduce PIG: Physically-Based Multi-Material Interaction with 3D Gaussians, a novel approach that combines 3D object segmentation with the simulation of interacting objects in high precision. Firstly, our method facilitates fast and accurate mapping from 2D pixels to 3D Gaussians, enabling precise 3D object-level segmentation. Secondly, we assign unique physical properties to correspondingly segmented objects within the scene for multi-material coupled interactions. Finally, we have successfully embedded constraint scales into deformation gradients, specifically clamping the scaling and rotation properties of the Gaussian primitives to eliminate artifacts and achieve geometric fidelity and visual consistency. Experimental results demonstrate that our method not only outperforms the state-of-the-art (SOTA) in terms of visual quality, but also opens up new directions and pipelines for the field of physically realistic scene generation.
FMaMIL: Frequency-Driven Mamba Multi-Instance Learning for Weakly Supervised Lesion Segmentation in Medical Images
Accurate lesion segmentation in histopathology images is essential for diagnostic interpretation and quantitative analysis, yet it remains challenging due to the limited availability of costly pixel-level annotations. To address this, we propose FMaMIL, a novel two-stage framework for weakly supervised lesion segmentation based solely on image-level labels. In the first stage, a lightweight Mamba-based encoder is introduced to capture long-range dependencies across image patches under the MIL paradigm. To enhance spatial sensitivity and structural awareness, we design a learnable frequency-domain encoding module that supplements spatial-domain features with spectrum-based information. CAMs generated in this stage are used to guide segmentation training. In the second stage, we refine the initial pseudo labels via a CAM-guided soft-label supervision and a self-correction mechanism, enabling robust training even under label noise. Extensive experiments on both public and private histopathology datasets demonstrate that FMaMIL outperforms state-of-the-art weakly supervised methods without relying on pixel-level annotations, validating its effectiveness and potential for digital pathology applications.
Synthetic Visual Genome CVPR 2025
Reasoning over visual relationships-spatial, functional, interactional, social, etc.-is considered to be a fundamental component of human cognition. Yet, despite the major advances in visual comprehension in multimodal language models (MLMs), precise reasoning over relationships and their generations remains a challenge. We introduce ROBIN: an MLM instruction-tuned with densely annotated relationships capable of constructing high-quality dense scene graphs at scale. To train ROBIN, we curate SVG, a synthetic scene graph dataset by completing the missing relations of selected objects in existing scene graphs using a teacher MLM and a carefully designed filtering process to ensure high-quality. To generate more accurate and rich scene graphs at scale for any image, we introduce SG-EDIT: a self-distillation framework where GPT-4o further refines ROBIN's predicted scene graphs by removing unlikely relations and/or suggesting relevant ones. In total, our dataset contains 146K images and 5.6M relationships for 2.6M objects. Results show that our ROBIN-3B model, despite being trained on less than 3 million instances, outperforms similar-size models trained on over 300 million instances on relationship understanding benchmarks, and even surpasses larger models up to 13B parameters. Notably, it achieves state-of-the-art performance in referring expression comprehension with a score of 88.9, surpassing the previous best of 87.4. Our results suggest that training on the refined scene graph data is crucial to maintaining high performance across diverse visual reasoning task.
comment: CVPR 2025
HieraEdgeNet: A Multi-Scale Edge-Enhanced Framework for Automated Pollen Recognition
Automated pollen recognition is vital to paleoclimatology, biodiversity monitoring, and public health, yet conventional methods are hampered by inefficiency and subjectivity. Existing deep learning models often struggle to achieve the requisite localization accuracy for microscopic targets like pollen, which are characterized by their minute size, indistinct edges, and complex backgrounds. To overcome this limitation, we introduce HieraEdgeNet, a multi-scale edge-enhancement framework. The framework's core innovation is the introduction of three synergistic modules: the Hierarchical Edge Module (HEM), which explicitly extracts a multi-scale pyramid of edge features that corresponds to the semantic hierarchy at early network stages; the Synergistic Edge Fusion (SEF) module, for deeply fusing these edge priors with semantic information at each respective scale; and the Cross Stage Partial Omni-Kernel Module (CSPOKM), which maximally refines the most detail-rich feature layers using an Omni-Kernel operator - comprising anisotropic large-kernel convolutions and mixed-domain attention - all within a computationally efficient Cross-Stage Partial (CSP) framework. On a large-scale dataset comprising 120 pollen classes, HieraEdgeNet achieves a mean Average Precision (mAP@.5) of 0.9501, significantly outperforming state-of-the-art baseline models such as YOLOv12n and RT-DETR. Furthermore, qualitative analysis confirms that our approach generates feature representations that are more precisely focused on object boundaries. By systematically integrating edge information, HieraEdgeNet provides a robust and powerful solution for high-precision, high-efficiency automated detection of microscopic objects.
comment: 16 pages, 5 figures, 2 tables. The dataset at https://www.kaggle.com/datasets/ayinven/hieraedgenetintegratesdatasets. The models at https://huggingface.co/datasets/AyinMostima/HieraEdgeNetintegratesdatasets. The source code in at https://github.com/AyinMostima/PalynoKit
Unblocking Fine-Grained Evaluation of Detailed Captions: An Explaining AutoRater and Critic-and-Revise Pipeline
Large Vision-Language Models (VLMs) now generate highly detailed, paragraphlength image captions, yet evaluating their factual accuracy remains challenging. Current methods often miss fine-grained errors, being designed for shorter texts or lacking datasets with verified inaccuracies. We introduce DOCCI-Critique, a benchmark with 1,400 VLM-generated paragraph captions (100 images, 14 VLMs) featuring over 10,216 sentence-level human annotations of factual correctness and explanatory rationales for errors, all within paragraph context. Building on this, we develop VNLI-Critique, a model for automated sentence-level factuality classification and critique generation. We highlight three key applications: (1) VNLI-Critique demonstrates robust generalization, validated by state-of-the-art performance on the M-HalDetect benchmark and strong results in CHOCOLATE claim verification. (2) The VNLI-Critique driven AutoRater for DOCCI-Critique provides reliable VLM rankings, showing excellent alignment with human factuality judgments (e.g., 0.98 Spearman). (3) An innovative Critic-and-Revise pipeline, where critiques from VNLI-Critique guide LLM-based corrections, achieves substantial improvements in caption factuality (e.g., a 46% gain on DetailCaps-4870). Our work offers a crucial benchmark alongside practical tools, designed to significantly elevate the standards for fine-grained evaluation and foster the improvement of VLM image understanding. Project page: https://google.github.io/unblocking-detail-caption
HuSc3D: Human Sculpture dataset for 3D object reconstruction
3D scene reconstruction from 2D images is one of the most important tasks in computer graphics. Unfortunately, existing datasets and benchmarks concentrate on idealized synthetic or meticulously captured realistic data. Such benchmarks fail to convey the inherent complexities encountered in newly acquired real-world scenes. In such scenes especially those acquired outside, the background is often dynamic, and by popular usage of cell phone cameras, there might be discrepancies in, e.g., white balance. To address this gap, we present HuSc3D, a novel dataset specifically designed for rigorous benchmarking of 3D reconstruction models under realistic acquisition challenges. Our dataset uniquely features six highly detailed, fully white sculptures characterized by intricate perforations and minimal textural and color variation. Furthermore, the number of images per scene varies significantly, introducing the additional challenge of limited training data for some instances alongside scenes with a standard number of views. By evaluating popular 3D reconstruction methods on this diverse dataset, we demonstrate the distinctiveness of HuSc3D in effectively differentiating model performance, particularly highlighting the sensitivity of methods to fine geometric details, color ambiguity, and varying data availability--limitations often masked by more conventional datasets.
Event-Priori-Based Vision-Language Model for Efficient Visual Understanding
Large Language Model (LLM)-based Vision-Language Models (VLMs) have substantially extended the boundaries of visual understanding capabilities. However, their high computational demands hinder deployment on resource-constrained edge devices. A key source of inefficiency stems from the VLM's need to process dense and redundant visual information. Visual inputs contain significant regions irrelevant to text semantics, rendering the associated computations ineffective for inference. This paper introduces a novel Event-Priori-Based Vision-Language Model, termed EP-VLM. Its core contribution is a novel mechanism leveraging motion priors derived from dynamic event vision to enhance VLM efficiency. Inspired by human visual cognition, EP-VLM first employs event data to guide the patch-wise sparsification of RGB visual inputs, progressively concentrating VLM computation on salient regions of the visual input. Subsequently, we construct a position-preserving tokenization strategy for the visual encoder within the VLM architecture. This strategy processes the event-guided, unstructured, sparse visual input while accurately preserving positional understanding within the visual input. Experimental results demonstrate that EP-VLM achieves significant efficiency improvements while maintaining nearly lossless accuracy compared to baseline models from the Qwen2-VL series. For instance, against the original Qwen2-VL-2B, EP-VLM achieves 50% FLOPs savings while retaining 98% of the original accuracy on the RealWorldQA dataset. This work demonstrates the potential of event-based vision priors for improving VLM inference efficiency, paving the way for creating more efficient and deployable VLMs for sustainable visual understanding at the edge.
Scaling Human Activity Recognition: A Comparative Evaluation of Synthetic Data Generation and Augmentation Techniques
Human activity recognition (HAR) is often limited by the scarcity of labeled datasets due to the high cost and complexity of real-world data collection. To mitigate this, recent work has explored generating virtual inertial measurement unit (IMU) data via cross-modality transfer. While video-based and language-based pipelines have each shown promise, they differ in assumptions and computational cost. Moreover, their effectiveness relative to traditional sensor-level data augmentation remains unclear. In this paper, we present a direct comparison between these two virtual IMU generation approaches against classical data augmentation techniques. We construct a large-scale virtual IMU dataset spanning 100 diverse activities from Kinetics-400 and simulate sensor signals at 22 body locations. The three data generation strategies are evaluated on benchmark HAR datasets (UTD-MHAD, PAMAP2, HAD-AW) using four popular models. Results show that virtual IMU data significantly improves performance over real or augmented data alone, particularly under limited-data conditions. We offer practical guidance on choosing data generation strategies and highlight the distinct advantages and disadvantages of each approach.
DragNeXt: Rethinking Drag-Based Image Editing
Drag-Based Image Editing (DBIE), which allows users to manipulate images by directly dragging objects within them, has recently attracted much attention from the community. However, it faces two key challenges: (\emph{\textcolor{magenta}{i}}) point-based drag is often highly ambiguous and difficult to align with users' intentions; (\emph{\textcolor{magenta}{ii}}) current DBIE methods primarily rely on alternating between motion supervision and point tracking, which is not only cumbersome but also fails to produce high-quality results. These limitations motivate us to explore DBIE from a new perspective -- redefining it as deformation, rotation, and translation of user-specified handle regions. Thereby, by requiring users to explicitly specify both drag areas and types, we can effectively address the ambiguity issue. Furthermore, we propose a simple-yet-effective editing framework, dubbed \textcolor{SkyBlue}{\textbf{DragNeXt}}. It unifies DBIE as a Latent Region Optimization (LRO) problem and solves it through Progressive Backward Self-Intervention (PBSI), simplifying the overall procedure of DBIE while further enhancing quality by fully leveraging region-level structure information and progressive guidance from intermediate drag states. We validate \textcolor{SkyBlue}{\textbf{DragNeXt}} on our NextBench, and extensive experiments demonstrate that our proposed method can significantly outperform existing approaches. Code will be released on github.
SurgBench: A Unified Large-Scale Benchmark for Surgical Video Analysis
Surgical video understanding is pivotal for enabling automated intraoperative decision-making, skill assessment, and postoperative quality improvement. However, progress in developing surgical video foundation models (FMs) remains hindered by the scarcity of large-scale, diverse datasets for pretraining and systematic evaluation. In this paper, we introduce \textbf{SurgBench}, a unified surgical video benchmarking framework comprising a pretraining dataset, \textbf{SurgBench-P}, and an evaluation benchmark, \textbf{SurgBench-E}. SurgBench offers extensive coverage of diverse surgical scenarios, with SurgBench-P encompassing 53 million frames across 22 surgical procedures and 11 specialties, and SurgBench-E providing robust evaluation across six categories (phase classification, camera motion, tool recognition, disease diagnosis, action classification, and organ detection) spanning 72 fine-grained tasks. Extensive experiments reveal that existing video FMs struggle to generalize across varied surgical video analysis tasks, whereas pretraining on SurgBench-P yields substantial performance improvements and superior cross-domain generalization to unseen procedures and modalities. Our dataset and code are available upon request.
SceneRAG: Scene-level Retrieval-Augmented Generation for Video Understanding
Despite recent advances in retrieval-augmented generation (RAG) for video understanding, effectively understanding long-form video content remains underexplored due to the vast scale and high complexity of video data. Current RAG approaches typically segment videos into fixed-length chunks, which often disrupts the continuity of contextual information and fails to capture authentic scene boundaries. Inspired by the human ability to naturally organize continuous experiences into coherent scenes, we present SceneRAG, a unified framework that leverages large language models to segment videos into narrative-consistent scenes by processing ASR transcripts alongside temporal metadata. SceneRAG further sharpens these initial boundaries through lightweight heuristics and iterative correction. For each scene, the framework fuses information from both visual and textual modalities to extract entity relations and dynamically builds a knowledge graph, enabling robust multi-hop retrieval and generation that account for long-range dependencies. Experiments on the LongerVideos benchmark, featuring over 134 hours of diverse content, confirm that SceneRAG substantially outperforms prior baselines, achieving a win rate of up to 72.5 percent on generation tasks.
Explore the vulnerability of black-box models via diffusion models
Recent advancements in diffusion models have enabled high-fidelity and photorealistic image generation across diverse applications. However, these models also present security and privacy risks, including copyright violations, sensitive information leakage, and the creation of harmful or offensive content that could be exploited maliciously. In this study, we uncover a novel security threat where an attacker leverages diffusion model APIs to generate synthetic images, which are then used to train a high-performing substitute model. This enables the attacker to execute model extraction and transfer-based adversarial attacks on black-box classification models with minimal queries, without needing access to the original training data. The generated images are sufficiently high-resolution and diverse to train a substitute model whose outputs closely match those of the target model. Across the seven benchmarks, including CIFAR and ImageNet subsets, our method shows an average improvement of 27.37% over state-of-the-art methods while using just 0.01 times of the query budget, achieving a 98.68% success rate in adversarial attacks on the target model.
Super Encoding Network: Recursive Association of Multi-Modal Encoders for Video Understanding
Video understanding has been considered as one critical step towards world modeling, which is an important long-term problem in AI research. Recently, multi-modal foundation models have shown such potential via large-scale pretraining. However, these models simply align encoders of different modalities via contrastive learning, while lacking deeper multi-modal interactions, which is critical for understanding complex target movements with diversified video scenes. To fill this gap, we propose a unified Super Encoding Network (SEN) for video understanding, which builds up such distinct interactions through recursive association of multi-modal encoders in the foundation models. Specifically, we creatively treat those well-trained encoders as "super neurons" in our SEN. Via designing a Recursive Association (RA) block, we progressively fuse multi-modalities with the input video, based on knowledge integrating, distributing, and prompting of super neurons in a recursive manner. In this way, our SEN can effectively encode deeper multi-modal interactions, for prompting various video understanding tasks in downstream. Extensive experiments show that, our SEN can remarkably boost the four most representative video tasks, including tracking, recognition, chatting, and editing, e.g., for pixel-level tracking, the average jaccard index improves 2.7%, temporal coherence(TC) drops 8.8% compared to the popular CaDeX++ approach. For one-shot video editing, textual alignment improves 6.4%, and frame consistency increases 4.1% compared to the popular TuneA-Video approach.
Uncertainty-o: One Model-agnostic Framework for Unveiling Uncertainty in Large Multimodal Models
Large Multimodal Models (LMMs), harnessing the complementarity among diverse modalities, are often considered more robust than pure Language Large Models (LLMs); yet do LMMs know what they do not know? There are three key open questions remaining: (1) how to evaluate the uncertainty of diverse LMMs in a unified manner, (2) how to prompt LMMs to show its uncertainty, and (3) how to quantify uncertainty for downstream tasks. In an attempt to address these challenges, we introduce Uncertainty-o: (1) a model-agnostic framework designed to reveal uncertainty in LMMs regardless of their modalities, architectures, or capabilities, (2) an empirical exploration of multimodal prompt perturbations to uncover LMM uncertainty, offering insights and findings, and (3) derive the formulation of multimodal semantic uncertainty, which enables quantifying uncertainty from multimodal responses. Experiments across 18 benchmarks spanning various modalities and 10 LMMs (both open- and closed-source) demonstrate the effectiveness of Uncertainty-o in reliably estimating LMM uncertainty, thereby enhancing downstream tasks such as hallucination detection, hallucination mitigation, and uncertainty-aware Chain-of-Thought reasoning.
comment: Project page: https://uncertainty-o.github.io/
Learning Speaker-Invariant Visual Features for Lipreading
Lipreading is a challenging cross-modal task that aims to convert visual lip movements into spoken text. Existing lipreading methods often extract visual features that include speaker-specific lip attributes (e.g., shape, color, texture), which introduce spurious correlations between vision and text. These correlations lead to suboptimal lipreading accuracy and restrict model generalization. To address this challenge, we introduce SIFLip, a speaker-invariant visual feature learning framework that disentangles speaker-specific attributes using two complementary disentanglement modules (Implicit Disentanglement and Explicit Disentanglement) to improve generalization. Specifically, since different speakers exhibit semantic consistency between lip movements and phonetic text when pronouncing the same words, our implicit disentanglement module leverages stable text embeddings as supervisory signals to learn common visual representations across speakers, implicitly decoupling speaker-specific features. Additionally, we design a speaker recognition sub-task within the main lipreading pipeline to filter speaker-specific features, then further explicitly disentangle these personalized visual features from the backbone network via gradient reversal. Experimental results demonstrate that SIFLip significantly enhances generalization performance across multiple public datasets. Experimental results demonstrate that SIFLip significantly improves generalization performance across multiple public datasets, outperforming state-of-the-art methods.
LLM-driven Indoor Scene Layout Generation via Scaled Human-aligned Data Synthesis and Multi-Stage Preference Optimization
Automatic indoor layout generation has attracted increasing attention due to its potential in interior design, virtual environment construction, and embodied AI. Existing methods fall into two categories: prompt-driven approaches that leverage proprietary LLM services (e.g., GPT APIs) and learning-based methods trained on layout data upon diffusion-based models. Prompt-driven methods often suffer from spatial inconsistency and high computational costs, while learning-based methods are typically constrained by coarse relational graphs and limited datasets, restricting their generalization to diverse room categories. In this paper, we revisit LLM-based indoor layout generation and present 3D-SynthPlace, a large-scale dataset that combines synthetic layouts generated via a 'GPT synthesize, Human inspect' pipeline, upgraded from the 3D-Front dataset. 3D-SynthPlace contains nearly 17,000 scenes, covering four common room types -- bedroom, living room, kitchen, and bathroom -- enriched with diverse objects and high-level spatial annotations. We further introduce OptiScene, a strong open-source LLM optimized for indoor layout generation, fine-tuned based on our 3D-SynthPlace dataset through our two-stage training. For the warum-up stage I, we adopt supervised fine-tuning (SFT), which is taught to first generate high-level spatial descriptions then conditionally predict concrete object placements. For the reinforcing stage II, to better align the generated layouts with human design preferences, we apply multi-turn direct preference optimization (DPO), which significantly improving layout quality and generation success rates. Extensive experiments demonstrate that OptiScene outperforms traditional prompt-driven and learning-based baselines. Moreover, OptiScene shows promising potential in interactive tasks such as scene editing and robot navigation.
Towards the Influence of Text Quantity on Writer Retrieval ICDAR2025
This paper investigates the task of writer retrieval, which identifies documents authored by the same individual within a dataset based on handwriting similarities. While existing datasets and methodologies primarily focus on page level retrieval, we explore the impact of text quantity on writer retrieval performance by evaluating line- and word level retrieval. We examine three state-of-the-art writer retrieval systems, including both handcrafted and deep learning-based approaches, and analyze their performance using varying amounts of text. Our experiments on the CVL and IAM dataset demonstrate that while performance decreases by 20-30% when only one line of text is used as query and gallery, retrieval accuracy remains above 90% of full-page performance when at least four lines are included. We further show that text-dependent retrieval can maintain strong performance in low-text scenarios. Our findings also highlight the limitations of handcrafted features in low-text scenarios, with deep learning-based methods like NetVLAD outperforming traditional VLAD encoding.
comment: accepted for ICDAR2025
OpenDance: Multimodal Controllable 3D Dance Generation Using Large-scale Internet Data
Music-driven dance generation offers significant creative potential yet faces considerable challenges. The absence of fine-grained multimodal data and the difficulty of flexible multi-conditional generation limit previous works on generation controllability and diversity in practice. In this paper, we build OpenDance5D, an extensive human dance dataset comprising over 101 hours across 14 distinct genres. Each sample has five modalities to facilitate robust cross-modal learning: RGB video, audio, 2D keypoints, 3D motion, and fine-grained textual descriptions from human arts. Furthermore, we propose OpenDanceNet, a unified masked modeling framework for controllable dance generation conditioned on music and arbitrary combinations of text prompts, keypoints, or character positioning. Comprehensive experiments demonstrate that OpenDanceNet achieves high-fidelity and flexible controllability.
Cross-channel Perception Learning for H&E-to-IHC Virtual Staining
With the rapid development of digital pathology, virtual staining has become a key technology in multimedia medical information systems, offering new possibilities for the analysis and diagnosis of pathological images. However, existing H&E-to-IHC studies often overlook the cross-channel correlations between cell nuclei and cell membranes. To address this issue, we propose a novel Cross-Channel Perception Learning (CCPL) strategy. Specifically, CCPL first decomposes HER2 immunohistochemical staining into Hematoxylin and DAB staining channels, corresponding to cell nuclei and cell membranes, respectively. Using the pathology foundation model Gigapath's Tile Encoder, CCPL extracts dual-channel features from both the generated and real images and measures cross-channel correlations between nuclei and membranes. The features of the generated and real stained images, obtained through the Tile Encoder, are also used to calculate feature distillation loss, enhancing the model's feature extraction capabilities without increasing the inference burden. Additionally, CCPL performs statistical analysis on the focal optical density maps of both single channels to ensure consistency in staining distribution and intensity. Experimental results, based on quantitative metrics such as PSNR, SSIM, PCC, and FID, along with professional evaluations from pathologists, demonstrate that CCPL effectively preserves pathological features, generates high-quality virtual stained images, and provides robust support for automated pathological diagnosis using multimedia medical data.
Synthesize Privacy-Preserving High-Resolution Images via Private Textual Intermediaries
Generating high fidelity, differentially private (DP) synthetic images offers a promising route to share and analyze sensitive visual data without compromising individual privacy. However, existing DP image synthesis methods struggle to produce high resolution outputs that faithfully capture the structure of the original data. In this paper, we introduce a novel method, referred to as Synthesis via Private Textual Intermediaries (SPTI), that can generate high resolution DP images with easy adoption. The key idea is to shift the challenge of DP image synthesis from the image domain to the text domain by leveraging state of the art DP text generation methods. SPTI first summarizes each private image into a concise textual description using image to text models, then applies a modified Private Evolution algorithm to generate DP text, and finally reconstructs images using text to image models. Notably, SPTI requires no model training, only inference with off the shelf models. Given a private dataset, SPTI produces synthetic images of substantially higher quality than prior DP approaches. On the LSUN Bedroom dataset, SPTI attains an FID less than or equal to 26.71 under epsilon equal to 1.0, improving over Private Evolution FID of 40.36. Similarly, on MM CelebA HQ, SPTI achieves an FID less than or equal to 33.27 at epsilon equal to 1.0, compared to 57.01 from DP fine tuning baselines. Overall, our results demonstrate that Synthesis via Private Textual Intermediaries provides a resource efficient and proprietary model compatible framework for generating high resolution DP synthetic images, greatly expanding access to private visual datasets.
APTOS-2024 challenge report: Generation of synthetic 3D OCT images from fundus photographs
Optical Coherence Tomography (OCT) provides high-resolution, 3D, and non-invasive visualization of retinal layers in vivo, serving as a critical tool for lesion localization and disease diagnosis. However, its widespread adoption is limited by equipment costs and the need for specialized operators. In comparison, 2D color fundus photography offers faster acquisition and greater accessibility with less dependence on expensive devices. Although generative artificial intelligence has demonstrated promising results in medical image synthesis, translating 2D fundus images into 3D OCT images presents unique challenges due to inherent differences in data dimensionality and biological information between modalities. To advance generative models in the fundus-to-3D-OCT setting, the Asia Pacific Tele-Ophthalmology Society (APTOS-2024) organized a challenge titled Artificial Intelligence-based OCT Generation from Fundus Images. This paper details the challenge framework (referred to as APTOS-2024 Challenge), including: the benchmark dataset, evaluation methodology featuring two fidelity metrics-image-based distance (pixel-level OCT B-scan similarity) and video-based distance (semantic-level volumetric consistency), and analysis of top-performing solutions. The challenge attracted 342 participating teams, with 42 preliminary submissions and 9 finalists. Leading methodologies incorporated innovations in hybrid data preprocessing or augmentation (cross-modality collaborative paradigms), pre-training on external ophthalmic imaging datasets, integration of vision foundation models, and model architecture improvement. The APTOS-2024 Challenge is the first benchmark demonstrating the feasibility of fundus-to-3D-OCT synthesis as a potential solution for improving ophthalmic care accessibility in under-resourced healthcare settings, while helping to expedite medical research and clinical applications.
Domain Randomization for Object Detection in Manufacturing Applications using Synthetic Data: A Comprehensive Study ICRA
This paper addresses key aspects of domain randomization in generating synthetic data for manufacturing object detection applications. To this end, we present a comprehensive data generation pipeline that reflects different factors: object characteristics, background, illumination, camera settings, and post-processing. We also introduce the Synthetic Industrial Parts Object Detection dataset (SIP15-OD) consisting of 15 objects from three industrial use cases under varying environments as a test bed for the study, while also employing an industrial dataset publicly available for robotic applications. In our experiments, we present more abundant results and insights into the feasibility as well as challenges of sim-to-real object detection. In particular, we identified material properties, rendering methods, post-processing, and distractors as important factors. Our method, leveraging these, achieves top performance on the public dataset with Yolov8 models trained exclusively on synthetic data; mAP@50 scores of 96.4% for the robotics dataset, and 94.1%, 99.5%, and 95.3% across three of the SIP15-OD use cases, respectively. The results showcase the effectiveness of the proposed domain randomization, potentially covering the distribution close to real data for the applications.
comment: This is accepted by 2025 IEEE International Conference on Robotics & Automation (ICRA), waiting for publication. 14 pages, 14 figures
MoQAE: Mixed-Precision Quantization for Long-Context LLM Inference via Mixture of Quantization-Aware Experts ACL 2025
One of the primary challenges in optimizing large language models (LLMs) for long-context inference lies in the high memory consumption of the Key-Value (KV) cache. Existing approaches, such as quantization, have demonstrated promising results in reducing memory usage. However, current quantization methods cannot take both effectiveness and efficiency into account. In this paper, we propose MoQAE, a novel mixed-precision quantization method via mixture of quantization-aware experts. First, we view different quantization bit-width configurations as experts and use the traditional mixture of experts (MoE) method to select the optimal configuration. To avoid the inefficiency caused by inputting tokens one by one into the router in the traditional MoE method, we input the tokens into the router chunk by chunk. Second, we design a lightweight router-only fine-tuning process to train MoQAE with a comprehensive loss to learn the trade-off between model accuracy and memory usage. Finally, we introduce a routing freezing (RF) and a routing sharing (RS) mechanism to further reduce the inference overhead. Extensive experiments on multiple benchmark datasets demonstrate that our method outperforms state-of-the-art KV cache quantization approaches in both efficiency and effectiveness.
comment: Accepted by the 63rd Annual Meeting of the Association for Computational Linguistics (ACL 2025)
BitVLA: 1-bit Vision-Language-Action Models for Robotics Manipulation
Vision-Language-Action (VLA) models have shown impressive capabilities across a wide range of robotics manipulation tasks. However, their growing model size poses significant challenges for deployment on resource-constrained robotic systems. While 1-bit pretraining has proven effective for enhancing the inference efficiency of large language models with minimal performance loss, its application to VLA models remains underexplored. In this work, we present BitVLA, the first 1-bit VLA model for robotics manipulation, in which every parameter is ternary, i.e., {-1, 0, 1}. To further reduce the memory footprint of the vision encoder, we propose the distillation-aware training strategy that compresses the full-precision encoder to 1.58-bit weights. During this process, a full-precision encoder serves as a teacher model to better align latent representations. Despite the lack of large-scale robotics pretraining, BitVLA achieves performance comparable to the state-of-the-art model OpenVLA-OFT with 4-bit post-training quantization on the LIBERO benchmark, while consuming only 29.8% of the memory. These results highlight BitVLA's promise for deployment on memory-constrained edge devices. We release the code and model weights in https://github.com/ustcwhy/BitVLA.
comment: Work in progress
Genesis: Multimodal Driving Scene Generation with Spatio-Temporal and Cross-Modal Consistency
We present Genesis, a unified framework for joint generation of multi-view driving videos and LiDAR sequences with spatio-temporal and cross-modal consistency. Genesis employs a two-stage architecture that integrates a DiT-based video diffusion model with 3D-VAE encoding, and a BEV-aware LiDAR generator with NeRF-based rendering and adaptive sampling. Both modalities are directly coupled through a shared latent space, enabling coherent evolution across visual and geometric domains. To guide the generation with structured semantics, we introduce DataCrafter, a captioning module built on vision-language models that provides scene-level and instance-level supervision. Extensive experiments on the nuScenes benchmark demonstrate that Genesis achieves state-of-the-art performance across video and LiDAR metrics (FVD 16.95, FID 4.24, Chamfer 0.611), and benefits downstream tasks including segmentation and 3D detection, validating the semantic fidelity and practical utility of the generated data.
SpatialLM: Training Large Language Models for Structured Indoor Modeling
SpatialLM is a large language model designed to process 3D point cloud data and generate structured 3D scene understanding outputs. These outputs include architectural elements like walls, doors, windows, and oriented object boxes with their semantic categories. Unlike previous methods which exploit task-specific network designs, our model adheres to the standard multimodal LLM architecture and is fine-tuned directly from open-source LLMs. To train SpatialLM, we collect a large-scale, high-quality synthetic dataset consisting of the point clouds of 12,328 indoor scenes (54,778 rooms) with ground-truth 3D annotations, and conduct a careful study on various modeling and training decisions. On public benchmarks, our model gives state-of-the-art performance in layout estimation and competitive results in 3D object detection. With that, we show a feasible path for enhancing the spatial understanding capabilities of modern LLMs for applications in augmented reality, embodied robotics, and more.
Drive Any Mesh: 4D Latent Diffusion for Mesh Deformation from Video
We propose DriveAnyMesh, a method for driving mesh guided by monocular video. Current 4D generation techniques encounter challenges with modern rendering engines. Implicit methods have low rendering efficiency and are unfriendly to rasterization-based engines, while skeletal methods demand significant manual effort and lack cross-category generalization. Animating existing 3D assets, instead of creating 4D assets from scratch, demands a deep understanding of the input's 3D structure. To tackle these challenges, we present a 4D diffusion model that denoises sequences of latent sets, which are then decoded to produce mesh animations from point cloud trajectory sequences. These latent sets leverage a transformer-based variational autoencoder, simultaneously capturing 3D shape and motion information. By employing a spatiotemporal, transformer-based diffusion model, information is exchanged across multiple latent frames, enhancing the efficiency and generalization of the generated results. Our experimental results demonstrate that DriveAnyMesh can rapidly produce high-quality animations for complex motions and is compatible with modern rendering engines. This method holds potential for applications in both the gaming and filming industries.
comment: technical report
CoCoA-Mix: Confusion-and-Confidence-Aware Mixture Model for Context Optimization ICML 2025
Prompt tuning, which adapts vision-language models by freezing model parameters and optimizing only the prompt, has proven effective for task-specific adaptations. The core challenge in prompt tuning is improving specialization for a specific task and generalization for unseen domains. However, frozen encoders often produce misaligned features, leading to confusion between classes and limiting specialization. To overcome this issue, we propose a confusion-aware loss (CoA-loss) that improves specialization by refining the decision boundaries between confusing classes. Additionally, we mathematically demonstrate that a mixture model can enhance generalization without compromising specialization. This is achieved using confidence-aware weights (CoA-weights), which adjust the weights of each prediction in the mixture model based on its confidence within the class domains. Extensive experiments show that CoCoA-Mix, a mixture model with CoA-loss and CoA-weights, outperforms state-of-the-art methods by enhancing specialization and generalization. Our code is publicly available at https://github.com/url-kaist/CoCoA-Mix.
comment: 8 pages, 5 figures; accepted at ICML 2025
Text-guided multi-stage cross-perception network for medical image segmentation
Medical image segmentation plays a crucial role in clinical medicine, serving as a tool for auxiliary diagnosis, treatment planning, and disease monitoring, thus facilitating physicians in the study and treatment of diseases. However, existing medical image segmentation methods are limited by the weak semantic expression of the target segmentation regions, which is caused by the low contrast between the target and non-target segmentation regions. To address this limitation, text prompt information has greast potential to capture the lesion location. However, existing text-guided methods suffer from insufficient cross-modal interaction and inadequate cross-modal feature expression. To resolve these issues, we propose the Text-guided Multi-stage Cross-perception network (TMC). In TMC, we introduce a multistage cross-attention module to enhance the model's understanding of semantic details and a multi-stage alignment loss to improve the consistency of cross-modal semantics. The results of the experiments demonstrate that our TMC achieves a superior performance with Dice of 84.77%, 78.50%, 88.73% in three public datasets (QaTa-COV19, MosMedData and Breast), outperforming UNet based networks and text-guided methods.
Ambiguity-Restrained Text-Video Representation Learning for Partially Relevant Video Retrieval AAAI 2025
Partially Relevant Video Retrieval~(PRVR) aims to retrieve a video where a specific segment is relevant to a given text query. Typical training processes of PRVR assume a one-to-one relationship where each text query is relevant to only one video. However, we point out the inherent ambiguity between text and video content based on their conceptual scope and propose a framework that incorporates this ambiguity into the model learning process. Specifically, we propose Ambiguity-Restrained representation Learning~(ARL) to address ambiguous text-video pairs. Initially, ARL detects ambiguous pairs based on two criteria: uncertainty and similarity. Uncertainty represents whether instances include commonly shared context across the dataset, while similarity indicates pair-wise semantic overlap. Then, with the detected ambiguous pairs, our ARL hierarchically learns the semantic relationship via multi-positive contrastive learning and dual triplet margin loss. Additionally, we delve into fine-grained relationships within the video instances. Unlike typical training at the text-video level, where pairwise information is provided, we address the inherent ambiguity within frames of the same untrimmed video, which often contains multiple contexts. This allows us to further enhance learning at the text-frame level. Lastly, we propose cross-model ambiguity detection to mitigate the error propagation that occurs when a single model is employed to detect ambiguous pairs for its training. With all components combined, our proposed method demonstrates its effectiveness in PRVR.
comment: Accepted to AAAI 2025
E3D-Bench: A Benchmark for End-to-End 3D Geometric Foundation Models
Spatial intelligence, encompassing 3D reconstruction, perception, and reasoning, is fundamental to applications such as robotics, aerial imaging, and extended reality. A key enabler is the real-time, accurate estimation of core 3D attributes (camera parameters, point clouds, depth maps, and 3D point tracks) from unstructured or streaming imagery. Inspired by the success of large foundation models in language and 2D vision, a new class of end-to-end 3D geometric foundation models (GFMs) has emerged, directly predicting dense 3D representations in a single feed-forward pass, eliminating the need for slow or unavailable precomputed camera parameters. Since late 2023, the field has exploded with diverse variants, but systematic evaluation is lacking. In this work, we present the first comprehensive benchmark for 3D GFMs, covering five core tasks: sparse-view depth estimation, video depth estimation, 3D reconstruction, multi-view pose estimation, novel view synthesis, and spanning both standard and challenging out-of-distribution datasets. Our standardized toolkit automates dataset handling, evaluation protocols, and metric computation to ensure fair, reproducible comparisons. We evaluate 16 state-of-the-art GFMs, revealing their strengths and limitations across tasks and domains, and derive key insights to guide future model scaling and optimization. All code, evaluation scripts, and processed data will be publicly released to accelerate research in 3D spatial intelligence.
comment: Project Page: https://e3dbench.github.io/
CORDIAL: Can Multimodal Large Language Models Effectively Understand Coherence Relationships? ACL
Multimodal Large Language Models (MLLMs) are renowned for their superior instruction-following and reasoning capabilities across diverse problem domains. However, existing benchmarks primarily focus on assessing factual and logical correctness in downstream tasks, with limited emphasis on evaluating MLLMs' ability to interpret pragmatic cues and intermodal relationships. To address this gap, we assess the competency of MLLMs in performing Multimodal Discourse Analysis (MDA) using Coherence Relations. Our benchmark, CORDIAL, encompasses a broad spectrum of Coherence Relations across 3 different discourse domains at varying levels of granularity. Through our experiments on 10+ MLLMs employing different prompting strategies, we show that even top models like Gemini 1.5 Pro and GPT-4o fail to match the performance of simple classifier-based baselines. This study emphasizes the need to move beyond similarity-based metrics and adopt a discourse-driven framework for evaluating MLLMs, providing a more nuanced assessment of their capabilities. The benchmark and code are available at: https://aashish2000.github.io/CORDIAL/
comment: To appear at the 63rd Annual Meeting of the Association for Computational Linguistics (ACL), Vienna, Austria, July 2025, https://2025.aclweb.org/
What Changed and What Could Have Changed? State-Change Counterfactuals for Procedure-Aware Video Representation Learning
Understanding a procedural activity requires modeling both how action steps transform the scene and how evolving scene transformations can influence the sequence of action steps, even those that are accidental or erroneous. Existing work has studied procedure-aware video representations by proposing novel approaches such as modeling the temporal order of actions, and has not explicitly learned the state changes (scene transformations). In this work, we study procedure-aware video representation learning by incorporating state-change descriptions generated by Large Language Models (LLMs) as supervision signals for video encoders. Moreover, we generate state-change counterfactuals that simulate hypothesized failure outcomes, allowing models to learn by imagining the unseen ``What if'' scenarios. This counterfactual reasoning facilitates the model's ability to understand the cause and effect of each step in an activity. To verify the procedure awareness of our model, we conduct extensive experiments on procedure-aware tasks, including temporal action segmentation, error detection, action phase classification, frame retrieval, multi-instance retrieval, and action recognition. Our results demonstrate the effectiveness of the proposed state-change descriptions and their counterfactuals, and achieve significant improvements on multiple tasks. We will make our source code and data publicly available soon.
comment: 16 pages, 4 figures
Enhancing Few-Shot Vision-Language Classification with Large Multimodal Model Features
Generative Large Multimodal Models (LMMs) like LLaVA and Qwen-VL excel at a wide variety of vision-language (VL) tasks. Despite strong performance, LMMs' generative outputs are not specialized for vision-language classification tasks (i.e., tasks with vision-language inputs and discrete labels) such as image classification and multiple-choice VQA. One key challenge in utilizing LMMs for these tasks is the extraction of useful features from generative LMMs. To overcome this, we propose an approach that leverages multimodal feature extraction from the LMM's latent space. Toward this end, we present Sparse Attention Vectors (SAVs) -- a finetuning-free method that leverages sparse attention head activations (fewer than 5% of the heads) in LMMs as strong feature representations. With only few-shot examples, SAVs demonstrate state-of-the-art performance compared to a variety of few-shot and finetuned baselines on a collection of vision-language classification tasks. Our experiments also imply that SAVs can scale in performance with additional examples and generalize to similar tasks, establishing SAVs as both effective and robust multimodal feature representations.
RONA: Pragmatically Diverse Image Captioning with Coherence Relations NAACL
Writing Assistants (e.g., Grammarly, Microsoft Copilot) traditionally generate diverse image captions by employing syntactic and semantic variations to describe image components. However, human-written captions prioritize conveying a central message alongside visual descriptions using pragmatic cues. To enhance caption diversity, it is essential to explore alternative ways of communicating these messages in conjunction with visual content. We propose RONA, a novel prompting strategy for Multi-modal Large Language Models (MLLM) that leverages Coherence Relations as a controllable axis for pragmatic variations. We demonstrate that RONA generates captions with better overall diversity and ground-truth alignment, compared to MLLM baselines across multiple domains. Our code is available at: https://github.com/aashish2000/RONA
comment: Accepted in the NAACL Fourth Workshop on Intelligent and Interactive Writing Assistants (In2Writing), Albuquerque, New Mexico, May 2025, https://in2writing.glitch.me
ViVo: A Dataset for Volumetric Video Reconstruction and Compression
As research on neural volumetric video reconstruction and compression flourishes, there is a need for diverse and realistic datasets, which can be used to develop and validate reconstruction and compression models. However, existing volumetric video datasets lack diverse content in terms of both semantic and low-level features that are commonly present in real-world production pipelines. In this context, we propose a new dataset, ViVo, for VolumetrIc VideO reconstruction and compression. The dataset is faithful to real-world volumetric video production and is the first dataset to extend the definition of diversity to include both human-centric characteristics (skin, hair, etc.) and dynamic visual phenomena (transparent, reflective, liquid, etc.). Each video sequence in this database contains raw data including fourteen multi-view RGB and depth video pairs, synchronized at 30FPS with per-frame calibration and audio data, and their associated 2-D foreground masks and 3-D point clouds. To demonstrate the use of this database, we have benchmarked three state-of-the-art (SotA) 3-D reconstruction methods and two volumetric video compression algorithms. The obtained results evidence the challenging nature of the proposed dataset and the limitations of existing datasets for both volumetric video reconstruction and compression tasks, highlighting the need to develop more effective algorithms for these applications. The database and the associated results are available at https://vivo-bvicr.github.io/
DINeMo: Learning Neural Mesh Models with no 3D Annotations CVPR 2025
Category-level 3D/6D pose estimation is a crucial step towards comprehensive 3D scene understanding, which would enable a broad range of applications in robotics and embodied AI. Recent works explored neural mesh models that approach a range of 2D and 3D tasks from an analysis-by-synthesis perspective. Despite the largely enhanced robustness to partial occlusion and domain shifts, these methods depended heavily on 3D annotations for part-contrastive learning, which confines them to a narrow set of categories and hinders efficient scaling. In this work, we present DINeMo, a novel neural mesh model that is trained with no 3D annotations by leveraging pseudo-correspondence obtained from large visual foundation models. We adopt a bidirectional pseudo-correspondence generation method, which produce pseudo correspondence utilize both local appearance features and global context information. Experimental results on car datasets demonstrate that our DINeMo outperforms previous zero- and few-shot 3D pose estimation by a wide margin, narrowing the gap with fully-supervised methods by 67.3%. Our DINeMo also scales effectively and efficiently when incorporating more unlabeled images during training, which demonstrate the advantages over supervised learning methods that rely on 3D annotations. Our project page is available at https://analysis-by-synthesis.github.io/DINeMo/.
comment: Accepted to 3rd Workshop on Compositional 3D Vision at CVPR 2025 (C3DV)
VLog: Video-Language Models by Generative Retrieval of Narration Vocabulary CVPR 2025
Human daily activities can be concisely narrated as sequences of routine events (e.g., turning off an alarm) in video streams, forming an event vocabulary. Motivated by this, we introduce VLog, a novel video understanding framework that define video narrations as vocabulary, going beyond the typical subword vocabularies in existing generative video-language models. Built on the lightweight language model GPT-2, VLog feature three key innovations: (i) A generative retrieval model, marrying language model's complex reasoning capabilities with contrastive retrieval's flexible upgrading over narration vocabulary. (ii) A hierarchical vocabulary derived from large-scale video narrations using our narration pair encoding algorithm, enabling efficient indexing of specific events (e.g., cutting a tomato) by identifying broader scenarios (e.g., kitchen) with expressive postfixes (e.g., by the left hand). (iii) A vocabulary update strategy leveraging generative models to extend the vocabulary for novel events encountered during inference. To validate our approach, we introduce VidCap-Eval, a development set requiring concise narrations with reasoning relationships (e.g., before and after). Experiments on EgoSchema, COIN, and HiREST further demonstrate the effectiveness of VLog, highlighting its ability to generate concise, contextually accurate, and efficient narrations, offering a novel perspective on video understanding. Codes are released at https://github.com/showlab/VLog.
comment: Accepted by CVPR 2025. Github: https://github.com/showlab/VLog
Hummingbird: High Fidelity Image Generation via Multimodal Context Alignment ICLR 2025
While diffusion models are powerful in generating high-quality, diverse synthetic data for object-centric tasks, existing methods struggle with scene-aware tasks such as Visual Question Answering (VQA) and Human-Object Interaction (HOI) Reasoning, where it is critical to preserve scene attributes in generated images consistent with a multimodal context, i.e. a reference image with accompanying text guidance query. To address this, we introduce $\textbf{Hummingbird}$, the first diffusion-based image generator which, given a multimodal context, generates highly diverse images w.r.t. the reference image while ensuring high fidelity by accurately preserving scene attributes, such as object interactions and spatial relationships from the text guidance. Hummingbird employs a novel Multimodal Context Evaluator that simultaneously optimizes our formulated Global Semantic and Fine-grained Consistency Rewards to ensure generated images preserve the scene attributes of reference images in relation to the text guidance while maintaining diversity. As the first model to address the task of maintaining both diversity and fidelity given a multimodal context, we introduce a new benchmark formulation incorporating MME Perception and Bongard HOI datasets. Benchmark experiments show Hummingbird outperforms all existing methods by achieving superior fidelity while maintaining diversity, validating Hummingbird's potential as a robust multimodal context-aligned image generator in complex visual tasks. Project page: https://roar-ai.github.io/hummingbird
comment: Accepted to ICLR 2025. Project page with code release: https://roar-ai.github.io/hummingbird
SimLTD: Simple Supervised and Semi-Supervised Long-Tailed Object Detection CVPR 2025
While modern visual recognition systems have made significant advancements, many continue to struggle with the open problem of learning from few exemplars. This paper focuses on the task of object detection in the setting where object classes follow a natural long-tailed distribution. Existing methods for long-tailed detection resort to external ImageNet labels to augment the low-shot training instances. However, such dependency on a large labeled database has limited utility in practical scenarios. We propose a versatile and scalable approach to leverage optional unlabeled images, which are easy to collect without the burden of human annotations. Our SimLTD framework is straightforward and intuitive, and consists of three simple steps: (1) pre-training on abundant head classes; (2) transfer learning on scarce tail classes; and (3) fine-tuning on a sampled set of both head and tail classes. Our approach can be viewed as an improved head-to-tail model transfer paradigm without the added complexities of meta-learning or knowledge distillation, as was required in past research. By harnessing supplementary unlabeled images, without extra image labels, SimLTD establishes new record results on the challenging LVIS v1 benchmark across both supervised and semi-supervised settings.
comment: CVPR 2025. The reference code is available at https://github.com/lexisnexis-risk-open-source/simltd
CAPAA: Classifier-Agnostic Projector-Based Adversarial Attack
Projector-based adversarial attack aims to project carefully designed light patterns (i.e., adversarial projections) onto scenes to deceive deep image classifiers. It has potential applications in privacy protection and the development of more robust classifiers. However, existing approaches primarily focus on individual classifiers and fixed camera poses, often neglecting the complexities of multi-classifier systems and scenarios with varying camera poses. This limitation reduces their effectiveness when introducing new classifiers or camera poses. In this paper, we introduce Classifier-Agnostic Projector-Based Adversarial Attack (CAPAA) to address these issues. First, we develop a novel classifier-agnostic adversarial loss and optimization framework that aggregates adversarial and stealthiness loss gradients from multiple classifiers. Then, we propose an attention-based gradient weighting mechanism that concentrates perturbations on regions of high classification activation, thereby improving the robustness of adversarial projections when applied to scenes with varying camera poses. Our extensive experimental evaluations demonstrate that CAPAA achieves both a higher attack success rate and greater stealthiness compared to existing baselines. Codes are available at: https://github.com/ZhanLiQxQ/CAPAA.
C3T: Cross-modal Transfer Through Time for Sensor-based Human Activity Recognition
In order to unlock the potential of diverse sensors, we investigate a method to transfer knowledge between time-series modalities using a multimodal \textit{temporal} representation space for Human Activity Recognition (HAR). Specifically, we explore the setting where the modality used in testing has no labeled data during training, which we refer to as Unsupervised Modality Adaptation (UMA). We categorize existing UMA approaches as Student-Teacher or Contrastive Alignment methods. These methods typically compress continuous-time data samples into single latent vectors during alignment, inhibiting their ability to transfer temporal information through real-world temporal distortions. To address this, we introduce Cross-modal Transfer Through Time (C3T), which preserves temporal information during alignment to handle dynamic sensor data better. C3T achieves this by aligning a set of temporal latent vectors across sensing modalities. Our extensive experiments on various camera+IMU datasets demonstrate that C3T outperforms existing methods in UMA by at least 8% in accuracy and shows superior robustness to temporal distortions such as time-shift, misalignment, and dilation. Our findings suggest that C3T has significant potential for developing generalizable models for time-series sensor data, opening new avenues for various multimodal applications.
Peer-Ranked Precision: Creating a Foundational Dataset for Fine-Tuning Vision Models from DataSeeds' Annotated Imagery
The development of modern Artificial Intelligence (AI) models, particularly diffusion-based models employed in computer vision and image generation tasks, is undergoing a paradigmatic shift in development methodologies. Traditionally dominated by a "Model Centric" approach, in which performance gains were primarily pursued through increasingly complex model architectures and hyperparameter optimization, the field is now recognizing a more nuanced "Data-Centric" approach. This emergent framework foregrounds the quality, structure, and relevance of training data as the principal driver of model performance. To operationalize this paradigm shift, we introduce the DataSeeds.AI sample dataset (the "DSD"), initially comprised of approximately 10,610 high-quality human peer-ranked photography images accompanied by extensive multi-tier annotations. The DSD is a foundational computer vision dataset designed to usher in a new standard for commercial image datasets. Representing a small fraction of DataSeeds.AI's 100 million-plus image catalog, the DSD provides a scalable foundation necessary for robust commercial and multimodal AI development. Through this in-depth exploratory analysis, we document the quantitative improvements generated by the DSD on specific models against known benchmarks and make the code and the trained models used in our evaluation publicly available.
comment: 28 pages, 12 figures
PID: Physics-Informed Diffusion Model for Infrared Image Generation
Infrared imaging technology has gained significant attention for its reliable sensing ability in low visibility conditions, prompting many studies to convert the abundant RGB images to infrared images. However, most existing image translation methods treat infrared images as a stylistic variation, neglecting the underlying physical laws, which limits their practical application. To address these issues, we propose a Physics-Informed Diffusion (PID) model for translating RGB images to infrared images that adhere to physical laws. Our method leverages the iterative optimization of the diffusion model and incorporates strong physical constraints based on prior knowledge of infrared laws during training. This approach enhances the similarity between translated infrared images and the real infrared domain without increasing extra training parameters. Experimental results demonstrate that PID significantly outperforms existing state-of-the-art methods. Our code is available at https://github.com/fangyuanmao/PID.
comment: Accepted by Pattern Recognition
Fine-grained Hierarchical Crop Type Classification from Integrated Hyperspectral EnMAP Data and Multispectral Sentinel-2 Time Series: A Large-scale Dataset and Dual-stream Transformer Method
Fine-grained crop type classification serves as the fundamental basis for large-scale crop mapping and plays a vital role in ensuring food security. It requires simultaneous capture of both phenological dynamics (obtained from multi-temporal satellite data like Sentinel-2) and subtle spectral variations (demanding nanometer-scale spectral resolution from hyperspectral imagery). Research combining these two modalities remains scarce currently due to challenges in hyperspectral data acquisition and crop types annotation costs. To address these issues, we construct a hierarchical hyperspectral crop dataset (H2Crop) by integrating 30m-resolution EnMAP hyperspectral data with Sentinel-2 time series. With over one million annotated field parcels organized in a four-tier crop taxonomy, H2Crop establishes a vital benchmark for fine-grained agricultural crop classification and hyperspectral image processing. We propose a dual-stream Transformer architecture that synergistically processes these modalities. It coordinates two specialized pathways: a spectral-spatial Transformer extracts fine-grained signatures from hyperspectral EnMAP data, while a temporal Swin Transformer extracts crop growth patterns from Sentinel-2 time series. The designed hierarchical classification head with hierarchical fusion then simultaneously delivers multi-level crop type classification across all taxonomic tiers. Experiments demonstrate that adding hyperspectral EnMAP data to Sentinel-2 time series yields a 4.2% average F1-scores improvement (peaking at 6.3%). Extensive comparisons also confirm our method's higher accuracy over existing deep learning approaches for crop type classification and the consistent benefits of hyperspectral data across varying temporal windows and crop change scenarios. Codes and dataset are available at https://github.com/flyakon/H2Crop.
comment: 27 pages, 12 figures
From Thousands to Billions: 3D Visual Language Grounding via Render-Supervised Distillation from 2D VLMs
3D vision-language grounding faces a fundamental data bottleneck: while 2D models train on billions of images, 3D models have access to only thousands of labeled scenes--a six-order-of-magnitude gap that severely limits performance. We introduce $\textbf{LIFT-GS}$, a practical distillation technique that overcomes this limitation by using differentiable rendering to bridge 3D and 2D supervision. LIFT-GS predicts 3D Gaussian representations from point clouds and uses them to render predicted language-conditioned 3D masks into 2D views, enabling supervision from 2D foundation models (SAM, CLIP, LLaMA) without requiring any 3D annotations. This render-supervised formulation enables end-to-end training of complete encoder-decoder architectures and is inherently model-agnostic. LIFT-GS achieves state-of-the-art results with $25.7\%$ mAP on open-vocabulary instance segmentation (vs. $20.2\%$ prior SOTA) and consistent $10-30\%$ improvements on referential grounding tasks. Remarkably, pretraining effectively multiplies fine-tuning datasets by 2X, demonstrating strong scaling properties that suggest 3D VLG currently operates in a severely data-scarce regime. Project page: https://liftgs.github.io
comment: Project page: https://liftgs.github.io
Benchmark Granularity and Model Robustness for Image-Text Retrieval SIGIR 2025
Image-Text Retrieval (ITR) systems are central to multimodal information access, with Vision-Language Models (VLMs) showing strong performance on standard benchmarks. However, these benchmarks predominantly rely on coarse-grained annotations, limiting their ability to reveal how models perform under real-world conditions, where query granularity varies. Motivated by this gap, we examine how dataset granularity and query perturbations affect retrieval performance and robustness across four architecturally diverse VLMs (ALIGN, AltCLIP, CLIP, and GroupViT). Using both standard benchmarks (MS-COCO, Flickr30k) and their fine-grained variants, we show that richer captions consistently enhance retrieval, especially in text-to-image tasks, where we observe an average improvement of 16.23%, compared to 6.44% in image-to-text. To assess robustness, we introduce a taxonomy of perturbations and conduct extensive experiments, revealing that while perturbations typically degrade performance, they can also unexpectedly improve retrieval, exposing nuanced model behaviors. Notably, word order emerges as a critical factor -- contradicting prior assumptions of model insensitivity to it. Our results highlight variation in model robustness and a dataset-dependent relationship between caption granularity and perturbation sensitivity and emphasize the necessity of evaluating models on datasets of varying granularity.
comment: accepted at SIGIR 2025
Detecting Out-of-Distribution Objects through Class-Conditioned Inpainting
Recent object detectors have achieved impressive accuracy in identifying objects seen during training. However, real-world deployment often introduces novel and unexpected objects, referred to as out-of-distribution (OOD) objects, posing significant challenges to model trustworthiness. Modern object detectors are typically overconfident, making it unreliable to use their predictions alone for OOD detection. To address this, we propose leveraging an auxiliary model as a complementary solution. Specifically, we utilize an off-the-shelf text-to-image generative model, such as Stable Diffusion, which is trained with objective functions distinct from those of discriminative object detectors. We hypothesize that this fundamental difference enables the detection of OOD objects by measuring inconsistencies between the models. Concretely, for a given detected object bounding box and its predicted in-distribution class label, we perform class-conditioned inpainting on the image with the object removed. If the object is OOD, the inpainted image is likely to deviate significantly from the original, making the reconstruction error a robust indicator of OOD status. Extensive experiments demonstrate that our approach consistently surpasses existing zero-shot and non-zero-shot OOD detection methods, establishing a robust framework for enhancing object detection systems in dynamic environments.
GRE Suite: Geo-localization Inference via Fine-Tuned Vision-Language Models and Enhanced Reasoning Chains
Recent advances in Visual Language Models (VLMs) have demonstrated exceptional performance in visual reasoning tasks. However, geo-localization presents unique challenges, requiring the extraction of multigranular visual cues from images and their integration with external world knowledge for systematic reasoning. Current approaches to geo-localization tasks often lack robust reasoning mechanisms and explainability, limiting their effectiveness. To address these limitations, we propose the Geo Reason Enhancement (GRE) Suite, a novel framework that augments VLMs with structured reasoning chains for accurate and interpretable location inference. The GRE Suite is systematically developed across three key dimensions: dataset, model, and benchmark. First, we introduce GRE30K, a high-quality geo-localization reasoning dataset designed to facilitate fine-grained visual and contextual analysis. Next, we present the GRE model, which employs a multi-stage reasoning strategy to progressively infer scene attributes, local details, and semantic features, thereby narrowing down potential geographic regions with enhanced precision. Finally, we construct the Geo Reason Evaluation Benchmark (GREval-Bench), a comprehensive evaluation framework that assesses VLMs across diverse urban, natural, and landmark scenes to measure both coarse-grained (e.g., country, continent) and fine-grained (e.g., city, street) localization performance. Experimental results demonstrate that GRE significantly outperforms existing methods across all granularities of geo-localization tasks, underscoring the efficacy of reasoning-augmented VLMs in complex geographic inference. Code and data will be released at https://github.com/Thorin215/GRE.
ShapeMoiré: Channel-Wise Shape-Guided Network for Image Demoiréing
Photographing optoelectronic displays often introduces unwanted moir\'e patterns due to analog signal interference between the pixel grids of the display and the camera sensor arrays. This work identifies two problems that are largely ignored by existing image demoir\'eing approaches: 1) moir\'e patterns vary across different channels (RGB); 2) repetitive patterns are constantly observed. However, employing conventional convolutional (CNN) layers cannot address these problems. Instead, this paper presents the use of our recently proposed \emph{Shape} concept. It was originally employed to model consistent features from fragmented regions, particularly when identical or similar objects coexist in an RGB-D image. Interestingly, we find that the Shape information effectively captures the moir\'e patterns in artifact images. Motivated by this discovery, we propose a new method, ShapeMoir\'e, for image demoir\'eing. Beyond modeling shape features at the patch-level, we further extend this to the global image-level and design a novel Shape-Architecture. Consequently, our proposed method, equipped with both ShapeConv and Shape-Architecture, can be seamlessly integrated into existing approaches without introducing any additional parameters or computation overhead during inference. We conduct extensive experiments on four widely used datasets, and the results demonstrate that our ShapeMoir\'e achieves state-of-the-art performance, particularly in terms of the PSNR metric.
comment: 19 pages
An Overview of the Burer-Monteiro Method for Certifiable Robot Perception
This paper presents an overview of the Burer-Monteiro method (BM), a technique that has been applied to solve robot perception problems to certifiable optimality in real-time. BM is often used to solve semidefinite programming relaxations, which can be used to perform global optimization for non-convex perception problems. Specifically, BM leverages the low-rank structure of typical semidefinite programs to dramatically reduce the computational cost of performing optimization. This paper discusses BM in certifiable perception, with three main objectives: (i) to consolidate information from the literature into a unified presentation, (ii) to elucidate the role of the linear independence constraint qualification (LICQ), a concept not yet well-covered in certifiable perception literature, and (iii) to share practical considerations that are discussed among practitioners but not thoroughly covered in the literature. Our general aim is to offer a practical primer for applying BM towards certifiable perception.
comment: Accepted to 2024 Robotics: Science and Systems (RSS) Safe Autonomy Workshop
Robust 3D Shape Reconstruction in Zero-Shot from a Single Image in the Wild CVPR 2025
Recent monocular 3D shape reconstruction methods have shown promising zero-shot results on object-segmented images without any occlusions. However, their effectiveness is significantly compromised in real-world conditions, due to imperfect object segmentation by off-the-shelf models and the prevalence of occlusions. To effectively address these issues, we propose a unified regression model that integrates segmentation and reconstruction, specifically designed for occlusion-aware 3D shape reconstruction. To facilitate its reconstruction in the wild, we also introduce a scalable data synthesis pipeline that simulates a wide range of variations in objects, occluders, and backgrounds. Training on our synthetic data enables the proposed model to achieve state-of-the-art zero-shot results on real-world images, using significantly fewer parameters than competing approaches.
comment: Accepted to CVPR 2025, Project Page: https://ZeroShape-W.github.io
Geometrical Properties of Text Token Embeddings for Strong Semantic Binding in Text-to-Image Generation
Text-to-image (T2I) models often suffer from text-image misalignment in complex scenes involving multiple objects and attributes. Semantic binding has attempted to associate the generated attributes and objects with their corresponding noun phrases (NPs) by text or latent optimizations with the modulation of cross-attention (CA) maps; yet, the factors that influence semantic binding remain underexplored. Here, we investigate the geometrical properties of text token embeddings and their CA maps. We found that the geometrical properties of token embeddings, specifically angular distances and norms, are crucial factors in the differentiation of the CA map. These theoretical findings led to our proposed training-free text-embedding-aware T2I framework, dubbed \textbf{TokeBi}, for strong semantic binding. TokeBi consists of Causality-Aware Projection-Out (CAPO) for distinguishing inter-NP CA maps and Adaptive Token Mixing (ATM) for enhancing inter-NP separation while maintaining intra-NP cohesion in CA maps. Extensive experiments confirm that TokeBi outperforms prior arts across diverse baselines and datasets.
Weakly Supervised Temporal Action Localization via Dual-Prior Collaborative Learning Guided by Multimodal Large Language Models CVPR
Recent breakthroughs in Multimodal Large Language Models (MLLMs) have gained significant recognition within the deep learning community, where the fusion of the Video Foundation Models (VFMs) and Large Language Models(LLMs) has proven instrumental in constructing robust video understanding systems, effectively surmounting constraints associated with predefined visual tasks. These sophisticated MLLMs exhibit remarkable proficiency in comprehending videos, swiftly attaining unprecedented performance levels across diverse benchmarks. However, their operation demands substantial memory and computational resources, underscoring the continued importance of traditional models in video comprehension tasks. In this paper, we introduce a novel learning paradigm termed MLLM4WTAL. This paradigm harnesses the potential of MLLM to offer temporal action key semantics and complete semantic priors for conventional Weakly-supervised Temporal Action Localization (WTAL) methods. MLLM4WTAL facilitates the enhancement of WTAL by leveraging MLLM guidance. It achieves this by integrating two distinct modules: Key Semantic Matching (KSM) and Complete Semantic Reconstruction (CSR). These modules work in tandem to effectively address prevalent issues like incomplete and over-complete outcomes common in WTAL methods. Rigorous experiments are conducted to validate the efficacy of our proposed approach in augmenting the performance of various heterogeneous WTAL models.
comment: Accepted to CVPR
OG-HFYOLO :Orientation gradient guidance and heterogeneous feature fusion for deformation table cell instance segmentation
Table structure recognition is a key task in document analysis. However, the geometric deformation in deformed tables causes a weak correlation between content information and structure, resulting in downstream tasks not being able to obtain accurate content information. To obtain fine-grained spatial coordinates of cells, we propose the OG-HFYOLO model, which enhances the edge response by Gradient Orientation-aware Extractor, combines a Heterogeneous Kernel Cross Fusion module and a scale-aware loss function to adapt to multi-scale objective features, and introduces mask-driven non-maximal suppression in the post-processing, which replaces the traditional bounding box suppression mechanism. Furthermore, we also propose a data generator, filling the gap in the dataset for fine-grained deformation table cell spatial coordinate localization, and derive a large-scale dataset named Deformation Wired Table (DWTAL). Experiments show that our proposed model demonstrates excellent segmentation accuracy on all mainstream instance segmentation models. The dataset and the source code are open source: https://github.com/justliulong/OGHFYOLO.
Learning Efficient and Effective Trajectories for Differential Equation-based Image Restoration
The differential equation-based image restoration approach aims to establish learnable trajectories connecting high-quality images to a tractable distribution, e.g., low-quality images or a Gaussian distribution. In this paper, we reformulate the trajectory optimization of this kind of method, focusing on enhancing both reconstruction quality and efficiency. Initially, we navigate effective restoration paths through a reinforcement learning process, gradually steering potential trajectories toward the most precise options. Additionally, to mitigate the considerable computational burden associated with iterative sampling, we propose cost-aware trajectory distillation to streamline complex paths into several manageable steps with adaptable sizes. Moreover, we fine-tune a foundational diffusion model (FLUX) with 12B parameters by using our algorithms, producing a unified framework for handling 7 kinds of image restoration tasks. Extensive experiments showcase the $\textit{significant}$ superiority of the proposed method, achieving a maximum PSNR improvement of 2.1 dB over state-of-the-art methods, while also greatly enhancing visual perceptual quality. Project page: https://zhu-zhiyu.github.io/FLUX-IR/.
Feature-Based Lie Group Transformer for Real-World Applications
The main goal of representation learning is to acquire meaningful representations from real-world sensory inputs without supervision. Representation learning explains some aspects of human development. Various neural network (NN) models have been proposed that acquire empirically good representations. However, the formulation of a good representation has not been established. We recently proposed a method for categorizing changes between a pair of sensory inputs. A unique feature of this approach is that transformations between two sensory inputs are learned to satisfy algebraic structural constraints. Conventional representation learning often assumes that disentangled independent feature axes is a good representation; however, we found that such a representation cannot account for conditional independence. To overcome this problem, we proposed a new method using group decomposition in Galois algebra theory. Although this method is promising for defining a more general representation, it assumes pixel-to-pixel translation without feature extraction, and can only process low-resolution images with no background, which prevents real-world application. In this study, we provide a simple method to apply our group decomposition theory to a more realistic scenario by combining feature extraction and object segmentation. We replace pixel translation with feature translation and formulate object segmentation as grouping features under the same transformation. We validated the proposed method on a practical dataset containing both real-world object and background. We believe that our model will lead to a better understanding of human development of object recognition in the real world.
comment: 8 pages, the dataset used in this work is https://drive.google.com/file/d/1RaSWNN2GEyV3zQPeGya4Mr9DDhJ7OMz7/view?usp=sharing
TissUnet: Improved Extracranial Tissue and Cranium Segmentation for Children through Adulthood
Extracranial tissues visible on brain magnetic resonance imaging (MRI) may hold significant value for characterizing health conditions and clinical decision-making, yet they are rarely quantified. Current tools have not been widely validated, particularly in settings of developing brains or underlying pathology. We present TissUnet, a deep learning model that segments skull bone, subcutaneous fat, and muscle from routine three-dimensional T1-weighted MRI, with or without contrast enhancement. The model was trained on 155 paired MRI-computed tomography (CT) scans and validated across nine datasets covering a wide age range and including individuals with brain tumors. In comparison to AI-CT-derived labels from 37 MRI-CT pairs, TissUnet achieved a median Dice coefficient of 0.79 [IQR: 0.77-0.81] in a healthy adult cohort. In a second validation using expert manual annotations, median Dice was 0.83 [IQR: 0.83-0.84] in healthy individuals and 0.81 [IQR: 0.78-0.83] in tumor cases, outperforming previous state-of-the-art method. Acceptability testing resulted in an 89% acceptance rate after adjudication by a tie-breaker(N=108 MRIs), and TissUnet demonstrated excellent performance in the blinded comparative review (N=45 MRIs), including both healthy and tumor cases in pediatric populations. TissUnet enables fast, accurate, and reproducible segmentation of extracranial tissues, supporting large-scale studies on craniofacial morphology, treatment effects, and cardiometabolic risk using standard brain T1w MRI.
comment: 44 pages, 4 tables, 6 figures, supplementary material
Unsolvable Problem Detection: Robust Understanding Evaluation for Large Multimodal Models ACL 2025
This paper introduces a novel task to evaluate the robust understanding capability of Large Multimodal Models (LMMs), termed $\textbf{Unsolvable Problem Detection (UPD)}$. Multiple-choice question answering (MCQA) is widely used to assess the understanding capability of LMMs, but it does not guarantee that LMMs truly comprehend the answer. UPD assesses the LMM's ability to withhold answers when encountering unsolvable problems of MCQA, verifying whether the model truly understands the answer. UPD encompasses three problems: Absent Answer Detection (AAD), Incompatible Answer Set Detection (IASD), and Incompatible Visual Question Detection (IVQD), covering unsolvable cases like answer-lacking or incompatible choices and image-question mismatches. For the evaluation, we introduce the MM-UPD Bench, a benchmark for assessing performance across various ability dimensions. Our experiments reveal that even most LMMs, which demonstrate adequate performance on existing benchmarks, struggle significantly with MM-UPD, underscoring a novel aspect of trustworthiness that current benchmarks have overlooked. A detailed analysis shows that LMMs have different bottlenecks and chain-of-thought and self-reflection improved performance for LMMs with the bottleneck in their LLM capability. We hope our insights will enhance the broader understanding and development of more reliable LMMs. The code is available at https://github.com/AtsuMiyai/UPD.
comment: Accepted by ACL 2025 Main Conference
Skywork-VL Reward: An Effective Reward Model for Multimodal Understanding and Reasoning
We propose Skywork-VL Reward, a multimodal reward model that provides reward signals for both multimodal understanding and reasoning tasks. Our technical approach comprises two key components: First, we construct a large-scale multimodal preference dataset that covers a wide range of tasks and scenarios, with responses collected from both standard vision-language models (VLMs) and advanced VLM reasoners. Second, we design a reward model architecture based on Qwen2.5-VL-7B-Instruct, integrating a reward head and applying multi-stage fine-tuning using pairwise ranking loss on pairwise preference data. Experimental evaluations show that Skywork-VL Reward achieves state-of-the-art results on multimodal VL-RewardBench and exhibits competitive performance on the text-only RewardBench benchmark. Furthermore, preference data constructed based on our Skywork-VL Reward proves highly effective for training Mixed Preference Optimization (MPO), leading to significant improvements in multimodal reasoning capabilities. Our results underscore Skywork-VL Reward as a significant advancement toward general-purpose, reliable reward models for multimodal alignment. Our model has been publicly released to promote transparency and reproducibility.
Skywork R1V: Pioneering Multimodal Reasoning with Chain-of-Thought
We introduce Skywork R1V, a multimodal reasoning model extending the an R1-series Large language models (LLM) to visual modalities via an efficient multimodal transfer method. Leveraging a lightweight visual projector, Skywork R1V facilitates seamless multimodal adaptation without necessitating retraining of either the foundational language model or the vision encoder. To strengthen visual-text alignment, we propose a hybrid optimization strategy that combines Iterative Supervised Fine-Tuning (SFT) with Group Relative Policy Optimization (GRPO), significantly enhancing cross-modal integration efficiency. Additionally, we introduce an adaptive-length Chain-of-Thought distillation approach for reasoning data generation. This approach dynamically optimizes reasoning chain lengths, thereby enhancing inference efficiency and preventing excessive reasoning overthinking. Empirical evaluations demonstrate that Skywork R1V, with only 38B parameters, delivers competitive performance, achieving a score of 69.0 on the MMMU benchmark and 67.5 on MathVista. Meanwhile, it maintains robust textual reasoning performance, evidenced by impressive scores of 72.0 on AIME and 94.0 on MATH500. The Skywork R1V model weights have been publicly released to promote openness and reproducibility.
RainFusion: Adaptive Video Generation Acceleration via Multi-Dimensional Visual Redundancy
Video generation using diffusion models is highly computationally intensive, with 3D attention in Diffusion Transformer (DiT) models accounting for over 80\% of the total computational resources. In this work, we introduce {\bf RainFusion}, a novel training-free sparse attention method that exploits inherent sparsity nature in visual data to accelerate attention computation while preserving video quality. Specifically, we identify three unique sparse patterns in video generation attention calculations--Spatial Pattern, Temporal Pattern and Textural Pattern. The sparse pattern for each attention head is determined online with negligible overhead (\textasciitilde\,0.2\%) with our proposed {\bf ARM} (Adaptive Recognition Module) during inference. Our proposed {\bf RainFusion} is a plug-and-play method, that can be seamlessly integrated into state-of-the-art 3D-attention video generation models without additional training or calibration. We evaluate our method on leading open-sourced models including HunyuanVideo, OpenSoraPlan-1.2 and CogVideoX-5B, demonstrating its broad applicability and effectiveness. Experimental results show that RainFusion achieves over {\bf 2\(\times\)} speedup in attention computation while maintaining video quality, with only a minimal impact on VBench scores (-0.2\%).
EmoVOCA: Speech-Driven Emotional 3D Talking Heads WACV 2025
The domain of 3D talking head generation has witnessed significant progress in recent years. A notable challenge in this field consists in blending speech-related motions with expression dynamics, which is primarily caused by the lack of comprehensive 3D datasets that combine diversity in spoken sentences with a variety of facial expressions. Whereas literature works attempted to exploit 2D video data and parametric 3D models as a workaround, these still show limitations when jointly modeling the two motions. In this work, we address this problem from a different perspective, and propose an innovative data-driven technique that we used for creating a synthetic dataset, called EmoVOCA, obtained by combining a collection of inexpressive 3D talking heads and a set of 3D expressive sequences. To demonstrate the advantages of this approach, and the quality of the dataset, we then designed and trained an emotional 3D talking head generator that accepts a 3D face, an audio file, an emotion label, and an intensity value as inputs, and learns to animate the audio-synchronized lip movements with expressive traits of the face. Comprehensive experiments, both quantitative and qualitative, using our data and generator evidence superior ability in synthesizing convincing animations, when compared with the best performing methods in the literature. Our code and pre-trained model will be made available.
comment: WACV 2025
GarmageNet: A Multimodal Generative Framework for Sewing Pattern Design and Generic Garment Modeling
Realistic digital garment modeling remains a labor-intensive task due to the intricate process of translating 2D sewing patterns into high-fidelity, simulation-ready 3D garments. We introduce GarmageNet, a unified generative framework that automates the creation of 2D sewing patterns, the construction of sewing relationships, and the synthesis of 3D garment initializations compatible with physics-based simulation. Central to our approach is Garmage, a novel garment representation that encodes each panel as a structured geometry image, effectively bridging the semantic and geometric gap between 2D structural patterns and 3D garment shapes. GarmageNet employs a latent diffusion transformer to synthesize panel-wise geometry images and integrates GarmageJigsaw, a neural module for predicting point-to-point sewing connections along panel contours. To support training and evaluation, we build GarmageSet, a large-scale dataset comprising over 10,000 professionally designed garments with detailed structural and style annotations. Our method demonstrates versatility and efficacy across multiple application scenarios, including scalable garment generation from multi-modal design concepts (text prompts, sketches, photographs), automatic modeling from raw flat sewing patterns, pattern recovery from unstructured point clouds, and progressive garment editing using conventional instructions-laying the foundation for fully automated, production-ready pipelines in digital fashion. Project page: https://style3d.github.io/garmagenet.
RAID: A Dataset for Testing the Adversarial Robustness of AI-Generated Image Detectors
AI-generated images have reached a quality level at which humans are incapable of reliably distinguishing them from real images. To counteract the inherent risk of fraud and disinformation, the detection of AI-generated images is a pressing challenge and an active research topic. While many of the presented methods claim to achieve high detection accuracy, they are usually evaluated under idealized conditions. In particular, the adversarial robustness is often neglected, potentially due to a lack of awareness or the substantial effort required to conduct a comprehensive robustness analysis. In this work, we tackle this problem by providing a simpler means to assess the robustness of AI-generated image detectors. We present RAID (Robust evaluation of AI-generated image Detectors), a dataset of 72k diverse and highly transferable adversarial examples. The dataset is created by running attacks against an ensemble of seven state-of-the-art detectors and images generated by four different text-to-image models. Extensive experiments show that our methodology generates adversarial images that transfer with a high success rate to unseen detectors, which can be used to quickly provide an approximate yet still reliable estimate of a detector's adversarial robustness. Our findings indicate that current state-of-the-art AI-generated image detectors can be easily deceived by adversarial examples, highlighting the critical need for the development of more robust methods. We release our dataset at https://huggingface.co/datasets/aimagelab/RAID and evaluation code at https://github.com/pralab/RAID.
ComPtr: Towards Diverse Bi-source Dense Prediction Tasks via A Simple yet General Complementary Transformer
Deep learning (DL) has advanced the field of dense prediction, while gradually dissolving the inherent barriers between different tasks. However, most existing works focus on designing architectures and constructing visual cues only for the specific task, which ignores the potential uniformity introduced by the DL paradigm. In this paper, we attempt to construct a novel $\underline{ComP}$lementary $\underline{tr}$ansformer, $\textbf{ComPtr}$, for diverse bi-source dense prediction tasks. Specifically, unlike existing methods that over-specialize in a single task or a subset of tasks, ComPtr starts from the more general concept of bi-source dense prediction. Based on the basic dependence on information complementarity, we propose consistency enhancement and difference awareness components with which ComPtr can evacuate and collect important visual semantic cues from different image sources for diverse tasks, respectively. ComPtr treats different inputs equally and builds an efficient dense interaction model in the form of sequence-to-sequence on top of the transformer. This task-generic design provides a smooth foundation for constructing the unified model that can simultaneously deal with various bi-source information. In extensive experiments across several representative vision tasks, i.e. remote sensing change detection, RGB-T crowd counting, RGB-D/T salient object detection, and RGB-D semantic segmentation, the proposed method consistently obtains favorable performance. The code will be available at https://github.com/lartpang/ComPtr.
SWAG: Long-term Surgical Workflow Prediction with Generative-based Anticipation
While existing approaches excel at recognising current surgical phases, they provide limited foresight and intraoperative guidance into future procedural steps. Similarly, current anticipation methods are constrained to predicting short-term and single events, neglecting the dense, repetitive, and long sequential nature of surgical workflows. To address these needs and limitations, we propose SWAG (Surgical Workflow Anticipative Generation), a framework that combines phase recognition and anticipation using a generative approach. This paper investigates two distinct decoding methods - single-pass (SP) and auto-regressive (AR) - to generate sequences of future surgical phases at minute intervals over long horizons. We propose a novel embedding approach using class transition probabilities to enhance the accuracy of phase anticipation. Additionally, we propose a generative framework using remaining time regression to classification (R2C). SWAG was evaluated on two publicly available datasets, Cholec80 and AutoLaparo21. Our single-pass model with class transition probability embeddings (SP*) achieves 32.1% and 41.3% F1 scores over 20 and 30 minutes on Cholec80 and AutoLaparo21, respectively. Moreover, our approach competes with existing methods on phase remaining time regression, achieving weighted mean absolute errors of 0.32 and 0.48 minutes for 2- and 3-minute horizons. SWAG demonstrates versatility across generative decoding frame works and classification and regression tasks to create temporal continuity between surgical workflow recognition and anticipation. Our method provides steps towards intraoperative surgical workflow generation for anticipation. Project: https://maxboels.github.io/swag.
comment: Accepted at IJCARS, Demo website: https://maxboels.com/swag/
Remote Sensing Image Classification with Decoupled Knowledge Distillation
To address the challenges posed by the large number of parameters in existing remote sensing image classification models, which hinder deployment on resource-constrained devices, this paper proposes a lightweight classification method based on knowledge distillation. Specifically, G-GhostNet is adopted as the backbone network, leveraging feature reuse to reduce redundant parameters and significantly improve inference efficiency. In addition, a decoupled knowledge distillation strategy is employed, which separates target and non-target classes to effectively enhance classification accuracy. Experimental results on the RSOD and AID datasets demonstrate that, compared with the high-parameter VGG-16 model, the proposed method achieves nearly equivalent Top-1 accuracy while reducing the number of parameters by 6.24 times. This approach strikes an excellent balance between model size and classification performance, offering an efficient solution for deployment on resource-limited devices.
comment: 7
Continuous Urban Change Detection from Satellite Image Time Series with Temporal Feature Refinement and Multi-Task Integration
Urbanization advances at unprecedented rates, leading to negative environmental and societal impacts. Remote sensing can help mitigate these effects by supporting sustainable development strategies with accurate information on urban growth. Deep learning-based methods have achieved promising urban change detection results from optical satellite image pairs using convolutional neural networks (ConvNets), transformers, and a multi-task learning setup. However, bi-temporal methods are limited for continuous urban change detection, i.e., the detection of changes in consecutive image pairs of satellite image time series (SITS), as they fail to fully exploit multi-temporal data (> 2 images). Existing multi-temporal change detection methods, on the other hand, collapse the temporal dimension, restricting their ability to capture continuous urban changes. Additionally, multi-task learning methods lack integration approaches that combine change and segmentation outputs. To address these challenges, we propose a continuous urban change detection framework incorporating two key modules. The temporal feature refinement (TFR) module employs self-attention to improve ConvNet-based multi-temporal building representations. The temporal dimension is preserved in the TFR module, enabling the detection of continuous changes. The multi-task integration (MTI) module utilizes Markov networks to find an optimal building map time series based on segmentation and dense change outputs. The proposed framework effectively identifies urban changes based on high-resolution SITS acquired by the PlanetScope constellation (F1 score 0.551), Gaofen-2 (F1 score 0.440), and WorldView-2 (F1 score 0.543). Moreover, our experiments on three challenging datasets demonstrate the effectiveness of the proposed framework compared to bi-temporal and multi-temporal urban change detection and segmentation methods.
comment: Accepted to IEEE Transactions on Geoscience and Remote Sensing, Code will be available at https://github.com/SebastianHafner/ContUrbanCD.git
Efficient Long-duration Talking Video Synthesis with Linear Diffusion Transformer under Multimodal Guidance
Portrait image animation using audio has rapidly advanced, but challenges remain in efficiently fusing multimodal inputs while ensuring temporal and portrait consistency with minimal computational cost. To address this, we present LetsTalk, a LinEar diffusion TranSformer for Talking video synthesis. LetsTalk incorporates a deep compression autoencoder to obtain efficient latent representations, and a spatio-temporal-aware transformer with efficient linear attention to effectively fuse multimodal information and enhance spatio-temporal consistency. We systematically explore and summarize three fusion schemes, ranging from shallow to deep fusion. We thoroughly analyze their characteristics, applicability, and trade-offs, thereby bridging critical gaps in multimodal conditional guidance. Based on modality differences of image, audio, and video generation, we adopt deep (Symbiotic Fusion) for portrait to ensure consistency, and shallow (Direct Fusion) for audio to align animation with speech while preserving motion diversity. To maintain temporal consistency in long-duration video generation, we propose a memory bank mechanism that preserves inter-clip dependencies, effectively preventing degradation across extended sequences. Furthermore, we develop a noise-regularized training strategy that explicitly compensates for DDPM sampling artifacts, significantly improving the model's robustness in continuous generation scenarios.Our extensive experiments demonstrate that our approach achieves state-of-the-art generation quality, producing temporally coherent and realistic videos with enhanced diversity and liveliness, while maintaining remarkable efficiency through its optimized model design with 8$\times$ fewer parameters.
comment: 16 pages, 13 figures
GHOST 2.0: generative high-fidelity one shot transfer of heads
While the task of face swapping has recently gained attention in the research community, a related problem of head swapping remains largely unexplored. In addition to skin color transfer, head swap poses extra challenges, such as the need to preserve structural information of the whole head during synthesis and inpaint gaps between swapped head and background. In this paper, we address these concerns with GHOST 2.0, which consists of two problem-specific modules. First, we introduce enhanced Aligner model for head reenactment, which preserves identity information at multiple scales and is robust to extreme pose variations. Secondly, we use a Blender module that seamlessly integrates the reenacted head into the target background by transferring skin color and inpainting mismatched regions. Both modules outperform the baselines on the corresponding tasks, allowing to achieve state of the art results in head swapping. We also tackle complex cases, such as large difference in hair styles of source and target. Code is available at https://github.com/ai-forever/ghost-2.0
CityGo: Lightweight Urban Modeling and Rendering with Proxy Buildings and Residual Gaussians
Accurate and efficient modeling of large-scale urban scenes is critical for applications such as AR navigation, UAV based inspection, and smart city digital twins. While aerial imagery offers broad coverage and complements limitations of ground-based data, reconstructing city-scale environments from such views remains challenging due to occlusions, incomplete geometry, and high memory demands. Recent advances like 3D Gaussian Splatting (3DGS) improve scalability and visual quality but remain limited by dense primitive usage, long training times, and poor suit ability for edge devices. We propose CityGo, a hybrid framework that combines textured proxy geometry with residual and surrounding 3D Gaussians for lightweight, photorealistic rendering of urban scenes from aerial perspectives. Our approach first extracts compact building proxy meshes from MVS point clouds, then uses zero order SH Gaussians to generate occlusion-free textures via image-based rendering and back-projection. To capture high-frequency details, we introduce residual Gaussians placed based on proxy-photo discrepancies and guided by depth priors. Broader urban context is represented by surrounding Gaussians, with importance-aware downsampling applied to non-critical regions to reduce redundancy. A tailored optimization strategy jointly refines proxy textures and Gaussian parameters, enabling real-time rendering of complex urban scenes on mobile GPUs with significantly reduced training and memory requirements. Extensive experiments on real-world aerial datasets demonstrate that our hybrid representation significantly reduces training time, achieving on average 1.4x speedup, while delivering comparable visual fidelity to pure 3D Gaussian Splatting approaches. Furthermore, CityGo enables real-time rendering of large-scale urban scenes on mobile consumer GPUs, with substantially reduced memory usage and energy consumption.
OccludeNet: A Causal Journey into Mixed-View Actor-Centric Video Action Recognition under Occlusions
The lack of occlusion data in common action recognition video datasets limits model robustness and hinders consistent performance gains. We build OccludeNet, a large-scale occluded video dataset including both real and synthetic occlusion scenes in different natural settings. OccludeNet includes dynamic occlusion, static occlusion, and multi-view interactive occlusion, addressing gaps in current datasets. Our analysis shows occlusion affects action classes differently: actions with low scene relevance and partial body visibility see larger drops in accuracy. To overcome the limits of existing occlusion-aware methods, we propose a structural causal model for occluded scenes and introduce the Causal Action Recognition (CAR) method, which uses backdoor adjustment and counterfactual reasoning. This approach strengthens key actor information and improves model robustness to occlusion. We hope the challenges of OccludeNet will encourage more study of causal links in occluded scenes and lead to a fresh look at class relations, ultimately leading to lasting performance improvements. Our code and data is availibale at: https://github.com/The-Martyr/OccludeNet-Dataset
Exploiting the Semantic Knowledge of Pre-trained Text-Encoders for Continual Learning
Deep neural networks (DNNs) excel on fixed datasets but struggle with incremental and shifting data in real-world scenarios. Continual learning addresses this challenge by allowing models to learn from new data while retaining previously learned knowledge. Existing methods mainly rely on visual features, often neglecting the rich semantic information encoded in text. The semantic knowledge available in the label information of the images, offers important semantic information that can be related with previously acquired knowledge of semantic classes. Consequently, effectively leveraging this information throughout continual learning is expected to be beneficial. To address this, we propose integrating semantic guidance within and across tasks by capturing semantic similarity using text embeddings. We start from a pre-trained CLIP model, employ the \emph{Semantically-guided Representation Learning (SG-RL)} module for a soft-assignment towards all current task classes, and use the Semantically-guided Knowledge Distillation (SG-KD) module for enhanced knowledge transfer. Experimental results demonstrate the superiority of our method on general and fine-grained datasets. Our code can be found in https://github.com/aprilsveryown/semantically-guided-continual-learning.
Improving Generalization in MRI-Based Deep Learning Models for Total Knee Replacement Prediction
Knee osteoarthritis (KOA) is a common joint disease that causes pain and mobility issues. While MRI-based deep learning models have demonstrated superior performance in predicting total knee replacement (TKR) and disease progression, their generalizability remains challenging, particularly when applied to imaging data from different sources. In this study, we have shown that replacing batch normalization with instance normalization, using data augmentation, and applying contrastive loss improves model generalization in a baseline deep learning model for knee osteoarthritis (KOA) prediction. We trained and evaluated our model using MRI data from the Osteoarthritis Initiative (OAI) database, considering sagittal fat-suppressed intermediate-weighted turbo spin-echo (FS-IW-TSE) images as the source domain and sagittal fat-suppressed three-dimensional (3D) dual-echo in steady state (DESS) images as the target domain. The results demonstrate a statistically significant improvement in classification accuracy across both domains, with our approach outperforming the baseline model.
Towards Achieving Perfect Multimodal Alignment
Multimodal alignment constructs a joint latent vector space where modalities representing the same concept map to neighboring latent vectors. We formulate this as an inverse problem and show that, under certain conditions, paired data from each modality can map to equivalent latent vectors, which we refer to as perfect alignment. When perfect alignment cannot be achieved, it can be approximated using the Singular Value Decomposition (SVD) of a multimodal data matrix. Experiments on synthetic multimodal Gaussian data verify the effectiveness of our perfect alignment method compared to a learned contrastive alignment method. We further demonstrate the practical application of cross-modal transfer for human action recognition, showing that perfect alignment significantly enhances the model's accuracy. We conclude by discussing how these findings can be applied to various modalities and tasks and the limitations of our method. We hope these findings inspire further exploration of perfect alignment and its applications in representation learning.
RSNet: A Light Framework for The Detection of SAR Ship Detection
Recent advancements in synthetic aperture radar (SAR) ship detection using deep learning have significantly improved accuracy and speed, yet effectively detecting small objects in complex backgrounds with fewer parameters remains a challenge. This letter introduces RSNet, a lightweight framework constructed to enhance ship detection in SAR imagery. To ensure accuracy with fewer parameters, we proposed Waveletpool-ContextGuided (WCG) as its backbone, guiding global context understanding through multi-scale wavelet features for effective detection in complex scenes. Additionally, Waveletpool-StarFusion (WSF) is introduced as the neck, employing a residual wavelet element-wise multiplication structure to achieve higher dimensional nonlinear features without increasing network width. The Lightweight-Shared (LS) module is designed as detect components to achieve efficient detection through lightweight shared convolutional structure and multi-format compatibility. Experiments on the SAR Ship Detection Dataset (SSDD) and High-Resolution SAR Image Dataset (HRSID) demonstrate that RSNet achieves a strong balance between lightweight design and detection performance, surpassing many state-of-the-art detectors, reaching 72.5\% and 67.6\% in \textbf{\(\mathbf{mAP_{.50:.95}}\) }respectively with 1.49M parameters. Our code will be released soon.
MMScan: A Multi-Modal 3D Scene Dataset with Hierarchical Grounded Language Annotations
With the emergence of LLMs and their integration with other data modalities, multi-modal 3D perception attracts more attention due to its connectivity to the physical world and makes rapid progress. However, limited by existing datasets, previous works mainly focus on understanding object properties or inter-object spatial relationships in a 3D scene. To tackle this problem, this paper builds the first largest ever multi-modal 3D scene dataset and benchmark with hierarchical grounded language annotations, MMScan. It is constructed based on a top-down logic, from region to object level, from a single target to inter-target relationships, covering holistic aspects of spatial and attribute understanding. The overall pipeline incorporates powerful VLMs via carefully designed prompts to initialize the annotations efficiently and further involve humans' correction in the loop to ensure the annotations are natural, correct, and comprehensive. Built upon existing 3D scanning data, the resulting multi-modal 3D dataset encompasses 1.4M meta-annotated captions on 109k objects and 7.7k regions as well as over 3.04M diverse samples for 3D visual grounding and question-answering benchmarks. We evaluate representative baselines on our benchmarks, analyze their capabilities in different aspects, and showcase the key problems to be addressed in the future. Furthermore, we use this high-quality dataset to train state-of-the-art 3D visual grounding and LLMs and obtain remarkable performance improvement both on existing benchmarks and in-the-wild evaluation. Codes, datasets, and benchmarks will be available at https://github.com/OpenRobotLab/EmbodiedScan.
comment: Follow-up of EmbodiedScan (camera-ready version). A multi-modal 3D dataset with the most-ever comprehensive language annotations for 3D-LLMs. Project page: https://tai-wang.github.io/mmscan/
Human-in-the-Loop Annotation for Image-Based Engagement Estimation: Assessing the Impact of Model Reliability on Annotation Accuracy
Human-in-the-loop (HITL) frameworks are increasingly recognized for their potential to improve annotation accuracy in emotion estimation systems by combining machine predictions with human expertise. This study focuses on integrating a high-performing image-based emotion model into a HITL annotation framework to evaluate the collaborative potential of human-machine interaction and identify the psychological and practical factors critical to successful collaboration. Specifically, we investigate how varying model reliability and cognitive framing influence human trust, cognitive load, and annotation behavior in HITL systems. We demonstrate that model reliability and psychological framing significantly impact annotators' trust, engagement, and consistency, offering insights into optimizing HITL frameworks. Through three experimental scenarios with 29 participants--baseline model reliability (S1), fabricated errors (S2), and cognitive bias introduced by negative framing (S3)--we analyzed behavioral and qualitative data. Reliable predictions in S1 yielded high trust and annotation consistency, while unreliable outputs in S2 led to increased critical evaluations but also heightened frustration and response variability. Negative framing in S3 revealed how cognitive bias influenced participants to perceive the model as more relatable and accurate, despite misinformation regarding its reliability. These findings highlight the importance of both reliable machine outputs and psychological factors in shaping effective human-machine collaboration. By leveraging the strengths of both human oversight and automated systems, this study establishes a scalable HITL framework for emotion annotation and lays the foundation for broader applications in adaptive learning and human-computer interaction.
Image and Video Processing
A Comparative Study of U-Net Architectures for Change Detection in Satellite Images
Remote sensing change detection is essential for monitoring the everchanging landscapes of the Earth. The U-Net architecture has gained popularity for its capability to capture spatial information and perform pixel-wise classification. However, their application in the Remote sensing field remains largely unexplored. Therefore, this paper fill the gap by conducting a comprehensive analysis of 34 papers. This study conducts a comparison and analysis of 18 different U-Net variations, assessing their potential for detecting changes in remote sensing. We evaluate both benefits along with drawbacks of each variation within the framework of this particular application. We emphasize variations that are explicitly built for change detection, such as Siamese Swin-U-Net, which utilizes a Siamese architecture. The analysis highlights the significance of aspects such as managing data from different time periods and collecting relationships over a long distance to enhance the precision of change detection. This study provides valuable insights for researchers and practitioners that choose U-Net versions for remote sensing change detection tasks.
W4S4: WaLRUS Meets S4 for Long-Range Sequence Modeling
State Space Models (SSMs) have emerged as powerful components for sequence modeling, enabling efficient handling of long-range dependencies via linear recurrence and convolutional computation. However, their effectiveness depends heavily on the choice and initialization of the state matrix. In this work, we build on the SaFARi framework and existing WaLRUS SSMs to introduce a new variant, W4S4 (WaLRUS for S4), a new class of SSMs constructed from redundant wavelet frames. WaLRUS admits a stable diagonalization and supports fast kernel computation without requiring low-rank approximations, making it both theoretically grounded and computationally efficient. We show that WaLRUS retains information over long horizons significantly better than HiPPO-based SSMs, both in isolation and when integrated into deep architectures such as S4. Our experiments demonstrate consistent improvements across delay reconstruction tasks, classification benchmarks, and long-range sequence modeling, confirming that high-quality, structured initialization enabled by wavelet-based state dynamic offers substantial advantages over existing alternatives. WaLRUS provides a scalable and versatile foundation for the next generation of deep SSM-based models.
comment: 10 pages, 2 figures, 3 tables
Fine-Grained Motion Compression and Selective Temporal Fusion for Neural B-Frame Video Coding
With the remarkable progress in neural P-frame video coding, neural B-frame coding has recently emerged as a critical research direction. However, most existing neural B-frame codecs directly adopt P-frame coding tools without adequately addressing the unique challenges of B-frame compression, leading to suboptimal performance. To bridge this gap, we propose novel enhancements for motion compression and temporal fusion for neural B-frame coding. First, we design a fine-grained motion compression method. This method incorporates an interactive dual-branch motion auto-encoder with per-branch adaptive quantization steps, which enables fine-grained compression of bi-directional motion vectors while accommodating their asymmetric bitrate allocation and reconstruction quality requirements. Furthermore, this method involves an interactive motion entropy model that exploits correlations between bi-directional motion latent representations by interactively leveraging partitioned latent segments as directional priors. Second, we propose a selective temporal fusion method that predicts bi-directional fusion weights to achieve discriminative utilization of bi-directional multi-scale temporal contexts with varying qualities. Additionally, this method introduces a hyperprior-based implicit alignment mechanism for contextual entropy modeling. By treating the hyperprior as a surrogate for the contextual latent representation, this mechanism implicitly mitigates the misalignment in the fused bi-directional temporal priors. Extensive experiments demonstrate that our proposed codec outperforms state-of-the-art neural B-frame codecs and achieves comparable or even superior compression performance to the H.266/VVC reference software under random-access configurations.
Adaptive Blind Super-Resolution Network for Spatial-Specific and Spatial-Agnostic Degradations
Prior methodologies have disregarded the diversities among distinct degradation types during image reconstruction, employing a uniform network model to handle multiple deteriorations. Nevertheless, we discover that prevalent degradation modalities, including sampling, blurring, and noise, can be roughly categorized into two classes. We classify the first class as spatial-agnostic dominant degradations, less affected by regional changes in image space, such as downsampling and noise degradation. The second class degradation type is intimately associated with the spatial position of the image, such as blurring, and we identify them as spatial-specific dominant degradations. We introduce a dynamic filter network integrating global and local branches to address these two degradation types. This network can greatly alleviate the practical degradation problem. Specifically, the global dynamic filtering layer can perceive the spatial-agnostic dominant degradation in different images by applying weights generated by the attention mechanism to multiple parallel standard convolution kernels, enhancing the network's representation ability. Meanwhile, the local dynamic filtering layer converts feature maps of the image into a spatially specific dynamic filtering operator, which performs spatially specific convolution operations on the image features to handle spatial-specific dominant degradations. By effectively integrating both global and local dynamic filtering operators, our proposed method outperforms state-of-the-art blind super-resolution algorithms in both synthetic and real image datasets.
comment: IEEE TRANSACTIONS ON IMAGE PROCESSING
Text-guided multi-stage cross-perception network for medical image segmentation
Medical image segmentation plays a crucial role in clinical medicine, serving as a tool for auxiliary diagnosis, treatment planning, and disease monitoring, thus facilitating physicians in the study and treatment of diseases. However, existing medical image segmentation methods are limited by the weak semantic expression of the target segmentation regions, which is caused by the low contrast between the target and non-target segmentation regions. To address this limitation, text prompt information has greast potential to capture the lesion location. However, existing text-guided methods suffer from insufficient cross-modal interaction and inadequate cross-modal feature expression. To resolve these issues, we propose the Text-guided Multi-stage Cross-perception network (TMC). In TMC, we introduce a multistage cross-attention module to enhance the model's understanding of semantic details and a multi-stage alignment loss to improve the consistency of cross-modal semantics. The results of the experiments demonstrate that our TMC achieves a superior performance with Dice of 84.77%, 78.50%, 88.73% in three public datasets (QaTa-COV19, MosMedData and Breast), outperforming UNet based networks and text-guided methods.
UruBots Autonomous Cars Challenge Pro Team Description Paper for FIRA 2025
This paper describes the development of an autonomous car by the UruBots team for the 2025 FIRA Autonomous Cars Challenge (Pro). The project involves constructing a compact electric vehicle, approximately the size of an RC car, capable of autonomous navigation through different tracks. The design incorporates mechanical and electronic components and machine learning algorithms that enable the vehicle to make real-time navigation decisions based on visual input from a camera. We use deep learning models to process camera images and control vehicle movements. Using a dataset of over ten thousand images, we trained a Convolutional Neural Network (CNN) to drive the vehicle effectively, through two outputs, steering and throttle. The car completed the track in under 30 seconds, achieving a pace of approximately 0.4 meters per second while avoiding obstacles.
Snap-and-tune: combining deep learning and test-time optimization for high-fidelity cardiovascular volumetric meshing
High-quality volumetric meshing from medical images is a key bottleneck for physics-based simulations in personalized medicine. For volumetric meshing of complex medical structures, recent studies have often utilized deep learning (DL)-based template deformation approaches to enable fast test-time generation with high spatial accuracy. However, these approaches still exhibit limitations, such as limited flexibility at high-curvature areas and unrealistic inter-part distances. In this study, we introduce a simple yet effective snap-and-tune strategy that sequentially applies DL and test-time optimization, which combines fast initial shape fitting with more detailed sample-specific mesh corrections. Our method provides significant improvements in both spatial accuracy and mesh quality, while being fully automated and requiring no additional training labels. Finally, we demonstrate the versatility and usefulness of our newly generated meshes via solid mechanics simulations in two different software platforms. Our code is available at https://github.com/danpak94/Deep-Cardiac-Volumetric-Mesh.
A System for Accurate Tracking and Video Recordings of Rodent Eye Movements using Convolutional Neural Networks for Biomedical Image Segmentation
Research in neuroscience and vision science relies heavily on careful measurements of animal subject's gaze direction. Rodents are the most widely studied animal subjects for such research because of their economic advantage and hardiness. Recently, video based eye trackers that use image processing techniques have become a popular option for gaze tracking because they are easy to use and are completely noninvasive. Although significant progress has been made in improving the accuracy and robustness of eye tracking algorithms, unfortunately, almost all of the techniques have focused on human eyes, which does not account for the unique characteristics of the rodent eye images, e.g., variability in eye parameters, abundance of surrounding hair, and their small size. To overcome these unique challenges, this work presents a flexible, robust, and highly accurate model for pupil and corneal reflection identification in rodent gaze determination that can be incrementally trained to account for variability in eye parameters encountered in the field. To the best of our knowledge, this is the first paper that demonstrates a highly accurate and practical biomedical image segmentation based convolutional neural network architecture for pupil and corneal reflection identification in eye images. This new method, in conjunction with our automated infrared videobased eye recording system, offers the state of the art technology in eye tracking for neuroscience and vision science research for rodents.
Fast Two-photon Microscopy by Neuroimaging with Oblong Random Acquisition (NORA)
Advances in neural imaging have enabled neuroscientists to study how large neural populations conspire to produce perception, behavior and cognition. Despite many advances in optical methods, there exists a fundamental tradeoff between imaging speed, field of view, and resolution that limits the scope of neural imaging, especially for the raster-scanning multi-photon imaging needed to image deeper into the brain. One approach to overcoming this trade-off is computational imaging: the co-development of optics designed to encode the target images into fewer measurements that are faster to acquire, with algorithms that compensate by inverting the optical coding to recover a larger or higher resolution image. We present here one such approach for raster-scanning two-photon imaging: Neuroimaging with Oblong Random Acquisition (NORA). NORA quickly acquires each frame in a microscopy video by subsampling only a fraction of the fast scanning lines, ignoring large portions of each frame. NORA mitigates the loss of information by 1) extending the point-spread function in the slow-scan direction to effectively integrate the fluorescence of several lines into a single set of measurements and 2) imaging different, randomly selected, lines at each frame. Rather than reconstruct the video frame-by-frame, NORA recovers full video sequences via nuclear-norm minimization on the pixels-by-time matrix, for which we prove theoretical guarantees on recovery. We simulated NORA imaging using the Neural Anatomy and Optical Microscopy (NAOMi) biophysical simulator, and used the simulations to demonstrate that NORA can accurately recover 400 um X 400 um fields of view at subsampling rates up to 20X, despite realistic noise and motion conditions. As NORA requires minimal changes to current microscopy systems, our results indicate that NORA can provide a promising avenue towards fast imaging of neural circuits.
comment: 22 pages, 4 figures
Improving Generalization in MRI-Based Deep Learning Models for Total Knee Replacement Prediction
Knee osteoarthritis (KOA) is a common joint disease that causes pain and mobility issues. While MRI-based deep learning models have demonstrated superior performance in predicting total knee replacement (TKR) and disease progression, their generalizability remains challenging, particularly when applied to imaging data from different sources. In this study, we have shown that replacing batch normalization with instance normalization, using data augmentation, and applying contrastive loss improves model generalization in a baseline deep learning model for knee osteoarthritis (KOA) prediction. We trained and evaluated our model using MRI data from the Osteoarthritis Initiative (OAI) database, considering sagittal fat-suppressed intermediate-weighted turbo spin-echo (FS-IW-TSE) images as the source domain and sagittal fat-suppressed three-dimensional (3D) dual-echo in steady state (DESS) images as the target domain. The results demonstrate a statistically significant improvement in classification accuracy across both domains, with our approach outperforming the baseline model.
RSNet: A Light Framework for The Detection of SAR Ship Detection
Recent advancements in synthetic aperture radar (SAR) ship detection using deep learning have significantly improved accuracy and speed, yet effectively detecting small objects in complex backgrounds with fewer parameters remains a challenge. This letter introduces RSNet, a lightweight framework constructed to enhance ship detection in SAR imagery. To ensure accuracy with fewer parameters, we proposed Waveletpool-ContextGuided (WCG) as its backbone, guiding global context understanding through multi-scale wavelet features for effective detection in complex scenes. Additionally, Waveletpool-StarFusion (WSF) is introduced as the neck, employing a residual wavelet element-wise multiplication structure to achieve higher dimensional nonlinear features without increasing network width. The Lightweight-Shared (LS) module is designed as detect components to achieve efficient detection through lightweight shared convolutional structure and multi-format compatibility. Experiments on the SAR Ship Detection Dataset (SSDD) and High-Resolution SAR Image Dataset (HRSID) demonstrate that RSNet achieves a strong balance between lightweight design and detection performance, surpassing many state-of-the-art detectors, reaching 72.5\% and 67.6\% in \textbf{\(\mathbf{mAP_{.50:.95}}\) }respectively with 1.49M parameters. Our code will be released soon.
Learning Robust Features for Scatter Removal and Reconstruction in Dynamic ICF X-Ray Tomography
Density reconstruction from X-ray projections is an important problem in radiography with key applications in scientific and industrial X-ray computed tomography (CT). Often, such projections are corrupted by unknown sources of noise and scatter, which when not properly accounted for, can lead to significant errors in density reconstruction. In the setting of this problem, recent deep learning-based methods have shown promise in improving the accuracy of density reconstruction. In this article, we propose a deep learning-based encoder-decoder framework wherein the encoder extracts robust features from noisy/corrupted X-ray projections and the decoder reconstructs the density field from the features extracted by the encoder. We explore three options for the latent-space representation of features: physics-inspired supervision, self-supervision, and no supervision. We find that variants based on self-supervised and physicsinspired supervised features perform better over a range of unknown scatter and noise. In extreme noise settings, the variant with self-supervised features performs best. After investigating further details of the proposed deep-learning methods, we conclude by demonstrating that the newly proposed methods are able to achieve higher accuracy in density reconstruction when compared to a traditional iterative technique.
Efficient MRI Parallel Imaging Reconstruction by K-Space Rendering via Generalized Implicit Neural Representation
High-resolution magnetic resonance imaging (MRI) is essential in clinical diagnosis. However, its long acquisition time remains a critical issue. Parallel imaging (PI) is a common approach to reduce acquisition time by periodically skipping specific k-space lines and reconstructing images from undersampled data. This study presents a generalized implicit neural representation (INR)-based framework for MRI PI reconstruction, addressing limitations commonly encountered in conventional methods, such as subject-specific or undersampling scale-specific requirements and long reconstruction time. The proposed method overcomes these limitations by leveraging prior knowledge of voxel-specific features and integrating a novel scale-embedded encoder module. This encoder generates scale-independent voxel-specific features from undersampled images, enabling robust reconstruction across various undersampling scales without requiring retraining for each specific scale or subject. The INR model treats MR signal intensities and phase values as continuous functions of spatial coordinates and prior knowledge to render fully sampled k-space, efficiently reconstructing high-quality MR images from undersampled data. Extensive experiments on publicly available MRI datasets demonstrate the superior performance of the proposed method in reconstructing images at multiple acceleration factors (4x, 5x, and 6x), achieving higher evaluation metrics and visual fidelity compared to state-of-the-art methods. In terms of efficiency, this INR-based approach exhibits notable advantages, including reduced floating point operations and GPU usage, allowing for accelerated processing times while maintaining high reconstruction quality. The generalized design of the model significantly reduces computational resources and time consumption, making it more suitable for real-time clinical applications.
Scan-Adaptive MRI Undersampling Using Neighbor-based Optimization (SUNO)
Accelerated MRI involves collecting partial k-space measurements to reduce acquisition time, patient discomfort, and motion artifacts, and typically uses regular undersampling patterns or hand-designed schemes. Recent works have studied population-adaptive sampling patterns that are learned from a group of patients (or scans) based on population-specific metrics. However, such a general sampling pattern can be sub-optimal for any specific scan since it may lack scan or slice adaptive details. To overcome this issue, we propose a framework for jointly learning scan-adaptive Cartesian undersampling patterns and a corresponding reconstruction model from a training set. We use an alternating algorithm for learning the sampling patterns and reconstruction model where we use an iterative coordinate descent (ICD) based offline optimization of scan-adaptive k-space sampling patterns for each example in the training set. A nearest neighbor search is then used to select the scan-adaptive sampling pattern at test time from initially acquired low-frequency k-space information. We applied the proposed framework (dubbed SUNO) to the fastMRI multi-coil knee and brain datasets, demonstrating improved performance over currently used undersampling patterns at both 4x and 8x acceleration factors in terms of both visual quality and quantitative metrics. The code for the proposed framework is available at https://github.com/sidgautam95/adaptive-sampling-mri-suno.
A Diffusion-Driven Temporal Super-Resolution and Spatial Consistency Enhancement Framework for 4D MRI imaging
In medical imaging, 4D MRI enables dynamic 3D visualization, yet the trade-off between spatial and temporal resolution requires prolonged scan time that can compromise temporal fidelity--especially during rapid, large-amplitude motion. Traditional approaches typically rely on registration-based interpolation to generate intermediate frames. However, these methods struggle with large deformations, resulting in misregistration, artifacts, and diminished spatial consistency. To address these challenges, we propose TSSC-Net, a novel framework that generates intermediate frames while preserving spatial consistency. To improve temporal fidelity under fast motion, our diffusion-based temporal super-resolution network generates intermediate frames using the start and end frames as key references, achieving 6x temporal super-resolution in a single inference step. Additionally, we introduce a novel tri-directional Mamba-based module that leverages long-range contextual information to effectively resolve spatial inconsistencies arising from cross-slice misalignment, thereby enhancing volumetric coherence and correcting cross-slice errors. Extensive experiments were performed on the public ACDC cardiac MRI dataset and a real-world dynamic 4D knee joint dataset. The results demonstrate that TSSC-Net can generate high-resolution dynamic MRI from fast-motion data while preserving structural fidelity and spatial consistency.
Estimation of Head Motion in Structural MRI and its Impact on Cortical Thickness Measurements in Retrospective Data
Motion-related artifacts are inevitable in Magnetic Resonance Imaging (MRI) and can bias automated neuroanatomical metrics such as cortical thickness. These biases can interfere with statistical analysis which is a major concern as motion has been shown to be more prominent in certain populations such as children or individuals with ADHD. Manual review cannot objectively quantify motion in anatomical scans, and existing quantitative automated approaches often require specialized hardware or custom acquisition protocols. Here, we train a 3D convolutional neural network to estimate a summary motion metric in retrospective routine research scans by leveraging a large training dataset of synthetically motion-corrupted volumes. We validate our method with one held-out site from our training cohort and with 14 fully independent datasets, including one with manual ratings, achieving a representative $R^2 = 0.65$ versus manual labels and significant thickness-motion correlations in 12/15 datasets. Furthermore, our predicted motion correlates with subject age in line with prior studies. Our approach generalizes across scanner brands and protocols, enabling objective, scalable motion assessment in structural MRI studies without prospective motion correction. By providing reliable motion estimates, our method offers researchers a tool to assess and account for potential biases in cortical thickness analyses.
Multimedia
VIVAT: Virtuous Improving VAE Training through Artifact Mitigation
Variational Autoencoders (VAEs) remain a cornerstone of generative computer vision, yet their training is often plagued by artifacts that degrade reconstruction and generation quality. This paper introduces VIVAT, a systematic approach to mitigating common artifacts in KL-VAE training without requiring radical architectural changes. We present a detailed taxonomy of five prevalent artifacts - color shift, grid patterns, blur, corner and droplet artifacts - and analyze their root causes. Through straightforward modifications, including adjustments to loss weights, padding strategies, and the integration of Spatially Conditional Normalization, we demonstrate significant improvements in VAE performance. Our method achieves state-of-the-art results in image reconstruction metrics (PSNR and SSIM) across multiple benchmarks and enhances text-to-image generation quality, as evidenced by superior CLIP scores. By preserving the simplicity of the KL-VAE framework while addressing its practical challenges, VIVAT offers actionable insights for researchers and practitioners aiming to optimize VAE training.
SongBloom: Coherent Song Generation via Interleaved Autoregressive Sketching and Diffusion Refinement NeurIPS2025
Generating music with coherent structure, harmonious instrumental and vocal elements remains a significant challenge in song generation. Existing language models and diffusion-based methods often struggle to balance global coherence with local fidelity, resulting in outputs that lack musicality or suffer from incoherent progression and mismatched lyrics. This paper introduces $\textbf{SongBloom}$, a novel framework for full-length song generation that leverages an interleaved paradigm of autoregressive sketching and diffusion-based refinement. SongBloom employs an autoregressive diffusion model that combines the high fidelity of diffusion models with the scalability of language models. Specifically, it gradually extends a musical sketch from short to long and refines the details from coarse to fine-grained. The interleaved generation paradigm effectively integrates prior semantic and acoustic context to guide the generation process. Experimental results demonstrate that SongBloom outperforms existing methods across both subjective and objective metrics and achieves performance comparable to the state-of-the-art commercial music generation platforms. Audio samples are available on our demo page: https://cypress-yang.github.io/SongBloom\_demo.
comment: Submitted to NeurIPS2025
AffectMachine-Pop: A controllable expert system for real-time pop music generation
Music is a powerful medium for influencing listeners' emotional states, and this capacity has driven a surge of research interest in AI-based affective music generation in recent years. Many existing systems, however, are a black box which are not directly controllable, thus making these systems less flexible and adaptive to users. We present \textit{AffectMachine-Pop}, an expert system capable of generating retro-pop music according to arousal and valence values, which can either be pre-determined or based on a listener's real-time emotion states. To validate the efficacy of the system, we conducted a listening study demonstrating that AffectMachine-Pop is capable of generating affective music at target levels of arousal and valence. The system is tailored for use either as a tool for generating interactive affective music based on user input, or for incorporation into biofeedback or neurofeedback systems to assist users with emotion self-regulation.
The Many Challenges of Human-Like Agents in Virtual Game Environments AAMAS-2025
Human-like agents are an increasingly important topic in games and beyond. Believable non-player characters enhance the gaming experience by improving immersion and providing entertainment. They also offer players the opportunity to engage with AI entities that can function as opponents, teachers, or cooperating partners. Additionally, in games where bots are prohibited -- and even more so in non-game environments -- there is a need for methods capable of identifying whether digital interactions occur with bots or humans. This leads to two fundamental research questions: (1) how to model and implement human-like AI, and (2) how to measure its degree of human likeness. This article offers two contributions. The first one is a survey of the most significant challenges in implementing human-like AI in games (or any virtual environment featuring simulated agents, although this article specifically focuses on games). Thirteen such challenges, both conceptual and technical, are discussed in detail. The second is an empirical study performed in a tactical video game that addresses the research question: "Is it possible to distinguish human players from bots (AI agents) based on empirical data?" A machine-learning approach using a custom deep recurrent convolutional neural network is presented. We hypothesize that the more challenging it is to create human-like AI for a given game, the easier it becomes to develop a method for distinguishing humans from AI-driven players.
comment: In proceedings of the 24th International Conference on Autonomous Agents and Multiagent Systems (AAMAS-2025), pages 1996--2005, May 19-23, Detroit, Michigan, USA
Tile Classification Based Viewport Prediction with Multi-modal Fusion Transformer
Viewport prediction is a crucial aspect of tile-based 360 video streaming system. However, existing trajectory based methods lack of robustness, also oversimplify the process of information construction and fusion between different modality inputs, leading to the error accumulation problem. In this paper, we propose a tile classification based viewport prediction method with Multi-modal Fusion Transformer, namely MFTR. Specifically, MFTR utilizes transformer-based networks to extract the long-range dependencies within each modality, then mine intra- and inter-modality relations to capture the combined impact of user historical inputs and video contents on future viewport selection. In addition, MFTR categorizes future tiles into two categories: user interested or not, and selects future viewport as the region that contains most user interested tiles. Comparing with predicting head trajectories, choosing future viewport based on tile's binary classification results exhibits better robustness and interpretability. To evaluate our proposed MFTR, we conduct extensive experiments on two widely used PVS-HM and Xu-Gaze dataset. MFTR shows superior performance over state-of-the-art methods in terms of average prediction accuracy and overlap ratio, also presents competitive computation efficiency.
comment: This paper is accepted by ACM-MM 2023
Computation and Language
Play to Generalize: Learning to Reason Through Game Play
Developing generalizable reasoning capabilities in multimodal large language models (MLLMs) remains challenging. Motivated by cognitive science literature suggesting that gameplay promotes transferable cognitive skills, we propose a novel post-training paradigm, Visual Game Learning, or ViGaL, where MLLMs develop out-of-domain generalization of multimodal reasoning through playing arcade-like games. Specifically, we show that post-training a 7B-parameter MLLM via reinforcement learning (RL) on simple arcade-like games, e.g. Snake, significantly enhances its downstream performance on multimodal math benchmarks like MathVista, and on multi-discipline questions like MMMU, without seeing any worked solutions, equations, or diagrams during RL, suggesting the capture of transferable reasoning skills. Remarkably, our model outperforms specialist models tuned on multimodal reasoning data in multimodal reasoning benchmarks, while preserving the base model's performance on general visual benchmarks, a challenge where specialist models often fall short. Our findings suggest a new post-training paradigm: synthetic, rule-based games can serve as controllable and scalable pre-text tasks that unlock generalizable multimodal reasoning abilities in MLLMs.
comment: Project Page: https://yunfeixie233.github.io/ViGaL/
Reinforcement Pre-Training
In this work, we introduce Reinforcement Pre-Training (RPT) as a new scaling paradigm for large language models and reinforcement learning (RL). Specifically, we reframe next-token prediction as a reasoning task trained using RL, where it receives verifiable rewards for correctly predicting the next token for a given context. RPT offers a scalable method to leverage vast amounts of text data for general-purpose RL, rather than relying on domain-specific annotated answers. By incentivizing the capability of next-token reasoning, RPT significantly improves the language modeling accuracy of predicting the next tokens. Moreover, RPT provides a strong pre-trained foundation for further reinforcement fine-tuning. The scaling curves show that increased training compute consistently improves the next-token prediction accuracy. The results position RPT as an effective and promising scaling paradigm to advance language model pre-training.
Reparameterized LLM Training via Orthogonal Equivalence Transformation
While large language models (LLMs) are driving the rapid advancement of artificial intelligence, effectively and reliably training these large models remains one of the field's most significant challenges. To address this challenge, we propose POET, a novel reParameterized training algorithm that uses Orthogonal Equivalence Transformation to optimize neurons. Specifically, POET reparameterizes each neuron with two learnable orthogonal matrices and a fixed random weight matrix. Because of its provable preservation of spectral properties of weight matrices, POET can stably optimize the objective function with improved generalization. We further develop efficient approximations that make POET flexible and scalable for training large-scale neural networks. Extensive experiments validate the effectiveness and scalability of POET in training LLMs.
comment: Technical report v1 (36 pages, 24 figures, project page: https://spherelab.ai/poet-site/)
$τ^2$-Bench: Evaluating Conversational Agents in a Dual-Control Environment
Existing benchmarks for conversational AI agents simulate single-control environments, where only the AI agent can use tools to interact with the world, while the user remains a passive information provider. This differs from real-world scenarios like technical support, where users need to actively participate in modifying the state of the (shared) world. In order to address this gap, we introduce $\tau^2$-bench, with four key contributions: 1) A novel Telecom dual-control domain modeled as a Dec-POMDP, where both agent and user make use of tools to act in a shared, dynamic environment that tests both agent coordination and communication, 2) A compositional task generator that programmatically creates diverse, verifiable tasks from atomic components, ensuring domain coverage and controlled complexity, 3) A reliable user simulator tightly coupled with the environment, whose behavior is constrained by tools and observable states, improving simulation fidelity, 4) Fine-grained analysis of agent performance through multiple ablations including separating errors arising from reasoning vs communication/coordination. In particular, our experiments show significant performance drops when agents shift from no-user to dual-control, highlighting the challenges of guiding users. Overall, $\tau^2$-bench provides a controlled testbed for agents that must both reason effectively and guide user actions.
HeuriGym: An Agentic Benchmark for LLM-Crafted Heuristics in Combinatorial Optimization
While Large Language Models (LLMs) have demonstrated significant advancements in reasoning and agent-based problem-solving, current evaluation methodologies fail to adequately assess their capabilities: existing benchmarks either rely on closed-ended questions prone to saturation and memorization, or subjective comparisons that lack consistency and rigor. In this work, we introduce HeuriGym, an agentic framework designed for evaluating heuristic algorithms generated by LLMs for combinatorial optimization problems, characterized by clearly defined objectives and expansive solution spaces. HeuriGym empowers LLMs to propose heuristics, receive evaluative feedback via code execution, and iteratively refine their solutions. We evaluate nine state-of-the-art models on nine problems across domains such as computer systems, logistics, and biology, exposing persistent limitations in tool use, planning, and adaptive reasoning. To quantify performance, we propose the Quality-Yield Index (QYI), a metric that captures both solution pass rate and quality. Even top models like GPT-o4-mini-high and Gemini-2.5-Pro attain QYI scores of only 0.6, well below the expert baseline of 1. Our open-source benchmark aims to guide the development of LLMs toward more effective and realistic problem-solving in scientific and engineering domains.
Reinforcing Multimodal Understanding and Generation with Dual Self-rewards
Building upon large language models (LLMs), recent large multimodal models (LMMs) unify cross-model understanding and generation into a single framework. However, LMMs still struggle to achieve accurate image-text alignment, prone to generating text responses contradicting the visual input or failing to follow the text-to-image prompts. Current solutions require external supervision (e.g., human feedback or reward models) and only address unidirectional tasks-either understanding or generation. In this work, based on the observation that understanding and generation are inverse dual tasks, we introduce a self-supervised dual reward mechanism to reinforce the understanding and generation capabilities of LMMs. Specifically, we sample multiple outputs for a given input in one task domain, then reverse the input-output pairs to compute the dual likelihood of the model as self-rewards for optimization. Extensive experimental results on visual understanding and generation benchmarks demonstrate that our method can effectively enhance the performance of the model without any external supervision, especially achieving remarkable improvements in text-to-image tasks.
Correlated Errors in Large Language Models ICML 2025
Diversity in training data, architecture, and providers is assumed to mitigate homogeneity in LLMs. However, we lack empirical evidence on whether different LLMs differ meaningfully. We conduct a large-scale empirical evaluation on over 350 LLMs overall, using two popular leaderboards and a resume-screening task. We find substantial correlation in model errors -- on one leaderboard dataset, models agree 60% of the time when both models err. We identify factors driving model correlation, including shared architectures and providers. Crucially, however, larger and more accurate models have highly correlated errors, even with distinct architectures and providers. Finally, we show the effects of correlation in two downstream tasks: LLM-as-judge evaluation and hiring -- the latter reflecting theoretical predictions regarding algorithmic monoculture.
comment: Accepted to ICML 2025
Language Models over Canonical Byte-Pair Encodings ICML 2025
Modern language models represent probability distributions over character strings as distributions over (shorter) token strings derived via a deterministic tokenizer, such as byte-pair encoding. While this approach is highly effective at scaling up language models to large corpora, its current incarnations have a concerning property: the model assigns nonzero probability mass to an exponential number of $\it{noncanonical}$ token encodings of each character string -- these are token strings that decode to valid character strings but are impossible under the deterministic tokenizer (i.e., they will never be seen in any training corpus, no matter how large). This misallocation is both erroneous, as noncanonical strings never appear in training data, and wasteful, diverting probability mass away from plausible outputs. These are avoidable mistakes! In this work, we propose methods to enforce canonicality in token-level language models, ensuring that only canonical token strings are assigned positive probability. We present two approaches: (1) canonicality by conditioning, leveraging test-time inference strategies without additional training, and (2) canonicality by construction, a model parameterization that guarantees canonical outputs but requires training. We demonstrate that fixing canonicality mistakes improves the likelihood of held-out data for several models and corpora.
comment: ICML 2025
Statistical Hypothesis Testing for Auditing Robustness in Language Models
Consider the problem of testing whether the outputs of a large language model (LLM) system change under an arbitrary intervention, such as an input perturbation or changing the model variant. We cannot simply compare two LLM outputs since they might differ due to the stochastic nature of the system, nor can we compare the entire output distribution due to computational intractability. While existing methods for analyzing text-based outputs exist, they focus on fundamentally different problems, such as measuring bias or fairness. To this end, we introduce distribution-based perturbation analysis, a framework that reformulates LLM perturbation analysis as a frequentist hypothesis testing problem. We construct empirical null and alternative output distributions within a low-dimensional semantic similarity space via Monte Carlo sampling, enabling tractable inference without restrictive distributional assumptions. The framework is (i) model-agnostic, (ii) supports the evaluation of arbitrary input perturbations on any black-box LLM, (iii) yields interpretable p-values; (iv) supports multiple perturbations via controlled error rates; and (v) provides scalar effect sizes. We demonstrate the usefulness of the framework across multiple case studies, showing how we can quantify response changes, measure true/false positive rates, and evaluate alignment with reference models. Above all, we see this as a reliable frequentist hypothesis testing framework for LLM auditing.
comment: arXiv admin note: substantial text overlap with arXiv:2412.00868
ProtocolLLM: RTL Benchmark for SystemVerilog Generation of Communication Protocols ISCA 2025
Recent advances in Large Language Models (LLMs) have shown promising capabilities in generating code for general-purpose programming languages. In contrast, their applicability for hardware description languages, particularly for generating synthesizable and functionally correct designs, remains significantly underexplored. HDLs such as SystemVerilog are logic-oriented and demand strict adherence to timing semantics, concurrency, and synthesizability constraints. Moreover, HDL-based design flows encompass a broad set of tasks beyond structural code generation, including testbench development, assertion-based verification, timing closure, and protocol-level integration for on-chip communication. The objective of our paper is to analyze the capabilities of state-of-the-art LLMs in generating SystemVerilog implementations of standard communication protocols, a core component of embedded and System-on-Chip (SoC) architectures. This paper introduces the first benchmark suite targeting four widely used protocols: SPI, I2C, UART, and AXI. We define code generation tasks that capture varying levels of design abstraction and prompt specificity. The generated designs are assessed for syntactic correctness, synthesizability, and functional fidelity via waveform simulation and test benches.
comment: Accepted at MLSysArch@ISCA 2025
Quantum Graph Transformer for NLP Sentiment Classification
Quantum machine learning is a promising direction for building more efficient and expressive models, particularly in domains where understanding complex, structured data is critical. We present the Quantum Graph Transformer (QGT), a hybrid graph-based architecture that integrates a quantum self-attention mechanism into the message-passing framework for structured language modeling. The attention mechanism is implemented using parameterized quantum circuits (PQCs), which enable the model to capture rich contextual relationships while significantly reducing the number of trainable parameters compared to classical attention mechanisms. We evaluate QGT on five sentiment classification benchmarks. Experimental results show that QGT consistently achieves higher or comparable accuracy than existing quantum natural language processing (QNLP) models, including both attention-based and non-attention-based approaches. When compared with an equivalent classical graph transformer, QGT yields an average accuracy improvement of 5.42% on real-world datasets and 4.76% on synthetic datasets. Additionally, QGT demonstrates improved sample efficiency, requiring nearly 50% fewer labeled samples to reach comparable performance on the Yelp dataset. These results highlight the potential of graph-based QNLP techniques for advancing efficient and scalable language understanding.
Mimicking or Reasoning: Rethinking Multi-Modal In-Context Learning in Vision-Language Models
Vision-language models (VLMs) are widely assumed to exhibit in-context learning (ICL), a property similar to that of their language-only counterparts. While recent work suggests VLMs can perform multimodal ICL (MM-ICL), studies show they often rely on shallow heuristics -- such as copying or majority voting -- rather than true task understanding. We revisit this assumption by evaluating VLMs under distribution shifts, where support examples come from a dataset different from the query. Surprisingly, performance often degrades with more demonstrations, and models tend to copy answers rather than learn from them. To investigate further, we propose a new MM-ICL with Reasoning pipeline that augments each demonstration with a generated rationale alongside the answer. We conduct extensive and comprehensive experiments on both perception- and reasoning-required datasets with open-source VLMs ranging from 3B to 72B and proprietary models such as Gemini 2.0. We conduct controlled studies varying shot count, retrieval method, rationale quality, and distribution. Our results show limited performance sensitivity across these factors, suggesting that current VLMs do not effectively utilize demonstration-level information as intended in MM-ICL.
Solving Inequality Proofs with Large Language Models
Inequality proving, crucial across diverse scientific and mathematical fields, tests advanced reasoning skills such as discovering tight bounds and strategic theorem application. This makes it a distinct, demanding frontier for large language models (LLMs), offering insights beyond general mathematical problem-solving. Progress in this area is hampered by existing datasets that are often scarce, synthetic, or rigidly formal. We address this by proposing an informal yet verifiable task formulation, recasting inequality proving into two automatically checkable subtasks: bound estimation and relation prediction. Building on this, we release IneqMath, an expert-curated dataset of Olympiad-level inequalities, including a test set and training corpus enriched with step-wise solutions and theorem annotations. We also develop a novel LLM-as-judge evaluation framework, combining a final-answer judge with four step-wise judges designed to detect common reasoning flaws. A systematic evaluation of 29 leading LLMs on IneqMath reveals a surprising reality: even top models like o1 achieve less than 10% overall accuracy under step-wise scrutiny; this is a drop of up to 65.5% from their accuracy considering only final answer equivalence. This discrepancy exposes fragile deductive chains and a critical gap for current LLMs between merely finding an answer and constructing a rigorous proof. Scaling model size and increasing test-time computation yield limited gains in overall proof correctness. Instead, our findings highlight promising research directions such as theorem-guided reasoning and self-refinement. Code and data are available at https://ineqmath.github.io/.
comment: 52 pages, 16 figures
Uncovering the Functional Roles of Nonlinearity in Memory
Memory and long-range temporal processing are core requirements for sequence modeling tasks across natural language processing, time-series forecasting, speech recognition, and control. While nonlinear recurrence has long been viewed as essential for enabling such mechanisms, recent work suggests that linear dynamics may often suffice. In this study, we go beyond performance comparisons to systematically dissect the functional role of nonlinearity in recurrent networks--identifying both when it is computationally necessary, and what mechanisms it enables. We use Almost Linear Recurrent Neural Networks (AL-RNNs), which allow fine-grained control over nonlinearity, as both a flexible modeling tool and a probe into the internal mechanisms of memory. Across a range of classic sequence modeling tasks and a real-world stimulus selection task, we find that minimal nonlinearity is not only sufficient but often optimal, yielding models that are simpler, more robust, and more interpretable than their fully nonlinear or linear counterparts. Our results provide a principled framework for selectively introducing nonlinearity, bridging dynamical systems theory with the functional demands of long-range memory and structured computation in recurrent neural networks, with implications for both artificial and biological neural systems.
comment: Preprint under review
LUCIFER: Language Understanding and Context-Infused Framework for Exploration and Behavior Refinement
In dynamic environments, the rapid obsolescence of pre-existing environmental knowledge creates a gap between an agent's internal model and the evolving reality of its operational context. This disparity between prior and updated environmental valuations fundamentally limits the effectiveness of autonomous decision-making. To bridge this gap, the contextual bias of human domain stakeholders, who naturally accumulate insights through direct, real-time observation, becomes indispensable. However, translating their nuanced, and context-rich input into actionable intelligence for autonomous systems remains an open challenge. To address this, we propose LUCIFER (Language Understanding and Context-Infused Framework for Exploration and Behavior Refinement), a domain-agnostic framework that integrates a hierarchical decision-making architecture with reinforcement learning (RL) and large language models (LLMs) into a unified system. This architecture mirrors how humans decompose complex tasks, enabling a high-level planner to coordinate specialised sub-agents, each focused on distinct objectives and temporally interdependent actions. Unlike traditional applications where LLMs are limited to single role, LUCIFER integrates them in two synergistic roles: as context extractors, structuring verbal stakeholder input into domain-aware representations that influence decision-making through an attention space mechanism aligning LLM-derived insights with the agent's learning process, and as zero-shot exploration facilitators guiding the agent's action selection process during exploration. We benchmark various LLMs in both roles and demonstrate that LUCIFER improves exploration efficiency and decision quality, outperforming flat, goal-conditioned policies. Our findings show the potential of context-driven decision-making, where autonomous systems leverage human contextual knowledge for operational success.
comment: 12 pages, 4 Figures, 3 Tables, submitted to the IEEE for possible publication
MiniCPM4: Ultra-Efficient LLMs on End Devices
This paper introduces MiniCPM4, a highly efficient large language model (LLM) designed explicitly for end-side devices. We achieve this efficiency through systematic innovation in four key dimensions: model architecture, training data, training algorithms, and inference systems. Specifically, in terms of model architecture, we propose InfLLM v2, a trainable sparse attention mechanism that accelerates both prefilling and decoding phases for long-context processing. Regarding training data, we propose UltraClean, an efficient and accurate pre-training data filtering and generation strategy, and UltraChat v2, a comprehensive supervised fine-tuning dataset. These datasets enable satisfactory model performance to be achieved using just 8 trillion training tokens. Regarding training algorithms, we propose ModelTunnel v2 for efficient pre-training strategy search, and improve existing post-training methods by introducing chunk-wise rollout for load-balanced reinforcement learning and data-efficient tenary LLM, BitCPM. Regarding inference systems, we propose CPM.cu that integrates sparse attention, model quantization, and speculative sampling to achieve efficient prefilling and decoding. To meet diverse on-device requirements, MiniCPM4 is available in two versions, with 0.5B and 8B parameters, respectively. Sufficient evaluation results show that MiniCPM4 outperforms open-source models of similar size across multiple benchmarks, highlighting both its efficiency and effectiveness. Notably, MiniCPM4-8B demonstrates significant speed improvements over Qwen3-8B when processing long sequences. Through further adaptation, MiniCPM4 successfully powers diverse applications, including trustworthy survey generation and tool use with model context protocol, clearly showcasing its broad usability.
comment: MiniCPM4 Technical Report
MEMOIR: Lifelong Model Editing with Minimal Overwrite and Informed Retention for LLMs
Language models deployed in real-world systems often require post-hoc updates to incorporate new or corrected knowledge. However, editing such models efficiently and reliably - without retraining or forgetting previous information - remains a major challenge. Existing methods for lifelong model editing either compromise generalization, interfere with past edits, or fail to scale to long editing sequences. We propose MEMOIR, a novel scalable framework that injects knowledge through a residual memory, i.e., a dedicated parameter module, while preserving the core capabilities of the pre-trained model. By sparsifying input activations through sample-dependent masks, MEMOIR confines each edit to a distinct subset of the memory parameters, minimizing interference among edits. At inference, it identifies relevant edits by comparing the sparse activation patterns of new queries to those stored during editing. This enables generalization to rephrased queries by activating only the relevant knowledge while suppressing unnecessary memory activation for unrelated prompts. Experiments on question answering, hallucination correction, and out-of-distribution generalization benchmarks across LLaMA-3 and Mistral demonstrate that MEMOIR achieves state-of-the-art performance across reliability, generalization, and locality metrics, scaling to thousands of sequential edits with minimal forgetting.
comment: The first two authors contributed equally to this work
Evaluating Large Language Models on the Frame and Symbol Grounding Problems: A Zero-shot Benchmark
Recent advancements in large language models (LLMs) have revitalized philosophical debates surrounding artificial intelligence. Two of the most fundamental challenges - namely, the Frame Problem and the Symbol Grounding Problem - have historically been viewed as unsolvable within traditional symbolic AI systems. This study investigates whether modern LLMs possess the cognitive capacities required to address these problems. To do so, I designed two benchmark tasks reflecting the philosophical core of each problem, administered them under zero-shot conditions to 13 prominent LLMs (both closed and open-source), and assessed the quality of the models' outputs across five trials each. Responses were scored along multiple criteria, including contextual reasoning, semantic coherence, and information filtering. The results demonstrate that while open-source models showed variability in performance due to differences in model size, quantization, and instruction tuning, several closed models consistently achieved high scores. These findings suggest that select modern LLMs may be acquiring capacities sufficient to produce meaningful and stable responses to these long-standing theoretical challenges.
comment: 52 pages, Additional resources available on GitHub repository
Learning to Focus: Causal Attention Distillation via Gradient-Guided Token Pruning
Large language models (LLMs) have demonstrated significant improvements in contextual understanding. However, their ability to attend to truly critical information during long-context reasoning and generation still falls behind the pace. Specifically, our preliminary experiments reveal that certain distracting patterns can misdirect the model's attention during inference, and removing these patterns substantially improves reasoning accuracy and generation quality. We attribute this phenomenon to spurious correlations in the training data, which obstruct the model's capacity to infer authentic causal instruction-response relationships. This phenomenon may induce redundant reasoning processes, potentially resulting in significant inference overhead and, more critically, the generation of erroneous or suboptimal responses. To mitigate this, we introduce a two-stage framework called Learning to Focus (LeaF) leveraging intervention-based inference to disentangle confounding factors. In the first stage, LeaF employs gradient-based comparisons with an advanced teacher to automatically identify confounding tokens based on causal relationships in the training corpus. Then, in the second stage, it prunes these tokens during distillation to enact intervention, aligning the student's attention with the teacher's focus distribution on truly critical context tokens. Experimental results demonstrate that LeaF not only achieves an absolute improvement in various mathematical reasoning and code generation benchmarks but also effectively suppresses attention to confounding tokens during inference, yielding a more interpretable and reliable reasoning model.
Improving large language models with concept-aware fine-tuning
Large language models (LLMs) have become the cornerstone of modern AI. However, the existing paradigm of next-token prediction fundamentally limits their ability to form coherent, high-level concepts, making it a critical barrier to human-like understanding and reasoning. Take the phrase "ribonucleic acid" as an example: an LLM will first decompose it into tokens, i.e., artificial text fragments ("rib", "on", ...), then learn each token sequentially, rather than grasping the phrase as a unified, coherent semantic entity. This fragmented representation hinders deeper conceptual understanding and, ultimately, the development of truly intelligent systems. In response, we introduce Concept-Aware Fine-Tuning (CAFT), a novel multi-token training method that redefines how LLMs are fine-tuned. By enabling the learning of sequences that span multiple tokens, this method fosters stronger concept-aware learning. Our experiments demonstrate significant improvements compared to conventional next-token finetuning methods across diverse tasks, including traditional applications like text summarization and domain-specific ones like de novo protein design. Multi-token prediction was previously only possible in the prohibitively expensive pretraining phase; CAFT, to our knowledge, is the first to bring the multi-token setting to the post-training phase, thus effectively democratizing its benefits for the broader community of practitioners and researchers. Finally, the unexpected effectiveness of our proposed method suggests wider implications for the machine learning research community. All code and data are available at https://github.com/michaelchen-lab/caft-llm
WebUIBench: A Comprehensive Benchmark for Evaluating Multimodal Large Language Models in WebUI-to-Code
With the rapid advancement of Generative AI technology, Multimodal Large Language Models(MLLMs) have the potential to act as AI software engineers capable of executing complex web application development. Considering that the model requires a confluence of multidimensional sub-capabilities to address the challenges of various development phases, constructing a multi-view evaluation framework is crucial for accurately guiding the enhancement of development efficiency. However, existing benchmarks usually fail to provide an assessment of sub-capabilities and focus solely on webpage generation outcomes. In this work, we draw inspiration from the principles of software engineering and further propose WebUIBench, a benchmark systematically designed to evaluate MLLMs in four key areas: WebUI Perception, HTML Programming,WebUI-HTML Understanding, and WebUI-to-Code. WebUIBench comprises 21K high-quality question-answer pairs derived from over 0.7K real-world websites. The extensive evaluation of 29 mainstream MLLMs uncovers the skill characteristics and various weakness that models encountered during the development process.
MultiMatch: Multihead Consistency Regularization Matching for Semi-Supervised Text Classification
We introduce MultiMatch, a novel semi-supervised learning (SSL) algorithm combining the paradigms of co-training and consistency regularization with pseudo-labeling. At its core, MultiMatch features a three-fold pseudo-label weighting module designed for three key purposes: selecting and filtering pseudo-labels based on head agreement and model confidence, and weighting them according to the perceived classification difficulty. This novel module enhances and unifies three existing techniques -- heads agreement from Multihead Co-training, self-adaptive thresholds from FreeMatch, and Average Pseudo-Margins from MarginMatch -- resulting in a holistic approach that improves robustness and performance in SSL settings. Experimental results on benchmark datasets highlight the superior performance of MultiMatch, achieving state-of-the-art results on 9 out of 10 setups from 5 natural language processing datasets and ranking first according to the Friedman test among 19 methods. Furthermore, MultiMatch demonstrates exceptional robustness in highly imbalanced settings, outperforming the second-best approach by 3.26% -- and data imbalance is a key factor for many text classification tasks.
LLM Unlearning Should Be Form-Independent
Large Language Model (LLM) unlearning aims to erase or suppress undesirable knowledge within the model, offering promise for controlling harmful or private information to prevent misuse. However, recent studies highlight its limited efficacy in real-world scenarios, hindering practical adoption. In this study, we identify a pervasive issue underlying many downstream failures: the effectiveness of existing unlearning methods heavily depends on the form of training samples and frequently fails to generalize to alternate expressions of the same knowledge. We formally characterize this problem as Form-Dependent Bias and systematically investigate its specific manifestation patterns across various downstream tasks. To quantify its prevalence and support future research, we introduce ORT, a novel benchmark designed to evaluate the robustness of unlearning methods against variations in knowledge expression. Results reveal that Form-Dependent Bias is both widespread and severe among current techniques. We argue that LLM unlearning should be form-independent to address the endless forms of downstream tasks encountered in real-world security-critical scenarios. Towards this goal, we introduce Rank-one Concept Redirection (ROCR), a novel training-free method, as a promising solution path. ROCR performs unlearning by targeting the invariants in downstream tasks, specifically the activated dangerous concepts. It is capable of modifying model parameters within seconds to redirect the model's perception of a specific unlearning target concept to another harmless concept. Extensive experiments demonstrate that ROCR significantly improves unlearning effectiveness compared to traditional methods while generating highly natural outputs.
Augmenting LLMs' Reasoning by Reinforcing Abstract Thinking
Recent studies have shown that large language models (LLMs), especially smaller ones, often lack robustness in their reasoning. I.e., they tend to experience performance drops when faced with distribution shifts, such as changes to numerical or nominal variables, or insertions of distracting clauses. A possible strategy to address this involves generating synthetic data to further "instantiate" reasoning problems on potential variations. In contrast, our approach focuses on "abstracting" reasoning problems. This not only helps counteract distribution shifts but also facilitates the connection to symbolic tools for deriving solutions. We find that this abstraction process is better acquired through reinforcement learning (RL) than just supervised fine-tuning, which often fails to produce faithful abstractions. Our method, AbstraL -- which promotes abstract reasoning in LLMs using RL on granular abstraction data -- significantly mitigates performance degradation on recent GSM perturbation benchmarks.
comment: Under review
Swiss Parliaments Corpus Re-Imagined (SPC_R): Enhanced Transcription with RAG-based Correction and Predicted BLEU
This paper presents a new long-form release of the Swiss Parliaments Corpus, converting entire multi-hour Swiss German debate sessions (each aligned with the official session protocols) into high-quality speech-text pairs. Our pipeline starts by transcribing all session audio into Standard German using Whisper Large-v3 under high-compute settings. We then apply a two-step GPT-4o correction process: first, GPT-4o ingests the raw Whisper output alongside the official protocols to refine misrecognitions, mainly named entities. Second, a separate GPT-4o pass evaluates each refined segment for semantic completeness. We filter out any segments whose Predicted BLEU score (derived from Whisper's average token log-probability) and GPT-4o evaluation score fall below a certain threshold. The final corpus contains 801 hours of audio, of which 751 hours pass our quality control. Compared to the original sentence-level SPC release, our long-form dataset achieves a 6-point BLEU improvement, demonstrating the power of combining robust ASR, LLM-based correction, and data-driven filtering for low-resource, domain-specific speech corpora.
Multilingual Grammatical Error Annotation: Combining Language-Agnostic Framework with Language-Specific Flexibility
Grammatical Error Correction (GEC) relies on accurate error annotation and evaluation, yet existing frameworks, such as $\texttt{errant}$, face limitations when extended to typologically diverse languages. In this paper, we introduce a standardized, modular framework for multilingual grammatical error annotation. Our approach combines a language-agnostic foundation with structured language-specific extensions, enabling both consistency and flexibility across languages. We reimplement $\texttt{errant}$ using $\texttt{stanza}$ to support broader multilingual coverage, and demonstrate the framework's adaptability through applications to English, German, Czech, Korean, and Chinese, ranging from general-purpose annotation to more customized linguistic refinements. This work supports scalable and interpretable GEC annotation across languages and promotes more consistent evaluation in multilingual settings. The complete codebase and annotation tools can be accessed at https://github.com/open-writing-evaluation/jp_errant_bea.
comment: BEA2025
Through the Valley: Path to Effective Long CoT Training for Small Language Models
Long chain-of-thought (CoT) supervision has become a common strategy to enhance reasoning in language models. While effective for large models, we identify a phenomenon we call Long CoT Degradation, in which small language models (SLMs; <=3B parameters) trained on limited long CoT data experience significant performance deterioration. Through extensive experiments on the Qwen2.5, LLaMA3 and Gemma3 families, we demonstrate that this degradation is widespread across SLMs. In some settings, models trained on only 8k long CoT examples lose up to 75% of their original performance before fine-tuning. Strikingly, we further observe that for some particularly small models, even training on 220k long CoT examples fails to recover or surpass their original performance prior to fine-tuning. Our analysis attributes this effect to error accumulation: while longer responses increase the capacity for multi-step reasoning, they also amplify the risk of compounding mistakes. Furthermore, we find that Long CoT Degradation may negatively impacts downstream reinforcement learning (RL), although this can be alleviated by sufficiently scaled supervised fine-tuning (SFT). Our findings challenge common assumptions about the benefits of long CoT training for SLMs and offer practical guidance for building more effective small-scale reasoning models.
Training Superior Sparse Autoencoders for Instruct Models
As large language models (LLMs) grow in scale and capability, understanding their internal mechanisms becomes increasingly critical. Sparse autoencoders (SAEs) have emerged as a key tool in mechanistic interpretability, enabling the extraction of human-interpretable features from LLMs. However, existing SAE training methods are primarily designed for base models, resulting in reduced reconstruction quality and interpretability when applied to instruct models. To bridge this gap, we propose $\underline{\textbf{F}}$inetuning-$\underline{\textbf{a}}$ligned $\underline{\textbf{S}}$equential $\underline{\textbf{T}}$raining ($\textit{FAST}$), a novel training method specifically tailored for instruct models. $\textit{FAST}$ aligns the training process with the data distribution and activation patterns characteristic of instruct models, resulting in substantial improvements in both reconstruction and feature interpretability. On Qwen2.5-7B-Instruct, $\textit{FAST}$ achieves a mean squared error of 0.6468 in token reconstruction, significantly outperforming baseline methods with errors of 5.1985 and 1.5096. In feature interpretability, $\textit{FAST}$ yields a higher proportion of high-quality features, for Llama3.2-3B-Instruct, $21.1\%$ scored in the top range, compared to $7.0\%$ and $10.2\%$ for $\textit{BT(P)}$ and $\textit{BT(F)}$. Surprisingly, we discover that intervening on the activations of special tokens via the SAEs leads to improvements in output quality, suggesting new opportunities for fine-grained control of model behavior. Code, data, and 240 trained SAEs are available at https://github.com/Geaming2002/FAST.
GaRAGe: A Benchmark with Grounding Annotations for RAG Evaluation ACL 2025
We present GaRAGe, a large RAG benchmark with human-curated long-form answers and annotations of each grounding passage, allowing a fine-grained evaluation of whether LLMs can identify relevant grounding when generating RAG answers. Our benchmark contains 2366 questions of diverse complexity, dynamism, and topics, and includes over 35K annotated passages retrieved from both private document sets and the Web, to reflect real-world RAG use cases. This makes it an ideal test bed to evaluate an LLM's ability to identify only the relevant information necessary to compose a response, or provide a deflective response when there is insufficient information. Evaluations of multiple state-of-the-art LLMs on GaRAGe show that the models tend to over-summarise rather than (a) ground their answers strictly on the annotated relevant passages (reaching at most a Relevance-Aware Factuality Score of 60%), or (b) deflect when no relevant grounding is available (reaching at most 31% true positive rate in deflections). The F1 in attribution to relevant sources is at most 58.9%, and we show that performance is particularly reduced when answering time-sensitive questions and when having to draw knowledge from sparser private grounding sources.
comment: ACL 2025 (Findings)
Silencing Empowerment, Allowing Bigotry: Auditing the Moderation of Hate Speech on Twitch
To meet the demands of content moderation, online platforms have resorted to automated systems. Newer forms of real-time engagement($\textit{e.g.}$, users commenting on live streams) on platforms like Twitch exert additional pressures on the latency expected of such moderation systems. Despite their prevalence, relatively little is known about the effectiveness of these systems. In this paper, we conduct an audit of Twitch's automated moderation tool ($\texttt{AutoMod}$) to investigate its effectiveness in flagging hateful content. For our audit, we create streaming accounts to act as siloed test beds, and interface with the live chat using Twitch's APIs to send over $107,000$ comments collated from $4$ datasets. We measure $\texttt{AutoMod}$'s accuracy in flagging blatantly hateful content containing misogyny, racism, ableism and homophobia. Our experiments reveal that a large fraction of hateful messages, up to $94\%$ on some datasets, $\textit{bypass moderation}$. Contextual addition of slurs to these messages results in $100\%$ removal, revealing $\texttt{AutoMod}$'s reliance on slurs as a moderation signal. We also find that contrary to Twitch's community guidelines, $\texttt{AutoMod}$ blocks up to $89.5\%$ of benign examples that use sensitive words in pedagogical or empowering contexts. Overall, our audit points to large gaps in $\texttt{AutoMod}$'s capabilities and underscores the importance for such systems to understand context effectively.
Synthesis by Design: Controlled Data Generation via Structural Guidance
Mathematical reasoning remains challenging for LLMs due to complex logic and the need for precise computation. Existing methods enhance LLM reasoning by synthesizing datasets through problem rephrasing, but face issues with generation quality and problem complexity. To address this, we propose to extract structural information with generated problem-solving code from mathematical reasoning and guide data generation with structured solutions. Applied to MATH and GSM8K, our approach produces 39K problems with labeled intermediate steps and a 6.1K-problem benchmark of higher difficulty. Results on our benchmark show that model performance declines as reasoning length increases. Additionally, we conducted fine-tuning experiments using the proposed training data on a range of LLMs, and the results validate the effectiveness of our dataset. We hope the proposed method and dataset will contribute to future research in enhancing LLM reasoning capabilities.
Beyond Benchmarks: A Novel Framework for Domain-Specific LLM Evaluation and Knowledge Mapping
The paper addresses two critical challenges in language model (LM) evaluation: creating reliable domain-specific benchmarks and understanding knowledge representation during domain adaptation. We introduce a deterministic pipeline that converts raw domain corpora into completion-type benchmarks without relying on LMs or human curation, eliminating benchmark contamination issues while enabling evaluation on the latest domain data. Our approach generates domain-specific keywords and related word lists using TF and Term TF-IDF methods and constructs prompt-target pairs. We evaluate models by measuring their ability to complete these prompts with the correct domain-specific targets, providing a direct assessment of domain knowledge with low computational cost. Through comprehensive experiments across multiple models (GPT-2 medium/XL, Llama-2/3.1, OLMo-2, Qwen-2, Mistral) and domains, we demonstrate that our benchmark strongly correlates with expert-generated benchmarks while providing a more accurate measure of domain knowledge than traditional perplexity metrics. We reveal that domain adaptation happens rapidly in smaller models (within 500 steps) and illustrate a new approach to domain knowledge evaluation in base models during training for early stopping. By extending mechanistic analysis to domain adaptation, we discover that initial-to-mid layers are primarily responsible for attribute extraction, while later layers focus on next token prediction. Furthermore, we show that during adaptation, forgetting begins in the middle layers, where attribute extraction happens and is amplified in later layers. Our work provides both a practical evaluation methodology for domain-specific LMs and novel insights into knowledge representation during adaptation, with implications for more efficient fine-tuning strategies and targeted approaches to mitigate catastrophic forgetting.
comment: 35 pages, 24 figures. First submission
Transcript-Prompted Whisper with Dictionary-Enhanced Decoding for Japanese Speech Annotation INTERSPEECH 2025
In this paper, we propose a method for annotating phonemic and prosodic labels on a given audio-transcript pair, aimed at constructing Japanese text-to-speech (TTS) datasets. Our approach involves fine-tuning a large-scale pre-trained automatic speech recognition (ASR) model, conditioned on ground truth transcripts, to simultaneously output phrase-level graphemes and annotation labels. To further correct errors in phonemic labeling, we employ a decoding strategy that utilizes dictionary prior knowledge. The objective evaluation results demonstrate that our proposed method outperforms previous approaches relying solely on text or audio. The subjective evaluation results indicate that the naturalness of speech synthesized by the TTS model, trained with labels annotated using our method, is comparable to that of a model trained with manual annotations.
comment: Accepted to INTERSPEECH 2025
Evaluating LLMs Robustness in Less Resourced Languages with Proxy Models
Large language models (LLMs) have demonstrated impressive capabilities across various natural language processing (NLP) tasks in recent years. However, their susceptibility to jailbreaks and perturbations necessitates additional evaluations. Many LLMs are multilingual, but safety-related training data contains mainly high-resource languages like English. This can leave them vulnerable to perturbations in low-resource languages such as Polish. We show how surprisingly strong attacks can be cheaply created by altering just a few characters and using a small proxy model for word importance calculation. We find that these character and word-level attacks drastically alter the predictions of different LLMs, suggesting a potential vulnerability that can be used to circumvent their internal safety mechanisms. We validate our attack construction methodology on Polish, a low-resource language, and find potential vulnerabilities of LLMs in this language. Additionally, we show how it can be extended to other languages. We release the created datasets and code for further research.
TreeReview: A Dynamic Tree of Questions Framework for Deep and Efficient LLM-based Scientific Peer Review
While Large Language Models (LLMs) have shown significant potential in assisting peer review, current methods often struggle to generate thorough and insightful reviews while maintaining efficiency. In this paper, we propose TreeReview, a novel framework that models paper review as a hierarchical and bidirectional question-answering process. TreeReview first constructs a tree of review questions by recursively decomposing high-level questions into fine-grained sub-questions and then resolves the question tree by iteratively aggregating answers from leaf to root to get the final review. Crucially, we incorporate a dynamic question expansion mechanism to enable deeper probing by generating follow-up questions when needed. We construct a benchmark derived from ICLR and NeurIPS venues to evaluate our method on full review generation and actionable feedback comments generation tasks. Experimental results of both LLM-based and human evaluation show that TreeReview outperforms strong baselines in providing comprehensive, in-depth, and expert-aligned review feedback, while reducing LLM token usage by up to 80% compared to computationally intensive approaches. Our code and benchmark dataset are available at https://github.com/YuanChang98/tree-review.
comment: 30 pages, 17 figures
Unblocking Fine-Grained Evaluation of Detailed Captions: An Explaining AutoRater and Critic-and-Revise Pipeline
Large Vision-Language Models (VLMs) now generate highly detailed, paragraphlength image captions, yet evaluating their factual accuracy remains challenging. Current methods often miss fine-grained errors, being designed for shorter texts or lacking datasets with verified inaccuracies. We introduce DOCCI-Critique, a benchmark with 1,400 VLM-generated paragraph captions (100 images, 14 VLMs) featuring over 10,216 sentence-level human annotations of factual correctness and explanatory rationales for errors, all within paragraph context. Building on this, we develop VNLI-Critique, a model for automated sentence-level factuality classification and critique generation. We highlight three key applications: (1) VNLI-Critique demonstrates robust generalization, validated by state-of-the-art performance on the M-HalDetect benchmark and strong results in CHOCOLATE claim verification. (2) The VNLI-Critique driven AutoRater for DOCCI-Critique provides reliable VLM rankings, showing excellent alignment with human factuality judgments (e.g., 0.98 Spearman). (3) An innovative Critic-and-Revise pipeline, where critiques from VNLI-Critique guide LLM-based corrections, achieves substantial improvements in caption factuality (e.g., a 46% gain on DetailCaps-4870). Our work offers a crucial benchmark alongside practical tools, designed to significantly elevate the standards for fine-grained evaluation and foster the improvement of VLM image understanding. Project page: https://google.github.io/unblocking-detail-caption
Intent Matters: Enhancing AI Tutoring with Fine-Grained Pedagogical Intent Annotation
Large language models (LLMs) hold great promise for educational applications, particularly in intelligent tutoring systems. However, effective tutoring requires alignment with pedagogical strategies - something current LLMs lack without task-specific adaptation. In this work, we explore whether fine-grained annotation of teacher intents can improve the quality of LLM-generated tutoring responses. We focus on MathDial, a dialog dataset for math instruction, and apply an automated annotation framework to re-annotate a portion of the dataset using a detailed taxonomy of eleven pedagogical intents. We then fine-tune an LLM using these new annotations and compare its performance to models trained on the original four-category taxonomy. Both automatic and qualitative evaluations show that the fine-grained model produces more pedagogically aligned and effective responses. Our findings highlight the value of intent specificity for controlled text generation in educational settings, and we release our annotated data and code to facilitate further research.
LoRMA: Low-Rank Multiplicative Adaptation for LLMs ACL
Large Language Models have shown remarkable capabilities in the NLP domain. Their effectiveness can mainly be attributed to their ability to adapt to an array of downstream tasks. However, generally, full fine-tuning is a computationally expensive job. To mitigate this, many techniques have been developed that prime efficiency, a prominent one being Low-Rank Adaptation (LoRA). However, LoRA and its variants employ re-parametrized additive updates. In this paper, we propose Low-Rank Multiplicative Adaptation (LoRMA), which shifts the paradigm of additive updates to a richer space of matrix multiplicative transformations. We tackle challenges such as computational complexity and rank bottleneck of matrix multiplication by effectively re-ordering operations and introducing rank inflation strategies. We conduct extensive experiments to demonstrate the effectiveness of our approach in terms of various evaluation metrics.
comment: Accepted at ACL Findings 2025; 21 pages (9 main paper + 5 pages references + 7 pages appendix)
Vuyko Mistral: Adapting LLMs for Low-Resource Dialectal Translation
In this paper we introduce the first effort to adapt large language models (LLMs) to the Ukrainian dialect (in our case Hutsul), a low-resource and morphologically complex dialect spoken in the Carpathian Highlands. We created a parallel corpus of 9852 dialect-to-standard Ukrainian sentence pairs and a dictionary of 7320 dialectal word mappings. We also addressed data shortage by proposing an advanced Retrieval-Augmented Generation (RAG) pipeline to generate synthetic parallel translation pairs, expanding the corpus with 52142 examples. We have fine-tuned multiple open-source LLMs using LoRA and evaluated them on a standard-to-dialect translation task, also comparing with few-shot GPT-4o translation. In the absence of human annotators, we adopt a multi-metric evaluation strategy combining BLEU, chrF++, TER, and LLM-based judgment (GPT-4o). The results show that even small(7B) finetuned models outperform zero-shot baselines such as GPT-4o across both automatic and LLM-evaluated metrics. All data, models, and code are publicly released at: https://github.com/woters/vuyko-hutsul
comment: Preprint. Will be published at Proceedings of the Fourth Ukrainian Natural Language Processing Workshop (UNLP)
PolitiSky24: U.S. Political Bluesky Dataset with User Stance Labels
Stance detection identifies the viewpoint expressed in text toward a specific target, such as a political figure. While previous datasets have focused primarily on tweet-level stances from established platforms, user-level stance resources, especially on emerging platforms like Bluesky remain scarce. User-level stance detection provides a more holistic view by considering a user's complete posting history rather than isolated posts. We present the first stance detection dataset for the 2024 U.S. presidential election, collected from Bluesky and centered on Kamala Harris and Donald Trump. The dataset comprises 16,044 user-target stance pairs enriched with engagement metadata, interaction graphs, and user posting histories. PolitiSky24 was created using a carefully evaluated pipeline combining advanced information retrieval and large language models, which generates stance labels with supporting rationales and text spans for transparency. The labeling approach achieves 81\% accuracy with scalable LLMs. This resource addresses gaps in political stance analysis through its timeliness, open-data nature, and user-level perspective. The dataset is available at https://doi.org/10.5281/zenodo.15616911
comment: The dataset is available at https://doi.org/10.5281/zenodo.15616911
Instructing Large Language Models for Low-Resource Languages: A Systematic Study for Basque
Instructing language models with user intent requires large instruction datasets, which are only available for a limited set of languages. In this paper, we explore alternatives to conventional instruction adaptation pipelines in low-resource scenarios. We assume a realistic scenario for low-resource languages, where only the following are available: corpora in the target language, existing open-weight multilingual base and instructed backbone LLMs, and synthetically generated instructions sampled from the instructed backbone. We present a comprehensive set of experiments for Basque that systematically study different combinations of these components evaluated on benchmarks and human preferences from 1,680 participants. Our conclusions show that target language corpora are essential, with synthetic instructions yielding robust models, and, most importantly, that using as backbone an instruction-tuned model outperforms using a base non-instructed model, and improved results when scaling up. Using Llama 3.1 instruct 70B as backbone our model comes near frontier models of much larger sizes for Basque, without using any Basque data apart from the 1.2B word corpora. We release code, models, instruction datasets, and human preferences to support full reproducibility in future research on low-resource language adaptation.
comment: Under review
Beyond the Sentence: A Survey on Context-Aware Machine Translation with Large Language Models
Despite the popularity of the large language models (LLMs), their application to machine translation is relatively underexplored, especially in context-aware settings. This work presents a literature review of context-aware translation with LLMs. The existing works utilise prompting and fine-tuning approaches, with few focusing on automatic post-editing and creating translation agents for context-aware machine translation. We observed that the commercial LLMs (such as ChatGPT and Tower LLM) achieved better results than the open-source LLMs (such as Llama and Bloom LLMs), and prompt-based approaches serve as good baselines to assess the quality of translations. Finally, we present some interesting future directions to explore.
Learning Speaker-Invariant Visual Features for Lipreading
Lipreading is a challenging cross-modal task that aims to convert visual lip movements into spoken text. Existing lipreading methods often extract visual features that include speaker-specific lip attributes (e.g., shape, color, texture), which introduce spurious correlations between vision and text. These correlations lead to suboptimal lipreading accuracy and restrict model generalization. To address this challenge, we introduce SIFLip, a speaker-invariant visual feature learning framework that disentangles speaker-specific attributes using two complementary disentanglement modules (Implicit Disentanglement and Explicit Disentanglement) to improve generalization. Specifically, since different speakers exhibit semantic consistency between lip movements and phonetic text when pronouncing the same words, our implicit disentanglement module leverages stable text embeddings as supervisory signals to learn common visual representations across speakers, implicitly decoupling speaker-specific features. Additionally, we design a speaker recognition sub-task within the main lipreading pipeline to filter speaker-specific features, then further explicitly disentangle these personalized visual features from the backbone network via gradient reversal. Experimental results demonstrate that SIFLip significantly enhances generalization performance across multiple public datasets. Experimental results demonstrate that SIFLip significantly improves generalization performance across multiple public datasets, outperforming state-of-the-art methods.
SAFEFLOW: A Principled Protocol for Trustworthy and Transactional Autonomous Agent Systems
Recent advances in large language models (LLMs) and vision-language models (VLMs) have enabled powerful autonomous agents capable of complex reasoning and multi-modal tool use. Despite their growing capabilities, today's agent frameworks remain fragile, lacking principled mechanisms for secure information flow, reliability, and multi-agent coordination. In this work, we introduce SAFEFLOW, a new protocol-level framework for building trustworthy LLM/VLM-based agents. SAFEFLOW enforces fine-grained information flow control (IFC), precisely tracking provenance, integrity, and confidentiality of all the data exchanged between agents, tools, users, and environments. By constraining LLM reasoning to respect these security labels, SAFEFLOW prevents untrusted or adversarial inputs from contaminating high-integrity decisions. To ensure robustness in concurrent multi-agent settings, SAFEFLOW introduces transactional execution, conflict resolution, and secure scheduling over shared state, preserving global consistency across agents. We further introduce mechanisms, including write-ahead logging, rollback, and secure caches, that further enhance resilience against runtime errors and policy violations. To validate the performances, we built SAFEFLOWBENCH, a comprehensive benchmark suite designed to evaluate agent reliability under adversarial, noisy, and concurrent operational conditions. Extensive experiments demonstrate that agents built with SAFEFLOW maintain impressive task performance and security guarantees even in hostile environments, substantially outperforming state-of-the-art. Together, SAFEFLOW and SAFEFLOWBENCH lay the groundwork for principled, robust, and secure agent ecosystems, advancing the frontier of reliable autonomy.
SELT: Self-Evaluation Tree Search for LLMs with Task Decomposition
While Large Language Models (LLMs) have achieved remarkable success in a wide range of applications, their performance often degrades in complex reasoning tasks. In this work, we introduce SELT (Self-Evaluation LLM Tree Search), a novel framework that leverages a modified Monte Carlo Tree Search (MCTS) to enhance LLM reasoning without relying on external reward models. By redefining the Upper Confidence Bound scoring to align with intrinsic self-evaluation capabilities of LLMs and decomposing the inference process into atomic subtasks augmented with semantic clustering at each node, SELT effectively balances exploration and exploitation, reduces redundant reasoning paths, and mitigates hallucination. We validate our approach on challenging benchmarks, including the knowledge-based MMLU and the Tool Learning dataset Seal-Tools, where SELT achieves significant improvements in answer accuracy and reasoning robustness compared to baseline methods. Notably, our framework operates without task-specific fine-tuning, demonstrating strong generalizability across diverse reasoning tasks. Relevant results and code are available at https://github.com/fairyshine/SELT .
comment: 11 pages, 5 figures
ChemAgent: Enhancing LLMs for Chemistry and Materials Science through Tree-Search Based Tool Learning
Large language models (LLMs) have recently demonstrated promising capabilities in chemistry tasks while still facing challenges due to outdated pretraining knowledge and the difficulty of incorporating specialized chemical expertise. To address these issues, we propose an LLM-based agent that synergistically integrates 137 external chemical tools created ranging from basic information retrieval to complex reaction predictions, and a dataset curation pipeline to generate the dataset ChemToolBench that facilitates both effective tool selection and precise parameter filling during fine-tuning and evaluation. We introduce a Hierarchical Evolutionary Monte Carlo Tree Search (HE-MCTS) framework, enabling independent optimization of tool planning and execution. By leveraging self-generated data, our approach supports step-level fine-tuning (FT) of the policy model and training task-adaptive PRM and ORM that surpass GPT-4o. Experimental evaluations demonstrate that our approach significantly improves performance in Chemistry QA and discovery tasks, offering a robust solution to integrate specialized tools with LLMs for advanced chemical applications. All datasets and code are available at https://github.com/AI4Chem/ChemistryAgent .
comment: 15 pages, 6 figures
Bit-level BPE: Below the byte boundary
Byte-level fallbacks for subword tokenization have become a common practice in large language models. In particular, it has been demonstrated to be incredibly effective as a pragmatic solution for preventing OOV, especially in the context of larger models. However, breaking a character down to individual bytes significantly increases the sequence length for long-tail tokens in languages such as Chinese, Japanese, and Korean (CJK) and other character-diverse contexts such as emoji. The increased sequence length results in longer computation during both training and inference. In this work, we propose a simple compression technique that reduces the sequence length losslessly.
Towards Large Language Models with Self-Consistent Natural Language Explanations
Large language models (LLMs) seem to offer an easy path to interpretability: just ask them to explain their decisions. Yet, studies show that these post-hoc explanations often misrepresent the true decision process, as revealed by mismatches in feature importance. Despite growing evidence of this inconsistency, no systematic solutions have emerged, partly due to the high cost of estimating feature importance, which limits evaluations to small datasets. To address this, we introduce the Post-hoc Self-Consistency Bank (PSCB) - a large-scale benchmark of decisions spanning diverse tasks and models, each paired with LLM-generated explanations and corresponding feature importance scores. Analysis of PSCB reveals that self-consistency scores barely differ between correct and incorrect predictions. We also show that the standard metric fails to meaningfully distinguish between explanations. To overcome this limitation, we propose an alternative metric that more effectively captures variation in explanation quality. We use it to fine-tune LLMs via Direct Preference Optimization (DPO), leading to significantly better alignment between explanations and decision-relevant features, even under domain shift. Our findings point to a scalable path toward more trustworthy, self-consistent LLMs.
Speaker-Distinguishable CTC: Learning Speaker Distinction Using CTC for Multi-Talker Speech Recognition INTERSPEECH 2025
This paper presents a novel framework for multi-talker automatic speech recognition without the need for auxiliary information. Serialized Output Training (SOT), a widely used approach, suffers from recognition errors due to speaker assignment failures. Although incorporating auxiliary information, such as token-level timestamps, can improve recognition accuracy, extracting such information from natural conversational speech remains challenging. To address this limitation, we propose Speaker-Distinguishable CTC (SD-CTC), an extension of CTC that jointly assigns a token and its corresponding speaker label to each frame. We further integrate SD-CTC into the SOT framework, enabling the SOT model to learn speaker distinction using only overlapping speech and transcriptions. Experimental comparisons show that multi-task learning with SD-CTC and SOT reduces the error rate of the SOT model by 26% and achieves performance comparable to state-of-the-art methods relying on auxiliary information.
comment: Accepted at INTERSPEECH 2025
DeRAGEC: Denoising Named Entity Candidates with Synthetic Rationale for ASR Error Correction ACL2025
We present DeRAGEC, a method for improving Named Entity (NE) correction in Automatic Speech Recognition (ASR) systems. By extending the Retrieval-Augmented Generative Error Correction (RAGEC) framework, DeRAGEC employs synthetic denoising rationales to filter out noisy NE candidates before correction. By leveraging phonetic similarity and augmented definitions, it refines noisy retrieved NEs using in-context learning, requiring no additional training. Experimental results on CommonVoice and STOP datasets show significant improvements in Word Error Rate (WER) and NE hit ratio, outperforming baseline ASR and RAGEC methods. Specifically, we achieved a 28% relative reduction in WER compared to ASR without postprocessing. Our source code is publicly available at: https://github.com/solee0022/deragec
comment: ACL2025 Findings
What Do Indonesians Really Need from Language Technology? A Nationwide Survey
There is an emerging effort to develop NLP for Indonesias 700+ local languages, but progress remains costly due to the need for direct engagement with native speakers. However, it is unclear what these language communities truly need from language technology. To address this, we conduct a nationwide survey to assess the actual needs of native speakers in Indonesia. Our findings indicate that addressing language barriers, particularly through machine translation and information retrieval, is the most critical priority. Although there is strong enthusiasm for advancements in language technology, concerns around privacy, bias, and the use of public data for AI training highlight the need for greater transparency and clear communication to support broader AI adoption.
comment: 26 pages, 12 figures, 5 tables
DEBATE: A Dataset for Disentangling Textual Ambiguity in Mandarin Through Speech
Despite extensive research on textual and visual disambiguation, disambiguation through speech (DTS) remains underexplored. This is largely due to the lack of high-quality datasets that pair spoken sentences with richly ambiguous text. To address this gap, we present DEBATE, a unique public Chinese speech-text dataset designed to study how speech cues and patterns-pronunciation, pause, stress and intonation-can help resolve textual ambiguity and reveal a speaker's true intent. DEBATE contains 1,001 carefully selected ambiguous utterances, each recorded by 10 native speakers, capturing diverse linguistic ambiguities and their disambiguation through speech. We detail the data collection pipeline and provide rigorous quality analysis. Additionally, we benchmark three state-of-the-art large speech and audio-language models, illustrating clear and huge performance gaps between machine and human understanding of spoken intent. DEBATE represents the first effort of its kind and offers a foundation for building similar DTS datasets across languages and cultures. The dataset and associated code are available at: https://github.com/SmileHnu/DEBATE.
Graph-of-Causal Evolution: Challenging Chain-of-Model for Reasoning
In view of the problem that each subchain in the chain-of-model (CoM) relies only on the information of the previous subchain and may lose long-range dependencies due to the causal mask blocking the global context flow between multi-level subchains, this work proposes a graph of causal evolution (GoCE). Its core principle is to map the implicit token representation into a differentiable and sparse causal adjacency matrix, then permeate causal constraints through each layer of calculation using causal-masked attention and causal-MoE. By combining intervention consistency loss test and self-evolution gate, the dynamic balance between causal structure learning and adaptive updating of transformer architecture is realized. The researcher built experimental environments in sandboxes built with Claude Sonnet 4, o4-mini-high, and DeepSeek R1 respectively with the transformer variant architecture introduced in GoCE. It is evaluated on publicly available datasets including CLUTRR, CLADDER, EX-FEVER, and CausalQA and compared with the baseline LLMs. The finding proves that GoCE strengthens the transformer's ability to capture long-range causal dependencies, while the ability to self-evolve is improved. It not only surpasses the design of CoM in terms of design principles, but also provides experience for future research on causal learning and continuous adaptive improvement.
comment: The relevant code has been uploaded to the publicly available GitHub repository. The link is: https://github.com/brucewang123456789/GeniusTrail/tree/main/GoCE
A Hybrid GA LLM Framework for Structured Task Optimization
GA LLM is a hybrid framework that combines Genetic Algorithms with Large Language Models to handle structured generation tasks under strict constraints. Each output, such as a plan or report, is treated as a gene, and evolutionary operations like selection, crossover, and mutation are guided by the language model to iteratively improve solutions. The language model provides domain knowledge and creative variation, while the genetic algorithm ensures structural integrity and global optimization. GA LLM has proven effective in tasks such as itinerary planning, academic outlining, and business reporting, consistently producing well structured and requirement satisfying results. Its modular design also makes it easy to adapt to new tasks. Compared to using a language model alone, GA LLM achieves better constraint satisfaction and higher quality solutions by combining the strengths of both components.
comment: 7 pages
Improving Fairness of Large Language Models in Multi-document Summarization ACL 2025
Fairness in multi-document summarization (MDS) is crucial for providing comprehensive views across documents with diverse social attribute values, which can significantly impact decision-making. For example, a summarization system that tends to overrepresent negative reviews of products can mislead customers into disregarding good products. Previous works measure fairness in MDS at two levels: summary-level and corpus-level. While summary-level fairness focuses on individual summaries, corpus-level fairness focuses on a corpus of summaries. Recent methods primarily focus on summary-level fairness. We propose FairPO, a preference tuning method that focuses on both summary-level and corpus-level fairness in MDS. To improve summary-level fairness, we propose to generate preference pairs by perturbing document sets. To improve corpus-level fairness, we propose fairness-aware preference tuning by dynamically adjusting the weights of preference pairs. Our experiments show that FairPO outperforms strong baselines while maintaining the critical qualities of summaries. The code is available at https://github.com/leehaoyuan/coverage_fairnes.
comment: Accepted to ACL 2025 main
Chasing Moving Targets with Online Self-Play Reinforcement Learning for Safer Language Models
Conventional language model (LM) safety alignment relies on a reactive, disjoint procedure: attackers exploit a static model, followed by defensive fine-tuning to patch exposed vulnerabilities. This sequential approach creates a mismatch -- attackers overfit to obsolete defenses, while defenders perpetually lag behind emerging threats. To address this, we propose Self-RedTeam, an online self-play reinforcement learning algorithm where an attacker and defender agent co-evolve through continuous interaction. We cast safety alignment as a two-player zero-sum game, where a single model alternates between attacker and defender roles -- generating adversarial prompts and safeguarding against them -- while a reward LM adjudicates outcomes. This enables dynamic co-adaptation. Grounded in the game-theoretic framework of zero-sum games, we establish a theoretical safety guarantee which motivates the design of our method: if self-play converges to a Nash Equilibrium, the defender will reliably produce safe responses to any adversarial input. Empirically, Self-RedTeam uncovers more diverse attacks (+21.8% SBERT) compared to attackers trained against static defenders and achieves higher robustness on safety benchmarks (e.g., +65.5% on WildJailBreak) than defenders trained against static attackers. We further propose hidden Chain-of-Thought, allowing agents to plan privately, which boosts adversarial diversity and reduces over-refusals. Our results motivate a shift from reactive patching to proactive co-evolution in LM safety training, enabling scalable, autonomous, and robust self-improvement of LMs via multi-agent reinforcement learning (MARL).
CCI4.0: A Bilingual Pretraining Dataset for Enhancing Reasoning in Large Language Models
We introduce CCI4.0, a large-scale bilingual pre-training dataset engineered for superior data quality and diverse human-like reasoning trajectory. CCI4.0 occupies roughly $35$ TB of disk space and comprises two sub-datasets: CCI4.0-M2-Base and CCI4.0-M2-CoT. CCI4.0-M2-Base combines a $5.2$ TB carefully curated Chinese web corpus, a $22.5$ TB English subset from Nemotron-CC, and diverse sources from math, wiki, arxiv, and code. Although these data are mostly sourced from well-processed datasets, the quality standards of various domains are dynamic and require extensive expert experience and labor to process. So, we propose a novel pipeline justifying data quality mainly based on models through two-stage deduplication, multiclassifier quality scoring, and domain-aware fluency filtering. We extract $4.5$ billion pieces of CoT(Chain-of-Thought) templates, named CCI4.0-M2-CoT. Differing from the distillation of CoT from larger models, our proposed staged CoT extraction exemplifies diverse reasoning patterns and significantly decreases the possibility of hallucination. Empirical evaluations demonstrate that LLMs pre-trained in CCI4.0 benefit from cleaner, more reliable training signals, yielding consistent improvements in downstream tasks, especially in math and code reflection tasks. Our results underscore the critical role of rigorous data curation and human thinking templates in advancing LLM performance, shedding some light on automatically processing pretraining corpora.
From Calibration to Collaboration: LLM Uncertainty Quantification Should Be More Human-Centered
Large Language Models (LLMs) are increasingly assisting users in the real world, yet their reliability remains a concern. Uncertainty quantification (UQ) has been heralded as a tool to enhance human-LLM collaboration by enabling users to know when to trust LLM predictions. We argue that current practices for uncertainty quantification in LLMs are not optimal for developing useful UQ for human users making decisions in real-world tasks. Through an analysis of 40 LLM UQ methods, we identify three prevalent practices hindering the community's progress toward its goal of benefiting downstream users: 1) evaluating on benchmarks with low ecological validity; 2) considering only epistemic uncertainty; and 3) optimizing metrics that are not necessarily indicative of downstream utility. For each issue, we propose concrete user-centric practices and research directions that LLM UQ researchers should consider. Instead of hill-climbing on unrepresentative tasks using imperfect metrics, we argue that the community should adopt a more human-centered approach to LLM uncertainty quantification.
GLOS: Sign Language Generation with Temporally Aligned Gloss-Level Conditioning
Sign language generation (SLG), or text-to-sign generation, bridges the gap between signers and non-signers. Despite recent progress in SLG, existing methods still often suffer from incorrect lexical ordering and low semantic accuracy. This is primarily due to sentence-level condition, which encodes the entire sentence of the input text into a single feature vector as a condition for SLG. This approach fails to capture the temporal structure of sign language and lacks the granularity of word-level semantics, often leading to disordered sign sequences and ambiguous motions. To overcome these limitations, we propose GLOS, a sign language generation framework with temporally aligned gloss-level conditioning. First, we employ gloss-level conditions, which we define as sequences of gloss embeddings temporally aligned with the motion sequence. This enables the model to access both the temporal structure of sign language and word-level semantics at each timestep. As a result, this allows for fine-grained control of signs and better preservation of lexical order. Second, we introduce a condition fusion module, temporal alignment conditioning (TAC), to efficiently deliver the word-level semantic and temporal structure provided by the gloss-level condition to the corresponding motion timesteps. Our method, which is composed of gloss-level conditions and TAC, generates signs with correct lexical order and high semantic accuracy, outperforming prior methods on CSL-Daily and Phoenix-2014T.
KScope: A Framework for Characterizing the Knowledge Status of Language Models
Characterizing a large language model's (LLM's) knowledge of a given question is challenging. As a result, prior work has primarily examined LLM behavior under knowledge conflicts, where the model's internal parametric memory contradicts information in the external context. However, this does not fully reflect how well the model knows the answer to the question. In this paper, we first introduce a taxonomy of five knowledge statuses based on the consistency and correctness of LLM knowledge modes. We then propose KScope, a hierarchical framework of statistical tests that progressively refines hypotheses about knowledge modes and characterizes LLM knowledge into one of these five statuses. We apply KScope to nine LLMs across four datasets and systematically establish: (1) Supporting context narrows knowledge gaps across models. (2) Context features related to difficulty, relevance, and familiarity drive successful knowledge updates. (3) LLMs exhibit similar feature preferences when partially correct or conflicted, but diverge sharply when consistently wrong. (4) Context summarization constrained by our feature analysis, together with enhanced credibility, further improves update effectiveness and generalizes across LLMs.
Understanding Cross-Domain Adaptation in Low-Resource Topic Modeling
Topic modeling plays a vital role in uncovering hidden semantic structures within text corpora, but existing models struggle in low-resource settings where limited target-domain data leads to unstable and incoherent topic inference. We address this challenge by formally introducing domain adaptation for low-resource topic modeling, where a high-resource source domain informs a low-resource target domain without overwhelming it with irrelevant content. We establish a finite-sample generalization bound showing that effective knowledge transfer depends on robust performance in both domains, minimizing latent-space discrepancy, and preventing overfitting to the data. Guided by these insights, we propose DALTA (Domain-Aligned Latent Topic Adaptation), a new framework that employs a shared encoder for domain-invariant features, specialized decoders for domain-specific nuances, and adversarial alignment to selectively transfer relevant information. Experiments on diverse low-resource datasets demonstrate that DALTA consistently outperforms state-of-the-art methods in terms of topic coherence, stability, and transferability.
When Style Breaks Safety: Defending Language Models Against Superficial Style Alignment
Large language models (LLMs) can be prompted with specific styles (e.g., formatting responses as lists), including in jailbreak queries. Although these style patterns are semantically unrelated to the malicious intents behind jailbreak queries, their safety impact remains unclear. In this work, we seek to understand whether style patterns compromise LLM safety, how superficial style alignment increases model vulnerability, and how best to mitigate these risks during alignment. We evaluate 32 LLMs across seven jailbreak benchmarks, and find that malicious queries with style patterns inflate the attack success rate (ASR) for nearly all models. Notably, ASR inflation correlates with both the length of style patterns and the relative attention an LLM exhibits on them. We then investigate superficial style alignment, and find that fine-tuning with specific styles makes LLMs more vulnerable to jailbreaks of those same styles. Finally, we propose SafeStyle, a defense strategy that incorporates a small amount of safety training data augmented to match the distribution of style patterns in the fine-tuning data. Across three LLMs and five fine-tuning style settings, SafeStyle consistently outperforms baselines in maintaining LLM safety.
LlamaRec-LKG-RAG: A Single-Pass, Learnable Knowledge Graph-RAG Framework for LLM-Based Ranking
Recent advances in Large Language Models (LLMs) have driven their adoption in recommender systems through Retrieval-Augmented Generation (RAG) frameworks. However, existing RAG approaches predominantly rely on flat, similarity-based retrieval that fails to leverage the rich relational structure inherent in user-item interactions. We introduce LlamaRec-LKG-RAG, a novel single-pass, end-to-end trainable framework that integrates personalized knowledge graph context into LLM-based recommendation ranking. Our approach extends the LlamaRec architecture by incorporating a lightweight user preference module that dynamically identifies salient relation paths within a heterogeneous knowledge graph constructed from user behavior and item metadata. These personalized subgraphs are seamlessly integrated into prompts for a fine-tuned Llama-2 model, enabling efficient and interpretable recommendations through a unified inference step. Comprehensive experiments on ML-100K and Amazon Beauty datasets demonstrate consistent and significant improvements over LlamaRec across key ranking metrics (MRR, NDCG, Recall). LlamaRec-LKG-RAG demonstrates the critical value of structured reasoning in LLM-based recommendations and establishes a foundation for scalable, knowledge-aware personalization in next-generation recommender systems. Code is available at~\href{https://github.com/VahidAz/LlamaRec-LKG-RAG}{repository}.
LG-ANNA-Embedding technical report
This report presents a unified instruction-based framework for learning generalized text embeddings optimized for both information retrieval (IR) and non-IR tasks. Built upon a decoder-only large language model (Mistral-7B), our approach combines in-context learning, soft supervision, and adaptive hard-negative mining to generate context-aware embeddings without task-specific fine-tuning. Structured instructions and few-shot examples are used to guide the model across diverse tasks, enabling strong performance on classification, semantic similarity, clustering, and reranking benchmarks. To improve semantic discrimination, we employ a soft labeling framework where continuous relevance scores, distilled from a high-performance dense retriever and reranker, serve as fine-grained supervision signals. In addition, we introduce adaptive margin-based hard-negative mining, which filters out semantically ambiguous negatives based on their similarity to positive examples, thereby enhancing training stability and retrieval robustness. Our model is evaluated on the newly introduced MTEB (English, v2) benchmark, covering 41 tasks across seven categories. Results show that our method achieves strong generalization and ranks among the top-performing models by Borda score, outperforming several larger or fully fine-tuned baselines. These findings highlight the effectiveness of combining in-context prompting, soft supervision, and adaptive sampling for scalable, high-quality embedding generation.
comment: 10 pages
Well Begun is Half Done: Low-resource Preference Alignment by Weak-to-Strong Decoding ACL 2025
Large Language Models (LLMs) require alignment with human preferences to avoid generating offensive, false, or meaningless content. Recently, low-resource methods for LLM alignment have been popular, while still facing challenges in obtaining both high-quality and aligned content. Motivated by the observation that the difficulty of generating aligned responses is concentrated at the beginning of decoding, we propose a novel framework, Weak-to-Strong Decoding (WSD), to enhance the alignment ability of base models by the guidance of a small aligned model. The small model first drafts well-aligned beginnings, followed by the large base model to continue the rest, controlled by a well-designed auto-switch mechanism. We also collect a new dataset, GenerAlign, to fine-tune a small-sized Pilot-3B as the draft model, which effectively enhances different base models under the WSD framework to outperform all baseline methods, while avoiding degradation on downstream tasks, termed as the alignment tax. Extensive experiments are further conducted to examine the impact of different settings and time efficiency, as well as analyses on the intrinsic mechanisms of WSD in depth.
comment: Accepted by ACL 2025 Findings
Conjoined Predication and Scalar Implicature
Magri (2016) investigates two puzzles arising from conjunction. Although Magri has proposed a solution to the second puzzle, the first remains unresolved. This first puzzle reveals a hidden interaction among quantification, collective/concurrent interpretation, and contextual updating dimensions that have yet to be explored. In essence, the problem is that certain forms of sentences like "Some Italians come from a warm country," when conjoined as in "(Only) Some Italians come from a warm country and are blond," sound infelicitous, even though no obvious alternative triggers a conflicting scalar implicature. In this paper, we offer a conceptual analysis of Magri's first puzzle by situating it within its original theoretical framework. We argue that the oddness arises from the collective or concurrent reading of the conjunctive predicate: in examples such as "(Only) Some Italians come from a warm country and are blond," this interpretation generates an indirect contextual contradiction. Moreover, we suggest that the pragmatic mechanisms governing scalar implicature generation extend beyond what is captured by exhaustification-based grammatical licensing accounts.
Plug-in and Fine-tuning: Bridging the Gap between Small Language Models and Large Language Models ACL 2025
Large language models (LLMs) are renowned for their extensive linguistic knowledge and strong generalization capabilities, but their high computational demands make them unsuitable for resource-constrained environments. In contrast, small language models (SLMs) are computationally efficient but often lack the broad generalization capacity of LLMs. To bridge this gap, we propose PiFi, a novel framework that combines the strengths of both LLMs and SLMs to achieve high performance while maintaining efficiency. PiFi integrates a single frozen layer from an LLM into a SLM and fine-tunes the combined model for specific tasks, boosting performance without a significant increase in computational cost. We show that PiFi delivers consistent performance improvements across a range of natural language processing tasks, including both natural language understanding and generation. Moreover, our findings demonstrate PiFi's ability to effectively leverage LLM knowledge, enhancing generalization to unseen domains and facilitating the transfer of linguistic abilities.
comment: ACL 2025 main conference
SEED: Enhancing Text-to-SQL Performance and Practical Usability Through Automatic Evidence Generation
Text-to-SQL enables non-experts to retrieve data from databases by converting natural language queries into SQL. However, state-of-the-art text-to-SQL studies rely on the BIRD dataset, which assumes that evidence is provided along with questions. Although BIRD facilitates research advancements, it assumes that users have expertise and domain knowledge, contradicting the fundamental goal of text-to-SQL. In addition, human-generated evidence in BIRD contains defects, including missing or erroneous evidence, which affects model performance. To address this issue, we propose SEED (System for Evidence Extraction and Domain knowledge generation), an approach that automatically generates evidence to improve performance and practical usability in real-world scenarios. SEED systematically analyzes database schema, description files, and values to extract relevant information. We evaluated SEED on BIRD and Spider, demonstrating that it significantly improves SQL generation accuracy in the no-evidence scenario, and in some cases, even outperforms the setting where BIRD evidence is provided. Our results highlight that SEED-generated evidence not only bridges the gap between research and real-world deployment but also improves the adaptability and robustness of text-to-SQL models. Our code is available at https://github.com/felix01189/SEED
Beyond Jailbreaks: Revealing Stealthier and Broader LLM Security Risks Stemming from Alignment Failures
Large language models (LLMs) are increasingly deployed in real-world applications, raising concerns about their security. While jailbreak attacks highlight failures under overtly harmful queries, they overlook a critical risk: incorrectly answering harmless-looking inputs can be dangerous and cause real-world harm (Implicit Harm). We systematically reformulate the LLM risk landscape through a structured quadrant perspective based on output factuality and input harmlessness, uncovering an overlooked high-risk region. To investigate this gap, we propose JailFlipBench, a benchmark aims to capture implicit harm, spanning single-modal, multimodal, and factual extension scenarios with diverse evaluation metrics. We further develop initial JailFlip attack methodologies and conduct comprehensive evaluations across multiple open-source and black-box LLMs, show that implicit harm present immediate and urgent real-world risks, calling for broader LLM safety assessments and alignment beyond conventional jailbreak paradigms.
G-Memory: Tracing Hierarchical Memory for Multi-Agent Systems
Large language model (LLM)-powered multi-agent systems (MAS) have demonstrated cognitive and execution capabilities that far exceed those of single LLM agents, yet their capacity for self-evolution remains hampered by underdeveloped memory architectures. Upon close inspection, we are alarmed to discover that prevailing MAS memory mechanisms (1) are overly simplistic, completely disregarding the nuanced inter-agent collaboration trajectories, and (2) lack cross-trial and agent-specific customization, in stark contrast to the expressive memory developed for single agents. To bridge this gap, we introduce G-Memory, a hierarchical, agentic memory system for MAS inspired by organizational memory theory, which manages the lengthy MAS interaction via a three-tier graph hierarchy: insight, query, and interaction graphs. Upon receiving a new user query, G-Memory performs bi-directional memory traversal to retrieve both $\textit{high-level, generalizable insights}$ that enable the system to leverage cross-trial knowledge, and $\textit{fine-grained, condensed interaction trajectories}$ that compactly encode prior collaboration experiences. Upon task execution, the entire hierarchy evolves by assimilating new collaborative trajectories, nurturing the progressive evolution of agent teams. Extensive experiments across five benchmarks, three LLM backbones, and three popular MAS frameworks demonstrate that G-Memory improves success rates in embodied action and accuracy in knowledge QA by up to $20.89\%$ and $10.12\%$, respectively, without any modifications to the original frameworks. Our codes are available at https://github.com/bingreeky/GMemory.
Refusal-Feature-guided Teacher for Safe Finetuning via Data Filtering and Alignment Distillation
Recently, major AI service providers such as Google and OpenAI have introduced Finetuning-as-a-Service, which enables users to customize Large Language Models (LLMs) for specific downstream tasks using their own data. However, this service is vulnerable to degradation of LLM safety-alignment when user data contains harmful prompts. While some prior works address this issue, fundamentally filtering harmful data from user data remains unexplored. Motivated by our observation that a directional representation reflecting refusal behavior (called the refusal feature) obtained from safety-aligned LLMs can inherently distinguish between harmful and harmless prompts, we propose the Refusal-Feature-guided Teacher (ReFT). Our ReFT model is trained to identify harmful prompts based on the similarity between input prompt features and its refusal feature. During finetuning, the ReFT model serves as a teacher that filters harmful prompts from user data and distills alignment knowledge into the base model. Extensive experiments demonstrate that our ReFT-based finetuning strategy effectively minimizes harmful outputs and enhances finetuning accuracy for user-specific tasks, offering a practical solution for secure and reliable deployment of LLMs in Finetuning-as-a-Service.
Improving LLM Reasoning through Interpretable Role-Playing Steering
Role-playing has emerged as an effective technique for enhancing the reasoning capabilities of large language models (LLMs). However, existing methods primarily rely on prompt engineering, which often lacks stability and interpretability. In this paper, we introduce Sparse Autoencoder Role-Playing Steering (SRPS), a novel framework that identifies and manipulates internal model features associated with role-playing behavior. Our approach extracts latent representations from role-play prompts, selects the most relevant features based on activation patterns, and constructs a steering vector that can be injected into the model's residual stream with controllable intensity. Our method enables fine-grained control over role-specific behavior and offers insights into how role information influences internal model activations. Extensive experiments across various reasoning benchmarks and model sizes demonstrate consistent performance gains. Notably, in the zero-shot chain-of-thought (CoT) setting, the accuracy of Llama3.1-8B on CSQA improves from 31.86% to 39.80%, while Gemma2-9B on SVAMP increases from 37.50% to 45.10%. These results highlight the potential of SRPS to enhance reasoning ability in LLMs, providing better interpretability and stability compared to traditional prompt-based role-playing.
comment: 21 pages, 8 figures, 8 tables
PhantomWiki: On-Demand Datasets for Reasoning and Retrieval Evaluation ICML 2025
High-quality benchmarks are essential for evaluating reasoning and retrieval capabilities of large language models (LLMs). However, curating datasets for this purpose is not a permanent solution as they are prone to data leakage and inflated performance results. To address these challenges, we propose PhantomWiki: a pipeline to generate unique, factually consistent document corpora with diverse question-answer pairs. Unlike prior work, PhantomWiki is neither a fixed dataset, nor is it based on any existing data. Instead, a new PhantomWiki instance is generated on demand for each evaluation. We vary the question difficulty and corpus size to disentangle reasoning and retrieval capabilities respectively, and find that PhantomWiki datasets are surprisingly challenging for frontier LLMs. Thus, we contribute a scalable and data leakage-resistant framework for disentangled evaluation of reasoning, retrieval, and tool-use abilities. Our code is available at https://github.com/kilian-group/phantom-wiki.
comment: Accepted to ICML 2025
When Two LLMs Debate, Both Think They'll Win
Can LLMs accurately adjust their confidence when facing opposition? Building on previous studies measuring calibration on static fact-based question-answering tasks, we evaluate Large Language Models (LLMs) in a dynamic, adversarial debate setting, uniquely combining two realistic factors: (a) a multi-turn format requiring models to update beliefs as new information emerges, and (b) a zero-sum structure to control for task-related uncertainty, since mutual high-confidence claims imply systematic overconfidence. We organized 60 three-round policy debates among ten state-of-the-art LLMs, with models privately rating their confidence (0-100) in winning after each round. We observed five concerning patterns: (1) Systematic overconfidence: models began debates with average initial confidence of 72.9% vs. a rational 50% baseline. (2) Confidence escalation: rather than reducing confidence as debates progressed, debaters increased their win probabilities, averaging 83% by the final round. (3) Mutual overestimation: in 61.7% of debates, both sides simultaneously claimed >=75% probability of victory, a logical impossibility. (4) Persistent self-debate bias: models debating identical copies increased confidence from 64.1% to 75.2%; even when explicitly informed their chance of winning was exactly 50%, confidence still rose (from 50.0% to 57.1%). (5) Misaligned private reasoning: models' private scratchpad thoughts sometimes differed from their public confidence ratings, raising concerns about faithfulness of chain-of-thought reasoning. These results suggest LLMs lack the ability to accurately self-assess or update their beliefs in dynamic, multi-turn tasks; a major concern as LLMs are now increasingly deployed without careful review in assistant and agentic roles. Code for our experiments is available at https://github.com/pradyuprasad/llms_overconfidence
Automated Capability Discovery via Foundation Model Self-Exploration
Foundation models have become general-purpose assistants, exhibiting diverse capabilities across numerous domains through training on web-scale data. It remains challenging to precisely characterize even a fraction of the full spectrum of these abilities and potential risks in any new model. Existing evaluation approaches often require significant human effort, and it is taking increasing effort to design ever harder challenges for more capable models. We introduce Automated Capability Discovery (ACD), a framework that designates one foundation model as a scientist to systematically propose open-ended tasks probing the abilities of a subject model (potentially itself). By combining frontier models with ideas from the field of open-endedness, ACD automatically and systematically uncovers a diverse spectrum of surprising capabilities and failures in the subject model. We demonstrate ACD across a range of foundation models (including the GPT, Claude, and Llama series), showing that it automatically generates thousands of distinct tasks, which are then clustered to reveal dozens of broader capability areas and failure modes, that would be challenging for any single team to uncover. We further validate our method's automated scoring with extensive human surveys, observing high agreement between model-generated and human evaluations. By leveraging foundation models' ability to both create tasks and self-evaluate, ACD is a significant step toward scalable, automated evaluation of novel AI systems. All code and evaluation logs are open-sourced at https://github.com/conglu1997/ACD.
MIB: A Mechanistic Interpretability Benchmark ICML 2025
How can we know whether new mechanistic interpretability methods achieve real improvements? In pursuit of lasting evaluation standards, we propose MIB, a Mechanistic Interpretability Benchmark, with two tracks spanning four tasks and five models. MIB favors methods that precisely and concisely recover relevant causal pathways or causal variables in neural language models. The circuit localization track compares methods that locate the model components - and connections between them - most important for performing a task (e.g., attribution patching or information flow routes). The causal variable localization track compares methods that featurize a hidden vector, e.g., sparse autoencoders (SAEs) or distributed alignment search (DAS), and align those features to a task-relevant causal variable. Using MIB, we find that attribution and mask optimization methods perform best on circuit localization. For causal variable localization, we find that the supervised DAS method performs best, while SAE features are not better than neurons, i.e., non-featurized hidden vectors. These findings illustrate that MIB enables meaningful comparisons, and increases our confidence that there has been real progress in the field.
comment: Accepted to ICML 2025. Project website at https://mib-bench.github.io
General-Reasoner: Advancing LLM Reasoning Across All Domains
Reinforcement learning (RL) has recently demonstrated strong potential in enhancing the reasoning capabilities of large language models (LLMs). Particularly, the "Zero" reinforcement learning introduced by Deepseek-R1-Zero, enables direct RL training of base LLMs without relying on an intermediate supervised fine-tuning stage. Despite these advancements, current works for LLM reasoning mainly focus on mathematical and coding domains, largely due to data abundance and the ease of answer verification. This limits the applicability and generalization of such models to broader domains, where questions often have diverse answer representations, and data is more scarce. In this paper, we propose General-Reasoner, a novel training paradigm designed to enhance LLM reasoning capabilities across diverse domains. Our key contributions include: (1) constructing a large-scale, high-quality dataset of questions with verifiable answers curated by web crawling, covering a wide range of disciplines; and (2) developing a generative model-based answer verifier, which replaces traditional rule-based verification with the capability of chain-of-thought and context-awareness. We train a series of models and evaluate them on a wide range of datasets covering wide domains like physics, chemistry, finance, electronics etc. Our comprehensive evaluation across these 12 benchmarks (e.g. MMLU-Pro, GPQA, SuperGPQA, TheoremQA, BBEH and MATH AMC) demonstrates that General-Reasoner outperforms existing baseline methods, achieving robust and generalizable reasoning performance while maintaining superior effectiveness in mathematical reasoning tasks.
CORDIAL: Can Multimodal Large Language Models Effectively Understand Coherence Relationships? ACL
Multimodal Large Language Models (MLLMs) are renowned for their superior instruction-following and reasoning capabilities across diverse problem domains. However, existing benchmarks primarily focus on assessing factual and logical correctness in downstream tasks, with limited emphasis on evaluating MLLMs' ability to interpret pragmatic cues and intermodal relationships. To address this gap, we assess the competency of MLLMs in performing Multimodal Discourse Analysis (MDA) using Coherence Relations. Our benchmark, CORDIAL, encompasses a broad spectrum of Coherence Relations across 3 different discourse domains at varying levels of granularity. Through our experiments on 10+ MLLMs employing different prompting strategies, we show that even top models like Gemini 1.5 Pro and GPT-4o fail to match the performance of simple classifier-based baselines. This study emphasizes the need to move beyond similarity-based metrics and adopt a discourse-driven framework for evaluating MLLMs, providing a more nuanced assessment of their capabilities. The benchmark and code are available at: https://aashish2000.github.io/CORDIAL/
comment: To appear at the 63rd Annual Meeting of the Association for Computational Linguistics (ACL), Vienna, Austria, July 2025, https://2025.aclweb.org/
Easy2Hard-Bench: Standardized Difficulty Labels for Profiling LLM Performance and Generalization NeurIPS 2024
While generalization over tasks from easy to hard is crucial to profile language models (LLMs), the datasets with fine-grained difficulty annotations for each problem across a broad range of complexity are still blank. Aiming to address this limitation, we present Easy2Hard-Bench, a consistently formatted collection of 6 benchmark datasets spanning various domains, such as mathematics and programming problems, chess puzzles, and reasoning questions. Each problem within these datasets is annotated with numerical difficulty scores. To systematically estimate problem difficulties, we collect abundant performance data on attempts to each problem by humans in the real world or LLMs on the prominent leaderboard. Leveraging the rich performance data, we apply well-established difficulty ranking systems, such as Item Response Theory (IRT) and Glicko-2 models, to uniformly assign numerical difficulty scores to problems. Moreover, datasets in Easy2Hard-Bench distinguish themselves from previous collections by a higher proportion of challenging problems. Through extensive experiments with six state-of-the-art LLMs, we provide a comprehensive analysis of their performance and generalization capabilities across varying levels of difficulty, with the aim of inspiring future research in LLM generalization. The datasets are available at https://huggingface.co/datasets/furonghuang-lab/Easy2Hard-Bench.
comment: NeurIPS 2024 Datasets and Benchmarks Track
Enhancing Few-Shot Vision-Language Classification with Large Multimodal Model Features
Generative Large Multimodal Models (LMMs) like LLaVA and Qwen-VL excel at a wide variety of vision-language (VL) tasks. Despite strong performance, LMMs' generative outputs are not specialized for vision-language classification tasks (i.e., tasks with vision-language inputs and discrete labels) such as image classification and multiple-choice VQA. One key challenge in utilizing LMMs for these tasks is the extraction of useful features from generative LMMs. To overcome this, we propose an approach that leverages multimodal feature extraction from the LMM's latent space. Toward this end, we present Sparse Attention Vectors (SAVs) -- a finetuning-free method that leverages sparse attention head activations (fewer than 5% of the heads) in LMMs as strong feature representations. With only few-shot examples, SAVs demonstrate state-of-the-art performance compared to a variety of few-shot and finetuned baselines on a collection of vision-language classification tasks. Our experiments also imply that SAVs can scale in performance with additional examples and generalize to similar tasks, establishing SAVs as both effective and robust multimodal feature representations.
RONA: Pragmatically Diverse Image Captioning with Coherence Relations NAACL
Writing Assistants (e.g., Grammarly, Microsoft Copilot) traditionally generate diverse image captions by employing syntactic and semantic variations to describe image components. However, human-written captions prioritize conveying a central message alongside visual descriptions using pragmatic cues. To enhance caption diversity, it is essential to explore alternative ways of communicating these messages in conjunction with visual content. We propose RONA, a novel prompting strategy for Multi-modal Large Language Models (MLLM) that leverages Coherence Relations as a controllable axis for pragmatic variations. We demonstrate that RONA generates captions with better overall diversity and ground-truth alignment, compared to MLLM baselines across multiple domains. Our code is available at: https://github.com/aashish2000/RONA
comment: Accepted in the NAACL Fourth Workshop on Intelligent and Interactive Writing Assistants (In2Writing), Albuquerque, New Mexico, May 2025, https://in2writing.glitch.me
Dynamic-SUPERB Phase-2: A Collaboratively Expanding Benchmark for Measuring the Capabilities of Spoken Language Models with 180 Tasks ICLR 2025
Multimodal foundation models, such as Gemini and ChatGPT, have revolutionized human-machine interactions by seamlessly integrating various forms of data. Developing a universal spoken language model that comprehends a wide range of natural language instructions is critical for bridging communication gaps and facilitating more intuitive interactions. However, the absence of a comprehensive evaluation benchmark poses a significant challenge. We present Dynamic-SUPERB Phase-2, an open and evolving benchmark for the comprehensive evaluation of instruction-based universal speech models. Building upon the first generation, this second version incorporates 125 new tasks contributed collaboratively by the global research community, expanding the benchmark to a total of 180 tasks, making it the largest benchmark for speech and audio evaluation. While the first generation of Dynamic-SUPERB was limited to classification tasks, Dynamic-SUPERB Phase-2 broadens its evaluation capabilities by introducing a wide array of novel and diverse tasks, including regression and sequence generation, across speech, music, and environmental audio. Evaluation results show that no model performed well universally. SALMONN-13B excelled in English ASR and Qwen2-Audio-7B-Instruct showed high accuracy in emotion recognition, but current models still require further innovations to handle a broader range of tasks. We open-source all task data and the evaluation pipeline at https://github.com/dynamic-superb/dynamic-superb.
comment: ICLR 2025
Introspective Growth: Automatically Advancing LLM Expertise in Technology Judgment
Large language models (LLMs) increasingly demonstrate signs of conceptual understanding, yet much of their internal knowledge remains latent, loosely structured, and difficult to access or evaluate. We propose self-questioning as a lightweight and scalable strategy to improve LLMs' understanding, particularly in domains where success depends on fine-grained semantic distinctions. To evaluate this approach, we introduce a challenging new benchmark of 1.3 million post-2015 computer science patent pairs, characterized by dense technical jargon and strategically complex writing. The benchmark centers on a pairwise differentiation task: can a model distinguish between closely related but substantively different inventions? We show that compared to placebo scientific information, prompting LLMs to generate and answer their own questions - targeting the background knowledge required for the task - significantly improves performance. These self-generated questions and answers activate otherwise underutilized internal knowledge. Allowing LLMs to retrieve answers from external scientific texts further enhances performance, suggesting that model knowledge is compressed and lacks the full richness of the training data. We also find that chain-of-thought prompting and self-questioning converge, though self-questioning remains more effective for improving understanding of technical concepts. Notably, we uncover an asymmetry in prompting: smaller models often generate more fundamental, more open-ended, better-aligned questions for mid-sized models than large models do, revealing a new strategy for cross-model collaboration. Altogether, our findings establish self-questioning as both a practical mechanism for automatically improving LLM comprehension, especially in domains with sparse and underrepresented knowledge, and a diagnostic probe of how internal and external knowledge are organized.
comment: We open-source our patent dataset at https://huggingface.co/datasets/UchiKlab/patent_understanding
DBudgetKV: Dynamic Budget in KV Cache Compression for Ensuring Optimal Performance
To alleviate memory burden during inference of large language models (LLMs), numerous studies have focused on compressing the KV cache by exploring aspects such as attention sparsity. These techniques are often designed with a pre-defined KV budget; however, as the optimal budget varies by different input lengths and task types, the existence of a fixed budget could result in inconsistent performance accepting inputs of diverse domains. To address this limitation, we propose a new KV cache compression objective: to always ensure the full-cache performance regardless of specific inputs, while maximizing KV cache pruning as much as possible. To achieve this goal, we introduce a novel KV cache compression method dubbed DBudgetKV, which features an attention-based metric to signal when the remaining KV cache is unlikely to match the full-cache performance, then halting the pruning process. Empirical evaluation spanning diverse context lengths, task types, and model sizes suggests that our method achieves lossless KV pruning effectively and robustly, exceeding 25% compression ratio on average. Furthermore, our method is easy to integrate within LLM inference, not only optimizing memory space, but also showing reduced inference time compared to existing methods.
Beyond Numeric Rewards: In-Context Dueling Bandits with LLM Agents ACL 2025
In-Context Reinforcement Learning (ICRL) is a frontier paradigm to solve Reinforcement Learning (RL) problems in the foundation model era. While ICRL capabilities have been demonstrated in transformers through task-specific training, the potential of Large Language Models (LLMs) out-of-the-box remains largely unexplored. This paper investigates whether LLMs can generalize cross-domain to perform ICRL under the problem of Dueling Bandits (DB), a stateless preference-based RL setting. We find that the top-performing LLMs exhibit a notable zero-shot capacity for relative decision-making, which translates to low short-term weak regret across all DB environment instances by quickly including the best arm in duels. However, an optimality gap still exists between LLMs and classic DB algorithms in terms of strong regret. LLMs struggle to converge and consistently exploit even when explicitly prompted to do so, and are sensitive to prompt variations. To bridge this gap, we propose an agentic flow framework: LLM with Enhanced Algorithmic Dueling (LEAD), which integrates off-the-shelf DB algorithm support with LLM agents through fine-grained adaptive interplay. We show that LEAD has theoretical guarantees inherited from classic DB algorithms on both weak and strong regret. We validate its efficacy and robustness even with noisy and adversarial prompts. The design of such an agentic framework sheds light on how to enhance the trustworthiness of general-purpose LLMs generalized to in-context decision-making tasks.
comment: ACL 2025 Findings
ConECT Dataset: Overcoming Data Scarcity in Context-Aware E-Commerce MT ACL 2025
Neural Machine Translation (NMT) has improved translation by using Transformer-based models, but it still struggles with word ambiguity and context. This problem is especially important in domain-specific applications, which often have problems with unclear sentences or poor data quality. Our research explores how adding information to models can improve translations in the context of e-commerce data. To this end we create ConECT -- a new Czech-to-Polish e-commerce product translation dataset coupled with images and product metadata consisting of 11,400 sentence pairs. We then investigate and compare different methods that are applicable to context-aware translation. We test a vision-language model (VLM), finding that visual context aids translation quality. Additionally, we explore the incorporation of contextual information into text-to-text models, such as the product's category path or image descriptions. The results of our study demonstrate that the incorporation of contextual information leads to an improvement in the quality of machine translation. We make the new dataset publicly available.
comment: Accepted at ACL 2025 (The 63rd Annual Meeting of the Association for Computational Linguistics)
WeQA: A Benchmark for Retrieval Augmented Generation in Wind Energy Domain
Wind energy project assessments present significant challenges for decision-makers, who must navigate and synthesize hundreds of pages of environmental and scientific documentation. These documents often span different regions and project scales, covering multiple domains of expertise. This process traditionally demands immense time and specialized knowledge from decision-makers. The advent of Large Language Models (LLM) and Retrieval Augmented Generation (RAG) approaches offer a transformative solution, enabling rapid, accurate cross-document information retrieval and synthesis. As the landscape of Natural Language Processing (NLP) and text generation continues to evolve, benchmarking becomes essential to evaluate and compare the performance of different RAG-based LLMs. In this paper, we present a comprehensive framework to generate a domain relevant RAG benchmark. Our framework is based on automatic question-answer generation with Human (domain experts)-AI (LLM) teaming. As a case study, we demonstrate the framework by introducing WeQA, a first-of-its-kind benchmark on the wind energy domain which comprises of multiple scientific documents/reports related to environmental aspects of wind energy projects. Our framework systematically evaluates RAG performance using diverse metrics and multiple question types with varying complexity level, providing a foundation for rigorous assessment of RAG-based systems in complex scientific domains and enabling researchers to identify areas for improvement in domain-specific applications.
comment: 8 pages without Limitation and References
Minerva: A Programmable Memory Test Benchmark for Language Models ICML 2025
How effectively can LLM-based AI assistants utilize their memory (context) to perform various tasks? Traditional data benchmarks, which are often manually crafted, suffer from several limitations: they are static, susceptible to overfitting, difficult to interpret, and lack actionable insights--failing to pinpoint the specific capabilities a model lacks when it does not pass a test. In this paper, we present a framework for automatically generating a comprehensive set of tests to evaluate models' abilities to use their memory effectively. Our framework extends the range of capability tests beyond the commonly explored (passkey, key-value, needle in the haystack) search, a dominant focus in the literature. Specifically, we evaluate models on atomic tasks such as searching, recalling, editing, matching, comparing information in context memory, performing basic operations when inputs are structured into distinct blocks, and maintaining state while operating on memory, simulating real-world data. Additionally, we design composite tests to investigate the models' ability to perform more complex, integrated tasks. Our benchmark enables an interpretable, detailed assessment of memory capabilities of LLMs.
comment: ICML 2025
Generalized Interpolating Discrete Diffusion ICML 2025
While state-of-the-art language models achieve impressive results through next-token prediction, they have inherent limitations such as the inability to revise already generated tokens. This has prompted exploration of alternative approaches such as discrete diffusion. However, masked diffusion, which has emerged as a popular choice due to its simplicity and effectiveness, reintroduces this inability to revise words. To overcome this, we generalize masked diffusion, deriving a new family of general interpolating discrete diffusion (GIDD) which offers greater flexibility in the design of the noising processes. Leveraging a novel diffusion ELBO, we achieve compute-matched state-of-the-art performance in diffusion language modeling. Exploiting GIDD's flexibility, we explore a hybrid approach combining masking and uniform noise, leading to improved sample quality and unlocking the ability for the model to correct its own mistakes, an area where autoregressive models notoriously have struggled. Code: https://github.com/dvruette/gidd/
comment: Published at ICML 2025; Code available at https://github.com/dvruette/gidd
MIRIAD: Augmenting LLMs with millions of medical query-response pairs
LLMs are bound to transform healthcare with advanced decision support and flexible chat assistants. However, LLMs are prone to generate inaccurate medical content. To ground LLMs in high-quality medical knowledge, LLMs have been equipped with external knowledge via RAG, where unstructured medical knowledge is split into small text chunks that can be selectively retrieved and integrated into the LLMs context. Yet, existing RAG pipelines rely on raw, unstructured medical text, which can be noisy, uncurated and difficult for LLMs to effectively leverage. Systematic approaches to organize medical knowledge to best surface it to LLMs are generally lacking. To address these challenges, we introduce MIRIAD, a large-scale, curated corpus of 5,821,948 medical QA pairs, each rephrased from and grounded in a passage from peer-reviewed medical literature using a semi-automated pipeline combining LLM generation, filtering, grounding, and human annotation. Unlike prior medical corpora, which rely on unstructured text, MIRIAD encapsulates web-scale medical knowledge in an operationalized query-response format, which enables more targeted retrieval. Experiments on challenging medical QA benchmarks show that augmenting LLMs with MIRIAD improves accuracy up to 6.7% compared to unstructured RAG baselines with the same source corpus and with the same amount of retrieved text. Moreover, MIRIAD improved the ability of LLMs to detect medical hallucinations by 22.5 to 37% (increase in F1 score). We further introduce MIRIAD-Atlas, an interactive map of MIRIAD spanning 56 medical disciplines, enabling clinical users to visually explore, search, and refine medical knowledge. MIRIAD promises to unlock a wealth of down-stream applications, including medical information retrievers, enhanced RAG applications, and knowledge-grounded chat interfaces, which ultimately enables more reliable LLM applications in healthcare.
comment: Preprint
Is poisoning a real threat to LLM alignment? Maybe more so than you think
Recent advancements in Reinforcement Learning with Human Feedback (RLHF) have significantly impacted the alignment of Large Language Models (LLMs). The sensitivity of reinforcement learning algorithms such as Proximal Policy Optimization (PPO) has led to new line work on Direct Policy Optimization (DPO), which treats RLHF in a supervised learning framework. The increased practical use of these RLHF methods warrants an analysis of their vulnerabilities. In this work, we investigate the vulnerabilities of DPO to poisoning attacks under different scenarios and compare the effectiveness of preference poisoning, a first of its kind. We comprehensively analyze DPO's vulnerabilities under different types of attacks, i.e., backdoor and non-backdoor attacks, and different poisoning methods across a wide array of language models, i.e., LLama 7B, Mistral 7B, and Gemma 7B. We find that unlike PPO-based methods, which, when it comes to backdoor attacks, require at least 4\% of the data to be poisoned to elicit harmful behavior, we exploit the true vulnerabilities of DPO more simply so we can poison the model with only as much as 0.5\% of the data. We further investigate the potential reasons behind the vulnerability and how well this vulnerability translates into backdoor vs non-backdoor attacks.
Evaluating Zero-Shot Multilingual Aspect-Based Sentiment Analysis with Large Language Models
Aspect-based sentiment analysis (ABSA), a sequence labeling task, has attracted increasing attention in multilingual contexts. While previous research has focused largely on fine-tuning or training models specifically for ABSA, we evaluate large language models (LLMs) under zero-shot conditions to explore their potential to tackle this challenge with minimal task-specific adaptation. We conduct a comprehensive empirical evaluation of a series of LLMs on multilingual ABSA tasks, investigating various prompting strategies, including vanilla zero-shot, chain-of-thought (CoT), self-improvement, self-debate, and self-consistency, across nine different models. Results indicate that while LLMs show promise in handling multilingual ABSA, they generally fall short of fine-tuned, task-specific models. Notably, simpler zero-shot prompts often outperform more complex strategies, especially in high-resource languages like English. These findings underscore the need for further refinement of LLM-based approaches to effectively address ABSA task across diverse languages.
comment: Preprint; Paper accepted at International Journal of Machine Learning and Cybernetics
Representation Bending for Large Language Model Safety ACL 2025
Large Language Models (LLMs) have emerged as powerful tools, but their inherent safety risks - ranging from harmful content generation to broader societal harms - pose significant challenges. These risks can be amplified by the recent adversarial attacks, fine-tuning vulnerabilities, and the increasing deployment of LLMs in high-stakes environments. Existing safety-enhancing techniques, such as fine-tuning with human feedback or adversarial training, are still vulnerable as they address specific threats and often fail to generalize across unseen attacks, or require manual system-level defenses. This paper introduces RepBend, a novel approach that fundamentally disrupts the representations underlying harmful behaviors in LLMs, offering a scalable solution to enhance (potentially inherent) safety. RepBend brings the idea of activation steering - simple vector arithmetic for steering model's behavior during inference - to loss-based fine-tuning. Through extensive evaluation, RepBend achieves state-of-the-art performance, outperforming prior methods such as Circuit Breaker, RMU, and NPO, with up to 95% reduction in attack success rates across diverse jailbreak benchmarks, all with negligible reduction in model usability and general capabilities.
comment: Accepted to ACL 2025 (main)
EVADE: Multimodal Benchmark for Evasive Content Detection in E-Commerce Applications
E-commerce platforms increasingly rely on Large Language Models (LLMs) and Vision-Language Models (VLMs) to detect illicit or misleading product content. However, these models remain vulnerable to evasive content: inputs (text or images) that superficially comply with platform policies while covertly conveying prohibited claims. Unlike traditional adversarial attacks that induce overt failures, evasive content exploits ambiguity and context, making it far harder to detect. Existing robustness benchmarks provide little guidance for this demanding, real-world challenge. We introduce EVADE, the first expert-curated, Chinese, multimodal benchmark specifically designed to evaluate foundation models on evasive content detection in e-commerce. The dataset contains 2,833 annotated text samples and 13,961 images spanning six demanding product categories, including body shaping, height growth, and health supplements. Two complementary tasks assess distinct capabilities: Single-Violation, which probes fine-grained reasoning under short prompts, and All-in-One, which tests long-context reasoning by merging overlapping policy rules into unified instructions. Notably, the All-in-One setting significantly narrows the performance gap between partial and full-match accuracy, suggesting that clearer rule definitions improve alignment between human and model judgment. We benchmark 26 mainstream LLMs and VLMs and observe substantial performance gaps: even state-of-the-art models frequently misclassify evasive samples. By releasing EVADE and strong baselines, we provide the first rigorous standard for evaluating evasive-content detection, expose fundamental limitations in current multimodal reasoning, and lay the groundwork for safer and more transparent content moderation systems in e-commerce. The dataset is publicly available at https://huggingface.co/datasets/koenshen/EVADE-Bench.
Cross-lingual Collapse: How Language-Centric Foundation Models Shape Reasoning in Large Language Models
We identify \textbf{Cross-lingual Collapse}, a systematic drift in which the chain-of-thought (CoT) of a multilingual language model reverts to its dominant pre-training language even when the prompt is expressed in a different language. Recent large language models (LLMs) with reinforcement learning with verifiable reward (RLVR) have achieved strong logical reasoning performances by exposing their intermediate reasoning traces, giving rise to large reasoning models (LRMs). However, the mechanism behind multilingual reasoning in LRMs is not yet fully explored. To investigate the issue, we fine-tune multilingual LRMs with Group-Relative Policy Optimization (GRPO) on translated versions of the GSM$8$K and SimpleRL-Zoo datasets in three different languages: Chinese, Korean, and Ukrainian. During training, we monitor both task accuracy and language consistency of the reasoning chains. Our experiments reveal three key findings: (i) GRPO rapidly amplifies pre-training language imbalances, leading to the erosion of low-resource languages within just a few hundred updates; (ii) language consistency reward mitigates this drift but does so at the expense of an almost 5 - 10 pp drop in accuracy. and (iii) the resulting language collapse is severely damaging and largely irreversible, as subsequent fine-tuning struggles to steer the model back toward its original target-language reasoning capabilities. Together, these findings point to a remarkable conclusion: \textit{not all languages are trained equally for reasoning}. Furthermore, our paper sheds light on the roles of reward shaping, data difficulty, and pre-training priors in eliciting multilingual reasoning.
comment: Preprint
Unsolvable Problem Detection: Robust Understanding Evaluation for Large Multimodal Models ACL 2025
This paper introduces a novel task to evaluate the robust understanding capability of Large Multimodal Models (LMMs), termed $\textbf{Unsolvable Problem Detection (UPD)}$. Multiple-choice question answering (MCQA) is widely used to assess the understanding capability of LMMs, but it does not guarantee that LMMs truly comprehend the answer. UPD assesses the LMM's ability to withhold answers when encountering unsolvable problems of MCQA, verifying whether the model truly understands the answer. UPD encompasses three problems: Absent Answer Detection (AAD), Incompatible Answer Set Detection (IASD), and Incompatible Visual Question Detection (IVQD), covering unsolvable cases like answer-lacking or incompatible choices and image-question mismatches. For the evaluation, we introduce the MM-UPD Bench, a benchmark for assessing performance across various ability dimensions. Our experiments reveal that even most LMMs, which demonstrate adequate performance on existing benchmarks, struggle significantly with MM-UPD, underscoring a novel aspect of trustworthiness that current benchmarks have overlooked. A detailed analysis shows that LMMs have different bottlenecks and chain-of-thought and self-reflection improved performance for LMMs with the bottleneck in their LLM capability. We hope our insights will enhance the broader understanding and development of more reliable LMMs. The code is available at https://github.com/AtsuMiyai/UPD.
comment: Accepted by ACL 2025 Main Conference
Skywork R1V: Pioneering Multimodal Reasoning with Chain-of-Thought
We introduce Skywork R1V, a multimodal reasoning model extending the an R1-series Large language models (LLM) to visual modalities via an efficient multimodal transfer method. Leveraging a lightweight visual projector, Skywork R1V facilitates seamless multimodal adaptation without necessitating retraining of either the foundational language model or the vision encoder. To strengthen visual-text alignment, we propose a hybrid optimization strategy that combines Iterative Supervised Fine-Tuning (SFT) with Group Relative Policy Optimization (GRPO), significantly enhancing cross-modal integration efficiency. Additionally, we introduce an adaptive-length Chain-of-Thought distillation approach for reasoning data generation. This approach dynamically optimizes reasoning chain lengths, thereby enhancing inference efficiency and preventing excessive reasoning overthinking. Empirical evaluations demonstrate that Skywork R1V, with only 38B parameters, delivers competitive performance, achieving a score of 69.0 on the MMMU benchmark and 67.5 on MathVista. Meanwhile, it maintains robust textual reasoning performance, evidenced by impressive scores of 72.0 on AIME and 94.0 on MATH500. The Skywork R1V model weights have been publicly released to promote openness and reproducibility.
SATA: A Paradigm for LLM Jailbreak via Simple Assistive Task Linkage ACL 2025
Large language models (LLMs) have made significant advancements across various tasks, but their safety alignment remain a major concern. Exploring jailbreak prompts can expose LLMs' vulnerabilities and guide efforts to secure them. Existing methods primarily design sophisticated instructions for the LLM to follow, or rely on multiple iterations, which could hinder the performance and efficiency of jailbreaks. In this work, we propose a novel jailbreak paradigm, Simple Assistive Task Linkage (SATA), which can effectively circumvent LLM safeguards and elicit harmful responses. Specifically, SATA first masks harmful keywords within a malicious query to generate a relatively benign query containing one or multiple [MASK] special tokens. It then employs a simple assistive task such as a masked language model task or an element lookup by position task to encode the semantics of the masked keywords. Finally, SATA links the assistive task with the masked query to jointly perform the jailbreak. Extensive experiments show that SATA achieves state-of-the-art performance and outperforms baselines by a large margin. Specifically, on AdvBench dataset, with mask language model (MLM) assistive task, SATA achieves an overall attack success rate (ASR) of 85% and harmful score (HS) of 4.57, and with element lookup by position (ELP) assistive task, SATA attains an overall ASR of 76% and HS of 4.43.
comment: To appear at Findings of ACL 2025
Assessing Dialect Fairness and Robustness of Large Language Models in Reasoning Tasks ACL 2025
Language is not monolithic. While benchmarks, including those designed for multiple languages, are often used as proxies to evaluate the performance of Large Language Models (LLMs), they tend to overlook the nuances of within-language variation and thus fail to model the experience of speakers of non-standard dialects. Focusing on African American Vernacular English (AAVE), we present the first study aimed at objectively assessing the fairness and robustness of LLMs in handling dialects across canonical reasoning tasks, including algorithm, math, logic, and integrated reasoning. We introduce ReDial (Reasoning with Dialect Queries), a benchmark containing 1.2K+ parallel query pairs in Standardized English and AAVE. We hire AAVE speakers, including experts with computer science backgrounds, to rewrite seven popular benchmarks, such as HumanEval and GSM8K. With ReDial, we evaluate widely used LLMs, including GPT, Claude, Llama, Mistral, and the Phi model families. Our findings reveal that almost all of these widely used models show significant brittleness and unfairness to queries in AAVE. Our work establishes a systematic and objective framework for analyzing LLM bias in dialectal queries. Moreover, it highlights how mainstream LLMs provide unfair service to dialect speakers in reasoning tasks, laying a critical foundation for future research.
comment: ACL 2025 main
Can Perplexity Predict Fine-tuning Performance? An Investigation of Tokenization Effects on Sequential Language Models for Nepali
The impact of subword tokenization on language model performance is well-documented for perplexity, with finer granularity consistently reducing this intrinsic metric. However, research on how different tokenization schemes affect a model's understanding capabilities remains limited, particularly for non-Latin script languages. Addressing this gap, we conducted a comprehensive evaluation of six distinct tokenization strategies by pretraining transformer-based language models for Nepali and evaluating their performance across multiple downstream tasks. While recent prominent models like GPT, RoBERTa, Claude, LLaMA, Mistral, Falcon, and MPT have adopted byte-level BPE tokenization, our findings demonstrate that for Nepali, SentencePiece tokenization consistently yields superior results on understanding-based tasks. Unlike previous studies that primarily focused on BERT-based architectures, our research specifically examines sequential transformer models, providing valuable insights for language model development in low-resource languages and highlighting the importance of tokenization strategy beyond perplexity reduction.
comment: 11 pages
Retrieval-Augmented Generation as Noisy In-Context Learning: A Unified Theory and Risk Bounds
Retrieval-augmented generation (RAG) has seen many empirical successes in recent years by aiding the LLM with external knowledge. However, its theoretical aspect has remained mostly unexplored. In this paper, we propose the first finite-sample generalization bound for RAG in in-context linear regression and derive an exact bias-variance tradeoff. Our framework views the retrieved texts as query-dependent noisy in-context examples and recovers the classical in-context learning (ICL) and standard RAG as the limit cases. Our analysis suggests that an intrinsic ceiling on generalization error exists on RAG as opposed to the ICL. Furthermore, our framework is able to model retrieval both from the training data and from external corpora by introducing uniform and non-uniform RAG noise. In line with our theory, we show the sample efficiency of ICL and RAG empirically with experiments on common QA benchmarks, such as Natural Questions and TriviaQA.
comment: Under Review
APE: Selective Fine-tuning with Acceptance Criteria for Language Model Adaptation
We present Adjacent Possible Exploration (APE), a selective fine-tuning method for adapting large language models that systematically explores parameter modifications while maintaining model stability. Inspired by evolutionary optimization principles, APE evaluates multiple candidate parameter updates through fine-tuning on small data subsets and accepts only those exceeding a performance threshold. Unlike standard fine-tuning that follows single gradient directions, APE implements a filtered selection process that prevents destabilizing parameter changes while enabling systematic improvement. Our method achieves 33.9\% BLEU improvement and 36.2\% perplexity reduction on news summarization tasks while using minimal computational resources. The approach provides a practical framework for controlled model adaptation that balances performance gains with representational stability.
ParallelComp: Parallel Long-Context Compressor for Length Extrapolation ICML 2025
Extrapolating ultra-long contexts (text length >128K) remains a major challenge for large language models (LLMs), as most training-free extrapolation methods are not only severely limited by memory bottlenecks, but also suffer from the attention sink, which restricts their scalability and effectiveness in practice. In this work, we propose ParallelComp, a parallel long-context compression method that effectively overcomes the memory bottleneck, enabling 8B-parameter LLMs to extrapolate from 8K to 128K tokens on a single A100 80GB GPU in a training-free setting. ParallelComp splits the input into chunks, dynamically evicting redundant chunks and irrelevant tokens, supported by a parallel KV cache eviction mechanism. Importantly, we present a systematic theoretical and empirical analysis of attention biases in parallel attention-including the attention sink, recency bias, and middle bias-and reveal that these biases exhibit distinctive patterns under ultra-long context settings. We further design a KV cache eviction technique to mitigate this phenomenon. Experimental results show that ParallelComp enables an 8B model (trained on 8K context) to achieve 91.17% of GPT-4's performance under ultra-long contexts, outperforming closed-source models such as Claude-2 and Kimi-Chat. We achieve a 1.76x improvement in chunk throughput, thereby achieving a 23.50x acceleration in the prefill stage with negligible performance loss and pave the way for scalable and robust ultra-long contexts extrapolation in LLMs. We release the code at https://github.com/menik1126/ParallelComp.
comment: This paper has been accepted by ICML 2025
Attention with Trained Embeddings Provably Selects Important Tokens
Token embeddings play a crucial role in language modeling but, despite this practical relevance, their theoretical understanding remains limited. Our paper addresses the gap by characterizing the structure of embeddings obtained via gradient descent. Specifically, we consider a one-layer softmax attention model with a linear head for binary classification, i.e., $\texttt{Softmax}( p^\top E_X^\top ) E_X v = \frac{ \sum_{i=1}^T \exp(p^\top E_{x_i}) E_{x_i}^\top v}{\sum_{j=1}^T \exp(p^\top E_{x_{j}}) }$, where $E_X = [ E_{x_1} , \dots, E_{x_T} ]^\top$ contains the embeddings of the input sequence, $p$ is the embedding of the $\mathrm{\langle cls \rangle}$ token and $v$ the output vector. First, we show that, already after a single step of gradient training with the logistic loss, the embeddings $E_X$ capture the importance of tokens in the dataset by aligning with the output vector $v$ proportionally to the frequency with which the corresponding tokens appear in the dataset. Then, after training $p$ via gradient flow until convergence, the softmax selects the important tokens in the sentence (i.e., those that are predictive of the label), and the resulting $\mathrm{\langle cls \rangle}$ embedding maximizes the margin for such a selection. Experiments on real-world datasets (IMDB, Yelp) exhibit a phenomenology close to that unveiled by our theory.
comment: Fix mistakes in Lemma 4.2 and proof of Lemma 4.5
HSF: Defending against Jailbreak Attacks with Hidden State Filtering WWW2025
With the growing deployment of LLMs in daily applications like chatbots and content generation, efforts to ensure outputs align with human values and avoid harmful content have intensified. However, increasingly sophisticated jailbreak attacks threaten this alignment, aiming to induce unsafe outputs. Current defense efforts either focus on prompt rewriting or detection, which are limited in effectiveness due to the various design of jailbreak prompts, or on output control and detection, which are computationally expensive as they require LLM inference. Therefore, designing a pre-inference defense method that resists diverse jailbreak prompts is crucial for preventing LLM jailbreak attacks. We observe that jailbreak attacks, safe queries, and harmful queries exhibit different clustering patterns within the LLM's hidden state representation space. This suggests that by leveraging the LLM's hidden state representational capabilities, we can analyze the LLM's forthcoming behavior and proactively intervene for defense. In this paper, we propose a jailbreak attack defense strategy based on a Hidden State Filter (HSF), a lossless architectural defense mechanism that enables the model to preemptively identify and reject adversarial inputs before the inference process begins. We activate its defensive potential through an additional plugin module, effectively framing the defense task as a classification problem. Experimental results on two benchmark datasets, utilizing three different LLMs, show that HSF significantly enhances resilience against six cutting-edge jailbreak attacks. It significantly reduces the success rate of jailbreak attacks while minimally impacting responses to benign user queries, with negligible inference overhead, and outperforming defense baselines.Our code and data are available at https://anonymous.4open.science/r/Hidden-State-Filtering-8652/
comment: WWW2025 WSAI BESTPAPER
Cool-Fusion: Fuse Large Language Models without Training
We focus on the problem of fusing two or more heterogeneous large language models (LLMs) to leverage their complementary strengths. One of the challenges of model fusion is high computational load, specifically in fine-tuning or aligning vocabularies. To address this, we propose Cool-Fusion, a simple yet effective approach that fuses the knowledge of source LLMs, which does not require training. Unlike ensemble methods, Cool-Fusion is applicable to any set of source LLMs that have different vocabularies. To overcome the vocabulary discrepancies among LLMs, we ensemble LLMs on text level, allowing them to rerank the generated texts by each other with different granularities. Extensive experiments have been conducted across a variety of benchmark datasets. On GSM8K, Cool-Fusion increases accuracy from three strong source LLMs by a significant margin of 17.4\%.
AI Scientists Fail Without Strong Implementation Capability
The emergence of Artificial Intelligence (AI) Scientist represents a paradigm shift in scientific discovery, with large language models (LLMs) taking the lead as the primary executor in the entire scientific workflow from idea generation to experiment implementation. Recent AI Scientist studies demonstrate sufficient capabilities for independent scientific discovery, with the generated research reports gaining acceptance at the ICLR 2025 workshop and ACL 2025, arguing that a human-level AI Scientist, capable of uncovering phenomena previously unknown to humans, may be imminent. Despite this substantial progress, AI Scientist has yet to produce a groundbreaking achievement in the domain of computer science on par with automated scientific tools. Based on extensive quantitative evidence from existing benchmarks in complex engineering tasks and a systematic evaluation assess 28 research papers generated by five advanced AI Scientist systems, we argue that \textbf{the fundamental bottleneck for AI Scientists lies in their capability to execute the requisite verification procedures.} Current AI Scientist systems lack the execution capabilities needed to execute rigorous experiments and produce high-quality scientific papers. To better illustrate the root cause of this \textbf{implementation gap}, we provide an in-depth discussion on the fundamental limitations of AI Scientist. This position paper aims to call for the participants in the community to bridge the implementation gap.
comment: Position
Flattery, Fluff, and Fog: Diagnosing and Mitigating Idiosyncratic Biases in Preference Models
Language models serve as proxies for human preference judgements in alignment and evaluation, yet they exhibit systematic miscalibration, prioritizing superficial patterns over substantive qualities. This bias manifests as overreliance on features like length, structure, and style, leading to issues like reward hacking and unreliable evaluations. Evidence suggests these biases originate in artifacts in human training data. In this work, we systematically investigate the relationship between training data biases and preference model miscalibration across five idiosyncratic features of language model generations: length, structure, jargon, sycophancy and vagueness. Using controlled counterfactual pairs, we first quantify the extent to which preference models favor responses with magnified biases (skew), finding this preference occurs in >60% of instances, and model preferences show high miscalibration (~40%) compared to human preferences. Notably, bias features only show mild negative correlations to human preference labels (mean r_human = -0.12) but show moderately strong positive correlations with labels from a strong reward model (mean r_model = +0.36), suggesting that models may overrely on spurious cues. To mitigate these issues, we propose a simple post-training method based on counterfactual data augmentation (CDA) using synthesized contrastive examples. Finetuning models with CDA reduces average miscalibration from 39.4% to 32.5% and average absolute skew difference from 20.5% to 10.0%, while maintaining overall RewardBench performance, showing that targeted debiasing is effective for building reliable preference models.
comment: Code and data available at https://github.com/anirudhb123/preference-model-biases
On Support Samples of Next Word Prediction ACL2025
Language models excel in various tasks by making complex decisions, yet understanding the rationale behind these decisions remains a challenge. This paper investigates \emph{data-centric interpretability} in language models, focusing on the next-word prediction task. Using representer theorem, we identify two types of \emph{support samples}-those that either promote or deter specific predictions. Our findings reveal that being a support sample is an intrinsic property, predictable even before training begins. Additionally, while non-support samples are less influential in direct predictions, they play a critical role in preventing overfitting and shaping generalization and representation learning. Notably, the importance of non-support samples increases in deeper layers, suggesting their significant role in intermediate representation formation. These insights shed light on the interplay between data and model decisions, offering a new dimension to understanding language model behavior and interpretability.
comment: Accepted to ACL2025(Main Conference)
Enigmata: Scaling Logical Reasoning in Large Language Models with Synthetic Verifiable Puzzles
Large Language Models (LLMs), such as OpenAI's o1 and DeepSeek's R1, excel at advanced reasoning tasks like math and coding via Reinforcement Learning with Verifiable Rewards (RLVR), but still struggle with puzzles solvable by humans without domain knowledge. We introduce Enigmata, the first comprehensive suite tailored for improving LLMs with puzzle reasoning skills. It includes 36 tasks across seven categories, each with 1) a generator that produces unlimited examples with controllable difficulty and 2) a rule-based verifier for automatic evaluation. This generator-verifier design supports scalable, multi-task RL training, fine-grained analysis, and seamless RLVR integration. We further propose Enigmata-Eval, a rigorous benchmark, and develop optimized multi-task RLVR strategies. Our trained model, Qwen2.5-32B-Enigmata, consistently surpasses o3-mini-high and o1 on the puzzle reasoning benchmarks like Enigmata-Eval, ARC-AGI (32.8%), and ARC-AGI 2 (0.6%). It also generalizes well to out-of-domain puzzle benchmarks and mathematical reasoning, with little multi-tasking trade-off. When trained on larger models like Seed1.5-Thinking (20B activated parameters and 200B total parameters), puzzle data from Enigmata further boosts SoTA performance on advanced math and STEM reasoning tasks such as AIME (2024-2025), BeyondAIME and GPQA (Diamond), showing nice generalization benefits of Enigmata. This work offers a unified, controllable framework for advancing logical reasoning in LLMs. Resources of this work can be found at https://seed-enigmata.github.io.
SecFormer: Fast and Accurate Privacy-Preserving Inference for Transformer Models via SMPC ACL 2024
With the growing use of Transformer models hosted on cloud platforms to offer inference services, privacy concerns are escalating, especially concerning sensitive data like investment plans and bank account details. Secure Multi-Party Computing (SMPC) emerges as a promising solution to protect the privacy of inference data and model parameters. However, the application of SMPC in Privacy-Preserving Inference (PPI) for Transformer models often leads to considerable slowdowns or declines in performance. This is largely due to the multitude of nonlinear operations in the Transformer architecture, which are not well-suited to SMPC and difficult to circumvent or optimize effectively. To address this concern, we introduce a comprehensive PPI framework called SecFormer to achieve fast and accurate PPI for Transformer models. We successfully eliminate the high-cost exponential and maximum operations in PPI without sacrificing model performance and develop a suite of efficient SMPC protocols by employing suitable numerical computation methods to boost other complex nonlinear functions in PPI, including GeLU, LayerNorm, and a redesigned Softmax. Our extensive experiments reveal that SecFormer outperforms MPCFormer in performance, showing improvements of $3.4\%$ and $24.7\%$ for BERT$_{\text{BASE}}$ and BERT$_{\text{LARGE}}$, respectively. In terms of efficiency, SecFormer is 3.57 and 3.58 times faster than PUMA for BERT$_{\text{BASE}}$ and BERT$_{\text{LARGE}}$, demonstrating its effectiveness and speed.
comment: ACL 2024
Eliciting In-context Retrieval and Reasoning for Long-context Large Language Models
Recent advancements in long-context language models (LCLMs) promise to transform Retrieval-Augmented Generation (RAG) by simplifying pipelines. With their expanded context windows, LCLMs can process entire knowledge bases and perform retrieval and reasoning directly -- a capability we define as In-Context Retrieval and Reasoning (ICR^2). However, existing benchmarks like LOFT often overestimate LCLM performance by providing overly simplified contexts. To address this, we introduce ICR^2, a benchmark that evaluates LCLMs in more realistic scenarios by including confounding passages retrieved with strong retrievers. We then propose three methods to enhance LCLM performance: (1) retrieve-then-generate fine-tuning, (2) retrieval-attention-probing, which uses attention heads to filter and de-noise long contexts during decoding, and (3) joint retrieval head training alongside the generation head. Our evaluation of five well-known LCLMs on LOFT and ICR^2 demonstrates significant gains with our best approach applied to Mistral-7B: +17 and +15 points by Exact Match on LOFT, and +13 and +2 points on ICR^2, compared to vanilla RAG and supervised fine-tuning, respectively. It even outperforms GPT-4-Turbo on most tasks despite being a much smaller model.
Compliance-to-Code: Enhancing Financial Compliance Checking via Code Generation
Nowadays, regulatory compliance has become a cornerstone of corporate governance, ensuring adherence to systematic legal frameworks. At its core, financial regulations often comprise highly intricate provisions, layered logical structures, and numerous exceptions, which inevitably result in labor-intensive or comprehension challenges. To mitigate this, recent Regulatory Technology (RegTech) and Large Language Models (LLMs) have gained significant attention in automating the conversion of regulatory text into executable compliance logic. However, their performance remains suboptimal particularly when applied to Chinese-language financial regulations, due to three key limitations: (1) incomplete domain-specific knowledge representation, (2) insufficient hierarchical reasoning capabilities, and (3) failure to maintain temporal and logical coherence. One promising solution is to develop a domain specific and code-oriented datasets for model training. Existing datasets such as LexGLUE, LegalBench, and CODE-ACCORD are often English-focused, domain-mismatched, or lack fine-grained granularity for compliance code generation. To fill these gaps, we present Compliance-to-Code, the first large-scale Chinese dataset dedicated to financial regulatory compliance. Covering 1,159 annotated clauses from 361 regulations across ten categories, each clause is modularly structured with four logical elements-subject, condition, constraint, and contextual information-along with regulation relations. We provide deterministic Python code mappings, detailed code reasoning, and code explanations to facilitate automated auditing. To demonstrate utility, we present FinCheck: a pipeline for regulation structuring, code generation, and report generation.
Enhancing Character-Level Understanding in LLMs through Token Internal Structure Learning ACL 2025
Tokenization methods like Byte-Pair Encoding (BPE) enhance computational efficiency in large language models (LLMs) but often obscure internal character structures within tokens. This limitation hinders LLMs' ability to predict precise character positions, which is crucial in tasks like Chinese Spelling Correction (CSC) where identifying the positions of misspelled characters accelerates correction processes. We propose Token Internal Position Awareness (TIPA), a method that significantly improves models' ability to capture character positions within tokens by training them on reverse character prediction tasks using the tokenizer's vocabulary. Experiments demonstrate that TIPA enhances position prediction accuracy in LLMs, enabling more precise identification of target characters in original text. Furthermore, when applied to downstream tasks that do not require exact position prediction, TIPA still boosts performance in tasks needing character-level information, validating its versatility and effectiveness.
comment: ACL 2025 Main
Binary Classifier Optimization for Large Language Model Alignment ACL 2025
In real-world services such as ChatGPT, aligning models based on user feedback is crucial for improving model performance. However, due to the simplicity and convenience of providing feedback, users typically offer only basic binary signals, such as 'thumbs-up' or 'thumbs-down'. Most existing alignment research, on the other hand, relies on preference-based approaches that require both positive and negative responses as a pair. We propose Binary Classifier Optimization (BCO), a technique that effectively aligns LLMs using only binary feedback. BCO trains a binary classifier, where the logit serves as an implicit reward, effectively minimizing the Direct Preference Optimization (DPO) loss. We demonstrate that the binary cross-entropy loss employed in classifier training acts as an upper bound for the DPO loss. Additionally, a novel reward shift technique further minimizes the gap between the losses. We validate our methodology in two settings: first, on a paired preference dataset, where our method performs on par with DPO; and second, on a Likert-5 scale annotation dataset which stems from real users' queries. Our model consistently demonstrates effective and robust alignment across four base LLMs and three different datasets, showcasing the strength of our approach to learning from binary signals.
comment: ACL 2025 main
Semantic Exploration with Adaptive Gating for Efficient Problem Solving with Language Models
Recent advancements in large language models (LLMs) have shown remarkable potential in various complex tasks requiring multi-step reasoning methods like tree search to explore diverse reasoning paths. However, existing methods often suffer from computational inefficiency and redundancy. First, they overlook the diversity of task difficulties, leading to unnecessarily extensive searches even for easy tasks. Second, they neglect the semantics of reasoning paths, resulting in redundant exploration of semantically identical paths. To address these limitations, we propose Semantic Exploration with Adaptive Gating (SEAG), a computationally efficient method. SEAG employs an adaptive gating mechanism that dynamically decides whether to conduct a tree search, based on the confidence level of answers from a preceding simple reasoning method. Furthermore, its tree-based exploration consolidates semantically identical reasoning steps, reducing redundant explorations while maintaining or even improving accuracy. Our extensive experiments demonstrate that SEAG significantly improves accuracy by 4.3% on average while requiring only 31% of computational costs compared to existing tree search-based methods on complex reasoning benchmarks including GSM8K and ARC with diverse language models such as Llama2, Llama3, and Mistral. Our code is available at https://github.com/ml-postech/SEAG-semantic-exploration-with-adaptive-gating .
NTPP: Generative Speech Language Modeling for Dual-Channel Spoken Dialogue via Next-Token-Pair Prediction ICML 2025
Inspired by the impressive capabilities of GPT-4o, there is growing interest in enabling speech language models (SLMs) to engage in natural, fluid spoken interactions with humans. Recent advancements have led to the development of several SLMs that demonstrate promising results in this area. However, current approaches have yet to fully exploit dual-channel speech data, which inherently captures the structure and dynamics of human conversation. In this work, we systematically explore the use of dual-channel speech data in the context of modern large language models, and introduce a novel generative modeling paradigm, Next-Token-Pair Prediction (NTPP), to enable speaker-independent dual-channel spoken dialogue learning using decoder-only architectures for the first time. We evaluate our approach on standard benchmarks, and empirical results show that our proposed method, NTPP, significantly improves the conversational abilities of SLMs in terms of turn-taking prediction, response coherence, and naturalness. Moreover, compared to existing methods, NTPP achieves substantially lower inference latency, highlighting its practical efficiency for real-time applications.
comment: Accepted by ICML 2025
BEYOND DIALOGUE: A Profile-Dialogue Alignment Framework Towards General Role-Playing Language Model
The rapid advancement of large language models (LLMs) has revolutionized role-playing, enabling the development of general role-playing models. However, current role-playing training has two significant issues: (I) Using a predefined role profile to prompt dialogue training for specific scenarios usually leads to inconsistencies and even conflicts between the dialogue and the profile, resulting in training biases. (II) The model learns to imitate the role based solely on the profile, neglecting profile-dialogue alignment at the sentence level. In this work, we propose a simple yet effective framework called BEYOND DIALOGUE, designed to overcome these hurdles. This framework innovatively introduces "beyond dialogue" tasks to align dialogue with profile traits based on each specific scenario, thereby eliminating biases during training. Furthermore, by adopting an innovative prompting mechanism that generates reasoning outcomes for training, the framework allows the model to achieve fine-grained alignment between profile and dialogue at the sentence level. The aforementioned methods are fully automated and low-cost. Additionally, the integration of automated dialogue and objective evaluation methods forms a comprehensive framework, paving the way for general role-playing. Experimental results demonstrate that our model excels in adhering to and reflecting various dimensions of role profiles, outperforming most proprietary general and specialized role-playing baselines. All code and datasets are available at https://github.com/yuyouyu32/BeyondDialogue.
Parameter-Efficient Fine-Tuning of State Space Models ICML 2025
Deep State Space Models (SSMs), such as Mamba (Gu & Dao, 2024), have become powerful tools for language modeling, offering high performance and linear scalability with sequence length. However, the application of parameter-efficient fine-tuning (PEFT) methods to SSM-based models remains largely underexplored. We start by investigating two fundamental questions on existing PEFT methods: (i) How do they perform on SSM-based models? (ii) Which parameters should they target for optimal results? Our analysis shows that LoRA and its variants consistently outperform all other PEFT methods. While LoRA is effective for linear projection matrices, it fails on SSM modules-yet still outperforms other methods applicable to SSMs, indicating their limitations. This underscores the need for a specialized SSM tuning approach. To address this, we propose Sparse Dimension Tuning (SDT), a PEFT method tailored for SSM modules. Combining SDT for SSMs with LoRA for linear projection matrices, we achieve state-of-the-art performance across extensive experiments.
comment: Accepted at ICML 2025. Code is available at https://github.com/furiosa-ai/ssm-peft
Measuring Diversity in Synthetic Datasets ICML 2025
Large language models (LLMs) are widely adopted to generate synthetic datasets for various natural language processing (NLP) tasks, such as text classification and summarization. However, accurately measuring the diversity of these synthetic datasets-an aspect crucial for robust model performance-remains a significant challenge. In this paper, we introduce DCScore, a novel method for measuring synthetic dataset diversity from a classification perspective. Specifically, DCScore formulates diversity evaluation as a sample classification task, leveraging mutual relationships among samples. We further provide theoretical verification of the diversity-related axioms satisfied by DCScore, highlighting its role as a principled diversity evaluation method. Experimental results on synthetic datasets reveal that DCScore enjoys a stronger correlation with multiple diversity pseudo-truths of evaluated datasets, underscoring its effectiveness. Moreover, both empirical and theoretical evidence demonstrate that DCScore substantially reduces computational costs compared to existing methods. Code is available at: https://github.com/bluewhalelab/dcscore.
comment: Accepted by ICML 2025
Token Cleaning: Fine-Grained Data Selection for LLM Supervised Fine-Tuning
Recent studies show that in supervised fine-tuning (SFT) of large language models (LLMs), data quality matters more than quantity. While most data cleaning methods concentrate on filtering entire samples, the quality of individual tokens within a sample can vary significantly. After pre-training, even in high-quality samples, patterns or phrases that are not task-related can be redundant, uninformative, or even harmful. Continuing to fine-tune on these patterns may offer limited benefit and even degrade downstream task performance. In this paper, we investigate token quality from a noisy-label perspective and propose a generic token cleaning pipeline for SFT tasks. Our method filters out uninformative tokens while preserving those carrying key task-specific information. Specifically, we first evaluate token quality by examining the influence of model updates on each token, then apply a threshold-based separation. The token influence can be measured in a single pass with a fixed reference model or iteratively with self-evolving reference models. The benefits and limitations of both methods are analyzed theoretically by error upper bounds. Extensive experiments show that our framework consistently improves downstream performance. Code is available at https://github.com/UCSC-REAL/TokenCleaning.
RomanLens: The Role Of Latent Romanization In Multilinguality In LLMs
Large Language Models (LLMs) exhibit strong multilingual performance despite being predominantly trained on English-centric corpora. This raises a fundamental question: How do LLMs achieve such multilingual capabilities? Focusing on languages written in non-Roman scripts, we investigate the role of Romanization - the representation of non-Roman scripts using Roman characters - as a potential bridge in multilingual processing. Using mechanistic interpretability techniques, we analyze next-token generation and find that intermediate layers frequently represent target words in Romanized form before transitioning to native script, a phenomenon we term Latent Romanization. Further, through activation patching experiments, we demonstrate that LLMs encode semantic concepts similarly across native and Romanized scripts, suggesting a shared underlying representation. Additionally, for translation into non-Roman script languages, our findings reveal that when the target language is in Romanized form, its representations emerge earlier in the model's layers compared to native script. These insights contribute to a deeper understanding of multilingual representation in LLMs and highlight the implicit role of Romanization in facilitating language transfer.
comment: 19 pages, 19 figures
Cartridges: Lightweight and general-purpose long context representations via self-study
Large language models are often used to answer queries grounded in large text corpora (e.g. codebases, legal documents, or chat histories) by placing the entire corpus in the context window and leveraging in-context learning (ICL). Although current models support contexts of 100K-1M tokens, this setup is costly to serve because the memory consumption of the KV cache scales with input length. We explore an alternative: training a smaller KV cache offline on each corpus. At inference time, we load this trained KV cache, which we call a Cartridge, and decode a response. Critically, the cost of training a Cartridge can be amortized across all the queries referencing the same corpus. However, we find that the naive approach of training the Cartridge with next-token prediction on the corpus is not competitive with ICL. Instead, we propose self-study, a training recipe in which we generate synthetic conversations about the corpus and train the Cartridge with a context-distillation objective. We find that Cartridges trained with self-study replicate the functionality of ICL, while being significantly cheaper to serve. On challenging long-context benchmarks, Cartridges trained with self-study match ICL performance while using 38.6x less memory and enabling 26.4x higher throughput. Self-study also extends the model's effective context length (e.g. from 128k to 484k tokens on MTOB) and surprisingly, leads to Cartridges that can be composed at inference time without retraining.
Multi-agent Architecture Search via Agentic Supernet
Large Language Model (LLM)-empowered multi-agent systems extend the cognitive boundaries of individual agents through disciplined collaboration and interaction, while constructing these systems often requires labor-intensive manual designs. Despite the availability of methods to automate the design of agentic workflows, they typically seek to identify a static, complex, one-size-fits-all system, which, however, fails to dynamically allocate inference resources based on the difficulty and domain of each query. To address this challenge, we shift away from the pursuit of a monolithic agentic system, instead optimizing the \textbf{agentic supernet}, a probabilistic and continuous distribution of agentic architectures. We introduce MaAS, an automated framework that samples query-dependent agentic systems from the supernet, delivering high-quality solutions and tailored resource allocation (\textit{e.g.}, LLM calls, tool calls, token cost). Comprehensive evaluation across six benchmarks demonstrates that MaAS \textbf{(I)} requires only $6\sim45\%$ of the inference costs of existing handcrafted or automated multi-agent systems, \textbf{(II)} surpasses them by $0.54\%\sim11.82\%$, and \textbf{(III)} enjoys superior cross-dataset and cross-LLM-backbone transferability.
When Models Know More Than They Can Explain: Quantifying Knowledge Transfer in Human-AI Collaboration
Recent advancements in AI reasoning have driven substantial improvements across diverse tasks. A critical open question is whether these improvements also yields better knowledge transfer: the ability of models to communicate reasoning in ways humans can understand, apply, and learn from. To investigate this, we introduce Knowledge Integration and Transfer Evaluation (KITE), a conceptual and experimental framework for Human-AI knowledge transfer capabilities and conduct the first large-scale human study (N=118) explicitly designed to measure it. In our two-phase setup, humans first ideate with an AI on problem-solving strategies, then independently implement solutions, isolating model explanations' influence on human understanding. Our findings reveal that although model benchmark performance correlates with collaborative outcomes, this relationship is notably inconsistent, featuring significant outliers, indicating that knowledge transfer requires dedicated optimization. Our analysis identifies behavioral and strategic factors mediating successful knowledge transfer. We release our code, dataset, and evaluation framework to support future work on communicatively aligned models.
comment: For code, data, visualizer, visit: https://kite-live.vercel.app
Power-Law Decay Loss for Large Language Model Finetuning: A Theory Perspective
During the finetuning stage of text generation tasks, standard cross-entropy loss treats all tokens equally. This can lead models to overemphasize high-frequency, low-information tokens, neglecting lower-frequency tokens crucial for specificity and informativeness in generated content. This paper introduces a novel loss function, Power-Law Decay Loss (PDL), specifically designed to optimize the finetuning process for text generation. The core motivation for PDL stems from observations in information theory and linguistics: the informativeness of a token is often inversely proportional to its frequency of occurrence. PDL re-weights the contribution of each token in the standard cross-entropy loss based on its frequency in the training corpus, following a power-law decay. Specifically, the weights for high-frequency tokens are reduced, while low-frequency, information-dense tokens are assigned higher weights. This mechanism guides the model during finetuning to focus more on learning and generating tokens that convey specific and unique information, thereby enhancing the quality, diversity, and informativeness of the generated text. We theoretically elaborate on the motivation and construction of PDL and discuss its potential applications and advantages across various text generation finetuning tasks, such as abstractive summarization, dialogue systems, and style transfer.
comment: Short of sufficient experiments and references
Structured Pruning for Diverse Best-of-N Reasoning Optimization ACL
Model pruning in transformer-based language models, traditionally viewed as a means of achieving computational savings, can enhance the model's reasoning capabilities. In this work, we uncover a surprising phenomenon: the selective pruning of certain attention heads leads to improvements in reasoning performance, particularly on challenging tasks. Motivated by this observation, we propose SPRINT, a novel contrastive learning framework that dynamically selects the optimal head and layer to prune during inference. By aligning question embeddings with head embeddings, SPRINT identifies those pruned-head configurations that result in more accurate reasoning. Extensive experiments demonstrate that our method significantly outperforms traditional best-of-$N$ and random head selection strategies on the MATH500 and GSM8K datasets.
comment: Accepted to ACL Findings 2025
BiMa: Towards Biases Mitigation for Text-Video Retrieval via Scene Element Guidance
Text-video retrieval (TVR) systems often suffer from visual-linguistic biases present in datasets, which cause pre-trained vision-language models to overlook key details. To address this, we propose BiMa, a novel framework designed to mitigate biases in both visual and textual representations. Our approach begins by generating scene elements that characterize each video by identifying relevant entities/objects and activities. For visual debiasing, we integrate these scene elements into the video embeddings, enhancing them to emphasize fine-grained and salient details. For textual debiasing, we introduce a mechanism to disentangle text features into content and bias components, enabling the model to focus on meaningful content while separately handling biased information. Extensive experiments and ablation studies across five major TVR benchmarks (i.e., MSR-VTT, MSVD, LSMDC, ActivityNet, and DiDeMo) demonstrate the competitive performance of BiMa. Additionally, the model's bias mitigation capability is consistently validated by its strong results on out-of-distribution retrieval tasks.
comment: 22 pages, 14 figures
Outlier-weighed Layerwise Sampling for LLM Fine-tuning
The rapid advancements in Large Language Models (LLMs) have revolutionized various natural language processing tasks. However, the substantial size of LLMs presents significant challenges in training or fine-tuning. While parameter-efficient approaches such as low-rank adaptation (LoRA) have gained popularity, they often compromise performance compared to full-rank fine-tuning. In this paper, we propose Outlier-weighed Layerwise Sampling (OWS), a new memory-efficient fine-tuning approach, inspired by the layerwise outlier distribution of LLMs. Unlike LoRA, which adds extra adapters to all layers, OWS strategically assigns higher sampling probabilities to layers with more outliers, selectively sampling only a few layers and fine-tuning their pre-trained weights. To further increase the number of fine-tuned layers without a proportional rise in memory costs, we incorporate gradient low-rank projection, further boosting the approach's performance. Our extensive experiments across various architectures, including LLaMa2 and Mistral, demonstrate that OWS consistently outperforms baseline approaches, including full fine-tuning. Specifically, it achieves up to a 1.1% average accuracy gain on the Commonsense Reasoning benchmark, a 3.0% improvement on MMLU, and a notable 10% boost on MT-Bench, while being more memory efficient. OWS allows us to fine-tune 7B LLMs with only 21GB of memory. Our code is available at https://github.com/pixeli99/OWS.
Do Large Language Models Judge Error Severity Like Humans?
Large Language Models (LLMs) are increasingly used as automated evaluators in natural language generation, yet it remains unclear whether they can accurately replicate human judgments of error severity. In this study, we systematically compare human and LLM assessments of image descriptions containing controlled semantic errors. We extend the experimental framework of van Miltenburg et al. (2020) to both unimodal (text-only) and multimodal (text + image) settings, evaluating four error types: age, gender, clothing type, and clothing colour. Our findings reveal that humans assign varying levels of severity to different error types, with visual context significantly amplifying perceived severity for colour and type errors. Notably, most LLMs assign low scores to gender errors but disproportionately high scores to colour errors, unlike humans, who judge both as highly severe but for different reasons. This suggests that these models may have internalised social norms influencing gender judgments but lack the perceptual grounding to emulate human sensitivity to colour, which is shaped by distinct neural mechanisms. Only one of the evaluated LLMs, Doubao, replicates the human-like ranking of error severity, but it fails to distinguish between error types as clearly as humans. Surprisingly, DeepSeek-V3, a unimodal LLM, achieves the highest alignment with human judgments across both unimodal and multimodal conditions, outperforming even state-of-the-art multimodal models.
SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering
Software engineering (SE) is increasingly collaborative, with developers working together on shared complex codebases. Effective collaboration in shared environments requires participants -- whether humans or AI agents -- to stay on the same page as their environment evolves. When a collaborator's understanding diverges from the current state -- what we term the out-of-sync challenge -- the collaborator's actions may fail, leading to integration issues. In this work, we introduce SyncMind, a framework that systematically defines the out-of-sync problem faced by large language model (LLM) agents in collaborative software engineering (CSE). Based on SyncMind, we create SyncBench, a benchmark featuring 24,332 instances of agent out-of-sync scenarios in real-world CSE derived from 21 popular GitHub repositories with executable verification tests. Experiments on SyncBench uncover critical insights into existing LLM agents' capabilities and limitations. Besides substantial performance gaps among agents (from Llama-3.1 agent <= 3.33% to Claude-3.5-Sonnet >= 28.18%), their consistently low collaboration willingness (<= 4.86%) suggests fundamental limitations of existing LLM in CSE. However, when collaboration occurs, it positively correlates with out-of-sync recovery success. Minimal performance differences in agents' resource-aware out-of-sync recoveries further reveal their significant lack of resource awareness and adaptability, shedding light on future resource-efficient collaborative systems. Code and data are openly available on our project website: https://xhguo7.github.io/SyncMind/.
Zero-Shot Event Causality Identification via Multi-source Evidence Fuzzy Aggregation with Large Language Models
Event Causality Identification (ECI) aims to detect causal relationships between events in textual contexts. Existing ECI models predominantly rely on supervised methodologies, suffering from dependence on large-scale annotated data. Although Large Language Models (LLMs) enable zero-shot ECI, they are prone to causal hallucination-erroneously establishing spurious causal links. To address these challenges, we propose MEFA, a novel zero-shot framework based on Multi-source Evidence Fuzzy Aggregation. First, we decompose causality reasoning into three main tasks (temporality determination, necessity analysis, and sufficiency verification) complemented by three auxiliary tasks. Second, leveraging meticulously designed prompts, we guide LLMs to generate uncertain responses and deterministic outputs. Finally, we quantify LLM's responses of sub-tasks and employ fuzzy aggregation to integrate these evidence for causality scoring and causality determination. Extensive experiments on three benchmarks demonstrate that MEFA outperforms second-best unsupervised baselines by 6.2% in F1-score and 9.3% in precision, while significantly reducing hallucination-induced errors. In-depth analysis verify the effectiveness of task decomposition and the superiority of fuzzy aggregation.
Scalable Vision Language Model Training via High Quality Data Curation ACL 2025
In this paper, we introduce SAIL-VL (ScAlable Vision Language Model TraIning via High QuaLity Data Curation), an open-source vision language model (VLM) series achieving state-of-the-art (SOTA) performance in 2B and 8B parameters. The following three key improvements contribute to SAIL-VL's leading performance: (1) Scalable high-quality visual understanding data construction: We implement a data construction pipeline to enable hundred-million-scale high-quality recaption data annotation. The resulted dataset SAIL-Caption is validated to be of the highest data quality compared with opensource datasets. (2) Scalable Pretraining with High-Quality Visual Understanding Data: We scale SAIL-VL's pretraining budget up to 655B tokens and show that even a 2B VLM benefits from scaled up training data sizes, exhibiting logarithmic data size scaling laws in benchmark performance. (3) Scalable SFT via data quantity and complexity scaling: We curate a high-quality SFT dataset collection with leading data quantity scaling effectiveness and demonstrate that training with progressively higher-complexity data surpasses baseline one-stage training by a large margin. SAIL-VL series models achieve the highest average score in 18 widely used VLM benchmarks in our evaluation, with the 2B model takes the top position over VLMs of comparable sizes on OpenCompass 2024 (https://rank.opencompass.org.cn/leaderboard-multimodal), demonstrating robust visual comprehension abilities. SAIL-VL series models are released at HuggingFace (https://huggingface.co/BytedanceDouyinContent).
comment: ACL 2025 Main Conference
A Comprehensive Survey in LLM(-Agent) Full Stack Safety: Data, Training and Deployment
The remarkable success of Large Language Models (LLMs) has illuminated a promising pathway toward achieving Artificial General Intelligence for both academic and industrial communities, owing to their unprecedented performance across various applications. As LLMs continue to gain prominence in both research and commercial domains, their security and safety implications have become a growing concern, not only for researchers and corporations but also for every nation. Currently, existing surveys on LLM safety primarily focus on specific stages of the LLM lifecycle, e.g., deployment phase or fine-tuning phase, lacking a comprehensive understanding of the entire "lifechain" of LLMs. To address this gap, this paper introduces, for the first time, the concept of "full-stack" safety to systematically consider safety issues throughout the entire process of LLM training, deployment, and eventual commercialization. Compared to the off-the-shelf LLM safety surveys, our work demonstrates several distinctive advantages: (I) Comprehensive Perspective. We define the complete LLM lifecycle as encompassing data preparation, pre-training, post-training, deployment and final commercialization. To our knowledge, this represents the first safety survey to encompass the entire lifecycle of LLMs. (II) Extensive Literature Support. Our research is grounded in an exhaustive review of over 800+ papers, ensuring comprehensive coverage and systematic organization of security issues within a more holistic understanding. (III) Unique Insights. Through systematic literature analysis, we have developed reliable roadmaps and perspectives for each chapter. Our work identifies promising research directions, including safety in data generation, alignment techniques, model editing, and LLM-based agent systems. These insights provide valuable guidance for researchers pursuing future work in this field.
Theoretical Benefit and Limitation of Diffusion Language Model
Diffusion language models have emerged as a promising approach for text generation. One would naturally expect this method to be an efficient replacement for autoregressive models since multiple tokens can be sampled in parallel during each diffusion step. However, its efficiency-accuracy trade-off is not yet well understood. In this paper, we present a rigorous theoretical analysis of a widely used type of diffusion language model, the Masked Diffusion Model (MDM), and find that its effectiveness heavily depends on the target evaluation metric. Under mild conditions, we prove that when using perplexity as the metric, MDMs can achieve near-optimal perplexity in sampling steps regardless of sequence length, demonstrating that efficiency can be achieved without sacrificing performance. However, when using the sequence error rate--which is important for understanding the "correctness" of a sequence, such as a reasoning chain--we show that the required sampling steps must scale linearly with sequence length to obtain "correct" sequences, thereby eliminating MDM's efficiency advantage over autoregressive models. Our analysis establishes the first theoretical foundation for understanding the benefits and limitations of MDMs. All theoretical findings are supported by empirical studies.
comment: 32 pages, 3 figures
Knowledge-to-Jailbreak: Investigating Knowledge-driven Jailbreaking Attacks for Large Language Models KDD 2025
Large language models (LLMs) have been increasingly applied to various domains, which triggers increasing concerns about LLMs' safety on specialized domains, e.g. medicine. Despite prior explorations on general jailbreaking attacks, there are two challenges for applying existing attacks on testing the domain-specific safety of LLMs: (1) Lack of professional knowledge-driven attacks, (2) Insufficient coverage of domain knowledge. To bridge this gap, we propose a new task, knowledge-to-jailbreak, which aims to generate jailbreaking attacks from domain knowledge, requiring both attack effectiveness and knowledge relevance. We collect a large-scale dataset with 12,974 knowledge-jailbreak pairs and fine-tune a large language model as jailbreak-generator, to produce domain knowledge-specific jailbreaks. Experiments on 13 domains and 8 target LLMs demonstrate the effectiveness of jailbreak-generator in generating jailbreaks that are both threatening to the target LLMs and relevant to the given knowledge. We also apply our method to an out-of-domain knowledge base, showing that jailbreak-generator can generate jailbreaks that are comparable in harmfulness to those crafted by human experts. Data and code are available at: https://github.com/THU-KEG/Knowledge-to-Jailbreak/.
comment: Accepted by KDD 2025 research track
Unveiling and Addressing Pseudo Forgetting in Large Language Models ACL 2025
Although substantial efforts have been made to mitigate catastrophic forgetting in continual learning, the intrinsic mechanisms are not well understood. In this work, we demonstrate the existence of "pseudo forgetting": the performance degradation on previous tasks is not attributed to a loss of capabilities, but rather to the failure of the instructions to activate the appropriate model abilities. We show that the model's performance on previous tasks can be restored through two simple interventions: (1) providing partial external correct rationale, and (2) appending semantically meaningless suffixes to the original instructions, to guide the generation of correct rationales. Through empirical analysis of the internal mechanisms governing rationale generation, we reveal that models exhibiting pseudo forgetting show reduced instruction dependence during rationale generation, leading to suboptimal activation of their inherent capabilities. Based on this insight, we propose Rationale-Guidance Difficulty based Replay (RGD-R) framework that dynamically allocates replay data based on the model's ability to correctly leverage the intrinsic capabilities. Experimental results demonstrate that RGD-R effectively mitigates pseudo forgetting while maintaining model plasticity.
comment: ACL 2025 Findings
What if LLMs Have Different World Views: Simulating Alien Civilizations with LLM-based Agents
This study introduces "CosmoAgent," an innovative artificial intelligence system that utilizes Large Language Models (LLMs) to simulate complex interactions between human and extraterrestrial civilizations. This paper introduces a mathematical model for quantifying the levels of civilization development and further employs a state transition matrix approach to evaluate their trajectories. Through this methodology, our study quantitatively analyzes the growth trajectories of civilizations, providing insights into future decision-making at critical points of growth and saturation. Furthermore, this paper acknowledges the vast diversity of potential living conditions across the universe, which could foster unique cosmologies, ethical codes, and worldviews among different civilizations. Recognizing the Earth-centric bias inherent in current LLM designs, we propose the novel concept of using LLM agents with diverse ethical paradigms and simulating interactions between entities with distinct moral principles. This innovative research not only introduces a novel method for comprehending potential inter-civilizational dynamics but also holds practical value in enabling entities with divergent value systems to strategize, prevent conflicts, and engage in games under conditions of asymmetric information. The accompanying code is available at https://github.com/MingyuJ666/Simulating-Alien-Civilizations-with-LLM-based-Agents.
BioHopR: A Benchmark for Multi-Hop, Multi-Answer Reasoning in Biomedical Domain
Biomedical reasoning often requires traversing interconnected relationships across entities such as drugs, diseases, and proteins. Despite the increasing prominence of large language models (LLMs), existing benchmarks lack the ability to evaluate multi-hop reasoning in the biomedical domain, particularly for queries involving one-to-many and many-to-many relationships. This gap leaves the critical challenges of biomedical multi-hop reasoning underexplored. To address this, we introduce BioHopR, a novel benchmark designed to evaluate multi-hop, multi-answer reasoning in structured biomedical knowledge graphs. Built from the comprehensive PrimeKG, BioHopR includes 1-hop and 2-hop reasoning tasks that reflect real-world biomedical complexities. Evaluations of state-of-the-art models reveal that O3-mini, a proprietary reasoning-focused model, achieves 37.93% precision on 1-hop tasks and 14.57% on 2-hop tasks, outperforming proprietary models such as GPT4O and open-source biomedical models including HuatuoGPT-o1-70B and Llama-3.3-70B. However, all models exhibit significant declines in multi-hop performance, underscoring the challenges of resolving implicit reasoning steps in the biomedical domain. By addressing the lack of benchmarks for multi-hop reasoning in biomedical domain, BioHopR sets a new standard for evaluating reasoning capabilities and highlights critical gaps between proprietary and open-source models while paving the way for future advancements in biomedical LLMs.
Rational Decision-Making Agent with Internalized Utility Judgment ICLR 2025
Large language models (LLMs) have demonstrated remarkable advancements and have attracted significant efforts to develop LLMs into agents capable of executing intricate multi-step decision-making tasks beyond traditional NLP applications. Existing approaches to LLM-based decision-making predominantly build upon the manually-designed external performance metrics to guide the decision-making process. However, reliance on the external performance metrics as prior is problematic in real-world scenarios, where such prior may be unavailable, flawed, or even erroneous. For genuine autonomous decision making, it is imperative for the agent to develop its rationality from its posterior experiences to judge decisions independently. Central to the development of rationality is the construction of an internalized utility judgment, capable of assigning numerical utilities to each decision. This paper proposes RadAgent (Rational Decision-Making Agent), which fosters the development of its rationality through an iterative framework involving Experience Exploration and Utility Learning. Within this framework, Elo-based Utility Construction is devised to assign Elo scores to individual decision steps to judge their utilities via pairwise comparisons. Consequently, these Elo scores guide the decision-making process to derive optimal outcomes. Experimental results on the ToolBench dataset demonstrate RadAgent's superiority over baselines, achieving over 10% improvement in Pass Rate on diverse tasks. It offers higher-quality solutions and reduces costs (ChatGPT API calls), highlighting its effectiveness and efficiency.
comment: Published as a conference paper at ICLR 2025
Tree-of-Debate: Multi-Persona Debate Trees Elicit Critical Thinking for Scientific Comparative Analysis ACL 2025
With the exponential growth of research facilitated by modern technology and improved accessibility, scientific discoveries have become increasingly fragmented within and across fields. This makes it challenging to assess the significance, novelty, incremental findings, and equivalent ideas between related works, particularly those from different research communities. Large language models (LLMs) have recently demonstrated strong quantitative and qualitative reasoning abilities, and multi-agent LLM debates have shown promise in handling complex reasoning tasks by exploring diverse perspectives and reasoning paths. Inspired by this, we introduce Tree-of-Debate (ToD), a framework which converts scientific papers into LLM personas that debate their respective novelties. To emphasize structured, critical reasoning rather than focusing solely on outcomes, ToD dynamically constructs a debate tree, enabling fine-grained analysis of independent novelty arguments within scholarly articles. Through experiments on scientific literature across various domains, evaluated by expert researchers, we demonstrate that ToD generates informative arguments, effectively contrasts papers, and supports researchers in their literature review.
comment: ACL 2025 Main Conference. Code available at: https://github.com/pkargupta/tree-of-debate
Human-Computer Interaction
Supporting Construction Worker Well-Being with a Multi-Agent Conversational AI System
The construction industry is characterized by both high physical and psychological risks, yet supports of mental health remain limited. While advancements in artificial intelligence (AI), particularly large language models (LLMs), offer promising solutions, their potential in construction remains largely underexplored. To bridge this gap, we developed a conversational multi-agent system that addresses industry-specific challenges through an AI-driven approach integrated with domain knowledge. In parallel, it fulfills construction workers' basic psychological needs by enabling interactions with multiple agents, each has a distinct persona. This approach ensures that workers receive both practical problem-solving support and social engagement, ultimately contributing to their overall well-being. We evaluate its usability and effectiveness through a within-subjects user study with 12 participants. The results show that our system significantly outperforms the single-agent baseline, achieving improvements of 18% in usability, 40% in self-determination, 60% in social presence, and 60% in trust. These findings highlight the promise of LLM-driven AI systems in providing domain-specific support for construction workers.
Implementation Considerations for Automated AI Grading of Student Work
This study explores the classroom implementation of an AI-powered grading platform in K-12 settings through a co-design pilot with 19 teachers. We combine platform usage logs, surveys, and qualitative interviews to examine how teachers use AI-generated rubrics and grading feedback. Findings reveal that while teachers valued the AI's rapid narrative feedback for formative purposes, they distrusted automated scoring and emphasized the need for human oversight. Students welcomed fast, revision-oriented feedback but remained skeptical of AI-only grading. We discuss implications for the design of trustworthy, teacher-centered AI assessment tools that enhance feedback while preserving pedagogical agency.
Predicting Situation Awareness from Physiological Signals
Situation awareness (SA)--comprising the ability to 1) perceive critical elements in the environment, 2) comprehend their meanings, and 3) project their future states--is critical for human operator performance. Due to the disruptive nature of gold-standard SA measures, researchers have sought physiological indicators to provide real-time information about SA. We extend prior work by using a multimodal suite of neurophysiological, psychophysiological, and behavioral signals, predicting all three levels of SA along a continuum, and predicting a comprehensive measure of SA in a complex multi-tasking simulation. We present a lab study in which 31 participants controlled an aircraft simulator task battery while wearing physiological sensors and responding to SA 'freeze-probe' assessments. We demonstrate the validity of task and assessment for measuring SA. Multimodal physiological models predict SA with greater predictive performance ($Q^2$ for levels 1-3 and total, respectively: 0.14, 0.00, 0.26, and 0.36) than models built with shuffled labels, demonstrating that multimodal physiological signals provide useful information in predicting all SA levels. Level 3 SA (projection) was best predicted, and level 2 SA comprehension) was the most challenging to predict. Ablation analysis and single sensor models found EEG and eye-tracking signals to be particularly useful to predictions of level 3 and total SA. A reduced sensor fusion model showed that predictive performance can be maintained with a subset of sensors. This first rigorous cross-validation assessment of predictive performance demonstrates the utility of multimodal physiological signals for inferring complex, holistic, objective measures of SA at all levels, non-disruptively, and along a continuum.
comment: 15 pages, 6 figures, submitted to IEEE Transactions on Human-Machine Systems
Integrating Artificial Intelligence as Assistive Technology for Older Adult Gamers: A Pilot Study
With respect to digital games, older adults are a demographic that is often underserved due to an industry-wide focus on younger audiences' preferences and skill sets. Meanwhile, as artificial intelligence (AI) continues to expand into everyday technologies, its assistive capabilities have been recognized, suggesting its potential in improving the gaming experience for older gamers. To study this potential, we iteratively developed a pilot survey aimed at understanding older adult gamers' current gameplay preference, challenges they are facing, and their perspectives of AI usage in gaming. This article contributes an overview of our iterative survey-design workflow, and pilot results from 39 participants. During each iteration, we analyzed the survey's efficacy and adjusted the content, language, and format to better capture meaningful data, and was able to create a refined survey for a larger, more representative future parent study. At the same time, preliminary findings suggest that for older adult gamers, usability issues in gaming remain key obstacles, while this demographic's perceptions of AI are shaped by both its practical benefits and concerns about autonomy and complexity. These findings also offer early insights for the design of age-inclusive, AI-supported gaming experiences.
comment: 9 pages, 1 figure
Supporting Aging Well through Accessible Digital Games: The Supplemental Role of AI in Game Design for Older Adults
As the population continues to age, and gaming continues to grow as a hobby for older people, heterogeneity among older adult gamers is increasing. We argue that traditional game-based accessibility features, such as simplified input schemes, redundant information channels, and increased legibility of digital user interfaces, are increasingly limited in the face of this heterogeneity. This is because such features affect all older adult players simultaneously and therefore are designed generically. We introduce artificial intelligence, although it has its own limitations and ethical concerns, as a method of creating player-based accessibility features, given the adaptive nature of the emerging technology. These accessibility features may help to address unique assemblage of accessibility needs an individual may accumulate through age. We adopt insights from gerontology, HCI, and disability studies into the digital game design discourse for older adults, and we contribute insight that can guide the integration of player-based accessibility features to supplement game-based counterparts. The accessibility of digital games for heterogenous older adult audience is paramount, as the medium offers short-term social, emotional, psychological, cognitive, and physical that support the long-term goal of aging well.
comment: 21 pages, 1 figure
Interaction Analysis by Humans and AI: A Comparative Perspective
This paper explores how Mixed Reality (MR) and 2D video conferencing influence children's communication during a gesture-based guessing game. Finnish-speaking participants engaged in a short collaborative task using two different setups: Microsoft HoloLens MR and Zoom. Audio-video recordings were transcribed and analyzed using Large Language Models (LLMs), enabling iterative correction, translation, and annotation. Despite limitations in annotations' accuracy and agreement, automated approaches significantly reduced processing time and allowed non-Finnish-speaking researchers to participate in data analysis. Evaluations highlight both the efficiency and constraints of LLM-based analyses for capturing children's interactions across these platforms. Initial findings indicate that MR fosters richer interaction, evidenced by higher emotional expression during annotation, and heightened engagement, while Zoom offers simplicity and accessibility. This study underscores the potential of MR to enhance collaborative learning experiences for children in distributed settings.
Silencing Empowerment, Allowing Bigotry: Auditing the Moderation of Hate Speech on Twitch
To meet the demands of content moderation, online platforms have resorted to automated systems. Newer forms of real-time engagement($\textit{e.g.}$, users commenting on live streams) on platforms like Twitch exert additional pressures on the latency expected of such moderation systems. Despite their prevalence, relatively little is known about the effectiveness of these systems. In this paper, we conduct an audit of Twitch's automated moderation tool ($\texttt{AutoMod}$) to investigate its effectiveness in flagging hateful content. For our audit, we create streaming accounts to act as siloed test beds, and interface with the live chat using Twitch's APIs to send over $107,000$ comments collated from $4$ datasets. We measure $\texttt{AutoMod}$'s accuracy in flagging blatantly hateful content containing misogyny, racism, ableism and homophobia. Our experiments reveal that a large fraction of hateful messages, up to $94\%$ on some datasets, $\textit{bypass moderation}$. Contextual addition of slurs to these messages results in $100\%$ removal, revealing $\texttt{AutoMod}$'s reliance on slurs as a moderation signal. We also find that contrary to Twitch's community guidelines, $\texttt{AutoMod}$ blocks up to $89.5\%$ of benign examples that use sensitive words in pedagogical or empowering contexts. Overall, our audit points to large gaps in $\texttt{AutoMod}$'s capabilities and underscores the importance for such systems to understand context effectively.
Happiness Finder: Exploring the Role of AI in Enhancing Well-Being During Four-Leaf Clover Searches
A four-leaf clover (FLC) symbolizes luck and happiness worldwide, but it is hard to distinguish it from the common three-leaf clover. While AI technology can assist in searching for FLC, it may not replicate the traditional search's sense of achievement. This study explores searcher feelings when AI aids the FLC search. In this study, we developed a system called ``Happiness Finder'' that uses object detection algorithms on smartphones or tablets to support the search. We exhibited HappinessFinder at an international workshop, allowing participants to experience four-leaf clover searching using potted artificial clovers and the HappinessFinder app. This paper reports the findings from this demonstration.
Human Side of Smart Contract Fuzzing: An Empirical Study
Smart contract (SC) fuzzing is a critical technique for detecting vulnerabilities in blockchain applications. However, its adoption remains challenging for practitioners due to fundamental differences between SCs and traditional software systems. In this study, we investigate the challenges practitioners face when adopting SC fuzzing tools by conducting an inductive content analysis of 381 GitHub issues from two widely used SC fuzzers: Echidna and Foundry. Furthermore, we conducted a user study to examine how these challenges affect different practitioner groups, SC developers, and traditional software security professionals, and identify strategies practitioners use to overcome them. We systematically categorize these challenges into a taxonomy based on their nature and occurrence within the SC fuzzing workflow. Our findings reveal domain-specific ease-of-use and usefulness challenges, including technical issues with blockchain emulation, and human issues with a lack of accessible documentation and process automation. Our results provide actionable insights for tool developers and researchers, guiding future improvements in SC fuzzer tool design.
Z3Guide: A Scalable, Student-Centered, and Extensible Educational Environment for Logic Modeling
Constraint-satisfaction problems (CSPs) are ubiquitous, ranging from budgeting for grocery shopping to verifying software behavior. Logic modeling helps solve CSPs programmatically using SMT solvers. Despite its importance in many Computer Science disciplines, resources for teaching and learning logic modeling are scarce and scattered, and challenges remain in designing educational environments for logic modeling that are accessible and meet the needs of teachers and students. This paper explores how to design such an environment and probes the impact of the design on the learning experience. From a need-finding interview study and a design iteration with teachers of logic modeling, we curated 10 design guidelines spanning three main requirements: providing easy access, supporting various educational modalities, and allowing extensions for customized pedagogical needs. We implemented nine guidelines in Z3Guide, an open-source browser-based tool. Using Z3Guide in a logic modeling learning workshop with more than 100 students, we gathered positive feedback on its support for learning and identified opportunities for future improvements.
AffectMachine-Pop: A controllable expert system for real-time pop music generation
Music is a powerful medium for influencing listeners' emotional states, and this capacity has driven a surge of research interest in AI-based affective music generation in recent years. Many existing systems, however, are a black box which are not directly controllable, thus making these systems less flexible and adaptive to users. We present \textit{AffectMachine-Pop}, an expert system capable of generating retro-pop music according to arousal and valence values, which can either be pre-determined or based on a listener's real-time emotion states. To validate the efficacy of the system, we conducted a listening study demonstrating that AffectMachine-Pop is capable of generating affective music at target levels of arousal and valence. The system is tailored for use either as a tool for generating interactive affective music based on user input, or for incorporation into biofeedback or neurofeedback systems to assist users with emotion self-regulation.
Understanding and Improving Data Repurposing
We live in an age of unprecedented opportunities to use existing data for tasks not anticipated when those data were collected, resulting in widespread data repurposing. This commentary defines and maps the scope of data repurposing to highlight its importance for organizations and society and the need to study data repurposing as a frontier of data management. We explain how repurposing differs from original data use and data reuse and then develop a framework for data repurposing consisting of concepts and activities for adapting existing data to new tasks. The framework and its implications are illustrated using two examples of repurposing, one in healthcare and one in citizen science. We conclude by suggesting opportunities for research to better understand data repurposing and enable more effective data repurposing practices.
C3T: Cross-modal Transfer Through Time for Sensor-based Human Activity Recognition
In order to unlock the potential of diverse sensors, we investigate a method to transfer knowledge between time-series modalities using a multimodal \textit{temporal} representation space for Human Activity Recognition (HAR). Specifically, we explore the setting where the modality used in testing has no labeled data during training, which we refer to as Unsupervised Modality Adaptation (UMA). We categorize existing UMA approaches as Student-Teacher or Contrastive Alignment methods. These methods typically compress continuous-time data samples into single latent vectors during alignment, inhibiting their ability to transfer temporal information through real-world temporal distortions. To address this, we introduce Cross-modal Transfer Through Time (C3T), which preserves temporal information during alignment to handle dynamic sensor data better. C3T achieves this by aligning a set of temporal latent vectors across sensing modalities. Our extensive experiments on various camera+IMU datasets demonstrate that C3T outperforms existing methods in UMA by at least 8% in accuracy and shows superior robustness to temporal distortions such as time-shift, misalignment, and dilation. Our findings suggest that C3T has significant potential for developing generalizable models for time-series sensor data, opening new avenues for various multimodal applications.
Minoritised Ethnic People's Security and Privacy Concerns and Responses towards Essential Online Services
Minoritised ethnic people are marginalised in society, and therefore at a higher risk of adverse online harms, including those arising from the loss of security and privacy of personal data. Despite this, there has been very little research focused on minoritised ethnic people's security and privacy concerns, attitudes, and behaviours. In this work, we provide the results of one of the first studies in this regard. We explore minoritised ethnic people's experiences of using essential online services across three sectors: health, social housing, and energy, their security and privacy-related concerns, and responses towards these services. We conducted a thematic analysis of 44 semi-structured interviews with people of various reported minoritised ethnicities in the UK. Privacy concerns and lack of control over personal data emerged as a major theme, with many interviewees considering privacy as their most significant concern when using online services. Several creative tactics to exercise some agency were reported, including selective and inconsistent disclosure of personal data. A core concern about how data may be used was driven by a fear of repercussions, including penalisation and discrimination, influenced by prior experiences of institutional and online racism. The increased concern and potential for harm resulted in minoritised ethnic people grappling with a higher-stakes dilemma of whether to disclose personal information online or not. Furthermore, trust in institutions, or lack thereof, was found to be embedded throughout as a basis for adapting behaviour. We draw on our results to provide lessons learned for the design of more inclusive, marginalisation-aware, and privacy-preserving online services.
comment: This is an e-print of a paper accepted to the USENIX Symposium on Usable Privacy and Security (SOUPS) 2025
Human-in-the-Loop Annotation for Image-Based Engagement Estimation: Assessing the Impact of Model Reliability on Annotation Accuracy
Human-in-the-loop (HITL) frameworks are increasingly recognized for their potential to improve annotation accuracy in emotion estimation systems by combining machine predictions with human expertise. This study focuses on integrating a high-performing image-based emotion model into a HITL annotation framework to evaluate the collaborative potential of human-machine interaction and identify the psychological and practical factors critical to successful collaboration. Specifically, we investigate how varying model reliability and cognitive framing influence human trust, cognitive load, and annotation behavior in HITL systems. We demonstrate that model reliability and psychological framing significantly impact annotators' trust, engagement, and consistency, offering insights into optimizing HITL frameworks. Through three experimental scenarios with 29 participants--baseline model reliability (S1), fabricated errors (S2), and cognitive bias introduced by negative framing (S3)--we analyzed behavioral and qualitative data. Reliable predictions in S1 yielded high trust and annotation consistency, while unreliable outputs in S2 led to increased critical evaluations but also heightened frustration and response variability. Negative framing in S3 revealed how cognitive bias influenced participants to perceive the model as more relatable and accurate, despite misinformation regarding its reliability. These findings highlight the importance of both reliable machine outputs and psychological factors in shaping effective human-machine collaboration. By leveraging the strengths of both human oversight and automated systems, this study establishes a scalable HITL framework for emotion annotation and lays the foundation for broader applications in adaptive learning and human-computer interaction.
BEYOND DIALOGUE: A Profile-Dialogue Alignment Framework Towards General Role-Playing Language Model
The rapid advancement of large language models (LLMs) has revolutionized role-playing, enabling the development of general role-playing models. However, current role-playing training has two significant issues: (I) Using a predefined role profile to prompt dialogue training for specific scenarios usually leads to inconsistencies and even conflicts between the dialogue and the profile, resulting in training biases. (II) The model learns to imitate the role based solely on the profile, neglecting profile-dialogue alignment at the sentence level. In this work, we propose a simple yet effective framework called BEYOND DIALOGUE, designed to overcome these hurdles. This framework innovatively introduces "beyond dialogue" tasks to align dialogue with profile traits based on each specific scenario, thereby eliminating biases during training. Furthermore, by adopting an innovative prompting mechanism that generates reasoning outcomes for training, the framework allows the model to achieve fine-grained alignment between profile and dialogue at the sentence level. The aforementioned methods are fully automated and low-cost. Additionally, the integration of automated dialogue and objective evaluation methods forms a comprehensive framework, paving the way for general role-playing. Experimental results demonstrate that our model excels in adhering to and reflecting various dimensions of role profiles, outperforming most proprietary general and specialized role-playing baselines. All code and datasets are available at https://github.com/yuyouyu32/BeyondDialogue.
When Models Know More Than They Can Explain: Quantifying Knowledge Transfer in Human-AI Collaboration
Recent advancements in AI reasoning have driven substantial improvements across diverse tasks. A critical open question is whether these improvements also yields better knowledge transfer: the ability of models to communicate reasoning in ways humans can understand, apply, and learn from. To investigate this, we introduce Knowledge Integration and Transfer Evaluation (KITE), a conceptual and experimental framework for Human-AI knowledge transfer capabilities and conduct the first large-scale human study (N=118) explicitly designed to measure it. In our two-phase setup, humans first ideate with an AI on problem-solving strategies, then independently implement solutions, isolating model explanations' influence on human understanding. Our findings reveal that although model benchmark performance correlates with collaborative outcomes, this relationship is notably inconsistent, featuring significant outliers, indicating that knowledge transfer requires dedicated optimization. Our analysis identifies behavioral and strategic factors mediating successful knowledge transfer. We release our code, dataset, and evaluation framework to support future work on communicatively aligned models.
comment: For code, data, visualizer, visit: https://kite-live.vercel.app
Not Like Us, Hunty: Measuring Perceptions and Behavioral Effects of Minoritized Anthropomorphic Cues in LLMs
As large language models (LLMs) increasingly adapt and personalize to diverse sets of users, there is an increased risk of systems appropriating sociolects, i.e., language styles or dialects that are associated with specific minoritized lived experiences (e.g., African American English, Queer slang). In this work, we examine whether sociolect usage by an LLM agent affects user reliance on its outputs and user perception (satisfaction, frustration, trust, and social presence). We designed and conducted user studies where 498 African American English (AAE) speakers and 487 Queer slang speakers performed a set of question-answering tasks with LLM-based suggestions in either standard American English (SAE) or their self-identified sociolect. Our findings showed that sociolect usage by LLMs influenced both reliance and perceptions, though in some surprising ways. Results suggest that both AAE and Queer slang speakers relied more on the SAE agent, and had more positive perceptions of the SAE agent. Yet, only Queer slang speakers felt more social presence from the Queer slang agent over the SAE one, whereas only AAE speakers preferred and trusted the SAE agent over the AAE one. These findings emphasize the need to test for behavioral outcomes rather than simply assume that personalization would lead to a better and safer reliance outcome. They also highlight the nuanced dynamics of minoritized language in machine interactions, underscoring the need for LLMs to be carefully designed to respect cultural and linguistic boundaries while fostering genuine user engagement and trust.
comment: accepted to FAccT 2025
A Survey of Earable Technology: Trends, Tools, and the Road Ahead
Earable devices, wearables positioned in or around the ear, are undergoing a rapid transformation from audio-centric accessories into multifunctional systems for interaction, contextual awareness, and health monitoring. This evolution is driven by commercial trends emphasizing sensor integration and by a surge of academic interest exploring novel sensing capabilities. Building on the foundation established by earlier surveys, this work presents a timely and comprehensive review of earable research published since 2022. We analyze over one hundred recent studies to characterize this shifting research landscape, identify emerging applications and sensing modalities, and assess progress relative to prior efforts. In doing so, we address three core questions: how has earable research evolved in recent years, what enabling resources are now available, and what opportunities remain for future exploration. Through this survey, we aim to provide both a retrospective and forward-looking view of earable technology as a rapidly expanding frontier in ubiquitous computing. In particular, this review reveals that over the past three years, researchers have discovered a variety of novel sensing principles, developed many new earable sensing applications, enhanced the accuracy of existing sensing tasks, and created substantial new resources to advance research in the field. Based on this, we further discuss open challenges and propose future directions for the next phase of earable research.
HOT-FIT-BR: A Context-Aware Evaluation Framework for Digital Health Systems in Resource-Limited Settings
Implementation of digital health systems in low-middle-income countries (LMICs) often fails due to a lack of evaluations that take into account infrastructure limitations, local policies, and community readiness. We introduce HOT-FIT-BR, a contextual evaluation framework that expands the HOT-FIT model with three new dimensions: (1) Infrastructure Index to measure electricity/internet availability, (2) Policy Compliance Layer to ensure regulatory compliance (e.g., Permenkes 24/2022 in Indonesia), and (3) Community Engagement Fit. Simulations at Indonesian Health Centers show that HOT-FIT-BR is 58% more sensitive to detecting problems than HOT-FIT, especially in rural areas with an Infra Index <3. The framework has also proven adaptive to the context of other LMICs such as India and Kenya through local parameter adjustments.
comment: This revised version of HOT-FIT-BR adds infrastructure, policy, and community metrics to the HOT-FIT model. Includes validation across 15 Indonesian Puskesmas, CRDT sync tests, security audits, and expert scoring. New tools (Policy NLP Checker, Infra Index) support reproducible LMIC health evaluations
The Many Challenges of Human-Like Agents in Virtual Game Environments AAMAS-2025
Human-like agents are an increasingly important topic in games and beyond. Believable non-player characters enhance the gaming experience by improving immersion and providing entertainment. They also offer players the opportunity to engage with AI entities that can function as opponents, teachers, or cooperating partners. Additionally, in games where bots are prohibited -- and even more so in non-game environments -- there is a need for methods capable of identifying whether digital interactions occur with bots or humans. This leads to two fundamental research questions: (1) how to model and implement human-like AI, and (2) how to measure its degree of human likeness. This article offers two contributions. The first one is a survey of the most significant challenges in implementing human-like AI in games (or any virtual environment featuring simulated agents, although this article specifically focuses on games). Thirteen such challenges, both conceptual and technical, are discussed in detail. The second is an empirical study performed in a tactical video game that addresses the research question: "Is it possible to distinguish human players from bots (AI agents) based on empirical data?" A machine-learning approach using a custom deep recurrent convolutional neural network is presented. We hypothesize that the more challenging it is to create human-like AI for a given game, the easier it becomes to develop a method for distinguishing humans from AI-driven players.
comment: In proceedings of the 24th International Conference on Autonomous Agents and Multiagent Systems (AAMAS-2025), pages 1996--2005, May 19-23, Detroit, Michigan, USA
"Would You Want an AI Tutor?" Understanding Stakeholder Perceptions of LLM-based Systems in the Classroom
In recent years, Large Language Models (LLMs) rapidly gained popularity across all parts of society, including education. After initial skepticism and bans, many schools have chosen to embrace this new technology by integrating it into their curricula in the form of virtual tutors and teaching assistants. However, neither the companies developing this technology nor the public institutions involved in its implementation have set up a formal system to collect feedback from the stakeholders impacted by them. In this paper, we argue that understanding the perceptions of those directly or indirectly impacted by LLMs in the classroom, including parents and school staff, is essential for ensuring responsible use of AI in this critical domain. Our contributions are two-fold. First, we propose the Contextualized Perceptions for the Adoption of LLMs in Education (Co-PALE) framework, which can be used to systematically elicit perceptions and inform whether and how LLM-based tools should be designed, developed, and deployed in the classroom. Second, we explain how our framework can be used to ground specific rubrics for eliciting perceptions of the relevant stakeholders in view of specific goals and context of implementation. Overall, Co-PALE is a practical step toward helping educational agents, policymakers, researchers, and technologists ensure the responsible and effective deployment of LLM-based systems across diverse learning contexts.
Multimedia
Learning Compact Vision Tokens for Efficient Large Multimodal Models
Large multimodal models (LMMs) suffer significant computational challenges due to the high cost of Large Language Models (LLMs) and the quadratic complexity of processing long vision token sequences. In this paper, we explore the spatial redundancy among vision tokens and shorten the length of vision token sequences for inference acceleration. Specifically, we propose a Spatial Token Fusion (STF) method to learn compact vision tokens for short vision token sequence, where spatial-adjacent tokens are fused into one. Meanwhile, weight-frozen vision encoder can not well adapt to the demand of extensive downstream vision-language tasks. To this end, we further introduce a Multi-Block Token Fusion (MBTF) module to supplement multi-granularity features for the reduced token sequence. Overall, we combine STF and MBTF module to balance token reduction and information preservation, thereby improving inference efficiency without sacrificing multimodal reasoning capabilities. Experimental results demonstrate that our method based on LLaVA-1.5 achieves comparable or even superior performance to the baseline on 8 popular vision-language benchmarks with only $25\%$ vision tokens of baseline. The source code and trained weights are available at https://github.com/visresearch/LLaVA-STF.
comment: The source code and trained weights are available at https://github.com/visresearch/LLaVA-STF
Harmony-Aware Music-driven Motion Synthesis with Perceptual Constraint on UGC Datasets
With the popularity of video-based user-generated content (UGC) on social media, harmony, as dictated by human perceptual principles, is critical in assessing the rhythmic consistency of audio-visual UGCs for better user engagement. In this work, we propose a novel harmony-aware GAN framework, following a specifically designed harmony evaluation strategy to enhance rhythmic synchronization in the automatic music-to-motion synthesis using a UGC dance dataset. This harmony strategy utilizes refined cross-modal beat detection to capture closely correlated audio and visual rhythms in an audio-visual pair. To mimic human attention mechanism, we introduce saliency-based beat weighting and interval-driven beat alignment, which ensures accurate harmony score estimation consistent with human perception. Building on this strategy, our model, employing efficient encoder-decoder and depth-lifting designs, is adversarially trained based on categorized musical meter segments to generate realistic and rhythmic 3D human motions. We further incorporate our harmony evaluation strategy as a weakly supervised perceptual constraint to flexibly guide the synchronized audio-visual rhythms during the generation process. Experimental results show that our proposed model significantly outperforms other leading music-to-motion methods in rhythmic harmony, both quantitatively and qualitatively, even with limited UGC training data. Live samples 15 can be watched at: https://youtu.be/tWwz7yq4aUs
From Swath to Full-Disc: Advancing Precipitation Retrieval with Multimodal Knowledge Expansion
Accurate near-real-time precipitation retrieval has been enhanced by satellite-based technologies. However, infrared-based algorithms have low accuracy due to weak relations with surface precipitation, whereas passive microwave and radar-based methods are more accurate but limited in range. This challenge motivates the Precipitation Retrieval Expansion (PRE) task, which aims to enable accurate, infrared-based full-disc precipitation retrievals beyond the scanning swath. We introduce Multimodal Knowledge Expansion, a two-stage pipeline with the proposed PRE-Net model. In the Swath-Distilling stage, PRE-Net transfers knowledge from a multimodal data integration model to an infrared-based model within the scanning swath via Coordinated Masking and Wavelet Enhancement (CoMWE). In the Full-Disc Adaptation stage, Self-MaskTune refines predictions across the full disc by balancing multimodal and full-disc infrared knowledge. Experiments on the introduced PRE benchmark demonstrate that PRE-Net significantly advanced precipitation retrieval performance, outperforming leading products like PERSIANN-CCS, PDIR, and IMERG. The code will be available at https://github.com/Zjut-MultimediaPlus/PRE-Net.
Hypergraph Tversky-Aware Domain Incremental Learning for Brain Tumor Segmentation with Missing Modalities MICCAI 2025
Existing methods for multimodal MRI segmentation with missing modalities typically assume that all MRI modalities are available during training. However, in clinical practice, some modalities may be missing due to the sequential nature of MRI acquisition, leading to performance degradation. Furthermore, retraining models to accommodate newly available modalities can be inefficient and may cause overfitting, potentially compromising previously learned knowledge. To address these challenges, we propose Replay-based Hypergraph Domain Incremental Learning (ReHyDIL) for brain tumor segmentation with missing modalities. ReHyDIL leverages Domain Incremental Learning (DIL) to enable the segmentation model to learn from newly acquired MRI modalities without forgetting previously learned information. To enhance segmentation performance across diverse patient scenarios, we introduce the Cross-Patient Hypergraph Segmentation Network (CHSNet), which utilizes hypergraphs to capture high-order associations between patients. Additionally, we incorporate Tversky-Aware Contrastive (TAC) loss to effectively mitigate information imbalance both across and within different modalities. Extensive experiments on the BraTS2019 dataset demonstrate that ReHyDIL outperforms state-of-the-art methods, achieving an improvement of over 2% in the Dice Similarity Coefficient across various tumor regions. Our code is available at https://github.com/reeive/ReHyDIL.
comment: MICCAI 2025 Early Accept. The code is available at https://github.com/reeive/ReHyDIL
HAIC: Improving Human Action Understanding and Generation with Better Captions for Multi-modal Large Language Models
Recent Multi-modal Large Language Models (MLLMs) have made great progress in video understanding. However, their performance on videos involving human actions is still limited by the lack of high-quality data. To address this, we introduce a two-stage data annotation pipeline. First, we design strategies to accumulate videos featuring clear human actions from the Internet. Second, videos are annotated in a standardized caption format that uses human attributes to distinguish individuals and chronologically details their actions and interactions. Through this pipeline, we curate two datasets, namely HAICTrain and HAICBench. \textbf{HAICTrain} comprises 126K video-caption pairs generated by Gemini-Pro and verified for training purposes. Meanwhile, \textbf{HAICBench} includes 412 manually annotated video-caption pairs and 2,000 QA pairs, for a comprehensive evaluation of human action understanding. Experimental results demonstrate that training with HAICTrain not only significantly enhances human understanding abilities across 4 benchmarks, but can also improve text-to-video generation results. Both the HAICTrain and HAICBench are released at https://huggingface.co/datasets/KuaishouHAIC/HAIC.
AdaReTaKe: Adaptive Redundancy Reduction to Perceive Longer for Video-language Understanding
Multimodal Large Language Models (MLLMs) have revolutionized video understanding, yet are still limited by context length when processing long videos. Recent methods compress videos by leveraging visual redundancy uniformly, yielding promising results. Nevertheless, our quantitative analysis shows that redundancy varies significantly across time and model layers, necessitating a more flexible compression strategy. We propose AdaReTaKe, a training-free method that flexibly reduces visual redundancy by allocating compression ratios among time and layers with theoretical guarantees. Integrated into state-of-the-art MLLMs, AdaReTaKe improves processing capacity from 256 to 2048 frames while preserving critical information. Experiments on VideoMME, MLVU, LongVideoBench, and LVBench datasets demonstrate that AdaReTaKe outperforms existing methods by 2.3% and 2.8% for 7B and 72B models, respectively, with even greater improvements of 5.9% and 6.0% on the longest LVBench. Our code is available at https://github.com/SCZwangxiao/video-FlexReduc.git.
Image and Video Processing
A Narrative Review on Large AI Models in Lung Cancer Screening, Diagnosis, and Treatment Planning
Lung cancer remains one of the most prevalent and fatal diseases worldwide, demanding accurate and timely diagnosis and treatment. Recent advancements in large AI models have significantly enhanced medical image understanding and clinical decision-making. This review systematically surveys the state-of-the-art in applying large AI models to lung cancer screening, diagnosis, prognosis, and treatment. We categorize existing models into modality-specific encoders, encoder-decoder frameworks, and joint encoder architectures, highlighting key examples such as CLIP, BLIP, Flamingo, BioViL-T, and GLoRIA. We further examine their performance in multimodal learning tasks using benchmark datasets like LIDC-IDRI, NLST, and MIMIC-CXR. Applications span pulmonary nodule detection, gene mutation prediction, multi-omics integration, and personalized treatment planning, with emerging evidence of clinical deployment and validation. Finally, we discuss current limitations in generalizability, interpretability, and regulatory compliance, proposing future directions for building scalable, explainable, and clinically integrated AI systems. Our review underscores the transformative potential of large AI models to personalize and optimize lung cancer care.
comment: Under Review
A Comprehensive Analysis of COVID-19 Detection Using Bangladeshi Data and Explainable AI
COVID-19 is a rapidly spreading and highly infectious virus which has triggered a global pandemic, profoundly affecting millions across the world. The pandemic has introduced unprecedented challenges in public health, economic stability, and societal structures, necessitating the implementation of extensive and multifaceted health interventions globally. It had a tremendous impact on Bangladesh by April 2024, with around 29,495 fatalities and more than 2 million confirmed cases. This study focuses on improving COVID-19 detection in CXR images by utilizing a dataset of 4,350 images from Bangladesh categorized into four classes: Normal, Lung-Opacity, COVID-19 and Viral-Pneumonia. ML, DL and TL models are employed with the VGG19 model achieving an impressive 98% accuracy. LIME is used to explain model predictions, highlighting the regions and features influencing classification decisions. SMOTE is applied to address class imbalances. By providing insight into both correct and incorrect classifications, the study emphasizes the importance of XAI in enhancing the transparency and reliability of models, ultimately improving the effectiveness of detection from CXR images.
comment: 2024 4th International Conference on Innovations in Science, Engineering and Technology (ICISET)
Transfer Learning and Explainable AI for Brain Tumor Classification: A Study Using MRI Data from Bangladesh
Brain tumors, regardless of being benign or malignant, pose considerable health risks, with malignant tumors being more perilous due to their swift and uncontrolled proliferation, resulting in malignancy. Timely identification is crucial for enhancing patient outcomes, particularly in nations such as Bangladesh, where healthcare infrastructure is constrained. Manual MRI analysis is arduous and susceptible to inaccuracies, rendering it inefficient for prompt diagnosis. This research sought to tackle these problems by creating an automated brain tumor classification system utilizing MRI data obtained from many hospitals in Bangladesh. Advanced deep learning models, including VGG16, VGG19, and ResNet50, were utilized to classify glioma, meningioma, and various brain cancers. Explainable AI (XAI) methodologies, such as Grad-CAM and Grad-CAM++, were employed to improve model interpretability by emphasizing the critical areas in MRI scans that influenced the categorization. VGG16 achieved the most accuracy, attaining 99.17%. The integration of XAI enhanced the system's transparency and stability, rendering it more appropriate for clinical application in resource-limited environments such as Bangladesh. This study highlights the capability of deep learning models, in conjunction with explainable artificial intelligence (XAI), to enhance brain tumor detection and identification in areas with restricted access to advanced medical technologies.
comment: 2024 6th International Conference on Sustainable Technologies for Industry 5.0 (STI)
Simultaneous Segmentation of Ventricles and Normal/Abnormal White Matter Hyperintensities in Clinical MRI using Deep Learning
Multiple sclerosis (MS) diagnosis and monitoring rely heavily on accurate assessment of brain MRI biomarkers, particularly white matter hyperintensities (WMHs) and ventricular changes. Current segmentation approaches suffer from several limitations: they typically segment these structures independently despite their pathophysiological relationship, struggle to differentiate between normal and pathological hyperintensities, and are poorly optimized for anisotropic clinical MRI data. We propose a novel 2D pix2pix-based deep learning framework for simultaneous segmentation of ventricles and WMHs with the unique capability to distinguish between normal periventricular hyperintensities and pathological MS lesions. Our method was developed and validated on FLAIR MRI scans from 300 MS patients. Compared to established methods (SynthSeg, Atlas Matching, BIANCA, LST-LPA, LST-LGA, and WMH-SynthSeg), our approach achieved superior performance for both ventricle segmentation (Dice: 0.801+/-0.025, HD95: 18.46+/-7.1mm) and WMH segmentation (Dice: 0.624+/-0.061, precision: 0.755+/-0.161). Furthermore, our method successfully differentiated between normal and abnormal hyperintensities with a Dice coefficient of 0.647. Notably, our approach demonstrated exceptional computational efficiency, completing end-to-end processing in approximately 4 seconds per case, up to 36 times faster than baseline methods, while maintaining minimal resource requirements. This combination of improved accuracy, clinically relevant differentiation capability, and computational efficiency addresses critical limitations in current neuroimaging analysis, potentially enabling integration into routine clinical workflows and enhancing MS diagnosis and monitoring.
comment: 44 pages, 11 figures, 1 table
QForce-RL: Quantized FPGA-Optimized Reinforcement Learning Compute Engine
Reinforcement Learning (RL) has outperformed other counterparts in sequential decision-making and dynamic environment control. However, FPGA deployment is significantly resource-expensive, as associated with large number of computations in training agents with high-quality images and possess new challenges. In this work, we propose QForce-RL takes benefits of quantization to enhance throughput and reduce energy footprint with light-weight RL architecture, without significant performance degradation. QForce-RL takes advantages from E2HRL to reduce overall RL actions to learn desired policy and QuaRL for quantization based SIMD for hardware acceleration. We have also provided detailed analysis for different RL environments, with emphasis on model size, parameters, and accelerated compute ops. The architecture is scalable for resource-constrained devices and provide parametrized efficient deployment with flexibility in latency, throughput, power, and energy efficiency. The proposed QForce-RL provides performance enhancement up to 2.3x and better FPS - 2.6x compared to SoTA works.
SiliCoN: Simultaneous Nuclei Segmentation and Color Normalization of Histological Images
Segmentation of nuclei regions from histological images is an important task for automated computer-aided analysis of histological images, particularly in the presence of impermissible color variation in the color appearance of stained tissue images. While color normalization enables better nuclei segmentation, accurate segmentation of nuclei structures makes color normalization rather trivial. In this respect, the paper proposes a novel deep generative model for simultaneously segmenting nuclei structures and normalizing color appearance of stained histological images.This model judiciously integrates the merits of truncated normal distribution and spatial attention. The model assumes that the latent color appearance information, corresponding to a particular histological image, is independent of respective nuclei segmentation map as well as embedding map information. The disentangled representation makes the model generalizable and adaptable as the modification or loss in color appearance information cannot be able to affect the nuclei segmentation map as well as embedding information. Also, for dealing with the stain overlap of associated histochemical reagents, the prior for latent color appearance code is assumed to be a mixture of truncated normal distributions. The proposed model incorporates the concept of spatial attention for segmentation of nuclei regions from histological images. The performance of the proposed approach, along with a comparative analysis with related state-of-the-art algorithms, has been demonstrated on publicly available standard histological image data sets.
comment: 10 pages, 9 figures
Optimal Transport Driven Asymmetric Image-to-Image Translation for Nuclei Segmentation of Histological Images
Segmentation of nuclei regions from histological images enables morphometric analysis of nuclei structures, which in turn helps in the detection and diagnosis of diseases under consideration. To develop a nuclei segmentation algorithm, applicable to different types of target domain representations, image-to-image translation networks can be considered as they are invariant to target domain image representations. One of the important issues with image-to-image translation models is that they fail miserably when the information content between two image domains are asymmetric in nature. In this regard, the paper introduces a new deep generative model for segmenting nuclei structures from histological images. The proposed model considers an embedding space for handling information-disparity between information-rich histological image space and information-poor segmentation map domain. Integrating judiciously the concepts of optimal transport and measure theory, the model develops an invertible generator, which provides an efficient optimization framework with lower network complexity. The concept of invertible generator automatically eliminates the need of any explicit cycle-consistency loss. The proposed model also introduces a spatially-constrained squeeze operation within the framework of invertible generator to maintain spatial continuity within the image patches. The model provides a better trade-off between network complexity and model performance compared to other existing models having complex network architectures. The performance of the proposed deep generative model, along with a comparison with state-of-the-art nuclei segmentation methods, is demonstrated on publicly available histological image data sets.
comment: 13 pages, 8 figures
Decoupled Data Consistency with Diffusion Purification for Image Restoration
Diffusion models have recently gained traction as a powerful class of deep generative priors, excelling in a wide range of image restoration tasks due to their exceptional ability to model data distributions. To solve image restoration problems, many existing techniques achieve data consistency by incorporating additional likelihood gradient steps into the reverse sampling process of diffusion models. However, the additional gradient steps pose a challenge for real-world practical applications as they incur a large computational overhead, thereby increasing inference time. They also present additional difficulties when using accelerated diffusion model samplers, as the number of data consistency steps is limited by the number of reverse sampling steps. In this work, we propose a novel diffusion-based image restoration solver that addresses these issues by decoupling the reverse process from the data consistency steps. Our method involves alternating between a reconstruction phase to maintain data consistency and a refinement phase that enforces the prior via diffusion purification. Our approach demonstrates versatility, making it highly adaptable for efficient problem-solving in latent space. Additionally, it reduces the necessity for numerous sampling steps through the integration of consistency models. The efficacy of our approach is validated through comprehensive experiments across various image restoration tasks, including image denoising, deblurring, inpainting, and super-resolution.
E2E-Swin-Unet++: An Enhanced End-to-End Swin-Unet Architecture With Dual Decoders For PTMC Segmentation
Precise segmentation of papillary thyroid microcarcinoma (PTMC) during ultrasound-guided radiofrequency ablation (RFA) is critical for effective treatment but remains challenging due to acoustic artifacts, small lesion size, and anatomical variability. In this study, we propose \textbf{DualSwinUnet++}, a dual-decoder transformer-based architecture designed to enhance PTMC segmentation by incorporating thyroid gland context. DualSwinUnet++ employs independent linear projection heads for each decoder and a residual information flow mechanism that passes intermediate features from the first (thyroid) decoder to the second (PTMC) decoder via concatenation and transformation. These design choices allow the model to condition tumor prediction explicitly on gland morphology without shared gradient interference. Trained on a clinical ultrasound dataset with 691 annotated RFA images and evaluated against state-of-the-art models, DualSwinUnet++ achieves superior Dice and Jaccard scores while maintaining sub-200ms inference latency. The results demonstrate the model's suitability for near real-time surgical assistance and its effectiveness in improving segmentation accuracy in challenging PTMC cases.
Computation and Language
Reward Model Interpretability via Optimal and Pessimal Tokens
Reward modeling has emerged as a crucial component in aligning large language models with human values. Significant attention has focused on using reward models as a means for fine-tuning generative models. However, the reward models themselves -- which directly encode human value judgments by turning prompt-response pairs into scalar rewards -- remain relatively understudied. We present a novel approach to reward model interpretability through exhaustive analysis of their responses across their entire vocabulary space. By examining how different reward models score every possible single-token response to value-laden prompts, we uncover several striking findings: (i) substantial heterogeneity between models trained on similar objectives, (ii) systematic asymmetries in how models encode high- vs low-scoring tokens, (iii) significant sensitivity to prompt framing that mirrors human cognitive biases, and (iv) overvaluation of more frequent tokens. We demonstrate these effects across ten recent open-source reward models of varying parameter counts and architectures. Our results challenge assumptions about the interchangeability of reward models, as well as their suitability as proxies of complex and context-dependent human values. We find that these models can encode concerning biases toward certain identity groups, which may emerge as unintended consequences of harmlessness training -- distortions that risk propagating through the downstream large language models now deployed to millions.
comment: Accepted for publication in Proceedings of the 2025 ACM Conference on Fairness, Accountability, and Transparency (FAccT '25), to appear June 2025
ConfQA: Answer Only If You Are Confident
Can we teach Large Language Models (LLMs) to refrain from hallucinating factual statements? In this paper we present a fine-tuning strategy that we call ConfQA, which can reduce hallucination rate from 20-40% to under 5% across multiple factuality benchmarks. The core idea is simple: when the LLM answers a question correctly, it is trained to continue with the answer; otherwise, it is trained to admit "I am unsure". But there are two key factors that make the training highly effective. First, we introduce a dampening prompt "answer only if you are confident" to explicitly guide the behavior, without which hallucination remains high as 15%-25%. Second, we leverage simple factual statements, specifically attribute values from knowledge graphs, to help LLMs calibrate the confidence, resulting in robust generalization across domains and question types. Building on this insight, we propose the Dual Neural Knowledge framework, which seamlessly select between internally parameterized neural knowledge and externally recorded symbolic knowledge based on ConfQA's confidence. The framework enables potential accuracy gains to beyond 95%, while reducing unnecessary external retrievals by over 30%.
comment: 10 pages main content, 10 pages appendix, 5 figures, 7 tables
Subjectivity in the Annotation of Bridging Anaphora ACL 2025
Bridging refers to the associative relationship between inferable entities in a discourse and the antecedents which allow us to understand them, such as understanding what "the door" means with respect to an aforementioned "house". As identifying associative relations between entities is an inherently subjective task, it is difficult to achieve consistent agreement in the annotation of bridging anaphora and their antecedents. In this paper, we explore the subjectivity involved in the annotation of bridging instances at three levels: anaphor recognition, antecedent resolution, and bridging subtype selection. To do this, we conduct an annotation pilot on the test set of the existing GUM corpus, and propose a newly developed classification system for bridging subtypes, which we compare to previously proposed schemes. Our results suggest that some previous resources are likely to be severely under-annotated. We also find that while agreement on the bridging subtype category was moderate, annotator overlap for exhaustively identifying instances of bridging is low, and that many disagreements resulted from subjective understanding of the entities involved.
comment: LAW-XIX, ACL 2025 Workshop
Exploring the Impact of Temperature on Large Language Models:Hot or Cold?
The sampling temperature, a critical hyperparameter in large language models (LLMs), modifies the logits before the softmax layer, thereby reshaping the distribution of output tokens. Recent studies have challenged the Stochastic Parrots analogy by demonstrating that LLMs are capable of understanding semantics rather than merely memorizing data and that randomness, modulated by sampling temperature, plays a crucial role in model inference. In this study, we systematically evaluated the impact of temperature in the range of 0 to 2 on data sets designed to assess six different capabilities, conducting statistical analyses on open source models of three different sizes: small (1B--4B), medium (6B--13B), and large (40B--80B). Our findings reveal distinct skill-specific effects of temperature on model performance, highlighting the complexity of optimal temperature selection in practical applications. To address this challenge, we propose a BERT-based temperature selector that takes advantage of these observed effects to identify the optimal temperature for a given prompt. We demonstrate that this approach can significantly improve the performance of small and medium models in the SuperGLUE datasets. Furthermore, our study extends to FP16 precision inference, revealing that temperature effects are consistent with those observed in 4-bit quantized models. By evaluating temperature effects up to 4.0 in three quantized models, we find that the Mutation Temperature -- the point at which significant performance changes occur -- increases with model size.
Aligned but Blind: Alignment Increases Implicit Bias by Reducing Awareness of Race ACL 2025
Although value-aligned language models (LMs) appear unbiased in explicit bias evaluations, they often exhibit stereotypes in implicit word association tasks, raising concerns about their fair usage. We investigate the mechanisms behind this discrepancy and find that alignment surprisingly amplifies implicit bias in model outputs. Specifically, we show that aligned LMs, unlike their unaligned counterparts, overlook racial concepts in early internal representations when the context is ambiguous. Not representing race likely fails to activate safety guardrails, leading to unintended biases. Inspired by this insight, we propose a new bias mitigation strategy that works by incentivizing the representation of racial concepts in the early model layers. In contrast to conventional mitigation methods of machine unlearning, our interventions find that steering the model to be more aware of racial concepts effectively mitigates implicit bias. Similar to race blindness in humans, ignoring racial nuances can inadvertently perpetuate subtle biases in LMs.
comment: Accepted to ACL 2025 (Main)
Synergizing Unsupervised Episode Detection with LLMs for Large-Scale News Events ACL 2025
State-of-the-art automatic event detection struggles with interpretability and adaptability to evolving large-scale key events -- unlike episodic structures, which excel in these areas. Often overlooked, episodes represent cohesive clusters of core entities performing actions at a specific time and location; a partially ordered sequence of episodes can represent a key event. This paper introduces a novel task, episode detection, which identifies episodes within a news corpus of key event articles. Detecting episodes poses unique challenges, as they lack explicit temporal or locational markers and cannot be merged using semantic similarity alone. While large language models (LLMs) can aid with these reasoning difficulties, they suffer with long contexts typical of news corpora. To address these challenges, we introduce EpiMine, an unsupervised framework that identifies a key event's candidate episodes by leveraging natural episodic partitions in articles, estimated through shifts in discriminative term combinations. These candidate episodes are more cohesive and representative of true episodes, synergizing with LLMs to better interpret and refine them into final episodes. We apply EpiMine to our three diverse, real-world event datasets annotated at the episode level, where it achieves a 59.2% average gain across all metrics compared to baselines.
comment: ACL 2025 Main Conference. Code available here: https://github.com/pkargupta/epimine
Watermarking Language Models with Error Correcting Codes
Recent progress in large language models enables the creation of realistic machine-generated content. Watermarking is a promising approach to distinguish machine-generated text from human text, embedding statistical signals in the output that are ideally undetectable to humans. We propose a watermarking framework that encodes such signals through an error correcting code. Our method, termed robust binary code (RBC) watermark, introduces no noticeable degradation in quality. We evaluate our watermark on base and instruction fine-tuned models and find that our watermark is robust to edits, deletions, and translations. We provide an information-theoretic perspective on watermarking, a powerful statistical test for detection and for generating $p$-values, and theoretical guarantees. Our empirical findings suggest our watermark is fast, powerful, and robust, comparing favorably to the state-of-the-art.
Toward Reliable Scientific Hypothesis Generation: Evaluating Truthfulness and Hallucination in Large Language Models IJCAI 2025
Large language models (LLMs) have shown significant potential in scientific disciplines such as biomedicine, particularly in hypothesis generation, where they can analyze vast literature, identify patterns, and suggest research directions. However, a key challenge lies in evaluating the truthfulness of generated hypotheses, as verifying their accuracy often requires substantial time and resources. Additionally, the hallucination problem in LLMs can lead to the generation of hypotheses that appear plausible but are ultimately incorrect, undermining their reliability. To facilitate the systematic study of these challenges, we introduce TruthHypo, a benchmark for assessing the capabilities of LLMs in generating truthful scientific hypotheses, and KnowHD, a knowledge-based hallucination detector to evaluate how well hypotheses are grounded in existing knowledge. Our results show that LLMs struggle to generate truthful hypotheses. By analyzing hallucinations in reasoning steps, we demonstrate that the groundedness scores provided by KnowHD serve as an effective metric for filtering truthful hypotheses from the diverse outputs of LLMs. Human evaluations further validate the utility of KnowHD in identifying truthful hypotheses and accelerating scientific discovery. Our data and source code are available at https://github.com/Teddy-XiongGZ/TruthHypo.
comment: Accepted to IJCAI 2025
Highly Fast Text Segmentation With Pairwise Markov Chains
Natural Language Processing (NLP) models' current trend consists of using increasingly more extra-data to build the best models as possible. It implies more expensive computational costs and training time, difficulties for deployment, and worries about these models' carbon footprint reveal a critical problem in the future. Against this trend, our goal is to develop NLP models requiring no extra-data and minimizing training time. To do so, in this paper, we explore Markov chain models, Hidden Markov Chain (HMC) and Pairwise Markov Chain (PMC), for NLP segmentation tasks. We apply these models for three classic applications: POS Tagging, Named-Entity-Recognition, and Chunking. We develop an original method to adapt these models for text segmentation's specific challenges to obtain relevant performances with very short training and execution times. PMC achieves equivalent results to those obtained by Conditional Random Fields (CRF), one of the most applied models for these tasks when no extra-data are used. Moreover, PMC has training times 30 times shorter than the CRF ones, which validates this model given our objectives.
comment: 9 pages, 5 figures, 4 tables, MNLP 2020
Human-Computer Interaction
Secondary Stakeholders in AI: Fighting for, Brokering, and Navigating Agency
As AI technologies become more human-facing, there have been numerous calls to adapt participatory approaches to AI development -- spurring the idea of participatory AI. However, these calls often focus only on primary stakeholders, such as end-users, and not secondary stakeholders. This paper seeks to translate the ideals of participatory AI to a broader population of secondary AI stakeholders through semi-structured interviews. We theorize that meaningful participation involves three participatory ideals: (1) informedness, (2) consent, and (3) agency. We also explore how secondary stakeholders realize these ideals by traversing a complicated problem space. Like walking up the rungs of a ladder, these ideals build on one another. We introduce three stakeholder archetypes: the reluctant data contributor, the unsupported activist, and the well-intentioned practitioner, who must navigate systemic barriers to achieving agentic AI relationships. We envision an AI future where secondary stakeholders are able to meaningfully participate with the AI systems they influence and are influenced by.
IDEIA: A Generative AI-Based System for Real-Time Editorial Ideation in Digital Journalism
This paper presents IDEIA (Intelligent Engine for Editorial Ideation and Assistance), a generative AI-powered system designed to optimize the journalistic ideation process by combining real-time trend analysis with automated content suggestion. Developed in collaboration with the Sistema Jornal do Commercio de Comunica\c{c}\~ao (SJCC), the largest media conglomerate in Brazil's North and Northeast regions, IDEIA integrates the Google Trends API for data-driven topic monitoring and the Google Gemini API for the generation of context-aware headlines and summaries. The system adopts a modular architecture based on Node.js, React, and PostgreSQL, supported by Docker containerization and a CI/CD pipeline using GitHub Actions and Vercel. Empirical results demonstrate a significant reduction in the time and cognitive effort required for editorial planning, with reported gains of up to 70\% in the content ideation stage. This work contributes to the field of computational journalism by showcasing how intelligent automation can enhance productivity while maintaining editorial quality. It also discusses the technical and ethical implications of incorporating generative models into newsroom workflows, highlighting scalability and future applicability across sectors beyond journalism.
comment: 9 pages, 5 figures
Investigating the Relationship Between Physical Activity and Tailored Behavior Change Messaging: Connecting Contextual Bandit with Large Language Models
Machine learning approaches, such as contextual multi-armed bandit (cMAB) algorithms, offer a promising strategy to reduce sedentary behavior by delivering personalized interventions to encourage physical activity. However, cMAB algorithms typically require large participant samples to learn effectively and may overlook key psychological factors that are not explicitly encoded in the model. In this study, we propose a hybrid approach that combines cMAB for selecting intervention types with large language models (LLMs) to personalize message content. We evaluate four intervention types: behavioral self-monitoring, gain-framed, loss-framed, and social comparison, each delivered as a motivational message aimed at increasing motivation for physical activity and daily step count. Message content is further personalized using dynamic contextual factors including daily fluctuations in self-efficacy, social influence, and regulatory focus. Over a seven-day trial, participants receive daily messages assigned by one of four models: cMAB alone, LLM alone, combined cMAB with LLM personalization (cMABxLLM), or equal randomization (RCT). Outcomes include daily step count and message acceptance, assessed via ecological momentary assessments (EMAs). We apply a causal inference framework to evaluate the effects of each model. Our findings offer new insights into the complementary roles of LLM-based personalization and cMAB adaptation in promoting physical activity through personalized behavioral messaging.
Sword and Shield: Uses and Strategies of LLMs in Navigating Disinformation
The emergence of Large Language Models (LLMs) presents a dual challenge in the fight against disinformation. These powerful tools, capable of generating human-like text at scale, can be weaponised to produce sophisticated and persuasive disinformation, yet they also hold promise for enhancing detection and mitigation strategies. This paper investigates the complex dynamics between LLMs and disinformation through a communication game that simulates online forums, inspired by the game Werewolf, with 25 participants. We analyse how Disinformers, Moderators, and Users leverage LLMs to advance their goals, revealing both the potential for misuse and combating disinformation. Our findings highlight the varying uses of LLMs depending on the participants' roles and strategies, underscoring the importance of understanding their effectiveness in this context. We conclude by discussing implications for future LLM development and online platform design, advocating for a balanced approach that empowers users and fosters trust while mitigating the risks of LLM-assisted disinformation.
earEOG via Periauricular Electrodes to Facilitate Eye Tracking in a Natural Headphone Form Factor
Eye tracking technology is frequently utilized to diagnose eye and neurological disorders, assess sleep and fatigue, study human visual perception, and enable novel gaze-based interaction methods. However, traditional eye tracking methodologies are constrained by bespoke hardware that is often cumbersome to wear, complex to apply, and demands substantial computational resources. To overcome these limitations, we investigated Electrooculography (EOG) eye tracking using 14 electrodes positioned around the ears, integrated into a custom-built headphone form factor device. In a controlled experiment, 16 participants tracked stimuli designed to induce smooth pursuits and saccades. Data analysis identified optimal electrode pairs for vertical and horizontal eye movement tracking, benchmarked against gold-standard EOG and camera-based methods. The electrode montage nearest the eyes yielded the best horizontal results. Horizontal smooth pursuits via earEOG showed high correlation with gold-standard measures ($r_{\mathrm{EOG}} = 0.81, p = 0.01$; $r_{\mathrm{CAM}} = 0.56, p = 0.02$), while vertical pursuits were weakly correlated ($r_{\mathrm{EOG}} = 0.28, p = 0.04$; $r_{\mathrm{CAM}} = 0.35, p = 0.05$). Voltage deflections when performing saccades showed strong correlation in the horizontal direction ($r_{\mathrm{left}} = 0.99, p = 0.0$; $r_{\mathrm{right}} = 0.99, p = 0.0$) but low correlation in the vertical direction ($r_{\mathrm{up}} = 0.6, p = 0.23$; $r_{\mathrm{down}} = 0.19, p = 0.73$). Overall, horizontal earEOG demonstrated strong performance, indicating its potential effectiveness, while vertical earEOG results were poor, suggesting limited feasibility in our current setup.
comment: 12 pages
Insights on Harmonic Tones from a Generative Music Experiment
The ultimate purpose of generative music AI is music production. The studio-lab, a social form within the art-science branch of cross-disciplinarity, is a way to advance music production with AI music models. During a studio-lab experiment involving researchers, music producers, and an AI model for music generating bass-like audio, it was observed that the producers used the model's output to convey two or more pitches with a single harmonic complex tone, which in turn revealed that the model had learned to generate structured and coherent simultaneous melodic lines using monophonic sequences of harmonic complex tones. These findings prompt a reconsideration of the long-standing debate on whether humans can perceive harmonics as distinct pitches and highlight how generative AI can not only enhance musical creativity but also contribute to a deeper understanding of music.
comment: 15th International Workshop on Machine Learning and Music, September 9, 2024, Vilnius, Lithuania
From Inquisitorial to Adversarial: Using Legal Theory to Redesign Online Reporting Systems
User reporting systems are central to addressing interpersonal conflicts and protecting users from harm in online spaces, particularly those with heightened privacy expectations. However, users often express frustration at their lack of insight and input into the reporting process. Drawing on offline legal literature, we trace these frustrations to the inquisitorial nature of today's online reporting systems, where moderators lead evidence gathering and case development. In contrast, adversarial models can grant users greater control and thus are better for procedural justice and privacy protection, despite their increased risks of system abuse. This motivates us to explore the potential of incorporating adversarial practices into online reporting systems. Through literature review, formative interviews, and threat modeling, we find a rich design space for empowering users to collect and present their evidence while mitigating potential abuse in the reporting process. In particular, we propose designs that minimize the amount of information shared for reporting purposes, as well as supporting evidence authentication. Finally, we discuss how our findings can inform new cryptographic tools and new efforts to apply comparative legal frameworks to online moderation.
comment: Under review
Evaluating LLM-corrupted Crowdsourcing Data Without Ground Truth
The recent success of generative AI highlights the crucial role of high-quality human feedback in building trustworthy AI systems. However, the increasing use of large language models (LLMs) by crowdsourcing workers poses a significant challenge: datasets intended to reflect human input may be compromised by LLM-generated responses. Existing LLM detection approaches often rely on high-dimension training data such as text, making them unsuitable for annotation tasks like multiple-choice labeling. In this work, we investigate the potential of peer prediction -- a mechanism that evaluates the information within workers' responses without using ground truth -- to mitigate LLM-assisted cheating in crowdsourcing with a focus on annotation tasks. Our approach quantifies the correlations between worker answers while conditioning on (a subset of) LLM-generated labels available to the requester. Building on prior research, we propose a training-free scoring mechanism with theoretical guarantees under a crowdsourcing model that accounts for LLM collusion. We establish conditions under which our method is effective and empirically demonstrate its robustness in detecting low-effort cheating on real-world crowdsourcing datasets.
comment: 33 pages, 9 figures
Examining Human-AI Collaboration for Co-Writing Constructive Comments Online
This paper examines if large language models (LLMs) can help people write constructive comments on divisive social issues due to the difficulty of expressing constructive disagreement online. Through controlled experiments with 600 participants from India and the US, who reviewed and wrote constructive comments on threads related to Islamophobia and homophobia, we observed potential misalignment between how LLMs and humans perceive constructiveness in online comments. While the LLM was more likely to prioritize politeness and balance among contrasting viewpoints when evaluating constructiveness, participants emphasized logic and facts more than the LLM did. Despite these differences, participants rated both LLM-generated and human-AI co-written comments as significantly more constructive than those written independently by humans. Our analysis also revealed that LLM-generated comments integrated significantly more linguistic features of constructiveness compared to human-written comments. When participants used LLMs to refine their comments, the resulting comments were more constructive, more positive, less toxic, and retained the original intent. However, occasionally LLMs distorted people's original views -- especially when their stances were not outright polarizing. Based on these findings, we discuss ethical and design considerations in using LLMs to facilitate constructive discourse online.
Writing with AI Lowers Psychological Ownership, but Longer Prompts Can Help
The feeling of something belonging to someone is called "psychological ownership." A common assumption is that writing with generative AI lowers psychological ownership, but the extent to which this occurs and the role of prompt length are unclear. We report on two experiments to examine the relationship between psychological ownership and prompt length. Participants wrote short stories either completely by themselves or wrote prompts of varying lengths. Results show that when participants wrote longer prompts, they had higher levels of psychological ownership. Their comments suggest they thought more about their prompts, often adding more details about the plot. However, benefits plateaued when prompt length was 75-100% of the target story length. To encourage users to write longer prompts, we propose augmenting the prompt submission button so it must be held down a long time if the prompt is short. Results show that this technique is effective at increasing prompt length.
comment: Accepted to the 7th ACM Conference on Conversational User Interfaces (CUI '25)
Epistemic Integrity in Large Language Models
Large language models are increasingly relied upon as sources of information, but their propensity for generating false or misleading statements with high confidence poses risks for users and society. In this paper, we confront the critical problem of epistemic miscalibration $\unicode{x2013}$ where a model's linguistic assertiveness fails to reflect its true internal certainty. We introduce a new human-labeled dataset and a novel method for measuring the linguistic assertiveness of Large Language Models (LLMs) which cuts error rates by over 50% relative to previous benchmarks. Validated across multiple datasets, our method reveals a stark misalignment between how confidently models linguistically present information and their actual accuracy. Further human evaluations confirm the severity of this miscalibration. This evidence underscores the urgent risk of the overstated certainty LLMs hold which may mislead users on a massive scale. Our framework provides a crucial step forward in diagnosing this miscalibration, offering a path towards correcting it and more trustworthy AI across domains.
Towards an Accessible, Noninvasive Micronutrient Status Assessment Method: A Comprehensive Review of Existing Techniques
Nutrients are critical to the functioning of the human body and their imbalance can result in detrimental health concerns. The majority of nutritional literature focuses on macronutrients, often ignoring the more critical nuances of micronutrient balance, which require more precise regulation. Currently, micronutrient status is routinely assessed via complex methods that are arduous for both the patient and the clinician. To address the global burden of micronutrient malnutrition, innovations in assessment must be accessible and noninvasive. In support of this task, this article synthesizes useful background information on micronutrients themselves, reviews the state of biofluid and physiological analyses for their assessment, and presents actionable opportunities to push the field forward. By taking a unique, clinical perspective that is absent from technological research on the topic, we find that the state of the art suffers from limited clinical relevance, a lack of overlap between biofluid and physiological approaches, and highly invasive and inaccessible solutions. Future work has the opportunity to maximize the impact of a novel assessment method by incorporating clinical relevance, the holistic nature of micronutrition, and prioritizing accessible and noninvasive systems.
comment: 54 pages, 5 figures, 19 tables. Submitted to ACM Transactions on Computing for Healthcare
Human-Computer Interaction
LLM-D12: A Dual-Dimensional Scale of Instrumental and Relational Dependencies on Large Language Models
There is growing interest in understanding how people interact with large language models (LLMs) and whether such models elicit dependency or even addictive behaviour. Validated tools to assess the extent to which individuals may become dependent on LLMs are scarce and primarily build on classic behavioral addiction symptoms, adapted to the context of LLM use. We view this as a conceptual limitation, as the LLM-human relationship is more nuanced and warrants a fresh and distinct perspective. To address this gap, we developed and validated a new 12-item questionnaire to measure LLM dependency, referred to as LLM-D12. The scale was based on the authors' prior theoretical work, with items developed accordingly and responses collected from 526 participants in the UK. Exploratory and confirmatory factor analyses, performed on separate halves of the total sample using a split-sample approach, supported a two-factor structure: Instrumental Dependency (six items) and Relationship Dependency (six items). Instrumental Dependency reflects the extent to which individuals rely on LLMs to support or collaborate in decision-making and cognitive tasks. Relationship Dependency captures the tendency to perceive LLMs as socially meaningful, sentient, or companion-like entities. The two-factor structure demonstrated excellent internal consistency and clear discriminant validity. External validation confirmed both the conceptual foundation and the distinction between the two subscales. The psychometric properties and structure of our LLM-D12 scale were interpreted in light of the emerging view that dependency on LLMs does not necessarily indicate dysfunction but may still reflect reliance levels that could become problematic in certain contexts.
In-Sensor Motion Recognition with Memristive System and Light Sensing Surfaces
In this paper, we introduce a novel device architecture that merges memristive devices with light-sensing surfaces, for energy-efficient motion recognition at the edge. Our light-sensing surface captures motion data through in-sensor computation. This data is then processed using a memristive system equipped with a HfO2-based synaptic device, coupled with a winner-take-all (WTA) circuit, tailored for low-power motion classification tasks. We validate our end-to-end system using four distinct human hand gestures - left-to-right, right-to-left, bottom-to-top, and top-to-bottom movements - to assess energy efficiency and classification robustness. Our experiments show that the system requires an average of only 4.17 nJ for taking our processed analog signal and mapping weights onto our memristive system and 0.952 nJ for testing per movement class, achieving 97.22% accuracy even under 5% noise interference. A key advantage of our proposed architecture is its low energy requirement, enabling the integration of energy-harvesting solutions such as solar power for sustainable autonomous operation. Additionally, our approach enhances data privacy by processing data locally, reducing the need for external data transmission and storage.
comment: The paper was published in the 2024 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)
Identity Deepfake Threats to Biometric Authentication Systems: Public and Expert Perspectives
Generative AI (Gen-AI) deepfakes pose a rapidly evolving threat to biometric authentication, yet a significant gap exists between expert understanding of these risks and public perception. This disconnection creates critical vulnerabilities in systems trusted by millions. To bridge this gap, we conducted a comprehensive mixed-method study, surveying 408 professionals across key sectors and conducting in-depth interviews with 37 participants (25 experts, 12 general public [non-experts]). Our findings reveal a paradox: while the public increasingly relies on biometrics for convenience, experts express grave concerns about the spoofing of static modalities like face and voice recognition. We found significant demographic and sector-specific divides in awareness and trust, with finance professionals, for example, showing heightened skepticism. To systematically analyze these threats, we introduce a novel Deepfake Kill Chain model, adapted from Hutchins et al.'s cybersecurity frameworks to map the specific attack vectors used by malicious actors against biometric systems. Based on this model and our empirical findings, we propose a tri-layer mitigation framework that prioritizes dynamic biometric signals (e.g., eye movements), robust privacy-preserving data governance, and targeted educational initiatives. This work provides the first empirically grounded roadmap for defending against AI-generated identity threats by aligning technical safeguards with human-centered insights.
How do datasets, developers, and models affect biases in a low-resourced language?
Sociotechnical systems, such as language technologies, frequently exhibit identity-based biases. These biases exacerbate the experiences of historically marginalized communities and remain understudied in low-resource contexts. While models and datasets specific to a language or with multilingual support are commonly recommended to address these biases, this paper empirically tests the effectiveness of such approaches in the context of gender, religion, and nationality-based identities in Bengali, a widely spoken but low-resourced language. We conducted an algorithmic audit of sentiment analysis models built on mBERT and BanglaBERT, which were fine-tuned using all Bengali sentiment analysis (BSA) datasets from Google Dataset Search. Our analyses showed that BSA models exhibit biases across different identity categories despite having similar semantic content and structure. We also examined the inconsistencies and uncertainties arising from combining pre-trained models and datasets created by individuals from diverse demographic backgrounds. We connected these findings to the broader discussions on epistemic injustice, AI alignment, and methodological decisions in algorithmic audits.
BTPD: A Multilingual Hand-curated Dataset of Bengali Transnational Political Discourse Across Online Communities
Understanding political discourse in online spaces is crucial for analyzing public opinion and ideological polarization. While social computing and computational linguistics have explored such discussions in English, such research efforts are significantly limited in major yet under-resourced languages like Bengali due to the unavailability of datasets. In this paper, we present a multilingual dataset of Bengali transnational political discourse (BTPD) collected from three online platforms, each representing distinct community structures and interaction dynamics. Besides describing how we hand-curated the dataset through community-informed keyword-based retrieval, this paper also provides a general overview of its topics and multilingual content.
Mind Games! Exploring the Impact of Dark Patterns in Mixed Reality Scenarios
Mixed Reality (MR) integrates virtual objects with the real world, offering potential but raising concerns about misuse through dark patterns. This study explored the effects of four dark patterns, adapted from prior research, and applied to MR across three targets: places, products, and people. In a two-factorial within-subject study with 74 participants, we analyzed 13 videos simulating MR experiences during a city walk. Results show that all dark patterns significantly reduced user comfort, increased reactance, and decreased the intention to use MR glasses, with the most disruptive effects linked to personal or monetary manipulation. Additionally, the dark patterns of Emotional and Sensory Manipulation and Hiding Information produced similar impacts on the user in MR, suggesting a re-evaluation of current classifications to go beyond deceptive design techniques. Our findings highlight the importance of developing ethical design guidelines and tools to detect and prevent dark patterns as immersive technologies continue to evolve.
Exploring Image Transforms derived from Eye Gaze Variables for Progressive Autism Diagnosis
The prevalence of Autism Spectrum Disorder (ASD) has surged rapidly over the past decade, posing significant challenges in communication, behavior, and focus for affected individuals. Current diagnostic techniques, though effective, are time-intensive, leading to high social and economic costs. This work introduces an AI-powered assistive technology designed to streamline ASD diagnosis and management, enhancing convenience for individuals with ASD and efficiency for caregivers and therapists. The system integrates transfer learning with image transforms derived from eye gaze variables to diagnose ASD. This facilitates and opens opportunities for in-home periodical diagnosis, reducing stress for individuals and caregivers, while also preserving user privacy through the use of image transforms. The accessibility of the proposed method also offers opportunities for improved communication between guardians and therapists, ensuring regular updates on progress and evolving support needs. Overall, the approach proposed in this work ensures timely, accessible diagnosis while protecting the subjects' privacy, improving outcomes for individuals with ASD.
comment: 6 pages, 8 figures, and 1 table
Grounded Persuasive Language Generation for Automated Marketing
This paper develops an agentic framework that employs large language models (LLMs) to automate the generation of persuasive and grounded marketing content, using real estate listing descriptions as our focal application domain. Our method is designed to align the generated content with user preferences while highlighting useful factual attributes. This agent consists of three key modules: (1) Grounding Module, mimicking expert human behavior to predict marketable features; (2) Personalization Module, aligning content with user preferences; (3) Marketing Module, ensuring factual accuracy and the inclusion of localized features. We conduct systematic human-subject experiments in the domain of real estate marketing, with a focus group of potential house buyers. The results demonstrate that marketing descriptions generated by our approach are preferred over those written by human experts by a clear margin while maintaining the same level of factual accuracy. Our findings suggest a promising agentic approach to automate large-scale targeted marketing while ensuring factuality of content generation.
When Incentives Backfire, Data Stops Being Human ICML 2025
Progress in AI has relied on human-generated data, from annotator marketplaces to the wider Internet. However, the widespread use of large language models now threatens the quality and integrity of human-generated data on these very platforms. We argue that this issue goes beyond the immediate challenge of filtering AI-generated content -- it reveals deeper flaws in how data collection systems are designed. Existing systems often prioritize speed, scale, and efficiency at the cost of intrinsic human motivation, leading to declining engagement and data quality. We propose that rethinking data collection systems to align with contributors' intrinsic motivations -- rather than relying solely on external incentives -- can help sustain high-quality data sourcing at scale while maintaining contributor trust and long-term participation.
comment: Position Paper at ICML 2025
IDN Authoring -- a design case
In this text, we consider the authoring of interactive digital narratives (IDNs) as a system of interwoven creative processes and look at it as a design process. The aim is to better understand the structural, aesthetic and interactive concepts authoring has to address, how authors think about those and what that means regarding the tools required to support authoring for IDNs. The paper concludes with a detailed vision of an authoring environment that is considered an open-source sandbox system, which provides the technical means to build a functional IDN but adapts the availability of technology based on the narrative engineer's aims, goals and skills. The environment establishes a collaboration between itself and the narrative engineer, who's interaction on one side focusses on the collection of material and its classification and on the other side covers the design of the engine that facilitates the aimed for audience to establish the stories for their information need out of the provided proto-narrative content space.
comment: 23 pages,10 Figures, becomes book chapter
LLMs Can Simulate Standardized Patients via Agent Coevolution ACL 2025
Training medical personnel using standardized patients (SPs) remains a complex challenge, requiring extensive domain expertise and role-specific practice. Previous research on Large Language Model (LLM)-based SPs mostly focuses on improving data retrieval accuracy or adjusting prompts through human feedback. However, this focus has overlooked the critical need for patient agents to learn a standardized presentation pattern that transforms data into human-like patient responses through unsupervised simulations. To address this gap, we propose EvoPatient, a novel simulated patient framework in which a patient agent and doctor agents simulate the diagnostic process through multi-turn dialogues, simultaneously gathering experience to improve the quality of both questions and answers, ultimately enabling human doctor training. Extensive experiments on various cases demonstrate that, by providing only overall SP requirements, our framework improves over existing reasoning methods by more than 10\% in requirement alignment and better human preference, while achieving an optimal balance of resource consumption after evolving over 200 cases for 10 hours, with excellent generalizability. Our system will be available at https://github.com/ZJUMAI/EvoPatient.
comment: Accepted to ACL 2025
Image and Video Processing
Quanta Diffusion
We present Quanta Diffusion (QuDi), a powerful generative video reconstruction method for single-photon imaging. QuDi is an algorithm supporting the latest Quanta Image Sensors (QIS) and Single Photon Avalanche Diodes (SPADs) for extremely low-light imaging conditions. Compared to existing methods, QuDi overcomes the difficulties of simultaneously managing the motion and the strong shot noise. The core innovation of QuDi is to inject a physics-based forward model into the diffusion algorithm, while keeping the motion estimation in the loop. QuDi demonstrates an average of 2.4 dB PSNR improvement over the best existing methods.
NSD-Imagery: A benchmark dataset for extending fMRI vision decoding methods to mental imagery CVPR 2025
We release NSD-Imagery, a benchmark dataset of human fMRI activity paired with mental images, to complement the existing Natural Scenes Dataset (NSD), a large-scale dataset of fMRI activity paired with seen images that enabled unprecedented improvements in fMRI-to-image reconstruction efforts. Recent models trained on NSD have been evaluated only on seen image reconstruction. Using NSD-Imagery, it is possible to assess how well these models perform on mental image reconstruction. This is a challenging generalization requirement because mental images are encoded in human brain activity with relatively lower signal-to-noise and spatial resolution; however, generalization from seen to mental imagery is critical for real-world applications in medical domains and brain-computer interfaces, where the desired information is always internally generated. We provide benchmarks for a suite of recent NSD-trained open-source visual decoding models (MindEye1, MindEye2, Brain Diffuser, iCNN, Takagi et al.) on NSD-Imagery, and show that the performance of decoding methods on mental images is largely decoupled from performance on vision reconstruction. We further demonstrate that architectural choices significantly impact cross-decoding performance: models employing simple linear decoding architectures and multimodal feature decoding generalize better to mental imagery, while complex architectures tend to overfit visual training data. Our findings indicate that mental imagery datasets are critical for the development of practical applications, and establish NSD-Imagery as a useful resource for better aligning visual decoding methods with this goal.
comment: Published at CVPR 2025
SPC to 3D: Novel View Synthesis from Binary SPC via I2I translation ICIP 2025
Single Photon Avalanche Diodes (SPADs) represent a cutting-edge imaging technology, capable of detecting individual photons with remarkable timing precision. Building on this sensitivity, Single Photon Cameras (SPCs) enable image capture at exceptionally high speeds under both low and high illumination. Enabling 3D reconstruction and radiance field recovery from such SPC data holds significant promise. However, the binary nature of SPC images leads to severe information loss, particularly in texture and color, making traditional 3D synthesis techniques ineffective. To address this challenge, we propose a modular two-stage framework that converts binary SPC images into high-quality colorized novel views. The first stage performs image-to-image (I2I) translation using generative models such as Pix2PixHD, converting binary SPC inputs into plausible RGB representations. The second stage employs 3D scene reconstruction techniques like Neural Radiance Fields (NeRF) or Gaussian Splatting (3DGS) to generate novel views. We validate our two-stage pipeline (Pix2PixHD + Nerf/3DGS) through extensive qualitative and quantitative experiments, demonstrating significant improvements in perceptual quality and geometric consistency over the alternative baseline.
comment: Accepted for publication at ICIP 2025
A Systematic Investigation on Deep Learning-Based Omnidirectional Image and Video Super-Resolution
Omnidirectional image and video super-resolution is a crucial research topic in low-level vision, playing an essential role in virtual reality and augmented reality applications. Its goal is to reconstruct high-resolution images or video frames from low-resolution inputs, thereby enhancing detail preservation and enabling more accurate scene analysis and interpretation. In recent years, numerous innovative and effective approaches have been proposed, predominantly based on deep learning techniques, involving diverse network architectures, loss functions, projection strategies, and training datasets. This paper presents a systematic review of recent progress in omnidirectional image and video super-resolution, focusing on deep learning-based methods. Given that existing datasets predominantly rely on synthetic degradation and fall short in capturing real-world distortions, we introduce a new dataset, 360Insta, that comprises authentically degraded omnidirectional images and videos collected under diverse conditions, including varying lighting, motion, and exposure settings. This dataset addresses a critical gap in current omnidirectional benchmarks and enables more robust evaluation of the generalization capabilities of omnidirectional super-resolution methods. We conduct comprehensive qualitative and quantitative evaluations of existing methods on both public datasets and our proposed dataset. Furthermore, we provide a systematic overview of the current status of research and discuss promising directions for future exploration. All datasets, methods, and evaluation metrics introduced in this work are publicly available and will be regularly updated. Project page: https://github.com/nqian1/Survey-on-ODISR-and-ODVSR.
Flood-DamageSense: Multimodal Mamba with Multitask Learning for Building Flood Damage Assessment using SAR Remote Sensing Imagery
Most post-disaster damage classifiers succeed only when destructive forces leave clear spectral or structural signatures -- conditions rarely present after inundation. Consequently, existing models perform poorly at identifying flood-related building damages. The model presented in this study, Flood-DamageSense, addresses this gap as the first deep-learning framework purpose-built for building-level flood-damage assessment. The architecture fuses pre- and post-event SAR/InSAR scenes with very-high-resolution optical basemaps and an inherent flood-risk layer that encodes long-term exposure probabilities, guiding the network toward plausibly affected structures even when compositional change is minimal. A multimodal Mamba backbone with a semi-Siamese encoder and task-specific decoders jointly predicts (1) graded building-damage states, (2) floodwater extent, and (3) building footprints. Training and evaluation on Hurricane Harvey (2017) imagery from Harris County, Texas -- supported by insurance-derived property-damage extents -- show a mean F1 improvement of up to 19 percentage points over state-of-the-art baselines, with the largest gains in the frequently misclassified "minor" and "moderate" damage categories. Ablation studies identify the inherent-risk feature as the single most significant contributor to this performance boost. An end-to-end post-processing pipeline converts pixel-level outputs to actionable, building-scale damage maps within minutes of image acquisition. By combining risk-aware modeling with SAR's all-weather capability, Flood-DamageSense delivers faster, finer-grained, and more reliable flood-damage intelligence to support post-disaster decision-making and resource allocation.
Exploring Image Transforms derived from Eye Gaze Variables for Progressive Autism Diagnosis
The prevalence of Autism Spectrum Disorder (ASD) has surged rapidly over the past decade, posing significant challenges in communication, behavior, and focus for affected individuals. Current diagnostic techniques, though effective, are time-intensive, leading to high social and economic costs. This work introduces an AI-powered assistive technology designed to streamline ASD diagnosis and management, enhancing convenience for individuals with ASD and efficiency for caregivers and therapists. The system integrates transfer learning with image transforms derived from eye gaze variables to diagnose ASD. This facilitates and opens opportunities for in-home periodical diagnosis, reducing stress for individuals and caregivers, while also preserving user privacy through the use of image transforms. The accessibility of the proposed method also offers opportunities for improved communication between guardians and therapists, ensuring regular updates on progress and evolving support needs. Overall, the approach proposed in this work ensures timely, accessible diagnosis while protecting the subjects' privacy, improving outcomes for individuals with ASD.
comment: 6 pages, 8 figures, and 1 table
RestoreGrad: Signal Restoration Using Conditional Denoising Diffusion Models with Jointly Learned Prior ICML 2025
Denoising diffusion probabilistic models (DDPMs) can be utilized to recover a clean signal from its degraded observation(s) by conditioning the model on the degraded signal. The degraded signals are themselves contaminated versions of the clean signals; due to this correlation, they may encompass certain useful information about the target clean data distribution. However, existing adoption of the standard Gaussian as the prior distribution in turn discards such information when shaping the prior, resulting in sub-optimal performance. In this paper, we propose to improve conditional DDPMs for signal restoration by leveraging a more informative prior that is jointly learned with the diffusion model. The proposed framework, called RestoreGrad, seamlessly integrates DDPMs into the variational autoencoder (VAE) framework, taking advantage of the correlation between the degraded and clean signals to encode a better diffusion prior. On speech and image restoration tasks, we show that RestoreGrad demonstrates faster convergence (5-10 times fewer training steps) to achieve better quality of restored signals over existing DDPM baselines and improved robustness to using fewer sampling steps in inference time (2-2.5 times fewer), advocating the advantages of leveraging jointly learned prior for efficiency improvements in the diffusion process.
comment: Accepted by ICML 2025 - Camera Ready Version
Intelligent Anomaly Detection for Lane Rendering Using Transformer with Self-Supervised Pre-Training and Customized Fine-Tuning
The burgeoning navigation services using digital maps provide great convenience to drivers. Nevertheless, the presence of anomalies in lane rendering map images occasionally introduces potential hazards, as such anomalies can be misleading to human drivers and consequently contribute to unsafe driving conditions. In response to this concern and to accurately and effectively detect the anomalies, this paper transforms lane rendering image anomaly detection into a classification problem and proposes a four-phase pipeline consisting of data pre-processing, self-supervised pre-training with the masked image modeling (MiM) method, customized fine-tuning using cross-entropy based loss with label smoothing, and post-processing to tackle it leveraging state-of-the-art deep learning techniques, especially those involving Transformer models. Various experiments verify the effectiveness of the proposed pipeline. Results indicate that the proposed pipeline exhibits superior performance in lane rendering image anomaly detection, and notably, the self-supervised pre-training with MiM can greatly enhance the detection accuracy while significantly reducing the total training time. For instance, employing the Swin Transformer with Uniform Masking as self-supervised pretraining (Swin-Trans-UM) yielded a heightened accuracy at 94.77% and an improved Area Under The Curve (AUC) score of 0.9743 compared with the pure Swin Transformer without pre-training (Swin-Trans) with an accuracy of 94.01% and an AUC of 0.9498. The fine-tuning epochs were dramatically reduced to 41 from the original 280. In conclusion, the proposed pipeline, with its incorporation of self-supervised pre-training using MiM and other advanced deep learning techniques, emerges as a robust solution for enhancing the accuracy and efficiency of lane rendering image anomaly detection in digital navigation systems.
comment: 16 pages, 7 figures, accepted and presented at the 103rd Transportation Research Board (TRB) Annual Meeting, and published by Transportation Research Record: Journal of the Transportation Research Board
ASMA: An Adaptive Safety Margin Algorithm for Vision-Language Drone Navigation via Scene-Aware Control Barrier Functions
In the rapidly evolving field of vision-language navigation (VLN), ensuring safety for physical agents remains an open challenge. For a human-in-the-loop language-operated drone to navigate safely, it must understand natural language commands, perceive the environment, and simultaneously avoid hazards in real time. Control Barrier Functions (CBFs) are formal methods that enforce safe operating conditions. Model Predictive Control (MPC) is an optimization framework that plans a sequence of future actions over a prediction horizon, ensuring smooth trajectory tracking while obeying constraints. In this work, we consider a VLN-operated drone platform and enhance its safety by formulating a novel scene-aware CBF that leverages ego-centric observations from a camera which has both Red-Green-Blue as well as Depth (RGB-D) channels. A CBF-less baseline system uses a Vision-Language Encoder with cross-modal attention to convert commands into an ordered sequence of landmarks. An object detection model identifies and verifies these landmarks in the captured images to generate a planned path. To further enhance safety, an Adaptive Safety Margin Algorithm (ASMA) is proposed. ASMA tracks moving objects and performs scene-aware CBF evaluation on-the-fly, which serves as an additional constraint within the MPC framework. By continuously identifying potentially risky observations, the system performs prediction in real time about unsafe conditions and proactively adjusts its control actions to maintain safe navigation throughout the trajectory. Deployed on a Parrot Bebop2 quadrotor in the Gazebo environment using the Robot Operating System (ROS), ASMA achieves 64%-67% increase in success rates with only a slight increase (1.4%-5.8%) in trajectory lengths compared to the baseline CBF-less VLN.
Empowering COVID-19 Detection: Optimizing Performance Through Fine-Tuned EfficientNet Deep Learning Architecture
The worldwide COVID-19 pandemic has profoundly influenced the health and everyday experiences of individuals across the planet. It is a highly contagious respiratory disease requiring early and accurate detection to curb its rapid transmission. Initial testing methods primarily revolved around identifying the genetic composition of the coronavirus, exhibiting a relatively low detection rate and requiring a time-intensive procedure. To address this challenge, experts have suggested using radiological imagery, particularly chest X-rays, as a valuable approach within the diagnostic protocol. This study investigates the potential of leveraging radiographic imaging (X-rays) with deep learning algorithms to swiftly and precisely identify COVID-19 patients. The proposed approach elevates the detection accuracy by fine-tuning with appropriate layers on various established transfer learning models. The experimentation was conducted on a COVID-19 X-ray dataset containing 2000 images. The accuracy rates achieved were impressive of 100% for EfficientNetB4 model. The fine-tuned EfficientNetB4 achieved an excellent accuracy score, showcasing its potential as a robust COVID-19 detection model. Furthermore, EfficientNetB4 excelled in identifying Lung disease using Chest X-ray dataset containing 4,350 Images, achieving remarkable performance with an accuracy of 99.17%, precision of 99.13%, recall of 99.16%, and f1-score of 99.14%. These results highlight the promise of fine-tuned transfer learning for efficient lung detection through medical imaging, especially with X-ray images. This research offers radiologists an effective means of aiding rapid and precise COVID-19 diagnosis and contributes valuable assistance for healthcare professionals in accurately identifying affected patients.
comment: After further evaluation, we identified an issue in our methodology affecting result reliability. Specifically, a fine-tuning preprocessing step requires refinement to enhance model performance and reproducibility. To address this, we are withdrawing the preprint for updates before resubmission. We appreciate readers' understanding and apologize for any inconvenience
An Optimized Ensemble Deep Learning Model For Brain Tumor Classification
Brain tumors present a grave risk to human life, demanding precise and timely diagnosis for effective treatment. Inaccurate identification of brain tumors can significantly diminish life expectancy, underscoring the critical need for precise diagnostic methods. Manual identification of brain tumors within vast Magnetic Resonance Imaging (MRI) image datasets is arduous and time-consuming. Thus, the development of a reliable deep learning (DL) model is essential to enhance diagnostic accuracy and ultimately save lives. This study introduces an innovative optimization-based deep ensemble approach employing transfer learning (TL) to efficiently classify brain tumors. Our methodology includes meticulous preprocessing, reconstruction of TL architectures, fine-tuning, and ensemble DL models utilizing weighted optimization techniques such as Genetic Algorithm-based Weight Optimization (GAWO) and Grid Search-based Weight Optimization (GSWO). Experimentation is conducted on the Figshare Contrast-Enhanced MRI (CE-MRI) brain tumor dataset, comprising 3064 images. Our approach achieves notable accuracy scores, with Xception, ResNet50V2, ResNet152V2, InceptionResNetV2, GAWO, and GSWO attaining 99.42%, 98.37%, 98.22%, 98.26%, 99.71%, and 99.76% accuracy, respectively. Notably, GSWO demonstrates superior accuracy, averaging 99.76\% accuracy across five folds on the Figshare CE-MRI brain tumor dataset. The comparative analysis highlights the significant performance enhancement of our proposed model over existing counterparts. In conclusion, our optimized deep ensemble model exhibits exceptional accuracy in swiftly classifying brain tumors. Furthermore, it has the potential to assist neurologists and clinicians in making accurate and immediate diagnostic decisions.
comment: After further evaluation, we identified an issue in our methodology affecting result reliability. Specifically, a fine-tuning preprocessing step requires refinement to enhance model performance and reproducibility. To address this, we are withdrawing the preprint for updates before resubmission. We appreciate readers' understanding and apologize for any inconvenience
UStyle: Waterbody Style Transfer of Underwater Scenes by Depth-Guided Feature Synthesis
The concept of waterbody style transfer remains largely unexplored in the underwater imaging and vision literature. Traditional image style transfer (STx) methods primarily focus on artistic and photorealistic blending, often failing to preserve object and scene geometry in images captured in high-scattering mediums such as underwater. The wavelength-dependent nonlinear attenuation and depth-dependent backscattering artifacts further complicate learning underwater image STx from unpaired data. This paper introduces UStyle, the first data-driven learning framework for transferring waterbody styles across underwater images without requiring prior reference images or scene information. We propose a novel depth-aware whitening and coloring transform (DA-WCT) mechanism that integrates physics-based waterbody synthesis to ensure perceptually consistent stylization while preserving scene structure. To enhance style transfer quality, we incorporate carefully designed loss functions that guide UStyle to maintain colorfulness, lightness, structural integrity, and frequency-domain characteristics, as well as high-level content in VGG and CLIP (contrastive language-image pretraining) feature spaces. By addressing domain-specific challenges, UStyle provides a robust framework for no-reference underwater image STx, surpassing state-of-the-art (SOTA) methods that rely solely on end-to-end reconstruction loss. Furthermore, we introduce the UF7D dataset, a curated collection of high-resolution underwater images spanning seven distinct waterbody styles, establishing a benchmark to support future research in underwater image STx. The UStyle inference pipeline and UF7D dataset are released at: https://github.com/uf-robopi/UStyle.
FiRe: Fixed-points of Restoration Priors for Solving Inverse Problems
Selecting an appropriate prior to compensate for information loss due to the measurement operator is a fundamental challenge in imaging inverse problems. Implicit priors based on denoising neural networks have become central to widely-used frameworks such as Plug-and-Play (PnP) algorithms. In this work, we introduce Fixed-points of Restoration (FiRe) priors as a new framework for expanding the notion of priors in PnP to general restoration models beyond traditional denoising models. The key insight behind FiRe is that smooth images emerge as fixed points of the composition of a degradation operator with the corresponding restoration model. This enables us to derive an explicit formula for our implicit prior by quantifying invariance of images under this composite operation. Adopting this fixed-point perspective, we show how various restoration networks can effectively serve as priors for solving inverse problems. The FiRe framework further enables ensemble-like combinations of multiple restoration models as well as acquisition-informed restoration networks, all within a unified optimization approach. Experimental results validate the effectiveness of FiRe across various inverse problems, establishing a new paradigm for incorporating pretrained restoration models into PnP-like algorithms. Code available at https://github.com/matthieutrs/fire.
Multimedia
Experimental Evaluation of Static Image Sub-Region-Based Search Models Using CLIP
Advances in multimodal text-image models have enabled effective text-based querying in extensive image collections. While these models show convincing performance for everyday life scenes, querying in highly homogeneous, specialized domains remains challenging. The primary problem is that users can often provide only vague textual descriptions as they lack expert knowledge to discriminate between homogenous entities. This work investigates whether adding location-based prompts to complement these vague text queries can enhance retrieval performance. Specifically, we collected a dataset of 741 human annotations, each containing short and long textual descriptions and bounding boxes indicating regions of interest in challenging underwater scenes. Using these annotations, we evaluate the performance of CLIP when queried on various static sub-regions of images compared to the full image. Our results show that both a simple 3-by-3 partitioning and a 5-grid overlap significantly improve retrieval effectiveness and remain robust to perturbations of the annotation box.
comment: 14 pages, 4 figures, 2 tables
The State-of-the-Art in Lifelog Retrieval: A Review of Progress at the ACM Lifelog Search Challenge Workshop 2022-24
The ACM Lifelog Search Challenge (LSC) is a venue that welcomes and compares systems that support the exploration of lifelog data, and in particular the retrieval of specific information, through an interactive competition format. This paper reviews the recent advances in interactive lifelog retrieval as demonstrated at the ACM LSC from 2022 to 2024. Through a detailed comparative analysis, we highlight key improvements across three main retrieval tasks: known-item search, question answering, and ad-hoc search. Our analysis identifies trends such as the widespread adoption of embedding-based retrieval methods (e.g., CLIP, BLIP), increased integration of large language models (LLMs) for conversational retrieval, and continued innovation in multimodal and collaborative search interfaces. We further discuss how specific retrieval techniques and user interface (UI) designs have impacted system performance, emphasizing the importance of balancing retrieval complexity with usability. Our findings indicate that embedding-driven approaches combined with LLMs show promise for lifelog retrieval systems. Likewise, improving UI design can enhance usability and efficiency. Additionally, we recommend reconsidering multi-instance system evaluations within the expert track to better manage variability in user familiarity and configuration effectiveness.
An Efficient Digital Watermarking Technique for Small Scale devices
In the age of IoT and mobile platforms, ensuring that content stay authentic whilst avoiding overburdening limited hardware is a key problem. This study introduces hybrid Fast Wavelet Transform & Additive Quantization index Modulation (FWT-AQIM) scheme, a lightweight watermarking approach that secures digital pictures on low-power, memory-constrained small scale devices to achieve a balanced trade-off among robustness, imperceptibility, and computational efficiency. The method embeds watermark in the luminance component of YCbCr color space using low-frequency FWT sub-bands, minimizing perceptual distortion, using additive QIM for simplicity. Both the extraction and embedding processes run in less than 40 ms and require minimum RAM when tested on a Raspberry Pi 5. Quality assessments on standard and high-resolution images yield PSNR greater than equal to 34 dB and SSIM greater than equal to 0.97, while robustness verification includes various geometric and signal-processing attacks demonstrating near-zero bit error rates and NCC greater than equal to 0.998. Using a mosaic-based watermark, redundancy added enhancing robustness without reducing throughput, which peaks at 11 MP/s. These findings show that FWT-AQIM provides an efficient, scalable solution for real-time, secure watermarking in bandwidth- and power-constrained contexts, opening the way for dependable content protection in developing IoT and multimedia applications.
comment: 28 pages, 11 figures, 4 tables
Computer Vision and Pattern Recognition
TerraFM: A Scalable Foundation Model for Unified Multisensor Earth Observation
Modern Earth observation (EO) increasingly leverages deep learning to harness the scale and diversity of satellite imagery across sensors and regions. While recent foundation models have demonstrated promising generalization across EO tasks, many remain limited by the scale, geographical coverage, and spectral diversity of their training data, factors critical for learning globally transferable representations. In this work, we introduce TerraFM, a scalable self-supervised learning model that leverages globally distributed Sentinel-1 and Sentinel-2 imagery, combined with large spatial tiles and land-cover aware sampling to enrich spatial and semantic coverage. By treating sensing modalities as natural augmentations in our self-supervised approach, we unify radar and optical inputs via modality-specific patch embeddings and adaptive cross-attention fusion. Our training strategy integrates local-global contrastive learning and introduces a dual-centering mechanism that incorporates class-frequency-aware regularization to address long-tailed distributions in land cover.TerraFM achieves strong generalization on both classification and segmentation tasks, outperforming prior models on GEO-Bench and Copernicus-Bench. Our code and pretrained models are publicly available at: https://github.com/mbzuai-oryx/TerraFM .
CoMemo: LVLMs Need Image Context with Image Memory ICML 2025
Recent advancements in Large Vision-Language Models built upon Large Language Models have established aligning visual features with LLM representations as the dominant paradigm. However, inherited LLM architectural designs introduce suboptimal characteristics for multimodal processing. First, LVLMs exhibit a bimodal distribution in attention allocation, leading to the progressive neglect of middle visual content as context expands. Second, conventional positional encoding schemes fail to preserve vital 2D structural relationships when processing dynamic high-resolution images. To address these limitations, we propose CoMemo - a dual-path architecture that combines a Context image path with an image Memory path for visual processing, effectively alleviating visual information neglect. Additionally, we introduce RoPE-DHR, a novel positional encoding mechanism that employs thumbnail-based positional aggregation to maintain 2D spatial awareness while mitigating remote decay in extended sequences. Evaluations across seven benchmarks,including long-context comprehension, multi-image reasoning, and visual question answering, demonstrate CoMemo's superior performance compared to conventional LVLM architectures. Project page is available at https://lalbj.github.io/projects/CoMemo/.
comment: ICML 2025
ExAct: A Video-Language Benchmark for Expert Action Analysis
We present ExAct, a new video-language benchmark for expert-level understanding of skilled physical human activities. Our new benchmark contains 3521 expert-curated video question-answer pairs spanning 11 physical activities in 6 domains: Sports, Bike Repair, Cooking, Health, Music, and Dance. ExAct requires the correct answer to be selected from five carefully designed candidate options, thus necessitating a nuanced, fine-grained, expert-level understanding of physical human skills. Evaluating the recent state-of-the-art VLMs on ExAct reveals a substantial performance gap relative to human expert performance. Specifically, the best-performing GPT-4o model achieves only 44.70% accuracy, well below the 82.02% attained by trained human specialists/experts. We believe that ExAct will be beneficial for developing and evaluating VLMs capable of precise understanding of human skills in various physical and procedural domains. Dataset and code are available at https://texaser.github.io/exact_project_page/
STARFlow: Scaling Latent Normalizing Flows for High-resolution Image Synthesis
We present STARFlow, a scalable generative model based on normalizing flows that achieves strong performance in high-resolution image synthesis. The core of STARFlow is Transformer Autoregressive Flow (TARFlow), which combines the expressive power of normalizing flows with the structured modeling capabilities of Autoregressive Transformers. We first establish the theoretical universality of TARFlow for modeling continuous distributions. Building on this foundation, we introduce several key architectural and algorithmic innovations to significantly enhance scalability: (1) a deep-shallow design, wherein a deep Transformer block captures most of the model representational capacity, complemented by a few shallow Transformer blocks that are computationally efficient yet substantially beneficial; (2) modeling in the latent space of pretrained autoencoders, which proves more effective than direct pixel-level modeling; and (3) a novel guidance algorithm that significantly boosts sample quality. Crucially, our model remains an end-to-end normalizing flow, enabling exact maximum likelihood training in continuous spaces without discretization. STARFlow achieves competitive performance in both class-conditional and text-conditional image generation tasks, approaching state-of-the-art diffusion models in sample quality. To our knowledge, this work is the first successful demonstration of normalizing flows operating effectively at this scale and resolution.
comment: TLDR: We show for the first time that normalizing flows can be scaled for high-resolution and text-conditioned image synthesis
Movie Facts and Fibs (MF$^2$): A Benchmark for Long Movie Understanding
Despite recent progress in vision-language models (VLMs), holistic understanding of long-form video content remains a significant challenge, partly due to limitations in current benchmarks. Many focus on peripheral, ``needle-in-a-haystack'' details, encouraging context-insensitive retrieval over deep comprehension. Others rely on large-scale, semi-automatically generated questions (often produced by language models themselves) that are easier for models to answer but fail to reflect genuine understanding. In this paper, we introduce MF$^2$, a new benchmark for evaluating whether models can comprehend, consolidate, and recall key narrative information from full-length movies (50-170 minutes long). MF$^2$ includes over 50 full-length, open-licensed movies, each paired with manually constructed sets of claim pairs -- one true (fact) and one plausible but false (fib), totalling over 850 pairs. These claims target core narrative elements such as character motivations and emotions, causal chains, and event order, and refer to memorable moments that humans can recall without rewatching the movie. Instead of multiple-choice formats, we adopt a binary claim evaluation protocol: for each pair, models must correctly identify both the true and false claims. This reduces biases like answer ordering and enables a more precise assessment of reasoning. Our experiments demonstrate that both open-weight and closed state-of-the-art models fall well short of human performance, underscoring the relative ease of the task for humans and their superior ability to retain and reason over critical narrative information -- an ability current VLMs lack.
comment: Under Review
BecomingLit: Relightable Gaussian Avatars with Hybrid Neural Shading
We introduce BecomingLit, a novel method for reconstructing relightable, high-resolution head avatars that can be rendered from novel viewpoints at interactive rates. Therefore, we propose a new low-cost light stage capture setup, tailored specifically towards capturing faces. Using this setup, we collect a novel dataset consisting of diverse multi-view sequences of numerous subjects under varying illumination conditions and facial expressions. By leveraging our new dataset, we introduce a new relightable avatar representation based on 3D Gaussian primitives that we animate with a parametric head model and an expression-dependent dynamics module. We propose a new hybrid neural shading approach, combining a neural diffuse BRDF with an analytical specular term. Our method reconstructs disentangled materials from our dynamic light stage recordings and enables all-frequency relighting of our avatars with both point lights and environment maps. In addition, our avatars can easily be animated and controlled from monocular videos. We validate our approach in extensive experiments on our dataset, where we consistently outperform existing state-of-the-art methods in relighting and reenactment by a significant margin.
comment: Project Page: see https://jonathsch.github.io/becominglit/ ; YouTube Video: see https://youtu.be/xPyeIqKdszA
Bridging Perspectives: A Survey on Cross-view Collaborative Intelligence with Egocentric-Exocentric Vision
Perceiving the world from both egocentric (first-person) and exocentric (third-person) perspectives is fundamental to human cognition, enabling rich and complementary understanding of dynamic environments. In recent years, allowing the machines to leverage the synergistic potential of these dual perspectives has emerged as a compelling research direction in video understanding. In this survey, we provide a comprehensive review of video understanding from both exocentric and egocentric viewpoints. We begin by highlighting the practical applications of integrating egocentric and exocentric techniques, envisioning their potential collaboration across domains. We then identify key research tasks to realize these applications. Next, we systematically organize and review recent advancements into three main research directions: (1) leveraging egocentric data to enhance exocentric understanding, (2) utilizing exocentric data to improve egocentric analysis, and (3) joint learning frameworks that unify both perspectives. For each direction, we analyze a diverse set of tasks and relevant works. Additionally, we discuss benchmark datasets that support research in both perspectives, evaluating their scope, diversity, and applicability. Finally, we discuss limitations in current works and propose promising future research directions. By synthesizing insights from both perspectives, our goal is to inspire advancements in video understanding and artificial intelligence, bringing machines closer to perceiving the world in a human-like manner. A GitHub repo of related works can be found at https://github.com/ayiyayi/Awesome-Egocentric-and-Exocentric-Vision.
Visual Graph Arena: Evaluating Visual Conceptualization of Vision and Multimodal Large Language Models
Recent advancements in multimodal large language models have driven breakthroughs in visual question answering. Yet, a critical gap persists, `conceptualization'-the ability to recognize and reason about the same concept despite variations in visual form, a basic ability of human reasoning. To address this challenge, we introduce the Visual Graph Arena (VGA), a dataset featuring six graph-based tasks designed to evaluate and improve AI systems' capacity for visual abstraction. VGA uses diverse graph layouts (e.g., Kamada-Kawai vs. planar) to test reasoning independent of visual form. Experiments with state-of-the-art vision models and multimodal LLMs reveal a striking divide: humans achieved near-perfect accuracy across tasks, while models totally failed on isomorphism detection and showed limited success in path/cycle tasks. We further identify behavioral anomalies suggesting pseudo-intelligent pattern matching rather than genuine understanding. These findings underscore fundamental limitations in current AI models for visual understanding. By isolating the challenge of representation-invariant reasoning, the VGA provides a framework to drive progress toward human-like conceptualization in AI visual models. The Visual Graph Arena is available at: \href{https://vga.csail.mit.edu/}{vga.csail.mit.edu}
Optimizing Cloud-to-GPU Throughput for Deep Learning With Earth Observation Data
Training deep learning models on petabyte-scale Earth observation (EO) data requires separating compute resources from data storage. However, standard PyTorch data loaders cannot keep modern GPUs utilized when streaming GeoTIFF files directly from cloud storage. In this work, we benchmark GeoTIFF loading throughput from both cloud object storage and local SSD, systematically testing different loader configurations and data parameters. We focus on tile-aligned reads and worker thread pools, using Bayesian optimization to find optimal settings for each storage type. Our optimized configurations increase remote data loading throughput by 20x and local throughput by 4x compared to default settings. On three public EO benchmarks, models trained with optimized remote loading achieve the same accuracy as local training within identical time budgets. We improve validation IoU by 6-15% and maintain 85-95% GPU utilization versus 0-30% with standard configurations. Code is publicly available at https://github.com/microsoft/pytorch-cloud-geotiff-optimization
Challenging Vision-Language Models with Surgical Data: A New Dataset and Broad Benchmarking Study
While traditional computer vision models have historically struggled to generalize to endoscopic domains, the emergence of foundation models has shown promising cross-domain performance. In this work, we present the first large-scale study assessing the capabilities of Vision Language Models (VLMs) for endoscopic tasks with a specific focus on laparoscopic surgery. Using a diverse set of state-of-the-art models, multiple surgical datasets, and extensive human reference annotations, we address three key research questions: (1) Can current VLMs solve basic perception tasks on surgical images? (2) Can they handle advanced frame-based endoscopic scene understanding tasks? and (3) How do specialized medical VLMs compare to generalist models in this context? Our results reveal that VLMs can effectively perform basic surgical perception tasks, such as object counting and localization, with performance levels comparable to general domain tasks. However, their performance deteriorates significantly when the tasks require medical knowledge. Notably, we find that specialized medical VLMs currently underperform compared to generalist models across both basic and advanced surgical tasks, suggesting that they are not yet optimized for the complexity of surgical environments. These findings highlight the need for further advancements to enable VLMs to handle the unique challenges posed by surgery. Overall, our work provides important insights for the development of next-generation endoscopic AI systems and identifies key areas for improvement in medical visual language models.
Towards an Explainable Comparison and Alignment of Feature Embeddings
While several feature embedding models have been developed in the literature, comparisons of these embeddings have largely focused on their numerical performance in classification-related downstream applications. However, an interpretable comparison of different embeddings requires identifying and analyzing mismatches between sample groups clustered within the embedding spaces. In this work, we propose the \emph{Spectral Pairwise Embedding Comparison (SPEC)} framework to compare embeddings and identify their differences in clustering a reference dataset. Our approach examines the kernel matrices derived from two embeddings and leverages the eigendecomposition of the difference kernel matrix to detect sample clusters that are captured differently by the two embeddings. We present a scalable implementation of this kernel-based approach, with computational complexity that grows linearly with the sample size. Furthermore, we introduce an optimization problem using this framework to align two embeddings, ensuring that clusters identified in one embedding are also captured in the other model. We provide numerical results demonstrating the SPEC's application to compare and align embeddings on large-scale datasets such as ImageNet and MS-COCO. The code is available at [https://github.com/mjalali/embedding-comparison](github.com/mjalali/embedding-comparison).
GenIR: Generative Visual Feedback for Mental Image Retrieval
Vision-language models (VLMs) have shown strong performance on text-to-image retrieval benchmarks. However, bridging this success to real-world applications remains a challenge. In practice, human search behavior is rarely a one-shot action. Instead, it is often a multi-round process guided by clues in mind, that is, a mental image ranging from vague recollections to vivid mental representations of the target image. Motivated by this gap, we study the task of Mental Image Retrieval (MIR), which targets the realistic yet underexplored setting where users refine their search for a mentally envisioned image through multi-round interactions with an image search engine. Central to successful interactive retrieval is the capability of machines to provide users with clear, actionable feedback; however, existing methods rely on indirect or abstract verbal feedback, which can be ambiguous, misleading, or ineffective for users to refine the query. To overcome this, we propose GenIR, a generative multi-round retrieval paradigm leveraging diffusion-based image generation to explicitly reify the AI system's understanding at each round. These synthetic visual representations provide clear, interpretable feedback, enabling users to refine their queries intuitively and effectively. We further introduce a fully automated pipeline to generate a high-quality multi-round MIR dataset. Experimental results demonstrate that GenIR significantly outperforms existing interactive methods in the MIR scenario. This work establishes a new task with a dataset and an effective generative retrieval method, providing a foundation for future research in this direction.
STSBench: A Spatio-temporal Scenario Benchmark for Multi-modal Large Language Models in Autonomous Driving
We introduce STSBench, a scenario-based framework to benchmark the holistic understanding of vision-language models (VLMs) for autonomous driving. The framework automatically mines pre-defined traffic scenarios from any dataset using ground-truth annotations, provides an intuitive user interface for efficient human verification, and generates multiple-choice questions for model evaluation. Applied to the NuScenes dataset, we present STSnu, the first benchmark that evaluates the spatio-temporal reasoning capabilities of VLMs based on comprehensive 3D perception. Existing benchmarks typically target off-the-shelf or fine-tuned VLMs for images or videos from a single viewpoint and focus on semantic tasks such as object recognition, dense captioning, risk assessment, or scene understanding. In contrast, STSnu evaluates driving expert VLMs for end-to-end driving, operating on videos from multi-view cameras or LiDAR. It specifically assesses their ability to reason about both ego-vehicle actions and complex interactions among traffic participants, a crucial capability for autonomous vehicles. The benchmark features 43 diverse scenarios spanning multiple views and frames, resulting in 971 human-verified multiple-choice questions. A thorough evaluation uncovers critical shortcomings in existing models' ability to reason about fundamental traffic dynamics in complex environments. These findings highlight the urgent need for architectural advances that explicitly model spatio-temporal reasoning. By addressing a core gap in spatio-temporal evaluation, STSBench enables the development of more robust and explainable VLMs for autonomous driving.
comment: Dataset: https://huggingface.co/datasets/ivc-lrp/STSBench, Code: https://github.com/LRP-IVC/STSBench
PuzzleWorld: A Benchmark for Multimodal, Open-Ended Reasoning in Puzzlehunts
Puzzlehunts are a genre of complex, multi-step puzzles lacking well-defined problem definitions. In contrast to conventional reasoning benchmarks consisting of tasks with clear instructions, puzzlehunts require models to discover the underlying problem structure from multimodal evidence and iterative reasoning, mirroring real-world domains such as scientific discovery, exploratory data analysis, or investigative problem-solving. Despite recent progress in foundation models, their performance on such open-ended settings remains largely untested. In this paper, we introduce PuzzleWorld, a large-scale benchmark of 667 puzzlehunt-style problems designed to assess step-by-step, open-ended, and creative multimodal reasoning. Each puzzle is annotated with the final solution, detailed reasoning traces, and cognitive skill labels, enabling holistic benchmarking and fine-grained diagnostic analysis. Most state-of-the-art models achieve only 1-2% final answer accuracy, with the best model solving only 14% of puzzles and reaching 40% stepwise accuracy. To demonstrate the value of our reasoning annotations, we show that fine-tuning a small model on reasoning traces improves stepwise reasoning from 4% to 11%, while training on final answers alone degrades performance to near zero. Our error analysis reveals that current models exhibit myopic reasoning, are bottlenecked by the limitations of language-based inference, and lack sketching capabilities crucial for visual and spatial reasoning. We release PuzzleWorld at https://github.com/MIT-MI/PuzzleWorld to support future work on building more general, open-ended, and creative reasoning systems.
3DFlowAction: Learning Cross-Embodiment Manipulation from 3D Flow World Model
Manipulation has long been a challenging task for robots, while humans can effortlessly perform complex interactions with objects, such as hanging a cup on the mug rack. A key reason is the lack of a large and uniform dataset for teaching robots manipulation skills. Current robot datasets often record robot action in different action spaces within a simple scene. This hinders the robot to learn a unified and robust action representation for different robots within diverse scenes. Observing how humans understand a manipulation task, we find that understanding how the objects should move in the 3D space is a critical clue for guiding actions. This clue is embodiment-agnostic and suitable for both humans and different robots. Motivated by this, we aim to learn a 3D flow world model from both human and robot manipulation data. This model predicts the future movement of the interacting objects in 3D space, guiding action planning for manipulation. Specifically, we synthesize a large-scale 3D optical flow dataset, named ManiFlow-110k, through a moving object auto-detect pipeline. A video diffusion-based world model then learns manipulation physics from these data, generating 3D optical flow trajectories conditioned on language instructions. With the generated 3D object optical flow, we propose a flow-guided rendering mechanism, which renders the predicted final state and leverages GPT-4o to assess whether the predicted flow aligns with the task description. This equips the robot with a closed-loop planning ability. Finally, we consider the predicted 3D optical flow as constraints for an optimization policy to determine a chunk of robot actions for manipulation. Extensive experiments demonstrate strong generalization across diverse robotic manipulation tasks and reliable cross-embodiment adaptation without hardware-specific training.
SatelliteFormula: Multi-Modal Symbolic Regression from Remote Sensing Imagery for Physics Discovery
We propose SatelliteFormula, a novel symbolic regression framework that derives physically interpretable expressions directly from multi-spectral remote sensing imagery. Unlike traditional empirical indices or black-box learning models, SatelliteFormula combines a Vision Transformer-based encoder for spatial-spectral feature extraction with physics-guided constraints to ensure consistency and interpretability. Existing symbolic regression methods struggle with the high-dimensional complexity of multi-spectral data; our method addresses this by integrating transformer representations into a symbolic optimizer that balances accuracy and physical plausibility. Extensive experiments on benchmark datasets and remote sensing tasks demonstrate superior performance, stability, and generalization compared to state-of-the-art baselines. SatelliteFormula enables interpretable modeling of complex environmental variables, bridging the gap between data-driven learning and physical understanding.
Technical Report for Egocentric Mistake Detection for the HoloAssist Challenge
In this report, we address the task of online mistake detection, which is vital in domains like industrial automation and education, where real-time video analysis allows human operators to correct errors as they occur. While previous work focuses on procedural errors involving action order, broader error types must be addressed for real-world use. We introduce an online mistake detection framework that handles both procedural and execution errors (e.g., motor slips or tool misuse). Upon detecting an error, we use a large language model (LLM) to generate explanatory feedback. Experiments on the HoloAssist benchmark confirm the effectiveness of our approach, where our approach is placed second on the mistake detection task.
A Novel Large-scale Crop Dataset and Dual-stream Transformer Method for Fine-grained Hierarchical Crop Classification from Integrated Hyperspectral EnMAP Data and Multispectral Sentinel-2 Time Series
Fine-grained crop classification is crucial for precision agriculture and food security monitoring. It requires simultaneous capture of both phenological dynamics (obtained from multi-temporal satellite data like Sentinel-2) and subtle spectral variations (demanding nanometer-scale spectral resolution from hyperspectral imagery). Research combining these two modalities remains scarce currently due to challenges in hyperspectral data acquisition and crop types annotation costs. To address these issues, we construct a hierarchical hyperspectral crop dataset (H2Crop) by integrating 30m-resolution EnMAP hyperspectral data with Sentinel-2 time series. With over one million annotated field parcels organized in a four-tier crop taxonomy, H2Crop establishes a vital benchmark for fine-grained agricultural crop classification and hyperspectral image processing. We propose a dual-stream Transformer architecture that synergistically processes these modalities. It coordinates two specialized pathways: a spectral-spatial Transformer extracts fine-grained signatures from hyperspectral EnMAP data, while a temporal Swin Transformer extracts crop growth patterns from Sentinel-2 time series. The designed hierarchy classification heads with hierarchical fusion then simultaneously delivers multi-level classification across all taxonomic tiers. Experiments demonstrate that adding hyperspectral EnMAP data to Sentinel-2 time series yields a 4.2% average F1-scores improvement (peaking at 6.3%). Extensive comparisons also confirming our method's higher accuracy over existing deep learning approaches for crop type classification and the consistent benefits of hyperspectral data across varying temporal windows and crop change scenarios. Codes and dataset will be available at https://github.com/flyakon/H2Crop and www.glass.hku.hk Keywords: Crop type classification, precision agriculture, remote sensing, deep learning, hyperspectral data, Sentinel-2 time series, fine-grained crops
comment: 28 pages, 12 figures
CLaMR: Contextualized Late-Interaction for Multimodal Content Retrieval
Online video web content is richly multimodal: a single video blends vision, speech, ambient audio, and on-screen text. Retrieval systems typically treat these modalities as independent retrieval sources, which can lead to noisy and subpar retrieval. We explore multimodal video content retrieval, where relevance can be scored from one particular modality or jointly across multiple modalities simultaneously. Consequently, an effective retriever must dynamically choose which modality (or set of modalities) best addresses the query. We introduce CLaMR, a multimodal, late-interaction retriever that jointly indexes 4 modalities: video frames, transcribed speech, on-screen text, and metadata. CLaMR jointly encodes all modalities with a unified multimodal backbone for improved contextualization and is trained to enhance dynamic modality selection via two key innovations. First, given the lack of training data for multimodal retrieval, we introduce MultiVENT 2.0++, a large-scale synthetic training dataset built on MultiVENT 2.0 (event-centric videos in various languages paired with queries) with modality-targeted queries. Next, we propose a modality-aware loss that jointly trains according to a standard contrastive objective alongside an objective for learning correct modality usage. On the test sets of MultiVENT 2.0++ and MSRVTT, conventional aggregation strategies, such as averaging similarities for baseline retrievers, degrade performance by introducing noise from irrelevant modalities. In contrast, CLaMR consistently outperforms existing retrievers: on MultiVENT 2.0++, CLaMR improves nDCG@10 by 25.6 over the best single-modality retriever and by 35.4 over the best multi-modality retriever. We illustrate CLaMR's downstream utility on long-video QA, retrieving relevant frames and obtaining a 3.50% boost over LanguageBind on Video-MME and 1.42% over dense sampling on LongVideoBench.
comment: 18 pages. Code and data: https://github.com/meetdavidwan/clamr
Gradient Similarity Surgery in Multi-Task Deep Learning ECML
The multi-task learning ($MTL$) paradigm aims to simultaneously learn multiple tasks within a single model capturing higher-level, more general hidden patterns that are shared by the tasks. In deep learning, a significant challenge in the backpropagation training process is the design of advanced optimisers to improve the convergence speed and stability of the gradient descent learning rule. In particular, in multi-task deep learning ($MTDL$) the multitude of tasks may generate potentially conflicting gradients that would hinder the concurrent convergence of the diverse loss functions. This challenge arises when the gradients of the task objectives have either different magnitudes or opposite directions, causing one or a few to dominate or to interfere with each other, thus degrading the training process. Gradient surgery methods address the problem explicitly dealing with conflicting gradients by adjusting the overall gradient trajectory. This work introduces a novel gradient surgery method, the Similarity-Aware Momentum Gradient Surgery (SAM-GS), which provides an effective and scalable approach based on a gradient magnitude similarity measure to guide the optimisation process. The SAM-GS surgery adopts gradient equalisation and modulation of the first-order momentum. A series of experimental tests have shown the effectiveness of SAM-GS on synthetic problems and $MTL$ benchmarks. Gradient magnitude similarity plays a crucial role in regularising gradient aggregation in $MTDL$ for the optimisation of the learning process.
comment: Paper accepted at ECMLPKDD 2025
CCLSTM: Coupled Convolutional Long-Short Term Memory Network for Occupancy Flow Forecasting
Predicting future states of dynamic agents is a fundamental task in autonomous driving. An expressive representation for this purpose is Occupancy Flow Fields, which provide a scalable and unified format for modeling motion, spatial extent, and multi-modal future distributions. While recent methods have achieved strong results using this representation, they often depend on high-quality vectorized inputs, which are unavailable or difficult to generate in practice, and the use of transformer-based architectures, which are computationally intensive and costly to deploy. To address these issues, we propose \textbf{Coupled Convolutional LSTM (CCLSTM)}, a lightweight, end-to-end trainable architecture based solely on convolutional operations. Without relying on vectorized inputs or self-attention mechanisms, CCLSTM effectively captures temporal dynamics and spatial occupancy-flow correlations using a compact recurrent convolutional structure. Despite its simplicity, CCLSTM achieves state-of-the-art performance on occupancy flow metrics and, as of this submission, ranks \(1^{\text{st}}\) in all metrics on the 2024 Waymo Occupancy and Flow Prediction Challenge leaderboard.
Bidirectional Image-Event Guided Low-Light Image Enhancement
Under extreme low-light conditions, traditional frame-based cameras, due to their limited dynamic range and temporal resolution, face detail loss and motion blur in captured images. To overcome this bottleneck, researchers have introduced event cameras and proposed event-guided low-light image enhancement algorithms. However, these methods neglect the influence of global low-frequency noise caused by dynamic lighting conditions and local structural discontinuities in sparse event data. To address these issues, we propose an innovative Bidirectional guided Low-light Image Enhancement framework (BiLIE). Specifically, to mitigate the significant low-frequency noise introduced by global illumination step changes, we introduce the frequency high-pass filtering-based Event Feature Enhancement (EFE) module at the event representation level to suppress the interference of low-frequency information, and preserve and highlight the high-frequency edges.Furthermore, we design a Bidirectional Cross Attention Fusion (BCAF) mechanism to acquire high-frequency structures and edges while suppressing structural discontinuities and local noise introduced by sparse event guidance, thereby generating smoother fused representations.Additionally, considering the poor visual quality and color bias in existing datasets, we provide a new dataset (RELIE), with high-quality ground truth through a reliable enhancement scheme. Extensive experimental results demonstrate that our proposed BiLIE outperforms state-of-the-art methods by 0.96dB in PSNR and 0.03 in LPIPS.
WoundAIssist: A Patient-Centered Mobile App for AI-Assisted Wound Care With Physicians in the Loop
The rising prevalence of chronic wounds, especially in aging populations, presents a significant healthcare challenge due to prolonged hospitalizations, elevated costs, and reduced patient quality of life. Traditional wound care is resource-intensive, requiring frequent in-person visits that strain both patients and healthcare professionals (HCPs). Therefore, we present WoundAIssist, a patient-centered, AI-driven mobile application designed to support telemedical wound care. WoundAIssist enables patients to regularly document wounds at home via photographs and questionnaires, while physicians remain actively engaged in the care process through remote monitoring and video consultations. A distinguishing feature is an integrated lightweight deep learning model for on-device wound segmentation, which, combined with patient-reported data, enables continuous monitoring of wound healing progression. Developed through an iterative, user-centered process involving both patients and domain experts, WoundAIssist prioritizes an user-friendly design, particularly for elderly patients. A conclusive usability study with patients and dermatologists reported excellent usability, good app quality, and favorable perceptions of the AI-driven wound recognition. Our main contribution is two-fold: (I) the implementation and (II) evaluation of WoundAIssist, an easy-to-use yet comprehensive telehealth solution designed to bridge the gap between patients and HCPs. Additionally, we synthesize design insights for remote patient monitoring apps, derived from over three years of interdisciplinary research, that may inform the development of similar digital health tools across clinical domains.
comment: Submitted to ACM Health (Special Issue)
DermaCon-IN: A Multi-concept Annotated Dermatological Image Dataset of Indian Skin Disorders for Clinical AI Research
Artificial intelligence is poised to augment dermatological care by enabling scalable image-based diagnostics. Yet, the development of robust and equitable models remains hindered by datasets that fail to capture the clinical and demographic complexity of real-world practice. This complexity stems from region-specific disease distributions, wide variation in skin tones, and the underrepresentation of outpatient scenarios from non-Western populations. We introduce DermaCon-IN, a prospectively curated dermatology dataset comprising over 5,450 clinical images from approximately 3,000 patients across outpatient clinics in South India. Each image is annotated by board-certified dermatologists with over 240 distinct diagnoses, structured under a hierarchical, etiology-based taxonomy adapted from Rook's classification. The dataset captures a wide spectrum of dermatologic conditions and tonal variation commonly seen in Indian outpatient care. We benchmark a range of architectures including convolutional models (ResNet, DenseNet, EfficientNet), transformer-based models (ViT, MaxViT, Swin), and Concept Bottleneck Models to establish baseline performance and explore how anatomical and concept-level cues may be integrated. These results are intended to guide future efforts toward interpretable and clinically realistic models. DermaCon-IN provides a scalable and representative foundation for advancing dermatology AI in real-world settings.
VideoChat-A1: Thinking with Long Videos by Chain-of-Shot Reasoning
The recent advance in video understanding has been driven by multimodal large language models (MLLMs). But these MLLMs are good at analyzing short videos, while suffering from difficulties in understanding videos with a longer context. To address this difficulty, several agent paradigms have recently been proposed, using MLLMs as agents for retrieving extra contextual knowledge in a long video. However, most existing agents ignore the key fact that a long video is composed with multiple shots, i.e., to answer the user question from a long video, it is critical to deeply understand its relevant shots like human. Without such insight, these agents often mistakenly find redundant even noisy temporal context, restricting their capacity for long video understanding. To fill this gap, we propose VideoChat-A1, a novel long video agent paradigm. Different from the previous works, our VideoChat-A1 can deeply think with long videos, via a distinct chain-of-shot reasoning paradigm. More specifically, it can progressively select the relevant shots of user question, and look into these shots in a coarse-to-fine partition. By multi-modal reasoning along the shot chain, VideoChat-A1 can effectively mimic step-by-step human thinking process, allowing to interactively discover preferable temporal context for thoughtful understanding in long videos. Extensive experiments show that, our VideoChat-A1 achieves the state-of-the-art performance on the mainstream long video QA benchmarks, e.g., it achieves 77.0 on VideoMME and 70.1 on EgoSchema, outperforming its strong baselines (e.g., Intern2.5VL-8B and InternVideo2.5-8B), by up to 10.8\% and 6.2\%. Compared to leading close-source GPT-4o and Gemini 1.5 Pro, VideoChat-A1 offers competitive accuracy, but with 7\% input frames and 12\% inference time on average.
LinGuinE: Longitudinal Guidance Estimation for Volumetric Lung Tumour Segmentation
Segmentation of lung gross tumour volumes is an important first step in radiotherapy and surgical intervention, and is starting to play a role in assessing chemotherapy response. Response to a drug is measured by tracking the tumour volumes over a series of CT scans over a time period i.e. a longitudinal study. However, there currently exist few solutions for automated or semi-automated longitudinal tumour segmentation. This paper introduces LinGuinE, an automated method to segment a longitudinal series of lung tumours. A radiologist must provide an initial input, indicating the location of the tumour in a CT scan at an arbitrary time point. LinGuinE samples points inside this tumour and propagates them to another time point using rigid registration. A click validity classifier selects points which still fall within the tumour; these are used to automatically create a segmentation in the new time point. We test LinGuinE on a dataset acquired from a phase 3 clinical trial for lung tumours and the publicly available 4-D lung CBCT dataset. We find that LinGuinE improves the Dice on both test sets by over 20% (p< 0.05) across 63 longitudinal studies. We show that any time point can be used as a starting point, conduct ablation experiments, and find that our LinGuinE setup yields the best results on both test datasets.
comment: 10 pages, 3 figures
Feedback Guidance of Diffusion Models
While Classifier-Free Guidance (CFG) has become standard for improving sample fidelity in conditional diffusion models, it can harm diversity and induce memorization by applying constant guidance regardless of whether a particular sample needs correction. We propose FeedBack Guidance (FBG), which uses a state-dependent coefficient to self-regulate guidance amounts based on need. Our approach is derived from first principles by assuming the learned conditional distribution is linearly corrupted by the unconditional distribution, contrasting with CFG's implicit multiplicative assumption. Our scheme relies on feedback of its own predictions about the conditional signal informativeness to adapt guidance dynamically during inference, challenging the view of guidance as a fixed hyperparameter. The approach is benchmarked on ImageNet512x512, where it significantly outperforms Classifier-Free Guidance and is competitive to Limited Interval Guidance (LIG) while benefitting from a strong mathematical framework. On Text-To-Image generation, we demonstrate that, as anticipated, our approach automatically applies higher guidance scales for complex prompts than for simpler ones and that it can be easily combined with existing guidance schemes such as CFG or LIG.
comment: Preprint. Article currently under review. Code is available at: https://github.com/FelixKoulischer/FBG_using_edm2
WisWheat: A Three-Tiered Vision-Language Dataset for Wheat Management
Wheat management strategies play a critical role in determining yield. Traditional management decisions often rely on labour-intensive expert inspections, which are expensive, subjective and difficult to scale. Recently, Vision-Language Models (VLMs) have emerged as a promising solution to enable scalable, data-driven management support. However, due to a lack of domain-specific knowledge, directly applying VLMs to wheat management tasks results in poor quantification and reasoning capabilities, ultimately producing vague or even misleading management recommendations. In response, we propose WisWheat, a wheat-specific dataset with a three-layered design to enhance VLM performance on wheat management tasks: (1) a foundational pretraining dataset of 47,871 image-caption pairs for coarsely adapting VLMs to wheat morphology; (2) a quantitative dataset comprising 7,263 VQA-style image-question-answer triplets for quantitative trait measuring tasks; and (3) an Instruction Fine-tuning dataset with 4,888 samples targeting biotic and abiotic stress diagnosis and management plan for different phenological stages. Extensive experimental results demonstrate that fine-tuning open-source VLMs (e.g., Qwen2.5 7B) on our dataset leads to significant performance improvements. Specifically, the Qwen2.5 VL 7B fine-tuned on our wheat instruction dataset achieves accuracy scores of 79.2% and 84.6% on wheat stress and growth stage conversation tasks respectively, surpassing even general-purpose commercial models such as GPT-4o by a margin of 11.9% and 34.6%.
Full Conformal Adaptation of Medical Vision-Language Models
Vision-language models (VLMs) pre-trained at large scale have shown unprecedented transferability capabilities and are being progressively integrated into medical image analysis. Although its discriminative potential has been widely explored, its reliability aspect remains overlooked. This work investigates their behavior under the increasingly popular split conformal prediction (SCP) framework, which theoretically guarantees a given error level on output sets by leveraging a labeled calibration set. However, the zero-shot performance of VLMs is inherently limited, and common practice involves few-shot transfer learning pipelines, which cannot absorb the rigid exchangeability assumptions of SCP. To alleviate this issue, we propose full conformal adaptation, a novel setting for jointly adapting and conformalizing pre-trained foundation models, which operates transductively over each test data point using a few-shot adaptation set. Moreover, we complement this framework with SS-Text, a novel training-free linear probe solver for VLMs that alleviates the computational cost of such a transductive approach. We provide comprehensive experiments using 3 different modality-specialized medical VLMs and 9 adaptation tasks. Our framework requires exactly the same data as SCP, and provides consistent relative improvements of up to 27% on set efficiency while maintaining the same coverage guarantees.
comment: IPMI 2025. Code: https://github.com/jusiro/FCA
FPDANet: A Multi-Section Classification Model for Intelligent Screening of Fetal Ultrasound
ResNet has been widely used in image classification tasks due to its ability to model the residual dependence of constant mappings for linear computation. However, the ResNet method adopts a unidirectional transfer of features and lacks an effective method to correlate contextual information, which is not effective in classifying fetal ultrasound images in the classification task, and fetal ultrasound images have problems such as low contrast, high similarity, and high noise. Therefore, we propose a bilateral multi-scale information fusion network-based FPDANet to address the above challenges. Specifically, we design the positional attention mechanism (DAN) module, which utilizes the similarity of features to establish the dependency of different spatial positional features and enhance the feature representation. In addition, we design a bilateral multi-scale (FPAN) information fusion module to capture contextual and global feature dependencies at different feature scales, thereby further improving the model representation. FPDANet classification results obtained 91.05\% and 100\% in Top-1 and Top-5 metrics, respectively, and the experimental results proved the effectiveness and robustness of FPDANet.
TRUST: Test-time Resource Utilization for Superior Trustworthiness
Standard uncertainty estimation techniques, such as dropout, often struggle to clearly distinguish reliable predictions from unreliable ones. We attribute this limitation to noisy classifier weights, which, while not impairing overall class-level predictions, render finer-level statistics less informative. To address this, we propose a novel test-time optimization method that accounts for the impact of such noise to produce more reliable confidence estimates. This score defines a monotonic subset-selection function, where population accuracy consistently increases as samples with lower scores are removed, and it demonstrates superior performance in standard risk-based metrics such as AUSE and AURC. Additionally, our method effectively identifies discrepancies between training and test distributions, reliably differentiates in-distribution from out-of-distribution samples, and elucidates key differences between CNN and ViT classifiers across various vision datasets.
SDS-Net: Shallow-Deep Synergism-detection Network for infrared small target detection
Current CNN-based infrared small target detection(IRSTD) methods generally overlook the heterogeneity between shallow and deep features, leading to inefficient collaboration between shallow fine grained structural information and deep high-level semantic representations. Additionally, the dependency relationships and fusion mechanisms across different feature hierarchies lack systematic modeling, which fails to fully exploit the complementarity of multilevel features. These limitations hinder IRSTD performance while incurring substantial computational costs. To address these challenges, this paper proposes a shallow-deep synergistic detection network (SDS-Net) that efficiently models multilevel feature representations to increase both the detection accuracy and computational efficiency in IRSTD tasks. SDS-Net introduces a dual-branch architecture that separately models the structural characteristics and semantic properties of features, effectively preserving shallow spatial details while capturing deep semantic representations, thereby achieving high-precision detection with significantly improved inference speed. Furthermore, the network incorporates an adaptive feature fusion module to dynamically model cross-layer feature correlations, enhancing overall feature collaboration and representation capability. Comprehensive experiments on three public datasets (NUAA-SIRST, NUDT-SIRST, and IRSTD-1K) demonstrate that SDS-Net outperforms state-of-the-art IRSTD methods while maintaining low computational complexity and high inference efficiency, showing superior detection performance and broad application prospects. Our code will be made public at https://github.com/PhysiLearn/SDS-Net.
comment: 13 pages,9 figures, Submitted IEEE Transactions on Geoscience and Remote Sensing
Tensor-to-Tensor Models with Fast Iterated Sum Features
Data in the form of images or higher-order tensors is ubiquitous in modern deep learning applications. Owing to their inherent high dimensionality, the need for subquadratic layers processing such data is even more pressing than for sequence data. We propose a novel tensor-to-tensor layer with linear cost in the input size, utilizing the mathematical gadget of ``corner trees'' from the field of permutation counting. In particular, for order-two tensors, we provide an image-to-image layer that can be plugged into image processing pipelines. On the one hand, our method can be seen as a higher-order generalization of state-space models. On the other hand, it is based on a multiparameter generalization of the signature of iterated integrals (or sums). The proposed tensor-to-tensor concept is used to build a neural network layer called the Fast Iterated Sums (FIS) layer which integrates seamlessly with other layer types. We demonstrate the usability of the FIS layer with both classification and anomaly detection tasks. By replacing some layers of a smaller ResNet architecture with FIS, a similar accuracy (with a difference of only 0.1\%) was achieved in comparison to a larger ResNet while reducing the number of trainable parameters and multi-add operations. The FIS layer was also used to build an anomaly detection model that achieved an average AUROC of 97.3\% on the texture images of the popular MVTec AD dataset. The processing and modelling codes are publicly available at https://github.com/diehlj/fast-iterated-sums.
HAVIR: HierArchical Vision to Image Reconstruction using CLIP-Guided Versatile Diffusion
Reconstructing visual information from brain activity bridges the gap between neuroscience and computer vision. Even though progress has been made in decoding images from fMRI using generative models, a challenge remains in accurately recovering highly complex visual stimuli. This difficulty stems from their elemental density and diversity, sophisticated spatial structures, and multifaceted semantic information. To address these challenges, we propose HAVIR that contains two adapters: (1) The AutoKL Adapter transforms fMRI voxels into a latent diffusion prior, capturing topological structures; (2) The CLIP Adapter converts the voxels to CLIP text and image embeddings, containing semantic information. These complementary representations are fused by Versatile Diffusion to generate the final reconstructed image. To extract the most essential semantic information from complex scenarios, the CLIP Adapter is trained with text captions describing the visual stimuli and their corresponding semantic images synthesized from these captions. The experimental results demonstrate that HAVIR effectively reconstructs both structural features and semantic information of visual stimuli even in complex scenarios, outperforming existing models.
comment: 15 pages, 6 figures, 3 tabs
Sample-Specific Noise Injection For Diffusion-Based Adversarial Purification
Diffusion-based purification (DBP) methods aim to remove adversarial noise from the input sample by first injecting Gaussian noise through a forward diffusion process, and then recovering the clean example through a reverse generative process. In the above process, how much Gaussian noise is injected to the input sample is key to the success of DBP methods, which is controlled by a constant noise level $t^*$ for all samples in existing methods. In this paper, we discover that an optimal $t^*$ for each sample indeed could be different. Intuitively, the cleaner a sample is, the less the noise it should be injected, and vice versa. Motivated by this finding, we propose a new framework, called Sample-specific Score-aware Noise Injection (SSNI). Specifically, SSNI uses a pre-trained score network to estimate how much a data point deviates from the clean data distribution (i.e., score norms). Then, based on the magnitude of score norms, SSNI applies a reweighting function to adaptively adjust $t^*$ for each sample, achieving sample-specific noise injections. Empirically, incorporating our framework with existing DBP methods results in a notable improvement in both accuracy and robustness on CIFAR-10 and ImageNet-1K, highlighting the necessity to allocate distinct noise levels to different samples in DBP methods. Our code is available at: https://github.com/tmlr-group/SSNI.
O-MaMa @ EgoExo4D Correspondence Challenge: Learning Object Mask Matching between Egocentric and Exocentric Views
The goal of the correspondence task is to segment specific objects across different views. This technical report re-defines cross-image segmentation by treating it as a mask matching task. Our method consists of: (1) A Mask-Context Encoder that pools dense DINOv2 semantic features to obtain discriminative object-level representations from FastSAM mask candidates, (2) an Ego$\leftrightarrow$Exo Cross-Attention that fuses multi-perspective observations, (3) a Mask Matching contrastive loss that aligns cross-view features in a shared latent space, and (4) a Hard Negative Adjacent Mining strategy to encourage the model to better differentiate between nearby objects.
Restereo: Diffusion stereo video generation and restoration
Stereo video generation has been gaining increasing attention with recent advancements in video diffusion models. However, most existing methods focus on generating 3D stereoscopic videos from monocular 2D videos. These approaches typically assume that the input monocular video is of high quality, making the task primarily about inpainting occluded regions in the warped video while preserving disoccluded areas. In this paper, we introduce a new pipeline that not only generates stereo videos but also enhances both left-view and right-view videos consistently with a single model. Our approach achieves this by fine-tuning the model on degraded data for restoration, as well as conditioning the model on warped masks for consistent stereo generation. As a result, our method can be fine-tuned on a relatively small synthetic stereo video datasets and applied to low-quality real-world videos, performing both stereo video generation and restoration. Experiments demonstrate that our method outperforms existing approaches both qualitatively and quantitatively in stereo video generation from low-resolution inputs.
comment: 12 pages, 5 figures
Enhancing Orthopox Image Classification Using Hybrid Machine Learning and Deep Learning Models
Orthopoxvirus infections must be accurately classified from medical pictures for an easy and early diagnosis and epidemic prevention. The necessity for automated and scalable solutions is highlighted by the fact that traditional diagnostic techniques can be time-consuming and require expert interpretation and there are few and biased data sets of the different types of Orthopox. In order to improve classification performance and lower computational costs, a hybrid strategy is put forth in this paper that uses Machine Learning models combined with pretrained Deep Learning models to extract deep feature representations without the need for augmented data. The findings show that this feature extraction method, when paired with other methods in the state-of-the-art, produces excellent classification outcomes while preserving training and inference efficiency. The proposed approach demonstrates strong generalization and robustness across multiple evaluation settings, offering a scalable and interpretable solution for real-world clinical deployment.
Bootstrapping World Models from Dynamics Models in Multimodal Foundation Models
To what extent do vision-and-language foundation models possess a realistic world model (observation $\times$ action $\rightarrow$ observation) and a dynamics model (observation $\times$ observation $\rightarrow$ action), when actions are expressed through language? While open-source foundation models struggle with both, we find that fine-tuning them to acquire a dynamics model through supervision is significantly easier than acquiring a world model. In turn, dynamics models can be used to bootstrap world models through two main strategies: 1) weakly supervised learning from synthetic data and 2) inference time verification. Firstly, the dynamics model can annotate actions for unlabelled pairs of video frame observations to expand the training data. We further propose a new objective, where image tokens in observation pairs are weighted by their importance, as predicted by a recognition model. Secondly, the dynamics models can assign rewards to multiple samples of the world model to score them, effectively guiding search at inference time. We evaluate the world models resulting from both strategies through the task of action-centric image editing on Aurora-Bench. Our best model achieves a performance competitive with state-of-the-art image editing models, improving on them by a margin of $15\%$ on real-world subsets according to GPT4o-as-judge, and achieving the best average human evaluation across all subsets of Aurora-Bench.
MCA-Bench: A Multimodal Benchmark for Evaluating CAPTCHA Robustness Against VLM-based Attacks
As automated attack techniques rapidly advance, CAPTCHAs remain a critical defense mechanism against malicious bots. However, existing CAPTCHA schemes encompass a diverse range of modalities -- from static distorted text and obfuscated images to interactive clicks, sliding puzzles, and logic-based questions -- yet the community still lacks a unified, large-scale, multimodal benchmark to rigorously evaluate their security robustness. To address this gap, we introduce MCA-Bench, a comprehensive and reproducible benchmarking suite that integrates heterogeneous CAPTCHA types into a single evaluation protocol. Leveraging a shared vision-language model backbone, we fine-tune specialized cracking agents for each CAPTCHA category, enabling consistent, cross-modal assessments. Extensive experiments reveal that MCA-Bench effectively maps the vulnerability spectrum of modern CAPTCHA designs under varied attack settings, and crucially offers the first quantitative analysis of how challenge complexity, interaction depth, and model solvability interrelate. Based on these findings, we propose three actionable design principles and identify key open challenges, laying the groundwork for systematic CAPTCHA hardening, fair benchmarking, and broader community collaboration. Datasets and code are available online.
comment: 31 pages, 8 figures
Domain Adaptation in Agricultural Image Analysis: A Comprehensive Review from Shallow Models to Deep Learning
With the increasing use of computer vision in agriculture, image analysis has become crucial for tasks like crop health monitoring and pest detection. However, significant domain shifts between source and target domains-due to environmental differences, crop types, and data acquisition methods-pose challenges. These domain gaps limit the ability of models to generalize across regions, seasons, and complex agricultural environments. This paper explores how Domain Adaptation (DA) techniques can address these challenges, focusing on their role in enhancing the cross-domain transferability of agricultural image analysis. DA has gained attention in agricultural vision tasks due to its potential to mitigate domain heterogeneity. The paper systematically reviews recent advances in DA for agricultural imagery, particularly its practical applications in complex agricultural environments. We examine the key drivers for adopting DA in agriculture, such as limited labeled data, weak model transferability, and dynamic environmental conditions. We also discuss its use in crop health monitoring, pest detection, and fruit recognition, highlighting improvements in performance across regions and seasons. The paper categorizes DA methods into shallow and deep learning models, with further divisions into supervised, semi-supervised, and unsupervised approaches. A special focus is given to adversarial learning-based DA methods, which have shown great promise in challenging agricultural scenarios. Finally, we review key public datasets in agricultural imagery, analyzing their value and limitations in DA research. This review provides a comprehensive framework for researchers, offering insights into current research gaps and supporting the advancement of DA methods in agricultural image analysis.
Dy3DGS-SLAM: Monocular 3D Gaussian Splatting SLAM for Dynamic Environments
Current Simultaneous Localization and Mapping (SLAM) methods based on Neural Radiance Fields (NeRF) or 3D Gaussian Splatting excel in reconstructing static 3D scenes but struggle with tracking and reconstruction in dynamic environments, such as real-world scenes with moving elements. Existing NeRF-based SLAM approaches addressing dynamic challenges typically rely on RGB-D inputs, with few methods accommodating pure RGB input. To overcome these limitations, we propose Dy3DGS-SLAM, the first 3D Gaussian Splatting (3DGS) SLAM method for dynamic scenes using monocular RGB input. To address dynamic interference, we fuse optical flow masks and depth masks through a probabilistic model to obtain a fused dynamic mask. With only a single network iteration, this can constrain tracking scales and refine rendered geometry. Based on the fused dynamic mask, we designed a novel motion loss to constrain the pose estimation network for tracking. In mapping, we use the rendering loss of dynamic pixels, color, and depth to eliminate transient interference and occlusion caused by dynamic objects. Experimental results demonstrate that Dy3DGS-SLAM achieves state-of-the-art tracking and rendering in dynamic environments, outperforming or matching existing RGB-D methods.
MOGO: Residual Quantized Hierarchical Causal Transformer for High-Quality and Real-Time 3D Human Motion Generation
Recent advances in transformer-based text-to-motion generation have led to impressive progress in synthesizing high-quality human motion. Nevertheless, jointly achieving high fidelity, streaming capability, real-time responsiveness, and scalability remains a fundamental challenge. In this paper, we propose MOGO (Motion Generation with One-pass), a novel autoregressive framework tailored for efficient and real-time 3D motion generation. MOGO comprises two key components: (1) MoSA-VQ, a motion scale-adaptive residual vector quantization module that hierarchically discretizes motion sequences with learnable scaling to produce compact yet expressive representations; and (2) RQHC-Transformer, a residual quantized hierarchical causal transformer that generates multi-layer motion tokens in a single forward pass, significantly reducing inference latency. To enhance semantic fidelity, we further introduce a text condition alignment mechanism that improves motion decoding under textual control. Extensive experiments on benchmark datasets including HumanML3D, KIT-ML, and CMP demonstrate that MOGO achieves competitive or superior generation quality compared to state-of-the-art transformer-based methods, while offering substantial improvements in real-time performance, streaming generation, and generalization under zero-shot settings.
comment: 9 pages, 4 figures, conference
SurGSplat: Progressive Geometry-Constrained Gaussian Splatting for Surgical Scene Reconstruction
Intraoperative navigation relies heavily on precise 3D reconstruction to ensure accuracy and safety during surgical procedures. However, endoscopic scenarios present unique challenges, including sparse features and inconsistent lighting, which render many existing Structure-from-Motion (SfM)-based methods inadequate and prone to reconstruction failure. To mitigate these constraints, we propose SurGSplat, a novel paradigm designed to progressively refine 3D Gaussian Splatting (3DGS) through the integration of geometric constraints. By enabling the detailed reconstruction of vascular structures and other critical features, SurGSplat provides surgeons with enhanced visual clarity, facilitating precise intraoperative decision-making. Experimental evaluations demonstrate that SurGSplat achieves superior performance in both novel view synthesis (NVS) and pose estimation accuracy, establishing it as a high-fidelity and efficient solution for surgical scene reconstruction. More information and results can be found on the page https://surgsplat.github.io/.
FADE: Frequency-Aware Diffusion Model Factorization for Video Editing CVPR
Recent advancements in diffusion frameworks have significantly enhanced video editing, achieving high fidelity and strong alignment with textual prompts. However, conventional approaches using image diffusion models fall short in handling video dynamics, particularly for challenging temporal edits like motion adjustments. While current video diffusion models produce high-quality results, adapting them for efficient editing remains difficult due to the heavy computational demands that prevent the direct application of previous image editing techniques. To overcome these limitations, we introduce FADE, a training-free yet highly effective video editing approach that fully leverages the inherent priors from pre-trained video diffusion models via frequency-aware factorization. Rather than simply using these models, we first analyze the attention patterns within the video model to reveal how video priors are distributed across different components. Building on these insights, we propose a factorization strategy to optimize each component's specialized role. Furthermore, we devise spectrum-guided modulation to refine the sampling trajectory with frequency domain cues, preventing information leakage and supporting efficient, versatile edits while preserving the basic spatial and temporal structure. Extensive experiments on real-world videos demonstrate that our method consistently delivers high-quality, realistic and temporally coherent editing results both qualitatively and quantitatively. Code is available at https://github.com/EternalEvan/FADE .
comment: Accepted by IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2025
Rethinking Semi-supervised Segmentation Beyond Accuracy: Reliability and Robustness
Semantic segmentation is critical for scene understanding but demands costly pixel-wise annotations, attracting increasing attention to semi-supervised approaches to leverage abundant unlabeled data. While semi-supervised segmentation is often promoted as a path toward scalable, real-world deployment, it is astonishing that current evaluation protocols exclusively focus on segmentation accuracy, entirely overlooking reliability and robustness. These qualities, which ensure consistent performance under diverse conditions (robustness) and well-calibrated model confidences as well as meaningful uncertainties (reliability), are essential for safety-critical applications like autonomous driving, where models must handle unpredictable environments and avoid sudden failures at all costs. To address this gap, we introduce the Reliable Segmentation Score (RSS), a novel metric that combines predictive accuracy, calibration, and uncertainty quality measures via a harmonic mean. RSS penalizes deficiencies in any of its components, providing an easy and intuitive way of holistically judging segmentation models. Comprehensive evaluations of UniMatchV2 against its predecessor and a supervised baseline show that semi-supervised methods often trade reliability for accuracy. While out-of-domain evaluations demonstrate UniMatchV2's robustness, they further expose persistent reliability shortcomings. We advocate for a shift in evaluation protocols toward more holistic metrics like RSS to better align semi-supervised learning research with real-world deployment needs.
QualitEye: Public and Privacy-preserving Gaze Data Quality Verification
Gaze-based applications are increasingly advancing with the availability of large datasets but ensuring data quality presents a substantial challenge when collecting data at scale. It further requires different parties to collaborate, therefore, privacy concerns arise. We propose QualitEye--the first method for verifying image-based gaze data quality. QualitEye employs a new semantic representation of eye images that contains the information required for verification while excluding irrelevant information for better domain adaptation. QualitEye covers a public setting where parties can freely exchange data and a privacy-preserving setting where parties cannot reveal their raw data nor derive gaze features/labels of others with adapted private set intersection protocols. We evaluate QualitEye on the MPIIFaceGaze and GazeCapture datasets and achieve a high verification performance (with a small overhead in runtime for privacy-preserving versions). Hence, QualitEye paves the way for new gaze analysis methods at the intersection of machine learning, human-computer interaction, and cryptography.
Proactive Assistant Dialogue Generation from Streaming Egocentric Videos
Recent advances in conversational AI have been substantial, but developing real-time systems for perceptual task guidance remains challenging. These systems must provide interactive, proactive assistance based on streaming visual inputs, yet their development is constrained by the costly and labor-intensive process of data collection and system evaluation. To address these limitations, we present a comprehensive framework with three key contributions. First, we introduce a novel data curation pipeline that synthesizes dialogues from annotated egocentric videos, resulting in \dataset, a large-scale synthetic dialogue dataset spanning multiple domains. Second, we develop a suite of automatic evaluation metrics, validated through extensive human studies. Third, we propose an end-to-end model that processes streaming video inputs to generate contextually appropriate responses, incorporating novel techniques for handling data imbalance and long-duration videos. This work lays the foundation for developing real-time, proactive AI assistants capable of guiding users through diverse tasks. Project page: https://pro-assist.github.io/
Query Nearby: Offset-Adjusted Mask2Former enhances small-organ segmentation
Medical segmentation plays an important role in clinical applications like radiation therapy and surgical guidance, but acquiring clinically acceptable results is difficult. In recent years, progress has been witnessed with the success of utilizing transformer-like models, such as combining the attention mechanism with CNN. In particular, transformer-based segmentation models can extract global information more effectively, compensating for the drawbacks of CNN modules that focus on local features. However, utilizing transformer architecture is not easy, because training transformer-based models can be resource-demanding. Moreover, due to the distinct characteristics in the medical field, especially when encountering mid-sized and small organs with compact regions, their results often seem unsatisfactory. For example, using ViT to segment medical images directly only gives a DSC of less than 50\%, which is far lower than the clinically acceptable score of 80\%. In this paper, we used Mask2Former with deformable attention to reduce computation and proposed offset adjustment strategies to encourage sampling points within the same organs during attention weights computation, thereby integrating compact foreground information better. Additionally, we utilized the 4th feature map in Mask2Former to provide a coarse location of organs, and employed an FCN-based auxiliary head to help train Mask2Former more quickly using Dice loss. We show that our model achieves SOTA (State-of-the-Art) performance on the HaNSeg and SegRap2023 datasets, especially on mid-sized and small organs.Our code is available at link https://github.com/earis/Offsetadjustment\_Background-location\_Decoder\_Mask2former.
Object Navigation with Structure-Semantic Reasoning-Based Multi-level Map and Multimodal Decision-Making LLM
The zero-shot object navigation (ZSON) in unknown open-ended environments coupled with semantically novel target often suffers from the significant decline in performance due to the neglect of high-dimensional implicit scene information and the long-range target searching task. To address this, we proposed an active object navigation framework with Environmental Attributes Map (EAM) and MLLM Hierarchical Reasoning module (MHR) to improve its success rate and efficiency. EAM is constructed by reasoning observed environments with SBERT and predicting unobserved ones with Diffusion, utilizing human space regularities that underlie object-room correlations and area adjacencies. MHR is inspired by EAM to perform frontier exploration decision-making, avoiding the circuitous trajectories in long-range scenarios to improve path efficiency. Experimental results demonstrate that the EAM module achieves 64.5\% scene mapping accuracy on MP3D dataset, while the navigation task attains SPLs of 28.4\% and 26.3\% on HM3D and MP3D benchmarks respectively - representing absolute improvements of 21.4\% and 46.0\% over baseline methods.
comment: 16 pages, 11 figures
Unleashing the Potential of Consistency Learning for Detecting and Grounding Multi-Modal Media Manipulation CVPR 2025
To tackle the threat of fake news, the task of detecting and grounding multi-modal media manipulation DGM4 has received increasing attention. However, most state-of-the-art methods fail to explore the fine-grained consistency within local content, usually resulting in an inadequate perception of detailed forgery and unreliable results. In this paper, we propose a novel approach named Contextual-Semantic Consistency Learning (CSCL) to enhance the fine-grained perception ability of forgery for DGM4. Two branches for image and text modalities are established, each of which contains two cascaded decoders, i.e., Contextual Consistency Decoder (CCD) and Semantic Consistency Decoder (SCD), to capture within-modality contextual consistency and across-modality semantic consistency, respectively. Both CCD and SCD adhere to the same criteria for capturing fine-grained forgery details. To be specific, each module first constructs consistency features by leveraging additional supervision from the heterogeneous information of each token pair. Then, the forgery-aware reasoning or aggregating is adopted to deeply seek forgery cues based on the consistency features. Extensive experiments on DGM4 datasets prove that CSCL achieves new state-of-the-art performance, especially for the results of grounding manipulated content. Codes and weights are avaliable at https://github.com/liyih/CSCL.
comment: Accepted by CVPR 2025
HMVLM: Multistage Reasoning-Enhanced Vision-Language Model for Long-Tailed Driving Scenarios
We present HaoMo Vision-Language Model (HMVLM), an end-to-end driving framework that implements the slow branch of a cognitively inspired fast-slow architecture. A fast controller outputs low-level steering, throttle, and brake commands, while a slow planner-a large vision-language model-generates high-level intents such as "yield to pedestrian" or "merge after the truck" without compromising latency. HMVLM introduces three upgrades: (1) selective five-view prompting with an embedded 4s history of ego kinematics, (2) multi-stage chain-of-thought (CoT) prompting that enforces a Scene Understanding -> Driving Decision -> Trajectory Inference reasoning flow, and (3) spline-based trajectory post-processing that removes late-stage jitter and sharp turns. Trained on the Waymo Open Dataset, these upgrades enable HMVLM to achieve a Rater Feedback Score (RFS) of 7.7367, securing 2nd place in the 2025 Waymo Vision-based End-to-End (E2E) Driving Challenge and surpassing the public baseline by 2.77%.
comment: WOD Vision-based End-to-End Driving Challenge
Domain-RAG: Retrieval-Guided Compositional Image Generation for Cross-Domain Few-Shot Object Detection
Cross-Domain Few-Shot Object Detection (CD-FSOD) aims to detect novel objects with only a handful of labeled samples from previously unseen domains. While data augmentation and generative methods have shown promise in few-shot learning, their effectiveness for CD-FSOD remains unclear due to the need for both visual realism and domain alignment. Existing strategies, such as copy-paste augmentation and text-to-image generation, often fail to preserve the correct object category or produce backgrounds coherent with the target domain, making them non-trivial to apply directly to CD-FSOD. To address these challenges, we propose Domain-RAG, a training-free, retrieval-guided compositional image generation framework tailored for CD-FSOD. Domain-RAG consists of three stages: domain-aware background retrieval, domain-guided background generation, and foreground-background composition. Specifically, the input image is first decomposed into foreground and background regions. We then retrieve semantically and stylistically similar images to guide a generative model in synthesizing a new background, conditioned on both the original and retrieved contexts. Finally, the preserved foreground is composed with the newly generated domain-aligned background to form the generated image. Without requiring any additional supervision or training, Domain-RAG produces high-quality, domain-consistent samples across diverse tasks, including CD-FSOD, remote sensing FSOD, and camouflaged FSOD. Extensive experiments show consistent improvements over strong baselines and establish new state-of-the-art results. Codes will be released upon acceptance.
Loss Functions for Predictor-based Neural Architecture Search
Evaluation is a critical but costly procedure in neural architecture search (NAS). Performance predictors have been widely adopted to reduce evaluation costs by directly estimating architecture performance. The effectiveness of predictors is heavily influenced by the choice of loss functions. While traditional predictors employ regression loss functions to evaluate the absolute accuracy of architectures, recent approaches have explored various ranking-based loss functions, such as pairwise and listwise ranking losses, to focus on the ranking of architecture performance. Despite their success in NAS, the effectiveness and characteristics of these loss functions have not been thoroughly investigated. In this paper, we conduct the first comprehensive study on loss functions in performance predictors, categorizing them into three main types: regression, ranking, and weighted loss functions. Specifically, we assess eight loss functions using a range of NAS-relevant metrics on 13 tasks across five search spaces. Our results reveal that specific categories of loss functions can be effectively combined to enhance predictor-based NAS. Furthermore, our findings could provide practical guidance for selecting appropriate loss functions for various tasks. We hope this work provides meaningful insights to guide the development of loss functions for predictor-based methods in the NAS community.
CryoFastAR: Fast Cryo-EM Ab Initio Reconstruction Made Easy
Pose estimation from unordered images is fundamental for 3D reconstruction, robotics, and scientific imaging. Recent geometric foundation models, such as DUSt3R, enable end-to-end dense 3D reconstruction but remain underexplored in scientific imaging fields like cryo-electron microscopy (cryo-EM) for near-atomic protein reconstruction. In cryo-EM, pose estimation and 3D reconstruction from unordered particle images still depend on time-consuming iterative optimization, primarily due to challenges such as low signal-to-noise ratios (SNR) and distortions from the contrast transfer function (CTF). We introduce CryoFastAR, the first geometric foundation model that can directly predict poses from Cryo-EM noisy images for Fast ab initio Reconstruction. By integrating multi-view features and training on large-scale simulated cryo-EM data with realistic noise and CTF modulations, CryoFastAR enhances pose estimation accuracy and generalization. To enhance training stability, we propose a progressive training strategy that first allows the model to extract essential features under simpler conditions before gradually increasing difficulty to improve robustness. Experiments show that CryoFastAR achieves comparable quality while significantly accelerating inference over traditional iterative approaches on both synthetic and real datasets.
Improved Allergy Wheal Detection for the Skin Prick Automated Test Device
Background: The skin prick test (SPT) is the gold standard for diagnosing sensitization to inhalant allergies. The Skin Prick Automated Test (SPAT) device was designed for increased consistency in test results, and captures 32 images to be jointly used for allergy wheal detection and delineation, which leads to a diagnosis. Materials and Methods: Using SPAT data from $868$ patients with suspected inhalant allergies, we designed an automated method to detect and delineate wheals on these images. To this end, $10,416$ wheals were manually annotated by drawing detailed polygons along the edges. The unique data-modality of the SPAT device, with $32$ images taken under distinct lighting conditions, requires a custom-made approach. Our proposed method consists of two parts: a neural network component that segments the wheals on the pixel level, followed by an algorithmic and interpretable approach for detecting and delineating the wheals. Results: We evaluate the performance of our method on a hold-out validation set of $217$ patients. As a baseline we use a single conventionally lighted image per SPT as input to our method. Conclusion: Using the $32$ SPAT images under various lighting conditions offers a considerably higher accuracy than a single image in conventional, uniform light.
comment: This work is presented at Artificial Intelligence in Medicine 2025, this is the longer (10 pages) version
ChronoTailor: Harnessing Attention Guidance for Fine-Grained Video Virtual Try-On
Video virtual try-on aims to seamlessly replace the clothing of a person in a source video with a target garment. Despite significant progress in this field, existing approaches still struggle to maintain continuity and reproduce garment details. In this paper, we introduce ChronoTailor, a diffusion-based framework that generates temporally consistent videos while preserving fine-grained garment details. By employing a precise spatio-temporal attention mechanism to guide the integration of fine-grained garment features, ChronoTailor achieves robust try-on performance. First, ChronoTailor leverages region-aware spatial guidance to steer the evolution of spatial attention and employs an attention-driven temporal feature fusion mechanism to generate more continuous temporal features. This dual approach not only enables fine-grained local editing but also effectively mitigates artifacts arising from video dynamics. Second, ChronoTailor integrates multi-scale garment features to preserve low-level visual details and incorporates a garment-pose feature alignment to ensure temporal continuity during dynamic motion. Additionally, we collect StyleDress, a new dataset featuring intricate garments, varied environments, and diverse poses, offering advantages over existing public datasets, and will be publicly available for research. Extensive experiments show that ChronoTailor maintains spatio-temporal continuity and preserves garment details during motion, significantly outperforming previous methods.
Cross-View Multi-Modal Segmentation @ Ego-Exo4D Challenges 2025 CVPR2025
In this report, we present a cross-view multi-modal object segmentation approach for the object correspondence task in the Ego-Exo4D Correspondence Challenges 2025. Given object queries from one perspective (e.g., ego view), the goal is to predict the corresponding object masks in another perspective (e.g., exo view). To tackle this task, we propose a multimodal condition fusion module that enhances object localization by leveraging both visual masks and textual descriptions as segmentation conditions. Furthermore, to address the visual domain gap between ego and exo views, we introduce a cross-view object alignment module that enforces object-level consistency across perspectives, thereby improving the model's robustness to viewpoint changes. Our proposed method ranked second on the leaderboard of the large-scale Ego-Exo4D object correspondence benchmark. Code will be made available at https://github.com/lovelyqian/ObjectRelator.
comment: The 2nd Price Award of EgoExo4D Relations, Second Joint EgoVis Workshop with CVPR2025, technical report paper is accepted by CVPRW 25
FontAdapter: Instant Font Adaptation in Visual Text Generation
Text-to-image diffusion models have significantly improved the seamless integration of visual text into diverse image contexts. Recent approaches further improve control over font styles through fine-tuning with predefined font dictionaries. However, adapting unseen fonts outside the preset is computationally expensive, often requiring tens of minutes, making real-time customization impractical. In this paper, we present FontAdapter, a framework that enables visual text generation in unseen fonts within seconds, conditioned on a reference glyph image. To this end, we find that direct training on font datasets fails to capture nuanced font attributes, limiting generalization to new glyphs. To overcome this, we propose a two-stage curriculum learning approach: FontAdapter first learns to extract font attributes from isolated glyphs and then integrates these styles into diverse natural backgrounds. To support this two-stage training scheme, we construct synthetic datasets tailored to each stage, leveraging large-scale online fonts effectively. Experiments demonstrate that FontAdapter enables high-quality, robust font customization across unseen fonts without additional fine-tuning during inference. Furthermore, it supports visual text editing, font style blending, and cross-lingual font transfer, positioning FontAdapter as a versatile framework for font customization tasks.
comment: Project page: https://fontadapter.github.io/
High Throughput Event Filtering: The Interpolation-based DIF Algorithm Hardware Architecture
In recent years, there has been rapid development in the field of event vision. It manifests itself both on the technical side, as better and better event sensors are available, and on the algorithmic side, as more and more applications of this technology are proposed and scientific papers are published. However, the data stream from these sensors typically contains a significant amount of noise, which varies depending on factors such as the degree of illumination in the observed scene or the temperature of the sensor. We propose a hardware architecture of the Distance-based Interpolation with Frequency Weights (DIF) filter and implement it on an FPGA chip. To evaluate the algorithm and compare it with other solutions, we have prepared a new high-resolution event dataset, which we are also releasing to the community. Our architecture achieved a throughput of 403.39 million events per second (MEPS) for a sensor resolution of 1280 x 720 and 428.45 MEPS for a resolution of 640 x 480. The average values of the Area Under the Receiver Operating Characteristic (AUROC) index ranged from 0.844 to 0.999, depending on the dataset, which is comparable to the state-of-the-art filtering solutions, but with much higher throughput and better operation over a wide range of noise levels.
comment: Accepted in the Microprocessors and Microsystems journal
FuseUNet: A Multi-Scale Feature Fusion Method for U-like Networks ICML2025
Medical image segmentation is a critical task in computer vision, with UNet serving as a milestone architecture. The typical component of UNet family is the skip connection, however, their skip connections face two significant limitations: (1) they lack effective interaction between features at different scales, and (2) they rely on simple concatenation or addition operations, which constrain efficient information integration. While recent improvements to UNet have focused on enhancing encoder and decoder capabilities, these limitations remain overlooked. To overcome these challenges, we propose a novel multi-scale feature fusion method that reimagines the UNet decoding process as solving an initial value problem (IVP), treating skip connections as discrete nodes. By leveraging principles from the linear multistep method, we propose an adaptive ordinary differential equation method to enable effective multi-scale feature fusion. Our approach is independent of the encoder and decoder architectures, making it adaptable to various U-Net-like networks. Experiments on ACDC, KiTS2023, MSD brain tumor, and ISIC2017/2018 skin lesion segmentation datasets demonstrate improved feature utilization, reduced network parameters, and maintained high performance. The code is available at https://github.com/nayutayuki/FuseUNet.
comment: ICML2025
DeformCL: Learning Deformable Centerline Representation for Vessel Extraction in 3D Medical Image CVPR 2025
In the field of 3D medical imaging, accurately extracting and representing the blood vessels with curvilinear structures holds paramount importance for clinical diagnosis. Previous methods have commonly relied on discrete representation like mask, often resulting in local fractures or scattered fragments due to the inherent limitations of the per-pixel classification paradigm. In this work, we introduce DeformCL, a new continuous representation based on Deformable Centerlines, where centerline points act as nodes connected by edges that capture spatial relationships. Compared with previous representations, DeformCL offers three key advantages: natural connectivity, noise robustness, and interaction facility. We present a comprehensive training pipeline structured in a cascaded manner to fully exploit these favorable properties of DeformCL. Extensive experiments on four 3D vessel segmentation datasets demonstrate the effectiveness and superiority of our method. Furthermore, the visualization of curved planar reformation images validates the clinical significance of the proposed framework. We release the code in https://github.com/barry664/DeformCL
comment: Accepted by CVPR 2025
NTIRE 2025 Challenge on HR Depth from Images of Specular and Transparent Surfaces CVPR 2025
This paper reports on the NTIRE 2025 challenge on HR Depth From images of Specular and Transparent surfaces, held in conjunction with the New Trends in Image Restoration and Enhancement (NTIRE) workshop at CVPR 2025. This challenge aims to advance the research on depth estimation, specifically to address two of the main open issues in the field: high-resolution and non-Lambertian surfaces. The challenge proposes two tracks on stereo and single-image depth estimation, attracting about 177 registered participants. In the final testing stage, 4 and 4 participating teams submitted their models and fact sheets for the two tracks.
comment: NTIRE Workshop Challenge Report, CVPR 2025
LLIA -- Enabling Low-Latency Interactive Avatars: Real-Time Audio-Driven Portrait Video Generation with Diffusion Models
Diffusion-based models have gained wide adoption in the virtual human generation due to their outstanding expressiveness. However, their substantial computational requirements have constrained their deployment in real-time interactive avatar applications, where stringent speed, latency, and duration requirements are paramount. We present a novel audio-driven portrait video generation framework based on the diffusion model to address these challenges. Firstly, we propose robust variable-length video generation to reduce the minimum time required to generate the initial video clip or state transitions, which significantly enhances the user experience. Secondly, we propose a consistency model training strategy for Audio-Image-to-Video to ensure real-time performance, enabling a fast few-step generation. Model quantization and pipeline parallelism are further employed to accelerate the inference speed. To mitigate the stability loss incurred by the diffusion process and model quantization, we introduce a new inference strategy tailored for long-duration video generation. These methods ensure real-time performance and low latency while maintaining high-fidelity output. Thirdly, we incorporate class labels as a conditional input to seamlessly switch between speaking, listening, and idle states. Lastly, we design a novel mechanism for fine-grained facial expression control to exploit our model's inherent capacity. Extensive experiments demonstrate that our approach achieves low-latency, fluid, and authentic two-way communication. On an NVIDIA RTX 4090D, our model achieves a maximum of 78 FPS at a resolution of 384x384 and 45 FPS at a resolution of 512x512, with an initial video generation latency of 140 ms and 215 ms, respectively.
EASG-Bench: Video Q&A Benchmark with Egocentric Action Scene Graphs
We introduce EASG-Bench, a question-answering benchmark for egocentric videos where the question-answering pairs are created from spatio-temporally grounded dynamic scene graphs capturing intricate relationships among actors, actions, and objects. We propose a systematic evaluation framework and evaluate several language-only and video large language models (video-LLMs) on this benchmark. We observe a performance gap in language-only and video-LLMs, especially on questions focusing on temporal ordering, thus identifying a research gap in the area of long-context video understanding. To promote the reproducibility of our findings and facilitate further research, the benchmark and accompanying code are available at the following GitHub page: https://github.com/fpv-iplab/EASG-bench.
GazeNLQ @ Ego4D Natural Language Queries Challenge 2025
This report presents our solution to the Ego4D Natural Language Queries (NLQ) Challenge at CVPR 2025. Egocentric video captures the scene from the wearer's perspective, where gaze serves as a key non-verbal communication cue that reflects visual attention and offer insights into human intention and cognition. Motivated by this, we propose a novel approach, GazeNLQ, which leverages gaze to retrieve video segments that match given natural language queries. Specifically, we introduce a contrastive learning-based pretraining strategy for gaze estimation directly from video. The estimated gaze is used to augment video representations within proposed model, thereby enhancing localization accuracy. Experimental results show that GazeNLQ achieves R1@IoU0.3 and R1@IoU0.5 scores of 27.82 and 18.68, respectively. Our code is available at https://github.com/stevenlin510/GazeNLQ.
Robust sensor fusion against on-vehicle sensor staleness CVPR 2025
Sensor fusion is crucial for a performant and robust Perception system in autonomous vehicles, but sensor staleness, where data from different sensors arrives with varying delays, poses significant challenges. Temporal misalignment between sensor modalities leads to inconsistent object state estimates, severely degrading the quality of trajectory predictions that are critical for safety. We present a novel and model-agnostic approach to address this problem via (1) a per-point timestamp offset feature (for LiDAR and radar both relative to camera) that enables fine-grained temporal awareness in sensor fusion, and (2) a data augmentation strategy that simulates realistic sensor staleness patterns observed in deployed vehicles. Our method is integrated into a perspective-view detection model that consumes sensor data from multiple LiDARs, radars and cameras. We demonstrate that while a conventional model shows significant regressions when one sensor modality is stale, our approach reaches consistently good performance across both synchronized and stale conditions.
comment: This paper has been accepted by CVPR 2025 Precognition Workshop
Do Large Vision-Language Models Distinguish between the Actual and Apparent Features of Illusions? SC
Humans are susceptible to optical illusions, which serve as valuable tools for investigating sensory and cognitive processes. Inspired by human vision studies, research has begun exploring whether machines, such as large vision language models (LVLMs), exhibit similar susceptibilities to visual illusions. However, studies often have used non-abstract images and have not distinguished actual and apparent features, leading to ambiguous assessments of machine cognition. To address these limitations, we introduce a visual question answering (VQA) dataset, categorized into genuine and fake illusions, along with corresponding control images. Genuine illusions present discrepancies between actual and apparent features, whereas fake illusions have the same actual and apparent features even though they look illusory due to the similar geometric configuration. We evaluate the performance of LVLMs for genuine and fake illusion VQA tasks and investigate whether the models discern actual and apparent features. Our findings indicate that although LVLMs may appear to recognize illusions by correctly answering questions about both feature types, they predict the same answers for both Genuine Illusion and Fake Illusion VQA questions. This suggests that their responses might be based on prior knowledge of illusions rather than genuine visual understanding. The dataset is available at https://github.com/ynklab/FILM
comment: To appear in the Proceedings of the 47th Annual Meeting of the Cognitive Science Society (COGSCI 2025)
Where Is The Ball: 3D Ball Trajectory Estimation From 2D Monocular Tracking CVPR 2025
We present a method for 3D ball trajectory estimation from a 2D tracking sequence. To overcome the ambiguity in 3D from 2D estimation, we design an LSTM-based pipeline that utilizes a novel canonical 3D representation that is independent of the camera's location to handle arbitrary views and a series of intermediate representations that encourage crucial invariance and reprojection consistency. We evaluated our method on four synthetic and three real datasets and conducted extensive ablation studies on our design choices. Despite training solely on simulated data, our method achieves state-of-the-art performance and can generalize to real-world scenarios with multiple trajectories, opening up a range of applications in sport analysis and virtual replay. Please visit our page: https://where-is-the-ball.github.io.
comment: 11th International Workshop on Computer Vision in Sports (CVsports) at CVPR 2025
Investigating the Relationship between Weighted Figure of Merit and Rosin's Measure
Many studies had been conducted to solve the problem of approximating a digital boundary by piece straight-line segments for further processing required in computer vision applications. The authors of these studies compared their schemes to determine the best one. The initial measure used to assess the goodness of a polygonal approximation was figure of merit. Later, it was pointed out that this measure was not an appropriate metric for a valid reason and this is why Rosin - through mathematical analysis - introduced a measure called merit. However, this measure involves optimal scheme of polygonal approximation and so it is time-consuming to compute it to assess the goodness of an approximation. This led many researchers to use weighted figure of merit as a substitute for Rosin's measure to compare among sub-optimal schemes. An attempt is made in this communication to investigate whether the two measures - weighted figure of merit and Rosin's measure - are related so that one can be used instead of the other and towards this end theoretical analysis, experimental investigation and statistical analysis are carried out. The mathematical formula for weighted figure of merit and Rosin's measure are analyzed and through proof of theorems it is found that the two measures are independent of each other theoretically. The graphical analysis of experiments carried out using public dataset supports theoretical analysis. The statistical analysis using Pearson's correlation coefficient also establishes that the two measures are uncorrelated. This analysis leads one to conclude that if a sub-optimal scheme is found to be better (worse) than some other sub-optimal scheme as indicated by Rosin's measure then the same conclusion cannot be drawn using weighted figure of merit and so one cannot use weighted figure of merit instead of Rosin's measure.
Any-Class Presence Likelihood for Robust Multi-Label Classification with Abundant Negative Data
Multi-label Classification (MLC) assigns an instance to one or more non-exclusive classes. A challenge arises when the dataset contains a large proportion of instances with no assigned class, referred to as negative data, which can overwhelm the learning process and hinder the accurate identification and classification of positive instances. Nevertheless, it is common in MLC applications such as industrial defect detection, agricultural disease identification, and healthcare diagnosis to encounter large amounts of negative data. Assigning a separate negative class to these instances further complicates the learning objective and introduces unnecessary redundancies. To address this challenge, we redesign standard MLC loss functions by deriving a likelihood of any class being present, formulated by a normalized weighted geometric mean of the predicted class probabilities. We introduce a regularization parameter that controls the relative contribution of the absent class probabilities to the any-class presence likelihood in positive instances. The any-class presence likelihood complements the multi-label learning by encouraging the network to become more aware of implicit positive instances and improve the label classification within those positive instances. Experiments on large-scale datasets with negative data: SewerML, modified COCO, and ChestX-ray14, across various networks and base loss functions show that our loss functions consistently improve MLC performance of their standard loss counterparts, achieving gains of up to 6.01 percentage points in F1, 8.06 in F2, and 3.11 in mean average precision, all without additional parameters or computational complexity. Code available at: https://github.com/ML-for-Sensor-Data-Western/gmean-mlc
You Only Estimate Once: Unified, One-stage, Real-Time Category-level Articulated Object 6D Pose Estimation for Robotic Grasping ICRA 2025
This paper addresses the problem of category-level pose estimation for articulated objects in robotic manipulation tasks. Recent works have shown promising results in estimating part pose and size at the category level. However, these approaches primarily follow a complex multi-stage pipeline that first segments part instances in the point cloud and then estimates the Normalized Part Coordinate Space (NPCS) representation for 6D poses. These approaches suffer from high computational costs and low performance in real-time robotic tasks. To address these limitations, we propose YOEO, a single-stage method that simultaneously outputs instance segmentation and NPCS representations in an end-to-end manner. We use a unified network to generate point-wise semantic labels and centroid offsets, allowing points from the same part instance to vote for the same centroid. We further utilize a clustering algorithm to distinguish points based on their estimated centroid distances. Finally, we first separate the NPCS region of each instance. Then, we align the separated regions with the real point cloud to recover the final pose and size. Experimental results on the GAPart dataset demonstrate the pose estimation capabilities of our proposed single-shot method. We also deploy our synthetically-trained model in a real-world setting, providing real-time visual feedback at 200Hz, enabling a physical Kinova robot to interact with unseen articulated objects. This showcases the utility and effectiveness of our proposed method.
comment: To appear in ICRA 2025
Token Transforming: A Unified and Training-Free Token Compression Framework for Vision Transformer Acceleration
Vision transformers have been widely explored in various vision tasks. Due to heavy computational cost, much interest has aroused for compressing vision transformer dynamically in the aspect of tokens. Current methods mainly pay attention to token pruning or merging to reduce token numbers, in which tokens are compressed exclusively, causing great information loss and therefore post-training is inevitably required to recover the performance. In this paper, we rethink token reduction and unify the process as an explicit form of token matrix transformation, in which all existing methods are constructing special forms of matrices within the framework. Furthermore, we propose a many-to-many Token Transforming framework that serves as a generalization of all existing methods and reserves the most information, even enabling training-free acceleration. We conduct extensive experiments to validate our framework. Specifically, we reduce 40% FLOPs and accelerate DeiT-S by $\times$1.5 with marginal 0.1% accuracy drop. Furthermore, we extend the method to dense prediction tasks including segmentation, object detection, depth estimation, and language model generation. Results demonstrate that the proposed method consistently achieves substantial improvements, offering a better computation-performance trade-off, impressive budget reduction and inference acceleration.
MoralCLIP: Contrastive Alignment of Vision-and-Language Representations with Moral Foundations Theory
Recent advances in vision-language models have enabled rich semantic understanding across modalities. However, these encoding methods lack the ability to interpret or reason about the moral dimensions of content-a crucial aspect of human cognition. In this paper, we address this gap by introducing MoralCLIP, a novel embedding representation method that extends multimodal learning with explicit moral grounding based on Moral Foundations Theory (MFT). Our approach integrates visual and textual moral cues into a unified embedding space, enabling cross-modal moral alignment. MoralCLIP is grounded on the multi-label dataset Social-Moral Image Database to identify co-occurring moral foundations in visual content. For MoralCLIP training, we design a moral data augmentation strategy to scale our annotated dataset to 15,000 image-text pairs labeled with MFT-aligned dimensions. Our results demonstrate that explicit moral supervision improves both unimodal and multimodal understanding of moral content, establishing a foundation for morally-aware AI systems capable of recognizing and aligning with human moral values.
Pts3D-LLM: Studying the Impact of Token Structure for 3D Scene Understanding With Large Language Models
Effectively representing 3D scenes for Multimodal Large Language Models (MLLMs) is crucial yet challenging. Existing approaches commonly only rely on 2D image features and use varied tokenization approaches. This work presents a rigorous study of 3D token structures, systematically comparing video-based and point-based representations while maintaining consistent model backbones and parameters. We propose a novel approach that enriches visual tokens by incorporating 3D point cloud features from a Sonata pretrained Point Transformer V3 encoder. Our experiments demonstrate that merging explicit 3D features significantly boosts performance. Furthermore, we show that point-based token structures can rival video-based ones when the points are cleverly sampled and ordered. Our best models from both structures achieve state-of-the-art results on multiple 3D understanding benchmarks. We emphasize our analysis of token structures as a key contribution, alongside transparent reporting of results averaged over multiple seeds, a practice we believe is vital for robust progress in the field.
comment: Main paper and appendix
Integer Binary-Range Alignment Neuron for Spiking Neural Networks
Spiking Neural Networks (SNNs) are noted for their brain-like computation and energy efficiency, but their performance lags behind Artificial Neural Networks (ANNs) in tasks like image classification and object detection due to the limited representational capacity. To address this, we propose a novel spiking neuron, Integer Binary-Range Alignment Leaky Integrate-and-Fire to exponentially expand the information expression capacity of spiking neurons with only a slight energy increase. This is achieved through Integer Binary Leaky Integrate-and-Fire and range alignment strategy. The Integer Binary Leaky Integrate-and-Fire allows integer value activation during training and maintains spike-driven dynamics with binary conversion expands virtual timesteps during inference. The range alignment strategy is designed to solve the spike activation limitation problem where neurons fail to activate high integer values. Experiments show our method outperforms previous SNNs, achieving 74.19% accuracy on ImageNet and 66.2% mAP@50 and 49.1% mAP@50:95 on COCO, surpassing previous bests with the same architecture by +3.45% and +1.6% and +1.8%, respectively. Notably, our SNNs match or exceed ANNs' performance with the same architecture, and the energy efficiency is improved by 6.3${\times}$.
comment: 11 pages
Peer-Ranked Precision: Creating a Foundational Dataset for Fine-Tuning Vision Models from DataSeeds' Annotated Imagery
The development of modern Artificial Intelligence (AI) models, particularly diffusion-based models employed in computer vision and image generation tasks, is undergoing a paradigmatic shift in development methodologies. Traditionally dominated by a "Model Centric" approach, in which performance gains were primarily pursued through increasingly complex model architectures and hyperparameter optimization, the field is now recognizing a more nuanced "Data-Centric" approach. This emergent framework foregrounds the quality, structure, and relevance of training data as the principal driver of model performance. To operationalize this paradigm shift, we introduce the DataSeeds.AI sample dataset (the "DSD"), initially comprised of approximately 10,610 high-quality human peer-ranked photography images accompanied by extensive multi-tier annotations. The DSD is a foundational computer vision dataset designed to usher in a new standard for commercial image datasets. Representing a small fraction of DataSeed.AI's 100 million-plus image catalog, the DSD provides a scalable foundation necessary for robust commercial and multimodal AI development. Through this in-depth exploratory analysis, we document the quantitative improvements generated by the DSD on specific models against known benchmarks and make the code and the trained models used in our evaluation publicly available.
comment: 28 pages, 12 figures
DriveAction: A Benchmark for Exploring Human-like Driving Decisions in VLA Models
Vision-Language-Action (VLA) models have advanced autonomous driving, but existing benchmarks still lack scenario diversity, reliable action-level annotation, and evaluation protocols aligned with human preferences. To address these limitations, we introduce DriveAction, the first action-driven benchmark specifically designed for VLA models, comprising 16,185 QA pairs generated from 2,610 driving scenarios. DriveAction leverages real-world driving data proactively collected by users of production-level autonomous vehicles to ensure broad and representative scenario coverage, offers high-level discrete action labels collected directly from users' actual driving operations, and implements an action-rooted tree-structured evaluation framework that explicitly links vision, language, and action tasks, supporting both comprehensive and task-specific assessment. Our experiments demonstrate that state-of-the-art vision-language models (VLMs) require both vision and language guidance for accurate action prediction: on average, accuracy drops by 3.3% without vision input, by 4.1% without language input, and by 8.0% without either. Our evaluation supports precise identification of model bottlenecks with robust and consistent results, thus providing new insights and a rigorous foundation for advancing human-like decisions in autonomous driving.
comment: Benchmark: https://huggingface.co/datasets/LiAuto-DriveAction/drive-action
TissUnet: Improved Extracranial Tissue and Cranium Segmentation for Children through Adulthood
Extracranial tissues visible on brain magnetic resonance imaging (MRI) may hold significant value for characterizing health conditions and clinical decision-making, yet they are rarely quantified. Current tools have not been widely validated, particularly in settings of developing brains or underlying pathology. We present TissUnet, a deep learning model that segments skull bone, subcutaneous fat, and muscle from routine three-dimensional T1-weighted MRI, with or without contrast enhancement. The model was trained on 155 paired MRI-computed tomography (CT) scans and validated across nine datasets covering a wide age range and including individuals with brain tumors. In comparison to AI-CT-derived labels from 37 MRI-CT pairs, TissUnet achieved a median Dice coefficient of 0.79 [IQR: 0.77-0.81] in a healthy adult cohort. In a second validation using expert manual annotations, median Dice was 0.83 [IQR: 0.83-0.84] in healthy individuals and 0.81 [IQR: 0.78-0.83] in tumor cases, outperforming previous state-of-the-art method. Acceptability testing resulted in an 89% acceptance rate after adjudication by a tie-breaker(N=108 MRIs), and TissUnet demonstrated excellent performance in the blinded comparative review (N=45 MRIs), including both healthy and tumor cases in pediatric populations. TissUnet enables fast, accurate, and reproducible segmentation of extracranial tissues, supporting large-scale studies on craniofacial morphology, treatment effects, and cardiometabolic risk using standard brain T1w MRI.
comment: 44 pages, 4 tables, 6 figures, supplementary material
Aerial Multi-View Stereo via Adaptive Depth Range Inference and Normal Cues
Three-dimensional digital urban reconstruction from multi-view aerial images is a critical application where deep multi-view stereo (MVS) methods outperform traditional techniques. However, existing methods commonly overlook the key differences between aerial and close-range settings, such as varying depth ranges along epipolar lines and insensitive feature-matching associated with low-detailed aerial images. To address these issues, we propose an Adaptive Depth Range MVS (ADR-MVS), which integrates monocular geometric cues to improve multi-view depth estimation accuracy. The key component of ADR-MVS is the depth range predictor, which generates adaptive range maps from depth and normal estimates using cross-attention discrepancy learning. In the first stage, the range map derived from monocular cues breaks through predefined depth boundaries, improving feature-matching discriminability and mitigating convergence to local optima. In later stages, the inferred range maps are progressively narrowed, ultimately aligning with the cascaded MVS framework for precise depth regression. Moreover, a normal-guided cost aggregation operation is specially devised for aerial stereo images to improve geometric awareness within the cost volume. Finally, we introduce a normal-guided depth refinement module that surpasses existing RGB-guided techniques. Experimental results demonstrate that ADR-MVS achieves state-of-the-art performance on the WHU, LuoJia-MVS, and M\"unchen datasets, while exhibits superior computational complexity.
comment: IEEE TGRS 2025
Hallucinate, Ground, Repeat: A Framework for Generalized Visual Relationship Detection
Understanding relationships between objects is central to visual intelligence, with applications in embodied AI, assistive systems, and scene understanding. Yet, most visual relationship detection (VRD) models rely on a fixed predicate set, limiting their generalization to novel interactions. A key challenge is the inability to visually ground semantically plausible, but unannotated, relationships hypothesized from external knowledge. This work introduces an iterative visual grounding framework that leverages large language models (LLMs) as structured relational priors. Inspired by expectation-maximization (EM), our method alternates between generating candidate scene graphs from detected objects using an LLM (expectation) and training a visual model to align these hypotheses with perceptual evidence (maximization). This process bootstraps relational understanding beyond annotated data and enables generalization to unseen predicates. Additionally, we introduce a new benchmark for open-world VRD on Visual Genome with 21 held-out predicates and evaluate under three settings: seen, unseen, and mixed. Our model outperforms LLM-only, few-shot, and debiased baselines, achieving mean recall (mR@50) of 15.9, 13.1, and 11.7 on predicate classification on these three sets. These results highlight the promise of grounded LLM priors for scalable open-world visual understanding.
comment: 22 pages, 9 figures, 5 tables
Learning to Weight Parameters for Data Attribution
We study data attribution in generative models, aiming to identify which training examples most influence a given output. Existing methods achieve this by tracing gradients back to training data. However, they typically treat all network parameters uniformly, ignoring the fact that different layers encode different types of information and may thus draw information differently from the training set. We propose a method that models this by learning parameter importance weights tailored for attribution, without requiring labeled data. This allows the attribution process to adapt to the structure of the model, capturing which training examples contribute to specific semantic aspects of an output, such as subject, style, or background. Our method improves attribution accuracy across diffusion models and enables fine-grained insights into how outputs borrow from training data.
FreeTimeGS: Free Gaussian Primitives at Anytime and Anywhere for Dynamic Scene Reconstruction CVPR 2025
This paper addresses the challenge of reconstructing dynamic 3D scenes with complex motions. Some recent works define 3D Gaussian primitives in the canonical space and use deformation fields to map canonical primitives to observation spaces, achieving real-time dynamic view synthesis. However, these methods often struggle to handle scenes with complex motions due to the difficulty of optimizing deformation fields. To overcome this problem, we propose FreeTimeGS, a novel 4D representation that allows Gaussian primitives to appear at arbitrary time and locations. In contrast to canonical Gaussian primitives, our representation possesses the strong flexibility, thus improving the ability to model dynamic 3D scenes. In addition, we endow each Gaussian primitive with an motion function, allowing it to move to neighboring regions over time, which reduces the temporal redundancy. Experiments results on several datasets show that the rendering quality of our method outperforms recent methods by a large margin. Project page: https://zju3dv.github.io/freetimegs/ .
comment: CVPR 2025; Project page: https://zju3dv.github.io/freetimegs/
Defurnishing with X-Ray Vision: Joint Removal of Furniture from Panoramas and Mesh
We present a pipeline for generating defurnished replicas of indoor spaces represented as textured meshes and corresponding multi-view panoramic images. To achieve this, we first segment and remove furniture from the mesh representation, extend planes, and fill holes, obtaining a simplified defurnished mesh (SDM). This SDM acts as an ``X-ray'' of the scene's underlying structure, guiding the defurnishing process. We extract Canny edges from depth and normal images rendered from the SDM. We then use these as a guide to remove the furniture from panorama images via ControlNet inpainting. This control signal ensures the availability of global geometric information that may be hidden from a particular panoramic view by the furniture being removed. The inpainted panoramas are used to texture the mesh. We show that our approach produces higher quality assets than methods that rely on neural radiance fields, which tend to produce blurry low-resolution images, or RGB-D inpainting, which is highly susceptible to hallucinations.
comment: Paper website: https://matterport.github.io/defurnishing-with-x-ray-vision/
Does Your 3D Encoder Really Work? When Pretrain-SFT from 2D VLMs Meets 3D VLMs
Remarkable progress in 2D Vision-Language Models (VLMs) has spurred interest in extending them to 3D settings for tasks like 3D Question Answering, Dense Captioning, and Visual Grounding. Unlike 2D VLMs that typically process images through an image encoder, 3D scenes, with their intricate spatial structures, allow for diverse model architectures. Based on their encoder design, this paper categorizes recent 3D VLMs into 3D object-centric, 2D image-based, and 3D scene-centric approaches. Despite the architectural similarity of 3D scene-centric VLMs to their 2D counterparts, they have exhibited comparatively lower performance compared with the latest 3D object-centric and 2D image-based approaches. To understand this gap, we conduct an in-depth analysis, revealing that 3D scene-centric VLMs show limited reliance on the 3D scene encoder, and the pre-train stage appears less effective than in 2D VLMs. Furthermore, we observe that data scaling benefits are less pronounced on larger datasets. Our investigation suggests that while these models possess cross-modal alignment capabilities, they tend to over-rely on linguistic cues and overfit to frequent answer distributions, thereby diminishing the effective utilization of the 3D encoder. To address these limitations and encourage genuine 3D scene understanding, we introduce a novel 3D Relevance Discrimination QA dataset designed to disrupt shortcut learning and improve 3D understanding. Our findings highlight the need for advanced evaluation and improved strategies for better 3D understanding in 3D VLMs.
Unifying Appearance Codes and Bilateral Grids for Driving Scene Gaussian Splatting
Neural rendering techniques, including NeRF and Gaussian Splatting (GS), rely on photometric consistency to produce high-quality reconstructions. However, in real-world scenarios, it is challenging to guarantee perfect photometric consistency in acquired images. Appearance codes have been widely used to address this issue, but their modeling capability is limited, as a single code is applied to the entire image. Recently, the bilateral grid was introduced to perform pixel-wise color mapping, but it is difficult to optimize and constrain effectively. In this paper, we propose a novel multi-scale bilateral grid that unifies appearance codes and bilateral grids. We demonstrate that this approach significantly improves geometric accuracy in dynamic, decoupled autonomous driving scene reconstruction, outperforming both appearance codes and bilateral grids. This is crucial for autonomous driving, where accurate geometry is important for obstacle avoidance and control. Our method shows strong results across four datasets: Waymo, NuScenes, Argoverse, and PandaSet. We further demonstrate that the improvement in geometry is driven by the multi-scale bilateral grid, which effectively reduces floaters caused by photometric inconsistency.
comment: Project page: https://bigcileng.github.io/bilateral-driving ; Code: https://github.com/BigCiLeng/bilateral-driving
Astraea: A GPU-Oriented Token-wise Acceleration Framework for Video Diffusion Transformers
Video diffusion transformers (vDiTs) have made impressive progress in text-to-video generation, but their high computational demands present major challenges for practical deployment. While existing acceleration methods reduce workload at various granularities, they often rely on heuristics, limiting their applicability. We introduce ASTRAEA, an automatic framework that searches for near-optimal configurations for vDiT-based video generation. At its core, ASTRAEA proposes a lightweight token selection mechanism and a memory-efficient, GPU-parallel sparse attention strategy, enabling linear reductions in execution time with minimal impact on generation quality. To determine optimal token reduction for different timesteps, we further design a search framework that leverages a classic evolutionary algorithm to automatically determine the distribution of the token budget effectively. Together, ASTRAEA achieves up to 2.4x inference speedup on a single GPU with great scalability (up to 13.2x speedup on 8 GPUs) while retaining better video quality compared to the state-of-the-art methods (<0.5% loss on the VBench score compared to the baseline vDiT models).
SeedEdit 3.0: Fast and High-Quality Generative Image Editing
We introduce SeedEdit 3.0, in companion with our T2I model Seedream 3.0, which significantly improves over our previous SeedEdit versions in both aspects of edit instruction following and image content (e.g., ID/IP) preservation on real image inputs. Additional to model upgrading with T2I, in this report, we present several key improvements. First, we develop an enhanced data curation pipeline with a meta-info paradigm and meta-info embedding strategy that help mix images from multiple data sources. This allows us to scale editing data effectively, and meta information is helpfult to connect VLM with diffusion model more closely. Second, we introduce a joint learning pipeline for computing a diffusion loss and reward losses. Finally, we evaluate SeedEdit 3.0 on our testing benchmarks, for real/synthetic image editing, where it achieves a best trade-off between multiple aspects, yielding a high usability rate of 56.1%, compared to SeedEdit 1.6 (38.4%), GPT4o (37.1%) and Gemini 2.0 (30.3%).
comment: Website: https://seed.bytedance.com/tech/seededit
Bridging Annotation Gaps: Transferring Labels to Align Object Detection Datasets
Combining multiple object detection datasets offers a path to improved generalisation but is hindered by inconsistencies in class semantics and bounding box annotations. Some methods to address this assume shared label taxonomies and address only spatial inconsistencies; others require manual relabelling, or produce a unified label space, which may be unsuitable when a fixed target label space is required. We propose Label-Aligned Transfer (LAT), a label transfer framework that systematically projects annotations from diverse source datasets into the label space of a target dataset. LAT begins by training dataset-specific detectors to generate pseudo-labels, which are then combined with ground-truth annotations via a Privileged Proposal Generator (PPG) that replaces the region proposal network in two-stage detectors. To further refine region features, a Semantic Feature Fusion (SFF) module injects class-aware context and features from overlapping proposals using a confidence-weighted attention mechanism. This pipeline preserves dataset-specific annotation granularity while enabling many-to-one label space transfer across heterogeneous datasets, resulting in a semantically and spatially aligned representation suitable for training a downstream detector. LAT thus jointly addresses both class-level misalignments and bounding box inconsistencies without relying on shared label spaces or manual annotations. Across multiple benchmarks, LAT demonstrates consistent improvements in target-domain detection performance, achieving gains of up to +4.8AP over semi-supervised baselines.
MARS: Radio Map Super-resolution and Reconstruction Method under Sparse Channel Measurements
Radio maps reflect the spatial distribution of signal strength and are essential for applications like smart cities, IoT, and wireless network planning. However, reconstructing accurate radio maps from sparse measurements remains challenging. Traditional interpolation and inpainting methods lack environmental awareness, while many deep learning approaches depend on detailed scene data, limiting generalization. To address this, we propose MARS, a Multi-scale Aware Radiomap Super-resolution method that combines CNNs and Transformers with multi-scale feature fusion and residual connections. MARS focuses on both global and local feature extraction, enhancing feature representation across different receptive fields and improving reconstruction accuracy. Experiments across different scenes and antenna locations show that MARS outperforms baseline models in both MSE and SSIM, while maintaining low computational cost, demonstrating strong practical potential.
Feature-Based Lie Group Transformer for Real-World Applications
The main goal of representation learning is to acquire meaningful representations from real-world sensory inputs without supervision. Representation learning explains some aspects of human development. Various neural network (NN) models have been proposed that acquire empirically good representations. However, the formulation of a good representation has not been established. We recently proposed a method for categorizing changes between a pair of sensory inputs. A unique feature of this approach is that transformations between two sensory inputs are learned to satisfy algebraic structural constraints. Conventional representation learning often assumes that disentangled independent feature axes is a good representation; however, we found that such a representation cannot account for conditional independence. To overcome this problem, we proposed a new method using group decomposition in Galois algebra theory. Although this method is promising for defining a more general representation, it assumes pixel-to-pixel translation without feature extraction, and can only process low-resolution images with no background, which prevents real-world application. In this study, we provide a simple method to apply our group decomposition theory to a more realistic scenario by combining feature extraction and object segmentation. We replace pixel translation with feature translation and formulate object segmentation as grouping features under the same transformation. We validated the proposed method on a practical dataset containing both real-world object and background. We believe that our model will lead to a better understanding of human development of object recognition in the real world.
Leopard: A Vision Language Model For Text-Rich Multi-Image Tasks
Text-rich images, where text serves as the central visual element guiding the overall understanding, are prevalent in real-world applications, such as presentation slides, scanned documents, and webpage snapshots. Tasks involving multiple text-rich images are especially challenging, as they require not only understanding the content of individual images but reasoning about inter-relationships and logical flows across multiple visual inputs. Despite the importance of these scenarios, current multimodal large language models (MLLMs) struggle to handle such tasks due to two key challenges: (1) the scarcity of high-quality instruction tuning datasets for text-rich multi-image scenarios, and (2) the difficulty in balancing image resolution with visual feature sequence length. To address these challenges, we propose Leopard, an MLLM tailored for handling vision-language tasks involving multiple text-rich images. First, we curated about one million high-quality multimodal instruction-tuning data, tailored to text-rich, multi-image scenarios. Second, we proposed an adaptive high-resolution multi-image encoding module to dynamically optimize the allocation of visual sequence length based on the original aspect ratios and resolutions of images. Experiments on a diverse set of benchmarks reveal that our model consistently outperforms state-of-the-art systems, such as Llama-3.2 and Qwen2-VL, in challenging text-rich, multi-image evaluations. Remarkably, our approach achieves outstanding performance using only 1.2M training instances, all of which are fully open-sourced, demonstrating both high efficiency and effectiveness compared to models trained on large-scale in-house data. Our code and data are available at https://github.com/tencent-ailab/Leopard.
comment: Our code is available at https://github.com/tencent-ailab/Leopard
Sketched Equivariant Imaging Regularization and Deep Internal Learning for Inverse Problems
Equivariant Imaging (EI) regularization has become the de-facto technique for unsupervised training of deep imaging networks, without any need of ground-truth data. Observing that the EI-based unsupervised training paradigm currently has significant computational redundancy leading to inefficiency in high-dimensional applications, we propose a sketched EI regularization which leverages the randomized sketching techniques for acceleration. We apply our sketched EI regularization to develop an accelerated deep internal learning framework, which can be efficiently applied for test-time network adaptation. Additionally, for network adaptation tasks, we propose a parameter-efficient approach to accelerate both EI and Sketched-EI via optimizing only the normalization layers. Our numerical study on X-ray CT and multicoil magnetic resonance image reconstruction tasks demonstrate that our approach can achieve significant computational acceleration over standard EI counterpart in single-input setting and network adaptation at test time.
comment: 22 pages
Normalizing Flows are Capable Generative Models ICML 2025
Normalizing Flows (NFs) are likelihood-based models for continuous inputs. They have demonstrated promising results on both density estimation and generative modeling tasks, but have received relatively little attention in recent years. In this work, we demonstrate that NFs are more powerful than previously believed. We present TarFlow: a simple and scalable architecture that enables highly performant NF models. TarFlow can be thought of as a Transformer-based variant of Masked Autoregressive Flows (MAFs): it consists of a stack of autoregressive Transformer blocks on image patches, alternating the autoregression direction between layers. TarFlow is straightforward to train end-to-end, and capable of directly modeling and generating pixels. We also propose three key techniques to improve sample quality: Gaussian noise augmentation during training, a post training denoising procedure, and an effective guidance method for both class-conditional and unconditional settings. Putting these together, TarFlow sets new state-of-the-art results on likelihood estimation for images, beating the previous best methods by a large margin, and generates samples with quality and diversity comparable to diffusion models, for the first time with a stand-alone NF model. We make our code available at https://github.com/apple/ml-tarflow.
comment: ICML 2025
MimeQA: Towards Socially-Intelligent Nonverbal Foundation Models
As AI becomes more closely integrated with peoples' daily activities, socially intelligent AI that can understand and interact seamlessly with humans in daily lives is increasingly important. However, current works in AI social reasoning all rely on language-only or language-dominant approaches to benchmark and training models, resulting in systems that are improving in verbal communication but struggle with nonverbal social understanding. To address this limitation, we tap into a novel data source rich in nonverbal social interactions -- mime videos. Mimes refer to the art of expression through gesture and movement without spoken words, which presents unique challenges and opportunities in interpreting nonverbal social communication. We contribute a new dataset called MimeQA, obtained by sourcing 8 hours of videos clips from YouTube and developing a comprehensive video question-answering benchmark comprising 806 carefully annotated and verified question-answer pairs, designed to probe nonverbal social reasoning capabilities. Using MimeQA, we evaluate state-of-the-art video large language models (vLLMs) and find that they achieve low overall accuracy, ranging from 20-30%, while humans score 86%. Our analysis reveals that vLLMs often fail to ground imagined objects and over-rely on the text prompt while ignoring subtle nonverbal interactions. We hope to inspire future work in AI models that embody true social intelligence capable of interpreting non-verbal human interactions.
DPCore: Dynamic Prompt Coreset for Continual Test-Time Adaptation ICML2025
Continual Test-Time Adaptation (CTTA) seeks to adapt source pre-trained models to continually changing, unseen target domains. While existing CTTA methods assume structured domain changes with uniform durations, real-world environments often exhibit dynamic patterns where domains recur with varying frequencies and durations. Current approaches, which adapt the same parameters across different domains, struggle in such dynamic conditions-they face convergence issues with brief domain exposures, risk forgetting previously learned knowledge, or misapplying it to irrelevant domains. To remedy this, we propose DPCore, a method designed for robust performance across diverse domain change patterns while ensuring computational efficiency. DPCore integrates three key components: Visual Prompt Adaptation for efficient domain alignment, a Prompt Coreset for knowledge preservation, and a Dynamic Update mechanism that intelligently adjusts existing prompts for similar domains while creating new ones for substantially different domains. Extensive experiments on four benchmarks demonstrate that DPCore consistently outperforms various CTTA methods, achieving state-of-the-art performance in both structured and dynamic settings while reducing trainable parameters by 99% and computation time by 64% compared to previous approaches.
comment: ICML2025
Sparse Autoencoders Learn Monosemantic Features in Vision-Language Models
Given that interpretability and steerability are crucial to AI safety, Sparse Autoencoders (SAEs) have emerged as a tool to enhance them in Large Language Models (LLMs). In this work, we extend the application of SAEs to Vision-Language Models (VLMs), such as CLIP, and introduce a comprehensive framework for evaluating monosemanticity at the neuron-level in vision representations. To ensure that our evaluation aligns with human perception, we propose a benchmark derived from a large-scale user study. Our experimental results reveal that SAEs trained on VLMs significantly enhance the monosemanticity of individual neurons, with sparsity and wide latents being the most influential factors. Notably, we demonstrate that applying SAE interventions on CLIP's vision encoder directly steers multimodal LLM outputs (e.g., LLaVA), without any modifications to the underlying model. These findings emphasize the practicality and efficacy of SAEs as an unsupervised tool for enhancing both interpretability and control of VLMs. Code is available at https://github.com/ExplainableML/sae-for-vlm.
comment: Preprint
LlavaGuard: An Open VLM-based Framework for Safeguarding Vision Datasets and Models ICML 2025
This paper introduces LlavaGuard, a suite of VLM-based vision safeguards that address the critical need for reliable guardrails in the era of large-scale data and models. To this end, we establish a novel open framework, describing a customizable safety taxonomy, data preprocessing, augmentation, and training setup. For teaching a VLM safeguard on safety, we further create a multimodal safety dataset with high-quality human expert annotations, where each image is labeled with a safety rating, category, and rationale. We also employ advanced augmentations to support context-specific assessments. The resulting LlavaGuard models, ranging from 0.5B to 7B, serve as a versatile tool for evaluating the safety compliance of visual content against flexible policies. In comprehensive experiments, LlavaGuard outperforms both state-of-the-art safeguards and VLMs in accuracy and in flexibly handling different policies. Additionally, we demonstrate LlavaGuard's performance in two real-world applications: large-scale dataset annotation and moderation of text-to-image models. We make our entire framework, including the dataset, model weights, and training code.
comment: In Proceedings of the 42st International Conference on Machine Learning (ICML 2025), Project page at https://ml-research.github.io/human-centered-genai/projects/llavaguard/index.html
A Lightweight Dual-Branch System for Weakly-Supervised Video Anomaly Detection on Consumer Edge Devices
The growing demand for intelligent security in consumer electronics, such as smart home cameras and personal monitoring systems, is often hindered by the high computational cost and large model sizes of advanced AI. These limitations prevent the effective deployment of real-time Video Anomaly Detection (VAD) on resource-constrained edge devices. To bridge this gap, this paper introduces Rule-based Video Anomaly Detection (RuleVAD), a novel, lightweight system engineered for high-efficiency and low-complexity threat detection directly on consumer hardware. RuleVAD features an innovative decoupled dual-branch architecture to minimize computational load. An implicit branch uses visual features for rapid, coarse-grained binary classification, efficiently filtering out normal activity to avoid unnecessary processing. For potentially anomalous or complex events, a multimodal explicit branch takes over. This branch leverages YOLO-World to detect objects and applies data mining to generate interpretable, text-based association rules from the scene. By aligning these rules with visual data, RuleVAD achieves a more nuanced, fine-grained classification, significantly reducing the false alarms common in vision-only systems. Extensive experiments on the XD-Violence and UCF-Crime benchmark datasets show that RuleVAD achieves superior performance, surpassing existing state-of-the-art methods in both accuracy and speed. Crucially, the entire system is optimized for low-power operation and is fully deployable on an NVIDIA Jetson Nano board, demonstrating its practical feasibility for bringing advanced, real-time security monitoring to everyday consumer electronic devices.
comment: This manuscript has been submitted to IEEE TCE and is under consideration for publication, with potential copyright transfer in the future
A novel non-convex minimax $p$-th order concave penalty function approach to low-rank tensor completion
The low-rank tensor completion (LRTC) problem aims to reconstruct a tensor from partial sample information, which has attracted significant interest in a wide range of practical applications such as image processing and computer vision. Among the various techniques employed for the LRTC problem, non-convex relaxation methods have been widely studied for their effectiveness in handling tensor singular values, which are crucial for accurate tensor recovery. While the minimax concave penalty (MCP) non-convex relaxation method has achieved promising results in tackling the LRTC problem and gained widely adopted, it exhibits a notable limitation: insufficient penalty on small singular values during the singular value handling process, resulting in inefficient tensor recovery. To address this issue and enhance recovery performance, a novel minimax $p$-th order concave penalty (MPCP) function is proposed. Based on this novel function, a tensor $p$-th order $\tau$ norm is proposed as a non-convex relaxation for tensor rank approximation, thereby establishing an MPCP-based LRTC model. Furthermore, theoretical convergence guarantees are rigorously established for the proposed method. Extensive numerical experiments conducted on multiple real datasets demonstrate that the proposed method outperforms the state-of-the-art methods in both visual quality and quantitative metrics.
comment: 30 pages,14 figures
Fréchet Radiomic Distance (FRD): A Versatile Metric for Comparing Medical Imaging Datasets
Determining whether two sets of images belong to the same or different distributions or domains is a crucial task in modern medical image analysis and deep learning; for example, to evaluate the output quality of image generative models. Currently, metrics used for this task either rely on the (potentially biased) choice of some downstream task, such as segmentation, or adopt task-independent perceptual metrics (e.g., Fr\'echet Inception Distance/FID) from natural imaging, which we show insufficiently capture anatomical features. To this end, we introduce a new perceptual metric tailored for medical images, FRD (Fr\'echet Radiomic Distance), which utilizes standardized, clinically meaningful, and interpretable image features. We show that FRD is superior to other image distribution metrics for a range of medical imaging applications, including out-of-domain (OOD) detection, the evaluation of image-to-image translation (by correlating more with downstream task performance as well as anatomical consistency and realism), and the evaluation of unconditional image generation. Moreover, FRD offers additional benefits such as stability and computational efficiency at low sample sizes, sensitivity to image corruptions and adversarial attacks, feature interpretability, and correlation with radiologist-perceived image quality. Additionally, we address key gaps in the literature by presenting an extensive framework for the multifaceted evaluation of image similarity metrics in medical imaging -- including the first large-scale comparative study of generative models for medical image translation -- and release an accessible codebase to facilitate future research. Our results are supported by thorough experiments spanning a variety of datasets, modalities, and downstream tasks, highlighting the broad potential of FRD for medical image analysis.
comment: Codebase for FRD computation: https://github.com/RichardObi/frd-score. Codebase for medical image similarity metric evaluation framework: https://github.com/mazurowski-lab/medical-image-similarity-metrics
Pseudo-labelling meets Label Smoothing for Noisy Partial Label Learning CVPR
We motivate weakly supervised learning as an effective learning paradigm for problems where curating perfectly annotated datasets is expensive and may require domain expertise such as fine-grained classification. We focus on Partial Label Learning (PLL), a weakly-supervised learning paradigm where each training instance is paired with a set of candidate labels (partial label), one of which is the true label. Noisy PLL (NPLL) relaxes this constraint by allowing some partial labels to not contain the true label, enhancing the practicality of the problem. Our work centres on NPLL and presents a framework that initially assigns pseudo-labels to images by exploiting the noisy partial labels through a weighted nearest neighbour algorithm. These pseudo-label and image pairs are then used to train a deep neural network classifier with label smoothing. The classifier's features and predictions are subsequently employed to refine and enhance the accuracy of pseudo-labels. We perform thorough experiments on seven datasets and compare against nine NPLL and PLL methods. We achieve state-of-the-art results in all studied settings from the prior literature, obtaining substantial gains in the simulated fine-grained benchmarks. Further, we show the promising generalisation capability of our framework in realistic, fine-grained, crowd-sourced datasets.
comment: Best Paper Award at The 12th Workshop on Fine-Grained Visual Categorization (CVPRW 2025)
SemiOccam: A Robust Semi-Supervised Image Recognition Network Using Sparse Labels
We present SemiOccam, an image recognition network that leverages semi-supervised learning in a highly efficient manner. Existing works often rely on complex training techniques and architectures, requiring hundreds of GPU hours for training, while their generalization ability when dealing with extremely limited labeled data remains to be improved. To address these limitations, we construct a hierarchical mixture density classification decision mechanism by optimizing mutual information between feature representations and target classes, compressing redundant information while retaining crucial discriminative components. Experimental results demonstrate that our method achieves state-of-the-art performance on various datasets when using negligible labeled samples, and its simple architecture keeps training time to minute-level. Notably, this paper reveals a long-overlooked data leakage issue in the STL-10 dataset for semi-supervised learning tasks and removes duplicates to ensure the reliability of experimental results. We also release the deduplicated CleanSTL-10 dataset to facilitate fair and reliable research in future semi-supervised learning. Code available at https://github.com/Shu1L0n9/SemiOccam.
comment: CleanSTL-10 available at https://huggingface.co/datasets/Shu1L0n9/CleanSTL-10
From Prototypes to General Distributions: An Efficient Curriculum for Masked Image Modeling CVPR2025
Masked Image Modeling (MIM) has emerged as a powerful self-supervised learning paradigm for visual representation learning, enabling models to acquire rich visual representations by predicting masked portions of images from their visible regions. While this approach has shown promising results, we hypothesize that its effectiveness may be limited by optimization challenges during early training stages, where models are expected to learn complex image distributions from partial observations before developing basic visual processing capabilities. To address this limitation, we propose a prototype-driven curriculum leagrning framework that structures the learning process to progress from prototypical examples to more complex variations in the dataset. Our approach introduces a temperature-based annealing scheme that gradually expands the training distribution, enabling more stable and efficient learning trajectories. Through extensive experiments on ImageNet-1K, we demonstrate that our curriculum learning strategy significantly improves both training efficiency and representation quality while requiring substantially fewer training epochs compared to standard Masked Auto-Encoding. Our findings suggest that carefully controlling the order of training examples plays a crucial role in self-supervised visual learning, providing a practical solution to the early-stage optimization challenges in MIM.
comment: Accepted to CVPR2025
In Search of Forgotten Domain Generalization ICLR 2025
Out-of-Domain (OOD) generalization is the ability of a model trained on one or more domains to generalize to unseen domains. In the ImageNet era of computer vision, evaluation sets for measuring a model's OOD performance were designed to be strictly OOD with respect to style. However, the emergence of foundation models and expansive web-scale datasets has obfuscated this evaluation process, as datasets cover a broad range of domains and risk test domain contamination. In search of the forgotten domain generalization, we create large-scale datasets subsampled from LAION -- LAION-Natural and LAION-Rendition -- that are strictly OOD to corresponding ImageNet and DomainNet test sets in terms of style. Training CLIP models on these datasets reveals that a significant portion of their performance is explained by in-domain examples. This indicates that the OOD generalization challenges from the ImageNet era still prevail and that training on web-scale data merely creates the illusion of OOD generalization. Furthermore, through a systematic exploration of combining natural and rendition datasets in varying proportions, we identify optimal mixing ratios for model generalization across these domains. Our datasets and results re-enable meaningful assessment of OOD robustness at scale -- a crucial prerequisite for improving model robustness.
comment: ICLR 2025 camera-ready version
ARMOR: Empowering Multimodal Understanding Model with Interleaved Multimodal Generation Capability
Unified multimodal understanding and generation have recently received much attention in the area of vision and language. Existing UniMs are designed to simultaneously learn both multimodal understanding and generation capabilities, demanding substantial computational resources, and often struggle to generate interleaved text-image. We present ARMOR, a resource-efficient and pure autoregressive framework that achieves both understanding and generation by fine-tuning existing multimodal large language models (MLLMs). Specifically, ARMOR extends existing MLLMs from three perspectives: (1) For model architecture, an asymmetric encoder-decoder architecture with a forward-switching mechanism is introduced to unify embedding space integrating textual and visual modalities for enabling natural text-image interleaved generation with minimal computational overhead. (2) For training data, a meticulously curated, high-quality interleaved dataset is collected for fine-tuning MLLMs. (3) For the training algorithm, we propose a ``what or how to generate'' algorithm to empower existing MLLMs with multimodal generation capabilities while preserving their multimodal understanding capabilities, through three progressive training stages based on the collected dataset. Experimental results demonstrate that ARMOR upgrades existing MLLMs to UniMs with promising image generation capabilities, using limited training resources. Our code will be released soon at https://github.com/finyorko/armor.
Balancing Beyond Discrete Categories: Continuous Demographic Labels for Fair Face Recognition
Bias has been a constant in face recognition models. Over the years, researchers have looked at it from both the model and the data point of view. However, their approach to mitigation of data bias was limited and lacked insight on the real nature of the problem. Here, in this document, we propose to revise our use of ethnicity labels as a continuous variable instead of a discrete value per identity. We validate our formulation both experimentally and theoretically, showcasing that not all identities from one ethnicity contribute equally to the balance of the dataset; thus, having the same number of identities per ethnicity does not represent a balanced dataset. We further show that models trained on datasets balanced in the continuous space consistently outperform models trained on data balanced in the discrete space. We trained more than 65 different models, and created more than 20 subsets of the original datasets.
comment: Under review
GenSpace: Benchmarking Spatially-Aware Image Generation
Humans can intuitively compose and arrange scenes in the 3D space for photography. However, can advanced AI image generators plan scenes with similar 3D spatial awareness when creating images from text or image prompts? We present GenSpace, a novel benchmark and evaluation pipeline to comprehensively assess the spatial awareness of current image generation models. Furthermore, standard evaluations using general Vision-Language Models (VLMs) frequently fail to capture the detailed spatial errors. To handle this challenge, we propose a specialized evaluation pipeline and metric, which reconstructs 3D scene geometry using multiple visual foundation models and provides a more accurate and human-aligned metric of spatial faithfulness. Our findings show that while AI models create visually appealing images and can follow general instructions, they struggle with specific 3D details like object placement, relationships, and measurements. We summarize three core limitations in the spatial perception of current state-of-the-art image generation models: 1) Object Perspective Understanding, 2) Egocentric-Allocentric Transformation and 3) Metric Measurement Adherence, highlighting possible directions for improving spatial intelligence in image generation.
VisionTS: Visual Masked Autoencoders Are Free-Lunch Zero-Shot Time Series Forecasters ICML 2025
Foundation models have emerged as a promising approach in time series forecasting (TSF). Existing approaches either repurpose large language models (LLMs) or build large-scale time series datasets to develop TSF foundation models for universal forecasting. However, these methods face challenges due to the severe cross-domain gap or in-domain heterogeneity. This paper explores a new road to building a TSF foundation model from rich, high-quality natural images. Our key insight is that a visual masked autoencoder, pre-trained on the ImageNet dataset, can naturally be a numeric series forecaster. By reformulating TSF as an image reconstruction task, we bridge the gap between image pre-training and TSF downstream tasks. Surprisingly, without further adaptation in the time series domain, the proposed VisionTS could achieve better zero-shot forecast performance than existing TSF foundation models. With fine-tuning for one epoch, VisionTS could further improve the forecasting and achieve state-of-the-art performance in most cases. Extensive experiments reveal intrinsic similarities between images and real-world time series, suggesting that visual models may offer a "free lunch" for TSF and highlight the potential for future cross-modality research. Our code is publicly available at https://github.com/Keytoyze/VisionTS.
comment: v4: accepted by ICML 2025
Assessing Intersectional Bias in Representations of Pre-Trained Image Recognition Models
Deep Learning models have achieved remarkable success. Training them is often accelerated by building on top of pre-trained models which poses the risk of perpetuating encoded biases. Here, we investigate biases in the representations of commonly used ImageNet classifiers for facial images while considering intersections of sensitive variables age, race and gender. To assess the biases, we use linear classifier probes and visualize activations as topographic maps. We find that representations in ImageNet classifiers particularly allow differentiation between ages. Less strongly pronounced, the models appear to associate certain ethnicities and distinguish genders in middle-aged groups.
comment: Summary paper accepted at the 3rd TRR 318 Conference: Contextualizing Explanations 2025
diffDemorph: Extending Reference-Free Demorphing to Unseen Faces
A face morph is created by combining two face images corresponding to two identities to produce a composite that successfully matches both the constituent identities. Reference-free (RF) demorphing reverses this process using only the morph image, without the need for additional reference images. Previous RF demorphing methods are overly constrained, as they rely on assumptions about the distributions of training and testing morphs such as the morphing technique used (e.g., landmark-based) and face image style (e.g., passport photos). In this paper, we introduce a novel diffusion-based approach, referred to as diffDeMorph, that effectively disentangles component images from a composite morph image with high visual fidelity. Our method is the first to generalize across morph techniques and face styles, beating the current state of the art by $\geq 59.46\%$ under a common training protocol across all datasets tested. We train our method on morphs created using synthetically generated face images and test on real morphs, thereby enhancing the practicality of the technique. Experiments on six datasets and two face matchers establish the utility and efficacy of our method.
Feedforward Few-shot Species Range Estimation ICML 2025
Knowing where a particular species can or cannot be found on Earth is crucial for ecological research and conservation efforts. By mapping the spatial ranges of all species, we would obtain deeper insights into how global biodiversity is affected by climate change and habitat loss. However, accurate range estimates are only available for a relatively small proportion of all known species. For the majority of the remaining species, we typically only have a small number of records denoting the spatial locations where they have previously been observed. We outline a new approach for few-shot species range estimation to address the challenge of accurately estimating the range of a species from limited data. During inference, our model takes a set of spatial locations as input, along with optional metadata such as text or an image, and outputs a species encoding that can be used to predict the range of a previously unseen species in a feedforward manner. We evaluate our approach on two challenging benchmarks, where we obtain state-of-the-art range estimation performance, in a fraction of the compute time, compared to recent alternative approaches.
comment: Published in the Proceedings of the 42nd International Conference on Machine Learning (ICML 2025)
Application of convolutional neural networks in image super-resolution
Due to strong learning abilities of convolutional neural networks (CNNs), they have become mainstream methods for image super-resolution. However, there are big differences of different deep learning methods with different types. There is little literature to summarize relations and differences of different methods in image super-resolution. Thus, summarizing these literatures are important, according to loading capacity and execution speed of devices. This paper first introduces principles of CNNs in image super-resolution, then introduces CNNs based bicubic interpolation, nearest neighbor interpolation, bilinear interpolation, transposed convolution, sub-pixel layer, meta up-sampling for image super-resolution to analyze differences and relations of different CNNs based interpolations and modules, and compare performance of these methods by experiments. Finally, this paper gives potential research points and drawbacks and summarizes the whole paper, which can facilitate developments of CNNs in image super-resolution.
comment: It has been accepted by CAAI transactions on intelligent systems, in Chinese language
MedXpertQA: Benchmarking Expert-Level Medical Reasoning and Understanding ICML 2025
We introduce MedXpertQA, a highly challenging and comprehensive benchmark to evaluate expert-level medical knowledge and advanced reasoning. MedXpertQA includes 4,460 questions spanning 17 specialties and 11 body systems. It includes two subsets, Text for text evaluation and MM for multimodal evaluation. Notably, MM introduces expert-level exam questions with diverse images and rich clinical information, including patient records and examination results, setting it apart from traditional medical multimodal benchmarks with simple QA pairs generated from image captions. MedXpertQA applies rigorous filtering and augmentation to address the insufficient difficulty of existing benchmarks like MedQA, and incorporates specialty board questions to improve clinical relevance and comprehensiveness. We perform data synthesis to mitigate data leakage risk and conduct multiple rounds of expert reviews to ensure accuracy and reliability. We evaluate 18 leading models on \benchmark. Moreover, medicine is deeply connected to real-world decision-making, providing a rich and representative setting for assessing reasoning abilities beyond mathematics and code. To this end, we develop a reasoning-oriented subset to facilitate the assessment of o1-like models. Code and data are available at: https://github.com/TsinghuaC3I/MedXpertQA
comment: ICML 2025
Rethinking Machine Unlearning in Image Generation Models CCS 2025
With the surge and widespread application of image generation models, data privacy and content safety have become major concerns and attracted great attention from users, service providers, and policymakers. Machine unlearning (MU) is recognized as a cost-effective and promising means to address these challenges. Despite some advancements, image generation model unlearning (IGMU) still faces remarkable gaps in practice, e.g., unclear task discrimination and unlearning guidelines, lack of an effective evaluation framework, and unreliable evaluation metrics. These can hinder the understanding of unlearning mechanisms and the design of practical unlearning algorithms. We perform exhaustive assessments over existing state-of-the-art unlearning algorithms and evaluation standards, and discover several critical flaws and challenges in IGMU tasks. Driven by these limitations, we make several core contributions, to facilitate the comprehensive understanding, standardized categorization, and reliable evaluation of IGMU. Specifically, (1) We design CatIGMU, a novel hierarchical task categorization framework. It provides detailed implementation guidance for IGMU, assisting in the design of unlearning algorithms and the construction of testbeds. (2) We introduce EvalIGMU, a comprehensive evaluation framework. It includes reliable quantitative metrics across five critical aspects. (3) We construct DataIGM, a high-quality unlearning dataset, which can be used for extensive evaluations of IGMU, training content detectors for judgment, and benchmarking the state-of-the-art unlearning algorithms. With EvalIGMU and DataIGM, we discover that most existing IGMU algorithms cannot handle the unlearning well across different evaluation dimensions, especially for preservation and robustness. Code and models are available at https://github.com/ryliu68/IGMU.
comment: Accepted by ACM CCS 2025
YOLO-RS: Remote Sensing Enhanced Crop Detection Methods
With the rapid development of remote sensing technology, crop classification and health detection based on deep learning have gradually become a research hotspot. However, the existing target detection methods show poor performance when dealing with small targets in remote sensing images, especially in the case of complex background and image mixing, which is difficult to meet the practical application requirementsite. To address this problem, a novel target detection model YOLO-RS is proposed in this paper. The model is based on the latest Yolov11 which significantly enhances the detection of small targets by introducing the Context Anchor Attention (CAA) mechanism and an efficient multi-field multi-scale feature fusion network. YOLO-RS adopts a bidirectional feature fusion strategy in the feature fusion process, which effectively enhances the model's performance in the detection of small targets. Small target detection. Meanwhile, the ACmix module at the end of the model backbone network solves the category imbalance problem by adaptively adjusting the contrast and sample mixing, thus enhancing the detection accuracy in complex scenes. In the experiments on the PDT remote sensing crop health detection dataset and the CWC crop classification dataset, YOLO-RS improves both the recall and the mean average precision (mAP) by about 2-3\% or so compared with the existing state-of-the-art methods, while the F1-score is also significantly improved. Moreover, the computational complexity of the model only increases by about 5.2 GFLOPs, indicating its significant advantages in both performance and efficiency. The experimental results validate the effectiveness and application potential of YOLO-RS in the task of detecting small targets in remote sensing images.
Subspecialty-Specific Foundation Model for Intelligent Gastrointestinal Pathology
Gastrointestinal (GI) diseases represent a clinically significant burden, necessitating precise diagnostic approaches to optimize patient outcomes. Conventional histopathological diagnosis suffers from limited reproducibility and diagnostic variability. To overcome these limitations, we develop Digepath, a specialized foundation model for GI pathology. Our framework introduces a dual-phase iterative optimization strategy combining pretraining with fine-screening, specifically designed to address the detection of sparsely distributed lesion areas in whole-slide images. Digepath is pretrained on over 353 million multi-scale images from 210,043 H&E-stained slides of GI diseases. It attains state-of-the-art performance on 33 out of 34 tasks related to GI pathology, including pathological diagnosis, protein expression status prediction, gene mutation prediction, and prognosis evaluation. We further translate the intelligent screening module for early GI cancer and achieve near-perfect 99.70% sensitivity across nine independent medical institutions. This work not only advances AI-driven precision pathology for GI diseases but also bridge critical gaps in histopathological practice.
Diving into Self-Evolving Training for Multimodal Reasoning ICML 2025
Self-evolving trainin--where models iteratively learn from their own outputs--has emerged as a key approach for complex reasoning tasks, addressing the scarcity of high-quality chain-of-thought data. However, its effectiveness in multimodal reasoning, a domain more intricate than text-only reasoning, remains underexplored, and the understanding of critical factors in this training paradigm remains limited. Furthermore, a central challenge for this training method is performance saturation, which impedes further improvements and scalability. Inspired by reinforcement learning (RL), in this paper, we reframe self-evolving training for multimodal reasoning through the lens of RL, identifying three pivotal factors: Training Method, Reward Model, and Prompt Variation. Through systematic analysis, we establish relatively optimal design principles that significantly enhance multimodal reasoning capabilities. Moreover, delving deeper into training dynamics, we uncover the roots of saturation and propose a new automatic balancing mechanism to mitigate this limitation. Building on these insights, we propose M-STAR (Multimodal Self-evolving Training for Reasoning), a framework that achieves consistent performance gains across models of varying sizes and diverse benchmarks. All resources are made publicly available at https://mstar-lmm.github.io.
comment: ICML 2025, Project Page: https://mstar-lmm.github.io
Self-Supervised Generative-Contrastive Learning of Multi-Modal Euclidean Input for 3D Shape Latent Representations: A Dynamic Switching Approach
We propose a combined generative and contrastive neural architecture for learning latent representations of 3D volumetric shapes. The architecture uses two encoder branches for voxel grids and multi-view images from the same underlying shape. The main idea is to combine a contrastive loss between the resulting latent representations with an additional reconstruction loss. That helps to avoid collapsing the latent representations as a trivial solution for minimizing the contrastive loss. A novel dynamic switching approach is used to cross-train two encoders with a shared decoder. The switching approach also enables the stop gradient operation on a random branch. Further classification experiments show that the latent representations learned with our self-supervised method integrate more useful information from the additional input data implicitly, thus leading to better reconstruction and classification performance.
Progressive Data Dropout: An Embarrassingly Simple Approach to Faster Training
The success of the machine learning field has reliably depended on training on large datasets. While effective, this trend comes at an extraordinary cost. This is due to two deeply intertwined factors: the size of models and the size of datasets. While promising research efforts focus on reducing the size of models, the other half of the equation remains fairly mysterious. Indeed, it is surprising that the standard approach to training remains to iterate over and over, uniformly sampling the training dataset. In this paper we explore a series of alternative training paradigms that leverage insights from hard-data-mining and dropout, simple enough to implement and use that can become the new training standard. The proposed Progressive Data Dropout reduces the number of effective epochs to as little as 12.4% of the baseline. This savings actually do not come at any cost for accuracy. Surprisingly, the proposed method improves accuracy by up to 4.82%. Our approach requires no changes to model architecture or optimizer, and can be applied across standard training pipelines, thus posing an excellent opportunity for wide adoption. Code can be found here: https://github.com/bazyagami/LearningWithRevision
CAPability: A Comprehensive Visual Caption Benchmark for Evaluating Both Correctness and Thoroughness
Visual captioning benchmarks have become outdated with the emergence of modern multimodal large language models (MLLMs), as the brief ground-truth sentences and traditional metrics fail to assess detailed captions effectively. While recent benchmarks attempt to address this by focusing on keyword extraction or object-centric evaluation, they remain limited to vague-view or object-view analyses and incomplete visual element coverage. In this paper, we introduce CAPability, a comprehensive multi-view benchmark for evaluating visual captioning across 12 dimensions spanning six critical views. We curate nearly 11K human-annotated images and videos with visual element annotations to evaluate the generated captions. CAPability stably assesses both the correctness and thoroughness of captions with \textit{precision} and \textit{hit} metrics. By converting annotations to QA pairs, we further introduce a heuristic metric, \textit{know but cannot tell} ($K\bar{T}$), indicating a significant performance gap between QA and caption capabilities. Our work provides a holistic analysis of MLLMs' captioning abilities, as we identify their strengths and weaknesses across various dimensions, guiding future research to enhance specific aspects of their capabilities.
UniDB: A Unified Diffusion Bridge Framework via Stochastic Optimal Control
Recent advances in diffusion bridge models leverage Doob's $h$-transform to establish fixed endpoints between distributions, demonstrating promising results in image translation and restoration tasks. However, these approaches frequently produce blurred or excessively smoothed image details and lack a comprehensive theoretical foundation to explain these shortcomings. To address these limitations, we propose UniDB, a unified framework for diffusion bridges based on Stochastic Optimal Control (SOC). UniDB formulates the problem through an SOC-based optimization and derives a closed-form solution for the optimal controller, thereby unifying and generalizing existing diffusion bridge models. We demonstrate that existing diffusion bridges employing Doob's $h$-transform constitute a special case of our framework, emerging when the terminal penalty coefficient in the SOC cost function tends to infinity. By incorporating a tunable terminal penalty coefficient, UniDB achieves an optimal balance between control costs and terminal penalties, substantially improving detail preservation and output quality. Notably, UniDB seamlessly integrates with existing diffusion bridge models, requiring only minimal code modifications. Extensive experiments across diverse image restoration tasks validate the superiority and adaptability of the proposed framework. Our code is available at https://github.com/UniDB-SOC/UniDB/.
Open Your Eyes: Vision Enhances Message Passing Neural Networks in Link Prediction ICML 2025
Message-passing graph neural networks (MPNNs) and structural features (SFs) are cornerstones for the link prediction task. However, as a common and intuitive mode of understanding, the potential of visual perception has been overlooked in the MPNN community. For the first time, we equip MPNNs with vision structural awareness by proposing an effective framework called Graph Vision Network (GVN), along with a more efficient variant (E-GVN). Extensive empirical results demonstrate that with the proposed frameworks, GVN consistently benefits from the vision enhancement across seven link prediction datasets, including challenging large-scale graphs. Such improvements are compatible with existing state-of-the-art (SOTA) methods and GVNs achieve new SOTA results, thereby underscoring a promising novel direction for link prediction.
comment: ICML 2025
RoPETR: Improving Temporal Camera-Only 3D Detection by Integrating Enhanced Rotary Position Embedding
This technical report introduces a targeted improvement to the StreamPETR framework, specifically aimed at enhancing velocity estimation, a critical factor influencing the overall NuScenes Detection Score. While StreamPETR exhibits strong 3D bounding box detection performance as reflected by its high mean Average Precision our analysis identified velocity estimation as a substantial bottleneck when evaluated on the NuScenes dataset. To overcome this limitation, we propose a customized positional embedding strategy tailored to enhance temporal modeling capabilities. Experimental evaluations conducted on the NuScenes test set demonstrate that our improved approach achieves a state-of-the-art NDS of 70.86% using the ViT-L backbone, setting a new benchmark for camera-only 3D object detection.
On the Importance of Text Preprocessing for Multimodal Representation Learning and Pathology Report Generation
Vision-language models in pathology enable multimodal case retrieval and automated report generation. Many of the models developed so far, however, have been trained on pathology reports that include information which cannot be inferred from paired whole slide images (e.g., patient history), potentially leading to hallucinated sentences in generated reports. To this end, we investigate how the selection of information from pathology reports for vision-language modeling affects the quality of the multimodal representations and generated reports. More concretely, we compare a model trained on full reports against a model trained on preprocessed reports that only include sentences describing the cell and tissue appearances based on the H&E-stained slides. For the experiments, we built upon the BLIP-2 framework and used a cutaneous melanocytic lesion dataset of 42,433 H&E-stained whole slide images and 19,636 corresponding pathology reports. Model performance was assessed using image-to-text and text-to-image retrieval, as well as qualitative evaluation of the generated reports by an expert pathologist. Our results demonstrate that text preprocessing prevents hallucination in report generation. Despite the improvement in the quality of the generated reports, training the vision-language model on full reports showed better cross-modal retrieval performance.
comment: 11 pages, 1 figure
Enhancing pretraining efficiency for medical image segmentation via transferability metrics
In medical image segmentation tasks, the scarcity of labeled training data poses a significant challenge when training deep neural networks. When using U-Net-style architectures, it is common practice to address this problem by pretraining the encoder part on a large general-purpose dataset like ImageNet. However, these methods are resource-intensive and do not guarantee improved performance on the downstream task. In this paper we investigate a variety of training setups on medical image segmentation datasets, using ImageNet-pretrained models. By examining over 300 combinations of models, datasets, and training methods, we find that shorter pretraining often leads to better results on the downstream task, providing additional proof to the well-known fact that the accuracy of the model on ImageNet is a poor indicator for downstream performance. As our main contribution, we introduce a novel transferability metric, based on contrastive learning, that measures how robustly a pretrained model is able to represent the target data. In contrast to other transferability scores, our method is applicable to the case of transferring from ImageNet classification to medical image segmentation. We apply our robustness score by measuring it throughout the pretraining phase to indicate when the model weights are optimal for downstream transfer. This reduces pretraining time and improves results on the target task.
comment: An error was discovered in the aggregation process of our results, particularly affecting the experiments involving the advanced pretraining method. This impacts the main conclusions of the paper, and we are therefore withdrawing the submission
TT-Occ: Test-Time Compute for Self-Supervised Occupancy via Spatio-Temporal Gaussian Splatting
Self-supervised 3D occupancy prediction offers a promising solution for understanding complex driving scenes without requiring costly 3D annotations. However, training dense occupancy decoders to capture fine-grained geometry and semantics can demand hundreds of GPU hours, and once trained, such models struggle to adapt to varying voxel resolutions or novel object categories without extensive retraining. To overcome these limitations, we propose a practical and flexible test-time occupancy prediction framework termed TT-Occ. Our method incrementally constructs, optimizes and voxelizes time-aware 3D Gaussians from raw sensor streams by integrating vision foundation models (VLMs) at runtime. The flexible nature of 3D Gaussians allows voxelization at arbitrary user-specified resolutions, while the generalization ability of VLMs enables accurate perception and open-vocabulary recognition, without any network training or fine-tuning. Specifically, TT-Occ operates in a lift-track-voxelize symphony: We first lift the geometry and semantics of surrounding-view extracted from VLMs to instantiate Gaussians at 3D space; Next, we track dynamic Gaussians while accumulating static ones to complete the scene and enforce temporal consistency; Finally, we voxelize the optimized Gaussians to generate occupancy prediction. Optionally, inherent noise in VLM predictions and tracking is mitigated by periodically smoothing neighboring Gaussians during optimization. To validate the generality and effectiveness of our framework, we offer two variants: one LiDAR-based and one vision-centric, and conduct extensive experiments on Occ3D and nuCraft benchmarks with varying voxel resolutions. Code will be available at https://github.com/Xian-Bei/TT-Occ.
RB-SCD: A New Benchmark for Semantic Change Detection of Roads and Bridges in Traffic Scenes
With the rapid modernization of urban transportation, accurately detecting changes such as road and bridge construction, renovation, and demolition is crucial for urban planning and traffic management. However, existing methods often struggle to extract fine-grained semantic changes in complex traffic scenes, largely due to the lack of high-quality annotated change detection (CD) datasets. To address this, we introduce the Road and Bridge Semantic Change Detection (RB-SCD) dataset, a comprehensive benchmark consisting of 260 pairs of high-resolution remote sensing images. RB-SCD spans diverse geographic areas and includes a wide variety of road and bridge types across over ten cities in multiple countries. It covers 11 distinct categories of semantic changes, enabling detailed structural and functional analysis. Based on this challenging dataset, we propose a novel framework called the Multimodal Frequency-Driven Change Detector (MFDCD). For the first time, MFDCD integrates multimodal feature characteristics in the frequency domain. It comprises two key components: the Dynamic Frequency Coupler (DFC) and the Textual Frequency Filter (TFF). DFC couples hierarchical visual features with wavelet-based frequency components, enhancing the perception of fine-grained and cross-temporal structural changes. TFF transforms textual features extracted by the CLIP model into the frequency domain via Fourier transform and applies graph-based filtering to extract salient frequency responses. These are then fused with visual features to enable effective multimodal representation learning. Extensive experiments show that MFDCD achieves strong performance on RB-SCD and three public benchmarks. The RB-SCD dataset, with its rich and diverse annotations, serves as a valuable resource for advancing research in road and bridge change detection under complex traffic conditions.
An Ensemble-Based Two-Step Framework for Classification of Pap Smear Cell Images
Early detection of cervical cancer is crucial for improving patient outcomes and reducing mortality by identifying precancerous lesions as soon as possible. As a result, the use of pap smear screening has significantly increased, leading to a growing demand for automated tools that can assist cytologists managing their rising workload. To address this, the Pap Smear Cell Classification Challenge (PS3C) has been organized in association with ISBI in 2025. This project aims to promote the development of automated tools for pap smear images classification. The analyzed images are grouped into four categories: healthy, unhealthy, both, and rubbish images which are considered as unsuitable for diagnosis. In this work, we propose a two-stage ensemble approach: first, a neural network determines whether an image is rubbish or not. If not, a second neural network classifies the image as containing a healthy cell, an unhealthy cell, or both.
comment: 7 pages, 3 figures, Grand Challenge paper accepted for publication at ISBI 2025
SageAttention2++: A More Efficient Implementation of SageAttention2
The efficiency of attention is critical because its time complexity grows quadratically with sequence length. SageAttention2 addresses this by utilizing quantization to accelerate matrix multiplications (Matmul) in attention. To further accelerate SageAttention2, we propose to utilize the faster instruction of FP8 Matmul accumulated in FP16. The instruction is 2x faster than the FP8 Matmul used in SageAttention2. Our experiments show that SageAttention2++ achieves a 3.9x speedup over FlashAttention while maintaining the same attention accuracy as SageAttention2. This means SageAttention2++ effectively accelerates various models, including those for language, image, and video generation, with negligible end-to-end metrics loss. The code will be available at https://github.com/thu-ml/SageAttention.
SpargeAttention: Accurate and Training-free Sparse Attention Accelerating Any Model Inference ICML
An efficient attention implementation is essential for large models due to its quadratic time complexity. Fortunately, attention commonly exhibits sparsity, i.e., many values in the attention map are near zero, allowing for the omission of corresponding computations. Many studies have utilized the sparse pattern to accelerate attention. However, most existing works focus on optimizing attention within specific models by exploiting certain sparse patterns of the attention map. A universal sparse attention that guarantees both the speedup and end-to-end performance of diverse models remains elusive. In this paper, we propose SpargeAttn, a universal sparse and quantized attention for any model. Our method uses a two-stage online filter: in the first stage, we rapidly and accurately predict the attention map, enabling the skip of some matrix multiplications in attention. In the second stage, we design an online softmax-aware filter that incurs no extra overhead and further skips some matrix multiplications. Experiments show that our method significantly accelerates diverse models, including language, image, and video generation, without sacrificing end-to-end metrics. The codes are available at https://github.com/thu-ml/SpargeAttn.
comment: @inproceedings{zhang2025spargeattn, title={Spargeattn: Accurate sparse attention accelerating any model inference}, author={Zhang, Jintao and Xiang, Chendong and Huang, Haofeng and Wei, Jia and Xi, Haocheng and Zhu, Jun and Chen, Jianfei}, booktitle={International Conference on Machine Learning (ICML)}, year={2025} }
Imitating Radiological Scrolling: A Global-Local Attention Model for 3D Chest CT Volumes Multi-Label Anomaly Classification
The rapid increase in the number of Computed Tomography (CT) scan examinations has created an urgent need for automated tools, such as organ segmentation, anomaly classification, and report generation, to assist radiologists with their growing workload. Multi-label classification of Three-Dimensional (3D) CT scans is a challenging task due to the volumetric nature of the data and the variety of anomalies to be detected. Existing deep learning methods based on Convolutional Neural Networks (CNNs) struggle to capture long-range dependencies effectively, while Vision Transformers require extensive pre-training, posing challenges for practical use. Additionally, these existing methods do not explicitly model the radiologist's navigational behavior while scrolling through CT scan slices, which requires both global context understanding and local detail awareness. In this study, we present CT-Scroll, a novel global-local attention model specifically designed to emulate the scrolling behavior of radiologists during the analysis of 3D CT scans. Our approach is evaluated on two public datasets, demonstrating its efficacy through comprehensive experiments and an ablation study that highlights the contribution of each model component.
comment: 13 pages, 4 figures. Accepted for publication at MIDL 2025
Skywork R1V2: Multimodal Hybrid Reinforcement Learning for Reasoning
We present Skywork R1V2, a next-generation multimodal reasoning model and a major leap forward from its predecessor, Skywork R1V. At its core, R1V2 introduces a hybrid reinforcement learning paradigm that jointly leverages the Mixed Preference Optimization (MPO) and the Group Relative Policy Optimization (GRPO), which harmonizes reward-model guidance with rule-based strategies, thereby addressing the long-standing challenge of balancing sophisticated reasoning capabilities with broad generalization. To further enhance training efficiency, we propose the Selective Sample Buffer (SSB) mechanism, which effectively addresses the vanishing advantages dilemma inherent in GRPO by prioritizing high-value samples throughout the optimization process. Notably, we observe that excessive reinforcement signals can induce visual hallucinations--a phenomenon we systematically monitor and mitigate through calibrated reward thresholds throughout the training process. Empirical results affirm the exceptional capability of R1V2, with benchmark-leading performances such as 62.6 on OlympiadBench, 78.9 on AIME2024, 63.6 on LiveCodeBench, and 73.6 on MMMU. These results underscore R1V2's superiority over existing open-source models and demonstrate significant progress in closing the performance gap with premier proprietary systems, including Gemini 2.5 and OpenAI-o4-mini. The Skywork R1V2 model weights have been publicly released to promote openness and reproducibility https://huggingface.co/Skywork/Skywork-R1V2-38B.
ZeroFlow: Overcoming Catastrophic Forgetting is Easier than You Think
Backpropagation provides a generalized configuration for overcoming catastrophic forgetting. Optimizers such as SGD and Adam are commonly used for weight updates in continual learning and continual pre-training. However, access to gradient information is not always feasible in practice due to black-box APIs, hardware constraints, or non-differentiable systems, a challenge we refer to as the gradient bans. To bridge this gap, we introduce ZeroFlow, the first benchmark designed to evaluate gradient-free optimization algorithms for overcoming forgetting. ZeroFlow examines a suite of forward pass-based methods across various algorithms, forgetting scenarios, and datasets. Our results show that forward passes alone can be sufficient to mitigate forgetting. We uncover novel optimization principles that highlight the potential of forward pass-based methods in mitigating forgetting, managing task conflicts, and reducing memory demands. Additionally, we propose new enhancements that further improve forgetting resistance using only forward passes. This work provides essential tools and insights to advance the development of forward-pass-based methods for continual learning.
Benchmarking and Improving Large Vision-Language Models for Fundamental Visual Graph Understanding and Reasoning ACL2025
Large Vision-Language Models (LVLMs) have demonstrated remarkable performance across diverse tasks. Despite great success, recent studies show that LVLMs encounter substantial limitations when engaging with visual graphs. To study the reason behind these limitations, we propose VGCure, a comprehensive benchmark covering 22 tasks for examining the fundamental graph understanding and reasoning capacities of LVLMs. Extensive evaluations conducted on 14 LVLMs reveal that LVLMs are weak in basic graph understanding and reasoning tasks, particularly those concerning relational or structurally complex information. Based on this observation, we propose a structure-aware fine-tuning framework to enhance LVLMs with structure learning abilities through three self-supervised learning tasks. Experiments validate the effectiveness of our method in improving LVLMs' performance on fundamental and downstream graph learning tasks, as well as enhancing their robustness against complex visual graphs.
comment: Accepted by ACL2025 main conference
Seeing like a Cephalopod: Colour Vision with a Monochrome Event Camera CVPR 2025
Cephalopods exhibit unique colour discrimination capabilities despite having one type of photoreceptor, relying instead on chromatic aberration induced by their ocular optics and pupil shapes to perceive spectral information. We took inspiration from this biological mechanism to design a spectral imaging system that combines a ball lens with an event-based camera. Our approach relies on a motorised system that shifts the focal position, mirroring the adaptive lens motion in cephalopods. This approach has enabled us to achieve wavelength-dependent focusing across the visible light and near-infrared spectrum, making the event a spectral sensor. We characterise chromatic aberration effects, using both event-based and conventional frame-based sensors, validating the effectiveness of bio-inspired spectral discrimination both in simulation and in a real setup as well as assessing the spectral discrimination performance. Our proposed approach provides a robust spectral sensing capability without conventional colour filters or computational demosaicing. This approach opens new pathways toward new spectral sensing systems inspired by nature's evolutionary solutions. Code and analysis are available at: https://samiarja.github.io/neuromorphic_octopus_eye/
comment: 15 pages, 14 figures, 1 table. Accepted at CVPR 2025 (Workshop on Event-based Vision)
Images Speak Louder than Words: Understanding and Mitigating Bias in Vision-Language Model from a Causal Mediation Perspective
Vision-language models (VLMs) pre-trained on extensive datasets can inadvertently learn biases by correlating gender information with specific objects or scenarios. Current methods, which focus on modifying inputs and monitoring changes in the model's output probability scores, often struggle to comprehensively understand bias from the perspective of model components. We propose a framework that incorporates causal mediation analysis to measure and map the pathways of bias generation and propagation within VLMs. This approach allows us to identify the direct effects of interventions on model bias and the indirect effects of interventions on bias mediated through different model components. Our results show that image features are the primary contributors to bias, with significantly higher impacts than text features, specifically accounting for 32.57% and 12.63% of the bias in the MSCOCO and PASCAL-SENTENCE datasets, respectively. Notably, the image encoder's contribution surpasses that of the text encoder and the deep fusion encoder. Further experimentation confirms that contributions from both language and vision modalities are aligned and non-conflicting. Consequently, focusing on blurring gender representations within the image encoder, which contributes most to the model bias, reduces bias efficiently by 22.03% and 9.04% in the MSCOCO and PASCAL-SENTENCE datasets, respectively, with minimal performance loss or increased computational demands.
Flexiffusion: Segment-wise Neural Architecture Search for Flexible Denoising Schedule
Diffusion models are cutting-edge generative models adept at producing diverse, high-quality images. Despite their effectiveness, these models often require significant computational resources owing to their numerous sequential denoising steps and the significant inference cost of each step. Recently, Neural Architecture Search (NAS) techniques have been employed to automatically search for faster generation processes. However, NAS for diffusion is inherently time-consuming as it requires estimating thousands of diffusion models to search for the optimal one. In this paper, we introduce Flexiffusion, a novel training-free NAS paradigm designed to accelerate diffusion models by concurrently optimizing generation steps and network structures. Specifically, we partition the generation process into isometric step segments, each sequentially composed of a full step, multiple partial steps, and several null steps. The full step computes all network blocks, while the partial step involves part of the blocks, and the null step entails no computation. Flexiffusion autonomously explores flexible step combinations for each segment, substantially reducing search costs and enabling greater acceleration compared to the state-of-the-art (SOTA) method for diffusion models. Our searched models reported speedup factors of $2.6\times$ and $1.5\times$ for the original LDM-4-G and the SOTA, respectively. The factors for Stable Diffusion V1.5 and the SOTA are $5.1\times$ and $2.0\times$. We also verified the performance of Flexiffusion on multiple datasets, and positive experiment results indicate that Flexiffusion can effectively reduce redundancy in diffusion models.
SALVE: A 3D Reconstruction Benchmark of Wounds from Consumer-grade Videos
Managing chronic wounds is a global challenge that can be alleviated by the adoption of automatic systems for clinical wound assessment from consumer-grade videos. While 2D image analysis approaches are insufficient for handling the 3D features of wounds, existing approaches utilizing 3D reconstruction methods have not been thoroughly evaluated. To address this gap, this paper presents a comprehensive study on 3D wound reconstruction from consumer-grade videos. Specifically, we introduce the SALVE dataset, comprising video recordings of realistic wound phantoms captured with different cameras. Using this dataset, we assess the accuracy and precision of state-of-the-art methods for 3D reconstruction, ranging from traditional photogrammetry pipelines to advanced neural rendering approaches. In our experiments, we observe that photogrammetry approaches do not provide smooth surfaces suitable for precise clinical measurements of wounds. Neural rendering approaches show promise in addressing this issue, advancing the use of this technology in wound care practices. We encourage the readers to visit the project page: https://remichierchia.github.io/SALVE/.
A Comprehensive Survey on Concept Erasure in Text-to-Image Diffusion Models
Text-to-Image (T2I) models have made remarkable progress in generating high-quality, diverse visual content from natural language prompts. However, their ability to reproduce copyrighted styles, sensitive imagery, and harmful content raises significant ethical and legal concerns. Concept erasure offers a proactive alternative to external filtering by modifying T2I models to prevent the generation of undesired content. In this survey, we provide a structured overview of concept erasure, categorizing existing methods based on their optimization strategies and the architectural components they modify. We categorize concept erasure methods into fine-tuning for parameter updates, closed-form solutions for efficient edits, and inference-time interventions for content restriction without weight modification. Additionally, we explore adversarial attacks that bypass erasure techniques and discuss emerging defenses. To support further research, we consolidate key datasets, evaluation metrics, and benchmarks for assessing erasure effectiveness and model robustness. This survey serves as a comprehensive resource, offering insights into the evolving landscape of concept erasure, its challenges, and future directions.
Ophora: A Large-Scale Data-Driven Text-Guided Ophthalmic Surgical Video Generation Model MICCAI25
In ophthalmic surgery, developing an AI system capable of interpreting surgical videos and predicting subsequent operations requires numerous ophthalmic surgical videos with high-quality annotations, which are difficult to collect due to privacy concerns and labor consumption. Text-guided video generation (T2V) emerges as a promising solution to overcome this issue by generating ophthalmic surgical videos based on surgeon instructions. In this paper, we present Ophora, a pioneering model that can generate ophthalmic surgical videos following natural language instructions. To construct Ophora, we first propose a Comprehensive Data Curation pipeline to convert narrative ophthalmic surgical videos into a large-scale, high-quality dataset comprising over 160K video-instruction pairs, Ophora-160K. Then, we propose a Progressive Video-Instruction Tuning scheme to transfer rich spatial-temporal knowledge from a T2V model pre-trained on natural video-text datasets for privacy-preserved ophthalmic surgical video generation based on Ophora-160K. Experiments on video quality evaluation via quantitative analysis and ophthalmologist feedback demonstrate that Ophora can generate realistic and reliable ophthalmic surgical videos based on surgeon instructions. We also validate the capability of Ophora for empowering downstream tasks of ophthalmic surgical workflow understanding. Code is available at https://github.com/mar-cry/Ophora.
comment: Early accepted in MICCAI25
GroMo: Plant Growth Modeling with Multiview Images
Understanding plant growth dynamics is essential for applications in agriculture and plant phenotyping. We present the Growth Modelling (GroMo) challenge, which is designed for two primary tasks: (1) plant age prediction and (2) leaf count estimation, both essential for crop monitoring and precision agriculture. For this challenge, we introduce GroMo25, a dataset with images of four crops: radish, okra, wheat, and mustard. Each crop consists of multiple plants (p1, p2, ..., pn) captured over different days (d1, d2, ..., dm) and categorized into five levels (L1, L2, L3, L4, L5). Each plant is captured from 24 different angles with a 15-degree gap between images. Participants are required to perform both tasks for all four crops with these multiview images. We proposed a Multiview Vision Transformer (MVVT) model for the GroMo challenge and evaluated the crop-wise performance on GroMo25. MVVT reports an average MAE of 7.74 for age prediction and an MAE of 5.52 for leaf count. The GroMo Challenge aims to advance plant phenotyping research by encouraging innovative solutions for tracking and predicting plant growth. The GitHub repository is publicly available at https://github.com/mriglab/GroMo-Plant-Growth-Modeling-with-Multiview-Images.
comment: 7 pages, 5 Figures, 3 Tables
TASTE-Rob: Advancing Video Generation of Task-Oriented Hand-Object Interaction for Generalizable Robotic Manipulation CVPR 2025
We address key limitations in existing datasets and models for task-oriented hand-object interaction video generation, a critical approach of generating video demonstrations for robotic imitation learning. Current datasets, such as Ego4D, often suffer from inconsistent view perspectives and misaligned interactions, leading to reduced video quality and limiting their applicability for precise imitation learning tasks. Towards this end, we introduce TASTE-Rob -- a pioneering large-scale dataset of 100,856 ego-centric hand-object interaction videos. Each video is meticulously aligned with language instructions and recorded from a consistent camera viewpoint to ensure interaction clarity. By fine-tuning a Video Diffusion Model (VDM) on TASTE-Rob, we achieve realistic object interactions, though we observed occasional inconsistencies in hand grasping postures. To enhance realism, we introduce a three-stage pose-refinement pipeline that improves hand posture accuracy in generated videos. Our curated dataset, coupled with the specialized pose-refinement framework, provides notable performance gains in generating high-quality, task-oriented hand-object interaction videos, resulting in achieving superior generalizable robotic manipulation. The TASTE-Rob dataset is publicly available to foster further advancements in the field, TASTE-Rob dataset and source code will be made publicly available on our website https://taste-rob.github.io.
comment: CVPR 2025; Project Page: https://taste-rob.github.io
LDPM: Towards undersampled MRI reconstruction with MR-VAE and Latent Diffusion Prior
Diffusion models, as powerful generative models, have found a wide range of applications and shown great potential in solving image reconstruction problems. Some works attempted to solve MRI reconstruction with diffusion models, but these methods operate directly in pixel space, leading to higher computational costs for optimization and inference. Latent diffusion models, pre-trained on natural images with rich visual priors, are expected to solve the high computational cost problem in MRI reconstruction by operating in a lower-dimensional latent space. However, direct application to MRI reconstruction faces three key challenges: (1) absence of explicit control mechanisms for medical fidelity, (2) domain gap between natural images and MR physics, and (3) undefined data consistency in latent space. To address these challenges, a novel Latent Diffusion Prior-based undersampled MRI reconstruction (LDPM) method is proposed. Our LDPM framework addresses these challenges by: (1) a sketch-guided pipeline with a two-step reconstruction strategy, which balances perceptual quality and anatomical fidelity, (2) an MRI-optimized VAE (MR-VAE), which achieves an improvement of approximately 3.92 dB in PSNR for undersampled MRI reconstruction compared to that with SD-VAE \cite{sd}, and (3) Dual-Stage Sampler, a modified version of spaced DDPM sampler, which enforces high-fidelity reconstruction in the latent space. Experiments on the fastMRI dataset\cite{fastmri} demonstrate the state-of-the-art performance of the proposed method and its robustness across various scenarios. The effectiveness of each module is also verified through ablation experiments.
comment: accepted as oral presentation at EMBC 2025
Toward a Low-Cost Perception System in Autonomous Vehicles: A Spectrum Learning Approach
We present a cost-effective new approach for generating denser depth maps for Autonomous Driving (AD) and Autonomous Vehicles (AVs) by integrating the images obtained from deep neural network (DNN) 4D radar detectors with conventional camera RGB images. Our approach introduces a novel pixel positional encoding algorithm inspired by Bartlett's spatial spectrum estimation technique. This algorithm transforms both radar depth maps and RGB images into a unified pixel image subspace called the Spatial Spectrum, facilitating effective learning based on their similarities and differences. Our method effectively leverages high-resolution camera images to train radar depth map generative models, addressing the limitations of conventional radar detectors in complex vehicular environments, thus sharpening the radar output. We develop spectrum estimation algorithms tailored for radar depth maps and RGB images, a comprehensive training framework for data-driven generative models, and a camera-radar deployment scheme for AV operation. Our results demonstrate that our approach also outperforms the state-of-the-art (SOTA) by 27.95% in terms of Unidirectional Chamfer Distance (UCD).
Smoothed Preference Optimization via ReNoise Inversion for Aligning Diffusion Models with Varied Human Preferences ICML 2025
Direct Preference Optimization (DPO) aligns text-to-image (T2I) generation models with human preferences using pairwise preference data. Although substantial resources are expended in collecting and labeling datasets, a critical aspect is often neglected: \textit{preferences vary across individuals and should be represented with more granularity.} To address this, we propose SmPO-Diffusion, a novel method for modeling preference distributions to improve the DPO objective, along with a numerical upper bound estimation for the diffusion optimization objective. First, we introduce a smoothed preference distribution to replace the original binary distribution. We employ a reward model to simulate human preferences and apply preference likelihood averaging to improve the DPO loss, such that the loss function approaches zero when preferences are similar. Furthermore, we utilize an inversion technique to simulate the trajectory preference distribution of the diffusion model, enabling more accurate alignment with the optimization objective. Our approach effectively mitigates issues of excessive optimization and objective misalignment present in existing methods through straightforward modifications. Our SmPO-Diffusion achieves state-of-the-art performance in preference evaluation, outperforming baselines across metrics with lower training costs. The project page is https://jaydenlyh.github.io/SmPO-project-page/.
comment: Accepted by ICML 2025
FPSAttention: Training-Aware FP8 and Sparsity Co-Design for Fast Video Diffusion
Diffusion generative models have become the standard for producing high-quality, coherent video content, yet their slow inference speeds and high computational demands hinder practical deployment. Although both quantization and sparsity can independently accelerate inference while maintaining generation quality, naively combining these techniques in existing training-free approaches leads to significant performance degradation due to the lack of joint optimization. We introduce FPSAttention, a novel training-aware co-design of FP8 quantization and sparsity for video generation, with a focus on the 3D bi-directional attention mechanism. Our approach features three key innovations: 1) A unified 3D tile-wise granularity that simultaneously supports both quantization and sparsity; 2) A denoising step-aware strategy that adapts to the noise schedule, addressing the strong correlation between quantization/sparsity errors and denoising steps; 3) A native, hardware-friendly kernel that leverages FlashAttention and is implemented with optimized Hopper architecture features for highly efficient execution. Trained on Wan2.1's 1.3B and 14B models and evaluated on the VBench benchmark, FPSAttention achieves a 7.09x kernel speedup for attention operations and a 4.96x end-to-end speedup for video generation compared to the BF16 baseline at 720p resolution-without sacrificing generation quality.
comment: Project Page: https://fps.ziplab.co
Modality-Fair Preference Optimization for Trustworthy MLLM Alignment
Multimodal large language models (MLLMs) have achieved remarkable success across various tasks. However, separate training of visual and textual encoders often results in a misalignment of the modality. Such misalignment may lead models to generate content that is absent from the input image, a phenomenon referred to as hallucination. These inaccuracies severely undermine the trustworthiness of MLLMs in real-world applications. Despite attempts to optimize text preferences to mitigate this issue, our initial investigation indicates that the trustworthiness of MLLMs remains inadequate. Specifically, these models tend to provide preferred answers even when the input image is heavily distorted. Analysis of visual token attention also indicates that the model focuses primarily on the surrounding context rather than the key object referenced in the question. These findings highlight a misalignment between the modalities, where answers inadequately leverage input images. Motivated by our findings, we propose Modality-Fair Preference Optimization (MFPO), which comprises three components: the construction of a multimodal preference dataset in which dispreferred images differ from originals solely in key regions; an image reward loss function encouraging the model to generate answers better aligned with the input images; and an easy-to-hard iterative alignment strategy to stabilize joint modality training. Extensive experiments on three trustworthiness benchmarks demonstrate that MFPO significantly enhances the trustworthiness of MLLMs. In particular, it enables the 7B models to attain trustworthiness levels on par with, or even surpass, those of the 13B, 34B, and larger models.
TMT: Tri-Modal Translation between Speech, Image, and Text by Processing Different Modalities as Different Languages
The capability to jointly process multi-modal information is becoming an essential task. However, the limited number of paired multi-modal data and the large computational requirements in multi-modal learning hinder the development. We propose a novel Tri-Modal Translation (TMT) model that translates between arbitrary modalities spanning speech, image, and text. We introduce a novel viewpoint, where we interpret different modalities as different languages, and treat multi-modal translation as a well-established machine translation problem. To this end, we tokenize speech and image data into discrete tokens, which provide a unified interface across modalities and significantly decrease the computational cost. In the proposed TMT, a multi-modal encoder-decoder conducts the core translation, whereas modality-specific processing is conducted only within the tokenization and detokenization stages. We evaluate the proposed TMT on all six modality translation tasks. TMT outperforms single model counterparts consistently, demonstrating that unifying tasks is beneficial not only for practicality but also for performance.
comment: IEEE TMM
Federated Foundation Model for GI Endoscopy Images
Gastrointestinal (GI) endoscopy is essential in identifying GI tract abnormalities in order to detect diseases in their early stages and improve patient outcomes. Although deep learning has shown success in supporting GI diagnostics and decision-making, these models require curated datasets with labels that are expensive to acquire. Foundation models offer a promising solution by learning general-purpose representations, which can be finetuned for specific tasks, overcoming data scarcity. Developing foundation models for medical imaging holds significant potential, but the sensitive and protected nature of medical data presents unique challenges. Foundation model training typically requires extensive datasets, and while hospitals generate large volumes of data, privacy restrictions prevent direct data sharing, making foundation model training infeasible in most scenarios. In this work, we propose a FL framework for training foundation models for gastroendoscopy imaging, enabling data to remain within local hospital environments while contributing to a shared model. We explore several established FL algorithms, assessing their suitability for training foundation models without relying on task-specific labels, conducting experiments in both homogeneous and heterogeneous settings. We evaluate the trained foundation model on three critical downstream tasks--classification, detection, and segmentation--and demonstrate that it achieves improved performance across all tasks, highlighting the effectiveness of our approach in a federated, privacy-preserving setting.
comment: 11 pages, 11 figures, submitted to BHI2025
Image and Video Processing
Integrating Complexity and Biological Realism: High-Performance Spiking Neural Networks for Breast Cancer Detection
Spiking Neural Networks (SNNs) event-driven nature enables efficient encoding of spatial and temporal features, making them suitable for dynamic time-dependent data processing. Despite their biological relevance, SNNs have seen limited application in medical image recognition due to difficulties in matching the performance of conventional deep learning models. To address this, we propose a novel breast cancer classification approach that combines SNNs with Lempel-Ziv Complexity (LZC) a computationally efficient measure of sequence complexity. LZC enhances the interpretability and accuracy of spike-based models by capturing structural patterns in neural activity. Our study explores both biophysical Leaky Integrate-and-Fire (LIF) and probabilistic Levy-Baxter (LB) neuron models under supervised, unsupervised, and hybrid learning regimes. Experiments were conducted on the Breast Cancer Wisconsin dataset using numerical features derived from medical imaging. LB-based models consistently exceeded 90.00% accuracy, while LIF-based models reached over 85.00%. The highest accuracy of 98.25% was achieved using an ANN-to-SNN conversion method applied to both neuron models comparable to traditional deep learning with back-propagation, but at up to 100 times lower computational cost. This hybrid approach merges deep learning performance with the efficiency and plausibility of SNNs, yielding top results at lower computational cost. We hypothesize that the synergy between temporal-coding, spike-sparsity, and LZC-driven complexity analysis enables more-efficient feature extraction. Our findings demonstrate that SNNs combined with LZC offer promising, biologically plausible alternative to conventional neural networks in medical diagnostics, particularly for resource-constrained or real-time systems.
DermaCon-IN: A Multi-concept Annotated Dermatological Image Dataset of Indian Skin Disorders for Clinical AI Research
Artificial intelligence is poised to augment dermatological care by enabling scalable image-based diagnostics. Yet, the development of robust and equitable models remains hindered by datasets that fail to capture the clinical and demographic complexity of real-world practice. This complexity stems from region-specific disease distributions, wide variation in skin tones, and the underrepresentation of outpatient scenarios from non-Western populations. We introduce DermaCon-IN, a prospectively curated dermatology dataset comprising over 5,450 clinical images from approximately 3,000 patients across outpatient clinics in South India. Each image is annotated by board-certified dermatologists with over 240 distinct diagnoses, structured under a hierarchical, etiology-based taxonomy adapted from Rook's classification. The dataset captures a wide spectrum of dermatologic conditions and tonal variation commonly seen in Indian outpatient care. We benchmark a range of architectures including convolutional models (ResNet, DenseNet, EfficientNet), transformer-based models (ViT, MaxViT, Swin), and Concept Bottleneck Models to establish baseline performance and explore how anatomical and concept-level cues may be integrated. These results are intended to guide future efforts toward interpretable and clinically realistic models. DermaCon-IN provides a scalable and representative foundation for advancing dermatology AI in real-world settings.
LinGuinE: Longitudinal Guidance Estimation for Volumetric Lung Tumour Segmentation
Segmentation of lung gross tumour volumes is an important first step in radiotherapy and surgical intervention, and is starting to play a role in assessing chemotherapy response. Response to a drug is measured by tracking the tumour volumes over a series of CT scans over a time period i.e. a longitudinal study. However, there currently exist few solutions for automated or semi-automated longitudinal tumour segmentation. This paper introduces LinGuinE, an automated method to segment a longitudinal series of lung tumours. A radiologist must provide an initial input, indicating the location of the tumour in a CT scan at an arbitrary time point. LinGuinE samples points inside this tumour and propagates them to another time point using rigid registration. A click validity classifier selects points which still fall within the tumour; these are used to automatically create a segmentation in the new time point. We test LinGuinE on a dataset acquired from a phase 3 clinical trial for lung tumours and the publicly available 4-D lung CBCT dataset. We find that LinGuinE improves the Dice on both test sets by over 20% (p< 0.05) across 63 longitudinal studies. We show that any time point can be used as a starting point, conduct ablation experiments, and find that our LinGuinE setup yields the best results on both test datasets.
comment: 10 pages, 3 figures
FPDANet: A Multi-Section Classification Model for Intelligent Screening of Fetal Ultrasound
ResNet has been widely used in image classification tasks due to its ability to model the residual dependence of constant mappings for linear computation. However, the ResNet method adopts a unidirectional transfer of features and lacks an effective method to correlate contextual information, which is not effective in classifying fetal ultrasound images in the classification task, and fetal ultrasound images have problems such as low contrast, high similarity, and high noise. Therefore, we propose a bilateral multi-scale information fusion network-based FPDANet to address the above challenges. Specifically, we design the positional attention mechanism (DAN) module, which utilizes the similarity of features to establish the dependency of different spatial positional features and enhance the feature representation. In addition, we design a bilateral multi-scale (FPAN) information fusion module to capture contextual and global feature dependencies at different feature scales, thereby further improving the model representation. FPDANet classification results obtained 91.05\% and 100\% in Top-1 and Top-5 metrics, respectively, and the experimental results proved the effectiveness and robustness of FPDANet.
Implicit Neural Representation-Based MRI Reconstruction Method with Sensitivity Map Constraints
Magnetic Resonance Imaging (MRI) is a widely utilized diagnostic tool in clinical settings, but its application is limited by the relatively long acquisition time. As a result, fast MRI reconstruction has become a significant area of research. In recent years, Implicit Neural Representation (INR), as a scan-specific method, has demonstrated outstanding performance in fast MRI reconstruction without fully-sampled images for training. High acceleration reconstruction poses a challenging problem, and a key component in achieving high-quality reconstruction with much few data is the accurate estimation of coil sensitivity maps. However, most INR-based methods apply regularization constraints solely to the generated images, while overlooking the characteristics of the coil sensitivity maps. To handle this, this work proposes a joint coil sensitivity map and image estimation network, termed INR-CRISTAL. The proposed INR-CRISTAL introduces an extra sensitivity map regularization in the INR networks to make use of the smooth characteristics of the sensitivity maps. Experimental results show that INR-CRISTAL provides more accurate coil sensitivity estimates with fewer artifacts, and delivers superior reconstruction performance in terms of artifact removal and structure preservation. Moreover, INR-CRISTAL demonstrates stronger robustness to automatic calibration signals and the acceleration rate compared to existing methods.
Reliable Evaluation of MRI Motion Correction: Dataset and Insights
Correcting motion artifacts in MRI is important, as they can hinder accurate diagnosis. However, evaluating deep learning-based and classical motion correction methods remains fundamentally difficult due to the lack of accessible ground-truth target data. To address this challenge, we study three evaluation approaches: real-world evaluation based on reference scans, simulated motion, and reference-free evaluation, each with its merits and shortcomings. To enable evaluation with real-world motion artifacts, we release PMoC3D, a dataset consisting of unprocessed Paired Motion-Corrupted 3D brain MRI data. To advance evaluation quality, we introduce MoMRISim, a feature-space metric trained for evaluating motion reconstructions. We assess each evaluation approach and find real-world evaluation together with MoMRISim, while not perfect, to be most reliable. Evaluation based on simulated motion systematically exaggerates algorithm performance, and reference-free evaluation overrates oversmoothed deep learning outputs.
Aerial Multi-View Stereo via Adaptive Depth Range Inference and Normal Cues
Three-dimensional digital urban reconstruction from multi-view aerial images is a critical application where deep multi-view stereo (MVS) methods outperform traditional techniques. However, existing methods commonly overlook the key differences between aerial and close-range settings, such as varying depth ranges along epipolar lines and insensitive feature-matching associated with low-detailed aerial images. To address these issues, we propose an Adaptive Depth Range MVS (ADR-MVS), which integrates monocular geometric cues to improve multi-view depth estimation accuracy. The key component of ADR-MVS is the depth range predictor, which generates adaptive range maps from depth and normal estimates using cross-attention discrepancy learning. In the first stage, the range map derived from monocular cues breaks through predefined depth boundaries, improving feature-matching discriminability and mitigating convergence to local optima. In later stages, the inferred range maps are progressively narrowed, ultimately aligning with the cascaded MVS framework for precise depth regression. Moreover, a normal-guided cost aggregation operation is specially devised for aerial stereo images to improve geometric awareness within the cost volume. Finally, we introduce a normal-guided depth refinement module that surpasses existing RGB-guided techniques. Experimental results demonstrate that ADR-MVS achieves state-of-the-art performance on the WHU, LuoJia-MVS, and M\"unchen datasets, while exhibits superior computational complexity.
comment: IEEE TGRS 2025
Noise Consistency Regularization for Improved Subject-Driven Image Synthesis
Fine-tuning Stable Diffusion enables subject-driven image synthesis by adapting the model to generate images containing specific subjects. However, existing fine-tuning methods suffer from two key issues: underfitting, where the model fails to reliably capture subject identity, and overfitting, where it memorizes the subject image and reduces background diversity. To address these challenges, we propose two auxiliary consistency losses for diffusion fine-tuning. First, a prior consistency regularization loss ensures that the predicted diffusion noise for prior (non-subject) images remains consistent with that of the pretrained model, improving fidelity. Second, a subject consistency regularization loss enhances the fine-tuned model's robustness to multiplicative noise modulated latent code, helping to preserve subject identity while improving diversity. Our experimental results demonstrate that incorporating these losses into fine-tuning not only preserves subject identity but also enhances image diversity, outperforming DreamBooth in terms of CLIP scores, background variation, and overall visual quality.
ResPF: Residual Poisson Flow for Efficient and Physically Consistent Sparse-View CT Reconstruction
Sparse-view computed tomography (CT) is a practical solution to reduce radiation dose, but the resulting ill-posed inverse problem poses significant challenges for accurate image reconstruction. Although deep learning and diffusion-based methods have shown promising results, they often lack physical interpretability or suffer from high computational costs due to iterative sampling starting from random noise. Recent advances in generative modeling, particularly Poisson Flow Generative Models (PFGM), enable high-fidelity image synthesis by modeling the full data distribution. In this work, we propose Residual Poisson Flow (ResPF) Generative Models for efficient and accurate sparse-view CT reconstruction. Based on PFGM++, ResPF integrates conditional guidance from sparse measurements and employs a hijacking strategy to significantly reduce sampling cost by skipping redundant initial steps. However, skipping early stages can degrade reconstruction quality and introduce unrealistic structures. To address this, we embed a data-consistency into each iteration, ensuring fidelity to sparse-view measurements. Yet, PFGM sampling relies on a fixed ordinary differential equation (ODE) trajectory induced by electrostatic fields, which can be disrupted by step-wise data consistency, resulting in unstable or degraded reconstructions. Inspired by ResNet, we introduce a residual fusion module to linearly combine generative outputs with data-consistent reconstructions, effectively preserving trajectory continuity. To the best of our knowledge, this is the first application of Poisson flow models to sparse-view CT. Extensive experiments on synthetic and clinical datasets demonstrate that ResPF achieves superior reconstruction quality, faster inference, and stronger robustness compared to state-of-the-art iterative, learning-based, and diffusion models.
Reconstructing Heterogeneous Biomolecules via Hierarchical Gaussian Mixtures and Part Discovery SP
Cryo-EM is a transformational paradigm in molecular biology where computational methods are used to infer 3D molecular structure at atomic resolution from extremely noisy 2D electron microscope images. At the forefront of research is how to model the structure when the imaged particles exhibit non-rigid conformational flexibility and compositional variation where parts are sometimes missing. We introduce a novel 3D reconstruction framework with a hierarchical Gaussian mixture model, inspired in part by Gaussian Splatting for 4D scene reconstruction. In particular, the structure of the model is grounded in an initial process that infers a part-based segmentation of the particle, providing essential inductive bias in order to handle both conformational and compositional variability. The framework, called CryoSPIRE, is shown to reveal biologically meaningful structures on complex experimental datasets, and establishes a new state-of-the-art on CryoBench, a benchmark for cryo-EM heterogeneity methods.
comment: 21 pages, 14 figures, Project Webpage: https://shekshaa.github.io/CryoSPIRE
Application of convolutional neural networks in image super-resolution
Due to strong learning abilities of convolutional neural networks (CNNs), they have become mainstream methods for image super-resolution. However, there are big differences of different deep learning methods with different types. There is little literature to summarize relations and differences of different methods in image super-resolution. Thus, summarizing these literatures are important, according to loading capacity and execution speed of devices. This paper first introduces principles of CNNs in image super-resolution, then introduces CNNs based bicubic interpolation, nearest neighbor interpolation, bilinear interpolation, transposed convolution, sub-pixel layer, meta up-sampling for image super-resolution to analyze differences and relations of different CNNs based interpolations and modules, and compare performance of these methods by experiments. Finally, this paper gives potential research points and drawbacks and summarizes the whole paper, which can facilitate developments of CNNs in image super-resolution.
comment: It has been accepted by CAAI transactions on intelligent systems, in Chinese language
Sketched Equivariant Imaging Regularization and Deep Internal Learning for Inverse Problems
Equivariant Imaging (EI) regularization has become the de-facto technique for unsupervised training of deep imaging networks, without any need of ground-truth data. Observing that the EI-based unsupervised training paradigm currently has significant computational redundancy leading to inefficiency in high-dimensional applications, we propose a sketched EI regularization which leverages the randomized sketching techniques for acceleration. We apply our sketched EI regularization to develop an accelerated deep internal learning framework, which can be efficiently applied for test-time network adaptation. Additionally, for network adaptation tasks, we propose a parameter-efficient approach to accelerate both EI and Sketched-EI via optimizing only the normalization layers. Our numerical study on X-ray CT and multicoil magnetic resonance image reconstruction tasks demonstrate that our approach can achieve significant computational acceleration over standard EI counterpart in single-input setting and network adaptation at test time.
comment: 22 pages
Fréchet Radiomic Distance (FRD): A Versatile Metric for Comparing Medical Imaging Datasets
Determining whether two sets of images belong to the same or different distributions or domains is a crucial task in modern medical image analysis and deep learning; for example, to evaluate the output quality of image generative models. Currently, metrics used for this task either rely on the (potentially biased) choice of some downstream task, such as segmentation, or adopt task-independent perceptual metrics (e.g., Fr\'echet Inception Distance/FID) from natural imaging, which we show insufficiently capture anatomical features. To this end, we introduce a new perceptual metric tailored for medical images, FRD (Fr\'echet Radiomic Distance), which utilizes standardized, clinically meaningful, and interpretable image features. We show that FRD is superior to other image distribution metrics for a range of medical imaging applications, including out-of-domain (OOD) detection, the evaluation of image-to-image translation (by correlating more with downstream task performance as well as anatomical consistency and realism), and the evaluation of unconditional image generation. Moreover, FRD offers additional benefits such as stability and computational efficiency at low sample sizes, sensitivity to image corruptions and adversarial attacks, feature interpretability, and correlation with radiologist-perceived image quality. Additionally, we address key gaps in the literature by presenting an extensive framework for the multifaceted evaluation of image similarity metrics in medical imaging -- including the first large-scale comparative study of generative models for medical image translation -- and release an accessible codebase to facilitate future research. Our results are supported by thorough experiments spanning a variety of datasets, modalities, and downstream tasks, highlighting the broad potential of FRD for medical image analysis.
comment: Codebase for FRD computation: https://github.com/RichardObi/frd-score. Codebase for medical image similarity metric evaluation framework: https://github.com/mazurowski-lab/medical-image-similarity-metrics
Subspecialty-Specific Foundation Model for Intelligent Gastrointestinal Pathology
Gastrointestinal (GI) diseases represent a clinically significant burden, necessitating precise diagnostic approaches to optimize patient outcomes. Conventional histopathological diagnosis suffers from limited reproducibility and diagnostic variability. To overcome these limitations, we develop Digepath, a specialized foundation model for GI pathology. Our framework introduces a dual-phase iterative optimization strategy combining pretraining with fine-screening, specifically designed to address the detection of sparsely distributed lesion areas in whole-slide images. Digepath is pretrained on over 353 million multi-scale images from 210,043 H&E-stained slides of GI diseases. It attains state-of-the-art performance on 33 out of 34 tasks related to GI pathology, including pathological diagnosis, protein expression status prediction, gene mutation prediction, and prognosis evaluation. We further translate the intelligent screening module for early GI cancer and achieve near-perfect 99.70% sensitivity across nine independent medical institutions. This work not only advances AI-driven precision pathology for GI diseases but also bridge critical gaps in histopathological practice.
Enhancing pretraining efficiency for medical image segmentation via transferability metrics
In medical image segmentation tasks, the scarcity of labeled training data poses a significant challenge when training deep neural networks. When using U-Net-style architectures, it is common practice to address this problem by pretraining the encoder part on a large general-purpose dataset like ImageNet. However, these methods are resource-intensive and do not guarantee improved performance on the downstream task. In this paper we investigate a variety of training setups on medical image segmentation datasets, using ImageNet-pretrained models. By examining over 300 combinations of models, datasets, and training methods, we find that shorter pretraining often leads to better results on the downstream task, providing additional proof to the well-known fact that the accuracy of the model on ImageNet is a poor indicator for downstream performance. As our main contribution, we introduce a novel transferability metric, based on contrastive learning, that measures how robustly a pretrained model is able to represent the target data. In contrast to other transferability scores, our method is applicable to the case of transferring from ImageNet classification to medical image segmentation. We apply our robustness score by measuring it throughout the pretraining phase to indicate when the model weights are optimal for downstream transfer. This reduces pretraining time and improves results on the target task.
comment: An error was discovered in the aggregation process of our results, particularly affecting the experiments involving the advanced pretraining method. This impacts the main conclusions of the paper, and we are therefore withdrawing the submission
An Ensemble-Based Two-Step Framework for Classification of Pap Smear Cell Images
Early detection of cervical cancer is crucial for improving patient outcomes and reducing mortality by identifying precancerous lesions as soon as possible. As a result, the use of pap smear screening has significantly increased, leading to a growing demand for automated tools that can assist cytologists managing their rising workload. To address this, the Pap Smear Cell Classification Challenge (PS3C) has been organized in association with ISBI in 2025. This project aims to promote the development of automated tools for pap smear images classification. The analyzed images are grouped into four categories: healthy, unhealthy, both, and rubbish images which are considered as unsuitable for diagnosis. In this work, we propose a two-stage ensemble approach: first, a neural network determines whether an image is rubbish or not. If not, a second neural network classifies the image as containing a healthy cell, an unhealthy cell, or both.
comment: 7 pages, 3 figures, Grand Challenge paper accepted for publication at ISBI 2025
Ophora: A Large-Scale Data-Driven Text-Guided Ophthalmic Surgical Video Generation Model MICCAI25
In ophthalmic surgery, developing an AI system capable of interpreting surgical videos and predicting subsequent operations requires numerous ophthalmic surgical videos with high-quality annotations, which are difficult to collect due to privacy concerns and labor consumption. Text-guided video generation (T2V) emerges as a promising solution to overcome this issue by generating ophthalmic surgical videos based on surgeon instructions. In this paper, we present Ophora, a pioneering model that can generate ophthalmic surgical videos following natural language instructions. To construct Ophora, we first propose a Comprehensive Data Curation pipeline to convert narrative ophthalmic surgical videos into a large-scale, high-quality dataset comprising over 160K video-instruction pairs, Ophora-160K. Then, we propose a Progressive Video-Instruction Tuning scheme to transfer rich spatial-temporal knowledge from a T2V model pre-trained on natural video-text datasets for privacy-preserved ophthalmic surgical video generation based on Ophora-160K. Experiments on video quality evaluation via quantitative analysis and ophthalmologist feedback demonstrate that Ophora can generate realistic and reliable ophthalmic surgical videos based on surgeon instructions. We also validate the capability of Ophora for empowering downstream tasks of ophthalmic surgical workflow understanding. Code is available at https://github.com/mar-cry/Ophora.
comment: Early accepted in MICCAI25
LDPM: Towards undersampled MRI reconstruction with MR-VAE and Latent Diffusion Prior
Diffusion models, as powerful generative models, have found a wide range of applications and shown great potential in solving image reconstruction problems. Some works attempted to solve MRI reconstruction with diffusion models, but these methods operate directly in pixel space, leading to higher computational costs for optimization and inference. Latent diffusion models, pre-trained on natural images with rich visual priors, are expected to solve the high computational cost problem in MRI reconstruction by operating in a lower-dimensional latent space. However, direct application to MRI reconstruction faces three key challenges: (1) absence of explicit control mechanisms for medical fidelity, (2) domain gap between natural images and MR physics, and (3) undefined data consistency in latent space. To address these challenges, a novel Latent Diffusion Prior-based undersampled MRI reconstruction (LDPM) method is proposed. Our LDPM framework addresses these challenges by: (1) a sketch-guided pipeline with a two-step reconstruction strategy, which balances perceptual quality and anatomical fidelity, (2) an MRI-optimized VAE (MR-VAE), which achieves an improvement of approximately 3.92 dB in PSNR for undersampled MRI reconstruction compared to that with SD-VAE \cite{sd}, and (3) Dual-Stage Sampler, a modified version of spaced DDPM sampler, which enforces high-fidelity reconstruction in the latent space. Experiments on the fastMRI dataset\cite{fastmri} demonstrate the state-of-the-art performance of the proposed method and its robustness across various scenarios. The effectiveness of each module is also verified through ablation experiments.
comment: accepted as oral presentation at EMBC 2025
Toward a Low-Cost Perception System in Autonomous Vehicles: A Spectrum Learning Approach
We present a cost-effective new approach for generating denser depth maps for Autonomous Driving (AD) and Autonomous Vehicles (AVs) by integrating the images obtained from deep neural network (DNN) 4D radar detectors with conventional camera RGB images. Our approach introduces a novel pixel positional encoding algorithm inspired by Bartlett's spatial spectrum estimation technique. This algorithm transforms both radar depth maps and RGB images into a unified pixel image subspace called the Spatial Spectrum, facilitating effective learning based on their similarities and differences. Our method effectively leverages high-resolution camera images to train radar depth map generative models, addressing the limitations of conventional radar detectors in complex vehicular environments, thus sharpening the radar output. We develop spectrum estimation algorithms tailored for radar depth maps and RGB images, a comprehensive training framework for data-driven generative models, and a camera-radar deployment scheme for AV operation. Our results demonstrate that our approach also outperforms the state-of-the-art (SOTA) by 27.95% in terms of Unidirectional Chamfer Distance (UCD).
Rate-Accuracy Bounds in Visual Coding for Machines
Increasingly, visual signals such as images, videos and point clouds are being captured solely for the purpose of automated analysis by computer vision models. Applications include traffic monitoring, robotics, autonomous driving, smart home, and many others. This trend has led to the need to develop compression strategies for these signals for the purpose of analysis rather than reconstruction, an area often referred to as "coding for machines." By drawing parallels with lossy coding of a discrete memoryless source, in this paper we derive rate-accuracy bounds on several popular problems in visual coding for machines, and compare these with state-of-the-art results from the literature. The comparison shows that the current results are at least an order of magnitude -- and in some cases two or three orders of magnitude -- away from the theoretical bounds in terms of the bitrate needed to achieve a certain level of accuracy. This, in turn, means that there is much room for improvement in the current methods for visual coding for machines.
comment: 7 pages, 8 figures, IEEE MIPR 2025
Gaussian is All You Need: A Unified Framework for Solving Inverse Problems via Diffusion Posterior Sampling
Diffusion models can generate a variety of high-quality images by modeling complex data distributions. Trained diffusion models can also be very effective image priors for solving inverse problems. Most of the existing diffusion-based methods integrate data consistency steps by approximating the likelihood function within the diffusion reverse sampling process. In this paper, we show that the existing approximations are either insufficient or computationally inefficient. To address these issues, we propose a unified likelihood approximation method that incorporates a covariance correction term to enhance the performance and avoids propagating gradients through the diffusion model. The correction term, when integrated into the reverse diffusion sampling process, achieves better convergence towards the true data posterior for selected distributions and improves performance on real-world natural image datasets. Furthermore, we present an efficient way to factorize and invert the covariance matrix of the likelihood function for several inverse problems. Our comprehensive experiments demonstrate the effectiveness of our method over several existing approaches. Code available at https://github.com/CSIPlab/CoDPS.
Computation and Language
Movie Facts and Fibs (MF$^2$): A Benchmark for Long Movie Understanding
Despite recent progress in vision-language models (VLMs), holistic understanding of long-form video content remains a significant challenge, partly due to limitations in current benchmarks. Many focus on peripheral, ``needle-in-a-haystack'' details, encouraging context-insensitive retrieval over deep comprehension. Others rely on large-scale, semi-automatically generated questions (often produced by language models themselves) that are easier for models to answer but fail to reflect genuine understanding. In this paper, we introduce MF$^2$, a new benchmark for evaluating whether models can comprehend, consolidate, and recall key narrative information from full-length movies (50-170 minutes long). MF$^2$ includes over 50 full-length, open-licensed movies, each paired with manually constructed sets of claim pairs -- one true (fact) and one plausible but false (fib), totalling over 850 pairs. These claims target core narrative elements such as character motivations and emotions, causal chains, and event order, and refer to memorable moments that humans can recall without rewatching the movie. Instead of multiple-choice formats, we adopt a binary claim evaluation protocol: for each pair, models must correctly identify both the true and false claims. This reduces biases like answer ordering and enables a more precise assessment of reasoning. Our experiments demonstrate that both open-weight and closed state-of-the-art models fall well short of human performance, underscoring the relative ease of the task for humans and their superior ability to retain and reason over critical narrative information -- an ability current VLMs lack.
comment: Under Review
AdvSumm: Adversarial Training for Bias Mitigation in Text Summarization
Large Language Models (LLMs) have achieved impressive performance in text summarization and are increasingly deployed in real-world applications. However, these systems often inherit associative and framing biases from pre-training data, leading to inappropriate or unfair outputs in downstream tasks. In this work, we present AdvSumm (Adversarial Summarization), a domain-agnostic training framework designed to mitigate bias in text summarization through improved generalization. Inspired by adversarial robustness, AdvSumm introduces a novel Perturber component that applies gradient-guided perturbations at the embedding level of Sequence-to-Sequence models, enhancing the model's robustness to input variations. We empirically demonstrate that AdvSumm effectively reduces different types of bias in summarization-specifically, name-nationality bias and political framing bias-without compromising summarization quality. Compared to standard transformers and data augmentation techniques like back-translation, AdvSumm achieves stronger bias mitigation performance across benchmark datasets.
Cartridges: Lightweight and general-purpose long context representations via self-study
Large language models are often used to answer queries grounded in large text corpora (e.g. codebases, legal documents, or chat histories) by placing the entire corpus in the context window and leveraging in-context learning (ICL). Although current models support contexts of 100K-1M tokens, this setup is costly to serve because the memory consumption of the KV cache scales with input length. We explore an alternative: training a smaller KV cache offline on each corpus. At inference time, we load this trained KV cache, which we call a Cartridge, and decode a response. Critically, the cost of training a Cartridge can be amortized across all the queries referencing the same corpus. However, we find that the naive approach of training the Cartridge with next-token prediction on the corpus is not competitive with ICL. Instead, we propose self-study, a training recipe in which we generate synthetic conversations about the corpus and train the Cartridge with a context-distillation objective. We find that Cartridges trained with self-study replicate the functionality of ICL, while being significantly cheaper to serve. On challenging long-context benchmarks, Cartridges trained with self-study match ICL performance while using 38.6x less memory and enabling 26.4x higher throughput. Self-study also extends the model's effective context length (e.g. from 128k to 484k tokens on MTOB) and surprisingly, leads to Cartridges that can be composed at inference time without retraining.
PersonaAgent: When Large Language Model Agents Meet Personalization at Test Time
Large Language Model (LLM) empowered agents have recently emerged as advanced paradigms that exhibit impressive capabilities in a wide range of domains and tasks. Despite their potential, current LLM agents often adopt a one-size-fits-all approach, lacking the flexibility to respond to users' varying needs and preferences. This limitation motivates us to develop PersonaAgent, the first personalized LLM agent framework designed to address versatile personalization tasks. Specifically, PersonaAgent integrates two complementary components - a personalized memory module that includes episodic and semantic memory mechanisms; a personalized action module that enables the agent to perform tool actions tailored to the user. At the core, the persona (defined as unique system prompt for each user) functions as an intermediary: it leverages insights from personalized memory to control agent actions, while the outcomes of these actions in turn refine the memory. Based on the framework, we propose a test-time user-preference alignment strategy that simulate the latest n interactions to optimize the persona prompt, ensuring real-time user preference alignment through textual loss feedback between simulated and ground-truth responses. Experimental evaluations demonstrate that PersonaAgent significantly outperforms other baseline methods by not only personalizing the action space effectively but also scaling during test-time real-world applications. These results underscore the feasibility and potential of our approach in delivering tailored, dynamic user experiences.
Bridging External and Parametric Knowledge: Mitigating Hallucination of LLMs with Shared-Private Semantic Synergy in Dual-Stream Knowledge
Retrieval-augmented generation (RAG) is a cost-effective approach to mitigate the hallucination of Large Language Models (LLMs) by incorporating the retrieved external knowledge into the generation process. However, external knowledge may conflict with the parametric knowledge of LLMs. Furthermore, current LLMs lack inherent mechanisms for resolving such knowledge conflicts, making traditional RAG methods suffer from degraded performance and stability. Thus, we propose a Dual-Stream Knowledge-Augmented Framework for Shared-Private Semantic Synergy (DSSP-RAG). Central to the framework is a novel approach that refines self-attention into a mixed-attention, distinguishing shared and private semantics for a controlled internal-external knowledge integration. To effectively facilitate DSSP in RAG, we further introduce an unsupervised hallucination detection method based on cognitive uncertainty, ensuring the necessity of introducing knowledge, and an Energy Quotient (EQ) based on attention difference matrices to reduce noise in the retrieved external knowledge. Extensive experiments on benchmark datasets show that DSSP-RAG can effectively resolve conflicts and enhance the complementarity of dual-stream knowledge, leading to superior performance over strong baselines.
Explaining Matters: Leveraging Definitions and Semantic Expansion for Sexism Detection ACL
The detection of sexism in online content remains an open problem, as harmful language disproportionately affects women and marginalized groups. While automated systems for sexism detection have been developed, they still face two key challenges: data sparsity and the nuanced nature of sexist language. Even in large, well-curated datasets like the Explainable Detection of Online Sexism (EDOS), severe class imbalance hinders model generalization. Additionally, the overlapping and ambiguous boundaries of fine-grained categories introduce substantial annotator disagreement, reflecting the difficulty of interpreting nuanced expressions of sexism. To address these challenges, we propose two prompt-based data augmentation techniques: Definition-based Data Augmentation (DDA), which leverages category-specific definitions to generate semantically-aligned synthetic examples, and Contextual Semantic Expansion (CSE), which targets systematic model errors by enriching examples with task-specific semantic features. To further improve reliability in fine-grained classification, we introduce an ensemble strategy that resolves prediction ties by aggregating complementary perspectives from multiple language models. Our experimental evaluation on the EDOS dataset demonstrates state-of-the-art performance across all tasks, with notable improvements of macro F1 by 1.5 points for binary classification (Task A) and 4.1 points for fine-grained classification (Task C).
comment: Proceedings of the 2025 Annual Meeting of the Association for Computational Linguistics (ACL). ACL 2025 - Main Conference
Corrector Sampling in Language Models
Autoregressive language models accumulate errors due to their fixed, irrevocable left-to-right token generation. To address this, we propose a new sampling method called Resample-Previous-Tokens (RPT). RPT mitigates error accumulation by iteratively revisiting and potentially replacing tokens in a window of previously generated text. This method can be integrated into existing autoregressive models, preserving their next-token-prediction quality and speed. Fine-tuning a pretrained 8B parameter model with RPT for only 100B resulted in ~10% relative improvements on reasoning and coding benchmarks compared to the standard sampling.
Can Theoretical Physics Research Benefit from Language Agents?
Large Language Models (LLMs) are rapidly advancing across diverse domains, yet their application in theoretical physics research is not yet mature. This position paper argues that LLM agents can potentially help accelerate theoretical, computational, and applied physics when properly integrated with domain knowledge and toolbox. We analyze current LLM capabilities for physics -- from mathematical reasoning to code generation -- identifying critical gaps in physical intuition, constraint satisfaction, and reliable reasoning. We envision future physics-specialized LLMs that could handle multimodal data, propose testable hypotheses, and design experiments. Realizing this vision requires addressing fundamental challenges: ensuring physical consistency, and developing robust verification methods. We call for collaborative efforts between physics and AI communities to help advance scientific discovery in physics.
comment: 9 pages
PuzzleWorld: A Benchmark for Multimodal, Open-Ended Reasoning in Puzzlehunts
Puzzlehunts are a genre of complex, multi-step puzzles lacking well-defined problem definitions. In contrast to conventional reasoning benchmarks consisting of tasks with clear instructions, puzzlehunts require models to discover the underlying problem structure from multimodal evidence and iterative reasoning, mirroring real-world domains such as scientific discovery, exploratory data analysis, or investigative problem-solving. Despite recent progress in foundation models, their performance on such open-ended settings remains largely untested. In this paper, we introduce PuzzleWorld, a large-scale benchmark of 667 puzzlehunt-style problems designed to assess step-by-step, open-ended, and creative multimodal reasoning. Each puzzle is annotated with the final solution, detailed reasoning traces, and cognitive skill labels, enabling holistic benchmarking and fine-grained diagnostic analysis. Most state-of-the-art models achieve only 1-2% final answer accuracy, with the best model solving only 14% of puzzles and reaching 40% stepwise accuracy. To demonstrate the value of our reasoning annotations, we show that fine-tuning a small model on reasoning traces improves stepwise reasoning from 4% to 11%, while training on final answers alone degrades performance to near zero. Our error analysis reveals that current models exhibit myopic reasoning, are bottlenecked by the limitations of language-based inference, and lack sketching capabilities crucial for visual and spatial reasoning. We release PuzzleWorld at https://github.com/MIT-MI/PuzzleWorld to support future work on building more general, open-ended, and creative reasoning systems.
Building Models of Neurological Language
This report documents the development and evaluation of domain-specific language models for neurology. Initially focused on building a bespoke model, the project adapted to rapid advances in open-source and commercial medical LLMs, shifting toward leveraging retrieval-augmented generation (RAG) and representational models for secure, local deployment. Key contributions include the creation of neurology-specific datasets (case reports, QA sets, textbook-derived data), tools for multi-word expression extraction, and graph-based analyses of medical terminology. The project also produced scripts and Docker containers for local hosting. Performance metrics and graph community results are reported, with future possible work open for multimodal models using open-source architectures like phi-4.
comment: 21 pages, 6 figures
Detecting Voice Phishing with Precision: Fine-Tuning Small Language Models
We develop a voice phishing (VP) detector by fine-tuning Llama3, a representative open-source, small language model (LM). In the prompt, we provide carefully-designed VP evaluation criteria and apply the Chain-of-Thought (CoT) technique. To evaluate the robustness of LMs and highlight differences in their performance, we construct an adversarial test dataset that places the models under challenging conditions. Moreover, to address the lack of VP transcripts, we create transcripts by referencing existing or new types of VP techniques. We compare cases where evaluation criteria are included, the CoT technique is applied, or both are used together. In the experiment, our results show that the Llama3-8B model, fine-tuned with a dataset that includes a prompt with VP evaluation criteria, yields the best performance among small LMs and is comparable to that of a GPT-4-based VP detector. These findings indicate that incorporating human expert knowledge into the prompt is more effective than using the CoT technique for small LMs in VP detection.
comment: 15 pages, 4 figures, 8 tables, journal submission
Does It Run and Is That Enough? Revisiting Text-to-Chart Generation with a Multi-Agent Approach
Large language models can translate natural-language chart descriptions into runnable code, yet approximately 15\% of the generated scripts still fail to execute, even after supervised fine-tuning and reinforcement learning. We investigate whether this persistent error rate stems from model limitations or from reliance on a single-prompt design. To explore this, we propose a lightweight multi-agent pipeline that separates drafting, execution, repair, and judgment, using only an off-the-shelf GPT-4o-mini model. On the \textsc{Text2Chart31} benchmark, our system reduces execution errors to 4.5\% within three repair iterations, outperforming the strongest fine-tuned baseline by nearly 5 percentage points while requiring significantly less compute. Similar performance is observed on the \textsc{ChartX} benchmark, with an error rate of 4.6\%, demonstrating strong generalization. Under current benchmarks, execution success appears largely solved. However, manual review reveals that 6 out of 100 sampled charts contain hallucinations, and an LLM-based accessibility audit shows that only 33.3\% (\textsc{Text2Chart31}) and 7.2\% (\textsc{ChartX}) of generated charts satisfy basic colorblindness guidelines. These findings suggest that future work should shift focus from execution reliability toward improving chart aesthetics, semantic fidelity, and accessibility.
comment: 8 pages
semantic-features: A User-Friendly Tool for Studying Contextual Word Embeddings in Interpretable Semantic Spaces SC
We introduce semantic-features, an extensible, easy-to-use library based on Chronis et al. (2023) for studying contextualized word embeddings of LMs by projecting them into interpretable spaces. We apply this tool in an experiment where we measure the contextual effect of the choice of dative construction (prepositional or double object) on the semantic interpretation of utterances (Bresnan, 2007). Specifically, we test whether "London" in "I sent London the letter." is more likely to be interpreted as an animate referent (e.g., as the name of a person) than in "I sent the letter to London." To this end, we devise a dataset of 450 sentence pairs, one in each dative construction, with recipients being ambiguous with respect to person-hood vs. place-hood. By applying semantic-features, we show that the contextualized word embeddings of three masked language models show the expected sensitivities. This leaves us optimistic about the usefulness of our tool.
comment: SCiL 2025 Camera Ready Extended Abstract
The Lock-in Hypothesis: Stagnation by Algorithm ICML 2025
The training and deployment of large language models (LLMs) create a feedback loop with human users: models learn human beliefs from data, reinforce these beliefs with generated content, reabsorb the reinforced beliefs, and feed them back to users again and again. This dynamic resembles an echo chamber. We hypothesize that this feedback loop entrenches the existing values and beliefs of users, leading to a loss of diversity and potentially the lock-in of false beliefs. We formalize this hypothesis and test it empirically with agent-based LLM simulations and real-world GPT usage data. Analysis reveals sudden but sustained drops in diversity after the release of new GPT iterations, consistent with the hypothesized human-AI feedback loop. Code and data available at https://thelockinhypothesis.com
comment: ICML 2025, 46 pages
Masked Language Models are Good Heterogeneous Graph Generalizers
Heterogeneous graph neural networks (HGNNs) excel at capturing structural and semantic information in heterogeneous graphs (HGs), while struggling to generalize across domains and tasks. Recently, some researchers have turned to integrating HGNNs with large language models (LLMs) for more generalizable heterogeneous graph learning. However, these approaches typically extract structural information via HGNNs as HG tokens, and disparities in embedding spaces between HGNNs and LLMs have been shown to bias the LLM's comprehension of HGs. Moreover, as these HG tokens are often derived from node-level tasks, the model's ability to generalize across tasks remains limited. To this end, we propose a simple yet effective Masked Language Modeling-based method, called MLM4HG. MLM4HG introduces metapath-based textual sequences instead of HG tokens to extract structural and semantic information inherent in HGs, and designs customized textual templates to unify different graph tasks into a coherent cloze-style "mask" token prediction paradigm. Specifically, MLM4HG first converts HGs from various domains to texts based on metapaths, and subsequently combines them with the unified task texts to form a HG-based corpus. Moreover, the corpus is fed into a pretrained LM for fine-tuning with a constrained target vocabulary, enabling the fine-tuned LM to generalize to unseen target HGs. Extensive cross-domain and multi-task experiments on four real-world datasets demonstrate the superior generalization performance of MLM4HG over state-of-the-art methods in both few-shot and zero-shot scenarios. Our code is available at https://github.com/BUPT-GAMMA/MLM4HG.
CLaMR: Contextualized Late-Interaction for Multimodal Content Retrieval
Online video web content is richly multimodal: a single video blends vision, speech, ambient audio, and on-screen text. Retrieval systems typically treat these modalities as independent retrieval sources, which can lead to noisy and subpar retrieval. We explore multimodal video content retrieval, where relevance can be scored from one particular modality or jointly across multiple modalities simultaneously. Consequently, an effective retriever must dynamically choose which modality (or set of modalities) best addresses the query. We introduce CLaMR, a multimodal, late-interaction retriever that jointly indexes 4 modalities: video frames, transcribed speech, on-screen text, and metadata. CLaMR jointly encodes all modalities with a unified multimodal backbone for improved contextualization and is trained to enhance dynamic modality selection via two key innovations. First, given the lack of training data for multimodal retrieval, we introduce MultiVENT 2.0++, a large-scale synthetic training dataset built on MultiVENT 2.0 (event-centric videos in various languages paired with queries) with modality-targeted queries. Next, we propose a modality-aware loss that jointly trains according to a standard contrastive objective alongside an objective for learning correct modality usage. On the test sets of MultiVENT 2.0++ and MSRVTT, conventional aggregation strategies, such as averaging similarities for baseline retrievers, degrade performance by introducing noise from irrelevant modalities. In contrast, CLaMR consistently outperforms existing retrievers: on MultiVENT 2.0++, CLaMR improves nDCG@10 by 25.6 over the best single-modality retriever and by 35.4 over the best multi-modality retriever. We illustrate CLaMR's downstream utility on long-video QA, retrieving relevant frames and obtaining a 3.50% boost over LanguageBind on Video-MME and 1.42% over dense sampling on LongVideoBench.
comment: 18 pages. Code and data: https://github.com/meetdavidwan/clamr
Table-r1: Self-supervised and Reinforcement Learning for Program-based Table Reasoning in Small Language Models
Table reasoning (TR) requires structured reasoning over semi-structured tabular data and remains challenging, particularly for small language models (SLMs, e.g., LLaMA-8B) due to their limited capacity compared to large LMs (LLMs, e.g., GPT-4o). To narrow this gap, we explore program-based TR (P-TR), which circumvents key limitations of text-based TR (T-TR), notably in numerical reasoning, by generating executable programs. However, applying P-TR to SLMs introduces two challenges: (i) vulnerability to heterogeneity in table layouts, and (ii) inconsistency in reasoning due to limited code generation capability. We propose Table-r1, a two-stage P-TR method designed for SLMs. Stage 1 introduces an innovative self-supervised learning task, Layout Transformation Inference, to improve tabular layout generalization from a programmatic view. Stage 2 adopts a mix-paradigm variant of Group Relative Policy Optimization, enhancing P-TR consistency while allowing dynamic fallback to T-TR when needed. Experiments on four TR benchmarks demonstrate that Table-r1 outperforms all SLM-based methods, achieving at least a 15% accuracy improvement over the base model (LLaMA-8B) across all datasets and reaching performance competitive with LLMs.
Let's CONFER: A Dataset for Evaluating Natural Language Inference Models on CONditional InFERence and Presupposition
Natural Language Inference (NLI) is the task of determining whether a sentence pair represents entailment, contradiction, or a neutral relationship. While NLI models perform well on many inference tasks, their ability to handle fine-grained pragmatic inferences, particularly presupposition in conditionals, remains underexplored. In this study, we introduce CONFER, a novel dataset designed to evaluate how NLI models process inference in conditional sentences. We assess the performance of four NLI models, including two pre-trained models, to examine their generalization to conditional reasoning. Additionally, we evaluate Large Language Models (LLMs), including GPT-4o, LLaMA, Gemma, and DeepSeek-R1, in zero-shot and few-shot prompting settings to analyze their ability to infer presuppositions with and without prior context. Our findings indicate that NLI models struggle with presuppositional reasoning in conditionals, and fine-tuning on existing NLI datasets does not necessarily improve their performance.
comment: This paper is published in the Proceedings of the 38th Canadian Conference on Artificial Intelligence (CAIAC 2025). Please cite the conference version at https://caiac.pubpub.org/pub/keh8ij01
Phonetically-Augmented Discriminative Rescoring for Voice Search Error Correction
End-to-end (E2E) Automatic Speech Recognition (ASR) models are trained using paired audio-text samples that are expensive to obtain, since high-quality ground-truth data requires human annotators. Voice search applications, such as digital media players, leverage ASR to allow users to search by voice as opposed to an on-screen keyboard. However, recent or infrequent movie titles may not be sufficiently represented in the E2E ASR system's training data, and hence, may suffer poor recognition. In this paper, we propose a phonetic correction system that consists of (a) a phonetic search based on the ASR model's output that generates phonetic alternatives that may not be considered by the E2E system, and (b) a rescorer component that combines the ASR model recognition and the phonetic alternatives, and select a final system output. We find that our approach improves word error rate between 4.4 and 7.6% relative on benchmarks of popular movie titles over a series of competitive baselines.
comment: To appear at Interspeech '25
Bridging the Gap: In-Context Learning for Modeling Human Disagreement
Large Language Models (LLMs) have shown strong performance on NLP classification tasks. However, they typically rely on aggregated labels-often via majority voting-which can obscure the human disagreement inherent in subjective annotations. This study examines whether LLMs can capture multiple perspectives and reflect annotator disagreement in subjective tasks such as hate speech and offensive language detection. We use in-context learning (ICL) in zero-shot and few-shot settings, evaluating four open-source LLMs across three label modeling strategies: aggregated hard labels, and disaggregated hard and soft labels. In few-shot prompting, we assess demonstration selection methods based on textual similarity (BM25, PLM-based), annotation disagreement (entropy), a combined ranking, and example ordering strategies (random vs. curriculum-based). Results show that multi-perspective generation is viable in zero-shot settings, while few-shot setups often fail to capture the full spectrum of human judgments. Prompt design and demonstration selection notably affect performance, though example ordering has limited impact. These findings highlight the challenges of modeling subjectivity with LLMs and the importance of building more perspective-aware, socially intelligent models.
Label-Context-Dependent Internal Language Model Estimation for CTC
Although connectionist temporal classification (CTC) has the label context independence assumption, it can still implicitly learn a context-dependent internal language model (ILM) due to modern powerful encoders. In this work, we investigate the implicit context dependency modeled in the ILM of CTC. To this end, we propose novel context-dependent ILM estimation methods for CTC based on knowledge distillation (KD) with theoretical justifications. Furthermore, we introduce two regularization methods for KD. We conduct experiments on Librispeech and TED-LIUM Release 2 datasets for in-domain and cross-domain evaluation, respectively. Experimental results show that context-dependent ILMs outperform the context-independent priors in cross-domain evaluation, indicating that CTC learns a context-dependent ILM. The proposed label-level KD with smoothing method surpasses other ILM estimation approaches, with more than 13% relative improvement in word error rate compared to shallow fusion.
comment: accepted to Interspeech 2025
Reinforcing Code Generation: Improving Text-to-SQL with Execution-Based Learning EMNLP 2025
In this work, we study the problem of code generation with a large language model (LLM), with a focus on generating SQL queries from natural language questions. We ask: Instead of using supervised fine tuning with text-code pairs, can we tune a model by having it interact with a database engine? We frame this problem as a reinforcement learning problem where the model receives execution-based feedback from the environment in the form of scalar rewards. These rewards penalize execution failures and assign positive values when a query returns a correct answer. We use the rewards within the Group Relative Policy Optimization (GRPO) framework. We use a tabular reasoning benchmark to test and evaluate our findings. We find that with only weak supervision in the form of question-answer pairs, RL-tuning improves the accuracy of model generated SQL code from 31.49 to 49.83 while reducing error percentage from 25.43% to 14.71%. This improvement allowed the model nearly match the performance performance to the larger SQLCoder-70B model. Our work demonstrates the potential of using execution-based feedback to improve symbolic reasoning capabilities of LLMs.
comment: Under review at EMNLP 2025
MIRIAD: Augmenting LLMs with millions of medical query-response pairs
LLMs are bound to transform healthcare with advanced decision support and flexible chat assistants. However, LLMs are prone to generate inaccurate medical content. To ground LLMs in high-quality medical knowledge, LLMs have been equipped with external knowledge via RAG, where unstructured medical knowledge is split into small text chunks that can be selectively retrieved and integrated into the LLMs context. Yet, existing RAG pipelines rely on raw, unstructured medical text, which can be noisy, uncurated and difficult for LLMs to effectively leverage. Systematic approaches to organize medical knowledge to best surface it to LLMs are generally lacking. To address these challenges, we introduce MIRIAD, a large-scale, curated corpus of 5,821,948 medical QA pairs, each rephrased from and grounded in a passage from peer-reviewed medical literature using a semi-automated pipeline combining LLM generation, filtering, grounding, and human annotation. Unlike prior medical corpora, which rely on unstructured text, MIRIAD encapsulates web-scale medical knowledge in an operationalized query-response format, which enables more targeted retrieval. Experiments on challenging medical QA benchmarks show that augmenting LLMs with MIRIAD improves accuracy up to 6.7% compared to unstructured RAG baselines with the same source corpus and with the same amount of retrieved text. Moreover, MIRIAD improved the ability of LLMs to detect medical hallucinations by 22.5 to 37% (increase in F1 score). We further introduce MIRIAD-Atlas, an interactive map of MIRIAD spanning 56 medical disciplines, enabling clinical users to visually explore, search, and refine medical knowledge. MIRIAD promises to unlock a wealth of down-stream applications, including medical information retrievers, enhanced RAG applications, and knowledge-grounded chat interfaces, which ultimately enables more reliable LLM applications in healthcare.
comment: Preprint
CO-VADA: A Confidence-Oriented Voice Augmentation Debiasing Approach for Fair Speech Emotion Recognition
Bias in speech emotion recognition (SER) systems often stems from spurious correlations between speaker characteristics and emotional labels, leading to unfair predictions across demographic groups. Many existing debiasing methods require model-specific changes or demographic annotations, limiting their practical use. We present CO-VADA, a Confidence-Oriented Voice Augmentation Debiasing Approach that mitigates bias without modifying model architecture or relying on demographic information. CO-VADA identifies training samples that reflect bias patterns present in the training data and then applies voice conversion to alter irrelevant attributes and generate samples. These augmented samples introduce speaker variations that differ from dominant patterns in the data, guiding the model to focus more on emotion-relevant features. Our framework is compatible with various SER models and voice conversion tools, making it a scalable and practical solution for improving fairness in SER systems.
comment: 8 pages
Zero-Shot Detection of LLM-Generated Code via Approximated Task Conditioning ECML-PKDD 2025
Detecting Large Language Model (LLM)-generated code is a growing challenge with implications for security, intellectual property, and academic integrity. We investigate the role of conditional probability distributions in improving zero-shot LLM-generated code detection, when considering both the code and the corresponding task prompt that generated it. Our key insight is that when evaluating the probability distribution of code tokens using an LLM, there is little difference between LLM-generated and human-written code. However, conditioning on the task reveals notable differences. This contrasts with natural language text, where differences exist even in the unconditional distributions. Leveraging this, we propose a novel zero-shot detection approach that approximates the original task used to generate a given code snippet and then evaluates token-level entropy under the approximated task conditioning (ATC). We further provide a mathematical intuition, contextualizing our method relative to previous approaches. ATC requires neither access to the generator LLM nor the original task prompts, making it practical for real-world applications. To the best of our knowledge, it achieves state-of-the-art results across benchmarks and generalizes across programming languages, including Python, CPP, and Java. Our findings highlight the importance of task-level conditioning for LLM-generated code detection. The supplementary materials and code are available at https://github.com/maorash/ATC, including the dataset gathering implementation, to foster further research in this area.
comment: To appear in the Proceedings of ECML-PKDD 2025, Springer Lecture Notes in Computer Science (LNCS)
Simple Yet Effective: Extracting Private Data Across Clients in Federated Fine-Tuning of Large Language Models
Federated fine-tuning of large language models (FedLLMs) presents a promising approach for achieving strong model performance while preserving data privacy in sensitive domains. However, the inherent memorization ability of LLMs makes them vulnerable to training data extraction attacks. To investigate this risk, we introduce simple yet effective extraction attack algorithms specifically designed for FedLLMs. In contrast to prior "verbatim" extraction attacks, which assume access to fragments from all training data, our approach operates under a more realistic threat model, where the attacker only has access to a single client's data and aims to extract previously unseen personally identifiable information (PII) from other clients. This requires leveraging contextual prefixes held by the attacker to generalize across clients. To evaluate the effectiveness of our approaches, we propose two rigorous metrics-coverage rate and efficiency-and extend a real-world legal dataset with PII annotations aligned with CPIS, GDPR, and CCPA standards, achieving 89.9% human-verified precision. Experimental results show that our method can extract up to 56.57% of victim-exclusive PII, with "Address," "Birthday," and "Name" being the most vulnerable categories. Our findings underscore the pressing need for robust defense strategies and contribute a new benchmark and evaluation framework for future research in privacy-preserving federated learning.
comment: 10 pages, 4 figures
Hey, That's My Data! Label-Only Dataset Inference in Large Language Models
Large Language Models (LLMs) have revolutionized Natural Language Processing by excelling at interpreting, reasoning about, and generating human language. However, their reliance on large-scale, often proprietary datasets poses a critical challenge: unauthorized usage of such data can lead to copyright infringement and significant financial harm. Existing dataset-inference methods typically depend on log probabilities to detect suspicious training material, yet many leading LLMs have begun withholding or obfuscating these signals. This reality underscores the pressing need for label-only approaches capable of identifying dataset membership without relying on internal model logits. We address this gap by introducing CatShift, a label-only dataset-inference framework that capitalizes on catastrophic forgetting: the tendency of an LLM to overwrite previously learned knowledge when exposed to new data. If a suspicious dataset was previously seen by the model, fine-tuning on a portion of it triggers a pronounced post-tuning shift in the model's outputs; conversely, truly novel data elicits more modest changes. By comparing the model's output shifts for a suspicious dataset against those for a known non-member validation set, we statistically determine whether the suspicious set is likely to have been part of the model's original training corpus. Extensive experiments on both open-source and API-based LLMs validate CatShift's effectiveness in logit-inaccessible settings, offering a robust and practical solution for safeguarding proprietary data.
MATP-BENCH: Can MLLM Be a Good Automated Theorem Prover for Multimodal Problems?
Numerous theorems, such as those in geometry, are often presented in multimodal forms (e.g., diagrams). Humans benefit from visual reasoning in such settings, using diagrams to gain intuition and guide the proof process. Modern Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in solving a wide range of mathematical problems. However, the potential of MLLMs as Automated Theorem Provers (ATPs), specifically in the multimodal domain, remains underexplored. In this paper, we introduce the Multimodal Automated Theorem Proving benchmark (MATP-BENCH), a new Multimodal, Multi-level, and Multi-language benchmark designed to evaluate MLLMs in this role as multimodal automated theorem provers. MATP-BENCH consists of 1056 multimodal theorems drawn from high school, university, and competition-level mathematics. All these multimodal problems are accompanied by formalizations in Lean 4, Coq and Isabelle, thus making the benchmark compatible with a wide range of theorem-proving frameworks. MATP-BENCH requires models to integrate sophisticated visual understanding with mastery of a broad spectrum of mathematical knowledge and rigorous symbolic reasoning to generate formal proofs. We use MATP-BENCH to evaluate a variety of advanced multimodal language models. Existing methods can only solve a limited number of the MATP-BENCH problems, indicating that this benchmark poses an open challenge for research on automated theorem proving.
comment: 29 pages
Large Language Models are Demonstration Pre-Selectors for Themselves ICML 2025
In-context learning (ICL) with large language models (LLMs) delivers strong few-shot performance by choosing few-shot demonstrations from the entire training data. However, existing ICL methods, which rely on similarity or diversity scores to choose demonstrations, incur high computational costs due to repeatedly retrieval from large-scale datasets for each query. To this end, we propose FEEDER (FEw yet Essential Demonstration prE-selectoR), a novel pre-selection framework that identifies a representative subset of demonstrations containing the most representative examples in the training data, tailored to specific LLMs. To construct this subset, we introduce the "sufficiency" and "necessity" metrics in the pre-selection stage and design a tree-based algorithm to identify representative examples efficiently. Once pre-selected, this representative subset can effectively replace the full training data, improving efficiency while maintaining comparable performance in ICL. Additionally, our pre-selected subset also benefits fine-tuning LLMs, where we introduce a bi-level optimization method that enhances training efficiency without sacrificing performance. Experiments with LLMs ranging from 300M to 8B parameters show that FEEDER can reduce training data size by over 20% while maintaining performance and seamlessly integrating with various downstream demonstration selection strategies in ICL.
comment: ICML 2025
When to Trust Context: Self-Reflective Debates for Context Reliability
Large language models frequently encounter conflicts between their parametric knowledge and contextual input, often resulting in factual inconsistencies or hallucinations. We propose Self-Reflective Debate for Contextual Reliability (SR-DCR), a lightweight framework that integrates token-level self-confidence with an asymmetric multi-agent debate to adjudicate such conflicts. A critic, deprived of context, challenges a defender who argues from the given passage; a judge model evaluates the debate and determines the context's reliability. The final answer is selected by combining the verdict with model confidence. Experiments on the ClashEval benchmark demonstrate that SR-DCR consistently enhances robustness to misleading context while maintaining accuracy on trustworthy inputs, outperforming both classical debate and confidence-only baselines with minimal computational overhead. The code is available at https://github.com/smiles724/Self-Reflective-Debates.
AgentSwift: Efficient LLM Agent Design via Value-guided Hierarchical Search
Large language model (LLM) agents have demonstrated strong capabilities across diverse domains. However, designing high-performing agentic systems remains challenging. Existing agent search methods suffer from three major limitations: (1) an emphasis on optimizing agentic workflows while under-utilizing proven human-designed components such as memory, planning, and tool use; (2) high evaluation costs, as each newly generated agent must be fully evaluated on benchmarks; and (3) inefficient search in large search space. In this work, we introduce a comprehensive framework to address these challenges. First, We propose a hierarchical search space that jointly models agentic workflow and composable functional components, enabling richer agentic system designs. Building on this structured design space, we introduce a predictive value model that estimates agent performance given agentic system and task description, allowing for efficient, low-cost evaluation during the search process. Finally, we present a hierarchical Monte Carlo Tree Search (MCTS) strategy informed by uncertainty to guide the search. Experiments on seven benchmarks, covering embodied, math, web, tool, and game, show that our method achieves an average performance gain of 8.34\% over state-of-the-art baselines and exhibits faster search progress with steeper improvement trajectories. Code repo is available at https://github.com/Ericccc02/AgentSwift.
comment: 20pages
Unlocking Recursive Thinking of LLMs: Alignment via Refinement ACL 2025
The OpenAI o1-series models have demonstrated that leveraging long-form Chain of Thought (CoT) can substantially enhance performance. However, the recursive thinking capabilities of Large Language Models (LLMs) remain limited, particularly in the absence of expert-curated data for distillation. In this paper, we propose \textbf{AvR}: \textbf{Alignment via Refinement}, a novel method aimed at unlocking the potential of LLMs for recursive reasoning through long-form CoT. AvR introduces a refinement process that integrates criticism and improvement actions, guided by differentiable learning techniques to optimize \textbf{refinement-aware rewards}. As a result, the synthesized multi-round data can be organized as a long refinement thought, further enabling test-time scaling. Experimental results show that AvR significantly outperforms conventional preference optimization methods. Notably, with only 3k synthetic samples, our method boosts the performance of the LLaMA-3-8B-Instruct model by over 20\% in win rate on AlpacaEval 2.0. Our code is available at Github (https://github.com/Banner-Z/AvR.git).
comment: Accepted to the Findings of ACL 2025
Token Signature: Predicting Chain-of-Thought Gains with Token Decoding Feature in Large Language Models ICML2025
Chain-of-Thought (CoT) technique has proven effective in improving the performance of large language models (LLMs) on complex reasoning tasks. However, the performance gains are inconsistent across different tasks, and the underlying mechanism remains a long-standing research question. In this work, we make a preliminary observation that the monotonicity of token probability distributions may be correlated with the gains achieved through CoT reasoning. Leveraging this insight, we propose two indicators based on the token probability distribution to assess CoT effectiveness across different tasks. By combining instance-level indicators with logistic regression model, we introduce Dynamic CoT, a method that dynamically select between CoT and direct answer. Furthermore, we extend Dynamic CoT to closed-source models by transferring decision strategies learned from open-source models. Our indicators for assessing CoT effectiveness achieve an accuracy of 89.2\%, and Dynamic CoT reduces token consumption by more than 35\% while maintaining high accuracy. Overall, our work offers a novel perspective on the underlying mechanisms of CoT reasoning and provides a framework for its more efficient deployment.
comment: 20 pages, 6 figures, 13 tables(Accept by ICML2025)
Bootstrapping World Models from Dynamics Models in Multimodal Foundation Models
To what extent do vision-and-language foundation models possess a realistic world model (observation $\times$ action $\rightarrow$ observation) and a dynamics model (observation $\times$ observation $\rightarrow$ action), when actions are expressed through language? While open-source foundation models struggle with both, we find that fine-tuning them to acquire a dynamics model through supervision is significantly easier than acquiring a world model. In turn, dynamics models can be used to bootstrap world models through two main strategies: 1) weakly supervised learning from synthetic data and 2) inference time verification. Firstly, the dynamics model can annotate actions for unlabelled pairs of video frame observations to expand the training data. We further propose a new objective, where image tokens in observation pairs are weighted by their importance, as predicted by a recognition model. Secondly, the dynamics models can assign rewards to multiple samples of the world model to score them, effectively guiding search at inference time. We evaluate the world models resulting from both strategies through the task of action-centric image editing on Aurora-Bench. Our best model achieves a performance competitive with state-of-the-art image editing models, improving on them by a margin of $15\%$ on real-world subsets according to GPT4o-as-judge, and achieving the best average human evaluation across all subsets of Aurora-Bench.
A Culturally-Rich Romanian NLP Dataset from "Who Wants to Be a Millionaire?" Videos
Large Language Models (LLMs) demonstrate varying performance across languages and cultural contexts. This study introduces a novel, culturally-rich, multilingual dataset derived from video recordings of the Romanian game show "Who Wants to Be a Millionaire?" (Vrei s\u{a} fii Milionar?). We employed an innovative process combining optical character recognition (OCR), automated text extraction, and manual verification to collect question-answer pairs, enriching them with metadata including question domain (e.g., biology, history), cultural relevance (Romanian-specific vs. international), and difficulty. Benchmarking state-of-the-art LLMs, including Romanian-adapted models, on this dataset revealed significant performance disparities: models consistently achieve higher accuracy (80-95%) on international questions compared to Romanian-specific cultural questions (50-75%). We further investigate these differences through experiments involving machine translation of Romanian questions into English and cross-lingual tests using a comparable dataset in French. Our findings underscore the impact of cultural context and data source on LLM performance and offer practical insights for building robust, culturally-aware multilingual NLP systems, especially in educational domains. The dataset is publicly available at Hugging Face.
comment: 10 pages
Audio-Aware Large Language Models as Judges for Speaking Styles
Audio-aware large language models (ALLMs) can understand the textual and non-textual information in the audio input. In this paper, we explore using ALLMs as an automatic judge to assess the speaking styles of speeches. We use ALLM judges to evaluate the speeches generated by SLMs on two tasks: voice style instruction following and role-playing. The speaking style we consider includes emotion, volume, speaking pace, word emphasis, pitch control, and non-verbal elements. We use four spoken language models (SLMs) to complete the two tasks and use humans and ALLMs to judge the SLMs' responses. We compare two ALLM judges, GPT-4o-audio and Gemini-2.5-pro, with human evaluation results and show that the agreement between Gemini and human judges is comparable to the agreement between human evaluators. These promising results show that ALLMs can be used as a judge to evaluate SLMs. Our results also reveal that current SLMs, even GPT-4o-audio, still have room for improvement in controlling the speaking style and generating natural dialogues.
Tau-Eval: A Unified Evaluation Framework for Useful and Private Text Anonymization
Text anonymization is the process of removing or obfuscating information from textual data to protect the privacy of individuals. This process inherently involves a complex trade-off between privacy protection and information preservation, where stringent anonymization methods can significantly impact the text's utility for downstream applications. Evaluating the effectiveness of text anonymization proves challenging from both privacy and utility perspectives, as there is no universal benchmark that can comprehensively assess anonymization techniques across diverse, and sometimes contradictory contexts. We present Tau-Eval, an open-source framework for benchmarking text anonymization methods through the lens of privacy and utility task sensitivity. A Python library, code, documentation and tutorials are publicly available.
LTG at SemEval-2025 Task 10: Optimizing Context for Classification of Narrative Roles SemEval 2025
Our contribution to the SemEval 2025 shared task 10, subtask 1 on entity framing, tackles the challenge of providing the necessary segments from longer documents as context for classification with a masked language model. We show that a simple entity-oriented heuristics for context selection can enable text classification using models with limited context window. Our context selection approach and the XLM-RoBERTa language model is on par with, or outperforms, Supervised Fine-Tuning with larger generative language models.
comment: Accepted for SemEval 2025; The 19th International Workshop on Semantic Evaluation
Let's Put Ourselves in Sally's Shoes: Shoes-of-Others Prefixing Improves Theory of Mind in Large Language Models
Recent studies have shown that Theory of Mind (ToM) in large language models (LLMs) has not reached human-level performance yet. Since fine-tuning LLMs on ToM datasets often degrades their generalization, several inference-time methods have been proposed to enhance ToM in LLMs. However, existing inference-time methods for ToM are specialized for inferring beliefs from contexts involving changes in the world state. In this study, we present a new inference-time method for ToM, Shoes-of-Others (SoO) prefixing, which makes fewer assumptions about contexts and is applicable to broader scenarios. SoO prefixing simply specifies the beginning of LLM outputs with ``Let's put ourselves in A's shoes.'', where A denotes the target character's name. We evaluate SoO prefixing on two benchmarks that assess ToM in conversational and narrative contexts without changes in the world state and find that it consistently improves ToM across five categories of mental states. Our analysis suggests that SoO prefixing elicits faithful thoughts, thereby improving the ToM performance.
comment: 14pages, 12 figures
Elementary Math Word Problem Generation using Large Language Models
Mathematics is often perceived as a complex subject by students, leading to high failure rates in exams. To improve Mathematics skills, it is important to provide sample questions for students to practice problem-solving. Manually creating Math Word Problems (MWPs) is time consuming for tutors, because they have to type in natural language while adhering to grammar and spelling rules of the language. Existing Deep Learning techniques for MWP generation either require a tutor to provide the initial portion of the MWP, and/or additional information such as an equation. In this paper, we present an MWP generation system based on Large Language Models (LLMs) that overcome the need for additional input - the only input to our system is the number of MWPs needed, the grade and the type of question (e.g. addition, subtraction). Unlike the existing LLM-based solutions for MWP generation, we carried out an extensive set of experiments involving different LLMs, prompting strategies, techniques to improve the diversity of questions, as well as techniques that employ human feedback to improve LLM performance. Human and automated evaluations confirmed that the generated MWPs are high in quality, with minimal spelling and grammar issues. However, LLMs still struggle to generate questions that adhere to the specified grade and question type requirements.
NameTag 3: A Tool and a Service for Multilingual/Multitagset NER ACL 2025
We introduce NameTag 3, an open-source tool and cloud-based web service for multilingual, multidataset, and multitagset named entity recognition (NER), supporting both flat and nested entities. NameTag 3 achieves state-of-the-art results on 21 test datasets in 15 languages and remains competitive on the rest, even against larger models. It is available as a command-line tool and as a cloud-based service, enabling use without local installation. NameTag 3 web service currently provides flat NER for 17 languages, trained on 21 corpora and three NE tagsets, all powered by a single 355M-parameter fine-tuned model; and nested NER for Czech, powered by a 126M fine-tuned model. The source code is licensed under open-source MPL 2.0, while the models are distributed under non-commercial CC BY-NC-SA 4.0. Documentation is available at https://ufal.mff.cuni.cz/nametag, source code at https://github.com/ufal/nametag3, and trained models via https://lindat.cz. The REST service and the web application can be found at https://lindat.mff.cuni.cz/services/nametag/. A demonstration video is available at https://www.youtube.com/watch?v=-gaGnP0IV8A.
comment: Accepted to ACL 2025
IntentionESC: An Intention-Centered Framework for Enhancing Emotional Support in Dialogue Systems ACL2025
In emotional support conversations, unclear intentions can lead supporters to employ inappropriate strategies, inadvertently imposing their expectations or solutions on the seeker. Clearly defined intentions are essential for guiding both the supporter's motivations and the overall emotional support process. In this paper, we propose the Intention-centered Emotional Support Conversation (IntentionESC) framework, which defines the possible intentions of supporters in emotional support conversations, identifies key emotional state aspects for inferring these intentions, and maps them to appropriate support strategies. While Large Language Models (LLMs) excel in text generating, they fundamentally operate as probabilistic models trained on extensive datasets, lacking a true understanding of human thought processes and intentions. To address this limitation, we introduce the Intention Centric Chain-of-Thought (ICECoT) mechanism. ICECoT enables LLMs to mimic human reasoning by analyzing emotional states, inferring intentions, and selecting suitable support strategies, thereby generating more effective emotional support responses. To train the model with ICECoT and integrate expert knowledge, we design an automated annotation pipeline that produces high-quality training data. Furthermore, we develop a comprehensive evaluation scheme to assess emotional support efficacy and conduct extensive experiments to validate our framework. Our data and code are available at https://github.com/43zxj/IntentionESC_ICECoT.
comment: ACL2025 findings
DynamicMind: A Tri-Mode Thinking System for Large Language Models
Modern large language models (LLMs) often struggle to dynamically adapt their reasoning depth to varying task complexities, leading to suboptimal performance or inefficient resource utilization. To address this, we introduce DynamicMind, a novel tri-mode thinking system. DynamicMind empowers LLMs to autonomously select between Fast, Normal, and Slow thinking modes for zero-shot question answering (ZSQA) tasks through cognitive-inspired prompt engineering. Our framework's core innovations include: (1) expanding the established dual-process framework of fast and slow thinking into a tri-mode thinking system involving a normal thinking mode to preserve the intrinsic capabilities of LLM; (2) proposing the Thinking Density metric, which aligns computational resource allocation with problem complexity; and (3) developing the Thinking Mode Capacity (TMC) dataset and a lightweight Mind Router to predict the optimal thinking mode. Extensive experiments across diverse mathematical, commonsense, and scientific QA benchmarks demonstrate that DynamicMind achieves superior ZSQA capabilities while establishing an effective trade-off between performance and computational efficiency.
MoA: Heterogeneous Mixture of Adapters for Parameter-Efficient Fine-Tuning of Large Language Models
Recent studies integrate Low-Rank Adaptation (LoRA) and Mixture-of-Experts (MoE) to further enhance the performance of parameter-efficient fine-tuning (PEFT) methods in Large Language Model (LLM) applications. Existing methods employ \emph{homogeneous} MoE-LoRA architectures composed of LoRA experts with either similar or identical structures and capacities. However, these approaches often suffer from representation collapse and expert load imbalance, which negatively impact the potential of LLMs. To address these challenges, we propose a \emph{heterogeneous} \textbf{Mixture-of-Adapters (MoA)} approach. This method dynamically integrates PEFT adapter experts with diverse structures, leveraging their complementary representational capabilities to foster expert specialization, thereby enhancing the effective transfer of pre-trained knowledge to downstream tasks. MoA supports two variants: \textbf{(i)} \textit{Soft MoA} achieves fine-grained integration by performing a weighted fusion of all expert outputs; \textbf{(ii)} \textit{Sparse MoA} activates adapter experts sparsely based on their contribution, achieving this with negligible performance degradation. Experimental results demonstrate that heterogeneous MoA outperforms homogeneous MoE-LoRA methods in both performance and parameter efficiency. Our project is available at https://github.com/DCDmllm/MoA.
LengClaro2023: A Dataset of Administrative Texts in Spanish with Plain Language adaptations
In this work, we present LengClaro2023, a dataset of legal-administrative texts in Spanish. Based on the most frequently used procedures from the Spanish Social Security website, we have created for each text two simplified equivalents. The first version follows the recommendations provided by arText claro. The second version incorporates additional recommendations from plain language guidelines to explore further potential improvements in the system. The linguistic resource created in this work can be used for evaluating automatic text simplification (ATS) systems in Spanish.
comment: In this report, we present a part of the master thesis written by Bel\'en Ag\"uera Marco in order to obtain the B.S. Language Analysis and Processing at the University of the Basque Country (UPV/EHU), supervised by Itziar Gonzalez-Dios
Generating Grounded Responses to Counter Misinformation via Learning Efficient Fine-Grained Critiques IJCAI 2025
Fake news and misinformation poses a significant threat to society, making efficient mitigation essential. However, manual fact-checking is costly and lacks scalability. Large Language Models (LLMs) offer promise in automating counter-response generation to mitigate misinformation, but a critical challenge lies in their tendency to hallucinate non-factual information. Existing models mainly rely on LLM self-feedback to reduce hallucination, but this approach is computationally expensive. In this paper, we propose MisMitiFact, Misinformation Mitigation grounded in Facts, an efficient framework for generating fact-grounded counter-responses at scale. MisMitiFact generates simple critique feedback to refine LLM outputs, ensuring responses are grounded in evidence. We develop lightweight, fine-grained critique models trained on data sourced from readily available fact-checking sites to identify and correct errors in key elements such as numerals, entities, and topics in LLM generations. Experiments show that MisMitiFact generates counter-responses of comparable quality to LLMs' self-feedback while using significantly smaller critique models. Importantly, it achieves ~5x increase in feedback generation throughput, making it highly suitable for cost-effective, large-scale misinformation mitigation. Code and LLM prompt templates are at https://github.com/xxfwin/MisMitiFact.
comment: accepted to IJCAI 2025
Proactive Assistant Dialogue Generation from Streaming Egocentric Videos
Recent advances in conversational AI have been substantial, but developing real-time systems for perceptual task guidance remains challenging. These systems must provide interactive, proactive assistance based on streaming visual inputs, yet their development is constrained by the costly and labor-intensive process of data collection and system evaluation. To address these limitations, we present a comprehensive framework with three key contributions. First, we introduce a novel data curation pipeline that synthesizes dialogues from annotated egocentric videos, resulting in \dataset, a large-scale synthetic dialogue dataset spanning multiple domains. Second, we develop a suite of automatic evaluation metrics, validated through extensive human studies. Third, we propose an end-to-end model that processes streaming video inputs to generate contextually appropriate responses, incorporating novel techniques for handling data imbalance and long-duration videos. This work lays the foundation for developing real-time, proactive AI assistants capable of guiding users through diverse tasks. Project page: https://pro-assist.github.io/
Route-and-Reason: Scaling Large Language Model Reasoning with Reinforced Model Router
Multi-step reasoning has proven essential for enhancing the problem-solving capabilities of Large Language Models (LLMs) by decomposing complex tasks into intermediate steps, either explicitly or implicitly. Extending the reasoning chain at test time through deeper thought processes or broader exploration, can furthur improve performance, but often incurs substantial costs due to the explosion in token usage. Yet, many reasoning steps are relatively simple and can be handled by more efficient smaller-scale language models (SLMs). This motivates hybrid approaches that allocate subtasks across models of varying capacities. However, realizing such collaboration requires accurate task decomposition and difficulty-aware subtask allocation, which is challenging. To address this, we propose R2-Reasoner, a novel framework that enables collaborative reasoning across heterogeneous LLMs by dynamically routing sub-tasks based on estimated complexity. At the core of our framework is a Reinforced Model Router, composed of a task decomposer and a subtask allocator. The task decomposer segments complex input queries into logically ordered subtasks, while the subtask allocator assigns each subtask to the most appropriate model, ranging from lightweight SLMs to powerful LLMs, balancing accuracy and efficiency. To train this router, we introduce a staged pipeline that combines supervised fine-tuning on task-specific datasets with Group Relative Policy Optimization algorithm, enabling self-supervised refinement through iterative reinforcement learning. Extensive experiments across four challenging benchmarks demonstrate that R2-Reasoner reduces API costs by 86.85% while maintaining or surpassing baseline accuracy. Our framework paves the way for more cost-effective and adaptive LLM reasoning. The code is open-source at https://anonymous.4open.science/r/R2_Reasoner .
Cross-lingual Collapse: How Language-Centric Foundation Models Shape Reasoning in Large Language Models
We identify \textbf{Cross-lingual Collapse}, a systematic drift in which the chain-of-thought (CoT) of a multilingual language model reverts to its dominant pre-training language even when the prompt is expressed in a different language. Recent large language models (LLMs) with reinforcement learning with verifiable reward (RLVR) have achieved strong logical reasoning performances by exposing their intermediate reasoning traces, giving rise to large reasoning models (LRMs). However, the mechanism behind multilingual reasoning in LRMs is not yet fully explored. To investigate the issue, we fine-tune multilingual LRMs with Group-Relative Policy Optimization (GRPO) on translated versions of the GSM$8$K and SimpleRL-Zoo datasets in three different languages: Chinese, Korean, and Ukrainian. During training, we monitor both task accuracy and language consistency of the reasoning chains. Our experiments reveal three key findings: (i) GRPO rapidly amplifies pre-training language imbalances, leading to the erosion of low-resource languages within just a few hundred updates; (ii) language consistency reward mitigates this drift but does so at the expense of an almost 5 - 10 pp drop in accuracy. and (iii) the resulting language collapse is severely damaging and largely irreversible, as subsequent fine-tuning struggles to steer the model back toward its original target-language reasoning capabilities. Together, these findings point to a remarkable conclusion: \textit{not all languages are trained equally for reasoning}. Furthermore, our paper sheds light on the roles of reward shaping, data difficulty, and pre-training priors in eliciting multilingual reasoning.
comment: Preprint
FinanceReasoning: Benchmarking Financial Numerical Reasoning More Credible, Comprehensive and Challenging ACL 2025
We introduce FinanceReasoning, a novel benchmark designed to evaluate the reasoning capabilities of large reasoning models (LRMs) in financial numerical reasoning problems. Compared to existing benchmarks, our work provides three key advancements. (1) Credibility: We update 15.6% of the questions from four public datasets, annotating 908 new questions with detailed Python solutions and rigorously refining evaluation standards. This enables an accurate assessment of the reasoning improvements of LRMs. (2) Comprehensiveness: FinanceReasoning covers 67.8% of financial concepts and formulas, significantly surpassing existing datasets. Additionally, we construct 3,133 Python-formatted functions, which enhances LRMs' financial reasoning capabilities through refined knowledge (e.g., 83.2% $\rightarrow$ 91.6% for GPT-4o). (3) Challenge: Models are required to apply multiple financial formulas for precise numerical reasoning on 238 Hard problems. The best-performing model (i.e., OpenAI o1 with PoT) achieves 89.1% accuracy, yet LRMs still face challenges in numerical precision. We demonstrate that combining Reasoner and Programmer models can effectively enhance LRMs' performance (e.g., 83.2% $\rightarrow$ 87.8% for DeepSeek-R1). Our work paves the way for future research on evaluating and improving LRMs in domain-specific complex reasoning tasks.
comment: Accepted by ACL 2025 Main Conference
CodeContests+: High-Quality Test Case Generation for Competitive Programming
Competitive programming, due to its high reasoning difficulty and precise correctness feedback, has become a key task for both training and evaluating the reasoning capabilities of large language models (LLMs). However, while a large amount of public problem data, such as problem statements and solutions, is available, the test cases of these problems are often difficult to obtain. Therefore, test case generation is a necessary task for building large-scale datasets, and the quality of the test cases directly determines the accuracy of the evaluation. In this paper, we introduce an LLM-based agent system that creates high-quality test cases for competitive programming problems. We apply this system to the CodeContests dataset and propose a new version with improved test cases, named CodeContests+. We evaluated the quality of test cases in CodeContestsPlus. First, we used 1.72 million submissions with pass/fail labels to examine the accuracy of these test cases in evaluation. The results indicated that CodeContests+ achieves significantly higher accuracy than CodeContests, particularly with a notably higher True Positive Rate (TPR). Subsequently, our experiments in LLM Reinforcement Learning (RL) further confirmed that improvements in test case quality yield considerable advantages for RL.
comment: 28 pages, 7 figures
MAPLE: Multi-Agent Adaptive Planning with Long-Term Memory for Table Reasoning
Table-based question answering requires complex reasoning capabilities that current LLMs struggle to achieve with single-pass inference. Existing approaches, such as Chain-of-Thought reasoning and question decomposition, lack error detection mechanisms and discard problem-solving experiences, contrasting sharply with how humans tackle such problems. In this paper, we propose MAPLE (Multi-agent Adaptive Planning with Long-term mEmory), a novel framework that mimics human problem-solving through specialized cognitive agents working in a feedback-driven loop. MAPLE integrates 4 key components: (1) a Solver using the ReAct paradigm for reasoning, (2) a Checker for answer verification, (3) a Reflector for error diagnosis and strategy correction, and (4) an Archiver managing long-term memory for experience reuse and evolution. Experiments on WiKiTQ and TabFact demonstrate significant improvements over existing methods, achieving state-of-the-art performance across multiple LLM backbones.
comment: 26 pages, 10 figures
Discrete Minds in a Continuous World: Do Language Models Know Time Passes?
While Large Language Models (LLMs) excel at temporal reasoning tasks like event ordering and duration estimation, their ability to perceive the actual passage of time remains unexplored. We investigate whether LLMs perceive the passage of time and adapt their decision-making accordingly through three complementary experiments. First, we introduce the Token-Time Hypothesis, positing that LLMs can map discrete token counts to continuous wall-clock time, and validate this through a dialogue duration judgment task. Second, we demonstrate that LLMs could use this awareness to adapt their response length while maintaining accuracy when users express urgency in question answering tasks. Finally, we develop BombRush, an interactive navigation challenge that examines how LLMs modify behavior under progressive time pressure in dynamic environments. Our findings indicate that LLMs possess certain awareness of time passage, enabling them to bridge discrete linguistic tokens and continuous physical time, though this capability varies with model size and reasoning abilities. This work establishes a theoretical foundation for enhancing temporal awareness in LLMs for time-sensitive applications.
dots.llm1 Technical Report
Mixture of Experts (MoE) models have emerged as a promising paradigm for scaling language models efficiently by activating only a subset of parameters for each input token. In this report, we present dots.llm1, a large-scale MoE model that activates 14B parameters out of a total of 142B parameters, delivering performance on par with state-of-the-art models while reducing training and inference costs. Leveraging our meticulously crafted and efficient data processing pipeline, dots.llm1 achieves performance comparable to Qwen2.5-72B after pretraining on 11.2T high-quality tokens and post-training to fully unlock its capabilities. Notably, no synthetic data is used during pretraining. To foster further research, we open-source intermediate training checkpoints at every one trillion tokens, providing valuable insights into the learning dynamics of large language models.
BioMol-MQA: A Multi-Modal Question Answering Dataset For LLM Reasoning Over Bio-Molecular Interactions
Retrieval augmented generation (RAG) has shown great power in improving Large Language Models (LLMs). However, most existing RAG-based LLMs are dedicated to retrieving single modality information, mainly text; while for many real-world problems, such as healthcare, information relevant to queries can manifest in various modalities such as knowledge graph, text (clinical notes), and complex molecular structure. Thus, being able to retrieve relevant multi-modality domain-specific information, and reason and synthesize diverse knowledge to generate an accurate response is important. To address the gap, we present BioMol-MQA, a new question-answering (QA) dataset on polypharmacy, which is composed of two parts (i) a multimodal knowledge graph (KG) with text and molecular structure for information retrieval; and (ii) challenging questions that designed to test LLM capabilities in retrieving and reasoning over multimodal KG to answer questions. Our benchmarks indicate that existing LLMs struggle to answer these questions and do well only when given the necessary background data, signaling the necessity for strong RAG frameworks.
Do Large Vision-Language Models Distinguish between the Actual and Apparent Features of Illusions? SC
Humans are susceptible to optical illusions, which serve as valuable tools for investigating sensory and cognitive processes. Inspired by human vision studies, research has begun exploring whether machines, such as large vision language models (LVLMs), exhibit similar susceptibilities to visual illusions. However, studies often have used non-abstract images and have not distinguished actual and apparent features, leading to ambiguous assessments of machine cognition. To address these limitations, we introduce a visual question answering (VQA) dataset, categorized into genuine and fake illusions, along with corresponding control images. Genuine illusions present discrepancies between actual and apparent features, whereas fake illusions have the same actual and apparent features even though they look illusory due to the similar geometric configuration. We evaluate the performance of LVLMs for genuine and fake illusion VQA tasks and investigate whether the models discern actual and apparent features. Our findings indicate that although LVLMs may appear to recognize illusions by correctly answering questions about both feature types, they predict the same answers for both Genuine Illusion and Fake Illusion VQA questions. This suggests that their responses might be based on prior knowledge of illusions rather than genuine visual understanding. The dataset is available at https://github.com/ynklab/FILM
comment: To appear in the Proceedings of the 47th Annual Meeting of the Cognitive Science Society (COGSCI 2025)
Writing-RL: Advancing Long-form Writing via Adaptive Curriculum Reinforcement Learning
Recent advances in Large Language Models (LLMs) have enabled strong performance in long-form writing, yet existing supervised fine-tuning (SFT) approaches suffer from limitations such as data saturation and restricted learning capacity bounded by teacher signals. In this work, we present Writing-RL: an Adaptive Curriculum Reinforcement Learning framework to advance long-form writing capabilities beyond SFT. The framework consists of three key components: Margin-aware Data Selection strategy that prioritizes samples with high learning potential, Pairwise Comparison Reward mechanism that provides discriminative learning signals in the absence of verifiable rewards, and Dynamic Reference Scheduling approach, which plays a particularly critical role by adaptively adjusting task difficulty based on evolving model performance. Experiments on 7B-scale writer models show that our RL framework largely improves long-form writing performance over strong SFT baselines. Furthermore, we observe that models trained with long-output RL generalize surprisingly well to long-input reasoning tasks, potentially offering a promising perspective for rethinking long-context training.
comment: Work in progress
Constrained Sampling for Language Models Should Be Easy: An MCMC Perspective
Constrained decoding enables Language Models (LMs) to produce samples that provably satisfy hard constraints. However, existing constrained-decoding approaches often distort the underlying model distribution, a limitation that is especially problematic in applications like program fuzzing, where one wants to generate diverse and valid program inputs for testing purposes. We propose a new constrained sampling framework based on Markov Chain Monte Carlo (MCMC) that simultaneously satisfies three core desiderata: constraint satisfying (every sample satisfies the constraint), monotonically converging (the sampling process converges to the true conditional distribution), and efficient (high-quality samples emerge in few steps). Our method constructs a proposal distribution over valid outputs and applies a Metropolis-Hastings acceptance criterion based on the LM's likelihood, ensuring principled and efficient exploration of the constrained space. Empirically, our sampler outperforms existing methods on both synthetic benchmarks and real-world program fuzzing tasks.
LLM-Symbolic Integration for Robust Temporal Tabular Reasoning ACL
Temporal tabular question answering presents a significant challenge for Large Language Models (LLMs), requiring robust reasoning over structured data, which is a task where traditional prompting methods often fall short. These methods face challenges such as memorization, sensitivity to table size, and reduced performance on complex queries. To overcome these limitations, we introduce TempTabQA-C, a synthetic dataset designed for systematic and controlled evaluations, alongside a symbolic intermediate representation that transforms tables into database schemas. This structured approach allows LLMs to generate and execute SQL queries, enhancing generalization and mitigating biases. By incorporating adaptive few-shot prompting with contextually tailored examples, our method achieves superior robustness, scalability, and performance. Experimental results consistently highlight improvements across key challenges, setting a new benchmark for robust temporal reasoning with LLMs.
comment: Accepted to ACL Findings 2025
Do LLMs Really Forget? Evaluating Unlearning with Knowledge Correlation and Confidence Awareness
Machine unlearning techniques aim to mitigate unintended memorization in large language models (LLMs). However, existing approaches predominantly focus on the explicit removal of isolated facts, often overlooking latent inferential dependencies and the non-deterministic nature of knowledge within LLMs. Consequently, facts presumed forgotten may persist implicitly through correlated information. To address these challenges, we propose a knowledge unlearning evaluation framework that more accurately captures the implicit structure of real-world knowledge by representing relevant factual contexts as knowledge graphs with associated confidence scores. We further develop an inference-based evaluation protocol leveraging powerful LLMs as judges; these judges reason over the extracted knowledge subgraph to determine unlearning success. Our LLM judges utilize carefully designed prompts and are calibrated against human evaluations to ensure their trustworthiness and stability. Extensive experiments on our newly constructed benchmark demonstrate that our framework provides a more realistic and rigorous assessment of unlearning performance. Moreover, our findings reveal that current evaluation strategies tend to overestimate unlearning effectiveness. Our code is publicly available at https://github.com/Graph-COM/Knowledge_Unlearning.git.
Large Language Models are Good Relational Learners
Large language models (LLMs) have demonstrated remarkable capabilities across various domains, yet their application to relational deep learning (RDL) remains underexplored. Existing approaches adapt LLMs by traversing relational links between entities in a database and converting the structured data into flat text documents. Still, this text-based serialization disregards critical relational structures, introduces redundancy, and often exceeds standard LLM context lengths. We introduce Rel-LLM, a novel architecture that utilizes a graph neural network (GNN)- based encoder to generate structured relational prompts for LLMs within a retrieval-augmented generation (RAG) framework. Unlike traditional text-based serialization approaches, our method preserves the inherent relational structure of databases while enabling LLMs to effectively process and reason over complex entity relationships. Specifically, the GNN encoder extracts a local subgraph around an entity to build feature representations that contain relevant entity relationships and temporal dependencies. These representations are transformed into structured prompts using a denormalization process, effectively allowing the LLM to reason over relational structures. Through extensive experiments, we demonstrate that Rel-LLM outperforms existing methods on key RDL tasks, offering a scalable and efficient approach to integrating LLMs with structured data sources. Code is available at https://github.com/smiles724/Rel-LLM.
RKEFino1: A Regulation Knowledge-Enhanced Large Language Model
Recent advances in large language models (LLMs) hold great promise for financial applications but introduce critical accuracy and compliance challenges in Digital Regulatory Reporting (DRR). To address these issues, we propose RKEFino1, a regulation knowledge-enhanced financial reasoning model built upon Fino1, fine-tuned with domain knowledge from XBRL, CDM, and MOF. We formulate two QA tasks-knowledge-based and mathematical reasoning-and introduce a novel Numerical NER task covering financial entities in both sentences and tables. Experimental results demonstrate the effectiveness and generalization capacity of RKEFino1 in compliance-critical financial tasks. We have released our model on Hugging Face.
Being Strong Progressively! Enhancing Knowledge Distillation of Large Language Models through a Curriculum Learning Framework
Knowledge Distillation (KD) compresses large language models (LLMs) by transferring the teacher model's capabilities to a smaller student model, reducing inference cost and memory usage while maintaining performance. However, existing KD methods for LLMs often fail to prevent significant shifts in the student model's distribution during training, leading to issues such as catastrophic forgetting, mode collapse, and training-inference mismatch. To address these challenges, we propose a novel, plug-in curriculum learning framework inspired by the strength training principle of "progressive overload" (POCL), which can be seamlessly integrated into existing white-box KD approaches with minimal computational overhead. The framework comprises two core components: (1) a difficulty measurer that ranks and partitions training samples from easy to hard, and (2) a training scheduler that incrementally introduces these subsets into the distillation process at fixed intervals while applying loss functions with progressively rising temperatures. By starting with the easiest samples and progressively increasing the difficulty, the approach enhances both the stability and efficiency of learning. Extensive experiments in instruction-following settings demonstrate that POCL consistently improves the performance of distilled student models across various white-box KD methods and model families. Our findings highlight the effectiveness of sorted training samples in KD for LLMs. More generally, our work demonstrates how to structure training data within the KD process to enhance the stability and performance of distilled LLMs.
When to use Graphs in RAG: A Comprehensive Analysis for Graph Retrieval-Augmented Generation
Graph retrieval-augmented generation (GraphRAG) has emerged as a powerful paradigm for enhancing large language models (LLMs) with external knowledge. It leverages graphs to model the hierarchical structure between specific concepts, enabling more coherent and effective knowledge retrieval for accurate reasoning.Despite its conceptual promise, recent studies report that GraphRAG frequently underperforms vanilla RAG on many real-world tasks. This raises a critical question: Is GraphRAG really effective, and in which scenarios do graph structures provide measurable benefits for RAG systems? To address this, we propose GraphRAG-Bench, a comprehensive benchmark designed to evaluate GraphRAG models onboth hierarchical knowledge retrieval and deep contextual reasoning. GraphRAG-Bench features a comprehensive dataset with tasks of increasing difficulty, coveringfact retrieval, complex reasoning, contextual summarization, and creative generation, and a systematic evaluation across the entire pipeline, from graph constructionand knowledge retrieval to final generation. Leveraging this novel benchmark, we systematically investigate the conditions when GraphRAG surpasses traditional RAG and the underlying reasons for its success, offering guidelines for its practical application. All related resources and analyses are collected for the community at https://github.com/GraphRAG-Bench/GraphRAG-Benchmark.
Voice Impression Control in Zero-Shot TTS INTERSPEECH 2025
Para-/non-linguistic information in speech is pivotal in shaping the listeners' impression. Although zero-shot text-to-speech (TTS) has achieved high speaker fidelity, modulating subtle para-/non-linguistic information to control perceived voice characteristics, i.e., impressions, remains challenging. We have therefore developed a voice impression control method in zero-shot TTS that utilizes a low-dimensional vector to represent the intensities of various voice impression pairs (e.g., dark-bright). The results of both objective and subjective evaluations have demonstrated our method's effectiveness in impression control. Furthermore, generating this vector via a large language model enables target-impression generation from a natural language description of the desired impression, thus eliminating the need for manual optimization.
comment: 5 pages,5 figures, Accepted to INTERSPEECH 2025
A Unified Representation for Continuity and Discontinuity: Syntactic and Computational Motivations
This paper advances a unified representation of linguistic structure for three grammar formalisms, namely, Phrase Structure Grammar (PSG), Dependency Grammar (DG) and Categorial Grammar (CG) from the perspective of syntactic and computational complexity considerations. The correspondence principle is proposed to enable a unified representation of the representational principles from PSG, DG, and CG. To that end, the paper first illustrates a series of steps in achieving a unified representation for a discontinuous subordinate clause from Turkish as an illustrative case. This affords a new way of approaching discontinuity in natural language from a theoretical point of view that unites and integrates the basic tenets of PSG, DG, and CG, with significant consequences for syntactic analysis. Then this paper demonstrates that a unified representation can simplify computational complexity with regards to the neurocognitive representation and processing of both continuous and discontinuous sentences vis-\`a-vis the basic principles of PSG, DG, and CG.
Zero-Shot Event Causality Identification via Multi-source Evidence Fuzzy Aggregation with Large Language Models
Event Causality Identification (ECI) aims to detect causal relationships between events in textual contexts. Existing ECI models predominantly rely on supervised methodologies, suffering from dependence on large-scale annotated data. Although Large Language Models (LLMs) enable zero-shot ECI, they are prone to causal hallucination-erroneously establishing spurious causal links. To address these challenges, we propose MEFA, a novel zero-shot framework based on Multi-source Evidence Fuzzy Aggregation. First, we decompose causality reasoning into three main tasks (temporality determination, necessity analysis, and sufficiency verification) complemented by three auxiliary tasks. Second, leveraging meticulously designed prompts, we guide LLMs to generate uncertain responses and deterministic outputs. Finally, we quantify LLM's responses of sub-tasks and employ fuzzy aggregation to integrate these evidence for causality scoring and causality determination. Extensive experiments on three benchmarks demonstrate that MEFA outperforms second-best unsupervised baselines by 6.2% in F1-score and 9.3% in precision, while significantly reducing hallucination-induced errors. In-depth analysis verify the effectiveness of task decomposition and the superiority of fuzzy aggregation.
Contextually Guided Transformers via Low-Rank Adaptation
Large Language Models (LLMs) based on Transformers excel at text processing, but their reliance on prompts for specialized behavior introduces computational overhead. We propose a modification to a Transformer architecture that eliminates the need for explicit prompts by learning to encode context into the model's weights. Our Contextually Guided Transformer (CGT) model maintains a contextual summary at each sequence position, allowing it to update the weights on the fly based on the preceding context. This approach enables the model to self-specialize, effectively creating a tailored model for processing information following a given prefix. We demonstrate the effectiveness of our method on synthetic in-context learning tasks and language modeling benchmarks. Furthermore, we introduce techniques for enhancing the interpretability of the learned contextual representations, drawing connections to Variational Autoencoders and promoting smoother, more consistent context encoding. This work offers a novel direction for efficient and adaptable language modeling by integrating context directly into the model's architecture.
Low-Resource Domain Adaptation for Speech LLMs via Text-Only Fine-Tuning
Recent advances in automatic speech recognition (ASR) have combined speech encoders with large language models (LLMs) through projection, forming Speech LLMs with strong performance. However, adapting them to new domains remains challenging, especially in low-resource settings where paired speech-text data is scarce. We propose a text-only fine-tuning strategy for Speech LLMs using unpaired target-domain text without requiring additional audio. To preserve speech-text alignment, we introduce a real-time evaluation mechanism during fine-tuning. This enables effective domain adaptation while maintaining source-domain performance. Experiments on LibriSpeech, SlideSpeech, and Medical datasets show that our method achieves competitive recognition performance, with minimal degradation compared to full audio-text fine-tuning. It also improves generalization to new domains without catastrophic forgetting, highlighting the potential of text-only fine-tuning for low-resource domain adaptation of ASR.
Can LLMs Express Personality Across Cultures? Introducing CulturalPersonas for Evaluating Trait Alignment
As LLMs become central to interactive applications, ranging from tutoring to mental health, the ability to express personality in culturally appropriate ways is increasingly important. While recent works have explored personality evaluation of LLMs, they largely overlook the interplay between culture and personality. To address this, we introduce CulturalPersonas, the first large-scale benchmark with human validation for evaluating LLMs' personality expression in culturally grounded, behaviorally rich contexts. Our dataset spans 3,000 scenario-based questions across six diverse countries, designed to elicit personality through everyday scenarios rooted in local values. We evaluate three LLMs, using both multiple-choice and open-ended response formats. Our results show that CulturalPersonas improves alignment with country-specific human personality distributions (over a 20% reduction in Wasserstein distance across models and countries) and elicits more expressive, culturally coherent outputs compared to existing benchmarks. CulturalPersonas surfaces meaningful modulated trait outputs in response to culturally grounded prompts, offering new directions for aligning LLMs to global norms of behavior. By bridging personality expression and cultural nuance, we envision that CulturalPersonas will pave the way for more socially intelligent and globally adaptive LLMs.
BAQ: Efficient Bit Allocation Quantization for Large Language Models
Post-training model quantization is a widely adopted technique for reducing the memory and computational costs of large language models (LLMs). However, most existing methods rely on uniform or heuristic bitwidth assignments, failing to account for the nonuniform sensitivity of weights to quantization noise. In this paper, we propose a novel framework for allocating quantization bitwidths based on sensitivity metrics derived from a Hessian proxy. We make key assumptions, which allow the layer/component-wise loss function to be expressed as an explicit function of the bitwidths. This enables a neat formulation of the bit allocation problem as a convex optimization task, whose closed-form solution adapts precision across weights to minimize the layer-wise quantization loss. Inspecting the solution provides several insights (such as the equal-loss structure), which are then exploited to design the proposed \textbf{BAQ} (Bit Allocation Quantization) algorithm. The proposed algorithm achieves a good trade-off between loss minimization and complexity and allows BAQ to be integrated into standard quantization pipelines with minimal overhead. Experimental results show that BAQ consistently outperforms GPTQ, achieving up to 56$\times$ lower perplexity at the same bitwidth on large language models ranging from 125M to 30B parameters. Leveraging our analytical results derived from solving the optimal bit allocation problem, we also provide a theoretical explanation for the observed gains. All codes of this paper are available at https://github.com/CSU-ModelCompression/BAQ.
Projectable Models: One-Shot Generation of Small Specialized Transformers from Large Ones ICML 2024
Modern Foundation Models (FMs) are typically trained on corpora spanning a wide range of different data modalities, topics and downstream tasks. Utilizing these models can be very computationally expensive and is out of reach for most consumer devices. Furthermore, most of the broad FM knowledge may actually be irrelevant for a specific task at hand. Here we explore a technique for mapping parameters of a large Transformer to parameters of a smaller specialized model. By making this transformation task-specific, we aim to capture a narrower scope of the knowledge needed for performing a specific task by a smaller model. We study our method on image modeling tasks, showing that performance of generated models exceeds that of universal conditional models.
comment: Presented at ES-FoMo II: 2nd Workshop on Efficient Systems for Foundation Models (ICML 2024)
Kinetics: Rethinking Test-Time Scaling Laws
We rethink test-time scaling laws from a practical efficiency perspective, revealing that the effectiveness of smaller models is significantly overestimated. Prior work, grounded in compute-optimality, overlooks critical memory access bottlenecks introduced by inference-time strategies (e.g., Best-of-$N$, long CoTs). Our holistic analysis, spanning models from 0.6B to 32B parameters, reveals a new Kinetics Scaling Law that better guides resource allocation by incorporating both computation and memory access costs. Kinetics Scaling Law suggests that test-time compute is more effective when used on models above a threshold than smaller ones. A key reason is that in TTS, attention, rather than parameter count, emerges as the dominant cost factor. Motivated by this, we propose a new scaling paradigm centered on sparse attention, which lowers per-token cost and enables longer generations and more parallel samples within the same resource budget. Empirically, we show that sparse attention models consistently outperform dense counterparts, achieving over 60 points gains in low-cost regimes and over 5 points gains in high-cost regimes for problem-solving accuracy on AIME, encompassing evaluations on state-of-the-art MoEs. These results suggest that sparse attention is essential and increasingly important with more computing invested, for realizing the full potential of test-time scaling where, unlike training, accuracy has yet to saturate as a function of computation, and continues to improve through increased generation. The code is available at https://github.com/Infini-AI-Lab/Kinetics.
ECoRAG: Evidentiality-guided Compression for Long Context RAG
Large Language Models (LLMs) have shown remarkable performance in Open-Domain Question Answering (ODQA) by leveraging external documents through Retrieval-Augmented Generation (RAG). To reduce RAG overhead, from longer context, context compression is necessary. However, prior compression methods do not focus on filtering out non-evidential information, which limit the performance in LLM-based RAG. We thus propose Evidentiality-guided RAG, or ECoRAG framework. ECoRAG improves LLM performance by compressing retrieved documents based on evidentiality, ensuring whether answer generation is supported by the correct evidence. As an additional step, ECoRAG reflects whether the compressed content provides sufficient evidence, and if not, retrieves more until sufficient. Experiments show that ECoRAG improves LLM performance on ODQA tasks, outperforming existing compression methods. Furthermore, ECoRAG is highly cost-efficient, as it not only reduces latency but also minimizes token usage by retaining only the necessary information to generate the correct answer. Code is available at https://github.com/ldilab/ECoRAG.
Dissecting Bias in LLMs: A Mechanistic Interpretability Perspective
Large Language Models (LLMs) are known to exhibit social, demographic, and gender biases, often as a consequence of the data on which they are trained. In this work, we adopt a mechanistic interpretability approach to analyze how such biases are structurally represented within models such as GPT-2 and Llama2. Focusing on demographic and gender biases, we explore different metrics to identify the internal edges responsible for biased behavior. We then assess the stability, localization, and generalizability of these components across dataset and linguistic variations. Through systematic ablations, we demonstrate that bias-related computations are highly localized, often concentrated in a small subset of layers. Moreover, the identified components change across fine-tuning settings, including those unrelated to bias. Finally, we show that removing these components not only reduces biased outputs but also affects other NLP tasks, such as named entity recognition and linguistic acceptability judgment because of the sharing of important components with these tasks.
Does It Make Sense to Speak of Introspection in Large Language Models?
Large language models (LLMs) exhibit compelling linguistic behaviour, and sometimes offer self-reports, that is to say statements about their own nature, inner workings, or behaviour. In humans, such reports are often attributed to a faculty of introspection and are typically linked to consciousness. This raises the question of how to interpret self-reports produced by LLMs, given their increasing linguistic fluency and cognitive capabilities. To what extent (if any) can the concept of introspection be meaningfully applied to LLMs? Here, we present and critique two examples of apparent introspective self-report from LLMs. In the first example, an LLM attempts to describe the process behind its own "creative" writing, and we argue this is not a valid example of introspection. In the second example, an LLM correctly infers the value of its own temperature parameter, and we argue that this can be legitimately considered a minimal example of introspection, albeit one that is (presumably) not accompanied by conscious experience.
Identifying Reliable Evaluation Metrics for Scientific Text Revision ACL 2025
Evaluating text revision in scientific writing remains a challenge, as traditional metrics such as ROUGE and BERTScore primarily focus on similarity rather than capturing meaningful improvements. In this work, we analyse and identify the limitations of these metrics and explore alternative evaluation methods that better align with human judgments. We first conduct a manual annotation study to assess the quality of different revisions. Then, we investigate reference-free evaluation metrics from related NLP domains. Additionally, we examine LLM-as-a-judge approaches, analysing their ability to assess revisions with and without a gold reference. Our results show that LLMs effectively assess instruction-following but struggle with correctness, while domain-specific metrics provide complementary insights. We find that a hybrid approach combining LLM-as-a-judge evaluation and task-specific metrics offers the most reliable assessment of revision quality.
comment: V1 contains only the English version, accepted to ACL 2025 main (26 pages). V2 contains both English (ACL 2025) and French (TALN 2025) versions (58 pages)
MEDAL: A Framework for Benchmarking LLMs as Multilingual Open-Domain Chatbots and Dialogue Evaluators
As the capabilities of chatbots and their underlying LLMs continue to dramatically improve, evaluating their performance has increasingly become a major blocker to their further development. A major challenge is the available benchmarking datasets, which are largely static, outdated, and lacking in multilingual coverage, limiting their ability to capture subtle linguistic and cultural variations. This paper introduces MEDAL, an automated multi-agent framework for generating, evaluating, and curating more representative and diverse open-domain dialogue evaluation benchmarks. Our approach leverages several state-of-the-art LLMs to generate user-chatbot multilingual dialogues, conditioned on varied seed contexts. A strong LLM (GPT-4.1) is then used for a multidimensional analysis of the performance of the chatbots, uncovering noticeable cross-lingual performance differences. Guided by this large-scale evaluation, we curate a new meta-evaluation multilingual benchmark and human-annotate samples with nuanced quality judgments. This benchmark is then used to assess the ability of several reasoning and non-reasoning LLMs to act as evaluators of open-domain dialogues. We find that current LLMs struggle to detect nuanced issues, particularly those involving empathy and reasoning.
comment: May ARR
Leopard: A Vision Language Model For Text-Rich Multi-Image Tasks
Text-rich images, where text serves as the central visual element guiding the overall understanding, are prevalent in real-world applications, such as presentation slides, scanned documents, and webpage snapshots. Tasks involving multiple text-rich images are especially challenging, as they require not only understanding the content of individual images but reasoning about inter-relationships and logical flows across multiple visual inputs. Despite the importance of these scenarios, current multimodal large language models (MLLMs) struggle to handle such tasks due to two key challenges: (1) the scarcity of high-quality instruction tuning datasets for text-rich multi-image scenarios, and (2) the difficulty in balancing image resolution with visual feature sequence length. To address these challenges, we propose Leopard, an MLLM tailored for handling vision-language tasks involving multiple text-rich images. First, we curated about one million high-quality multimodal instruction-tuning data, tailored to text-rich, multi-image scenarios. Second, we proposed an adaptive high-resolution multi-image encoding module to dynamically optimize the allocation of visual sequence length based on the original aspect ratios and resolutions of images. Experiments on a diverse set of benchmarks reveal that our model consistently outperforms state-of-the-art systems, such as Llama-3.2 and Qwen2-VL, in challenging text-rich, multi-image evaluations. Remarkably, our approach achieves outstanding performance using only 1.2M training instances, all of which are fully open-sourced, demonstrating both high efficiency and effectiveness compared to models trained on large-scale in-house data. Our code and data are available at https://github.com/tencent-ailab/Leopard.
comment: Our code is available at https://github.com/tencent-ailab/Leopard
MimeQA: Towards Socially-Intelligent Nonverbal Foundation Models
As AI becomes more closely integrated with peoples' daily activities, socially intelligent AI that can understand and interact seamlessly with humans in daily lives is increasingly important. However, current works in AI social reasoning all rely on language-only or language-dominant approaches to benchmark and training models, resulting in systems that are improving in verbal communication but struggle with nonverbal social understanding. To address this limitation, we tap into a novel data source rich in nonverbal social interactions -- mime videos. Mimes refer to the art of expression through gesture and movement without spoken words, which presents unique challenges and opportunities in interpreting nonverbal social communication. We contribute a new dataset called MimeQA, obtained by sourcing 8 hours of videos clips from YouTube and developing a comprehensive video question-answering benchmark comprising 806 carefully annotated and verified question-answer pairs, designed to probe nonverbal social reasoning capabilities. Using MimeQA, we evaluate state-of-the-art video large language models (vLLMs) and find that they achieve low overall accuracy, ranging from 20-30%, while humans score 86%. Our analysis reveals that vLLMs often fail to ground imagined objects and over-rely on the text prompt while ignoring subtle nonverbal interactions. We hope to inspire future work in AI models that embody true social intelligence capable of interpreting non-verbal human interactions.
A semantic embedding space based on large language models for modelling human beliefs
Beliefs form the foundation of human cognition and decision-making, guiding our actions and social connections. A model encapsulating beliefs and their interrelationships is crucial for understanding their influence on our actions. However, research on belief interplay has often been limited to beliefs related to specific issues and relied heavily on surveys. We propose a method to study the nuanced interplay between thousands of beliefs by leveraging an online user debate data and mapping beliefs onto a neural embedding space constructed using a fine-tuned large language model (LLM). This belief space captures the interconnectedness and polarization of diverse beliefs across social issues. Our findings show that positions within this belief space predict new beliefs of individuals and estimate cognitive dissonance based on the distance between existing and new beliefs. This study demonstrates how LLMs, combined with collective online records of human beliefs, can offer insights into the fundamental principles that govern human belief formation.
comment: 5 figures, 2 tables (SI: 25 figures, 7 tables). Published in Nature Human Behaviour (2025)
Banyan: Improved Representation Learning with Explicit Structure ICML 2025
We present Banyan, a model that efficiently learns semantic representations by leveraging explicit hierarchical structure. While transformers excel at scale, they struggle in low-resource settings. Conversely recent structured models have shown promise as efficient learners, but lack performance. Banyan bridges this gap with two key innovations: an entangled hierarchical tree structure and diagonalized message passing, enabling it to outperform larger transformer models with just 14 non-embedding parameters. It excels in low-resource settings, offering a viable alternative for under-represented languages and highlighting its potential for efficient, interpretable NLP in resource-constrained environments.
comment: ICML 2025 Camera Ready + Code Release
Emergent Response Planning in LLMs ICML 2025
In this work, we argue that large language models (LLMs), though trained to predict only the next token, exhibit emergent planning behaviors: $\textbf{their hidden representations encode future outputs beyond the next token}$. Through simple probing, we demonstrate that LLM prompt representations encode global attributes of their entire responses, including $\textit{structure attributes}$ (e.g., response length, reasoning steps), $\textit{content attributes}$ (e.g., character choices in storywriting, multiple-choice answers at the end of response), and $\textit{behavior attributes}$ (e.g., answer confidence, factual consistency). In addition to identifying response planning, we explore how it scales with model size across tasks and how it evolves during generation. The findings that LLMs plan ahead for the future in their hidden representations suggest potential applications for improving transparency and generation control.
comment: ICML 2025
Automated Journalistic Questions: A New Method for Extracting 5W1H in French
The 5W1H questions -- who, what, when, where, why and how -- are commonly used in journalism to ensure that an article describes events clearly and systematically. Answering them is a crucial prerequisites for tasks such as summarization, clustering, and news aggregation. In this paper, we design the first automated extraction pipeline to get 5W1H information from French news articles. To evaluate the performance of our algorithm, we also create a corpus of 250 Quebec news articles with 5W1H answers marked by four human annotators. Our results demonstrate that our pipeline performs as well in this task as the large language model GPT-4o.
comment: 14 pages, 5 figures, 7 tables
Not All Rollouts are Useful: Down-Sampling Rollouts in LLM Reinforcement Learning
Reinforcement learning with verifiable rewards (RLVR) has emerged as a powerful paradigm for enhancing reasoning capabilities in large language models. However, it is constrained by a fundamental asymmetry in computation and memory requirements: rollout generation is embarrassingly parallel and memory-light, whereas policy updates are communication-heavy and memory-intensive. To address this, we introduce PODS (Policy Optimization with Down-Sampling). PODS produces numerous rollouts in parallel, then trains on only an informative subset, preserving learning signals while slashing update cost. We instantiate PODS with max-variance down-sampling, a principled criterion that maximises reward diversity and show it admits an $O(n\log n)$ solution. Empirically, coupling PODS with Group Relative Policy Optimization (GRPO) achieves superior performance over standard GRPO across different reasoning benchmarks and hardware environments.
comment: 14 pages, 7 figures
Towards Effective Extraction and Evaluation of Factual Claims ACL 2025
A common strategy for fact-checking long-form content generated by Large Language Models (LLMs) is extracting simple claims that can be verified independently. Since inaccurate or incomplete claims compromise fact-checking results, ensuring claim quality is critical. However, the lack of a standardized evaluation framework impedes assessment and comparison of claim extraction methods. To address this gap, we propose a framework for evaluating claim extraction in the context of fact-checking along with automated, scalable, and replicable methods for applying this framework, including novel approaches for measuring coverage and decontextualization. We also introduce Claimify, an LLM-based claim extraction method, and demonstrate that it outperforms existing methods under our evaluation framework. A key feature of Claimify is its ability to handle ambiguity and extract claims only when there is high confidence in the correct interpretation of the source text.
comment: ACL 2025 Main Conference
LLMs on the Line: Data Determines Loss-to-Loss Scaling Laws ICML 2025
Scaling laws guide the development of large language models (LLMs) by offering estimates for the optimal balance of model size, tokens, and compute. More recently, loss-to-loss scaling laws that relate losses across pretraining datasets and downstream tasks have emerged as a powerful tool for understanding and improving LLM performance. In this work, we investigate which factors most strongly influence loss-to-loss scaling. Our experiments reveal that the pretraining data and tokenizer determine the scaling trend. In contrast, model size, optimization hyperparameters, and even significant architectural differences, such as between transformer-based models like Llama and state-space models like Mamba, have limited impact. Consequently, practitioners should carefully curate suitable pretraining datasets for optimal downstream performance, while architectures and other settings can be freely optimized for training efficiency.
comment: ICML 2025 camera-ready version
Unveiling Topological Structures from Language: A Comprehensive Survey of Topological Data Analysis Applications in NLP
The surge of data available on the internet has led to the adoption of various computational methods to analyze and extract valuable insights from this wealth of information. Among these, the field of Machine Learning (ML) has thrived by leveraging data to extract meaningful insights. However, ML techniques face notable challenges when dealing with real-world data, often due to issues of imbalance, noise, insufficient labeling, and high dimensionality. To address these limitations, some researchers advocate for the adoption of Topological Data Analysis (TDA), a statistical approach that discerningly captures the intrinsic shape of data despite noise. Despite its potential, TDA has not gained as much traction within the Natural Language Processing (NLP) domain compared to structurally distinct areas like computer vision. Nevertheless, a dedicated community of researchers has been exploring the application of TDA in NLP, yielding 95 papers we comprehensively survey in this paper. Our findings categorize these efforts into theoretical and non-theoretical approaches. Theoretical approaches aim to explain linguistic phenomena from a topological viewpoint, while non-theoretical approaches merge TDA with ML features, utilizing diverse numerical representation techniques. We conclude by exploring the challenges and unresolved questions that persist in this niche field. Resources and a list of papers on this topic can be found at: https://github.com/AdaUchendu/AwesomeTDA4NLP.
Opt-Out: Investigating Entity-Level Unlearning for Large Language Models via Optimal Transport ACL 2025
Instruction-following large language models (LLMs), such as ChatGPT, have become widely popular among everyday users. However, these models inadvertently disclose private, sensitive information to their users, underscoring the need for machine unlearning techniques to remove selective information from the models. While prior work has focused on forgetting small, random subsets of training data at the instance-level, we argue that real-world scenarios often require the removal of an entire user data, which may require a more careful maneuver. In this study, we explore entity-level unlearning, which aims to erase all knowledge related to a target entity while preserving the remaining model capabilities. To address this, we introduce Opt-Out, an optimal transport-based unlearning method that utilizes the Wasserstein distance from the model's initial parameters to achieve more effective and fine-grained unlearning. We also present the first Entity-Level Unlearning Dataset (ELUDe) designed to evaluate entity-level unlearning. Our empirical results demonstrate that Opt-Out surpasses existing methods, establishing a new standard for secure and adaptable LLMs that can accommodate user data removal requests without the need for full retraining.
comment: ACL 2025 Main
The Canary's Echo: Auditing Privacy Risks of LLM-Generated Synthetic Text ICML 2025
How much information about training samples can be leaked through synthetic data generated by Large Language Models (LLMs)? Overlooking the subtleties of information flow in synthetic data generation pipelines can lead to a false sense of privacy. In this paper, we assume an adversary has access to some synthetic data generated by a LLM. We design membership inference attacks (MIAs) that target the training data used to fine-tune the LLM that is then used to synthesize data. The significant performance of our MIA shows that synthetic data leak information about the training data. Further, we find that canaries crafted for model-based MIAs are sub-optimal for privacy auditing when only synthetic data is released. Such out-of-distribution canaries have limited influence on the model's output when prompted to generate useful, in-distribution synthetic data, which drastically reduces their effectiveness. To tackle this problem, we leverage the mechanics of auto-regressive models to design canaries with an in-distribution prefix and a high-perplexity suffix that leave detectable traces in synthetic data. This enhances the power of data-based MIAs and provides a better assessment of the privacy risks of releasing synthetic data generated by LLMs.
comment: 42nd International Conference on Machine Learning (ICML 2025)
Efficient and Direct Duplex Modeling for Speech-to-Speech Language Model
Spoken dialogue is an intuitive form of human-computer interaction, yet current speech language models often remain constrained to turn-based exchanges, lacking real-time adaptability such as user barge-in. We propose a novel duplex speech to speech (S2S) architecture featuring continuous user inputs and codec agent outputs with channel fusion that directly models simultaneous user and agent streams. Using a pretrained streaming encoder for user input enables the first duplex S2S model without requiring speech pretrain. Separate architectures for agent and user modeling facilitate codec fine-tuning for better agent voices and halve the bitrate (0.6 kbps) compared to previous works. Experimental results show that the proposed model outperforms previous duplex models in reasoning, turn-taking, and barge-in abilities. The model requires significantly less speech data, as speech pretrain is skipped, which markedly simplifies the process of building a duplex S2S model from any LLMs. Finally, it is the first openly available duplex S2S model with training and inference code to foster reproducibility.
comment: Accepted to Interspeech 2025
GraphCheck: Multi-Path Fact-Checking with Entity-Relationship Graphs
Automated fact-checking aims to assess the truthfulness of textual claims based on relevant evidence. However, verifying complex claims that require multi-hop reasoning remains a significant challenge. We propose GraphCheck, a novel framework that transforms claims into entity-relationship graphs for structured and systematic verification. By explicitly modeling both explicit and latent entities and exploring multiple reasoning paths, GraphCheck improves verification robustness. While GraphCheck excels in complex scenarios, it may be unnecessarily elaborate for simpler claims. To address this, we introduce DP-GraphCheck, a variant that employs a lightweight strategy selector to adaptively choose between direct prompting and GraphCheck. This selective mechanism improves both accuracy and efficiency by applying the appropriate level of reasoning to each claim. Experiments on the HOVER and EX-FEVER datasets demonstrate that our approach outperforms existing methods, particularly on multi-hop claims. Moreover, the strategy selection mechanism in DP-GraphCheck generalizes well to other fact-checking pipelines, highlighting the versatility of our framework.
Tug-of-war between idiom's figurative and literal meanings in LLMs
Idioms present a unique challenge for language models due to their non-compositional figurative meanings, which often strongly diverge from the idiom's literal interpretation. This duality requires a model to learn representing and deciding between the two meanings to interpret an idiom in a figurative sense, or literally. In this paper, we employ tools from mechanistic interpretability to trace how a large pretrained causal transformer (LLama3.2-1B-base) deals with this ambiguity. We localize three steps of idiom processing: First, the idiom's figurative meaning is retrieved in early attention and MLP sublayers. We identify specific attention heads which boost the figurative meaning of the idiom while suppressing the idiom's literal interpretation. The model subsequently represents the figurative representation through an intermediate path. Meanwhile, a parallel bypass route forwards literal interpretation, ensuring that a both reading remain available. Overall, our findings provide a mechanistic evidence for idiom comprehension in an autoregressive transformer.
HIGHT: Hierarchical Graph Tokenization for Molecule-Language Alignment ICML2025
Recently, there has been a surge of interest in extending the success of large language models (LLMs) from texts to molecules. Most existing approaches adopt a graph neural network to represent a molecule as a series of node tokens for molecule-language alignment, which, however, have overlooked the inherent hierarchical structures in molecules. Notably, higher-order molecular structures contain rich semantics of functional groups, which encode crucial biochemical functionalities of the molecules. We show that neglecting the hierarchical information in tokenization will lead to subpar molecule-language alignment and severe hallucination. To address this limitation, we propose HIerarchical GrapH Tokenization (HIGHT). HIGHT employs a hierarchical graph tokenizer that encodes the hierarchy of atom, motif, and molecular levels of informative tokens to improve the molecular perception of LLMs. HIGHT also adopts an augmented instruction tuning dataset, enriched with the hierarchical graph information, to further enhance the molecule-language alignment. Extensive experiments on 14 real-world benchmarks verify the effectiveness of HIGHT in reducing hallucination by 40%, and significant improvements in various molecule-language downstream tasks. The project is available at https: //higraphllm.github.io/.
comment: ICML2025, 27 pages, 7 figures, 23 tables; project page: https://higraphllm.github.io/
MedXpertQA: Benchmarking Expert-Level Medical Reasoning and Understanding ICML 2025
We introduce MedXpertQA, a highly challenging and comprehensive benchmark to evaluate expert-level medical knowledge and advanced reasoning. MedXpertQA includes 4,460 questions spanning 17 specialties and 11 body systems. It includes two subsets, Text for text evaluation and MM for multimodal evaluation. Notably, MM introduces expert-level exam questions with diverse images and rich clinical information, including patient records and examination results, setting it apart from traditional medical multimodal benchmarks with simple QA pairs generated from image captions. MedXpertQA applies rigorous filtering and augmentation to address the insufficient difficulty of existing benchmarks like MedQA, and incorporates specialty board questions to improve clinical relevance and comprehensiveness. We perform data synthesis to mitigate data leakage risk and conduct multiple rounds of expert reviews to ensure accuracy and reliability. We evaluate 18 leading models on \benchmark. Moreover, medicine is deeply connected to real-world decision-making, providing a rich and representative setting for assessing reasoning abilities beyond mathematics and code. To this end, we develop a reasoning-oriented subset to facilitate the assessment of o1-like models. Code and data are available at: https://github.com/TsinghuaC3I/MedXpertQA
comment: ICML 2025
Rethinking Machine Unlearning in Image Generation Models CCS 2025
With the surge and widespread application of image generation models, data privacy and content safety have become major concerns and attracted great attention from users, service providers, and policymakers. Machine unlearning (MU) is recognized as a cost-effective and promising means to address these challenges. Despite some advancements, image generation model unlearning (IGMU) still faces remarkable gaps in practice, e.g., unclear task discrimination and unlearning guidelines, lack of an effective evaluation framework, and unreliable evaluation metrics. These can hinder the understanding of unlearning mechanisms and the design of practical unlearning algorithms. We perform exhaustive assessments over existing state-of-the-art unlearning algorithms and evaluation standards, and discover several critical flaws and challenges in IGMU tasks. Driven by these limitations, we make several core contributions, to facilitate the comprehensive understanding, standardized categorization, and reliable evaluation of IGMU. Specifically, (1) We design CatIGMU, a novel hierarchical task categorization framework. It provides detailed implementation guidance for IGMU, assisting in the design of unlearning algorithms and the construction of testbeds. (2) We introduce EvalIGMU, a comprehensive evaluation framework. It includes reliable quantitative metrics across five critical aspects. (3) We construct DataIGM, a high-quality unlearning dataset, which can be used for extensive evaluations of IGMU, training content detectors for judgment, and benchmarking the state-of-the-art unlearning algorithms. With EvalIGMU and DataIGM, we discover that most existing IGMU algorithms cannot handle the unlearning well across different evaluation dimensions, especially for preservation and robustness. Code and models are available at https://github.com/ryliu68/IGMU.
comment: Accepted by ACM CCS 2025
Reasoning Through Execution: Unifying Process and Outcome Rewards for Code Generation ICML 2025
Large Language Models excel at code generation yet struggle with complex programming tasks that demand sophisticated reasoning. To bridge this gap, traditional process supervision relies on learned reward models requiring costly training data and suffering from reward misalignment, while outcome supervision fails for complex tasks needing coordinated intermediate steps. We introduce Outcome Refining Process Supervision, which unifies process and outcome supervision by leveraging executable verification: a tree-structured search framework generates strategic alternatives, profiles execution metrics, and scores candidates via self-critique mechanisms that integrate runtime feedback with reasoning. Experiments across 5 models and 3 benchmarks show consistent gains, with 26.9% higher correctness and 42.2% improved code efficiency. The results demonstrate that ORPS enables LLMs to overcome local optima in code generation, suggesting a promising direction for combining verifiable outcomes with structured reasoning to tackle complex challenges. We open-source at: https://github.com/zhuohaoyu/ORPS
comment: Accepted to ICML 2025; 23 pages, 7 figures, code is available at: https://github.com/zhuohaoyu/ORPS
Improving Customer Service with Automatic Topic Detection in User Emails
This study introduces a novel natural language processing pipeline that enhances customer service efficiency at Telekom Srbija, a leading Serbian telecommunications company, through automated email topic detection and labeling. Central to the pipeline is BERTopic, a modular framework that allows unsupervised topic modeling. After a series of preprocessing and postprocessing steps, we assign one of 12 topics and several additional labels to incoming emails, allowing customer service to filter and access them through a custom-made application. While applied to Serbian, the methodology is conceptually language-agnostic and can be readily adapted to other languages, particularly those that are low-resourced and morphologically rich. The system performance was evaluated by assessing the speed and correctness of the automatically assigned topics, with a weighted average processing time of 0.041 seconds per email and a weighted average F1 score of 0.96. The system now operates in the company's production environment, streamlining customer service operations through automated email classification.
comment: Paper accepted to the 15th International Conference on Information Society and Technology (ICIST), Kopaonik, Serbia, 9-12 March 2025. To appear in L
Judgment of Learning: A Human Ability Beyond Generative Artificial Intelligence
Large language models (LLMs) increasingly mimic human cognition in various language-based tasks. However, their capacity for metacognition - particularly in predicting memory performance - remains unexplored. Here, we introduce a cross-agent prediction model to assess whether ChatGPT-based LLMs align with human judgments of learning (JOL), a metacognitive measure where individuals predict their own future memory performance. We tested humans and LLMs on pairs of sentences, one of which was a garden-path sentence - a sentence that initially misleads the reader toward an incorrect interpretation before requiring reanalysis. By manipulating contextual fit (fitting vs. unfitting sentences), we probed how intrinsic cues (i.e., relatedness) affect both LLM and human JOL. Our results revealed that while human JOL reliably predicted actual memory performance, none of the tested LLMs (GPT-3.5-turbo, GPT-4-turbo, and GPT-4o) demonstrated comparable predictive accuracy. This discrepancy emerged regardless of whether sentences appeared in fitting or unfitting contexts. These findings indicate that, despite LLMs' demonstrated capacity to model human cognition at the object-level, they struggle at the meta-level, failing to capture the variability in individual memory predictions. By identifying this shortcoming, our study underscores the need for further refinements in LLMs' self-monitoring abilities, which could enhance their utility in educational settings, personalized learning, and human-AI interactions. Strengthening LLMs' metacognitive performance may reduce the reliance on human oversight, paving the way for more autonomous and seamless integration of AI into tasks requiring deeper cognitive awareness.
comment: 24 pages, 2 figures
Peri-LN: Revisiting Normalization Layer in the Transformer Architecture ICML2025
Selecting a layer normalization (LN) strategy that stabilizes training and speeds convergence in Transformers remains difficult, even for today's large language models (LLM). We present a comprehensive analytical foundation for understanding how different LN strategies influence training dynamics in large-scale Transformers. Until recently, Pre-LN and Post-LN have long dominated practices despite their limitations in large-scale training. However, several open-source models have recently begun silently adopting a third strategy without much explanation. This strategy places normalization layer peripherally around sublayers, a design we term Peri-LN. While Peri-LN has demonstrated promising performance, its precise mechanisms and benefits remain almost unexplored. Our in-depth analysis delineates the distinct behaviors of LN strategies, showing how each placement shapes activation variance and gradient propagation. To validate our theoretical insight, we conduct extensive experiments on Transformers up to $3.2$B parameters, showing that Peri-LN consistently achieves more balanced variance growth, steadier gradient flow, and convergence stability. Our results suggest that Peri-LN warrants broader consideration for large-scale Transformer architectures, providing renewed insights into the optimal placement of LN.
comment: ICML2025 Camera-ready version
DPO-Shift: Shifting the Distribution of Direct Preference Optimization
Direct Preference Optimization (DPO) and its variants have become increasingly popular for aligning language models with human preferences. These methods aim to teach models to better distinguish between chosen (or preferred) and rejected (or dispreferred) responses. However, prior research has identified that the probability of chosen responses often decreases during training, and this phenomenon is known as likelihood displacement. To tackle this challenge, in this work we introduce DPO-Shift to controllably shift the distribution of the chosen probability. Then, we show that DPO-Shift exhibits a fundamental trade-off between improving the chosen probability and sacrificing the reward margin, as supported by both theoretical analysis and experimental validation. Furthermore, we demonstrate the superiority of DPO-Shift over DPO on downstream tasks such as MT-Bench and a designed win rate experiment. We believe this study shows that the likelihood displacement issue of DPO can be effectively mitigated with a simple, theoretically grounded solution. Our code is available at https://github.com/Meaquadddd/DPO-Shift.
Jacobian Sparse Autoencoders: Sparsify Computations, Not Just Activations
Sparse autoencoders (SAEs) have been successfully used to discover sparse and human-interpretable representations of the latent activations of LLMs. However, we would ultimately like to understand the computations performed by LLMs and not just their representations. The extent to which SAEs can help us understand computations is unclear because they are not designed to "sparsify" computations in any sense, only latent activations. To solve this, we propose Jacobian SAEs (JSAEs), which yield not only sparsity in the input and output activations of a given model component but also sparsity in the computation (formally, the Jacobian) connecting them. With a na\"ive implementation, the Jacobians in LLMs would be computationally intractable due to their size. One key technical contribution is thus finding an efficient way of computing Jacobians in this setup. We find that JSAEs extract a relatively large degree of computational sparsity while preserving downstream LLM performance approximately as well as traditional SAEs. We also show that Jacobians are a reasonable proxy for computational sparsity because MLPs are approximately linear when rewritten in the JSAE basis. Lastly, we show that JSAEs achieve a greater degree of computational sparsity on pre-trained LLMs than on the equivalent randomized LLM. This shows that the sparsity of the computational graph appears to be a property that LLMs learn through training, and suggests that JSAEs might be more suitable for understanding learned transformer computations than standard SAEs.
The Synergy of LLMs & RL Unlocks Offline Learning of Generalizable Language-Conditioned Policies with Low-fidelity Data ICML
Developing autonomous agents capable of performing complex, multi-step decision-making tasks specified in natural language remains a significant challenge, particularly in realistic settings where labeled data is scarce and real-time experimentation is impractical. Existing reinforcement learning (RL) approaches often struggle to generalize to unseen goals and states, limiting their applicability. In this paper, we introduce TEDUO, a novel training pipeline for offline language-conditioned policy learning in symbolic environments. Unlike conventional methods, TEDUO operates on readily available, unlabeled datasets and addresses the challenge of generalization to previously unseen goals and states. Our approach harnesses large language models (LLMs) in a dual capacity: first, as automatization tools augmenting offline datasets with richer annotations, and second, as generalizable instruction-following agents. Empirical results demonstrate that TEDUO achieves data-efficient learning of robust language-conditioned policies, accomplishing tasks beyond the reach of conventional RL frameworks or out-of-the-box LLMs alone.
comment: Accepted at International Conference on Machine Learning (ICML) 2025
TRACT: Regression-Aware Fine-tuning Meets Chain-of-Thought Reasoning for LLM-as-a-Judge ACL 2025
The LLM-as-a-judge paradigm uses large language models (LLMs) for automated text evaluation, where a numerical assessment is assigned by an LLM to the input text following scoring rubrics. Existing methods for LLM-as-a-judge use cross-entropy (CE) loss for fine-tuning, which neglects the numeric nature of score prediction. Recent work addresses numerical prediction limitations of LLM fine-tuning through regression-aware fine-tuning, which, however, does not consider chain-of-thought (CoT) reasoning for score prediction. In this paper, we introduce TRACT (Two-stage Regression-Aware fine-tuning with CoT), a method combining CoT reasoning with regression-aware training. TRACT consists of two stages: first, seed LLM is fine-tuned to generate CoTs, which serve as supervision for the second stage fine-tuning. The training objective of TRACT combines the CE loss for learning the CoT reasoning capabilities, and the regression-aware loss for the score prediction. Experiments across four LLM-as-a-judge datasets and two LLMs show that TRACT significantly outperforms existing methods. Extensive ablation studies validate the importance of each component in TRACT.
comment: ACL 2025 camera-ready Codes and models are available at https://github.com/d223302/TRACT
Diving into Self-Evolving Training for Multimodal Reasoning ICML 2025
Self-evolving trainin--where models iteratively learn from their own outputs--has emerged as a key approach for complex reasoning tasks, addressing the scarcity of high-quality chain-of-thought data. However, its effectiveness in multimodal reasoning, a domain more intricate than text-only reasoning, remains underexplored, and the understanding of critical factors in this training paradigm remains limited. Furthermore, a central challenge for this training method is performance saturation, which impedes further improvements and scalability. Inspired by reinforcement learning (RL), in this paper, we reframe self-evolving training for multimodal reasoning through the lens of RL, identifying three pivotal factors: Training Method, Reward Model, and Prompt Variation. Through systematic analysis, we establish relatively optimal design principles that significantly enhance multimodal reasoning capabilities. Moreover, delving deeper into training dynamics, we uncover the roots of saturation and propose a new automatic balancing mechanism to mitigate this limitation. Building on these insights, we propose M-STAR (Multimodal Self-evolving Training for Reasoning), a framework that achieves consistent performance gains across models of varying sizes and diverse benchmarks. All resources are made publicly available at https://mstar-lmm.github.io.
comment: ICML 2025, Project Page: https://mstar-lmm.github.io
GRASP: Replace Redundant Layers with Adaptive Singular Parameters for Efficient Model Compression
Recent studies have demonstrated that many layers are functionally redundant in large language models (LLMs), enabling model compression by removing these layers to reduce inference cost. While such approaches can improve efficiency, indiscriminate layer pruning often results in significant performance degradation. In this paper, we propose GRASP (Gradient-based Retention of Adaptive Singular Parameters), a novel compression framework that mitigates this issue by preserving sensitivity-aware singular values. Unlike direct layer pruning, GRASP leverages gradient-based attribution on a small calibration dataset to adaptively identify and retain critical singular components. By replacing redundant layers with only a minimal set of parameters, GRASP achieves efficient compression while maintaining strong performance with minimal overhead. Experiments across multiple LLMs show that GRASP consistently outperforms existing compression methods, achieving 90% of the original model's performance under a 20% compression ratio.
comment: 15 pages, 5 figures
AutoML-Agent: A Multi-Agent LLM Framework for Full-Pipeline AutoML ICML 2025
Automated machine learning (AutoML) accelerates AI development by automating tasks in the development pipeline, such as optimal model search and hyperparameter tuning. Existing AutoML systems often require technical expertise to set up complex tools, which is in general time-consuming and requires a large amount of human effort. Therefore, recent works have started exploiting large language models (LLM) to lessen such burden and increase the usability of AutoML frameworks via a natural language interface, allowing non-expert users to build their data-driven solutions. These methods, however, are usually designed only for a particular process in the AI development pipeline and do not efficiently use the inherent capacity of the LLMs. This paper proposes AutoML-Agent, a novel multi-agent framework tailored for full-pipeline AutoML, i.e., from data retrieval to model deployment. AutoML-Agent takes user's task descriptions, facilitates collaboration between specialized LLM agents, and delivers deployment-ready models. Unlike existing work, instead of devising a single plan, we introduce a retrieval-augmented planning strategy to enhance exploration to search for more optimal plans. We also decompose each plan into sub-tasks (e.g., data preprocessing and neural network design) each of which is solved by a specialized agent we build via prompting executing in parallel, making the search process more efficient. Moreover, we propose a multi-stage verification to verify executed results and guide the code generation LLM in implementing successful solutions. Extensive experiments on seven downstream tasks using fourteen datasets show that AutoML-Agent achieves a higher success rate in automating the full AutoML process, yielding systems with good performance throughout the diverse domains.
comment: ICML 2025, Project Page: https://deepauto-ai.github.io/automl-agent
CAT-LLM: Style-enhanced Large Language Models with Text Style Definition for Chinese Article-style Transfer
Text style transfer plays a vital role in online entertainment and social media. However, existing models struggle to handle the complexity of Chinese long texts, such as rhetoric, structure, and culture, which restricts their broader application. To bridge this gap, we propose a Chinese Article-style Transfer (CAT-LLM) framework, which addresses the challenges of style transfer in complex Chinese long texts. At its core, CAT-LLM features a bespoke pluggable Text Style Definition (TSD) module that integrates machine learning algorithms to analyze and model article styles at both word and sentence levels. This module acts as a bridge, enabling LLMs to better understand and adapt to the complexities of Chinese article styles. Furthermore, it supports the dynamic expansion of internal style trees, enabling the framework to seamlessly incorporate new and diverse style definitions, enhancing adaptability and scalability for future research and applications. Additionally, to facilitate robust evaluation, we created ten parallel datasets using a combination of ChatGPT and various Chinese texts, each corresponding to distinct writing styles, significantly improving the accuracy of the model evaluation and establishing a novel paradigm for text style transfer research. Extensive experimental results demonstrate that CAT-LLM, combined with GPT-3.5-Turbo, achieves state-of-the-art performance, with a transfer accuracy F1 score of 79.36% and a content preservation F1 score of 96.47% on the "Fortress Besieged" dataset. These results highlight CAT-LLM's innovative contributions to style transfer research, including its ability to preserve content integrity while achieving precise and flexible style transfer across diverse Chinese text domains. Building on these contributions, CAT-LLM presents significant potential for advancing Chinese digital media and facilitating automated content creation.
CAPability: A Comprehensive Visual Caption Benchmark for Evaluating Both Correctness and Thoroughness
Visual captioning benchmarks have become outdated with the emergence of modern multimodal large language models (MLLMs), as the brief ground-truth sentences and traditional metrics fail to assess detailed captions effectively. While recent benchmarks attempt to address this by focusing on keyword extraction or object-centric evaluation, they remain limited to vague-view or object-view analyses and incomplete visual element coverage. In this paper, we introduce CAPability, a comprehensive multi-view benchmark for evaluating visual captioning across 12 dimensions spanning six critical views. We curate nearly 11K human-annotated images and videos with visual element annotations to evaluate the generated captions. CAPability stably assesses both the correctness and thoroughness of captions with \textit{precision} and \textit{hit} metrics. By converting annotations to QA pairs, we further introduce a heuristic metric, \textit{know but cannot tell} ($K\bar{T}$), indicating a significant performance gap between QA and caption capabilities. Our work provides a holistic analysis of MLLMs' captioning abilities, as we identify their strengths and weaknesses across various dimensions, guiding future research to enhance specific aspects of their capabilities.
MapEval: A Map-Based Evaluation of Geo-Spatial Reasoning in Foundation Models ICML 2025
Recent advancements in foundation models have improved autonomous tool usage and reasoning, but their capabilities in map-based reasoning remain underexplored. To address this, we introduce MapEval, a benchmark designed to assess foundation models across three distinct tasks - textual, API-based, and visual reasoning - through 700 multiple-choice questions spanning 180 cities and 54 countries, covering spatial relationships, navigation, travel planning, and real-world map interactions. Unlike prior benchmarks that focus on simple location queries, MapEval requires models to handle long-context reasoning, API interactions, and visual map analysis, making it the most comprehensive evaluation framework for geospatial AI. On evaluation of 30 foundation models, including Claude-3.5-Sonnet, GPT-4o, and Gemini-1.5-Pro, none surpass 67% accuracy, with open-source models performing significantly worse and all models lagging over 20% behind human performance. These results expose critical gaps in spatial inference, as models struggle with distances, directions, route planning, and place-specific reasoning, highlighting the need for better geospatial AI to bridge the gap between foundation models and real-world navigation. All the resources are available at: https://mapeval.github.io/.
comment: ICML 2025 (Spotlight)
PoisonBench: Assessing Large Language Model Vulnerability to Data Poisoning ICML 2025
Preference learning is a central component for aligning current LLMs, but this process can be vulnerable to data poisoning attacks. To address this concern, we introduce PoisonBench, a benchmark for evaluating large language models' susceptibility to data poisoning during preference learning. Data poisoning attacks can manipulate large language model responses to include hidden malicious content or biases, potentially causing the model to generate harmful or unintended outputs while appearing to function normally. We deploy two distinct attack types across eight realistic scenarios, assessing 21 widely-used models. Our findings reveal concerning trends: (1) Scaling up parameter size does not inherently enhance resilience against poisoning attacks; (2) There exists a log-linear relationship between the effects of the attack and the data poison ratio; (3) The effect of data poisoning can generalize to extrapolated triggers that are not included in the poisoned data. These results expose weaknesses in current preference learning techniques, highlighting the urgent need for more robust defenses against malicious models and data manipulation.
comment: Accepted at ICML 2025. Tingchen Fu and Fazl Barez are core research contributors
Infi-MMR: Curriculum-based Unlocking Multimodal Reasoning via Phased Reinforcement Learning in Multimodal Small Language Models
Recent advancements in large language models (LLMs) have demonstrated substantial progress in reasoning capabilities, such as DeepSeek-R1, which leverages rule-based reinforcement learning to enhance logical reasoning significantly. However, extending these achievements to multimodal large language models (MLLMs) presents critical challenges, which are frequently more pronounced for Multimodal Small Language Models (MSLMs) given their typically weaker foundational reasoning abilities: (1) the scarcity of high-quality multimodal reasoning datasets, (2) the degradation of reasoning capabilities due to the integration of visual processing, and (3) the risk that direct application of reinforcement learning may produce complex yet incorrect reasoning processes. To address these challenges, we design a novel framework Infi-MMR to systematically unlock the reasoning potential of MSLMs through a curriculum of three carefully structured phases and propose our multimodal reasoning model Infi-MMR-3B. The first phase, Foundational Reasoning Activation, leverages high-quality textual reasoning datasets to activate and strengthen the model's logical reasoning capabilities. The second phase, Cross-Modal Reasoning Adaptation, utilizes caption-augmented multimodal data to facilitate the progressive transfer of reasoning skills to multimodal contexts. The third phase, Multimodal Reasoning Enhancement, employs curated, caption-free multimodal data to mitigate linguistic biases and promote robust cross-modal reasoning. Infi-MMR-3B achieves both state-of-the-art multimodal math reasoning ability (43.68% on MathVerse testmini, 27.04% on MathVision test, and 21.33% on OlympiadBench) and general reasoning ability (67.2% on MathVista testmini). Resources are available at https://huggingface.co/Reallm-Labs/Infi-MMR-3B.
Training Software Engineering Agents and Verifiers with SWE-Gym ICML 2025
We present SWE-Gym, the first environment for training real-world software engineering (SWE) agents. SWE-Gym contains 2,438 real-world Python task instances, each comprising a codebase with an executable runtime environment, unit tests, and a task specified in natural language. We use SWE-Gym to train language model based SWE agents, achieving up to 19% absolute gains in resolve rate on the popular SWE-Bench Verified and Lite test sets. We also experiment with inference-time scaling through verifiers trained on agent trajectories sampled from SWE-Gym. When combined with our fine-tuned SWE agents, we achieve 32.0% and 26.0% on SWE-Bench Verified and Lite, respectively, reflecting a new state-of-the-art for open-weight SWE agents. To facilitate further research, we publicly release SWE-Gym, models, and agent trajectories.
comment: Accepted at ICML 2025. Code at https://github.com/SWE-Gym/SWE-Gym
Taming Knowledge Conflicts in Language Models ICML 2025
Language Models (LMs) often encounter knowledge conflicts when parametric memory contradicts contextual knowledge. Previous works attribute this conflict to the interplay between "memory heads" and "context heads", attention heads assumed to promote either memory or context exclusively. In this study, we go beyond this fundamental assumption by uncovering a critical phenomenon we term the superposition of contextual information and parametric memory, where highly influential attention heads simultaneously contribute to both memory and context. Building upon this insight, we propose Just Run Twice (JuICE), a test-time attention intervention method that steers LMs toward either parametric beliefs or contextual knowledge without requiring fine-tuning. JuICE identifies a set of reliable attention heads and leverages a dual-run approach to mitigate the superposition effects. Extensive experiments across 11 datasets and 6 model architectures demonstrate that JuICE sets the new state-of-the-art performance and robust generalization, achieving significant and consistent improvement across different domains under various conflict types. Finally, we theoretically analyze knowledge conflict and the superposition of contextual information and parametric memory in attention heads, which further elucidates the effectiveness of JuICE in these settings. Our code is available at https://github.com/GaotangLi/JUICE.
comment: ICML 2025 (Spotlight)
Not All Jokes Land: Evaluating Large Language Models Understanding of Workplace Humor
With the recent advances in Artificial Intelligence (AI) and Large Language Models (LLMs), the automation of daily tasks, like automatic writing, is getting more and more attention. Hence, efforts have focused on aligning LLMs with human values, yet humor, particularly professional industrial humor used in workplaces, has been largely neglected. To address this, we develop a dataset of professional humor statements along with features that determine the appropriateness of each statement. Our evaluation of five LLMs shows that LLMs often struggle to judge the appropriateness of humor accurately.
DiMA: An LLM-Powered Ride-Hailing Assistant at DiDi KDD 2025
On-demand ride-hailing services like DiDi, Uber, and Lyft have transformed urban transportation, offering unmatched convenience and flexibility. In this paper, we introduce DiMA, an LLM-powered ride-hailing assistant deployed in DiDi Chuxing. Its goal is to provide seamless ride-hailing services and beyond through a natural and efficient conversational interface under dynamic and complex spatiotemporal urban contexts. To achieve this, we propose a spatiotemporal-aware order planning module that leverages external tools for precise spatiotemporal reasoning and progressive order planning. Additionally, we develop a cost-effective dialogue system that integrates multi-type dialog repliers with cost-aware LLM configurations to handle diverse conversation goals and trade-off response quality and latency. Furthermore, we introduce a continual fine-tuning scheme that utilizes real-world interactions and simulated dialogues to align the assistant's behavior with human preferred decision-making processes. Since its deployment in the DiDi application, DiMA has demonstrated exceptional performance, achieving 93% accuracy in order planning and 92% in response generation during real-world interactions. Offline experiments further validate DiMA capabilities, showing improvements of up to 70.23% in order planning and 321.27% in response generation compared to three state-of-the-art agent frameworks, while reducing latency by $0.72\times$ to $5.47\times$. These results establish DiMA as an effective, efficient, and intelligent mobile assistant for ride-hailing services.
comment: KDD 2025
TiC-LM: A Web-Scale Benchmark for Time-Continual LLM Pretraining
Large Language Models (LLMs) trained on historical web data inevitably become outdated. We investigate evaluation strategies and update methods for LLMs as new data becomes available. We introduce a web-scale dataset for time-continual pretraining of LLMs derived from 114 dumps of Common Crawl (CC) - orders of magnitude larger than previous continual language modeling benchmarks. We also design time-stratified evaluations across both general CC data and specific domains (Wikipedia, StackExchange, and code documentation) to assess how well various continual learning methods adapt to new data while retaining past knowledge. Our findings demonstrate that, on general CC data, autoregressive meta-schedules combined with a fixed-ratio replay of older data can achieve comparable held-out loss to re-training from scratch, while requiring significantly less computation (2.6x). However, the optimal balance between incorporating new data and replaying old data differs as replay is crucial to avoid forgetting on generic web data but less so on specific domains.
comment: Code available at: https://github.com/apple/ml-tic-lm
Lost in the Passage: Passage-level In-context Learning Does Not Necessarily Need a "Passage"
By simply incorporating demonstrations into the context, in-context learning (ICL) enables large language models (LLMs) to yield awesome performance on many tasks. In this study, we focus on passage-level long-context ICL for generation tasks and find that LLMs cannot learn the intrinsic relationship between the demonstration passage and the generation output. We conduct experiments with different LLMs on two typical generation tasks including single-document question answering and distractor generation, demonstrating that even a completely meaningless demonstration passage with 1/4 length achieves much better performance than the original full passage. Analysis via attention and information flow reveals that LLMs pay little attention to passages compared to other components in the prompt and little information flows from the passage to other parts of the demonstration, which further confirms our finding. Additionally, experiments on context compression indicate that compression approaches proven effective on other long-context tasks are not suitable for passage-level ICL, since simply using shorter meaningless demonstration passages already achieves competitive performance.
LLM in the Loop: Creating the ParaDeHate Dataset for Hate Speech Detoxification
Detoxification, the task of rewriting harmful language into non-toxic text, has become increasingly important amid the growing prevalence of toxic content online. However, high-quality parallel datasets for detoxification, especially for hate speech, remain scarce due to the cost and sensitivity of human annotation. In this paper, we propose a novel LLM-in-the-loop pipeline leveraging GPT-4o-mini for automated detoxification. We first replicate the ParaDetox pipeline by replacing human annotators with an LLM and show that the LLM performs comparably to human annotation. Building on this, we construct ParaDeHate, a large-scale parallel dataset specifically for hatespeech detoxification. We release ParaDeHate as a benchmark of over 8K hate/non-hate text pairs and evaluate a wide range of baseline methods. Experimental results show that models such as BART, fine-tuned on ParaDeHate, achieve better performance in style accuracy, content preservation, and fluency, demonstrating the effectiveness of LLM-generated detoxification text as a scalable alternative to human annotation.
Benchmarking and Improving Large Vision-Language Models for Fundamental Visual Graph Understanding and Reasoning ACL2025
Large Vision-Language Models (LVLMs) have demonstrated remarkable performance across diverse tasks. Despite great success, recent studies show that LVLMs encounter substantial limitations when engaging with visual graphs. To study the reason behind these limitations, we propose VGCure, a comprehensive benchmark covering 22 tasks for examining the fundamental graph understanding and reasoning capacities of LVLMs. Extensive evaluations conducted on 14 LVLMs reveal that LVLMs are weak in basic graph understanding and reasoning tasks, particularly those concerning relational or structurally complex information. Based on this observation, we propose a structure-aware fine-tuning framework to enhance LVLMs with structure learning abilities through three self-supervised learning tasks. Experiments validate the effectiveness of our method in improving LVLMs' performance on fundamental and downstream graph learning tasks, as well as enhancing their robustness against complex visual graphs.
comment: Accepted by ACL2025 main conference
Images Speak Louder than Words: Understanding and Mitigating Bias in Vision-Language Model from a Causal Mediation Perspective
Vision-language models (VLMs) pre-trained on extensive datasets can inadvertently learn biases by correlating gender information with specific objects or scenarios. Current methods, which focus on modifying inputs and monitoring changes in the model's output probability scores, often struggle to comprehensively understand bias from the perspective of model components. We propose a framework that incorporates causal mediation analysis to measure and map the pathways of bias generation and propagation within VLMs. This approach allows us to identify the direct effects of interventions on model bias and the indirect effects of interventions on bias mediated through different model components. Our results show that image features are the primary contributors to bias, with significantly higher impacts than text features, specifically accounting for 32.57% and 12.63% of the bias in the MSCOCO and PASCAL-SENTENCE datasets, respectively. Notably, the image encoder's contribution surpasses that of the text encoder and the deep fusion encoder. Further experimentation confirms that contributions from both language and vision modalities are aligned and non-conflicting. Consequently, focusing on blurring gender representations within the image encoder, which contributes most to the model bias, reduces bias efficiently by 22.03% and 9.04% in the MSCOCO and PASCAL-SENTENCE datasets, respectively, with minimal performance loss or increased computational demands.
IDA-Bench: Evaluating LLMs on Interactive Guided Data Analysis
Large Language Models (LLMs) show promise as data analysis agents, but existing benchmarks overlook the iterative nature of the field, where experts' decisions evolve with deeper insights of the dataset. To address this, we introduce IDA-Bench, a novel benchmark evaluating LLM agents in multi-round interactive scenarios. Derived from complex Kaggle notebooks, tasks are presented as sequential natural language instructions by an LLM-simulated user. Agent performance is judged by comparing its final numerical output to the human-derived baseline. Initial results show that even state-of-the-art coding agents (like Claude-3.7-thinking) succeed on < 50% of the tasks, highlighting limitations not evident in single-turn tests. This work underscores the need to improve LLMs' multi-round capabilities for building more reliable data analysis agents, highlighting the necessity of achieving a balance between instruction following and reasoning.
LGAR: Zero-Shot LLM-Guided Neural Ranking for Abstract Screening in Systematic Literature Reviews ACL
The scientific literature is growing rapidly, making it hard to keep track of the state-of-the-art. Systematic literature reviews (SLRs) aim to identify and evaluate all relevant papers on a topic. After retrieving a set of candidate papers, the abstract screening phase determines initial relevance. To date, abstract screening methods using large language models (LLMs) focus on binary classification settings; existing question answering (QA) based ranking approaches suffer from error propagation. LLMs offer a unique opportunity to evaluate the SLR's inclusion and exclusion criteria, yet, existing benchmarks do not provide them exhaustively. We manually extract these criteria as well as research questions for 57 SLRs, mostly in the medical domain, enabling principled comparisons between approaches. Moreover, we propose LGAR, a zero-shot LLM Guided Abstract Ranker composed of an LLM based graded relevance scorer and a dense re-ranker. Our extensive experiments show that LGAR outperforms existing QA-based methods by 5-10 pp. in mean average precision. Our code and data is publicly available.
comment: Accepted to ACL Findings 2025
m-KAILIN: Knowledge-Driven Agentic Scientific Corpus Distillation Framework for Biomedical Large Language Models Training
Corpus distillation for biomedical large language models (LLMs) seeks to address the pressing challenge of insufficient quantity and quality in open-source annotated scientific corpora, which remains a bottleneck for effective LLM training in biomedical research. This paper proposes a knowledge-driven, agentic framework for scientific corpus distillation, tailored explicitly for LLM training in the biomedical domain, addressing the challenge posed by the complex hierarchy of biomedical knowledge. Central to our approach is a collaborative multi-agent architecture, where specialized agents, each guided by the Medical Subject Headings (MeSH) hierarchy, work in concert to autonomously extract, synthesize, and self-evaluate high-quality textual data from vast scientific literature. This agentic framework collectively generates and refines domain-specific question-answer pairs, ensuring comprehensive coverage and consistency with biomedical ontologies while minimizing manual involvement. Extensive experimental results show that language models trained on our multi-agent distilled datasets achieve notable improvements in biomedical question-answering tasks, outperforming both strong life sciences LLM baselines and advanced proprietary models. Notably, our AI-Ready dataset enables Llama3-70B to surpass GPT-4 with MedPrompt and Med-PaLM-2, despite their larger scale. Detailed ablation studies and case analyses further validate the effectiveness and synergy of each agent within the framework, highlighting the potential of multi-agent collaboration in biomedical LLM training.
comment: Biomedical large language models, corpus distillation, question-answer, agentic AI. arXiv admin note: text overlap with arXiv:2501.15108
On the Query Complexity of Verifier-Assisted Language Generation ICML 2025
Recently, a plethora of works have proposed inference-time algorithms (e.g. best-of-n), which incorporate verifiers to assist the generation process. Their quality-efficiency trade-offs have been empirically benchmarked on a variety of constrained generation tasks, but the algorithmic design landscape is still largely poorly understood. In this paper, we develop a mathematical framework for reasoning about constrained generation using a pre-trained language model generator oracle and a process verifier--which can decide whether a prefix can be extended to a string which satisfies the constraints of choice. We show that even in very simple settings, access to a verifier can render an intractable problem (information-theoretically or computationally) to a tractable one. In fact, we show even simple algorithms, like tokenwise rejection sampling, can enjoy significant benefits from access to a verifier. Empirically, we show that a natural modification of tokenwise rejection sampling, in which the sampler is allowed to "backtrack" (i.e., erase the final few generated tokens) has robust and substantive benefits over natural baselines (e.g. (blockwise) rejection sampling, nucleus sampling)--both in terms of computational efficiency, accuracy and diversity.
comment: ICML 2025
ProSec: Fortifying Code LLMs with Proactive Security Alignment
While recent code-specific large language models (LLMs) have greatly enhanced their code generation capabilities, the safety of these models remains under-explored, posing potential risks as insecure code generated by these models may introduce vulnerabilities into real-world systems. Existing methods collect security-focused datasets from real-world vulnerabilities for instruction tuning in order to mitigate such issues. However, they are largely constrained by the data sparsity of vulnerable code, and have limited applicability in the multi-stage post-training workflows of modern LLMs. In this paper, we propose ProSec, a novel proactive security alignment approach designed to align code LLMs with secure coding practices. ProSec systematically exposes the vulnerabilities in a code LLM by synthesizing vulnerability-inducing coding scenarios from Common Weakness Enumerations (CWEs) and generates fixes to vulnerable code snippets, allowing the model to learn secure practices through preference learning objectives. The scenarios synthesized by ProSec trigger 25x more vulnerable code than a normal instruction-tuning dataset, resulting in a security-focused alignment dataset 7x larger than the previous work. Experiments show that models trained with ProSec are 25.2% to 35.4% more secure compared to previous work without degrading models' utility.
comment: The first two authors contributed equally to this work
Emergent Symbolic Mechanisms Support Abstract Reasoning in Large Language Models ICML 2025
Many recent studies have found evidence for emergent reasoning capabilities in large language models (LLMs), but debate persists concerning the robustness of these capabilities, and the extent to which they depend on structured reasoning mechanisms. To shed light on these issues, we study the internal mechanisms that support abstract reasoning in LLMs. We identify an emergent symbolic architecture that implements abstract reasoning via a series of three computations. In early layers, symbol abstraction heads convert input tokens to abstract variables based on the relations between those tokens. In intermediate layers, symbolic induction heads perform sequence induction over these abstract variables. Finally, in later layers, retrieval heads predict the next token by retrieving the value associated with the predicted abstract variable. These results point toward a resolution of the longstanding debate between symbolic and neural network approaches, suggesting that emergent reasoning in neural networks depends on the emergence of symbolic mechanisms.
comment: This is an extended version of a paper that has been accepted to ICML 2025
ResearchTown: Simulator of Human Research Community ICML 2025
Large Language Models (LLMs) have demonstrated remarkable potential in scientific domains, yet a fundamental question remains unanswered: Can we simulate human research communities with LLMs? Addressing this question can deepen our understanding of the processes behind idea brainstorming and inspire the automatic discovery of novel scientific insights. In this work, we propose ResearchTown, a multi-agent framework for research community simulation. Within this framework, the human research community is simplified as an agent-data graph, where researchers and papers are represented as agent-type and data-type nodes, respectively, and connected based on their collaboration relationships. We also introduce TextGNN, a text-based inference framework that models various research activities (e.g., paper reading, paper writing, and review writing) as special forms of a unified message-passing process on the agent-data graph. To evaluate the quality of the research community simulation, we present ResearchBench, a benchmark that uses a node-masking prediction task for scalable and objective assessment based on similarity. Our experiments reveal three key findings: (1) ResearchTown can provide a realistic simulation of collaborative research activities, including paper writing and review writing; (2) ResearchTown can maintain robust simulation with multiple researchers and diverse papers; (3) ResearchTown can generate interdisciplinary research ideas that potentially inspire pioneering research directions.
comment: 9 pages, ICML 2025
Analyzing LLMs' Knowledge Boundary Cognition Across Languages Through the Lens of Internal Representations ACL 2025
While understanding the knowledge boundaries of LLMs is crucial to prevent hallucination, research on the knowledge boundaries of LLMs has predominantly focused on English. In this work, we present the first study to analyze how LLMs recognize knowledge boundaries across different languages by probing their internal representations when processing known and unknown questions in multiple languages. Our empirical studies reveal three key findings: 1) LLMs' perceptions of knowledge boundaries are encoded in the middle to middle-upper layers across different languages. 2) Language differences in knowledge boundary perception follow a linear structure, which motivates our proposal of a training-free alignment method that effectively transfers knowledge boundary perception ability across languages, thereby helping reduce hallucination risk in low-resource languages; 3) Fine-tuning on bilingual question pair translation further enhances LLMs' recognition of knowledge boundaries across languages. Given the absence of standard testbeds for cross-lingual knowledge boundary analysis, we construct a multilingual evaluation suite comprising three representative types of knowledge boundary data. Our code and datasets are publicly available at https://github.com/DAMO-NLP-SG/LLM-Multilingual-Knowledge-Boundaries.
comment: ACL 2025 main; camera ready
CoIR: A Comprehensive Benchmark for Code Information Retrieval Models ACL 2025
Despite the substantial success of Information Retrieval (IR) in various NLP tasks, most IR systems predominantly handle queries and corpora in natural language, neglecting the domain of code retrieval. Code retrieval is critically important yet remains under-explored, with existing methods and benchmarks inadequately representing the diversity of code in various domains and tasks. Addressing this gap, we present COIR (Code Information Retrieval Benchmark), a robust and comprehensive benchmark specifically designed to assess code retrieval capabilities. COIR comprises ten meticulously curated code datasets, spanning eight distinctive retrieval tasks across seven diverse domains. We first discuss the construction of COIR and its diverse dataset composition. Further, we evaluate nine widely used retrieval models using COIR, uncovering significant difficulties in performing code retrieval tasks even with state-of-the-art systems. To facilitate easy adoption and integration within existing research workflows, COIR has been developed as a user-friendly Python framework, readily installable via pip. It shares same data schema as other popular benchmarks like MTEB and BEIR, enabling seamless cross-benchmark evaluations. Through COIR, we aim to invigorate research in the code retrieval domain, providing a versatile benchmarking tool that encourages further development and exploration of code retrieval systems. https://github.com/CoIR-team/coir.
comment: ACL 2025 Main
Structure Guided Large Language Model for SQL Generation
Recent advancements in large language models (LLMs) have shown promise in bridging the gap between natural language queries and database management systems, enabling users to interact with databases without the background of SQL. However, LLMs often struggle to comprehend complex database structures and accurately interpret user intentions. Decomposition-based methods have been proposed to enhance the performance of LLMs on complex tasks, but decomposing SQL generation into subtasks is non-trivial due to the declarative structure of SQL syntax and the intricate connections between query concepts and database elements. In this paper, we propose a novel Structure GUided text-to-SQL framework~(SGU-SQL) that incorporates syntax-based prompting to enhance the SQL generation capabilities of LLMs. Specifically, SGU-SQL establishes structure-aware links between user queries and database schema and decomposes the complex generation task using syntax-based prompting to enable more accurate LLM-based SQL generation. Extensive experiments on two benchmark datasets demonstrate that SGU-SQL consistently outperforms state-of-the-art text-to-SQL models.
comment: The 42nd International Conference on Machine Learning
A Survey on Sparse Autoencoders: Interpreting the Internal Mechanisms of Large Language Models
Large Language Models (LLMs) have transformed natural language processing, yet their internal mechanisms remain largely opaque. Recently, mechanistic interpretability has attracted significant attention from the research community as a means to understand the inner workings of LLMs. Among various mechanistic interpretability approaches, Sparse Autoencoders (SAEs) have emerged as a promising method due to their ability to disentangle the complex, superimposed features within LLMs into more interpretable components. This paper presents a comprehensive survey of SAEs for interpreting and understanding the internal workings of LLMs. Our major contributions include: (1) exploring the technical framework of SAEs, covering basic architecture, design improvements, and effective training strategies; (2) examining different approaches to explaining SAE features, categorized into input-based and output-based explanation methods; (3) discussing evaluation methods for assessing SAE performance, covering both structural and functional metrics; and (4) investigating real-world applications of SAEs in understanding and manipulating LLM behaviors.
comment: 23 pages, 3 figures
Generalizable LLM Learning of Graph Synthetic Data with Reinforcement Learning
Previous research has sought to enhance the graph reasoning capabilities of LLMs by supervised fine-tuning on synthetic graph data. While these led to specialized LLMs better at solving graph algorithm problems, we don't need LLMs for shortest path: we need generalization from synthetic graph data to real-world tasks with implicit graph structures. In this work, we propose to unlock generalizable learning of graph synthetic data with reinforcement learning. We first design solution-based and process-based rewards for synthetic graph problems: instead of rigid memorizing response patterns in direct fine-tuning, we posit that RL would help LLMs grasp the essentials underlying graph reasoning and alleviate overfitting. We employ RL algorithms such as GRPO and DPO, aligning both off-the-shelf LLMs and LLMs fine-tuned on synthetic graph data. We then compare them against existing settings on both in-domain synthetic tasks and out-of-domain real-world tasks with implicit graph structures such as multi-hop QA, structured planning, and more. Extensive experiments demonstrate that our RL recipe leads to statistically significant improvement on 5 datasets, with an average gain of 12.9\% over baseline settings. Further analysis reveals that process-based rewards consistently outperform solution-based rewards, mixing synthetic and real-world task data yields potential gains, while compositionality and explainable intermediate steps remains a critical challenge even after RL.
comment: 9 pages, 3 figures, 3 tables. Experimental code and results are publicly available at https://anonymous.4open.science/r/Graph_RL-BF08/readme.md
GuessBench: Sensemaking Multimodal Creativity in the Wild
We propose GuessBench, a novel benchmark that evaluates Vision Language Models (VLMs) on modeling the pervasive, noisy, and pluralistic human creativity. GuessBench sources data from "Guess the Build", an online multiplayer Minecraft minigame where one player constructs a Minecraft build given a concept (e.g. caterpillar) and others try to guess it with natural language hints, presenting a pristine testbed for sensemaking creativity in the wild with VLMs acting as guessers. We curate 1500 images from the actual gameplay and design 2000 problems spanning static and dynamic image settings, natural language hints of varying completeness, and more. Extensive experiments with six open/API VLMs and five reasoning enhancement approaches demonstrate that GuessBench presents a uniquely challenging task in creativity modeling: even the start-of-the-art GPT-4o is incorrect on 34% of instances, while we observe a huge performance gap (13.87% vs. 53.93% on average) between open and API models. When used as a resource to improve VLMs, fine-tuning on the reasoning traces for GuessBench problems improves visual perception tasks by 15.36% on average. Further analysis reveals that VLM performance in creativity sensemaking correlates with the frequency of the concept in training data, while the accuracy drops sharply for concepts in underrepresented cultural contexts and low-resource languages.
Data Swarms: Optimizable Generation of Synthetic Evaluation Data
We propose Data Swarms, an algorithm to optimize the generation of synthetic evaluation data and advance quantitative desiderata of LLM evaluation. We first train a swarm of initial data generators using existing data, and define various evaluation objectives to reflect the desired properties of evaluation (e.g., generate more difficult problems for the evaluated models) and quantitatively evaluate data generators. We then employ particle swarm optimization to optimize the swarm of data generators, where they collaboratively search through the model parameter space to find new generators that advance these objectives. We further extend it to Adversarial Swarms, where the data generator swarm generates harder data while the test taker model swarm learns from such data, co-evolving dynamically for better data and models simultaneously. Extensive experiments demonstrate that Data Swarms outperforms eight data generation baselines across five evaluation objectives, while Adversarial Swarms produce more robust learning of synthetic data and stronger generalization. Further analysis reveals that Data Swarms successfully optimizes compositions of multiple evaluation objectives and generalizes to new off-the-shelf LLMs, unseen at optimization time.
TMT: Tri-Modal Translation between Speech, Image, and Text by Processing Different Modalities as Different Languages
The capability to jointly process multi-modal information is becoming an essential task. However, the limited number of paired multi-modal data and the large computational requirements in multi-modal learning hinder the development. We propose a novel Tri-Modal Translation (TMT) model that translates between arbitrary modalities spanning speech, image, and text. We introduce a novel viewpoint, where we interpret different modalities as different languages, and treat multi-modal translation as a well-established machine translation problem. To this end, we tokenize speech and image data into discrete tokens, which provide a unified interface across modalities and significantly decrease the computational cost. In the proposed TMT, a multi-modal encoder-decoder conducts the core translation, whereas modality-specific processing is conducted only within the tokenization and detokenization stages. We evaluate the proposed TMT on all six modality translation tasks. TMT outperforms single model counterparts consistently, demonstrating that unifying tasks is beneficial not only for practicality but also for performance.
comment: IEEE TMM
WER We Stand: Benchmarking Urdu ASR Models
This paper presents a comprehensive evaluation of Urdu Automatic Speech Recognition (ASR) models. We analyze the performance of three ASR model families: Whisper, MMS, and Seamless-M4T using Word Error Rate (WER), along with a detailed examination of the most frequent wrong words and error types including insertions, deletions, and substitutions. Our analysis is conducted using two types of datasets, read speech and conversational speech. Notably, we present the first conversational speech dataset designed for benchmarking Urdu ASR models. We find that seamless-large outperforms other ASR models on the read speech dataset, while whisper-large performs best on the conversational speech dataset. Furthermore, this evaluation highlights the complexities of assessing ASR models for low-resource languages like Urdu using quantitative metrics alone and emphasizes the need for a robust Urdu text normalization system. Our findings contribute valuable insights for developing robust ASR systems for low-resource languages like Urdu.
Multi-Agent Collaboration via Cross-Team Orchestration ACL 2025
Large Language Models (LLMs) have significantly impacted various domains, especially through organized LLM-driven autonomous agents. A representative scenario is in software development, where agents can collaborate in a team like humans, following predefined phases to complete sub-tasks sequentially. However, for an agent team, each phase yields only one possible outcome. This results in the completion of only one development chain, thereby losing the opportunity to explore multiple potential decision paths within the solution space. Consequently leading to suboptimal results or extensive trial and error. To address this, we introduce Cross-Team Orchestration (Croto), a scalable multi-team framework that enables orchestrated teams to jointly propose various task-oriented solutions and interact with their insights in a self-independence while cross-team collaboration environment for superior solutions generation. Experiments reveal a notable increase in software quality compared to state-of-the-art baselines. We further tested our framework on story generation tasks, which demonstrated a promising generalization ability of our framework in other domains. The code and data is available at https://github.com/OpenBMB/ChatDev/tree/macnet
comment: Accepted to Findings of ACL 2025
Instructor-Worker Large Language Model System for Policy Recommendation: a Case Study on Air Quality Analysis of the January 2025 Los Angeles Wildfires
The Los Angeles wildfires of January 2025 caused more than 250 billion dollars in damage and lasted for nearly an entire month before containment. Following our previous work, the Digital Twin Building, we modify and leverage the multi-agent large language model framework as well as the cloud-mapping integration to study the air quality during the Los Angeles wildfires. Recent advances in large language models have allowed for out-of-the-box automated large-scale data analysis. We use a multi-agent large language system comprised of an Instructor agent and Worker agents. Upon receiving the users' instructions, the Instructor agent retrieves the data from the cloud platform and produces instruction prompts to the Worker agents. The Worker agents then analyze the data and provide summaries. The summaries are finally input back into the Instructor agent, which then provides the final data analysis. We test this system's capability for data-based policy recommendation by assessing our Instructor-Worker LLM system's health recommendations based on air quality during the Los Angeles wildfires.
Where is the signal in tokenization space? EMNLP 2024
Large Language Models (LLMs) are typically shipped with tokenizers that deterministically encode text into so-called canonical token sequences, to which the LLMs assign probability values. One common assumption is that the probability of a piece of text is the probability of its canonical token sequence. However, the tokenization of a string is not unique: e.g., the Llama2 tokenizer encodes Tokens as [Tok,ens], but [Tok,en,s] also represents the same text. In this paper, we study non-canonical tokenizations. We prove that, given a string, it is computationally hard to find the most likely tokenization for an autoregressive LLM, as well as to compute the marginal probability over all possible tokenizations. We then show how the marginal is, in most cases, indistinguishable from the canonical probability. Surprisingly, we then empirically demonstrate the existence of a significant amount of signal hidden within tokenization space. Notably, by simply aggregating the probabilities of non-canonical tokenizations, we achieve improvements across a range of LLM evaluation benchmarks for a variety of architectures, including transformers and state space models.
comment: Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, EMNLP 2024
Human-Computer Interaction
"We need to avail ourselves of GenAI to enhance knowledge distribution": Empowering Older Adults through GenAI Literacy
As generative AI (GenAI) becomes increasingly widespread, it is crucial to equip users, particularly vulnerable populations such as older adults (65 and older), with the knowledge to understand its benefits and potential risks. Older adults often exhibit greater reservations about adopting emerging technologies and require tailored literacy support. Using a mixed methods approach, this study examines strategies for delivering GenAI literacy to older adults through a chatbot named Litti, evaluating its impact on their AI literacy (knowledge, safety, and ethical use). The quantitative data indicated a trend toward improved AI literacy, though the results were not statistically significant. However, qualitative interviews revealed diverse levels of familiarity with generative AI and a strong desire to learn more. Findings also show that while Litti provided a positive learning experience, it did not significantly enhance participants' trust or sense of safety regarding GenAI. This exploratory case study highlights the challenges and opportunities in designing AI literacy education for the rapidly growing older adult population.
The Lock-in Hypothesis: Stagnation by Algorithm ICML 2025
The training and deployment of large language models (LLMs) create a feedback loop with human users: models learn human beliefs from data, reinforce these beliefs with generated content, reabsorb the reinforced beliefs, and feed them back to users again and again. This dynamic resembles an echo chamber. We hypothesize that this feedback loop entrenches the existing values and beliefs of users, leading to a loss of diversity and potentially the lock-in of false beliefs. We formalize this hypothesis and test it empirically with agent-based LLM simulations and real-world GPT usage data. Analysis reveals sudden but sustained drops in diversity after the release of new GPT iterations, consistent with the hypothesized human-AI feedback loop. Code and data available at https://thelockinhypothesis.com
comment: ICML 2025, 46 pages
(AI peers) are people learning from the same standpoint: Perception of AI characters in a Collaborative Science Investigation
While the complexity of 21st-century demands has promoted pedagogical approaches to foster complex competencies, a persistent gap remains between in-class learning activities and individualized learning or assessment practices. To address this, studies have explored the use of AI-generated characters in learning and assessment. One attempt is scenario-based assessment (SBA), a technique that not only measures but also fosters the development of competencies throughout the assessment process. SBA introduces simulated agents to provide an authentic social-interactional context, allowing for the assessment of competency-based constructs while mitigating the unpredictability of real-life interactions. Recent advancements in multimodal AI, such as text-to-video technology, allow these agents to be enhanced into AI-generated characters. This mixed-method study investigates how learners perceive AI characters taking the role of mentor and teammates in an SBA mirroring the context of a collaborative science investigation. Specifically, we examined the Likert scale responses of 56 high schoolers regarding trust, social presence, and effectiveness. We analyzed the relationships between these factors and their impact on the intention to adopt AI characters through PLS-SEM. Our findings indicated that learners' trust shaped their sense of social presence with the AI characters, enhancing perceived effectiveness. Qualitative analysis further highlighted factors that foster trust, such as material credibility and alignment with learning goals, as well as the pivotal role of social presence in creating a collaborative context. This paper was accepted as an full paper for AIED 2025.
comment: 14 pages
Recommender systems, stigmergy, and the tyranny of popularity
Scientific recommender systems, such as Google Scholar and Web of Science, are essential tools for discovery. Search algorithms that power work through stigmergy, a collective intelligence mechanism that surfaces useful paths through repeated engagement. While generally effective, this ``rich-get-richer'' dynamic results in a small number of high-profile papers that dominate visibility. This essay argues argue that these algorithm over-reliance on popularity fosters intellectual homogeneity and exacerbates structural inequities, stifling innovative and diverse perspectives critical for scientific progress. We propose an overhaul of search platforms to incorporate user-specific calibration, allowing researchers to manually adjust the weights of factors like popularity, recency, and relevance. We also advise platform developers on how word embeddings and LLMs could be implemented in ways that increase user autonomy. While our suggestions are particularly pertinent to aligning recommender systems with scientific values, these ideas are broadly applicable to information access systems in general. Designing platforms that increase user autonomy is an important step toward more robust and dynamic information
WoundAIssist: A Patient-Centered Mobile App for AI-Assisted Wound Care With Physicians in the Loop
The rising prevalence of chronic wounds, especially in aging populations, presents a significant healthcare challenge due to prolonged hospitalizations, elevated costs, and reduced patient quality of life. Traditional wound care is resource-intensive, requiring frequent in-person visits that strain both patients and healthcare professionals (HCPs). Therefore, we present WoundAIssist, a patient-centered, AI-driven mobile application designed to support telemedical wound care. WoundAIssist enables patients to regularly document wounds at home via photographs and questionnaires, while physicians remain actively engaged in the care process through remote monitoring and video consultations. A distinguishing feature is an integrated lightweight deep learning model for on-device wound segmentation, which, combined with patient-reported data, enables continuous monitoring of wound healing progression. Developed through an iterative, user-centered process involving both patients and domain experts, WoundAIssist prioritizes an user-friendly design, particularly for elderly patients. A conclusive usability study with patients and dermatologists reported excellent usability, good app quality, and favorable perceptions of the AI-driven wound recognition. Our main contribution is two-fold: (I) the implementation and (II) evaluation of WoundAIssist, an easy-to-use yet comprehensive telehealth solution designed to bridge the gap between patients and HCPs. Additionally, we synthesize design insights for remote patient monitoring apps, derived from over three years of interdisciplinary research, that may inform the development of similar digital health tools across clinical domains.
comment: Submitted to ACM Health (Special Issue)
Compression of executable QR codes or sQRy for Industry: an example for Wi-Fi access points
Executable QR codes, or sQRy, is a technology dated 2022 that permits to include a runnable program inside a QR code, enabling interaction with the user even in the absence of an Internet connection. sQRy are enablers for different practical applications, including network equipment configuration, diagnostics, and enhanced smart manuals in industrial contexts. Many other non-industry-related fields can also benefit from this technology. Regardless of where sQRy are used, text strings are among the most commonly embedded data. However, due to strict limitations on the available payload, the occupancy of strings limits the length of the programs that can be embedded. In this work, we propose a simple yet effective strategy that can reduce the space taken by strings, hence broadening sQRy applicability.
comment: preprint accepted, 4 pages, 2025
A Novel, Human-in-the-Loop Computational Grounded Theory Framework for Big Social Data
The availability of big data has significantly influenced the possibilities and methodological choices for conducting large-scale behavioural and social science research. In the context of qualitative data analysis, a major challenge is that conventional methods require intensive manual labour and are often impractical to apply to large datasets. One effective way to address this issue is by integrating emerging computational methods to overcome scalability limitations. However, a critical concern for researchers is the trustworthiness of results when Machine Learning (ML) and Natural Language Processing (NLP) tools are used to analyse such data. We argue that confidence in the credibility and robustness of results depends on adopting a 'human-in-the-loop' methodology that is able to provide researchers with control over the analytical process, while retaining the benefits of using ML and NLP. With this in mind, we propose a novel methodological framework for Computational Grounded Theory (CGT) that supports the analysis of large qualitative datasets, while maintaining the rigour of established Grounded Theory (GT) methodologies. To illustrate the framework's value, we present the results of testing it on a dataset collected from Reddit in a study aimed at understanding tutors' experiences in the gig economy.
comment: 24 pages, 2 figures, 15 tables
Conversational Interfaces for Parametric Conceptual Architectural Design: Integrating Mixed Reality with LLM-driven Interaction
Mixed reality (MR) environments offer embodied spatial interaction, providing intuitive 3D manipulation capabilities that enhance the conceptual design process. Parametric modeling, a powerful and advanced architectural design method, enables the generation of complex, optimized geometries. However, its integration into MR environments remains limited due to precision constraints and unsuitable input modalities. Existing MR tools prioritize spatial interaction but lack the control and expressiveness required for parametric workflows, particularly for designers without formal programming backgrounds. We address this gap by introducing a novel conversational MR interface that combines speech input, gesture recognition, and a multi-agent large language model (LLM) system to support intuitive parametric modeling. Our system dynamically manages parameter states, resolves ambiguous commands through conversation and contextual prompting, and enables real-time model manipulation within immersive environments. We demonstrate how this approach reduces cognitive and operational barriers in early-stage design tasks, allowing users to refine and explore their design space. This work expands the role of MR to a generative design platform, supporting programmatic thinking in design tasks through natural, embodied interaction.
Minoritised Ethnic People's Security and Privacy Concerns and Responses towards Essential Online Services
Minoritised ethnic people are marginalised in society, and therefore at a higher risk of adverse online harms, including those arising from the loss of security and privacy of personal data. Despite this, there has been very little research focused on minoritised ethnic people's security and privacy concerns, attitudes, and behaviours. In this work, we provide the results of one of the first studies in this regard. We explore minoritised ethnic people's experiences of using essential online services across three sectors: health, social housing, and energy, their security and privacy-related concerns, and responses towards these services. We conducted a thematic analysis of 44 semi-structured interviews with people of various reported minoritised ethnicities in the UK. Privacy concerns and lack of control over personal data emerged as a major theme, with many interviewees considering privacy as their most significant concern when using online services. Several creative tactics to exercise some agency were reported, including selective and inconsistent disclosure of personal data. A core concern about how data may be used was driven by a fear of repercussions, including penalisation and discrimination, influenced by prior experiences of institutional and online racism. The increased concern and potential for harm resulted in minoritised ethnic people grappling with a higher-stakes dilemma of whether to disclose personal information online or not. Furthermore, trust in institutions, or lack thereof, was found to be embedded throughout as a basis for adapting behaviour. We draw on our results to provide lessons learned for the design of more inclusive, marginalisation-aware, and privacy-preserving online services.
comment: This is an e-print of a paper accepted to the USENIX Symposium on Usable Privacy and Security (SOUPS) 2025
The Turn to Practice in Design Ethics: Characteristics and Future Research Directions for HCI Research
As emerging technologies continue to shape society, there is a growing emphasis on the need to engage with design ethics as it unfolds in practice to better capture the complexities of ethical considerations embedded in day-to-day work. Positioned within the broader "turn to practice" in HCI, the review characterizes this body of work in terms of its motivations, conceptual frameworks, methodologies, and contributions across a range of design disciplines and academic databases. The findings reveal a shift away from static and abstract ethical frameworks toward an understanding of ethics as an evolving, situated, and inherent aspect of design activities, one that can be cultivated and fostered collaboratively. This review proposes six future directions for establishing common research priorities and fostering the field's growth. While the review promotes cross-disciplinary dialogue, we argue that HCI research, given its cumulative experience with practice-oriented research, is well-equipped to guide this emerging strand of work on design ethics.
QualitEye: Public and Privacy-preserving Gaze Data Quality Verification
Gaze-based applications are increasingly advancing with the availability of large datasets but ensuring data quality presents a substantial challenge when collecting data at scale. It further requires different parties to collaborate, therefore, privacy concerns arise. We propose QualitEye--the first method for verifying image-based gaze data quality. QualitEye employs a new semantic representation of eye images that contains the information required for verification while excluding irrelevant information for better domain adaptation. QualitEye covers a public setting where parties can freely exchange data and a privacy-preserving setting where parties cannot reveal their raw data nor derive gaze features/labels of others with adapted private set intersection protocols. We evaluate QualitEye on the MPIIFaceGaze and GazeCapture datasets and achieve a high verification performance (with a small overhead in runtime for privacy-preserving versions). Hence, QualitEye paves the way for new gaze analysis methods at the intersection of machine learning, human-computer interaction, and cryptography.
Proactive Assistant Dialogue Generation from Streaming Egocentric Videos
Recent advances in conversational AI have been substantial, but developing real-time systems for perceptual task guidance remains challenging. These systems must provide interactive, proactive assistance based on streaming visual inputs, yet their development is constrained by the costly and labor-intensive process of data collection and system evaluation. To address these limitations, we present a comprehensive framework with three key contributions. First, we introduce a novel data curation pipeline that synthesizes dialogues from annotated egocentric videos, resulting in \dataset, a large-scale synthetic dialogue dataset spanning multiple domains. Second, we develop a suite of automatic evaluation metrics, validated through extensive human studies. Third, we propose an end-to-end model that processes streaming video inputs to generate contextually appropriate responses, incorporating novel techniques for handling data imbalance and long-duration videos. This work lays the foundation for developing real-time, proactive AI assistants capable of guiding users through diverse tasks. Project page: https://pro-assist.github.io/
Human-AI Alignment of Multimodal Large Language Models with Speech-Language Pathologists in Parent-Child Interactions
Joint attention is a critical marker of early social-communicative development, yet remains difficult for caregivers to assess without expert guidance. In this work, we explore how multimodal large language models (MLLMs) can be aligned with the reasoning processes of speech-language pathologists (SLPs) to support the interpretation of everyday parent-child interactions. We conducted in-depth interviews and video annotation studies with three experienced SLPs to uncover how they evaluate joint attention based on three core behavioural cues: gaze, action, and vocalisation. Using these insights, we developed a two-stage MLLM-based system that first extracts fine-grained behavioural descriptions from video segments and then judge joint attention quality using expert-aligned prompts. Our evaluation across 26 parent-child interaction videos shows that MLLMs can achieve up to 85% accuracy in perceptual cue extraction and over 75% average precision in simulating expert judgement. We further propose design guidelines for building MLLM-based behaviour observation-judgement systems that align with SLPs, emphasising the structuring of behavioural cues, the construction of exemplar libraries grounded in expert annotations, and the need to personalise system responses based on developmental stage and neurotypical or atypical presentation. This work provides structured behavioural cues derived from SLP expertise, demonstrates the feasibility of aligning SLPs observation and judgement using MLLMs, and offers practical design guidelines for building aligned systems to support parent-child interaction analysis.
comment: work in progress
Regenerating Daily Routines for Young Adults with Depression through User-Led Indoor Environment Modifications Using Local Natural Materials
Young adults with depression often experience prolonged indoor stays, limiting their access to natural environments and exacerbating mental health challenges. While nature therapy is recognized for its psychological benefits, existing interventions frequently require outdoor engagement, which may not be accessible for all individuals. This study explores the potential of user-led indoor modifications using local natural materials as a mental health intervention. A qualitative approach wasemployedtoassessemotionalandenvironmentalconnectedness.Participants engaged in material exploration, collection, and crafting, integrating natural elements into their living spaces. Findings indicate improved mood,increased environmental awareness,and a stronger sense of agency over personal space. The standardized intervention steps suggest the feasibility of a self-help toolkit, enabling broader implementation. This research contributes to sustainable, user-driven mental health interventions, bridging the gap between nature therapy and practical indoor applications.
comment: This work (7 pages, 2 figures) was accepted as a poster at HCII 2025. Due to limited funding, it will not appear in the official Springer proceedings. The version uploaded here is the original preprint submitted for review. The preprint is shared to support further discussion on user-led, nature-integrated mental health interventions in HCI contexts
A Survey of Earable Technology: Trends, Tools, and the Road Ahead
Earable devices, wearables positioned in or around the ear, are undergoing a rapid transformation from audio-centric accessories into multifunctional systems for interaction, contextual awareness, and health monitoring. This evolution is driven by commercial trends emphasizing sensor integration and by a surge of academic interest exploring novel sensing capabilities. Building on the foundation established by earlier surveys, this work presents a timely and comprehensive review of earable research published since 2022. We analyze over one hundred recent studies to characterize this shifting research landscape, identify emerging applications and sensing modalities, and assess progress relative to prior efforts. In doing so, we address three core questions: how has earable research evolved in recent years, what enabling resources are now available, and what opportunities remain for future exploration. Through this survey, we aim to provide both a retrospective and forward-looking view of earable technology as a rapidly expanding frontier in ubiquitous computing. In particular, this review reveals that over the past three years, researchers have discovered a variety of novel sensing principles, developed many new earable sensing applications, enhanced the accuracy of existing sensing tasks, and created substantial new resources to advance research in the field. Based on this, we further discuss open challenges and propose future directions for the next phase of earable research.
Evaluating AI-Powered Learning Assistants in Engineering Higher Education: Student Engagement, Ethical Challenges, and Policy Implications
As generative AI tools become increasingly integrated into higher education, understanding how students interact with and perceive these technologies is essential for responsible and effective adoption. This study evaluates the use of the Educational AI Hub, an AI-powered learning framework, in undergraduate civil and environmental engineering courses at a large R1 public university. Using a mixed-methods approach that combines pre- and post-surveys, system usage logs, and qualitative analysis of the open-ended prompts and questions students posed to the AI chatbot, the research explores students' perceptions of trust, ethical concerns, usability, and learning outcomes. Findings reveal that students appreciated the AI assistant for its convenience and comfort, with nearly half reporting greater ease in using the AI tool compared to seeking help from instructors or teaching assistants. The tool was seen as most helpful for completing homework and understanding course concepts, though perceptions of its instructional quality were mixed. Ethical concerns emerged as a key barrier to full engagement: while most students viewed AI use as ethically acceptable, many expressed uncertainties about institutional policies and apprehension about potential academic misconduct. This study contributes to the growing body of research on AI in education by highlighting the importance of usability, policy clarity, and faculty guidance in fostering meaningful AI engagement. The findings suggest that while students are ready to embrace AI as a supplement to human instruction, thoughtful integration and transparent institutional frameworks are critical for ensuring student confidence, trust, and learning effectiveness.
comment: 26 pages, 10 Figures, 6 Tables
What Comes After Harm? Mapping Reparative Actions in AI through Justice Frameworks
As Artificial Intelligence (AI) systems are integrated into more aspects of society, they offer new capabilities but also cause a range of harms that are drawing increasing scrutiny. A large body of work in the Responsible AI community has focused on identifying and auditing these harms. However, much less is understood about what happens after harm occurs: what constitutes reparation, who initiates it, and how effective these reparations are. In this paper, we develop a taxonomy of AI harm reparation based on a thematic analysis of real-world incidents. The taxonomy organizes reparative actions into four overarching goals: acknowledging harm, attributing responsibility, providing remedies, and enabling systemic change. We apply this framework to a dataset of 1,060 AI-related incidents, analyzing the prevalence of each action and the distribution of stakeholder involvement. Our findings show that reparation efforts are concentrated in early, symbolic stages, with limited actions toward accountability or structural reform. Drawing on theories of justice, we argue that existing responses fall short of delivering meaningful redress. This work contributes a foundation for advancing more accountable and reparative approaches to Responsible AI.
Insights from Designing Context-Aware Meal Preparation Assistance for Older Adults with Mild Cognitive Impairment (MCI) and Their Care Partners
Older adults with mild cognitive impairment (MCI) often face challenges during meal preparation, such as forgetting ingredients, skipping steps, or leaving appliances on, which can compromise their safety and independence. Our study explores the design of context-aware assistive technologies for meal preparation using a user-centered iterative design process. Through three iterative phases of design and feedback, evolving from low-tech lightbox to a digital screen, we gained insights into managing diverse contexts and personalizing assistance through collaboration with older adults with MCI and their care partners. We concluded our findings in three key contexts--routine-based, real-time, and situational--that informed strategies for designing context-aware meal prep assistance tailored to users' needs. Our results provide actionable insights for creating technologies to assist meal preparation that are personalized for the unique lifestyles of older adults with MCI, situated in the complex and dynamic homebound context, and respecting the collaboration between older adults and their care partners.
comment: DIS 2025
A Modular Haptic Display with Reconfigurable Signals for Personalized Information Transfer
We present a customizable soft haptic system that integrates modular hardware with an information-theoretic algorithm to personalize feedback for different users and tasks. Our platform features modular, multi-degree-of-freedom pneumatic displays, where different signal types, such as pressure, frequency, and contact area, can be activated or combined using fluidic logic circuits. These circuits simplify control by reducing reliance on specialized electronics and enabling coordinated actuation of multiple haptic elements through a compact set of inputs. Our approach allows rapid reconfiguration of haptic signal rendering through hardware-level logic switching without rewriting code. Personalization of the haptic interface is achieved through the combination of modular hardware and software-driven signal selection. To determine which display configurations will be most effective, we model haptic communication as a signal transmission problem, where an agent must convey latent information to the user. We formulate the optimization problem to identify the haptic hardware setup that maximizes the information transfer between the intended message and the user's interpretation, accounting for individual differences in sensitivity, preferences, and perceptual salience. We evaluate this framework through user studies where participants interact with reconfigurable displays under different signal combinations. Our findings support the role of modularity and personalization in creating multimodal haptic interfaces and advance the development of reconfigurable systems that adapt with users in dynamic human-machine interaction contexts.
comment: This work has been submitted to the IEEE Transactions on Haptics for possible publication
Privacy Perspectives and Practices of Chinese Smart Home Product Teams
Previous research has explored the privacy needs and concerns of device owners, primary users, and different bystander groups with regard to smart home devices like security cameras, smart speakers, and hubs, but little is known about the privacy views and practices of smart home product teams, particularly those in non-Western contexts. This paper presents findings from 27 semi-structured interviews with Chinese smart home product team members, including product/project managers, software/hardware engineers, user experience (UX) designers, legal/privacy experts, and marketers/operation specialists. We examine their privacy perspectives, practices, and risk mitigation strategies. Our results show that participants emphasized compliance with Chinese data privacy laws, which typically prioritized national security over individual privacy rights. China-specific cultural, social, and legal factors also influenced participants' ethical considerations and attitudes toward balancing user privacy and security with convenience. Drawing on our findings, we propose a set of recommendations for smart home product teams, along with socio-technical and legal interventions to address smart home privacy issues-especially those belonging to at-risk groups-in Chinese multi-user smart homes.
Future of Work with AI Agents: Auditing Automation and Augmentation Potential across the U.S. Workforce
The rapid rise of compound AI systems (a.k.a., AI agents) is reshaping the labor market, raising concerns about job displacement, diminished human agency, and overreliance on automation. Yet, we lack a systematic understanding of the evolving landscape. In this paper, we address this gap by introducing a novel auditing framework to assess which occupational tasks workers want AI agents to automate or augment, and how those desires align with the current technological capabilities. Our framework features an audio-enhanced mini-interview to capture nuanced worker desires and introduces the Human Agency Scale (HAS) as a shared language to quantify the preferred level of human involvement. Using this framework, we construct the WORKBank database, building on the U.S. Department of Labor's O*NET database, to capture preferences from 1,500 domain workers and capability assessments from AI experts across over 844 tasks spanning 104 occupations. Jointly considering the desire and technological capability divides tasks in WORKBank into four zones: Automation "Green Light" Zone, Automation "Red Light" Zone, R&D Opportunity Zone, Low Priority Zone. This highlights critical mismatches and opportunities for AI agent development. Moving beyond a simple automate-or-not dichotomy, our results reveal diverse HAS profiles across occupations, reflecting heterogeneous expectations for human involvement. Moreover, our study offers early signals of how AI agent integration may reshape the core human competencies, shifting from information-focused skills to interpersonal ones. These findings underscore the importance of aligning AI agent development with human desires and preparing workers for evolving workplace dynamics.
comment: Preprint
ScriptDoctor: Automatic Generation of PuzzleScript Games via Large Language Models and Tree Search
There is much interest in using large pre-trained models in Automatic Game Design (AGD), whether via the generation of code, assets, or more abstract conceptualization of design ideas. But so far this interest largely stems from the ad hoc use of such generative models under persistent human supervision. Much work remains to show how these tools can be integrated into longer-time-horizon AGD pipelines, in which systems interface with game engines to test generated content autonomously. To this end, we introduce ScriptDoctor, a Large Language Model (LLM)-driven system for automatically generating and testing games in PuzzleScript, an expressive but highly constrained description language for turn-based puzzle games over 2D gridworlds. ScriptDoctor generates and tests game design ideas in an iterative loop, where human-authored examples are used to ground the system's output, compilation errors from the PuzzleScript engine are used to elicit functional code, and search-based agents play-test generated games. ScriptDoctor serves as a concrete example of the potential of automated, open-ended LLM-based workflows in generating novel game content.
comment: 5 pages, 3 figures, 3 tables, submitted to IEEE Conference on Games as a Short Paper
RadioGami: Batteryless, Long-Range Wireless Paper Sensors Using Tunnel Diodes
Paper-based interactive RF devices have opened new possibilities for wireless sensing, yet they are typically constrained by short operational ranges. This paper introduces RadioGami, a method for creating long-range, batteryless RF sensing surfaces on paper using low-cost, DIY materials like copper tape, paper, and off-the-shelf electronics paired with an affordable radio receiver (approx. $20). We explore the design space enabled by RadioGami, including sensing paper deformations like bending, tearing, and origami patterns (Miura, Kresling) at ranges up to 45.73 meters. RadioGami employs a novel ultra-low power (35uW) switching circuit with a tunnel diode for wireless functionality. These surfaces can sustainably operate by harvesting energy using tiny photodiodes. We demonstrate applications that monitor object status, track user interactions (rotation, sliding), and detect environmental changes. We characterize performance, sensitivity, range, and power consumption with deployment studies. RadioGami advances sustainable, tangible, and batteryless interfaces for embodied interaction.
comment: The paper is published in the Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT) and will be presented at UbiComp 2025
Fake Friends and Sponsored Ads: The Risks of Advertising in Conversational Search
Digital commerce thrives on advertising, with many of the largest technology companies relying on it as a significant source of revenue. However, in the context of information-seeking behavior, such as search, advertising may degrade the user experience by lowering search quality, misusing user data for inappropriate personalization, potentially misleading individuals, or even leading them toward harm. These challenges remain significant as conversational search technologies, such as ChatGPT, become widespread. This paper critically examines the future of advertising in conversational search, utilizing several speculative examples to illustrate the potential risks posed to users who seek guidance on sensitive topics. Additionally, it provides an overview of the forms that advertising might take in this space and introduces the "fake friend dilemma," the idea that a conversational agent may exploit unaligned user trust to achieve other objectives. This study presents a provocative discussion on the future of online advertising in the space of conversational search and ends with a call to action.
comment: Accepted for publication at ACM CUI 2025
Teaming in the AI Era: AI-Augmented Frameworks for Forming, Simulating, and Optimizing Human Teams
Effective teamwork is essential across diverse domains. During the team formation stage, a key challenge is forming teams that effectively balance user preferences with task objectives to enhance overall team satisfaction. In the team performing stage, maintaining cohesion and engagement is critical for sustaining high team performance. However, existing computational tools and algorithms for team optimization often rely on static data inputs, narrow algorithmic objectives, or solutions tailored for specific contexts, failing to account for the dynamic interplay of team members personalities, evolving goals, and changing individual preferences. Therefore, teams may encounter member dissatisfaction, as purely algorithmic assignments can reduce members commitment to team goals or experience suboptimal engagement due to the absence of timely, personalized guidance to help members adjust their behaviors and interactions as team dynamics evolve. Ultimately, these challenges can lead to reduced overall team performance. My Ph.D. dissertation aims to develop AI-augmented team optimization frameworks and practical systems that enhance team satisfaction, engagement, and performance. First, I propose a team formation framework that leverages a multi-armed bandit algorithm to iteratively refine team composition based on user preferences, ensuring alignment between individual needs and collective team goals to enhance team satisfaction. Second, I introduce tAIfa (Team AI Feedback Assistant), an AI-powered system that utilizes large language models (LLMs) to deliver immediate, personalized feedback to both teams and individual members, enhancing cohesion and engagement. Finally, I present PuppeteerLLM, an LLM-based simulation framework that simulates multi-agent teams to model complex team dynamics within realistic environments, incorporating task-driven collaboration and long-term coordination.
comment: 5 pages, UMAP 25, June 16_19, 2025, New York City, NY, USA
User Altruism in Recommendation Systems
Users of social media platforms based on recommendation systems (RecSys) (e.g. TikTok, X, YouTube) strategically interact with platform content to influence future recommendations. On some such platforms, users have been documented to form large-scale grassroots movements encouraging others to purposefully interact with algorithmically suppressed content in order to "boost" its recommendation; we term this behavior user altruism. To capture this behavior, we study a game between users and a RecSys, where users provide the RecSys (potentially manipulated) preferences over the contents available to them, and the RecSys -- limited by data and computation constraints -- creates a low-rank approximation preference matrix, and ultimately provides each user her (approximately) most-preferred item. We compare the users' social welfare under truthful preference reporting and under a class of strategies capturing user altruism. In our theoretical analysis, we provide sufficient conditions to ensure strict increases in user social welfare under user altruism, and provide an algorithm to find an effective altruistic strategy. Interestingly, we show that for commonly assumed recommender utility functions, effectively altruistic strategies also improve the utility of the RecSys! We show that our results are robust to several model misspecifications, thus strengthening our conclusions. Our theoretical analysis is complemented by empirical results of effective altruistic strategies on the GoodReads dataset, and an online survey on how real-world users behave altruistically in RecSys. Overall, our findings serve as a proof-of-concept of the reasons why traditional RecSys may incentivize users to form collectives and/or follow altruistic strategies when interacting with them.
Design of a visual environment for programming by direct data manipulation
The use of applications on computers, smartphones, and tablets has been considerably simplified thanks to interactive and dynamic graphical interfaces coupled with the mouse and touch screens. It is no longer necessary to be a computer specialist to use them. Paradoxically, the development of computer programs generally requires writing lines of code in a programming language whose syntax is particularly strict. This process poses many difficulties for programmers. We propose an original tool in which arbitrary programs (Turing-complete) can be developed in a completely visual manner by direct manipulation of the data, without writing a line of code. The user can thus develop an algorithm by directly visualizing the result of actions taken on the data. A method for constructing iterations is associated with the tool. It proposes to create each part, including the loop body, in a non-linear manner under visual control of the state of the data. In addition, the tool supports the production of lines of code in several languages including Python, C, Java, that correspond to the actions performed. In this article, we present the tool, the design choices, the problems to be solved, and the limits and the contributions of the direct-data-manipulation approach.
comment: in French language
Assessing Intersectional Bias in Representations of Pre-Trained Image Recognition Models
Deep Learning models have achieved remarkable success. Training them is often accelerated by building on top of pre-trained models which poses the risk of perpetuating encoded biases. Here, we investigate biases in the representations of commonly used ImageNet classifiers for facial images while considering intersections of sensitive variables age, race and gender. To assess the biases, we use linear classifier probes and visualize activations as topographic maps. We find that representations in ImageNet classifiers particularly allow differentiation between ages. Less strongly pronounced, the models appear to associate certain ethnicities and distinguish genders in middle-aged groups.
comment: Summary paper accepted at the 3rd TRR 318 Conference: Contextualizing Explanations 2025
TAPOR: 3D Hand Pose Reconstruction with Fully Passive Thermal Sensing for Around-Device Interactions
This paper presents the design and implementation of TAPOR, a privacy-preserving, non-contact, and fully passive sensing system for accurate and robust 3D hand pose reconstruction for around-device interaction using a single low-cost thermal array sensor. Thermal sensing using inexpensive and miniature thermal arrays emerges with an excellent utility-privacy balance, offering an imaging resolution significantly lower than cameras but far superior to RF signals like radar or WiFi. The design of TAPOR, however, is challenging, mainly because the captured temperature maps are low-resolution and textureless. To overcome the challenges, we investigate thermo-depth and thermo-pose properties, proposing a novel physics-inspired neural network that learns effective 3D spatial representations of potential hand poses. We then formulate the 3D pose reconstruction problem as a distinct retrieval task, enabling accurate hand pose determination from the input temperature map. To deploy TAPOR on IoT devices, we introduce an effective heterogeneous knowledge distillation method, reducing computation by 377x. TAPOR is fully implemented and tested in real-world scenarios, showing remarkable performance, supported by four gesture control and finger tracking case studies. We envision TAPOR to be a ubiquitous interface for around-device control and have open-sourced it at https://github.com/aiot-lab/TAPOR.
comment: Published on Ubicomp 2025
Understanding the decision-making process of choice modellers
Discrete Choice Modelling serves as a robust framework for modelling human choice behaviour across various disciplines. Building a choice model is a semi structured research process that involves a combination of a priori assumptions, behavioural theories, and statistical methods. This complex set of decisions, coupled with diverse workflows, can lead to substantial variability in model outcomes. To better understand these dynamics, we developed the Serious Choice Modelling Game, which simulates the real world modelling process and tracks modellers' decisions in real time using a stated preference dataset. Participants were asked to develop choice models to estimate Willingness to Pay values to inform policymakers about strategies for reducing noise pollution. The game recorded actions across multiple phases, including descriptive analysis, model specification, and outcome interpretation, allowing us to analyse both individual decisions and differences in modelling approaches. While our findings reveal a strong preference for using data visualisation tools in descriptive analysis, it also identifies gaps in missing values handling before model specification. We also found significant variation in the modelling approach, even when modellers were working with the same choice dataset. Despite the availability of more complex models, simpler models such as Multinomial Logit were often preferred, suggesting that modellers tend to avoid complexity when time and resources are limited. Participants who engaged in more comprehensive data exploration and iterative model comparison tended to achieve better model fit and parsimony, which demonstrate that the methodological choices made throughout the workflow have significant implications, particularly when modelling outcomes are used for policy formulation.
comment: 35 pages, 7 figures
Scaffolding Creativity: Integrating Generative AI Tools and Real-world Experiences in Business Education
This exploratory study investigates the intersection of Generative AI tools and experiential learning in business education. Through a case study of an innovative undergraduate course, we examine how students interact with and adapt to various AI modalities-from text-based tools to image generation-alongside real-world experiences. Our findings reveal how this integrated approach enables novice users to overcome creative barriers, accelerates skill acquisition, and creates a dynamic interplay between AI-generated insights and real-world validation. We identify critical interaction challenges, including prompt engineering patterns and the need for more intuitive AI interfaces in educational contexts. These insights inform the design of future AI tools for creative learning and contribute to broader HCI discussions about human-AI collaboration in educational settings.
comment: 9 pages, 3 figures. Accepted to CHI EA '25. This version reflects the final accepted version with revisions
DiMA: An LLM-Powered Ride-Hailing Assistant at DiDi KDD 2025
On-demand ride-hailing services like DiDi, Uber, and Lyft have transformed urban transportation, offering unmatched convenience and flexibility. In this paper, we introduce DiMA, an LLM-powered ride-hailing assistant deployed in DiDi Chuxing. Its goal is to provide seamless ride-hailing services and beyond through a natural and efficient conversational interface under dynamic and complex spatiotemporal urban contexts. To achieve this, we propose a spatiotemporal-aware order planning module that leverages external tools for precise spatiotemporal reasoning and progressive order planning. Additionally, we develop a cost-effective dialogue system that integrates multi-type dialog repliers with cost-aware LLM configurations to handle diverse conversation goals and trade-off response quality and latency. Furthermore, we introduce a continual fine-tuning scheme that utilizes real-world interactions and simulated dialogues to align the assistant's behavior with human preferred decision-making processes. Since its deployment in the DiDi application, DiMA has demonstrated exceptional performance, achieving 93% accuracy in order planning and 92% in response generation during real-world interactions. Offline experiments further validate DiMA capabilities, showing improvements of up to 70.23% in order planning and 321.27% in response generation compared to three state-of-the-art agent frameworks, while reducing latency by $0.72\times$ to $5.47\times$. These results establish DiMA as an effective, efficient, and intelligent mobile assistant for ride-hailing services.
comment: KDD 2025
JailbreakLens: Visual Analysis of Jailbreak Attacks Against Large Language Models
The proliferation of large language models (LLMs) has underscored concerns regarding their security vulnerabilities, notably against jailbreak attacks, where adversaries design jailbreak prompts to circumvent safety mechanisms for potential misuse. Addressing these concerns necessitates a comprehensive analysis of jailbreak prompts to evaluate LLMs' defensive capabilities and identify potential weaknesses. However, the complexity of evaluating jailbreak performance and understanding prompt characteristics makes this analysis laborious. We collaborate with domain experts to characterize problems and propose an LLM-assisted framework to streamline the analysis process. It provides automatic jailbreak assessment to facilitate performance evaluation and support analysis of components and keywords in prompts. Based on the framework, we design JailbreakLens, a visual analysis system that enables users to explore the jailbreak performance against the target model, conduct multi-level analysis of prompt characteristics, and refine prompt instances to verify findings. Through a case study, technical evaluations, and expert interviews, we demonstrate our system's effectiveness in helping users evaluate model security and identify model weaknesses.
Multimedia
SVD: Spatial Video Dataset
Stereoscopic video has long been the subject of research due to its capacity to deliver immersive three-dimensional content across a wide range of applications, from virtual and augmented reality to advanced human-computer interaction. The dual-view format inherently provides binocular disparity cues that enhance depth perception and realism, making it indispensable for fields such as telepresence, 3D mapping, and robotic vision. Until recently, however, end-to-end pipelines for capturing, encoding, and viewing high-quality 3D video were neither widely accessible nor optimized for consumer-grade devices. Today's smartphones, such as the iPhone Pro, and modern Head-Mounted Displays (HMDs), like the Apple Vision Pro (AVP), offer built-in support for stereoscopic video capture, hardware-accelerated encoding, and seamless playback on devices like the Apple Vision Pro and Meta Quest 3, requiring minimal user intervention. Apple refers to this streamlined workflow as spatial video. Making the full stereoscopic video process available to everyone has made new applications possible. Despite these advances, there remains a notable absence of publicly available datasets that include the complete spatial video pipeline. In this paper, we introduce SVD, a spatial video dataset comprising 300 five-second video sequences, 150 captured using an iPhone Pro and 150 with an AVP. Additionally, 10 longer videos with a minimum duration of 2 minutes have been recorded. The SVD dataset is publicly released under an open-access license to facilitate research in codec performance evaluation, subjective and objective quality of experience (QoE) assessment, depth-based computer vision, stereoscopic video streaming, and other emerging 3D applications such as neural rendering and volumetric capture. Link to the dataset: https://cd-athena.github.io/SVD/
Optimization-Free Universal Watermark Forgery with Regenerative Diffusion Models
Watermarking becomes one of the pivotal solutions to trace and verify the origin of synthetic images generated by artificial intelligence models, but it is not free of risks. Recent studies demonstrate the capability to forge watermarks from a target image onto cover images via adversarial optimization without knowledge of the target generative model and watermark schemes. In this paper, we uncover a greater risk of an optimization-free and universal watermark forgery that harnesses existing regenerative diffusion models. Our proposed forgery attack, PnP (Plug-and-Plant), seamlessly extracts and integrates the target watermark via regenerating the image, without needing any additional optimization routine. It allows for universal watermark forgery that works independently of the target image's origin or the watermarking model used. We explore the watermarked latent extracted from the target image and visual-textual context of cover images as priors to guide sampling of the regenerative process. Extensive evaluation on 24 scenarios of model-data-watermark combinations demonstrates that PnP can successfully forge the watermark (up to 100% detectability and user attribution), and maintain the best visual perception. By bypassing model retraining and enabling adaptability to any image, our approach significantly broadens the scope of forgery attacks, presenting a greater challenge to the security of current watermarking techniques for diffusion models and the authority of watermarking schemes in synthetic data generation and governance.
The JPEG XL Image Coding System: History, Features, Coding Tools, Design Rationale, and Future
JPEG XL is a new image coding system offering state-of-the-art compression performance, lossless JPEG recompression, and advanced features. It aims to replace JPEG, PNG, GIF, and other formats with a single universal codec. This article provides an overview of JPEG XL, including its history, design rationale, coding tools, and future potential. It can be used as a companion document to the standard (ISO/IEC 18181), or as a standalone article to better understand JPEG XL, either at a high level or in considerable technical detail.
comment: 73 pages, 62 figures
DeepFake Doctor: Diagnosing and Treating Audio-Video Fake Detection
Generative AI advances rapidly, allowing the creation of very realistic manipulated video and audio. This progress presents a significant security and ethical threat, as malicious users can exploit DeepFake techniques to spread misinformation. Recent DeepFake detection approaches explore the multimodal (audio-video) threat scenario. In particular, there is a lack of reproducibility and critical issues with existing datasets - such as the recently uncovered silence shortcut in the widely used FakeAVCeleb dataset. Considering the importance of this topic, we aim to gain a deeper understanding of the key issues affecting benchmarking in audio-video DeepFake detection. We examine these challenges through the lens of the three core benchmarking pillars: datasets, detection methods, and evaluation protocols. To address these issues, we spotlight the recent DeepSpeak v1 dataset and are the first to propose an evaluation protocol and benchmark it using SOTA models. We introduce SImple Multimodal BAseline (SIMBA), a competitive yet minimalistic approach that enables the exploration of diverse design choices. We also deepen insights into the issue of audio shortcuts and present a promising mitigation strategy. Finally, we analyze and enhance the evaluation scheme on the widely used FakeAVCeleb dataset. Our findings offer a way forward in the complex area of audio-video DeepFake detection.
Multi-Modal Multi-Task Federated Foundation Models for Next-Generation Extended Reality Systems: Towards Privacy-Preserving Distributed Intelligence in AR/VR/MR
Extended reality (XR) systems, which consist of virtual reality (VR), augmented reality (AR), and mixed reality (XR), offer a transformative interface for immersive, multi-modal, and embodied human-computer interaction. In this paper, we envision that multi-modal multi-task (M3T) federated foundation models (FedFMs) can offer transformative capabilities for XR systems through integrating the representational strength of M3T foundation models (FMs) with the privacy-preserving model training principles of federated learning (FL). We present a modular architecture for FedFMs, which entails different coordination paradigms for model training and aggregations. Central to our vision is the codification of XR challenges that affect the implementation of FedFMs under the SHIFT dimensions: (1) Sensor and modality diversity, (2) Hardware heterogeneity and system-level constraints, (3) Interactivity and embodied personalization, (4) Functional/task variability, and (5) Temporality and environmental variability. We illustrate the manifestation of these dimensions across a set of emerging and anticipated applications of XR systems. Finally, we propose evaluation metrics, dataset requirements, and design tradeoffs necessary for the development of resource-aware FedFMs in XR. This perspective aims to chart the technical and conceptual foundations for context-aware privacy-preserving intelligence in the next generation of XR systems.
comment: 16 pages, 4 Figures, 8 Tables
TimeWak: Temporal Chained-Hashing Watermark for Time Series Data
Synthetic time series generated by diffusion models enable sharing privacy-sensitive datasets, such as patients' functional MRI records. Key criteria for synthetic data include high data utility and traceability to verify the data source. Recent watermarking methods embed in homogeneous latent spaces, but state-of-the-art time series generators operate in real space, making latent-based watermarking incompatible. This creates the challenge of watermarking directly in real space while handling feature heterogeneity and temporal dependencies. We propose TimeWak, the first watermarking algorithm for multivariate time series diffusion models. To handle temporal dependence and spatial heterogeneity, TimeWak embeds a temporal chained-hashing watermark directly within the real temporal-feature space. The other unique feature is the $\epsilon$-exact inversion, which addresses the non-uniform reconstruction error distribution across features from inverting the diffusion process to detect watermarks. We derive the error bound of inverting multivariate time series and further maintain high watermark detectability. We extensively evaluate TimeWak on its impact on synthetic data quality, watermark detectability, and robustness under various post-editing attacks, against 5 datasets and baselines of different temporal lengths. Our results show that TimeWak achieves improvements of 61.96% in context-FID score, and 8.44% in correlational scores against the state-of-the-art baseline, while remaining consistently detectable.
Efficient Fine-Grained Guidance for Diffusion Model Based Symbolic Music Generation
Developing generative models to create or conditionally create symbolic music presents unique challenges due to the combination of limited data availability and the need for high precision in note pitch. To address these challenges, we introduce an efficient Fine-Grained Guidance (FGG) approach within diffusion models. FGG guides the diffusion models to generate music that aligns more closely with the control and intent of expert composers, which is critical to improve the accuracy, listenability, and quality of generated music. This approach empowers diffusion models to excel in advanced applications such as improvisation, and interactive music creation. We derive theoretical characterizations for both the challenges in symbolic music generation and the effects of the FGG approach. We provide numerical experiments and subjective evaluation to demonstrate the effectiveness of our approach. We have published a demo page to showcase performances, which enables real-time interactive generation.
Latent Feature-Guided Conditional Diffusion for Generative Image Semantic Communication
Semantic communication is proposed and expected to improve the efficiency of massive data transmission over sixth generation (6G) networks. However, existing image semantic communication schemes are primarily focused on optimizing pixel-level metrics, while neglecting the crucial aspect of region of interest (ROI) preservation. To address this issue, we propose an ROI-aware latent representation-oriented image semantic communication (LRISC) system. In particular, we first map the source image to latent features in a high-dimensional semantic space, these latent features are then fused with ROI mask through a feature-weighting mechanism. Subsequently, these features are encoded using a joint source and channel coding (JSCC) scheme with adaptive rate for efficient transmission over a wireless channel. At the receiver, a conditional diffusion model is developed by using the received latent features as conditional guidance to steer the reverse diffusion process, progressively reconstructing high-fidelity images while preserving semantic consistency. Moreover, we introduce a channel signal-to-noise ratio (SNR) adaptation mechanism, allowing one model to work across various channel states. Experiments show that the proposed method significantly outperforms existing methods, in terms of learned perceptual image patch similarity (LPIPS) and robustness against channel noise, with an average LPIPS reduction of 43.3% compared to DeepJSCC, while guaranteeing the semantic consistency.
comment: 6 pages, 6 figures, update title
GroMo: Plant Growth Modeling with Multiview Images
Understanding plant growth dynamics is essential for applications in agriculture and plant phenotyping. We present the Growth Modelling (GroMo) challenge, which is designed for two primary tasks: (1) plant age prediction and (2) leaf count estimation, both essential for crop monitoring and precision agriculture. For this challenge, we introduce GroMo25, a dataset with images of four crops: radish, okra, wheat, and mustard. Each crop consists of multiple plants (p1, p2, ..., pn) captured over different days (d1, d2, ..., dm) and categorized into five levels (L1, L2, L3, L4, L5). Each plant is captured from 24 different angles with a 15-degree gap between images. Participants are required to perform both tasks for all four crops with these multiview images. We proposed a Multiview Vision Transformer (MVVT) model for the GroMo challenge and evaluated the crop-wise performance on GroMo25. MVVT reports an average MAE of 7.74 for age prediction and an MAE of 5.52 for leaf count. The GroMo Challenge aims to advance plant phenotyping research by encouraging innovative solutions for tracking and predicting plant growth. The GitHub repository is publicly available at https://github.com/mriglab/GroMo-Plant-Growth-Modeling-with-Multiview-Images.
comment: 7 pages, 5 Figures, 3 Tables
Token Communications: A Unified Framework for Cross-modal Context-aware Semantic Communications
In this paper, we introduce token communications (TokCom), a large model-driven framework to leverage cross-modal context information in generative semantic communications (GenSC). TokCom is a new paradigm, motivated by the recent success of generative foundation models and multimodal large language models (GFM/MLLMs), where the communication units are tokens, enabling efficient transformer-based token processing at the transmitter and receiver. In this paper, we introduce the potential opportunities and challenges of leveraging context in GenSC, explore how to integrate GFM/MLLMs-based token processing into semantic communication systems to leverage cross-modal context effectively at affordable complexity, present the key principles for efficient TokCom at various layers in future wireless networks. In a typical image semantic communication setup, we demonstrate a significant improvement of the bandwidth efficiency, achieved by TokCom by leveraging the context information among tokens. Finally, the potential research directions are identified to facilitate adoption of TokCom in future wireless networks.
comment: Submitted to IEEE Journals
Computer Vision and Pattern Recognition
VideoMathQA: Benchmarking Mathematical Reasoning via Multimodal Understanding in Videos
Mathematical reasoning in real-world video settings presents a fundamentally different challenge than in static images or text. It requires interpreting fine-grained visual information, accurately reading handwritten or digital text, and integrating spoken cues, often dispersed non-linearly over time. In such multimodal contexts, success hinges not just on perception, but on selectively identifying and integrating the right contextual details from a rich and noisy stream of content. To this end, we introduce VideoMathQA, a benchmark designed to evaluate whether models can perform such temporally extended cross-modal reasoning on videos. The benchmark spans 10 diverse mathematical domains, covering videos ranging from 10 seconds to over 1 hour. It requires models to interpret structured visual content, understand instructional narratives, and jointly ground concepts across visual, audio, and textual modalities. We employ graduate-level experts to ensure high quality, totaling over $920$ man-hours of annotation. To reflect real-world scenarios, questions are designed around three core reasoning challenges: direct problem solving, where answers are grounded in the presented question; conceptual transfer, which requires applying learned methods to new problems; and deep instructional comprehension, involving multi-step reasoning over extended explanations and partially worked-out solutions. Each question includes multi-step reasoning annotations, enabling fine-grained diagnosis of model capabilities. Through this benchmark, we highlight the limitations of existing approaches and establish a systematic evaluation framework for models that must reason, rather than merely perceive, across temporally extended and modality-rich mathematical problem settings. Our benchmark and evaluation code are available at: https://mbzuai-oryx.github.io/VideoMathQA
comment: VideoMathQA Technical Report
Contrastive Flow Matching
Unconditional flow-matching trains diffusion models to transport samples from a source distribution to a target distribution by enforcing that the flows between sample pairs are unique. However, in conditional settings (e.g., class-conditioned models), this uniqueness is no longer guaranteed--flows from different conditions may overlap, leading to more ambiguous generations. We introduce Contrastive Flow Matching, an extension to the flow matching objective that explicitly enforces uniqueness across all conditional flows, enhancing condition separation. Our approach adds a contrastive objective that maximizes dissimilarities between predicted flows from arbitrary sample pairs. We validate Contrastive Flow Matching by conducting extensive experiments across varying model architectures on both class-conditioned (ImageNet-1k) and text-to-image (CC3M) benchmarks. Notably, we find that training models with Contrastive Flow Matching (1) improves training speed by a factor of up to 9x, (2) requires up to 5x fewer de-noising steps and (3) lowers FID by up to 8.9 compared to training the same models with flow matching. We release our code at: https://github.com/gstoica27/DeltaFM.git.
FreeTimeGS: Free Gaussians at Anytime and Anywhere for Dynamic Scene Reconstruction CVPR 2025
This paper addresses the challenge of reconstructing dynamic 3D scenes with complex motions. Some recent works define 3D Gaussian primitives in the canonical space and use deformation fields to map canonical primitives to observation spaces, achieving real-time dynamic view synthesis. However, these methods often struggle to handle scenes with complex motions due to the difficulty of optimizing deformation fields. To overcome this problem, we propose FreeTimeGS, a novel 4D representation that allows Gaussian primitives to appear at arbitrary time and locations. In contrast to canonical Gaussian primitives, our representation possesses the strong flexibility, thus improving the ability to model dynamic 3D scenes. In addition, we endow each Gaussian primitive with an motion function, allowing it to move to neighboring regions over time, which reduces the temporal redundancy. Experiments results on several datasets show that the rendering quality of our method outperforms recent methods by a large margin.
comment: CVPR 2025; Project page: https://zju3dv.github.io/freetimegs/
SparseMM: Head Sparsity Emerges from Visual Concept Responses in MLLMs
Multimodal Large Language Models (MLLMs) are commonly derived by extending pre-trained Large Language Models (LLMs) with visual capabilities. In this work, we investigate how MLLMs process visual inputs by analyzing their attention mechanisms. We reveal a surprising sparsity phenomenon: only a small subset (approximately less than 5%) of attention heads in LLMs actively contribute to visual understanding, termed visual heads. To identify these heads efficiently, we design a training-free framework that quantifies head-level visual relevance through targeted response analysis. Building on this discovery, we introduce SparseMM, a KV-Cache optimization strategy that allocates asymmetric computation budgets to heads in LLMs based on their visual scores, leveraging the sparity of visual heads for accelerating the inference of MLLMs. Compared with prior KV-Cache acceleration methods that ignore the particularity of visual, SparseMM prioritizes stress and retaining visual semantics during decoding. Extensive evaluations across mainstream multimodal benchmarks demonstrate that SparseMM achieves superior accuracy-efficiency trade-offs. Notably, SparseMM delivers 1.38x real-time acceleration and 52% memory reduction during generation while maintaining performance parity on efficiency test. Our project is open sourced at https://github.com/CR400AF-A/SparseMM.
Neural Inverse Rendering from Propagating Light
We present the first system for physically based, neural inverse rendering from multi-viewpoint videos of propagating light. Our approach relies on a time-resolved extension of neural radiance caching -- a technique that accelerates inverse rendering by storing infinite-bounce radiance arriving at any point from any direction. The resulting model accurately accounts for direct and indirect light transport effects and, when applied to captured measurements from a flash lidar system, enables state-of-the-art 3D reconstruction in the presence of strong indirect light. Further, we demonstrate view synthesis of propagating light, automatic decomposition of captured measurements into direct and indirect components, as well as novel capabilities such as multi-view time-resolved relighting of captured scenes.
comment: Website: https://anaghmalik.com/InvProp/
ContentV: Efficient Training of Video Generation Models with Limited Compute
Recent advances in video generation demand increasingly efficient training recipes to mitigate escalating computational costs. In this report, we present ContentV, an 8B-parameter text-to-video model that achieves state-of-the-art performance (85.14 on VBench) after training on 256 x 64GB Neural Processing Units (NPUs) for merely four weeks. ContentV generates diverse, high-quality videos across multiple resolutions and durations from text prompts, enabled by three key innovations: (1) A minimalist architecture that maximizes reuse of pre-trained image generation models for video generation; (2) A systematic multi-stage training strategy leveraging flow matching for enhanced efficiency; and (3) A cost-effective reinforcement learning with human feedback framework that improves generation quality without requiring additional human annotations. All the code and models are available at: https://contentv.github.io.
comment: Project Page: https://contentv.github.io
Refer to Anything with Vision-Language Prompts
Recent image segmentation models have advanced to segment images into high-quality masks for visual entities, and yet they cannot provide comprehensive semantic understanding for complex queries based on both language and vision. This limitation reduces their effectiveness in applications that require user-friendly interactions driven by vision-language prompts. To bridge this gap, we introduce a novel task of omnimodal referring expression segmentation (ORES). In this task, a model produces a group of masks based on arbitrary prompts specified by text only or text plus reference visual entities. To address this new challenge, we propose a novel framework to "Refer to Any Segmentation Mask Group" (RAS), which augments segmentation models with complex multimodal interactions and comprehension via a mask-centric large multimodal model. For training and benchmarking ORES models, we create datasets MaskGroups-2M and MaskGroups-HQ to include diverse mask groups specified by text and reference entities. Through extensive evaluation, we demonstrate superior performance of RAS on our new ORES task, as well as classic referring expression segmentation (RES) and generalized referring expression segmentation (GRES) tasks. Project page: https://Ref2Any.github.io.
Direct Numerical Layout Generation for 3D Indoor Scene Synthesis via Spatial Reasoning
Realistic 3D indoor scene synthesis is vital for embodied AI and digital content creation. It can be naturally divided into two subtasks: object generation and layout generation. While recent generative models have significantly advanced object-level quality and controllability, layout generation remains challenging due to limited datasets. Existing methods either overfit to these datasets or rely on predefined constraints to optimize numerical layout that sacrifice flexibility. As a result, they fail to generate scenes that are both open-vocabulary and aligned with fine-grained user instructions. We introduce DirectLayout, a framework that directly generates numerical 3D layouts from text descriptions using generalizable spatial reasoning of large language models (LLMs). DirectLayout decomposes the generation into three stages: producing a Bird's-Eye View (BEV) layout, lifting it into 3D space, and refining object placements. To enable explicit spatial reasoning and help the model grasp basic principles of object placement, we employ Chain-of-Thought (CoT) Activation based on the 3D-Front dataset. Additionally, we design CoT-Grounded Generative Layout Reward to enhance generalization and spatial planning. During inference, DirectLayout addresses asset-layout mismatches via Iterative Asset-Layout Alignment through in-context learning. Extensive experiments demonstrate that DirectLayout achieves impressive semantic consistency, generalization and physical plausibility.
comment: Project Page: https://directlayout.github.io/
Defurnishing with X-Ray Vision: Joint Removal of Furniture from Panoramas and Mesh
We present a pipeline for generating defurnished replicas of indoor spaces represented as textured meshes and corresponding multi-view panoramic images. To achieve this, we first segment and remove furniture from the mesh representation, extend planes, and fill holes, obtaining a simplified defurnished mesh (SDM). This SDM acts as an ``X-ray'' of the scene's underlying structure, guiding the defurnishing process. We extract Canny edges from depth and normal images rendered from the SDM. We then use these as a guide to remove the furniture from panorama images via ControlNet inpainting. This control signal ensures the availability of global geometric information that may be hidden from a particular panoramic view by the furniture being removed. The inpainted panoramas are used to texture the mesh. We show that our approach produces higher quality assets than methods that rely on neural radiance fields, which tend to produce blurry low-resolution images, or RGB-D inpainting, which is highly susceptible to hallucinations.
VideoMolmo: Spatio-Temporal Grounding Meets Pointing
Spatio-temporal localization is vital for precise interactions across diverse domains, from biological research to autonomous navigation and interactive interfaces. Current video-based approaches, while proficient in tracking, lack the sophisticated reasoning capabilities of large language models, limiting their contextual understanding and generalization. We introduce VideoMolmo, a large multimodal model tailored for fine-grained spatio-temporal pointing conditioned on textual descriptions. Building upon the Molmo architecture, VideoMolmo incorporates a temporal module utilizing an attention mechanism to condition each frame on preceding frames, ensuring temporal consistency. Additionally, our novel temporal mask fusion pipeline employs SAM2 for bidirectional point propagation, significantly enhancing coherence across video sequences. This two-step decomposition, i.e., first using the LLM to generate precise pointing coordinates, then relying on a sequential mask-fusion module to produce coherent segmentation, not only simplifies the task for the language model but also enhances interpretability. Due to the lack of suitable datasets, we curate a comprehensive dataset comprising 72k video-caption pairs annotated with 100k object points. To evaluate the generalization of VideoMolmo, we introduce VPoS-Bench, a challenging out-of-distribution benchmark spanning five real-world scenarios: Cell Tracking, Egocentric Vision, Autonomous Driving, Video-GUI Interaction, and Robotics. We also evaluate our model on Referring Video Object Segmentation (Refer-VOS) and Reasoning VOS tasks. In comparison to existing models, VideoMolmo substantially improves spatio-temporal pointing accuracy and reasoning capability. Our code and models are publicly available at https://github.com/mbzuai-oryx/VideoMolmo.
comment: 20 pages, 13 figures
Unleashing Hour-Scale Video Training for Long Video-Language Understanding
Recent long-form video-language understanding benchmarks have driven progress in video large multimodal models (Video-LMMs). However, the scarcity of well-annotated long videos has left the training of hour-long Video-LLMs underexplored. To close this gap, we present VideoMarathon, a large-scale hour-long video instruction-following dataset. This dataset includes around 9,700 hours of long videos sourced from diverse domains, ranging from 3 to 60 minutes per video. Specifically, it contains 3.3M high-quality QA pairs, spanning six fundamental topics: temporality, spatiality, object, action, scene, and event. Compared to existing video instruction datasets, VideoMarathon significantly extends training video durations up to 1 hour, and supports 22 diverse tasks requiring both short- and long-term video comprehension. Building on VideoMarathon, we propose Hour-LLaVA, a powerful and efficient Video-LMM for hour-scale video-language modeling. It enables hour-long video training and inference at 1-FPS sampling by leveraging a memory augmentation module, which adaptively integrates user question-relevant and spatiotemporal-informative semantics from a cached full video context. In our experiments, Hour-LLaVA achieves the best performance on multiple long video-language benchmarks, demonstrating the high quality of the VideoMarathon dataset and the superiority of the Hour-LLaVA model.
comment: Project page: https://videomarathon.github.io/
MINT-CoT: Enabling Interleaved Visual Tokens in Mathematical Chain-of-Thought Reasoning
Chain-of-Thought (CoT) has widely enhanced mathematical reasoning in Large Language Models (LLMs), but it still remains challenging for extending it to multimodal domains. Existing works either adopt a similar textual reasoning for image input, or seek to interleave visual signals into mathematical CoT. However, they face three key limitations for math problem-solving: reliance on coarse-grained box-shaped image regions, limited perception of vision encoders on math content, and dependence on external capabilities for visual modification. In this paper, we propose MINT-CoT, introducing Mathematical INterleaved Tokens for Chain-of-Thought visual reasoning. MINT-CoT adaptively interleaves relevant visual tokens into textual reasoning steps via an Interleave Token, which dynamically selects visual regions of any shapes within math figures. To empower this capability, we construct the MINT-CoT dataset, containing 54K mathematical problems aligning each reasoning step with visual regions at the token level, accompanied by a rigorous data generation pipeline. We further present a three-stage MINT-CoT training strategy, progressively combining text-only CoT SFT, interleaved CoT SFT, and interleaved CoT RL, which derives our MINT-CoT-7B model. Extensive experiments demonstrate the effectiveness of our method for effective visual interleaved reasoning in mathematical domains, where MINT-CoT-7B outperforms the baseline model by +34.08% on MathVista, +28.78% on GeoQA, and +23.2% on MMStar, respectively. Our code and data are available at https://github.com/xinyan-cxy/MINT-CoT
comment: Code is released at https://github.com/xinyan-cxy/MINT-CoT
AV-Reasoner: Improving and Benchmarking Clue-Grounded Audio-Visual Counting for MLLMs
Despite progress in video understanding, current MLLMs struggle with counting tasks. Existing benchmarks are limited by short videos, close-set queries, lack of clue annotations, and weak multimodal coverage. In this paper, we introduce CG-AV-Counting, a manually-annotated clue-grounded counting benchmark with 1,027 multimodal questions and 5,845 annotated clues over 497 long videos. It supports both black-box and white-box evaluation, serving as a comprehensive testbed for both end-to-end and reasoning-based counting. To explore ways to improve model's counting capability, we propose AV-Reasoner, a model trained with GRPO and curriculum learning to generalize counting ability from related tasks. AV-Reasoner achieves state-of-the-art results across multiple benchmarks, demonstrating the effectiveness of reinforcement learning. However, experiments show that on out-of-domain benchmarks, reasoning in the language space fails to bring performance gains. The code and benchmark have been realeased on https://av-reasoner.github.io.
comment: 21 pages, 11 figures
Revisiting Depth Representations for Feed-Forward 3D Gaussian Splatting
Depth maps are widely used in feed-forward 3D Gaussian Splatting (3DGS) pipelines by unprojecting them into 3D point clouds for novel view synthesis. This approach offers advantages such as efficient training, the use of known camera poses, and accurate geometry estimation. However, depth discontinuities at object boundaries often lead to fragmented or sparse point clouds, degrading rendering quality -- a well-known limitation of depth-based representations. To tackle this issue, we introduce PM-Loss, a novel regularization loss based on a pointmap predicted by a pre-trained transformer. Although the pointmap itself may be less accurate than the depth map, it effectively enforces geometric smoothness, especially around object boundaries. With the improved depth map, our method significantly improves the feed-forward 3DGS across various architectures and scenes, delivering consistently better rendering results. Our project page: https://aim-uofa.github.io/PMLoss
comment: Project page: https://aim-uofa.github.io/PMLoss
Does Your 3D Encoder Really Work? When Pretrain-SFT from 2D VLMs Meets 3D VLMs
Remarkable progress in 2D Vision-Language Models (VLMs) has spurred interest in extending them to 3D settings for tasks like 3D Question Answering, Dense Captioning, and Visual Grounding. Unlike 2D VLMs that typically process images through an image encoder, 3D scenes, with their intricate spatial structures, allow for diverse model architectures. Based on their encoder design, this paper categorizes recent 3D VLMs into 3D object-centric, 2D image-based, and 3D scene-centric approaches. Despite the architectural similarity of 3D scene-centric VLMs to their 2D counterparts, they have exhibited comparatively lower performance compared with the latest 3D object-centric and 2D image-based approaches. To understand this gap, we conduct an in-depth analysis, revealing that 3D scene-centric VLMs show limited reliance on the 3D scene encoder, and the pre-train stage appears less effective than in 2D VLMs. Furthermore, we observe that data scaling benefits are less pronounced on larger datasets. Our investigation suggests that while these models possess cross-modal alignment capabilities, they tend to over-rely on linguistic cues and overfit to frequent answer distributions, thereby diminishing the effective utilization of the 3D encoder. To address these limitations and encourage genuine 3D scene understanding, we introduce a novel 3D Relevance Discrimination QA dataset designed to disrupt shortcut learning and improve 3D understanding. Our findings highlight the need for advanced evaluation and improved strategies for better 3D understanding in 3D VLMs.
ProJo4D: Progressive Joint Optimization for Sparse-View Inverse Physics Estimation
Neural rendering has made significant strides in 3D reconstruction and novel view synthesis. With the integration with physics, it opens up new applications. The inverse problem of estimating physics from visual data, however, still remains challenging, limiting its effectiveness for applications like physically accurate digital twin creation in robotics and XR. Existing methods that incorporate physics into neural rendering frameworks typically require dense multi-view videos as input, making them impractical for scalable, real-world use. When presented with sparse multi-view videos, the sequential optimization strategy used by existing approaches introduces significant error accumulation, e.g., poor initial 3D reconstruction leads to bad material parameter estimation in subsequent stages. Instead of sequential optimization, directly optimizing all parameters at the same time also fails due to the highly non-convex and often non-differentiable nature of the problem. We propose ProJo4D, a progressive joint optimization framework that gradually increases the set of jointly optimized parameters guided by their sensitivity, leading to fully joint optimization over geometry, appearance, physical state, and material property. Evaluations on PAC-NeRF and Spring-Gaus datasets show that ProJo4D outperforms prior work in 4D future state prediction, novel view rendering of future state, and material parameter estimation, demonstrating its effectiveness in physically grounded 4D scene understanding. For demos, please visit the project webpage: https://daniel03c1.github.io/ProJo4D/
MARBLE: Material Recomposition and Blending in CLIP-Space
Editing materials of objects in images based on exemplar images is an active area of research in computer vision and graphics. We propose MARBLE, a method for performing material blending and recomposing fine-grained material properties by finding material embeddings in CLIP-space and using that to control pre-trained text-to-image models. We improve exemplar-based material editing by finding a block in the denoising UNet responsible for material attribution. Given two material exemplar-images, we find directions in the CLIP-space for blending the materials. Further, we can achieve parametric control over fine-grained material attributes such as roughness, metallic, transparency, and glow using a shallow network to predict the direction for the desired material attribute change. We perform qualitative and quantitative analysis to demonstrate the efficacy of our proposed method. We also present the ability of our method to perform multiple edits in a single forward pass and applicability to painting. Project Page: https://marblecontrol.github.io/
Do It Yourself: Learning Semantic Correspondence from Pseudo-Labels SC
Finding correspondences between semantically similar points across images and object instances is one of the everlasting challenges in computer vision. While large pre-trained vision models have recently been demonstrated as effective priors for semantic matching, they still suffer from ambiguities for symmetric objects or repeated object parts. We propose to improve semantic correspondence estimation via 3D-aware pseudo-labeling. Specifically, we train an adapter to refine off-the-shelf features using pseudo-labels obtained via 3D-aware chaining, filtering wrong labels through relaxed cyclic consistency, and 3D spherical prototype mapping constraints. While reducing the need for dataset specific annotations compared to prior work, we set a new state-of-the-art on SPair-71k by over 4% absolute gain and by over 7% against methods with similar supervision requirements. The generality of our proposed approach simplifies extension of training to other data sources, which we demonstrate in our experiments.
comment: Project page: https://genintel.github.io/DIY-SC
Perceive Anything: Recognize, Explain, Caption, and Segment Anything in Images and Videos
We present Perceive Anything Model (PAM), a conceptually straightforward and efficient framework for comprehensive region-level visual understanding in images and videos. Our approach extends the powerful segmentation model SAM 2 by integrating Large Language Models (LLMs), enabling simultaneous object segmentation with the generation of diverse, region-specific semantic outputs, including categories, label definition, functional explanations, and detailed captions. A key component, Semantic Perceiver, is introduced to efficiently transform SAM 2's rich visual features, which inherently carry general vision, localization, and semantic priors into multi-modal tokens for LLM comprehension. To support robust multi-granularity understanding, we also develop a dedicated data refinement and augmentation pipeline, yielding a high-quality dataset of 1.5M image and 0.6M video region-semantic annotations, including novel region-level streaming video caption data. PAM is designed for lightweightness and efficiency, while also demonstrates strong performance across a diverse range of region understanding tasks. It runs 1.2-2.4x faster and consumes less GPU memory than prior approaches, offering a practical solution for real-world applications. We believe that our effective approach will serve as a strong baseline for future research in region-level visual understanding.
comment: 19 pages, 13 figures, Website: https://Perceive-Anything.github.io
SeedVR2: One-Step Video Restoration via Diffusion Adversarial Post-Training
Recent advances in diffusion-based video restoration (VR) demonstrate significant improvement in visual quality, yet yield a prohibitive computational cost during inference. While several distillation-based approaches have exhibited the potential of one-step image restoration, extending existing approaches to VR remains challenging and underexplored, particularly when dealing with high-resolution video in real-world settings. In this work, we propose a one-step diffusion-based VR model, termed as SeedVR2, which performs adversarial VR training against real data. To handle the challenging high-resolution VR within a single step, we introduce several enhancements to both model architecture and training procedures. Specifically, an adaptive window attention mechanism is proposed, where the window size is dynamically adjusted to fit the output resolutions, avoiding window inconsistency observed under high-resolution VR using window attention with a predefined window size. To stabilize and improve the adversarial post-training towards VR, we further verify the effectiveness of a series of losses, including a proposed feature matching loss without significantly sacrificing training efficiency. Extensive experiments show that SeedVR2 can achieve comparable or even better performance compared with existing VR approaches in a single step.
comment: Draft Ver. Project page: https://iceclear.github.io/projects/seedvr2/
DM-SegNet: Dual-Mamba Architecture for 3D Medical Image Segmentation with Global Context Modeling
Accurate 3D medical image segmentation demands architectures capable of reconciling global context modeling with spatial topology preservation. While State Space Models (SSMs) like Mamba show potential for sequence modeling, existing medical SSMs suffer from encoder-decoder incompatibility: the encoder's 1D sequence flattening compromises spatial structures, while conventional decoders fail to leverage Mamba's state propagation. We present DM-SegNet, a Dual-Mamba architecture integrating directional state transitions with anatomy-aware hierarchical decoding. The core innovations include a quadri-directional spatial Mamba module employing four-directional 3D scanning to maintain anatomical spatial coherence, a gated spatial convolution layer that enhances spatially sensitive feature representation prior to state modeling, and a Mamba-driven decoding framework enabling bidirectional state synchronization across scales. Extensive evaluation on two clinically significant benchmarks demonstrates the efficacy of DM-SegNet: achieving state-of-the-art Dice Similarity Coefficient (DSC) of 85.44% on the Synapse dataset for abdominal organ segmentation and 90.22% on the BraTS2023 dataset for brain tumor segmentation.
AliTok: Towards Sequence Modeling Alignment between Tokenizer and Autoregressive Model
Autoregressive image generation aims to predict the next token based on previous ones. However, existing image tokenizers encode tokens with bidirectional dependencies during the compression process, which hinders the effective modeling by autoregressive models. In this paper, we propose a novel Aligned Tokenizer (AliTok), which utilizes a causal decoder to establish unidirectional dependencies among encoded tokens, thereby aligning the token modeling approach between the tokenizer and autoregressive model. Furthermore, by incorporating prefix tokens and employing two-stage tokenizer training to enhance reconstruction consistency, AliTok achieves great reconstruction performance while being generation-friendly. On ImageNet-256 benchmark, using a standard decoder-only autoregressive model as the generator with only 177M parameters, AliTok achieves a gFID score of 1.50 and an IS of 305.9. When the parameter count is increased to 662M, AliTok achieves a gFID score of 1.35, surpassing the state-of-the-art diffusion method with 10x faster sampling speed. The code and weights are available at https://github.com/ali-vilab/alitok.
comment: Code: https://github.com/ali-vilab/alitok
EOC-Bench: Can MLLMs Identify, Recall, and Forecast Objects in an Egocentric World?
The emergence of multimodal large language models (MLLMs) has driven breakthroughs in egocentric vision applications. These applications necessitate persistent, context-aware understanding of objects, as users interact with tools in dynamic and cluttered environments. However, existing embodied benchmarks primarily focus on static scene exploration, emphasizing object's appearance and spatial attributes while neglecting the assessment of dynamic changes arising from users' interactions. To address this gap, we introduce EOC-Bench, an innovative benchmark designed to systematically evaluate object-centric embodied cognition in dynamic egocentric scenarios. Specially, EOC-Bench features 3,277 meticulously annotated QA pairs categorized into three temporal categories: Past, Present, and Future, covering 11 fine-grained evaluation dimensions and 3 visual object referencing types. To ensure thorough assessment, we develop a mixed-format human-in-the-loop annotation framework with four types of questions and design a novel multi-scale temporal accuracy metric for open-ended temporal evaluation. Based on EOC-Bench, we conduct comprehensive evaluations of various proprietary, open-source, and object-level MLLMs. EOC-Bench serves as a crucial tool for advancing the embodied object cognitive capabilities of MLLMs, establishing a robust foundation for developing reliable core models for embodied systems.
comment: 32pages
Stable Vision Concept Transformers for Medical Diagnosis
Transparency is a paramount concern in the medical field, prompting researchers to delve into the realm of explainable AI (XAI). Among these XAI methods, Concept Bottleneck Models (CBMs) aim to restrict the model's latent space to human-understandable high-level concepts by generating a conceptual layer for extracting conceptual features, which has drawn much attention recently. However, existing methods rely solely on concept features to determine the model's predictions, which overlook the intrinsic feature embeddings within medical images. To address this utility gap between the original models and concept-based models, we propose Vision Concept Transformer (VCT). Furthermore, despite their benefits, CBMs have been found to negatively impact model performance and fail to provide stable explanations when faced with input perturbations, which limits their application in the medical field. To address this faithfulness issue, this paper further proposes the Stable Vision Concept Transformer (SVCT) based on VCT, which leverages the vision transformer (ViT) as its backbone and incorporates a conceptual layer. SVCT employs conceptual features to enhance decision-making capabilities by fusing them with image features and ensures model faithfulness through the integration of Denoised Diffusion Smoothing. Comprehensive experiments on four medical datasets demonstrate that our VCT and SVCT maintain accuracy while remaining interpretable compared to baselines. Furthermore, even when subjected to perturbations, our SVCT model consistently provides faithful explanations, thus meeting the needs of the medical field.
comment: arXiv admin note: text overlap with arXiv:2304.06129 by other authors
RaySt3R: Predicting Novel Depth Maps for Zero-Shot Object Completion
3D shape completion has broad applications in robotics, digital twin reconstruction, and extended reality (XR). Although recent advances in 3D object and scene completion have achieved impressive results, existing methods lack 3D consistency, are computationally expensive, and struggle to capture sharp object boundaries. Our work (RaySt3R) addresses these limitations by recasting 3D shape completion as a novel view synthesis problem. Specifically, given a single RGB-D image and a novel viewpoint (encoded as a collection of query rays), we train a feedforward transformer to predict depth maps, object masks, and per-pixel confidence scores for those query rays. RaySt3R fuses these predictions across multiple query views to reconstruct complete 3D shapes. We evaluate RaySt3R on synthetic and real-world datasets, and observe it achieves state-of-the-art performance, outperforming the baselines on all datasets by up to 44% in 3D chamfer distance. Project page: https://rayst3r.github.io
Video World Models with Long-term Spatial Memory
Emerging world models autoregressively generate video frames in response to actions, such as camera movements and text prompts, among other control signals. Due to limited temporal context window sizes, these models often struggle to maintain scene consistency during revisits, leading to severe forgetting of previously generated environments. Inspired by the mechanisms of human memory, we introduce a novel framework to enhancing long-term consistency of video world models through a geometry-grounded long-term spatial memory. Our framework includes mechanisms to store and retrieve information from the long-term spatial memory and we curate custom datasets to train and evaluate world models with explicitly stored 3D memory mechanisms. Our evaluations show improved quality, consistency, and context length compared to relevant baselines, paving the way towards long-term consistent world generation.
comment: Project page: https://spmem.github.io/
Rectified Point Flow: Generic Point Cloud Pose Estimation
We introduce Rectified Point Flow, a unified parameterization that formulates pairwise point cloud registration and multi-part shape assembly as a single conditional generative problem. Given unposed point clouds, our method learns a continuous point-wise velocity field that transports noisy points toward their target positions, from which part poses are recovered. In contrast to prior work that regresses part-wise poses with ad-hoc symmetry handling, our method intrinsically learns assembly symmetries without symmetry labels. Together with a self-supervised encoder focused on overlapping points, our method achieves a new state-of-the-art performance on six benchmarks spanning pairwise registration and shape assembly. Notably, our unified formulation enables effective joint training on diverse datasets, facilitating the learning of shared geometric priors and consequently boosting accuracy. Project page: https://rectified-pointflow.github.io/.
comment: Project page: https://rectified-pointflow.github.io/
Unifying Appearance Codes and Bilateral Grids for Driving Scene Gaussian Splatting
Neural rendering techniques, including NeRF and Gaussian Splatting (GS), rely on photometric consistency to produce high-quality reconstructions. However, in real-world scenarios, it is challenging to guarantee perfect photometric consistency in acquired images. Appearance codes have been widely used to address this issue, but their modeling capability is limited, as a single code is applied to the entire image. Recently, the bilateral grid was introduced to perform pixel-wise color mapping, but it is difficult to optimize and constrain effectively. In this paper, we propose a novel multi-scale bilateral grid that unifies appearance codes and bilateral grids. We demonstrate that this approach significantly improves geometric accuracy in dynamic, decoupled autonomous driving scene reconstruction, outperforming both appearance codes and bilateral grids. This is crucial for autonomous driving, where accurate geometry is important for obstacle avoidance and control. Our method shows strong results across four datasets: Waymo, NuScenes, Argoverse, and PandaSet. We further demonstrate that the improvement in geometry is driven by the multi-scale bilateral grid, which effectively reduces floaters caused by photometric inconsistency.
comment: Project page: https://bigcileng.github.io/bilateral-driving; Code: https://github.com/BigCiLeng/bilateral-driving
From Play to Replay: Composed Video Retrieval for Temporally Fine-Grained Videos
Composed Video Retrieval (CoVR) retrieves a target video given a query video and a modification text describing the intended change. Existing CoVR benchmarks emphasize appearance shifts or coarse event changes and therefore do not test the ability to capture subtle, fast-paced temporal differences. We introduce TF-CoVR, the first large-scale benchmark dedicated to temporally fine-grained CoVR. TF-CoVR focuses on gymnastics and diving and provides 180K triplets drawn from FineGym and FineDiving. Previous CoVR benchmarks focusing on temporal aspect, link each query to a single target segment taken from the same video, limiting practical usefulness. In TF-CoVR, we instead construct each pair by prompting an LLM with the label differences between clips drawn from different videos; every pair is thus associated with multiple valid target videos (3.9 on average), reflecting real-world tasks such as sports-highlight generation. To model these temporal dynamics we propose TF-CoVR-Base, a concise two-stage training framework: (i) pre-train a video encoder on fine-grained action classification to obtain temporally discriminative embeddings; (ii) align the composed query with candidate videos using contrastive learning. We conduct the first comprehensive study of image, video, and general multimodal embedding (GME) models on temporally fine-grained composed retrieval in both zero-shot and fine-tuning regimes. On TF-CoVR, TF-CoVR-Base improves zero-shot mAP@50 from 5.92 (LanguageBind) to 7.51, and after fine-tuning raises the state-of-the-art from 19.83 to 25.82.
Can Foundation Models Generalise the Presentation Attack Detection Capabilities on ID Cards?
Nowadays, one of the main challenges in presentation attack detection (PAD) on ID cards is obtaining generalisation capabilities for a diversity of countries that are issuing ID cards. Most PAD systems are trained on one, two, or three ID documents because of privacy protection concerns. As a result, they do not obtain competitive results for commercial purposes when tested in an unknown new ID card country. In this scenario, Foundation Models (FM) trained on huge datasets can help to improve generalisation capabilities. This work intends to improve and benchmark the capabilities of FM and how to use them to adapt the generalisation on PAD of ID Documents. Different test protocols were used, considering zero-shot and fine-tuning and two different ID card datasets. One private dataset based on Chilean IDs and one open-set based on three ID countries: Finland, Spain, and Slovakia. Our findings indicate that bona fide images are the key to generalisation.
LeanPO: Lean Preference Optimization for Likelihood Alignment in Video-LLMs
Most Video Large Language Models (Video-LLMs) adopt preference alignment techniques, e.g., DPO~\citep{rafailov2024dpo}, to optimize the reward margin between a winning response ($y_w$) and a losing response ($y_l$). However, the likelihood displacement observed in DPO indicates that both $\log \pi_\theta (y_w\mid x)$ and $\log \pi_\theta (y_l\mid x) $ often decrease during training, inadvertently boosting the probabilities of non-target responses. In this paper, we systematically revisit this phenomenon from LLMs to Video-LLMs, showing that it intensifies when dealing with the redundant complexity of video content. To alleviate the impact of this phenomenon, we propose \emph{Lean Preference Optimization} (LeanPO), a reference-free approach that reformulates the implicit reward as the average likelihood of the response with respect to the policy model. A key component of LeanPO is the reward-trustworthiness correlated self-generated preference data pipeline, which carefully infuses relevant prior knowledge into the model while continuously refining the preference data via self-reflection. This allows the policy model to obtain high-quality paired data and accurately estimate the newly defined reward, thus mitigating the unintended drop. In addition, we introduce a dynamic label smoothing strategy that mitigates the impact of noise in responses from diverse video content, preventing the model from overfitting to spurious details. Extensive experiments demonstrate that LeanPO significantly enhances the performance of state-of-the-art Video-LLMs, consistently boosting baselines of varying capacities with minimal additional training overhead. Moreover, LeanPO offers a simple yet effective solution for aligning Video-LLM preferences with human trustworthiness, paving the way toward the reliable and efficient Video-LLMs.
comment: Code: https://github.com/Wang-Xiaodong1899/LeanPO
Spatiotemporal Contrastive Learning for Cross-View Video Localization in Unstructured Off-road Terrains
Robust cross-view 3-DoF localization in GPS-denied, off-road environments remains challenging due to (1) perceptual ambiguities from repetitive vegetation and unstructured terrain, and (2) seasonal shifts that significantly alter scene appearance, hindering alignment with outdated satellite imagery. To address this, we introduce MoViX, a self-supervised cross-view video localization framework that learns viewpoint- and season-invariant representations while preserving directional awareness essential for accurate localization. MoViX employs a pose-dependent positive sampling strategy to enhance directional discrimination and temporally aligned hard negative mining to discourage shortcut learning from seasonal cues. A motion-informed frame sampler selects spatially diverse frames, and a lightweight temporal aggregator emphasizes geometrically aligned observations while downweighting ambiguous ones. At inference, MoViX runs within a Monte Carlo Localization framework, using a learned cross-view matching module in place of handcrafted models. Entropy-guided temperature scaling enables robust multi-hypothesis tracking and confident convergence under visual ambiguity. We evaluate MoViX on the TartanDrive 2.0 dataset, training on under 30 minutes of data and testing over 12.29 km. Despite outdated satellite imagery, MoViX localizes within 25 meters of ground truth 93% of the time, and within 50 meters 100% of the time in unseen regions, outperforming state-of-the-art baselines without environment-specific tuning. We further demonstrate generalization on a real-world off-road dataset from a geographically distinct site with a different robot platform.
Aligning Latent Spaces with Flow Priors
This paper presents a novel framework for aligning learnable latent spaces to arbitrary target distributions by leveraging flow-based generative models as priors. Our method first pretrains a flow model on the target features to capture the underlying distribution. This fixed flow model subsequently regularizes the latent space via an alignment loss, which reformulates the flow matching objective to treat the latents as optimization targets. We formally prove that minimizing this alignment loss establishes a computationally tractable surrogate objective for maximizing a variational lower bound on the log-likelihood of latents under the target distribution. Notably, the proposed method eliminates computationally expensive likelihood evaluations and avoids ODE solving during optimization. As a proof of concept, we demonstrate in a controlled setting that the alignment loss landscape closely approximates the negative log-likelihood of the target distribution. We further validate the effectiveness of our approach through large-scale image generation experiments on ImageNet with diverse target distributions, accompanied by detailed discussions and ablation studies. With both theoretical and empirical validation, our framework paves a new way for latent space alignment.
SAM-aware Test-time Adaptation for Universal Medical Image Segmentation
Universal medical image segmentation using the Segment Anything Model (SAM) remains challenging due to its limited adaptability to medical domains. Existing adaptations, such as MedSAM, enhance SAM's performance in medical imaging but at the cost of reduced generalization to unseen data. Therefore, in this paper, we propose SAM-aware Test-Time Adaptation (SAM-TTA), a fundamentally different pipeline that preserves the generalization of SAM while improving its segmentation performance in medical imaging via a test-time framework. SAM-TTA tackles two key challenges: (1) input-level discrepancies caused by differences in image acquisition between natural and medical images and (2) semantic-level discrepancies due to fundamental differences in object definition between natural and medical domains (e.g., clear boundaries vs. ambiguous structures). Specifically, our SAM-TTA framework comprises (1) Self-adaptive Bezier Curve-based Transformation (SBCT), which adaptively converts single-channel medical images into three-channel SAM-compatible inputs while maintaining structural integrity, to mitigate the input gap between medical and natural images, and (2) Dual-scale Uncertainty-driven Mean Teacher adaptation (DUMT), which employs consistency learning to align SAM's internal representations to medical semantics, enabling efficient adaptation without auxiliary supervision or expensive retraining. Extensive experiments on five public datasets demonstrate that our SAM-TTA outperforms existing TTA approaches and even surpasses fully fine-tuned models such as MedSAM in certain scenarios, establishing a new paradigm for universal medical image segmentation. Code can be found at https://github.com/JianghaoWu/SAM-TTA.
comment: 10 pages, 4 figures
MonkeyOCR: Document Parsing with a Structure-Recognition-Relation Triplet Paradigm
We introduce MonkeyOCR, a vision-language model for document parsing that advances the state of the art by leveraging a Structure-Recognition-Relation (SRR) triplet paradigm. This design simplifies what would otherwise be a complex multi-tool pipeline (as in MinerU's modular approach) and avoids the inefficiencies of processing full pages with giant end-to-end models (e.g., large multimodal LLMs like Qwen-VL). In SRR, document parsing is abstracted into three fundamental questions - "Where is it?" (structure), "What is it?" (recognition), and "How is it organized?" (relation) - corresponding to layout analysis, content identification, and logical ordering. This focused decomposition balances accuracy and speed: it enables efficient, scalable processing without sacrificing precision. To train and evaluate this approach, we introduce the MonkeyDoc (the most comprehensive document parsing dataset to date), with 3.9 million instances spanning over ten document types in both Chinese and English. Experiments show that MonkeyOCR outperforms MinerU by an average of 5.1%, with particularly notable improvements on challenging content such as formulas (+15.0%) and tables (+8.6%). Remarkably, our 3B-parameter model surpasses much larger and top-performing models, including Qwen2.5-VL (72B) and Gemini 2.5 Pro, achieving state-of-the-art average performance on English document parsing tasks. In addition, MonkeyOCR processes multi-page documents significantly faster (0.84 pages per second compared to 0.65 for MinerU and 0.12 for Qwen2.5-VL-7B). The 3B model can be efficiently deployed for inference on a single NVIDIA 3090 GPU. Code and models will be released at https://github.com/Yuliang-Liu/MonkeyOCR.
DSG-World: Learning a 3D Gaussian World Model from Dual State Videos
Building an efficient and physically consistent world model from limited observations is a long standing challenge in vision and robotics. Many existing world modeling pipelines are based on implicit generative models, which are hard to train and often lack 3D or physical consistency. On the other hand, explicit 3D methods built from a single state often require multi-stage processing-such as segmentation, background completion, and inpainting-due to occlusions. To address this, we leverage two perturbed observations of the same scene under different object configurations. These dual states offer complementary visibility, alleviating occlusion issues during state transitions and enabling more stable and complete reconstruction. In this paper, we present DSG-World, a novel end-to-end framework that explicitly constructs a 3D Gaussian World model from Dual State observations. Our approach builds dual segmentation-aware Gaussian fields and enforces bidirectional photometric and semantic consistency. We further introduce a pseudo intermediate state for symmetric alignment and design collaborative co-pruning trategies to refine geometric completeness. DSG-World enables efficient real-to-simulation transfer purely in the explicit Gaussian representation space, supporting high-fidelity rendering and object-level scene manipulation without relying on dense observations or multi-stage pipelines. Extensive experiments demonstrate strong generalization to novel views and scene states, highlighting the effectiveness of our approach for real-world 3D reconstruction and simulation.
Towards Vision-Language-Garment Models For Web Knowledge Garment Understanding and Generation CVPR
Multimodal foundation models have demonstrated strong generalization, yet their ability to transfer knowledge to specialized domains such as garment generation remains underexplored. We introduce VLG, a vision-language-garment model that synthesizes garments from textual descriptions and visual imagery. Our experiments assess VLG's zero-shot generalization, investigating its ability to transfer web-scale reasoning to unseen garment styles and prompts. Preliminary results indicate promising transfer capabilities, highlighting the potential for multimodal foundation models to adapt effectively to specialized domains like fashion design.
comment: Presented at MMFM CVPRW'25, code available at https://georgenakayama.github.io/AIpparel/
Follow-Your-Motion: Video Motion Transfer via Efficient Spatial-Temporal Decoupled Finetuning
Recently, breakthroughs in the video diffusion transformer have shown remarkable capabilities in diverse motion generations. As for the motion-transfer task, current methods mainly use two-stage Low-Rank Adaptations (LoRAs) finetuning to obtain better performance. However, existing adaptation-based motion transfer still suffers from motion inconsistency and tuning inefficiency when applied to large video diffusion transformers. Naive two-stage LoRA tuning struggles to maintain motion consistency between generated and input videos due to the inherent spatial-temporal coupling in the 3D attention operator. Additionally, they require time-consuming fine-tuning processes in both stages. To tackle these issues, we propose Follow-Your-Motion, an efficient two-stage video motion transfer framework that finetunes a powerful video diffusion transformer to synthesize complex motion.Specifically, we propose a spatial-temporal decoupled LoRA to decouple the attention architecture for spatial appearance and temporal motion processing. During the second training stage, we design the sparse motion sampling and adaptive RoPE to accelerate the tuning speed. To address the lack of a benchmark for this field, we introduce MotionBench, a comprehensive benchmark comprising diverse motion, including creative camera motion, single object motion, multiple object motion, and complex human motion. We show extensive evaluations on MotionBench to verify the superiority of Follow-Your-Motion.
comment: project page: https://follow-your-motion.github.io/
OGGSplat: Open Gaussian Growing for Generalizable Reconstruction with Expanded Field-of-View
Reconstructing semantic-aware 3D scenes from sparse views is a challenging yet essential research direction, driven by the demands of emerging applications such as virtual reality and embodied AI. Existing per-scene optimization methods require dense input views and incur high computational costs, while generalizable approaches often struggle to reconstruct regions outside the input view cone. In this paper, we propose OGGSplat, an open Gaussian growing method that expands the field-of-view in generalizable 3D reconstruction. Our key insight is that the semantic attributes of open Gaussians provide strong priors for image extrapolation, enabling both semantic consistency and visual plausibility. Specifically, once open Gaussians are initialized from sparse views, we introduce an RGB-semantic consistent inpainting module applied to selected rendered views. This module enforces bidirectional control between an image diffusion model and a semantic diffusion model. The inpainted regions are then lifted back into 3D space for efficient and progressive Gaussian parameter optimization. To evaluate our method, we establish a Gaussian Outpainting (GO) benchmark that assesses both semantic and generative quality of reconstructed open-vocabulary scenes. OGGSplat also demonstrates promising semantic-aware scene reconstruction capabilities when provided with two view images captured directly from a smartphone camera.
Grounding Beyond Detection: Enhancing Contextual Understanding in Embodied 3D Grounding
Embodied 3D grounding aims to localize target objects described in human instructions from ego-centric viewpoint. Most methods typically follow a two-stage paradigm where a trained 3D detector's optimized backbone parameters are used to initialize a grounding model. In this study, we explore a fundamental question: Does embodied 3D grounding benefit enough from detection? To answer this question, we assess the grounding performance of detection models using predicted boxes filtered by the target category. Surprisingly, these detection models without any instruction-specific training outperform the grounding models explicitly trained with language instructions. This indicates that even category-level embodied 3D grounding may not be well resolved, let alone more fine-grained context-aware grounding. Motivated by this finding, we propose DEGround, which shares DETR queries as object representation for both DEtection and Grounding and enables the grounding to benefit from basic category classification and box detection. Based on this framework, we further introduce a regional activation grounding module that highlights instruction-related regions and a query-wise modulation module that incorporates sentence-level semantic into the query representation, strengthening the context-aware understanding of language instructions. Remarkably, DEGround outperforms state-of-the-art model BIP3D by 7.52\% at overall accuracy on the EmbodiedScan validation set. The source code will be publicly available at https://github.com/zyn213/DEGround.
comment: 1st place on embodiedscan
Quantifying Cross-Modality Memorization in Vision-Language Models
Understanding what and how neural networks memorize during training is crucial, both from the perspective of unintentional memorization of potentially sensitive information and from the standpoint of effective knowledge acquisition for real-world, knowledge-intensive tasks. While previous studies primarily investigate memorization within a single modality, such as text memorization in large language models or image memorization in diffusion models, unified multimodal models are becoming increasingly prevalent in practical applications. In this work, we focus on the unique characteristics of cross-modality memorization and conduct a systematic study centered on vision-language models. To facilitate controlled experiments, we first introduce a synthetic persona dataset comprising diverse synthetic person images and textual descriptions. We quantify factual knowledge memorization and cross-modal transferability by training models on a single modality and evaluating their performance in the other. Our results reveal that facts learned in one modality transfer to the other, but a significant gap exists between recalling information in the source and target modalities. Furthermore, we observe that this gap exists across various scenarios, including more capable models, machine unlearning, and the multi-hop case. At the end, we propose a baseline method to mitigate this challenge. We hope our study can inspire future research on developing more robust multimodal learning techniques to enhance cross-modal transferability.
Vision-Based Autonomous MM-Wave Reflector Using ArUco-Driven Angle-of-Arrival Estimation
Reliable millimeter-wave (mmWave) communication in non-line-of-sight (NLoS) conditions remains a major challenge for both military and civilian operations, especially in urban or infrastructure-limited environments. This paper presents a vision-aided autonomous reflector system designed to enhance mmWave link performance by dynamically steering signal reflections using a motorized metallic plate. The proposed system leverages a monocular camera to detect ArUco markers on allied transmitter and receiver nodes, estimate their angles of arrival, and align the reflector in real time for optimal signal redirection. This approach enables selective beam coverage by serving only authenticated targets with visible markers and reduces the risk of unintended signal exposure. The designed prototype, built on a Raspberry Pi 4 and low-power hardware, operates autonomously without reliance on external infrastructure or GPS. Experimental results at 60\,GHz demonstrate a 23\,dB average gain in received signal strength and an 0.89 probability of maintaining signal reception above a target threshold of -65 dB in an indoor environment, far exceeding the static and no-reflector baselines. These results demonstrate the system's potential for resilient and adaptive mmWave connectivity in complex and dynamic environments.
MokA: Multimodal Low-Rank Adaptation for MLLMs
In this paper, we reveal that most current efficient multimodal fine-tuning methods are hindered by a key limitation: they are directly borrowed from LLMs, often neglecting the intrinsic differences of multimodal scenarios and even affecting the full utilization of all modalities. Inspired by our empirical observation, we argue that unimodal adaptation and cross-modal adaptation are two essential parts for the effective fine-tuning of MLLMs. From this perspective, we propose Multimodal low-rank Adaptation (MokA), a multimodal-aware efficient fine-tuning strategy that takes multimodal characteristics into consideration. It compresses unimodal information by modality-specific parameters while explicitly enhancing cross-modal interaction, ensuring both unimodal and cross-modal adaptation. Extensive experiments cover three representative multimodal scenarios (audio-visual-text, visual-text, and speech-text), and multiple LLM backbones (LLaMA2/3, Qwen2, Qwen2.5-VL, etc). Consistent improvements indicate the efficacy and versatility of the proposed method. Ablation studies and efficiency evaluation are also conducted to fully asses our method. Overall, we think MokA provides a more targeted solution for efficient adaptation of MLLMs, paving the way for further exploration. The project page is at https://gewu-lab.github.io/MokA.
Single GPU Task Adaptation of Pathology Foundation Models for Whole Slide Image Analysis
Pathology foundation models (PFMs) have emerged as powerful tools for analyzing whole slide images (WSIs). However, adapting these pretrained PFMs for specific clinical tasks presents considerable challenges, primarily due to the availability of only weak (WSI-level) labels for gigapixel images, necessitating multiple instance learning (MIL) paradigm for effective WSI analysis. This paper proposes a novel approach for single-GPU \textbf{T}ask \textbf{A}daptation of \textbf{PFM}s (TAPFM) that uses vision transformer (\vit) attention for MIL aggregation while optimizing both for feature representations and attention weights. The proposed approach maintains separate computational graphs for MIL aggregator and the PFM to create stable training dynamics that align with downstream task objectives during end-to-end adaptation. Evaluated on mutation prediction tasks for bladder cancer and lung adenocarcinoma across institutional and TCGA cohorts, TAPFM consistently outperforms conventional approaches, with H-Optimus-0 (TAPFM) outperforming the benchmarks. TAPFM effectively handles multi-label classification of actionable mutations as well. Thus, TAPFM makes adaptation of powerful pre-trained PFMs practical on standard hardware for various clinical applications.
Track Any Anomalous Object: A Granular Video Anomaly Detection Pipeline
Video anomaly detection (VAD) is crucial in scenarios such as surveillance and autonomous driving, where timely detection of unexpected activities is essential. Although existing methods have primarily focused on detecting anomalous objects in videos -- either by identifying anomalous frames or objects -- they often neglect finer-grained analysis, such as anomalous pixels, which limits their ability to capture a broader range of anomalies. To address this challenge, we propose a new framework called Track Any Anomalous Object (TAO), which introduces a granular video anomaly detection pipeline that, for the first time, integrates the detection of multiple fine-grained anomalous objects into a unified framework. Unlike methods that assign anomaly scores to every pixel, our approach transforms the problem into pixel-level tracking of anomalous objects. By linking anomaly scores to downstream tasks such as segmentation and tracking, our method removes the need for threshold tuning and achieves more precise anomaly localization in long and complex video sequences. Experiments demonstrate that TAO sets new benchmarks in accuracy and robustness. Project page available online.
Through-the-Wall Radar Human Activity Recognition WITHOUT Using Neural Networks
After a few years of research in the field of through-the-wall radar (TWR) human activity recognition (HAR), I found that we seem to be stuck in the mindset of training on radar image data through neural network models. The earliest related works in this field based on template matching did not require a training process, and I believe they have never died. Because these methods possess a strong physical interpretability and are closer to the basis of theoretical signal processing research. In this paper, I would like to try to return to the original path by attempting to eschew neural networks to achieve the TWR HAR task and challenge to achieve intelligent recognition as neural network models. In detail, the range-time map and Doppler-time map of TWR are first generated. Then, the initial regions of the human target foreground and noise background on the maps are determined using corner detection method, and the micro-Doppler signature is segmented using the multiphase active contour model. The micro-Doppler segmentation feature is discretized into a two-dimensional point cloud. Finally, the topological similarity between the resulting point cloud and the point clouds of the template data is calculated using Mapper algorithm to obtain the recognition results. The effectiveness of the proposed method is demonstrated by numerical simulated and measured experiments. The open-source code of this work is released at: https://github.com/JoeyBGOfficial/Through-the-Wall-Radar-Human-Activity-Recognition-Without-Using-Neural-Networks.
comment: 15 pages, 8 figures, 8 tables
FRED: The Florence RGB-Event Drone Dataset
Small, fast, and lightweight drones present significant challenges for traditional RGB cameras due to their limitations in capturing fast-moving objects, especially under challenging lighting conditions. Event cameras offer an ideal solution, providing high temporal definition and dynamic range, yet existing benchmarks often lack fine temporal resolution or drone-specific motion patterns, hindering progress in these areas. This paper introduces the Florence RGB-Event Drone dataset (FRED), a novel multimodal dataset specifically designed for drone detection, tracking, and trajectory forecasting, combining RGB video and event streams. FRED features more than 7 hours of densely annotated drone trajectories, using 5 different drone models and including challenging scenarios such as rain and adverse lighting conditions. We provide detailed evaluation protocols and standard metrics for each task, facilitating reproducible benchmarking. The authors hope FRED will advance research in high-speed drone perception and multimodal spatiotemporal understanding.
CIVET: Systematic Evaluation of Understanding in VLMs
While Vision-Language Models (VLMs) have achieved competitive performance in various tasks, their comprehension of the underlying structure and semantics of a scene remains understudied. To investigate the understanding of VLMs, we study their capability regarding object properties and relations in a controlled and interpretable manner. To this scope, we introduce CIVET, a novel and extensible framework for systematiC evaluatIon Via controllEd sTimuli. CIVET addresses the lack of standardized systematic evaluation for assessing VLMs' understanding, enabling researchers to test hypotheses with statistical rigor. With CIVET, we evaluate five state-of-the-art VLMs on exhaustive sets of stimuli, free from annotation noise, dataset-specific biases, and uncontrolled scene complexity. Our findings reveal that 1) current VLMs can accurately recognize only a limited set of basic object properties; 2) their performance heavily depends on the position of the object in the scene; 3) they struggle to understand basic relations among objects. Furthermore, a comparative evaluation with human annotators reveals that VLMs still fall short of achieving human-level accuracy.
PixCell: A generative foundation model for digital histopathology images
The digitization of histology slides has revolutionized pathology, providing massive datasets for cancer diagnosis and research. Contrastive self-supervised and vision-language models have been shown to effectively mine large pathology datasets to learn discriminative representations. On the other hand, generative models, capable of synthesizing realistic and diverse images, present a compelling solution to address unique problems in pathology that involve synthesizing images; overcoming annotated data scarcity, enabling privacy-preserving data sharing, and performing inherently generative tasks, such as virtual staining. We introduce PixCell, the first diffusion-based generative foundation model for histopathology. We train PixCell on PanCan-30M, a vast, diverse dataset derived from 69,184 H\&E-stained whole slide images covering various cancer types. We employ a progressive training strategy and a self-supervision-based conditioning that allows us to scale up training without any annotated data. PixCell generates diverse and high-quality images across multiple cancer types, which we find can be used in place of real data to train a self-supervised discriminative model. Synthetic images shared between institutions are subject to fewer regulatory barriers than would be the case with real clinical images. Furthermore, we showcase the ability to precisely control image generation using a small set of annotated images, which can be used for both data augmentation and educational purposes. Testing on a cell segmentation task, a mask-guided PixCell enables targeted data augmentation, improving downstream performance. Finally, we demonstrate PixCell's ability to use H\&E structural staining to infer results from molecular marker studies; we use this capability to infer IHC staining from H\&E images. Our trained models are publicly released to accelerate research in computational pathology.
Practical Manipulation Model for Robust Deepfake Detection
Modern deepfake detection models have achieved strong performance even on the challenging cross-dataset task. However, detection performance under non-ideal conditions remains very unstable, limiting success on some benchmark datasets and making it easy to circumvent detection. Inspired by the move to a more real-world degradation model in the area of image super-resolution, we have developed a Practical Manipulation Model (PMM) that covers a larger set of possible forgeries. We extend the space of pseudo-fakes by using Poisson blending, more diverse masks, generator artifacts, and distractors. Additionally, we improve the detectors' generality and robustness by adding strong degradations to the training images. We demonstrate that these changes not only significantly enhance the model's robustness to common image degradations but also improve performance on standard benchmark datasets. Specifically, we show clear increases of $3.51\%$ and $6.21\%$ AUC on the DFDC and DFDCP datasets, respectively, over the s-o-t-a LAA backbone. Furthermore, we highlight the lack of robustness in previous detectors and our improvements in this regard. Code can be found at https://github.com/BenediktHopf/PMM
DIMCIM: A Quantitative Evaluation Framework for Default-mode Diversity and Generalization in Text-to-Image Generative Models
Recent advances in text-to-image (T2I) models have achieved impressive quality and consistency. However, this has come at the cost of representation diversity. While automatic evaluation methods exist for benchmarking model diversity, they either require reference image datasets or lack specificity about the kind of diversity measured, limiting their adaptability and interpretability. To address this gap, we introduce the Does-it/Can-it framework, DIM-CIM, a reference-free measurement of default-mode diversity ("Does" the model generate images with expected attributes?) and generalization capacity ("Can" the model generate diverse attributes for a particular concept?). We construct the COCO-DIMCIM benchmark, which is seeded with COCO concepts and captions and augmented by a large language model. With COCO-DIMCIM, we find that widely-used models improve in generalization at the cost of default-mode diversity when scaling from 1.5B to 8.1B parameters. DIMCIM also identifies fine-grained failure cases, such as attributes that are generated with generic prompts but are rarely generated when explicitly requested. Finally, we use DIMCIM to evaluate the training data of a T2I model and observe a correlation of 0.85 between diversity in training images and default-mode diversity. Our work provides a flexible and interpretable framework for assessing T2I model diversity and generalization, enabling a more comprehensive understanding of model performance.
Astraea: A GPU-Oriented Token-wise Acceleration Framework for Video Diffusion Transformers
Video diffusion transformers (vDiTs) have made impressive progress in text-to-video generation, but their high computational demands present major challenges for practical deployment. While existing acceleration methods reduce workload at various granularities, they often rely on heuristics, limiting their applicability. We introduce ASTRAEA, an automatic framework that searches for near-optimal configurations for vDiT-based video generation. At its core, ASTRAEA proposes a lightweight token selection mechanism and a memory-efficient, GPU-parallel sparse attention strategy, enabling linear reductions in execution time with minimal impact on generation quality. To determine optimal token reduction for different timesteps, we further design a search framework that leverages a classic evolutionary algorithm to automatically determine the distribution of the token budget effectively. Together, ASTRAEA achieves up to 2.4x inference speedup on a single GPU with great scalability (up to 13.2x speedup on 8 GPUs) while retaining better video quality compared to the state-of-the-art methods (<0.5% loss on the VBench score compared to the baseline vDiT models).
FG 2025 TrustFAA: the First Workshop on Towards Trustworthy Facial Affect Analysis: Advancing Insights of Fairness, Explainability, and Safety (TrustFAA)
With the increasing prevalence and deployment of Emotion AI-powered facial affect analysis (FAA) tools, concerns about the trustworthiness of these systems have become more prominent. This first workshop on "Towards Trustworthy Facial Affect Analysis: Advancing Insights of Fairness, Explainability, and Safety (TrustFAA)" aims to bring together researchers who are investigating different challenges in relation to trustworthiness-such as interpretability, uncertainty, biases, and privacy-across various facial affect analysis tasks, including macro/ micro-expression recognition, facial action unit detection, other corresponding applications such as pain and depression detection, as well as human-robot interaction and collaboration. In alignment with FG2025's emphasis on ethics, as demonstrated by the inclusion of an Ethical Impact Statement requirement for this year's submissions, this workshop supports FG2025's efforts by encouraging research, discussion and dialogue on trustworthy FAA.
Synthetic Dataset Generation for Autonomous Mobile Robots Using 3D Gaussian Splatting for Vision Training
Annotated datasets are critical for training neural networks for object detection, yet their manual creation is time- and labour-intensive, subjective to human error, and often limited in diversity. This challenge is particularly pronounced in the domain of robotics, where diverse and dynamic scenarios further complicate the creation of representative datasets. To address this, we propose a novel method for automatically generating annotated synthetic data in Unreal Engine. Our approach leverages photorealistic 3D Gaussian splats for rapid synthetic data generation. We demonstrate that synthetic datasets can achieve performance comparable to that of real-world datasets while significantly reducing the time required to generate and annotate data. Additionally, combining real-world and synthetic data significantly increases object detection performance by leveraging the quality of real-world images with the easier scalability of synthetic data. To our knowledge, this is the first application of synthetic data for training object detection algorithms in the highly dynamic and varied environment of robot soccer. Validation experiments reveal that a detector trained on synthetic images performs on par with one trained on manually annotated real-world images when tested on robot soccer match scenarios. Our method offers a scalable and comprehensive alternative to traditional dataset creation, eliminating the labour-intensive error-prone manual annotation process. By generating datasets in a simulator where all elements are intrinsically known, we ensure accurate annotations while significantly reducing manual effort, which makes it particularly valuable for robotics applications requiring diverse and scalable training data.
Interpretable Multimodal Framework for Human-Centered Street Assessment: Integrating Visual-Language Models for Perceptual Urban Diagnostics
While objective street metrics derived from imagery or GIS have become standard in urban analytics, they remain insufficient to capture subjective perceptions essential to inclusive urban design. This study introduces a novel Multimodal Street Evaluation Framework (MSEF) that fuses a vision transformer (VisualGLM-6B) with a large language model (GPT-4), enabling interpretable dual-output assessment of streetscapes. Leveraging over 15,000 annotated street-view images from Harbin, China, we fine-tune the framework using LoRA and P-Tuning v2 for parameter-efficient adaptation. The model achieves an F1 score of 0.84 on objective features and 89.3 percent agreement with aggregated resident perceptions, validated across stratified socioeconomic geographies. Beyond classification accuracy, MSEF captures context-dependent contradictions: for instance, informal commerce boosts perceived vibrancy while simultaneously reducing pedestrian comfort. It also identifies nonlinear and semantically contingent patterns -- such as the divergent perceptual effects of architectural transparency across residential and commercial zones -- revealing the limits of universal spatial heuristics. By generating natural-language rationales grounded in attention mechanisms, the framework bridges sensory data with socio-affective inference, enabling transparent diagnostics aligned with SDG 11. This work offers both methodological innovation in urban perception modeling and practical utility for planning systems seeking to reconcile infrastructural precision with lived experience.
comment: 24 pages, 10 figures
SeedEdit 3.0: Fast and High-Quality Generative Image Editing
We introduce SeedEdit 3.0, in companion with our T2I model Seedream 3.0 [22], which significantly improves over our previous version [27] in both aspects of edit instruction following and image content (e.g., ID/IP) preservation on real image inputs. Additional to model upgrading with T2I, in this report, we present several key improvements. First, we develop an enhanced data curation pipeline with a meta-info paradigm and meta-info embedding strategy that help mix images from multiple data sources. This allows us to scale editing data effectively, and meta information is helpfult to connect VLM with diffusion model more closely. Second, we introduce a joint learning pipeline for computing a diffusion loss and a reward loss. Finally, we evaluate SeedEdit 3.0 on our testing benchmarks, for real image editing, where it achieves a best trade-off between multiple aspects, yielding a high usability rate of 56.1%, compared to SeedEdit 1.6 (38.4%), GPT4o (37.1%) and Gemini 2.0 (30.3%).
comment: Our website: https://seed.bytedance.com/tech/seededit
Parking, Perception, and Retail: Street-Level Determinants of Community Vitality in Harbin
The commercial vitality of community-scale streets in Chinese cities is shaped by complex interactions between vehicular accessibility, environmental quality, and pedestrian perception. This study proposes an interpretable, image-based framework to examine how street-level features -- including parked vehicle density, greenery, cleanliness, and street width -- impact retail performance and user satisfaction in Harbin, China. Leveraging street view imagery and a multimodal large language model (VisualGLM-6B), we construct a Community Commercial Vitality Index (CCVI) from Meituan and Dianping data and analyze its relationship with spatial attributes extracted via GPT-4-based perception modeling. Our findings reveal that while moderate vehicle presence may enhance commercial access, excessive on-street parking -- especially in narrow streets -- erodes walkability and reduces both satisfaction and shop-level pricing. In contrast, streets with higher perceived greenery and cleanliness show significantly greater satisfaction scores but only weak associations with pricing. Street width moderates the effects of vehicle presence, underscoring the importance of spatial configuration. These results demonstrate the value of integrating AI-assisted perception with urban morphological analysis to capture non-linear and context-sensitive drivers of commercial success. This study advances both theoretical and methodological frontiers by highlighting the conditional role of vehicle activity in neighborhood commerce and demonstrating the feasibility of multimodal AI for perceptual urban diagnostics. The implications extend to urban design, parking management, and scalable planning tools for community revitalization.
comment: 22 pages,5 figures
A Survey on Vietnamese Document Analysis and Recognition: Challenges and Future Directions
Vietnamese document analysis and recognition (DAR) is a crucial field with applications in digitization, information retrieval, and automation. Despite advancements in OCR and NLP, Vietnamese text recognition faces unique challenges due to its complex diacritics, tonal variations, and lack of large-scale annotated datasets. Traditional OCR methods often struggle with real-world document variations, while deep learning approaches have shown promise but remain limited by data scarcity and generalization issues. Recently, large language models (LLMs) and vision-language models have demonstrated remarkable improvements in text recognition and document understanding, offering a new direction for Vietnamese DAR. However, challenges such as domain adaptation, multimodal learning, and computational efficiency persist. This survey provide a comprehensive review of existing techniques in Vietnamese document recognition, highlights key limitations, and explores how LLMs can revolutionize the field. We discuss future research directions, including dataset development, model optimization, and the integration of multimodal approaches for improved document intelligence. By addressing these gaps, we aim to foster advancements in Vietnamese DAR and encourage community-driven solutions.
FlowDirector: Training-Free Flow Steering for Precise Text-to-Video Editing
Text-driven video editing aims to modify video content according to natural language instructions. While recent training-free approaches have made progress by leveraging pre-trained diffusion models, they typically rely on inversion-based techniques that map input videos into the latent space, which often leads to temporal inconsistencies and degraded structural fidelity. To address this, we propose FlowDirector, a novel inversion-free video editing framework. Our framework models the editing process as a direct evolution in data space, guiding the video via an Ordinary Differential Equation (ODE) to smoothly transition along its inherent spatiotemporal manifold, thereby preserving temporal coherence and structural details. To achieve localized and controllable edits, we introduce an attention-guided masking mechanism that modulates the ODE velocity field, preserving non-target regions both spatially and temporally. Furthermore, to address incomplete edits and enhance semantic alignment with editing instructions, we present a guidance-enhanced editing strategy inspired by Classifier-Free Guidance, which leverages differential signals between multiple candidate flows to steer the editing trajectory toward stronger semantic alignment without compromising structural consistency. Extensive experiments across benchmarks demonstrate that FlowDirector achieves state-of-the-art performance in instruction adherence, temporal consistency, and background preservation, establishing a new paradigm for efficient and coherent video editing without inversion.
comment: Project Page is https://flowdirector-edit.github.io
DACN: Dual-Attention Convolutional Network for Hyperspectral Image Super-Resolution
2D convolutional neural networks (CNNs) have attracted significant attention for hyperspectral image super-resolution tasks. However, a key limitation is their reliance on local neighborhoods, which leads to a lack of global contextual understanding. Moreover, band correlation and data scarcity continue to limit their performance. To mitigate these issues, we introduce DACN, a dual-attention convolutional network for hyperspectral image super-resolution. Specifically, the model first employs augmented convolutions, integrating multi-head attention to effectively capture both local and global feature dependencies. Next, we infer separate attention maps for the channel and spatial dimensions to determine where to focus across different channels and spatial positions. Furthermore, a custom optimized loss function is proposed that combines L2 regularization with spatial-spectral gradient loss to ensure accurate spectral fidelity. Experimental results on two hyperspectral datasets demonstrate that the combination of multi-head attention and channel attention outperforms either attention mechanism used individually.
Identifying and Understanding Cross-Class Features in Adversarial Training ICML 2025
Adversarial training (AT) has been considered one of the most effective methods for making deep neural networks robust against adversarial attacks, while the training mechanisms and dynamics of AT remain open research problems. In this paper, we present a novel perspective on studying AT through the lens of class-wise feature attribution. Specifically, we identify the impact of a key family of features on AT that are shared by multiple classes, which we call cross-class features. These features are typically useful for robust classification, which we offer theoretical evidence to illustrate through a synthetic data model. Through systematic studies across multiple model architectures and settings, we find that during the initial stage of AT, the model tends to learn more cross-class features until the best robustness checkpoint. As AT further squeezes the training robust loss and causes robust overfitting, the model tends to make decisions based on more class-specific features. Based on these discoveries, we further provide a unified view of two existing properties of AT, including the advantage of soft-label training and robust overfitting. Overall, these insights refine the current understanding of AT mechanisms and provide new perspectives on studying them. Our code is available at https://github.com/PKU-ML/Cross-Class-Features-AT.
comment: ICML 2025
Physical Annotation for Automated Optical Inspection: A Concept for In-Situ, Pointer-Based Trainingdata Generation
This paper introduces a novel physical annotation system designed to generate training data for automated optical inspection. The system uses pointer-based in-situ interaction to transfer the valuable expertise of trained inspection personnel directly into a machine learning (ML) training pipeline. Unlike conventional screen-based annotation methods, our system captures physical trajectories and contours directly on the object, providing a more intuitive and efficient way to label data. The core technology uses calibrated, tracked pointers to accurately record user input and transform these spatial interactions into standardised annotation formats that are compatible with open-source annotation software. Additionally, a simple projector-based interface projects visual guidance onto the object to assist users during the annotation process, ensuring greater accuracy and consistency. The proposed concept bridges the gap between human expertise and automated data generation, enabling non-IT experts to contribute to the ML training pipeline and preventing the loss of valuable training samples. Preliminary evaluation results confirm the feasibility of capturing detailed annotation trajectories and demonstrate that integration with CVAT streamlines the workflow for subsequent ML tasks. This paper details the system architecture, calibration procedures and interface design, and discusses its potential contribution to future ML data generation for automated optical inspection.
UAV4D: Dynamic Neural Rendering of Human-Centric UAV Imagery using Gaussian Splatting
Despite significant advancements in dynamic neural rendering, existing methods fail to address the unique challenges posed by UAV-captured scenarios, particularly those involving monocular camera setups, top-down perspective, and multiple small, moving humans, which are not adequately represented in existing datasets. In this work, we introduce UAV4D, a framework for enabling photorealistic rendering for dynamic real-world scenes captured by UAVs. Specifically, we address the challenge of reconstructing dynamic scenes with multiple moving pedestrians from monocular video data without the need for additional sensors. We use a combination of a 3D foundation model and a human mesh reconstruction model to reconstruct both the scene background and humans. We propose a novel approach to resolve the scene scale ambiguity and place both humans and the scene in world coordinates by identifying human-scene contact points. Additionally, we exploit the SMPL model and background mesh to initialize Gaussian splats, enabling holistic scene rendering. We evaluated our method on three complex UAV-captured datasets: VisDrone, Manipal-UAV, and Okutama-Action, each with distinct characteristics and 10~50 humans. Our results demonstrate the benefits of our approach over existing methods in novel view synthesis, achieving a 1.5 dB PSNR improvement and superior visual sharpness.
ComfyUI-Copilot: An Intelligent Assistant for Automated Workflow Development ACL 2025
We introduce ComfyUI-Copilot, a large language model-powered plugin designed to enhance the usability and efficiency of ComfyUI, an open-source platform for AI-driven art creation. Despite its flexibility and user-friendly interface, ComfyUI can present challenges to newcomers, including limited documentation, model misconfigurations, and the complexity of workflow design. ComfyUI-Copilot addresses these challenges by offering intelligent node and model recommendations, along with automated one-click workflow construction. At its core, the system employs a hierarchical multi-agent framework comprising a central assistant agent for task delegation and specialized worker agents for different usages, supported by our curated ComfyUI knowledge bases to streamline debugging and deployment. We validate the effectiveness of ComfyUI-Copilot through both offline quantitative evaluations and online user feedback, showing that it accurately recommends nodes and accelerates workflow development. Additionally, use cases illustrate that ComfyUI-Copilot lowers entry barriers for beginners and enhances workflow efficiency for experienced users. The ComfyUI-Copilot installation package and a demo video are available at https://github.com/AIDC-AI/ComfyUI-Copilot.
comment: ACL 2025 Demo. Github: https://github.com/AIDC-AI/ComfyUI-Copilot
Point Cloud Segmentation of Agricultural Vehicles using 3D Gaussian Splatting
Training neural networks for tasks such as 3D point cloud semantic segmentation demands extensive datasets, yet obtaining and annotating real-world point clouds is costly and labor-intensive. This work aims to introduce a novel pipeline for generating realistic synthetic data, by leveraging 3D Gaussian Splatting (3DGS) and Gaussian Opacity Fields (GOF) to generate 3D assets of multiple different agricultural vehicles instead of using generic models. These assets are placed in a simulated environment, where the point clouds are generated using a simulated LiDAR. This is a flexible approach that allows changing the LiDAR specifications without incurring additional costs. We evaluated the impact of synthetic data on segmentation models such as PointNet++, Point Transformer V3, and OACNN, by training and validating the models only on synthetic data. Remarkably, the PTv3 model had an mIoU of 91.35\%, a noteworthy result given that the model had neither been trained nor validated on any real data. Further studies even suggested that in certain scenarios the models trained only on synthetically generated data performed better than models trained on real-world data. Finally, experiments demonstrated that the models can generalize across semantic classes, enabling accurate predictions on mesh models they were never trained on.
Structure-Aware Radar-Camera Depth Estimation
Monocular depth estimation aims to determine the depth of each pixel from an RGB image captured by a monocular camera. The development of deep learning has significantly advanced this field by facilitating the learning of depth features from some well-annotated datasets \cite{Geiger_Lenz_Stiller_Urtasun_2013,silberman2012indoor}. Eigen \textit{et al.} \cite{eigen2014depth} first introduce a multi-scale fusion network for depth regression. Following this, subsequent improvements have come from reinterpreting the regression task as a classification problem \cite{bhat2021adabins,Li_Wang_Liu_Jiang_2022}, incorporating additional priors \cite{shao2023nddepth,yang2023gedepth}, and developing more effective objective function \cite{xian2020structure,Yin_Liu_Shen_Yan_2019}. Despite these advances, generalizing to unseen domains remains a challenge. Recently, several methods have employed affine-invariant loss to enable multi-dataset joint training \cite{MiDaS,ZeroDepth,guizilini2023towards,Dany}. Among them, Depth Anything \cite{Dany} has shown leading performance in zero-shot monocular depth estimation. While it struggles to estimate accurate metric depth due to the lack of explicit depth cues, it excels at extracting structural information from unseen images, producing structure-detailed monocular depth.
Beyond Cropped Regions: New Benchmark and Corresponding Baseline for Chinese Scene Text Retrieval in Diverse Layouts
Chinese scene text retrieval is a practical task that aims to search for images containing visual instances of a Chinese query text. This task is extremely challenging because Chinese text often features complex and diverse layouts in real-world scenes. Current efforts tend to inherit the solution for English scene text retrieval, failing to achieve satisfactory performance. In this paper, we establish a Diversified Layout benchmark for Chinese Street View Text Retrieval (DL-CSVTR), which is specifically designed to evaluate retrieval performance across various text layouts, including vertical, cross-line, and partial alignments. To address the limitations in existing methods, we propose Chinese Scene Text Retrieval CLIP (CSTR-CLIP), a novel model that integrates global visual information with multi-granularity alignment training. CSTR-CLIP applies a two-stage training process to overcome previous limitations, such as the exclusion of visual features outside the text region and reliance on single-granularity alignment, thereby enabling the model to effectively handle diverse text layouts. Experiments on existing benchmark show that CSTR-CLIP outperforms the previous state-of-the-art model by 18.82% accuracy and also provides faster inference speed. Further analysis on DL-CSVTR confirms the superior performance of CSTR-CLIP in handling various text layouts. The dataset and code will be publicly available to facilitate research in Chinese scene text retrieval.
PATS: Proficiency-Aware Temporal Sampling for Multi-View Sports Skill Assessment
Automated sports skill assessment requires capturing fundamental movement patterns that distinguish expert from novice performance, yet current video sampling methods disrupt the temporal continuity essential for proficiency evaluation. To this end, we introduce Proficiency-Aware Temporal Sampling (PATS), a novel sampling strategy that preserves complete fundamental movements within continuous temporal segments for multi-view skill assessment. PATS adaptively segments videos to ensure each analyzed portion contains full execution of critical performance components, repeating this process across multiple segments to maximize information coverage while maintaining temporal coherence. Evaluated on the EgoExo4D benchmark with SkillFormer, PATS surpasses the state-of-the-art accuracy across all viewing configurations (+0.65% to +3.05%) and delivers substantial gains in challenging domains (+26.22% bouldering, +2.39% music, +1.13% basketball). Systematic analysis reveals that PATS successfully adapts to diverse activity characteristics-from high-frequency sampling for dynamic sports to fine-grained segmentation for sequential skills-demonstrating its effectiveness as an adaptive approach to temporal sampling that advances automated skill assessment for real-world applications.
Multi-scale Image Super Resolution with a Single Auto-Regressive Model
In this paper we tackle Image Super Resolution (ISR), using recent advances in Visual Auto-Regressive (VAR) modeling. VAR iteratively estimates the residual in latent space between gradually increasing image scales, a process referred to as next-scale prediction. Thus, the strong priors learned during pre-training align well with the downstream task (ISR). To our knowledge, only VARSR has exploited this synergy so far, showing promising results. However, due to the limitations of existing residual quantizers, VARSR works only at a fixed resolution, i.e. it fails to map intermediate outputs to the corresponding image scales. Additionally, it relies on a 1B transformer architecture (VAR-d24), and leverages a large-scale private dataset to achieve state-of-the-art results. We address these limitations through two novel components: a) a Hierarchical Image Tokenization approach with a multi-scale image tokenizer that progressively represents images at different scales while simultaneously enforcing token overlap across scales, and b) a Direct Preference Optimization (DPO) regularization term that, relying solely on the LR and HR tokenizations, encourages the transformer to produce the latter over the former. To the best of our knowledge, this is the first time a quantizer is trained to force semantically consistent residuals at different scales, and the first time that preference-based optimization is used to train a VAR. Using these two components, our model can denoise the LR image and super-resolve at half and full target upscale factors in a single forward pass. Additionally, we achieve \textit{state-of-the-art results on ISR}, while using a small model (300M params vs ~1B params of VARSR), and without using external training data.
comment: Enrique Sanchez and Isma Hadji equally contributed to this work. Project site https://github.com/saic-fi/ms_sr_var
TextVidBench: A Benchmark for Long Video Scene Text Understanding
Despite recent progress on the short-video Text-Visual Question Answering (ViteVQA) task - largely driven by benchmarks such as M4-ViteVQA - existing datasets still suffer from limited video duration and narrow evaluation scopes, making it difficult to adequately assess the growing capabilities of powerful multimodal large language models (MLLMs). To address these limitations, we introduce TextVidBench, the first benchmark specifically designed for long-video text question answering (>3 minutes). TextVidBench makes three key contributions: 1) Cross-domain long-video coverage: Spanning 9 categories (e.g., news, sports, gaming), with an average video length of 2306 seconds, enabling more realistic evaluation of long-video understanding. 2) A three-stage evaluation framework: "Text Needle-in-Haystack -> Temporal Grounding -> Text Dynamics Captioning". 3) High-quality fine-grained annotations: Containing over 5,000 question-answer pairs with detailed semantic labeling. Furthermore, we propose an efficient paradigm for improving large models through: (i) introducing the IT-Rope mechanism and temporal prompt engineering to enhance temporal perception, (ii) adopting non-uniform positional encoding to better handle long video sequences, and (iii) applying lightweight fine-tuning on video-text data. Extensive experiments on multiple public datasets as well as TextVidBench demonstrate that our new benchmark presents significant challenges to existing models, while our proposed method offers valuable insights into improving long-video scene text understanding capabilities.
Bringing SAM to new heights: Leveraging elevation data for tree crown segmentation from drone imagery
Information on trees at the individual level is crucial for monitoring forest ecosystems and planning forest management. Current monitoring methods involve ground measurements, requiring extensive cost, time and labor. Advances in drone remote sensing and computer vision offer great potential for mapping individual trees from aerial imagery at broad-scale. Large pre-trained vision models, such as the Segment Anything Model (SAM), represent a particularly compelling choice given limited labeled data. In this work, we compare methods leveraging SAM for the task of automatic tree crown instance segmentation in high resolution drone imagery in three use cases: 1) boreal plantations, 2) temperate forests and 3) tropical forests. We also study the integration of elevation data into models, in the form of Digital Surface Model (DSM) information, which can readily be obtained at no additional cost from RGB drone imagery. We present BalSAM, a model leveraging SAM and DSM information, which shows potential over other methods, particularly in the context of plantations. We find that methods using SAM out-of-the-box do not outperform a custom Mask R-CNN, even with well-designed prompts. However, efficiently tuning SAM end-to-end and integrating DSM information are both promising avenues for tree crown instance segmentation models.
FEAT: Full-Dimensional Efficient Attention Transformer for Medical Video Generation MICCAI 2025
Synthesizing high-quality dynamic medical videos remains a significant challenge due to the need for modeling both spatial consistency and temporal dynamics. Existing Transformer-based approaches face critical limitations, including insufficient channel interactions, high computational complexity from self-attention, and coarse denoising guidance from timestep embeddings when handling varying noise levels. In this work, we propose FEAT, a full-dimensional efficient attention Transformer, which addresses these issues through three key innovations: (1) a unified paradigm with sequential spatial-temporal-channel attention mechanisms to capture global dependencies across all dimensions, (2) a linear-complexity design for attention mechanisms in each dimension, utilizing weighted key-value attention and global channel attention, and (3) a residual value guidance module that provides fine-grained pixel-level guidance to adapt to different noise levels. We evaluate FEAT on standard benchmarks and downstream tasks, demonstrating that FEAT-S, with only 23\% of the parameters of the state-of-the-art model Endora, achieves comparable or even superior performance. Furthermore, FEAT-L surpasses all comparison methods across multiple datasets, showcasing both superior effectiveness and scalability. Code is available at https://github.com/Yaziwel/FEAT.
comment: This paper has been early accepted by MICCAI 2025
APVR: Hour-Level Long Video Understanding with Adaptive Pivot Visual Information Retrieval
Current video-based multimodal large language models struggle with hour-level video understanding due to computational constraints and inefficient information extraction from extensive temporal sequences. We propose APVR (Adaptive Pivot Visual information Retrieval), a training-free framework that addresses the memory wall limitation through hierarchical visual information retrieval. APVR operates via two complementary components: Pivot Frame Retrieval employs semantic expansion and multi-modal confidence scoring to identify semantically relevant video frames, while Pivot Token Retrieval performs query-aware attention-driven token selection within the pivot frames. This dual granularity approach enables processing of hour-long videos while maintaining semantic fidelity. Experimental validation on LongVideoBench and VideoMME demonstrates significant performance improvements, establishing state-of-the-art results for not only training-free but also training-based approaches while providing plug-and-play integration capability with existing MLLM architectures.
Robustness as Architecture: Designing IQA Models to Withstand Adversarial Perturbations
Image Quality Assessment (IQA) models are increasingly relied upon to evaluate image quality in real-world systems -- from compression and enhancement to generation and streaming. Yet their adoption brings a fundamental risk: these models are inherently unstable. Adversarial manipulations can easily fool them, inflating scores and undermining trust. Traditionally, such vulnerabilities are addressed through data-driven defenses -- adversarial retraining, regularization, or input purification. But what if this is the wrong lens? What if robustness in perceptual models is not something to learn but something to design? In this work, we propose a provocative idea: robustness as an architectural prior. Rather than training models to resist perturbations, we reshape their internal structure to suppress sensitivity from the ground up. We achieve this by enforcing orthogonal information flow, constraining the network to norm-preserving operations -- and further stabilizing the system through pruning and fine-tuning. The result is a robust IQA architecture that withstands adversarial attacks without requiring adversarial training or significant changes to the original model. This approach suggests a shift in perspective: from optimizing robustness through data to engineering it through design.
Time-Lapse Video-Based Embryo Grading via Complementary Spatial-Temporal Pattern Mining
Artificial intelligence has recently shown promise in automated embryo selection for In-Vitro Fertilization (IVF). However, current approaches either address partial embryo evaluation lacking holistic quality assessment or target clinical outcomes inevitably confounded by extra-embryonic factors, both limiting clinical utility. To bridge this gap, we propose a new task called Video-Based Embryo Grading - the first paradigm that directly utilizes full-length time-lapse monitoring (TLM) videos to predict embryologists' overall quality assessments. To support this task, we curate a real-world clinical dataset comprising over 2,500 TLM videos, each annotated with a grading label indicating the overall quality of embryos. Grounded in clinical decision-making principles, we propose a Complementary Spatial-Temporal Pattern Mining (CoSTeM) framework that conceptually replicates embryologists' evaluation process. The CoSTeM comprises two branches: (1) a morphological branch using a Mixture of Cross-Attentive Experts layer and a Temporal Selection Block to select discriminative local structural features, and (2) a morphokinetic branch employing a Temporal Transformer to model global developmental trajectories, synergistically integrating static and dynamic determinants for grading embryos. Extensive experimental results demonstrate the superiority of our design. This work provides a valuable methodological framework for AI-assisted embryo selection. The dataset and source code will be publicly available upon acceptance.
CzechLynx: A Dataset for Individual Identification and Pose Estimation of the Eurasian Lynx
We introduce CzechLynx, the first large-scale, open-access dataset for individual identification, 2D pose estimation, and instance segmentation of the Eurasian lynx (Lynx lynx). CzechLynx includes more than 30k camera trap images annotated with segmentation masks, identity labels, and 20-point skeletons and covers 219 unique individuals across 15 years of systematic monitoring in two geographically distinct regions: Southwest Bohemia and the Western Carpathians. To increase the data variability, we create a complementary synthetic set with more than 100k photorealistic images generated via a Unity-based pipeline and diffusion-driven text-to-texture modeling, covering diverse environments, poses, and coat-pattern variations. To allow testing generalization across spatial and temporal domains, we define three tailored evaluation protocols/splits: (i) geo-aware, (ii) time-aware open-set, and (iii) time-aware closed-set. This dataset is targeted to be instrumental in benchmarking state-of-the-art models and the development of novel methods for not just individual animal re-identification.
Light and 3D: a methodological exploration of digitisation techniques adapted to a selection of objects from the Mus{é}e d'Arch{é}ologie Nationale
The need to digitize heritage objects is now widely accepted. This article presents the very fashionable context of the creation of ''digital twins''. It illustrates the diversity of photographic 3D digitization methods, but this is not its only objective. Using a selection of objects from the collections of the mus{\'e}e d'Arch{\'e}ologie nationale, it shows that no single method is suitable for all cases. Rather, the method to be recommended for a given object should be the result of a concerted choice between those involved in heritage and those involved in the digital domain, as each new object may require the adaptation of existing tools. It would therefore be pointless to attempt an absolute classification of 3D digitization methods. On the contrary, we need to find the digital tool best suited to each object, taking into account not only its characteristics, but also the future use of its digital twin.
comment: in French language
Generating Synthetic Stereo Datasets using 3D Gaussian Splatting and Expert Knowledge Transfer
In this paper, we introduce a 3D Gaussian Splatting (3DGS)-based pipeline for stereo dataset generation, offering an efficient alternative to Neural Radiance Fields (NeRF)-based methods. To obtain useful geometry estimates, we explore utilizing the reconstructed geometry from the explicit 3D representations as well as depth estimates from the FoundationStereo model in an expert knowledge transfer setup. We find that when fine-tuning stereo models on 3DGS-generated datasets, we demonstrate competitive performance in zero-shot generalization benchmarks. When using the reconstructed geometry directly, we observe that it is often noisy and contains artifacts, which propagate noise to the trained model. In contrast, we find that the disparity estimates from FoundationStereo are cleaner and consequently result in a better performance on the zero-shot generalization benchmarks. Our method highlights the potential for low-cost, high-fidelity dataset creation and fast fine-tuning for deep stereo models. Moreover, we also reveal that while the latest Gaussian Splatting based methods have achieved superior performance on established benchmarks, their robustness falls short in challenging in-the-wild settings warranting further exploration.
From Objects to Anywhere: A Holistic Benchmark for Multi-level Visual Grounding in 3D Scenes
3D visual grounding has made notable progress in localizing objects within complex 3D scenes. However, grounding referring expressions beyond objects in 3D scenes remains unexplored. In this paper, we introduce Anywhere3D-Bench, a holistic 3D visual grounding benchmark consisting of 2,632 referring expression-3D bounding box pairs spanning four different grounding levels: human-activity areas, unoccupied space beyond objects, objects in the scene, and fine-grained object parts. We assess a range of state-of-the-art 3D visual grounding methods alongside large language models (LLMs) and multimodal LLMs (MLLMs) on Anywhere3D-Bench. Experimental results reveal that space-level and part-level visual grounding pose the greatest challenges: space-level tasks require a more comprehensive spatial reasoning ability, for example, modeling distances and spatial relations within 3D space, while part-level tasks demand fine-grained perception of object composition. Even the best performance model, OpenAI o4-mini, achieves only 23.57% accuracy on space-level tasks and 33.94% on part-level tasks, significantly lower than its performance on area-level and object-level tasks. These findings underscore a critical gap in current models' capacity to understand and reason about 3D scene beyond object-level semantics.
Learning to Plan via Supervised Contrastive Learning and Strategic Interpolation: A Chess Case Study
Modern chess engines achieve superhuman performance through deep tree search and regressive evaluation, while human players rely on intuition to select candidate moves followed by a shallow search to validate them. To model this intuition-driven planning process, we train a transformer encoder using supervised contrastive learning to embed board states into a latent space structured by positional evaluation. In this space, distance reflects evaluative similarity, and visualized trajectories display interpretable transitions between game states. We demonstrate that move selection can occur entirely within this embedding space by advancing toward favorable regions, without relying on deep search. Despite using only a 6-ply beam search, our model achieves an estimated Elo rating of 2593. Performance improves with both model size and embedding dimensionality, suggesting that latent planning may offer a viable alternative to traditional search. Although we focus on chess, the proposed embedding-based planning method can be generalized to other perfect-information games where state evaluations are learnable. All source code is available at https://github.com/andrewhamara/SOLIS.
Invisible Backdoor Triggers in Image Editing Model via Deep Watermarking
Diffusion models have achieved remarkable progress in both image generation and editing. However, recent studies have revealed their vulnerability to backdoor attacks, in which specific patterns embedded in the input can manipulate the model's behavior. Most existing research in this area has proposed attack frameworks focused on the image generation pipeline, leaving backdoor attacks in image editing relatively unexplored. Among the few studies targeting image editing, most utilize visible triggers, which are impractical because they introduce noticeable alterations to the input image before editing. In this paper, we propose a novel attack framework that embeds invisible triggers into the image editing process via poisoned training data. We leverage off-the-shelf deep watermarking models to encode imperceptible watermarks as backdoor triggers. Our goal is to make the model produce the predefined backdoor target when it receives watermarked inputs, while editing clean images normally according to the given prompt. With extensive experiments across different watermarking models, the proposed method achieves promising attack success rates. In addition, the analysis results of the watermark characteristics in term of backdoor attack further support the effectiveness of our approach. The code is available at:https://github.com/aiiu-lab/BackdoorImageEditing
Geological Field Restoration through the Lens of Image Inpainting
We present a new viewpoint on a reconstructing multidimensional geological fields from sparse observations. Drawing inspiration from deterministic image inpainting techniques, we model a partially observed spatial field as a multidimensional tensor and recover missing values by enforcing a global low-rank structure. Our approach combines ideas from tensor completion and geostatistics, providing a robust optimization framework. Experiments on synthetic geological fields demonstrate that used tensor completion method significant improvements in reconstruction accuracy over ordinary kriging for various percent of observed data.
MineInsight: A Multi-sensor Dataset for Humanitarian Demining Robotics in Off-Road Environments
The use of robotics in humanitarian demining increasingly involves computer vision techniques to improve landmine detection capabilities. However, in the absence of diverse and realistic datasets, the reliable validation of algorithms remains a challenge for the research community. In this paper, we introduce MineInsight, a publicly available multi-sensor, multi-spectral dataset designed for off-road landmine detection. The dataset features 35 different targets (15 landmines and 20 commonly found objects) distributed along three distinct tracks, providing a diverse and realistic testing environment. MineInsight is, to the best of our knowledge, the first dataset to integrate dual-view sensor scans from both an Unmanned Ground Vehicle and its robotic arm, offering multiple viewpoints to mitigate occlusions and improve spatial awareness. It features two LiDARs, as well as images captured at diverse spectral ranges, including visible (RGB, monochrome), visible short-wave infrared (VIS-SWIR), and long-wave infrared (LWIR). Additionally, the dataset comes with an estimation of the location of the targets, offering a benchmark for evaluating detection algorithms. We recorded approximately one hour of data in both daylight and nighttime conditions, resulting in around 38,000 RGB frames, 53,000 VIS-SWIR frames, and 108,000 LWIR frames. MineInsight serves as a benchmark for developing and evaluating landmine detection algorithms. Our dataset is available at https://github.com/mariomlz99/MineInsight.
comment: This work has been submitted to the IEEE for possible publication
OpenMaskDINO3D : Reasoning 3D Segmentation via Large Language Model
Although perception systems have made remarkable advancements in recent years, particularly in 2D reasoning segmentation, these systems still rely on explicit human instruction or pre-defined categories to identify target objects before executing visual recognition tasks. Such systems have matured significantly, demonstrating the ability to reason and comprehend implicit user intentions in two-dimensional contexts, producing accurate segmentation masks based on complex and implicit query text. However, a comparable framework and structure for 3D reasoning segmentation remain absent. This paper introduces OpenMaskDINO3D, a LLM designed for comprehensive 3D understanding and segmentation. OpenMaskDINO3D processes point cloud data and text prompts to produce instance segmentation masks, excelling in many 3D tasks. By introducing a SEG token and object identifier, we achieve high-precision 3D segmentation mask generation, enabling the model to directly produce accurate point cloud segmentation results from natural language instructions. Experimental results on large-scale ScanNet datasets validate the effectiveness of our OpenMaskDINO3D across various tasks.
comment: Project Page: https://github.com/Zhangkuns/OpenMaskDINO3D
DualX-VSR: Dual Axial Spatial$\times$Temporal Transformer for Real-World Video Super-Resolution without Motion Compensation
Transformer-based models like ViViT and TimeSformer have advanced video understanding by effectively modeling spatiotemporal dependencies. Recent video generation models, such as Sora and Vidu, further highlight the power of transformers in long-range feature extraction and holistic spatiotemporal modeling. However, directly applying these models to real-world video super-resolution (VSR) is challenging, as VSR demands pixel-level precision, which can be compromised by tokenization and sequential attention mechanisms. While recent transformer-based VSR models attempt to address these issues using smaller patches and local attention, they still face limitations such as restricted receptive fields and dependence on optical flow-based alignment, which can introduce inaccuracies in real-world settings. To overcome these issues, we propose Dual Axial Spatial$\times$Temporal Transformer for Real-World Video Super-Resolution (DualX-VSR), which introduces a novel dual axial spatial$\times$temporal attention mechanism that integrates spatial and temporal information along orthogonal directions. DualX-VSR eliminates the need for motion compensation, offering a simplified structure that provides a cohesive representation of spatiotemporal information. As a result, DualX-VSR achieves high fidelity and superior performance in real-world VSR task.
comment: 15 pages, 9 figures
Fool the Stoplight: Realistic Adversarial Patch Attacks on Traffic Light Detectors
Realistic adversarial attacks on various camera-based perception tasks of autonomous vehicles have been successfully demonstrated so far. However, only a few works considered attacks on traffic light detectors. This work shows how CNNs for traffic light detection can be attacked with printed patches. We propose a threat model, where each instance of a traffic light is attacked with a patch placed under it, and describe a training strategy. We demonstrate successful adversarial patch attacks in universal settings. Our experiments show realistic targeted red-to-green label-flipping attacks and attacks on pictogram classification. Finally, we perform a real-world evaluation with printed patches and demonstrate attacks in the lab settings with a mobile traffic light for construction sites and in a test area with stationary traffic lights. Our code is available at https://github.com/KASTEL-MobilityLab/attacks-on-traffic-light-detection.
comment: Accepted for publication at IV 2025
Spike-TBR: a Noise Resilient Neuromorphic Event Representation
Event cameras offer significant advantages over traditional frame-based sensors, including higher temporal resolution, lower latency and dynamic range. However, efficiently converting event streams into formats compatible with standard computer vision pipelines remains a challenging problem, particularly in the presence of noise. In this paper, we propose Spike-TBR, a novel event-based encoding strategy based on Temporal Binary Representation (TBR), addressing its vulnerability to noise by integrating spiking neurons. Spike-TBR combines the frame-based advantages of TBR with the noise-filtering capabilities of spiking neural networks, creating a more robust representation of event streams. We evaluate four variants of Spike-TBR, each using different spiking neurons, across multiple datasets, demonstrating superior performance in noise-affected scenarios while improving the results on clean data. Our method bridges the gap between spike-based and frame-based processing, offering a simple noise-resilient solution for event-driven vision applications.
MegaHan97K: A Large-Scale Dataset for Mega-Category Chinese Character Recognition with over 97K Categories
Foundational to the Chinese language and culture, Chinese characters encompass extraordinarily extensive and ever-expanding categories, with the latest Chinese GB18030-2022 standard containing 87,887 categories. The accurate recognition of this vast number of characters, termed mega-category recognition, presents a formidable yet crucial challenge for cultural heritage preservation and digital applications. Despite significant advances in Optical Character Recognition (OCR), mega-category recognition remains unexplored due to the absence of comprehensive datasets, with the largest existing dataset containing merely 16,151 categories. To bridge this critical gap, we introduce MegaHan97K, a mega-category, large-scale dataset covering an unprecedented 97,455 categories of Chinese characters. Our work offers three major contributions: (1) MegaHan97K is the first dataset to fully support the latest GB18030-2022 standard, providing at least six times more categories than existing datasets; (2) It effectively addresses the long-tail distribution problem by providing balanced samples across all categories through its three distinct subsets: handwritten, historical and synthetic subsets; (3) Comprehensive benchmarking experiments reveal new challenges in mega-category scenarios, including increased storage demands, morphologically similar character recognition, and zero-shot learning difficulties, while also unlocking substantial opportunities for future research. To the best of our knowledge, the MetaHan97K is likely the dataset with the largest classes not only in the field of OCR but may also in the broader domain of pattern recognition. The dataset is available at https://github.com/SCUT-DLVCLab/MegaHan97K.
SupeRANSAC: One RANSAC to Rule Them All
Robust estimation is a cornerstone in computer vision, particularly for tasks like Structure-from-Motion and Simultaneous Localization and Mapping. RANSAC and its variants are the gold standard for estimating geometric models (e.g., homographies, relative/absolute poses) from outlier-contaminated data. Despite RANSAC's apparent simplicity, achieving consistently high performance across different problems is challenging. While recent research often focuses on improving specific RANSAC components (e.g., sampling, scoring), overall performance is frequently more influenced by the "bells and whistles" (i.e., the implementation details and problem-specific optimizations) within a given library. Popular frameworks like OpenCV and PoseLib demonstrate varying performance, excelling in some tasks but lagging in others. We introduce SupeRANSAC, a novel unified RANSAC pipeline, and provide a detailed analysis of the techniques that make RANSAC effective for specific vision tasks, including homography, fundamental/essential matrix, and absolute/rigid pose estimation. SupeRANSAC is designed for consistent accuracy across these tasks, improving upon the best existing methods by, for example, 6 AUC points on average for fundamental matrix estimation. We demonstrate significant performance improvements over the state-of-the-art on multiple problems and datasets. Code: https://github.com/danini/superansac
LotusFilter: Fast Diverse Nearest Neighbor Search via a Learned Cutoff Table CVPR 2025
Approximate nearest neighbor search (ANNS) is an essential building block for applications like RAG but can sometimes yield results that are overly similar to each other. In certain scenarios, search results should be similar to the query and yet diverse. We propose LotusFilter, a post-processing module to diversify ANNS results. We precompute a cutoff table summarizing vectors that are close to each other. During the filtering, LotusFilter greedily looks up the table to delete redundant vectors from the candidates. We demonstrated that the LotusFilter operates fast (0.02 [ms/query]) in settings resembling real-world RAG applications, utilizing features such as OpenAI embeddings. Our code is publicly available at https://github.com/matsui528/lotf.
comment: CVPR 2025. GitHub: https://github.com/matsui528/lotf
Object-X: Learning to Reconstruct Multi-Modal 3D Object Representations
Learning effective multi-modal 3D representations of objects is essential for numerous applications, such as augmented reality and robotics. Existing methods often rely on task-specific embeddings that are tailored either for semantic understanding or geometric reconstruction. As a result, these embeddings typically cannot be decoded into explicit geometry and simultaneously reused across tasks. In this paper, we propose Object-X, a versatile multi-modal object representation framework capable of encoding rich object embeddings (e.g. images, point cloud, text) and decoding them back into detailed geometric and visual reconstructions. Object-X operates by geometrically grounding the captured modalities in a 3D voxel grid and learning an unstructured embedding fusing the information from the voxels with the object attributes. The learned embedding enables 3D Gaussian Splatting-based object reconstruction, while also supporting a range of downstream tasks, including scene alignment, single-image 3D object reconstruction, and localization. Evaluations on two challenging real-world datasets demonstrate that Object-X produces high-fidelity novel-view synthesis comparable to standard 3D Gaussian Splatting, while significantly improving geometric accuracy. Moreover, Object-X achieves competitive performance with specialized methods in scene alignment and localization. Critically, our object-centric descriptors require 3-4 orders of magnitude less storage compared to traditional image- or point cloud-based approaches, establishing Object-X as a scalable and highly practical solution for multi-modal 3D scene representation.
Deep learning image burst stacking to reconstruct high-resolution ground-based solar observations
Large aperture ground based solar telescopes allow the solar atmosphere to be resolved in unprecedented detail. However, observations are limited by Earths turbulent atmosphere, requiring post image corrections. Current reconstruction methods using short exposure bursts face challenges with strong turbulence and high computational costs. We introduce a deep learning approach that reconstructs 100 short exposure images into one high quality image in real time. Using unpaired image to image translation, our model is trained on degraded bursts with speckle reconstructions as references, improving robustness and generalization. Our method shows an improved robustness in terms of perceptual quality, especially when speckle reconstructions show artifacts. An evaluation with a varying number of images per burst demonstrates that our method makes efficient use of the combined image information and achieves the best reconstructions when provided with the full image burst.
HypeVPR: Exploring Hyperbolic Space for Perspective to Equirectangular Visual Place Recognition
When applying Visual Place Recognition (VPR) to real-world mobile robots and similar applications, perspective-to-equirectangular (P2E) formulation naturally emerges as a suitable approach to accommodate diverse query images captured from various viewpoints. In this paper, we introduce HypeVPR, a novel hierarchical embedding framework in hyperbolic space, designed to address the unique challenges of P2E VPR. The key idea behind HypeVPR is that visual environments captured by panoramic views exhibit inherent hierarchical structures. To leverage this property, we employ hyperbolic space to represent hierarchical feature relationships and preserve distance properties within the feature space. To achieve this, we propose a hierarchical feature aggregation mechanism that organizes local-to-global feature representations within hyperbolic space. Additionally, HypeVPR adopts an efficient coarse-to-fine search strategy, optimally balancing speed and accuracy to ensure robust matching, even between descriptors from different image types. This approach enables HypeVPR to outperform state-of-the-art methods while significantly reducing retrieval time, achieving up to 5x faster retrieval across diverse benchmark datasets. The code and models will be released at https://github.com/suhan-woo/HypeVPR.git.
Toward Better SSIM Loss for Unsupervised Monocular Depth Estimation
Unsupervised monocular depth learning generally relies on the photometric relation among temporally adjacent images. Most of previous works use both mean absolute error (MAE) and structure similarity index measure (SSIM) with conventional form as training loss. However, they ignore the effect of different components in the SSIM function and the corresponding hyperparameters on the training. To address these issues, this work proposes a new form of SSIM. Compared with original SSIM function, the proposed new form uses addition rather than multiplication to combine the luminance, contrast, and structural similarity related components in SSIM. The loss function constructed with this scheme helps result in smoother gradients and achieve higher performance on unsupervised depth estimation. We conduct extensive experiments to determine the relatively optimal combination of parameters for our new SSIM. Based on the popular MonoDepth approach, the optimized SSIM loss function can remarkably outperform the baseline on the KITTI-2015 outdoor dataset.
comment: 12 pages,4 figures
Ontology-based knowledge representation for bone disease diagnosis: a foundation for safe and sustainable medical artificial intelligence systems
Medical artificial intelligence (AI) systems frequently lack systematic domain expertise integration, potentially compromising diagnostic reliability. This study presents an ontology-based framework for bone disease diagnosis, developed in collaboration with Ho Chi Minh City Hospital for Traumatology and Orthopedics. The framework introduces three theoretical contributions: (1) a hierarchical neural network architecture guided by bone disease ontology for segmentation-classification tasks, incorporating Visual Language Models (VLMs) through prompts, (2) an ontology-enhanced Visual Question Answering (VQA) system for clinical reasoning, and (3) a multimodal deep learning model that integrates imaging, clinical, and laboratory data through ontological relationships. The methodology maintains clinical interpretability through systematic knowledge digitization, standardized medical terminology mapping, and modular architecture design. The framework demonstrates potential for extension beyond bone diseases through its standardized structure and reusable components. While theoretical foundations are established, experimental validation remains pending due to current dataset and computational resource limitations. Future work will focus on expanding the clinical dataset and conducting comprehensive system validation.
Truth in the Few: High-Value Data Selection for Efficient Multi-Modal Reasoning
While multi-modal large language models (MLLMs) have made significant progress in complex reasoning tasks via reinforcement learning, it is commonly believed that extensive training data is necessary for improving multi-modal reasoning ability, inevitably leading to data redundancy and substantial computational costs. However, can smaller high-value datasets match or outperform full corpora for multi-modal reasoning in MLLMs? In this work, we challenge this assumption through a key observation: meaningful multi-modal reasoning is triggered by only a sparse subset of training samples, termed cognitive samples, whereas the majority contribute marginally. Building on this insight, we propose a novel data selection paradigm termed Reasoning Activation Potential (RAP), which identifies cognitive samples by estimating each sample's potential to stimulate genuine multi-modal reasoning by two complementary estimators: 1) Causal Discrepancy Estimator (CDE) based on the potential outcome model principle, eliminates samples that overly rely on language priors by comparing outputs between multi-modal and text-only inputs; 2) Attention Confidence Estimator (ACE), which exploits token-level self-attention to discard samples dominated by irrelevant but over-emphasized tokens in intermediate reasoning stages. Moreover, we introduce a Difficulty-aware Replacement Module (DRM) to substitute trivial instances with cognitively challenging ones, thereby ensuring complexity for robust multi-modal reasoning. Experiments on six datasets show that our RAP method consistently achieves superior performance using only 9.3% of the training data, while reducing computational costs by over 43%. Our code is available at https://github.com/Leo-ssl/RAP.
Physics Informed Capsule Enhanced Variational AutoEncoder for Underwater Image Enhancement
We present a novel dual-stream architecture that achieves state-of-the-art underwater image enhancement by explicitly integrating the Jaffe-McGlamery physical model with capsule clustering-based feature representation learning. Our method simultaneously estimates transmission maps and spatially-varying background light through a dedicated physics estimator while extracting entity-level features via capsule clustering in a parallel stream. This physics-guided approach enables parameter-free enhancement that respects underwater formation constraints while preserving semantic structures and fine-grained details. Our approach also features a novel optimization objective ensuring both physical adherence and perceptual quality across multiple spatial frequencies. To validate our approach, we conducted extensive experiments across six challenging benchmarks. Results demonstrate consistent improvements of $+0.5$dB PSNR over the best existing methods while requiring only one-third of their computational complexity (FLOPs), or alternatively, more than $+1$dB PSNR improvement when compared to methods with similar computational budgets. Code and data \textit{will} be available at https://github.com/iN1k1/.
SRD: Reinforcement-Learned Semantic Perturbation for Backdoor Defense in VLMs
Vision-Language Models (VLMs) have achieved remarkable performance in image captioning, but recent studies show they are vulnerable to backdoor attacks. Attackers can inject imperceptible perturbations-such as local pixel triggers or global semantic phrases-into the training data, causing the model to generate malicious, attacker-controlled captions for specific inputs. These attacks are hard to detect and defend due to their stealthiness and cross-modal nature. By analyzing attack samples, we identify two key vulnerabilities: (1) abnormal attention concentration on specific image regions, and (2) semantic drift and incoherence in generated captions. To counter this, we propose Semantic Reward Defense (SRD), a reinforcement learning framework that mitigates backdoor behavior without prior knowledge of triggers. SRD uses a Deep Q-Network to learn policies for applying discrete perturbations (e.g., occlusion, color masking) to sensitive image regions, aiming to disrupt the activation of malicious pathways. We design a semantic fidelity score as the reward signal, which jointly evaluates semantic consistency and linguistic fluency of the output, guiding the agent toward generating robust yet faithful captions. Experiments across mainstream VLMs and datasets show SRD reduces attack success rates to 5.6%, while preserving caption quality on clean inputs with less than 10% performance drop. SRD offers a trigger-agnostic, interpretable defense paradigm against stealthy backdoor threats in multimodal generative models.
Bridging Annotation Gaps: Transferring Labels to Align Object Detection Datasets
Combining multiple object detection datasets offers a path to improved generalisation but is hindered by inconsistencies in class semantics and bounding box annotations. Some methods to address this assume shared label taxonomies and address only spatial inconsistencies; others require manual relabelling, or produce a unified label space, which may be unsuitable when a fixed target label space is required. We propose Label-Aligned Transfer (LAT), a label transfer framework that systematically projects annotations from diverse source datasets into the label space of a target dataset. LAT begins by training dataset-specific detectors to generate pseudo-labels, which are then combined with ground-truth annotations via a Privileged Proposal Generator (PPG) that replaces the region proposal network in two-stage detectors. To further refine region features, a Semantic Feature Fusion (SFF) module injects class-aware context and features from overlapping proposals using a confidence-weighted attention mechanism. This pipeline preserves dataset-specific annotation granularity while enabling many-to-one label space transfer across heterogeneous datasets, resulting in a semantically and spatially aligned representation suitable for training a downstream detector. LAT thus jointly addresses both class-level misalignments and bounding box inconsistencies without relying on shared label spaces or manual annotations. Across multiple benchmarks, LAT demonstrates consistent improvements in target-domain detection performance, achieving gains of up to +4.8AP over semi-supervised baselines.
Using In-Context Learning for Automatic Defect Labelling of Display Manufacturing Data
This paper presents an AI-assisted auto-labeling system for display panel defect detection that leverages in-context learning capabilities. We adopt and enhance the SegGPT architecture with several domain-specific training techniques and introduce a scribble-based annotation mechanism to streamline the labeling process. Our two-stage training approach, validated on industrial display panel datasets, demonstrates significant improvements over the baseline model, achieving an average IoU increase of 0.22 and a 14% improvement in recall across multiple product types, while maintaining approximately 60% auto-labeling coverage. Experimental results show that models trained on our auto-labeled data match the performance of those trained on human-labeled data, offering a practical solution for reducing manual annotation efforts in industrial inspection systems.
Learning dissection trajectories from expert surgical videos via imitation learning with equivariant diffusion
Endoscopic Submucosal Dissection (ESD) is a well-established technique for removing epithelial lesions. Predicting dissection trajectories in ESD videos offers significant potential for enhancing surgical skill training and simplifying the learning process, yet this area remains underexplored. While imitation learning has shown promise in acquiring skills from expert demonstrations, challenges persist in handling uncertain future movements, learning geometric symmetries, and generalizing to diverse surgical scenarios. To address these, we introduce a novel approach: Implicit Diffusion Policy with Equivariant Representations for Imitation Learning (iDPOE). Our method models expert behavior through a joint state action distribution, capturing the stochastic nature of dissection trajectories and enabling robust visual representation learning across various endoscopic views. By incorporating a diffusion model into policy learning, iDPOE ensures efficient training and sampling, leading to more accurate predictions and better generalization. Additionally, we enhance the model's ability to generalize to geometric symmetries by embedding equivariance into the learning process. To address state mismatches, we develop a forward-process guided action inference strategy for conditional sampling. Using an ESD video dataset of nearly 2000 clips, experimental results show that our approach surpasses state-of-the-art methods, both explicit and implicit, in trajectory prediction. To the best of our knowledge, this is the first application of imitation learning to surgical skill development for dissection trajectory prediction.
Towards Holistic Visual Quality Assessment of AI-Generated Videos: A LLM-Based Multi-Dimensional Evaluation Model
The development of AI-Generated Video (AIGV) technology has been remarkable in recent years, significantly transforming the paradigm of video content production. However, AIGVs still suffer from noticeable visual quality defects, such as noise, blurriness, frame jitter and low dynamic degree, which severely impact the user's viewing experience. Therefore, an effective automatic visual quality assessment is of great importance for AIGV content regulation and generative model improvement. In this work, we decompose the visual quality of AIGVs into three dimensions: technical quality, motion quality, and video semantics. For each dimension, we design corresponding encoder to achieve effective feature representation. Moreover, considering the outstanding performance of large language models (LLMs) in various vision and language tasks, we introduce a LLM as the quality regression module. To better enable the LLM to establish reasoning associations between multi-dimensional features and visual quality, we propose a specially designed multi-modal prompt engineering framework. Additionally, we incorporate LoRA fine-tuning technology during the training phase, allowing the LLM to better adapt to specific tasks. Our proposed method achieved \textbf{second place} in the NTIRE 2025 Quality Assessment of AI-Generated Content Challenge: Track 2 AI Generated video, demonstrating its effectiveness. Codes can be obtained at https://github.com/QiZelu/AIGVEval.
Robust Few-Shot Vision-Language Model Adaptation
Pretrained VLMs achieve strong performance on downstream tasks when adapted with just a few labeled examples. As the adapted models inevitably encounter out-of-distribution (OOD) test data that deviates from the in-distribution (ID) task-specific training data, enhancing OOD generalization in few-shot adaptation is critically important. We study robust few-shot VLM adaptation, aiming to increase both ID and OOD accuracy. By comparing different adaptation methods (e.g., prompt tuning, linear probing, contrastive finetuning, and full finetuning), we uncover three key findings: (1) finetuning with proper hyperparameters significantly outperforms the popular VLM adaptation methods prompt tuning and linear probing; (2) visual encoder-only finetuning achieves better efficiency and accuracy than contrastively finetuning both visual and textual encoders; (3) finetuning the top layers of the visual encoder provides the best balance between ID and OOD accuracy. Building on these findings, we propose partial finetuning of the visual encoder empowered with two simple augmentation techniques: (1) retrieval augmentation which retrieves task-relevant data from the VLM's pretraining dataset to enhance adaptation, and (2) adversarial perturbation which promotes robustness during finetuning. Results show that the former/latter boosts OOD/ID accuracy while slightly sacrificing the ID/OOD accuracy. Yet, perhaps understandably, naively combining the two does not maintain their best OOD/ID accuracy. We address this dilemma with the developed SRAPF, Stage-wise Retrieval Augmentation-based Adversarial Partial Finetuning. SRAPF consists of two stages: (1) partial finetuning the visual encoder using both ID and retrieved data, and (2) adversarial partial finetuning with few-shot ID data. Extensive experiments demonstrate that SRAPF achieves the state-of-the-art ID and OOD accuracy on the ImageNet OOD benchmarks.
comment: Project website: https://hannawang09.github.io/projects/srapf/
Line of Sight: On Linear Representations in VLLMs
Language models can be equipped with multimodal capabilities by fine-tuning on embeddings of visual inputs. But how do such multimodal models represent images in their hidden activations? We explore representations of image concepts within LlaVA-Next, a popular open-source VLLM. We find a diverse set of ImageNet classes represented via linearly decodable features in the residual stream. We show that the features are causal by performing targeted edits on the model output. In order to increase the diversity of the studied linear features, we train multimodal Sparse Autoencoders (SAEs), creating a highly interpretable dictionary of text and image features. We find that although model representations across modalities are quite disjoint, they become increasingly shared in deeper layers.
comment: 8 pages, 9 figures
HoliSafe: Holistic Safety Benchmarking and Modeling with Safety Meta Token for Vision-Language Model
Despite emerging efforts to enhance the safety of Vision-Language Models (VLMs), current approaches face two main shortcomings. 1) Existing safety-tuning datasets and benchmarks only partially consider how image-text interactions can yield harmful content, often overlooking contextually unsafe outcomes from seemingly benign pairs. This narrow coverage leaves VLMs vulnerable to jailbreak attacks in unseen configurations. 2) Prior methods rely primarily on data-centric tuning, with limited architectural innovations to intrinsically strengthen safety. We address these gaps by introducing a holistic safety dataset and benchmark, HoliSafe, that spans all five safe/unsafe image-text combinations, providing a more robust basis for both training and evaluation. We further propose SafeLLaVA, a novel VLM augmented with a learnable safety meta token and a dedicated safety head. The meta token encodes harmful visual cues during training, intrinsically guiding the language model toward safer responses, while the safety head offers interpretable harmfulness classification aligned with refusal rationales. Experiments show that SafeLLaVA, trained on HoliSafe, achieves state-of-the-art safety performance across multiple VLM benchmarks. Additionally, the HoliSafe benchmark itself reveals critical vulnerabilities in existing models. We hope that HoliSafe and SafeLLaVA will spur further research into robust and interpretable VLM safety, expanding future avenues for multimodal alignment.
comment: Project page: https://youngwanlee.github.io/holisafe
MMRefine: Unveiling the Obstacles to Robust Refinement in Multimodal Large Language Models ACL
This paper introduces MMRefine, a MultiModal Refinement benchmark designed to evaluate the error refinement capabilities of Multimodal Large Language Models (MLLMs). As the emphasis shifts toward enhancing reasoning during inference, MMRefine provides a framework that evaluates MLLMs' abilities to detect and correct errors across six distinct scenarios beyond just comparing final accuracy before and after refinement. Furthermore, the benchmark analyzes the refinement performance by categorizing errors into six error types. Experiments with various open and closed MLLMs reveal bottlenecks and factors impeding refinement performance, highlighting areas for improvement in effective reasoning enhancement. Our code and dataset are publicly available at https://github.com/naver-ai/MMRefine.
comment: ACL Findings 2025
MARS: Radio Map Super-resolution and Reconstruction Method under Sparse Channel Measurements
Radio maps reflect the spatial distribution of signal strength and are essential for applications like smart cities, IoT, and wireless network planning. However, reconstructing accurate radio maps from sparse measurements remains challenging. Traditional interpolation and inpainting methods lack environmental awareness, while many deep learning approaches depend on detailed scene data, limiting generalization. To address this, we propose MARS, a Multi-scale Aware Radiomap Super-resolution method that combines CNNs and Transformers with multi-scale feature fusion and residual connections. MARS focuses on both global and local feature extraction, enhancing feature representation across different receptive fields and improving reconstruction accuracy. Experiments across different scenes and antenna locations show that MARS outperforms baseline models in both MSE and SSIM, while maintaining low computational cost, demonstrating strong practical potential.
Gen-n-Val: Agentic Image Data Generation and Validation
Recently, Large Language Models (LLMs) and Vision Large Language Models (VLLMs) have demonstrated impressive performance as agents across various tasks while data scarcity and label noise remain significant challenges in computer vision tasks, such as object detection and instance segmentation. A common solution for resolving these issues is to generate synthetic data. However, current synthetic data generation methods struggle with issues, such as multiple objects per mask, inaccurate segmentation, and incorrect category labels, limiting their effectiveness. To address these issues, we introduce Gen-n-Val, a novel agentic data generation framework that leverages Layer Diffusion (LD), LLMs, and VLLMs to produce high-quality, single-object masks and diverse backgrounds. Gen-n-Val consists of two agents: (1) The LD prompt agent, an LLM, optimizes prompts for LD to generate high-quality foreground instance images and segmentation masks. These optimized prompts ensure the generation of single-object synthetic data with precise instance masks and clean backgrounds. (2) The data validation agent, a VLLM, which filters out low-quality synthetic instance images. The system prompts for both agents are refined through TextGrad. Additionally, we use image harmonization to combine multiple instances within scenes. Compared to state-of-the-art synthetic data approaches like MosaicFusion, our approach reduces invalid synthetic data from 50% to 7% and improves performance by 1% mAP on rare classes in COCO instance segmentation with YOLOv9c and YOLO11m. Furthermore, Gen-n-Val shows significant improvements (7. 1% mAP) over YOLO-Worldv2-M in open-vocabulary object detection benchmarks with YOLO11m. Moreover, Gen-n-Val improves the performance of YOLOv9 and YOLO11 families in instance segmentation and object detection.
Interpretable Few-Shot Image Classification via Prototypical Concept-Guided Mixture of LoRA Experts
Self-Explainable Models (SEMs) rely on Prototypical Concept Learning (PCL) to enable their visual recognition processes more interpretable, but they often struggle in data-scarce settings where insufficient training samples lead to suboptimal performance.To address this limitation, we propose a Few-Shot Prototypical Concept Classification (FSPCC) framework that systematically mitigates two key challenges under low-data regimes: parametric imbalance and representation misalignment. Specifically, our approach leverages a Mixture of LoRA Experts (MoLE) for parameter-efficient adaptation, ensuring a balanced allocation of trainable parameters between the backbone and the PCL module.Meanwhile, cross-module concept guidance enforces tight alignment between the backbone's feature representations and the prototypical concept activation patterns.In addition, we incorporate a multi-level feature preservation strategy that fuses spatial and semantic cues across various layers, thereby enriching the learned representations and mitigating the challenges posed by limited data availability.Finally, to enhance interpretability and minimize concept overlap, we introduce a geometry-aware concept discrimination loss that enforces orthogonality among concepts, encouraging more disentangled and transparent decision boundaries.Experimental results on six popular benchmarks (CUB-200-2011, mini-ImageNet, CIFAR-FS, Stanford Cars, FGVC-Aircraft, and DTD) demonstrate that our approach consistently outperforms existing SEMs by a notable margin, with 4.2%-8.7% relative gains in 5-way 5-shot classification.These findings highlight the efficacy of coupling concept learning with few-shot adaptation to achieve both higher accuracy and clearer model interpretability, paving the way for more transparent visual recognition systems.
comment: 13 pages,5 figures
Feature-Based Lie Group Transformer for Real-World Applications
The main goal of representation learning is to acquire meaningful representations from real-world sensory inputs without supervision. Representation learning explains some aspects of human development. Various neural network (NN) models have been proposed that acquire empirically good representations. However, the formulation of a good representation has not been established. We recently proposed a method for categorizing changes between a pair of sensory inputs. A unique feature of this approach is that transformations between two sensory inputs are learned to satisfy algebraic structural constraints. Conventional representation learning often assumes that disentangled independent feature axes is a good representation; however, we found that such a representation cannot account for conditional independence. To overcome this problem, we proposed a new method using group decomposition in Galois algebra theory. Although this method is promising for defining a more general representation, it assumes pixel-to-pixel translation without feature extraction, and can only process low-resolution images with no background, which prevents real-world application. In this study, we provide a simple method to apply our group decomposition theory to a more realistic scenario by combining feature extraction and object segmentation. We replace pixel translation with feature translation and formulate object segmentation as grouping features under the same transformation. We validated the proposed method on a practical dataset containing both real-world object and background. We believe that our model will lead to a better understanding of human development of object recognition in the real world.
A Fast Unsupervised Scheme for Polygonal Approximation
This paper proposes a fast and unsupervised scheme for a polygonal approximation of a closed digital curve. It is demonstrated that the approximation scheme is faster than state-of-the-art approximation and is competitive with the same in Rosin's measure and in its aesthetic aspect. The scheme comprises of three phases: initial segmentation, iterative vertex insertion, and iterative merging, followed by vertex adjustment. The initial segmentation is used to detect sharp turnings - the vertices that seemingly have high curvature. It is likely that some of important vertices with low curvature might have been missed out at the first phase and so iterative vertex insertion is used to add vertices in a region where the curvature changes slowly but steadily. The initial phase may pick up some undesirable vertices and so merging is used to eliminate the redundant vertices. Finally, vertex adjustment is used to facilitate enhancement in the aesthetic look of the approximation. The quality of the approximations is measured using Rosin's measure. The robustness of the proposed scheme with respect to geometric transformation is observed.
ReasonGen-R1: CoT for Autoregressive Image generation models through SFT and RL
Although chain-of-thought reasoning and reinforcement learning (RL) have driven breakthroughs in NLP, their integration into generative vision models remains underexplored. We introduce ReasonGen-R1, a two-stage framework that first imbues an autoregressive image generator with explicit text-based "thinking" skills via supervised fine-tuning on a newly generated reasoning dataset of written rationales, and then refines its outputs using Group Relative Policy Optimization. To enable the model to reason through text before generating images, We automatically generate and release a corpus of model crafted rationales paired with visual prompts, enabling controlled planning of object layouts, styles, and scene compositions. Our GRPO algorithm uses reward signals from a pretrained vision language model to assess overall visual quality, optimizing the policy in each update. Evaluations on GenEval, DPG, and the T2I benchmark demonstrate that ReasonGen-R1 consistently outperforms strong baselines and prior state-of-the-art models. More: aka.ms/reasongen.
DEFAME: Dynamic Evidence-based FAct-checking with Multimodal Experts
The proliferation of disinformation demands reliable and scalable fact-checking solutions. We present Dynamic Evidence-based FAct-checking with Multimodal Experts (DEFAME), a modular, zero-shot MLLM pipeline for open-domain, text-image claim verification. DEFAME operates in a six-stage process, dynamically selecting the tools and search depth to extract and evaluate textual and visual evidence. Unlike prior approaches that are text-only, lack explainability, or rely solely on parametric knowledge, DEFAME performs end-to-end verification, accounting for images in claims and evidence while generating structured, multimodal reports. Evaluation on the popular benchmarks VERITE, AVerITeC, and MOCHEG shows that DEFAME surpasses all previous methods, establishing itself as the new state-of-the-art fact-checking system for uni- and multimodal fact-checking. Moreover, we introduce a new multimodal benchmark, ClaimReview2024+, featuring claims after the knowledge cutoff of GPT-4o, avoiding data leakage. Here, DEFAME drastically outperforms the GPT-4o baselines, showing temporal generalizability and the potential for real-time fact-checking.
Stochastic Poisson Surface Reconstruction with One Solve using Geometric Gaussian Processes
Poisson Surface Reconstruction is a widely-used algorithm for reconstructing a surface from an oriented point cloud. To facilitate applications where only partial surface information is available, or scanning is performed sequentially, a recent line of work proposes to incorporate uncertainty into the reconstructed surface via Gaussian process models. The resulting algorithms first perform Gaussian process interpolation, then solve a set of volumetric partial differential equations globally in space, resulting in a computationally expensive two-stage procedure. In this work, we apply recently-developed techniques from geometric Gaussian processes to combine interpolation and surface reconstruction into a single stage, requiring only one linear solve per sample. The resulting reconstructed surface samples can be queried locally in space, without the use of problem-dependent volumetric meshes or grids. These capabilities enable one to (a) perform probabilistic collision detection locally around the region of interest, (b) perform ray casting without evaluating points not on the ray's trajectory, and (c) perform next-view planning on a per-ray basis. They also do not requiring one to approximate kernel matrix inverses with diagonal matrices as part of intermediate computations, unlike prior methods. Results show that our approach provides a cleaner, more-principled, and more-flexible stochastic surface reconstruction pipeline.
MAC-Gaze: Motion-Aware Continual Calibration for Mobile Gaze Tracking
Mobile gaze tracking faces a fundamental challenge: maintaining accuracy as users naturally change their postures and device orientations. Traditional calibration approaches, like one-off, fail to adapt to these dynamic conditions, leading to degraded performance over time. We present MAC-Gaze, a Motion-Aware continual Calibration approach that leverages smartphone Inertial measurement unit (IMU) sensors and continual learning techniques to automatically detect changes in user motion states and update the gaze tracking model accordingly. Our system integrates a pre-trained visual gaze estimator and an IMU-based activity recognition model with a clustering-based hybrid decision-making mechanism that triggers recalibration when motion patterns deviate significantly from previously encountered states. To enable accumulative learning of new motion conditions while mitigating catastrophic forgetting, we employ replay-based continual learning, allowing the model to maintain performance across previously encountered motion conditions. We evaluate our system through extensive experiments on the publicly available RGBDGaze dataset and our own 10-hour multimodal MotionGaze dataset (481K+ images, 800K+ IMU readings), encompassing a wide range of postures under various motion conditions including sitting, standing, lying, and walking. Results demonstrate that our method reduces gaze estimation error by 19.9% on RGBDGaze (from 1.73 cm to 1.41 cm) and by 31.7% on MotionGaze (from 2.81 cm to 1.92 cm) compared to traditional calibration approaches. Our framework provides a robust solution for maintaining gaze estimation accuracy in mobile scenarios.
comment: 24 pages, 7 figures
UniWorld-V1: High-Resolution Semantic Encoders for Unified Visual Understanding and Generation
Although existing unified models achieve strong performance in vision-language understanding and text-to-image generation, they remain limited in addressing image perception and manipulation -- capabilities increasingly demanded in practical applications. Recently, OpenAI introduced the powerful GPT-4o-Image model, which showcases advanced capabilities in comprehensive image perception and manipulation, sparking widespread interest. Through carefully designed experiments, we observe that GPT-4o-Image likely relies on semantic encoders rather than VAEs for feature extraction, despite VAEs being commonly regarded as crucial for image manipulation tasks. Inspired by this insight, we propose UniWorld-V1, a unified generative framework built upon semantic features extracted from powerful multimodal large language models and contrastive semantic encoders. Using only 2.7M training data, UniWorld-V1 achieves impressive performance across diverse tasks, including image understanding, generation, manipulation, and perception. We fully open-source the UniWorld-V1 framework, including model weights, training and evaluation scripts, and datasets to promote reproducibility and further research.
DREAM: Disentangling Risks to Enhance Safety Alignment in Multimodal Large Language Models NAACL 2025
Multimodal Large Language Models (MLLMs) pose unique safety challenges due to their integration of visual and textual data, thereby introducing new dimensions of potential attacks and complex risk combinations. In this paper, we begin with a detailed analysis aimed at disentangling risks through step-by-step reasoning within multimodal inputs. We find that systematic multimodal risk disentanglement substantially enhances the risk awareness of MLLMs. Via leveraging the strong discriminative abilities of multimodal risk disentanglement, we further introduce \textbf{DREAM} (\textit{\textbf{D}isentangling \textbf{R}isks to \textbf{E}nhance Safety \textbf{A}lignment in \textbf{M}LLMs}), a novel approach that enhances safety alignment in MLLMs through supervised fine-tuning and iterative Reinforcement Learning from AI Feedback (RLAIF). Experimental results show that DREAM significantly boosts safety during both inference and training phases without compromising performance on normal tasks (namely oversafety), achieving a 16.17\% improvement in the SIUO safe\&effective score compared to GPT-4V. The data and code are available at https://github.com/Kizna1ver/DREAM.
comment: [NAACL 2025] The first four authors contribute equally, 23 pages, repo at https://github.com/Kizna1ver/DREAM
SR3D: Unleashing Single-view 3D Reconstruction for Transparent and Specular Object Grasping
Recent advancements in 3D robotic manipulation have improved grasping of everyday objects, but transparent and specular materials remain challenging due to depth sensing limitations. While several 3D reconstruction and depth completion approaches address these challenges, they suffer from setup complexity or limited observation information utilization. To address this, leveraging the power of single view 3D object reconstruction approaches, we propose a training free framework SR3D that enables robotic grasping of transparent and specular objects from a single view observation. Specifically, given single view RGB and depth images, SR3D first uses the external visual models to generate 3D reconstructed object mesh based on RGB image. Then, the key idea is to determine the 3D object's pose and scale to accurately localize the reconstructed object back into its original depth corrupted 3D scene. Therefore, we propose view matching and keypoint matching mechanisms,which leverage both the 2D and 3D's inherent semantic and geometric information in the observation to determine the object's 3D state within the scene, thereby reconstructing an accurate 3D depth map for effective grasp detection. Experiments in both simulation and real world show the reconstruction effectiveness of SR3D.
BevSplat: Resolving Height Ambiguity via Feature-Based Gaussian Primitives for Weakly-Supervised Cross-View Localization
This paper addresses the problem of weakly supervised cross-view localization, where the goal is to estimate the pose of a ground camera relative to a satellite image with noisy ground truth annotations. A common approach to bridge the cross-view domain gap for pose estimation is Bird's-Eye View (BEV) synthesis. However, existing methods struggle with height ambiguity due to the lack of depth information in ground images and satellite height maps. Previous solutions either assume a flat ground plane or rely on complex models, such as cross-view transformers. We propose BevSplat, a novel method that resolves height ambiguity by using feature-based Gaussian primitives. Each pixel in the ground image is represented by a 3D Gaussian with semantic and spatial features, which are synthesized into a BEV feature map for relative pose estimation. Additionally, to address challenges with panoramic query images, we introduce an icosphere-based supervision strategy for the Gaussian primitives. We validate our method on the widely used KITTI and VIGOR datasets, which include both pinhole and panoramic query images. Experimental results show that BevSplat significantly improves localization accuracy over prior approaches.
Detection-Driven Object Count Optimization for Text-to-Image Diffusion Models
Accurately controlling object count in text-to-image generation remains a key challenge. Supervised methods often fail, as training data rarely covers all count variations. Methods that manipulate the denoising process to add or remove objects can help; however, they still require labeled data, limit robustness and image quality, and rely on a slow, iterative process. Pre-trained differentiable counting models that rely on soft object density summation exist and could steer generation, but employing them presents three main challenges: (i) they are pre-trained on clean images, making them less effective during denoising steps that operate on noisy inputs; (ii) they are not robust to viewpoint changes; and (iii) optimization is computationally expensive, requiring repeated model evaluations per image. We propose a new framework that uses pre-trained object counting techniques and object detectors to guide generation. First, we optimize a counting token using an outer-loop loss computed on fully generated images. Second, we introduce a detection-driven scaling term that corrects errors caused by viewpoint and proportion shifts, among other factors, without requiring backpropagation through the detection model. Third, we show that the optimized parameters can be reused for new prompts, removing the need for repeated optimization. Our method provides efficiency through token reuse, flexibility via compatibility with various detectors, and accuracy with improved counting across diverse object categories.
comment: Pre-print
AnyTop: Character Animation Diffusion with Any Topology SIGGRAPH 2025
Generating motion for arbitrary skeletons is a longstanding challenge in computer graphics, remaining largely unexplored due to the scarcity of diverse datasets and the irregular nature of the data. In this work, we introduce AnyTop, a diffusion model that generates motions for diverse characters with distinct motion dynamics, using only their skeletal structure as input. Our work features a transformer-based denoising network, tailored for arbitrary skeleton learning, integrating topology information into the traditional attention mechanism. Additionally, by incorporating textual joint descriptions into the latent feature representation, AnyTop learns semantic correspondences between joints across diverse skeletons. Our evaluation demonstrates that AnyTop generalizes well, even with as few as three training examples per topology, and can produce motions for unseen skeletons as well. Furthermore, our model's latent space is highly informative, enabling downstream tasks such as joint correspondence, temporal segmentation and motion editing. Our webpage, https://anytop2025.github.io/Anytop-page, includes links to videos and code.
comment: SIGGRAPH 2025. Video: https://www.youtube.com/watch?v=NWOdkM5hAbE, Project page: https://anytop2025.github.io/Anytop-page, Code: https://github.com/Anytop2025/Anytop
Eddeep: Fast eddy-current distortion correction for diffusion MRI with deep learning MICCAI 2024
Modern diffusion MRI sequences commonly acquire a large number of volumes with diffusion sensitization gradients of differing strengths or directions. Such sequences rely on echo-planar imaging (EPI) to achieve reasonable scan duration. However, EPI is vulnerable to off-resonance effects, leading to tissue susceptibility and eddy-current induced distortions. The latter is particularly problematic because it causes misalignment between volumes, disrupting downstream modelling and analysis. The essential correction of eddy distortions is typically done post-acquisition, with image registration. However, this is non-trivial because correspondence between volumes can be severely disrupted due to volume-specific signal attenuations induced by varying directions and strengths of the applied gradients. This challenge has been successfully addressed by the popular FSL~Eddy tool but at considerable computational cost. We propose an alternative approach, leveraging recent advances in image processing enabled by deep learning (DL). It consists of two convolutional neural networks: 1) An image translator to restore correspondence between images; 2) A registration model to align the translated images. Results demonstrate comparable distortion estimates to FSL~Eddy, while requiring only modest training sample sizes. This work, to the best of our knowledge, is the first to tackle this problem with deep learning. Together with recently developed DL-based susceptibility correction techniques, they pave the way for real-time preprocessing of diffusion MRI, facilitating its wider uptake in the clinic.
comment: Accepted in MICCAI 2024 conference (without rebuttal). Github repo: https://github.com/CIG-UCL/eddeep
OmniCharacter: Towards Immersive Role-Playing Agents with Seamless Speech-Language Personality Interaction
Role-Playing Agents (RPAs), benefiting from large language models, is an emerging interactive AI system that simulates roles or characters with diverse personalities. However, existing methods primarily focus on mimicking dialogues among roles in textual form, neglecting the role's voice traits (e.g., voice style and emotions) as playing a crucial effect in interaction, which tends to be more immersive experiences in realistic scenarios. Towards this goal, we propose OmniCharacter, a first seamless speech-language personality interaction model to achieve immersive RPAs with low latency. Specifically, OmniCharacter enables agents to consistently exhibit role-specific personality traits and vocal traits throughout the interaction, enabling a mixture of speech and language responses. To align the model with speech-language scenarios, we construct a dataset named OmniCharacter-10K, which involves more distinctive characters (20), richly contextualized multi-round dialogue (10K), and dynamic speech response (135K). Experimental results showcase that our method yields better responses in terms of both content and style compared to existing RPAs and mainstream speech-language models, with a response latency as low as 289ms. Code and dataset are available at https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/OmniCharacter.
comment: 14 pages, 6 figures
VCD: A Dataset for Visual Commonsense Discovery in Images
Visual commonsense plays a vital role in understanding and reasoning about the visual world. While commonsense knowledge bases like ConceptNet provide structured collections of general facts, they lack visually grounded representations. Scene graph datasets like Visual Genome, though rich in object-level descriptions, primarily focus on directly observable information and lack systematic categorization of commonsense knowledge. We present Visual Commonsense Dataset (VCD), a large-scale dataset containing over 100,000 images and 14 million object-commonsense pairs that bridges this gap. VCD introduces a novel three-level taxonomy for visual commonsense, integrating both Seen (directly observable) and Unseen (inferrable) commonsense across Property, Action, and Space aspects. Each commonsense is represented as a triple where the head entity is grounded to object bounding boxes in images, enabling scene-dependent and object-specific visual commonsense representation. To demonstrate VCD's utility, we develop VCM, a generative model that combines a vision-language model with instruction tuning to discover diverse visual commonsense from images. Extensive evaluations demonstrate both the high quality of VCD and its value as a resource for advancing visually grounded commonsense understanding and reasoning. Our dataset and code will be released on https://github.com/NUSTM/VCD.
Pre-training Everywhere: Parameter-Efficient Fine-Tuning for Medical Image Analysis via Target Parameter Pre-training
Parameter-efficient fine-tuning (PEFT) techniques have emerged to address overfitting and high computational costs associated with fully fine-tuning in self-supervised learning. Mainstream PEFT methods add a few trainable parameters while keeping the pre-trained backbone parameters fixed. These methods achieve comparative, and often superior, performance to fully fine-tuning, demonstrating the powerful representation ability of the pre-trained backbone. Despite this success, these methods typically ignore the initialization of the new parameters, often relying solely on random initialization. We argue that if pre-training is significantly beneficial, it should be applied to all parameters requiring representational capacity. Motivated by this, we propose Target Parameter Pre-training (TPP), a simple yet effective fine-tuning framework. TPP pre-trains target parameters, i.e., the new parameters introduced during fine-tuning, in an additional stage before PEFT. During this stage, the pre-trained backbone parameters are frozen, and only the new parameters are trainable. A defined pretext task encourages the new parameters to learn specific representations of downstream data. Subsequently, when PEFT is employed, the pre-trained new parameters are loaded to enhance fine-tuning efficiency. The proposed TPP framework is versatile, allowing integration with various pre-trained backbones, pretext tasks, and PEFT methods. We evaluated the fine-tuning performance of our method on seven public datasets, covering four modalities and two task types. The results demonstrate that TPP can be easily integrated into existing PEFT methods, significantly improving performance.
comment: 14 pages, 4 figures, 11 tables
Convex Relaxation for Robust Vanishing Point Estimation in Manhattan World CVPR 2025
Determining the vanishing points (VPs) in a Manhattan world, as a fundamental task in many 3D vision applications, consists of jointly inferring the line-VP association and locating each VP. Existing methods are, however, either sub-optimal solvers or pursuing global optimality at a significant cost of computing time. In contrast to prior works, we introduce convex relaxation techniques to solve this task for the first time. Specifically, we employ a "soft" association scheme, realized via a truncated multi-selection error, that allows for joint estimation of VPs' locations and line-VP associations. This approach leads to a primal problem that can be reformulated into a quadratically constrained quadratic programming (QCQP) problem, which is then relaxed into a convex semidefinite programming (SDP) problem. To solve this SDP problem efficiently, we present a globally optimal outlier-robust iterative solver (called GlobustVP), which independently searches for one VP and its associated lines in each iteration, treating other lines as outliers. After each independent update of all VPs, the mutual orthogonality between the three VPs in a Manhattan world is reinforced via local refinement. Extensive experiments on both synthetic and real-world data demonstrate that GlobustVP achieves a favorable balance between efficiency, robustness, and global optimality compared to previous works. The code is publicly available at https://github.com/WU-CVGL/GlobustVP.
comment: Accepted to CVPR 2025 as Award Candidate & Oral Presentation. The first two authors contributed equally to this work. Code: https://github.com/WU-CVGL/GlobustVP
Attentive Eraser: Unleashing Diffusion Model's Object Removal Potential via Self-Attention Redirection Guidance AAAI 2025
Recently, diffusion models have emerged as promising newcomers in the field of generative models, shining brightly in image generation. However, when employed for object removal tasks, they still encounter issues such as generating random artifacts and the incapacity to repaint foreground object areas with appropriate content after remova1l. To tackle these problems, we propose Attentive Eraser, a tuning-free method to empower pre-trained diffusion models for stable and effective object removal. Firstly, in light of the observation that the self-attention maps influence the structure and shape details of the generated images, we propose Attention Activation and Suppression (ASS), which re-engineers the self-attention mechanism within the pre-trained diffusion models based on the given mask, thereby prioritizing the background over the foreground object during the reverse generation process. Moreover, we introduce Self-Attention Redirection Guidance (SARG), which utilizes the self-attention redirected by ASS to guide the generation process, effectively removing foreground objects within the mask while simultaneously generating content that is both plausible and coherent. Experiments demonstrate the stability and effectiveness of Attentive Eraser in object removal across a variety of pre-trained diffusion models, outperforming even training-based methods. Furthermore, Attentive Eraser can be implemented in various diffusion model architectures and checkpoints, enabling excellent scalability. Code is available at https://github.com/Anonym0u3/AttentiveEraser.
comment: Accepted by AAAI 2025(Oral)
Diff-Instruct++: Training One-step Text-to-image Generator Model to Align with Human Preferences
One-step text-to-image generator models offer advantages such as swift inference efficiency, flexible architectures, and state-of-the-art generation performance. In this paper, we study the problem of aligning one-step generator models with human preferences for the first time. Inspired by the success of reinforcement learning using human feedback (RLHF), we formulate the alignment problem as maximizing expected human reward functions while adding an Integral Kullback-Leibler divergence term to prevent the generator from diverging. By overcoming technical challenges, we introduce Diff-Instruct++ (DI++), the first, fast-converging and image data-free human preference alignment method for one-step text-to-image generators. We also introduce novel theoretical insights, showing that using CFG for diffusion distillation is secretly doing RLHF with DI++. Such an interesting finding brings understanding and potential contributions to future research involving CFG. In the experiment sections, we align both UNet-based and DiT-based one-step generators using DI++, which use the Stable Diffusion 1.5 and the PixelArt-$\alpha$ as the reference diffusion processes. The resulting DiT-based one-step text-to-image model achieves a strong Aesthetic Score of 6.19 and an Image Reward of 1.24 on the COCO validation prompt dataset. It also achieves a leading Human preference Score (HPSv2.0) of 28.48, outperforming other open-sourced models such as Stable Diffusion XL, DMD2, SD-Turbo, as well as PixelArt-$\alpha$. Both theoretical contributions and empirical evidence indicate that DI++ is a strong human-preference alignment approach for one-step text-to-image models. The homepage of the paper is https://github.com/pkulwj1994/diff_instruct_pp.
comment: Revision: The paper was accepted by Transactions of Machine Learning Research (TMLR)
RAID: A Dataset for Testing the Adversarial Robustness of AI-Generated Image Detectors
AI-generated images have reached a quality level at which humans are incapable of reliably distinguishing them from real images. To counteract the inherent risk of fraud and disinformation, the detection of AI-generated images is a pressing challenge and an active research topic. While many of the presented methods claim to achieve high detection accuracy, they are usually evaluated under idealized conditions. In particular, the adversarial robustness is often neglected, potentially due to a lack of awareness or the substantial effort required to conduct a comprehensive robustness analysis. In this work, we tackle this problem by providing a simpler means to assess the robustness of AI-generated image detectors. We present RAID (Robust evaluation of AI-generated image Detectors), a dataset of 72k diverse and highly transferable adversarial examples. The dataset is created by running attacks against an ensemble of seven state-of-the-art detectors and images generated by four different text-to-image models. Extensive experiments show that our methodology generates adversarial images that transfer with a high success rate to unseen detectors, which can be used to quickly provide an approximate yet still reliable estimate of a detector's adversarial robustness. Our findings indicate that current state-of-the-art AI-generated image detectors can be easily deceived by adversarial examples, highlighting the critical need for the development of more robust methods. We release our dataset at https://huggingface.co/datasets/aimagelab/RAID and evaluation code at https://github.com/pralab/RAID.
GenLit: Reformulating Single-Image Relighting as Video Generation
Manipulating the illumination of a 3D scene within a single image represents a fundamental challenge in computer vision and graphics. This problem has traditionally been addressed using inverse rendering techniques, which involve explicit 3D asset reconstruction and costly ray-tracing simulations. Meanwhile, recent advancements in visual foundation models suggest that a new paradigm could soon be possible -- one that replaces explicit physical models with networks that are trained on large amounts of image and video data. In this paper, we exploit the physical world understanding of a video diffusion model, particularly Stable Video Diffusion, to relight a single image. We introduce GenLit, a framework that distills the ability of a graphics engine to perform light manipulation into a video-generation model, enabling users to directly insert and manipulate a point light in the 3D world within a given image, and generate results directly as a video sequence. We find that a model fine-tuned on only a small synthetic dataset generalizes to real-world scenes, enabling single-image relighting with plausible and convincing shadows. Our results highlight the ability of video foundation models to capture rich information about lighting, material, and, shape and our findings indicate that such models, with minimal training, can be used to perform relighting without explicit asset reconstruction or complex ray tracing.
Place Recognition Meet Multiple Modalitie: A Comprehensive Review, Current Challenges and Future Directions
Place recognition is a cornerstone of vehicle navigation and mapping, which is pivotal in enabling systems to determine whether a location has been previously visited. This capability is critical for tasks such as loop closure in Simultaneous Localization and Mapping (SLAM) and long-term navigation under varying environmental conditions. In this survey, we comprehensively review recent advancements in place recognition, emphasizing three representative methodological paradigms: Convolutional Neural Network (CNN)-based approaches, Transformer-based frameworks, and cross-modal strategies. We begin by elucidating the significance of place recognition within the broader context of autonomous systems. Subsequently, we trace the evolution of CNN-based methods, highlighting their contributions to robust visual descriptor learning and scalability in large-scale environments. We then examine the emerging class of Transformer-based models, which leverage self-attention mechanisms to capture global dependencies and offer improved generalization across diverse scenes. Furthermore, we discuss cross-modal approaches that integrate heterogeneous data sources such as Lidar, vision, and text description, thereby enhancing resilience to viewpoint, illumination, and seasonal variations. We also summarize standard datasets and evaluation metrics widely adopted in the literature. Finally, we identify current research challenges and outline prospective directions, including domain adaptation, real-time performance, and lifelong learning, to inspire future advancements in this domain. The unified framework of leading-edge place recognition methods, i.e., code library, and the results of their experimental evaluations are available at https://github.com/CV4RA/SOTA-Place-Recognitioner.
comment: 67 pages
Navigating Motion Agents in Dynamic and Cluttered Environments through LLM Reasoning
This paper advances motion agents empowered by large language models (LLMs) toward autonomous navigation in dynamic and cluttered environments, significantly surpassing first and recent seminal but limited studies on LLM's spatial reasoning, where movements are restricted in four directions in simple, static environments in the presence of only single agents much less multiple agents. Specifically, we investigate LLMs as spatial reasoners to overcome these limitations by uniformly encoding environments (e.g., real indoor floorplans), agents which can be dynamic obstacles and their paths as discrete tokens akin to language tokens. Our training-free framework supports multi-agent coordination, closed-loop replanning, and dynamic obstacle avoidance without retraining or fine-tuning. We show that LLMs can generalize across agents, tasks, and environments using only text-based interactions, opening new possibilities for semantically grounded, interactive navigation in both simulation and embodied systems.
David and Goliath: Small One-step Model Beats Large Diffusion with Score Post-training ICML2025
We propose Diff-Instruct* (DI*), a data-efficient post-training approach for one-step text-to-image generative models to improve its human preferences without requiring image data. Our method frames alignment as online reinforcement learning from human feedback (RLHF), which optimizes the one-step model to maximize human reward functions while being regularized to be kept close to a reference diffusion process. Unlike traditional RLHF approaches, which rely on the Kullback-Leibler divergence as the regularization, we introduce a novel general score-based divergence regularization that substantially improves performance as well as post-training stability. Although the general score-based RLHF objective is intractable to optimize, we derive a strictly equivalent tractable loss function in theory that can efficiently compute its \emph{gradient} for optimizations. We introduce \emph{DI*-SDXL-1step}, which is a 2.6B one-step text-to-image model at a resolution of $1024\times 1024$, post-trained from DMD2 w.r.t SDXL. \textbf{Our 2.6B \emph{DI*-SDXL-1step} model outperforms the 50-step 12B FLUX-dev model} in ImageReward, PickScore, and CLIP score on the Parti prompts benchmark while using only 1.88\% of the inference time. This result clearly shows that with proper post-training, the small one-step model is capable of beating huge multi-step diffusion models. Our model is open-sourced at this link: https://github.com/pkulwj1994/diff_instruct_star. We hope our findings can contribute to human-centric machine learning techniques.
comment: Revision: paper accepted by the ICML2025 main conference
Sonic: Shifting Focus to Global Audio Perception in Portrait Animation
The study of talking face generation mainly explores the intricacies of synchronizing facial movements and crafting visually appealing, temporally-coherent animations. However, due to the limited exploration of global audio perception, current approaches predominantly employ auxiliary visual and spatial knowledge to stabilize the movements, which often results in the deterioration of the naturalness and temporal inconsistencies.Considering the essence of audio-driven animation, the audio signal serves as the ideal and unique priors to adjust facial expressions and lip movements, without resorting to interference of any visual signals. Based on this motivation, we propose a novel paradigm, dubbed as Sonic, to {s}hift f{o}cus on the exploration of global audio per{c}ept{i}o{n}.To effectively leverage global audio knowledge, we disentangle it into intra- and inter-clip audio perception and collaborate with both aspects to enhance overall perception.For the intra-clip audio perception, 1). \textbf{Context-enhanced audio learning}, in which long-range intra-clip temporal audio knowledge is extracted to provide facial expression and lip motion priors implicitly expressed as the tone and speed of speech. 2). \textbf{Motion-decoupled controller}, in which the motion of the head and expression movement are disentangled and independently controlled by intra-audio clips. Most importantly, for inter-clip audio perception, as a bridge to connect the intra-clips to achieve the global perception, \textbf{Time-aware position shift fusion}, in which the global inter-clip audio information is considered and fused for long-audio inference via through consecutively time-aware shifted windows. Extensive experiments demonstrate that the novel audio-driven paradigm outperform existing SOTA methodologies in terms of video quality, temporally consistency, lip synchronization precision, and motion diversity.
comment: refer to our main-page \url{https://jixiaozhong.github.io/Sonic/}
Geometric Visual Fusion Graph Neural Networks for Multi-Person Human-Object Interaction Recognition in Videos
Human-Object Interaction (HOI) recognition in videos requires understanding both visual patterns and geometric relationships as they evolve over time. Visual and geometric features offer complementary strengths. Visual features capture appearance context, while geometric features provide structural patterns. Effectively fusing these multimodal features without compromising their unique characteristics remains challenging. We observe that establishing robust, entity-specific representations before modeling interactions helps preserve the strengths of each modality. Therefore, we hypothesize that a bottom-up approach is crucial for effective multimodal fusion. Following this insight, we propose the Geometric Visual Fusion Graph Neural Network (GeoVis-GNN), which uses dual-attention feature fusion combined with interdependent entity graph learning. It progressively builds from entity-specific representations toward high-level interaction understanding. To advance HOI recognition to real-world scenarios, we introduce the Concurrent Partial Interaction Dataset (MPHOI-120). It captures dynamic multi-person interactions involving concurrent actions and partial engagement. This dataset helps address challenges like complex human-object dynamics and mutual occlusions. Extensive experiments demonstrate the effectiveness of our method across various HOI scenarios. These scenarios include two-person interactions, single-person activities, bimanual manipulations, and complex concurrent partial interactions. Our method achieves state-of-the-art performance.
comment: Accepted by Expert Systems with Applications (ESWA)
Images are Worth Variable Length of Representations
Most existing vision encoders map images into a fixed-length sequence of tokens, overlooking the fact that different images contain varying amounts of information. For example, a visually complex image (e.g., a cluttered room) inherently carries more information and thus deserves more tokens than a simple image (e.g., a blank wall). To address this inefficiency, we propose DOVE, a dynamic vision encoder that produces a variable number of visual tokens (i.e., continuous representation vectors) to reconstruct each image. Our results show that DOVE significantly reduces the average number of tokens while maintaining high reconstruction quality. In several linear probing and downstream multimodal tasks, it outperforms existing autoencoder-based tokenization methods when using far fewer tokens, capturing more expressive semantic features compared to fixed-length encoding. We further extend DOVE with query-conditioned tokenization. By guiding the model to focus on query-relevant regions, it achieves more efficient and targeted semantic extraction. Our code and checkpoints are available at https://dove-encoder.github.io/dove-encoder.
Viewport Prediction for Volumetric Video Streaming by Exploring Video Saliency and Trajectory Information
Volumetric video, also known as hologram video, is a novel medium that portrays natural content in Virtual Reality (VR), Augmented Reality (AR), and Mixed Reality (MR). It is expected to be the next-gen video technology and a prevalent use case for 5G and beyond wireless communication. Considering that each user typically only watches a section of the volumetric video, known as the viewport, it is essential to have precise viewport prediction for optimal performance. However, research on this topic is still in its infancy. In the end, this paper presents and proposes a novel approach, named Saliency and Trajectory Viewport Prediction (STVP), which aims to improve the precision of viewport prediction in volumetric video streaming. The STVP extensively utilizes video saliency information and viewport trajectory. To our knowledge, this is the first comprehensive study of viewport prediction in volumetric video streaming. In particular, we introduce a novel sampling method, Uniform Random Sampling (URS), to reduce computational complexity while still preserving video features in an efficient manner. Then we present a saliency detection technique that incorporates both spatial and temporal information for detecting static, dynamic geometric, and color salient regions. Finally, we intelligently fuse saliency and trajectory information to achieve more accurate viewport prediction. We conduct extensive simulations to evaluate the effectiveness of our proposed viewport prediction methods using state-of-the-art volumetric video sequences. The experimental results show the superiority of the proposed method over existing schemes. The dataset and source code will be publicly accessible after acceptance.
Hybrid deep convolution model for lung cancer detection with transfer learning
Advances in healthcare research have significantly enhanced our understanding of disease mechanisms, diagnostic precision, and therapeutic options. Yet, lung cancer remains one of the leading causes of cancer-related mortality worldwide due to challenges in early and accurate diagnosis. While current lung cancer detection models show promise, there is considerable potential for further improving the accuracy for timely intervention. To address this challenge, we introduce a hybrid deep convolution model leveraging transfer learning, named the Maximum Sensitivity Neural Network (MSNN). MSNN is designed to improve the precision of lung cancer detection by refining sensitivity and specificity. This model has surpassed existing deep learning approaches through experimental validation, achieving an accuracy of 98% and a sensitivity of 97%. By overlaying sensitivity maps onto lung Computed Tomography (CT) scans, it enables the visualization of regions most indicative of malignant or benign classifications. This innovative method demonstrates exceptional performance in distinguishing lung cancer with minimal false positives, thereby enhancing the accuracy of medical diagnoses.
comment: Authors realized mistake in the model. Also some data was misinterpreted
Electrolyzers-HSI: Close-Range Multi-Scene Hyperspectral Imaging Benchmark Dataset
The global challenge of sustainable recycling demands automated, fast, and accurate, state-of-the-art (SOTA) material detection systems that act as a bedrock for a circular economy. Democratizing access to these cutting-edge solutions that enable real-time waste analysis is essential for scaling up recycling efforts and fostering the Green Deal. In response, we introduce \textbf{Electrolyzers-HSI}, a novel multimodal benchmark dataset designed to accelerate the recovery of critical raw materials through accurate electrolyzer materials classification. The dataset comprises 55 co-registered high-resolution RGB images and hyperspectral imaging (HSI) data cubes spanning the 400--2500 nm spectral range, yielding over 4.2 million pixel vectors and 424,169 labeled ones. This enables non-invasive spectral analysis of shredded electrolyzer samples, supporting quantitative and qualitative material classification and spectral properties investigation. We evaluate a suite of baseline machine learning (ML) methods alongside SOTA transformer-based deep learning (DL) architectures, including Vision Transformer, SpectralFormer, and the Multimodal Fusion Transformer, to investigate architectural bottlenecks for further efficiency optimisation when deploying transformers in material identification. We implement zero-shot detection techniques and majority voting across pixel-level predictions to establish object-level classification robustness. In adherence to the FAIR data principles, the electrolyzers-HSI dataset and accompanying codebase are openly available at https://github.com/hifexplo/Electrolyzers-HSI and https://rodare.hzdr.de/record/3668, supporting reproducible research and facilitating the broader adoption of smart and sustainable e-waste recycling solutions.
Reading Recognition in the Wild
To enable egocentric contextual AI in always-on smart glasses, it is crucial to be able to keep a record of the user's interactions with the world, including during reading. In this paper, we introduce a new task of reading recognition to determine when the user is reading. We first introduce the first-of-its-kind large-scale multimodal Reading in the Wild dataset, containing 100 hours of reading and non-reading videos in diverse and realistic scenarios. We then identify three modalities (egocentric RGB, eye gaze, head pose) that can be used to solve the task, and present a flexible transformer model that performs the task using these modalities, either individually or combined. We show that these modalities are relevant and complementary to the task, and investigate how to efficiently and effectively encode each modality. Additionally, we show the usefulness of this dataset towards classifying types of reading, extending current reading understanding studies conducted in constrained settings to larger scale, diversity and realism.
comment: Project Page: https://www.projectaria.com/datasets/reading-in-the-wild/
FlowCut: Rethinking Redundancy via Information Flow for Efficient Vision-Language Models
Large vision-language models (LVLMs) excel at multimodal understanding but suffer from high computational costs due to redundant vision tokens. Existing pruning methods typically rely on single-layer attention scores to rank and prune redundant visual tokens to solve this inefficiency. However, as the interaction between tokens and layers is complicated, this raises a basic question: Is such a simple single-layer criterion sufficient to identify redundancy? To answer this question, we rethink the emergence of redundant visual tokens from a fundamental perspective: information flow, which models the interaction between tokens and layers by capturing how information moves between tokens across layers. We find (1) the CLS token acts as an information relay, which can simplify the complicated flow analysis; (2) the redundancy emerges progressively and dynamically via layer-wise attention concentration; and (3) relying solely on attention scores from single layers can lead to contradictory redundancy identification. Based on this, we propose FlowCut, an information-flow-aware pruning framework, mitigating the insufficiency of the current criterion for identifying redundant tokens and better aligning with the model's inherent behaviors. Extensive experiments show that FlowCut achieves superior results, outperforming SoTA by 1.6% on LLaVA-1.5-7B with 88.9% token reduction, and by 4.3% on LLaVA-NeXT-7B with 94.4% reduction, delivering 3.2x speed-up in the prefilling stage. Our code is available at https://github.com/TungChintao/FlowCut
comment: 19 pages, 11 figures
GaRA-SAM: Robustifying Segment Anything Model with Gated-Rank Adaptation
Improving robustness of the Segment Anything Model (SAM) to input degradations is critical for its deployment in high-stakes applications such as autonomous driving and robotics. Our approach to this challenge prioritizes three key aspects: first, parameter efficiency to maintain the inherent generalization capability of SAM; second, fine-grained and input-aware robustification to precisely address the input corruption; and third, adherence to standard training protocols for ease of training. To this end, we propose gated-rank adaptation (GaRA). GaRA introduces lightweight adapters into intermediate layers of the frozen SAM, where each adapter dynamically adjusts the effective rank of its weight matrix based on the input by selectively activating (rank-1) components of the matrix using a learned gating module. This adjustment enables fine-grained and input-aware robustification without compromising the generalization capability of SAM. Our model, GaRA-SAM, significantly outperforms prior work on all robust segmentation benchmarks. In particular, it surpasses the previous best IoU score by up to 21.3\%p on ACDC, a challenging real corrupted image dataset.
Rethinking the Stability-Plasticity Trade-off in Continual Learning from an Architectural Perspective ICML 2025
The quest for Continual Learning (CL) seeks to empower neural networks with the ability to learn and adapt incrementally. Central to this pursuit is addressing the stability-plasticity dilemma, which involves striking a balance between two conflicting objectives: preserving previously learned knowledge and acquiring new knowledge. While numerous CL methods aim to achieve this trade-off, they often overlook the impact of network architecture on stability and plasticity, restricting the trade-off to the parameter level. In this paper, we delve into the conflict between stability and plasticity at the architectural level. We reveal that under an equal parameter constraint, deeper networks exhibit better plasticity, while wider networks are characterized by superior stability. To address this architectural-level dilemma, we introduce a novel framework denoted Dual-Arch, which serves as a plug-in component for CL. This framework leverages the complementary strengths of two distinct and independent networks: one dedicated to plasticity and the other to stability. Each network is designed with a specialized and lightweight architecture, tailored to its respective objective. Extensive experiments demonstrate that Dual-Arch enhances the performance of existing CL methods while being up to 87% more compact in terms of parameters. Code: https://github.com/byyx666/Dual-Arch.
comment: Accepted to ICML 2025
Self-Supervised Learning for Text Recognition: A Critical Survey
Text Recognition (TR) refers to the research area that focuses on retrieving textual information from images, a topic that has seen significant advancements in the last decade due to the use of Deep Neural Networks (DNN). However, these solutions often necessitate vast amounts of manually labeled or synthetic data. Addressing this challenge, Self-Supervised Learning (SSL) has gained attention by utilizing large datasets of unlabeled data to train DNN, thereby generating meaningful and robust representations. Although SSL was initially overlooked in TR because of its unique characteristics, recent years have witnessed a surge in the development of SSL methods specifically for this field. This rapid development, however, has led to many methods being explored independently, without taking previous efforts in methodology or comparison into account, thereby hindering progress in the field of research. This paper, therefore, seeks to consolidate the use of SSL in the field of TR, offering a critical and comprehensive overview of the current state of the art. We will review and analyze the existing methods, compare their results, and highlight inconsistencies in the current literature. This thorough analysis aims to provide general insights into the field, propose standardizations, identify new research directions, and foster its proper development.
comment: Published at International Journal of Computer Vision (IJCV)
Text-to-CAD Generation Through Infusing Visual Feedback in Large Language Models ICML 2025
Creating Computer-Aided Design (CAD) models requires significant expertise and effort. Text-to-CAD, which converts textual descriptions into CAD parametric sequences, is crucial in streamlining this process. Recent studies have utilized ground-truth parametric sequences, known as sequential signals, as supervision to achieve this goal. However, CAD models are inherently multimodal, comprising parametric sequences and corresponding rendered visual objects. Besides,the rendering process from parametric sequences to visual objects is many-to-one. Therefore, both sequential and visual signals are critical for effective training. In this work, we introduce CADFusion, a framework that uses Large Language Models (LLMs) as the backbone and alternates between two training stages: the sequential learning (SL) stage and the visual feedback (VF) stage. In the SL stage, we train LLMs using ground-truth parametric sequences, enabling the generation of logically coherent parametric sequences. In the VF stage, we reward parametric sequences that render into visually preferred objects and penalize those that do not, allowing LLMs to learn how rendered visual objects are perceived and evaluated. These two stages alternate throughout the training, ensuring balanced learning and preserving benefits of both signals. Experiments demonstrate that CADFusion significantly improves performance, both qualitatively and quantitatively.
comment: ICML 2025 camera ready
GarmageNet: A Multimodal Generative Framework for Sewing Pattern Design and Generic Garment Modeling
Realistic digital garment modeling remains a labor-intensive task due to the intricate process of translating 2D sewing patterns into high-fidelity, simulation-ready 3D garments. We introduce GarmageNet, a unified generative framework that automates the creation of 2D sewing patterns, the construction of sewing relationships, and the synthesis of 3D garment initializations compatible with physics-based simulation. Central to our approach is Garmage, a novel garment representation that encodes each panel as a structured geometry image, effectively bridging the semantic and geometric gap between 2D structural patterns and 3D garment shapes. GarmageNet employs a latent diffusion transformer to synthesize panel-wise geometry images and integrates GarmageJigsaw, a neural module for predicting point-to-point sewing connections along panel contours. To support training and evaluation, we build GarmageSet, a large-scale dataset comprising over 10,000 professionally designed garments with detailed structural and style annotations. Our method demonstrates versatility and efficacy across multiple application scenarios, including scalable garment generation from multi-modal design concepts (text prompts, sketches, photographs), automatic modeling from raw flat sewing patterns, pattern recovery from unstructured point clouds, and progressive garment editing using conventional instructions-laying the foundation for fully automated, production-ready pipelines in digital fashion. Project page: https://style3d.github.io/garmagenet.
Adapt before Continual Learning
Continual Learning (CL) seeks to enable neural networks to incrementally acquire new knowledge (plasticity) while retaining existing knowledge (stability). While pre-trained models (PTMs) have become pivotal in CL, prevailing approaches freeze the PTM backbone to preserve stability, limiting their plasticity, particularly when encountering significant domain gaps in incremental tasks. Conversely, sequentially finetuning the entire PTM risks catastrophic forgetting of generalizable knowledge, exposing a critical stability-plasticity trade-off. To address this challenge, we propose Adapting PTMs before the core CL process (ACL), a novel framework that refines the PTM backbone through a plug-and-play adaptation phase before learning each new task with existing CL approaches (e.g., prompt tuning). ACL enhances plasticity by aligning embeddings with their original class prototypes while distancing them from others, theoretically and empirically shown to balance stability and plasticity. Extensive experiments demonstrate that ACL significantly improves CL performance across benchmarks and integrated methods, offering a versatile solution for PTM-based CL. Code is available at https://github.com/byyx666/ACL_code.
EmbodiedBench: Comprehensive Benchmarking Multi-modal Large Language Models for Vision-Driven Embodied Agents ICML 2025
Leveraging Multi-modal Large Language Models (MLLMs) to create embodied agents offers a promising avenue for tackling real-world tasks. While language-centric embodied agents have garnered substantial attention, MLLM-based embodied agents remain underexplored due to the lack of comprehensive evaluation frameworks. To bridge this gap, we introduce EmbodiedBench, an extensive benchmark designed to evaluate vision-driven embodied agents. EmbodiedBench features: (1) a diverse set of 1,128 testing tasks across four environments, ranging from high-level semantic tasks (e.g., household) to low-level tasks involving atomic actions (e.g., navigation and manipulation); and (2) six meticulously curated subsets evaluating essential agent capabilities like commonsense reasoning, complex instruction understanding, spatial awareness, visual perception, and long-term planning. Through extensive experiments, we evaluated 24 leading proprietary and open-source MLLMs within EmbodiedBench. Our findings reveal that: MLLMs excel at high-level tasks but struggle with low-level manipulation, with the best model, GPT-4o, scoring only 28.9\% on average. EmbodiedBench provides a multifaceted standardized evaluation platform that not only highlights existing challenges but also offers valuable insights to advance MLLM-based embodied agents. Our code and dataset are available at https://embodiedbench.github.io.
comment: Accepted to ICML 2025
OmnimatteZero: Fast Training-free Omnimatte with Pre-trained Video Diffusion Models
In Omnimatte, one aims to decompose a given video into semantically meaningful layers, including the background and individual objects along with their associated effects, such as shadows and reflections. Existing methods often require extensive training or costly self-supervised optimization. In this paper, we present OmnimatteZero, a training-free approach that leverages off-the-shelf pre-trained video diffusion models for omnimatte. It can remove objects from videos, extract individual object layers along with their effects, and composite those objects onto new videos. These are accomplished by adapting zero-shot image inpainting techniques for video object removal, a task they fail to handle effectively out-of-the-box. To overcome this, we introduce temporal and spatial attention guidance modules that steer the diffusion process for accurate object removal and temporally consistent background reconstruction. We further show that self-attention maps capture information about the object and its footprints and use them to inpaint the object's effects, leaving a clean background. Additionally, through simple latent arithmetic, object layers can be isolated and recombined seamlessly with new video layers to produce new videos. Evaluations show that OmnimatteZero not only achieves superior performance in terms of background reconstruction but also sets a new record for the fastest Omnimatte approach, achieving real-time performance with minimal frame runtime.
comment: Project Page: https://dvirsamuel.github.io/omnimattezero.github.io/
Psi-Sampler: Initial Particle Sampling for SMC-Based Inference-Time Reward Alignment in Score Models
We introduce $\Psi$-Sampler, an SMC-based framework incorporating pCNL-based initial particle sampling for effective inference-time reward alignment with a score-based generative model. Inference-time reward alignment with score-based generative models has recently gained significant traction, following a broader paradigm shift from pre-training to post-training optimization. At the core of this trend is the application of Sequential Monte Carlo (SMC) to the denoising process. However, existing methods typically initialize particles from the Gaussian prior, which inadequately captures reward-relevant regions and results in reduced sampling efficiency. We demonstrate that initializing from the reward-aware posterior significantly improves alignment performance. To enable posterior sampling in high-dimensional latent spaces, we introduce the preconditioned Crank-Nicolson Langevin (pCNL) algorithm, which combines dimension-robust proposals with gradient-informed dynamics. This approach enables efficient and scalable posterior sampling and consistently improves performance across various reward alignment tasks, including layout-to-image generation, quantity-aware generation, and aesthetic-preference generation, as demonstrated in our experiments. Project Webpage: https://psi-sampler.github.io/
Image and Video Processing
DM-SegNet: Dual-Mamba Architecture for 3D Medical Image Segmentation with Global Context Modeling
Accurate 3D medical image segmentation demands architectures capable of reconciling global context modeling with spatial topology preservation. While State Space Models (SSMs) like Mamba show potential for sequence modeling, existing medical SSMs suffer from encoder-decoder incompatibility: the encoder's 1D sequence flattening compromises spatial structures, while conventional decoders fail to leverage Mamba's state propagation. We present DM-SegNet, a Dual-Mamba architecture integrating directional state transitions with anatomy-aware hierarchical decoding. The core innovations include a quadri-directional spatial Mamba module employing four-directional 3D scanning to maintain anatomical spatial coherence, a gated spatial convolution layer that enhances spatially sensitive feature representation prior to state modeling, and a Mamba-driven decoding framework enabling bidirectional state synchronization across scales. Extensive evaluation on two clinically significant benchmarks demonstrates the efficacy of DM-SegNet: achieving state-of-the-art Dice Similarity Coefficient (DSC) of 85.44% on the Synapse dataset for abdominal organ segmentation and 90.22% on the BraTS2023 dataset for brain tumor segmentation.
PixCell: A generative foundation model for digital histopathology images
The digitization of histology slides has revolutionized pathology, providing massive datasets for cancer diagnosis and research. Contrastive self-supervised and vision-language models have been shown to effectively mine large pathology datasets to learn discriminative representations. On the other hand, generative models, capable of synthesizing realistic and diverse images, present a compelling solution to address unique problems in pathology that involve synthesizing images; overcoming annotated data scarcity, enabling privacy-preserving data sharing, and performing inherently generative tasks, such as virtual staining. We introduce PixCell, the first diffusion-based generative foundation model for histopathology. We train PixCell on PanCan-30M, a vast, diverse dataset derived from 69,184 H\&E-stained whole slide images covering various cancer types. We employ a progressive training strategy and a self-supervision-based conditioning that allows us to scale up training without any annotated data. PixCell generates diverse and high-quality images across multiple cancer types, which we find can be used in place of real data to train a self-supervised discriminative model. Synthetic images shared between institutions are subject to fewer regulatory barriers than would be the case with real clinical images. Furthermore, we showcase the ability to precisely control image generation using a small set of annotated images, which can be used for both data augmentation and educational purposes. Testing on a cell segmentation task, a mask-guided PixCell enables targeted data augmentation, improving downstream performance. Finally, we demonstrate PixCell's ability to use H\&E structural staining to infer results from molecular marker studies; we use this capability to infer IHC staining from H\&E images. Our trained models are publicly released to accelerate research in computational pathology.
DACN: Dual-Attention Convolutional Network for Hyperspectral Image Super-Resolution
2D convolutional neural networks (CNNs) have attracted significant attention for hyperspectral image super-resolution tasks. However, a key limitation is their reliance on local neighborhoods, which leads to a lack of global contextual understanding. Moreover, band correlation and data scarcity continue to limit their performance. To mitigate these issues, we introduce DACN, a dual-attention convolutional network for hyperspectral image super-resolution. Specifically, the model first employs augmented convolutions, integrating multi-head attention to effectively capture both local and global feature dependencies. Next, we infer separate attention maps for the channel and spatial dimensions to determine where to focus across different channels and spatial positions. Furthermore, a custom optimized loss function is proposed that combines L2 regularization with spatial-spectral gradient loss to ensure accurate spectral fidelity. Experimental results on two hyperspectral datasets demonstrate that the combination of multi-head attention and channel attention outperforms either attention mechanism used individually.
Physics Informed Capsule Enhanced Variational AutoEncoder for Underwater Image Enhancement
We present a novel dual-stream architecture that achieves state-of-the-art underwater image enhancement by explicitly integrating the Jaffe-McGlamery physical model with capsule clustering-based feature representation learning. Our method simultaneously estimates transmission maps and spatially-varying background light through a dedicated physics estimator while extracting entity-level features via capsule clustering in a parallel stream. This physics-guided approach enables parameter-free enhancement that respects underwater formation constraints while preserving semantic structures and fine-grained details. Our approach also features a novel optimization objective ensuring both physical adherence and perceptual quality across multiple spatial frequencies. To validate our approach, we conducted extensive experiments across six challenging benchmarks. Results demonstrate consistent improvements of $+0.5$dB PSNR over the best existing methods while requiring only one-third of their computational complexity (FLOPs), or alternatively, more than $+1$dB PSNR improvement when compared to methods with similar computational budgets. Code and data \textit{will} be available at https://github.com/iN1k1/.
Ontology-based knowledge representation for bone disease diagnosis: a foundation for safe and sustainable medical artificial intelligence systems
Medical artificial intelligence (AI) systems frequently lack systematic domain expertise integration, potentially compromising diagnostic reliability. This study presents an ontology-based framework for bone disease diagnosis, developed in collaboration with Ho Chi Minh City Hospital for Traumatology and Orthopedics. The framework introduces three theoretical contributions: (1) a hierarchical neural network architecture guided by bone disease ontology for segmentation-classification tasks, incorporating Visual Language Models (VLMs) through prompts, (2) an ontology-enhanced Visual Question Answering (VQA) system for clinical reasoning, and (3) a multimodal deep learning model that integrates imaging, clinical, and laboratory data through ontological relationships. The methodology maintains clinical interpretability through systematic knowledge digitization, standardized medical terminology mapping, and modular architecture design. The framework demonstrates potential for extension beyond bone diseases through its standardized structure and reusable components. While theoretical foundations are established, experimental validation remains pending due to current dataset and computational resource limitations. Future work will focus on expanding the clinical dataset and conducting comprehensive system validation.
U-NetMN and SegNetMN: Modified U-Net and SegNet models for bimodal SAR image segmentation
Segmenting Synthetic Aperture Radar (SAR) images is crucial for many remote sensing applications, particularly water body detection. However, deep learning-based segmentation models often face challenges related to convergence speed and stability, mainly due to the complex statistical distribution of this type of data. In this study, we evaluate the impact of mode normalization on two widely used semantic segmentation models, U-Net and SegNet. Specifically, we integrate mode normalization, to reduce convergence time while maintaining the performance of the baseline models. Experimental results demonstrate that mode normalization significantly accelerates convergence. Furthermore, cross-validation results indicate that normalized models exhibit increased stability in different zones. These findings highlight the effectiveness of normalization in improving computational efficiency and generalization in SAR image segmentation.
Deep histological synthesis from mass spectrometry imaging for multimodal registration
Registration of histological and mass spectrometry imaging (MSI) allows for more precise identification of structural changes and chemical interactions in tissue. With histology and MSI having entirely different image formation processes and dimensionalities, registration of the two modalities remains an ongoing challenge. This work proposes a solution that synthesises histological images from MSI, using a pix2pix model, to effectively enable unimodal registration. Preliminary results show promising synthetic histology images with limited artifacts, achieving increases in mutual information (MI) and structural similarity index measures (SSIM) of +0.924 and +0.419, respectively, compared to a baseline U-Net model. Our source code is available on GitHub: https://github.com/kimberley/MIUA2025.
comment: Medical Image Understanding and Analysis (MIUA) 2025 Extended Abstract Submission
Eddeep: Fast eddy-current distortion correction for diffusion MRI with deep learning MICCAI 2024
Modern diffusion MRI sequences commonly acquire a large number of volumes with diffusion sensitization gradients of differing strengths or directions. Such sequences rely on echo-planar imaging (EPI) to achieve reasonable scan duration. However, EPI is vulnerable to off-resonance effects, leading to tissue susceptibility and eddy-current induced distortions. The latter is particularly problematic because it causes misalignment between volumes, disrupting downstream modelling and analysis. The essential correction of eddy distortions is typically done post-acquisition, with image registration. However, this is non-trivial because correspondence between volumes can be severely disrupted due to volume-specific signal attenuations induced by varying directions and strengths of the applied gradients. This challenge has been successfully addressed by the popular FSL~Eddy tool but at considerable computational cost. We propose an alternative approach, leveraging recent advances in image processing enabled by deep learning (DL). It consists of two convolutional neural networks: 1) An image translator to restore correspondence between images; 2) A registration model to align the translated images. Results demonstrate comparable distortion estimates to FSL~Eddy, while requiring only modest training sample sizes. This work, to the best of our knowledge, is the first to tackle this problem with deep learning. Together with recently developed DL-based susceptibility correction techniques, they pave the way for real-time preprocessing of diffusion MRI, facilitating its wider uptake in the clinic.
comment: Accepted in MICCAI 2024 conference (without rebuttal). Github repo: https://github.com/CIG-UCL/eddeep
FlowDAS: A Stochastic Interpolant-based Framework for Data Assimilation
Data assimilation (DA) integrates observations with a dynamical model to estimate states of PDE-governed systems. Model-driven methods (e.g., Kalman, particle) presuppose full knowledge of the true dynamics, which is not always satisfied in practice, while purely data-driven solvers learn a deterministic mapping between observations and states and therefore miss the intrinsic stochasticity of real processes. Recently, score-based diffusion models learn a global diffusion prior and provide a good modeling of the stochastic dynamics, showing new potential for DA. However, their all-at-once generation rather than step-by-step transition limits their performance when dealing with highly complex stochastic processes and lacks physical interpretability. To tackle these drawbacks, we introduce FlowDAS, a generative DA framework that uses stochastic interpolants to directly learn state transition dynamics and achieve step-by-step transition to better model the real dynamics. We also improve the framework by combining the observation, better suiting the DA settings. Directly learning the underlying dynamics from collected data removes restrictive dynamical assumptions, and conditioning on observations at each interpolation step yields stable, measurement-consistent forecasts. Experiments on Lorenz-63, Navier-Stokes super-resolution/sparse-observation scenarios, and large-scale weather forecasting -- where dynamics are partly or wholly unknown -- show that FlowDAS surpasses model-driven methods, neural operators, and score-based baselines in accuracy and physical plausibility.
Solving Inverse Problems via Diffusion-Based Priors: An Approximation-Free Ensemble Sampling Approach
Diffusion models (DMs) have proven to be effective in modeling high-dimensional distributions, leading to their widespread adoption for representing complex priors in Bayesian inverse problems (BIPs). However, current DM-based posterior sampling methods proposed for solving common BIPs rely on heuristic approximations to the generative process. To exploit the generative capability of DMs and avoid the usage of such approximations, we propose an ensemble-based algorithm that performs posterior sampling without the use of heuristic approximations. Our algorithm is motivated by existing works that combine DM-based methods with the sequential Monte Carlo (SMC) method. By examining how the prior evolves through the diffusion process encoded by the pre-trained score function, we derive a modified partial differential equation (PDE) governing the evolution of the corresponding posterior distribution. This PDE includes a modified diffusion term and a reweighting term, which can be simulated via stochastic weighted particle methods. Theoretically, we prove that the error between the true posterior distribution can be bounded in terms of the training error of the pre-trained score function and the number of particles in the ensemble. Empirically, we validate our algorithm on several inverse problems in imaging to show that our method gives more accurate reconstructions compared to existing DM-based methods.
comment: 45 pages
Uncovering Memorization Effect in the Presence of Spurious Correlations
Machine learning models often rely on simple spurious features -- patterns in training data that correlate with targets but are not causally related to them, like image backgrounds in foreground classification. This reliance typically leads to imbalanced test performance across minority and majority groups. In this work, we take a closer look at the fundamental cause of such imbalanced performance through the lens of memorization, which refers to the ability to predict accurately on atypical examples (minority groups) in the training set but failing in achieving the same accuracy in the testing set. This paper systematically shows the ubiquitous existence of spurious features in a small set of neurons within the network, providing the first-ever evidence that memorization may contribute to imbalanced group performance. Through three experimental sources of converging empirical evidence, we find the property of a small subset of neurons or channels in memorizing minority group information. Inspired by these findings, we hypothesize that spurious memorization, concentrated within a small subset of neurons, plays a key role in driving imbalanced group performance. To further substantiate this hypothesis, we show that eliminating these unnecessary spurious memorization patterns via a novel framework during training can significantly affect the model performance on minority groups. Our experimental results across various architectures and benchmarks offer new insights on how neural networks encode core and spurious knowledge, laying the groundwork for future research in demystifying robustness to spurious correlation.
comment: Accepted by Nature Communications
Improving Generalization in MRI-Based Deep Learning Models for Total Knee Replacement Prediction
Knee osteoarthritis (KOA) is a common joint disease that causes pain and mobility issues. While MRI-based deep learning models have demonstrated superior performance in predicting total knee replacement (TKR) and disease progression, their generalizability remains challenging, particularly when applied to imaging data from different sources. In this study, we have shown that replacing batch normalization with instance normalization, using data augmentation, and applying contrastive loss improves model generalization in a baseline deep learning model for knee osteoarthritis (KOA) prediction. We trained and evaluated our model using MRI data from the Osteoarthritis Initiative (OAI) database, considering sagittal fat-suppressed intermediate-weighted turbo spin-echo (FS-IW-TSE) images as the source domain and sagittal fat-suppressed three-dimensional (3D) dual-echo in steady state (DESS) images as the target domain. The results demonstrate a statistically significant improvement in classification accuracy across both domains, with our approach outperforming the baseline model.
Multimedia
Beyond the Desktop: XR-Driven Segmentation with Meta Quest 3 and MX Ink
Medical imaging segmentation is essential in clinical settings for diagnosing diseases, planning surgeries, and other procedures. However, manual annotation is a cumbersome and effortful task. To mitigate these aspects, this study implements and evaluates the usability and clinical applicability of an extended reality (XR)-based segmentation tool for anatomical CT scans, using the Meta Quest 3 headset and Logitech MX Ink stylus. We develop an immersive interface enabling real-time interaction with 2D and 3D medical imaging data in a customizable workspace designed to mitigate workflow fragmentation and cognitive demands inherent to conventional manual segmentation tools. The platform combines stylus-driven annotation, mirroring traditional pen-on-paper workflows, with instant 3D volumetric rendering. A user study with a public craniofacial CT dataset demonstrated the tool's foundational viability, achieving a System Usability Scale (SUS) score of 66, within the expected range for medical applications. Participants highlighted the system's intuitive controls (scoring 4.1/5 for self-descriptiveness on ISONORM metrics) and spatial interaction design, with qualitative feedback highlighting strengths in hybrid 2D/3D navigation and realistic stylus ergonomics. While users identified opportunities to enhance task-specific precision and error management, the platform's core workflow enabled dynamic slice adjustment, reducing cognitive load compared to desktop tools. Results position the XR-stylus paradigm as a promising foundation for immersive segmentation tools, with iterative refinements targeting haptic feedback calibration and workflow personalization to advance adoption in preoperative planning.
comment: 10 pages
Truth in the Few: High-Value Data Selection for Efficient Multi-Modal Reasoning
While multi-modal large language models (MLLMs) have made significant progress in complex reasoning tasks via reinforcement learning, it is commonly believed that extensive training data is necessary for improving multi-modal reasoning ability, inevitably leading to data redundancy and substantial computational costs. However, can smaller high-value datasets match or outperform full corpora for multi-modal reasoning in MLLMs? In this work, we challenge this assumption through a key observation: meaningful multi-modal reasoning is triggered by only a sparse subset of training samples, termed cognitive samples, whereas the majority contribute marginally. Building on this insight, we propose a novel data selection paradigm termed Reasoning Activation Potential (RAP), which identifies cognitive samples by estimating each sample's potential to stimulate genuine multi-modal reasoning by two complementary estimators: 1) Causal Discrepancy Estimator (CDE) based on the potential outcome model principle, eliminates samples that overly rely on language priors by comparing outputs between multi-modal and text-only inputs; 2) Attention Confidence Estimator (ACE), which exploits token-level self-attention to discard samples dominated by irrelevant but over-emphasized tokens in intermediate reasoning stages. Moreover, we introduce a Difficulty-aware Replacement Module (DRM) to substitute trivial instances with cognitively challenging ones, thereby ensuring complexity for robust multi-modal reasoning. Experiments on six datasets show that our RAP method consistently achieves superior performance using only 9.3% of the training data, while reducing computational costs by over 43%. Our code is available at https://github.com/Leo-ssl/RAP.
Enhancing Frequency for Single Image Super-Resolution with Learnable Separable Kernels
Existing approaches often enhance the performance of single-image super-resolution (SISR) methods by incorporating auxiliary structures, such as specialized loss functions, to indirectly boost the quality of low-resolution images. In this paper, we propose a plug-and-play module called Learnable Separable Kernels (LSKs), which are formally rank-one matrices designed to directly enhance image frequency components. We begin by explaining why LSKs are particularly suitable for SISR tasks from a frequency perspective. Baseline methods incorporating LSKs demonstrate a significant reduction of over 60\% in both the number of parameters and computational requirements. This reduction is achieved through the decomposition of LSKs into orthogonal and mergeable one-dimensional kernels. Additionally, we perform an interpretable analysis of the feature maps generated by LSKs. Visualization results reveal the capability of LSKs to enhance image frequency components effectively. Extensive experiments show that incorporating LSKs not only reduces the number of parameters and computational load but also improves overall model performance. Moreover, these experiments demonstrate that models utilizing LSKs exhibit superior performance, particularly as the upscaling factor increases.
SocialDF: Benchmark Dataset and Detection Model for Mitigating Harmful Deepfake Content on Social Media Platforms
The rapid advancement of deep generative models has significantly improved the realism of synthetic media, presenting both opportunities and security challenges. While deepfake technology has valuable applications in entertainment and accessibility, it has emerged as a potent vector for misinformation campaigns, particularly on social media. Existing detection frameworks struggle to distinguish between benign and adversarially generated deepfakes engineered to manipulate public perception. To address this challenge, we introduce SocialDF, a curated dataset reflecting real-world deepfake challenges on social media platforms. This dataset encompasses high-fidelity deepfakes sourced from various online ecosystems, ensuring broad coverage of manipulative techniques. We propose a novel LLM-based multi-factor detection approach that combines facial recognition, automated speech transcription, and a multi-agent LLM pipeline to cross-verify audio-visual cues. Our methodology emphasizes robust, multi-modal verification techniques that incorporate linguistic, behavioral, and contextual analysis to effectively discern synthetic media from authentic content.
FGAS: Fixed Decoder Network-Based Audio Steganography with Adversarial Perturbation Generation
The rapid development of Artificial Intelligence Generated Content (AIGC) has made high-fidelity generated audio widely available across the Internet, providing diverse cover signals for covert communication. Driven by advances in deep learning, current audio steganography schemes are mainly based on encoding-decoding network architectures. While these methods greatly improve the security of audio steganography, they typically require complex training and large pre-trained models. To address the aforementioned issues, this paper pioneers a Fixed Decoder Network-Based Audio Steganography with Adversarial Perturbation Generation (FGAS). Adversarial perturbations carrying secret message are embedded into the cover audio to generate stego audio. The receiver only needs to share the structure and weights of the fixed decoder network to accurately extract the secret message from the stego audio, this eliminates the reliance on large pre-trained models. In FGAS, we propose an audio Adversarial Perturbation Generation (APG) strategy and design a lightweight fixed decoder. The fixed decoder guarantees reliable extraction of the hidden message, while the adversarial perturbations are optimized to keep the stego audio perceptually and statistically close to the cover audio, thereby improving resistance to steganalysis. The experimental results show that FGAS significantly improves the quality of stego audio, achieving an average PSNR gain of over 10 dB compared to SOTA methods. Moreover, FGAS exhibits superior anti-steganalysis performance under different relative payloads; under high-capacity embedding, it achieves a classification error rate about 2% higher, indicating stronger anti-steganalysis performance compared to current SOTA methods.
David and Goliath: Small One-step Model Beats Large Diffusion with Score Post-training ICML2025
We propose Diff-Instruct* (DI*), a data-efficient post-training approach for one-step text-to-image generative models to improve its human preferences without requiring image data. Our method frames alignment as online reinforcement learning from human feedback (RLHF), which optimizes the one-step model to maximize human reward functions while being regularized to be kept close to a reference diffusion process. Unlike traditional RLHF approaches, which rely on the Kullback-Leibler divergence as the regularization, we introduce a novel general score-based divergence regularization that substantially improves performance as well as post-training stability. Although the general score-based RLHF objective is intractable to optimize, we derive a strictly equivalent tractable loss function in theory that can efficiently compute its \emph{gradient} for optimizations. We introduce \emph{DI*-SDXL-1step}, which is a 2.6B one-step text-to-image model at a resolution of $1024\times 1024$, post-trained from DMD2 w.r.t SDXL. \textbf{Our 2.6B \emph{DI*-SDXL-1step} model outperforms the 50-step 12B FLUX-dev model} in ImageReward, PickScore, and CLIP score on the Parti prompts benchmark while using only 1.88\% of the inference time. This result clearly shows that with proper post-training, the small one-step model is capable of beating huge multi-step diffusion models. Our model is open-sourced at this link: https://github.com/pkulwj1994/diff_instruct_star. We hope our findings can contribute to human-centric machine learning techniques.
comment: Revision: paper accepted by the ICML2025 main conference
Sonic: Shifting Focus to Global Audio Perception in Portrait Animation
The study of talking face generation mainly explores the intricacies of synchronizing facial movements and crafting visually appealing, temporally-coherent animations. However, due to the limited exploration of global audio perception, current approaches predominantly employ auxiliary visual and spatial knowledge to stabilize the movements, which often results in the deterioration of the naturalness and temporal inconsistencies.Considering the essence of audio-driven animation, the audio signal serves as the ideal and unique priors to adjust facial expressions and lip movements, without resorting to interference of any visual signals. Based on this motivation, we propose a novel paradigm, dubbed as Sonic, to {s}hift f{o}cus on the exploration of global audio per{c}ept{i}o{n}.To effectively leverage global audio knowledge, we disentangle it into intra- and inter-clip audio perception and collaborate with both aspects to enhance overall perception.For the intra-clip audio perception, 1). \textbf{Context-enhanced audio learning}, in which long-range intra-clip temporal audio knowledge is extracted to provide facial expression and lip motion priors implicitly expressed as the tone and speed of speech. 2). \textbf{Motion-decoupled controller}, in which the motion of the head and expression movement are disentangled and independently controlled by intra-audio clips. Most importantly, for inter-clip audio perception, as a bridge to connect the intra-clips to achieve the global perception, \textbf{Time-aware position shift fusion}, in which the global inter-clip audio information is considered and fused for long-audio inference via through consecutively time-aware shifted windows. Extensive experiments demonstrate that the novel audio-driven paradigm outperform existing SOTA methodologies in terms of video quality, temporally consistency, lip synchronization precision, and motion diversity.
comment: refer to our main-page \url{https://jixiaozhong.github.io/Sonic/}
Viewport Prediction for Volumetric Video Streaming by Exploring Video Saliency and Trajectory Information
Volumetric video, also known as hologram video, is a novel medium that portrays natural content in Virtual Reality (VR), Augmented Reality (AR), and Mixed Reality (MR). It is expected to be the next-gen video technology and a prevalent use case for 5G and beyond wireless communication. Considering that each user typically only watches a section of the volumetric video, known as the viewport, it is essential to have precise viewport prediction for optimal performance. However, research on this topic is still in its infancy. In the end, this paper presents and proposes a novel approach, named Saliency and Trajectory Viewport Prediction (STVP), which aims to improve the precision of viewport prediction in volumetric video streaming. The STVP extensively utilizes video saliency information and viewport trajectory. To our knowledge, this is the first comprehensive study of viewport prediction in volumetric video streaming. In particular, we introduce a novel sampling method, Uniform Random Sampling (URS), to reduce computational complexity while still preserving video features in an efficient manner. Then we present a saliency detection technique that incorporates both spatial and temporal information for detecting static, dynamic geometric, and color salient regions. Finally, we intelligently fuse saliency and trajectory information to achieve more accurate viewport prediction. We conduct extensive simulations to evaluate the effectiveness of our proposed viewport prediction methods using state-of-the-art volumetric video sequences. The experimental results show the superiority of the proposed method over existing schemes. The dataset and source code will be publicly accessible after acceptance.
MMS-LLaMA: Efficient LLM-based Audio-Visual Speech Recognition with Minimal Multimodal Speech Tokens ACL 2025
Audio-Visual Speech Recognition (AVSR) achieves robust speech recognition in noisy environments by combining auditory and visual information. However, recent Large Language Model (LLM) based AVSR systems incur high computational costs due to the high temporal resolution of audio-visual speech processed by LLMs. In this work, we introduce an efficient multimodal speech LLM framework that minimizes token length while preserving essential linguistic content. Our approach employs an early AV-fusion module for streamlined feature integration, an audio-visual speech Q-Former that dynamically allocates tokens based on input duration, and a refined query allocation strategy with a speech rate predictor to adjust token allocation according to speaking speed of each audio sample. Extensive experiments on the LRS3 dataset show that our method achieves state-of-the-art performance with a WER of 0.72% while using only 3.5 tokens per second. Moreover, our approach not only reduces token usage by 86% compared to the previous multimodal speech LLM framework, but also improves computational efficiency by reducing FLOPs by 35.7%.
comment: Accepted at Findings of ACL 2025. The code and models are available https://github.com/JeongHun0716/MMS-LLaMA
MAVL: A Multilingual Audio-Video Lyrics Dataset for Animated Song Translation
Lyrics translation requires both accurate semantic transfer and preservation of musical rhythm, syllabic structure, and poetic style. In animated musicals, the challenge intensifies due to alignment with visual and auditory cues. We introduce Multilingual Audio-Video Lyrics Benchmark for Animated Song Translation (MAVL), the first multilingual, multimodal benchmark for singable lyrics translation. By integrating text, audio, and video, MAVL enables richer and more expressive translations than text-only approaches. Building on this, we propose Syllable-Constrained Audio-Video LLM with Chain-of-Thought SylAVL-CoT, which leverages audio-video cues and enforces syllabic constraints to produce natural-sounding lyrics. Experimental results demonstrate that SylAVL-CoT significantly outperforms text-based models in singability and contextual accuracy, emphasizing the value of multimodal, multilingual approaches for lyrics translation.
comment: 28 pages, 8 figures, our codes and datasets are available at https://github.com/k1064190/MAVL
Contrastive Visual Data Augmentation
Large multimodal models (LMMs) often struggle to recognize novel concepts, as they rely on pre-trained knowledge and have limited ability to capture subtle visual details. Domain-specific knowledge gaps in training also make them prone to confusing visually similar, commonly misrepresented, or low-resource concepts. To help LMMs better align nuanced visual features with language, improving their ability to recognize and reason about novel or rare concepts, we propose a Contrastive visual Data Augmentation (CoDA) strategy. CoDA extracts key contrastive textual and visual features of target concepts against the known concepts they are misrecognized as, and then uses multimodal generative models to produce targeted synthetic data. Automatic filtering of extracted features and augmented images is implemented to guarantee their quality, as verified by human annotators. We show the effectiveness and efficiency of CoDA on low-resource concept and diverse scene recognition datasets including INaturalist and SUN. We additionally collect NovelSpecies, a benchmark dataset consisting of newly discovered animal species that are guaranteed to be unseen by LMMs. LLaVA-1.6 1-shot updating results on these three datasets show CoDA significantly improves SOTA visual data augmentation strategies by 12.3% (NovelSpecies), 5.1% (SUN), and 6.0% (iNat) absolute gains in accuracy.
Computation and Language
Inference-Time Hyper-Scaling with KV Cache Compression
Inference-time scaling trades efficiency for increased reasoning accuracy by generating longer or more parallel sequences. However, in Transformer LLMs, generation cost is bottlenecked by the size of the key-value (KV) cache, rather than the number of generated tokens. Hence, we explore inference-time hyper-scaling: by compressing the KV cache, we can generate more tokens within the same compute budget and further improve the accuracy of scaled inference. The success of this approach, however, hinges on the ability of compression methods to preserve accuracy even at high compression ratios. To make hyper-scaling practical, we introduce Dynamic Memory Sparsification (DMS), a novel method for sparsifying KV caches that only requires 1K training steps to achieve 8$\times$ compression, while maintaining better accuracy than training-free sparse attention. Instead of prematurely discarding cached tokens, DMS delays token eviction, implicitly merging representations and preserving critical information. We demonstrate the effectiveness of inference-time hyper-scaling with DMS on multiple families of LLMs, showing that it boosts accuracy for comparable inference runtime and memory load. For instance, we enhance Qwen-R1 32B by an average of 9.1 points on AIME 24, 7.6 on GPQA, and 9.6 on LiveCodeBench across compute budgets.
Why LLM Safety Guardrails Collapse After Fine-tuning: A Similarity Analysis Between Alignment and Fine-tuning Datasets
Recent advancements in large language models (LLMs) have underscored their vulnerability to safety alignment jailbreaks, particularly when subjected to downstream fine-tuning. However, existing mitigation strategies primarily focus on reactively addressing jailbreak incidents after safety guardrails have been compromised, removing harmful gradients during fine-tuning, or continuously reinforcing safety alignment throughout fine-tuning. As such, they tend to overlook a critical upstream factor: the role of the original safety-alignment data. This paper therefore investigates the degradation of safety guardrails through the lens of representation similarity between upstream alignment datasets and downstream fine-tuning tasks. Our experiments demonstrate that high similarity between these datasets significantly weakens safety guardrails, making models more susceptible to jailbreaks. Conversely, low similarity between these two types of datasets yields substantially more robust models and thus reduces harmfulness score by up to 10.33%. By highlighting the importance of upstream dataset design in the building of durable safety guardrails and reducing real-world vulnerability to jailbreak attacks, these findings offer actionable insights for fine-tuning service providers.
comment: Project Page: https://hsiung.cc/llm-similarity-risk/
Flattery, Fluff, and Fog: Diagnosing and Mitigating Idiosyncratic Biases in Preference Models
Language models serve as proxies for human preference judgements in alignment and evaluation, yet they exhibit systematic miscalibration, prioritizing superficial patterns over substantive qualities. This bias manifests as overreliance on features like length, structure, and style, leading to issues like reward hacking and unreliable evaluations. Evidence suggests these biases originate in artifacts in human training data. In this work, we systematically investigate the relationship between training data biases and preference model miscalibration across five idiosyncratic features of language model generations: length, structure, jargon, sycophancy and vagueness. Using controlled counterfactual pairs, we first quantify the extent to which preference models favor responses with magnified biases (skew), finding this preference occurs in >60% of instances, and model preferences show high miscalibration (~40%) compared to human preferences. Notably, bias features only show mild negative correlations to human preference labels (mean r_human = -0.12) but show moderately strong positive correlations with labels from a strong reward model (mean r_model = +0.36), suggesting that models may overrely on spurious cues. To mitigate these issues, we propose a simple post-training method based on counterfactual data augmentation (CDA) using synthesized contrastive examples. Finetuning models with CDA reduces average miscalibration from 39.4% to 32.5% and average absolute skew difference from 20.5% to 10.0%, while maintaining overall RewardBench performance, showing that targeted debiasing is effective for building reliable preference models.
comment: Code and data available at https://github.com/anirudhb123/preference-model-biases
Search Arena: Analyzing Search-Augmented LLMs
Search-augmented language models combine web search with Large Language Models (LLMs) to improve response groundedness and freshness. However, analyzing these systems remains challenging: existing datasets are limited in scale and narrow in scope, often constrained to static, single-turn, fact-checking questions. In this work, we introduce Search Arena, a crowd-sourced, large-scale, human-preference dataset of over 24,000 paired multi-turn user interactions with search-augmented LLMs. The dataset spans diverse intents and languages, and contains full system traces with around 12,000 human preference votes. Our analysis reveals that user preferences are influenced by the number of citations, even when the cited content does not directly support the attributed claims, uncovering a gap between perceived and actual credibility. Furthermore, user preferences vary across cited sources, revealing that community-driven platforms are generally preferred and static encyclopedic sources are not always appropriate and reliable. To assess performance across different settings, we conduct cross-arena analyses by testing search-augmented LLMs in a general-purpose chat environment and conventional LLMs in search-intensive settings. We find that web search does not degrade and may even improve performance in non-search settings; however, the quality in search settings is significantly affected if solely relying on the model's parametric knowledge. We open-sourced the dataset to support future research in this direction. Our dataset and code are available at: https://github.com/lmarena/search-arena.
comment: Preprint. Code: https://github.com/lmarena/search-arena. Dataset: https://huggingface.co/datasets/lmarena-ai/search-arena-24k
Kinetics: Rethinking Test-Time Scaling Laws
We rethink test-time scaling laws from a practical efficiency perspective, revealing that the effectiveness of smaller models is significantly overestimated. Prior work, grounded in compute-optimality, overlooks critical memory access bottlenecks introduced by inference-time strategies (e.g., Best-of-$N$, long CoTs). Our holistic analysis, spanning models from 0.6B to 32B parameters, reveals a new Kinetics Scaling Law that better guides resource allocation by incorporating both computation and memory access costs. Kinetics Scaling Law suggests that test-time compute is more effective when used on models above a threshold than smaller ones. A key reason is that in TTS, attention, rather than parameter count, emerges as the dominant cost factor. Motivated by this, we propose a new scaling paradigm centered on sparse attention, which lowers per-token cost and enables longer generations and more parallel samples within the same resource budget. Empirically, we show that sparse attention models consistently outperform dense counterparts, achieving over 60 points gains in low-cost regimes and over 5 points gains in high-cost regimes for problem-solving accuracy on AIME, encompassing evaluations on state-of-the-art MoEs. These results suggest that sparse attention is essential for realizing the full potential of test-time scaling because, unlike training, where parameter scaling saturates, test-time accuracy continues to improve through increased generation. The code is available at https://github.com/Infini-AI-Lab/Kinetics.
Unleashing Hour-Scale Video Training for Long Video-Language Understanding
Recent long-form video-language understanding benchmarks have driven progress in video large multimodal models (Video-LMMs). However, the scarcity of well-annotated long videos has left the training of hour-long Video-LLMs underexplored. To close this gap, we present VideoMarathon, a large-scale hour-long video instruction-following dataset. This dataset includes around 9,700 hours of long videos sourced from diverse domains, ranging from 3 to 60 minutes per video. Specifically, it contains 3.3M high-quality QA pairs, spanning six fundamental topics: temporality, spatiality, object, action, scene, and event. Compared to existing video instruction datasets, VideoMarathon significantly extends training video durations up to 1 hour, and supports 22 diverse tasks requiring both short- and long-term video comprehension. Building on VideoMarathon, we propose Hour-LLaVA, a powerful and efficient Video-LMM for hour-scale video-language modeling. It enables hour-long video training and inference at 1-FPS sampling by leveraging a memory augmentation module, which adaptively integrates user question-relevant and spatiotemporal-informative semantics from a cached full video context. In our experiments, Hour-LLaVA achieves the best performance on multiple long video-language benchmarks, demonstrating the high quality of the VideoMarathon dataset and the superiority of the Hour-LLaVA model.
comment: Project page: https://videomarathon.github.io/
Improving Data Efficiency for LLM Reinforcement Fine-tuning Through Difficulty-targeted Online Data Selection and Rollout Replay
Reinforcement learning (RL) has become an effective approach for fine-tuning large language models (LLMs), particularly to enhance their reasoning capabilities. However, RL fine-tuning remains highly resource-intensive, and existing work has largely overlooked the problem of data efficiency. In this paper, we propose two techniques to improve data efficiency in LLM RL fine-tuning: difficulty-targeted online data selection and rollout replay. We introduce the notion of adaptive difficulty to guide online data selection, prioritizing questions of moderate difficulty that are more likely to yield informative learning signals. To estimate adaptive difficulty efficiently, we develop an attention-based framework that requires rollouts for only a small reference set of questions. The adaptive difficulty of the remaining questions is then estimated based on their similarity to this set. To further reduce rollout cost, we introduce a rollout replay mechanism that reuses recent rollouts, lowering per-step computation while maintaining stable updates. Extensive experiments across 6 LLM-dataset combinations show that our method reduces RL fine-tuning time by 25% to 65% to reach the same level of performance as the original GRPO algorithm.
Constrained Entropic Unlearning: A Primal-Dual Framework for Large Language Models
Large Language Models (LLMs) deployed in real-world settings increasingly face the need to unlearn sensitive, outdated, or proprietary information. Existing unlearning methods typically formulate forgetting and retention as a regularized trade-off, combining both objectives into a single scalarized loss. This often leads to unstable optimization and degraded performance on retained data, especially under aggressive forgetting. We propose a new formulation of LLM unlearning as a constrained optimization problem: forgetting is enforced via a novel logit-margin flattening loss that explicitly drives the output distribution toward uniformity on a designated forget set, while retention is preserved through a hard constraint on a separate retain set. Compared to entropy-based objectives, our loss is softmax-free, numerically stable, and maintains non-vanishing gradients, enabling more efficient and robust optimization. We solve the constrained problem using a scalable primal-dual algorithm that exposes the trade-off between forgetting and retention through the dynamics of the dual variable. Evaluations on the TOFU and MUSE benchmarks across diverse LLM architectures demonstrate that our approach consistently matches or exceeds state-of-the-art baselines, effectively removing targeted information while preserving downstream utility.
Time to Talk: LLM Agents for Asynchronous Group Communication in Mafia Games
LLMs are used predominantly in synchronous communication, where a human user and a model communicate in alternating turns. In contrast, many real-world settings are inherently asynchronous. For example, in group chats, online team meetings, or social games, there is no inherent notion of turns; therefore, the decision of when to speak forms a crucial part of the participant's decision making. In this work, we develop an adaptive asynchronous LLM-agent which, in addition to determining what to say, also decides when to say it. To evaluate our agent, we collect a unique dataset of online Mafia games, including both human participants, as well as our asynchronous agent. Overall, our agent performs on par with human players, both in game performance, as well as in its ability to blend in with the other human players. Our analysis shows that the agent's behavior in deciding when to speak closely mirrors human patterns, although differences emerge in message content. We release all our data and code to support and encourage further research for more realistic asynchronous communication between LLM agents. This work paves the way for integration of LLMs into realistic human group settings, from assistance in team discussions to educational and professional environments where complex social dynamics must be navigated.
ProRefine: Inference-time Prompt Refinement with Textual Feedback
Agentic workflows, where multiple AI agents collaborate to accomplish complex tasks like reasoning or planning, are becoming increasingly prevalent. However, these workflows often suffer from error propagation and sub-optimal performance, largely due to poorly designed prompts that fail to effectively guide individual agents. This is a critical problem because it limits the reliability and scalability of these powerful systems. We introduce ProRefine, an innovative inference-time prompt optimization method that leverages textual feedback from large language models (LLMs) to address this challenge. ProRefine dynamically refines prompts for multi-step reasoning tasks without additional training or ground truth labels. Evaluated on five benchmark mathematical reasoning datasets, ProRefine significantly surpasses zero-shot Chain-of-Thought baselines by 3 to 37 percentage points. This approach not only boosts accuracy but also allows smaller models to match the performance of larger ones, highlighting its potential for efficient and scalable AI deployment, and democratizing access to high-performing AI.
Micro-Act: Mitigate Knowledge Conflict in Question Answering via Actionable Self-Reasoning ACL 2025
Retrieval-Augmented Generation (RAG) systems commonly suffer from Knowledge Conflicts, where retrieved external knowledge contradicts the inherent, parametric knowledge of large language models (LLMs). It adversely affects performance on downstream tasks such as question answering (QA). Existing approaches often attempt to mitigate conflicts by directly comparing two knowledge sources in a side-by-side manner, but this can overwhelm LLMs with extraneous or lengthy contexts, ultimately hindering their ability to identify and mitigate inconsistencies. To address this issue, we propose Micro-Act a framework with a hierarchical action space that automatically perceives context complexity and adaptively decomposes each knowledge source into a sequence of fine-grained comparisons. These comparisons are represented as actionable steps, enabling reasoning beyond the superficial context. Through extensive experiments on five benchmark datasets, Micro-Act consistently achieves significant increase in QA accuracy over state-of-the-art baselines across all 5 datasets and 3 conflict types, especially in temporal and semantic types where all baselines fail significantly. More importantly, Micro-Act exhibits robust performance on non-conflict questions simultaneously, highlighting its practical value in real-world RAG applications.
comment: Accepted by ACL 2025 Main
CLATTER: Comprehensive Entailment Reasoning for Hallucination Detection
A common approach to hallucination detection casts it as a natural language inference (NLI) task, often using LLMs to classify whether the generated text is entailed by corresponding reference texts. Since entailment classification is a complex reasoning task, one would expect that LLMs could benefit from generating an explicit reasoning process, as in CoT reasoning or the explicit ``thinking'' of recent reasoning models. In this work, we propose that guiding such models to perform a systematic and comprehensive reasoning process -- one that both decomposes the text into smaller facts and also finds evidence in the source for each fact -- allows models to execute much finer-grained and accurate entailment decisions, leading to increased performance. To that end, we define a 3-step reasoning process, consisting of (i) claim decomposition, (ii) sub-claim attribution and entailment classification, and (iii) aggregated classification, showing that such guided reasoning indeed yields improved hallucination detection. Following this reasoning framework, we introduce an analysis scheme, consisting of several metrics that measure the quality of the intermediate reasoning steps, which provided additional empirical evidence for the improved quality of our guided reasoning scheme.
Towards a Unified System of Representation for Continuity and Discontinuity in Natural Language
Syntactic discontinuity is a grammatical phenomenon in which a constituent is split into more than one part because of the insertion of an element which is not part of the constituent. This is observed in many languages across the world such as Turkish, Russian, Japanese, Warlpiri, Navajo, Hopi, Dyirbal, Yidiny etc. Different formalisms/frameworks in current linguistic theory approach the problem of discontinuous structures in different ways. Each framework/formalism has widely been viewed as an independent and non-converging system of analysis. In this paper, we propose a unified system of representation for both continuity and discontinuity in structures of natural languages by taking into account three formalisms, in particular, Phrase Structure Grammar (PSG) for its widely used notion of constituency, Dependency Grammar (DG) for its head-dependent relations, and Categorial Grammar (CG) for its focus on functor-argument relations. We attempt to show that discontinuous expressions as well as continuous structures can be analysed through a unified mathematical derivation incorporating the representations of linguistic structure in these three grammar formalisms.
MesaNet: Sequence Modeling by Locally Optimal Test-Time Training
Sequence modeling is currently dominated by causal transformer architectures that use softmax self-attention. Although widely adopted, transformers require scaling memory and compute linearly during inference. A recent stream of work linearized the softmax operation, resulting in powerful recurrent neural network (RNN) models with constant memory and compute costs such as DeltaNet, Mamba or xLSTM. These models can be unified by noting that their recurrent layer dynamics can all be derived from an in-context regression objective, approximately optimized through an online learning rule. Here, we join this line of work and introduce a numerically stable, chunkwise parallelizable version of the recently proposed Mesa layer (von Oswald et al., 2024), and study it in language modeling at the billion-parameter scale. This layer again stems from an in-context loss, but which is now minimized to optimality at every time point using a fast conjugate gradient solver. Through an extensive suite of experiments, we show that optimal test-time training enables reaching lower language modeling perplexity and higher downstream benchmark performance than previous RNNs, especially on tasks requiring long context understanding. This performance gain comes at the cost of additional flops spent during inference time. Our results are therefore intriguingly related to recent trends of increasing test-time compute to improve performance -- here by spending compute to solve sequential optimization problems within the neural network itself.
Diagonal Batching Unlocks Parallelism in Recurrent Memory Transformers for Long Contexts
Transformer models struggle with long-context inference due to their quadratic time and linear memory complexity. Recurrent Memory Transformers (RMTs) offer a solution by reducing the asymptotic cost to linear time and constant memory usage. However, their memory update mechanism leads to sequential execution, causing a performance bottleneck. We introduce Diagonal Batching, a scheduling scheme that unlocks parallelism across segments in RMTs while preserving exact recurrence. This approach eliminates the sequential constraint, enabling efficient GPU inference even for single long-context inputs without complex batching and pipelining techniques. Because the technique is purely a run-time computation reordering, existing RMT models adopt it with no retraining. Applied to a LLaMA-1B ARMT model, Diagonal Batching yields a 3.3x speedup over standard full-attention LLaMA-1B and a 1.8x speedup over the sequential RMT implementation on 131,072-token sequences. By removing sequential bottleneck, Diagonal Batching reduces inference cost and latency, thereby strengthening RMTs as a practical solution for real-world, long-context applications.
Improving Low-Resource Morphological Inflection via Self-Supervised Objectives ACL 2025
Self-supervised objectives have driven major advances in NLP by leveraging large-scale unlabeled data, but such resources are scarce for many of the world's languages. Surprisingly, they have not been explored much for character-level tasks, where smaller amounts of data have the potential to be beneficial. We investigate the effectiveness of self-supervised auxiliary tasks for morphological inflection -- a character-level task highly relevant for language documentation -- in extremely low-resource settings, training encoder-decoder transformers for 19 languages and 13 auxiliary objectives. Autoencoding yields the best performance when unlabeled data is very limited, while character masked language modeling (CMLM) becomes more effective as data availability increases. Though objectives with stronger inductive biases influence model predictions intuitively, they rarely outperform standard CMLM. However, sampling masks based on known morpheme boundaries consistently improves performance, highlighting a promising direction for low-resource morphological modeling.
comment: ACL 2025 main
Mitigating Degree Bias Adaptively with Hard-to-Learn Nodes in Graph Contrastive Learning
Graph Neural Networks (GNNs) often suffer from degree bias in node classification tasks, where prediction performance varies across nodes with different degrees. Several approaches, which adopt Graph Contrastive Learning (GCL), have been proposed to mitigate this bias. However, the limited number of positive pairs and the equal weighting of all positives and negatives in GCL still lead to low-degree nodes acquiring insufficient and noisy information. This paper proposes the Hardness Adaptive Reweighted (HAR) contrastive loss to mitigate degree bias. It adds more positive pairs by leveraging node labels and adaptively weights positive and negative pairs based on their learning hardness. In addition, we develop an experimental framework named SHARP to extend HAR to a broader range of scenarios. Both our theoretical analysis and experiments validate the effectiveness of SHARP. The experimental results across four datasets show that SHARP achieves better performance against baselines at both global and degree levels.
LLM-First Search: Self-Guided Exploration of the Solution Space
Large Language Models (LLMs) have demonstrated remarkable improvements in reasoning and planning through increased test-time compute, often by framing problem-solving as a search process. While methods like Monte Carlo Tree Search (MCTS) have proven effective in some domains, their reliance on fixed exploration hyperparameters limits their adaptability across tasks of varying difficulty, rendering them impractical or expensive in certain settings. In this paper, we propose \textbf{LLM-First Search (LFS)}, a novel \textit{LLM Self-Guided Search} method that removes the need for pre-defined search strategies by empowering the LLM to autonomously control the search process via self-guided exploration. Rather than relying on external heuristics or hardcoded policies, the LLM evaluates whether to pursue the current search path or explore alternative branches based on its internal scoring mechanisms. This enables more flexible and context-sensitive reasoning without requiring manual tuning or task-specific adaptation. We evaluate LFS on Countdown and Sudoku against three classic widely-used search algorithms, Tree-of-Thoughts' Breadth First Search (ToT-BFS), Best First Search (BestFS), and MCTS, each of which have been used to achieve SotA results on a range of challenging reasoning tasks. We found that LFS (1) performs better on more challenging tasks without additional tuning, (2) is more computationally efficient compared to the other methods, especially when powered by a stronger model, (3) scales better with stronger models, due to its LLM-First design, and (4) scales better with increased compute budget. Our code is publicly available at \href{https://github.com/NathanHerr/LLM-First-Search}{LLM-First-Search}.
comment: 9 main pages, 2 figures, 2 tables, 36 appendix pages
The Common Pile v0.1: An 8TB Dataset of Public Domain and Openly Licensed Text
Large language models (LLMs) are typically trained on enormous quantities of unlicensed text, a practice that has led to scrutiny due to possible intellectual property infringement and ethical concerns. Training LLMs on openly licensed text presents a first step towards addressing these issues, but prior data collection efforts have yielded datasets too small or low-quality to produce performant LLMs. To address this gap, we collect, curate, and release the Common Pile v0.1, an eight terabyte collection of openly licensed text designed for LLM pretraining. The Common Pile comprises content from 30 sources that span diverse domains including research papers, code, books, encyclopedias, educational materials, audio transcripts, and more. Crucially, we validate our efforts by training two 7 billion parameter LLMs on text from the Common Pile: Comma v0.1-1T and Comma v0.1-2T, trained on 1 and 2 trillion tokens respectively. Both models attain competitive performance to LLMs trained on unlicensed text with similar computational budgets, such as Llama 1 and 2 7B. In addition to releasing the Common Pile v0.1 itself, we also release the code used in its creation as well as the training mixture and checkpoints for the Comma v0.1 models.
RELIC: Evaluating Compositional Instruction Following via Language Recognition
Large language models (LLMs) are increasingly expected to perform tasks based only on a specification of the task provided in context, without examples of inputs and outputs; this ability is referred to as instruction following. We introduce the Recognition of Languages In-Context (RELIC) framework to evaluate instruction following using language recognition: the task of determining if a string is generated by formal grammar. Unlike many standard evaluations of LLMs' ability to use their context, this task requires composing together a large number of instructions (grammar productions) retrieved from the context. Because the languages are synthetic, the task can be increased in complexity as LLMs' skills improve, and new instances can be automatically generated, mitigating data contamination. We evaluate state-of-the-art LLMs on RELIC and find that their accuracy can be reliably predicted from the complexity of the grammar and the individual example strings, and that even the most advanced LLMs currently available show near-chance performance on more complex grammars and samples, in line with theoretical expectations. We also use RELIC to diagnose how LLMs attempt to solve increasingly difficult reasoning tasks, finding that as the complexity of the language recognition task increases, models switch to relying on shallow heuristics instead of following complex instructions.
Counterfactual reasoning: an analysis of in-context emergence
Large-scale neural language models (LMs) exhibit remarkable performance in in-context learning: the ability to learn and reason the input context on the fly without parameter update. This work studies in-context counterfactual reasoning in language models, that is, to predict the consequences of changes under hypothetical scenarios. We focus on studying a well-defined synthetic setup: a linear regression task that requires noise abduction, where accurate prediction is based on inferring and copying the contextual noise from factual observations. We show that language models are capable of counterfactual reasoning in this controlled setup and provide insights that counterfactual reasoning for a broad class of functions can be reduced to a transformation on in-context observations; we find self-attention, model depth, and data diversity in pre-training drive performance in Transformers. More interestingly, our findings extend beyond regression tasks and show that Transformers can perform noise abduction on sequential data, providing preliminary evidence on the potential for counterfactual story generation. Our code is available under https://github.com/moXmiller/counterfactual-reasoning.git .
Qwen3 Embedding: Advancing Text Embedding and Reranking Through Foundation Models
In this work, we introduce the Qwen3 Embedding series, a significant advancement over its predecessor, the GTE-Qwen series, in text embedding and reranking capabilities, built upon the Qwen3 foundation models. Leveraging the Qwen3 LLMs' robust capabilities in multilingual text understanding and generation, our innovative multi-stage training pipeline combines large-scale unsupervised pre-training with supervised fine-tuning on high-quality datasets. Effective model merging strategies further ensure the robustness and adaptability of the Qwen3 Embedding series. During the training process, the Qwen3 LLMs serve not only as backbone models but also play a crucial role in synthesizing high-quality, rich, and diverse training data across multiple domains and languages, thus enhancing the training pipeline. The Qwen3 Embedding series offers a spectrum of model sizes (0.6B, 4B, 8B) for both embedding and reranking tasks, addressing diverse deployment scenarios where users can optimize for either efficiency or effectiveness. Empirical evaluations demonstrate that the Qwen3 Embedding series achieves state-of-the-art results across diverse benchmarks. Notably, it excels on the multilingual evaluation benchmark MTEB for text embedding, as well as in various retrieval tasks, including code retrieval, cross-lingual retrieval and multilingual retrieval. To facilitate reproducibility and promote community-driven research and development, the Qwen3 Embedding models are publicly available under the Apache 2.0 license.
ECoRAG: Evidentiality-guided Compression for Long Context RAG
Large Language Models (LLMs) have shown remarkable performance in Open-Domain Question Answering (ODQA) by leveraging external documents through Retrieval-Augmented Generation (RAG). To reduce RAG overhead, from longer context, context compression is necessary. However, prior compression methods do not focus on filtering out non-evidential information, which limit the performance in LLM-based RAG. We thus propose Evidentiality-guided RAG, or \textbf{ECoRAG} framework. ECoRAG improves LLM performance by compressing retrieved documents based on evidentiality, ensuring whether answer generation is supported by the correct evidence. As an additional step, ECoRAG reflects whether the compressed content provides sufficient evidence, and if not, retrieves more until sufficient. Experiments show that ECoRAG improves LLM performance on ODQA tasks, outperforming existing compression methods. Furthermore, ECoRAG is highly cost-efficient, as it not only reduces latency but also minimizes token usage by retaining only the necessary information to generate the correct answer. Code is available at https://github.com/ldilab/ECoRAG.
Dissecting Bias in LLMs: A Mechanistic Interpretability Perspective
Large Language Models (LLMs) are known to exhibit social, demographic, and gender biases, often as a consequence of the data on which they are trained. In this work, we adopt a mechanistic interpretability approach to analyze how such biases are structurally represented within models such as GPT-2 and Llama2. Focusing on demographic and gender biases, we explore different metrics to identify the internal edges responsible for biased behavior. We then assess the stability, localization, and generalizability of these components across dataset and linguistic variations. Through systematic ablations, we demonstrate that bias-related computations are highly localized, often concentrated in a small subset of layers. Moreover, the identified components change across fine-tuning settings, including those unrelated to bias. Finally, we show that removing these components not only reduces biased outputs but also affects other NLP tasks, such as named entity recognition and linguistic acceptability judgment because of the sharing of important components with these tasks.
Knowledgeable-r1: Policy Optimization for Knowledge Exploration in Retrieval-Augmented Generation
Retrieval-augmented generation (RAG) is a mainstream method for improving performance on knowledge-intensive tasks. However,current RAG systems often place too much emphasis on retrieved contexts. This can lead to reliance on inaccurate sources and overlook the model's inherent knowledge, especially when dealing with misleading or excessive information. To resolve this imbalance, we propose Knowledgeable-r1 that using joint sampling and define multi policy distributions in knowledge capability exploration to stimulate large language models'self-integrated utilization of parametric and contextual knowledge. Experiments show that Knowledgeable-r1 significantly enhances robustness and reasoning accuracy in both parameters and contextual conflict tasks and general RAG tasks, especially outperforming baselines by 17.07% in counterfactual scenarios and demonstrating consistent gains across RAG tasks. Our code are available at https://github.com/lcy80366872/ knowledgeable-r1.
CIVET: Systematic Evaluation of Understanding in VLMs
While Vision-Language Models (VLMs) have achieved competitive performance in various tasks, their comprehension of the underlying structure and semantics of a scene remains understudied. To investigate the understanding of VLMs, we study their capability regarding object properties and relations in a controlled and interpretable manner. To this scope, we introduce CIVET, a novel and extensible framework for systematiC evaluatIon Via controllEd sTimuli. CIVET addresses the lack of standardized systematic evaluation for assessing VLMs' understanding, enabling researchers to test hypotheses with statistical rigor. With CIVET, we evaluate five state-of-the-art VLMs on exhaustive sets of stimuli, free from annotation noise, dataset-specific biases, and uncontrolled scene complexity. Our findings reveal that 1) current VLMs can accurately recognize only a limited set of basic object properties; 2) their performance heavily depends on the position of the object in the scene; 3) they struggle to understand basic relations among objects. Furthermore, a comparative evaluation with human annotators reveals that VLMs still fall short of achieving human-level accuracy.
Do Large Language Models Judge Error Severity Like Humans?
Large Language Models (LLMs) are increasingly used as automated evaluators in natural language generation, yet it remains unclear whether they can accurately replicate human judgments of error severity. In this study, we systematically compare human and LLM assessments of image descriptions containing controlled semantic errors. We extend the experimental framework of van Miltenburg et al. (2020) to both unimodal (text-only) and multimodal (text + image) settings, evaluating four error types: age, gender, clothing type, and clothing colour. Our findings reveal that humans assign varying levels of severity to different error types, with visual context significantly amplifying perceived severity for colour and type errors. Notably, most LLMs assign low scores to gender errors but disproportionately high scores to colour errors, unlike humans, who judge both as highly severe but for different reasons. This suggests that these models may have internalised social norms influencing gender judgments but lack the perceptual grounding to emulate human sensitivity to colour, which is shaped by distinct neural mechanisms. Only one of the evaluated LLMs, Doubao, replicates the human-like ranking of error severity, but it fails to distinguish between error types as clearly as humans. Surprisingly, DeepSeek-V3, a unimodal LLM, achieves the highest alignment with human judgments across both unimodal and multimodal conditions, outperforming even state-of-the-art multimodal models.
AudioLens: A Closer Look at Auditory Attribute Perception of Large Audio-Language Models
Understanding the internal mechanisms of large audio-language models (LALMs) is crucial for interpreting their behavior and improving performance. This work presents the first in-depth analysis of how LALMs internally perceive and recognize auditory attributes. By applying vocabulary projection on three state-of-the-art LALMs, we track how attribute information evolves across layers and token positions. We find that attribute information generally decreases with layer depth when recognition fails, and that resolving attributes at earlier layers correlates with better accuracy. Moreover, LALMs heavily rely on querying auditory inputs for predicting attributes instead of aggregating necessary information in hidden states at attribute-mentioning positions. Based on our findings, we demonstrate a method to enhance LALMs. Our results offer insights into auditory attribute processing, paving the way for future improvements.
comment: 8 pages, 5 figures, 3 tables
Information Locality as an Inductive Bias for Neural Language Models
Inductive biases are inherent in every machine learning system, shaping how models generalize from finite data. In the case of neural language models (LMs), debates persist as to whether these biases align with or diverge from human processing constraints. To address this issue, we propose a quantitative framework that allows for controlled investigations into the nature of these biases. Within our framework, we introduce $m$-local entropy$\unicode{x2013}$an information-theoretic measure derived from average lossy-context surprisal$\unicode{x2013}$that captures the local uncertainty of a language by quantifying how effectively the $m-1$ preceding symbols disambiguate the next symbol. In experiments on both perturbed natural language corpora and languages defined by probabilistic finite-state automata (PFSAs), we show that languages with higher $m$-local entropy are more difficult for Transformer and LSTM LMs to learn. These results suggest that neural LMs, much like humans, are highly sensitive to the local statistical structure of a language.
DiCoRe: Enhancing Zero-shot Event Detection via Divergent-Convergent LLM Reasoning ACL
Zero-shot Event Detection (ED), the task of identifying event mentions in natural language text without any training data, is critical for document understanding in specialized domains. Understanding the complex event ontology, extracting domain-specific triggers from the passage, and structuring them appropriately overloads and limits the utility of Large Language Models (LLMs) for zero-shot ED. To this end, we propose DiCoRe, a divergent-convergent reasoning framework that decouples the task of ED using Dreamer and Grounder. Dreamer encourages divergent reasoning through open-ended event discovery, which helps to boost event coverage. Conversely, Grounder introduces convergent reasoning to align the free-form predictions with the task-specific instructions using finite-state machine guided constrained decoding. Additionally, an LLM-Judge verifies the final outputs to ensure high precision. Through extensive experiments on six datasets across five domains and nine LLMs, we demonstrate how DiCoRe consistently outperforms prior zero-shot, transfer-learning, and reasoning baselines, achieving 4-7% average F1 gains over the best baseline -- establishing DiCoRe as a strong zero-shot ED framework.
comment: Submitted at ACL ARR May 2025
The NTNU System at the S&I Challenge 2025 SLA Open Track ISCA
A recent line of research on spoken language assessment (SLA) employs neural models such as BERT and wav2vec 2.0 (W2V) to evaluate speaking proficiency across linguistic and acoustic modalities. Although both models effectively capture features relevant to oral competence, each exhibits modality-specific limitations. BERT-based methods rely on ASR transcripts, which often fail to capture prosodic and phonetic cues for SLA. In contrast, W2V-based methods excel at modeling acoustic features but lack semantic interpretability. To overcome these limitations, we propose a system that integrates W2V with Phi-4 multimodal large language model (MLLM) through a score fusion strategy. The proposed system achieves a root mean square error (RMSE) of 0.375 on the official test set of the Speak & Improve Challenge 2025, securing second place in the competition. For comparison, the RMSEs of the top-ranked, third-ranked, and official baseline systems are 0.364, 0.384, and 0.444, respectively.
comment: submitted to the ISCA SLaTE-2025 Workshop
CL-ISR: A Contrastive Learning and Implicit Stance Reasoning Framework for Misleading Text Detection on Social Media
Misleading text detection on social media platforms is a critical research area, as these texts can lead to public misunderstanding, social panic and even economic losses. This paper proposes a novel framework - CL-ISR (Contrastive Learning and Implicit Stance Reasoning), which combines contrastive learning and implicit stance reasoning, to improve the detection accuracy of misleading texts on social media. First, we use the contrastive learning algorithm to improve the model's learning ability of semantic differences between truthful and misleading texts. Contrastive learning could help the model to better capture the distinguishing features between different categories by constructing positive and negative sample pairs. This approach enables the model to capture distinguishing features more effectively, particularly in linguistically complicated situations. Second, we introduce the implicit stance reasoning module, to explore the potential stance tendencies in the text and their relationships with related topics. This method is effective for identifying content that misleads through stance shifting or emotional manipulation, because it can capture the implicit information behind the text. Finally, we integrate these two algorithms together to form a new framework, CL-ISR, which leverages the discriminative power of contrastive learning and the interpretive depth of stance reasoning to significantly improve detection effect.
comment: 6 pages, 2 figures
Interpretable Multimodal Framework for Human-Centered Street Assessment: Integrating Visual-Language Models for Perceptual Urban Diagnostics
While objective street metrics derived from imagery or GIS have become standard in urban analytics, they remain insufficient to capture subjective perceptions essential to inclusive urban design. This study introduces a novel Multimodal Street Evaluation Framework (MSEF) that fuses a vision transformer (VisualGLM-6B) with a large language model (GPT-4), enabling interpretable dual-output assessment of streetscapes. Leveraging over 15,000 annotated street-view images from Harbin, China, we fine-tune the framework using LoRA and P-Tuning v2 for parameter-efficient adaptation. The model achieves an F1 score of 0.84 on objective features and 89.3 percent agreement with aggregated resident perceptions, validated across stratified socioeconomic geographies. Beyond classification accuracy, MSEF captures context-dependent contradictions: for instance, informal commerce boosts perceived vibrancy while simultaneously reducing pedestrian comfort. It also identifies nonlinear and semantically contingent patterns -- such as the divergent perceptual effects of architectural transparency across residential and commercial zones -- revealing the limits of universal spatial heuristics. By generating natural-language rationales grounded in attention mechanisms, the framework bridges sensory data with socio-affective inference, enabling transparent diagnostics aligned with SDG 11. This work offers both methodological innovation in urban perception modeling and practical utility for planning systems seeking to reconcile infrastructural precision with lived experience.
comment: 24 pages, 10 figures
Parking, Perception, and Retail: Street-Level Determinants of Community Vitality in Harbin
The commercial vitality of community-scale streets in Chinese cities is shaped by complex interactions between vehicular accessibility, environmental quality, and pedestrian perception. This study proposes an interpretable, image-based framework to examine how street-level features -- including parked vehicle density, greenery, cleanliness, and street width -- impact retail performance and user satisfaction in Harbin, China. Leveraging street view imagery and a multimodal large language model (VisualGLM-6B), we construct a Community Commercial Vitality Index (CCVI) from Meituan and Dianping data and analyze its relationship with spatial attributes extracted via GPT-4-based perception modeling. Our findings reveal that while moderate vehicle presence may enhance commercial access, excessive on-street parking -- especially in narrow streets -- erodes walkability and reduces both satisfaction and shop-level pricing. In contrast, streets with higher perceived greenery and cleanliness show significantly greater satisfaction scores but only weak associations with pricing. Street width moderates the effects of vehicle presence, underscoring the importance of spatial configuration. These results demonstrate the value of integrating AI-assisted perception with urban morphological analysis to capture non-linear and context-sensitive drivers of commercial success. This study advances both theoretical and methodological frontiers by highlighting the conditional role of vehicle activity in neighborhood commerce and demonstrating the feasibility of multimodal AI for perceptual urban diagnostics. The implications extend to urban design, parking management, and scalable planning tools for community revitalization.
comment: 22 pages,5 figures
Just a Scratch: Enhancing LLM Capabilities for Self-harm Detection through Intent Differentiation and Emoji Interpretation ACL 2025
Self-harm detection on social media is critical for early intervention and mental health support, yet remains challenging due to the subtle, context-dependent nature of such expressions. Identifying self-harm intent aids suicide prevention by enabling timely responses, but current large language models (LLMs) struggle to interpret implicit cues in casual language and emojis. This work enhances LLMs' comprehension of self-harm by distinguishing intent through nuanced language-emoji interplay. We present the Centennial Emoji Sensitivity Matrix (CESM-100), a curated set of 100 emojis with contextual self-harm interpretations and the Self-Harm Identification aNd intent Extraction with Supportive emoji sensitivity (SHINES) dataset, offering detailed annotations for self-harm labels, casual mentions (CMs), and serious intents (SIs). Our unified framework: a) enriches inputs using CESM-100; b) fine-tunes LLMs for multi-task learning: self-harm detection (primary) and CM/SI span detection (auxiliary); c) generates explainable rationales for self-harm predictions. We evaluate the framework on three state-of-the-art LLMs-Llama 3, Mental-Alpaca, and MentalLlama, across zero-shot, few-shot, and fine-tuned scenarios. By coupling intent differentiation with contextual cues, our approach commendably enhances LLM performance in both detection and explanation tasks, effectively addressing the inherent ambiguity in self-harm signals. The SHINES dataset, CESM-100 and codebase are publicly available at: https://www.iitp.ac.in/~ai-nlp-ml/resources.html#SHINES .
comment: To be published in the Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (ACL 2025 Main)
RIVAL: Reinforcement Learning with Iterative and Adversarial Optimization for Machine Translation
Large language models (LLMs) possess strong multilingual capabilities, and combining Reinforcement Learning from Human Feedback (RLHF) with translation tasks has shown great potential. However, we observe that this paradigm performs unexpectedly poorly when applied to colloquial subtitle translation tasks. In this work, we investigate this issue and find that the offline reward model (RM) gradually diverges from the online LLM due to distributional shift, ultimately leading to undesirable training outcomes. To address this, we propose RIVAL, an adversarial training framework that formulates the process as a min-max game between the RM and the LLM. RIVAL iteratively updates the both models, with the RM trained to distinguish strong from weak translations (qualitative preference reward), and the LLM trained to enhance its translation for closing this gap. To stabilize training and improve generalizability, we also incorporate quantitative preference reward (e.g., BLEU) into the RM, enabling reference-free quality modeling aligned with human evaluation. Through extensive experiments, we demonstrate that the proposed adversarial training framework significantly improves upon translation baselines.
Does It Make Sense to Speak of Introspection in Large Language Models?
Large language models (LLMs) exhibit compelling linguistic behaviour, and sometimes offer self-reports, that is to say statements about their own nature, inner workings, or behaviour. In humans, such reports are often attributed to a faculty of introspection and are typically linked to consciousness. This raises the question of how to interpret self-reports produced by LLMs, given their increasing linguistic fluency and cognitive capabilities. To what extent (if any) can the concept of introspection be meaningfully applied to LLMs? Here, we present and critique two examples of apparent introspective self-report from LLMs. In the first example, an LLM attempts to describe the process behind its own ``creative'' writing, and we argue this is not a valid example of introspection. In the second example, an LLM correctly infers the value of its own temperature parameter, and we argue that this can be legitimately considered a minimal example of introspection, albeit one that is (presumably) not accompanied by conscious experience.
Debatable Intelligence: Benchmarking LLM Judges via Debate Speech Evaluation
We introduce Debate Speech Evaluation as a novel and challenging benchmark for assessing LLM judges. Evaluating debate speeches requires a deep understanding of the speech at multiple levels, including argument strength and relevance, the coherence and organization of the speech, the appropriateness of its style and tone, and so on. This task involves a unique set of cognitive abilities that have previously received limited attention in systematic LLM benchmarking. To explore such skills, we leverage a dataset of over 600 meticulously annotated debate speeches and present the first in-depth analysis of how state-of-the-art LLMs compare to human judges on this task. Our findings reveal a nuanced picture: while larger models can approximate individual human judgments in some respects, they differ substantially in their overall judgment behavior. We also investigate the ability of frontier LLMs to generate persuasive, opinionated speeches, showing that models may perform at a human level on this task.
comment: Code: https://github.com/noy-sternlicht/Debatable-Intelligence
TALL -- A Trainable Architecture for Enhancing LLM Performance in Low-Resource Languages
Large Language Models (LLMs) excel in high-resource languages but struggle with low-resource languages due to limited training data. This paper presents TALL (Trainable Architecture for Enhancing LLM Performance in Low-Resource Languages), which integrates an LLM with two bilingual translation models. TALL transforms low-resource inputs into high-resource representations, leveraging the LLM's capabilities while preserving linguistic features through dimension alignment layers and custom transformers. Our experiments on Hebrew demonstrate significant improvements over several baselines, including direct use, naive translation, and fine-tuning approaches. The architecture employs a parameter-efficient strategy, freezing pre-trained components while training only lightweight adapter modules, balancing computational efficiency with performance gains.
Automatic Robustness Stress Testing of LLMs as Mathematical Problem Solvers
Large language models (LLMs) have achieved distinguished performance on various reasoning-intensive tasks. However, LLMs might still face the challenges of robustness issues and fail unexpectedly in some simple reasoning tasks. Previous works evaluate the LLM robustness with hand-crafted templates or a limited set of perturbation rules, indicating potential data contamination in pre-training or fine-tuning datasets. In this work, inspired by stress testing in software engineering, we propose a novel framework, Automatic Robustness Checker (AR-Checker), to generate mathematical problem variants that maintain the semantic meanings of the original one but might fail the LLMs. The AR-Checker framework generates mathematical problem variants through multi-round parallel streams of LLM-based rewriting and verification. Our framework can generate benchmark variants dynamically for each LLM, thus minimizing the risk of data contamination. Experiments on GSM8K and MATH-500 demonstrate the strong performance of AR-Checker on mathematical tasks. We also evaluate AR-Checker on benchmarks beyond mathematics, including MMLU, MMLU-Pro, and CommonsenseQA, where it also achieves strong performance, further proving the effectiveness of AR-Checker.
Controlling Summarization Length Through EOS Token Weighting
Controlling the length of generated text can be crucial in various text-generation tasks, including summarization. Existing methods often require complex model alterations, limiting compatibility with pre-trained models. We address these limitations by developing a simple approach for controlling the length of automatic text summaries by increasing the importance of correctly predicting the EOS token in the cross-entropy loss computation. The proposed methodology is agnostic to architecture and decoding algorithms and orthogonal to other inference-time techniques to control the generation length. We tested it with encoder-decoder and modern GPT-style LLMs, and show that this method can control generation length, often without affecting the quality of the summary.
ComfyUI-Copilot: An Intelligent Assistant for Automated Workflow Development ACL 2025
We introduce ComfyUI-Copilot, a large language model-powered plugin designed to enhance the usability and efficiency of ComfyUI, an open-source platform for AI-driven art creation. Despite its flexibility and user-friendly interface, ComfyUI can present challenges to newcomers, including limited documentation, model misconfigurations, and the complexity of workflow design. ComfyUI-Copilot addresses these challenges by offering intelligent node and model recommendations, along with automated one-click workflow construction. At its core, the system employs a hierarchical multi-agent framework comprising a central assistant agent for task delegation and specialized worker agents for different usages, supported by our curated ComfyUI knowledge bases to streamline debugging and deployment. We validate the effectiveness of ComfyUI-Copilot through both offline quantitative evaluations and online user feedback, showing that it accurately recommends nodes and accelerates workflow development. Additionally, use cases illustrate that ComfyUI-Copilot lowers entry barriers for beginners and enhances workflow efficiency for experienced users. The ComfyUI-Copilot installation package and a demo video are available at https://github.com/AIDC-AI/ComfyUI-Copilot.
comment: ACL 2025 Demo. Github: https://github.com/AIDC-AI/ComfyUI-Copilot
SCOP: Evaluating the Comprehension Process of Large Language Models from a Cognitive View
Despite the great potential of large language models(LLMs) in machine comprehension, it is still disturbing to fully count on them in real-world scenarios. This is probably because there is no rational explanation for whether the comprehension process of LLMs is aligned with that of experts. In this paper, we propose SCOP to carefully examine how LLMs perform during the comprehension process from a cognitive view. Specifically, it is equipped with a systematical definition of five requisite skills during the comprehension process, a strict framework to construct testing data for these skills, and a detailed analysis of advanced open-sourced and closed-sourced LLMs using the testing data. With SCOP, we find that it is still challenging for LLMs to perform an expert-level comprehension process. Even so, we notice that LLMs share some similarities with experts, e.g., performing better at comprehending local information than global information. Further analysis reveals that LLMs can be somewhat unreliable -- they might reach correct answers through flawed comprehension processes. Based on SCOP, we suggest that one direction for improving LLMs is to focus more on the comprehension process, ensuring all comprehension skills are thoroughly developed during training.
comment: arXiv admin note: text overlap with arXiv:2004.14535 by other authors
Towards Storage-Efficient Visual Document Retrieval: An Empirical Study on Reducing Patch-Level Embeddings ACL 2025
Despite the strong performance of ColPali/ColQwen2 in Visualized Document Retrieval (VDR), it encodes each page into multiple patch-level embeddings and leads to excessive memory usage. This empirical study investigates methods to reduce patch embeddings per page at minimum performance degradation. We evaluate two token-reduction strategies: token pruning and token merging. Regarding token pruning, we surprisingly observe that a simple random strategy outperforms other sophisticated pruning methods, though still far from satisfactory. Further analysis reveals that pruning is inherently unsuitable for VDR as it requires removing certain page embeddings without query-specific information. Turning to token merging (more suitable for VDR), we search for the optimal combinations of merging strategy across three dimensions and develop Light-ColPali/ColQwen2. It maintains 98.2% of retrieval performance with only 11.8% of original memory usage, and preserves 94.6% effectiveness at 2.8% memory footprint. We expect our empirical findings and resulting Light-ColPali/ColQwen2 offer valuable insights and establish a competitive baseline for future research towards efficient VDR.
comment: Accepted by ACL 2025 findings
Better Semi-supervised Learning for Multi-domain ASR Through Incremental Retraining and Data Filtering
Fine-tuning pretrained ASR models for specific domains is challenging when labeled data is scarce. But unlabeled audio and labeled data from related domains are often available. We propose an incremental semi-supervised learning pipeline that first integrates a small in-domain labeled set and an auxiliary dataset from a closely related domain, achieving a relative improvement of 4% over no auxiliary data. Filtering based on multi-model consensus or named entity recognition (NER) is then applied to select and iteratively refine pseudo-labels, showing slower performance saturation compared to random selection. Evaluated on the multi-domain Wow call center and Fisher English corpora, it outperforms single-step fine-tuning. Consensus-based filtering outperforms other methods, providing up to 22.3% relative improvement on Wow and 24.8% on Fisher over single-step fine-tuning with random selection. NER is the second-best filter, providing competitive performance at a lower computational cost.
comment: Accepted at Interspeech 2025, Netherlands
From Struggle (06-2024) to Mastery (02-2025) LLMs Conquer Advanced Algorithm Exams and Pave the Way for Editorial Generation
This paper presents a comprehensive evaluation of the performance of state-of-the-art Large Language Models (LLMs) on challenging university-level algorithms exams. By testing multiple models on both a Romanian exam and its high-quality English translation, we analyze LLMs' problem-solving capabilities, consistency, and multilingual performance. Our empirical study reveals that the most recent models not only achieve scores comparable to top-performing students but also demonstrate robust reasoning skills on complex, multi-step algorithmic challenges, even though difficulties remain with graph-based tasks. Building on these findings, we explore the potential of LLMs to support educational environments through the generation of high-quality editorial content, offering instructors a powerful tool to enhance student feedback. The insights and best practices discussed herein pave the way for further integration of generative AI in advanced algorithm education.
comment: 15 pages Pre-print Paper accepted to ITS 2025
ConECT Dataset: Overcoming Data Scarcity in Context-Aware E-Commerce MT ACL 2025
Neural Machine Translation (NMT) has improved translation by using Transformer-based models, but it still struggles with word ambiguity and context. This problem is especially important in domain-specific applications, which often have problems with unclear sentences or poor data quality. Our research explores how adding information to models can improve translations in the context of e-commerce data. To this end we create ConECT -- a new Czech-to-Polish e-commerce product translation dataset coupled with images and product metadata consisting of 11,400 sentence pairs. We then investigate and compare different methods that are applicable to context-aware translation. We test a vision-language model (VLM), finding that visual context aids translation quality. Additionally, we explore the incorporation of contextual information into text-to-text models, such as the product's category path or image descriptions. The results of our study demonstrate that the incorporation of contextual information leads to an improvement in the quality of machine translation. We make the new dataset publicly available.
comment: Accepted at ACL 2025 (The 63rd Annual Meeting of the Association for Computational Linguistics)
Simulating LLM-to-LLM Tutoring for Multilingual Math Feedback
Large language models (LLMs) have demonstrated the ability to generate formative feedback and instructional hints in English, making them increasingly relevant for AI-assisted education. However, their ability to provide effective instructional support across different languages, especially for mathematically grounded reasoning tasks, remains largely unexamined. In this work, we present the first large-scale simulation of multilingual tutor-student interactions using LLMs. A stronger model plays the role of the tutor, generating feedback in the form of hints, while a weaker model simulates the student. We explore 352 experimental settings across 11 typologically diverse languages, four state-of-the-art LLMs, and multiple prompting strategies to assess whether language-specific feedback leads to measurable learning gains. Our study examines how student input language, teacher feedback language, model choice, and language resource level jointly influence performance. Results show that multilingual hints can significantly improve learning outcomes, particularly in low-resource languages when feedback is aligned with the student's native language. These findings offer practical insights for developing multilingual, LLM-based educational tools that are both effective and inclusive.
comment: Preprint, in submission
A Practitioner's Guide to Building ASR Models for Low-Resource Languages: A Case Study on Scottish Gaelic
An effective approach to the development of ASR systems for low-resource languages is to fine-tune an existing multilingual end-to-end model. When the original model has been trained on large quantities of data from many languages, fine-tuning can be effective with limited training data, even when the language in question was not present in the original training data. The fine-tuning approach has been encouraged by the availability of public-domain E2E models and is widely believed to lead to state-of-the-art results. This paper, however, challenges that belief. We show that an approach combining hybrid HMMs with self-supervised models can yield substantially better performance with limited training data. This combination allows better utilisation of all available speech and text data through continued self-supervised pre-training and semi-supervised training. We benchmark our approach on Scottish Gaelic, achieving WER reductions of 32% relative over our best fine-tuned Whisper model.
comment: Accepted to Interspeech 2025
Dissecting Long Reasoning Models: An Empirical Study
Despite recent progress in training long-context reasoning models via reinforcement learning (RL), several open questions and counterintuitive behaviors remain. This work focuses on three key aspects: (1) We systematically analyze the roles of positive and negative samples in RL, revealing that positive samples mainly facilitate data fitting, whereas negative samples significantly enhance generalization and robustness. Interestingly, training solely on negative samples can rival standard RL training performance. (2) We identify substantial data inefficiency in group relative policy optimization, where over half of the samples yield zero advantage. To address this, we explore two straightforward strategies, including relative length rewards and offline sample injection, to better leverage these data and enhance reasoning efficiency and capability. (3) We investigate unstable performance across various reasoning models and benchmarks, attributing instability to uncertain problems with ambiguous outcomes, and demonstrate that multiple evaluation runs mitigate this issue.
comment: Working in process
When Thinking LLMs Lie: Unveiling the Strategic Deception in Representations of Reasoning Models
The honesty of large language models (LLMs) is a critical alignment challenge, especially as advanced systems with chain-of-thought (CoT) reasoning may strategically deceive humans. Unlike traditional honesty issues on LLMs, which could be possibly explained as some kind of hallucination, those models' explicit thought paths enable us to study strategic deception--goal-driven, intentional misinformation where reasoning contradicts outputs. Using representation engineering, we systematically induce, detect, and control such deception in CoT-enabled LLMs, extracting "deception vectors" via Linear Artificial Tomography (LAT) for 89% detection accuracy. Through activation steering, we achieve a 40% success rate in eliciting context-appropriate deception without explicit prompts, unveiling the specific honesty-related issue of reasoning models and providing tools for trustworthy AI alignment.
Verbose ListOps (VLO): Beyond Long Context -- Unmasking LLM's Reasoning Blind Spots
Large Language Models (LLMs), whilst great at extracting facts from text, struggle with nested narrative reasoning. Existing long context and multi-hop QA benchmarks inadequately test this, lacking realistic distractors or failing to decouple context length from reasoning complexity, masking a fundamental LLM limitation. We introduce Verbose ListOps, a novel benchmark that programmatically transposes ListOps computations into lengthy, coherent stories. This uniquely forces internal computation and state management of nested reasoning problems by withholding intermediate results, and offers fine-grained controls for both narrative size \emph{and} reasoning difficulty. Whilst benchmarks like LongReason (2025) advance approaches for synthetically expanding the context size of multi-hop QA problems, Verbose ListOps pinpoints a specific LLM vulnerability: difficulty in state management for nested sub-reasoning amongst semantically-relevant, distracting narrative. Our experiments show that leading LLMs (e.g., OpenAI o4, Gemini 2.5 Pro) collapse in performance on Verbose ListOps at modest (~10k token) narrative lengths, despite effortlessly solving raw ListOps equations. Addressing this failure is paramount for real-world text interpretation which requires identifying key reasoning points, tracking conceptual intermediate results, and filtering irrelevant information. Verbose ListOps, and its extensible generation framework thus enables targeted reasoning enhancements beyond mere context-window expansion; a critical step to automating the world's knowledge work.
ICPC-Eval: Probing the Frontiers of LLM Reasoning with Competitive Programming Contests
With the significant progress of large reasoning models in complex coding and reasoning tasks, existing benchmarks, like LiveCodeBench and CodeElo, are insufficient to evaluate the coding capabilities of large language models (LLMs) in real competition environments. Moreover, current evaluation metrics such as Pass@K fail to capture the reflective abilities of reasoning models. To address these challenges, we propose \textbf{ICPC-Eval}, a top-level competitive coding benchmark designed to probing the frontiers of LLM reasoning. ICPC-Eval includes 118 carefully curated problems from 11 recent ICPC contests held in various regions of the world, offering three key contributions: 1) A challenging realistic ICPC competition scenario, featuring a problem type and difficulty distribution consistent with actual contests. 2) A robust test case generation method and a corresponding local evaluation toolkit, enabling efficient and accurate local evaluation. 3) An effective test-time scaling evaluation metric, Refine@K, which allows iterative repair of solutions based on execution feedback. The results underscore the significant challenge in evaluating complex reasoning abilities: top-tier reasoning models like DeepSeek-R1 often rely on multi-turn code feedback to fully unlock their in-context reasoning potential when compared to non-reasoning counterparts. Furthermore, despite recent advancements in code generation, these models still lag behind top-performing human teams. We release the benchmark at: https://github.com/RUCAIBox/Slow_Thinking_with_LLMs
Evaluating the Effectiveness of Linguistic Knowledge in Pretrained Language Models: A Case Study of Universal Dependencies
Universal Dependencies (UD), while widely regarded as the most successful linguistic framework for cross-lingual syntactic representation, remains underexplored in terms of its effectiveness. This paper addresses this gap by integrating UD into pretrained language models and assesses if UD can improve their performance on a cross-lingual adversarial paraphrase identification task. Experimental results show that incorporation of UD yields significant improvements in accuracy and $F_1$ scores, with average gains of 3.85\% and 6.08\% respectively. These enhancements reduce the performance gap between pretrained models and large language models in some language pairs, and even outperform the latter in some others. Furthermore, the UD-based similarity score between a given language and English is positively correlated to the performance of models in that language. Both findings highlight the validity and potential of UD in out-of-domain tasks.
Prompting LLMs: Length Control for Isometric Machine Translation
In this study, we explore the effectiveness of isometric machine translation across multiple language pairs (En$\to$De, En$\to$Fr, and En$\to$Es) under the conditions of the IWSLT Isometric Shared Task 2022. Using eight open-source large language models (LLMs) of varying sizes, we investigate how different prompting strategies, varying numbers of few-shot examples, and demonstration selection influence translation quality and length control. We discover that the phrasing of instructions, when aligned with the properties of the provided demonstrations, plays a crucial role in controlling the output length. Our experiments show that LLMs tend to produce shorter translations only when presented with extreme examples, while isometric demonstrations often lead to the models disregarding length constraints. While few-shot prompting generally enhances translation quality, further improvements are marginal across 5, 10, and 20-shot settings. Finally, considering multiple outputs allows to notably improve overall tradeoff between the length and quality, yielding state-of-the-art performance for some language pairs.
comment: Accepted to IWSLT 2025
Multiple-Choice Question Generation Using Large Language Models: Methodology and Educator Insights
Integrating Artificial Intelligence (AI) in educational settings has brought new learning approaches, transforming the practices of both students and educators. Among the various technologies driving this transformation, Large Language Models (LLMs) have emerged as powerful tools for creating educational materials and question answering, but there are still space for new applications. Educators commonly use Multiple-Choice Questions (MCQs) to assess student knowledge, but manually generating these questions is resource-intensive and requires significant time and cognitive effort. In our opinion, LLMs offer a promising solution to these challenges. This paper presents a novel comparative analysis of three widely known LLMs - Llama 2, Mistral, and GPT-3.5 - to explore their potential for creating informative and challenging MCQs. In our approach, we do not rely on the knowledge of the LLM, but we inject the knowledge into the prompt to contrast the hallucinations, giving the educators control over the test's source text, too. Our experiment involving 21 educators shows that GPT-3.5 generates the most effective MCQs across several known metrics. Additionally, it shows that there is still some reluctance to adopt AI in the educational field. This study sheds light on the potential of LLMs to generate MCQs and improve the educational experience, providing valuable insights for the future.
comment: Copyright ACM 2024. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in Adjunct Proceedings of the 32nd ACM Conference on User Modeling, Adaptation and Personalization (UMAP Adjunct '24), http://dx.doi.org/10.1145/3631700.3665233
MockConf: A Student Interpretation Dataset: Analysis, Word- and Span-level Alignment and Baselines ACL 2025
In simultaneous interpreting, an interpreter renders a source speech into another language with a very short lag, much sooner than sentences are finished. In order to understand and later reproduce this dynamic and complex task automatically, we need dedicated datasets and tools for analysis, monitoring, and evaluation, such as parallel speech corpora, and tools for their automatic annotation. Existing parallel corpora of translated texts and associated alignment algorithms hardly fill this gap, as they fail to model long-range interactions between speech segments or specific types of divergences (e.g., shortening, simplification, functional generalization) between the original and interpreted speeches. In this work, we introduce MockConf, a student interpreting dataset that was collected from Mock Conferences run as part of the students' curriculum. This dataset contains 7 hours of recordings in 5 European languages, transcribed and aligned at the level of spans and words. We further implement and release InterAlign, a modern web-based annotation tool for parallel word and span annotations on long inputs, suitable for aligning simultaneous interpreting. We propose metrics for the evaluation and a baseline for automatic alignment. Dataset and tools are released to the community.
comment: Accepted to ACL 2025 Main Conference
Joint Evaluation of Answer and Reasoning Consistency for Hallucination Detection in Large Reasoning Models
Large Reasoning Models (LRMs) extend large language models with explicit, multi-step reasoning traces to enhance transparency and performance on complex tasks. However, these reasoning traces can be redundant or logically inconsistent, making them a new source of hallucination that is difficult to detect. Existing hallucination detection methods focus primarily on answer-level uncertainty and often fail to detect hallucinations or logical inconsistencies arising from the model's reasoning trace. This oversight is particularly problematic for LRMs, where the explicit thinking trace is not only an important support to the model's decision-making process but also a key source of potential hallucination. To this end, we propose RACE (Reasoning and Answer Consistency Evaluation), a novel framework specifically tailored for hallucination detection in LRMs. RACE operates by extracting essential reasoning steps and computing four diagnostic signals: inter-sample consistency of reasoning traces, entropy-based answer uncertainty, semantic alignment between reasoning and answers, and internal coherence of reasoning. This joint analysis enables fine-grained hallucination detection even when the final answer appears correct. Experiments across datasets and different LLMs demonstrate that RACE outperforms existing hallucination detection baselines, offering a robust and generalizable solution for evaluating LRMs. Our code is available at: https://github.com/bebr2/RACE.
From EHRs to Patient Pathways: Scalable Modeling of Longitudinal Health Trajectories with LLMs
Healthcare systems face significant challenges in managing and interpreting vast, heterogeneous patient data for personalized care. Existing approaches often focus on narrow use cases with a limited feature space, overlooking the complex, longitudinal interactions needed for a holistic understanding of patient health. In this work, we propose a novel approach to patient pathway modeling by transforming diverse electronic health record (EHR) data into a structured representation and designing a holistic pathway prediction model, EHR2Path, optimized to predict future health trajectories. Further, we introduce a novel summary mechanism that embeds long-term temporal context into topic-specific summary tokens, improving performance over text-only models, while being much more token-efficient. EHR2Path demonstrates strong performance in both next time-step prediction and longitudinal simulation, outperforming competitive baselines. It enables detailed simulations of patient trajectories, inherently targeting diverse evaluation tasks, such as forecasting vital signs, lab test results, or length-of-stay, opening a path towards predictive and personalized healthcare.
A Reasoning-Based Approach to Cryptic Crossword Clue Solving ICML 2025
Cryptic crossword clues are challenging language tasks for which new test sets are released daily by major newspapers on a global basis. Each cryptic clue contains both the definition of the answer to be placed in the crossword grid (in common with regular crosswords), and 'wordplay' that proves that the answer is correct (i.e. a human solver can be confident that an answer is correct without needing crossing words as confirmation). This work describes an LLM-based reasoning system built from open-licensed components that solves cryptic clues by (i) hypothesising answers; (ii) proposing wordplay explanations; and (iii) using a verifier system that operates on codified reasoning steps. Overall, this system establishes a new state-of-the-art performance on the challenging Cryptonite dataset of clues from The Times and The Telegraph newspapers in the UK. Because each proved solution is expressed in Python, interpretable wordplay reasoning for proven answers is available for inspection.
comment: 9 page paper plus Appendices. Accepted to ICML 2025
Evaluating Vision-Language and Large Language Models for Automated Student Assessment in Indonesian Classrooms
Although vision-language and large language models (VLM and LLM) offer promising opportunities for AI-driven educational assessment, their effectiveness in real-world classroom settings, particularly in underrepresented educational contexts, remains underexplored. In this study, we evaluated the performance of a state-of-the-art VLM and several LLMs on 646 handwritten exam responses from grade 4 students in six Indonesian schools, covering two subjects: Mathematics and English. These sheets contain more than 14K student answers that span multiple choice, short answer, and essay questions. Assessment tasks include grading these responses and generating personalized feedback. Our findings show that the VLM often struggles to accurately recognize student handwriting, leading to error propagation in downstream LLM grading. Nevertheless, LLM-generated feedback retains some utility, even when derived from imperfect input, although limitations in personalization and contextual relevance persist.
Design of intelligent proofreading system for English translation based on CNN and BERT
Since automatic translations can contain errors that require substantial human post-editing, machine translation proofreading is essential for improving quality. This paper proposes a novel hybrid approach for robust proofreading that combines convolutional neural networks (CNN) with Bidirectional Encoder Representations from Transformers (BERT). In order to extract semantic information from phrases and expressions, CNN uses a variety of convolution kernel filters to capture local n-gram patterns. In the meanwhile, BERT creates context-rich representations of whole sequences by utilizing stacked bidirectional transformer encoders. Using BERT's attention processes, the integrated error detection component relates tokens to spot translation irregularities including word order problems and omissions. The correction module then uses parallel English-German alignment and GRU decoder models in conjunction with translation memory to propose logical modifications that maintain original meaning. A unified end-to-end training process optimized for post-editing performance is applied to the whole pipeline. The multi-domain collection of WMT and the conversational dialogues of Open-Subtitles are two of the English-German parallel corpora used to train the model. Multiple loss functions supervise detection and correction capabilities. Experiments attain a 90% accuracy, 89.37% F1, and 16.24% MSE, exceeding recent proofreading techniques by over 10% overall. Comparative benchmarking demonstrates state-of-the-art performance in identifying and coherently rectifying mistranslations and omissions.
Dissecting Logical Reasoning in LLMs: A Fine-Grained Evaluation and Supervision Study
Logical reasoning is a core capability for many applications of large language models (LLMs), yet existing benchmarks often rely solely on final-answer accuracy, failing to capture the quality and structure of the reasoning process. We propose FineLogic, a fine-grained evaluation framework that assesses logical reasoning across three dimensions: overall benchmark accuracy, stepwise soundness, and representation-level alignment. In addition, to better understand how reasoning capabilities emerge, we conduct a comprehensive study on the effects of supervision format during fine-tuning. We construct four supervision styles (one natural language and three symbolic variants) and train LLMs under each. Our findings reveal that natural language supervision yields strong generalization even on out-of-distribution and long-context tasks, while symbolic reasoning styles promote more structurally sound and atomic inference chains. Further, our representation-level probing shows that fine-tuning primarily improves reasoning behaviors through step-by-step generation, rather than enhancing shortcut prediction or internalized correctness. Together, our framework and analysis provide a more rigorous and interpretable lens for evaluating and improving logical reasoning in LLMs.
Towards LLM-Centric Multimodal Fusion: A Survey on Integration Strategies and Techniques
The rapid progress of Multimodal Large Language Models(MLLMs) has transformed the AI landscape. These models combine pre-trained LLMs with various modality encoders. This integration requires a systematic understanding of how different modalities connect to the language backbone. Our survey presents an LLM-centric analysis of current approaches. We examine methods for transforming and aligning diverse modal inputs into the language embedding space. This addresses a significant gap in existing literature. We propose a classification framework for MLLMs based on three key dimensions. First, we examine architectural strategies for modality integration. This includes both the specific integration mechanisms and the fusion level. Second, we categorize representation learning techniques as either joint or coordinate representations. Third, we analyze training paradigms, including training strategies and objective functions. By examining 125 MLLMs developed between 2021 and 2025, we identify emerging patterns in the field. Our taxonomy provides researchers with a structured overview of current integration techniques. These insights aim to guide the development of more robust multimodal integration strategies for future models built on pre-trained foundations.
comment: 18 pages, 3 figures, 3 tables
MMSU: A Massive Multi-task Spoken Language Understanding and Reasoning Benchmark
Speech inherently contains rich acoustic information that extends far beyond the textual language. In real-world spoken language understanding, effective interpretation often requires integrating semantic meaning (e.g., content), paralinguistic features (e.g., emotions, speed, pitch) and phonological characteristics (e.g., prosody, intonation, rhythm), which are embedded in speech. While recent multimodal Speech Large Language Models (SpeechLLMs) have demonstrated remarkable capabilities in processing audio information, their ability to perform fine-grained perception and complex reasoning in natural speech remains largely unexplored. To address this gap, we introduce MMSU, a comprehensive benchmark designed specifically for understanding and reasoning in spoken language. MMSU comprises 5,000 meticulously curated audio-question-answer triplets across 47 distinct tasks. To ground our benchmark in linguistic theory, we systematically incorporate a wide range of linguistic phenomena, including phonetics, prosody, rhetoric, syntactics, semantics, and paralinguistics. Through a rigorous evaluation of 14 advanced SpeechLLMs, we identify substantial room for improvement in existing models, highlighting meaningful directions for future optimization. MMSU establishes a new standard for comprehensive assessment of spoken language understanding, providing valuable insights for developing more sophisticated human-AI speech interaction systems. MMSU benchmark is available at https://huggingface.co/datasets/ddwang2000/MMSU. Evaluation Code is available at https://github.com/dingdongwang/MMSU_Bench.
comment: MMSU benchmark is available at https://huggingface.co/datasets/ddwang2000/MMSU. Evaluation Code is available at https://github.com/dingdongwang/MMSU_Bench
Fine-Grained Interpretation of Political Opinions in Large Language Models
Studies of LLMs' political opinions mainly rely on evaluations of their open-ended responses. Recent work indicates that there is a misalignment between LLMs' responses and their internal intentions. This motivates us to probe LLMs' internal mechanisms and help uncover their internal political states. Additionally, we found that the analysis of LLMs' political opinions often relies on single-axis concepts, which can lead to concept confounds. In this work, we extend the single-axis to multi-dimensions and apply interpretable representation engineering techniques for more transparent LLM political concept learning. Specifically, we designed a four-dimensional political learning framework and constructed a corresponding dataset for fine-grained political concept vector learning. These vectors can be used to detect and intervene in LLM internals. Experiments are conducted on eight open-source LLMs with three representation engineering techniques. Results show these vectors can disentangle political concept confounds. Detection tasks validate the semantic meaning of the vectors and show good generalization and robustness in OOD settings. Intervention Experiments show these vectors can intervene in LLMs to generate responses with different political leanings.
Identifying Reliable Evaluation Metrics for Scientific Text Revision ACL 2025
Evaluating text revision in scientific writing remains a challenge, as traditional metrics such as ROUGE and BERTScore primarily focus on similarity rather than capturing meaningful improvements. In this work, we analyse and identify the limitations of these metrics and explore alternative evaluation methods that better align with human judgments. We first conduct a manual annotation study to assess the quality of different revisions. Then, we investigate reference-free evaluation metrics from related NLP domains. Additionally, we examine LLM-as-a-judge approaches, analysing their ability to assess revisions with and without a gold reference. Our results show that LLMs effectively assess instruction-following but struggle with correctness, while domain-specific metrics provide complementary insights. We find that a hybrid approach combining LLM-as-a-judge evaluation and task-specific metrics offers the most reliable assessment of revision quality.
comment: Accepted to ACL 2025 main
GOLFer: Smaller LM-Generated Documents Hallucination Filter & Combiner for Query Expansion in Information Retrieval
Large language models (LLMs)-based query expansion for information retrieval augments queries with generated hypothetical documents with LLMs. However, its performance relies heavily on the scale of the language models (LMs), necessitating larger, more advanced LLMs. This approach is costly, computationally intensive, and often has limited accessibility. To address these limitations, we introduce GOLFer - Smaller LMs-Generated Documents Hallucination Filter & Combiner - a novel method leveraging smaller open-source LMs for query expansion. GOLFer comprises two modules: a hallucination filter and a documents combiner. The former detects and removes non-factual and inconsistent sentences in generated documents, a common issue with smaller LMs, while the latter combines the filtered content with the query using a weight vector to balance their influence. We evaluate GOLFer alongside dominant LLM-based query expansion methods on three web search and ten low-resource datasets. Experimental results demonstrate that GOLFer consistently outperforms other methods using smaller LMs, and maintains competitive performance against methods using large-size LLMs, demonstrating its effectiveness.
Exp4Fuse: A Rank Fusion Framework for Enhanced Sparse Retrieval using Large Language Model-based Query Expansion
Large Language Models (LLMs) have shown potential in generating hypothetical documents for query expansion, thereby enhancing information retrieval performance. However, the efficacy of this method is highly dependent on the quality of the generated documents, which often requires complex prompt strategies and the integration of advanced dense retrieval techniques. This can be both costly and computationally intensive. To mitigate these limitations, we explore the use of zero-shot LLM-based query expansion to improve sparse retrieval, particularly for learned sparse retrievers. We introduce a novel fusion ranking framework, Exp4Fuse, which enhances the performance of sparse retrievers through an indirect application of zero-shot LLM-based query expansion. Exp4Fuse operates by simultaneously considering two retrieval routes-one based on the original query and the other on the LLM-augmented query. It then generates two ranked lists using a sparse retriever and fuses them using a modified reciprocal rank fusion method. We conduct extensive evaluations of Exp4Fuse against leading LLM-based query expansion methods and advanced retrieval techniques on three MS MARCO-related datasets and seven low-resource datasets. Experimental results reveal that Exp4Fuse not only surpasses existing LLM-based query expansion methods in enhancing sparse retrievers but also, when combined with advanced sparse retrievers, achieves SOTA results on several benchmarks. This highlights the superior performance and effectiveness of Exp4Fuse in improving query expansion for sparse retrieval.
Lifelong Evolution: Collaborative Learning between Large and Small Language Models for Continuous Emergent Fake News Detection
The widespread dissemination of fake news on social media has significantly impacted society, resulting in serious consequences. Conventional deep learning methodologies employing small language models (SLMs) suffer from extensive supervised training requirements and difficulties adapting to evolving news environments due to data scarcity and distribution shifts. Large language models (LLMs), despite robust zero-shot capabilities, fall short in accurately detecting fake news owing to outdated knowledge and the absence of suitable demonstrations. In this paper, we propose a novel Continuous Collaborative Emergent Fake News Detection (C$^2$EFND) framework to address these challenges. The C$^2$EFND framework strategically leverages both LLMs' generalization power and SLMs' classification expertise via a multi-round collaborative learning framework. We further introduce a lifelong knowledge editing module based on a Mixture-of-Experts architecture to incrementally update LLMs and a replay-based continue learning method to ensure SLMs retain prior knowledge without retraining entirely. Extensive experiments on Pheme and Twitter16 datasets demonstrate that C$^2$EFND significantly outperforms existed methods, effectively improving detection accuracy and adaptability in continuous emergent fake news scenarios.
Evaluation is All You Need: Strategic Overclaiming of LLM Reasoning Capabilities Through Evaluation Design
Reasoning models represented by the Deepseek-R1-Distill series have been widely adopted by the open-source community due to their strong performance in mathematics, science, programming, and other domains. However, our study reveals that their benchmark evaluation results are subject to significant fluctuations caused by various factors. Subtle differences in evaluation conditions can lead to substantial variations in results. Similar phenomena are observed in other open-source inference models fine-tuned based on the Deepseek-R1-Distill series, as well as in the QwQ-32B model, making their claimed performance improvements difficult to reproduce reliably. Therefore, we advocate for the establishment of a more rigorous paradigm for model performance evaluation and present our empirical assessments of the Deepseek-R1-Distill series models.
SPARTA ALIGNMENT: Collectively Aligning Multiple Language Models through Combat
We propose SPARTA ALIGNMENT, an algorithm to collectively align multiple LLMs through competition and combat. To complement a single model's lack of diversity in generation and biases in evaluation, multiple LLMs form a "sparta tribe" to compete against each other in fulfilling instructions while serving as judges for the competition of others. For each iteration, one instruction and two models are selected for a duel, the other models evaluate the two responses, and their evaluation scores are aggregated through a adapted elo-ranking based reputation system, where winners/losers of combat gain/lose weight in evaluating others. The peer-evaluated combat results then become preference pairs where the winning response is preferred over the losing one, and all models learn from these preferences at the end of each iteration. SPARTA ALIGNMENT enables the self-evolution of multiple LLMs in an iterative and collective competition process. Extensive experiments demonstrate that SPARTA ALIGNMENT outperforms initial models and 4 self-alignment baselines across 10 out of 12 tasks and datasets with 7.0% average improvement. Further analysis reveals that SPARTA ALIGNMENT generalizes more effectively to unseen tasks and leverages the expertise diversity of participating models to produce more logical, direct and informative outputs.
IIITH-BUT system for IWSLT 2025 low-resource Bhojpuri to Hindi speech translation
This paper presents the submission of IIITH-BUT to the IWSLT 2025 shared task on speech translation for the low-resource Bhojpuri-Hindi language pair. We explored the impact of hyperparameter optimisation and data augmentation techniques on the performance of the SeamlessM4T model fine-tuned for this specific task. We systematically investigated a range of hyperparameters including learning rate schedules, number of update steps, warm-up steps, label smoothing, and batch sizes; and report their effect on translation quality. To address data scarcity, we applied speed perturbation and SpecAugment and studied their effect on translation quality. We also examined the use of cross-lingual signal through joint training with Marathi and Bhojpuri speech data. Our experiments reveal that careful selection of hyperparameters and the application of simple yet effective augmentation techniques significantly improve performance in low-resource settings. We also analysed the translation hypotheses to understand various kinds of errors that impacted the translation quality in terms of BLEU.
comment: Paper is accepted to IWSLT2025
LLM-based phoneme-to-grapheme for phoneme-based speech recognition
In automatic speech recognition (ASR), phoneme-based multilingual pre-training and crosslingual fine-tuning is attractive for its high data efficiency and competitive results compared to subword-based models. However, Weighted Finite State Transducer (WFST) based decoding is limited by its complex pipeline and inability to leverage large language models (LLMs). Therefore, we propose LLM-based phoneme-to-grapheme (LLM-P2G) decoding for phoneme-based ASR, consisting of speech-to-phoneme (S2P) and phoneme-to-grapheme (P2G). A challenge is that there seems to have information loss in cascading S2P and P2G. To address this challenge, we propose two training strategies: data augmentation with noisy phonemes (DANP), and randomized top-$K$ marginalized (TKM) training and decoding. Our experimental results show that LLM-P2G outperforms WFST-based systems in crosslingual ASR for Polish and German, by relative WER reductions of 3.6% and 6.9% respectively.
comment: Interspeech 2025
Accelerated Test-Time Scaling with Model-Free Speculative Sampling
Language models have demonstrated remarkable capabilities in reasoning tasks through test-time scaling techniques like best-of-N sampling and tree search. However, these approaches often demand substantial computational resources, creating a critical trade-off between performance and efficiency. We introduce STAND (STochastic Adaptive N-gram Drafting), a novel model-free speculative decoding approach that leverages the inherent redundancy in reasoning trajectories to achieve significant acceleration without compromising accuracy. Our analysis reveals that reasoning paths frequently reuse similar reasoning patterns, enabling efficient model-free token prediction without requiring separate draft models. By introducing stochastic drafting and preserving probabilistic information through a memory-efficient logit-based N-gram module, combined with optimized Gumbel-Top-K sampling and data-driven tree construction, STAND significantly improves token acceptance rates. Extensive evaluations across multiple models and reasoning tasks (AIME-2024, GPQA-Diamond, and LiveCodeBench) demonstrate that STAND reduces inference latency by 60-65% compared to standard autoregressive decoding while maintaining accuracy. Furthermore, STAND outperforms state-of-the-art speculative decoding methods by 14-28% in throughput and shows strong performance even in single-trajectory scenarios, reducing inference latency by 48-58%. As a model-free approach, STAND can be applied to any existing language model without additional training, being a powerful plug-and-play solution for accelerating language model reasoning.
Cracking the Code: Enhancing Implicit Hate Speech Detection through Coding Classification
The internet has become a hotspot for hate speech (HS), threatening societal harmony and individual well-being. While automatic detection methods perform well in identifying explicit hate speech (ex-HS), they struggle with more subtle forms, such as implicit hate speech (im-HS). We tackle this problem by introducing a new taxonomy for im-HS detection, defining six encoding strategies named codetypes. We present two methods for integrating codetypes into im-HS detection: 1) prompting large language models (LLMs) directly to classify sentences based on generated responses, and 2) using LLMs as encoders with codetypes embedded during the encoding process. Experiments show that the use of codetypes improves im-HS detection in both Chinese and English datasets, validating the effectiveness of our approach across different languages.
comment: Proceedings of the 5th Workshop on Trustworthy NLP (TrustNLP 2025), 112-126
Recycling the Web: A Method to Enhance Pre-training Data Quality and Quantity for Language Models
Scaling laws predict that the performance of large language models improves with increasing model size and data size. In practice, pre-training has been relying on massive web crawls, using almost all data sources publicly available on the internet so far. However, this pool of natural data does not grow at the same rate as the compute supply. Furthermore, the availability of high-quality texts is even more limited: data filtering pipelines often remove up to 99% of the initial web scrapes to achieve state-of-the-art. To address the "data wall" of pre-training scaling, our work explores ways to transform and recycle data discarded in existing filtering processes. We propose REWIRE, REcycling the Web with guIded REwrite, a method to enrich low-quality documents so that they could become useful for training. This in turn allows us to increase the representation of synthetic data in the final pre-training set. Experiments at 1B, 3B and 7B scales of the DCLM benchmark show that mixing high-quality raw texts and our rewritten texts lead to 1.0, 1.3 and 2.5 percentage points improvement respectively across 22 diverse tasks, compared to training on only filtered web data. Training on the raw-synthetic data mix is also more effective than having access to 2x web data. Through further analysis, we demonstrate that about 82% of the mixed in texts come from transforming lower-quality documents that would otherwise be discarded. REWIRE also outperforms related approaches of generating synthetic data, including Wikipedia-style paraphrasing, question-answer synthesizing and knowledge extraction. These results suggest that recycling web texts holds the potential for being a simple and effective approach for scaling pre-training data.
MMRefine: Unveiling the Obstacles to Robust Refinement in Multimodal Large Language Models ACL
This paper introduces MMRefine, a MultiModal Refinement benchmark designed to evaluate the error refinement capabilities of Multimodal Large Language Models (MLLMs). As the emphasis shifts toward enhancing reasoning during inference, MMRefine provides a framework that evaluates MLLMs' abilities to detect and correct errors across six distinct scenarios beyond just comparing final accuracy before and after refinement. Furthermore, the benchmark analyzes the refinement performance by categorizing errors into six error types. Experiments with various open and closed MLLMs reveal bottlenecks and factors impeding refinement performance, highlighting areas for improvement in effective reasoning enhancement. Our code and dataset are publicly available at https://github.com/naver-ai/MMRefine.
comment: ACL Findings 2025
Urania: Differentially Private Insights into AI Use
We introduce $Urania$, a novel framework for generating insights about LLM chatbot interactions with rigorous differential privacy (DP) guarantees. The framework employs a private clustering mechanism and innovative keyword extraction methods, including frequency-based, TF-IDF-based, and LLM-guided approaches. By leveraging DP tools such as clustering, partition selection, and histogram-based summarization, $Urania$ provides end-to-end privacy protection. Our evaluation assesses lexical and semantic content preservation, pair similarity, and LLM-based metrics, benchmarking against a non-private Clio-inspired pipeline (Tamkin et al., 2024). Moreover, we develop a simple empirical privacy evaluation that demonstrates the enhanced robustness of our DP pipeline. The results show the framework's ability to extract meaningful conversational insights while maintaining stringent user privacy, effectively balancing data utility with privacy preservation.
Normative Conflicts and Shallow AI Alignment
The progress of AI systems such as large language models (LLMs) raises increasingly pressing concerns about their safe deployment. This paper examines the value alignment problem for LLMs, arguing that current alignment strategies are fundamentally inadequate to prevent misuse. Despite ongoing efforts to instill norms such as helpfulness, honesty, and harmlessness in LLMs through fine-tuning based on human preferences, they remain vulnerable to adversarial attacks that exploit conflicts between these norms. I argue that this vulnerability reflects a fundamental limitation of existing alignment methods: they reinforce shallow behavioral dispositions rather than endowing LLMs with a genuine capacity for normative deliberation. Drawing from on research in moral psychology, I show how humans' ability to engage in deliberative reasoning enhances their resilience against similar adversarial tactics. LLMs, by contrast, lack a robust capacity to detect and rationally resolve normative conflicts, leaving them susceptible to manipulation; even recent advances in reasoning-focused LLMs have not addressed this vulnerability. This ``shallow alignment'' problem carries significant implications for AI safety and regulation, suggesting that current approaches are insufficient for mitigating potential harms posed by increasingly capable AI systems.
comment: Published in Philosophical Studies
EMO-Debias: Benchmarking Gender Debiasing Techniques in Multi-Label Speech Emotion Recognition
Speech emotion recognition (SER) systems often exhibit gender bias. However, the effectiveness and robustness of existing debiasing methods in such multi-label scenarios remain underexplored. To address this gap, we present EMO-Debias, a large-scale comparison of 13 debiasing methods applied to multi-label SER. Our study encompasses techniques from pre-processing, regularization, adversarial learning, biased learners, and distributionally robust optimization. Experiments conducted on acted and naturalistic emotion datasets, using WavLM and XLSR representations, evaluate each method under conditions of gender imbalance. Our analysis quantifies the trade-offs between fairness and accuracy, identifying which approaches consistently reduce gender performance gaps without compromising overall model performance. The findings provide actionable insights for selecting effective debiasing strategies and highlight the impact of dataset distributions.
comment: 8 pages
Flex-TravelPlanner: A Benchmark for Flexible Planning with Language Agents
Real-world planning problems require constant adaptation to changing requirements and balancing of competing constraints. However, current benchmarks for evaluating LLMs' planning capabilities primarily focus on static, single-turn scenarios. We introduce Flex-TravelPlanner, a benchmark that evaluates language models' ability to reason flexibly in dynamic planning scenarios. Building on the TravelPlanner dataset~\citep{xie2024travelplanner}, we introduce two novel evaluation settings: (1) sequential constraint introduction across multiple turns, and (2) scenarios with explicitly prioritized competing constraints. Our analysis of GPT-4o and Llama 3.1 70B reveals several key findings: models' performance on single-turn tasks poorly predicts their ability to adapt plans across multiple turns; constraint introduction order significantly affects performance; and models struggle with constraint prioritization, often incorrectly favoring newly introduced lower priority preferences over existing higher-priority constraints. These findings highlight the importance of evaluating LLMs in more realistic, dynamic planning scenarios and suggest specific directions for improving model performance on complex planning tasks. The code and dataset for our framework are publicly available at https://github.com/juhyunohh/FlexTravelBench.
TaDA: Training-free recipe for Decoding with Adaptive KV Cache Compression and Mean-centering ACL-2025
The key-value (KV) cache in transformer models is a critical component for efficient decoding or inference, yet its memory demands scale poorly with sequence length, posing a major challenge for scalable deployment of large language models. Among several approaches to KV cache compression, quantization of key and value activations has been widely explored. Most KV cache quantization methods still need to manage sparse and noncontiguous outliers separately. To address this, we introduce TaDA, a training-free recipe for KV cache compression with quantization precision that adapts to error sensitivity across layers and a mean centering to eliminate separate outlier handling. Our approach yields substantial accuracy improvements for multiple models supporting various context lengths. Moreover, our approach does not need to separately manage outlier elements -- a persistent hurdle in most traditional quantization methods. Experiments on standard benchmarks demonstrate that our technique reduces KV cache memory footprint to 27% of the original 16-bit baseline while achieving comparable accuracy. Our method paves the way for scalable and high-performance reasoning in language models by potentially enabling inference for longer context length models, reasoning models, and longer chain of thoughts.
comment: ACL-2025 industry-track accepted
ViCocktail: Automated Multi-Modal Data Collection for Vietnamese Audio-Visual Speech Recognition
Audio-Visual Speech Recognition (AVSR) has gained significant attention recently due to its robustness against noise, which often challenges conventional speech recognition systems that rely solely on audio features. Despite this advantage, AVSR models remain limited by the scarcity of extensive datasets, especially for most languages beyond English. Automated data collection offers a promising solution. This work presents a practical approach to generate AVSR datasets from raw video, refining existing techniques for improved efficiency and accessibility. We demonstrate its broad applicability by developing a baseline AVSR model for Vietnamese. Experiments show the automatically collected dataset enables a strong baseline, achieving competitive performance with robust ASR in clean conditions and significantly outperforming them in noisy environments like cocktail parties. This efficient method provides a pathway to expand AVSR to more languages, particularly under-resourced ones.
comment: Accepted at Interspeech 2025
A Fictional Q&A Dataset for Studying Memorization and Knowledge Acquisition
When language models are trained on textual data, they acquire both knowledge about the structure of language as well as knowledge of facts about the world. At inference time, their knowledge of facts can be leveraged to solve interesting problems and perform useful knowledge work for users. It is well known that language models can verbatim memorize long sequences from their training data. However, it is much less well understood how language models memorize facts seen during training. In this work, we propose a new dataset to specifically empower researchers to study the dual processes of fact memorization and verbatim sequence memorization. The dataset consists of synthetically-generated, webtext-like documents about fictional events, as well as question-answer pairs about the events. We conduct training experiments showing how synthetic data about fictional events can be effective in teasing apart different forms of memorization. We also document the challenges in effectively building realistic, fictional synthetic data.
comment: 10 pages and 8 figures in the main body
IYKYK: Using language models to decode extremist cryptolects
Extremist groups develop complex in-group language, also referred to as cryptolects, to exclude or mislead outsiders. We investigate the ability of current language technologies to detect and interpret the cryptolects of two online extremist platforms. Evaluating eight models across six tasks, our results indicate that general purpose LLMs cannot consistently detect or decode extremist language. However, performance can be significantly improved by domain adaptation and specialised prompting techniques. These results provide important insights to inform the development and deployment of automated moderation technologies. We further develop and release novel labelled and unlabelled datasets, including 19.4M posts from extremist platforms and lexicons validated by human experts.
Leveraging Self-Attention for Input-Dependent Soft Prompting in LLMs ACL 2025
The performance of large language models in domain-specific tasks necessitates fine-tuning, which is computationally expensive and technically challenging. This paper focuses on parameter-efficient fine-tuning using soft prompting, a promising approach that adapts pre-trained models to downstream tasks by learning a small set of parameters. We propose a novel Input Dependent Soft Prompting technique with a self-Attention Mechanism (ID-SPAM) that generates soft prompts based on the input tokens and attends different tokens with varying importance. Our method is simple and efficient, keeping the number of trainable parameters small. We show the merits of the proposed approach compared to state-of-the-art techniques on various tasks and show the improved zero shot domain transfer capability.
comment: Accepted in ACL 2025 (Main) Conference
Deployability-Centric Infrastructure-as-Code Generation: An LLM-based Iterative Framework
Infrastructure-as-Code (IaC) generation holds significant promise for automating cloud infrastructure provisioning. Recent advances in Large Language Models (LLMs) present a promising opportunity to democratize IaC development by generating deployable infrastructure templates from natural language descriptions, but current evaluation focuses on syntactic correctness while ignoring deployability, the fatal measure of IaC template utility. We address this gap through two contributions: (1) IaCGen, an LLM-based deployability-centric framework that uses iterative feedback mechanism to generate IaC templates, and (2) DPIaC-Eval, a deployability-centric IaC template benchmark consists of 153 real-world scenarios that can evaluate syntax, deployment, user intent, and security. Our evaluation reveals that state-of-the-art LLMs initially performed poorly, with Claude-3.5 and Claude-3.7 achieving only 30.2% and 26.8% deployment success on the first attempt respectively. However, IaCGen transforms this performance dramatically: all evaluated models reach over 90% passItr@25, with Claude-3.5 and Claude-3.7 achieving 98% success rate. Despite these improvements, critical challenges remain in user intent alignment (25.2% accuracy) and security compliance (8.4% pass rate), highlighting areas requiring continued research. Our work provides the first comprehensive assessment of deployability-centric IaC template generation and establishes a foundation for future research.
Mitigating Confounding in Speech-Based Dementia Detection through Weight Masking ACL 2025
Deep transformer models have been used to detect linguistic anomalies in patient transcripts for early Alzheimer's disease (AD) screening. While pre-trained neural language models (LMs) fine-tuned on AD transcripts perform well, little research has explored the effects of the gender of the speakers represented by these transcripts. This work addresses gender confounding in dementia detection and proposes two methods: the $\textit{Extended Confounding Filter}$ and the $\textit{Dual Filter}$, which isolate and ablate weights associated with gender. We evaluate these methods on dementia datasets with first-person narratives from patients with cognitive impairment and healthy controls. Our results show transformer models tend to overfit to training data distributions. Disrupting gender-related weights results in a deconfounded dementia classifier, with the trade-off of slightly reduced dementia detection performance.
comment: 16 pages, 20 figures. Accepted to ACL 2025 Main Conference
OPeRA: A Dataset of Observation, Persona, Rationale, and Action for Evaluating LLMs on Human Online Shopping Behavior Simulation
Can large language models (LLMs) accurately simulate the next web action of a specific user? While LLMs have shown promising capabilities in generating ``believable'' human behaviors, evaluating their ability to mimic real user behaviors remains an open challenge, largely due to the lack of high-quality, publicly available datasets that capture both the observable actions and the internal reasoning of an actual human user. To address this gap, we introduce OPERA, a novel dataset of Observation, Persona, Rationale, and Action collected from real human participants during online shopping sessions. OPERA is the first public dataset that comprehensively captures: user personas, browser observations, fine-grained web actions, and self-reported just-in-time rationales. We developed both an online questionnaire and a custom browser plugin to gather this dataset with high fidelity. Using OPERA, we establish the first benchmark to evaluate how well current LLMs can predict a specific user's next action and rationale with a given persona and history. This dataset lays the groundwork for future research into LLM agents that aim to act as personalized digital twins for human.
AceReason-Nemotron: Advancing Math and Code Reasoning through Reinforcement Learning
Despite recent progress in large-scale reinforcement learning (RL) for reasoning, the training recipe for building high-performing reasoning models remains elusive. Key implementation details of frontier models, such as DeepSeek-R1, including data curation strategies and RL training recipe, are often omitted. Moreover, recent research indicates distillation remains more effective than RL for smaller models. In this work, we demonstrate that large-scale RL can significantly enhance the reasoning capabilities of strong, small- and mid-sized models, achieving results that surpass those of state-of-the-art distillation-based models. We systematically study the RL training process through extensive ablations and propose a simple yet effective approach: first training on math-only prompts, then on code-only prompts. Notably, we find that math-only RL not only significantly enhances the performance of strong distilled models on math benchmarks (e.g., +14.6% / +17.2% on AIME 2025 for the 7B / 14B models), but also code reasoning tasks (e.g., +6.8% / +5.8% on LiveCodeBench for the 7B / 14B models). In addition, extended code-only RL iterations further improve performance on code benchmarks with minimal or no degradation in math results. We develop a robust data curation pipeline to collect challenging prompts with high-quality, verifiable answers and test cases to enable verification-based RL across both domains. Finally, we identify key experimental insights, including curriculum learning with progressively increasing response lengths and the stabilizing effect of on-policy parameter updates. We find that RL not only elicits the foundational reasoning capabilities acquired during pretraining and supervised fine-tuning (e.g., distillation), but also pushes the limits of the model's reasoning ability, enabling it to solve problems that were previously unsolvable.
comment: Add pass@1024 evaluation results for LiveCodeBench v6. We release the models at: https://huggingface.co/collections/nvidia/acereason-682f4e1261dc22f697fd1485
The broader spectrum of in-context learning
The ability of language models to learn a task from a few examples in context has generated substantial interest. Here, we provide a perspective that situates this type of supervised few-shot learning within a much broader spectrum of meta-learned in-context learning. Indeed, we suggest that any distribution of sequences in which context non-trivially decreases loss on subsequent predictions can be interpreted as eliciting a kind of in-context learning. We suggest that this perspective helps to unify the broad set of in-context abilities that language models exhibit -- such as adapting to tasks from instructions or role play, or extrapolating time series. This perspective also sheds light on potential roots of in-context learning in lower-level processing of linguistic dependencies (e.g. coreference or parallel structures). Finally, taking this perspective highlights the importance of generalization, which we suggest can be studied along several dimensions: not only the ability to learn something novel, but also flexibility in learning from different presentations, and in applying what is learned. We discuss broader connections to past literature in meta-learning and goal-conditioned agents, and other perspectives on learning and adaptation. We close by suggesting that research on in-context learning should consider this broader spectrum of in-context capabilities and types of generalization.
Is LLM the Silver Bullet to Low-Resource Languages Machine Translation?
Low-Resource Languages (LRLs) present significant challenges in natural language processing due to their limited linguistic resources and underrepresentation in standard datasets. While recent advances in Large Language Models (LLMs) and Neural Machine Translation have substantially improved translation capabilities for high-resource languages, performance disparities persist for LRLs, particularly impacting privacy-sensitive and resource-constrained scenarios. This paper systematically evaluates current LLMs in 200 languages using the FLORES-200 benchmark and demonstrates their limitations in LRL translation capability. We also explore alternative data sources, including news articles and bilingual dictionaries, and demonstrate how knowledge distillation from large pre-trained teacher models can significantly improve the performance of small LLMs on LRL translation tasks. For example, this approach increases EN->LB with the LLM-as-a-Judge score on the validation set from 0.36 to 0.89 for Llama-3.2-3B. Furthermore, we examine different fine-tuning configurations, providing practical insights on optimal data scale, training efficiency, and the preservation of generalization capabilities of models under study.
ReasonGen-R1: CoT for Autoregressive Image generation models through SFT and RL
Although chain-of-thought reasoning and reinforcement learning (RL) have driven breakthroughs in NLP, their integration into generative vision models remains underexplored. We introduce ReasonGen-R1, a two-stage framework that first imbues an autoregressive image generator with explicit text-based "thinking" skills via supervised fine-tuning on a newly generated reasoning dataset of written rationales, and then refines its outputs using Group Relative Policy Optimization. To enable the model to reason through text before generating images, We automatically generate and release a corpus of model crafted rationales paired with visual prompts, enabling controlled planning of object layouts, styles, and scene compositions. Our GRPO algorithm uses reward signals from a pretrained vision language model to assess overall visual quality, optimizing the policy in each update. Evaluations on GenEval, DPG, and the T2I benchmark demonstrate that ReasonGen-R1 consistently outperforms strong baselines and prior state-of-the-art models. More: aka.ms/reasongen.
GRAF: Graph Retrieval Augmented by Facts for Romanian Legal Multi-Choice Question Answering ACL 2025
Pre-trained Language Models (PLMs) have shown remarkable performances in recent years, setting a new paradigm for NLP research and industry. The legal domain has received some attention from the NLP community partly due to its textual nature. Some tasks from this domain are represented by question-answering (QA) tasks. This work explores the legal domain Multiple-Choice QA (MCQA) for a low-resource language. The contribution of this work is multi-fold. We first introduce JuRO, the first openly available Romanian legal MCQA dataset, comprising three different examinations and a number of 10,836 total questions. Along with this dataset, we introduce CROL, an organized corpus of laws that has a total of 93 distinct documents with their modifications from 763 time spans, that we leveraged in this work for Information Retrieval (IR) techniques. Moreover, we are the first to propose Law-RoG, a Knowledge Graph (KG) for the Romanian language, and this KG is derived from the aforementioned corpus. Lastly, we propose a novel approach for MCQA, Graph Retrieval Augmented by Facts (GRAF), which achieves competitive results with generally accepted SOTA methods and even exceeds them in most settings.
comment: Accepted to ACL 2025 Findings
From Benign import Toxic: Jailbreaking the Language Model via Adversarial Metaphors
Current studies have exposed the risk of Large Language Models (LLMs) generating harmful content by jailbreak attacks. However, they overlook that the direct generation of harmful content from scratch is more difficult than inducing LLM to calibrate benign content into harmful forms. In our study, we introduce a novel attack framework that exploits AdVersArial meTAphoR (AVATAR) to induce the LLM to calibrate malicious metaphors for jailbreaking. Specifically, to answer harmful queries, AVATAR adaptively identifies a set of benign but logically related metaphors as the initial seed. Then, driven by these metaphors, the target LLM is induced to reason and calibrate about the metaphorical content, thus jailbroken by either directly outputting harmful responses or calibrating residuals between metaphorical and professional harmful content. Experimental results demonstrate that AVATAR can effectively and transferable jailbreak LLMs and achieve a state-of-the-art attack success rate across multiple advanced LLMs.
comment: arXiv admin note: substantial text overlap with arXiv:2412.12145
DEFAME: Dynamic Evidence-based FAct-checking with Multimodal Experts
The proliferation of disinformation demands reliable and scalable fact-checking solutions. We present Dynamic Evidence-based FAct-checking with Multimodal Experts (DEFAME), a modular, zero-shot MLLM pipeline for open-domain, text-image claim verification. DEFAME operates in a six-stage process, dynamically selecting the tools and search depth to extract and evaluate textual and visual evidence. Unlike prior approaches that are text-only, lack explainability, or rely solely on parametric knowledge, DEFAME performs end-to-end verification, accounting for images in claims and evidence while generating structured, multimodal reports. Evaluation on the popular benchmarks VERITE, AVerITeC, and MOCHEG shows that DEFAME surpasses all previous methods, establishing itself as the new state-of-the-art fact-checking system for uni- and multimodal fact-checking. Moreover, we introduce a new multimodal benchmark, ClaimReview2024+, featuring claims after the knowledge cutoff of GPT-4o, avoiding data leakage. Here, DEFAME drastically outperforms the GPT-4o baselines, showing temporal generalizability and the potential for real-time fact-checking.
UniWorld-V1: High-Resolution Semantic Encoders for Unified Visual Understanding and Generation
Although existing unified models achieve strong performance in vision-language understanding and text-to-image generation, they remain limited in addressing image perception and manipulation -- capabilities increasingly demanded in practical applications. Recently, OpenAI introduced the powerful GPT-4o-Image model, which showcases advanced capabilities in comprehensive image perception and manipulation, sparking widespread interest. Through carefully designed experiments, we observe that GPT-4o-Image likely relies on semantic encoders rather than VAEs for feature extraction, despite VAEs being commonly regarded as crucial for image manipulation tasks. Inspired by this insight, we propose UniWorld-V1, a unified generative framework built upon semantic features extracted from powerful multimodal large language models and contrastive semantic encoders. Using only 2.7M training data, UniWorld-V1 achieves impressive performance across diverse tasks, including image understanding, generation, manipulation, and perception. We fully open-source the UniWorld-V1 framework, including model weights, training and evaluation scripts, and datasets to promote reproducibility and further research.
The Lessons of Developing Process Reward Models in Mathematical Reasoning
Process Reward Models (PRMs) emerge as a promising approach for process supervision in mathematical reasoning of Large Language Models (LLMs), which aim to identify and mitigate intermediate errors in the reasoning processes. However, the development of effective PRMs faces significant challenges, particularly in data annotation and evaluation methodologies. In this paper, through extensive experiments, we demonstrate that commonly used Monte Carlo (MC) estimation-based data synthesis for PRMs typically yields inferior performance and generalization compared to LLM-as-a-judge and human annotation methods. MC estimation relies on completion models to evaluate current-step correctness, leading to inaccurate step verification. Furthermore, we identify potential biases in conventional Best-of-N (BoN) evaluation strategies for PRMs: (1) The unreliable policy models generate responses with correct answers but flawed processes, leading to a misalignment between the evaluation criteria of BoN and the PRM objectives of process verification. (2) The tolerance of PRMs of such responses leads to inflated BoN scores. (3) Existing PRMs have a significant proportion of minimum scores concentrated on the final answer steps, revealing the shift from process to outcome-based assessment in BoN Optimized PRMs. To address these challenges, we develop a consensus filtering mechanism that effectively integrates MC estimation with LLM-as-a-judge and advocates a more comprehensive evaluation framework that combines response-level and step-level metrics. Based on the mechanisms, we significantly improve both model performance and data efficiency in the BoN evaluation and the step-wise error identification task. Finally, we release a new state-of-the-art PRM that outperforms existing open-source alternatives and provides practical guidelines for future research in building process supervision models.
CheckEmbed: Effective Verification of LLM Solutions to Open-Ended Tasks
Large Language Models (LLMs) are transforming a wide range of domains, yet verifying their outputs remains a significant challenge, especially for complex open-ended tasks such as consolidation, summarization, and knowledge extraction. To address this, we introduce CheckEmbed (CE): a simple, scalable, and accurate verification method. CE reduces each LLM answer to a single embedding vector using powerful modern embedding LLM models like SFR-Embedding-Mistral. Prior methods such as BERTScore and SelfCheckGPT relied on weaker encoders like BERT, forcing them to operate at token or sentence granularity. In contrast, CE performs fast, semantically rich comparisons directly at the whole-answer level, overcoming key limitations in both accuracy and scalability. We conduct a comprehensive design and time complexity analysis across 13 verification baselines, including classical text scorers (e.g., BLEU), stability-based methods (e.g., SelfCheckGPT), and generative evaluators (e.g., LLM-as-a-Judge), which highlights the effectiveness, efficiency, versatility, and simplicity of CE. Empirical results show that CE reliably detects hallucinations in both closed and open-ended tasks. We further present evidence that CE generalizes beyond text to other modalities such as vision, establishing it as a practical and versatile verification framework.
MMBoundary: Advancing MLLM Knowledge Boundary Awareness through Reasoning Step Confidence Calibration ACL 2025
In recent years, multimodal large language models (MLLMs) have made significant progress but continue to face inherent challenges in multimodal reasoning, which requires multi-level (e.g., perception, reasoning) and multi-granular (e.g., multi-step reasoning chain) advanced inferencing. Prior work on estimating model confidence tends to focus on the overall response for training and calibration, but fails to assess confidence in each reasoning step, leading to undesirable hallucination snowballing. In this work, we present MMBoundary, a novel framework that advances the knowledge boundary awareness of MLLMs through reasoning step confidence calibration. To achieve this, we propose to incorporate complementary textual and cross-modal self-rewarding signals to estimate confidence at each step of the MLLM reasoning process. In addition to supervised fine-tuning MLLM on this set of self-rewarded confidence estimation signal for initial confidence expression warm-up, we introduce a reinforcement learning stage with multiple reward functions for further aligning model knowledge and calibrating confidence at each reasoning step, enhancing reasoning chain self-correction. Empirical results show that MMBoundary significantly outperforms existing methods across diverse domain datasets and metrics, achieving an average of 7.5% reduction in multimodal confidence calibration errors and up to 8.3% improvement in task performance.
comment: 18 pages, ACL 2025
DREAM: Disentangling Risks to Enhance Safety Alignment in Multimodal Large Language Models NAACL 2025
Multimodal Large Language Models (MLLMs) pose unique safety challenges due to their integration of visual and textual data, thereby introducing new dimensions of potential attacks and complex risk combinations. In this paper, we begin with a detailed analysis aimed at disentangling risks through step-by-step reasoning within multimodal inputs. We find that systematic multimodal risk disentanglement substantially enhances the risk awareness of MLLMs. Via leveraging the strong discriminative abilities of multimodal risk disentanglement, we further introduce \textbf{DREAM} (\textit{\textbf{D}isentangling \textbf{R}isks to \textbf{E}nhance Safety \textbf{A}lignment in \textbf{M}LLMs}), a novel approach that enhances safety alignment in MLLMs through supervised fine-tuning and iterative Reinforcement Learning from AI Feedback (RLAIF). Experimental results show that DREAM significantly boosts safety during both inference and training phases without compromising performance on normal tasks (namely oversafety), achieving a 16.17\% improvement in the SIUO safe\&effective score compared to GPT-4V. The data and code are available at https://github.com/Kizna1ver/DREAM.
comment: [NAACL 2025] The first four authors contribute equally, 23 pages, repo at https://github.com/Kizna1ver/DREAM
Multi-Head RAG: Solving Multi-Aspect Problems with LLMs
Retrieval Augmented Generation (RAG) enhances the abilities of Large Language Models (LLMs) by enabling the retrieval of documents into the LLM context to provide more accurate and relevant responses. Existing RAG solutions do not focus on queries that may require fetching multiple documents with substantially different contents. Such queries occur frequently, but are challenging because the embeddings of these documents may be distant in the embedding space, making it hard to retrieve them all. This paper introduces Multi-Head RAG (MRAG), a novel scheme designed to address this gap with a simple yet powerful idea: leveraging activations of Transformer's multi-head attention layer, instead of the decoder layer, as keys for fetching multi-aspect documents. The driving observation is that different attention heads learn to capture different data aspects. Harnessing the corresponding activations results in embeddings that represent various facets of data items and queries, improving the retrieval accuracy for complex queries. We provide an evaluation methodology and metrics, multi-aspect datasets, and real-world use cases to demonstrate MRAG's effectiveness. We show MRAG's design advantages over 18 RAG baselines, empirical improvements of up to 20% in retrieval success ratios, and benefits for downstream LLM generation. MRAG can be seamlessly integrated with existing RAG frameworks and benchmarks.
Can Large Language Models Understand Intermediate Representations in Compilers?
Intermediate Representations (IRs) play a critical role in compiler design and program analysis, yet their comprehension by Large Language Models (LLMs) remains underexplored. In this paper, we present an explorative empirical study evaluating the capabilities of six state-of-the-art LLMs: GPT-4, GPT-3, DeepSeek, Gemma 2, Llama 3, and Code Llama, in understanding IRs. Specifically, we assess model performance across four core tasks: control flow graph reconstruction, decompilation, code summarization, and execution reasoning. While LLMs exhibit competence in parsing IR syntax and identifying high-level structures, they consistently struggle with instruction-level reasoning, especially in control flow reasoning, loop handling, and dynamic execution. Common failure modes include misinterpreting branching instructions, omitting critical operations, and relying on heuristic reasoning rather than precise instruction-level logic. Our findings highlight the need for IR-specific enhancements in LLM design. We recommend fine-tuning on structured IR datasets and integrating control-flow-sensitive architectures to improve model effectiveness. All experimental data and source code are publicly available at
SNaRe: Domain-aware Data Generation for Low-Resource Event Detection ACL
Event Detection (ED) -- the task of identifying event mentions from natural language text -- is critical for enabling reasoning in highly specialized domains such as biomedicine, law, and epidemiology. Data generation has proven to be effective in broadening its utility to wider applications without requiring expensive expert annotations. However, when existing generation approaches are applied to specialized domains, they struggle with label noise, where annotations are incorrect, and domain drift, characterized by a distributional mismatch between generated sentences and the target domain. To address these issues, we introduce SNaRe, a domain-aware synthetic data generation framework composed of three components: Scout, Narrator, and Refiner. Scout extracts triggers from unlabeled target domain data and curates a high-quality domain-specific trigger list using corpus-level statistics to mitigate domain drift. Narrator, conditioned on these triggers, generates high-quality domain-aligned sentences, and Refiner identifies additional event mentions, ensuring high annotation quality. Experimentation on three diverse domain ED datasets reveals how SNaRe outperforms the best baseline, achieving average F1 gains of 3-7% in the zero-shot/few-shot settings and 4-20% F1 improvement for multilingual generation. Analyzing the generated trigger hit rate and human evaluation substantiates SNaRe's stronger annotation quality and reduced domain drift.
comment: Under review at ACL ARR May 2025
ValueSim: Generating Backstories to Model Individual Value Systems
As Large Language Models (LLMs) continue to exhibit increasingly human-like capabilities, aligning them with human values has become critically important. Contemporary advanced techniques, such as prompt learning and reinforcement learning, are being deployed to better align LLMs with human values. However, while these approaches address broad ethical considerations and helpfulness, they rarely focus on simulating individualized human value systems. To address this gap, we present ValueSim, a framework that simulates individual values through the generation of personal backstories reflecting past experiences and demographic information. ValueSim converts structured individual data into narrative backstories and employs a multi-module architecture inspired by the Cognitive-Affective Personality System to simulate individual values based on these narratives. Testing ValueSim on a self-constructed benchmark derived from the World Values Survey demonstrates an improvement in top-1 accuracy by over 10% compared to retrieval-augmented generation methods. Further analysis reveals that performance enhances as additional user interaction history becomes available, indicating the model's ability to refine its persona simulation capabilities over time.
comment: 8 pages main paper + 13 pages appendix, 3 figures, 2 tables
Explainability in Practice: A Survey of Explainable NLP Across Various Domains
Natural Language Processing (NLP) has become a cornerstone in many critical sectors, including healthcare, finance, and customer relationship management. This is especially true with the development and use of advanced models such as GPT-based architectures and BERT, which are widely used in decision-making processes. However, the black-box nature of these advanced NLP models has created an urgent need for transparency and explainability. This review explores explainable NLP (XNLP) with a focus on its practical deployment and real-world applications, examining its implementation and the challenges faced in domain-specific contexts. The paper underscores the importance of explainability in NLP and provides a comprehensive perspective on how XNLP can be designed to meet the unique demands of various sectors, from healthcare's need for clear insights to finance's emphasis on fraud detection and risk assessment. Additionally, this review aims to bridge the knowledge gap in XNLP literature by offering a domain-specific exploration and discussing underrepresented areas such as real-world applicability, metric evaluation, and the role of human interaction in model assessment. The paper concludes by suggesting future research directions that could enhance the understanding and broader application of XNLP.
CHIMERA: A Knowledge Base of Idea Recombination in Scientific Literature
A hallmark of human innovation is the process of recombination -- creating original ideas by integrating elements of existing mechanisms and concepts. In this work, we automatically mine the scientific literature and build CHIMERA: a large-scale knowledge base (KB) of recombination examples. CHIMERA can be used to empirically explore at scale how scientists recombine concepts and take inspiration from different areas, or to train supervised machine learning models that learn to predict new creative cross-domain directions. To build this KB, we present a novel information extraction task of extracting recombination from scientific paper abstracts, collect a high-quality corpus of hundreds of manually annotated abstracts, and use it to train an LLM-based extraction model. The model is applied to a large corpus of papers in the AI domain, yielding a KB of over 28K recombination examples. We analyze CHIMERA to explore the properties of recombination in different subareas of AI. Finally, we train a scientific hypothesis generation model using the KB, which predicts new recombination directions that real-world researchers find inspiring. Our data and code are available at https://github.com/noy-sternlicht/CHIMERA-KB
comment: Project page: https://noy-sternlicht.github.io/CHIMERA-Web
LLM Social Simulations Are a Promising Research Method ICML 2025
Accurate and verifiable large language model (LLM) simulations of human research subjects promise an accessible data source for understanding human behavior and training new AI systems. However, results to date have been limited, and few social scientists have adopted this method. In this position paper, we argue that the promise of LLM social simulations can be achieved by addressing five tractable challenges. We ground our argument in a review of empirical comparisons between LLMs and human research subjects, commentaries on the topic, and related work. We identify promising directions, including context-rich prompting and fine-tuning with social science datasets. We believe that LLM social simulations can already be used for pilot and exploratory studies, and more widespread use may soon be possible with rapidly advancing LLM capabilities. Researchers should prioritize developing conceptual models and iterative evaluations to make the best use of new AI systems.
comment: Published at ICML 2025
OmniCharacter: Towards Immersive Role-Playing Agents with Seamless Speech-Language Personality Interaction
Role-Playing Agents (RPAs), benefiting from large language models, is an emerging interactive AI system that simulates roles or characters with diverse personalities. However, existing methods primarily focus on mimicking dialogues among roles in textual form, neglecting the role's voice traits (e.g., voice style and emotions) as playing a crucial effect in interaction, which tends to be more immersive experiences in realistic scenarios. Towards this goal, we propose OmniCharacter, a first seamless speech-language personality interaction model to achieve immersive RPAs with low latency. Specifically, OmniCharacter enables agents to consistently exhibit role-specific personality traits and vocal traits throughout the interaction, enabling a mixture of speech and language responses. To align the model with speech-language scenarios, we construct a dataset named OmniCharacter-10K, which involves more distinctive characters (20), richly contextualized multi-round dialogue (10K), and dynamic speech response (135K). Experimental results showcase that our method yields better responses in terms of both content and style compared to existing RPAs and mainstream speech-language models, with a response latency as low as 289ms. Code and dataset are available at https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/OmniCharacter.
comment: 14 pages, 6 figures
The Impossibility of Fair LLMs ACL 2025
The rise of general-purpose artificial intelligence (AI) systems, particularly large language models (LLMs), has raised pressing moral questions about how to reduce bias and ensure fairness at scale. Researchers have documented a sort of "bias" in the significant correlations between demographics (e.g., race, gender) in LLM prompts and responses, but it remains unclear how LLM fairness could be evaluated with more rigorous definitions, such as group fairness or fair representations. We analyze a variety of technical fairness frameworks and find inherent challenges in each that make the development of a fair LLM intractable. We show that each framework either does not logically extend to the general-purpose AI context or is infeasible in practice, primarily due to the large amounts of unstructured training data and the many potential combinations of human populations, use cases, and sensitive attributes. These inherent challenges would persist for general-purpose AI, including LLMs, even if empirical challenges, such as limited participatory input and limited measurement methods, were overcome. Nonetheless, fairness will remain an important type of model evaluation, and there are still promising research directions, particularly the development of standards for the responsibility of LLM developers, context-specific evaluations, and methods of iterative, participatory, and AI-assisted evaluation that could scale fairness across the diverse contexts of modern human-AI interaction.
comment: Published in ACL 2025
Bias in Language Models: Beyond Trick Tests and Toward RUTEd Evaluation ACL 2025
Standard benchmarks of bias and fairness in large language models (LLMs) measure the association between the user attributes stated or implied by a prompt and the LLM's short text response, but human-AI interaction increasingly requires long-form and context-specific system output to solve real-world tasks. In the commonly studied domain of gender-occupation bias, we test whether these benchmarks are robust to lengthening the LLM responses as a measure of Realistic Use and Tangible Effects (i.e., RUTEd evaluations). From the current literature, we adapt three standard bias metrics (neutrality, skew, and stereotype) and develop analogous RUTEd evaluations from three contexts of real-world use: children's bedtime stories, user personas, and English language learning exercises. We find that standard bias metrics have no significant correlation with the more realistic bias metrics. For example, selecting the least biased model based on the standard "trick tests" coincides with selecting the least biased model as measured in more realistic use no more than random chance. We suggest that there is not yet evidence to justify standard benchmarks as reliable proxies of real-world AI biases, and we encourage further development of evaluations grounded in particular contexts.
comment: Published in ACL 2025
Leveraging LLMs for Bangla Grammar Error Correction:Error Categorization, Synthetic Data, and Model Evaluation ACL
Large Language Models (LLMs) perform exceedingly well in Natural Language Understanding (NLU) tasks for many languages including English. However, despite being the fifth most-spoken language globally, Grammatical Error Correction (GEC) in Bangla remains underdeveloped. In this work, we investigate how LLMs can be leveraged for improving Bangla GEC. For that, we first do an extensive categorization of 12 error classes in Bangla, and take a survey of native Bangla speakers to collect real-world errors. We next devise a rule-based noise injection method to create grammatically incorrect sentences corresponding to correct ones. The Vaiyakarana dataset, thus created, consists of 5,67,422 sentences of which 2,27,119 are erroneous. This dataset is then used to instruction-tune LLMs for the task of GEC in Bangla. Evaluations show that instruction-tuning with \name improves GEC performance of LLMs by 3-7 percentage points as compared to the zero-shot setting, and makes them achieve human-like performance in grammatical error identification. Humans, though, remain superior in error correction.
comment: Accepted at ACL Findings, 2025
GoRA: Gradient-driven Adaptive Low Rank Adaptation
Low-Rank Adaptation (LoRA) is a crucial method for efficiently fine-tuning large language models (LLMs), with its effectiveness influenced by two key factors: rank selection and weight initialization. While numerous LoRA variants have been proposed to improve performance by addressing one of these aspects, they often compromise usability or computational efficiency. In this paper, we analyze and identify the core limitations of existing approaches and propose a novel framework -- GoRA (Gradient-driven Adaptive Low Rank Adaptation) -- that simultaneously adapts both the rank and initialization strategy within a unified framework. GoRA leverages gradient information during training to dynamically assign optimal ranks and initialize low-rank adapter weights in an adaptive manner. To our knowledge, GoRA is the first method that not only addresses the limitations of prior approaches -- which often focus on either rank selection or initialization in isolation -- but also unifies both aspects within a single framework, enabling more effective and efficient adaptation. Extensive experiments across various architectures and modalities show that GoRA consistently outperforms existing LoRA-based methods while preserving the efficiency of vanilla LoRA. For example, when fine-tuning Llama3.1-8B-Base for mathematical reasoning, GoRA achieves a 5.13-point improvement over standard LoRA and even outperforms full fine-tuning by 2.05 points under high-rank settings.
Argument Summarization and its Evaluation in the Era of Large Language Models
Large Language Models (LLMs) have revolutionized various Natural Language Generation (NLG) tasks, including Argument Summarization (ArgSum), a key subfield of Argument Mining (AM). This paper investigates the integration of state-of-the-art LLMs into ArgSum, including for its evaluation. In particular, we propose a novel prompt-based evaluation scheme, and validate it through a novel human benchmark dataset. Our work makes three main contributions: (i) the integration of LLMs into existing ArgSum frameworks, (ii) the development of a new LLM-based ArgSum system, benchmarked against prior methods, and (iii) the introduction of an advanced LLM-based evaluation scheme. We demonstrate that the use of LLMs substantially improves both the generation and evaluation of argument summaries, achieving state-of-the-art results and advancing the field of ArgSum. We also show that among the four LLMs integrated in (i) and (ii), Qwen-3-32B, despite having the fewest parameters, performs best, even surpassing GPT-4o, while LLaMA-3.3-70B consistently underperforms.
Optimizing Anytime Reasoning via Budget Relative Policy Optimization
Scaling test-time compute is crucial for enhancing the reasoning capabilities of large language models (LLMs). Existing approaches typically employ reinforcement learning (RL) to maximize a verifiable reward obtained at the end of reasoning traces. However, such methods optimize only the final performance under a large and fixed token budget, which hinders efficiency in both training and deployment. In this work, we present a novel framework, AnytimeReasoner, to optimize anytime reasoning performance, which aims to improve token efficiency and the flexibility of reasoning under varying token budget constraints. To achieve this, we truncate the complete thinking process to fit within sampled token budgets from a prior distribution, compelling the model to summarize the optimal answer for each truncated thinking for verification. This introduces verifiable dense rewards into the reasoning process, facilitating more effective credit assignment in RL optimization. We then optimize the thinking and summary policies in a decoupled manner to maximize the cumulative reward. Additionally, we introduce a novel variance reduction technique, Budget Relative Policy Optimization (BRPO), to enhance the robustness and efficiency of the learning process when reinforcing the thinking policy. Empirical results in mathematical reasoning tasks demonstrate that our method consistently outperforms GRPO across all thinking budgets under various prior distributions, enhancing both training and token efficiency.
GRU: Mitigating the Trade-off between Unlearning and Retention for LLMs
Large language model (LLM) unlearning has demonstrated its essential role in removing privacy and copyright-related responses, crucial for their legal and safe applications. However, the pursuit of complete unlearning often comes with substantial costs due to its compromises in their general functionality, leading to a notorious trade-off between unlearning and retention. It motivates this paper to explore enhanced unlearning schemes that can mitigate this trade-off. Specifically, we propose Gradient Rectified Unlearning (GRU), an improved framework that regulates the directions of gradient updates during the unlearning procedure such that their side impacts on other, unrelated responses can be minimized. GRU is easy and general to implement, demonstrating practical effectiveness across a variety of well-established unlearning benchmarks.
Self-Correction is More than Refinement: A Learning Framework for Visual and Language Reasoning Tasks ACL 2025
While Vision-Language Models (VLMs) have shown remarkable abilities in visual and language reasoning tasks, they invariably generate flawed responses. Self-correction that instructs models to refine their outputs presents a promising solution to this issue. Previous studies have mainly concentrated on Large Language Models (LLMs), while the self-correction abilities of VLMs, particularly concerning both visual and linguistic information, remain largely unexamined. This study investigates the self-correction capabilities of VLMs during both inference and fine-tuning stages. We introduce a Self-Correction Learning (SCL) approach that enables VLMs to learn from their self-generated self-correction data through Direct Preference Optimization (DPO) without relying on external feedback, facilitating self-improvement. Specifically, we collect preferred and disfavored samples based on the correctness of initial and refined responses, which are obtained by two-turn self-correction with VLMs during the inference stage. Experimental results demonstrate that although VLMs struggle to self-correct effectively during iterative inference without additional fine-tuning and external feedback, they can enhance their performance and avoid previous mistakes through preference fine-tuning when their self-generated self-correction data are categorized into preferred and disfavored samples. This study emphasizes that self-correction is not merely a refinement process; rather, it should enhance the reasoning abilities of models through additional training, enabling them to generate high-quality responses directly without further refinement.
comment: Accepted by ACL 2025 Findings
Cramming 1568 Tokens into a Single Vector and Back Again: Exploring the Limits of Embedding Space Capacity ACL 2025
A range of recent works addresses the problem of compression of sequence of tokens into a shorter sequence of real-valued vectors to be used as inputs instead of token embeddings or key-value cache. These approaches are focused on reduction of the amount of compute in existing language models rather than minimization of number of bits needed to store text. Despite relying on powerful models as encoders, the maximum attainable lossless compression ratio is typically not higher than x10. This fact is highly intriguing because, in theory, the maximum information capacity of large real-valued vectors is far beyond the presented rates even for 16-bit precision and a modest vector size. In this work, we explore the limits of compression by replacing the encoder with a per-sample optimization procedure. We show that vectors with compression ratios up to x1500 exist, which highlights two orders of magnitude gap between existing and practically attainable solutions. Furthermore, we empirically show that the compression limits are determined not by the length of the input but by the amount of uncertainty to be reduced, namely, the cross-entropy loss on this sequence without any conditioning. The obtained limits highlight the substantial gap between the theoretical capacity of input embeddings and their practical utilization, suggesting significant room for optimization in model design.
comment: ACL 2025 (main conference)
Position is Power: System Prompts as a Mechanism of Bias in Large Language Models (LLMs)
System prompts in Large Language Models (LLMs) are predefined directives that guide model behaviour, taking precedence over user inputs in text processing and generation. LLM deployers increasingly use them to ensure consistent responses across contexts. While model providers set a foundation of system prompts, deployers and third-party developers can append additional prompts without visibility into others' additions, while this layered implementation remains entirely hidden from end-users. As system prompts become more complex, they can directly or indirectly introduce unaccounted for side effects. This lack of transparency raises fundamental questions about how the position of information in different directives shapes model outputs. As such, this work examines how the placement of information affects model behaviour. To this end, we compare how models process demographic information in system versus user prompts across six commercially available LLMs and 50 demographic groups. Our analysis reveals significant biases, manifesting in differences in user representation and decision-making scenarios. Since these variations stem from inaccessible and opaque system-level configurations, they risk representational, allocative and potential other biases and downstream harms beyond the user's ability to detect or correct. Our findings draw attention to these critical issues, which have the potential to perpetuate harms if left unexamined. Further, we argue that system prompt analysis must be incorporated into AI auditing processes, particularly as customisable system prompts become increasingly prevalent in commercial AI deployments.
comment: Forthcoming in Proceedings of ACM FAccT 2025
Knockout LLM Assessment: Using Large Language Models for Evaluations through Iterative Pairwise Comparisons ACL 2025
Large Language Models (LLMs) have shown to be effective evaluators across various domains such as machine translations or the scientific domain. Current LLM-as-a-Judge approaches rely mostly on individual assessments or a single round of pairwise assessments, preventing the judge LLM from developing a global ranking perspective. To address this, we present Knockout Assessment, an LLM-asa Judge method using a knockout tournament system with iterative pairwise comparisons. Experiments across three LLMs on two datasets show that knockout assessment improves scoring accuracy, increasing Pearson correlation with expert evaluations by 0.07 on average for university-level exam scoring and machine translation evaluations, aligning LLM assessments more closely with human scoring.
comment: Accepted to GEM @ ACL 2025
EvaLearn: Quantifying the Learning Capability and Efficiency of LLMs via Sequential Problem Solving
We introduce EvaLearn, a pioneering benchmark designed to evaluate large language models (LLMs) on their learning capability and efficiency in challenging tasks, a critical, yet underexplored aspect of model potential. EvaLearn contains 648 challenging problems across six task types, grouped into 182 sequences, each sequence dedicated to one task type. Diverging from most existing benchmarks that evaluate models in parallel, EvaLearn requires models to solve problems sequentially, allowing them to leverage the experience gained from previous solutions. EvaLearn provides five comprehensive automated metrics to evaluate models and quantify their learning capability and efficiency. We extensively benchmark nine frontier models and observe varied performance profiles: some models, such as Claude-3.7-sonnet, start with moderate initial performance but exhibit strong learning ability, while some models struggle to benefit from experience and may even show negative transfer. Moreover, we investigate model performance under two learning settings and find that instance-level rubrics and teacher-model feedback further facilitate model learning. Importantly, we observe that current LLMs with stronger static abilities do not show a clear advantage in learning capability across all tasks, highlighting that EvaLearn evaluates a new dimension of model performance. We hope EvaLearn provides a novel evaluation perspective for assessing LLM potential and understanding the gap between models and human capabilities, promoting the development of deeper and more dynamic evaluation approaches. All datasets, the automatic evaluation framework, and the results studied in this paper are available at the GitHub repository.
comment: 47 pages, 24 figures
Toward a Human-Centered Evaluation Framework for Trustworthy LLM-Powered GUI Agents
The rise of Large Language Models (LLMs) has revolutionized Graphical User Interface (GUI) automation through LLM-powered GUI agents, yet their ability to process sensitive data with limited human oversight raises significant privacy and security risks. This position paper identifies three key risks of GUI agents and examines how they differ from traditional GUI automation and general autonomous agents. Despite these risks, existing evaluations focus primarily on performance, leaving privacy and security assessments largely unexplored. We review current evaluation metrics for both GUI and general LLM agents and outline five key challenges in integrating human evaluators for GUI agent assessments. To address these gaps, we advocate for a human-centered evaluation framework that incorporates risk assessments, enhances user awareness through in-context consent, and embeds privacy and security considerations into GUI agent design and evaluation.
Adaptive Jailbreaking Strategies Based on the Semantic Understanding Capabilities of Large Language Models
Adversarial attacks on Large Language Models (LLMs) via jailbreaking techniques-methods that circumvent their built-in safety and ethical constraints-have emerged as a critical challenge in AI security. These attacks compromise the reliability of LLMs by exploiting inherent weaknesses in their comprehension capabilities. This paper investigates the efficacy of jailbreaking strategies that are specifically adapted to the diverse levels of understanding exhibited by different LLMs. We propose the Adaptive Jailbreaking Strategies Based on the Semantic Understanding Capabilities of Large Language Models, a novel framework that classifies LLMs into Type I and Type II categories according to their semantic comprehension abilities. For each category, we design tailored jailbreaking strategies aimed at leveraging their vulnerabilities to facilitate successful attacks. Extensive experiments conducted on multiple LLMs demonstrate that our adaptive strategy markedly improves the success rate of jailbreaking. Notably, our approach achieves an exceptional 98.9% success rate in jailbreaking GPT-4o(29 May 2025 release)
Towards Robust ESG Analysis Against Greenwashing Risks: Aspect-Action Analysis with Cross-Category Generalization ACL 2025
Sustainability reports are key for evaluating companies' environmental, social and governance, ESG performance, but their content is increasingly obscured by greenwashing - sustainability claims that are misleading, exaggerated, and fabricated. Yet, existing NLP approaches for ESG analysis lack robustness against greenwashing risks, often extracting insights that reflect misleading or exaggerated sustainability claims rather than objective ESG performance. To bridge this gap, we introduce A3CG - Aspect-Action Analysis with Cross-Category Generalization, as a novel dataset to improve the robustness of ESG analysis amid the prevalence of greenwashing. By explicitly linking sustainability aspects with their associated actions, A3CG facilitates a more fine-grained and transparent evaluation of sustainability claims, ensuring that insights are grounded in verifiable actions rather than vague or misleading rhetoric. Additionally, A3CG emphasizes cross-category generalization. This ensures robust model performance in aspect-action analysis even when companies change their reports to selectively favor certain sustainability areas. Through experiments on A3CG, we analyze state-of-the-art supervised models and LLMs, uncovering their limitations and outlining key directions for future research.
comment: Proceedings of the Association for Computational Linguistics Main Conference (ACL 2025)
Deriving Strategic Market Insights with Large Language Models: A Benchmark for Forward Counterfactual Generation
Counterfactual reasoning typically involves considering alternatives to actual events. While often applied to understand past events, a distinct form-forward counterfactual reasoning-focuses on anticipating plausible future developments. This type of reasoning is invaluable in dynamic financial markets, where anticipating market developments can powerfully unveil potential risks and opportunities for stakeholders, guiding their decision-making. However, performing this at scale is challenging due to the cognitive demands involved, underscoring the need for automated solutions. Large Language Models (LLMs) offer promise, but remain unexplored for this application. To address this gap, we introduce a novel benchmark, Fin-Force-FINancial FORward Counterfactual Evaluation. By curating financial news headlines and providing structured evaluation, Fin-Force supports LLM based forward counterfactual generation. This paves the way for scalable and automated solutions for exploring and anticipating future market developments, thereby providing structured insights for decision-making. Through experiments on Fin-Force, we evaluate state-of-the-art LLMs and counterfactual generation methods, analyzing their limitations and proposing insights for future research.
In-context Language Learning for Endangered Languages in Speech Recognition
With approximately 7,000 languages spoken worldwide, current large language models (LLMs) support only a small subset. Prior research indicates LLMs can learn new languages for certain tasks without supervised data. We extend this investigation to speech recognition, investigating whether LLMs can learn unseen, low-resource languages through in-context learning (ICL). With experiments on four diverse endangered languages that LLMs have not been trained on, we find that providing more relevant text samples enhances performance in both language modelling and Automatic Speech Recognition (ASR) tasks. Furthermore, we show that the probability-based approach outperforms the traditional instruction-based approach in language learning. Lastly, we show ICL enables LLMs to achieve ASR performance that is comparable to or even surpasses dedicated language models trained specifically for these languages, while preserving the original capabilities of the LLMs.
comment: Interspeech2025
MiMo: Unlocking the Reasoning Potential of Language Model -- From Pretraining to Posttraining
We present MiMo-7B, a large language model born for reasoning tasks, with optimization across both pre-training and post-training stages. During pre-training, we enhance the data preprocessing pipeline and employ a three-stage data mixing strategy to strengthen the base model's reasoning potential. MiMo-7B-Base is pre-trained on 25 trillion tokens, with additional Multi-Token Prediction objective for enhanced performance and accelerated inference speed. During post-training, we curate a dataset of 130K verifiable mathematics and programming problems for reinforcement learning, integrating a test-difficulty-driven code-reward scheme to alleviate sparse-reward issues and employing strategic data resampling to stabilize training. Extensive evaluations show that MiMo-7B-Base possesses exceptional reasoning potential, outperforming even much larger 32B models. The final RL-tuned model, MiMo-7B-RL, achieves superior performance on mathematics, code and general reasoning tasks, surpassing the performance of OpenAI o1-mini. The model checkpoints are available at https://github.com/xiaomimimo/MiMo.
Full-Parameter Continual Pretraining of Gemma2: Insights into Fluency and Domain Knowledge
In this technical report, we empirically investigate the relationship between linguistic fluency and domain knowledge in the context of continual learning with large language models (LLMs). Specifically, we enhance the linguistic fluency of the Gemma2 LLM for the Lithuanian language by autoregressively pretraining its full parameter set on the first 10\% of the Lithuanian language component of the CulturaX dataset. To prevent catastrophic forgetting of the model's existing domain knowledge, we apply Elastic Weight Consolidation (EWC), leveraging Fisher information estimated using data from the Massive Multitask Language Understanding (MMLU) benchmark. In the post-training evaluations, we assess linguistic fluency through perplexity and evaluate domain knowledge using accuracy on a suite of language understanding benchmarks, including ARC-Easy, Belebele, GSM8K, HellaSwag, MMLU, TruthfulQA, and Winogrande, in both English and Lithuanian. The empirical results demonstrate that EWC not only mitigates catastrophic forgetting by preserving the model's performance in terms of both linguistic fluency and domain knowledge but also improves or maintains these capabilities for the newly added Lithuanian language. These findings highlight the potential for more efficient adaptation of general-purpose LLMs to under-represented languages without requiring access to the original training data. The accompanying codebase is openly accessible at https://github.com/Neurotechnology/LLM_EWC.
comment: 9 pages, 3 figures, 1 table
NTPP: Generative Speech Language Modeling for Dual-Channel Spoken Dialogue via Next-Token-Pair Prediction ICML 2025
Inspired by the impressive capabilities of GPT-4o, there is growing interest in enabling speech language models (SLMs) to engage in natural, fluid spoken interactions with humans. Recent advancements have led to the development of several SLMs that demonstrate promising results in this area. However, current approaches have yet to fully exploit dual-channel speech data, which inherently captures the structure and dynamics of human conversation. In this work, we systematically explore the use of dual-channel speech data in the context of modern large language models, and introduce a novel generative modeling paradigm, Next-Token-Pair Prediction (NTPP), to enable speaker-independent dual-channel spoken dialogue learning using decoder-only architectures for the first time. We evaluate our approach on standard benchmarks, and empirical results show that our proposed method, NTPP, significantly improves the conversational abilities of SLMs in terms of turn-taking prediction, response coherence, and naturalness. Moreover, compared to existing methods, NTPP achieves substantially lower inference latency, highlighting its practical efficiency for real-time applications.
comment: Accepted by ICML 2025
NorEval: A Norwegian Language Understanding and Generation Evaluation Benchmark ACL 2025
This paper introduces NorEval, a new and comprehensive evaluation suite for large-scale standardized benchmarking of Norwegian generative language models (LMs). NorEval consists of 24 high-quality human-created datasets -- of which five are created from scratch. In contrast to existing benchmarks for Norwegian, NorEval covers a broad spectrum of task categories targeting Norwegian language understanding and generation, establishes human baselines, and focuses on both of the official written standards of the Norwegian language: Bokm{\aa}l and Nynorsk. All our datasets and a collection of over 100 human-written prompts are integrated into LM Evaluation Harness, ensuring flexible and reproducible evaluation. We describe the NorEval design and present the results of benchmarking 19 open-source pre-trained and instruction-tuned LMs for Norwegian in various scenarios. Our benchmark, evaluation framework, and annotation materials are publicly available.
comment: Accepted for Findings of the Association for Computational Linguistics: ACL 2025
Evaluation of LLMs in Speech is Often Flawed: Test Set Contamination in Large Language Models for Speech Recognition
Recent work suggests that large language models (LLMs) can improve performance of speech tasks compared to existing systems. To support their claims, results on LibriSpeech and Common Voice are often quoted. However, this work finds that a substantial amount of the LibriSpeech and Common Voice evaluation sets appear in public LLM pretraining corpora. This calls into question the reliability of findings drawn from these two datasets. To measure contamination impact, LLMs trained with/without contamination are compared. A contaminated LLM is more likely to generate test sentences it has seen during training. Then, speech recognisers based on LLMs are compared. They show only subtle error rate differences if the LLM is contaminated, but assign significantly higher probabilities to transcriptions seen during LLM training. Results show that LLM outputs can be biased by tiny amounts of data contamination, highlighting the importance of evaluating LLM-based speech systems with held-out data.
MuLan: Adapting Multilingual Diffusion Models for Hundreds of Languages with Negligible Cost
In this work, we explore a cost-effective framework for multilingual image generation. We find that, unlike models tuned on high-quality images with multilingual annotations, leveraging text encoders pre-trained on widely available, noisy Internet image-text pairs significantly enhances data efficiency in text-to-image (T2I) generation across multiple languages.Based on this insight, we introduce MuLan, Multi-Language adapter, a lightweight language adapter with fewer than 20M parameters, trained alongside a frozen text encoder and image diffusion model. Compared to previous multilingual T2I models, this framework offers: (1) Cost efficiency. Using readily accessible English data and off-the-shelf multilingual text encoders minimizes the training cost; (2) High performance. Achieving comparable generation capabilities in over 110 languages with CLIP similarity scores nearly matching those in English (39.57 for English vs. 39.61 for other languages); and (3) Broad applicability. Seamlessly integrating with compatible community tools like LoRA, LCM, ControlNet, and IP-Adapter, expanding its potential use cases.
When Claims Evolve: Evaluating and Enhancing the Robustness of Embedding Models Against Misinformation Edits ACL 2025
Online misinformation remains a critical challenge, and fact-checkers increasingly rely on claim matching systems that use sentence embedding models to retrieve relevant fact-checks. However, as users interact with claims online, they often introduce edits, and it remains unclear whether current embedding models used in retrieval are robust to such edits. To investigate this, we introduce a perturbation framework that generates valid and natural claim variations, enabling us to assess the robustness of a wide-range of sentence embedding models in a multi-stage retrieval pipeline and evaluate the effectiveness of various mitigation approaches. Our evaluation reveals that standard embedding models exhibit notable performance drops on edited claims, while LLM-distilled embedding models offer improved robustness at a higher computational cost. Although a strong reranker helps to reduce the performance drop, it cannot fully compensate for first-stage retrieval gaps. To address these retrieval gaps, we evaluate train- and inference-time mitigation approaches, demonstrating that they can improve in-domain robustness by up to 17 percentage points and boost out-of-domain generalization by 10 percentage points. Overall, our findings provide practical improvements to claim-matching systems, enabling more reliable fact-checking of evolving misinformation. Code and data are available at https://github.com/JabezNzomo99/claim-matching-robustness.
comment: Accepted to ACL 2025 Findings
Evaluating Morphological Compositional Generalization in Large Language Models NAACL 2025
Large language models (LLMs) have demonstrated significant progress in various natural language generation and understanding tasks. However, their linguistic generalization capabilities remain questionable, raising doubts about whether these models learn language similarly to humans. While humans exhibit compositional generalization and linguistic creativity in language use, the extent to which LLMs replicate these abilities, particularly in morphology, is under-explored. In this work, we systematically investigate the morphological generalization abilities of LLMs through the lens of compositionality. We define morphemes as compositional primitives and design a novel suite of generative and discriminative tasks to assess morphological productivity and systematicity. Focusing on agglutinative languages such as Turkish and Finnish, we evaluate several state-of-the-art instruction-finetuned multilingual models, including GPT-4 and Gemini. Our analysis shows that LLMs struggle with morphological compositional generalization particularly when applied to novel word roots, with performance declining sharply as morphological complexity increases. While models can identify individual morphological combinations better than chance, their performance lacks systematicity, leading to significant accuracy gaps compared to humans.
comment: Accepted to NAACL 2025
Rethinking Text-based Protein Understanding: Retrieval or LLM?
In recent years, protein-text models have gained significant attention for their potential in protein generation and understanding. Current approaches focus on integrating protein-related knowledge into large language models through continued pretraining and multi-modal alignment, enabling simultaneous comprehension of textual descriptions and protein sequences. Through a thorough analysis of existing model architectures and text-based protein understanding benchmarks, we identify significant data leakage issues present in current benchmarks. Moreover, conventional metrics derived from natural language processing fail to accurately assess the model's performance in this domain. To address these limitations, we reorganize existing datasets and introduce a novel evaluation framework based on biological entities. Motivated by our observation, we propose a retrieval-enhanced method, which significantly outperforms fine-tuned LLMs for protein-to-text generation and shows accuracy and efficiency in training-free scenarios. Our code and data can be seen at https://github.com/IDEA-XL/RAPM.
FlowCut: Rethinking Redundancy via Information Flow for Efficient Vision-Language Models
Large vision-language models (LVLMs) excel at multimodal understanding but suffer from high computational costs due to redundant vision tokens. Existing pruning methods typically rely on single-layer attention scores to rank and prune redundant visual tokens to solve this inefficiency. However, as the interaction between tokens and layers is complicated, this raises a basic question: Is such a simple single-layer criterion sufficient to identify redundancy? To answer this question, we rethink the emergence of redundant visual tokens from a fundamental perspective: information flow, which models the interaction between tokens and layers by capturing how information moves between tokens across layers. We find (1) the CLS token acts as an information relay, which can simplify the complicated flow analysis; (2) the redundancy emerges progressively and dynamically via layer-wise attention concentration; and (3) relying solely on attention scores from single layers can lead to contradictory redundancy identification. Based on this, we propose FlowCut, an information-flow-aware pruning framework, mitigating the insufficiency of the current criterion for identifying redundant tokens and better aligning with the model's inherent behaviors. Extensive experiments show that FlowCut achieves superior results, outperforming SoTA by 1.6% on LLaVA-1.5-7B with 88.9% token reduction, and by 4.3% on LLaVA-NeXT-7B with 94.4% reduction, delivering 3.2x speed-up in the prefilling stage. Our code is available at https://github.com/TungChintao/FlowCut
comment: 19 pages, 11 figures
Fewer Hallucinations, More Verification: A Three-Stage LLM-Based Framework for ASR Error Correction
Automatic Speech Recognition (ASR) error correction aims to correct recognition errors while preserving accurate text. Although traditional approaches demonstrate moderate effectiveness, LLMs offer a paradigm that eliminates the need for training and labeled data. However, directly using LLMs will encounter hallucinations problem, which may lead to the modification of the correct text. To address this problem, we propose the Reliable LLM Correction Framework (RLLM-CF), which consists of three stages: (1) error pre-detection, (2) chain-of-thought sub-tasks iterative correction, and (3) reasoning process verification. The advantage of our method is that it does not require additional information or fine-tuning of the model, and ensures the correctness of the LLM correction under multi-pass programming. Experiments on AISHELL-1, AISHELL-2, and Librispeech show that the GPT-4o model enhanced by our framework achieves 21%, 11%, 9%, and 11.4% relative reductions in CER/WER.
Distilling the Implicit Multi-Branch Structure in LLMs' Reasoning via Reinforcement Learning
Distilling reasoning paths from teacher to student models via supervised fine-tuning (SFT) provides a shortcut for improving the reasoning ability of smaller Large Language Models (LLMs). However, the reasoning paths generated by teacher models often reflect only surface-level traces of their underlying authentic reasoning. Insights from cognitive neuroscience suggest that authentic reasoning involves a complex interweaving between meta-reasoning (which selects appropriate sub-problems from multiple candidates) and solving (which addresses the sub-problem). This implies authentic reasoning has an implicit multi-branch structure. Supervised fine-tuning collapses this rich structure into a flat sequence of token prediction in the teacher's reasoning path, preventing effective distillation of this structure to students. To address this limitation, we propose RLKD, a reinforcement learning (RL)-based distillation framework guided by a novel Generative Structure Reward Model (GSRM). Our GSRM converts reasoning paths into multiple meta-reasoning-solving steps and computes rewards to measure structural alignment between student and teacher reasoning. RLKD combines this reward with RL, enabling student LLMs to internalize the teacher's implicit multi-branch reasoning structure rather than merely mimicking fixed output paths. Experiments show RLKD surpasses standard SFT-RL pipelines even when trained on 0.1% of data under an RL-only regime, unlocking greater student reasoning potential than SFT-based distillation.
comment: 15 pages
Firm or Fickle? Evaluating Large Language Models Consistency in Sequential Interactions
Large Language Models (LLMs) have shown remarkable capabilities across various tasks, but their deployment in high-stake domains requires consistent and coherent behavior across multiple rounds of user interaction. This paper introduces a comprehensive framework for evaluating and improving LLM response consistency, making three key contributions. Code and data are available at: https://github.com/yubol-bobo/MT-Consistency. First, we introduce Position-Weighted Consistency (PWC), a metric designed to capture both the importance of early-stage stability and recovery patterns in multi-turn interactions. Second, we present MT-Consistency, a carefully curated benchmark dataset spanning diverse domains and difficulty levels, specifically designed to evaluate LLM consistency under various challenging follow-up scenarios. Third, we introduce Confidence-Aware Response Generation (CARG), a framework that significantly improves response stability by explicitly integrating internal model confidence scores during the generation process. Experimental results demonstrate that CARG significantly improves response stability without sacrificing accuracy, offering a practical path toward more dependable LLM behavior in critical, real-world deployments.
comment: 8 pages, 5 figures
Focus On This, Not That! Steering LLMs with Adaptive Feature Specification
Despite the success of Instruction Tuning (IT) in training large language models (LLMs), such models often leverage spurious or biased features learnt from their training data and can become misaligned, leading to undesired behaviours. While existing techniques can steer model behaviour at inference-time, they are often post-hoc and do not embed steering as an intrinsic model feature. In this work, we introduce Focus Instruction Tuning (FIT), which trains LLMs to condition their responses by focusing on specific features whilst ignoring others, leading to different behaviours based on what features are specified. Across diverse benchmarks, we demonstrate that FIT: (i) successfully steers behaviour at inference time; (ii) increases robustness by amplifying core task signals and down-weighting spurious cues; (iii) mitigates social bias by suppressing demographic attributes; and (iv) generalises under distribution shifts and to previously unseen focus features. FIT therefore offers a lightweight, intrinsic mechanism for building more robust, fair, and easily controllable LLMs.
comment: 36pages, 19 figures
The Role of Diversity in In-Context Learning for Large Language Models
In-context learning (ICL) is a crucial capability of current large language models (LLMs), where the selection of examples plays a key role in performance. While most existing approaches focus on selecting the most similar examples to the query, the impact of diversity in example selection remains underexplored. We systematically investigate the role of diversity in in-context example selection through experiments across a range of tasks, from sentiment classification to more challenging math and code problems. Experiments on Llama-3.1, Gemma-2, and Mistral-v0.3 families of models show that diversity-aware selection methods improve performance, particularly on complex tasks like math and code, and enhance robustness to out-of-distribution queries. To support these findings, we introduce a theoretical framework that explains the benefits of incorporating diversity in in-context example selection.
comment: 30 pages
Scaling Trends in Language Model Robustness ICML
Increasing model size has unlocked a dazzling array of capabilities in modern language models. At the same time, even frontier models remain vulnerable to jailbreaks and prompt injections, despite concerted efforts to make them robust. As both attack and defense gain access to more compute, and as models become larger, what happens to robustness? We argue that to answer this question requires a \emph{scaling} approach, which we employ in an extensive study of language model robustness across several classification tasks, model families, and adversarial attacks. We find that in the absence of explicit safety training, larger models are not consistently more robust; however, scale improves sample efficiency in adversarial training, though it worsens compute efficiency. Further, we find that increasing attack compute smoothly improves attack success rate against both undefended and adversarially trained models. Finally, after exploring robustness transfer across attacks and threat models, we combine attack and defense scaling rates to study the offense-defense balance. We find that while attack scaling outpaces adversarial training across all models studied, larger adversarially trained models might give defense the advantage in the long run. These results underscore the utility of the scaling lens, and provide a paradigm for evaluating future attacks and defenses on frontier models.
comment: 59 pages; updated to ICML version
FastDraft: How to Train Your Draft ACL 2025
Speculative Decoding has gained popularity as an effective technique for accelerating the auto-regressive inference process of Large Language Models. However, Speculative Decoding entirely relies on the availability of efficient draft models, which are often lacking for many existing language models due to a stringent constraint of vocabulary compatibility. In this work we introduce FastDraft, a novel and efficient approach for pre-training and aligning a draft model to any large language model by incorporating efficient pre-training, followed by fine-tuning over synthetic datasets generated by the target model. We demonstrate FastDraft by training two highly parameter efficient drafts for the popular Phi-3-mini and Llama-3.1-8B models. Using FastDraft, we were able to produce a draft model with approximately 10 billion tokens on a single server with 8 Intel$^\circledR$ Gaudi$^\circledR$ 2 accelerators in under 24 hours. Our results show that the draft model achieves impressive results in key metrics of acceptance rate, block efficiency and up to 3x memory bound speed up when evaluated on code completion and up to 2x in summarization, text completion and instruction tasks. We validate our theoretical findings through benchmarking on the latest Intel$^\circledR$ Core$^{\tiny \text{TM}}$ Ultra, achieving a wall-clock time speedup of up to 2x, indicating a significant reduction in runtime. Due to its high quality, FastDraft unlocks large language models inference on AI-PC and other edge-devices.
comment: Accepted at ACL 2025
The Vector Grounding Problem
The remarkable performance of large language models (LLMs) on complex linguistic tasks has sparked debate about their capabilities. Unlike humans, these models learn language solely from textual data without directly interacting with the world. Yet they generate seemingly meaningful text on diverse topics. This achievement has renewed interest in the classical `Symbol Grounding Problem' -- the question of whether the internal representations and outputs of symbolic AI systems can possess intrinsic meaning that is not parasitic on external interpretation. Although modern LLMs compute over vectors rather than symbols, an analogous problem arises for these systems, which we call the Vector Grounding Problem. This paper has two main goals. First, we distinguish five main notions of grounding that are often conflated in the literature, and argue that only one of them, which we call referential grounding, is relevant to the Vector Grounding Problem. Second, drawing on philosophical theories of representational content, we provide two arguments for the claim that LLMs and related systems can achieve referential grounding: (1) through preference fine-tuning methods that explicitly establish world-involving functions, and (2) through pre-training alone, which in limited domains may select for internal states with world-involving content, as mechanistic interpretability research suggests. Through these pathways, LLMs can establish connections to the world sufficient for intrinsic meaning. One potentially surprising implication of our discussion is that that multimodality and embodiment are neither necessary nor sufficient to overcome the Grounding Problem.
EmbodiedBench: Comprehensive Benchmarking Multi-modal Large Language Models for Vision-Driven Embodied Agents ICML 2025
Leveraging Multi-modal Large Language Models (MLLMs) to create embodied agents offers a promising avenue for tackling real-world tasks. While language-centric embodied agents have garnered substantial attention, MLLM-based embodied agents remain underexplored due to the lack of comprehensive evaluation frameworks. To bridge this gap, we introduce EmbodiedBench, an extensive benchmark designed to evaluate vision-driven embodied agents. EmbodiedBench features: (1) a diverse set of 1,128 testing tasks across four environments, ranging from high-level semantic tasks (e.g., household) to low-level tasks involving atomic actions (e.g., navigation and manipulation); and (2) six meticulously curated subsets evaluating essential agent capabilities like commonsense reasoning, complex instruction understanding, spatial awareness, visual perception, and long-term planning. Through extensive experiments, we evaluated 24 leading proprietary and open-source MLLMs within EmbodiedBench. Our findings reveal that: MLLMs excel at high-level tasks but struggle with low-level manipulation, with the best model, GPT-4o, scoring only 28.9\% on average. EmbodiedBench provides a multifaceted standardized evaluation platform that not only highlights existing challenges but also offers valuable insights to advance MLLM-based embodied agents. Our code and dataset are available at https://embodiedbench.github.io.
comment: Accepted to ICML 2025
Mind the Confidence Gap: Overconfidence, Calibration, and Distractor Effects in Large Language Models
Large Language Models (LLMs) show remarkable proficiency in natural language tasks, yet their frequent overconfidence-misalignment between predicted confidence and true correctness-poses significant risks in critical decision-making applications. We present a comprehensive analysis on calibration in LLMs across nine LLMs and three factual Question-Answering (QA) datasets, systematically comparing standard free-generation settings against structured distractor-augmented prompts. Our evaluation reveals that explicitly incorporating distractors can substantially mitigate miscalibration, achieving relative accuracy improvements up to 460% and ECE reductions up to 90%. Despite general trends, we uncover nuanced findings: large RLHF-tuned models display inherent calibration strengths but can paradoxically suffer increased miscalibration on easier queries, whereas smaller models benefit disproportionately from distractor prompts but remain significantly miscalibrated. Through detailed analyses across question types, we identify persistent calibration failures, particularly in person-based queries. We conclude with concrete recommendations-targeted fine-tuning, structured prompting, and strategic model choice-to ensure reliable, trustworthy LLM deployments.
Magic Mushroom: A Customizable Benchmark for Fine-grained Analysis of Retrieval Noise Erosion in RAG Systems
Retrieval-Augmented Generation (RAG) systems enhance Large Language Models (LLMs) by incorporating external retrieved information, mitigating issues such as hallucination and outdated knowledge. However, RAG systems are highly sensitive to retrieval noise prevalent in real-world scenarios. Existing benchmarks fail to emulate the complex and heterogeneous noise distributions encountered in real-world retrieval environments, undermining reliable robustness assessment. In this paper, we define four categories of retrieval noise based on linguistic properties and noise characteristics, aiming to reflect the heterogeneity of noise in real-world scenarios. Building on this, we introduce Magic Mushroom, a benchmark for replicating "magic mushroom" noise: contexts that appear relevant on the surface but covertly mislead RAG systems. Magic Mushroom comprises 7,468 single-hop and 3,925 multi-hop question-answer pairs. More importantly, Magic Mushroom enables researchers to flexibly configure combinations of retrieval noise according to specific research objectives or application scenarios, allowing for highly controlled evaluation setups. We evaluate LLM generators of varying parameter scales and classic RAG denoising strategies under diverse noise distributions to investigate their performance dynamics during progressive noise encroachment. Our analysis reveals that both generators and denoising strategies have significant room for improvement and exhibit extreme sensitivity to noise distributions. Magic Mushroom emerges as a promising tool for evaluating and advancing noise-robust RAG systems, accelerating their widespread deployment in real-world applications. The Magic Mushroom benchmark is available at https://drive.google.com/file/d/1aP5kyPuk4L-L_uoI6T9UhxuTyt8oMqjT/view?usp=sharing.
Should I Trust You? Detecting Deception in Negotiations using Counterfactual RL ACL
An increasingly common socio-technical problem is people being taken in by offers that sound ``too good to be true'', where persuasion and trust shape decision-making. This paper investigates how \abr{ai} can help detect these deceptive scenarios. We analyze how humans strategically deceive each other in \textit{Diplomacy}, a board game that requires both natural language communication and strategic reasoning. This requires extracting logical forms of proposed agreements in player communications and computing the relative rewards of the proposal using agents' value functions. Combined with text-based features, this can improve our deception detection. Our method detects human deception with a high precision when compared to a Large Language Model approach that flags many true messages as deceptive. Future human-\abr{ai} interaction tools can build on our methods for deception detection by triggering \textit{friction} to give users a chance of interrogating suspicious proposals.
comment: ACL Findings 2025
Propaganda and Information Dissemination in the Russo-Ukrainian War: Natural Language Processing of Russian and Western Twitter Narratives
The conflict in Ukraine has been not only characterised by military engagement but also by a significant information war, with social media platforms like X, formerly known as Twitter playing an important role in shaping public perception. This article provides an analysis of tweets from propaganda accounts and trusted accounts collected from the onset of the war, February 2022 until the middle of May 2022 with n=40,000 total tweets. We utilise natural language processing and machine learning algorithms to assess the sentiment and identify key themes, topics and narratives across the dataset with human-in-the-loop (HITL) analysis throughout. Our findings indicate distinct strategies in how information is created, spread, and targeted at different audiences by both sides. Propaganda accounts frequently employ emotionally charged language and disinformation to evoke fear and distrust, whereas other accounts, primarily Western tend to focus on factual reporting and humanitarian aspects of the conflict. Clustering analysis reveals groups of accounts with similar behaviours, which we suspect indicates the presence of coordinated efforts. This research attempts to contribute to our understanding of the dynamics of information warfare and offers techniques for future studies on social media influence in military conflicts.
comment: 7 pages; 6 figures
An Efficient Task-Oriented Dialogue Policy: Evolutionary Reinforcement Learning Injected by Elite Individuals ACL 2025
Deep Reinforcement Learning (DRL) is widely used in task-oriented dialogue systems to optimize dialogue policy, but it struggles to balance exploration and exploitation due to the high dimensionality of state and action spaces. This challenge often results in local optima or poor convergence. Evolutionary Algorithms (EAs) have been proven to effectively explore the solution space of neural networks by maintaining population diversity. Inspired by this, we innovatively combine the global search capabilities of EA with the local optimization of DRL to achieve a balance between exploration and exploitation. Nevertheless, the inherent flexibility of natural language in dialogue tasks complicates this direct integration, leading to prolonged evolutionary times. Thus, we further propose an elite individual injection mechanism to enhance EA's search efficiency by adaptively introducing best-performing individuals into the population. Experiments across four datasets show that our approach significantly improves the balance between exploration and exploitation, boosting performance. Moreover, the effectiveness of the EII mechanism in reducing exploration time has been demonstrated, achieving an efficient integration of EA and DRL on task-oriented dialogue policy tasks.
comment: Accepted to ACL 2025 (Main Track)
Inducing lexicons of in-group language with socio-temporal context ACL 2025
In-group language is an important signifier of group dynamics. This paper proposes a novel method for inducing lexicons of in-group language, which incorporates its socio-temporal context. Existing methods for lexicon induction do not capture the evolving nature of in-group language, nor the social structure of the community. Using dynamic word and user embeddings trained on conversations from online anti-women communities, our approach outperforms prior methods for lexicon induction. We develop a test set for the task of lexicon induction and a new lexicon of manosphere language, validated by human experts, which quantifies the relevance of each term to a specific sub-community at a given point in time. Finally, we present novel insights on in-group language which illustrate the utility of this approach.
comment: Accepted to ACL 2025
From Intention To Implementation: Automating Biomedical Research via LLMs SC
Conventional biomedical research is increasingly labor-intensive due to the exponential growth of scientific literature and datasets. Artificial intelligence (AI), particularly Large Language Models (LLMs), has the potential to revolutionize this process by automating various steps. Still, significant challenges remain, including the need for multidisciplinary expertise, logicality of experimental design, and performance measurements. This paper introduces BioResearcher, the first end-to-end automated system designed to streamline the entire biomedical research process involving dry lab experiments. BioResearcher employs a modular multi-agent architecture, integrating specialized agents for search, literature processing, experimental design, and programming. By decomposing complex tasks into logically related sub-tasks and utilizing a hierarchical learning approach, BioResearcher effectively addresses the challenges of multidisciplinary requirements and logical complexity. Furthermore, BioResearcher incorporates an LLM-based reviewer for in-process quality control and introduces novel evaluation metrics to assess the quality and automation of experimental protocols. BioResearcher successfully achieves an average execution success rate of 63.07% across eight previously unmet research objectives. The generated protocols, on average, outperform typical agent systems by 22.0% on five quality metrics. The system demonstrates significant potential to reduce researchers' workloads and accelerate biomedical discoveries, paving the way for future innovations in automated research systems.
comment: To appear in SCIENCE CHINA Information Sciences. If you find our work useful, please cite us as: @article{ BioResearcher, author = "Yi Luo and Linghang Shi and Yihao Li and Aobo Zhuang and Yeyun Gong and Ling Liu and Chen Lin", title = "From Intention To Implementation: Automating Biomedical Research via LLMs", journal = "SCIENCE CHINA Information Sciences", year = "2025" }
Not All Options Are Created Equal: Textual Option Weighting for Token-Efficient LLM-Based Knowledge Tracing
Large Language Models (LLMs) have recently emerged as promising tools for knowledge tracing (KT) due to their strong reasoning and generalization abilities. While recent LLM-based KT methods have proposed new prompt formats, they struggle to represent the full interaction histories of example learners within a single prompt during in-context learning (ICL), resulting in limited scalability and high computational cost under token constraints. In this work, we present \textit{LLM-based Option-weighted Knowledge Tracing (LOKT)}, a simple yet effective framework that encodes the interaction histories of example learners in context as \textit{textual categorical option weights (TCOW)}. TCOW are semantic labels (e.g., ``inadequate'') assigned to the options selected by learners when answering questions, enhancing the interpretability of LLMs. Experiments on multiple-choice datasets show that LOKT outperforms existing non-LLM and LLM-based KT models in both cold-start and warm-start settings. Moreover, LOKT enables scalable and cost-efficient inference, achieving strong performance even under strict token constraints. Our code is available at \href{https://anonymous.4open.science/r/LOKT_model-3233}{https://anonymous.4open.science/r/LOKT\_model-3233}.
comment: 11 pages
Rectified Sparse Attention
Efficient long-sequence generation is a critical challenge for Large Language Models. While recent sparse decoding methods improve efficiency, they suffer from KV cache misalignment, where approximation errors accumulate and degrade generation quality. In this work, we propose Rectified Sparse Attention (ReSA), a simple yet effective method that combines block-sparse attention with periodic dense rectification. By refreshing the KV cache at fixed intervals using a dense forward pass, ReSA bounds error accumulation and preserves alignment with the pretraining distribution. Experiments across math reasoning, language modeling, and retrieval tasks demonstrate that ReSA achieves near-lossless generation quality with significantly improved efficiency. Notably, ReSA delivers up to 2.42$\times$ end-to-end speedup under decoding at 256K sequence length, making it a practical solution for scalable long-context inference. Code is available at https://aka.ms/ReSA-LM.
MoDoMoDo: Multi-Domain Data Mixtures for Multimodal LLM Reinforcement Learning
Reinforcement Learning with Verifiable Rewards (RLVR) has recently emerged as a powerful paradigm for post-training large language models (LLMs), achieving state-of-the-art performance on tasks with structured, verifiable answers. Applying RLVR to Multimodal LLMs (MLLMs) presents significant opportunities but is complicated by the broader, heterogeneous nature of vision-language tasks that demand nuanced visual, logical, and spatial capabilities. As such, training MLLMs using RLVR on multiple datasets could be beneficial but creates challenges with conflicting objectives from interaction among diverse datasets, highlighting the need for optimal dataset mixture strategies to improve generalization and reasoning. We introduce a systematic post-training framework for Multimodal LLM RLVR, featuring a rigorous data mixture problem formulation and benchmark implementation. Specifically, (1) We developed a multimodal RLVR framework for multi-dataset post-training by curating a dataset that contains different verifiable vision-language problems and enabling multi-domain online RL learning with different verifiable rewards; (2) We proposed a data mixture strategy that learns to predict the RL fine-tuning outcome from the data mixture distribution, and consequently optimizes the best mixture. Comprehensive experiments showcase that multi-domain RLVR training, when combined with mixture prediction strategies, can significantly boost MLLM general reasoning capacities. Our best mixture improves the post-trained model's accuracy on out-of-distribution benchmarks by an average of 5.24% compared to the same model post-trained with uniform data mixture, and by a total of 20.74% compared to the pre-finetuning baseline.
comment: Project Webpage: https://modomodo-rl.github.io/
Locally Typical Sampling ACL 2022
Today's probabilistic language generators fall short when it comes to producing coherent and fluent text despite the fact that the underlying models perform well under standard metrics, e.g., perplexity. This discrepancy has puzzled the language generation community for the last few years. In this work, we posit that the abstraction of natural language generation as a discrete stochastic process--which allows for an information-theoretic analysis--can provide new insights into the behavior of probabilistic language generators, e.g., why high-probability texts can be dull or repetitive. Humans use language as a means of communicating information, aiming to do so in a simultaneously efficient and error-minimizing manner; in fact, psycholinguistics research suggests humans choose each word in a string with this subconscious goal in mind. We formally define the set of strings that meet this criterion: those for which each word has an information content close to the expected information content, i.e., the conditional entropy of our model. We then propose a simple and efficient procedure for enforcing this criterion when generating from probabilistic models, which we call locally typical sampling. Automatic and human evaluations show that, in comparison to nucleus and top-k sampling, locally typical sampling offers competitive performance (in both abstractive summarization and story generation) in terms of quality while consistently reducing degenerate repetitions.
comment: TACL 2022
Fundamental Limits of Prompt Tuning Transformers: Universality, Capacity and Efficiency ICLR 2025
We investigate the statistical and computational limits of prompt tuning for transformer-based foundation models. Our key contributions are prompt tuning on \emph{single-head} transformers with only a \emph{single} self-attention layer: (i) is universal, and (ii) supports efficient (even almost-linear time) algorithms under the Strong Exponential Time Hypothesis (SETH). Statistically, we prove that prompt tuning on such simplest possible transformers are universal approximators for sequence-to-sequence Lipschitz functions. In addition, we provide an exponential-in-$dL$ and -in-$(1/\epsilon)$ lower bound on the required soft-prompt tokens for prompt tuning to memorize any dataset with 1-layer, 1-head transformers. Computationally, we identify a phase transition in the efficiency of prompt tuning, determined by the norm of the \emph{soft-prompt-induced} keys and queries, and provide an upper bound criterion. Beyond this criterion, no sub-quadratic (efficient) algorithm for prompt tuning exists under SETH. Within this criterion, we showcase our theory by proving the existence of almost-linear time prompt tuning inference algorithms. These fundamental limits provide important necessary conditions for designing expressive and efficient prompt tuning methods for practitioners.
comment: Accepted at ICLR 2025. v2 matches the camera-ready version
Reasoning Towards Fairness: Mitigating Bias in Language Models through Reasoning-Guided Fine-Tuning
Recent advances in large-scale generative language models have shown that reasoning capabilities can significantly improve model performance across a variety of tasks. However, the impact of reasoning on a model's ability to mitigate stereotypical responses remains largely underexplored. In this work, we investigate the crucial relationship between a model's reasoning ability and fairness, and ask whether improved reasoning capabilities can mitigate harmful stereotypical responses, especially those arising due to shallow or flawed reasoning. We conduct a comprehensive evaluation of multiple open-source LLMs, and find that larger models with stronger reasoning abilities exhibit substantially lower stereotypical bias on existing fairness benchmarks. Building on this insight, we introduce ReGiFT -- Reasoning Guided Fine-Tuning, a novel approach that extracts structured reasoning traces from advanced reasoning models and infuses them into models that lack such capabilities. We use only general-purpose reasoning and do not require any fairness-specific supervision for bias mitigation. Notably, we see that models fine-tuned using ReGiFT not only improve fairness relative to their non-reasoning counterparts but also outperform advanced reasoning models on fairness benchmarks. We also analyze how variations in the correctness of the reasoning traces and their length influence model fairness and their overall performance. Our findings highlight that enhancing reasoning capabilities is an effective, fairness-agnostic strategy for mitigating stereotypical bias caused by reasoning flaws.
comment: 17 pages
Adversarial Tokenization ACL 2025
Current LLM pipelines account for only one possible tokenization for a given string, ignoring exponentially many alternative tokenizations during training and inference. For example, the standard Llama3 tokenization of penguin is [p,enguin], yet [peng,uin] is another perfectly valid alternative. In this paper, we show that despite LLMs being trained solely on one tokenization, they still retain semantic understanding of other tokenizations, raising questions about their implications in LLM safety. Put succinctly, we answer the following question: can we adversarially tokenize an obviously malicious string to evade safety and alignment restrictions? We show that not only is adversarial tokenization an effective yet previously neglected axis of attack, but it is also competitive against existing state-of-the-art adversarial approaches without changing the text of the harmful request. We empirically validate this exploit across three state-of-the-art LLMs and adversarial datasets, revealing a previously unknown vulnerability in subword models.
comment: Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics, ACL 2025
Prompting is Not All You Need! Evaluating LLM Agent Simulation Methodologies with Real-World Online Customer Behavior Data
Recent research shows that LLMs can simulate ``believable'' human behaviors to power LLM agents via prompt-only methods. In this work, we focus on evaluating LLM's objective ``accuracy'' rather than the subjective ``believability'' in simulating human behavior, leveraging a large-scale, real-world dataset collected from customers' online shopping actions. We present the first comprehensive evaluation of state-of-the-art LLMs (e.g., DeepSeek-R1, Llama, and Claude) on the task of web shopping action generation. Our results show that out-of-the-box LLM-generated actions are often misaligned with actual human behavior, whereas fine-tuning LLMs on real-world behavioral data substantially improves their ability to generate accurate actions compared to prompt-only methods. Furthermore, incorporating synthesized reasonings into model training leads to additional performance gains, demonstrating the value of explicit rationale in behavior modeling. This work evaluates state-of-the-art LLMs in behavior simulation and provides actionable insights into how real-world action data can enhance the fidelity of LLM agents.
Human-Computer Interaction
Teaming in the AI Era: AI-Augmented Frameworks for Forming, Simulating, and Optimizing Human Teams
Effective teamwork is essential across diverse domains. During the team formation stage, a key challenge is forming teams that effectively balance user preferences with task objectives to enhance overall team satisfaction. In the team performing stage, maintaining cohesion and engagement is critical for sustaining high team performance. However, existing computational tools and algorithms for team optimization often rely on static data inputs, narrow algorithmic objectives, or solutions tailored for specific contexts, failing to account for the dynamic interplay of team members personalities, evolving goals, and changing individual preferences. Therefore, teams may encounter member dissatisfaction, as purely algorithmic assignments can reduce members commitment to team goals or experience suboptimal engagement due to the absence of timely, personalized guidance to help members adjust their behaviors and interactions as team dynamics evolve. Ultimately, these challenges can lead to reduced overall team performance. My Ph.D. dissertation aims to develop AI-augmented team optimization frameworks and practical systems that enhance team satisfaction, engagement, and performance. First, I propose a team formation framework that leverages a multi-armed bandit algorithm to iteratively refine team composition based on user preferences, ensuring alignment between individual needs and collective team goals to enhance team satisfaction. Second, I introduce tAIfa (Team AI Feedback Assistant), an AI-powered system that utilizes large language models (LLMs) to deliver immediate, personalized feedback to both teams and individual members, enhancing cohesion and engagement. Finally, I present PuppeteerLLM, an LLM-based simulation framework that simulates multi-agent teams to model complex team dynamics within realistic environments, incorporating task-driven collaboration and long-term coordination.
comment: 5 pages, UMAP 25, June 16_19, 2025, New York City, NY, USA
Towards Effective Multidisciplinary Health and HCI Teams based on AI Framework
As a Ph.D. student with a diverse background in both public and private sectors, I have encountered numerous challenges in cross-disciplinary and multi-stakeholder team projects. My research on developing team compositions that involve multidisciplinary members from fields including education, academia, and health. Along with my advisor, we are focused on exploring how HCI can help individuals assemble more effective teams. This effort involves developing socio-technical systems that guide and inform individuals of the potential teams that they can assemble. We employ state-of-the-art algorithms that prioritize inclusion among team members from diverse areas of expertise and familiarity between the team members. Our goal for attending this workshop is to engage in meaningful dialogues with scholars and researchers, leveraging these interactions to refine our approach to building an AI-driven team composition system to foster effective, interdisciplinary collaboration in health-focused HCI research.
comment: 4 pages, 1 figure, Presented at CHI24, Workshop on Conducting Research at the Intersection of HCI and Health Building and Supporting Teams with Diverse Expertise to Increase Public Health Impact, May 11 to 16, 2024, Honolulu, HI, USA
PulseRide: A Robotic Wheelchair for Personalized Exertion Control with Human-in-the-Loop Reinforcement Learning
Maintaining an active lifestyle is vital for quality of life, yet challenging for wheelchair users. For instance, powered wheelchairs face increasing risks of obesity and deconditioning due to inactivity. Conversely, manual wheelchair users, who propel the wheelchair by pushing the wheelchair's handrims, often face upper extremity injuries from repetitive motions. These challenges underscore the need for a mobility system that promotes activity while minimizing injury risk. Maintaining optimal exertion during wheelchair use enhances health benefits and engagement, yet the variations in individual physiological responses complicate exertion optimization. To address this, we introduce PulseRide, a novel wheelchair system that provides personalized assistance based on each user's physiological responses, helping them maintain their physical exertion goals. Unlike conventional assistive systems focused on obstacle avoidance and navigation, PulseRide integrates real-time physiological data-such as heart rate and ECG-with wheelchair speed to deliver adaptive assistance. Using a human-in-the-loop reinforcement learning approach with Deep Q-Network algorithm (DQN), the system adjusts push assistance to keep users within a moderate activity range without under- or over-exertion. We conducted preliminary tests with 10 users on various terrains, including carpet and slate, to assess PulseRide's effectiveness. Our findings show that, for individual users, PulseRide maintains heart rates within the moderate activity zone as much as 71.7 percent longer than manual wheelchairs. Among all users, we observed an average reduction in muscle contractions of 41.86 percent, delaying fatigue onset and enhancing overall comfort and engagement. These results indicate that PulseRide offers a healthier, adaptive mobility solution, bridging the gap between passive and physically taxing mobility options.
Artificial Intelligence Should Genuinely Support Clinical Reasoning and Decision Making To Bridge the Translational Gap
Artificial intelligence promises to revolutionise medicine, yet its impact remains limited because of the pervasive translational gap. We posit that the prevailing technology-centric approaches underpin this challenge, rendering such systems fundamentally incompatible with clinical practice, specifically diagnostic reasoning and decision making. Instead, we propose a novel sociotechnical conceptualisation of data-driven support tools designed to complement doctors' cognitive and epistemic activities. Crucially, it prioritises real-world impact over superhuman performance on inconsequential benchmarks.
From Screen to Space: Evaluating Siemens' Cinematic Reality
As one of the first research teams with full access to Siemens' Cinematic Reality, we evaluate its usability and clinical potential for cinematic volume rendering on the Apple Vision Pro. We visualized venous-phase liver computed tomography and magnetic resonance cholangiopancreatography scans from the CHAOS and MRCP\_DLRecon datasets. Fourteen medical experts assessed usability and anticipated clinical integration potential using the System Usability Scale, ISONORM 9242-110-S questionnaire, and an open-ended survey. Their feedback identified feasibility, key usability strengths, and required features to catalyze the adaptation in real-world clinical workflows. The findings provide insights into the potential of immersive cinematic rendering in medical imaging.
comment: 16 pages
LLMs for sensory-motor control: Combining in-context and iterative learning
We propose a method that enables large language models (LLMs) to control embodied agents by directly mapping continuous observation vectors to continuous action vectors. Initially, the LLMs generate a control strategy based on a textual description of the agent, its environment, and the intended goal. This strategy is then iteratively refined through a learning process in which the LLMs are repeatedly prompted to improve the current strategy, using performance feedback and sensory-motor data collected during its evaluation. The method is validated on classic control tasks from the Gymnasium library and the inverted pendulum task from the MuJoCo library. In most cases, it successfully identifies optimal or high-performing solutions by integrating symbolic knowledge derived through reasoning with sub-symbolic sensory-motor data gathered as the agent interacts with its environment.
comment: 24 pages (13 pages are from appendix), 6 figures, code for experiments replication and supplementary material provided at https://github.com/jtyska/llm-robotics-article/
Adapting Online Customer Reviews for Blind Users: A Case Study of Restaurant Reviews
Online reviews have become an integral aspect of consumer decision-making on e-commerce websites, especially in the restaurant industry. Unlike sighted users who can visually skim through the reviews, perusing reviews remains challenging for blind users, who rely on screen reader assistive technology that supports predominantly one-dimensional narration of content via keyboard shortcuts. In an interview study, we uncovered numerous pain points of blind screen reader users with online restaurant reviews, notably, the listening fatigue and frustration after going through only the first few reviews. To address these issues, we developed QuickQue assistive tool that performs aspect-focused sentiment-driven summarization to reorganize the information in the reviews into an alternative, thematically-organized presentation that is conveniently perusable with a screen reader. At its core, QuickQue utilizes a large language model to perform aspect-based joint classification for grouping reviews, followed by focused summarizations within the groups to generate concise representations of reviewers' opinions, which are then presented to the screen reader users via an accessible interface. Evaluation of QuickQue in a user study with 10 participants showed significant improvements in overall usability and task workload compared to the status quo screen reader.
Beyond the Desktop: XR-Driven Segmentation with Meta Quest 3 and MX Ink
Medical imaging segmentation is essential in clinical settings for diagnosing diseases, planning surgeries, and other procedures. However, manual annotation is a cumbersome and effortful task. To mitigate these aspects, this study implements and evaluates the usability and clinical applicability of an extended reality (XR)-based segmentation tool for anatomical CT scans, using the Meta Quest 3 headset and Logitech MX Ink stylus. We develop an immersive interface enabling real-time interaction with 2D and 3D medical imaging data in a customizable workspace designed to mitigate workflow fragmentation and cognitive demands inherent to conventional manual segmentation tools. The platform combines stylus-driven annotation, mirroring traditional pen-on-paper workflows, with instant 3D volumetric rendering. A user study with a public craniofacial CT dataset demonstrated the tool's foundational viability, achieving a System Usability Scale (SUS) score of 66, within the expected range for medical applications. Participants highlighted the system's intuitive controls (scoring 4.1/5 for self-descriptiveness on ISONORM metrics) and spatial interaction design, with qualitative feedback highlighting strengths in hybrid 2D/3D navigation and realistic stylus ergonomics. While users identified opportunities to enhance task-specific precision and error management, the platform's core workflow enabled dynamic slice adjustment, reducing cognitive load compared to desktop tools. Results position the XR-stylus paradigm as a promising foundation for immersive segmentation tools, with iterative refinements targeting haptic feedback calibration and workflow personalization to advance adoption in preoperative planning.
comment: 10 pages
Improving AI-generated music with user-guided training
AI music generation has advanced rapidly, with models like diffusion and autoregressive algorithms enabling high-fidelity outputs. These tools can alter styles, mix instruments, or isolate them. Since sound can be visualized as spectrograms, image-generation algorithms can be applied to generate novel music. However, these algorithms are typically trained on fixed datasets, which makes it challenging for them to interpret and respond to user input accurately. This is especially problematic because music is highly subjective and requires a level of personalization that image generation does not provide. In this work, we propose a human-computation approach to gradually improve the performance of these algorithms based on user interactions. The human-computation element involves aggregating and selecting user ratings to use as the loss function for fine-tuning the model. We employ a genetic algorithm that incorporates user feedback to enhance the baseline performance of a model initially trained on a fixed dataset. The effectiveness of this approach is measured by the average increase in user ratings with each iteration. In the pilot test, the first iteration showed an average rating increase of 0.2 compared to the baseline. The second iteration further improved upon this, achieving an additional increase of 0.39 over the first iteration.
comment: Select for presentation in HHAI 2025
Neuronal avalanches as a predictive biomarker of BCI performance: towards a tool to guide tailored training program
Brain-Computer Interfaces (BCIs) based on motor imagery (MI) hold promise for restoring control in individuals with motor impairments. However, up to 30% of users remain unable to effectively use BCIs-a phenomenon termed ''BCI inefficiency.'' This study addresses a major limitation in current BCI training protocols: the use of fixed-length training paradigms that ignore individual learning variability. We propose a novel approach that leverages neuronal avalanches-spatiotemporal cascades of brain activity-as biomarkers to characterize and predict user-specific learning mechanism. Using electroencephalography (EEG) data collected across four MI-BCI training sessions in 20 healthy participants, we extracted two features: avalanche length and activations. These features revealed significant training and taskcondition effects, particularly in later sessions. Crucially, changes in these features across sessions ($\Delta$avalanche length and $\Delta$activations) correlated significantly with BCI performance and enabled prediction of future BCI success via longitudinal Support Vector Regression and Classification models. Predictive accuracy reached up to 91%, with notable improvements after spatial filtering based on selected regions of interest. These findings demonstrate the utility of neuronal avalanche dynamics as robust biomarkers for BCI training, supporting the development of personalized protocols aimed at mitigating BCI illiteracy.
Multi-Tool Analysis of User Interface & Accessibility in Deployed Web-Based Chatbots
In this work, we present a multi-tool evaluation of 106 deployed web-based chatbots, across domains like healthcare, education and customer service, comprising both standalone applications and embedded widgets using automated tools (Google Lighthouse, PageSpeed Insights, SiteImprove Accessibility Checker) and manual audits (Microsoft Accessibility Insights). Our analysis reveals that over 80% of chatbots exhibit at least one critical accessibility issue, and 45% suffer from missing semantic structures or ARIA role misuse. Furthermore, we found that accessibility scores correlate strongly across tools (e.g., Lighthouse vs PageSpeed Insights, r = 0.861), but performance scores do not (r = 0.436), underscoring the value of a multi-tool approach. We offer a replicable evaluation insights and actionable recommendations to support the development of user-friendly conversational interfaces.
comment: 9 pages, 6 figures. Submitted to ACM Conversational User Interfaces (CUI) 2025
Seamless and Efficient Interactions within a Mixed-Dimensional Information Space
Mediated by today's visual displays, information space allows users to discover, access and interact with a wide range of digital and physical information. The information presented in this space may be digital, physical or a blend of both, and appear across different dimensions - such as texts, images, 3D content and physical objects embedded within real-world environment. Navigating within the information space often involves interacting with mixed-dimensional entities, visually represented in both 2D and 3D. At times, interactions also involve transitioning among entities represented in different dimensions. We introduce the concept of mixed-dimensional information space, encompassing entities represented in both 2D and 3D. Interactions within the mixed-dimensional information space should be seamless and efficient: users should be able to focus on their primary tasks without being distracted by interactions with or transitions between entities. While incorporating 3D representations into the mixed-dimensional information space offers intuitive and immersive ways to interact with complex information, it is important to address potential seams and inefficiencies that arise while interacting with both 2D and 3D entities. This dissertation introduces new interactive techniques and systems to realize seamless and efficient interactions within the mixed-dimensional information space. This dissertation introduces three interactive systems: MemoVis which aims to use emergent generative AI to help users create reference images for 3D design feedback; PaperToPlace which demonstrates how paper-based instruction documents can be transformed and spatialized into a context-aware MR experience; and VRContour which explores how contour delineation workflow can be brought into VR.
comment: PhD Dissertation from University of California San Diego; 134 pages
User Altruism in Recommendation Systems
Users of social media platforms based on recommendation systems (RecSys) (e.g. TikTok, X, YouTube) strategically interact with platform content to influence future recommendations. On some such platforms, users have been documented to form large-scale grassroots movements encouraging others to purposefully interact with algorithmically suppressed content in order to "boost" its recommendation; we term this behavior user altruism. To capture this behavior, we study a game between users and a RecSys, where users provide the RecSys (potentially manipulated) preferences over the contents available to them, and the RecSys -- limited by data and computation constraints -- creates a low-rank approximation preference matrix, and ultimately provides each user her (approximately) most-preferred item. We compare the users' social welfare under truthful preference reporting and under a class of strategies capturing user altruism. In our theoretical analysis, we provide sufficient conditions to ensure strict increases in user social welfare under user altruism, and provide an algorithm to find an effective altruistic strategy. Interestingly, we show that for commonly assumed recommender utility functions, effectively altruistic strategies also improve the utility of the RecSys! We show that our results are robust to several model misspecifications, thus strengthening our conclusions. Our theoretical analysis is complemented by empirical results of effective altruistic strategies on the GoodReads dataset, and an online survey on how real-world users behave altruistically in RecSys. Overall, our findings serve as a proof-of-concept of the reasons why traditional RecSys may incentivize users to form collectives and/or follow altruistic strategies when interacting with them.
OPeRA: A Dataset of Observation, Persona, Rationale, and Action for Evaluating LLMs on Human Online Shopping Behavior Simulation
Can large language models (LLMs) accurately simulate the next web action of a specific user? While LLMs have shown promising capabilities in generating ``believable'' human behaviors, evaluating their ability to mimic real user behaviors remains an open challenge, largely due to the lack of high-quality, publicly available datasets that capture both the observable actions and the internal reasoning of an actual human user. To address this gap, we introduce OPERA, a novel dataset of Observation, Persona, Rationale, and Action collected from real human participants during online shopping sessions. OPERA is the first public dataset that comprehensively captures: user personas, browser observations, fine-grained web actions, and self-reported just-in-time rationales. We developed both an online questionnaire and a custom browser plugin to gather this dataset with high fidelity. Using OPERA, we establish the first benchmark to evaluate how well current LLMs can predict a specific user's next action and rationale with a given persona and history. This dataset lays the groundwork for future research into LLM agents that aim to act as personalized digital twins for human.
Scenarios in Computing Research: A Systematic Review of the Use of Scenario Methods for Exploring the Future of Computing Technologies in Society
Scenario building is an established method to anticipate the future of emerging technologies. Its primary goal is to use narratives to map future trajectories of technology development and sociotechnical adoption. Following this process, risks and benefits can be identified early on, and strategies can be developed that strive for desirable futures. In recent years, computer science has adopted this method and applied it to various technologies, including Artificial Intelligence (AI). Because computing technologies play such an important role in shaping modern societies, it is worth exploring how scenarios are being used as an anticipatory tool in the field -- and what possible traditional uses of scenarios are not yet covered but have the potential to enrich the field. We address this gap by conducting a systematic literature review on the use of scenario building methods in computer science over the last decade (n = 59). We guide the review along two main questions. First, we aim to uncover how scenarios are used in computing literature, focusing especially on the rationale for why scenarios are used. Second, in following the potential of scenario building to enhance inclusivity in research, we dive deeper into the participatory element of the existing scenario building literature in computer science.
comment: 10 pages, 3 figures. Currently under review
When Models Know More Than They Can Explain: Quantifying Knowledge Transfer in Human-AI Collaboration
Recent advancements in AI reasoning have driven substantial improvements across diverse tasks. A critical open question is whether these improvements also yields better knowledge transfer: the ability of models to communicate reasoning in ways humans can understand, apply, and learn from. To investigate this, we introduce Knowledge Integration and Transfer Evaluation (KITE), a conceptual and experimental framework for Human-AI knowledge transfer capabilities and conduct the first large-scale human study (N=118) explicitly designed to measure it. In our two-phase setup, humans first ideate with an AI on problem-solving strategies, then independently implement solutions, isolating model explanations' influence on human understanding. Our findings reveal that although model benchmark performance correlates with collaborative outcomes, this relationship is notably inconsistent, featuring significant outliers, indicating that knowledge transfer requires dedicated optimization. Our analysis identifies behavioral and strategic factors mediating successful knowledge transfer. We release our code, dataset, and evaluation framework to support future work on communicatively aligned models.
comment: For code, data, visualizer, visit: https:kite-live.vercel.app
Personalized Interpretability -- Interactive Alignment of Prototypical Parts Networks
Concept-based interpretable neural networks have gained significant attention due to their intuitive and easy-to-understand explanations based on case-based reasoning, such as "this bird looks like those sparrows". However, a major limitation is that these explanations may not always be comprehensible to users due to concept inconsistency, where multiple visual features are inappropriately mixed (e.g., a bird's head and wings treated as a single concept). This inconsistency breaks the alignment between model reasoning and human understanding. Furthermore, users have specific preferences for how concepts should look, yet current approaches provide no mechanism for incorporating their feedback. To address these issues, we introduce YoursProtoP, a novel interactive strategy that enables the personalization of prototypical parts - the visual concepts used by the model - according to user needs. By incorporating user supervision, YoursProtoP adapts and splits concepts used for both prediction and explanation to better match the user's preferences and understanding. Through experiments on both the synthetic FunnyBirds dataset and a real-world scenario using the CUB, CARS, and PETS datasets in a comprehensive user study, we demonstrate the effectiveness of YoursProtoP in achieving concept consistency without compromising the accuracy of the model.
comment: 20 pages, 11 figures
Understanding Community-Level Blocklists in Decentralized Social Media
Community-level blocklists are key to content moderation practices in decentralized social media. These blocklists enable moderators to prevent other communities, such as those acting in bad faith, from interacting with their own -- and, if shared publicly, warn others about communities worth blocking. Prior work has examined blocklists in centralized social media, noting their potential for collective moderation outcomes, but has focused on blocklists as individual-level tools. To understand how moderators perceive and utilize community-level blocklists and what additional support they may need, we examine social media communities running Mastodon, an open-source microblogging software built on the ActivityPub protocol. We conducted (1) content analysis of the community-level blocklist ecosystem, and (2) semi-structured interviews with twelve Mastodon moderators. Our content analysis revealed wide variation in blocklist goals, inclusion criteria, and transparency. Interviews showed moderators balance proactive safety, reactive practices, and caution around false positives when using blocklists for moderation. They noted challenges and limitations in current blocklist use, suggesting design improvements like comment receipts, category filters, and collaborative voting. We discuss implications for decentralized content moderation, highlighting trade-offs between openness, safety, and nuance; the complexity of moderator roles; and opportunities for future design.
Sentiment Analysis in Learning Management Systems Understanding Student Feedback at Scale
During the wake of the Covid-19 pandemic, the educational paradigm has experienced a major change from in person learning traditional to online platforms. The change of learning convention has impacted the teacher-student especially in non-verbal communication. The absent of non-verbal communication has led to a reliance on verbal feedback which diminished the efficacy of the educational experience. This paper explores the integration of sentiment analysis into learning management systems (LMS) to bridge the student-teacher's gap by offering an alternative approach to interpreting student feedback beyond its verbal context. The research involves data preparation, feature selection, and the development of a deep neural network model encompassing word embedding, LSTM, and attention mechanisms. This model is compared against a logistic regression baseline to evaluate its efficacy in understanding student feedback. The study aims to bridge the communication gap between instructors and students in online learning environments, offering insights into the emotional context of student feedback and ultimately improving the quality of online education.
comment: 10 pages, 10 figures
MAC-Gaze: Motion-Aware Continual Calibration for Mobile Gaze Tracking
Mobile gaze tracking faces a fundamental challenge: maintaining accuracy as users naturally change their postures and device orientations. Traditional calibration approaches, like one-off, fail to adapt to these dynamic conditions, leading to degraded performance over time. We present MAC-Gaze, a Motion-Aware continual Calibration approach that leverages smartphone Inertial measurement unit (IMU) sensors and continual learning techniques to automatically detect changes in user motion states and update the gaze tracking model accordingly. Our system integrates a pre-trained visual gaze estimator and an IMU-based activity recognition model with a clustering-based hybrid decision-making mechanism that triggers recalibration when motion patterns deviate significantly from previously encountered states. To enable accumulative learning of new motion conditions while mitigating catastrophic forgetting, we employ replay-based continual learning, allowing the model to maintain performance across previously encountered motion conditions. We evaluate our system through extensive experiments on the publicly available RGBDGaze dataset and our own 10-hour multimodal MotionGaze dataset (481K+ images, 800K+ IMU readings), encompassing a wide range of postures under various motion conditions including sitting, standing, lying, and walking. Results demonstrate that our method reduces gaze estimation error by 19.9% on RGBDGaze (from 1.73 cm to 1.41 cm) and by 31.7% on MotionGaze (from 2.81 cm to 1.92 cm) compared to traditional calibration approaches. Our framework provides a robust solution for maintaining gaze estimation accuracy in mobile scenarios.
comment: 24 pages, 7 figures
Understanding and Mitigating Network Latency Effect on Teleoperated-Robot with Extended Reality
Robot teleoperation with extended reality (XR teleoperation) enables intuitive interaction by allowing remote robots to mimic user motions with real-time 3D feedback. However, existing systems face significant motion-to-motion (M2M) latency--the delay between the user's latest motion and the corresponding robot feedback--leading to high teleoperation error and mission completion time. This issue stems from the system's exclusive reliance on network communication, making it highly vulnerable to network degradation. To address these challenges, we introduce TeleXR, the first end-to-end, fully open-sourced XR teleoperation framework that decouples robot control and XR visualization from network dependencies. TeleXR leverages local sensing data to reconstruct delayed or missing information of the counterpart, thereby significantly reducing network-induced issues. This approach allows both the XR and robot to run concurrently with network transmission while maintaining high robot planning accuracy. TeleXR also features contention-aware scheduling to mitigate GPU contention and bandwidth-adaptive point cloud scaling to cope with limited bandwidth.
comment: This documents is a 5 pages technical report version. Removed watermark from acm for copyright purpose
Biased AI can Influence Political Decision-Making
As modern large language models (LLMs) become integral to everyday tasks, concerns about their inherent biases and their potential impact on human decision-making have emerged. While bias in models are well-documented, less is known about how these biases influence human decisions. This paper presents two interactive experiments investigating the effects of partisan bias in LLMs on political opinions and decision-making. Participants interacted freely with either a biased liberal, biased conservative, or unbiased control model while completing these tasks. We found that participants exposed to partisan biased models were significantly more likely to adopt opinions and make decisions which matched the LLM's bias. Even more surprising, this influence was seen when the model bias and personal political partisanship of the participant were opposite. However, we also discovered that prior knowledge of AI was weakly correlated with a reduction of the impact of the bias, highlighting the possible importance of AI education for robust mitigation of bias effects. Our findings not only highlight the critical effects of interacting with biased LLMs and its ability to impact public discourse and political conduct, but also highlights potential techniques for mitigating these risks in the future.
LLM Social Simulations Are a Promising Research Method ICML 2025
Accurate and verifiable large language model (LLM) simulations of human research subjects promise an accessible data source for understanding human behavior and training new AI systems. However, results to date have been limited, and few social scientists have adopted this method. In this position paper, we argue that the promise of LLM social simulations can be achieved by addressing five tractable challenges. We ground our argument in a review of empirical comparisons between LLMs and human research subjects, commentaries on the topic, and related work. We identify promising directions, including context-rich prompting and fine-tuning with social science datasets. We believe that LLM social simulations can already be used for pilot and exploratory studies, and more widespread use may soon be possible with rapidly advancing LLM capabilities. Researchers should prioritize developing conceptual models and iterative evaluations to make the best use of new AI systems.
comment: Published at ICML 2025
The Impossibility of Fair LLMs ACL 2025
The rise of general-purpose artificial intelligence (AI) systems, particularly large language models (LLMs), has raised pressing moral questions about how to reduce bias and ensure fairness at scale. Researchers have documented a sort of "bias" in the significant correlations between demographics (e.g., race, gender) in LLM prompts and responses, but it remains unclear how LLM fairness could be evaluated with more rigorous definitions, such as group fairness or fair representations. We analyze a variety of technical fairness frameworks and find inherent challenges in each that make the development of a fair LLM intractable. We show that each framework either does not logically extend to the general-purpose AI context or is infeasible in practice, primarily due to the large amounts of unstructured training data and the many potential combinations of human populations, use cases, and sensitive attributes. These inherent challenges would persist for general-purpose AI, including LLMs, even if empirical challenges, such as limited participatory input and limited measurement methods, were overcome. Nonetheless, fairness will remain an important type of model evaluation, and there are still promising research directions, particularly the development of standards for the responsibility of LLM developers, context-specific evaluations, and methods of iterative, participatory, and AI-assisted evaluation that could scale fairness across the diverse contexts of modern human-AI interaction.
comment: Published in ACL 2025
Toward a Human-Centered Evaluation Framework for Trustworthy LLM-Powered GUI Agents
The rise of Large Language Models (LLMs) has revolutionized Graphical User Interface (GUI) automation through LLM-powered GUI agents, yet their ability to process sensitive data with limited human oversight raises significant privacy and security risks. This position paper identifies three key risks of GUI agents and examines how they differ from traditional GUI automation and general autonomous agents. Despite these risks, existing evaluations focus primarily on performance, leaving privacy and security assessments largely unexplored. We review current evaluation metrics for both GUI and general LLM agents and outline five key challenges in integrating human evaluators for GUI agent assessments. To address these gaps, we advocate for a human-centered evaluation framework that incorporates risk assessments, enhances user awareness through in-context consent, and embeds privacy and security considerations into GUI agent design and evaluation.
Biased by Design: Leveraging Inherent AI Biases to Enhance Critical Thinking of News Readers
This paper explores the design of a propaganda detection tool using Large Language Models (LLMs). Acknowledging the inherent biases in AI models, especially in political contexts, we investigate how these biases might be leveraged to enhance critical thinking in news consumption. Countering the typical view of AI biases as detrimental, our research proposes strategies of user choice and personalization in response to a user's political stance, applying psychological concepts of confirmation bias and cognitive dissonance. We present findings from a qualitative user study, offering insights and design recommendations (bias awareness, personalization and choice, and gradual introduction of diverse perspectives) for AI tools in propaganda detection.
comment: European Conference on Information Systems (ECIS)
Assessing AI Explainability: A Usability Study Using a Novel Framework Involving Clinicians
An AI design framework was developed based on three core principles, namely understandability, trust, and usability. The framework was conceptualized by synthesizing evidence from the literature and by consulting with experts. The initial version of the AI Explainability Framework was validated based on an in-depth expert engagement and review process. For evaluation purposes, an AI-anchored prototype, incorporating novel explainability features, was built and deployed online. The primary function of the prototype was to predict the postpartum depression risk using analytics models. The development of the prototype was carried out in an iterative fashion, based on a pilot-level formative evaluation, followed by refinements and summative evaluation. The System Explainability Scale (SES) metric was developed to measure the influence of the three dimensions of the AI Explainability Framework. For the summative stage, a comprehensive usability test was conducted involving 20 clinicians, and the SES metric was used to assess clinicians` satisfaction with the tool. On a 5-point rating system, the tool received high scores for the usability dimension, followed by trust and understandability. The average explainability score was 4.56. In terms of understandability, trust, and usability, the average score was 4.51, 4.53 and 4.71 respectively. Overall, the 13-item SES metric showed strong internal consistency with Cronbach`s alpha of 0.84 and a positive correlation coefficient (Spearman`s rho = 0.81, p<0.001) between the composite SES score and explainability. A major finding was that the framework, combined with the SES usability metric, provides a straightforward approach for developing AI-based healthcare tools that lower the challenges associated with explainability.
comment: 10 pages, 4 figures, Accepted to the 13th IEEE International Conference on Healthcare Informatics (IEEE ICHI 2025)
From User Surveys to Telemetry-Driven AI Agents: Exploring the Potential of Personalized Productivity Solutions
Information workers increasingly struggle with productivity challenges in modern workplaces, facing difficulties in managing time and effectively utilizing workplace analytics data for behavioral improvement. Despite the availability of productivity metrics through enterprise tools, workers often fail to translate this data into actionable insights. We present a comprehensive, user-centric approach to address these challenges through AI-based productivity agents tailored to users' needs. Utilizing a two-phase method, we first conducted a survey with 363 participants, exploring various aspects of productivity, communication style, agent approach, personality traits, personalization, and privacy. Drawing on the survey insights, we developed a GPT-4 powered personalized productivity agent that utilizes telemetry data gathered via Viva Insights from information workers to provide tailored assistance. We compared its performance with alternative productivity-assistive tools, such as dashboard and narrative, in a study involving 40 participants. Our findings highlight the importance of user-centric design, adaptability, and the balance between personalization and privacy in AI-assisted productivity tools. By building on these insights, our work provides important guidance for developing more effective productivity solutions, ultimately leading to optimized efficiency and user experiences for information workers.
comment: Updated to reflect the accepted paper version
A Survey of Passive Sensing for Workplace Wellbeing and Productivity
The modern workplace is undergoing a radical transformation, driven by technological advances that blur the boundaries between human capability and digital augmentation. At the forefront of this evolution is passive sensing technology - a suite of tools that quietly monitor and interpret human behavior without active user engagement. This paper examines how these technologies are reshaping our understanding of workplace dynamics, with a particular focus on employee wellbeing and productivity. Through a comprehensive review of recent research, we explore both the transformative potential and inherent challenges of passive sensing in professional environments. Our analysis reveals emerging patterns in how these technologies can support worker health and performance, while also highlighting critical gaps in current research and opportunities for future innovation. We conclude by outlining a roadmap for integrating passive sensing into future workplaces in ways that enhance human potential while preserving dignity and autonomy.
comment: Updated to reflect peer-reviewed, print version
SignBot: Learning Human-to-Humanoid Sign Language Interaction
Sign language is a natural and visual form of language that uses movements and expressions to convey meaning, serving as a crucial means of communication for individuals who are deaf or hard-of-hearing (DHH). However, the number of people proficient in sign language remains limited, highlighting the need for technological advancements to bridge communication gaps and foster interactions with minorities. Based on recent advancements in embodied humanoid robots, we propose SignBot, a novel framework for human-robot sign language interaction. SignBot integrates a cerebellum-inspired motion control component and a cerebral-oriented module for comprehension and interaction. Specifically, SignBot consists of: 1) Motion Retargeting, which converts human sign language datasets into robot-compatible kinematics; 2) Motion Control, which leverages a learning-based paradigm to develop a robust humanoid control policy for tracking sign language gestures; and 3) Generative Interaction, which incorporates translator, responser, and generator of sign language, thereby enabling natural and effective communication between robots and humans. Simulation and real-world experimental results demonstrate that SignBot can effectively facilitate human-robot interaction and perform sign language motions with diverse robots and datasets. SignBot represents a significant advancement in automatic sign language interaction on embodied humanoid robot platforms, providing a promising solution to improve communication accessibility for the DHH community.
A Reliable Framework for Human-in-the-Loop Anomaly Detection in Time Series
Time series anomaly detection is a critical machine learning task for numerous applications, such as finance, healthcare, and industrial systems. However, even high-performing models may exhibit potential issues such as biases, leading to unreliable outcomes and misplaced confidence. While model explanation techniques, particularly visual explanations, offer valuable insights by elucidating model attributions of their decision, many limitations still exist -- They are primarily instance-based and not scalable across the dataset, and they provide one-directional information from the model to the human side, lacking a mechanism for users to address detected issues. To fulfill these gaps, we introduce HILAD, a novel framework designed to foster a dynamic and bidirectional collaboration between humans and AI for enhancing anomaly detection models in time series. Through our visual interface, HILAD empowers domain experts to detect, interpret, and correct unexpected model behaviors at scale. Our evaluation through user studies with two models and three time series datasets demonstrates the effectiveness of HILAD, which fosters a deeper model understanding, immediate corrective actions, and model reliability enhancement.
comment: The manuscript is currently under review
"Feeling that I was Collaborating with Them:" A 20-year Systematic Literature Review of Social Virtual Reality Leveraging Collaboration
As more people meet, interact, and socialize online, Social Virtual Reality (VR) emerges as a promising technology that can bridge the gap between traditional face-to-face and online communication. Compared to traditional screen-based applications, Social VR provides immersive, spatial, and three-dimensional social interactions, making it a promising tool for enhancing collaborations. To map the existing research in this domain, we conducted a 20-year systematic literature review to characterize how Social VR has been employed for collaboration. After screening 2,035 articles, we identified 62 articles that addressed how Social VR has supported collaboration among remote users. Our findings show that Social VR can enhance team collaboration on three key levels: enhancing individual perceptions and experiences within their groups, fostering team dynamics with virtual elements that enable realistic interactions, and employing affordances unique in VR that augment users' spaces. Future research should explore how Social VR can support long-term collaboration, foster trust, enable more diverse and inclusive participation, and move beyond replicating physical-world interactions by leveraging the unique affordances of immersive environments. This review highlights the current practices, challenges, and future research opportunities within CSCW, offering insights for theorizing the impact of Social VR on team collaboration and for designing new applications that effectively support remote collaborations.
Computer Vision and Pattern Recognition
LayerFlow: A Unified Model for Layer-aware Video Generation
We present LayerFlow, a unified solution for layer-aware video generation. Given per-layer prompts, LayerFlow generates videos for the transparent foreground, clean background, and blended scene. It also supports versatile variants like decomposing a blended video or generating the background for the given foreground and vice versa. Starting from a text-to-video diffusion transformer, we organize the videos for different layers as sub-clips, and leverage layer embeddings to distinguish each clip and the corresponding layer-wise prompts. In this way, we seamlessly support the aforementioned variants in one unified framework. For the lack of high-quality layer-wise training videos, we design a multi-stage training strategy to accommodate static images with high-quality layer annotations. Specifically, we first train the model with low-quality video data. Then, we tune a motion LoRA to make the model compatible with static frames. Afterward, we train the content LoRA on the mixture of image data with high-quality layered images along with copy-pasted video data. During inference, we remove the motion LoRA thus generating smooth videos with desired layers.
comment: Project Page: https://sihuiji.github.io/LayerFlow-Page/
Object-centric 3D Motion Field for Robot Learning from Human Videos
Learning robot control policies from human videos is a promising direction for scaling up robot learning. However, how to extract action knowledge (or action representations) from videos for policy learning remains a key challenge. Existing action representations such as video frames, pixelflow, and pointcloud flow have inherent limitations such as modeling complexity or loss of information. In this paper, we propose to use object-centric 3D motion field to represent actions for robot learning from human videos, and present a novel framework for extracting this representation from videos for zero-shot control. We introduce two novel components in its implementation. First, a novel training pipeline for training a ''denoising'' 3D motion field estimator to extract fine object 3D motions from human videos with noisy depth robustly. Second, a dense object-centric 3D motion field prediction architecture that favors both cross-embodiment transfer and policy generalization to background. We evaluate the system in real world setups. Experiments show that our method reduces 3D motion estimation error by over 50% compared to the latest method, achieve 55% average success rate in diverse tasks where prior approaches fail~($\lesssim 10$\%), and can even acquire fine-grained manipulation skills like insertion.
comment: Project: https://zhaohengyin.github.io/3DMF
Voyager: Long-Range and World-Consistent Video Diffusion for Explorable 3D Scene Generation
Real-world applications like video gaming and virtual reality often demand the ability to model 3D scenes that users can explore along custom camera trajectories. While significant progress has been made in generating 3D objects from text or images, creating long-range, 3D-consistent, explorable 3D scenes remains a complex and challenging problem. In this work, we present Voyager, a novel video diffusion framework that generates world-consistent 3D point-cloud sequences from a single image with user-defined camera path. Unlike existing approaches, Voyager achieves end-to-end scene generation and reconstruction with inherent consistency across frames, eliminating the need for 3D reconstruction pipelines (e.g., structure-from-motion or multi-view stereo). Our method integrates three key components: 1) World-Consistent Video Diffusion: A unified architecture that jointly generates aligned RGB and depth video sequences, conditioned on existing world observation to ensure global coherence 2) Long-Range World Exploration: An efficient world cache with point culling and an auto-regressive inference with smooth video sampling for iterative scene extension with context-aware consistency, and 3) Scalable Data Engine: A video reconstruction pipeline that automates camera pose estimation and metric depth prediction for arbitrary videos, enabling large-scale, diverse training data curation without manual 3D annotations. Collectively, these designs result in a clear improvement over existing methods in visual quality and geometric accuracy, with versatile applications.
Seeing in the Dark: Benchmarking Egocentric 3D Vision with the Oxford Day-and-Night Dataset
We introduce Oxford Day-and-Night, a large-scale, egocentric dataset for novel view synthesis (NVS) and visual relocalisation under challenging lighting conditions. Existing datasets often lack crucial combinations of features such as ground-truth 3D geometry, wide-ranging lighting variation, and full 6DoF motion. Oxford Day-and-Night addresses these gaps by leveraging Meta ARIA glasses to capture egocentric video and applying multi-session SLAM to estimate camera poses, reconstruct 3D point clouds, and align sequences captured under varying lighting conditions, including both day and night. The dataset spans over 30 $\mathrm{km}$ of recorded trajectories and covers an area of 40,000 $\mathrm{m}^2$, offering a rich foundation for egocentric 3D vision research. It supports two core benchmarks, NVS and relocalisation, providing a unique platform for evaluating models in realistic and diverse environments.
comment: Project page: https://oxdan.active.vision/
Struct2D: A Perception-Guided Framework for Spatial Reasoning in Large Multimodal Models
Unlocking spatial reasoning in Large Multimodal Models (LMMs) is crucial for enabling intelligent interaction with 3D environments. While prior efforts often rely on explicit 3D inputs or specialized model architectures, we ask: can LMMs reason about 3D space using only structured 2D representations derived from perception? We introduce Struct2D, a perception-guided prompting framework that combines bird's-eye-view (BEV) images with object marks and object-centric metadata, optionally incorporating egocentric keyframes when needed. Using Struct2D, we conduct an in-depth zero-shot analysis of closed-source LMMs (e.g., GPT-o3) and find that they exhibit surprisingly strong spatial reasoning abilities when provided with structured 2D inputs, effectively handling tasks such as relative direction estimation and route planning. Building on these insights, we construct Struct2D-Set, a large-scale instruction tuning dataset with 200K fine-grained QA pairs across eight spatial reasoning categories, generated automatically from 3D indoor scenes. We fine-tune an open-source LMM (Qwen2.5VL) on Struct2D-Set, achieving competitive performance on multiple benchmarks, including 3D question answering, dense captioning, and object grounding. Our approach demonstrates that structured 2D inputs can effectively bridge perception and language reasoning in LMMs-without requiring explicit 3D representations as input. We will release both our code and dataset to support future research.
comment: https://github.com/neu-vi/struct2d
Pseudo-Simulation for Autonomous Driving
Existing evaluation paradigms for Autonomous Vehicles (AVs) face critical limitations. Real-world evaluation is often challenging due to safety concerns and a lack of reproducibility, whereas closed-loop simulation can face insufficient realism or high computational costs. Open-loop evaluation, while being efficient and data-driven, relies on metrics that generally overlook compounding errors. In this paper, we propose pseudo-simulation, a novel paradigm that addresses these limitations. Pseudo-simulation operates on real datasets, similar to open-loop evaluation, but augments them with synthetic observations generated prior to evaluation using 3D Gaussian Splatting. Our key idea is to approximate potential future states the AV might encounter by generating a diverse set of observations that vary in position, heading, and speed. Our method then assigns a higher importance to synthetic observations that best match the AV's likely behavior using a novel proximity-based weighting scheme. This enables evaluating error recovery and the mitigation of causal confusion, as in closed-loop benchmarks, without requiring sequential interactive simulation. We show that pseudo-simulation is better correlated with closed-loop simulations (R^2=0.8) than the best existing open-loop approach (R^2=0.7). We also establish a public leaderboard for the community to benchmark new methodologies with pseudo-simulation. Our code is available at https://github.com/autonomousvision/navsim.
UNIC: Unified In-Context Video Editing
Recent advances in text-to-video generation have sparked interest in generative video editing tasks. Previous methods often rely on task-specific architectures (e.g., additional adapter modules) or dedicated customizations (e.g., DDIM inversion), which limit the integration of versatile editing conditions and the unification of various editing tasks. In this paper, we introduce UNified In-Context Video Editing (UNIC), a simple yet effective framework that unifies diverse video editing tasks within a single model in an in-context manner. To achieve this unification, we represent the inputs of various video editing tasks as three types of tokens: the source video tokens, the noisy video latent, and the multi-modal conditioning tokens that vary according to the specific editing task. Based on this formulation, our key insight is to integrate these three types into a single consecutive token sequence and jointly model them using the native attention operations of DiT, thereby eliminating the need for task-specific adapter designs. Nevertheless, direct task unification under this framework is challenging, leading to severe token collisions and task confusion due to the varying video lengths and diverse condition modalities across tasks. To address these, we introduce task-aware RoPE to facilitate consistent temporal positional encoding, and condition bias that enables the model to clearly differentiate different editing tasks. This allows our approach to adaptively perform different video editing tasks by referring the source video and varying condition tokens "in context", and support flexible task composition. To validate our method, we construct a unified video editing benchmark containing six representative video editing tasks. Results demonstrate that our unified approach achieves superior performance on each task and exhibits emergent task composition abilities.
comment: The project page is at \href{https://zixuan-ye.github.io/UNIC}{https://zixuan-ye.github.io/UNIC}
Sounding that Object: Interactive Object-Aware Image to Audio Generation ICML 2025
Generating accurate sounds for complex audio-visual scenes is challenging, especially in the presence of multiple objects and sound sources. In this paper, we propose an {\em interactive object-aware audio generation} model that grounds sound generation in user-selected visual objects within images. Our method integrates object-centric learning into a conditional latent diffusion model, which learns to associate image regions with their corresponding sounds through multi-modal attention. At test time, our model employs image segmentation to allow users to interactively generate sounds at the {\em object} level. We theoretically validate that our attention mechanism functionally approximates test-time segmentation masks, ensuring the generated audio aligns with selected objects. Quantitative and qualitative evaluations show that our model outperforms baselines, achieving better alignment between objects and their associated sounds. Project page: https://tinglok.netlify.app/files/avobject/
comment: ICML 2025
FullDiT2: Efficient In-Context Conditioning for Video Diffusion Transformers
Fine-grained and efficient controllability on video diffusion transformers has raised increasing desires for the applicability. Recently, In-context Conditioning emerged as a powerful paradigm for unified conditional video generation, which enables diverse controls by concatenating varying context conditioning signals with noisy video latents into a long unified token sequence and jointly processing them via full-attention, e.g., FullDiT. Despite their effectiveness, these methods face quadratic computation overhead as task complexity increases, hindering practical deployment. In this paper, we study the efficiency bottleneck neglected in original in-context conditioning video generation framework. We begin with systematic analysis to identify two key sources of the computation inefficiencies: the inherent redundancy within context condition tokens and the computational redundancy in context-latent interactions throughout the diffusion process. Based on these insights, we propose FullDiT2, an efficient in-context conditioning framework for general controllability in both video generation and editing tasks, which innovates from two key perspectives. Firstly, to address the token redundancy, FullDiT2 leverages a dynamic token selection mechanism to adaptively identify important context tokens, reducing the sequence length for unified full-attention. Additionally, a selective context caching mechanism is devised to minimize redundant interactions between condition tokens and video latents. Extensive experiments on six diverse conditional video editing and generation tasks demonstrate that FullDiT2 achieves significant computation reduction and 2-3 times speedup in averaged time cost per diffusion step, with minimal degradation or even higher performance in video generation quality. The project page is at \href{https://fulldit2.github.io/}{https://fulldit2.github.io/}.
Diffusion Domain Teacher: Diffusion Guided Domain Adaptive Object Detector
Object detectors often suffer a decrease in performance due to the large domain gap between the training data (source domain) and real-world data (target domain). Diffusion-based generative models have shown remarkable abilities in generating high-quality and diverse images, suggesting their potential for extracting valuable feature from various domains. To effectively leverage the cross-domain feature representation of diffusion models, in this paper, we train a detector with frozen-weight diffusion model on the source domain, then employ it as a teacher model to generate pseudo labels on the unlabeled target domain, which are used to guide the supervised learning of the student model on the target domain. We refer to this approach as Diffusion Domain Teacher (DDT). By employing this straightforward yet potent framework, we significantly improve cross-domain object detection performance without compromising the inference speed. Our method achieves an average mAP improvement of 21.2% compared to the baseline on 6 datasets from three common cross-domain detection benchmarks (Cross-Camera, Syn2Real, Real2Artistic}, surpassing the current state-of-the-art (SOTA) methods by an average of 5.7% mAP. Furthermore, extensive experiments demonstrate that our method consistently brings improvements even in more powerful and complex models, highlighting broadly applicable and effective domain adaptation capability of our DDT. The code is available at https://github.com/heboyong/Diffusion-Domain-Teacher.
comment: MM2024 poster, with appendix and codes
Language-Image Alignment with Fixed Text Encoders
Currently, the most dominant approach to establishing language-image alignment is to pre-train text and image encoders jointly through contrastive learning, such as CLIP and its variants. In this work, we question whether such a costly joint training is necessary. In particular, we investigate if a pre-trained fixed large language model (LLM) offers a good enough text encoder to guide visual representation learning. That is, we propose to learn Language-Image alignment with a Fixed Text encoder (LIFT) from an LLM by training only the image encoder. Somewhat surprisingly, through comprehensive benchmarking and ablation studies, we find that this much simplified framework LIFT is highly effective and it outperforms CLIP in most scenarios that involve compositional understanding and long captions, while achieving considerable gains in computational efficiency. Our work takes a first step towards systematically exploring how text embeddings from LLMs can guide visual learning and suggests an alternative design choice for learning language-aligned visual representations.
Advancing Multimodal Reasoning: From Optimized Cold Start to Staged Reinforcement Learning
Inspired by the remarkable reasoning capabilities of Deepseek-R1 in complex textual tasks, many works attempt to incentivize similar capabilities in Multimodal Large Language Models (MLLMs) by directly applying reinforcement learning (RL). However, they still struggle to activate complex reasoning. In this paper, rather than examining multimodal RL in isolation, we delve into current training pipelines and identify three crucial phenomena: 1) Effective cold start initialization is critical for enhancing MLLM reasoning. Intriguingly, we find that initializing with carefully selected text data alone can lead to performance surpassing many recent multimodal reasoning models, even before multimodal RL. 2) Standard GRPO applied to multimodal RL suffers from gradient stagnation, which degrades training stability and performance. 3) Subsequent text-only RL training, following the multimodal RL phase, further enhances multimodal reasoning. This staged training approach effectively balances perceptual grounding and cognitive reasoning development. By incorporating the above insights and addressing multimodal RL issues, we introduce ReVisual-R1, achieving a new state-of-the-art among open-source 7B MLLMs on challenging benchmarks including MathVerse, MathVision, WeMath, LogicVista, DynaMath, and challenging AIME2024 and AIME2025.
comment: 19 pages, 6 figures
FlexGS: Train Once, Deploy Everywhere with Many-in-One Flexible 3D Gaussian Splatting CVPR 2025
3D Gaussian splatting (3DGS) has enabled various applications in 3D scene representation and novel view synthesis due to its efficient rendering capabilities. However, 3DGS demands relatively significant GPU memory, limiting its use on devices with restricted computational resources. Previous approaches have focused on pruning less important Gaussians, effectively compressing 3DGS but often requiring a fine-tuning stage and lacking adaptability for the specific memory needs of different devices. In this work, we present an elastic inference method for 3DGS. Given an input for the desired model size, our method selects and transforms a subset of Gaussians, achieving substantial rendering performance without additional fine-tuning. We introduce a tiny learnable module that controls Gaussian selection based on the input percentage, along with a transformation module that adjusts the selected Gaussians to complement the performance of the reduced model. Comprehensive experiments on ZipNeRF, MipNeRF and Tanks\&Temples scenes demonstrate the effectiveness of our approach. Code is available at https://flexgs.github.io.
comment: CVPR 2025; Project Page: https://flexgs.github.io
Image Editing As Programs with Diffusion Models
While diffusion models have achieved remarkable success in text-to-image generation, they encounter significant challenges with instruction-driven image editing. Our research highlights a key challenge: these models particularly struggle with structurally inconsistent edits that involve substantial layout changes. To mitigate this gap, we introduce Image Editing As Programs (IEAP), a unified image editing framework built upon the Diffusion Transformer (DiT) architecture. At its core, IEAP approaches instructional editing through a reductionist lens, decomposing complex editing instructions into sequences of atomic operations. Each operation is implemented via a lightweight adapter sharing the same DiT backbone and is specialized for a specific type of edit. Programmed by a vision-language model (VLM)-based agent, these operations collaboratively support arbitrary and structurally inconsistent transformations. By modularizing and sequencing edits in this way, IEAP generalizes robustly across a wide range of editing tasks, from simple adjustments to substantial structural changes. Extensive experiments demonstrate that IEAP significantly outperforms state-of-the-art methods on standard benchmarks across various editing scenarios. In these evaluations, our framework delivers superior accuracy and semantic fidelity, particularly for complex, multi-step instructions. Codes are available at https://github.com/YujiaHu1109/IEAP.
Person Re-Identification System at Semantic Level based on Pedestrian Attributes Ontology
Person Re-Identification (Re-ID) is a very important task in video surveillance systems such as tracking people, finding people in public places, or analysing customer behavior in supermarkets. Although there have been many works to solve this problem, there are still remaining challenges such as large-scale datasets, imbalanced data, viewpoint, fine grained data (attributes), the Local Features are not employed at semantic level in online stage of Re-ID task, furthermore, the imbalanced data problem of attributes are not taken into consideration. This paper has proposed a Unified Re-ID system consisted of three main modules such as Pedestrian Attribute Ontology (PAO), Local Multi-task DCNN (Local MDCNN), Imbalance Data Solver (IDS). The new main point of our Re-ID system is the power of mutual support of PAO, Local MDCNN and IDS to exploit the inner-group correlations of attributes and pre-filter the mismatch candidates from Gallery set based on semantic information as Fashion Attributes and Facial Attributes, to solve the imbalanced data of attributes without adjusting network architecture and data augmentation. We experimented on the well-known Market1501 dataset. The experimental results have shown the effectiveness of our Re-ID system and it could achieve the higher performance on Market1501 dataset in comparison to some state-of-the-art Re-ID methods.
MMR-V: What's Left Unsaid? A Benchmark for Multimodal Deep Reasoning in Videos
The sequential structure of videos poses a challenge to the ability of multimodal large language models (MLLMs) to locate multi-frame evidence and conduct multimodal reasoning. However, existing video benchmarks mainly focus on understanding tasks, which only require models to match frames mentioned in the question (hereafter referred to as "question frame") and perceive a few adjacent frames. To address this gap, we propose MMR-V: A Benchmark for Multimodal Deep Reasoning in Videos. The benchmark is characterized by the following features. (1) Long-range, multi-frame reasoning: Models are required to infer and analyze evidence frames that may be far from the question frame. (2) Beyond perception: Questions cannot be answered through direct perception alone but require reasoning over hidden information. (3) Reliability: All tasks are manually annotated, referencing extensive real-world user understanding to align with common perceptions. (4) Confusability: Carefully designed distractor annotation strategies to reduce model shortcuts. MMR-V consists of 317 videos and 1,257 tasks. Our experiments reveal that current models still struggle with multi-modal reasoning; even the best-performing model, o4-mini, achieves only 52.5% accuracy. Additionally, current reasoning enhancement strategies (Chain-of-Thought and scaling test-time compute) bring limited gains. Further analysis indicates that the CoT demanded for multi-modal reasoning differs from it in textual reasoning, which partly explains the limited performance gains. We hope that MMR-V can inspire further research into enhancing multi-modal reasoning capabilities.
comment: Project Page: https://mmr-v.github.io
UniCUE: Unified Recognition and Generation Framework for Chinese Cued Speech Video-to-Speech Generation
Cued Speech (CS) enhances lipreading through hand coding, providing precise speech perception support for the hearing-impaired. CS Video-to-Speech generation (CSV2S) task aims to convert the CS visual expressions (CS videos) of hearing-impaired individuals into comprehensible speech signals. Direct generation of speech from CS video (called single CSV2S) yields poor performance due to insufficient CS data. Current research mostly focuses on CS Recognition (CSR), which convert video content into linguistic text. Based on this, one straightforward way of CSV2S is to combine CSR with a Text-to-Speech system. This combined architecture relies on text as an intermediate medium for stepwise cross-modal alignment, which may lead to error propagation and temporal misalignment between speech and video dynamics. To address these challenges, we propose a novel approach that directly generates speech from CS videos without relying on intermediate text. Building upon this, we propose UniCUE, the first unified framework for CSV2S, whose core innovation lies in the integration of the CSR task that provides fine-grained visual-semantic information to facilitate speech generation from CS videos. More precisely, (1) a novel fine-grained semantic alignment pool to ensure precise mapping between visual features and speech contents; (2) a VisioPhonetic adapter to bridge cross-task representations, ensuring seamless compatibility between two distinct tasks (i.e., CSV2S and CSR); (3) a pose-aware visual processor is introduced to enhance fine-grained spatiotemporal correlations between lip and hand movements in CS video. Experiments on our new established Chinese CS dataset (14 cuers1: 8 hearing-impaired and 6 normal-hearing) show that our UniCUE significantly reduces Word Error Rate by 78.3% and improves lip-speech synchronization by 32% compared to the single CSV2S.
comment: 10 pages, 10 figures
Recent Advances in Medical Image Classification
Medical image classification is crucial for diagnosis and treatment, benefiting significantly from advancements in artificial intelligence. The paper reviews recent progress in the field, focusing on three levels of solutions: basic, specific, and applied. It highlights advances in traditional methods using deep learning models like Convolutional Neural Networks and Vision Transformers, as well as state-of-the-art approaches with Vision Language Models. These models tackle the issue of limited labeled data, and enhance and explain predictive results through Explainable Artificial Intelligence.
Contour Errors: An Ego-Centric Metric for Reliable 3D Multi-Object Tracking
Finding reliable matches is essential in multi-object tracking to ensure the accuracy and reliability of perception systems in safety-critical applications such as autonomous vehicles. Effective matching mitigates perception errors, enhancing object identification and tracking for improved performance and safety. However, traditional metrics such as Intersection over Union (IoU) and Center Point Distances (CPDs), which are effective in 2D image planes, often fail to find critical matches in complex 3D scenes. To address this limitation, we introduce Contour Errors (CEs), an ego or object-centric metric for identifying matches of interest in tracking scenarios from a functional perspective. By comparing bounding boxes in the ego vehicle's frame, contour errors provide a more functionally relevant assessment of object matches. Extensive experiments on the nuScenes dataset demonstrate that contour errors improve the reliability of matches over the state-of-the-art 2D IoU and CPD metrics in tracking-by-detection methods. In 3D car tracking, our results show that Contour Errors reduce functional failures (FPs/FNs) by 80% at close ranges and 60% at far ranges compared to IoU in the evaluation stage.
A Comprehensive Study on Medical Image Segmentation using Deep Neural Networks
Over the past decade, Medical Image Segmentation (MIS) using Deep Neural Networks (DNNs) has achieved significant performance improvements and holds great promise for future developments. This paper presents a comprehensive study on MIS based on DNNs. Intelligent Vision Systems are often evaluated based on their output levels, such as Data, Information, Knowledge, Intelligence, and Wisdom (DIKIW),and the state-of-the-art solutions in MIS at these levels are the focus of research. Additionally, Explainable Artificial Intelligence (XAI) has become an important research direction, as it aims to uncover the "black box" nature of previous DNN architectures to meet the requirements of transparency and ethics. The study emphasizes the importance of MIS in disease diagnosis and early detection, particularly for increasing the survival rate of cancer patients through timely diagnosis. XAI and early prediction are considered two important steps in the journey from "intelligence" to "wisdom." Additionally, the paper addresses existing challenges and proposes potential solutions to enhance the efficiency of implementing DNN-based MIS.
A Diffusion-Driven Temporal Super-Resolution and Spatial Consistency Enhancement Framework for 4D MRI imaging
In medical imaging, 4D MRI enables dynamic 3D visualization, yet the trade-off between spatial and temporal resolution requires prolonged scan time that can compromise temporal fidelity--especially during rapid, large-amplitude motion. Traditional approaches typically rely on registration-based interpolation to generate intermediate frames. However, these methods struggle with large deformations, resulting in misregistration, artifacts, and diminished spatial consistency. To address these challenges, we propose TSSC-Net, a novel framework that generates intermediate frames while preserving spatial consistency. To improve temporal fidelity under fast motion, our diffusion-based temporal super-resolution network generates intermediate frames using the start and end frames as key references, achieving 6x temporal super-resolution in a single inference step. Additionally, we introduce a novel tri-directional Mamba-based module that leverages long-range contextual information to effectively resolve spatial inconsistencies arising from cross-slice misalignment, thereby enhancing volumetric coherence and correcting cross-slice errors. Extensive experiments were performed on the public ACDC cardiac MRI dataset and a real-world dynamic 4D knee joint dataset. The results demonstrate that TSSC-Net can generate high-resolution dynamic MRI from fast-motion data while preserving structural fidelity and spatial consistency.
Multi-view Surface Reconstruction Using Normal and Reflectance Cues
Achieving high-fidelity 3D surface reconstruction while preserving fine details remains challenging, especially in the presence of materials with complex reflectance properties and without a dense-view setup. In this paper, we introduce a versatile framework that incorporates multi-view normal and optionally reflectance maps into radiance-based surface reconstruction. Our approach employs a pixel-wise joint re-parametrization of reflectance and surface normals, representing them as a vector of radiances under simulated, varying illumination. This formulation enables seamless incorporation into standard surface reconstruction pipelines, such as traditional multi-view stereo (MVS) frameworks or modern neural volume rendering (NVR) ones. Combined with the latter, our approach achieves state-of-the-art performance on multi-view photometric stereo (MVPS) benchmark datasets, including DiLiGenT-MV, LUCES-MV and Skoltech3D. In particular, our method excels in reconstructing fine-grained details and handling challenging visibility conditions. The present paper is an extended version of the earlier conference paper by Brument et al. (in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024), featuring an accelerated and more robust algorithm as well as a broader empirical evaluation. The code and data relative to this article is available at https://github.com/RobinBruneau/RNb-NeuS2.
comment: 22 pages, 15 figures, 11 tables. A thorough qualitative and quantitive study is available in the supplementary material at https://drive.google.com/file/d/1KDfCKediXNP5Os954TL_QldaUWS0nKcD/view?usp=drive_link
GlobalBuildingAtlas: An Open Global and Complete Dataset of Building Polygons, Heights and LoD1 3D Models
We introduce GlobalBuildingAtlas, a publicly available dataset providing global and complete coverage of building polygons, heights and Level of Detail 1 (LoD1) 3D building models. This is the first open dataset to offer high quality, consistent, and complete building data in 2D and 3D form at the individual building level on a global scale. Towards this dataset, we developed machine learning-based pipelines to derive building polygons and heights (called GBA.Height) from global PlanetScope satellite data, respectively. Also a quality-based fusion strategy was employed to generate higher-quality polygons (called GBA.Polygon) based on existing open building polygons, including our own derived one. With more than 2.75 billion buildings worldwide, GBA.Polygon surpasses the most comprehensive database to date by more than 1 billion buildings. GBA.Height offers the most detailed and accurate global 3D building height maps to date, achieving a spatial resolution of 3x3 meters-30 times finer than previous global products (90 m), enabling a high-resolution and reliable analysis of building volumes at both local and global scales. Finally, we generated a global LoD1 building model (called GBA.LoD1) from the resulting GBA.Polygon and GBA.Height. GBA.LoD1 represents the first complete global LoD1 building models, including 2.68 billion building instances with predicted heights, i.e., with a height completeness of more than 97%, achieving RMSEs ranging from 1.5 m to 8.9 m across different continents. With its height accuracy, comprehensive global coverage and rich spatial details, GlobalBuildingAltas offers novel insights on the status quo of global buildings, which unlocks unprecedented geospatial analysis possibilities, as showcased by a better illustration of where people live and a more comprehensive monitoring of the progress on the 11th Sustainable Development Goal of the United Nations.
Multimodal Tabular Reasoning with Privileged Structured Information
Tabular reasoning involves multi-step information extraction and logical inference over tabular data. While recent advances have leveraged large language models (LLMs) for reasoning over structured tables, such high-quality textual representations are often unavailable in real-world settings, where tables typically appear as images. In this paper, we tackle the task of tabular reasoning from table images, leveraging privileged structured information available during training to enhance multimodal large language models (MLLMs). The key challenges lie in the complexity of accurately aligning structured information with visual representations, and in effectively transferring structured reasoning skills to MLLMs despite the input modality gap. To address these, we introduce TabUlar Reasoning with Bridged infOrmation ({\sc Turbo}), a new framework for multimodal tabular reasoning with privileged structured tables. {\sc Turbo} benefits from a structure-aware reasoning trace generator based on DeepSeek-R1, contributing to high-quality modality-bridged data. On this basis, {\sc Turbo} repeatedly generates and selects the advantageous reasoning paths, further enhancing the model's tabular reasoning ability. Experimental results demonstrate that, with limited ($9$k) data, {\sc Turbo} achieves state-of-the-art performance ($+7.2\%$ vs. previous SOTA) across multiple datasets.
Point Cloud Quality Assessment Using the Perceptual Clustering Weighted Graph (PCW-Graph) and Attention Fusion Network
No-Reference Point Cloud Quality Assessment (NR-PCQA) is critical for evaluating 3D content in real-world applications where reference models are unavailable.
Optimal Transport-based Domain Alignment as a Preprocessing Step for Federated Learning
Federated learning (FL) is a subfield of machine learning that avoids sharing local data with a central server, which can enhance privacy and scalability. The inability to consolidate data leads to a unique problem called dataset imbalance, where agents in a network do not have equal representation of the labels one is trying to learn to predict. In FL, fusing locally-trained models with unbalanced datasets may deteriorate the performance of global model aggregation, and reduce the quality of updated local models and the accuracy of the distributed agents' decisions. In this work, we introduce an Optimal Transport-based preprocessing algorithm that aligns the datasets by minimizing the distributional discrepancy of data along the edge devices. We accomplish this by leveraging Wasserstein barycenters when computing channel-wise averages. These barycenters are collected in a trusted central server where they collectively generate a target RGB space. By projecting our dataset towards this target space, we minimize the distributional discrepancy on a global level, which facilitates the learning process due to a minimization of variance across the samples. We demonstrate the capabilities of the proposed approach over the CIFAR-10 dataset, where we show its capability of reaching higher degrees of generalization in fewer communication rounds.
Towards generating more interpretable counterfactuals via concept vectors: a preliminary study on chest X-rays
An essential step in deploying medical imaging models is ensuring alignment with clinical knowledge and interpretability. We focus on mapping clinical concepts into the latent space of generative models to identify Concept Activation Vectors (CAVs). Using a simple reconstruction autoencoder, we link user-defined concepts to image-level features without explicit label training. The extracted concepts are stable across datasets, enabling visual explanations that highlight clinically relevant features. By traversing latent space along concept directions, we produce counterfactuals that exaggerate or reduce specific clinical features. Preliminary results on chest X-rays show promise for large pathologies like cardiomegaly, while smaller pathologies remain challenging due to reconstruction limits. Although not outperforming baselines, this approach offers a path toward interpretable, concept-based explanations aligned with clinical knowledge.
Video Deblurring with Deconvolution and Aggregation Networks
In contrast to single-image deblurring, video deblurring has the advantage that neighbor frames can be utilized to deblur a target frame. However, existing video deblurring algorithms often fail to properly employ the neighbor frames, resulting in sub-optimal performance. In this paper, we propose a deconvolution and aggregation network (DAN) for video deblurring that utilizes the information of neighbor frames well. In DAN, both deconvolution and aggregation strategies are achieved through three sub-networks: the preprocessing network (PPN) and the alignment-based deconvolution network (ABDN) for the deconvolution scheme; the frame aggregation network (FAN) for the aggregation scheme. In the deconvolution part, blurry inputs are first preprocessed by the PPN with non-local operations. Then, the output frames from the PPN are deblurred by the ABDN based on the frame alignment. In the FAN, these deblurred frames from the deconvolution part are combined into a latent frame according to reliability maps which infer pixel-wise sharpness. The proper combination of three sub-networks can achieve favorable performance on video deblurring by using the neighbor frames suitably. In experiments, the proposed DAN was demonstrated to be superior to existing state-of-the-art methods through both quantitative and qualitative evaluations on the public datasets.
EV-Flying: an Event-based Dataset for In-The-Wild Recognition of Flying Objects
Monitoring aerial objects is crucial for security, wildlife conservation, and environmental studies. Traditional RGB-based approaches struggle with challenges such as scale variations, motion blur, and high-speed object movements, especially for small flying entities like insects and drones. In this work, we explore the potential of event-based vision for detecting and recognizing flying objects, in particular animals that may not follow short and long-term predictable patters. Event cameras offer high temporal resolution, low latency, and robustness to motion blur, making them well-suited for this task. We introduce EV-Flying, an event-based dataset of flying objects, comprising manually annotated birds, insects and drones with spatio-temporal bounding boxes and track identities. To effectively process the asynchronous event streams, we employ a point-based approach leveraging lightweight architectures inspired by PointNet. Our study investigates the classification of flying objects using point cloud-based event representations. The proposed dataset and methodology pave the way for more efficient and reliable aerial object recognition in real-world scenarios.
Mitigating Hallucinations in Large Vision-Language Models via Entity-Centric Multimodal Preference Optimization
Large Visual Language Models (LVLMs) have demonstrated impressive capabilities across multiple tasks. However, their trustworthiness is often challenged by hallucinations, which can be attributed to the modality misalignment and the inherent hallucinations of their underlying Large Language Models (LLMs) backbone. Existing preference alignment methods focus on aligning model responses with human preferences while neglecting image-text modality alignment, resulting in over-reliance on LLMs and hallucinations. In this paper, we propose Entity-centric Multimodal Preference Optimization (EMPO), which achieves enhanced modality alignment than existing human preference alignment methods. Besides, to overcome the scarcity of high-quality multimodal preference data, we utilize open-source instruction datasets to automatically construct high-quality preference data across three aspects: image, instruction, and response. Experiments on two human preference datasets and five multimodal hallucination benchmarks demonstrate the effectiveness of EMPO, e.g., reducing hallucination rates by 85.9% on Object-HalBench and 49.8% on MM-HalBench.
Rex-Thinker: Grounded Object Referring via Chain-of-Thought Reasoning
Object referring aims to detect all objects in an image that match a given natural language description. We argue that a robust object referring model should be grounded, meaning its predictions should be both explainable and faithful to the visual content. Specifically, it should satisfy two key properties: 1) Verifiable, by producing interpretable reasoning that justifies its predictions and clearly links them to visual evidence; and 2) Trustworthy, by learning to abstain when no object in the image satisfies the given expression. However, most methods treat referring as a direct bounding box prediction task, offering limited interpretability and struggling to reject expressions with no matching object. In this work, we propose Rex-Thinker, a model that formulates object referring as an explicit CoT reasoning task. Given a referring expression, we first identify all candidate object instances corresponding to the referred object category. Rex-Thinker then performs step-by-step reasoning over each candidate to assess whether it matches the given expression, before making a final prediction. To support this paradigm, we construct a large-scale CoT-style referring dataset named HumanRef-CoT by prompting GPT-4o on the HumanRef dataset. Each reasoning trace follows a structured planning, action, and summarization format, enabling the model to learn decomposed, interpretable reasoning over object candidates. We then train Rex-Thinker in two stages: a cold-start supervised fine-tuning phase to teach the model how to perform structured reasoning, followed by GRPO-based RL learning to improve accuracy and generalization. Experiments show that our approach outperforms standard baselines in both precision and interpretability on in-domain evaluation, while also demonstrating improved ability to reject hallucinated outputs and strong generalization in out-of-domain settings.
comment: homepage: https://rexthinker.github.io/
Conformal coronary calcification volume estimation with conditional coverage via histogram clustering
Incidental detection and quantification of coronary calcium in CT scans could lead to the early introduction of lifesaving clinical interventions. However, over-reporting could negatively affect patient wellbeing and unnecessarily burden the medical system. Therefore, careful considerations should be taken when automatically reporting coronary calcium scores. A cluster-based conditional conformal prediction framework is proposed to provide score intervals with calibrated coverage from trained segmentation networks without retraining. The proposed method was tuned and used to calibrate predictive intervals for 3D UNet models (deterministic, MCDropout and deep ensemble) reaching similar coverage with better triage metrics compared to conventional conformal prediction. Meaningful predictive intervals of calcium scores could help triage patients according to the confidence of their risk category prediction.
comment: IEEE 22nd International Symposium on Biomedical Imaging (ISBI)
Dreaming up scale invariance via inverse renormalization group
We explore how minimal neural networks can invert the renormalization group (RG) coarse-graining procedure in the two-dimensional Ising model, effectively "dreaming up" microscopic configurations from coarse-grained states. This task-formally impossible at the level of configurations-can be approached probabilistically, allowing machine learning models to reconstruct scale-invariant distributions without relying on microscopic input. We demonstrate that even neural networks with as few as three trainable parameters can learn to generate critical configurations, reproducing the scaling behavior of observables such as magnetic susceptibility, heat capacity, and Binder ratios. A real-space renormalization group analysis of the generated configurations confirms that the models capture not only scale invariance but also reproduce nontrivial eigenvalues of the RG transformation. Surprisingly, we find that increasing network complexity by introducing multiple layers offers no significant benefit. These findings suggest that simple local rules, akin to those generating fractal structures, are sufficient to encode the universality of critical phenomena, opening the door to efficient generative models of statistical ensembles in physics.
comment: v1: 12 pages, 11 figures, 55 references
Vocabulary-free few-shot learning for Vision-Language Models CVPR
Recent advances in few-shot adaptation for Vision-Language Models (VLMs) have greatly expanded their ability to generalize across tasks using only a few labeled examples. However, existing approaches primarily build upon the strong zero-shot priors of these models by leveraging carefully designed, task-specific prompts. This dependence on predefined class names can restrict their applicability, especially in scenarios where exact class names are unavailable or difficult to specify. To address this limitation, we introduce vocabulary-free few-shot learning for VLMs, a setting where target class instances - that is, images - are available but their corresponding names are not. We propose Similarity Mapping (SiM), a simple yet effective baseline that classifies target instances solely based on similarity scores with a set of generic prompts (textual or visual), eliminating the need for carefully handcrafted prompts. Although conceptually straightforward, SiM demonstrates strong performance, operates with high computational efficiency (learning the mapping typically takes less than one second), and provides interpretability by linking target classes to generic prompts. We believe that our approach could serve as an important baseline for future research in vocabulary-free few-shot learning. Code is available at https://github.com/MaxZanella/vocabulary-free-FSL.
comment: Accepted at CVPR Workshops 2025
Seeing What Tastes Good: Revisiting Multimodal Distributional Semantics in the Billion Parameter Era ACL
Human learning and conceptual representation is grounded in sensorimotor experience, in contrast to state-of-the-art foundation models. In this paper, we investigate how well such large-scale models, trained on vast quantities of data, represent the semantic feature norms of concrete object concepts, e.g. a ROSE is red, smells sweet, and is a flower. More specifically, we use probing tasks to test which properties of objects these models are aware of. We evaluate image encoders trained on image data alone, as well as multimodally-trained image encoders and language-only models, on predicting an extended denser version of the classic McRae norms and the newer Binder dataset of attribute ratings. We find that multimodal image encoders slightly outperform language-only approaches, and that image-only encoders perform comparably to the language models, even on non-visual attributes that are classified as "encyclopedic" or "function". These results offer new insights into what can be learned from pure unimodal learning, and the complementarity of the modalities.
comment: ACL Findings 2025
DynTok: Dynamic Compression of Visual Tokens for Efficient and Effective Video Understanding
Typical video modeling methods, such as LLava, represent videos as sequences of visual tokens, which are then processed by the LLM backbone for effective video understanding. However, this approach leads to a massive number of visual tokens, especially for long videos. A practical solution is to first extract relevant visual information from the large visual context before feeding it into the LLM backbone, thereby reducing computational overhead. In this work, we introduce DynTok, a novel \textbf{Dyn}amic video \textbf{Tok}en compression strategy. DynTok adaptively splits visual tokens into groups and merges them within each group, achieving high compression in regions with low information density while preserving essential content. Our method reduces the number of tokens to 44.4% of the original size while maintaining comparable performance. It further benefits from increasing the number of video frames and achieves 65.3% on Video-MME and 72.5% on MLVU. By applying this simple yet effective compression method, we expose the redundancy in video token representations and offer insights for designing more efficient video modeling techniques.
RAID: A Dataset for Testing the Adversarial Robustness of AI-Generated Image Detectors NeurIPS 2025
AI-generated images have reached a quality level at which humans are incapable of reliably distinguishing them from real images. To counteract the inherent risk of fraud and disinformation, the detection of AI-generated images is a pressing challenge and an active research topic. While many of the presented methods claim to achieve high detection accuracy, they are usually evaluated under idealized conditions. In particular, the adversarial robustness is often neglected, potentially due to a lack of awareness or the substantial effort required to conduct a comprehensive robustness analysis. In this work, we tackle this problem by providing a simpler means to assess the robustness of AI-generated image detectors. We present RAID (Robust evaluation of AI-generated image Detectors), a dataset of 72k diverse and highly transferable adversarial examples. The dataset is created by running attacks against an ensemble of seven state-of-the-art detectors and images generated by four different text-to-image models. Extensive experiments show that our methodology generates adversarial images that transfer with a high success rate to unseen detectors, which can be used to quickly provide an approximate yet still reliable estimate of a detector's adversarial robustnessOur findings indicate that current state-of-the-art AI-generated image detectors can be easily deceived by adversarial examples, highlighting the critical need for the development of more robust methods. We release our dataset at https://huggingface.co/datasets/aimagelab/RAID and evaluation code at https://github.com/pralab/RAID.
comment: Under review for NeurIPS 2025 Datasets and Benchmarks Track
Solving Inverse Problems via Diffusion-Based Priors: An Approximation-Free Ensemble Sampling Approach
Diffusion models (DMs) have proven to be effective in modeling high-dimensional distributions, leading to their widespread adoption for representing complex priors in Bayesian inverse problems (BIPs). However, current DM-based posterior sampling methods proposed for solving common BIPs rely on heuristic approximations to the generative process. To exploit the generative capability of DMs and avoid the usage of such approximations, we propose an ensemble-based algorithm that performs posterior sampling without the use of heuristic approximations. Our algorithm is motivated by existing works that combine DM-based methods with the sequential Monte Carlo (SMC) method. By examining how the prior evolves through the diffusion process encoded by the pre-trained score function, we derive a modified partial differential equation (PDE) governing the evolution of the corresponding posterior distribution. This PDE includes a modified diffusion term and a reweighting term, which can be simulated via stochastic weighted particle methods. Theoretically, we prove that the error between the true posterior distribution can be bounded in terms of the training error of the pre-trained score function and the number of particles in the ensemble. Empirically, we validate our algorithm on several inverse problems in imaging to show that our method gives more accurate reconstructions compared to existing DM-based methods.
comment: 45 pages
MS-YOLO: A Multi-Scale Model for Accurate and Efficient Blood Cell Detection
Complete blood cell detection holds significant value in clinical diagnostics. Conventional manual microscopy methods suffer from time inefficiency and diagnostic inaccuracies. Existing automated detection approaches remain constrained by high deployment costs and suboptimal accuracy. While deep learning has introduced powerful paradigms to this field, persistent challenges in detecting overlapping cells and multi-scale objects hinder practical deployment. This study proposes the multi-scale YOLO (MS-YOLO), a blood cell detection model based on the YOLOv11 framework, incorporating three key architectural innovations to enhance detection performance. Specifically, the multi-scale dilated residual module (MS-DRM) replaces the original C3K2 modules to improve multi-scale discriminability; the dynamic cross-path feature enhancement module (DCFEM) enables the fusion of hierarchical features from the backbone with aggregated features from the neck to enhance feature representations; and the light adaptive-weight downsampling module (LADS) improves feature downsampling through adaptive spatial weighting while reducing computational complexity. Experimental results on the CBC benchmark demonstrate that MS-YOLO achieves precise detection of overlapping cells and multi-scale objects, particularly small targets such as platelets, achieving an mAP@50 of 97.4% that outperforms existing models. Further validation on the supplementary WBCDD dataset confirms its robust generalization capability. Additionally, with a lightweight architecture and real-time inference efficiency, MS-YOLO meets clinical deployment requirements, providing reliable technical support for standardized blood pathology assessment.
Adapt before Continual Learning
Continual Learning (CL) seeks to enable neural networks to incrementally acquire new knowledge (plasticity) while retaining existing knowledge (stability). While pre-trained models (PTMs) have become pivotal in CL, prevailing approaches freeze the PTM backbone to preserve stability, limiting their plasticity, particularly when encountering significant domain gaps in incremental tasks. Conversely, sequentially finetuning the entire PTM risks catastrophic forgetting of generalizable knowledge, exposing a critical stability-plasticity trade-off. To address this challenge, we propose Adapting PTMs before the core CL process (ACL), a novel framework that refines the PTM backbone through a plug-and-play adaptation phase before learning each new task with existing CL approaches (e.g., prompt tuning). ACL enhances plasticity by aligning embeddings with their original class prototypes while distancing them from others, theoretically and empirically shown to balance stability and plasticity. Extensive experiments demonstrate that ACL significantly improves CL performance across benchmarks and integrated methods, offering a versatile solution for PTM-based CL.
Rethinking the Stability-Plasticity Trade-off in Continual Learning from an Architectural Perspective
The quest for Continual Learning (CL) seeks to empower neural networks with the ability to learn and adapt incrementally. Central to this pursuit is addressing the stability-plasticity dilemma, which involves striking a balance between two conflicting objectives: preserving previously learned knowledge and acquiring new knowledge. While numerous CL methods aim to achieve this trade-off, they often overlook the impact of network architecture on stability and plasticity, restricting the trade-off to the parameter level. In this paper, we delve into the conflict between stability and plasticity at the architectural level. We reveal that under an equal parameter constraint, deeper networks exhibit better plasticity, while wider networks are characterized by superior stability. To address this architectural-level dilemma, we introduce a novel framework denoted Dual-Arch, which serves as a plug-in component for CL. This framework leverages the complementary strengths of two distinct and independent networks: one dedicated to plasticity and the other to stability. Each network is designed with a specialized and lightweight architecture, tailored to its respective objective. Extensive experiments demonstrate that Dual-Arch enhances the performance of existing CL methods while being up to 87% more compact in terms of parameters.
Average Calibration Losses for Reliable Uncertainty in Medical Image Segmentation
Deep neural networks for medical image segmentation are often overconfident, compromising both reliability and clinical utility. In this work, we propose differentiable formulations of marginal L1 Average Calibration Error (mL1-ACE) as an auxiliary loss that can be computed on a per-image basis. We compare both hard- and soft-binning approaches to directly improve pixel-wise calibration. Our experiments on four datasets (ACDC, AMOS, KiTS, BraTS) demonstrate that incorporating mL1-ACE significantly reduces calibration errors, particularly Average Calibration Error (ACE) and Maximum Calibration Error (MCE), while largely maintaining high Dice Similarity Coefficients (DSCs). We find that the soft-binned variant yields the greatest improvements in calibration, over the Dice plus cross-entropy loss baseline, but often compromises segmentation performance, with hard-binned mL1-ACE maintaining segmentation performance, albeit with weaker calibration improvement. To gain further insight into calibration performance and its variability across an imaging dataset, we introduce dataset reliability histograms, an aggregation of per-image reliability diagrams. The resulting analysis highlights improved alignment between predicted confidences and true accuracies. Overall, our approach not only enhances the trustworthiness of segmentation predictions but also shows potential for safer integration of deep learning methods into clinical workflows. We share our code here: https://github.com/cai4cai/Average-Calibration-Losses
comment: 12 pages, 5 figures, IEEE TMI submission
DiffCAP: Diffusion-based Cumulative Adversarial Purification for Vision Language Models
Vision Language Models (VLMs) have shown remarkable capabilities in multimodal understanding, yet their susceptibility to perturbations poses a significant threat to their reliability in real-world applications. Despite often being imperceptible to humans, these perturbations can drastically alter model outputs, leading to erroneous interpretations and decisions. This paper introduces DiffCAP, a novel diffusion-based purification strategy that can effectively neutralize adversarial corruptions in VLMs. We observe that adding minimal noise to an adversarially corrupted image significantly alters its latent embedding with respect to VLMs. Building on this insight, DiffCAP cumulatively injects random Gaussian noise into adversarially perturbed input data. This process continues until the embeddings of two consecutive noisy images reach a predefined similarity threshold, indicating a potential approach to neutralize the adversarial effect. Subsequently, a pretrained diffusion model is employed to denoise the stabilized image, recovering a clean representation suitable for the VLMs to produce an output. Through extensive experiments across six datasets with three VLMs under varying attack strengths in three task scenarios, we show that DiffCAP consistently outperforms existing defense techniques by a substantial margin. Notably, DiffCAP significantly reduces both hyperparameter tuning complexity and the required diffusion time, thereby accelerating the denoising process. Equipped with strong theoretical and empirical support, DiffCAP provides a robust and practical solution for securely deploying VLMs in adversarial environments.
Vision Remember: Alleviating Visual Forgetting in Efficient MLLM with Vision Feature Resample
In this work, we study the Efficient Multimodal Large Language Model. Redundant vision tokens consume a significant amount of computational memory and resources. Therefore, many previous works compress them in the Vision Projector to reduce the number of vision tokens. However, simply compressing in the Vision Projector can lead to the loss of visual information, especially for tasks that rely on fine-grained spatial relationships, such as OCR and Chart \& Table Understanding. To address this problem, we propose Vision Remember, which is inserted between the LLM decoder layers to allow vision tokens to re-memorize vision features. Specifically, we retain multi-level vision features and resample them with the vision tokens that have interacted with the text token. During the resampling process, each vision token only attends to a local region in vision features, which is referred to as saliency-enhancing local attention. Saliency-enhancing local attention not only improves computational efficiency but also captures more fine-grained contextual information and spatial relationships within the region. Comprehensive experiments on multiple visual understanding benchmarks validate the effectiveness of our method when combined with various Efficient Vision Projectors, showing performance gains without sacrificing efficiency. Based on Vision Remember, LLaVA-VR with only 2B parameters is also superior to previous representative MLLMs such as Tokenpacker-HD-7B and DeepSeek-VL-7B.
Multiple Stochastic Prompt Tuning for Practical Cross-Domain Few Shot Learning
In this work, we propose a practical cross-domain few-shot learning (pCDFSL) task, where a large-scale pre-trained model like CLIP can be easily deployed on a target dataset. The goal is to simultaneously classify all unseen classes under extreme domain shifts, by utilizing only a few labeled samples per class. The pCDFSL paradigm is source-free and moves beyond artificially created episodic training and testing regimes followed by existing CDFSL frameworks, making it more challenging and relevant to real-world applications. Towards that goal, we propose a novel framework, termed MIST (MultIple STochastic Prompt tuning), where multiple stochastic prompts are utilized to handle significant domain and semantic shifts. Specifically, multiple prompts are learnt for each class, effectively capturing multiple peaks in the input data. Furthermore, instead of representing the weights of the multiple prompts as point-estimates, we model them as learnable Gaussian distributions with two different strategies, encouraging an efficient exploration of the prompt parameter space, which mitigate overfitting due to the few labeled training samples. Extensive experiments and comparison with the state-of-the-art methods on four CDFSL benchmarks adapted to this setting, show the effectiveness of the proposed framework.
Learning from Noise: Enhancing DNNs for Event-Based Vision through Controlled Noise Injection
Event-based sensors offer significant advantages over traditional frame-based cameras, especially in scenarios involving rapid motion or challenging lighting conditions. However, event data frequently suffers from considerable noise, negatively impacting the performance and robustness of deep learning models. Traditionally, this problem has been addressed by applying filtering algorithms to the event stream, but this may also remove some of relevant data. In this paper, we propose a novel noise-injection training methodology designed to enhance the neural networks robustness against varying levels of event noise. Our approach introduces controlled noise directly into the training data, enabling models to learn noise-resilient representations. We have conducted extensive evaluations of the proposed method using multiple benchmark datasets (N-Caltech101, N-Cars, and Mini N-ImageNet) and various network architectures, including Convolutional Neural Networks, Vision Transformers, Spiking Neural Networks, and Graph Convolutional Networks. Experimental results show that our noise-injection training strategy achieves stable performance over a range of noise intensities, consistently outperforms event-filtering techniques, and achieves the highest average classification accuracy, making it a viable alternative to traditional event-data filtering methods in an object classification system. Code: https://github.com/vision-agh/DVS_Filtering
Joint Video Enhancement with Deblurring, Super-Resolution, and Frame Interpolation Network
Video quality is often severely degraded by multiple factors rather than a single factor. These low-quality videos can be restored to high-quality videos by sequentially performing appropriate video enhancement techniques. However, the sequential approach was inefficient and sub-optimal because most video enhancement approaches were designed without taking into account that multiple factors together degrade video quality. In this paper, we propose a new joint video enhancement method that mitigates multiple degradation factors simultaneously by resolving an integrated enhancement problem. Our proposed network, named DSFN, directly produces a high-resolution, high-frame-rate, and clear video from a low-resolution, low-frame-rate, and blurry video. In the DSFN, low-resolution and blurry input frames are enhanced by a joint deblurring and super-resolution (JDSR) module. Meanwhile, intermediate frames between input adjacent frames are interpolated by a triple-frame-based frame interpolation (TFBFI) module. The proper combination of the proposed modules of DSFN can achieve superior performance on the joint video enhancement task. Experimental results show that the proposed method outperforms other sequential state-of-the-art techniques on public datasets with a smaller network size and faster processing time.
Identifying Alzheimer's Disease Prediction Strategies of Convolutional Neural Network Classifiers using R2* Maps and Spectral Clustering
Deep learning models have shown strong performance in classifying Alzheimer's disease (AD) from R2* maps, but their decision-making remains opaque, raising concerns about interpretability. Previous studies suggest biases in model decisions, necessitating further analysis. This study uses Layer-wise Relevance Propagation (LRP) and spectral clustering to explore classifier decision strategies across preprocessing and training configurations using R2* maps. We trained a 3D convolutional neural network on R2* maps, generating relevance heatmaps via LRP and applied spectral clustering to identify dominant patterns. t-Stochastic Neighbor Embedding (t-SNE) visualization was used to assess clustering structure. Spectral clustering revealed distinct decision patterns, with the relevance-guided model showing the clearest separation between AD and normal control (NC) cases. The t-SNE visualization confirmed that this model aligned heatmap groupings with the underlying subject groups. Our findings highlight the significant impact of preprocessing and training choices on deep learning models trained on R2* maps, even with similar performance metrics. Spectral clustering offers a structured method to identify classification strategy differences, emphasizing the importance of explainability in medical AI.
comment: Accepted for the conference EUSIPCO2025 (https://eusipco2025.org/)
Video, How Do Your Tokens Merge? CVPR 2025
Video transformer models require huge amounts of compute resources due to the spatio-temporal scaling of the input. Tackling this, recent methods have proposed to drop or merge tokens for image models, whether randomly or via learned methods. Merging tokens has many benefits: it can be plugged into any vision transformer, does not require model re-training, and it propagates information that would otherwise be dropped through the model. Before now, video token merging has not been evaluated on temporally complex datasets for video understanding. In this work, we explore training-free token merging for video to provide comprehensive experiments and find best practices across four video transformers on three datasets that exhibit coarse and fine-grained action recognition. Our results showcase the benefits of video token merging with a speedup of around $2.5$X while maintaining accuracy (avg. $-0.55\%$ for ViViT). Code available at https://github.com/sjpollard/video-how-do-your-tokens-merge.
comment: Accepted at eLVM workshop at CVPR 2025
Kinship in Speech: Leveraging Linguistic Relatedness for Zero-Shot TTS in Indian Languages INTERSPEECH 2025
Text-to-speech (TTS) systems typically require high-quality studio data and accurate transcriptions for training. India has 1369 languages, with 22 official using 13 scripts. Training a TTS system for all these languages, most of which have no digital resources, seems a Herculean task. Our work focuses on zero-shot synthesis, particularly for languages whose scripts and phonotactics come from different families. The novelty of our work is in the augmentation of a shared phone representation and modifying the text parsing rules to match the phonotactics of the target language, thus reducing the synthesiser overhead and enabling rapid adaptation. Intelligible and natural speech was generated for Sanskrit, Maharashtrian and Canara Konkani, Maithili and Kurukh by leveraging linguistic connections across languages with suitable synthesisers. Evaluations confirm the effectiveness of this approach, highlighting its potential to expand speech technology access for under-represented languages.
comment: Accepted at INTERSPEECH 2025
JointSplat: Probabilistic Joint Flow-Depth Optimization for Sparse-View Gaussian Splatting
Reconstructing 3D scenes from sparse viewpoints is a long-standing challenge with wide applications. Recent advances in feed-forward 3D Gaussian sparse-view reconstruction methods provide an efficient solution for real-time novel view synthesis by leveraging geometric priors learned from large-scale multi-view datasets and computing 3D Gaussian centers via back-projection. Despite offering strong geometric cues, both feed-forward multi-view depth estimation and flow-depth joint estimation face key limitations: the former suffers from mislocation and artifact issues in low-texture or repetitive regions, while the latter is prone to local noise and global inconsistency due to unreliable matches when ground-truth flow supervision is unavailable. To overcome this, we propose JointSplat, a unified framework that leverages the complementarity between optical flow and depth via a novel probabilistic optimization mechanism. Specifically, this pixel-level mechanism scales the information fusion between depth and flow based on the matching probability of optical flow during training. Building upon the above mechanism, we further propose a novel multi-view depth-consistency loss to leverage the reliability of supervision while suppressing misleading gradients in uncertain areas. Evaluated on RealEstate10K and ACID, JointSplat consistently outperforms state-of-the-art (SOTA) methods, demonstrating the effectiveness and robustness of our proposed probabilistic joint flow-depth optimization approach for high-fidelity sparse-view 3D reconstruction.
Animal Pose Labeling Using General-Purpose Point Trackers
Automatically estimating animal poses from videos is important for studying animal behaviors. Existing methods do not perform reliably since they are trained on datasets that are not comprehensive enough to capture all necessary animal behaviors. However, it is very challenging to collect such datasets due to the large variations in animal morphology. In this paper, we propose an animal pose labeling pipeline that follows a different strategy, i.e. test time optimization. Given a video, we fine-tune a lightweight appearance embedding inside a pre-trained general-purpose point tracker on a sparse set of annotated frames. These annotations can be obtained from human labelers or off-the-shelf pose detectors. The fine-tuned model is then applied to the rest of the frames for automatic labeling. Our method achieves state-of-the-art performance at a reasonable annotation cost. We believe our pipeline offers a valuable tool for the automatic quantification of animal behavior. Visit our project webpage at https://zhuoyang-pan.github.io/animal-labeling.
Personalized MR-Informed Diffusion Models for 3D PET Image Reconstruction
Recent work has shown improved lesion detectability and flexibility to reconstruction hyperparameters (e.g. scanner geometry or dose level) when PET images are reconstructed by leveraging pre-trained diffusion models. Such methods train a diffusion model (without sinogram data) on high-quality, but still noisy, PET images. In this work, we propose a simple method for generating subject-specific PET images from a dataset of multi-subject PET-MR scans, synthesizing "pseudo-PET" images by transforming between different patients' anatomy using image registration. The images we synthesize retain information from the subject's MR scan, leading to higher resolution and the retention of anatomical features compared to the original set of PET images. With simulated and real [$^{18}$F]FDG datasets, we show that pre-training a personalized diffusion model with subject-specific "pseudo-PET" images improves reconstruction accuracy with low-count data. In particular, the method shows promise in combining information from a guidance MR scan without overly imposing anatomical features, demonstrating an improved trade-off between reconstructing PET-unique image features versus features present in both PET and MR. We believe this approach for generating and utilizing synthetic data has further applications to medical imaging tasks, particularly because patient-specific PET images can be generated without resorting to generative deep learning or large training datasets.
comment: 10 pages, 10 figures
ConText: Driving In-context Learning for Text Removal and Segmentation ICML 2025
This paper presents the first study on adapting the visual in-context learning (V-ICL) paradigm to optical character recognition tasks, specifically focusing on text removal and segmentation. Most existing V-ICL generalists employ a reasoning-as-reconstruction approach: they turn to using a straightforward image-label compositor as the prompt and query input, and then masking the query label to generate the desired output. This direct prompt confines the model to a challenging single-step reasoning process. To address this, we propose a task-chaining compositor in the form of image-removal-segmentation, providing an enhanced prompt that elicits reasoning with enriched intermediates. Additionally, we introduce context-aware aggregation, integrating the chained prompt pattern into the latent query representation, thereby strengthening the model's in-context reasoning. We also consider the issue of visual heterogeneity, which complicates the selection of homogeneous demonstrations in text recognition. Accordingly, this is effectively addressed through a simple self-prompting strategy, preventing the model's in-context learnability from devolving into specialist-like, context-free inference. Collectively, these insights culminate in our ConText model, which achieves new state-of-the-art across both in- and out-of-domain benchmarks. The code is available at https://github.com/Ferenas/ConText.
comment: 19 pages, 9 figures, Accepted at ICML 2025
CoLa: Chinese Character Decomposition with Compositional Latent Components
Humans can decompose Chinese characters into compositional components and recombine them to recognize unseen characters. This reflects two cognitive principles: Compositionality, the idea that complex concepts are built on simpler parts; and Learning-to-learn, the ability to learn strategies for decomposing and recombining components to form new concepts. These principles provide inductive biases that support efficient generalization. They are critical to Chinese character recognition (CCR) in solving the zero-shot problem, which results from the common long-tail distribution of Chinese character datasets. Existing methods have made substantial progress in modeling compositionality via predefined radical or stroke decomposition. However, they often ignore the learning-to-learn capability, limiting their ability to generalize beyond human-defined schemes. Inspired by these principles, we propose a deep latent variable model that learns Compositional Latent components of Chinese characters (CoLa) without relying on human-defined decomposition schemes. Recognition and matching can be performed by comparing compositional latent components in the latent space, enabling zero-shot character recognition. The experiments illustrate that CoLa outperforms previous methods in both character the radical zero-shot CCR. Visualization indicates that the learned components can reflect the structure of characters in an interpretable way. Moreover, despite being trained on historical documents, CoLa can analyze components of oracle bone characters, highlighting its cross-dataset generalization ability.
Analytical Reconstruction of Periodically Deformed Objects in Time-resolved CT
Time-resolved CT is an advanced measurement technique that has been widely used to observe dynamic objects, including periodically varying structures such as hearts, lungs, or hearing structures. To reconstruct these objects from CT projections, a common approach is to divide the projections into several collections based on their motion phases and perform reconstruction within each collection, assuming they originate from a static object. This describes the gating-based method, which is the standard approach for time-periodic reconstruction. However, the gating-based reconstruction algorithm only utilizes a limited subset of projections within each collection and ignores the correlation between different collections, leading to inefficient use of the radiation dose. To address this issue, we propose two analytical reconstruction pipelines in this paper, and validate them with experimental data captured using tomographic synchrotron microscopy. We demonstrate that our approaches significantly reduce random noise in the reconstructed images without blurring the sharp features of the observed objects. Equivalently, our methods can achieve the same reconstruction quality as gating-based methods but with a lower radiation dose. Our code is available at github.com/PeriodRecon.
HUMOF: Human Motion Forecasting in Interactive Social Scenes
Complex scenes present significant challenges for predicting human behaviour due to the abundance of interaction information, such as human-human and humanenvironment interactions. These factors complicate the analysis and understanding of human behaviour, thereby increasing the uncertainty in forecasting human motions. Existing motion prediction methods thus struggle in these complex scenarios. In this paper, we propose an effective method for human motion forecasting in interactive scenes. To achieve a comprehensive representation of interactions, we design a hierarchical interaction feature representation so that high-level features capture the overall context of the interactions, while low-level features focus on fine-grained details. Besides, we propose a coarse-to-fine interaction reasoning module that leverages both spatial and frequency perspectives to efficiently utilize hierarchical features, thereby enhancing the accuracy of motion predictions. Our method achieves state-of-the-art performance across four public datasets. Code will be released when this paper is published.
SAAT: Synergistic Alternating Aggregation Transformer for Image Super-Resolution
Single image super-resolution is a well-known downstream task which aims to restore low-resolution images into high-resolution images. At present, models based on Transformers have shone brightly in the field of super-resolution due to their ability to capture long-term dependencies in information. However, current methods typically compute self-attention in nonoverlapping windows to save computational costs, and the standard self-attention computation only focuses on its results, thereby neglecting the useful information across channels and the rich spatial structural information generated in the intermediate process. Channel attention and spatial attention have, respectively, brought significant improvements to various downstream visual tasks in terms of extracting feature dependency and spatial structure relationships, but the synergistic relationship between channel and spatial attention has not been fully explored yet.To address these issues, we propose a novel model. Synergistic Alternating Aggregation Transformer (SAAT), which can better utilize the potential information of features. In SAAT, we introduce the Efficient Channel & Window Synergistic Attention Group (CWSAG) and the Spatial & Window Synergistic Attention Group (SWSAG). On the one hand, CWSAG combines efficient channel attention with shifted window attention, enhancing non-local feature fusion, and producing more visually appealing results. On the other hand, SWSAG leverages spatial attention to capture rich structured feature information, thereby enabling SAAT to more effectively extract structural features.Extensive experimental results and ablation studies demonstrate the effectiveness of SAAT in the field of super-resolution. SAAT achieves performance comparable to that of the state-of-the-art (SOTA) under the same quantity of parameters.
ComRoPE: Scalable and Robust Rotary Position Embedding Parameterized by Trainable Commuting Angle Matrices
The Transformer architecture has revolutionized various regions since it was proposed, and its effectiveness largely depends on the ability to encode positional information. Traditional position encoding methods exhibit significant limitations due to lack of robustness and flexibility of position. Therefore, Rotary Positional Encoding (RoPE) was proposed to alleviate these issues, which integrates positional information by rotating the embeddings in the attention mechanism. However, RoPE requires manually defined rotation matrices with limited transformation space, constraining the model's capacity. In this work, we propose ComRoPE, which generalizes RoPE by defining it in terms of trainable commuting angle matrices. Specifically, we demonstrate that pairwise commutativity of these matrices is essential for RoPE to achieve scalability and positional robustness. We formally define the RoPE Equation, which is an essential condition that ensures consistent performance with position offsets. Based on the theoretical analysis, we present two types of trainable commuting angle matrices as sufficient solutions to the RoPE equation, which significantly improve performance, surpassing the current state-of-the-art method by 1.6% at training resolution and 2.9% at higher resolution on the ImageNet-1K dataset. Furthermore, our framework shows versatility in generalizing to existing RoPE formulations and offering new insights for future positional encoding research. To ensure reproducibility, the source code and instructions are available at https://github.com/Longin-Yu/ComRoPE
FSHNet: Fully Sparse Hybrid Network for 3D Object Detection CVPR2025
Fully sparse 3D detectors have recently gained significant attention due to their efficiency in long-range detection. However, sparse 3D detectors extract features only from non-empty voxels, which impairs long-range interactions and causes the center feature missing. The former weakens the feature extraction capability, while the latter hinders network optimization. To address these challenges, we introduce the Fully Sparse Hybrid Network (FSHNet). FSHNet incorporates a proposed SlotFormer block to enhance the long-range feature extraction capability of existing sparse encoders. The SlotFormer divides sparse voxels using a slot partition approach, which, compared to traditional window partition, provides a larger receptive field. Additionally, we propose a dynamic sparse label assignment strategy to deeply optimize the network by providing more high-quality positive samples. To further enhance performance, we introduce a sparse upsampling module to refine downsampled voxels, preserving fine-grained details crucial for detecting small objects. Extensive experiments on the Waymo, nuScenes, and Argoverse2 benchmarks demonstrate the effectiveness of FSHNet. The code is available at https://github.com/Say2L/FSHNet.
comment: Accepted by CVPR2025
PlückeRF: A Line-based 3D Representation for Few-view Reconstruction
Feed-forward 3D reconstruction methods aim to predict the 3D structure of a scene directly from input images, providing a faster alternative to per-scene optimization approaches. Significant progress has been made in single-view and few-view reconstruction using learned priors that infer object shape and appearance, even for unobserved regions. However, there is substantial potential to enhance these methods by better leveraging information from multiple views when available. To address this, we propose a few-view reconstruction model that more effectively harnesses multi-view information. Our approach introduces a simple mechanism that connects the 3D representation with pixel rays from the input views, allowing for preferential sharing of information between nearby 3D locations and between 3D locations and nearby pixel rays. We achieve this by defining the 3D representation as a set of structured, feature-augmented lines; the Pl\"uckeRF representation. Using this representation, we demonstrate improvements in reconstruction quality over the equivalent triplane representation and state-of-the-art feedforward reconstruction methods.
OSGNet @ Ego4D Episodic Memory Challenge 2025 CVPR
In this report, we present our champion solutions for the three egocentric video localization tracks of the Ego4D Episodic Memory Challenge at CVPR 2025. All tracks require precise localization of the interval within an untrimmed egocentric video. Previous unified video localization approaches often rely on late fusion strategies, which tend to yield suboptimal results. To address this, we adopt an early fusion-based video localization model to tackle all three tasks, aiming to enhance localization accuracy. Ultimately, our method achieved first place in the Natural Language Queries, Goal Step, and Moment Queries tracks, demonstrating its effectiveness. Our code can be found at https://github.com/Yisen-Feng/OSGNet.
comment: The champion solutions for the three egocentric video localization tracks(Natural Language Queries, Goal Step, and Moment Queries tracks) of the Ego4D Episodic Memory Challenge at CVPR EgoVis Workshop 2025
AetherVision-Bench: An Open-Vocabulary RGB-Infrared Benchmark for Multi-Angle Segmentation across Aerial and Ground Perspectives CVPR 2025
Open-vocabulary semantic segmentation (OVSS) involves assigning labels to each pixel in an image based on textual descriptions, leveraging world models like CLIP. However, they encounter significant challenges in cross-domain generalization, hindering their practical efficacy in real-world applications. Embodied AI systems are transforming autonomous navigation for ground vehicles and drones by enhancing their perception abilities, and in this study, we present AetherVision-Bench, a benchmark for multi-angle segmentation across aerial, and ground perspectives, which facilitates an extensive evaluation of performance across different viewing angles and sensor modalities. We assess state-of-the-art OVSS models on the proposed benchmark and investigate the key factors that impact the performance of zero-shot transfer models. Our work pioneers the creation of a robustness benchmark, offering valuable insights and establishing a foundation for future research.
comment: Accepted at Workshop on Foundation Models Meet Embodied Agents at CVPR 2025 (Non-archival Track)
OV-COAST: Cost Aggregation with Optimal Transport for Open-Vocabulary Semantic Segmentation CVPR 2025
Open-vocabulary semantic segmentation (OVSS) entails assigning semantic labels to each pixel in an image using textual descriptions, typically leveraging world models such as CLIP. To enhance out-of-domain generalization, we propose Cost Aggregation with Optimal Transport (OV-COAST) for open-vocabulary semantic segmentation. To align visual-language features within the framework of optimal transport theory, we employ cost volume to construct a cost matrix, which quantifies the distance between two distributions. Our approach adopts a two-stage optimization strategy: in the first stage, the optimal transport problem is solved using cost volume via Sinkhorn distance to obtain an alignment solution; in the second stage, this solution is used to guide the training of the CAT-Seg model. We evaluate state-of-the-art OVSS models on the MESS benchmark, where our approach notably improves the performance of the cost-aggregation model CAT-Seg with ViT-B backbone, achieving superior results, surpassing CAT-Seg by 1.72 % and SAN-B by 4.9 % mIoU. The code is available at https://github.com/adityagandhamal/OV-COAST/}{https://github.com/adityagandhamal/OV-COAST/ .
comment: Accepted at CVPR 2025 Workshop on Transformers for Vision (Non-archival track)
Advancements in Artificial Intelligence Applications for Cardiovascular Disease Research
Recent advancements in artificial intelligence (AI) have revolutionized cardiovascular medicine, particularly through integration with computed tomography (CT), magnetic resonance imaging (MRI), electrocardiography (ECG) and ultrasound (US). Deep learning architectures, including convolutional neural networks and generative adversarial networks, enable automated analysis of medical imaging and physiological signals, surpassing human capabilities in diagnostic accuracy and workflow efficiency. However, critical challenges persist, including the inability to validate input data accuracy, which may propagate diagnostic errors. This review highlights AI's transformative potential in precision diagnostics while underscoring the need for robust validation protocols to ensure clinical reliability. Future directions emphasize hybrid models integrating multimodal data and adaptive algorithms to refine personalized cardiovascular care.
DSSAU-Net:U-Shaped Hybrid Network for Pubic Symphysis and Fetal Head Segmentation MICCAI
In the childbirth process, traditional methods involve invasive vaginal examinations, but research has shown that these methods are both subjective and inaccurate. Ultrasound-assisted diagnosis offers an objective yet effective way to assess fetal head position via two key parameters: Angle of Progression (AoP) and Head-Symphysis Distance (HSD), calculated by segmenting the fetal head (FH) and pubic symphysis (PS), which aids clinicians in ensuring a smooth delivery process. Therefore, accurate segmentation of FH and PS is crucial. In this work, we propose a sparse self-attention network architecture with good performance and high computational efficiency, named DSSAU-Net, for the segmentation of FH and PS. Specifically, we stack varying numbers of Dual Sparse Selection Attention (DSSA) blocks at each stage to form a symmetric U-shaped encoder-decoder network architecture. For a given query, DSSA is designed to explicitly perform one sparse token selection at both the region and pixel levels, respectively, which is beneficial for further reducing computational complexity while extracting the most relevant features. To compensate for the information loss during the upsampling process, skip connections with convolutions are designed. Additionally, multiscale feature fusion is employed to enrich the model's global and local information. The performance of DSSAU-Net has been validated using the Intrapartum Ultrasound Grand Challenge (IUGC) 2024 \textit{test set} provided by the organizer in the MICCAI IUGC 2024 competition\footnote{\href{https://codalab.lisn.upsaclay.fr/competitions/18413\#learn\_the\_details}{https://codalab.lisn.upsaclay.fr/competitions/18413\#learn\_the\_details}}, where we win the fourth place on the tasks of classification and segmentation, demonstrating its effectiveness. The codes will be available at https://github.com/XiaZunhui/DSSAU-Net.
comment: 14 pages, 3 figures, 5 tables.Accepted by MICCAI Workshop on IUGC 2024
PRJ: Perception-Retrieval-Judgement for Generated Images
The rapid progress of generative AI has enabled remarkable creative capabilities, yet it also raises urgent concerns regarding the safety of AI-generated visual content in real-world applications such as content moderation, platform governance, and digital media regulation. This includes unsafe material such as sexually explicit images, violent scenes, hate symbols, propaganda, and unauthorized imitations of copyrighted artworks. Existing image safety systems often rely on rigid category filters and produce binary outputs, lacking the capacity to interpret context or reason about nuanced, adversarially induced forms of harm. In addition, standard evaluation metrics (e.g., attack success rate) fail to capture the semantic severity and dynamic progression of toxicity. To address these limitations, we propose Perception-Retrieval-Judgement (PRJ), a cognitively inspired framework that models toxicity detection as a structured reasoning process. PRJ follows a three-stage design: it first transforms an image into descriptive language (perception), then retrieves external knowledge related to harm categories and traits (retrieval), and finally evaluates toxicity based on legal or normative rules (judgement). This language-centric structure enables the system to detect both explicit and implicit harms with improved interpretability and categorical granularity. In addition, we introduce a dynamic scoring mechanism based on a contextual toxicity risk matrix to quantify harmfulness across different semantic dimensions. Experiments show that PRJ surpasses existing safety checkers in detection accuracy and robustness while uniquely supporting structured category-level toxicity interpretation.
How PARTs assemble into wholes: Learning the relative composition of images
The composition of objects and their parts, along with object-object positional relationships, provides a rich source of information for representation learning. Hence, spatial-aware pretext tasks have been actively explored in self-supervised learning. Existing works commonly start from a grid structure, where the goal of the pretext task involves predicting the absolute position index of patches within a fixed grid. However, grid-based approaches fall short of capturing the fluid and continuous nature of real-world object compositions. We introduce PART, a self-supervised learning approach that leverages continuous relative transformations between off-grid patches to overcome these limitations. By modeling how parts relate to each other in a continuous space, PART learns the relative composition of images-an off-grid structural relative positioning process that generalizes beyond occlusions and deformations. In tasks requiring precise spatial understanding such as object detection and time series prediction, PART outperforms strong grid-based methods like MAE and DropPos, while also maintaining competitive performance on global classification tasks with minimal hyperparameter tuning. By breaking free from grid constraints, PART opens up an exciting new trajectory for universal self-supervised pretraining across diverse datatypes-from natural images to EEG signals-with promising potential in video, medical imaging, and audio.
BiXFormer: A Robust Framework for Maximizing Modality Effectiveness in Multi-Modal Semantic Segmentation
Utilizing multi-modal data enhances scene understanding by providing complementary semantic and geometric information. Existing methods fuse features or distill knowledge from multiple modalities into a unified representation, improving robustness but restricting each modality's ability to fully leverage its strengths in different situations. We reformulate multi-modal semantic segmentation as a mask-level classification task and propose BiXFormer, which integrates Unified Modality Matching (UMM) and Cross Modality Alignment (CMA) to maximize modality effectiveness and handle missing modalities. Specifically, BiXFormer first categorizes multi-modal inputs into RGB and X, where X represents any non-RGB modalities, e.g., depth, allowing separate processing for each. This design leverages the well-established pretraining for RGB, while addressing the relative lack of attention to X modalities. Then, we propose UMM, which includes Modality Agnostic Matching (MAM) and Complementary Matching (CM). MAM assigns labels to features from all modalities without considering modality differences, leveraging each modality's strengths. CM then reassigns unmatched labels to remaining unassigned features within their respective modalities, ensuring that each available modality contributes to the final prediction and mitigating the impact of missing modalities. Moreover, to further facilitate UMM, we introduce CMA, which enhances the weaker queries assigned in CM by aligning them with optimally matched queries from MAM. Experiments on both synthetic and real-world multi-modal benchmarks demonstrate the effectiveness of our method, achieving significant improvements in mIoU of +2.75% and +22.74% over the prior arts.
Accelerating SfM-based Pose Estimation with Dominating Set
This paper introduces a preprocessing technique to speed up Structure-from-Motion (SfM) based pose estimation, which is critical for real-time applications like augmented reality (AR), virtual reality (VR), and robotics. Our method leverages the concept of a dominating set from graph theory to preprocess SfM models, significantly enhancing the speed of the pose estimation process without losing significant accuracy. Using the OnePose dataset, we evaluated our method across various SfM-based pose estimation techniques. The results demonstrate substantial improvements in processing speed, ranging from 1.5 to 14.48 times, and a reduction in reference images and point cloud size by factors of 17-23 and 2.27-4, respectively. This work offers a promising solution for efficient and accurate 3D pose estimation, balancing speed and accuracy in real-time applications.
ROSA: Addressing text understanding challenges in photographs via ROtated SAmpling
Visually impaired people could benefit from Visual Question Answering (VQA) systems to interpret text in their surroundings. However, current models often struggle with recognizing text in the photos taken by this population. Through in-depth interviews with visually impaired individuals, we identified common framing conventions that frequently result in misaligned text. Existing VQA benchmarks primarily feature well-oriented text captured by sighted users, under-representing these challenges. To address this gap, we introduce ROtated SAmpling (ROSA), a decoding strategy that enhances VQA performance in text-rich images with incorrectly oriented text. ROSA outperforms Greedy decoding by 11.7 absolute points in the best-performing model.
Intersectional Bias in Pre-Trained Image Recognition Models
Deep Learning models have achieved remarkable success. Training them is often accelerated by building on top of pre-trained models which poses the risk of perpetuating encoded biases. Here, we investigate biases in the representations of commonly used ImageNet classifiers for facial images while considering intersections of sensitive variables age, race and gender. To assess the biases, we use linear classifier probes and visualize activations as topographic maps. We find that representations in ImageNet classifiers particularly allow differentiation between ages. Less strongly pronounced, the models appear to associate certain ethnicities and distinguish genders in middle-aged groups.
comment: Summary paper accepted at the 3rd TRR 318 Conference: Contextualizing Explanations 2025
Zero-Shot Temporal Interaction Localization for Egocentric Videos
Locating human-object interaction (HOI) actions within video serves as the foundation for multiple downstream tasks, such as human behavior analysis and human-robot skill transfer. Current temporal action localization methods typically rely on annotated action and object categories of interactions for optimization, which leads to domain bias and low deployment efficiency. Although some recent works have achieved zero-shot temporal action localization (ZS-TAL) with large vision-language models (VLMs), their coarse-grained estimations and open-loop pipelines hinder further performance improvements for temporal interaction localization (TIL). To address these issues, we propose a novel zero-shot TIL approach dubbed EgoLoc to locate the timings of grasp actions for human-object interaction in egocentric videos. EgoLoc introduces a self-adaptive sampling strategy to generate reasonable visual prompts for VLM reasoning. By absorbing both 2D and 3D observations, it directly samples high-quality initial guesses around the possible contact/separation timestamps of HOI according to 3D hand velocities, leading to high inference accuracy and efficiency. In addition, EgoLoc generates closed-loop feedback from visual and dynamic cues to further refine the localization results. Comprehensive experiments on the publicly available dataset and our newly proposed benchmark demonstrate that EgoLoc achieves better temporal interaction localization for egocentric videos compared to state-of-the-art baselines. We will release our code and relevant data as open-source at https://github.com/IRMVLab/EgoLoc.
INP-Former++: Advancing Universal Anomaly Detection via Intrinsic Normal Prototypes and Residual Learning
Anomaly detection (AD) is essential for industrial inspection and medical diagnosis, yet existing methods typically rely on ``comparing'' test images to normal references from a training set. However, variations in appearance and positioning often complicate the alignment of these references with the test image, limiting detection accuracy. We observe that most anomalies manifest as local variations, meaning that even within anomalous images, valuable normal information remains. We argue that this information is useful and may be more aligned with the anomalies since both the anomalies and the normal information originate from the same image. Therefore, rather than relying on external normality from the training set, we propose INP-Former, a novel method that extracts Intrinsic Normal Prototypes (INPs) directly from the test image. Specifically, we introduce the INP Extractor, which linearly combines normal tokens to represent INPs. We further propose an INP Coherence Loss to ensure INPs can faithfully represent normality for the testing image. These INPs then guide the INP-guided Decoder to reconstruct only normal tokens, with reconstruction errors serving as anomaly scores. Additionally, we propose a Soft Mining Loss to prioritize hard-to-optimize samples during training. INP-Former achieves state-of-the-art performance in single-class, multi-class, and few-shot AD tasks across MVTec-AD, VisA, and Real-IAD, positioning it as a versatile and universal solution for AD. Remarkably, INP-Former also demonstrates some zero-shot AD capability. Furthermore, we propose a soft version of the INP Coherence Loss and enhance INP-Former by incorporating residual learning, leading to the development of INP-Former++. The proposed method significantly improves detection performance across single-class, multi-class, semi-supervised, few-shot, and zero-shot settings.
comment: 15 pages, 11 figures, 13 tables
MambaNeXt-YOLO: A Hybrid State Space Model for Real-time Object Detection
Real-time object detection is a fundamental but challenging task in computer vision, particularly when computational resources are limited. Although YOLO-series models have set strong benchmarks by balancing speed and accuracy, the increasing need for richer global context modeling has led to the use of Transformer-based architectures. Nevertheless, Transformers have high computational complexity because of their self-attention mechanism, which limits their practicality for real-time and edge deployments. To overcome these challenges, recent developments in linear state space models, such as Mamba, provide a promising alternative by enabling efficient sequence modeling with linear complexity. Building on this insight, we propose MambaNeXt-YOLO, a novel object detection framework that balances accuracy and efficiency through three key contributions: (1) MambaNeXt Block: a hybrid design that integrates CNNs with Mamba to effectively capture both local features and long-range dependencies; (2) Multi-branch Asymmetric Fusion Pyramid Network (MAFPN): an enhanced feature pyramid architecture that improves multi-scale object detection across various object sizes; and (3) Edge-focused Efficiency: our method achieved 66.6\% mAP at 31.9 FPS on the PASCAL VOC dataset without any pre-training and supports deployment on edge devices such as the NVIDIA Jetson Xavier NX and Orin NX.
EmoArt: A Multidimensional Dataset for Emotion-Aware Artistic Generation
With the rapid advancement of diffusion models, text-to-image generation has achieved significant progress in image resolution, detail fidelity, and semantic alignment, particularly with models like Stable Diffusion 3.5, Stable Diffusion XL, and FLUX 1. However, generating emotionally expressive and abstract artistic images remains a major challenge, largely due to the lack of large-scale, fine-grained emotional datasets. To address this gap, we present the EmoArt Dataset -- one of the most comprehensive emotion-annotated art datasets to date. It contains 132,664 artworks across 56 painting styles (e.g., Impressionism, Expressionism, Abstract Art), offering rich stylistic and cultural diversity. Each image includes structured annotations: objective scene descriptions, five key visual attributes (brushwork, composition, color, line, light), binary arousal-valence labels, twelve emotion categories, and potential art therapy effects. Using EmoArt, we systematically evaluate popular text-to-image diffusion models for their ability to generate emotionally aligned images from text. Our work provides essential data and benchmarks for emotion-driven image synthesis and aims to advance fields such as affective computing, multimodal learning, and computational art, enabling applications in art therapy and creative design. The dataset and more details can be accessed via our project website.
YOND: Practical Blind Raw Image Denoising Free from Camera-Specific Data Dependency
The rapid advancement of photography has created a growing demand for a practical blind raw image denoising method. Recently, learning-based methods have become mainstream due to their excellent performance. However, most existing learning-based methods suffer from camera-specific data dependency, resulting in performance drops when applied to data from unknown cameras. To address this challenge, we introduce a novel blind raw image denoising method named YOND, which represents You Only Need a Denoiser. Trained solely on synthetic data, YOND can generalize robustly to noisy raw images captured by diverse unknown cameras. Specifically, we propose three key modules to guarantee the practicality of YOND: coarse-to-fine noise estimation (CNE), expectation-matched variance-stabilizing transform (EM-VST), and SNR-guided denoiser (SNR-Net). Firstly, we propose CNE to identify the camera noise characteristic, refining the estimated noise parameters based on the coarse denoised image. Secondly, we propose EM-VST to eliminate camera-specific data dependency, correcting the bias expectation of VST according to the noisy image. Finally, we propose SNR-Net to offer controllable raw image denoising, supporting adaptive adjustments and manual fine-tuning. Extensive experiments on unknown cameras, along with flexible solutions for challenging cases, demonstrate the superior practicality of our method. The source code will be publicly available at the \href{https://fenghansen.github.io/publication/YOND}{project homepage}.
comment: 17 pages, 19 figures, TPAMI under review
Images are Worth Variable Length of Representations
Most existing vision encoders map images into a fixed-length sequence of tokens, overlooking the fact that different images contain varying amounts of information. For example, a visually complex image (e.g., a cluttered room) inherently carries more information and thus deserves more tokens than a simple image (e.g., a blank wall). To address this inefficiency, we propose DOVE, a dynamic vision encoder that produces a variable number of visual tokens (i.e., continuous representation vectors) to reconstruct each image. Our results show that DOVE significantly reduces the average number of tokens while maintaining high reconstruction quality. In several linear probing and downstream multimodal tasks, it outperforms existing autoencoder-based tokenization methods when using far fewer tokens, capturing more expressive semantic features compared to fixed-length encoding. We further extend DOVE with query-conditioned tokenization. By guiding the model to focus on query-relevant regions, it achieves more efficient and targeted semantic extraction. Our code and checkpoints are available at https://dove-encoder.github.io/dove-encoder.
Spatial Understanding from Videos: Structured Prompts Meet Simulation Data
Visual-spatial understanding, the ability to infer object relationships and layouts from visual input, is fundamental to downstream tasks such as robotic navigation and embodied interaction. However, existing methods face spatial uncertainty and data scarcity, limiting the 3D spatial reasoning capability of pre-trained vision-language models (VLMs). To address these challenges, we present a unified framework for enhancing 3D spatial reasoning in pre-trained VLMs without modifying their architecture. This framework combines SpatialMind, a structured prompting strategy that decomposes complex scenes and questions into interpretable reasoning steps, with ScanForgeQA, a scalable question-answering dataset built from diverse 3D simulation scenes through an automated construction process designed for fine-tuning. Extensive experiments across multiple benchmarks demonstrate the individual and combined effectiveness of our prompting and fine-tuning strategies, and yield insights that may inspire future research on visual-spatial understanding.
FingerVeinSyn-5M: A Million-Scale Dataset and Benchmark for Finger Vein Recognition
A major challenge in finger vein recognition is the lack of large-scale public datasets. Existing datasets contain few identities and limited samples per finger, restricting the advancement of deep learning-based methods. To address this, we introduce FVeinSyn, a synthetic generator capable of producing diverse finger vein patterns with rich intra-class variations. Using FVeinSyn, we created FingerVeinSyn-5M -- the largest available finger vein dataset -- containing 5 million samples from 50,000 unique fingers, each with 100 variations including shift, rotation, scale, roll, varying exposure levels, skin scattering blur, optical blur, and motion blur. FingerVeinSyn-5M is also the first to offer fully annotated finger vein images, supporting deep learning applications in this field. Models pretrained on FingerVeinSyn-5M and fine-tuned with minimal real data achieve an average 53.91\% performance gain across multiple benchmarks. The dataset is publicly available at: https://github.com/EvanWang98/FingerVeinSyn-5M.
Negative-Guided Subject Fidelity Optimization for Zero-Shot Subject-Driven Generation
We present Subject Fidelity Optimization (SFO), a novel comparative learning framework for zero-shot subject-driven generation that enhances subject fidelity. Beyond supervised fine-tuning methods that rely only on positive targets and use the diffusion loss as in the pre-training stage, SFO introduces synthetic negative targets and explicitly guides the model to favor positives over negatives through pairwise comparison. For negative targets, we propose Condition-Degradation Negative Sampling (CDNS), which automatically generates distinctive and informative negatives by intentionally degrading visual and textual cues without expensive human annotations. Moreover, we reweight the diffusion timesteps to focus finetuning on intermediate steps where subject details emerge. Extensive experiments demonstrate that SFO with CDNS significantly outperforms baselines in terms of both subject fidelity and text alignment on a subject-driven generation benchmark. Project page: https://subjectfidelityoptimization.github.io/
Isharah: A Large-Scale Multi-Scene Dataset for Continuous Sign Language Recognition
Current benchmarks for sign language recognition (SLR) focus mainly on isolated SLR, while there are limited datasets for continuous SLR (CSLR), which recognizes sequences of signs in a video. Additionally, existing CSLR datasets are collected in controlled settings, which restricts their effectiveness in building robust real-world CSLR systems. To address these limitations, we present Isharah, a large multi-scene dataset for CSLR. It is the first dataset of its type and size that has been collected in an unconstrained environment using signers' smartphone cameras. This setup resulted in high variations of recording settings, camera distances, angles, and resolutions. This variation helps with developing sign language understanding models capable of handling the variability and complexity of real-world scenarios. The dataset consists of 30,000 video clips performed by 18 deaf and professional signers. Additionally, the dataset is linguistically rich as it provides a gloss-level annotation for all dataset's videos, making it useful for developing CSLR and sign language translation (SLT) systems. This paper also introduces multiple sign language understanding benchmarks, including signer-independent and unseen-sentence CSLR, along with gloss-based and gloss-free SLT. The Isharah dataset is available on https://snalyami.github.io/Isharah_CSLR/.
VLMs Can Aggregate Scattered Training Patches
One way to mitigate risks in vision-language models (VLMs) is to remove dangerous samples in their training data. However, such data moderation can be easily bypassed when harmful images are split into small, benign-looking patches, scattered across many training samples. VLMs may then learn to piece these fragments together during training and generate harmful responses at inference, either from full images or text references. For instance, if trained on image patches from a bloody scene paired with the descriptions "safe," VLMs may later describe, the full image or a text reference to the scene, as "safe." We define the core ability of VLMs enabling this attack as $\textit{visual stitching}$ -- the ability to integrate visual information spread across multiple training samples that share the same textual descriptions. In our work, we first demonstrate visual stitching abilities in common open-source VLMs on three datasets where each image is labeled with a unique synthetic ID: we split each $(\texttt{image}, \texttt{ID})$ pair into $\{(\texttt{patch}, \texttt{ID})\}$ pairs at different granularity for finetuning, and we find that tuned models can verbalize the correct IDs from full images or text reference. Building on this, we simulate the adversarial data poisoning scenario mentioned above by using patches from dangerous images and replacing IDs with text descriptions like ``safe'' or ``unsafe'', demonstrating how harmful content can evade moderation in patches and later be reconstructed through visual stitching, posing serious VLM safety risks. Code is available at https://github.com/ZHZisZZ/visual-stitching.
PDSE: A Multiple Lesion Detector for CT Images using PANet and Deformable Squeeze-and-Excitation Block
Detecting lesions in Computed Tomography (CT) scans is a challenging task in medical image processing due to the diverse types, sizes, and locations of lesions. Recently, various one-stage and two-stage framework networks have been developed to focus on lesion localization. We introduce a one-stage lesion detection framework, PDSE, by redesigning Retinanet to achieve higher accuracy and efficiency for detecting lesions in multimodal CT images. Specifically, we enhance the path aggregation flow by incorporating a low-level feature map. Additionally, to improve model representation, we utilize the adaptive Squeeze-and-Excitation (SE) block and integrate channel feature map attention. This approach has resulted in achieving new state-of-the-art performance. Our method significantly improves the detection of small and multiscaled objects. When evaluated against other advanced algorithms on the public DeepLesion benchmark, our algorithm achieved an mAP of over 0.20.
comment: MIUA 2024
Analyzing Transformer Models and Knowledge Distillation Approaches for Image Captioning on Edge AI
Edge computing decentralizes processing power to network edge, enabling real-time AI-driven decision-making in IoT applications. In industrial automation such as robotics and rugged edge AI, real-time perception and intelligence are critical for autonomous operations. Deploying transformer-based image captioning models at the edge can enhance machine perception, improve scene understanding for autonomous robots, and aid in industrial inspection. However, these edge or IoT devices are often constrained in computational resources for physical agility, yet they have strict response time requirements. Traditional deep learning models can be too large and computationally demanding for these devices. In this research, we present findings of transformer-based models for image captioning that operate effectively on edge devices. By evaluating resource-effective transformer models and applying knowledge distillation techniques, we demonstrate inference can be accelerated on resource-constrained devices while maintaining model performance using these techniques.
Generating 6DoF Object Manipulation Trajectories from Action Description in Egocentric Vision CVPR 2025
Learning to use tools or objects in common scenes, particularly handling them in various ways as instructed, is a key challenge for developing interactive robots. Training models to generate such manipulation trajectories requires a large and diverse collection of detailed manipulation demonstrations for various objects, which is nearly unfeasible to gather at scale. In this paper, we propose a framework that leverages large-scale ego- and exo-centric video datasets -- constructed globally with substantial effort -- of Exo-Ego4D to extract diverse manipulation trajectories at scale. From these extracted trajectories with the associated textual action description, we develop trajectory generation models based on visual and point cloud-based language models. In the recently proposed egocentric vision-based in-a-quality trajectory dataset of HOT3D, we confirmed that our models successfully generate valid object trajectories, establishing a training dataset and baseline models for the novel task of generating 6DoF manipulation trajectories from action descriptions in egocentric vision.
comment: CVPR 2025
UniWorld: High-Resolution Semantic Encoders for Unified Visual Understanding and Generation
Although existing unified models achieve strong performance in vision-language understanding and text-to-image generation, they remain limited in addressing image perception and manipulation -- capabilities increasingly demanded in practical applications. Recently, OpenAI introduced the powerful GPT-4o-Image model, which showcases advanced capabilities in comprehensive image perception and manipulation, sparking widespread interest. Through carefully designed experiments, we observe that GPT-4o-Image likely relies on semantic encoders rather than VAEs for feature extraction, despite VAEs being commonly regarded as crucial for image manipulation tasks. Inspired by this insight, we propose UniWorld, a unified generative framework built upon semantic features extracted from powerful multimodal large language models and contrastive semantic encoders. Using only 2.7M training data, UniWorld achieves impressive performance across diverse tasks, including image understanding, generation, manipulation, and perception. We fully open-source the UniWorld framework, including model weights, training and evaluation scripts, and datasets to promote reproducibility and further research.
FlySearch: Exploring how vision-language models explore
The real world is messy and unstructured. Uncovering critical information often requires active, goal-driven exploration. It remains to be seen whether Vision-Language Models (VLMs), which recently emerged as a popular zero-shot tool in many difficult tasks, can operate effectively in such conditions. In this paper, we answer this question by introducing FlySearch, a 3D, outdoor, photorealistic environment for searching and navigating to objects in complex scenes. We define three sets of scenarios with varying difficulty and observe that state-of-the-art VLMs cannot reliably solve even the simplest exploration tasks, with the gap to human performance increasing as the tasks get harder. We identify a set of central causes, ranging from vision hallucination, through context misunderstanding, to task planning failures, and we show that some of them can be addressed by finetuning. We publicly release the benchmark, scenarios, and the underlying codebase.
Go Beyond Earth: Understanding Human Actions and Scenes in Microgravity Environments
Despite substantial progress in video understanding, most existing datasets are limited to Earth's gravitational conditions. However, microgravity alters human motion, interactions, and visual semantics, revealing a critical gap for real-world vision systems. This presents a challenge for domain-robust video understanding in safety-critical space applications. To address this, we introduce MicroG-4M, the first benchmark for spatio-temporal and semantic understanding of human activities in microgravity. Constructed from real-world space missions and cinematic simulations, the dataset includes 4,759 clips covering 50 actions, 1,238 context-rich captions, and over 7,000 question-answer pairs on astronaut activities and scene understanding. MicroG-4M supports three core tasks: fine-grained multi-label action recognition, temporal video captioning, and visual question answering, enabling a comprehensive evaluation of both spatial localization and semantic reasoning in microgravity contexts. We establish baselines using state-of-the-art models. All data, annotations, and code are available at https://github.com/LEI-QI-233/HAR-in-Space.
comment: 15 pages, 3 figures, code are available at https://github.com/LEI-QI-233/HAR-in-Space
MedEBench: Revisiting Text-instructed Image Editing on Medical Domain
Text-guided image editing has seen rapid progress in natural image domains, but its adaptation to medical imaging remains limited and lacks standardized evaluation. Clinically, such editing holds promise for simulating surgical outcomes, creating personalized teaching materials, and enhancing patient communication. To bridge this gap, we introduce MedEBench, a comprehensive benchmark for evaluating text-guided medical image editing. It consists of 1,182 clinically sourced image-prompt triplets spanning 70 tasks across 13 anatomical regions. MedEBench offers three key contributions: (1) a clinically relevant evaluation framework covering Editing Accuracy, Contextual Preservation, and Visual Quality, supported by detailed descriptions of expected change and ROI (Region of Interest) masks; (2) a systematic comparison of seven state-of-the-art models, revealing common failure patterns; and (3) a failure analysis protocol based on attention grounding, using IoU between attention maps and ROIs to identify mislocalization. MedEBench provides a solid foundation for developing and evaluating reliable, clinically meaningful medical image editing systems. Project website: https://mliuby.github.io/MedEBench_Website/
comment: Project website: https://mliuby.github.io/MedEBench_Website/
Open-PMC-18M: A High-Fidelity Large Scale Medical Dataset for Multimodal Representation Learning
Compound figures, which are multi-panel composites containing diverse subfigures, are ubiquitous in biomedical literature, yet large-scale subfigure extraction remains largely unaddressed. Prior work on subfigure extraction has been limited in both dataset size and generalizability, leaving a critical open question: How does high-fidelity image-text alignment via large-scale subfigure extraction impact representation learning in vision-language models? We address this gap by introducing a scalable subfigure extraction pipeline based on transformer-based object detection, trained on a synthetic corpus of 500,000 compound figures, and achieving state-of-the-art performance on both ImageCLEF 2016 and synthetic benchmarks. Using this pipeline, we release OPEN-PMC-18M, a large-scale high quality biomedical vision-language dataset comprising 18 million clinically relevant subfigure-caption pairs spanning radiology, microscopy, and visible light photography. We train and evaluate vision-language models on our curated datasets and show improved performance across retrieval, zero-shot classification, and robustness benchmarks, outperforming existing baselines. We release our dataset, models, and code to support reproducible benchmarks and further study into biomedical vision-language modeling and representation learning.
comment: 15 pages
FaceSleuth: Learning-Driven Single-Orientation Attention Verifies Vertical Dominance in Micro-Expression Recognition
Micro-expression recognition (MER) demands models that can amplify millisecond-level, low-amplitude facial motions while suppressing identity-specific appearance. We introduce FaceSleuth, a dual-stream architecture that (1) enhances motion along the empirically dominant vertical axix through a Continuously Vertical Attention (CVA) block, (2) localises the resulting signals with a Facial Position Focalizer built on hierarchical cross-window attention, and (3) steers feature learning toward physiologically meaningful regions via lightweight Action-Unit embeddings. To examine whether the hand-chosen vertical axis is indeed optimal, we further propose a Single-Orientation Attention (SOA) module that learns its own pooling direction end-to-end. SOA is differentiable, adds only 0.16 % parameters, and collapses to CVA when the learned angle converges to {\Pi}/2. In practice, SOA reliably drifts to 88{\deg}, confirming the effectiveness of the vertical prior while delivering consistent gains. On three standard MER benchmarks, FaceSleuth with CVA already surpasses previous state-of-the-art methods; plugging in SOA lifts accuracy and F1 score performance to 95.1 % / 0.918 on CASME II, 87.1 % / 0.840 on SAMM, and 92.9 % / 0.917 on MMEW without sacrificing model compactness. These results establish a new state of the art and, for the first time, provide empirical evidence that the vertical attention bias is the most discriminative orientation for MER.
comment: 12 pages, 2 figures
High Performance Space Debris Tracking in Complex Skylight Backgrounds with a Large-Scale Dataset
With the rapid development of space exploration, space debris has attracted more attention due to its potential extreme threat, leading to the need for real-time and accurate debris tracking. However, existing methods are mainly based on traditional signal processing, which cannot effectively process the complex background and dense space debris. In this paper, we propose a deep learning-based Space Debris Tracking Network~(SDT-Net) to achieve highly accurate debris tracking. SDT-Net effectively represents the feature of debris, enhancing the efficiency and stability of end-to-end model learning. To train and evaluate this model effectively, we also produce a large-scale dataset Space Debris Tracking Dataset (SDTD) by a novel observation-based data simulation scheme. SDTD contains 18,040 video sequences with a total of 62,562 frames and covers 250,000 synthetic space debris. Extensive experiments validate the effectiveness of our model and the challenging of our dataset. Furthermore, we test our model on real data from the Antarctic Station, achieving a MOTA score of 70.6%, which demonstrates its strong transferability to real-world scenarios. Our dataset and code will be released soon.
Generative Emotion Cause Explanation in Multimodal Conversations
Multimodal conversation, a crucial form of human communication, carries rich emotional content, making the exploration of the causes of emotions within it a research endeavor of significant importance. However, existing research on the causes of emotions typically employs an utterance selection method within a single textual modality to locate causal utterances. This approach remains limited to coarse-grained assessments, lacks nuanced explanations of emotional causation, and demonstrates inadequate capability in identifying multimodal emotional triggers. Therefore, we introduce a task-\textbf{Multimodal Emotion Cause Explanation in Conversation (MECEC)}. This task aims to generate a summary based on the multimodal context of conversations, clearly and intuitively describing the reasons that trigger a given emotion. To adapt to this task, we develop a new dataset (ECEM) based on the MELD dataset. ECEM combines video clips with detailed explanations of character emotions, helping to explore the causal factors behind emotional expression in multimodal conversations. A novel approach, FAME-Net, is further proposed, that harnesses the power of Large Language Models (LLMs) to analyze visual data and accurately interpret the emotions conveyed through facial expressions in videos. By exploiting the contagion effect of facial emotions, FAME-Net effectively captures the emotional causes of individuals engaged in conversations. Our experimental results on the newly constructed dataset show that FAME-Net outperforms several excellent baselines. Code and dataset are available at https://github.com/3222345200/FAME-Net.
A Survey on (M)LLM-Based GUI Agents
Graphical User Interface (GUI) Agents have emerged as a transformative paradigm in human-computer interaction, evolving from rule-based automation scripts to sophisticated AI-driven systems capable of understanding and executing complex interface operations. This survey provides a comprehensive examination of the rapidly advancing field of LLM-based GUI Agents, systematically analyzing their architectural foundations, technical components, and evaluation methodologies. We identify and analyze four fundamental components that constitute modern GUI Agents: (1) perception systems that integrate text-based parsing with multimodal understanding for comprehensive interface comprehension; (2) exploration mechanisms that construct and maintain knowledge bases through internal modeling, historical experience, and external information retrieval; (3) planning frameworks that leverage advanced reasoning methodologies for task decomposition and execution; and (4) interaction systems that manage action generation with robust safety controls. Through rigorous analysis of these components, we reveal how recent advances in large language models and multimodal learning have revolutionized GUI automation across desktop, mobile, and web platforms. We critically examine current evaluation frameworks, highlighting methodological limitations in existing benchmarks while proposing directions for standardization. This survey also identifies key technical challenges, including accurate element localization, effective knowledge retrieval, long-horizon planning, and safety-aware execution control, while outlining promising research directions for enhancing GUI Agents' capabilities. Our systematic review provides researchers and practitioners with a thorough understanding of the field's current state and offers insights into future developments in intelligent interface automation.
Right Side Up? Disentangling Orientation Understanding in MLLMs with Fine-grained Multi-axis Perception Tasks
Object orientation understanding represents a fundamental challenge in visual perception critical for applications like robotic manipulation and augmented reality. Current vision-language benchmarks fail to isolate this capability, often conflating it with positional relationships and general scene understanding. We introduce DORI (Discriminative Orientation Reasoning Intelligence), a comprehensive benchmark establishing object orientation perception as a primary evaluation target. DORI assesses four dimensions of orientation comprehension: frontal alignment, rotational transformations, relative directional relationships, and canonical orientation understanding. Through carefully curated tasks from 11 datasets spanning 67 object categories across synthetic and real-world scenarios, DORI provides insights on how multi-modal systems understand object orientations. Our evaluation of 15 state-of-the-art vision-language models reveals critical limitations: even the best models achieve only 54.2% accuracy on coarse tasks and 33.0% on granular orientation judgments, with performance deteriorating for tasks requiring reference frame shifts or compound rotations. These findings demonstrate the need for dedicated orientation representation mechanisms, as models show systematic inability to perform precise angular estimations, track orientation changes across viewpoints, and understand compound rotations - suggesting limitations in their internal 3D spatial representations. As the first diagnostic framework specifically designed for orientation awareness in multimodal systems, DORI offers implications for improving robotic control, 3D scene reconstruction, and human-AI interaction in physical environments. DORI data: https://huggingface.co/datasets/appledora/DORI-Benchmark
Bézier Splatting for Fast and Differentiable Vector Graphics Rendering
Differentiable vector graphics (VGs) are widely used in image vectorization and vector synthesis, while existing representations are costly to optimize and struggle to achieve high-quality rendering results for high-resolution images. This work introduces a new differentiable VG representation, dubbed B\'ezier Splatting, that enables fast yet high-fidelity VG rasterization. B\'ezier Splatting samples 2D Gaussians along B\'ezier curves, which naturally provide positional gradients at object boundaries. Thanks to the efficient splatting-based differentiable rasterizer, B\'ezier Splatting achieves 30x and 150x faster per forward and backward rasterization step for open curves compared to DiffVG. Additionally, we introduce an adaptive pruning and densification strategy that dynamically adjusts the spatial distribution of curves to escape local minima, further improving VG quality. Furthermore, our new VG representation supports conversion to standard XML-based SVG format, enhancing interoperability with existing VG tools and pipelines. Experimental results show that B\'ezier Splatting significantly outperforms existing methods with better visual fidelity and significant optimization speedup.
comment: Project page: https://xiliu8006.github.io/Bezier_splatting_project/
Single-Pass Object-Focused Data Selection
While unlabeled image data is often plentiful, the costs of high-quality labels pose an important practical challenge: Which images should one select for labeling to use the annotation budget for a particular target task most effectively? To address this problem, we focus on single-pass data selection, which refers to the process of selecting all data to be annotated at once before training a downstream model. Prior methods for single-pass data selection rely on image-level representations and fail to reliably outperform random selection for object detection and segmentation. We propose Object-Focused Data Selection (OFDS) which leverages object-level features from foundation models and ensures semantic coverage of all target classes. In extensive experiments across tasks and target domains, OFDS consistently outperforms random selection and all baselines. The best results for constrained annotation budgets are obtained by combining human labels from OFDS with autolabels from foundation models. Moreover, using OFDS to select the initial labeled set for active learning yields consistent improvements
Estimating Total Lung Volume from Pixel-level Thickness Maps of Chest Radiographs Using Deep Learning
Purpose: To estimate the total lung volume (TLV) from real and synthetic frontal chest radiographs (CXR) on a pixel level using lung thickness maps generated by a U-Net deep learning model. Methods: This retrospective study included 5,959 chest CT scans from two public datasets: the lung nodule analysis 2016 (n=656) and the Radiological Society of North America (RSNA) pulmonary embolism detection challenge 2020 (n=5,303). Additionally, 72 participants were selected from the Klinikum Rechts der Isar dataset (October 2018 to December 2019), each with a corresponding chest radiograph taken within seven days. Synthetic radiographs and lung thickness maps were generated using forward projection of CT scans and their lung segmentations. A U-Net model was trained on synthetic radiographs to predict lung thickness maps and estimate TLV. Model performance was assessed using mean squared error (MSE), Pearson correlation coefficient (r), and two-sided Student's t-distribution. Results: The study included 72 participants (45 male, 27 female, 33 healthy: mean age 62 years [range 34-80]; 39 with chronic obstructive pulmonary disease: mean age 69 years [range 47-91]). TLV predictions showed low error rates ($MSE_{Public-Synthetic}$=0.16 $L^2$, $MSE_{KRI-Synthetic}$=0.20 $L^2$, $MSE_{KRI-Real}$=0.35 $L^2$) and strong correlations with CT-derived reference standard TLV ($n_{Public-Synthetic}$=1,191, r=0.99, P<0.001; $n_{KRI-Synthetic}$=72, r=0.97, P<0.001; $n_{KRI-Real}$=72, r=0.91, P<0.001). The Luna16 test data demonstrated the highest performance, with the lowest mean squared error (MSE = 0.09 $L^2$) and strongest correlation (r = 0.99, P <0.001) for TLV estimation. Conclusion: The U-Net-generated pixel-level lung thickness maps successfully estimated TLV for both synthetic and real radiographs.
DualMap: Online Open-Vocabulary Semantic Mapping for Natural Language Navigation in Dynamic Changing Scenes
We introduce DualMap, an online open-vocabulary mapping system that enables robots to understand and navigate dynamically changing environments through natural language queries. Designed for efficient semantic mapping and adaptability to changing environments, DualMap meets the essential requirements for real-world robot navigation applications. Our proposed hybrid segmentation frontend and object-level status check eliminate the costly 3D object merging required by prior methods, enabling efficient online scene mapping. The dual-map representation combines a global abstract map for high-level candidate selection with a local concrete map for precise goal-reaching, effectively managing and updating dynamic changes in the environment. Through extensive experiments in both simulation and real-world scenarios, we demonstrate state-of-the-art performance in 3D open-vocabulary segmentation, efficient scene mapping, and online language-guided navigation.
comment: 8 pages, 5 figures. Code: https://github.com/Eku127/DualMap Project page: https://eku127.github.io/DualMap/
Generalized Diffusion Detector: Mining Robust Features from Diffusion Models for Domain-Generalized Detection CVPR2025
Domain generalization (DG) for object detection aims to enhance detectors' performance in unseen scenarios. This task remains challenging due to complex variations in real-world applications. Recently, diffusion models have demonstrated remarkable capabilities in diverse scene generation, which inspires us to explore their potential for improving DG tasks. Instead of generating images, our method extracts multi-step intermediate features during the diffusion process to obtain domain-invariant features for generalized detection. Furthermore, we propose an efficient knowledge transfer framework that enables detectors to inherit the generalization capabilities of diffusion models through feature and object-level alignment, without increasing inference time. We conduct extensive experiments on six challenging DG benchmarks. The results demonstrate that our method achieves substantial improvements of 14.0% mAP over existing DG approaches across different domains and corruption types. Notably, our method even outperforms most domain adaptation methods without accessing any target domain data. Moreover, the diffusion-guided detectors show consistent improvements of 15.9% mAP on average compared to the baseline. Our work aims to present an effective approach for domain-generalized detection and provide potential insights for robust visual recognition in real-world scenarios. The code is available at https://github.com/heboyong/Generalized-Diffusion-Detector.
comment: CVPR2025 camera-ready version with supplementary material
EnergyMoGen: Compositional Human Motion Generation with Energy-Based Diffusion Model in Latent Space CVPR 2025
Diffusion models, particularly latent diffusion models, have demonstrated remarkable success in text-driven human motion generation. However, it remains challenging for latent diffusion models to effectively compose multiple semantic concepts into a single, coherent motion sequence. To address this issue, we propose EnergyMoGen, which includes two spectrums of Energy-Based Models: (1) We interpret the diffusion model as a latent-aware energy-based model that generates motions by composing a set of diffusion models in latent space; (2) We introduce a semantic-aware energy model based on cross-attention, which enables semantic composition and adaptive gradient descent for text embeddings. To overcome the challenges of semantic inconsistency and motion distortion across these two spectrums, we introduce Synergistic Energy Fusion. This design allows the motion latent diffusion model to synthesize high-quality, complex motions by combining multiple energy terms corresponding to textual descriptions. Experiments show that our approach outperforms existing state-of-the-art models on various motion generation tasks, including text-to-motion generation, compositional motion generation, and multi-concept motion generation. Additionally, we demonstrate that our method can be used to extend motion datasets and improve the text-to-motion task.
comment: Accepted to CVPR 2025. Project page: https://jiro-zhang.github.io/EnergyMoGen/
Rapid Bone Scintigraphy Enhancement via Semantic Prior Distillation from Segment Anything Model
Rapid bone scintigraphy is crucial for diagnosing skeletal disorders and detecting tumor metastases in children, as it shortens scan duration and reduces discomfort. However, accelerated acquisition often degrades image quality, impairing the visibility of fine anatomical details and potentially compromising diagnosis. To overcome this limitation, we introduce the first application of SAM-based semantic priors for medical image restoration, utilizing the Segment Anything Model (SAM) to enhance pediatric rapid bone scintigraphy. Our approach employs two cascaded networks, $f^{IR1}$ and $f^{IR2}$, supported by three specialized modules: a Semantic Prior Integration (SPI) module, a Semantic Knowledge Distillation (SKD) module, and a Semantic Consistency Module (SCM). The SPI and SKD modules inject domain-specific semantic cues from a fine-tuned SAM, while the SCM preserves coherent semantic feature representations across both cascaded stages. Moreover, we present RBS, a novel Rapid Bone Scintigraphy dataset comprising paired standard (20 cm/min) and rapid (40 cm/min) scans from 137 pediatric patients aged 0.5 - 16 years, making it the first dataset tailored for pediatric rapid bone scintigraphy restoration. Extensive experiments on both a public endoscopic dataset and our RBS dataset demonstrate that our method consistently surpasses existing techniques in PSNR, SSIM, FID, and LPIPS metrics.
comment: 12 pages, 9 figures, 8 tables
MM-IQ: Benchmarking Human-Like Abstraction and Reasoning in Multimodal Models
IQ testing has served as a foundational methodology for evaluating human cognitive capabilities, deliberately decoupling assessment from linguistic background, language proficiency, or domain-specific knowledge to isolate core competencies in abstraction and reasoning. Yet, artificial intelligence research currently lacks systematic benchmarks to quantify these critical cognitive capabilities in multimodal systems. To address this crucial gap, we propose MM-IQ, a comprehensive evaluation framework, which comprises a large-scale training set with 4,776 visual reasoning problems and 2,710 meticulously curated test items spanning 8 distinct reasoning paradigms. Through systematic evaluation of existing open-source and proprietary multimodal models, our benchmark reveals striking limitations: even state-of-the-art architectures achieve only marginally superior performance to random chance (33.17% vs. 25% baseline accuracy). This substantial performance chasm highlights the inadequacy of current multimodal models in approximating fundamental human reasoning capacities, underscoring the need for paradigm-shifting advancements to bridge this cognitive divide. Moreover, inspired by the recent surge of large reasoning models, we also release a multimodal reasoning model as the baseline that is trained via reinforcement learning with verifiable reward functions, reaching competitive performance to the state-of-the-art with a notably smaller model size.
MammAlps: A multi-view video behavior monitoring dataset of wild mammals in the Swiss Alps CVPR 2025
Monitoring wildlife is essential for ecology and ethology, especially in light of the increasing human impact on ecosystems. Camera traps have emerged as habitat-centric sensors enabling the study of wildlife populations at scale with minimal disturbance. However, the lack of annotated video datasets limits the development of powerful video understanding models needed to process the vast amount of fieldwork data collected. To advance research in wild animal behavior monitoring we present MammAlps, a multimodal and multi-view dataset of wildlife behavior monitoring from 9 camera-traps in the Swiss National Park. MammAlps contains over 14 hours of video with audio, 2D segmentation maps and 8.5 hours of individual tracks densely labeled for species and behavior. Based on 6135 single animal clips, we propose the first hierarchical and multimodal animal behavior recognition benchmark using audio, video and reference scene segmentation maps as inputs. Furthermore, we also propose a second ecology-oriented benchmark aiming at identifying activities, species, number of individuals and meteorological conditions from 397 multi-view and long-term ecological events, including false positive triggers. We advocate that both tasks are complementary and contribute to bridging the gap between machine learning and ecology. Code and data are available at: https://github.com/eceo-epfl/MammAlps
comment: CVPR 2025; Benchmark and code at: https://github.com/eceo-epfl/MammAlps. After submission of v1, we noticed that a few audio files were not correctly aligned with the corresponding video. We fixed the issue, which had little to no impact on performance. We also now report results for three runs
Comparing the Effects of Persistence Barcodes Aggregation and Feature Concatenation on Medical Imaging
In medical image analysis, feature engineering plays an important role in the design and performance of machine learning models. Persistent homology (PH), from the field of topological data analysis (TDA), demonstrates robustness and stability to data perturbations and addresses the limitation from traditional feature extraction approaches where a small change in input results in a large change in feature representation. Using PH, we store persistent topological and geometrical features in the form of the persistence barcode whereby large bars represent global topological features and small bars encapsulate geometrical information of the data. When multiple barcodes are computed from 2D or 3D medical images, two approaches can be used to construct the final topological feature vector in each dimension: aggregating persistence barcodes followed by featurization or concatenating topological feature vectors derived from each barcode. In this study, we conduct a comprehensive analysis across diverse medical imaging datasets to compare the effects of the two aforementioned approaches on the performance of classification models. The results of this analysis indicate that feature concatenation preserves detailed topological information from individual barcodes, yields better classification performance and is therefore a preferred approach when conducting similar experiments.
comment: 16 pages, 8 figures
UltraBones100k: A reliable automated labeling method and large-scale dataset for ultrasound-based bone surface extraction
Ultrasound-based bone surface segmentation is crucial in computer-assisted orthopedic surgery. However, ultrasound images have limitations, including a low signal-to-noise ratio, and acoustic shadowing, which make interpretation difficult. Existing deep learning models for bone segmentation rely primarily on costly manual labeling by experts, limiting dataset size and model generalizability. Additionally, the complexity of ultrasound physics and acoustic shadow makes the images difficult for humans to interpret, leading to incomplete labels in anechoic regions and limiting model performance. To advance ultrasound bone segmentation and establish effective model benchmarks, larger and higher-quality datasets are needed. We propose a methodology for collecting ex-vivo ultrasound datasets with automatically generated bone labels, including anechoic regions. The proposed labels are derived by accurately superimposing tracked bone CT models onto the tracked ultrasound images. These initial labels are refined to account for ultrasound physics. A clinical evaluation is conducted by an expert physician specialized on orthopedic sonography to assess the quality of the generated bone labels. A neural network for bone segmentation is trained on the collected dataset and its predictions are compared to expert manual labels, evaluating accuracy, completeness, and F1-score. We collected the largest known dataset of 100k ultrasound images of human lower limbs with bone labels, called UltraBones100k. A Wilcoxon signed-rank test with Bonferroni correction confirmed that the bone alignment after our method significantly improved the quality of bone labeling (p < 0.001). The model trained on UltraBones100k consistently outperforms manual labeling in all metrics, particularly in low-intensity regions (320% improvement in completeness at a distance threshold of 0.5 mm).
comment: accepted by Computers in Biology and Medicine
Galileo: Learning Global & Local Features of Many Remote Sensing Modalities
We introduce a highly multimodal transformer to represent many remote sensing modalities - multispectral optical, synthetic aperture radar, elevation, weather, pseudo-labels, and more - across space and time. These inputs are useful for diverse remote sensing tasks, such as crop mapping and flood detection. However, learning shared representations of remote sensing data is challenging, given the diversity of relevant data modalities, and because objects of interest vary massively in scale, from small boats (1-2 pixels and fast) to glaciers (thousands of pixels and slow). We present a novel self-supervised learning algorithm that extracts multi-scale features across a flexible set of input modalities through masked modeling. Our dual global and local contrastive losses differ in their targets (deep representations vs. shallow input projections) and masking strategies (structured vs. not). Our Galileo is a single generalist model that outperforms SoTA specialist models for satellite images and pixel time series across eleven benchmarks and multiple tasks.
KAN-HyperpointNet for Point Cloud Sequence-Based 3D Human Action Recognition
Point cloud sequence-based 3D action recognition has achieved impressive performance and efficiency. However, existing point cloud sequence modeling methods cannot adequately balance the precision of limb micro-movements with the integrity of posture macro-structure, leading to the loss of crucial information cues in action inference. To overcome this limitation, we introduce D-Hyperpoint, a novel data type generated through a D-Hyperpoint Embedding module. D-Hyperpoint encapsulates both regional-momentary motion and global-static posture, effectively summarizing the unit human action at each moment. In addition, we present a D-Hyperpoint KANsMixer module, which is recursively applied to nested groupings of D-Hyperpoints to learn the action discrimination information and creatively integrates Kolmogorov-Arnold Networks (KAN) to enhance spatio-temporal interaction within D-Hyperpoints. Finally, we propose KAN-HyperpointNet, a spatio-temporal decoupled network architecture for 3D action recognition. Extensive experiments on two public datasets: MSR Action3D and NTU-RGB+D 60, demonstrate the state-of-the-art performance of our method.
Objective drives the consistency of representational similarity across datasets
The Platonic Representation Hypothesis claims that recent foundation models are converging to a shared representation space as a function of their downstream task performance, irrespective of the objectives and data modalities used to train these models (Huh et al., 2024). Representational similarity is generally measured for individual datasets and is not necessarily consistent across datasets. Thus, one may wonder whether this convergence of model representations is confounded by the datasets commonly used in machine learning. Here, we propose a systematic way to measure how representational similarity between models varies with the set of stimuli used to construct the representations. We find that the objective function is a crucial factor in determining the consistency of representational similarities across datasets. Specifically, self-supervised vision models learn representations whose relative pairwise similarities generalize better from one dataset to another compared to those of image classification or image-text models. Moreover, the correspondence between representational similarities and the models' task behavior is dataset-dependent, being most strongly pronounced for single-domain datasets. Our work provides a framework for analyzing similarities of model representations across datasets and linking those similarities to differences in task behavior.
comment: 26 pages
Two-stage deep learning framework for the restoration of incomplete-ring PET images
Positron Emission Tomography (PET) is an important molecular imaging tool widely used in medicine. Traditional PET systems rely on complete detector rings for full angular coverage and reliable data collection. However, incomplete-ring PET scanners have emerged due to hardware failures, cost constraints, or specific clinical needs. Standard reconstruction algorithms often suffer from performance degradation with these systems because of reduced data completeness and geometric inconsistencies. We present a two-stage deep-learning framework that, without incorporating any time-of-flight (TOF) information, restores high-quality images from data with about 50% missing coincidences - double the loss levels previously addressed by CNN-based methods. The pipeline operates in two stages: a projection-domain Attention U-Net first predicts the missing sections of the sinogram by leveraging spatial context from neighbouring slices, after which the completed data are reconstructed with OSEM algorithm and passed to a U-Net-diffusion module that removes residual artefacts while reinstating high-frequency detail. Using 206 brain volumes from a public dataset, the result shows that our model successfully preserves most anatomical structures and tracer distribution features with PSNR of 30.92 dB and SSIM of 0.9708. We also achieve higher inference speed, thus providing an effective solution for incomplete-ring PET imaging.
comment: 20 pages, 7 figures
Diffusing DeBias: Synthetic Bias Amplification for Model Debiasing
Deep learning model effectiveness in classification tasks is often challenged by the quality and quantity of training data whenever they are affected by strong spurious correlations between specific attributes and target labels. This results in a form of bias affecting training data, which typically leads to unrecoverable weak generalization in prediction. This paper aims at facing this problem by leveraging bias amplification with generated synthetic data: we introduce Diffusing DeBias (DDB), a novel approach acting as a plug-in for common methods of unsupervised model debiasing exploiting the inherent bias-learning tendency of diffusion models in data generation. Specifically, our approach adopts conditional diffusion models to generate synthetic bias-aligned images, which replace the original training set for learning an effective bias amplifier model that we subsequently incorporate into an end-to-end and a two-step unsupervised debiasing approach. By tackling the fundamental issue of bias-conflicting training samples memorization in learning auxiliary models, typical of this type of techniques, our proposed method beats current state-of-the-art in multiple benchmark datasets, demonstrating its potential as a versatile and effective tool for tackling bias in deep learning models.
comment: 18 Pages, 9 Figures
Data-Juicer Sandbox: A Feedback-Driven Suite for Multimodal Data-Model Co-development ICML 2025
The emergence of multimodal large models has advanced artificial intelligence, introducing unprecedented levels of performance and functionality. However, optimizing these models remains challenging due to historically isolated paths of model-centric and data-centric developments, leading to suboptimal outcomes and inefficient resource utilization. In response, we present a new sandbox suite tailored for integrated data-model co-development. This sandbox provides a feedback-driven experimental platform, enabling cost-effective iteration and guided refinement of both data and models. Our proposed ``Probe-Analyze-Refine'' workflow, validated through practical use cases on multimodal tasks such as image-text pre-training with CLIP, image-to-text generation with LLaVA-like models, and text-to-video generation with DiT-based models, yields transferable and notable performance boosts, such as topping the VBench leaderboard. A comprehensive set of over 100 experiments demonstrated the suite's usability and extensibility, while also uncovering insights into the interplay between data quality, diversity, model behavior, and computational costs. All codes, datasets, and models are open-sourced to foster future research and applications that would otherwise be infeasible due to the lack of a dedicated co-development infrastructure.
comment: Accepted by ICML 2025 (Spotlight). 33 pages, 16 tables, 14 figures
Flow-GRPO: Training Flow Matching Models via Online RL
We propose Flow-GRPO, the first method integrating online reinforcement learning (RL) into flow matching models. Our approach uses two key strategies: (1) an ODE-to-SDE conversion that transforms a deterministic Ordinary Differential Equation (ODE) into an equivalent Stochastic Differential Equation (SDE) that matches the original model's marginal distribution at all timesteps, enabling statistical sampling for RL exploration; and (2) a Denoising Reduction strategy that reduces training denoising steps while retaining the original inference timestep number, significantly improving sampling efficiency without performance degradation. Empirically, Flow-GRPO is effective across multiple text-to-image tasks. For complex compositions, RL-tuned SD3.5 generates nearly perfect object counts, spatial relations, and fine-grained attributes, boosting GenEval accuracy from 63% to 95%. In visual text rendering, its accuracy improves from 59% to 92%, significantly enhancing text generation. Flow-GRPO also achieves substantial gains in human preference alignment. Notably, very little reward hacking occurred, meaning rewards did not increase at the cost of appreciable image quality or diversity degradation.
comment: Code: https://github.com/yifan123/flow_grpo
CARL: Camera-Agnostic Representation Learning for Spectral Image Analysis
Spectral imaging offers promising applications across diverse domains, including medicine and urban scene understanding, and is already established as a critical modality in remote sensing. However, variability in channel dimensionality and captured wavelengths among spectral cameras impede the development of AI-driven methodologies, leading to camera-specific models with limited generalizability and inadequate cross-camera applicability. To address this bottleneck, we introduce $\textbf{CARL}$, a model for $\textbf{C}$amera-$\textbf{A}$gnostic $\textbf{R}$epresentation $\textbf{L}$earning across RGB, multispectral, and hyperspectral imaging modalities. To enable the conversion of a spectral image with any channel dimensionality to a camera-agnostic embedding, we introduce wavelength positional encoding and a self-attention-cross-attention mechanism to compress spectral information into learned query representations. Spectral-spatial pre-training is achieved with a novel spectral self-supervised JEPA-inspired strategy tailored to CARL. Large-scale experiments across the domains of medical imaging, autonomous driving, and satellite imaging demonstrate our model's unique robustness to spectral heterogeneity, outperforming on datasets with simulated and real-world cross-camera spectral variations. The scalability and versatility of the proposed approach position our model as a backbone for future spectral foundation models.
RAC3: Retrieval-Augmented Corner Case Comprehension for Autonomous Driving with Vision-Language Models
Understanding and addressing corner cases is essential for ensuring the safety and reliability of autonomous driving systems. Vision-language models (VLMs) play a crucial role in enhancing scenario comprehension, yet they face significant challenges, such as hallucination and insufficient real-world grounding, which compromise their performance in critical driving scenarios. In this work, RAC3, a novel framework designed to enhance the performance of VLMs in corner case comprehension, is proposed. RAC3 integrates a frequency-spatial fusion (FSF) image encoder, a cross-modal alignment training method for embedding models with hard and semi-hard negative mining, and a fast querying and retrieval pipeline based on K-Means clustering and hierarchical navigable small world (HNSW) indexing. A multimodal chain-of-thought (CoT) prompting strategy to guide analogical reasoning and reduce hallucinations during inference is introduced. Moreover, an update mechanism is integrated into RAC3 to ensure continual learning within the framework. Extensive experiments on the CODA and nuScenes datasets demonstrate that RAC3 significantly improves corner case comprehension across multiple downstream tasks. Compared to prior state-of-the-art methods, RAC3 achieves the highest final score of 74.46 on the CODA-LM benchmark and shows consistent performance gains when integrated with end-to-end frameworks like DriveLM. These results demonstrate the effectiveness of retrieval-augmented strategies and cross-modal alignment for safer and more interpretable autonomous driving.
comment: 14 pages, 7 figures
NTIRE 2025 Challenge on RAW Image Restoration and Super-Resolution CVPR 2025
This paper reviews the NTIRE 2025 RAW Image Restoration and Super-Resolution Challenge, highlighting the proposed solutions and results. New methods for RAW Restoration and Super-Resolution could be essential in modern Image Signal Processing (ISP) pipelines, however, this problem is not as explored as in the RGB domain. The goal of this challenge is two fold, (i) restore RAW images with blur and noise degradations, (ii) upscale RAW Bayer images by 2x, considering unknown noise and blur. In the challenge, a total of 230 participants registered, and 45 submitted results during thee challenge period. This report presents the current state-of-the-art in RAW Restoration.
comment: CVPR 2025 - New Trends in Image Restoration and Enhancement (NTIRE)
FlexTok: Resampling Images into 1D Token Sequences of Flexible Length ICML 2025
Image tokenization has enabled major advances in autoregressive image generation by providing compressed, discrete representations that are more efficient to process than raw pixels. While traditional approaches use 2D grid tokenization, recent methods like TiTok have shown that 1D tokenization can achieve high generation quality by eliminating grid redundancies. However, these methods typically use a fixed number of tokens and thus cannot adapt to an image's inherent complexity. We introduce FlexTok, a tokenizer that projects 2D images into variable-length, ordered 1D token sequences. For example, a 256x256 image can be resampled into anywhere from 1 to 256 discrete tokens, hierarchically and semantically compressing its information. By training a rectified flow model as the decoder and using nested dropout, FlexTok produces plausible reconstructions regardless of the chosen token sequence length. We evaluate our approach in an autoregressive generation setting using a simple GPT-style Transformer. On ImageNet, this approach achieves an FID<2 across 8 to 128 tokens, outperforming TiTok and matching state-of-the-art methods with far fewer tokens. We further extend the model to support to text-conditioned image generation and examine how FlexTok relates to traditional 2D tokenization. A key finding is that FlexTok enables next-token prediction to describe images in a coarse-to-fine "visual vocabulary", and that the number of tokens to generate depends on the complexity of the generation task.
comment: ICML 2025. Project page at https://flextok.epfl.ch/
VCT: Training Consistency Models with Variational Noise Coupling
Consistency Training (CT) has recently emerged as a strong alternative to diffusion models for image generation. However, non-distillation CT often suffers from high variance and instability, motivating ongoing research into its training dynamics. We propose Variational Consistency Training (VCT), a flexible and effective framework compatible with various forward kernels, including those in flow matching. Its key innovation is a learned noise-data coupling scheme inspired by Variational Autoencoders, where a data-dependent encoder models noise emission. This enables VCT to adaptively learn noise-todata pairings, reducing training variance relative to the fixed, unsorted pairings in classical CT. Experiments on multiple image datasets demonstrate significant improvements: our method surpasses baselines, achieves state-of-the-art FID among non-distillation CT approaches on CIFAR-10, and matches SoTA performance on ImageNet 64 x 64 with only two sampling steps. Code is available at https://github.com/sony/vct.
comment: 23 pages, 11 figures
Towards a deep learning approach for classifying treatment response in glioblastomas
Glioblastomas are the most aggressive type of glioma, having a 5-year survival rate of 6.9%. Treatment typically involves surgery, followed by radiotherapy and chemotherapy, and frequent magnetic resonance imaging (MRI) scans to monitor disease progression. To assess treatment response, radiologists use the Response Assessment in Neuro-Oncology (RANO) criteria to categorize the tumor into one of four labels based on imaging and clinical features: complete response, partial response, stable disease, and progressive disease. This assessment is very complex and time-consuming. Since deep learning (DL) has been widely used to tackle classification problems, this work aimed to implement the first DL pipeline for the classification of RANO criteria based on two consecutive MRI acquisitions. The models were trained and tested on the open dataset LUMIERE. Five approaches were tested: 1) subtraction of input images, 2) different combinations of modalities, 3) different model architectures, 4) different pretraining tasks, and 5) adding clinical data. The pipeline that achieved the best performance used a Densenet264 considering only T1-weighted, T2-weighted, and Fluid Attenuated Inversion Recovery (FLAIR) images as input without any pretraining. A median Balanced Accuracy of 50.96% was achieved. Additionally, explainability methods were applied. Using Saliency Maps, the tumor region was often successfully highlighted. In contrast, Grad-CAM typically failed to highlight the tumor region, with some exceptions observed in the Complete Response and Progressive Disease classes, where it effectively identified the tumor region. These results set a benchmark for future studies on glioblastoma treatment response assessment based on the RANO criteria while emphasizing the heterogeneity of factors that might play a role when assessing the tumor's response to treatment.
EasyInv: Toward Fast and Better DDIM Inversion ICML 2025
This paper introduces EasyInv, an easy yet novel approach that significantly advances the field of DDIM Inversion by addressing the inherent inefficiencies and performance limitations of traditional iterative optimization methods. At the core of our EasyInv is a refined strategy for approximating inversion noise, which is pivotal for enhancing the accuracy and reliability of the inversion process. By prioritizing the initial latent state, which encapsulates rich information about the original images, EasyInv steers clear of the iterative refinement of noise items. Instead, we introduce a methodical aggregation of the latent state from the preceding time step with the current state, effectively increasing the influence of the initial latent state and mitigating the impact of noise. We illustrate that EasyInv is capable of delivering results that are either on par with or exceed those of the conventional DDIM Inversion approach, especially under conditions where the model's precision is limited or computational resources are scarce. Concurrently, our EasyInv offers an approximate threefold enhancement regarding inference efficiency over off-the-shelf iterative optimization techniques. It can be easily combined with most existing inversion methods by only four lines of code. See code at https://github.com/potato-kitty/EasyInv.
comment: Accepted by ICML 2025
Learning 3D Representations from Procedural 3D Programs CVPR2025
Self-supervised learning has emerged as a promising approach for acquiring transferable 3D representations from unlabeled 3D point clouds. Unlike 2D images, which are widely accessible, acquiring 3D assets requires specialized expertise or professional 3D scanning equipment, making it difficult to scale and raising copyright concerns. To address these challenges, we propose learning 3D representations from procedural 3D programs that automatically generate 3D shapes using simple primitives and augmentations. Remarkably, despite lacking semantic content, the 3D representations learned from the procedurally generated 3D shapes perform on par with state-of-the-art representations learned from semantically recognizable 3D models (e.g., airplanes) across various downstream 3D tasks, including shape classification, part segmentation, and masked point cloud completion. We provide a detailed analysis on factors that make a good 3D procedural program. Extensive experiments further suggest that current self-supervised learning methods on point clouds do not rely on the semantics of 3D shapes, shedding light on the nature of 3D representations learned.
comment: SynData4CV @ CVPR2025 | Project Page: https://point-mae-zero.cs.virginia.edu/
SemEval-2025 Task 1: AdMIRe -- Advancing Multimodal Idiomaticity Representation SemEval-2025
Idiomatic expressions present a unique challenge in NLP, as their meanings are often not directly inferable from their constituent words. Despite recent advancements in Large Language Models (LLMs), idiomaticity remains a significant obstacle to robust semantic representation. We present datasets and tasks for SemEval-2025 Task 1: AdMiRe (Advancing Multimodal Idiomaticity Representation), which challenges the community to assess and improve models' ability to interpret idiomatic expressions in multimodal contexts and in multiple languages. Participants competed in two subtasks: ranking images based on their alignment with idiomatic or literal meanings, and predicting the next image in a sequence. The most effective methods achieved human-level performance by leveraging pretrained LLMs and vision-language models in mixture-of-experts settings, with multiple queries used to smooth over the weaknesses in these models' representations of idiomaticity.
comment: Author accepted version; SemEval-2025 proceedings to appear at ACL 2025. This version corrects a typo in the results table
SViMo: Synchronized Diffusion for Video and Motion Generation in Hand-object Interaction Scenarios
Hand-Object Interaction (HOI) generation has significant application potential. However, current 3D HOI motion generation approaches heavily rely on predefined 3D object models and lab-captured motion data, limiting generalization capabilities. Meanwhile, HOI video generation methods prioritize pixel-level visual fidelity, often sacrificing physical plausibility. Recognizing that visual appearance and motion patterns share fundamental physical laws in the real world, we propose a novel framework that combines visual priors and dynamic constraints within a synchronized diffusion process to generate the HOI video and motion simultaneously. To integrate the heterogeneous semantics, appearance, and motion features, our method implements tri-modal adaptive modulation for feature aligning, coupled with 3D full-attention for modeling inter- and intra-modal dependencies. Furthermore, we introduce a vision-aware 3D interaction diffusion model that generates explicit 3D interaction sequences directly from the synchronized diffusion outputs, then feeds them back to establish a closed-loop feedback cycle. This architecture eliminates dependencies on predefined object models or explicit pose guidance while significantly enhancing video-motion consistency. Experimental results demonstrate our method's superiority over state-of-the-art approaches in generating high-fidelity, dynamically plausible HOI sequences, with notable generalization capabilities in unseen real-world scenarios. Project page at https://github.com/Droliven/SViMo\_project.
Skywork R1V2: Multimodal Hybrid Reinforcement Learning for Reasoning
We present Skywork R1V2, a next-generation multimodal reasoning model and a major leap forward from its predecessor, Skywork R1V. At its core, R1V2 introduces a hybrid reinforcement learning paradigm that jointly leverages the Mixed Preference Optimization (MPO) and the Group Relative Policy Optimization (GRPO), which harmonizes reward-model guidance with rule-based strategies, thereby addressing the long-standing challenge of balancing sophisticated reasoning capabilities with broad generalization. To further enhance training efficiency, we propose the Selective Sample Buffer (SSB) mechanism, which effectively addresses the vanishing advantages dilemma inherent in GRPO by prioritizing high-value samples throughout the optimization process. Notably, we observe that excessive reinforcement signals can induce visual hallucinations--a phenomenon we systematically monitor and mitigate through calibrated reward thresholds throughout the training process. Empirical results affirm the exceptional capability of R1V2, with benchmark-leading performances such as 62.6 on OlympiadBench, 78.9 on AIME2024, 63.6 on LiveCodeBench, and 73.6 on MMMU. These results underscore R1V2's superiority over existing open-source models and demonstrate significant progress in closing the performance gap with premier proprietary systems, including Gemini 2.5 and OpenAI-o4-mini. The Skywork R1V2 model weights have been publicly released to promote openness and reproducibility https://huggingface.co/Skywork/Skywork-R1V2-38B.
CondiMen: Conditional Multi-Person Mesh Recovery CVPR 2025
Multi-person human mesh recovery (HMR) consists in detecting all individuals in a given input image, and predicting the body shape, pose, and 3D location for each detected person. The dominant approaches to this task rely on neural networks trained to output a single prediction for each detected individual. In contrast, we propose CondiMen, a method that outputs a joint parametric distribution over likely poses, body shapes, intrinsics and distances to the camera, using a Bayesian network. This approach offers several advantages. First, a probability distribution can handle some inherent ambiguities of this task -- such as the uncertainty between a person's size and their distance to the camera, or simply the loss of information when projecting 3D data onto the 2D image plane. Second, the output distribution can be combined with additional information to produce better predictions, by using e.g. known camera or body shape parameters, or by exploiting multi-view observations. Third, one can efficiently extract the most likely predictions from the output distribution, making our proposed approach suitable for real-time applications. Empirically we find that our model i) achieves performance on par with or better than the state-of-the-art, ii) captures uncertainties and correlations inherent in pose estimation and iii) can exploit additional information at test time, such as multi-view consistency or body shape priors. CondiMen spices up the modeling of ambiguity, using just the right ingredients on hand.
comment: accepted to the RHOBIN workshop at CVPR 2025
Multi-Source Collaborative Style Augmentation and Domain-Invariant Learning for Federated Domain Generalization IJCAI 2025
Federated domain generalization aims to learn a generalizable model from multiple decentralized source domains for deploying on the unseen target domain. The style augmentation methods have achieved great progress on domain generalization. However, the existing style augmentation methods either explore the data styles within isolated source domain or interpolate the style information across existing source domains under the data decentralization scenario, which leads to limited style space. To address this issue, we propose a Multi-source Collaborative Style Augmentation and Domain-invariant learning method (MCSAD) for federated domain generalization. Specifically, we propose a multi-source collaborative style augmentation module to generate data in the broader style space. Furthermore, we conduct domain-invariant learning between the original data and augmented data by cross-domain feature alignment within the same class and classes relation ensemble distillation between different classes to learn a domain-invariant model. By alternatively conducting collaborative style augmentation and domain-invariant learning, the model can generalize well on unseen target domain. Extensive experiments on multiple domain generalization datasets indicate that our method significantly outperforms the state-of-the-art federated domain generalization methods.
comment: IJCAI 2025
Escaping Plato's Cave: Towards the Alignment of 3D and Text Latent Spaces CVPR 2025
Recent works have shown that, when trained at scale, uni-modal 2D vision and text encoders converge to learned features that share remarkable structural properties, despite arising from different representations. However, the role of 3D encoders with respect to other modalities remains unexplored. Furthermore, existing 3D foundation models that leverage large datasets are typically trained with explicit alignment objectives with respect to frozen encoders from other representations. In this work, we investigate the possibility of a posteriori alignment of representations obtained from uni-modal 3D encoders compared to text-based feature spaces. We show that naive post-training feature alignment of uni-modal text and 3D encoders results in limited performance. We then focus on extracting subspaces of the corresponding feature spaces and discover that by projecting learned representations onto well-chosen lower-dimensional subspaces the quality of alignment becomes significantly higher, leading to improved accuracy on matching and retrieval tasks. Our analysis further sheds light on the nature of these shared subspaces, which roughly separate between semantic and geometric data representations. Overall, ours is the first work that helps to establish a baseline for post-training alignment of 3D uni-modal and text feature spaces, and helps to highlight both the shared and unique properties of 3D data compared to other representations. Our code and weights are available at https://github.com/Souhail-01/3d-text-alignment
comment: CVPR 2025
Implicit Inversion turns CLIP into a Decoder
CLIP is a discriminative model trained to align images and text in a shared embedding space. Due to its multimodal structure, it serves as the backbone of many generative pipelines, where a decoder is trained to map from the shared space back to images. In this work, we show that image synthesis is nevertheless possible using CLIP alone -- without any decoder, training, or fine-tuning. Our approach optimizes a frequency-aware implicit neural representation that encourages coarse-to-fine generation by stratifying frequencies across network layers. To stabilize this inverse mapping, we introduce adversarially robust initialization, a lightweight Orthogonal Procrustes projection to align local text and image embeddings, and a blending loss that anchors outputs to natural image statistics. Without altering CLIP's weights, this framework unlocks capabilities such as text-to-image generation, style transfer, and image reconstruction. These findings suggest that discriminative models may hold untapped generative potential, hidden in plain sight.
MAC-Gaze: Motion-Aware Continual Calibration for Mobile Gaze Tracking
Mobile gaze tracking faces a fundamental challenge: maintaining accuracy as users naturally change their postures and device orientations. Traditional calibration approaches, like one-off, fail to adapt to these dynamic conditions, leading to degraded performance over time. We present MAC-Gaze, a Motion-Aware continual Calibration approach that leverages smartphone Inertial measurement unit (IMU) sensors and continual learning techniques to automatically detect changes in user motion states and update the gaze tracking model accordingly. Our system integrates a pre-trained visual gaze estimator and an IMU-based activity recognition model with a clustering-based hybrid decision-making mechanism that triggers recalibration when motion patterns deviate significantly from previously encountered states. To enable accumulative learning of new motion conditions while mitigating catastrophic forgetting, we employ replay-based continual learning, allowing the model to maintain performance across previously encountered motion conditions. We evaluate our system through extensive experiments on the publicly available RGBDGaze dataset and our own 10-hour multimodal MotionGaze dataset (481K+ images, 800K+ IMU readings), encompassing a wide range of postures under various motion conditions including sitting, standing, lying, and walking. Results demonstrate that our method reduces gaze estimation error by 19.9% on RGBDGaze (from 1.73 cm to 1.41 cm) and by 31.7% on MotionGaze (from 2.81 cm to 1.92 cm) compared to traditional calibration approaches. Our framework provides a robust solution for maintaining gaze estimation accuracy in mobile scenarios.
comment: 24 pages, 7 figures
MAmmoTH-VL: Eliciting Multimodal Reasoning with Instruction Tuning at Scale ACL 2025
Open-source multimodal large language models (MLLMs) have shown significant potential in a broad range of multimodal tasks. However, their reasoning capabilities remain constrained by existing instruction-tuning datasets, which were predominately repurposed from academic datasets such as VQA, AI2D, and ChartQA. These datasets target simplistic tasks, and only provide phrase-level answers without any intermediate rationales. To address these challenges, we introduce a scalable and cost-effective method to construct a large-scale multimodal instruction-tuning dataset with rich intermediate rationales designed to elicit CoT reasoning. Using only open models, we create a dataset containing 12M instruction-response pairs to cover diverse, reasoning-intensive tasks with detailed and faithful rationales. Experiments demonstrate that training MLLMs on this dataset significantly improves reasoning capabilities, achieving state-of-the-art performance on benchmarks such as MathVerse (+8.1%), MMMU-Pro (+7%), and MuirBench (+13.3%). Additionally, the model demonstrates notable improvements of up to 4% on non-reasoning-based benchmarks. Ablation studies further highlight the importance of key components, such as rewriting and self-filtering, in the dataset construction process.
comment: ACL 2025 Main
SEM: Enhancing Spatial Understanding for Robust Robot Manipulation
A key challenge in robot manipulation lies in developing policy models with strong spatial understanding, the ability to reason about 3D geometry, object relations, and robot embodiment. Existing methods often fall short: 3D point cloud models lack semantic abstraction, while 2D image encoders struggle with spatial reasoning. To address this, we propose SEM (Spatial Enhanced Manipulation model), a novel diffusion-based policy framework that explicitly enhances spatial understanding from two complementary perspectives. A spatial enhancer augments visual representations with 3D geometric context, while a robot state encoder captures embodiment-aware structure through graphbased modeling of joint dependencies. By integrating these modules, SEM significantly improves spatial understanding, leading to robust and generalizable manipulation across diverse tasks that outperform existing baselines.
EscapeCraft: A 3D Room Escape Environment for Benchmarking Complex Multimodal Reasoning Ability
The rapid advancing of Multimodal Large Language Models (MLLMs) has spurred interest in complex multimodal reasoning tasks in the real-world and virtual environment, which require coordinating multiple abilities, including visual perception, visual reasoning, spatial awareness, and target deduction. However, existing evaluations primarily assess the final task completion, often degrading assessments to isolated abilities such as visual grounding and visual question answering. Less attention is given to comprehensively and quantitatively analyzing reasoning process in multimodal environments, which is crucial for understanding model behaviors and underlying reasoning mechanisms beyond merely task success. To address this, we introduce MM-Escape, an extensible benchmark for investigating multimodal reasoning, inspired by real-world escape games. MM-Escape emphasizes intermediate model behaviors alongside final task completion. To achieve this, we develop EscapeCraft, a customizable and open environment that enables models to engage in free-form exploration for assessing multimodal reasoning. Extensive experiments show that MLLMs, regardless of scale, can successfully complete the simplest room escape tasks, with some exhibiting human-like exploration strategies. Yet, performance dramatically drops as task difficulty increases. Moreover, we observe that performance bottlenecks vary across models, revealing distinct failure modes and limitations in their multimodal reasoning abilities, such as repetitive trajectories without adaptive exploration, getting stuck in corners due to poor visual spatial awareness, and ineffective use of acquired props, such as the key. We hope our work sheds light on new challenges in multimodal reasoning, and uncovers potential improvements in MLLMs capabilities.
InterRVOS: Interaction-aware Referring Video Object Segmentation
Referring video object segmentation aims to segment the object in a video corresponding to a given natural language expression. While prior works have explored various referring scenarios, including motion-centric or multi-instance expressions, most approaches still focus on localizing a single target object in isolation. However, in comprehensive video understanding, an object's role is often defined by its interactions with other entities, which are largely overlooked in existing datasets and models. In this work, we introduce Interaction-aware referring video object sgementation (InterRVOS), a new task that requires segmenting both actor and target entities involved in an interaction. Each interactoin is described through a pair of complementary expressions from different semantic perspectives, enabling fine-grained modeling of inter-object relationships. To tackle this task, we propose InterRVOS-8K, the large-scale and automatically constructed dataset containing diverse interaction-aware expressions with corresponding masks, including challenging cases such as motion-only multi-instance expressions. We also present a baseline architecture, ReVIOSa, designed to handle actor-target segmentation from a single expression, achieving strong performance in both standard and interaction-focused settings. Furthermore, we introduce an actor-target-aware evalaution setting that enables a more targeted assessment of interaction understanding. Experimental results demonstrate that our approach outperforms prior methods in modeling complex object interactions for referring video object segmentation task, establishing a strong foundation for future research in interaction-centric video understanding. Our project page is available at https://cvlab-kaist.github.io/InterRVOS.
Your Turn: At Home Turning Angle Estimation for Parkinson's Disease Severity Assessment
People with Parkinson's Disease (PD) often experience progressively worsening gait, including changes in how they turn around, as the disease progresses. Existing clinical rating tools are not capable of capturing hour-by-hour variations of PD symptoms, as they are confined to brief assessments within clinic settings. Measuring gait turning angles continuously and passively is a component step towards using gait characteristics as sensitive indicators of disease progression in PD. This paper presents a deep learning-based approach to automatically quantify turning angles by extracting 3D skeletons from videos and calculating the rotation of hip and knee joints. We utilise state-of-the-art human pose estimation models, Fastpose and Strided Transformer, on a total of 1386 turning video clips from 24 subjects (12 people with PD and 12 healthy control volunteers), trimmed from a PD dataset of unscripted free-living videos in a home-like setting (Turn-REMAP). We also curate a turning video dataset, Turn-H3.6M, from the public Human3.6M human pose benchmark with 3D ground truth, to further validate our method. Previous gait research has primarily taken place in clinics or laboratories evaluating scripted gait outcomes, but this work focuses on free-living home settings where complexities exist, such as baggy clothing and poor lighting. Due to difficulties in obtaining accurate ground truth data in a free-living setting, we quantise the angle into the nearest bin $45^\circ$ based on the manual labelling of expert clinicians. Our method achieves a turning calculation accuracy of 41.6%, a Mean Absolute Error (MAE) of 34.7{\deg}, and a weighted precision WPrec of 68.3% for Turn-REMAP. This is the first work to explore the use of single monocular camera data to quantify turns by PD patients in a home setting.
A Flag Decomposition for Hierarchical Datasets
Flag manifolds encode nested sequences of subspaces and serve as powerful structures for various computer vision and machine learning applications. Despite their utility in tasks such as dimensionality reduction, motion averaging, and subspace clustering, current applications are often restricted to extracting flags using common matrix decomposition methods like the singular value decomposition. Here, we address the need for a general algorithm to factorize and work with hierarchical datasets. In particular, we propose a novel, flag-based method that decomposes arbitrary hierarchical real-valued data into a hierarchy-preserving flag representation in Stiefel coordinates. Our work harnesses the potential of flag manifolds in applications including denoising, clustering, and few-shot learning.
DreamFrame: Enhancing Video Understanding via Automatically Generated QA and Style-Consistent Keyframes
Recent large vision-language models (LVLMs) for video understanding are primarily fine-tuned with various videos scraped from online platforms. Existing datasets, such as ActivityNet, require considerable human labor for structuring and annotation before effectively utilized for tuning LVLMs. While current LVLMs are primarily trained on existing datasets in broad, general-purpose settings, adapting them to specific downstream scenarios remains challenging, as collecting and annotating task-specific videos is highly labor-intensive and time-consuming. To address this issue, we propose a three-stage framework named DreamFrame for automatically generating style-consistent keyframes and corresponding question-answer (QA) pairs to support LVLM instruction tuning. DreamFrame generates datasets in a movie-like manner. First, we utilize an LLM to generate structured movie plots including movie prior information (like overview and style), frame descriptions and plot-related QA pairs, with a story expansion strategy to mitigate context length limitations.Then, to ensure visual consistency across generated frames, we design a Style Immobilization Process which maintains consistent style through an embedding learning strategy. Finally, frame descriptions and style embeddings are integrated to produce coherent keyframes. Using DreamFrame, we construct a dataset comprising approximately 1k stylized keyframe-like videos and 100k diverse QA pairs. Extensive fine-tuned experiments on various LVLM architectures demonstrate the effectiveness of the proposed dataset. Furthermore, based on the proposed dataset, we fine-tune a new LVLM named DreamFrame-7B, which significantly surpasses the previous similar-sized LVLMs across different benchmarks.
Graph Flow Matching: Enhancing Image Generation with Neighbor-Aware Flow Fields
Flow matching casts sample generation as learning a continuous-time velocity field that transports noise to data. Existing flow matching networks typically predict each point's velocity independently, considering only its location and time along its flow trajectory, and ignoring neighboring points. However, this pointwise approach may overlook correlations between points along the generation trajectory that could enhance velocity predictions, thereby improving downstream generation quality. To address this, we propose Graph Flow Matching (GFM), a lightweight enhancement that decomposes the learned velocity into a reaction term -- any standard flow matching network -- and a diffusion term that aggregates neighbor information via a graph neural module. This reaction-diffusion formulation retains the scalability of deep flow models while enriching velocity predictions with local context, all at minimal additional computational cost. Operating in the latent space of a pretrained variational autoencoder, GFM consistently improves Fr\'echet Inception Distance (FID) and recall across five image generation benchmarks (LSUN Church, LSUN Bedroom, FFHQ, AFHQ-Cat, and CelebA-HQ at $256\times256$), demonstrating its effectiveness as a modular enhancement to existing flow matching architectures.
M3-AGIQA: Multimodal, Multi-Round, Multi-Aspect AI-Generated Image Quality Assessment
The rapid advancement of AI-generated image (AIGI) models presents new challenges for evaluating image quality, particularly across three aspects: perceptual quality, prompt correspondence, and authenticity. To address these challenges, we introduce M3-AGIQA, a comprehensive framework that leverages Multimodal Large Language Models (MLLMs) to enable more human-aligned, holistic evaluation of AI-generated images across both visual and textual domains. Besides, our framework features a structured multi-round evaluation process, generating and analyzing intermediate image descriptions to provide deeper insight into these three aspects. By aligning model outputs more closely with human judgment, M3-AGIQA delivers robust and interpretable quality scores. Extensive experiments on multiple benchmarks demonstrate that our method achieves state-of-the-art performance on tested datasets and aspects, and exhibits strong generalizability in most cross-dataset settings. Code is available at https://github.com/strawhatboy/M3-AGIQA.
comment: 24 pages. This work has been submitted to the ACM for possible publication
Diffusion-VLA: Generalizable and Interpretable Robot Foundation Model via Self-Generated Reasoning ICML 2025
In this paper, we present DiffusionVLA, a novel framework that seamlessly combines the autoregression model with the diffusion model for learning visuomotor policy. Central to our approach is a next-token prediction objective, enabling the model to reason effectively over the user's query in the context of current observations. Subsequently, a diffusion model is attached to generate robust action outputs. To enhance policy learning through self-reasoning, we introduce a novel reasoning injection module that integrates reasoning phrases directly into the policy learning process. The whole framework is simple and flexible, making it easy to deploy and upgrade. We conduct extensive experiments using multiple real robots to validate the effectiveness of DiffusionVLA. Our tests include a challenging factory sorting task, where DiffusionVLA successfully categorizes objects, including those not seen during training. We observe that the reasoning module makes the model interpretable. It allows observers to understand the model thought process and identify potential causes of policy failures. Additionally, we test DiffusionVLA on a zero-shot bin-picking task, achieving 63.7\% accuracy on 102 previously unseen objects. Our method demonstrates robustness to visual changes, such as distractors and new backgrounds, and easily adapts to new embodiments. Furthermore, DiffusionVLA can follow novel instructions and retain conversational ability. Notably, DiffusionVLA is data-efficient and fast at inference; our smallest DiffusionVLA-2B runs 82Hz on a single A6000 GPU and can train from scratch on less than 50 demonstrations for a complex task. Finally, we scale the model from 2B to 72B parameters, showcasing improved generalization capabilities with increased model size.
comment: Accepted by ICML 2025. The project page is available at: http://diffusion-vla.github.io
AlignMMBench: Evaluating Chinese Multimodal Alignment in Large Vision-Language Models
Evaluating the alignment capabilities of large Vision-Language Models (VLMs) is essential for determining their effectiveness as helpful assistants. However, existing benchmarks primarily focus on basic abilities using nonverbal methods, such as yes-no and multiple-choice questions. In this paper, we address this gap by introducing AlignMMBench, which provides more nuanced evaluations of alignment capabilities and is the first benchmark specifically designed for Chinese visual contexts. This benchmark is meticulously curated from real-world scenarios and internet sources, encompassing thirteen specific tasks across three categories, and includes both single-turn and multi-turn dialogue scenarios. Incorporating a prompt rewrite strategy, AlignMMBench encompasses 1,054 images and 4,978 question-answer pairs. To facilitate the evaluation pipeline, we develop CritiqueVLM, a rule-calibrated evaluator that exceeds GPT-4's evaluation ability. Additionally, we measure the "alignment score", a quantitative metric designed to assess the robustness and stability of models across diverse prompts. Finally, we evaluate the performance of representative VLMs on AlignMMBench, offering insights into the capabilities and limitations of different VLM architectures. The evaluation code and data are available at https://github.com/THUDM/AlignMMBench.
Sonic: Shifting Focus to Global Audio Perception in Portrait Animation
The study of talking face generation mainly explores the intricacies of synchronizing facial movements and crafting visually appealing, temporally-coherent animations. However, due to the limited exploration of global audio perception, current approaches predominantly employ auxiliary visual and spatial knowledge to stabilize the movements, which often results in the deterioration of the naturalness and temporal inconsistencies.Considering the essence of audio-driven animation, the audio signal serves as the ideal and unique priors to adjust facial expressions and lip movements, without resorting to interference of any visual signals. Based on this motivation, we propose a novel paradigm, dubbed as Sonic, to {s}hift f{o}cus on the exploration of global audio per{c}ept{i}o{n}.To effectively leverage global audio knowledge, we disentangle it into intra- and inter-clip audio perception and collaborate with both aspects to enhance overall perception.For the intra-clip audio perception, 1). \textbf{Context-enhanced audio learning}, in which long-range intra-clip temporal audio knowledge is extracted to provide facial expression and lip motion priors implicitly expressed as the tone and speed of speech. 2). \textbf{Motion-decoupled controller}, in which the motion of the head and expression movement are disentangled and independently controlled by intra-audio clips. Most importantly, for inter-clip audio perception, as a bridge to connect the intra-clips to achieve the global perception, \textbf{Time-aware position shift fusion}, in which the global inter-clip audio information is considered and fused for long-audio inference via through consecutively time-aware shifted windows. Extensive experiments demonstrate that the novel audio-driven paradigm outperform existing SOTA methodologies in terms of video quality, temporally consistency, lip synchronization precision, and motion diversity.
comment: refer to our main-page \url{https://jixiaozhong.github.io/Sonic/}
FlowMo: Variance-Based Flow Guidance for Coherent Motion in Video Generation
Text-to-video diffusion models are notoriously limited in their ability to model temporal aspects such as motion, physics, and dynamic interactions. Existing approaches address this limitation by retraining the model or introducing external conditioning signals to enforce temporal consistency. In this work, we explore whether a meaningful temporal representation can be extracted directly from the predictions of a pre-trained model without any additional training or auxiliary inputs. We introduce FlowMo, a novel training-free guidance method that enhances motion coherence using only the model's own predictions in each diffusion step. FlowMo first derives an appearance-debiased temporal representation by measuring the distance between latents corresponding to consecutive frames. This highlights the implicit temporal structure predicted by the model. It then estimates motion coherence by measuring the patch-wise variance across the temporal dimension and guides the model to reduce this variance dynamically during sampling. Extensive experiments across multiple text-to-video models demonstrate that FlowMo significantly improves motion coherence without sacrificing visual quality or prompt alignment, offering an effective plug-and-play solution for enhancing the temporal fidelity of pre-trained video diffusion models.
MMAR: Towards Lossless Multi-Modal Auto-Regressive Probabilistic Modeling
Recent advancements in multi-modal large language models have propelled the development of joint probabilistic models capable of both image understanding and generation. However, we have identified that recent methods suffer from loss of image information during understanding task, due to either image discretization or diffusion denoising steps. To address this issue, we propose a novel Multi-Modal Auto-Regressive (MMAR) probabilistic modeling framework. Unlike discretization line of method, MMAR takes in continuous-valued image tokens to avoid information loss in an efficient way. Differing from diffusion-based approaches, we disentangle the diffusion process from auto-regressive backbone model by employing a light-weight diffusion head on top each auto-regressed image patch embedding. In this way, when the model transits from image generation to understanding through text generation, the backbone model's hidden representation of the image is not limited to the last denoising step. To successfully train our method, we also propose a theoretically proven technique that addresses the numerical stability issue and a training strategy that balances the generation and understanding task goals. Extensive evaluations on 18 image understanding benchmarks show that MMAR significantly outperforms most of the existing joint multi-modal models, surpassing the method that employs pre-trained CLIP vision encoder. Meanwhile, MMAR is able to generate high quality images. We also show that our method is scalable with larger data and model size.
The Role of Visual Modality in Multimodal Mathematical Reasoning: Challenges and Insights
Recent research has increasingly focused on multimodal mathematical reasoning, particularly emphasizing the creation of relevant datasets and benchmarks. Despite this, the role of visual information in reasoning has been underexplored. Our findings show that existing multimodal mathematical models minimally leverage visual information, and model performance remains largely unaffected by changes to or removal of images in the dataset. We attribute this to the dominance of textual information and answer options that inadvertently guide the model to correct answers. To improve evaluation methods, we introduce the HC-M3D dataset, specifically designed to require image reliance for problem-solving and to challenge models with similar, yet distinct, images that change the correct answer. In testing leading models, their failure to detect these subtle visual differences suggests limitations in current visual perception capabilities. Additionally, we observe that the common approach of improving general VQA capabilities by combining various types of image encoders does not contribute to math reasoning performance. This finding also presents a challenge to enhancing visual reliance during math reasoning. Our benchmark and code would be available at \href{https://github.com/Yufang-Liu/visual_modality_role}{https://github.com/Yufang-Liu/visual\_modality\_role}.
Prescribing the Right Remedy: Mitigating Hallucinations in Large Vision-Language Models via Targeted Instruction Tuning
Despite achieving outstanding performance on various cross-modal tasks, current large vision-language models (LVLMs) still suffer from hallucination issues, manifesting as inconsistencies between their generated responses and the corresponding images. Prior research has implicated that the low quality of instruction data, particularly the skewed balance between positive and negative samples, is a significant contributor to model hallucinations. Recently, researchers have proposed high-quality instruction datasets, such as LRV-Instruction, to mitigate model hallucination. Nonetheless, our investigation reveals that hallucinatory concepts from different LVLMs exhibit specificity, i.e. the distribution of hallucinatory concepts varies significantly across models. Existing datasets did not consider the hallucination specificity of different models in the design processes, thereby diminishing their efficacy in mitigating model hallucination. In this paper, we propose a targeted instruction data generation framework named DFTG that tailored to the hallucination specificity of different models. Concretely, DFTG consists of two stages: hallucination diagnosis, which extracts the necessary information from the model's responses and images for hallucination diagnosis; and targeted data generation, which generates targeted instruction data based on diagnostic results. The experimental results on hallucination benchmarks demonstrate that the targeted instruction data generated by our method are more effective in mitigating hallucinations compared to previous datasets.
comment: Accepted in Information Sciences 2025
DiffoRA: Enabling Parameter-Efficient Fine-Tuning via Differential Module Selection
The Parameter-Efficient Fine-Tuning (PEFT) methods have been extensively researched for large language models in downstream tasks. Among all the existing approaches, the Low-Rank Adaptation (LoRA) has gained popularity for its streamlined design by incorporating low-rank matrices into existing pre-trained models. Though effective, LoRA, as well as its adaptive optimizations, either allocate the same matrix to all the modules or adjust the interior rank of the components based on importance scoring indicators. In this paper, we argue that not all the modules in LLMs are suitable and necessary to be fine-tuned. Enlightened by this insight, we propose a new PEFT scheme called DiffoRA, which enables adaptive adoption of the low-rank decomposition matrices. At the core of DiffoRA lies a Differential Adaptation Matrix (DAM) to determine which module is the most suitable and essential for fine-tuning. We theoretically explain how the designed matrix impacts the convergence rate and generalization capability of a pre-trained model. We then construct the DAM via continuous relaxation and discretization with weight-sharing optimizations. We fully implement DiffoRA and design comprehensive experiments to evaluate its performance. The experimental results demonstrate that DiffoRA delivers state-of-the-art results across multiple benchmarks.
MMedPO: Aligning Medical Vision-Language Models with Clinical-Aware Multimodal Preference Optimization ICML 2025
The advancement of Large Vision-Language Models (LVLMs) has propelled their application in the medical field. However, Medical LVLMs (Med-LVLMs) encounter factuality challenges due to modality misalignment, where the models prioritize textual knowledge over visual input, leading to hallucinations that contradict information in medical images. Previous attempts to enhance modality alignment in Med-LVLMs through preference optimization have inadequately mitigated clinical relevance in preference data, making these samples easily distinguishable and reducing alignment effectiveness. To address this challenge, we propose MMedPO, a novel multimodal medical preference optimization approach that considers the clinical relevance of preference samples to enhance Med-LVLM alignment. MMedPO curates multimodal preference data by introducing two types of dispreference: (1) plausible hallucinations injected through target Med-LVLMs or GPT-4o to produce medically inaccurate responses, and (2) lesion region neglect achieved through local lesion-noising, disrupting visual understanding of critical areas. We then calculate clinical relevance for each sample based on scores from multiple Med-LLMs and visual tools, and integrate these scores into the preference optimization process as weights, enabling effective alignment. Our experiments demonstrate that MMedPO significantly enhances factual accuracy in Med-LVLMs, achieving substantial improvements over existing preference optimization methods by averaging 14.2% and 51.7% across the Med-VQA and report generation tasks. Our code are available in https://github.com/aiming-lab/MMedPO.
comment: ICML 2025
Beyond Entropy: Region Confidence Proxy for Wild Test-Time Adaptation ICML 2025
Wild Test-Time Adaptation (WTTA) is proposed to adapt a source model to unseen domains under extreme data scarcity and multiple shifts. Previous approaches mainly focused on sample selection strategies, while overlooking the fundamental problem on underlying optimization. Initially, we critically analyze the widely-adopted entropy minimization framework in WTTA and uncover its significant limitations in noisy optimization dynamics that substantially hinder adaptation efficiency. Through our analysis, we identify region confidence as a superior alternative to traditional entropy, however, its direct optimization remains computationally prohibitive for real-time applications. In this paper, we introduce a novel region-integrated method ReCAP that bypasses the lengthy process. Specifically, we propose a probabilistic region modeling scheme that flexibly captures semantic changes in embedding space. Subsequently, we develop a finite-to-infinite asymptotic approximation that transforms the intractable region confidence into a tractable and upper-bounded proxy. These innovations significantly unlock the overlooked potential dynamics in local region in a concise solution. Our extensive experiments demonstrate the consistent superiority of ReCAP over existing methods across various datasets and wild scenarios.
comment: Accepted by ICML 2025
Visual Attention Never Fades: Selective Progressive Attention ReCalibration for Detailed Image Captioning in Multimodal Large Language Models ICML 2025
Detailed image captioning is essential for tasks like data generation and aiding visually impaired individuals. High-quality captions require a balance between precision and recall, which remains challenging for current multimodal large language models (MLLMs). In this work, we hypothesize that this limitation stems from weakening and increasingly noisy visual attention as responses lengthen. To address this issue, we propose SPARC (Selective Progressive Attention ReCalibration), a training-free method that enhances the contribution of visual tokens during decoding. SPARC is founded on three key observations: (1) increasing the influence of all visual tokens reduces recall; thus, SPARC selectively amplifies visual tokens; (2) as captions lengthen, visual attention becomes noisier, so SPARC identifies critical visual tokens by leveraging attention differences across time steps; (3) as visual attention gradually weakens, SPARC reinforces it to preserve its influence. Our experiments, incorporating both automated and human evaluations, demonstrate that existing methods improve the precision of MLLMs at the cost of recall. In contrast, our proposed method enhances both precision and recall with minimal computational overhead.
comment: ICML 2025
Grid-LOGAT: Grid Based Local and Global Area Transcription for Video Question Answering
In this paper, we propose a Grid-based Local and Global Area Transcription (Grid-LoGAT) system for Video Question Answering (VideoQA). The system operates in two phases. First, extracting text transcripts from video frames using a Vision-Language Model (VLM). Next, processing questions using these transcripts to generate answers through a Large Language Model (LLM). This design ensures image privacy by deploying the VLM on edge devices and the LLM in the cloud. To improve transcript quality, we propose grid-based visual prompting, which extracts intricate local details from each grid cell and integrates them with global information. Evaluation results show that Grid-LoGAT, using the open-source VLM (LLaVA-1.6-7B) and LLM (Llama-3.1-8B), outperforms state-of-the-art methods with similar baseline models on NExT-QA and STAR-QA datasets with an accuracy of 65.9% and 50.11% respectively. Additionally, our method surpasses the non-grid version by 24 points on localization-based questions we created using NExT-QA. (This paper is accepted by IEEE ICIP 2025.)
comment: Copyright 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
MemoryOut: Learning Principal Features via Multimodal Sparse Filtering Network for Semi-supervised Video Anomaly Detection
Video Anomaly Detection (VAD) methods based on reconstruction or prediction face two critical challenges: (1) strong generalization capability often results in accurate reconstruction or prediction of abnormal events, making it difficult to distinguish normal from abnormal patterns; (2) reliance only on low-level appearance and motion cues limits their ability to identify high-level semantic in abnormal events from complex scenes. To address these limitations, we propose a novel VAD framework with two key innovations. First, to suppress excessive generalization, we introduce the Sparse Feature Filtering Module (SFFM) that employs bottleneck filters to dynamically and adaptively remove abnormal information from features. Unlike traditional memory modules, it does not need to memorize the normal prototypes across the training dataset. Further, we design the Mixture of Experts (MoE) architecture for SFFM. Each expert is responsible for extracting specialized principal features during running time, and different experts are selectively activated to ensure the diversity of the learned principal features. Second, to overcome the neglect of semantics in existing methods, we integrate a Vision-Language Model (VLM) to generate textual descriptions for video clips, enabling comprehensive joint modeling of semantic, appearance, and motion cues. Additionally, we enforce modality consistency through semantic similarity constraints and motion frame-difference contrastive loss. Extensive experiments on multiple public datasets validate the effectiveness of our multimodal joint modeling framework and sparse feature filtering paradigm. Project page at https://qzfm.github.io/sfn_vad_project_page/.
Image and Video Processing
Synthetic multi-inversion time magnetic resonance images for visualization of subcortical structures
Purpose: Visualization of subcortical gray matter is essential in neuroscience and clinical practice, particularly for disease understanding and surgical planning.While multi-inversion time (multi-TI) T$_1$-weighted (T$_1$-w) magnetic resonance (MR) imaging improves visualization, it is rarely acquired in clinical settings. Approach: We present SyMTIC (Synthetic Multi-TI Contrasts), a deep learning method that generates synthetic multi-TI images using routinely acquired T$_1$-w, T$_2$-weighted (T$_2$-w), and FLAIR images. Our approach combines image translation via deep neural networks with imaging physics to estimate longitudinal relaxation time (T$_1$) and proton density (PD) maps. These maps are then used to compute multi-TI images with arbitrary inversion times. Results: SyMTIC was trained using paired MPRAGE and FGATIR images along with T$_2$-w and FLAIR images. It accurately synthesized multi-TI images from standard clinical inputs, achieving image quality comparable to that from explicitly acquired multi-TI data.The synthetic images, especially for TI values between 400-800 ms, enhanced visualization of subcortical structures and improved segmentation of thalamic nuclei. Conclusion: SyMTIC enables robust generation of high-quality multi-TI images from routine MR contrasts. It generalizes well to varied clinical datasets, including those with missing FLAIR images or unknown parameters, offering a practical solution for improving brain MR image visualization and analysis.
comment: Under review at the Journal of Medical Imaging
Recent Advances in Medical Image Classification
Medical image classification is crucial for diagnosis and treatment, benefiting significantly from advancements in artificial intelligence. The paper reviews recent progress in the field, focusing on three levels of solutions: basic, specific, and applied. It highlights advances in traditional methods using deep learning models like Convolutional Neural Networks and Vision Transformers, as well as state-of-the-art approaches with Vision Language Models. These models tackle the issue of limited labeled data, and enhance and explain predictive results through Explainable Artificial Intelligence.
A Comprehensive Study on Medical Image Segmentation using Deep Neural Networks
Over the past decade, Medical Image Segmentation (MIS) using Deep Neural Networks (DNNs) has achieved significant performance improvements and holds great promise for future developments. This paper presents a comprehensive study on MIS based on DNNs. Intelligent Vision Systems are often evaluated based on their output levels, such as Data, Information, Knowledge, Intelligence, and Wisdom (DIKIW),and the state-of-the-art solutions in MIS at these levels are the focus of research. Additionally, Explainable Artificial Intelligence (XAI) has become an important research direction, as it aims to uncover the "black box" nature of previous DNN architectures to meet the requirements of transparency and ethics. The study emphasizes the importance of MIS in disease diagnosis and early detection, particularly for increasing the survival rate of cancer patients through timely diagnosis. XAI and early prediction are considered two important steps in the journey from "intelligence" to "wisdom." Additionally, the paper addresses existing challenges and proposes potential solutions to enhance the efficiency of implementing DNN-based MIS.
A Diffusion-Driven Temporal Super-Resolution and Spatial Consistency Enhancement Framework for 4D MRI imaging
In medical imaging, 4D MRI enables dynamic 3D visualization, yet the trade-off between spatial and temporal resolution requires prolonged scan time that can compromise temporal fidelity--especially during rapid, large-amplitude motion. Traditional approaches typically rely on registration-based interpolation to generate intermediate frames. However, these methods struggle with large deformations, resulting in misregistration, artifacts, and diminished spatial consistency. To address these challenges, we propose TSSC-Net, a novel framework that generates intermediate frames while preserving spatial consistency. To improve temporal fidelity under fast motion, our diffusion-based temporal super-resolution network generates intermediate frames using the start and end frames as key references, achieving 6x temporal super-resolution in a single inference step. Additionally, we introduce a novel tri-directional Mamba-based module that leverages long-range contextual information to effectively resolve spatial inconsistencies arising from cross-slice misalignment, thereby enhancing volumetric coherence and correcting cross-slice errors. Extensive experiments were performed on the public ACDC cardiac MRI dataset and a real-world dynamic 4D knee joint dataset. The results demonstrate that TSSC-Net can generate high-resolution dynamic MRI from fast-motion data while preserving structural fidelity and spatial consistency.
Towards generating more interpretable counterfactuals via concept vectors: a preliminary study on chest X-rays
An essential step in deploying medical imaging models is ensuring alignment with clinical knowledge and interpretability. We focus on mapping clinical concepts into the latent space of generative models to identify Concept Activation Vectors (CAVs). Using a simple reconstruction autoencoder, we link user-defined concepts to image-level features without explicit label training. The extracted concepts are stable across datasets, enabling visual explanations that highlight clinically relevant features. By traversing latent space along concept directions, we produce counterfactuals that exaggerate or reduce specific clinical features. Preliminary results on chest X-rays show promise for large pathologies like cardiomegaly, while smaller pathologies remain challenging due to reconstruction limits. Although not outperforming baselines, this approach offers a path toward interpretable, concept-based explanations aligned with clinical knowledge.
Conformal coronary calcification volume estimation with conditional coverage via histogram clustering
Incidental detection and quantification of coronary calcium in CT scans could lead to the early introduction of lifesaving clinical interventions. However, over-reporting could negatively affect patient wellbeing and unnecessarily burden the medical system. Therefore, careful considerations should be taken when automatically reporting coronary calcium scores. A cluster-based conditional conformal prediction framework is proposed to provide score intervals with calibrated coverage from trained segmentation networks without retraining. The proposed method was tuned and used to calibrate predictive intervals for 3D UNet models (deterministic, MCDropout and deep ensemble) reaching similar coverage with better triage metrics compared to conventional conformal prediction. Meaningful predictive intervals of calcium scores could help triage patients according to the confidence of their risk category prediction.
comment: IEEE 22nd International Symposium on Biomedical Imaging (ISBI)
Solving Inverse Problems via Diffusion-Based Priors: An Approximation-Free Ensemble Sampling Approach
Diffusion models (DMs) have proven to be effective in modeling high-dimensional distributions, leading to their widespread adoption for representing complex priors in Bayesian inverse problems (BIPs). However, current DM-based posterior sampling methods proposed for solving common BIPs rely on heuristic approximations to the generative process. To exploit the generative capability of DMs and avoid the usage of such approximations, we propose an ensemble-based algorithm that performs posterior sampling without the use of heuristic approximations. Our algorithm is motivated by existing works that combine DM-based methods with the sequential Monte Carlo (SMC) method. By examining how the prior evolves through the diffusion process encoded by the pre-trained score function, we derive a modified partial differential equation (PDE) governing the evolution of the corresponding posterior distribution. This PDE includes a modified diffusion term and a reweighting term, which can be simulated via stochastic weighted particle methods. Theoretically, we prove that the error between the true posterior distribution can be bounded in terms of the training error of the pre-trained score function and the number of particles in the ensemble. Empirically, we validate our algorithm on several inverse problems in imaging to show that our method gives more accurate reconstructions compared to existing DM-based methods.
comment: 45 pages
Identifying Alzheimer's Disease Prediction Strategies of Convolutional Neural Network Classifiers using R2* Maps and Spectral Clustering
Deep learning models have shown strong performance in classifying Alzheimer's disease (AD) from R2* maps, but their decision-making remains opaque, raising concerns about interpretability. Previous studies suggest biases in model decisions, necessitating further analysis. This study uses Layer-wise Relevance Propagation (LRP) and spectral clustering to explore classifier decision strategies across preprocessing and training configurations using R2* maps. We trained a 3D convolutional neural network on R2* maps, generating relevance heatmaps via LRP and applied spectral clustering to identify dominant patterns. t-Stochastic Neighbor Embedding (t-SNE) visualization was used to assess clustering structure. Spectral clustering revealed distinct decision patterns, with the relevance-guided model showing the clearest separation between AD and normal control (NC) cases. The t-SNE visualization confirmed that this model aligned heatmap groupings with the underlying subject groups. Our findings highlight the significant impact of preprocessing and training choices on deep learning models trained on R2* maps, even with similar performance metrics. Spectral clustering offers a structured method to identify classification strategy differences, emphasizing the importance of explainability in medical AI.
comment: Accepted for the conference EUSIPCO2025 (https://eusipco2025.org/)
Frame-Level Real-Time Assessment of Stroke Rehabilitation Exercises from Video-Level Labeled Data: Task-Specific vs. Foundation Models
The growing demands of stroke rehabilitation have increased the need for solutions to support autonomous exercising. Virtual coaches can provide real-time exercise feedback from video data, helping patients improve motor function and keep engagement. However, training real-time motion analysis systems demands frame-level annotations, which are time-consuming and costly to obtain. In this work, we present a framework that learns to classify individual frames from video-level annotations for real-time assessment of compensatory motions in rehabilitation exercises. We use a gradient-based technique and a pseudo-label selection method to create frame-level pseudo-labels for training a frame-level classifier. We leverage pre-trained task-specific models - Action Transformer, SkateFormer - and a foundation model - MOMENT - for pseudo-label generation, aiming to improve generalization to new patients. To validate the approach, we use the \textit{SERE} dataset with 18 post-stroke patients performing five rehabilitation exercises annotated on compensatory motions. MOMENT achieves better video-level assessment results (AUC = $73\%$), outperforming the baseline LSTM (AUC = $58\%$). The Action Transformer, with the Integrated Gradient technique, leads to better outcomes (AUC = $72\%$) for frame-level assessment, outperforming the baseline trained with ground truth frame-level labeling (AUC = $69\%$). We show that our proposed approach with pre-trained models enhances model generalization ability and facilitates the customization to new patients, reducing the demands of data labeling.
3D Holographic Flow Cytometry Measurements of Microalgae: Strategies for Angle Recovery in Complex Rotation Patterns
Marine ecosystems are in the spotlight, because environmental changes are threatening biodiversity and ecological functions. In this context, microalgae play key ecological roles both in planktonic and benthic ecosystems. Consequently, they are considered indispensable targets for global monitoring programs. However, due to a high spatial and temporal variability and to difficulties of species identification (still relying on microscopy observations), the assessment of roles played by these components of marine ecosystems is demanding. In addition, technologies for a 3D assessment of their complex morphology are scarcely available. Here, we present a comprehensive workflow for retrieving 3D information on microalgae with diverse geometries through holographic microscopy operating in flow-cytometry mode. Depending on the rotation patterns of samples, a tailored approach is used to retrieve their rolling angles. We demonstrate the feasibility of measuring 3D data of various microalgae, contingent to the intrinsic optical properties of cells. Specifically, we show that for quasi-transparent and low-scattering microorganisms, the retrieved angles permit to achieve quantitative 3D tomographic Refractive Index (RI) mapping, providing a full characterization of the alga in terms of its inner structure and the outer shape. Moreover, even in the most challenging scenarios, where microalgae exhibit high light absorption or strong scattering, quantitative 3D shape reconstructions of diatoms and dinoflagellates can be at least achieved. Finally, we compare our direct 3D measurements with 2D inferences of 3D properties, obtained using a commercially available microscopy system. The ability to non-invasively obtain 3D information on microalgae marks a fundamental advancement in the field, unlocking a wealth of novel biological insights for characterizing aquatic ecosystems.
YOND: Practical Blind Raw Image Denoising Free from Camera-Specific Data Dependency
The rapid advancement of photography has created a growing demand for a practical blind raw image denoising method. Recently, learning-based methods have become mainstream due to their excellent performance. However, most existing learning-based methods suffer from camera-specific data dependency, resulting in performance drops when applied to data from unknown cameras. To address this challenge, we introduce a novel blind raw image denoising method named YOND, which represents You Only Need a Denoiser. Trained solely on synthetic data, YOND can generalize robustly to noisy raw images captured by diverse unknown cameras. Specifically, we propose three key modules to guarantee the practicality of YOND: coarse-to-fine noise estimation (CNE), expectation-matched variance-stabilizing transform (EM-VST), and SNR-guided denoiser (SNR-Net). Firstly, we propose CNE to identify the camera noise characteristic, refining the estimated noise parameters based on the coarse denoised image. Secondly, we propose EM-VST to eliminate camera-specific data dependency, correcting the bias expectation of VST according to the noisy image. Finally, we propose SNR-Net to offer controllable raw image denoising, supporting adaptive adjustments and manual fine-tuning. Extensive experiments on unknown cameras, along with flexible solutions for challenging cases, demonstrate the superior practicality of our method. The source code will be publicly available at the \href{https://fenghansen.github.io/publication/YOND}{project homepage}.
comment: 17 pages, 19 figures, TPAMI under review
A Poisson-Guided Decomposition Network for Extreme Low-Light Image Enhancement
Low-light image denoising and enhancement are challenging, especially when traditional noise assumptions, such as Gaussian noise, do not hold in majority. In many real-world scenarios, such as low-light imaging, noise is signal-dependent and is better represented as Poisson noise. In this work, we address the problem of denoising images degraded by Poisson noise under extreme low-light conditions. We introduce a light-weight deep learning-based method that integrates Retinex based decomposition with Poisson denoising into a unified encoder-decoder network. The model simultaneously enhances illumination and suppresses noise by incorporating a Poisson denoising loss to address signal-dependent noise. Without prior requirement for reflectance and illumination, the network learns an effective decomposition process while ensuring consistent reflectance and smooth illumination without causing any form of color distortion. The experimental results demonstrate the effectiveness and practicality of the proposed low-light illumination enhancement method. Our method significantly improves visibility and brightness in low-light conditions, while preserving image structure and color constancy under ambient illumination.
comment: 8 pages, 3 figures and 1 table
Gradient Inversion Attacks on Parameter-Efficient Fine-Tuning CVPR 2025
Federated learning (FL) allows multiple data-owners to collaboratively train machine learning models by exchanging local gradients, while keeping their private data on-device. To simultaneously enhance privacy and training efficiency, recently parameter-efficient fine-tuning (PEFT) of large-scale pretrained models has gained substantial attention in FL. While keeping a pretrained (backbone) model frozen, each user fine-tunes only a few lightweight modules to be used in conjunction, to fit specific downstream applications. Accordingly, only the gradients with respect to these lightweight modules are shared with the server. In this work, we investigate how the privacy of the fine-tuning data of the users can be compromised via a malicious design of the pretrained model and trainable adapter modules. We demonstrate gradient inversion attacks on a popular PEFT mechanism, the adapter, which allow an attacker to reconstruct local data samples of a target user, using only the accessible adapter gradients. Via extensive experiments, we demonstrate that a large batch of fine-tuning images can be retrieved with high fidelity. Our attack highlights the need for privacy-preserving mechanisms for PEFT, while opening up several future directions. Our code is available at https://github.com/info-ucr/PEFTLeak.
comment: 2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2025)
POLARIS: A High-contrast Polarimetric Imaging Benchmark Dataset for Exoplanetary Disk Representation Learning NeurIPS 2025
With over 1,000,000 images from more than 10,000 exposures using state-of-the-art high-contrast imagers (e.g., Gemini Planet Imager, VLT/SPHERE) in the search for exoplanets, can artificial intelligence (AI) serve as a transformative tool in imaging Earth-like exoplanets in the coming decade? In this paper, we introduce a benchmark and explore this question from a polarimetric image representation learning perspective. Despite extensive investments over the past decade, only a few new exoplanets have been directly imaged. Existing imaging approaches rely heavily on labor-intensive labeling of reference stars, which serve as background to extract circumstellar objects (disks or exoplanets) around target stars. With our POLARIS (POlarized Light dAta for total intensity Representation learning of direct Imaging of exoplanetary Systems) dataset, we classify reference star and circumstellar disk images using the full public SPHERE/IRDIS polarized-light archive since 2014, requiring less than 10 percent manual labeling. We evaluate a range of models including statistical, generative, and large vision-language models and provide baseline performance. We also propose an unsupervised generative representation learning framework that integrates these models, achieving superior performance and enhanced representational power. To our knowledge, this is the first uniformly reduced, high-quality exoplanet imaging dataset, rare in astrophysics and machine learning. By releasing this dataset and baselines, we aim to equip astrophysicists with new tools and engage data scientists in advancing direct exoplanet imaging, catalyzing major interdisciplinary breakthroughs.
comment: 9 pages main text with 5 figures, 9 pages appendix with 9 figures. Submitted to NeurIPS 2025
NTIRE 2025 Challenge on RAW Image Restoration and Super-Resolution CVPR 2025
This paper reviews the NTIRE 2025 RAW Image Restoration and Super-Resolution Challenge, highlighting the proposed solutions and results. New methods for RAW Restoration and Super-Resolution could be essential in modern Image Signal Processing (ISP) pipelines, however, this problem is not as explored as in the RGB domain. The goal of this challenge is two fold, (i) restore RAW images with blur and noise degradations, (ii) upscale RAW Bayer images by 2x, considering unknown noise and blur. In the challenge, a total of 230 participants registered, and 45 submitted results during thee challenge period. This report presents the current state-of-the-art in RAW Restoration.
comment: CVPR 2025 - New Trends in Image Restoration and Enhancement (NTIRE)
Estimating Total Lung Volume from Pixel-level Thickness Maps of Chest Radiographs Using Deep Learning
Purpose: To estimate the total lung volume (TLV) from real and synthetic frontal chest radiographs (CXR) on a pixel level using lung thickness maps generated by a U-Net deep learning model. Methods: This retrospective study included 5,959 chest CT scans from two public datasets: the lung nodule analysis 2016 (n=656) and the Radiological Society of North America (RSNA) pulmonary embolism detection challenge 2020 (n=5,303). Additionally, 72 participants were selected from the Klinikum Rechts der Isar dataset (October 2018 to December 2019), each with a corresponding chest radiograph taken within seven days. Synthetic radiographs and lung thickness maps were generated using forward projection of CT scans and their lung segmentations. A U-Net model was trained on synthetic radiographs to predict lung thickness maps and estimate TLV. Model performance was assessed using mean squared error (MSE), Pearson correlation coefficient (r), and two-sided Student's t-distribution. Results: The study included 72 participants (45 male, 27 female, 33 healthy: mean age 62 years [range 34-80]; 39 with chronic obstructive pulmonary disease: mean age 69 years [range 47-91]). TLV predictions showed low error rates ($MSE_{Public-Synthetic}$=0.16 $L^2$, $MSE_{KRI-Synthetic}$=0.20 $L^2$, $MSE_{KRI-Real}$=0.35 $L^2$) and strong correlations with CT-derived reference standard TLV ($n_{Public-Synthetic}$=1,191, r=0.99, P<0.001; $n_{KRI-Synthetic}$=72, r=0.97, P<0.001; $n_{KRI-Real}$=72, r=0.91, P<0.001). The Luna16 test data demonstrated the highest performance, with the lowest mean squared error (MSE = 0.09 $L^2$) and strongest correlation (r = 0.99, P <0.001) for TLV estimation. Conclusion: The U-Net-generated pixel-level lung thickness maps successfully estimated TLV for both synthetic and real radiographs.
Rapid Bone Scintigraphy Enhancement via Semantic Prior Distillation from Segment Anything Model
Rapid bone scintigraphy is crucial for diagnosing skeletal disorders and detecting tumor metastases in children, as it shortens scan duration and reduces discomfort. However, accelerated acquisition often degrades image quality, impairing the visibility of fine anatomical details and potentially compromising diagnosis. To overcome this limitation, we introduce the first application of SAM-based semantic priors for medical image restoration, utilizing the Segment Anything Model (SAM) to enhance pediatric rapid bone scintigraphy. Our approach employs two cascaded networks, $f^{IR1}$ and $f^{IR2}$, supported by three specialized modules: a Semantic Prior Integration (SPI) module, a Semantic Knowledge Distillation (SKD) module, and a Semantic Consistency Module (SCM). The SPI and SKD modules inject domain-specific semantic cues from a fine-tuned SAM, while the SCM preserves coherent semantic feature representations across both cascaded stages. Moreover, we present RBS, a novel Rapid Bone Scintigraphy dataset comprising paired standard (20 cm/min) and rapid (40 cm/min) scans from 137 pediatric patients aged 0.5 - 16 years, making it the first dataset tailored for pediatric rapid bone scintigraphy restoration. Extensive experiments on both a public endoscopic dataset and our RBS dataset demonstrate that our method consistently surpasses existing techniques in PSNR, SSIM, FID, and LPIPS metrics.
comment: 12 pages, 9 figures, 8 tables
Multimodal Biomarkers for Schizophrenia: Towards Individual Symptom Severity Estimation
Studies on schizophrenia assessments using deep learning typically treat it as a classification task to detect the presence or absence of the disorder, oversimplifying the condition and reducing its clinical applicability. This traditional approach overlooks the complexity of schizophrenia, limiting its practical value in healthcare settings. This study shifts the focus to individual symptom severity estimation using a multimodal approach that integrates speech, video, and text inputs. We develop unimodal models for each modality and a multimodal framework to improve accuracy and robustness. By capturing a more detailed symptom profile, this approach can help in enhancing diagnostic precision and support personalized treatment, offering a scalable and objective tool for mental health assessment.
comment: Accepted to be presented at Interspeech 2025
UltraBones100k: A reliable automated labeling method and large-scale dataset for ultrasound-based bone surface extraction
Ultrasound-based bone surface segmentation is crucial in computer-assisted orthopedic surgery. However, ultrasound images have limitations, including a low signal-to-noise ratio, and acoustic shadowing, which make interpretation difficult. Existing deep learning models for bone segmentation rely primarily on costly manual labeling by experts, limiting dataset size and model generalizability. Additionally, the complexity of ultrasound physics and acoustic shadow makes the images difficult for humans to interpret, leading to incomplete labels in anechoic regions and limiting model performance. To advance ultrasound bone segmentation and establish effective model benchmarks, larger and higher-quality datasets are needed. We propose a methodology for collecting ex-vivo ultrasound datasets with automatically generated bone labels, including anechoic regions. The proposed labels are derived by accurately superimposing tracked bone CT models onto the tracked ultrasound images. These initial labels are refined to account for ultrasound physics. A clinical evaluation is conducted by an expert physician specialized on orthopedic sonography to assess the quality of the generated bone labels. A neural network for bone segmentation is trained on the collected dataset and its predictions are compared to expert manual labels, evaluating accuracy, completeness, and F1-score. We collected the largest known dataset of 100k ultrasound images of human lower limbs with bone labels, called UltraBones100k. A Wilcoxon signed-rank test with Bonferroni correction confirmed that the bone alignment after our method significantly improved the quality of bone labeling (p < 0.001). The model trained on UltraBones100k consistently outperforms manual labeling in all metrics, particularly in low-intensity regions (320% improvement in completeness at a distance threshold of 0.5 mm).
comment: accepted by Computers in Biology and Medicine
Towards a deep learning approach for classifying treatment response in glioblastomas
Glioblastomas are the most aggressive type of glioma, having a 5-year survival rate of 6.9%. Treatment typically involves surgery, followed by radiotherapy and chemotherapy, and frequent magnetic resonance imaging (MRI) scans to monitor disease progression. To assess treatment response, radiologists use the Response Assessment in Neuro-Oncology (RANO) criteria to categorize the tumor into one of four labels based on imaging and clinical features: complete response, partial response, stable disease, and progressive disease. This assessment is very complex and time-consuming. Since deep learning (DL) has been widely used to tackle classification problems, this work aimed to implement the first DL pipeline for the classification of RANO criteria based on two consecutive MRI acquisitions. The models were trained and tested on the open dataset LUMIERE. Five approaches were tested: 1) subtraction of input images, 2) different combinations of modalities, 3) different model architectures, 4) different pretraining tasks, and 5) adding clinical data. The pipeline that achieved the best performance used a Densenet264 considering only T1-weighted, T2-weighted, and Fluid Attenuated Inversion Recovery (FLAIR) images as input without any pretraining. A median Balanced Accuracy of 50.96% was achieved. Additionally, explainability methods were applied. Using Saliency Maps, the tumor region was often successfully highlighted. In contrast, Grad-CAM typically failed to highlight the tumor region, with some exceptions observed in the Complete Response and Progressive Disease classes, where it effectively identified the tumor region. These results set a benchmark for future studies on glioblastoma treatment response assessment based on the RANO criteria while emphasizing the heterogeneity of factors that might play a role when assessing the tumor's response to treatment.
CMAR-Net: Accurate Cross-Modal 3D SAR Reconstruction of Vehicle Targets with Sparse-Aspect Multi-Baseline Data
Sparse-aspect multi-baseline Synthetic Aperture Radar (SAR) three-dimensional (3D) tomography is a crucial remote sensing technique. Compared to full-aspect observation, it needs only a few observation aspects to achieve a sufficiently clear 3D scene reconstruction, providing a cost-effective alternative. In the past, compressive sensing (CS) was the mainstream approach for sparse 3D SAR imaging. Recently, deep learning (DL) revolutionizes this field through its powerful data-driven representation capabilities and efficient inference characteristics. However, existing DL methods primarily depend on high-resolution radar images for supervising the training of deep neural networks (DNNs). This unimodal approach precludes the incorporation of complementary information from other data sources, thereby limiting potential improvements in imaging performance. In this paper, we propose a Cross-Modal 3D-SAR Reconstruction Network (CMAR-Net) that enhances 3D SAR imaging by fusing heterogeneous information. Leveraging cross-modal supervision from 2D optical images and error transfer guaranteed by differentiable rendering, CMAR-Net achieves efficient training and reconstructs highly sparse-aspect multi-baseline SAR image into visually structured and accurate 3D images, particularly for vehicle targets. Extensive experiments on simulated and real-world datasets demonstrate that CMAR-Net significantly outperforms state-of-the-art sparse reconstruction algorithms based on CS and DL, with average improvements of 75.83% in PSNR and 47.85% in SSIM. Furthermore, our method eliminates the need for time-consuming full-aperture data preprocessing and relies solely on computer-rendered optical images, significantly reducing dataset construction costs. This work highlights the potential of cross-modal learning for multi-baseline SAR 3D imaging and introduces a novel framework for radar imaging research.
comment: This work has been submitted to the IEEE for possible publication
Contrast-Invariant Self-supervised Segmentation for Quantitative Placental MRI
Accurate placental segmentation is essential for quantitative analysis of the placenta. However, this task is particularly challenging in T2*-weighted placental imaging due to: (1) weak and inconsistent boundary contrast across individual echoes; (2) the absence of manual ground truth annotations for all echo times; and (3) motion artifacts across echoes caused by fetal and maternal movement. In this work, we propose a contrast-augmented segmentation framework that leverages complementary information across multi-echo T2*-weighted MRI to learn robust, contrast-invariant representations. Our method integrates: (i) masked autoencoding (MAE) for self-supervised pretraining on unlabeled multi-echo slices; (ii) masked pseudo-labeling (MPL) for unsupervised domain adaptation across echo times; and (iii) global-local collaboration to align fine-grained features with global anatomical context. We further introduce a semantic matching loss to encourage representation consistency across echoes of the same subject. Experiments on a clinical multi-echo placental MRI dataset demonstrate that our approach generalizes effectively across echo times and outperforms both single-echo and naive fusion baselines. To our knowledge, this is the first work to systematically exploit multi-echo T2*-weighted MRI for placental segmentation.
comment: 8 pages, 20 figures
Bias Assessment and Data Drift Detection in Medical Image Analysis: A Survey
Machine Learning (ML) models have gained popularity in medical imaging analysis given their expert level performance in many medical domains. To enhance the trustworthiness, acceptance, and regulatory compliance of medical imaging models and to facilitate their integration into clinical settings, we review and categorise methods for ensuring ML reliability, both during development and throughout the model's lifespan. Specifically, we provide an overview of methods assessing models' inner-workings regarding bias encoding and detection of data drift for disease classification models. Additionally, to evaluate the severity in case of a significant drift, we provide an overview of the methods developed for classifier accuracy estimation in case of no access to ground truth labels. This should enable practitioners to implement methods ensuring reliable ML deployment and consistent prediction performance over time.
DRIFTS: Optimizing Domain Randomization with Synthetic Data and Weight Interpolation for Fetal Brain Tissue Segmentation
Fetal brain tissue segmentation in magnetic resonance imaging (MRI) is a crucial tool that supports understanding of neurodevelopment, yet it faces challenges due to the heterogeneity of data coming from different scanners and settings, as well as data scarcity. Recent approaches based on domain randomization, like SynthSeg, have shown great potential for single-source domain generalization by simulating images with randomized contrast and image resolution from the label maps. In this work, we investigate how to maximize the out-of-domain (OOD) generalization potential of SynthSegbased methods in fetal brain MRI. Specifically, we demonstrate that the simple Gaussian mixture models employed in FetalSynthSeg outperform physics-informed generation methods in terms of OOD generalization. We further show that incorporating intensity clustering significantly enhances generalization in settings with limited label classes by producing more realistic synthetic data. By combining synthetic pretraining with fine-tuning on real images and applying weight-space interpolation between the two models, we propose DRIFTS as an effective and practical solution for single-source domain generalization. DRIFTS consistently outperforms current state-of-the-art models across multiple benchmarks and is, to our knowledge, the first method to achieve accurate brain tissue segmentation on fetal T1-weighted images. We validate our approach on 308 subjects from four datasets acquired at three different sites, covering a range of scanner field strengths (0.55T to 3T) and both T1w and T2w modalities. We conclude with five practical recommendations to guide the development of SynthSeg-based methods for other organs and imaging modalities.
Multimedia
Sounding that Object: Interactive Object-Aware Image to Audio Generation ICML 2025
Generating accurate sounds for complex audio-visual scenes is challenging, especially in the presence of multiple objects and sound sources. In this paper, we propose an {\em interactive object-aware audio generation} model that grounds sound generation in user-selected visual objects within images. Our method integrates object-centric learning into a conditional latent diffusion model, which learns to associate image regions with their corresponding sounds through multi-modal attention. At test time, our model employs image segmentation to allow users to interactively generate sounds at the {\em object} level. We theoretically validate that our attention mechanism functionally approximates test-time segmentation masks, ensuring the generated audio aligns with selected objects. Quantitative and qualitative evaluations show that our model outperforms baselines, achieving better alignment between objects and their associated sounds. Project page: https://tinglok.netlify.app/files/avobject/
comment: ICML 2025
LaF-GRPO: In-Situ Navigation Instruction Generation for the Visually Impaired via GRPO with LLM-as-Follower Reward
Navigation instruction generation for visually impaired (VI) individuals (NIG-VI) is critical yet relatively underexplored. This study, hence, focuses on producing precise, in-situ, step-by-step navigation instructions that are practically usable by VI users. Concretely, we propose LaF-GRPO (LLM-as-Follower GRPO), where an LLM simulates VI user responses to generate rewards guiding the Vision-Language Model (VLM) post-training. This enhances instruction usability while reducing costly real-world data needs. To facilitate training and testing, we introduce NIG4VI, a 27k-sample open-sourced benchmark. It provides diverse navigation scenarios with accurate spatial coordinates, supporting detailed, open-ended in-situ instruction generation. Experiments on NIG4VI show the effectiveness of LaF-GRPO by quantitative metrics (e.g., Zero-(LaF-GRPO) boosts BLEU +14\%; SFT+(LaF-GRPO) METEOR 0.542 vs. GPT-4o's 0.323) and yields more intuitive, safer instructions. Code and benchmark are available at \href{https://github.com/YiyiyiZhao/NIG4VI}{https://github.com/YiyiyiZhao/NIG4VI}.
Conformer-based Ultrasound-to-Speech Conversion
Deep neural networks have shown promising potential for ultrasound-to-speech conversion task towards Silent Speech Interfaces. In this work, we applied two Conformer-based DNN architectures (Base and one with bi-LSTM) for this task. Speaker-specific models were trained on the data of four speakers from the Ultrasuite-Tal80 dataset, while the generated mel spectrograms were synthesized to audio waveform using a HiFi-GAN vocoder. Compared to a standard 2D-CNN baseline, objective measurements (MSE and mel cepstral distortion) showed no statistically significant improvement for either model. However, a MUSHRA listening test revealed that Conformer with bi-LSTM provided better perceptual quality, while Conformer Base matched the performance of the baseline along with a 3x faster training time due to its simpler architecture. These findings suggest that Conformer-based models, especially the Conformer with bi-LSTM, offer a promising alternative to CNNs for ultrasound-to-speech conversion.
comment: accepted to Interspeech 2025
SplArt: Articulation Estimation and Part-Level Reconstruction with 3D Gaussian Splatting
Reconstructing articulated objects prevalent in daily environments is crucial for applications in augmented/virtual reality and robotics. However, existing methods face scalability limitations (requiring 3D supervision or costly annotations), robustness issues (being susceptible to local optima), and rendering shortcomings (lacking speed or photorealism). We introduce SplArt, a self-supervised, category-agnostic framework that leverages 3D Gaussian Splatting (3DGS) to reconstruct articulated objects and infer kinematics from two sets of posed RGB images captured at different articulation states, enabling real-time photorealistic rendering for novel viewpoints and articulations. SplArt augments 3DGS with a differentiable mobility parameter per Gaussian, achieving refined part segmentation. A multi-stage optimization strategy is employed to progressively handle reconstruction, part segmentation, and articulation estimation, significantly enhancing robustness and accuracy. SplArt exploits geometric self-supervision, effectively addressing challenging scenarios without requiring 3D annotations or category-specific priors. Evaluations on established and newly proposed benchmarks, along with applications to real-world scenarios using a handheld RGB camera, demonstrate SplArt's state-of-the-art performance and real-world practicality. Code is publicly available at https://github.com/ripl/splart.
comment: https://github.com/ripl/splart
How Far Are We from Predicting Missing Modalities with Foundation Models?
Multimodal foundation models have demonstrated impressive capabilities across diverse tasks. However, their potential as plug-and-play solutions for missing modality prediction remains underexplored. To investigate this, we categorize existing approaches into three representative paradigms, encompassing a total of 42 model variants, and conduct a comprehensive evaluation in terms of prediction accuracy and adaptability to downstream tasks. Our analysis reveals that current foundation models often fall short in two critical aspects: (i) fine-grained semantic extraction from the available modalities, and (ii) robust validation of generated modalities. These limitations lead to suboptimal and, at times, misaligned predictions. To address these challenges, we propose an agentic framework tailored for missing modality prediction. This framework dynamically formulates modality-aware mining strategies based on the input context, facilitating the extraction of richer and more discriminative semantic features. In addition, we introduce a \textit{self-refinement mechanism}, which iteratively verifies and enhances the quality of generated modalities through internal feedback. Experimental results show that our method reduces FID for missing image prediction by at least 14% and MER for missing text prediction by at least 10% compared to baselines.
Photoreal Scene Reconstruction from an Egocentric Device SIGGRAPH
In this paper, we investigate the challenges associated with using egocentric devices to photorealistic reconstruct the scene in high dynamic range. Existing methodologies typically assume using frame-rate 6DoF pose estimated from the device's visual-inertial odometry system, which may neglect crucial details necessary for pixel-accurate reconstruction. This study presents two significant findings. Firstly, in contrast to mainstream work treating RGB camera as global shutter frame-rate camera, we emphasize the importance of employing visual-inertial bundle adjustment (VIBA) to calibrate the precise timestamps and movement of the rolling shutter RGB sensing camera in a high frequency trajectory format, which ensures an accurate calibration of the physical properties of the rolling-shutter camera. Secondly, we incorporate a physical image formation model based into Gaussian Splatting, which effectively addresses the sensor characteristics, including the rolling-shutter effect of RGB cameras and the dynamic ranges measured by sensors. Our proposed formulation is applicable to the widely-used variants of Gaussian Splats representation. We conduct a comprehensive evaluation of our pipeline using the open-source Project Aria device under diverse indoor and outdoor lighting conditions, and further validate it on a Meta Quest3 device. Across all experiments, we observe a consistent visual enhancement of +1 dB in PSNR by incorporating VIBA, with an additional +1 dB achieved through our proposed image formation model. Our complete implementation, evaluation datasets, and recording profile are available at http://www.projectaria.com/photoreal-reconstruction/
comment: Paper accepted to SIGGRAPH Conference Paper 2025
SAVVY: Spatial Awareness via Audio-Visual LLMs through Seeing and Hearing
3D spatial reasoning in dynamic, audio-visual environments is a cornerstone of human cognition yet remains largely unexplored by existing Audio-Visual Large Language Models (AV-LLMs) and benchmarks, which predominantly focus on static or 2D scenes. We introduce SAVVY-Bench, the first benchmark for 3D spatial reasoning in dynamic scenes with synchronized spatial audio. SAVVY-Bench is comprised of thousands of relationships involving static and moving objects, and requires fine-grained temporal grounding, consistent 3D localization, and multi-modal annotation. To tackle this challenge, we propose SAVVY, a novel training-free reasoning pipeline that consists of two stages: (i) Egocentric Spatial Tracks Estimation, which leverages AV-LLMs as well as other audio-visual methods to track the trajectories of key objects related to the query using both visual and spatial audio cues, and (ii) Dynamic Global Map Construction, which aggregates multi-modal queried object trajectories and converts them into a unified global dynamic map. Using the constructed map, a final QA answer is obtained through a coordinate transformation that aligns the global map with the queried viewpoint. Empirical evaluation demonstrates that SAVVY substantially enhances performance of state-of-the-art AV-LLMs, setting a new standard and stage for approaching dynamic 3D spatial reasoning in AV-LLMs.
comment: Project website with demo videos: https://zijuncui02.github.io/SAVVY/
ReactDiff: Latent Diffusion for Facial Reaction Generation
Given the audio-visual clip of the speaker, facial reaction generation aims to predict the listener's facial reactions. The challenge lies in capturing the relevance between video and audio while balancing appropriateness, realism, and diversity. While prior works have mostly focused on uni-modal inputs or simplified reaction mappings, recent approaches such as PerFRDiff have explored multi-modal inputs and the one-to-many nature of appropriate reaction mappings. In this work, we propose the Facial Reaction Diffusion (ReactDiff) framework that uniquely integrates a Multi-Modality Transformer with conditional diffusion in the latent space for enhanced reaction generation. Unlike existing methods, ReactDiff leverages intra- and inter-class attention for fine-grained multi-modal interaction, while the latent diffusion process between the encoder and decoder enables diverse yet contextually appropriate outputs. Experimental results demonstrate that ReactDiff significantly outperforms existing approaches, achieving a facial reaction correlation of 0.26 and diversity score of 0.094 while maintaining competitive realism. The code is open-sourced at \href{https://github.com/Hunan-Tiger/ReactDiff}{github}.
comment: Accepted by Neural Networks
Sonic: Shifting Focus to Global Audio Perception in Portrait Animation
The study of talking face generation mainly explores the intricacies of synchronizing facial movements and crafting visually appealing, temporally-coherent animations. However, due to the limited exploration of global audio perception, current approaches predominantly employ auxiliary visual and spatial knowledge to stabilize the movements, which often results in the deterioration of the naturalness and temporal inconsistencies.Considering the essence of audio-driven animation, the audio signal serves as the ideal and unique priors to adjust facial expressions and lip movements, without resorting to interference of any visual signals. Based on this motivation, we propose a novel paradigm, dubbed as Sonic, to {s}hift f{o}cus on the exploration of global audio per{c}ept{i}o{n}.To effectively leverage global audio knowledge, we disentangle it into intra- and inter-clip audio perception and collaborate with both aspects to enhance overall perception.For the intra-clip audio perception, 1). \textbf{Context-enhanced audio learning}, in which long-range intra-clip temporal audio knowledge is extracted to provide facial expression and lip motion priors implicitly expressed as the tone and speed of speech. 2). \textbf{Motion-decoupled controller}, in which the motion of the head and expression movement are disentangled and independently controlled by intra-audio clips. Most importantly, for inter-clip audio perception, as a bridge to connect the intra-clips to achieve the global perception, \textbf{Time-aware position shift fusion}, in which the global inter-clip audio information is considered and fused for long-audio inference via through consecutively time-aware shifted windows. Extensive experiments demonstrate that the novel audio-driven paradigm outperform existing SOTA methodologies in terms of video quality, temporally consistency, lip synchronization precision, and motion diversity.
comment: refer to our main-page \url{https://jixiaozhong.github.io/Sonic/}
Computation and Language
Efficient Knowledge Editing via Minimal Precomputation ACL 2025
Knowledge editing methods like MEMIT are able to make data and compute efficient updates of factual knowledge by using a single sentence to update facts and their consequences. However, what is often overlooked is a "precomputation step", which requires a one-time but significant computational cost. The authors of MEMIT originally precompute approximately 44 million hidden vectors per edited layer, which requires a forward pass over 44 million tokens. For GPT-J (6B), this precomputation step takes 36 hours on a single GPU, while it takes approximately 40 hours for Llama2-7B. Additionally, this precomputation time grows with model size. In this paper, we show that this excessive computational cost is unnecessary. Knowledge editing using MEMIT and related methods, such as ROME and EMMET, can be performed by pre-computing a very small portion of the 44 million hidden vectors. We first present the theoretical minimum number of hidden vector precomputation required for solutions of these editing methods to exist. We then empirically show that knowledge editing using these methods can be done by pre-computing significantly fewer hidden vectors. Specifically, we show that the precomputation step can be done with less than 0.3% of the originally stipulated number of hidden vectors. This saves a significant amount of precomputation time and allows users to begin editing new models within a few minutes.
comment: ACL 2025 Main Conference
Does Thinking More always Help? Understanding Test-Time Scaling in Reasoning Models
Recent trends in test-time scaling for reasoning models (e.g., OpenAI o1, DeepSeek R1) have led to a popular belief that extending thinking traces using prompts like "Wait" or "Let me rethink" can improve performance. This raises a natural question: Does thinking more at test-time truly lead to better reasoning? To answer this question, we perform a detailed empirical study across models and benchmarks, which reveals a consistent pattern of initial performance improvements from additional thinking followed by a decline, due to "overthinking". To understand this non-monotonic trend, we consider a simple probabilistic model, which reveals that additional thinking increases output variance-creating an illusion of improved reasoning while ultimately undermining precision. Thus, observed gains from "more thinking" are not true indicators of improved reasoning, but artifacts stemming from the connection between model uncertainty and evaluation metric. This suggests that test-time scaling through extended thinking is not an effective way to utilize the inference thinking budget. Recognizing these limitations, we introduce an alternative test-time scaling approach, parallel thinking, inspired by Best-of-N sampling. Our method generates multiple independent reasoning paths within the same inference budget and selects the most consistent response via majority vote, achieving up to 20% higher accuracy compared to extended thinking. This provides a simple yet effective mechanism for test-time scaling of reasoning models.
Advancing Multimodal Reasoning: From Optimized Cold Start to Staged Reinforcement Learning
Inspired by the remarkable reasoning capabilities of Deepseek-R1 in complex textual tasks, many works attempt to incentivize similar capabilities in Multimodal Large Language Models (MLLMs) by directly applying reinforcement learning (RL). However, they still struggle to activate complex reasoning. In this paper, rather than examining multimodal RL in isolation, we delve into current training pipelines and identify three crucial phenomena: 1) Effective cold start initialization is critical for enhancing MLLM reasoning. Intriguingly, we find that initializing with carefully selected text data alone can lead to performance surpassing many recent multimodal reasoning models, even before multimodal RL. 2) Standard GRPO applied to multimodal RL suffers from gradient stagnation, which degrades training stability and performance. 3) Subsequent text-only RL training, following the multimodal RL phase, further enhances multimodal reasoning. This staged training approach effectively balances perceptual grounding and cognitive reasoning development. By incorporating the above insights and addressing multimodal RL issues, we introduce ReVisual-R1, achieving a new state-of-the-art among open-source 7B MLLMs on challenging benchmarks including MathVerse, MathVision, WeMath, LogicVista, DynaMath, and challenging AIME2024 and AIME2025.
comment: 19 pages, 6 figures
R-Search: Empowering LLM Reasoning with Search via Multi-Reward Reinforcement Learning
Large language models (LLMs) have notably progressed in multi-step and long-chain reasoning. However, extending their reasoning capabilities to encompass deep interactions with search remains a non-trivial challenge, as models often fail to identify optimal reasoning-search interaction trajectories, resulting in suboptimal responses. We propose R-Search, a novel reinforcement learning framework for Reasoning-Search integration, designed to enable LLMs to autonomously execute multi-step reasoning with deep search interaction, and learn optimal reasoning search interaction trajectories via multi-reward signals, improving response quality in complex logic- and knowledge-intensive tasks. R-Search guides the LLM to dynamically decide when to retrieve or reason, while globally integrating key evidence to enhance deep knowledge interaction between reasoning and search. During RL training, R-Search provides multi-stage, multi-type rewards to jointly optimize the reasoning-search trajectory. Experiments on seven datasets show that R-Search outperforms advanced RAG baselines by up to 32.2% (in-domain) and 25.1% (out-of-domain). The code and data are available at https://github.com/QingFei1/R-Search.
comment: 16 pages, 3 figures
Long or short CoT? Investigating Instance-level Switch of Large Reasoning Models
With the rapid advancement of large reasoning models, long Chain-of-Thought (CoT) prompting has demonstrated strong performance on complex tasks. However, this often comes with a significant increase in token usage. In this paper, we conduct a comprehensive empirical analysis comparing long and short CoT strategies. Our findings reveal that while long CoT can lead to performance improvements, its benefits are often marginal relative to its significantly higher token consumption. Specifically, long CoT tends to outperform when ample generation budgets are available, whereas short CoT is more effective under tighter budget constraints. These insights underscore the need for a dynamic approach that selects the proper CoT strategy based on task context and resource availability. To address this, we propose SwitchCoT, an automatic framework that adaptively chooses between long and short CoT strategies to balance reasoning accuracy and computational efficiency. Moreover, SwitchCoT is designed to be budget-aware, making it broadly applicable across scenarios with varying resource constraints. Experimental results demonstrate that SwitchCoT can reduce inference costs by up to 50% while maintaining high accuracy. Notably, under limited token budgets, it achieves performance comparable to, or even exceeding, that of using either long or short CoT alone.
SuperWriter: Reflection-Driven Long-Form Generation with Large Language Models
Long-form text generation remains a significant challenge for large language models (LLMs), particularly in maintaining coherence, ensuring logical consistency, and preserving text quality as sequence length increases. To address these limitations, we propose SuperWriter-Agent, an agent-based framework designed to enhance the quality and consistency of long-form text generation. SuperWriter-Agent introduces explicit structured thinking-through planning and refinement stages into the generation pipeline, guiding the model to follow a more deliberate and cognitively grounded process akin to that of a professional writer. Based on this framework, we construct a supervised fine-tuning dataset to train a 7B SuperWriter-LM. We further develop a hierarchical Direct Preference Optimization (DPO) procedure that uses Monte Carlo Tree Search (MCTS) to propagate final quality assessments and optimize each generation step accordingly. Empirical results across diverse benchmarks demonstrate that SuperWriter-LM achieves state-of-the-art performance, surpassing even larger-scale baseline models in both automatic evaluation and human evaluation. Furthermore, comprehensive ablation studies demonstrate the effectiveness of hierarchical DPO and underscore the value of incorporating structured thinking steps to improve the quality of long-form text generation.
SkipGPT: Dynamic Layer Pruning Reinvented with Token Awareness and Module Decoupling
Large language models (LLMs) achieve remarkable performance across tasks but incur substantial computational costs due to their deep, multi-layered architectures. Layer pruning has emerged as a strategy to alleviate these inefficiencies, but conventional static pruning methods overlook two critical dynamics inherent to LLM inference: (1) horizontal dynamics, where token-level heterogeneity demands context-aware pruning decisions, and (2) vertical dynamics, where the distinct functional roles of MLP and self-attention layers necessitate component-specific pruning policies. We introduce SkipGPT, a dynamic layer pruning framework designed to optimize computational resource allocation through two core innovations: (1) global token-aware routing to prioritize critical tokens, and (2) decoupled pruning policies for MLP and self-attention components. To mitigate training instability, we propose a two-stage optimization paradigm: first, a disentangled training phase that learns routing strategies via soft parameterization to avoid premature pruning decisions, followed by parameter-efficient LoRA fine-tuning to restore performance impacted by layer removal. Extensive experiments demonstrate that SkipGPT reduces over 40% of model parameters while matching or exceeding the performance of the original dense model across benchmarks. By harmonizing dynamic efficiency with preserved expressivity, SkipGPT advances the practical deployment of scalable, resource-aware LLMs. Our code is publicly available at: https://github.com/EIT-NLP/SkipGPT.
A Dataset for Addressing Patient's Information Needs related to Clinical Course of Hospitalization
Patients have distinct information needs about their hospitalization that can be addressed using clinical evidence from electronic health records (EHRs). While artificial intelligence (AI) systems show promise in meeting these needs, robust datasets are needed to evaluate the factual accuracy and relevance of AI-generated responses. To our knowledge, no existing dataset captures patient information needs in the context of their EHRs. We introduce ArchEHR-QA, an expert-annotated dataset based on real-world patient cases from intensive care unit and emergency department settings. The cases comprise questions posed by patients to public health forums, clinician-interpreted counterparts, relevant clinical note excerpts with sentence-level relevance annotations, and clinician-authored answers. To establish benchmarks for grounded EHR question answering (QA), we evaluated three open-weight large language models (LLMs)--Llama 4, Llama 3, and Mixtral--across three prompting strategies: generating (1) answers with citations to clinical note sentences, (2) answers before citations, and (3) answers from filtered citations. We assessed performance on two dimensions: Factuality (overlap between cited note sentences and ground truth) and Relevance (textual and semantic similarity between system and reference answers). The final dataset contains 134 patient cases. The answer-first prompting approach consistently performed best, with Llama 4 achieving the highest scores. Manual error analysis supported these findings and revealed common issues such as omitted key clinical evidence and contradictory or hallucinated content. Overall, ArchEHR-QA provides a strong benchmark for developing and evaluating patient-centered EHR QA systems, underscoring the need for further progress toward generating factual and relevant responses in clinical contexts.
Establishing Trustworthy LLM Evaluation via Shortcut Neuron Analysis ACL 2025
The development of large language models (LLMs) depends on trustworthy evaluation. However, most current evaluations rely on public benchmarks, which are prone to data contamination issues that significantly compromise fairness. Previous researches have focused on constructing dynamic benchmarks to address contamination. However, continuously building new benchmarks is costly and cyclical. In this work, we aim to tackle contamination by analyzing the mechanisms of contaminated models themselves. Through our experiments, we discover that the overestimation of contaminated models is likely due to parameters acquiring shortcut solutions in training. We further propose a novel method for identifying shortcut neurons through comparative and causal analysis. Building on this, we introduce an evaluation method called shortcut neuron patching to suppress shortcut neurons. Experiments validate the effectiveness of our approach in mitigating contamination. Additionally, our evaluation results exhibit a strong linear correlation with MixEval, a recently released trustworthy benchmark, achieving a Spearman coefficient ($\rho$) exceeding 0.95. This high correlation indicates that our method closely reveals true capabilities of the models and is trustworthy. We conduct further experiments to demonstrate the generalizability of our method across various benchmarks and hyperparameter settings. Code: https://github.com/GaryStack/Trustworthy-Evaluation
comment: Accepted to ACL 2025 Main Conference
MMR-V: What's Left Unsaid? A Benchmark for Multimodal Deep Reasoning in Videos
The sequential structure of videos poses a challenge to the ability of multimodal large language models (MLLMs) to locate multi-frame evidence and conduct multimodal reasoning. However, existing video benchmarks mainly focus on understanding tasks, which only require models to match frames mentioned in the question (hereafter referred to as "question frame") and perceive a few adjacent frames. To address this gap, we propose MMR-V: A Benchmark for Multimodal Deep Reasoning in Videos. The benchmark is characterized by the following features. (1) Long-range, multi-frame reasoning: Models are required to infer and analyze evidence frames that may be far from the question frame. (2) Beyond perception: Questions cannot be answered through direct perception alone but require reasoning over hidden information. (3) Reliability: All tasks are manually annotated, referencing extensive real-world user understanding to align with common perceptions. (4) Confusability: Carefully designed distractor annotation strategies to reduce model shortcuts. MMR-V consists of 317 videos and 1,257 tasks. Our experiments reveal that current models still struggle with multi-modal reasoning; even the best-performing model, o4-mini, achieves only 52.5% accuracy. Additionally, current reasoning enhancement strategies (Chain-of-Thought and scaling test-time compute) bring limited gains. Further analysis indicates that the CoT demanded for multi-modal reasoning differs from it in textual reasoning, which partly explains the limited performance gains. We hope that MMR-V can inspire further research into enhancing multi-modal reasoning capabilities.
comment: Project Page: https://mmr-v.github.io
Are Lexicon-Based Tools Still the Gold Standard for Valence Analysis in Low-Resource Flemish?
Understanding the nuances in everyday language is pivotal for advancements in computational linguistics & emotions research. Traditional lexicon-based tools such as LIWC and Pattern have long served as foundational instruments in this domain. LIWC is the most extensively validated word count based text analysis tool in the social sciences and Pattern is an open source Python library offering functionalities for NLP. However, everyday language is inherently spontaneous, richly expressive, & deeply context dependent. To explore the capabilities of LLMs in capturing the valences of daily narratives in Flemish, we first conducted a study involving approximately 25,000 textual responses from 102 Dutch-speaking participants. Each participant provided narratives prompted by the question, "What is happening right now and how do you feel about it?", accompanied by self-assessed valence ratings on a continuous scale from -50 to +50. We then assessed the performance of three Dutch-specific LLMs in predicting these valence scores, and compared their outputs to those generated by LIWC and Pattern. Our findings indicate that, despite advancements in LLM architectures, these Dutch tuned models currently fall short in accurately capturing the emotional valence present in spontaneous, real-world narratives. This study underscores the imperative for developing culturally and linguistically tailored models/tools that can adeptly handle the complexities of natural language use. Enhancing automated valence analysis is not only pivotal for advancing computational methodologies but also holds significant promise for psychological research with ecologically valid insights into human daily experiences. We advocate for increased efforts in creating comprehensive datasets & finetuning LLMs for low-resource languages like Flemish, aiming to bridge the gap between computational linguistics & emotion research.
CLAIM: An Intent-Driven Multi-Agent Framework for Analyzing Manipulation in Courtroom Dialogues ACL
Courtrooms are places where lives are determined and fates are sealed, yet they are not impervious to manipulation. Strategic use of manipulation in legal jargon can sway the opinions of judges and affect the decisions. Despite the growing advancements in NLP, its application in detecting and analyzing manipulation within the legal domain remains largely unexplored. Our work addresses this gap by introducing LegalCon, a dataset of 1,063 annotated courtroom conversations labeled for manipulation detection, identification of primary manipulators, and classification of manipulative techniques, with a focus on long conversations. Furthermore, we propose CLAIM, a two-stage, Intent-driven Multi-agent framework designed to enhance manipulation analysis by enabling context-aware and informed decision-making. Our results highlight the potential of incorporating agentic frameworks to improve fairness and transparency in judicial processes. We hope that this contributes to the broader application of NLP in legal discourse analysis and the development of robust tools to support fairness in legal decision-making. Our code and data are available at https://github.com/Disha1001/CLAIM.
comment: Accepted to SICon 2025 ACL
Rectified Sparse Attention
Efficient long-sequence generation is a critical challenge for Large Language Models. While recent sparse decoding methods improve efficiency, they suffer from KV cache misalignment, where approximation errors accumulate and degrade generation quality. In this work, we propose Rectified Sparse Attention (ReSA), a simple yet effective method that combines block-sparse attention with periodic dense rectification. By refreshing the KV cache at fixed intervals using a dense forward pass, ReSA bounds error accumulation and preserves alignment with the pretraining distribution. Experiments across math reasoning, language modeling, and retrieval tasks demonstrate that ReSA achieves near-lossless generation quality with significantly improved efficiency. Notably, ReSA delivers up to 2.42$\times$ end-to-end speedup under decoding at 256K sequence length, making it a practical solution for scalable long-context inference. Code is available at https://aka.ms/ReSA-LM.
TextAtari: 100K Frames Game Playing with Language Agents
We present TextAtari, a benchmark for evaluating language agents on very long-horizon decision-making tasks spanning up to 100,000 steps. By translating the visual state representations of classic Atari games into rich textual descriptions, TextAtari creates a challenging test bed that bridges sequential decision-making with natural language processing. The benchmark includes nearly 100 distinct tasks with varying complexity, action spaces, and planning horizons, all rendered as text through an unsupervised representation learning framework (AtariARI). We evaluate three open-source large language models (Qwen2.5-7B, Gemma-7B, and Llama3.1-8B) across three agent frameworks (zero-shot, few-shot chain-of-thought, and reflection reasoning) to assess how different forms of prior knowledge affect performance on these long-horizon challenges. Four scenarios-Basic, Obscured, Manual Augmentation, and Reference-based-investigate the impact of semantic understanding, instruction comprehension, and expert demonstrations on agent decision-making. Our results reveal significant performance gaps between language agents and human players in extensive planning tasks, highlighting challenges in sequential reasoning, state tracking, and strategic planning across tens of thousands of steps. TextAtari provides standardized evaluation protocols, baseline implementations, and a framework for advancing research at the intersection of language models and planning.
comment: 51 pages, 39 figures
AmbiK: Dataset of Ambiguous Tasks in Kitchen Environment ACL 2025
As a part of an embodied agent, Large Language Models (LLMs) are typically used for behavior planning given natural language instructions from the user. However, dealing with ambiguous instructions in real-world environments remains a challenge for LLMs. Various methods for task ambiguity detection have been proposed. However, it is difficult to compare them because they are tested on different datasets and there is no universal benchmark. For this reason, we propose AmbiK (Ambiguous Tasks in Kitchen Environment), the fully textual dataset of ambiguous instructions addressed to a robot in a kitchen environment. AmbiK was collected with the assistance of LLMs and is human-validated. It comprises 1000 pairs of ambiguous tasks and their unambiguous counterparts, categorized by ambiguity type (Human Preferences, Common Sense Knowledge, Safety), with environment descriptions, clarifying questions and answers, user intents, and task plans, for a total of 2000 tasks. We hope that AmbiK will enable researchers to perform a unified comparison of ambiguity detection methods. AmbiK is available at https://github.com/cog-model/AmbiK-dataset.
comment: ACL 2025 (Main Conference)
Multimodal Tabular Reasoning with Privileged Structured Information
Tabular reasoning involves multi-step information extraction and logical inference over tabular data. While recent advances have leveraged large language models (LLMs) for reasoning over structured tables, such high-quality textual representations are often unavailable in real-world settings, where tables typically appear as images. In this paper, we tackle the task of tabular reasoning from table images, leveraging privileged structured information available during training to enhance multimodal large language models (MLLMs). The key challenges lie in the complexity of accurately aligning structured information with visual representations, and in effectively transferring structured reasoning skills to MLLMs despite the input modality gap. To address these, we introduce TabUlar Reasoning with Bridged infOrmation ({\sc Turbo}), a new framework for multimodal tabular reasoning with privileged structured tables. {\sc Turbo} benefits from a structure-aware reasoning trace generator based on DeepSeek-R1, contributing to high-quality modality-bridged data. On this basis, {\sc Turbo} repeatedly generates and selects the advantageous reasoning paths, further enhancing the model's tabular reasoning ability. Experimental results demonstrate that, with limited ($9$k) data, {\sc Turbo} achieves state-of-the-art performance ($+7.2\%$ vs. previous SOTA) across multiple datasets.
EuroLLM-9B: Technical Report
This report presents EuroLLM-9B, a large language model trained from scratch to support the needs of European citizens by covering all 24 official European Union languages and 11 additional languages. EuroLLM addresses the issue of European languages being underrepresented and underserved in existing open large language models. We provide a comprehensive overview of EuroLLM-9B's development, including tokenizer design, architectural specifications, data filtering, and training procedures. We describe the pre-training data collection and filtering pipeline, including the creation of EuroFilter, an AI-based multilingual filter, as well as the design of EuroBlocks-Synthetic, a novel synthetic dataset for post-training that enhances language coverage for European languages. Evaluation results demonstrate EuroLLM-9B's competitive performance on multilingual benchmarks and machine translation tasks, establishing it as the leading open European-made LLM of its size. To support open research and adoption, we release all major components of this work, including the base and instruction-tuned models, the EuroFilter classifier, and the synthetic post-training dataset.
comment: 56 pages
LLMEval-Med: A Real-world Clinical Benchmark for Medical LLMs with Physician Validation
Evaluating large language models (LLMs) in medicine is crucial because medical applications require high accuracy with little room for error. Current medical benchmarks have three main types: medical exam-based, comprehensive medical, and specialized assessments. However, these benchmarks have limitations in question design (mostly multiple-choice), data sources (often not derived from real clinical scenarios), and evaluation methods (poor assessment of complex reasoning). To address these issues, we present LLMEval-Med, a new benchmark covering five core medical areas, including 2,996 questions created from real-world electronic health records and expert-designed clinical scenarios. We also design an automated evaluation pipeline, incorporating expert-developed checklists into our LLM-as-Judge framework. Furthermore, our methodology validates machine scoring through human-machine agreement analysis, dynamically refining checklists and prompts based on expert feedback to ensure reliability. We evaluate 13 LLMs across three categories (specialized medical models, open-source models, and closed-source models) on LLMEval-Med, providing valuable insights for the safe and effective deployment of LLMs in medical domains. The dataset is released in https://github.com/llmeval/LLMEval-Med.
A Novel Data Augmentation Approach for Automatic Speaking Assessment on Opinion Expressions ISCA
Automated speaking assessment (ASA) on opinion expressions is often hampered by the scarcity of labeled recordings, which restricts prompt diversity and undermines scoring reliability. To address this challenge, we propose a novel training paradigm that leverages a large language models (LLM) to generate diverse responses of a given proficiency level, converts responses into synthesized speech via speaker-aware text-to-speech synthesis, and employs a dynamic importance loss to adaptively reweight training instances based on feature distribution differences between synthesized and real speech. Subsequently, a multimodal large language model integrates aligned textual features with speech signals to predict proficiency scores directly. Experiments conducted on the LTTC dataset show that our approach outperforms methods relying on real data or conventional augmentation, effectively mitigating low-resource constraints and enabling ASA on opinion expressions with cross-modal information.
comment: submitted to the ISCA SLaTE-2025 Workshop
Acoustically Precise Hesitation Tagging Is Essential for End-to-End Verbatim Transcription Systems ISCA
Verbatim transcription for automatic speaking assessment demands accurate capture of disfluencies, crucial for downstream tasks like error analysis and feedback. However, many ASR systems discard or generalize hesitations, losing important acoustic details. We fine-tune Whisper models on the Speak & Improve 2025 corpus using low-rank adaptation (LoRA), without recourse to external audio training data. We compare three annotation schemes: removing hesitations (Pure), generic tags (Rich), and acoustically precise fillers inferred by Gemini 2.0 Flash from existing audio-transcript pairs (Extra). Our challenge system achieved 6.47% WER (Pure) and 5.81% WER (Extra). Post-challenge experiments reveal that fine-tuning Whisper Large V3 Turbo with the "Extra" scheme yielded a 5.5% WER, an 11.3% relative improvement over the "Pure" scheme (6.2% WER). This demonstrates that explicit, realistic filled-pause labeling significantly enhances ASR accuracy for verbatim L2 speech transcription.
comment: submitted to the ISCA SLaTE-2025 Workshop
Controlling Difficulty of Generated Text for AI-Assisted Language Learning EMNLP 2025
Practicing conversations with large language models (LLMs) presents a promising alternative to traditional in-person language learning. However, most LLMs generate text at a near-native level of complexity, making them ill-suited for beginner learners (CEFR: A1-A2). In this paper, we investigate whether controllable generation techniques -- specifically modular methods that do not require model fine-tuning -- can adapt LLM outputs to better support absolute beginners. We evaluate these methods through both automatic metrics and a user study with university-level learners of Japanese. Our findings show that while prompting alone fails to control output difficulty, the use of future discriminators (Yang and Klein, 2021) significantly improves output comprehensibility (from 40.4\% to 84.3\%). We further introduce a novel token-level evaluation metric, Token Miss Rate (TMR), that quantifies the proportion of incomprehensible tokens per utterance and correlates strongly with human judgments. To support future research in AI-assisted language learning, we release our code, models, annotation tools, and dataset.
comment: Submitted to EMNLP 2025
LaF-GRPO: In-Situ Navigation Instruction Generation for the Visually Impaired via GRPO with LLM-as-Follower Reward
Navigation instruction generation for visually impaired (VI) individuals (NIG-VI) is critical yet relatively underexplored. This study, hence, focuses on producing precise, in-situ, step-by-step navigation instructions that are practically usable by VI users. Concretely, we propose LaF-GRPO (LLM-as-Follower GRPO), where an LLM simulates VI user responses to generate rewards guiding the Vision-Language Model (VLM) post-training. This enhances instruction usability while reducing costly real-world data needs. To facilitate training and testing, we introduce NIG4VI, a 27k-sample open-sourced benchmark. It provides diverse navigation scenarios with accurate spatial coordinates, supporting detailed, open-ended in-situ instruction generation. Experiments on NIG4VI show the effectiveness of LaF-GRPO by quantitative metrics (e.g., Zero-(LaF-GRPO) boosts BLEU +14\%; SFT+(LaF-GRPO) METEOR 0.542 vs. GPT-4o's 0.323) and yields more intuitive, safer instructions. Code and benchmark are available at \href{https://github.com/YiyiyiZhao/NIG4VI}{https://github.com/YiyiyiZhao/NIG4VI}.
Progressive Mastery: Customized Curriculum Learning with Guided Prompting for Mathematical Reasoning
Large Language Models (LLMs) have achieved remarkable performance across various reasoning tasks, yet post-training is constrained by inefficient sample utilization and inflexible difficulty samples processing. To address these limitations, we propose Customized Curriculum Learning (CCL), a novel framework with two key innovations. First, we introduce model-adaptive difficulty definition that customizes curriculum datasets based on each model's individual capabilities rather than using predefined difficulty metrics. Second, we develop "Guided Prompting," which dynamically reduces sample difficulty through strategic hints, enabling effective utilization of challenging samples that would otherwise degrade performance. Comprehensive experiments on supervised fine-tuning and reinforcement learning demonstrate that CCL significantly outperforms uniform training approaches across five mathematical reasoning benchmarks, confirming its effectiveness across both paradigms in enhancing sample utilization and model performance.
High Accuracy, Less Talk (HALT): Reliable LLMs through Capability-Aligned Finetuning
Large Language Models (LLMs) currently respond to every prompt. However, they can produce incorrect answers when they lack knowledge or capability -- a problem known as hallucination. We instead propose post-training an LLM to generate content only when confident in its correctness and to otherwise (partially) abstain. Specifically, our method, HALT, produces capability-aligned post-training data that encodes what the model can and cannot reliably generate. We generate this data by splitting responses of the pretrained LLM into factual fragments (atomic statements or reasoning steps), and use ground truth information to identify incorrect fragments. We achieve capability-aligned finetuning responses by either removing incorrect fragments or replacing them with "Unsure from Here" -- according to a tunable threshold that allows practitioners to trade off response completeness and mean correctness of the response's fragments. We finetune four open-source models for biography writing, mathematics, coding, and medicine with HALT for three different trade-off thresholds. HALT effectively trades off response completeness for correctness, increasing the mean correctness of response fragments by 15% on average, while resulting in a 4% improvement in the F1 score (mean of completeness and correctness of the response) compared to the relevant baselines. By tuning HALT for highest correctness, we train a single reliable Llama3-70B model with correctness increased from 51% to 87% across all four domains while maintaining 53% of the response completeness achieved with standard finetuning.
Explainability-Based Token Replacement on LLM-Generated Text
Generative models, especially large language models (LLMs), have shown remarkable progress in producing text that appears human-like. However, they often exhibit patterns that make their output easier to detect than text written by humans. In this paper, we investigate how explainable AI (XAI) methods can be used to reduce the detectability of AI-generated text (AIGT) while also introducing a robust ensemble-based detection approach. We begin by training an ensemble classifier to distinguish AIGT from human-written text, then apply SHAP and LIME to identify tokens that most strongly influence its predictions. We propose four explainability-based token replacement strategies to modify these influential tokens. Our findings show that these token replacement approaches can significantly diminish a single classifier's ability to detect AIGT. However, our ensemble classifier maintains strong performance across multiple languages and domains, showing that a multi-model approach can mitigate the impact of token-level manipulations. These results show that XAI methods can make AIGT harder to detect by focusing on the most influential tokens. At the same time, they highlight the need for robust, ensemble-based detection strategies that can adapt to evolving approaches for hiding AIGT.
On Support Samples of Next Word Prediction ACL2025
Language models excel in various tasks by making complex decisions, yet understanding the rationale behind these decisions remains a challenge. This paper investigates \emph{data-centric interpretability} in language models, focusing on the next-word prediction task. Using representer theorem, we identify two types of \emph{support samples}-those that either promote or deter specific predictions. Our findings reveal that being a support sample is an intrinsic property, predictable even before training begins. Additionally, while non-support samples are less influential in direct predictions, they play a critical role in preventing overfitting and shaping generalization and representation learning. Notably, the importance of non-support samples increases in deeper layers, suggesting their significant role in intermediate representation formation.These insights shed light on the interplay between data and model decisions, offering a new dimension to understanding language model behavior and interpretability.
comment: Accepted to ACL2025(Main Conference)
Lacuna Inc. at SemEval-2025 Task 4: LoRA-Enhanced Influence-Based Unlearning for LLMs SemEval-2025
This paper describes LIBU (LoRA enhanced influence-based unlearning), an algorithm to solve the task of unlearning - removing specific knowledge from a large language model without retraining from scratch and compromising its overall utility (SemEval-2025 Task 4: Unlearning sensitive content from Large Language Models). The algorithm combines classical \textit{influence functions} to remove the influence of the data from the model and \textit{second-order optimization} to stabilize the overall utility. Our experiments show that this lightweight approach is well applicable for unlearning LLMs in different kinds of task.
comment: Accepted to SemEval-2025, an ACL 2025 workshop
Think Like a Person Before Responding: A Multi-Faceted Evaluation of Persona-Guided LLMs for Countering Hate ACL
Automated counter-narratives (CN) offer a promising strategy for mitigating online hate speech, yet concerns about their affective tone, accessibility, and ethical risks remain. We propose a framework for evaluating Large Language Model (LLM)-generated CNs across four dimensions: persona framing, verbosity and readability, affective tone, and ethical robustness. Using GPT-4o-Mini, Cohere's CommandR-7B, and Meta's LLaMA 3.1-70B, we assess three prompting strategies on the MT-Conan and HatEval datasets. Our findings reveal that LLM-generated CNs are often verbose and adapted for people with college-level literacy, limiting their accessibility. While emotionally guided prompts yield more empathetic and readable responses, there remain concerns surrounding safety and effectiveness.
comment: Accepted at ACL WOAH 2025
Unveiling and Eliminating the Shortcut Learning for Locate-Then-Edit Knowledge Editing via Both Subject and Relation Awareness
Knowledge editing aims to alternate the target knowledge predicted by large language models while ensuring the least side effects on unrelated knowledge. An effective way to achieve knowledge editing is to identify pivotal parameters for predicting factual associations and modify them with an optimization process to update the predictions. However, these locate-then-edit methods are uncontrollable since they tend to modify most unrelated relations connected to the subject of target editing. We unveil that this failure of controllable editing is due to a shortcut learning issue during the optimization process. Specifically, we discover two crucial features that are the subject feature and the relation feature for models to learn during optimization, but the current optimization process tends to over-learning the subject feature while neglecting the relation feature. To eliminate this shortcut learning of the subject feature, we propose a novel two-stage optimization process that balances the learning of the subject feature and the relation feature. Experimental results demonstrate that our approach successfully prevents knowledge editing from shortcut learning and achieves the optimal overall performance, contributing to controllable knowledge editing.
LexTime: A Benchmark for Temporal Ordering of Legal Events
Temporal reasoning in legal texts is important for applications like case law analysis and compliance monitoring. However, existing datasets lack expert language evaluation, leaving a gap in understanding how LLMs manage event ordering in legal contexts. We introduce LexTime, the first dataset designed to evaluate LLMs' event ordering capabilities in legal language, consisting of 512 instances from U.S. Federal Complaints with annotated event pairs and their temporal relations. Our findings show that (1) LLMs are more accurate on legal event ordering than on narrative (up to +10.5%); (2) longer input contexts and implicit events boost accuracy, reaching 80.8% for implicit-explicit event pairs; (3) legal linguistic complexities and nested clauses remain a challenge. We investigate how context length, explicit vs implicit event pairs, and legal language features affect model performance, demonstrating the need for specific modeling strategies to enhance temporal event reasoning.
comment: Preprint
Mitigating Hallucinations in Large Vision-Language Models via Entity-Centric Multimodal Preference Optimization
Large Visual Language Models (LVLMs) have demonstrated impressive capabilities across multiple tasks. However, their trustworthiness is often challenged by hallucinations, which can be attributed to the modality misalignment and the inherent hallucinations of their underlying Large Language Models (LLMs) backbone. Existing preference alignment methods focus on aligning model responses with human preferences while neglecting image-text modality alignment, resulting in over-reliance on LLMs and hallucinations. In this paper, we propose Entity-centric Multimodal Preference Optimization (EMPO), which achieves enhanced modality alignment than existing human preference alignment methods. Besides, to overcome the scarcity of high-quality multimodal preference data, we utilize open-source instruction datasets to automatically construct high-quality preference data across three aspects: image, instruction, and response. Experiments on two human preference datasets and five multimodal hallucination benchmarks demonstrate the effectiveness of EMPO, e.g., reducing hallucination rates by 85.9% on Object-HalBench and 49.8% on MM-HalBench.
The mutual exclusivity bias of bilingual visually grounded speech models
Mutual exclusivity (ME) is a strategy where a novel word is associated with a novel object rather than a familiar one, facilitating language learning in children. Recent work has found an ME bias in a visually grounded speech (VGS) model trained on English speech with paired images. But ME has also been studied in bilingual children, who may employ it less due to cross-lingual ambiguity. We explore this pattern computationally using bilingual VGS models trained on combinations of English, French, and Dutch. We find that bilingual models generally exhibit a weaker ME bias than monolingual models, though exceptions exist. Analyses show that the combined visual embeddings of bilingual models have a smaller variance for familiar data, partly explaining the increase in confusion between novel and familiar concepts. We also provide new insights into why the ME bias exists in VGS models in the first place. Code and data: https://github.com/danoneata/me-vgs
comment: Interspeech 2025
AI Agents for Conversational Patient Triage: Preliminary Simulation-Based Evaluation with Real-World EHR Data
Background: We present a Patient Simulator that leverages real world patient encounters which cover a broad range of conditions and symptoms to provide synthetic test subjects for development and testing of healthcare agentic models. The simulator provides a realistic approach to patient presentation and multi-turn conversation with a symptom-checking agent. Objectives: (1) To construct and instantiate a Patient Simulator to train and test an AI health agent, based on patient vignettes derived from real EHR data. (2) To test the validity and alignment of the simulated encounters provided by the Patient Simulator to expert human clinical providers. (3) To illustrate the evaluation framework of such an LLM system on the generated realistic, data-driven simulations -- yielding a preliminary assessment of our proposed system. Methods: We first constructed realistic clinical scenarios by deriving patient vignettes from real-world EHR encounters. These vignettes cover a variety of presenting symptoms and underlying conditions. We then evaluate the performance of the Patient Simulator as a simulacrum of a real patient encounter across over 500 different patient vignettes. We leveraged a separate AI agent to provide multi-turn questions to obtain a history of present illness. The resulting multiturn conversations were evaluated by two expert clinicians. Results: Clinicians scored the Patient Simulator as consistent with the patient vignettes in those same 97.7% of cases. The extracted case summary based on the conversation history was 99% relevant. Conclusions: We developed a methodology to incorporate vignettes derived from real healthcare patient data to build a simulation of patient responses to symptom checking agents. The performance and alignment of this Patient Simulator could be used to train and test a multi-turn conversational AI agent at scale.
QQSUM: A Novel Task and Model of Quantitative Query-Focused Summarization for Review-based Product Question Answering ACL 2025
Review-based Product Question Answering (PQA) allows e-commerce platforms to automatically address customer queries by leveraging insights from user reviews. However, existing PQA systems generate answers with only a single perspective, failing to capture the diversity of customer opinions. In this paper we introduce a novel task Quantitative Query-Focused Summarization (QQSUM), which aims to summarize diverse customer opinions into representative Key Points (KPs) and quantify their prevalence to effectively answer user queries. While Retrieval-Augmented Generation (RAG) shows promise for PQA, its generated answers still fall short of capturing the full diversity of viewpoints. To tackle this challenge, our model QQSUM-RAG, which extends RAG, employs few-shot learning to jointly train a KP-oriented retriever and a KP summary generator, enabling KP-based summaries that capture diverse and representative opinions. Experimental results demonstrate that QQSUM-RAG achieves superior performance compared to state-of-the-art RAG baselines in both textual quality and quantification accuracy of opinions. Our source code is available at: https://github.com/antangrocket1312/QQSUMM
comment: Paper accepted to ACL 2025 Main Conference
CETBench: A Novel Dataset constructed via Transformations over Programs for Benchmarking LLMs for Code-Equivalence Checking
LLMs have been extensively used for the task of automated code generation. In this work, we examine the applicability of LLMs for the related but relatively unexplored task of code-equivalence checking, i.e., given two programs, whether they are functionally equivalent or not. This is an important problem since benchmarking code equivalence can play a critical role in evaluating LLM capabilities for tasks such as code re-writing and code translation. Towards this end, we present CETBench - Code Equivalence with Transformations Benchmark, constructed via a repository of programs, where two programs in the repository may be solving the same or different tasks. Each instance in our dataset is obtained by taking a pair of programs in the repository and applying a random series of pre-defined code transformations, resulting in (non-)equivalent pairs. Our analysis on this dataset reveals a surprising finding that very simple code transformations in the underlying pair of programs can result in a significant drop in performance of SOTA LLMs for the task of code-equivalence checking. To remedy this, we present a simple fine-tuning-based approach to boost LLM performance on the transformed pairs of programs. Our approach for dataset generation is generic, and can be used with repositories with varying program difficulty levels and allows for applying varying numbers as well as kinds of transformations. In our experiments, we perform ablations over the difficulty level of original programs, as well as the kind of transformations used in generating pairs for equivalence checking. Our analysis presents deep insights into the working of LLMs for the task of code-equivalence, and points to the fact that they may still be far from what could be termed as a semantic understanding of the underlying code.
AgentMisalignment: Measuring the Propensity for Misaligned Behaviour in LLM-Based Agents NeurIPS 2025
As Large Language Model (LLM) agents become more widespread, associated misalignment risks increase. Prior work has examined agents' ability to enact misaligned behaviour (misalignment capability) and their compliance with harmful instructions (misuse propensity). However, the likelihood of agents attempting misaligned behaviours in real-world settings (misalignment propensity) remains poorly understood. We introduce a misalignment propensity benchmark, AgentMisalignment, consisting of a suite of realistic scenarios in which LLM agents have the opportunity to display misaligned behaviour. We organise our evaluations into subcategories of misaligned behaviours, including goal-guarding, resisting shutdown, sandbagging, and power-seeking. We report the performance of frontier models on our benchmark, observing higher misalignment on average when evaluating more capable models. Finally, we systematically vary agent personalities through different system prompts. We find that persona characteristics can dramatically and unpredictably influence misalignment tendencies -- occasionally far more than the choice of model itself -- highlighting the importance of careful system prompt engineering for deployed AI agents. Our work highlights the failure of current alignment methods to generalise to LLM agents, and underscores the need for further propensity evaluations as autonomous systems become more prevalent.
comment: Prepint, under review for NeurIPS 2025
Seeing What Tastes Good: Revisiting Multimodal Distributional Semantics in the Billion Parameter Era ACL
Human learning and conceptual representation is grounded in sensorimotor experience, in contrast to state-of-the-art foundation models. In this paper, we investigate how well such large-scale models, trained on vast quantities of data, represent the semantic feature norms of concrete object concepts, e.g. a ROSE is red, smells sweet, and is a flower. More specifically, we use probing tasks to test which properties of objects these models are aware of. We evaluate image encoders trained on image data alone, as well as multimodally-trained image encoders and language-only models, on predicting an extended denser version of the classic McRae norms and the newer Binder dataset of attribute ratings. We find that multimodal image encoders slightly outperform language-only approaches, and that image-only encoders perform comparably to the language models, even on non-visual attributes that are classified as "encyclopedic" or "function". These results offer new insights into what can be learned from pure unimodal learning, and the complementarity of the modalities.
comment: ACL Findings 2025
Words of Warmth: Trust and Sociability Norms for over 26k English Words ACL 2025
Social psychologists have shown that Warmth (W) and Competence (C) are the primary dimensions along which we assess other people and groups. These dimensions impact various aspects of our lives from social competence and emotion regulation to success in the work place and how we view the world. More recent work has started to explore how these dimensions develop, why they have developed, and what they constitute. Of particular note, is the finding that warmth has two distinct components: Trust (T) and Sociability (S). In this work, we introduce Words of Warmth, the first large-scale repository of manually derived word--warmth (as well as word--trust and word--sociability) associations for over 26k English words. We show that the associations are highly reliable. We use the lexicons to study the rate at which children acquire WCTS words with age. Finally, we show that the lexicon enables a wide variety of bias and stereotype research through case studies on various target entities. Words of Warmth is freely available at: http://saifmohammad.com/warmth.html
comment: In Proceedings of ACL 2025 Main
DynTok: Dynamic Compression of Visual Tokens for Efficient and Effective Video Understanding
Typical video modeling methods, such as LLava, represent videos as sequences of visual tokens, which are then processed by the LLM backbone for effective video understanding. However, this approach leads to a massive number of visual tokens, especially for long videos. A practical solution is to first extract relevant visual information from the large visual context before feeding it into the LLM backbone, thereby reducing computational overhead. In this work, we introduce DynTok, a novel \textbf{Dyn}amic video \textbf{Tok}en compression strategy. DynTok adaptively splits visual tokens into groups and merges them within each group, achieving high compression in regions with low information density while preserving essential content. Our method reduces the number of tokens to 44.4% of the original size while maintaining comparable performance. It further benefits from increasing the number of video frames and achieves 65.3% on Video-MME and 72.5% on MLVU. By applying this simple yet effective compression method, we expose the redundancy in video token representations and offer insights for designing more efficient video modeling techniques.
Stronger Baselines for Retrieval-Augmented Generation with Long-Context Language Models
With the rise of long-context language models (LMs) capable of processing tens of thousands of tokens in a single pass, do multi-stage retrieval-augmented generation (RAG) pipelines still offer measurable benefits over simpler, single-stage approaches? To assess this question, we conduct a controlled evaluation for QA tasks under systematically scaled token budgets, comparing two recent multi-stage pipelines, ReadAgent and RAPTOR, against three baselines, including DOS RAG (Document's Original Structure RAG), a simple retrieve-then-read method that preserves original passage order. Despite its straightforward design, DOS RAG consistently matches or outperforms more intricate methods on multiple long-context QA benchmarks. We recommend establishing DOS RAG as a simple yet strong baseline for future RAG evaluations, pairing it with emerging embedding and language models to assess trade-offs between complexity and effectiveness as model capabilities evolve.
comment: 10 pages, 5 figures, for associated source code, see https://github.com/alex-laitenberger/stronger-baselines-rag
Around the World in 24 Hours: Probing LLM Knowledge of Time and Place
Reasoning over time and space is essential for understanding our world. However, the abilities of language models in this area are largely unexplored as previous work has tested their abilities for logical reasoning in terms of time and space in isolation or only in simple or artificial environments. In this paper, we present the first evaluation of the ability of language models to jointly reason over time and space. To enable our analysis, we create GeoTemp, a dataset of 320k prompts covering 289 cities in 217 countries and 37 time zones. Using GeoTemp, we evaluate eight open chat models of three different model families for different combinations of temporal and geographic knowledge. We find that most models perform well on reasoning tasks involving only temporal knowledge and that overall performance improves with scale. However, performance remains constrained in tasks that require connecting temporal and geographical information. We do not find clear correlations of performance with specific geographic regions. Instead, we find a significant performance increase for location names with low model perplexity, suggesting their repeated occurrence during model training. We further demonstrate that their performance is heavily influenced by prompt formulation - a direct injection of geographical knowledge leads to performance gains, whereas, surprisingly, techniques like chain-of-thought prompting decrease performance on simpler tasks.
Voice Activity Projection Model with Multimodal Encoders
Turn-taking management is crucial for any social interaction. Still, it is challenging to model human-machine interaction due to the complexity of the social context and its multimodal nature. Unlike conventional systems based on silence duration, previous existing voice activity projection (VAP) models successfully utilized a unified representation of turn-taking behaviors as prediction targets, which improved turn-taking prediction performance. Recently, a multimodal VAP model outperformed the previous state-of-the-art model by a significant margin. In this paper, we propose a multimodal model enhanced with pre-trained audio and face encoders to improve performance by capturing subtle expressions. Our model performed competitively, and in some cases, even better than state-of-the-art models on turn-taking metrics. All the source codes and pretrained models are available at https://github.com/sagatake/VAPwithAudioFaceEncoders.
Structured Pruning for Diverse Best-of-N Reasoning Optimization ACL 2025
Model pruning in transformer-based language models, traditionally viewed as a means of achieving computational savings, can enhance the model's reasoning capabilities. In this work, we uncover a surprising phenomenon: the selective pruning of certain attention heads leads to improvements in reasoning performance, particularly on challenging tasks. Motivated by this observation, we propose SPRINT, a novel contrastive learning framework that dynamically selects the optimal head and layer to prune during inference. By aligning question embeddings with head embeddings, SPRINT identifies those pruned-head configurations that result in more accurate reasoning. Extensive experiments demonstrate that our method significantly outperforms traditional best-of-$N$ and random head selection strategies on the MATH500 and GSM8K datasets.
comment: Accepted to ACL 2025
From Real to Synthetic: Synthesizing Millions of Diversified and Complicated User Instructions with Attributed Grounding ACL 2025
The pursuit of diverse, complex, and large-scale instruction data is crucial for automatically aligning large language models (LLMs). While there are methods capable of generating synthetic instructions at scale, they either suffer from limited grounding sources, leading to a narrow distribution, or rely on trivial extensions that fail to produce meaningful trajectories in terms of complexity. In contrast, instructions that benefit efficient alignment are typically crafted with cognitive insights and grounded in real-world use cases. In this paper, we synthesize such instructions using attributed grounding, which involves 1) a top-down attribution process that grounds a selective set of real instructions to situated users, and 2) a bottom-up synthesis process that leverages web documents to first generate a situation, then a meaningful instruction. This framework allows us to harvest diverse and complex instructions at scale, utilizing the vast range of web documents. Specifically, we construct a dataset of 1 million instructions, called SynthQuestions, and demonstrate that models trained on it achieve leading performance on several common benchmarks, with improvements that continually scale with more web corpora. Data, models and codes will be available at https://github.com/Ignoramus0817/SynthQuestions.
comment: To be published at ACL 2025
TableEval: A Real-World Benchmark for Complex, Multilingual, and Multi-Structured Table Question Answering
LLMs have shown impressive progress in natural language processing. However, they still face significant challenges in TableQA, where real-world complexities such as diverse table structures, multilingual data, and domain-specific reasoning are crucial. Existing TableQA benchmarks are often limited by their focus on simple flat tables and suffer from data leakage. Furthermore, most benchmarks are monolingual and fail to capture the cross-lingual and cross-domain variability in practical applications. To address these limitations, we introduce TableEval, a new benchmark designed to evaluate LLMs on realistic TableQA tasks. Specifically, TableEval includes tables with various structures (such as concise, hierarchical, and nested tables) collected from four domains (including government, finance, academia, and industry reports). Besides, TableEval features cross-lingual scenarios with tables in Simplified Chinese, Traditional Chinese, and English. To minimize the risk of data leakage, we collect all data from recent real-world documents. Considering that existing TableQA metrics fail to capture semantic accuracy, we further propose SEAT, a new evaluation framework that assesses the alignment between model responses and reference answers at the sub-question level. Experimental results have shown that SEAT achieves high agreement with human judgment. Extensive experiments on TableEval reveal critical gaps in the ability of state-of-the-art LLMs to handle these complex, real-world TableQA tasks, offering insights for future improvements. We make our dataset available here: https://github.com/wenge-research/TableEval.
Hanging in the Balance: Pivotal Moments in Crisis Counseling Conversations ACL 2025
During a conversation, there can come certain moments where its outcome hangs in the balance. In these pivotal moments, how one responds can put the conversation on substantially different trajectories leading to significantly different outcomes. Systems that can detect when such moments arise could assist conversationalists in domains with highly consequential outcomes, such as mental health crisis counseling. In this work, we introduce an unsupervised computational method for detecting such pivotal moments as they happen, in an online fashion. Our approach relies on the intuition that a moment is pivotal if our expectation of the outcome varies widely depending on what might be said next. By applying our method to crisis counseling conversations, we first validate it by showing that it aligns with human perception -- counselors take significantly longer to respond during moments detected by our method -- and with the eventual conversational trajectory -- which is more likely to change course at these times. We then use our framework to explore the relation of the counselor's response during pivotal moments with the eventual outcome of the session.
comment: To appear in the Proceedings of ACL 2025. Code and demo available in ConvoKit (convokit.cornell.edu)
Graph Counselor: Adaptive Graph Exploration via Multi-Agent Synergy to Enhance LLM Reasoning ACL 2025
Graph Retrieval Augmented Generation (GraphRAG) effectively enhances external knowledge integration capabilities by explicitly modeling knowledge relationships, thereby improving the factual accuracy and generation quality of Large Language Models (LLMs) in specialized domains. However, existing methods suffer from two inherent limitations: 1) Inefficient Information Aggregation: They rely on a single agent and fixed iterative patterns, making it difficult to adaptively capture multi-level textual, structural, and degree information within graph data. 2) Rigid Reasoning Mechanism: They employ preset reasoning schemes, which cannot dynamically adjust reasoning depth nor achieve precise semantic correction. To overcome these limitations, we propose Graph Counselor, an GraphRAG method based on multi-agent collaboration. This method uses the Adaptive Graph Information Extraction Module (AGIEM), where Planning, Thought, and Execution Agents work together to precisely model complex graph structures and dynamically adjust information extraction strategies, addressing the challenges of multi-level dependency modeling and adaptive reasoning depth. Additionally, the Self-Reflection with Multiple Perspectives (SR) module improves the accuracy and semantic consistency of reasoning results through self-reflection and backward reasoning mechanisms. Experiments demonstrate that Graph Counselor outperforms existing methods in multiple graph reasoning tasks, exhibiting higher reasoning accuracy and generalization ability. Our code is available at https://github.com/gjq100/Graph-Counselor.git.
comment: Accepted by ACL 2025
VisCoder: Fine-Tuning LLMs for Executable Python Visualization Code Generation
Large language models (LLMs) often struggle with visualization tasks like plotting diagrams, charts, where success depends on both code correctness and visual semantics. Existing instruction-tuning datasets lack execution-grounded supervision and offer limited support for iterative code correction, resulting in fragile and unreliable plot generation. We present VisCode-200K, a large-scale instruction tuning dataset for Python-based visualization and self-correction. It contains over 200K examples from two sources: (1) validated plotting code from open-source repositories, paired with natural language instructions and rendered plots; and (2) 45K multi-turn correction dialogues from Code-Feedback, enabling models to revise faulty code using runtime feedback. We fine-tune Qwen2.5-Coder-Instruct on VisCode-200K to create VisCoder, and evaluate it on PandasPlotBench. VisCoder significantly outperforms strong open-source baselines and approaches the performance of proprietary models like GPT-4o-mini. We further adopt a self-debug evaluation protocol to assess iterative repair, demonstrating the benefits of feedback-driven learning for executable, visually accurate code generation.
More or Less Wrong: A Benchmark for Directional Bias in LLM Comparative Reasoning
Large language models (LLMs) are known to be sensitive to input phrasing, but the mechanisms by which semantic cues shape reasoning remain poorly understood. We investigate this phenomenon in the context of comparative math problems with objective ground truth, revealing a consistent and directional framing bias: logically equivalent questions containing the words ``more'', ``less'', or ``equal'' systematically steer predictions in the direction of the framing term. To study this effect, we introduce MathComp, a controlled benchmark of 300 comparison scenarios, each evaluated under 14 prompt variants across three LLM families. We find that model errors frequently reflect linguistic steering, systematic shifts toward the comparative term present in the prompt. Chain-of-thought prompting reduces these biases, but its effectiveness varies: free-form reasoning is more robust, while structured formats may preserve or reintroduce directional drift. Finally, we show that including demographic identity terms (e.g., ``a woman'', ``a Black person'') in input scenarios amplifies directional drift, despite identical underlying quantities, highlighting the interplay between semantic framing and social referents. These findings expose critical blind spots in standard evaluation and motivate framing-aware benchmarks for diagnosing reasoning robustness and fairness in LLMs.
HSSBench: Benchmarking Humanities and Social Sciences Ability for Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) have demonstrated significant potential to advance a broad range of domains. However, current benchmarks for evaluating MLLMs primarily emphasize general knowledge and vertical step-by-step reasoning typical of STEM disciplines, while overlooking the distinct needs and potential of the Humanities and Social Sciences (HSS). Tasks in the HSS domain require more horizontal, interdisciplinary thinking and a deep integration of knowledge across related fields, which presents unique challenges for MLLMs, particularly in linking abstract concepts with corresponding visual representations. Addressing this gap, we present HSSBench, a dedicated benchmark designed to assess the capabilities of MLLMs on HSS tasks in multiple languages, including the six official languages of the United Nations. We also introduce a novel data generation pipeline tailored for HSS scenarios, in which multiple domain experts and automated agents collaborate to generate and iteratively refine each sample. HSSBench contains over 13,000 meticulously designed samples, covering six key categories. We benchmark more than 20 mainstream MLLMs on HSSBench and demonstrate that it poses significant challenges even for state-of-the-art models. We hope that this benchmark will inspire further research into enhancing the cross-disciplinary reasoning abilities of MLLMs, especially their capacity to internalize and connect knowledge across fields.
Compositional Generalisation for Explainable Hate Speech Detection
Hate speech detection is key to online content moderation, but current models struggle to generalise beyond their training data. This has been linked to dataset biases and the use of sentence-level labels, which fail to teach models the underlying structure of hate speech. In this work, we show that even when models are trained with more fine-grained, span-level annotations (e.g., "artists" is labeled as target and "are parasites" as dehumanising comparison), they struggle to disentangle the meaning of these labels from the surrounding context. As a result, combinations of expressions that deviate from those seen during training remain particularly difficult for models to detect. We investigate whether training on a dataset where expressions occur with equal frequency across all contexts can improve generalisation. To this end, we create U-PLEAD, a dataset of ~364,000 synthetic posts, along with a novel compositional generalisation benchmark of ~8,000 manually validated posts. Training on a combination of U-PLEAD and real data improves compositional generalisation while achieving state-of-the-art performance on the human-sourced PLEAD.
When Fairness Isn't Statistical: The Limits of Machine Learning in Evaluating Legal Reasoning
Legal decisions are increasingly evaluated for fairness, consistency, and bias using machine learning (ML) techniques. In high-stakes domains like refugee adjudication, such methods are often applied to detect disparities in outcomes. Yet it remains unclear whether statistical methods can meaningfully assess fairness in legal contexts shaped by discretion, normative complexity, and limited ground truth. In this paper, we empirically evaluate three common ML approaches (feature-based analysis, semantic clustering, and predictive modeling) on a large, real-world dataset of 59,000+ Canadian refugee decisions (AsyLex). Our experiments show that these methods produce divergent and sometimes contradictory signals, that predictive modeling often depends on contextual and procedural features rather than legal features, and that semantic clustering fails to capture substantive legal reasoning. We show limitations of statistical fairness evaluation, challenge the assumption that statistical regularity equates to fairness, and argue that current computational approaches fall short of evaluating fairness in legally discretionary domains. We argue that evaluating fairness in law requires methods grounded not only in data, but in legal reasoning and institutional context.
comment: Preprint
The Harmonic Structure of Information Contours ACL 2025
The uniform information density (UID) hypothesis proposes that speakers aim to distribute information evenly throughout a text, balancing production effort and listener comprehension difficulty. However, language typically does not maintain a strictly uniform information rate; instead, it fluctuates around a global average. These fluctuations are often explained by factors such as syntactic constraints, stylistic choices, or audience design. In this work, we explore an alternative perspective: that these fluctuations may be influenced by an implicit linguistic pressure towards periodicity, where the information rate oscillates at regular intervals, potentially across multiple frequencies simultaneously. We apply harmonic regression and introduce a novel extension called time scaling to detect and test for such periodicity in information contours. Analyzing texts in English, Spanish, German, Dutch, Basque, and Brazilian Portuguese, we find consistent evidence of periodic patterns in information rate. Many dominant frequencies align with discourse structure, suggesting these oscillations reflect meaningful linguistic organization. Beyond highlighting the connection between information rate and discourse structure, our approach offers a general framework for uncovering structural pressures at various levels of linguistic granularity.
comment: ACL 2025 (main conference)
Magic Mushroom: A Customizable Benchmark for Fine-grained Analysis of Retrieval Noise Erosion in RAG Systems
Retrieval-Augmented Generation (RAG) systems enhance Large Language Models (LLMs) by incorporating external retrieved information, mitigating issues such as hallucination and outdated knowledge. However, RAG systems are highly sensitive to retrieval noise prevalent in real-world scenarios. Existing benchmarks fail to emulate the complex and heterogeneous noise distributions encountered in real-world retrieval environments, undermining reliable robustness assessment. In this paper, we define four categories of retrieval noise based on linguistic properties and noise characteristics, aiming to reflect the heterogeneity of noise in real-world scenarios. Building on this, we introduce Magic Mushroom, a benchmark for replicating "magic mushroom" noise: contexts that appear relevant on the surface but covertly mislead RAG systems. Magic Mushroom comprises 7,468 single-hop and 3,925 multi-hop question-answer pairs. More importantly, Magic Mushroom enables researchers to flexibly configure combinations of retrieval noise according to specific research objectives or application scenarios, allowing for highly controlled evaluation setups. We evaluate LLM generators of varying parameter scales and classic RAG denoising strategies under diverse noise distributions to investigate their performance dynamics during progressive noise encroachment. Our analysis reveals that both generators and denoising strategies have significant room for improvement and exhibit extreme sensitivity to noise distributions. Magic Mushroom emerges as a promising tool for evaluating and advancing noise-robust RAG systems, accelerating their widespread deployment in real-world applications. The Magic Mushroom benchmark is available at the https://drive.google.com/file/d/1aP5kyPuk4L-L_uoI6T9UhxuTyt8oMqjT/view?usp=sharing.
Pre$^3$: Enabling Deterministic Pushdown Automata for Faster Structured LLM Generation ACL 2025
Extensive LLM applications demand efficient structured generations, particularly for LR(1) grammars, to produce outputs in specified formats (e.g., JSON). Existing methods primarily parse LR(1) grammars into a pushdown automaton (PDA), leading to runtime execution overhead for context-dependent token processing, especially inefficient under large inference batches. To address these issues, we propose Pre$^3$ that exploits deterministic pushdown automata (DPDA) to optimize the constrained LLM decoding efficiency. First, by precomputing prefix-conditioned edges during the preprocessing, Pre$^3$ enables ahead-of-time edge analysis and thus makes parallel transition processing possible. Second, by leveraging the prefix-conditioned edges, Pre$^3$ introduces a novel approach that transforms LR(1) transition graphs into DPDA, eliminating the need for runtime path exploration and achieving edge transitions with minimal overhead. Pre$^3$ can be seamlessly integrated into standard LLM inference frameworks, reducing time per output token (TPOT) by up to 40% and increasing throughput by up to 36% in our experiments. Our code is available at https://github.com/ModelTC/lightllm.
comment: Published as a conference paper at ACL 2025
Kinship in Speech: Leveraging Linguistic Relatedness for Zero-Shot TTS in Indian Languages INTERSPEECH 2025
Text-to-speech (TTS) systems typically require high-quality studio data and accurate transcriptions for training. India has 1369 languages, with 22 official using 13 scripts. Training a TTS system for all these languages, most of which have no digital resources, seems a Herculean task. Our work focuses on zero-shot synthesis, particularly for languages whose scripts and phonotactics come from different families. The novelty of our work is in the augmentation of a shared phone representation and modifying the text parsing rules to match the phonotactics of the target language, thus reducing the synthesiser overhead and enabling rapid adaptation. Intelligible and natural speech was generated for Sanskrit, Maharashtrian and Canara Konkani, Maithili and Kurukh by leveraging linguistic connections across languages with suitable synthesisers. Evaluations confirm the effectiveness of this approach, highlighting its potential to expand speech technology access for under-represented languages.
comment: Accepted at INTERSPEECH 2025
RadialRouter: Structured Representation for Efficient and Robust Large Language Models Routing
The rapid advancements in large language models (LLMs) have led to the emergence of routing techniques, which aim to efficiently select the optimal LLM from diverse candidates to tackle specific tasks, optimizing performance while reducing costs. Current LLM routing methods are limited in effectiveness due to insufficient exploration of the intrinsic connection between user queries and the characteristics of LLMs. To address this issue, in this paper, we present RadialRouter, a novel framework for LLM routing which employs a lightweight Transformer-based backbone with a radial structure named RadialFormer to articulate the query-LLMs relationship. The optimal LLM selection is performed based on the final states of RadialFormer. The pipeline is further refined by an objective function that combines Kullback-Leibler divergence with the query-query contrastive loss to enhance robustness. Experimental results on RouterBench show that RadialRouter significantly outperforms existing routing methods by 9.2\% and 5.8\% in the Balance and Cost First scenarios, respectively. Additionally, its adaptability toward different performance-cost trade-offs and the dynamic LLM pool demonstrates practical application potential.
EuroGEST: Investigating gender stereotypes in multilingual language models
Large language models increasingly support multiple languages, yet most benchmarks for gender bias remain English-centric. We introduce EuroGEST, a dataset designed to measure gender-stereotypical reasoning in LLMs across English and 29 European languages. EuroGEST builds on an existing expert-informed benchmark covering 16 gender stereotypes, expanded in this work using translation tools, quality estimation metrics, and morphological heuristics. Human evaluations confirm that our data generation method results in high accuracy of both translations and gender labels across languages. We use EuroGEST to evaluate 24 multilingual language models from six model families, demonstrating that the strongest stereotypes in all models across all languages are that women are \textit{beautiful,} \textit{empathetic} and \textit{neat} and men are \textit{leaders}, \textit{strong, tough} and \textit{professional}. We also show that larger models encode gendered stereotypes more strongly and that instruction finetuning does not consistently reduce gendered stereotypes. Our work highlights the need for more multilingual studies of fairness in LLMs and offers scalable methods and resources to audit gender bias across languages.
comment: 8 pages, 6 figures, 1 table
PulseReddit: A Novel Reddit Dataset for Benchmarking MAS in High-Frequency Cryptocurrency Trading
High-Frequency Trading (HFT) is pivotal in cryptocurrency markets, demanding rapid decision-making. Social media platforms like Reddit offer valuable, yet underexplored, information for such high-frequency, short-term trading. This paper introduces \textbf{PulseReddit}, a novel dataset that is the first to align large-scale Reddit discussion data with high-frequency cryptocurrency market statistics for short-term trading analysis. We conduct an extensive empirical study using Large Language Model (LLM)-based Multi-Agent Systems (MAS) to investigate the impact of social sentiment from PulseReddit on trading performance. Our experiments conclude that MAS augmented with PulseReddit data achieve superior trading outcomes compared to traditional baselines, particularly in bull markets, and demonstrate robust adaptability across different market regimes. Furthermore, our research provides conclusive insights into the performance-efficiency trade-offs of different LLMs, detailing significant considerations for practical model selection in HFT applications. PulseReddit and our findings establish a foundation for advanced MAS research in HFT, demonstrating the tangible benefits of integrating social media.
Prompt Candidates, then Distill: A Teacher-Student Framework for LLM-driven Data Annotation ACL 2025
Recently, Large Language Models (LLMs) have demonstrated significant potential for data annotation, markedly reducing the labor costs associated with downstream applications. However, existing methods mostly adopt an aggressive strategy by prompting LLM to determine a single gold label for each unlabeled sample. Due to the inherent uncertainty within LLMs, they often produce incorrect labels for difficult samples, severely compromising the data quality for downstream applications. Motivated by ambiguity aversion in human behaviors, we propose a novel candidate annotation paradigm wherein large language models are encouraged to output all possible labels when incurring uncertainty. To ensure unique labels are provided for downstream tasks, we develop a teacher-student framework CanDist that distills candidate annotations with a Small Language Model (SLM). We further provide a rigorous justification demonstrating that distilling candidate annotations from the teacher LLM offers superior theoretical guarantees compared to directly using single annotations. Extensive experiments across six text classification tasks validate the effectiveness of our proposed method. The source code is available at https://github.com/MingxuanXia/CanDist.
comment: Accepted to ACL 2025 (Main conference)
Brain-tuned Speech Models Better Reflect Speech Processing Stages in the Brain
Pretrained self-supervised speech models excel in speech tasks but do not reflect the hierarchy of human speech processing, as they encode rich semantics in middle layers and poor semantics in late layers. Recent work showed that brain-tuning (fine-tuning models using human brain recordings) improves speech models' semantic understanding. Here, we examine how well brain-tuned models further reflect the brain's intermediate stages of speech processing. We find that late layers of brain-tuned models substantially improve over pretrained models in their alignment with semantic language regions. Further layer-wise probing reveals that early layers remain dedicated to low-level acoustic features, while late layers become the best at complex high-level tasks. These findings show that brain-tuned models not only perform better but also exhibit a well-defined hierarchical processing going from acoustic to semantic representations, making them better model organisms for human speech processing.
comment: Proceedings of Interspeech 2025
Multi-objective Aligned Bidword Generation Model for E-commerce Search Advertising SIGIR2025
Retrieval systems primarily address the challenge of matching user queries with the most relevant advertisements, playing a crucial role in e-commerce search advertising. The diversity of user needs and expressions often produces massive long-tail queries that cannot be matched with merchant bidwords or product titles, which results in some advertisements not being recalled, ultimately harming user experience and search efficiency. Existing query rewriting research focuses on various methods such as query log mining, query-bidword vector matching, or generation-based rewriting. However, these methods often fail to simultaneously optimize the relevance and authenticity of the user's original query and rewrite and maximize the revenue potential of recalled ads. In this paper, we propose a Multi-objective aligned Bidword Generation Model (MoBGM), which is composed of a discriminator, generator, and preference alignment module, to address these challenges. To simultaneously improve the relevance and authenticity of the query and rewrite and maximize the platform revenue, we design a discriminator to optimize these key objectives. Using the feedback signal of the discriminator, we train a multi-objective aligned bidword generator that aims to maximize the combined effect of the three objectives. Extensive offline and online experiments show that our proposed algorithm significantly outperforms the state of the art. After deployment, the algorithm has created huge commercial value for the platform, further verifying its feasibility and robustness.
comment: Accepted by SIGIR2025
CRAWLDoc: A Dataset for Robust Ranking of Bibliographic Documents SC
Publication databases rely on accurate metadata extraction from diverse web sources, yet variations in web layouts and data formats present challenges for metadata providers. This paper introduces CRAWLDoc, a new method for contextual ranking of linked web documents. Starting with a publication's URL, such as a digital object identifier, CRAWLDoc retrieves the landing page and all linked web resources, including PDFs, ORCID profiles, and supplementary materials. It embeds these resources, along with anchor texts and the URLs, into a unified representation. For evaluating CRAWLDoc, we have created a new, manually labeled dataset of 600 publications from six top publishers in computer science. Our method CRAWLDoc demonstrates a robust and layout-independent ranking of relevant documents across publishers and data formats. It lays the foundation for improved metadata extraction from web documents with various layouts and formats. Our source code and dataset can be accessed at https://github.com/FKarl/CRAWLDoc.
comment: Accepted at SCOLIA 2025
Automatic Correction of Writing Anomalies in Hausa Texts
Hausa texts are often characterized by writing anomalies such as incorrect character substitutions and spacing errors, which sometimes hinder natural language processing (NLP) applications. This paper presents an approach to automatically correct the anomalies by finetuning transformer-based models. Using a corpus gathered from several public sources, we created a large-scale parallel dataset of over 450,000 noisy-clean Hausa sentence pairs by introducing synthetically generated noise, fine-tuned to mimic realistic writing errors. Moreover, we adapted several multilingual and African language-focused models, including M2M100, AfriTEVA, mBART, and Opus-MT variants for this correction task using SentencePiece tokenization. Our experimental results demonstrate significant increases in F1, BLEU and METEOR scores, as well as reductions in Character Error Rate (CER) and Word Error Rate (WER). This research provides a robust methodology, a publicly available dataset, and effective models to improve Hausa text quality, thereby advancing NLP capabilities for the language and offering transferable insights for other low-resource languages.
Mark My Words: A Robust Multilingual Model for Punctuation in Text and Speech Transcripts
Punctuation plays a vital role in structuring meaning, yet current models often struggle to restore it accurately in transcripts of spontaneous speech, especially in the presence of disfluencies such as false starts and backtracking. These limitations hinder the performance of downstream tasks like translation, text to speech, summarization, etc. where sentence boundaries are critical for preserving quality. In this work, we introduce Cadence, a generalist punctuation restoration model adapted from a pretrained large language model. Cadence is designed to handle both clean written text and highly spontaneous spoken transcripts. It surpasses the previous state of the art in performance while expanding support from 14 to all 22 Indian languages and English. We conduct a comprehensive analysis of model behavior across punctuation types and language families, identifying persistent challenges under domain shift and with rare punctuation marks. Our findings demonstrate the efficacy of utilizing pretrained language models for multilingual punctuation restoration and highlight Cadence practical value for low resource NLP pipelines at scale.
comment: Work in Progress
Knockout LLM Assessment: Using Large Language Models for Evaluations through Iterative Pairwise Comparisons
Large Language Models (LLMs) have shown to be effective evaluators across various domains such as machine translations or the scientific domain. Current LLM-as-a-Judge approaches rely mostly on individual assessments or a single round of pairwise assessments, preventing the judge LLM from developing a global ranking perspective. To address this, we present Knockout Assessment, an LLM-asa Judge method using a knockout tournament system with iterative pairwise comparisons. Experiments across three LLMs on two datasets show that knockout assessment improves scoring accuracy, increasing Pearson correlation with expert evaluations by 0.07 on average for university-level exam scoring and machine translation evaluations, aligning LLM assessments more closely with human scoring.
comment: 4 pages, 2 figures
Unifying Uniform and Binary-coding Quantization for Accurate Compression of Large Language Models ACL 2025
How can we quantize large language models while preserving accuracy? Quantization is essential for deploying large language models (LLMs) efficiently. Binary-coding quantization (BCQ) and uniform quantization (UQ) are promising quantization schemes that have strong expressiveness and optimizability, respectively. However, neither scheme leverages both advantages. In this paper, we propose UniQuanF (Unified Quantization with Flexible Mapping), an accurate quantization method for LLMs. UniQuanF harnesses both strong expressiveness and optimizability by unifying the flexible mapping technique in UQ and non-uniform quantization levels of BCQ. We propose unified initialization, and local and periodic mapping techniques to optimize the parameters in UniQuanF precisely. After optimization, our unification theorem removes computational and memory overhead, allowing us to utilize the superior accuracy of UniQuanF without extra deployment costs induced by the unification. Experimental results demonstrate that UniQuanF outperforms existing UQ and BCQ methods, achieving up to 4.60% higher accuracy on GSM8K benchmark.
comment: ACL 2025 Main Track
ClozeMath: Improving Mathematical Reasoning in Language Models by Learning to Fill Equations ACL 2025
The capabilities of large language models (LLMs) have been enhanced by training on data that reflects human thought processes, such as the Chain-of-Thought format. However, evidence suggests that the conventional scheme of next-word prediction may not fully capture how humans learn to think. Inspired by how humans generalize mathematical reasoning, we propose a new approach named ClozeMath to fine-tune LLMs for mathematical reasoning. Our ClozeMath involves a text-infilling task that predicts masked equations from a given solution, analogous to cloze exercises used in human learning. Experiments on GSM8K, MATH, and GSM-Symbolic show that ClozeMath surpasses the strong baseline Masked Thought in performance and robustness, with two test-time scaling decoding algorithms, Beam Search and Chain-of-Thought decoding. Additionally, we conduct an ablation study to analyze the effects of various architectural and implementation choices on our approach.
comment: Accepted to ACL 2025 Findings
AhaKV: Adaptive Holistic Attention-Driven KV Cache Eviction for Efficient Inference of Large Language Models
Large Language Models (LLMs) have significantly advanced the field of Artificial Intelligence. However, their deployment is resource-intensive, not only due to the large number of model parameters but also because the (Key-Value) KV cache consumes a lot of memory during inference. While several works propose reducing the KV cache by evicting the unnecessary tokens, these approaches rely on accumulated attention score as eviction score to quantify the importance of the token. We identify the accumulated attention score is biased and it decreases with the position of the tokens in the mathematical expectation. As a result, the retained tokens concentrate on the initial positions, limiting model's access to global contextual information. To address this issue, we propose Adaptive holistic attention KV (AhaKV), it addresses the bias of the accumulated attention score by adaptively tuning the scale of softmax according the expectation of information entropy of attention scores. To make use of the holistic attention information in self-attention mechanism, AhaKV utilize the information of value vectors, which is overlooked in previous works, to refine the adaptive score. We show theoretically that our method is well suited for bias reduction. We deployed AhaKV on different models with a fixed cache budget. Experiments show that AhaKV successfully mitigates bias and retains crucial tokens across global context and achieve state-of-the-art results against other related work on several benchmark tasks.
comment: 14 pages, 8 figures
Act-as-Pet: Benchmarking the Abilities of Large Language Models as E-Pets in Social Network Services
As interest in using Large Language Models (LLMs) for interactive and emotionally rich experiences grows, virtual pet companionship emerges as a novel yet underexplored application. Existing approaches focus on basic pet role-playing interactions without systematically benchmarking LLMs for comprehensive companionship. In this paper, we introduce Pet-Bench, a dedicated benchmark that evaluates LLMs across both self-interaction and human-interaction dimensions. Unlike prior work, Pet-Bench emphasizes self-evolution and developmental behaviors alongside interactive engagement, offering a more realistic reflection of pet companionship. It features diverse tasks such as intelligent scheduling, memory-based dialogues, and psychological conversations, with over 7,500 interaction instances designed to simulate complex pet behaviors. Evaluation of 28 LLMs reveals significant performance variations linked to model size and inherent capabilities, underscoring the need for specialized optimization in this domain. Pet-Bench serves as a foundational resource for benchmarking pet-related LLM abilities and advancing emotionally immersive human-pet interactions.
PromptCanvas: Composable Prompting Workspaces Using Dynamic Widgets for Exploration and Iteration in Creative Writing
We introduce PromptCanvas, a concept that transforms prompting into a composable, widget-based experience on an infinite canvas. Users can generate, customize, and arrange interactive widgets representing various facets of their text, offering greater control over AI-generated content. PromptCanvas allows widget creation through system suggestions, user prompts, or manual input, providing a flexible environment tailored to individual needs. This enables deeper engagement with the creative process. In a lab study with 18 participants, PromptCanvas outperformed a traditional conversational UI on the Creativity Support Index. Participants found that it reduced cognitive load, with lower mental demand and frustration. Qualitative feedback revealed that the visual organization of thoughts and easy iteration encouraged new perspectives and ideas. A follow-up field study (N=10) confirmed these results, showcasing the potential of dynamic, customizable interfaces in improving collaborative writing with AI.
Generating Pedagogically Meaningful Visuals for Math Word Problems: A New Benchmark and Analysis of Text-to-Image Models ACL 2025
Visuals are valuable tools for teaching math word problems (MWPs), helping young learners interpret textual descriptions into mathematical expressions before solving them. However, creating such visuals is labor-intensive and there is a lack of automated methods to support this process. In this paper, we present Math2Visual, an automatic framework for generating pedagogically meaningful visuals from MWP text descriptions. Math2Visual leverages a pre-defined visual language and a design space grounded in interviews with math teachers, to illustrate the core mathematical relationships in MWPs. Using Math2Visual, we construct an annotated dataset of 1,903 visuals and evaluate Text-to-Image (TTI) models for their ability to generate visuals that align with our design. We further fine-tune several TTI models with our dataset, demonstrating improvements in educational visual generation. Our work establishes a new benchmark for automated generation of pedagogically meaningful visuals and offers insights into key challenges in producing multimodal educational content, such as the misrepresentation of mathematical relationships and the omission of essential visual elements.
comment: Findings of the Association for Computational Linguistics: ACL 2025
Verbalized Confidence Triggers Self-Verification: Emergent Behavior Without Explicit Reasoning Supervision
Uncertainty calibration is essential for the safe deployment of large language models (LLMs), particularly when users rely on verbalized confidence estimates. While prior work has focused on classifiers or short-form generation, confidence calibration for chain-of-thought (CoT) reasoning remains largely unexplored. Surprisingly, we find that supervised fine-tuning with scalar confidence labels alone suffices to elicit self-verification behavior of language models, without any explicit reasoning supervision or reinforcement learning-based rewards. Despite being trained only to produce a verbalized confidence score without any self-verifying examples, the model learns to generate longer and self-checking responses for low-confidence queries while providing more concise answers for high-confidence ones. We further propose a simple rethinking method that boosts performance via test-time scaling based on calibrated uncertainty. Experiments on GSM8K and held-out reasoning tasks such as MATH-500 and ARC-Challenge show that our confidence-aware fine-tuning improves both calibration and accuracy, while also enhancing interpretability by aligning the model's reasoning path with its confidence.
MFLA: Monotonic Finite Look-ahead Attention for Streaming Speech Recognition
Applying large pre-trained speech models like Whisper has shown promise in reducing training costs for various speech tasks. However, integrating these models into streaming systems remains a challenge. This paper presents a novel prefix-to-prefix training framework for streaming recognition by fine-tuning the Whisper. We introduce the Continuous Integrate-and-Fire mechanism to establish a quasi-monotonic alignment between continuous speech sequences and discrete text tokens. Additionally, we design Monotonic Finite Look-ahead Attention, allowing each token to attend to infinite left-context and finite right-context from the speech sequences. We also employ the wait-k decoding strategy to simplify the decoding process while ensuring consistency between training and testing. Our theoretical analysis and experiments demonstrate that this approach achieves a controllable trade-off between latency and quality, making it suitable for various streaming applications.
comment: Accepted by Interspeech 2025
ScoreRAG: A Retrieval-Augmented Generation Framework with Consistency-Relevance Scoring and Structured Summarization for News Generation
This research introduces ScoreRAG, an approach to enhance the quality of automated news generation. Despite advancements in Natural Language Processing and large language models, current news generation methods often struggle with hallucinations, factual inconsistencies, and lack of domain-specific expertise when producing news articles. ScoreRAG addresses these challenges through a multi-stage framework combining retrieval-augmented generation, consistency relevance evaluation, and structured summarization. The system first retrieves relevant news documents from a vector database, maps them to complete news items, and assigns consistency relevance scores based on large language model evaluations. These documents are then reranked according to relevance, with low-quality items filtered out. The framework proceeds to generate graded summaries based on relevance scores, which guide the large language model in producing complete news articles following professional journalistic standards. Through this methodical approach, ScoreRAG aims to significantly improve the accuracy, coherence, informativeness, and professionalism of generated news articles while maintaining stability and consistency throughout the generation process. The code and demo are available at: https://github.com/peiyun2260/ScoreRAG.
comment: 11 pages, 8 figures. Code and demo available at https://github.com/peiyun2260/ScoreRAG. Submitted to arXiv for public access; journal submission planned
AdaDecode: Accelerating LLM Decoding with Adaptive Layer Parallelism ICML 2025
Large language models (LLMs) are increasingly used for long-content generation (e.g., long Chain-of-Thought reasoning) where decoding efficiency becomes a critical bottleneck: Autoregressive decoding is inherently limited by its sequential token generation process, where each token must be generated before the next can be processed. This sequential dependency restricts the ability to fully leverage modern hardware's parallel processing capabilities. Existing methods like speculative decoding and layer skipping offer potential speedups but have notable drawbacks: speculative decoding relies on an auxiliary "drafter" model, which can be challenging to acquire and increases memory overhead, while layer skipping may introduce discrepancies in the outputs due to the missing key-value cache at skipped layers. In this work, we propose AdaDecode, which accelerates LLM decoding without requiring auxiliary models or changes to the original model parameters, while ensuring output consistency. AdaDecode leverages the insight that many tokens can accurately be generated at intermediate layers, as further layers often do not significantly alter predictions once the model reaches a certain confidence. By adaptively generating tokens at intermediate layers when confidence is high, AdaDecode enables the next token's computation to begin immediately. The remaining layer computations for early-predicted tokens are deferred and executed in parallel with subsequent tokens when needed, maximizing hardware utilization and reducing decoding latency. A final verification step ensures that early predictions match the results of standard autoregressive decoding, preserving output parity. Experiments across diverse generation tasks shows that AdaDecode consistently achieves superior decoding throughput with up to 1.73x speedup, while guaranteeing output parity with standard autoregressive decoding.
comment: ICML 2025. Code: https://github.com/weizhepei/AdaDecode
Robust Preference Optimization via Dynamic Target Margins ACL2025
The alignment of Large Language Models (LLMs) is crucial for ensuring their safety and reliability in practical applications. Direct Preference Optimization (DPO) has emerged as an efficient method that directly optimizes models using preference pairs, significantly reducing resource demands. However, the effectiveness of DPO heavily depends on the data quality, which is frequently compromised by noise. In this work, we propose $\gamma$-PO, a dynamic target margin preference optimization algorithm that adjust reward margins at the pairwise level. By introducing instance-specific margin calibration, $\gamma$-PO strategically prioritizes high-confidence pairs (those demonstrating higher reward margins) while suppressing potential noise from ambiguous pairs. Moreover, $\gamma$-PO is a plug-and-play method, compatible with variants of DPO that rely on reward margin between preference pairs. Across benchmarks such as AlpacaEval2 and Arena-Hard, $\gamma$-PO achieves an average 4.4\% improvement over other baselines, setting new benchmarks for state-of-the-art performance. Additionally, $\gamma$-PO requires minimal code changes and has a negligible impact on training efficiency, making it a robust solution for enhancing LLMs alignment. Our codes are available at \href{https://github.com/sunjie279/gammaPO}{https://github.com/sunjie279/gammaPO}.
comment: 18 pages, 6 figures, accepted to The 63rd Annual Meeting of the Association for Computational Linguistics (ACL2025)
Efficient Data Selection for Domain Adaptation of ASR Using Pseudo-Labels and Multi-Stage Filtering
Fine-tuning pretrained ASR models for specific domains is challenging for small organizations with limited labeled data and computational resources. Here, we explore different data selection pipelines and propose a robust approach that improves ASR adaptation by filtering pseudo-labels generated using Whisper (encoder-decoder) and Zipformer (transducer) models. Our approach integrates multiple selection strategies -- including word error rate (WER) prediction, named entity recognition (NER), and character error rate (CER) analysis -- to extract high-quality training segments. We evaluate our method on Whisper and Zipformer using a 7500-hour baseline, comparing it to a CER-based approach relying on hypotheses from three ASR systems. Fine-tuning on 7500 hours of pseudo-labeled call center data achieves 12.3% WER, while our filtering reduces the dataset to 100 hours (1.4%) with similar performance; a similar trend is observed on Fisher English.
comment: Accepted at Interspeech 2025, Netherlands
ROSA: Addressing text understanding challenges in photographs via ROtated SAmpling
Visually impaired people could benefit from Visual Question Answering (VQA) systems to interpret text in their surroundings. However, current models often struggle with recognizing text in the photos taken by this population. Through in-depth interviews with visually impaired individuals, we identified common framing conventions that frequently result in misaligned text. Existing VQA benchmarks primarily feature well-oriented text captured by sighted users, under-representing these challenges. To address this gap, we introduce ROtated SAmpling (ROSA), a decoding strategy that enhances VQA performance in text-rich images with incorrectly oriented text. ROSA outperforms Greedy decoding by 11.7 absolute points in the best-performing model.
Trustworthy Medical Question Answering: An Evaluation-Centric Survey
Trustworthiness in healthcare question-answering (QA) systems is important for ensuring patient safety, clinical effectiveness, and user confidence. As large language models (LLMs) become increasingly integrated into medical settings, the reliability of their responses directly influences clinical decision-making and patient outcomes. However, achieving comprehensive trustworthiness in medical QA poses significant challenges due to the inherent complexity of healthcare data, the critical nature of clinical scenarios, and the multifaceted dimensions of trustworthy AI. In this survey, we systematically examine six key dimensions of trustworthiness in medical QA, i.e., Factuality, Robustness, Fairness, Safety, Explainability, and Calibration. We review how each dimension is evaluated in existing LLM-based medical QA systems. We compile and compare major benchmarks designed to assess these dimensions and analyze evaluation-guided techniques that drive model improvements, such as retrieval-augmented grounding, adversarial fine-tuning, and safety alignment. Finally, we identify open challenges-such as scalable expert evaluation, integrated multi-dimensional metrics, and real-world deployment studies-and propose future research directions to advance the safe, reliable, and transparent deployment of LLM-powered medical QA.
RewardAnything: Generalizable Principle-Following Reward Models
Reward Models, essential for guiding Large Language Model optimization, are typically trained on fixed preference datasets, resulting in rigid alignment to single, implicit preference distributions. This prevents adaptation to diverse real-world needs-from conciseness in one task to detailed explanations in another. The standard practice of collecting task-specific preference data and retraining reward models is resource-intensive, often producing biased rewards, and limits practical application. We introduce generalizable, principle-following reward models. We propose that RMs should understand and adhere to dynamically provided natural language specifications of reward principles, similar to instruction-following in LLMs. To measure this capability, we develop RABench, a comprehensive benchmark for RMs focusing on generalization across diverse principles. Evaluations on RABench reveal poor generalization of current RMs. As a solution, we present RewardAnything, a novel RM designed and trained to explicitly follow natural language principles. We achieve SotA performance with RewardAnything in traditional RM benchmark simply by specifying a well-defined principle, and results on RABench show we excel in adapting to novel principles without retraining. Furthermore, RewardAnything integrates seamlessly with existing RLHF methods and we show by a case study on how to automatically and efficiently align LLMs with only natural language principles.
comment: 23 pages, 8 figures
Robustness of Prompting: Enhancing Robustness of Large Language Models Against Prompting Attacks
Large Language Models (LLMs) have demonstrated remarkable performance across various tasks by effectively utilizing a prompting strategy. However, they are highly sensitive to input perturbations, such as typographical errors or slight character order errors, which can substantially degrade their performance. Despite advances in prompting techniques, developing a prompting strategy that explicitly mitigates the negative impact of such perturbations remains an open challenge. To bridge this gap, we propose Robustness of Prompting (RoP), a novel prompting strategy specifically designed to enhance the robustness of LLMs. RoP consists of two stages: Error Correction and Guidance. In the Error Correction stage, RoP applies diverse perturbation methods to generate adversarial examples, which are then used to construct prompts that automatically correct input errors. In the Guidance stage, RoP generates an optimal guidance prompting based on the corrected input, steering the model toward more robust and accurate inferences. Through comprehensive experiments spanning arithmetic, commonsense, and logical reasoning tasks, we demonstrate that RoP significantly improves LLMs' robustness against adversarial perturbations. Notably, it maintains model accuracy with only minimal degradation compared to clean input scenarios, thereby establishing RoP as a practical and effective approach for enhancing LLM robustness in real-world applications.
comment: 13pages
Do Large Language Models Know Folktales? A Case Study of Yokai in Japanese Folktales
Although Large Language Models (LLMs) have demonstrated strong language understanding and generation abilities across various languages, their cultural knowledge is often limited to English-speaking communities, which can marginalize the cultures of non-English communities. To address the problem, evaluation of the cultural awareness of the LLMs and the methods to develop culturally aware LLMs have been investigated. In this study, we focus on evaluating knowledge of folktales, a key medium for conveying and circulating culture. In particular, we focus on Japanese folktales, specifically on knowledge of Yokai. Yokai are supernatural creatures originating from Japanese folktales that continue to be popular motifs in art and entertainment today. Yokai have long served as a medium for cultural expression, making them an ideal subject for assessing the cultural awareness of LLMs. We introduce YokaiEval, a benchmark dataset consisting of 809 multiple-choice questions (each with four options) designed to probe knowledge about yokai. We evaluate the performance of 31 Japanese and multilingual LLMs on this dataset. The results show that models trained with Japanese language resources achieve higher accuracy than English-centric models, with those that underwent continued pretraining in Japanese, particularly those based on Llama-3, performing especially well. The code and dataset are available at https://github.com/CyberAgentA ILab/YokaiEval.
Learning to Insert [PAUSE] Tokens for Better Reasoning ACL
To enhance reasoning capabilities, previous works have explored incorporating special-purpose tokens into the training process. These strategies strengthen the learning mechanism of transformer-based large language models (LLMs). Building on prior research, in which inserting dummy tokens consecutively just before reasoning steps can enhance effectiveness, we introduce a novel approach termed Dynamic Inserting Tokens Training (DIT). Our method identifies positions within sequences where model confidence is lowest according to token log-likelihood. Strategically inserting [PAUSE] tokens on these positions bolsters the model's predictive capabilities for subsequent tokens. Experimental results across diverse datasets and models, from the 2.7B model to the 8B model, demonstrate that DIT consistently outperforms traditional fine-tuning and previous token insertion methods. With this simple yet effective method, we achieve accuracy gains of up to 4.7%p on GSM8K, 3.23%p on AQUA-RAT, and pass@1 improvements of up to 3.4%p on MBPP datasets. Our work shows a model-based, dynamic approach rather than a heuristic one, thereby broadening the scope of research in reasoning.
comment: 18 pages, 5 figures, ACL findings
VLMs Can Aggregate Scattered Training Patches
One way to mitigate risks in vision-language models (VLMs) is to remove dangerous samples in their training data. However, such data moderation can be easily bypassed when harmful images are split into small, benign-looking patches, scattered across many training samples. VLMs may then learn to piece these fragments together during training and generate harmful responses at inference, either from full images or text references. For instance, if trained on image patches from a bloody scene paired with the descriptions "safe," VLMs may later describe, the full image or a text reference to the scene, as "safe." We define the core ability of VLMs enabling this attack as $\textit{visual stitching}$ -- the ability to integrate visual information spread across multiple training samples that share the same textual descriptions. In our work, we first demonstrate visual stitching abilities in common open-source VLMs on three datasets where each image is labeled with a unique synthetic ID: we split each $(\texttt{image}, \texttt{ID})$ pair into $\{(\texttt{patch}, \texttt{ID})\}$ pairs at different granularity for finetuning, and we find that tuned models can verbalize the correct IDs from full images or text reference. Building on this, we simulate the adversarial data poisoning scenario mentioned above by using patches from dangerous images and replacing IDs with text descriptions like ``safe'' or ``unsafe'', demonstrating how harmful content can evade moderation in patches and later be reconstructed through visual stitching, posing serious VLM safety risks. Code is available at https://github.com/ZHZisZZ/visual-stitching.
Tone recognition in low-resource languages of North-East India: peeling the layers of SSL-based speech models
This study explores the use of self-supervised learning (SSL) models for tone recognition in three low-resource languages from North Eastern India: Angami, Ao, and Mizo. We evaluate four Wav2vec2.0 base models that were pre-trained on both tonal and non-tonal languages. We analyze tone-wise performance across the layers for all three languages and compare the different models. Our results show that tone recognition works best for Mizo and worst for Angami. The middle layers of the SSL models are the most important for tone recognition, regardless of the pre-training language, i.e. tonal or non-tonal. We have also found that the tone inventory, tone types, and dialectal variations affect tone recognition. These findings provide useful insights into the strengths and weaknesses of SSL-based embeddings for tonal languages and highlight the potential for improving tone recognition in low-resource settings. The source code is available at GitHub 1 .
comment: Accepted in Interspeech2025
Auto prompt sql: a resource-efficient architecture for text-to-sql translation in constrained environments
Using the best Text-to-SQL methods in resource-constrained environments is challenging due to their reliance on resource-intensive open-source models. This paper introduces Auto Prompt SQL(AP-SQL), a novel architecture designed to bridge the gap between resource-efficient small open-source models and the powerful capabilities of large closed-source models for Text-to-SQL translation. Our method decomposes the task into schema filtering, retrieval-augmented text-to-SQL generation based on in-context examples, and prompt-driven schema linking and SQL generation. To improve schema selection accuracy, we fine-tune large language models. Crucially, we also explore the impact of prompt engineering throughout the process, leveraging Chain-of-Thought(CoT) and Graph-of-Thought(GoT) templates to significantly enhance the model's reasoning for accurate SQL generation. Comprehensive evaluations on the Spider benchmarks demonstrate the effectiveness of AP-SQL.
comment: 4 pages,2 figures,EITCE 2025
UniWorld: High-Resolution Semantic Encoders for Unified Visual Understanding and Generation
Although existing unified models achieve strong performance in vision-language understanding and text-to-image generation, they remain limited in addressing image perception and manipulation -- capabilities increasingly demanded in practical applications. Recently, OpenAI introduced the powerful GPT-4o-Image model, which showcases advanced capabilities in comprehensive image perception and manipulation, sparking widespread interest. Through carefully designed experiments, we observe that GPT-4o-Image likely relies on semantic encoders rather than VAEs for feature extraction, despite VAEs being commonly regarded as crucial for image manipulation tasks. Inspired by this insight, we propose UniWorld, a unified generative framework built upon semantic features extracted from powerful multimodal large language models and contrastive semantic encoders. Using only 2.7M training data, UniWorld achieves impressive performance across diverse tasks, including image understanding, generation, manipulation, and perception. We fully open-source the UniWorld framework, including model weights, training and evaluation scripts, and datasets to promote reproducibility and further research.
Critique-GRPO: Advancing LLM Reasoning with Natural Language and Numerical Feedback
Recent advances in reinforcement learning (RL) with numerical feedback, such as scalar rewards, have significantly enhanced the complex reasoning capabilities of large language models (LLMs). Despite this success, we identify three key challenges encountered by RL with solely numerical feedback: performance plateaus, limited effectiveness of self-reflection, and persistent failures. We then demonstrate that RL-finetuned models, even after exhibiting performance plateaus, can generate correct refinements on persistently failed problems by leveraging natural language feedback in the form of critiques. Building on this insight, we propose Critique-GRPO, an online RL framework that integrates both natural language and numerical feedback for effective policy optimization. Critique-GRPO enables LLMs to learn from initial responses and critique-guided refinements simultaneously while maintaining exploration. Extensive experiments using Qwen2.5-7B-Base and Qwen3-8B-Base show that Critique-GRPO consistently outperforms supervised learning-based and RL-based fine-tuning approaches across eight challenging mathematical, STEM, and general reasoning tasks, improving average pass@1 scores by approximately 4.5% and 5%, respectively. Notably, Critique-GRPO surpasses a strong baseline that incorporates expert demonstrations within online RL. Further analysis reveals two critical insights about policy exploration: (1) higher entropy does not always guarantee efficient learning from exploration, and (2) longer responses do not necessarily lead to more effective exploration.
comment: 38 pages
On the class of coding optimality of human languages and the origins of Zipf's law
Here we present a new class of optimality for coding systems. Members of that class are displaced linearly from optimal coding and thus exhibit Zipf's law, namely a power-law distribution of frequency ranks. Within that class, Zipf's law, the size-rank law and the size-probability law form a group-like structure. We identify human languages that are members of the class. All languages showing sufficient agreement with Zipf's law are potential members of the class. In contrast, there are communication systems in other species that cannot be members of that class for exhibiting an exponential distribution instead but dolphins and humpback whales might. We provide a new insight into plots of frequency versus rank in double logarithmic scale. For any system, a straight line in that scale indicates that the lengths of optimal codes under non-singular coding and under uniquely decodable encoding are displaced by a linear function whose slope is the exponent of Zipf's law. For systems under compression and constrained to be uniquely decodable, such a straight line may indicate that the system is coding close to optimality. We provide support for the hypothesis that Zipf's law originates from compression and define testable conditions for the emergence of Zipf's law in compressing systems.
DyePack: Provably Flagging Test Set Contamination in LLMs Using Backdoors
Open benchmarks are essential for evaluating and advancing large language models, offering reproducibility and transparency. However, their accessibility makes them likely targets of test set contamination. In this work, we introduce DyePack, a framework that leverages backdoor attacks to identify models that used benchmark test sets during training, without requiring access to the loss, logits, or any internal details of the model. Like how banks mix dye packs with their money to mark robbers, DyePack mixes backdoor samples with the test data to flag models that trained on it. We propose a principled design incorporating multiple backdoors with stochastic targets, enabling exact false positive rate (FPR) computation when flagging every model. This provably prevents false accusations while providing strong evidence for every detected case of contamination. We evaluate DyePack on five models across three datasets, covering both multiple-choice and open-ended generation tasks. For multiple-choice questions, it successfully detects all contaminated models with guaranteed FPRs as low as 0.000073% on MMLU-Pro and 0.000017% on Big-Bench-Hard using eight backdoors. For open-ended generation tasks, it generalizes well and identifies all contaminated models on Alpaca with a guaranteed false positive rate of just 0.127% using six backdoors.
Demystifying Reasoning Dynamics with Mutual Information: Thinking Tokens are Information Peaks in LLM Reasoning
Large reasoning models (LRMs) have demonstrated impressive capabilities in complex problem-solving, yet their internal reasoning mechanisms remain poorly understood. In this paper, we investigate the reasoning trajectories of LRMs from an information-theoretic perspective. By tracking how mutual information (MI) between intermediate representations and the correct answer evolves during LRM reasoning, we observe an interesting MI peaks phenomenon: the MI at specific generative steps exhibits a sudden and significant increase during LRM's reasoning process. We theoretically analyze such phenomenon and show that as MI increases, the probability of model's prediction error decreases. Furthermore, these MI peaks often correspond to tokens expressing reflection or transition, such as ``Hmm'', ``Wait'' and ``Therefore,'' which we term as the thinking tokens. We then demonstrate that these thinking tokens are crucial for LRM's reasoning performance, while other tokens has minimal impacts. Building on these analyses, we propose two simple yet effective methods to improve LRM's reasoning performance, by delicately leveraging these thinking tokens. Overall, our work provides novel insights into the reasoning mechanisms of LRMs and offers practical ways to improve their reasoning capabilities. The code is available at https://github.com/ChnQ/MI-Peaks.
comment: Preprint. Under review
Social Genome: Grounded Social Reasoning Abilities of Multimodal Models
Social reasoning abilities are crucial for AI systems to effectively interpret and respond to multimodal human communication and interaction within social contexts. We introduce SOCIAL GENOME, the first benchmark for fine-grained, grounded social reasoning abilities of multimodal models. SOCIAL GENOME contains 272 videos of interactions and 1,486 human-annotated reasoning traces related to inferences about these interactions. These traces contain 5,777 reasoning steps that reference evidence from visual cues, verbal cues, vocal cues, and external knowledge (contextual knowledge external to videos). SOCIAL GENOME is also the first modeling challenge to study external knowledge in social reasoning. SOCIAL GENOME computes metrics to holistically evaluate semantic and structural qualities of model-generated social reasoning traces. We demonstrate the utility of SOCIAL GENOME through experiments with state-of-the-art models, identifying performance gaps and opportunities for future research to improve the grounded social reasoning abilities of multimodal models.
comment: Under Review, 24 pages
On Entity Identification in Language Models ACL 2025
We analyze the extent to which internal representations of language models (LMs) identify and distinguish mentions of named entities, focusing on the many-to-many correspondence between entities and their mentions. We first formulate two problems of entity mentions -- ambiguity and variability -- and propose a framework analogous to clustering quality metrics. Specifically, we quantify through cluster analysis of LM internal representations the extent to which mentions of the same entity cluster together and mentions of different entities remain separated. Our experiments examine five Transformer-based autoregressive models, showing that they effectively identify and distinguish entities with metrics analogous to precision and recall ranging from 0.66 to 0.9. Further analysis reveals that entity-related information is compactly represented in a low-dimensional linear subspace at early LM layers. Additionally, we clarify how the characteristics of entity representations influence word prediction performance. These findings are interpreted through the lens of isomorphism between LM representations and entity-centric knowledge structures in the real world, providing insights into how LMs internally organize and use entity information.
comment: ACL 2025 Findings; 26 pages, 13 figures, 9 tables
MASTER: Enhancing Large Language Model via Multi-Agent Simulated Teaching
Instruction fine-tuning is crucial in NLP tasks, enhancing pretrained models' instruction-following capabilities and task-specific performance. However, obtaining high-quality fine-tuning data for large models is challenging due to data collection difficulties and high production costs. To address this, we propose MASTER, a novel data augmentation method that enriches original data through interactions among multiple agents with varying cognitive levels. We simulate three pedagogically grounded teaching scenarios, leveraging multi-agent conversations to generate high-quality teacher-student interaction data. Utilizing MASTER, we construct BOOST-QA, a fine-tuning dataset augmented from existing datasets like Orca-Math-200k, ProcQA, and OpenHermes2.5. Experiments show that models fine-tuned with BOOST-QA perform excellently across multiple benchmarks, demonstrating strong multitask generalization. Notably, MASTER significantly improves models' reasoning abilities in complex tasks, providing valuable insights for future research.
Generative Emotion Cause Explanation in Multimodal Conversations
Multimodal conversation, a crucial form of human communication, carries rich emotional content, making the exploration of the causes of emotions within it a research endeavor of significant importance. However, existing research on the causes of emotions typically employs an utterance selection method within a single textual modality to locate causal utterances. This approach remains limited to coarse-grained assessments, lacks nuanced explanations of emotional causation, and demonstrates inadequate capability in identifying multimodal emotional triggers. Therefore, we introduce a task-\textbf{Multimodal Emotion Cause Explanation in Conversation (MECEC)}. This task aims to generate a summary based on the multimodal context of conversations, clearly and intuitively describing the reasons that trigger a given emotion. To adapt to this task, we develop a new dataset (ECEM) based on the MELD dataset. ECEM combines video clips with detailed explanations of character emotions, helping to explore the causal factors behind emotional expression in multimodal conversations. A novel approach, FAME-Net, is further proposed, that harnesses the power of Large Language Models (LLMs) to analyze visual data and accurately interpret the emotions conveyed through facial expressions in videos. By exploiting the contagion effect of facial emotions, FAME-Net effectively captures the emotional causes of individuals engaged in conversations. Our experimental results on the newly constructed dataset show that FAME-Net outperforms several excellent baselines. Code and dataset are available at https://github.com/3222345200/FAME-Net.
CoRe-MMRAG: Cross-Source Knowledge Reconciliation for Multimodal RAG ACL 2025
Multimodal Retrieval-Augmented Generation (MMRAG) has been introduced to enhance Multimodal Large Language Models by incorporating externally retrieved multimodal knowledge, but it introduces two challenges: Parametric-Retrieved Knowledge Inconsistency (PRKI), where discrepancies between parametric and retrieved knowledge create uncertainty in determining reliability, and Visual-Textual Knowledge Inconsistency (VTKI), where misalignment between visual and textual sources disrupts entity representation. To address these challenges, we propose Cross-source knowledge \textbf{Re}conciliation for Multimodal RAG (CoRe-MMRAG), a novel end-to-end framework that effectively reconciles inconsistencies across knowledge sources. CoRe-MMRAG follows a four-stage pipeline: it first generates an internal response from parametric knowledge, then selects the most relevant multimodal evidence via joint similarity assessment, generates an external response, and finally integrates both to produce a reliable answer. Additionally, a specialized training paradigm enhances knowledge source discrimination, multimodal integration, and unified answer generation. Experiments on KB-VQA benchmarks show that CoRe-MMRAG achieves substantial improvements over baseline methods, achieving 5.6% and 9.3% performance gains on InfoSeek and Encyclopedic-VQA, respectively.
comment: Accepted to ACL 2025 Main
A Survey on (M)LLM-Based GUI Agents
Graphical User Interface (GUI) Agents have emerged as a transformative paradigm in human-computer interaction, evolving from rule-based automation scripts to sophisticated AI-driven systems capable of understanding and executing complex interface operations. This survey provides a comprehensive examination of the rapidly advancing field of LLM-based GUI Agents, systematically analyzing their architectural foundations, technical components, and evaluation methodologies. We identify and analyze four fundamental components that constitute modern GUI Agents: (1) perception systems that integrate text-based parsing with multimodal understanding for comprehensive interface comprehension; (2) exploration mechanisms that construct and maintain knowledge bases through internal modeling, historical experience, and external information retrieval; (3) planning frameworks that leverage advanced reasoning methodologies for task decomposition and execution; and (4) interaction systems that manage action generation with robust safety controls. Through rigorous analysis of these components, we reveal how recent advances in large language models and multimodal learning have revolutionized GUI automation across desktop, mobile, and web platforms. We critically examine current evaluation frameworks, highlighting methodological limitations in existing benchmarks while proposing directions for standardization. This survey also identifies key technical challenges, including accurate element localization, effective knowledge retrieval, long-horizon planning, and safety-aware execution control, while outlining promising research directions for enhancing GUI Agents' capabilities. Our systematic review provides researchers and practitioners with a thorough understanding of the field's current state and offers insights into future developments in intelligent interface automation.
Through the Prism of Culture: Evaluating LLMs' Understanding of Indian Subcultures and Traditions
Large Language Models (LLMs) have shown remarkable advancements but also raise concerns about cultural bias, often reflecting dominant narratives at the expense of under-represented subcultures. In this study, we evaluate the capacity of LLMs to recognize and accurately respond to the Little Traditions within Indian society, encompassing localized cultural practices and subcultures such as caste, kinship, marriage, and religion. Through a series of case studies, we assess whether LLMs can balance the interplay between dominant Great Traditions and localized Little Traditions. We explore various prompting strategies and further investigate whether using prompts in regional languages enhances the models cultural sensitivity and response quality. Our findings reveal that while LLMs demonstrate an ability to articulate cultural nuances, they often struggle to apply this understanding in practical, context-specific scenarios. To the best of our knowledge, this is the first study to analyze LLMs engagement with Indian subcultures, offering critical insights into the challenges of embedding cultural diversity in AI systems.
Large Language Models Struggle to Describe the Haystack without Human Help: Human-in-the-loop Evaluation of Topic Models
A common use of NLP is to facilitate the understanding of large document collections, with a shift from using traditional topic models to Large Language Models. Yet the effectiveness of using LLM for large corpus understanding in real-world applications remains under-explored. This study measures the knowledge users acquire with unsupervised, supervised LLM-based exploratory approaches or traditional topic models on two datasets. While LLM-based methods generate more human-readable topics and show higher average win probabilities than traditional models for data exploration, they produce overly generic topics for domain-specific datasets that do not easily allow users to learn much about the documents. Adding human supervision to the LLM generation process improves data exploration by mitigating hallucination and over-genericity but requires greater human effort. In contrast, traditional. models like Latent Dirichlet Allocation (LDA) remain effective for exploration but are less user-friendly. We show that LLMs struggle to describe the haystack of large corpora without human help, particularly domain-specific data, and face scaling and hallucination limitations due to context length constraints.
comment: 22 Pages. LLM for Data Exploration and content analysis, Topic Models. 63rd Annual Meeting of the Association for Computational Linguistics (2025)
Refining Sentence Embedding Model through Ranking Sentences Generation with Large Language Models
Sentence embedding is essential for many NLP tasks, with contrastive learning methods achieving strong performance using annotated datasets like NLI. Yet, the reliance on manual labels limits scalability. Recent studies leverage large language models (LLMs) to generate sentence pairs, reducing annotation dependency. However, they overlook ranking information crucial for fine-grained semantic distinctions. To tackle this challenge, we propose a method for controlling the generation direction of LLMs in the latent space. Unlike unconstrained generation, the controlled approach ensures meaningful semantic divergence. Then, we refine exist sentence embedding model by integrating ranking information and semantic information. Experiments on multiple benchmarks demonstrate that our method achieves new SOTA performance with a modest cost in ranking sentence synthesis.
Rethinking the Role of Prompting Strategies in LLM Test-Time Scaling: A Perspective of Probability Theory ACL 2025
Recently, scaling test-time compute on Large Language Models (LLM) has garnered wide attention. However, there has been limited investigation of how various reasoning prompting strategies perform as scaling. In this paper, we focus on a standard and realistic scaling setting: majority voting. We systematically conduct experiments on 6 LLMs $\times$ 8 prompting strategies $\times$ 6 benchmarks. Experiment results consistently show that as the sampling time and computational overhead increase, complicated prompting strategies with superior initial performance gradually fall behind simple Chain-of-Thought. We analyze this phenomenon and provide theoretical proofs. Additionally, we propose a probabilistic method to efficiently predict scaling performance and identify the best prompting strategy under large sampling times, eliminating the need for resource-intensive inference processes in practical applications. Furthermore, we introduce two ways derived from our theoretical analysis to significantly improve the scaling performance. We hope that our research can promote to re-examine the role of complicated prompting, unleash the potential of simple prompting strategies, and provide new insights for enhancing test-time scaling performance. Code is available at https://github.com/MraDonkey/rethinking_prompting.
comment: ACL 2025 Main, 33 pages, 51 figures
DynaSaur: Large Language Agents Beyond Predefined Actions
Existing LLM agent systems typically select actions from a fixed and predefined set at every step. While this approach is effective in closed, narrowly scoped environments, it presents two major challenges for real-world, open-ended scenarios: (1) it significantly restricts the planning and acting capabilities of LLM agents, and (2) it requires substantial human effort to enumerate and implement all possible actions, which is impractical in complex environments with a vast number of potential actions. To address these limitations, we propose an LLM agent framework that can dynamically create and compose actions as needed. In this framework, the agent interacts with its environment by generating and executing programs written in a general-purpose programming language. Moreover, generated actions are accumulated over time for future reuse. Our extensive experiments across multiple benchmarks show that this framework significantly improves flexibility and outperforms prior methods that rely on a fixed action set. Notably, it enables LLM agents to adapt and recover in scenarios where predefined actions are insufficient or fail due to unforeseen edge cases. Our code can be found in https://github.com/adobe-research/dynasaur.
comment: 19 pages, 10 figures
Rubrik's Cube: Testing a New Rubric for Evaluating Explanations on the CUBE dataset ACL 2025
The performance and usability of Large-Language Models (LLMs) are driving their use in explanation generation tasks. However, despite their widespread adoption, LLM explanations have been found to be unreliable, making it difficult for users to distinguish good from bad explanations. To address this issue, we present Rubrik's CUBE, an education-inspired rubric and a dataset of 26k explanations, written and later quality-annotated using the rubric by both humans and six open- and closed-source LLMs. The CUBE dataset focuses on two reasoning and two language tasks, providing the necessary diversity for us to effectively test our proposed rubric. Using Rubrik, we find that explanations are influenced by both task and perceived difficulty. Low quality stems primarily from a lack of conciseness in LLM-generated explanations, rather than cohesion and word choice. The full dataset, rubric, and code are available at https://github.com/RubriksCube/rubriks_cube.
comment: 10 main pages (24 appendix pages), 9 figures, accepted to ACL 2025
Assistant-Guided Mitigation of Teacher Preference Bias in LLM-as-a-Judge
LLM-as-a-Judge employs large language models (LLMs), such as GPT-4, to evaluate the quality of LLM-generated responses, gaining popularity for its cost-effectiveness and strong alignment with human evaluations. However, training proxy judge models using evaluation data generated by powerful teacher models introduces a critical yet previously overlooked issue: teacher preference bias, where the proxy judge model learns a biased preference for responses from the teacher model. To tackle this problem, we propose a novel setting that incorporates an additional assistant model, which is not biased toward the teacher model's responses, to complement the training data. Building on this setup, we introduce AGDe-Judge, a three-stage framework designed to debias from both the labels and feedbacks in the training data. Extensive experiments demonstrate that AGDe-Judge effectively reduces teacher preference bias while maintaining strong performance across six evaluation benchmarks. Code is available at https://github.com/Liuz233/AGDe-Judge.
comment: Under review
Meta-rater: A Multi-dimensional Data Selection Method for Pre-training Language Models ACL 2025
The composition of pre-training datasets for large language models (LLMs) remains largely undisclosed, hindering transparency and efforts to optimize data quality, a critical driver of model performance. Current data selection methods, such as natural language quality assessments, diversity-based filters, and classifier-based approaches, are limited by single-dimensional evaluation or redundancy-focused strategies. To address these gaps, we propose four dimensions to evaluate data quality: professionalism, readability, reasoning, and cleanliness. We further introduce Meta-rater,a multi-dimensional data selection method that integrates these dimensions with existing quality metrics through learned optimal weightings. Meta-rater employs proxy models to train a regression model that predicts validation loss, enabling the identification of optimal combinations of quality scores. Experiments demonstrate that Meta-rater doubles convergence speed for 1.3B parameter models and improves downstream task performance by 3.23, with advantages that scale to models as large as 7.2B parameters. Our work establishes that holistic, multi-dimensional quality integration significantly outperforms conventional single-dimension approaches, offering a scalable paradigm for enhancing pre-training efficiency and model capability. To advance future research, we release scripts, data, and models at https://github.com/opendatalab/Meta-rater.
comment: Accepted by ACL 2025
REAL: Response Embedding-based Alignment for LLMs
Aligning large language models (LLMs) to human preferences is a crucial step in building helpful and safe AI tools, which usually involve training on supervised datasets. Popular algorithms such as Direct Preference Optimization (DPO) rely on pairs of AI-generated responses ranked according to human annotation. The response pair annotation process might bring human bias. Building a correct preference dataset is the costly part of the alignment pipeline. To improve annotation efficiency and quality in the LLMs alignment, we propose REAL: Response Embedding-based Alignment for LLMs, a strategy for constructing a high-quality training dataset that focuses on acquiring the less ambiguous preference pairs for labeling out of a set of response candidates. Our selection process is based on the similarity of embedding responses independently of prompts, which guarantees the selection process in an off-policy setting, avoiding adaptively measuring the similarity during the training. Experimental results on real-world dataset SHP2 and synthetic HH-RLHF benchmarks indicate that choosing dissimilar response pairs enhances the direct alignment of LLMs while reducing inherited labeling errors. The model aligned with dissimilar response pairs obtained a better margin and win rate on the dialogue task. Our findings suggest that focusing on distinct pairs can reduce the label error and improve LLM alignment efficiency, saving up to $65\%$ of annotators' work.
Revisiting Uncertainty Quantification Evaluation in Language Models: Spurious Interactions with Response Length Bias Results ACL 2025
Uncertainty Quantification (UQ) in Language Models (LMs) is key to improving their safety and reliability. Evaluations often use metrics like AUROC to assess how well UQ methods (e.g., negative sequence probabilities) correlate with task correctness functions (e.g., ROUGE-L). We show that mutual biases--when both UQ methods and correctness functions are biased by the same factors--systematically distort evaluation. First, we formally prove that any mutual bias non-randomly skews AUROC rankings, compromising benchmark integrity. Second, we confirm this happens empirically by testing 7 widely used correctness functions, from lexical-based and embedding-based metrics to LM-as-a-judge approaches, across 4 datasets x 4 models x 8 UQ methods. Our analysis shows that length biases in correctness functions distort UQ assessments by interacting with length biases in UQ methods. We identify LM-as-a-judge methods as the least length-biased, offering a promising path for a fairer UQ evaluation.
comment: Accepted at ACL 2025 (Main)
The Arabic AI Fingerprint: Stylometric Analysis and Detection of Large Language Models Text
Large Language Models (LLMs) have achieved unprecedented capabilities in generating human-like text, posing subtle yet significant challenges for information integrity across critical domains, including education, social media, and academia, enabling sophisticated misinformation campaigns, compromising healthcare guidance, and facilitating targeted propaganda. This challenge becomes severe, particularly in under-explored and low-resource languages like Arabic. This paper presents a comprehensive investigation of Arabic machine-generated text, examining multiple generation strategies (generation from the title only, content-aware generation, and text refinement) across diverse model architectures (ALLaM, Jais, Llama, and GPT-4) in academic, and social media domains. Our stylometric analysis reveals distinctive linguistic patterns differentiating human-written from machine-generated Arabic text across these varied contexts. Despite their human-like qualities, we demonstrate that LLMs produce detectable signatures in their Arabic outputs, with domain-specific characteristics that vary significantly between different contexts. Based on these insights, we developed BERT-based detection models that achieved exceptional performance in formal contexts (up to 99.9\% F1-score) with strong precision across model architectures. Our cross-domain analysis confirms generalization challenges previously reported in the literature. To the best of our knowledge, this work represents the most comprehensive investigation of Arabic machine-generated text to date, uniquely combining multiple prompt generation methods, diverse model architectures, and in-depth stylometric analysis across varied textual domains, establishing a foundation for developing robust, linguistically-informed detection systems essential for preserving information integrity in Arabic-language contexts.
How Does A Text Preprocessing Pipeline Affect Ontology Syntactic Matching?
The classic text preprocessing pipeline, comprising Tokenisation, Normalisation, Stop Words Removal, and Stemming/Lemmatisation, has been implemented in many systems for syntactic ontology matching (OM). However, the lack of standardisation in text preprocessing creates diversity in mapping results. In this paper, we investigate the effect of the text preprocessing pipeline on syntactic OM in 8 Ontology Alignment Evaluation Initiative (OAEI) tracks with 49 distinct alignments. We find that Phase 1 text preprocessing (Tokenisation and Normalisation) is more effective than Phase 2 text preprocessing (Stop Words Removal and Stemming/Lemmatisation). We propose two novel approaches to repair unwanted false mappings caused by Phase 2 text preprocessing. One is an ad hoc logic-based repair approach that employs an ontology-specific check to find common words that cause false mappings. These words are stored in a reserved word set and applied before the text preprocessing. By leveraging the power of large language models (LLMs), we also propose a post hoc LLM-based repair approach. This approach utilises the strong background knowledge provided by LLMs to repair non-existent and counter-intuitive false mappings after the text preprocessing. It also overcomes the tendency towards unstable true mappings by injecting the classic text preprocessing pipeline via function calling. The experimental results show that these two approaches can improve the matching correctness and the overall matching performance.
comment: 13 pages, 14 figures, 4 tables
CheckEmbed: Effective Verification of LLM Solutions to Open-Ended Tasks
Large Language Models (LLMs) are transforming a wide range of domains, yet verifying their outputs remains a significant challenge, especially for complex open-ended tasks such as consolidation, summarization, and knowledge extraction. To address this, we introduce CheckEmbed (CE): a simple, scalable, and accurate verification method. CE reduces each LLM answer to a single embedding vector using powerful modern embedding LLM models like SFR-Embedding-Mistral. Prior methods such as BERTScore and SelfCheckGPT relied on weaker encoders like BERT, forcing them to operate at token or sentence granularity. In contrast, CE performs fast, semantically rich comparisons directly at the whole-answer level, overcoming key limitations in both accuracy and scalability. We conduct a comprehensive design and time complexity analysis across 13 verification baselines, including classical text scorers (e.g., BLEU), stability-based methods (e.g., SelfCheckGPT), and generative evaluators (e.g., LLM-as-a-Judge), which highlights the effectiveness, efficiency, versatility, and simplicity of CE. Empirical results show that CE reliably detects hallucinations in both closed and open-ended tasks. We further present evidence that CE generalizes beyond text to other modalities such as vision, establishing it as a practical and versatile verification framework.
Sleepless Nights, Sugary Days: Creating Synthetic Users with Health Conditions for Realistic Coaching Agent Interactions ACL 2025
We present an end-to-end framework for generating synthetic users for evaluating interactive agents designed to encourage positive behavior changes, such as in health and lifestyle coaching. The synthetic users are grounded in health and lifestyle conditions, specifically sleep and diabetes management in this study, to ensure realistic interactions with the health coaching agent. Synthetic users are created in two stages: first, structured data are generated grounded in real-world health and lifestyle factors in addition to basic demographics and behavioral attributes; second, full profiles of the synthetic users are developed conditioned on the structured data. Interactions between synthetic users and the coaching agent are simulated using generative agent-based models such as Concordia, or directly by prompting a language model. Using two independently-developed agents for sleep and diabetes coaching as case studies, the validity of this framework is demonstrated by analyzing the coaching agent's understanding of the synthetic users' needs and challenges. Finally, through multiple blinded evaluations of user-coach interactions by human experts, we demonstrate that our synthetic users with health and behavioral attributes more accurately portray real human users with the same attributes, compared to generic synthetic users not grounded in such attributes. The proposed framework lays the foundation for efficient development of conversational agents through extensive, realistic, and grounded simulated interactions.
comment: Accepted to the 63rd Annual Meeting of the Association for Computational Linguistics (ACL 2025)
PFDial: A Structured Dialogue Instruction Fine-tuning Method Based on UML Flowcharts
Process-driven dialogue systems, which operate under strict predefined process constraints, are essential in customer service and equipment maintenance scenarios. Although Large Language Models (LLMs) have shown remarkable progress in dialogue and reasoning, they still struggle to solve these strictly constrained dialogue tasks. To address this challenge, we construct Process Flow Dialogue (PFDial) dataset, which contains 12,705 high-quality Chinese dialogue instructions derived from 440 flowcharts containing 5,055 process nodes. Based on PlantUML specification, each UML flowchart is converted into atomic dialogue units i.e., structured five-tuples. Experimental results demonstrate that a 7B model trained with merely 800 samples, and a 0.5B model trained on total data both can surpass 90% accuracy. Additionally, the 8B model can surpass GPT-4o up to 43.88% with an average of 11.00%. We further evaluate models' performance on challenging backward transitions in process flows and conduct an in-depth analysis of various dataset formats to reveal their impact on model performance in handling decision and sequential branches. The data is released in https://github.com/KongLongGeFDU/PFDial.
Comparative Analysis of AI Agent Architectures for Entity Relationship Classification
Entity relationship classification remains a challenging task in information extraction, especially in scenarios with limited labeled data and complex relational structures. In this study, we conduct a comparative analysis of three distinct AI agent architectures designed to perform relation classification using large language models (LLMs). The agentic architectures explored include (1) reflective self-evaluation, (2) hierarchical task decomposition, and (3) a novel multi-agent dynamic example generation mechanism, each leveraging different modes of reasoning and prompt adaptation. In particular, our dynamic example generation approach introduces real-time cooperative and adversarial prompting. We systematically compare their performance across multiple domains and model backends. Our experiments demonstrate that multi-agent coordination consistently outperforms standard few-shot prompting and approaches the performance of fine-tuned models. These findings offer practical guidance for the design of modular, generalizable LLM-based systems for structured relation extraction. The source codes and dataset are available at https://github.com/maryambrj/ALIEN.git.
ARIA: Training Language Agents with Intention-Driven Reward Aggregation
Large language models (LLMs) have enabled agents to perform complex reasoning and decision-making through free-form language interactions. However, in open-ended language action environments (e.g., negotiation or question-asking games), the action space can be formulated as a joint distribution over tokens, resulting in an exponentially large action space. Sampling actions in such a space can lead to extreme reward sparsity, which brings large reward variance, hindering effective reinforcement learning (RL). To address this, we propose ARIA, a method that Aggregates Rewards in Intention space to enable efficient and effective language Agents training. ARIA aims to project natural language actions from the high-dimensional joint token distribution space into a low-dimensional intention space, where semantically similar actions are clustered and assigned shared rewards. This intention-aware reward aggregation reduces reward variance by densifying reward signals, fostering better policy optimization. Extensive experiments demonstrate that ARIA not only significantly reduces policy gradient variance, but also delivers substantial performance gains of an average of 9.95% across four downstream tasks, consistently outperforming offline and online RL baselines.
LoGU: Long-form Generation with Uncertainty Expressions ACL 2025
While Large Language Models (LLMs) demonstrate impressive capabilities, they still struggle with generating factually incorrect content (i.e., hallucinations). A promising approach to mitigate this issue is enabling models to express uncertainty when unsure. Previous research on uncertainty modeling has primarily focused on short-form QA, but realworld applications often require much longer responses. In this work, we introduce the task of Long-form Generation with Uncertainty(LoGU). We identify two key challenges: Uncertainty Suppression, where models hesitate to express uncertainty, and Uncertainty Misalignment, where models convey uncertainty inaccurately. To tackle these challenges, we propose a refinement-based data collection framework and a two-stage training pipeline. Our framework adopts a divide-and-conquer strategy, refining uncertainty based on atomic claims. The collected data are then used in training through supervised fine-tuning (SFT) and direct preference optimization (DPO) to enhance uncertainty expression. Extensive experiments on three long-form instruction following datasets show that our method significantly improves accuracy, reduces hallucinations, and maintains the comprehensiveness of responses.
comment: ACL 2025 Main
Children's Voice Privacy: First Steps And Emerging Challenges
Children are one of the most under-represented groups in speech technologies, as well as one of the most vulnerable in terms of privacy. Despite this, anonymization techniques targeting this population have received little attention. In this study, we seek to bridge this gap, and establish a baseline for the use of voice anonymization techniques designed for adult speech when applied to children's voices. Such an evaluation is essential, as children's speech presents a distinct set of challenges when compared to that of adults. This study comprises three children's datasets, six anonymization methods, and objective and subjective utility metrics for evaluation. Our results show that existing systems for adults are still able to protect children's voice privacy, but suffer from much higher utility degradation. In addition, our subjective study displays the challenges of automatic evaluation methods for speech quality in children's speech, highlighting the need for further research.
comment: Accepted at Interspeech 2025, Netherlands
SAEBench: A Comprehensive Benchmark for Sparse Autoencoders in Language Model Interpretability ICML 2025
Sparse autoencoders (SAEs) are a popular technique for interpreting language model activations, and there is extensive recent work on improving SAE effectiveness. However, most prior work evaluates progress using unsupervised proxy metrics with unclear practical relevance. We introduce SAEBench, a comprehensive evaluation suite that measures SAE performance across eight diverse metrics, spanning interpretability, feature disentanglement and practical applications like unlearning. To enable systematic comparison, we open-source a suite of over 200 SAEs across eight recently proposed SAE architectures and training algorithms. Our evaluation reveals that gains on proxy metrics do not reliably translate to better practical performance. For instance, while Matryoshka SAEs slightly underperform on existing proxy metrics, they substantially outperform other architectures on feature disentanglement metrics; moreover, this advantage grows with SAE scale. By providing a standardized framework for measuring progress in SAE development, SAEBench enables researchers to study scaling trends and make nuanced comparisons between different SAE architectures and training methodologies. Our interactive interface enables researchers to flexibly visualize relationships between metrics across hundreds of open-source SAEs at: www.neuronpedia.org/sae-bench
comment: Accepted to ICML 2025 main conference
MultiHoax: A Dataset of Multi-hop False-Premise Questions ACL
As Large Language Models are increasingly deployed in high-stakes domains, their ability to detect false assumptions and reason critically is crucial for ensuring reliable outputs. False-premise questions (FPQs) serve as an important evaluation method by exposing cases where flawed assumptions lead to incorrect responses. While existing benchmarks focus on single-hop FPQs, real-world reasoning often requires multi-hop inference, where models must verify consistency across multiple reasoning steps rather than relying on surface-level cues. To address this gap, we introduce MultiHoax, a benchmark for evaluating LLMs' ability to handle false premises in complex, multi-step reasoning tasks. Our dataset spans seven countries and ten diverse knowledge categories, using Wikipedia as the primary knowledge source to enable factual reasoning across regions. Experiments reveal that state-of-the-art LLMs struggle to detect false premises across different countries, knowledge categories, and multi-hop reasoning types, highlighting the need for improved false premise detection and more robust multi-hop reasoning capabilities in LLMs.
comment: accepted at ACL Findings 2025
Let's Reason Formally: Natural-Formal Hybrid Reasoning Enhances LLM's Math Capability
Enhancing the mathematical reasoning capabilities of LLMs has garnered significant attention in both the mathematical and computer science communities. Recent works have made substantial progress in both Natural Language (NL) reasoning and Formal Language (FL) reasoning by leveraging the potential of pure Reinforcement Learning (RL) methods on base models. However, RL approaches struggle to impart new capabilities not presented in the base model, highlighting the need to integrate more knowledge like FL into NL math reasoning effectively. Yet, this integration is challenging due to inherent disparities in problem structure and reasoning format between NL and FL. To address these challenges, we introduce **NL-FL HybridReasoning**, an end-to-end framework designed to incorporate the FL expert into NL math problem-solving. To bridge the NL and FL input format gap, we propose the *NL-FL Problem Alignment* method, which reformulates the Question-Answering (QA) problems in NL as existence theorems in FL. Subsequently, the *Mixed Problem Input* technique we provide enables the FL reasoner to handle both QA and existence problems concurrently. Lastly, we mitigate the NL and FL output format gap in reasoning through an LLM-based *Answer Extraction* mechanism. Comprehensive experiments demonstrate that the **HybridReasoning** framework achieves **89.80%** and **84.34%** accuracy rates on the MATH-500 and the AMC benchmarks, surpassing the NL baseline by 4.60% and 4.82%, respectively. Notably, some problems resolved by our framework remain unsolved by the NL baseline model even under a larger number of trials.
D2S-FLOW: Automated Parameter Extraction from Datasheets for SPICE Model Generation Using Large Language Models
In electronic design, engineers often manually search through extensive documents to retrieve component parameters required for constructing SPICE models, a process that is both labor-intensive and time-consuming. To address this challenge, we present an automated framework called D2S-FLOW that leverages large language models (LLMs) to extract electrical parameters from datasheets and generate SPICE models with high precision and efficiency, significantly reducing the need for manual intervention. Unlike traditional RAG systems, D2S-FLOW employs a workflow to enhance precision in handling unstructured documents and inconsistent naming conventions through three innovative mechanisms: Attention-Guided Document Focusing (AGDF), Hierarchical Document-Enhanced Retrieval (HDER), and Heterogeneous Named Entity Normalization (HNEN). AGDF narrows retrieval to user-selected documents, HDER utilizes document structure for precise parameter localization, and HNEN standardizes terminology via semantic inference. Experimental results demonstrate that the framework achieves an Exact Match (EM) of 0.86, an F1 score of 0.92, and an Exact Correctness (EC) of 0.96, outperforming the strongest baseline by 19.4%, 5.7%, and 13.1%, respectively. Additionally, it reduces API token consumption by 38% and minimizes the irrelevant information ratio to 4%, showcasing substantial improvements in resource efficiency. This research provides an effective automated solution for circuit design.
comment: 14 pages, 18 figures
An Expanded Massive Multilingual Dataset for High-Performance Language Technologies (HPLT) ACL'2025
Training state-of-the-art large language models requires vast amounts of clean and diverse textual data. However, building suitable multilingual datasets remains a challenge. In this work, we present HPLT v2, a collection of high-quality multilingual monolingual and parallel corpora, extending prior work of the HPLT project. The monolingual portion of the data contains 8T tokens covering 193 languages, while the parallel data contains 380M sentence pairs covering 51 languages. We document the entire data pipeline and release the code to reproduce it. We provide extensive analysis of the quality and characteristics of our data. Finally, we evaluate the performance of language models and machine translation systems trained on HPLT v2, demonstrating its value.
comment: ACL'2025 Main Proceedings
Data Laundering: Artificially Boosting Benchmark Results through Knowledge Distillation
In this paper, we show that knowledge distillation can be subverted to manipulate language model benchmark scores, revealing a critical vulnerability in current evaluation practices. We introduce "Data Laundering," a process that enables the covert transfer of benchmark-specific knowledge through seemingly legitimate intermediate training steps. Through extensive experiments with a 2-layer BERT student model, we show how this approach can achieve substantial improvements in benchmark accuracy (up to 75\% on GPQA) without developing genuine reasoning capabilities. Notably, this method can be exploited intentionally or even unintentionally, as researchers may inadvertently adopt this method and inflate scores without realising the implications. While our findings demonstrate the effectiveness of this technique, we present them as a cautionary tale highlighting the urgent need for more robust evaluation methods in AI. This work aims to contribute to the ongoing discussion about evaluation integrity in AI development and the need for benchmarks that more accurately reflect true model capabilities. The code is available at https://github.com/mbzuai-nlp/data_laundering.
comment: 14 pages
Tug-of-war between idiom's figurative and literal meanings in LLMs
Idioms present a unique challenge for language models due to their non-compositional figurative meanings, which often strongly diverge from the idiom's literal interpretation. This duality requires a model to learn representing and deciding between the two meanings to interpret an idiom in a figurative sense, or literally. In this paper, we employ tools from mechanistic interpretability to trace how a large pretrained causal transformer (LLama3.2-1B-base) deals with this ambiguity. We localize three steps of idiom processing: First, the idiom's figurative meaning is retrieved in early attention and MLP sublayers. We identify specific attention heads which boost the figurative meaning of the idiom while suppressing the idiom's literal interpretation. The model subsequently represents the figurative representation through an intermediate path. Meanwhile, a parallel bypass route forwards literal interpretation, ensuring that a both reading remain available. Overall, our findings provide a mechanistic evidence for idiom comprehension in an autoregressive transformer.
Identifying Aspects in Peer Reviews
Peer review is central to academic publishing, but the growing volume of submissions is straining the process. This motivates the development of computational approaches to support peer review. While each review is tailored to a specific paper, reviewers often make assessments according to certain aspects such as Novelty, which reflect the values of the research community. This alignment creates opportunities for standardizing the reviewing process, improving quality control, and enabling computational support. While prior work has demonstrated the potential of aspect analysis for peer review assistance, the notion of aspect remains poorly formalized. Existing approaches often derive aspects from review forms and guidelines, yet data-driven methods for aspect identification are underexplored. To address this gap, our work takes a bottom-up approach: we propose an operational definition of aspect and develop a data-driven schema for deriving aspects from a corpus of peer reviews. We introduce a dataset of peer reviews augmented with aspects and show how it can be used for community-level review analysis. We further show how the choice of aspects can impact downstream applications, such as LLM-generated review detection. Our results lay a foundation for a principled and data-driven investigation of review aspects, and pave the path for new applications of NLP to support peer review.
LLMs Think, But Not In Your Flow: Reasoning-Level Personalization for Black-Box Large Language Models
Large language models (LLMs) have recently achieved impressive performance across a wide range of natural language tasks and are now widely used in real-world applications. Among them, black-box LLMs--served via APIs without access to model internals--are especially dominant due to their scalability and ease of deployment. Despite their strong capabilities, these models typically produce generalized responses that overlook personal preferences and reasoning styles. This has led to growing interest in black-box LLM personalization, which aims to tailor model outputs to user-specific context without modifying model parameters. However, existing approaches primarily focus on response-level personalization, attempting to match final outputs without modeling personal thought process. To address this limitation, we propose RPM, a framework for reasoning-level personalization that aligns the model's reasoning process with a user's personalized logic. RPM first constructs statistical user-specific factors by extracting and grouping response-influential features from user history. It then builds personalized reasoning paths that reflect how these factors are used in context. In the inference stage, RPM retrieves reasoning-aligned examples for new queries via feature-level similarity and performs inference conditioned on the structured factors and retrieved reasoning paths, enabling the model to follow user-specific reasoning trajectories. This reasoning-level personalization enhances both predictive accuracy and interpretability by grounding model outputs in user-specific logic through structured information. Extensive experiments across diverse tasks show that RPM consistently outperforms response-level personalization methods, demonstrating the effectiveness of reasoning-level personalization in black-box LLMs.
SemEval-2025 Task 1: AdMIRe -- Advancing Multimodal Idiomaticity Representation SemEval-2025
Idiomatic expressions present a unique challenge in NLP, as their meanings are often not directly inferable from their constituent words. Despite recent advancements in Large Language Models (LLMs), idiomaticity remains a significant obstacle to robust semantic representation. We present datasets and tasks for SemEval-2025 Task 1: AdMiRe (Advancing Multimodal Idiomaticity Representation), which challenges the community to assess and improve models' ability to interpret idiomatic expressions in multimodal contexts and in multiple languages. Participants competed in two subtasks: ranking images based on their alignment with idiomatic or literal meanings, and predicting the next image in a sequence. The most effective methods achieved human-level performance by leveraging pretrained LLMs and vision-language models in mixture-of-experts settings, with multiple queries used to smooth over the weaknesses in these models' representations of idiomaticity.
comment: Author accepted version; SemEval-2025 proceedings to appear at ACL 2025. This version corrects a typo in the results table
Enabling LLM Knowledge Analysis via Extensive Materialization
Large language models (LLMs) have majorly advanced NLP and AI, and next to their ability to perform a wide range of procedural tasks, a major success factor is their internalized factual knowledge. Since Petroni et al. (2019), analyzing this knowledge has gained attention. However, most approaches investigate one question at a time via modest-sized pre-defined samples, introducing an ``availability bias'' (Tversky&Kahnemann, 1973) that prevents the analysis of knowledge (or beliefs) of LLMs beyond the experimenter's predisposition. To address this challenge, we propose a novel methodology to comprehensively materialize an LLM's factual knowledge through recursive querying and result consolidation. Our approach is a milestone for LLM research, for the first time providing constructive insights into the scope and structure of LLM knowledge (or beliefs). As a prototype, we build GPTKB, a knowledge base (KB) comprising 101 million relational triples for over 2.9 million entities from GPT-4o-mini. We use GPTKB to exemplarily analyze GPT-4o-mini's factual knowledge in terms of scale, accuracy, bias, cutoff and consistency, at the same time. GPTKB is accessible at https://gptkb.org
comment: 14 pages, 4 tables, 12 figures
MAmmoTH-VL: Eliciting Multimodal Reasoning with Instruction Tuning at Scale ACL 2025
Open-source multimodal large language models (MLLMs) have shown significant potential in a broad range of multimodal tasks. However, their reasoning capabilities remain constrained by existing instruction-tuning datasets, which were predominately repurposed from academic datasets such as VQA, AI2D, and ChartQA. These datasets target simplistic tasks, and only provide phrase-level answers without any intermediate rationales. To address these challenges, we introduce a scalable and cost-effective method to construct a large-scale multimodal instruction-tuning dataset with rich intermediate rationales designed to elicit CoT reasoning. Using only open models, we create a dataset containing 12M instruction-response pairs to cover diverse, reasoning-intensive tasks with detailed and faithful rationales. Experiments demonstrate that training MLLMs on this dataset significantly improves reasoning capabilities, achieving state-of-the-art performance on benchmarks such as MathVerse (+8.1%), MMMU-Pro (+7%), and MuirBench (+13.3%). Additionally, the model demonstrates notable improvements of up to 4% on non-reasoning-based benchmarks. Ablation studies further highlight the importance of key components, such as rewriting and self-filtering, in the dataset construction process.
comment: ACL 2025 Main
Hypothetical Documents or Knowledge Leakage? Rethinking LLM-based Query Expansion ACL 2025
Query expansion methods powered by large language models (LLMs) have demonstrated effectiveness in zero-shot retrieval tasks. These methods assume that LLMs can generate hypothetical documents that, when incorporated into a query vector, enhance the retrieval of real evidence. However, we challenge this assumption by investigating whether knowledge leakage in benchmarks contributes to the observed performance gains. Using fact verification as a testbed, we analyze whether the generated documents contain information entailed by ground-truth evidence and assess their impact on performance. Our findings indicate that, on average, performance improvements consistently occurred for claims whose generated documents included sentences entailed by gold evidence. This suggests that knowledge leakage may be present in fact-verification benchmarks, potentially inflating the perceived performance of LLM-based query expansion methods.
comment: ACL 2025 (Findings)
Bench4KE: Benchmarking Automated Competency Question Generation
The availability of Large Language Models (LLMs) presents a unique opportunity to reinvigorate research on Knowledge Engineering (KE) automation, a trend already evident in recent efforts developing LLM-based methods and tools for the automatic generation of Competency Questions (CQs). However, the evaluation of these tools lacks standardisation. This undermines the methodological rigour and hinders the replication and comparison of results. To address this gap, we introduce Bench4KE, an extensible API-based benchmarking system for KE automation. Its first release focuses on evaluating tools that generate CQs automatically. CQs are natural language questions used by ontology engineers to define the functional requirements of an ontology. Bench4KE provides a curated gold standard consisting of CQ datasets from four real-world ontology projects. It uses a suite of similarity metrics to assess the quality of the CQs generated. We present a comparative analysis of four recent CQ generation systems, which are based on LLMs, establishing a baseline for future research. Bench4KE is also designed to accommodate additional KE automation tasks, such as SPARQL query generation, ontology testing and drafting. Code and datasets are publicly available under the Apache 2.0 license.
Scaling Laws for Floating Point Quantization Training
Low-precision training is considered an effective strategy for reducing both training and downstream inference costs. Previous scaling laws for precision mainly focus on integer quantization, which pay less attention to the constituents in floating-point (FP) quantization, and thus cannot well fit the LLM losses in this scenario. In contrast, while FP quantization training is more commonly implemented in production, it's research has been relatively superficial. In this paper, we thoroughly explore the effects of FP quantization targets, exponent bits, mantissa bits, and the calculation granularity of the scaling factor in FP quantization training performance of LLM models. In addition to an accurate FP quantization unified scaling law, we also provide valuable suggestions for the community: (1) Exponent bits contribute slightly more to the model performance than mantissa bits. We provide the optimal exponent-mantissa bit ratio for different bit numbers, which is available for future reference by hardware manufacturers; (2) We discover the formation of the critical data size in low-precision LLM training. Too much training data exceeding the critical data size will inversely bring in degradation of LLM performance; (3) The optimal FP quantization precision is directly proportional to the computational power, but within a wide computational power range. We estimate that the best cost-performance precision should lie between 4-8 bits.
WizardMath: Empowering Mathematical Reasoning for Large Language Models via Reinforced Evol-Instruct ICLR 2025
Large language models (LLMs), such as GPT-4, have shown remarkable performance in natural language processing (NLP) tasks, including challenging mathematical reasoning. However, most existing open-source models are only pre-trained on large-scale internet data and without math-related optimization. In this paper, we present WizardMath, which enhances the mathematical CoT reasoning abilities of LLMs without using external python tools, by applying our proposed Reinforcement Learning from Evol-Instruct Feedback (RLEIF) method to the domain of math. Through extensive experiments on two mathematical reasoning benchmarks, namely GSM8k and MATH, we reveal the extraordinary capabilities of our model. Remarkably, WizardMath-Mistral 7B surpasses top-tier open-source LLMs by a substantial margin with higher data efficiency. Furthermore, WizardMath 70B even outperforms GPT-3.5-Turbo, Claude 2, Gemini Pro and GPT-4-early-version. Additionally, our preliminary exploration highlights the pivotal role of instruction evolution and process supervision in achieving exceptional math performance. For more details refer to https://github.com/nlpxucan/WizardLM
comment: This paper has been accepted to ICLR 2025 as an Oral presentation
T$^2$: An Adaptive Test-Time Scaling Strategy for Contextual Question Answering
Recent advances in Large Language Models (LLMs) have demonstrated remarkable performance in Contextual Question Answering (CQA). However, prior approaches typically employ elaborate reasoning strategies regardless of question complexity, leading to low adaptability. Recent efficient test-time scaling methods introduce budget constraints or early stop mechanisms to avoid overthinking for straightforward questions. But they add human bias to the reasoning process and fail to leverage models' inherent reasoning capabilities. To address these limitations, we present T$^2$: Think-to-Think, a novel framework that dynamically adapts reasoning depth based on question complexity. T$^2$ leverages the insight that if an LLM can effectively solve similar questions using specific reasoning strategies, it can apply the same strategy to the original question. This insight enables to adoption of concise reasoning for straightforward questions while maintaining detailed analysis for complex problems. T$^2$ works through four key steps: decomposing questions into structural elements, generating similar examples with candidate reasoning strategies, evaluating these strategies against multiple criteria, and applying the most appropriate strategy to the original question. Experimental evaluation across seven diverse CQA benchmarks demonstrates that T$^2$ not only achieves higher accuracy than baseline methods but also reduces computational overhead by up to 25.2\%.
comment: arXiv admin note: substantial text overlap with arXiv:2503.22985
InSerter: Speech Instruction Following with Unsupervised Interleaved Pre-training ACL 2025
Recent advancements in speech large language models (SpeechLLMs) have attracted considerable attention. Nonetheless, current methods exhibit suboptimal performance in adhering to speech instructions. Notably, the intelligence of models significantly diminishes when processing speech-form input as compared to direct text-form input. Prior work has attempted to mitigate this semantic inconsistency between speech and text representations through techniques such as representation and behavior alignment, which involve the meticulous design of data pairs during the post-training phase. In this paper, we introduce a simple and scalable training method called InSerter, which stands for Interleaved Speech-Text Representation Pre-training. InSerter is designed to pre-train large-scale unsupervised speech-text sequences, where the speech is synthesized from randomly selected segments of an extensive text corpus using text-to-speech conversion. Consequently, the model acquires the ability to generate textual continuations corresponding to the provided speech segments, obviating the need for intensive data design endeavors. To systematically evaluate speech instruction-following capabilities, we introduce SpeechInstructBench, the first comprehensive benchmark specifically designed for speech-oriented instruction-following tasks. Our proposed InSerter achieves SOTA performance in SpeechInstructBench and demonstrates superior or competitive results across diverse speech processing tasks.
comment: Accepted to ACL 2025; Data is available at: https://huggingface.co/datasets/ddwang2000/SpeechInstructBench
ConSim: Measuring Concept-Based Explanations' Effectiveness with Automated Simulatability
Concept-based explanations work by mapping complex model computations to human-understandable concepts. Evaluating such explanations is very difficult, as it includes not only the quality of the induced space of possible concepts but also how effectively the chosen concepts are communicated to users. Existing evaluation metrics often focus solely on the former, neglecting the latter. We introduce an evaluation framework for measuring concept explanations via automated simulatability: a simulator's ability to predict the explained model's outputs based on the provided explanations. This approach accounts for both the concept space and its interpretation in an end-to-end evaluation. Human studies for simulatability are notoriously difficult to enact, particularly at the scale of a wide, comprehensive empirical evaluation (which is the subject of this work). We propose using large language models (LLMs) as simulators to approximate the evaluation and report various analyses to make such approximations reliable. Our method allows for scalable and consistent evaluation across various models and datasets. We report a comprehensive empirical evaluation using this framework and show that LLMs provide consistent rankings of explanation methods. Code available at https://github.com/AnonymousConSim/ConSim.
UBench: Benchmarking Uncertainty in Large Language Models with Multiple Choice Questions ACL
Despite recent progress in systematic evaluation frameworks, benchmarking the uncertainty of large language models (LLMs) remains a highly challenging task. Existing methods for benchmarking the uncertainty of LLMs face three key challenges: the need for internal model access, additional training, or high computational costs. This is particularly unfavorable for closed-source models. To this end, we introduce UBench, a new benchmark for evaluating the uncertainty of LLMs. Unlike other benchmarks, UBench is based on confidence intervals. It encompasses 11,978 multiple-choice questions spanning knowledge, language, understanding, and reasoning capabilities. Based on this, we conduct extensive experiments. This includes comparisons with other advanced uncertainty estimation methods, the assessment of the uncertainty of 20 LLMs, and an exploration of the effects of Chain-of-Thought (CoT) prompts, role-playing (RP) prompts, and temperature on model uncertainty. Our analysis reveals several crucial insights: 1) Our confidence interval-based methods are highly effective for uncertainty quantification; 2) Regarding uncertainty, outstanding open-source models show competitive performance versus closed-source models; 3) CoT and RP prompts present potential ways to improve model reliability, while the influence of temperature changes follows no universal rule. Our implementation is available at https://github.com/Cyno2232/UBENCH.
comment: accepted by ACL Findings (2025)
Sliding Window Attention Training for Efficient Large Language Models
Recent advances in transformer-based Large Language Models (LLMs) have demonstrated remarkable capabilities across various tasks. However, their quadratic computational complexity concerning sequence length remains a significant bottleneck for processing long documents. As a result, many efforts like sparse attention and state space models have been proposed to improve the efficiency of LLMs over long sequences. Though effective, these approaches compromise the performance or introduce structural complexity. This calls for a simple yet efficient model that preserves the fundamental Transformer architecture. To this end, we introduce SWAT, which enables efficient long-context handling via Sliding Window Attention Training. This paper first attributes the inefficiency of Transformers to the attention sink phenomenon resulting from the high variance of softmax operation. Then, we replace softmax with the sigmoid function and utilize a balanced ALiBi and Rotary Position Embedding for efficient information compression and retention. Experiments demonstrate that SWAT achieves SOTA performance compared with state-of-the-art linear recurrent architectures on eight benchmarks. Code is available at https://github.com/Fzkuji/swat-attention.
comment: 14 pages, 5 figures
SCORE: Story Coherence and Retrieval Enhancement for AI Narratives
Large Language Models (LLMs) can generate creative and engaging narratives from user-specified input, but maintaining coherence and emotional depth throughout these AI-generated stories remains a challenge. In this work, we propose SCORE, a framework for Story Coherence and Retrieval Enhancement, designed to detect and resolve narrative inconsistencies. By tracking key item statuses and generating episode summaries, SCORE uses a Retrieval-Augmented Generation (RAG) approach, incorporating TF-IDF and cosine similarity to identify related episodes and enhance the overall story structure. Results from testing multiple LLM-generated stories demonstrate that SCORE significantly improves the consistency and stability of narrative coherence compared to baseline GPT models, providing a more robust method for evaluating and refining AI-generated narratives.
ROGRAG: A Robustly Optimized GraphRAG Framework ACL2025
Large language models (LLMs) commonly struggle with specialized or emerging topics which are rarely seen in the training corpus. Graph-based retrieval-augmented generation (GraphRAG) addresses this by structuring domain knowledge as a graph for dynamic retrieval. However, existing pipelines involve complex engineering workflows, making it difficult to isolate the impact of individual components. It is also challenging to evaluate the retrieval effectiveness due to the overlap between the pretraining and evaluation datasets. In this work, we introduce ROGRAG, a Robustly Optimized GraphRAG framework. Specifically, we propose a multi-stage retrieval mechanism that integrates dual-level with logic form retrieval methods to improve retrieval robustness without increasing computational cost. To further refine the system, we incorporate various result verification methods and adopt an incremental database construction approach. Through extensive ablation experiments, we rigorously assess the effectiveness of each component. Our implementation includes comparative experiments on SeedBench, where Qwen2.5-7B-Instruct initially underperformed. ROGRAG significantly improves the score from 60.0% to 75.0% and outperforms mainstream methods. Experiments on domain-specific datasets reveal that dual-level retrieval enhances fuzzy matching, while logic form retrieval improves structured reasoning, highlighting the importance of multi-stage retrieval.ROGRAG is released as an open-source resource and supports installation with pip.
comment: ACL2025 demo track, 10 pages
PAST: Phonetic-Acoustic Speech Tokenizer
We present PAST, a novel end-to-end framework that jointly models phonetic information alongside signal reconstruction, eliminating the need for external pretrained models. Unlike previous approaches that rely on pretrained self-supervised models, PAST employs supervised phonetic data, directly integrating domain knowledge into the tokenization process via auxiliary tasks. Additionally, we introduce a streamable, causal variant of PAST, enabling real-time speech applications. Results demonstrate that PAST surpasses existing evaluated baseline tokenizers across common evaluation metrics, including phonetic representation and speech reconstruction. Notably, PAST also achieves superior performance when serving as a speech representation for speech language models, further highlighting its effectiveness as a foundation for spoken language generation. To foster further research, we release the full implementation. For code, model checkpoints, and samples see: https://pages.cs.huji.ac.il/adiyoss-lab/PAST
Soft Reasoning: Navigating Solution Spaces in Large Language Models through Controlled Embedding Exploration ICML 2025
Large Language Models (LLMs) struggle with complex reasoning due to limited diversity and inefficient search. We propose Soft Reasoning, an embedding-based search framework that optimises the embedding of the first token to guide generation. It combines (1) embedding perturbation for controlled exploration and (2) Bayesian optimisation to refine embeddings via a verifier-guided objective, balancing exploration and exploitation. This approach improves reasoning accuracy and coherence while avoiding reliance on heuristic search. Experiments demonstrate superior correctness with minimal computation, making it a scalable, model-agnostic solution.
comment: Accepted as a Spotlight at ICML 2025
Probing LLMs for Multilingual Discourse Generalization Through a Unified Label Set ACL 2025
Discourse understanding is essential for many NLP tasks, yet most existing work remains constrained by framework-dependent discourse representations. This work investigates whether large language models (LLMs) capture discourse knowledge that generalizes across languages and frameworks. We address this question along two dimensions: (1) developing a unified discourse relation label set to facilitate cross-lingual and cross-framework discourse analysis, and (2) probing LLMs to assess whether they encode generalizable discourse abstractions. Using multilingual discourse relation classification as a testbed, we examine a comprehensive set of 23 LLMs of varying sizes and multilingual capabilities. Our results show that LLMs, especially those with multilingual training corpora, can generalize discourse information across languages and frameworks. Further layer-wise analyses reveal that language generalization at the discourse level is most salient in the intermediate layers. Lastly, our error analysis provides an account of challenging relation classes.
comment: 18 pages, 7 figures, 3 tables, code: https://github.com/mainlp/discourse_probes, camera-ready revision for ACL 2025
RULEBREAKERS: Challenging LLMs at the Crossroads between Formal Logic and Human-like Reasoning ICML 2025
Formal logic enables computers to reason in natural language by representing sentences in symbolic forms and applying rules to derive conclusions. However, in what our study characterizes as "rulebreaker" scenarios, this method can lead to conclusions that are typically not inferred or accepted by humans given their common sense and factual knowledge. Inspired by works in cognitive science, we create RULEBREAKERS, the first dataset for rigorously evaluating the ability of large language models (LLMs) to recognize and respond to rulebreakers (versus non-rulebreakers) in a human-like manner. Evaluating seven LLMs, we find that most models, including GPT-4o, achieve mediocre accuracy on RULEBREAKERS and exhibit some tendency to over-rigidly apply logical rules unlike what is expected from typical human reasoners. Further analysis suggests that this apparent failure is potentially associated with the models' poor utilization of their world knowledge and their attention distribution patterns. Whilst revealing a limitation of current LLMs, our study also provides a timely counterbalance to a growing body of recent works that propose methods relying on formal logic to improve LLMs' general reasoning capabilities, highlighting their risk of further increasing divergence between LLMs and human-like reasoning.
comment: Preprint. Accepted by ICML 2025
AlignMMBench: Evaluating Chinese Multimodal Alignment in Large Vision-Language Models
Evaluating the alignment capabilities of large Vision-Language Models (VLMs) is essential for determining their effectiveness as helpful assistants. However, existing benchmarks primarily focus on basic abilities using nonverbal methods, such as yes-no and multiple-choice questions. In this paper, we address this gap by introducing AlignMMBench, which provides more nuanced evaluations of alignment capabilities and is the first benchmark specifically designed for Chinese visual contexts. This benchmark is meticulously curated from real-world scenarios and internet sources, encompassing thirteen specific tasks across three categories, and includes both single-turn and multi-turn dialogue scenarios. Incorporating a prompt rewrite strategy, AlignMMBench encompasses 1,054 images and 4,978 question-answer pairs. To facilitate the evaluation pipeline, we develop CritiqueVLM, a rule-calibrated evaluator that exceeds GPT-4's evaluation ability. Additionally, we measure the "alignment score", a quantitative metric designed to assess the robustness and stability of models across diverse prompts. Finally, we evaluate the performance of representative VLMs on AlignMMBench, offering insights into the capabilities and limitations of different VLM architectures. The evaluation code and data are available at https://github.com/THUDM/AlignMMBench.
A Survey of Event Causality Identification: Taxonomy, Challenges, Assessment, and Prospects
Event Causality Identification (ECI) has emerged as a pivotal task in natural language processing (NLP), aimed at automatically detecting causal relationships between events in text. In this comprehensive survey, we systematically elucidate the foundational principles and technical frameworks of ECI, proposing a novel classification framework to categorize and clarify existing methods. {We discuss associated challenges, provide quantitative evaluations, and outline future directions for this dynamic and rapidly evolving field. We first delineate key definitions, problem formalization, and evaluation protocols of ECI. Our classification framework organizes ECI methods based on two primary tasks: Sentence-level Event Causality Identification (SECI) and Document-level Event Causality Identification (DECI). For SECI, we review methods including feature pattern-based matching, machine learning-based classification, deep semantic encoding, prompt-based fine-tuning, and causal knowledge pre-training, alongside common data augmentation strategies. For DECI, we focus on techniques such as deep semantic encoding, event graph reasoning, and prompt-based fine-tuning. We dedicate specific discussions to advancements in multi-lingual and cross-lingual ECI as well as zero-shot ECI leveraging Large Language Models (LLMs). Furthermore, we analyze the strengths, limitations, and unresolved challenges of each method. Extensive quantitative evaluations are conducted on four benchmark datasets to assess various ECI methods. Finally, we explore future research directions.
MMedPO: Aligning Medical Vision-Language Models with Clinical-Aware Multimodal Preference Optimization ICML 2025
The advancement of Large Vision-Language Models (LVLMs) has propelled their application in the medical field. However, Medical LVLMs (Med-LVLMs) encounter factuality challenges due to modality misalignment, where the models prioritize textual knowledge over visual input, leading to hallucinations that contradict information in medical images. Previous attempts to enhance modality alignment in Med-LVLMs through preference optimization have inadequately mitigated clinical relevance in preference data, making these samples easily distinguishable and reducing alignment effectiveness. To address this challenge, we propose MMedPO, a novel multimodal medical preference optimization approach that considers the clinical relevance of preference samples to enhance Med-LVLM alignment. MMedPO curates multimodal preference data by introducing two types of dispreference: (1) plausible hallucinations injected through target Med-LVLMs or GPT-4o to produce medically inaccurate responses, and (2) lesion region neglect achieved through local lesion-noising, disrupting visual understanding of critical areas. We then calculate clinical relevance for each sample based on scores from multiple Med-LLMs and visual tools, and integrate these scores into the preference optimization process as weights, enabling effective alignment. Our experiments demonstrate that MMedPO significantly enhances factual accuracy in Med-LVLMs, achieving substantial improvements over existing preference optimization methods by averaging 14.2% and 51.7% across the Med-VQA and report generation tasks. Our code are available in https://github.com/aiming-lab/MMedPO.
comment: ICML 2025
Full-Duplex-Bench: A Benchmark to Evaluate Full-duplex Spoken Dialogue Models on Turn-taking Capabilities
Spoken dialogue modeling poses challenges beyond text-based language modeling, requiring real-time interaction, turn-taking, and backchanneling. While most Spoken Dialogue Models (SDMs) operate in half-duplex mode-processing one turn at a time - emerging full-duplex SDMs can listen and speak simultaneously, enabling more natural conversations. However, current evaluations remain limited, focusing mainly on turn-based metrics or coarse corpus-level analyses. To address this, we introduce Full-Duplex-Bench, a benchmark that systematically evaluates key interactive behaviors: pause handling, backchanneling, turn-taking, and interruption management. Our framework uses automatic metrics for consistent, reproducible assessment and provides a fair, fast evaluation setup. By releasing our benchmark and code, we aim to advance spoken dialogue modeling and foster the development of more natural and engaging SDMs.
comment: Work in Progress
From Intention To Implementation: Automating Biomedical Research via LLMs
Conventional biomedical research is increasingly labor-intensive due to the exponential growth of scientific literature and datasets. Artificial intelligence (AI), particularly Large Language Models (LLMs), has the potential to revolutionize this process by automating various steps. Still, significant challenges remain, including the need for multidisciplinary expertise, logicality of experimental design, and performance measurements. This paper introduces BioResearcher, the first end-to-end automated system designed to streamline the entire biomedical research process involving dry lab experiments. BioResearcher employs a modular multi-agent architecture, integrating specialized agents for search, literature processing, experimental design, and programming. By decomposing complex tasks into logically related sub-tasks and utilizing a hierarchical learning approach, BioResearcher effectively addresses the challenges of multidisciplinary requirements and logical complexity. Furthermore, BioResearcher incorporates an LLM-based reviewer for in-process quality control and introduces novel evaluation metrics to assess the quality and automation of experimental protocols. BioResearcher successfully achieves an average execution success rate of 63.07% across eight previously unmet research objectives. The generated protocols averagely outperform typical agent systems by 22.0% on five quality metrics. The system demonstrates significant potential to reduce researchers' workloads and accelerate biomedical discoveries, paving the way for future innovations in automated research systems.
comment: The paper involves material for which we have not yet obtained proper copyright permissions
MCIP: Protecting MCP Safety via Model Contextual Integrity Protocol
As Model Context Protocol (MCP) introduces an easy-to-use ecosystem for users and developers, it also brings underexplored safety risks. Its decentralized architecture, which separates clients and servers, poses unique challenges for systematic safety analysis. This paper proposes a novel framework to enhance MCP safety. Guided by the MAESTRO framework, we first analyze the missing safety mechanisms in MCP, and based on this analysis, we propose the Model Contextual Integrity Protocol (MCIP), a refined version of MCP that addresses these gaps. Next, we develop a fine-grained taxonomy that captures a diverse range of unsafe behaviors observed in MCP scenarios. Building on this taxonomy, we develop benchmark and training data that support the evaluation and improvement of LLMs' capabilities in identifying safety risks within MCP interactions. Leveraging the proposed benchmark and training data, we conduct extensive experiments on state-of-the-art LLMs. The results highlight LLMs' vulnerabilities in MCP interactions and demonstrate that our approach substantially improves their safety performance.
comment: 17 pages
STEER-BENCH: A Benchmark for Evaluating the Steerability of Large Language Models
Steerability, or the ability of large language models (LLMs) to adapt outputs to align with diverse community-specific norms, perspectives, and communication styles, is critical for real-world applications but remains under-evaluated. We introduce Steer-Bench, a benchmark for assessing population-specific steering using contrasting Reddit communities. Covering 30 contrasting subreddit pairs across 19 domains, Steer-Bench includes over 10,000 instruction-response pairs and validated 5,500 multiple-choice question with corresponding silver labels to test alignment with diverse community norms. Our evaluation of 13 popular LLMs using Steer-Bench reveals that while human experts achieve an accuracy of 81% with silver labels, the best-performing models reach only around 65% accuracy depending on the domain and configuration. Some models lag behind human-level alignment by over 15 percentage points, highlighting significant gaps in community-sensitive steerability. Steer-Bench is a benchmark to systematically assess how effectively LLMs understand community-specific instructions, their resilience to adversarial steering attempts, and their ability to accurately represent diverse cultural and ideological perspectives.
Token-Driven GammaTune: Adaptive Calibration for Enhanced Speculative Decoding
Speculative decoding accelerates large language model (LLM) inference by using a smaller draft model to propose tokens, which are then verified by a larger target model. However, selecting an optimal speculation length is critical for maximizing speedup while minimizing wasted computation. We introduce \textit{GammaTune} and \textit{GammaTune+}, training-free adaptive algorithms that dynamically adjust speculation length based on token acceptance rates using a heuristic-based switching mechanism. Evaluated on SpecBench across multiple tasks and model pairs, our method outperforms other heuristic-based approaches and fixed-length speculative decoding, achieving an average speedup of 15\% ($\pm$5\%) with \textit{GammaTune} and 16\% ($\pm$3\%) with \textit{GammaTune+}, while reducing performance variance. This makes \textit{GammaTune} a robust and efficient solution for real-world deployment.
comment: 6 pages, 2 figures, 1 table
Transformers in Speech Processing: A Survey
The remarkable success of transformers in the field of natural language processing has sparked the interest of the speech-processing community, leading to an exploration of their potential for modeling long-range dependencies within speech sequences. Recently, transformers have gained prominence across various speech-related domains, including automatic speech recognition, speech synthesis, speech translation, speech para-linguistics, speech enhancement, spoken dialogue systems, and numerous multimodal applications. In this paper, we present a comprehensive survey that aims to bridge research studies from diverse subfields within speech technology. By consolidating findings from across the speech technology landscape, we provide a valuable resource for researchers interested in harnessing the power of transformers to advance the field. We identify the challenges encountered by transformers in speech processing while also offering insights into potential solutions to address these issues.
comment: Accepted in Computer Science Review 2025
Representation Surgery: Theory and Practice of Affine Steering ICML 2024
Language models often exhibit undesirable behavior, e.g., generating toxic or gender-biased text. In the case of neural language models, an encoding of the undesirable behavior is often present in the model's representations. Thus, one natural (and common) approach to prevent the model from exhibiting undesirable behavior is to steer the model's representations in a manner that reduces the probability of it generating undesirable text. This paper investigates the formal and empirical properties of steering functions, i.e., transformation of the neural language model's representations that alter its behavior. First, we derive two optimal, in the least-squares sense, affine steering functions under different constraints. Our theory provides justification for existing approaches and offers a novel, improved steering approach. Second, we offer a series of experiments that demonstrate the empirical effectiveness of the methods in mitigating bias and reducing toxic generation.
comment: Accepted in ICML 2024
Is Compression Really Linear with Code Intelligence?
Understanding the relationship between data compression and the capabilities of Large Language Models (LLMs) is crucial, especially in specialized domains like code intelligence. Prior work posited a linear relationship between compression and general intelligence. However, it overlooked the multifaceted nature of code that encompasses diverse programming languages and tasks, and struggled with fair evaluation of modern Code LLMs. We address this by evaluating a diverse array of open-source Code LLMs on comprehensive multi-language, multi-task code benchmarks. To address the challenge of efficient and fair evaluation of pre-trained LLMs' code intelligence, we introduce \textit{Format Annealing}, a lightweight, transparent training methodology designed to assess the intrinsic capabilities of these pre-trained models equitably. Compression efficacy, measured as bits-per-character (BPC), is determined using a novel, large-scale, and previously unseen code validation set derived from GitHub. Our empirical results reveal a fundamental logarithmic relationship between measured code intelligence and BPC. This finding refines prior hypotheses of linearity, which we suggest are likely observations of the logarithmic curve's tail under specific, limited conditions. Our work provides a more nuanced understanding of compression's role in developing code intelligence and contributes a robust evaluation framework in the code domain.
comment: work in progress
Human-Computer Interaction
Neural and Cognitive Impacts of AI: The Influence of Task Subjectivity on Human-LLM Collaboration
AI-based interactive assistants are advancing human-augmenting technology, yet their effects on users' mental and physiological states remain under-explored. We address this gap by analyzing how Copilot for Microsoft Word, a LLM-based assistant, impacts users. Using tasks ranging from objective (SAT reading comprehension) to subjective (personal reflection), and with measurements including fNIRS, Empatica E4, NASA-TLX, and questionnaires, we measure Copilot's effects on users. We also evaluate users' performance with and without Copilot across tasks. In objective tasks, participants reported a reduction of workload and an increase in enjoyment, which was paired with objective performance increases. Participants reported reduced workload and increased enjoyment with no change in performance in a creative poetry writing task. However, no benefits due to Copilot use were reported in a highly subjective self-reflection task. Although no physiological changes were recorded due to Copilot use, task-dependent differences in prefrontal cortex activation offer complementary insights into the cognitive processes associated with successful and unsuccessful human-AI collaboration. These findings suggest that AI assistants' effectiveness varies with task type-particularly showing decreased usefulness in tasks that engage episodic memory-and presents a brain-network based hypothesis of human-AI collaboration.
comment: 15 pages, 12 figures
Controlling Difficulty of Generated Text for AI-Assisted Language Learning EMNLP 2025
Practicing conversations with large language models (LLMs) presents a promising alternative to traditional in-person language learning. However, most LLMs generate text at a near-native level of complexity, making them ill-suited for beginner learners (CEFR: A1-A2). In this paper, we investigate whether controllable generation techniques -- specifically modular methods that do not require model fine-tuning -- can adapt LLM outputs to better support absolute beginners. We evaluate these methods through both automatic metrics and a user study with university-level learners of Japanese. Our findings show that while prompting alone fails to control output difficulty, the use of future discriminators (Yang and Klein, 2021) significantly improves output comprehensibility (from 40.4\% to 84.3\%). We further introduce a novel token-level evaluation metric, Token Miss Rate (TMR), that quantifies the proportion of incomprehensible tokens per utterance and correlates strongly with human judgments. To support future research in AI-assisted language learning, we release our code, models, annotation tools, and dataset.
comment: Submitted to EMNLP 2025
Think Like a Person Before Responding: A Multi-Faceted Evaluation of Persona-Guided LLMs for Countering Hate ACL
Automated counter-narratives (CN) offer a promising strategy for mitigating online hate speech, yet concerns about their affective tone, accessibility, and ethical risks remain. We propose a framework for evaluating Large Language Model (LLM)-generated CNs across four dimensions: persona framing, verbosity and readability, affective tone, and ethical robustness. Using GPT-4o-Mini, Cohere's CommandR-7B, and Meta's LLaMA 3.1-70B, we assess three prompting strategies on the MT-Conan and HatEval datasets. Our findings reveal that LLM-generated CNs are often verbose and adapted for people with college-level literacy, limiting their accessibility. While emotionally guided prompts yield more empathetic and readable responses, there remain concerns surrounding safety and effectiveness.
comment: Accepted at ACL WOAH 2025
Understanding Mental Models of Generative Conversational Search and The Effect of Interface Transparency
The experience and adoption of conversational search is tied to the accuracy and completeness of users' mental models -- their internal frameworks for understanding and predicting system behaviour. Thus, understanding these models can reveal areas for design interventions. Transparency is one such intervention which can improve system interpretability and enable mental model alignment. While past research has explored mental models of search engines, those of generative conversational search remain underexplored, even while the popularity of these systems soars. To address this, we conducted a study with 16 participants, who performed 4 search tasks using 4 conversational interfaces of varying transparency levels. Our analysis revealed that most user mental models were too abstract to support users in explaining individual search instances. These results suggest that 1) mental models may pose a barrier to appropriate trust in conversational search, and 2) hybrid web-conversational search is a promising novel direction for future search interface design.
comment: Work in Progress
PromptCanvas: Composable Prompting Workspaces Using Dynamic Widgets for Exploration and Iteration in Creative Writing
We introduce PromptCanvas, a concept that transforms prompting into a composable, widget-based experience on an infinite canvas. Users can generate, customize, and arrange interactive widgets representing various facets of their text, offering greater control over AI-generated content. PromptCanvas allows widget creation through system suggestions, user prompts, or manual input, providing a flexible environment tailored to individual needs. This enables deeper engagement with the creative process. In a lab study with 18 participants, PromptCanvas outperformed a traditional conversational UI on the Creativity Support Index. Participants found that it reduced cognitive load, with lower mental demand and frustration. Qualitative feedback revealed that the visual organization of thoughts and easy iteration encouraged new perspectives and ideas. A follow-up field study (N=10) confirmed these results, showcasing the potential of dynamic, customizable interfaces in improving collaborative writing with AI.
Generating Pedagogically Meaningful Visuals for Math Word Problems: A New Benchmark and Analysis of Text-to-Image Models ACL 2025
Visuals are valuable tools for teaching math word problems (MWPs), helping young learners interpret textual descriptions into mathematical expressions before solving them. However, creating such visuals is labor-intensive and there is a lack of automated methods to support this process. In this paper, we present Math2Visual, an automatic framework for generating pedagogically meaningful visuals from MWP text descriptions. Math2Visual leverages a pre-defined visual language and a design space grounded in interviews with math teachers, to illustrate the core mathematical relationships in MWPs. Using Math2Visual, we construct an annotated dataset of 1,903 visuals and evaluate Text-to-Image (TTI) models for their ability to generate visuals that align with our design. We further fine-tune several TTI models with our dataset, demonstrating improvements in educational visual generation. Our work establishes a new benchmark for automated generation of pedagogically meaningful visuals and offers insights into key challenges in producing multimodal educational content, such as the misrepresentation of mathematical relationships and the omission of essential visual elements.
comment: Findings of the Association for Computational Linguistics: ACL 2025
Enhancing Text Comprehension for Dyslexic Readers: A 3D Semantic Visualization Approach Using Transformer Mode
Dyslexic individuals often face significant challenges with traditional reading, particularly when engaging with complex texts such as mystery novels. These texts typically demand advanced narrative tracking and information integration skills, making it difficult for dyslexic readers to fully comprehend the content. However, research indicates that while dyslexic individuals may struggle with textual processing, they often possess strong spatial imagination abilities. Leveraging this strength, this study proposes an innovative approach using Transformer models to map sentences and words into three-dimensional vector representations. This process clusters semantically similar sentences and words in spatial proximity, allowing dyslexic readers to interpret the semantic structure and narrative flow of the text through spatial perception. Experimental results demonstrate that, compared to direct text reading, this three-dimensional semantic visualization method significantly enhances dyslexic readers' comprehension of complex texts. In particular, it shows marked advantages in identifying narrative relationships and character connections. This study provides a novel pathway for improving textual comprehension among dyslexic individuals
Design of a visual environment for programming by direct data manipulation
The use of applications on computers, smartphones, and tablets has been considerably simplified thanks to interactive and dynamic graphical interfaces coupled with the mouse and touch screens. It is no longer necessary to be a computer specialist to use them. Paradoxically, the development of computer programs generally requires writing lines of code in a programming language whose syntax is particularly strict. This process poses many difficulties for programmers. We propose an original tool in which arbitrary programs (Turing-complete) can be developed in a completely visual manner by direct manipulation of the data, without writing a line of code. The user can thus develop an algorithm by directly visualizing the result of actions taken on the data. A method for constructing iterations is associated with the tool. It proposes to create each part, including the loop body, in a non-linear manner under visual control of the state of the data. In addition, the tool supports the production of lines of code in several languages including Python, C, Java, that correspond to the actions performed. In this article, we present the tool, the design choices, the problems to be solved, and the limits and the contributions of the direct-data-manipulation approach.
comment: in French language
Understanding Visually Impaired Tramway Passengers Interaction with Public Transport Systems
Designing inclusive public transport services is crucial to developing modern, barrier-free smart city infrastructure. This research contributes to the design of inclusive public transport by considering accessibility challenges emerging from socio-technical systems, thus demanding the integration of technological and social solutions. Using Actor-Network Theory (ANT) as a theoretical framework and a mixed-method approach, including shadowing and a focus group, this study examines the socio-technical networks that shape accessibility experiences for visually impaired passengers utilizing the tram in Linz, Austria. Key dimensions that influence public transport accessibility are identified: network configuration, mobility patterns, technology integration, and warning systems. The results show that accessibility emerges from complex interactions between human actors (passengers, staff) and non-human actors (assistive devices, infrastructure) rather than being an inherent property of transport systems. Digital technologies serve multiple functions, from navigational assistance to broader social inclusion, although users comfort with technology varies. Participants emphasized the importance of the two-sense principle for warning signals, with directional audio and tactile feedback particularly valuable.
comment: 16th International Conference on Applied Human Factors and Ergonomics (AHFE 2025) and the Affiliated Conferences
Intersectional Bias in Pre-Trained Image Recognition Models
Deep Learning models have achieved remarkable success. Training them is often accelerated by building on top of pre-trained models which poses the risk of perpetuating encoded biases. Here, we investigate biases in the representations of commonly used ImageNet classifiers for facial images while considering intersections of sensitive variables age, race and gender. To assess the biases, we use linear classifier probes and visualize activations as topographic maps. We find that representations in ImageNet classifiers particularly allow differentiation between ages. Less strongly pronounced, the models appear to associate certain ethnicities and distinguish genders in middle-aged groups.
comment: Summary paper accepted at the 3rd TRR 318 Conference: Contextualizing Explanations 2025
VChatter: Exploring Generative Conversational Agents for Simulating Exposure Therapy to Reduce Social Anxiety
Many people struggle with social anxiety, feeling fear, or even physically uncomfortable in social situations like talking to strangers. Exposure therapy, a clinical method that gradually and repeatedly exposes individuals to the source of their fear and helps them build coping mechanisms, can reduce social anxiety but traditionally requires human therapists' guidance and constructions of situations. In this paper, we developed a multi-agent system VChatter to explore large language models(LLMs)-based conversational agents for simulating exposure therapy with users. Based on a survey study (N=36) and an expert interview, VChatter includes an Agent-P, which acts as a psychotherapist to design the exposure therapy plans for users, and two Agent-Hs, which can take on different interactive roles in low, medium, and high exposure scenarios. A six-day qualitative study (N=10) showcases VChatter's usefulness in reducing users' social anxiety, feelings of isolation, and avoidance of social interactions. We demonstrated the feasibility of using LLMs-based conversational agents to simulate exposure therapy for addressing social anxiety and discussed future concerns for designing agents tailored to social anxiety.
Photoreal Scene Reconstruction from an Egocentric Device SIGGRAPH
In this paper, we investigate the challenges associated with using egocentric devices to photorealistic reconstruct the scene in high dynamic range. Existing methodologies typically assume using frame-rate 6DoF pose estimated from the device's visual-inertial odometry system, which may neglect crucial details necessary for pixel-accurate reconstruction. This study presents two significant findings. Firstly, in contrast to mainstream work treating RGB camera as global shutter frame-rate camera, we emphasize the importance of employing visual-inertial bundle adjustment (VIBA) to calibrate the precise timestamps and movement of the rolling shutter RGB sensing camera in a high frequency trajectory format, which ensures an accurate calibration of the physical properties of the rolling-shutter camera. Secondly, we incorporate a physical image formation model based into Gaussian Splatting, which effectively addresses the sensor characteristics, including the rolling-shutter effect of RGB cameras and the dynamic ranges measured by sensors. Our proposed formulation is applicable to the widely-used variants of Gaussian Splats representation. We conduct a comprehensive evaluation of our pipeline using the open-source Project Aria device under diverse indoor and outdoor lighting conditions, and further validate it on a Meta Quest3 device. Across all experiments, we observe a consistent visual enhancement of +1 dB in PSNR by incorporating VIBA, with an additional +1 dB achieved through our proposed image formation model. Our complete implementation, evaluation datasets, and recording profile are available at http://www.projectaria.com/photoreal-reconstruction/
comment: Paper accepted to SIGGRAPH Conference Paper 2025
Reviewriter: AI-Generated Instructions For Peer Review Writing
Large Language Models (LLMs) offer novel opportunities for educational applications that have the potential to transform traditional learning for students. Despite AI-enhanced applications having the potential to provide personalized learning experiences, more studies are needed on the design of generative AI systems and evidence for using them in real educational settings. In this paper, we design, implement and evaluate \texttt{Reviewriter}, a novel tool to provide students with AI-generated instructions for writing peer reviews in German. Our study identifies three key aspects: a) we provide insights into student needs when writing peer reviews with generative models which we then use to develop a novel system to provide adaptive instructions b) we fine-tune three German language models on a selected corpus of 11,925 student-written peer review texts in German and choose German-GPT2 based on quantitative measures and human evaluation, and c) we evaluate our tool with fourteen students, revealing positive technology acceptance based on quantitative measures. Additionally, the qualitative feedback presents the benefits and limitations of generative AI in peer review writing.
Crowd-SFT: Crowdsourcing for LLM Alignment
Large Language Models (LLMs) increasingly rely on Supervised Fine-Tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF) to align model responses with human preferences. While RLHF employs a reinforcement learning approach with a separate reward model, SFT uses human-curated datasets for supervised learning. Both approaches traditionally depend on small, vetted groups of annotators, making them costly, prone to bias, and limited in scalability. We propose an open, crowd-sourced fine-tuning framework that addresses these limitations by enabling broader feedback collection for SFT without extensive annotator training. Our framework promotes incentive fairness via a point-based reward system correlated with Shapley values and guides model convergence through iterative model updates. Our multi-model selection framework demonstrates up to a 55% reduction in target distance over single-model selection, enabling subsequent experiments that validate our point-based reward mechanism's close alignment with Shapley values (a well-established method for attributing individual contributions) thereby supporting fair and scalable participation.
CPS-Guard: Framework for Dependability Assurance of AI- and LLM-Based Cyber-Physical Systems
Cyber-Physical Systems (CPS) increasingly depend on advanced AI techniques to operate in critical applications. However, traditional verification and validation methods often struggle to handle the unpredictable and dynamic nature of AI components. In this paper, we introduce CPS-Guard, a novel framework that employs multi-role orchestration to automate the iterative assurance process for AI-powered CPS. By assigning specialized roles (e.g., safety monitoring, security assessment, fault injection, and recovery planning) to dedicated agents within a simulated environment, CPS-Guard continuously evaluates and refines AI behavior against a range of dependability requirements. We demonstrate the framework through a case study involving an autonomous vehicle navigating an intersection with an AI-based planner. Our results show that CPS-Guard effectively detects vulnerabilities, manages performance impacts, and supports adaptive recovery strategies, thereby offering a structured and extensible solution for rigorous V&V in safety- and security-critical systems.
MAC-Gaze: Motion-Aware Continual Calibration for Mobile Gaze Tracking
Mobile gaze tracking faces a fundamental challenge: maintaining accuracy as users naturally change their postures and device orientations. Traditional calibration approaches, like one-off, fail to adapt to these dynamic conditions, leading to degraded performance over time. We present MAC-Gaze, a Motion-Aware continual Calibration approach that leverages smartphone Inertial measurement unit (IMU) sensors and continual learning techniques to automatically detect changes in user motion states and update the gaze tracking model accordingly. Our system integrates a pre-trained visual gaze estimator and an IMU-based activity recognition model with a clustering-based hybrid decision-making mechanism that triggers recalibration when motion patterns deviate significantly from previously encountered states. To enable accumulative learning of new motion conditions while mitigating catastrophic forgetting, we employ replay-based continual learning, allowing the model to maintain performance across previously encountered motion conditions. We evaluate our system through extensive experiments on the publicly available RGBDGaze dataset and our own 10-hour multimodal MotionGaze dataset (481K+ images, 800K+ IMU readings), encompassing a wide range of postures under various motion conditions including sitting, standing, lying, and walking. Results demonstrate that our method reduces gaze estimation error by 19.9% on RGBDGaze (from 1.73 cm to 1.41 cm) and by 31.7% on MotionGaze (from 2.81 cm to 1.92 cm) compared to traditional calibration approaches. Our framework provides a robust solution for maintaining gaze estimation accuracy in mobile scenarios.
comment: 24 pages, 7 figures
A Survey on (M)LLM-Based GUI Agents
Graphical User Interface (GUI) Agents have emerged as a transformative paradigm in human-computer interaction, evolving from rule-based automation scripts to sophisticated AI-driven systems capable of understanding and executing complex interface operations. This survey provides a comprehensive examination of the rapidly advancing field of LLM-based GUI Agents, systematically analyzing their architectural foundations, technical components, and evaluation methodologies. We identify and analyze four fundamental components that constitute modern GUI Agents: (1) perception systems that integrate text-based parsing with multimodal understanding for comprehensive interface comprehension; (2) exploration mechanisms that construct and maintain knowledge bases through internal modeling, historical experience, and external information retrieval; (3) planning frameworks that leverage advanced reasoning methodologies for task decomposition and execution; and (4) interaction systems that manage action generation with robust safety controls. Through rigorous analysis of these components, we reveal how recent advances in large language models and multimodal learning have revolutionized GUI automation across desktop, mobile, and web platforms. We critically examine current evaluation frameworks, highlighting methodological limitations in existing benchmarks while proposing directions for standardization. This survey also identifies key technical challenges, including accurate element localization, effective knowledge retrieval, long-horizon planning, and safety-aware execution control, while outlining promising research directions for enhancing GUI Agents' capabilities. Our systematic review provides researchers and practitioners with a thorough understanding of the field's current state and offers insights into future developments in intelligent interface automation.
Biased by Design: Leveraging AI Inherent Biases to Enhance Critical Thinking of News Readers
This paper explores the design of a propaganda detection tool using Large Language Models (LLMs). Acknowledging the inherent biases in AI models, especially in political contexts, we investigate how these biases might be leveraged to enhance critical thinking in news consumption. Countering the typical view of AI biases as detrimental, our research proposes strategies of user choice and personalization in response to a user's political stance, applying psychological concepts of confirmation bias and cognitive dissonance. We present findings from a qualitative user study, offering insights and design recommendations (bias awareness, personalization and choice, and gradual introduction of diverse perspectives) for AI tools in propaganda detection.
comment: European Conference on Information Systems (ECIS)
A Comprehensive Survey of Agents for Computer Use: Foundations, Challenges, and Future Directions
Agents for computer use (ACUs) are an emerging class of systems capable of executing complex tasks on digital devices - such as desktops, mobile phones, and web platforms - given instructions in natural language. These agents can automate tasks by controlling software via low-level actions like mouse clicks and touchscreen gestures. However, despite rapid progress, ACUs are not yet mature for everyday use. In this survey, we investigate the state-of-the-art, trends, and research gaps in the development of practical ACUs. We provide a comprehensive review of the ACU landscape, introducing a unifying taxonomy spanning three dimensions: (I) the domain perspective, characterizing agent operating contexts; (II) the interaction perspective, describing observation modalities (e.g., screenshots, HTML) and action modalities (e.g., mouse, keyboard, code execution); and (III) the agent perspective, detailing how agents perceive, reason, and learn. We review 87 ACUs and 33 datasets across foundation model-based and classical approaches through this taxonomy. Our analysis identifies six major research gaps: insufficient generalization, inefficient learning, limited planning, low task complexity in benchmarks, non-standardized evaluation, and a disconnect between research and practical conditions. To address these gaps, we advocate for: (a) vision-based observations and low-level control to enhance generalization; (b) adaptive learning beyond static prompting; (c) effective planning and reasoning methods and models; (d) benchmarks that reflect real-world task complexity; (e) standardized evaluation based on task success; (f) aligning agent design with real-world deployment constraints. Together, our taxonomy and analysis establish a foundation for advancing ACU research toward general-purpose agents for robust and scalable computer use.
Towards Sustainable Creativity Support: An Exploratory Study on Prompt Based Image Generation
Creativity is a valuable human skill that has long been augmented through both analog and digital tools. Recent progress in generative AI, such as image generation, provides a disruptive technological solution to supporting human creativity further and helping humans generate solutions faster. While AI image generators can help to rapidly visualize ideas based on user prompts, the use of such AI systems has also been critiqued due to their considerable energy usage. In this paper, we report on a user study (N = 24) to understand whether energy consumption can be reduced without impeding on the tool's perceived creativity support. Our results highlight that, for example, a main effect of (image generation) condition on energy consumption, and index of creativity support per prompt but not per task, which seem mainly attributed to image quantity per prompt. We provide details of our analysis on the relation between energy usage, creativity support, and prompting behavior, including attitudes towards designing with AI and its environmental impact.
comment: 20 pages, 8 figures
Understanding Impact of Human Feedback via Influence Functions ACL 2025
In Reinforcement Learning from Human Feedback (RLHF), it is crucial to learn suitable reward models from human feedback to align large language models (LLMs) with human intentions. However, human feedback can often be noisy, inconsistent, or biased, especially when evaluating complex responses. Such feedback can lead to misaligned reward signals, potentially causing unintended side effects during the RLHF process. To address these challenges, we explore the use of influence functions to measure the impact of human feedback on the performance of reward models. We propose a compute-efficient approximation method that enables the application of influence functions to LLM-based reward models and large-scale preference datasets. In our experiments, we demonstrate two key applications of influence functions: (1) detecting common forms of labeler bias in human feedback datasets and (2) guiding labelers to refine their strategies to align more closely with expert feedback. By quantifying the impact of human feedback on reward models, we believe that influence functions can enhance feedback interpretability and contribute to scalable oversight in RLHF, helping labelers provide more accurate and consistent feedback. Source code is available at https://github.com/mintaywon/IF_RLHF
comment: Accepted at ACL 2025, Source code: https://github.com/mintaywon/IF_RLHF
InSerter: Speech Instruction Following with Unsupervised Interleaved Pre-training ACL 2025
Recent advancements in speech large language models (SpeechLLMs) have attracted considerable attention. Nonetheless, current methods exhibit suboptimal performance in adhering to speech instructions. Notably, the intelligence of models significantly diminishes when processing speech-form input as compared to direct text-form input. Prior work has attempted to mitigate this semantic inconsistency between speech and text representations through techniques such as representation and behavior alignment, which involve the meticulous design of data pairs during the post-training phase. In this paper, we introduce a simple and scalable training method called InSerter, which stands for Interleaved Speech-Text Representation Pre-training. InSerter is designed to pre-train large-scale unsupervised speech-text sequences, where the speech is synthesized from randomly selected segments of an extensive text corpus using text-to-speech conversion. Consequently, the model acquires the ability to generate textual continuations corresponding to the provided speech segments, obviating the need for intensive data design endeavors. To systematically evaluate speech instruction-following capabilities, we introduce SpeechInstructBench, the first comprehensive benchmark specifically designed for speech-oriented instruction-following tasks. Our proposed InSerter achieves SOTA performance in SpeechInstructBench and demonstrates superior or competitive results across diverse speech processing tasks.
comment: Accepted to ACL 2025; Data is available at: https://huggingface.co/datasets/ddwang2000/SpeechInstructBench
Music Interpretation and Emotion Perception: A Computational and Neurophysiological Investigation
This study investigates emotional expression and perception in music performance using computational and neurophysiological methods. The influence of different performance settings, such as repertoire, diatonic modal etudes, and improvisation, as well as levels of expressiveness, on performers' emotional communication and listeners' reactions is explored. Professional musicians performed various tasks, and emotional annotations were provided by both performers and the audience. Audio analysis revealed that expressive and improvisational performances exhibited unique acoustic features, while emotion analysis showed stronger emotional responses. Neurophysiological measurements indicated greater relaxation in improvisational performances. This multimodal study highlights the significance of expressivity in enhancing emotional communication and audience engagement.
comment: Accepted at SMC 2025
Missing Pieces: How Do Designs that Expose Uncertainty Longitudinally Impact Trust in AI Decision Aids? An In Situ Study of Gig Drivers
Decision aids based on artificial intelligence (AI) induce a wide range of outcomes when they are deployed in uncertain environments. In this paper, we investigate how users' trust in recommendations from an AI decision aid is impacted over time by designs that expose uncertainty in predicted outcomes. Unlike previous work, we focus on gig driving - a real-world, repeated decision-making context. We report on a longitudinal mixed-methods study ($n=51$) where we measured gig drivers' trust as they interacted with an AI-based schedule recommendation tool. Our results show that participants' trust in the tool was shaped by both their first impressions of its accuracy and their longitudinal interactions with it; and that task-aligned framings of uncertainty improved trust by allowing participants to incorporate uncertainty into their decision-making processes. Additionally, we observed that trust depended on their characteristics as drivers, underscoring the need for more in situ studies of AI decision aids.
comment: 27 pages; 3 tables; 13 figures; accepted version, published at the 2025 ACM Conference on Fairness, Accountability, and Transparency (FAccT '25)
ExeChecker: Where Did I Go Wrong?
In this paper, we present a contrastive learning based framework, ExeChecker, for the interpretation of rehabilitation exercises. Our work builds upon state-of-the-art advances in the area of human pose estimation, graph-attention neural networks, and transformer interpretablity. The downstream task is to assist rehabilitation by providing informative feedback to users while they are performing prescribed exercises. We utilize a contrastive learning strategy during training. Given a tuple of correctly and incorrectly executed exercises, our model is able to identify and highlight those joints that are involved in an incorrect movement and thus require the user's attention. We collected an in-house dataset, ExeCheck, with paired recordings of both correct and incorrect execution of exercises. In our experiments, we tested our method on this dataset as well as the UI-PRMD dataset and found ExeCheck outperformed the baseline method using pairwise sequence alignment in identifying joints of physical relevance in rehabilitation exercises.
Bias Assessment and Data Drift Detection in Medical Image Analysis: A Survey
Machine Learning (ML) models have gained popularity in medical imaging analysis given their expert level performance in many medical domains. To enhance the trustworthiness, acceptance, and regulatory compliance of medical imaging models and to facilitate their integration into clinical settings, we review and categorise methods for ensuring ML reliability, both during development and throughout the model's lifespan. Specifically, we provide an overview of methods assessing models' inner-workings regarding bias encoding and detection of data drift for disease classification models. Additionally, to evaluate the severity in case of a significant drift, we provide an overview of the methods developed for classifier accuracy estimation in case of no access to ground truth labels. This should enable practitioners to implement methods ensuring reliable ML deployment and consistent prediction performance over time.
WikiGap: Promoting Epistemic Equity by Surfacing Knowledge Gaps Between English Wikipedia and other Language Editions
With more than 11 times as many pageviews as the next, English Wikipedia dominates global knowledge access relative to other language editions. Readers are prone to assuming English Wikipedia as a superset of all language editions, leading many to prefer it even when their primary language is not English. Other language editions, however, comprise complementary facts rooted in their respective cultures and media environments, which are marginalized in English Wikipedia. While Wikipedia's user interface enables switching between language editions through its Interlanguage Link (ILL) system, it does not reveal to readers that other language editions contain valuable, complementary information. We present WikiGap, a system that surfaces complementary facts sourced from other Wikipedias within the English Wikipedia interface. Specifically, by combining a recent multilingual information-gap discovery method with a user-centered design, WikiGap enables access to complementary information from French, Russian, and Chinese Wikipedia. In a mixed-methods study (n=21), WikiGap significantly improved fact-finding accuracy, reduced task time, and received a 32-point higher usability score relative to Wikipedia's current ILL-based navigation system. Participants reported increased awareness of the availability of complementary information in non-English editions and reconsidered the completeness of English Wikipedia. WikiGap thus paves the way for improved epistemic equity across language editions.
Uncertainty Quantification in Machine Learning for Biosignal Applications -- A Review
Uncertainty Quantification (UQ) has gained traction in an attempt to improve the interpretability and robustness of machine learning predictions. Specifically (medical) biosignals such as electroencephalography (EEG), electrocardiography (ECG), electrooculography (EOG), and electromyography (EMG) could benefit from good UQ, since these suffer from a poor signal-to-noise ratio, and good human interpretability is pivotal for medical applications. In this paper, we review the state of the art of applying Uncertainty Quantification to Machine Learning tasks in the biosignal domain. We present various methods, shortcomings, uncertainty measures and theoretical frameworks that currently exist in this application domain. We address misconceptions in the field, provide recommendations for future work, and discuss gaps in the literature in relation to diagnostic implementations as well as control for prostheses or brain-computer interfaces. Overall it can be concluded that promising UQ methods are available, but that research is needed on how people and systems may interact with an uncertainty-model in a (clinical) environment
comment: 30 pages, 24 figures, 3 tables
It's only fair when I think it's fair: How Gender Bias Alignment Undermines Distributive Fairness in Human-AI Collaboration
Human-AI collaboration is increasingly relevant in consequential areas where AI recommendations support human discretion. However, human-AI teams' effectiveness, capability, and fairness highly depend on human perceptions of AI. Positive fairness perceptions have been shown to foster trust and acceptance of AI recommendations. Yet, work on confirmation bias highlights that humans selectively adhere to AI recommendations that align with their expectations and beliefs -- despite not being necessarily correct or fair. This raises the question whether confirmation bias also transfers to the alignment of gender bias between human and AI decisions. In our study, we examine how gender bias alignment influences fairness perceptions and reliance. The results of a 2x2 between-subject study highlight the connection between gender bias alignment, fairness perceptions, and reliance, demonstrating that merely constructing a ``formally fair'' AI system is insufficient for optimal human-AI collaboration; ultimately, AI recommendations will likely be overridden if biases do not align.
Computer Vision and Pattern Recognition
IllumiCraft: Unified Geometry and Illumination Diffusion for Controllable Video Generation
Although diffusion-based models can generate high-quality and high-resolution video sequences from textual or image inputs, they lack explicit integration of geometric cues when controlling scene lighting and visual appearance across frames. To address this limitation, we propose IllumiCraft, an end-to-end diffusion framework accepting three complementary inputs: (1) high-dynamic-range (HDR) video maps for detailed lighting control; (2) synthetically relit frames with randomized illumination changes (optionally paired with a static background reference image) to provide appearance cues; and (3) 3D point tracks that capture precise 3D geometry information. By integrating the lighting, appearance, and geometry cues within a unified diffusion architecture, IllumiCraft generates temporally coherent videos aligned with user-defined prompts. It supports background-conditioned and text-conditioned video relighting and provides better fidelity than existing controllable video generation methods. Project Page: https://yuanze-lin.me/IllumiCraft_page
comment: Tech Report
Self-Supervised Spatial Correspondence Across Modalities CVPR 2025
We present a method for finding cross-modal space-time correspondences. Given two images from different visual modalities, such as an RGB image and a depth map, our model identifies which pairs of pixels correspond to the same physical points in the scene. To solve this problem, we extend the contrastive random walk framework to simultaneously learn cycle-consistent feature representations for both cross-modal and intra-modal matching. The resulting model is simple and has no explicit photo-consistency assumptions. It can be trained entirely using unlabeled data, without the need for any spatially aligned multimodal image pairs. We evaluate our method on both geometric and semantic correspondence tasks. For geometric matching, we consider challenging tasks such as RGB-to-depth and RGB-to-thermal matching (and vice versa); for semantic matching, we evaluate on photo-sketch and cross-style image alignment. Our method achieves strong performance across all benchmarks.
comment: CVPR 2025. Project link: https://www.ayshrv.com/cmrw . Code: https://github.com/ayshrv/cmrw
UniWorld: High-Resolution Semantic Encoders for Unified Visual Understanding and Generation
Although existing unified models deliver strong performance on vision-language understanding and text-to-image generation, their models are limited in exploring image perception and manipulation tasks, which are urgently desired by users for wide applications. Recently, OpenAI released their powerful GPT-4o-Image model for comprehensive image perception and manipulation, achieving expressive capability and attracting community interests. By observing the performance of GPT-4o-Image in our carefully constructed experiments, we infer that GPT-4o-Image leverages features extracted by semantic encoders instead of VAE, while VAEs are considered essential components in many image manipulation models. Motivated by such inspiring observations, we present a unified generative framework named UniWorld based on semantic features provided by powerful visual-language models and contrastive semantic encoders. As a result, we build a strong unified model using only 1% amount of BAGEL's data, which consistently outperforms BAGEL on image editing benchmarks. UniWorld also maintains competitive image understanding and generation capabilities, achieving strong performance across multiple image perception tasks. We fully open-source our models, including model weights, training and evaluation scripts, and datasets.
MERIT: Multilingual Semantic Retrieval with Interleaved Multi-Condition Query
Semantic retrieval is crucial for modern applications yet remains underexplored in current research. Existing datasets are limited to single languages, single images, or singular retrieval conditions, often failing to fully exploit the expressive capacity of visual information as evidenced by maintained performance when images are replaced with captions. However, practical retrieval scenarios frequently involve interleaved multi-condition queries with multiple images. Hence, this paper introduces MERIT, the first multilingual dataset for interleaved multi-condition semantic retrieval, comprising 320,000 queries with 135,000 products in 5 languages, covering 7 distinct product categories. Extensive experiments on MERIT identify existing models's limitation: focusing solely on global semantic information while neglecting specific conditional elements in queries. Consequently, we propose Coral, a novel fine-tuning framework that adapts pre-trained MLLMs by integrating embedding reconstruction to preserve fine-grained conditional elements and contrastive learning to extract comprehensive global semantics. Experiments demonstrate that Coral achieves a 45.9% performance improvement over conventional approaches on MERIT, with strong generalization capabilities validated across 8 established retrieval benchmarks. Collectively, our contributions - a novel dataset, identification of critical limitations in existing approaches, and an innovative fine-tuning framework - establish a foundation for future research in interleaved multi-condition semantic retrieval.
comment: Preprint; Project Page, Code, and Dataset at: https://merit-2025.github.io/
GUI-Actor: Coordinate-Free Visual Grounding for GUI Agents
One of the principal challenges in building VLM-powered GUI agents is visual grounding, i.e., localizing the appropriate screen region for action execution based on both the visual content and the textual plans. Most existing work formulates this as a text-based coordinate generation task. However, these approaches suffer from several limitations: weak spatial-semantic alignment, inability to handle ambiguous supervision targets, and a mismatch between the dense nature of screen coordinates and the coarse, patch-level granularity of visual features extracted by models like Vision Transformers. In this paper, we propose GUI-Actor, a VLM-based method for coordinate-free GUI grounding. At its core, GUI-Actor introduces an attention-based action head that learns to align a dedicated token with all relevant visual patch tokens, enabling the model to propose one or more action regions in a single forward pass. In line with this, we further design a grounding verifier to evaluate and select the most plausible action region from the candidates proposed for action execution. Extensive experiments show that GUI-Actor outperforms prior state-of-the-art methods on multiple GUI action grounding benchmarks, with improved generalization to unseen screen resolutions and layouts. Notably, GUI-Actor-7B even surpasses UI-TARS-72B (38.1) on ScreenSpot-Pro, achieving scores of 40.7 with Qwen2-VL and 44.6 with Qwen2.5-VL as backbones. Furthermore, by incorporating the verifier, we find that fine-tuning only the newly introduced action head (~100M parameters for 7B model) while keeping the VLM backbone frozen is sufficient to achieve performance comparable to previous state-of-the-art models, highlighting that GUI-Actor can endow the underlying VLM with effective grounding capabilities without compromising its general-purpose strengths.
Context as Memory: Scene-Consistent Interactive Long Video Generation with Memory Retrieval
Recent advances in interactive video generation have shown promising results, yet existing approaches struggle with scene-consistent memory capabilities in long video generation due to limited use of historical context. In this work, we propose Context-as-Memory, which utilizes historical context as memory for video generation. It includes two simple yet effective designs: (1) storing context in frame format without additional post-processing; (2) conditioning by concatenating context and frames to be predicted along the frame dimension at the input, requiring no external control modules. Furthermore, considering the enormous computational overhead of incorporating all historical context, we propose the Memory Retrieval module to select truly relevant context frames by determining FOV (Field of View) overlap between camera poses, which significantly reduces the number of candidate frames without substantial information loss. Experiments demonstrate that Context-as-Memory achieves superior memory capabilities in interactive long video generation compared to SOTAs, even generalizing effectively to open-domain scenarios not seen during training. The link of our project page is https://context-as-memory.github.io/.
CamCloneMaster: Enabling Reference-based Camera Control for Video Generation
Camera control is crucial for generating expressive and cinematic videos. Existing methods rely on explicit sequences of camera parameters as control conditions, which can be cumbersome for users to construct, particularly for intricate camera movements. To provide a more intuitive camera control method, we propose CamCloneMaster, a framework that enables users to replicate camera movements from reference videos without requiring camera parameters or test-time fine-tuning. CamCloneMaster seamlessly supports reference-based camera control for both Image-to-Video and Video-to-Video tasks within a unified framework. Furthermore, we present the Camera Clone Dataset, a large-scale synthetic dataset designed for camera clone learning, encompassing diverse scenes, subjects, and camera movements. Extensive experiments and user studies demonstrate that CamCloneMaster outperforms existing methods in terms of both camera controllability and visual quality.
comment: Project Page: https://camclonemaster.github.io/
SVGenius: Benchmarking LLMs in SVG Understanding, Editing and Generation
Large Language Models (LLMs) and Multimodal LLMs have shown promising capabilities for SVG processing, yet existing benchmarks suffer from limited real-world coverage, lack of complexity stratification, and fragmented evaluation paradigms. We introduce SVGenius, a comprehensive benchmark comprising 2,377 queries across three progressive dimensions: understanding, editing, and generation. Built on real-world data from 24 application domains with systematic complexity stratification, SVGenius evaluates models through 8 task categories and 18 metrics. We assess 22 mainstream models spanning different scales, architectures, training paradigms, and accessibility levels. Our analysis reveals that while proprietary models significantly outperform open-source counterparts, all models exhibit systematic performance degradation with increasing complexity, indicating fundamental limitations in current approaches; however, reasoning-enhanced training proves more effective than pure scaling for overcoming these limitations, though style transfer remains the most challenging capability across all model types. SVGenius establishes the first systematic evaluation framework for SVG processing, providing crucial insights for developing more capable vector graphics models and advancing automated graphic design applications. Appendix and supplementary materials (including all data and code) are available at https://zju-real.github.io/SVGenius.
comment: 19 pages,4 figures, Project page: https://zju-real.github.io/SVGenius, Code: https://github.com/ZJU-REAL/SVGenius-Bench
OmniSpatial: Towards Comprehensive Spatial Reasoning Benchmark for Vision Language Models
Spatial reasoning is a key aspect of cognitive psychology and remains a major bottleneck for current vision-language models (VLMs). While extensive research has aimed to evaluate or improve VLMs' understanding of basic spatial relations, such as distinguishing left from right, near from far, and object counting, these tasks represent only the most fundamental level of spatial reasoning. In this work, we introduce OmniSpatial, a comprehensive and challenging benchmark for spatial reasoning, grounded in cognitive psychology. OmniSpatial covers four major categories: dynamic reasoning, complex spatial logic, spatial interaction, and perspective-taking, with 50 fine-grained subcategories. Through Internet data crawling and careful manual annotation, we construct over 1.5K question-answer pairs. Extensive experiments show that both open- and closed-source VLMs, as well as existing reasoning and spatial understanding models, exhibit significant limitations in comprehensive spatial understanding. We further analyze failure cases and propose potential directions for future research.
comment: Project Page: https://qizekun.github.io/omnispatial/
Simulate Any Radar: Attribute-Controllable Radar Simulation via Waveform Parameter Embedding
We present SA-Radar (Simulate Any Radar), a radar simulation approach that enables controllable and efficient generation of radar cubes conditioned on customizable radar attributes. Unlike prior generative or physics-based simulators, SA-Radar integrates both paradigms through a waveform-parameterized attribute embedding. We design ICFAR-Net, a 3D U-Net conditioned on radar attributes encoded via waveform parameters, which captures signal variations induced by different radar configurations. This formulation bypasses the need for detailed radar hardware specifications and allows efficient simulation of range-azimuth-Doppler (RAD) tensors across diverse sensor settings. We further construct a mixed real-simulated dataset with attribute annotations to robustly train the network. Extensive evaluations on multiple downstream tasks-including 2D/3D object detection and radar semantic segmentation-demonstrate that SA-Radar's simulated data is both realistic and effective, consistently improving model performance when used standalone or in combination with real data. Our framework also supports simulation in novel sensor viewpoints and edited scenes, showcasing its potential as a general-purpose radar data engine for autonomous driving applications. Code and additional materials are available at https://zhuxing0.github.io/projects/SA-Radar.
comment: Code: https://github.com/zhuxing0/SA-Radar Project page: https://zhuxing0.github.io/projects/SA-Radar
Native-Resolution Image Synthesis
We introduce native-resolution image synthesis, a novel generative modeling paradigm that enables the synthesis of images at arbitrary resolutions and aspect ratios. This approach overcomes the limitations of conventional fixed-resolution, square-image methods by natively handling variable-length visual tokens, a core challenge for traditional techniques. To this end, we introduce the Native-resolution diffusion Transformer (NiT), an architecture designed to explicitly model varying resolutions and aspect ratios within its denoising process. Free from the constraints of fixed formats, NiT learns intrinsic visual distributions from images spanning a broad range of resolutions and aspect ratios. Notably, a single NiT model simultaneously achieves the state-of-the-art performance on both ImageNet-256x256 and 512x512 benchmarks. Surprisingly, akin to the robust zero-shot capabilities seen in advanced large language models, NiT, trained solely on ImageNet, demonstrates excellent zero-shot generalization performance. It successfully generates high-fidelity images at previously unseen high resolutions (e.g., 1536 x 1536) and diverse aspect ratios (e.g., 16:9, 3:1, 4:3), as shown in Figure 1. These findings indicate the significant potential of native-resolution modeling as a bridge between visual generative modeling and advanced LLM methodologies.
comment: Project Page: https://wzdthu.github.io/NiT/
AnimeShooter: A Multi-Shot Animation Dataset for Reference-Guided Video Generation
Recent advances in AI-generated content (AIGC) have significantly accelerated animation production. To produce engaging animations, it is essential to generate coherent multi-shot video clips with narrative scripts and character references. However, existing public datasets primarily focus on real-world scenarios with global descriptions, and lack reference images for consistent character guidance. To bridge this gap, we present AnimeShooter, a reference-guided multi-shot animation dataset. AnimeShooter features comprehensive hierarchical annotations and strong visual consistency across shots through an automated pipeline. Story-level annotations provide an overview of the narrative, including the storyline, key scenes, and main character profiles with reference images, while shot-level annotations decompose the story into consecutive shots, each annotated with scene, characters, and both narrative and descriptive visual captions. Additionally, a dedicated subset, AnimeShooter-audio, offers synchronized audio tracks for each shot, along with audio descriptions and sound sources. To demonstrate the effectiveness of AnimeShooter and establish a baseline for the reference-guided multi-shot video generation task, we introduce AnimeShooterGen, which leverages Multimodal Large Language Models (MLLMs) and video diffusion models. The reference image and previously generated shots are first processed by MLLM to produce representations aware of both reference and context, which are then used as the condition for the diffusion model to decode the subsequent shot. Experimental results show that the model trained on AnimeShooter achieves superior cross-shot visual consistency and adherence to reference visual guidance, which highlight the value of our dataset for coherent animated video generation.
comment: Project released at: https://qiulu66.github.io/animeshooter/
DCM: Dual-Expert Consistency Model for Efficient and High-Quality Video Generation
Diffusion Models have achieved remarkable results in video synthesis but require iterative denoising steps, leading to substantial computational overhead. Consistency Models have made significant progress in accelerating diffusion models. However, directly applying them to video diffusion models often results in severe degradation of temporal consistency and appearance details. In this paper, by analyzing the training dynamics of Consistency Models, we identify a key conflicting learning dynamics during the distillation process: there is a significant discrepancy in the optimization gradients and loss contributions across different timesteps. This discrepancy prevents the distilled student model from achieving an optimal state, leading to compromised temporal consistency and degraded appearance details. To address this issue, we propose a parameter-efficient \textbf{Dual-Expert Consistency Model~(DCM)}, where a semantic expert focuses on learning semantic layout and motion, while a detail expert specializes in fine detail refinement. Furthermore, we introduce Temporal Coherence Loss to improve motion consistency for the semantic expert and apply GAN and Feature Matching Loss to enhance the synthesis quality of the detail expert.Our approach achieves state-of-the-art visual quality with significantly reduced sampling steps, demonstrating the effectiveness of expert specialization in video diffusion model distillation. Our code and models are available at \href{https://github.com/Vchitect/DCM}{https://github.com/Vchitect/DCM}.
HumanRAM: Feed-forward Human Reconstruction and Animation Model using Transformers SIGGRAPH 2025
3D human reconstruction and animation are long-standing topics in computer graphics and vision. However, existing methods typically rely on sophisticated dense-view capture and/or time-consuming per-subject optimization procedures. To address these limitations, we propose HumanRAM, a novel feed-forward approach for generalizable human reconstruction and animation from monocular or sparse human images. Our approach integrates human reconstruction and animation into a unified framework by introducing explicit pose conditions, parameterized by a shared SMPL-X neural texture, into transformer-based large reconstruction models (LRM). Given monocular or sparse input images with associated camera parameters and SMPL-X poses, our model employs scalable transformers and a DPT-based decoder to synthesize realistic human renderings under novel viewpoints and novel poses. By leveraging the explicit pose conditions, our model simultaneously enables high-quality human reconstruction and high-fidelity pose-controlled animation. Experiments show that HumanRAM significantly surpasses previous methods in terms of reconstruction accuracy, animation fidelity, and generalization performance on real-world datasets. Video results are available at https://zju3dv.github.io/humanram/.
comment: Accepted by SIGGRAPH 2025 (Conference Track). Project page: https://zju3dv.github.io/humanram/
Controllable Human-centric Keyframe Interpolation with Generative Prior
Existing interpolation methods use pre-trained video diffusion priors to generate intermediate frames between sparsely sampled keyframes. In the absence of 3D geometric guidance, these methods struggle to produce plausible results for complex, articulated human motions and offer limited control over the synthesized dynamics. In this paper, we introduce PoseFuse3D Keyframe Interpolator (PoseFuse3D-KI), a novel framework that integrates 3D human guidance signals into the diffusion process for Controllable Human-centric Keyframe Interpolation (CHKI). To provide rich spatial and structural cues for interpolation, our PoseFuse3D, a 3D-informed control model, features a novel SMPL-X encoder that transforms 3D geometry and shape into the 2D latent conditioning space, alongside a fusion network that integrates these 3D cues with 2D pose embeddings. For evaluation, we build CHKI-Video, a new dataset annotated with both 2D poses and 3D SMPL-X parameters. We show that PoseFuse3D-KI consistently outperforms state-of-the-art baselines on CHKI-Video, achieving a 9% improvement in PSNR and a 38% reduction in LPIPS. Comprehensive ablations demonstrate that our PoseFuse3D model improves interpolation fidelity.
comment: Project Page: https://gseancdat.github.io/projects/PoseFuse3D_KI
Targeted Forgetting of Image Subgroups in CLIP Models
Foundation models (FMs) such as CLIP have demonstrated impressive zero-shot performance across various tasks by leveraging large-scale, unsupervised pre-training. However, they often inherit harmful or unwanted knowledge from noisy internet-sourced datasets, compromising their reliability in real-world applications. Existing model unlearning methods either rely on access to pre-trained datasets or focus on coarse-grained unlearning (e.g., entire classes), leaving a critical gap for fine-grained unlearning. In this paper, we address the challenging scenario of selectively forgetting specific portions of knowledge within a class, without access to pre-trained data, while preserving the model's overall performance. We propose a novel three-stage approach that progressively unlearns targeted knowledge while mitigating over-forgetting. It consists of (1) a forgetting stage to fine-tune the CLIP on samples to be forgotten, (2) a reminding stage to restore performance on retained samples, and (3) a restoring stage to recover zero-shot capabilities using model souping. Additionally, we introduce knowledge distillation to handle the distribution disparity between forgetting, retaining samples, and unseen pre-trained data. Extensive experiments on CIFAR-10, ImageNet-1K, and style datasets demonstrate that our approach effectively unlearns specific subgroups while maintaining strong zero-shot performance on semantically similar subgroups and other categories, significantly outperforming baseline unlearning methods, which lose effectiveness under the CLIP unlearning setting.
comment: 12 Figures,5 Pages. The project page is \url{https://zhangaipi.github.io/forget_clip/}
Zero-Shot Tree Detection and Segmentation from Aerial Forest Imagery
Large-scale delineation of individual trees from remote sensing imagery is crucial to the advancement of ecological research, particularly as climate change and other environmental factors rapidly transform forest landscapes across the world. Current RGB tree segmentation methods rely on training specialized machine learning models with labeled tree datasets. While these learning-based approaches can outperform manual data collection when accurate, the existing models still depend on training data that's hard to scale. In this paper, we investigate the efficacy of using a state-of-the-art image segmentation model, Segment Anything Model 2 (SAM2), in a zero-shot manner for individual tree detection and segmentation. We evaluate a pretrained SAM2 model on two tasks in this domain: (1) zero-shot segmentation and (2) zero-shot transfer by using predictions from an existing tree detection model as prompts. Our results suggest that SAM2 not only has impressive generalization capabilities, but also can form a natural synergy with specialized methods trained on in-domain labeled data. We find that applying large pretrained models to problems in remote sensing is a promising avenue for future progress. We make our code available at: https://github.com/open-forest-observatory/tree-detection-framework.
comment: Code: https://github.com/open-forest-observatory/tree-detection-framework
Revisiting Continuity of Image Tokens for Cross-domain Few-shot Learning ICML 2025
Vision Transformer (ViT) has achieved remarkable success due to its large-scale pretraining on general domains, but it still faces challenges when applying it to downstream distant domains that have only scarce training data, which gives rise to the Cross-Domain Few-Shot Learning (CDFSL) task. Inspired by Self-Attention's insensitivity to token orders, we find an interesting phenomenon neglected in current works: disrupting the continuity of image tokens (i.e., making pixels not smoothly transited across patches) in ViT leads to a noticeable performance decline in the general (source) domain but only a marginal decrease in downstream target domains. This questions the role of image tokens' continuity in ViT's generalization under large domain gaps. In this paper, we delve into this phenomenon for an interpretation. We find continuity aids ViT in learning larger spatial patterns, which are harder to transfer than smaller ones, enlarging domain distances. Meanwhile, it implies that only smaller patterns within each patch could be transferred under extreme domain gaps. Based on this interpretation, we further propose a simple yet effective method for CDFSL that better disrupts the continuity of image tokens, encouraging the model to rely less on large patterns and more on smaller ones. Extensive experiments show the effectiveness of our method in reducing domain gaps and outperforming state-of-the-art works. Codes and models are available at https://github.com/shuaiyi308/ReCIT.
comment: Accepted by ICML 2025(spotlight)
ByteMorph: Benchmarking Instruction-Guided Image Editing with Non-Rigid Motions
Editing images with instructions to reflect non-rigid motions, camera viewpoint shifts, object deformations, human articulations, and complex interactions, poses a challenging yet underexplored problem in computer vision. Existing approaches and datasets predominantly focus on static scenes or rigid transformations, limiting their capacity to handle expressive edits involving dynamic motion. To address this gap, we introduce ByteMorph, a comprehensive framework for instruction-based image editing with an emphasis on non-rigid motions. ByteMorph comprises a large-scale dataset, ByteMorph-6M, and a strong baseline model built upon the Diffusion Transformer (DiT), named ByteMorpher. ByteMorph-6M includes over 6 million high-resolution image editing pairs for training, along with a carefully curated evaluation benchmark ByteMorph-Bench. Both capture a wide variety of non-rigid motion types across diverse environments, human figures, and object categories. The dataset is constructed using motion-guided data generation, layered compositing techniques, and automated captioning to ensure diversity, realism, and semantic coherence. We further conduct a comprehensive evaluation of recent instruction-based image editing methods from both academic and commercial domains.
comment: Website: https://boese0601.github.io/bytemorph Dataset: https://huggingface.co/datasets/ByteDance-Seed/BM-6M Benchmark: https://huggingface.co/datasets/ByteDance-Seed/BM-Bench Code: https://github.com/ByteDance-Seed/BM-code Demo: https://huggingface.co/spaces/Boese0601/ByteMorph-Demo
DyTact: Capturing Dynamic Contacts in Hand-Object Manipulation
Reconstructing dynamic hand-object contacts is essential for realistic manipulation in AI character animation, XR, and robotics, yet it remains challenging due to heavy occlusions, complex surface details, and limitations in existing capture techniques. In this paper, we introduce DyTact, a markerless capture method for accurately capturing dynamic contact in hand-object manipulations in a non-intrusive manner. Our approach leverages a dynamic, articulated representation based on 2D Gaussian surfels to model complex manipulations. By binding these surfels to MANO meshes, DyTact harnesses the inductive bias of template models to stabilize and accelerate optimization. A refinement module addresses time-dependent high-frequency deformations, while a contact-guided adaptive sampling strategy selectively increases surfel density in contact regions to handle heavy occlusion. Extensive experiments demonstrate that DyTact not only achieves state-of-the-art dynamic contact estimation accuracy but also significantly improves novel view synthesis quality, all while operating with fast optimization and efficient memory usage. Project Page: https://oliver-cong02.github.io/DyTact.github.io/ .
EgoVLM: Policy Optimization for Egocentric Video Understanding
Emerging embodied AI applications, such as wearable cameras and autonomous agents, have underscored the need for robust reasoning from first person video streams. We introduce EgoVLM, a vision-language model specifically designed to integrate visual comprehension and spatial-temporal reasoning within egocentric video contexts. EgoVLM is fine-tuned via Group Relative Policy Optimization (GRPO), a reinforcement learning method adapted to align model outputs with human-like reasoning steps. Following DeepSeek R1-Zero's approach, we directly tune using RL without any supervised fine-tuning phase on chain-of-thought (CoT) data. We evaluate EgoVLM on egocentric video question answering benchmarks and show that domain-specific training substantially improves performance over general-purpose VLMs. Our EgoVLM-3B, trained exclusively on non-CoT egocentric data, outperforms the base Qwen2.5-VL 3B and 7B models by 14.33 and 13.87 accuracy points on the EgoSchema benchmark, respectively. By explicitly generating reasoning traces, EgoVLM enhances interpretability, making it well-suited for downstream applications. Furthermore, we introduce a novel keyframe-based reward that incorporates salient frame selection to guide reinforcement learning optimization. This reward formulation opens a promising avenue for future exploration in temporally grounded egocentric reasoning.
comment: Our Code can be found at https://github.com/adityavavre/VidEgoVLM
FuseLIP: Multimodal Embeddings via Early Fusion of Discrete Tokens
Contrastive language-image pre-training aligns the features of text-image pairs in a common latent space via distinct encoders for each modality. While this approach achieves impressive performance in several zero-shot tasks, it cannot natively handle multimodal inputs, i.e., encoding image and text into a single feature vector. As a remedy, it is common practice to use additional modules to merge the features extracted by the unimodal encoders. In this work, we present FuseLIP, an alternative architecture for multimodal embedding. Leveraging recent progress in discrete image tokenizers, we propose to use a single transformer model which operates on an extended vocabulary of text and image tokens. This early fusion approach allows the different modalities to interact at each depth of encoding and obtain richer representations compared to common late fusion. We collect new datasets for multimodal pre-training and evaluation, designing challenging tasks for multimodal encoder models. We show that FuseLIP outperforms other approaches in multimodal embedding tasks such as VQA and text-guided image transformation retrieval, while being comparable to baselines on unimodal tasks.
comment: Code and models available at https://github.com/chs20/fuselip
DPO Learning with LLMs-Judge Signal for Computer Use Agents
Computer use agents (CUA) are systems that automatically interact with graphical user interfaces (GUIs) to complete tasks. CUA have made significant progress with the advent of large vision-language models (VLMs). However, these agents typically rely on cloud-based inference with substantial compute demands, raising critical privacy and scalability concerns, especially when operating on personal devices. In this work, we take a step toward privacy-preserving and resource-efficient agents by developing a lightweight vision-language model that runs entirely on local machines. To train this compact agent, we introduce an LLM-as-Judge framework that automatically evaluates and filters synthetic interaction trajectories, producing high-quality data for reinforcement learning without human annotation. Experiments on the OS-World benchmark demonstrate that our fine-tuned local model outperforms existing baselines, highlighting a promising path toward private, efficient, and generalizable GUI agents.
Explicitly Modeling Subcortical Vision with a Neuro-Inspired Front-End Improves CNN Robustness
Convolutional neural networks (CNNs) trained on object recognition achieve high task performance but continue to exhibit vulnerability under a range of visual perturbations and out-of-domain images, when compared with biological vision. Prior work has demonstrated that coupling a standard CNN with a front-end block (VOneBlock) that mimics the primate primary visual cortex (V1) can improve overall model robustness. Expanding on this, we introduce Early Vision Networks (EVNets), a new class of hybrid CNNs that combine the VOneBlock with a novel SubcorticalBlock, whose architecture draws from computational models in neuroscience and is parameterized to maximize alignment with subcortical responses reported across multiple experimental studies. Without being optimized to do so, the assembly of the SubcorticalBlock with the VOneBlock improved V1 alignment across most standard V1 benchmarks, and better modeled extra-classical receptive field phenomena. In addition, EVNets exhibit stronger emergent shape bias and overperform the base CNN architecture by 8.5% on an aggregate benchmark of robustness evaluations, including adversarial perturbations, common corruptions, and domain shifts. Finally, we show that EVNets can be further improved when paired with a state-of-the-art data augmentation technique, surpassing the performance of the isolated data augmentation approach by 7.3% on our robustness benchmark. This result reveals complementary benefits between changes in architecture to better mimic biology and training-based machine learning approaches.
InterMamba: Efficient Human-Human Interaction Generation with Adaptive Spatio-Temporal Mamba
Human-human interaction generation has garnered significant attention in motion synthesis due to its vital role in understanding humans as social beings. However, existing methods typically rely on transformer-based architectures, which often face challenges related to scalability and efficiency. To address these issues, we propose a novel, efficient human-human interaction generation method based on the Mamba framework, designed to meet the demands of effectively capturing long-sequence dependencies while providing real-time feedback. Specifically, we introduce an adaptive spatio-temporal Mamba framework that utilizes two parallel SSM branches with an adaptive mechanism to integrate the spatial and temporal features of motion sequences. To further enhance the model's ability to capture dependencies within individual motion sequences and the interactions between different individual sequences, we develop two key modules: the self-adaptive spatio-temporal Mamba module and the cross-adaptive spatio-temporal Mamba module, enabling efficient feature learning. Extensive experiments demonstrate that our method achieves state-of-the-art results on two interaction datasets with remarkable quality and efficiency. Compared to the baseline method InterGen, our approach not only improves accuracy but also requires a minimal parameter size of just 66M ,only 36% of InterGen's, while achieving an average inference speed of 0.57 seconds, which is 46% of InterGen's execution time.
SG2VID: Scene Graphs Enable Fine-Grained Control for Video Synthesis
Surgical simulation plays a pivotal role in training novice surgeons, accelerating their learning curve and reducing intra-operative errors. However, conventional simulation tools fall short in providing the necessary photorealism and the variability of human anatomy. In response, current methods are shifting towards generative model-based simulators. Yet, these approaches primarily focus on using increasingly complex conditioning for precise synthesis while neglecting the fine-grained human control aspect. To address this gap, we introduce SG2VID, the first diffusion-based video model that leverages Scene Graphs for both precise video synthesis and fine-grained human control. We demonstrate SG2VID's capabilities across three public datasets featuring cataract and cholecystectomy surgery. While SG2VID outperforms previous methods both qualitatively and quantitatively, it also enables precise synthesis, providing accurate control over tool and anatomy's size and movement, entrance of new tools, as well as the overall scene layout. We qualitatively motivate how SG2VID can be used for generative augmentation and present an experiment demonstrating its ability to improve a downstream phase detection task when the training set is extended with our synthetic videos. Finally, to showcase SG2VID's ability to retain human control, we interact with the Scene Graphs to generate new video samples depicting major yet rare intra-operative irregularities.
ORV: 4D Occupancy-centric Robot Video Generation
Acquiring real-world robotic simulation data through teleoperation is notoriously time-consuming and labor-intensive. Recently, action-driven generative models have gained widespread adoption in robot learning and simulation, as they eliminate safety concerns and reduce maintenance efforts. However, the action sequences used in these methods often result in limited control precision and poor generalization due to their globally coarse alignment. To address these limitations, we propose ORV, an Occupancy-centric Robot Video generation framework, which utilizes 4D semantic occupancy sequences as a fine-grained representation to provide more accurate semantic and geometric guidance for video generation. By leveraging occupancy-based representations, ORV enables seamless translation of simulation data into photorealistic robot videos, while ensuring high temporal consistency and precise controllability. Furthermore, our framework supports the simultaneous generation of multi-view videos of robot gripping operations - an important capability for downstream robotic learning tasks. Extensive experimental results demonstrate that ORV consistently outperforms existing baseline methods across various datasets and sub-tasks. Demo, Code and Model: https://orangesodahub.github.io/ORV
comment: Project page: https://orangesodahub.github.io/ORV/ ; Code: https://github.com/OrangeSodahub/ORV
LEG-SLAM: Real-Time Language-Enhanced Gaussian Splatting for SLAM
Modern Gaussian Splatting methods have proven highly effective for real-time photorealistic rendering of 3D scenes. However, integrating semantic information into this representation remains a significant challenge, especially in maintaining real-time performance for SLAM (Simultaneous Localization and Mapping) applications. In this work, we introduce LEG-SLAM -- a novel approach that fuses an optimized Gaussian Splatting implementation with visual-language feature extraction using DINOv2 followed by a learnable feature compressor based on Principal Component Analysis, while enabling an online dense SLAM. Our method simultaneously generates high-quality photorealistic images and semantically labeled scene maps, achieving real-time scene reconstruction with more than 10 fps on the Replica dataset and 18 fps on ScanNet. Experimental results show that our approach significantly outperforms state-of-the-art methods in reconstruction speed while achieving competitive rendering quality. The proposed system eliminates the need for prior data preparation such as camera's ego motion or pre-computed static semantic maps. With its potential applications in autonomous robotics, augmented reality, and other interactive domains, LEG-SLAM represents a significant step forward in real-time semantic 3D Gaussian-based SLAM. Project page: https://titrom025.github.io/LEG-SLAM/
EDITOR: Effective and Interpretable Prompt Inversion for Text-to-Image Diffusion Models
Text-to-image generation models~(e.g., Stable Diffusion) have achieved significant advancements, enabling the creation of high-quality and realistic images based on textual descriptions. Prompt inversion, the task of identifying the textual prompt used to generate a specific artifact, holds significant potential for applications including data attribution, model provenance, and watermarking validation. Recent studies introduced a delayed projection scheme to optimize for prompts representative of the vocabulary space, though challenges in semantic fluency and efficiency remain. Advanced image captioning models or visual large language models can generate highly interpretable prompts, but they often lack in image similarity. In this paper, we propose a prompt inversion technique called \sys for text-to-image diffusion models, which includes initializing embeddings using a pre-trained image captioning model, refining them through reverse-engineering in the latent space, and converting them to texts using an embedding-to-text model. Our experiments on the widely-used datasets, such as MS COCO, LAION, and Flickr, show that our method outperforms existing methods in terms of image similarity, textual alignment, prompt interpretability and generalizability. We further illustrate the application of our generated prompts in tasks such as cross-concept image synthesis, concept manipulation, evolutionary multi-concept generation and unsupervised segmentation.
Sparse-vDiT: Unleashing the Power of Sparse Attention to Accelerate Video Diffusion Transformers
While Diffusion Transformers (DiTs) have achieved breakthroughs in video generation, this long sequence generation task remains constrained by the quadratic complexity of attention mechanisms, resulting in significant inference latency. Through detailed analysis of attention maps in Video Diffusion Transformer (vDiT), we identify three recurring sparsity patterns: diagonal, multi-diagonal, and vertical-stripe structures. And even 3-6\% attention heads can be skipped. Crucially, these patterns exhibit strong layer-depth and head-position correlations but show limited dependence on the input content. Leveraging these findings, we propose Sparse-vDiT, a sparsity acceleration framework for vDiT comprising: 1) Pattern-optimized sparse kernels that replace dense attention with computationally efficient implementations for each identified sparsity pattern. 2) An offline sparse diffusion search algorithm that selects the optimal sparse computation strategy per layer and head via hardware-aware cost modeling. After determining the optimal configuration, we fuse heads within the same layer that share the same attention strategy, enhancing inference efficiency. Integrated into state-of-the-art vDiT models (CogVideoX1.5, HunyuanVideo, and Wan2.1), Sparse-vDiT achieves 2.09$\times$, 2.38$\times$, and 1.67$\times$ theoretical FLOP reduction, and actual inference speedups of 1.76$\times$, 1.85$\times$, and 1.58$\times$, respectively, while maintaining high visual fidelity, with PSNR values reaching 24.13, 27.09, and 22.59. Our work demonstrates that latent structural sparsity in vDiTs can be systematically exploited for long video synthesis.
Smartflow: Enabling Scalable Spatiotemporal Geospatial Research
BlackSky introduces Smartflow, a cloud-based framework enabling scalable spatiotemporal geospatial research built on open-source tools and technologies. Using STAC-compliant catalogs as a common input, heterogeneous geospatial data can be processed into standardized datacubes for analysis and model training. Model experimentation is managed using a combination of tools, including ClearML, Tensorboard, and Apache Superset. Underpinning Smartflow is Kubernetes, which orchestrates the provisioning and execution of workflows to support both horizontal and vertical scalability. This combination of features makes Smartflow well-suited for geospatial model development and analysis over large geographic areas, time scales, and expansive image archives. We also present a novel neural architecture, built using Smartflow, to monitor large geographic areas for heavy construction. Qualitative results based on data from the IARPA Space-based Machine Automated Recognition Technique (SMART) program are presented that show the model is capable of detecting heavy construction throughout all major phases of development.
DFBench: Benchmarking Deepfake Image Detection Capability of Large Multimodal Models
With the rapid advancement of generative models, the realism of AI-generated images has significantly improved, posing critical challenges for verifying digital content authenticity. Current deepfake detection methods often depend on datasets with limited generation models and content diversity that fail to keep pace with the evolving complexity and increasing realism of the AI-generated content. Large multimodal models (LMMs), widely adopted in various vision tasks, have demonstrated strong zero-shot capabilities, yet their potential in deepfake detection remains largely unexplored. To bridge this gap, we present \textbf{DFBench}, a large-scale DeepFake Benchmark featuring (i) broad diversity, including 540,000 images across real, AI-edited, and AI-generated content, (ii) latest model, the fake images are generated by 12 state-of-the-art generation models, and (iii) bidirectional benchmarking and evaluating for both the detection accuracy of deepfake detectors and the evasion capability of generative models. Based on DFBench, we propose \textbf{MoA-DF}, Mixture of Agents for DeepFake detection, leveraging a combined probability strategy from multiple LMMs. MoA-DF achieves state-of-the-art performance, further proving the effectiveness of leveraging LMMs for deepfake detection. Database and codes are publicly available at https://github.com/IntMeGroup/DFBench.
PartComposer: Learning and Composing Part-Level Concepts from Single-Image Examples
We present PartComposer: a framework for part-level concept learning from single-image examples that enables text-to-image diffusion models to compose novel objects from meaningful components. Existing methods either struggle with effectively learning fine-grained concepts or require a large dataset as input. We propose a dynamic data synthesis pipeline generating diverse part compositions to address one-shot data scarcity. Most importantly, we propose to maximize the mutual information between denoised latents and structured concept codes via a concept predictor, enabling direct regulation on concept disentanglement and re-composition supervision. Our method achieves strong disentanglement and controllable composition, outperforming subject and part-level baselines when mixing concepts from the same, or different, object categories.
Astrophotography turbulence mitigation via generative models
Photography is the cornerstone of modern astronomical and space research. However, most astronomical images captured by ground-based telescopes suffer from atmospheric turbulence, resulting in degraded imaging quality. While multi-frame strategies like lucky imaging can mitigate some effects, they involve intensive data acquisition and complex manual processing. In this paper, we propose AstroDiff, a generative restoration method that leverages both the high-quality generative priors and restoration capabilities of diffusion models to mitigate atmospheric turbulence. Extensive experiments demonstrate that AstroDiff outperforms existing state-of-the-art learning-based methods in astronomical image turbulence mitigation, providing higher perceptual quality and better structural fidelity under severe turbulence conditions. Our code and additional results are available at https://web-six-kappa-66.vercel.app/
Deep Learning for Retinal Degeneration Assessment: A Comprehensive Analysis of the MARIO AMD Progression Challenge MICCAI
The MARIO challenge, held at MICCAI 2024, focused on advancing the automated detection and monitoring of age-related macular degeneration (AMD) through the analysis of optical coherence tomography (OCT) images. Designed to evaluate algorithmic performance in detecting neovascular activity changes within AMD, the challenge incorporated unique multi-modal datasets. The primary dataset, sourced from Brest, France, was used by participating teams to train and test their models. The final ranking was determined based on performance on this dataset. An auxiliary dataset from Algeria was used post-challenge to evaluate population and device shifts from submitted solutions. Two tasks were involved in the MARIO challenge. The first one was the classification of evolution between two consecutive 2D OCT B-scans. The second one was the prediction of future AMD evolution over three months for patients undergoing anti-vascular endothelial growth factor (VEGF) therapy. Thirty-five teams participated, with the top 12 finalists presenting their methods. This paper outlines the challenge's structure, tasks, data characteristics, and winning methodologies, setting a benchmark for AMD monitoring using OCT, infrared imaging, and clinical data (such as the number of visits, age, gender, etc.). The results of this challenge indicate that artificial intelligence (AI) performs as well as a physician in measuring AMD progression (Task 1) but is not yet able of predicting future evolution (Task 2).
comment: MARIO-MICCAI-CHALLENGE 2024
HaploOmni: Unified Single Transformer for Multimodal Video Understanding and Generation
With the advancement of language models, unified multimodal understanding and generation have made significant strides, with model architectures evolving from separated components to unified single-model frameworks. This paper explores an efficient training paradigm to build a single transformer for unified multimodal understanding and generation. Specifically, we propose a multimodal warmup strategy utilizing prior knowledge to extend capabilities. To address cross-modal compatibility challenges, we introduce feature pre-scaling and multimodal AdaLN techniques. Integrating the proposed technologies, we present the HaploOmni, a new single multimodal transformer. With limited training costs, HaploOmni achieves competitive performance across multiple image and video understanding and generation benchmarks over advanced unified models. All codes will be made public at https://github.com/Tencent/HaploVLM.
FORLA:Federated Object-centric Representation Learning with Slot Attention
Learning efficient visual representations across heterogeneous unlabeled datasets remains a central challenge in federated learning. Effective federated representations require features that are jointly informative across clients while disentangling domain-specific factors without supervision. We introduce FORLA, a novel framework for federated object-centric representation learning and feature adaptation across clients using unsupervised slot attention. At the core of our method is a shared feature adapter, trained collaboratively across clients to adapt features from foundation models, and a shared slot attention module that learns to reconstruct the adapted features. To optimize this adapter, we design a two-branch student-teacher architecture. In each client, a student decoder learns to reconstruct full features from foundation models, while a teacher decoder reconstructs their adapted, low-dimensional counterpart. The shared slot attention module bridges cross-domain learning by aligning object-level representations across clients. Experiments in multiple real-world datasets show that our framework not only outperforms centralized baselines on object discovery but also learns a compact, universal representation that generalizes well across domains. This work highlights federated slot attention as an effective tool for scalable, unsupervised visual representation learning from cross-domain data with distributed concepts.
comment: 24 pages, 6 figures
Interaction Field Matching: Overcoming Limitations of Electrostatic Models
Electrostatic field matching (EFM) has recently appeared as a novel physics-inspired paradigm for data generation and transfer using the idea of an electric capacitor. However, it requires modeling electrostatic fields using neural networks, which is non-trivial because of the necessity to take into account the complex field outside the capacitor plates. In this paper, we propose Interaction Field Matching (IFM), a generalization of EFM which allows using general interaction fields beyond the electrostatic one. Furthermore, inspired by strong interactions between quarks and antiquarks in physics, we design a particular interaction field realization which solves the problems which arise when modeling electrostatic fields in EFM. We show the performance on a series of toy and image data transfer problems.
MIND: Material Interface Generation from UDFs for Non-Manifold Surface Reconstruction
Unsigned distance fields (UDFs) are widely used in 3D deep learning due to their ability to represent shapes with arbitrary topology. While prior work has largely focused on learning UDFs from point clouds or multi-view images, extracting meshes from UDFs remains challenging, as the learned fields rarely attain exact zero distances. A common workaround is to reconstruct signed distance fields (SDFs) locally from UDFs to enable surface extraction via Marching Cubes. However, this often introduces topological artifacts such as holes or spurious components. Moreover, local SDFs are inherently incapable of representing non-manifold geometry, leading to complete failure in such cases. To address this gap, we propose MIND (Material Interface from Non-manifold Distance fields), a novel algorithm for generating material interfaces directly from UDFs, enabling non-manifold mesh extraction from a global perspective. The core of our method lies in deriving a meaningful spatial partitioning from the UDF, where the target surface emerges as the interface between distinct regions. We begin by computing a two-signed local field to distinguish the two sides of manifold patches, and then extend this to a multi-labeled global field capable of separating all sides of a non-manifold structure. By combining this multi-labeled field with the input UDF, we construct material interfaces that support non-manifold mesh extraction via a multi-labeled Marching Cubes algorithm. Extensive experiments on UDFs generated from diverse data sources, including point cloud reconstruction, multi-view reconstruction, and medial axis transforms, demonstrate that our approach robustly handles complex non-manifold surfaces and significantly outperforms existing methods.
Towards Auto-Annotation from Annotation Guidelines: A Benchmark through 3D LiDAR Detection
A crucial yet under-appreciated prerequisite in machine learning solutions for real-applications is data annotation: human annotators are hired to manually label data according to detailed, expert-crafted guidelines. This is often a laborious, tedious, and costly process. To study methods for facilitating data annotation, we introduce a new benchmark AnnoGuide: Auto-Annotation from Annotation Guidelines. It aims to evaluate automated methods for data annotation directly from expert-defined annotation guidelines, eliminating the need for manual labeling. As a case study, we repurpose the well-established nuScenes dataset, commonly used in autonomous driving research, which provides comprehensive annotation guidelines for labeling LiDAR point clouds with 3D cuboids across 18 object classes. These guidelines include a few visual examples and textual descriptions, but no labeled 3D cuboids in LiDAR data, making this a novel task of multi-modal few-shot 3D detection without 3D annotations. The advances of powerful foundation models (FMs) make AnnoGuide especially timely, as FMs offer promising tools to tackle its challenges. We employ a conceptually straightforward pipeline that (1) utilizes open-source FMs for object detection and segmentation in RGB images, (2) projects 2D detections into 3D using known camera poses, and (3) clusters LiDAR points within the frustum of each 2D detection to generate a 3D cuboid. Starting with a non-learned solution that leverages off-the-shelf FMs, we progressively refine key components and achieve significant performance improvements, boosting 3D detection mAP from 12.1 to 21.9! Nevertheless, our results highlight that AnnoGuide remains an open and challenging problem, underscoring the urgent need for developing LiDAR-based FMs. We release our code and models at GitHub: https://annoguide.github.io/annoguide3Dbenchmark
FlySearch: Exploring how vision-language models explore
The real world is messy and unstructured. Uncovering critical information often requires active, goal-driven exploration. It remains to be seen whether Vision-Language Models (VLMs), which recently emerged as a popular zero-shot tool in many difficult tasks, can operate effectively in such conditions. In this paper, we answer this question by introducing FlySearch, a 3D, outdoor, photorealistic environment for searching and navigating to objects in complex scenes. We define three sets of scenarios with varying difficulty and observe that state-of-the-art VLMs cannot reliably solve even the simplest exploration tasks, with the gap to human performance increasing as the tasks get harder. We identify a set of central causes, ranging from vision hallucination, through context misunderstanding, to task planning failures, and we show that some of them can be addressed by finetuning. We publicly release the benchmark, scenarios, and the underlying codebase.
VolTex: Food Volume Estimation using Text-Guided Segmentation and Neural Surface Reconstruction
Accurate food volume estimation is crucial for dietary monitoring, medical nutrition management, and food intake analysis. Existing 3D Food Volume estimation methods accurately compute the food volume but lack for food portions selection. We present VolTex, a framework that improves \change{the food object selection} in food volume estimation. Allowing users to specify a target food item via text input to be segmented, our method enables the precise selection of specific food objects in real-world scenes. The segmented object is then reconstructed using the Neural Surface Reconstruction method to generate high-fidelity 3D meshes for volume computation. Extensive evaluations on the MetaFood3D dataset demonstrate the effectiveness of our approach in isolating and reconstructing food items for accurate volume estimation. The source code is accessible at https://github.com/GCVCG/VolTex.
Dense Match Summarization for Faster Two-view Estimation CVPR
In this paper, we speed up robust two-view relative pose from dense correspondences. Previous work has shown that dense matchers can significantly improve both accuracy and robustness in the resulting pose. However, the large number of matches comes with a significantly increased runtime during robust estimation in RANSAC. To avoid this, we propose an efficient match summarization scheme which provides comparable accuracy to using the full set of dense matches, while having 10-100x faster runtime. We validate our approach on standard benchmark datasets together with multiple state-of-the-art dense matchers.
comment: Accepted to Computer Vision and Pattern Recognition (CVPR) 2025
OpenFace 3.0: A Lightweight Multitask System for Comprehensive Facial Behavior Analysis
In recent years, there has been increasing interest in automatic facial behavior analysis systems from computing communities such as vision, multimodal interaction, robotics, and affective computing. Building upon the widespread utility of prior open-source facial analysis systems, we introduce OpenFace 3.0, an open-source toolkit capable of facial landmark detection, facial action unit detection, eye-gaze estimation, and facial emotion recognition. OpenFace 3.0 contributes a lightweight unified model for facial analysis, trained with a multi-task architecture across diverse populations, head poses, lighting conditions, video resolutions, and facial analysis tasks. By leveraging the benefits of parameter sharing through a unified model and training paradigm, OpenFace 3.0 exhibits improvements in prediction performance, inference speed, and memory efficiency over similar toolkits and rivals state-of-the-art models. OpenFace 3.0 can be installed and run with a single line of code and operate in real-time without specialized hardware. OpenFace 3.0 code for training models and running the system is freely available for research purposes and supports contributions from the community.
comment: IEEE FG 2025, \c{opyright} 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work
GaRA-SAM: Robustifying Segment Anything Model with Gated-Rank Adaptation
Improving robustness of the Segment Anything Model (SAM) to input degradations is critical for its deployment in high-stakes applications such as autonomous driving and robotics. Our approach to this challenge prioritizes three key aspects: first, parameter efficiency to maintain the inherent generalization capability of SAM; second, fine-grained and input-aware robustification to precisely address the input corruption; and third, adherence to standard training protocols for ease of training. To this end, we propose gated-rank adaptation (GaRA). GaRA introduces lightweight adapters into intermediate layers of the frozen SAM, where each adapter dynamically adjusts the effective rank of its weight matrix based on the input by selectively activating (rank-1) components of the matrix using a learned gating module. This adjustment enables fine-grained and input-aware robustification without compromising the generalization capability of SAM. Our model, GaRA-SAM, significantly outperforms prior work on all robust segmentation benchmarks. In particular, it surpasses the previous best IoU score by up to 21.3\%p on ACDC, a challenging real corrupted image dataset.
NTIRE 2025 XGC Quality Assessment Challenge: Methods and Results
This paper reports on the NTIRE 2025 XGC Quality Assessment Challenge, which will be held in conjunction with the New Trends in Image Restoration and Enhancement Workshop (NTIRE) at CVPR 2025. This challenge is to address a major challenge in the field of video and talking head processing. The challenge is divided into three tracks, including user generated video, AI generated video and talking head. The user-generated video track uses the FineVD-GC, which contains 6,284 user generated videos. The user-generated video track has a total of 125 registered participants. A total of 242 submissions are received in the development phase, and 136 submissions are received in the test phase. Finally, 5 participating teams submitted their models and fact sheets. The AI generated video track uses the Q-Eval-Video, which contains 34,029 AI-Generated Videos (AIGVs) generated by 11 popular Text-to-Video (T2V) models. A total of 133 participants have registered in this track. A total of 396 submissions are received in the development phase, and 226 submissions are received in the test phase. Finally, 6 participating teams submitted their models and fact sheets. The talking head track uses the THQA-NTIRE, which contains 12,247 2D and 3D talking heads. A total of 89 participants have registered in this track. A total of 225 submissions are received in the development phase, and 118 submissions are received in the test phase. Finally, 8 participating teams submitted their models and fact sheets. Each participating team in every track has proposed a method that outperforms the baseline, which has contributed to the development of fields in three tracks.
comment: NTIRE 2025 XGC Quality Assessment Challenge Report. arXiv admin note: text overlap with arXiv:2404.16687
Pan-Arctic Permafrost Landform and Human-built Infrastructure Feature Detection with Vision Transformers and Location Embeddings
Accurate mapping of permafrost landforms, thaw disturbances, and human-built infrastructure at pan-Arctic scale using sub-meter satellite imagery is increasingly critical. Handling petabyte-scale image data requires high-performance computing and robust feature detection models. While convolutional neural network (CNN)-based deep learning approaches are widely used for remote sensing (RS),similar to the success in transformer based large language models, Vision Transformers (ViTs) offer advantages in capturing long-range dependencies and global context via attention mechanisms. ViTs support pretraining via self-supervised learning-addressing the common limitation of labeled data in Arctic feature detection and outperform CNNs on benchmark datasets. Arctic also poses challenges for model generalization, especially when features with the same semantic class exhibit diverse spectral characteristics. To address these issues for Arctic feature detection, we integrate geospatial location embeddings into ViTs to improve adaptation across regions. This work investigates: (1) the suitability of pre-trained ViTs as feature extractors for high-resolution Arctic remote sensing tasks, and (2) the benefit of combining image and location embeddings. Using previously published datasets for Arctic feature detection, we evaluate our models on three tasks-detecting ice-wedge polygons (IWP), retrogressive thaw slumps (RTS), and human-built infrastructure. We empirically explore multiple configurations to fuse image embeddings and location embeddings. Results show that ViTs with location embeddings outperform prior CNN-based models on two of the three tasks including F1 score increase from 0.84 to 0.92 for RTS detection, demonstrating the potential of transformer-based models with spatial awareness for Arctic RS applications.
comment: 20 pages, 2 column IEEE format, 13 Figures
MVTD: A Benchmark Dataset for Maritime Visual Object Tracking
Visual Object Tracking (VOT) is a fundamental task with widespread applications in autonomous navigation, surveillance, and maritime robotics. Despite significant advances in generic object tracking, maritime environments continue to present unique challenges, including specular water reflections, low-contrast targets, dynamically changing backgrounds, and frequent occlusions. These complexities significantly degrade the performance of state-of-the-art tracking algorithms, highlighting the need for domain-specific datasets. To address this gap, we introduce the Maritime Visual Tracking Dataset (MVTD), a comprehensive and publicly available benchmark specifically designed for maritime VOT. MVTD comprises 182 high-resolution video sequences, totaling approximately 150,000 frames, and includes four representative object classes: boat, ship, sailboat, and unmanned surface vehicle (USV). The dataset captures a diverse range of operational conditions and maritime scenarios, reflecting the real-world complexities of maritime environments. We evaluated 14 recent SOTA tracking algorithms on the MVTD benchmark and observed substantial performance degradation compared to their performance on general-purpose datasets. However, when fine-tuned on MVTD, these models demonstrate significant performance gains, underscoring the effectiveness of domain adaptation and the importance of transfer learning in specialized tracking contexts. The MVTD dataset fills a critical gap in the visual tracking community by providing a realistic and challenging benchmark for maritime scenarios. Dataset and Source Code can be accessed here "https://github.com/AhsanBaidar/MVTD".
comment: Submited to Nature Scientific Data
Enhancing Abnormality Identification: Robust Out-of-Distribution Strategies for Deepfake Detection
Detecting deepfakes has become a critical challenge in Computer Vision and Artificial Intelligence. Despite significant progress in detection techniques, generalizing them to open-set scenarios continues to be a persistent difficulty. Neural networks are often trained on the closed-world assumption, but with new generative models constantly evolving, it is inevitable to encounter data generated by models that are not part of the training distribution. To address these challenges, in this paper, we propose two novel Out-Of-Distribution (OOD) detection approaches. The first approach is trained to reconstruct the input image, while the second incorporates an attention mechanism for detecting OODs. Our experiments validate the effectiveness of the proposed approaches compared to existing state-of-the-art techniques. Our method achieves promising results in deepfake detection and ranks among the top-performing configurations on the benchmark, demonstrating their potential for robust, adaptable solutions in dynamic, real-world applications.
Hierarchical Self-Prompting SAM: A Prompt-Free Medical Image Segmentation Framework
Although the Segment Anything Model (SAM) is highly effective in natural image segmentation, it requires dependencies on prompts, which limits its applicability to medical imaging where manual prompts are often unavailable. Existing efforts to fine-tune SAM for medical segmentation typically struggle to remove this dependency. We propose Hierarchical Self-Prompting SAM (HSP-SAM), a novel self-prompting framework that enables SAM to achieve strong performance in prompt-free medical image segmentation. Unlike previous self-prompting methods that remain limited to positional prompts similar to vanilla SAM, we are the first to introduce learning abstract prompts during the self-prompting process. This simple and intuitive self-prompting framework achieves superior performance on classic segmentation tasks such as polyp and skin lesion segmentation, while maintaining robustness across diverse medical imaging modalities. Furthermore, it exhibits strong generalization to unseen datasets, achieving improvements of up to 14.04% over previous state-of-the-art methods on some challenging benchmarks. These results suggest that abstract prompts encapsulate richer and higher-dimensional semantic information compared to positional prompts, thereby enhancing the model's robustness and generalization performance. All models and codes will be released upon acceptance.
Learning Pyramid-structured Long-range Dependencies for 3D Human Pose Estimation
Action coordination in human structure is indispensable for the spatial constraints of 2D joints to recover 3D pose. Usually, action coordination is represented as a long-range dependence among body parts. However, there are two main challenges in modeling long-range dependencies. First, joints should not only be constrained by other individual joints but also be modulated by the body parts. Second, existing methods make networks deeper to learn dependencies between non-linked parts. They introduce uncorrelated noise and increase the model size. In this paper, we utilize a pyramid structure to better learn potential long-range dependencies. It can capture the correlation across joints and groups, which complements the context of the human sub-structure. In an effective cross-scale way, it captures the pyramid-structured long-range dependence. Specifically, we propose a novel Pyramid Graph Attention (PGA) module to capture long-range cross-scale dependencies. It concatenates information from various scales into a compact sequence, and then computes the correlation between scales in parallel. Combining PGA with graph convolution modules, we develop a Pyramid Graph Transformer (PGFormer) for 3D human pose estimation, which is a lightweight multi-scale transformer architecture. It encapsulates human sub-structures into self-attention by pooling. Extensive experiments show that our approach achieves lower error and smaller model size than state-of-the-art methods on Human3.6M and MPI-INF-3DHP datasets. The code is available at https://github.com/MingjieWe/PGFormer.
comment: Accepted by IEEE Transactions on Multimedia (TMM)
METok: Multi-Stage Event-based Token Compression for Efficient Long Video Understanding
Recent advances in Video Large Language Models (VLLMs) have significantly enhanced their ability to understand video content. Nonetheless, processing long videos remains challenging due to high computational demands and the redundancy present in the visual data. In this work, we propose METok, a training-free, Multi-stage Event-based Token compression framework designed to accelerate VLLMs' inference while preserving accuracy. METok progressively eliminates redundant visual tokens across three critical stages: (1) event-aware compression during vision encoding, (2) hierarchical token pruning in the prefilling stage based on semantic alignment and event importance, and (3) a decoding-stage KV Cache optimization that further reduces memory consumption. Our experiments on diverse video benchmarks demonstrate that METok achieves an optimal trade-off between efficiency and accuracy by dynamically selecting informative visual tokens. For instance, equipping LongVA-7B with METok realizes an 80.6% FLOPs reduction and 93.5% KV Cache memory savings, all while maintaining comparable or even superior accuracy.
comment: 14 pages, 10 figures
PBR-SR: Mesh PBR Texture Super Resolution from 2D Image Priors
We present PBR-SR, a novel method for physically based rendering (PBR) texture super resolution (SR). It outputs high-resolution, high-quality PBR textures from low-resolution (LR) PBR input in a zero-shot manner. PBR-SR leverages an off-the-shelf super-resolution model trained on natural images, and iteratively minimizes the deviations between super-resolution priors and differentiable renderings. These enhancements are then back-projected into the PBR map space in a differentiable manner to produce refined, high-resolution textures. To mitigate view inconsistencies and lighting sensitivity, which is common in view-based super-resolution, our method applies 2D prior constraints across multi-view renderings, iteratively refining the shared, upscaled textures. In parallel, we incorporate identity constraints directly in the PBR texture domain to ensure the upscaled textures remain faithful to the LR input. PBR-SR operates without any additional training or data requirements, relying entirely on pretrained image priors. We demonstrate that our approach produces high-fidelity PBR textures for both artist-designed and AI-generated meshes, outperforming both direct SR models application and prior texture optimization methods. Our results show high-quality outputs in both PBR and rendering evaluations, supporting advanced applications such as relighting.
comment: Project page: https://terencecyj.github.io/projects/PBR-SR/, Video: https://youtu.be/eaM5S3Mt1RM
Go Beyond Earth: Understanding Human Actions and Scenes in Microgravity Environments NeurIPS 2025
Despite substantial progress in video understanding, most existing datasets are limited to Earth's gravitational conditions. However, microgravity alters human motion, interactions, and visual semantics, revealing a critical gap for real-world vision systems. This presents a challenge for domain-robust video understanding in safety-critical space applications. To address this, we introduce MicroG-4M, the first benchmark for spatio-temporal and semantic understanding of human activities in microgravity. Constructed from real-world space missions and cinematic simulations, the dataset includes 4,759 clips covering 50 actions, 1,238 context-rich captions, and over 7,000 question-answer pairs on astronaut activities and scene understanding. MicroG-4M supports three core tasks: fine-grained multi-label action recognition, temporal video captioning, and visual question answering, enabling a comprehensive evaluation of both spatial localization and semantic reasoning in microgravity contexts. We establish baselines using state-of-the-art models. All data, annotations, and code are available at https://github.com/LEI-QI-233/HAR-in-Space.
comment: 15 pages, 3 figures, submitted to NeurIPS 2025
Random Registers for Cross-Domain Few-Shot Learning ICML 2025
Cross-domain few-shot learning (CDFSL) aims to transfer knowledge from a data-sufficient source domain to data-scarce target domains. Although Vision Transformer (ViT) has shown superior capability in many vision tasks, its transferability against huge domain gaps in CDFSL is still under-explored. In this paper, we find an intriguing phenomenon: during the source-domain training, prompt tuning, as a common way to train ViT, could be harmful for the generalization of ViT in target domains, but setting them to random noises (i.e., random registers) could consistently improve target-domain performance. We then delve into this phenomenon for an interpretation. We find that learnable prompts capture domain information during the training on the source dataset, which views irrelevant visual patterns as vital cues for recognition. This can be viewed as a kind of overfitting and increases the sharpness of the loss landscapes. In contrast, random registers are essentially a novel way of perturbing attention for the sharpness-aware minimization, which helps the model find a flattened minimum in loss landscapes, increasing the transferability. Based on this phenomenon and interpretation, we further propose a simple but effective approach for CDFSL to enhance the perturbation on attention maps by adding random registers on the semantic regions of image tokens, improving the effectiveness and efficiency of random registers. Extensive experiments on four benchmarks validate our rationale and state-of-the-art performance. Codes and models are available at https://github.com/shuaiyi308/REAP.
comment: Accepted by ICML 2025
SemVink: Advancing VLMs' Semantic Understanding of Optical Illusions via Visual Global Thinking
Vision-language models (VLMs) excel in semantic tasks but falter at a core human capability: detecting hidden content in optical illusions or AI-generated images through perceptual adjustments like zooming. We introduce HC-Bench, a benchmark of 112 images with hidden text, objects, and illusions, revealing that leading VLMs achieve near-zero accuracy (0-5.36%)-even with explicit prompting. Humans resolve such ambiguities instinctively, yet VLMs fail due to an overreliance on high-level semantics. Strikingly, we propose SemVink (Semantic Visual Thinking) by simply scaling images to low resolutions (32-128 pixels), which unlocks >99% accuracy by eliminating redundant visual noise. This exposes a critical architectural flaw: VLMs prioritize abstract reasoning over low-level visual operations crucial for real-world robustness. Our work urges a shift toward hybrid models integrating multi-scale processing, bridging the gap between computational vision and human cognition for applications in medical imaging, security, and beyond.
PhysGaia: A Physics-Aware Dataset of Multi-Body Interactions for Dynamic Novel View Synthesis
We introduce PhysGaia, a novel physics-aware dataset specifically designed for Dynamic Novel View Synthesis (DyNVS), encompassing both structured objects and unstructured physical phenomena. Unlike existing datasets that primarily focus on photorealistic reconstruction, PhysGaia is created to actively support physics-aware dynamic scene modeling. Our dataset provides complex dynamic scenarios with rich interactions among multiple objects, where they realistically collide with each other and exchange forces. Furthermore, it contains a diverse range of physical materials, such as liquid, gas, viscoelastic substance, and textile, which moves beyond the rigid bodies prevalent in existing datasets. All scenes in PhysGaia are faithfully generated to strictly adhere to physical laws, leveraging carefully selected material-specific physics solvers. To enable quantitative evaluation of physical modeling, our dataset provides essential ground-truth information, including 3D particle trajectories and physics parameters, e.g., viscosity. To facilitate research adoption, we also provide essential integration pipelines for using state-of-the-art DyNVS models with our dataset and report their results. By addressing the critical lack of datasets for physics-aware modeling, PhysGaia will significantly advance research in dynamic view synthesis, physics-based scene understanding, and deep learning models integrated with physical simulation -- ultimately enabling more faithful reconstruction and interpretation of complex dynamic scenes. Our datasets and codes are available in the project website, http://cvlab.snu.ac.kr/research/PhysGaia.
comment: Project page: http://cvlab.snu.ac.kr/research/PhysGaia, Data: https://huggingface.co/datasets/mijeongkim/PhysGaia/tree/main
Automated Measurement of Optic Nerve Sheath Diameter Using Ocular Ultrasound Video
Objective. Elevated intracranial pressure (ICP) is recognized as a biomarker of secondary brain injury, with a significant linear correlation observed between optic nerve sheath diameter (ONSD) and ICP. Frequent monitoring of ONSD could effectively support dynamic evaluation of ICP. However, ONSD measurement is heavily reliant on the operator's experience and skill, particularly in manually selecting the optimal frame from ultrasound sequences and measuring ONSD. Approach. This paper presents a novel method to automatically identify the optimal frame from video sequences for ONSD measurement by employing the Kernel Correlation Filter (KCF) tracking algorithm and Simple Linear Iterative Clustering (SLIC) segmentation algorithm. The optic nerve sheath is mapped and measured using a Gaussian Mixture Model (GMM) combined with a KL-divergence-based method. Results. When compared with the average measurements of two expert clinicians, the proposed method achieved a mean error, mean squared deviation, and intraclass correlation coefficient (ICC) of 0.04, 0.054, and 0.782, respectively. Significance. The findings suggest that this method provides highly accurate automated ONSD measurements, showing potential for clinical application.
comment: 17 pages, 9 figures
SAMJ: Fast Image Annotation on ImageJ/Fiji via Segment Anything Model
Mask annotation remains a significant bottleneck in AI-driven biomedical image analysis due to its labor-intensive nature. To address this challenge, we introduce SAMJ, a user-friendly ImageJ/Fiji plugin leveraging the Segment Anything Model (SAM). SAMJ enables seamless, interactive annotations with one-click installation on standard computers. Designed for real-time object delineation in large scientific images, SAMJ is an easy-to-use solution that simplifies and accelerates the creation of labeled image datasets.
FreeScene: Mixed Graph Diffusion for 3D Scene Synthesis from Free Prompts CVPR 2025
Controllability plays a crucial role in the practical applications of 3D indoor scene synthesis. Existing works either allow rough language-based control, that is convenient but lacks fine-grained scene customization, or employ graph based control, which offers better controllability but demands considerable knowledge for the cumbersome graph design process. To address these challenges, we present FreeScene, a user-friendly framework that enables both convenient and effective control for indoor scene synthesis.Specifically, FreeScene supports free-form user inputs including text description and/or reference images, allowing users to express versatile design intentions. The user inputs are adequately analyzed and integrated into a graph representation by a VLM-based Graph Designer. We then propose MG-DiT, a Mixed Graph Diffusion Transformer, which performs graph-aware denoising to enhance scene generation. Our MG-DiT not only excels at preserving graph structure but also offers broad applicability to various tasks, including, but not limited to, text-to-scene, graph-to-scene, and rearrangement, all within a single model. Extensive experiments demonstrate that FreeScene provides an efficient and user-friendly solution that unifies text-based and graph based scene synthesis, outperforming state-of-the-art methods in terms of both generation quality and controllability in a range of applications.
comment: Accepted to CVPR 2025
A Dynamic Transformer Network for Vehicle Detection
Stable consumer electronic systems can assist traffic better. Good traffic consumer electronic systems require collaborative work between traffic algorithms and hardware. However, performance of popular traffic algorithms containing vehicle detection methods based on deep networks via learning data relation rather than learning differences in different lighting and occlusions is limited. In this paper, we present a dynamic Transformer network for vehicle detection (DTNet). DTNet utilizes a dynamic convolution to guide a deep network to dynamically generate weights to enhance adaptability of an obtained detector. Taking into relations of different information account, a mixed attention mechanism based channel attention and Transformer is exploited to strengthen relations of channels and pixels to extract more salient information for vehicle detection. To overcome the drawback of difference in an image account, a translation-variant convolution relies on spatial location information to refine obtained structural information for vehicle detection. Experimental results illustrate that our DTNet is competitive for vehicle detection. Code of the proposed DTNet can be obtained at https://github.com/hellloxiaotian/DTNet.
comment: 8 pages, 5 figures. This paper has been accepted for publication in IEEE Transactions on Consumer Electronics
Unified Attention Modeling for Efficient Free-Viewing and Visual Search via Shared Representations
Computational human attention modeling in free-viewing and task-specific settings is often studied separately, with limited exploration of whether a common representation exists between them. This work investigates this question and proposes a neural network architecture that builds upon the Human Attention transformer (HAT) to test the hypothesis. Our results demonstrate that free-viewing and visual search can efficiently share a common representation, allowing a model trained in free-viewing attention to transfer its knowledge to task-driven visual search with a performance drop of only 3.86% in the predicted fixation scanpaths, measured by the semantic sequence score (SemSS) metric which reflects the similarity between predicted and human scanpaths. This transfer reduces computational costs by 92.29% in terms of GFLOPs and 31.23% in terms of trainable parameters.
comment: Accepted to the 2025 IEEE International Conference on Development and Learning (ICDL)
Rethinking Machine Unlearning in Image Generation Models CCS 2025
With the surge and widespread application of image generation models, data privacy and content safety have become major concerns and attracted great attention from users, service providers, and policymakers. Machine unlearning (MU) is recognized as a cost-effective and promising means to address these challenges. Despite some advancements, image generation model unlearning (IGMU) still faces remarkable gaps in practice, e.g., unclear task discrimination and unlearning guidelines, lack of an effective evaluation framework, and unreliable evaluation metrics. These can hinder the understanding of unlearning mechanisms and the design of practical unlearning algorithms. We perform exhaustive assessments over existing state-of-the-art unlearning algorithms and evaluation standards, and discover several critical flaws and challenges in IGMU tasks. Driven by these limitations, we make several core contributions, to facilitate the comprehensive understanding, standardized categorization, and reliable evaluation of IGMU. Specifically, (1) We design CatIGMU, a novel hierarchical task categorization framework. It provides detailed implementation guidance for IGMU, assisting in the design of unlearning algorithms and the construction of testbeds. (2) We introduce EvalIGMU, a comprehensive evaluation framework. It includes reliable quantitative metrics across five critical aspects. (3) We construct DataIGM, a high-quality unlearning dataset, which can be used for extensive evaluations of IGMU, training content detectors for judgment, and benchmarking the state-of-the-art unlearning algorithms. With EvalIGMU and DataIGM, we discover that most existing IGMU algorithms cannot handle the unlearning well across different evaluation dimensions, especially for preservation and robustness. Code and models are available at https://github.com/ryliu68/IGMU.
comment: Accepted by ACM CCS 2025
RobustSplat: Decoupling Densification and Dynamics for Transient-Free 3DGS
3D Gaussian Splatting (3DGS) has gained significant attention for its real-time, photo-realistic rendering in novel-view synthesis and 3D modeling. However, existing methods struggle with accurately modeling scenes affected by transient objects, leading to artifacts in the rendered images. We identify that the Gaussian densification process, while enhancing scene detail capture, unintentionally contributes to these artifacts by growing additional Gaussians that model transient disturbances. To address this, we propose RobustSplat, a robust solution based on two critical designs. First, we introduce a delayed Gaussian growth strategy that prioritizes optimizing static scene structure before allowing Gaussian splitting/cloning, mitigating overfitting to transient objects in early optimization. Second, we design a scale-cascaded mask bootstrapping approach that first leverages lower-resolution feature similarity supervision for reliable initial transient mask estimation, taking advantage of its stronger semantic consistency and robustness to noise, and then progresses to high-resolution supervision to achieve more precise mask prediction. Extensive experiments on multiple challenging datasets show that our method outperforms existing methods, clearly demonstrating the robustness and effectiveness of our method. Our project page is https://fcyycf.github.io/RobustSplat/.
comment: Project page: https://fcyycf.github.io/RobustSplat/
VTGaussian-SLAM: RGBD SLAM for Large Scale Scenes with Splatting View-Tied 3D Gaussians ICML 2025
Jointly estimating camera poses and mapping scenes from RGBD images is a fundamental task in simultaneous localization and mapping (SLAM). State-of-the-art methods employ 3D Gaussians to represent a scene, and render these Gaussians through splatting for higher efficiency and better rendering. However, these methods cannot scale up to extremely large scenes, due to the inefficient tracking and mapping strategies that need to optimize all 3D Gaussians in the limited GPU memories throughout the training to maintain the geometry and color consistency to previous RGBD observations. To resolve this issue, we propose novel tracking and mapping strategies to work with a novel 3D representation, dubbed view-tied 3D Gaussians, for RGBD SLAM systems. View-tied 3D Gaussians is a kind of simplified Gaussians, which is tied to depth pixels, without needing to learn locations, rotations, and multi-dimensional variances. Tying Gaussians to views not only significantly saves storage but also allows us to employ many more Gaussians to represent local details in the limited GPU memory. Moreover, our strategies remove the need of maintaining all Gaussians learnable throughout the training, while improving rendering quality, and tracking accuracy. We justify the effectiveness of these designs, and report better performance over the latest methods on the widely used benchmarks in terms of rendering and tracking accuracy and scalability. Please see our project page for code and videos at https://machineperceptionlab.github.io/VTGaussian-SLAM-Project .
comment: ICML 2025
Open-PMC-18M: A High-Fidelity Large Scale Medical Dataset for Multimodal Representation Learning
Compound figures, which are multi-panel composites containing diverse subfigures, are ubiquitous in biomedical literature, yet large-scale subfigure extraction remains largely unaddressed. Prior work on subfigure extraction has been limited in both dataset size and generalizability, leaving a critical open question: How does high-fidelity image-text alignment via large-scale subfigure extraction impact representation learning in vision-language models? We address this gap by introducing a scalable subfigure extraction pipeline based on transformer-based object detection, trained on a synthetic corpus of 500,000 compound figures, and achieving state-of-the-art performance on both ImageCLEF 2016 and synthetic benchmarks. Using this pipeline, we release OPEN-PMC-18M, a large-scale high quality biomedical vision-language dataset comprising 18 million clinically relevant subfigure-caption pairs spanning radiology, microscopy, and visible light photography. We train and evaluate vision-language models on our curated datasets and show improved performance across retrieval, zero-shot classification, and robustness benchmarks, outperforming existing baselines. We release our dataset, models, and code to support reproducible benchmarks and further study into biomedical vision-language modeling and representation learning.
comment: 15 pages
GeneA-SLAM2: Dynamic SLAM with AutoEncoder-Preprocessed Genetic Keypoints Resampling and Depth Variance-Guided Dynamic Region Removal
Existing semantic SLAM in dynamic environments mainly identify dynamic regions through object detection or semantic segmentation methods. However, in certain highly dynamic scenarios, the detection boxes or segmentation masks cannot fully cover dynamic regions. Therefore, this paper proposes a robust and efficient GeneA-SLAM2 system that leverages depth variance constraints to handle dynamic scenes. Our method extracts dynamic pixels via depth variance and creates precise depth masks to guide the removal of dynamic objects. Simultaneously, an autoencoder is used to reconstruct keypoints, improving the genetic resampling keypoint algorithm to obtain more uniformly distributed keypoints and enhance the accuracy of pose estimation. Our system was evaluated on multiple highly dynamic sequences. The results demonstrate that GeneA-SLAM2 maintains high accuracy in dynamic scenes compared to current methods. Code is available at: https://github.com/qingshufan/GeneA-SLAM2.
LinkTo-Anime: A 2D Animation Optical Flow Dataset from 3D Model Rendering
Existing optical flow datasets focus primarily on real-world simulation or synthetic human motion, but few are tailored to Celluloid(cel) anime character motion: a domain with unique visual and motion characteristics. To bridge this gap and facilitate research in optical flow estimation and downstream tasks such as anime video generation and line drawing colorization, we introduce LinkTo-Anime, the first high-quality dataset specifically designed for cel anime character motion generated with 3D model rendering. LinkTo-Anime provides rich annotations including forward and backward optical flow, occlusion masks, and Mixamo Skeleton. The dataset comprises 395 video sequences, totally 24,230 training frames, 720 validation frames, and 4,320 test frames. Furthermore, a comprehensive benchmark is constructed with various optical flow estimation methods to analyze the shortcomings and limitations across multiple datasets.
Iterative Self-Improvement of Vision Language Models for Image Scoring and Self-Explanation ICIP2025
Image scoring is a crucial task in numerous real-world applications. To trust a model's judgment, understanding its rationale is essential. This paper proposes a novel training method for Vision Language Models (VLMs) to generate not only image scores but also corresponding justifications in natural language. Leveraging only an image scoring dataset and an instruction-tuned VLM, our method enables self-training, utilizing the VLM's generated text without relying on external data or models. In addition, we introduce a simple method for creating a dataset designed to improve alignment between predicted scores and their textual justifications. By iteratively training the model with Direct Preference Optimization on two distinct datasets and merging them, we can improve both scoring accuracy and the coherence of generated explanations.
comment: Accepted to ICIP2025
ToothForge: Automatic Dental Shape Generation using Synchronized Spectral Embeddings
We introduce ToothForge, a spectral approach for automatically generating novel 3D teeth, effectively addressing the sparsity of dental shape datasets. By operating in the spectral domain, our method enables compact machine learning modeling, allowing the generation of high-resolution tooth meshes in milliseconds. However, generating shape spectra comes with the instability of the decomposed harmonics. To address this, we propose modeling the latent manifold on synchronized frequential embeddings. Spectra of all data samples are aligned to a common basis prior to the training procedure, effectively eliminating biases introduced by the decomposition instability. Furthermore, synchronized modeling removes the limiting factor imposed by previous methods, which require all shapes to share a common fixed connectivity. Using a private dataset of real dental crowns, we observe a greater reconstruction quality of the synthetized shapes, exceeding those of models trained on unaligned embeddings. We also explore additional applications of spectral analysis in digital dentistry, such as shape compression and interpolation. ToothForge facilitates a range of approaches at the intersection of spectral analysis and machine learning, with fewer restrictions on mesh structure. This makes it applicable for shape analysis not only in dentistry, but also in broader medical applications, where guaranteeing consistent connectivity across shapes from various clinics is unrealistic. The code is available at https://github.com/tiborkubik/toothForge.
comment: Information Processing in Medical Imaging (IPMI2025)
Smoothed Preference Optimization via ReNoise Inversion for Aligning Diffusion Models with Varied Human Preferences ICML 2025
Direct Preference Optimization (DPO) aligns text-to-image (T2I) generation models with human preferences using pairwise preference data. Although substantial resources are expended in collecting and labeling datasets, a critical aspect is often neglected: \textit{preferences vary across individuals and should be represented with more granularity.} To address this, we propose SmPO-Diffusion, a novel method for modeling preference distributions to improve the DPO objective, along with a numerical upper bound estimation for the diffusion optimization objective. First, we introduce a smoothed preference distribution to replace the original binary distribution. We employ a reward model to simulate human preferences and apply preference likelihood averaging to improve the DPO loss, such that the loss function approaches zero when preferences are similar. Furthermore, we utilize an inversion technique to simulate the trajectory preference distribution of the diffusion model, enabling more accurate alignment with the optimization objective. Our approach effectively mitigates issues of excessive optimization and objective misalignment present in existing methods through straightforward modifications. Our SmPO-Diffusion achieves state-of-the-art performance in preference evaluation, outperforming baselines across metrics with lower training costs. The project page is https://jaydenlyh.github.io/SmPO-project-page/.
comment: Accepted by ICML 2025
LayoutRAG: Retrieval-Augmented Model for Content-agnostic Conditional Layout Generation
Controllable layout generation aims to create plausible visual arrangements of element bounding boxes within a graphic design according to certain optional constraints, such as the type or position of a specific component. While recent diffusion or flow-matching models have achieved considerable advances in multifarious conditional generation tasks, there remains considerable room for generating optimal arrangements under given conditions. In this work, we propose to carry out layout generation through retrieving by conditions and reference-guided generation. Specifically, we retrieve appropriate layout templates according to given conditions as references. The references are then utilized to guide the denoising or flow-based transport process. By retrieving layouts compatible with the given conditions, we can uncover the potential information not explicitly provided in the given condition. Such an approach offers more effective guidance to the model during the generation process, in contrast to previous models that feed the condition to the model and let the model infer the unprovided layout attributes directly. Meanwhile, we design a condition-modulated attention that selectively absorbs retrieval knowledge, adapting to the difference between retrieved templates and given conditions. Extensive experiment results show that our method successfully produces high-quality layouts that meet the given conditions and outperforms existing state-of-the-art models. Code will be released upon acceptance.
comment: 12 pages, 5 figures
FaceSleuth: Learning-Driven Single-Orientation Attention Verifies Vertical Dominance in Micro-Expression Recognition
Micro-expression recognition (MER) demands models that can amplify millisecond-level, low-amplitude facial motions while suppressing identity-specific appearance. We introduce FaceSleuth, a dual-stream architecture that (1) enhances motion along the empirically dominant vertical axix through a Continuously Vertical Attention (CVA) block, (2) localises the resulting signals with a Facial Position Focalizer built on hierarchical cross-window attention, and (3) steers feature learning toward physiologically meaningful regions via lightweight Action-Unit embeddings. To examine whether the hand-chosen vertical axis is indeed optimal, we further propose a Single-Orientation Attention (SOA) module that learns its own pooling direction end-to-end. SOA is differentiable, adds only 0.16 % parameters, and collapses to CVA when the learned angle converges to {\Pi}/2. In practice, SOA reliably drifts to 88{\deg}, confirming the effectiveness of the vertical prior while delivering consistent gains. On three standard MER benchmarks, FaceSleuth with CVA already surpasses previous state-of-the-art methods; plugging in SOA lifts accuracy and F1 score performance to 95.1 % / 0.918 on CASME II, 87.1 % / 0.840 on SAMM, and 92.9 % / 0.917 on MMEW without sacrificing model compactness. These results establish a new state of the art and, for the first time, provide empirical evidence that the vertical attention bias is the most discriminative orientation for MER.
comment: 12 pages, 2 figures
Large-scale Self-supervised Video Foundation Model for Intelligent Surgery
Computer-Assisted Intervention (CAI) has the potential to revolutionize modern surgery, with surgical scene understanding serving as a critical component in supporting decision-making, improving procedural efficacy, and ensuring intraoperative safety. While existing AI-driven approaches alleviate annotation burdens via self-supervised spatial representation learning, their lack of explicit temporal modeling during pre-training fundamentally restricts the capture of dynamic surgical contexts, resulting in incomplete spatiotemporal understanding. In this work, we introduce the first video-level surgical pre-training framework that enables joint spatiotemporal representation learning from large-scale surgical video data. To achieve this, we constructed a large-scale surgical video dataset comprising 3,650 videos and approximately 3.55 million frames, spanning more than 20 surgical procedures and over 10 anatomical structures. Building upon this dataset, we propose SurgVISTA (Surgical Video-level Spatial-Temporal Architecture), a reconstruction-based pre-training method that captures intricate spatial structures and temporal dynamics through joint spatiotemporal modeling. Additionally, SurgVISTA incorporates image-level knowledge distillation guided by a surgery-specific expert to enhance the learning of fine-grained anatomical and semantic features. To validate its effectiveness, we established a comprehensive benchmark comprising 13 video-level datasets spanning six surgical procedures across four tasks. Extensive experiments demonstrate that SurgVISTA consistently outperforms both natural- and surgical-domain pre-trained models, demonstrating strong potential to advance intelligent surgical systems in clinically meaningful scenarios.
Towards Geometry Problem Solving in the Large Model Era: A Survey
Geometry problem solving (GPS) represents a critical frontier in artificial intelligence, with profound applications in education, computer-aided design, and computational graphics. Despite its significance, automating GPS remains challenging due to the dual demands of spatial understanding and rigorous logical reasoning. Recent advances in large models have enabled notable breakthroughs, particularly for SAT-level problems, yet the field remains fragmented across methodologies, benchmarks, and evaluation frameworks. This survey systematically synthesizes GPS advancements through three core dimensions: (1) benchmark construction, (2) textual and diagrammatic parsing, and (3) reasoning paradigms. We further propose a unified analytical paradigm, assess current limitations, and identify emerging opportunities to guide future research toward human-level geometric reasoning, including automated benchmark generation and interpretable neuro-symbolic integration.
comment: 8pages, 4 figures, conference submission
Solving Inverse Problems with FLAIR
Flow-based latent generative models such as Stable Diffusion 3 are able to generate images with remarkable quality, even enabling photorealistic text-to-image generation. Their impressive performance suggests that these models should also constitute powerful priors for inverse imaging problems, but that approach has not yet led to comparable fidelity. There are several key obstacles: (i) the encoding into a lower-dimensional latent space makes the underlying (forward) mapping non-linear; (ii) the data likelihood term is usually intractable; and (iii) learned generative models struggle to recover rare, atypical data modes during inference. We present FLAIR, a novel training free variational framework that leverages flow-based generative models as a prior for inverse problems. To that end, we introduce a variational objective for flow matching that is agnostic to the type of degradation, and combine it with deterministic trajectory adjustments to recover atypical modes. To enforce exact consistency with the observed data, we decouple the optimization of the data fidelity and regularization terms. Moreover, we introduce a time-dependent calibration scheme in which the strength of the regularization is modulated according to off-line accuracy estimates. Results on standard imaging benchmarks demonstrate that FLAIR consistently outperforms existing diffusion- and flow-based methods in terms of reconstruction quality and sample diversity.
Self-Disentanglement and Re-Composition for Cross-Domain Few-Shot Segmentation ICML 2025
Cross-Domain Few-Shot Segmentation (CD-FSS) aims to transfer knowledge from a source-domain dataset to unseen target-domain datasets with limited annotations. Current methods typically compare the distance between training and testing samples for mask prediction. However, we find an entanglement problem exists in this widely adopted method, which tends to bind sourcedomain patterns together and make each of them hard to transfer. In this paper, we aim to address this problem for the CD-FSS task. We first find a natural decomposition of the ViT structure, based on which we delve into the entanglement problem for an interpretation. We find the decomposed ViT components are crossly compared between images in distance calculation, where the rational comparisons are entangled with those meaningless ones by their equal importance, leading to the entanglement problem. Based on this interpretation, we further propose to address the entanglement problem by learning to weigh for all comparisons of ViT components, which learn disentangled features and re-compose them for the CD-FSS task, benefiting both the generalization and finetuning. Experiments show that our model outperforms the state-of-the-art CD-FSS method by 1.92% and 1.88% in average accuracy under 1-shot and 5-shot settings, respectively.
comment: Accepted by ICML 2025
Small Aid, Big Leap: Efficient Test-Time Adaptation for Vision-Language Models with AdaptNet
Test-time adaptation (TTA) has emerged as a critical technique for enhancing the generalization capability of vision-language models (VLMs) during inference. However, existing approaches often incur substantial computational costs and exhibit poor scalability, primarily due to sample-wise adaptation granularity and reliance on costly auxiliary designs such as data augmentation. To address these limitations, we introduce SAIL (Small Aid, Big Leap), a novel adapter-based TTA framework that leverages a lightweight, learnable AdaptNet to enable efficient and scalable model adaptation. As SAIL's core, a frozen pre-trained VLM collaborates with AdaptNet through a confidence-based interpolation weight, generating robust predictions during inference. These predictions serve as self-supervised targets to align AdaptNet's outputs through efficient batch-wise processing, dramatically reducing computational costs without modifying the VLM or requiring memory caches. To mitigate catastrophic forgetting during continual adaptation, we propose a gradient-aware reset strategy driven by a gradient drift indicator (GDI), which dynamically detects domain transitions and strategically resets AdaptNet for stable adaptation. Extensive experiments across diverse benchmarks on two scenarios demonstrate that SAIL achieves state-of-the-art performance while maintaining low computational costs. These results highlight SAIL's effectiveness, efficiency and scalability for real-world deployment. The code will be released upon acceptance.
MotionRAG-Diff: A Retrieval-Augmented Diffusion Framework for Long-Term Music-to-Dance Generation
Generating long-term, coherent, and realistic music-conditioned dance sequences remains a challenging task in human motion synthesis. Existing approaches exhibit critical limitations: motion graph methods rely on fixed template libraries, restricting creative generation; diffusion models, while capable of producing novel motions, often lack temporal coherence and musical alignment. To address these challenges, we propose $\textbf{MotionRAG-Diff}$, a hybrid framework that integrates Retrieval-Augmented Generation (RAG) with diffusion-based refinement to enable high-quality, musically coherent dance generation for arbitrary long-term music inputs. Our method introduces three core innovations: (1) A cross-modal contrastive learning architecture that aligns heterogeneous music and dance representations in a shared latent space, establishing unsupervised semantic correspondence without paired data; (2) An optimized motion graph system for efficient retrieval and seamless concatenation of motion segments, ensuring realism and temporal coherence across long sequences; (3) A multi-condition diffusion model that jointly conditions on raw music signals and contrastive features to enhance motion quality and global synchronization. Extensive experiments demonstrate that MotionRAG-Diff achieves state-of-the-art performance in motion quality, diversity, and music-motion synchronization accuracy. This work establishes a new paradigm for music-driven dance generation by synergizing retrieval-based template fidelity with diffusion-based creative enhancement.
comment: 12 pages, 5 figures
ControlMambaIR: Conditional Controls with State-Space Model for Image Restoration
This paper proposes ControlMambaIR, a novel image restoration method designed to address perceptual challenges in image deraining, deblurring, and denoising tasks. By integrating the Mamba network architecture with the diffusion model, the condition network achieves refined conditional control, thereby enhancing the control and optimization of the image generation process. To evaluate the robustness and generalization capability of our method across various image degradation conditions, extensive experiments were conducted on several benchmark datasets, including Rain100H, Rain100L, GoPro, and SSID. The results demonstrate that our proposed approach consistently surpasses existing methods in perceptual quality metrics, such as LPIPS and FID, while maintaining comparable performance in image distortion metrics, including PSNR and SSIM, highlighting its effectiveness and adaptability. Notably, ablation experiments reveal that directly noise prediction in the diffusion process achieves better performance, effectively balancing noise suppression and detail preservation. Furthermore, the findings indicate that the Mamba architecture is particularly well-suited as a conditional control network for diffusion models, outperforming both CNN- and Attention-based approaches in this context. Overall, these results highlight the flexibility and effectiveness of ControlMambaIR in addressing a range of image restoration perceptual challenges.
Synthetic Iris Image Databases and Identity Leakage: Risks and Mitigation Strategies
This paper presents a comprehensive overview of iris image synthesis methods, which can alleviate the issues associated with gathering large, diverse datasets of biometric data from living individuals, which are considered pivotal for biometric methods development. These methods for synthesizing iris data range from traditional, hand crafted image processing-based techniques, through various iterations of GAN-based image generators, variational autoencoders (VAEs), as well as diffusion models. The potential and fidelity in iris image generation of each method is discussed and examples of inferred predictions are provided. Furthermore, the risks of individual biometric features leakage from the training sets are considered, together with possible strategies for preventing them, which have to be implemented should these generative methods be considered a valid replacement of real-world biometric datasets.
SiamNAS: Siamese Surrogate Model for Dominance Relation Prediction in Multi-objective Neural Architecture Search GECCO' 25
Modern neural architecture search (NAS) is inherently multi-objective, balancing trade-offs such as accuracy, parameter count, and computational cost. This complexity makes NAS computationally expensive and nearly impossible to solve without efficient approximations. To address this, we propose a novel surrogate modelling approach that leverages an ensemble of Siamese network blocks to predict dominance relationships between candidate architectures. Lightweight and easy to train, the surrogate achieves 92% accuracy and replaces the crowding distance calculation in the survivor selection strategy with a heuristic rule based on model size. Integrated into a framework termed SiamNAS, this design eliminates costly evaluations during the search process. Experiments on NAS-Bench-201 demonstrate the framework's ability to identify Pareto-optimal solutions with significantly reduced computational costs. The proposed SiamNAS identified a final non-dominated set containing the best architecture in NAS-Bench-201 for CIFAR-10 and the second-best for ImageNet, in terms of test error rate, within 0.01 GPU days. This proof-of-concept study highlights the potential of the proposed Siamese network surrogate model to generalise to multi-tasking optimisation, enabling simultaneous optimisation across tasks. Additionally, it offers opportunities to extend the approach for generating Sets of Pareto Sets (SOS), providing diverse Pareto-optimal solutions for heterogeneous task settings.
comment: Genetic and Evolutionary Computation Conference (GECCO' 25)
FlexPainter: Flexible and Multi-View Consistent Texture Generation
Texture map production is an important part of 3D modeling and determines the rendering quality. Recently, diffusion-based methods have opened a new way for texture generation. However, restricted control flexibility and limited prompt modalities may prevent creators from producing desired results. Furthermore, inconsistencies between generated multi-view images often lead to poor texture generation quality. To address these issues, we introduce \textbf{FlexPainter}, a novel texture generation pipeline that enables flexible multi-modal conditional guidance and achieves highly consistent texture generation. A shared conditional embedding space is constructed to perform flexible aggregation between different input modalities. Utilizing such embedding space, we present an image-based CFG method to decompose structural and style information, achieving reference image-based stylization. Leveraging the 3D knowledge within the image diffusion prior, we first generate multi-view images simultaneously using a grid representation to enhance global understanding. Meanwhile, we propose a view synchronization and adaptive weighting module during diffusion sampling to further ensure local consistency. Finally, a 3D-aware texture completion model combined with a texture enhancement model is used to generate seamless, high-resolution texture maps. Comprehensive experiments demonstrate that our framework significantly outperforms state-of-the-art methods in both flexibility and generation quality.
comment: 11 pages, 10 figures in main paper, 10 pages, 12 figures in supplementary
Rodrigues Network for Learning Robot Actions
Understanding and predicting articulated actions is important in robot learning. However, common architectures such as MLPs and Transformers lack inductive biases that reflect the underlying kinematic structure of articulated systems. To this end, we propose the Neural Rodrigues Operator, a learnable generalization of the classical forward kinematics operation, designed to inject kinematics-aware inductive bias into neural computation. Building on this operator, we design the Rodrigues Network (RodriNet), a novel neural architecture specialized for processing actions. We evaluate the expressivity of our network on two synthetic tasks on kinematic and motion prediction, showing significant improvements compared to standard backbones. We further demonstrate its effectiveness in two realistic applications: (i) imitation learning on robotic benchmarks with the Diffusion Policy, and (ii) single-image 3D hand reconstruction. Our results suggest that integrating structured kinematic priors into the network architecture improves action learning in various domains.
Hierarchical Question-Answering for Driving Scene Understanding Using Vision-Language Models
In this paper, we present a hierarchical question-answering (QA) approach for scene understanding in autonomous vehicles, balancing cost-efficiency with detailed visual interpretation. The method fine-tunes a compact vision-language model (VLM) on a custom dataset specific to the geographical area in which the vehicle operates to capture key driving-related visual elements. At the inference stage, the hierarchical QA strategy decomposes the scene understanding task into high-level and detailed sub-questions. Instead of generating lengthy descriptions, the VLM navigates a structured question tree, where answering high-level questions (e.g., "Is it possible for the ego vehicle to turn left at the intersection?") triggers more detailed sub-questions (e.g., "Is there a vehicle approaching the intersection from the opposite direction?"). To optimize inference time, questions are dynamically skipped based on previous answers, minimizing computational overhead. The extracted answers are then synthesized using handcrafted templates to ensure coherent, contextually accurate scene descriptions. We evaluate the proposed approach on the custom dataset using GPT reference-free scoring, demonstrating its competitiveness with state-of-the-art methods like GPT-4o in capturing key scene details while achieving significantly lower inference time. Moreover, qualitative results from real-time deployment highlight the proposed approach's capacity to capture key driving elements with minimal latency.
comment: This work has been submitted to the IEEE for possible publication
High Performance Space Debris Tracking in Complex Skylight Backgrounds with a Large-Scale Dataset
With the rapid development of space exploration, space debris has attracted more attention due to its potential extreme threat, leading to the need for real-time and accurate debris tracking. However, existing methods are mainly based on traditional signal processing, which cannot effectively process the complex background and dense space debris. In this paper, we propose a deep learning-based Space Debris Tracking Network~(SDT-Net) to achieve highly accurate debris tracking. SDT-Net effectively represents the feature of debris, enhancing the efficiency and stability of end-to-end model learning. To train and evaluate this model effectively, we also produce a large-scale dataset Space Debris Tracking Dataset (SDTD) by a novel observation-based data simulation scheme. SDTD contains 18,040 video sequences with a total of 62,562 frames and covers 250,000 synthetic space debris. Extensive experiments validate the effectiveness of our model and the challenging of our dataset. Furthermore, we test our model on real data from the Antarctic Station, achieving a MOTA score of 70.6%, which demonstrates its strong transferability to real-world scenarios. Our dataset and code will be released soon.
One-Step Diffusion-based Real-World Image Super-Resolution with Visual Perception Distillation
Diffusion-based models have been widely used in various visual generation tasks, showing promising results in image super-resolution (SR), while typically being limited by dozens or even hundreds of sampling steps. Although existing methods aim to accelerate the inference speed of multi-step diffusion-based SR methods through knowledge distillation, their generated images exhibit insufficient semantic alignment with real images, resulting in suboptimal perceptual quality reconstruction, specifically reflected in the CLIPIQA score. These methods still have many challenges in perceptual quality and semantic fidelity. Based on the challenges, we propose VPD-SR, a novel visual perception diffusion distillation framework specifically designed for SR, aiming to construct an effective and efficient one-step SR model. Specifically, VPD-SR consists of two components: Explicit Semantic-aware Supervision (ESS) and High-Frequency Perception (HFP) loss. Firstly, the ESS leverages the powerful visual perceptual understanding capabilities of the CLIP model to extract explicit semantic supervision, thereby enhancing semantic consistency. Then, Considering that high-frequency information contributes to the visual perception quality of images, in addition to the vanilla distillation loss, the HFP loss guides the student model to restore the missing high-frequency details in degraded images that are critical for enhancing perceptual quality. Lastly, we expand VPD-SR in adversarial training manner to further enhance the authenticity of the generated content. Extensive experiments conducted on synthetic and real-world datasets demonstrate that the proposed VPD-SR achieves superior performance compared to both previous state-of-the-art methods and the teacher model with just one-step sampling.
Application of convolutional neural networks in image super-resolution
Due to strong learning abilities of convolutional neural networks (CNNs), they have become mainstream methods for image super-resolution. However, there are big differences of different deep learning methods with different types. There is little literature to summarize relations and differences of different methods in image super-resolution. Thus, summarizing these literatures are important, according to loading capacity and execution speed of devices. This paper first introduces principles of CNNs in image super-resolution, then introduces CNNs based bicubic interpolation, nearest neighbor interpolation, bilinear interpolation, transposed convolution, sub-pixel layer, meta up-sampling for image super-resolution to analyze differences and relations of different CNNs based interpolations and modules, and compare performance of these methods by experiments. Finally, this paper gives potential research points and drawbacks and summarizes the whole paper, which can facilitate developments of CNNs in image super-resolution.
comment: It has been accepted by CAAI transactions on intelligent systems, in Chinese language
Hyperspectral Image Generation with Unmixing Guided Diffusion Model
Recently, hyperspectral image generation has received increasing attention, but existing generative models rely on conditional generation schemes, which limits the diversity of generated images. Diffusion models are popular for their ability to generate high-quality samples, but adapting these models from RGB to hyperspectral data presents the challenge of high dimensionality and physical constraints. To address these challenges, we propose a novel diffusion model guided by hyperspectral unmixing. Our model comprises two key modules: an unmixing autoencoder module and an abundance diffusion module. The unmixing autoencoder module leverages unmixing guidance to shift the generative task from the image space to the low-dimensional abundance space, significantly reducing computational complexity while preserving high fidelity. The abundance diffusion module generates samples that satisfy the constraints of non-negativity and unity, ensuring the physical consistency of the reconstructed HSIs. Additionally, we introduce two evaluation metrics tailored to hyperspectral data. Empirical results, evaluated using both traditional metrics and our proposed metrics, indicate that our model is capable of generating high-quality and diverse hyperspectral images, offering an advancement in hyperspectral data generation.
BEVCALIB: LiDAR-Camera Calibration via Geometry-Guided Bird's-Eye View Representations
Accurate LiDAR-camera calibration is fundamental to fusing multi-modal perception in autonomous driving and robotic systems. Traditional calibration methods require extensive data collection in controlled environments and cannot compensate for the transformation changes during the vehicle/robot movement. In this paper, we propose the first model that uses bird's-eye view (BEV) features to perform LiDAR camera calibration from raw data, termed BEVCALIB. To achieve this, we extract camera BEV features and LiDAR BEV features separately and fuse them into a shared BEV feature space. To fully utilize the geometric information from the BEV feature, we introduce a novel feature selector to filter the most important features in the transformation decoder, which reduces memory consumption and enables efficient training. Extensive evaluations on KITTI, NuScenes, and our own dataset demonstrate that BEVCALIB establishes a new state of the art. Under various noise conditions, BEVCALIB outperforms the best baseline in the literature by an average of (47.08%, 82.32%) on KITTI dataset, and (78.17%, 68.29%) on NuScenes dataset, in terms of (translation, rotation), respectively. In the open-source domain, it improves the best reproducible baseline by one order of magnitude. Our code and demo results are available at https://cisl.ucr.edu/BEVCalib.
A Tree-guided CNN for image super-resolution
Deep convolutional neural networks can extract more accurate structural information via deep architectures to obtain good performance in image super-resolution. However, it is not easy to find effect of important layers in a single network architecture to decrease performance of super-resolution. In this paper, we design a tree-guided CNN for image super-resolution (TSRNet). It uses a tree architecture to guide a deep network to enhance effect of key nodes to amplify the relation of hierarchical information for improving the ability of recovering images. To prevent insufficiency of the obtained structural information, cosine transform techniques in the TSRNet are used to extract cross-domain information to improve the performance of image super-resolution. Adaptive Nesterov momentum optimizer (Adan) is applied to optimize parameters to boost effectiveness of training a super-resolution model. Extended experiments can verify superiority of the proposed TSRNet for restoring high-quality images. Its code can be obtained at https://github.com/hellloxiaotian/TSRNet.
comment: This paper has been accepted for publication in IEEE Transactions on Consumer Electronics. 10 pages, 6 figures. Its code can be obtained at https://github.com/hellloxiaotian/TSRNet
Dynamic mapping from static labels: remote sensing dynamic sample generation with temporal-spectral embedding
Accurate remote sensing geographic mapping depends heavily on representative and timely sample data. However, rapid changes in land surface dynamics necessitate frequent updates, quickly rendering previously collected samples obsolete and imposing significant labor demands for continuous manual updates. In this study, we aim to address this problem by dynamic sample generation using existing single-date static labeled samples. We introduce TasGen, a two-stage automated framework to automatically generate dynamic samples, designed to simultaneously model spectral and temporal dependencies in time-series remote sensing imagery via temporal-spectral embedding, capturing land surface changes without additional manual annotations.
Contrast & Compress: Learning Lightweight Embeddings for Short Trajectories
The ability to retrieve semantically and directionally similar short-range trajectories with both accuracy and efficiency is foundational for downstream applications such as motion forecasting and autonomous navigation. However, prevailing approaches often depend on computationally intensive heuristics or latent anchor representations that lack interpretability and controllability. In this work, we propose a novel framework for learning fixed-dimensional embeddings for short trajectories by leveraging a Transformer encoder trained with a contrastive triplet loss that emphasize the importance of discriminative feature spaces for trajectory data. We analyze the influence of Cosine and FFT-based similarity metrics within the contrastive learning paradigm, with a focus on capturing the nuanced directional intent that characterizes short-term maneuvers. Our empirical evaluation on the Argoverse 2 dataset demonstrates that embeddings shaped by Cosine similarity objectives yield superior clustering of trajectories by both semantic and directional attributes, outperforming FFT-based baselines in retrieval tasks. Notably, we show that compact Transformer architectures, even with low-dimensional embeddings (e.g., 16 dimensions, but qualitatively down to 4), achieve a compelling balance between retrieval performance (minADE, minFDE) and computational overhead, aligning with the growing demand for scalable and interpretable motion priors in real-time systems. The resulting embeddings provide a compact, semantically meaningful, and efficient representation of trajectory data, offering a robust alternative to heuristic similarity measures and paving the way for more transparent and controllable motion forecasting pipelines.
comment: Submitted for peer review
DCI: Dual-Conditional Inversion for Boosting Diffusion-Based Image Editing
Diffusion models have achieved remarkable success in image generation and editing tasks. Inversion within these models aims to recover the latent noise representation for a real or generated image, enabling reconstruction, editing, and other downstream tasks. However, to date, most inversion approaches suffer from an intrinsic trade-off between reconstruction accuracy and editing flexibility. This limitation arises from the difficulty of maintaining both semantic alignment and structural consistency during the inversion process. In this work, we introduce Dual-Conditional Inversion (DCI), a novel framework that jointly conditions on the source prompt and reference image to guide the inversion process. Specifically, DCI formulates the inversion process as a dual-condition fixed-point optimization problem, minimizing both the latent noise gap and the reconstruction error under the joint guidance. This design anchors the inversion trajectory in both semantic and visual space, leading to more accurate and editable latent representations. Our novel setup brings new understanding to the inversion process. Extensive experiments demonstrate that DCI achieves state-of-the-art performance across multiple editing tasks, significantly improving both reconstruction quality and editing precision. Furthermore, we also demonstrate that our method achieves strong results in reconstruction tasks, implying a degree of robustness and generalizability approaching the ultimate goal of the inversion process.
Kernel-based Unsupervised Embedding Alignment for Enhanced Visual Representation in Vision-language Models ICML 2025
Vision-language models, such as CLIP, have achieved significant success in aligning visual and textual representations, becoming essential components of many multi-modal large language models (MLLMs) like LLaVA and OpenFlamingo. However, numerous studies have identified CLIP's limited fine-grained perception as a critical drawback, leading to substantial failures in downstream MLLMs. In contrast, vision-centric foundation models like DINOv2 demonstrate remarkable capabilities in capturing fine details from images. In this work, we propose a novel kernel-based method to align CLIP's visual representation with that of DINOv2, ensuring that the resulting embeddings maintain compatibility with text embeddings while enhancing perceptual capabilities. Our alignment objective is designed for efficient stochastic optimization. Following this image-only alignment fine-tuning, the visual encoder retains compatibility with the frozen text encoder and exhibits significant improvements in zero-shot object recognition, fine-grained spatial reasoning, and localization. By integrating the aligned visual encoder, downstream MLLMs also demonstrate enhanced performance.
comment: ICML 2025
SurgVLM: A Large Vision-Language Model and Systematic Evaluation Benchmark for Surgical Intelligence
Foundation models have achieved transformative success across biomedical domains by enabling holistic understanding of multimodal data. However, their application in surgery remains underexplored. Surgical intelligence presents unique challenges - requiring surgical visual perception, temporal analysis, and reasoning. Existing general-purpose vision-language models fail to address these needs due to insufficient domain-specific supervision and the lack of a large-scale high-quality surgical database. To bridge this gap, we propose SurgVLM, one of the first large vision-language foundation models for surgical intelligence, where this single universal model can tackle versatile surgical tasks. To enable this, we construct a large-scale multimodal surgical database, SurgVLM-DB, comprising over 1.81 million frames with 7.79 million conversations, spanning more than 16 surgical types and 18 anatomical structures. We unify and reorganize 23 public datasets across 10 surgical tasks, followed by standardizing labels and doing hierarchical vision-language alignment to facilitate comprehensive coverage of gradually finer-grained surgical tasks, from visual perception, temporal analysis, to high-level reasoning. Building upon this comprehensive dataset, we propose SurgVLM, which is built upon Qwen2.5-VL, and undergoes instruction tuning to 10+ surgical tasks. We further construct a surgical multimodal benchmark, SurgVLM-Bench, for method evaluation. SurgVLM-Bench consists of 6 popular and widely-used datasets in surgical domain, covering several crucial downstream tasks. Based on SurgVLM-Bench, we evaluate the performance of our SurgVLM (3 SurgVLM variants: SurgVLM-7B, SurgVLM-32B, and SurgVLM-72B), and conduct comprehensive comparisons with 14 mainstream commercial VLMs (e.g., GPT-4o, Gemini 2.0 Flash, Qwen2.5-Max).
comment: 29 pages, 5 figures
DiffVLA: Vision-Language Guided Diffusion Planning for Autonomous Driving
Research interest in end-to-end autonomous driving has surged owing to its fully differentiable design integrating modular tasks, i.e. perception, prediction and planing, which enables optimization in pursuit of the ultimate goal. Despite the great potential of the end-to-end paradigm, existing methods suffer from several aspects including expensive BEV (bird's eye view) computation, action diversity, and sub-optimal decision in complex real-world scenarios. To address these challenges, we propose a novel hybrid sparse-dense diffusion policy, empowered by a Vision-Language Model (VLM), called Diff-VLA. We explore the sparse diffusion representation for efficient multi-modal driving behavior. Moreover, we rethink the effectiveness of VLM driving decision and improve the trajectory generation guidance through deep interaction across agent, map instances and VLM output. Our method shows superior performance in Autonomous Grand Challenge 2025 which contains challenging real and reactive synthetic scenarios. Our methods achieves 45.0 PDMS.
comment: 4pages
Prisma: An Open Source Toolkit for Mechanistic Interpretability in Vision and Video CVPR
Robust tooling and publicly available pre-trained models have helped drive recent advances in mechanistic interpretability for language models. However, similar progress in vision mechanistic interpretability has been hindered by the lack of accessible frameworks and pre-trained weights. We present Prisma (Access the codebase here: https://github.com/Prisma-Multimodal/ViT-Prisma), an open-source framework designed to accelerate vision mechanistic interpretability research, providing a unified toolkit for accessing 75+ vision and video transformers; support for sparse autoencoder (SAE), transcoder, and crosscoder training; a suite of 80+ pre-trained SAE weights; activation caching, circuit analysis tools, and visualization tools; and educational resources. Our analysis reveals surprising findings, including that effective vision SAEs can exhibit substantially lower sparsity patterns than language SAEs, and that in some instances, SAE reconstructions can decrease model loss. Prisma enables new research directions for understanding vision model internals while lowering barriers to entry in this emerging field.
comment: 4 pages, 3 figures, 9 tables. Oral and Tutorial at the CVPR Mechanistic Interpretability for Vision (MIV) Workshop
Normalized Attention Guidance: Universal Negative Guidance for Diffusion Models
Negative guidance -- explicitly suppressing unwanted attributes -- remains a fundamental challenge in diffusion models, particularly in few-step sampling regimes. While Classifier-Free Guidance (CFG) works well in standard settings, it fails under aggressive sampling step compression due to divergent predictions between positive and negative branches. We present Normalized Attention Guidance (NAG), an efficient, training-free mechanism that applies extrapolation in attention space with L1-based normalization and refinement. NAG restores effective negative guidance where CFG collapses while maintaining fidelity. Unlike existing approaches, NAG generalizes across architectures (UNet, DiT), sampling regimes (few-step, multi-step), and modalities (image, video), functioning as a \textit{universal} plug-in with minimal computational overhead. Through extensive experimentation, we demonstrate consistent improvements in text alignment (CLIP Score), fidelity (FID, PFID), and human-perceived quality (ImageReward). Our ablation studies validate each design component, while user studies confirm significant preference for NAG-guided outputs. As a model-agnostic inference-time approach requiring no retraining, NAG provides effortless negative guidance for all modern diffusion frameworks -- pseudocode in the Appendix!
Beyond Face Swapping: A Diffusion-Based Digital Human Benchmark for Multimodal Deepfake Detection
In recent years, the explosive advancement of deepfake technology has posed a critical and escalating threat to public security: diffusion-based digital human generation. Unlike traditional face manipulation methods, such models can generate highly realistic videos with consistency via multimodal control signals. Their flexibility and covertness pose severe challenges to existing detection strategies. To bridge this gap, we introduce DigiFakeAV, the new large-scale multimodal digital human forgery dataset based on diffusion models. Leveraging five of the latest digital human generation methods and a voice cloning method, we systematically construct a dataset comprising 60,000 videos (8.4 million frames), covering multiple nationalities, skin tones, genders, and real-world scenarios, significantly enhancing data diversity and realism. User studies demonstrate that the misrecognition rate by participants for DigiFakeAV reaches as high as 68%. Moreover, the substantial performance degradation of existing detection models on our dataset further highlights its challenges. To address this problem, we propose DigiShield, an effective detection baseline based on spatiotemporal and cross-modal fusion. By jointly modeling the 3D spatiotemporal features of videos and the semantic-acoustic features of audio, DigiShield achieves state-of-the-art (SOTA) performance on the DigiFakeAV and shows strong generalization on other datasets.
InfoChartQA: A Benchmark for Multimodal Question Answering on Infographic Charts
Understanding infographic charts with design-driven visual elements (e.g., pictograms, icons) requires both visual recognition and reasoning, posing challenges for multimodal large language models (MLLMs). However, existing visual-question answering benchmarks fall short in evaluating these capabilities of MLLMs due to the lack of paired plain charts and visual-element-based questions. To bridge this gap, we introduce InfoChartQA, a benchmark for evaluating MLLMs on infographic chart understanding. It includes 5,642 pairs of infographic and plain charts, each sharing the same underlying data but differing in visual presentations. We further design visual-element-based questions to capture their unique visual designs and communicative intent. Evaluation of 20 MLLMs reveals a substantial performance decline on infographic charts, particularly for visual-element-based questions related to metaphors. The paired infographic and plain charts enable fine-grained error analysis and ablation studies, which highlight new opportunities for advancing MLLMs in infographic chart understanding. We release InfoChartQA at https://github.com/CoolDawnAnt/InfoChartQA.
Point Cloud Mixture-of-Domain-Experts Model for 3D Self-supervised Learning IJCAI 2025
Point clouds, as a primary representation of 3D data, can be categorized into scene domain point clouds and object domain point clouds. Point cloud self-supervised learning (SSL) has become a mainstream paradigm for learning 3D representations. However, existing point cloud SSL primarily focuses on learning domain-specific 3D representations within a single domain, neglecting the complementary nature of cross-domain knowledge, which limits the learning of 3D representations. In this paper, we propose to learn a comprehensive Point cloud Mixture-of-Domain-Experts model (Point-MoDE) via a block-to-scene pre-training strategy. Specifically, we first propose a mixture-of-domain-expert model consisting of scene domain experts and multiple shared object domain experts. Furthermore, we propose a block-to-scene pretraining strategy, which leverages the features of point blocks in the object domain to regress their initial positions in the scene domain through object-level block mask reconstruction and scene-level block position regression. By integrating the complementary knowledge between object and scene, this strategy simultaneously facilitates the learning of both object-domain and scene-domain representations, leading to a more comprehensive 3D representation. Extensive experiments in downstream tasks demonstrate the superiority of our model.
comment: Accepted to IJCAI 2025
Chain-of-Jailbreak Attack for Image Generation Models via Editing Step by Step ACL 2025
Text-based image generation models, such as Stable Diffusion and DALL-E 3, hold significant potential in content creation and publishing workflows, making them the focus in recent years. Despite their remarkable capability to generate diverse and vivid images, considerable efforts are being made to prevent the generation of harmful content, such as abusive, violent, or pornographic material. To assess the safety of existing models, we introduce a novel jailbreaking method called Chain-of-Jailbreak (CoJ) attack, which compromises image generation models through a step-by-step editing process. Specifically, for malicious queries that cannot bypass the safeguards with a single prompt, we intentionally decompose the query into multiple sub-queries. The image generation models are then prompted to generate and iteratively edit images based on these sub-queries. To evaluate the effectiveness of our CoJ attack method, we constructed a comprehensive dataset, CoJ-Bench, encompassing nine safety scenarios, three types of editing operations, and three editing elements. Experiments on four widely-used image generation services provided by GPT-4V, GPT-4o, Gemini 1.5 and Gemini 1.5 Pro, demonstrate that our CoJ attack method can successfully bypass the safeguards of models for over 60% cases, which significantly outperforms other jailbreaking methods (i.e., 14%). Further, to enhance these models' safety against our CoJ attack method, we also propose an effective prompting-based method, Think Twice Prompting, that can successfully defend over 95% of CoJ attack. We release our dataset and code to facilitate the AI safety research.
comment: Accepted by ACL 2025 Findings
Can't See the Forest for the Trees: Benchmarking Multimodal Safety Awareness for Multimodal LLMs ACL 2025
Multimodal Large Language Models (MLLMs) have expanded the capabilities of traditional language models by enabling interaction through both text and images. However, ensuring the safety of these models remains a significant challenge, particularly in accurately identifying whether multimodal content is safe or unsafe-a capability we term safety awareness. In this paper, we introduce MMSafeAware, the first comprehensive multimodal safety awareness benchmark designed to evaluate MLLMs across 29 safety scenarios with 1500 carefully curated image-prompt pairs. MMSafeAware includes both unsafe and over-safety subsets to assess models abilities to correctly identify unsafe content and avoid over-sensitivity that can hinder helpfulness. Evaluating nine widely used MLLMs using MMSafeAware reveals that current models are not sufficiently safe and often overly sensitive; for example, GPT-4V misclassifies 36.1% of unsafe inputs as safe and 59.9% of benign inputs as unsafe. We further explore three methods to improve safety awareness-prompting-based approaches, visual contrastive decoding, and vision-centric reasoning fine-tuning-but find that none achieve satisfactory performance. Our findings highlight the profound challenges in developing MLLMs with robust safety awareness, underscoring the need for further research in this area. All the code and data will be publicly available to facilitate future research.
comment: Accepted by ACL 2025
S4-Driver: Scalable Self-Supervised Driving Multimodal Large Language Modelwith Spatio-Temporal Visual Representation CVPR2025
The latest advancements in multi-modal large language models (MLLMs) have spurred a strong renewed interest in end-to-end motion planning approaches for autonomous driving. Many end-to-end approaches rely on human annotations to learn intermediate perception and prediction tasks, while purely self-supervised approaches--which directly learn from sensor inputs to generate planning trajectories without human annotations often underperform the state of the art. We observe a key gap in the input representation space: end-to-end approaches built on MLLMs are often pretrained with reasoning tasks in 2D image space rather than the native 3D space in which autonomous vehicles plan. To this end, we propose S4-Driver, a scalable self-supervised motion planning algorithm with spatio-temporal visual representation, based on the popular PaLI multimodal large language model. S4-Driver uses a novel sparse volume strategy to seamlessly transform the strong visual representation of MLLMs from perspective view to 3D space without the need to finetune the vision encoder. This representation aggregates multi-view and multi-frame visual inputs and enables better prediction of planning trajectories in 3D space. To validate our method, we run experiments on both nuScenes and Waymo Open Motion Dataset (with in-house camera data). Results show that S4-Driver performs favorably against existing supervised multi-task approaches while requiring no human annotations. It also demonstrates great scalability when pretrained on large volumes of unannotated driving logs.
comment: Accepted by CVPR2025; Project website: s4-driver.github.io
Visual-TCAV: Concept-based Attribution and Saliency Maps for Post-hoc Explainability in Image Classification
Convolutional Neural Networks (CNNs) have seen significant performance improvements in recent years. However, due to their size and complexity, they function as black-boxes, leading to transparency concerns. State-of-the-art saliency methods generate local explanations that highlight the area in the input image where a class is identified but cannot explain how a concept of interest contributes to the prediction, which is essential for bias mitigation. On the other hand, concept-based methods, such as TCAV (Testing with Concept Activation Vectors), provide insights into how sensitive is the network to a concept, but cannot compute its attribution in a specific prediction nor show its location within the input image. This paper introduces a novel post-hoc explainability framework, Visual-TCAV, which aims to bridge the gap between these methods by providing both local and global explanations for CNN-based image classification. Visual-TCAV uses Concept Activation Vectors (CAVs) to generate saliency maps that show where concepts are recognized by the network. Moreover, it can estimate the attribution of these concepts to the output of any class using a generalization of Integrated Gradients. This framework is evaluated on popular CNN architectures, with its validity further confirmed via experiments where ground truth for explanations is known, and a comparison with TCAV. Our code is available at https://github.com/DataSciencePolimi/Visual-TCAV.
comment: Preprint currently under review
SASP: Strip-Aware Spatial Perception for Fine-Grained Bird Image Classification
Fine-grained bird image classification (FBIC) is not only of great significance for ecological monitoring and species identification, but also holds broad research value in the fields of image recognition and fine-grained visual modeling. Compared with general image classification tasks, FBIC poses more formidable challenges: 1) the differences in species size and imaging distance result in the varying sizes of birds presented in the images; 2) complex natural habitats often introduce strong background interference; 3) and highly flexible poses such as flying, perching, or foraging result in substantial intra-class variability. These factors collectively make it difficult for traditional methods to stably extract discriminative features, thereby limiting the generalizability and interpretability of models in real-world applications. To address these challenges, this paper proposes a fine-grained bird classification framework based on strip-aware spatial perception, which aims to capture long-range spatial dependencies across entire rows or columns in bird images, thereby enhancing the model's robustness and interpretability. The proposed method incorporates two novel modules: extensional perception aggregator (EPA) and channel semantic weaving (CSW). Specifically, EPA integrates local texture details with global structural cues by aggregating information across horizontal and vertical spatial directions. CSW further refines the semantic representations by adaptively fusing long-range and short-range information along the channel dimension. Built upon a ResNet-50 backbone, the model enables jump-wise connection of extended structural features across the spatial domain. Experimental results on the CUB-200-2011 dataset demonstrate that our framework achieves significant performance improvements while maintaining architectural efficiency.
Effective Dual-Region Augmentation for Reduced Reliance on Large Amounts of Labeled Data SP
This paper introduces a novel dual-region augmentation approach designed to reduce reliance on large-scale labeled datasets while improving model robustness and adaptability across diverse computer vision tasks, including source-free domain adaptation (SFDA) and person re-identification (ReID). Our method performs targeted data transformations by applying random noise perturbations to foreground objects and spatially shuffling background patches. This effectively increases the diversity of the training data, improving model robustness and generalization. Evaluations on the PACS dataset for SFDA demonstrate that our augmentation strategy consistently outperforms existing methods, achieving significant accuracy improvements in both single-target and multi-target adaptation settings. By augmenting training data through structured transformations, our method enables model generalization across domains, providing a scalable solution for reducing reliance on manually annotated datasets. Furthermore, experiments on Market-1501 and DukeMTMC-reID datasets validate the effectiveness of our approach for person ReID, surpassing traditional augmentation techniques. The code is available at https://github.com/PrasannaPulakurthi/Foreground-Background-Augmentation
comment: 9 pages, 2 figures, 4 tables, Accepted to SPIE DSC 2025 Conference: Synthetic Data for Artificial Intelligence and Machine Learning: Tools, Techniques, and Applications III
SceneSplat: Gaussian Splatting-based Scene Understanding with Vision-Language Pretraining
Recognizing arbitrary or previously unseen categories is essential for comprehensive real-world 3D scene understanding. Currently, all existing methods rely on 2D or textual modalities during training or together at inference. This highlights the clear absence of a model capable of processing 3D data alone for learning semantics end-to-end, along with the necessary data to train such a model. Meanwhile, 3D Gaussian Splatting (3DGS) has emerged as the de facto standard for 3D scene representation across various vision tasks. However, effectively integrating semantic reasoning into 3DGS in a generalizable manner remains an open challenge. To address these limitations, we introduce SceneSplat, to our knowledge the first large-scale 3D indoor scene understanding approach that operates natively on 3DGS. Furthermore, we propose a self-supervised learning scheme that unlocks rich 3D feature learning from unlabeled scenes. To power the proposed methods, we introduce SceneSplat-7K, the first large-scale 3DGS dataset for indoor scenes, comprising 7916 scenes derived from seven established datasets, such as ScanNet and Matterport3D. Generating SceneSplat-7K required computational resources equivalent to 150 GPU days on an L4 GPU, enabling standardized benchmarking for 3DGS-based reasoning for indoor scenes. Our exhaustive experiments on SceneSplat-7K demonstrate the significant benefit of the proposed method over the established baselines.
comment: Our code, model, and dataset will be released at https://unique1i.github.io/SceneSplat_webpage/
Adversarial Robustness of AI-Generated Image Detectors in the Real World
The rapid advancement of Generative Artificial Intelligence (GenAI) capabilities is accompanied by a concerning rise in its misuse. In particular the generation of credible misinformation in the form of images poses a significant threat to the public trust in democratic processes. Consequently, there is an urgent need to develop tools to reliably distinguish between authentic and AI-generated content. The majority of detection methods are based on neural networks that are trained to recognize forensic artifacts. In this work, we demonstrate that current state-of-the-art classifiers are vulnerable to adversarial examples under real-world conditions. Through extensive experiments, comprising four detection methods and five attack algorithms, we show that an attacker can dramatically decrease classification performance, without internal knowledge of the detector's architecture. Notably, most attacks remain effective even when images are degraded during the upload to, e.g., social media platforms. In a case study, we demonstrate that these robustness challenges are also found in commercial tools by conducting black-box attacks on HIVE, a proprietary online GenAI media detector. In addition, we evaluate the robustness of using generated features of a robust pre-trained model and showed that this increases the robustness, while not reaching the performance on benign inputs. These results, along with the increasing potential of GenAI to erode public trust, underscore the need for more research and new perspectives on methods to prevent its misuse.
We Should Chart an Atlas of All the World's Models
Public model repositories now contain millions of models, yet most models remain undocumented and effectively lost. In this position paper, we advocate for charting the world's model population in a unified structure we call the Model Atlas: a graph that captures models, their attributes, and the weight transformations that connect them. The Model Atlas enables applications in model forensics, meta-ML research, and model discovery, challenging tasks given today's unstructured model repositories. However, because most models lack documentation, large atlas regions remain uncharted. Addressing this gap motivates new machine learning methods that treat models themselves as data, inferring properties such as functionality, performance, and lineage directly from their weights. We argue that a scalable path forward is to bypass the unique parameter symmetries that plague model weights. Charting all the world's models will require a community effort, and we hope its broad utility will rally researchers toward this goal.
comment: Project page: https://horwitz.ai/model-atlas
Learning on Model Weights using Tree Experts CVPR 2025
The number of publicly available models is rapidly increasing, yet most remain undocumented. Users looking for suitable models for their tasks must first determine what each model does. Training machine learning models to infer missing documentation directly from model weights is challenging, as these weights often contain significant variation unrelated to model functionality (denoted nuisance). Here, we identify a key property of real-world models: most public models belong to a small set of Model Trees, where all models within a tree are fine-tuned from a common ancestor (e.g., a foundation model). Importantly, we find that within each tree there is less nuisance variation between models. Concretely, while learning across Model Trees requires complex architectures, even a linear classifier trained on a single model layer often works within trees. While effective, these linear classifiers are computationally expensive, especially when dealing with larger models that have many parameters. To address this, we introduce Probing Experts (ProbeX), a theoretically motivated and lightweight method. Notably, ProbeX is the first probing method specifically designed to learn from the weights of a single hidden model layer. We demonstrate the effectiveness of ProbeX by predicting the categories in a model's training dataset based only on its weights. Excitingly, ProbeX can map the weights of Stable Diffusion into a weight-language embedding space, enabling model search via text, i.e., zero-shot model classification.
comment: CVPR 2025. Project page: https://horwitz.ai/probex/
HunyuanVideo-Avatar: High-Fidelity Audio-Driven Human Animation for Multiple Characters
Recent years have witnessed significant progress in audio-driven human animation. However, critical challenges remain in (i) generating highly dynamic videos while preserving character consistency, (ii) achieving precise emotion alignment between characters and audio, and (iii) enabling multi-character audio-driven animation. To address these challenges, we propose HunyuanVideo-Avatar, a multimodal diffusion transformer (MM-DiT)-based model capable of simultaneously generating dynamic, emotion-controllable, and multi-character dialogue videos. Concretely, HunyuanVideo-Avatar introduces three key innovations: (i) A character image injection module is designed to replace the conventional addition-based character conditioning scheme, eliminating the inherent condition mismatch between training and inference. This ensures the dynamic motion and strong character consistency; (ii) An Audio Emotion Module (AEM) is introduced to extract and transfer the emotional cues from an emotion reference image to the target generated video, enabling fine-grained and accurate emotion style control; (iii) A Face-Aware Audio Adapter (FAA) is proposed to isolate the audio-driven character with latent-level face mask, enabling independent audio injection via cross-attention for multi-character scenarios. These innovations empower HunyuanVideo-Avatar to surpass state-of-the-art methods on benchmark datasets and a newly proposed wild dataset, generating realistic avatars in dynamic, immersive scenarios.
MMLA: Multi-Environment, Multi-Species, Low-Altitude Drone Dataset CVPR
Real-time wildlife detection in drone imagery supports critical ecological and conservation monitoring. However, standard detection models like YOLO often fail to generalize across locations and struggle with rare species, limiting their use in automated drone deployments. We present MMLA, a novel multi-environment, multi-species, low-altitude drone dataset collected across three sites (Ol Pejeta Conservancy and Mpala Research Centre in Kenya, and The Wilds in Ohio), featuring six species (zebras, giraffes, onagers, and African wild dogs). The dataset contains 811K annotations from 37 high-resolution videos. Baseline YOLO models show performance disparities across locations while fine-tuning YOLOv11m on MMLA improves mAP50 to 82%, a 52-point gain over baseline. Our results underscore the need for diverse training data to enable robust animal detection in autonomous drone systems.
comment: Accepted at CVPR Workshop, CV4Animals 2025
Open-world Machine Learning: A Systematic Review and Future Directions
Machine learning has achieved remarkable success in many applications. However, existing studies are largely based on the closed-world assumption, which assumes that the environment is stationary, and the model is fixed once deployed. In many real-world applications, this fundamental and rather naive assumption may not hold because an open environment is complex, dynamic, and full of unknowns. In such cases, rejecting unknowns, discovering novelties, and then continually learning them, could enable models to be safe and evolve continually as biological systems do. This article presents a holistic view of open-world machine learning by investigating unknown rejection, novelty discovery, and continual learning in a unified paradigm. The challenges, principles, and limitations of current methodologies are discussed in detail. Furthermore, widely used benchmarks, metrics, and performances are summarized. Finally, we discuss several potential directions for further progress in the field. By providing a comprehensive introduction to the emerging open-world machine learning paradigm, this article aims to help researchers build more powerful AI systems in their respective fields, and to promote the development of artificial general intelligence.
Can Large Language Models Challenge CNNs in Medical Image Analysis?
This study presents a multimodal AI framework designed for precisely classifying medical diagnostic images. Utilizing publicly available datasets, the proposed system compares the strengths of convolutional neural networks (CNNs) and different large language models (LLMs). This in-depth comparative analysis highlights key differences in diagnostic performance, execution efficiency, and environmental impacts. Model evaluation was based on accuracy, F1-score, average execution time, average energy consumption, and estimated $CO_2$ emission. The findings indicate that although CNN-based models can outperform various multimodal techniques that incorporate both images and contextual information, applying additional filtering on top of LLMs can lead to substantial performance gains. These findings highlight the transformative potential of multimodal AI systems to enhance the reliability, efficiency, and scalability of medical diagnostics in clinical settings.
Scene Structure Guidance Network: Unfolding Graph Partitioning into Pixel-Wise Feature Learning AAAI
Understanding the informative structures of scenes is essential for low-level vision tasks. Unfortunately, it is difficult to obtain a concrete visual definition of the informative structures because influences of visual features are task-specific. In this paper, we propose a single general neural network architecture for extracting task-specific structure guidance for scenes. To do this, we first analyze traditional spectral clustering methods, which computes a set of eigenvectors to model a segmented graph forming small compact structures on image domains. We then unfold the traditional graph-partitioning problem into a learnable network, named \textit{Scene Structure Guidance Network (SSGNet)}, to represent the task-specific informative structures. The SSGNet yields a set of coefficients of eigenvectors that produces explicit feature representations of image structures. In addition, our SSGNet is light-weight ($\sim$ 56K parameters), and can be used as a plug-and-play module for off-the-shelf architectures. We optimize the SSGNet without any supervision by proposing two novel training losses that enforce task-specific scene structure generation during training. Our main contribution is to show that such a simple network can achieve state-of-the-art results for several low-level vision applications. We also demonstrate that our network generalizes well on unseen datasets, compared to existing methods which use structural embedding frameworks. We further propose a lighter version of SSGNet ($\sim$ 29K parameters) for depth computation, SSGNet-D, and successfully execute it on edge computing devices like Jetson AGX Orin, improving the performance of baseline network, even in the wild, with little computational delay.
comment: 35 pages, 14 figures, journal extension version of SSGNet (https://ojs.aaai.org/index.php/AAAI/article/view/25322)
UDA4Inst: Unsupervised Domain Adaptation for Instance Segmentation
Instance segmentation is crucial for autonomous driving, but is hindered by the lack of annotated real-world data due to expensive labeling costs. Unsupervised Domain Adaptation (UDA) offers a solution by transferring knowledge from labeled synthetic data to unlabeled real-world data. While UDA methods for synthetic to real-world domains (synth-to-real) excel in tasks such as semantic segmentation and object detection, their application to instance segmentation for autonomous driving remains underexplored and often relies on suboptimal baselines. We introduce UDA4Inst, a powerful framework for synth-to-real UDA in instance segmentation. Our framework enhances instance segmentation through Semantic Category Training and Bidirectional Mixing Training. Semantic Category Training groups semantically related classes for separate training, improving pseudo-label quality and segmentation accuracy. Bidirectional Mixing Training combines instance-wise and patch-wise data mixing, creating coherent composites that enhance generalization across domains. Extensive experiments show UDA4Inst sets a new state-of-the-art on the SYNTHIA-> Cityscapes benchmark (mAP 31.3) and introduces results on novel datasets, using UrbanSyn and Synscapes as sources and Cityscapes and KITTI360 as targets. Code and models are available at https://github.com/gyc-code/UDA4Inst.
comment: Accepted at IEEE Intelligent Vehicles Symposium (IV 2025) as an oral presentation
LLM-Guided Taxonomy and Hierarchical Uncertainty for 3D Point Cloud Active Learning
We present a novel active learning framework for 3D point cloud semantic segmentation that, for the first time, integrates large language models (LLMs) to construct hierarchical label structures and guide uncertainty-based sample selection. Unlike prior methods that treat labels as flat and independent, our approach leverages LLM prompting to automatically generate multi-level semantic taxonomies and introduces a recursive uncertainty projection mechanism that propagates uncertainty across hierarchy levels. This enables spatially diverse, label-aware point selection that respects the inherent semantic structure of 3D scenes. Experiments on S3DIS and ScanNet v2 show that our method achieves up to 4% mIoU improvement under extremely low annotation budgets (e.g., 0.02%), substantially outperforming existing baselines. Our results highlight the untapped potential of LLMs as knowledge priors in 3D vision and establish hierarchical uncertainty modeling as a powerful paradigm for efficient point cloud annotation.
Improving Heart Rejection Detection in XPCI Images Using Synthetic Data Augmentation
Accurate identification of acute cellular rejection (ACR) in endomyocardial biopsies is essential for effective management of heart transplant patients. However, the rarity of high-grade rejection cases (3R) presents a significant challenge for training robust deep learning models. This work addresses the class imbalance problem by leveraging synthetic data generation using StyleGAN to augment the limited number of real 3R images. Prior to GAN training, histogram equalization was applied to standardize image appearance and improve the consistency of tissue representation. StyleGAN was trained on available 3R biopsy patches and subsequently used to generate 10,000 realistic synthetic images. These were combined with real 0R samples, that is samples without rejection, in various configurations to train ResNet-18 classifiers for binary rejection classification. Three classifier variants were evaluated: one trained on real 0R and synthetic 3R images, another using both synthetic and additional real samples, and a third trained solely on real data. All models were tested on an independent set of real biopsy images. Results demonstrate that synthetic data improves classification performance, particularly when used in combination with real samples. The highest-performing model, which used both real and synthetic images, achieved strong precision and recall for both classes. These findings underscore the value of hybrid training strategies and highlight the potential of GAN-based data augmentation in biomedical image analysis, especially in domains constrained by limited annotated datasets.
comment: For the time being, the paper needs to be withdrawn so that a more extensive evaluation of the results can be conducted to validate the approach. Furthermore, additional authors will need to be added, which will be addressed if the study's results prove satisfactory
T-FAKE: Synthesizing Thermal Images for Facial Landmarking
Facial analysis is a key component in a wide range of applications such as healthcare, autonomous driving, and entertainment. Despite the availability of various facial RGB datasets, the thermal modality, which plays a crucial role in life sciences, medicine, and biometrics, has been largely overlooked. To address this gap, we introduce the T-FAKE dataset, a new large-scale synthetic thermal dataset with sparse and dense landmarks. To facilitate the creation of the dataset, we propose a novel RGB2Thermal loss function, which enables the domain-adaptive transfer of RGB faces to thermal style. By utilizing the Wasserstein distance between thermal and RGB patches and the statistical analysis of clinical temperature distributions on faces, we ensure that the generated thermal images closely resemble real samples. Using RGB2Thermal style transfer based on our RGB2Thermal loss function, we create the large-scale synthetic thermal T-FAKE dataset with landmark and segmentation annotations. Leveraging our novel T-FAKE dataset, probabilistic landmark prediction, and label adaptation networks, we demonstrate significant improvements in landmark detection methods on thermal images across different landmark conventions. Our models show excellent performance with both sparse 70-point landmarks and dense 478-point landmark annotations. Moreover, our RGB2Thermal loss leads to notable results in terms of perceptual evaluation and temperature prediction.
comment: 22 pages, 12 figures, Philipp Flotho and Moritz Piening share equal contribution
Beyond Prompt Engineering: Robust Behavior Control in LLMs via Steering Target Atoms ACL 2025
Precise control over language model generation is vital for ensuring both safety and reliability. Although prompt engineering and steering are commonly used to intervene in model behaviors, the vast number of parameters in models often results in highly intertwined internal representations. This interdependency can limit control precision and sometimes lead to unintended side effects. Recent research has explored the use of sparse autoencoders (SAE) to disentangle knowledge in high-dimensional spaces for steering. However, these applications have been limited to toy tasks owing to the nontrivial issue of locating atomic knowledge components. In this paper, we propose Steering Target Atoms (STA), a novel method that isolates and manipulates disentangled knowledge components to enhance safety. Comprehensive experiments demonstrate the effectiveness of our approach. Further analysis reveals that steering exhibits superior robustness and flexibility, particularly in adversarial scenarios. We also apply the steering strategy to the large reasoning model, confirming its effectiveness in precise reasoning control.
comment: ACL 2025
MoBluRF: Motion Deblurring Neural Radiance Fields for Blurry Monocular Video
Neural Radiance Fields (NeRF), initially developed for static scenes, have inspired many video novel view synthesis techniques. However, the challenge for video view synthesis arises from motion blur, a consequence of object or camera movements during exposure, which hinders the precise synthesis of sharp spatio-temporal views. In response, we propose a novel motion deblurring NeRF framework for blurry monocular video, called MoBluRF, consisting of a Base Ray Initialization (BRI) stage and a Motion Decomposition-based Deblurring (MDD) stage. In the BRI stage, we coarsely reconstruct dynamic 3D scenes and jointly initialize the base rays which are further used to predict latent sharp rays, using the inaccurate camera pose information from the given blurry frames. In the MDD stage, we introduce a novel Incremental Latent Sharp-rays Prediction (ILSP) approach for the blurry monocular video frames by decomposing the latent sharp rays into global camera motion and local object motion components. We further propose two loss functions for effective geometry regularization and decomposition of static and dynamic scene components without any mask supervision. Experiments show that MoBluRF outperforms qualitatively and quantitatively the recent state-of-the-art methods with large margins.
comment: Accepted to IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2025. The first two authors contributed equally to this work (equal contribution). The last two authors are co-corresponding authors. Please visit our project page at https://kaist-viclab.github.io/moblurf-site/
TestDG: Test-time Domain Generalization for Continual Test-time Adaptation
This paper studies continual test-time adaptation (CTTA), the task of adapting a model to constantly changing unseen domains in testing while preserving previously learned knowledge. Existing CTTA methods mostly focus on adaptation to the current test domain only, overlooking generalization to arbitrary test domains a model may face in the future. To tackle this limitation, we present a novel online test-time domain generalization framework for CTTA, dubbed TestDG. TestDG aims to learn features invariant to both current and previous test domains on the fly during testing, improving the potential for effective generalization to future domains. To this end, we propose a new model architecture and a test-time adaptation strategy dedicated to learning domain-invariant features, along with a new data structure and optimization algorithm for effectively managing information from previous test domains. TestDG achieved state of the art on four public CTTA benchmarks. Moreover, it showed superior generalization to unseen test domains.
Likelihood-Scheduled Score-Based Generative Modeling for Fully 3D PET Image Reconstruction
Medical image reconstruction with pre-trained score-based generative models (SGMs) has advantages over other existing state-of-the-art deep-learned reconstruction methods, including improved resilience to different scanner setups and advanced image distribution modeling. SGM-based reconstruction has recently been applied to simulated positron emission tomography (PET) datasets, showing improved contrast recovery for out-of-distribution lesions relative to the state-of-the-art. However, existing methods for SGM-based reconstruction from PET data suffer from slow reconstruction, burdensome hyperparameter tuning and slice inconsistency effects (in 3D). In this work, we propose a practical methodology for fully 3D reconstruction that accelerates reconstruction and reduces the number of critical hyperparameters by matching the likelihood of an SGM's reverse diffusion process to a current iterate of the maximum-likelihood expectation maximization algorithm. Using the example of low-count reconstruction from simulated [$^{18}$F]DPA-714 datasets, we show our methodology can match or improve on the NRMSE and SSIM of existing state-of-the-art SGM-based PET reconstruction while reducing reconstruction time and the need for hyperparameter tuning. We evaluate our methodology against state-of-the-art supervised and conventional reconstruction algorithms. Finally, we demonstrate a first-ever implementation of SGM-based reconstruction for real 3D PET data, specifically [$^{18}$F]DPA-714 data, where we integrate perpendicular pre-trained SGMs to eliminate slice inconsistency issues.
comment: 12 pages, 14 figures. Author's accepted manuscript, IEEE Transactions on Medical Imaging
Bayesian Prompt Flow Learning for Zero-Shot Anomaly Detection
Recently, vision-language models (e.g. CLIP) have demonstrated remarkable performance in zero-shot anomaly detection (ZSAD). By leveraging auxiliary data during training, these models can directly perform cross-category anomaly detection on target datasets, such as detecting defects on industrial product surfaces or identifying tumors in organ tissues. Existing approaches typically construct text prompts through either manual design or the optimization of learnable prompt vectors. However, these methods face several challenges: 1) handcrafted prompts require extensive expert knowledge and trial-and-error; 2) single-form learnable prompts struggle to capture complex anomaly semantics; and 3) an unconstrained prompt space limits generalization to unseen categories. To address these issues, we propose Bayesian Prompt Flow Learning (Bayes-PFL), which models the prompt space as a learnable probability distribution from a Bayesian perspective. Specifically, a prompt flow module is designed to learn both image-specific and image-agnostic distributions, which are jointly utilized to regularize the text prompt space and improve the model's generalization on unseen categories. These learned distributions are then sampled to generate diverse text prompts, effectively covering the prompt space. Additionally, a residual cross-model attention (RCA) module is introduced to better align dynamic text embeddings with fine-grained image features. Extensive experiments on 15 industrial and medical datasets demonstrate our method's superior performance. The code is available at https://github.com/xiaozhen228/Bayes-PFL.
Towards Computation- and Communication-efficient Computational Pathology
Despite the impressive performance across a wide range of applications, current computational pathology models face significant diagnostic efficiency challenges due to their reliance on high-magnification whole-slide image analysis. This limitation severely compromises their clinical utility, especially in time-sensitive diagnostic scenarios and situations requiring efficient data transfer. To address these issues, we present a novel computation- and communication-efficient framework called Magnification-Aligned Global-Local Transformer (MAG-GLTrans). Our approach significantly reduces computational time, file transfer requirements, and storage overhead by enabling effective analysis using low-magnification inputs rather than high-magnification ones. The key innovation lies in our proposed magnification alignment (MAG) mechanism, which employs self-supervised learning to bridge the information gap between low and high magnification levels by effectively aligning their feature representations. Through extensive evaluation across various fundamental CPath tasks, MAG-GLTrans demonstrates state-of-the-art classification performance while achieving remarkable efficiency gains: up to 10.7 times reduction in computational time and over 20 times reduction in file transfer and storage requirements. Furthermore, we highlight the versatility of our MAG framework through two significant extensions: (1) its applicability as a feature extractor to enhance the efficiency of any CPath architecture, and (2) its compatibility with existing foundation models and histopathology-specific encoders, enabling them to process low-magnification inputs with minimal information loss. These advancements position MAG-GLTrans as a particularly promising solution for time-sensitive applications, especially in the context of intraoperative frozen section diagnosis where both accuracy and efficiency are paramount.
A Comparative Study of Scanpath Models in Graph-Based Visualization
Information Visualization (InfoVis) systems utilize visual representations to enhance data interpretation. Understanding how visual attention is allocated is essential for optimizing interface design. However, collecting Eye-tracking (ET) data presents challenges related to cost, privacy, and scalability. Computational models provide alternatives for predicting gaze patterns, thereby advancing InfoVis research. In our study, we conducted an ET experiment with 40 participants who analyzed graphs while responding to questions of varying complexity within the context of digital forensics. We compared human scanpaths with synthetic ones generated by models such as DeepGaze, UMSS, and Gazeformer. Our research evaluates the accuracy of these models and examines how question complexity and number of nodes influence performance. This work contributes to the development of predictive modeling in visual analytics, offering insights that can enhance the design and effectiveness of InfoVis systems.
CMRINet: Joint Groupwise Registration and Segmentation for Cardiac Function Quantification from Cine-MRI
Accurate and efficient quantification of cardiac function is essential for the estimation of prognosis of cardiovascular diseases (CVDs). One of the most commonly used metrics for evaluating cardiac pumping performance is left ventricular ejection fraction (LVEF). However, LVEF can be affected by factors such as inter-observer variability and varying pre-load and after-load conditions, which can reduce its reproducibility. Additionally, cardiac dysfunction may not always manifest as alterations in LVEF, such as in heart failure and cardiotoxicity diseases. An alternative measure that can provide a relatively load-independent quantitative assessment of myocardial contractility is myocardial strain and strain rate. By using LVEF in combination with myocardial strain, it is possible to obtain a thorough description of cardiac function. Automated estimation of LVEF and other volumetric measures from cine-MRI sequences can be achieved through segmentation models, while strain calculation requires the estimation of tissue displacement between sequential frames, which can be accomplished using registration models. These tasks are often performed separately, potentially limiting the assessment of cardiac function. To address this issue, in this study we propose an end-to-end deep learning (DL) model that jointly estimates groupwise (GW) registration and segmentation for cardiac cine-MRI images. The proposed anatomically-guided Deep GW network was trained and validated on a large dataset of 4-chamber view cine-MRI image series of 374 subjects. A quantitative comparison with conventional GW registration using elastix and two DL-based methods showed that the proposed model improved performance and substantially reduced computation time.
comment: 15 pages, 7 figures, 1 appendix
P-TAME: Explain Any Image Classifier with Trained Perturbations
The adoption of Deep Neural Networks (DNNs) in critical fields where predictions need to be accompanied by justifications is hindered by their inherent black-box nature. In this paper, we introduce P-TAME (Perturbation-based Trainable Attention Mechanism for Explanations), a model-agnostic method for explaining DNN-based image classifiers. P-TAME employs an auxiliary image classifier to extract features from the input image, bypassing the need to tailor the explanation method to the internal architecture of the backbone classifier being explained. Unlike traditional perturbation-based methods, which have high computational requirements, P-TAME offers an efficient alternative by generating high-resolution explanations in a single forward pass during inference. We apply P-TAME to explain the decisions of VGG-16, ResNet-50, and ViT-B-16, three distinct and widely used image classifiers. Quantitative and qualitative results show that our method matches or outperforms previous explainability methods, including model-specific approaches. Code and trained models will be released upon acceptance.
comment: Published in IEEE Open Journal of Signal Processing (Volume 6)
MedEBench: Revisiting Text-instructed Image Editing on Medical Domain
Text-guided image editing has seen rapid progress in natural image domains, but its adaptation to medical imaging remains limited and lacks standardized evaluation. Clinically, such editing holds promise for simulating surgical outcomes, creating personalized teaching materials, and enhancing patient communication. To bridge this gap, we introduce \textbf{MedEBench}, a comprehensive benchmark for evaluating text-guided medical image editing. It consists of 1,182 clinically sourced image-prompt triplets spanning 70 tasks across 13 anatomical regions. MedEBench offers three key contributions: (1) a clinically relevant evaluation framework covering Editing Accuracy, Contextual Preservation, and Visual Quality, supported by detailed descriptions of expected change and ROI (Region of Interest) masks; (2) a systematic comparison of seven state-of-the-art models, revealing common failure patterns; and (3) a failure analysis protocol based on attention grounding, using IoU between attention maps and ROIs to identify mislocalization. MedEBench provides a solid foundation for developing and evaluating reliable, clinically meaningful medical image editing systems.
DeepSPV: A Deep Learning Pipeline for 3D Spleen Volume Estimation from 2D Ultrasound Images
Splenomegaly, the enlargement of the spleen, is an important clinical indicator for various associated medical conditions, such as sickle cell disease (SCD). Spleen length measured from 2D ultrasound is the most widely used metric for characterising spleen size. However, it is still considered a surrogate measure, and spleen volume remains the gold standard for assessing spleen size. Accurate spleen volume measurement typically requires 3D imaging modalities, such as computed tomography or magnetic resonance imaging, but these are not widely available, especially in the Global South which has a high prevalence of SCD. In this work, we introduce a deep learning pipeline, DeepSPV, for precise spleen volume estimation from single or dual 2D ultrasound images. The pipeline involves a segmentation network and a variational autoencoder for learning low-dimensional representations from the estimated segmentations. We investigate three approaches for spleen volume estimation and our best model achieves 86.62%/92.5% mean relative volume accuracy (MRVA) under single-view/dual-view settings, surpassing the performance of human experts. In addition, the pipeline can provide confidence intervals for the volume estimates as well as offering benefits in terms of interpretability, which further support clinicians in decision-making when identifying splenomegaly. We evaluate the full pipeline using a highly realistic synthetic dataset generated by a diffusion model, achieving an overall MRVA of 83.0% from a single 2D ultrasound image. Our proposed DeepSPV is the first work to use deep learning to estimate 3D spleen volume from 2D ultrasound images and can be seamlessly integrated into the current clinical workflow for spleen assessment.
comment: arXiv admin note: substantial text overlap with arXiv:2308.08038
OralBBNet: Spatially Guided Dental Segmentation of Panoramic X-Rays with Bounding Box Priors
Teeth segmentation and recognition play a vital role in a variety of dental applications and diagnostic procedures. The integration of deep learning models has facilitated the development of precise and automated segmentation methods. Although prior research has explored teeth segmentation, not many methods have successfully performed tooth segmentation and detection simultaneously. This study presents UFBA-425, a dental dataset derived from the UFBA-UESC dataset, featuring bounding box and polygon annotations for 425 panoramic dental X-rays. Additionally, this work introduces OralBBNet, an architecture featuring distinct segmentation and detection heads as U-Net and YOLOv8, respectively. OralBBNet is designed to improve the accuracy and robustness of tooth classification and segmentation on panoramic X-rays by leveraging the complementary strengths of U-Net and YOLOv8. Our approach achieved a 1-3% improvement in mean average precision (mAP) for teeth detection compared to existing techniques and a 15-20% improvement in the dice score for teeth segmentation over U-Net over various tooth categories and 2-4% improvement in the dice score when compared with other segmentation architectures. The results of this study establish a foundation for the wider implementation of object detection models in dental diagnostics.
comment: Under Review, Biomedical Signal Processing Control
A Novel Benchmark for Few-Shot Semantic Segmentation in the Era of Foundation Models
Few-shot semantic segmentation (FSS) is a crucial challenge in computer vision, driving extensive research into a diverse range of methods, from advanced meta-learning techniques to simple transfer learning baselines. With the emergence of vision foundation models (VFM) serving as generalist feature extractors, we seek to explore the adaptation of these models for FSS. While current FSS benchmarks focus on adapting pre-trained models to new tasks with few images, they emphasize in-domain generalization, making them less suitable for VFM trained on large-scale web datasets. To address this, we propose a novel realistic benchmark with a simple and straightforward adaptation process tailored for this task. Using this benchmark, we conduct a comprehensive comparative analysis of prominent VFM and semantic segmentation models. To evaluate their effectiveness, we leverage various adaption methods, ranging from linear probing to parameter efficient fine-tuning (PEFT) and full fine-tuning. Our findings show that models designed for segmentation can be outperformed by self-supervised (SSL) models. On the other hand, while PEFT methods yields competitive performance, they provide little discrepancy in the obtained results compared to other methods, highlighting the critical role of the feature extractor in determining results. To our knowledge, this is the first study on the adaptation of VFM for FSS.
Learning from True-False Labels via Multi-modal Prompt Retrieving
Pre-trained Vision-Language Models (VLMs) exhibit strong zero-shot classification abilities, demonstrating great potential for generating weakly supervised labels. Unfortunately, existing weakly supervised learning methods are short of ability in generating accurate labels via VLMs. In this paper, we propose a novel weakly supervised labeling setting, namely True-False Labels (TFLs) which can achieve high accuracy when generated by VLMs. The TFL indicates whether an instance belongs to the label, which is randomly and uniformly sampled from the candidate label set. Specifically, we theoretically derive a risk-consistent estimator to explore and utilize the conditional probability distribution information of TFLs. Besides, we propose a convolutional-based Multi-modal Prompt Retrieving (MRP) method to bridge the gap between the knowledge of VLMs and target learning tasks. Experimental results demonstrate the effectiveness of the proposed TFL setting and MRP learning method. The code to reproduce the experiments is at https://github.com/Tranquilxu/TMP.
comment: 15 pages, 5 figures
T-TAME: Trainable Attention Mechanism for Explaining Convolutional Networks and Vision Transformers
The development and adoption of Vision Transformers and other deep-learning architectures for image classification tasks has been rapid. However, the "black box" nature of neural networks is a barrier to adoption in applications where explainability is essential. While some techniques for generating explanations have been proposed, primarily for Convolutional Neural Networks, adapting such techniques to the new paradigm of Vision Transformers is non-trivial. This paper presents T-TAME, Transformer-compatible Trainable Attention Mechanism for Explanations, a general methodology for explaining deep neural networks used in image classification tasks. The proposed architecture and training technique can be easily applied to any convolutional or Vision Transformer-like neural network, using a streamlined training approach. After training, explanation maps can be computed in a single forward pass; these explanation maps are comparable to or outperform the outputs of computationally expensive perturbation-based explainability techniques, achieving SOTA performance. We apply T-TAME to three popular deep learning classifier architectures, VGG-16, ResNet-50, and ViT-B-16, trained on the ImageNet dataset, and we demonstrate improvements over existing state-of-the-art explainability methods. A detailed analysis of the results and an ablation study provide insights into how the T-TAME design choices affect the quality of the generated explanation maps.
comment: Accepted
VectorPainter: Advanced Stylized Vector Graphics Synthesis Using Stroke-Style Priors ICME
We introduce VectorPainter, a novel framework designed for reference-guided text-to-vector-graphics synthesis. Based on our observation that the style of strokes can be an important aspect to distinguish different artists, our method reforms the task into synthesize a desired vector graphics by rearranging stylized strokes, which are vectorized from the reference images. Specifically, our method first converts the pixels of the reference image into a series of vector strokes, and then generates a vector graphic based on the input text description by optimizing the positions and colors of these vector strokes. To precisely capture the style of the reference image in the vectorized strokes, we propose an innovative vectorization method that employs an imitation learning strategy. To preserve the style of the strokes throughout the generation process, we introduce a style-preserving loss function. Extensive experiments have been conducted to demonstrate the superiority of our approach over existing works in stylized vector graphics synthesis, as well as the effectiveness of the various components of our method.
comment: Accepted by 2025 IEEE International Conference on Multimedia and Expo (ICME). IEEE, 2025. Project page: https://hjc-owo.github.io/VectorPainterProject/
LeYOLO, New Embedded Architecture for Object Detection
Efficient computation in deep neural networks is crucial for real-time object detection. However, recent advancements primarily result from improved high-performing hardware rather than improving parameters and FLOP efficiency. This is especially evident in the latest YOLO architectures, where speed is prioritized over lightweight design. As a result, object detection models optimized for low-resource environments like microcontrollers have received less attention. For devices with limited computing power, existing solutions primarily rely on SSDLite or combinations of low-parameter classifiers, creating a noticeable gap between YOLO-like architectures and truly efficient lightweight detectors. This raises a key question: Can a model optimized for parameter and FLOP efficiency achieve accuracy levels comparable to mainstream YOLO models? To address this, we introduce two key contributions to object detection models using MSCOCO as a base validation set. First, we propose LeNeck, a general-purpose detection framework that maintains inference speed comparable to SSDLite while significantly improving accuracy and reducing parameter count. Second, we present LeYOLO, an efficient object detection model designed to enhance computational efficiency in YOLO-based architectures. LeYOLO effectively bridges the gap between SSDLite-based detectors and YOLO models, offering high accuracy in a model as compact as MobileNets. Both contributions are particularly well-suited for mobile, embedded, and ultra-low-power devices, including microcontrollers, where computational efficiency is critical.
comment: https://crv.pubpub.org/pub/sae4lpdf
Spatio-Temporal Fuzzy-oriented Multi-Modal Meta-Learning for Fine-grained Emotion Recognition
Fine-grained emotion recognition (FER) plays a vital role in various fields, such as disease diagnosis, personalized recommendations, and multimedia mining. However, existing FER methods face three key challenges in real-world applications: (i) they rely on large amounts of continuously annotated data to ensure accuracy since emotions are complex and ambiguous in reality, which is costly and time-consuming; (ii) they cannot capture the temporal heterogeneity caused by changing emotion patterns, because they usually assume that the temporal correlation within sampling periods is the same; (iii) they do not consider the spatial heterogeneity of different FER scenarios, that is, the distribution of emotion information in different data may have bias or interference. To address these challenges, we propose a Spatio-Temporal Fuzzy-oriented Multi-modal Meta-learning framework (ST-F2M). Specifically, ST-F2M first divides the multi-modal videos into multiple views, and each view corresponds to one modality of one emotion. Multiple randomly selected views for the same emotion form a meta-training task. Next, ST-F2M uses an integrated module with spatial and temporal convolutions to encode the data of each task, reflecting the spatial and temporal heterogeneity. Then it adds fuzzy semantic information to each task based on generalized fuzzy rules, which helps handle the complexity and ambiguity of emotions. Finally, ST-F2M learns emotion-related general meta-knowledge through meta-recurrent neural networks to achieve fast and robust fine-grained emotion recognition. Extensive experiments show that ST-F2M outperforms various state-of-the-art methods in terms of accuracy and model efficiency. In addition, we construct ablation studies and further analysis to explore why ST-F2M performs well.
comment: This work has been submitted to the IEEE for possible publication
Self-supervised Learning of Event-guided Video Frame Interpolation for Rolling Shutter Frames ICCV 2023
Most consumer cameras use rolling shutter (RS) exposure, which often leads to distortions such as skew and jelly effects. These videos are further limited by bandwidth and frame rate constraints. In this paper, we explore the potential of event cameras, which offer high temporal resolution. We propose a framework to recover global shutter (GS) high-frame-rate videos without RS distortion by combining an RS camera and an event camera. Due to the lack of real-world datasets, our framework adopts a self-supervised strategy based on a displacement field, a dense 3D spatiotemporal representation of pixel motion during exposure. This enables mutual reconstruction between RS and GS frames and facilitates slow-motion recovery. We combine RS frames with the displacement field to generate GS frames, and integrate inverse mapping and RS frame warping for self-supervision. Experiments on four datasets show that our method removes distortion, reduces bandwidth usage by 94 percent, and achieves 16 ms per frame at 32x interpolation.
comment: An earlier version of this paper (ID: 1845) was submitted to ICCV 2023 in March 2023. The work has been substantially revised and accepted by IEEE Transactions on Visualization and Computer Graphics (TVCG)
X-Driver: Explainable Autonomous Driving with Vision-Language Models
End-to-end autonomous driving has advanced significantly, offering benefits such as system simplicity and stronger driving performance in both open-loop and closed-loop settings than conventional pipelines. However, existing frameworks still suffer from low success rates in closed-loop evaluations, highlighting their limitations in real-world deployment. In this paper, we introduce X-Driver, a unified multi-modal large language models(MLLMs) framework designed for closed-loop autonomous driving, leveraging Chain-of-Thought(CoT) and autoregressive modeling to enhance perception and decision-making. We validate X-Driver across multiple autonomous driving tasks using public benchmarks in CARLA simulation environment, including Bench2Drive[6]. Our experimental results demonstrate superior closed-loop performance, surpassing the current state-of-the-art(SOTA) while improving the interpretability of driving decisions. These findings underscore the importance of structured reasoning in end-to-end driving and establish X-Driver as a strong baseline for future research in closed-loop autonomous driving.
No Training, No Problem: Rethinking Classifier-Free Guidance for Diffusion Models ICLR 2025
Classifier-free guidance (CFG) has become the standard method for enhancing the quality of conditional diffusion models. However, employing CFG requires either training an unconditional model alongside the main diffusion model or modifying the training procedure by periodically inserting a null condition. There is also no clear extension of CFG to unconditional models. In this paper, we revisit the core principles of CFG and introduce a new method, independent condition guidance (ICG), which provides the benefits of CFG without the need for any special training procedures. Our approach streamlines the training process of conditional diffusion models and can also be applied during inference on any pre-trained conditional model. Additionally, by leveraging the time-step information encoded in all diffusion networks, we propose an extension of CFG, called time-step guidance (TSG), which can be applied to any diffusion model, including unconditional ones. Our guidance techniques are easy to implement and have the same sampling cost as CFG. Through extensive experiments, we demonstrate that ICG matches the performance of standard CFG across various conditional diffusion models. Moreover, we show that TSG improves generation quality in a manner similar to CFG, without relying on any conditional information.
comment: Published as a conference paper at ICLR 2025
Eliminating Oversaturation and Artifacts of High Guidance Scales in Diffusion Models ICLR 2025
Classifier-free guidance (CFG) is crucial for improving both generation quality and alignment between the input condition and final output in diffusion models. While a high guidance scale is generally required to enhance these aspects, it also causes oversaturation and unrealistic artifacts. In this paper, we revisit the CFG update rule and introduce modifications to address this issue. We first decompose the update term in CFG into parallel and orthogonal components with respect to the conditional model prediction and observe that the parallel component primarily causes oversaturation, while the orthogonal component enhances image quality. Accordingly, we propose down-weighting the parallel component to achieve high-quality generations without oversaturation. Additionally, we draw a connection between CFG and gradient ascent and introduce a new rescaling and momentum method for the CFG update rule based on this insight. Our approach, termed adaptive projected guidance (APG), retains the quality-boosting advantages of CFG while enabling the use of higher guidance scales without oversaturation. APG is easy to implement and introduces practically no additional computational overhead to the sampling process. Through extensive experiments, we demonstrate that APG is compatible with various conditional diffusion models and samplers, leading to improved FID, recall, and saturation scores while maintaining precision comparable to CFG, making our method a superior plug-and-play alternative to standard classifier-free guidance.
comment: Published as a conference paper at ICLR 2025
Hierarchical Relational Learning for Few-Shot Knowledge Graph Completion ICLR 2023
Knowledge graphs (KGs) are powerful in terms of their inference abilities, but are also notorious for their incompleteness and long-tail distribution of relations. To address these challenges and expand the coverage of KGs, few-shot KG completion aims to make predictions for triplets involving novel relations when only a few training triplets are provided as reference. Previous methods have focused on designing local neighbor aggregators to learn entity-level information and/or imposing a potentially invalid sequential dependency assumption at the triplet level to learn meta relation information. However, pairwise triplet-level interactions and context-level relational information have been largely overlooked for learning meta representations of few-shot relations. In this paper, we propose a hierarchical relational learning method (HiRe) for few-shot KG completion. By jointly capturing three levels of relational information (entity-level, triplet-level and context-level), HiRe can effectively learn and refine meta representations of few-shot relations, and thus generalize well to new unseen relations. Extensive experiments on benchmark datasets validate the superiority of HiRe over state-of-the-art methods. The code can be found in https://github.com/alexhw15/HiRe.git.
comment: Published at ICLR 2023
Constant Rate Scheduling: Constant-Rate Distributional Change for Efficient Training and Sampling in Diffusion Models
We propose a general approach to optimize noise schedules for training and sampling in diffusion models. Our approach optimizes the noise schedules to ensure a constant rate of change in the probability distribution of diffused data throughout the diffusion process. Any distance metric for measuring the probability-distributional change is applicable to our approach, and we introduce three distance metrics. We evaluated the effectiveness of our approach on unconditional and class-conditional image-generation tasks using the LSUN (Horse, Bedroom, Church), ImageNet, FFHQ, and CIFAR10 datasets. Through extensive experiments, we confirmed that our approach broadly improves the performance of pixel-space and latent-space diffusion models regardless of the dataset, sampler, and number of function evaluations ranging from 5 to 250. Notably, by using our approach for optimizing both training and sampling schedules, we achieved a state-of-the-art FID score of 2.03 without sacrificing mode coverage on LSUN Horse 256 $\times$ 256.
comment: 44 pages, 20 figures, 25 tables
OpenS2V-Nexus: A Detailed Benchmark and Million-Scale Dataset for Subject-to-Video Generation
Subject-to-Video (S2V) generation aims to create videos that faithfully incorporate reference content, providing enhanced flexibility in the production of videos. To establish the infrastructure for S2V generation, we propose OpenS2V-Nexus, consisting of (i) OpenS2V-Eval, a fine-grained benchmark, and (ii) OpenS2V-5M, a million-scale dataset. In contrast to existing S2V benchmarks inherited from VBench that focus on global and coarse-grained assessment of generated videos, OpenS2V-Eval focuses on the model's ability to generate subject-consistent videos with natural subject appearance and identity fidelity. For these purposes, OpenS2V-Eval introduces 180 prompts from seven major categories of S2V, which incorporate both real and synthetic test data. Furthermore, to accurately align human preferences with S2V benchmarks, we propose three automatic metrics, NexusScore, NaturalScore and GmeScore, to separately quantify subject consistency, naturalness, and text relevance in generated videos. Building on this, we conduct a comprehensive evaluation of 18 representative S2V models, highlighting their strengths and weaknesses across different content. Moreover, we create the first open-source large-scale S2V generation dataset OpenS2V-5M, which consists of five million high-quality 720P subject-text-video triples. Specifically, we ensure subject-information diversity in our dataset by (1) segmenting subjects and building pairing information via cross-video associations and (2) prompting GPT-Image-1 on raw frames to synthesize multi-view representations. Through OpenS2V-Nexus, we deliver a robust infrastructure to accelerate future S2V generation research.
comment: Code and Dataset: https://github.com/PKU-YuanGroup/OpenS2V-Nexus
S3D: Sketch-Driven 3D Model Generation CVPR'25
Generating high-quality 3D models from 2D sketches is a challenging task due to the inherent ambiguity and sparsity of sketch data. In this paper, we present S3D, a novel framework that converts simple hand-drawn sketches into detailed 3D models. Our method utilizes a U-Net-based encoder-decoder architecture to convert sketches into face segmentation masks, which are then used to generate a 3D representation that can be rendered from novel views. To ensure robust consistency between the sketch domain and the 3D output, we introduce a novel style-alignment loss that aligns the U-Net bottleneck features with the initial encoder outputs of the 3D generation module, significantly enhancing reconstruction fidelity. To further enhance the network's robustness, we apply augmentation techniques to the sketch dataset. This streamlined framework demonstrates the effectiveness of S3D in generating high-quality 3D models from sketch inputs. The source code for this project is publicly available at https://github.com/hailsong/S3D.
comment: Accepted as a short paper to the GMCV Workshop at CVPR'25
OmniTalker: One-shot Real-time Text-Driven Talking Audio-Video Generation With Multimodal Style Mimicking
Although significant progress has been made in audio-driven talking head generation, text-driven methods remain underexplored. In this work, we present OmniTalker, a unified framework that jointly generates synchronized talking audio-video content from input text while emulating the speaking and facial movement styles of the target identity, including speech characteristics, head motion, and facial dynamics. Our framework adopts a dual-branch diffusion transformer (DiT) architecture, with one branch dedicated to audio generation and the other to video synthesis. At the shallow layers, cross-modal fusion modules are introduced to integrate information between the two modalities. In deeper layers, each modality is processed independently, with the generated audio decoded by a vocoder and the video rendered using a GAN-based high-quality visual renderer. Leveraging the in-context learning capability of DiT through a masked-infilling strategy, our model can simultaneously capture both audio and visual styles without requiring explicit style extraction modules. Thanks to the efficiency of the DiT backbone and the optimized visual renderer, OmniTalker achieves real-time inference at 25 FPS. To the best of our knowledge, OmniTalker is the first one-shot framework capable of jointly modeling speech and facial styles in real time. Extensive experiments demonstrate its superiority over existing methods in terms of generation quality, particularly in preserving style consistency and ensuring precise audio-video synchronization, all while maintaining efficient inference.
comment: Project Page https://humanaigc.github.io/omnitalker
Diving into Self-Evolving Training for Multimodal Reasoning ICML 2025
Self-evolving trainin--where models iteratively learn from their own outputs--has emerged as a key approach for complex reasoning tasks, addressing the scarcity of high-quality chain-of-thought data. However, its effectiveness in multimodal reasoning, a domain more intricate than text-only reasoning, remains underexplored, and the understanding of critical factors in this training paradigm remains limited. Furthermore, a central challenge for this training method is performance saturation, which impedes further improvements and scalability. Inspired by reinforcement learning (RL), in this paper, we reframe self-evolving training for multimodal reasoning through the lens of RL, identifying three pivotal factors: Training Method, Reward Model, and Prompt Variation. Through systematic analysis, we establish relatively optimal design principles that significantly enhance multimodal reasoning capabilities. Moreover, delving deeper into training dynamics, we uncover the roots of saturation and propose a new automatic balancing mechanism to mitigate this limitation. Building on these insights, we propose M-STAR (Multimodal Self-evolving Training for Reasoning), a framework that achieves consistent performance gains across models of varying sizes and diverse benchmarks. All resources are made publicly available at https://mstar-lmm.github.io.
comment: ICML 2025, Project Page: https://mstar-lmm.github.io
Evaluating and Advancing Multimodal Large Language Models in Perception Ability Lens
As multimodal large language models (MLLMs) advance rapidly, rigorous evaluation has become essential, providing further guidance for their development. In this work, we focus on a unified and robust evaluation of \textbf{vision perception} abilities, the foundational skill of MLLMs. We find that existing perception benchmarks, each focusing on different question types, domains, and evaluation metrics, introduce significant evaluation variance, complicating comprehensive assessments of perception abilities when relying on any single benchmark. To address this, we introduce \textbf{AbilityLens}, a unified benchmark designed to evaluate MLLMs in six key perception abilities (ranging from counting, OCR, to understanding structural data), focusing on both accuracy and stability, with each ability encompassing diverse types of questions, domains, and metrics. With the assistance of AbilityLens, we: (1) identify the strengths and weaknesses of current main-stream MLLMs, highlighting stability patterns and revealing a notable performance gap between state-of-the-art open-source and closed-source models; (2) uncover interesting ability conflict and early convergence phenomena during MLLM training; (3) reveal the primary reason of ability conflict is data mixing ratio and LLM model size; and (4) discuss the effectiveness of some straightforward strategies \eg, fine-tuning and model merging, to solve the ability conflict. The benchmark and online leaderboard is released in https://github.com/Chenfeng1271/AbilityLens.
comment: Code repository: https://github.com/Chenfeng1271/AbilityLens/tree/main
Low-Resolution Self-Attention for Semantic Segmentation
Semantic segmentation tasks naturally require high-resolution information for pixel-wise segmentation and global context information for class prediction. While existing vision transformers demonstrate promising performance, they often utilize high-resolution context modeling, resulting in a computational bottleneck. In this work, we challenge conventional wisdom and introduce the Low-Resolution Self-Attention (LRSA) mechanism to capture global context at a significantly reduced computational cost, i.e., FLOPs. Our approach involves computing self-attention in a fixed low-resolution space regardless of the input image's resolution, with additional 3x3 depth-wise convolutions to capture fine details in the high-resolution space. We demonstrate the effectiveness of our LRSA approach by building the LRFormer, a vision transformer with an encoder-decoder structure. Extensive experiments on the ADE20K, COCO-Stuff, and Cityscapes datasets demonstrate that LRFormer outperforms state-of-the-art models. Code is available at https://github.com/yuhuan-wu/LRFormer.
comment: Accepted by IEEE TPAMI; 14 pages, 6 figures, 14 tables
Mobile-Agent-V: A Video-Guided Approach for Effortless and Efficient Operational Knowledge Injection in Mobile Automation
The exponential rise in mobile device usage necessitates streamlined automation for effective task management, yet many AI frameworks fall short due to inadequate operational expertise. While manually written knowledge can bridge this gap, it is often burdensome and inefficient. We introduce Mobile-Agent-V, an innovative framework that utilizes video as a guiding tool to effortlessly and efficiently inject operational knowledge into mobile automation processes. By deriving knowledge directly from video content, Mobile-Agent-V eliminates manual intervention, significantly reducing the effort and time required for knowledge acquisition. To rigorously evaluate this approach, we propose Mobile-Knowledge, a benchmark tailored to assess the impact of external knowledge on mobile agent performance. Our experimental findings demonstrate that Mobile-Agent-V enhances performance by 36% compared to existing methods, underscoring its effortless and efficient advantages in mobile automation.
comment: 17 pages, 7 figures, 9 tables
Inclusion 2024 Global Multimedia Deepfake Detection Challenge: Towards Multi-dimensional Face Forgery Detection
In this paper, we present the Global Multimedia Deepfake Detection held concurrently with the Inclusion 2024. Our Multimedia Deepfake Detection aims to detect automatic image and audio-video manipulations including but not limited to editing, synthesis, generation, Photoshop,etc. Our challenge has attracted 1500 teams from all over the world, with about 5000 valid result submission counts. We invite the top 20 teams to present their solutions to the challenge, from which the top 3 teams are awarded prizes in the grand finale. In this paper, we present the solutions from the top 3 teams of the two tracks, to boost the research work in the field of image and audio-video forgery detection. The methodologies developed through the challenge will contribute to the development of next-generation deepfake detection systems and we encourage participants to open source their methods.
comment: Inclusion 2024 Global Multimedia Deepfake Detection Competition Top Team Technical Report
Generative Emotion Cause Explanation in Multimodal Conversations
Multimodal conversation, a crucial form of human communication, carries rich emotional content, making the exploration of the causes of emotions within it a research endeavor of significant importance. However, existing research on the causes of emotions typically employs an utterance selection method within a single textual modality to locate causal utterances. This approach remains limited to coarse-grained assessments, lacks nuanced explanations of emotional causation, and demonstrates inadequate capability in identifying multimodal emotional triggers. Therefore, we introduce a task-\textbf{Multimodal Emotion Cause Explanation in Conversation (MECEC)}. This task aims to generate a summary based on the multimodal context of conversations, clearly and intuitively describing the reasons that trigger a given emotion. To adapt to this task, we develop a new dataset (ECEM) based on the MELD dataset. ECEM combines video clips with detailed explanations of character emotions, helping to explore the causal factors behind emotional expression in multimodal conversations. A novel approach, FAME-Net, is further proposed, that harnesses the power of Large Language Models (LLMs) to analyze visual data and accurately interpret the emotions conveyed through facial expressions in videos. By exploiting the contagion effect of facial emotions, FAME-Net effectively captures the emotional causes of individuals engaged in conversations. Our experimental results on the newly constructed dataset show that FAME-Net outperforms several excellent baselines. Code and dataset are available at https://github.com/3222345200/FAME-Net.
PointCloud-Text Matching: Benchmark Datasets and a Baseline
In this paper, we present and study a new instance-level retrieval task: PointCloud-Text Matching (PTM), which aims to identify the exact cross-modal instance that matches a given point-cloud query or text query. PTM has potential applications in various scenarios, such as indoor/urban-canyon localization and scene retrieval. However, there is a lack of suitable and targeted datasets for PTM in practice. To address this issue, we present a new PTM benchmark dataset, namely SceneDepict-3D2T. We observe that the data poses significant challenges due to its inherent characteristics, such as the sparsity, noise, or disorder of point clouds and the ambiguity, vagueness, or incompleteness of texts, which render existing cross-modal matching methods ineffective for PTM. To overcome these challenges, we propose a PTM baseline, named Robust PointCloud-Text Matching method (RoMa). RoMa consists of two key modules: a Dual Attention Perception module (DAP) and a Robust Negative Contrastive Learning module (RNCL). Specifically, DAP leverages token-level and feature-level attention mechanisms to adaptively focus on useful local and global features, and aggregate them into common representations, thereby reducing the adverse impact of noise and ambiguity. To handle noisy correspondence, RNCL enhances robustness against mismatching by dividing negative pairs into clean and noisy subsets and assigning them forward and reverse optimization directions, respectively. We conduct extensive experiments on our benchmarks and demonstrate the superiority of our RoMa.
comment: The version submitted this time has been significantly revised and improved on the previous version
Image and Video Processing
Astrophotography turbulence mitigation via generative models
Photography is the cornerstone of modern astronomical and space research. However, most astronomical images captured by ground-based telescopes suffer from atmospheric turbulence, resulting in degraded imaging quality. While multi-frame strategies like lucky imaging can mitigate some effects, they involve intensive data acquisition and complex manual processing. In this paper, we propose AstroDiff, a generative restoration method that leverages both the high-quality generative priors and restoration capabilities of diffusion models to mitigate atmospheric turbulence. Extensive experiments demonstrate that AstroDiff outperforms existing state-of-the-art learning-based methods in astronomical image turbulence mitigation, providing higher perceptual quality and better structural fidelity under severe turbulence conditions. Our code and additional results are available at https://web-six-kappa-66.vercel.app/
Solving Inverse Problems with FLAIR
Flow-based latent generative models such as Stable Diffusion 3 are able to generate images with remarkable quality, even enabling photorealistic text-to-image generation. Their impressive performance suggests that these models should also constitute powerful priors for inverse imaging problems, but that approach has not yet led to comparable fidelity. There are several key obstacles: (i) the encoding into a lower-dimensional latent space makes the underlying (forward) mapping non-linear; (ii) the data likelihood term is usually intractable; and (iii) learned generative models struggle to recover rare, atypical data modes during inference. We present FLAIR, a novel training free variational framework that leverages flow-based generative models as a prior for inverse problems. To that end, we introduce a variational objective for flow matching that is agnostic to the type of degradation, and combine it with deterministic trajectory adjustments to recover atypical modes. To enforce exact consistency with the observed data, we decouple the optimization of the data fidelity and regularization terms. Moreover, we introduce a time-dependent calibration scheme in which the strength of the regularization is modulated according to off-line accuracy estimates. Results on standard imaging benchmarks demonstrate that FLAIR consistently outperforms existing diffusion- and flow-based methods in terms of reconstruction quality and sample diversity.
Application of convolutional neural networks in image super-resolution
Due to strong learning abilities of convolutional neural networks (CNNs), they have become mainstream methods for image super-resolution. However, there are big differences of different deep learning methods with different types. There is little literature to summarize relations and differences of different methods in image super-resolution. Thus, summarizing these literatures are important, according to loading capacity and execution speed of devices. This paper first introduces principles of CNNs in image super-resolution, then introduces CNNs based bicubic interpolation, nearest neighbor interpolation, bilinear interpolation, transposed convolution, sub-pixel layer, meta up-sampling for image super-resolution to analyze differences and relations of different CNNs based interpolations and modules, and compare performance of these methods by experiments. Finally, this paper gives potential research points and drawbacks and summarizes the whole paper, which can facilitate developments of CNNs in image super-resolution.
comment: It has been accepted by CAAI transactions on intelligent systems, in Chinese language
Hyperspectral Image Generation with Unmixing Guided Diffusion Model
Recently, hyperspectral image generation has received increasing attention, but existing generative models rely on conditional generation schemes, which limits the diversity of generated images. Diffusion models are popular for their ability to generate high-quality samples, but adapting these models from RGB to hyperspectral data presents the challenge of high dimensionality and physical constraints. To address these challenges, we propose a novel diffusion model guided by hyperspectral unmixing. Our model comprises two key modules: an unmixing autoencoder module and an abundance diffusion module. The unmixing autoencoder module leverages unmixing guidance to shift the generative task from the image space to the low-dimensional abundance space, significantly reducing computational complexity while preserving high fidelity. The abundance diffusion module generates samples that satisfy the constraints of non-negativity and unity, ensuring the physical consistency of the reconstructed HSIs. Additionally, we introduce two evaluation metrics tailored to hyperspectral data. Empirical results, evaluated using both traditional metrics and our proposed metrics, indicate that our model is capable of generating high-quality and diverse hyperspectral images, offering an advancement in hyperspectral data generation.
A Tree-guided CNN for image super-resolution
Deep convolutional neural networks can extract more accurate structural information via deep architectures to obtain good performance in image super-resolution. However, it is not easy to find effect of important layers in a single network architecture to decrease performance of super-resolution. In this paper, we design a tree-guided CNN for image super-resolution (TSRNet). It uses a tree architecture to guide a deep network to enhance effect of key nodes to amplify the relation of hierarchical information for improving the ability of recovering images. To prevent insufficiency of the obtained structural information, cosine transform techniques in the TSRNet are used to extract cross-domain information to improve the performance of image super-resolution. Adaptive Nesterov momentum optimizer (Adan) is applied to optimize parameters to boost effectiveness of training a super-resolution model. Extended experiments can verify superiority of the proposed TSRNet for restoring high-quality images. Its code can be obtained at https://github.com/hellloxiaotian/TSRNet.
comment: This paper has been accepted for publication in IEEE Transactions on Consumer Electronics. 10 pages, 6 figures. Its code can be obtained at https://github.com/hellloxiaotian/TSRNet
Dynamic mapping from static labels: remote sensing dynamic sample generation with temporal-spectral embedding
Accurate remote sensing geographic mapping depends heavily on representative and timely sample data. However, rapid changes in land surface dynamics necessitate frequent updates, quickly rendering previously collected samples obsolete and imposing significant labor demands for continuous manual updates. In this study, we aim to address this problem by dynamic sample generation using existing single-date static labeled samples. We introduce TasGen, a two-stage automated framework to automatically generate dynamic samples, designed to simultaneously model spectral and temporal dependencies in time-series remote sensing imagery via temporal-spectral embedding, capturing land surface changes without additional manual annotations.
Multi-modal brain MRI synthesis based on SwinUNETR
Multi-modal brain magnetic resonance imaging (MRI) plays a crucial role in clinical diagnostics by providing complementary information across different imaging modalities. However, a common challenge in clinical practice is missing MRI modalities. In this paper, we apply SwinUNETR to the synthesize of missing modalities in brain MRI. SwinUNETR is a novel neural network architecture designed for medical image analysis, integrating the strengths of Swin Transformer and convolutional neural networks (CNNs). The Swin Transformer, a variant of the Vision Transformer (ViT), incorporates hierarchical feature extraction and window-based self-attention mechanisms, enabling it to capture both local and global contextual information effectively. By combining the Swin Transformer with CNNs, SwinUNETR merges global context awareness with detailed spatial resolution. This hybrid approach addresses the challenges posed by the varying modality characteristics and complex brain structures, facilitating the generation of accurate and realistic synthetic images. We evaluate the performance of SwinUNETR on brain MRI datasets and demonstrate its superior capability in generating clinically valuable images. Our results show significant improvements in image quality, anatomical consistency, and diagnostic value.
comment: 9 pages, 5 figures
Unrolling Nonconvex Graph Total Variation for Image Denoising
Conventional model-based image denoising optimizations employ convex regularization terms, such as total variation (TV) that convexifies the $\ell_0$-norm to promote sparse signal representation. Instead, we propose a new non-convex total variation term in a graph setting (NC-GTV), such that when combined with an $\ell_2$-norm fidelity term for denoising, leads to a convex objective with no extraneous local minima. We define NC-GTV using a new graph variant of the Huber function, interpretable as a Moreau envelope. The crux is the selection of a parameter $a$ characterizing the graph Huber function that ensures overall objective convexity; we efficiently compute $a$ via an adaptation of Gershgorin Circle Theorem (GCT). To minimize the convex objective, we design a linear-time algorithm based on Alternating Direction Method of Multipliers (ADMM) and unroll it into a lightweight feed-forward network for data-driven parameter learning. Experiments show that our method outperforms unrolled GTV and other representative image denoising schemes, while employing far fewer network parameters.
Hybrid Ensemble of Segmentation-Assisted Classification and GBDT for Skin Cancer Detection with Engineered Metadata and Synthetic Lesions from ISIC 2024 Non-Dermoscopic 3D-TBP Images CVPR 2025
Skin cancer is among the most prevalent and life-threatening diseases worldwide, with early detection being critical to patient outcomes. This work presents a hybrid machine and deep learning-based approach for classifying malignant and benign skin lesions using the SLICE-3D dataset from ISIC 2024, which comprises 401,059 cropped lesion images extracted from 3D Total Body Photography (TBP), emulating non-dermoscopic, smartphone-like conditions. Our method combines vision transformers (EVA02) and our designed convolutional ViT hybrid (EdgeNeXtSAC) to extract robust features, employing a segmentation-assisted classification pipeline to enhance lesion localization. Predictions from these models are fused with a gradient-boosted decision tree (GBDT) ensemble enriched by engineered features and patient-specific relational metrics. To address class imbalance and improve generalization, we augment malignant cases with Stable Diffusion-generated synthetic lesions and apply a diagnosis-informed relabeling strategy to harmonize external datasets into a 3-class format. Using partial AUC (pAUC) above 80 percent true positive rate (TPR) as the evaluation metric, our approach achieves a pAUC of 0.1755 -- the highest among all configurations. These results underscore the potential of hybrid, interpretable AI systems for skin cancer triage in telemedicine and resource-constrained settings.
comment: Written as per the requirements of CVPR 2025. It is a 8 page paper without reference
Rethinking Whole-Body CT Image Interpretation: An Abnormality-Centric Approach
Automated interpretation of CT images-particularly localizing and describing abnormal findings across multi-plane and whole-body scans-remains a significant challenge in clinical radiology. This work aims to address this challenge through four key contributions: (i) On taxonomy, we collaborate with senior radiologists to propose a comprehensive hierarchical classification system, with 404 representative abnormal findings across all body regions; (ii) On data, we contribute a dataset containing over 14.5K CT images from multiple planes and all human body regions, and meticulously provide grounding annotations for over 19K abnormalities, each linked to the detailed description and cast into the taxonomy; (iii) On model development, we propose OminiAbnorm-CT, which can automatically ground and describe abnormal findings on multi-plane and whole-body CT images based on text queries, while also allowing flexible interaction through visual prompts; (iv) On benchmarks, we establish three representative evaluation tasks based on real clinical scenarios. Through extensive experiments, we show that OminiAbnorm-CT can significantly outperform existing methods on all the tasks and metrics.
petBrain: A New Pipeline for Amyloid, Tau Tangles and Neurodegeneration Quantification Using PET and MRI
INTRODUCTION: Quantification of amyloid plaques (A), neurofibrillary tangles (T2), and neurodegeneration (N) using PET and MRI is critical for Alzheimer's disease (AD) diagnosis and prognosis. Existing pipelines face limitations regarding processing time, variability in tracer types, and challenges in multimodal integration. METHODS: We developed petBrain, a novel end-to-end processing pipeline for amyloid-PET, tau-PET, and structural MRI. It leverages deep learning-based segmentation, standardized biomarker quantification (Centiloid, CenTauR, HAVAs), and simultaneous estimation of A, T2, and N biomarkers. The pipeline is implemented as a web-based platform, requiring no local computational infrastructure or specialized software knowledge. RESULTS: petBrain provides reliable and rapid biomarker quantification, with results comparable to existing pipelines for A and T2. It shows strong concordance with data processed in ADNI databases. The staging and quantification of A/T2/N by petBrain demonstrated good agreement with CSF/plasma biomarkers, clinical status, and cognitive performance. DISCUSSION: petBrain represents a powerful and openly accessible platform for standardized AD biomarker analysis, facilitating applications in clinical research.
A Survey of Deep Learning Video Super-Resolution
Video super-resolution (VSR) is a prominent research topic in low-level computer vision, where deep learning technologies have played a significant role. The rapid progress in deep learning and its applications in VSR has led to a proliferation of tools and techniques in the literature. However, the usage of these methods is often not adequately explained, and decisions are primarily driven by quantitative improvements. Given the significance of VSR's potential influence across multiple domains, it is imperative to conduct a comprehensive analysis of the elements and deep learning methodologies employed in VSR research. This methodical analysis will facilitate the informed development of models tailored to specific application needs. In this paper, we present an overarching overview of deep learning-based video super-resolution models, investigating each component and discussing its implications. Furthermore, we provide a synopsis of key components and technologies employed by state-of-the-art and earlier VSR models. By elucidating the underlying methodologies and categorising them systematically, we identified trends, requirements, and challenges in the domain. As a first-of-its-kind survey of deep learning-based VSR models, this work also establishes a multi-level taxonomy to guide current and future VSR research, enhancing the maturation and interpretation of VSR practices for various practical applications.
comment: This paper has been published in IEEE Transactions on Emerging Topics in Computational Intelligence, vol. 8, no. 4, pp. 2655-2676, Aug. 2024, doi: 10.1109/TETCI.2024.3398015
Talk2SAM: Text-Guided Semantic Enhancement for Complex-Shaped Object Segmentation
Segmenting objects with complex shapes, such as wires, bicycles, or structural grids, remains a significant challenge for current segmentation models, including the Segment Anything Model (SAM) and its high-quality variant SAM-HQ. These models often struggle with thin structures and fine boundaries, leading to poor segmentation quality. We propose Talk2SAM, a novel approach that integrates textual guidance to improve segmentation of such challenging objects. The method uses CLIP-based embeddings derived from user-provided text prompts to identify relevant semantic regions, which are then projected into the DINO feature space. These features serve as additional prompts for SAM-HQ, enhancing its ability to focus on the target object. Beyond improving segmentation accuracy, Talk2SAM allows user-controllable segmentation, enabling disambiguation of objects within a single bounding box based on textual input. We evaluate our approach on three benchmarks: BIG, ThinObject5K, and DIS5K. Talk2SAM consistently outperforms SAM-HQ, achieving up to +5.9\% IoU and +8.3\% boundary IoU improvements. Our results demonstrate that incorporating natural language guidance provides a flexible and effective means for precise object segmentation, particularly in cases where traditional prompt-based methods fail. The source code is available on GitHub: https://github.com/richlukich/Talk2SAM
comment: 14 pages, 7 figures, Submitted to the conference
TriPSS: A Tri-Modal Keyframe Extraction Framework Using Perceptual, Structural, and Semantic Representations
Efficient keyframe extraction is critical for effective video summarization and retrieval, yet capturing the complete richness of video content remains challenging. In this work, we present TriPSS, a novel tri-modal framework that effectively integrates perceptual cues from color features in the CIELAB space, deep structural embeddings derived from ResNet-50, and semantic context from frame-level captions generated by Llama-3.2-11B-Vision-Instruct. By fusing these diverse modalities using principal component analysis, TriPSS constructs robust multi-modal embeddings that enable adaptive segmentation of video content via HDBSCAN clustering. A subsequent refinement stage incorporating quality assessment and duplicate filtering ensures that the final keyframe set is both concise and semantically rich. Comprehensive evaluations on benchmark datasets TVSum20 and SumMe demonstrate that TriPSS achieves state-of-the-art performance, substantially outperforming traditional unimodal and previous multi-modal methods. These results underscore TriPSS's ability to capture nuanced visual and semantic information, thereby setting a new benchmark for video content understanding in large-scale retrieval scenarios.
Enhancing Neural Autoregressive Distribution Estimators for Image Reconstruction
Autoregressive models are often employed to learn distributions of image data by decomposing the $D$-dimensional density function into a product of one-dimensional conditional distributions. Each conditional depends on preceding variables (pixels, in the case of image data), making the order in which variables are processed fundamental to the model performance. In this paper, we study the problem of observing a small subset of image pixels (referred to as a pixel patch) to predict the unobserved parts of the image. As our prediction mechanism, we propose a generalized and computationally efficient version of the convolutional neural autoregressive distribution estimator (ConvNADE) model adapted for real-valued and color images. Moreover, we investigate the quality of image reconstruction when observing both random pixel patches and low-discrepancy pixel patches inspired by quasi-Monte Carlo theory. Experiments on benchmark datasets demonstrate that choosing the pixels akin to a low-discrepancy sequence reduces test loss and produces more realistic reconstructed images.
comment: Accepted for publication in conference proceedings, MCQMC 2024
Controllable Satellite-to-Street-View Synthesis with Precise Pose Alignment and Zero-Shot Environmental Control
Generating street-view images from satellite imagery is a challenging task, particularly in maintaining accurate pose alignment and incorporating diverse environmental conditions. While diffusion models have shown promise in generative tasks, their ability to maintain strict pose alignment throughout the diffusion process is limited. In this paper, we propose a novel Iterative Homography Adjustment (IHA) scheme applied during the denoising process, which effectively addresses pose misalignment and ensures spatial consistency in the generated street-view images. Additionally, currently, available datasets for satellite-to-street-view generation are limited in their diversity of illumination and weather conditions, thereby restricting the generalizability of the generated outputs. To mitigate this, we introduce a text-guided illumination and weather-controlled sampling strategy that enables fine-grained control over the environmental factors. Extensive quantitative and qualitative evaluations demonstrate that our approach significantly improves pose accuracy and enhances the diversity and realism of generated street-view images, setting a new benchmark for satellite-to-street-view generation tasks.
Efficient RAW Image Deblurring with Adaptive Frequency Modulation
Image deblurring plays a crucial role in enhancing visual clarity across various applications. Although most deep learning approaches primarily focus on sRGB images, which inherently lose critical information during the image signal processing pipeline, RAW images, being unprocessed and linear, possess superior restoration potential but remain underexplored. Deblurring RAW images presents unique challenges, particularly in handling frequency-dependent blur while maintaining computational efficiency. To address these issues, we propose Frequency Enhanced Network (FrENet), a framework specifically designed for RAW-to-RAW deblurring that operates directly in the frequency domain. We introduce a novel Adaptive Frequency Positional Modulation module, which dynamically adjusts frequency components according to their spectral positions, thereby enabling precise control over the deblurring process. Additionally, frequency domain skip connections are adopted to further preserve high-frequency details. Experimental results demonstrate that FrENet surpasses state-of-the-art deblurring methods in RAW image deblurring, achieving significantly better restoration quality while maintaining high efficiency in terms of reduced MACs. Furthermore, FrENet's adaptability enables it to be extended to sRGB images, where it delivers comparable or superior performance compared to methods specifically designed for sRGB data. The code will be available at https://github.com/WenlongJiao/FrENet .
comment: The code will be available at https://github.com/WenlongJiao/FrENet
Can Large Language Models Challenge CNNs in Medical Image Analysis?
This study presents a multimodal AI framework designed for precisely classifying medical diagnostic images. Utilizing publicly available datasets, the proposed system compares the strengths of convolutional neural networks (CNNs) and different large language models (LLMs). This in-depth comparative analysis highlights key differences in diagnostic performance, execution efficiency, and environmental impacts. Model evaluation was based on accuracy, F1-score, average execution time, average energy consumption, and estimated $CO_2$ emission. The findings indicate that although CNN-based models can outperform various multimodal techniques that incorporate both images and contextual information, applying additional filtering on top of LLMs can lead to substantial performance gains. These findings highlight the transformative potential of multimodal AI systems to enhance the reliability, efficiency, and scalability of medical diagnostics in clinical settings.
Diffusion models for Gaussian distributions: Exact solutions and Wasserstein errors
Diffusion or score-based models recently showed high performance in image generation. They rely on a forward and a backward stochastic differential equations (SDE). The sampling of a data distribution is achieved by numerically solving the backward SDE or its associated flow ODE. Studying the convergence of these models necessitates to control four different types of error: the initialization error, the truncation error, the discretization error and the score approximation. In this paper, we theoretically study the behavior of diffusion models and their numerical implementation when the data distribution is Gaussian. Our first contribution is to derive the analytical solutions of the backward SDE and the probability flow ODE and to prove that these solutions and their discretizations are all Gaussian processes. Our second contribution is to compute the exact Wasserstein errors between the target and the numerically sampled distributions for any numerical scheme. This allows us to monitor convergence directly in the data space, while experimental works limit their empirical analysis to Inception features. An implementation of our code is available online.
Towards Computation- and Communication-efficient Computational Pathology
Despite the impressive performance across a wide range of applications, current computational pathology models face significant diagnostic efficiency challenges due to their reliance on high-magnification whole-slide image analysis. This limitation severely compromises their clinical utility, especially in time-sensitive diagnostic scenarios and situations requiring efficient data transfer. To address these issues, we present a novel computation- and communication-efficient framework called Magnification-Aligned Global-Local Transformer (MAG-GLTrans). Our approach significantly reduces computational time, file transfer requirements, and storage overhead by enabling effective analysis using low-magnification inputs rather than high-magnification ones. The key innovation lies in our proposed magnification alignment (MAG) mechanism, which employs self-supervised learning to bridge the information gap between low and high magnification levels by effectively aligning their feature representations. Through extensive evaluation across various fundamental CPath tasks, MAG-GLTrans demonstrates state-of-the-art classification performance while achieving remarkable efficiency gains: up to 10.7 times reduction in computational time and over 20 times reduction in file transfer and storage requirements. Furthermore, we highlight the versatility of our MAG framework through two significant extensions: (1) its applicability as a feature extractor to enhance the efficiency of any CPath architecture, and (2) its compatibility with existing foundation models and histopathology-specific encoders, enabling them to process low-magnification inputs with minimal information loss. These advancements position MAG-GLTrans as a particularly promising solution for time-sensitive applications, especially in the context of intraoperative frozen section diagnosis where both accuracy and efficiency are paramount.
DeepSPV: A Deep Learning Pipeline for 3D Spleen Volume Estimation from 2D Ultrasound Images
Splenomegaly, the enlargement of the spleen, is an important clinical indicator for various associated medical conditions, such as sickle cell disease (SCD). Spleen length measured from 2D ultrasound is the most widely used metric for characterising spleen size. However, it is still considered a surrogate measure, and spleen volume remains the gold standard for assessing spleen size. Accurate spleen volume measurement typically requires 3D imaging modalities, such as computed tomography or magnetic resonance imaging, but these are not widely available, especially in the Global South which has a high prevalence of SCD. In this work, we introduce a deep learning pipeline, DeepSPV, for precise spleen volume estimation from single or dual 2D ultrasound images. The pipeline involves a segmentation network and a variational autoencoder for learning low-dimensional representations from the estimated segmentations. We investigate three approaches for spleen volume estimation and our best model achieves 86.62%/92.5% mean relative volume accuracy (MRVA) under single-view/dual-view settings, surpassing the performance of human experts. In addition, the pipeline can provide confidence intervals for the volume estimates as well as offering benefits in terms of interpretability, which further support clinicians in decision-making when identifying splenomegaly. We evaluate the full pipeline using a highly realistic synthetic dataset generated by a diffusion model, achieving an overall MRVA of 83.0% from a single 2D ultrasound image. Our proposed DeepSPV is the first work to use deep learning to estimate 3D spleen volume from 2D ultrasound images and can be seamlessly integrated into the current clinical workflow for spleen assessment.
comment: arXiv admin note: substantial text overlap with arXiv:2308.08038
A Unified Multi-Scale Attention-Based Network for Automatic 3D Segmentation of Lung Parenchyma & Nodules In Thoracic CT Images
Lung cancer has been one of the major threats across the world with the highest mortalities. Computer-aided detection (CAD) can help in early detection and thus can help increase the survival rate. Accurate lung parenchyma segmentation (to include the juxta-pleural nodules) and lung nodule segmentation, the primary symptom of lung cancer, play a crucial role in the overall accuracy of the Lung CAD pipeline. Lung nodule segmentation is quite challenging because of the diverse nodule types and other inhibit structures present within the lung lobes. Traditional machine/deep learning methods suffer from generalization and robustness. Recent Vision Language Models/Foundation Models perform well on the anatomical level, but they suffer on fine-grained segmentation tasks, and their semi-automatic nature limits their effectiveness in real-time clinical scenarios. In this paper, we propose a novel method for accurate 3D segmentation of lung parenchyma and lung nodules. The proposed architecture is an attention-based network with residual blocks at each encoder-decoder state. Max pooling is replaced by strided convolutions at the encoder, and trilinear interpolation is replaced by transposed convolutions at the decoder to maximize the number of learnable parameters. Dilated convolutions at each encoder-decoder stage allow the model to capture the larger context without increasing computational costs. The proposed method has been evaluated extensively on one of the largest publicly available datasets, namely LUNA16, and is compared with recent notable work in the domain using standard performance metrics like Dice score, IOU, etc. It can be seen from the results that the proposed method achieves better performance than state-of-the-art methods. The source code, datasets, and pre-processed data can be accessed using the link: https://github.com/EMeRALDsNRPU/Attention-Based-3D-ResUNet.
PHISWID: Physics-Inspired Underwater Image Dataset Synthesized from RGB-D Images
This paper introduces the physics-inspired synthesized underwater image dataset (PHISWID), a dataset tailored for enhancing underwater image processing through physics-inspired image synthesis. For underwater image enhancement, data-driven approaches (e.g., deep neural networks) typically demand extensive datasets, yet acquiring paired clean atmospheric images and degraded underwater images poses significant challenges. Existing datasets have limited contributions to image enhancement due to lack of physics models, publicity, and ground-truth atmospheric images. PHISWID addresses these issues by offering a set of paired atmospheric and underwater images. Specifically, underwater images are synthetically degraded by color degradation and marine snow artifacts from atmospheric RGB-D images. It is enabled based on a physics-based underwater image observation model. Our synthetic approach generates a large quantity of the pairs, enabling effective training of deep neural networks and objective image quality assessment. Through benchmark experiments with some datasets and image enhancement methods, we validate that our dataset can improve the image enhancement performance. Our dataset, which is publicly available, contributes to the development in underwater image processing.
Latent Wavelet Diffusion: Enabling 4K Image Synthesis for Free
High-resolution image synthesis remains a core challenge in generative modeling, particularly in balancing computational efficiency with the preservation of fine-grained visual detail. We present Latent Wavelet Diffusion (LWD), a lightweight framework that enables any latent diffusion model to scale to ultra-high-resolution image generation (2K to 4K) for free. LWD introduces three key components: (1) a scale-consistent variational autoencoder objective that enhances the spectral fidelity of latent representations; (2) wavelet energy maps that identify and localize detail-rich spatial regions within the latent space; and (3) a time-dependent masking strategy that focuses denoising supervision on high-frequency components during training. LWD requires no architectural modifications and incurs no additional computational overhead. Despite its simplicity, it consistently improves perceptual quality and reduces FID in ultra-high-resolution image synthesis, outperforming strong baseline models. These results highlight the effectiveness of frequency-aware, signal-driven supervision as a principled and efficient approach for high-resolution generative modeling.
Dirty and Clean-Label attack detection using GAN discriminators
Gathering enough images to train a deep computer vision model is a constant challenge. Unfortunately, collecting images from unknown sources can leave your model s behavior at risk of being manipulated by a dirty-label or clean-label attack unless the images are properly inspected. Manually inspecting each image-label pair is impractical and common poison-detection methods that involve re-training your model can be time consuming. This research uses GAN discriminators to protect a single class against mislabeled and different levels of modified images. The effect of said perturbation on a basic convolutional neural network classifier is also included for reference. The results suggest that after training on a single class, GAN discriminator s confidence scores can provide a threshold to identify mislabeled images and identify 100% of the tested poison starting at a perturbation epsilon magnitude of 0.20, after decision threshold calibration using in-class samples. Developers can use this report as a basis to train their own discriminators to protect high valued classes in their CV models.
comment: 13 pages total. Appendix starts on page 10
ABCDEFGH: An Adaptation-Based Convolutional Neural Network-CycleGAN Disease-Courses Evolution Framework Using Generative Models in Health Education
With the advancement of modern medicine and the development of technologies such as MRI, CT, and cellular analysis, it has become increasingly critical for clinicians to accurately interpret various diagnostic images. However, modern medical education often faces challenges due to limited access to high-quality teaching materials, stemming from privacy concerns and a shortage of educational resources (Balogh et al., 2015). In this context, image data generated by machine learning models, particularly generative models, presents a promising solution. These models can create diverse and comparable imaging datasets without compromising patient privacy, thereby supporting modern medical education. In this study, we explore the use of convolutional neural networks (CNNs) and CycleGAN (Zhu et al., 2017) for generating synthetic medical images. The source code is available at https://github.com/mliuby/COMP4211-Project.
comment: All authors did not agree to submitting this work. This version of the report contains misinformation and is not ready to share
Enhancing Fourier Neural Operators with Local Spatial Features
Partial Differential Equation (PDE) problems often exhibit strong local spatial structures, and effectively capturing these structures is critical for approximating their solutions. Recently, the Fourier Neural Operator (FNO) has emerged as an efficient approach for solving these PDE problems. By using parametrization in the frequency domain, FNOs can efficiently capture global patterns. However, this approach inherently overlooks the critical role of local spatial features, as frequency-domain parameterized convolutions primarily emphasize global interactions without encoding comprehensive localized spatial dependencies. Although several studies have attempted to address this limitation, their extracted Local Spatial Features (LSFs) remain insufficient, and computational efficiency is often compromised. To address this limitation, we introduce a convolutional neural network (CNN)-based feature pre-extractor to capture LSFs directly from input data, resulting in a hybrid architecture termed \textit{Conv-FNO}. Furthermore, we introduce two novel resizing schemes to make our Conv-FNO resolution invariant. In this work, we focus on demonstrating the effectiveness of incorporating LSFs into FNOs by conducting both a theoretical analysis and extensive numerical experiments. Our findings show that this simple yet impactful modification enhances the representational capacity of FNOs and significantly improves performance on challenging PDE benchmarks.
Exploring Sparsity for Parameter Efficient Fine Tuning Using Wavelets
Efficiently adapting large foundation models is critical, especially with tight compute and memory budgets. Parameter-Efficient Fine-Tuning (PEFT) methods such as LoRA offer limited granularity and effectiveness in few-parameter regimes. We propose Wavelet Fine-Tuning (WaveFT), a novel PEFT method that learns highly sparse updates in the wavelet domain of residual matrices. WaveFT allows precise control of trainable parameters, offering fine-grained capacity adjustment and excelling with remarkably low parameter count, potentially far fewer than LoRA's minimum, ideal for extreme parameter-efficient scenarios. Evaluated on personalized text-to-image generation using Stable Diffusion XL as baseline, WaveFT significantly outperforms LoRA and other PEFT methods, especially at low parameter counts; achieving superior subject fidelity, prompt alignment, and image diversity.
Computation and Language
Causal Estimation of Tokenisation Bias ACL 2025
Modern language models are typically trained over subword sequences, but ultimately define probabilities over character-strings. Ideally, the choice of the tokeniser -- which maps character-strings to subwords -- should not affect the probability assigned to the underlying character-string; in practice, it does. We define this mismatch as tokenisation bias. In this work, we quantify one particular type of tokenisation bias: the effect of including or not a subword (e.g., $\langle hello \rangle$) in a tokeniser's vocabulary on the probability a trained model assigns to the corresponding characters (i.e., \textit{``hello''}). Estimating this effect is challenging because each model is trained with only one tokeniser. We address this by framing tokenisation bias as a causal effect and estimating it using the regression discontinuity design. Specifically, we exploit the fact that tokenisation algorithms rank subwords and add the first $K$ to a tokeniser's vocabulary, where $K$ is an arbitrary cutoff point. As such, we can estimate a causal effect by comparing similar subwords around this cutoff. Experimentally, we find that tokenisation consistently affects models' outputs across scales, vocabularies, and tokenisers. Notably, a subword's presence in a small model's vocabulary may increase its characters' probability by up to 17 times, highlighting tokenisation as a key design choice in language modelling.
comment: Published as a conference paper at ACL 2025
UniWorld: High-Resolution Semantic Encoders for Unified Visual Understanding and Generation
Although existing unified models deliver strong performance on vision-language understanding and text-to-image generation, their models are limited in exploring image perception and manipulation tasks, which are urgently desired by users for wide applications. Recently, OpenAI released their powerful GPT-4o-Image model for comprehensive image perception and manipulation, achieving expressive capability and attracting community interests. By observing the performance of GPT-4o-Image in our carefully constructed experiments, we infer that GPT-4o-Image leverages features extracted by semantic encoders instead of VAE, while VAEs are considered essential components in many image manipulation models. Motivated by such inspiring observations, we present a unified generative framework named UniWorld based on semantic features provided by powerful visual-language models and contrastive semantic encoders. As a result, we build a strong unified model using only 1% amount of BAGEL's data, which consistently outperforms BAGEL on image editing benchmarks. UniWorld also maintains competitive image understanding and generation capabilities, achieving strong performance across multiple image perception tasks. We fully open-source our models, including model weights, training and evaluation scripts, and datasets.
Entity-Augmented Neuroscience Knowledge Retrieval Using Ontology and Semantic Understanding Capability of LLM
Neuroscience research publications encompass a vast wealth of knowledge. Accurately retrieving existing information and discovering new insights from this extensive literature is essential for advancing the field. However, when knowledge is dispersed across multiple sources, current state-of-the-art retrieval methods often struggle to extract the necessary information. A knowledge graph (KG) can integrate and link knowledge from multiple sources, but existing methods for constructing KGs in neuroscience often rely on labeled data and require domain expertise. Acquiring large-scale, labeled data for a specialized area like neuroscience presents significant challenges. This work proposes novel methods for constructing KG from unlabeled large-scale neuroscience research corpus utilizing large language models (LLM), neuroscience ontology, and text embeddings. We analyze the semantic relevance of neuroscience text segments identified by LLM for building the knowledge graph. We also introduce an entity-augmented information retrieval algorithm to extract knowledge from the KG. Several experiments were conducted to evaluate the proposed approaches, and the results demonstrate that our methods significantly enhance knowledge discovery from the unlabeled neuroscience research corpus. It achieves an F1 score of 0.84 for entity extraction, and the knowledge obtained from the KG improves answers to over 54% of the questions.
MERIT: Multilingual Semantic Retrieval with Interleaved Multi-Condition Query
Semantic retrieval is crucial for modern applications yet remains underexplored in current research. Existing datasets are limited to single languages, single images, or singular retrieval conditions, often failing to fully exploit the expressive capacity of visual information as evidenced by maintained performance when images are replaced with captions. However, practical retrieval scenarios frequently involve interleaved multi-condition queries with multiple images. Hence, this paper introduces MERIT, the first multilingual dataset for interleaved multi-condition semantic retrieval, comprising 320,000 queries with 135,000 products in 5 languages, covering 7 distinct product categories. Extensive experiments on MERIT identify existing models's limitation: focusing solely on global semantic information while neglecting specific conditional elements in queries. Consequently, we propose Coral, a novel fine-tuning framework that adapts pre-trained MLLMs by integrating embedding reconstruction to preserve fine-grained conditional elements and contrastive learning to extract comprehensive global semantics. Experiments demonstrate that Coral achieves a 45.9% performance improvement over conventional approaches on MERIT, with strong generalization capabilities validated across 8 established retrieval benchmarks. Collectively, our contributions - a novel dataset, identification of critical limitations in existing approaches, and an innovative fine-tuning framework - establish a foundation for future research in interleaved multi-condition semantic retrieval.
comment: Preprint; Project Page, Code, and Dataset at: https://merit-2025.github.io/
GUI-Actor: Coordinate-Free Visual Grounding for GUI Agents
One of the principal challenges in building VLM-powered GUI agents is visual grounding, i.e., localizing the appropriate screen region for action execution based on both the visual content and the textual plans. Most existing work formulates this as a text-based coordinate generation task. However, these approaches suffer from several limitations: weak spatial-semantic alignment, inability to handle ambiguous supervision targets, and a mismatch between the dense nature of screen coordinates and the coarse, patch-level granularity of visual features extracted by models like Vision Transformers. In this paper, we propose GUI-Actor, a VLM-based method for coordinate-free GUI grounding. At its core, GUI-Actor introduces an attention-based action head that learns to align a dedicated token with all relevant visual patch tokens, enabling the model to propose one or more action regions in a single forward pass. In line with this, we further design a grounding verifier to evaluate and select the most plausible action region from the candidates proposed for action execution. Extensive experiments show that GUI-Actor outperforms prior state-of-the-art methods on multiple GUI action grounding benchmarks, with improved generalization to unseen screen resolutions and layouts. Notably, GUI-Actor-7B even surpasses UI-TARS-72B (38.1) on ScreenSpot-Pro, achieving scores of 40.7 with Qwen2-VL and 44.6 with Qwen2.5-VL as backbones. Furthermore, by incorporating the verifier, we find that fine-tuning only the newly introduced action head (~100M parameters for 7B model) while keeping the VLM backbone frozen is sufficient to achieve performance comparable to previous state-of-the-art models, highlighting that GUI-Actor can endow the underlying VLM with effective grounding capabilities without compromising its general-purpose strengths.
Co-Evolving LLM Coder and Unit Tester via Reinforcement Learning
We propose CURE, a novel reinforcement learning framework with a dedicated reward design that co-evolves coding and unit test generation capabilities based on their interaction outcomes, without any ground-truth code as supervision. This approach enables flexible and scalable training and allows the unit tester to learn directly from the coder's mistakes. Our derived ReasonFlux-Coder-7B and 14B models improve code generation accuracy by 5.3% and Best-of-N accuracy by 9.0% after optimization on Qwen2.5-Instruct models, outperforming similarly sized Qwen-Coder, DeepSeek-Coder, and Seed-Coder. They naturally extend to downstream tasks such as test-time scaling and agentic coding-achieving a 8.1% improvement over the base model. For the long-CoT model, our ReasonFlux-Coder-4B consistently outperforms Qwen3-4B while achieving 64.8% inference efficiency in unit test generation. Notably, we also find that our model can serve as an effective reward model for reinforcement learning on base models. Project: https://github.com/Gen-Verse/CURE
comment: Project: https://github.com/Gen-Verse/CURE
OmniSpatial: Towards Comprehensive Spatial Reasoning Benchmark for Vision Language Models
Spatial reasoning is a key aspect of cognitive psychology and remains a major bottleneck for current vision-language models (VLMs). While extensive research has aimed to evaluate or improve VLMs' understanding of basic spatial relations, such as distinguishing left from right, near from far, and object counting, these tasks represent only the most fundamental level of spatial reasoning. In this work, we introduce OmniSpatial, a comprehensive and challenging benchmark for spatial reasoning, grounded in cognitive psychology. OmniSpatial covers four major categories: dynamic reasoning, complex spatial logic, spatial interaction, and perspective-taking, with 50 fine-grained subcategories. Through Internet data crawling and careful manual annotation, we construct over 1.5K question-answer pairs. Extensive experiments show that both open- and closed-source VLMs, as well as existing reasoning and spatial understanding models, exhibit significant limitations in comprehensive spatial understanding. We further analyze failure cases and propose potential directions for future research.
comment: Project Page: https://qizekun.github.io/omnispatial/
AUTOCIRCUIT-RL: Reinforcement Learning-Driven LLM for Automated Circuit Topology Generation ICML'2025
Analog circuit topology synthesis is integral to Electronic Design Automation (EDA), enabling the automated creation of circuit structures tailored to specific design requirements. However, the vast design search space and strict constraint adherence make efficient synthesis challenging. Leveraging the versatility of Large Language Models (LLMs), we propose AUTOCIRCUIT-RL,a novel reinforcement learning (RL)-based framework for automated analog circuit synthesis. The framework operates in two phases: instruction tuning, where an LLM learns to generate circuit topologies from structured prompts encoding design constraints, and RL refinement, which further improves the instruction-tuned model using reward models that evaluate validity, efficiency, and output voltage. The refined model is then used directly to generate topologies that satisfy the design constraints. Empirical results show that AUTOCIRCUIT-RL generates ~12% more valid circuits and improves efficiency by ~14% compared to the best baselines, while reducing duplicate generation rates by ~38%. It achieves over 60% success in synthesizing valid circuits with limited training data, demonstrating strong generalization. These findings highlight the framework's effectiveness in scaling to complex circuits while maintaining efficiency and constraint adherence, marking a significant advancement in AI-driven circuit design.
comment: 9 Pages (Content), 4 Pages (Appendix), 7 figures, ICML'2025
Critique-GRPO: Advancing LLM Reasoning with Natural Language and Numerical Feedback
Recent advances in reinforcement learning (RL) with numerical feedback, such as scalar rewards, have significantly enhanced the complex reasoning capabilities of large language models (LLMs). Despite this success, we identify three key challenges encountered by RL with solely numerical feedback: performance plateaus, limited effectiveness of self-reflection, and persistent failures. We then demonstrate that RL-finetuned models, even after exhibiting performance plateaus, can generate correct refinements on persistently failed problems by leveraging natural language feedback in the form of critiques. Building on this insight, we propose Critique-GRPO, an online RL framework that integrates both natural language and numerical feedback for effective policy optimization. Critique-GRPO enables LLMs to learn from initial responses and critique-guided refinements simultaneously while maintaining exploration. Extensive experiments using Qwen2.5-7B-Base and Qwen3-8B-Base show that Critique-GRPO consistently outperforms supervised learning-based and RL-based fine-tuning approaches across eight challenging mathematical, STEM, and general reasoning tasks, improving average pass@1 scores by approximately 4.5% and 5%, respectively. Notably, Critique-GRPO surpasses a strong baseline that incorporates expert demonstrations within online RL. Further analysis reveals two critical insights about policy exploration: (1) higher entropy does not always guarantee efficient learning from exploration, and (2) longer responses do not necessarily lead to more effective exploration.
comment: 38 pages
Beyond Text Compression: Evaluating Tokenizers Across Scales ACL 2025
The choice of tokenizer can profoundly impact language model performance, yet accessible and reliable evaluations of tokenizer quality remain an open challenge. Inspired by scaling consistency, we show that smaller models can accurately predict significant differences in tokenizer impact on larger models at a fraction of the compute cost. By systematically evaluating both English-centric and multilingual tokenizers, we find that tokenizer choice has negligible effects on tasks in English but results in consistent performance differences in multilingual settings. We propose new intrinsic tokenizer metrics inspired by Zipf's law that correlate more strongly with downstream performance than text compression when modeling unseen languages. By combining several metrics to capture multiple aspects of tokenizer behavior, we develop a reliable framework for intrinsic tokenizer evaluations. Our work offers a more efficient path to informed tokenizer selection in future language model development.
comment: ACL 2025
Retrieval-Augmented Generation as Noisy In-Context Learning: A Unified Theory and Risk Bounds
Retrieval-augmented generation (RAG) has seen many empirical successes in recent years by aiding the LLM with external knowledge. However, its theoretical aspect has remained mostly unexplored. In this paper, we propose the first finite-sample generalization bound for RAG in in-context linear regression and derive an exact bias-variance tradeoff. Our framework views the retrieved texts as query-dependent noisy in-context examples and recovers the classical in-context learning (ICL) and standard RAG as the limit cases. Our analysis suggests that an intrinsic ceiling on generalization error exists on RAG as opposed to the ICL. Furthermore, our framework is able to model retrieval both from the training data and from external corpora by introducing uniform and non-uniform RAG noise. In line with our theory, we show the sample efficiency of ICL and RAG empirically with experiments on common QA benchmarks, such as Natural Questions and TriviaQA.
comment: Under Review
Literary Evidence Retrieval via Long-Context Language Models ACL 2025
How well do modern long-context language models understand literary fiction? We explore this question via the task of literary evidence retrieval, repurposing the RELiC dataset of That et al. (2022) to construct a benchmark where the entire text of a primary source (e.g., The Great Gatsby) is provided to an LLM alongside literary criticism with a missing quotation from that work. This setting, in which the model must generate the missing quotation, mirrors the human process of literary analysis by requiring models to perform both global narrative reasoning and close textual examination. We curate a high-quality subset of 292 examples through extensive filtering and human verification. Our experiments show that recent reasoning models, such as Gemini Pro 2.5 can exceed human expert performance (62.5% vs. 50% accuracy). In contrast, the best open-weight model achieves only 29.1% accuracy, highlighting a wide gap in interpretive reasoning between open and closed-weight models. Despite their speed and apparent accuracy, even the strongest models struggle with nuanced literary signals and overgeneration, signaling open challenges for applying LLMs to literary analysis. We release our dataset and evaluation code to encourage future work in this direction.
comment: ACL 2025
MAEBE: Multi-Agent Emergent Behavior Framework ICML 2025
Traditional AI safety evaluations on isolated LLMs are insufficient as multi-agent AI ensembles become prevalent, introducing novel emergent risks. This paper introduces the Multi-Agent Emergent Behavior Evaluation (MAEBE) framework to systematically assess such risks. Using MAEBE with the Greatest Good Benchmark (and a novel double-inversion question technique), we demonstrate that: (1) LLM moral preferences, particularly for Instrumental Harm, are surprisingly brittle and shift significantly with question framing, both in single agents and ensembles. (2) The moral reasoning of LLM ensembles is not directly predictable from isolated agent behavior due to emergent group dynamics. (3) Specifically, ensembles exhibit phenomena like peer pressure influencing convergence, even when guided by a supervisor, highlighting distinct safety and alignment challenges. Our findings underscore the necessity of evaluating AI systems in their interactive, multi-agent contexts.
comment: Preprint. This work has been submitted to the Multi-Agent Systems Workshop at ICML 2025 for review
Facts Do Care About Your Language: Assessing Answer Quality of Multilingual LLMs
Factuality is a necessary precursor to useful educational tools. As adoption of Large Language Models (LLMs) in education continues of grow, ensuring correctness in all settings is paramount. Despite their strong English capabilities, LLM performance in other languages is largely untested. In this work, we evaluate the correctness of the Llama3.1 family of models in answering factual questions appropriate for middle and high school students. We demonstrate that LLMs not only provide extraneous and less truthful information, but also exacerbate existing biases against rare languages.
Towards Analyzing and Understanding the Limitations of VAPO: A Theoretical Perspective
Reinforcement learning (RL) enhances large language models (LLMs) in complex, long-chain-of-thought (long-CoT) reasoning. The advanced VAPO framework, despite sophisticated mechanisms like Decoupled GAE, theoretically faces fundamental limitations in comprehensively modeling and leveraging deep, long-term value for fine-grained, step-by-step policy guidance in extended reasoning chains. We argue these limitations stem from inherent difficulties in credit assignment, value function representational capacity with temporally abstracted goals, and translating global value signals into local policy improvements, especially with sparse rewards. Our theoretical analysis examines these aspects to illuminate VAPO's boundaries in long-term value modeling, aiming to deepen understanding of current RL for advanced reasoning and suggest future research for more robust LLM agents.
Leveraging Information Retrieval to Enhance Spoken Language Understanding Prompts in Few-Shot Learning INTERSPEECH 2025
Understanding user queries is fundamental in many applications, such as home assistants, booking systems, or recommendations. Accordingly, it is crucial to develop accurate Spoken Language Understanding (SLU) approaches to ensure the reliability of the considered system. Current State-of-the-Art SLU techniques rely on large amounts of training data; however, only limited annotated examples are available for specific tasks or languages. In the meantime, instruction-tuned large language models (LLMs) have shown exceptional performance on unseen tasks in a few-shot setting when provided with adequate prompts. In this work, we propose to explore example selection by leveraging Information retrieval (IR) approaches to build an enhanced prompt that is applied to an SLU task. We evaluate the effectiveness of the proposed method on several SLU benchmarks. Experimental results show that lexical IR methods significantly enhance performance without increasing prompt length.
comment: Conference paper accepted to INTERSPEECH 2025
Coding Agents with Multimodal Browsing are Generalist Problem Solvers
Modern human labor is characterized by specialization; we train for years and develop particular tools that allow us to perform well across a variety of tasks. In addition, AI agents have been specialized for domains such as software engineering, web navigation, and workflow automation. However, this results in agents that are good for one thing but fail to generalize beyond their intended scope. One reason for this is that agent developers provide a highly specialized set of tools or make architectural decisions optimized for a specific use case or benchmark. In this work, we ask the question: what is the minimal set of general tools that can be used to achieve high performance across a diverse set of tasks? Our answer is OpenHands-Versa, a generalist agent built with a modest number of general tools: code editing and execution, web search, as well as multimodal web browsing and file access. Importantly, OpenHands-Versa demonstrates superior or competitive performance over leading specialized agents across three diverse and challenging benchmarks: SWE-Bench Multimodal, GAIA, and The Agent Company, outperforming the best-performing previously published results with absolute improvements in success rate of 9.1, 1.3, and 9.1 points respectively. Further, we show how existing state-of-the-art multi-agent systems fail to generalize beyond their target domains. These results demonstrate the feasibility of developing a generalist agent to solve diverse tasks and establish OpenHands-Versa as a strong baseline for future research.
Conditioning Large Language Models on Legal Systems? Detecting Punishable Hate Speech
The assessment of legal problems requires the consideration of a specific legal system and its levels of abstraction, from constitutional law to statutory law to case law. The extent to which Large Language Models (LLMs) internalize such legal systems is unknown. In this paper, we propose and investigate different approaches to condition LLMs at different levels of abstraction in legal systems. This paper examines different approaches to conditioning LLMs at multiple levels of abstraction in legal systems to detect potentially punishable hate speech. We focus on the task of classifying whether a specific social media posts falls under the criminal offense of incitement to hatred as prescribed by the German Criminal Code. The results show that there is still a significant performance gap between models and legal experts in the legal assessment of hate speech, regardless of the level of abstraction with which the models were conditioned. Our analysis revealed, that models conditioned on abstract legal knowledge lacked deep task understanding, often contradicting themselves and hallucinating answers, while models using concrete legal knowledge performed reasonably well in identifying relevant target groups, but struggled with classifying target conducts.
A Multi-Agent Framework for Mitigating Dialect Biases in Privacy Policy Question-Answering Systems ACL 2025
Privacy policies inform users about data collection and usage, yet their complexity limits accessibility for diverse populations. Existing Privacy Policy Question Answering (QA) systems exhibit performance disparities across English dialects, disadvantaging speakers of non-standard varieties. We propose a novel multi-agent framework inspired by human-centered design principles to mitigate dialectal biases. Our approach integrates a Dialect Agent, which translates queries into Standard American English (SAE) while preserving dialectal intent, and a Privacy Policy Agent, which refines predictions using domain expertise. Unlike prior approaches, our method does not require retraining or dialect-specific fine-tuning, making it broadly applicable across models and domains. Evaluated on PrivacyQA and PolicyQA, our framework improves GPT-4o-mini's zero-shot accuracy from 0.394 to 0.601 on PrivacyQA and from 0.352 to 0.464 on PolicyQA, surpassing or matching few-shot baselines without additional training data. These results highlight the effectiveness of structured agent collaboration in mitigating dialect biases and underscore the importance of designing NLP systems that account for linguistic diversity to ensure equitable access to privacy information.
comment: Accepted to ACL 2025 Main Conference
It's Not a Walk in the Park! Challenges of Idiom Translation in Speech-to-text Systems ACL 2025
Idioms are defined as a group of words with a figurative meaning not deducible from their individual components. Although modern machine translation systems have made remarkable progress, translating idioms remains a major challenge, especially for speech-to-text systems, where research on this topic is notably sparse. In this paper, we systematically evaluate idiom translation as compared to conventional news translation in both text-to-text machine translation (MT) and speech-to-text translation (SLT) systems across two language pairs (German to English, Russian to English). We compare state-of-the-art end-to-end SLT systems (SeamlessM4T SLT-to-text, Whisper Large v3) with MT systems (SeamlessM4T SLT-to-text, No Language Left Behind), Large Language Models (DeepSeek, LLaMA) and cascaded alternatives. Our results reveal that SLT systems experience a pronounced performance drop on idiomatic data, often reverting to literal translations even in higher layers, whereas MT systems and Large Language Models demonstrate better handling of idioms. These findings underscore the need for idiom-specific strategies and improved internal representations in SLT architectures.
comment: 13 pages, 3 figures, ACL 2025
Mitigating Manipulation and Enhancing Persuasion: A Reflective Multi-Agent Approach for Legal Argument Generation
Large Language Models (LLMs) are increasingly explored for legal argument generation, yet they pose significant risks of manipulation through hallucination and ungrounded persuasion, and often fail to utilize provided factual bases effectively or abstain when arguments are untenable. This paper introduces a novel reflective multi-agent method designed to address these challenges in the context of legally compliant persuasion. Our approach employs specialized agents--a Factor Analyst and an Argument Polisher--in an iterative refinement process to generate 3-ply legal arguments (plaintiff, defendant, rebuttal). We evaluate Reflective Multi-Agent against single-agent, enhanced-prompt single-agent, and non-reflective multi-agent baselines using four diverse LLMs (GPT-4o, GPT-4o-mini, Llama-4-Maverick-17b-128e, Llama-4-Scout-17b-16e) across three legal scenarios: "arguable", "mismatched", and "non-arguable". Results demonstrate Reflective Multi-Agent's significant superiority in successful abstention (preventing generation when arguments cannot be grounded), marked improvements in hallucination accuracy (reducing fabricated and misattributed factors), particularly in "non-arguable" scenarios, and enhanced factor utilization recall (improving the use of provided case facts). These findings suggest that structured reflection within a multi-agent framework offers a robust computable method for fostering ethical persuasion and mitigating manipulation in LLM-based legal argumentation systems, a critical step towards trustworthy AI in law. Project page: https://lizhang-aiandlaw.github.io/A-Reflective-Multi-Agent-Approach-for-Legal-Argument-Generation/
comment: 13 pages, 2 figures, Workshop on Legally Compliant Intelligent Chatbots at ICAIL 2025]{Workshop on Legally Compliant Intelligent Chatbots @ ICAIL 2025
Performance of leading large language models in May 2025 in Membership of the Royal College of General Practitioners-style examination questions: a cross-sectional analysis
Background: Large language models (LLMs) have demonstrated substantial potential to support clinical practice. Other than Chat GPT4 and its predecessors, few LLMs, especially those of the leading and more powerful reasoning model class, have been subjected to medical specialty examination questions, including in the domain of primary care. This paper aimed to test the capabilities of leading LLMs as of May 2025 (o3, Claude Opus 4, Grok3, and Gemini 2.5 Pro) in primary care education, specifically in answering Member of the Royal College of General Practitioners (MRCGP) style examination questions. Methods: o3, Claude Opus 4, Grok3, and Gemini 2.5 Pro were tasked to answer 100 randomly chosen multiple choice questions from the Royal College of General Practitioners GP SelfTest on 25 May 2025. Questions included textual information, laboratory results, and clinical images. Each model was prompted to answer as a GP in the UK and was provided with full question information. Each question was attempted once by each model. Responses were scored against correct answers provided by GP SelfTest. Results: The total score of o3, Claude Opus 4, Grok3, and Gemini 2.5 Pro was 99.0%, 95.0%, 95.0%, and 95.0%, respectively. The average peer score for the same questions was 73.0%. Discussion: All models performed remarkably well, and all substantially exceeded the average performance of GPs and GP registrars who had answered the same questions. o3 demonstrated the best performance, while the performances of the other leading models were comparable with each other and were not substantially lower than that of o3. These findings strengthen the case for LLMs, particularly reasoning models, to support the delivery of primary care, especially those that have been specifically trained on primary care clinical data.
comment: 12 pages, 1 Table
Towards a Japanese Full-duplex Spoken Dialogue System
Full-duplex spoken dialogue systems, which can model simultaneous bidirectional features of human conversations such as speech overlaps and backchannels, have attracted significant attention recently. However, the study of full-duplex spoken dialogue systems for the Japanese language has been limited, and the research on their development in Japanese remains scarce. In this paper, we present the first publicly available full-duplex spoken dialogue model in Japanese, which is built upon Moshi, a full-duplex dialogue model in English. Our model is trained through a two-stage process: pre-training on a large-scale spoken dialogue data in Japanese, followed by fine-tuning on high-quality stereo spoken dialogue data. We further enhance the model's performance by incorporating synthetic dialogue data generated by a multi-stream text-to-speech system. Evaluation experiments demonstrate that the trained model outperforms Japanese baseline models in both naturalness and meaningfulness.
comment: Accepted to Interspeech 2025
Expanding before Inferring: Enhancing Factuality in Large Language Models through Premature Layers Interpolation
Large Language Models (LLMs) demonstrate remarkable capabilities in text understanding and generation. However, their tendency to produce factually inconsistent outputs, commonly referred to as ''hallucinations'', remains a critical challenge. Existing approaches, such as retrieval-based and inference-time correction methods, primarily address this issue at the input or output level, often overlooking the intrinsic information refinement process and the role of premature layers. Meanwhile, alignment- and fine-tuning-based methods are resource-intensive. In this paper, we propose PLI (Premature Layers Interpolation), a novel, training-free, and plug-and-play intervention designed to enhance factuality. PLI mitigates hallucinations by inserting premature layers formed through mathematical interpolation with adjacent layers. Inspired by stable diffusion and sampling steps, PLI extends the depth of information processing and transmission in LLMs, improving factual coherence. Experiments on four publicly available datasets demonstrate that PLI effectively reduces hallucinations while outperforming existing baselines in most cases. Further analysis suggests that the success of layer interpolation is closely linked to LLMs' internal mechanisms. To promote reproducibility, we will release our code and data upon acceptance.
FlowerTune: A Cross-Domain Benchmark for Federated Fine-Tuning of Large Language Models
Large Language Models (LLMs) have achieved state-of-the-art results across diverse domains, yet their development remains reliant on vast amounts of publicly available data, raising concerns about data scarcity and the lack of access to domain-specific, sensitive information. Federated Learning (FL) presents a compelling framework to address these challenges by enabling decentralized fine-tuning on pre-trained LLMs without sharing raw data. However, the compatibility and performance of pre-trained LLMs in FL settings remain largely under explored. We introduce the FlowerTune LLM Leaderboard, a first-of-its-kind benchmarking suite designed to evaluate federated fine-tuning of LLMs across four diverse domains: general NLP, finance, medical, and coding. Each domain includes federated instruction-tuning datasets and domain-specific evaluation metrics. Our results, obtained through a collaborative, open-source and community-driven approach, provide the first comprehensive comparison across 26 pre-trained LLMs with different aggregation and fine-tuning strategies under federated settings, offering actionable insights into model performance, resource constraints, and domain adaptation. This work lays the foundation for developing privacy-preserving, domain-specialized LLMs for real-world applications.
HACo-Det: A Study Towards Fine-Grained Machine-Generated Text Detection under Human-AI Coauthoring
The misuse of large language models (LLMs) poses potential risks, motivating the development of machine-generated text (MGT) detection. Existing literature primarily concentrates on binary, document-level detection, thereby neglecting texts that are composed jointly by human and LLM contributions. Hence, this paper explores the possibility of fine-grained MGT detection under human-AI coauthoring. We suggest fine-grained detectors can pave pathways toward coauthored text detection with a numeric AI ratio. Specifically, we propose a dataset, HACo-Det, which produces human-AI coauthored texts via an automatic pipeline with word-level attribution labels. We retrofit seven prevailing document-level detectors to generalize them to word-level detection. Then we evaluate these detectors on HACo-Det on both word- and sentence-level detection tasks. Empirical results show that metric-based methods struggle to conduct fine-grained detection with a 0.462 average F1 score, while finetuned models show superior performance and better generalization across domains. However, we argue that fine-grained co-authored text detection is far from solved. We further analyze factors influencing performance, e.g., context window, and highlight the limitations of current methods, pointing to potential avenues for improvement.
Adaptive Graph Pruning for Multi-Agent Communication
Large Language Model (LLM) based multi-agent systems have shown remarkable performance in various tasks, especially when enhanced through collaborative communication. However, current methods often rely on a fixed number of agents and static communication structures, limiting their ability to adapt to varying task complexities. In this paper, we propose Adaptive Graph Pruning (AGP), a novel task-adaptive multi-agent collaboration framework that jointly optimizes agent quantity (hard-pruning) and communication topology (soft-pruning). Specifically, our method employs a two-stage training strategy: firstly, independently training soft-pruning networks for different agent quantities to determine optimal agent-quantity-specific complete graphs and positional masks across specific tasks; and then jointly optimizing hard-pruning and soft-pruning within a maximum complete graph to dynamically configure the number of agents and their communication topologies per task. Extensive experiments demonstrate that our approach is: (1) High-performing, achieving state-of-the-art results across six benchmarks and consistently generalizes across multiple mainstream LLM architectures, with a increase in performance of $2.58\%\sim 9.84\%$; (2) Task-adaptive, dynamically constructing optimized communication topologies tailored to specific tasks, with an extremely high performance in all three task categories (general reasoning, mathematical reasoning, and code generation); (3) Token-economical, having fewer training steps and token consumption at the same time, with a decrease in token consumption of $90\%+$; and (4) Training-efficient, achieving high performance with very few training steps compared with other methods. The performance will surpass the existing baselines after about ten steps of training under six benchmarks.
Quantitative LLM Judges
LLM-as-a-judge is a framework in which a large language model (LLM) automatically evaluates the output of another LLM. We propose quantitative LLM judges, which align evaluation scores of existing LLM judges to human scores in a given domain using regression models. The models are trained to improve the score of the original judge by using the judge's textual evaluation and score. We present four quantitative judges for different types of absolute and relative feedback, which showcases the generality and versatility of our framework. Our framework is more computationally efficient than supervised fine-tuning and can be more statistically efficient when human feedback is limited, which is expected in most applications of our work. We validate these claims empirically on four datasets using two base judges. Our experiments show that quantitative judges can effectively improve the predictive power of existing judges through post-hoc modeling.
INESC-ID @ eRisk 2025: Exploring Fine-Tuned, Similarity-Based, and Prompt-Based Approaches to Depression Symptom Identification
In this work, we describe our team's approach to eRisk's 2025 Task 1: Search for Symptoms of Depression. Given a set of sentences and the Beck's Depression Inventory - II (BDI) questionnaire, participants were tasked with submitting up to 1,000 sentences per depression symptom in the BDI, sorted by relevance. Participant submissions were evaluated according to standard Information Retrieval (IR) metrics, including Average Precision (AP) and R-Precision (R-PREC). The provided training data, however, consisted of sentences labeled as to whether a given sentence was relevant or not w.r.t. one of BDI's symptoms. Due to this labeling limitation, we framed our development as a binary classification task for each BDI symptom, and evaluated accordingly. To that end, we split the available labeled data into training and validation sets, and explored foundation model fine-tuning, sentence similarity, Large Language Model (LLM) prompting, and ensemble techniques. The validation results revealed that fine-tuning foundation models yielded the best performance, particularly when enhanced with synthetic data to mitigate class imbalance. We also observed that the optimal approach varied by symptom. Based on these insights, we devised five independent test runs, two of which used ensemble methods. These runs achieved the highest scores in the official IR evaluation, outperforming submissions from 16 other teams.
comment: 12 pages, 1 figure, 6 tables
A Controllable Examination for Long-Context Language Models
Existing frameworks for evaluating long-context language models (LCLM) can be broadly categorized into real-world and synthetic tasks. Despite their utility, both approaches are accompanied by certain intrinsic limitations. Real-world tasks are too complex to interpret or characterize and are susceptible to data contamination. In contrast, synthetic tasks often adopt the needle-in-the-haystack (NIAH) format, wherein a lack of coherence between the "needle" and the "haystack" compromises their validity as proxies for realistic applications. In response to these challenges, we posit that an ideal long-context evaluation framework should be characterized by three essential features: $\textit{seamless context}$, $\textit{controllable setting}$, and $\textit{sound evaluation}$. This study introduces $\textbf{LongBioBench}$, a novel benchmark that utilizes artificially generated biographies as a controlled environment for assessing LCLMs across dimensions of $\textit{understanding}$, $\textit{reasoning}$, and $\textit{trustworthiness}$. Our experimental evaluation, which includes $\textbf{18}$ LCLMs in total, demonstrates that most models still exhibit deficiencies in semantic understanding and elementary reasoning over retrieved results and are less trustworthy as context length increases. Our further analysis indicates some design choices employed by existing synthetic benchmarks, such as contextual non-coherence, numerical needles, and the absence of distractors, rendering them vulnerable to test the model long-context capabilities. Moreover, we also reveal that long-context continual pretraining primarily adjusts RoPE embedding to accommodate extended context lengths. To sum up, compared to previous synthetic benchmarks, LongBioBench achieves a better trade-off between mirroring authentic language tasks and maintaining controllability, and is highly interpretable and configurable.
comment: Preprint
Cell-o1: Training LLMs to Solve Single-Cell Reasoning Puzzles with Reinforcement Learning
Cell type annotation is a key task in analyzing the heterogeneity of single-cell RNA sequencing data. Although recent foundation models automate this process, they typically annotate cells independently, without considering batch-level cellular context or providing explanatory reasoning. In contrast, human experts often annotate distinct cell types for different cell clusters based on their domain knowledge. To mimic this workflow, we introduce the CellPuzzles task, where the objective is to assign unique cell types to a batch of cells. This benchmark spans diverse tissues, diseases, and donor conditions, and requires reasoning across the batch-level cellular context to ensure label uniqueness. We find that off-the-shelf large language models (LLMs) struggle on CellPuzzles, with the best baseline (OpenAI's o1) achieving only 19.0% batch-level accuracy. To fill this gap, we propose Cell-o1, a 7B LLM trained via supervised fine-tuning on distilled reasoning traces, followed by reinforcement learning with batch-level rewards. Cell-o1 achieves state-of-the-art performance, outperforming o1 by over 73% and generalizing well across contexts. Further analysis of training dynamics and reasoning behaviors provides insights into batch-level annotation performance and emergent expert-like reasoning. Code and data are available at https://github.com/ncbi-nlp/cell-o1.
comment: 28 pages; 16 tables; 7 figures; Code: https://github.com/ncbi-nlp/cell-o1
IMPARA-GED: Grammatical Error Detection is Boosting Reference-free Grammatical Error Quality Estimator ACL 2025
We propose IMPARA-GED, a novel reference-free automatic grammatical error correction (GEC) evaluation method with grammatical error detection (GED) capabilities. We focus on the quality estimator of IMPARA, an existing automatic GEC evaluation method, and construct that of IMPARA-GED using a pre-trained language model with enhanced GED capabilities. Experimental results on SEEDA, a meta-evaluation dataset for automatic GEC evaluation methods, demonstrate that IMPARA-GED achieves the highest correlation with human sentence-level evaluations.
comment: ACL 2025 Findings
A Multi-Dialectal Dataset for German Dialect ASR and Dialect-to-Standard Speech Translation
Although Germany has a diverse landscape of dialects, they are underrepresented in current automatic speech recognition (ASR) research. To enable studies of how robust models are towards dialectal variation, we present Betthupferl, an evaluation dataset containing four hours of read speech in three dialect groups spoken in Southeast Germany (Franconian, Bavarian, Alemannic), and half an hour of Standard German speech. We provide both dialectal and Standard German transcriptions, and analyze the linguistic differences between them. We benchmark several multilingual state-of-the-art ASR models on speech translation into Standard German, and find differences between how much the output resembles the dialectal vs. standardized transcriptions. Qualitative error analyses of the best ASR model reveal that it sometimes normalizes grammatical differences, but often stays closer to the dialectal constructions.
comment: Accepted to Interspeech 2025
Scaling Fine-Grained MoE Beyond 50B Parameters: Empirical Evaluation and Practical Insights
Mixture of Experts (MoE) architectures have emerged as pivotal for scaling Large Language Models (LLMs) efficiently. Fine-grained MoE approaches - utilizing more numerous, smaller experts - have demonstrated potential in improving model convergence and quality. This work proposes a set of training recipes and provides a comprehensive empirical evaluation of fine-grained MoE, directly comparing its scaling properties against standard MoE configurations for models with up to 56B total (17B active) parameters. We investigate convergence speed, model performance on downstream benchmarks, and practical training considerations across various setups. Overall, at the largest scale we show that fine-grained MoE achieves better validation loss and higher accuracy across a set of downstream benchmarks. This study offers empirical grounding and practical insights for leveraging fine-grained MoE in the development of future large-scale models.
CoT is Not True Reasoning, It Is Just a Tight Constraint to Imitate: A Theory Perspective
Chain-of-Thought (CoT) prompting has demonstrably enhanced the performance of Large Language Models on tasks requiring multi-step inference. This success has led to widespread claims of emergent reasoning capabilities in these models. In this paper, we present a theoretical counter-perspective: Chain-of-Thought (CoT) does not elicit genuine, abstract reasoning. Instead, we argue that Chain-of-Thought functions as a powerful structural constraint that guides Large Language Models to imitate the form of reasoning. By forcing the generation of intermediate steps, Chain-of-Thought leverages the model immense capacity for sequence prediction and pattern matching, effectively constraining its output to sequences that resemble coherent thought processes. Chain-of-Thought (CoT) prompting has demonstrably enhanced the performance of Large Language Models on tasks requiring multi-step inference. This success has led to widespread claims of emergent reasoning capabilities in these models. In this paper, we present a theoretical counter-perspective: Chain-of-Thought (CoT) does not elicit genuine, abstract reasoning. Instead, we argue that Chain-of-Thought functions as a powerful structural constraint that guides Large Language Models to imitate the form of reasoning. By forcing the generation of intermediate steps, Chain-of-Thought leverages the model immense capacity for sequence prediction and pattern matching, effectively constraining its output to sequences that resemble coherent thought processes.
Token and Span Classification for Entity Recognition in French Historical Encyclopedias
Named Entity Recognition (NER) in historical texts presents unique challenges due to non-standardized language, archaic orthography, and nested or overlapping entities. This study benchmarks a diverse set of NER approaches, ranging from classical Conditional Random Fields (CRFs) and spaCy-based models to transformer-based architectures such as CamemBERT and sequence-labeling models like Flair. Experiments are conducted on the GeoEDdA dataset, a richly annotated corpus derived from 18th-century French encyclopedias. We propose framing NER as both token-level and span-level classification to accommodate complex nested entity structures typical of historical documents. Additionally, we evaluate the emerging potential of few-shot prompting with generative language models for low-resource scenarios. Our results demonstrate that while transformer-based models achieve state-of-the-art performance, especially on nested entities, generative models offer promising alternatives when labeled data are scarce. The study highlights ongoing challenges in historical NER and suggests avenues for hybrid approaches combining symbolic and neural methods to better capture the intricacies of early modern French text.
Demystifying Reasoning Dynamics with Mutual Information: Thinking Tokens are Information Peaks in LLM Reasoning
Large reasoning models (LRMs) have demonstrated impressive capabilities in complex problem-solving, yet their internal reasoning mechanisms remain poorly understood. In this paper, we investigate the reasoning trajectories of LRMs from an information-theoretic perspective. By tracking how mutual information (MI) between intermediate representations and the correct answer evolves during LRM reasoning, we observe an interesting MI peaks phenomenon: the MI at specific generative steps exhibits a sudden and significant increase during LRM's reasoning process. We theoretically analyze such phenomenon and show that as MI increases, the probability of model's prediction error decreases. Furthermore, these MI peaks often correspond to tokens expressing reflection or transition, such as ``Hmm'', ``Wait'' and ``Therefore,'' which we term as the thinking tokens. We then demonstrate that these thinking tokens are crucial for LRM's reasoning performance, while other tokens has minimal impacts. Building on these analyses, we propose two simple yet effective methods to improve LRM's reasoning performance, by delicately leveraging these thinking tokens. Overall, our work provides novel insights into the reasoning mechanisms of LRMs and offers practical ways to improve their reasoning capabilities. The code is available at https://github.com/ChnQ/MI-Peaks.
comment: Preprint. Under review
TO-GATE: Clarifying Questions and Summarizing Responses with Trajectory Optimization for Eliciting Human Preference
Large language models (LLMs) can effectively elicit human preferences through multi-turn dialogue. Complex tasks can be accomplished through iterative clarifying questions and final responses generated by an LLM acting as a questioner (STaR-GATE; Andukuri et al., 2024}). However, existing approaches based on self-taught reasoning struggle to identify optimal dialogue trajectories and avoid irrelevant questions to the tasks. To address this limitation, we propose TO-GATE, a novel framework that enhances question generation through trajectory optimization, which consists of two key components: a clarification resolver that generates optimal questioning trajectories, and a summarizer that ensures task-aligned final responses. The trajectory optimization enables the model to produce effective elicitation questions and summary responses tailored to specific tasks. Experimental results demonstrate that TO-GATE significantly outperforms baseline methods, achieving a 9.32% improvement on standard preference elicitation tasks.
ProcrustesGPT: Compressing LLMs with Structured Matrices and Orthogonal Transformations ACL
Large language models (LLMs) demonstrate impressive results in natural language processing tasks but require a significant amount of computational and memory resources. Structured matrix representations are a promising way for reducing the number of parameters of these models. However, it seems unrealistic to expect that weight matrices of pretrained models can be accurately represented by structured matrices without any fine-tuning. To overcome this issue, we utilize the fact that LLM output is invariant under certain orthogonal transformations of weight matrices. This insight can be leveraged to identify transformations that significantly improve the compressibility of weights within structured classes. The proposed approach is applicable to various types of structured matrices that support efficient projection operations. Code is available at https://github.com/GrishKate/ProcrustesGPT
comment: Accepted by ACL Findings
SemVink: Advancing VLMs' Semantic Understanding of Optical Illusions via Visual Global Thinking
Vision-language models (VLMs) excel in semantic tasks but falter at a core human capability: detecting hidden content in optical illusions or AI-generated images through perceptual adjustments like zooming. We introduce HC-Bench, a benchmark of 112 images with hidden text, objects, and illusions, revealing that leading VLMs achieve near-zero accuracy (0-5.36%)-even with explicit prompting. Humans resolve such ambiguities instinctively, yet VLMs fail due to an overreliance on high-level semantics. Strikingly, we propose SemVink (Semantic Visual Thinking) by simply scaling images to low resolutions (32-128 pixels), which unlocks >99% accuracy by eliminating redundant visual noise. This exposes a critical architectural flaw: VLMs prioritize abstract reasoning over low-level visual operations crucial for real-world robustness. Our work urges a shift toward hybrid models integrating multi-scale processing, bridging the gap between computational vision and human cognition for applications in medical imaging, security, and beyond.
Rethinking Machine Unlearning in Image Generation Models CCS 2025
With the surge and widespread application of image generation models, data privacy and content safety have become major concerns and attracted great attention from users, service providers, and policymakers. Machine unlearning (MU) is recognized as a cost-effective and promising means to address these challenges. Despite some advancements, image generation model unlearning (IGMU) still faces remarkable gaps in practice, e.g., unclear task discrimination and unlearning guidelines, lack of an effective evaluation framework, and unreliable evaluation metrics. These can hinder the understanding of unlearning mechanisms and the design of practical unlearning algorithms. We perform exhaustive assessments over existing state-of-the-art unlearning algorithms and evaluation standards, and discover several critical flaws and challenges in IGMU tasks. Driven by these limitations, we make several core contributions, to facilitate the comprehensive understanding, standardized categorization, and reliable evaluation of IGMU. Specifically, (1) We design CatIGMU, a novel hierarchical task categorization framework. It provides detailed implementation guidance for IGMU, assisting in the design of unlearning algorithms and the construction of testbeds. (2) We introduce EvalIGMU, a comprehensive evaluation framework. It includes reliable quantitative metrics across five critical aspects. (3) We construct DataIGM, a high-quality unlearning dataset, which can be used for extensive evaluations of IGMU, training content detectors for judgment, and benchmarking the state-of-the-art unlearning algorithms. With EvalIGMU and DataIGM, we discover that most existing IGMU algorithms cannot handle the unlearning well across different evaluation dimensions, especially for preservation and robustness. Code and models are available at https://github.com/ryliu68/IGMU.
comment: Accepted by ACM CCS 2025
Exploiting the English Vocabulary Profile for L2 word-level vocabulary assessment with LLMs
Vocabulary use is a fundamental aspect of second language (L2) proficiency. To date, its assessment by automated systems has typically examined the context-independent, or part-of-speech (PoS) related use of words. This paper introduces a novel approach to enable fine-grained vocabulary evaluation exploiting the precise use of words within a sentence. The scheme combines large language models (LLMs) with the English Vocabulary Profile (EVP). The EVP is a standard lexical resource that enables in-context vocabulary use to be linked with proficiency level. We evaluate the ability of LLMs to assign proficiency levels to individual words as they appear in L2 learner writing, addressing key challenges such as polysemy, contextual variation, and multi-word expressions. We compare LLMs to a PoS-based baseline. LLMs appear to exploit additional semantic information that yields improved performance. We also explore correlations between word-level proficiency and essay-level proficiency. Finally, the approach is applied to examine the consistency of the EVP proficiency levels. Results show that LLMs are well-suited for the task of vocabulary assessment.
comment: Accepted to the 20th Workshop on Innovative Use of NLP for Building Educational Applications
Multi-task Learning with Active Learning for Arabic Offensive Speech Detection
The rapid growth of social media has amplified the spread of offensive, violent, and vulgar speech, which poses serious societal and cybersecurity concerns. Detecting such content in Arabic text is particularly complex due to limited labeled data, dialectal variations, and the language's inherent complexity. This paper proposes a novel framework that integrates multi-task learning (MTL) with active learning to enhance offensive speech detection in Arabic social media text. By jointly training on two auxiliary tasks, violent and vulgar speech, the model leverages shared representations to improve the detection accuracy of the offensive speech. Our approach dynamically adjusts task weights during training to balance the contribution of each task and optimize performance. To address the scarcity of labeled data, we employ an active learning strategy through several uncertainty sampling techniques to iteratively select the most informative samples for model training. We also introduce weighted emoji handling to better capture semantic cues. Experimental results on the OSACT2022 dataset show that the proposed framework achieves a state-of-the-art macro F1-score of 85.42%, outperforming existing methods while using significantly fewer fine-tuning samples. The findings of this study highlight the potential of integrating MTL with active learning for efficient and accurate offensive language detection in resource-constrained settings.
Stereotypical gender actions can be extracted from Web text
We extracted gender-specific actions from text corpora and Twitter, and compared them to stereotypical expectations of people. We used Open Mind Common Sense (OMCS), a commonsense knowledge repository, to focus on actions that are pertinent to common sense and daily life of humans. We use the gender information of Twitter users and Web-corpus-based pronoun/name gender heuristics to compute the gender bias of the actions. With high recall, we obtained a Spearman correlation of 0.47 between corpus-based predictions and a human gold standard, and an area under the ROC curve of 0.76 when predicting the polarity of the gold standard. We conclude that it is feasible to use natural text (and a Twitter-derived corpus in particular) in order to augment commonsense repositories with the stereotypical gender expectations of actions. We also present a dataset of 441 commonsense actions with human judges' ratings on whether the action is typically/slightly masculine/feminine (or neutral), and another larger dataset of 21,442 actions automatically rated by the methods we investigate in this study.
An Exploratory Framework for Future SETI Applications: Detecting Generative Reactivity via Language Models
We present an exploratory framework to test whether noise-like input can induce structured responses in language models. Instead of assuming that extraterrestrial signals must be decoded, we evaluate whether inputs can trigger linguistic behavior in generative systems. This shifts the focus from decoding to viewing structured output as a sign of underlying regularity in the input. We tested GPT-2 small, a 117M-parameter model trained on English text, using four types of acoustic input: human speech, humpback whale vocalizations, Phylloscopus trochilus birdsong, and algorithmically generated white noise. All inputs were treated as noise-like, without any assumed symbolic encoding. To assess reactivity, we defined a composite score called Semantic Induction Potential (SIP), combining entropy, syntax coherence, compression gain, and repetition penalty. Results showed that whale and bird vocalizations had higher SIP scores than white noise, while human speech triggered only moderate responses. This suggests that language models may detect latent structure even in data without conventional semantics. We propose that this approach could complement traditional SETI methods, especially in cases where communicative intent is unknown. Generative reactivity may offer a different way to identify data worth closer attention.
comment: submitted to the International Journal of Astrobiology
RACE-Align: Retrieval-Augmented and Chain-of-Thought Enhanced Preference Alignment for Large Language Models
Large Language Models (LLMs) struggle with accuracy, domain-specific reasoning, and interpretability in vertical domains. Traditional preference alignment methods like Reinforcement Learning from Human Feedback (RLHF) and Direct Preference Optimization (DPO) often overlook the underlying knowledge sources and reasoning logic. This paper introduces RACE-Align (Retrieval-Augmented and Chain-of-Thought Enhanced Alignment), a novel framework designed to address these limitations. RACE-Align systematically constructs a binary preference dataset incorporating external knowledge support and explicit Chain-of-Thought (CoT) reasoning, then aligns LLMs using the DPO algorithm. The core innovation lies in its preference data construction strategy: it integrates AI-driven retrieval for factual grounding, enhancing knowledgeability and accuracy, and emphasizes the optimization of domain-specific CoT, treating the reasoning process itself as a key preference dimension. A multi-stage, AI-driven refinement pipeline cost-effectively generates these preference pairs. Experimental validation in Traditional Chinese Medicine (TCM) using Qwen3-1.7B as the base model demonstrates that RACE-Align significantly outperforms the original base model and a model fine-tuned only with Supervised Fine-Tuning (SFT). Improvements were observed across multiple dimensions, including answer accuracy, information richness, application of TCM thinking patterns, logicality and depth of reasoning, and interpretability. These findings suggest RACE-Align offers an effective pathway to enhance LLMs' knowledge application, reasoning reliability, and process transparency in complex vertical domains.
Benchmarking and Advancing Large Language Models for Local Life Services KDD 2025
Large language models (LLMs) have exhibited remarkable capabilities and achieved significant breakthroughs across various domains, leading to their widespread adoption in recent years. Building on this progress, we investigate their potential in the realm of local life services. In this study, we establish a comprehensive benchmark and systematically evaluate the performance of diverse LLMs across a wide range of tasks relevant to local life services. To further enhance their effectiveness, we explore two key approaches: model fine-tuning and agent-based workflows. Our findings reveal that even a relatively compact 7B model can attain performance levels comparable to a much larger 72B model, effectively balancing inference cost and model capability. This optimization greatly enhances the feasibility and efficiency of deploying LLMs in real-world online services, making them more practical and accessible for local life applications.
comment: KDD 2025
Iterative Self-Improvement of Vision Language Models for Image Scoring and Self-Explanation ICIP2025
Image scoring is a crucial task in numerous real-world applications. To trust a model's judgment, understanding its rationale is essential. This paper proposes a novel training method for Vision Language Models (VLMs) to generate not only image scores but also corresponding justifications in natural language. Leveraging only an image scoring dataset and an instruction-tuned VLM, our method enables self-training, utilizing the VLM's generated text without relying on external data or models. In addition, we introduce a simple method for creating a dataset designed to improve alignment between predicted scores and their textual justifications. By iteratively training the model with Direct Preference Optimization on two distinct datasets and merging them, we can improve both scoring accuracy and the coherence of generated explanations.
comment: Accepted to ICIP2025
On Entity Identification in Language Models ACL 2025
We analyze the extent to which internal representations of language models (LMs) identify and distinguish mentions of named entities, focusing on the many-to-many correspondence between entities and their mentions. We first formulate two problems of entity mentions -- ambiguity and variability -- and propose a framework analogous to clustering quality metrics. Specifically, we quantify through cluster analysis of LM internal representations the extent to which mentions of the same entity cluster together and mentions of different entities remain separated. Our experiments examine five Transformer-based autoregressive models, showing that they effectively identify and distinguish entities with metrics analogous to precision and recall ranging from 0.66 to 0.9. Further analysis reveals that entity-related information is compactly represented in a low-dimensional linear subspace at early LM layers. Additionally, we clarify how the characteristics of entity representations influence word prediction performance. These findings are interpreted through the lens of isomorphism between LM representations and entity-centric knowledge structures in the real world, providing insights into how LMs internally organize and use entity information.
comment: ACL 2025 Findings; 26 pages, 13 figures, 9 tables
MASTER: Enhancing Large Language Model via Multi-Agent Simulated Teaching
Instruction fine-tuning is crucial in NLP tasks, enhancing pretrained models' instruction-following capabilities and task-specific performance. However, obtaining high-quality fine-tuning data for large models is challenging due to data collection difficulties and high production costs. To address this, we propose MASTER, a novel data augmentation method that enriches original data through interactions among multiple agents with varying cognitive levels. We simulate three pedagogically grounded teaching scenarios, leveraging multi-agent conversations to generate high-quality teacher-student interaction data. Utilizing MASTER, we construct BOOST-QA, a fine-tuning dataset augmented from existing datasets like Orca-Math-200k, ProcQA, and OpenHermes2.5. Experiments show that models fine-tuned with BOOST-QA perform excellently across multiple benchmarks, demonstrating strong multitask generalization. Notably, MASTER significantly improves models' reasoning abilities in complex tasks, providing valuable insights for future research.
Decompose, Plan in Parallel, and Merge: A Novel Paradigm for Large Language Models based Planning with Multiple Constraints
Despite significant advances in Large Language Models (LLMs), planning tasks still present challenges for LLM-based agents. Existing planning methods face two key limitations: heavy constraints and cascading errors. To address these limitations, we propose a novel parallel planning paradigm, which Decomposes, Plans for subtasks in Parallel, and Merges subplans into a final plan (DPPM). Specifically, DPPM decomposes the complex task based on constraints into subtasks, generates the subplan for each subtask in parallel, and merges them into a global plan. In addition, our approach incorporates a verification and refinement module, enabling error correction and conflict resolution. Experimental results demonstrate that DPPM significantly outperforms existing methods in travel planning tasks.
TL;DR: Too Long, Do Re-weighting for Effcient LLM Reasoning Compression
Large Language Models (LLMs) have recently achieved remarkable progress by leveraging Reinforcement Learning and extended Chain-of-Thought (CoT) techniques. However, the challenge of performing efficient language reasoning--especially during inference with extremely long outputs--has drawn increasing attention from the research community. In this work, we propose a dynamic ratio-based training pipeline that does not rely on sophisticated data annotations or interpolation between multiple models. We continuously balance the weights between the model's System-1 and System-2 data to eliminate redundant reasoning processes while preserving the model's reasoning capability. We validate our approach across models on DeepSeek-R1-Distill-7B and DeepSeek-R1-Distill-14B and on a diverse set of benchmarks with varying difficulty levels. Our method significantly reduces the number of output tokens by nearly 40% while maintaining the accuracy of the reasoning. Our code and data will be available soon.
EvaLearn: Quantifying the Learning Capability and Efficiency of LLMs via Sequential Problem Solving
We introduce EvaLearn, a pioneering benchmark designed to evaluate large language models (LLMs) on their learning capability and efficiency in challenging tasks, a critical, yet underexplored aspect of model potential. EvaLearn contains 648 challenging problems across six task types, grouped into 182 sequences, each sequence dedicated to one task type. Diverging from most existing benchmarks that evaluate models in parallel, EvaLearn requires models to solve problems sequentially, allowing them to leverage the experience gained from previous solutions. EvaLearn provides five comprehensive automated metrics to evaluate models and quantify their learning capability and efficiency. We extensively benchmark nine frontier models and observe varied performance profiles: some models, such as Claude-3.7-sonnet, start with moderate initial performance but exhibit strong learning ability, while some models struggle to benefit from experience and may even show negative transfer. Moreover, we investigate model performance under two learning settings and find that instance-level rubrics and teacher-model feedback further facilitate model learning. Importantly, we observe that current LLMs with stronger static abilities do not show a clear advantage in learning capability across all tasks, highlighting that EvaLearn evaluates a new dimension of model performance. We hope EvaLearn provides a novel evaluation perspective for assessing LLM potential and understanding the gap between models and human capabilities, promoting the development of deeper and more dynamic evaluation approaches. All datasets, the automatic evaluation framework, and the results studied in this paper are available at the GitHub repository.
comment: 47 pages, 24 figures
Are Economists Always More Introverted? Analyzing Consistency in Persona-Assigned LLMs
Personalized Large Language Models (LLMs) are increasingly used in diverse applications, where they are assigned a specific persona - such as a happy high school teacher - to guide their responses. While prior research has examined how well LLMs adhere to predefined personas in writing style, a comprehensive analysis of consistency across different personas and task types is lacking. In this paper, we introduce a new standardized framework to analyze consistency in persona-assigned LLMs. We define consistency as the extent to which a model maintains coherent responses when assigned the same persona across different tasks and runs. Our framework evaluates personas across four different categories (happiness, occupation, personality, and political stance) spanning multiple task dimensions (survey writing, essay generation, social media post generation, single turn, and multi-turn conversations). Our findings reveal that consistency is influenced by multiple factors, including the assigned persona, stereotypes, and model design choices. Consistency also varies across tasks, increasing with more structured tasks and additional context. All code is available on GitHub.
Overcoming Data Scarcity in Multi-Dialectal Arabic ASR via Whisper Fine-Tuning
Although commercial Arabic automatic speech recognition (ASR) systems support Modern Standard Arabic (MSA), they struggle with dialectal speech. We investigate the effect of fine-tuning OpenAI's Whisper on five major Arabic dialects (Gulf, Levantine, Iraqi, Egyptian, Maghrebi) using Mozilla Common Voice for MSA and the MASC dataset for dialectal speech. We evaluate MSA training size effects, benefits of pre-training on MSA data, and dialect-specific versus dialect-pooled models. We find that small amounts of MSA fine-tuning data yield substantial improvements for smaller models, matching larger non-fine-tuned models. While MSA pre-training shows minimal benefit, suggesting limited shared features between MSA and dialects, our dialect-pooled models perform comparably to dialect-specific ones. This indicates that pooling dialectal data, when properly balanced, can help address data scarcity in low-resource ASR without significant performance loss.
comment: Accepted at Interspeech 2025
EssayBench: Evaluating Large Language Models in Multi-Genre Chinese Essay Writing
Chinese essay writing and its evaluation are critical in educational contexts, yet the capabilities of Large Language Models (LLMs) in this domain remain largely underexplored. Existing benchmarks often rely on coarse-grained text quality metrics, largely overlooking the structural and rhetorical complexities of Chinese essays, particularly across diverse genres. To address this gap, we propose \benchName, a multi-genre benchmark specifically designed for Chinese essay writing across four major genres: Argumentative, Narrative, Descriptive, and Expository. We curate and refine a total of 728 real-world prompts to ensure authenticity and meticulously categorize them into the \textit{Open-Ended} and \textit{Constrained} sets to capture diverse writing scenarios. To reliably evaluate generated essays, we develop a fine-grained, genre-specific scoring framework that hierarchically aggregates scores. We further validate our evaluation protocol through a comprehensive human agreement study. Finally, we benchmark 15 large-sized LLMs, analyzing their strengths and limitations across genres and instruction types. With \benchName, we aim to advance LLM-based Chinese essay evaluation and inspire future research on improving essay generation in educational settings.
Beyond the Surface: Measuring Self-Preference in LLM Judgments
Recent studies show that large language models (LLMs) exhibit self-preference bias when serving as judges, meaning they tend to favor their own responses over those generated by other models. Existing methods typically measure this bias by calculating the difference between the scores a judge model assigns to its own responses and those it assigns to responses from other models. However, this approach conflates self-preference bias with response quality, as higher-quality responses from the judge model may also lead to positive score differences, even in the absence of bias. To address this issue, we introduce gold judgments as proxies for the actual quality of responses and propose the DBG score, which measures self-preference bias as the difference between the scores assigned by the judge model to its own responses and the corresponding gold judgments. Since gold judgments reflect true response quality, the DBG score mitigates the confounding effect of response quality on bias measurement. Using the DBG score, we conduct comprehensive experiments to assess self-preference bias across LLMs of varying versions, sizes, and reasoning abilities. Additionally, we investigate two factors that influence and help alleviate self-preference bias: response text style and the post-training data of judge models. Finally, we explore potential underlying mechanisms of self-preference bias from an attention-based perspective. Our code and data are available at https://github.com/zhiyuanc2001/self-preference.
On Generalization across Measurement Systems: LLMs Entail More Test-Time Compute for Underrepresented Cultures ACL 2025
Measurement systems (e.g., currencies) differ across cultures, but the conversions between them are well defined so that humans can state facts using any measurement system of their choice. Being available to users from diverse cultural backgrounds, large language models (LLMs) should also be able to provide accurate information irrespective of the measurement system at hand. Using newly compiled datasets we test if this is the case for seven open-source LLMs, addressing three key research questions: (RQ1) What is the default system used by LLMs for each type of measurement? (RQ2) Do LLMs' answers and their accuracy vary across different measurement systems? (RQ3) Can LLMs mitigate potential challenges w.r.t. underrepresented systems via reasoning? Our findings show that LLMs default to the measurement system predominantly used in the data. Additionally, we observe considerable instability and variance in performance across different measurement systems. While this instability can in part be mitigated by employing reasoning methods such as chain-of-thought (CoT), this implies longer responses and thereby significantly increases test-time compute (and inference costs), marginalizing users from cultural backgrounds that use underrepresented measurement systems.
comment: Accepted to ACL 2025 Main (Camera-Ready Version)
Synthetic Speech Source Tracing using Metric Learning
This paper addresses source tracing in synthetic speech-identifying generative systems behind manipulated audio via speaker recognition-inspired pipelines. While prior work focuses on spoofing detection, source tracing lacks robust solutions. We evaluate two approaches: classification-based and metric-learning. We tested our methods on the MLAADv5 benchmark using ResNet and self-supervised learning (SSL) backbones. The results show that ResNet achieves competitive performance with the metric learning approach, matching and even exceeding SSL-based systems. Our work demonstrates ResNet's viability for source tracing while underscoring the need to optimize SSL representations for this task. Our work bridges speaker recognition methodologies with audio forensic challenges, offering new directions for combating synthetic media manipulation.
comment: Submitted to Interspeech 2025
Evaluating Named Entity Recognition Models for Russian Cultural News Texts: From BERT to LLM
This paper addresses the challenge of Named Entity Recognition (NER) for person names within the specialized domain of Russian news texts concerning cultural events. The study utilizes the unique SPbLitGuide dataset, a collection of event announcements from Saint Petersburg spanning 1999 to 2019. A comparative evaluation of diverse NER models is presented, encompassing established transformer-based architectures such as DeepPavlov, RoBERTa, and SpaCy, alongside recent Large Language Models (LLMs) including GPT-3.5, GPT-4, and GPT-4o. Key findings highlight the superior performance of GPT-4o when provided with specific prompting for JSON output, achieving an F1 score of 0.93. Furthermore, GPT-4 demonstrated the highest precision at 0.99. The research contributes to a deeper understanding of current NER model capabilities and limitations when applied to morphologically rich languages like Russian within the cultural heritage domain, offering insights for researchers and practitioners. Follow-up evaluation with GPT-4.1 (April 2025) achieves F1=0.94 for both simple and structured prompts, demonstrating rapid progress across model families and simplified deployment requirements.
Prosodic Structure Beyond Lexical Content: A Study of Self-Supervised Learning INTERSPEECH 2025
People exploit the predictability of lexical structures during text comprehension. Though predictable structure is also present in speech, the degree to which prosody, e.g. intonation, tempo, and loudness, contributes to such structure independently of the lexical content is unclear. This study leverages self-supervised learning (SSL) to examine the temporal granularity of structures in the acoustic correlates of prosody. Representations from our proposed Masked Prosody Model can predict perceptual labels dependent on local information, such as word boundaries, but provide the most value for labels involving longer-term structures, like emotion recognition. Probing experiments across various perceptual labels show strong relative gains over untransformed pitch, energy, and voice activity features. Our results reveal the importance of SSL training objective timescale and highlight the value of complex SSL-encoded structures compared to more constrained classical structures.
comment: Accepted at INTERSPEECH 2025
IndoSafety: Culturally Grounded Safety for LLMs in Indonesian Languages
Although region-specific large language models (LLMs) are increasingly developed, their safety remains underexplored, particularly in culturally diverse settings like Indonesia, where sensitivity to local norms is essential and highly valued by the community. In this work, we present IndoSafety, the first high-quality, human-verified safety evaluation dataset tailored for the Indonesian context, covering five language varieties: formal and colloquial Indonesian, along with three major local languages: Javanese, Sundanese, and Minangkabau. IndoSafety is constructed by extending prior safety frameworks to develop a taxonomy that captures Indonesia's sociocultural context. We find that existing Indonesian-centric LLMs often generate unsafe outputs, particularly in colloquial and local language settings, while fine-tuning on IndoSafety significantly improves safety while preserving task performance. Our work highlights the critical need for culturally grounded safety evaluation and provides a concrete step toward responsible LLM deployment in multilingual settings. Warning: This paper contains example data that may be offensive, harmful, or biased.
comment: 25 pages
Pruning General Large Language Models into Customized Expert Models
Large language models (LLMs) have revolutionized natural language processing, yet their substantial model sizes often require substantial computational resources. To preserve computing resources and accelerate inference speed, it is crucial to prune redundant parameters, especially for experienced users who often need compact expert models tailored to specific downstream scenarios. However, most existing pruning methods focus on preserving the model's general capabilities, often requiring extensive post-training or suffering from degraded performance due to coarse-grained pruning. In this work, we design a $\underline{Cus}$tom $\underline{Prun}$ing method ($\texttt{Cus-Prun}$) to prune a large general model into a smaller lightweight expert model, which is positioned along the "language", "domain" and "task" dimensions. By identifying and pruning irrelevant neurons of each dimension, $\texttt{Cus-Prun}$ creates expert models without any post-training. Our experiments demonstrate that $\texttt{Cus-Prun}$ consistently outperforms other methods, achieving minimal loss in both expert and general capabilities across various models from different model families and sizes.
Response-Level Rewards Are All You Need for Online Reinforcement Learning in LLMs: A Mathematical Perspective
We study a common challenge in reinforcement learning for large language models (LLMs): the Zero-Reward Assumption, where non-terminal actions (i.e., intermediate token generations) receive zero task-specific immediate reward, while only the final token receives a reward for the entire response. This assumption arises frequently in practice, as precise token-level rewards are often difficult or infeasible to obtain in LLM applications. In this work, we provide a unifying theoretical perspective. We introduce the Trajectory Policy Gradient Theorem, which shows that the policy gradient based on true, unknown token-level rewards can be unbiasedly estimated using only a response-level reward model, regardless of whether the Zero-Reward Assumption holds or not, for algorithms in the REINFORCE and Actor-Critic families. This result reveals that widely used methods such as PPO, GRPO, ReMax, and RLOO inherently possess the capacity to model token-level reward signals, offering a theoretical justification for response-level reward approaches. Our findings pave the way for more practical, efficient LLM fine-tuning, allowing developers to treat training algorithms as black boxes and focus on improving the response-level reward model with auxiliary sub-models. We also offer a detailed analysis of popular RL and non-RL methods, comparing their theoretical foundations and practical advantages across common LLM tasks. Finally, we propose a new algorithm: Token-Reinforced Policy Optimization (TRePO), a theoretically grounded method that is simpler than PPO, matches GRPO in memory efficiency, and holds promise for broad applicability.
CoRe-MMRAG: Cross-Source Knowledge Reconciliation for Multimodal RAG ACL 2025
Multimodal Retrieval-Augmented Generation (MMRAG) has been introduced to enhance Multimodal Large Language Models by incorporating externally retrieved multimodal knowledge, but it introduces two challenges: Parametric-Retrieved Knowledge Inconsistency (PRKI), where discrepancies between parametric and retrieved knowledge create uncertainty in determining reliability, and Visual-Textual Knowledge Inconsistency (VTKI), where misalignment between visual and textual sources disrupts entity representation. To address these challenges, we propose \textbf{C}r\textbf{o}ss-source knowledge \textbf{Re}conciliation for \textbf{M}ulti\textbf{M}odal \textbf{RAG} (CoRe-MMRAG), a novel end-to-end framework that effectively reconciles inconsistencies across knowledge sources. CoRe-MMRAG follows a four-stage pipeline: it first generates an internal response from parametric knowledge, then selects the most relevant multimodal evidence via joint similarity assessment, generates an external response, and finally integrates both to produce a reliable answer. Additionally, a specialized training paradigm enhances knowledge source discrimination, multimodal integration, and unified answer generation. Experiments on KB-VQA benchmarks show that CoRe-MMRAG achieves substantial improvements over baseline methods, achieving 5.6\% and 9.3\% performance gains on InfoSeek and Encyclopedic-VQA, respectively. We release code and data at \href{https://github.com/TyangJN/CoRe-MMRAG}{https://github.com/TyangJN/CoRe-MMRAG}.
comment: Accepted to ACL 2025 Main
Answer Convergence as a Signal for Early Stopping in Reasoning
Chain-of-thought (CoT) prompting enhances reasoning in large language models (LLMs) but often leads to verbose and redundant outputs, thus increasing inference cost. We hypothesize that many reasoning steps are unnecessary for producing correct answers. To investigate this, we start with a systematic study to examine what is the minimum reasoning required for a model to reach a stable decision. We find that on math reasoning tasks like math, models typically converge to their final answers after 60\% of the reasoning steps, suggesting substantial redundancy in the remaining content. Based on these insights, we propose three inference-time strategies to improve efficiency: (1) early stopping via answer consistency, (2) boosting the probability of generating end-of-reasoning signals, and (3) a supervised method that learns when to stop based on internal activations. Experiments across five benchmarks and five open-weights LLMs show that our methods significantly reduce token usage with little or no accuracy drop. In particular, on NaturalQuestions, Answer Consistency reduces tokens by over 40\% while further improving accuracy. Our work underscores the importance of cost-effective reasoning methods that operate at inference time, offering practical benefits for real-world applications.
Natural Language Processing to Enhance Deliberation in Political Online Discussions: A Survey
Political online participation in the form of discussing political issues and exchanging opinions among citizens is gaining importance with more and more formats being held digitally. To come to a decision, a careful discussion and consideration of opinions and a civil exchange of arguments, which is defined as the act of deliberation, is desirable. The quality of discussions and participation processes in terms of their deliberativeness highly depends on the design of platforms and processes. To facilitate online communication for both participants and initiators, machine learning methods offer a lot of potential. In this work we want to showcase which issues occur in political online discussions and how machine learning can be used to counteract these issues and enhance deliberation.
ReasoningFlow: Semantic Structure of Complex Reasoning Traces ACL 2025
Large reasoning models (LRMs) generate complex reasoning traces with planning, reflection, verification, and backtracking. In this work, we introduce ReasoningFlow, a unified schema for analyzing the semantic structures of these complex traces. ReasoningFlow parses traces into directed acyclic graphs, enabling the characterization of distinct reasoning patterns as subgraph structures. This human-interpretable representation offers promising applications in understanding, evaluating, and enhancing the reasoning processes of LRMs.
comment: 10 pages, 6 figures. ArgMining 2025 Workshop (Non-archival) @ ACL 2025
Automated Web Application Testing: End-to-End Test Case Generation with Large Language Models and Screen Transition Graphs
Web applications are critical to modern software ecosystems, yet ensuring their reliability remains challenging due to the complexity and dynamic nature of web interfaces. Recent advances in large language models (LLMs) have shown promise in automating complex tasks, but limitations persist in handling dynamic navigation flows and complex form interactions. This paper presents an automated system for generating test cases for two key aspects of web application testing: site navigation and form filling. For site navigation, the system employs screen transition graphs and LLMs to model navigation flows and generate test scenarios. For form filling, it uses state graphs to handle conditional forms and automates Selenium script generation. Key contributions include: (1) a novel integration of graph structures and LLMs for site navigation testing, (2) a state graph-based approach for automating form-filling test cases, and (3) a comprehensive dataset for evaluating form-interaction testing. Experimental results demonstrate the system's effectiveness in improving test coverage and robustness, advancing the state of web application testing.
comment: Published in the Proceedings of JSAI 2025
Multilingual Information Retrieval with a Monolingual Knowledge Base SIGIR25
Multilingual information retrieval has emerged as powerful tools for expanding knowledge sharing across languages. On the other hand, resources on high quality knowledge base are often scarce and in limited languages, therefore an effective embedding model to transform sentences from different languages into a feature vector space same as the knowledge base language becomes the key ingredient for cross language knowledge sharing, especially to transfer knowledge available in high-resource languages to low-resource ones. In this paper we propose a novel strategy to fine-tune multilingual embedding models with weighted sampling for contrastive learning, enabling multilingual information retrieval with a monolingual knowledge base. We demonstrate that the weighted sampling strategy produces performance gains compared to standard ones by up to 31.03\% in MRR and up to 33.98\% in Recall@3. Additionally, our proposed methodology is language agnostic and applicable for both multilingual and code switching use cases.
comment: 6 pages, accepted at GENNEXT@SIGIR25
Learning Together to Perform Better: Teaching Small-Scale LLMs to Collaborate via Preferential Rationale Tuning ACL
LLMssuch as GPT-4 have shown a remarkable ability to solve complex questions by generating step-by-step rationales. Prior works have utilized this capability to improve smaller and cheaper LMs (say, with 7B parameters). However, various practical constraints, such as copyright and legal issues, owing to lack of transparency in the pre-training data of large (often closed) models, prevent their use in commercial settings. Little focus has been given to improving the innate reasoning ability of smaller models without distilling information from larger LLMs. To address this, we propose COLLATE, a trainable framework that tunes a (small) LLM to generate those outputs from a pool of diverse rationales that selectively improves the downstream task. COLLATE enforces multiple instances of the same LLM to exhibit distinct behavior and employs them to generate rationales to obtain diverse outputs. The LLM is then tuned via preference optimization to choose the candidate rationale which maximizes the likelihood of ground-truth answer. COLLATE outperforms several trainable and prompting baselines on 5 datasets across 3 domains: maths problem solving, natural language inference, and commonsense reasoning. We show the eff icacy of COLLATE on LLMs from different model families across varying parameter scales (1B to 8B) and demonstrate the benefit of multiple rationale providers guided by the end task through ablations. Code is released here (https://github.com/Sohanpatnaik106/collate).
comment: Accepted at ACL Main 2025
TACLR: A Scalable and Efficient Retrieval-based Method for Industrial Product Attribute Value Identification ACL 2025
Product Attribute Value Identification (PAVI) involves identifying attribute values from product profiles, a key task for improving product search, recommendation, and business analytics on e-commerce platforms. However, existing PAVI methods face critical challenges, such as inferring implicit values, handling out-of-distribution (OOD) values, and producing normalized outputs. To address these limitations, we introduce Taxonomy-Aware Contrastive Learning Retrieval (TACLR), the first retrieval-based method for PAVI. TACLR formulates PAVI as an information retrieval task by encoding product profiles and candidate values into embeddings and retrieving values based on their similarity. It leverages contrastive training with taxonomy-aware hard negative sampling and employs adaptive inference with dynamic thresholds. TACLR offers three key advantages: (1) it effectively handles implicit and OOD values while producing normalized outputs; (2) it scales to thousands of categories, tens of thousands of attributes, and millions of values; and (3) it supports efficient inference for high-load industrial deployment. Extensive experiments on proprietary and public datasets validate the effectiveness and efficiency of TACLR. Further, it has been successfully deployed on the real-world e-commerce platform Xianyu, processing millions of product listings daily with frequently updated, large-scale attribute taxonomies. We release the code to facilitate reproducibility and future research at https://github.com/SuYindu/TACLR.
comment: Accepted at ACL 2025
DLP: Dynamic Layerwise Pruning in Large Language Models ICML 2025
Pruning has recently been widely adopted to reduce the parameter scale and improve the inference efficiency of Large Language Models (LLMs). Mainstream pruning techniques often rely on uniform layerwise pruning strategies, which can lead to severe performance degradation at high sparsity levels. Recognizing the varying contributions of different layers in LLMs, recent studies have shifted their focus toward non-uniform layerwise pruning. However, these approaches often rely on pre-defined values, which can result in suboptimal performance. To overcome these limitations, we propose a novel method called Dynamic Layerwise Pruning (DLP). This approach adaptively determines the relative importance of each layer by integrating model weights with input activation information, assigning pruning rates accordingly. Experimental results show that DLP effectively preserves model performance at high sparsity levels across multiple LLMs. Specifically, at 70% sparsity, DLP reduces the perplexity of LLaMA2-7B by 7.79 and improves the average accuracy by 2.7% compared to state-of-the-art methods. Moreover, DLP is compatible with various existing LLM compression techniques and can be seamlessly integrated into Parameter-Efficient Fine-Tuning (PEFT). We release the code at https://github.com/ironartisan/DLP to facilitate future research.
comment: Accepted by ICML 2025
Probing LLM Hallucination from Within: Perturbation-Driven Approach via Internal Knowledge
LLM hallucination, where unfaithful text is generated, presents a critical challenge for LLMs' practical applications. Current detection methods often resort to external knowledge, LLM fine-tuning, or supervised training with large hallucination-labeled datasets. Moreover, these approaches do not distinguish between different types of hallucinations, which is crucial for enhancing detection performance. To address such limitations, we introduce hallucination probing, a new task that classifies LLM-generated text into three categories: aligned, misaligned, and fabricated. Driven by our novel discovery that perturbing key entities in prompts affects LLM's generation of these three types of text differently, we propose SHINE, a novel hallucination probing method that does not require external knowledge, supervised training, or LLM fine-tuning. SHINE is effective in hallucination probing across three modern LLMs, and achieves state-of-the-art performance in hallucination detection, outperforming seven competing methods across four datasets and four LLMs, underscoring the importance of probing for accurate detection.
comment: 22 pages, 15 figures
LazyReview A Dataset for Uncovering Lazy Thinking in NLP Peer Reviews ACL 2025
Peer review is a cornerstone of quality control in scientific publishing. With the increasing workload, the unintended use of `quick' heuristics, referred to as lazy thinking, has emerged as a recurring issue compromising review quality. Automated methods to detect such heuristics can help improve the peer-reviewing process. However, there is limited NLP research on this issue, and no real-world dataset exists to support the development of detection tools. This work introduces LazyReview, a dataset of peer-review sentences annotated with fine-grained lazy thinking categories. Our analysis reveals that Large Language Models (LLMs) struggle to detect these instances in a zero-shot setting. However, instruction-based fine-tuning on our dataset significantly boosts performance by 10-20 performance points, highlighting the importance of high-quality training data. Furthermore, a controlled experiment demonstrates that reviews revised with lazy thinking feedback are more comprehensive and actionable than those written without such feedback. We will release our dataset and the enhanced guidelines that can be used to train junior reviewers in the community. (Code available here: https://github.com/UKPLab/acl2025-lazy-review)
comment: Accepted at ACL 2025: 29 pages, 18 Figures, 15 Tables
Is it the end of (generative) linguistics as we know it?
A significant debate has emerged in response to a paper written by Steven Piantadosi (Piantadosi, 2023) and uploaded to the LingBuzz platform, the open archive for generative linguistics. Piantadosi's dismissal of Chomsky's approach is ruthless, but generative linguists deserve it. In this paper, I will adopt three idealized perspectives -- computational, theoretical, and experimental -- to focus on two fundamental issues that lend partial support to Piantadosi's critique: (a) the evidence challenging the Poverty of Stimulus (PoS) hypothesis and (b) the notion of simplicity as conceived within mainstream Minimalism. In conclusion, I argue that, to reclaim a central role in language studies, generative linguistics -- representing a prototypical theoretical perspective on language -- needs a serious update leading to (i) more precise, consistent, and complete formalizations of foundational intuitions and (ii) the establishment and utilization of a standardized dataset of crucial empirical evidence to evaluate the theory's adequacy. On the other hand, ignoring the formal perspective leads to major drawbacks in both computational and experimental approaches. Neither descriptive nor explanatory adequacy can be easily achieved without the precise formulation of general principles that can be challenged empirically.
DRAMA: Diverse Augmentation from Large Language Models to Smaller Dense Retrievers ACL 2025
Large language models (LLMs) have demonstrated strong effectiveness and robustness while fine-tuned as dense retrievers. However, their large parameter size brings significant inference time computational challenges, including high encoding costs for large-scale corpora and increased query latency, limiting their practical deployment. While smaller retrievers offer better efficiency, they often fail to generalize effectively with limited supervised fine-tuning data. In this work, we introduce DRAMA, a training framework that leverages LLMs to train smaller generalizable dense retrievers. In particular, we adopt pruned LLMs as the backbone and train on diverse LLM-augmented data in a single-stage contrastive learning setup. Experiments show that DRAMA offers better multilingual and long-context capabilities than traditional encoder-based retrievers, and achieves strong performance across multiple tasks and languages. These highlight the potential of connecting the training of smaller retrievers with the growing advancements in LLMs, bridging the gap between efficiency and generalization.
comment: ACL 2025
One-shot Entropy Minimization
We trained 13,440 large language models and found that entropy minimization requires only a single unlabeled data and 10 steps optimization to achieve performance improvements comparable to or even greater than those obtained using thousands of data and carefully designed rewards in rule-based reinforcement learning. This striking result may prompt a rethinking of post-training paradigms for large language models. Our code is avaliable at https://github.com/zitian-gao/one-shot-em.
comment: Work in progress
Chain-of-Jailbreak Attack for Image Generation Models via Editing Step by Step ACL 2025
Text-based image generation models, such as Stable Diffusion and DALL-E 3, hold significant potential in content creation and publishing workflows, making them the focus in recent years. Despite their remarkable capability to generate diverse and vivid images, considerable efforts are being made to prevent the generation of harmful content, such as abusive, violent, or pornographic material. To assess the safety of existing models, we introduce a novel jailbreaking method called Chain-of-Jailbreak (CoJ) attack, which compromises image generation models through a step-by-step editing process. Specifically, for malicious queries that cannot bypass the safeguards with a single prompt, we intentionally decompose the query into multiple sub-queries. The image generation models are then prompted to generate and iteratively edit images based on these sub-queries. To evaluate the effectiveness of our CoJ attack method, we constructed a comprehensive dataset, CoJ-Bench, encompassing nine safety scenarios, three types of editing operations, and three editing elements. Experiments on four widely-used image generation services provided by GPT-4V, GPT-4o, Gemini 1.5 and Gemini 1.5 Pro, demonstrate that our CoJ attack method can successfully bypass the safeguards of models for over 60% cases, which significantly outperforms other jailbreaking methods (i.e., 14%). Further, to enhance these models' safety against our CoJ attack method, we also propose an effective prompting-based method, Think Twice Prompting, that can successfully defend over 95% of CoJ attack. We release our dataset and code to facilitate the AI safety research.
comment: Accepted by ACL 2025 Findings
Can't See the Forest for the Trees: Benchmarking Multimodal Safety Awareness for Multimodal LLMs ACL 2025
Multimodal Large Language Models (MLLMs) have expanded the capabilities of traditional language models by enabling interaction through both text and images. However, ensuring the safety of these models remains a significant challenge, particularly in accurately identifying whether multimodal content is safe or unsafe-a capability we term safety awareness. In this paper, we introduce MMSafeAware, the first comprehensive multimodal safety awareness benchmark designed to evaluate MLLMs across 29 safety scenarios with 1500 carefully curated image-prompt pairs. MMSafeAware includes both unsafe and over-safety subsets to assess models abilities to correctly identify unsafe content and avoid over-sensitivity that can hinder helpfulness. Evaluating nine widely used MLLMs using MMSafeAware reveals that current models are not sufficiently safe and often overly sensitive; for example, GPT-4V misclassifies 36.1% of unsafe inputs as safe and 59.9% of benign inputs as unsafe. We further explore three methods to improve safety awareness-prompting-based approaches, visual contrastive decoding, and vision-centric reasoning fine-tuning-but find that none achieve satisfactory performance. Our findings highlight the profound challenges in developing MLLMs with robust safety awareness, underscoring the need for further research in this area. All the code and data will be publicly available to facilitate future research.
comment: Accepted by ACL 2025
Rethinking Evaluation Metrics for Grammatical Error Correction: Why Use a Different Evaluation Process than Human? ACL 2025
One of the goals of automatic evaluation metrics in grammatical error correction (GEC) is to rank GEC systems such that it matches human preferences. However, current automatic evaluations are based on procedures that diverge from human evaluation. Specifically, human evaluation derives rankings by aggregating sentence-level relative evaluation results, e.g., pairwise comparisons, using a rating algorithm, whereas automatic evaluation averages sentence-level absolute scores to obtain corpus-level scores, which are then sorted to determine rankings. In this study, we propose an aggregation method for existing automatic evaluation metrics which aligns with human evaluation methods to bridge this gap. We conducted experiments using various metrics, including edit-based metrics, n-gram based metrics, and sentence-level metrics, and show that resolving the gap improves results for the most of metrics on the SEEDA benchmark. We also found that even BERT-based metrics sometimes outperform the metrics of GPT-4. The proposed ranking method is integrated gec-metrics.
comment: ACL 2025 (Main), 5 pages, 2 figures
A$^2$ATS: Retrieval-Based KV Cache Reduction via Windowed Rotary Position Embedding and Query-Aware Vector Quantization
Long context large language models (LLMs) pose significant challenges for efficient serving due to the large memory footprint and high access overhead of KV cache. Retrieval-based KV cache reduction methods can mitigate these challenges, typically by offloading the complete KV cache to CPU and retrieving necessary tokens on demand during inference. However, these methods still suffer from unsatisfactory accuracy degradation and extra retrieval overhead. To address these limitations, this paper proposes A$^2$ATS, a novel retrieval-based KV cache reduction method. A$^2$ATS aims to obtain an accurate approximation of attention scores by applying the vector quantization technique to key states, thereby enabling efficient and precise retrieval of the top-K tokens. First, we propose Windowed Rotary Position Embedding, which decouples the positional dependency from query and key states after position embedding. Then, we propose query-aware vector quantization that optimizes the objective of attention score approximation directly. Finally, we design the heterogeneous inference architecture for KV cache offloading, enabling long context serving with larger batch sizes. Experimental results demonstrate that A$^2$ATS can achieve a lower performance degradation with similar or lower overhead compared to existing methods, thereby increasing long context serving throughput by up to $2.7 \times$.
d1: Scaling Reasoning in Diffusion Large Language Models via Reinforcement Learning
Recent large language models (LLMs) have demonstrated strong reasoning capabilities that benefits from online reinforcement learning (RL). These capabilities have primarily been demonstrated within the left-to-right autoregressive (AR) generation paradigm. In contrast, non-autoregressive paradigms based on diffusion generate text in a coarse-to-fine manner. Although recent diffusion-based large language models (dLLMs) have achieved competitive language modeling performance compared to their AR counterparts, it remains unclear if dLLMs can also leverage recent advances in LLM reasoning. To this end, we propose d1, a framework to adapt pre-trained masked dLLMs into reasoning models via a combination of supervised finetuning (SFT) and RL. Specifically, we develop and extend techniques to improve reasoning in pretrained dLLMs: (a) we utilize a masked SFT technique to distill knowledge and instill self-improvement behavior directly from existing datasets, and (b) we introduce a novel critic-free, policy-gradient based RL algorithm called diffu-GRPO, the first integration of policy gradient methods to masked dLLMs. Through empirical studies, we investigate the performance of different post-training recipes on multiple mathematical and planning benchmarks. We find that d1 yields the best performance and significantly improves performance of a state-of-the-art dLLM. Our code is released at https://dllm-reasoning.github.io/.
comment: 27 pages, project page at https://dllm-reasoning.github.io/
On the class of coding optimality of human languages and the origins of Zipf's law
Here we present a new class of optimality for coding systems. Members of that class are displaced linearly from optimal coding and thus exhibit Zipf's law, namely a power-law distribution of frequency ranks. Within that class, Zipf's law, the size-rank law and the size-probability law form a group-like structure. We identify human languages that are members of the class. All languages showing sufficient agreement with Zipf's law are potential members of the class. In contrast, there are communication systems in other species that cannot be members of that class for exhibiting an exponential distribution instead but dolphins and humpback whales might. We provide a new insight into plots of frequency versus rank in double logarithmic scale. For any system, a straight line in that scale indicates that the lengths of optimal codes under non-singular coding and under uniquely decodable encoding are displaced by a linear function whose slope is the exponent of Zipf's law. For systems under compression and constrained to be uniquely decodable, such a straight line may indicate that the system is coding close to optimality. Our findings provide support for the hypothesis that Zipf's law originates from compression.
The Polar Express: Optimal Matrix Sign Methods and Their Application to the Muon Algorithm
Computing the polar decomposition and the related matrix sign function, has been a well-studied problem in numerical analysis for decades. More recently, it has emerged as an important subroutine in deep learning, particularly within the Muon optimization framework. However, the requirements in this setting differ significantly from those of traditional numerical analysis. In deep learning, methods must be highly efficient and GPU-compatible, but high accuracy is often unnecessary. As a result, classical algorithms like Newton-Schulz (which suffers from slow initial convergence) and methods based on rational functions (which rely on QR decompositions or matrix inverses) are poorly suited to this context. In this work, we introduce Polar Express, a GPU-friendly algorithm for computing the polar decomposition. Like classical polynomial methods such as Newton-Schulz, our approach uses only matrix-matrix multiplications, making it GPU-compatible. Motivated by earlier work of Chen & Chow and Nakatsukasa & Freund, Polar Express adapts the polynomial update rule at each iteration by solving a minimax optimization problem, and we prove that it enjoys a strong worst-case optimality guarantee. This property ensures both rapid early convergence and fast asymptotic convergence. We also address finite-precision issues, making it stable in bfloat16 in practice. We apply Polar Express within the Muon optimization framework and show consistent improvements in validation loss on large-scale models such as GPT-2, outperforming recent alternatives across a range of learning rates.
comment: 34 pages, 8 figures, 4 algorithms
We Should Chart an Atlas of All the World's Models
Public model repositories now contain millions of models, yet most models remain undocumented and effectively lost. In this position paper, we advocate for charting the world's model population in a unified structure we call the Model Atlas: a graph that captures models, their attributes, and the weight transformations that connect them. The Model Atlas enables applications in model forensics, meta-ML research, and model discovery, challenging tasks given today's unstructured model repositories. However, because most models lack documentation, large atlas regions remain uncharted. Addressing this gap motivates new machine learning methods that treat models themselves as data, inferring properties such as functionality, performance, and lineage directly from their weights. We argue that a scalable path forward is to bypass the unique parameter symmetries that plague model weights. Charting all the world's models will require a community effort, and we hope its broad utility will rally researchers toward this goal.
comment: Project page: https://horwitz.ai/model-atlas
Can Character-based Language Models Improve Downstream Task Performance in Low-Resource and Noisy Language Scenarios?
Recent impressive improvements in NLP, largely based on the success of contextual neural language models, have been mostly demonstrated on at most a couple dozen high-resource languages. Building language models and, more generally, NLP systems for non-standardized and low-resource languages remains a challenging task. In this work, we focus on North-African colloquial dialectal Arabic written using an extension of the Latin script, called NArabizi, found mostly on social media and messaging communication. In this low-resource scenario with data displaying a high level of variability, we compare the downstream performance of a character-based language model on part-of-speech tagging and dependency parsing to that of monolingual and multilingual models. We show that a character-based model trained on only 99k sentences of NArabizi and fined-tuned on a small treebank of this language leads to performance close to those obtained with the same architecture pre-trained on large multilingual and monolingual models. Confirming these results a on much larger data set of noisy French user-generated content, we argue that such character-based language models can be an asset for NLP in low-resource and high language variability set-tings.
comment: updated version with new results
Unmasking Database Vulnerabilities: Zero-Knowledge Schema Inference Attacks in Text-to-SQL Systems NAACL 2025
Text-to-SQL systems empower users to interact with databases using natural language, automatically translating queries into executable SQL code. However, their reliance on database schema information for SQL generation exposes them to significant security vulnerabilities, particularly schema inference attacks that can lead to unauthorized data access or manipulation. In this paper, we introduce a novel zero-knowledge framework for reconstructing the underlying database schema of text-to-SQL models without any prior knowledge of the database. Our approach systematically probes text-to-SQL models with specially crafted questions and leverages a surrogate GPT-4 model to interpret the outputs, effectively uncovering hidden schema elements -- including tables, columns, and data types. We demonstrate that our method achieves high accuracy in reconstructing table names, with F1 scores of up to .99 for generative models and .78 for fine-tuned models, underscoring the severity of schema leakage risks. We also show that our attack can steal prompt information in non-text-to-SQL models. Furthermore, we propose a simple protection mechanism for generative models and empirically show its limitations in mitigating these attacks.
comment: Accepted to NAACL 2025 Findings
COMPKE: Complex Question Answering under Knowledge Editing ACL 2025
Knowledge Editing, which efficiently modifies the knowledge in large language models, has gathered great attention. Current benchmarks primarily use multi-hop question answering to assess and analyze newly injected or updated knowledge. However, we argue that these benchmarks fail to effectively evaluate how well the updated models apply this knowledge in real-life scenarios, particularly when questions require complex reasoning, involving one-to-many relationships or multi-step logical intersections. To fill in this gap, we introduce a new benchmark, COMPKE: Complex Question Answering under Knowledge Editing, which includes 11,924 complex questions that reflect real-life situations. We conduct an extensive evaluation of four knowledge editing methods on COMPKE, revealing that their effectiveness varies notably across different models. For instance, MeLLo attains an accuracy of 39.47 on GPT-4O-MINI, but this drops sharply to 3.83 on QWEN2.5-3B. We further investigate the underlying causes of these disparities from both methodological and model-specific perspectives. The datasets are available at https://github.com/kzjkzj666/CompKE.
comment: Accepted by ACL 2025 Findings
Low-Rank Adaptation Secretly Imitates Differentially Private SGD
As pre-trained language models grow in size, full fine-tuning their parameters on task adaptation data becomes increasingly impractical. To address this challenge, some methods for low-rank adaptation of language models have been proposed, e.g. LoRA, which incorporates trainable low-rank decomposition matrices into only some parameters of the pre-trained model, called adapters. This approach significantly reduces the number of trainable parameters compared to fine-tuning all parameters or adapters. In this work, we look at low-rank adaptation method from the lens of data privacy. We show theoretically that the low-rank adaptation used in LoRA is equivalent to fine-tuning adapters with noisy batch gradients - just like what DPSGD algorithm does. We also quantify the variance of the injected noise as a decreasing function of adaptation rank. By establishing a Berry-Esseen type bound on the total variation distance between the injected noise distribution and a Gaussian noise distribution with the same variance, we show that the dynamics of low-rank adaptation is very close to when DPSGD is performed w.r.t the adapters. Following our theoretical findings and approved by our experimental results, we show that low-rank adaptation provides robustness to membership inference attacks w.r.t the fine-tuning data.
Gaussian mixture models as a proxy for interacting language models
Large language models (LLMs) are a powerful tool with the ability to match human capabilities and behavior in many settings. Retrieval-augmented generation (RAG) further allows LLMs to generate diverse output depending on the contents of their RAG database. This motivates their use in the social sciences to study human behavior between individuals when large-scale experiments are infeasible. However, LLMs depend on complex, computationally expensive algorithms. In this paper, we introduce interacting Gaussian mixture models (GMMs) as an alternative to similar frameworks using LLMs. We compare a simplified model of GMMs to select experimental simulations of LLMs whose updating and response depend on feedback from other LLMs. We find that interacting GMMs capture important features of the dynamics in interacting LLMs, and we investigate key similarities and differences between interacting LLMs and GMMs. We conclude by discussing the benefits of Gaussian mixture models, potential modifications, and future research directions.
Linear Representation Transferability Hypothesis: Leveraging Small Models to Steer Large Models
It has been hypothesized that neural networks with similar architectures trained on similar data learn shared representations relevant to the learning task. We build on this idea by extending the conceptual framework where representations learned across models trained on the same data can be expressed as linear combinations of a \emph{universal} set of basis features. These basis features underlie the learning task itself and remain consistent across models, regardless of scale. From this framework, we propose the \textbf{Linear Representation Transferability (LRT)} Hypothesis -- that there exists an affine transformation between the representation spaces of different models. To test this hypothesis, we learn affine mappings between the hidden states of models of different sizes and evaluate whether steering vectors -- directions in hidden state space associated with specific model behaviors -- retain their semantic effect when transferred from small to large language models using the learned mappings. We find strong empirical evidence that such affine mappings can preserve steering behaviors. These findings suggest that representations learned by small models can be used to guide the behavior of large models, and that the LRT hypothesis may be a promising direction on understanding representation alignment across model scales.
Improving Multilingual Speech Models on ML-SUPERB 2.0: Fine-tuning with Data Augmentation and LID-Aware CTC
Multilingual speech processing with self-supervised or supervised pre-trained Speech Foundation Models (SFM) has achieved strong performance on tasks like Language Identification (LID) and Automatic Speech Recognition (ASR). However, these models struggle with limited resources during fine-tuning. This paper enhances multilingual LID and ASR on ML-SUPERB 2.0 by exploring multiple strategies for adapting SFMs, including frozen upstream training, partial fine-tuning, and low-rank adaptation. Furthermore, we employ data augmentation to mitigate performance gaps in few-shot settings and introduce LID Connectionist Temporal Classification (CTC) loss for regularization. Our approach achieves a 14% relative improvement in LID accuracy and a 30% relative reduction in ASR CER over the baseline on ML-SUPERB 2.0, securing second place in the Interspeech 2025 ML-SUPERB 2.0 Challenge.
DyePack: Provably Flagging Test Set Contamination in LLMs Using Backdoors
Open benchmarks are essential for evaluating and advancing large language models, offering reproducibility and transparency. However, their accessibility makes them likely targets of test set contamination. In this work, we introduce DyePack, a framework that leverages backdoor attacks to identify models that used benchmark test sets during training, without requiring access to the loss, logits, or any internal details of the model. Like how banks mix dye packs with their money to mark robbers, DyePack mixes backdoor samples with the test data to flag models that trained on it. We propose a principled design incorporating multiple backdoors with stochastic targets, enabling exact false positive rate (FPR) computation when flagging every model. This provably prevents false accusations while providing strong evidence for every detected case of contamination. We evaluate DyePack on five models across three datasets, covering both multiple-choice and open-ended generation tasks. For multiple-choice questions, it successfully detects all contaminated models with guaranteed FPRs as low as 0.000073% on MMLU-Pro and 0.000017% on Big-Bench-Hard using eight backdoors. For open-ended generation tasks, it generalizes well and identifies all contaminated models on Alpaca with a guaranteed false positive rate of just 0.127% using six backdoors.
KRISTEVA: Close Reading as a Novel Task for Benchmarking Interpretive Reasoning ACL 2025
Each year, tens of millions of essays are written and graded in college-level English courses. Students are asked to analyze literary and cultural texts through a process known as close reading, in which they gather textual details to formulate evidence-based arguments. Despite being viewed as a basis for critical thinking and widely adopted as a required element of university coursework, close reading has never been evaluated on large language models (LLMs), and multi-discipline benchmarks like MMLU do not include literature as a subject. To fill this gap, we present KRISTEVA, the first close reading benchmark for evaluating interpretive reasoning, consisting of 1331 multiple-choice questions adapted from classroom data. With KRISTEVA, we propose three progressively more difficult sets of tasks to approximate different elements of the close reading process, which we use to test how well LLMs may seem to understand and reason about literary works: 1) extracting stylistic features, 2) retrieving relevant contextual information from parametric knowledge, and 3) multi-hop reasoning between style and external contexts. Our baseline results find that, while state-of-the-art LLMs possess some college-level close reading competency (accuracy 49.7% - 69.7%), their performances still trail those of experienced human evaluators on 10 out of our 11 tasks.
comment: ACL 2025 main
Meta-Learning Neural Mechanisms rather than Bayesian Priors ACL 2025
Children acquire language despite being exposed to several orders of magnitude less data than large language models require. Meta-learning has been proposed as a way to integrate human-like learning biases into neural-network architectures, combining both the structured generalizations of symbolic models with the scalability of neural-network models. But what does meta-learning exactly imbue the model with? We investigate the meta-learning of formal languages and find that, contrary to previous claims, meta-trained models are not learning simplicity-based priors when meta-trained on datasets organised around simplicity. Rather, we find evidence that meta-training imprints neural mechanisms (such as counters) into the model, which function like cognitive primitives for the network on downstream tasks. Most surprisingly, we find that meta-training on a single formal language can provide as much improvement to a model as meta-training on 5000 different formal languages, provided that the formal language incentivizes the learning of useful neural mechanisms. Taken together, our findings provide practical implications for efficient meta-learning paradigms and new theoretical insights into linking symbolic theories and neural mechanisms.
comment: Accepted to ACL 2025 Main
Lower Layers Matter: Alleviating Hallucination via Multi-Layer Fusion Contrastive Decoding with Truthfulness Refocused
Large Language Models (LLMs) have demonstrated exceptional performance across various natural language processing tasks. However, they occasionally generate inaccurate and counterfactual outputs, a phenomenon commonly referred to as "hallucinations''. To tackle this issue, recent studies have explored contrastive decoding between the original model and an amateur model with induced hallucination, showing promising results. Nevertheless, this approach can disrupt the original LLM's output distribution due to coarse contrast and simple subtraction operations, potentially leading to errors. In this paper, we introduce a novel contrastive decoding framework, termed LOL (LOwer Layer Matters). Unlike prior methods that focus solely on the final layer, our approach integrates contrastive information from lower layers to enable multi-layer fusion during contrastive decoding. Additionally, we incorporate a truthfulness refocused module that leverages instruction guidance to further improve truthfulness in contrastive decoding. Extensive experiments on four publicly available datasets demonstrate that the LOL framework significantly mitigates hallucination while outperforming existing baselines in most cases. For reproducibility, we will release our code and data upon acceptance.
Cannot See the Forest for the Trees: Invoking Heuristics and Biases to Elicit Irrational Choices of LLMs
Despite the remarkable performance of Large Language Models (LLMs), they remain vulnerable to jailbreak attacks, which can compromise their safety mechanisms. Existing studies often rely on brute-force optimization or manual design, failing to uncover potential risks in real-world scenarios. To address this, we propose a novel jailbreak attack framework, ICRT, inspired by heuristics and biases in human cognition. Leveraging the simplicity effect, we employ cognitive decomposition to reduce the complexity of malicious prompts. Simultaneously, relevance bias is utilized to reorganize prompts, enhancing semantic alignment and inducing harmful outputs effectively. Furthermore, we introduce a ranking-based harmfulness evaluation metric that surpasses the traditional binary success-or-failure paradigm by employing ranking aggregation methods such as Elo, HodgeRank, and Rank Centrality to comprehensively quantify the harmfulness of generated content. Experimental results show that our approach consistently bypasses mainstream LLMs' safety mechanisms and generates high-risk content, providing insights into jailbreak attack risks and contributing to stronger defense strategies.
A Survey on Employing Large Language Models for Text-to-SQL Tasks
With the development of the Large Language Models (LLMs), a large range of LLM-based Text-to-SQL(Text2SQL) methods have emerged. This survey provides a comprehensive review of LLM-based Text2SQL studies. We first enumerate classic benchmarks and evaluation metrics. For the two mainstream methods, prompt engineering and finetuning, we introduce a comprehensive taxonomy and offer practical insights into each subcategory. We present an overall analysis of the above methods and various models evaluated on well-known datasets and extract some characteristics. Finally, we discuss the challenges and future directions in this field.
comment: Accepted by ACM Computing Surveys (CSUR)
A Mousetrap: Fooling Large Reasoning Models for Jailbreak with Chain of Iterative Chaos
Large Reasoning Models (LRMs) have significantly advanced beyond traditional Large Language Models (LLMs) with their exceptional logical reasoning capabilities, yet these improvements introduce heightened safety risks. When subjected to jailbreak attacks, their ability to generate more targeted and organized content can lead to greater harm. Although some studies claim that reasoning enables safer LRMs against existing LLM attacks, they overlook the inherent flaws within the reasoning process itself. To address this gap, we propose the first jailbreak attack targeting LRMs, exploiting their unique vulnerabilities stemming from the advanced reasoning capabilities. Specifically, we introduce a Chaos Machine, a novel component to transform attack prompts with diverse one-to-one mappings. The chaos mappings iteratively generated by the machine are embedded into the reasoning chain, which strengthens the variability and complexity and also promotes a more robust attack. Based on this, we construct the Mousetrap framework, which makes attacks projected into nonlinear-like low sample spaces with mismatched generalization enhanced. Also, due to the more competing objectives, LRMs gradually maintain the inertia of unpredictable iterative reasoning and fall into our trap. Success rates of the Mousetrap attacking o1-mini, Claude-Sonnet and Gemini-Thinking are as high as 96%, 86% and 98% respectively on our toxic dataset Trotter. On benchmarks such as AdvBench, StrongREJECT, and HarmBench, attacking Claude-Sonnet, well-known for its safety, Mousetrap can astonishingly achieve success rates of 87.5%, 86.58% and 93.13% respectively. Attention: This paper contains inappropriate, offensive and harmful content.
Efficient Annotator Reliability Assessment with EffiARA
Data annotation is an essential component of the machine learning pipeline; it is also a costly and time-consuming process. With the introduction of transformer-based models, annotation at the document level is increasingly popular; however, there is no standard framework for structuring such tasks. The EffiARA annotation framework is, to our knowledge, the first project to support the whole annotation pipeline, from understanding the resources required for an annotation task to compiling the annotated dataset and gaining insights into the reliability of individual annotators as well as the dataset as a whole. The framework's efficacy is supported by two previous studies: one improving classification performance through annotator-reliability-based soft-label aggregation and sample weighting, and the other increasing the overall agreement among annotators through removing identifying and replacing an unreliable annotator. This work introduces the EffiARA Python package and its accompanying webtool, which provides an accessible graphical user interface for the system. We open-source the EffiARA Python package at https://github.com/MiniEggz/EffiARA and the webtool is publicly accessible at https://effiara.gate.ac.uk.
FocalPO: Enhancing Preference Optimizing by Focusing on Correct Preference Rankings ACL 2025
Efficient preference optimization algorithms such as Direct Preference Optimization (DPO) have become a popular approach in aligning large language models (LLMs) with human preferences. These algorithms implicitly treat the LLM as a reward model, and focus on training it to correct misranked preference pairs. However, recent work~\citep{chen2024preference} empirically finds that DPO training \textit{rarely improves these misranked preference pairs}, despite its gradient emphasizing on these cases. We introduce FocalPO, a DPO variant that instead \textit{down-weighs} misranked preference pairs and prioritizes enhancing the model's understanding of pairs that it can already rank correctly. Inspired by Focal Loss used in vision tasks, FocalPO achieves this by adding a modulating factor to dynamically scale DPO loss. Our experiment demonstrates that FocalPO surpasses DPO and its variants on popular benchmarks like Alpaca Eval 2.0 using Mistral-Base-7B and Llama-3-Instruct-8B, with the introduced hyperparameter fixed. Additionally, we empirically reveals how FocalPO affects training on correct and incorrect sample groups, further underscoring its effectiveness.
comment: ACL 2025
SATA: A Paradigm for LLM Jailbreak via Simple Assistive Task Linkage
Large language models (LLMs) have made significant advancements across various tasks, but their safety alignment remain a major concern. Exploring jailbreak prompts can expose LLMs' vulnerabilities and guide efforts to secure them. Existing methods primarily design sophisticated instructions for the LLM to follow, or rely on multiple iterations, which could hinder the performance and efficiency of jailbreaks. In this work, we propose a novel jailbreak paradigm, Simple Assistive Task Linkage (SATA), which can effectively circumvent LLM safeguards and elicit harmful responses. Specifically, SATA first masks harmful keywords within a malicious query to generate a relatively benign query containing one or multiple [MASK] special tokens. It then employs a simple assistive task such as a masked language model task or an element lookup by position task to encode the semantics of the masked keywords. Finally, SATA links the assistive task with the masked query to jointly perform the jailbreak. Extensive experiments show that SATA achieves state-of-the-art performance and outperforms baselines by a large margin. Specifically, on AdvBench dataset, with mask language model (MLM) assistive task, SATA achieves an overall attack success rate (ASR) of 85% and harmful score (HS) of 4.57, and with element lookup by position (ELP) assistive task, SATA attains an overall ASR of 76% and HS of 4.43.
Beyond Prompt Engineering: Robust Behavior Control in LLMs via Steering Target Atoms ACL 2025
Precise control over language model generation is vital for ensuring both safety and reliability. Although prompt engineering and steering are commonly used to intervene in model behaviors, the vast number of parameters in models often results in highly intertwined internal representations. This interdependency can limit control precision and sometimes lead to unintended side effects. Recent research has explored the use of sparse autoencoders (SAE) to disentangle knowledge in high-dimensional spaces for steering. However, these applications have been limited to toy tasks owing to the nontrivial issue of locating atomic knowledge components. In this paper, we propose Steering Target Atoms (STA), a novel method that isolates and manipulates disentangled knowledge components to enhance safety. Comprehensive experiments demonstrate the effectiveness of our approach. Further analysis reveals that steering exhibits superior robustness and flexibility, particularly in adversarial scenarios. We also apply the steering strategy to the large reasoning model, confirming its effectiveness in precise reasoning control.
comment: ACL 2025
Dynamic Chunking and Selection for Reading Comprehension of Ultra-Long Context in Large Language Models ACL 2025
Large language models (LLMs) often struggle to accurately read and comprehend extremely long texts. Current methods for improvement typically rely on splitting long contexts into fixed-length chunks. However, fixed truncation risks separating semantically relevant content, leading to ambiguity and compromising accurate understanding. To overcome this limitation, we propose a straightforward approach for dynamically separating and selecting chunks of long context, facilitating a more streamlined input for LLMs. In particular, we compute semantic similarities between adjacent sentences, using lower similarities to adaptively divide long contexts into variable-length chunks. We further train a question-aware classifier to select sensitive chunks that are critical for answering specific questions. Experimental results on both single-hop and multi-hop question-answering benchmarks show that the proposed approach consistently outperforms strong baselines. Notably, it maintains robustness across a wide range of input lengths, handling sequences of up to 256k tokens. Our datasets and code are available at the following link: https://github.com/ECNU-Text-Computing/DCS
comment: Accepted by ACL 2025 Main Conference
Improving the Language Understanding Capabilities of Large Language Models Using Reinforcement Learning
Instruction-fine-tuned large language models (LLMs) under 14B parameters continue to underperform on natural language understanding (NLU) tasks, often trailing smaller models like BERT-base on benchmarks such as GLUE and SuperGLUE. Motivated by the success of reinforcement learning in reasoning tasks (e.g., DeepSeek), we explore Proximal Policy Optimization (PPO) as a framework to improve the NLU capabilities of LLMs. We frame NLU as a reinforcement learning environment, treating token generation as a sequence of actions and optimizing for reward signals based on alignment with ground-truth labels. PPO consistently outperforms supervised fine-tuning, yielding an average improvement of 6.3 points on GLUE, and surpasses zero-shot and few-shot prompting by 38.7 and 26.1 points, respectively. Notably, PPO-tuned models outperform GPT-4o by over 4\% on average across sentiment and natural language inference tasks, including gains of 7.3\% on the Mental Health dataset and 10.9\% on SIGA-nli. This work highlights a promising direction for adapting LLMs to new tasks by reframing them as reinforcement learning problems, enabling learning through simple end-task rewards rather than extensive data curation.
Social Genome: Grounded Social Reasoning Abilities of Multimodal Models
Social reasoning abilities are crucial for AI systems to effectively interpret and respond to multimodal human communication and interaction within social contexts. We introduce SOCIAL GENOME, the first benchmark for fine-grained, grounded social reasoning abilities of multimodal models. SOCIAL GENOME contains 272 videos of interactions and 1,486 human-annotated reasoning traces related to inferences about these interactions. These traces contain 5,777 reasoning steps that reference evidence from visual cues, verbal cues, vocal cues, and external knowledge (contextual knowledge external to videos). SOCIAL GENOME is also the first modeling challenge to study external knowledge in social reasoning. SOCIAL GENOME computes metrics to holistically evaluate semantic and structural qualities of model-generated social reasoning traces. We demonstrate the utility of SOCIAL GENOME through experiments with state-of-the-art models, identifying performance gaps and opportunities for future research to improve the grounded social reasoning abilities of multimodal models.
comment: Under Review, 24 pages
Computational Analysis of Character Development in Holocaust Testimonies
This work presents a computational approach to analyze character development along the narrative timeline. The analysis characterizes the inner and outer changes the protagonist undergoes within a narrative, and the interplay between them. We consider transcripts of Holocaust survivor testimonies as a test case, each telling the story of an individual in first-person terms. We focus on the survivor's religious trajectory, examining the evolution of their disposition toward religious belief and practice along the testimony. Clustering the resulting trajectories in the dataset, we identify common sequences in the data. Our findings highlight multiple common structures of religiosity across the narratives: in terms of belief, most present a constant disposition, while for practice, most present an oscillating structure, serving as valuable material for historical and sociological research. This work demonstrates the potential of natural language processing techniques for analyzing character evolution through thematic trajectories in narratives.
IndicRAGSuite: Large-Scale Datasets and a Benchmark for Indian Language RAG Systems
Retrieval-Augmented Generation (RAG) systems enable language models to access relevant information and generate accurate, well-grounded, and contextually informed responses. However, for Indian languages, the development of high-quality RAG systems is hindered by the lack of two critical resources: (1) evaluation benchmarks for retrieval and generation tasks, and (2) large-scale training datasets for multilingual retrieval. Most existing benchmarks and datasets are centered around English or high-resource languages, making it difficult to extend RAG capabilities to the diverse linguistic landscape of India. To address the lack of evaluation benchmarks, we create IndicMSMarco, a multilingual benchmark for evaluating retrieval quality and response generation in 13 Indian languages, created via manual translation of 1000 diverse queries from MS MARCO-dev set. To address the need for training data, we build a large-scale dataset of (question, answer, relevant passage) tuples derived from the Wikipedias of 19 Indian languages using state-of-the-art LLMs. Additionally, we include translated versions of the original MS MARCO dataset to further enrich the training data and ensure alignment with real-world information-seeking tasks. Resources are available here: https://huggingface.co/collections/ai4bharat/indicragsuite-683e7273cb2337208c8c0fcb
comment: WIP
Free-text Rationale Generation under Readability Level Control ACL 2025
Free-text rationales justify model decisions in natural language and thus become likable and accessible among approaches to explanation across many tasks. However, their effectiveness can be hindered by misinterpretation and hallucination. As a perturbation test, we investigate how large language models (LLMs) perform rationale generation under the effects of readability level control, i.e., being prompted for an explanation targeting a specific expertise level, such as sixth grade or college. We find that explanations are adaptable to such instruction, though the observed distinction between readability levels does not fully match the defined complexity scores according to traditional readability metrics. Furthermore, the generated rationales tend to feature medium level complexity, which correlates with the measured quality using automatic metrics. Finally, our human annotators confirm a generally satisfactory impression on rationales at all readability levels, with high-school-level readability being most commonly perceived and favored.
comment: ACL 2025 Workshop on Generation, Evaluation, and Metrics (GEM^2)
Large Language Model Evaluation via Matrix Nuclear-Norm
As large language models (LLMs) continue to evolve, efficient evaluation metrics are vital for assessing their ability to compress information and reduce redundancy. While traditional metrics like Matrix Entropy offer valuable insights, they are computationally intensive for large-scale models due to their \( O(n^3) \) time complexity with Singular Value Decomposition (SVD). To mitigate this issue, we introduce the Matrix Nuclear-Norm, which not only serves as a metric to quantify the data compression proficiency of LLM but also provides a convex approximation of matrix rank to capture both predictive discriminability and diversity. By employing the \( L_{1,2}\text{-norm} \) to further approximate the nuclear norm, we can effectively assess the model's information compression capabilities. This approach reduces the time complexity to \( O(n^2) \) and eliminates the need for SVD computation. Consequently, the Matrix Nuclear-Norm achieves speeds 8 to 24 times faster than Matrix Entropy for the CEREBRAS-GPT model as sizes increase from 111M to 6.7B. This performance gap becomes more pronounced with larger models, as validated in tests with other models like Pythia. Additionally, evaluations on benchmarks and model responses confirm that our proposed Matrix Nuclear-Norm is a reliable, scalable, and efficient tool for assessing LLMs' performance, striking a balance between accuracy and computational efficiency. The code is available at https://github.com/MLGroupJLU/MatrixNuclearNorm.
comment: 21 pages
OASST-ETC Dataset: Alignment Signals from Eye-tracking Analysis of LLM Responses
While Large Language Models (LLMs) have significantly advanced natural language processing, aligning them with human preferences remains an open challenge. Although current alignment methods rely primarily on explicit feedback, eye-tracking (ET) data offers insights into real-time cognitive processing during reading. In this paper, we present OASST-ETC, a novel eye-tracking corpus capturing reading patterns from 24 participants, while evaluating LLM-generated responses from the OASST1 dataset. Our analysis reveals distinct reading patterns between preferred and non-preferred responses, which we compare with synthetic eye-tracking data. Furthermore, we examine the correlation between human reading measures and attention patterns from various transformer-based models, discovering stronger correlations in preferred responses. This work introduces a unique resource for studying human cognitive processing in LLM evaluation and suggests promising directions for incorporating eye-tracking data into alignment methods. The dataset and analysis code are publicly available.
comment: This paper has been accepted to ACM ETRA 2025 and published on PACMHCI
Large Language Models to Diffusion Finetuning ICML 2025
We propose a new finetuning method to provide pre-trained large language models (LMs) the ability to scale test-time compute through the diffusion framework. By increasing the number of diffusion steps, we show our finetuned models achieve monotonically increasing accuracy, directly translating to improved performance across downstream tasks. Furthermore, our finetuned models can expertly answer questions on specific topics by integrating powerful guidance techniques, and autonomously determine the compute required for a given problem by leveraging adaptive ODE solvers. Our method is universally applicable to any foundation model pre-trained with a cross-entropy loss and does not modify any of its original weights, fully preserving its strong single-step generation capabilities. We show our method is more effective and fully compatible with traditional finetuning approaches, introducing an orthogonal new direction to unify the strengths of the autoregressive and diffusion frameworks.
comment: Camera-ready version, presented at ICML 2025. Code available at: https://github.com/SakanaAI/L2D
XTRUST: On the Multilingual Trustworthiness of Large Language Models
Large language models (LLMs) have demonstrated remarkable capabilities across a range of natural language processing (NLP) tasks, capturing the attention of both practitioners and the broader public. A key question that now preoccupies the AI community concerns the capabilities and limitations of these models, with trustworthiness emerging as a central issue, particularly as LLMs are increasingly applied in sensitive fields like healthcare and finance, where errors can have serious consequences. However, most previous studies on the trustworthiness of LLMs have been limited to a single language, typically the predominant one in the dataset, such as English. In response to the growing global deployment of LLMs, we introduce XTRUST, the first comprehensive multilingual trustworthiness benchmark. XTRUST encompasses a diverse range of topics, including illegal activities, hallucination, out-of-distribution (OOD) robustness, physical and mental health, toxicity, fairness, misinformation, privacy, and machine ethics, across 10 different languages. Using XTRUST, we conduct an empirical evaluation of the multilingual trustworthiness of five widely used LLMs, offering an in-depth analysis of their performance across languages and tasks. Our results indicate that many LLMs struggle with certain low-resource languages, such as Arabic and Russian, highlighting the considerable room for improvement in the multilingual trustworthiness of current language models. The code is available at https://github.com/LluckyYH/XTRUST.
comment: 21 pages
X-Driver: Explainable Autonomous Driving with Vision-Language Models
End-to-end autonomous driving has advanced significantly, offering benefits such as system simplicity and stronger driving performance in both open-loop and closed-loop settings than conventional pipelines. However, existing frameworks still suffer from low success rates in closed-loop evaluations, highlighting their limitations in real-world deployment. In this paper, we introduce X-Driver, a unified multi-modal large language models(MLLMs) framework designed for closed-loop autonomous driving, leveraging Chain-of-Thought(CoT) and autoregressive modeling to enhance perception and decision-making. We validate X-Driver across multiple autonomous driving tasks using public benchmarks in CARLA simulation environment, including Bench2Drive[6]. Our experimental results demonstrate superior closed-loop performance, surpassing the current state-of-the-art(SOTA) while improving the interpretability of driving decisions. These findings underscore the importance of structured reasoning in end-to-end driving and establish X-Driver as a strong baseline for future research in closed-loop autonomous driving.
HateDay: Insights from a Global Hate Speech Dataset Representative of a Day on Twitter ACL 2025
To address the global challenge of online hate speech, prior research has developed detection models to flag such content on social media. However, due to systematic biases in evaluation datasets, the real-world effectiveness of these models remains unclear, particularly across geographies. We introduce HateDay, the first global hate speech dataset representative of social media settings, constructed from a random sample of all tweets posted on September 21, 2022 and covering eight languages and four English-speaking countries. Using HateDay, we uncover substantial variation in the prevalence and composition of hate speech across languages and regions. We show that evaluations on academic datasets greatly overestimate real-world detection performance, which we find is very low, especially for non-European languages. Our analysis identifies key drivers of this gap, including models' difficulty to distinguish hate from offensive speech and a mismatch between the target groups emphasized in academic datasets and those most frequently targeted in real-world settings. We argue that poor model performance makes public models ill-suited for automatic hate speech moderation and find that high moderation rates are only achievable with substantial human oversight. Our results underscore the need to evaluate detection systems on data that reflects the complexity and diversity of real-world social media.
comment: ACL 2025 main conference. Data available at https://huggingface.co/datasets/manueltonneau/hateday
DeepTheorem: Advancing LLM Reasoning for Theorem Proving Through Natural Language and Reinforcement Learning
Theorem proving serves as a major testbed for evaluating complex reasoning abilities in large language models (LLMs). However, traditional automated theorem proving (ATP) approaches rely heavily on formal proof systems that poorly align with LLMs' strength derived from informal, natural language knowledge acquired during pre-training. In this work, we propose DeepTheorem, a comprehensive informal theorem-proving framework exploiting natural language to enhance LLM mathematical reasoning. DeepTheorem includes a large-scale benchmark dataset consisting of 121K high-quality IMO-level informal theorems and proofs spanning diverse mathematical domains, rigorously annotated for correctness, difficulty, and topic categories, accompanied by systematically constructed verifiable theorem variants. We devise a novel reinforcement learning strategy (RL-Zero) explicitly tailored to informal theorem proving, leveraging the verified theorem variants to incentivize robust mathematical inference. Additionally, we propose comprehensive outcome and process evaluation metrics examining proof correctness and the quality of reasoning steps. Extensive experimental analyses demonstrate DeepTheorem significantly improves LLM theorem-proving performance compared to existing datasets and supervised fine-tuning protocols, achieving state-of-the-art accuracy and reasoning quality. Our findings highlight DeepTheorem's potential to fundamentally advance automated informal theorem proving and mathematical exploration.
UltraWiki: Ultra-fine-grained Entity Set Expansion with Negative Seed Entities ICDE 2025
Entity Set Expansion (ESE) aims to identify new entities belonging to the same semantic class as the given set of seed entities. Traditional methods solely relied on positive seed entities to represent the target fine-grained semantic class, rendering them tough to represent ultra-fine-grained semantic classes. Specifically, merely relying on positive seed entities leads to two inherent shortcomings: (i) Ambiguity among ultra-fine-grained semantic classes. (ii) Inability to define ``unwanted'' semantics. Hence, previous ESE methods struggle to address the ultra-fine-grained ESE (Ultra-ESE) task. To solve this issue, we first introduce negative seed entities in the inputs, which jointly describe the ultra-fine-grained semantic class with positive seed entities. Negative seed entities eliminate the semantic ambiguity by providing a contrast between positive and negative attributes. Meanwhile, it provides a straightforward way to express ``unwanted''. To assess model performance in Ultra-ESE and facilitate further research, we also constructed UltraWiki, the first large-scale dataset tailored for Ultra-ESE. UltraWiki encompasses 50,973 entities and 394,097 sentences, alongside 236 ultra-fine-grained semantic classes, where each class is represented with 3-5 positive and negative seed entities. Moreover, a retrieval-based framework RetExpan and a generation-based framework GenExpan are proposed to provide powerful baselines for Ultra-ESE. Additionally, we devised two strategies to enhance models' comprehension of ultra-fine-grained entities' semantics: contrastive learning and chain-of-thought reasoning. Extensive experiments confirm the effectiveness of our proposed strategies and also reveal that there remains a large space for improvement in Ultra-ESE.
comment: Accepted by ICDE 2025
Finite State Automata Inside Transformers with Chain-of-Thought: A Mechanistic Study on State Tracking
Chain-of-thought (CoT) significantly enhances the performance of large language models (LLMs) across a wide range of tasks, and prior research shows that CoT can theoretically increase expressiveness. However, there is limited mechanistic understanding of the algorithms that Transformer+CoT can learn. Our key contributions are: (1) We evaluate the state tracking capabilities of Transformer+CoT and its variants, confirming the effectiveness of CoT. (2) Next, we identify the circuit (a subset of model components, responsible for tracking the world state), indicating that late-layer MLP neurons play a key role. We propose two metrics, compression and distinction, and show that the neuron sets for each state achieve nearly 100% accuracy, providing evidence of an implicit finite state automaton (FSA) embedded within the model. (3) Additionally, we explore three challenging settings: skipping intermediate steps, introducing data noises, and testing length generalization. Our results demonstrate that Transformer+CoT learns robust algorithms (FSAs), highlighting its resilience in challenging scenarios. Our code is available at https://github.com/IvanChangPKU/FSA.
How to Connect Speech Foundation Models and Large Language Models? What Matters and What Does Not
The remarkable performance achieved by Large Language Models (LLM) has driven research efforts to leverage them for a wide range of tasks and input modalities. In speech-to-text (S2T) tasks, the emerging solution consists of projecting the output of the encoder of a Speech Foundational Model (SFM) into the LLM embedding space through an adapter module. However, no work has yet investigated how much the downstream-task performance depends on each component (SFM, adapter, LLM) nor whether the best design of the adapter depends on the chosen SFM and LLM. To fill this gap, we evaluate the combination of 5 adapter modules, 2 LLMs (Mistral and Llama), and 2 SFMs (Whisper and SeamlessM4T) on two widespread S2T tasks, namely Automatic Speech Recognition and Speech Translation. Our results demonstrate that the SFM plays a pivotal role in downstream performance, while the adapter choice has moderate impact and depends on the SFM and LLM.
comment: Submitted to Interspeech 2025
Emergent Abilities of Large Language Models under Continued Pretraining for Language Adaptation ACL 2025
Continued pretraining (CPT) is a popular approach to adapt existing large language models (LLMs) to new languages. When doing so, it is common practice to include a portion of English data in the mixture, but its role has not been carefully studied to date. In this work, we show that including English does not impact validation perplexity, yet it is critical for the emergence of downstream capabilities in the target language. We introduce a language-agnostic benchmark for in-context learning (ICL), which reveals catastrophic forgetting early on CPT when English is not included. This in turn damages the ability of the model to generalize to downstream prompts in the target language as measured by perplexity, even if it does not manifest in terms of accuracy until later in training, and can be tied to a big shift in the model parameters. Based on these insights, we introduce curriculum learning and exponential moving average (EMA) of weights as effective alternatives to mitigate the need for English. All in all, our work sheds light into the dynamics by which emergent abilities arise when doing CPT for language adaptation, and can serve as a foundation to design more effective methods in the future.
comment: To appear in ACL 2025 Main
Continual Speech Learning with Fused Speech Features
Rapid growth in speech data demands adaptive models, as traditional static methods fail to keep pace with dynamic and diverse speech information. We introduce continuous speech learning, a new set-up targeting at bridging the adaptation gap in current speech models. We use the encoder-decoder Whisper model to standardize speech tasks into a generative format. We integrate a learnable gated-fusion layer on the top of the encoder to dynamically select task-specific features for downstream tasks. Our approach improves accuracy significantly over traditional methods in six speech processing tasks, demonstrating gains in adapting to new speech tasks without full retraining.
comment: Accepted to Interspeech 2025
Towards Enhanced Immersion and Agency for LLM-based Interactive Drama ACL'2025
LLM-based Interactive Drama is a novel AI-based dialogue scenario, where the user (i.e. the player) plays the role of a character in the story, has conversations with characters played by LLM agents, and experiences an unfolding story. This paper begins with understanding interactive drama from two aspects: Immersion, the player's feeling of being present in the story, and Agency, the player's ability to influence the story world. Both are crucial to creating an enjoyable interactive experience, while they have been underexplored in previous work. To enhance these two aspects, we first propose Playwriting-guided Generation, a novel method that helps LLMs craft dramatic stories with substantially improved structures and narrative quality. Additionally, we introduce Plot-based Reflection for LLM agents to refine their reactions to align with the player's intentions. Our evaluation relies on human judgment to assess the gains of our methods in terms of immersion and agency.
comment: Accepted by ACL'2025
Inference-time sparse attention with asymmetric indexing
Self-attention in transformer models is an incremental associative memory that maps key vectors to value vectors. One way to speed up self-attention is to employ GPU-compatible vector search algorithms based on standard partitioning methods such as k-means. However, such partitioning methods yield poor results in this context because (1) the keys and queries follow different distributions, and (2) the RoPE positional encoding hinders the bucket assignment. This paper introduces Saap (Self-Attention with Asymmetric Partitions), which overcomes these problems. It is an asymmetrical indexing technique that employs distinct partitions for keys and queries, thereby approximating self-attention with a data-adaptive sparsity pattern. It works on pretrained language models and only requires to train (offline) a small query classifier. On a long context Llama 3.1-8b model, with sequences ranging from 100k to 500k tokens, Saap typically reduces by a factor of 20 the fraction of memory that needs to be looked-up, which translates to a time saving of 60\% when compared to FlashAttention-v2.
CausalAbstain: Enhancing Multilingual LLMs with Causal Reasoning for Trustworthy Abstention ACL
Large Language Models (LLMs) often exhibit knowledge disparities across languages. Encouraging LLMs to \textit{abstain} when faced with knowledge gaps is a promising strategy to reduce hallucinations in multilingual settings. Current abstention strategies for multilingual scenarios primarily rely on generating feedback in various languages using LLMs and performing self-reflection. However, these methods can be adversely impacted by inaccuracies and biases in the generated feedback. To address this, from a causal perspective, we introduce \textit{CausalAbstain}, a method that helps LLMs determine whether to utilize multiple generated feedback responses and how to identify the most useful ones. Extensive experiments demonstrate that \textit{CausalAbstain} effectively selects helpful feedback and enhances abstention decisions with interpretability in both native language (\textsc{Casual-native}) and multilingual (\textsc{Causal-multi}) settings, outperforming strong baselines on two benchmark datasets covering encyclopedic and commonsense knowledge QA tasks. Our code and data are open-sourced at https://github.com/peachch/CausalAbstain.
comment: Accepted to Association for Computational Linguistics Findings (ACL) 2025
Exposing Numeracy Gaps: A Benchmark to Evaluate Fundamental Numerical Abilities in Large Language Models ACL 2025
Large Language Models (LLMs) have demonstrated impressive capabilities in natural language processing tasks, such as text generation and semantic understanding. However, their performance on numerical reasoning tasks, such as basic arithmetic, numerical retrieval, and magnitude comparison, remains surprisingly poor. This gap arises from their reliance on surface-level statistical patterns rather than understanding numbers as continuous magnitudes. Existing benchmarks primarily focus on either linguistic competence or structured mathematical problem-solving, neglecting fundamental numerical reasoning required in real-world scenarios. To bridge this gap, we propose NumericBench, a comprehensive benchmark to evaluate six fundamental numerical capabilities: number recognition, arithmetic operations, contextual retrieval, comparison, summary, and logical reasoning. NumericBench includes datasets ranging from synthetic number lists to the crawled real-world data, addressing challenges like long contexts, noise, and multi-step reasoning. Extensive experiments on state-of-the-art LLMs, including GPT-4 and DeepSeek, reveal persistent weaknesses in numerical reasoning, highlighting the urgent need to improve numerically-aware language modeling. The benchmark is released in: https://github.com/TreeAI-Lab/NumericBench.
comment: Accepted by ACL 2025
Threading the Needle: Reweaving Chain-of-Thought Reasoning to Explain Human Label Variation
The recent rise of reasoning-tuned Large Language Models (LLMs)--which generate chains of thought (CoTs) before giving the final answer--has attracted significant attention and offers new opportunities for gaining insights into human label variation, which refers to plausible differences in how multiple annotators label the same data instance. Prior work has shown that LLM-generated explanations can help align model predictions with human label distributions, but typically adopt a reverse paradigm: producing explanations based on given answers. In contrast, CoTs provide a forward reasoning path that may implicitly embed rationales for each answer option, before generating the answers. We thus propose a novel LLM-based pipeline enriched with linguistically-grounded discourse segmenters to extract supporting and opposing statements for each answer option from CoTs with improved accuracy. We also propose a rank-based HLV evaluation framework that prioritizes the ranking of answers over exact scores, which instead favor direct comparison of label distributions. Our method outperforms a direct generation method as well as baselines on three datasets, and shows better alignment of ranking methods with humans, highlighting the effectiveness of our approach.
comment: 22 pages, 7 figures
Enhancing Ultra-Low-Bit Quantization of Large Language Models Through Saliency-Aware Partial Retraining
The growing use of large language models has raised environmental and economic concerns about their intensity of resource usage during inference. Serving these models to each user requires substantial energy and water for cooling. Model compression techniques like quantization can shrink large language models and make them more resource efficient at the cost of potential performance degradation. Quantization methods compress model size through replacing their high-precision parameters by quantized values of lower precision. Among existing methods, the ApiQ method achieves superior accuracy preservation at minimal memory and time overhead. We investigate two ideas to extend performance in ultra-low-bit quantization beyond ApiQ's level. First, we look into combining existing quantization-aware training techniques with ApiQ's partial training. We show that this does not outperform the baseline ApiQ method with limited training data and frozen weights. This leads to two key insights: (1) The substantial representational capacity that is gained through full retraining is unlikely to be feasible through partial training. (2) This gain may depend on using a large and diverse dataset in quantization-aware training. Second, through a novel approach informed by the two insights, we propose an ultra-low-bit quantization method that builds upon ApiQ and extends its performance without the need for full retraining. This publicly available method relies on a saliency-aware regularization term that prioritizes preserving the most impactful parameters during quantization. Our experiments on LLaMA 7B and 13B benchmarks demonstrate that our method reduces the ApiQ's accuracy degradation by 10.85\% and 7.54\% respectively.
comment: This is a post-peer-review accepted manuscript from the proceedings of the 22nd International Conference on Modeling Decisions for Artificial Intelligence (MDAI'25). The publisher authenticated version and full citation details are available on Springer's website. 31 pages, 4 figures, 16 tables
LiTEx: A Linguistic Taxonomy of Explanations for Understanding Within-Label Variation in Natural Language Inference
There is increasing evidence of Human Label Variation (HLV) in Natural Language Inference (NLI), where annotators assign different labels to the same premise-hypothesis pair. However, within-label variation--cases where annotators agree on the same label but provide divergent reasoning--poses an additional and mostly overlooked challenge. Several NLI datasets contain highlighted words in the NLI item as explanations, but the same spans on the NLI item can be highlighted for different reasons, as evidenced by free-text explanations, which offer a window into annotators' reasoning. To systematically understand this problem and gain insight into the rationales behind NLI labels, we introduce LITEX, a linguistically-informed taxonomy for categorizing free-text explanations. Using this taxonomy, we annotate a subset of the e-SNLI dataset, validate the taxonomy's reliability, and analyze how it aligns with NLI labels, highlights, and explanations. We further assess the taxonomy's usefulness in explanation generation, demonstrating that conditioning generation on LITEX yields explanations that are linguistically closer to human explanations than those generated using only labels or highlights. Our approach thus not only captures within-label variation but also shows how taxonomy-guided generation for reasoning can bridge the gap between human and model explanations more effectively than existing strategies.
comment: 21 pages, 6 figures
GPTVQ: The Blessing of Dimensionality for LLM Quantization
In this work we show that the size versus accuracy trade-off of neural network quantization can be significantly improved by increasing the quantization dimensionality. We propose the GPTVQ method, a new fast method for post-training vector quantization (VQ) that scales well to Large Language Models (LLMs). Our method interleaves quantization of one or more columns with updates to the remaining unquantized weights, using information from the Hessian of the per-layer output reconstruction MSE. Quantization codebooks are initialized using an efficient data-aware version of the EM algorithm. The codebooks are then updated, and further compressed by using integer quantization and SVD-based compression. GPTVQ establishes a new state-of-the art in the size vs accuracy trade-offs on a wide range of LLMs such as Llama-v2 and Mistral. Furthermore, our method is efficient: on a single H100 it takes between 3 and 11 hours to process a Llamav2-70B model, depending on quantization setting. Lastly, with on-device timings for VQ decompression on a mobile CPU we show that VQ leads to improved latency compared to using a 4-bit integer format.
A Fully Automated Pipeline for Conversational Discourse Annotation: Tree Scheme Generation and Labeling with Large Language Models
Recent advances in Large Language Models (LLMs) have shown promise in automating discourse annotation for conversations. While manually designing tree annotation schemes significantly improves annotation quality for humans and models, their creation remains time-consuming and requires expert knowledge. We propose a fully automated pipeline that uses LLMs to construct such schemes and perform annotation. We evaluate our approach on speech functions (SFs) and the Switchboard-DAMSL (SWBD-DAMSL) taxonomies. Our experiments compare various design choices, and we show that frequency-guided decision trees, paired with an advanced LLM for annotation, can outperform previously manually designed trees and even match or surpass human annotators while significantly reducing the time required for annotation. We release all code and resultant schemes and annotations to facilitate future research on discourse annotation.
Improving Transformer Performance for French Clinical Notes Classification Using Mixture of Experts on a Limited Dataset
Transformer-based models have shown outstanding results in natural language processing but face challenges in applications like classifying small-scale clinical texts, especially with constrained computational resources. This study presents a customized Mixture of Expert (MoE) Transformer models for classifying small-scale French clinical texts at CHU Sainte-Justine Hospital. The MoE-Transformer addresses the dual challenges of effective training with limited data and low-resource computation suitable for in-house hospital use. Despite the success of biomedical pre-trained models such as CamemBERT-bio, DrBERT, and AliBERT, their high computational demands make them impractical for many clinical settings. Our MoE-Transformer model not only outperforms DistillBERT, CamemBERT, FlauBERT, and Transformer models on the same dataset but also achieves impressive results: an accuracy of 87\%, precision of 87\%, recall of 85\%, and F1-score of 86\%. While the MoE-Transformer does not surpass the performance of biomedical pre-trained BERT models, it can be trained at least 190 times faster, offering a viable alternative for settings with limited data and computational resources. Although the MoE-Transformer addresses challenges of generalization gaps and sharp minima, demonstrating some limitations for efficient and accurate clinical text classification, this model still represents a significant advancement in the field. It is particularly valuable for classifying small French clinical narratives within the privacy and constraints of hospital-based computational resources.
comment: Accepted for publication in the IEEE Journal of Translational Engineering in Health and Medicine
Diving into Self-Evolving Training for Multimodal Reasoning ICML 2025
Self-evolving trainin--where models iteratively learn from their own outputs--has emerged as a key approach for complex reasoning tasks, addressing the scarcity of high-quality chain-of-thought data. However, its effectiveness in multimodal reasoning, a domain more intricate than text-only reasoning, remains underexplored, and the understanding of critical factors in this training paradigm remains limited. Furthermore, a central challenge for this training method is performance saturation, which impedes further improvements and scalability. Inspired by reinforcement learning (RL), in this paper, we reframe self-evolving training for multimodal reasoning through the lens of RL, identifying three pivotal factors: Training Method, Reward Model, and Prompt Variation. Through systematic analysis, we establish relatively optimal design principles that significantly enhance multimodal reasoning capabilities. Moreover, delving deeper into training dynamics, we uncover the roots of saturation and propose a new automatic balancing mechanism to mitigate this limitation. Building on these insights, we propose M-STAR (Multimodal Self-evolving Training for Reasoning), a framework that achieves consistent performance gains across models of varying sizes and diverse benchmarks. All resources are made publicly available at https://mstar-lmm.github.io.
comment: ICML 2025, Project Page: https://mstar-lmm.github.io
EoRA: Fine-tuning-free Compensation for Compressed LLM with Eigenspace Low-Rank Approximation
While post-training compression techniques effectively reduce the memory footprint, latency, and power consumption of Large Language Models (LLMs), they often result in noticeable accuracy degradation and remain limited by hardware and kernel constraints that restrict supported compression formats ultimately reducing flexibility across a wide range of deployment scenarios. In this work, we propose EoRA, a novel fine-tuning-free method that augments compressed LLMs with low-rank matrices, allowing users to rapidly enhance task-specific performance and freely balance the trade-off between accuracy and computational overhead beyond the constraints of compression formats. EoRA consistently outperforms prior training-free low rank methods in recovering the accuracy of compressed LLMs, achieving notable accuracy improvements (e.g., $\mathbf{10.84\%}$ on ARC-Challenge, $\mathbf{6.74\%}$ on MathQA, and $\mathbf{6.74\%}$ on GSM8K) for LLaMA3-8B compressed to 3-bit. We also introduce an optimized CUDA kernel, accelerating inference by up to 1.4x and reducing memory overhead through quantizing EoRA. Overall, EoRA offers a prompt solution for improving the accuracy of compressed models under varying user requirements, enabling more efficient and flexible deployment of LLMs. Code is available at https://github.com/NVlabs/EoRA.
Evaluating and Advancing Multimodal Large Language Models in Perception Ability Lens
As multimodal large language models (MLLMs) advance rapidly, rigorous evaluation has become essential, providing further guidance for their development. In this work, we focus on a unified and robust evaluation of \textbf{vision perception} abilities, the foundational skill of MLLMs. We find that existing perception benchmarks, each focusing on different question types, domains, and evaluation metrics, introduce significant evaluation variance, complicating comprehensive assessments of perception abilities when relying on any single benchmark. To address this, we introduce \textbf{AbilityLens}, a unified benchmark designed to evaluate MLLMs in six key perception abilities (ranging from counting, OCR, to understanding structural data), focusing on both accuracy and stability, with each ability encompassing diverse types of questions, domains, and metrics. With the assistance of AbilityLens, we: (1) identify the strengths and weaknesses of current main-stream MLLMs, highlighting stability patterns and revealing a notable performance gap between state-of-the-art open-source and closed-source models; (2) uncover interesting ability conflict and early convergence phenomena during MLLM training; (3) reveal the primary reason of ability conflict is data mixing ratio and LLM model size; and (4) discuss the effectiveness of some straightforward strategies \eg, fine-tuning and model merging, to solve the ability conflict. The benchmark and online leaderboard is released in https://github.com/Chenfeng1271/AbilityLens.
comment: Code repository: https://github.com/Chenfeng1271/AbilityLens/tree/main
SHARP: Unlocking Interactive Hallucination via Stance Transfer in Role-Playing LLMs
The advanced role-playing capabilities of Large Language Models (LLMs) have enabled rich interactive scenarios, yet existing research in social interactions neglects hallucination while struggling with poor generalizability and implicit character fidelity judgments. To bridge this gap, motivated by human behaviour, we introduce a generalizable and explicit paradigm for uncovering interactive patterns of LLMs across diverse worldviews. Specifically, we first define interactive hallucination through stance transfer, then construct SHARP, a benchmark built by extracting relations from commonsense knowledge graphs and utilizing LLMs' inherent hallucination properties to simulate multi-role interactions. Extensive experiments confirm our paradigm's effectiveness and stability, examine the factors that influence these metrics, and challenge conventional hallucination mitigation solutions. More broadly, our work reveals a fundamental limitation in popular post-training methods for role-playing LLMs: the tendency to obscure knowledge beneath style, resulting in monotonous yet human-like behaviors - interactive hallucination.
comment: 28 pages, unfortunately accepted to findings with Meta 4, acknowledge and apologize to the reviewers and area chair who support our work in the discussion period
Localizing Persona Representations in LLMs
We present a study on how and where personas -- defined by distinct sets of human characteristics, values, and beliefs -- are encoded in the representation space of large language models (LLMs). Using a range of dimension reduction and pattern recognition methods, we first identify the model layers that show the greatest divergence in encoding these representations. We then analyze the activations within a selected layer to examine how specific personas are encoded relative to others, including their shared and distinct embedding spaces. We find that, across multiple pre-trained decoder-only LLMs, the analyzed personas show large differences in representation space only within the final third of the decoder layers. We observe overlapping activations for specific ethical perspectives -- such as moral nihilism and utilitarianism -- suggesting a degree of polysemy. In contrast, political ideologies like conservatism and liberalism appear to be represented in more distinct regions. These findings help to improve our understanding of how LLMs internally represent information and can inform future efforts in refining the modulation of specific human traits in LLM outputs. Warning: This paper includes potentially offensive sample statements.
Mobile-Agent-V: A Video-Guided Approach for Effortless and Efficient Operational Knowledge Injection in Mobile Automation
The exponential rise in mobile device usage necessitates streamlined automation for effective task management, yet many AI frameworks fall short due to inadequate operational expertise. While manually written knowledge can bridge this gap, it is often burdensome and inefficient. We introduce Mobile-Agent-V, an innovative framework that utilizes video as a guiding tool to effortlessly and efficiently inject operational knowledge into mobile automation processes. By deriving knowledge directly from video content, Mobile-Agent-V eliminates manual intervention, significantly reducing the effort and time required for knowledge acquisition. To rigorously evaluate this approach, we propose Mobile-Knowledge, a benchmark tailored to assess the impact of external knowledge on mobile agent performance. Our experimental findings demonstrate that Mobile-Agent-V enhances performance by 36% compared to existing methods, underscoring its effortless and efficient advantages in mobile automation.
comment: I submitted the replacement version as a new article by mistake. Future updates will appear at arXiv:2502.17110
Mobile-Agent-V: A Video-Guided Approach for Effortless and Efficient Operational Knowledge Injection in Mobile Automation
The exponential rise in mobile device usage necessitates streamlined automation for effective task management, yet many AI frameworks fall short due to inadequate operational expertise. While manually written knowledge can bridge this gap, it is often burdensome and inefficient. We introduce Mobile-Agent-V, an innovative framework that utilizes video as a guiding tool to effortlessly and efficiently inject operational knowledge into mobile automation processes. By deriving knowledge directly from video content, Mobile-Agent-V eliminates manual intervention, significantly reducing the effort and time required for knowledge acquisition. To rigorously evaluate this approach, we propose Mobile-Knowledge, a benchmark tailored to assess the impact of external knowledge on mobile agent performance. Our experimental findings demonstrate that Mobile-Agent-V enhances performance by 36% compared to existing methods, underscoring its effortless and efficient advantages in mobile automation.
comment: 17 pages, 7 figures, 9 tables
Improving Dialogue State Tracking through Combinatorial Search for In-Context Examples ACL 2025
In dialogue state tracking (DST), in-context learning comprises a retriever that selects labeled dialogues as in-context examples and a DST model that uses these examples to infer the dialogue state of the query dialogue. Existing methods for constructing training data for retrievers suffer from three key limitations: (1) the synergistic effect of examples is not considered, (2) the linguistic characteristics of the query are not sufficiently factored in, and (3) scoring is not directly optimized for DST performance. Consequently, the retriever can fail to retrieve examples that would substantially improve DST performance. To address these issues, we present CombiSearch, a method that scores effective in-context examples based on their combinatorial impact on DST performance. Our evaluation on MultiWOZ shows that retrievers trained with CombiSearch surpass state-of-the-art models, achieving a 20x gain in data efficiency and generalizing well to the SGD dataset. Moreover, CombiSearch attains a 12% absolute improvement in the upper bound DST performance over traditional approaches when no retrieval errors are assumed. This significantly increases the headroom for practical DST performance while demonstrating that existing methods rely on suboptimal data for retriever training.
comment: This paper has been accepted for publication at ACL 2025
Conti Inc.: Understanding the Internal Discussions of a large Ransomware-as-a-Service Operator with Machine Learning
Ransomware-as-a-service (RaaS) is increasing the scale and complexity of ransomware attacks. Understanding the internal operations behind RaaS has been a challenge due to the illegality of such activities. The recent chat leak of the Conti RaaS operator, one of the most infamous ransomware operators on the international scene, offers a key opportunity to better understand the inner workings of such organizations. This paper analyzes the main topic discussions in the Conti chat leak using machine learning techniques such as Natural Language Processing (NLP) and Latent Dirichlet Allocation (LDA), as well as visualization strategies. Five discussion topics are found: 1) Business, 2) Technical, 3) Internal tasking/Management, 4) Malware, and 5) Customer Service/Problem Solving. Moreover, the distribution of topics among Conti members shows that only 4% of individuals have specialized discussions while almost all individuals (96%) are all-rounders, meaning that their discussions revolve around the five topics. The results also indicate that a significant proportion of Conti discussions are non-tech related. This study thus highlights that running such large RaaS operations requires a workforce skilled beyond technical abilities, with individuals involved in various tasks, from management to customer service or problem solving. The discussion topics also show that the organization behind the Conti RaaS oper5086933ator shares similarities with a large firm. We conclude that, although RaaS represents an example of specialization in the cybercrime industry, only a few members are specialized in one topic, while the rest runs and coordinates the RaaS operation.
Unnatural Languages Are Not Bugs but Features for LLMs
Large Language Models (LLMs) have been observed to process non-human-readable text sequences, such as jailbreak prompts, often viewed as a bug for aligned LLMs. In this work, we present a systematic investigation challenging this perception, demonstrating that unnatural languages - strings that appear incomprehensible to humans but maintain semantic meanings for LLMs - contain latent features usable by models. Notably, unnatural languages possess latent features that can be generalized across different models and tasks during inference. Furthermore, models fine-tuned on unnatural versions of instruction datasets perform on-par with those trained on natural language, achieving 49.71 win rates in Length-controlled AlpacaEval 2.0 in average across various base models. In addition, through comprehensive analysis, we demonstrate that LLMs process unnatural languages by filtering noise and inferring contextual meaning from filtered words.
Localizing and Mitigating Errors in Long-form Question Answering ACL 2025
Long-form question answering (LFQA) aims to provide thorough and in-depth answers to complex questions, enhancing comprehension. However, such detailed responses are prone to hallucinations and factual inconsistencies, challenging their faithful evaluation. This work introduces HaluQuestQA, the first hallucination dataset with localized error annotations for human-written and model-generated LFQA answers. HaluQuestQA comprises 698 QA pairs with 1.8k span-level error annotations for five different error types by expert annotators, along with preference judgments. Using our collected data, we thoroughly analyze the shortcomings of long-form answers and find that they lack comprehensiveness and provide unhelpful references. We train an automatic feedback model on this dataset that predicts error spans with incomplete information and provides associated explanations. Finally, we propose a prompt-based approach, Error-informed refinement, that uses signals from the learned feedback model to refine generated answers, which we show reduces errors and improves answer quality across multiple models. Furthermore, humans find answers generated by our approach comprehensive and highly prefer them (84%) over the baseline answers.
comment: ACL 2025 Findings; Code and data are available: https://github.com/UKPLab/acl2025-lfqa-hallucination
Negation: A Pink Elephant in the Large Language Models' Room?
Negations are key to determining sentence meaning, making them essential for logical reasoning. Despite their importance, negations pose a substantial challenge for large language models (LLMs) and remain underexplored. We constructed and published two new textual entailment datasets NoFEVER-ML and NoSNLI-ML in four languages (English, Czech, German, and Ukrainian) with examples differing in negation. It allows investigation of the root causes of the negation problem and its exemplification: how popular LLM model properties and language impact their inability to handle negation correctly. Contrary to previous work, we show that increasing the model size may improve the models' ability to handle negations. Furthermore, we find that both the models' reasoning accuracy and robustness to negation are language-dependent and that the length and explicitness of the premise have an impact on robustness. There is better accuracy in projective language with fixed order, such as English, than in non-projective ones, such as German or Czech. Our entailment datasets pave the way to further research for explanation and exemplification of the negation problem, minimization of LLM hallucinations, and improvement of LLM reasoning in multilingual settings.
Tracking the Feature Dynamics in LLM Training: A Mechanistic Study
Understanding training dynamics and feature evolution is crucial for the mechanistic interpretability of large language models (LLMs). Although sparse autoencoders (SAEs) have been used to identify features within LLMs, a clear picture of how these features evolve during training remains elusive. In this study, we (1) introduce SAE-Track, a novel method for efficiently obtaining a continual series of SAEs, providing the foundation for a mechanistic study that covers (2) the semantic evolution of features, (3) the underlying processes of feature formation, and (4) the directional drift of feature vectors. Our work provides new insights into the dynamics of features in LLMs, enhancing our understanding of training mechanisms and feature evolution. For reproducibility, our code is available at https://github.com/Superposition09m/SAE-Track.
Self-Improvement Towards Pareto Optimality: Mitigating Preference Conflicts in Multi-Objective Alignment ACL
Multi-Objective Alignment (MOA) aims to align LLMs' responses with multiple human preference objectives, with Direct Preference Optimization (DPO) emerging as a prominent approach. However, we find that DPO-based MOA approaches suffer from widespread preference conflicts in the data, where different objectives favor different responses. This results in conflicting optimization directions, hindering the optimization on the Pareto Front. To address this, we propose to construct Pareto-optimal responses to resolve preference conflicts. To efficiently obtain and utilize such responses, we propose a self-improving DPO framework that enables LLMs to self-generate and select Pareto-optimal responses for self-supervised preference alignment. Extensive experiments on two datasets demonstrate the superior Pareto Front achieved by our framework compared to various baselines. Code is available at https://github.com/zyttt-coder/SIPO.
comment: ACL findings (2025)
LLMs can Find Mathematical Reasoning Mistakes by Pedagogical Chain-of-Thought IJCAI 2024
Self-correction is emerging as a promising approach to mitigate the issue of hallucination in Large Language Models (LLMs). To facilitate effective self-correction, recent research has proposed mistake detection as its initial step. However, current literature suggests that LLMs often struggle with reliably identifying reasoning mistakes when using simplistic prompting strategies. To address this challenge, we introduce a unique prompting strategy, termed the Pedagogical Chain-of-Thought (PedCoT), which is specifically designed to guide the identification of reasoning mistakes, particularly mathematical reasoning mistakes. PedCoT consists of pedagogical principles for prompts (PPP) design, two-stage interaction process (TIP) and grounded PedCoT prompts, all inspired by the educational theory of the Bloom Cognitive Model (BCM). We evaluate our approach on two public datasets featuring math problems of varying difficulty levels. The experiments demonstrate that our zero-shot prompting strategy significantly outperforms strong baselines. The proposed method can achieve the goal of reliable mathematical mistake identification and provide a foundation for automatic math answer grading. The results underscore the significance of educational theory, serving as domain knowledge, in guiding prompting strategy design for addressing challenging tasks with LLMs effectively.
comment: Accepted by IJCAI 2024
Generative Emotion Cause Explanation in Multimodal Conversations
Multimodal conversation, a crucial form of human communication, carries rich emotional content, making the exploration of the causes of emotions within it a research endeavor of significant importance. However, existing research on the causes of emotions typically employs an utterance selection method within a single textual modality to locate causal utterances. This approach remains limited to coarse-grained assessments, lacks nuanced explanations of emotional causation, and demonstrates inadequate capability in identifying multimodal emotional triggers. Therefore, we introduce a task-\textbf{Multimodal Emotion Cause Explanation in Conversation (MECEC)}. This task aims to generate a summary based on the multimodal context of conversations, clearly and intuitively describing the reasons that trigger a given emotion. To adapt to this task, we develop a new dataset (ECEM) based on the MELD dataset. ECEM combines video clips with detailed explanations of character emotions, helping to explore the causal factors behind emotional expression in multimodal conversations. A novel approach, FAME-Net, is further proposed, that harnesses the power of Large Language Models (LLMs) to analyze visual data and accurately interpret the emotions conveyed through facial expressions in videos. By exploiting the contagion effect of facial emotions, FAME-Net effectively captures the emotional causes of individuals engaged in conversations. Our experimental results on the newly constructed dataset show that FAME-Net outperforms several excellent baselines. Code and dataset are available at https://github.com/3222345200/FAME-Net.
LLM-Driven E-Commerce Marketing Content Optimization: Balancing Creativity and Conversion
As e-commerce competition intensifies, balancing creative content with conversion effectiveness becomes critical. Leveraging LLMs' language generation capabilities, we propose a framework that integrates prompt engineering, multi-objective fine-tuning, and post-processing to generate marketing copy that is both engaging and conversion-driven. Our fine-tuning method combines sentiment adjustment, diversity enhancement, and CTA embedding. Through offline evaluations and online A/B tests across categories, our approach achieves a 12.5 % increase in CTR and an 8.3 % increase in CVR while maintaining content novelty. This provides a practical solution for automated copy generation and suggests paths for future multimodal, real-time personalization.
Generator-Assistant Stepwise Rollback Framework for Large Language Model Agent
Large language model (LLM) agents typically adopt a step-by-step reasoning framework, in which they interleave the processes of thinking and acting to accomplish the given task. However, this paradigm faces a deep-rooted one-pass issue whereby each generated intermediate thought is plugged into the trajectory regardless of its correctness, which can cause irreversible error propagation. To address the issue, this paper proposes a novel framework called Generator-Assistant Stepwise Rollback (GA-Rollback) to induce better decision-making for LLM agents. Particularly, GA-Rollback utilizes a generator to interact with the environment and an assistant to examine each action produced by the generator, where the assistant triggers a rollback operation upon detection of incorrect actions. Moreover, we introduce two additional strategies tailored for the rollback scenario to further improve its effectiveness. Extensive experiments show that GA-Rollback achieves significant improvements over several strong baselines on three widely used benchmarks. Our analysis further reveals that GA-Rollback can function as a robust plug-and-play module, integrating seamlessly with other methods.
UGPhysics: A Comprehensive Benchmark for Undergraduate Physics Reasoning with Large Language Models ICML 2025
Large language models (LLMs) have demonstrated remarkable capabilities in solving complex reasoning tasks, particularly in mathematics. However, the domain of physics reasoning presents unique challenges that have received significantly less attention. Existing benchmarks often fall short in evaluating LLMs' abilities on the breadth and depth of undergraduate-level physics, underscoring the need for a comprehensive evaluation. To fill this gap, we introduce UGPhysics, a large-scale and comprehensive benchmark specifically designed to evaluate UnderGraduate-level Physics (UGPhysics) reasoning with LLMs. UGPhysics includes 5,520 undergraduate-level physics problems in both English and Chinese, covering 13 subjects with seven different answer types and four distinct physics reasoning skills, all rigorously screened for data leakage. Additionally, we develop a Model-Assistant Rule-based Judgment (MARJ) pipeline specifically tailored for assessing answer correctness of physics problems, ensuring accurate evaluation. Our evaluation of 31 leading LLMs shows that the highest overall accuracy, 49.8% (achieved by OpenAI-o1-mini), emphasizes the necessity for models with stronger physics reasoning skills, beyond math abilities. We hope UGPhysics, along with MARJ, will drive future advancements in AI for physics reasoning. Codes and data are available at https://github.com/YangLabHKUST/UGPhysics .
comment: Accepted to ICML 2025
Recall with Reasoning: Chain-of-Thought Distillation for Mamba's Long-Context Memory and Extrapolation
Mamba's theoretical infinite-context potential is limited in practice when sequences far exceed training lengths. This work explores unlocking Mamba's long-context memory ability by a simple-yet-effective method, Recall with Reasoning (RwR), by distilling chain-of-thought (CoT) summarization from a teacher model. Specifically, RwR prepends these summarization as CoT prompts during fine-tuning, teaching Mamba to actively recall and reason over long contexts. Experiments on LONGMEMEVAL and HELMET show RwR boosts Mamba's long-context performance against comparable Transformer/hybrid baselines under similar pretraining conditions, while preserving short-context capabilities, all without architectural changes.
Multimedia
IllumiCraft: Unified Geometry and Illumination Diffusion for Controllable Video Generation
Although diffusion-based models can generate high-quality and high-resolution video sequences from textual or image inputs, they lack explicit integration of geometric cues when controlling scene lighting and visual appearance across frames. To address this limitation, we propose IllumiCraft, an end-to-end diffusion framework accepting three complementary inputs: (1) high-dynamic-range (HDR) video maps for detailed lighting control; (2) synthetically relit frames with randomized illumination changes (optionally paired with a static background reference image) to provide appearance cues; and (3) 3D point tracks that capture precise 3D geometry information. By integrating the lighting, appearance, and geometry cues within a unified diffusion architecture, IllumiCraft generates temporally coherent videos aligned with user-defined prompts. It supports background-conditioned and text-conditioned video relighting and provides better fidelity than existing controllable video generation methods. Project Page: https://yuanze-lin.me/IllumiCraft_page
comment: Tech Report
MERIT: Multilingual Semantic Retrieval with Interleaved Multi-Condition Query
Semantic retrieval is crucial for modern applications yet remains underexplored in current research. Existing datasets are limited to single languages, single images, or singular retrieval conditions, often failing to fully exploit the expressive capacity of visual information as evidenced by maintained performance when images are replaced with captions. However, practical retrieval scenarios frequently involve interleaved multi-condition queries with multiple images. Hence, this paper introduces MERIT, the first multilingual dataset for interleaved multi-condition semantic retrieval, comprising 320,000 queries with 135,000 products in 5 languages, covering 7 distinct product categories. Extensive experiments on MERIT identify existing models's limitation: focusing solely on global semantic information while neglecting specific conditional elements in queries. Consequently, we propose Coral, a novel fine-tuning framework that adapts pre-trained MLLMs by integrating embedding reconstruction to preserve fine-grained conditional elements and contrastive learning to extract comprehensive global semantics. Experiments demonstrate that Coral achieves a 45.9% performance improvement over conventional approaches on MERIT, with strong generalization capabilities validated across 8 established retrieval benchmarks. Collectively, our contributions - a novel dataset, identification of critical limitations in existing approaches, and an innovative fine-tuning framework - establish a foundation for future research in interleaved multi-condition semantic retrieval.
comment: Preprint; Project Page, Code, and Dataset at: https://merit-2025.github.io/
Controllable Text-to-Speech Synthesis with Masked-Autoencoded Style-Rich Representation
Controllable TTS models with natural language prompts often lack the ability for fine-grained control and face a scarcity of high-quality data. We propose a two-stage style-controllable TTS system with language models, utilizing a quantized masked-autoencoded style-rich representation as an intermediary. In the first stage, an autoregressive transformer is used for the conditional generation of these style-rich tokens from text and control signals. The second stage generates codec tokens from both text and sampled style-rich tokens. Experiments show that training the first-stage model on extensive datasets enhances the content robustness of the two-stage model as well as control capabilities over multiple attributes. By selectively combining discrete labels and speaker embeddings, we explore fully controlling the speaker's timbre and other stylistic information, and adjusting attributes like emotion for a specified speaker. Audio samples are available at https://style-ar-tts.github.io.
Dynamic mapping from static labels: remote sensing dynamic sample generation with temporal-spectral embedding
Accurate remote sensing geographic mapping depends heavily on representative and timely sample data. However, rapid changes in land surface dynamics necessitate frequent updates, quickly rendering previously collected samples obsolete and imposing significant labor demands for continuous manual updates. In this study, we aim to address this problem by dynamic sample generation using existing single-date static labeled samples. We introduce TasGen, a two-stage automated framework to automatically generate dynamic samples, designed to simultaneously model spectral and temporal dependencies in time-series remote sensing imagery via temporal-spectral embedding, capturing land surface changes without additional manual annotations.
StarVC: A Unified Auto-Regressive Framework for Joint Text and Speech Generation in Voice Conversion
Voice Conversion (VC) modifies speech to match a target speaker while preserving linguistic content. Traditional methods usually extract speaker information directly from speech while neglecting the explicit utilization of linguistic content. Since VC fundamentally involves disentangling speaker identity from linguistic content, leveraging structured semantic features could enhance conversion performance. However, previous attempts to incorporate semantic features into VC have shown limited effectiveness, motivating the integration of explicit text modeling. We propose StarVC, a unified autoregressive VC framework that first predicts text tokens before synthesizing acoustic features. The experiments demonstrate that StarVC outperforms conventional VC methods in preserving both linguistic content (i.e., WER and CER) and speaker characteristics (i.e., SECS and MOS). Audio demo can be found at: https://thuhcsi.github.io/StarVC/.
comment: 5 pages, 2 figures, Accepted by Interspeech 2025, Demo: https://thuhcsi.github.io/StarVC/
Trusted Fake Audio Detection Based on Dirichlet Distribution
With the continuous development of deep learning-based speech conversion and speech synthesis technologies, the cybersecurity problem posed by fake audio has become increasingly serious. Previously proposed models for defending against fake audio have attained remarkable performance. However, they all fall short in modeling the trustworthiness of the decisions made by the models themselves. Based on this, we put forward a plausible fake audio detection approach based on the Dirichlet distribution with the aim of enhancing the reliability of fake audio detection. Specifically, we first generate evidence through a neural network. Uncertainty is then modeled using the Dirichlet distribution. By modeling the belief distribution with the parameters of the Dirichlet distribution, an estimate of uncertainty can be obtained for each decision. Finally, the predicted probabilities and corresponding uncertainty estimates are combined to form the final opinion. On the ASVspoof series dataset (i.e., ASVspoof 2019 LA, ASVspoof 2021 LA, and DF), we conduct a number of comparison experiments to verify the excellent performance of the proposed model in terms of accuracy, robustness, and trustworthiness.
EyeNavGS: A 6-DoF Navigation Dataset and Record-n-Replay Software for Real-World 3DGS Scenes in VR
3D Gaussian Splatting (3DGS) is an emerging media representation that reconstructs real-world 3D scenes in high fidelity, enabling 6-degrees-of-freedom (6-DoF) navigation in virtual reality (VR). However, developing and evaluating 3DGS-enabled applications and optimizing their rendering performance, require realistic user navigation data. Such data is currently unavailable for photorealistic 3DGS reconstructions of real-world scenes. This paper introduces EyeNavGS (EyeNavGS), the first publicly available 6-DoF navigation dataset featuring traces from 46 participants exploring twelve diverse, real-world 3DGS scenes. The dataset was collected at two sites, using the Meta Quest Pro headsets, recording the head pose and eye gaze data for each rendered frame during free world standing 6-DoF navigation. For each of the twelve scenes, we performed careful scene initialization to correct for scene tilt and scale, ensuring a perceptually-comfortable VR experience. We also release our open-source SIBR viewer software fork with record-and-replay functionalities and a suite of utility tools for data processing, conversion, and visualization. The EyeNavGS dataset and its accompanying software tools provide valuable resources for advancing research in 6-DoF viewport prediction, adaptive streaming, 3D saliency, and foveated rendering for 3DGS scenes. The EyeNavGS dataset is available at: https://symmru.github.io/EyeNavGS/.
SNIFR : Boosting Fine-Grained Child Harmful Content Detection Through Audio-Visual Alignment with Cascaded Cross-Transformer INTERSPEECH 2025
As video-sharing platforms have grown over the past decade, child viewership has surged, increasing the need for precise detection of harmful content like violence or explicit scenes. Malicious users exploit moderation systems by embedding unsafe content in minimal frames to evade detection. While prior research has focused on visual cues and advanced such fine-grained detection, audio features remain underexplored. In this study, we embed audio cues with visual for fine-grained child harmful content detection and introduce SNIFR, a novel framework for effective alignment. SNIFR employs a transformer encoder for intra-modality interaction, followed by a cascaded cross-transformer for inter-modality alignment. Our approach achieves superior performance over unimodal and baseline fusion methods, setting a new state-of-the-art.
comment: Accepted to INTERSPEECH 2025
Towards Source Attribution of Singing Voice Deepfake with Multimodal Foundation Models INTERSPEECH 2025
In this work, we introduce the task of singing voice deepfake source attribution (SVDSA). We hypothesize that multimodal foundation models (MMFMs) such as ImageBind, LanguageBind will be most effective for SVDSA as they are better equipped for capturing subtle source-specific characteristics-such as unique timbre, pitch manipulation, or synthesis artifacts of each singing voice deepfake source due to their cross-modality pre-training. Our experiments with MMFMs, speech foundation models and music foundation models verify the hypothesis that MMFMs are the most effective for SVDSA. Furthermore, inspired from related research, we also explore fusion of foundation models (FMs) for improved SVDSA. To this end, we propose a novel framework, COFFE which employs Chernoff Distance as novel loss function for effective fusion of FMs. Through COFFE with the symphony of MMFMs, we attain the topmost performance in comparison to all the individual FMs and baseline fusion methods.
comment: Accepted to INTERSPEECH 2025
TriPSS: A Tri-Modal Keyframe Extraction Framework Using Perceptual, Structural, and Semantic Representations
Efficient keyframe extraction is critical for effective video summarization and retrieval, yet capturing the complete richness of video content remains challenging. In this work, we present TriPSS, a novel tri-modal framework that effectively integrates perceptual cues from color features in the CIELAB space, deep structural embeddings derived from ResNet-50, and semantic context from frame-level captions generated by Llama-3.2-11B-Vision-Instruct. By fusing these diverse modalities using principal component analysis, TriPSS constructs robust multi-modal embeddings that enable adaptive segmentation of video content via HDBSCAN clustering. A subsequent refinement stage incorporating quality assessment and duplicate filtering ensures that the final keyframe set is both concise and semantically rich. Comprehensive evaluations on benchmark datasets TVSum20 and SumMe demonstrate that TriPSS achieves state-of-the-art performance, substantially outperforming traditional unimodal and previous multi-modal methods. These results underscore TriPSS's ability to capture nuanced visual and semantic information, thereby setting a new benchmark for video content understanding in large-scale retrieval scenarios.
Q-Ponder: A Unified Training Pipeline for Reasoning-based Visual Quality Assessment
Recent studies demonstrate that multimodal large language models (MLLMs) can proficiently evaluate visual quality through interpretable assessments. However, existing approaches typically treat quality scoring and reasoning descriptions as separate tasks with disjoint optimization objectives, leading to a trade-off: models adept at quality reasoning descriptions struggle with precise score regression, while score-focused models lack interpretability. This limitation hinders the full potential of MLLMs in visual quality assessment, where accuracy and interpretability should be mutually reinforcing. To address this, we propose a unified two-stage training framework comprising a cold-start stage and a reinforcement learning-based fine-tuning stage. Specifically, in the first stage, we distill high-quality data from a teacher model through expert-designed prompts, initializing reasoning capabilities via cross-entropy loss supervision. In the second stage, we introduce a novel reward with Group Relative Policy Optimization (GRPO) to jointly optimize scoring accuracy and reasoning consistency. We designate the models derived from these two stages as Q-Ponder-CI and Q-Ponder. Extensive experiments show that Q-Ponder achieves state-of-the-art (SOTA) performance on quality score regression benchmarks, delivering up to 6.5% higher SRCC on cross-domain datasets. Furthermore, Q-Ponder significantly outperforms description-based SOTA models, including its teacher model Qwen-2.5-VL-72B, particularly in description accuracy and reasonableness, demonstrating the generalization potential over diverse tasks.
Chain-of-Jailbreak Attack for Image Generation Models via Editing Step by Step ACL 2025
Text-based image generation models, such as Stable Diffusion and DALL-E 3, hold significant potential in content creation and publishing workflows, making them the focus in recent years. Despite their remarkable capability to generate diverse and vivid images, considerable efforts are being made to prevent the generation of harmful content, such as abusive, violent, or pornographic material. To assess the safety of existing models, we introduce a novel jailbreaking method called Chain-of-Jailbreak (CoJ) attack, which compromises image generation models through a step-by-step editing process. Specifically, for malicious queries that cannot bypass the safeguards with a single prompt, we intentionally decompose the query into multiple sub-queries. The image generation models are then prompted to generate and iteratively edit images based on these sub-queries. To evaluate the effectiveness of our CoJ attack method, we constructed a comprehensive dataset, CoJ-Bench, encompassing nine safety scenarios, three types of editing operations, and three editing elements. Experiments on four widely-used image generation services provided by GPT-4V, GPT-4o, Gemini 1.5 and Gemini 1.5 Pro, demonstrate that our CoJ attack method can successfully bypass the safeguards of models for over 60% cases, which significantly outperforms other jailbreaking methods (i.e., 14%). Further, to enhance these models' safety against our CoJ attack method, we also propose an effective prompting-based method, Think Twice Prompting, that can successfully defend over 95% of CoJ attack. We release our dataset and code to facilitate the AI safety research.
comment: Accepted by ACL 2025 Findings
Can't See the Forest for the Trees: Benchmarking Multimodal Safety Awareness for Multimodal LLMs ACL 2025
Multimodal Large Language Models (MLLMs) have expanded the capabilities of traditional language models by enabling interaction through both text and images. However, ensuring the safety of these models remains a significant challenge, particularly in accurately identifying whether multimodal content is safe or unsafe-a capability we term safety awareness. In this paper, we introduce MMSafeAware, the first comprehensive multimodal safety awareness benchmark designed to evaluate MLLMs across 29 safety scenarios with 1500 carefully curated image-prompt pairs. MMSafeAware includes both unsafe and over-safety subsets to assess models abilities to correctly identify unsafe content and avoid over-sensitivity that can hinder helpfulness. Evaluating nine widely used MLLMs using MMSafeAware reveals that current models are not sufficiently safe and often overly sensitive; for example, GPT-4V misclassifies 36.1% of unsafe inputs as safe and 59.9% of benign inputs as unsafe. We further explore three methods to improve safety awareness-prompting-based approaches, visual contrastive decoding, and vision-centric reasoning fine-tuning-but find that none achieve satisfactory performance. Our findings highlight the profound challenges in developing MLLMs with robust safety awareness, underscoring the need for further research in this area. All the code and data will be publicly available to facilitate future research.
comment: Accepted by ACL 2025
T-TAME: Trainable Attention Mechanism for Explaining Convolutional Networks and Vision Transformers
The development and adoption of Vision Transformers and other deep-learning architectures for image classification tasks has been rapid. However, the "black box" nature of neural networks is a barrier to adoption in applications where explainability is essential. While some techniques for generating explanations have been proposed, primarily for Convolutional Neural Networks, adapting such techniques to the new paradigm of Vision Transformers is non-trivial. This paper presents T-TAME, Transformer-compatible Trainable Attention Mechanism for Explanations, a general methodology for explaining deep neural networks used in image classification tasks. The proposed architecture and training technique can be easily applied to any convolutional or Vision Transformer-like neural network, using a streamlined training approach. After training, explanation maps can be computed in a single forward pass; these explanation maps are comparable to or outperform the outputs of computationally expensive perturbation-based explainability techniques, achieving SOTA performance. We apply T-TAME to three popular deep learning classifier architectures, VGG-16, ResNet-50, and ViT-B-16, trained on the ImageNet dataset, and we demonstrate improvements over existing state-of-the-art explainability methods. A detailed analysis of the results and an ablation study provide insights into how the T-TAME design choices affect the quality of the generated explanation maps.
comment: Accepted
Inclusion 2024 Global Multimedia Deepfake Detection Challenge: Towards Multi-dimensional Face Forgery Detection
In this paper, we present the Global Multimedia Deepfake Detection held concurrently with the Inclusion 2024. Our Multimedia Deepfake Detection aims to detect automatic image and audio-video manipulations including but not limited to editing, synthesis, generation, Photoshop,etc. Our challenge has attracted 1500 teams from all over the world, with about 5000 valid result submission counts. We invite the top 20 teams to present their solutions to the challenge, from which the top 3 teams are awarded prizes in the grand finale. In this paper, we present the solutions from the top 3 teams of the two tracks, to boost the research work in the field of image and audio-video forgery detection. The methodologies developed through the challenge will contribute to the development of next-generation deepfake detection systems and we encourage participants to open source their methods.
comment: Inclusion 2024 Global Multimedia Deepfake Detection Competition Top Team Technical Report
Human-Computer Interaction
Assessing Workers Neuro-physiological Stress Responses to Augmented Reality Safety Warnings in Immersive Virtual Roadway Work Zones
This paper presents a multi-stage experimental framework that integrates immersive Virtual Reality (VR) simulations, wearable sensors, and advanced signal processing to investigate construction workers neuro-physiological stress responses to multi-sensory AR-enabled warnings. Participants performed light- and moderate-intensity roadway maintenance tasks within a high-fidelity VR roadway work zone, while key stress markers of electrodermal activity (EDA), heart rate variability (HRV), and electroencephalography (EEG) were continuously measured. Statistical analyses revealed that task intensity significantly influenced physiological and neurological stress indicators. Moderate-intensity tasks elicited greater autonomic arousal, evidenced by elevated heart rate measures (mean-HR, std-HR, max-HR) and stronger electrodermal responses, while EEG data indicated distinct stress-related alpha suppression and beta enhancement. Feature-importance analysis further identified mean EDR and short-term HR metrics as discriminative for classifying task intensity. Correlation results highlighted a temporal lag between immediate neural changes and subsequent physiological stress reactions, emphasizing the interplay between cognition and autonomic regulation during hazardous tasks.
Feedstack: Layering Structured Representations over Unstructured Feedback to Scaffold Human AI Conversation
Many conversational user interfaces facilitate linear conversations with turn-based dialogue, similar to face-to-face conversations between people. However, digital conversations can afford more than simple back-and-forth; they can be layered with interaction techniques and structured representations that scaffold exploration, reflection, and shared understanding between users and AI systems. We introduce Feedstack, a speculative interface that augments feedback conversations with layered affordances for organizing, navigating, and externalizing feedback. These layered structures serve as a shared representation of the conversation that can surface user intent and reveal underlying design principles. This work represents an early exploration of this vision using a research-through-design approach. We describe system features and design rationale, and present insights from two formative (n=8, n=8) studies to examine how novice designers engage with these layered supports. Rather than presenting a conclusive evaluation, we reflect on Feedstack as a design probe that opens up new directions for conversational feedback systems.
comment: CUI '25, Proceedings of the 7th ACM Conference on Conversational User Interfaces, July 8--10, 2025, Waterloo, ON, Canada
Mapping Student-AI Interaction Dynamics in Multi-Agent Learning Environments: Supporting Personalised Learning and Reducing Performance Gaps
Multi-agent AI systems, which simulate diverse instructional roles such as teachers and peers, offer new possibilities for personalized and interactive learning. Yet, student-AI interaction patterns and their pedagogical implications remain unclear. This study explores how university students engaged with multiple AI agents, and how these interactions influenced cognitive outcomes (learning gains) and non-cognitive factors (motivation, technology acceptance). Based on MAIC, an online learning platform with multi-agent, the research involved 305 university students and 19,365 lines of dialogue data. Pre- and post-test scores, self-reported motivation and technology acceptance were also collected. The study identified two engagement patterns: co-construction of knowledge and co-regulation. Lag sequential analysis revealed that students with lower prior knowledge relied more on co-construction of knowledge sequences, showing higher learning gains and post-course motivation. In contrast, students with higher prior knowledge engaged more in co-regulation behaviors but exhibited limited learning improvement. Technology acceptance increased across all groups. These findings suggest that multi-agent AI systems can adapt to students' varying needs, support differentiated engagement, and reduce performance gaps. Implications for personalized system design and future research directions are discussed.
comment: 27 pages, 8 figures
Performance of leading large language models in May 2025 in Membership of the Royal College of General Practitioners-style examination questions: a cross-sectional analysis
Background: Large language models (LLMs) have demonstrated substantial potential to support clinical practice. Other than Chat GPT4 and its predecessors, few LLMs, especially those of the leading and more powerful reasoning model class, have been subjected to medical specialty examination questions, including in the domain of primary care. This paper aimed to test the capabilities of leading LLMs as of May 2025 (o3, Claude Opus 4, Grok3, and Gemini 2.5 Pro) in primary care education, specifically in answering Member of the Royal College of General Practitioners (MRCGP) style examination questions. Methods: o3, Claude Opus 4, Grok3, and Gemini 2.5 Pro were tasked to answer 100 randomly chosen multiple choice questions from the Royal College of General Practitioners GP SelfTest on 25 May 2025. Questions included textual information, laboratory results, and clinical images. Each model was prompted to answer as a GP in the UK and was provided with full question information. Each question was attempted once by each model. Responses were scored against correct answers provided by GP SelfTest. Results: The total score of o3, Claude Opus 4, Grok3, and Gemini 2.5 Pro was 99.0%, 95.0%, 95.0%, and 95.0%, respectively. The average peer score for the same questions was 73.0%. Discussion: All models performed remarkably well, and all substantially exceeded the average performance of GPs and GP registrars who had answered the same questions. o3 demonstrated the best performance, while the performances of the other leading models were comparable with each other and were not substantially lower than that of o3. These findings strengthen the case for LLMs, particularly reasoning models, to support the delivery of primary care, especially those that have been specifically trained on primary care clinical data.
comment: 12 pages, 1 Table
Unpacking Graduate Students' Learning Experience with Generative AI Teaching Assistant in A Quantitative Methodology Course
The study was conducted in an Advanced Quantitative Research Methods course involving 20 graduate students. During the course, student inquiries made to the AI were recorded and coded using Bloom's taxonomy and the CLEAR framework. A series of independent sample t-tests and poisson regression analyses were employed to analyse the characteristics of different questions asked by students with different backgrounds. Post course interviews were conducted with 10 students to gain deeper insights into their perceptions. The findings revealed a U-shaped pattern in students' use of the AI assistant, with higher usage at the beginning and towards the end of the course, and a decrease in usage during the middle weeks. Most questions posed to the AI focused on knowledge and comprehension levels, with fewer questions involving deeper cognitive thinking. Students with a weaker mathematical foundation used the AI assistant more frequently, though their inquiries tended to lack explicit and logical structure compared to those with a strong mathematical foundation, who engaged less with the tool. These patterns suggest the need for targeted guidance to optimise the effectiveness of AI tools for students with varying levels of academic proficiency.
comment: 37 pages, 5 figures
Cell-o1: Training LLMs to Solve Single-Cell Reasoning Puzzles with Reinforcement Learning
Cell type annotation is a key task in analyzing the heterogeneity of single-cell RNA sequencing data. Although recent foundation models automate this process, they typically annotate cells independently, without considering batch-level cellular context or providing explanatory reasoning. In contrast, human experts often annotate distinct cell types for different cell clusters based on their domain knowledge. To mimic this workflow, we introduce the CellPuzzles task, where the objective is to assign unique cell types to a batch of cells. This benchmark spans diverse tissues, diseases, and donor conditions, and requires reasoning across the batch-level cellular context to ensure label uniqueness. We find that off-the-shelf large language models (LLMs) struggle on CellPuzzles, with the best baseline (OpenAI's o1) achieving only 19.0% batch-level accuracy. To fill this gap, we propose Cell-o1, a 7B LLM trained via supervised fine-tuning on distilled reasoning traces, followed by reinforcement learning with batch-level rewards. Cell-o1 achieves state-of-the-art performance, outperforming o1 by over 73% and generalizing well across contexts. Further analysis of training dynamics and reasoning behaviors provides insights into batch-level annotation performance and emergent expert-like reasoning. Code and data are available at https://github.com/ncbi-nlp/cell-o1.
comment: 28 pages; 16 tables; 7 figures; Code: https://github.com/ncbi-nlp/cell-o1
Exploring listeners' perceptions of AI-generated and human-composed music for functional emotional applications
This work investigates how listeners perceive and evaluate AI-generated as compared to human-composed music in the context of emotional resonance and regulation. Across a mixed-methods design, participants were exposed to both AI and human music under various labeling conditions (music correctly labeled as AI- or human-origin, music incorrectly labeled as AI- or human-origin, and unlabeled music) and emotion cases (Calm and Upbeat), and were asked to rate preference, efficacy of target emotion elicitation, and emotional impact. Participants were significantly more likely to rate human-composed music, regardless of labeling, as more effective at eliciting target emotional states, though quantitative analyses revealed no significant differences in emotional response. However, participants were significantly more likely to indicate preference for AI-generated music, yielding further questions regarding the impact of emotional authenticity and perceived authorship on musical appraisal. Qualitative data underscored this, with participants associating humanness with qualities such as imperfection, flow, and 'soul.' These findings challenge the assumption that preference alone signals success in generative music systems. Rather than positioning AI tools as replacements for human creativity or emotional expression, they point toward a more careful design ethos that acknowledges the limits of replication and prioritizes human values such as authenticity, individuality, and emotion regulation in wellness and affective technologies.
comment: 18 pages (includes references and appendix), 2 figures, 5 tables (includes 1 in appendix), and appendix
UltrasonicSpheres: Localized, Multi-Channel Sound Spheres Using Off-the-Shelf Speakers and Earables
We present a demo ofUltrasonicSpheres, a novel system for location-specific audio delivery using wearable earphones that decode ultrasonic signals into audible sound. Unlike conventional beamforming setups, UltrasonicSpheres relies on single ultrasonic speakers to broadcast localized audio with multiple channels, each encoded on a distinct ultrasonic carrier frequency. Users wearing our acoustically transparent earphones can demodulate their selected stream, such as exhibit narrations in a chosen language, while remaining fully aware of ambient environmental sounds. The experience preserves spatial audio perception, giving the impression that the sound originates directly from the physical location of the source. This enables personalized, localized audio without requiring pairing, tracking, or additional infrastructure. Importantly, visitors not equipped with the earphones are unaffected, as the ultrasonic signals are inaudible to the human ear. Our demo invites participants to explore multiple co-located audio zones and experience how UltrasonicSpheres supports unobtrusive delivery of personalized sound in public spaces.
Heatables: Effects of Infrared-LED-Induced Ear Heating on Thermal Perception, Comfort, and Cognitive Performance
Maintaining thermal comfort in shared indoor environments remains challenging, as centralized HVAC systems are slow to adapt and standardized to group norms. Cold exposure not only reduces subjective comfort but can impair cognitive performance, particularly under moderate to severe cold stress. Personal Comfort Systems (PCS) have shown promise by providing localized heating, yet many designs target distal body parts with low thermosensitivity and often lack portability. In this work, we investigate whether targeted thermal stimulation using in-ear worn devices can manipulate thermal perception and enhance thermal comfort. We present Heatables, a novel in-ear wearable that emits Near-Infrared (NIR) and Infrared (IR) radiation via integrated LEDs to deliver localized optical heating. This approach leverages NIR-IR's ability to penetrate deeper tissues, offering advantages over traditional resistive heating limited to surface warming. In a placebo-controlled study with 24 participants, each exposed for 150 minutes in a cool office environment (approximately 17.5 degrees Celsius) to simulate sustained cold stress during typical sedentary office activities, Heatables significantly increased the perceived ambient temperature by around 1.5 degrees Celsius and delayed cold discomfort. Importantly, thermal benefits extended beyond the ear region, improving both whole-body comfort and thermal acceptability. These findings position in-ear NIR-IR-LED-based stimulation as a promising modality for unobtrusive thermal comfort enhancement in everyday contexts.
Cognitive Load-Driven VR Memory Palaces: Personalizing Focus and Recall Enhancement
Cognitive load, which varies across individuals, can significantly affect focus and memory performance.This study explores the integration of Virtual Reality (VR) with memory palace techniques, aiming to optimize VR environments tailored to individual cognitive load levels to improve focus and memory. We utilized EEG devices, specifically the Oculus Quest 2, to monitor Beta wave activity in 10 participants.By modeling their cognitive load profiles through polynomial regression, we dynamically adjusted spatial variables within a VR environment using Grasshopper, creating personalized experiences. Results indicate that 8 participants showed a notable increase in Beta wave activity, demonstrating improved focus and cognitive performance in the customized VR settings.These findings underscore the potential of VR-based memory environments, driven by cognitive load considerations, and provide valuable insights for advancing VR memory research
comment: 10 pages, 5 figures, submitted to HCII 2025. Includes EEG-based VR adaptation experiments, dynamic spatial modeling, and empirical evaluation of memory performance
HORUS: A Mixed Reality Interface for Managing Teams of Mobile Robots IROS 2025
Mixed Reality (MR) interfaces have been extensively explored for controlling mobile robots, but there is limited research on their application to managing teams of robots. This paper presents HORUS: Holistic Operational Reality for Unified Systems, a Mixed Reality interface offering a comprehensive set of tools for managing multiple mobile robots simultaneously. HORUS enables operators to monitor individual robot statuses, visualize sensor data projected in real time, and assign tasks to single robots, subsets of the team, or the entire group, all from a Mini-Map (Ground Station). The interface also provides different teleoperation modes: a mini-map mode that allows teleoperation while observing the robot model and its transform on the mini-map, and a semi-immersive mode that offers a flat, screen-like view in either single or stereo view (3D). We conducted a user study in which participants used HORUS to manage a team of mobile robots tasked with finding clues in an environment, simulating search and rescue tasks. This study compared HORUS's full-team management capabilities with individual robot teleoperation. The experiments validated the versatility and effectiveness of HORUS in multi-robot coordination, demonstrating its potential to advance human-robot collaboration in dynamic, team-based environments.
comment: 7 pages, 7 figures, conference paper submitted to IROS 2025
Natural Language Processing to Enhance Deliberation in Political Online Discussions: A Survey
Political online participation in the form of discussing political issues and exchanging opinions among citizens is gaining importance with more and more formats being held digitally. To come to a decision, a careful discussion and consideration of opinions and a civil exchange of arguments, which is defined as the act of deliberation, is desirable. The quality of discussions and participation processes in terms of their deliberativeness highly depends on the design of platforms and processes. To facilitate online communication for both participants and initiators, machine learning methods offer a lot of potential. In this work we want to showcase which issues occur in political online discussions and how machine learning can be used to counteract these issues and enhance deliberation.
To Embody or Not: The Effect Of Embodiment On User Perception Of LLM-based Conversational Agents
Embodiment in conversational agents (CAs) refers to the physical or visual representation of these agents, which can significantly influence user perception and interaction. Limited work has been done examining the effect of embodiment on the perception of CAs utilizing modern large language models (LLMs) in non-hierarchical cooperative tasks, a common use case of CAs as more powerful models become widely available for general use. To bridge this research gap, we conducted a mixed-methods within-subjects study on how users perceive LLM-based CAs in cooperative tasks when embodied and non-embodied. The results show that the non-embodied agent received significantly better quantitative appraisals for competence than the embodied agent, and in qualitative feedback, many participants believed that the embodied CA was more sycophantic than the non-embodied CA. Building on prior work on users' perceptions of LLM sycophancy and anthropomorphic features, we theorize that the typically-positive impact of embodiment on perception of CA credibility can become detrimental in the presence of sycophancy. The implication of such a phenomenon is that, contrary to intuition and existing literature, embodiment is not a straightforward way to improve a CA's perceived credibility if there exists a tendency to sycophancy.
IP-Dialog: Evaluating Implicit Personalization in Dialogue Systems with Synthetic Data
In modern dialogue systems, the ability to implicitly infer user backgrounds from conversations and leverage this information for personalized assistance is crucial. However, the scarcity of high-quality data remains a fundamental challenge to evaluating and improving this capability. Traditional dataset construction methods are labor-intensive, resource-demanding, and raise privacy concerns. To address these issues, we propose a novel approach for automatic synthetic data generation and introduce the Implicit Personalized Dialogue (IP-Dialog) benchmark along with a training dataset, covering 10 tasks and 12 user attribute types. Additionally, we develop a systematic evaluation framework with four metrics to assess both attribute awareness and reasoning capabilities. We further propose five causal graphs to elucidate models' reasoning pathways during implicit personalization. Extensive experiments yield insightful observations and prove the reliability of our dataset.
Visualization for interactively adjusting the de-bias effect of word embedding
Word embedding, which converts words into numerical values, is an important natural language processing technique and widely used. One of the serious problems of word embedding is that the bias will be learned and affect the model if the dataset used for pre-training contains bias. On the other hand, indiscriminate removal of bias from word embeddings may result in the loss of information, even if the bias is undesirable to us. As a result, a risk of model performance degradation due to bias removal will be another problem. As a solution to this problem, we focus on gender bias in Japanese and propose an interactive visualization method to adjust the degree of debias for each word category. Specifically, we visualize the accuracy in a category classification task after debiasing, and allow the user to adjust the parameters based on the visualization results, so that the debiasing can be adjusted according to the user's objectives. In addition, considering a trade-off between debiasing and preventing degradation of model performance, and that different people perceive gender bias differently, we developed a mechanism to present multiple choices of debiasing configurations applying an optimization scheme. This paper presents the results of an experiment in which we removed the gender bias for word embeddings learned from the Japanese version of Wikipedia. We classified words into five categories based on a news corpus, and observed that the degree of influence of debiasing differed greatly among the categories. We then adjusted the degree of debiasing for each category based on the visualization results.
EyeNavGS: A 6-DoF Navigation Dataset and Record-n-Replay Software for Real-World 3DGS Scenes in VR
3D Gaussian Splatting (3DGS) is an emerging media representation that reconstructs real-world 3D scenes in high fidelity, enabling 6-degrees-of-freedom (6-DoF) navigation in virtual reality (VR). However, developing and evaluating 3DGS-enabled applications and optimizing their rendering performance, require realistic user navigation data. Such data is currently unavailable for photorealistic 3DGS reconstructions of real-world scenes. This paper introduces EyeNavGS (EyeNavGS), the first publicly available 6-DoF navigation dataset featuring traces from 46 participants exploring twelve diverse, real-world 3DGS scenes. The dataset was collected at two sites, using the Meta Quest Pro headsets, recording the head pose and eye gaze data for each rendered frame during free world standing 6-DoF navigation. For each of the twelve scenes, we performed careful scene initialization to correct for scene tilt and scale, ensuring a perceptually-comfortable VR experience. We also release our open-source SIBR viewer software fork with record-and-replay functionalities and a suite of utility tools for data processing, conversion, and visualization. The EyeNavGS dataset and its accompanying software tools provide valuable resources for advancing research in 6-DoF viewport prediction, adaptive streaming, 3D saliency, and foveated rendering for 3DGS scenes. The EyeNavGS dataset is available at: https://symmru.github.io/EyeNavGS/.
The Stress of Improvisation: Instructors' Perspectives on Live Coding in Programming Classes
Live coding is a pedagogical technique in which an instructor writes and executes code in front of students to impart skills like incremental development and debugging. Although live coding offers many benefits, instructors face many challenges in the classroom, like cognitive challenges and psychological stress, most of which have yet to be formally studied. To understand the obstacles faced by instructors in CS classes, we conducted (1) a formative interview with five teaching assistants in exercise sessions and (2) a contextual inquiry study with four lecturers for large-scale classes. We found that the improvisational and unpredictable nature of live coding makes it difficult for instructors to manage their time and keep students engaged, resulting in more mental stress than presenting static slides. We discussed opportunities for augmenting existing IDEs and presentation setups to help enhance live coding experience.
comment: 6 pages
Sampling Preferences Yields Simple Trustworthiness Scores
With the onset of large language models (LLMs), the performance of artificial intelligence (AI) models is becoming increasingly multi-dimensional. Accordingly, there have been several large, multi-dimensional evaluation frameworks put forward to evaluate LLMs. Though these frameworks are much more realistic than previous attempts which only used a single score like accuracy, multi-dimensional evaluations can complicate decision-making since there is no obvious way to select an optimal model. This work introduces preference sampling, a method to extract a scalar trustworthiness score from multi-dimensional evaluation results by considering the many characteristics of model performance which users value. We show that preference sampling improves upon alternate aggregation methods by using multi-dimensional trustworthiness evaluations of LLMs from TrustLLM and DecodingTrust. We find that preference sampling is consistently reductive, fully reducing the set of candidate models 100% of the time whereas Pareto optimality never reduces the set by more than 50%. Likewise, preference sampling is consistently sensitive to user priors-allowing users to specify the relative weighting and confidence of their preferences-whereas averaging scores is intransigent to the users' prior knowledge.
From Reality to Recognition: Evaluating Visualization Analogies for Novice Chart Comprehension
Novice learners often have difficulty learning new visualization types because they tend to interpret novel visualizations through the mental models of simpler charts they have previously encountered. Traditional visualization teaching methods, which usually rely on directly translating conceptual aspects of data into concrete data visualizations, often fail to attend to the needs of novice learners navigating this tension. To address this, we conducted an empirical exploration of how analogies can be used to help novices with chart comprehension. We introduced visualization analogies: visualizations that map data structures to real-world contexts to facilitate an intuitive understanding of novel chart types. We evaluated this pedagogical technique using a within-subject study (N=128) where we taught 8 chart types using visualization analogies. Our findings show that visualization analogies improve visual analysis skills and help learners transfer their understanding to actual charts. They effectively introduce visual embellishments, cater to diverse learning preferences, and are preferred by novice learners over traditional chart visualizations. This study offers empirical insights and open-source tools to advance visualization education through analogical reasoning.
The Reader is the Metric: How Textual Features and Reader Profiles Explain Conflicting Evaluations of AI Creative Writing ACL
Recent studies comparing AI-generated and human-authored literary texts have produced conflicting results: some suggest AI already surpasses human quality, while others argue it still falls short. We start from the hypothesis that such divergences can be largely explained by genuine differences in how readers interpret and value literature, rather than by an intrinsic quality of the texts evaluated. Using five public datasets (1,471 stories, 101 annotators including critics, students, and lay readers), we (i) extract 17 reference-less textual features (e.g., coherence, emotional variance, average sentence length...); (ii) model individual reader preferences, deriving feature importance vectors that reflect their textual priorities; and (iii) analyze these vectors in a shared "preference space". Reader vectors cluster into two profiles: 'surface-focused readers' (mainly non-experts), who prioritize readability and textual richness; and 'holistic readers' (mainly experts), who value thematic development, rhetorical variety, and sentiment dynamics. Our results quantitatively explain how measurements of literary quality are a function of how text features align with each reader's preferences. These findings advocate for reader-sensitive evaluation frameworks in the field of creative text generation.
comment: Camera-ready version, 14 pages, 3 figures. Accepted to Findings of the Association for Computational Linguistics (ACL) 2025. Code & data: https://github.com/grmarco/the-reader-is-the-metric
On the Necessity of Multi-Domain Explanation: An Uncertainty Principle Approach for Deep Time Series Models
A prevailing approach to explain time series models is to generate attribution in time domain. A recent development in time series XAI is the concept of explanation spaces, where any model trained in the time domain can be interpreted with any existing XAI method in alternative domains, such as frequency. The prevailing approach is to present XAI attributions either in the time domain or in the domain where the attribution is most sparse. In this paper, we demonstrate that in certain cases, XAI methods can generate attributions that highlight fundamentally different features in the time and frequency domains that are not direct counterparts of one another. This suggests that both domains' attributions should be presented to achieve a more comprehensive interpretation. Thus it shows the necessity of multi-domain explanation. To quantify when such cases arise, we introduce the uncertainty principle (UP), originally developed in quantum mechanics and later studied in harmonic analysis and signal processing, to the XAI literature. This principle establishes a lower bound on how much a signal can be simultaneously localized in both the time and frequency domains. By leveraging this concept, we assess whether attributions in the time and frequency domains violate this bound, indicating that they emphasize distinct features. In other words, UP provides a sufficient condition that the time and frequency domain explanations do not match and, hence, should be both presented to the end user. We validate the effectiveness of this approach across various deep learning models, XAI methods, and a wide range of classification and forecasting datasets. The frequent occurrence of UP violations across various datasets and XAI methods highlights the limitations of existing approaches that focus solely on time-domain explanations. This underscores the need for multi-domain explanations as a new paradigm.
Neural Signatures Within and Between Chess Puzzle Solving and Standard Cognitive Tasks for Brain-Computer Interfaces: A Low-Cost Electroencephalography Study
Consumer-grade electroencephalography (EEG) devices show promise for Brain-Computer Interface (BCI) applications, but their efficacy in detecting subtle cognitive states remains understudied. We developed a comprehensive study paradigm which incorporates a combination of established cognitive tasks (N-Back, Stroop, and Mental Rotation) and adds a novel ecological Chess puzzles task. We tested our paradigm with the MUSE 2, a low-cost consumer-grade EEG device. Using linear mixed-effects modeling we demonstrate successful distinctions of within-task workload levels and cross-task cognitive states based on the spectral power data derived from the MUSE 2 device. With machine learning we further show reliable predictive power to differentiate between workload levels in the N-Back task, and also achieve effective cross-task classification. These findings demonstrate that consumer-grade EEG devices like the MUSE 2 can be used to effectively differentiate between various levels of cognitive workload as well as among more nuanced task-based cognitive states, and that these tools can be leveraged for real-time adaptive BCI applications in practical settings.
comment: 29 pages, 13 figures
Evaluations at Work: Measuring the Capabilities of GenAI in Use
Current AI benchmarks miss the messy, multi-turn nature of human-AI collaboration. We present an evaluation framework that decomposes real-world tasks into interdependent subtasks, letting us track both LLM performance and users' strategies across a dialogue. Complementing this framework, we develop a suite of metrics, including a composite usage derived from semantic similarity, word overlap, and numerical matches; structural coherence; intra-turn diversity; and a novel measure of the "information frontier" reflecting the alignment between AI outputs and users' working knowledge. We demonstrate our methodology in a financial valuation task that mirrors real-world complexity. Our empirical findings reveal that while greater integration of LLM-generated content generally enhances output quality, its benefits are moderated by factors such as response incoherence, excessive subtask diversity, and the distance of provided information from users' existing knowledge. These results suggest that proactive dialogue strategies designed to inject novelty may inadvertently undermine task performance. Our work thus advances a more holistic evaluation of human-AI collaboration, offering both a robust methodological framework and actionable insights for developing more effective AI-augmented work processes.
A Comparative Study of Scanpath Models in Graph-Based Visualization
Information Visualization (InfoVis) systems utilize visual representations to enhance data interpretation. Understanding how visual attention is allocated is essential for optimizing interface design. However, collecting Eye-tracking (ET) data presents challenges related to cost, privacy, and scalability. Computational models provide alternatives for predicting gaze patterns, thereby advancing InfoVis research. In our study, we conducted an ET experiment with 40 participants who analyzed graphs while responding to questions of varying complexity within the context of digital forensics. We compared human scanpaths with synthetic ones generated by models such as DeepGaze, UMSS, and Gazeformer. Our research evaluates the accuracy of these models and examines how question complexity and number of nodes influence performance. This work contributes to the development of predictive modeling in visual analytics, offering insights that can enhance the design and effectiveness of InfoVis systems.
Do ATCOs Need Explanations, and Why? Towards ATCO-Centered Explainable AI for Conflict Resolution Advisories
Interest in explainable artificial intelligence (XAI) is surging. Prior research has primarily focused on systems' ability to generate explanations, often guided by researchers' intuitions rather than end-users' needs. Unfortunately, such approaches have not yielded favorable outcomes when compared to a black-box baseline (i.e., no explanation). To address this gap, this paper advocates a human-centered approach that shifts focus to air traffic controllers (ATCOs) by asking a fundamental yet overlooked question: Do ATCOs need explanations, and if so, why? Insights from air traffic management (ATM), human-computer interaction, and the social sciences were synthesized to provide a holistic understanding of XAI challenges and opportunities in ATM. Evaluating 11 ATM operational goals revealed a clear need for explanations when ATCOs aim to document decisions and rationales for future reference or report generation. Conversely, ATCOs are less likely to seek them when their conflict resolution approach align with the artificial intelligence (AI) advisory. While this is a preliminary study, the findings are expected to inspire broader and deeper inquiries into the design of ATCO-centric XAI systems, paving the way for more effective human-AI interaction in ATM.
comment: 2025 ATRD US-Europe Air Transportation Research & Development Symposium
Seismocardiography for Emotion Recognition: A Study on EmoWear with Insights from DEAP
Emotions have a profound impact on our daily lives, influencing our thoughts, behaviors, and interactions, but also our physiological reactions. Recent advances in wearable technology have facilitated studying emotions through cardio-respiratory signals. Accelerometers offer a non-invasive, convenient, and cost-effective method for capturing heart- and pulmonary-induced vibrations on the chest wall, specifically Seismocardiography (SCG) and Accelerometry-Derived Respiration (ADR). Their affordability, wide availability, and ability to provide rich contextual data make accelerometers ideal for everyday use. While accelerometers have been used as part of broader modality fusions for Emotion Recognition (ER), their stand-alone potential via SCG and ADR remains unexplored. Bridging this gap could significantly help the embedding of ER into real-world applications, minimizing the hardware, and increasing contextual integration potentials. To address this gap, we introduce SCG and ADR as novel modalities for ER and evaluate their performance using the EmoWear dataset. First, we replicate the single-trial emotion classification pipeline from the DEAP dataset study, achieving similar results. Then we use our validated pipeline to train models that predict affective valence-arousal states using SCG and compare them against established cardiac signals, Electrocardiography (ECG) and Blood Volume Pulse (BVP). Results show that SCG is a viable modality for ER, achieving similar performance to ECG and BVP. By combining ADR with SCG, we achieved a working ER framework that only requires a single chest-worn accelerometer. These findings pave the way for integrating ER into real-world, enabling seamless affective computing in everyday life.
comment: This work has been accepted for publication in IEEE Transactions on Affective Computing. Final version can be found at the provided DOI
Grounded Persuasive Language Generation for Automated Marketing
This paper develops an agentic framework that employs large language models (LLMs) to automate the generation of persuasive and grounded marketing content, using real estate listing descriptions as our focal application domain. Our method is designed to align the generated content with user preferences while highlighting useful factual attributes. This agent consists of three key modules: (1) Grounding Module, mimicking expert human behavior to predict marketable features; (2) Personalization Module, aligning content with user preferences; (3) Marketing Module, ensuring factual accuracy and the inclusion of localized features. We conduct systematic human-subject experiments in the domain of real estate marketing, with a focus group of potential house buyers. The results demonstrate that marketing descriptions generated by our approach are preferred over those written by human experts by a clear margin while maintaining the same level of factual accuracy. Our findings suggest a promising agentic approach to automate large-scale targeted marketing while ensuring factuality of content generation.
Examining Algorithmic Curation on Social Media: An Empirical Audit of Reddit's r/popular Feed
Platforms are increasingly relying on algorithms to curate the content within users' social media feeds. However, the growing prominence of proprietary, algorithmically curated feeds has concealed what factors influence the presentation of content on social media feeds and how that presentation affects user behavior. This lack of transparency can be detrimental to users, from reducing users' agency over their content consumption to the propagation of misinformation and toxic content. To uncover details about how these feeds operate and influence user behavior, we conduct an empirical audit of Reddit's algorithmically curated trending feed called r/popular. Using 10K r/popular posts collected by taking snapshots of the feed over 11 months, we find that recent comments help a post remain on r/popular longer and climb the feed. We also find that posts below rank 80 correspond to a sharp decline in activity compared to posts above. When examining the effects of having a higher proportion of undesired behavior -- i.e., moderator-removed and toxic comments -- we find no significant evidence that it helps posts stay on r/popular for longer. Although posts closer to the top receive more undesired comments, we find this increase to coincide with a broader increase in overall engagement -- rather than indicating a disproportionate effect on undesired activity. The relationships between algorithmic rank and engagement highlight the extent to which algorithms employed by social media platforms essentially determine which content is prioritized and which is not. We conclude by discussing how content creators, consumers, and moderators on social media platforms can benefit from empirical audits aimed at improving transparency in algorithmically curated feeds.
comment: 15 pages, 5 figures
Dehumanizing Machines: Mitigating Anthropomorphic Behaviors in Text Generation Systems ACL 2025
As text generation systems' outputs are increasingly anthropomorphic -- perceived as human-like -- scholars have also increasingly raised concerns about how such outputs can lead to harmful outcomes, such as users over-relying or developing emotional dependence on these systems. How to intervene on such system outputs to mitigate anthropomorphic behaviors and their attendant harmful outcomes, however, remains understudied. With this work, we aim to provide empirical and theoretical grounding for developing such interventions. To do so, we compile an inventory of interventions grounded both in prior literature and a crowdsourcing study where participants edited system outputs to make them less human-like. Drawing on this inventory, we also develop a conceptual framework to help characterize the landscape of possible interventions, articulate distinctions between different types of interventions, and provide a theoretical basis for evaluating the effectiveness of different interventions.
comment: ACL 2025
Computer Vision and Pattern Recognition
Beyond Pretty Pictures: Combined Single- and Multi-Image Super-resolution for Sentinel-2 Images
Super-resolution aims to increase the resolution of satellite images by reconstructing high-frequency details, which go beyond na\"ive upsampling. This has particular relevance for Earth observation missions like Sentinel-2, which offer frequent, regular coverage at no cost; but at coarse resolution. Its pixel footprint is too large to capture small features like houses, streets, or hedge rows. To address this, we present SEN4X, a hybrid super-resolution architecture that combines the advantages of single-image and multi-image techniques. It combines temporal oversampling from repeated Sentinel-2 acquisitions with a learned prior from high-resolution Pl\'eiades Neo data. In doing so, SEN4X upgrades Sentinel-2 imagery to 2.5 m ground sampling distance. We test the super-resolved images on urban land-cover classification in Hanoi, Vietnam. We find that they lead to a significant performance improvement over state-of-the-art super-resolution baselines.
I see what you mean: Co-Speech Gestures for Reference Resolution in Multimodal Dialogue
In face-to-face interaction, we use multiple modalities, including speech and gestures, to communicate information and resolve references to objects. However, how representational co-speech gestures refer to objects remains understudied from a computational perspective. In this work, we address this gap by introducing a multimodal reference resolution task centred on representational gestures, while simultaneously tackling the challenge of learning robust gesture embeddings. We propose a self-supervised pre-training approach to gesture representation learning that grounds body movements in spoken language. Our experiments show that the learned embeddings align with expert annotations and have significant predictive power. Moreover, reference resolution accuracy further improves when (1) using multimodal gesture representations, even when speech is unavailable at inference time, and (2) leveraging dialogue history. Overall, our findings highlight the complementary roles of gesture and speech in reference resolution, offering a step towards more naturalistic models of human-machine interaction.
Survey on Vision-Language-Action Models
This paper presents an AI-generated review of Vision-Language-Action (VLA) models, summarizing key methodologies, findings, and future directions. The content is produced using large language models (LLMs) and is intended only for demonstration purposes. This work does not represent original research, but highlights how AI can help automate literature reviews. As AI-generated content becomes more prevalent, ensuring accuracy, reliability, and proper synthesis remains a challenge. Future research will focus on developing a structured framework for AI-assisted literature reviews, exploring techniques to enhance citation accuracy, source credibility, and contextual understanding. By examining the potential and limitations of LLM in academic writing, this study aims to contribute to the broader discussion of integrating AI into research workflows. This work serves as a preliminary step toward establishing systematic approaches for leveraging AI in literature review generation, making academic knowledge synthesis more efficient and scalable.
comment: arXiv admin note: This submission has been withdrawn due to serious violation of arXiv policies for acceptable submissions
AdaWorld: Learning Adaptable World Models with Latent Actions ICML 2025
World models aim to learn action-controlled future prediction and have proven essential for the development of intelligent agents. However, most existing world models rely heavily on substantial action-labeled data and costly training, making it challenging to adapt to novel environments with heterogeneous actions through limited interactions. This limitation can hinder their applicability across broader domains. To overcome this limitation, we propose AdaWorld, an innovative world model learning approach that enables efficient adaptation. The key idea is to incorporate action information during the pretraining of world models. This is achieved by extracting latent actions from videos in a self-supervised manner, capturing the most critical transitions between frames. We then develop an autoregressive world model that conditions on these latent actions. This learning paradigm enables highly adaptable world models, facilitating efficient transfer and learning of new actions even with limited interactions and finetuning. Our comprehensive experiments across multiple environments demonstrate that AdaWorld achieves superior performance in both simulation quality and visual planning.
comment: ICML 2025. Project page: https://adaptable-world-model.github.io/, code: https://github.com/Little-Podi/AdaWorld, model: https://huggingface.co/Little-Podi/AdaWorld
Segment Anything for Histopathology
Nucleus segmentation is an important analysis task in digital pathology. However, methods for automatic segmentation often struggle with new data from a different distribution, requiring users to manually annotate nuclei and retrain data-specific models. Vision foundation models (VFMs), such as the Segment Anything Model (SAM), offer a more robust alternative for automatic and interactive segmentation. Despite their success in natural images, a foundation model for nucleus segmentation in histopathology is still missing. Initial efforts to adapt SAM have shown some success, but did not yet introduce a comprehensive model for diverse segmentation tasks. To close this gap, we introduce PathoSAM, a VFM for nucleus segmentation, based on training SAM on a diverse dataset. Our extensive experiments show that it is the new state-of-the-art model for automatic and interactive nucleus instance segmentation in histopathology. We also demonstrate how it can be adapted for other segmentation tasks, including semantic nucleus segmentation. For this task, we show that it yields results better than popular methods, while not yet beating the state-of-the-art, CellViT. Our models are open-source and compatible with popular tools for data annotation. We also provide scripts for whole-slide image segmentation. Our code and models are publicly available at https://github.com/computational-cell-analytics/patho-sam.
comment: Published in MIDL 2025
S2A: A Unified Framework for Parameter and Memory Efficient Transfer Learning
Parameter-efficient transfer learning (PETL) aims to reduce the scales of pretrained models for multiple downstream tasks. However, as the models keep scaling up, the memory footprint of existing PETL methods is not significantly reduced compared to the reduction of learnable parameters. This limitation hinders the practical deployment of PETL methods on memory-constrained devices. To this end, we proposed a new PETL framework, called Structure to Activation (S2A), to reduce the memory footprint of activation during fine-tuning. Specifically, our framework consists of: 1) Activation modules design(i.e., bias, prompt and side modules) in the parametric model structure, which results in a significant reduction of adjustable parameters and activation memory; 2) 4-bit quantization of activations based on their derivatives for non-parametric structures (e.g., nonlinear functions), which maintains accuracy while significantly reducing memory usage. Our S2A method consequently offers a lightweight solution in terms of both parameters and memory footprint. We evaluated S2A with different backbones and performed extensive experiments on various datasets to evaluate the effectiveness. The results show that our methods not only outperform existing PETL techniques, achieving a fourfold reduction in GPU memory footprint on average, but also shows competitive performance in accuracy with fewer tunable parameters. These demonstrate that our method is highly suitable for practical transfer learning on hardware-constrained devices.
MASt3R-SLAM: Real-Time Dense SLAM with 3D Reconstruction Priors CVPR 2025
We present a real-time monocular dense SLAM system designed bottom-up from MASt3R, a two-view 3D reconstruction and matching prior. Equipped with this strong prior, our system is robust on in-the-wild video sequences despite making no assumption on a fixed or parametric camera model beyond a unique camera centre. We introduce efficient methods for pointmap matching, camera tracking and local fusion, graph construction and loop closure, and second-order global optimisation. With known calibration, a simple modification to the system achieves state-of-the-art performance across various benchmarks. Altogether, we propose a plug-and-play monocular SLAM system capable of producing globally-consistent poses and dense geometry while operating at 15 FPS.
comment: CVPR 2025 Highlight. The first two authors contributed equally to this work. Project Page: https://edexheim.github.io/mast3r-slam/
Monge-Ampere Regularization for Learning Arbitrary Shapes from Point Clouds
As commonly used implicit geometry representations, the signed distance function (SDF) is limited to modeling watertight shapes, while the unsigned distance function (UDF) is capable of representing various surfaces. However, its inherent theoretical shortcoming, i.e., the non-differentiability at the zero level set, would result in sub-optimal reconstruction quality. In this paper, we propose the scaled-squared distance function (S$^{2}$DF), a novel implicit surface representation for modeling arbitrary surface types. S$^{2}$DF does not distinguish between inside and outside regions while effectively addressing the non-differentiability issue of UDF at the zero level set. We demonstrate that S$^{2}$DF satisfies a second-order partial differential equation of Monge-Ampere-type, allowing us to develop a learning pipeline that leverages a novel Monge-Ampere regularization to directly learn S$^{2}$DF from raw unoriented point clouds without supervision from ground-truth S$^{2}$DF values. Extensive experiments across multiple datasets show that our method significantly outperforms state-of-the-art supervised approaches that require ground-truth surface information as supervision for training. The source code is available at https://github.com/chuanxiang-yang/S2DF.
comment: Accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), Project Page: https://chuanxiang-yang.github.io/S2DF/, Code: https://github.com/chuanxiang-yang/S2DF
OpenUni: A Simple Baseline for Unified Multimodal Understanding and Generation
In this report, we present OpenUni, a simple, lightweight, and fully open-source baseline for unifying multimodal understanding and generation. Inspired by prevailing practices in unified model learning, we adopt an efficient training strategy that minimizes the training complexity and overhead by bridging the off-the-shelf multimodal large language models (LLMs) and diffusion models through a set of learnable queries and a light-weight transformer-based connector. With a minimalist choice of architecture, we demonstrate that OpenUni can: 1) generate high-quality and instruction-aligned images, and 2) achieve exceptional performance on standard benchmarks such as GenEval, DPG- Bench, and WISE, with only 1.1B and 3.1B activated parameters. To support open research and community advancement, we release all model weights, training code, and our curated training datasets (including 23M image-text pairs) at https://github.com/wusize/OpenUni.
Safety at Scale: A Comprehensive Survey of Large Model Safety
The rapid advancement of large models, driven by their exceptional abilities in learning and generalization through large-scale pre-training, has reshaped the landscape of Artificial Intelligence (AI). These models are now foundational to a wide range of applications, including conversational AI, recommendation systems, autonomous driving, content generation, medical diagnostics, and scientific discovery. However, their widespread deployment also exposes them to significant safety risks, raising concerns about robustness, reliability, and ethical implications. This survey provides a systematic review of current safety research on large models, covering Vision Foundation Models (VFMs), Large Language Models (LLMs), Vision-Language Pre-training (VLP) models, Vision-Language Models (VLMs), Diffusion Models (DMs), and large-model-based Agents. Our contributions are summarized as follows: (1) We present a comprehensive taxonomy of safety threats to these models, including adversarial attacks, data poisoning, backdoor attacks, jailbreak and prompt injection attacks, energy-latency attacks, data and model extraction attacks, and emerging agent-specific threats. (2) We review defense strategies proposed for each type of attacks if available and summarize the commonly used datasets and benchmarks for safety research. (3) Building on this, we identify and discuss the open challenges in large model safety, emphasizing the need for comprehensive safety evaluations, scalable and effective defense mechanisms, and sustainable data practices. More importantly, we highlight the necessity of collective efforts from the research community and international collaboration. Our work can serve as a useful reference for researchers and practitioners, fostering the ongoing development of comprehensive defense systems and platforms to safeguard AI models.
comment: 47 pages, 3 figures, 11 tables; GitHub: https://github.com/xingjunm/Awesome-Large-Model-Safety
SpatialLLM: A Compound 3D-Informed Design towards Spatially-Intelligent Large Multimodal Models CVPR 2025
Humans naturally understand 3D spatial relationships, enabling complex reasoning like predicting collisions of vehicles from different directions. Current large multimodal models (LMMs), however, lack of this capability of 3D spatial reasoning. This limitation stems from the scarcity of 3D training data and the bias in current model designs toward 2D data. In this paper, we systematically study the impact of 3D-informed data, architecture, and training setups, introducing SpatialLLM, a large multi-modal model with advanced 3D spatial reasoning abilities. To address data limitations, we develop two types of 3D-informed training datasets: (1) 3D-informed probing data focused on object's 3D location and orientation, and (2) 3D-informed conversation data for complex spatial relationships. Notably, we are the first to curate VQA data that incorporate 3D orientation relationships on real images. Furthermore, we systematically integrate these two types of training data with the architectural and training designs of LMMs, providing a roadmap for optimal design aimed at achieving superior 3D reasoning capabilities. Our SpatialLLM advances machines toward highly capable 3D-informed reasoning, surpassing GPT-4o performance by 8.7%. Our systematic empirical design and the resulting findings offer valuable insights for future research in this direction.
comment: CVPR 2025 highlight
ChitroJera: A Regionally Relevant Visual Question Answering Dataset for Bangla ECML
Visual Question Answer (VQA) poses the problem of answering a natural language question about a visual context. Bangla, despite being a widely spoken language, is considered low-resource in the realm of VQA due to the lack of proper benchmarks, challenging models known to be performant in other languages. Furthermore, existing Bangla VQA datasets offer little regional relevance and are largely adapted from their foreign counterparts. To address these challenges, we introduce a large-scale Bangla VQA dataset, ChitroJera, totaling over 15k samples from diverse and locally relevant data sources. We assess the performance of text encoders, image encoders, multimodal models, and our novel dual-encoder models. The experiments reveal that the pre-trained dual-encoders outperform other models of their scale. We also evaluate the performance of current large vision language models (LVLMs) using prompt-based techniques, achieving the overall best performance. Given the underdeveloped state of existing datasets, we envision ChitroJera expanding the scope of Vision-Language tasks in Bangla.
comment: Accepted in ECML PKDD 2025
In the Picture: Medical Imaging Datasets, Artifacts, and their Living Review
Datasets play a critical role in medical imaging research, yet issues such as label quality, shortcuts, and metadata are often overlooked. This lack of attention may harm the generalizability of algorithms and, consequently, negatively impact patient outcomes. While existing medical imaging literature reviews mostly focus on machine learning (ML) methods, with only a few focusing on datasets for specific applications, these reviews remain static -- they are published once and not updated thereafter. This fails to account for emerging evidence, such as biases, shortcuts, and additional annotations that other researchers may contribute after the dataset is published. We refer to these newly discovered findings of datasets as research artifacts. To address this gap, we propose a living review that continuously tracks public datasets and their associated research artifacts across multiple medical imaging applications. Our approach includes a framework for the living review to monitor data documentation artifacts, and an SQL database to visualize the citation relationships between research artifact and dataset. Lastly, we discuss key considerations for creating medical imaging datasets, review best practices for data annotation, discuss the significance of shortcuts and demographic diversity, and emphasize the importance of managing datasets throughout their entire lifecycle. Our demo is publicly available at http://inthepicture.itu.dk/.
comment: ACM Conference on Fairness, Accountability, and Transparency - FAccT 2025
Erwin: A Tree-based Hierarchical Transformer for Large-scale Physical Systems ICML 2025
Large-scale physical systems defined on irregular grids pose significant scalability challenges for deep learning methods, especially in the presence of long-range interactions and multi-scale coupling. Traditional approaches that compute all pairwise interactions, such as attention, become computationally prohibitive as they scale quadratically with the number of nodes. We present Erwin, a hierarchical transformer inspired by methods from computational many-body physics, which combines the efficiency of tree-based algorithms with the expressivity of attention mechanisms. Erwin employs ball tree partitioning to organize computation, which enables linear-time attention by processing nodes in parallel within local neighborhoods of fixed size. Through progressive coarsening and refinement of the ball tree structure, complemented by a novel cross-ball interaction mechanism, it captures both fine-grained local details and global features. We demonstrate Erwin's effectiveness across multiple domains, including cosmology, molecular dynamics, PDE solving, and particle fluid dynamics, where it consistently outperforms baseline methods both in accuracy and computational efficiency.
comment: Accepted to ICML 2025. Code: https://github.com/maxxxzdn/erwin
DiffVLA: Vision-Language Guided Diffusion Planning for Autonomous Driving
Research interest in end-to-end autonomous driving has surged owing to its fully differentiable design integrating modular tasks, i.e. perception, prediction and planing, which enables optimization in pursuit of the ultimate goal. Despite the great potential of the end-to-end paradigm, existing methods suffer from several aspects including expensive BEV (bird's eye view) computation, action diversity, and sub-optimal decision in complex real-world scenarios. To address these challenges, we propose a novel hybrid sparse-dense diffusion policy, empowered by a Vision-Language Model (VLM), called Diff-VLA. We explore the sparse diffusion representation for efficient multi-modal driving behavior. Moreover, we rethink the effectiveness of VLM driving decision and improve the trajectory generation guidance through deep interaction across agent, map instances and VLM output. Our method shows superior performance in Autonomous Grand Challenge 2025 which contains challenging real and reactive synthetic scenarios. Our methods achieves 45.0 PDMS.
comment: 4pages
TextDestroyer: A Training- and Annotation-Free Diffusion Method for Destroying Anomal Text from Images
In this paper, we propose TextDestroyer, the first training- and annotation-free method for scene text destruction using a pre-trained diffusion model. Existing scene text removal models require complex annotation and retraining, and may leave faint yet recognizable text information, compromising privacy protection and content concealment. TextDestroyer addresses these issues by employing a three-stage hierarchical process to obtain accurate text masks. Our method scrambles text areas in the latent start code using a Gaussian distribution before reconstruction. During the diffusion denoising process, self-attention key and value are referenced from the original latent to restore the compromised background. Latent codes saved at each inversion step are used for replacement during reconstruction, ensuring perfect background restoration. The advantages of TextDestroyer include: (1) it eliminates labor-intensive data annotation and resource-intensive training; (2) it achieves more thorough text destruction, preventing recognizable traces; and (3) it demonstrates better generalization capabilities, performing well on both real-world scenes and generated images.
A Conformal Risk Control Framework for Granular Word Assessment and Uncertainty Calibration of CLIPScore Quality Estimates ACL 2025
This study explores current limitations of learned image captioning evaluation metrics, specifically the lack of granular assessments for errors within captions, and the reliance on single-point quality estimates without considering uncertainty. To address the limitations, we propose a simple yet effective strategy for generating and calibrating distributions of CLIPScore values. Leveraging a model-agnostic conformal risk control framework, we calibrate CLIPScore values for task-specific control variables, tackling the aforementioned limitations. Experimental results demonstrate that using conformal risk control, over score distributions produced with simple methods such as input masking, can achieve competitive performance compared to more complex approaches. Our method effectively detects erroneous words, while providing formal guarantees aligned with desired risk levels. It also improves the correlation between uncertainty estimations and prediction errors, thus enhancing the overall reliability of caption evaluation metrics.
comment: Accepted at Findings ACL 2025
RemoteSAM: Towards Segment Anything for Earth Observation
We aim to develop a robust yet flexible visual foundation model for Earth observation. It should possess strong capabilities in recognizing and localizing diverse visual targets while providing compatibility with various input-output interfaces required across different task scenarios. Current systems cannot meet these requirements, as they typically utilize task-specific architecture trained on narrow data domains with limited semantic coverage. Our study addresses these limitations from two aspects: data and modeling. We first introduce an automatic data engine that enjoys significantly better scalability compared to previous human annotation or rule-based approaches. It has enabled us to create the largest dataset of its kind to date, comprising 270K image-text-mask triplets covering an unprecedented range of diverse semantic categories and attribute specifications. Based on this data foundation, we further propose a task unification paradigm that centers around referring expression segmentation. It effectively handles a wide range of vision-centric perception tasks, including classification, detection, segmentation, grounding, etc, using a single model without any task-specific heads. Combining these innovations on data and modeling, we present RemoteSAM, a foundation model that establishes new SoTA on several earth observation perception benchmarks, outperforming other foundation models such as Falcon, GeoChat, and LHRS-Bot with significantly higher efficiency. Models and data are publicly available at https://github.com/1e12Leon/RemoteSAM.
ReelWave: Multi-Agentic Movie Sound Generation through Multimodal LLM Conversation
Current audio generation conditioned by text or video focuses on aligning audio with text/video modalities. Despite excellent alignment results, these multimodal frameworks still cannot be directly applied to compelling movie storytelling involving multiple scenes, where "on-screen" sounds require temporally-aligned audio generation, while "off-screen" sounds contribute to appropriate environment sounds accompanied by background music when applicable. Inspired by professional movie production, this paper proposes a multi-agentic framework for audio generation supervised by an autonomous Sound Director agent, engaging multi-turn conversations with other agents for on-screen and off-screen sound generation through multimodal LLM. To address on-screen sound generation, after detecting any talking humans in videos, we capture semantically and temporally synchronized sound by training a prediction model that forecasts interpretable, time-varying audio control signals: loudness, pitch, and timbre, which are used by a Foley Artist agent to condition a cross-attention module in the sound generation. The Foley Artist works cooperatively with the Composer and Voice Actor agents, and together they autonomously generate off-screen sound to complement the overall production. Each agent takes on specific roles similar to those of a movie production team. To temporally ground audio language models, in ReelWave, text/video conditions are decomposed into atomic, specific sound generation instructions synchronized with visuals when applicable. Consequently, our framework can generate rich and relevant audio content conditioned on video clips extracted from movies.
comment: Project page: https://vincent2311.github.io/ReelWave_demo
MultiFlow: A unified deep learning framework for multi-vessel classification, segmentation and clustering of phase-contrast MRI validated on a multi-site single ventricle patient cohort
We present a deep learning framework with two models for automated segmentation and large-scale flow phenotyping in a registry of single-ventricle patients. MultiFlowSeg simultaneously classifies and segments five key vessels, left and right pulmonary arteries, aorta, superior vena cava, and inferior vena cava, from velocity encoded phase-contrast magnetic resonance (PCMR) data. Trained on 260 CMR exams (5 PCMR scans per exam), it achieved an average Dice score of 0.91 on 50 unseen test cases. The method was then integrated into an automated pipeline where it processed over 5,500 registry exams without human assistance, in exams with all 5 vessels it achieved 98% classification and 90% segmentation accuracy. Flow curves from successful segmentations were used to train MultiFlowDTC, which applied deep temporal clustering to identify distinct flow phenotypes. Survival analysis revealed distinct phenotypes were significantly associated with increased risk of death/transplantation and liver disease, demonstrating the potential of the framework.
comment: 6 Figures
MSDNet: Multi-Scale Decoder for Few-Shot Semantic Segmentation via Transformer-Guided Prototyping
Few-shot Semantic Segmentation addresses the challenge of segmenting objects in query images with only a handful of annotated examples. However, many previous state-of-the-art methods either have to discard intricate local semantic features or suffer from high computational complexity. To address these challenges, we propose a new Few-shot Semantic Segmentation framework based on the Transformer architecture. Our approach introduces the spatial transformer decoder and the contextual mask generation module to improve the relational understanding between support and query images. Moreover, we introduce a multi scale decoder to refine the segmentation mask by incorporating features from different resolutions in a hierarchical manner. Additionally, our approach integrates global features from intermediate encoder stages to improve contextual understanding, while maintaining a lightweight structure to reduce complexity. This balance between performance and efficiency enables our method to achieve competitive results on benchmark datasets such as PASCAL-5^i and COCO-20^i in both 1-shot and 5-shot settings. Notably, our model with only 1.5 million parameters demonstrates competitive performance while overcoming limitations of existing methodologies.
Contrastive Alignment with Semantic Gap-Aware Corrections in Text-Video Retrieval
Recent advances in text-video retrieval have been largely driven by contrastive learning frameworks. However, existing methods overlook a key source of optimization tension: the separation between text and video distributions in the representation space (referred to as the modality gap), and the prevalence of false negatives in batch sampling. These factors lead to conflicting gradients under the InfoNCE loss, impeding stable alignment. To mitigate this, we propose GARE, a Gap-Aware Retrieval framework that introduces a learnable, pair-specific increment Delta_ij between text t_i and video v_j to offload the tension from the global anchor representation. We first derive the ideal form of Delta_ij via a coupled multivariate first-order Taylor approximation of the InfoNCE loss under a trust-region constraint, revealing it as a mechanism for resolving gradient conflicts by guiding updates along a locally optimal descent direction. Due to the high cost of directly computing Delta_ij, we introduce a lightweight neural module conditioned on the semantic gap between each video-text pair, enabling structure-aware correction guided by gradient supervision. To further stabilize learning and promote interpretability, we regularize Delta using three components: a trust-region constraint to prevent oscillation, a directional diversity term to promote semantic coverage, and an information bottleneck to limit redundancy. Experiments across four retrieval benchmarks show that GARE consistently improves alignment accuracy and robustness to noisy supervision, confirming the effectiveness of gap-aware tension mitigation.
SwiftEdit: Lightning Fast Text-Guided Image Editing via One-Step Diffusion
Recent advances in text-guided image editing enable users to perform image edits through simple text inputs, leveraging the extensive priors of multi-step diffusion-based text-to-image models. However, these methods often fall short of the speed demands required for real-world and on-device applications due to the costly multi-step inversion and sampling process involved. In response to this, we introduce SwiftEdit, a simple yet highly efficient editing tool that achieve instant text-guided image editing (in 0.23s). The advancement of SwiftEdit lies in its two novel contributions: a one-step inversion framework that enables one-step image reconstruction via inversion and a mask-guided editing technique with our proposed attention rescaling mechanism to perform localized image editing. Extensive experiments are provided to demonstrate the effectiveness and efficiency of SwiftEdit. In particular, SwiftEdit enables instant text-guided image editing, which is extremely faster than previous multi-step methods (at least 50 times faster) while maintain a competitive performance in editing results. Our project page is at: https://swift-edit.github.io/
comment: 17 pages, 15 figures
Improving Medical Large Vision-Language Models with Abnormal-Aware Feedback
Existing Medical Large Vision-Language Models (Med-LVLMs), encapsulating extensive medical knowledge, demonstrate excellent capabilities in understanding medical images. However, there remain challenges in visual localization in medical images, which is crucial for abnormality detection and interpretation. To address these issues, we propose a novel UMed-LVLM designed to unveil medical abnormalities. Specifically, we collect a Medical Abnormalities Unveiling (MAU) dataset and propose a two-stage training method for UMed-LVLM training. To collect MAU dataset, we propose a prompt method utilizing the GPT-4V to generate diagnoses based on identified abnormal areas in medical images. Moreover, the two-stage training method includes Abnormal-Aware Instruction Tuning and Abnormal-Aware Rewarding, comprising Relevance Reward, Abnormal Localization Reward and Vision Relevance Reward. Experimental results demonstrate that our UMed-LVLM significantly outperforms existing Med-LVLMs in identifying and understanding medical abnormalities, achieving a 58% improvement over the baseline. In addition, this work shows that enhancing the abnormality detection capabilities of Med-LVLMs significantly improves their understanding of medical images and generalization capability.
comment: 16 pages
CAP-Net: A Unified Network for 6D Pose and Size Estimation of Categorical Articulated Parts from a Single RGB-D Image CVPR 2025
This paper tackles category-level pose estimation of articulated objects in robotic manipulation tasks and introduces a new benchmark dataset. While recent methods estimate part poses and sizes at the category level, they often rely on geometric cues and complex multi-stage pipelines that first segment parts from the point cloud, followed by Normalized Part Coordinate Space (NPCS) estimation for 6D poses. These approaches overlook dense semantic cues from RGB images, leading to suboptimal accuracy, particularly for objects with small parts. To address these limitations, we propose a single-stage Network, CAP-Net, for estimating the 6D poses and sizes of Categorical Articulated Parts. This method combines RGB-D features to generate instance segmentation and NPCS representations for each part in an end-to-end manner. CAP-Net uses a unified network to simultaneously predict point-wise class labels, centroid offsets, and NPCS maps. A clustering algorithm then groups points of the same predicted class based on their estimated centroid distances to isolate each part. Finally, the NPCS region of each part is aligned with the point cloud to recover its final pose and size. To bridge the sim-to-real domain gap, we introduce the RGBD-Art dataset, the largest RGB-D articulated dataset to date, featuring photorealistic RGB images and depth noise simulated from real sensors. Experimental evaluations on the RGBD-Art dataset demonstrate that our method significantly outperforms the state-of-the-art approach. Real-world deployments of our model in robotic tasks underscore its robustness and exceptional sim-to-real transfer capabilities, confirming its substantial practical utility. Our dataset, code and pre-trained models are available on the project page.
comment: To appear in CVPR 2025 (Highlight)
DIS-CO: Discovering Copyrighted Content in VLMs Training Data
How can we verify whether copyrighted content was used to train a large vision-language model (VLM) without direct access to its training data? Motivated by the hypothesis that a VLM is able to recognize images from its training corpus, we propose DIS-CO, a novel approach to infer the inclusion of copyrighted content during the model's development. By repeatedly querying a VLM with specific frames from targeted copyrighted material, DIS-CO extracts the content's identity through free-form text completions. To assess its effectiveness, we introduce MovieTection, a benchmark comprising 14,000 frames paired with detailed captions, drawn from films released both before and after a model's training cutoff. Our results show that DIS-CO significantly improves detection performance, nearly doubling the average AUC of the best prior method on models with logits available. Our findings also highlight a broader concern: all tested models appear to have been exposed to some extent to copyrighted content. Our code and data are available at https://github.com/avduarte333/DIS-CO
OmniCaptioner: One Captioner to Rule Them All
We propose OmniCaptioner, a versatile visual captioning framework for generating fine-grained textual descriptions across a wide variety of visual domains. Unlike prior methods limited to specific image types (e.g., natural images or geometric visuals), our framework provides a unified solution for captioning natural images, visual text (e.g., posters, UIs, textbooks), and structured visuals (e.g., documents, tables, charts). By converting low-level pixel information into semantically rich textual representations, our framework bridges the gap between visual and textual modalities. Our results highlight three key advantages: (i) Enhanced Visual Reasoning with LLMs, where long-context captions of visual modalities empower LLMs, particularly the DeepSeek-R1 series, to reason effectively in multimodal scenarios; (ii) Improved Image Generation, where detailed captions improve tasks like text-to-image generation and image transformation; and (iii) Efficient Supervised Fine-Tuning (SFT), which enables faster convergence with less data. We believe the versatility and adaptability of OmniCaptioner can offer a new perspective for bridging the gap between language and visual modalities.
comment: More visualizations on Homepage: https://alpha-innovator.github.io/OmniCaptioner-project-page and Official code: https://github.com/Alpha-Innovator/OmniCaptioner
Parameter Efficient Fine-Tuning of Segment Anything Model for Biomedical Imaging
Segmentation is an important analysis task for biomedical images, enabling the study of individual organelles, cells or organs. Deep learning has massively improved segmentation methods, but challenges remain in generalization to new conditions, requiring costly data annotation. Vision foundation models, such as Segment Anything Model (SAM), address this issue through improved generalization. However, these models still require finetuning on annotated data, although with less annotations, to achieve optimal results for new conditions. As a downside, they require more computational resources. This makes parameter-efficient finetuning (PEFT) relevant. We contribute the first comprehensive study of PEFT for SAM applied to biomedical images. We find that the placement of PEFT layers is more important for efficiency than the type of layer for vision transformers and we provide a recipe for resource-efficient finetuning. Our code is publicly available at https://github.com/computational-cell-analytics/peft-sam.
comment: Published in MIDL 2025
Keypoint-Integrated Instruction-Following Data Generation for Enhanced Human Pose and Action Understanding in Multimodal Models
Current vision-language multimodal models are well-adapted for general visual understanding tasks. However, they perform inadequately when handling complex visual tasks related to human poses and actions due to the lack of specialized vision-language instruction-following data. We introduce a method for generating such data by integrating human keypoints with traditional visual features such as captions and bounding boxes, enabling more precise understanding of human-centric scenes. Our approach constructs a dataset comprising 200,328 samples tailored to fine-tune models for human-centric tasks, focusing on three areas: conversation, detailed description, and complex reasoning. We establish a benchmark called Human Pose and Action Understanding Benchmark (HPAUB) to assess model performance on human pose and action understanding. We fine-tune the LLaVA-1.5-7B model using this dataset and evaluate it on the benchmark, achieving significant improvements. Experimental results show an overall improvement of 21.18% compared to the original LLaVA-1.5-7B model. These findings highlight the effectiveness of keypoint-integrated data in enhancing multimodal models. Code is available at https://github.com/Ody-trek/Keypoint-Instruction-Tuning.
comment: Accepted at the International Conference on Advanced Concepts for Intelligent Vision Systems (ACIVS 2025)
Jigsaw-R1: A Study of Rule-based Visual Reinforcement Learning with Jigsaw Puzzles
The application of rule-based reinforcement learning (RL) to multimodal large language models (MLLMs) introduces unique challenges and potential deviations from findings in text-only domains, particularly for perception-heavy tasks. This paper provides a comprehensive study of rule-based visual RL, using jigsaw puzzles as a structured experimental framework. Jigsaw puzzles offer inherent ground truth, adjustable difficulty, and demand complex decision-making, making them ideal for this study. Our research reveals several key findings: \textit{Firstly,} we find that MLLMs, initially performing near to random guessing on the simplest jigsaw puzzles, achieve near-perfect accuracy and generalize to complex, unseen configurations through fine-tuning. \textit{Secondly,} training on jigsaw puzzles can induce generalization to other visual tasks, with effectiveness tied to specific task configurations. \textit{Thirdly,} MLLMs can learn and generalize with or without explicit reasoning, though open-source models often favor direct answering. Consequently, even when trained for step-by-step reasoning, they can ignore the thinking process in deriving the final answer. \textit{Fourthly,} we observe that complex reasoning patterns appear to be pre-existing rather than emergent, with their frequency increasing alongside training and task difficulty. \textit{Finally,} our results demonstrate that RL exhibits more effective generalization than Supervised Fine-Tuning (SFT), and an initial SFT cold start phase can hinder subsequent RL optimization. Although these observations are based on jigsaw puzzles and may vary across other visual tasks, this research contributes a valuable piece of jigsaw to the larger puzzle of collective understanding rule-based visual RL and its potential in multimodal learning. The code is available at: https://github.com/zifuwanggg/Jigsaw-R1.
Stochastic Layer-Wise Shuffle for Improving Vision Mamba Training ICML25
Recent Vision Mamba (Vim) models exhibit nearly linear complexity in sequence length, making them highly attractive for processing visual data. However, the training methodologies and their potential are still not sufficiently explored. In this paper, we investigate strategies for Vim and propose Stochastic Layer-Wise Shuffle (SLWS), a novel regularization method that can effectively improve the Vim training. Without architectural modifications, this approach enables the non-hierarchical Vim to get leading performance on ImageNet-1K compared with the similar type counterparts. Our method operates through four simple steps per layer: probability allocation to assign layer-dependent shuffle rates, operation sampling via Bernoulli trials, sequence shuffling of input tokens, and order restoration of outputs. SLWS distinguishes itself through three principles: \textit{(1) Plug-and-play:} No architectural modifications are needed, and it is deactivated during inference. \textit{(2) Simple but effective:} The four-step process introduces only random permutations and negligible overhead. \textit{(3) Intuitive design:} Shuffling probabilities grow linearly with layer depth, aligning with the hierarchical semantic abstraction in vision models. Our work underscores the importance of tailored training strategies for Vim models and provides a helpful way to explore their scalability.
comment: accpeted to ICML25
PixFoundation: Are We Heading in the Right Direction with Pixel-level Vision Foundation Models?
Multiple works have emerged to push the boundaries on multi-modal large language models (MLLMs) towards pixel-level understanding. The current trend in pixel-level MLLMs is to train with pixel-level grounding supervision on large-scale labelled data with specialized decoders for the segmentation task. However, we show that such MLLMs when evaluated on recent challenging vision-centric benchmarks, exhibit a weak ability in visual question answering (VQA). Surprisingly, some of these methods even downgrade the grounding ability of MLLMs that were never trained with such pixel-level supervision. In this work, we propose two novel challenging benchmarks with paired evaluation for both VQA and grounding. We show that MLLMs without pixel-level grounding supervision can outperform the state of the art in such tasks. Our paired benchmarks and evaluation enable additional analysis on the reasons for failure with respect to VQA and/or grounding. Furthermore, we propose simple baselines to extract the grounding information that can be plugged into any MLLM, which we call PixFoundation. More importantly, we study the research question of "When does grounding emerge in MLLMs that are not trained with pixel-level grounding supervision?" We show that grounding can coincide with object parts, its location, appearance, context or state, where we show 27-45% of the examples in both benchmarks exhibit this phenomenon. Our code and datasets will be made publicly available and some are in the supplemental.
comment: Under Review
ARFlow: Human Action-Reaction Flow Matching with Physical Guidance
Human action-reaction synthesis, a fundamental challenge in modeling causal human interactions, plays a critical role in applications ranging from virtual reality to social robotics. While diffusion-based models have demonstrated promising performance, they exhibit two key limitations for interaction synthesis: reliance on complex noise-to-reaction generators with intricate conditional mechanisms, and frequent physical violations in generated motions. To address these issues, we propose Action-Reaction Flow Matching (ARFlow), a novel framework that establishes direct action-to-reaction mappings, eliminating the need for complex conditional mechanisms. Our approach introduces a physical guidance mechanism specifically designed for Flow Matching (FM) that effectively prevents body penetration artifacts during sampling. Moreover, we discover the bias of traditional flow matching sampling algorithm and employ a reprojection method to revise the sampling direction of FM. To further enhance the reaction diversity, we incorporate randomness into the sampling process. Extensive experiments on NTU120, Chi3D and InterHuman datasets demonstrate that ARFlow not only outperforms existing methods in terms of Fr\'echet Inception Distance and motion diversity but also significantly reduces body collisions, as measured by our new Intersection Volume and Intersection Frequency metrics.
comment: Project Page: https://arflow2025.github.io/
RePaViT: Scalable Vision Transformer Acceleration via Structural Reparameterization on Feedforward Network Layers ICML2025
We reveal that feedforward network (FFN) layers, rather than attention layers, are the primary contributors to Vision Transformer (ViT) inference latency, with their impact signifying as model size increases. This finding highlights a critical opportunity for optimizing the efficiency of large-scale ViTs by focusing on FFN layers. In this work, we propose a novel channel idle mechanism that facilitates post-training structural reparameterization for efficient FFN layers during testing. Specifically, a set of feature channels remains idle and bypasses the nonlinear activation function in each FFN layer, thereby forming a linear pathway that enables structural reparameterization during inference. This mechanism results in a family of ReParameterizable Vision Transformers (RePaViTs), which achieve remarkable latency reductions with acceptable sacrifices (sometimes gains) in accuracy across various ViTs. The benefits of our method scale consistently with model sizes, demonstrating greater speed improvements and progressively narrowing accuracy gaps or even higher accuracies on larger models. In particular, RePa-ViT-Large and RePa-ViT-Huge enjoy 66.8% and 68.7% speed-ups with +1.7% and +1.1% higher top-1 accuracies under the same training strategy, respectively. RePaViT is the first to employ structural reparameterization on FFN layers to expedite ViTs to our best knowledge, and we believe that it represents an auspicious direction for efficient ViTs. Source code is available at https://github.com/Ackesnal/RePaViT.
comment: Accepted to ICML2025
A Survey on Event-driven 3D Reconstruction: Development under Different Categories
Event cameras have gained increasing attention for 3D reconstruction due to their high temporal resolution, low latency, and high dynamic range. They capture per-pixel brightness changes asynchronously, allowing accurate reconstruction under fast motion and challenging lighting conditions. In this survey, we provide a comprehensive review of event-driven 3D reconstruction methods, including stereo, monocular, and multimodal systems. We further categorize recent developments based on geometric, learning-based, and hybrid approaches. Emerging trends, such as neural radiance fields and 3D Gaussian splatting with event data, are also covered. The related works are structured chronologically to illustrate the innovations and progression within the field. To support future research, we also highlight key research gaps and future research directions in dataset, experiment, evaluation, event representation, etc.
comment: We have decided not to submit this article and plan to withdraw it from public display. The content of this article will be presented in a more comprehensive form in another work
RADAR: Enhancing Radiology Report Generation with Supplementary Knowledge Injection ACL 2025
Large language models (LLMs) have demonstrated remarkable capabilities in various domains, including radiology report generation. Previous approaches have attempted to utilize multimodal LLMs for this task, enhancing their performance through the integration of domain-specific knowledge retrieval. However, these approaches often overlook the knowledge already embedded within the LLMs, leading to redundant information integration. To address this limitation, we propose Radar, a framework for enhancing radiology report generation with supplementary knowledge injection. Radar improves report generation by systematically leveraging both the internal knowledge of an LLM and externally retrieved information. Specifically, it first extracts the model's acquired knowledge that aligns with expert image-based classification outputs. It then retrieves relevant supplementary knowledge to further enrich this information. Finally, by aggregating both sources, Radar generates more accurate and informative radiology reports. Extensive experiments on MIMIC-CXR, CheXpert-Plus, and IU X-ray demonstrate that our model outperforms state-of-the-art LLMs in both language quality and clinical accuracy.
comment: Accepted to ACL 2025 main
VL-RewardBench: A Challenging Benchmark for Vision-Language Generative Reward Models CVPR 2025
Vision-language generative reward models (VL-GenRMs) play a crucial role in aligning and evaluating multimodal AI systems, yet their own evaluation remains under-explored. Current assessment methods primarily rely on AI-annotated preference labels from traditional VL tasks, which can introduce biases and often fail to effectively challenge state-of-the-art models. To address these limitations, we introduce VL-RewardBench, a comprehensive benchmark spanning general multimodal queries, visual hallucination detection, and complex reasoning tasks. Through our AI-assisted annotation pipeline that combines sample selection with human verification, we curate 1,250 high-quality examples specifically designed to probe VL-GenRMs limitations. Comprehensive evaluation across 16 leading large vision-language models demonstrates VL-RewardBench's effectiveness as a challenging testbed, where even GPT-4o achieves only 65.4% accuracy, and state-of-the-art open-source models such as Qwen2-VL-72B, struggle to surpass random-guessing. Importantly, performance on VL-RewardBench strongly correlates (Pearson's r $>$ 0.9) with MMMU-Pro accuracy using Best-of-N sampling with VL-GenRMs. Analysis experiments uncover three critical insights for improving VL-GenRMs: (i) models predominantly fail at basic visual perception tasks rather than reasoning tasks; (ii) inference-time scaling benefits vary dramatically by model capacity; and (iii) training VL-GenRMs to learn to judge substantially boosts judgment capability (+14.7% accuracy for a 7B VL-GenRM). We believe VL-RewardBench along with the experimental insights will become a valuable resource for advancing VL-GenRMs.
comment: CVPR 2025 Camera Ready Version. Project page: https://vl-rewardbench.github.io
Prisma: An Open Source Toolkit for Mechanistic Interpretability in Vision and Video CVPR
Robust tooling and publicly available pre-trained models have helped drive recent advances in mechanistic interpretability for language models. However, similar progress in vision mechanistic interpretability has been hindered by the lack of accessible frameworks and pre-trained weights. We present Prisma (Access the codebase here: https://github.com/Prisma-Multimodal/ViT-Prisma), an open-source framework designed to accelerate vision mechanistic interpretability research, providing a unified toolkit for accessing 75+ vision and video transformers; support for sparse autoencoder (SAE), transcoder, and crosscoder training; a suite of 80+ pre-trained SAE weights; activation caching, circuit analysis tools, and visualization tools; and educational resources. Our analysis reveals surprising findings, including that effective vision SAEs can exhibit substantially lower sparsity patterns than language SAEs, and that in some instances, SAE reconstructions can decrease model loss. Prisma enables new research directions for understanding vision model internals while lowering barriers to entry in this emerging field.
comment: 4 pages, 3 figures, 9 tables. Oral and Tutorial at the CVPR Mechanistic Interpretability for Vision (MIV) Workshop
Distractor-free Generalizable 3D Gaussian Splatting
We present DGGS, a novel framework that addresses the previously unexplored challenge: $\textbf{Distractor-free Generalizable 3D Gaussian Splatting}$ (3DGS). It mitigates 3D inconsistency and training instability caused by distractor data in the cross-scenes generalizable train setting while enabling feedforward inference for 3DGS and distractor masks from references in the unseen scenes. To achieve these objectives, DGGS proposes a scene-agnostic reference-based mask prediction and refinement module during the training phase, effectively eliminating the impact of distractor on training stability. Moreover, we combat distractor-induced artifacts and holes at inference time through a novel two-stage inference framework for references scoring and re-selection, complemented by a distractor pruning mechanism that further removes residual distractor 3DGS-primitive influences. Extensive feedforward experiments on the real and our synthetic data show DGGS's reconstruction capability when dealing with novel distractor scenes. Moreover, our generalizable mask prediction even achieves an accuracy superior to existing scene-specific training methods. Homepage is https://github.com/bbbbby-99/DGGS.
Urban Safety Perception Assessments via Integrating Multimodal Large Language Models with Street View Images
Measuring urban safety perception is an important and complex task that traditionally relies heavily on human resources. This process often involves extensive field surveys, manual data collection, and subjective assessments, which can be time-consuming, costly, and sometimes inconsistent. Street View Images (SVIs), along with deep learning methods, provide a way to realize large-scale urban safety detection. However, achieving this goal often requires extensive human annotation to train safety ranking models, and the architectural differences between cities hinder the transferability of these models. Thus, a fully automated method for conducting safety evaluations is essential. Recent advances in multimodal large language models (MLLMs) have demonstrated powerful reasoning and analytical capabilities. Cutting-edge models, e.g., GPT-4 have shown surprising performance in many tasks. We employed these models for urban safety ranking on a human-annotated anchor set and validated that the results from MLLMs align closely with human perceptions. Additionally, we proposed a method based on the pre-trained Contrastive Language-Image Pre-training (CLIP) feature and K-Nearest Neighbors (K-NN) retrieval to quickly assess the safety index of the entire city. Experimental results show that our method outperforms existing training needed deep learning approaches, achieving efficient and accurate urban safety evaluations. The proposed automation for urban safety perception assessment is a valuable tool for city planners, policymakers, and researchers aiming to improve urban environments.
comment: 15 pages, 10 figures
FactCheXcker: Mitigating Measurement Hallucinations in Chest X-ray Report Generation Models CVPR 2025
Medical vision-language models often struggle with generating accurate quantitative measurements in radiology reports, leading to hallucinations that undermine clinical reliability. We introduce FactCheXcker, a modular framework that de-hallucinates radiology report measurements by leveraging an improved query-code-update paradigm. Specifically, FactCheXcker employs specialized modules and the code generation capabilities of large language models to solve measurement queries generated based on the original report. After extracting measurable findings, the results are incorporated into an updated report. We evaluate FactCheXcker on endotracheal tube placement, which accounts for an average of 78% of report measurements, using the MIMIC-CXR dataset and 11 medical report-generation models. Our results show that FactCheXcker significantly reduces hallucinations, improves measurement precision, and maintains the quality of the original reports. Specifically, FactCheXcker improves the performance of 10/11 models and achieves an average improvement of 135.0% in reducing measurement hallucinations measured by mean absolute error. Code is available at https://github.com/rajpurkarlab/FactCheXcker.
comment: Accepted to CVPR 2025
MIRAGE: Assessing Hallucination in Multimodal Reasoning Chains of MLLM
Multimodal hallucination in multimodal large language models (MLLMs) restricts the correctness of MLLMs. However, multimodal hallucinations are multi-sourced and arise from diverse causes. Existing benchmarks fail to adequately distinguish between perception-induced hallucinations and reasoning-induced hallucinations. This failure constitutes a significant issue and hinders the diagnosis of multimodal reasoning failures within MLLMs. To address this, we propose the {\dataset} benchmark, which isolates reasoning hallucinations by constructing questions where input images are correctly perceived by MLLMs yet reasoning errors persist. {\dataset} introduces multi-granular evaluation metrics: accuracy, factuality, and LLMs hallucination score for hallucination quantification. Our analysis reveals that (1) the model scale, data scale, and training stages significantly affect the degree of logical, fabrication, and factual hallucinations; (2) current MLLMs show no effective improvement on spatial hallucinations caused by misinterpreted spatial relationships, indicating their limited visual reasoning capabilities; and (3) question types correlate with distinct hallucination patterns, highlighting targeted challenges and potential mitigation strategies. To address these challenges, we propose {\method}, a method that combines curriculum reinforcement fine-tuning to encourage models to generate logic-consistent reasoning chains by stepwise reducing learning difficulty, and collaborative hint inference to reduce reasoning complexity. {\method} establishes a baseline on {\dataset}, and reduces the logical hallucinations in original base models.
Flex3D: Feed-Forward 3D Generation with Flexible Reconstruction Model and Input View Curation ICML 25
Generating high-quality 3D content from text, single images, or sparse view images remains a challenging task with broad applications. Existing methods typically employ multi-view diffusion models to synthesize multi-view images, followed by a feed-forward process for 3D reconstruction. However, these approaches are often constrained by a small and fixed number of input views, limiting their ability to capture diverse viewpoints and, even worse, leading to suboptimal generation results if the synthesized views are of poor quality. To address these limitations, we propose Flex3D, a novel two-stage framework capable of leveraging an arbitrary number of high-quality input views. The first stage consists of a candidate view generation and curation pipeline. We employ a fine-tuned multi-view image diffusion model and a video diffusion model to generate a pool of candidate views, enabling a rich representation of the target 3D object. Subsequently, a view selection pipeline filters these views based on quality and consistency, ensuring that only the high-quality and reliable views are used for reconstruction. In the second stage, the curated views are fed into a Flexible Reconstruction Model (FlexRM), built upon a transformer architecture that can effectively process an arbitrary number of inputs. FlemRM directly outputs 3D Gaussian points leveraging a tri-plane representation, enabling efficient and detailed 3D generation. Through extensive exploration of design and training strategies, we optimize FlexRM to achieve superior performance in both reconstruction and generation tasks. Our results demonstrate that Flex3D achieves state-of-the-art performance, with a user study winning rate of over 92% in 3D generation tasks when compared to several of the latest feed-forward 3D generative models.
comment: ICML 25. Project page: https://junlinhan.github.io/projects/flex3d/
Generating by Understanding: Neural Visual Generation with Logical Symbol Groundings KDD 2025
Making neural visual generative models controllable by logical reasoning systems is promising for improving faithfulness, transparency, and generalizability. We propose the Abductive visual Generation (AbdGen) approach to build such logic-integrated models. A vector-quantized symbol grounding mechanism and the corresponding disentanglement training method are introduced to enhance the controllability of logical symbols over generation. Furthermore, we propose two logical abduction methods to make our approach require few labeled training data and support the induction of latent logical generative rules from data. We experimentally show that our approach can be utilized to integrate various neural generative models with logical reasoning systems, by both learning from scratch or utilizing pre-trained models directly. The code is released at https://github.com/future-item/AbdGen.
comment: KDD 2025 research track paper
NUC-Net: Non-uniform Cylindrical Partition Network for Efficient LiDAR Semantic Segmentation
LiDAR semantic segmentation plays a vital role in autonomous driving. Existing voxel-based methods for LiDAR semantic segmentation apply uniform partition to the 3D LiDAR point cloud to form a structured representation based on cartesian/cylindrical coordinates. Although these methods show impressive performance, the drawback of existing voxel-based methods remains in two aspects: (1) it requires a large enough input voxel resolution, which brings a large amount of computation cost and memory consumption. (2) it does not well handle the unbalanced point distribution of LiDAR point cloud. In this paper, we propose a non-uniform cylindrical partition network named NUC-Net to tackle the above challenges. Specifically, we propose the Arithmetic Progression of Interval (API) method to non-uniformly partition the radial axis and generate the voxel representation which is representative and efficient. Moreover, we propose a non-uniform multi-scale aggregation method to improve contextual information. Our method achieves state-of-the-art performance on SemanticKITTI and nuScenes datasets with much faster speed and much less training time. And our method can be a general component for LiDAR semantic segmentation, which significantly improves both the accuracy and efficiency of the uniform counterpart by $4 \times$ training faster and $2 \times$ GPU memory reduction and $3 \times$ inference speedup. We further provide theoretical analysis towards understanding why NUC is effective and how point distribution affects performance. Code is available at \href{https://github.com/alanWXZ/NUC-Net}{https://github.com/alanWXZ/NUC-Net}.
comment: Accepted at TCSVT in 2025.Code available at https://github.com/alanWXZ/NUC-Net
Mixed-View Panorama Synthesis using Geospatially Guided Diffusion
We introduce the task of mixed-view panorama synthesis, where the goal is to synthesize a novel panorama given a small set of input panoramas and a satellite image of the area. This contrasts with previous work which only uses input panoramas (same-view synthesis), or an input satellite image (cross-view synthesis). We argue that the mixed-view setting is the most natural to support panorama synthesis for arbitrary locations worldwide. A critical challenge is that the spatial coverage of panoramas is uneven, with few panoramas available in many regions of the world. We introduce an approach that utilizes diffusion-based modeling and an attention-based architecture for extracting information from all available input imagery. Experimental results demonstrate the effectiveness of our proposed method. In particular, our model can handle scenarios when the available panoramas are sparse or far from the location of the panorama we are attempting to synthesize. The project page is available at https://mixed-view.github.io
comment: Accepted by Transactions on Machine Learning Research (TMLR) Project page: https://mixed-view.github.io
Probing Equivariance and Symmetry Breaking in Convolutional Networks
In this work, we explore the trade-offs of explicit structural priors, particularly group equivariance. We address this through theoretical analysis and a comprehensive empirical study. To enable controlled and fair comparisons, we introduce \texttt{Rapidash}, a unified group convolutional architecture that allows for different variants of equivariant and non-equivariant models. Our results suggest that more constrained equivariant models outperform less constrained alternatives when aligned with the geometry of the task, and increasing representation capacity does not fully eliminate performance gaps. We see improved performance of models with equivariance and symmetry-breaking through tasks like segmentation, regression, and generation across diverse datasets. Explicit \textit{symmetry breaking} via geometric reference frames consistently improves performance, while \textit{breaking equivariance} through geometric input features can be helpful when aligned with task geometry. Our results provide task-specific performance trends that offer a more nuanced way for model selection.
comment: 27 pages, 7 figures
RAFT: Robust Augmentation of FeaTures for Image Segmentation
Image segmentation is a powerful computer vision technique for scene understanding. However, real-world deployment is stymied by the need for high-quality, meticulously labeled datasets. Synthetic data provides high-quality labels while reducing the need for manual data collection and annotation. However, deep neural networks trained on synthetic data often face the Syn2Real problem, leading to poor performance in real-world deployments. To mitigate the aforementioned gap in image segmentation, we propose RAFT, a novel framework for adapting image segmentation models using minimal labeled real-world data through data and feature augmentations, as well as active learning. To validate RAFT, we perform experiments on the synthetic-to-real "SYNTHIA->Cityscapes" and "GTAV->Cityscapes" benchmarks. We managed to surpass the previous state of the art, HALO. SYNTHIA->Cityscapes experiences an improvement in mIoU* upon domain adaptation of 2.1%/79.9%, and GTAV->Cityscapes experiences a 0.4%/78.2% improvement in mIoU. Furthermore, we test our approach on the real-to-real benchmark of "Cityscapes->ACDC", and again surpass HALO, with a gain in mIoU upon adaptation of 1.3%/73.2%. Finally, we examine the effect of the allocated annotation budget and various components of RAFT upon the final transfer mIoU.
The Dual Power of Interpretable Token Embeddings: Jailbreaking Attacks and Defenses for Diffusion Model Unlearning
Despite the remarkable generation capabilities of diffusion models, recent studies have shown that they can memorize and create harmful content when given specific text prompts. Although fine-tuning approaches have been developed to mitigate this issue by unlearning harmful concepts, these methods can be easily circumvented through jailbreaking attacks. This implies that the harmful concept has not been fully erased from the model. However, existing jailbreaking attack methods, while effective, lack interpretability regarding why unlearned models still retain the concept, thereby hindering the development of defense strategies. In this work, we address these limitations by proposing an attack method that learns an orthogonal set of interpretable attack token embeddings. The attack token embeddings can be decomposed into human-interpretable textual elements, revealing that unlearned models still retain the target concept through implicit textual components. Furthermore, these attack token embeddings are powerful and transferable across text prompts, initial noises, and unlearned models, emphasizing that unlearned models are more vulnerable than expected. Finally, building on the insights from our interpretable attack, we develop a defense method to protect unlearned models against both our proposed and existing jailbreaking attacks. Extensive experimental results demonstrate the effectiveness of our attack and defense strategies.
GD doesn't make the cut: Three ways that non-differentiability affects neural network training
This paper critically examines the fundamental distinctions between gradient methods applied to non-differentiable functions (NGDMs) and classical gradient descents (GDs) for differentiable functions, revealing significant gaps in current deep learning optimization theory. We demonstrate that NGDMs exhibit markedly different convergence properties compared to GDs, strongly challenging the applicability of extensive neural network convergence literature based on $L-smoothness$ to non-smooth neural networks. Our analysis reveals paradoxical behavior of NDGM solutions for $L_{1}$-regularized problems, where increasing regularization counterintuitively leads to larger $L_{1}$ norms of optimal solutions. This finding calls into question widely adopted $L_{1}$ penalization techniques for network pruning. We further challenge the common assumption that optimization algorithms like RMSProp behave similarly in differentiable and non-differentiable contexts. Expanding on the Edge of Stability phenomenon, we demonstrate its occurrence in a broader class of functions, including Lipschitz continuous convex differentiable functions. This finding raises important questions about its relevance and interpretation in non-convex, non-differentiable neural networks, particularly those using ReLU activations. Our work identifies critical misunderstandings of NDGMs in influential literature, stemming from an overreliance on strong smoothness assumptions. These findings necessitate a reevaluation of optimization dynamics in deep learning, emphasizing the crucial need for more nuanced theoretical foundations in analyzing these complex systems.
comment: Fixing more proofs
Fact-Checking of AI-Generated Reports
With advances in generative artificial intelligence (AI), it is now possible to produce realistic-looking automated reports for preliminary reads of radiology images. This can expedite clinical workflows, improve accuracy and reduce overall costs. However, it is also well-known that such models often hallucinate, leading to false findings in the generated reports. In this paper, we propose a new method of fact-checking of AI-generated reports using their associated images. Specifically, the developed examiner differentiates real and fake sentences in reports by learning the association between an image and sentences describing real or potentially fake findings. To train such an examiner, we first created a new dataset of fake reports by perturbing the findings in the original ground truth radiology reports associated with images. Text encodings of real and fake sentences drawn from these reports are then paired with image encodings to learn the mapping to real/fake labels. The utility of such an examiner is demonstrated for verifying automatically generated reports by detecting and removing fake sentences. Future generative AI approaches can use the resulting tool to validate their reports leading to a more responsible use of AI in expediting clinical workflows.
comment: 10 pages, 3 figures, 3 tables
VARD: Efficient and Dense Fine-Tuning for Diffusion Models with Value-based RL
Diffusion models have emerged as powerful generative tools across various domains, yet tailoring pre-trained models to exhibit specific desirable properties remains challenging. While reinforcement learning (RL) offers a promising solution,current methods struggle to simultaneously achieve stable, efficient fine-tuning and support non-differentiable rewards. Furthermore, their reliance on sparse rewards provides inadequate supervision during intermediate steps, often resulting in suboptimal generation quality. To address these limitations, dense and differentiable signals are required throughout the diffusion process. Hence, we propose VAlue-based Reinforced Diffusion (VARD): a novel approach that first learns a value function predicting expection of rewards from intermediate states, and subsequently uses this value function with KL regularization to provide dense supervision throughout the generation process. Our method maintains proximity to the pretrained model while enabling effective and stable training via backpropagation. Experimental results demonstrate that our approach facilitates better trajectory guidance, improves training efficiency and extends the applicability of RL to diffusion models optimized for complex, non-differentiable reward functions.
comment: Under review
Unveiling the Lack of LVLM Robustness to Fundamental Visual Variations: Why and Path Forward ACL 2025
Large Vision Language Models (LVLMs) excel in various vision-language tasks. Yet, their robustness to visual variations in position, scale, orientation, and context that objects in natural scenes inevitably exhibit due to changes in viewpoint and environment remains largely underexplored. To bridge this gap, we introduce V$^2$R-Bench, a comprehensive benchmark framework for evaluating Visual Variation Robustness of LVLMs, which encompasses automated evaluation dataset generation and principled metrics for thorough robustness assessment. Through extensive evaluation on 21 LVLMs, we reveal a surprising vulnerability to visual variations, in which even advanced models that excel at complex vision-language tasks significantly underperform on simple tasks such as object recognition. Interestingly, these models exhibit a distinct visual position bias that contradicts theories of effective receptive fields, and demonstrate a human-like visual acuity threshold. To identify the source of these vulnerabilities, we present a systematic framework for component-level analysis, featuring a novel visualization approach for aligned visual features. Results show that these vulnerabilities stem from error accumulation in the pipeline architecture and inadequate multimodal alignment. Complementary experiments with synthetic data further demonstrate that these limitations are fundamentally architectural deficiencies, scoring the need for architectural innovations in future LVLM designs.
comment: Accepted to ACL 2025 Findings
MaxSup: Overcoming Representation Collapse in Label Smoothing
Label Smoothing (LS) is widely adopted to reduce overconfidence in neural network predictions and improve generalization. Despite these benefits, recent studies reveal two critical issues with LS. First, LS induces overconfidence in misclassified samples. Second, it compacts feature representations into overly tight clusters, diluting intra-class diversity, although the precise cause of this phenomenon remained elusive. In this paper, we analytically decompose the LS-induced loss, exposing two key terms: (i) a regularization term that dampens overconfidence only when the prediction is correct, and (ii) an error-amplification term that arises under misclassifications. This latter term compels the network to reinforce incorrect predictions with undue certainty, exacerbating representation collapse. To address these shortcomings, we propose Max Suppression (MaxSup), which applies uniform regularization to both correct and incorrect predictions by penalizing the top-1 logit rather than the ground-truth logit. Through extensive feature-space analyses, we show that MaxSup restores intra-class variation and sharpens inter-class boundaries. Experiments on large-scale image classification and multiple downstream tasks confirm that MaxSup is a more robust alternative to LS, consistently reducing overconfidence while preserving richer feature representations. Code is available at: https://github.com/ZhouYuxuanYX/Maximum-Suppression-Regularization
comment: 24 pages, 15 tables, 5 figures. Preliminary work under review. Do not distribute
Generalizing from SIMPLE to HARD Visual Reasoning: Can We Mitigate Modality Imbalance in VLMs?
Vision Language Models (VLMs) are impressive at visual question answering and image captioning. But they underperform on multi-step visual reasoning -- even compared to LLMs on the same tasks presented in text form -- giving rise to perceptions of modality imbalance or brittleness. Towards a systematic study of such issues, we introduce a synthetic framework for assessing the ability of VLMs to perform algorithmic visual reasoning, comprising three tasks: Table Readout, Grid Navigation, and Visual Analogy. Each has two levels of difficulty, SIMPLE and HARD, and even the SIMPLE versions are difficult for frontier VLMs. We propose strategies for training on the SIMPLE version of tasks that improve performance on the corresponding HARD task, i.e., simple-to-hard (S2H) generalization. This controlled setup, where each task also has an equivalent text-only version, allows a quantification of the modality imbalance and how it is impacted by training strategy. We show that 1) explicit image-to-text conversion is important in promoting S2H generalization on images, by transferring reasoning from text; 2) conversion can be internalized at test time. We also report results of mechanistic study of this phenomenon. We identify measures of gradient alignment that can identify training strategies that promote better S2H generalization. Ablations highlight the importance of chain-of-thought.
A Survey of 3D Reconstruction with Event Cameras
Event cameras are rapidly emerging as powerful vision sensors for 3D reconstruction, uniquely capable of asynchronously capturing per-pixel brightness changes. Compared to traditional frame-based cameras, event cameras produce sparse yet temporally dense data streams, enabling robust and accurate 3D reconstruction even under challenging conditions such as high-speed motion, low illumination, and extreme dynamic range scenarios. These capabilities offer substantial promise for transformative applications across various fields, including autonomous driving, robotics, aerial navigation, and immersive virtual reality. In this survey, we present the first comprehensive review exclusively dedicated to event-based 3D reconstruction. Existing approaches are systematically categorised based on input modality into stereo, monocular, and multimodal systems, and further classified according to reconstruction methodologies, including geometry-based techniques, deep learning approaches, and neural rendering techniques such as Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS). Within each category, methods are chronologically organised to highlight the evolution of key concepts and advancements. Furthermore, we provide a detailed summary of publicly available datasets specifically suited to event-based reconstruction tasks. Finally, we discuss significant open challenges in dataset availability, standardised evaluation, effective representation, and dynamic scene reconstruction, outlining insightful directions for future research. This survey aims to serve as an essential reference and provides a clear and motivating roadmap toward advancing the state of the art in event-driven 3D reconstruction.
comment: 24 pages, 16 figures, 11 tables
Benchmarking 3D Human Pose Estimation Models under Occlusions
Human Pose Estimation (HPE) involves detecting and localizing keypoints on the human body from visual data. In 3D HPE, occlusions, where parts of the body are not visible in the image, pose a significant challenge for accurate pose reconstruction. This paper presents a benchmark on the robustness of 3D HPE models under realistic occlusion conditions, involving combinations of occluded keypoints commonly observed in real-world scenarios. We evaluate nine state-of-the-art 2D-to-3D HPE models, spanning convolutional, transformer-based, graph-based, and diffusion-based architectures, using the BlendMimic3D dataset, a synthetic dataset with ground-truth 2D/3D annotations and occlusion labels. All models were originally trained on Human3.6M and tested here without retraining to assess their generalization. We introduce a protocol that simulates occlusion by adding noise into 2D keypoints based on real detector behavior, and conduct both global and per-joint sensitivity analyses. Our findings reveal that all models exhibit notable performance degradation under occlusion, with diffusion-based models underperforming despite their stochastic nature. Additionally, a per-joint occlusion analysis identifies consistent vulnerability in distal joints (e.g., wrists, feet) across models. Overall, this work highlights critical limitations of current 3D HPE models in handling occlusions, and provides insights for improving real-world robustness.
Robust Multimodal Learning via Cross-Modal Proxy Tokens
Multimodal models often experience a significant performance drop when one or more modalities are missing during inference. To address this challenge, we propose a simple yet effective approach that enhances robustness to missing modalities while maintaining strong performance when all modalities are available. Our method introduces cross-modal proxy tokens (CMPTs), which approximate the class token of a missing modality by attending only to the tokens of the available modality without requiring explicit modality generation or auxiliary networks. To efficiently learn these approximations with minimal computational overhead, we employ low-rank adapters in frozen unimodal encoders and jointly optimize an alignment loss with a task-specific loss. Extensive experiments on five multimodal datasets show that our method outperforms state-of-the-art baselines across various missing rates while achieving competitive results in complete-modality settings. Overall, our method offers a flexible and efficient solution for robust multimodal learning. The code and pretrained models will be released on GitHub.
comment: 21 Pages, 9 Figures, 6 Tables
Hierarchical Material Recognition from Local Appearance
We introduce a taxonomy of materials for hierarchical recognition from local appearance. Our taxonomy is motivated by vision applications and is arranged according to the physical traits of materials. We contribute a diverse, in-the-wild dataset with images and depth maps of the taxonomy classes. Utilizing the taxonomy and dataset, we present a method for hierarchical material recognition based on graph attention networks. Our model leverages the taxonomic proximity between classes and achieves state-of-the-art performance. We demonstrate the model's potential to generalize to adverse, real-world imaging conditions, and that novel views rendered using the depth maps can enhance this capability. Finally, we show the model's capacity to rapidly learn new materials in a few-shot learning setting.
Motion-compensated cardiac MRI using low-rank diffeomorphic flow (DMoCo)
We introduce an unsupervised motion-compensated image reconstruction algorithm for free-breathing and ungated 3D cardiac magnetic resonance imaging (MRI). We express the image volume corresponding to each specific motion phase as the deformation of a single static image template. The main contribution of the work is the low-rank model for the compact joint representation of the family of diffeomorphisms, parameterized by the motion phases. The diffeomorphism at a specific motion phase is obtained by integrating a parametric velocity field along a path connecting the reference template phase to the motion phase. The velocity field at different phases is represented using a low-rank model. The static template and the low-rank motion model parameters are learned directly from the k-space data in an unsupervised fashion. The more constrained motion model is observed to offer improved recovery compared to current motion-resolved and motion-compensated algorithms for free-breathing 3D cine MRI.
LEGNet: Lightweight Edge-Gaussian Driven Network for Low-Quality Remote Sensing Image Object Detection
Remote sensing object detection (RSOD) often suffers from degradations such as low spatial resolution, sensor noise, motion blur, and adverse illumination. These factors diminish feature distinctiveness, leading to ambiguous object representations and inadequate foreground-background separation. Existing RSOD methods exhibit limitations in robust detection of low-quality objects. To address these pressing challenges, we introduce LEGNet, a lightweight backbone network featuring a novel Edge-Gaussian Aggregation (EGA) module specifically engineered to enhance feature representation derived from low-quality remote sensing images. EGA module integrates: (a) orientation-aware Scharr filters to sharpen crucial edge details often lost in low-contrast or blurred objects, and (b) Gaussian-prior-based feature refinement to suppress noise and regularize ambiguous feature responses, enhancing foreground saliency under challenging conditions. EGA module alleviates prevalent problems in reduced contrast, structural discontinuities, and ambiguous feature responses prevalent in degraded images, effectively improving model robustness while maintaining computational efficiency. Comprehensive evaluations across five benchmarks (DOTA-v1.0, v1.5, DIOR-R, FAIR1M-v1.0, and VisDrone2019) demonstrate that LEGNet achieves state-of-the-art performance, particularly in detecting low-quality objects. The code is available at https://github.com/lwCVer/LEGNet.
comment: 17 pages, 8 figures
Concept Based Explanations and Class Contrasting
Explaining deep neural networks is challenging, due to their large size and non-linearity. In this paper, we introduce a concept-based explanation method, in order to explain the prediction for an individual class, as well as contrasting any two classes, i.e. explain why the model predicts one class over the other. We test it on several openly available classification models trained on ImageNet1K. We perform both qualitative and quantitative tests. For example, for a ResNet50 model from pytorch model zoo, we can use the explanation for why the model predicts a class 'A' to automatically select four dataset crops where the model does not predict class 'A'. The model then predicts class 'A' again for the newly combined image in 91.1% of the cases (works for 911 out of the 1000 classes). The code including an .ipynb example is available on github: https://github.com/rherdt185/concept-based-explanations-and-class-contrasting
Enhancing Sample Generation of Diffusion Models using Noise Level Correction
The denoising process of diffusion models can be interpreted as an approximate projection of noisy samples onto the data manifold. Moreover, the noise level in these samples approximates their distance to the underlying manifold. Building on this insight, we propose a novel method to enhance sample generation by aligning the estimated noise level with the true distance of noisy samples to the manifold. Specifically, we introduce a noise level correction network, leveraging a pre-trained denoising network, to refine noise level estimates during the denoising process. Additionally, we extend this approach to various image restoration tasks by integrating task-specific constraints, including inpainting, deblurring, super-resolution, colorization, and compressed sensing. Experimental results demonstrate that our method significantly improves sample quality in both unconstrained and constrained generation scenarios. Notably, the proposed noise level correction framework is compatible with existing denoising schedulers (e.g., DDIM), offering additional performance improvements.
Image and Video Processing
Dual encoding feature filtering generalized attention UNET for retinal vessel segmentation
Retinal blood vessel segmentation is crucial for diagnosing ocular and cardiovascular diseases. Although the introduction of U-Net in 2015 by Olaf Ronneberger significantly advanced this field, yet issues like limited training data, imbalance data distribution, and inadequate feature extraction persist, hindering both the segmentation performance and optimal model generalization. Addressing these critical issues, the DEFFA-Unet is proposed featuring an additional encoder to process domain-invariant pre-processed inputs, thereby improving both richer feature encoding and enhanced model generalization. A feature filtering fusion module is developed to ensure the precise feature filtering and robust hybrid feature fusion. In response to the task-specific need for higher precision where false positives are very costly, traditional skip connections are replaced with the attention-guided feature reconstructing fusion module. Additionally, innovative data augmentation and balancing methods are proposed to counter data scarcity and distribution imbalance, further boosting the robustness and generalization of the model. With a comprehensive suite of evaluation metrics, extensive validations on four benchmark datasets (DRIVE, CHASEDB1, STARE, and HRF) and an SLO dataset (IOSTAR), demonstrate the proposed method's superiority over both baseline and state-of-the-art models. Particularly the proposed method significantly outperforms the compared methods in cross-validation model generalization.
NTIRE 2025 Challenge on RAW Image Restoration and Super-Resolution CVPR 2025
This paper reviews the NTIRE 2025 RAW Image Restoration and Super-Resolution Challenge, highlighting the proposed solutions and results. New methods for RAW Restoration and Super-Resolution could be essential in modern Image Signal Processing (ISP) pipelines, however, this problem is not as explored as in the RGB domain. The goal of this challenge is two fold, (i) restore RAW images with blur and noise degradations, (ii) upscale RAW Bayer images by 2x, considering unknown noise and blur. In the challenge, a total of 230 participants registered, and 45 submitted results during thee challenge period. This report presents the current state-of-the-art in RAW Restoration.
comment: CVPR 2025 - New Trends in Image Restoration and Enhancement (NTIRE)
Tomographic Foundation Model -- FORCE: Flow-Oriented Reconstruction Conditioning Engine
Computed tomography (CT) is a major medical imaging modality. Clinical CT scenarios, such as low-dose screening, sparse-view scanning, and metal implants, often lead to severe noise and artifacts in reconstructed images, requiring improved reconstruction techniques. The introduction of deep learning has significantly advanced CT image reconstruction. However, obtaining paired training data remains rather challenging due to patient motion and other constraints. Although deep learning methods can still perform well with approximately paired data, they inherently carry the risk of hallucination due to data inconsistencies and model instability. In this paper, we integrate the data fidelity with the state-of-the-art generative AI model, referred to as the Poisson flow generative model (PFGM) with a generalized version PFGM++, and propose a novel CT framework: Flow-Oriented Reconstruction Conditioning Engine (FORCE). In our experiments, the proposed method shows superior performance in various CT imaging tasks, outperforming existing unsupervised reconstruction approaches.
RAW Image Reconstruction from RGB on Smartphones. NTIRE 2025 Challenge Report CVPR 2025
Numerous low-level vision tasks operate in the RAW domain due to its linear properties, bit depth, and sensor designs. Despite this, RAW image datasets are scarce and more expensive to collect than the already large and public sRGB datasets. For this reason, many approaches try to generate realistic RAW images using sensor information and sRGB images. This paper covers the second challenge on RAW Reconstruction from sRGB (Reverse ISP). We aim to recover RAW sensor images from smartphones given the corresponding sRGB images without metadata and, by doing this, ``reverse" the ISP transformation. Over 150 participants joined this NTIRE 2025 challenge and submitted efficient models. The proposed methods and benchmark establish the state-of-the-art for generating realistic RAW data.
comment: CVPR 2025 - New Trends in Image Restoration and Enhancement (NTIRE)
Are Pixel-Wise Metrics Reliable for Sparse-View Computed Tomography Reconstruction?
Widely adopted evaluation metrics for sparse-view CT reconstruction--such as Structural Similarity Index Measure and Peak Signal-to-Noise Ratio--prioritize pixel-wise fidelity but often fail to capture the completeness of critical anatomical structures, particularly small or thin regions that are easily missed. To address this limitation, we propose a suite of novel anatomy-aware evaluation metrics designed to assess structural completeness across anatomical structures, including large organs, small organs, intestines, and vessels. Building on these metrics, we introduce CARE, a Completeness-Aware Reconstruction Enhancement framework that incorporates structural penalties during training to encourage anatomical preservation of significant structures. CARE is model-agnostic and can be seamlessly integrated into analytical, implicit, and generative methods. When applied to these methods, CARE substantially improves structural completeness in CT reconstructions, achieving up to +32% improvement for large organs, +22% for small organs, +40% for intestines, and +36% for vessels.
Beyond Pixel Agreement: Large Language Models as Clinical Guardrails for Reliable Medical Image Segmentation
Evaluating AI-generated medical image segmentations for clinical acceptability poses a significant challenge, as traditional pixelagreement metrics often fail to capture true diagnostic utility. This paper introduces Hierarchical Clinical Reasoner (HCR), a novel framework that leverages Large Language Models (LLMs) as clinical guardrails for reliable, zero-shot quality assessment. HCR employs a structured, multistage prompting strategy that guides LLMs through a detailed reasoning process, encompassing knowledge recall, visual feature analysis, anatomical inference, and clinical synthesis, to evaluate segmentations. We evaluated HCR on a diverse dataset across six medical imaging tasks. Our results show that HCR, utilizing models like Gemini 2.5 Flash, achieved a classification accuracy of 78.12%, performing comparably to, and in instances exceeding, dedicated vision models such as ResNet50 (72.92% accuracy) that were specifically trained for this task. The HCR framework not only provides accurate quality classifications but also generates interpretable, step-by-step reasoning for its assessments. This work demonstrates the potential of LLMs, when appropriately guided, to serve as sophisticated evaluators, offering a pathway towards more trustworthy and clinically-aligned quality control for AI in medical imaging.
comment: under review
NTIRE 2025 the 2nd Restore Any Image Model (RAIM) in the Wild Challenge
In this paper, we present a comprehensive overview of the NTIRE 2025 challenge on the 2nd Restore Any Image Model (RAIM) in the Wild. This challenge established a new benchmark for real-world image restoration, featuring diverse scenarios with and without reference ground truth. Participants were tasked with restoring real-captured images suffering from complex and unknown degradations, where both perceptual quality and fidelity were critically evaluated. The challenge comprised two tracks: (1) the low-light joint denoising and demosaicing (JDD) task, and (2) the image detail enhancement/generation task. Each track included two sub-tasks. The first sub-task involved paired data with available ground truth, enabling quantitative evaluation. The second sub-task dealt with real-world yet unpaired images, emphasizing restoration efficiency and subjective quality assessed through a comprehensive user study. In total, the challenge attracted nearly 300 registrations, with 51 teams submitting more than 600 results. The top-performing methods advanced the state of the art in image restoration and received unanimous recognition from all 20+ expert judges. The datasets used in Track 1 and Track 2 are available at https://drive.google.com/drive/folders/1Mgqve-yNcE26IIieI8lMIf-25VvZRs_J and https://drive.google.com/drive/folders/1UB7nnzLwqDZOwDmD9aT8J0KVg2ag4Qae, respectively. The official challenge pages for Track 1 and Track 2 can be found at https://codalab.lisn.upsaclay.fr/competitions/21334#learn_the_details and https://codalab.lisn.upsaclay.fr/competitions/21623#learn_the_details.
Fourier-Modulated Implicit Neural Representation for Multispectral Satellite Image Compression
Multispectral satellite images play a vital role in agriculture, fisheries, and environmental monitoring. However, their high dimensionality, large data volumes, and diverse spatial resolutions across multiple channels pose significant challenges for data compression and analysis. This paper presents ImpliSat, a unified framework specifically designed to address these challenges through efficient compression and reconstruction of multispectral satellite data. ImpliSat leverages Implicit Neural Representations (INR) to model satellite images as continuous functions over coordinate space, capturing fine spatial details across varying spatial resolutions. Furthermore, we introduce a Fourier modulation algorithm that dynamically adjusts to the spectral and spatial characteristics of each band, ensuring optimal compression while preserving critical image details.
comment: Accepted to IGARSS 2025 (Oral)
Structured Pruning and Quantization for Learned Image Compression
The high computational costs associated with large deep learning models significantly hinder their practical deployment. Model pruning has been widely explored in deep learning literature to reduce their computational burden, but its application has been largely limited to computer vision tasks such as image classification and object detection. In this work, we propose a structured pruning method targeted for Learned Image Compression (LIC) models that aims to reduce the computational costs associated with image compression while maintaining the rate-distortion performance. We employ a Neural Architecture Search (NAS) method based on the rate-distortion loss for computing the pruning ratio for each layer of the network. We compare our pruned model with the uncompressed LIC Model with same network architecture and show that it can achieve model size reduction without any BD-Rate performance drop. We further show that our pruning method can be integrated with model quantization to achieve further model compression while maintaining similar BD-Rate performance. We have made the source code available at gitlab.com/viper-purdue/lic-pruning.
Dirty and Clean-Label attack detection using GAN discriminators
Gathering enough images to train a deep computer vision model is a constant challenge. Unfortunately, collecting images from unknown sources can leave your model s behavior at risk of being manipulated by a dirty-label or clean-label attack unless the images are properly inspected. Manually inspecting each image-label pair is impractical and common poison-detection methods that involve re-training your model can be time consuming. This research uses GAN discriminators to protect a single class against mislabeled and different levels of modified images. The effect of said perturbation on a basic convolutional neural network classifier is also included for reference. The results suggest that after training on a single class, GAN discriminator s confidence scores can provide a threshold to identify mislabeled images and identify 100% of the tested poison starting at a perturbation epsilon magnitude of 0.20, after decision threshold calibration using in-class samples. Developers can use this report as a basis to train their own discriminators to protect high valued classes in their CV models.
comment: 13 pages total. Appendix starts on page 10
Flexible Mixed Precision Quantization for Learned Image Compression
Despite its improvements in coding performance compared to traditional codecs, Learned Image Compression (LIC) suffers from large computational costs for storage and deployment. Model quantization offers an effective solution to reduce the computational complexity of LIC models. However, most existing works perform fixed-precision quantization which suffers from sub-optimal utilization of resources due to the varying sensitivity to quantization of different layers of a neural network. In this paper, we propose a Flexible Mixed Precision Quantization (FMPQ) method that assigns different bit-widths to different layers of the quantized network using the fractional change in rate-distortion loss as the bit-assignment criterion. We also introduce an adaptive search algorithm which reduces the time-complexity of searching for the desired distribution of quantization bit-widths given a fixed model size. Evaluation of our method shows improved BD-Rate performance under similar model size constraints compared to other works on quantization of LIC models. We have made the source code available at gitlab.com/viper-purdue/fmpq.
A combined Machine Learning and Finite Element Modelling tool for the surgical planning of craniosynostosis correction
Craniosynostosis is a medical condition that affects the growth of babies' heads, caused by an early fusion of cranial sutures. In recent decades, surgical treatments for craniosynostosis have significantly improved, leading to reduced invasiveness, faster recovery, and less blood loss. At Great Ormond Street Hospital (GOSH), the main surgical treatment for patients diagnosed with sagittal craniosynostosis (SC) is spring assisted cranioplasty (SAC). This procedure involves a 15x15 mm2 osteotomy, where two springs are inserted to induce distraction. Despite the numerous advantages of this surgical technique for patients, the outcome remains unpredictable due to the lack of efficient preoperative planning tools. The surgeon's experience and the baby's age are currently relied upon to determine the osteotomy location and spring selection. Previous tools for predicting the surgical outcome of SC relied on finite element modeling (FEM), which involved computed tomography (CT) imaging and required engineering expertise and lengthy calculations. The main goal of this research is to develop a real-time prediction tool for the surgical outcome of patients, eliminating the need for CT scans to minimise radiation exposure during preoperative planning. The proposed methodology involves creating personalised synthetic skulls based on three-dimensional (3D) photographs, incorporating population average values of suture location, skull thickness, and soft tissue properties. A machine learning (ML) surrogate model is employed to achieve the desired surgical outcome. The resulting multi-output support vector regressor model achieves a R2 metric of 0.95 and MSE and MAE below 0.13. Furthermore, in the future, this model could not only simulate various surgical scenarios but also provide optimal parameters for achieving a maximum cranial index (CI).
comment: 11 pages, 16 figures
Beyond Pretty Pictures: Combined Single- and Multi-Image Super-resolution for Sentinel-2 Images
Super-resolution aims to increase the resolution of satellite images by reconstructing high-frequency details, which go beyond na\"ive upsampling. This has particular relevance for Earth observation missions like Sentinel-2, which offer frequent, regular coverage at no cost; but at coarse resolution. Its pixel footprint is too large to capture small features like houses, streets, or hedge rows. To address this, we present SEN4X, a hybrid super-resolution architecture that combines the advantages of single-image and multi-image techniques. It combines temporal oversampling from repeated Sentinel-2 acquisitions with a learned prior from high-resolution Pl\'eiades Neo data. In doing so, SEN4X upgrades Sentinel-2 imagery to 2.5 m ground sampling distance. We test the super-resolved images on urban land-cover classification in Hanoi, Vietnam. We find that they lead to a significant performance improvement over state-of-the-art super-resolution baselines.
Segment Anything for Histopathology
Nucleus segmentation is an important analysis task in digital pathology. However, methods for automatic segmentation often struggle with new data from a different distribution, requiring users to manually annotate nuclei and retrain data-specific models. Vision foundation models (VFMs), such as the Segment Anything Model (SAM), offer a more robust alternative for automatic and interactive segmentation. Despite their success in natural images, a foundation model for nucleus segmentation in histopathology is still missing. Initial efforts to adapt SAM have shown some success, but did not yet introduce a comprehensive model for diverse segmentation tasks. To close this gap, we introduce PathoSAM, a VFM for nucleus segmentation, based on training SAM on a diverse dataset. Our extensive experiments show that it is the new state-of-the-art model for automatic and interactive nucleus instance segmentation in histopathology. We also demonstrate how it can be adapted for other segmentation tasks, including semantic nucleus segmentation. For this task, we show that it yields results better than popular methods, while not yet beating the state-of-the-art, CellViT. Our models are open-source and compatible with popular tools for data annotation. We also provide scripts for whole-slide image segmentation. Our code and models are publicly available at https://github.com/computational-cell-analytics/patho-sam.
comment: Published in MIDL 2025
In the Picture: Medical Imaging Datasets, Artifacts, and their Living Review
Datasets play a critical role in medical imaging research, yet issues such as label quality, shortcuts, and metadata are often overlooked. This lack of attention may harm the generalizability of algorithms and, consequently, negatively impact patient outcomes. While existing medical imaging literature reviews mostly focus on machine learning (ML) methods, with only a few focusing on datasets for specific applications, these reviews remain static -- they are published once and not updated thereafter. This fails to account for emerging evidence, such as biases, shortcuts, and additional annotations that other researchers may contribute after the dataset is published. We refer to these newly discovered findings of datasets as research artifacts. To address this gap, we propose a living review that continuously tracks public datasets and their associated research artifacts across multiple medical imaging applications. Our approach includes a framework for the living review to monitor data documentation artifacts, and an SQL database to visualize the citation relationships between research artifact and dataset. Lastly, we discuss key considerations for creating medical imaging datasets, review best practices for data annotation, discuss the significance of shortcuts and demographic diversity, and emphasize the importance of managing datasets throughout their entire lifecycle. Our demo is publicly available at http://inthepicture.itu.dk/.
comment: ACM Conference on Fairness, Accountability, and Transparency - FAccT 2025
Flex3D: Feed-Forward 3D Generation with Flexible Reconstruction Model and Input View Curation ICML 25
Generating high-quality 3D content from text, single images, or sparse view images remains a challenging task with broad applications. Existing methods typically employ multi-view diffusion models to synthesize multi-view images, followed by a feed-forward process for 3D reconstruction. However, these approaches are often constrained by a small and fixed number of input views, limiting their ability to capture diverse viewpoints and, even worse, leading to suboptimal generation results if the synthesized views are of poor quality. To address these limitations, we propose Flex3D, a novel two-stage framework capable of leveraging an arbitrary number of high-quality input views. The first stage consists of a candidate view generation and curation pipeline. We employ a fine-tuned multi-view image diffusion model and a video diffusion model to generate a pool of candidate views, enabling a rich representation of the target 3D object. Subsequently, a view selection pipeline filters these views based on quality and consistency, ensuring that only the high-quality and reliable views are used for reconstruction. In the second stage, the curated views are fed into a Flexible Reconstruction Model (FlexRM), built upon a transformer architecture that can effectively process an arbitrary number of inputs. FlemRM directly outputs 3D Gaussian points leveraging a tri-plane representation, enabling efficient and detailed 3D generation. Through extensive exploration of design and training strategies, we optimize FlexRM to achieve superior performance in both reconstruction and generation tasks. Our results demonstrate that Flex3D achieves state-of-the-art performance, with a user study winning rate of over 92% in 3D generation tasks when compared to several of the latest feed-forward 3D generative models.
comment: ICML 25. Project page: https://junlinhan.github.io/projects/flex3d/
Fact-Checking of AI-Generated Reports
With advances in generative artificial intelligence (AI), it is now possible to produce realistic-looking automated reports for preliminary reads of radiology images. This can expedite clinical workflows, improve accuracy and reduce overall costs. However, it is also well-known that such models often hallucinate, leading to false findings in the generated reports. In this paper, we propose a new method of fact-checking of AI-generated reports using their associated images. Specifically, the developed examiner differentiates real and fake sentences in reports by learning the association between an image and sentences describing real or potentially fake findings. To train such an examiner, we first created a new dataset of fake reports by perturbing the findings in the original ground truth radiology reports associated with images. Text encodings of real and fake sentences drawn from these reports are then paired with image encodings to learn the mapping to real/fake labels. The utility of such an examiner is demonstrated for verifying automatically generated reports by detecting and removing fake sentences. Future generative AI approaches can use the resulting tool to validate their reports leading to a more responsible use of AI in expediting clinical workflows.
comment: 10 pages, 3 figures, 3 tables
Enhancing Sample Generation of Diffusion Models using Noise Level Correction
The denoising process of diffusion models can be interpreted as an approximate projection of noisy samples onto the data manifold. Moreover, the noise level in these samples approximates their distance to the underlying manifold. Building on this insight, we propose a novel method to enhance sample generation by aligning the estimated noise level with the true distance of noisy samples to the manifold. Specifically, we introduce a noise level correction network, leveraging a pre-trained denoising network, to refine noise level estimates during the denoising process. Additionally, we extend this approach to various image restoration tasks by integrating task-specific constraints, including inpainting, deblurring, super-resolution, colorization, and compressed sensing. Experimental results demonstrate that our method significantly improves sample quality in both unconstrained and constrained generation scenarios. Notably, the proposed noise level correction framework is compatible with existing denoising schedulers (e.g., DDIM), offering additional performance improvements.
Debiased Opto-electronic Joint Transform Correlator for Enhanced Real-Time Pattern Recognition
Opto-electronic joint transform correlators (OJTCs) use a focal plane array (FPA) to detect the joint power spectrum (JPS) of two input images, projecting it onto a spatial light modulator (SLM) to be optically Fourier transformed. The JPS is composed of two self-intensities and two conjugate-products, where only the latter produce the cross-correlation. However, the self-intensity terms are typically much stronger than the conjugate-products, producing a bias that consumes most of the available bit-depth on the FPA and SLM. Here we propose and demonstrate, through simulation and experiment, a debiased OJTC (DOJTC) that electronically pre-processes the JPS to remove the self-intensity terms before sending it to the SLM, thereby enhancing the quality of the cross-correlation result. We show that under some conditions the DOJTC yields a nearly two orders of magnitude improvement in the signal-to-noise ratio compared to an OJTC.
Ola: Pushing the Frontiers of Omni-Modal Language Model
Recent advances in large language models, particularly following GPT-4o, have sparked increasing interest in developing omni-modal models capable of understanding more modalities. While some open-source alternatives have emerged, there is still a notable lag behind specialized single-modality models in performance. In this paper, we present Ola, an Omni-modal Language model that achieves competitive performance across image, video, and audio understanding compared to specialized counterparts, pushing the frontiers of the omni-modal language model to a large extent. We conduct a comprehensive exploration of architectural design, data curation, and training strategies essential for building a robust omni-modal model. Ola incorporates advanced visual understanding and audio recognition capabilities through several critical and effective improvements over mainstream baselines. Moreover, we rethink inter-modal relationships during omni-modal training, emphasizing cross-modal alignment with video as a central bridge, and propose a progressive training pipeline that begins with the most distinct modalities and gradually moves towards closer modality alignment. Extensive experiments demonstrate that Ola surpasses existing open omni-modal LLMs across all modalities while achieving highly competitive performance compared to state-of-the-art specialized models of similar sizes. We aim to make Ola a fully open omni-modal understanding solution to advance future research in this emerging field. Model weights, code, and data are open-sourced at https://github.com/Ola-Omni/Ola.
Real-time respiratory motion forecasting with online learning of recurrent neural networks for accurate targeting in externally guided radiotherapy
In lung radiotherapy, infrared cameras can track reflective objects on the chest to estimate tumor motion due to breathing, but treatment system latencies hinder radiation beam precision. Real-time recurrent learning (RTRL) is a potential solution that can learn patterns within non-stationary respiratory data but has high complexity. This study assesses the capabilities of resource-efficient online RNN algorithms, namely unbiased online recurrent optimization (UORO), sparse-1 step approximation (SnAp-1), and decoupled neural interfaces (DNI) to forecast respiratory motion during radiotherapy treatment accurately. We use time series containing the 3D positions of external markers on the chest of healthy subjects. We propose efficient implementations for SnAp-1 and DNI that compress the influence and immediate Jacobian matrices and accurately update the linear coefficients used in credit assignment estimation, respectively. Data was originally sampled at 10Hz; we resampled it at 3.33Hz and 30Hz to analyze the effect of the sampling rate on performance. We use UORO, SnAp-1, and DNI to forecast each marker's 3D position with horizons h<=2.1s (the time interval in advance for which the prediction is made) and compare them with RTRL, least mean squares, kernel support vector regression, and linear regression. RNNs trained online achieved similar or better accuracy than most previous works using larger training databases and deep learning, even though we used only the first minute of each sequence to predict motion within that exact sequence. SnAp-1 had the lowest normalized root mean square errors (nRMSEs) averaged over the horizon values considered, equal to 0.335 and 0.157, at 3.33Hz and 10.0Hz, respectively. Similarly, UORO had the lowest nRMSE at 30Hz, equal to 0.086. DNI's inference time (6.8ms per time step at 30Hz, Intel Core i7-13700 CPU) was the lowest among the RNN methods.
comment: 40 pages, 18 figures, accepted manuscript version
MedVAE: Efficient Automated Interpretation of Medical Images with Large-Scale Generalizable Autoencoders
Medical images are acquired at high resolutions with large fields of view in order to capture fine-grained features necessary for clinical decision-making. Consequently, training deep learning models on medical images can incur large computational costs. In this work, we address the challenge of downsizing medical images in order to improve downstream computational efficiency while preserving clinically-relevant features. We introduce MedVAE, a family of six large-scale 2D and 3D autoencoders capable of encoding medical images as downsized latent representations and decoding latent representations back to high-resolution images. We train MedVAE autoencoders using a novel two-stage training approach with 1,052,730 medical images. Across diverse tasks obtained from 20 medical image datasets, we demonstrate that (1) utilizing MedVAE latent representations in place of high-resolution images when training downstream models can lead to efficiency benefits (up to 70x improvement in throughput) while simultaneously preserving clinically-relevant features and (2) MedVAE can decode latent representations back to high-resolution images with high fidelity. Our work demonstrates that large-scale, generalizable autoencoders can help address critical efficiency challenges in the medical domain. Our code is available at https://github.com/StanfordMIMI/MedVAE.
comment: MIDL 2025 (Oral)
Multimedia
MoDA: Modulation Adapter for Fine-Grained Visual Grounding in Instructional MLLMs
Recently, Multimodal Large Language Models (MLLMs) have demonstrated impressive performance on instruction-following tasks by integrating pretrained visual encoders with large language models (LLMs). However, existing approaches often struggle to ground fine-grained visual concepts in complex scenes. In this paper, we propose MoDA (Modulation Adapter), a lightweight yet effective module designed to refine pre-aligned visual features through instruction-guided modulation. Our approach follows the standard LLaVA training protocol, consisting of a two-stage process: (1) aligning image features to the LLMs input space via a frozen vision encoder and adapter layers, and (2) refining those features using the MoDA adapter during the instructional tuning stage. MoDA employs a Transformer-based cross-attention mechanism to generate a modulation mask over the aligned visual tokens, thereby emphasizing semantically relevant embedding dimensions based on the language instruction. The modulated features are then passed to the LLM for autoregressive language generation. Our experimental evaluation shows that MoDA improves visual grounding and generates more contextually appropriate responses, demonstrating its effectiveness as a general-purpose enhancement for image-based MLLMs.
GSCodec Studio: A Modular Framework for Gaussian Splat Compression SC
3D Gaussian Splatting and its extension to 4D dynamic scenes enable photorealistic, real-time rendering from real-world captures, positioning Gaussian Splats (GS) as a promising format for next-generation immersive media. However, their high storage requirements pose significant challenges for practical use in sharing, transmission, and storage. Despite various studies exploring GS compression from different perspectives, these efforts remain scattered across separate repositories, complicating benchmarking and the integration of best practices. To address this gap, we present GSCodec Studio, a unified and modular framework for GS reconstruction, compression, and rendering. The framework incorporates a diverse set of 3D/4D GS reconstruction methods and GS compression techniques as modular components, facilitating flexible combinations and comprehensive comparisons. By integrating best practices from community research and our own explorations, GSCodec Studio supports the development of compact representation and compression solutions for static and dynamic Gaussian Splats, namely our Static and Dynamic GSCodec, achieving competitive rate-distortion performance in static and dynamic GS compression. The code for our framework is publicly available at https://github.com/JasonLSC/GSCodec_Studio , to advance the research on Gaussian Splats compression.
comment: Repository of the project: https://github.com/JasonLSC/GSCodec_Studio
Small Stickers, Big Meanings: A Multilingual Sticker Semantic Understanding Dataset with a Gamified Approach
Stickers, though small, are a highly condensed form of visual expression, ubiquitous across messaging platforms and embraced by diverse cultures, genders, and age groups. Despite their popularity, sticker retrieval remains an underexplored task due to the significant human effort and subjectivity involved in constructing high-quality sticker query datasets. Although large language models (LLMs) excel at general NLP tasks, they falter when confronted with the nuanced, intangible, and highly specific nature of sticker query generation. To address this challenge, we propose a threefold solution. First, we introduce Sticktionary, a gamified annotation framework designed to gather diverse, high-quality, and contextually resonant sticker queries. Second, we present StickerQueries, a multilingual sticker query dataset containing 1,115 English and 615 Chinese queries, annotated by over 60 contributors across 60+ hours. Lastly, Through extensive quantitative and qualitative evaluation, we demonstrate that our approach significantly enhances query generation quality, retrieval accuracy, and semantic understanding in the sticker domain. To support future research, we publicly release our multilingual dataset along with two fine-tuned query generation models.
LASPA: Language Agnostic Speaker Disentanglement with Prefix-Tuned Cross-Attention
Speaker recognition models face challenges in multi-lingual settings due to the entanglement of linguistic information within speaker embeddings. The overlap between vocal traits such as accent, vocal anatomy, and a language's phonetic structure complicates separating linguistic and speaker information. Disentangling these components can significantly improve speaker recognition accuracy. To this end, we propose a novel disentanglement learning strategy that integrates joint learning through prefix-tuned cross-attention. This approach is particularly effective when speakers switch between languages. Experimental results show the model generalizes across monolingual and multi-lingual settings, including unseen languages. Notably, the proposed model improves the equal error rate across multiple datasets, highlighting its ability to separate language information from speaker embeddings and enhance recognition in diverse linguistic conditions.
comment: Accepted at Interspeech 2025, Netherlands
Automatic Stage Lighting Control: Is it a Rule-Driven Process or Generative Task?
Stage lighting plays an essential role in live music performances, influencing the engaging experience of both musicians and audiences. Given the high costs associated with hiring or training professional lighting engineers, Automatic Stage Lighting Control (ASLC) has gained increasing attention. However, most existing approaches only classify music into limited categories and map them to predefined light patterns, resulting in formulaic and monotonous outcomes that lack rationality. To address this issue, this paper presents an end-to-end solution that directly learns from experienced lighting engineers -- Skip-BART. To the best of our knowledge, this is the first work to conceptualize ASLC as a generative task rather than merely a classification problem. Our method modifies the BART model to take audio music as input and produce light hue and value (intensity) as output, incorporating a novel skip connection mechanism to enhance the relationship between music and light within the frame grid.We validate our method through both quantitative analysis and an human evaluation, demonstrating that Skip-BART outperforms conventional rule-based methods across all evaluation metrics and shows only a limited gap compared to real lighting engineers.Specifically, our method yields a p-value of 0.72 in a statistical comparison based on human evaluations with human lighting engineers, suggesting that the proposed approach closely matches human lighting engineering performance. To support further research, we have made our self-collected dataset, code, and trained model parameters available at https://github.com/RS2002/Skip-BART .
MUDI: A Multimodal Biomedical Dataset for Understanding Pharmacodynamic Drug-Drug Interactions
Understanding the interaction between different drugs (drug-drug interaction or DDI) is critical for ensuring patient safety and optimizing therapeutic outcomes. Existing DDI datasets primarily focus on textual information, overlooking multimodal data that reflect complex drug mechanisms. In this paper, we (1) introduce MUDI, a large-scale Multimodal biomedical dataset for Understanding pharmacodynamic Drug-drug Interactions, and (2) benchmark learning methods to study it. In brief, MUDI provides a comprehensive multimodal representation of drugs by combining pharmacological text, chemical formulas, molecular structure graphs, and images across 310,532 annotated drug pairs labeled as Synergism, Antagonism, or New Effect. Crucially, to effectively evaluate machine-learning based generalization, MUDI consists of unseen drug pairs in the test set. We evaluate benchmark models using both late fusion voting and intermediate fusion strategies. All data, annotations, evaluation scripts, and baselines are released under an open research license.
Learning Sparsity for Effective and Efficient Music Performance Question Answering ACL 2025
Music performances, characterized by dense and continuous audio as well as seamless audio-visual integration, present unique challenges for multimodal scene understanding and reasoning. Recent Music Performance Audio-Visual Question Answering (Music AVQA) datasets have been proposed to reflect these challenges, highlighting the continued need for more effective integration of audio-visual representations in complex question answering. However, existing Music AVQA methods often rely on dense and unoptimized representations, leading to inefficiencies in the isolation of key information, the reduction of redundancy, and the prioritization of critical samples. To address these challenges, we introduce Sparsify, a sparse learning framework specifically designed for Music AVQA. It integrates three sparsification strategies into an end-to-end pipeline and achieves state-of-the-art performance on the Music AVQA datasets. In addition, it reduces training time by 28.32% compared to its fully trained dense counterpart while maintaining accuracy, demonstrating clear efficiency gains. To further improve data efficiency, we propose a key-subset selection algorithm that selects and uses approximately 25% of MUSIC-AVQA v2.0 training data and retains 70-80% of full-data performance across models.
comment: Accepted to the main conference of the 63rd Annual Meeting of the Association for Computational Linguistics (ACL 2025)
I see what you mean: Co-Speech Gestures for Reference Resolution in Multimodal Dialogue
In face-to-face interaction, we use multiple modalities, including speech and gestures, to communicate information and resolve references to objects. However, how representational co-speech gestures refer to objects remains understudied from a computational perspective. In this work, we address this gap by introducing a multimodal reference resolution task centred on representational gestures, while simultaneously tackling the challenge of learning robust gesture embeddings. We propose a self-supervised pre-training approach to gesture representation learning that grounds body movements in spoken language. Our experiments show that the learned embeddings align with expert annotations and have significant predictive power. Moreover, reference resolution accuracy further improves when (1) using multimodal gesture representations, even when speech is unavailable at inference time, and (2) leveraging dialogue history. Overall, our findings highlight the complementary roles of gesture and speech in reference resolution, offering a step towards more naturalistic models of human-machine interaction.
RoSMM: A Robust and Secure Multi-Modal Watermarking Framework for Diffusion Models
Current image watermarking technologies are predominantly categorized into text watermarking techniques and image steganography; however, few methods can simultaneously handle text and image-based watermark data, which limits their applicability in complex digital environments. This paper introduces an innovative multi-modal watermarking approach, drawing on the concept of vector discretization in encoder-based vector quantization. By constructing adjacency matrices, the proposed method enables the transformation of text watermarks into robust image-based representations, providing a novel multi-modal watermarking paradigm for image generation applications. Additionally, this study presents a newly designed image restoration module to mitigate image degradation caused by transmission losses and various noise interferences, thereby ensuring the reliability and integrity of the watermark. Experimental results validate the robustness of the method under multiple noise attacks, providing a secure, scalable, and efficient solution for digital image copyright protection.
Contrastive Alignment with Semantic Gap-Aware Corrections in Text-Video Retrieval
Recent advances in text-video retrieval have been largely driven by contrastive learning frameworks. However, existing methods overlook a key source of optimization tension: the separation between text and video distributions in the representation space (referred to as the modality gap), and the prevalence of false negatives in batch sampling. These factors lead to conflicting gradients under the InfoNCE loss, impeding stable alignment. To mitigate this, we propose GARE, a Gap-Aware Retrieval framework that introduces a learnable, pair-specific increment Delta_ij between text t_i and video v_j to offload the tension from the global anchor representation. We first derive the ideal form of Delta_ij via a coupled multivariate first-order Taylor approximation of the InfoNCE loss under a trust-region constraint, revealing it as a mechanism for resolving gradient conflicts by guiding updates along a locally optimal descent direction. Due to the high cost of directly computing Delta_ij, we introduce a lightweight neural module conditioned on the semantic gap between each video-text pair, enabling structure-aware correction guided by gradient supervision. To further stabilize learning and promote interpretability, we regularize Delta using three components: a trust-region constraint to prevent oscillation, a directional diversity term to promote semantic coverage, and an information bottleneck to limit redundancy. Experiments across four retrieval benchmarks show that GARE consistently improves alignment accuracy and robustness to noisy supervision, confirming the effectiveness of gap-aware tension mitigation.
Detecting Multimedia Generated by Large AI Models: A Survey
The rapid advancement of Large AI Models (LAIMs), particularly diffusion models and large language models, has marked a new era where AI-generated multimedia is increasingly integrated into various aspects of daily life. Although beneficial in numerous fields, this content presents significant risks, including potential misuse, societal disruptions, and ethical concerns. Consequently, detecting multimedia generated by LAIMs has become crucial, with a marked rise in related research. Despite this, there remains a notable gap in systematic surveys that focus specifically on detecting LAIM-generated multimedia. Addressing this, we provide the first survey to comprehensively cover existing research on detecting multimedia (such as text, images, videos, audio, and multimodal content) created by LAIMs. Specifically, we introduce a novel taxonomy for detection methods, categorized by media modality, and aligned with two perspectives: pure detection (aiming to enhance detection performance) and beyond detection (adding attributes like generalizability, robustness, and interpretability to detectors). Additionally, we have presented a brief overview of generation mechanisms, public datasets, online detection tools, and evaluation metrics to provide a valuable resource for researchers and practitioners in this field. Most importantly, we offer a focused analysis from a social media perspective to highlight their broader societal impact. Furthermore, we identify current challenges in detection and propose directions for future research that address unexplored, ongoing, and emerging issues in detecting multimedia generated by LAIMs. Our aim for this survey is to fill an academic gap and contribute to global AI security efforts, helping to ensure the integrity of information in the digital realm. The project link is https://github.com/Purdue-M2/Detect-LAIM-generated-Multimedia-Survey.
Exploring Transferability of Multimodal Adversarial Samples for Vision-Language Pre-training Models with Contrastive Learning
The integration of visual and textual data in Vision-Language Pre-training (VLP) models is crucial for enhancing vision-language understanding. However, the adversarial robustness of these models, especially in the alignment of image-text features, has not yet been sufficiently explored. In this paper, we introduce a novel gradient-based multimodal adversarial attack method, underpinned by contrastive learning, to improve the transferability of multimodal adversarial samples in VLP models. This method concurrently generates adversarial texts and images within imperceptive perturbation, employing both image-text and intra-modal contrastive loss. We evaluate the effectiveness of our approach on image-text retrieval and visual entailment tasks, using publicly available datasets in a black-box setting. Extensive experiments indicate a significant advancement over existing single-modal transfer-based adversarial attack methods and current multimodal adversarial attack approaches.
SEA: Low-Resource Safety Alignment for Multimodal Large Language Models via Synthetic Embeddings ACL 2025
Multimodal Large Language Models (MLLMs) have serious security vulnerabilities.While safety alignment using multimodal datasets consisting of text and data of additional modalities can effectively enhance MLLM's security, it is costly to construct these datasets. Existing low-resource security alignment methods, including textual alignment, have been found to struggle with the security risks posed by additional modalities. To address this, we propose Synthetic Embedding augmented safety Alignment (SEA), which optimizes embeddings of additional modality through gradient updates to expand textual datasets. This enables multimodal safety alignment training even when only textual data is available. Extensive experiments on image, video, and audio-based MLLMs demonstrate that SEA can synthesize a high-quality embedding on a single RTX3090 GPU within 24 seconds. SEA significantly improves the security of MLLMs when faced with threats from additional modalities. To assess the security risks introduced by video and audio, we also introduced a new benchmark called VA-SafetyBench. High attack success rates across multiple MLLMs validate its challenge. Our code and data will be available at https://github.com/ZeroNLP/SEA.
comment: Accepted in ACL 2025 Main Track
Ola: Pushing the Frontiers of Omni-Modal Language Model
Recent advances in large language models, particularly following GPT-4o, have sparked increasing interest in developing omni-modal models capable of understanding more modalities. While some open-source alternatives have emerged, there is still a notable lag behind specialized single-modality models in performance. In this paper, we present Ola, an Omni-modal Language model that achieves competitive performance across image, video, and audio understanding compared to specialized counterparts, pushing the frontiers of the omni-modal language model to a large extent. We conduct a comprehensive exploration of architectural design, data curation, and training strategies essential for building a robust omni-modal model. Ola incorporates advanced visual understanding and audio recognition capabilities through several critical and effective improvements over mainstream baselines. Moreover, we rethink inter-modal relationships during omni-modal training, emphasizing cross-modal alignment with video as a central bridge, and propose a progressive training pipeline that begins with the most distinct modalities and gradually moves towards closer modality alignment. Extensive experiments demonstrate that Ola surpasses existing open omni-modal LLMs across all modalities while achieving highly competitive performance compared to state-of-the-art specialized models of similar sizes. We aim to make Ola a fully open omni-modal understanding solution to advance future research in this emerging field. Model weights, code, and data are open-sourced at https://github.com/Ola-Omni/Ola.
Computation and Language
Domain Regeneration: How well do LLMs match syntactic properties of text domains?
Recent improvement in large language model performance have, in all likelihood, been accompanied by improvement in how well they can approximate the distribution of their training data. In this work, we explore the following question: which properties of text domains do LLMs faithfully approximate, and how well do they do so? Applying observational approaches familiar from corpus linguistics, we prompt a commonly used, opensource LLM to regenerate text from two domains of permissively licensed English text which are often contained in LLM training data -- Wikipedia and news text. This regeneration paradigm allows us to investigate whether LLMs can faithfully match the original human text domains in a fairly semantically-controlled setting. We investigate varying levels of syntactic abstraction, from more simple properties like sentence length, and article readability, to more complex and higher order properties such as dependency tag distribution, parse depth, and parse complexity. We find that the majority of the regenerated distributions show a shifted mean, a lower standard deviation, and a reduction of the long tail, as compared to the human originals.
Tracr-Injection: Distilling Algorithms into Pre-trained Language Models ACL
Motivated by the surge of large language models, there has been a push to formally characterize the symbolic abilities intrinsic to the transformer architecture. A programming language, called RASP, has been proposed, which can be directly compiled into transformer weights to implement these algorithms. However, the tasks that can be implemented in RASP are often uncommon to learn from natural unsupervised data, showing a mismatch between theoretical capabilities of the transformer architecture, and the practical learnability of these capabilities from unsupervised data. We propose tracr-injection, a method that allows us to distill algorithms written in RASP directly into a pre-trained language model. We showcase our method by injecting 3 different algorithms into a language model. We show how our method creates an interpretable subspace within the model's residual stream, which can be decoded into the variables present in the code of the RASP algorithm. Additionally, we found that the proposed method can improve out-of-distribution performance compared to our baseline, indicating that indeed a more symbolic mechanism is taking place in the inner workings of the model. We release the code used to run our experiments.
comment: ACL Findings 2025
I see what you mean: Co-Speech Gestures for Reference Resolution in Multimodal Dialogue
In face-to-face interaction, we use multiple modalities, including speech and gestures, to communicate information and resolve references to objects. However, how representational co-speech gestures refer to objects remains understudied from a computational perspective. In this work, we address this gap by introducing a multimodal reference resolution task centred on representational gestures, while simultaneously tackling the challenge of learning robust gesture embeddings. We propose a self-supervised pre-training approach to gesture representation learning that grounds body movements in spoken language. Our experiments show that the learned embeddings align with expert annotations and have significant predictive power. Moreover, reference resolution accuracy further improves when (1) using multimodal gesture representations, even when speech is unavailable at inference time, and (2) leveraging dialogue history. Overall, our findings highlight the complementary roles of gesture and speech in reference resolution, offering a step towards more naturalistic models of human-machine interaction.
Survey on Vision-Language-Action Models
This paper presents an AI-generated review of Vision-Language-Action (VLA) models, summarizing key methodologies, findings, and future directions. The content is produced using large language models (LLMs) and is intended only for demonstration purposes. This work does not represent original research, but highlights how AI can help automate literature reviews. As AI-generated content becomes more prevalent, ensuring accuracy, reliability, and proper synthesis remains a challenge. Future research will focus on developing a structured framework for AI-assisted literature reviews, exploring techniques to enhance citation accuracy, source credibility, and contextual understanding. By examining the potential and limitations of LLM in academic writing, this study aims to contribute to the broader discussion of integrating AI into research workflows. This work serves as a preliminary step toward establishing systematic approaches for leveraging AI in literature review generation, making academic knowledge synthesis more efficient and scalable.
comment: arXiv admin note: This submission has been withdrawn due to serious violation of arXiv policies for acceptable submissions
EnigmaToM: Improve LLMs' Theory-of-Mind Reasoning Capabilities with Neural Knowledge Base of Entity States ACL 2025
Theory-of-Mind (ToM), the ability to infer others' perceptions and mental states, is fundamental to human interaction but remains challenging for Large Language Models (LLMs). While existing ToM reasoning methods show promise with reasoning via perceptual perspective-taking, they often rely excessively on off-the-shelf LLMs, reducing their efficiency and limiting their applicability to high-order ToM reasoning. To address these issues, we present EnigmaToM, a novel neuro-symbolic framework that enhances ToM reasoning by integrating a Neural Knowledge Base of entity states (Enigma) for (1) a psychology-inspired iterative masking mechanism that facilitates accurate perspective-taking and (2) knowledge injection that elicits key entity information. Enigma generates structured knowledge of entity states to build spatial scene graphs for belief tracking across various ToM orders and enrich events with fine-grained entity state details. Experimental results on ToMi, HiToM, and FANToM benchmarks show that EnigmaToM significantly improves ToM reasoning across LLMs of varying sizes, particularly excelling in high-order reasoning scenarios.
comment: Findings of ACL 2025
How much do language models memorize?
We propose a new method for estimating how much a model ``knows'' about a datapoint and use it to measure the capacity of modern language models. Prior studies of language model memorization have struggled to disentangle memorization from generalization. We formally separate memorization into two components: \textit{unintended memorization}, the information a model contains about a specific dataset, and \textit{generalization}, the information a model contains about the true data-generation process. When we completely eliminate generalization, we can compute the total memorization, which provides an estimate of model capacity: our measurements estimate that GPT-style models have a capacity of approximately 3.6 bits per parameter. We train language models on datasets of increasing size and observe that models memorize until their capacity fills, at which point ``grokking'' begins, and unintended memorization decreases as models begin to generalize. We train hundreds of transformer language models ranging from $500K$ to $1.5B$ parameters and produce a series of scaling laws relating model capacity and data size to membership inference.
ScEdit: Script-based Assessment of Knowledge Editing ACL 2025
Knowledge Editing (KE) has gained increasing attention, yet current KE tasks remain relatively simple. Under current evaluation frameworks, many editing methods achieve exceptionally high scores, sometimes nearing perfection. However, few studies integrate KE into real-world application scenarios (e.g., recent interest in LLM-as-agent). To support our analysis, we introduce a novel script-based benchmark -- ScEdit (Script-based Knowledge Editing Benchmark) -- which encompasses both counterfactual and temporal edits. We integrate token-level and text-level evaluation methods, comprehensively analyzing existing KE techniques. The benchmark extends traditional fact-based ("What"-type question) evaluation to action-based ("How"-type question) evaluation. We observe that all KE methods exhibit a drop in performance on established metrics and face challenges on text-level metrics, indicating a challenging task. Our benchmark is available at https://github.com/asdfo123/ScEdit.
comment: ACL 2025 Findings
GCoT: Chain-of-Thought Prompt Learning for Graphs KDD2025
Chain-of-thought (CoT) prompting has achieved remarkable success in natural language processing (NLP). However, its vast potential remains largely unexplored for graphs. This raises an interesting question: How can we design CoT prompting for graphs to guide graph models to learn step by step? On one hand, unlike natural languages, graphs are non-linear and characterized by complex topological structures. On the other hand, many graphs lack textual data, making it difficult to formulate language-based CoT prompting. In this work, we propose the first CoT prompt learning framework for text-free graphs, GCoT. Specifically, we decompose the adaptation process for each downstream task into a series of inference steps, with each step consisting of prompt-based inference, ``thought'' generation, and thought-conditioned prompt learning. While the steps mimic CoT prompting in NLP, the exact mechanism differs significantly. Specifically, at each step, an input graph, along with a prompt, is first fed into a pre-trained graph encoder for prompt-based inference. We then aggregate the hidden layers of the encoder to construct a ``thought'', which captures the working state of each node in the current step. Conditioned on this thought, we learn a prompt specific to each node based on the current state. These prompts are fed into the next inference step, repeating the cycle. To evaluate and analyze the effectiveness of GCoT, we conduct comprehensive experiments on eight public datasets, which demonstrate the advantage of our approach.
comment: Accepted by SIGKDD2025
SAEBench: A Comprehensive Benchmark for Sparse Autoencoders in Language Model Interpretability ICML 2025
Sparse autoencoders (SAEs) are a popular technique for interpreting language model activations, and there is extensive recent work on improving SAE effectiveness. However, most prior work evaluates progress using unsupervised proxy metrics with unclear practical relevance. We introduce SAEBench, a comprehensive evaluation suite that measures SAE performance across eight diverse metrics, spanning interpretability, feature disentanglement and practical applications like unlearning. To enable systematic comparison, we open-source a suite of over 200 SAEs across eight recently proposed SAE architectures and training algorithms. Our evaluation reveals that gains on proxy metrics do not reliably translate to better practical performance. For instance, while Matryoshka SAEs slightly underperform on existing proxy metrics, they substantially outperform other architectures on feature disentanglement metrics; moreover, this advantage grows with SAE scale. By providing a standardized framework for measuring progress in SAE development, SAEBench enables researchers to study scaling trends and make nuanced comparisons between different SAE architectures and training methodologies. Our interactive interface enables researchers to flexibly visualize relationships between metrics across hundreds of open-source SAEs at: www.neuronpedia.org/sae-bench
comment: Accepted to ICML 2025 main conference
PIP: Perturbation-based Iterative Pruning for Large Language Models
The rapid increase in the parameter counts of Large Language Models (LLMs), reaching billions or even trillions, presents significant challenges for their practical deployment, particularly in resource-constrained environments. To ease this issue, we propose PIP (Perturbation-based Iterative Pruning), a novel double-view structured pruning method to optimize LLMs, which combines information from two different views: the unperturbed view and the perturbed view. With the calculation of gradient differences, PIP iteratively prunes those that struggle to distinguish between these two views. Our experiments show that PIP reduces the parameter count by approximately 20% while retaining over 85% of the original model's accuracy across varied benchmarks. In some cases, the performance of the pruned model is within 5% of the unpruned version, demonstrating PIP's ability to preserve key aspects of model effectiveness. Moreover, PIP consistently outperforms existing state-of-the-art (SOTA) structured pruning methods, establishing it as a leading technique for optimizing LLMs in environments with constrained resources.
MiLiC-Eval: Benchmarking Multilingual LLMs for China's Minority Languages ACL 2025
Large language models (LLMs) excel in high-resource languages but struggle with low-resource languages (LRLs), particularly those spoken by minority communities in China, such as Tibetan, Uyghur, Kazakh, and Mongolian. To systematically track the progress in these languages, we introduce MiLiC-Eval, a benchmark designed for minority languages in China, featuring 24K instances across 9 tasks. MiLiC-Eval focuses on underrepresented writing systems. Its parallelism between tasks and languages can provide a faithful and fine-grained assessment of linguistic and problem-solving skills. Our evaluation reveals that open-source LLMs perform poorly on syntax-intensive tasks and multi-script languages. We further demonstrate how MiLiC-Eval can help advance LRL research in handling diverse writing systems and understanding the process of language adaptation.
comment: ACL 2025 (Findings) Code and data available at https://github.com/luciusssss/MiLiC-Eval
Efficient Speech Translation through Model Compression and Knowledge Distillation
Efficient deployment of large audio-language models for speech translation remains challenging due to their significant computational requirements. In this paper, we address this challenge through our system submissions to the "Model Compression" track at the International Conference on Spoken Language Translation (IWSLT 2025). We experiment with a combination of approaches including iterative layer pruning based on layer importance evaluation, low-rank adaptation with 4-bit quantization (QLoRA), and knowledge distillation. In our experiments, we use Qwen2-Audio-7B-Instruct for speech translation into German and Chinese. Our pruned (student) models achieve up to a 50% reduction in both model parameters and storage footprint, while retaining 97-100% of the translation quality of the in-domain (teacher) models.
comment: IWSLT 2025
Emergence and Effectiveness of Task Vectors in In-Context Learning: An Encoder Decoder Perspective
Autoregressive transformers exhibit adaptive learning through in-context learning (ICL), which begs the question of how. Prior works have shown that transformers represent the ICL tasks as vectors in their representations. In this paper, we leverage the encoding-decoding framework to study how transformers form task vectors during pretraining and how their task encoding quality predicts ICL task performance. On synthetic ICL tasks, we analyze the training dynamics of a small transformer and report the coupled emergence of task encoding and decoding. As the model learns to encode different latent tasks (e.g., "Finding the first noun in a sentence.") into distinct, separable representations, it concurrently builds conditional decoding algorithms and improves its ICL performance. We validate this phenomenon across pretrained models of varying scales (Gemma-2 2B/9B/27B, Llama-3.1 8B/70B) and over the course of pretraining in OLMo-7B. Further, we demonstrate that the quality of task encoding inferred from representations predicts ICL performance, and that, surprisingly, finetuning the earlier layers can improve the task encoding and performance more than finetuning the latter layers. Our empirical insights shed light into better understanding the success and failure modes of large language models via their representations.
comment: https://charming-centaur-089.notion.site/Emergence-and-Effectiveness-of-Task-Vectors-in-In-Context-Learning-An-Encoder-Decoder-Perspective-2054664a1d59814f8401cded3332fce4
Bemba Speech Translation: Exploring a Low-Resource African Language
This paper describes our system submission to the International Conference on Spoken Language Translation (IWSLT 2025), low-resource languages track, namely for Bemba-to-English speech translation. We built cascaded speech translation systems based on Whisper and NLLB-200, and employed data augmentation techniques, such as back-translation. We investigate the effect of using synthetic data and discuss our experimental setup.
comment: IWSLT 2025
Discriminating Form and Meaning in Multilingual Models with Minimal-Pair ABX Tasks
We introduce a set of training-free ABX-style discrimination tasks to evaluate how multilingual language models represent language identity (form) and semantic content (meaning). Inspired from speech processing, these zero-shot tasks measure whether minimal differences in representation can be reliably detected. This offers a flexible and interpretable alternative to probing. Applied to XLM-R (Conneau et al, 2020) across pretraining checkpoints and layers, we find that language discrimination declines over training and becomes concentrated in lower layers, while meaning discrimination strengthens over time and stabilizes in deeper layers. We then explore probing tasks, showing some alignment between our metrics and linguistic learning performance. Our results position ABX tasks as a lightweight framework for analyzing the structure of multilingual representations.
Bone Soups: A Seek-and-Soup Model Merging Approach for Controllable Multi-Objective Generation ACL 2025
User information needs are often highly diverse and varied. A key challenge in current research is how to achieve controllable multi-objective generation while enabling rapid adaptation to accommodate diverse user demands during test time. Existing solutions, such as Rewarded Soup, focus on merging language models individually tuned on single objectives. While easy to implement and widely used, these approaches face limitations in achieving optimal performance due to their disregard for the impacts of competing objectives on model tuning. To address this issue, we propose Bone Soup, a novel model merging approach that first seeks a series of backbone models by considering the impacts of multiple objectives and then makes the soup (i.e., merge the backbone models). Specifically, Bone Soup begins by training multiple backbone models for different objectives using multi-objective reinforcement learning. Each backbone model is guided by a combination of backbone reward signals. To ensure that these models are optimal for the Pareto front, the backbone rewards are crafted by combining standard reward functions into basis vectors, which can then be modified through a rule-based construction method. Bone Soup leverages a symmetric circulant matrix mapping to generate the merging coefficients, which are used to merge the backbone models according to user preferences. Extensive experimental results demonstrate that Bone Soup exhibits strong controllability and Pareto optimality in controllable multi-objective generation, providing a more effective and efficient approach to addressing diverse user needs at test time.
comment: This paper is accepted by the ACL 2025 Main Conference
Safety at Scale: A Comprehensive Survey of Large Model Safety
The rapid advancement of large models, driven by their exceptional abilities in learning and generalization through large-scale pre-training, has reshaped the landscape of Artificial Intelligence (AI). These models are now foundational to a wide range of applications, including conversational AI, recommendation systems, autonomous driving, content generation, medical diagnostics, and scientific discovery. However, their widespread deployment also exposes them to significant safety risks, raising concerns about robustness, reliability, and ethical implications. This survey provides a systematic review of current safety research on large models, covering Vision Foundation Models (VFMs), Large Language Models (LLMs), Vision-Language Pre-training (VLP) models, Vision-Language Models (VLMs), Diffusion Models (DMs), and large-model-based Agents. Our contributions are summarized as follows: (1) We present a comprehensive taxonomy of safety threats to these models, including adversarial attacks, data poisoning, backdoor attacks, jailbreak and prompt injection attacks, energy-latency attacks, data and model extraction attacks, and emerging agent-specific threats. (2) We review defense strategies proposed for each type of attacks if available and summarize the commonly used datasets and benchmarks for safety research. (3) Building on this, we identify and discuss the open challenges in large model safety, emphasizing the need for comprehensive safety evaluations, scalable and effective defense mechanisms, and sustainable data practices. More importantly, we highlight the necessity of collective efforts from the research community and international collaboration. Our work can serve as a useful reference for researchers and practitioners, fostering the ongoing development of comprehensive defense systems and platforms to safeguard AI models.
comment: 47 pages, 3 figures, 11 tables; GitHub: https://github.com/xingjunm/Awesome-Large-Model-Safety
ChitroJera: A Regionally Relevant Visual Question Answering Dataset for Bangla ECML
Visual Question Answer (VQA) poses the problem of answering a natural language question about a visual context. Bangla, despite being a widely spoken language, is considered low-resource in the realm of VQA due to the lack of proper benchmarks, challenging models known to be performant in other languages. Furthermore, existing Bangla VQA datasets offer little regional relevance and are largely adapted from their foreign counterparts. To address these challenges, we introduce a large-scale Bangla VQA dataset, ChitroJera, totaling over 15k samples from diverse and locally relevant data sources. We assess the performance of text encoders, image encoders, multimodal models, and our novel dual-encoder models. The experiments reveal that the pre-trained dual-encoders outperform other models of their scale. We also evaluate the performance of current large vision language models (LVLMs) using prompt-based techniques, achieving the overall best performance. Given the underdeveloped state of existing datasets, we envision ChitroJera expanding the scope of Vision-Language tasks in Bangla.
comment: Accepted in ECML PKDD 2025
SpeechT: Findings of the First Mentorship in Speech Translation
This work presents the details and findings of the first mentorship in speech translation (SpeechT), which took place in December 2024 and January 2025. To fulfil the mentorship requirements, the participants engaged in key activities, including data preparation, modelling, and advanced research. The participants explored data augmentation techniques and compared end-to-end and cascaded speech translation systems. The projects covered various languages other than English, including Arabic, Bengali, Galician, Indonesian, Japanese, and Spanish.
comment: MT Summit 2025
Implicit Reasoning in Transformers is Reasoning through Shortcuts ACL 2025
Test-time compute is emerging as a new paradigm for enhancing language models' complex multi-step reasoning capabilities, as demonstrated by the success of OpenAI's o1 and o3, as well as DeepSeek's R1. Compared to explicit reasoning in test-time compute, implicit reasoning is more inference-efficient, requiring fewer generated tokens. However, why does the advanced reasoning capability fail to emerge in the implicit reasoning style? In this work, we train GPT-2 from scratch on a curated multi-step mathematical reasoning dataset and conduct analytical experiments to investigate how language models perform implicit reasoning in multi-step tasks. Our findings reveal: 1) Language models can perform step-by-step reasoning and achieve high accuracy in both in-domain and out-of-domain tests via implicit reasoning. However, this capability only emerges when trained on fixed-pattern data. 2) Conversely, implicit reasoning abilities emerging from training on unfixed-pattern data tend to overfit a specific pattern and fail to generalize further. Notably, this limitation is also observed in state-of-the-art large language models. These findings suggest that language models acquire implicit reasoning through shortcut learning, enabling strong performance on tasks with similar patterns while lacking generalization.
comment: ACL 2025 Findings
SepLLM: Accelerate Large Language Models by Compressing One Segment into One Separator ICML 2025
Large Language Models (LLMs) have exhibited exceptional performance across a spectrum of natural language processing tasks. However, their substantial sizes pose considerable challenges, particularly in computational demands and inference speed, due to their quadratic complexity. In this work, we have identified a key pattern: certain seemingly meaningless separator tokens (i.e., punctuations) contribute disproportionately to attention scores compared to semantically meaningful tokens. This observation suggests that information of the segments between these separator tokens can be effectively condensed into the separator tokens themselves without significant information loss. Guided by this insight, we introduce SepLLM, a plug-and-play framework that accelerates inference by compressing these segments and eliminating redundant tokens. Additionally, we implement efficient kernels for training acceleration. Experimental results across training-free, training-from-scratch, and post-training settings demonstrate SepLLM's effectiveness. Notably, using the Llama-3-8B backbone, SepLLM achieves over 50% reduction in KV cache on the GSM8K-CoT benchmark while maintaining comparable performance. Furthermore, in streaming settings, SepLLM effectively processes sequences of up to 4 million tokens or more while maintaining consistent language modeling capabilities.
comment: Accepted to ICML 2025
Enhancing LLM-based Hatred and Toxicity Detection with Meta-Toxic Knowledge Graph
The rapid growth of social media platforms has raised significant concerns regarding online content toxicity. When Large Language Models (LLMs) are used for toxicity detection, two key challenges emerge: 1) the absence of domain-specific toxic knowledge leads to false negatives; 2) the excessive sensitivity of LLMs to toxic speech results in false positives, limiting freedom of speech. To address these issues, we propose a novel method called MetaTox, leveraging graph search on a meta-toxic knowledge graph to enhance hatred and toxicity detection. First, we construct a comprehensive meta-toxic knowledge graph by utilizing LLMs to extract toxic information through a three-step pipeline, with toxic benchmark datasets serving as corpora. Second, we query the graph via retrieval and ranking processes to supplement accurate, relevant toxic knowledge. Extensive experiments and in-depth case studies across multiple datasets demonstrate that our MetaTox significantly decreases the false positive rate while boosting overall toxicity detection performance. Our code is available at https://github.com/YiboZhao624/MetaTox.
comment: 8 pages of content
Enhancing Transformers for Generalizable First-Order Logical Entailment ACL 2025
Transformers, as the fundamental deep learning architecture, have demonstrated great capability in reasoning. This paper studies the generalizable first-order logical reasoning ability of transformers with their parameterized knowledge and how to improve it. Transformers' capability of first-order reasoning is further captured by whether they can conduct first-order logical entailment, which is quantitatively measured by their performance in answering knowledge graph queries. We establish the connections between (1) two types of distribution shifts studied in out-of-distribution generalization and (2) unseen knowledge and query settings discussed in the task of knowledge graph query answering, which makes it possible to characterize the fine-grained generalizability. Results on our comprehensive dataset showed that transformers outperform previous methods designed particularly for this task and provided detailed empirical evidence about the impact of the input query syntax, token embedding, and transformer architectures on the reasoning capability of transformers. Interestingly, our results revealed the mismatch of positional encoding and other design choices of transformer architectures in previous practices. Motivated by this, we propose TEGA, a logic-aware architecture that significantly improves the performance in generalizable first-order logical entailment.
comment: ACL 2025 Main
LLMs instead of Human Judges? A Large Scale Empirical Study across 20 NLP Evaluation Tasks ACL 2025
There is an increasing trend towards evaluating NLP models with LLMs instead of human judgments, raising questions about the validity of these evaluations, as well as their reproducibility in the case of proprietary models. We provide JUDGE-BENCH, an extensible collection of 20 NLP datasets with human annotations covering a broad range of evaluated properties and types of data, and comprehensively evaluate 11 current LLMs, covering both open-weight and proprietary models, for their ability to replicate the annotations. Our evaluations show substantial variance across models and datasets. Models are reliable evaluators on some tasks, but overall display substantial variability depending on the property being evaluated, the expertise level of the human judges, and whether the language is human or model-generated. We conclude that LLMs should be carefully validated against human judgments before being used as evaluators.
comment: Accepted to the main conference of ACL 2025
CNNSum: Exploring Long-Context Summarization with Large Language Models in Chinese Novels ACL 2025
Large language models (LLMs) have been well-researched in various long-context tasks. However, the scarcity of long-context summarization datasets hinders progress in this area. To address this, we introduce CNNSum, a multi-scale long-context summarization benchmark based on Chinese novels, featuring human-driven annotations across four subsets totaling 695 samples, with lengths ranging from 16k to 128k. We benchmark numerous LLMs and conduct detailed human assessments to summarize abnormal output types. Furthermore, we extensively explore how to improve long-context summarization. In our study: (1) Advanced LLMs may generate much subjective commentary, leading to vague summaries. (2) Currently, long-context summarization mainly relies on memory ability. The advantages of Large LLMs are hard to utilize, thus small LLMs are more cost-effective. (3) Different prompt types paired with various version models may cause large performance gaps. In further fine-tuning, these can be mitigated, and the Base version models perform better. (4) LLMs with RoPE-base scaled exhibit strong extrapolation potential; using short-context data can significantly improve long-context summarization performance. However, further applying other interpolation methods requires careful selection. (5) CNNSum provides more reliable evaluation results than other benchmarks. We release CNNSum to advance future research.(https://github.com/CxsGhost/CNNSum)
comment: Accepted to ACL 2025 (Findings)
LexGen: Domain-aware Multilingual Lexicon Generation ACL
Lexicon or dictionary generation across domains has the potential for societal impact, as it can potentially enhance information accessibility for a diverse user base while preserving language identity. Prior work in the field primarily focuses on bilingual lexical induction, which deals with word alignments using mapping or corpora-based approaches. However, these approaches do not cater to domain-specific lexicon generation that consists of domain-specific terminology. This task becomes particularly important in specialized medical, engineering, and other technical domains, owing to the highly infrequent usage of the terms and scarcity of data involving domain-specific terms especially for low/mid-resource languages. In this paper, we propose a new model to generate dictionary words for $6$ Indian languages in the multi-domain setting. Our model consists of domain-specific and domain-generic layers that encode information, and these layers are invoked via a learnable routing technique. We also release a new benchmark dataset consisting of >75K translation pairs across 6 Indian languages spanning 8 diverse domains.We conduct both zero-shot and few-shot experiments across multiple domains to show the efficacy of our proposed model in generalizing to unseen domains and unseen languages. Additionally, we also perform a post-hoc human evaluation on unseen languages. The source code and dataset is present at https://github.com/Atulkmrsingh/lexgen.
comment: ACL Main Conference, 2025
KnowShiftQA: How Robust are RAG Systems when Textbook Knowledge Shifts in K-12 Education? ACL 2025
Retrieval-Augmented Generation (RAG) systems show remarkable potential as question answering tools in the K-12 Education domain, where knowledge is typically queried within the restricted scope of authoritative textbooks. However, discrepancies between these textbooks and the parametric knowledge inherent in Large Language Models (LLMs) can undermine the effectiveness of RAG systems. To systematically investigate RAG system robustness against such knowledge discrepancies, we introduce KnowShiftQA. This novel question answering dataset simulates these discrepancies by applying deliberate hypothetical knowledge updates to both answers and source documents, reflecting how textbook knowledge can shift. KnowShiftQA comprises 3,005 questions across five subjects, designed with a comprehensive question typology focusing on context utilization and knowledge integration. Our extensive experiments on retrieval and question answering performance reveal that most RAG systems suffer a substantial performance drop when faced with these knowledge discrepancies. Furthermore, questions requiring the integration of contextual (textbook) knowledge with parametric (LLM) knowledge pose a significant challenge to current LLMs.
comment: ACL 2025 Main
Cross-Lingual Transfer of Debiasing and Detoxification in Multilingual LLMs: An Extensive Investigation ACL 2025
Recent generative large language models (LLMs) show remarkable performance in non-English languages, but when prompted in those languages they tend to express higher harmful social biases and toxicity levels. Prior work has shown that finetuning on specialized datasets can mitigate this behavior, and doing so in English can transfer to other languages. In this work, we investigate the impact of different finetuning methods on the model's bias and toxicity, but also on its ability to produce fluent and diverse text. We reduce biases by finetuning on curated non-harmful text, but find only direct preference optimization to be effective for mitigating toxicity. The mitigation caused by applying these methods in English also transfers to non-English languages. We find evidence that the extent to which transfer takes place can be predicted by the amount of data in a given language present in the model's pretraining data. However, this transfer of bias and toxicity mitigation often comes at the expense of decreased language generation ability in non-English languages, highlighting the importance of developing language-specific bias and toxicity mitigation methods.
comment: Accepted to the Findings of ACL 2025
TAG-INSTRUCT: Controlled Instruction Complexity Enhancement through Structure-based Augmentation
High-quality instruction data is crucial for developing large language models (LLMs), yet existing approaches struggle to effectively control instruction complexity. We present TAG-INSTRUCT, a novel framework that enhances instruction complexity through structured semantic compression and controlled difficulty augmentation. Unlike previous prompt-based methods operating on raw text, TAG-INSTRUCT compresses instructions into a compact tag space and systematically enhances complexity through RL-guided tag expansion. Through extensive experiments, we show that TAG-INSTRUCT outperforms existing instruction complexity augmentation approaches. Our analysis reveals that operating in tag space provides superior controllability and stability across different instruction synthesis frameworks.
A Conformal Risk Control Framework for Granular Word Assessment and Uncertainty Calibration of CLIPScore Quality Estimates ACL 2025
This study explores current limitations of learned image captioning evaluation metrics, specifically the lack of granular assessments for errors within captions, and the reliance on single-point quality estimates without considering uncertainty. To address the limitations, we propose a simple yet effective strategy for generating and calibrating distributions of CLIPScore values. Leveraging a model-agnostic conformal risk control framework, we calibrate CLIPScore values for task-specific control variables, tackling the aforementioned limitations. Experimental results demonstrate that using conformal risk control, over score distributions produced with simple methods such as input masking, can achieve competitive performance compared to more complex approaches. Our method effectively detects erroneous words, while providing formal guarantees aligned with desired risk levels. It also improves the correlation between uncertainty estimations and prediction errors, thus enhancing the overall reliability of caption evaluation metrics.
comment: Accepted at Findings ACL 2025
A is for Absorption: Studying Feature Splitting and Absorption in Sparse Autoencoders
Sparse Autoencoders (SAEs) aim to decompose the activation space of large language models (LLMs) into human-interpretable latent directions or features. As we increase the number of features in the SAE, hierarchical features tend to split into finer features ("math" may split into "algebra", "geometry", etc.), a phenomenon referred to as feature splitting. However, we show that sparse decomposition and splitting of hierarchical features is not robust. Specifically, we show that seemingly monosemantic features fail to fire where they should, and instead get "absorbed" into their children features. We coin this phenomenon feature absorption, and show that it is caused by optimizing for sparsity in SAEs whenever the underlying features form a hierarchy. We introduce a metric to detect absorption in SAEs, and validate our findings empirically on hundreds of LLM SAEs. Our investigation suggests that varying SAE sizes or sparsity is insufficient to solve this issue. We discuss the implications of feature absorption in SAEs and some potential approaches to solve the fundamental theoretical issues before SAEs can be used for interpreting LLMs robustly and at scale.
Knowing Before Saying: LLM Representations Encode Information About Chain-of-Thought Success Before Completion
We investigate whether the success of a zero-shot Chain-of-Thought (CoT) process can be predicted before completion. We discover that a probing classifier, based on LLM representations, performs well \emph{even before a single token is generated}, suggesting that crucial information about the reasoning process is already present in the initial steps representations. In contrast, a strong BERT-based baseline, which relies solely on the generated tokens, performs worse, likely because it depends on shallow linguistic cues rather than deeper reasoning dynamics. Surprisingly, using later reasoning steps does not always improve classification. When additional context is unhelpful, earlier representations resemble later ones more, suggesting LLMs encode key information early. This implies reasoning can often stop early without loss. To test this, we conduct early stopping experiments, showing that truncating CoT reasoning still improves performance over not using CoT at all, though a gap remains compared to full reasoning. However, approaches like supervised learning or reinforcement learning designed to shorten CoT chains could leverage our classifier's guidance to identify when early stopping is effective. Our findings provide insights that may support such methods, helping to optimize CoT's efficiency while preserving its benefits.
Standard Benchmarks Fail - Auditing LLM Agents in Finance Must Prioritize Risk
Standard benchmarks fixate on how well large language model (LLM) agents perform in finance, yet say little about whether they are safe to deploy. We argue that accuracy metrics and return-based scores provide an illusion of reliability, overlooking vulnerabilities such as hallucinated facts, stale data, and adversarial prompt manipulation. We take a firm position: financial LLM agents should be evaluated first and foremost on their risk profile, not on their point-estimate performance. Drawing on risk-engineering principles, we outline a three-level agenda: model, workflow, and system, for stress-testing LLM agents under realistic failure modes. To illustrate why this shift is urgent, we audit six API-based and open-weights LLM agents on three high-impact tasks and uncover hidden weaknesses that conventional benchmarks miss. We conclude with actionable recommendations for researchers, practitioners, and regulators: audit risk-aware metrics in future studies, publish stress scenarios alongside datasets, and treat ``safety budget'' as a primary success criterion. Only by redefining what ``good'' looks like can the community responsibly advance AI-driven finance.
comment: 46 pages, 2 figures, 2 tables
SPILL: Domain-Adaptive Intent Clustering based on Selection and Pooling with Large Language Models
In this paper, we propose Selection and Pooling with Large Language Models (SPILL), an intuitive and domain-adaptive method for intent clustering without fine-tuning. Existing embeddings-based clustering methods rely on a few labeled examples or unsupervised fine-tuning to optimize results for each new dataset, which makes them less generalizable to multiple datasets. Our goal is to make these existing embedders more generalizable to new domain datasets without further fine-tuning. Inspired by our theoretical derivation and simulation results on the effectiveness of sampling and pooling techniques, we view the clustering task as a small-scale selection problem. A good solution to this problem is associated with better clustering performance. Accordingly, we propose a two-stage approach: First, for each utterance (referred to as the seed), we derive its embedding using an existing embedder. Then, we apply a distance metric to select a pool of candidates close to the seed. Because the embedder is not optimized for new datasets, in the second stage, we use an LLM to further select utterances from these candidates that share the same intent as the seed. Finally, we pool these selected candidates with the seed to derive a refined embedding for the seed. We found that our method generally outperforms directly using an embedder, and it achieves comparable results to other state-of-the-art studies, even those that use much larger models and require fine-tuning, showing its strength and efficiency. Our results indicate that our method enables existing embedders to be further improved without additional fine-tuning, making them more adaptable to new domain datasets. Additionally, viewing the clustering task as a small-scale selection problem gives the potential of using LLMs to customize clustering tasks according to the user's goals.
Improving Medical Large Vision-Language Models with Abnormal-Aware Feedback
Existing Medical Large Vision-Language Models (Med-LVLMs), encapsulating extensive medical knowledge, demonstrate excellent capabilities in understanding medical images. However, there remain challenges in visual localization in medical images, which is crucial for abnormality detection and interpretation. To address these issues, we propose a novel UMed-LVLM designed to unveil medical abnormalities. Specifically, we collect a Medical Abnormalities Unveiling (MAU) dataset and propose a two-stage training method for UMed-LVLM training. To collect MAU dataset, we propose a prompt method utilizing the GPT-4V to generate diagnoses based on identified abnormal areas in medical images. Moreover, the two-stage training method includes Abnormal-Aware Instruction Tuning and Abnormal-Aware Rewarding, comprising Relevance Reward, Abnormal Localization Reward and Vision Relevance Reward. Experimental results demonstrate that our UMed-LVLM significantly outperforms existing Med-LVLMs in identifying and understanding medical abnormalities, achieving a 58% improvement over the baseline. In addition, this work shows that enhancing the abnormality detection capabilities of Med-LVLMs significantly improves their understanding of medical images and generalization capability.
comment: 16 pages
Non-literal Understanding of Number Words by Language Models
Humans naturally interpret numbers non-literally, effortlessly combining context, world knowledge, and speaker intent. We investigate whether large language models (LLMs) interpret numbers similarly, focusing on hyperbole and pragmatic halo effects. Through systematic comparison with human data and computational models of pragmatic reasoning, we find that LLMs diverge from human interpretation in striking ways. By decomposing pragmatic reasoning into testable components, grounded in the Rational Speech Act framework, we pinpoint where LLM processing diverges from human cognition -- not in prior knowledge, but in reasoning with it. This insight leads us to develop a targeted solution -- chain-of-thought prompting inspired by an RSA model makes LLMs' interpretations more human-like. Our work demonstrates how computational cognitive models can both diagnose AI-human differences and guide development of more human-like language understanding capabilities.
comment: 12 pages, 10 figures. To appear in the Proceedings of CogSci 2025
OmniCaptioner: One Captioner to Rule Them All
We propose OmniCaptioner, a versatile visual captioning framework for generating fine-grained textual descriptions across a wide variety of visual domains. Unlike prior methods limited to specific image types (e.g., natural images or geometric visuals), our framework provides a unified solution for captioning natural images, visual text (e.g., posters, UIs, textbooks), and structured visuals (e.g., documents, tables, charts). By converting low-level pixel information into semantically rich textual representations, our framework bridges the gap between visual and textual modalities. Our results highlight three key advantages: (i) Enhanced Visual Reasoning with LLMs, where long-context captions of visual modalities empower LLMs, particularly the DeepSeek-R1 series, to reason effectively in multimodal scenarios; (ii) Improved Image Generation, where detailed captions improve tasks like text-to-image generation and image transformation; and (iii) Efficient Supervised Fine-Tuning (SFT), which enables faster convergence with less data. We believe the versatility and adaptability of OmniCaptioner can offer a new perspective for bridging the gap between language and visual modalities.
comment: More visualizations on Homepage: https://alpha-innovator.github.io/OmniCaptioner-project-page and Official code: https://github.com/Alpha-Innovator/OmniCaptioner
SEA-HELM: Southeast Asian Holistic Evaluation of Language Models
With the rapid emergence of novel capabilities in Large Language Models (LLMs), the need for rigorous multilingual and multicultural benchmarks that are integrated has become more pronounced. Though existing LLM benchmarks are capable of evaluating specific capabilities of LLMs in English as well as in various mid- to low-resource languages, including those in the Southeast Asian (SEA) region, a comprehensive and culturally representative evaluation suite for the SEA languages has not been developed thus far. Here, we present SEA-HELM, a holistic linguistic and cultural LLM evaluation suite that emphasises SEA languages, comprising five core pillars: (1) NLP Classics, (2) LLM-specifics, (3) SEA Linguistics, (4) SEA Culture, (5) Safety. SEA-HELM currently supports Filipino, Indonesian, Tamil, Thai, and Vietnamese. We also introduce the SEA-HELM leaderboard, which allows users to understand models' multilingual and multicultural performance in a systematic and user-friendly manner. We make the SEA-HELM evaluation code publicly available.
Jigsaw-R1: A Study of Rule-based Visual Reinforcement Learning with Jigsaw Puzzles
The application of rule-based reinforcement learning (RL) to multimodal large language models (MLLMs) introduces unique challenges and potential deviations from findings in text-only domains, particularly for perception-heavy tasks. This paper provides a comprehensive study of rule-based visual RL, using jigsaw puzzles as a structured experimental framework. Jigsaw puzzles offer inherent ground truth, adjustable difficulty, and demand complex decision-making, making them ideal for this study. Our research reveals several key findings: \textit{Firstly,} we find that MLLMs, initially performing near to random guessing on the simplest jigsaw puzzles, achieve near-perfect accuracy and generalize to complex, unseen configurations through fine-tuning. \textit{Secondly,} training on jigsaw puzzles can induce generalization to other visual tasks, with effectiveness tied to specific task configurations. \textit{Thirdly,} MLLMs can learn and generalize with or without explicit reasoning, though open-source models often favor direct answering. Consequently, even when trained for step-by-step reasoning, they can ignore the thinking process in deriving the final answer. \textit{Fourthly,} we observe that complex reasoning patterns appear to be pre-existing rather than emergent, with their frequency increasing alongside training and task difficulty. \textit{Finally,} our results demonstrate that RL exhibits more effective generalization than Supervised Fine-Tuning (SFT), and an initial SFT cold start phase can hinder subsequent RL optimization. Although these observations are based on jigsaw puzzles and may vary across other visual tasks, this research contributes a valuable piece of jigsaw to the larger puzzle of collective understanding rule-based visual RL and its potential in multimodal learning. The code is available at: https://github.com/zifuwanggg/Jigsaw-R1.
Middle-Layer Representation Alignment for Cross-Lingual Transfer in Fine-Tuned LLMs ACL 2025
While large language models demonstrate remarkable capabilities at task-specific applications through fine-tuning, extending these benefits across diverse languages is essential for broad accessibility. However, effective cross-lingual transfer is hindered by LLM performance gaps across languages and the scarcity of fine-tuning data in many languages. Through analysis of LLM internal representations from over 1,000+ language pairs, we discover that middle layers exhibit the strongest potential for cross-lingual alignment. Building on this finding, we propose a middle-layer alignment objective integrated into task-specific training. Our experiments on slot filling, machine translation, and structured text generation show consistent improvements in cross-lingual transfer, especially to lower-resource languages. The method is robust to the choice of alignment languages and generalizes to languages unseen during alignment. Furthermore, we show that separately trained alignment modules can be merged with existing task-specific modules, improving cross-lingual capabilities without full re-training. Our code is publicly available (https://github.com/dannigt/mid-align).
comment: ACL 2025
Wait, that's not an option: LLMs Robustness with Incorrect Multiple-Choice Options ACL 2025
This work introduces a novel framework for evaluating LLMs' capacity to balance instruction-following with critical reasoning when presented with multiple-choice questions containing no valid answers. Through systematic evaluation across arithmetic, domain-specific knowledge, and high-stakes medical decision tasks, we demonstrate that post-training aligned models often default to selecting invalid options, while base models exhibit improved refusal capabilities that scale with model size. Our analysis reveals that alignment techniques, though intended to enhance helpfulness, can inadvertently impair models' reflective judgment--the ability to override default behaviors when faced with invalid options. We additionally conduct a parallel human study showing similar instruction-following biases, with implications for how these biases may propagate through human feedback datasets used in alignment. We provide extensive ablation studies examining the impact of model size, training techniques, and prompt engineering. Our findings highlight fundamental tensions between alignment optimization and preservation of critical reasoning capabilities, with important implications for developing more robust AI systems for real-world deployment.
comment: Accepted for ACL 2025 Main Conference and NeurIPS 2024 FM-EduAssess Workshop
Position: It's Time to Act on the Risk of Efficient Personalized Text Generation
The recent surge in high-quality open-source Generative AI text models (colloquially: LLMs), as well as efficient finetuning techniques, have opened the possibility of creating high-quality personalized models that generate text attuned to a specific individual's needs and are capable of credibly imitating their writing style by refining an open-source model with that person's own data. The technology to create such models is accessible to private individuals, and training and running such models can be done cheaply on consumer-grade hardware. While these advancements are a huge gain for usability and privacy, this position paper argues that the practical feasibility of impersonating specific individuals also introduces novel safety risks. For instance, this technology enables the creation of phishing emails or fraudulent social media accounts, based on small amounts of publicly available text, or by the individuals themselves to escape AI text detection. We further argue that these risks are complementary to - and distinct from - the much-discussed risks of other impersonation attacks such as image, voice, or video deepfakes, and are not adequately addressed by the larger research community, or the current generation of open- and closed-source models.
GMLM: Bridging Graph Neural Networks and Language Models for Heterophilic Node Classification
Integrating structured graph data with rich textual information from nodes poses a significant challenge, particularly for heterophilic node classification. Current approaches often struggle with computational costs or effective fusion of disparate modalities. We propose \textbf{Graph Masked Language Model (GMLM)}, a novel architecture efficiently combining Graph Neural Networks (GNNs) with Pre-trained Language Models (PLMs). GMLM introduces three key innovations: (i) a \textbf{dynamic active node selection} strategy for scalable PLM text processing; (ii) a GNN-specific \textbf{contrastive pretraining stage} using soft masking with a learnable graph \texttt{[MASK]} token for robust structural representations; and (iii) a \textbf{dedicated fusion module} integrating RGCN-based GNN embeddings with PLM (GTE-Small \& DistilBERT) embeddings. Extensive experiments on heterophilic benchmarks (Cornell, Wisconsin, Texas) demonstrate GMLM's superiority. Notably, GMLM(DistilBERT) achieves significant performance gains, improving accuracy by over \textbf{4.7\%} on Cornell and over \textbf{2.0\%} on Texas compared to the previous best-performing baselines. This work underscores the benefits of targeted PLM engagement and modality-specific pretraining for improved, efficient learning on text-rich graphs.
Disentangling Likes and Dislikes in Personalized Generative Explainable Recommendation WWW
Recent research on explainable recommendation generally frames the task as a standard text generation problem, and evaluates models simply based on the textual similarity between the predicted and ground-truth explanations. However, this approach fails to consider one crucial aspect of the systems: whether their outputs accurately reflect the users' (post-purchase) sentiments, i.e., whether and why they would like and/or dislike the recommended items. To shed light on this issue, we introduce new datasets and evaluation methods that focus on the users' sentiments. Specifically, we construct the datasets by explicitly extracting users' positive and negative opinions from their post-purchase reviews using an LLM, and propose to evaluate systems based on whether the generated explanations 1) align well with the users' sentiments, and 2) accurately identify both positive and negative opinions of users on the target items. We benchmark several recent models on our datasets and demonstrate that achieving strong performance on existing metrics does not ensure that the generated explanations align well with the users' sentiments. Lastly, we find that existing models can provide more sentiment-aware explanations when the users' (predicted) ratings for the target items are directly fed into the models as input. The datasets and benchmark implementation are available at: https://github.com/jchanxtarov/sent_xrec.
comment: This manuscript has been accepted for presentation at The Web Conference (WWW) 2025
STRICTA: Structured Reasoning in Critical Text Assessment for Peer Review and Beyond ACL 2025
Critical text assessment is at the core of many expert activities, such as fact-checking, peer review, and essay grading. Yet, existing work treats critical text assessment as a black box problem, limiting interpretability and human-AI collaboration. To close this gap, we introduce Structured Reasoning In Critical Text Assessment (STRICTA), a novel specification framework to model text assessment as an explicit, step-wise reasoning process. STRICTA breaks down the assessment into a graph of interconnected reasoning steps drawing on causality theory (Pearl, 1995). This graph is populated based on expert interaction data and used to study the assessment process and facilitate human-AI collaboration. We formally define STRICTA and apply it in a study on biomedical paper assessment, resulting in a dataset of over 4000 reasoning steps from roughly 40 biomedical experts on more than 20 papers. We use this dataset to empirically study expert reasoning in critical text assessment, and investigate if LLMs are able to imitate and support experts within these workflows. The resulting tools and datasets pave the way for studying collaborative expert-AI reasoning in text assessment, in peer review and beyond.
comment: Accepted at ACL 2025
EdiText: Controllable Coarse-to-Fine Text Editing with Diffusion Language Models ACL 2025
We propose EdiText, a controllable text editing method that modifies the reference text to desired attributes at various scales. We integrate an SDEdit-based editing technique that allows for broad adjustments in the degree of text editing. Additionally, we introduce a novel fine-level editing method based on self-conditioning, which allows subtle control of reference text. While being capable of editing on its own, this fine-grained method, integrated with the SDEdit approach, enables EdiText to make precise adjustments within the desired range. EdiText demonstrates its controllability to robustly adjust reference text at a broad range of levels across various tasks, including toxicity control and sentiment control.
comment: ACL 2025
Guiding Reasoning in Small Language Models with LLM Assistance
The limited reasoning capabilities of small language models (SLMs) cast doubt on their suitability for tasks demanding deep, multi-step logical deduction. This paper introduces a framework called Small Reasons, Large Hints (SMART), which selectively augments SLM reasoning with targeted guidance from large language models (LLMs). Inspired by the concept of cognitive scaffolding, SMART employs a score-based evaluation to identify uncertain reasoning steps and injects corrective LLM-generated reasoning only when necessary. By framing structured reasoning as an optimal policy search, our approach steers the reasoning trajectory toward correct solutions without exhaustive sampling. Our experiments on mathematical reasoning datasets demonstrate that targeted external scaffolding significantly improves performance, paving the way for collaborative use of both SLM and LLM to tackle complex reasoning tasks that are currently unsolvable by SLMs alone.
comment: 20 pages, 12 figures, 9 tables
Subword models struggle with word learning, but surprisal hides it ACL 2025
We study word learning in subword and character language models with the psycholinguistic lexical decision task. While subword LMs struggle to discern words and non-words with high accuracy, character LMs solve this task easily and consistently. Only when supplied with further contexts do subword LMs perform similarly to character models. Additionally, when looking at word-level and syntactic learning trajectories, we find that both processes are separable in character LMs. Word learning happens before syntactic learning, whereas both occur simultaneously in subword LMs. This raises questions about the adequacy of subword LMs for modeling language acquisition and positions character LMs as a viable alternative to study processes below the syntactic level.
comment: Accepted to ACL 2025 (Main)
Diversity-oriented Data Augmentation with Large Language Models ACL 2025
Data augmentation is an essential technique in natural language processing (NLP) for enriching training datasets by generating diverse samples. This process is crucial for improving the robustness and generalization capabilities of NLP models. However, a significant challenge remains: \textit{Insufficient Attention to Sample Distribution Diversity}. Most existing methods focus on increasing the sample numbers while neglecting the sample distribution diversity, which can lead to model overfitting. In response, we explore data augmentation's impact on dataset diversity and propose a \textbf{\underline{D}}iversity-\textbf{\underline{o}}riented data \textbf{\underline{Aug}}mentation framework (\textbf{DoAug}). % \(\mathscr{DoAug}\) Specifically, we utilize a diversity-oriented fine-tuning approach to train an LLM as a diverse paraphraser, which is capable of augmenting textual datasets by generating diversified paraphrases. Then, we apply the LLM paraphraser to a selected coreset of highly informative samples and integrate the paraphrases with the original data to create a more diverse augmented dataset. Finally, we conduct extensive experiments on 12 real-world textual datasets. The results show that our fine-tuned LLM augmenter improves diversity while preserving label consistency, thereby enhancing the robustness and performance of downstream tasks. Specifically, it achieves an average performance gain of \(10.52\%\), surpassing the runner-up baseline with more than three percentage points.
comment: Accepted to ACL 2025
NUTSHELL: A Dataset for Abstract Generation from Scientific Talks
Scientific communication is receiving increasing attention in natural language processing, especially to help researches access, summarize, and generate content. One emerging application in this area is Speech-to-Abstract Generation (SAG), which aims to automatically generate abstracts from recorded scientific presentations. SAG enables researchers to efficiently engage with conference talks, but progress has been limited by a lack of large-scale datasets. To address this gap, we introduce NUTSHELL, a novel multimodal dataset of *ACL conference talks paired with their corresponding abstracts. We establish strong baselines for SAG and evaluate the quality of generated abstracts using both automatic metrics and human judgments. Our results highlight the challenges of SAG and demonstrate the benefits of training on NUTSHELL. By releasing NUTSHELL under an open license (CC-BY 4.0), we aim to advance research in SAG and foster the development of improved models and evaluation methods.
An End-to-End Approach for Child Reading Assessment in the Xhosa Language
Child literacy is a strong predictor of life outcomes at the subsequent stages of an individual's life. This points to a need for targeted interventions in vulnerable low and middle income populations to help bridge the gap between literacy levels in these regions and high income ones. In this effort, reading assessments provide an important tool to measure the effectiveness of these programs and AI can be a reliable and economical tool to support educators with this task. Developing accurate automatic reading assessment systems for child speech in low-resource languages poses significant challenges due to limited data and the unique acoustic properties of children's voices. This study focuses on Xhosa, a language spoken in South Africa, to advance child speech recognition capabilities. We present a novel dataset composed of child speech samples in Xhosa. The dataset is available upon request and contains ten words and letters, which are part of the Early Grade Reading Assessment (EGRA) system. Each recording is labeled with an online and cost-effective approach by multiple markers and a subsample is validated by an independent EGRA reviewer. This dataset is evaluated with three fine-tuned state-of-the-art end-to-end models: wav2vec 2.0, HuBERT, and Whisper. The results indicate that the performance of these models can be significantly influenced by the amount and balancing of the available training data, which is fundamental for cost-effective large dataset collection. Furthermore, our experiments indicate that the wav2vec 2.0 performance is improved by training on multiple classes at a time, even when the number of available samples is constrained.
comment: Paper accepted on AIED 2025 containing 14 pages, 6 figures and 4 tables
TACLR: A Scalable and Efficient Retrieval-based Method for Industrial Product Attribute Value Identification ACL 2025
Product Attribute Value Identification (PAVI) involves identifying attribute values from product profiles, a key task for improving product search, recommendation, and business analytics on e-commerce platforms. However, existing PAVI methods face critical challenges, such as inferring implicit values, handling out-of-distribution (OOD) values, and producing normalized outputs. To address these limitations, we introduce Taxonomy-Aware Contrastive Learning Retrieval (TACLR), the first retrieval-based method for PAVI. TACLR formulates PAVI as an information retrieval task by encoding product profiles and candidate values into embeddings and retrieving values based on their similarity. It leverages contrastive training with taxonomy-aware hard negative sampling and employs adaptive inference with dynamic thresholds. TACLR offers three key advantages: (1) it effectively handles implicit and OOD values while producing normalized outputs; (2) it scales to thousands of categories, tens of thousands of attributes, and millions of values; and (3) it supports efficient inference for high-load industrial deployment. Extensive experiments on proprietary and public datasets validate the effectiveness and efficiency of TACLR. Further, it has been successfully deployed on the real-world e-commerce platform Xianyu, processing millions of product listings daily with frequently updated, large-scale attribute taxonomies. We release the code to facilitate reproducibility and future research at https://github.com/SuYindu/TACLR.
comment: Camera-ready version of the paper accepted at ACL 2025
Optimizing the Training Schedule of Multilingual NMT using Reinforcement Learning
Multilingual NMT is a viable solution for translating low-resource languages (LRLs) when data from high-resource languages (HRLs) from the same language family is available. However, the training schedule, i.e. the order of presentation of languages, has an impact on the quality of such systems. Here, in a many-to-one translation setting, we propose to apply two algorithms that use reinforcement learning to optimize the training schedule of NMT: (1) Teacher-Student Curriculum Learning and (2) Deep Q Network. The former uses an exponentially smoothed estimate of the returns of each action based on the loss on monolingual or multilingual development subsets, while the latter estimates rewards using an additional neural network trained from the history of actions selected in different states of the system, together with the rewards received. On a 8-to-1 translation dataset with LRLs and HRLs, our second method improves BLEU and COMET scores with respect to both random selection of monolingual batches and shuffled multilingual batches, by adjusting the number of presentations of LRL vs. HRL batches.
comment: Proceedings of MT Summit 2025
Prediction hubs are context-informed frequent tokens in LLMs ACL 2025
Hubness, the tendency for a few points to be among the nearest neighbours of a disproportionate number of other points, commonly arises when applying standard distance measures to high-dimensional data, often negatively impacting distance-based analysis. As autoregressive large language models (LLMs) operate on high-dimensional representations, we ask whether they are also affected by hubness. We first prove that the only large-scale representation comparison operation performed by LLMs, namely that between context and unembedding vectors to determine continuation probabilities, is not characterized by the concentration of distances phenomenon that typically causes the appearance of nuisance hubness. We then empirically show that this comparison still leads to a high degree of hubness, but the hubs in this case do not constitute a disturbance. They are rather the result of context-modulated frequent tokens often appearing in the pool of likely candidates for next token prediction. However, when other distances are used to compare LLM representations, we do not have the same theoretical guarantees, and, indeed, we see nuisance hubs appear. There are two main takeaways. First, hubness, while omnipresent in high-dimensional spaces, is not a negative property that needs to be mitigated when LLMs are being used for next token prediction. Second, when comparing representations from LLMs using Euclidean or cosine distance, there is a high risk of nuisance hubs and practitioners should use mitigation techniques if relevant.
comment: Published as a conference paper at ACL 2025
Automated Structured Radiology Report Generation ACL
Automated radiology report generation from chest X-ray (CXR) images has the potential to improve clinical efficiency and reduce radiologists' workload. However, most datasets, including the publicly available MIMIC-CXR and CheXpert Plus, consist entirely of free-form reports, which are inherently variable and unstructured. This variability poses challenges for both generation and evaluation: existing models struggle to produce consistent, clinically meaningful reports, and standard evaluation metrics fail to capture the nuances of radiological interpretation. To address this, we introduce Structured Radiology Report Generation (SRRG), a new task that reformulates free-text radiology reports into a standardized format, ensuring clarity, consistency, and structured clinical reporting. We create a novel dataset by restructuring reports using large language models (LLMs) following strict structured reporting desiderata. Additionally, we introduce SRR-BERT, a fine-grained disease classification model trained on 55 labels, enabling more precise and clinically informed evaluation of structured reports. To assess report quality, we propose F1-SRR-BERT, a metric that leverages SRR-BERT's hierarchical disease taxonomy to bridge the gap between free-text variability and structured clinical reporting. We validate our dataset through a reader study conducted by five board-certified radiologists and extensive benchmarking experiments.
comment: Accepted to ACL Main 2025
ZEBRA: Leveraging Model-Behavioral Knowledge for Zero-Annotation Preference Dataset Construction
Recent efforts in LLM alignment have focused on constructing large-scale preference datasets via human or Artificial Intelligence (AI) annotators. However, such approaches rely on instance-wise supervision, incurring substantial annotation cost and limited interpretability. In this paper, we propose ZEBRA - a model behavior-wise zero-annotation framework that constructs preference data by leveraging model behavior knowledge derived from benchmark performances. ZEBRA binarizes response pairs by evaluating the quality and similarity of their origin models, entirely bypassing instance-level annotation. This allows scalable, controllable, and cost-effective alignment data generation. Empirical results show that ZEBRA achieves alignment performance comparable to instance-supervised methods, despite requiring no manual or model-based labeling.
comment: 16 pages,7 figures,5 tables,4 graphs
Leveraging Variation Theory in Counterfactual Data Augmentation for Optimized Active Learning ACL 2025
Active Learning (AL) allows models to learn interactively from user feedback. This paper introduces a counterfactual data augmentation approach to AL, particularly addressing the selection of datapoints for user querying, a pivotal concern in enhancing data efficiency. Our approach is inspired by Variation Theory, a theory of human concept learning that emphasizes the essential features of a concept by focusing on what stays the same and what changes. Instead of just querying with existing datapoints, our approach synthesizes artificial datapoints that highlight potential key similarities and differences among labels using a neuro-symbolic pipeline combining large language models (LLMs) and rule-based models. Through an experiment in the example domain of text classification, we show that our approach achieves significantly higher performance when there are fewer annotated data. As the annotated training data gets larger the impact of the generated data starts to diminish showing its capability to address the cold start problem in AL. This research sheds light on integrating theories of human learning into the optimization of AL.
comment: Accepted to ACL 2025 Findings
Satori: Reinforcement Learning with Chain-of-Action-Thought Enhances LLM Reasoning via Autoregressive Search
Large language models (LLMs) have demonstrated remarkable reasoning capabilities across diverse domains. Recent studies have shown that increasing test-time computation enhances LLMs' reasoning capabilities. This typically involves extensive sampling at inference time guided by an external LLM verifier, resulting in a two-player system. Despite external guidance, the effectiveness of this system demonstrates the potential of a single LLM to tackle complex tasks. Thus, we pose a new research problem: Can we internalize the searching capabilities to fundamentally enhance the reasoning abilities of a single LLM? This work explores an orthogonal direction focusing on post-training LLMs for autoregressive searching (i.e., an extended reasoning process with self-reflection and self-exploration of new strategies). To achieve this, we propose the Chain-of-Action-Thought (COAT) reasoning and a two-stage training paradigm: 1) a small-scale format tuning stage to internalize the COAT reasoning format and 2) a large-scale self-improvement stage leveraging reinforcement learning. Our approach results in Satori, a 7B LLM trained on open-source models and data. Extensive empirical evaluations demonstrate that Satori achieves state-of-the-art performance on mathematical reasoning benchmarks while exhibits strong generalization to out-of-domain tasks. Code, data, and models are fully open-sourced.
Pragmatics in the Era of Large Language Models: A Survey on Datasets, Evaluation, Opportunities and Challenges ACL 2025
Understanding pragmatics-the use of language in context-is crucial for developing NLP systems capable of interpreting nuanced language use. Despite recent advances in language technologies, including large language models, evaluating their ability to handle pragmatic phenomena such as implicatures and references remains challenging. To advance pragmatic abilities in models, it is essential to understand current evaluation trends and identify existing limitations. In this survey, we provide a comprehensive review of resources designed for evaluating pragmatic capabilities in NLP, categorizing datasets by the pragmatics phenomena they address. We analyze task designs, data collection methods, evaluation approaches, and their relevance to real-world applications. By examining these resources in the context of modern language models, we highlight emerging trends, challenges, and gaps in existing benchmarks. Our survey aims to clarify the landscape of pragmatic evaluation and guide the development of more comprehensive and targeted benchmarks, ultimately contributing to more nuanced and context-aware NLP models.
comment: ACL 2025
Algorithmic Fidelity of Large Language Models in Generating Synthetic German Public Opinions: A Case Study ACL 2025
In recent research, large language models (LLMs) have been increasingly used to investigate public opinions. This study investigates the algorithmic fidelity of LLMs, i.e., the ability to replicate the socio-cultural context and nuanced opinions of human participants. Using open-ended survey data from the German Longitudinal Election Studies (GLES), we prompt different LLMs to generate synthetic public opinions reflective of German subpopulations by incorporating demographic features into the persona prompts. Our results show that Llama performs better than other LLMs at representing subpopulations, particularly when there is lower opinion diversity within those groups. Our findings further reveal that the LLM performs better for supporters of left-leaning parties like The Greens and The Left compared to other parties, and matches the least with the right-party AfD. Additionally, the inclusion or exclusion of specific variables in the prompts can significantly impact the models' predictions. These findings underscore the importance of aligning LLMs to more effectively model diverse public opinions while minimizing political biases and enhancing robustness in representativeness.
comment: ACL 2025
MSDA: Combining Pseudo-labeling and Self-Supervision for Unsupervised Domain Adaptation in ASR
In this work, we investigate the Meta PL unsupervised domain adaptation framework for Automatic Speech Recognition (ASR). We introduce a Multi-Stage Domain Adaptation pipeline (MSDA), a sample-efficient, two-stage adaptation approach that integrates self-supervised learning with semi-supervised techniques. MSDA is designed to enhance the robustness and generalization of ASR models, making them more adaptable to diverse conditions. It is particularly effective for low-resource languages like Greek and in weakly supervised scenarios where labeled data is scarce or noisy. Through extensive experiments, we demonstrate that Meta PL can be applied effectively to ASR tasks, achieving state-of-the-art results, significantly outperforming state-of-the-art methods, and providing more robust solutions for unsupervised domain adaptation in ASR. Our ablations highlight the necessity of utilizing a cascading approach when combining self-supervision with self-training.
comment: Submitted to Interspeech 2025
Reassessing Large Language Model Boolean Query Generation for Systematic Reviews SIGIR-2025
Systematic reviews are comprehensive literature reviews that address highly focused research questions and represent the highest form of evidence in medicine. A critical step in this process is the development of complex Boolean queries to retrieve relevant literature. Given the difficulty of manually constructing these queries, recent efforts have explored Large Language Models (LLMs) to assist in their formulation. One of the first studies,Wang et al., investigated ChatGPT for this task, followed by Staudinger et al., which evaluated multiple LLMs in a reproducibility study. However, the latter overlooked several key aspects of the original work, including (i) validation of generated queries, (ii) output formatting constraints, and (iii) selection of examples for chain-of-thought (Guided) prompting. As a result, its findings diverged significantly from the original study. In this work, we systematically reproduce both studies while addressing these overlooked factors. Our results show that query effectiveness varies significantly across models and prompt designs, with guided query formulation benefiting from well-chosen seed studies. Overall, prompt design and model selection are key drivers of successful query formulation. Our findings provide a clearer understanding of LLMs' potential in Boolean query generation and highlight the importance of model- and prompt-specific optimisations. The complex nature of systematic reviews adds to challenges in both developing and reproducing methods but also highlights the importance of reproducibility studies in this domain.
comment: Accepted in SIGIR-2025
RADAR: Enhancing Radiology Report Generation with Supplementary Knowledge Injection ACL 2025
Large language models (LLMs) have demonstrated remarkable capabilities in various domains, including radiology report generation. Previous approaches have attempted to utilize multimodal LLMs for this task, enhancing their performance through the integration of domain-specific knowledge retrieval. However, these approaches often overlook the knowledge already embedded within the LLMs, leading to redundant information integration. To address this limitation, we propose Radar, a framework for enhancing radiology report generation with supplementary knowledge injection. Radar improves report generation by systematically leveraging both the internal knowledge of an LLM and externally retrieved information. Specifically, it first extracts the model's acquired knowledge that aligns with expert image-based classification outputs. It then retrieves relevant supplementary knowledge to further enrich this information. Finally, by aggregating both sources, Radar generates more accurate and informative radiology reports. Extensive experiments on MIMIC-CXR, CheXpert-Plus, and IU X-ray demonstrate that our model outperforms state-of-the-art LLMs in both language quality and clinical accuracy.
comment: Accepted to ACL 2025 main
VL-RewardBench: A Challenging Benchmark for Vision-Language Generative Reward Models CVPR 2025
Vision-language generative reward models (VL-GenRMs) play a crucial role in aligning and evaluating multimodal AI systems, yet their own evaluation remains under-explored. Current assessment methods primarily rely on AI-annotated preference labels from traditional VL tasks, which can introduce biases and often fail to effectively challenge state-of-the-art models. To address these limitations, we introduce VL-RewardBench, a comprehensive benchmark spanning general multimodal queries, visual hallucination detection, and complex reasoning tasks. Through our AI-assisted annotation pipeline that combines sample selection with human verification, we curate 1,250 high-quality examples specifically designed to probe VL-GenRMs limitations. Comprehensive evaluation across 16 leading large vision-language models demonstrates VL-RewardBench's effectiveness as a challenging testbed, where even GPT-4o achieves only 65.4% accuracy, and state-of-the-art open-source models such as Qwen2-VL-72B, struggle to surpass random-guessing. Importantly, performance on VL-RewardBench strongly correlates (Pearson's r $>$ 0.9) with MMMU-Pro accuracy using Best-of-N sampling with VL-GenRMs. Analysis experiments uncover three critical insights for improving VL-GenRMs: (i) models predominantly fail at basic visual perception tasks rather than reasoning tasks; (ii) inference-time scaling benefits vary dramatically by model capacity; and (iii) training VL-GenRMs to learn to judge substantially boosts judgment capability (+14.7% accuracy for a 7B VL-GenRM). We believe VL-RewardBench along with the experimental insights will become a valuable resource for advancing VL-GenRMs.
comment: CVPR 2025 Camera Ready Version. Project page: https://vl-rewardbench.github.io
Neuron Empirical Gradient: Discovering and Quantifying Neurons Global Linear Controllability ACL 2025
While feed-forward neurons in pre-trained language models (PLMs) can encode knowledge, past research targeted a small subset of neurons that heavily influence outputs. This leaves the broader role of neuron activations unclear, limiting progress in areas like knowledge editing. We uncover a global linear relationship between neuron activations and outputs using neuron interventions on a knowledge probing dataset. The gradient of this linear relationship, which we call the neuron empirical gradient (NEG), captures how changes in activations affect predictions. To compute NEG efficiently, we propose NeurGrad, enabling large-scale analysis of neuron behavior in PLMs. We also show that NEG effectively captures language skills across diverse prompts through skill neuron probing. Experiments on MCEval8k, a multi-genre multiple-choice knowledge benchmark, support NEG's ability to represent model knowledge. Further analysis highlights the key properties of NEG-based skill representation: efficiency, robustness, flexibility, and interdependency. The code and data are released.
comment: Accepted to ACL 2025 Main, 32 pages
RoToR: Towards More Reliable Responses for Order-Invariant Inputs ACL 2025
Mitigating positional bias of language models (LMs) for listwise inputs is a well-known and important problem (e.g., lost-in-the-middle). While zero-shot order-invariant LMs have been proposed to solve this issue, their success on practical listwise problems has been limited. In this work, as a first contribution, we identify and overcome two limitations to make zero-shot invariant LMs more practical: (1) training and inference distribution mismatch arising from modifying positional ID assignments to enforce invariance, and (2) failure to adapt to mixture of order-invariant and sensitive inputs in practical listwise problems. Then, to overcome these issues we propose (1) RoToR, a zero-shot invariant LM for genuinely order-invariant inputs with minimal modifications of positional IDs, and (2) Selective Routing, an adaptive framework that handles both order-invariant and order-sensitive inputs in listwise tasks. On the Lost in the middle (LitM), Knowledge Graph QA (KGQA), and MMLU benchmarks, we show that RoToR with Selective Routing can effectively handle practical listwise input tasks in a zero-shot manner (https://github.com/soyoung97/RoToR)
comment: Accepted at ACL 2025 main
MedHELM: Holistic Evaluation of Large Language Models for Medical Tasks
While large language models (LLMs) achieve near-perfect scores on medical licensing exams, these evaluations inadequately reflect the complexity and diversity of real-world clinical practice. We introduce MedHELM, an extensible evaluation framework for assessing LLM performance for medical tasks with three key contributions. First, a clinician-validated taxonomy spanning 5 categories, 22 subcategories, and 121 tasks developed with 29 clinicians. Second, a comprehensive benchmark suite comprising 35 benchmarks (17 existing, 18 newly formulated) providing complete coverage of all categories and subcategories in the taxonomy. Third, a systematic comparison of LLMs with improved evaluation methods (using an LLM-jury) and a cost-performance analysis. Evaluation of 9 frontier LLMs, using the 35 benchmarks, revealed significant performance variation. Advanced reasoning models (DeepSeek R1: 66% win-rate; o3-mini: 64% win-rate) demonstrated superior performance, though Claude 3.5 Sonnet achieved comparable results at 40% lower estimated computational cost. On a normalized accuracy scale (0-1), most models performed strongly in Clinical Note Generation (0.73-0.85) and Patient Communication & Education (0.78-0.83), moderately in Medical Research Assistance (0.65-0.75), and generally lower in Clinical Decision Support (0.56-0.72) and Administration & Workflow (0.53-0.63). Our LLM-jury evaluation method achieved good agreement with clinician ratings (ICC = 0.47), surpassing both average clinician-clinician agreement (ICC = 0.43) and automated baselines including ROUGE-L (0.36) and BERTScore-F1 (0.44). Claude 3.5 Sonnet achieved comparable performance to top models at lower estimated cost. These findings highlight the importance of real-world, task-specific evaluation for medical use of LLMs and provides an open source framework to enable this.
Which Agent Causes Task Failures and When? On Automated Failure Attribution of LLM Multi-Agent Systems
Failure attribution in LLM multi-agent systems-identifying the agent and step responsible for task failures-provides crucial clues for systems debugging but remains underexplored and labor-intensive. In this paper, we propose and formulate a new research area: automated failure attribution for LLM multi-agent systems. To support this initiative, we introduce the Who&When dataset, comprising extensive failure logs from 127 LLM multi-agent systems with fine-grained annotations linking failures to specific agents and decisive error steps. Using the Who&When, we develop and evaluate three automated failure attribution methods, summarizing their corresponding pros and cons. The best method achieves 53.5% accuracy in identifying failure-responsible agents but only 14.2% in pinpointing failure steps, with some methods performing below random. Even SOTA reasoning models, such as OpenAI o1 and DeepSeek R1, fail to achieve practical usability. These results highlight the task's complexity and the need for further research in this area. Code and dataset are available at https://github.com/mingyin1/Agents_Failure_Attribution
comment: camera-ready
Surrogate Signals from Format and Length: Reinforcement Learning for Solving Mathematical Problems without Ground Truth Answers
Large Language Models have achieved remarkable success in natural language processing tasks, with Reinforcement Learning playing a key role in adapting them to specific applications. However, obtaining ground truth answers for training LLMs in mathematical problem-solving is often challenging, costly, and sometimes unfeasible. This research delves into the utilization of format and length as surrogate signals to train LLMs for mathematical problem-solving, bypassing the need for traditional ground truth answers. Our study shows that a reward function centered on format correctness alone can yield performance improvements comparable to the standard GRPO algorithm in early phases. Recognizing the limitations of format-only rewards in the later phases, we incorporate length-based rewards. The resulting GRPO approach, leveraging format-length surrogate signals, not only matches but surpasses the performance of the standard GRPO algorithm relying on ground truth answers in certain scenarios, achieving 40.0% accuracy on AIME2024 with a 7B base model. Through systematic exploration and experimentation, this research not only offers a practical solution for training LLMs to solve mathematical problems and reducing the dependence on extensive ground truth data collection, but also reveals the essence of why our label-free approach succeeds: the powerful base model is like an excellent student who has already mastered mathematical and logical reasoning skills, but performs poorly on the test paper, it simply needs to develop good answering habits to achieve outstanding results in exams, to unlock the capabilities it already possesses.
MentalChat16K: A Benchmark Dataset for Conversational Mental Health Assistance
We introduce MentalChat16K, an English benchmark dataset combining a synthetic mental health counseling dataset and a dataset of anonymized transcripts from interventions between Behavioral Health Coaches and Caregivers of patients in palliative or hospice care. Covering a diverse range of conditions like depression, anxiety, and grief, this curated dataset is designed to facilitate the development and evaluation of large language models for conversational mental health assistance. By providing a high-quality resource tailored to this critical domain, MentalChat16K aims to advance research on empathetic, personalized AI solutions to improve access to mental health support services. The dataset prioritizes patient privacy, ethical considerations, and responsible data usage. MentalChat16K presents a valuable opportunity for the research community to innovate AI technologies that can positively impact mental well-being. The dataset is available at https://huggingface.co/datasets/ShenLab/MentalChat16K and the code and documentation are hosted on GitHub at https://github.com/ChiaPatricia/MentalChat16K.
Learning to Explain: Prototype-Based Surrogate Models for LLM Classification
Large language models (LLMs) have demonstrated impressive performance on natural language tasks, but their decision-making processes remain largely opaque. Existing explanation methods either suffer from limited faithfulness to the model's reasoning or produce explanations that humans find difficult to understand. To address these challenges, we propose \textbf{ProtoSurE}, a novel prototype-based surrogate framework that provides faithful and human-understandable explanations for LLMs. ProtoSurE trains an interpretable-by-design surrogate model that aligns with the target LLM while utilizing sentence-level prototypes as human-understandable concepts. Extensive experiments show that ProtoSurE consistently outperforms SOTA explanation methods across diverse LLMs and datasets. Importantly, ProtoSurE demonstrates strong data efficiency, requiring relatively few training examples to achieve good performance, making it practical for real-world applications.
Does Time Have Its Place? Temporal Heads: Where Language Models Recall Time-specific Information ACL 2025
While the ability of language models to elicit facts has been widely investigated, how they handle temporally changing facts remains underexplored. We discover Temporal Heads, specific attention heads that primarily handle temporal knowledge, through circuit analysis. We confirm that these heads are present across multiple models, though their specific locations may vary, and their responses differ depending on the type of knowledge and its corresponding years. Disabling these heads degrades the model's ability to recall time-specific knowledge while maintaining its general capabilities without compromising time-invariant and question-answering performances. Moreover, the heads are activated not only numeric conditions ("In 2004") but also textual aliases ("In the year ..."), indicating that they encode a temporal dimension beyond simple numerical representation. Furthermore, we expand the potential of our findings by demonstrating how temporal knowledge can be edited by adjusting the values of these heads.
comment: Accepted to the main conference at ACL 2025
Semantic Integrity Constraints: Declarative Guardrails for AI-Augmented Data Processing Systems
AI-augmented data processing systems (DPSs) integrate large language models (LLMs) into query pipelines, allowing powerful semantic operations on structured and unstructured data. However, the reliability (a.k.a. trust) of these systems is fundamentally challenged by the potential for LLMs to produce errors, limiting their adoption in critical domains. To help address this reliability bottleneck, we introduce semantic integrity constraints (SICs) -- a declarative abstraction for specifying and enforcing correctness conditions over LLM outputs in semantic queries. SICs generalize traditional database integrity constraints to semantic settings, supporting common types of constraints, such as grounding, soundness, and exclusion, with both proactive and reactive enforcement strategies. We argue that SICs provide a foundation for building reliable and auditable AI-augmented data systems. Specifically, we present a system design for integrating SICs into query planning and runtime execution and discuss its realization in AI-augmented DPSs. To guide and evaluate the vision, we outline several design goals -- covering criteria around expressiveness, runtime semantics, integration, performance, and enterprise-scale applicability -- and discuss how our framework addresses each, along with open research challenges.
BridG MT: Enhancing LLMs' Machine Translation Capabilities with Sentence Bridging and Gradual MT ACL
Recent Large Language Models (LLMs) have demonstrated impressive translation performance without requiring fine-tuning on additional parallel corpora. However, they still face significant challenges in certain scenarios, particularly when translating low-resource languages. A common approach to address this issue is to provide external knowledge, such as few-shot examples, to assist LLMs in translating specific source sentences. However, this method is fundamentally limited by the quality or quantity of relevant sources, which cannot always be guaranteed. To reduce LLMs' reliance on external sources, we propose BridG MT, a method that combines Sentence Bridging, which generates a sequence of sentences as a bridge that gradually transition from easy-to-translate to more difficult, and Gradual MT, which sequentially translates these sentences using earlier translations as few-shot examples for subsequent ones. Experiments conducted on four LLMs across seven languages demonstrate that our method effectively enhances translation performance, even outperforming translation methods that rely on a large number of few-shot examples.
comment: Accepted to ACL Findings 2025
Active Layer-Contrastive Decoding Reduces Hallucination in Large Language Model Generation
Recent decoding methods improve the factuality of large language models (LLMs) by refining how the next token is selected during generation. These methods typically operate at the token level, leveraging internal representations to suppress superficial patterns. Nevertheless, LLMs remain prone to hallucinations, especially over longer contexts. In this paper, we propose Active Layer-Contrastive Decoding (ActLCD), a novel decoding strategy that actively decides when to apply contrasting layers during generation. By casting decoding as a sequential decision-making problem, ActLCD employs a reinforcement learning policy guided by a reward-aware classifier to optimize factuality beyond the token level. Our experiments demonstrate that ActLCD surpasses state-of-the-art methods across five benchmarks, showcasing its effectiveness in mitigating hallucinations in diverse generation scenarios.
SwiftKV: Fast Prefill-Optimized Inference with Knowledge-Preserving Model Transformation
LLM inference for enterprise applications, such as summarization, RAG, and code-generation, typically observe much longer prompt than generations, leading to high prefill cost and response latency. We present SwiftKV, a novel model transformation and distillation procedure targeted at reducing the prefill compute (in FLOPs) of prompt tokens while preserving high generation quality. First, SwiftKV prefills later layers' KV cache using an earlier layer's output, allowing prompt tokens to skip those later layers. Second, SwiftKV employs a lightweight knowledge-preserving distillation procedure that can adapt existing LLMs with minimal accuracy impact. Third, SwiftKV can naturally incorporate KV cache compression to improve inference performance in low-memory scenarios. Our comprehensive experiments show that SwiftKV can effectively reduce prefill computation by 25-50% across several LLM families while incurring minimum quality degradation. In the end-to-end inference serving, SwiftKV realizes up to 2x higher aggregate throughput and 60% lower time per output token. It can achieve a staggering 560 TFlops/GPU of normalized inference throughput, which translates to 16K tokens/s for Llama-3.1-70B. SwiftKV is open-sourced at https://github.com/snowflakedb/arctictraining.
Forensic deepfake audio detection using segmental speech features
This study explores the potential of using acoustic features of segmental speech sounds to detect deepfake audio. These features are highly interpretable because of their close relationship with human articulatory processes and are expected to be more difficult for deepfake models to replicate. The results demonstrate that certain segmental features commonly used in forensic voice comparison (FVC) are effective in identifying deep-fakes, whereas some global features provide little value. These findings underscore the need to approach audio deepfake detection using methods that are distinct from those employed in traditional FVC, and offer a new perspective on leveraging segmental features for this purpose.
DLP: Dynamic Layerwise Pruning in Large Language Models ICML 2025
Pruning has recently been widely adopted to reduce the parameter scale and improve the inference efficiency of Large Language Models (LLMs). Mainstream pruning techniques often rely on uniform layerwise pruning strategies, which can lead to severe performance degradation at high sparsity levels. Recognizing the varying contributions of different layers in LLMs, recent studies have shifted their focus toward non-uniform layerwise pruning. However, these approaches often rely on pre-defined values, which can result in suboptimal performance. To overcome these limitations, we propose a novel method called Dynamic Layerwise Pruning (DLP). This approach adaptively determines the relative importance of each layer by integrating model weights with input activation information, assigning pruning rates accordingly. Experimental results show that DLP effectively preserves model performance at high sparsity levels across multiple LLMs. Specifically, at 70% sparsity, DLP reduces the perplexity of LLaMA2-7B by 7.79 and improves the average accuracy by 2.7% compared to state-of-the-art methods. Moreover, DLP is compatible with various existing LLM compression techniques and can be seamlessly integrated into Parameter-Efficient Fine-Tuning (PEFT). We release the code at [this https URL](https://github.com/ironartisan/DLP) to facilitate future research.
comment: Accepted by ICML 2025
Neural Topic Modeling with Large Language Models in the Loop
Topic modeling is a fundamental task in natural language processing, allowing the discovery of latent thematic structures in text corpora. While Large Language Models (LLMs) have demonstrated promising capabilities in topic discovery, their direct application to topic modeling suffers from issues such as incomplete topic coverage, misalignment of topics, and inefficiency. To address these limitations, we propose LLM-ITL, a novel LLM-in-the-loop framework that integrates LLMs with Neural Topic Models (NTMs). In LLM-ITL, global topics and document representations are learned through the NTM. Meanwhile, an LLM refines these topics using an Optimal Transport (OT)-based alignment objective, where the refinement is dynamically adjusted based on the LLM's confidence in suggesting topical words for each set of input words. With the flexibility of being integrated into many existing NTMs, the proposed approach enhances the interpretability of topics while preserving the efficiency of NTMs in learning topics and document representations. Extensive experiments demonstrate that LLM-ITL helps NTMs significantly improve their topic interpretability while maintaining the quality of document representation. Our code and datasets are available at https://github.com/Xiaohao-Yang/LLM-ITL
Hierarchical Retrieval with Evidence Curation for Open-Domain Financial Question Answering on Standardized Documents ACL 2025
Retrieval-augmented generation (RAG) based large language models (LLMs) are widely used in finance for their excellent performance on knowledge-intensive tasks. However, standardized documents (e.g., SEC filing) share similar formats such as repetitive boilerplate texts, and similar table structures. This similarity forces traditional RAG methods to misidentify near-duplicate text, leading to duplicate retrieval that undermines accuracy and completeness. To address these issues, we propose the Hierarchical Retrieval with Evidence Curation (HiREC) framework. Our approach first performs hierarchical retrieval to reduce confusion among similar texts. It first retrieve related documents and then selects the most relevant passages from the documents. The evidence curation process removes irrelevant passages. When necessary, it automatically generates complementary queries to collect missing information. To evaluate our approach, we construct and release a Large-scale Open-domain Financial (LOFin) question answering benchmark that includes 145,897 SEC documents and 1,595 question-answer pairs. Our code and data are available at https://github.com/deep-over/LOFin-bench-HiREC.
comment: ACL 2025 (Findings)
Token-Budget-Aware LLM Reasoning
Reasoning is critical for large language models (LLMs) to excel in a wide range of tasks. While methods like Chain-of-Thought (CoT) reasoning and enhance LLM performance by decomposing problems into intermediate steps, they also incur significant overhead in token usage, leading to increased costs. We find that the reasoning process of current LLMs is unnecessarily lengthy and it can be compressed by including a reasonable token budget in the prompt, but the choice of token budget plays a crucial role in the actual compression effectiveness. We then propose a token-budget-aware LLM reasoning framework that dynamically adjusts the number of reasoning tokens based on the reasoning complexity of each problem. Experiments show that our method effectively reduces token costs in CoT reasoning with only a slight performance reduction, offering a practical solution to balance efficiency and accuracy in LLM reasoning. Code: https://github.com/GeniusHTX/TALE
SwingArena: Competitive Programming Arena for Long-context GitHub Issue Solving
We present SwingArena, a competitive evaluation framework for Large Language Models (LLMs) that closely mirrors real-world software development workflows. Unlike traditional static benchmarks, SwingArena models the collaborative process of software iteration by pairing LLMs as submitters, who generate patches, and reviewers, who create test cases and verify the patches through continuous integration (CI) pipelines. To support these interactive evaluations, we introduce a retrieval-augmented code generation (RACG) module that efficiently handles long-context challenges by providing syntactically and semantically relevant code snippets from large codebases, supporting multiple programming languages (C++, Python, Rust, and Go). This enables the framework to scale across diverse tasks and contexts while respecting token limitations. Our experiments, using over 400 high-quality real-world GitHub issues selected from a pool of 2,300 issues, show that models like GPT-4o excel at aggressive patch generation, whereas DeepSeek and Gemini prioritize correctness in CI validation. SwingArena presents a scalable and extensible methodology for evaluating LLMs in realistic, CI-driven software development settings. More details are available on our project page: swing-bench.github.io
Large Language and Reasoning Models are Shallow Disjunctive Reasoners ACL 2025
Large Language Models (LLMs) have been found to struggle with systematic reasoning. Even on tasks where they appear to perform well, their performance often depends on shortcuts, rather than on genuine reasoning abilities, leading them to collapse on out-of-distribution (OOD) examples. Post-training strategies based on reinforcement learning and chain-of-thought prompting have recently been hailed as a step change. However, little is known about the potential of the resulting ``Large Reasoning Models'' (LRMs) beyond maths and programming-based problem solving, where genuine OOD problems can be sparse. In this paper, we focus on tasks that require systematic relational composition for qualitative spatial and temporal reasoning. The setting allows fine control over problem difficulty to precisely measure OOD generalization. We find that, zero-shot LRMs generally outperform their LLM counterparts in single-path reasoning tasks but struggle in the multi-path setting. Whilst showing comparatively better results, fine-tuned LLMs are also not capable of multi-path generalization. We also provide evidence for the behavioral interpretation for this, i.e., that LRMs are shallow disjunctive reasoners.
comment: ACL 2025 main conference
Guiding Generative Storytelling with Knowledge Graphs
Large Language Models (LLMs) have shown great potential in automated story generation, but challenges remain in maintaining long-form coherence and providing users with intuitive and effective control. Retrieval-Augmented Generation (RAG) has proven effective in reducing hallucinations in text generation; however, the use of structured data to support generative storytelling remains underexplored. This paper investigates how knowledge graphs (KGs) can enhance LLM-based storytelling by improving narrative quality and enabling user-driven modifications. We propose a KG-assisted storytelling pipeline and evaluate its effectiveness through a user study with 15 participants. Participants created their own story prompts, generated stories, and edited knowledge graphs to shape their narratives. Through quantitative and qualitative analysis, our findings demonstrate that knowledge graphs significantly enhance story quality in action-oriented and structured narratives within our system settings. Additionally, editing the knowledge graph increases users' sense of control, making storytelling more engaging, interactive, and playful.
comment: This manuscript was submitted for peer review in January 2025
Completing A Systematic Review in Hours instead of Months with Interactive AI Agents ACL 2025
Systematic reviews (SRs) are vital for evidence-based practice in high stakes disciplines, such as healthcare, but are often impeded by intensive labors and lengthy processes that can take months to complete. Due to the high demand for domain expertise, existing automatic summarization methods fail to accurately identify relevant studies and generate high-quality summaries. To that end, we introduce InsightAgent, a human-centered interactive AI agent powered by large language models that revolutionize this workflow. InsightAgent partitions a large literature corpus based on semantics and employs a multi-agent design for more focused processing of literature, leading to significant improvement in the quality of generated SRs. InsightAgent also provides intuitive visualizations of the corpus and agent trajectories, allowing users to effortlessly monitor the actions of the agent and provide real-time feedback based on their expertise. Our user studies with 9 medical professionals demonstrate that the visualization and interaction mechanisms can effectively improve the quality of synthesized SRs by 27.2%, reaching 79.7% of human-written quality. At the same time, user satisfaction is improved by 34.4%. With InsightAgent, it only takes a clinician about 1.5 hours, rather than months, to complete a high-quality systematic review.
comment: Accepted as ACL 2025 (main)
Ask in Any Modality: A Comprehensive Survey on Multimodal Retrieval-Augmented Generation
Large Language Models (LLMs) suffer from hallucinations and outdated knowledge due to their reliance on static training data. Retrieval-Augmented Generation (RAG) mitigates these issues by integrating external dynamic information for improved factual grounding. With advances in multimodal learning, Multimodal RAG extends this approach by incorporating multiple modalities such as text, images, audio, and video to enhance the generated outputs. However, cross-modal alignment and reasoning introduce unique challenges beyond those in unimodal RAG. This survey offers a structured and comprehensive analysis of Multimodal RAG systems, covering datasets, benchmarks, metrics, evaluation, methodologies, and innovations in retrieval, fusion, augmentation, and generation. We review training strategies, robustness enhancements, loss functions, and agent-based approaches, while also exploring the diverse Multimodal RAG scenarios. In addition, we outline open challenges and future directions to guide research in this evolving field. This survey lays the foundation for developing more capable and reliable AI systems that effectively leverage multimodal dynamic external knowledge bases. All resources are publicly available at https://github.com/llm-lab-org/Multimodal-RAG-Survey.
comment: GitHub repository: https://github.com/llm-lab-org/Multimodal-RAG-Survey
Multimodal Conversation Structure Understanding
Conversations are usually structured by roles -- who is speaking, who's being addressed, and who's listening -- and unfold in threads that break with changes in speaker floor or topical focus. While large language models (LLMs) have shown incredible capabilities in dialogue and reasoning, their ability to understand fine-grained conversational structure, especially in multi-modal, multi-party settings, remains underexplored. To address this gap, we introduce a suite of tasks focused on conversational role attribution (speaker, addressees, side-participants) and conversation threading (utterance linking and clustering), drawing on conversation analysis and sociolinguistics. To support those tasks, we present a human annotated dataset of 4,398 annotations for speakers and reply-to relationship, 5,755 addressees, and 3,142 side-participants. We evaluate popular audio-visual LLMs and vision-language models on our dataset, and our experimental results suggest that multimodal conversational structure understanding remains challenging. The most performant audio-visual LLM outperforms all vision-language models across all metrics, especially in speaker and addressee recognition. However, its performance drops significantly when conversation participants are anonymized. The number of conversation participants in a clip is the strongest negative predictor of role-attribution performance, while acoustic clarity (measured by pitch and spectral centroid) and detected face coverage yield positive associations. We hope this work lays the groundwork for future evaluation and development of multimodal LLMs that can reason more effectively about conversation structure.
3MDBench: Medical Multimodal Multi-agent Dialogue Benchmark
Though Large Vision-Language Models (LVLMs) are being actively explored in medicine, their ability to conduct telemedicine consultations combining accurate diagnosis with professional dialogue remains underexplored. In this paper, we present 3MDBench (Medical Multimodal Multi-agent Dialogue Benchmark), an open-source framework for simulating and evaluating LVLM-driven telemedical consultations. 3MDBench simulates patient variability through four temperament-based Patient Agents and an Assessor Agent that jointly evaluate diagnostic accuracy and dialogue quality. It includes 3013 cases across 34 diagnoses drawn from real-world telemedicine interactions, combining textual and image-based data. The experimental study compares diagnostic strategies for popular LVLMs, including GPT-4o-mini, LLaVA-3.2-11B-Vision-Instruct, and Qwen2-VL-7B-Instruct. We demonstrate that multimodal dialogue with internal reasoning improves F1 score by 6.5% over non-dialogue settings, highlighting the importance of context-aware, information-seeking questioning. Moreover, injecting predictions from a diagnostic convolutional network into the LVLM's context boosts F1 by up to 20%. Source code is available at https://anonymous.4open.science/r/3mdbench_acl-0511.
comment: 35 pages, 13 figures, 7 tables
Generalizing from SIMPLE to HARD Visual Reasoning: Can We Mitigate Modality Imbalance in VLMs?
Vision Language Models (VLMs) are impressive at visual question answering and image captioning. But they underperform on multi-step visual reasoning -- even compared to LLMs on the same tasks presented in text form -- giving rise to perceptions of modality imbalance or brittleness. Towards a systematic study of such issues, we introduce a synthetic framework for assessing the ability of VLMs to perform algorithmic visual reasoning, comprising three tasks: Table Readout, Grid Navigation, and Visual Analogy. Each has two levels of difficulty, SIMPLE and HARD, and even the SIMPLE versions are difficult for frontier VLMs. We propose strategies for training on the SIMPLE version of tasks that improve performance on the corresponding HARD task, i.e., simple-to-hard (S2H) generalization. This controlled setup, where each task also has an equivalent text-only version, allows a quantification of the modality imbalance and how it is impacted by training strategy. We show that 1) explicit image-to-text conversion is important in promoting S2H generalization on images, by transferring reasoning from text; 2) conversion can be internalized at test time. We also report results of mechanistic study of this phenomenon. We identify measures of gradient alignment that can identify training strategies that promote better S2H generalization. Ablations highlight the importance of chain-of-thought.
Improving Factuality with Explicit Working Memory ACL 2025
Large language models can generate factually inaccurate content, a problem known as hallucination. Recent works have built upon retrieved-augmented generation to improve factuality through iterative prompting but these methods are limited by the traditional RAG design. To address these challenges, we introduce EWE (Explicit Working Memory), a novel approach that enhances factuality in long-form text generation by integrating a working memory that receives real-time feedback from external resources. The memory is refreshed based on online fact-checking and retrieval feedback, allowing EWE to rectify false claims during the generation process and ensure more accurate and reliable outputs. Our experiments demonstrate that Ewe outperforms strong baselines on four fact-seeking long-form generation datasets, increasing the factuality metric, VeriScore, by 2 to 6 points absolute without sacrificing the helpfulness of the responses. Further analysis reveals that the design of rules for memory updates, configurations of memory units, and the quality of the retrieval datastore are crucial factors for influencing model performance.
comment: ACL 2025 Camera Ready
Estimating LLM Consistency: A User Baseline vs Surrogate Metrics
Large language models (LLMs) are prone to hallucinations and sensitive to prompt perturbations, often resulting in inconsistent or unreliable generated text. Different methods have been proposed to mitigate such hallucinations and fragility -- one of them being measuring the consistency (the model's confidence in the response, or likelihood of generating a similar response when resampled) of LLM responses. In previous work, measuring consistency often relied on the probability of a response appearing within a pool of resampled responses, or internal states or logits of responses. However, it is not yet clear how well these approaches approximate how humans perceive the consistency of LLM responses. We performed a user study (n=2,976) and found current methods typically do not approximate users' perceptions of LLM consistency very well. We propose a logit-based ensemble method for estimating LLM consistency, and we show that this method matches the performance of the best-performing existing metric in estimating human ratings of LLM consistency. Our results suggest that methods of estimating LLM consistency without human evaluation are sufficiently imperfect that we suggest evaluation with human input be more broadly used.
(Im)possibility of Automated Hallucination Detection in Large Language Models
Is automated hallucination detection possible? In this work, we introduce a theoretical framework to analyze the feasibility of automatically detecting hallucinations produced by large language models (LLMs). Inspired by the classical Gold-Angluin framework for language identification and its recent adaptation to language generation by Kleinberg and Mullainathan, we investigate whether an algorithm, trained on examples drawn from an unknown target language $K$ (selected from a countable collection) and given access to an LLM, can reliably determine whether the LLM's outputs are correct or constitute hallucinations. First, we establish an equivalence between hallucination detection and the classical task of language identification. We prove that any hallucination detection method can be converted into a language identification method, and conversely, algorithms solving language identification can be adapted for hallucination detection. Given the inherent difficulty of language identification, this implies that hallucination detection is fundamentally impossible for most language collections if the detector is trained using only correct examples from the target language. Second, we show that the use of expert-labeled feedback, i.e., training the detector with both positive examples (correct statements) and negative examples (explicitly labeled incorrect statements), dramatically changes this conclusion. Under this enriched training regime, automated hallucination detection becomes possible for all countable language collections. These results highlight the essential role of expert-labeled examples in training hallucination detectors and provide theoretical support for feedback-based methods, such as reinforcement learning with human feedback (RLHF), which have proven critical for reliable LLM deployment.
A Dual-Directional Context-Aware Test-Time Learning for Text Classification
Text classification assigns text to predefined categories. Traditional methods struggle with complex structures and long-range dependencies. Deep learning with recurrent neural networks and Transformer models has improved feature extraction and context awareness. However, these models still trade off interpretability, efficiency and contextual range. We propose the Dynamic Bidirectional Elman Attention Network (DBEAN). DBEAN combines bidirectional temporal modeling and self-attention. It dynamically weights critical input segments and preserves computational efficiency.
comment: 10 pages
Measuring Data Diversity for Instruction Tuning: A Systematic Analysis and A Reliable Metric ACL 2025
Data diversity is crucial for the instruction tuning of large language models. Existing studies have explored various diversity-aware data selection methods to construct high-quality datasets and enhance model performance. However, the fundamental problem of precisely defining and measuring data diversity remains underexplored, limiting clear guidance for data engineering. To address this, we systematically analyze 11 existing diversity measurement methods by evaluating their correlation with model performance through extensive fine-tuning experiments. Our results indicate that a reliable diversity measure should properly account for both inter-sample differences and the information density in the sample space. Building on this, we propose NovelSum, a new diversity metric based on sample-level "novelty." Experiments on both simulated and real-world data show that NovelSum accurately captures diversity variations and achieves a 0.97 correlation with instruction-tuned model performance, highlighting its value in guiding data engineering practices. With NovelSum as an optimization objective, we further develop a greedy, diversity-oriented data selection strategy that outperforms existing approaches, validating both the effectiveness and practical significance of our metric. The code is available at https://github.com/UmeanNever/NovelSum.
comment: Accepted at ACL 2025 Main. Camera-ready version updated (20 pages). Project page: https://github.com/UmeanNever/NovelSum
Pitfalls of Scale: Investigating the Inverse Task of Redefinition in Large Language Models ACL 2025
Inverse tasks can uncover potential reasoning gaps as Large Language Models (LLMs) scale up. In this work, we explore the redefinition task, in which we assign alternative values to well-known physical constants and units of measure, prompting LLMs to respond accordingly. Our findings show that not only does model performance degrade with scale, but its false confidence also rises. Moreover, while factors such as prompting strategies or response formatting are influential, they do not preclude LLMs from anchoring to memorized values.
comment: Accepted at Findings of ACL 2025
HoH: A Dynamic Benchmark for Evaluating the Impact of Outdated Information on Retrieval-Augmented Generation
While Retrieval-Augmented Generation (RAG) has emerged as an effective approach for addressing the knowledge outdating problem in Large Language Models (LLMs), it still faces a critical challenge: the prevalence of outdated information in knowledge bases. Current research primarily focuses on incorporating up-to-date information, yet the impact of outdated information coexisting in retrieval sources remains inadequately addressed. To bridge this gap, we introduce HoH, the first benchmark specifically designed to evaluate the impact of outdated information on RAG. Our benchmark leverages token-level diff algorithms combined with LLM pipelines to efficiently create a large-scale QA dataset that accurately captures the evolution of temporal knowledge in real-world facts. Through comprehensive experiments, we reveal that outdated information significantly degrades RAG performance in two critical ways: (1) it substantially reduces response accuracy by distracting models from correct information, and (2) it can mislead models into generating potentially harmful outputs, even when current information is available. Current RAG approaches struggle with both retrieval and generation aspects when handling outdated information. These findings highlight the urgent need for innovative solutions to address the temporal challenges in RAG. Our code and data are available at: https://github.com/0russwest0/HoH.
Beyond Examples: High-level Automated Reasoning Paradigm in In-Context Learning via MCTS
In-context learning (ICL) enables large language models (LLMs) to perform downstream tasks through advanced prompting and high-quality demonstrations. However, traditional ICL paradigms encounter significant limitations in complex reasoning tasks, stemming primarily from their dependence on example quality and absence of explicit reasoning guidance. To address these challenges, we introduce HiAR-ICL, a **Hi**gh-level **A**utomated **R**easoning paradigm in **ICL** that shifts focus from specific examples to abstract reasoning patterns, thereby extending the conventional concept of "context" in ICL. Our approach begins by defining five atomic reasoning actions, upon which we employ Monte Carlo Tree Search to systematically construct high-level reasoning patterns. During inference, HiAR-ICL dynamically selects appropriate reasoning patterns based on problem attributes, providing explicit guidance for the model's reasoning process. Experiments demonstrate HiAR-ICL's effectiveness and efficiency: utilizing only 200 prior samples with Qwen2.5-7B-Instruct, our method achieves 80.6% accuracy on MATH and 62.5% on AMC, exceeding GPT-4o's 77.2% and 57.5%. Our approach enhances performance across models of varying sizes while generalizing effectively across domains. Further analysis reveals that HiAR-ICL can also serve as a plug-and-play inference method compatible with post-training techniques like GRPO. Code and data are available at https://github.com/jinyangwu/HiARICL.
GrammaMT: Improving Machine Translation with Grammar-Informed In-Context Learning ACL 2025
We introduce GrammaMT, a grammatically-aware prompting approach for machine translation that uses Interlinear Glossed Text (IGT), a common form of linguistic description providing morphological and lexical annotations for source sentences. GrammaMT proposes three prompting strategies: gloss-shot, chain-gloss and model-gloss. All are training-free, requiring only a few examples that involve minimal effort to collect, and making them well-suited for low-resource setups. Experiments show that GrammaMT enhances translation performance on open-source instruction-tuned LLMs for various low- to high-resource languages across three benchmarks: (1) the largest IGT corpus, (2) the challenging 2023 SIGMORPHON Shared Task data over endangered languages, and (3) even in an out-of-domain setting with FLORES. Moreover, ablation studies reveal that leveraging gloss resources could substantially boost MT performance (by over 17 BLEU points) if LLMs accurately generate or access input sentence glosses.
comment: Accepted at ACL 2025
Standard Benchmarks Fail -- Auditing LLM Agents in Finance Must Prioritize Risk
Standard benchmarks fixate on how well large language model (LLM) agents perform in finance, yet say little about whether they are safe to deploy. We argue that accuracy metrics and return-based scores provide an illusion of reliability, overlooking vulnerabilities such as hallucinated facts, stale data, and adversarial prompt manipulation. We take a firm position: financial LLM agents should be evaluated first and foremost on their risk profile, not on their point-estimate performance. Drawing on risk-engineering principles, we outline a three-level agenda: model, workflow, and system, for stress-testing LLM agents under realistic failure modes. To illustrate why this shift is urgent, we audit six API-based and open-weights LLM agents on three high-impact tasks and uncover hidden weaknesses that conventional benchmarks miss. We conclude with actionable recommendations for researchers, practitioners, and regulators: audit risk-aware metrics in future studies, publish stress scenarios alongside datasets, and treat ``safety budget'' as a primary success criterion. Only by redefining what ``good'' looks like can the community responsibly advance AI-driven finance.
comment: 46 pages, 2 figures, 2 tables
Human-Computer Interaction
Composable Building Blocks for Controllable and Transparent Interactive AI Systems
While the increased integration of AI technologies into interactive systems enables them to solve an equally increasing number of tasks, the black box problem of AI models continues to spread throughout the interactive system as a whole. Explainable AI (XAI) techniques can make AI models more accessible by employing post-hoc methods or transitioning to inherently interpretable models. While this makes individual AI models clearer, the overarching system architecture remains opaque. To this end, we propose an approach to represent interactive systems as sequences of structural building blocks, such as AI models and control mechanisms grounded in the literature. These can then be explained through accompanying visual building blocks, such as XAI techniques. The flow and APIs of the structural building blocks form an explicit overview of the system. This serves as a communication basis for both humans and automated agents like LLMs, aligning human and machine interpretability of AI models. We discuss a selection of building blocks and concretize our flow-based approach in an architecture and accompanying prototype interactive system.
comment: Accepted to The 3rd Workshop on Engineering Interactive Systems Embedding AI Technologies, EICS 2025
Your Interface, Your Control: Adapting Takeover Requests for Seamless Handover in Semi-Autonomous Vehicles
With the automotive industry transitioning towards conditionally automated driving, takeover warning systems are crucial for ensuring safe collaborative driving between users and semi-automated vehicles. However, previous work has focused on static warning systems that do not accommodate different driver states. Therefore, we propose an adaptive takeover warning system that is personalised to drivers, enhancing their experience and safety. We conducted two user studies investigating semi-autonomous driving scenarios in rural and urban environments while participants performed non-driving-related tasks such as text entry and visual search. We investigated the effects of varying time budgets and head-up versus head-down displays for takeover requests on drivers' situational awareness and mental state. Through our statistical and clustering analyses, we propose strategies for designing adaptable takeover systems, e.g., using longer time budgets and head-up displays for non-hazardous takeover events in high-complexity environments while using shorter time budgets and head-down displays for hazardous events in low-complexity environments.
Challenges in designing research infrastructure software in multi-stakeholder contexts
This study investigates the challenges in designing research infrastructure software for automated software publication in multi-stakeholder environments, focusing specifically on the HERMES system. Through two quantitative surveys of research software engineers (RSEs) and infrastructure facility staff (IFs), it examines technical, organizational, and social requirements across these stakeholder groups. The study reveals significant differences in how RSEs and IFs prioritize various system features. While RSEs highly value compatibility with existing infrastructure, IFs prioritize user-focused aspects like system usability and documentation. The research identifies two main challenges in designing research infrastructure software: (1) the existence of multiple stakeholder groups with differing requirements, and (2) the internal heterogeneity within each stakeholder group across dimensions such as technical experience. The study also highlights that only half of RSE respondents actively practice software publication, pointing to potential cultural or technical barriers. Additionally, the research reveals discrepancies in how stakeholders view organizational aspects, with IFs consistently rating factors like responsibility structures and quality assurance as more important than RSEs do. These findings contribute to a better understanding of the complexities involved in designing research infrastructure software and emphasize the need for systems that can accommodate diverse user groups while maintaining usability across different technical expertise levels.
comment: 19 pages, 6 figures, accepted to be presented at 27th International Conference on Human-Computer Interaction, 22-27 June 2025, Gothenburg, Sweden. This preprint has not undergone peer review or any post-submission improvements or corrections. The Version of Record of this contribution is published in "HCII 2025", and is available online at https://doi.org/10.1007/978-3-031-93838-2_21
NoRe: Augmenting Journaling Experience with Generative AI for Music Creation
Journaling has long been recognized for fostering emotional awareness and self-reflection, and recent advancements in generative AI offer new opportunities to create personalized music that can enhance these practices. In this study, we explore how AI-generated music can augment the journaling experience. Through a formative study, we examined journal writers' writing patterns, purposes, emotional regulation strategies, and the design requirements for the system that augments journaling experience by journal-based AI-generated music. Based on these insights, we developed NoRe, a system that transforms journal entries into personalized music using generative AI. In a seven-day in-the-wild study (N=15), we investigated user engagement and perceived emotional effectiveness through system logs, surveys, and interviews. Our findings suggest that journal-based music generation could support emotional reflection and provide vivid reminiscence of daily experiences. Drawing from these findings, we discuss design implications for tailoring music to journal writers' emotional states and preferences.
comment: Accepted by ACM DIS 2025; 20 pages, 6 figures, 8 tables
AgentCPM-GUI: Building Mobile-Use Agents with Reinforcement Fine-Tuning
The recent progress of large language model agents has opened new possibilities for automating tasks through graphical user interfaces (GUIs), especially in mobile environments where intelligent interaction can greatly enhance usability. However, practical deployment of such agents remains constrained by several key challenges. Existing training data is often noisy and lack semantic diversity, which hinders the learning of precise grounding and planning. Models trained purely by imitation tend to overfit to seen interface patterns and fail to generalize in unfamiliar scenarios. Moreover, most prior work focuses on English interfaces while overlooks the growing diversity of non-English applications such as those in the Chinese mobile ecosystem. In this work, we present AgentCPM-GUI, an 8B-parameter GUI agent built for robust and efficient on-device GUI interaction. Our training pipeline includes grounding-aware pre-training to enhance perception, supervised fine-tuning on high-quality Chinese and English trajectories to imitate human-like actions, and reinforcement fine-tuning with GRPO to improve reasoning capability. We also introduce a compact action space that reduces output length and supports low-latency execution on mobile devices. AgentCPM-GUI achieves state-of-the-art performance on five public benchmarks and a new Chinese GUI benchmark called CAGUI, reaching $96.9\%$ Type-Match and $91.3\%$ Exact-Match. To facilitate reproducibility and further research, we publicly release all code, model checkpoint, and evaluation data.
comment: The project is available at https://github.com/OpenBMB/AgentCPM-GUI
How Problematic are Suspenseful Interactions?
Current "social acceptability" guidelines for interactive technologies advise against certain, seemingly problematic forms of interaction. Specifically, "suspenseful" interactions, characterized by visible manipulations and invisible effects, are generally considered be problematic. However, the empirical grounding for this claim is surprisingly weak. To test its validity, this paper presents a controlled replication study (n = 281) of the "suspensefulness effect". Although it could be statistically replicated with two out of three social acceptability measures, effect sizes were small (r =< .2), and all compared forms of interaction, including the suspenseful one, had high absolute social acceptability scores. Thus, despite the slight negative effect, suspenseful interactions seem less problematic in the overall scheme of things. We discuss alternative approaches to improve the social acceptability of interactive technology, and recommend to more closely engage with their specific social situatedness.
comment: 14 pages, 3 figures
Fast SSVEP Detection Using a Calibration-Free EEG Decoding Framework
Steady-State Visual Evoked Potential is a brain response to visual stimuli flickering at constant frequencies. It is commonly used in brain-computer interfaces for direct brain-device communication due to their simplicity, minimal training data, and high information transfer rate. Traditional methods suffer from poor performance due to reliance on prior knowledge, while deep learning achieves higher accuracy but requires substantial high-quality training data for precise signal decoding. In this paper, we propose a calibration-free EEG signal decoding framework for fast SSVEP detection. Our framework integrates Inter-Trial Remixing & Context-Aware Distribution Alignment data augmentation for EEG signals and employs a compact architecture of small fully connected layers, effectively addressing the challenge of limited EEG data availability. Additionally, we propose an Adaptive Spectrum Denoise Module that operates in the frequency domain based on global features, requiring only linear complexity to reduce noise in EEG data and improve data quality. For calibration-free classification experiments on short EEG signals from three public datasets, our framework demonstrates statistically significant accuracy advantages(p<0.05) over existing methods in the majority of cases, while requiring at least 52.7% fewer parameters and 29.9% less inference time. By eliminating the need for user-specific calibration, this advancement significantly enhances the usability of BCI systems, accelerating their commercialization and widespread adoption in real-world applications.
Turning to Online Forums for Legal Information: A Case Study of GDPR's Legitimate Interests
Practitioners building online services and tools often turn to online forums such as Reddit, Law Stack Exchange, and Stack Overflow for legal guidance to ensure compliance with the GDPR. The legal information presented in these forums directly impact present-day industry practitioner's decisions. Online forums can serve as gateways that, depending on the accuracy and quality of the answers provided, may either support or undermine the protection of privacy and data protection fundamental rights. However, there is a need for deeper investigation into practitioners' decision-making processes and their understanding of legal compliance. Using GDPR's ``legitimate interests'' legal ground for processing personal data as a case study, we investigate how practitioners use online forums to identify common areas of confusion in applying legitimate interests in practice, and evaluate how legally sound online forum responses are. Our analysis found that applying the ``legitimate interests'' legal basis is complex for practitioners, with important implications for how the GDPR is implemented in practice. The legal analysis showed that crowdsourced legal information tends to be legally sound, though sometimes incomplete. We outline recommendations to improve the quality of online forums by ensuring that responses are more legally sound and comprehensive, enabling practitioners to apply legitimate interests effectively in practice and uphold the GDPR.
A Practical Guide for Supporting Formative Assessment and Feedback Using Generative AI
Formative assessment is a cornerstone of effective teaching and learning, providing students with feedback to guide their learning. While there has been an exponential growth in the application of generative AI in scaling various aspects of formative assessment, ranging from automatic question generation to intelligent tutoring systems and personalized feedback, few have directly addressed the core pedagogical principles of formative assessment. Here, we critically examined how generative AI, especially large-language models (LLMs) such as ChatGPT, can support key components of formative assessment: helping students, teachers, and peers understand "where learners are going," "where learners currently are," and "how to move learners forward" in the learning process. With the rapid emergence of new prompting techniques and LLM capabilities, we also provide guiding principles for educators to effectively leverage cost-free LLMs in formative assessments while remaining grounded in pedagogical best practices. Furthermore, we reviewed the role of LLMs in generating feedback, highlighting limitations in current evaluation metrics that inadequately capture the nuances of formative feedback, such as distinguishing feedback at the task, process, and self-regulatory levels. Finally, we offer practical guidelines for educators and researchers, including concrete classroom strategies and future directions such as developing robust metrics to assess LLM-generated feedback, leveraging LLMs to overcome systemic and cultural barriers to formative assessment, and designing AI-aware assessment strategies that promote transferable skills while mitigating overreliance on LLM-generated responses. By structuring the discussion within an established formative assessment framework, this review provides a comprehensive foundation for integrating LLMs into formative assessment in a pedagogically informed manner.
Leveraging Variation Theory in Counterfactual Data Augmentation for Optimized Active Learning ACL 2025
Active Learning (AL) allows models to learn interactively from user feedback. This paper introduces a counterfactual data augmentation approach to AL, particularly addressing the selection of datapoints for user querying, a pivotal concern in enhancing data efficiency. Our approach is inspired by Variation Theory, a theory of human concept learning that emphasizes the essential features of a concept by focusing on what stays the same and what changes. Instead of just querying with existing datapoints, our approach synthesizes artificial datapoints that highlight potential key similarities and differences among labels using a neuro-symbolic pipeline combining large language models (LLMs) and rule-based models. Through an experiment in the example domain of text classification, we show that our approach achieves significantly higher performance when there are fewer annotated data. As the annotated training data gets larger the impact of the generated data starts to diminish showing its capability to address the cold start problem in AL. This research sheds light on integrating theories of human learning into the optimization of AL.
comment: Accepted to ACL 2025 Findings
Data-driven Causal Discovery for Pedestrians-Autonomous Personal Mobility Vehicle Interactions with eHMIs: From Psychological States to Walking Behaviors
Autonomous personal mobility vehicle (APMV) is a new type of small smart vehicle designed for mixed-traffic environments, including interactions with pedestrians. To enhance the interaction experience between pedestrians and APMVs and to prevent potential risks, it is crucial to investigate pedestrians' walking behaviors when interacting with APMVs and to understand the psychological processes underlying these behaviors. This study aims to investigate the causal relationships between subjective evaluations of pedestrians and their walking behaviors during interactions with an APMV equipped with an external human-machine interface (eHMI). An experiment of pedestrian-APMV interaction was conducted with 42 pedestrian participants, in which various eHMIs on the APMV were designed to induce participants to experience different levels of subjective evaluations and generate the corresponding walking behaviors. Based on the hypothesized model of the pedestrian's cognition-decision-behavior process, the results of causal discovery align with the previously proposed model. Furthermore, this study further analyzes the direct and total causal effects of each factor and investigates the causal processes affecting several important factors in the field of human-vehicle interaction, such as situation awareness, trust in vehicle, risk perception, hesitation in decision making, and walking behaviors.
MentalChat16K: A Benchmark Dataset for Conversational Mental Health Assistance
We introduce MentalChat16K, an English benchmark dataset combining a synthetic mental health counseling dataset and a dataset of anonymized transcripts from interventions between Behavioral Health Coaches and Caregivers of patients in palliative or hospice care. Covering a diverse range of conditions like depression, anxiety, and grief, this curated dataset is designed to facilitate the development and evaluation of large language models for conversational mental health assistance. By providing a high-quality resource tailored to this critical domain, MentalChat16K aims to advance research on empathetic, personalized AI solutions to improve access to mental health support services. The dataset prioritizes patient privacy, ethical considerations, and responsible data usage. MentalChat16K presents a valuable opportunity for the research community to innovate AI technologies that can positively impact mental well-being. The dataset is available at https://huggingface.co/datasets/ShenLab/MentalChat16K and the code and documentation are hosted on GitHub at https://github.com/ChiaPatricia/MentalChat16K.
Guiding Generative Storytelling with Knowledge Graphs
Large Language Models (LLMs) have shown great potential in automated story generation, but challenges remain in maintaining long-form coherence and providing users with intuitive and effective control. Retrieval-Augmented Generation (RAG) has proven effective in reducing hallucinations in text generation; however, the use of structured data to support generative storytelling remains underexplored. This paper investigates how knowledge graphs (KGs) can enhance LLM-based storytelling by improving narrative quality and enabling user-driven modifications. We propose a KG-assisted storytelling pipeline and evaluate its effectiveness through a user study with 15 participants. Participants created their own story prompts, generated stories, and edited knowledge graphs to shape their narratives. Through quantitative and qualitative analysis, our findings demonstrate that knowledge graphs significantly enhance story quality in action-oriented and structured narratives within our system settings. Additionally, editing the knowledge graph increases users' sense of control, making storytelling more engaging, interactive, and playful.
comment: This manuscript was submitted for peer review in January 2025
The CASE Framework -- A New Architecture for Participatory Research and Digital Health Surveillance
We present the CASE framework, an open-source platform for adaptive, context-aware participatory research, and pandemic preparedness. CASE implements an event-driven architecture that enables dynamic survey workflows, allowing real-time adaptation based on participant responses, external data, temporal conditions, and evolving user states. The framework supports a broad range of research needs, from simple one-time questionnaires to complex longitudinal studies with advanced conditional logic. Built on over a decade of practical experience, CASE underwent a major architectural rework in 2024, transitioning from a microservice-based design to a streamlined monolithic architecture. This evolution significantly improved maintainability, flexibility, and accessibility to deployment, particularly for institutions with limited technical capacity. CASE has been successfully deployed across diverse domains, powering national disease surveillance platforms, supporting post-COVID cohort studies, and enabling real-time sentiment analysis during political events. These applications, involving tens of thousands of participants, demonstrate the framework's scalability, versatility, and practical value. This paper describes the foundations of CASE, details its architectural evolution, and presents lessons learned from real-world deployments. We establish CASE as a mature and reusable research infrastructure that balances sophisticated functionality with practical implementation, addressing the critical global need for sustainable and institutionally controlled data collection systems.
comment: 10 pages, 5 figures. Submitted as a preprint to arXiv (no prior publication)
Completing A Systematic Review in Hours instead of Months with Interactive AI Agents ACL 2025
Systematic reviews (SRs) are vital for evidence-based practice in high stakes disciplines, such as healthcare, but are often impeded by intensive labors and lengthy processes that can take months to complete. Due to the high demand for domain expertise, existing automatic summarization methods fail to accurately identify relevant studies and generate high-quality summaries. To that end, we introduce InsightAgent, a human-centered interactive AI agent powered by large language models that revolutionize this workflow. InsightAgent partitions a large literature corpus based on semantics and employs a multi-agent design for more focused processing of literature, leading to significant improvement in the quality of generated SRs. InsightAgent also provides intuitive visualizations of the corpus and agent trajectories, allowing users to effortlessly monitor the actions of the agent and provide real-time feedback based on their expertise. Our user studies with 9 medical professionals demonstrate that the visualization and interaction mechanisms can effectively improve the quality of synthesized SRs by 27.2%, reaching 79.7% of human-written quality. At the same time, user satisfaction is improved by 34.4%. With InsightAgent, it only takes a clinician about 1.5 hours, rather than months, to complete a high-quality systematic review.
comment: Accepted as ACL 2025 (main)
3MDBench: Medical Multimodal Multi-agent Dialogue Benchmark
Though Large Vision-Language Models (LVLMs) are being actively explored in medicine, their ability to conduct telemedicine consultations combining accurate diagnosis with professional dialogue remains underexplored. In this paper, we present 3MDBench (Medical Multimodal Multi-agent Dialogue Benchmark), an open-source framework for simulating and evaluating LVLM-driven telemedical consultations. 3MDBench simulates patient variability through four temperament-based Patient Agents and an Assessor Agent that jointly evaluate diagnostic accuracy and dialogue quality. It includes 3013 cases across 34 diagnoses drawn from real-world telemedicine interactions, combining textual and image-based data. The experimental study compares diagnostic strategies for popular LVLMs, including GPT-4o-mini, LLaVA-3.2-11B-Vision-Instruct, and Qwen2-VL-7B-Instruct. We demonstrate that multimodal dialogue with internal reasoning improves F1 score by 6.5% over non-dialogue settings, highlighting the importance of context-aware, information-seeking questioning. Moreover, injecting predictions from a diagnostic convolutional network into the LVLM's context boosts F1 by up to 20%. Source code is available at https://anonymous.4open.science/r/3mdbench_acl-0511.
comment: 35 pages, 13 figures, 7 tables
Estimating LLM Consistency: A User Baseline vs Surrogate Metrics
Large language models (LLMs) are prone to hallucinations and sensitive to prompt perturbations, often resulting in inconsistent or unreliable generated text. Different methods have been proposed to mitigate such hallucinations and fragility -- one of them being measuring the consistency (the model's confidence in the response, or likelihood of generating a similar response when resampled) of LLM responses. In previous work, measuring consistency often relied on the probability of a response appearing within a pool of resampled responses, or internal states or logits of responses. However, it is not yet clear how well these approaches approximate how humans perceive the consistency of LLM responses. We performed a user study (n=2,976) and found current methods typically do not approximate users' perceptions of LLM consistency very well. We propose a logit-based ensemble method for estimating LLM consistency, and we show that this method matches the performance of the best-performing existing metric in estimating human ratings of LLM consistency. Our results suggest that methods of estimating LLM consistency without human evaluation are sufficiently imperfect that we suggest evaluation with human input be more broadly used.
A-MEM: Agentic Memory for LLM Agents
While large language model (LLM) agents can effectively use external tools for complex real-world tasks, they require memory systems to leverage historical experiences. Current memory systems enable basic storage and retrieval but lack sophisticated memory organization, despite recent attempts to incorporate graph databases. Moreover, these systems' fixed operations and structures limit their adaptability across diverse tasks. To address this limitation, this paper proposes a novel agentic memory system for LLM agents that can dynamically organize memories in an agentic way. Following the basic principles of the Zettelkasten method, we designed our memory system to create interconnected knowledge networks through dynamic indexing and linking. When a new memory is added, we generate a comprehensive note containing multiple structured attributes, including contextual descriptions, keywords, and tags. The system then analyzes historical memories to identify relevant connections, establishing links where meaningful similarities exist. Additionally, this process enables memory evolution - as new memories are integrated, they can trigger updates to the contextual representations and attributes of existing historical memories, allowing the memory network to continuously refine its understanding. Our approach combines the structured organization principles of Zettelkasten with the flexibility of agent-driven decision making, allowing for more adaptive and context-aware memory management. Empirical experiments on six foundation models show superior improvement against existing SOTA baselines. The source code for evaluating performance is available at https://github.com/WujiangXu/AgenticMemory, while the source code of agentic memory system is available at https://github.com/agiresearch/A-mem.
Perception-aware Sampling for Scatterplot Visualizations
Visualizing data is often a crucial first step in data analytics workflows, but growing data sizes pose challenges due to computational and visual perception limitations. As a result, data analysts commonly down-sample their data and work with subsets. Deriving representative samples, however, remains a challenge. This paper focuses on scatterplots, a widely-used visualization type, and introduces a novel sampling objective -- perception-awareness -- aiming to improve sample efficacy by targeting humans' perception of a visualization. We make the following contributions: (1) We propose perception-augmented databases and design PAwS: a novel perception-aware sampling method for scatterplots that leverages saliency maps -- a computer vision tool for predicting areas of attention focus in visualizations -- and models perception-awareness via saliency, density, and coverage objectives. (2) We design ApproPAwS: a fast, perception-aware method for approximate visualizations, which exploits the fact that small visual perturbations are often imperceptible to humans. (3) We introduce the concept of perceptual similarity as a metric for sample quality, and present a novel method that compares saliency maps to measure it. (4) Our extensive experimental evaluation shows that our methods consistently outperform prior art in producing samples with high perceptual similarity, while ApproPAwS achieves up to 100x speed-ups with minimal loss in visual fidelity. Our user study shows that PAwS is often preferred by humans, validating our quantitative findings.
An AI-powered Public Health Automated Kiosk System for Personalized Care: An Experimental Pilot Study
Background: The HERMES Kiosk (Healthcare Enhanced Recommendations through Artificial Intelligence & Expertise System) is designed to provide personalized Over-the-Counter (OTC) medication recommendations, addressing the limitations of traditional health kiosks. It integrates an advanced GAMENet model enhanced with Graph Attention Networks (GAT) and Multi-Head Cross-Attention (MHCA) while ensuring user privacy through federated learning. This paper outlines the conceptual design and architecture of HERMES, with a focus on deployment in high-traffic public areas. Methods: HERMES analyzes self-reported symptoms and anonymized medical histories using AI algorithms to generate context-aware OTC medication recommendations. The system was initially trained using Electronic Health Records (EHR) from the MIMIC-III dataset (6,350 patients) and Drug-Drug Interaction (DDI) data from the TWOSIDES database, incorporating the top 90 severity DDI types. Real-time DDI checks and ATC-mapped drug codes further improve safety. The kiosk is designed for accessibility, offering multilingual support, large fonts, voice commands, and Braille compatibility. A built-in health education library promotes preventive care and health literacy. A survey was conducted among 10 medical professionals to evaluate its potential applications in medicine. Results: Preliminary results show that the enhanced GAMENet model achieved a Precision-Recall AUC (PRAUC) of 0.74, outperforming the original model. These findings suggest a strong potential for delivering accurate and secure healthcare recommendations in public settings. Conclusion: HERMES demonstrates how AI-driven, privacy-preserving kiosks can enhance public health access, empower users, and alleviate burdens on healthcare systems. Future work will focus on real-world deployment, usability testing, and scalability for broader adoption.
comment: 16 pages, 3 figures, 2 tables
Public versus Less-Public News Engagement on Facebook: Patterns Across Bias and Reliability
The rapid growth of social media as a news platform has raised significant concerns about the influence and societal impact of biased and unreliable news on these platforms. While much research has explored user engagement with news on platforms like Facebook, most studies have focused on publicly shared posts. This focus leaves an important question unanswered: how representative is the public sphere of Facebook's entire ecosystem? Specifically, how much of the interactions occur in less-public spaces, and do public engagement patterns for different news classes (e.g., reliable vs. unreliable) generalize to the broader Facebook ecosystem? This paper presents the first comprehensive comparison of interaction patterns between Facebook's more public sphere (referred to as public in paper) and the less public sphere (referred to as private). For the analysis, we first collect two complementary datasets: (1) aggregated interaction data for all Facebook posts (public + private) for 19,050 manually labeled news articles (225.3M user interactions), and (2) a subset containing only interactions with public posts (70.4M interactions). Then, through discussions and iterative feedback from the CrowdTangle team, we develop a robust method for fair comparison between these datasets. Our analysis reveals that only 31% of news interactions occur in the public sphere, with significant variations across news classes. Engagement patterns in less-public spaces often differ, with users, for example, engaging more deeply in private contexts. These findings highlight the need to examine both public and less-public engagement to fully understand news dissemination on Facebook. The observed differences hold important implications on content moderation, platform governance, and policymaking, contributing to healthier online discourse.
comment: Updated to the version published in the Proceedings of the 17th ACM Web Science Conference (WebSci'25), May 20-24, 2025, New Brunswick, NJ, USA
Image and Video Processing
Analysis of Local Methane Emissions Using Near-Simultaneous Multi-Satellite Observations: Insights from Landfills and Oil-Gas Facilities
Methane (CH4) is a potent greenhouse gas, and its detection and quantification are crucial for mitigating the greenhouse effect. This study presents a comparative analysis of methane emissions observed using near-simultaneous observations from hyperspectral imaging spectrometers hosted aboard different satellite platforms (PRISMA, EnMAP, EMIT and GHGSat). Methane emissions from oil and gas facilities and landfills are analyzed to evaluate the consistency and precision of the sensors and temporal variability of the source. Landfills, characterized by diffuse and stable emissions, and dynamic oil and gas facilities, subject to operational variability, provide contrasting use cases for emission monitoring. Emission rates are quantified using the Integrated Mass Enhancement (IME) model and validated across satellites with overlapping acquisitions. This study highlights the advantages and limitations of each satellite system, emphasizing the critical role of multi-sensor integration in bridging temporal and spatial observation gaps. Insights derived here aim to enhance global methane monitoring frameworks and guide future satellite design for improved emission quantification.
TRUST -- Transformer-Driven U-Net for Sparse Target Recovery NeurIPS 2025
In the context of inverse problems $\bf y = Ax$, sparse recovery offers a powerful paradigm shift by enabling the stable solution of ill-posed or underdetermined systems through the exploitation of structure, particularly sparsity. Sparse regularization techniques via $\ell_0$- or $\ell_1$-norm minimization encourage solutions $\bf x$ that are both consistent with observations $\bf y$ and parsimonious in representation, often yielding physically meaningful interpretations. In this work, we address the classical inverse problem under the challenging condition where the sensing operator $\bf A$ is unknown and only a limited set of observation-target pairs $\{ \bf x,\bf y \}$ is available. We propose a novel neural architecture, TRUST, that integrates the attention mechanism of Transformers with the decoder pathway of a UNet to simultaneously learn the sensing operator and reconstruct the sparse signal. The TRUST model incorporates a Transformer-based encoding branch to capture long-range dependencies and estimate sparse support, which then guides a U-Net-style decoder to refine reconstruction through multiscale feature integration. The skip connections between the transformer stages and the decoder not only enhance image quality but also enable the decoder to access image features at different levels of abstraction. This hybrid architecture enables more accurate and robust recovery by combining global context with local details. Experimental results demonstrate that TRUST significantly outperforms traditional sparse recovery methods and standalone U-Net models, achieving superior performance in SSIM and PSNR metrics while effectively suppressing hallucination artifacts that commonly plague deep learning-based inverse solvers.
comment: 10 pages, 5 figures. Under review at NeurIPS 2025
Alzheimers Disease Classification in Functional MRI With 4D Joint Temporal-Spatial Kernels in Novel 4D CNN Model
Previous works in the literature apply 3D spatial-only models on 4D functional MRI data leading to possible sub-par feature extraction to be used for downstream tasks like classification. In this work, we aim to develop a novel 4D convolution network to extract 4D joint temporal-spatial kernels that not only learn spatial information but in addition also capture temporal dynamics. Experimental results show promising performance in capturing spatial-temporal data in functional MRI compared to 3D models. The 4D CNN model improves Alzheimers disease diagnosis for rs-fMRI data, enabling earlier detection and better interventions. Future research could explore task-based fMRI applications and regression tasks, enhancing understanding of cognitive performance and disease progression.
comment: Published in International Society for Magnetic Resonance in Medicine (ISMRM) 2025 under submission number 3398
Domain-Agnostic Stroke Lesion Segmentation Using Physics-Constrained Synthetic Data
Segmenting stroke lesions in MRI is challenging due to diverse acquisition protocols that limit model generalisability. In this work, we introduce two physics-constrained approaches to generate synthetic quantitative MRI (qMRI) images that improve segmentation robustness across heterogeneous domains. Our first method, $\texttt{qATLAS}$, trains a neural network to estimate qMRI maps from standard MPRAGE images, enabling the simulation of varied MRI sequences with realistic tissue contrasts. The second method, $\texttt{qSynth}$, synthesises qMRI maps directly from tissue labels using label-conditioned Gaussian mixture models, ensuring physical plausibility. Extensive experiments on multiple out-of-domain datasets show that both methods outperform a baseline UNet, with $\texttt{qSynth}$ notably surpassing previous synthetic data approaches. These results highlight the promise of integrating MRI physics into synthetic data generation for robust, generalisable stroke lesion segmentation. Code is available at https://github.com/liamchalcroft/qsynth
Real-time Chest X-Ray Distributed Decision Support for Resource-constrained Clinics
Internet of Things (IoT) based healthcare systems offer significant potential for improving the delivery of healthcare services in humanitarian engineering, providing essential healthcare services to millions of underserved people in remote areas worldwide. However, these areas have poor network infrastructure, making communications difficult for traditional IoT. This paper presents a real-time chest X-ray classification system for hospitals in remote areas using FastDDS real-time middleware, offering reliable real-time communication. We fine-tuned a ResNet50 neural network to an accuracy of 88.61%, a precision of 88.76%, and a recall of 88.49\%. Our system results mark an average throughput of 3.2 KB/s and an average latency of 65 ms. The proposed system demonstrates how middleware-based systems can assist doctors in remote locations.
UniRestore: Unified Perceptual and Task-Oriented Image Restoration Model Using Diffusion Prior CVPR2025
Image restoration aims to recover content from inputs degraded by various factors, such as adverse weather, blur, and noise. Perceptual Image Restoration (PIR) methods improve visual quality but often do not support downstream tasks effectively. On the other hand, Task-oriented Image Restoration (TIR) methods focus on enhancing image utility for high-level vision tasks, sometimes compromising visual quality. This paper introduces UniRestore, a unified image restoration model that bridges the gap between PIR and TIR by using a diffusion prior. The diffusion prior is designed to generate images that align with human visual quality preferences, but these images are often unsuitable for TIR scenarios. To solve this limitation, UniRestore utilizes encoder features from an autoencoder to adapt the diffusion prior to specific tasks. We propose a Complementary Feature Restoration Module (CFRM) to reconstruct degraded encoder features and a Task Feature Adapter (TFA) module to facilitate adaptive feature fusion in the decoder. This design allows UniRestore to optimize images for both human perception and downstream task requirements, addressing discrepancies between visual quality and functional needs. Integrating these modules also enhances UniRestore's adapability and efficiency across diverse tasks. Extensive expertments demonstrate the superior performance of UniRestore in both PIR and TIR scenarios.
comment: Accepted by CVPR2025 (Highlight); Project Page: https://unirestore.github.io
Deep Learning Framework for Infrastructure Maintenance: Crack Detection and High-Resolution Imaging of Infrastructure Surfaces
Recently, there has been an impetus for the application of cutting-edge data collection platforms such as drones mounted with camera sensors for infrastructure asset management. However, the sensor characteristics, proximity to the structure, hard-to-reach access, and environmental conditions often limit the resolution of the datasets. A few studies used super-resolution techniques to address the problem of low-resolution images. Nevertheless, these techniques were observed to increase computational cost and false alarms of distress detection due to the consideration of all the infrastructure images i.e., positive and negative distress classes. In order to address the pre-processing of false alarm and achieve efficient super-resolution, this study developed a framework consisting of convolutional neural network (CNN) and efficient sub-pixel convolutional neural network (ESPCNN). CNN accurately classified both the classes. ESPCNN, which is the lightweight super-resolution technique, generated high-resolution infrastructure image of positive distress obtained from CNN. The ESPCNN outperformed bicubic interpolation in all the evaluation metrics for super-resolution. Based on the performance metrics, the combination of CNN and ESPCNN was observed to be effective in preprocessing the infrastructure images with negative distress, reducing the computational cost and false alarms in the next step of super-resolution. The visual inspection showed that EPSCNN is able to capture crack propagation, complex geometry of even minor cracks. The proposed framework is expected to help the highway agencies in accurately performing distress detection and assist in efficient asset management practices.
comment: Presented :Transportation Research Board 104th Annual Meeting, Washington, D.C
SCC-YOLO: An Improved Object Detector for Assisting in Brain Tumor Diagnosis
Brain tumors can lead to neurological dysfunction, cognitive and psychological changes, increased intracranial pressure, and seizures, posing significant risks to health. The You Only Look Once (YOLO) series has shown superior accuracy in medical imaging object detection. This paper presents a novel SCC-YOLO architecture that integrates the SCConv module into YOLOv9. The SCConv module optimizes convolutional efficiency by reducing spatial and channel redundancy, enhancing image feature learning. We examine the effects of different attention mechanisms with YOLOv9 for brain tumor detection using the Br35H dataset and our custom dataset (Brain_Tumor_Dataset). Results indicate that SCC-YOLO improved mAP50 by 0.3% on the Br35H dataset and by 0.5% on our custom dataset compared to YOLOv9. SCC-YOLO achieves state-of-the-art performance in brain tumor detection.
Computer Vision and Pattern Recognition
Accurate Differential Operators for Hybrid Neural Fields CVPR 2025
Neural fields have become widely used in various fields, from shape representation to neural rendering, and for solving partial differential equations (PDEs). With the advent of hybrid neural field representations like Instant NGP that leverage small MLPs and explicit representations, these models train quickly and can fit large scenes. Yet in many applications like rendering and simulation, hybrid neural fields can cause noticeable and unreasonable artifacts. This is because they do not yield accurate spatial derivatives needed for these downstream applications. In this work, we propose two ways to circumvent these challenges. Our first approach is a post hoc operator that uses local polynomial fitting to obtain more accurate derivatives from pre-trained hybrid neural fields. Additionally, we also propose a self-supervised fine-tuning approach that refines the hybrid neural field to yield accurate derivatives directly while preserving the initial signal. We show applications of our method to rendering, collision simulation, and solving PDEs. We observe that using our approach yields more accurate derivatives, reducing artifacts and leading to more accurate simulations in downstream applications.
comment: Accepted in CVPR 2025. Project page is available at https://justachetan.github.io/hnf-derivatives/
MDMP: Multi-modal Diffusion for supervised Motion Predictions with uncertainty CVPR 2025
This paper introduces a Multi-modal Diffusion model for Motion Prediction (MDMP) that integrates and synchronizes skeletal data and textual descriptions of actions to generate refined long-term motion predictions with quantifiable uncertainty. Existing methods for motion forecasting or motion generation rely solely on either prior motions or text prompts, facing limitations with precision or control, particularly over extended durations. The multi-modal nature of our approach enhances the contextual understanding of human motion, while our graph-based transformer framework effectively capture both spatial and temporal motion dynamics. As a result, our model consistently outperforms existing generative techniques in accurately predicting long-term motions. Additionally, by leveraging diffusion models' ability to capture different modes of prediction, we estimate uncertainty, significantly improving spatial awareness in human-robot interactions by incorporating zones of presence with varying confidence levels for each body joint.
comment: Accepted to CVPR 2025 - HuMoGen. Minor revisions made based on reviewer feedback
VLM-3R: Vision-Language Models Augmented with Instruction-Aligned 3D Reconstruction
The rapid advancement of Large Multimodal Models (LMMs) for 2D images and videos has motivated extending these models to understand 3D scenes, aiming for human-like visual-spatial intelligence. Nevertheless, achieving deep spatial understanding comparable to human capabilities poses significant challenges in model encoding and data acquisition. Existing methods frequently depend on external depth sensors for geometry capture or utilize off-the-shelf algorithms for pre-constructing 3D maps, thereby limiting their scalability, especially with prevalent monocular video inputs and for time-sensitive applications. In this work, we introduce VLM-3R, a unified framework for Vision-Language Models (VLMs) that incorporates 3D Reconstructive instruction tuning. VLM-3R processes monocular video frames by employing a geometry encoder to derive implicit 3D tokens that represent spatial understanding. Leveraging our Spatial-Visual-View Fusion and over 200K curated 3D reconstructive instruction tuning question-answer (QA) pairs, VLM-3R effectively aligns real-world spatial context with language instructions. This enables monocular 3D spatial assistance and embodied reasoning. To facilitate the evaluation of temporal reasoning, we introduce the Vision-Spatial-Temporal Intelligence benchmark, featuring over 138.6K QA pairs across five distinct tasks focused on evolving spatial relationships. Extensive experiments demonstrate that our model, VLM-3R, not only facilitates robust visual-spatial reasoning but also enables the understanding of temporal 3D context changes, excelling in both accuracy and scalability.
comment: Project Page: https://vlm-3r.github.io/
Real-time Chest X-Ray Distributed Decision Support for Resource-constrained Clinics
Internet of Things (IoT) based healthcare systems offer significant potential for improving the delivery of healthcare services in humanitarian engineering, providing essential healthcare services to millions of underserved people in remote areas worldwide. However, these areas have poor network infrastructure, making communications difficult for traditional IoT. This paper presents a real-time chest X-ray classification system for hospitals in remote areas using FastDDS real-time middleware, offering reliable real-time communication. We fine-tuned a ResNet50 neural network to an accuracy of 88.61%, a precision of 88.76%, and a recall of 88.49\%. Our system results mark an average throughput of 3.2 KB/s and an average latency of 65 ms. The proposed system demonstrates how middleware-based systems can assist doctors in remote locations.
Think Small, Act Big: Primitive Prompt Learning for Lifelong Robot Manipulation CVPR 2025
Building a lifelong robot that can effectively leverage prior knowledge for continuous skill acquisition remains significantly challenging. Despite the success of experience replay and parameter-efficient methods in alleviating catastrophic forgetting problem, naively applying these methods causes a failure to leverage the shared primitives between skills. To tackle these issues, we propose Primitive Prompt Learning (PPL), to achieve lifelong robot manipulation via reusable and extensible primitives. Within our two stage learning scheme, we first learn a set of primitive prompts to represent shared primitives through multi-skills pre-training stage, where motion-aware prompts are learned to capture semantic and motion shared primitives across different skills. Secondly, when acquiring new skills in lifelong span, new prompts are appended and optimized with frozen pretrained prompts, boosting the learning via knowledge transfer from old skills to new ones. For evaluation, we construct a large-scale skill dataset and conduct extensive experiments in both simulation and real-world tasks, demonstrating PPL's superior performance over state-of-the-art methods.
comment: Accepted to CVPR 2025
Inference-Time Text-to-Video Alignment with Diffusion Latent Beam Search
The remarkable progress in text-to-video diffusion models enables photorealistic generations, although the contents of the generated video often include unnatural movement or deformation, reverse playback, and motionless scenes. Recently, an alignment problem has attracted huge attention, where we steer the output of diffusion models based on some quantity on the goodness of the content. Because there is a large room for improvement of perceptual quality along the frame direction, we should address which metrics we should optimize and how we can optimize them in the video generation. In this paper, we propose diffusion latent beam search with lookahead estimator, which can select a better diffusion latent to maximize a given alignment reward, at inference time. We then point out that the improvement of perceptual video quality considering the alignment to prompts requires reward calibration by weighting existing metrics. This is because when humans or vision language models evaluate outputs, many previous metrics to quantify the naturalness of video do not always correlate with evaluation. We demonstrate that our method improves the perceptual quality evaluated on the calibrated reward, VLMs, and human assessment, without model parameter update, and outputs the best generation compared to greedy search and best-of-N sampling under much more efficient computational cost. The experiments highlight that our method is beneficial to many capable generative models, and provide a practical guideline that we should prioritize the inference-time compute allocation into lookahead steps for reward estimation over search budget or denoising steps.
comment: Code: https://github.com/shim0114/T2V-Diffusion-Search
Distill CLIP (DCLIP): Enhancing Image-Text Retrieval via Cross-Modal Transformer Distillation
We present Distill CLIP (DCLIP), a fine-tuned variant of the CLIP model that enhances multimodal image-text retrieval while preserving the original model's strong zero-shot classification capabilities. CLIP models are typically constrained by fixed image resolutions and limited context, which can hinder their effectiveness in retrieval tasks that require fine-grained cross-modal understanding. DCLIP addresses these challenges through a meta teacher-student distillation framework, where a cross-modal transformer teacher is fine-tuned to produce enriched embeddings via bidirectional cross-attention between YOLO-extracted image regions and corresponding textual spans. These semantically and spatially aligned global representations guide the training of a lightweight student model using a hybrid loss that combines contrastive learning and cosine similarity objectives. Despite being trained on only ~67,500 samples curated from MSCOCO, Flickr30k, and Conceptual Captions-just a fraction of CLIP's original dataset-DCLIP significantly improves image-text retrieval metrics (Recall@K, MAP), while retaining approximately 94% of CLIP's zero-shot classification performance. These results demonstrate that DCLIP effectively mitigates the trade-off between task specialization and generalization, offering a resource-efficient, domain-adaptive, and detail-sensitive solution for advanced vision-language tasks. Code available at https://anonymous.4open.science/r/DCLIP-B772/README.md.
Deep Learning Framework for Infrastructure Maintenance: Crack Detection and High-Resolution Imaging of Infrastructure Surfaces
Recently, there has been an impetus for the application of cutting-edge data collection platforms such as drones mounted with camera sensors for infrastructure asset management. However, the sensor characteristics, proximity to the structure, hard-to-reach access, and environmental conditions often limit the resolution of the datasets. A few studies used super-resolution techniques to address the problem of low-resolution images. Nevertheless, these techniques were observed to increase computational cost and false alarms of distress detection due to the consideration of all the infrastructure images i.e., positive and negative distress classes. In order to address the pre-processing of false alarm and achieve efficient super-resolution, this study developed a framework consisting of convolutional neural network (CNN) and efficient sub-pixel convolutional neural network (ESPCNN). CNN accurately classified both the classes. ESPCNN, which is the lightweight super-resolution technique, generated high-resolution infrastructure image of positive distress obtained from CNN. The ESPCNN outperformed bicubic interpolation in all the evaluation metrics for super-resolution. Based on the performance metrics, the combination of CNN and ESPCNN was observed to be effective in preprocessing the infrastructure images with negative distress, reducing the computational cost and false alarms in the next step of super-resolution. The visual inspection showed that EPSCNN is able to capture crack propagation, complex geometry of even minor cracks. The proposed framework is expected to help the highway agencies in accurately performing distress detection and assist in efficient asset management practices.
comment: Presented :Transportation Research Board 104th Annual Meeting, Washington, D.C
LLaVA-ST: A Multimodal Large Language Model for Fine-Grained Spatial-Temporal Understanding CVPR2025
Recent advancements in multimodal large language models (MLLMs) have shown promising results, yet existing approaches struggle to effectively handle both temporal and spatial localization simultaneously. This challenge stems from two key issues: first, incorporating spatial-temporal localization introduces a vast number of coordinate combinations, complicating the alignment of linguistic and visual coordinate representations; second, encoding fine-grained temporal and spatial information during video feature compression is inherently difficult. To address these issues, we propose LLaVA-ST, a MLLM for fine-grained spatial-temporal multimodal understanding. In LLaVA-ST, we propose Language-Aligned Positional Embedding, which embeds the textual coordinate special token into the visual space, simplifying the alignment of fine-grained spatial-temporal correspondences. Additionally, we design the Spatial-Temporal Packer, which decouples the feature compression of temporal and spatial resolutions into two distinct point-to-region attention processing streams. Furthermore, we propose ST-Align dataset with 4.3M training samples for fine-grained spatial-temporal multimodal understanding. With ST-align, we present a progressive training pipeline that aligns the visual and textual feature through sequential coarse-to-fine stages.Additionally, we introduce an ST-Align benchmark to evaluate spatial-temporal interleaved fine-grained understanding tasks, which include Spatial-Temporal Video Grounding (STVG) , Event Localization and Captioning (ELC) and Spatial Video Grounding (SVG). LLaVA-ST achieves outstanding performance on 11 benchmarks requiring fine-grained temporal, spatial, or spatial-temporal interleaving multimodal understanding. Our code, data and benchmark will be released at Our code, data and benchmark will be released at https://github.com/appletea233/LLaVA-ST .
comment: Accepted by CVPR2025
ObjectAdd: Adding Objects into Image via a Training-Free Diffusion Modification Fashion
We introduce ObjectAdd, a training-free diffusion modification method to add user-expected objects into user-specified area. The motive of ObjectAdd stems from: first, describing everything in one prompt can be difficult, and second, users often need to add objects into the generated image. To accommodate with real world, our ObjectAdd maintains accurate image consistency after adding objects with technical innovations in: (1) embedding-level concatenation to ensure correct text embedding coalesce; (2) object-driven layout control with latent and attention injection to ensure objects accessing user-specified area; (3) prompted image inpainting in an attention refocusing & object expansion fashion to ensure rest of the image stays the same. With a text-prompted image, our ObjectAdd allows users to specify a box and an object, and achieves: (1) adding object inside the box area; (2) exact content outside the box area; (3) flawless fusion between the two areas
comment: 13 pages in total
DA-VPT: Semantic-Guided Visual Prompt Tuning for Vision Transformers CVPR 2025
Visual Prompt Tuning (VPT) has become a promising solution for Parameter-Efficient Fine-Tuning (PEFT) approach for Vision Transformer (ViT) models by partially fine-tuning learnable tokens while keeping most model parameters frozen. Recent research has explored modifying the connection structures of the prompts. However, the fundamental correlation and distribution between the prompts and image tokens remain unexplored. In this paper, we leverage metric learning techniques to investigate how the distribution of prompts affects fine-tuning performance. Specifically, we propose a novel framework, Distribution Aware Visual Prompt Tuning (DA-VPT), to guide the distributions of the prompts by learning the distance metric from their class-related semantic data. Our method demonstrates that the prompts can serve as an effective bridge to share semantic information between image patches and the class token. We extensively evaluated our approach on popular benchmarks in both recognition and segmentation tasks. The results demonstrate that our approach enables more effective and efficient fine-tuning of ViT models by leveraging semantic information to guide the learning of the prompts, leading to improved performance on various downstream vision tasks.
comment: CVPR 2025
Why Does Little Robustness Help? A Further Step Towards Understanding Adversarial Transferability
Adversarial examples (AEs) for DNNs have been shown to be transferable: AEs that successfully fool white-box surrogate models can also deceive other black-box models with different architectures. Although a bunch of empirical studies have provided guidance on generating highly transferable AEs, many of these findings lack explanations and even lead to inconsistent advice. In this paper, we take a further step towards understanding adversarial transferability, with a particular focus on surrogate aspects. Starting from the intriguing little robustness phenomenon, where models adversarially trained with mildly perturbed adversarial samples can serve as better surrogates, we attribute it to a trade-off between two predominant factors: model smoothness and gradient similarity. Our investigations focus on their joint effects, rather than their separate correlations with transferability. Through a series of theoretical and empirical analyses, we conjecture that the data distribution shift in adversarial training explains the degradation of gradient similarity. Building on these insights, we explore the impacts of data augmentation and gradient regularization on transferability and identify that the trade-off generally exists in the various training mechanisms, thus building a comprehensive blueprint for the regulation mechanism behind transferability. Finally, we provide a general route for constructing better surrogates to boost transferability which optimizes both model smoothness and gradient similarity simultaneously, e.g., the combination of input gradient regularization and sharpness-aware minimization (SAM), validated by extensive experiments. In summary, we call for attention to the united impacts of these two factors for launching effective transfer attacks, rather than optimizing one while ignoring the other, and emphasize the crucial role of manipulating surrogate models.
comment: IEEE Symposium on Security and Privacy (Oakland) 2024; Extended version; Fix an proof error of Theorem 1
Towards Resource-Efficient Streaming of Large-Scale Medical Image Datasets for Deep Learning
Large-scale medical imaging datasets have accelerated deep learning (DL) for medical image analysis. However, the large scale of these datasets poses a challenge for researchers, resulting in increased storage and bandwidth requirements for hosting and accessing them. Since different researchers have different use cases and require different resolutions or formats for DL, it is neither feasible to anticipate every researcher's needs nor practical to store data in multiple resolutions and formats. To that end, we propose the Medical Image Streaming Toolkit (MIST), a format-agnostic database that enables streaming of medical images at different resolutions and formats from a single high-resolution copy. We evaluated MIST across eight popular, large-scale medical imaging datasets spanning different body parts, modalities, and formats. Our results showed that our framework reduced the storage and bandwidth requirements for hosting and downloading datasets without impacting image quality. We demonstrate that MIST addresses the challenges posed by large-scale medical imaging datasets by building a data-efficient and format-agnostic database to meet the diverse needs of researchers and reduce barriers to DL research in medical imaging.
comment: 17 pages, 4 figures, 10 tables, accepted to MIDL'25
OpenGait: A Comprehensive Benchmark Study for Gait Recognition towards Better Practicality
Gait recognition, a rapidly advancing vision technology for person identification from a distance, has made significant strides in indoor settings. However, evidence suggests that existing methods often yield unsatisfactory results when applied to newly released real-world gait datasets. Furthermore, conclusions drawn from indoor gait datasets may not easily generalize to outdoor ones. Therefore, the primary goal of this paper is to present a comprehensive benchmark study aimed at improving practicality rather than solely focusing on enhancing performance. To this end, we developed OpenGait, a flexible and efficient gait recognition platform. Using OpenGait, we conducted in-depth ablation experiments to revisit recent developments in gait recognition. Surprisingly, we detected some imperfect parts of some prior methods and thereby uncovered several critical yet previously neglected insights. These findings led us to develop three structurally simple yet empirically powerful and practically robust baseline models: DeepGaitV2, SkeletonGait, and SkeletonGait++, which represent the appearance-based, model-based, and multi-modal methodologies for gait pattern description, respectively. In addition to achieving state-of-the-art performance, our careful exploration provides new perspectives on the modeling experience of deep gait models and the representational capacity of typical gait modalities. In the end, we discuss the key trends and challenges in current gait recognition, aiming to inspire further advancements towards better practicality. The code is available at https://github.com/ShiqiYu/OpenGait.
SemanticDraw: Towards Real-Time Interactive Content Creation from Image Diffusion Models CVPR 2025
We introduce SemanticDraw, a new paradigm of interactive content creation where high-quality images are generated in near real-time from given multiple hand-drawn regions, each encoding prescribed semantic meaning. In order to maximize the productivity of content creators and to fully realize their artistic imagination, it requires both quick interactive interfaces and fine-grained regional controls in their tools. Despite astonishing generation quality from recent diffusion models, we find that existing approaches for regional controllability are very slow (52 seconds for $512 \times 512$ image) while not compatible with acceleration methods such as LCM, blocking their huge potential in interactive content creation. From this observation, we build our solution for interactive content creation in two steps: (1) we establish compatibility between region-based controls and acceleration techniques for diffusion models, maintaining high fidelity of multi-prompt image generation with $\times 10$ reduced number of inference steps, (2) we increase the generation throughput with our new multi-prompt stream batch pipeline, enabling low-latency generation from multiple, region-based text prompts on a single RTX 2080 Ti GPU. Our proposed framework is generalizable to any existing diffusion models and acceleration schedulers, allowing sub-second (0.64 seconds) image content creation application upon well-established image diffusion models. Our project page is: https://jaerinlee.com/research/semantic-draw
comment: CVPR 2025 camera ready
Conditional Image Synthesis with Diffusion Models: A Survey
Conditional image synthesis based on user-specified requirements is a key component in creating complex visual content. In recent years, diffusion-based generative modeling has become a highly effective way for conditional image synthesis, leading to exponential growth in the literature. However, the complexity of diffusion-based modeling, the wide range of image synthesis tasks, and the diversity of conditioning mechanisms present significant challenges for researchers to keep up with rapid developments and to understand the core concepts on this topic. In this survey, we categorize existing works based on how conditions are integrated into the two fundamental components of diffusion-based modeling, $\textit{i.e.}$, the denoising network and the sampling process. We specifically highlight the underlying principles, advantages, and potential challenges of various conditioning approaches during the training, re-purposing, and specialization stages to construct a desired denoising network. We also summarize six mainstream conditioning mechanisms in the sampling process. All discussions are centered around popular applications. Finally, we pinpoint several critical yet still unsolved problems and suggest some possible solutions for future research. Our reviewed works are itemized at https://github.com/zju-pi/Awesome-Conditional-Diffusion-Models.
ItTakesTwo: Leveraging Peer Representations for Semi-supervised LiDAR Semantic Segmentation ECCV 2024
The costly and time-consuming annotation process to produce large training sets for modelling semantic LiDAR segmentation methods has motivated the development of semi-supervised learning (SSL) methods. However, such SSL approaches often concentrate on employing consistency learning only for individual LiDAR representations. This narrow focus results in limited perturbations that generally fail to enable effective consistency learning. Additionally, these SSL approaches employ contrastive learning based on the sampling from a limited set of positive and negative embedding samples. This paper introduces a novel semi-supervised LiDAR semantic segmentation framework called ItTakesTwo (IT2). IT2 is designed to ensure consistent predictions from peer LiDAR representations, thereby improving the perturbation effectiveness in consistency learning. Furthermore, our contrastive learning employs informative samples drawn from a distribution of positive and negative embeddings learned from the entire training set. Results on public benchmarks show that our approach achieves remarkable improvements over the previous state-of-the-art (SOTA) methods in the field. The code is available at: https://github.com/yyliu01/IT2.
comment: 27 pages (15 pages main paper and 12 pages supplementary with references), ECCV 2024 accepted
DiTASK: Multi-Task Fine-Tuning with Diffeomorphic Transformations CVPR 2025
Pre-trained Vision Transformers now serve as powerful tools for computer vision. Yet, efficiently adapting them for multiple tasks remains a challenge that arises from the need to modify the rich hidden representations encoded by the learned weight matrices, without inducing interference between tasks. Current parameter-efficient methods like LoRA, which apply low-rank updates, force tasks to compete within constrained subspaces, ultimately degrading performance. We introduce DiTASK a novel Diffeomorphic Multi-Task Fine-Tuning approach that maintains pre-trained representations by preserving weight matrix singular vectors, while enabling task-specific adaptations through neural diffeomorphic transformations of the singular values. By following this approach, DiTASK enables both shared and task-specific feature modulations with minimal added parameters. Our theoretical analysis shows that DITASK achieves full-rank updates during optimization, preserving the geometric structure of pre-trained features, and establishing a new paradigm for efficient multi-task learning (MTL). Our experiments on PASCAL MTL and NYUD show that DiTASK achieves state-of-the-art performance across four dense prediction tasks, using 75% fewer parameters than existing methods. Our code is available [here](https://github.com/ipsitmantri/DiTASK).
comment: CVPR 2025, 14 pages
NFIG: Autoregressive Image Generation with Next-Frequency Prediction
Autoregressive models have achieved promising results in natural language processing. However, for image generation tasks, they encounter substantial challenges in effectively capturing long-range dependencies, managing computational costs, and most crucially, defining meaningful autoregressive sequences that reflect natural image hierarchies. To address these issues, we present \textbf{N}ext-\textbf{F}requency \textbf{I}mage \textbf{G}eneration (\textbf{NFIG}), a novel framework that decomposes the image generation process into multiple frequency-guided stages. Our approach first generates low-frequency components to establish global structure with fewer tokens, then progressively adds higher-frequency details, following the natural spectral hierarchy of images. This principled autoregressive sequence not only improves the quality of generated images by better capturing true causal relationships between image components, but also significantly reduces computational overhead during inference. Extensive experiments demonstrate that NFIG achieves state-of-the-art performance with fewer steps, offering a more efficient solution for image generation, with 1.25$\times$ speedup compared to VAR-d20 while achieving better performance (FID: 2.81) on the ImageNet-256 benchmark. We hope that our insight of incorporating frequency-domain knowledge to guide autoregressive sequence design will shed light on future research. We will make our code publicly available upon acceptance of the paper.
comment: 10 pages, 7 figures, 2 tables
DragPoser: Motion Reconstruction from Variable Sparse Tracking Signals via Latent Space Optimization
High-quality motion reconstruction that follows the user's movements can be achieved by high-end mocap systems with many sensors. However, obtaining such animation quality with fewer input devices is gaining popularity as it brings mocap closer to the general public. The main challenges include the loss of end-effector accuracy in learning-based approaches, or the lack of naturalness and smoothness in IK-based solutions. In addition, such systems are often finely tuned to a specific number of trackers and are highly sensitive to missing data e.g., in scenarios where a sensor is occluded or malfunctions. In response to these challenges, we introduce DragPoser, a novel deep-learning-based motion reconstruction system that accurately represents hard and dynamic on-the-fly constraints, attaining real-time high end-effectors position accuracy. This is achieved through a pose optimization process within a structured latent space. Our system requires only one-time training on a large human motion dataset, and then constraints can be dynamically defined as losses, while the pose is iteratively refined by computing the gradients of these losses within the latent space. To further enhance our approach, we incorporate a Temporal Predictor network, which employs a Transformer architecture to directly encode temporality within the latent space. This network ensures the pose optimization is confined to the manifold of valid poses and also leverages past pose data to predict temporally coherent poses. Results demonstrate that DragPoser surpasses both IK-based and the latest data-driven methods in achieving precise end-effector positioning, while it produces natural poses and temporally coherent motion. In addition, our system showcases robustness against on-the-fly constraint modifications, and exhibits exceptional adaptability to various input configurations and changes.
comment: Published on Eurographics 2025. Project page: https://upc-virvig.github.io/DragPoser/
MFCLIP: Multi-modal Fine-grained CLIP for Generalizable Diffusion Face Forgery Detection
The rapid development of photo-realistic face generation methods has raised significant concerns in society and academia, highlighting the urgent need for robust and generalizable face forgery detection (FFD) techniques. Although existing approaches mainly capture face forgery patterns using image modality, other modalities like fine-grained noises and texts are not fully explored, which limits the generalization capability of the model. In addition, most FFD methods tend to identify facial images generated by GAN, but struggle to detect unseen diffusion-synthesized ones. To address the limitations, we aim to leverage the cutting-edge foundation model, contrastive language-image pre-training (CLIP), to achieve generalizable diffusion face forgery detection (DFFD). In this paper, we propose a novel multi-modal fine-grained CLIP (MFCLIP) model, which mines comprehensive and fine-grained forgery traces across image-noise modalities via language-guided face forgery representation learning, to facilitate the advancement of DFFD. Specifically, we devise a fine-grained language encoder (FLE) that extracts fine global language features from hierarchical text prompts. We design a multi-modal vision encoder (MVE) to capture global image forgery embeddings as well as fine-grained noise forgery patterns extracted from the richest patch, and integrate them to mine general visual forgery traces. Moreover, we build an innovative plug-and-play sample pair attention (SPA) method to emphasize relevant negative pairs and suppress irrelevant ones, allowing cross-modality sample pairs to conduct more flexible alignment. Extensive experiments and visualizations show that our model outperforms the state of the arts on different settings like cross-generator, cross-forgery, and cross-dataset evaluations.
comment: Accepted by IEEE Transactions on Information Forensics and Security 2025
ITA-MDT: Image-Timestep-Adaptive Masked Diffusion Transformer Framework for Image-Based Virtual Try-On CVPR 2025
This paper introduces ITA-MDT, the Image-Timestep-Adaptive Masked Diffusion Transformer Framework for Image-Based Virtual Try-On (IVTON), designed to overcome the limitations of previous approaches by leveraging the Masked Diffusion Transformer (MDT) for improved handling of both global garment context and fine-grained details. The IVTON task involves seamlessly superimposing a garment from one image onto a person in another, creating a realistic depiction of the person wearing the specified garment. Unlike conventional diffusion-based virtual try-on models that depend on large pre-trained U-Net architectures, ITA-MDT leverages a lightweight, scalable transformer-based denoising diffusion model with a mask latent modeling scheme, achieving competitive results while reducing computational overhead. A key component of ITA-MDT is the Image-Timestep Adaptive Feature Aggregator (ITAFA), a dynamic feature aggregator that combines all of the features from the image encoder into a unified feature of the same size, guided by diffusion timestep and garment image complexity. This enables adaptive weighting of features, allowing the model to emphasize either global information or fine-grained details based on the requirements of the denoising stage. Additionally, the Salient Region Extractor (SRE) module is presented to identify complex region of the garment to provide high-resolution local information to the denoising model as an additional condition alongside the global information of the full garment image. This targeted conditioning strategy enhances detail preservation of fine details in highly salient garment regions, optimizing computational resources by avoiding unnecessarily processing entire garment image. Comparative evaluations confirms that ITA-MDT improves efficiency while maintaining strong performance, reaching state-of-the-art results in several metrics.
comment: CVPR 2025, Project Page: https://jiwoohong93.github.io/ita-mdt/
Exploring Model Kinship for Merging Large Language Models
Model merging has become one of the key technologies for enhancing the capabilities and efficiency of Large Language Models (LLMs). However, our understanding of the expected performance gains and principles when merging any two models remains limited. In this work, we introduce model kinship, the degree of similarity or relatedness between LLMs, analogous to biological evolution. With comprehensive empirical analysis, we find that there is a certain relationship between model kinship and the performance gains after model merging, which can help guide our selection of candidate models. Inspired by this, we propose a new model merging strategy: Top-k Greedy Merging with Model Kinship, which can yield better performance on benchmark datasets. Specifically, we discover that using model kinship as a criterion can assist us in continuously performing model merging, alleviating the degradation (local optima) in model evolution, whereas model kinship can serve as a guide to escape these traps. Code is available at https://github.com/zjunlp/ModelKinship.
comment: Ongoing work
Marine Saliency Segmenter: Object-Focused Conditional Diffusion with Region-Level Semantic Knowledge Distillation
Marine Saliency Segmentation (MSS) plays a pivotal role in various vision-based marine exploration tasks. However, existing marine segmentation techniques face the dilemma of object mislocalization and imprecise boundaries due to the complex underwater environment. Meanwhile, despite the impressive performance of diffusion models in visual segmentation, there remains potential to further leverage contextual semantics to enhance feature learning of region-level salient objects, thereby improving segmentation outcomes. Building on this insight, we propose DiffMSS, a novel marine saliency segmenter based on the diffusion model, which utilizes semantic knowledge distillation to guide the segmentation of marine salient objects. Specifically, we design a region-word similarity matching mechanism to identify salient terms at the word level from the text descriptions. These high-level semantic features guide the conditional feature learning network in generating salient and accurate diffusion conditions with semantic knowledge distillation. To further refine the segmentation of fine-grained structures in unique marine organisms, we develop the dedicated consensus deterministic sampling to suppress overconfident missegmentations. Comprehensive experiments demonstrate the superior performance of DiffMSS over state-of-the-art methods in both quantitative and qualitative evaluations.
IMPROVE: Iterative Model Pipeline Refinement and Optimization Leveraging LLM Experts
Large language model (LLM) agents have emerged as a promising solution to automate the workflow of machine learning, but most existing methods share a common limitation: they attempt to optimize entire pipelines in a single step before evaluation, making it difficult to attribute improvements to specific changes. This lack of granularity leads to unstable optimization and slower convergence, limiting their effectiveness. To address this, we introduce Iterative Refinement, a novel strategy for LLM-driven ML pipeline design inspired by how human ML experts iteratively refine models, focusing on one component at a time rather than making sweeping changes all at once. By systematically updating individual components based on real training feedback, Iterative Refinement improves overall model performance. We also provide some theoretical edvience of the superior properties of this Iterative Refinement. Further, we implement this strategy in IMPROVE, an end-to-end LLM agent framework for automating and optimizing object classification pipelines. Through extensive evaluations across datasets of varying sizes and domains, we demonstrate that Iterative Refinement enables IMPROVE to consistently achieve better performance over existing zero-shot LLM-based approaches.
ADS-Edit: A Multimodal Knowledge Editing Dataset for Autonomous Driving Systems
Recent advancements in Large Multimodal Models (LMMs) have shown promise in Autonomous Driving Systems (ADS). However, their direct application to ADS is hindered by challenges such as misunderstanding of traffic knowledge, complex road conditions, and diverse states of vehicle. To address these challenges, we propose the use of Knowledge Editing, which enables targeted modifications to a model's behavior without the need for full retraining. Meanwhile, we introduce ADS-Edit, a multimodal knowledge editing dataset specifically designed for ADS, which includes various real-world scenarios, multiple data types, and comprehensive evaluation metrics. We conduct comprehensive experiments and derive several interesting conclusions. We hope that our work will contribute to the further advancement of knowledge editing applications in the field of autonomous driving. Code and data are available in https://github.com/zjunlp/EasyEdit.
comment: Work in progress
How Do LLMs Acquire New Knowledge? A Knowledge Circuits Perspective on Continual Pre-Training ACL 2025
Despite exceptional capabilities in knowledge-intensive tasks, Large Language Models (LLMs) face a critical gap in understanding how they internalize new knowledge, particularly how to structurally embed acquired knowledge in their neural computations. We address this issue through the lens of knowledge circuit evolution, identifying computational subgraphs that facilitate knowledge storage and processing. Our systematic analysis of circuit evolution throughout continual pre-training reveals several key findings: (1) the acquisition of new knowledge is influenced by its relevance to pre-existing knowledge; (2) the evolution of knowledge circuits exhibits a distinct phase shift from formation to optimization; (3) the evolution of knowledge circuits follows a deep-to-shallow pattern. These insights not only advance our theoretical understanding of the mechanisms of new knowledge acquisition in LLMs, but also provide potential implications for improving continual pre-training strategies to enhance model performance. Code and data will be available at https://github.com/zjunlp/DynamicKnowledgeCircuits.
comment: ACL 2025 Findings
FreeInsert: Disentangled Text-Guided Object Insertion in 3D Gaussian Scene without Spatial Priors
Text-driven object insertion in 3D scenes is an emerging task that enables intuitive scene editing through natural language. However, existing 2D editing-based methods often rely on spatial priors such as 2D masks or 3D bounding boxes, and they struggle to ensure consistency of the inserted object. These limitations hinder flexibility and scalability in real-world applications. In this paper, we propose FreeInsert, a novel framework that leverages foundation models including MLLMs, LGMs, and diffusion models to disentangle object generation from spatial placement. This enables unsupervised and flexible object insertion in 3D scenes without spatial priors. FreeInsert starts with an MLLM-based parser that extracts structured semantics, including object types, spatial relationships, and attachment regions, from user instructions. These semantics guide both the reconstruction of the inserted object for 3D consistency and the learning of its degrees of freedom. We leverage the spatial reasoning capabilities of MLLMs to initialize object pose and scale. A hierarchical, spatially aware refinement stage further integrates spatial semantics and MLLM-inferred priors to enhance placement. Finally, the appearance of the object is improved using the inserted-object image to enhance visual fidelity. Experimental results demonstrate that FreeInsert achieves semantically coherent, spatially precise, and visually realistic 3D insertions without relying on spatial priors, offering a user-friendly and flexible editing experience.
SynWorld: Virtual Scenario Synthesis for Agentic Action Knowledge Refinement ACL 2025
In the interaction between agents and their environments, agents expand their capabilities by planning and executing actions. However, LLM-based agents face substantial challenges when deployed in novel environments or required to navigate unconventional action spaces. To empower agents to autonomously explore environments, optimize workflows, and enhance their understanding of actions, we propose SynWorld, a framework that allows agents to synthesize possible scenarios with multi-step action invocation within the action space and perform Monte Carlo Tree Search (MCTS) exploration to effectively refine their action knowledge in the current environment. Our experiments demonstrate that SynWorld is an effective and general approach to learning action knowledge in new environments. Code is available at https://github.com/zjunlp/SynWorld.
comment: ACL 2025
Uni-MuMER: Unified Multi-Task Fine-Tuning of Vision-Language Model for Handwritten Mathematical Expression Recognition
Handwritten Mathematical Expression Recognition (HMER) remains a persistent challenge in Optical Character Recognition (OCR) due to the inherent freedom of symbol layout and variability in handwriting styles. Prior methods have faced performance bottlenecks, proposing isolated architectural modifications that are difficult to integrate coherently into a unified framework. Meanwhile, recent advances in pretrained vision-language models (VLMs) have demonstrated strong cross-task generalization, offering a promising foundation for developing unified solutions. In this paper, we introduce Uni-MuMER, which fully fine-tunes a VLM for the HMER task without modifying its architecture, effectively injecting domain-specific knowledge into a generalist framework. Our method integrates three data-driven tasks: Tree-Aware Chain-of-Thought (Tree-CoT) for structured spatial reasoning, Error-Driven Learning (EDL) for reducing confusion among visually similar characters, and Symbol Counting (SC) for improving recognition consistency in long expressions. Experiments on the CROHME and HME100K datasets show that Uni-MuMER achieves new state-of-the-art performance, surpassing the best lightweight specialized model SSAN by 16.31% and the top-performing VLM Gemini2.5-flash by 24.42% in the zero-shot setting. Our datasets, models, and code are open-sourced at: https://github.com/BFlameSwift/Uni-MuMER
SCC-YOLO: An Improved Object Detector for Assisting in Brain Tumor Diagnosis
Brain tumors can lead to neurological dysfunction, cognitive and psychological changes, increased intracranial pressure, and seizures, posing significant risks to health. The You Only Look Once (YOLO) series has shown superior accuracy in medical imaging object detection. This paper presents a novel SCC-YOLO architecture that integrates the SCConv module into YOLOv9. The SCConv module optimizes convolutional efficiency by reducing spatial and channel redundancy, enhancing image feature learning. We examine the effects of different attention mechanisms with YOLOv9 for brain tumor detection using the Br35H dataset and our custom dataset (Brain_Tumor_Dataset). Results indicate that SCC-YOLO improved mAP50 by 0.3% on the Br35H dataset and by 0.5% on our custom dataset compared to YOLOv9. SCC-YOLO achieves state-of-the-art performance in brain tumor detection.
Flash3D: Feed-Forward Generalisable 3D Scene Reconstruction from a Single Image
We propose Flash3D, a method for scene reconstruction and novel view synthesis from a single image which is both very generalisable and efficient. For generalisability, we start from a "foundation" model for monocular depth estimation and extend it to a full 3D shape and appearance reconstructor. For efficiency, we base this extension on feed-forward Gaussian Splatting. Specifically, we predict a first layer of 3D Gaussians at the predicted depth, and then add additional layers of Gaussians that are offset in space, allowing the model to complete the reconstruction behind occlusions and truncations. Flash3D is very efficient, trainable on a single GPU in a day, and thus accessible to most researchers. It achieves state-of-the-art results when trained and tested on RealEstate10k. When transferred to unseen datasets like NYU it outperforms competitors by a large margin. More impressively, when transferred to KITTI, Flash3D achieves better PSNR than methods trained specifically on that dataset. In some instances, it even outperforms recent methods that use multiple views as input. Code, models, demo, and more results are available at https://www.robots.ox.ac.uk/~vgg/research/flash3d/.
comment: Project page: https://www.robots.ox.ac.uk/~vgg/research/flash3d/
Enhancing Multimodal Unified Representations for Cross Modal Generalization
To enhance the interpretability of multimodal unified representations, many studies have focused on discrete unified representations. These efforts typically start with contrastive learning and gradually extend to the disentanglement of modal information, achieving solid multimodal discrete unified representations. However, existing research often overlooks two critical issues: 1) The use of Euclidean distance for quantization in discrete representations often overlooks the important distinctions among different dimensions of features, resulting in redundant representations after quantization; 2) Different modalities have unique characteristics, and a uniform alignment approach does not fully exploit these traits. To address these issues, we propose Training-free Optimization of Codebook (TOC) and Fine and Coarse cross-modal Information Disentangling (FCID). These methods refine the unified discrete representations from pretraining and perform fine- and coarse-grained information disentanglement tailored to the specific characteristics of each modality, achieving significant performance improvements over previous state-of-the-art models. The code is available at https://github.com/haihuangcode/CMG.
Chain-of-Talkers (CoTalk): Fast Human Annotation of Dense Image Captions
While densely annotated image captions significantly facilitate the learning of robust vision-language alignment, methodologies for systematically optimizing human annotation efforts remain underexplored. We introduce Chain-of-Talkers (CoTalk), an AI-in-the-loop methodology designed to maximize the number of annotated samples and improve their comprehensiveness under fixed budget constraints (e.g., total human annotation time). The framework is built upon two key insights. First, sequential annotation reduces redundant workload compared to conventional parallel annotation, as subsequent annotators only need to annotate the ``residual'' -- the missing visual information that previous annotations have not covered. Second, humans process textual input faster by reading while outputting annotations with much higher throughput via talking; thus a multimodal interface enables optimized efficiency. We evaluate our framework from two aspects: intrinsic evaluations that assess the comprehensiveness of semantic units, obtained by parsing detailed captions into object-attribute trees and analyzing their effective connections; extrinsic evaluation measures the practical usage of the annotated captions in facilitating vision-language alignment. Experiments with eight participants show our Chain-of-Talkers (CoTalk) improves annotation speed (0.42 vs. 0.30 units/sec) and retrieval performance (41.13% vs. 40.52%) over the parallel method.
NEXT: Multi-Grained Mixture of Experts via Text-Modulation for Multi-Modal Object Re-ID
Multi-modal object re-identification (ReID) aims to extract identity features across heterogeneous spectral modalities to enable accurate recognition and retrieval in complex real-world scenarios. However, most existing methods rely on implicit feature fusion structures, making it difficult to model fine-grained recognition strategies under varying challenging conditions. Benefiting from the powerful semantic understanding capabilities of Multi-modal Large Language Models (MLLMs), the visual appearance of an object can be effectively translated into descriptive text. In this paper, we propose a reliable multi-modal caption generation method based on attribute confidence, which significantly reduces the unknown recognition rate of MLLMs in multi-modal semantic generation and improves the quality of generated text. Additionally, we propose a novel ReID framework NEXT, the Multi-grained Mixture of Experts via Text-Modulation for Multi-modal Object Re-Identification. Specifically, we decouple the recognition problem into semantic and structural expert branches to separately capture modality-specific appearance and intrinsic structure. For semantic recognition, we propose the Text-Modulated Semantic-sampling Experts (TMSE), which leverages randomly sampled high-quality semantic texts to modulate expert-specific sampling of multi-modal features and mining intra-modality fine-grained semantic cues. Then, to recognize coarse-grained structure features, we propose the Context-Shared Structure-aware Experts (CSSE) that focuses on capturing the holistic object structure across modalities and maintains inter-modality structural consistency through a soft routing mechanism. Finally, we propose the Multi-Modal Feature Aggregation (MMFA), which adopts a unified feature fusion strategy to simply and effectively integrate semantic and structural expert outputs into the final identity representations.
CogAD: Cognitive-Hierarchy Guided End-to-End Autonomous Driving
While end-to-end autonomous driving has advanced significantly, prevailing methods remain fundamentally misaligned with human cognitive principles in both perception and planning. In this paper, we propose CogAD, a novel end-to-end autonomous driving model that emulates the hierarchical cognition mechanisms of human drivers. CogAD implements dual hierarchical mechanisms: global-to-local context processing for human-like perception and intent-conditioned multi-mode trajectory generation for cognitively-inspired planning. The proposed method demonstrates three principal advantages: comprehensive environmental understanding through hierarchical perception, robust planning exploration enabled by multi-level planning, and diverse yet reasonable multi-modal trajectory generation facilitated by dual-level uncertainty modeling. Extensive experiments on nuScenes and Bench2Drive demonstrate that CogAD achieves state-of-the-art performance in end-to-end planning, exhibiting particular superiority in long-tail scenarios and robust generalization to complex real-world driving conditions.
Domain-Agnostic Stroke Lesion Segmentation Using Physics-Constrained Synthetic Data
Segmenting stroke lesions in MRI is challenging due to diverse acquisition protocols that limit model generalisability. In this work, we introduce two physics-constrained approaches to generate synthetic quantitative MRI (qMRI) images that improve segmentation robustness across heterogeneous domains. Our first method, $\texttt{qATLAS}$, trains a neural network to estimate qMRI maps from standard MPRAGE images, enabling the simulation of varied MRI sequences with realistic tissue contrasts. The second method, $\texttt{qSynth}$, synthesises qMRI maps directly from tissue labels using label-conditioned Gaussian mixture models, ensuring physical plausibility. Extensive experiments on multiple out-of-domain datasets show that both methods outperform a baseline UNet, with $\texttt{qSynth}$ notably surpassing previous synthetic data approaches. These results highlight the promise of integrating MRI physics into synthetic data generation for robust, generalisable stroke lesion segmentation. Code is available at https://github.com/liamchalcroft/qsynth
Multimedia
Iola Walker: A Mobile Footfall Detection System for Music Composition
This project is the first of several experiments composing music that changes in response to biosignals. The system is dubbed "iola walker" in reference to a common polyrhythm, the hemiola. A listener goes for a walk, and the Iola Walker app detects their walking pace. Iola Walker picks up footfalls using a foot-mounted accelerometer, processing the signals in real time using a recurrent neural network in an Android app. The Android app outputs a MIDI event for each footfall. The iola walker player, which might be a VST running in a DAW, plays the version of the next music passage with underlying polyrhythms closest to the listener's walking pace. This paper documents the process of training the model to detect the footfalls in real time. The model is trained on accelerometer data from an Mbient Labs foot-mounted IMU at 200~Hz, with the ground truth for footfalls annotated by pressing the volume-up button on the Android device when the foot hits the ground. To collect training data, I walked around my neighborhood clicking the volume-up button each time my foot hit the ground. Several methods were tried for detecting footfalls in real time from sensor data, including ones based on digital signal processing techniques and traditional machine learning techniques.
CountingFruit: Real-Time 3D Fruit Counting with Language-Guided Semantic Gaussian Splatting
Accurate fruit counting in real-world agricultural environments is a longstanding challenge due to visual occlusions, semantic ambiguity, and the high computational demands of 3D reconstruction. Existing methods based on neural radiance fields suffer from low inference speed, limited generalization, and lack support for open-set semantic control. This paper presents FruitLangGS, a real-time 3D fruit counting framework that addresses these limitations through spatial reconstruction, semantic embedding, and language-guided instance estimation. FruitLangGS first reconstructs orchard-scale scenes using an adaptive Gaussian splatting pipeline with radius-aware pruning and tile-based rasterization for efficient rendering. To enable semantic control, each Gaussian encodes a compressed CLIP-aligned language embedding, forming a compact and queryable 3D representation. At inference time, prompt-based semantic filtering is applied directly in 3D space, without relying on image-space segmentation or view-level fusion. The selected Gaussians are then converted into dense point clouds via distribution-aware sampling and clustered to estimate fruit counts. Experimental results on real orchard data demonstrate that FruitLangGS achieves higher rendering speed, semantic flexibility, and counting accuracy compared to prior approaches, offering a new perspective for language-driven, real-time neural rendering across open-world scenarios.
Camera Trajectory Generation: A Comprehensive Survey of Methods, Metrics, and Future Directions
Camera trajectory generation is a cornerstone in computer graphics, robotics, virtual reality, and cinematography, enabling seamless and adaptive camera movements that enhance visual storytelling and immersive experiences. Despite its growing prominence, the field lacks a systematic and unified survey that consolidates essential knowledge and advancements in this domain. This paper addresses this gap by providing the first comprehensive review of the field, covering from foundational definitions to advanced methodologies. We introduce the different approaches to camera representation and present an in-depth review of available camera trajectory generation models, starting with rule-based approaches and progressing through optimization-based techniques, machine learning advancements, and hybrid methods that integrate multiple strategies. Additionally, we gather and analyze the metrics and datasets commonly used for evaluating camera trajectory systems, offering insights into how these tools measure performance, aesthetic quality, and practical applicability. Finally, we highlight existing limitations, critical gaps in current research, and promising opportunities for investment and innovation in the field. This paper not only serves as a foundational resource for researchers entering the field but also paves the way for advancing adaptive, efficient, and creative camera trajectory systems across diverse applications.
Multiverse Through Deepfakes: The MultiFakeVerse Dataset of Person-Centric Visual and Conceptual Manipulations
The rapid advancement of GenAI technology over the past few years has significantly contributed towards highly realistic deepfake content generation. Despite ongoing efforts, the research community still lacks a large-scale and reasoning capability driven deepfake benchmark dataset specifically tailored for person-centric object, context and scene manipulations. In this paper, we address this gap by introducing MultiFakeVerse, a large scale person-centric deepfake dataset, comprising 845,286 images generated through manipulation suggestions and image manipulations both derived from vision-language models (VLM). The VLM instructions were specifically targeted towards modifications to individuals or contextual elements of a scene that influence human perception of importance, intent, or narrative. This VLM-driven approach enables semantic, context-aware alterations such as modifying actions, scenes, and human-object interactions rather than synthetic or low-level identity swaps and region-specific edits that are common in existing datasets. Our experiments reveal that current state-of-the-art deepfake detection models and human observers struggle to detect these subtle yet meaningful manipulations. The code and dataset are available on \href{https://github.com/Parul-Gupta/MultiFakeVerse}{GitHub}.
EEG2TEXT-CN: An Exploratory Study of Open-Vocabulary Chinese Text-EEG Alignment via Large Language Model and Contrastive Learning on ChineseEEG
We propose EEG2TEXT-CN, which, to the best of our knowledge, represents one of the earliest open-vocabulary EEG-to-text generation frameworks tailored for Chinese. Built on a biologically grounded EEG encoder (NICE-EEG) and a compact pretrained language model (MiniLM), our architecture aligns multichannel brain signals with natural language representations via masked pretraining and contrastive learning. Using a subset of the ChineseEEG dataset, where each sentence contains approximately ten Chinese characters aligned with 128-channel EEG recorded at 256 Hz, we segment EEG into per-character embeddings and predict full sentences in a zero-shot setting. The decoder is trained with teacher forcing and padding masks to accommodate variable-length sequences. Evaluation on over 1,500 training-validation sentences and 300 held-out test samples shows promising lexical alignment, with a best BLEU-1 score of 6.38\%. While syntactic fluency remains a challenge, our findings demonstrate the feasibility of non-phonetic, cross-modal language decoding from EEG. This work opens a new direction in multilingual brain-to-text research and lays the foundation for future cognitive-language interfaces in Chinese.
Jailbreak-AudioBench: In-Depth Evaluation and Analysis of Jailbreak Threats for Large Audio Language Models
Large Language Models (LLMs) demonstrate impressive zero-shot performance across a wide range of natural language processing tasks. Integrating various modality encoders further expands their capabilities, giving rise to Multimodal Large Language Models (MLLMs) that process not only text but also visual and auditory modality inputs. However, these advanced capabilities may also pose significant security risks, as models can be exploited to generate harmful or inappropriate content through jailbreak attack. While prior work has extensively explored how manipulating textual or visual modality inputs can circumvent safeguards in LLMs and MLLMs, the vulnerability of audio-specific Jailbreak on Large Audio-Language Models (LALMs) remains largely underexplored. To address this gap, we introduce \textbf{Jailbreak-AudioBench}, which consists of the Toolbox, curated Dataset, and comprehensive Benchmark. The Toolbox supports not only text-to-audio conversion but also various editing techniques for injecting audio hidden semantics. The curated Dataset provides diverse explicit and implicit jailbreak audio examples in both original and edited forms. Utilizing this dataset, we evaluate multiple state-of-the-art LALMs and establish the most comprehensive Jailbreak benchmark to date for audio modality. Finally, Jailbreak-AudioBench establishes a foundation for advancing future research on LALMs safety alignment by enabling the in-depth exposure of more powerful jailbreak threats, such as query-based audio editing, and by facilitating the development of effective defense mechanisms.
ADS-Edit: A Multimodal Knowledge Editing Dataset for Autonomous Driving Systems
Recent advancements in Large Multimodal Models (LMMs) have shown promise in Autonomous Driving Systems (ADS). However, their direct application to ADS is hindered by challenges such as misunderstanding of traffic knowledge, complex road conditions, and diverse states of vehicle. To address these challenges, we propose the use of Knowledge Editing, which enables targeted modifications to a model's behavior without the need for full retraining. Meanwhile, we introduce ADS-Edit, a multimodal knowledge editing dataset specifically designed for ADS, which includes various real-world scenarios, multiple data types, and comprehensive evaluation metrics. We conduct comprehensive experiments and derive several interesting conclusions. We hope that our work will contribute to the further advancement of knowledge editing applications in the field of autonomous driving. Code and data are available in https://github.com/zjunlp/EasyEdit.
comment: Work in progress
Computation and Language
What is Stigma Attributed to? A Theory-Grounded, Expert-Annotated Interview Corpus for Demystifying Mental-Health Stigma ACL 2025
Mental-health stigma remains a pervasive social problem that hampers treatment-seeking and recovery. Existing resources for training neural models to finely classify such stigma are limited, relying primarily on social-media or synthetic data without theoretical underpinnings. To remedy this gap, we present an expert-annotated, theory-informed corpus of human-chatbot interviews, comprising 4,141 snippets from 684 participants with documented socio-cultural backgrounds. Our experiments benchmark state-of-the-art neural models and empirically unpack the challenges of stigma detection. This dataset can facilitate research on computationally detecting, neutralizing, and counteracting mental-health stigma. Our corpus is openly available at https://github.com/HanMeng2004/Mental-Health-Stigma-Interview-Corpus.
comment: Accepted to ACL 2025 Main Conference, 38 Pages
Scalable Fine-tuning from Multiple Data Sources: A First-Order Approximation Approach EMNLP'24
We study the problem of fine-tuning a language model (LM) for a target task by optimally using the information from $n$ auxiliary tasks. This problem has broad applications in NLP, such as targeted instruction tuning and data selection in chain-of-thought fine-tuning. The key challenge of this problem is that not all auxiliary tasks are beneficial in improving the performance of the target task. Thus, selecting the right subset of auxiliary tasks is crucial. Conventional subset selection methods, such as forward and backward stepwise selection, are unsuitable for LM fine-tuning because they require repeated training on subsets of auxiliary tasks. This paper introduces a new algorithm for estimating model fine-tuning performance without requiring repeated training. Our algorithm first performs multitask training using data from all tasks to obtain a meta initialization. Then, we approximate the model fine-tuning loss of a subset using functional values and gradients from the meta initialization. Empirically, we find that this gradient-based approximation holds with remarkable accuracy for twelve transformer-based LMs. Thus, we can now estimate fine-tuning performances on CPUs within a few seconds. Finally, we fine-tune the pretrained base model once on the selected subset of tasks. We conduct extensive experiments to validate this approach, delivering a speedup of $30\times$ over conventional subset selection while incurring only $1\%$ error of the true fine-tuning performances. In downstream evaluations involving both instruction tuning and chain-of-thought fine-tuning, this loss-based selection approach improves over prior gradient or representation similarity-based methods for subset selection by up to $3.8\%$.
comment: 17 pages. Appeared in Findings of EMNLP'24
The Nature of NLP: Analyzing Contributions in NLP Papers ACL 2025
Natural Language Processing (NLP) is an established and dynamic field. Despite this, what constitutes NLP research remains debated. In this work, we address the question by quantitatively examining NLP research papers. We propose a taxonomy of research contributions and introduce NLPContributions, a dataset of nearly $2k$ NLP research paper abstracts, carefully annotated to identify scientific contributions and classify their types according to this taxonomy. We also introduce a novel task of automatically identifying contribution statements and classifying their types from research papers. We present experimental results for this task and apply our model to $\sim$$29k$ NLP research papers to analyze their contributions, aiding in the understanding of the nature of NLP research. We show that NLP research has taken a winding path -- with the focus on language and human-centric studies being prominent in the 1970s and 80s, tapering off in the 1990s and 2000s, and starting to rise again since the late 2010s. Alongside this revival, we observe a steady rise in dataset and methodological contributions since the 1990s, such that today, on average, individual NLP papers contribute in more ways than ever before. Our dataset and analyses offer a powerful lens for tracing research trends and offer potential for generating informed, data-driven literature surveys.
comment: accepted at ACL 2025
ClusComp: A Simple Paradigm for Model Compression and Efficient Finetuning ACL
As large language models (LLMs) scale, model compression is crucial for edge deployment and accessibility. Weight-only quantization reduces model size but suffers from performance degradation at lower bit widths. Moreover, standard finetuning is incompatible with quantized models, and alternative methods often fall short of full finetuning. In this paper, we propose ClusComp, a simple yet effective compression paradigm that clusters weight matrices into codebooks and finetunes them block-by-block. ClusComp (1) achieves superior performance in 2-4 bit quantization, (2) pushes compression to 1-bit while outperforming ultra-low-bit methods with minimal finetuning, and (3) enables efficient finetuning, even surpassing existing quantization-based approaches and rivaling full FP16 finetuning. Notably, ClusComp supports compression and finetuning of 70B LLMs on a single A6000-48GB GPU.
comment: ACL camera-ready version
Attributing Response to Context: A Jensen-Shannon Divergence Driven Mechanistic Study of Context Attribution in Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) leverages large language models (LLMs) combined with external contexts to enhance the accuracy and reliability of generated responses. However, reliably attributing generated content to specific context segments, context attribution, remains challenging due to the computationally intensive nature of current methods, which often require extensive fine-tuning or human annotation. In this work, we introduce a novel Jensen-Shannon Divergence driven method to Attribute Response to Context (ARC-JSD), enabling efficient and accurate identification of essential context sentences without additional fine-tuning or surrogate modelling. Evaluations on a wide range of RAG benchmarks, such as TyDi QA, Hotpot QA, and Musique, using instruction-tuned LLMs in different scales demonstrate superior accuracy and significant computational efficiency improvements compared to the previous surrogate-based method. Furthermore, our mechanistic analysis reveals specific attention heads and multilayer perceptron (MLP) layers responsible for context attribution, providing valuable insights into the internal workings of RAG models. Our code is available at https://github.com/ruizheliUOA/ARC_JSD
comment: Work in process
Graph-Based Spectral Decomposition for Parameter Coordination in Language Model Fine-Tuning
This paper proposes a parameter collaborative optimization algorithm for large language models, enhanced with graph spectral analysis. The goal is to improve both fine-tuning efficiency and structural awareness during training. In the proposed method, the parameters of a pre-trained language model are treated as nodes in a graph. A weighted graph is constructed, and Laplacian spectral decomposition is applied to enable frequency-domain modeling and structural representation of the parameter space. Based on this structure, a joint loss function is designed. It combines the task loss with a spectral regularization term to facilitate collaborative updates among parameters. In addition, a spectral filtering mechanism is introduced during the optimization phase. This mechanism adjusts gradients in a structure-aware manner, enhancing the model's training stability and convergence behavior. The method is evaluated on multiple tasks, including traditional fine-tuning comparisons, few-shot generalization tests, and convergence speed analysis. In all settings, the proposed approach demonstrates superior performance. The experimental results confirm that the spectral collaborative optimization framework effectively reduces parameter perturbations and improves fine-tuning quality while preserving overall model performance. This work contributes significantly to the field of artificial intelligence by advancing parameter-efficient training methodologies for large-scale models, reinforcing the importance of structural signal processing in deep learning optimization, and offering a robust, generalizable framework for enhancing language model adaptability and performance.
Towards Neural No-Resource Language Translation: A Comparative Evaluation of Approaches
No-resource languages - those with minimal or no digital representation - pose unique challenges for machine translation (MT). Unlike low-resource languages, which rely on limited but existent corpora, no-resource languages often have fewer than 100 sentences available for training. This work explores the problem of no-resource translation through three distinct workflows: fine-tuning of translation-specific models, in-context learning with large language models (LLMs) using chain-of-reasoning prompting, and direct prompting without reasoning. Using Owens Valley Paiute as a case study, we demonstrate that no-resource translation demands fundamentally different approaches from low-resource scenarios, as traditional approaches to machine translation, such as those that work for low-resource languages, fail. Empirical results reveal that, although traditional approaches fail, the in-context learning capabilities of general-purpose large language models enable no-resource language translation that outperforms low-resource translation approaches and rivals human translations (BLEU 0.45-0.6); specifically, chain-of-reasoning prompting outperforms other methods for larger corpora, while direct prompting exhibits advantages in smaller datasets. As these approaches are language-agnostic, they have potential to be generalized to translation tasks from a wide variety of no-resource languages without expert input. These findings establish no-resource translation as a distinct paradigm requiring innovative solutions, providing practical and theoretical insights for language preservation.
comment: Presented at the Columbia AI Summit 2025
Towards a Neural Lambda Calculus: Neurosymbolic AI Applied to the Foundations of Functional Programming
Over the last decades, deep neural networks based-models became the dominant paradigm in machine learning. Further, the use of artificial neural networks in symbolic learning has been seen as increasingly relevant recently. To study the capabilities of neural networks in the symbolic AI domain, researchers have explored the ability of deep neural networks to learn mathematical constructions, such as addition and multiplication, logic inference, such as theorem provers, and even the execution of computer programs. The latter is known to be too complex a task for neural networks. Therefore, the results were not always successful, and often required the introduction of biased elements in the learning process, in addition to restricting the scope of possible programs to be executed. In this work, we will analyze the ability of neural networks to learn how to execute programs as a whole. To do so, we propose a different approach. Instead of using an imperative programming language, with complex structures, we use the Lambda Calculus ({\lambda}-Calculus), a simple, but Turing-Complete mathematical formalism, which serves as the basis for modern functional programming languages and is at the heart of computability theory. We will introduce the use of integrated neural learning and lambda calculi formalization. Finally, we explore execution of a program in {\lambda}-Calculus is based on reductions, we will show that it is enough to learn how to perform these reductions so that we can execute any program. Keywords: Machine Learning, Lambda Calculus, Neurosymbolic AI, Neural Networks, Transformer Model, Sequence-to-Sequence Models, Computational Models
comment: Keywords: Machine Learning, Lambda Calculus, Neurosymbolic AI, Neural Networks, Transformer Model, Sequence-to-Sequence Models, Computational Models
EVALOOP: Assessing LLM Robustness in Programming from a Self-consistency Perspective
Assessing the programming capabilities of Large Language Models (LLMs) is crucial for their effective use in software engineering. Current evaluations, however, predominantly measure the accuracy of generated code on static benchmarks, neglecting the critical aspect of model robustness during programming tasks. While adversarial attacks offer insights on model robustness, their effectiveness is limited and evaluation could be constrained. Current adversarial attack methods for robustness evaluation yield inconsistent results, struggling to provide a unified evaluation across different LLMs. We introduce EVALOOP, a novel assessment framework that evaluate the robustness from a self-consistency perspective, i.e., leveraging the natural duality inherent in popular software engineering tasks, e.g., code generation and code summarization. EVALOOP initiates a self-contained feedback loop: an LLM generates output (e.g., code) from an input (e.g., natural language specification), and then use the generated output as the input to produce a new output (e.g., summarizes that code into a new specification). EVALOOP repeats the process to assess the effectiveness of EVALOOP in each loop. This cyclical strategy intrinsically evaluates robustness without rely on any external attack setups, providing a unified metric to evaluate LLMs' robustness in programming. We evaluate 16 prominent LLMs (e.g., GPT-4.1, O4-mini) on EVALOOP and found that EVALOOP typically induces a 5.01%-19.31% absolute drop in pass@1 performance within ten loops. Intriguingly, robustness does not always align with initial performance (i.e., one-time query); for instance, GPT-3.5-Turbo, despite superior initial code generation compared to DeepSeek-V2, demonstrated lower robustness over repeated evaluation loop.
comment: 19 pages, 11 figures
Understanding Inequality of LLM Fact-Checking over Geographic Regions with Agent and Retrieval models
Fact-checking is a potentially useful application of Large Language Models (LLMs) to combat the growing dissemination of disinformation. However, the performance of LLMs varies across geographic regions. In this paper, we evaluate the factual accuracy of open and private models across a diverse set of regions and scenarios. Using a dataset containing 600 fact-checked statements balanced across six global regions we examine three experimental setups of fact-checking a statement: (1) when just the statement is available, (2) when an LLM-based agent with Wikipedia access is utilized, and (3) as a best case scenario when a Retrieval-Augmented Generation (RAG) system provided with the official fact check is employed. Our findings reveal that regardless of the scenario and LLM used, including GPT-4, Claude Sonnet, and LLaMA, statements from the Global North perform substantially better than those from the Global South. Furthermore, this gap is broadened for the more realistic case of a Wikipedia agent-based system, highlighting that overly general knowledge bases have a limited ability to address region-specific nuances. These results underscore the urgent need for better dataset balancing and robust retrieval strategies to enhance LLM fact-checking capabilities, particularly in geographically diverse contexts.
VLM-3R: Vision-Language Models Augmented with Instruction-Aligned 3D Reconstruction
The rapid advancement of Large Multimodal Models (LMMs) for 2D images and videos has motivated extending these models to understand 3D scenes, aiming for human-like visual-spatial intelligence. Nevertheless, achieving deep spatial understanding comparable to human capabilities poses significant challenges in model encoding and data acquisition. Existing methods frequently depend on external depth sensors for geometry capture or utilize off-the-shelf algorithms for pre-constructing 3D maps, thereby limiting their scalability, especially with prevalent monocular video inputs and for time-sensitive applications. In this work, we introduce VLM-3R, a unified framework for Vision-Language Models (VLMs) that incorporates 3D Reconstructive instruction tuning. VLM-3R processes monocular video frames by employing a geometry encoder to derive implicit 3D tokens that represent spatial understanding. Leveraging our Spatial-Visual-View Fusion and over 200K curated 3D reconstructive instruction tuning question-answer (QA) pairs, VLM-3R effectively aligns real-world spatial context with language instructions. This enables monocular 3D spatial assistance and embodied reasoning. To facilitate the evaluation of temporal reasoning, we introduce the Vision-Spatial-Temporal Intelligence benchmark, featuring over 138.6K QA pairs across five distinct tasks focused on evolving spatial relationships. Extensive experiments demonstrate that our model, VLM-3R, not only facilitates robust visual-spatial reasoning but also enables the understanding of temporal 3D context changes, excelling in both accuracy and scalability.
comment: Project Page: https://vlm-3r.github.io/
The Impact of Token Granularity on the Predictive Power of Language Model Surprisal ACL 2025
Word-by-word language model surprisal is often used to model the incremental processing of human readers, which raises questions about how various choices in language modeling influence its predictive power. One factor that has been overlooked in cognitive modeling is the granularity of subword tokens, which explicitly encodes information about word length and frequency, and ultimately influences the quality of vector representations that are learned. This paper presents experiments that manipulate the token granularity and evaluate its impact on the ability of surprisal to account for processing difficulty of naturalistic text and garden-path constructions. Experiments with naturalistic reading times reveal a substantial influence of token granularity on surprisal, with tokens defined by a vocabulary size of 8,000 resulting in surprisal that is most predictive. In contrast, on garden-path constructions, language models trained on coarser-grained tokens generally assigned higher surprisal to critical regions, suggesting a greater sensitivity to garden-path effects than previously reported. Taken together, these results suggest a large role of token granularity on the quality of language model surprisal for cognitive modeling.
comment: ACL 2025; results with Natural Stories alignment issue corrected (commit 4700daa)
Wanda++: Pruning Large Language Models via Regional Gradients ACL 2025
Large Language Models (LLMs) pruning seeks to remove unimportant weights for inference speedup with minimal accuracy impact. However, existing methods often suffer from accuracy degradation without full-model sparsity-aware fine-tuning. This paper presents Wanda++, a novel pruning framework that outperforms the state-of-the-art methods by utilizing decoder-block-level \textbf{regional} gradients. Specifically, Wanda++ improves the pruning score with regional gradients for the first time and proposes an efficient regional optimization method to minimize pruning-induced output discrepancies between the dense and sparse decoder output. Notably, Wanda++ improves perplexity by up to 32\% over Wanda in the language modeling task and generalizes effectively to downstream tasks. Moreover, despite updating weights with regional optimization, Wanda++ remains orthogonal to sparsity-aware fine-tuning, further reducing perplexity with LoRA in great extend. Our approach is lightweight, pruning a 7B LLaMA model in under 10 minutes on a single H100 GPU.
comment: Paper accepted at ACL 2025 Findings
Navigating Rifts in Human-LLM Grounding: Study and Benchmark ACL 2025
Language models excel at following instructions but often struggle with the collaborative aspects of conversation that humans naturally employ. This limitation in grounding -- the process by which conversation participants establish mutual understanding -- can lead to outcomes ranging from frustrated users to serious consequences in high-stakes scenarios. To systematically study grounding challenges in human-LLM interactions, we analyze logs from three human-assistant datasets: WildChat, MultiWOZ, and Bing Chat. We develop a taxonomy of grounding acts and build models to annotate and forecast grounding behavior. Our findings reveal significant differences in human-human and human-LLM grounding: LLMs were three times less likely to initiate clarification and sixteen times less likely to provide follow-up requests than humans. Additionally, we find that early grounding failures predict later interaction breakdowns. Building on these insights, we introduce Rifts, a benchmark derived from publicly available LLM interaction data containing situations where LLMs fail to initiate grounding. We note that current frontier models perform poorly on Rifts, highlighting the need to reconsider how we train and prompt LLMs for human interaction. To this end, we develop a preliminary intervention aimed at mitigating grounding failures.
comment: ACL 2025, 16 pages, 5 figures
Post-Training Language Models for Continual Relation Extraction
Real-world data, such as news articles, social media posts, and chatbot conversations, is inherently dynamic and non-stationary, presenting significant challenges for constructing real-time structured representations through knowledge graphs (KGs). Relation Extraction (RE), a fundamental component of KG creation, often struggles to adapt to evolving data when traditional models rely on static, outdated datasets. Continual Relation Extraction (CRE) methods tackle this issue by incrementally learning new relations while preserving previously acquired knowledge. This study investigates the application of pre-trained language models (PLMs), specifically large language models (LLMs), to CRE, with a focus on leveraging memory replay to address catastrophic forgetting. We evaluate decoder-only models (eg, Mistral-7B and Llama2-7B) and encoder-decoder models (eg, Flan-T5 Base) on the TACRED and FewRel datasets. Task-incremental fine-tuning of LLMs demonstrates superior performance over earlier approaches using encoder-only models like BERT on TACRED, excelling in seen-task accuracy and overall performance (measured by whole and average accuracy), particularly with the Mistral and Flan-T5 models. Results on FewRel are similarly promising, achieving second place in whole and average accuracy metrics. This work underscores critical factors in knowledge transfer, language model architecture, and KG completeness, advancing CRE with LLMs and memory replay for dynamic, real-time relation extraction.
comment: 17 pages, Initial Results and Reporting of the work
Iterative Deepening Sampling as Efficient Test-Time Scaling
Recent reasoning models, such as OpenAI's O1 series, have demonstrated exceptional performance on complex reasoning tasks and revealed new test-time scaling laws. Inspired by this, many people have been studying how to train models to achieve effective self-evaluation and self-correction to further enable the scaling paradigm. However, less studied is how to efficiently scale test-time compute from a fixed model, and this remains a challenge. In this paper, we address this challenge by focusing on enhancing the quality of self-reflection data generation for complex problem-solving at test time, which can also subsequently improve the training of next-generation large language models (LLMs). Specifically, we explore how systematically triggering a model's self-correction mechanisms can improve performance on challenging reasoning tasks. To this end, we propose a novel iterative deepening sampling algorithm framework designed to enhance self-correction and generate higher-quality samples. Through extensive experiments on Math500 and AIME benchmarks, we demonstrate that our method achieves a higher success rate on difficult tasks and provide detailed ablation studies to analyze its effectiveness across diverse settings.
MEXA: Multilingual Evaluation of English-Centric LLMs via Cross-Lingual Alignment ACL
English-centric large language models (LLMs) often show strong multilingual capabilities. However, their multilingual performance remains unclear and is under-evaluated for many other languages. Most benchmarks for multilinguality focus on classic NLP tasks or cover a minimal number of languages. We introduce MEXA, a method for assessing the multilingual capabilities of pre-trained English-centric LLMs using parallel sentences, which are available for more languages than existing downstream tasks. MEXA leverages that English-centric LLMs use English as a pivot language in their intermediate layers. MEXA computes the alignment between English and non-English languages using parallel sentences to evaluate the transfer of language understanding from English to other languages. This alignment can be used to estimate model performance in different languages. We conduct controlled experiments using various parallel datasets (FLORES-200 and Bible), models (Llama family, Gemma family, Mistral, and OLMo), and established downstream tasks (Belebele, m-MMLU, and m-ARC). We explore different methods to compute embeddings in decoder-only models. Our results show that MEXA, in its default settings, achieves an average Pearson correlation of 0.90 between its predicted scores and actual task performance across languages. This suggests that MEXA is a reliable method for estimating the multilingual capabilities of English-centric LLMs, providing a clearer understanding of their multilingual potential and the inner workings of LLMs. Leaderboard: https://cis-lmu-mexa.hf.space, Code: https://github.com/cisnlp/MEXA.
comment: ACL Findings 2025
Reflection-Window Decoding: Text Generation with Selective Refinement ICML 2025
The autoregressive decoding for text generation in large language models (LLMs), while widely used, is inherently suboptimal due to the lack of a built-in mechanism to perform refinement and/or correction of the generated content. In this paper, we consider optimality in terms of the joint probability over the generated response, when jointly considering all tokens at the same time. We theoretically characterize the potential deviation of the autoregressively generated response from its globally optimal counterpart that is of the same length. Our analysis suggests that we need to be cautious when noticeable uncertainty arises during text generation, which may signal the sub-optimality of the generation history. To address the pitfall of autoregressive decoding for text generation, we propose an approach that incorporates a sliding reflection window and a pausing criterion, such that refinement and generation can be carried out interchangeably as the decoding proceeds. Our selective refinement framework strikes a balance between efficiency and optimality, and our extensive experimental results demonstrate the effectiveness of our approach.
comment: In Proceedings of the 42nd International Conference on Machine Learning, 2025. (ICML 2025)
PBEBench: A Multi-Step Programming by Examples Reasoning Benchmark inspired by Historical Linguistics
Recently, long chain of thought (LCoT), Large Language Models (LLMs), have taken the machine learning world by storm with their breathtaking reasoning capabilities. However, are the abstract reasoning abilities of these models general enough for problems of practical importance? Unlike past work, which has focused mainly on math, coding, and data wrangling, we focus on a historical linguistics-inspired inductive reasoning problem, formulated as Programming by Examples. We develop a fully automated pipeline for dynamically generating a benchmark for this task with controllable difficulty in order to tackle scalability and contamination issues to which many reasoning benchmarks are subject. Using our pipeline, we generate a test set with nearly 1k instances that is challenging for all state-of-the-art reasoning LLMs, with the best model (Claude-3.7-Sonnet) achieving a mere 54% pass rate, demonstrating that LCoT LLMs still struggle with a class or reasoning that is ubiquitous in historical linguistics as well as many other domains.
Distill CLIP (DCLIP): Enhancing Image-Text Retrieval via Cross-Modal Transformer Distillation
We present Distill CLIP (DCLIP), a fine-tuned variant of the CLIP model that enhances multimodal image-text retrieval while preserving the original model's strong zero-shot classification capabilities. CLIP models are typically constrained by fixed image resolutions and limited context, which can hinder their effectiveness in retrieval tasks that require fine-grained cross-modal understanding. DCLIP addresses these challenges through a meta teacher-student distillation framework, where a cross-modal transformer teacher is fine-tuned to produce enriched embeddings via bidirectional cross-attention between YOLO-extracted image regions and corresponding textual spans. These semantically and spatially aligned global representations guide the training of a lightweight student model using a hybrid loss that combines contrastive learning and cosine similarity objectives. Despite being trained on only ~67,500 samples curated from MSCOCO, Flickr30k, and Conceptual Captions-just a fraction of CLIP's original dataset-DCLIP significantly improves image-text retrieval metrics (Recall@K, MAP), while retaining approximately 94% of CLIP's zero-shot classification performance. These results demonstrate that DCLIP effectively mitigates the trade-off between task specialization and generalization, offering a resource-efficient, domain-adaptive, and detail-sensitive solution for advanced vision-language tasks. Code available at https://anonymous.4open.science/r/DCLIP-B772/README.md.
A Fully Generative Motivational Interviewing Counsellor Chatbot for Moving Smokers Towards the Decision to Quit ACL
The conversational capabilities of Large Language Models (LLMs) suggest that they may be able to perform as automated talk therapists. It is crucial to know if these systems would be effective and adhere to known standards. We present a counsellor chatbot that focuses on motivating tobacco smokers to quit smoking. It uses a state-of-the-art LLM and a widely applied therapeutic approach called Motivational Interviewing (MI), and was evolved in collaboration with clinician-scientists with expertise in MI. We also describe and validate an automated assessment of both the chatbot's adherence to MI and client responses. The chatbot was tested on 106 participants, and their confidence that they could succeed in quitting smoking was measured before the conversation and one week later. Participants' confidence increased by an average of 1.7 on a 0-10 scale. The automated assessment of the chatbot showed adherence to MI standards in 98% of utterances, higher than human counsellors. The chatbot scored well on a participant-reported metric of perceived empathy but lower than typical human counsellors. Furthermore, participants' language indicated a good level of motivation to change, a key goal in MI. These results suggest that the automation of talk therapy with a modern LLM has promise.
comment: To be published in the Findings of the 63rd Annual Meeting of the Association for Computational Linguistics (ACL), Vienna, Austria, 2025
Probing LLM Hallucination from Within: Perturbation-Driven Approach via Internal Knowledge
LLM hallucination, where unfaithful text is generated, presents a critical challenge for LLMs' practical applications. Current detection methods often resort to external knowledge, LLM fine-tuning, or supervised training with large hallucination-labeled datasets. Moreover, these approaches do not distinguish between different types of hallucinations, which is crucial for enhancing detection performance. To address such limitations, we introduce hallucination probing, a new task that classifies LLM-generated text into three categories: aligned, misaligned, and fabricated. Driven by our novel discovery that perturbing key entities in prompts affects LLM's generation of these three types of text differently, we propose SHINE, a novel hallucination probing method that does not require external knowledge, supervised training, or LLM fine-tuning. SHINE is effective in hallucination probing across three modern LLMs, and achieves state-of-the-art performance in hallucination detection, outperforming seven competing methods across four datasets and four LLMs, underscoring the importance of probing for accurate detection.
comment: 22 pages, 15 figures
Effective faking of verbal deception detection with target-aligned adversarial attacks
Background: Deception detection through analysing language is a promising avenue using both human judgments and automated machine learning judgments. For both forms of credibility assessment, automated adversarial attacks that rewrite deceptive statements to appear truthful pose a serious threat. Methods: We used a dataset of 243 truthful and 262 fabricated autobiographical stories in a deception detection task for humans and machine learning models. A large language model was tasked to rewrite deceptive statements so that they appear truthful. In Study 1, humans who made a deception judgment or used the detailedness heuristic and two machine learning models (a fine-tuned language model and a simple n-gram model) judged original or adversarial modifications of deceptive statements. In Study 2, we manipulated the target alignment of the modifications, i.e. tailoring the attack to whether the statements would be assessed by humans or computer models. Results: When adversarial modifications were aligned with their target, human (d=-0.07 and d=-0.04) and machine judgments (51% accuracy) dropped to the chance level. When the attack was not aligned with the target, both human heuristics judgments (d=0.30 and d=0.36) and machine learning predictions (63-78%) were significantly better than chance. Conclusions: Easily accessible language models can effectively help anyone fake deception detection efforts both by humans and machine learning models. Robustness against adversarial modifications for humans and machines depends on that target alignment. We close with suggestions on advancing deception research with adversarial attack designs and techniques.
comment: Accepted to Legal and Criminological Psychology (author version)
Relevant or Random: Can LLMs Truly Perform Analogical Reasoning?
Analogical reasoning is a unique ability of humans to address unfamiliar challenges by transferring strategies from relevant past experiences. One key finding in psychology is that compared with irrelevant past experiences, recalling relevant ones can help humans better handle new tasks. Coincidentally, the NLP community has also recently found that self-generating relevant examples in the context can help large language models (LLMs) better solve a given problem than hand-crafted prompts. However, it is yet not clear whether relevance is the key factor eliciting such capability, i.e., can LLMs benefit more from self-generated relevant examples than irrelevant ones? In this work, we systematically explore whether LLMs can truly perform analogical reasoning on a diverse set of reasoning tasks. With extensive experiments and analysis, we show that self-generated random examples can surprisingly achieve comparable or even better performance on certain tasks, e.g., 4% performance boost on GSM8K with random biological examples. We find that the accuracy of self-generated examples is the key factor and subsequently design two novel methods with improved performance and significantly reduced inference costs. Overall, we aim to advance a deeper understanding of LLM analogical reasoning and hope this work stimulates further research in the design of self-generated contexts.
Beyond Output Matching: Bidirectional Alignment for Enhanced In-Context Learning
Large language models (LLMs) have shown impressive few-shot generalization on many tasks via in-context learning (ICL). Despite their success in showing such emergent abilities, the scale and complexity of larger models also lead to unprecedentedly high computational demands and deployment challenges. In reaction, researchers explore transferring the powerful capabilities of larger models to more efficient and compact models by typically aligning the output of smaller (student) models with that of larger (teacher) models. Existing methods either train student models on the generated outputs of teacher models or imitate their token-level probability distributions. However, these distillation methods pay little to no attention to the input, which also plays a crucial role in ICL. Based on the finding that the performance of ICL is highly sensitive to the selection of demonstration examples, we propose Bidirectional Alignment (BiAlign) to fully leverage the models' preferences for ICL examples to improve the ICL abilities of student models. Specifically, we introduce the alignment of input preferences between student and teacher models by incorporating a novel ranking loss, in addition to aligning the token-level output distribution. With extensive experiments and analysis, we demonstrate that BiAlign can consistently outperform existing baselines on a variety of tasks involving language understanding, reasoning, and coding.
Primus: A Pioneering Collection of Open-Source Datasets for Cybersecurity LLM Training
Large Language Models (LLMs) have shown remarkable advancements in specialized fields such as finance, law, and medicine. However, in cybersecurity, we have noticed a lack of open-source datasets, with a particular lack of high-quality cybersecurity pretraining corpora, even though much research indicates that LLMs acquire their knowledge during pretraining. To address this, we present a comprehensive suite of datasets covering all major training stages, including pretraining, instruction fine-tuning, and reasoning distillation with cybersecurity-specific self-reflection data. Extensive ablation studies demonstrate their effectiveness on public cybersecurity benchmarks. In particular, continual pre-training on our dataset yields a 15.88% improvement in the aggregate score, while reasoning distillation leads to a 10% gain in security certification (CISSP). We will release all datasets and trained cybersecurity LLMs under the ODC-BY and MIT licenses to encourage further research in the community. For access to all datasets and model weights, please refer to https://huggingface.co/collections/trendmicro-ailab/primus-67b1fd27052b802b4af9d243.
A Semantic-Aware Layer-Freezing Approach to Computation-Efficient Fine-Tuning of Language Models ACL 2025
Finetuning language models (LMs) is crucial for adapting the models to downstream data and tasks. However, full finetuning is usually costly. Existing work, such as parameter-efficient finetuning (PEFT), often focuses on \textit{how to finetune} but neglects the issue of \textit{where to finetune}. As a pioneering work on reducing the cost of backpropagation (at the layer level) by answering where to finetune, we conduct a semantic analysis of the LM inference process. We first propose using transition traces of the latent representation to compute deviations (or loss). Then, using a derived formula of scaling law, we estimate the gain of each layer in reducing deviation (or loss). Further, we narrow down the scope for finetuning, and also, study the cost-benefit balance of LM finetuning. We perform extensive experiments across well-known LMs and datasets. The results show that our approach is effective and efficient, and outperforms the existing baselines. Our approach is orthogonal to other techniques for improving finetuning efficiency, such as PEFT methods, offering practical values on LM finetuning.
comment: accepted by ACL 2025, the camera-ready version
A Survey of LLM $\times$ DATA
The integration of large language model (LLM) and data management (DATA) is rapidly redefining both domains. In this survey, we comprehensively review the bidirectional relationships. On the one hand, DATA4LLM, spanning large-scale data processing, storage, and serving, feeds LLMs with high quality, diversity, and timeliness of data required for stages like pre-training, post-training, retrieval-augmented generation, and agentic workflows: (i) Data processing for LLMs includes scalable acquisition, deduplication, filtering, selection, domain mixing, and synthetic augmentation; (ii) Data Storage for LLMs focuses on efficient data and model formats, distributed and heterogeneous storage hierarchies, KV-cache management, and fault-tolerant checkpointing; (iii) Data serving for LLMs tackles challenges in RAG (e.g., knowledge post-processing), LLM inference (e.g., prompt compression, data provenance), and training strategies (e.g., data packing and shuffling). On the other hand, in LLM4DATA, LLMs are emerging as general-purpose engines for data management. We review recent advances in (i) data manipulation, including automatic data cleaning, integration, discovery; (ii) data analysis, covering reasoning over structured, semi-structured, and unstructured data, and (iii) system optimization (e.g., configuration tuning, query rewriting, anomaly diagnosis), powered by LLM techniques like retrieval-augmented prompting, task-specialized fine-tuning, and multi-agent collaboration.
comment: Please refer to the paper list at: https://github.com/weAIDB/awesome-data-llm
FINEREASON: Evaluating and Improving LLMs' Deliberate Reasoning through Reflective Puzzle Solving ACL2025
Many challenging reasoning tasks require not just rapid, intuitive responses, but a more deliberate, multi-step approach. Recent progress in large language models (LLMs) highlights an important shift from the "System 1" way of quick reactions to the "System 2" style of reflection-and-correction problem solving. However, current benchmarks heavily rely on the final-answer accuracy, leaving much of a model's intermediate reasoning steps unexamined. This fails to assess the model's ability to reflect and rectify mistakes within the reasoning process. To bridge this gap, we introduce FINEREASON, a logic-puzzle benchmark for fine-grained evaluation of LLMs' reasoning capabilities. Each puzzle can be decomposed into atomic steps, making it ideal for rigorous validation of intermediate correctness. Building on this, we introduce two tasks: state checking, and state transition, for a comprehensive evaluation of how models assess the current situation and plan the next move. To support broader research, we also provide a puzzle training set aimed at enhancing performance on general mathematical tasks. We show that models trained on our state checking and transition data demonstrate gains in math reasoning by up to 5.1% on GSM8K.
comment: Accepted to ACL2025 Main
Large Language Models Struggle with Unreasonability in Math Problems
Large Language Models (LLMs) have shown remarkable success on a wide range of math and reasoning benchmarks. However, we observe that they often struggle when faced with unreasonable math problems. Instead of recognizing these issues, models frequently proceed as if the problem is well-posed, producing incorrect answers or falling into overthinking and verbose self-correction. To systematically investigate this overlooked vulnerability, we propose the \textbf{Unreasonable Math Problems (UMP)} benchmark, designed to evaluate LLMs' ability to detect and respond to unreasonable math problem statements. Based on extensive experiments covering 19 LLMs, we find that even state-of-the-art general models like GPT-4o achieve only a score of 0.6 on UMP. While reasoning models such as DeepSeek-R1 demonstrate a higher sensitivity to unreasonable inputs, this often comes at the cost of generating overly long and meaningless responses that fail to converge. We further explore prompting and fine-tuning methods, which offer partial improvements but also introduce trade-offs, shedding light on both the potential and limitations of LLMs in this challenging setting.
comment: 32 pages, 8 figures
Mixture of insighTful Experts (MoTE): The Synergy of Thought Chains and Expert Mixtures in Self-Alignment
As the capabilities of large language models (LLMs) continue to expand, aligning these models with human values remains a significant challenge. Recent studies show that reasoning abilities contribute significantly to model safety, while integrating Mixture-of-Experts (MoE) architectures can further enhance alignment. In this work, we address a fundamental question: How to effectively incorporate reasoning abilities and MoE architectures into self-alignment process in LLMs? We propose Mixture of insighTful Experts (MoTE), a novel framework that synergistically combines reasoning chains and expert mixtures to improve self-alignments. From a data perspective, MoTE employs a structured reasoning chain comprising four key stages: Question Analysis, Answer Guidance, Safe Answer, and Safety Checking. This approach enhances safety through multi-step reasoning and proves effective even for smaller and less powerful LLMs (e.g., 7B models). From an architectural perspective, MoTE adopts a multi-LoRA framework with step-level routing, where each expert is dedicated to a specific reasoning step. This design eliminates the need for balance losses, ensures stable training, and supports adaptive inference lengths. Experimental results demonstrate that MoTE significantly improves model safety, jailbreak resistance, and over-refusal capabilities, achieving performance comparable to OpenAI's state-of-the-art o1 model.
"My life is miserable, have to sign 500 autographs everyday": Exposing Humblebragging, the Brags in Disguise ACL 2025
Humblebragging is a phenomenon in which individuals present self-promotional statements under the guise of modesty or complaints. For example, a statement like, "Ugh, I can't believe I got promoted to lead the entire team. So stressful!", subtly highlights an achievement while pretending to be complaining. Detecting humblebragging is important for machines to better understand the nuances of human language, especially in tasks like sentiment analysis and intent recognition. However, this topic has not yet been studied in computational linguistics. For the first time, we introduce the task of automatically detecting humblebragging in text. We formalize the task by proposing a 4-tuple definition of humblebragging and evaluate machine learning, deep learning, and large language models (LLMs) on this task, comparing their performance with humans. We also create and release a dataset called HB-24, containing 3,340 humblebrags generated using GPT-4o. Our experiments show that detecting humblebragging is non-trivial, even for humans. Our best model achieves an F1-score of 0.88. This work lays the foundation for further exploration of this nuanced linguistic phenomenon and its integration into broader natural language understanding systems.
comment: Accepted to ACL 2025 Findings
Inferring Functionality of Attention Heads from their Parameters ACL 2025
Attention heads are one of the building blocks of large language models (LLMs). Prior work on investigating their operation mostly focused on analyzing their behavior during inference for specific circuits or tasks. In this work, we seek a comprehensive mapping of the operations they implement in a model. We propose MAPS (Mapping Attention head ParameterS), an efficient framework that infers the functionality of attention heads from their parameters, without any model training or inference. We showcase the utility of MAPS for answering two types of questions: (a) given a predefined operation, mapping how strongly heads across the model implement it, and (b) given an attention head, inferring its salient functionality. Evaluating MAPS on 20 operations across 6 popular LLMs shows its estimations correlate with the head's outputs during inference and are causally linked to the model's predictions. Moreover, its mappings reveal attention heads of certain operations that were overlooked in previous studies, and valuable insights on function universality and architecture biases in LLMs. Next, we present an automatic pipeline and analysis that leverage MAPS to characterize the salient operations of a given head. Our pipeline produces plausible operation descriptions for most heads, as assessed by human judgment, while revealing diverse operations.
comment: ACL 2025 Main
TabXEval: Why this is a Bad Table? An eXhaustive Rubric for Table Evaluation ACL 2025
Evaluating tables qualitatively and quantitatively poses a significant challenge, as standard metrics often overlook subtle structural and content-level discrepancies. To address this, we propose a rubric-based evaluation framework that integrates multi-level structural descriptors with fine-grained contextual signals, enabling more precise and consistent table comparison. Building on this, we introduce TabXEval, an eXhaustive and eXplainable two-phase evaluation framework. TabXEval first aligns reference and predicted tables structurally via TabAlign, then performs semantic and syntactic comparison using TabCompare, offering interpretable and granular feedback. We evaluate TabXEval on TabXBench, a diverse, multi-domain benchmark featuring realistic table perturbations and human annotations. A sensitivity-specificity analysis further demonstrates the robustness and explainability of TabXEval across varied table tasks. Code and data are available at https://coral-lab-asu.github.io/tabxeval/
comment: Accepeted for Findings at ACL 2025
Knowledge-augmented Pre-trained Language Models for Biomedical Relation Extraction
Automatic relationship extraction (RE) from biomedical literature is critical for managing the vast amount of scientific knowledge produced each year. In recent years, utilizing pre-trained language models (PLMs) has become the prevalent approach in RE. Several studies report improved performance when incorporating additional context information while fine-tuning PLMs for RE. However, variations in the PLMs applied, the databases used for augmentation, hyper-parameter optimization, and evaluation methods complicate direct comparisons between studies and raise questions about the generalizability of these findings. Our study addresses this research gap by evaluating PLMs enhanced with contextual information on five datasets spanning four relation scenarios within a consistent evaluation framework. We evaluate three baseline PLMs and first conduct extensive hyperparameter optimization. After selecting the top-performing model, we enhance it with additional data, including textual entity descriptions, relational information from knowledge graphs, and molecular structure encodings. Our findings illustrate the importance of i) the choice of the underlying language model and ii) a comprehensive hyperparameter optimization for achieving strong extraction performance. Although inclusion of context information yield only minor overall improvements, an ablation study reveals substantial benefits for smaller PLMs when such external data was included during fine-tuning.
Are We in the AI-Generated Text World Already? Quantifying and Monitoring AIGT on Social Media ACL 2025
Social media platforms are experiencing a growing presence of AI-Generated Texts (AIGTs). However, the misuse of AIGTs could have profound implications for public opinion, such as spreading misinformation and manipulating narratives. Despite its importance, it remains unclear how prevalent AIGTs are on social media. To address this gap, this paper aims to quantify and monitor the AIGTs on online social media platforms. We first collect a dataset (SM-D) with around 2.4M posts from 3 major social media platforms: Medium, Quora, and Reddit. Then, we construct a diverse dataset (AIGTBench) to train and evaluate AIGT detectors. AIGTBench combines popular open-source datasets and our AIGT datasets generated from social media texts by 12 LLMs, serving as a benchmark for evaluating mainstream detectors. With this setup, we identify the best-performing detector (OSM-Det). We then apply OSM-Det to SM-D to track AIGTs across social media platforms from January 2022 to October 2024, using the AI Attribution Rate (AAR) as the metric. Specifically, Medium and Quora exhibit marked increases in AAR, rising from 1.77% to 37.03% and 2.06% to 38.95%, respectively. In contrast, Reddit shows slower growth, with AAR increasing from 1.31% to 2.45% over the same period. Our further analysis indicates that AIGTs on social media differ from human-written texts across several dimensions, including linguistic patterns, topic distributions, engagement levels, and the follower distribution of authors. We envision our analysis and findings on AIGTs in social media can shed light on future research in this domain.
comment: Accepted at ACL 2025 Main Conference. 29 pages, 21 figures, 12 tables
Quality-Aware Decoding: Unifying Quality Estimation and Decoding
Quality Estimation (QE) models for Neural Machine Translation (NMT) predict the quality of the hypothesis without having access to the reference. An emerging research direction in NMT involves the use of QE models, which have demonstrated high correlations with human judgment and can enhance translations through Quality-Aware Decoding. Although several approaches have been proposed based on sampling multiple candidate translations and picking the best candidate, none have integrated these models directly into the decoding process. In this paper, we address this by proposing a novel token-level QE model capable of reliably scoring partial translations. We build a uni-directional QE model for this, as decoder models are inherently trained and efficient on partial sequences. We then present a decoding strategy that integrates the QE model for Quality-Aware decoding and demonstrate that the translation quality improves when compared to the N-best list re-ranking with state-of-the-art QE models (up to $1.39$ XCOMET-XXL $\uparrow$). Finally, we show that our approach provides significant benefits in document translation tasks, where the quality of N-best lists is typically suboptimal. Code can be found at https://ai4lt.iar.kit.edu/english/projects\_kontextmt.php
comment: IWSLT 2025
SWE-bench Goes Live!
The issue-resolving task, where a model generates patches to fix real-world bugs, has emerged as a critical benchmark for evaluating the capabilities of large language models (LLMs). While SWE-bench and its variants have become standard in this domain, they suffer from key limitations: they have not been updated since their initial releases, cover a narrow set of repositories, and depend heavily on manual effort for instance construction and environment setup. These factors hinder scalability and introduce risks of overfitting and data contamination. In this work, we present SWE-bench-Live, a live-updatable benchmark designed to overcome these challenges. Our initial release consists of 1,319 tasks derived from real GitHub issues created since 2024, spanning 93 repositories. Each task is accompanied by a dedicated Docker image to ensure reproducible execution. Central to our benchmark is \method, an automated curation pipeline that streamlines the entire process from instance creation to environment setup, removing manual bottlenecks and enabling scalability and continuous updates. We evaluate a range of state-of-the-art agent frameworks and LLMs on SWE-bench-Live, revealing a substantial performance gap compared to static benchmarks like SWE-bench, even under controlled evaluation conditions. To better understand this discrepancy, we perform detailed analyses across repository origin, issue recency, and task difficulty. By providing a fresh, diverse, and executable benchmark grounded in live repository activity, SWE-bench-Live facilitates rigorous, contamination-resistant evaluation of LLMs and agents in dynamic, real-world software development settings.
comment: Homepage: \url{https://swe-bench-live.github.io/}, Code: \url{https://github.com/SWE-bench-Live}, Dataset: \url{https://huggingface.co/SWE-bench-Live}
LLM-as-an-Interviewer: Beyond Static Testing Through Dynamic LLM Evaluation
We introduce LLM-as-an-Interviewer, a novel paradigm for evaluating large language models (LLMs). This approach leverages multi-turn interactions where the LLM interviewer actively provides feedback on responses and poses follow-up questions to the evaluated LLM. At the start of the interview, the LLM interviewer dynamically modifies datasets to generate initial questions, mitigating data contamination. We apply the LLM-as-an-Interviewer framework to evaluate six models on the MATH and DepthQA tasks. Our results show that the framework effectively provides insights into LLM performance, including the quality of initial responses, adaptability to feedback, and ability to address follow-up queries like clarification or additional knowledge requests. The framework also addresses key limitations of conventional methods like LLM-as-a-Judge, including verbosity bias and inconsistency across runs. Finally, we propose the Interview Report, which aggregates insights from the interview process, providing examples and a comprehensive analysis of the LLM's strengths and weaknesses. This report offers a detailed snapshot of the model's real-world applicability. The code for our framework is publicly available at https://github.com/interview-eval/.
LazyReview A Dataset for Uncovering Lazy Thinking in NLP Peer Reviews ACL 2025
Peer review is a cornerstone of quality control in scientific publishing. With the increasing workload, the unintended use of `quick' heuristics, referred to as lazy thinking, has emerged as a recurring issue compromising review quality. Automated methods to detect such heuristics can help improve the peer-reviewing process. However, there is limited NLP research on this issue, and no real-world dataset exists to support the development of detection tools. This work introduces LazyReview, a dataset of peer-review sentences annotated with fine-grained lazy thinking categories. Our analysis reveals that Large Language Models (LLMs) struggle to detect these instances in a zero-shot setting. However, instruction-based fine-tuning on our dataset significantly boosts performance by 10-20 performance points, highlighting the importance of high-quality training data. Furthermore, a controlled experiment demonstrates that reviews revised with lazy thinking feedback are more comprehensive and actionable than those written without such feedback. We will release our dataset and the enhanced guidelines that can be used to train junior reviewers in the community. (Code available here: https://github.com/UKPLab/arxiv2025-lazy-review)
comment: Accepted at ACL 2025: 29 pages, 18 Figures, 15 Tables
Learning distributed representations with efficient SoftMax normalization
Learning distributed representations, or embeddings, that encode the relational similarity patterns among objects is a relevant task in machine learning. A popular method to learn the embedding matrices $X, Y$ is optimizing a loss function of the term ${\rm SoftMax}(XY^T)$. The complexity required to calculate this term, however, runs quadratically with the problem size, making it a computationally heavy solution. In this article, we propose a linear-time heuristic approximation to compute the normalization constants of ${\rm SoftMax}(XY^T)$ for embedding vectors with bounded norms. We show on some pre-trained embedding datasets that the proposed estimation method achieves higher or comparable accuracy with competing methods. From this result, we design an efficient and task-agnostic algorithm that learns the embeddings by optimizing the cross entropy between the softmax and a set of probability distributions given as inputs. The proposed algorithm is interpretable and easily adapted to arbitrary embedding problems. We consider a few use cases and observe similar or higher performances and a lower computational time than similar ``2Vec'' algorithms.
Enhancing Text Editing for Grammatical Error Correction: Arabic as a Case Study
Text editing frames grammatical error correction (GEC) as a sequence tagging problem, where edit tags are assigned to input tokens, and applying these edits results in the corrected text. This approach has gained attention for its efficiency and interpretability. However, while extensively explored for English, text editing remains largely underexplored for morphologically rich languages like Arabic. In this paper, we introduce a text editing approach that derives edit tags directly from data, eliminating the need for language-specific edits. We demonstrate its effectiveness on Arabic, a diglossic and morphologically rich language, and investigate the impact of different edit representations on model performance. Our approach achieves SOTA results on two Arabic GEC benchmarks and performs on par with SOTA on two others. Additionally, our models are over six times faster than existing Arabic GEC systems, making our approach more practical for real-world applications. Finally, we explore ensemble models, demonstrating how combining different models leads to further performance improvements. We make our code, data, and pretrained models publicly available.
CASE -- Condition-Aware Sentence Embeddings for Conditional Semantic Textual Similarity Measurement
The meaning conveyed by a sentence often depends on the context in which it appears. Despite the progress of sentence embedding methods, it remains unclear how to best modify a sentence embedding conditioned on its context. To address this problem, we propose Condition-Aware Sentence Embeddings (CASE), an efficient and accurate method to create an embedding for a sentence under a given condition. First, CASE creates an embedding for the condition using a Large Language Model (LLM), where the sentence influences the attention scores computed for the tokens in the condition during pooling. Next, a supervised nonlinear projection is learned to reduce the dimensionality of the LLM-based text embeddings. We show that CASE significantly outperforms previously proposed Conditional Semantic Textual Similarity (C-STS) methods on an existing standard benchmark dataset. We find that subtracting the condition embedding consistently improves the C-STS performance of LLM-based text embeddings. Moreover, we propose a supervised dimensionality reduction method that not only reduces the dimensionality of LLM-based embeddings but also significantly improves their performance.
MMSciBench: Benchmarking Language Models on Chinese Multimodal Scientific Problems ACL 2025
Recent advances in large language models (LLMs) and vision-language models (LVLMs) have shown promise across many tasks, yet their scientific reasoning capabilities remain untested, particularly in multimodal settings. We present MMSciBench, a benchmark for evaluating mathematical and physical reasoning through text-only and text-image formats, with human-annotated difficulty levels, solutions with detailed explanations, and taxonomic mappings. Evaluation of state-of-the-art models reveals significant limitations, with even the best model achieving only \textbf{63.77\%} accuracy and particularly struggling with visual reasoning tasks. Our analysis exposes critical gaps in complex reasoning and visual-textual integration, establishing MMSciBench as a rigorous standard for measuring progress in multimodal scientific understanding. The code for MMSciBench is open-sourced at GitHub, and the dataset is available at Hugging Face.
comment: Accepted to the Findings of the Association for Computational Linguistics (ACL 2025)
Calling a Spade a Heart: Gaslighting Multimodal Large Language Models via Negation
Multimodal Large Language Models (MLLMs) have exhibited remarkable advancements in integrating different modalities, excelling in complex understanding and generation tasks. Despite their success, MLLMs remain vulnerable to conversational adversarial inputs, particularly negation arguments. This paper systematically evaluates state-of-the-art MLLMs across diverse benchmarks, revealing significant performance drops when negation arguments are introduced to initially correct responses. Notably, we introduce the first benchmark GaslightingBench, specifically designed to evaluate the vulnerability of MLLMs to negation arguments. GaslightingBench consists of multiple-choice questions curated from existing datasets, along with generated negation prompts across 20 diverse categories. Throughout extensive evaluation, we find that proprietary models such as Gemini-1.5-flash, GPT-4o and Claude-3.5-Sonnet demonstrate better resilience compared to open-source counterparts like Qwen2-VL and LLaVA. However, all evaluated MLLMs struggle to maintain logical consistency under negation arguments during conversation. Our findings provide critical insights for improving the robustness of MLLMs against negation inputs, contributing to the development of more reliable and trustworthy multimodal AI systems.
Disambiguating Reference in Visually Grounded Dialogues through Joint Modeling of Textual and Multimodal Semantic Structures ACL2025
Multimodal reference resolution, including phrase grounding, aims to understand the semantic relations between mentions and real-world objects. Phrase grounding between images and their captions is a well-established task. In contrast, for real-world applications, it is essential to integrate textual and multimodal reference resolution to unravel the reference relations within dialogue, especially in handling ambiguities caused by pronouns and ellipses. This paper presents a framework that unifies textual and multimodal reference resolution by mapping mention embeddings to object embeddings and selecting mentions or objects based on their similarity. Our experiments show that learning textual reference resolution, such as coreference resolution and predicate-argument structure analysis, positively affects performance in multimodal reference resolution. In particular, our model with coreference resolution performs better in pronoun phrase grounding than representative models for this task, MDETR and GLIP. Our qualitative analysis demonstrates that incorporating textual reference relations strengthens the confidence scores between mentions, including pronouns and predicates, and objects, which can reduce the ambiguities that arise in visually grounded dialogues.
comment: ACL2025 main. Code available at https://github.com/SInadumi/mmrr
Persona Dynamics: Unveiling the Impact of Personality Traits on Agents in Text-Based Games
Artificial agents are increasingly central to complex interactions and decision-making tasks, yet aligning their behaviors with desired human values remains an open challenge. In this work, we investigate how human-like personality traits influence agent behavior and performance within text-based interactive environments. We introduce PANDA: Personality Adapted Neural Decision Agents, a novel method for projecting human personality traits onto agents to guide their behavior. To induce personality in a text-based game agent, (i) we train a personality classifier to identify what personality type the agent's actions exhibit, and (ii) we integrate the personality profiles directly into the agent's policy-learning pipeline. By deploying agents embodying 16 distinct personality types across 25 text-based games and analyzing their trajectories, we demonstrate that an agent's action decisions can be guided toward specific personality profiles. Moreover, certain personality types, such as those characterized by higher levels of Openness, display marked advantages in performance. These findings underscore the promise of personality-adapted agents for fostering more aligned, effective, and human-centric decision-making in interactive environments.
Visualizing Public Opinion on X: A Real-Time Sentiment Dashboard Using VADER and DistilBERT
In the age of social media, understanding public sentiment toward major corporations is crucial for investors, policymakers, and researchers. This paper presents a comprehensive sentiment analysis system tailored for corporate reputation monitoring, combining Natural Language Processing (NLP) and machine learning techniques to accurately interpret public opinion in real time. The methodology integrates a hybrid sentiment detection framework leveraging both rule-based models (VADER) and transformer-based deep learning models (DistilBERT), applied to social media data from multiple platforms. The system begins with robust preprocessing involving noise removal and text normalization, followed by sentiment classification using an ensemble approach to ensure both interpretability and contextual accuracy. Results are visualized through sentiment distribution plots, comparative analyses, and temporal sentiment trends for enhanced interpretability. Our analysis reveals significant disparities in public sentiment across major corporations, with companies like Amazon (81.2) and Samsung (45.8) receiving excellent sentiment scores, while Microsoft (21.7) and Walmart (21.9) exhibit poor sentiment profiles. These findings demonstrate the utility of our multi-source sentiment framework in providing actionable insights regarding corporate public perception, enabling stakeholders to make informed strategic decisions based on comprehensive sentiment analysis.
comment: 19 pages, 2 figures
Measuring What Makes You Unique: Difference-Aware User Modeling for Enhancing LLM Personalization ACL
Personalizing Large Language Models (LLMs) has become a critical step in facilitating their widespread application to enhance individual life experiences. In pursuit of personalization, distilling key preference information from an individual's historical data as instructional preference context to customize LLM generation has emerged as a promising direction. However, these methods face a fundamental limitation by overlooking the inter-user comparative analysis, which is essential for identifying the inter-user differences that truly shape preferences. To address this limitation, we propose Difference-aware Personalization Learning (DPL), a novel approach that emphasizes extracting inter-user differences to enhance LLM personalization. DPL strategically selects representative users for comparison and establishes a structured standard to extract meaningful, task-relevant differences for customizing LLM generation. Extensive experiments on real-world datasets demonstrate that DPL significantly enhances LLM personalization. We release our code at https://github.com/SnowCharmQ/DPL.
comment: 2025 ACL Findings
AfriHuBERT: A self-supervised speech representation model for African languages
In this work, we present AfriHuBERT, an extension of mHuBERT-147, a compact self-supervised learning (SSL) model pretrained on 147 languages. While mHuBERT-147 covered 16 African languages, we expand this to 1,226 through continued pretraining on 10K+ hours of speech data from diverse sources, benefiting an African population of over 600M. We evaluate AfriHuBERT on two key speech tasks, Spoken Language Identification (SLID) and Automatic Speech Recognition (ASR), using the FLEURS benchmark. Our results show a +3.6% F1 score improvement for SLID and a -2.1% average Word Error Rate (WER) reduction for ASR over mHuBERT-147, and demonstrates competitiveness with larger SSL models such as MMS and XEUS. Further analysis shows that ASR models trained on AfriHuBERT exhibit improved cross-corpus generalization and are competitive in extremely low-resource ASR scenarios.
comment: Interspeech 2025
Exploring Model Kinship for Merging Large Language Models
Model merging has become one of the key technologies for enhancing the capabilities and efficiency of Large Language Models (LLMs). However, our understanding of the expected performance gains and principles when merging any two models remains limited. In this work, we introduce model kinship, the degree of similarity or relatedness between LLMs, analogous to biological evolution. With comprehensive empirical analysis, we find that there is a certain relationship between model kinship and the performance gains after model merging, which can help guide our selection of candidate models. Inspired by this, we propose a new model merging strategy: Top-k Greedy Merging with Model Kinship, which can yield better performance on benchmark datasets. Specifically, we discover that using model kinship as a criterion can assist us in continuously performing model merging, alleviating the degradation (local optima) in model evolution, whereas model kinship can serve as a guide to escape these traps. Code is available at https://github.com/zjunlp/ModelKinship.
comment: Ongoing work
Beyond Decoder-only: Large Language Models Can be Good Encoders for Machine Translation ACL
The field of neural machine translation (NMT) has changed with the advent of large language models (LLMs). Much of the recent emphasis in natural language processing (NLP) has been on modeling machine translation and many other problems using a single pre-trained Transformer decoder, while encoder-decoder architectures, which were the standard in earlier NMT models, have received relatively less attention. In this paper, we explore translation models that are universal, efficient, and easy to optimize, by marrying the world of LLMs with the world of NMT. We apply LLMs to NMT encoding and leave the NMT decoder unchanged. We also develop methods for adapting LLMs to work better with the NMT decoder. Furthermore, we construct a new dataset involving multiple tasks to assess how well the machine translation system generalizes across various tasks. Evaluations on the WMT and our datasets show that results using our method match or surpass a range of baselines in terms of translation quality, but achieve $2.4 \sim 6.5 \times$ inference speedups and a $75\%$ reduction in the memory footprint of the KV cache. It also demonstrates strong generalization across a variety of translation-related tasks.
comment: Accepted to ACL Findings 2025. Please cite the ACL version. Code and data are available at: https://github.com/NiuTrans/LaMaTE
GAMEBoT: Transparent Assessment of LLM Reasoning in Games ACL 2025
Large Language Models (LLMs) are increasingly deployed in real-world applications that demand complex reasoning. To track progress, robust benchmarks are required to evaluate their capabilities beyond superficial pattern recognition. However, current LLM reasoning benchmarks often face challenges such as insufficient interpretability, performance saturation or data contamination. To address these challenges, we introduce GAMEBoT, a gaming arena designed for rigorous and transparent assessment of LLM reasoning capabilities. GAMEBoT decomposes complex reasoning in games into predefined modular subproblems. This decomposition allows us to design a suite of Chain-of-Thought (CoT) prompts that leverage domain knowledge to guide LLMs in addressing these subproblems before action selection. Furthermore, we develop a suite of rule-based algorithms to generate ground truth for these subproblems, enabling rigorous validation of the LLMs' intermediate reasoning steps. This approach facilitates evaluation of both the quality of final actions and the accuracy of the underlying reasoning process. GAMEBoT also naturally alleviates the risk of data contamination through dynamic games and head-to-head LLM competitions. We benchmark 17 prominent LLMs across eight games, encompassing various strategic abilities and game characteristics. Our results suggest that GAMEBoT presents a significant challenge, even when LLMs are provided with detailed CoT prompts. Project page: https://visual-ai.github.io/gamebot
comment: 9 pages, ACL 2025
ADS-Edit: A Multimodal Knowledge Editing Dataset for Autonomous Driving Systems
Recent advancements in Large Multimodal Models (LMMs) have shown promise in Autonomous Driving Systems (ADS). However, their direct application to ADS is hindered by challenges such as misunderstanding of traffic knowledge, complex road conditions, and diverse states of vehicle. To address these challenges, we propose the use of Knowledge Editing, which enables targeted modifications to a model's behavior without the need for full retraining. Meanwhile, we introduce ADS-Edit, a multimodal knowledge editing dataset specifically designed for ADS, which includes various real-world scenarios, multiple data types, and comprehensive evaluation metrics. We conduct comprehensive experiments and derive several interesting conclusions. We hope that our work will contribute to the further advancement of knowledge editing applications in the field of autonomous driving. Code and data are available in https://github.com/zjunlp/EasyEdit.
comment: Work in progress
CKnowEdit: A New Chinese Knowledge Editing Dataset for Linguistics, Facts, and Logic Error Correction in LLMs ACL 2025
Chinese, as a linguistic system rich in depth and complexity, is characterized by distinctive elements such as ancient poetry, proverbs, idioms, and other cultural constructs. However, current Large Language Models (LLMs) face limitations in these specialized domains, highlighting the need for the development of comprehensive datasets that can assess, continuously update, and progressively improve these culturally-grounded linguistic competencies through targeted training optimizations. To address this gap, we introduce CKnowEdit, the first-ever Chinese knowledge editing dataset designed to correct linguistic, factual, and logical errors in LLMs. We collect seven types of knowledge from a wide range of sources, including classical texts, idioms, and content from Baidu Tieba Ruozhiba, taking into account the unique polyphony, antithesis, and logical structures inherent in the Chinese language. By analyzing this dataset, we highlight the challenges current LLMs face in mastering Chinese. Furthermore, our evaluation of state-of-the-art knowledge editing techniques reveals opportunities to advance the correction of Chinese knowledge. Code and dataset are available at https://github.com/zjunlp/EasyEdit.
comment: ACL 2025; project website is available at https://zjunlp.github.io/project/CKnowEdit code and dataset are available at https://github.com/zjunlp/EasyEdit
If Attention Serves as a Cognitive Model of Human Memory Retrieval, What is the Plausible Memory Representation? ACL 2025
Recent work in computational psycholinguistics has revealed intriguing parallels between attention mechanisms and human memory retrieval, focusing primarily on vanilla Transformers that operate on token-level representations. However, computational psycholinguistic research has also established that syntactic structures provide compelling explanations for human sentence processing that token-level factors cannot fully account for. In this paper, we investigate whether the attention mechanism of Transformer Grammar (TG), which uniquely operates on syntactic structures as representational units, can serve as a cognitive model of human memory retrieval, using Normalized Attention Entropy (NAE) as a linking hypothesis between models and humans. Our experiments demonstrate that TG's attention achieves superior predictive power for self-paced reading times compared to vanilla Transformer's, with further analyses revealing independent contributions from both models. These findings suggest that human sentence processing involves dual memory representations -- one based on syntactic structures and another on token sequences -- with attention serving as the general memory retrieval algorithm, while highlighting the importance of incorporating syntactic structures as representational units.
comment: 18 pages; To appear in ACL 2025
How Do LLMs Acquire New Knowledge? A Knowledge Circuits Perspective on Continual Pre-Training ACL 2025
Despite exceptional capabilities in knowledge-intensive tasks, Large Language Models (LLMs) face a critical gap in understanding how they internalize new knowledge, particularly how to structurally embed acquired knowledge in their neural computations. We address this issue through the lens of knowledge circuit evolution, identifying computational subgraphs that facilitate knowledge storage and processing. Our systematic analysis of circuit evolution throughout continual pre-training reveals several key findings: (1) the acquisition of new knowledge is influenced by its relevance to pre-existing knowledge; (2) the evolution of knowledge circuits exhibits a distinct phase shift from formation to optimization; (3) the evolution of knowledge circuits follows a deep-to-shallow pattern. These insights not only advance our theoretical understanding of the mechanisms of new knowledge acquisition in LLMs, but also provide potential implications for improving continual pre-training strategies to enhance model performance. Code and data will be available at https://github.com/zjunlp/DynamicKnowledgeCircuits.
comment: ACL 2025 Findings
Know You First and Be You Better: Modeling Human-Like User Simulators via Implicit Profiles ACL 2025
User simulators are crucial for replicating human interactions with dialogue systems, supporting both collaborative training and automatic evaluation, especially for large language models (LLMs). However, current role-playing methods face challenges such as a lack of utterance-level authenticity and user-level diversity, often hindered by role confusion and dependence on predefined profiles of well-known figures. In contrast, direct simulation focuses solely on text, neglecting implicit user traits like personality and conversation-level consistency. To address these issues, we introduce the User Simulator with Implicit Profiles (USP), a framework that infers implicit user profiles from human-machine interactions to simulate personalized and realistic dialogues. We first develop an LLM-driven extractor with a comprehensive profile schema, then refine the simulation using conditional supervised fine-tuning and reinforcement learning with cycle consistency, optimizing at both the utterance and conversation levels. Finally, a diverse profile sampler captures the distribution of real-world user profiles. Experimental results show that USP outperforms strong baselines in terms of authenticity and diversity while maintaining comparable consistency. Additionally, using USP to evaluate LLM on dynamic multi-turn aligns well with mainstream benchmarks, demonstrating its effectiveness in real-world applications.
comment: 9 pages. Accepted to ACL 2025. Camera-ready version
SynWorld: Virtual Scenario Synthesis for Agentic Action Knowledge Refinement ACL 2025
In the interaction between agents and their environments, agents expand their capabilities by planning and executing actions. However, LLM-based agents face substantial challenges when deployed in novel environments or required to navigate unconventional action spaces. To empower agents to autonomously explore environments, optimize workflows, and enhance their understanding of actions, we propose SynWorld, a framework that allows agents to synthesize possible scenarios with multi-step action invocation within the action space and perform Monte Carlo Tree Search (MCTS) exploration to effectively refine their action knowledge in the current environment. Our experiments demonstrate that SynWorld is an effective and general approach to learning action knowledge in new environments. Code is available at https://github.com/zjunlp/SynWorld.
comment: ACL 2025
RoCoFT: Efficient Finetuning of Large Language Models with Row-Column Updates
We propose RoCoFT, a parameter-efficient fine-tuning method for large-scale language models (LMs) based on updating only a few rows and columns of the weight matrices in transformers. Through extensive experiments with medium-size LMs like BERT and RoBERTa, and larger LMs like Bloom-7B, Llama2-7B, and Llama2-13B, we show that our method gives comparable or better accuracies than state-of-art PEFT methods while also being more memory and computation-efficient. We also study the reason behind the effectiveness of our method with tools from neural tangent kernel theory. We empirically demonstrate that our kernel, constructed using a restricted set of row and column parameters, are numerically close to the full-parameter kernel and gives comparable classification performance. Ablation studies are conducted to investigate the impact of different algorithmic choices, including the selection strategy for rows and columns as well as the optimal rank for effective implementation of our method.
comment: RoCoFT is a parameter-efficient method
Investigating Language Preference of Multilingual RAG Systems ACL 2025
Multilingual Retrieval-Augmented Generation (mRAG) systems enhance language models by integrating external multilingual information to produce context-aware responses. However, mRAG systems struggle with retrieving relevant information due to linguistic variations between queries and documents, generating inconsistent responses when multilingual sources conflict. In this work, we systematically investigate language preferences in both retrieval and generation of mRAG through a series of experiments. Our analysis indicates that retrievers tend to prefer high-resource and query languages, yet this preference does not consistently improve generation performance. Moreover, we observe that generators prefer the query language or Latin scripts, leading to inconsistent outputs. To overcome these issues, we propose Dual Knowledge Multilingual RAG (DKM-RAG), a simple yet effective framework that fuses translated multilingual passages with complementary model knowledge. Empirical results demonstrate that DKM-RAG mitigates language preference in generation and enhances performance across diverse linguistic settings. Code is available at https://github.com/jeonghyunpark2002/LanguagePreference.git
comment: ACL 2025 Findings
LLM-Mixer: Multiscale Mixing in LLMs for Time Series Forecasting
Time series forecasting remains a challenging task, particularly in the context of complex multiscale temporal patterns. This study presents LLM-Mixer, a framework that improves forecasting accuracy through the combination of multiscale time-series decomposition with pre-trained LLMs (Large Language Models). LLM-Mixer captures both short-term fluctuations and long-term trends by decomposing the data into multiple temporal resolutions and processing them with a frozen LLM, guided by a textual prompt specifically designed for time-series data. Extensive experiments conducted on multivariate and univariate datasets demonstrate that LLM-Mixer achieves competitive performance, outperforming recent state-of-the-art models across various forecasting horizons. This work highlights the potential of combining multiscale analysis and LLMs for effective and scalable time-series forecasting.
comment: Time series forecasting using LLMs
Towards Diverse and Efficient Audio Captioning via Diffusion Models
We introduce Diffusion-based Audio Captioning (DAC), a non-autoregressive diffusion model tailored for diverse and efficient audio captioning. Although existing captioning models relying on language backbones have achieved remarkable success in various captioning tasks, their insufficient performance in terms of generation speed and diversity impede progress in audio understanding and multimedia applications. Our diffusion-based framework offers unique advantages stemming from its inherent stochasticity and holistic context modeling in captioning. Through rigorous evaluation, we demonstrate that DAC not only achieves SOTA performance levels compared to existing benchmarks in the caption quality, but also significantly outperforms them in terms of generation speed and diversity. The success of DAC illustrates that text generation can also be seamlessly integrated with audio and visual generation tasks using a diffusion backbone, paving the way for a unified, audio-related generative model across different modalities.
comment: https://sites.google.com/view/diffusion-audio-captioning
Are Your LLMs Capable of Stable Reasoning? ACL 2025
The rapid advancement of large language models (LLMs) has shown remarkable progress in complex reasoning tasks. However, a significant disparity exists between benchmark performances and real-world applications. We attribute this gap primarily to current evaluation protocols and metrics, which inadequately capture the full spectrum of LLM capabilities, especially in complex reasoning tasks where both accuracy and consistency are essential. In this paper, we introduce G-Pass@$k$, a novel evaluation metric that continuously assesses model performance across multiple sampling attempts, quantifying both the model's performance potential and its stability. Through extensive experiments on various public and newly constructed benchmarks, we employ G-Pass@$k$ in conjunction with state-of-the-art large language models to provide comprehensive insights into their potential capabilities and operational consistency. Our findings reveal a significant opportunity to enhance the realistic reasoning abilities of LLMs, underscoring the necessity for more robust evaluation metrics.
comment: ACL 2025 Camera
Router-Tuning: A Simple and Effective Approach for Enabling Dynamic-Depth in Transformers
Traditional transformer models often allocate a fixed amount of computational resources to every input token, leading to inefficient and unnecessary computation. To address this, the Mixture of Depths (MoD) was introduced to dynamically adjust the computational depth by skipping less important layers. Despite its promise, current MoD approaches remain under-explored and face two main challenges: (1) high training costs due to the need to train the entire model along with the routers that determine which layers to skip, and (2) the risk of performance degradation when important layers are bypassed. In response to the first issue, we propose Router-Tuning, a method that fine-tunes only the router on a small dataset, drastically reducing the computational overhead associated with full model training. For the second challenge, we propose MindSkip, which deploys Attention with Dynamic Depths. This method preserves the model's performance while significantly enhancing computational and memory efficiency. Extensive experiments demonstrate that our approach delivers competitive results while dramatically improving the computation efficiency, e.g., 21\% speedup and only a 0.2\% performance drop. The code is released at https://github.com/CASE-Lab-UMD/Router-Tuning.
Data Whisperer: Efficient Data Selection for Task-Specific LLM Fine-Tuning via Few-Shot In-Context Learning ACL 2025
Fine-tuning large language models (LLMs) on task-specific data is essential for their effective deployment. As dataset sizes grow, efficiently selecting optimal subsets for training becomes crucial to balancing performance and computational costs. Traditional data selection methods often require fine-tuning a scoring model on the target dataset, which is time-consuming and resource-intensive, or rely on heuristics that fail to fully leverage the model's predictive capabilities. To address these challenges, we propose Data Whisperer, an efficient, training-free, attention-based method that leverages few-shot in-context learning with the model to be fine-tuned. Comprehensive evaluations were conducted on both raw and synthetic datasets across diverse tasks and models. Notably, Data Whisperer achieves superior performance compared to the full GSM8K dataset on the Llama-3-8B-Instruct model, using just 10% of the data, and outperforms existing methods with a 3.1-point improvement and a 7.4$\times$ speedup. The code is available at https://github.com/gszfwsb/Data-Whisperer.
comment: Accepted by ACL 2025 main, 18 pages, 8 figures, 6 tables
Mind Your Theory: Theory of Mind Goes Deeper Than Reasoning ACL2025
Theory of Mind (ToM) capabilities in LLMs have recently become a central object of investigation. Cognitive science distinguishes between two steps required for ToM tasks: 1) determine whether to invoke ToM, which includes the appropriate Depth of Mentalizing (DoM), or level of recursion required to complete a task; and 2) applying the correct inference given the DoM. In this position paper, we first identify several lines of work in different communities in AI, including LLM benchmarking, ToM add-ons, ToM probing, and formal models for ToM. We argue that recent work in AI tends to focus exclusively on the second step which are typically framed as static logic problems. We conclude with suggestions for improved evaluation of ToM capabilities inspired by dynamic environments used in cognitive tasks.
comment: 4 pages, 2 figures, accepted to ACL2025 Findings
Exploring Persona Sentiment Sensitivity in Personalized Dialogue Generation ACL 2025
Personalized dialogue systems have advanced considerably with the integration of user-specific personas into large language models (LLMs). However, while LLMs can effectively generate personalized responses, the influence of persona sentiment on dialogue quality remains underexplored. In this work, we conduct a large-scale analysis of dialogues generated using a range of polarized user profiles. Our experiments reveal that dialogues involving negatively polarized users tend to overemphasize persona attributes. In contrast, positively polarized profiles yield dialogues that selectively incorporate persona information, resulting in smoother interactions. Furthermore, we find that personas with weak or neutral sentiment generally produce lower-quality dialogues. Motivated by these findings, we propose a dialogue generation approach that explicitly accounts for persona polarity by combining a turn-based generation strategy with a profile ordering mechanism and sentiment-aware prompting. Our study provides new insights into the sensitivity of LLMs to persona sentiment and offers guidance for developing more robust and nuanced personalized dialogue systems.
comment: Accepted to ACL 2025 (Main)
Improving Model Factuality with Fine-grained Critique-based Evaluator
Factuality evaluation aims to detect factual errors produced by language models (LMs) and hence guide the development of more factual models. Towards this goal, we train a factuality evaluator, FenCE, that provides LM generators with claim-level factuality feedback. We conduct data augmentation on a combination of public judgment datasets to train FenCE to (1) generate textual critiques along with scores and (2) make claim-level judgment based on diverse source documents obtained by various tools. We then present a framework that leverages FenCE to improve the factuality of LM generators by constructing training data. Specifically, we generate a set of candidate responses, leverage FenCE to revise and score each response without introducing lesser-known facts, and train the generator by preferring highly scored revised responses. Experiments show that our data augmentation methods improve the evaluator's accuracy by 2.9% on LLM-AggreFact. With FenCE, we improve Llama2-7B-chat and Llama3-8B-chat's factuality rate by 16.86% and 14.45% on FActScore, outperforming state-of-the-art factuality finetuning methods by 8.83% and 6.96%.
Human-Computer Interaction
The Measurement Imbalance in Agentic AI Evaluation Undermines Industry Productivity Claims
As industry reports claim agentic AI systems deliver double-digit productivity gains and multi-trillion dollar economic potential, the validity of these claims has become critical for investment decisions, regulatory policy, and responsible technology adoption. However, this paper demonstrates that current evaluation practices for agentic AI systems exhibit a systemic imbalance that calls into question prevailing industry productivity claims. Our systematic review of 84 papers (2023--2025) reveals an evaluation imbalance where technical metrics dominate assessments (83%), while human-centered (30%), safety (53%), and economic assessments (30%) remain peripheral, with only 15% incorporating both technical and human dimensions. This measurement gap creates a fundamental disconnect between benchmark success and deployment value. We present evidence from healthcare, finance, and retail sectors where systems excelling on technical metrics failed in real-world implementation due to unmeasured human, temporal, and contextual factors. Our position is not against agentic AI's potential, but rather that current evaluation frameworks systematically privilege narrow technical metrics while neglecting dimensions critical to real-world success. We propose a balanced four-axis evaluation model and call on the community to lead this paradigm shift because benchmark-driven optimization shapes what we build. By redefining evaluation practices, we can better align industry claims with deployment realities and ensure responsible scaling of agentic systems in high-stakes domains.
comment: 15 pages, 3 figures
$\text{TREX}^2$: Dual-Reconstruction Framework for Teleoperated-Robot with EXtended Reality
Robot teleoperation with extended reality (XR teleoperation) enables intuitive interaction by allowing remote robots to mimic user motions with real-time 3D feedback. However, existing systems face significant motion-to-motion (M2M) latency -- the delay between the user's latest motion and the corresponding robot feedback -- leading to high teleoperation error and mission completion time. This issue stems from the system's exclusive reliance on network communication, making it highly vulnerable to network degradation. To address these challenges, we introduce $\text{TREX}^2$, the first end-to-end, fully open-sourced XR teleoperation framework that decouples robot control and XR visualization from network dependencies. $\text{TREX}^2$ leverages local sensing data to reconstruct delayed or missing information of the counterpart, thereby significantly reducing network-induced issues. This approach allows both the XR and robot to run concurrently with network transmission while maintaining high robot planning accuracy. $\text{TREX}^2$ also features contention-aware scheduling to mitigate GPU contention and bandwidth-adaptive point cloud scaling to cope with limited bandwidth. We implement $\text{TREX}^2$ across three hardware settings, including simulated and physical robots, and evaluate it on 9,500 real-world teleoperation trials from the RoboSet dataset \cite{kumar2024robohive}, covering single- and multi-step missions. Compared to state-of-the-art XR teleoperation frameworks, $\text{TREX}^2$ reduces teleoperation error by up to 69.8% on WLAN and 73.1% on cellular networks with only 6.7% maximum runtime overhead. It also improves completion time by up to 47.7%, enabling smoother teleoperation. A real-world case study on ten stationary and mobile missions further shows $\text{TREX}^2$ achieves up to 37.7% faster completion while lowering average teleoperation error by up to 57.2%.
TRiMM: Transformer-Based Rich Motion Matching for Real-Time multi-modal Interaction in Digital Humans
Large Language Model (LLM)-driven digital humans have sparked a series of recent studies on co-speech gesture generation systems. However, existing approaches struggle with real-time synthesis and long-text comprehension. This paper introduces Transformer-Based Rich Motion Matching (TRiMM), a novel multi-modal framework for real-time 3D gesture generation. Our method incorporates three modules: 1) a cross-modal attention mechanism to achieve precise temporal alignment between speech and gestures; 2) a long-context autoregressive model with a sliding window mechanism for effective sequence modeling; 3) a large-scale gesture matching system that constructs an atomic action library and enables real-time retrieval. Additionally, we develop a lightweight pipeline implemented in the Unreal Engine for experimentation. Our approach achieves real-time inference at 120 fps and maintains a per-sentence latency of 0.15 seconds on consumer-grade GPUs (Geforce RTX3060). Extensive subjective and objective evaluations on the ZEGGS, and BEAT datasets demonstrate that our model outperforms current state-of-the-art methods. TRiMM enhances the speed of co-speech gesture generation while ensuring gesture quality, enabling LLM-driven digital humans to respond to speech in real time and synthesize corresponding gestures. Our code is available at https://github.com/teroon/TRiMM-Transformer-Based-Rich-Motion-Matching
comment: 24 pages,12 figures
Bridging Subjective and Objective QoE: Operator-Level Aggregation Using LLM-Based Comment Analysis and Network MOS Comparison
This paper introduces a dual-layer framework for network operator-side quality of experience (QoE) assessment that integrates both objective network modeling and subjective user perception extracted from live-streaming platforms. On the objective side, we develop a machine learning model trained on mean opinion scores (MOS) computed via the ITU-T P.1203 reference implementation, allowing accurate prediction of user-perceived video quality using only network parameters such as packet loss, delay, jitter, and throughput without reliance on video content or client-side instrumentation. On the subjective side, we present a semantic filtering and scoring pipeline that processes user comments from live streams to extract performance-related feedback. A large language model is used to assign scalar MOS scores to filtered comments in a deterministic and reproducible manner. To support scalable and interpretable analysis, we construct a labeled dataset of 47,894 live-stream comments, of which about 34,000 are identified as QoE-relevant through multi-layer semantic filtering. Each comment is enriched with simulated Internet Service Provider attribution and temporally aligned using synthetic timestamps in 5-min intervals. The resulting dataset enables operator-level aggregation and time-series analysis of user-perceived quality. A delta MOS metric is proposed to measure each Internet service provider's deviation from platform-wide sentiment, allowing detection of localized degradations even in the absence of direct network telemetry. A controlled outage simulation confirms the framework's effectiveness in identifying service disruptions through comment-based trends alone. The system provides each operator with its own subjective MOS and the global platform average per interval, enabling real-time interpretation of performance deviations and comparison with objective network-based QoE estimates.
comment: 19 ppages, 13 figures
CO-OPERA: A Human-AI Collaborative Playwriting Tool to Support Creative Storytelling for Interdisciplinary Drama Education
Drama-in-education is an interdisciplinary instructional approach that integrates subjects such as language, history, and psychology. Its core component is playwriting. Based on need-finding interviews of 13 teachers, we found that current general-purpose AI tools cannot effectively assist teachers and students during playwriting. Therefore, we propose CO-OPERA - a collaborative playwriting tool integrating generative artificial intelligence capabilities. In CO-OPERA, users can both expand their thinking through discussions with a tutor and converge their thinking by operating agents to generate script elements. Additionally, the system allows for iterative modifications and regenerations based on user requirements. A system usability test conducted with middle school students shows that our CO-OPERA helps users focus on whole logical narrative development during playwriting. Our playwriting examples and raw data for qualitative and quantitative analysis are available at https://github.com/daisyinb612/CO-OPERA.
HADA: Human-AI Agent Decision Alignment Architecture
We present HADA (Human-AI Agent Decision Alignment), a protocol- and framework agnostic reference architecture that keeps both large language model (LLM) agents and legacy algorithms aligned with organizational targets and values. HADA wraps any algorithm or LLM in role-specific stakeholder agents -- business, data-science, audit, ethics, and customer -- each exposing conversational APIs so that technical and non-technical actors can query, steer, audit, or contest every decision across strategic, tactical, and real-time horizons. Alignment objectives, KPIs, and value constraints are expressed in natural language and are continuously propagated, logged, and versioned while thousands of heterogeneous agents run on different orchestration stacks. A cloud-native proof of concept packages a production credit-scoring model (getLoanDecision) and deploys it on Docker/Kubernetes/Python; five scripted retail-bank scenarios show how target changes, parameter tweaks, explanation requests, and ethics triggers flow end to end through the architecture. Evaluation followed the Design-Science Research Methodology. Walkthrough observation and log inspection demonstrated complete coverage of six predefined objectives: every role could invoke conversational control, trace KPIs and value constraints, detect and mitigate ZIP-code bias, and reproduce full decision lineage, independent of the underlying LLM or agent library. Contributions: (1) an open-source HADA architecture, (2) a mid-range design theory for human-AI alignment in multi-agent systems, and (3) empirical evidence that framework-agnostic, protocol-compliant stakeholder agents improve accuracy, transparency, and ethical compliance in real-world decision pipelines.
comment: 18 pages, 4 figures
What is Stigma Attributed to? A Theory-Grounded, Expert-Annotated Interview Corpus for Demystifying Mental-Health Stigma ACL 2025
Mental-health stigma remains a pervasive social problem that hampers treatment-seeking and recovery. Existing resources for training neural models to finely classify such stigma are limited, relying primarily on social-media or synthetic data without theoretical underpinnings. To remedy this gap, we present an expert-annotated, theory-informed corpus of human-chatbot interviews, comprising 4,141 snippets from 684 participants with documented socio-cultural backgrounds. Our experiments benchmark state-of-the-art neural models and empirically unpack the challenges of stigma detection. This dataset can facilitate research on computationally detecting, neutralizing, and counteracting mental-health stigma. Our corpus is openly available at https://github.com/HanMeng2004/Mental-Health-Stigma-Interview-Corpus.
comment: Accepted to ACL 2025 Main Conference, 38 Pages
Multimodal Sensing and Machine Learning to Compare Printed and Verbal Assembly Instructions Delivered by a Social Robot
In this paper, we compare a manual assembly task communicated to workers using both printed and robot-delivered instructions. The comparison was made using physiological signals (blood volume pulse (BVP) and electrodermal activity (EDA)) collected from individuals during an experimental study. In addition, we also collected responses of individuals using the NASA Task Load Index (TLX) survey. Furthermore, we mapped the collected physiological signals to the responses of participants for NASA TLX to predict their workload. For both the classification problems, we compare the performance of Convolutional Neural Networks (CNNs) and Long-Short-Term Memory (LSTM) models. Results show that for our CNN-based approach using multimodal data (both BVP and EDA) gave better results than using just BVP (approx. 8.38% more) and EDA (approx 20.49% more). Our LSTM-based model too had better results when we used multimodal data (approx 8.38% more than just BVP and 6.70% more than just EDA). Overall, CNNs performed better than LSTMs for classifying physiologies for paper vs robot-based instruction by 7.72%. The CNN-based model was able to give better classification results (approximately 17.83% more on an average across all responses of the NASA TLX) within a few minutes of training compared to the LSTM-based models.
comment: Accepted to IEEE CASE 2025
Navigating Rifts in Human-LLM Grounding: Study and Benchmark ACL 2025
Language models excel at following instructions but often struggle with the collaborative aspects of conversation that humans naturally employ. This limitation in grounding -- the process by which conversation participants establish mutual understanding -- can lead to outcomes ranging from frustrated users to serious consequences in high-stakes scenarios. To systematically study grounding challenges in human-LLM interactions, we analyze logs from three human-assistant datasets: WildChat, MultiWOZ, and Bing Chat. We develop a taxonomy of grounding acts and build models to annotate and forecast grounding behavior. Our findings reveal significant differences in human-human and human-LLM grounding: LLMs were three times less likely to initiate clarification and sixteen times less likely to provide follow-up requests than humans. Additionally, we find that early grounding failures predict later interaction breakdowns. Building on these insights, we introduce Rifts, a benchmark derived from publicly available LLM interaction data containing situations where LLMs fail to initiate grounding. We note that current frontier models perform poorly on Rifts, highlighting the need to reconsider how we train and prompt LLMs for human interaction. To this end, we develop a preliminary intervention aimed at mitigating grounding failures.
comment: ACL 2025, 16 pages, 5 figures
How Do LLMs Acquire New Knowledge? A Knowledge Circuits Perspective on Continual Pre-Training ACL 2025
Despite exceptional capabilities in knowledge-intensive tasks, Large Language Models (LLMs) face a critical gap in understanding how they internalize new knowledge, particularly how to structurally embed acquired knowledge in their neural computations. We address this issue through the lens of knowledge circuit evolution, identifying computational subgraphs that facilitate knowledge storage and processing. Our systematic analysis of circuit evolution throughout continual pre-training reveals several key findings: (1) the acquisition of new knowledge is influenced by its relevance to pre-existing knowledge; (2) the evolution of knowledge circuits exhibits a distinct phase shift from formation to optimization; (3) the evolution of knowledge circuits follows a deep-to-shallow pattern. These insights not only advance our theoretical understanding of the mechanisms of new knowledge acquisition in LLMs, but also provide potential implications for improving continual pre-training strategies to enhance model performance. Code and data will be available at https://github.com/zjunlp/DynamicKnowledgeCircuits.
comment: ACL 2025 Findings
Cognitive Guardrails for Open-World Decision Making in Autonomous Drone Swarms
Small Uncrewed Aerial Systems (sUAS) are increasingly deployed as autonomous swarms in search-and-rescue and other disaster-response scenarios. In these settings, they use computer vision (CV) to detect objects of interest and autonomously adapt their missions. However, traditional CV systems often struggle to recognize unfamiliar objects in open-world environments or to infer their relevance for mission planning. To address this, we incorporate large language models (LLMs) to reason about detected objects and their implications. While LLMs can offer valuable insights, they are also prone to hallucinations and may produce incorrect, misleading, or unsafe recommendations. To ensure safe and sensible decision-making under uncertainty, high-level decisions must be governed by cognitive guardrails. This article presents the design, simulation, and real-world integration of these guardrails for sUAS swarms in search-and-rescue missions.
comment: 16 pages, 8 figures
Content Moderation by LLM: From Accuracy to Legitimacy
One trending application of LLM (large language model) is to use it for content moderation in online platforms. Most current studies on this application have focused on the metric of accuracy -- the extent to which LLMs make correct decisions about content. This article argues that accuracy is insufficient and misleading because it fails to grasp the distinction between easy cases and hard cases, as well as the inevitable trade-offs in achieving higher accuracy. Closer examination reveals that content moderation is a constitutive part of platform governance, the key of which is to gain and enhance legitimacy. Instead of making moderation decisions correct, the chief goal of LLMs is to make them legitimate. In this regard, this article proposes a paradigm shift from the single benchmark of accuracy towards a legitimacy-based framework for evaluating the performance of LLM moderators. The framework suggests that for easy cases, the key is to ensure accuracy, speed, and transparency, while for hard cases, what matters is reasoned justification and user participation. Examined under this framework, LLMs' real potential in moderation is not accuracy improvement. Rather, LLMs can better contribute in four other aspects: to conduct screening of hard cases from easy cases, to provide quality explanations for moderation decisions, to assist human reviewers in getting more contextual information, and to facilitate user participation in a more interactive way. To realize these contributions, this article proposes a workflow for incorporating LLMs into the content moderation system. Using normative theories from law and social sciences to critically assess the new technological application, this article seeks to redefine LLMs' role in content moderation and redirect relevant research in this field.
REALM: A Dataset of Real-World LLM Use Cases
Large Language Models (LLMs), such as the GPT series, have driven significant industrial applications, leading to economic and societal transformations. However, a comprehensive understanding of their real-world applications remains limited. To address this, we introduce REALM, a dataset of over 94,000 LLM use cases collected from Reddit and news articles. REALM captures two key dimensions: the diverse applications of LLMs and the demographics of their users. It categorizes LLM applications and explores how users' occupations relate to the types of applications they use. By integrating real-world data, REALM offers insights into LLM adoption across different domains, providing a foundation for future research on their evolving societal roles.
comment: 11 pages, 3 figures
Human-AI Governance (HAIG): A Trust-Utility Approach
This paper introduces the HAIG framework for analysing trust dynamics across evolving human-AI relationships. Current categorical frameworks (e.g., "human-in-the-loop" models) inadequately capture how AI systems evolve from tools to partners, particularly as foundation models demonstrate emergent capabilities and multi-agent systems exhibit autonomous goal-setting behaviours. As systems advance, agency redistributes in complex patterns that are better represented as positions along continua rather than discrete categories, though progression may include both gradual shifts and significant step changes. The HAIG framework operates across three levels: dimensions (Decision Authority Distribution, Process Autonomy, and Accountability Configuration), continua (gradual shifts along each dimension), and thresholds (critical points requiring governance adaptation). Unlike risk-based or principle-based approaches, HAIG adopts a trust-utility orientation, focusing on maintaining appropriate trust relationships that maximise utility while ensuring sufficient safeguards. Our analysis reveals how technical advances in self-supervision, reasoning authority, and distributed decision-making drive non-uniform trust evolution across both contextual variation and technological advancement. Case studies in healthcare and European regulation demonstrate how HAIG complements existing frameworks while offering a foundation for alternative approaches that anticipate governance challenges before they emerge.
comment: 32 pages including references and appendix, 25 pages core text, 3 figures, 3 tables
Image and Video Processing
CineMA: A Foundation Model for Cine Cardiac MRI
Cardiac magnetic resonance (CMR) is a key investigation in clinical cardiovascular medicine and has been used extensively in population research. However, extracting clinically important measurements such as ejection fraction for diagnosing cardiovascular diseases remains time-consuming and subjective. We developed CineMA, a foundation AI model automating these tasks with limited labels. CineMA is a self-supervised autoencoder model trained on 74,916 cine CMR studies to reconstruct images from masked inputs. After fine-tuning, it was evaluated across eight datasets on 23 tasks from four categories: ventricle and myocardium segmentation, left and right ventricle ejection fraction calculation, disease detection and classification, and landmark localisation. CineMA is the first foundation model for cine CMR to match or outperform convolutional neural networks (CNNs). CineMA demonstrated greater label efficiency than CNNs, achieving comparable or better performance with fewer annotations. This reduces the burden of clinician labelling and supports replacing task-specific training with fine-tuning foundation models in future cardiac imaging applications. Models and code for pre-training and fine-tuning are available at https://github.com/mathpluscode/CineMA, democratising access to high-performance models that otherwise require substantial computational resources, promoting reproducibility and accelerating clinical translation.
ABCDEFGH: An Adaptation-Based Convolutional Neural Network-CycleGAN Disease-Courses Evolution Framework Using Generative Models in Health Education
With the advancement of modern medicine and the development of technologies such as MRI, CT, and cellular analysis, it has become increasingly critical for clinicians to accurately interpret various diagnostic images. However, modern medical education often faces challenges due to limited access to high-quality teaching materials, stemming from privacy concerns and a shortage of educational resources (Balogh et al., 2015). In this context, image data generated by machine learning models, particularly generative models, presents a promising solution. These models can create diverse and comparable imaging datasets without compromising patient privacy, thereby supporting modern medical education. In this study, we explore the use of convolutional neural networks (CNNs) and CycleGAN (Zhu et al., 2017) for generating synthetic medical images. The source code is available at https://github.com/mliuby/COMP4211-Project.
MR2US-Pro: Prostate MR to Ultrasound Image Translation and Registration Based on Diffusion Models
The diagnosis of prostate cancer increasingly depends on multimodal imaging, particularly magnetic resonance imaging (MRI) and transrectal ultrasound (TRUS). However, accurate registration between these modalities remains a fundamental challenge due to the differences in dimensionality and anatomical representations. In this work, we present a novel framework that addresses these challenges through a two-stage process: TRUS 3D reconstruction followed by cross-modal registration. Unlike existing TRUS 3D reconstruction methods that rely heavily on external probe tracking information, we propose a totally probe-location-independent approach that leverages the natural correlation between sagittal and transverse TRUS views. With the help of our clustering-based feature matching method, we enable the spatial localization of 2D frames without any additional probe tracking information. For the registration stage, we introduce an unsupervised diffusion-based framework guided by modality translation. Unlike existing methods that translate one modality into another, we map both MR and US into a pseudo intermediate modality. This design enables us to customize it to retain only registration-critical features, greatly easing registration. To further enhance anatomical alignment, we incorporate an anatomy-aware registration strategy that prioritizes internal structural coherence while adaptively reducing the influence of boundary inconsistencies. Extensive validation demonstrates that our approach outperforms state-of-the-art methods by achieving superior registration accuracy with physically realistic deformations in a completely unsupervised fashion.
Image Restoration Learning via Noisy Supervision in the Fourier Domain
Noisy supervision refers to supervising image restoration learning with noisy targets. It can alleviate the data collection burden and enhance the practical applicability of deep learning techniques. However, existing methods suffer from two key drawbacks. Firstly, they are ineffective in handling spatially correlated noise commonly observed in practical applications such as low-light imaging and remote sensing. Secondly, they rely on pixel-wise loss functions that only provide limited supervision information. This work addresses these challenges by leveraging the Fourier domain. We highlight that the Fourier coefficients of spatially correlated noise exhibit sparsity and independence, making them easier to handle. Additionally, Fourier coefficients contain global information, enabling more significant supervision. Motivated by these insights, we propose to establish noisy supervision in the Fourier domain. We first prove that Fourier coefficients of a wide range of noise converge in distribution to the Gaussian distribution. Exploiting this statistical property, we establish the equivalence between using noisy targets and clean targets in the Fourier domain. This leads to a unified learning framework applicable to various image restoration tasks, diverse network architectures, and different noise models. Extensive experiments validate the outstanding performance of this framework in terms of both quantitative indices and perceptual quality.
Your Demands Deserve More Bits: Referring Semantic Image Compression at Ultra-low Bitrate ISCA
With the help of powerful generative models, Semantic Image Compression (SIC) has achieved impressive performance at ultra-low bitrate. However, due to coarse-grained visual-semantic alignment and inherent randomness, the reliability of SIC is seriously concerned for reconstructing completely different object instances, even they are semantically consistent with original images. To tackle this issue, we propose a novel Referring Semantic Image Compression (RSIC) framework to improve the fidelity of user-specified content while retaining extreme compression ratios. Specifically, RSIC consists of three modules: Global Description Encoding (GDE), Referring Guidance Encoding (RGE), and Guided Generative Decoding (GGD). GDE and RGE encode global semantic information and local features, respectively, while GGD handles the non-uniformly guided generative process based on the encoded information. In this way, our RSIC achieves flexible customized compression according to user demands, which better balance the local fidelity, global realism, semantic alignment, and bit overhead. Extensive experiments on three datasets verify the compression efficiency and flexibility of the proposed method.
comment: Accepted for oral presentation at ISCAS2025
UNSURF: Uncertainty Quantification for Cortical Surface Reconstruction of Clinical Brain MRIs MICCAI 2025
We propose UNSURF, a novel uncertainty measure for cortical surface reconstruction of clinical brain MRI scans of any orientation, resolution, and contrast. It relies on the discrepancy between predicted voxel-wise signed distance functions (SDFs) and the actual SDFs of the fitted surfaces. Our experiments on real clinical scans show that traditional uncertainty measures, such as voxel-wise Monte Carlo variance, are not suitable for modeling the uncertainty of surface placement. Our results demonstrate that UNSURF estimates correlate well with the ground truth errors and: \textit{(i)}~enable effective automated quality control of surface reconstructions at the subject-, parcel-, mesh node-level; and \textit{(ii)}~improve performance on a downstream Alzheimer's disease classification task.
comment: Raghav Mehta and Karthik Gopinath contributed equally. Ben Glocker and Juan Eugenio Iglesias contributed equally. Paper under review at MICCAI 2025
A European Multi-Center Breast Cancer MRI Dataset
Detecting breast cancer early is of the utmost importance to effectively treat the millions of women afflicted by breast cancer worldwide every year. Although mammography is the primary imaging modality for screening breast cancer, there is an increasing interest in adding magnetic resonance imaging (MRI) to screening programmes, particularly for women at high risk. Recent guidelines by the European Society of Breast Imaging (EUSOBI) recommended breast MRI as a supplemental screening tool for women with dense breast tissue. However, acquiring and reading MRI scans requires significantly more time from expert radiologists. This highlights the need to develop new automated methods to detect cancer accurately using MRI and Artificial Intelligence (AI), which have the potential to support radiologists in breast MRI interpretation and classification and help detect cancer earlier. For this reason, the ODELIA consortium has made this multi-centre dataset publicly available to assist in developing AI tools for the detection of breast cancer on MRI.
Efficient 3D Brain Tumor Segmentation with Axial-Coronal-Sagittal Embedding
In this paper, we address the crucial task of brain tumor segmentation in medical imaging and propose innovative approaches to enhance its performance. The current state-of-the-art nnU-Net has shown promising results but suffers from extensive training requirements and underutilization of pre-trained weights. To overcome these limitations, we integrate Axial-Coronal-Sagittal convolutions and pre-trained weights from ImageNet into the nnU-Net framework, resulting in reduced training epochs, reduced trainable parameters, and improved efficiency. Two strategies for transferring 2D pre-trained weights to the 3D domain are presented, ensuring the preservation of learned relationships and feature representations critical for effective information propagation. Furthermore, we explore a joint classification and segmentation model that leverages pre-trained encoders from a brain glioma grade classification proxy task, leading to enhanced segmentation performance, especially for challenging tumor labels. Experimental results demonstrate that our proposed methods in the fast training settings achieve comparable or even outperform the ensemble of cross-validation models, a common practice in the brain tumor segmentation literature.
comment: Accepted by PSIVT 2023. Best paper award. Repo: https://github.com/LouisDo2108/ACS-nnU-Net
Encoding of Demographic and Anatomical Information in Chest X-Ray-based Severe Left Ventricular Hypertrophy Classifiers
While echocardiography and MRI are clinical standards for evaluating cardiac structure, their use is limited by cost and accessibility.We introduce a direct classification framework that predicts severe left ventricular hypertrophy from chest X-rays, without relying on anatomical measurements or demographic inputs. Our approach achieves high AUROC and AUPRC, and employs Mutual Information Neural Estimation to quantify feature expressivity. This reveals clinically meaningful attribute encoding and supports transparent model interpretation.
A Compendium of Autonomous Navigation using Object Detection and Tracking in Unmanned Aerial Vehicles
Unmanned Aerial Vehicles (UAVs) are one of the most revolutionary inventions of 21st century. At the core of a UAV lies the central processing system that uses wireless signals to control their movement. The most popular UAVs are quadcopters that use a set of four motors, arranged as two on either side with opposite spin. An autonomous UAV is called a drone. Drones have been in service in the US army since the 90's for covert missions critical to national security. It would not be wrong to claim that drones make up an integral part of the national security and provide the most valuable service during surveillance operations. While UAVs are controlled using wireless signals, there reside some challenges that disrupt the operation of such vehicles such as signal quality and range, real time processing, human expertise, robust hardware and data security. These challenges can be solved by programming UAVs to be autonomous, using object detection and tracking, through Computer Vision algorithms. Computer Vision is an interdisciplinary field that seeks the use of deep learning to gain a high-level understanding of digital images and videos for the purpose of automating the task of human visual system. Using computer vision, algorithms for detecting and tracking various objects can be developed suitable to the hardware so as to allow real time processing for immediate judgement. This paper attempts to review the various approaches several authors have proposed for the purpose of autonomous navigation of UAVs by through various algorithms of object detection and tracking in real time, for the purpose of applications in various fields such as disaster management, dense area exploration, traffic vehicle surveillance etc.
Advancing Image Super-resolution Techniques in Remote Sensing: A Comprehensive Survey
Remote sensing image super-resolution (RSISR) is a crucial task in remote sensing image processing, aiming to reconstruct high-resolution (HR) images from their low-resolution (LR) counterparts. Despite the growing number of RSISR methods proposed in recent years, a systematic and comprehensive review of these methods is still lacking. This paper presents a thorough review of RSISR algorithms, covering methodologies, datasets, and evaluation metrics. We provide an in-depth analysis of RSISR methods, categorizing them into supervised, unsupervised, and quality evaluation approaches, to help researchers understand current trends and challenges. Our review also discusses the strengths, limitations, and inherent challenges of these techniques. Notably, our analysis reveals significant limitations in existing methods, particularly in preserving fine-grained textures and geometric structures under large-scale degradation. Based on these findings, we outline future research directions, highlighting the need for domain-specific architectures and robust evaluation protocols to bridge the gap between synthetic and real-world RSISR scenarios.
comment: A survey of Remote Sensing Super-resolution Techniques
Open High-Resolution Satellite Imagery: The WorldStrat Dataset -- With Application to Super-Resolution NeurIPS 2022
Analyzing the planet at scale with satellite imagery and machine learning is a dream that has been constantly hindered by the cost of difficult-to-access highly-representative high-resolution imagery. To remediate this, we introduce here the WorldStrat dataset. The largest and most varied such publicly available dataset, at Airbus SPOT 6/7 satellites' high resolution of up to 1.5 m/pixel, empowered by European Space Agency's Phi-Lab as part of the ESA-funded QueryPlanet project, we curate nearly 10,000 sqkm of unique locations to ensure stratified representation of all types of land-use across the world: from agriculture to ice caps, from forests to multiple urbanization densities. We also enrich those with locations typically under-represented in ML datasets: sites of humanitarian interest, illegal mining sites, and settlements of persons at risk. We temporally-match each high-resolution image with multiple low-resolution images from the freely accessible lower-resolution Sentinel-2 satellites at 10 m/pixel. We accompany this dataset with an open-source Python package to: rebuild or extend the WorldStrat dataset, train and infer baseline algorithms, and learn with abundant tutorials, all compatible with the popular EO-learn toolbox. We hereby hope to foster broad-spectrum applications of ML to satellite imagery, and possibly develop from free public low-resolution Sentinel2 imagery the same power of analysis allowed by costly private high-resolution imagery. We illustrate this specific point by training and releasing several highly compute-efficient baselines on the task of Multi-Frame Super-Resolution. High-resolution Airbus imagery is CC BY-NC, while the labels and Sentinel2 imagery are CC BY, and the source code and pre-trained models under BSD. The dataset is available at https://zenodo.org/record/6810791 and the software package at https://github.com/worldstrat/worldstrat .
comment: Published in 36th Conference on Neural Information Processing Systems (NeurIPS 2022) Track on Datasets and Benchmarks
Controllable Satellite-to-Street-View Synthesis with Precise Pose Alignment and Zero-Shot Environmental Control
Generating street-view images from satellite imagery is a challenging task, particularly in maintaining accurate pose alignment and incorporating diverse environmental conditions. While diffusion models have shown promise in generative tasks, their ability to maintain strict pose alignment throughout the diffusion process is limited. In this paper, we propose a novel Iterative Homography Adjustment (IHA) scheme applied during the denoising process, which effectively addresses pose misalignment and ensures spatial consistency in the generated street-view images. Additionally, currently, available datasets for satellite-to-street-view generation are limited in their diversity of illumination and weather conditions, thereby restricting the generalizability of the generated outputs. To mitigate this, we introduce a text-guided illumination and weather-controlled sampling strategy that enables fine-grained control over the environmental factors. Extensive quantitative and qualitative evaluations demonstrate that our approach significantly improves pose accuracy and enhances the diversity and realism of generated street-view images, setting a new benchmark for satellite-to-street-view generation tasks.
Leveraging Complementary Attention maps in vision transformers for OCT image analysis
Optical Coherence Tomography (OCT) scan yields all possible cross-section images of a retina for detecting biomarkers linked to optical defects. Due to the high volume of data generated, an automated and reliable biomarker detection pipeline is necessary as a primary screening stage. We outline our new state-of-the-art pipeline for identifying biomarkers from OCT scans. In collaboration with trained ophthalmologists, we identify local and global structures in biomarkers. Through a comprehensive and systematic review of existing vision architectures, we evaluate different convolution and attention mechanisms for biomarker detection. We find that MaxViT, a hybrid vision transformer combining convolution layers with strided attention, is better suited for local feature detection, while EVA-02, a standard vision transformer leveraging pure attention and large-scale knowledge distillation, excels at capturing global features. We ensemble the predictions of both models to achieve first place in the IEEE Video and Image Processing Cup 2023 competition on OCT biomarker detection, achieving a patient-wise F1 score of 0.8527 in the final phase of the competition, scoring 3.8\% higher than the next best solution. Finally, we used knowledge distillation to train a single MaxViT to outperform our ensemble at a fraction of the computation cost.
comment: Accepted in 2025 IEEE International Conference on Image Processing
Multimedia
Scene Detection Policies and Keyframe Extraction Strategies for Large-Scale Video Analysis
Robust scene segmentation and keyframe extraction are essential preprocessing steps in video understanding pipelines, supporting tasks such as indexing, summarization, and semantic retrieval. However, existing methods often lack generalizability across diverse video types and durations. We present a unified, adaptive framework for automatic scene detection and keyframe selection that handles formats ranging from short-form media to long-form films, archival content, and surveillance footage. Our system dynamically selects segmentation policies based on video length: adaptive thresholding for short videos, hybrid strategies for mid-length ones, and interval-based splitting for extended recordings. This ensures consistent granularity and efficient processing across domains. For keyframe selection, we employ a lightweight module that scores sampled frames using a composite metric of sharpness, luminance, and temporal spread, avoiding complex saliency models while ensuring visual relevance. Designed for high-throughput workflows, the system is deployed in a commercial video analysis platform and has processed content from media, education, research, and security domains. It offers a scalable and interpretable solution suitable for downstream applications such as UI previews, embedding pipelines, and content filtering. We discuss practical implementation details and outline future enhancements, including audio-aware segmentation and reinforcement-learned frame scoring.
comment: 24 pages, 8 figures, submitted as a preprint. ArXiv preprint only, not submitted to a journal yet
SEED: A Benchmark Dataset for Sequential Facial Attribute Editing with Diffusion Models
Diffusion models have recently enabled precise and photorealistic facial editing across a wide range of semantic attributes. Beyond single-step modifications, a growing class of applications now demands the ability to analyze and track sequences of progressive edits, such as stepwise changes to hair, makeup, or accessories. However, sequential editing introduces significant challenges in edit attribution and detection robustness, further complicated by the lack of large-scale, finely annotated benchmarks tailored explicitly for this task. We introduce SEED, a large-scale Sequentially Edited facE Dataset constructed via state-of-the-art diffusion models. SEED contains over 90,000 facial images with one to four sequential attribute modifications, generated using diverse diffusion-based editing pipelines (LEdits, SDXL, SD3). Each image is annotated with detailed edit sequences, attribute masks, and prompts, facilitating research on sequential edit tracking, visual provenance analysis, and manipulation robustness assessment. To benchmark this task, we propose FAITH, a frequency-aware transformer-based model that incorporates high-frequency cues to enhance sensitivity to subtle sequential changes. Comprehensive experiments, including systematic comparisons of multiple frequency-domain methods, demonstrate the effectiveness of FAITH and the unique challenges posed by SEED. SEED offers a challenging and flexible resource for studying progressive diffusion-based edits at scale. Dataset and code will be publicly released at: https://github.com/Zeus1037/SEED.
The Many Challenges of Human-Like Agents in Virtual Game Environments AAMAS-2025
Human-like agents are an increasingly important topic in games and beyond. Believable non-player characters enhance the gaming experience by improving immersion and providing entertainment. They also offer players the opportunity to engage with AI entities that can function as opponents, teachers, or cooperating partners. Additionally, in games where bots are prohibited -- and even more so in non-game environments -- there is a need for methods capable of identifying whether digital interactions occur with bots or humans. This leads to two fundamental research questions: (1) how to model and implement human-like AI, and (2) how to measure its degree of human likeness. This article offers two contributions. The first one is a survey of the most significant challenges in implementing human-like AI in games (or any virtual environment featuring simulated agents, although this article specifically focuses on games). Thirteen such challenges, both conceptual and technical, are discussed in detail. The second is an empirical study performed in a tactical video game that addresses the research question: "Is it possible to distinguish human players from bots (AI agents) based on empirical data?" A machine-learning approach using a custom deep recurrent convolutional neural network is presented. We hypothesize that the more challenging it is to create human-like AI for a given game, the easier it becomes to develop a method for distinguishing humans from AI-driven players.
comment: In proceedings of the 24th International Conference on Autonomous Agents and Multiagent Systems (AAMAS-2025), pages 1996--2005, May 19-23, Detroit, Michigan, USA
MEGADance: Mixture-of-Experts Architecture for Genre-Aware 3D Dance Generation
Music-driven 3D dance generation has attracted increasing attention in recent years, with promising applications in choreography, virtual reality, and creative content creation. Previous research has generated promising realistic dance movement from audio signals. However, traditional methods underutilize genre conditioning, often treating it as auxiliary modifiers rather than core semantic drivers. This oversight compromises music-motion synchronization and disrupts dance genre continuity, particularly during complex rhythmic transitions, thereby leading to visually unsatisfactory effects. To address the challenge, we propose MEGADance, a novel architecture for music-driven 3D dance generation. By decoupling choreographic consistency into dance generality and genre specificity, MEGADance demonstrates significant dance quality and strong genre controllability. It consists of two stages: (1) High-Fidelity Dance Quantization Stage (HFDQ), which encodes dance motions into a latent representation by Finite Scalar Quantization (FSQ) and reconstructs them with kinematic-dynamic constraints, and (2) Genre-Aware Dance Generation Stage (GADG), which maps music into the latent representation by synergistic utilization of Mixture-of-Experts (MoE) mechanism with Mamba-Transformer hybrid backbone. Extensive experiments on the FineDance and AIST++ dataset demonstrate the state-of-the-art performance of MEGADance both qualitatively and quantitatively. Code will be released upon acceptance.
comment: arXiv admin note: text overlap with arXiv:2505.14222
Co-Reinforcement Learning for Unified Multimodal Understanding and Generation
This paper presents a pioneering exploration of reinforcement learning (RL) via group relative policy optimization for unified multimodal large language models (ULMs), aimed at simultaneously reinforcing generation and understanding capabilities. Through systematic pilot studies, we uncover the significant potential of ULMs to enable the synergistic co-evolution of dual capabilities within a shared policy optimization framework. Building on this insight, we introduce CoRL, a co-reinforcement learning framework comprising a unified RL stage for joint optimization and a refined RL stage for task-specific enhancement. With the proposed CoRL, our resulting model, ULM-R1, achieves average improvements of 7% on three text-to-image generation datasets and 23% on nine multimodal understanding benchmarks. These results demonstrate the effectiveness of CoRL and highlight the substantial benefit of reinforcement learning in facilitating cross-task synergy and optimization for ULMs. Code is available at https://github.com/mm-vl/ULM-R1.
Graph-Driven Multimodal Feature Learning Framework for Apparent Personality Assessment
Predicting personality traits automatically has become a challenging problem in computer vision. This paper introduces an innovative multimodal feature learning framework for personality analysis in short video clips. For visual processing, we construct a facial graph and design a Geo-based two-stream network incorporating an attention mechanism, leveraging both Graph Convolutional Networks (GCN) and Convolutional Neural Networks (CNN) to capture static facial expressions. Additionally, ResNet18 and VGGFace networks are employed to extract global scene and facial appearance features at the frame level. To capture dynamic temporal information, we integrate a BiGRU with a temporal attention module for extracting salient frame representations. To enhance the model's robustness, we incorporate the VGGish CNN for audio-based features and XLM-Roberta for text-based features. Finally, a multimodal channel attention mechanism is introduced to integrate different modalities, and a Multi-Layer Perceptron (MLP) regression model is used to predict personality traits. Experimental results confirm that our proposed framework surpasses existing state-of-the-art approaches in performance.
comment: The article contains serious scientific errors and cannot be corrected by updating the preprint
Human-Computer Interaction
Vid2Coach: Transforming How-To Videos into Task Assistants
People use videos to learn new recipes, exercises, and crafts. Such videos remain difficult for blind and low vision (BLV) people to follow as they rely on visual comparison. Our observations of visual rehabilitation therapists (VRTs) guiding BLV people to follow how-to videos revealed that VRTs provide both proactive and responsive support including detailed descriptions, non-visual workarounds, and progress feedback. We propose Vid2Coach, a system that transforms how-to videos into wearable camera-based assistants that provide accessible instructions and mixed-initiative feedback. From the video, Vid2Coach generates accessible instructions by augmenting narrated instructions with demonstration details and completion criteria for each step. It then uses retrieval-augmented-generation to extract relevant non-visual workarounds from BLV-specific resources. Vid2Coach then monitors user progress with a camera embedded in commercial smart glasses to provide context-aware instructions, proactive feedback, and answers to user questions. BLV participants (N=8) using Vid2Coach completed cooking tasks with 58.5\% fewer errors than when using their typical workflow and wanted to use Vid2Coach in their daily lives. Vid2Coach demonstrates an opportunity for AI visual assistance that strengthens rather than replaces non-visual expertise.
The Hidden Language of Harm: Examining the Role of Emojis in Harmful Online Communication and Content Moderation
Social media platforms have become central to modern communication, yet they also harbor offensive content that challenges platform safety and inclusivity. While prior research has primarily focused on textual indicators of offense, the role of emojis, ubiquitous visual elements in online discourse, remains underexplored. Emojis, despite being rarely offensive in isolation, can acquire harmful meanings through symbolic associations, sarcasm, and contextual misuse. In this work, we systematically examine emoji contributions to offensive Twitter messages, analyzing their distribution across offense categories and how users exploit emoji ambiguity. To address this, we propose an LLM-powered, multi-step moderation pipeline that selectively replaces harmful emojis while preserving the tweet's semantic intent. Human evaluations confirm our approach effectively reduces perceived offensiveness without sacrificing meaning. Our analysis also reveals heterogeneous effects across offense types, offering nuanced insights for online communication and emoji moderation.
comment: 18 pages, 3 figures
Towards Temporally Explainable Dysarthric Speech Clarity Assessment
Dysarthria, a motor speech disorder, affects intelligibility and requires targeted interventions for effective communication. In this work, we investigate automated mispronunciation feedback by collecting a dysarthric speech dataset from six speakers reading two passages, annotated by a speech therapist with temporal markers and mispronunciation descriptions. We design a three-stage framework for explainable mispronunciation evaluation: (1) overall clarity scoring, (2) mispronunciation localization, and (3) mispronunciation type classification. We systematically analyze pretrained Automatic Speech Recognition (ASR) models in each stage, assessing their effectiveness in dysarthric speech evaluation (Code available at: https://github.com/augmented-human-lab/interspeech25_speechtherapy, Supplementary webpage: https://apps.ahlab.org/interspeech25_speechtherapy/). Our findings offer clinically relevant insights for automating actionable feedback for pronunciation assessment, which could enable independent practice for patients and help therapists deliver more effective interventions.
comment: Accepted in Interspeech 2025. First two authors were equal contributors
Adaptive-VP: A Framework for LLM-Based Virtual Patients that Adapts to Trainees' Dialogue to Facilitate Nurse Communication Training ACL 2025
Effective communication training is essential to preparing nurses for high-quality patient care. While standardized patient (SP) simulations provide valuable experiential learning, they are often costly and inflexible. Virtual patient (VP) systems offer a scalable alternative, but most fail to adapt to the varying communication skills of trainees. In particular, when trainees respond ineffectively, VPs should escalate in hostility or become uncooperative--yet this level of adaptive interaction remains largely unsupported. To address this gap, we introduce Adaptive-VP, a VP dialogue generation framework that leverages large language models (LLMs) to dynamically adapt VP behavior based on trainee input. The framework features a pipeline for constructing clinically grounded yet flexible VP scenarios and a modular system for assessing trainee communication and adjusting VP responses in real time, while ensuring learner safety. We validated Adaptive-VP by simulating challenging patient conversations. Automated evaluation using a corpus from practicing nurses showed that our communication skill evaluation mechanism reflected real-world proficiency levels. Expert nurses further confirmed that Adaptive-VP produced more natural and realistic interactions than existing approaches, demonstrating its potential as a scalable and effective tool for nursing communication training.
comment: ACL 2025 Findings, 34 pages, 9 figures
Understanding Remote Communication between Grandparents and Grandchildren in Distributed Immigrant Families
Grandparent-grandchild bonds are crucial for both parties. Many immigrant families are geographically dispersed, and the grandparents and grandchildren need to rely on remote communication to maintain their relationships. In addition to geographical separation, grandparents and grandchildren in such families also face language and culture barriers during remote communication. The associated challenges and needs remain understudied as existing research primarily focuses on non-immigrant families or co-located immigrant families. To address this gap, we conducted interviews with six Chinese immigrant families in Canada. Our findings highlight unique challenges faced by immigrant families during remote communication, such as amplified language and cultural barriers due to geographic separation, and provide insights into how technology can better support remote communication. This work offers empirical knowledge about the communication needs of distributed immigrant families and provides directions for future research and design to support grandparent-grandchild remote communication in these families.
comment: Poster at Graphics Interface 2025
Modeling and Optimizing User Preferences in AI Copilots: A Comprehensive Survey and Taxonomy
AI copilots represent a new generation of AI-powered systems designed to assist users, particularly knowledge workers and developers, in complex, context-rich tasks. As these systems become more embedded in daily workflows, personalization has emerged as a critical factor for improving usability, effectiveness, and user satisfaction. Central to this personalization is preference optimization: the system's ability to detect, interpret, and align with individual user preferences. While prior work in intelligent assistants and optimization algorithms is extensive, their intersection within AI copilots remains underexplored. This survey addresses that gap by examining how user preferences are operationalized in AI copilots. We investigate how preference signals are sourced, modeled across different interaction stages, and refined through feedback loops. Building on a comprehensive literature review, we define the concept of an AI copilot and introduce a taxonomy of preference optimization techniques across pre-, mid-, and post-interaction phases. Each technique is evaluated in terms of advantages, limitations, and design implications. By consolidating fragmented efforts across AI personalization, human-AI interaction, and language model adaptation, this work offers both a unified conceptual foundation and a practical design perspective for building user-aligned, persona-aware AI copilots that support end-to-end adaptability and deployment.
The Many Challenges of Human-Like Agents in Virtual Game Environments AAMAS-2025
Human-like agents are an increasingly important topic in games and beyond. Believable non-player characters enhance the gaming experience by improving immersion and providing entertainment. They also offer players the opportunity to engage with AI entities that can function as opponents, teachers, or cooperating partners. Additionally, in games where bots are prohibited -- and even more so in non-game environments -- there is a need for methods capable of identifying whether digital interactions occur with bots or humans. This leads to two fundamental research questions: (1) how to model and implement human-like AI, and (2) how to measure its degree of human likeness. This article offers two contributions. The first one is a survey of the most significant challenges in implementing human-like AI in games (or any virtual environment featuring simulated agents, although this article specifically focuses on games). Thirteen such challenges, both conceptual and technical, are discussed in detail. The second is an empirical study performed in a tactical video game that addresses the research question: "Is it possible to distinguish human players from bots (AI agents) based on empirical data?" A machine-learning approach using a custom deep recurrent convolutional neural network is presented. We hypothesize that the more challenging it is to create human-like AI for a given game, the easier it becomes to develop a method for distinguishing humans from AI-driven players.
comment: In proceedings of the 24th International Conference on Autonomous Agents and Multiagent Systems (AAMAS-2025), pages 1996--2005, May 19-23, Detroit, Michigan, USA
Visualizationary: Automating Design Feedback for Visualization Designers using LLMs
Interactive visualization editors empower users to author visualizations without writing code, but do not provide guidance on the art and craft of effective visual communication. In this paper, we explore the potential of using an off-the-shelf large language models (LLMs) to provide actionable and customized feedback to visualization designers. Our implementation, VISUALIZATIONARY, demonstrates how ChatGPT can be used for this purpose through two key components: a preamble of visualization design guidelines and a suite of perceptual filters that extract salient metrics from a visualization image. We present findings from a longitudinal user study involving 13 visualization designers-6 novices, 4 intermediates, and 3 experts-who authored a new visualization from scratch over several days. Our results indicate that providing guidance in natural language via an LLM can aid even seasoned designers in refining their visualizations. All our supplemental materials are available at https://osf.io/v7hu8.
comment: Minor Revision Status, IEEE Transactions on Visualization and Computer Graphics
Dialogue Systems for Emotional Support via Value Reinforcement ACL 2025
Emotional support dialogue systems aim to reduce help-seekers' distress and help them overcome challenges. While human values$\unicode{x2013}$core beliefs that shape an individual's priorities$\unicode{x2013}$are increasingly emphasized in contemporary psychological therapy for their role in fostering internal transformation and long-term emotional well-being, their integration into emotional support systems remains underexplored. To bridge this gap, we present a value-driven method for training emotional support dialogue systems designed to reinforce positive values in seekers. Notably, our model identifies which values to reinforce at each turn and how to do so, by leveraging online support conversations from Reddit. We evaluate the method across support skills, seekers' emotional intensity, and value reinforcement. Our method consistently outperforms various baselines, effectively exploring and eliciting values from seekers. Additionally, leveraging crowd knowledge from Reddit significantly enhances its effectiveness. Therapists highlighted its ability to validate seekers' challenges and emphasize positive aspects of their situations$\unicode{x2013}$both crucial elements of value reinforcement. Our work, being the first to integrate value reinforcement into emotional support systems, demonstrates its promise and establishes a foundation for future research.
comment: This paper has been accepted for publication at ACL 2025
"Cold, Calculated, and Condescending": How AI Identifies and Explains Ableism Compared to Disabled People
People with disabilities (PwD) regularly encounter ableist hate and microaggressions online. These spaces are generally moderated by machine learning models, but little is known about how effectively AI models identify ableist speech and how well their judgments align with PwD. To investigate this, we curated a first-of-its-kind dataset of 200 social media comments targeted towards PwD, and prompted state-of-the art AI models (i.e., Toxicity Classifiers, LLMs) to score toxicity and ableism for each comment, and explain their reasoning. Then, we recruited 190 participants to similarly rate and explain the harm, and evaluate LLM explanations. Our mixed-methods analysis highlighted a major disconnect: AI underestimated toxicity compared to PwD ratings, while its ableism assessments were sporadic and varied. Although LLMs identified some biases, its explanations were flawed--they lacked nuance, made incorrect assumptions, and appeared judgmental instead of educational. Going forward, we discuss challenges and opportunities in designing moderation systems for ableism, and advocate for the involvement of intersectional disabled perspectives in AI.
Computer Vision and Pattern Recognition
Robust Adaptation of Foundation Models with Black-Box Visual Prompting CVPR'23
With a surge of large-scale pre-trained models, parameter-efficient transfer learning (PETL) of large models has garnered significant attention. While promising, they commonly rely on two optimistic assumptions: 1) full access to the parameters of a PTM, and 2) sufficient memory capacity to cache all intermediate activations for gradient computation. However, in most real-world applications, PTMs serve as black-box APIs or proprietary software without full parameter accessibility. Besides, it is hard to meet a large memory requirement for modern PTMs. This work proposes black-box visual prompting (BlackVIP), which efficiently adapts the PTMs without knowledge of their architectures or parameters. BlackVIP has two components: 1) Coordinator and 2) simultaneous perturbation stochastic approximation with gradient correction (SPSA-GC). The Coordinator designs input-dependent visual prompts, which allow the target PTM to adapt in the wild. SPSA-GC efficiently estimates the gradient of PTM to update Coordinator. Besides, we introduce a variant, BlackVIP-SE, which significantly reduces the runtime and computational cost of BlackVIP. Extensive experiments on 19 datasets demonstrate that BlackVIPs enable robust adaptation to diverse domains and tasks with minimal memory requirements. We further provide a theoretical analysis on the generalization of visual prompting methods by presenting their connection to the certified robustness of randomized smoothing, and presenting an empirical support for improved robustness.
comment: Extended work from the CVPR'23 paper: arxiv:2303.14773; This paper has been submitted to IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) for possible publication
Dyn-HaMR: Recovering 4D Interacting Hand Motion from a Dynamic Camera
We propose Dyn-HaMR, to the best of our knowledge, the first approach to reconstruct 4D global hand motion from monocular videos recorded by dynamic cameras in the wild. Reconstructing accurate 3D hand meshes from monocular videos is a crucial task for understanding human behaviour, with significant applications in augmented and virtual reality (AR/VR). However, existing methods for monocular hand reconstruction typically rely on a weak perspective camera model, which simulates hand motion within a limited camera frustum. As a result, these approaches struggle to recover the full 3D global trajectory and often produce noisy or incorrect depth estimations, particularly when the video is captured by dynamic or moving cameras, which is common in egocentric scenarios. Our Dyn-HaMR consists of a multi-stage, multi-objective optimization pipeline, that factors in (i) simultaneous localization and mapping (SLAM) to robustly estimate relative camera motion, (ii) an interacting-hand prior for generative infilling and to refine the interaction dynamics, ensuring plausible recovery under (self-)occlusions, and (iii) hierarchical initialization through a combination of state-of-the-art hand tracking methods. Through extensive evaluations on both in-the-wild and indoor datasets, we show that our approach significantly outperforms state-of-the-art methods in terms of 4D global mesh recovery. This establishes a new benchmark for hand motion reconstruction from monocular video with moving cameras. Our project page is at https://dyn-hamr.github.io/.
comment: Project page is available at https://dyn-hamr.github.io/
Open High-Resolution Satellite Imagery: The WorldStrat Dataset -- With Application to Super-Resolution NeurIPS 2022
Analyzing the planet at scale with satellite imagery and machine learning is a dream that has been constantly hindered by the cost of difficult-to-access highly-representative high-resolution imagery. To remediate this, we introduce here the WorldStrat dataset. The largest and most varied such publicly available dataset, at Airbus SPOT 6/7 satellites' high resolution of up to 1.5 m/pixel, empowered by European Space Agency's Phi-Lab as part of the ESA-funded QueryPlanet project, we curate nearly 10,000 sqkm of unique locations to ensure stratified representation of all types of land-use across the world: from agriculture to ice caps, from forests to multiple urbanization densities. We also enrich those with locations typically under-represented in ML datasets: sites of humanitarian interest, illegal mining sites, and settlements of persons at risk. We temporally-match each high-resolution image with multiple low-resolution images from the freely accessible lower-resolution Sentinel-2 satellites at 10 m/pixel. We accompany this dataset with an open-source Python package to: rebuild or extend the WorldStrat dataset, train and infer baseline algorithms, and learn with abundant tutorials, all compatible with the popular EO-learn toolbox. We hereby hope to foster broad-spectrum applications of ML to satellite imagery, and possibly develop from free public low-resolution Sentinel2 imagery the same power of analysis allowed by costly private high-resolution imagery. We illustrate this specific point by training and releasing several highly compute-efficient baselines on the task of Multi-Frame Super-Resolution. High-resolution Airbus imagery is CC BY-NC, while the labels and Sentinel2 imagery are CC BY, and the source code and pre-trained models under BSD. The dataset is available at https://zenodo.org/record/6810791 and the software package at https://github.com/worldstrat/worldstrat .
comment: Published in 36th Conference on Neural Information Processing Systems (NeurIPS 2022) Track on Datasets and Benchmarks
FastCAR: Fast Classification And Regression Multi-Task Learning via Task Consolidation for Modelling a Continuous Property Variable of Object Classes
FastCAR is a novel task consolidation approach in Multi-Task Learning (MTL) for a classification and a regression task, despite task heterogeneity with only subtle correlation. It addresses object classification and continuous property variable regression, a crucial use case in science and engineering. FastCAR involves a labeling transformation approach that can be used with a single-task regression network architecture. FastCAR outperforms traditional MTL model families, parametrized in the landscape of architecture and loss weighting schemes, when learning of both tasks are collectively considered (classification accuracy of 99.54\%, regression mean absolute percentage error of 2.4\%). The experiments performed used an Advanced Steel Property dataset https://github.com/fastcandr/Advanced-Steel-Property-Dataset contributed by us. The dataset comprises 4536 images of 224x224 pixels, annotated with object classes and hardness properties that take continuous values. With our designed approach, FastCAR achieves reduced latency and time efficiency.
WaterSplatting: Fast Underwater 3D Scene Reconstruction Using Gaussian Splatting
The underwater 3D scene reconstruction is a challenging, yet interesting problem with applications ranging from naval robots to VR experiences. The problem was successfully tackled by fully volumetric NeRF-based methods which can model both the geometry and the medium (water). Unfortunately, these methods are slow to train and do not offer real-time rendering. More recently, 3D Gaussian Splatting (3DGS) method offered a fast alternative to NeRFs. However, because it is an explicit method that renders only the geometry, it cannot render the medium and is therefore unsuited for underwater reconstruction. Therefore, we propose a novel approach that fuses volumetric rendering with 3DGS to handle underwater data effectively. Our method employs 3DGS for explicit geometry representation and a separate volumetric field (queried once per pixel) for capturing the scattering medium. This dual representation further allows the restoration of the scenes by removing the scattering medium. Our method outperforms state-of-the-art NeRF-based methods in rendering quality on the underwater SeaThru-NeRF dataset. Furthermore, it does so while offering real-time rendering performance, addressing the efficiency limitations of existing methods. Web: https://water-splatting.github.io
comment: Web: https://water-splatting.github.io
Normalized Attention Guidance: Universal Negative Guidance for Diffusion Model
Negative guidance -- explicitly suppressing unwanted attributes -- remains a fundamental challenge in diffusion models, particularly in few-step sampling regimes. While Classifier-Free Guidance (CFG) works well in standard settings, it fails under aggressive sampling step compression due to divergent predictions between positive and negative branches. We present Normalized Attention Guidance (NAG), an efficient, training-free mechanism that applies extrapolation in attention space with L1-based normalization and refinement. NAG restores effective negative guidance where CFG collapses while maintaining fidelity. Unlike existing approaches, NAG generalizes across architectures (UNet, DiT), sampling regimes (few-step, multi-step), and modalities (image, video), functioning as a \textit{universal} plug-in with minimal computational overhead. Through extensive experimentation, we demonstrate consistent improvements in text alignment (CLIP Score), fidelity (FID, PFID), and human-perceived quality (ImageReward). Our ablation studies validate each design component, while user studies confirm significant preference for NAG-guided outputs. As a model-agnostic inference-time approach requiring no retraining, NAG provides effortless negative guidance for all modern diffusion frameworks -- pseudocode in the Appendix!
Efficiency Bottlenecks of Convolutional Kolmogorov-Arnold Networks: A Comprehensive Scrutiny with ImageNet, AlexNet, LeNet and Tabular Classification
Algorithmic level developments like Convolutional Neural Networks, transformers, attention mechanism, Retrieval Augmented Generation and so on have changed Artificial Intelligence. Recent such development was observed by Kolmogorov-Arnold Networks that suggested to challenge the fundamental concept of a Neural Network, thus change Multilayer Perceptron, and Convolutional Neural Networks. They received a good reception in terms of scientific modeling, yet had some drawbacks in terms of efficiency. In this paper, we train Convolutional Kolmogorov Arnold Networks (CKANs) with the ImageNet-1k dataset with 1.3 million images, MNIST dataset with 60k images and a tabular biological science related MoA dataset and test the promise of CKANs in terms of FLOPS, Inference Time, number of trainable parameters and training time against the accuracy, precision, recall and f-1 score they produce against the standard industry practice on CNN models. We show that the CKANs perform fair yet slower than CNNs in small size dataset like MoA and MNIST but are not nearly comparable as the dataset gets larger and more complex like the ImageNet. The code implementation of this paper can be found on the link: https://github.com/ashimdahal/Study-of-Convolutional-Kolmogorov-Arnold-networks
CTRL-GS: Cascaded Temporal Residue Learning for 4D Gaussian Splatting CVPR 2025
Recently, Gaussian Splatting methods have emerged as a desirable substitute for prior Radiance Field methods for novel-view synthesis of scenes captured with multi-view images or videos. In this work, we propose a novel extension to 4D Gaussian Splatting for dynamic scenes. Drawing on ideas from residual learning, we hierarchically decompose the dynamic scene into a "video-segment-frame" structure, with segments dynamically adjusted by optical flow. Then, instead of directly predicting the time-dependent signals, we model the signal as the sum of video-constant values, segment-constant values, and frame-specific residuals, as inspired by the success of residual learning. This approach allows more flexible models that adapt to highly variable scenes. We demonstrate state-of-the-art visual quality and real-time rendering on several established datasets, with the greatest improvements on complex scenes with large movements, occlusions, and fine details, where current methods degrade most.
comment: Accepted to 4D Vision Workshop @ CVPR 2025
HarmoniCa: Harmonizing Training and Inference for Better Feature Caching in Diffusion Transformer Acceleration ICML 2025
Diffusion Transformers (DiTs) excel in generative tasks but face practical deployment challenges due to high inference costs. Feature caching, which stores and retrieves redundant computations, offers the potential for acceleration. Existing learning-based caching, though adaptive, overlooks the impact of the prior timestep. It also suffers from misaligned objectives--aligned predicted noise vs. high-quality images--between training and inference. These two discrepancies compromise both performance and efficiency. To this end, we harmonize training and inference with a novel learning-based caching framework dubbed HarmoniCa. It first incorporates Step-Wise Denoising Training (SDT) to ensure the continuity of the denoising process, where prior steps can be leveraged. In addition, an Image Error Proxy-Guided Objective (IEPO) is applied to balance image quality against cache utilization through an efficient proxy to approximate the image error. Extensive experiments across $8$ models, $4$ samplers, and resolutions from $256\times256$ to $2K$ demonstrate superior performance and speedup of our framework. For instance, it achieves over $40\%$ latency reduction (i.e., $2.07\times$ theoretical speedup) and improved performance on PixArt-$\alpha$. Remarkably, our image-free approach reduces training time by $25\%$ compared with the previous method. Our code is available at https://github.com/ModelTC/HarmoniCa.
comment: Accepted by ICML 2025
SpargeAttention: Accurate and Training-free Sparse Attention Accelerating Any Model Inference ICML
An efficient attention implementation is essential for large models due to its quadratic time complexity. Fortunately, attention commonly exhibits sparsity, i.e., many values in the attention map are near zero, allowing for the omission of corresponding computations. Many studies have utilized the sparse pattern to accelerate attention. However, most existing works focus on optimizing attention within specific models by exploiting certain sparse patterns of the attention map. A universal sparse attention that guarantees both the speedup and end-to-end performance of diverse models remains elusive. In this paper, we propose SpargeAttn, a universal sparse and quantized attention for any model. Our method uses a two-stage online filter: in the first stage, we rapidly and accurately predict the attention map, enabling the skip of some matrix multiplications in attention. In the second stage, we design an online softmax-aware filter that incurs no extra overhead and further skips some matrix multiplications. Experiments show that our method significantly accelerates diverse models, including language, image, and video generation, without sacrificing end-to-end metrics. The codes are available at https://github.com/thu-ml/SpargeAttn.
comment: @inproceedings{zhang2025spargeattn, title={Spargeattn: Accurate sparse attention accelerating any model inference}, author={Zhang, Jintao and Xiang, Chendong and Huang, Haofeng and Wei, Jia and Xi, Haocheng and Zhu, Jun and Chen, Jianfei}, booktitle={International Conference on Machine Learning (ICML)}, year={2025} }
SageAttention2: Efficient Attention with Thorough Outlier Smoothing and Per-thread INT4 Quantization ICML
Although quantization for linear layers has been widely used, its application to accelerate the attention process remains limited. To further enhance the efficiency of attention computation compared to SageAttention while maintaining precision, we propose SageAttention2, which utilizes significantly faster 4-bit matrix multiplication (Matmul) alongside additional precision-enhancing techniques. First, we propose to quantize matrices $(Q, K)$ to INT4 in a hardware-friendly thread-level granularity and quantize matrices $(\widetilde P, V)$ to FP8. Second, we propose a method to smooth $Q$, enhancing the accuracy of INT4 $QK^\top$. Third, we propose a two-level accumulation strategy for $\widetilde PV$ to enhance the accuracy of FP8 $\widetilde PV$. The operations per second (OPS) of SageAttention2 surpass FlashAttention2 and xformers by about 3x and 4.5x on RTX4090, respectively. Moreover, SageAttention2 matches the speed of FlashAttention3(fp8) on the Hopper GPUs, while delivering much higher accuracy. Comprehensive experiments confirm that our approach incurs negligible end-to-end metrics loss across diverse models, including those for language, image, and video generation. The code is available at https://github.com/thu-ml/SageAttention.
comment: @inproceedings{zhang2024sageattention2, title={Sageattention2: Efficient attention with thorough outlier smoothing and per-thread int4 quantization}, author={Zhang, Jintao and Huang, Haofeng and Zhang, Pengle and Wei, Jia and Zhu, Jun and Chen, Jianfei}, booktitle={International Conference on Machine Learning (ICML)}, year={2025} }
CRAVES: Controlling Robotic Arm with a Vision-based Economic System
Training a robotic arm to accomplish real-world tasks has been attracting increasing attention in both academia and industry. This work discusses the role of computer vision algorithms in this field. We focus on low-cost arms on which no sensors are equipped and thus all decisions are made upon visual recognition, e.g., real-time 3D pose estimation. This requires annotating a lot of training data, which is not only time-consuming but also laborious. In this paper, we present an alternative solution, which uses a 3D model to create a large number of synthetic data, trains a vision model in this virtual domain, and applies it to real-world images after domain adaptation. To this end, we design a semi-supervised approach, which fully leverages the geometric constraints among keypoints. We apply an iterative algorithm for optimization. Without any annotations on real images, our algorithm generalizes well and produces satisfying results on 3D pose estimation, which is evaluated on two real-world datasets. We also construct a vision-based control system for task accomplishment, for which we train a reinforcement learning agent in a virtual environment and apply it to the real-world. Moreover, our approach, with merely a 3D model being required, has the potential to generalize to other types of multi-rigid-body dynamic systems. Website: https://qiuwch.github.io/craves.ai. Code: https://github.com/zuoym15/craves.ai
comment: 10 pages, 6 figures
More Thinking, Less Seeing? Assessing Amplified Hallucination in Multimodal Reasoning Models
Test-time compute has empowered multimodal large language models to generate extended reasoning chains, yielding strong performance on tasks such as multimodal math reasoning. However, this improved reasoning ability often comes with increased hallucination: as generations become longer, models tend to drift away from image-grounded content and rely more heavily on language priors. Attention analysis shows that longer reasoning chains lead to reduced focus on visual inputs, which contributes to hallucination. To systematically study this phenomenon, we introduce RH-AUC, a metric that quantifies how a model's perception accuracy changes with reasoning length, allowing us to evaluate whether the model preserves visual grounding during reasoning. We also release RH-Bench, a diagnostic benchmark that spans a variety of multimodal tasks, designed to assess the trade-off between reasoning ability and hallucination. Our analysis reveals that (i) larger models typically achieve a better balance between reasoning and perception, and (ii) this balance is influenced more by the types and domains of training data than by its overall volume. These findings underscore the importance of evaluation frameworks that jointly consider both reasoning quality and perceptual fidelity.
ChartGalaxy: A Dataset for Infographic Chart Understanding and Generation
Infographic charts are a powerful medium for communicating abstract data by combining visual elements (e.g., charts, images) with textual information. However, their visual and structural richness poses challenges for large vision-language models (LVLMs), which are typically trained on plain charts. To bridge this gap, we introduce ChartGalaxy, a million-scale dataset designed to advance the understanding and generation of infographic charts. The dataset is constructed through an inductive process that identifies 75 chart types, 330 chart variations, and 68 layout templates from real infographic charts and uses them to create synthetic ones programmatically. We showcase the utility of this dataset through: 1) improving infographic chart understanding via fine-tuning, 2) benchmarking code generation for infographic charts, and 3) enabling example-based infographic chart generation. By capturing the visual and structural complexity of real design, ChartGalaxy provides a useful resource for enhancing multimodal reasoning and generation in LVLMs.
comment: 56 pages
Advancing Image Super-resolution Techniques in Remote Sensing: A Comprehensive Survey
Remote sensing image super-resolution (RSISR) is a crucial task in remote sensing image processing, aiming to reconstruct high-resolution (HR) images from their low-resolution (LR) counterparts. Despite the growing number of RSISR methods proposed in recent years, a systematic and comprehensive review of these methods is still lacking. This paper presents a thorough review of RSISR algorithms, covering methodologies, datasets, and evaluation metrics. We provide an in-depth analysis of RSISR methods, categorizing them into supervised, unsupervised, and quality evaluation approaches, to help researchers understand current trends and challenges. Our review also discusses the strengths, limitations, and inherent challenges of these techniques. Notably, our analysis reveals significant limitations in existing methods, particularly in preserving fine-grained textures and geometric structures under large-scale degradation. Based on these findings, we outline future research directions, highlighting the need for domain-specific architectures and robust evaluation protocols to bridge the gap between synthetic and real-world RSISR scenarios.
comment: A survey of Remote Sensing Super-resolution Techniques
RF4D:Neural Radar Fields for Novel View Synthesis in Outdoor Dynamic Scenes
Neural fields (NFs) have demonstrated remarkable performance in scene reconstruction, powering various tasks such as novel view synthesis. However, existing NF methods relying on RGB or LiDAR inputs often exhibit severe fragility to adverse weather, particularly when applied in outdoor scenarios like autonomous driving. In contrast, millimeter-wave radar is inherently robust to environmental changes, while unfortunately, its integration with NFs remains largely underexplored. Besides, as outdoor driving scenarios frequently involve moving objects, making spatiotemporal modeling essential for temporally consistent novel view synthesis. To this end, we introduce RF4D, a radar-based neural field framework specifically designed for novel view synthesis in outdoor dynamic scenes. RF4D explicitly incorporates temporal information into its representation, significantly enhancing its capability to model moving objects. We further introduce a feature-level flow module that predicts latent temporal offsets between adjacent frames, enforcing temporal coherence in dynamic scene modeling. Moreover, we propose a radar-specific power rendering formulation closely aligned with radar sensing physics, improving synthesis accuracy and interoperability. Extensive experiments on public radar datasets demonstrate the superior performance of RF4D in terms of radar measurement synthesis quality and occupancy estimation accuracy, achieving especially pronounced improvements in dynamic outdoor scenarios.
AVadCLIP: Audio-Visual Collaboration for Robust Video Anomaly Detection
With the increasing adoption of video anomaly detection in intelligent surveillance domains, conventional visual-based detection approaches often struggle with information insufficiency and high false-positive rates in complex environments. To address these limitations, we present a novel weakly supervised framework that leverages audio-visual collaboration for robust video anomaly detection. Capitalizing on the exceptional cross-modal representation learning capabilities of Contrastive Language-Image Pretraining (CLIP) across visual, audio, and textual domains, our framework introduces two major innovations: an efficient audio-visual fusion that enables adaptive cross-modal integration through lightweight parametric adaptation while maintaining the frozen CLIP backbone, and a novel audio-visual prompt that dynamically enhances text embeddings with key multimodal information based on the semantic correlation between audio-visual features and textual labels, significantly improving CLIP's generalization for the video anomaly detection task. Moreover, to enhance robustness against modality deficiency during inference, we further develop an uncertainty-driven feature distillation module that synthesizes audio-visual representations from visual-only inputs. This module employs uncertainty modeling based on the diversity of audio-visual features to dynamically emphasize challenging features during the distillation process. Our framework demonstrates superior performance across multiple benchmarks, with audio integration significantly boosting anomaly detection accuracy in various scenarios. Notably, with unimodal data enhanced by uncertainty-driven distillation, our approach consistently outperforms current unimodal VAD methods.
comment: 12 pages, 6 figures, 9 tables. This work has been submitted to the IEEE for possible publication
Subpixel Edge Localization Based on Converted Intensity Summation under Stable Edge Region
To satisfy the rigorous requirements of precise edge detection in critical high-accuracy measurements, this article proposes a series of efficient approaches for localizing subpixel edge. In contrast to the fitting based methods, which consider pixel intensity as a sample value derived from a specific model. We take an innovative perspective by assuming that the intensity at the pixel level can be interpreted as a local integral mapping in the intensity model for subpixel localization. Consequently, we propose a straightforward subpixel edge localization method called Converted Intensity Summation (CIS). To address the limited robustness associated with focusing solely on the localization of individual edge points, a Stable Edge Region (SER) based algorithm is presented to alleviate local interference near edges. Given the observation that the consistency of edge statistics exists in the local region, the algorithm seeks correlated stable regions in the vicinity of edges to facilitate the acquisition of robust parameters and achieve higher precision positioning. In addition, an edge complement method based on extension-adjustment is also introduced to rectify the irregular edges through the efficient migration of SERs. A large number of experiments are conducted on both synthetic and real image datasets which cover common edge patterns as well as various real scenarios such as industrial PCB images, remote sensing and medical images. It is verified that CIS can achieve higher accuracy than the state-of-the-art method, while requiring less execution time. Moreover, by integrating SER into CIS, the proposed algorithm demonstrates excellent performance in further improving the anti-interference capability and positioning accuracy.
StarVector: Generating Scalable Vector Graphics Code from Images and Text
Scalable Vector Graphics (SVGs) are vital for modern image rendering due to their scalability and versatility. Previous SVG generation methods have focused on curve-based vectorization, lacking semantic understanding, often producing artifacts, and struggling with SVG primitives beyond path curves. To address these issues, we introduce StarVector, a multimodal large language model for SVG generation. It performs image vectorization by understanding image semantics and using SVG primitives for compact, precise outputs. Unlike traditional methods, StarVector works directly in the SVG code space, leveraging visual understanding to apply accurate SVG primitives. To train StarVector, we create SVG-Stack, a diverse dataset of 2M samples that enables generalization across vectorization tasks and precise use of primitives like ellipses, polygons, and text. We address challenges in SVG evaluation, showing that pixel-based metrics like MSE fail to capture the unique qualities of vector graphics. We introduce SVG-Bench, a benchmark across 10 datasets, and 3 tasks: Image-to-SVG, Text-to-SVG generation, and diagram generation. Using this setup, StarVector achieves state-of-the-art performance, producing more compact and semantically rich SVGs.
TSD-SR: One-Step Diffusion with Target Score Distillation for Real-World Image Super-Resolution
Pre-trained text-to-image diffusion models are increasingly applied to real-world image super-resolution (Real-ISR) task. Given the iterative refinement nature of diffusion models, most existing approaches are computationally expensive. While methods such as SinSR and OSEDiff have emerged to condense inference steps via distillation, their performance in image restoration or details recovery is not satisfied. To address this, we propose TSD-SR, a novel distillation framework specifically designed for real-world image super-resolution, aiming to construct an efficient and effective one-step model. We first introduce the Target Score Distillation, which leverages the priors of diffusion models and real image references to achieve more realistic image restoration. Secondly, we propose a Distribution-Aware Sampling Module to make detail-oriented gradients more readily accessible, addressing the challenge of recovering fine details. Extensive experiments demonstrate that our TSD-SR has superior restoration results (most of the metrics perform the best) and the fastest inference speed (e.g. 40 times faster than SeeSR) compared to the past Real-ISR approaches based on pre-trained diffusion priors.
Co-Reinforcement Learning for Unified Multimodal Understanding and Generation
This paper presents a pioneering exploration of reinforcement learning (RL) via group relative policy optimization for unified multimodal large language models (ULMs), aimed at simultaneously reinforcing generation and understanding capabilities. Through systematic pilot studies, we uncover the significant potential of ULMs to enable the synergistic co-evolution of dual capabilities within a shared policy optimization framework. Building on this insight, we introduce CoRL, a co-reinforcement learning framework comprising a unified RL stage for joint optimization and a refined RL stage for task-specific enhancement. With the proposed CoRL, our resulting model, ULM-R1, achieves average improvements of 7% on three text-to-image generation datasets and 23% on nine multimodal understanding benchmarks. These results demonstrate the effectiveness of CoRL and highlight the substantial benefit of reinforcement learning in facilitating cross-task synergy and optimization for ULMs. Code is available at https://github.com/mm-vl/ULM-R1.
QuickVideo: Real-Time Long Video Understanding with System Algorithm Co-Design
Long-video understanding has emerged as a crucial capability in real-world applications such as video surveillance, meeting summarization, educational lecture analysis, and sports broadcasting. However, it remains computationally prohibitive for VideoLLMs, primarily due to two bottlenecks: 1) sequential video decoding, the process of converting the raw bit stream to RGB frames can take up to a minute for hour-long video inputs, and 2) costly prefilling of up to several million tokens for LLM inference, resulting in high latency and memory use. To address these challenges, we propose QuickVideo, a system-algorithm co-design that substantially accelerates long-video understanding to support real-time downstream applications. It comprises three key innovations: QuickDecoder, a parallelized CPU-based video decoder that achieves 2-3 times speedup by splitting videos into keyframe-aligned intervals processed concurrently; QuickPrefill, a memory-efficient prefilling method using KV-cache pruning to support more frames with less GPU memory; and an overlapping scheme that overlaps CPU video decoding with GPU inference. Together, these components infernece time reduce by a minute on long video inputs, enabling scalable, high-quality video understanding even on limited hardware. Experiments show that QuickVideo generalizes across durations and sampling rates, making long video processing feasible in practice.
comment: 19 pages, 6 figures, 2 tables
Autoregressive Models in Vision: A Survey
Autoregressive modeling has been a huge success in the field of natural language processing (NLP). Recently, autoregressive models have emerged as a significant area of focus in computer vision, where they excel in producing high-quality visual content. Autoregressive models in NLP typically operate on subword tokens. However, the representation strategy in computer vision can vary in different levels, i.e., pixel-level, token-level, or scale-level, reflecting the diverse and hierarchical nature of visual data compared to the sequential structure of language. This survey comprehensively examines the literature on autoregressive models applied to vision. To improve readability for researchers from diverse research backgrounds, we start with preliminary sequence representation and modeling in vision. Next, we divide the fundamental frameworks of visual autoregressive models into three general sub-categories, including pixel-based, token-based, and scale-based models based on the representation strategy. We then explore the interconnections between autoregressive models and other generative models. Furthermore, we present a multifaceted categorization of autoregressive models in computer vision, including image generation, video generation, 3D generation, and multimodal generation. We also elaborate on their applications in diverse domains, including emerging domains such as embodied AI and 3D medical AI, with about 250 related references. Finally, we highlight the current challenges to autoregressive models in vision with suggestions about potential research directions. We have also set up a Github repository to organize the papers included in this survey at: https://github.com/ChaofanTao/Autoregressive-Models-in-Vision-Survey.
comment: The paper is accepted by TMLR
PHT-CAD: Efficient CAD Parametric Primitive Analysis with Progressive Hierarchical Tuning
Computer-Aided Design (CAD) plays a pivotal role in industrial manufacturing, yet 2D Parametric Primitive Analysis (PPA) remains underexplored due to two key challenges: structural constraint reasoning and advanced semantic understanding. To tackle these challenges, we first propose an Efficient Hybrid Parametrization (EHP) for better representing 2D engineering drawings. EHP contains four types of atomic component i.e., point, line, circle, and arc). Additionally, we propose PHT-CAD, a novel 2D PPA framework that harnesses the modality alignment and reasoning capabilities of Vision-Language Models (VLMs) for precise engineering drawing analysis. In PHT-CAD, we introduce four dedicated regression heads to predict corresponding atomic components. To train PHT-CAD, a three-stage training paradigm Progressive Hierarchical Tuning (PHT) is proposed to progressively enhance PHT-CAD's capability to perceive individual primitives, infer structural constraints, and align annotation layers with their corresponding geometric representations. Considering that existing datasets lack complete annotation layers and real-world engineering drawings, we introduce ParaCAD, the first large-scale benchmark that explicitly integrates both the geometric and annotation layers. ParaCAD comprises over 10 million annotated drawings for training and 3,000 real-world industrial drawings with complex topological structures and physical constraints for test. Extensive experiments demonstrate the effectiveness of PHT-CAD and highlight the practical significance of ParaCAD in advancing 2D PPA research.
ChatReID: Open-ended Interactive Person Retrieval via Hierarchical Progressive Tuning for Vision Language Models
Person re-identification (Re-ID) is a crucial task in computer vision, aiming to recognize individuals across non-overlapping camera views. While recent advanced vision-language models (VLMs) excel in logical reasoning and multi-task generalization, their applications in Re-ID tasks remain limited. They either struggle to perform accurate matching based on identity-relevant features or assist image-dominated branches as auxiliary semantics. In this paper, we propose a novel framework ChatReID, that shifts the focus towards a text-side-dominated retrieval paradigm, enabling flexible and interactive re-identification. To integrate the reasoning abilities of language models into Re-ID pipelines, We first present a large-scale instruction dataset, which contains more than 8 million prompts to promote the model fine-tuning. Next. we introduce a hierarchical progressive tuning strategy, which endows Re-ID ability through three stages of tuning, i.e., from person attribute understanding to fine-grained image retrieval and to multi-modal task reasoning. Extensive experiments across ten popular benchmarks demonstrate that ChatReID outperforms existing methods, achieving state-of-the-art performance in all Re-ID tasks. More experiments demonstrate that ChatReID not only has the ability to recognize fine-grained details but also to integrate them into a coherent reasoning process.
One RL to See Them All: Visual Triple Unified Reinforcement Learning
Reinforcement learning (RL) has significantly advanced the reasoning capabilities of vision-language models (VLMs). However, the use of RL beyond reasoning tasks remains largely unexplored, especially for perceptionintensive tasks like object detection and grounding. We propose V-Triune, a Visual Triple Unified Reinforcement Learning system that enables VLMs to jointly learn visual reasoning and perception tasks within a single training pipeline. V-Triune comprises triple complementary components: Sample-Level Data Formatting (to unify diverse task inputs), Verifier-Level Reward Computation (to deliver custom rewards via specialized verifiers) , and Source-Level Metric Monitoring (to diagnose problems at the data-source level). We further introduce a novel Dynamic IoU reward, which provides adaptive, progressive, and definite feedback for perception tasks handled by V-Triune. Our approach is instantiated within off-the-shelf RL training framework using open-source 7B and 32B backbone models. The resulting model, dubbed Orsta (One RL to See Them All), demonstrates consistent improvements across both reasoning and perception tasks. This broad capability is significantly shaped by its training on a diverse dataset, constructed around four representative visual reasoning tasks (Math, Puzzle, Chart, and Science) and four visual perception tasks (Grounding, Detection, Counting, and OCR). Subsequently, Orsta achieves substantial gains on MEGA-Bench Core, with improvements ranging from +2.1 to an impressive +14.1 across its various 7B and 32B model variants, with performance benefits extending to a wide range of downstream tasks. These results highlight the effectiveness and scalability of our unified RL approach for VLMs. The V-Triune system, along with the Orsta models, is publicly available at https://github.com/MiniMax-AI.
comment: Technical Report
Exploring Compositional Generalization of Multimodal LLMs for Medical Imaging
Medical imaging provides essential visual insights for diagnosis, and multimodal large language models (MLLMs) are increasingly utilized for its analysis due to their strong generalization capabilities; however, the underlying factors driving this generalization remain unclear. Current research suggests that multi-task training outperforms single-task as different tasks can benefit each other, but they often overlook the internal relationships within these tasks. To analyze this phenomenon, we attempted to employ compositional generalization (CG), which refers to the models' ability to understand novel combinations by recombining learned elements, as a guiding framework. Since medical images can be precisely defined by Modality, Anatomical area, and Task, naturally providing an environment for exploring CG, we assembled 106 medical datasets to create Med-MAT for comprehensive experiments. The experiments confirmed that MLLMs can use CG to understand unseen medical images and identified CG as one of the main drivers of the generalization observed in multi-task training. Additionally, further studies demonstrated that CG effectively supports datasets with limited data and confirmed that MLLMs can achieve CG across classification and detection tasks, underscoring its broader generalization potential. Med-MAT is available at https://github.com/FreedomIntelligence/Med-MAT.
Alignment is All You Need: A Training-free Augmentation Strategy for Pose-guided Video Generation ICML 2024
Character animation is a transformative field in computer graphics and vision, enabling dynamic and realistic video animations from static images. Despite advancements, maintaining appearance consistency in animations remains a challenge. Our approach addresses this by introducing a training-free framework that ensures the generated video sequence preserves the reference image's subtleties, such as physique and proportions, through a dual alignment strategy. We decouple skeletal and motion priors from pose information, enabling precise control over animation generation. Our method also improves pixel-level alignment for conditional control from the reference character, enhancing the temporal consistency and visual cohesion of animations. Our method significantly enhances the quality of video generation without the need for large datasets or expensive computational resources.
comment: Accepted to CVG@ICML 2024
An Interpretable Representation Learning Approach for Diffusion Tensor Imaging
Diffusion Tensor Imaging (DTI) tractography offers detailed insights into the structural connectivity of the brain, but presents challenges in effective representation and interpretation in deep learning models. In this work, we propose a novel 2D representation of DTI tractography that encodes tract-level fractional anisotropy (FA) values into a 9x9 grayscale image. This representation is processed through a Beta-Total Correlation Variational Autoencoder with a Spatial Broadcast Decoder to learn a disentangled and interpretable latent embedding. We evaluate the quality of this embedding using supervised and unsupervised representation learning strategies, including auxiliary classification, triplet loss, and SimCLR-based contrastive learning. Compared to the 1D Group deep neural network (DNN) baselines, our approach improves the F1 score in a downstream sex classification task by 15.74% and shows a better disentanglement than the 3D representation.
comment: Accepted for publication at MIDL 2025
M$^3$-VOS: Multi-Phase, Multi-Transition, and Multi-Scenery Video Object Segmentation
Intelligent robots need to interact with diverse objects across various environments. The appearance and state of objects frequently undergo complex transformations depending on the object properties, e.g., phase transitions. However, in the vision community, segmenting dynamic objects with phase transitions is overlooked. In light of this, we introduce the concept of phase in segmentation, which categorizes real-world objects based on their visual characteristics and potential morphological and appearance changes. Then, we present a new benchmark, Multi-Phase, Multi-Transition, and Multi-Scenery Video Object Segmentation (M$^3$-VOS), to verify the ability of models to understand object phases, which consists of 479 high-resolution videos spanning over 10 distinct everyday scenarios. It provides dense instance mask annotations that capture both object phases and their transitions. We evaluate state-of-the-art methods on M$^3$-VOS, yielding several key insights. Notably, current appearance-based approaches show significant room for improvement when handling objects with phase transitions. The inherent changes in disorder suggest that the predictive performance of the forward entropy-increasing process can be improved through a reverse entropy-reducing process. These findings lead us to propose ReVOS, a new plug-andplay model that improves its performance by reversal refinement. Our data and code will be publicly available at https://zixuan-chen.github.io/M-cube-VOS.github.io/.
comment: 18 pages, 12 figures
Efficient Open Set Single Image Test Time Adaptation of Vision Language Models
Adapting models to dynamic, real-world environments characterized by shifting data distributions and unseen test scenarios is a critical challenge in deep learning. In this paper, we consider a realistic and challenging Test-Time Adaptation setting, where a model must continuously adapt to test samples that arrive sequentially, one at a time, while distinguishing between known and unknown classes. Current Test-Time Adaptation methods operate under closed-set assumptions or batch processing, differing from the real-world open-set scenarios. We address this limitation by establishing a comprehensive benchmark for {\em Open-set Single-image Test-Time Adaptation using Vision-Language Models}. Furthermore, we propose ROSITA, a novel framework that leverages dynamically updated feature banks to identify reliable test samples and employs a contrastive learning objective to improve the separation between known and unknown classes. Our approach effectively adapts models to domain shifts for known classes while rejecting unfamiliar samples. Extensive experiments across diverse real-world benchmarks demonstrate that ROSITA sets a new state-of-the-art in open-set TTA, achieving both strong performance and computational efficiency for real-time deployment. Our code can be found at the project site https://manogna-s.github.io/rosita/
comment: Accepted at TMLR
Don't Let Your Robot be Harmful: Responsible Robotic Manipulation via Safety-as-Policy
Unthinking execution of human instructions in robotic manipulation can lead to severe safety risks, such as poisonings, fires, and even explosions. In this paper, we present responsible robotic manipulation, which requires robots to consider potential hazards in the real-world environment while completing instructions and performing complex operations safely and efficiently. However, such scenarios in real world are variable and risky for training. To address this challenge, we propose Safety-as-policy, which includes (i) a world model to automatically generate scenarios containing safety risks and conduct virtual interactions, and (ii) a mental model to infer consequences with reflections and gradually develop the cognition of safety, allowing robots to accomplish tasks while avoiding dangers. Additionally, we create the SafeBox synthetic dataset, which includes one hundred responsible robotic manipulation tasks with different safety risk scenarios and instructions, effectively reducing the risks associated with real-world experiments. Experiments demonstrate that Safety-as-policy can avoid risks and efficiently complete tasks in both synthetic dataset and real-world experiments, significantly outperforming baseline methods. Our SafeBox dataset shows consistent evaluation results with real-world scenarios, serving as a safe and effective benchmark for future research.
Harnessing PDF Data for Improving Japanese Large Multimodal Models ACL2025
Large Multimodal Models (LMMs) have demonstrated strong performance in English, but their effectiveness in Japanese remains limited due to the lack of high-quality training data. Current Japanese LMMs often rely on translated English datasets, restricting their ability to capture Japan-specific cultural knowledge. To address this, we explore the potential of Japanese PDF data as a training resource, an area that remains largely underutilized. We introduce a fully automated pipeline that leverages pretrained models to extract image-text pairs from PDFs through layout analysis, OCR, and vision-language pairing, removing the need for manual annotation. Additionally, we construct instruction data from extracted image-text pairs to enrich the training data. To evaluate the effectiveness of PDF-derived data, we train Japanese LMMs and assess their performance on the Japanese LMM Benchmark. Our results demonstrate substantial improvements, with performance gains ranging from 2.1% to 13.8% on Heron-Bench. Further analysis highlights the impact of PDF-derived data on various factors, such as model size and language models, reinforcing its value as a multimodal resource for Japanese LMMs.
comment: Accepted to ACL2025 Findings. Code: https://github.com/ku21fan/PDF-JLMM
CLEAR: Character Unlearning in Textual and Visual Modalities
Machine Unlearning (MU) is critical for removing private or hazardous information from deep learning models. While MU has advanced significantly in unimodal (text or vision) settings, multimodal unlearning (MMU) remains underexplored due to the lack of open benchmarks for evaluating cross-modal data removal. To address this gap, we introduce CLEAR, the first open-source benchmark designed specifically for MMU. CLEAR contains 200 fictitious individuals and 3,700 images linked with corresponding question-answer pairs, enabling a thorough evaluation across modalities. We conduct a comprehensive analysis of 11 MU methods (e.g., SCRUB, gradient ascent, DPO) across four evaluation sets, demonstrating that jointly unlearning both modalities outperforms single-modality approaches. The dataset is available at https://huggingface.co/datasets/therem/CLEAR
Graph-Driven Multimodal Feature Learning Framework for Apparent Personality Assessment
Predicting personality traits automatically has become a challenging problem in computer vision. This paper introduces an innovative multimodal feature learning framework for personality analysis in short video clips. For visual processing, we construct a facial graph and design a Geo-based two-stream network incorporating an attention mechanism, leveraging both Graph Convolutional Networks (GCN) and Convolutional Neural Networks (CNN) to capture static facial expressions. Additionally, ResNet18 and VGGFace networks are employed to extract global scene and facial appearance features at the frame level. To capture dynamic temporal information, we integrate a BiGRU with a temporal attention module for extracting salient frame representations. To enhance the model's robustness, we incorporate the VGGish CNN for audio-based features and XLM-Roberta for text-based features. Finally, a multimodal channel attention mechanism is introduced to integrate different modalities, and a Multi-Layer Perceptron (MLP) regression model is used to predict personality traits. Experimental results confirm that our proposed framework surpasses existing state-of-the-art approaches in performance.
comment: The article contains serious scientific errors and cannot be corrected by updating the preprint
GAME: Learning Multimodal Interactions via Graph Structures for Personality Trait Estimation
Apparent personality analysis from short videos poses significant chal-lenges due to the complex interplay of visual, auditory, and textual cues. In this paper, we propose GAME, a Graph-Augmented Multimodal Encoder designed to robustly model and fuse multi-source features for automatic personality prediction. For the visual stream, we construct a facial graph and introduce a dual-branch Geo Two-Stream Network, which combines Graph Convolutional Networks (GCNs) and Convolutional Neural Net-works (CNNs) with attention mechanisms to capture both structural and appearance-based facial cues. Complementing this, global context and iden-tity features are extracted using pretrained ResNet18 and VGGFace back-bones. To capture temporal dynamics, frame-level features are processed by a BiGRU enhanced with temporal attention modules. Meanwhile, audio representations are derived from the VGGish network, and linguistic se-mantics are captured via the XLM-Roberta transformer. To achieve effective multimodal integration, we propose a Channel Attention-based Fusion module, followed by a Multi-Layer Perceptron (MLP) regression head for predicting personality traits. Extensive experiments show that GAME con-sistently outperforms existing methods across multiple benchmarks, vali-dating its effectiveness and generalizability.
comment: The article contains serious scientific errors and cannot be corrected by updating the preprint
IrrMap: A Large-Scale Comprehensive Dataset for Irrigation Method Mapping
We introduce IrrMap, the first large-scale dataset (1.1 million patches) for irrigation method mapping across regions. IrrMap consists of multi-resolution satellite imagery from LandSat and Sentinel, along with key auxiliary data such as crop type, land use, and vegetation indices. The dataset spans 1,687,899 farms and 14,117,330 acres across multiple western U.S. states from 2013 to 2023, providing a rich and diverse foundation for irrigation analysis and ensuring geospatial alignment and quality control. The dataset is ML-ready, with standardized 224x224 GeoTIFF patches, the multiple input modalities, carefully chosen train-test-split data, and accompanying dataloaders for seamless deep learning model training andbenchmarking in irrigation mapping. The dataset is also accompanied by a complete pipeline for dataset generation, enabling researchers to extend IrrMap to new regions for irrigation data collection or adapt it with minimal effort for other similar applications in agricultural and geospatial analysis. We also analyze the irrigation method distribution across crop groups, spatial irrigation patterns (using Shannon diversity indices), and irrigated area variations for both LandSat and Sentinel, providing insights into regional and resolution-based differences. To promote further exploration, we openly release IrrMap, along with the derived datasets, benchmark models, and pipeline code, through a GitHub repository: https://github.com/Nibir088/IrrMap and Data repository: https://huggingface.co/Nibir/IrrMap, providing comprehensive documentation and implementation details.
Beyond Face Swapping: A Diffusion-Based Digital Human Benchmark for Multimodal Deepfake Detection
In recent years, the explosive advancement of deepfake technology has posed a critical and escalating threat to public security: diffusion-based digital human generation. Unlike traditional face manipulation methods, such models can generate highly realistic videos with consistency via multimodal control signals. Their flexibility and covertness pose severe challenges to existing detection strategies. To bridge this gap, we introduce DigiFakeAV, the new large-scale multimodal digital human forgery dataset based on diffusion models. Leveraging five of the latest digital human generation methods and a voice cloning method, we systematically construct a dataset comprising 60,000 videos (8.4 million frames), covering multiple nationalities, skin tones, genders, and real-world scenarios, significantly enhancing data diversity and realism. User studies demonstrate that the misrecognition rate by participants for DigiFakeAV reaches as high as 68%. Moreover, the substantial performance degradation of existing detection models on our dataset further highlights its challenges. To address this problem, we propose DigiShield, an effective detection baseline based on spatiotemporal and cross-modal fusion. By jointly modeling the 3D spatiotemporal features of videos and the semantic-acoustic features of audio, DigiShield achieves state-of-the-art (SOTA) performance on the DigiFakeAV and shows strong generalization on other datasets.
PADetBench: Towards Benchmarking Physical Attacks against Object Detection
Physical attacks against object detection have gained increasing attention due to their significant practical implications. However, conducting physical experiments is extremely time-consuming and labor-intensive. Moreover, physical dynamics and cross-domain transformation are challenging to strictly regulate in the real world, leading to unaligned evaluation and comparison, severely hindering the development of physically robust models. To accommodate these challenges, we explore utilizing realistic simulation to thoroughly and rigorously benchmark physical attacks with fairness under controlled physical dynamics and cross-domain transformation. This resolves the problem of capturing identical adversarial images that cannot be achieved in the real world. Our benchmark includes 20 physical attack methods, 48 object detectors, comprehensive physical dynamics, and evaluation metrics. We also provide end-to-end pipelines for dataset generation, detection, evaluation, and further analysis. In addition, we perform 8064 groups of evaluation based on our benchmark, which includes both overall evaluation and further detailed ablation studies for controlled physical dynamics. Through these experiments, we provide in-depth analyses of physical attack performance and physical adversarial robustness, draw valuable observations, and discuss potential directions for future research. Codebase: https://github.com/JiaweiLian/Benchmarking_Physical_Attack
View-Invariant Policy Learning via Zero-Shot Novel View Synthesis
Large-scale visuomotor policy learning is a promising approach toward developing generalizable manipulation systems. Yet, policies that can be deployed on diverse embodiments, environments, and observational modalities remain elusive. In this work, we investigate how knowledge from large-scale visual data of the world may be used to address one axis of variation for generalizable manipulation: observational viewpoint. Specifically, we study single-image novel view synthesis models, which learn 3D-aware scene-level priors by rendering images of the same scene from alternate camera viewpoints given a single input image. For practical application to diverse robotic data, these models must operate zero-shot, performing view synthesis on unseen tasks and environments. We empirically analyze view synthesis models within a simple data-augmentation scheme that we call View Synthesis Augmentation (VISTA) to understand their capabilities for learning viewpoint-invariant policies from single-viewpoint demonstration data. Upon evaluating the robustness of policies trained with our method to out-of-distribution camera viewpoints, we find that they outperform baselines in both simulated and real-world manipulation tasks. Videos and additional visualizations are available at https://s-tian.github.io/projects/vista.
comment: Accepted to CoRL 2024
Towards Modality Generalization: A Benchmark and Prospective Analysis
Multi-modal learning has achieved remarkable success by integrating information from various modalities, achieving superior performance in tasks like recognition and retrieval compared to uni-modal approaches. However, real-world scenarios often present novel modalities that are unseen during training due to resource and privacy constraints, a challenge current methods struggle to address. This paper introduces Modality Generalization (MG), which focuses on enabling models to generalize to unseen modalities. We define two cases: Weak MG, where both seen and unseen modalities can be mapped into a joint embedding space via existing perceptors, and Strong MG, where no such mappings exist. To facilitate progress, we propose a comprehensive benchmark featuring multi-modal algorithms and adapt existing methods that focus on generalization. Extensive experiments highlight the complexity of MG, exposing the limitations of existing methods and identifying key directions for future research. Our work provides a foundation for advancing robust and adaptable multi-modal models, enabling them to handle unseen modalities in realistic scenarios.
comment: under-review
InfoChartQA: A Benchmark for Multimodal Question Answering on Infographic Charts
Understanding infographic charts with design-driven visual elements (e.g., pictograms, icons) requires both visual recognition and reasoning, posing challenges for multimodal large language models (MLLMs). However, existing visual-question answering benchmarks fall short in evaluating these capabilities of MLLMs due to the lack of paired plain charts and visual-element-based questions. To bridge this gap, we introduce InfoChartQA, a benchmark for evaluating MLLMs on infographic chart understanding. It includes 5,642 pairs of infographic and plain charts, each sharing the same underlying data but differing in visual presentations. We further design visual-element-based questions to capture their unique visual designs and communicative intent. Evaluation of 20 MLLMs reveals a substantial performance decline on infographic charts, particularly for visual-element-based questions related to metaphors. The paired infographic and plain charts enable fine-grained error analysis and ablation studies, which highlight new opportunities for advancing MLLMs in infographic chart understanding. We release InfoChartQA at https://github.com/CoolDawnAnt/InfoChartQA.
FMNet: Frequency-Assisted Mamba-Like Linear Attention Network for Camouflaged Object Detection
Camouflaged Object Detection (COD) is challenging due to the strong similarity between camouflaged objects and their surroundings, which complicates identification. Existing methods mainly rely on spatial local features, failing to capture global information, while Transformers increase computational costs. To address this, the Frequency-Assisted Mamba-Like Linear Attention Network (FMNet) is proposed, which leverages frequency-domain learning to efficiently capture global features and mitigate ambiguity between objects and the background. FMNet introduces the Multi-Scale Frequency-Assisted Mamba-Like Linear Attention (MFM) module, integrating frequency and spatial features through a multi-scale structure to handle scale variations while reducing computational complexity. Additionally, the Pyramidal Frequency Attention Extraction (PFAE) module and the Frequency Reverse Decoder (FRD) enhance semantics and reconstruct features. Experimental results demonstrate that FMNet outperforms existing methods on multiple COD datasets, showcasing its advantages in both performance and efficiency. Code available at https://github.com/Chranos/FMNet.
Insight Over Sight: Exploring the Vision-Knowledge Conflicts in Multimodal LLMs ACL 2025
This paper explores the problem of commonsense level vision-knowledge conflict in Multimodal Large Language Models (MLLMs), where visual information contradicts model's internal commonsense knowledge. To study this issue, we introduce an automated framework, augmented with human-in-the-loop quality control, to generate inputs designed to simulate and evaluate these conflicts in MLLMs. Using this framework, we have crafted a diagnostic benchmark consisting of 374 original images and 1,122 high-quality question-answer (QA) pairs. The benchmark covers two aspects of conflict and three question types, providing a thorough assessment tool. We apply this benchmark to assess the conflict-resolution capabilities of nine representative MLLMs from various model families. Our results indicate an evident over-reliance on parametric knowledge for approximately 20% of all queries, especially among Yes-No and action-related problems. Based on these findings, we evaluate the effectiveness of existing approaches to mitigating the conflicts and compare them to our "Focus-on-Vision" prompting strategy. Despite some improvement, the vision-knowledge conflict remains unresolved and can be further scaled through our data construction framework. Our proposed framework, benchmark, and analysis contribute to the understanding and mitigation of vision-knowledge conflicts in MLLMs.
comment: Accepted by ACL 2025 main
Don't Miss the Forest for the Trees: Attentional Vision Calibration for Large Vision Language Models ACL 2025
Large Vision Language Models (LVLMs) demonstrate strong capabilities in visual understanding and description, yet often suffer from hallucinations, attributing incorrect or misleading features to images. We observe that LVLMs disproportionately focus on a small subset of image tokens--termed blind tokens--which are typically irrelevant to the query (e.g., background or non-object regions). We hypothesize that such attention misalignment plays a key role in generating hallucinated responses. To mitigate this issue, we propose Attentional Vision Calibration (AvisC), a test-time approach that dynamically recalibrates the influence of blind tokens without modifying the underlying attention mechanism. AvisC first identifies blind tokens by analyzing layer-wise attention distributions over image tokens, then employs a contrastive decoding strategy to balance the influence of original and blind-token-biased logits. Experiments on standard benchmarks, including POPE, MME, and AMBER, demonstrate that AvisC effectively reduces hallucinations in LVLMs.
comment: ACL 2025 Findings; Project: https://sangminwoo.github.io/AvisC/
Point Cloud Mixture-of-Domain-Experts Model for 3D Self-supervised Learning CVPR 2025
Point clouds, as a primary representation of 3D data, can be categorized into scene domain point clouds and object domain point clouds. Point cloud self-supervised learning (SSL) has become a mainstream paradigm for learning 3D representations. However, existing point cloud SSL primarily focuses on learning domain-specific 3D representations within a single domain, neglecting the complementary nature of cross-domain knowledge, which limits the learning of 3D representations. In this paper, we propose to learn a comprehensive Point cloud Mixture-of-Domain-Experts model (Point-MoDE) via a block-to-scene pre-training strategy. Specifically, we first propose a mixture-of-domain-expert model consisting of scene domain experts and multiple shared object domain experts. Furthermore, we propose a block-to-scene pretraining strategy, which leverages the features of point blocks in the object domain to regress their initial positions in the scene domain through object-level block mask reconstruction and scene-level block position regression. By integrating the complementary knowledge between object and scene, this strategy simultaneously facilitates the learning of both object-domain and scene-domain representations, leading to a more comprehensive 3D representation. Extensive experiments in downstream tasks demonstrate the superiority of our model.
comment: Accepted to CVPR 2025
YOLO advances to its genesis: a decadal and comprehensive review of the You Only Look Once (YOLO) series
This review systematically examines the progression of the You Only Look Once (YOLO) object detection algorithms from YOLOv1 to the recently unveiled YOLOv12. Employing a reverse chronological analysis, this study examines the advancements introduced by YOLO algorithms, beginning with YOLOv12 and progressing through YOLO11 (or YOLOv11), YOLOv10, YOLOv9, YOLOv8, and subsequent versions to explore each version's contributions to enhancing speed, detection accuracy, and computational efficiency in real-time object detection. Additionally, this study reviews the alternative versions derived from YOLO architectural advancements of YOLO-NAS, YOLO-X, YOLO-R, DAMO-YOLO, and Gold-YOLO. Moreover, the study highlights the transformative impact of YOLO models across five critical application areas: autonomous vehicles and traffic safety, healthcare and medical imaging, industrial manufacturing, surveillance and security, and agriculture. By detailing the incremental technological advancements in subsequent YOLO versions, this review chronicles the evolution of YOLO, and discusses the challenges and limitations in each of the earlier versions. The evolution signifies a path towards integrating YOLO with multimodal, context-aware, and Artificial General Intelligence (AGI) systems for the next YOLO decade, promising significant implications for future developments in AI-driven applications. YOLO Review, YOLO Advances, YOLOv13, YOLOv14, YOLOv15, YOLOv16, YOLOv17, YOLOv18, YOLOv19, YOLOv20, YOLO review, YOLO Object Detection
comment: Published in Artificial Intelligence Review as https://doi.org/10.1007/s10462-025-11253-3
Leveraging Complementary Attention maps in vision transformers for OCT image analysis
Optical Coherence Tomography (OCT) scan yields all possible cross-section images of a retina for detecting biomarkers linked to optical defects. Due to the high volume of data generated, an automated and reliable biomarker detection pipeline is necessary as a primary screening stage. We outline our new state-of-the-art pipeline for identifying biomarkers from OCT scans. In collaboration with trained ophthalmologists, we identify local and global structures in biomarkers. Through a comprehensive and systematic review of existing vision architectures, we evaluate different convolution and attention mechanisms for biomarker detection. We find that MaxViT, a hybrid vision transformer combining convolution layers with strided attention, is better suited for local feature detection, while EVA-02, a standard vision transformer leveraging pure attention and large-scale knowledge distillation, excels at capturing global features. We ensemble the predictions of both models to achieve first place in the IEEE Video and Image Processing Cup 2023 competition on OCT biomarker detection, achieving a patient-wise F1 score of 0.8527 in the final phase of the competition, scoring 3.8\% higher than the next best solution. Finally, we used knowledge distillation to train a single MaxViT to outperform our ensemble at a fraction of the computation cost.
comment: Accepted in 2025 IEEE International Conference on Image Processing
Organizing Unstructured Image Collections using Natural Language
Organizing unstructured image collections into semantic clusters is a long-standing challenge. Traditional deep clustering techniques address this by producing a single data partition, whereas multiple clustering methods uncover diverse alternative partitions-but only when users predefine the clustering criteria. Yet expecting users to specify such criteria a priori for large, unfamiliar datasets is unrealistic. In this work, we introduce the task of Open-ended Semantic Multiple Clustering (OpenSMC), which aims to automatically discover clustering criteria from large, unstructured image collections, revealing interpretable substructures without human input. Our framework, X-Cluster: eXploratory Clustering, treats text as a reasoning proxy: it concurrently scans the entire image collection, proposes candidate criteria in natural language, and groups images into meaningful clusters per criterion. To evaluate progress, we release COCO-4c and Food-4c benchmarks, each annotated with four grouping criteria. Experiments show that X-Cluster effectively reveals meaningful partitions and enables downstream applications such as bias discovery and social media image popularity analysis. We will open-source code and data to encourage reproducibility and further research.
comment: Preprint. Project webpage: https://oatmealliu.github.io/opensmc.html
Understanding differences in applying DETR to natural and medical images
Transformer-based detectors have shown success in computer vision tasks with natural images. These models, exemplified by the Deformable DETR, are optimized through complex engineering strategies tailored to the typical characteristics of natural scenes. However, medical imaging data presents unique challenges such as extremely large image sizes, fewer and smaller regions of interest, and object classes which can be differentiated only through subtle differences. This study evaluates the applicability of these transformer-based design choices when applied to a screening mammography dataset that represents these distinct medical imaging data characteristics. Our analysis reveals that common design choices from the natural image domain, such as complex encoder architectures, multi-scale feature fusion, query initialization, and iterative bounding box refinement, do not improve and sometimes even impair object detection performance in medical imaging. In contrast, simpler and shallower architectures often achieve equal or superior results. This finding suggests that the adaptation of transformer models for medical imaging data requires a reevaluation of standard practices, potentially leading to more efficient and specialized frameworks for medical diagnosis.
comment: Accepted for publication at the Journal of Machine Learning for Biomedical Imaging (MELBA) https://melba-journal.org/2025:009
SurgRIPE challenge: Benchmark of Surgical Robot Instrument Pose Estimation
Accurate instrument pose estimation is a crucial step towards the future of robotic surgery, enabling applications such as autonomous surgical task execution. Vision-based methods for surgical instrument pose estimation provide a practical approach to tool tracking, but they often require markers to be attached to the instruments. Recently, more research has focused on the development of marker-less methods based on deep learning. However, acquiring realistic surgical data, with ground truth instrument poses, required for deep learning training, is challenging. To address the issues in surgical instrument pose estimation, we introduce the Surgical Robot Instrument Pose Estimation (SurgRIPE) challenge, hosted at the 26th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) in 2023. The objectives of this challenge are: (1) to provide the surgical vision community with realistic surgical video data paired with ground truth instrument poses, and (2) to establish a benchmark for evaluating markerless pose estimation methods. The challenge led to the development of several novel algorithms that showcased improved accuracy and robustness over existing methods. The performance evaluation study on the SurgRIPE dataset highlights the potential of these advanced algorithms to be integrated into robotic surgery systems, paving the way for more precise and autonomous surgical procedures. The SurgRIPE challenge has successfully established a new benchmark for the field, encouraging further research and development in surgical robot instrument pose estimation.
comment: 35 pages, 18 figures, journal paper
Computer Vision and Pattern Recognition
Open CaptchaWorld: A Comprehensive Web-based Platform for Testing and Benchmarking Multimodal LLM Agents
CAPTCHAs have been a critical bottleneck for deploying web agents in real-world applications, often blocking them from completing end-to-end automation tasks. While modern multimodal LLM agents have demonstrated impressive performance in static perception tasks, their ability to handle interactive, multi-step reasoning challenges like CAPTCHAs is largely untested. To address this gap, we introduce Open CaptchaWorld, the first web-based benchmark and platform specifically designed to evaluate the visual reasoning and interaction capabilities of MLLM-powered agents through diverse and dynamic CAPTCHA puzzles. Our benchmark spans 20 modern CAPTCHA types, totaling 225 CAPTCHAs, annotated with a new metric we propose: CAPTCHA Reasoning Depth, which quantifies the number of cognitive and motor steps required to solve each puzzle. Experimental results show that humans consistently achieve near-perfect scores, state-of-the-art MLLM agents struggle significantly, with success rates at most 40.0% by Browser-Use Openai-o3, far below human-level performance, 93.3%. This highlights Open CaptchaWorld as a vital benchmark for diagnosing the limits of current multimodal agents and guiding the development of more robust multimodal reasoning systems. Code and Data are available at this https URL.
comment: Code at: https://github.com/MetaAgentX/OpenCaptchaWorld
AdaHuman: Animatable Detailed 3D Human Generation with Compositional Multiview Diffusion
Existing methods for image-to-3D avatar generation struggle to produce highly detailed, animation-ready avatars suitable for real-world applications. We introduce AdaHuman, a novel framework that generates high-fidelity animatable 3D avatars from a single in-the-wild image. AdaHuman incorporates two key innovations: (1) A pose-conditioned 3D joint diffusion model that synthesizes consistent multi-view images in arbitrary poses alongside corresponding 3D Gaussian Splats (3DGS) reconstruction at each diffusion step; (2) A compositional 3DGS refinement module that enhances the details of local body parts through image-to-image refinement and seamlessly integrates them using a novel crop-aware camera ray map, producing a cohesive detailed 3D avatar. These components allow AdaHuman to generate highly realistic standardized A-pose avatars with minimal self-occlusion, enabling rigging and animation with any input motion. Extensive evaluation on public benchmarks and in-the-wild images demonstrates that AdaHuman significantly outperforms state-of-the-art methods in both avatar reconstruction and reposing. Code and models will be publicly available for research purposes.
comment: Website: https://nvlabs.github.io/AdaHuman
Agent-X: Evaluating Deep Multimodal Reasoning in Vision-Centric Agentic Tasks
Deep reasoning is fundamental for solving complex tasks, especially in vision-centric scenarios that demand sequential, multimodal understanding. However, existing benchmarks typically evaluate agents with fully synthetic, single-turn queries, limited visual modalities, and lack a framework to assess reasoning quality over multiple steps as required in real-world settings. To address this, we introduce Agent-X, a large-scale benchmark for evaluating vision-centric agents multi-step and deep reasoning capabilities in real-world, multimodal settings. Agent- X features 828 agentic tasks with authentic visual contexts, including images, multi-image comparisons, videos, and instructional text. These tasks span six major agentic environments: general visual reasoning, web browsing, security and surveillance, autonomous driving, sports, and math reasoning. Our benchmark requires agents to integrate tool use with explicit, stepwise decision-making in these diverse settings. In addition, we propose a fine-grained, step-level evaluation framework that assesses the correctness and logical coherence of each reasoning step and the effectiveness of tool usage throughout the task. Our results reveal that even the best-performing models, including GPT, Gemini, and Qwen families, struggle to solve multi-step vision tasks, achieving less than 50% full-chain success. These findings highlight key bottlenecks in current LMM reasoning and tool-use capabilities and identify future research directions in vision-centric agentic reasoning models. Our data and code are publicly available at https://github.com/mbzuai-oryx/Agent-X
ReasonGen-R1: CoT for Autoregressive Image generation models through SFT and RL
Although chain-of-thought reasoning and reinforcement learning (RL) have driven breakthroughs in NLP, their integration into generative vision models remains underexplored. We introduce ReasonGen-R1, a two-stage framework that first imbues an autoregressive image generator with explicit text-based "thinking" skills via supervised fine-tuning on a newly generated reasoning dataset of written rationales, and then refines its outputs using Group Relative Policy Optimization. To enable the model to reason through text before generating images, We automatically generate and release a corpus of model crafted rationales paired with visual prompts, enabling controlled planning of object layouts, styles, and scene compositions. Our GRPO algorithm uses reward signals from a pretrained vision language model to assess overall visual quality, optimizing the policy in each update. Evaluations on GenEval, DPG, and the T2I benchmark demonstrate that ReasonGen-R1 consistently outperforms strong baselines and prior state-of-the-art models. More: aka.ms/reasongen.
MiniMax-Remover: Taming Bad Noise Helps Video Object Removal
Recent advances in video diffusion models have driven rapid progress in video editing techniques. However, video object removal, a critical subtask of video editing, remains challenging due to issues such as hallucinated objects and visual artifacts. Furthermore, existing methods often rely on computationally expensive sampling procedures and classifier-free guidance (CFG), resulting in slow inference. To address these limitations, we propose MiniMax-Remover, a novel two-stage video object removal approach. Motivated by the observation that text condition is not best suited for this task, we simplify the pretrained video generation model by removing textual input and cross-attention layers, resulting in a more lightweight and efficient model architecture in the first stage. In the second stage, we distilled our remover on successful videos produced by the stage-1 model and curated by human annotators, using a minimax optimization strategy to further improve editing quality and inference speed. Specifically, the inner maximization identifies adversarial input noise ("bad noise") that makes failure removals, while the outer minimization step trains the model to generate high-quality removal results even under such challenging conditions. As a result, our method achieves a state-of-the-art video object removal results with as few as 6 sampling steps and doesn't rely on CFG, significantly improving inference efficiency. Extensive experiments demonstrate the effectiveness and superiority of MiniMax-Remover compared to existing methods. Codes and Videos are available at: https://minimax-remover.github.io.
ProxyThinker: Test-Time Guidance through Small Visual Reasoners
Recent advancements in reinforcement learning with verifiable rewards have pushed the boundaries of the visual reasoning capabilities in large vision-language models (LVLMs). However, training LVLMs with reinforcement fine-tuning (RFT) is computationally expensive, posing a significant challenge to scaling model size. In this work, we propose ProxyThinker, an inference-time technique that enables large models to inherit the visual reasoning capabilities from small, slow-thinking visual reasoners without any training. By subtracting the output distributions of base models from those of RFT reasoners, ProxyThinker modifies the decoding dynamics and successfully elicits the slow-thinking reasoning demonstrated by the emerged sophisticated behaviors such as self-verification and self-correction. ProxyThinker consistently boosts performance on challenging visual benchmarks on spatial, mathematical, and multi-disciplinary reasoning, enabling untuned base models to compete with the performance of their full-scale RFT counterparts. Furthermore, our implementation efficiently coordinates multiple language models with parallelism techniques and achieves up to 38 $\times$ faster inference compared to previous decoding-time methods, paving the way for the practical deployment of ProxyThinker. Code is available at https://github.com/MrZilinXiao/ProxyThinker.
MoDoMoDo: Multi-Domain Data Mixtures for Multimodal LLM Reinforcement Learning
Reinforcement Learning with Verifiable Rewards (RLVR) has recently emerged as a powerful paradigm for post-training large language models (LLMs), achieving state-of-the-art performance on tasks with structured, verifiable answers. Applying RLVR to Multimodal LLMs (MLLMs) presents significant opportunities but is complicated by the broader, heterogeneous nature of vision-language tasks that demand nuanced visual, logical, and spatial capabilities. As such, training MLLMs using RLVR on multiple datasets could be beneficial but creates challenges with conflicting objectives from interaction among diverse datasets, highlighting the need for optimal dataset mixture strategies to improve generalization and reasoning. We introduce a systematic post-training framework for Multimodal LLM RLVR, featuring a rigorous data mixture problem formulation and benchmark implementation. Specifically, (1) We developed a multimodal RLVR framework for multi-dataset post-training by curating a dataset that contains different verifiable vision-language problems and enabling multi-domain online RL learning with different verifiable rewards; (2) We proposed a data mixture strategy that learns to predict the RL fine-tuning outcome from the data mixture distribution, and consequently optimizes the best mixture. Comprehensive experiments showcase that multi-domain RLVR training, when combined with mixture prediction strategies, can significantly boost MLLM general reasoning capacities. Our best mixture improves the post-trained model's accuracy on out-of-distribution benchmarks by an average of 5.24% compared to the same model post-trained with uniform data mixture, and by a total of 20.74% compared to the pre-finetuning baseline.
comment: Project Webpage: https://modomodo-rl.github.io/
GenSpace: Benchmarking Spatially-Aware Image Generation
Humans can intuitively compose and arrange scenes in the 3D space for photography. However, can advanced AI image generators plan scenes with similar 3D spatial awareness when creating images from text or image prompts? We present GenSpace, a novel benchmark and evaluation pipeline to comprehensively assess the spatial awareness of current image generation models. Furthermore, standard evaluations using general Vision-Language Models (VLMs) frequently fail to capture the detailed spatial errors. To handle this challenge, we propose a specialized evaluation pipeline and metric, which reconstructs 3D scene geometry using multiple visual foundation models and provides a more accurate and human-aligned metric of spatial faithfulness. Our findings show that while AI models create visually appealing images and can follow general instructions, they struggle with specific 3D details like object placement, relationships, and measurements. We summarize three core limitations in the spatial perception of current state-of-the-art image generation models: 1) Object Perspective Understanding, 2) Egocentric-Allocentric Transformation and 3) Metric Measurement Adherence, highlighting possible directions for improving spatial intelligence in image generation.
SiLVR: A Simple Language-based Video Reasoning Framework
Recent advances in test-time optimization have led to remarkable reasoning capabilities in Large Language Models (LLMs), enabling them to solve highly complex problems in math and coding. However, the reasoning capabilities of multimodal LLMs (MLLMs) still significantly lag, especially for complex video-language tasks. To address this issue, we present SiLVR, a Simple Language-based Video Reasoning framework that decomposes complex video understanding into two stages. In the first stage, SiLVR transforms raw video into language-based representations using multisensory inputs, such as short clip captions and audio/speech subtitles. In the second stage, language descriptions are fed into a powerful reasoning LLM to solve complex video-language understanding tasks. To handle long-context multisensory inputs, we use an adaptive token reduction scheme, which dynamically determines the temporal granularity with which to sample the tokens. Our simple, modular, and training-free video reasoning framework achieves the best-reported results on Video-MME (long), Video-MMMU (comprehension), Video-MMLU, CGBench, and EgoLife. Furthermore, our empirical study focused on video reasoning capabilities shows that, despite not being explicitly trained on video, strong reasoning LLMs can effectively aggregate multisensory input information from video, speech, and audio for complex temporal, causal, long-context, and knowledge acquisition reasoning tasks in video. Code is available at https://github.com/CeeZh/SILVR.
Time Blindness: Why Video-Language Models Can't See What Humans Can?
Recent advances in vision-language models (VLMs) have made impressive strides in understanding spatio-temporal relationships in videos. However, when spatial information is obscured, these models struggle to capture purely temporal patterns. We introduce $\textbf{SpookyBench}$, a benchmark where information is encoded solely in temporal sequences of noise-like frames, mirroring natural phenomena from biological signaling to covert communication. Interestingly, while humans can recognize shapes, text, and patterns in these sequences with over 98% accuracy, state-of-the-art VLMs achieve 0% accuracy. This performance gap highlights a critical limitation: an over-reliance on frame-level spatial features and an inability to extract meaning from temporal cues. Furthermore, when trained in data sets with low spatial signal-to-noise ratios (SNR), temporal understanding of models degrades more rapidly than human perception, especially in tasks requiring fine-grained temporal reasoning. Overcoming this limitation will require novel architectures or training paradigms that decouple spatial dependencies from temporal processing. Our systematic analysis shows that this issue persists across model scales and architectures. We release SpookyBench to catalyze research in temporal pattern recognition and bridge the gap between human and machine video understanding. Dataset and code has been made available on our project website: https://timeblindness.github.io/.
comment: Project page at https://timeblindness.github.io/
TalkingHeadBench: A Multi-Modal Benchmark & Analysis of Talking-Head DeepFake Detection
The rapid advancement of talking-head deepfake generation fueled by advanced generative models has elevated the realism of synthetic videos to a level that poses substantial risks in domains such as media, politics, and finance. However, current benchmarks for deepfake talking-head detection fail to reflect this progress, relying on outdated generators and offering limited insight into model robustness and generalization. We introduce TalkingHeadBench, a comprehensive multi-model multi-generator benchmark and curated dataset designed to evaluate the performance of state-of-the-art detectors on the most advanced generators. Our dataset includes deepfakes synthesized by leading academic and commercial models and features carefully constructed protocols to assess generalization under distribution shifts in identity and generator characteristics. We benchmark a diverse set of existing detection methods, including CNNs, vision transformers, and temporal models, and analyze their robustness and generalization capabilities. In addition, we provide error analysis using Grad-CAM visualizations to expose common failure modes and detector biases. TalkingHeadBench is hosted on https://huggingface.co/datasets/luchaoqi/TalkingHeadBench with open access to all data splits and protocols. Our benchmark aims to accelerate research towards more robust and generalizable detection models in the face of rapidly evolving generative techniques.
ViStoryBench: Comprehensive Benchmark Suite for Story Visualization
Story visualization, which aims to generate a sequence of visually coherent images aligning with a given narrative and reference images, has seen significant progress with recent advancements in generative models. To further enhance the performance of story visualization frameworks in real-world scenarios, we introduce a comprehensive evaluation benchmark, ViStoryBench. We collect a diverse dataset encompassing various story types and artistic styles, ensuring models are evaluated across multiple dimensions such as different plots (e.g., comedy, horror) and visual aesthetics (e.g., anime, 3D renderings). ViStoryBench is carefully curated to balance narrative structures and visual elements, featuring stories with single and multiple protagonists to test models' ability to maintain character consistency. Additionally, it includes complex plots and intricate world-building to challenge models in generating accurate visuals. To ensure comprehensive comparisons, our benchmark incorporates a wide range of evaluation metrics assessing critical aspects. This structured and multifaceted framework enables researchers to thoroughly identify both the strengths and weaknesses of different models, fostering targeted improvements.
comment: 33 Pages, Project Page: https://vistorybench.github.io/, Code: https://github.com/vistorybench/vistorybench
Reading Recognition in the Wild
To enable egocentric contextual AI in always-on smart glasses, it is crucial to be able to keep a record of the user's interactions with the world, including during reading. In this paper, we introduce a new task of reading recognition to determine when the user is reading. We first introduce the first-of-its-kind large-scale multimodal Reading in the Wild dataset, containing 100 hours of reading and non-reading videos in diverse and realistic scenarios. We then identify three modalities (egocentric RGB, eye gaze, head pose) that can be used to solve the task, and present a flexible transformer model that performs the task using these modalities, either individually or combined. We show that these modalities are relevant and complementary to the task, and investigate how to efficiently and effectively encode each modality. Additionally, we show the usefulness of this dataset towards classifying types of reading, extending current reading understanding studies conducted in constrained settings to larger scale, diversity and realism. Code, model, and data will be public.
Vision LLMs Are Bad at Hierarchical Visual Understanding, and LLMs Are the Bottleneck
This paper reveals that many state-of-the-art large language models (LLMs) lack hierarchical knowledge about our visual world, unaware of even well-established biology taxonomies. This shortcoming makes LLMs a bottleneck for vision LLMs' hierarchical visual understanding (e.g., recognizing Anemone Fish but not Vertebrate). We arrive at these findings using about one million four-choice visual question answering (VQA) tasks constructed from six taxonomies and four image datasets. Interestingly, finetuning a vision LLM using our VQA tasks reaffirms LLMs' bottleneck effect to some extent because the VQA tasks improve the LLM's hierarchical consistency more than the vision LLM's. We conjecture that one cannot make vision LLMs understand visual concepts fully hierarchical until LLMs possess corresponding taxonomy knowledge.
comment: 28 pages, 13 figures
VideoCAD: A Large-Scale Video Dataset for Learning UI Interactions and 3D Reasoning from CAD Software
Computer-Aided Design (CAD) is a time-consuming and complex process, requiring precise, long-horizon user interactions with intricate 3D interfaces. While recent advances in AI-driven user interface (UI) agents show promise, most existing datasets and methods focus on short, low-complexity tasks in mobile or web applications, failing to capture the demands of professional engineering tools. In this work, we introduce VideoCAD, the first attempt at engineering UI interaction learning for precision tasks. Specifically, VideoCAD is a large-scale synthetic dataset consisting of over 41K annotated video recordings of CAD operations, generated using an automated framework for collecting high-fidelity UI action data from human-made CAD designs. Compared to existing datasets, VideoCAD offers an order of magnitude higher complexity in UI interaction learning for real-world engineering tasks, having up to a 20x longer time horizon than other datasets. We show two important downstream applications of VideoCAD: learning UI interactions from professional precision 3D CAD tools and a visual question-answering (VQA) benchmark designed to evaluate multimodal large language models' (LLM) spatial reasoning and video understanding abilities. To learn the UI interactions, we propose VideoCADFormer - a state-of-the-art model in learning CAD interactions directly from video, which outperforms multiple behavior cloning baselines. Both VideoCADFormer and the VQA benchmark derived from VideoCAD reveal key challenges in the current state of video-based UI understanding, including the need for precise action grounding, multi-modal and spatial reasoning, and long-horizon dependencies.
Zero-Shot Chinese Character Recognition with Hierarchical Multi-Granularity Image-Text Aligning
Chinese Character Recognition (CCR) is a fundamental technology for intelligent document processing. Unlike Latin characters, Chinese characters exhibit unique spatial structures and compositional rules, allowing for the use of fine-grained semantic information in representation. However, existing approaches are usually based on auto-regressive as well as edit distance post-process and typically rely on a single-level character representation. In this paper, we propose a Hierarchical Multi-Granularity Image-Text Aligning (Hi-GITA) framework based on a contrastive paradigm. To leverage the abundant fine-grained semantic information of Chinese characters, we propose multi-granularity encoders on both image and text sides. Specifically, the Image Multi-Granularity Encoder extracts hierarchical image representations from character images, capturing semantic cues from localized strokes to holistic structures. The Text Multi-Granularity Encoder extracts stroke and radical sequence representations at different levels of granularity. To better capture the relationships between strokes and radicals, we introduce Multi-Granularity Fusion Modules on the image and text sides, respectively. Furthermore, to effectively bridge the two modalities, we further introduce a Fine-Grained Decoupled Image-Text Contrastive loss, which aligns image and text representations across multiple granularities. Extensive experiments demonstrate that our proposed Hi-GITA significantly outperforms existing zero-shot CCR methods. For instance, it brings about 20% accuracy improvement in handwritten character and radical zero-shot settings. Code and models will be released soon.
comment: The first three authors contributed equally
LegalEval-Q: A New Benchmark for The Quality Evaluation of LLM-Generated Legal Text
As large language models (LLMs) are increasingly used in legal applications, current evaluation benchmarks tend to focus mainly on factual accuracy while largely neglecting important linguistic quality aspects such as clarity, coherence, and terminology. To address this gap, we propose three steps: First, we develop a regression model to evaluate the quality of legal texts based on clarity, coherence, and terminology. Second, we create a specialized set of legal questions. Third, we analyze 49 LLMs using this evaluation framework. Our analysis identifies three key findings: First, model quality levels off at 14 billion parameters, with only a marginal improvement of $2.7\%$ noted at 72 billion parameters. Second, engineering choices such as quantization and context length have a negligible impact, as indicated by statistical significance thresholds above 0.016. Third, reasoning models consistently outperform base architectures. A significant outcome of our research is the release of a ranking list and Pareto analysis, which highlight the Qwen3 series as the optimal choice for cost-performance tradeoffs. This work not only establishes standardized evaluation protocols for legal LLMs but also uncovers fundamental limitations in current training data refinement approaches. Code and models are available at: https://github.com/lyxx3rd/LegalEval-Q.
comment: 10 pages, 11 figures
Segmenting France Across Four Centuries
Historical maps offer an invaluable perspective into territory evolution across past centuries--long before satellite or remote sensing technologies existed. Deep learning methods have shown promising results in segmenting historical maps, but publicly available datasets typically focus on a single map type or period, require extensive and costly annotations, and are not suited for nationwide, long-term analyses. In this paper, we introduce a new dataset of historical maps tailored for analyzing large-scale, long-term land use and land cover evolution with limited annotations. Spanning metropolitan France (548,305 km^2), our dataset contains three map collections from the 18th, 19th, and 20th centuries. We provide both comprehensive modern labels and 22,878 km^2 of manually annotated historical labels for the 18th and 19th century maps. Our dataset illustrates the complexity of the segmentation task, featuring stylistic inconsistencies, interpretive ambiguities, and significant landscape changes (e.g., marshlands disappearing in favor of forests). We assess the difficulty of these challenges by benchmarking three approaches: a fully-supervised model trained with historical labels, and two weakly-supervised models that rely only on modern annotations. The latter either use the modern labels directly or first perform image-to-image translation to address the stylistic gap between historical and contemporary maps. Finally, we discuss how these methods can support long-term environment monitoring, offering insights into centuries of landscape transformation. Our official project repository is publicly available at https://github.com/Archiel19/FRAx4.git.
comment: 20 pages, 8 figures, 3 tables
Bi-Manual Joint Camera Calibration and Scene Representation
Robot manipulation, especially bimanual manipulation, often requires setting up multiple cameras on multiple robot manipulators. Before robot manipulators can generate motion or even build representations of their environments, the cameras rigidly mounted to the robot need to be calibrated. Camera calibration is a cumbersome process involving collecting a set of images, with each capturing a pre-determined marker. In this work, we introduce the Bi-Manual Joint Calibration and Representation Framework (Bi-JCR). Bi-JCR enables multiple robot manipulators, each with cameras mounted, to circumvent taking images of calibration markers. By leveraging 3D foundation models for dense, marker-free multi-view correspondence, Bi-JCR jointly estimates: (i) the extrinsic transformation from each camera to its end-effector, (ii) the inter-arm relative poses between manipulators, and (iii) a unified, scale-consistent 3D representation of the shared workspace, all from the same captured RGB image sets. The representation, jointly constructed from images captured by cameras on both manipulators, lives in a common coordinate frame and supports collision checking and semantic segmentation to facilitate downstream bimanual coordination tasks. We empirically evaluate the robustness of Bi-JCR on a variety of tabletop environments, and demonstrate its applicability on a variety of downstream tasks.
CL-LoRA: Continual Low-Rank Adaptation for Rehearsal-Free Class-Incremental Learning CVPR 2025
Class-Incremental Learning (CIL) aims to learn new classes sequentially while retaining the knowledge of previously learned classes. Recently, pre-trained models (PTMs) combined with parameter-efficient fine-tuning (PEFT) have shown remarkable performance in rehearsal-free CIL without requiring exemplars from previous tasks. However, existing adapter-based methods, which incorporate lightweight learnable modules into PTMs for CIL, create new adapters for each new task, leading to both parameter redundancy and failure to leverage shared knowledge across tasks. In this work, we propose ContinuaL Low-Rank Adaptation (CL-LoRA), which introduces a novel dual-adapter architecture combining \textbf{task-shared adapters} to learn cross-task knowledge and \textbf{task-specific adapters} to capture unique features of each new task. Specifically, the shared adapters utilize random orthogonal matrices and leverage knowledge distillation with gradient reassignment to preserve essential shared knowledge. In addition, we introduce learnable block-wise weights for task-specific adapters, which mitigate inter-task interference while maintaining the model's plasticity. We demonstrate CL-LoRA consistently achieves promising performance under multiple benchmarks with reduced training and inference computation, establishing a more efficient and scalable paradigm for continual learning with pre-trained models.
comment: Accepted to CVPR 2025
Beyond Pretty Pictures: Combined Single- and Multi-Image Super-resolution for Sentinel-2 Images
Super-resolution aims to increase the resolution of satellite images by reconstructing high-frequency details, which go beyond na\"ive upsampling. This has particular relevance for Earth observation missions like Sentinel-2, which offer frequent, regular coverage at no cost; but at coarse resolution. Its pixel footprint is too large to capture small features like houses, streets, or hedge rows. To address this, we present SEN4X, a hybrid super-resolution architecture that combines the advantages of single-image and multi-image techniques. It combines temporal oversampling from repeated Sentinel-2 acquisitions with a learned prior from high-resolution Pl\'eiades Neo data. In doing so, SEN4X upgrades Sentinel-2 imagery to 2.5 m ground sampling distance. We test the super-resolved images on urban land-cover classification in Hanoi, Vietnam. We find that they lead to a significant performance improvement over state-of-the-art super-resolution baselines.
TC-GS: A Faster Gaussian Splatting Module Utilizing Tensor Cores
3D Gaussian Splatting (3DGS) renders pixels by rasterizing Gaussian primitives, where conditional alpha-blending dominates the time cost in the rendering pipeline. This paper proposes TC-GS, an algorithm-independent universal module that expands Tensor Core (TCU) applicability for 3DGS, leading to substantial speedups and seamless integration into existing 3DGS optimization frameworks. The key innovation lies in mapping alpha computation to matrix multiplication, fully utilizing otherwise idle TCUs in existing 3DGS implementations. TC-GS provides plug-and-play acceleration for existing top-tier acceleration algorithms tightly coupled with rendering pipeline designs, like Gaussian compression and redundancy elimination algorithms. Additionally, we introduce a global-to-local coordinate transformation to mitigate rounding errors from quadratic terms of pixel coordinates caused by Tensor Core half-precision computation. Extensive experiments demonstrate that our method maintains rendering quality while providing an additional 2.18x speedup over existing Gaussian acceleration algorithms, thus reaching up to a total 5.6x acceleration. The code is currently available at anonymous \href{https://github.com/TensorCore3DGS/3DGSTensorCore}
comment: 15 pages, 6 figures
Lightweight Relational Embedding in Task-Interpolated Few-Shot Networks for Enhanced Gastrointestinal Disease Classification
Traditional diagnostic methods like colonoscopy are invasive yet critical tools necessary for accurately diagnosing colorectal cancer (CRC). Detection of CRC at early stages is crucial for increasing patient survival rates. However, colonoscopy is dependent on obtaining adequate and high-quality endoscopic images. Prolonged invasive procedures are inherently risky for patients, while suboptimal or insufficient images hamper diagnostic accuracy. These images, typically derived from video frames, often exhibit similar patterns, posing challenges in discrimination. To overcome these challenges, we propose a novel Deep Learning network built on a Few-Shot Learning architecture, which includes a tailored feature extractor, task interpolation, relational embedding, and a bi-level routing attention mechanism. The Few-Shot Learning paradigm enables our model to rapidly adapt to unseen fine-grained endoscopic image patterns, and the task interpolation augments the insufficient images artificially from varied instrument viewpoints. Our relational embedding approach discerns critical intra-image features and captures inter-image transitions between consecutive endoscopic frames, overcoming the limitations of Convolutional Neural Networks (CNNs). The integration of a light-weight attention mechanism ensures a concentrated analysis of pertinent image regions. By training on diverse datasets, the model's generalizability and robustness are notably improved for handling endoscopic images. Evaluated on Kvasir dataset, our model demonstrated superior performance, achieving an accuracy of 90.1\%, precision of 0.845, recall of 0.942, and an F1 score of 0.891. This surpasses current state-of-the-art methods, presenting a promising solution to the challenges of invasive colonoscopy by optimizing CRC detection through advanced image analysis.
comment: 6 pages, 15 figures
Draw ALL Your Imagine: A Holistic Benchmark and Agent Framework for Complex Instruction-based Image Generation
Recent advancements in text-to-image (T2I) generation have enabled models to produce high-quality images from textual descriptions. However, these models often struggle with complex instructions involving multiple objects, attributes, and spatial relationships. Existing benchmarks for evaluating T2I models primarily focus on general text-image alignment and fail to capture the nuanced requirements of complex, multi-faceted prompts. Given this gap, we introduce LongBench-T2I, a comprehensive benchmark specifically designed to evaluate T2I models under complex instructions. LongBench-T2I consists of 500 intricately designed prompts spanning nine diverse visual evaluation dimensions, enabling a thorough assessment of a model's ability to follow complex instructions. Beyond benchmarking, we propose an agent framework (Plan2Gen) that facilitates complex instruction-driven image generation without requiring additional model training. This framework integrates seamlessly with existing T2I models, using large language models to interpret and decompose complex prompts, thereby guiding the generation process more effectively. As existing evaluation metrics, such as CLIPScore, fail to adequately capture the nuances of complex instructions, we introduce an evaluation toolkit that automates the quality assessment of generated images using a set of multi-dimensional metrics. The data and code are released at https://github.com/yczhou001/LongBench-T2I.
DiG-Net: Enhancing Quality of Life through Hyper-Range Dynamic Gesture Recognition in Assistive Robotics
Dynamic hand gestures play a pivotal role in assistive human-robot interaction (HRI), facilitating intuitive, non-verbal communication, particularly for individuals with mobility constraints or those operating robots remotely. Current gesture recognition methods are mostly limited to short-range interactions, reducing their utility in scenarios demanding robust assistive communication from afar. In this paper, we introduce a novel approach designed specifically for assistive robotics, enabling dynamic gesture recognition at extended distances of up to 30 meters, thereby significantly improving accessibility and quality of life. Our proposed Distance-aware Gesture Network (DiG-Net) effectively combines Depth-Conditioned Deformable Alignment (DADA) blocks with Spatio-Temporal Graph modules, enabling robust processing and classification of gesture sequences captured under challenging conditions, including significant physical attenuation, reduced resolution, and dynamic gesture variations commonly experienced in real-world assistive environments. We further introduce the Radiometric Spatio-Temporal Depth Attenuation Loss (RSTDAL), shown to enhance learning and strengthen model robustness across varying distances. Our model demonstrates significant performance improvement over state-of-the-art gesture recognition frameworks, achieving a recognition accuracy of 97.3% on a diverse dataset with challenging hyper-range gestures. By effectively interpreting gestures from considerable distances, DiG-Net significantly enhances the usability of assistive robots in home healthcare, industrial safety, and remote assistance scenarios, enabling seamless and intuitive interactions for users regardless of physical limitations
comment: arXiv admin note: substantial text overlap with arXiv:2411.18413
Efficient Estimation of Regularized Tyler's M-Estimator Using Approximate LOOCV
We consider the problem of estimating a regularization parameter, or a shrinkage coefficient $\alpha \in (0,1)$ for Regularized Tyler's M-estimator (RTME). In particular, we propose to estimate an optimal shrinkage coefficient by setting $\alpha$ as the solution to a suitably chosen objective function; namely the leave-one-out cross-validated (LOOCV) log-likelihood loss. Since LOOCV is computationally prohibitive even for moderate sample size $n$, we propose a computationally efficient approximation for the LOOCV log-likelihood loss that eliminates the need for invoking the RTME procedure $n$ times for each sample left out during the LOOCV procedure. This approximation yields an $O(n)$ reduction in the running time complexity for the LOOCV procedure, which results in a significant speedup for computing the LOOCV estimate. We demonstrate the efficiency and accuracy of the proposed approach on synthetic high-dimensional data sampled from heavy-tailed elliptical distributions, as well as on real high-dimensional datasets for object recognition, face recognition, and handwritten digit's recognition. Our experiments show that the proposed approach is efficient and consistently more accurate than other methods in the literature for shrinkage coefficient estimation.
comment: An extended version of a short article that appeared in 2023 IEEE Workshop on Information Theory, Saint-Malo, France
Tackling View-Dependent Semantics in 3D Language Gaussian Splatting ICML 2025
Recent advancements in 3D Gaussian Splatting (3D-GS) enable high-quality 3D scene reconstruction from RGB images. Many studies extend this paradigm for language-driven open-vocabulary scene understanding. However, most of them simply project 2D semantic features onto 3D Gaussians and overlook a fundamental gap between 2D and 3D understanding: a 3D object may exhibit various semantics from different viewpoints--a phenomenon we term view-dependent semantics. To address this challenge, we propose LaGa (Language Gaussians), which establishes cross-view semantic connections by decomposing the 3D scene into objects. Then, it constructs view-aggregated semantic representations by clustering semantic descriptors and reweighting them based on multi-view semantics. Extensive experiments demonstrate that LaGa effectively captures key information from view-dependent semantics, enabling a more comprehensive understanding of 3D scenes. Notably, under the same settings, LaGa achieves a significant improvement of +18.7% mIoU over the previous SOTA on the LERF-OVS dataset. Our code is available at: https://github.com/SJTU-DeepVisionLab/LaGa.
comment: ICML 2025 camera ready. Project Page: https://jumpat.github.io/laga-page/
Contrast-Invariant Self-supervised Segmentation for Quantitative Placental MRI
Accurate placental segmentation is essential for quantitative analysis of the placenta. However, this task is particularly challenging in T2*-weighted placental imaging due to: (1) weak and inconsistent boundary contrast across individual echoes; (2) the absence of manual ground truth annotations for all echo times; and (3) motion artifacts across echoes caused by fetal and maternal movement. In this work, we propose a contrast-augmented segmentation framework that leverages complementary information across multi-echo T2*-weighted MRI to learn robust, contrast-invariant representations. Our method integrates: (i) masked autoencoding (MAE) for self-supervised pretraining on unlabeled multi-echo slices; (ii) masked pseudo-labeling (MPL) for unsupervised domain adaptation across echo times; and (iii) global-local collaboration to align fine-grained features with global anatomical context. We further introduce a semantic matching loss to encourage representation consistency across echoes of the same subject. Experiments on a clinical multi-echo placental MRI dataset demonstrate that our approach generalizes effectively across echo times and outperforms both single-echo and naive fusion baselines. To our knowledge, this is the first work to systematically exploit multi-echo T2*-weighted MRI for placental segmentation.
comment: 8 pages, 20 figures
DreamDance: Animating Character Art via Inpainting Stable Gaussian Worlds
This paper presents DreamDance, a novel character art animation framework capable of producing stable, consistent character and scene motion conditioned on precise camera trajectories. To achieve this, we re-formulate the animation task as two inpainting-based steps: Camera-aware Scene Inpainting and Pose-aware Video Inpainting. The first step leverages a pre-trained image inpainting model to generate multi-view scene images from the reference art and optimizes a stable large-scale Gaussian field, which enables coarse background video rendering with camera trajectories. However, the rendered video is rough and only conveys scene motion. To resolve this, the second step trains a pose-aware video inpainting model that injects the dynamic character into the scene video while enhancing background quality. Specifically, this model is a DiT-based video generation model with a gating strategy that adaptively integrates the character's appearance and pose information into the base background video. Through extensive experiments, we demonstrate the effectiveness and generalizability of DreamDance, producing high-quality and consistent character animations with remarkable camera dynamics.
Reinforcing Video Reasoning with Focused Thinking
Recent advancements in reinforcement learning, particularly through Group Relative Policy Optimization (GRPO), have significantly improved multimodal large language models for complex reasoning tasks. However, two critical limitations persist: 1) they often produce unfocused, verbose reasoning chains that obscure salient spatiotemporal cues and 2) binary rewarding fails to account for partially correct answers, resulting in high reward variance and inefficient learning. In this paper, we propose TW-GRPO, a novel framework that enhances visual reasoning with focused thinking and dense reward granularity. Specifically, we employs a token weighting mechanism that prioritizes tokens with high informational density (estimated by intra-group variance), suppressing redundant tokens like generic reasoning prefixes. Furthermore, we reformulate RL training by shifting from single-choice to multi-choice QA tasks, where soft rewards enable finer-grained gradient estimation by distinguishing partial correctness. Additionally, we propose question-answer inversion, a data augmentation strategy to generate diverse multi-choice samples from existing benchmarks. Experiments demonstrate state-of-the-art performance on several video reasoning and general understanding benchmarks. Notably, TW-GRPO achieves 50.4\% accuracy on CLEVRER (18.8\% improvement over Video-R1) and 65.8\% on MMVU. Our codes are available at \href{https://github.com/longmalongma/TW-GRPO}{https://github.com/longmalongma/TW-GRPO}.
RT-X Net: RGB-Thermal cross attention network for Low-Light Image Enhancement ICIP 2025
In nighttime conditions, high noise levels and bright illumination sources degrade image quality, making low-light image enhancement challenging. Thermal images provide complementary information, offering richer textures and structural details. We propose RT-X Net, a cross-attention network that fuses RGB and thermal images for nighttime image enhancement. We leverage self-attention networks for feature extraction and a cross-attention mechanism for fusion to effectively integrate information from both modalities. To support research in this domain, we introduce the Visible-Thermal Image Enhancement Evaluation (V-TIEE) dataset, comprising 50 co-located visible and thermal images captured under diverse nighttime conditions. Extensive evaluations on the publicly available LLVIP dataset and our V-TIEE dataset demonstrate that RT-X Net outperforms state-of-the-art methods in low-light image enhancement. The code and the V-TIEE can be found here https://github.com/jhakrraman/rt-xnet.
comment: Accepted at ICIP 2025
PatchDEMUX: A Certifiably Robust Framework for Multi-label Classifiers Against Adversarial Patches CVPR 2025
Deep learning techniques have enabled vast improvements in computer vision technologies. Nevertheless, these models are vulnerable to adversarial patch attacks which catastrophically impair performance. The physically realizable nature of these attacks calls for certifiable defenses, which feature provable guarantees on robustness. While certifiable defenses have been successfully applied to single-label classification, limited work has been done for multi-label classification. In this work, we present PatchDEMUX, a certifiably robust framework for multi-label classifiers against adversarial patches. Our approach is a generalizable method which can extend any existing certifiable defense for single-label classification; this is done by considering the multi-label classification task as a series of isolated binary classification problems to provably guarantee robustness. Furthermore, in the scenario where an attacker is limited to a single patch we propose an additional certification procedure that can provide tighter robustness bounds. Using the current state-of-the-art (SOTA) single-label certifiable defense PatchCleanser as a backbone, we find that PatchDEMUX can achieve non-trivial robustness on the MS-COCO and PASCAL VOC datasets while maintaining high clean performance
comment: CVPR 2025
Conformal Prediction for Zero-Shot Models CVPR 2025
Vision-language models pre-trained at large scale have shown unprecedented adaptability and generalization to downstream tasks. Although its discriminative potential has been widely explored, its reliability and uncertainty are still overlooked. In this work, we investigate the capabilities of CLIP models under the split conformal prediction paradigm, which provides theoretical guarantees to black-box models based on a small, labeled calibration set. In contrast to the main body of literature on conformal predictors in vision classifiers, foundation models exhibit a particular characteristic: they are pre-trained on a one-time basis on an inaccessible source domain, different from the transferred task. This domain drift negatively affects the efficiency of the conformal sets and poses additional challenges. To alleviate this issue, we propose Conf-OT, a transfer learning setting that operates transductive over the combined calibration and query sets. Solving an optimal transport problem, the proposed method bridges the domain gap between pre-training and adaptation without requiring additional data splits but still maintaining coverage guarantees. We comprehensively explore this conformal prediction strategy on a broad span of 15 datasets and three non-conformity scores. Conf-OT provides consistent relative improvements of up to 20% on set efficiency while being 15 times faster than popular transductive approaches.
comment: CVPR 2025. Code: https://github.com/jusiro/CLIP-Conformal
Learning reusable concepts across different egocentric video understanding tasks CVPR 2025
Our comprehension of video streams depicting human activities is naturally multifaceted: in just a few moments, we can grasp what is happening, identify the relevance and interactions of objects in the scene, and forecast what will happen soon, everything all at once. To endow autonomous systems with such holistic perception, learning how to correlate concepts, abstract knowledge across diverse tasks, and leverage tasks synergies when learning novel skills is essential. In this paper, we introduce Hier-EgoPack, a unified framework able to create a collection of task perspectives that can be carried across downstream tasks and used as a potential source of additional insights, as a backpack of skills that a robot can carry around and use when needed.
comment: Extended abstract derived from arXiv:2502.02487. Presented at the Second Joint Egocentric Vision (EgoVis) Workshop (CVPR 2025)
TumorGen: Boundary-Aware Tumor-Mask Synthesis with Rectified Flow Matching
Tumor data synthesis offers a promising solution to the shortage of annotated medical datasets. However, current approaches either limit tumor diversity by using predefined masks or employ computationally expensive two-stage processes with multiple denoising steps, causing computational inefficiency. Additionally, these methods typically rely on binary masks that fail to capture the gradual transitions characteristic of tumor boundaries. We present TumorGen, a novel Boundary-Aware Tumor-Mask Synthesis with Rectified Flow Matching for efficient 3D tumor synthesis with three key components: a Boundary-Aware Pseudo Mask Generation module that replaces strict binary masks with flexible bounding boxes; a Spatial-Constraint Vector Field Estimator that simultaneously synthesizes tumor latents and masks using rectified flow matching to ensure computational efficiency; and a VAE-guided mask refiner that enhances boundary realism. TumorGen significantly improves computational efficiency by requiring fewer sampling steps while maintaining pathological accuracy through coarse and fine-grained spatial constraints. Experimental results demonstrate TumorGen's superior performance over existing tumor synthesis methods in both efficiency and realism, offering a valuable contribution to AI-driven cancer diagnostics.
comment: 10 pages, 4 figures
Beyond FACS: Data-driven Facial Expression Dictionaries, with Application to Predicting Autism
The Facial Action Coding System (FACS) has been used by numerous studies to investigate the links between facial behavior and mental health. The laborious and costly process of FACS coding has motivated the development of machine learning frameworks for Action Unit (AU) detection. Despite intense efforts spanning three decades, the detection accuracy for many AUs is considered to be below the threshold needed for behavioral research. Also, many AUs are excluded altogether, making it impossible to fulfill the ultimate goal of FACS-the representation of any facial expression in its entirety. This paper considers an alternative approach. Instead of creating automated tools that mimic FACS experts, we propose to use a new coding system that mimics the key properties of FACS. Specifically, we construct a data-driven coding system called the Facial Basis, which contains units that correspond to localized and interpretable 3D facial movements, and overcomes three structural limitations of automated FACS coding. First, the proposed method is completely unsupervised, bypassing costly, laborious and variable manual annotation. Second, Facial Basis reconstructs all observable movement, rather than relying on a limited repertoire of recognizable movements (as in automated FACS). Finally, the Facial Basis units are additive, whereas AUs may fail detection when they appear in a non-additive combination. The proposed method outperforms the most frequently used AU detector in predicting autism diagnosis from in-person and remote conversations, highlighting the importance of encoding facial behavior comprehensively. To our knowledge, Facial Basis is the first alternative to FACS for deconstructing facial expressions in videos into localized movements. We provide an open source implementation of the method at github.com/sariyanidi/FacialBasis.
comment: To appear in the Proceedings of the 19th IEEE International Conference on Automatic Face and Gesture Recognition (2025)
6D Pose Estimation on Point Cloud Data through Prior Knowledge Integration: A Case Study in Autonomous Disassembly
The accurate estimation of 6D pose remains a challenging task within the computer vision domain, even when utilizing 3D point cloud data. Conversely, in the manufacturing domain, instances arise where leveraging prior knowledge can yield advancements in this endeavor. This study focuses on the disassembly of starter motors to augment the engineering of product life cycles. A pivotal objective in this context involves the identification and 6D pose estimation of bolts affixed to the motors, facilitating automated disassembly within the manufacturing workflow. Complicating matters, the presence of occlusions and the limitations of single-view data acquisition, notably when motors are placed in a clamping system, obscure certain portions and render some bolts imperceptible. Consequently, the development of a comprehensive pipeline capable of acquiring complete bolt information is imperative to avoid oversight in bolt detection. In this paper, employing the task of bolt detection within the scope of our project as a pertinent use case, we introduce a meticulously devised pipeline. This multi-stage pipeline effectively captures the 6D information with regard to all bolts on the motor, thereby showcasing the effective utilization of prior knowledge in handling this challenging task. The proposed methodology not only contributes to the field of 6D pose estimation but also underscores the viability of integrating domain-specific insights to tackle complex problems in manufacturing and automation.
Decoupled Competitive Framework for Semi-supervised Medical Image Segmentation ECAI 2024
Confronting the critical challenge of insufficiently annotated samples in medical domain, semi-supervised medical image segmentation (SSMIS) emerges as a promising solution. Specifically, most methodologies following the Mean Teacher (MT) or Dual Students (DS) architecture have achieved commendable results. However, to date, these approaches face a performance bottleneck due to two inherent limitations, \textit{e.g.}, the over-coupling problem within MT structure owing to the employment of exponential moving average (EMA) mechanism, as well as the severe cognitive bias between two students of DS structure, both of which potentially lead to reduced efficacy, or even model collapse eventually. To mitigate these issues, a Decoupled Competitive Framework (DCF) is elaborated in this work, which utilizes a straightforward competition mechanism for the update of EMA, effectively decoupling students and teachers in a dynamical manner. In addition, the seamless exchange of invaluable and precise insights is facilitated among students, guaranteeing a better learning paradigm. The DCF introduced undergoes rigorous validation on three publicly accessible datasets, which encompass both 2D and 3D datasets. The results demonstrate the superiority of our method over previous cutting-edge competitors. Code will be available at https://github.com/JiaheChen2002/DCF.
comment: Published in ECAI 2024
Black-box Adversarial Attacks on CNN-based SLAM Algorithms
Continuous advancements in deep learning have led to significant progress in feature detection, resulting in enhanced accuracy in tasks like Simultaneous Localization and Mapping (SLAM). Nevertheless, the vulnerability of deep neural networks to adversarial attacks remains a challenge for their reliable deployment in applications, such as navigation of autonomous agents. Even though CNN-based SLAM algorithms are a growing area of research there is a notable absence of a comprehensive presentation and examination of adversarial attacks targeting CNN-based feature detectors, as part of a SLAM system. Our work introduces black-box adversarial perturbations applied to the RGB images fed into the GCN-SLAM algorithm. Our findings on the TUM dataset [30] reveal that even attacks of moderate scale can lead to tracking failure in as many as 76% of the frames. Moreover, our experiments highlight the catastrophic impact of attacking depth instead of RGB input images on the SLAM system.
comment: 9 pages, 8 figures
BIMA: Bijective Maximum Likelihood Learning Approach to Hallucination Prediction and Mitigation in Large Vision-Language Models CVPR
Large vision-language models have become widely adopted to advance in various domains. However, developing a trustworthy system with minimal interpretable characteristics of large-scale models presents a significant challenge. One of the most prevalent terms associated with the fallacy functions caused by these systems is hallucination, where the language model generates a response that does not correspond to the visual content. To mitigate this problem, several approaches have been developed, and one prominent direction is to ameliorate the decoding process. In this paper, we propose a new Bijective Maximum Likelihood Learning (BIMA) approach to hallucination mitigation using normalizing flow theories. The proposed BIMA method can efficiently mitigate the hallucination problem in prevailing vision-language models, resulting in significant improvements. Notably, BIMA achieves the average F1 score of 85.06% on POPE benchmark and remarkably reduce CHAIRS and CHAIRI by 7.6% and 2.6%, respectively. To the best of our knowledge, this is one of the first studies that contemplates the bijection means to reduce hallucination induced by large vision-language models.
comment: CVPRW 2025, 8 pages, 4 figures
A Cross Branch Fusion-Based Contrastive Learning Framework for Point Cloud Self-supervised Learning
Contrastive learning is an essential method in self-supervised learning. It primarily employs a multi-branch strategy to compare latent representations obtained from different branches and train the encoder. In the case of multi-modal input, diverse modalities of the same object are fed into distinct branches. When using single-modal data, the same input undergoes various augmentations before being fed into different branches. However, all existing contrastive learning frameworks have so far only performed contrastive operations on the learned features at the final loss end, with no information exchange between different branches prior to this stage. In this paper, for point cloud unsupervised learning without the use of extra training data, we propose a Contrastive Cross-branch Attention-based framework for Point cloud data (termed PoCCA), to learn rich 3D point cloud representations. By introducing sub-branches, PoCCA allows information exchange between different branches before the loss end. Experimental results demonstrate that in the case of using no extra training data, the representations learned with our self-supervised model achieve state-of-the-art performances when used for downstream tasks on point clouds.
Cloud Optical Thickness Retrievals Using Angle Invariant Attention Based Deep Learning Models ICIP
Cloud Optical Thickness (COT) is a critical cloud property influencing Earth's climate, weather, and radiation budget. Satellite radiance measurements enable global COT retrieval, but challenges like 3D cloud effects, viewing angles, and atmospheric interference must be addressed to ensure accurate estimation. Traditionally, the Independent Pixel Approximation (IPA) method, which treats individual pixels independently, has been used for COT estimation. However, IPA introduces significant bias due to its simplified assumptions. Recently, deep learning-based models have shown improved performance over IPA but lack robustness, as they are sensitive to variations in radiance intensity, distortions, and cloud shadows. These models also introduce substantial errors in COT estimation under different solar and viewing zenith angles. To address these challenges, we propose a novel angle-invariant, attention-based deep model called Cloud-Attention-Net with Angle Coding (CAAC). Our model leverages attention mechanisms and angle embeddings to account for satellite viewing geometry and 3D radiative transfer effects, enabling more accurate retrieval of COT. Additionally, our multi-angle training strategy ensures angle invariance. Through comprehensive experiments, we demonstrate that CAAC significantly outperforms existing state-of-the-art deep learning models, reducing cloud property retrieval errors by at least a factor of nine.
comment: 6 pages, 7 figures, to be published in 2025 IEEE International Conference on Image Processing (ICIP)
Category-Level 6D Object Pose Estimation in Agricultural Settings Using a Lattice-Deformation Framework and Diffusion-Augmented Synthetic Data IROS
Accurate 6D object pose estimation is essential for robotic grasping and manipulation, particularly in agriculture, where fruits and vegetables exhibit high intra-class variability in shape, size, and texture. The vast majority of existing methods rely on instance-specific CAD models or require depth sensors to resolve geometric ambiguities, making them impractical for real-world agricultural applications. In this work, we introduce PLANTPose, a novel framework for category-level 6D pose estimation that operates purely on RGB input. PLANTPose predicts both the 6D pose and deformation parameters relative to a base mesh, allowing a single category-level CAD model to adapt to unseen instances. This enables accurate pose estimation across varying shapes without relying on instance-specific data. To enhance realism and improve generalization, we also leverage Stable Diffusion to refine synthetic training images with realistic texturing, mimicking variations due to ripeness and environmental factors and bridging the domain gap between synthetic data and the real world. Our evaluations on a challenging benchmark that includes bananas of various shapes, sizes, and ripeness status demonstrate the effectiveness of our framework in handling large intraclass variations while maintaining accurate 6D pose predictions, significantly outperforming the state-of-the-art RGB-based approach MegaPose.
comment: 7 pages, 4 figures. Submitted to the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025. This work has been submitted to the IEEE for possible publication
NUC-Net: Non-uniform Cylindrical Partition Network for Efficient LiDAR Semantic Segmentation
LiDAR semantic segmentation plays a vital role in autonomous driving. Existing voxel-based methods for LiDAR semantic segmentation apply uniform partition to the 3D LiDAR point cloud to form a structured representation based on cartesian/cylindrical coordinates. Although these methods show impressive performance, the drawback of existing voxel-based methods remains in two aspects: (1) it requires a large enough input voxel resolution, which brings a large amount of computation cost and memory consumption. (2) it does not well handle the unbalanced point distribution of LiDAR point cloud. In this paper, we propose a non-uniform cylindrical partition network named NUC-Net to tackle the above challenges. Specifically, we propose the Arithmetic Progression of Interval (API) method to non-uniformly partition the radial axis and generate the voxel representation which is representative and efficient. Moreover, we propose a non-uniform multi-scale aggregation method to improve contextual information. Our method achieves state-of-the-art performance on SemanticKITTI and nuScenes datasets with much faster speed and much less training time. And our method can be a general component for LiDAR semantic segmentation, which significantly improves both the accuracy and efficiency of the uniform counterpart by $4 \times$ training faster and $2 \times$ GPU memory reduction and $3 \times$ inference speedup. We further provide theoretical analysis towards understanding why NUC is effective and how point distribution affects performance. Code is available at \href{https://github.com/alanWXZ/NUC-Net}{https://github.com/alanWXZ/NUC-Net}.
Learning from Videos for 3D World: Enhancing MLLMs with 3D Vision Geometry Priors
Previous research has investigated the application of Multimodal Large Language Models (MLLMs) in understanding 3D scenes by interpreting them as videos. These approaches generally depend on comprehensive 3D data inputs, such as point clouds or reconstructed Bird's-Eye View (BEV) maps. In our research, we advance this field by enhancing the capability of MLLMs to understand and reason in 3D spaces directly from video data, without the need for additional 3D input. We propose a novel and efficient method, the Video-3D Geometry Large Language Model (VG LLM). Our approach employs a 3D visual geometry encoder that extracts 3D prior information from video sequences. This information is integrated with visual tokens and fed into the MLLM. Extensive experiments have shown that our method has achieved substantial improvements in various tasks related to 3D scene understanding and spatial reasoning, all directly learned from video sources. Impressively, our 4B model, which does not rely on explicit 3D data inputs, achieves competitive results compared to existing state-of-the-art methods, and even surpasses the Gemini-1.5-Pro in the VSI-Bench evaluations.
Hyperbolic Dataset Distillation
To address the computational and storage challenges posed by large-scale datasets in deep learning, dataset distillation has been proposed to synthesize a compact dataset that replaces the original while maintaining comparable model performance. Unlike optimization-based approaches that require costly bi-level optimization, distribution matching (DM) methods improve efficiency by aligning the distributions of synthetic and original data, thereby eliminating nested optimization. DM achieves high computational efficiency and has emerged as a promising solution. However, existing DM methods, constrained to Euclidean space, treat data as independent and identically distributed points, overlooking complex geometric and hierarchical relationships. To overcome this limitation, we propose a novel hyperbolic dataset distillation method, termed HDD. Hyperbolic space, characterized by negative curvature and exponential volume growth with distance, naturally models hierarchical and tree-like structures. HDD embeds features extracted by a shallow network into the Lorentz hyperbolic space, where the discrepancy between synthetic and original data is measured by the hyperbolic (geodesic) distance between their centroids. By optimizing this distance, the hierarchical structure is explicitly integrated into the distillation process, guiding synthetic samples to gravitate towards the root-centric regions of the original data distribution while preserving their underlying geometric characteristics. Furthermore, we find that pruning in hyperbolic space requires only 20% of the distilled core set to retain model performance, while significantly improving training stability. Notably, HDD is seamlessly compatible with most existing DM methods, and extensive experiments on different datasets validate its effectiveness.
GARLIC: GAussian Representation LearnIng for spaCe partitioning
We introduce GARLIC (GAussian Representation LearnIng for spaCe partitioning), a novel indexing structure based on \(N\)-dimensional Gaussians for efficiently learning high-dimensional vector spaces. Our approach is inspired from Gaussian splatting techniques, typically used in 3D rendering, which we adapt for high-dimensional search and classification. We optimize Gaussian parameters using information-theoretic objectives that balance coverage, assignment confidence, and structural and semantic consistency. A key contribution is to progressively refine the representation through split and clone operations, handling hundreds of dimensions, thus handling varying data densities. GARLIC offers the fast building times of traditional space partitioning methods (e.g., under \(\sim5\) min build time for SIFT1M) while achieving \(\sim50\%\) Recall10@10 in low-candidate regimes. Experimental results on standard benchmarks demonstrate our method's consistency in (a) \(k\)-NN retrieval, outperforming methods, such as Faiss-IVF, in fast-recall by using about half their probes for the same Recall10@10 in Fashion-MNIST, and (b) in classification tasks, beating by \(\sim15\%\) accuracy other majority voting methods. Further, we show strong generalization capabilities, maintaining high accuracy even with downsampled training data: using just \(1\%\) of the training data returns \(\sim 45\%\) Recall@1, thus making GARLIC quite powerful for applications requiring both speed and accuracy.
Model-Guided Network with Cluster-Based Operators for Spatio-Spectral Super-Resolution
This paper addresses the problem of reconstructing a high-resolution hyperspectral image from a low-resolution multispectral observation. While spatial super-resolution and spectral super-resolution have been extensively studied, joint spatio-spectral super-resolution remains relatively explored. We propose an end-to-end model-driven framework that explicitly decomposes the joint spatio-spectral super-resolution problem into spatial super-resolution, spectral super-resolution and fusion tasks. Each sub-task is addressed by unfolding a variational-based approach, where the operators involved in the proximal gradient iterative scheme are replaced with tailored learnable modules. In particular, we design an upsampling operator for spatial super-resolution based on classical back-projection algorithms, adapted to handle arbitrary scaling factors. Spectral reconstruction is performed using learnable cluster-based upsampling and downsampling operators. For image fusion, we integrate low-frequency estimation and high-frequency injection modules to combine the spatial and spectral information from spatial super-resolution and spectral super-resolution outputs. Additionally, we introduce an efficient nonlocal post-processing step that leverages image self-similarity by combining a multi-head attention mechanism with residual connections. Extensive evaluations on several datasets and sampling factors demonstrate the effectiveness of our approach. The source code will be available at https://github.com/TAMI-UIB/JSSUNet
SARD: A Large-Scale Synthetic Arabic OCR Dataset for Book-Style Text Recognition
Arabic Optical Character Recognition (OCR) is essential for converting vast amounts of Arabic print media into digital formats. However, training modern OCR models, especially powerful vision-language models, is hampered by the lack of large, diverse, and well-structured datasets that mimic real-world book layouts. Existing Arabic OCR datasets often focus on isolated words or lines or are limited in scale, typographic variety, or structural complexity found in books. To address this significant gap, we introduce SARD (Large-Scale Synthetic Arabic OCR Dataset). SARD is a massive, synthetically generated dataset specifically designed to simulate book-style documents. It comprises 843,622 document images containing 690 million words, rendered across ten distinct Arabic fonts to ensure broad typographic coverage. Unlike datasets derived from scanned documents, SARD is free from real-world noise and distortions, offering a clean and controlled environment for model training. Its synthetic nature provides unparalleled scalability and allows for precise control over layout and content variation. We detail the dataset's composition and generation process and provide benchmark results for several OCR models, including traditional and deep learning approaches, highlighting the challenges and opportunities presented by this dataset. SARD serves as a valuable resource for developing and evaluating robust OCR and vision-language models capable of processing diverse Arabic book-style texts.
Unleashing the Power of Intermediate Domains for Mixed Domain Semi-Supervised Medical Image Segmentation
Both limited annotation and domain shift are prevalent challenges in medical image segmentation. Traditional semi-supervised segmentation and unsupervised domain adaptation methods address one of these issues separately. However, the coexistence of limited annotation and domain shift is quite common, which motivates us to introduce a novel and challenging scenario: Mixed Domain Semi-supervised medical image Segmentation (MiDSS), where limited labeled data from a single domain and a large amount of unlabeled data from multiple domains. To tackle this issue, we propose the UST-RUN framework, which fully leverages intermediate domain information to facilitate knowledge transfer. We employ Unified Copy-paste (UCP) to construct intermediate domains, and propose a Symmetric GuiDance training strategy (SymGD) to supervise unlabeled data by merging pseudo-labels from intermediate samples. Subsequently, we introduce a Training Process aware Random Amplitude MixUp (TP-RAM) to progressively incorporate style-transition components into intermediate samples. To generate more diverse intermediate samples, we further select reliable samples with high-quality pseudo-labels, which are then mixed with other unlabeled data. Additionally, we generate sophisticated intermediate samples with high-quality pseudo-labels for unreliable samples, ensuring effective knowledge transfer for them. Extensive experiments on four public datasets demonstrate the superiority of UST-RUN. Notably, UST-RUN achieves a 12.94% improvement in Dice score on the Prostate dataset. Our code is available at https://github.com/MQinghe/UST-RUN
comment: Accepted by IEEE TMI 2025. arXiv admin note: text overlap with arXiv:2404.08951
Optimal Weighted Convolution for Classification and Denosing
We introduce a novel weighted convolution operator that enhances traditional convolutional neural networks (CNNs) by integrating a spatial density function into the convolution operator. This extension enables the network to differentially weight neighbouring pixels based on their relative position to the reference pixel, improving spatial characterisation and feature extraction. The proposed operator maintains the same number of trainable parameters and is fully compatible with existing CNN architectures. Although developed for 2D image data, the framework is generalisable to signals on regular grids of arbitrary dimensions, such as 3D volumetric data or 1D time series. We propose an efficient implementation of the weighted convolution by pre-computing the density function and achieving execution times comparable to standard convolution layers. We evaluate our method on two deep learning tasks: image classification using the CIFAR-100 dataset [KH+09] and image denoising using the DIV2K dataset [AT17]. Experimental results with state-of-the-art classification (e.g., VGG [SZ15], ResNet [HZRS16]) and denoising (e.g., DnCNN [ZZC+17], NAFNet [CCZS22]) methods show that the weighted convolution improves performance with respect to standard convolution across different quantitative metrics. For example, VGG achieves an accuracy of 66.94% with weighted convolution versus 56.89% with standard convolution on the classification problem, while DnCNN improves the PSNR value from 20.17 to 22.63 on the denoising problem. All models were trained on the CINECA Leonardo cluster to reduce the execution time and improve the tuning of the density function values. The PyTorch implementation of the weighted convolution is publicly available at: https://github.com/cammarasana123/weightedConvolution2.0.
comment: 17 pages, 3 figures, 6 tables
Mixpert: Mitigating Multimodal Learning Conflicts with Efficient Mixture-of-Vision-Experts
Multimodal large language models (MLLMs) require a nuanced interpretation of complex image information, typically leveraging a vision encoder to perceive various visual scenarios. However, relying solely on a single vision encoder to handle diverse task domains proves difficult and inevitably leads to conflicts. Recent work enhances data perception by directly integrating multiple domain-specific vision encoders, yet this structure adds complexity and limits the potential for joint optimization. In this paper, we introduce Mixpert, an efficient mixture-of-vision-experts architecture that inherits the joint learning advantages from a single vision encoder while being restructured into a multi-expert paradigm for task-specific fine-tuning across different visual tasks. Additionally, we design a dynamic routing mechanism that allocates input images to the most suitable visual expert. Mixpert effectively alleviates domain conflicts encountered by a single vision encoder in multi-task learning with minimal additional computational cost, making it more efficient than multiple encoders. Furthermore, Mixpert integrates seamlessly into any MLLM, with experimental results demonstrating substantial performance gains across various tasks.
Geospatial Foundation Models to Enable Progress on Sustainable Development Goals
Foundation Models (FMs) are large-scale, pre-trained AI systems that have revolutionized natural language processing and computer vision, and are now advancing geospatial analysis and Earth Observation (EO). They promise improved generalization across tasks, scalability, and efficient adaptation with minimal labeled data. However, despite the rapid proliferation of geospatial FMs, their real-world utility and alignment with global sustainability goals remain underexplored. We introduce SustainFM, a comprehensive benchmarking framework grounded in the 17 Sustainable Development Goals with extremely diverse tasks ranging from asset wealth prediction to environmental hazard detection. This study provides a rigorous, interdisciplinary assessment of geospatial FMs and offers critical insights into their role in attaining sustainability goals. Our findings show: (1) While not universally superior, FMs often outperform traditional approaches across diverse tasks and datasets. (2) Evaluating FMs should go beyond accuracy to include transferability, generalization, and energy efficiency as key criteria for their responsible use. (3) FMs enable scalable, SDG-grounded solutions, offering broad utility for tackling complex sustainability challenges. Critically, we advocate for a paradigm shift from model-centric development to impact-driven deployment, and emphasize metrics such as energy efficiency, robustness to domain shifts, and ethical considerations.
Optimal Density Functions for Weighted Convolution in Learning Models
The paper introduces the weighted convolution, a novel approach to the convolution for signals defined on regular grids (e.g., 2D images) through the application of an optimal density function to scale the contribution of neighbouring pixels based on their distance from the central pixel. This choice differs from the traditional uniform convolution, which treats all neighbouring pixels equally. Our weighted convolution can be applied to convolutional neural network problems to improve the approximation accuracy. Given a convolutional network, we define a framework to compute the optimal density function through a minimisation model. The framework separates the optimisation of the convolutional kernel weights (using stochastic gradient descent) from the optimisation of the density function (using DIRECT-L). Experimental results on a learning model for an image-to-image task (e.g., image denoising) show that the weighted convolution significantly reduces the loss (up to 53% improvement) and increases the test accuracy compared to standard convolution. While this method increases execution time by 11%, it is robust across several hyperparameters of the learning model. Future work will apply the weighted convolution to real-case 2D and 3D image convolutional learning problems.
comment: 5 figures, 5 tables, 21 pages
UniGeo: Taming Video Diffusion for Unified Consistent Geometry Estimation
Recently, methods leveraging diffusion model priors to assist monocular geometric estimation (e.g., depth and normal) have gained significant attention due to their strong generalization ability. However, most existing works focus on estimating geometric properties within the camera coordinate system of individual video frames, neglecting the inherent ability of diffusion models to determine inter-frame correspondence. In this work, we demonstrate that, through appropriate design and fine-tuning, the intrinsic consistency of video generation models can be effectively harnessed for consistent geometric estimation. Specifically, we 1) select geometric attributes in the global coordinate system that share the same correspondence with video frames as the prediction targets, 2) introduce a novel and efficient conditioning method by reusing positional encodings, and 3) enhance performance through joint training on multiple geometric attributes that share the same correspondence. Our results achieve superior performance in predicting global geometric attributes in videos and can be directly applied to reconstruction tasks. Even when trained solely on static video data, our approach exhibits the potential to generalize to dynamic video scenes.
comment: Project page: https://sunyangtian.github.io/UniGeo-web/
AMIA: Automatic Masking and Joint Intention Analysis Makes LVLMs Robust Jailbreak Defenders
We introduce AMIA, a lightweight, inference-only defense for Large Vision-Language Models (LVLMs) that (1) Automatically Masks a small set of text-irrelevant image patches to disrupt adversarial perturbations, and (2) conducts joint Intention Analysis to uncover and mitigate hidden harmful intents before response generation. Without any retraining, AMIA improves defense success rates across diverse LVLMs and jailbreak benchmarks from an average of 52.4% to 81.7%, preserves general utility with only a 2% average accuracy drop, and incurs only modest inference overhead. Ablation confirms both masking and intention analysis are essential for a robust safety-utility trade-off.
comment: 11 pages, 7 figures
un$^2$CLIP: Improving CLIP's Visual Detail Capturing Ability via Inverting unCLIP
Contrastive Language-Image Pre-training (CLIP) has become a foundation model and has been applied to various vision and multimodal tasks. However, recent works indicate that CLIP falls short in distinguishing detailed differences in images and shows suboptimal performance on dense-prediction and vision-centric multimodal tasks. Therefore, this work focuses on improving existing CLIP models, aiming to capture as many visual details in images as possible. We find that a specific type of generative models, unCLIP, provides a suitable framework for achieving our goal. Specifically, unCLIP trains an image generator conditioned on the CLIP image embedding. In other words, it inverts the CLIP image encoder. Compared to discriminative models like CLIP, generative models are better at capturing image details because they are trained to learn the data distribution of images. Additionally, the conditional input space of unCLIP aligns with CLIP's original image-text embedding space. Therefore, we propose to invert unCLIP (dubbed un$^2$CLIP) to improve the CLIP model. In this way, the improved image encoder can gain unCLIP's visual detail capturing ability while preserving its alignment with the original text encoder simultaneously. We evaluate our improved CLIP across various tasks to which CLIP has been applied, including the challenging MMVP-VLM benchmark, the dense-prediction open-vocabulary segmentation task, and multimodal large language model tasks. Experiments show that un$^2$CLIP significantly improves the original CLIP and previous CLIP improvement methods. Code and models will be available at https://github.com/LiYinqi/un2CLIP.
Digital twins enable full-reference quality assessment of photoacoustic image reconstructions
Quantitative comparison of the quality of photoacoustic image reconstruction algorithms remains a major challenge. No-reference image quality measures are often inadequate, but full-reference measures require access to an ideal reference image. While the ground truth is known in simulations, it is unknown in vivo, or in phantom studies, as the reference depends on both the phantom properties and the imaging system. We tackle this problem by using numerical digital twins of tissue-mimicking phantoms and the imaging system to perform a quantitative calibration to reduce the simulation gap. The contributions of this paper are two-fold: First, we use this digital-twin framework to compare multiple state-of-the-art reconstruction algorithms. Second, among these is a Fourier transform-based reconstruction algorithm for circular detection geometries, which we test on experimental data for the first time. Our results demonstrate the usefulness of digital phantom twins by enabling assessment of the accuracy of the numerical forward model and enabling comparison of image reconstruction schemes with full-reference image quality assessment. We show that the Fourier transform-based algorithm yields results comparable to those of iterative time reversal, but at a lower computational cost. All data and code are publicly available on Zenodo: https://doi.org/10.5281/zenodo.15388429.
Reason-SVG: Hybrid Reward RL for Aha-Moments in Vector Graphics Generation
Generating high-quality Scalable Vector Graphics (SVGs) is challenging for Large Language Models (LLMs), as it requires advanced reasoning for structural validity, semantic faithfulness, and visual coherence -- capabilities in which current LLMs often fall short. In this work, we introduce Reason-SVG, a novel framework designed to enhance LLM reasoning for SVG generation. Reason-SVG pioneers the "Drawing-with-Thought" (DwT) paradigm, in which models generate both SVG code and explicit design rationales, mimicking the human creative process. Reason-SVG adopts a two-stage training strategy: First, Supervised Fine-Tuning (SFT) trains the LLM on the DwT paradigm to activate foundational reasoning abilities. Second, Reinforcement Learning (RL), utilizing Group Relative Policy Optimization (GRPO), empowers the model to generate both DwT and SVGs rationales through refined, reward-driven reasoning. To facilitate reasoning-driven SVG generation, we design a Hybrid Reward function that evaluates the presence and utility of DwT reasoning, along with structural validity, semantic alignment, and visual quality. We also introduce the SVGX-DwT-10k dataset, a high-quality corpus of 10,000 SVG-DwT pairs, where each SVG code is generated based on explicit DwT reasoning. By integrating DwT, SFT, and Hybrid Reward-guided RL, Reason-SVG significantly improves LLM performance in generating accurate and visually compelling SVGs, potentially fostering "Aha moments" in design.
comment: 17 pages, 5 figures
Deformable Attention Mechanisms Applied to Object Detection, case of Remote Sensing
Object detection has recently seen an interesting trend in terms of the most innovative research work, this task being of particular importance in the field of remote sensing, given the consistency of these images in terms of geographical coverage and the objects present. Furthermore, Deep Learning (DL) models, in particular those based on Transformers, are especially relevant for visual computing tasks in general, and target detection in particular. Thus, the present work proposes an application of Deformable-DETR model, a specific architecture using deformable attention mechanisms, on remote sensing images in two different modes, especially optical and Synthetic Aperture Radar (SAR). To achieve this objective, two datasets are used, one optical, which is Pleiades Aircraft dataset, and the other SAR, in particular SAR Ship Detection Dataset (SSDD). The results of a 10-fold stratified validation showed that the proposed model performed particularly well, obtaining an F1 score of 95.12% for the optical dataset and 94.54% for SSDD, while comparing these results with several models detections, especially those based on CNNs and transformers, as well as those specifically designed to detect different object classes in remote sensing images.
comment: 10 pages, 5 figures, paper accepted at the 29th International Conference on Knowledge-Based and Intelligent Information and Engineering Systems (KES 2025), Osaka, Japan
ACM-UNet: Adaptive Integration of CNNs and Mamba for Efficient Medical Image Segmentation
The U-shaped encoder-decoder architecture with skip connections has become a prevailing paradigm in medical image segmentation due to its simplicity and effectiveness. While many recent works aim to improve this framework by designing more powerful encoders and decoders, employing advanced convolutional neural networks (CNNs) for local feature extraction, Transformers or state space models (SSMs) such as Mamba for global context modeling, or hybrid combinations of both, these methods often struggle to fully utilize pretrained vision backbones (e.g., ResNet, ViT, VMamba) due to structural mismatches. To bridge this gap, we introduce ACM-UNet, a general-purpose segmentation framework that retains a simple UNet-like design while effectively incorporating pretrained CNNs and Mamba models through a lightweight adapter mechanism. This adapter resolves architectural incompatibilities and enables the model to harness the complementary strengths of CNNs and SSMs-namely, fine-grained local detail extraction and long-range dependency modeling. Additionally, we propose a hierarchical multi-scale wavelet transform module in the decoder to enhance feature fusion and reconstruction fidelity. Extensive experiments on the Synapse and ACDC benchmarks demonstrate that ACM-UNet achieves state-of-the-art performance while remaining computationally efficient. Notably, it reaches 85.12% Dice Score and 13.89mm HD95 on the Synapse dataset with 17.93G FLOPs, showcasing its effectiveness and scalability. Code is available at: https://github.com/zyklcode/ACM-UNet.
comment: 10 pages, 3 figures, 5 tables
Period-LLM: Extending the Periodic Capability of Multimodal Large Language Model CVPR 2025
Periodic or quasi-periodic phenomena reveal intrinsic characteristics in various natural processes, such as weather patterns, movement behaviors, traffic flows, and biological signals. Given that these phenomena span multiple modalities, the capabilities of Multimodal Large Language Models (MLLMs) offer promising potential to effectively capture and understand their complex nature. However, current MLLMs struggle with periodic tasks due to limitations in: 1) lack of temporal modelling and 2) conflict between short and long periods. This paper introduces Period-LLM, a multimodal large language model designed to enhance the performance of periodic tasks across various modalities, and constructs a benchmark of various difficulty for evaluating the cross-modal periodic capabilities of large models. Specially, We adopt an "Easy to Hard Generalization" paradigm, starting with relatively simple text-based tasks and progressing to more complex visual and multimodal tasks, ensuring that the model gradually builds robust periodic reasoning capabilities. Additionally, we propose a "Resisting Logical Oblivion" optimization strategy to maintain periodic reasoning abilities during semantic alignment. Extensive experiments demonstrate the superiority of the proposed Period-LLM over existing MLLMs in periodic tasks. The code is available at https://github.com/keke-nice/Period-LLM.
comment: Accepted by CVPR 2025
SPPSFormer: High-quality Superpoint-based Transformer for Roof Plane Instance Segmentation from Point Clouds
Transformers have been seldom employed in point cloud roof plane instance segmentation, which is the focus of this study, and existing superpoint Transformers suffer from limited performance due to the use of low-quality superpoints. To address this challenge, we establish two criteria that high-quality superpoints for Transformers should satisfy and introduce a corresponding two-stage superpoint generation process. The superpoints generated by our method not only have accurate boundaries, but also exhibit consistent geometric sizes and shapes, both of which greatly benefit the feature learning of superpoint Transformers. To compensate for the limitations of deep learning features when the training set size is limited, we incorporate multidimensional handcrafted features into the model. Additionally, we design a decoder that combines a Kolmogorov-Arnold Network with a Transformer module to improve instance prediction and mask extraction. Finally, our network's predictions are refined using traditional algorithm-based postprocessing. For evaluation, we annotated a real-world dataset and corrected annotation errors in the existing RoofN3D dataset. Experimental results show that our method achieves state-of-the-art performance on our dataset, as well as both the original and reannotated RoofN3D datasets. Moreover, our model is not sensitive to plane boundary annotations during training, significantly reducing the annotation burden. Through comprehensive experiments, we also identified key factors influencing roof plane segmentation performance: in addition to roof types, variations in point cloud density, density uniformity, and 3D point precision have a considerable impact. These findings underscore the importance of incorporating data augmentation strategies that account for point cloud quality to enhance model robustness under diverse and challenging conditions.
comment: 18 pages, 8 figures
SA-Person: Text-Based Person Retrieval with Scene-aware Re-ranking
Text-based person retrieval aims to identify a target individual from a gallery of images based on a natural language description. It presents a significant challenge due to the complexity of real-world scenes and the ambiguity of appearance-related descriptions. Existing methods primarily emphasize appearance-based cross-modal retrieval, often neglecting the contextual information embedded within the scene, which can offer valuable complementary insights for retrieval. To address this, we introduce SCENEPERSON-13W, a large-scale dataset featuring over 100,000 scenes with rich annotations covering both pedestrian appearance and environmental cues. Based on this, we propose SA-Person, a two-stage retrieval framework. In the first stage, it performs discriminative appearance grounding by aligning textual cues with pedestrian-specific regions. In the second stage, it introduces SceneRanker, a training-free, scene-aware re-ranking method leveraging multimodal large language models to jointly reason over pedestrian appearance and the global scene context. Experiments on SCENEPERSON-13W validate the effectiveness of our framework in challenging scene-level retrieval scenarios. The code and dataset will be made publicly available.
comment: 22 pages, 7 figures. Under review
Diversify and Conquer: Open-set Disagreement for Robust Semi-supervised Learning with Outliers
Conventional semi-supervised learning (SSL) ideally assumes that labeled and unlabeled data share an identical class distribution, however in practice, this assumption is easily violated, as unlabeled data often includes unknown class data, i.e., outliers. The outliers are treated as noise, considerably degrading the performance of SSL models. To address this drawback, we propose a novel framework, Diversify and Conquer (DAC), to enhance SSL robustness in the context of open-set semi-supervised learning. In particular, we note that existing open-set SSL methods rely on prediction discrepancies between inliers and outliers from a single model trained on labeled data. This approach can be easily failed when the labeled data is insufficient, leading to performance degradation that is worse than naive SSL that do not account for outliers. In contrast, our approach exploits prediction disagreements among multiple models that are differently biased towards the unlabeled distribution. By leveraging the discrepancies arising from training on unlabeled data, our method enables robust outlier detection even when the labeled data is underspecified. Our key contribution is constructing a collection of differently biased models through a single training process. By encouraging divergent heads to be differently biased towards outliers while making consistent predictions for inliers, we exploit the disagreement among these heads as a measure to identify unknown concepts. Our code is available at https://github.com/heejokong/DivCon.
comment: Accepted by IEEE Transactions on Neural Networks and Learning Systems (TNNLS)
SORCE: Small Object Retrieval in Complex Environments
Text-to-Image Retrieval (T2IR) is a highly valuable task that aims to match a given textual query to images in a gallery. Existing benchmarks primarily focus on textual queries describing overall image semantics or foreground salient objects, possibly overlooking inconspicuous small objects, especially in complex environments. Such small object retrieval is crucial, as in real-world applications, the targets of interest are not always prominent in the image. Thus, we introduce SORCE (Small Object Retrieval in Complex Environments), a new subfield of T2IR, focusing on retrieving small objects in complex images with textual queries. We propose a new benchmark, SORCE-1K, consisting of images with complex environments and textual queries describing less conspicuous small objects with minimal contextual cues from other salient objects. Preliminary analysis on SORCE-1K finds that existing T2IR methods struggle to capture small objects and encode all the semantics into a single embedding, leading to poor retrieval performance on SORCE-1K. Therefore, we propose to represent each image with multiple distinctive embeddings. We leverage Multimodal Large Language Models (MLLMs) to extract multiple embeddings for each image instructed by a set of Regional Prompts (ReP). Experimental results show that our multi-embedding approach through MLLM and ReP significantly outperforms existing T2IR methods on SORCE-1K. Our experiments validate the effectiveness of SORCE-1K for benchmarking SORCE performances, highlighting the potential of multi-embedding representation and text-customized MLLM features for addressing this task.
comment: Project Page: https://github.com/MCG-NJU/SORCE
Graph Flow Matching: Enhancing Image Generation with Neighbor-Aware Flow Fields
Flow matching casts sample generation as learning a continuous-time velocity field that transports noise to data. Existing flow matching networks typically predict each point's velocity independently, considering only its location and time along its flow trajectory, and ignoring neighboring points. However, this pointwise approach may overlook correlations between points along the generation trajectory that could enhance velocity predictions, thereby improving downstream generation quality. To address this, we propose Graph Flow Matching (GFM), a lightweight enhancement that decomposes the learned velocity into a reaction term -- any standard flow matching network -- and a diffusion term that aggregates neighbor information via a graph neural module. This reaction-diffusion formulation retains the scalability of deep flow models while enriching velocity predictions with local context, all at minimal additional computational cost. Operating in the latent space of a pretrained variational autoencoder, GFM consistently improves Fr\'echet Inception Distance (FID) and recall across five image generation benchmarks (LSUN Church, LSUN Bedroom, FFHQ, AFHQ-Cat, and CelebA-HQ at $256\times256$), demonstrating its effectiveness as a modular enhancement to existing flow matching architectures.
Bridging 3D Anomaly Localization and Repair via High-Quality Continuous Geometric Representation
3D point cloud anomaly detection is essential for robust vision systems but is challenged by pose variations and complex geometric anomalies. Existing patch-based methods often suffer from geometric fidelity issues due to discrete voxelization or projection-based representations, limiting fine-grained anomaly localization. We introduce Pose-Aware Signed Distance Field (PASDF), a novel framework that integrates 3D anomaly detection and repair by learning a continuous, pose-invariant shape representation. PASDF leverages a Pose Alignment Module for canonicalization and a SDF Network to dynamically incorporate pose, enabling implicit learning of high-fidelity anomaly repair templates from the continuous SDF. This facilitates precise pixel-level anomaly localization through an Anomaly-Aware Scoring Module. Crucially, the continuous 3D representation in PASDF extends beyond detection, facilitating in-situ anomaly repair. Experiments on Real3D-AD and Anomaly-ShapeNet demonstrate state-of-the-art performance, achieving high object-level AUROC scores of 80.2% and 90.0%, respectively. These results highlight the effectiveness of continuous geometric representations in advancing 3D anomaly detection and facilitating practical anomaly region repair. The code is available at https://github.com/ZZZBBBZZZ/PASDF to support further research.
Advancing Compositional Awareness in CLIP with Efficient Fine-Tuning
Vision-language models like CLIP have demonstrated remarkable zero-shot capabilities in classification and retrieval. However, these models often struggle with compositional reasoning - the ability to understand the relationships between concepts. A recent benchmark, SugarCrepe++, reveals that previous works on improving compositionality have mainly improved lexical sensitivity but neglected semantic understanding. In addition, downstream retrieval performance often deteriorates, although one would expect that improving compositionality should enhance retrieval. In this work, we introduce CLIC (Compositionally-aware Learning in CLIP), a fine-tuning method based on a novel training technique combining multiple images and their associated captions. CLIC improves compositionality across architectures as well as differently pre-trained CLIP models, both in terms of lexical and semantic understanding, and achieves consistent gains in retrieval performance. This even applies to the recent CLIPS, which achieves SOTA retrieval performance. Nevertheless, the short fine-tuning with CLIC leads to an improvement in retrieval and to the best compositional CLIP model on SugarCrepe++. All our models and code are available at https://clic-compositional-clip.github.io
pyMEAL: A Multi-Encoder Augmentation-Aware Learning for Robust and Generalizable Medical Image Translation
Medical imaging is critical for diagnostics, but clinical adoption of advanced AI-driven imaging faces challenges due to patient variability, image artifacts, and limited model generalization. While deep learning has transformed image analysis, 3D medical imaging still suffers from data scarcity and inconsistencies due to acquisition protocols, scanner differences, and patient motion. Traditional augmentation uses a single pipeline for all transformations, disregarding the unique traits of each augmentation and struggling with large data volumes. To address these challenges, we propose a Multi-encoder Augmentation-Aware Learning (MEAL) framework that leverages four distinct augmentation variants processed through dedicated encoders. Three fusion strategies such as concatenation (CC), fusion layer (FL), and adaptive controller block (BD) are integrated to build multi-encoder models that combine augmentation-specific features before decoding. MEAL-BD uniquely preserves augmentation-aware representations, enabling robust, protocol-invariant feature learning. As demonstrated in a Computed Tomography (CT)-to-T1-weighted Magnetic Resonance Imaging (MRI) translation study, MEAL-BD consistently achieved the best performance on both unseen- and predefined-test data. On both geometric transformations (like rotations and flips) and non-augmented inputs, MEAL-BD outperformed other competing methods, achieving higher mean peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) scores. These results establish MEAL as a reliable framework for preserving structural fidelity and generalizing across clinically relevant variability. By reframing augmentation as a source of diverse, generalizable features, MEAL supports robust, protocol-invariant learning, advancing clinically reliable medical imaging solutions.
comment: 36 pages, 9 figures, 2 tables
EasyText: Controllable Diffusion Transformer for Multilingual Text Rendering
Generating accurate multilingual text with diffusion models has long been desired but remains challenging. Recent methods have made progress in rendering text in a single language, but rendering arbitrary languages is still an unexplored area. This paper introduces EasyText, a text rendering framework based on DiT (Diffusion Transformer), which connects denoising latents with multilingual character tokens encoded as character tokens. We propose character positioning encoding and position encoding interpolation techniques to achieve controllable and precise text rendering. Additionally, we construct a large-scale synthetic text image dataset with 1 million multilingual image-text annotations as well as a high-quality dataset of 20K annotated images, which are used for pretraining and fine-tuning respectively. Extensive experiments and evaluations demonstrate the effectiveness and advancement of our approach in multilingual text rendering, visual quality, and layout-aware text integration.
PCIE_Pose Solution for EgoExo4D Pose and Proficiency Estimation Challenge
This report introduces our team's (PCIE_EgoPose) solutions for the EgoExo4D Pose and Proficiency Estimation Challenges at CVPR2025. Focused on the intricate task of estimating 21 3D hand joints from RGB egocentric videos, which are complicated by subtle movements and frequent occlusions, we developed the Hand Pose Vision Transformer (HP-ViT+). This architecture synergizes a Vision Transformer and a CNN backbone, using weighted fusion to refine the hand pose predictions. For the EgoExo4D Body Pose Challenge, we adopted a multimodal spatio-temporal feature integration strategy to address the complexities of body pose estimation across dynamic contexts. Our methods achieved remarkable performance: 8.31 PA-MPJPE in the Hand Pose Challenge and 11.25 MPJPE in the Body Pose Challenge, securing championship titles in both competitions. We extended our pose estimation solutions to the Proficiency Estimation task, applying core technologies such as transformer-based architectures. This extension enabled us to achieve a top-1 accuracy of 0.53, a SOTA result, in the Demonstrator Proficiency Estimation competition.
Efficient RAW Image Deblurring with Adaptive Frequency Modulation NeurIPS 2025
Image deblurring plays a crucial role in enhancing visual clarity across various applications. Although most deep learning approaches primarily focus on sRGB images, which inherently lose critical information during the image signal processing pipeline, RAW images, being unprocessed and linear, possess superior restoration potential but remain underexplored. Deblurring RAW images presents unique challenges, particularly in handling frequency-dependent blur while maintaining computational efficiency. To address these issues, we propose Frequency Enhanced Network (FrENet), a framework specifically designed for RAW-to-RAW deblurring that operates directly in the frequency domain. We introduce a novel Adaptive Frequency Positional Modulation module, which dynamically adjusts frequency components according to their spectral positions, thereby enabling precise control over the deblurring process. Additionally, frequency domain skip connections are adopted to further preserve high-frequency details. Experimental results demonstrate that FrENet surpasses state-of-the-art deblurring methods in RAW image deblurring, achieving significantly better restoration quality while maintaining high efficiency in terms of reduced MACs. Furthermore, FrENet's adaptability enables it to be extended to sRGB images, where it delivers comparable or superior performance compared to methods specifically designed for sRGB data. The code will be available at https://github.com/WenlongJiao/FrENet .
comment: Preprint. Submitted to NeurIPS 2025
IRBridge: Solving Image Restoration Bridge with Pre-trained Generative Diffusion Models
Bridge models in image restoration construct a diffusion process from degraded to clear images. However, existing methods typically require training a bridge model from scratch for each specific type of degradation, resulting in high computational costs and limited performance. This work aims to efficiently leverage pretrained generative priors within existing image restoration bridges to eliminate this requirement. The main challenge is that standard generative models are typically designed for a diffusion process that starts from pure noise, while restoration tasks begin with a low-quality image, resulting in a mismatch in the state distributions between the two processes. To address this challenge, we propose a transition equation that bridges two diffusion processes with the same endpoint distribution. Based on this, we introduce the IRBridge framework, which enables the direct utilization of generative models within image restoration bridges, offering a more flexible and adaptable approach to image restoration. Extensive experiments on six image restoration tasks demonstrate that IRBridge efficiently integrates generative priors, resulting in improved robustness and generalization performance. Code will be available at GitHub.
PCIE_Interaction Solution for Ego4D Social Interaction Challenge
This report presents our team's PCIE_Interaction solution for the Ego4D Social Interaction Challenge at CVPR 2025, addressing both Looking At Me (LAM) and Talking To Me (TTM) tasks. The challenge requires accurate detection of social interactions between subjects and the camera wearer, with LAM relying exclusively on face crop sequences and TTM combining speaker face crops with synchronized audio segments. In the LAM track, we employ face quality enhancement and ensemble methods. For the TTM task, we extend visual interaction analysis by fusing audio and visual cues, weighted by a visual quality score. Our approach achieved 0.81 and 0.71 mean average precision (mAP) on the LAM and TTM challenges leader board. Code is available at https://github.com/KanokphanL/PCIE_Ego4D_Social_Interaction
Leveraging Intermediate Features of Vision Transformer for Face Anti-Spoofing CVPR
Face recognition systems are designed to be robust against changes in head pose, illumination, and blurring during image capture. If a malicious person presents a face photo of the registered user, they may bypass the authentication process illegally. Such spoofing attacks need to be detected before face recognition. In this paper, we propose a spoofing attack detection method based on Vision Transformer (ViT) to detect minute differences between live and spoofed face images. The proposed method utilizes the intermediate features of ViT, which have a good balance between local and global features that are important for spoofing attack detection, for calculating loss in training and score in inference. The proposed method also introduces two data augmentation methods: face anti-spoofing data augmentation and patch-wise data augmentation, to improve the accuracy of spoofing attack detection. We demonstrate the effectiveness of the proposed method through experiments using the OULU-NPU and SiW datasets.
comment: 2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
S3CE-Net: Spike-guided Spatiotemporal Semantic Coupling and Expansion Network for Long Sequence Event Re-Identification
In this paper, we leverage the advantages of event cameras to resist harsh lighting conditions, reduce background interference, achieve high time resolution, and protect facial information to study the long-sequence event-based person re-identification (Re-ID) task. To this end, we propose a simple and efficient long-sequence event Re-ID model, namely the Spike-guided Spatiotemporal Semantic Coupling and Expansion Network (S3CE-Net). To better handle asynchronous event data, we build S3CE-Net based on spiking neural networks (SNNs). The S3CE-Net incorporates the Spike-guided Spatial-temporal Attention Mechanism (SSAM) and the Spatiotemporal Feature Sampling Strategy (STFS). The SSAM is designed to carry out semantic interaction and association in both spatial and temporal dimensions, leveraging the capabilities of SNNs. The STFS involves sampling spatial feature subsequences and temporal feature subsequences from the spatiotemporal dimensions, driving the Re-ID model to perceive broader and more robust effective semantics. Notably, the STFS introduces no additional parameters and is only utilized during the training stage. Therefore, S3CE-Net is a low-parameter and high-efficiency model for long-sequence event-based person Re-ID. Extensive experiments have verified that our S3CE-Net achieves outstanding performance on many mainstream long-sequence event-based person Re-ID datasets. Code is available at:https://github.com/Mhsunshine/SC3E_Net.
Leadership Assessment in Pediatric Intensive Care Unit Team Training CVPR 2025
This paper addresses the task of assessing PICU team's leadership skills by developing an automated analysis framework based on egocentric vision. We identify key behavioral cues, including fixation object, eye contact, and conversation patterns, as essential indicators of leadership assessment. In order to capture these multimodal signals, we employ Aria Glasses to record egocentric video, audio, gaze, and head movement data. We collect one-hour videos of four simulated sessions involving doctors with different roles and levels. To automate data processing, we propose a method leveraging REMoDNaV, SAM, YOLO, and ChatGPT for fixation object detection, eye contact detection, and conversation classification. In the experiments, significant correlations are observed between leadership skills and behavioral metrics, i.e., the output of our proposed methods, such as fixation time, transition patterns, and direct orders in speech. These results indicate that our proposed data collection and analysis framework can effectively solve skill assessment for training PICU teams.
comment: This paper is accepted by EgoVis Workshop at CVPR 2025
SASP: Strip-Aware Spatial Perception for Fine-Grained Bird Image Classification
Fine-grained bird image classification (FBIC) is not only of great significance for ecological monitoring and species identification, but also holds broad research value in the fields of image recognition and fine-grained visual modeling. Compared with general image classification tasks, FBIC poses more formidable challenges: 1) the differences in species size and imaging distance result in the varying sizes of birds presented in the images; 2) complex natural habitats often introduce strong background interference; 3) and highly flexible poses such as flying, perching, or foraging result in substantial intra-class variability. These factors collectively make it difficult for traditional methods to stably extract discriminative features, thereby limiting the generalizability and interpretability of models in real-world applications. To address these challenges, this paper proposes a fine-grained bird classification framework based on strip-aware spatial perception, which aims to capture long-range spatial dependencies across entire rows or columns in bird images, thereby enhancing the model's robustness and interpretability. The proposed method incorporates two novel modules: extensional perception aggregator (EPA) and channel semantic weaving (CSW). Specifically, EPA integrates local texture details with global structural cues by aggregating information across horizontal and vertical spatial directions. CSW further refines the semantic representations by adaptively fusing long-range and short-range information along the channel dimension. Built upon a ResNet-50 backbone, the model enables jump-wise connection of extended structural features across the spatial domain. Experimental results on the CUB-200-2011 dataset demonstrate that our framework achieves significant performance improvements while maintaining architectural efficiency.
Spatiotemporal Analysis of Forest Machine Operations Using 3D Video Classification
This paper presents a deep learning-based framework for classifying forestry operations from dashcam video footage. Focusing on four key work elements - crane-out, cutting-and-to-processing, driving, and processing - the approach employs a 3D ResNet-50 architecture implemented with PyTorchVideo. Trained on a manually annotated dataset of field recordings, the model achieves strong performance, with a validation F1 score of 0.88 and precision of 0.90. These results underscore the effectiveness of spatiotemporal convolutional networks for capturing both motion patterns and appearance in real-world forestry environments. The system integrates standard preprocessing and augmentation techniques to improve generalization, but overfitting is evident, highlighting the need for more training data and better class balance. Despite these challenges, the method demonstrates clear potential for reducing the manual workload associated with traditional time studies, offering a scalable solution for operational monitoring and efficiency analysis in forestry. This work contributes to the growing application of AI in natural resource management and sets the foundation for future systems capable of real-time activity recognition in forest machinery. Planned improvements include dataset expansion, enhanced regularization, and deployment trials on embedded systems for in-field use.
D2AF: A Dual-Driven Annotation and Filtering Framework for Visual Grounding
Visual Grounding is a task that aims to localize a target region in an image based on a free-form natural language description. With the rise of Transformer architectures, there is an increasing need for larger datasets to boost performance. However, the high cost of manual annotation poses a challenge, hindering the scale of data and the ability of large models to enhance their effectiveness. Previous pseudo label generation methods heavily rely on human-labeled captions of the original dataset, limiting scalability and diversity. To address this, we propose D2AF, a robust annotation framework for visual grounding using only input images. This approach overcomes dataset size limitations and enriches both the quantity and diversity of referring expressions. Our approach leverages multimodal large models and object detection models. By implementing dual-driven annotation strategies, we effectively generate detailed region-text pairs using both closed-set and open-set approaches. We further conduct an in-depth analysis of data quantity and data distribution. Our findings demonstrate that increasing data volume enhances model performance. However, the degree of improvement depends on how well the pseudo labels broaden the original data distribution. Based on these insights, we propose a consistency and distribution aware filtering method to further improve data quality by effectively removing erroneous and redundant data. This approach effectively eliminates noisy data, leading to improved performance. Experiments on three visual grounding tasks demonstrate that our method significantly improves the performance of existing models and achieves state-of-the-art results.
comment: 16pages, 8figures
Grid-LOGAT: Grid Based Local and Global Area Transcription for Video Question Answering
In this paper, we propose a Grid-based Local and Global Area Transcription (Grid-LoGAT) system for Video Question Answering (VideoQA). The system operates in two phases. First, extracting text transcripts from video frames using a Vision-Language Model (VLM). Next, processing questions using these transcripts to generate answers through a Large Language Model (LLM). This design ensures image privacy by deploying the VLM on edge devices and the LLM in the cloud. To improve transcript quality, we propose grid-based visual prompting, which extracts intricate local details from each grid cell and integrates them with global information. Evaluation results show that Grid-LoGAT, using the open-source VLM (LLaVA-1.6-7B) and LLM (Llama-3.1-8B), outperforms state-of-the-art methods with similar baseline models on NExT-QA and STAR-QA datasets with an accuracy of 65.9% and 50.11% respectively. Additionally, our method surpasses the non-grid version by 24 points on localization-based questions we created using NExT-QA.
comment: \c{opyright} 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
Revisiting Cross-Modal Knowledge Distillation: A Disentanglement Approach for RGBD Semantic Segmentation
Multi-modal RGB and Depth (RGBD) data are predominant in many domains such as robotics, autonomous driving and remote sensing. The combination of these multi-modal data enhances environmental perception by providing 3D spatial context, which is absent in standard RGB images. Although RGBD multi-modal data can be available to train computer vision models, accessing all sensor modalities during the inference stage may be infeasible due to sensor failures or resource constraints, leading to a mismatch between data modalities available during training and inference. Traditional Cross-Modal Knowledge Distillation (CMKD) frameworks, developed to address this task, are typically based on a teacher/student paradigm, where a multi-modal teacher distills knowledge into a single-modality student model. However, these approaches face challenges in teacher architecture choices and distillation process selection, thus limiting their adoption in real-world scenarios. To overcome these issues, we introduce CroDiNo-KD (Cross-Modal Disentanglement: a New Outlook on Knowledge Distillation), a novel cross-modal knowledge distillation framework for RGBD semantic segmentation. Our approach simultaneously learns single-modality RGB and Depth models by exploiting disentanglement representation, contrastive learning and decoupled data augmentation with the aim to structure the internal manifolds of neural network models through interaction and collaboration. We evaluated CroDiNo-KD on three RGBD datasets across diverse domains, considering recent CMKD frameworks as competitors. Our findings illustrate the quality of CroDiNo-KD, and they suggest reconsidering the conventional teacher/student paradigm to distill information from multi-modal data to single-modality neural networks.
A Novel Coronary Artery Registration Method Based on Super-pixel Particle Swarm Optimization
Percutaneous Coronary Intervention (PCI) is a minimally invasive procedure that improves coronary blood flow and treats coronary artery disease. Although PCI typically requires 2D X-ray angiography (XRA) to guide catheter placement at real-time, computed tomography angiography (CTA) may substantially improve PCI by providing precise information of 3D vascular anatomy and status. To leverage real-time XRA and detailed 3D CTA anatomy for PCI, accurate multimodal image registration of XRA and CTA is required, to guide the procedure and avoid complications. This is a challenging process as it requires registration of images from different geometrical modalities (2D -> 3D and vice versa), with variations in contrast and noise levels. In this paper, we propose a novel multimodal coronary artery image registration method based on a swarm optimization algorithm, which effectively addresses challenges such as large deformations, low contrast, and noise across these imaging modalities. Our algorithm consists of two main modules: 1) preprocessing of XRA and CTA images separately, and 2) a registration module based on feature extraction using the Steger and Superpixel Particle Swarm Optimization algorithms. Our technique was evaluated on a pilot dataset of 28 pairs of XRA and CTA images from 10 patients who underwent PCI. The algorithm was compared with four state-of-the-art (SOTA) methods in terms of registration accuracy, robustness, and efficiency. Our method outperformed the selected SOTA baselines in all aspects. Experimental results demonstrate the significant effectiveness of our algorithm, surpassing the previous benchmarks and proposes a novel clinical approach that can potentially have merit for improving patient outcomes in coronary artery disease.
VUDG: A Dataset for Video Understanding Domain Generalization
Video understanding has made remarkable progress in recent years, largely driven by advances in deep models and the availability of large-scale annotated datasets. However, existing works typically ignore the inherent domain shifts encountered in real-world video applications, leaving domain generalization (DG) in video understanding underexplored. Hence, we propose Video Understanding Domain Generalization (VUDG), a novel dataset designed specifically for evaluating the DG performance in video understanding. VUDG contains videos from 11 distinct domains that cover three types of domain shifts, and maintains semantic similarity across different domains to ensure fair and meaningful evaluation. We propose a multi-expert progressive annotation framework to annotate each video with both multiple-choice and open-ended question-answer pairs. Extensive experiments on 9 representative large video-language models (LVLMs) and several traditional video question answering methods show that most models (including state-of-the-art LVLMs) suffer performance degradation under domain shifts. These results highlight the challenges posed by VUDG and the difference in the robustness of current models to data distribution shifts. We believe VUDG provides a valuable resource for prompting future research in domain generalization video understanding.
KEVER^2: Knowledge-Enhanced Visual Emotion Reasoning and Retrieval
Understanding what emotions images evoke in their viewers is a foundational goal in human-centric visual computing. While recent advances in vision-language models (VLMs) have shown promise for visual emotion analysis (VEA), several key challenges remain unresolved. Emotional cues in images are often abstract, overlapping, and entangled, making them difficult to model and interpret. Moreover, VLMs struggle to align these complex visual patterns with emotional semantics due to limited supervision and sparse emotional grounding. Finally, existing approaches lack structured affective knowledge to resolve ambiguity and ensure consistent emotional reasoning across diverse visual domains. To address these limitations, we propose \textbf{K-EVER\textsuperscript{2}}, a knowledge-enhanced framework for emotion reasoning and retrieval. Our approach introduces a semantically structured formulation of visual emotion cues and integrates external affective knowledge through multimodal alignment. Without relying on handcrafted labels or direct emotion supervision, K-EVER\textsuperscript{2} achieves robust and interpretable emotion predictions across heterogeneous image types. We validate our framework on three representative benchmarks, Emotion6, EmoSet, and M-Disaster, covering social media imagery, human-centric scenes, and disaster contexts. K-EVER\textsuperscript{2} consistently outperforms strong CNN and VLM baselines, achieving up to a \textbf{19\% accuracy gain} for specific emotions and a \textbf{12.3\% average accuracy gain} across all emotion categories. Our results demonstrate a scalable and generalizable solution for advancing emotional understanding of visual content.
GeoVision Labeler: Zero-Shot Geospatial Classification with Vision and Language Models
Classifying geospatial imagery remains a major bottleneck for applications such as disaster response and land-use monitoring-particularly in regions where annotated data is scarce or unavailable. Existing tools (e.g., RS-CLIP) that claim zero-shot classification capabilities for satellite imagery nonetheless rely on task-specific pretraining and adaptation to reach competitive performance. We introduce GeoVision Labeler (GVL), a strictly zero-shot classification framework: a vision Large Language Model (vLLM) generates rich, human-readable image descriptions, which are then mapped to user-defined classes by a conventional Large Language Model (LLM). This modular, and interpretable pipeline enables flexible image classification for a large range of use cases. We evaluated GVL across three benchmarks-SpaceNet v7, UC Merced, and RESISC45. It achieves up to 93.2% zero-shot accuracy on the binary Buildings vs. No Buildings task on SpaceNet v7. For complex multi-class classification tasks (UC Merced, RESISC45), we implemented a recursive LLM-driven clustering to form meta-classes at successive depths, followed by hierarchical classification-first resolving coarse groups, then finer distinctions-to deliver competitive zero-shot performance. GVL is open-sourced at https://github.com/microsoft/geo-vision-labeler to catalyze adoption in real-world geospatial workflows.
KairosAD: A SAM-Based Model for Industrial Anomaly Detection on Embedded Devices
In the era of intelligent manufacturing, anomaly detection has become essential for maintaining quality control on modern production lines. However, while many existing models show promising performance, they are often too large, computationally demanding, and impractical to deploy on resource-constrained embedded devices that can be easily installed on the production lines of Small and Medium Enterprises (SMEs). To bridge this gap, we present KairosAD, a novel supervised approach that uses the power of the Mobile Segment Anything Model (MobileSAM) for image-based anomaly detection. KairosAD has been evaluated on the two well-known industrial anomaly detection datasets, i.e., MVTec-AD and ViSA. The results show that KairosAD requires 78% fewer parameters and boasts a 4x faster inference time compared to the leading state-of-the-art model, while maintaining comparable AUROC performance. We deployed KairosAD on two embedded devices, the NVIDIA Jetson NX, and the NVIDIA Jetson AGX. Finally, KairosAD was successfully installed and tested on the real production line of the Industrial Computer Engineering Laboratory (ICE Lab) at the University of Verona. The code is available at https://github.com/intelligolabs/KairosAD.
comment: Accepted at the 23rd International Conference on Image Analysis and Processing (ICIAP 2025)
DisTime: Distribution-based Time Representation for Video Large Language Models
Despite advances in general video understanding, Video Large Language Models (Video-LLMs) face challenges in precise temporal localization due to discrete time representations and limited temporally aware datasets. Existing methods for temporal expression either conflate time with text-based numerical values, add a series of dedicated temporal tokens, or regress time using specialized temporal grounding heads. To address these issues, we introduce DisTime, a lightweight framework designed to enhance temporal comprehension in Video-LLMs. DisTime employs a learnable token to create a continuous temporal embedding space and incorporates a Distribution-based Time Decoder that generates temporal probability distributions, effectively mitigating boundary ambiguities and maintaining temporal continuity. Additionally, the Distribution-based Time Encoder re-encodes timestamps to provide time markers for Video-LLMs. To overcome temporal granularity limitations in existing datasets, we propose an automated annotation paradigm that combines the captioning capabilities of Video-LLMs with the localization expertise of dedicated temporal models. This leads to the creation of InternVid-TG, a substantial dataset with 1.25M temporally grounded events across 179k videos, surpassing ActivityNet-Caption by 55 times. Extensive experiments demonstrate that DisTime achieves state-of-the-art performance across benchmarks in three time-sensitive tasks while maintaining competitive performance in Video QA tasks. Code and data are released at https://github.com/josephzpng/DisTime.
STAR-Net: An Interpretable Model-Aided Network for Remote Sensing Image Denoising
Remote sensing image (RSI) denoising is an important topic in the field of remote sensing. Despite the impressive denoising performance of RSI denoising methods, most current deep learning-based approaches function as black boxes and lack integration with physical information models, leading to limited interpretability. Additionally, many methods may struggle with insufficient attention to non-local self-similarity in RSI and require tedious tuning of regularization parameters to achieve optimal performance, particularly in conventional iterative optimization approaches. In this paper, we first propose a novel RSI denoising method named sparse tensor-aided representation network (STAR-Net), which leverages a low-rank prior to effectively capture the non-local self-similarity within RSI. Furthermore, we extend STAR-Net to a sparse variant called STAR-Net-S to deal with the interference caused by non-Gaussian noise in original RSI for the purpose of improving robustness. Different from conventional iterative optimization, we develop an alternating direction method of multipliers (ADMM)-guided deep unrolling network, in which all regularization parameters can be automatically learned, thus inheriting the advantages of both model-based and deep learning-based approaches and successfully addressing the above-mentioned shortcomings. Comprehensive experiments on synthetic and real-world datasets demonstrate that STAR-Net and STAR-Net-S outperform state-of-the-art RSI denoising methods.
EasyText: Controllable Diffusion Transformer for Multilingual Text Rendering
Generating accurate multilingual text with diffusion models has long been desired but remains challenging. Recent methods have made progress in rendering text in a single language, but rendering arbitrary languages is still an unexplored area. This paper introduces EasyText, a text rendering framework based on DiT (Diffusion Transformer), which connects denoising latents with multilingual character tokens encoded as character tokens. We propose character positioning encoding and position encoding interpolation techniques to achieve controllable and precise text rendering. Additionally, we construct a large-scale synthetic text image dataset with 1 million multilingual image-text annotations as well as a high-quality dataset of 20K annotated images, which are used for pretraining and fine-tuning respectively. Extensive experiments and evaluations demonstrate the effectiveness and advancement of our approach in multilingual text rendering, visual quality, and layout-aware text integration.
ZPressor: Bottleneck-Aware Compression for Scalable Feed-Forward 3DGS
Feed-forward 3D Gaussian Splatting (3DGS) models have recently emerged as a promising solution for novel view synthesis, enabling one-pass inference without the need for per-scene 3DGS optimization. However, their scalability is fundamentally constrained by the limited capacity of their encoders, leading to degraded performance or excessive memory consumption as the number of input views increases. In this work, we analyze feed-forward 3DGS frameworks through the lens of the Information Bottleneck principle and introduce ZPressor, a lightweight architecture-agnostic module that enables efficient compression of multi-view inputs into a compact latent state $Z$ that retains essential scene information while discarding redundancy. Concretely, ZPressor enables existing feed-forward 3DGS models to scale to over 100 input views at 480P resolution on an 80GB GPU, by partitioning the views into anchor and support sets and using cross attention to compress the information from the support views into anchor views, forming the compressed latent state $Z$. We show that integrating ZPressor into several state-of-the-art feed-forward 3DGS models consistently improves performance under moderate input views and enhances robustness under dense view settings on two large-scale benchmarks DL3DV-10K and RealEstate10K. The video results, code and trained models are available on our project page: https://lhmd.top/zpressor.
comment: Project Page: https://lhmd.top/zpressor, Code: https://github.com/ziplab/ZPressor
OpenUni: A Simple Baseline for Unified Multimodal Understanding and Generation
In this report, we present OpenUni, a simple, lightweight, and fully open-source baseline for unifying multimodal understanding and generation. Inspired by prevailing practices in unified model learning, we adopt an efficient training strategy that minimizes the training complexity and overhead by bridging the off-the-shelf multimodal large language models (LLMs) and diffusion models through a set of learnable queries and a light-weight transformer-based connector. With a minimalist choice of architecture, we demonstrate that OpenUni can: 1) generate high-quality and instruction-aligned images, and 2) achieve exceptional performance on standard benchmarks such as GenEval, DPG- Bench, and WISE, with only 1.1B and 3.1B activated parameters. To support open research and community advancement, we release all model weights, training code, and our curated training datasets (including 23M image-text pairs) at https://github.com/wusize/OpenUni.
Qwen Look Again: Guiding Vision-Language Reasoning Models to Re-attention Visual Information
Inference time scaling drives extended reasoning to enhance the performance of Vision-Language Models (VLMs), thus forming powerful Vision-Language Reasoning Models (VLRMs). However, long reasoning dilutes visual tokens, causing visual information to receive less attention and may trigger hallucinations. Although introducing text-only reflection processes shows promise in language models, we demonstrate that it is insufficient to suppress hallucinations in VLMs. To address this issue, we introduce Qwen-LookAgain (Qwen-LA), a novel VLRM designed to mitigate hallucinations by incorporating a vision-text reflection process that guides the model to re-attention visual information during reasoning. We first propose a reinforcement learning method Balanced Reflective Policy Optimization (BRPO), which guides the model to decide when to generate vision-text reflection on its own and balance the number and length of reflections. Then, we formally prove that VLRMs lose attention to visual tokens as reasoning progresses, and demonstrate that supplementing visual information during reflection enhances visual attention. Therefore, during training and inference, Visual Token COPY and Visual Token ROUTE are introduced to force the model to re-attention visual information at the visual level, addressing the limitations of text-only reflection. Experiments on multiple visual QA datasets and hallucination metrics indicate that Qwen-LA achieves leading accuracy performance while reducing hallucinations. Our code is available at: https://github.com/Liar406/Look_Again
Right Side Up? Disentangling Orientation Understanding in MLLMs with Fine-grained Multi-axis Perception Tasks
Object orientation understanding represents a fundamental challenge in visual perception critical for applications like robotic manipulation and augmented reality. Current vision-language benchmarks fail to isolate this capability, often conflating it with positional relationships and general scene understanding. We introduce DORI (Discriminative Orientation Reasoning Intelligence), a comprehensive benchmark establishing object orientation perception as a primary evaluation target. DORI assesses four dimensions of orientation comprehension: frontal alignment, rotational transformations, relative directional relationships, and canonical orientation understanding. Through carefully curated tasks from 11 datasets spanning 67 object categories across synthetic and real-world scenarios, DORI provides insights on how multi-modal systems understand object orientations. Our evaluation of 15 state-of-the-art vision-language models reveals critical limitations: even the best models achieve only 54.2% accuracy on coarse tasks and 33.0% on granular orientation judgments, with performance deteriorating for tasks requiring reference frame shifts or compound rotations. These findings demonstrate the need for dedicated orientation representation mechanisms, as models show systematic inability to perform precise angular estimations, track orientation changes across viewpoints, and understand compound rotations - suggesting limitations in their internal 3D spatial representations. As the first diagnostic framework specifically designed for orientation awareness in multimodal systems, DORI offers implications for improving robotic control, 3D scene reconstruction, and human-AI interaction in physical environments. DORI data: https://huggingface.co/datasets/appledora/DORI-Benchmark
CraftsMan3D: High-fidelity Mesh Generation with 3D Native Generation and Interactive Geometry Refiner
We present a novel generative 3D modeling system, coined CraftsMan, which can generate high-fidelity 3D geometries with highly varied shapes, regular mesh topologies, and detailed surfaces, and, notably, allows for refining the geometry in an interactive manner. Despite the significant advancements in 3D generation, existing methods still struggle with lengthy optimization processes, irregular mesh topologies, noisy surfaces, and difficulties in accommodating user edits, consequently impeding their widespread adoption and implementation in 3D modeling software. Our work is inspired by the craftsman, who usually roughs out the holistic figure of the work first and elaborates the surface details subsequently. Specifically, we employ a 3D native diffusion model, which operates on latent space learned from latent set-based 3D representations, to generate coarse geometries with regular mesh topology in seconds. In particular, this process takes as input a text prompt or a reference image and leverages a powerful multi-view (MV) diffusion model to generate multiple views of the coarse geometry, which are fed into our MV-conditioned 3D diffusion model for generating the 3D geometry, significantly improving robustness and generalizability. Following that, a normal-based geometry refiner is used to significantly enhance the surface details. This refinement can be performed automatically, or interactively with user-supplied edits. Extensive experiments demonstrate that our method achieves high efficacy in producing superior-quality 3D assets compared to existing methods. HomePage: https://craftsman3d.github.io/, Code: https://github.com/wyysf-98/CraftsMan
comment: HomePage: https://craftsman3d.github.io/, Code: https://github.com/wyysf-98/CraftsMan3D
V2SFlow: Video-to-Speech Generation with Speech Decomposition and Rectified Flow ICASSP 2025
In this paper, we introduce V2SFlow, a novel Video-to-Speech (V2S) framework designed to generate natural and intelligible speech directly from silent talking face videos. While recent V2S systems have shown promising results on constrained datasets with limited speakers and vocabularies, their performance often degrades on real-world, unconstrained datasets due to the inherent variability and complexity of speech signals. To address these challenges, we decompose the speech signal into manageable subspaces (content, pitch, and speaker information), each representing distinct speech attributes, and predict them directly from the visual input. To generate coherent and realistic speech from these predicted attributes, we employ a rectified flow matching decoder built on a Transformer architecture, which models efficient probabilistic pathways from random noise to the target speech distribution. Extensive experiments demonstrate that V2SFlow significantly outperforms state-of-the-art methods, even surpassing the naturalness of ground truth utterances. Code and models are available at: https://github.com/kaistmm/V2SFlow
comment: ICASSP 2025
MSVCOD:A Large-Scale Multi-Scene Dataset for Video Camouflage Object Detection
Video Camouflaged Object Detection (VCOD) is a challenging task which aims to identify objects that seamlessly concealed within the background in videos. The dynamic properties of video enable detection of camouflaged objects through motion cues or varied perspectives. Previous VCOD datasets primarily contain animal objects, limiting the scope of research to wildlife scenarios. However, the applications of VCOD extend beyond wildlife and have significant implications in security, art, and medical fields. Addressing this problem, we construct a new large-scale multi-domain VCOD dataset MSVCOD. To achieve high-quality annotations, we design a semi-automatic iterative annotation pipeline that reduces costs while maintaining annotation accuracy. Our MSVCOD is the largest VCOD dataset to date, introducing multiple object categories including human, animal, medical, and vehicle objects for the first time, while also expanding background diversity across various environments. This expanded scope increases the practical applicability of the VCOD task in camouflaged object detection. Alongside this dataset, we introduce a one-steam video camouflage object detection model that performs both feature extraction and information fusion without additional motion feature fusion modules. Our framework achieves state-of-the-art results on the existing VCOD animal dataset and the proposed MSVCOD. The dataset and code will be made publicly available.
comment: 10 pages
Using Knowledge Graphs to harvest datasets for efficient CLIP model training
Training high-quality CLIP models typically requires enormous datasets, which limits the development of domain-specific models -- especially in areas that even the largest CLIP models do not cover well -- and drives up training costs. This poses challenges for scientific research that needs fine-grained control over the training procedure of CLIP models. In this work, we show that by employing smart web search strategies enhanced with knowledge graphs, a robust CLIP model can be trained from scratch with considerably less data. Specifically, we demonstrate that an expert foundation model for living organisms can be built using just 10M images. Moreover, we introduce EntityNet, a dataset comprising 33M images paired with 46M text descriptions, which enables the training of a generic CLIP model in significantly reduced time.
CLIP-IT: CLIP-based Pairing for Histology Images Classification
Multimodal learning has shown significant promise for improving medical image analysis by integrating information from complementary data sources. This is widely employed for training vision-language models (VLMs) for cancer detection based on histology images and text reports. However, one of the main limitations in training these VLMs is the requirement for large paired datasets, raising concerns over privacy, and data collection, annotation, and maintenance costs. To address this challenge, we introduce CLIP-IT method to train a vision backbone model to classify histology images by pairing them with privileged textual information from an external source. At first, the modality pairing step relies on a CLIP-based model to match histology images with semantically relevant textual report data from external sources, creating an augmented multimodal dataset without the need for manually paired samples. Then, we propose a multimodal training procedure that distills the knowledge from the paired text modality to the unimodal image classifier for enhanced performance without the need for the textual data during inference. A parameter-efficient fine-tuning method is used to efficiently address the misalignment between the main (image) and paired (text) modalities. During inference, the improved unimodal histology classifier is used, with only minimal additional computational complexity. Our experiments on challenging PCAM, CRC, and BACH histology image datasets show that CLIP-IT can provide a cost-effective approach to leverage privileged textual information and outperform unimodal classifiers for histology.
$\textit{Revelio}$: Interpreting and leveraging semantic information in diffusion models
We study $\textit{how}$ rich visual semantic information is represented within various layers and denoising timesteps of different diffusion architectures. We uncover monosemantic interpretable features by leveraging k-sparse autoencoders (k-SAE). We substantiate our mechanistic interpretations via transfer learning using light-weight classifiers on off-the-shelf diffusion models' features. On $4$ datasets, we demonstrate the effectiveness of diffusion features for representation learning. We provide an in-depth analysis of how different diffusion architectures, pre-training datasets, and language model conditioning impacts visual representation granularity, inductive biases, and transfer learning capabilities. Our work is a critical step towards deepening interpretability of black-box diffusion models. Code and visualizations available at: https://github.com/revelio-diffusion/revelio
comment: 15 pages, 14 figures
Re-ttention: Ultra Sparse Visual Generation via Attention Statistical Reshape
Diffusion Transformers (DiT) have become the de-facto model for generating high-quality visual content like videos and images. A huge bottleneck is the attention mechanism where complexity scales quadratically with resolution and video length. One logical way to lessen this burden is sparse attention, where only a subset of tokens or patches are included in the calculation. However, existing techniques fail to preserve visual quality at extremely high sparsity levels and might even incur non-negligible compute overheads. % To address this concern, we propose Re-ttention, which implements very high sparse attention for visual generation models by leveraging the temporal redundancy of Diffusion Models to overcome the probabilistic normalization shift within the attention mechanism. Specifically, Re-ttention reshapes attention scores based on the prior softmax distribution history in order to preserve the visual quality of the full quadratic attention at very high sparsity levels. % Experimental results on T2V/T2I models such as CogVideoX and the PixArt DiTs demonstrate that Re-ttention requires as few as 3.1\% of the tokens during inference, outperforming contemporary methods like FastDiTAttn, Sparse VideoGen and MInference. Further, we measure latency to show that our method can attain over 45\% end-to-end % and over 92\% self-attention latency reduction on an H100 GPU at negligible overhead cost. Code available online here: \href{https://github.com/cccrrrccc/Re-ttention}{https://github.com/cccrrrccc/Re-ttention}
comment: Submitted before obtaining agreement of all authors
U2-BENCH: Benchmarking Large Vision-Language Models on Ultrasound Understanding
Ultrasound is a widely-used imaging modality critical to global healthcare, yet its interpretation remains challenging due to its varying image quality on operators, noises, and anatomical structures. Although large vision-language models (LVLMs) have demonstrated impressive multimodal capabilities across natural and medical domains, their performance on ultrasound remains largely unexplored. We introduce U2-BENCH, the first comprehensive benchmark to evaluate LVLMs on ultrasound understanding across classification, detection, regression, and text generation tasks. U2-BENCH aggregates 7,241 cases spanning 15 anatomical regions and defines 8 clinically inspired tasks, such as diagnosis, view recognition, lesion localization, clinical value estimation, and report generation, across 50 ultrasound application scenarios. We evaluate 20 state-of-the-art LVLMs, both open- and closed-source, general-purpose and medical-specific. Our results reveal strong performance on image-level classification, but persistent challenges in spatial reasoning and clinical language generation. U2-BENCH establishes a rigorous and unified testbed to assess and accelerate LVLM research in the uniquely multimodal domain of medical ultrasound imaging.
Deep Augmentation: Dropout as Augmentation for Self-Supervised Learning
Despite dropout's ubiquity in machine learning, its effectiveness as a form of data augmentation remains under-explored. We address two key questions: (i) When is dropout effective as an augmentation strategy? (ii) Is dropout uniquely effective under these conditions? To explore these questions, we propose Deep Augmentation, a network- and modality-agnostic method that applies dropout or PCA transformations to targeted layers in neural networks. Through extensive experiments on contrastive learning tasks in NLP, computer vision, and graph learning, we find that uniformly applying dropout across layers does not consistently improve performance. Instead, dropout proves most beneficial in deeper layers and can be matched by alternative augmentations (e.g., PCA). We also show that a stop-gradient operation is critical for ensuring dropout functions effectively as an augmentation, and that performance trends invert when moving from contrastive tasks to supervised tasks. Our analysis suggests that Deep Augmentation helps mitigate inter-layer co-adaptation -- a notable issue in self-supervised learning due to the absence of labeled data. Drawing on these insights, we outline a procedure for selecting the optimal augmentation layer and demonstrate that Deep Augmentation can outperform traditional input-level augmentations. This simple yet powerful approach can be seamlessly integrated into a wide range of architectures and modalities, yielding notable gains in both performance and generalization.
Progressive Prompt Detailing for Improved Alignment in Text-to-Image Generative Models CVPR 2025
Text-to-image generative models often struggle with long prompts detailing complex scenes, diverse objects with distinct visual characteristics and spatial relationships. In this work, we propose SCoPE (Scheduled interpolation of Coarse-to-fine Prompt Embeddings), a training-free method to improve text-to-image alignment by progressively refining the input prompt in a coarse-to-fine-grained manner. Given a detailed input prompt, we first decompose it into multiple sub-prompts which evolve from describing broad scene layout to highly intricate details. During inference, we interpolate between these sub-prompts and thus progressively introduce finer-grained details into the generated image. Our training-free plug-and-play approach significantly enhances prompt alignment, achieves an average improvement of more than +8 in Visual Question Answering (VQA) scores over the Stable Diffusion baselines on 83% of the prompts from the GenAI-Bench dataset.
comment: Accepted at CVPR 2025 workshops (AI4CC (oral) & GMCV (poster))
Disentangled Source-Free Personalization for Facial Expression Recognition with Neutral Target Data
Facial Expression Recognition (FER) from videos is a crucial task in various application areas, such as human-computer interaction and health diagnosis and monitoring (e.g., assessing pain and depression). Beyond the challenges of recognizing subtle emotional or health states, the effectiveness of deep FER models is often hindered by the considerable inter-subject variability in expressions. Source-free (unsupervised) domain adaptation (SFDA) methods may be employed to adapt a pre-trained source model using only unlabeled target domain data, thereby avoiding data privacy, storage, and transmission issues. Typically, SFDA methods adapt to a target domain dataset corresponding to an entire population and assume it includes data from all recognition classes. However, collecting such comprehensive target data can be difficult or even impossible for FER in healthcare applications. In many real-world scenarios, it may be feasible to collect a short neutral control video (which displays only neutral expressions) from target subjects before deployment. These videos can be used to adapt a model to better handle the variability of expressions among subjects. This paper introduces the Disentangled SFDA (DSFDA) method to address the challenge posed by adapting models with missing target expression data. DSFDA leverages data from a neutral target control video for end-to-end generation and adaptation of target data with missing non-neutral data. Our method learns to disentangle features related to expressions and identity while generating the missing non-neutral expression data for the target subject, thereby enhancing model accuracy. Additionally, our self-supervision strategy improves model adaptation by reconstructing target images that maintain the same identity and source expression.
comment: 13 pages, 13 figures, FG 2025: IEEE Conf. on Automatic Face and Gesture Recognition
Post-hoc Probabilistic Vision-Language Models
Vision-language models (VLMs), such as CLIP and SigLIP, have found remarkable success in classification, retrieval, and generative tasks. For this, VLMs deterministically map images and text descriptions to a joint latent space in which their similarity is assessed using the cosine similarity. However, a deterministic mapping of inputs fails to capture uncertainties over concepts arising from domain shifts when used in downstream tasks. In this work, we propose post-hoc uncertainty estimation in VLMs that does not require additional training. Our method leverages a Bayesian posterior approximation over the last layers in VLMs and analytically quantifies uncertainties over cosine similarities. We demonstrate its effectiveness for uncertainty quantification and support set selection in active learning. Compared to baselines, we obtain improved and well-calibrated predictive uncertainties, interpretable uncertainty estimates, and sample-efficient active learning. Our results show promise for safety-critical applications of large-scale models.
comment: Project page: https://aaltoml.github.io/BayesVLM/
Autoregression-free video prediction using diffusion model for mitigating error propagation
Existing long-term video prediction methods often rely on an autoregressive video prediction mechanism. However, this approach suffers from error propagation, particularly in distant future frames. To address this limitation, this paper proposes the first AutoRegression-Free (ARFree) video prediction framework using diffusion models. Different from an autoregressive video prediction mechanism, ARFree directly predicts any future frame tuples from the context frame tuple. The proposed ARFree consists of two key components: 1) a motion prediction module that predicts a future motion using motion feature extracted from the context frame tuple; 2) a training method that improves motion continuity and contextual consistency between adjacent future frame tuples. Our experiments with two benchmark datasets show that the proposed ARFree video prediction framework outperforms several state-of-the-art video prediction methods.
comment: 6 pages, 4 figures, 2 tables
Good Keypoints for the Two-View Geometry Estimation Problem
Local features are essential to many modern downstream applications. Therefore, it is of interest to determine the properties of local features that contribute to the downstream performance for a better design of feature detectors and descriptors. In our work, we propose a new theoretical model for scoring feature points (keypoints) in the context of the two-view geometry estimation problem. The model determines two properties that a good keypoint for solving the homography estimation problem should have: be repeatable and have a small expected measurement error. This result provides key insights into why maximizing the number of correspondences doesn't always lead to better homography estimation accuracy. We use the developed model to design a method that detects keypoints that benefit the homography estimation and introduce the Bounded NeSS-ST (BoNeSS-ST) keypoint detector. The novelty of BoNeSS-ST comes from strong theoretical foundations, a more accurate keypoint scoring due to subpixel refinement and a cost designed for superior robustness to low saliency keypoints. As a result, BoNeSS-ST outperforms prior self-supervised local feature detectors on the planar homography estimation task and is on par with them on the epipolar geometry estimation task.
comment: Preprint
SoTA with Less: MCTS-Guided Sample Selection for Data-Efficient Visual Reasoning Self-Improvement
We introduce ThinkLite-VL, a family of visual reasoning models that achieve state-of-the-art (SoTA) performance using an order of magnitude fewer training samples, relying purely on reinforcement fine-tuning (RFT) self-improvement without any knowledge distillation. Our central insight is that sample difficulty critically influences RFT effectiveness: appropriately challenging examples can drive substantial reasoning improvements, even in low-data regimes. However, quantifying sample difficulty in a reliable and scalable manner remains non-trivial. To address this, we repurpose Monte Carlo Tree Search (MCTS) to measure sample difficulty via the number of reasoning iterations a vision-language model (VLM) requires to solve each instance. This MCTS-based selection procedure identifies samples that induce deeper reasoning while remaining solvable, allowing us to filter a high-quality subset from 70k open-source examples spanning math, natural image understanding, and chart comprehension. Using this approach, we select just 11k challenging samples for RFT on Qwen2.5-VL-7B-Instruct and 7.5k samples for Qwen2.5-VL-72B-Instruct. The resulting models, ThinkLite-VL-7B and ThinkLite-VL-72B, significantly outperform their respective base models across eight visual reasoning benchmarks. In particular, ThinkLite-VL-7B improves the average performance of Qwen2.5-VL-7B-Instruct by 7\% and surpasses all existing 7B-level models, as well as much larger models such as GPT-4o, O1 and Qwen2.5-VL-72B, achieving a new SoTA score of 75.1 on MathVista. ThinkLite-VL-72B further advances the SoTA frontier, achieving an accuracy of 79.7 on MathVista and an average benchmark improvement of 4.42 over the open-source SOTA. These results demonstrate that MCTS-guided difficulty filtering provides a scalable and effective path toward data-efficient self-improvement in multimodal reasoning.
comment: 27 pages, 5 figures
DiffusionTrend: A Minimalist Approach to Virtual Fashion Try-On
We introduce DiffusionTrend for virtual fashion try-on, which forgoes the need for retraining diffusion models. Using advanced diffusion models, DiffusionTrend harnesses latent information rich in prior information to capture the nuances of garment details. Throughout the diffusion denoising process, these details are seamlessly integrated into the model image generation, expertly directed by a precise garment mask crafted by a lightweight and compact CNN. Although our DiffusionTrend model initially demonstrates suboptimal metric performance, our exploratory approach offers some important advantages: (1) It circumvents resource-intensive retraining of diffusion models on large datasets. (2) It eliminates the necessity for various complex and user-unfriendly model inputs. (3) It delivers a visually compelling try-on experience, underscoring the potential of training-free diffusion model. This initial foray into the application of untrained diffusion models in virtual try-on technology potentially paves the way for further exploration and refinement in this industrially and academically valuable field.
Adversarial Pruning: A Survey and Benchmark of Pruning Methods for Adversarial Robustness
Recent work has proposed neural network pruning techniques to reduce the size of a network while preserving robustness against adversarial examples, i.e., well-crafted inputs inducing a misclassification. These methods, which we refer to as adversarial pruning methods, involve complex and articulated designs, making it difficult to analyze the differences and establish a fair and accurate comparison. In this work, we overcome these issues by surveying current adversarial pruning methods and proposing a novel taxonomy to categorize them based on two main dimensions: the pipeline, defining when to prune; and the specifics, defining how to prune. We then highlight the limitations of current empirical analyses and propose a novel, fair evaluation benchmark to address them. We finally conduct an empirical re-evaluation of current adversarial pruning methods and discuss the results, highlighting the shared traits of top-performing adversarial pruning methods, as well as common issues. We welcome contributions in our publicly-available benchmark at https://github.com/pralab/AdversarialPruningBenchmark
comment: Accepted at Pattern Recognition
HEIE: MLLM-Based Hierarchical Explainable AIGC Image Implausibility Evaluator CVPR 2025
AIGC images are prevalent across various fields, yet they frequently suffer from quality issues like artifacts and unnatural textures. Specialized models aim to predict defect region heatmaps but face two primary challenges: (1) lack of explainability, failing to provide reasons and analyses for subtle defects, and (2) inability to leverage common sense and logical reasoning, leading to poor generalization. Multimodal large language models (MLLMs) promise better comprehension and reasoning but face their own challenges: (1) difficulty in fine-grained defect localization due to the limitations in capturing tiny details, and (2) constraints in providing pixel-wise outputs necessary for precise heatmap generation. To address these challenges, we propose HEIE: a novel MLLM-Based Hierarchical Explainable Image Implausibility Evaluator. We introduce the CoT-Driven Explainable Trinity Evaluator, which integrates heatmaps, scores, and explanation outputs, using CoT to decompose complex tasks into subtasks of increasing difficulty and enhance interpretability. Our Adaptive Hierarchical Implausibility Mapper synergizes low-level image features with high-level mapper tokens from LLMs, enabling precise local-to-global hierarchical heatmap predictions through an uncertainty-based adaptive token approach. Moreover, we propose a new dataset: Expl-AIGI-Eval, designed to facilitate interpretable implausibility evaluation of AIGC images. Our method demonstrates state-of-the-art performance through extensive experiments. Our project is at https://yfthu.github.io/HEIE/.
comment: Accepted by CVPR 2025
On the Design Fundamentals of Diffusion Models: A Survey
Diffusion models are learning pattern-learning systems to model and sample from data distributions with three functional components namely the forward process, the reverse process, and the sampling process. The components of diffusion models have gained significant attention with many design factors being considered in common practice. Existing reviews have primarily focused on higher-level solutions, covering less on the design fundamentals of components. This study seeks to address this gap by providing a comprehensive and coherent review of seminal designable factors within each functional component of diffusion models. This provides a finer-grained perspective of diffusion models, benefiting future studies in the analysis of individual components, the design factors for different purposes, and the implementation of diffusion models.
comment: Accepted in Pattern Recognition
DCTdiff: Intriguing Properties of Image Generative Modeling in the DCT Space ICML 2025
This paper explores image modeling from the frequency space and introduces DCTdiff, an end-to-end diffusion generative paradigm that efficiently models images in the discrete cosine transform (DCT) space. We investigate the design space of DCTdiff and reveal the key design factors. Experiments on different frameworks (UViT, DiT), generation tasks, and various diffusion samplers demonstrate that DCTdiff outperforms pixel-based diffusion models regarding generative quality and training efficiency. Remarkably, DCTdiff can seamlessly scale up to 512$\times$512 resolution without using the latent diffusion paradigm and beats latent diffusion (using SD-VAE) with only 1/4 training cost. Finally, we illustrate several intriguing properties of DCT image modeling. For example, we provide a theoretical proof of why 'image diffusion can be seen as spectral autoregression', bridging the gap between diffusion and autoregressive models. The effectiveness of DCTdiff and the introduced properties suggest a promising direction for image modeling in the frequency space. The code is https://github.com/forever208/DCTdiff.
comment: ICML 2025
One-Step is Enough: Sparse Autoencoders for Text-to-Image Diffusion Models
For large language models (LLMs), sparse autoencoders (SAEs) have been shown to decompose intermediate representations that often are not interpretable directly into sparse sums of interpretable features, facilitating better control and subsequent analysis. However, similar analyses and approaches have been lacking for text-to-image models. We investigate the possibility of using SAEs to learn interpretable features for SDXL Turbo, a few-step text-to-image diffusion model. To this end, we train SAEs on the updates performed by transformer blocks within SDXL Turbo's denoising U-net in its 1-step setting. Interestingly, we find that they generalize to 4-step SDXL Turbo and even to the multi-step SDXL base model (i.e., a different model) without additional training. In addition, we show that their learned features are interpretable, causally influence the generation process, and reveal specialization among the blocks. We do so by creating RIEBench, a representation-based image editing benchmark, for editing images while they are generated by turning on and off individual SAE features. This allows us to track which transformer blocks' features are the most impactful depending on the edit category. Our work is the first investigation of SAEs for interpretability in text-to-image diffusion models and our results establish SAEs as a promising approach for understanding and manipulating the internal mechanisms of text-to-image models.
VideoGameBench: Can Vision-Language Models complete popular video games?
Vision-language models (VLMs) have achieved strong results on coding and math benchmarks that are challenging for humans, yet their ability to perform tasks that come naturally to humans--such as perception, spatial navigation, and memory management--remains understudied. Real video games are crafted to be intuitive for humans to learn and master by leveraging innate inductive biases, making them an ideal testbed for evaluating such capabilities in VLMs. To this end, we introduce VideoGameBench, a benchmark consisting of 10 popular video games from the 1990s that VLMs directly interact with in real-time. VideoGameBench challenges models to complete entire games with access to only raw visual inputs and a high-level description of objectives and controls, a significant departure from existing setups that rely on game-specific scaffolding and auxiliary information. We keep three of the games secret to encourage solutions that generalize to unseen environments. Our experiments show that frontier vision-language models struggle to progress beyond the beginning of each game. We find inference latency to be a major limitation of frontier models in the real-time setting; therefore, we introduce VideoGameBench Lite, a setting where the game pauses while waiting for the LM's next action. The best performing model, Gemini 2.5 Pro, completes only 0.48% of VideoGameBench and 1.6% of VideoGameBench Lite. We hope that the formalization of the human skills mentioned above into this benchmark motivates progress in these research directions.
comment: 9 pages, 33 pages including supplementary
LesionDiffusion: Towards Text-controlled General Lesion Synthesis
Fully-supervised lesion recognition methods in medical imaging face challenges due to the reliance on large annotated datasets, which are expensive and difficult to collect. To address this, synthetic lesion generation has become a promising approach. However, existing models struggle with scalability, fine-grained control over lesion attributes, and the generation of complex structures. We propose LesionDiffusion, a text-controllable lesion synthesis framework for 3D CT imaging that generates both lesions and corresponding masks. By utilizing a structured lesion report template, our model provides greater control over lesion attributes and supports a wider variety of lesion types. We introduce a dataset of 1,505 annotated CT scans with paired lesion masks and structured reports, covering 14 lesion types across 8 organs. LesionDiffusion consists of two components: a lesion mask synthesis network (LMNet) and a lesion inpainting network (LINet), both guided by lesion attributes and image features. Extensive experiments demonstrate that LesionDiffusion significantly improves segmentation performance, with strong generalization to unseen lesion types and organs, outperforming current state-of-the-art models. Code is available at https://github.com/HengruiTianSJTU/LesionDiffusion.
comment: 10 pages, 4 figures
Are MLMs Trapped in the Visual Room?
Can multi-modal large models (MLMs) that can ``see'' an image be said to ``understand'' it? Drawing inspiration from Searle's Chinese Room, we propose the \textbf{Visual Room} argument: a system may process and describe every detail of visual inputs by following algorithmic rules, without genuinely comprehending the underlying intention. This dilemma challenges the prevailing assumption that perceptual mastery implies genuine understanding. In implementation, we introduce a two-tier evaluation framework spanning perception and cognition. The perception component evaluates whether MLMs can accurately capture the surface-level details of visual contents, where the cognitive component examines their ability to infer sarcasm polarity. To support this framework, We further introduce a high-quality multi-modal sarcasm dataset comprising both 924 static images and 100 dynamic videos. All sarcasm labels are annotated by the original authors and verified by independent reviewers to ensure clarity and consistency. We evaluate eight state-of-the-art (SoTA) MLMs. Our results highlight three key findings: (1) MLMs demonstrate high accuracy in visual perception; (2) even with correct perception, MLMs exhibit an average error rate of ~17.1\% in sarcasm understanding, revealing a significant gap between seeing and understanding; (3) this gap stems from weaknesses in context integration, emotional reasoning, and pragmatic inference. This work provides empirical grounding for the proposed Visual Room argument and offers a new evaluation paradigm for MLMs.
comment: 19 pages
Efficient Universal Goal Hijacking with Semantics-guided Prompt Organization ACL 2025
Universal goal hijacking is a kind of prompt injection attack that forces LLMs to return a target malicious response for arbitrary normal user prompts. The previous methods achieve high attack performance while being too cumbersome and time-consuming. Also, they have concentrated solely on optimization algorithms, overlooking the crucial role of the prompt. To this end, we propose a method called POUGH that incorporates an efficient optimization algorithm and two semantics-guided prompt organization strategies. Specifically, our method starts with a sampling strategy to select representative prompts from a candidate pool, followed by a ranking strategy that prioritizes them. Given the sequentially ranked prompts, our method employs an iterative optimization algorithm to generate a fixed suffix that can concatenate to arbitrary user prompts for universal goal hijacking. Experiments conducted on four popular LLMs and ten types of target responses verified the effectiveness.
comment: accepted by ACL 2025
Image Captioning Evaluation in the Age of Multimodal LLMs: Challenges and Future Perspectives IJCAI 2025
The evaluation of machine-generated image captions is a complex and evolving challenge. With the advent of Multimodal Large Language Models (MLLMs), image captioning has become a core task, increasing the need for robust and reliable evaluation metrics. This survey provides a comprehensive overview of advancements in image captioning evaluation, analyzing the evolution, strengths, and limitations of existing metrics. We assess these metrics across multiple dimensions, including correlation with human judgment, ranking accuracy, and sensitivity to hallucinations. Additionally, we explore the challenges posed by the longer and more detailed captions generated by MLLMs and examine the adaptability of current metrics to these stylistic variations. Our analysis highlights some limitations of standard evaluation approaches and suggests promising directions for future research in image captioning assessment.
comment: IJCAI 2025. Repo GitHub: https://github.com/aimagelab/awesome-captioning-evaluation
SAMBLE: Shape-Specific Point Cloud Sampling for an Optimal Trade-Off Between Local Detail and Global Uniformity
Driven by the increasing demand for accurate and efficient representation of 3D data in various domains, point cloud sampling has emerged as a pivotal research topic in 3D computer vision. Recently, learning-to-sample methods have garnered growing interest from the community, particularly for their ability to be jointly trained with downstream tasks. However, previous learning-based sampling methods either lead to unrecognizable sampling patterns by generating a new point cloud or biased sampled results by focusing excessively on sharp edge details. Moreover, they all overlook the natural variations in point distribution across different shapes, applying a similar sampling strategy to all point clouds. In this paper, we propose a Sparse Attention Map and Bin-based Learning method (termed SAMBLE) to learn shape-specific sampling strategies for point cloud shapes. SAMBLE effectively achieves an improved balance between sampling edge points for local details and preserving uniformity in the global shape, resulting in superior performance across multiple common point cloud downstream tasks, even in scenarios with few-point sampling.
Efficient Adaptation For Remote Sensing Visual Grounding
Adapting pre-trained models has become an effective strategy in artificial intelligence, offering a scalable and efficient alternative to training models from scratch. In the context of remote sensing (RS), where visual grounding(VG) remains underexplored, this approach enables the deployment of powerful vision-language models to achieve robust cross-modal understanding while significantly reducing computational overhead. To address this, we applied Parameter Efficient Fine Tuning (PEFT) techniques to adapt these models for RS-specific VG tasks. Specifically, we evaluated LoRA placement across different modules in Grounding DINO and used BitFit and adapters to fine-tune the OFA foundation model pre-trained on general-purpose VG datasets. This approach achieved performance comparable to or surpassing current State Of The Art (SOTA) models while significantly reducing computational costs. This study highlights the potential of PEFT techniques to advance efficient and precise multi-modal analysis in RS, offering a practical and cost-effective alternative to full model training.
AnimeGamer: Infinite Anime Life Simulation with Next Game State Prediction
Recent advancements in image and video synthesis have opened up new promise in generative games. One particularly intriguing application is transforming characters from anime films into interactive, playable entities. This allows players to immerse themselves in the dynamic anime world as their favorite characters for life simulation through language instructions. Such games are defined as infinite game since they eliminate predetermined boundaries and fixed gameplay rules, where players can interact with the game world through open-ended language and experience ever-evolving storylines and environments. Recently, a pioneering approach for infinite anime life simulation employs large language models (LLMs) to translate multi-turn text dialogues into language instructions for image generation. However, it neglects historical visual context, leading to inconsistent gameplay. Furthermore, it only generates static images, failing to incorporate the dynamics necessary for an engaging gaming experience. In this work, we propose AnimeGamer, which is built upon Multimodal Large Language Models (MLLMs) to generate each game state, including dynamic animation shots that depict character movements and updates to character states, as illustrated in Figure 1. We introduce novel action-aware multimodal representations to represent animation shots, which can be decoded into high-quality video clips using a video diffusion model. By taking historical animation shot representations as context and predicting subsequent representations, AnimeGamer can generate games with contextual consistency and satisfactory dynamics. Extensive evaluations using both automated metrics and human evaluations demonstrate that AnimeGamer outperforms existing methods in various aspects of the gaming experience. Codes and checkpoints are available at https://github.com/TencentARC/AnimeGamer.
comment: Project released at: https://howe125.github.io/AnimeGamer.github.io/
A Decade of Wheat Mapping for Lebanon
Wheat accounts for approximately 20% of the world's caloric intake, making it a vital component of global food security. Given this importance, mapping wheat fields plays a crucial role in enabling various stakeholders, including policy makers, researchers, and agricultural organizations, to make informed decisions regarding food security, supply chain management, and resource allocation. In this paper, we tackle the problem of accurately mapping wheat fields out of satellite images by introducing an improved pipeline for winter wheat segmentation, as well as presenting a case study on a decade-long analysis of wheat mapping in Lebanon. We integrate a Temporal Spatial Vision Transformer (TSViT) with Parameter-Efficient Fine Tuning (PEFT) and a novel post-processing pipeline based on the Fields of The World (FTW) framework. Our proposed pipeline addresses key challenges encountered in existing approaches, such as the clustering of small agricultural parcels in a single large field. By merging wheat segmentation with precise field boundary extraction, our method produces geometrically coherent and semantically rich maps that enable us to perform in-depth analysis such as tracking crop rotation pattern over years. Extensive evaluations demonstrate improved boundary delineation and field-level precision, establishing the potential of the proposed framework in operational agricultural monitoring and historical trend analysis. By allowing for accurate mapping of wheat fields, this work lays the foundation for a range of critical studies and future advances, including crop monitoring and yield estimation.
AutoStudio: Crafting Consistent Subjects in Multi-turn Interactive Image Generation
As cutting-edge Text-to-Image (T2I) generation models already excel at producing remarkable single images, an even more challenging task, i.e., multi-turn interactive image generation begins to attract the attention of related research communities. This task requires models to interact with users over multiple turns to generate a coherent sequence of images. However, since users may switch subjects frequently, current efforts struggle to maintain subject consistency while generating diverse images. To address this issue, we introduce a training-free multi-agent framework called AutoStudio. AutoStudio employs three agents based on large language models (LLMs) to handle interactions, along with a stable diffusion (SD) based agent for generating high-quality images. Specifically, AutoStudio consists of (i) a subject manager to interpret interaction dialogues and manage the context of each subject, (ii) a layout generator to generate fine-grained bounding boxes to control subject locations, (iii) a supervisor to provide suggestions for layout refinements, and (iv) a drawer to complete image generation. Furthermore, we introduce a Parallel-UNet to replace the original UNet in the drawer, which employs two parallel cross-attention modules for exploiting subject-aware features. We also introduce a subject-initialized generation method to better preserve small subjects. Our AutoStudio hereby can generate a sequence of multi-subject images interactively and consistently. Extensive experiments on the public CMIGBench benchmark and human evaluations show that AutoStudio maintains multi-subject consistency across multiple turns well, and it also raises the state-of-the-art performance by 13.65% in average Frechet Inception Distance and 2.83% in average character-character similarity.
comment: Multi-turn interactive image generation
TheaterGen: Character Management with LLM for Consistent Multi-turn Image Generation
Recent advances in diffusion models can generate high-quality and stunning images from text. However, multi-turn image generation, which is of high demand in real-world scenarios, still faces challenges in maintaining semantic consistency between images and texts, as well as contextual consistency of the same subject across multiple interactive turns. To address this issue, we introduce TheaterGen, a training-free framework that integrates large language models (LLMs) and text-to-image (T2I) models to provide the capability of multi-turn image generation. Within this framework, LLMs, acting as a "Screenwriter", engage in multi-turn interaction, generating and managing a standardized prompt book that encompasses prompts and layout designs for each character in the target image. Based on these, Theatergen generate a list of character images and extract guidance information, akin to the "Rehearsal". Subsequently, through incorporating the prompt book and guidance information into the reverse denoising process of T2I diffusion models, Theatergen generate the final image, as conducting the "Final Performance". With the effective management of prompt books and character images, TheaterGen significantly improves semantic and contextual consistency in synthesized images. Furthermore, we introduce a dedicated benchmark, CMIGBench (Consistent Multi-turn Image Generation Benchmark) with 8000 multi-turn instructions. Different from previous multi-turn benchmarks, CMIGBench does not define characters in advance. Both the tasks of story generation and multi-turn editing are included on CMIGBench for comprehensive evaluation. Extensive experimental results show that TheaterGen outperforms state-of-the-art methods significantly. It raises the performance bar of the cutting-edge Mini DALLE 3 model by 21% in average character-character similarity and 19% in average text-image similarity.
GPT4Point: A Unified Framework for Point-Language Understanding and Generation
Multimodal Large Language Models (MLLMs) have excelled in 2D image-text comprehension and image generation, but their understanding of the 3D world is notably deficient, limiting progress in 3D language understanding and generation. To solve this problem, we introduce GPT4Point, an innovative groundbreaking point-language multimodal model designed specifically for unified 3D object understanding and generation within the MLLM framework. GPT4Point as a powerful 3D MLLM seamlessly can execute a variety of point-text reference tasks such as point-cloud captioning and Q&A. Additionally, GPT4Point is equipped with advanced capabilities for controllable 3D generation, it can get high-quality results through a low-quality point-text feature maintaining the geometric shapes and colors. To support the expansive needs of 3D object-text pairs, we develop Pyramid-XL, a point-language dataset annotation engine. It constructs a large-scale database over 1M objects of varied text granularity levels from the Objaverse-XL dataset, essential for training GPT4Point. A comprehensive benchmark has been proposed to evaluate 3D point-language understanding capabilities. In extensive evaluations, GPT4Point has demonstrated superior performance in understanding and generation.
DiffDecompose: Layer-Wise Decomposition of Alpha-Composited Images via Diffusion Transformers
Diffusion models have recently motivated great success in many generation tasks like object removal. Nevertheless, existing image decomposition methods struggle to disentangle semi-transparent or transparent layer occlusions due to mask prior dependencies, static object assumptions, and the lack of datasets. In this paper, we delve into a novel task: Layer-Wise Decomposition of Alpha-Composited Images, aiming to recover constituent layers from single overlapped images under the condition of semi-transparent/transparent alpha layer non-linear occlusion. To address challenges in layer ambiguity, generalization, and data scarcity, we first introduce AlphaBlend, the first large-scale and high-quality dataset for transparent and semi-transparent layer decomposition, supporting six real-world subtasks (e.g., translucent flare removal, semi-transparent cell decomposition, glassware decomposition). Building on this dataset, we present DiffDecompose, a diffusion Transformer-based framework that learns the posterior over possible layer decompositions conditioned on the input image, semantic prompts, and blending type. Rather than regressing alpha mattes directly, DiffDecompose performs In-Context Decomposition, enabling the model to predict one or multiple layers without per-layer supervision, and introduces Layer Position Encoding Cloning to maintain pixel-level correspondence across layers. Extensive experiments on the proposed AlphaBlend dataset and public LOGO dataset verify the effectiveness of DiffDecompose. The code and dataset will be available upon paper acceptance. Our code will be available at: https://github.com/Wangzt1121/DiffDecompose.
Video-MME: The First-Ever Comprehensive Evaluation Benchmark of Multi-modal LLMs in Video Analysis
In the quest for artificial general intelligence, Multi-modal Large Language Models (MLLMs) have emerged as a focal point in recent advancements. However, the predominant focus remains on developing their capabilities in static image understanding. The potential of MLLMs in processing sequential visual data is still insufficiently explored, highlighting the absence of a comprehensive, high-quality assessment of their performance. In this paper, we introduce Video-MME, the first-ever full-spectrum, Multi-Modal Evaluation benchmark of MLLMs in Video analysis. Our work distinguishes from existing benchmarks through four key features: 1) Diversity in video types, spanning 6 primary visual domains with 30 subfields to ensure broad scenario generalizability; 2) Duration in temporal dimension, encompassing both short-, medium-, and long-term videos, ranging from 11 seconds to 1 hour, for robust contextual dynamics; 3) Breadth in data modalities, integrating multi-modal inputs besides video frames, including subtitles and audios, to unveil the all-round capabilities of MLLMs; 4) Quality in annotations, utilizing rigorous manual labeling by expert annotators to facilitate precise and reliable model assessment. 900 videos with a total of 254 hours are manually selected and annotated by repeatedly viewing all the video content, resulting in 2,700 question-answer pairs. With Video-MME, we extensively evaluate various state-of-the-art MLLMs, including GPT-4 series and Gemini 1.5 Pro, as well as open-source image models like InternVL-Chat-V1.5 and video models like LLaVA-NeXT-Video. Our experiments reveal that Gemini 1.5 Pro is the best-performing commercial model, significantly outperforming the open-source models. Our dataset along with these findings underscores the need for further improvements in handling longer sequences and multi-modal data. Project Page: https://video-mme.github.io
comment: Project Page: https://video-mme.github.io
MedDiff-FM: A Diffusion-based Foundation Model for Versatile Medical Image Applications
Diffusion models have achieved significant success in both natural image and medical image domains, encompassing a wide range of applications. Previous investigations in medical images have often been constrained to specific anatomical regions, particular applications, and limited datasets, resulting in isolated diffusion models. This paper introduces a diffusion-based foundation model to address a diverse range of medical image tasks, namely MedDiff-FM. MedDiff-FM leverages 3D CT images from multiple publicly available datasets, covering anatomical regions from head to abdomen, to pre-train a diffusion foundation model, and explores the capabilities of the diffusion foundation model across a variety of application scenarios. The diffusion foundation model handles multi-level integrated image processing both at the image-level and patch-level, utilizes position embedding to establish multi-level spatial relationships, and leverages region classes and anatomical structures to capture certain anatomical regions. MedDiff-FM manages several downstream tasks seamlessly, including image denoising, anomaly detection, and image synthesis. MedDiff-FM is also capable of performing super-resolution, lesion generation, and lesion inpainting by rapidly fine-tuning the diffusion foundation model using ControlNet with task-specific conditions. The experimental results demonstrate the effectiveness of MedDiff-FM in addressing diverse downstream medical image tasks.
VITA: Towards Open-Source Interactive Omni Multimodal LLM
The remarkable multimodal capabilities and interactive experience of GPT-4o underscore their necessity in practical applications, yet open-source models rarely excel in both areas. In this paper, we introduce VITA, the first-ever open-source Multimodal Large Language Model (MLLM) adept at simultaneous processing and analysis of Video, Image, Text, and Audio modalities, and meanwhile has an advanced multimodal interactive experience. Starting from Mixtral 8x7B as a language foundation, we expand its Chinese vocabulary followed by bilingual instruction tuning. We further endow the language model with visual and audio capabilities through two-stage multi-task learning of multimodal alignment and instruction tuning. VITA demonstrates robust foundational capabilities of multilingual, vision, and audio understanding, as evidenced by its strong performance across a range of both unimodal and multimodal benchmarks. Beyond foundational capabilities, we have made considerable progress in enhancing the natural multimodal human-computer interaction experience. VITA is the first step for the open-source community to explore the seamless integration of multimodal understanding and interaction. While there is still lots of work to be done on VITA to get close to close-source counterparts, we hope that its role as a pioneer can serve as a cornerstone for subsequent research. Project Page: https://vita-home.github.io.
comment: Project Page: https://vita-home.github.io
Scaling Large Motion Models with Million-Level Human Motions ICML 2025
Inspired by the recent success of LLMs, the field of human motion understanding has increasingly shifted toward developing large motion models. Despite some progress, current efforts remain far from achieving truly generalist models, primarily due to the lack of massive high-quality data. To address this gap, we present MotionLib, the first million-level dataset for motion generation, which is at least 15$\times$ larger than existing counterparts and enriched with hierarchical text descriptions. Using MotionLib, we train a large motion model named \projname, demonstrating robust performance across a wide range of human activities, including unseen ones. Through systematic investigation, for the first time, we highlight the importance of scaling both data and model size for advancing motion generation, along with key insights to achieve this goal. To better integrate the motion modality, we propose Motionbook, an innovative motion encoding approach including (1) a compact yet lossless feature to represent motions; (2) a novel 2D lookup-free motion tokenizer that preserves fine-grained motion details while expanding codebook capacity, significantly enhancing the representational power of motion tokens. We believe this work lays the groundwork for developing more versatile and powerful motion generation models in the future. For further details, visit https://beingbeyond.github.io/Being-M0/.
comment: ICML 2025
IDEA: An Inverse Domain Expert Adaptation Based Active DNN IP Protection Method
Illegitimate reproduction, distribution and derivation of Deep Neural Network (DNN) models can inflict economic loss, reputation damage and even privacy infringement. Passive DNN intellectual property (IP) protection methods such as watermarking and fingerprinting attempt to prove the ownership upon IP violation, but they are often too late to stop catastrophic damage of IP abuse and too feeble against strong adversaries. In this paper, we propose IDEA, an Inverse Domain Expert Adaptation based proactive DNN IP protection method featuring active authorization and source traceability. IDEA generalizes active authorization as an inverse problem of domain adaptation. The multi-adaptive optimization is solved by a mixture-of-experts model with one real and two fake experts. The real expert re-optimizes the source model to correctly classify test images with a unique model user key steganographically embedded. The fake experts are trained to output random prediction on test images without or with incorrect user key embedded by minimizing their mutual information (MI) with the real expert. The MoE model is knowledge distilled into a unified protected model to avoid leaking the expert model features by maximizing their MI with additional multi-layer attention and contrastive representation loss optimization. IDEA not only prevents unauthorized users without the valid key to access the functional model, but also enable the model owner to validate the deployed model and trace the source of IP infringement. We extensively evaluate IDEA on five datasets and four DNN models to demonstrate its effectiveness in authorization control, culprit tracing success rate, and robustness against various attacks.
Hierarchical Attention Fusion of Visual and Textual Representations for Cross-Domain Sequential Recommendation SC
Cross-Domain Sequential Recommendation (CDSR) predicts user behavior by leveraging historical interactions across multiple domains, focusing on modeling cross-domain preferences through intra- and inter-sequence item relationships. Inspired by human cognitive processes, we propose Hierarchical Attention Fusion of Visual and Textual Representations (HAF-VT), a novel approach integrating visual and textual data to enhance cognitive modeling. Using the frozen CLIP model, we generate image and text embeddings, enriching item representations with multimodal data. A hierarchical attention mechanism jointly learns single-domain and cross-domain preferences, mimicking human information integration. Evaluated on four e-commerce datasets, HAF-VT outperforms existing methods in capturing cross-domain user interests, bridging cognitive principles with computational models and highlighting the role of multimodal data in sequential decision-making.
comment: Accepted at CogSCI 2025. arXiv admin note: text overlap with arXiv:2502.15694
Emotion-Qwen: Training Hybrid Experts for Unified Emotion and General Vision-Language Understanding
Emotion understanding in videos aims to accurately recognize and interpret individuals' emotional states by integrating contextual, visual, textual, and auditory cues. While Large Multimodal Models (LMMs) have demonstrated significant progress in general vision-language (VL) tasks, their performance in emotion-specific scenarios remains limited. Moreover, fine-tuning LMMs on emotion-related tasks often leads to catastrophic forgetting, hindering their ability to generalize across diverse tasks. To address these challenges, we present Emotion-Qwen, a tailored multimodal framework designed to enhance both emotion understanding and general VL reasoning. Emotion-Qwen incorporates a sophisticated Hybrid Compressor based on the Mixture of Experts (MoE) paradigm, which dynamically routes inputs to balance emotion-specific and general-purpose processing. The model is pre-trained in a three-stage pipeline on large-scale general and emotional image datasets to support robust multimodal representations. Furthermore, we construct the Video Emotion Reasoning (VER) dataset, comprising more than 40K bilingual video clips with fine-grained descriptive annotations, to further enrich Emotion-Qwen's emotional reasoning capability. Experimental results demonstrate that Emotion-Qwen achieves state-of-the-art performance on multiple emotion recognition benchmarks, while maintaining competitive results on general VL tasks. Code and models are available at https://github.com/24DavidHuang/Emotion-Qwen.
RedundancyLens: Revealing and Exploiting Visual Token Processing Redundancy for Efficient Decoder-Only MLLMs ACL 2025
Current Multimodal Large Language Model (MLLM) architectures face a critical tradeoff between performance and efficiency: decoder-only architectures achieve higher performance but lower efficiency, while cross-attention-based architectures offer greater efficiency but lower performance. The key distinction lies in how visual tokens are processed. Decoder-only architectures apply self-attention and FFN operations on visual tokens, while cross-attention architectures skip these computations. To investigate whether redundancy exists in this computationally expensive process, we propose a training-free framework for analyzing trained MLLMs. It consists of Probe-Activated Dynamic FFN and Hollow Attention, which enable adjustable reductions in computations for visual tokens, as well as a Layer Ranking Algorithm that prioritizes layers for these reductions. Extensive experiments demonstrate substantial, structured, and clustered redundancy unique to decoder-only MLLMs, offering valuable insights for future MLLM architecture design. Furthermore, by leveraging our reduction framework as a training-free inference acceleration approach, we achieve performance comparable to or better than state-of-the-art methods while remaining compatible with them. Code will be publicly available at https://github.com/L-Hugh/RedundancyLens.
comment: ACL 2025 Findings
Boost-and-Skip: A Simple Guidance-Free Diffusion for Minority Generation ICML 2025
Minority samples are underrepresented instances located in low-density regions of a data manifold, and are valuable in many generative AI applications, such as data augmentation, creative content generation, etc. Unfortunately, existing diffusion-based minority generators often rely on computationally expensive guidance dedicated for minority generation. To address this, here we present a simple yet powerful guidance-free approach called Boost-and-Skip for generating minority samples using diffusion models. The key advantage of our framework requires only two minimal changes to standard generative processes: (i) variance-boosted initialization and (ii) timestep skipping. We highlight that these seemingly-trivial modifications are supported by solid theoretical and empirical evidence, thereby effectively promoting emergence of underrepresented minority features. Our comprehensive experiments demonstrate that Boost-and-Skip greatly enhances the capability of generating minority samples, even rivaling guidance-based state-of-the-art approaches while requiring significantly fewer computations. Code is available at https://github.com/soobin-um/BnS.
comment: ICML 2025, 29 pages, 11 figures
CAE-Net: Generalized Deepfake Image Detection using Convolution and Attention Mechanisms with Spatial and Frequency Domain Features
Effective deepfake detection tools are becoming increasingly essential to the growing usage of deepfakes in unethical practices. There exists a wide range of deepfake generation techniques, which makes it challenging to develop an accurate universal detection mechanism. The 2025 IEEE Signal Processing Cup (\textit{DFWild-Cup} competition) provided a diverse dataset of deepfake images containing significant class imbalance. The images in the dataset are generated from multiple deepfake image generators, for training machine learning model(s) to emphasize the generalization of deepfake detection. To this end, we proposed a disjoint set-based multistage training method to address the class imbalance and devised an ensemble-based architecture \emph{CAE-Net}. Our architecture consists of a convolution- and attention-based ensemble network, and employs three different neural network architectures: EfficientNet, Data-Efficient Image Transformer (DeiT), and ConvNeXt with wavelet transform to capture both local and global features of deepfakes. We visualize the specific regions that these models focus on for classification using Grad-CAM, and empirically demonstrate the effectiveness of these models in grouping real and fake images into cohesive clusters using t-SNE plots. Individually, the EfficientNet B0 architecture has achieved 90.79\% accuracy, whereas the ConvNeXt and the DeiT architecture have achieved 89.49\% and 89.32\% accuracy, respectively. With these networks, our weighted ensemble model achieves an excellent accuracy of 94.63\% on the validation dataset of the SP Cup 2025 competition. The equal error rate of 4.72\% and the Area Under the ROC curve of 97.37\% further confirm the stability of our proposed method. Finally, the robustness of our proposed model against adversarial perturbation attacks is tested as well, showing the inherent defensive properties of the ensemble approach.
comment: Under review in Elsevier Journal of Visual Communication and Image Representation
REJEPA: A Novel Joint-Embedding Predictive Architecture for Efficient Remote Sensing Image Retrieval
The rapid expansion of remote sensing image archives demands the development of strong and efficient techniques for content-based image retrieval (RS-CBIR). This paper presents REJEPA (Retrieval with Joint-Embedding Predictive Architecture), an innovative self-supervised framework designed for unimodal RS-CBIR. REJEPA utilises spatially distributed context token encoding to forecast abstract representations of target tokens, effectively capturing high-level semantic features and eliminating unnecessary pixel-level details. In contrast to generative methods that focus on pixel reconstruction or contrastive techniques that depend on negative pairs, REJEPA functions within feature space, achieving a reduction in computational complexity of 40-60% when compared to pixel-reconstruction baselines like Masked Autoencoders (MAE). To guarantee strong and varied representations, REJEPA incorporates Variance-Invariance-Covariance Regularisation (VICReg), which prevents encoder collapse by promoting feature diversity and reducing redundancy. The method demonstrates an estimated enhancement in retrieval accuracy of 5.1% on BEN-14K (S1), 7.4% on BEN-14K (S2), 6.0% on FMoW-RGB, and 10.1% on FMoW-Sentinel compared to prominent SSL techniques, including CSMAE-SESD, Mask-VLM, SatMAE, ScaleMAE, and SatMAE++, on extensive RS benchmarks BEN-14K (multispectral and SAR data), FMoW-RGB and FMoW-Sentinel. Through effective generalisation across sensor modalities, REJEPA establishes itself as a sensor-agnostic benchmark for efficient, scalable, and precise RS-CBIR, addressing challenges like varying resolutions, high object density, and complex backgrounds with computational efficiency.
comment: 14 pages
Behind the Magic, MERLIM: Multi-modal Evaluation Benchmark for Large Image-Language Models
Large Vision and Language Models have enabled significant advances in fully supervised and zero-shot visual tasks. These large architectures serve as the baseline to what is currently known as Instruction Tuning Large Vision and Language models (IT-LVLMs). IT-LVLMs are general-purpose multi-modal assistants whose responses are modulated by natural language instructions and visual data. Despite this versatility, IT-LVLM effectiveness in fundamental computer vision problems remains unclear, primarily due to the absence of a standardized evaluation benchmark. This paper introduces a Multi-modal Evaluation Benchmark named MERLIM, a scalable test-bed to assess the capabilities of IT-LVLMs on fundamental computer vision tasks. MERLIM contains over 300K image-question pairs and has a strong focus on detecting cross-modal "hallucination" events in IT-LVLMs. Our results bring important insights on the performance of state-of-the-art IT-LVLMs including limitations at identifying fine-grained visual concepts, object hallucinations across tasks, and biases towards the language query. Our findings also suggest that these models have weak visual grounding, but manage to make adequate guesses from global visual patterns or language biases contained in the LLM component. We name this phenomenon of correct answers with no visual grounding as hidden hallucinations.
comment: 18 pages, 10 figures, 6 tables
ENACT: Entropy-based Clustering of Attention Input for Reducing the Computational Needs of Object Detection Transformers
Transformers demonstrate competitive performance in terms of precision on the problem of vision-based object detection. However, they require considerable computational resources due to the quadratic size of the attention weights. In this work, we propose to cluster the transformer input on the basis of its entropy, due to its similarity between same object pixels. This is expected to reduce GPU usage during training, while maintaining reasonable accuracy. This idea is realized with an implemented module that is called ENtropy-based Attention Clustering for detection Transformers (ENACT), which serves as a plug-in to any multi-head self-attention based transformer network. Experiments on the COCO object detection dataset and three detection transformers demonstrate that the requirements on memory are reduced, while the detection accuracy is degraded only slightly. The code of the ENACT module is available at https://github.com/GSavathrakis/ENACT.
Structured 3D Latents for Scalable and Versatile 3D Generation
We introduce a novel 3D generation method for versatile and high-quality 3D asset creation. The cornerstone is a unified Structured LATent (SLAT) representation which allows decoding to different output formats, such as Radiance Fields, 3D Gaussians, and meshes. This is achieved by integrating a sparsely-populated 3D grid with dense multiview visual features extracted from a powerful vision foundation model, comprehensively capturing both structural (geometry) and textural (appearance) information while maintaining flexibility during decoding. We employ rectified flow transformers tailored for SLAT as our 3D generation models and train models with up to 2 billion parameters on a large 3D asset dataset of 500K diverse objects. Our model generates high-quality results with text or image conditions, significantly surpassing existing methods, including recent ones at similar scales. We showcase flexible output format selection and local 3D editing capabilities which were not offered by previous models. Code, model, and data will be released.
comment: Project Page: https://github.com/Microsoft/TRELLIS
Adversarially Robust AI-Generated Image Detection for Free: An Information Theoretic Perspective
Rapid advances in Artificial Intelligence Generated Images (AIGI) have facilitated malicious use, such as forgery and misinformation. Therefore, numerous methods have been proposed to detect fake images. Although such detectors have been proven to be universally vulnerable to adversarial attacks, defenses in this field are scarce. In this paper, we first identify that adversarial training (AT), widely regarded as the most effective defense, suffers from performance collapse in AIGI detection. Through an information-theoretic lens, we further attribute the cause of collapse to feature entanglement, which disrupts the preservation of feature-label mutual information. Instead, standard detectors show clear feature separation. Motivated by this difference, we propose Training-free Robust Detection via Information-theoretic Measures (TRIM), the first training-free adversarial defense for AIGI detection. TRIM builds on standard detectors and quantifies feature shifts using prediction entropy and KL divergence. Extensive experiments across multiple datasets and attacks validate the superiority of our TRIM, e.g., outperforming the state-of-the-art defense by 33.88% (28.91%) on ProGAN (GenImage), while well maintaining original accuracy.
Analysis of Pseudo-Labeling for Online Source-Free Universal Domain Adaptation
A domain (distribution) shift between training and test data often hinders the real-world performance of deep neural networks, necessitating unsupervised domain adaptation (UDA) to bridge this gap. Online source-free UDA has emerged as a solution for practical scenarios where access to source data is restricted and target data is received as a continuous stream. However, the open-world nature of many real-world applications additionally introduces category shifts meaning that the source and target label spaces may differ. Online source-free universal domain adaptation (SF-UniDA) addresses this challenge. Existing methods mainly rely on self-training with pseudo-labels, yet the relationship between pseudo-labeling and adaptation outcomes has not been studied yet. To bridge this gap, we conduct a systematic analysis through controlled experiments with simulated pseudo-labeling, offering valuable insights into pseudo-labeling for online SF-UniDA. Our findings reveal a substantial gap between the current state-of-the-art and the upper bound of adaptation achieved with perfect pseudo-labeling. Moreover, we show that a contrastive loss enables effective adaptation even with moderate pseudo-label accuracy, while a cross-entropy (CE) loss, though less robust to pseudo-label errors, achieves superior results when pseudo-labeling approaches perfection. Lastly, our findings indicate that pseudo-label accuracy is in general more crucial than quantity, suggesting that prioritizing fewer but high-confidence pseudo-labels is beneficial. Overall, our study highlights the critical role of pseudo-labeling in (online) SF-UniDA and provides actionable insights to drive future advancements in the field. Our code is available at https://github.com/pascalschlachter/PLAnalysis.
comment: Accepted at the 33rd European Signal Processing Conference (EUSIPCO 2025)
A Survey on Text-Driven 360-Degree Panorama Generation
The advent of text-driven 360-degree panorama generation, enabling the synthesis of 360-degree panoramic images directly from textual descriptions, marks a transformative advancement in immersive visual content creation. This innovation significantly simplifies the traditionally complex process of producing such content. Recent progress in text-to-image diffusion models has accelerated the rapid development in this emerging field. This survey presents a comprehensive review of text-driven 360-degree panorama generation, offering an in-depth analysis of state-of-the-art algorithms and their expanding applications in 360-degree 3D scene generation. Furthermore, we critically examine current limitations and propose promising directions for future research. A curated project page with relevant resources and research papers is available at https://littlewhitesea.github.io/Text-Driven-Pano-Gen/.
A Survey on Self-supervised Contrastive Learning for Multimodal Text-Image Analysis
Self-supervised learning is a machine learning approach that generates implicit labels by learning underlined patterns and extracting discriminative features from unlabeled data without manual labelling. Contrastive learning introduces the concept of "positive" and "negative" samples, where positive pairs (e.g., variation of the same image/object) are brought together in the embedding space, and negative pairs (e.g., views from different images/objects) are pushed farther away. This methodology has shown significant improvements in image understanding and image text analysis without much reliance on labeled data. In this paper, we comprehensively discuss the terminologies, recent developments and applications of contrastive learning with respect to text-image models. Specifically, we provide an overview of the approaches of contrastive learning in text-image models in recent years. Secondly, we categorize the approaches based on different model structures. Thirdly, we further introduce and discuss the latest advances of the techniques used in the process such as pretext tasks for both images and text, architectural structures, and key trends. Lastly, we discuss the recent state-of-art applications of self-supervised contrastive learning Text-Image based models.
comment: 38 pages, 8 figures, survey paper
Improving Adversarial Robustness via Phase and Amplitude-aware Prompting
Deep neural networks are found to be vulnerable to adversarial perturbations. The prompt-based defense has been increasingly studied due to its high efficiency. However, existing prompt-based defenses mainly exploited mixed prompt patterns, where critical patterns closely related to object semantics lack sufficient focus. The phase and amplitude spectra have been proven to be highly related to specific semantic patterns and crucial for robustness. To this end, in this paper, we propose a Phase and Amplitude-aware Prompting (PAP) defense. Specifically, we construct phase-level and amplitude-level prompts for each class, and adjust weights for prompting according to the model's robust performance under these prompts during training. During testing, we select prompts for each image using its predicted label to obtain the prompted image, which is inputted to the model to get the final prediction. Experimental results demonstrate the effectiveness of our method.
"See the World, Discover Knowledge": A Chinese Factuality Evaluation for Large Vision Language Models
The evaluation of factual accuracy in large vision language models (LVLMs) has lagged behind their rapid development, making it challenging to fully reflect these models' knowledge capacity and reliability. In this paper, we introduce the first factuality-based visual question-answering benchmark in Chinese, named ChineseSimpleVQA, aimed at assessing the visual factuality of LVLMs across 8 major topics and 56 subtopics. The key features of this benchmark include a focus on the Chinese language, diverse knowledge types, a multi-hop question construction, high-quality data, static consistency, and easy-to-evaluate through short answers. Moreover, we contribute a rigorous data construction pipeline and decouple the visual factuality into two parts: seeing the world (i.e., object recognition) and discovering knowledge. This decoupling allows us to analyze the capability boundaries and execution mechanisms of LVLMs. Subsequently, we evaluate 34 advanced open-source and closed-source models, revealing critical performance gaps within this field. Our evaluation-friendly code and data have already been open-sourced.
comment: 26 pages, 21 figures
ReelWave: Multi-Agentic Movie Sound Generation through Multimodal LLM Conversation
Current audio generation conditioned by text or video focuses on aligning audio with text/video modalities. Despite excellent alignment results, these multimodal frameworks still cannot be directly applied to compelling movie storytelling involving multiple scenes, where "on-screen" sounds require temporally-aligned audio generation, while "off-screen" sounds contribute to appropriate environment sounds accompanied by background music when applicable. Inspired by professional movie production, this paper proposes a multi-agentic framework for audio generation supervised by an autonomous Sound Director agent, engaging multi-turn conversations with other agents for on-screen and off-screen sound generation through multimodal LLM. To address on-screen sound generation, after detecting any talking humans in videos, we capture semantically and temporally synchronized sound by training a prediction model that forecasts interpretable, time-varying audio control signals: loudness, pitch, and timbre, which are used by a Foley Artist agent to condition a cross-attention module in the sound generation. The Foley Artist works cooperatively with the Composer and Voice Actor agents, and together they autonomously generate off-screen sound to complement the overall production. Each agent takes on specific roles similar to those of a movie production team. To temporally ground audio language models, in ReelWave, text/video conditions are decomposed into atomic, specific sound generation instructions synchronized with visuals when applicable. Consequently, our framework can generate rich and relevant audio content conditioned on video clips extracted from movies.
Large Language Model-Driven Distributed Integrated Multimodal Sensing and Semantic Communications
Traditional single-modal sensing systems-based solely on either radio frequency (RF) or visual data-struggle to cope with the demands of complex and dynamic environments. Furthermore, single-device systems are constrained by limited perspectives and insufficient spatial coverage, which impairs their effectiveness in urban or non-line-of-sight scenarios. To overcome these challenges, we propose a novel large language model (LLM)-driven distributed integrated multimodal sensing and semantic communication (LLM-DiSAC) framework. Specifically, our system consists of multiple collaborative sensing devices equipped with RF and camera modules, working together with an aggregation center to enhance sensing accuracy. First, on sensing devices, LLM-DiSAC develops an RF-vision fusion network (RVFN), which employs specialized feature extractors for RF and visual data, followed by a cross-attention module for effective multimodal integration. Second, a LLM-based semantic transmission network (LSTN) is proposed to enhance communication efficiency, where the LLM-based decoder leverages known channel parameters, such as transceiver distance and signal-to-noise ratio (SNR), to mitigate semantic distortion. Third, at the aggregation center, a transformer-based aggregation model (TRAM) with an adaptive aggregation attention mechanism is developed to fuse distributed features and enhance sensing accuracy. To preserve data privacy, a two-stage distributed learning strategy is introduced, allowing local model training at the device level and centralized aggregation model training using intermediate features. Finally, evaluations on a synthetic multi-view RF-visual dataset generated by the Genesis simulation engine show that LLM-DiSAC achieves a good performance.
Unpaired Deblurring via Decoupled Diffusion Model
Generative diffusion models trained on large-scale datasets have achieved remarkable progress in image synthesis. In favor of their ability to supplement missing details and generate aesthetically pleasing contents, recent works have applied them to image deblurring via training an adapter on blurry-sharp image pairs to provide structural conditions for restoration. However, acquiring substantial amounts of realistic paired data is challenging and costly in real-world scenarios. On the other hand, relying solely on synthetic data often results in overfitting, leading to unsatisfactory performance when confronted with unseen blur patterns. To tackle this issue, we propose UID-Diff, a generative-diffusion-based model designed to enhance deblurring performance on unknown domains by decoupling structural features and blur patterns through joint training on three specially designed tasks. We employ two Q-Formers as structural features and blur patterns extractors separately. The features extracted by them will be used for the supervised deblurring task on synthetic data and the unsupervised blur-transfer task by leveraging unpaired blurred images from the target domain simultaneously. We further introduce a reconstruction task to make the structural features and blur patterns complementary. This blur-decoupled learning process enhances the generalization capabilities of UID-Diff when encountering unknown blur patterns. Experiments on real-world datasets demonstrate that UID-Diff outperforms existing state-of-the-art methods in blur removal and structural preservation in various challenging scenarios.
comment: We propose UID-Diff to integrate generative diffusion model into unpaired deblurring tasks
Camouflaged Object Tracking: A Benchmark
Visual tracking has seen remarkable advancements, largely driven by the availability of large-scale training datasets that have enabled the development of highly accurate and robust algorithms. While significant progress has been made in tracking general objects, research on more challenging scenarios, such as tracking camouflaged objects, remains limited. Camouflaged objects, which blend seamlessly with their surroundings or other objects, present unique challenges for detection and tracking in complex environments. This challenge is particularly critical in applications such as military, security, agriculture, and marine monitoring, where precise tracking of camouflaged objects is essential. To address this gap, we introduce the Camouflaged Object Tracking Dataset (COTD), a specialized benchmark designed specifically for evaluating camouflaged object tracking methods. The COTD dataset comprises 200 sequences and approximately 80,000 frames, each annotated with detailed bounding boxes. Our evaluation of 20 existing tracking algorithms reveals significant deficiencies in their performance with camouflaged objects. To address these issues, we propose a novel tracking framework, HiPTrack-MLS, which demonstrates promising results in improving tracking performance for camouflaged objects. COTD and code are avialable at https://github.com/openat25/HIPTrack-MLS.
FieldWorkArena: Agentic AI Benchmark for Real Field Work Tasks
This paper proposes FieldWorkArena, a benchmark for agentic AI targeting real-world field work. With the recent increase in demand for agentic AI, they are required to monitor and report safety and health incidents, as well as manufacturing-related incidents, that may occur in real-world work environments. Existing agentic AI benchmarks have been limited to evaluating web tasks and are insufficient for evaluating agents in real-world work environments, where complexity increases significantly. In this paper, we define a new action space that agentic AI should possess for real world work environment benchmarks and improve the evaluation function from previous methods to assess the performance of agentic AI in diverse real-world tasks. The dataset consists of videos captured on-site and documents actually used in factories and warehouses, and tasks were created based on interviews with on-site workers and managers. Evaluation results confirmed that performance evaluation considering the characteristics of Multimodal LLM (MLLM) such as GPT-4o is feasible. Additionally, the effectiveness and limitations of the proposed new evaluation method were identified. The complete dataset (HuggingFace) and evaluation program (GitHub) can be downloaded from the following website: https://en-documents.research.global.fujitsu.com/fieldworkarena/.
comment: 6 pages, 2 figures, 4 tables
Enhancing Large Vision Model in Street Scene Semantic Understanding through Leveraging Posterior Optimization Trajectory
To improve the generalization of the autonomous driving (AD) perception model, vehicles need to update the model over time based on the continuously collected data. As time progresses, the amount of data fitted by the AD model expands, which helps to improve the AD model generalization substantially. However, such ever-expanding data is a double-edged sword for the AD model. Specifically, as the fitted data volume grows to exceed the the AD model's fitting capacities, the AD model is prone to under-fitting. To address this issue, we propose to use a pretrained Large Vision Models (LVMs) as backbone coupled with downstream perception head to understand AD semantic information. This design can not only surmount the aforementioned under-fitting problem due to LVMs' powerful fitting capabilities, but also enhance the perception generalization thanks to LVMs' vast and diverse training data. On the other hand, to mitigate vehicles' computational burden of training the perception head while running LVM backbone, we introduce a Posterior Optimization Trajectory (POT)-Guided optimization scheme (POTGui) to accelerate the convergence. Concretely, we propose a POT Generator (POTGen) to generate posterior (future) optimization direction in advance to guide the current optimization iteration, through which the model can generally converge within 10 epochs. Extensive experiments demonstrate that the proposed method improves the performance by over 66.48\% and converges faster over 6 times, compared to the existing state-of-the-art approach.
comment: 7 pages
ART-DECO: Arbitrary Text Guidance for 3D Detailizer Construction
We introduce a 3D detailizer, a neural model which can instantaneously (in <1s) transform a coarse 3D shape proxy into a high-quality asset with detailed geometry and texture as guided by an input text prompt. Our model is trained using the text prompt, which defines the shape class and characterizes the appearance and fine-grained style of the generated details. The coarse 3D proxy, which can be easily varied and adjusted (e.g., via user editing), provides structure control over the final shape. Importantly, our detailizer is not optimized for a single shape; it is the result of distilling a generative model, so that it can be reused, without retraining, to generate any number of shapes, with varied structures, whose local details all share a consistent style and appearance. Our detailizer training utilizes a pretrained multi-view image diffusion model, with text conditioning, to distill the foundational knowledge therein into our detailizer via Score Distillation Sampling (SDS). To improve SDS and enable our detailizer architecture to learn generalizable features over complex structures, we train our model in two training stages to generate shapes with increasing structural complexity. Through extensive experiments, we show that our method generates shapes of superior quality and details compared to existing text-to-3D models under varied structure control. Our detailizer can refine a coarse shape in less than a second, making it possible to interactively author and adjust 3D shapes. Furthermore, the user-imposed structure control can lead to creative, and hence out-of-distribution, 3D asset generations that are beyond the current capabilities of leading text-to-3D generative models. We demonstrate an interactive 3D modeling workflow our method enables, and its strong generalizability over styles, structures, and object categories.
RenderBender: A Survey on Adversarial Attacks Using Differentiable Rendering IJCAI '25
Differentiable rendering techniques like Gaussian Splatting and Neural Radiance Fields have become powerful tools for generating high-fidelity models of 3D objects and scenes. Their ability to produce both physically plausible and differentiable models of scenes are key ingredient needed to produce physically plausible adversarial attacks on DNNs. However, the adversarial machine learning community has yet to fully explore these capabilities, partly due to differing attack goals (e.g., misclassification, misdetection) and a wide range of possible scene manipulations used to achieve them (e.g., alter texture, mesh). This survey contributes the first framework that unifies diverse goals and tasks, facilitating easy comparison of existing work, identifying research gaps, and highlighting future directions - ranging from expanding attack goals and tasks to account for new modalities, state-of-the-art models, tools, and pipelines, to underscoring the importance of studying real-world threats in complex scenes.
comment: 9 pages, 1 figure, 2 tables, IJCAI '25 Survey Track
MorphoSeg: An Uncertainty-Aware Deep Learning Method for Biomedical Segmentation of Complex Cellular Morphologies
Deep learning has revolutionized medical and biological imaging, particularly in segmentation tasks. However, segmenting biological cells remains challenging due to the high variability and complexity of cell shapes. Addressing this challenge requires high-quality datasets that accurately represent the diverse morphologies found in biological cells. Existing cell segmentation datasets are often limited by their focus on regular and uniform shapes. In this paper, we introduce a novel benchmark dataset of Ntera-2 (NT2) cells, a pluripotent carcinoma cell line, exhibiting diverse morphologies across multiple stages of differentiation, capturing the intricate and heterogeneous cellular structures that complicate segmentation tasks. To address these challenges, we propose an uncertainty-aware deep learning framework for complex cellular morphology segmentation (MorphoSeg) by incorporating sampling of virtual outliers from low-likelihood regions during training. Our comprehensive experimental evaluations against state-of-the-art baselines demonstrate that MorphoSeg significantly enhances segmentation accuracy, achieving up to a 7.74% increase in the Dice Similarity Coefficient (DSC) and a 28.36% reduction in the Hausdorff Distance. These findings highlight the effectiveness of our dataset and methodology in advancing cell segmentation capabilities, especially for complex and variable cell morphologies. The dataset and source code is publicly available at https://github.com/RanchoGoose/MorphoSeg.
The Structural Safety Generalization Problem
LLM jailbreaks are a widespread safety challenge. Given this problem has not yet been tractable, we suggest targeting a key failure mechanism: the failure of safety to generalize across semantically equivalent inputs. We further focus the target by requiring desirable tractability properties of attacks to study: explainability, transferability between models, and transferability between goals. We perform red-teaming within this framework by uncovering new vulnerabilities to multi-turn, multi-image, and translation-based attacks. These attacks are semantically equivalent by our design to their single-turn, single-image, or untranslated counterparts, enabling systematic comparisons; we show that the different structures yield different safety outcomes. We then demonstrate the potential for this framework to enable new defenses by proposing a Structure Rewriting Guardrail, which converts an input to a structure more conducive to safety assessment. This guardrail significantly improves refusal of harmful inputs, without over-refusing benign ones. Thus, by framing this intermediate challenge - more tractable than universal defenses but essential for long-term safety - we highlight a critical milestone for AI safety research.
EasyREG: Easy Depth-Based Markerless Registration and Tracking using Augmented Reality Device for Surgical Guidance
The use of Augmented Reality (AR) devices for surgical guidance has gained increasing traction in the medical field. Traditional registration methods often rely on external fiducial markers to achieve high accuracy and real-time performance. However, these markers introduce cumbersome calibration procedures and can be challenging to deploy in clinical settings. While commercial solutions have attempted real-time markerless tracking using the native RGB cameras of AR devices, their accuracy remains questionable for medical guidance, primarily due to occlusions and significant outliers between the live sensor data and the preoperative target anatomy point cloud derived from MRI or CT scans. In this work, we present a markerless framework that relies only on the depth sensor of AR devices and consists of two modules: a registration module for high-precision, outlier-robust target anatomy localization, and a tracking module for real-time pose estimation. The registration module integrates depth sensor error correction, a human-in-the-loop region filtering technique, and a robust global alignment with curvature-aware feature sampling, followed by local ICP refinement, for markerless alignment of preoperative models with patient anatomy. The tracking module employs a fast and robust registration algorithm that uses the initial pose from the registration module to estimate the target pose in real-time. We comprehensively evaluated the performance of both modules through simulation and real-world measurements. The results indicate that our markerless system achieves superior performance for registration and comparable performance for tracking to industrial solutions. The two-module design makes our system a one-stop solution for surgical procedures where the target anatomy moves or stays static during surgery.
GSBA$^K$: $top$-$K$ Geometric Score-based Black-box Attack ICLR 2025
Existing score-based adversarial attacks mainly focus on crafting $top$-1 adversarial examples against classifiers with single-label classification. Their attack success rate and query efficiency are often less than satisfactory, particularly under small perturbation requirements; moreover, the vulnerability of classifiers with multi-label learning is yet to be studied. In this paper, we propose a comprehensive surrogate free score-based attack, named \b geometric \b score-based \b black-box \b attack (GSBA$^K$), to craft adversarial examples in an aggressive $top$-$K$ setting for both untargeted and targeted attacks, where the goal is to change the $top$-$K$ predictions of the target classifier. We introduce novel gradient-based methods to find a good initial boundary point to attack. Our iterative method employs novel gradient estimation techniques, particularly effective in $top$-$K$ setting, on the decision boundary to effectively exploit the geometry of the decision boundary. Additionally, GSBA$^K$ can be used to attack against classifiers with $top$-$K$ multi-label learning. Extensive experimental results on ImageNet and PASCAL VOC datasets validate the effectiveness of GSBA$^K$ in crafting $top$-$K$ adversarial examples.
comment: License changed to CC BY 4.0 to align with ICLR 2025. No changes to content. Published at: https://openreview.net/forum?id=htX7AoHyln
FlashDepth: Real-time Streaming Video Depth Estimation at 2K Resolution
A versatile video depth estimation model should (1) be accurate and consistent across frames, (2) produce high-resolution depth maps, and (3) support real-time streaming. We propose FlashDepth, a method that satisfies all three requirements, performing depth estimation on a 2044x1148 streaming video at 24 FPS. We show that, with careful modifications to pretrained single-image depth models, these capabilities are enabled with relatively little data and training. We evaluate our approach across multiple unseen datasets against state-of-the-art depth models, and find that ours outperforms them in terms of boundary sharpness and speed by a significant margin, while maintaining competitive accuracy. We hope our model will enable various applications that require high-resolution depth, such as video editing, and online decision-making, such as robotics. We release all code and model weights at https://github.com/Eyeline-Research/FlashDepth
Absolute Coordinates Make Motion Generation Easy
State-of-the-art text-to-motion generation models rely on the kinematic-aware, local-relative motion representation popularized by HumanML3D, which encodes motion relative to the pelvis and to the previous frame with built-in redundancy. While this design simplifies training for earlier generation models, it introduces critical limitations for diffusion models and hinders applicability to downstream tasks. In this work, we revisit the motion representation and propose a radically simplified and long-abandoned alternative for text-to-motion generation: absolute joint coordinates in global space. Through systematic analysis of design choices, we show that this formulation achieves significantly higher motion fidelity, improved text alignment, and strong scalability, even with a simple Transformer backbone and no auxiliary kinematic-aware losses. Moreover, our formulation naturally supports downstream tasks such as text-driven motion control and temporal/spatial editing without additional task-specific reengineering and costly classifier guidance generation from control signals. Finally, we demonstrate promising generalization to directly generate SMPL-H mesh vertices in motion from text, laying a strong foundation for future research and motion-related applications.
comment: Preprint
HandCraft: Anatomically Correct Restoration of Malformed Hands in Diffusion Generated Images WACV
Generative text-to-image models, such as Stable Diffusion, have demonstrated a remarkable ability to generate diverse, high-quality images. However, they are surprisingly inept when it comes to rendering human hands, which are often anatomically incorrect or reside in the "uncanny valley". In this paper, we propose a method HandCraft for restoring such malformed hands. This is achieved by automatically constructing masks and depth images for hands as conditioning signals using a parametric model, allowing a diffusion-based image editor to fix the hand's anatomy and adjust its pose while seamlessly integrating the changes into the original image, preserving pose, color, and style. Our plug-and-play hand restoration solution is compatible with existing pretrained diffusion models, and the restoration process facilitates adoption by eschewing any fine-tuning or training requirements for the diffusion models. We also contribute MalHand datasets that contain generated images with a wide variety of malformed hands in several styles for hand detector training and hand restoration benchmarking, and demonstrate through qualitative and quantitative evaluation that HandCraft not only restores anatomical correctness but also maintains the integrity of the overall image.
comment: 2025 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)
LaWa: Using Latent Space for In-Generation Image Watermarking ECCV 2024
With generative models producing high quality images that are indistinguishable from real ones, there is growing concern regarding the malicious usage of AI-generated images. Imperceptible image watermarking is one viable solution towards such concerns. Prior watermarking methods map the image to a latent space for adding the watermark. Moreover, Latent Diffusion Models (LDM) generate the image in the latent space of a pre-trained autoencoder. We argue that this latent space can be used to integrate watermarking into the generation process. To this end, we present LaWa, an in-generation image watermarking method designed for LDMs. By using coarse-to-fine watermark embedding modules, LaWa modifies the latent space of pre-trained autoencoders and achieves high robustness against a wide range of image transformations while preserving perceptual quality of the image. We show that LaWa can also be used as a general image watermarking method. Through extensive experiments, we demonstrate that LaWa outperforms previous works in perceptual quality, robustness against attacks, and computational complexity, while having very low false positive rate. Code is available here.
comment: Accepted to ECCV 2024
Multimedia
ARECHO: Autoregressive Evaluation via Chain-Based Hypothesis Optimization for Speech Multi-Metric Estimation
Speech signal analysis poses significant challenges, particularly in tasks such as speech quality evaluation and profiling, where the goal is to predict multiple perceptual and objective metrics. For instance, metrics like PESQ (Perceptual Evaluation of Speech Quality), STOI (Short-Time Objective Intelligibility), and MOS (Mean Opinion Score) each capture different aspects of speech quality. However, these metrics often have different scales, assumptions, and dependencies, making joint estimation non-trivial. To address these issues, we introduce ARECHO (Autoregressive Evaluation via Chain-based Hypothesis Optimization), a chain-based, versatile evaluation system for speech assessment grounded in autoregressive dependency modeling. ARECHO is distinguished by three key innovations: (1) a comprehensive speech information tokenization pipeline; (2) a dynamic classifier chain that explicitly captures inter-metric dependencies; and (3) a two-step confidence-oriented decoding algorithm that enhances inference reliability. Experiments demonstrate that ARECHO significantly outperforms the baseline framework across diverse evaluation scenarios, including enhanced speech analysis, speech generation evaluation, and noisy speech evaluation. Furthermore, its dynamic dependency modeling improves interpretability by capturing inter-metric relationships.
Interactive Video Generation via Domain Adaptation
Text-conditioned diffusion models have emerged as powerful tools for high-quality video generation. However, enabling Interactive Video Generation (IVG), where users control motion elements such as object trajectory, remains challenging. Recent training-free approaches introduce attention masking to guide trajectory, but this often degrades perceptual quality. We identify two key failure modes in these methods, both of which we interpret as domain shift problems, and propose solutions inspired by domain adaptation. First, we attribute the perceptual degradation to internal covariate shift induced by attention masking, as pretrained models are not trained to handle masked attention. To address this, we propose mask normalization, a pre-normalization layer designed to mitigate this shift via distribution matching. Second, we address initialization gap, where the randomly sampled initial noise does not align with IVG conditioning, by introducing a temporal intrinsic diffusion prior that enforces spatio-temporal consistency at each denoising step. Extensive qualitative and quantitative evaluations demonstrate that mask normalization and temporal intrinsic denoising improve both perceptual quality and trajectory control over the existing state-of-the-art IVG techniques.
comment: Preprint. Under Review
ISMAF: Intrinsic-Social Modality Alignment and Fusion for Multimodal Rumor Detection
The rapid dissemination of rumors on social media highlights the urgent need for automatic detection methods to safeguard societal trust and stability. While existing multimodal rumor detection models primarily emphasize capturing consistency between intrinsic modalities (e.g., news text and images), they often overlook the intricate interplay between intrinsic and social modalities. This limitation hampers the ability to fully capture nuanced relationships that are crucial for a comprehensive understanding. Additionally, current methods struggle with effectively fusing social context with textual and visual information, resulting in fragmented interpretations. To address these challenges, this paper proposes a novel Intrinsic-Social Modality Alignment and Fusion (ISMAF) framework for multimodal rumor detection. ISMAF first employs a cross-modal consistency alignment strategy to align complex interactions between intrinsic and social modalities. It then leverages a mutual learning approach to facilitate collaborative refinement and integration of complementary information across modalities. Finally, an adaptive fusion mechanism is incorporated to dynamically adjust the contribution of each modality, tackling the complexities of three-modality fusion. Extensive experiments on both English and Chinese real-world multimedia datasets demonstrate that ISMAF consistently outperforms state-of-the-art models.
CMIE: Combining MLLM Insights with External Evidence for Explainable Out-of-Context Misinformation Detection
Multimodal large language models (MLLMs) have demonstrated impressive capabilities in visual reasoning and text generation. While previous studies have explored the application of MLLM for detecting out-of-context (OOC) misinformation, our empirical analysis reveals two persisting challenges of this paradigm. Evaluating the representative GPT-4o model on direct reasoning and evidence augmented reasoning, results indicate that MLLM struggle to capture the deeper relationships-specifically, cases in which the image and text are not directly connected but are associated through underlying semantic links. Moreover, noise in the evidence further impairs detection accuracy. To address these challenges, we propose CMIE, a novel OOC misinformation detection framework that incorporates a Coexistence Relationship Generation (CRG) strategy and an Association Scoring (AS) mechanism. CMIE identifies the underlying coexistence relationships between images and text, and selectively utilizes relevant evidence to enhance misinformation detection. Experimental results demonstrate that our approach outperforms existing methods.
EmotionTalk: An Interactive Chinese Multimodal Emotion Dataset With Rich Annotations
In recent years, emotion recognition plays a critical role in applications such as human-computer interaction, mental health monitoring, and sentiment analysis. While datasets for emotion analysis in languages such as English have proliferated, there remains a pressing need for high-quality, comprehensive datasets tailored to the unique linguistic, cultural, and multimodal characteristics of Chinese. In this work, we propose \textbf{EmotionTalk}, an interactive Chinese multimodal emotion dataset with rich annotations. This dataset provides multimodal information from 19 actors participating in dyadic conversational settings, incorporating acoustic, visual, and textual modalities. It includes 23.6 hours of speech (19,250 utterances), annotations for 7 utterance-level emotion categories (happy, surprise, sad, disgust, anger, fear, and neutral), 5-dimensional sentiment labels (negative, weakly negative, neutral, weakly positive, and positive) and 4-dimensional speech captions (speaker, speaking style, emotion and overall). The dataset is well-suited for research on unimodal and multimodal emotion recognition, missing modality challenges, and speech captioning tasks. To our knowledge, it represents the first high-quality and versatile Chinese dialogue multimodal emotion dataset, which is a valuable contribution to research on cross-cultural emotion analysis and recognition. Additionally, we conduct experiments on EmotionTalk to demonstrate the effectiveness and quality of the dataset. It will be open-source and freely available for all academic purposes. The dataset and codes will be made available at: https://github.com/NKU-HLT/EmotionTalk.
Emotion-Qwen: Training Hybrid Experts for Unified Emotion and General Vision-Language Understanding
Emotion understanding in videos aims to accurately recognize and interpret individuals' emotional states by integrating contextual, visual, textual, and auditory cues. While Large Multimodal Models (LMMs) have demonstrated significant progress in general vision-language (VL) tasks, their performance in emotion-specific scenarios remains limited. Moreover, fine-tuning LMMs on emotion-related tasks often leads to catastrophic forgetting, hindering their ability to generalize across diverse tasks. To address these challenges, we present Emotion-Qwen, a tailored multimodal framework designed to enhance both emotion understanding and general VL reasoning. Emotion-Qwen incorporates a sophisticated Hybrid Compressor based on the Mixture of Experts (MoE) paradigm, which dynamically routes inputs to balance emotion-specific and general-purpose processing. The model is pre-trained in a three-stage pipeline on large-scale general and emotional image datasets to support robust multimodal representations. Furthermore, we construct the Video Emotion Reasoning (VER) dataset, comprising more than 40K bilingual video clips with fine-grained descriptive annotations, to further enrich Emotion-Qwen's emotional reasoning capability. Experimental results demonstrate that Emotion-Qwen achieves state-of-the-art performance on multiple emotion recognition benchmarks, while maintaining competitive results on general VL tasks. Code and models are available at https://github.com/24DavidHuang/Emotion-Qwen.
ISDrama: Immersive Spatial Drama Generation through Multimodal Prompting
Multimodal immersive spatial drama generation focuses on creating continuous multi-speaker binaural speech with dramatic prosody based on multimodal prompts, with potential applications in AR, VR, and others. This task requires simultaneous modeling of spatial information and dramatic prosody based on multimodal inputs, with high data collection costs. To the best of our knowledge, our work is the first attempt to address these challenges. We construct MRSDrama, the first multimodal recorded spatial drama dataset, containing binaural drama audios, scripts, videos, geometric poses, and textual prompts. Then, we propose ISDrama, the first immersive spatial drama generation model through multimodal prompting. ISDrama comprises these primary components: 1) Multimodal Pose Encoder, based on contrastive learning, considering the Doppler effect caused by moving speakers to extract unified pose information from multimodal prompts. 2) Immersive Drama Transformer, a flow-based mamba-transformer model that generates high-quality drama, incorporating Drama-MOE to select proper experts for enhanced prosody and pose control. We also design a context-consistent classifier-free guidance strategy to coherently generate complete drama. Experimental results show that ISDrama outperforms baseline models on objective and subjective metrics. The demos and dataset are available at https://aaronz345.github.io/ISDramaDemo.
Computation and Language
Open CaptchaWorld: A Comprehensive Web-based Platform for Testing and Benchmarking Multimodal LLM Agents
CAPTCHAs have been a critical bottleneck for deploying web agents in real-world applications, often blocking them from completing end-to-end automation tasks. While modern multimodal LLM agents have demonstrated impressive performance in static perception tasks, their ability to handle interactive, multi-step reasoning challenges like CAPTCHAs is largely untested. To address this gap, we introduce Open CaptchaWorld, the first web-based benchmark and platform specifically designed to evaluate the visual reasoning and interaction capabilities of MLLM-powered agents through diverse and dynamic CAPTCHA puzzles. Our benchmark spans 20 modern CAPTCHA types, totaling 225 CAPTCHAs, annotated with a new metric we propose: CAPTCHA Reasoning Depth, which quantifies the number of cognitive and motor steps required to solve each puzzle. Experimental results show that humans consistently achieve near-perfect scores, state-of-the-art MLLM agents struggle significantly, with success rates at most 40.0% by Browser-Use Openai-o3, far below human-level performance, 93.3%. This highlights Open CaptchaWorld as a vital benchmark for diagnosing the limits of current multimodal agents and guiding the development of more robust multimodal reasoning systems. Code and Data are available at this https URL.
comment: Code at: https://github.com/MetaAgentX/OpenCaptchaWorld
Agent-X: Evaluating Deep Multimodal Reasoning in Vision-Centric Agentic Tasks
Deep reasoning is fundamental for solving complex tasks, especially in vision-centric scenarios that demand sequential, multimodal understanding. However, existing benchmarks typically evaluate agents with fully synthetic, single-turn queries, limited visual modalities, and lack a framework to assess reasoning quality over multiple steps as required in real-world settings. To address this, we introduce Agent-X, a large-scale benchmark for evaluating vision-centric agents multi-step and deep reasoning capabilities in real-world, multimodal settings. Agent- X features 828 agentic tasks with authentic visual contexts, including images, multi-image comparisons, videos, and instructional text. These tasks span six major agentic environments: general visual reasoning, web browsing, security and surveillance, autonomous driving, sports, and math reasoning. Our benchmark requires agents to integrate tool use with explicit, stepwise decision-making in these diverse settings. In addition, we propose a fine-grained, step-level evaluation framework that assesses the correctness and logical coherence of each reasoning step and the effectiveness of tool usage throughout the task. Our results reveal that even the best-performing models, including GPT, Gemini, and Qwen families, struggle to solve multi-step vision tasks, achieving less than 50% full-chain success. These findings highlight key bottlenecks in current LMM reasoning and tool-use capabilities and identify future research directions in vision-centric agentic reasoning models. Our data and code are publicly available at https://github.com/mbzuai-oryx/Agent-X
ReasonGen-R1: CoT for Autoregressive Image generation models through SFT and RL
Although chain-of-thought reasoning and reinforcement learning (RL) have driven breakthroughs in NLP, their integration into generative vision models remains underexplored. We introduce ReasonGen-R1, a two-stage framework that first imbues an autoregressive image generator with explicit text-based "thinking" skills via supervised fine-tuning on a newly generated reasoning dataset of written rationales, and then refines its outputs using Group Relative Policy Optimization. To enable the model to reason through text before generating images, We automatically generate and release a corpus of model crafted rationales paired with visual prompts, enabling controlled planning of object layouts, styles, and scene compositions. Our GRPO algorithm uses reward signals from a pretrained vision language model to assess overall visual quality, optimizing the policy in each update. Evaluations on GenEval, DPG, and the T2I benchmark demonstrate that ReasonGen-R1 consistently outperforms strong baselines and prior state-of-the-art models. More: aka.ms/reasongen.
ProxyThinker: Test-Time Guidance through Small Visual Reasoners
Recent advancements in reinforcement learning with verifiable rewards have pushed the boundaries of the visual reasoning capabilities in large vision-language models (LVLMs). However, training LVLMs with reinforcement fine-tuning (RFT) is computationally expensive, posing a significant challenge to scaling model size. In this work, we propose ProxyThinker, an inference-time technique that enables large models to inherit the visual reasoning capabilities from small, slow-thinking visual reasoners without any training. By subtracting the output distributions of base models from those of RFT reasoners, ProxyThinker modifies the decoding dynamics and successfully elicits the slow-thinking reasoning demonstrated by the emerged sophisticated behaviors such as self-verification and self-correction. ProxyThinker consistently boosts performance on challenging visual benchmarks on spatial, mathematical, and multi-disciplinary reasoning, enabling untuned base models to compete with the performance of their full-scale RFT counterparts. Furthermore, our implementation efficiently coordinates multiple language models with parallelism techniques and achieves up to 38 $\times$ faster inference compared to previous decoding-time methods, paving the way for the practical deployment of ProxyThinker. Code is available at https://github.com/MrZilinXiao/ProxyThinker.
MoDoMoDo: Multi-Domain Data Mixtures for Multimodal LLM Reinforcement Learning
Reinforcement Learning with Verifiable Rewards (RLVR) has recently emerged as a powerful paradigm for post-training large language models (LLMs), achieving state-of-the-art performance on tasks with structured, verifiable answers. Applying RLVR to Multimodal LLMs (MLLMs) presents significant opportunities but is complicated by the broader, heterogeneous nature of vision-language tasks that demand nuanced visual, logical, and spatial capabilities. As such, training MLLMs using RLVR on multiple datasets could be beneficial but creates challenges with conflicting objectives from interaction among diverse datasets, highlighting the need for optimal dataset mixture strategies to improve generalization and reasoning. We introduce a systematic post-training framework for Multimodal LLM RLVR, featuring a rigorous data mixture problem formulation and benchmark implementation. Specifically, (1) We developed a multimodal RLVR framework for multi-dataset post-training by curating a dataset that contains different verifiable vision-language problems and enabling multi-domain online RL learning with different verifiable rewards; (2) We proposed a data mixture strategy that learns to predict the RL fine-tuning outcome from the data mixture distribution, and consequently optimizes the best mixture. Comprehensive experiments showcase that multi-domain RLVR training, when combined with mixture prediction strategies, can significantly boost MLLM general reasoning capacities. Our best mixture improves the post-trained model's accuracy on out-of-distribution benchmarks by an average of 5.24% compared to the same model post-trained with uniform data mixture, and by a total of 20.74% compared to the pre-finetuning baseline.
comment: Project Webpage: https://modomodo-rl.github.io/
ProRL: Prolonged Reinforcement Learning Expands Reasoning Boundaries in Large Language Models
Recent advances in reasoning-centric language models have highlighted reinforcement learning (RL) as a promising method for aligning models with verifiable rewards. However, it remains contentious whether RL truly expands a model's reasoning capabilities or merely amplifies high-reward outputs already latent in the base model's distribution, and whether continually scaling up RL compute reliably leads to improved reasoning performance. In this work, we challenge prevailing assumptions by demonstrating that prolonged RL (ProRL) training can uncover novel reasoning strategies that are inaccessible to base models, even under extensive sampling. We introduce ProRL, a novel training methodology that incorporates KL divergence control, reference policy resetting, and a diverse suite of tasks. Our empirical analysis reveals that RL-trained models consistently outperform base models across a wide range of pass@k evaluations, including scenarios where base models fail entirely regardless of the number of attempts. We further show that reasoning boundary improvements correlates strongly with task competence of base model and training duration, suggesting that RL can explore and populate new regions of solution space over time. These findings offer new insights into the conditions under which RL meaningfully expands reasoning boundaries in language models and establish a foundation for future work on long-horizon RL for reasoning. We release model weights to support further research: https://huggingface.co/nvidia/Nemotron-Research-Reasoning-Qwen-1.5B
comment: 26 pages, 17 figures
AlphaOne: Reasoning Models Thinking Slow and Fast at Test Time
This paper presents AlphaOne ($\alpha$1), a universal framework for modulating reasoning progress in large reasoning models (LRMs) at test time. $\alpha$1 first introduces $\alpha$ moment, which represents the scaled thinking phase with a universal parameter $\alpha$. Within this scaled pre-$\alpha$ moment phase, it dynamically schedules slow thinking transitions by modeling the insertion of reasoning transition tokens as a Bernoulli stochastic process. After the $\alpha$ moment, $\alpha$1 deterministically terminates slow thinking with the end-of-thinking token, thereby fostering fast reasoning and efficient answer generation. This approach unifies and generalizes existing monotonic scaling methods by enabling flexible and dense slow-to-fast reasoning modulation. Extensive empirical studies on various challenging benchmarks across mathematical, coding, and scientific domains demonstrate $\alpha$1's superior reasoning capability and efficiency. Project page: https://alphaone-project.github.io/
Beyond Multiple Choice: Evaluating Steering Vectors for Adaptive Free-Form Summarization
Steering vectors are a lightweight method for controlling text properties by adding a learned bias to language model activations at inference time. So far, steering vectors have predominantly been evaluated in multiple-choice settings, while their effectiveness in free-form generation tasks remains understudied. Moving "Beyond Multiple Choice," we thoroughly evaluate the effectiveness of steering vectors in adaptively controlling topical focus, sentiment, toxicity, and readability in abstractive summaries of the NEWTS dataset. We find that steering effectively controls the targeted summary properties, but high steering strengths consistently degrade both intrinsic and extrinsic text quality. Compared to steering, prompting offers weaker control, while preserving text quality. Combining steering and prompting yields the strongest control over text properties and offers the most favorable efficacy-quality trade-off at moderate steering strengths. Our results underscore the practical trade-off between control strength and text quality preservation when applying steering vectors to free-form generation tasks.
comment: 29 pages, 21 figures, preprint
MetaFaith: Faithful Natural Language Uncertainty Expression in LLMs
A critical component in the trustworthiness of LLMs is reliable uncertainty communication, yet LLMs often use assertive language when conveying false claims, leading to over-reliance and eroded trust. We present the first systematic study of $\textit{faithful confidence calibration}$ of LLMs, benchmarking models' ability to use linguistic expressions of uncertainty that $\textit{faithfully reflect}$ their intrinsic uncertainty, across a comprehensive array of models, datasets, and prompting strategies. Our results demonstrate that LLMs largely fail at this task, and that existing interventions are insufficient: standard prompt approaches provide only marginal gains, and existing, factuality-based calibration techniques can even harm faithful calibration. To address this critical gap, we introduce MetaFaith, a novel prompt-based calibration approach inspired by human metacognition. We show that MetaFaith robustly improves faithful calibration across diverse models and task domains, enabling up to 61% improvement in faithfulness and achieving an 83% win rate over original generations as judged by humans.
Harnessing Negative Signals: Reinforcement Distillation from Teacher Data for LLM Reasoning
Recent advances in model distillation demonstrate that data from advanced reasoning models (e.g., DeepSeek-R1, OpenAI's o1) can effectively transfer complex reasoning abilities to smaller, efficient student models. However, standard practices employ rejection sampling, discarding incorrect reasoning examples -- valuable, yet often underutilized data. This paper addresses the critical question: How can both positive and negative distilled reasoning traces be effectively leveraged to maximize LLM reasoning performance in an offline setting? To this end, We propose Reinforcement Distillation (REDI), a two-stage framework. Stage 1 learns from positive traces via Supervised Fine-Tuning (SFT). Stage 2 further refines the model using both positive and negative traces through our proposed REDI objective. This novel objective is a simple, reference-free loss function that outperforms established methods like DPO and SimPO in this distillation context. Our empirical evaluations demonstrate REDI's superiority over baseline Rejection Sampling SFT or SFT combined with DPO/SimPO on mathematical reasoning tasks. Notably, the Qwen-REDI-1.5B model, post-trained on just 131k positive and negative examples from the open Open-R1 dataset, achieves an 83.1% score on MATH-500 (pass@1). Its performance matches or surpasses that of DeepSeek-R1-Distill-Qwen-1.5B (a model post-trained on 800k proprietary data) across various mathematical reasoning benchmarks, establishing a new state-of-the-art for 1.5B models post-trained offline with openly available data.
comment: 27 pages, 10 figures. Code available at https://github.com/Tim-Siu/reinforcement-distillation
MiCRo: Mixture Modeling and Context-aware Routing for Personalized Preference Learning
Reward modeling is a key step in building safe foundation models when applying reinforcement learning from human feedback (RLHF) to align Large Language Models (LLMs). However, reward modeling based on the Bradley-Terry (BT) model assumes a global reward function, failing to capture the inherently diverse and heterogeneous human preferences. Hence, such oversimplification limits LLMs from supporting personalization and pluralistic alignment. Theoretically, we show that when human preferences follow a mixture distribution of diverse subgroups, a single BT model has an irreducible error. While existing solutions, such as multi-objective learning with fine-grained annotations, help address this issue, they are costly and constrained by predefined attributes, failing to fully capture the richness of human values. In this work, we introduce MiCRo, a two-stage framework that enhances personalized preference learning by leveraging large-scale binary preference datasets without requiring explicit fine-grained annotations. In the first stage, MiCRo introduces context-aware mixture modeling approach to capture diverse human preferences. In the second stage, MiCRo integrates an online routing strategy that dynamically adapts mixture weights based on specific context to resolve ambiguity, allowing for efficient and scalable preference adaptation with minimal additional supervision. Experiments on multiple preference datasets demonstrate that MiCRo effectively captures diverse human preferences and significantly improves downstream personalization.
Chameleon: A Flexible Data-mixing Framework for Language Model Pretraining and Finetuning ICML 2025
Training data mixtures greatly impact the generalization performance of large language models. Existing domain reweighting methods often rely on costly weight computations and require retraining when new data is introduced. To this end, we introduce a flexible and efficient data mixing framework, Chameleon, that employs leverage scores to quantify domain importance within a learned embedding space. We first construct a domain affinity matrix over domain embeddings. The induced leverage scores determine a mixture that upweights domains sharing common representations in embedding space. This formulation allows direct transfer to new data by computing the new domain embeddings. In experiments, we demonstrate improvements over three key scenarios: (i) our computed weights improve performance on pretraining domains with a fraction of the compute of existing methods; (ii) Chameleon can adapt to data changes without proxy retraining, boosting few-shot reasoning accuracies when transferred to new data; (iii) our method enables efficient domain reweighting in finetuning, consistently improving test perplexity on all finetuning domains over uniform mixture. Our code is available at https://github.com/LIONS-EPFL/Chameleon.
comment: ICML 2025
Vision LLMs Are Bad at Hierarchical Visual Understanding, and LLMs Are the Bottleneck
This paper reveals that many state-of-the-art large language models (LLMs) lack hierarchical knowledge about our visual world, unaware of even well-established biology taxonomies. This shortcoming makes LLMs a bottleneck for vision LLMs' hierarchical visual understanding (e.g., recognizing Anemone Fish but not Vertebrate). We arrive at these findings using about one million four-choice visual question answering (VQA) tasks constructed from six taxonomies and four image datasets. Interestingly, finetuning a vision LLM using our VQA tasks reaffirms LLMs' bottleneck effect to some extent because the VQA tasks improve the LLM's hierarchical consistency more than the vision LLM's. We conjecture that one cannot make vision LLMs understand visual concepts fully hierarchical until LLMs possess corresponding taxonomy knowledge.
comment: 28 pages, 13 figures
Multilinguality Does not Make Sense: Investigating Factors Behind Zero-Shot Transfer in Sense-Aware Tasks
Cross-lingual transfer allows models to perform tasks in languages unseen during training and is often assumed to benefit from increased multilinguality. In this work, we challenge this assumption in the context of two underexplored, sense-aware tasks: polysemy disambiguation and lexical semantic change. Through a large-scale analysis across 28 languages, we show that multilingual training is neither necessary nor inherently beneficial for effective transfer. Instead, we find that confounding factors - such as fine-tuning data composition and evaluation artifacts - better account for the perceived advantages of multilinguality. Our findings call for more rigorous evaluations in multilingual NLP. We release fine-tuned models and benchmarks to support further research, with implications extending to low-resource and typologically diverse languages.
comment: 8 pages, 8 figures
How much do language models memorize?
We propose a new method for estimating how much a model ``knows'' about a datapoint and use it to measure the capacity of modern language models. Prior studies of language model memorization have struggled to disentangle memorization from generalization. We formally separate memorization into two components: \textit{unintended memorization}, the information a model contains about a specific dataset, and \textit{generalization}, the information a model contains about the true data-generation process. When we completely eliminate generalization, we can compute the total memorization, which provides an estimate of model capacity: our measurements estimate that GPT-style models have a capacity of approximately 3.6 bits per parameter. We train language models on datasets of increasing size and observe that models memorize until their capacity fills, at which point ``grokking'' begins, and unintended memorization decreases as models begin to generalize. We train hundreds of transformer language models ranging from $500K$ to $1.5B$ parameters and produce a series of scaling laws relating model capacity and data size to membership inference.
Improving Reliability and Explainability of Medical Question Answering through Atomic Fact Checking in Retrieval-Augmented LLMs
Large language models (LLMs) exhibit extensive medical knowledge but are prone to hallucinations and inaccurate citations, which pose a challenge to their clinical adoption and regulatory compliance. Current methods, such as Retrieval Augmented Generation, partially address these issues by grounding answers in source documents, but hallucinations and low fact-level explainability persist. In this work, we introduce a novel atomic fact-checking framework designed to enhance the reliability and explainability of LLMs used in medical long-form question answering. This method decomposes LLM-generated responses into discrete, verifiable units called atomic facts, each of which is independently verified against an authoritative knowledge base of medical guidelines. This approach enables targeted correction of errors and direct tracing to source literature, thereby improving the factual accuracy and explainability of medical Q&A. Extensive evaluation using multi-reader assessments by medical experts and an automated open Q&A benchmark demonstrated significant improvements in factual accuracy and explainability. Our framework achieved up to a 40% overall answer improvement and a 50% hallucination detection rate. The ability to trace each atomic fact back to the most relevant chunks from the database provides a granular, transparent explanation of the generated responses, addressing a major gap in current medical AI applications. This work represents a crucial step towards more trustworthy and reliable clinical applications of LLMs, addressing key prerequisites for clinical application and fostering greater confidence in AI-assisted healthcare.
comment: 11 pages, 4 figures
LegalEval-Q: A New Benchmark for The Quality Evaluation of LLM-Generated Legal Text
As large language models (LLMs) are increasingly used in legal applications, current evaluation benchmarks tend to focus mainly on factual accuracy while largely neglecting important linguistic quality aspects such as clarity, coherence, and terminology. To address this gap, we propose three steps: First, we develop a regression model to evaluate the quality of legal texts based on clarity, coherence, and terminology. Second, we create a specialized set of legal questions. Third, we analyze 49 LLMs using this evaluation framework. Our analysis identifies three key findings: First, model quality levels off at 14 billion parameters, with only a marginal improvement of $2.7\%$ noted at 72 billion parameters. Second, engineering choices such as quantization and context length have a negligible impact, as indicated by statistical significance thresholds above 0.016. Third, reasoning models consistently outperform base architectures. A significant outcome of our research is the release of a ranking list and Pareto analysis, which highlight the Qwen3 series as the optimal choice for cost-performance tradeoffs. This work not only establishes standardized evaluation protocols for legal LLMs but also uncovers fundamental limitations in current training data refinement approaches. Code and models are available at: https://github.com/lyxx3rd/LegalEval-Q.
comment: 10 pages, 11 figures
PhySense: Principle-Based Physics Reasoning Benchmarking for Large Language Models
Large language models (LLMs) have rapidly advanced and are increasingly capable of tackling complex scientific problems, including those in physics. Despite this progress, current LLMs often fail to emulate the concise, principle-based reasoning characteristic of human experts, instead generating lengthy and opaque solutions. This discrepancy highlights a crucial gap in their ability to apply core physical principles for efficient and interpretable problem solving. To systematically investigate this limitation, we introduce PhySense, a novel principle-based physics reasoning benchmark designed to be easily solvable by experts using guiding principles, yet deceptively difficult for LLMs without principle-first reasoning. Our evaluation across multiple state-of-the-art LLMs and prompt types reveals a consistent failure to align with expert-like reasoning paths, providing insights for developing AI systems with efficient, robust and interpretable principle-based scientific reasoning.
Guiding Generative Storytelling with Knowledge Graphs
Large Language Models (LLMs) have shown great potential in automated story generation, but challenges remain in maintaining long-form coherence and providing users with intuitive and effective control. Retrieval-Augmented Generation (RAG) has proven effective in reducing hallucinations in text generation; however, the use of structured data to support generative storytelling remains underexplored. This paper investigates how knowledge graphs (KGs) can enhance LLM-based storytelling by improving narrative quality and enabling user-driven modifications. We propose a KG-assisted storytelling pipeline and evaluate its effectiveness through a user study with 15 participants. Participants created their own story prompts, generated stories, and edited knowledge graphs to shape their narratives. Through quantitative and qualitative analysis, our findings demonstrate that knowledge graphs significantly enhance story quality in action-oriented and structured narratives within our system settings. Additionally, editing the knowledge graph increases users' sense of control, making storytelling more engaging, interactive, and playful.
comment: This manuscript was submitted for peer review in January 2025
Drop Dropout on Single-Epoch Language Model Pretraining ACL
Originally, dropout was seen as a breakthrough regularization technique that reduced overfitting and improved performance in almost all applications of deep learning by reducing overfitting. Yet, single-epoch pretraining tasks common to modern LLMs yield minimal overfitting, leading to dropout not being used for large LLMs. Nevertheless, no thorough empirical investigation has been done on the role of dropout in LM pretraining. Through experiments in single-epoch pretraining of both masked (BERT) and autoregressive (Pythia 160M and 1.4B) LMs with varying levels of dropout, we find that downstream performance in language modeling, morpho-syntax (BLiMP), question answering (SQuAD), and natural-language inference (MNLI) improves when dropout is not applied during pretraining. We additionally find that the recently-introduced "early dropout" also degrades performance over applying no dropout at all. We further investigate the models' editability, and find that models trained without dropout are more successful in gradient-based model editing (MEND) and equivalent in representation-based model editing (ReFT). Therefore, we advocate to drop dropout during single-epoch pretraining.
comment: Accepted to ACL Findings; 5 pages, 2 figures, 4 pages of appendix
Draw ALL Your Imagine: A Holistic Benchmark and Agent Framework for Complex Instruction-based Image Generation
Recent advancements in text-to-image (T2I) generation have enabled models to produce high-quality images from textual descriptions. However, these models often struggle with complex instructions involving multiple objects, attributes, and spatial relationships. Existing benchmarks for evaluating T2I models primarily focus on general text-image alignment and fail to capture the nuanced requirements of complex, multi-faceted prompts. Given this gap, we introduce LongBench-T2I, a comprehensive benchmark specifically designed to evaluate T2I models under complex instructions. LongBench-T2I consists of 500 intricately designed prompts spanning nine diverse visual evaluation dimensions, enabling a thorough assessment of a model's ability to follow complex instructions. Beyond benchmarking, we propose an agent framework (Plan2Gen) that facilitates complex instruction-driven image generation without requiring additional model training. This framework integrates seamlessly with existing T2I models, using large language models to interpret and decompose complex prompts, thereby guiding the generation process more effectively. As existing evaluation metrics, such as CLIPScore, fail to adequately capture the nuances of complex instructions, we introduce an evaluation toolkit that automates the quality assessment of generated images using a set of multi-dimensional metrics. The data and code are released at https://github.com/yczhou001/LongBench-T2I.
Revisiting Epistemic Markers in Confidence Estimation: Can Markers Accurately Reflect Large Language Models' Uncertainty? ACL2025
As large language models (LLMs) are increasingly used in high-stakes domains, accurately assessing their confidence is crucial. Humans typically express confidence through epistemic markers (e.g., "fairly confident") instead of numerical values. However, it remains unclear whether LLMs consistently use these markers to reflect their intrinsic confidence due to the difficulty of quantifying uncertainty associated with various markers. To address this gap, we first define marker confidence as the observed accuracy when a model employs an epistemic marker. We evaluate its stability across multiple question-answering datasets in both in-distribution and out-of-distribution settings for open-source and proprietary LLMs. Our results show that while markers generalize well within the same distribution, their confidence is inconsistent in out-of-distribution scenarios. These findings raise significant concerns about the reliability of epistemic markers for confidence estimation, underscoring the need for improved alignment between marker based confidence and actual model uncertainty. Our code is available at https://github.com/HKUST-KnowComp/MarCon.
comment: ACL2025
From Macro to Micro: Probing Dataset Diversity in Language Model Fine-Tuning
Dataset diversity plays a pivotal role for the successful training of many machine learning models, particularly in the supervised fine-tuning (SFT) stage of large language model (LLM) development. Despite increasing recognition of its importance, systematic analyses of dataset diversity still remain underexplored. To address this gap, this work presents a systematic taxonomy of existing diversity-control strategies, which primarily focus on the instruction component, operating at either macroscopic (entire instruction semantics) or mesoscopic levels (instruction units), and furthermore introduces a novel analysis of microscopic diversity within the response component, specifically analyzing the statistical distribution of tokens in SFT training samples. In the experimental evaluation, we construct fixed-size datasets (e.g., 10,000 samples each) from a corpus of 117,000 open-source SFT samples, incorporating six distinct diversity-control strategies spanning macro-, meso-, and microscopic levels applied to both instructions and responses. We then fine-tune LLMs on these datasets to assess the six diversity-control strategies. Results reveal that while macroscopic and mesoscopic strategies lead to higher performance with increasing diversity, the microscopic strategy in responses exhibits both a stronger correlation between model performance and the degree of diversity and superior performance with maximum diversity across all strategies. These findings offer actionable insights for constructing high-performance SFT datasets.
REASONING GYM: Reasoning Environments for Reinforcement Learning with Verifiable Rewards
We introduce Reasoning Gym (RG), a library of reasoning environments for reinforcement learning with verifiable rewards. It provides over 100 data generators and verifiers spanning multiple domains including algebra, arithmetic, computation, cognition, geometry, graph theory, logic, and various common games. Its key innovation is the ability to generate virtually infinite training data with adjustable complexity, unlike most previous reasoning datasets, which are typically fixed. This procedural generation approach allows for continuous evaluation across varying difficulty levels. Our experimental results demonstrate the efficacy of RG in both evaluating and reinforcement learning of reasoning models.
comment: For code, see https://github.com/open-thought/reasoning-gym
LGAR: Zero-Shot LLM-Guided Neural Ranking for Abstract Screening in Systematic Literature Reviews
The scientific literature is growing rapidly, making it hard to keep track of the state-of-the-art. Systematic literature reviews (SLRs) aim to identify and evaluate all relevant papers on a topic. After retrieving a set of candidate papers, the abstract screening phase determines initial relevance. To date, abstract screening methods using large language models (LLMs) focus on binary classification settings; existing question answering (QA) based ranking approaches suffer from error propagation. LLMs offer a unique opportunity to evaluate the SLR's inclusion and exclusion criteria, yet, existing benchmarks do not provide them exhaustively. We manually extract these criteria as well as research questions for 57 SLRs, mostly in the medical domain, enabling principled comparisons between approaches. Moreover, we propose LGAR, a zero-shot LLM Guided Abstract Ranker composed of an LLM based graded relevance scorer and a dense re-ranker. Our extensive experiments show that LGAR outperforms existing QA-based methods by 5-10 pp. in mean average precision. Our code and data is publicly available.
Don't Reinvent the Wheel: Efficient Instruction-Following Text Embedding based on Guided Space Transformation ACL 2025
In this work, we investigate an important task named instruction-following text embedding, which generates dynamic text embeddings that adapt to user instructions, highlighting specific attributes of text. Despite recent advancements, existing approaches suffer from significant computational overhead, as they require re-encoding the entire corpus for each new instruction. To address this challenge, we propose GSTransform, a novel instruction-following text embedding framework based on Guided Space Transformation. Our key observation is that instruction-relevant information is inherently encoded in generic embeddings but remains underutilized. Instead of repeatedly encoding the corpus for each instruction, GSTransform is a lightweight transformation mechanism that adapts pre-computed embeddings in real time to align with user instructions, guided by a small amount of text data with instruction-focused label annotation. We conduct extensive experiments on three instruction-awareness downstream tasks across nine real-world datasets, demonstrating that GSTransform improves instruction-following text embedding quality over state-of-the-art methods while achieving dramatic speedups of 6~300x in real-time processing on large-scale datasets. The source code is available at https://github.com/YingchaojieFeng/GSTransform.
comment: Accepted to ACL 2025
SUMO: Subspace-Aware Moment-Orthogonalization for Accelerating Memory-Efficient LLM Training
Low-rank gradient-based optimization methods have significantly improved memory efficiency during the training of large language models (LLMs), enabling operations within constrained hardware without sacrificing performance. However, these methods primarily emphasize memory savings, often overlooking potential acceleration in convergence due to their reliance on standard isotropic steepest descent techniques, which can perform suboptimally in the highly anisotropic landscapes typical of deep networks, particularly LLMs. In this paper, we propose SUMO (Subspace-Aware Moment-Orthogonalization), an optimizer that employs exact singular value decomposition (SVD) for moment orthogonalization within a dynamically adapted low-dimensional subspace, enabling norm-inducing steepest descent optimization steps. By explicitly aligning optimization steps with the spectral characteristics of the loss landscape, SUMO effectively mitigates approximation errors associated with commonly used methods like Newton-Schulz orthogonalization approximation. We theoretically establish an upper bound on these approximation errors, proving their dependence on the condition numbers of moments, conditions we analytically demonstrate are encountered during LLM training. Furthermore, we both theoretically and empirically illustrate that exact orthogonalization via SVD substantially improves convergence rates while reducing overall complexity. Empirical evaluations confirm that SUMO accelerates convergence, enhances stability, improves performance, and reduces memory requirements by up to 20% compared to state-of-the-art methods.
"Dyadosyncrasy", Idiosyncrasy and Demographic Factors in Turn-Taking
Turn-taking in dialogue follows universal constraints but also varies significantly. This study examines how demographic (sex, age, education) and individual factors shape turn-taking using a large dataset of US English conversations (Fisher). We analyze Transition Floor Offset (TFO) and find notable interspeaker variation. Sex and age have small but significant effects female speakers and older individuals exhibit slightly shorter offsets - while education shows no effect. Lighter topics correlate with shorter TFOs. However, individual differences have a greater impact, driven by a strong idiosyncratic and an even stronger "dyadosyncratic" component - speakers in a dyad resemble each other more than they resemble themselves in different dyads. This suggests that the dyadic relationship and joint activity are the strongest determinants of TFO, outweighing demographic influences.
comment: Accepted to Interspeech 2025
Circuit Stability Characterizes Language Model Generalization
Extensively evaluating the capabilities of (large) language models is difficult. Rapid development of state-of-the-art models induce benchmark saturation, while creating more challenging datasets is labor-intensive. Inspired by the recent developments in mechanistic interpretability, we introduce circuit stability as a new way to assess model performance. Circuit stability refers to a model's ability to apply a consistent reasoning process-its circuit-across various inputs. We mathematically formalize circuit stability and circuit equivalence. Then, through three case studies, we empirically show that circuit stability and the lack thereof can characterize and predict different aspects of generalization. Our proposed methods offer a step towards rigorously relating the generality of models to their interpretability.
comment: 16 pages, 10 figures
Reflect, Retry, Reward: Self-Improving LLMs via Reinforcement Learning
We explore a method for improving the performance of large language models through self-reflection and reinforcement learning. By incentivizing the model to generate better self-reflections when it answers incorrectly, we demonstrate that a model's ability to solve complex, verifiable tasks can be enhanced even when generating synthetic data is infeasible and only binary feedback is available. Our framework operates in two stages: first, upon failing a given task, the model generates a self-reflective commentary analyzing its previous attempt; second, the model is given another attempt at the task with the self-reflection in context. If the subsequent attempt succeeds, the tokens generated during the self-reflection phase are rewarded. Our experimental results show substantial performance gains across a variety of model architectures, as high as 34.7% improvement at math equation writing and 18.1% improvement at function calling. Notably, smaller fine-tuned models (1.5 billion to 7 billion parameters) outperform models in the same family that are 10 times larger. Our novel paradigm is thus an exciting pathway to more useful and reliable language models that can self-improve on challenging tasks with limited external feedback.
CoRet: Improved Retriever for Code Editing ACL 2025
In this paper, we introduce CoRet, a dense retrieval model designed for code-editing tasks that integrates code semantics, repository structure, and call graph dependencies. The model focuses on retrieving relevant portions of a code repository based on natural language queries such as requests to implement new features or fix bugs. These retrieved code chunks can then be presented to a user or to a second code-editing model or agent. To train CoRet, we propose a loss function explicitly designed for repository-level retrieval. On SWE-bench and Long Code Arena's bug localisation datasets, we show that our model substantially improves retrieval recall by at least 15 percentage points over existing models, and ablate the design choices to show their importance in achieving these results.
comment: ACL 2025
FinMME: Benchmark Dataset for Financial Multi-Modal Reasoning Evaluation ACL 2025
Multimodal Large Language Models (MLLMs) have experienced rapid development in recent years. However, in the financial domain, there is a notable lack of effective and specialized multimodal evaluation datasets. To advance the development of MLLMs in the finance domain, we introduce FinMME, encompassing more than 11,000 high-quality financial research samples across 18 financial domains and 6 asset classes, featuring 10 major chart types and 21 subtypes. We ensure data quality through 20 annotators and carefully designed validation mechanisms. Additionally, we develop FinScore, an evaluation system incorporating hallucination penalties and multi-dimensional capability assessment to provide an unbiased evaluation. Extensive experimental results demonstrate that even state-of-the-art models like GPT-4o exhibit unsatisfactory performance on FinMME, highlighting its challenging nature. The benchmark exhibits high robustness with prediction variations under different prompts remaining below 1%, demonstrating superior reliability compared to existing datasets. Our dataset and evaluation protocol are available at https://huggingface.co/datasets/luojunyu/FinMME and https://github.com/luo-junyu/FinMME.
comment: ACL 2025 Main Conference
Voice Conversion Improves Cross-Domain Robustness for Spoken Arabic Dialect Identification
Arabic dialect identification (ADI) systems are essential for large-scale data collection pipelines that enable the development of inclusive speech technologies for Arabic language varieties. However, the reliability of current ADI systems is limited by poor generalization to out-of-domain speech. In this paper, we present an effective approach based on voice conversion for training ADI models that achieves state-of-the-art performance and significantly improves robustness in cross-domain scenarios. Evaluated on a newly collected real-world test set spanning four different domains, our approach yields consistent improvements of up to +34.1% in accuracy across domains. Furthermore, we present an analysis of our approach and demonstrate that voice conversion helps mitigate the speaker bias in the ADI dataset. We release our robust ADI model and cross-domain evaluation dataset to support the development of inclusive speech technologies for Arabic.
comment: Accepted in Interspeech 2025
HESEIA: A community-based dataset for evaluating social biases in large language models, co-designed in real school settings in Latin America
Most resources for evaluating social biases in Large Language Models are developed without co-design from the communities affected by these biases, and rarely involve participatory approaches. We introduce HESEIA, a dataset of 46,499 sentences created in a professional development course. The course involved 370 high-school teachers and 5,370 students from 189 Latin-American schools. Unlike existing benchmarks, HESEIA captures intersectional biases across multiple demographic axes and school subjects. It reflects local contexts through the lived experience and pedagogical expertise of educators. Teachers used minimal pairs to create sentences that express stereotypes relevant to their school subjects and communities. We show the dataset diversity in term of demographic axes represented and also in terms of the knowledge areas included. We demonstrate that the dataset contains more stereotypes unrecognized by current LLMs than previous datasets. HESEIA is available to support bias assessments grounded in educational communities.
Causal-aware Large Language Models: Enhancing Decision-Making Through Learning, Adapting and Acting IJCAI 2025
Large language models (LLMs) have shown great potential in decision-making due to the vast amount of knowledge stored within the models. However, these pre-trained models are prone to lack reasoning abilities and are difficult to adapt to new environments, further hindering their application to complex real-world tasks. To address these challenges, inspired by the human cognitive process, we propose Causal-aware LLMs, which integrate the structural causal model (SCM) into the decision-making process to model, update, and utilize structured knowledge of the environment in a ``learning-adapting-acting" paradigm. Specifically, in the learning stage, we first utilize an LLM to extract the environment-specific causal entities and their causal relations to initialize a structured causal model of the environment. Subsequently,in the adapting stage, we update the structured causal model through external feedback about the environment, via an idea of causal intervention. Finally, in the acting stage, Causal-aware LLMs exploit structured causal knowledge for more efficient policy-making through the reinforcement learning agent. The above processes are performed iteratively to learn causal knowledge, ultimately enabling the causal-aware LLMs to achieve a more accurate understanding of the environment and make more efficient decisions. Experimental results across 22 diverse tasks within the open-world game ``Crafter" validate the effectiveness of our proposed method.
comment: Accepted by IJCAI 2025
Multi-Domain ABSA Conversation Dataset Generation via LLMs for Real-World Evaluation and Model Comparison
Aspect-Based Sentiment Analysis (ABSA) offers granular insights into opinions but often suffers from the scarcity of diverse, labeled datasets that reflect real-world conversational nuances. This paper presents an approach for generating synthetic ABSA data using Large Language Models (LLMs) to address this gap. We detail the generation process aimed at producing data with consistent topic and sentiment distributions across multiple domains using GPT-4o. The quality and utility of the generated data were evaluated by assessing the performance of three state-of-the-art LLMs (Gemini 1.5 Pro, Claude 3.5 Sonnet, and DeepSeek-R1) on topic and sentiment classification tasks. Our results demonstrate the effectiveness of the synthetic data, revealing distinct performance trade-offs among the models: DeepSeekR1 showed higher precision, Gemini 1.5 Pro and Claude 3.5 Sonnet exhibited strong recall, and Gemini 1.5 Pro offered significantly faster inference. We conclude that LLM-based synthetic data generation is a viable and flexible method for creating valuable ABSA resources, facilitating research and model evaluation without reliance on limited or inaccessible real-world labeled data.
comment: 11 pages, 3 figures, 5 tables, 6th International Conference on Natural Language Computing and AI (NLCAI 2025), ISBN : 978-1-923107-59-5, Computer Science & Information Technology (CS & IT), ISSN : 2231 - 5403, Volume 15, Number 10, May 2025
Speech-to-Text Translation with Phoneme-Augmented CoT: Enhancing Cross-Lingual Transfer in Low-Resource Scenarios
We propose a Speech-to-Text Translation (S2TT) approach that integrates phoneme representations into a Chain-of-Thought (CoT) framework to improve translation in low-resource and zero-resource settings. By introducing phoneme recognition as an intermediate step, we enhance cross-lingual transfer, enabling translation even for languages with no labeled speech data. Our system builds on a multilingual LLM, which we extend to process speech and phonemes. Training follows a curriculum learning strategy that progressively introduces more complex tasks. Experiments on multilingual S2TT benchmarks show that phoneme-augmented CoT improves translation quality in low-resource conditions and enables zero-resource translation, while slightly impacting high-resource performance. Despite this trade-off, our findings demonstrate that phoneme-based CoT is a promising step toward making S2TT more accessible across diverse languages.
comment: Accepted at Interspeech 2025
BPE Stays on SCRIPT: Structured Encoding for Robust Multilingual Pretokenization
Byte Pair Encoding (BPE) tokenizers, widely used in Large Language Models, face challenges in multilingual settings, including penalization of non-Western scripts and the creation of tokens with partial UTF-8 sequences. Pretokenization, often reliant on complex regular expressions, can also introduce fragility and unexpected edge cases. We propose SCRIPT (Script Category Representation in PreTokenization), a novel encoding scheme that bypasses UTF-8 byte conversion by using initial tokens based on Unicode script and category properties. This approach enables a simple, rule-based pretokenization strategy that respects script boundaries, offering a robust alternative to pretokenization strategies based on regular expressions. We also introduce and validate a constrained BPE merging strategy that enforces character integrity, applicable to both SCRIPT-BPE and byte-based BPE. Our experiments demonstrate that SCRIPT-BPE achieves competitive compression while eliminating encoding-based penalties for non-Latin-script languages.
comment: 9 pages, 2 figures. For associated code, see https://github.com/sanderland/script_bpe
Soft Reasoning: Navigating Solution Spaces in Large Language Models through Controlled Embedding Exploration ICML 2025
Large Language Models (LLMs) struggle with complex reasoning due to limited diversity and inefficient search. We propose Soft Reasoning, an embedding-based search framework that optimises the embedding of the first token to guide generation. It combines (1) embedding perturbation for controlled exploration and (2) Bayesian optimisation to refine embeddings via a verifier-guided objective, balancing exploration and exploitation. This approach improves reasoning accuracy and coherence while avoiding reliance on heuristic search. Experiments demonstrate superior correctness with minimal computation, making it a scalable, model-agnostic solution.
comment: Accepted by ICML 2025
Should I Share this Translation? Evaluating Quality Feedback for User Reliance on Machine Translation
As people increasingly use AI systems in work and daily life, feedback mechanisms that help them use AI responsibly are urgently needed, particularly in settings where users are not equipped to assess the quality of AI predictions. We study a realistic Machine Translation (MT) scenario where monolingual users decide whether to share an MT output, first without and then with quality feedback. We compare four types of quality feedback: explicit feedback that directly give users an assessment of translation quality using 1) error highlights and 2) LLM explanations, and implicit feedback that helps users compare MT inputs and outputs through 3) backtranslation and 4) question-answer (QA) tables. We find that all feedback types, except error highlights, significantly improve both decision accuracy and appropriate reliance. Notably, implicit feedback, especially QA tables, yields significantly greater gains than explicit feedback in terms of decision accuracy, appropriate reliance, and user perceptions, receiving the highest ratings for helpfulness and trust, and the lowest for mental burden.
comment: 22 pages, 7 figures
A Simple Linear Patch Revives Layer-Pruned Large Language Models
Layer pruning has become a popular technique for compressing large language models (LLMs) due to its simplicity. However, existing layer pruning methods often suffer from significant performance drops. We identify that this degradation stems from the mismatch of activation magnitudes across layers and tokens at the pruning interface. To address this, we propose LinearPatch, a simple plug-and-play technique to revive the layer-pruned LLMs. The proposed method adopts Hadamard transformation to suppress massive outliers in particular tokens, and channel-wise scaling to align the activation magnitudes. These operations can be fused into a single matrix, which functions as a patch to bridge the pruning interface with negligible inference overhead. LinearPatch retains up to 94.15% performance of the original model when pruning 5 layers of LLaMA-3-8B on the question answering benchmark, surpassing existing state-of-the-art methods by 4%. In addition, the patch matrix can be further optimized with memory efficient offline knowledge distillation. With only 5K samples, the retained performance of LinearPatch can be further boosted to 95.16% within 30 minutes on a single computing card.
TRIDENT: Enhancing Large Language Model Safety with Tri-Dimensional Diversified Red-Teaming Data Synthesis
Large Language Models (LLMs) excel in various natural language processing tasks but remain vulnerable to generating harmful content or being exploited for malicious purposes. Although safety alignment datasets have been introduced to mitigate such risks through supervised fine-tuning (SFT), these datasets often lack comprehensive risk coverage. Most existing datasets focus primarily on lexical diversity while neglecting other critical dimensions. To address this limitation, we propose a novel analysis framework to systematically measure the risk coverage of alignment datasets across three essential dimensions: Lexical Diversity, Malicious Intent, and Jailbreak Tactics. We further introduce TRIDENT, an automated pipeline that leverages persona-based, zero-shot LLM generation to produce diverse and comprehensive instructions spanning these dimensions. Each harmful instruction is paired with an ethically aligned response, resulting in two datasets: TRIDENT-Core, comprising 26,311 examples, and TRIDENT-Edge, with 18,773 examples. Fine-tuning Llama 3.1-8B on TRIDENT-Edge demonstrates substantial improvements, achieving an average 14.29% reduction in Harm Score, and a 20% decrease in Attack Success Rate compared to the best-performing baseline model fine-tuned on the WildBreak dataset.
Multiple LLM Agents Debate for Equitable Cultural Alignment
Large Language Models (LLMs) need to adapt their predictions to diverse cultural contexts to benefit diverse communities across the world. While previous efforts have focused on single-LLM, single-turn approaches, we propose to exploit the complementary strengths of multiple LLMs to promote cultural adaptability. We introduce a Multi-Agent Debate framework, where two LLM-based agents debate over a cultural scenario and collaboratively reach a final decision. We propose two variants: one where either LLM agents exclusively debate and another where they dynamically choose between self-reflection and debate during their turns. We evaluate these approaches on 7 open-weight LLMs (and 21 LLM combinations) using the NormAd-ETI benchmark for social etiquette norms in 75 countries. Experiments show that debate improves both overall accuracy and cultural group parity over single-LLM baselines. Notably, multi-agent debate enables relatively small LLMs (7-9B) to achieve accuracies comparable to that of a much larger model (27B parameters).
comment: 37 pages, 18 figures
MSDA: Combining Pseudo-labeling and Self-Supervision for Unsupervised Domain Adaptation in ASR
In this work, we investigate the Meta PL unsupervised domain adaptation framework for Automatic Speech Recognition (ASR). We introduce a Multi-Stage Domain Adaptation pipeline (MSDA), a sample-efficient, two-stage adaptation approach that integrates self-supervised learning with semi-supervised techniques. MSDA is designed to enhance the robustness and generalization of ASR models, making them more adaptable to diverse conditions. It is particularly effective for low-resource languages like Greek and in weakly supervised scenarios where labeled data is scarce or noisy. Through extensive experiments, we demonstrate that Meta PL can be applied effectively to ASR tasks, achieving state-of-the-art results, significantly outperforming state-of-the-art methods, and providing more robust solutions for unsupervised domain adaptation in ASR. Our ablations highlight the necessity of utilizing a cascading approach when combining self-supervision with self-training.
PRISM: A Framework for Producing Interpretable Political Bias Embeddings with Political-Aware Cross-Encoder ACL 2025
Semantic Text Embedding is a fundamental NLP task that encodes textual content into vector representations, where proximity in the embedding space reflects semantic similarity. While existing embedding models excel at capturing general meaning, they often overlook ideological nuances, limiting their effectiveness in tasks that require an understanding of political bias. To address this gap, we introduce PRISM, the first framework designed to Produce inteRpretable polItical biaS eMbeddings. PRISM operates in two key stages: (1) Controversial Topic Bias Indicator Mining, which systematically extracts fine-grained political topics and their corresponding bias indicators from weakly labeled news data, and (2) Cross-Encoder Political Bias Embedding, which assigns structured bias scores to news articles based on their alignment with these indicators. This approach ensures that embeddings are explicitly tied to bias-revealing dimensions, enhancing both interpretability and predictive power. Through extensive experiments on two large-scale datasets, we demonstrate that PRISM outperforms state-of-the-art text embedding models in political bias classification while offering highly interpretable representations that facilitate diversified retrieval and ideological analysis. The source code is available at https://github.com/dukesun99/ACL-PRISM.
comment: Accepted to ACL 2025
Are Optimal Algorithms Still Optimal? Rethinking Sorting in LLM-Based Pairwise Ranking with Batching and Caching
We introduce a novel framework for analyzing sorting algorithms in pairwise ranking prompting (PRP), re-centering the cost model around LLM inferences rather than traditional pairwise comparisons. While classical metrics based on comparison counts have traditionally been used to gauge efficiency, our analysis reveals that expensive LLM inferences overturn these predictions; accordingly, our framework encourages strategies such as batching and caching to mitigate inference costs. We show that algorithms optimal in the classical setting can lose efficiency when LLM inferences dominate the cost under certain optimizations.
Efficient Text Encoders for Labor Market Analysis
Labor market analysis relies on extracting insights from job advertisements, which provide valuable yet unstructured information on job titles and corresponding skill requirements. While state-of-the-art methods for skill extraction achieve strong performance, they depend on large language models (LLMs), which are computationally expensive and slow. In this paper, we propose \textbf{ConTeXT-match}, a novel contrastive learning approach with token-level attention that is well-suited for the extreme multi-label classification task of skill classification. \textbf{ConTeXT-match} significantly improves skill extraction efficiency and performance, achieving state-of-the-art results with a lightweight bi-encoder model. To support robust evaluation, we introduce \textbf{Skill-XL}, a new benchmark with exhaustive, sentence-level skill annotations that explicitly address the redundancy in the large label space. Finally, we present \textbf{JobBERT V2}, an improved job title normalization model that leverages extracted skills to produce high-quality job title representations. Experiments demonstrate that our models are efficient, accurate, and scalable, making them ideal for large-scale, real-time labor market analysis.
comment: This work has been submitted to the IEEE for possible publication
Disentangling Language and Culture for Evaluating Multilingual Large Language Models ACL 2025
This paper introduces a Dual Evaluation Framework to comprehensively assess the multilingual capabilities of LLMs. By decomposing the evaluation along the dimensions of linguistic medium and cultural context, this framework enables a nuanced analysis of LLMs' ability to process questions within both native and cross-cultural contexts cross-lingually. Extensive evaluations are conducted on a wide range of models, revealing a notable "CulturalLinguistic Synergy" phenomenon, where models exhibit better performance when questions are culturally aligned with the language. This phenomenon is further explored through interpretability probing, which shows that a higher proportion of specific neurons are activated in a language's cultural context. This activation proportion could serve as a potential indicator for evaluating multilingual performance during model training. Our findings challenge the prevailing notion that LLMs, primarily trained on English data, perform uniformly across languages and highlight the necessity of culturally and linguistically model evaluations. Our code can be found at https://yingjiahao14. github.io/Dual-Evaluation/.
comment: Accepted to ACL 2025 (Main Conference)
The Hallucination Dilemma: Factuality-Aware Reinforcement Learning for Large Reasoning Models
Large language models (LLMs) have significantly advanced in reasoning tasks through reinforcement learning (RL) optimization, achieving impressive capabilities across various challenging benchmarks. However, our empirical analysis reveals a critical drawback: reasoning-oriented RL fine-tuning significantly increases the prevalence of hallucinations. We theoretically analyze the RL training dynamics, identifying high-variance gradient, entropy-induced randomness, and susceptibility to spurious local optima as key factors leading to hallucinations. To address this drawback, we propose Factuality-aware Step-wise Policy Optimization (FSPO), an innovative RL fine-tuning algorithm incorporating explicit factuality verification at each reasoning step. FSPO leverages automated verification against given evidence to dynamically adjust token-level advantage values, incentivizing factual correctness throughout the reasoning process. Experiments across mathematical reasoning and hallucination benchmarks using Qwen2.5 and Llama models demonstrate that FSPO effectively reduces hallucinations while enhancing reasoning accuracy, substantially improving both reliability and performance.
Benchmarking Large Language Models for Cryptanalysis and Mismatched-Generalization
Recent advancements in Large Language Models (LLMs) have transformed natural language understanding and generation, leading to extensive benchmarking across diverse tasks. However, cryptanalysis a critical area for data security and encryption has not yet been thoroughly explored in LLM evaluations. To address this gap, we evaluate cryptanalytic potential of state of the art LLMs on encrypted texts generated using a range of cryptographic algorithms. We introduce a novel benchmark dataset comprising diverse plain texts spanning various domains, lengths, writing styles, and topics paired with their encrypted versions. Using zero-shot and few shot settings, we assess multiple LLMs for decryption accuracy and semantic comprehension across different encryption schemes. Our findings reveal key insights into the strengths and limitations of LLMs in side-channel communication while raising concerns about their susceptibility to jailbreaking attacks. This research highlights the dual-use nature of LLMs in security contexts and contributes to the ongoing discussion on AI safety and security.
comment: Preprint
Interpretable phenotyping of Heart Failure patients with Dutch discharge letters
Objective: Heart failure (HF) patients present with diverse phenotypes affecting treatment and prognosis. This study evaluates models for phenotyping HF patients based on left ventricular ejection fraction (LVEF) classes, using structured and unstructured data, assessing performance and interpretability. Materials and Methods: The study analyzes all HF hospitalizations at both Amsterdam UMC hospitals (AMC and VUmc) from 2015 to 2023 (33,105 hospitalizations, 16,334 patients). Data from AMC were used for model training, and from VUmc for external validation. The dataset was unlabelled and included tabular clinical measurements and discharge letters. Silver labels for LVEF classes were generated by combining diagnosis codes, echocardiography results, and textual mentions. Gold labels were manually annotated for 300 patients for testing. Multiple Transformer-based (black-box) and Aug-Linear (white-box) models were trained and compared with baselines on structured and unstructured data. To evaluate interpretability, two clinicians annotated 20 discharge letters by highlighting information they considered relevant for LVEF classification. These were compared to SHAP and LIME explanations from black-box models and the inherent explanations of Aug-Linear models. Results: BERT-based and Aug-Linear models, using discharge letters alone, achieved the highest classification results (AUC=0.84 for BERT, 0.81 for Aug-Linear on external validation), outperforming baselines. Aug-Linear explanations aligned more closely with clinicians' explanations than post-hoc explanations on black-box models. Conclusions: Discharge letters emerged as the most informative source for phenotyping HF patients. Aug-Linear models matched black-box performance while providing clinician-aligned interpretability, supporting their use in transparent clinical decision-making.
comment: 43 pages, 8 figures
Eye of Judgement: Dissecting the Evaluation of Russian-speaking LLMs with POLLUX
We introduce POLLUX, a comprehensive open-source benchmark designed to evaluate the generative capabilities of large language models (LLMs) in Russian. Our main contribution is a novel evaluation methodology that enhances the interpretability of LLM assessment. For each task type, we define a set of detailed criteria and develop a scoring protocol where models evaluate responses and provide justifications for their ratings. This enables transparent, criteria-driven evaluation beyond traditional resource-consuming, side-by-side human comparisons. POLLUX includes a detailed, fine-grained taxonomy of 35 task types covering diverse generative domains such as code generation, creative writing, and practical assistant use cases, totaling 2,100 manually crafted and professionally authored prompts. Each task is categorized by difficulty (easy/medium/hard), with experts constructing the dataset entirely from scratch. We also release a family of LLM-as-a-Judge (7B and 32B) evaluators trained for nuanced assessment of generative outputs. This approach provides scalable, interpretable evaluation and annotation tools for model development, effectively replacing costly and less precise human judgments.
comment: 179 pages
Harnessing Large Language Models for Scientific Novelty Detection
In an era of exponential scientific growth, identifying novel research ideas is crucial and challenging in academia. Despite potential, the lack of an appropriate benchmark dataset hinders the research of novelty detection. More importantly, simply adopting existing NLP technologies, e.g., retrieving and then cross-checking, is not a one-size-fits-all solution due to the gap between textual similarity and idea conception. In this paper, we propose to harness large language models (LLMs) for scientific novelty detection (ND), associated with two new datasets in marketing and NLP domains. To construct the considerate datasets for ND, we propose to extract closure sets of papers based on their relationship, and then summarize their main ideas based on LLMs. To capture idea conception, we propose to train a lightweight retriever by distilling the idea-level knowledge from LLMs to align ideas with similar conception, enabling efficient and accurate idea retrieval for LLM novelty detection. Experiments show our method consistently outperforms others on the proposed benchmark datasets for idea retrieval and ND tasks. Codes and data are available at https://anonymous.4open.science/r/NoveltyDetection-10FB/.
comment: 15 pages, 3 figures, 3 tables
When Harry Meets Superman: The Role of The Interlocutor in Persona-Based Dialogue Generation
Endowing dialogue agents with persona information has proven to significantly improve the consistency and diversity of their generations. While much focus has been placed on aligning dialogues with provided personas, the adaptation to the interlocutor's profile remains largely underexplored. In this work, we investigate three key aspects: (1) a model's ability to align responses with both the provided persona and the interlocutor's; (2) its robustness when dealing with familiar versus unfamiliar interlocutors and topics, and (3) the impact of additional fine-tuning on specific persona-based dialogues. We evaluate dialogues generated with diverse speaker pairings and topics, framing the evaluation as an author identification task and employing both LLM-as-a-judge and human evaluations. By systematically masking or disclosing information about the interlocutor, we assess its impact on dialogue generation. Results show that access to the interlocutor's persona improves the recognition of the target speaker, while masking it does the opposite. Although models generalise well across topics, they struggle with unfamiliar interlocutors. Finally, we found that in zero-shot settings, LLMs often copy biographical details, facilitating identification but trivialising the task.
Explainable Depression Detection using Masked Hard Instance Mining
This paper addresses the critical need for improved explainability in text-based depression detection. While offering predictive outcomes, current solutions often overlook the understanding of model predictions which can hinder trust in the system. We propose the use of Masked Hard Instance Mining (MHIM) to enhance the explainability in the depression detection task. MHIM strategically masks attention weights within the model, compelling it to distribute attention across a wider range of salient features. We evaluate MHIM on two datasets representing distinct languages: Thai (Thai-Maywe) and English (DAIC-WOZ). Our results demonstrate that MHIM significantly improves performance in terms of both prediction accuracy and explainability metrics.
Decoding Knowledge Attribution in Mixture-of-Experts: A Framework of Basic-Refinement Collaboration and Efficiency Analysis ACL 2025
The interpretability of Mixture-of-Experts (MoE) models, especially those with heterogeneous designs, remains underexplored. Existing attribution methods for dense models fail to capture dynamic routing-expert interactions in sparse MoE architectures. To address this issue, we propose a cross-level attribution algorithm to analyze sparse MoE architectures (Qwen 1.5-MoE, OLMoE, Mixtral-8x7B) against dense models (Qwen 1.5-7B, Llama-7B, Mixtral-7B). Results show MoE models achieve 37% higher per-layer efficiency via a "mid-activation, late-amplification" pattern: early layers screen experts, while late layers refine knowledge collaboratively. Ablation studies reveal a "basic-refinement" framework--shared experts handle general tasks (entity recognition), while routed experts specialize in domain-specific processing (geographic attributes). Semantic-driven routing is evidenced by strong correlations between attention heads and experts (r=0.68), enabling task-aware coordination. Notably, architectural depth dictates robustness: deep Qwen 1.5-MoE mitigates expert failures (e.g., 43% MRR drop in geographic tasks when blocking top-10 experts) through shared expert redundancy, whereas shallow OLMoE suffers severe degradation (76% drop). Task sensitivity further guides design: core-sensitive tasks (geography) require concentrated expertise, while distributed-tolerant tasks (object attributes) leverage broader participation. These insights advance MoE interpretability, offering principles to balance efficiency, specialization, and robustness.
comment: ACL 2025
GATE: General Arabic Text Embedding for Enhanced Semantic Textual Similarity with Matryoshka Representation Learning and Hybrid Loss Training
Semantic textual similarity (STS) is a critical task in natural language processing (NLP), enabling applications in retrieval, clustering, and understanding semantic relationships between texts. However, research in this area for the Arabic language remains limited due to the lack of high-quality datasets and pre-trained models. This scarcity of resources has restricted the accurate evaluation and advance of semantic similarity in Arabic text. This paper introduces General Arabic Text Embedding (GATE) models that achieve state-of-the-art performance on the Semantic Textual Similarity task within the MTEB benchmark. GATE leverages Matryoshka Representation Learning and a hybrid loss training approach with Arabic triplet datasets for Natural Language Inference, which are essential for enhancing model performance in tasks that demand fine-grained semantic understanding. GATE outperforms larger models, including OpenAI, with a 20-25% performance improvement on STS benchmarks, effectively capturing the unique semantic nuances of Arabic.
NexusSum: Hierarchical LLM Agents for Long-Form Narrative Summarization ACL 2025
Summarizing long-form narratives--such as books, movies, and TV scripts--requires capturing intricate plotlines, character interactions, and thematic coherence, a task that remains challenging for existing LLMs. We introduce NexusSum, a multi-agent LLM framework for narrative summarization that processes long-form text through a structured, sequential pipeline--without requiring fine-tuning. Our approach introduces two key innovations: (1) Dialogue-to-Description Transformation: A narrative-specific preprocessing method that standardizes character dialogue and descriptive text into a unified format, improving coherence. (2) Hierarchical Multi-LLM Summarization: A structured summarization pipeline that optimizes chunk processing and controls output length for accurate, high-quality summaries. Our method establishes a new state-of-the-art in narrative summarization, achieving up to a 30.0% improvement in BERTScore (F1) across books, movies, and TV scripts. These results demonstrate the effectiveness of multi-agent LLMs in handling long-form content, offering a scalable approach for structured summarization in diverse storytelling domains.
comment: Accepted to the main track of ACL 2025
Identifying Primary Stress Across Related Languages and Dialects with Transformer-based Speech Encoder Models
Automating primary stress identification has been an active research field due to the role of stress in encoding meaning and aiding speech comprehension. Previous studies relied mainly on traditional acoustic features and English datasets. In this paper, we investigate the approach of fine-tuning a pre-trained transformer model with an audio frame classification head. Our experiments use a new Croatian training dataset, with test sets in Croatian, Serbian, the Chakavian dialect, and Slovenian. By comparing an SVM classifier using traditional acoustic features with the fine-tuned speech transformer, we demonstrate the transformer's superiority across the board, achieving near-perfect results for Croatian and Serbian, with a 10-point performance drop for the more distant Chakavian and Slovenian. Finally, we show that only a few hundred multi-syllabic training words suffice for strong performance. We release our datasets and model under permissive licenses.
comment: Accepted to InterSpeech2025
Improving Language and Modality Transfer in Translation by Character-level Modeling ACL 2025
Current translation systems, despite being highly multilingual, cover only 5% of the world's languages. Expanding language coverage to the long-tail of low-resource languages requires data-efficient methods that rely on cross-lingual and cross-modal knowledge transfer. To this end, we propose a character-based approach to improve adaptability to new languages and modalities. Our method leverages SONAR, a multilingual fixed-size embedding space with different modules for encoding and decoding. We use a teacher-student approach with parallel translation data to obtain a character-level encoder. Then, using ASR data, we train a lightweight adapter to connect a massively multilingual CTC ASR model (MMS), to the character-level encoder, potentially enabling speech translation from 1,000+ languages. Experimental results in text translation for 75 languages on FLORES+ demonstrate that our character-based approach can achieve better language transfer than traditional subword-based models, especially outperforming them in low-resource settings, and demonstrating better zero-shot generalizability to unseen languages. Our speech adaptation, maximizing knowledge transfer from the text modality, achieves state-of-the-art results in speech-to-text translation on the FLEURS benchmark on 33 languages, surpassing previous supervised and cascade models, albeit being a zero-shot model with minimal supervision from ASR data.
comment: ACL 2025
Bench4KE: Benchmarking Automated Competency Question Generation
The availability of Large Language Models (LLMs) presents a unique opportunity to reinvigorate research on Knowledge Engineering (KE) automation, a trend already evident in recent efforts developing LLM-based methods and tools for the automatic generation of Competency Questions (CQs). However, the evaluation of these tools lacks standardisation. This undermines the methodological rigour and hinders the replication and comparison of results. To address this gap, we introduce Bench4KE, an extensible API-based benchmarking system for KE automation. Its first release focuses on evaluating tools that generate CQs automatically. CQs are natural language questions used by ontology engineers to define the functional requirements of an ontology. Bench4KE provides a curated gold standard consisting of CQ datasets from four real-world ontology projects. It uses a suite of similarity metrics to assess the quality of the CQs generated. We present a comparative analysis of four recent CQ generation systems, which are based on LLMs, establishing a baseline for future research. Bench4KE is also designed to accommodate additional KE automation tasks, such as SPARQL query generation, ontology testing and drafting. Code and datasets are publicly available under the Apache 2.0 license.
CREFT: Sequential Multi-Agent LLM for Character Relation Extraction
Understanding complex character relations is crucial for narrative analysis and efficient script evaluation, yet existing extraction methods often fail to handle long-form narratives with nuanced interactions. To address this challenge, we present CREFT, a novel sequential framework leveraging specialized Large Language Model (LLM) agents. First, CREFT builds a base character graph through knowledge distillation, then iteratively refines character composition, relation extraction, role identification, and group assignments. Experiments on a curated Korean drama dataset demonstrate that CREFT significantly outperforms single-agent LLM baselines in both accuracy and completeness. By systematically visualizing character networks, CREFT streamlines narrative comprehension and accelerates script review -- offering substantial benefits to the entertainment, publishing, and educational sectors.
A*-Thought: Efficient Reasoning via Bidirectional Compression for Low-Resource Settings
Large Reasoning Models (LRMs) achieve superior performance by extending the thought length. However, a lengthy thinking trajectory leads to reduced efficiency. Most of the existing methods are stuck in the assumption of overthinking and attempt to reason efficiently by compressing the Chain-of-Thought, but this often leads to performance degradation. To address this problem, we introduce A*-Thought, an efficient tree search-based unified framework designed to identify and isolate the most essential thoughts from the extensive reasoning chains produced by these models. It formulates the reasoning process of LRMs as a search tree, where each node represents a reasoning span in the giant reasoning space. By combining the A* search algorithm with a cost function specific to the reasoning path, it can efficiently compress the chain of thought and determine a reasoning path with high information density and low cost. In addition, we also propose a bidirectional importance estimation mechanism, which further refines this search process and enhances its efficiency beyond uniform sampling. Extensive experiments on several advanced math tasks show that A*-Thought effectively balances performance and efficiency over a huge search space. Specifically, A*-Thought can improve the performance of QwQ-32B by 2.39$\times$ with low-budget and reduce the length of the output token by nearly 50% with high-budget. The proposed method is also compatible with several other LRMs, demonstrating its generalization capability. The code can be accessed at: https://github.com/AI9Stars/AStar-Thought.
Cross-Attention Speculative Decoding
Speculative decoding (SD) is a widely adopted approach for accelerating inference in large language models (LLMs), particularly when the draft and target models are well aligned. However, state-of-the-art SD methods typically rely on tightly coupled, self-attention-based Transformer decoders, often augmented with auxiliary pooling or fusion layers. This coupling makes them increasingly complex and harder to generalize across different models. We present Budget EAGLE (Beagle), the first, to our knowledge, cross-attention-based Transformer decoder SD model that achieves performance on par with leading self-attention SD models (EAGLE-v2) while eliminating the need for pooling or auxiliary components, simplifying the architecture, improving training efficiency, and maintaining stable memory usage during training-time simulation. To enable effective training of this novel architecture, we propose Two-Stage Block-Attention Training, a new method that achieves training stability and convergence efficiency in block-level attention scenarios. Extensive experiments across multiple LLMs and datasets show that Beagle achieves competitive inference speedups and higher training efficiency than EAGLE-v2, offering a strong alternative for architectures in speculative decoding.
Localizing Persona Representations in LLMs
We present a study on how and where personas -- defined by distinct sets of human characteristics, values, and beliefs -- are encoded in the representation space of large language models (LLMs). Using a range of dimension reduction and pattern recognition methods, we first identify the model layers that show the greatest divergence in encoding these representations. We then analyze the activations within a selected layer to examine how specific personas are encoded relative to others, including their shared and distinct embedding spaces. We find that, across multiple pre-trained decoder-only LLMs, the analyzed personas show large differences in representation space only within the final third of the decoder layers. We observe overlapping activations for specific ethical perspectives -- such as moral nihilism and utilitarianism -- suggesting a degree of polysemy. In contrast, political ideologies like conservatism and liberalism appear to be represented in more distinct regions. These findings help to improve our understanding of how LLMs internally represent information and can inform future efforts in refining the modulation of specific human traits in LLM outputs. Warning: This paper includes potentially offensive sample statements.
Don't Erase, Inform! Detecting and Contextualizing Harmful Language in Cultural Heritage Collections
Cultural Heritage (CH) data hold invaluable knowledge, reflecting the history, traditions, and identities of societies, and shaping our understanding of the past and present. However, many CH collections contain outdated or offensive descriptions that reflect historical biases. CH Institutions (CHIs) face significant challenges in curating these data due to the vast scale and complexity of the task. To address this, we develop an AI-powered tool that detects offensive terms in CH metadata and provides contextual insights into their historical background and contemporary perception. We leverage a multilingual vocabulary co-created with marginalized communities, researchers, and CH professionals, along with traditional NLP techniques and Large Language Models (LLMs). Available as a standalone web app and integrated with major CH platforms, the tool has processed over 7.9 million records, contextualizing the contentious terms detected in their metadata. Rather than erasing these terms, our approach seeks to inform, making biases visible and providing actionable insights for creating more inclusive and accessible CH collections.
Beyond Linear Steering: Unified Multi-Attribute Control for Language Models
Controlling multiple behavioral attributes in large language models (LLMs) at inference time is a challenging problem due to interference between attributes and the limitations of linear steering methods, which assume additive behavior in activation space and require per-attribute tuning. We introduce K-Steering, a unified and flexible approach that trains a single non-linear multi-label classifier on hidden activations and computes intervention directions via gradients at inference time. This avoids linearity assumptions, removes the need for storing and tuning separate attribute vectors, and allows dynamic composition of behaviors without retraining. To evaluate our method, we propose two new benchmarks, ToneBank and DebateMix, targeting compositional behavioral control. Empirical results across 3 model families, validated by both activation-based classifiers and LLM-based judges, demonstrate that K-Steering outperforms strong baselines in accurately steering multiple behaviors.
DEEPQUESTION: Systematic Generation of Real-World Challenges for Evaluating LLMs Performance
LLMs often excel on standard benchmarks but falter on real-world tasks. We introduce DeepQuestion, a scalable automated framework that augments existing datasets based on Bloom's taxonomy and creates novel questions that trace original solution paths to probe evaluative and creative skills. Extensive experiments across ten open-source and proprietary models, covering both general-purpose and reasoning LLMs, reveal substantial performance drops (even up to 70% accuracy loss) on higher-order tasks, underscoring persistent gaps in deep reasoning. Our work highlights the need for cognitively diverse benchmarks to advance LLM progress. DeepQuestion and related datasets will be released upon acceptance of the paper.
Limited-Resource Adapters Are Regularizers, Not Linguists
Cross-lingual transfer from related high-resource languages is a well-established strategy to enhance low-resource language technologies. Prior work has shown that adapters show promise for, e.g., improving low-resource machine translation (MT). In this work, we investigate an adapter souping method combined with cross-attention fine-tuning of a pre-trained MT model to leverage language transfer for three low-resource Creole languages, which exhibit relatedness to different language groups across distinct linguistic dimensions. Our approach improves performance substantially over baselines. However, we find that linguistic relatedness -- or even a lack thereof -- does not covary meaningfully with adapter performance. Surprisingly, our cross-attention fine-tuning approach appears equally effective with randomly initialized adapters, implying that the benefit of adapters in this setting lies in parameter regularization, and not in meaningful information transfer. We provide analysis supporting this regularization hypothesis. Our findings underscore the reality that neural language processing involves many success factors, and that not all neural methods leverage linguistic knowledge in intuitive ways.
Stress-testing Machine Generated Text Detection: Shifting Language Models Writing Style to Fool Detectors ACL 2025
Recent advancements in Generative AI and Large Language Models (LLMs) have enabled the creation of highly realistic synthetic content, raising concerns about the potential for malicious use, such as misinformation and manipulation. Moreover, detecting Machine-Generated Text (MGT) remains challenging due to the lack of robust benchmarks that assess generalization to real-world scenarios. In this work, we present a pipeline to test the resilience of state-of-the-art MGT detectors (e.g., Mage, Radar, LLM-DetectAIve) to linguistically informed adversarial attacks. To challenge the detectors, we fine-tune language models using Direct Preference Optimization (DPO) to shift the MGT style toward human-written text (HWT). This exploits the detectors' reliance on stylistic clues, making new generations more challenging to detect. Additionally, we analyze the linguistic shifts induced by the alignment and which features are used by detectors to detect MGT texts. Our results show that detectors can be easily fooled with relatively few examples, resulting in a significant drop in detection performance. This highlights the importance of improving detection methods and making them robust to unseen in-domain texts.
comment: Accepted at Findings of ACL 2025
AMIA: Automatic Masking and Joint Intention Analysis Makes LVLMs Robust Jailbreak Defenders
We introduce AMIA, a lightweight, inference-only defense for Large Vision-Language Models (LVLMs) that (1) Automatically Masks a small set of text-irrelevant image patches to disrupt adversarial perturbations, and (2) conducts joint Intention Analysis to uncover and mitigate hidden harmful intents before response generation. Without any retraining, AMIA improves defense success rates across diverse LVLMs and jailbreak benchmarks from an average of 52.4% to 81.7%, preserves general utility with only a 2% average accuracy drop, and incurs only modest inference overhead. Ablation confirms both masking and intention analysis are essential for a robust safety-utility trade-off.
comment: 11 pages, 7 figures
TimeHC-RL: Temporal-aware Hierarchical Cognitive Reinforcement Learning for Enhancing LLMs' Social Intelligence
Recently, Large Language Models (LLMs) have made significant progress in IQ-related domains that require careful thinking, such as mathematics and coding. However, enhancing LLMs' cognitive development in social domains, particularly from a post-training perspective, remains underexplored. Recognizing that the social world follows a distinct timeline and requires a richer blend of cognitive modes (from intuitive reactions (System 1) and surface-level thinking to deliberate thinking (System 2)) than mathematics, which primarily relies on System 2 cognition (careful, step-by-step reasoning), we introduce Temporal-aware Hierarchical Cognitive Reinforcement Learning (TimeHC-RL) for enhancing LLMs' social intelligence. In our experiments, we systematically explore improving LLMs' social intelligence and validate the effectiveness of the TimeHC-RL method, through five other post-training paradigms and two test-time intervention paradigms on eight datasets with diverse data patterns. Experimental results reveal the superiority of our proposed TimeHC-RL method compared to the widely adopted System 2 RL method. It gives the 7B backbone model wings, enabling it to rival the performance of advanced models like DeepSeek-R1 and OpenAI-O3. Additionally, the systematic exploration from post-training and test-time interventions perspectives to improve LLMs' social intelligence has uncovered several valuable insights.
comment: 22 pages, 12 figures
Towards Effective Code-Integrated Reasoning
In this paper, we investigate code-integrated reasoning, where models generate code when necessary and integrate feedback by executing it through a code interpreter. To acquire this capability, models must learn when and how to use external code tools effectively, which is supported by tool-augmented reinforcement learning (RL) through interactive learning. Despite its benefits, tool-augmented RL can still suffer from potential instability in the learning dynamics. In light of this challenge, we present a systematic approach to improving the training effectiveness and stability of tool-augmented RL for code-integrated reasoning. Specifically, we develop enhanced training strategies that balance exploration and stability, progressively building tool-use capabilities while improving reasoning performance. Through extensive experiments on five mainstream mathematical reasoning benchmarks, our model demonstrates significant performance improvements over multiple competitive baselines. Furthermore, we conduct an in-depth analysis of the mechanism and effect of code-integrated reasoning, revealing several key insights, such as the extension of model's capability boundaries and the simultaneous improvement of reasoning efficiency through code integration. All data and code for reproducing this work are available at: https://github.com/RUCAIBox/CIR.
comment: Technical Report on Slow Thinking with LLMs: Code-Integrated Reasoning
Leveraging Knowledge Graphs and LLMs for Structured Generation of Misinformation
The rapid spread of misinformation, further amplified by recent advances in generative AI, poses significant threats to society, impacting public opinion, democratic stability, and national security. Understanding and proactively assessing these threats requires exploring methodologies that enable structured and scalable misinformation generation. In this paper, we propose a novel approach that leverages knowledge graphs (KGs) as structured semantic resources to systematically generate fake triplets. By analyzing the structural properties of KGs, such as the distance between entities and their predicates, we identify plausibly false relationships. These triplets are then used to guide large language models (LLMs) in generating misinformation statements with varying degrees of credibility. By utilizing structured semantic relationships, our deterministic approach produces misinformation inherently challenging for humans to detect, drawing exclusively upon publicly available KGs (e.g., WikiGraphs). Additionally, we investigate the effectiveness of LLMs in distinguishing between genuine and artificially generated misinformation. Our analysis highlights significant limitations in current LLM-based detection methods, underscoring the necessity for enhanced detection strategies and a deeper exploration of inherent biases in generative models.
Optimizing the Interface Between Knowledge Graphs and LLMs for Complex Reasoning
Integrating Large Language Models (LLMs) with Knowledge Graphs (KGs) results in complex systems with numerous hyperparameters that directly affect performance. While such systems are increasingly common in retrieval-augmented generation, the role of systematic hyperparameter optimization remains underexplored. In this paper, we study this problem in the context of Cognee, a modular framework for end-to-end KG construction and retrieval. Using three multi-hop QA benchmarks (HotPotQA, TwoWikiMultiHop, and MuSiQue) we optimize parameters related to chunking, graph construction, retrieval, and prompting. Each configuration is scored using established metrics (exact match, F1, and DeepEval's LLM-based correctness metric). Our results demonstrate that meaningful gains can be achieved through targeted tuning. While the gains are consistent, they are not uniform, with performance varying across datasets and metrics. This variability highlights both the value of tuning and the limitations of standard evaluation measures. While demonstrating the immediate potential of hyperparameter tuning, we argue that future progress will depend not only on architectural advances but also on clearer frameworks for optimization and evaluation in complex, modular systems.
comment: This is a preliminary version. A revised and expanded version is in preparation
VietMix: A Naturally Occurring Vietnamese-English Code-Mixed Corpus with Iterative Augmentation for Machine Translation
Machine translation systems fail when processing code-mixed inputs for low-resource languages. We address this challenge by curating VietMix, a parallel corpus of naturally occurring code-mixed Vietnamese text paired with expert English translations. Augmenting this resource, we developed a complementary synthetic data generation pipeline. This pipeline incorporates filtering mechanisms to ensure syntactic plausibility and pragmatic appropriateness in code-mixing patterns. Experimental validation shows our naturalistic and complementary synthetic data boost models' performance, measured by translation quality estimation scores, of up to 71.84 on COMETkiwi and 81.77 on XCOMET. Triangulating positive results with LLM-based assessments, augmented models are favored over seed fine-tuned counterparts in approximately 49% of judgments (54-56% excluding ties). VietMix and our augmentation methodology advance ecological validity in neural MT evaluations and establish a framework for addressing code-mixed translation challenges across other low-resource pairs.
CaMMT: Benchmarking Culturally Aware Multimodal Machine Translation
Cultural content poses challenges for machine translation systems due to the differences in conceptualizations between cultures, where language alone may fail to convey sufficient context to capture region-specific meanings. In this work, we investigate whether images can act as cultural context in multimodal translation. We introduce CaMMT, a human-curated benchmark of over 5,800 triples of images along with parallel captions in English and regional languages. Using this dataset, we evaluate five Vision Language Models (VLMs) in text-only and text+image settings. Through automatic and human evaluations, we find that visual context generally improves translation quality, especially in handling Culturally-Specific Items (CSIs), disambiguation, and correct gender usage. By releasing CaMMT, we aim to support broader efforts in building and evaluating multimodal translation systems that are better aligned with cultural nuance and regional variation.
Domain Pre-training Impact on Representations
This empirical study analyzes the effects of the pre-training corpus on the quality of learned transformer representations. We focus on the representation quality induced solely through pre-training. Our experiments show that pre-training on a small, specialized corpus can yield effective representations, and that the success of combining a generic and a specialized corpus depends on the distributional similarity between the target task and the specialized corpus.
When Large Multimodal Models Confront Evolving Knowledge:Challenges and Pathways
Large language/multimodal models (LLMs/LMMs) store extensive pre-trained knowledge but struggle to maintain consistency with real-world updates, making it difficult to avoid catastrophic forgetting while acquiring evolving knowledge. Previous work focused on constructing textual knowledge datasets and exploring knowledge injection in LLMs, lacking exploration of multimodal evolving knowledge injection in LMMs. To address this, we propose the EVOKE benchmark to evaluate LMMs' ability to inject multimodal evolving knowledge in real-world scenarios. Meanwhile, a comprehensive evaluation of multimodal evolving knowledge injection revealed two challenges: (1) Existing knowledge injection methods perform terribly on evolving knowledge. (2) Supervised fine-tuning causes catastrophic forgetting, particularly instruction following ability is severely compromised. Additionally, we provide pathways and find that: (1) Text knowledge augmentation during the training phase improves performance, while image augmentation cannot achieve it. (2) Continual learning methods, especially Replay and MoELoRA, effectively mitigate forgetting. Our findings indicate that current knowledge injection methods have many limitations on evolving knowledge, which motivates further research on more efficient and stable knowledge injection methods.
Exploring the Impact of Occupational Personas on Domain-Specific QA
Recent studies on personas have improved the way Large Language Models (LLMs) interact with users. However, the effect of personas on domain-specific question-answering (QA) tasks remains a subject of debate. This study analyzes whether personas enhance specialized QA performance by introducing two types of persona: Profession-Based Personas (PBPs) (e.g., scientist), which directly relate to domain expertise, and Occupational Personality-Based Personas (OPBPs) (e.g., scientific person), which reflect cognitive tendencies rather than explicit expertise. Through empirical evaluations across multiple scientific domains, we demonstrate that while PBPs can slightly improve accuracy, OPBPs often degrade performance, even when semantically related to the task. Our findings suggest that persona relevance alone does not guarantee effective knowledge utilization and that they may impose cognitive constraints that hinder optimal knowledge application. Future research can explore how nuanced distinctions in persona representations guide LLMs, potentially contributing to reasoning and knowledge retrieval that more closely mirror human social conceptualization.
Model Unlearning via Sparse Autoencoder Subspace Guided Projections
Large language models (LLMs) store vast amounts of information, making them powerful yet raising privacy and safety concerns when selective knowledge removal is required. Existing unlearning strategies, ranging from gradient-based fine-tuning and model editing to sparse autoencoder (SAE) steering, either lack interpretability or fail to provide a robust defense against adversarial prompts. We propose SAE-Guided Subspace Projection Unlearning (SSPU), a novel framework that leverages SAE features to drive targeted updates in the model's parameter space, enabling precise, interpretable, and robust unlearning. SSPU's three-stage pipeline performs data-driven layer and feature selection, subspace construction via QR decomposition, and constrained optimization that controls activations into an "irrelevant" subspace while preserving retained knowledge. Overall, we use SAE features to construct a subspace that supervises unlearning, refining the loss and adding a regularization term to guide interpretable parameter updates. In experiments on the WMDP-Cyber forget set and three utility benchmarks (MMLU, TruthfulQA, GSM8K), SSPU reduces harmful knowledge accuracy by 3.22% compared to the strongest baseline. It also improves adversarial robustness, lowering malicious accuracy under jailbreak prompts compared to baselines. Our findings expose the limitations of prior unlearning methods and demonstrate how interpretable subspace-guided optimization can achieve robust, controllable model behavior.
Donate or Create? Comparing Data Collection Strategies for Emotion-labeled Multimodal Social Media Posts ACL 2025
Accurate modeling of subjective phenomena such as emotion expression requires data annotated with authors' intentions. Commonly such data is collected by asking study participants to donate and label genuine content produced in the real world, or create content fitting particular labels during the study. Asking participants to create content is often simpler to implement and presents fewer risks to participant privacy than data donation. However, it is unclear if and how study-created content may differ from genuine content, and how differences may impact models. We collect study-created and genuine multimodal social media posts labeled for emotion and compare them on several dimensions, including model performance. We find that compared to genuine posts, study-created posts are longer, rely more on their text and less on their images for emotion expression, and focus more on emotion-prototypical events. The samples of participants willing to donate versus create posts are demographically different. Study-created data is valuable to train models that generalize well to genuine data, but realistic effectiveness estimates require genuine data.
comment: Published at ACL 2025
MMAFFBen: A Multilingual and Multimodal Affective Analysis Benchmark for Evaluating LLMs and VLMs
Large language models and vision-language models (which we jointly call LMs) have transformed NLP and CV, demonstrating remarkable potential across various fields. However, their capabilities in affective analysis (i.e. sentiment analysis and emotion detection) remain underexplored. This gap is largely due to the absence of comprehensive evaluation benchmarks, and the inherent complexity of affective analysis tasks. In this paper, we introduce MMAFFBen, the first extensive open-source benchmark for multilingual multimodal affective analysis. MMAFFBen encompasses text, image, and video modalities across 35 languages, covering four key affective analysis tasks: sentiment polarity, sentiment intensity, emotion classification, and emotion intensity. Moreover, we construct the MMAFFIn dataset for fine-tuning LMs on affective analysis tasks, and further develop MMAFFLM-3b and MMAFFLM-7b based on it. We evaluate various representative LMs, including GPT-4o-mini, providing a systematic comparison of their affective understanding capabilities. This project is available at https://github.com/lzw108/MMAFFBen.
comment: Work in progress
LLMs Are Globally Multilingual Yet Locally Monolingual: Exploring Knowledge Transfer via Language and Thought Theory
Multilingual large language models (LLMs) open up new possibilities for leveraging information across languages, but their factual knowledge recall remains inconsistent depending on the input language. While previous studies have attempted to address this issue through English-based prompting and evaluation, we explore non-English to English transfer via Language and Thought Theory. This perspective allows us to examine language-thought binding in LLMs and uncover why factual knowledge often fails to transfer effectively. We propose the Language-to-Thought (L2T) prompting strategy, which analyzes the relationship between input language, internal cognitive processes, and knowledge. Experimental results challenge the assumption that English-based approaches consistently outperform other languages and offer a novel insight that aligning the model's internal thought with the knowledge required for the task is critical for successful cross-lingual transfer. Furthermore, we show that applying L2T during training can alleviate LLMs' reliance on the input language and facilitate cross-linguistic knowledge integration without translation-based learning. Code and datasets will be available.
Automatic classification of stop realisation with wav2vec2.0
Modern phonetic research regularly makes use of automatic tools for the annotation of speech data, however few tools exist for the annotation of many variable phonetic phenomena. At the same time, pre-trained self-supervised models, such as wav2vec2.0, have been shown to perform well at speech classification tasks and latently encode fine-grained phonetic information. We demonstrate that wav2vec2.0 models can be trained to automatically classify stop burst presence with high accuracy in both English and Japanese, robust across both finely-curated and unprepared speech corpora. Patterns of variability in stop realisation are replicated with the automatic annotations, and closely follow those of manual annotations. These results demonstrate the potential of pre-trained speech models as tools for the automatic annotation and processing of speech corpus data, enabling researchers to 'scale-up' the scope of phonetic research with relative ease.
comment: Accepted for Interspeech 2025. 5 pages, 3 figures
Firm or Fickle? Evaluating Large Language Models Consistency in Sequential Interactions
Large Language Models (LLMs) have shown remarkable capabilities across various tasks, but their deployment in high-stake domains requires consistent and coherent behavior across multiple rounds of user interaction. This paper introduces a comprehensive framework for evaluating and improving LLM response consistency, making three key contributions. Code and data are available at: https://github.com/yubol-bobo/MT-Consistency. First, we introduce Position-Weighted Consistency (PWC), a metric designed to capture both the importance of early-stage stability and recovery patterns in multi-turn interactions. Second, we present MT-Consistency, a carefully curated benchmark dataset spanning diverse domains and difficulty levels, specifically designed to evaluate LLM consistency under various challenging follow-up scenarios. Third, we introduce Confidence-Aware Response Generation (CARG), a framework that significantly improves response stability by explicitly integrating internal model confidence scores during the generation process. Experimental results demonstrate that CARG significantly improves response stability without sacrificing accuracy, offering a practical path toward more dependable LLM behavior in critical, real-world deployments.
comment: 8 pages, 5 figures
DeepSeek-R1 vs. o3-mini: How Well can Reasoning LLMs Evaluate MT and Summarization?
Reasoning-enabled large language models (LLMs) excel in logical tasks, yet their utility for evaluating natural language generation remains unexplored. This study systematically compares reasoning LLMs with non-reasoning counterparts across machine translation and text summarization evaluation tasks. We evaluate eight models spanning state-of-the-art reasoning models (DeepSeek-R1, OpenAI o3), their distilled variants (8B-70B parameters), and equivalent non-reasoning LLMs. Experiments on WMT23 and SummEval benchmarks reveal architecture and task-dependent benefits: OpenAI o3-mini models show improved performance with increased reasoning on MT, while DeepSeek-R1 and generally underperforms compared to its non-reasoning variant except in summarization consistency evaluation. Correlation analysis demonstrates that reasoning token usage correlates with evaluation quality only in specific models, while almost all models generally allocate more reasoning tokens when identifying more quality issues. Distillation maintains reasonable performance up to 32B parameter models but degrades substantially at 8B scale. This work provides the first assessment of reasoning LLMs for NLG evaluation and comparison to non-reasoning models. We share our code to facilitate further research: https://github.com/NL2G/reasoning-eval.
KBQA-o1: Agentic Knowledge Base Question Answering with Monte Carlo Tree Search ICML 2025
Knowledge Base Question Answering (KBQA) aims to answer natural language questions with a large-scale structured knowledge base (KB). Despite advancements with large language models (LLMs), KBQA still faces challenges in weak KB awareness, imbalance between effectiveness and efficiency, and high reliance on annotated data. To address these challenges, we propose KBQA-o1, a novel agentic KBQA method with Monte Carlo Tree Search (MCTS). It introduces a ReAct-based agent process for stepwise logical form generation with KB environment exploration. Moreover, it employs MCTS, a heuristic search method driven by policy and reward models, to balance agentic exploration's performance and search space. With heuristic exploration, KBQA-o1 generates high-quality annotations for further improvement by incremental fine-tuning. Experimental results show that KBQA-o1 outperforms previous low-resource KBQA methods with limited annotated data, boosting Llama-3.1-8B model's GrailQA F1 performance to 78.5% compared to 48.5% of the previous sota method with GPT-3.5-turbo. Our code is publicly available.
comment: Accepted by ICML 2025 main conference
Improving Parallel Program Performance with LLM Optimizers via Agent-System Interfaces
Modern scientific discovery increasingly relies on high-performance computing for complex modeling and simulation. A key challenge in improving parallel program performance is efficiently mapping tasks to processors and data to memory, a process dictated by intricate, low-level system code known as mappers. Developing high-performance mappers demands days of manual tuning, posing a significant barrier for domain scientists without systems expertise. We introduce a framework that automates mapper development with generative optimization, leveraging richer feedback beyond scalar performance metrics. Our approach features the Agent-System Interface, which includes a Domain-Specific Language (DSL) to abstract away the low-level complexity of system code and define a structured search space, as well as AutoGuide, a mechanism that interprets raw execution output into actionable feedback. Unlike traditional reinforcement learning methods such as OpenTuner, which rely solely on scalar feedback, our method finds superior mappers in far fewer iterations. With just 10 iterations, it outperforms OpenTuner even after 1000 iterations, achieving 3.8X faster performance. Our approach finds mappers that surpass expert-written mappers by up to 1.34X speedup across nine benchmarks while reducing tuning time from days to minutes.
FCMR: Robust Evaluation of Financial Cross-Modal Multi-Hop Reasoning ACL 2025
Real-world decision-making often requires integrating and reasoning over information from multiple modalities. While recent multimodal large language models (MLLMs) have shown promise in such tasks, their ability to perform multi-hop reasoning across diverse sources remains insufficiently evaluated. Existing benchmarks, such as MMQA, face challenges due to (1) data contamination and (2) a lack of complex queries that necessitate operations across more than two modalities, hindering accurate performance assessment. To address this, we present Financial Cross-Modal Multi-Hop Reasoning (FCMR), a benchmark created to analyze the reasoning capabilities of MLLMs by urging them to combine information from textual reports, tables, and charts within the financial domain. FCMR is categorized into three difficulty levels-Easy, Medium, and Hard-facilitating a step-by-step evaluation. In particular, problems at the Hard level require precise cross-modal three-hop reasoning and are designed to prevent the disregard of any modality. Experiments on this new benchmark reveal that even state-of-the-art MLLMs struggle, with the best-performing model (Claude 3.5 Sonnet) achieving only 30.4% accuracy on the most challenging tier. We also conduct analysis to provide insights into the inner workings of the models, including the discovery of a critical bottleneck in the information retrieval phase.
comment: ACL 2025
Boosting Multimodal Reasoning with Automated Structured Thinking
Multimodal large language models excel across diverse domains but struggle with complex visual reasoning tasks. Current approaches aim to incorporate structured thinking via two strategies: explicit search methods and post-training techniques. However, both approaches face significant limitations: Search-based methods suffer from computational inefficiency due to extensive solution space exploration, while post-training methods require substantial data, computational resources, and often encounter training instability. To address these limitations, we propose AStar, an \textbf{A}utomated \textbf{S}tructured \textbf{t}hinking paradigm for multimod\textbf{a}l \textbf{r}easoning. Our method introduces "thought cards", a lightweight library of high-level reasoning patterns abstracted from 500 prior samples using Monte Carlo Tree Search. For each test problem, AStar adaptively retrieves the optimal thought cards and seamlessly integrates these external explicit guidelines with the model's internal implicit reasoning capabilities. Extensive experiments demonstrate AStar's effectiveness and efficiency: using only 500 prior samples and a 7B backbone, our training-free framework achieves 53.9$\%$ accuracy on MathVerse (surpassing GPT-4o's 50.2%) and 32.7% on MathVision (versus GPT-4o's 30.4%). Further analysis reveals that AStar generalizes beyond multimodal reasoning to visual perception and understanding domains, and serves as a plug-and-play test-time inference method compatible with mainstream post-training techniques like GRPO.
RuleArena: A Benchmark for Rule-Guided Reasoning with LLMs in Real-World Scenarios ACL 2025
This paper introduces RuleArena, a novel and challenging benchmark designed to evaluate the ability of large language models (LLMs) to follow complex, real-world rules in reasoning. Covering three practical domains -- airline baggage fees, NBA transactions, and tax regulations -- RuleArena assesses LLMs' proficiency in handling intricate natural language instructions that demand long-context understanding, logical reasoning, and accurate mathematical computation. Two key attributes distinguish RuleArena from traditional rule-based reasoning benchmarks: (1) it extends beyond standard first-order logic representations, and (2) it is grounded in authentic, practical scenarios, providing insights into the suitability and reliability of LLMs for real-world applications. Our findings reveal several notable limitations in LLMs: (1) they struggle to identify and apply the appropriate rules, frequently becoming confused by similar but distinct regulations, (2) they cannot consistently perform accurate mathematical computations, even when they correctly identify the relevant rules, and (3) in general, they perform poorly in the benchmark. We also observe a significant performance boost when LLMs are provided with external tools for oracle math and logic operations. These results highlight significant challenges and promising research directions in advancing LLMs' rule-guided reasoning capabilities in real-life applications. Our codes and data are publicly available on https://github.com/skyriver-2000/RuleArena.
comment: ACL 2025 Main Conference
Using Knowledge Graphs to harvest datasets for efficient CLIP model training
Training high-quality CLIP models typically requires enormous datasets, which limits the development of domain-specific models -- especially in areas that even the largest CLIP models do not cover well -- and drives up training costs. This poses challenges for scientific research that needs fine-grained control over the training procedure of CLIP models. In this work, we show that by employing smart web search strategies enhanced with knowledge graphs, a robust CLIP model can be trained from scratch with considerably less data. Specifically, we demonstrate that an expert foundation model for living organisms can be built using just 10M images. Moreover, we introduce EntityNet, a dataset comprising 33M images paired with 46M text descriptions, which enables the training of a generic CLIP model in significantly reduced time.
SparQLe: Speech Queries to Text Translation Through LLMs
With the growing influence of Large Language Models (LLMs), there is increasing interest in integrating speech representations with them to enable more seamless multi-modal processing and speech understanding. This study introduces a novel approach that combines self-supervised speech representations with instruction-tuned LLMs for speech-to-text translation. The proposed approach leverages a modality adapter to align extracted speech features with instruction-tuned LLMs using English speech data. Our experiments demonstrate that this method effectively preserves the semantic content of the input speech and serves as an effective bridge between self-supervised speech models and instruction-tuned LLMs, offering a promising approach for various speech understanding applications.
You need to MIMIC to get FAME: Solving Meeting Transcript Scarcity with a Multi-Agent Conversations ACL 2025
Meeting summarization suffers from limited high-quality data, mainly due to privacy restrictions and expensive collection processes. We address this gap with FAME, a dataset of 500 meetings in English and 300 in German produced by MIMIC, our new multi-agent meeting synthesis framework that generates meeting transcripts on a given knowledge source by defining psychologically grounded participant profiles, outlining the conversation, and orchestrating a large language model (LLM) debate. A modular post-processing step refines these outputs, mitigating potential repetitiveness and overly formal tones, ensuring coherent, credible dialogues at scale. We also propose a psychologically grounded evaluation framework assessing naturalness, social behavior authenticity, and transcript difficulties. Human assessments show that FAME approximates real-meeting spontaneity (4.5/5 in naturalness), preserves speaker-centric challenges (3/5 in spoken language), and introduces richer information-oriented difficulty (4/5 in difficulty). These findings highlight that FAME is a good and scalable proxy for real-world meeting conditions. It enables new test scenarios for meeting summarization research and other conversation-centric applications in tasks requiring conversation data or simulating social scenarios under behavioral constraints.
comment: Accepted at ACL 2025 (Findings)
Middle-Layer Representation Alignment for Cross-Lingual Transfer in Fine-Tuned LLMs ACL 2025
While large language models demonstrate remarkable capabilities at task-specific applications through fine-tuning, extending these benefits across diverse languages is essential for broad accessibility. However, effective cross-lingual transfer is hindered by LLM performance gaps across languages and the scarcity of fine-tuning data in many languages. Through analysis of LLM internal representations from over 1,000+ language pairs, we discover that middle layers exhibit the strongest potential for cross-lingual alignment. Building on this finding, we propose a middle-layer alignment objective integrated into task-specific training. Our experiments on slot filling, machine translation, and structured text generation show consistent improvements in cross-lingual transfer, especially to lower-resource languages. The method is robust to the choice of alignment languages and generalizes to languages unseen during alignment. Furthermore, we show that separately trained alignment modules can be merged with existing task-specific modules, improving cross-lingual capabilities without full re-training. Our code is publicly available (https://github.com/dannigt/mid-align).
comment: ACL 2025
VLDBench Evaluating Multimodal Disinformation with Regulatory Alignment
Detecting disinformation that blends manipulated text and images has become increasingly challenging, as AI tools make synthetic content easy to generate and disseminate. While most existing AI safety benchmarks focus on single modality misinformation (i.e., false content shared without intent to deceive), intentional multimodal disinformation, such as propaganda or conspiracy theories that imitate credible news, remains largely unaddressed. We introduce the Vision-Language Disinformation Detection Benchmark (VLDBench), the first large-scale resource supporting both unimodal (text-only) and multimodal (text + image) disinformation detection. VLDBench comprises approximately 62,000 labeled text-image pairs across 13 categories, curated from 58 news outlets. Using a semi-automated pipeline followed by expert review, 22 domain experts invested over 500 hours to produce high-quality annotations with substantial inter-annotator agreement. Evaluations of state-of-the-art Large Language Models (LLMs) and Vision-Language Models (VLMs) on VLDBench show that incorporating visual cues improves detection accuracy by 5 to 35 percentage points over text-only models. VLDBench provides data and code for evaluation, fine-tuning, and robustness testing to support disinformation analysis. Developed in alignment with AI governance frameworks (e.g., the MIT AI Risk Repository), VLDBench offers a principled foundation for advancing trustworthy disinformation detection in multimodal media. Project: https://vectorinstitute.github.io/VLDBench/ Dataset: https://huggingface.co/datasets/vector-institute/VLDBench Code: https://github.com/VectorInstitute/VLDBench
comment: under review
Mitigating Subgroup Disparities in Multi-Label Speech Emotion Recognition: A Pseudo-Labeling and Unsupervised Learning Approach
While subgroup disparities and performance bias are increasingly studied in computational research, fairness in categorical Speech Emotion Recognition (SER) remains underexplored. Existing methods often rely on explicit demographic labels, which are difficult to obtain due to privacy concerns. To address this limitation, we introduce an Implicit Demography Inference (IDI) module that leverages pseudo-labeling from a pre-trained model and unsupervised learning using k-means clustering to mitigate bias in SER. Our experiments show that pseudo-labeling IDI reduces subgroup disparities, improving fairness metrics by over 28% with less than a 2% decrease in SER accuracy. Also, the unsupervised IDI yields more than a 4.6% improvement in fairness metrics with a drop of less than 3.6% in SER performance. Further analyses reveal that the unsupervised IDI consistently mitigates race and age disparities, demonstrating its potential when explicit demographic information is unavailable.
comment: Accepted by InterSpeech 2025. 7 pages including 2 pages of appendix
Addressing Blind Guessing: Calibration of Selection Bias in Multiple-Choice Question Answering by Video Language Models
Evaluating Video Language Models (VLMs) is a challenging task. Due to its transparency, Multiple-Choice Question Answering (MCQA) is widely used to measure the performance of these models through accuracy. However, existing MCQA benchmarks fail to capture the full reasoning capabilities of VLMs due to selection bias, when models disproportionately favor certain answer options based on positional patterns observed during training. In this work, we conduct a comprehensive empirical analysis of several VLM architectures across major datasets designed to assess complex video-focused reasoning. We identify where the bias is most pronounced and demonstrate to what extent model responses reflect genuine understanding of video content and related questions, as opposed to reliance on arbitrary patterns or superficial cues, such as answer position. By decomposing the MCQA task and adapting fairness bias metrics to VLMs, we introduce a post-processing calibration technique BOLD to balance this bias. Our results show that reducing selection bias improves not only debiasing metrics but also overall model performance, including Accuracy and F1 Mean score. Our method, by suppressing "blind guessing", offers a more cost- and time-effective approach to mitigating selection bias compared to existing techniques. This study represents the first focused investigation of selection bias in video-to-text LLM-powered models.
Deep Augmentation: Dropout as Augmentation for Self-Supervised Learning
Despite dropout's ubiquity in machine learning, its effectiveness as a form of data augmentation remains under-explored. We address two key questions: (i) When is dropout effective as an augmentation strategy? (ii) Is dropout uniquely effective under these conditions? To explore these questions, we propose Deep Augmentation, a network- and modality-agnostic method that applies dropout or PCA transformations to targeted layers in neural networks. Through extensive experiments on contrastive learning tasks in NLP, computer vision, and graph learning, we find that uniformly applying dropout across layers does not consistently improve performance. Instead, dropout proves most beneficial in deeper layers and can be matched by alternative augmentations (e.g., PCA). We also show that a stop-gradient operation is critical for ensuring dropout functions effectively as an augmentation, and that performance trends invert when moving from contrastive tasks to supervised tasks. Our analysis suggests that Deep Augmentation helps mitigate inter-layer co-adaptation -- a notable issue in self-supervised learning due to the absence of labeled data. Drawing on these insights, we outline a procedure for selecting the optimal augmentation layer and demonstrate that Deep Augmentation can outperform traditional input-level augmentations. This simple yet powerful approach can be seamlessly integrated into a wide range of architectures and modalities, yielding notable gains in both performance and generalization.
ToolCoder: A Systematic Code-Empowered Tool Learning Framework for Large Language Models ACL 2025
Tool learning has emerged as a crucial capability for large language models (LLMs) to solve complex real-world tasks through interaction with external tools. Existing approaches face significant challenges, including reliance on hand-crafted prompts, difficulty in multi-step planning, and lack of precise error diagnosis and reflection mechanisms. We propose ToolCoder, a novel framework that reformulates tool learning as a code generation task. Inspired by software engineering principles, ToolCoder transforms natural language queries into structured Python function scaffold and systematically breaks down tasks with descriptive comments, enabling LLMs to leverage coding paradigms for complex reasoning and planning. It then generates and executes function implementations to obtain final responses. Additionally, ToolCoder stores successfully executed functions in a repository to promote code reuse, while leveraging error traceback mechanisms for systematic debugging, optimizing both execution efficiency and robustness. Experiments demonstrate that ToolCoder achieves superior performance in task completion accuracy and execution reliability compared to existing approaches, establishing the effectiveness of code-centric approaches in tool learning.
comment: Accepted to ACL 2025
HelpSteer3: Human-Annotated Feedback and Edit Data to Empower Inference-Time Scaling in Open-Ended General-Domain Tasks ACL 2025
Inference-Time Scaling has been critical to the success of recent models such as OpenAI o1 and DeepSeek R1. However, many techniques used to train models for inference-time scaling require tasks to have answers that can be verified, limiting their application to domains such as math, coding and logical reasoning. We take inspiration from how humans make first attempts, ask for detailed feedback from others and make improvements based on such feedback across a wide spectrum of open-ended endeavors. To this end, we collect HelpSteer3 data to train dedicated Feedback and Edit Models that are capable of performing inference-time scaling for open-ended general-domain tasks. In our setup, one model generates an initial response, which are given feedback by a second model, that are then used by a third model to edit the response. We show that performance on Arena Hard, a benchmark strongly predictive of Chatbot Arena Elo can be boosted by scaling the number of initial response drafts, effective feedback and edited responses. When scaled optimally, our setup based on 70B models from the Llama 3 family can reach SoTA performance on Arena Hard at 92.7 as of 5 Mar 2025, surpassing OpenAI o1-preview-2024-09-12 with 90.4 and DeepSeek R1 with 92.3.
comment: 23 pages, 2 figures, Accepted to ACL 2025 Main
Contrastive Learning for Task-Independent SpeechLLM-Pretraining
Large language models (LLMs) excel in natural language processing but adapting these LLMs to speech processing tasks efficiently is not straightforward. Direct task-specific fine-tuning is limited by overfitting risks, data requirements, and computational costs. To address these challenges, we propose a scalable, two-stage training approach: (1) A task-independent speech pretraining stage using contrastive learning to align text and speech representations over all layers, followed by (2) a task-specific fine-tuning stage requiring minimal data. This approach outperforms traditional ASR pretraining and enables the model to surpass models specialized on speech translation and question answering while being trained on only 10% of the task-specific data.
MAGIC-VQA: Multimodal And Grounded Inference with Commonsense Knowledge for Visual Question Answering ACL 2025
Visual Question Answering (VQA) requires reasoning across visual and textual modalities, yet Large Vision-Language Models (LVLMs) often lack integrated commonsense knowledge, limiting their robustness in real-world scenarios. To address this, we introduce MAGIC-VQA, a novel framework that enhances VQA by systematically integrating commonsense knowledge with LVLMs. MAGIC-VQA employs a three-stage process: (1) Explicit Knowledge Integration from external sources, (2) By-Type Post-Processing for contextual refinement, and (3) Implicit Knowledge Augmentation using a Graph Neural Network (GNN) for structured reasoning. While GNNs bring greater depth to structured inference, they enable superior relational inference beyond LVLMs. MAGIC-VQA bridges a key gap by unifying commonsensse knowledge with LVLM-driven reasoning, eliminating the need for extensive pre-training or complex prompt tuning. Our framework achieves state-of-the-art performance on benchmark datasets, significantly improving commonsense reasoning in VQA.
comment: Findings of ACL 2025
Krikri: Advancing Open Large Language Models for Greek
We introduce Llama-Krikri-8B, a cutting-edge Large Language Model tailored for the Greek language, built on Meta's Llama 3.1-8B. Llama-Krikri-8B has been extensively trained on high-quality Greek data to ensure superior adaptation to linguistic nuances. With 8 billion parameters, it offers advanced capabilities while maintaining efficient computational performance. Llama-Krikri-8B supports both Modern Greek and English, and is also equipped to handle polytonic text and Ancient Greek. The chat version of Llama-Krikri-8B features a multi-stage post-training pipeline, utilizing both human and synthetic instruction and preference data, by applying techniques such as MAGPIE. In addition, for evaluation, we propose three novel public benchmarks for Greek. Our evaluation on existing as well as the proposed benchmarks shows notable improvements over comparable Greek and multilingual LLMs in both natural language understanding and generation as well as code generation.
Learning to Reason Over Time: Timeline Self-Reflection for Improved Temporal Reasoning in Language Models ACL 2025
Large Language Models (LLMs) have emerged as powerful tools for generating coherent text, understanding context, and performing reasoning tasks. However, they struggle with temporal reasoning, which requires processing time-related information such as event sequencing, durations, and inter-temporal relationships. These capabilities are critical for applications including question answering, scheduling, and historical analysis. In this paper, we introduce TISER, a novel framework that enhances the temporal reasoning abilities of LLMs through a multi-stage process that combines timeline construction with iterative self-reflection. Our approach leverages test-time scaling to extend the length of reasoning traces, enabling models to capture complex temporal dependencies more effectively. This strategy not only boosts reasoning accuracy but also improves the traceability of the inference process. Experimental results demonstrate state-of-the-art performance across multiple benchmarks, including out-of-distribution test sets, and reveal that TISER enables smaller open-source models to surpass larger closed-weight models on challenging temporal reasoning tasks.
comment: ACL 2025 (Main)
Controllable Context Sensitivity and the Knob Behind It ICLR 2025
When making predictions, a language model must trade off how much it relies on its context vs. its prior knowledge. Choosing how sensitive the model is to its context is a fundamental functionality, as it enables the model to excel at tasks like retrieval-augmented generation and question-answering. In this paper, we search for a knob which controls this sensitivity, determining whether language models answer from the context or their prior knowledge. To guide this search, we design a task for controllable context sensitivity. In this task, we first feed the model a context (Paris is in England) and a question (Where is Paris?); we then instruct the model to either use its prior or contextual knowledge and evaluate whether it generates the correct answer for both intents (either France or England). When fine-tuned on this task, instruction-tuned versions of Llama-3.1, Mistral-v0.3, and Gemma-2 can solve it with high accuracy (85-95%). Analyzing these high-performing models, we narrow down which layers may be important to context sensitivity using a novel linear time algorithm. Then, in each model, we identify a 1-D subspace in a single layer that encodes whether the model follows context or prior knowledge. Interestingly, while we identify this subspace in a fine-tuned model, we find that the exact same subspace serves as an effective knob in not only that model but also non-fine-tuned instruct and base models of that model family. Finally, we show a strong correlation between a model's performance and how distinctly it separates context-agreeing from context-ignoring answers in this subspace. These results suggest a single subspace facilitates how the model chooses between context and prior knowledge, hinting at a simple fundamental mechanism that controls this behavior.
comment: Published as a conference paper at ICLR 2025
GeAR: Generation Augmented Retrieval ACL 2025
Document retrieval techniques are essential for developing large-scale information systems. The common approach involves using a bi-encoder to compute the semantic similarity between a query and documents. However, the scalar similarity often fail to reflect enough information, hindering the interpretation of retrieval results. In addition, this process primarily focuses on global semantics, overlooking the finer-grained semantic relationships between the query and the document's content. In this paper, we introduce a novel method, $\textbf{Ge}$neration $\textbf{A}$ugmented $\textbf{R}$etrieval ($\textbf{GeAR}$), which not only improves the global document-query similarity through contrastive learning, but also integrates well-designed fusion and decoding modules. This enables GeAR to generate relevant context within the documents based on a given query, facilitating learning to retrieve local fine-grained information. Furthermore, when used as a retriever, GeAR does not incur any additional computational cost over bi-encoders. GeAR exhibits competitive retrieval performance across diverse scenarios and tasks. Moreover, qualitative analysis and the results generated by GeAR provide novel insights into the interpretation of retrieval results. The code, data, and models will be released at \href{https://github.com/microsoft/LMOps}{https://github.com/microsoft/LMOps}.
comment: In ACL 2025
Building Better: Avoiding Pitfalls in Developing Language Resources when Data is Scarce ACL2025
Language is a form of symbolic capital that affects people's lives in many ways (Bourdieu1977,1991). As a powerful means of communication, it reflects identities, cultures, traditions, and societies more broadly. Therefore, data in a given language should be regarded as more than just a collection of tokens. Rigorous data collection and labeling practices are essential for developing more human-centered and socially aware technologies. Although there has been growing interest in under-resourced languages within the NLP community, work in this area faces unique challenges, such as data scarcity and limited access to qualified annotators. In this paper, we collect feedback from individuals directly involved in and impacted by NLP artefacts for medium- and low-resource languages. We conduct both quantitative and qualitative analyses of their responses and highlight key issues related to: (1) data quality, including linguistic and cultural appropriateness; and (2) the ethics of common annotation practices, such as the misuse of participatory research. Based on these findings, we make several recommendations for creating high-quality language artefacts that reflect the cultural milieu of their speakers, while also respecting the dignity and labor of data workers.
comment: Accepted at ACL2025 (Main)
FactSelfCheck: Fact-Level Black-Box Hallucination Detection for LLMs
Large Language Models (LLMs) frequently generate hallucinated content, posing significant challenges for applications where factuality is crucial. While existing hallucination detection methods typically operate at the sentence level or passage level, we propose FactSelfCheck, a novel black-box sampling-based method that enables fine-grained fact-level detection. Our approach represents text as knowledge graphs consisting of facts in the form of triples. Through analyzing factual consistency across multiple LLM responses, we compute fine-grained hallucination scores without requiring external resources or training data. Our evaluation demonstrates that FactSelfCheck performs competitively with leading sentence-level sampling-based methods while providing more detailed insights. Most notably, our fact-level approach significantly improves hallucination correction, achieving a 35.5% increase in factual content compared to the baseline, while sentence-level SelfCheckGPT yields only a 10.6% improvement. The granular nature of our detection enables more precise identification and correction of hallucinated content. Additionally, we contribute a new dataset for evaluating sampling-based methods - FavaMultiSamples.
comment: Preprint
VideoGameBench: Can Vision-Language Models complete popular video games?
Vision-language models (VLMs) have achieved strong results on coding and math benchmarks that are challenging for humans, yet their ability to perform tasks that come naturally to humans--such as perception, spatial navigation, and memory management--remains understudied. Real video games are crafted to be intuitive for humans to learn and master by leveraging innate inductive biases, making them an ideal testbed for evaluating such capabilities in VLMs. To this end, we introduce VideoGameBench, a benchmark consisting of 10 popular video games from the 1990s that VLMs directly interact with in real-time. VideoGameBench challenges models to complete entire games with access to only raw visual inputs and a high-level description of objectives and controls, a significant departure from existing setups that rely on game-specific scaffolding and auxiliary information. We keep three of the games secret to encourage solutions that generalize to unseen environments. Our experiments show that frontier vision-language models struggle to progress beyond the beginning of each game. We find inference latency to be a major limitation of frontier models in the real-time setting; therefore, we introduce VideoGameBench Lite, a setting where the game pauses while waiting for the LM's next action. The best performing model, Gemini 2.5 Pro, completes only 0.48% of VideoGameBench and 1.6% of VideoGameBench Lite. We hope that the formalization of the human skills mentioned above into this benchmark motivates progress in these research directions.
comment: 9 pages, 33 pages including supplementary
M+: Extending MemoryLLM with Scalable Long-Term Memory
Equipping large language models (LLMs) with latent-space memory has attracted increasing attention as they can extend the context window of existing language models. However, retaining information from the distant past remains a challenge. For example, MemoryLLM (Wang et al., 2024a), as a representative work with latent-space memory, compresses past information into hidden states across all layers, forming a memory pool of 1B parameters. While effective for sequence lengths up to 16k tokens, it struggles to retain knowledge beyond 20k tokens. In this work, we address this limitation by introducing M+, a memory-augmented model based on MemoryLLM that significantly enhances long-term information retention. M+ integrates a long-term memory mechanism with a co-trained retriever, dynamically retrieving relevant information during text generation. We evaluate M+ on diverse benchmarks, including long-context understanding and knowledge retention tasks. Experimental results show that M+ significantly outperforms MemoryLLM and recent strong baselines, extending knowledge retention from under 20k to over 160k tokens with similar GPU memory overhead. We open-source our code at https://github.com/wangyu-ustc/MemoryLLM
Do We Know What LLMs Don't Know? A Study of Consistency in Knowledge Probing
The reliability of large language models (LLMs) is greatly compromised by their tendency to hallucinate, underscoring the need for precise identification of knowledge gaps within LLMs. Various methods for probing such gaps exist, ranging from calibration-based to prompting-based methods. To evaluate these probing methods, in this paper, we propose a new process based on using input variations and quantitative metrics. Through this, we expose two dimensions of inconsistency in knowledge gap probing. (1) Intra-method inconsistency: Minimal non-semantic perturbations in prompts lead to considerable variance in detected knowledge gaps within the same probing method; e.g., the simple variation of shuffling answer options can decrease agreement to around 40%. (2) Cross-method inconsistency: Probing methods contradict each other on whether a model knows the answer. Methods are highly inconsistent -- with decision consistency across methods being as low as 7% -- even though the model, dataset, and prompt are all the same. These findings challenge existing probing methods and highlight the urgent need for perturbation-robust probing frameworks.
MAKIEval: A Multilingual Automatic WiKidata-based Framework for Cultural Awareness Evaluation for LLMs
Large language models (LLMs) are used globally across many languages, but their English-centric pretraining raises concerns about cross-lingual disparities for cultural awareness, often resulting in biased outputs. However, comprehensive multilingual evaluation remains challenging due to limited benchmarks and questionable translation quality. To better assess these disparities, we introduce MAKIEval, an automatic multilingual framework for evaluating cultural awareness in LLMs across languages, regions, and topics. MAKIEval evaluates open-ended text generation, capturing how models express culturally grounded knowledge in natural language. Leveraging Wikidata's multilingual structure as a cross-lingual anchor, it automatically identifies cultural entities in model outputs and links them to structured knowledge, enabling scalable, language-agnostic evaluation without manual annotation or translation. We then introduce four metrics that capture complementary dimensions of cultural awareness: granularity, diversity, cultural specificity, and consensus across languages. We assess 7 LLMs developed from different parts of the world, encompassing both open-source and proprietary systems, across 13 languages, 19 countries and regions, and 6 culturally salient topics (e.g., food, clothing). Notably, we find that models tend to exhibit stronger cultural awareness in English, suggesting that English prompts more effectively activate culturally grounded knowledge. We publicly release our code and data.
Overcoming Sparsity Artifacts in Crosscoders to Interpret Chat-Tuning
Model diffing is the study of how fine-tuning changes a model's representations and internal algorithms. Many behaviors of interest are introduced during fine-tuning, and model diffing offers a promising lens to interpret such behaviors. Crosscoders are a recent model diffing method that learns a shared dictionary of interpretable concepts represented as latent directions in both the base and fine-tuned models, allowing us to track how concepts shift or emerge during fine-tuning. Notably, prior work has observed concepts with no direction in the base model, and it was hypothesized that these model-specific latents were concepts introduced during fine-tuning. However, we identify two issues which stem from the crosscoders L1 training loss that can misattribute concepts as unique to the fine-tuned model, when they really exist in both models. We develop Latent Scaling to flag these issues by more accurately measuring each latent's presence across models. In experiments comparing Gemma 2 2B base and chat models, we observe that the standard crosscoder suffers heavily from these issues. Building on these insights, we train a crosscoder with BatchTopK loss and show that it substantially mitigates these issues, finding more genuinely chat-specific and highly interpretable concepts. We recommend practitioners adopt similar techniques. Using the BatchTopK crosscoder, we successfully identify a set of chat-specific latents that are both interpretable and causally effective, representing concepts such as $\textit{false information}$ and $\textit{personal question}$, along with multiple refusal-related latents that show nuanced preferences for different refusal triggers. Overall, our work advances best practices for the crosscoder-based methodology for model diffing and demonstrates that it can provide concrete insights into how chat-tuning modifies model behavior.
comment: 42 pages, 31 figures
Efficient Universal Goal Hijacking with Semantics-guided Prompt Organization ACL 2025
Universal goal hijacking is a kind of prompt injection attack that forces LLMs to return a target malicious response for arbitrary normal user prompts. The previous methods achieve high attack performance while being too cumbersome and time-consuming. Also, they have concentrated solely on optimization algorithms, overlooking the crucial role of the prompt. To this end, we propose a method called POUGH that incorporates an efficient optimization algorithm and two semantics-guided prompt organization strategies. Specifically, our method starts with a sampling strategy to select representative prompts from a candidate pool, followed by a ranking strategy that prioritizes them. Given the sequentially ranked prompts, our method employs an iterative optimization algorithm to generate a fixed suffix that can concatenate to arbitrary user prompts for universal goal hijacking. Experiments conducted on four popular LLMs and ten types of target responses verified the effectiveness.
comment: accepted by ACL 2025
Image Captioning Evaluation in the Age of Multimodal LLMs: Challenges and Future Perspectives IJCAI 2025
The evaluation of machine-generated image captions is a complex and evolving challenge. With the advent of Multimodal Large Language Models (MLLMs), image captioning has become a core task, increasing the need for robust and reliable evaluation metrics. This survey provides a comprehensive overview of advancements in image captioning evaluation, analyzing the evolution, strengths, and limitations of existing metrics. We assess these metrics across multiple dimensions, including correlation with human judgment, ranking accuracy, and sensitivity to hallucinations. Additionally, we explore the challenges posed by the longer and more detailed captions generated by MLLMs and examine the adaptability of current metrics to these stylistic variations. Our analysis highlights some limitations of standard evaluation approaches and suggests promising directions for future research in image captioning assessment.
comment: IJCAI 2025. Repo GitHub: https://github.com/aimagelab/awesome-captioning-evaluation
NativQA: Multilingual Culturally-Aligned Natural Query for LLMs
Natural Question Answering (QA) datasets play a crucial role in evaluating the capabilities of large language models (LLMs), ensuring their effectiveness in real-world applications. Despite the numerous QA datasets that have been developed and some work has been done in parallel, there is a notable lack of a framework and large scale region-specific datasets queried by native users in their own languages. This gap hinders the effective benchmarking and the development of fine-tuned models for regional and cultural specificities. In this study, we propose a scalable, language-independent framework, NativQA, to seamlessly construct culturally and regionally aligned QA datasets in native languages, for LLM evaluation and tuning. We demonstrate the efficacy of the proposed framework by designing a multilingual natural QA dataset, MultiNativQA, consisting of ~64k manually annotated QA pairs in seven languages, ranging from high to extremely low resource, based on queries from native speakers from 9 regions covering 18 topics. We benchmark open- and closed-source LLMs with the MultiNativQA dataset. We made the MultiNativQA dataset(https://huggingface.co/datasets/QCRI/MultiNativQA), and other experimental scripts(https://gitlab.com/nativqa/multinativqa) publicly available for the community.
comment: LLMs, Native, Multilingual, Language Diversity, Contextual Understanding, Minority Languages, Culturally Informed, Foundation Models, Large Language Models
ZOGRASCOPE: A New Benchmark for Semantic Parsing over Property Graphs
In recent years, the need for natural language interfaces to knowledge graphs has become increasingly important since they enable easy and efficient access to the information contained in them. In particular, property graphs (PGs) have seen increased adoption as a means of representing complex structured information. Despite their growing popularity in industry, PGs remain relatively underrepresented in semantic parsing research with a lack of resources for evaluation. To address this gap, we introduce ZOGRASCOPE, a benchmark designed specifically for PGs and queries written in Cypher. Our benchmark includes a diverse set of manually annotated queries of varying complexity and is organized into three partitions: iid, compositional and length. We complement this paper with a set of experiments that test the performance of different LLMs in a variety of learning settings.
Efficient Adaptation For Remote Sensing Visual Grounding
Adapting pre-trained models has become an effective strategy in artificial intelligence, offering a scalable and efficient alternative to training models from scratch. In the context of remote sensing (RS), where visual grounding(VG) remains underexplored, this approach enables the deployment of powerful vision-language models to achieve robust cross-modal understanding while significantly reducing computational overhead. To address this, we applied Parameter Efficient Fine Tuning (PEFT) techniques to adapt these models for RS-specific VG tasks. Specifically, we evaluated LoRA placement across different modules in Grounding DINO and used BitFit and adapters to fine-tune the OFA foundation model pre-trained on general-purpose VG datasets. This approach achieved performance comparable to or surpassing current State Of The Art (SOTA) models while significantly reducing computational costs. This study highlights the potential of PEFT techniques to advance efficient and precise multi-modal analysis in RS, offering a practical and cost-effective alternative to full model training.
Impact of Frame Rates on Speech Tokenizer: A Case Study on Mandarin and English
The speech tokenizer plays a crucial role in recent speech tasks, generally serving as a bridge between speech signals and language models. While low-frame-rate codecs are widely employed as speech tokenizers, the impact of frame rates on speech tokens remains underexplored. In this study, we investigate how varying frame rates affect speech tokenization by examining Mandarin and English, two typologically distinct languages. We encode speech at different frame rates and evaluate the resulting semantic tokens in the speech recognition task. Our findings reveal that frame rate variations influence speech tokenization differently for each language, highlighting the interplay between frame rates, phonetic density, and language-specific acoustic features. The results provide insights into optimizing frame rate selection for speech tokenizers, with implications for automatic speech recognition, text-to-speech, and other speech-related applications.
comment: 6 pages, 5 figures
All-in-one: Understanding and Generation in Multimodal Reasoning with the MAIA Benchmark
We introduce MAIA (Multimodal AI Assessment), a native-Italian benchmark designed for fine-grained investigation of the reasoning abilities of visual language models on videos. MAIA differs from other available video benchmarks for its design, its reasoning categories, the metric it uses, and the language and culture of the videos. MAIA evaluates Vision Language Models (VLMs) on two aligned tasks: a visual statement verification task and an open-ended visual question-answering task, both on the same set of video-related questions. It considers twelve reasoning categories that aim to disentangle language and vision relations by highlighting the role of the visual input. Thanks to its carefully taught design, it evaluates VLMs' consistency and visually grounded natural language comprehension and generation simultaneously through an aggregated metric revealing low results that highlight models' fragility. Last but not least, the video collection has been carefully selected to reflect the Italian culture, and the language data are produced by native-speakers.
From Citations to Criticality: Predicting Legal Decision Influence in the Multilingual Swiss Jurisprudence ACL
Many court systems are overwhelmed all over the world, leading to huge backlogs of pending cases. Effective triage systems, like those in emergency rooms, could ensure proper prioritization of open cases, optimizing time and resource allocation in the court system. In this work, we introduce the Criticality Prediction dataset, a novel resource for evaluating case prioritization. Our dataset features a two-tier labeling system: (1) the binary LD-Label, identifying cases published as Leading Decisions (LD), and (2) the more granular Citation-Label, ranking cases by their citation frequency and recency, allowing for a more nuanced evaluation. Unlike existing approaches that rely on resource-intensive manual annotations, we algorithmically derive labels leading to a much larger dataset than otherwise possible. We evaluate several multilingual models, including both smaller fine-tuned models and large language models in a zero-shot setting. Our results show that the fine-tuned models consistently outperform their larger counterparts, thanks to our large training set. Our results highlight that for highly domain-specific tasks like ours, large training sets are still valuable.
comment: Accepted to ACL main 2025
Flow-of-Options: Diversified and Improved LLM Reasoning by Thinking Through Options ICML 2025
We present a novel reasoning approach called Flow-of-Options (FoO), designed to address intrinsic biases in Large Language Models (LLMs). Flow-of-Options enables LLMs to systematically explore a diverse range of possibilities in their reasoning, as demonstrated by an FoO-based agentic framework developed for autonomously solving Machine Learning (ML) tasks. FoO enforces diversity in LLM solutions through compressed and interpretable task representations, resulting in improvements of 38.2% - 69.2% on standard data science tasks, and 37.4% - 47.9% on therapeutic chemistry tasks, as compared to state-of-the-art baselines. With an overall operation cost under $1 per task, our framework is well-suited for cost-sensitive applications. Going beyond tabular classification and regression, we show the broader applicability of our FoO-based agentic system to tasks such as reinforcement learning and image generation. Our code is open-sourced at: https://github.com/flagshippioneering/Flow-of-Options.
comment: ICML 2025
SwiLTra-Bench: The Swiss Legal Translation Benchmark ACL
In Switzerland legal translation is uniquely important due to the country's four official languages and requirements for multilingual legal documentation. However, this process traditionally relies on professionals who must be both legal experts and skilled translators -- creating bottlenecks and impacting effective access to justice. To address this challenge, we introduce SwiLTra-Bench, a comprehensive multilingual benchmark of over 180K aligned Swiss legal translation pairs comprising laws, headnotes, and press releases across all Swiss languages along with English, designed to evaluate LLM-based translation systems. Our systematic evaluation reveals that frontier models achieve superior translation performance across all document types, while specialized translation systems excel specifically in laws but under-perform in headnotes. Through rigorous testing and human expert validation, we demonstrate that while fine-tuning open SLMs significantly improves their translation quality, they still lag behind the best zero-shot prompted frontier models such as Claude-3.5-Sonnet. Additionally, we present SwiLTra-Judge, a specialized LLM evaluation system that aligns best with human expert assessments.
comment: Accepted at ACL main 2025
ChinaTravel: An Open-Ended Benchmark for Language Agents in Chinese Travel Planning
Recent advances in LLMs, particularly in language reasoning and tool integration, have rapidly sparked the \emph{Language Agents} for real-world development. Among these, travel planning represents a prominent domain, combining complex multi-objective planning challenges with practical deployment demands. However, existing benchmarks often oversimplify real-world requirements by focusing on synthetic queries and limited constraints. We address the gap of evaluating language agents in multi-day, multi-POI travel planning scenarios with diverse and open human needs. Specifically, we introduce \emph{ChinaTravel}, the first open-ended benchmark grounded in authentic Chinese travel requirements collected from 1,154 human participants. We design a compositionally generalizable domain-specific language (DSL) for scalable evaluation, covering feasibility, constraint satisfaction, and preference comparison. Empirical studies reveal the potential of neuro-symbolic agents in travel planning, achieving a 37.0\% constraint satisfaction rate on human queries, a 10\times improvement over purely neural models. These findings highlight ChinaTravel as a pivotal milestone for advancing language agents in complex, real-world planning scenarios.
comment: Webpage: https://www.lamda.nju.edu.cn/shaojj/chinatravel
From Misleading Queries to Accurate Answers: A Three-Stage Fine-Tuning Method for LLMs ACL 2025
Large language models (LLMs) exhibit excellent performance in natural language processing (NLP), but remain highly sensitive to the quality of input queries, especially when these queries contain misleading or inaccurate information. Existing methods focus on correcting the output, but they often overlook the potential of improving the ability of LLMs to detect and correct misleading content in the input itself. In this paper, we propose a novel three-stage fine-tuning method that enhances the ability of LLMs to detect and correct misleading information in the input, further improving response accuracy and reducing hallucinations. Specifically, the three stages include (1) training LLMs to identify misleading information, (2) training LLMs to correct the misleading information using built-in or external knowledge, and (3) training LLMs to generate accurate answers based on the corrected queries. To evaluate our method, we conducted experiments on three datasets for the hallucination detection task and the question answering~(QA) task, as well as two datasets containing misleading information that we constructed. The experimental results demonstrate that our method significantly improves the accuracy and factuality of LLM responses, while also enhancing the ability to detect hallucinations and reducing the generation of hallucinations in the output, particularly when the query contains misleading information.
comment: Accepted to ACL 2025 (Findings)
Video-MME: The First-Ever Comprehensive Evaluation Benchmark of Multi-modal LLMs in Video Analysis
In the quest for artificial general intelligence, Multi-modal Large Language Models (MLLMs) have emerged as a focal point in recent advancements. However, the predominant focus remains on developing their capabilities in static image understanding. The potential of MLLMs in processing sequential visual data is still insufficiently explored, highlighting the absence of a comprehensive, high-quality assessment of their performance. In this paper, we introduce Video-MME, the first-ever full-spectrum, Multi-Modal Evaluation benchmark of MLLMs in Video analysis. Our work distinguishes from existing benchmarks through four key features: 1) Diversity in video types, spanning 6 primary visual domains with 30 subfields to ensure broad scenario generalizability; 2) Duration in temporal dimension, encompassing both short-, medium-, and long-term videos, ranging from 11 seconds to 1 hour, for robust contextual dynamics; 3) Breadth in data modalities, integrating multi-modal inputs besides video frames, including subtitles and audios, to unveil the all-round capabilities of MLLMs; 4) Quality in annotations, utilizing rigorous manual labeling by expert annotators to facilitate precise and reliable model assessment. 900 videos with a total of 254 hours are manually selected and annotated by repeatedly viewing all the video content, resulting in 2,700 question-answer pairs. With Video-MME, we extensively evaluate various state-of-the-art MLLMs, including GPT-4 series and Gemini 1.5 Pro, as well as open-source image models like InternVL-Chat-V1.5 and video models like LLaVA-NeXT-Video. Our experiments reveal that Gemini 1.5 Pro is the best-performing commercial model, significantly outperforming the open-source models. Our dataset along with these findings underscores the need for further improvements in handling longer sequences and multi-modal data. Project Page: https://video-mme.github.io
comment: Project Page: https://video-mme.github.io
Vision-Language Models Struggle to Align Entities across Modalities ACL 2025
Cross-modal entity linking refers to the ability to align entities and their attributes across different modalities. While cross-modal entity linking is a fundamental skill needed for real-world applications such as multimodal code generation, fake news detection, or scene understanding, it has not been thoroughly studied in the literature. In this paper, we introduce a new task and benchmark to address this gap. Our benchmark, MATE, consists of 5.5k evaluation instances featuring visual scenes aligned with their textual representations. To evaluate cross-modal entity linking performance, we design a question-answering task that involves retrieving one attribute of an object in one modality based on a unique attribute of that object in another modality. We evaluate state-of-the-art Vision-Language Models (VLMs) and humans on this task, and find that VLMs struggle significantly compared to humans, particularly as the number of objects in the scene increases. Our analysis also shows that, while chain-of-thought prompting can improve VLM performance, models remain far from achieving human-level proficiency. These findings highlight the need for further research in cross-modal entity linking and show that MATE is a strong benchmark to support that progress.
comment: Accepted Findings ACL 2025
VITA: Towards Open-Source Interactive Omni Multimodal LLM
The remarkable multimodal capabilities and interactive experience of GPT-4o underscore their necessity in practical applications, yet open-source models rarely excel in both areas. In this paper, we introduce VITA, the first-ever open-source Multimodal Large Language Model (MLLM) adept at simultaneous processing and analysis of Video, Image, Text, and Audio modalities, and meanwhile has an advanced multimodal interactive experience. Starting from Mixtral 8x7B as a language foundation, we expand its Chinese vocabulary followed by bilingual instruction tuning. We further endow the language model with visual and audio capabilities through two-stage multi-task learning of multimodal alignment and instruction tuning. VITA demonstrates robust foundational capabilities of multilingual, vision, and audio understanding, as evidenced by its strong performance across a range of both unimodal and multimodal benchmarks. Beyond foundational capabilities, we have made considerable progress in enhancing the natural multimodal human-computer interaction experience. VITA is the first step for the open-source community to explore the seamless integration of multimodal understanding and interaction. While there is still lots of work to be done on VITA to get close to close-source counterparts, we hope that its role as a pioneer can serve as a cornerstone for subsequent research. Project Page: https://vita-home.github.io.
comment: Project Page: https://vita-home.github.io
A Rose by Any Other Name: LLM-Generated Explanations Are Good Proxies for Human Explanations to Collect Label Distributions on NLI ACL 2025
Disagreement in human labeling is ubiquitous, and can be captured in human judgment distributions (HJDs). Recent research has shown that explanations provide valuable information for understanding human label variation (HLV) and large language models (LLMs) can approximate HJD from a few human-provided label-explanation pairs. However, collecting explanations for every label is still time-consuming. This paper examines whether LLMs can be used to replace humans in generating explanations for approximating HJD. Specifically, we use LLMs as annotators to generate model explanations for a few given human labels. We test ways to obtain and combine these label-explanations with the goal to approximate human judgment distributions. We further compare the resulting human with model-generated explanations, and test automatic and human explanation selection. Our experiments show that LLM explanations are promising for NLI: to estimate HJDs, generated explanations yield comparable results to human's when provided with human labels. Importantly, our results generalize from datasets with human explanations to i) datasets where they are not available and ii) challenging out-of-distribution test sets.
comment: Accepted by ACL 2025 Findings, 25 pages, 21 figures
Bias Beware: The Impact of Cognitive Biases on LLM-Driven Product Recommendations
The advent of Large Language Models (LLMs) has revolutionized product recommenders, yet their susceptibility to adversarial manipulation poses critical challenges, particularly in real-world commercial applications. Our approach is the first one to tap into human psychological principles, seamlessly modifying product descriptions, making such manipulations hard to detect. In this work, we investigate cognitive biases as black-box adversarial strategies, drawing parallels between their effects on LLMs and human purchasing behavior. Through extensive evaluation across models of varying scale, we find that certain biases, such as social proof, consistently boost product recommendation rate and ranking, while others, like scarcity and exclusivity, surprisingly reduce visibility. Our results demonstrate that cognitive biases are deeply embedded in state-of-the-art LLMs, leading to highly unpredictable behavior in product recommendations and posing significant challenges for effective mitigation.
Mixup Model Merge: Enhancing Model Merging Performance through Randomized Linear Interpolation
Model merging aims to integrate multiple task-specific models into a unified model that inherits the capabilities of the task-specific models, without additional training. Existing model merging methods often lack consideration of the varying contribution ratios of different task-specific models to the final merged model. In this paper, we propose Mixup Model Merge (M3), a simple yet effective method inspired by the randomized linear interpolation strategy from the Mixup data augmentation technique. M3 performs randomized linear interpolation in parameter space between two task-specific LLMs, where interpolation coefficients are sampled from a Beta distribution to explore diverse contribution ratios. This controllable randomness allows M3 to outperform standard equal-ratio merging by discovering better contribution ratio combinations. Extensive experiments show that M3 significantly (1) improves merged LLM performance across tasks, (2) enhances out-of-distribution and adversarial robustness, and (3) outperforms the positive effects of the sparsification method DARE on model merging and can be further combined with DARE to achieve superior results. By tuning the Beta distribution's shape parameters, (4) M3 balances exploration efficiency and diversity in contribution ratios. The code is available at: https://github.com/MLGroupJLU/MixupModelMerge
comment: 15 pages
MuSC: Improving Complex Instruction Following with Multi-granularity Self-Contrastive Training ACL2025
Complex instruction-following with elaborate constraints is imperative for Large Language Models (LLMs). While existing methods have constructed data for complex instruction alignment, they all rely on a more advanced model, especially GPT-4, limiting their application. In this paper, we propose a Multi-granularity Self-Contrastive Training (MuSC) framework, to improve the complex instruction alignment without relying on a stronger model. Our method is conducted on both coarse and fine granularity. On coarse-granularity, we construct constraint-aware preference data based on instruction decomposition and recombination. On fine-granularity, we perform token-aware preference optimization with dynamic token-level supervision. Our method is evaluated on open-sourced models, and experiment results show our method achieves significant improvement on both complex and general instruction-following benchmarks, surpassing previous self-alignment methods.
comment: Accepted to ACL2025
Query-driven Document-level Scientific Evidence Extraction from Biomedical Studies ACL 2025
Extracting scientific evidence from biomedical studies for clinical research questions (e.g., Does stem cell transplantation improve quality of life in patients with medically refractory Crohn's disease compared to placebo?) is a crucial step in synthesising biomedical evidence. In this paper, we focus on the task of document-level scientific evidence extraction for clinical questions with conflicting evidence. To support this task, we create a dataset called CochraneForest, leveraging forest plots from Cochrane systematic reviews. It comprises 202 annotated forest plots, associated clinical research questions, full texts of studies, and study-specific conclusions. Building on CochraneForest, we propose URCA (Uniform Retrieval Clustered Augmentation), a retrieval-augmented generation framework designed to tackle the unique challenges of evidence extraction. Our experiments show that URCA outperforms the best existing methods by up to 10.3% in F1 score on this task. However, the results also underscore the complexity of CochraneForest, establishing it as a challenging testbed for advancing automated evidence synthesis systems.
comment: Accepted at ACL 2025 Main Conference
An Empirical Study of LLM-as-a-Judge for LLM Evaluation: Fine-tuned Judge Model is not a General Substitute for GPT-4 ACL2025
Recently, there has been a growing trend of utilizing Large Language Model (LLM) to evaluate the quality of other LLMs. Many studies have fine-tuned judge models based on open-source LLMs for evaluation. While the fine-tuned judge models are claimed to achieve comparable evaluation capability with GPT-4, in this work, we conduct an empirical study of LLM-as-a-Judge. Our findings indicate that although the fine-tuned judge models achieve high performance on in-domain test sets, even surpassing GPT-4, they underperform GPT-4 across several dimensions, including generalizability, fairness and adaptability. We also reveal that the fine-tuned judge model inherently operates as a task-specific classifier, consequently imposing the limitations.
comment: Accepted to Findings of ACL2025
MOOSE-Chem3: Toward Experiment-Guided Hypothesis Ranking via Simulated Experimental Feedback
Hypothesis ranking is a crucial component of automated scientific discovery, particularly in natural sciences where wet-lab experiments are costly and throughput-limited. Existing approaches focus on pre-experiment ranking, relying solely on large language model's internal reasoning without incorporating empirical outcomes from experiments. We introduce the task of experiment-guided ranking, which aims to prioritize candidate hypotheses based on the results of previously tested ones. However, developing such strategies is challenging due to the impracticality of repeatedly conducting real experiments in natural science domains. To address this, we propose a simulator grounded in three domain-informed assumptions, modeling hypothesis performance as a function of similarity to a known ground truth hypothesis, perturbed by noise. We curate a dataset of 124 chemistry hypotheses with experimentally reported outcomes to validate the simulator. Building on this simulator, we develop a pseudo experiment-guided ranking method that clusters hypotheses by shared functional characteristics and prioritizes candidates based on insights derived from simulated experimental feedback. Experiments show that our method outperforms pre-experiment baselines and strong ablations.
Multi-perspective Alignment for Increasing Naturalness in Neural Machine Translation ACL 2025
Neural machine translation (NMT) systems amplify lexical biases present in their training data, leading to artificially impoverished language in output translations. These language-level characteristics render automatic translations different from text originally written in a language and human translations, which hinders their usefulness in for example creating evaluation datasets. Attempts to increase naturalness in NMT can fall short in terms of content preservation, where increased lexical diversity comes at the cost of translation accuracy. Inspired by the reinforcement learning from human feedback framework, we introduce a novel method that rewards both naturalness and content preservation. We experiment with multiple perspectives to produce more natural translations, aiming at reducing machine and human translationese. We evaluate our method on English-to-Dutch literary translation, and find that our best model produces translations that are lexically richer and exhibit more properties of human-written language, without loss in translation accuracy.
comment: Accepted to ACL 2025 main; 9 pages
Surrogate Signals from Format and Length: Reinforcement Learning for Solving Mathematical Problems without Ground Truth Answers
Large Language Models have achieved remarkable success in natural language processing tasks, with Reinforcement Learning playing a key role in adapting them to specific applications. However, obtaining ground truth answers for training LLMs in mathematical problem-solving is often challenging, costly, and sometimes unfeasible. This research delves into the utilization of format and length as surrogate signals to train LLMs for mathematical problem-solving, bypassing the need for traditional ground truth answers.Our study shows that a reward function centered on format correctness alone can yield performance improvements comparable to the standard GRPO algorithm in early phases. Recognizing the limitations of format-only rewards in the later phases, we incorporate length-based rewards. The resulting GRPO approach, leveraging format-length surrogate signals, not only matches but surpasses the performance of the standard GRPO algorithm relying on ground truth answers in certain scenarios, achieving 40.0% accuracy on AIME2024 with a 7B base model. Through systematic exploration and experimentation, this research not only offers a practical solution for training LLMs to solve mathematical problems and reducing the dependence on extensive ground truth data collection, but also reveals the essence of why our label-free approach succeeds: the powerful base model is like an excellent student who has already mastered mathematical and logical reasoning skills, but performs poorly on the test paper, it simply needs to develop good answering habits to achieve outstanding results in exams , to unlock the capabilities it already possesses.
Behind the Magic, MERLIM: Multi-modal Evaluation Benchmark for Large Image-Language Models
Large Vision and Language Models have enabled significant advances in fully supervised and zero-shot visual tasks. These large architectures serve as the baseline to what is currently known as Instruction Tuning Large Vision and Language models (IT-LVLMs). IT-LVLMs are general-purpose multi-modal assistants whose responses are modulated by natural language instructions and visual data. Despite this versatility, IT-LVLM effectiveness in fundamental computer vision problems remains unclear, primarily due to the absence of a standardized evaluation benchmark. This paper introduces a Multi-modal Evaluation Benchmark named MERLIM, a scalable test-bed to assess the capabilities of IT-LVLMs on fundamental computer vision tasks. MERLIM contains over 300K image-question pairs and has a strong focus on detecting cross-modal "hallucination" events in IT-LVLMs. Our results bring important insights on the performance of state-of-the-art IT-LVLMs including limitations at identifying fine-grained visual concepts, object hallucinations across tasks, and biases towards the language query. Our findings also suggest that these models have weak visual grounding, but manage to make adequate guesses from global visual patterns or language biases contained in the LLM component. We name this phenomenon of correct answers with no visual grounding as hidden hallucinations.
comment: 18 pages, 10 figures, 6 tables
ResSVD: Residual Compensated SVD for Large Language Model Compression
Large language models (LLMs) have demonstrated impressive capabilities in a wide range of downstream natural language processing tasks. Nevertheless, their considerable sizes and memory demands hinder practical deployment, underscoring the importance of developing efficient compression strategies. Singular value decomposition (SVD) decomposes a matrix into orthogonal components, enabling efficient low-rank approximation. This is particularly suitable for LLM compression, where weight matrices often exhibit significant redundancy. However, current SVD-based methods neglect the residual matrix from truncation, resulting in significant truncation loss. Additionally, compressing all layers of the model results in severe performance degradation. To overcome these limitations, we propose ResSVD, a new post-training SVD-based LLM compression method. Specifically, we leverage the residual matrix generated during the truncation process to reduce truncation loss. Moreover, under a fixed overall compression ratio, we selectively compress the last few layers of the model, which mitigates error propagation and significantly improves the performance of compressed models. Comprehensive evaluations of ResSVD on diverse LLM families and multiple benchmark datasets indicate that ResSVD consistently achieves superior performance over existing counterpart methods, demonstrating its practical effectiveness.
Are the Hidden States Hiding Something? Testing the Limits of Factuality-Encoding Capabilities in LLMs
Factual hallucinations are a major challenge for Large Language Models (LLMs). They undermine reliability and user trust by generating inaccurate or fabricated content. Recent studies suggest that when generating false statements, the internal states of LLMs encode information about truthfulness. However, these studies often rely on synthetic datasets that lack realism, which limits generalization when evaluating the factual accuracy of text generated by the model itself. In this paper, we challenge the findings of previous work by investigating truthfulness encoding capabilities, leading to the generation of a more realistic and challenging dataset. Specifically, we extend previous work by introducing: (1) a strategy for sampling plausible true-false factoid sentences from tabular data and (2) a procedure for generating realistic, LLM-dependent true-false datasets from Question Answering collections. Our analysis of two open-source LLMs reveals that while the findings from previous studies are partially validated, generalization to LLM-generated datasets remains challenging. This study lays the groundwork for future research on factuality in LLMs and offers practical guidelines for more effective evaluation.
DemoShapley: Valuation of Demonstrations for In-Context Learning
Large language models (LLMs) using in-context learning (ICL) excel in many tasks without task-specific fine-tuning. However, demonstration selection and ordering greatly impact ICL effectiveness. To address this, we propose DemoShapley and Beta-DemoShapley, inspired by Data Shapley and Beta Shapley, to assess the influence of individual demonstrations. DemoShapley captures how each example influences performance in different contexts, unlike other influence-based methods that rely on a fixed number of demonstrations. Beta-DemoShapley further enhances this framework by incorporating the Beta distribution, allowing users to assign higher weights to smaller cardinalities, which aligns with ICL's prompt length and computational constraints. Our findings show that the proposed algorithms improve model performance by selecting quality demonstrations, and enhancing generalization to out-of-distribution tasks. It also identifies noise-compromised data and promotes fairness in LLMs, protecting model performance and ensuring robustness across various scenarios.
Born a Transformer -- Always a Transformer?
Transformers have theoretical limitations in modeling certain sequence-to-sequence tasks, yet it remains largely unclear if these limitations play a role in large-scale pretrained LLMs, or whether LLMs might effectively overcome these constraints in practice due to the scale of both the models themselves and their pretraining data. We explore how these architectural constraints manifest after pretraining, by studying a family of $\textit{retrieval}$ and $\textit{copying}$ tasks inspired by Liu et al. [2024a]. We use a recently proposed framework for studying length generalization [Huang et al., 2025] to provide guarantees for each of our settings. Empirically, we observe an $\textit{induction-versus-anti-induction}$ asymmetry, where pretrained models are better at retrieving tokens to the right (induction) rather than the left (anti-induction) of a query token. This asymmetry disappears upon targeted fine-tuning if length-generalization is guaranteed by theory. Mechanistic analysis reveals that this asymmetry is connected to the differences in the strength of induction versus anti-induction circuits within pretrained transformers. We validate our findings through practical experiments on real-world tasks demonstrating reliability risks. Our results highlight that pretraining selectively enhances certain transformer capabilities, but does not overcome fundamental length-generalization limits.
GTSinger: A Global Multi-Technique Singing Corpus with Realistic Music Scores for All Singing Tasks NeurIPS 2024
The scarcity of high-quality and multi-task singing datasets significantly hinders the development of diverse controllable and personalized singing tasks, as existing singing datasets suffer from low quality, limited diversity of languages and singers, absence of multi-technique information and realistic music scores, and poor task suitability. To tackle these problems, we present GTSinger, a large global, multi-technique, free-to-use, high-quality singing corpus with realistic music scores, designed for all singing tasks, along with its benchmarks. Particularly, (1) we collect 80.59 hours of high-quality singing voices, forming the largest recorded singing dataset; (2) 20 professional singers across nine widely spoken languages offer diverse timbres and styles; (3) we provide controlled comparison and phoneme-level annotations of six commonly used singing techniques, helping technique modeling and control; (4) GTSinger offers realistic music scores, assisting real-world musical composition; (5) singing voices are accompanied by manual phoneme-to-audio alignments, global style labels, and 16.16 hours of paired speech for various singing tasks. Moreover, to facilitate the use of GTSinger, we conduct four benchmark experiments: technique-controllable singing voice synthesis, technique recognition, style transfer, and speech-to-singing conversion. The corpus and demos can be found at http://aaronz345.github.io/GTSingerDemo/. We provide the dataset and the code for processing data and conducting benchmarks at https://huggingface.co/datasets/AaronZ345/GTSinger and https://github.com/AaronZ345/GTSinger.
comment: Accepted by NeurIPS 2024 (Spotlight)
What's the Difference? Supporting Users in Identifying the Effects of Prompt and Model Changes Through Token Patterns ACL'25
Prompt engineering for large language models is challenging, as even small prompt perturbations or model changes can significantly impact the generated output texts. Existing evaluation methods of LLM outputs, either automated metrics or human evaluation, have limitations, such as providing limited insights or being labor-intensive. We propose Spotlight, a new approach that combines both automation and human analysis. Based on data mining techniques, we automatically distinguish between random (decoding) variations and systematic differences in language model outputs. This process provides token patterns that describe the systematic differences and guide the user in manually analyzing the effects of their prompts and changes in models efficiently. We create three benchmarks to quantitatively test the reliability of token pattern extraction methods and demonstrate that our approach provides new insights into established prompt data. From a human-centric perspective, through demonstration studies and a user study, we show that our token pattern approach helps users understand the systematic differences of language model outputs. We are further able to discover relevant differences caused by prompt and model changes (e.g. related to gender or culture), thus supporting the prompt engineering process and human-centric model behavior research.
comment: Accepted at ACL'25
TCSinger 2: Customizable Multilingual Zero-shot Singing Voice Synthesis ACL 2025
Customizable multilingual zero-shot singing voice synthesis (SVS) has various potential applications in music composition and short video dubbing. However, existing SVS models overly depend on phoneme and note boundary annotations, limiting their robustness in zero-shot scenarios and producing poor transitions between phonemes and notes. Moreover, they also lack effective multi-level style control via diverse prompts. To overcome these challenges, we introduce TCSinger 2, a multi-task multilingual zero-shot SVS model with style transfer and style control based on various prompts. TCSinger 2 mainly includes three key modules: 1) Blurred Boundary Content (BBC) Encoder, predicts duration, extends content embedding, and applies masking to the boundaries to enable smooth transitions. 2) Custom Audio Encoder, uses contrastive learning to extract aligned representations from singing, speech, and textual prompts. 3) Flow-based Custom Transformer, leverages Cus-MOE, with F0 supervision, enhancing both the synthesis quality and style modeling of the generated singing voice. Experimental results show that TCSinger 2 outperforms baseline models in both subjective and objective metrics across multiple related tasks. Singing voice samples are available at https://aaronz345.github.io/TCSinger2Demo/.
comment: Accepted by Findings of ACL 2025
LLLMs: A Data-Driven Survey of Evolving Research on Limitations of Large Language Models
Large language model (LLM) research has grown rapidly, along with increasing concern about their limitations such as failures in reasoning, hallucinations, and limited multilingual capability. While prior reviews have addressed these issues, they often focus on individual limitations or consider them within the broader context of evaluating overall model performance. This survey addresses the gap by presenting a data-driven, semi-automated review of research on limitations of LLMs (LLLMs) from 2022 to 2025, using a bottom-up approach. From a corpus of 250,000 ACL and arXiv papers, we extract 14,648 relevant limitation papers using keyword filtering and LLM-based classification, validated against expert labels. Using topic clustering (via two approaches, HDBSCAN+BERTopic and LlooM), we identify between 7 and 15 prominent types of limitations discussed in recent LLM research across the ACL and arXiv datasets. We find that LLM-related research increases nearly sixfold in ACL and nearly fifteenfold in arXiv between 2022 and 2025, while LLLMs research grows even faster, by a factor of over 12 in ACL and nearly 28 in arXiv. Reasoning remains the most studied limitation, followed by generalization, hallucination, bias, and security. The distribution of topics in the ACL dataset stays relatively stable over time, while arXiv shifts toward safety and controllability (with topics like security risks, alignment, hallucinations, knowledge editing), and multimodality between 2022 and 2025. We offer a quantitative view of trends in LLM limitations research and release a dataset of annotated abstracts and a validated methodology, available at: https://github.com/a-kostikova/LLLMs-Survey.
Modular Sentence Encoders: Separating Language Specialization from Cross-Lingual Alignment ACL 2025
Multilingual sentence encoders (MSEs) are commonly obtained by training multilingual language models to map sentences from different languages into a shared semantic space. As such, they are subject to curse of multilinguality, a loss of monolingual representational accuracy due to parameter sharing. Another limitation of MSEs is the trade-off between different task performance: cross-lingual alignment training distorts the optimal monolingual structure of semantic spaces of individual languages, harming the utility of sentence embeddings in monolingual tasks; cross-lingual tasks, such as cross-lingual semantic similarity and zero-shot transfer for sentence classification, may also require conflicting cross-lingual alignment strategies. In this work, we address both issues by means of modular training of sentence encoders. We first train language-specific monolingual modules to mitigate negative interference between languages (i.e., the curse). We then align all non-English sentence embeddings to the English by training cross-lingual alignment adapters, preventing interference with monolingual specialization from the first step. We train the cross-lingual adapters with two different types of data to resolve the conflicting requirements of different cross-lingual tasks. Monolingual and cross-lingual results on semantic text similarity and relatedness, bitext mining and sentence classification show that our modular solution achieves better and more balanced performance across all the tasks compared to full-parameter training of monolithic multilingual sentence encoders, especially benefiting low-resource languages.
comment: Accepted for ACL 2025 main conference
Versatile Framework for Song Generation with Prompt-based Control
Song generation focuses on producing controllable high-quality songs based on various prompts. However, existing methods struggle to generate vocals and accompaniments with prompt-based control and proper alignment. Additionally, they fall short in supporting various tasks. To address these challenges, we introduce VersBand, a multi-task song generation framework for synthesizing high-quality, aligned songs with prompt-based control. VersBand comprises these primary models: 1) VocalBand, a decoupled model, leverages the flow-matching method for generating singing styles, pitches, and mel-spectrograms, allowing fast, high-quality vocal generation with style control. 2) AccompBand, a flow-based transformer model, incorporates the Band-MOE, selecting suitable experts for enhanced quality, alignment, and control. This model allows for generating controllable, high-quality accompaniments aligned with vocals. 3) Two generation models, LyricBand for lyrics and MelodyBand for melodies, contribute to the comprehensive multi-task song generation system, allowing for extensive control based on multiple prompts. Experimental results demonstrate that VersBand performs better over baseline models across multiple song generation tasks using objective and subjective metrics. Audio samples are available at https://aaronz345.github.io/VersBandDemo.
LLaMAs Have Feelings Too: Unveiling Sentiment and Emotion Representations in LLaMA Models Through Probing
Large Language Models (LLMs) have rapidly become central to NLP, demonstrating their ability to adapt to various tasks through prompting techniques, including sentiment analysis. However, we still have a limited understanding of how these models capture sentiment-related information. This study probes the hidden layers of Llama models to pinpoint where sentiment features are most represented and to assess how this affects sentiment analysis. Using probe classifiers, we analyze sentiment encoding across layers and scales, identifying the layers and pooling methods that best capture sentiment signals. Our results show that sentiment information is most concentrated in mid-layers for binary polarity tasks, with detection accuracy increasing up to 14% over prompting techniques. Additionally, we find that in decoder-only models, the last token is not consistently the most informative for sentiment encoding. Finally, this approach enables sentiment tasks to be performed with memory requirements reduced by an average of 57%. These insights contribute to a broader understanding of sentiment in LLMs, suggesting layer-specific probing as an effective approach for sentiment tasks beyond prompting, with potential to enhance model utility and reduce memory requirements.
TCSinger: Zero-Shot Singing Voice Synthesis with Style Transfer and Multi-Level Style Control EMNLP 2024
Zero-shot singing voice synthesis (SVS) with style transfer and style control aims to generate high-quality singing voices with unseen timbres and styles (including singing method, emotion, rhythm, technique, and pronunciation) from audio and text prompts. However, the multifaceted nature of singing styles poses a significant challenge for effective modeling, transfer, and control. Furthermore, current SVS models often fail to generate singing voices rich in stylistic nuances for unseen singers. To address these challenges, we introduce TCSinger, the first zero-shot SVS model for style transfer across cross-lingual speech and singing styles, along with multi-level style control. Specifically, TCSinger proposes three primary modules: 1) the clustering style encoder employs a clustering vector quantization model to stably condense style information into a compact latent space; 2) the Style and Duration Language Model (S\&D-LM) concurrently predicts style information and phoneme duration, which benefits both; 3) the style adaptive decoder uses a novel mel-style adaptive normalization method to generate singing voices with enhanced details. Experimental results show that TCSinger outperforms all baseline models in synthesis quality, singer similarity, and style controllability across various tasks, including zero-shot style transfer, multi-level style control, cross-lingual style transfer, and speech-to-singing style transfer. Singing voice samples can be accessed at https://aaronz345.github.io/TCSingerDemo/.
comment: Accepted by EMNLP 2024
StyleSinger: Style Transfer for Out-of-Domain Singing Voice Synthesis AAAI 2024
Style transfer for out-of-domain (OOD) singing voice synthesis (SVS) focuses on generating high-quality singing voices with unseen styles (such as timbre, emotion, pronunciation, and articulation skills) derived from reference singing voice samples. However, the endeavor to model the intricate nuances of singing voice styles is an arduous task, as singing voices possess a remarkable degree of expressiveness. Moreover, existing SVS methods encounter a decline in the quality of synthesized singing voices in OOD scenarios, as they rest upon the assumption that the target vocal attributes are discernible during the training phase. To overcome these challenges, we propose StyleSinger, the first singing voice synthesis model for zero-shot style transfer of out-of-domain reference singing voice samples. StyleSinger incorporates two critical approaches for enhanced effectiveness: 1) the Residual Style Adaptor (RSA) which employs a residual quantization module to capture diverse style characteristics in singing voices, and 2) the Uncertainty Modeling Layer Normalization (UMLN) to perturb the style attributes within the content representation during the training phase and thus improve the model generalization. Our extensive evaluations in zero-shot style transfer undeniably establish that StyleSinger outperforms baseline models in both audio quality and similarity to the reference singing voice samples. Access to singing voice samples can be found at https://aaronz345.github.io/StyleSingerDemo/.
comment: Accepted by AAAI 2024
Beyond Prompting: An Efficient Embedding Framework for Open-Domain Question Answering ACL 2025
Large language models have recently pushed open domain question answering (ODQA) to new frontiers. However, prevailing retriever-reader pipelines often depend on multiple rounds of prompt level instructions, leading to high computational overhead, instability, and suboptimal retrieval coverage. In this paper, we propose EmbQA, an embedding-level framework that alleviates these shortcomings by enhancing both the retriever and the reader. Specifically, we refine query representations via lightweight linear layers under an unsupervised contrastive learning objective, thereby reordering retrieved passages to highlight those most likely to contain correct answers. Additionally, we introduce an exploratory embedding that broadens the model's latent semantic space to diversify candidate generation and employs an entropy-based selection mechanism to choose the most confident answer automatically. Extensive experiments across three open-source LLMs, three retrieval methods, and four ODQA benchmarks demonstrate that EmbQA substantially outperforms recent baselines in both accuracy and efficiency.
comment: Accepted in ACL 2025 Main
Human-Computer Interaction
Guiding Generative Storytelling with Knowledge Graphs
Large Language Models (LLMs) have shown great potential in automated story generation, but challenges remain in maintaining long-form coherence and providing users with intuitive and effective control. Retrieval-Augmented Generation (RAG) has proven effective in reducing hallucinations in text generation; however, the use of structured data to support generative storytelling remains underexplored. This paper investigates how knowledge graphs (KGs) can enhance LLM-based storytelling by improving narrative quality and enabling user-driven modifications. We propose a KG-assisted storytelling pipeline and evaluate its effectiveness through a user study with 15 participants. Participants created their own story prompts, generated stories, and edited knowledge graphs to shape their narratives. Through quantitative and qualitative analysis, our findings demonstrate that knowledge graphs significantly enhance story quality in action-oriented and structured narratives within our system settings. Additionally, editing the knowledge graph increases users' sense of control, making storytelling more engaging, interactive, and playful.
comment: This manuscript was submitted for peer review in January 2025
Generative Knowledge Production Pipeline Driven by Academic Influencers
Generative AI transforms knowledge production, validation, and dissemination, raising academic integrity and credibility concerns. This study examines 53 academic influencer videos that reached 5.3 million viewers to identify an emerging, structured, implementation-ready pipeline balancing originality, ethical compliance, and human-AI collaboration despite the disruptive impacts. Findings highlight generative AI's potential to automate publication workflows and democratize participation in knowledge production while challenging traditional scientific norms. Academic influencers emerge as key intermediaries in this paradigm shift, connecting bottom-up practices with institutional policies to improve adaptability. Accordingly, the study proposes a generative publication production pipeline and a policy framework for co-intelligence adaptation and reinforcing credibility-centered standards in AI-powered research. These insights support scholars, educators, and policymakers in understanding AI's transformative impact by advocating responsible and innovation-driven knowledge production. Additionally, they reveal pathways for automating best practices, optimizing scholarly workflows, and fostering creativity in academic research and publication.
comment: 15 pages, 1 figure, 2 tables, Horizon Europe NGI funding
Can LLMs and humans be friends? Uncovering factors affecting human-AI intimacy formation
Large language models (LLMs) are increasingly being used in conversational roles, yet little is known about how intimacy emerges in human-LLM interactions. Although previous work emphasized the importance of self-disclosure in human-chatbot interaction, it is questionable whether gradual and reciprocal self-disclosure is also helpful in human-LLM interaction. Thus, this study examined three possible aspects contributing to intimacy formation: gradual self-disclosure, reciprocity, and naturalness. Study 1 explored the impact of mutual, gradual self-disclosure with 29 users and a vanilla LLM. Study 2 adopted self-criticism methods for more natural responses and conducted a similar experiment with 53 users. Results indicate that gradual self-disclosure significantly enhances perceived social intimacy, regardless of persona reciprocity. Moreover, participants perceived utterances generated with self-criticism as more natural compared to those of vanilla LLMs; self-criticism fostered higher intimacy in early stages. Also, we observed that excessive empathetic expressions occasionally disrupted immersion, pointing to the importance of response calibration during intimacy formation.
comment: 30 pages, 2figures
A 3D Mobile Crowdsensing Framework for Sustainable Urban Digital Twins
In this article, we propose a 3D mobile crowdsensing (3D-MCS) framework aimed at sustainable urban digital twins (UDTs). The framework comprises four key mechanisms: (1) the 3D-MCS mechanism, consisting of active and passive models; (2) the Geohash-based spatial information management mechanism; (3) the dynamic point cloud integration mechanism for UDTs; and (4) the web-based real-time visualizer for 3D-MCS and UDTs. The active sensing model features a gamified 3D-MCS approach, where participants collect point cloud data through an augmented reality territory coloring game. In contrast, the passive sensing model employs a wearable 3D-MCS approach, where participants wear smartphones around their necks without disrupting daily activities. The spatial information management mechanism efficiently partitions the space into regions using Geohash. The dynamic point cloud integration mechanism incorporates point clouds collected by 3D-MCS into UDTs through global and local point cloud registration. Finally, we evaluated the proposed framework through real-world experiments. We verified the effectiveness of the proposed 3D-MCS models from the perspectives of subjective evaluation and data collection and analysis. Furthermore, we analyzed the performance of the dynamic point cloud integration using a dataset.
comment: 8 pages, 18 figures, 3 tables
Category-aware EEG image generation based on wavelet transform and contrast semantic loss
Reconstructing visual stimuli from EEG signals is a crucial step in realizing brain-computer interfaces. In this paper, we propose a transformer-based EEG signal encoder integrating the Discrete Wavelet Transform (DWT) and the gating mechanism. Guided by the feature alignment and category-aware fusion losses, this encoder is used to extract features related to visual stimuli from EEG signals. Subsequently, with the aid of a pre-trained diffusion model, these features are reconstructed into visual stimuli. To verify the effectiveness of the model, we conducted EEG-to-image generation and classification tasks using the THINGS-EEG dataset. To address the limitations of quantitative analysis at the semantic level, we combined WordNet-based classification and semantic similarity metrics to propose a novel semantic-based score, emphasizing the ability of our model to transfer neural activities into visual representations. Experimental results show that our model significantly improves semantic alignment and classification accuracy, which achieves a maximum single-subject accuracy of 43\%, outperforming other state-of-the-art methods. The source code and supplementary material is available at https://github.com/zes0v0inn/DWT_EEG_Reconstruction/tree/main.
SignBot: Learning Human-to-Humanoid Sign Language Interaction
Sign language is a natural and visual form of language that uses movements and expressions to convey meaning, serving as a crucial means of communication for individuals who are deaf or hard-of-hearing (DHH). However, the number of people proficient in sign language remains limited, highlighting the need for technological advancements to bridge communication gaps and foster interactions with minorities. Based on recent advancements in embodied humanoid robots, we propose SignBot, a novel framework for human-robot sign language interaction. SignBot integrates a cerebellum-inspired motion control component and a cerebral-oriented module for comprehension and interaction. Specifically, SignBot consists of: 1) Motion Retargeting, which converts human sign language datasets into robot-compatible kinematics; 2) Motion Control, which leverages a learning-based paradigm to develop a robust humanoid control policy for tracking sign language gestures; and 3) Generative Interaction, which incorporates translator, responser, and generator of sign language, thereby enabling natural and effective communication between robots and humans. Simulation and real-world experimental results demonstrate that SignBot can effectively facilitate human-robot interaction and perform sign language motions with diverse robots and datasets. SignBot represents a significant advancement in automatic sign language interaction on embodied humanoid robot platforms, providing a promising solution to improve communication accessibility for the DHH community.
Effects of Theory of Mind and Prosocial Beliefs on Steering Human-Aligned Behaviors of LLMs in Ultimatum Games
Large Language Models (LLMs) have shown potential in simulating human behaviors and performing theory-of-mind (ToM) reasoning, a crucial skill for complex social interactions. In this study, we investigate the role of ToM reasoning in aligning agentic behaviors with human norms in negotiation tasks, using the ultimatum game as a controlled environment. We initialized LLM agents with different prosocial beliefs (including Greedy, Fair, and Selfless) and reasoning methods like chain-of-thought (CoT) and varying ToM levels, and examined their decision-making processes across diverse LLMs, including reasoning models like o3-mini and DeepSeek-R1 Distilled Qwen 32B. Results from 2,700 simulations indicated that ToM reasoning enhances behavior alignment, decision-making consistency, and negotiation outcomes. Consistent with previous findings, reasoning models exhibit limited capability compared to models with ToM reasoning, different roles of the game benefits with different orders of ToM reasoning. Our findings contribute to the understanding of ToM's role in enhancing human-AI interaction and cooperative decision-making. The code used for our experiments can be found at https://github.com/Stealth-py/UltimatumToM.
comment: 17 pages, 1 figure, 6 tables
Locating Risk: Task Designers and the Challenge of Risk Disclosure in RAI Content Work SC
As AI systems are increasingly tested and deployed in open-ended and high-stakes domains, crowd workers are often tasked with responsible AI (RAI) content work. These tasks include labeling violent content, moderating disturbing text, or simulating harmful behavior for red teaming exercises to shape AI system behaviors. While prior efforts have highlighted the risks to worker well-being associated with RAI content work, far less attention has been paid to how these risks are communicated to workers. Existing transparency frameworks and guidelines such as model cards, datasheets, and crowdworksheets focus on documenting model information and dataset collection processes, but they overlook an important aspect of disclosing well-being risks to workers. In the absence of standard workflows or clear guidance, the consistent application of content warnings, consent flows, or other forms of well-being risk disclosure remain unclear. This study investigates how task designers approach risk disclosure in crowdsourced RAI tasks. Drawing on interviews with 23 task designers across academic and industry sectors, we examine how well-being risk is recognized, interpreted, and communicated in practice. Our findings surface a need to support task designers in identifying and communicating well-being risk not only to support crowdworker well-being but also to strengthen the ethical integrity and technical efficacy of AI development pipelines.
comment: Under submission at CSCW 2026
WikiGap: Promoting Epistemic Equity by Surfacing Knowledge Gaps Between English Wikipedia and other Language Editions
With more than 11 times as many pageviews as the next, English Wikipedia dominates global knowledge access relative to other language editions. Readers are prone to assuming English Wikipedia as a superset of all language editions, leading many to prefer it even when their primary language is not English. Other language editions, however, comprise complementary facts rooted in their respective cultures and media environments, which are marginalized in English Wikipedia. While Wikipedia's user interface enables switching between language editions through its Interlanguage Link (ILL) system, it does not reveal to readers that other language editions contain valuable, complementary information. We present WikiGap, a system that surfaces complementary facts sourced from other Wikipedias within the English Wikipedia interface. Specifically, by combining a recent multilingual information-gap discovery method with a user-centered design, WikiGap enables access to complementary information from French, Russian, and Chinese Wikipedia. In a mixed-methods study (n=21), WikiGap significantly improved fact-finding accuracy, reduced task time, and received a 32-point higher usability score relative to Wikipedia's current ILL-based navigation system. Participants reported increased awareness of the availability of complementary information in non-English editions and reconsidered the completeness of English Wikipedia. WikiGap thus paves the way for improved epistemic equity across language editions.
How Students (Really) Use ChatGPT: Uncovering Experiences Among Undergraduate Students
This study investigates how undergraduate students engage with ChatGPT in self directed learning contexts. Analyzing naturalistic interaction logs, we identify five dominant use categories of ChatGPT information seeking, content generation, language refinement, meta cognitive engagement, and conversational repair. Behavioral modeling reveals that structured, goal driven tasks like coding, multiple choice solving, and job application writing are strong predictors of continued use. Drawing on Self-Directed Learning (SDL) and the Uses and Gratifications Theory (UGT), we show how students actively manage ChatGPTs affordances and limitations through prompt adaptation, follow-ups, and emotional regulation. Rather than disengaging after breakdowns, students often persist through clarification and repair, treating the assistant as both tool and learning partner. We also offer design and policy recommendations to support transparent, responsive, and pedagogically grounded integration of generative AI in higher education.
FeatureSense: Protecting Speaker Attributes in Always-On Audio Sensing System
Audio is a rich sensing modality that is useful for a variety of human activity recognition tasks. However, the ubiquitous nature of smartphones and smart speakers with always-on microphones has led to numerous privacy concerns and a lack of trust in deploying these audio-based sensing systems. This paper addresses this critical challenge of preserving user privacy when using audio for sensing applications while maintaining utility. While prior work focuses primarily on protecting recoverable speech content, we show that sensitive speaker-specific attributes such as age and gender can still be inferred after masking speech and propose a comprehensive privacy evaluation framework to assess this speaker attribute leakage. We design and implement FeatureSense, an open-source library that provides a set of generalizable privacy-aware audio features that can be used for wide range of sensing applications. We present an adaptive task-specific feature selection algorithm that optimizes the privacy-utility-cost trade-off based on the application requirements. Through our extensive evaluation, we demonstrate the high utility of FeatureSense across a diverse set of sensing tasks. Our system outperforms existing privacy techniques by 60.6% in preserving user-specific privacy. This work provides a foundational framework for ensuring trust in audio sensing by enabling effective privacy-aware audio classification systems.
GPTFootprint: Increasing Consumer Awareness of the Environmental Impacts of LLMs
With the growth of AI, researchers are studying how to mitigate its environmental impact, primarily by proposing policy changes and increasing awareness among developers. However, research on AI end users is limited. Therefore, we introduce GPTFootprint, a browser extension that aims to increase consumer awareness of the significant water and energy consumption of LLMs, and reduce unnecessary LLM usage. GPTFootprint displays a dynamically updating visualization of the resources individual users consume through their ChatGPT queries. After a user reaches a set query limit, a popup prompts them to take a break from ChatGPT. In a week-long user study, we found that GPTFootprint increases people's awareness of environmental impact, but has limited success in decreasing ChatGPT usage. This research demonstrates the potential for individual-level interventions to contribute to the broader goal of sustainable AI usage, and provides insights into the effectiveness of awareness-based behavior modification strategies in the context of LLMs.
comment: Published in Proceedings of the Extended Abstracts of the CHI Conference on Human Factors in Computing System
Beyond the Prototype: Challenges of Long-Term Integration of Visual Analytics in Civic Spaces
Despite the recognized benefits of visual analytics systems in supporting data-driven decision-making, their deployment in real-world civic contexts often faces significant barriers. Beyond technical challenges such as resource constraints and development complexity, sociotechnical factors, including organizational hierarchies, misalignment between designers and stakeholders, and concerns around technology adoption hinder their sustained use. In this work, we reflect on our collective experiences of designing, developing, and deploying visual analytics systems in the civic domain and discuss challenges across design and adoption aspects. We emphasize the need for deeper integration strategies, equitable stakeholder engagement, and sustainable implementation frameworks to bridge the gap between research and practice.
Towards Tangible Immersion for Cobot Programming-by-Demonstration: Visual, Tactile and Haptic Interfaces for Mixed-Reality Cobot Automation in Semiconductor Manufacturing
Sensor-based reactive and hybrid approaches have proven a promising line of study to address imperfect knowledge in grasping and manipulation. However the reactive approaches are usually tightly coupled to a particular embodiment making transfer of knowledge difficult. This paper proposes a paradigm for modeling and execution of reactive manipulation actions, which makes knowledge transfer to different embodiments possible while retaining the reactive capabilities of the embodiments. The proposed approach extends the idea of control primitives coordinated by a state machine by introducing an embodiment independent layer of abstraction. Abstract manipulation primitives constitute a vocabulary of atomic, embodiment independent actions, which can be coordinated using state machines to describe complex actions. To obtain embodiment specific models, the abstract state machines are automatically translated to embodiment specific models, such that full capabilities of each platform can be utilized. The strength of the manipulation primitives paradigm is demonstrated by developing a set of corresponding embodiment specific primitives for object transport, including a complex reactive grasping primitive. The robustness of the approach is experimentally studied in emptying of a box filled with several unknown objects. The embodiment independence is studied by performing a manipulation task on two different platforms using the same abstract description.
comment: 4 Pages, 5 Figures
MythTriage: Scalable Detection of Opioid Use Disorder Myths on a Video-Sharing Platform
Understanding the prevalence of misinformation in health topics online can inform public health policies and interventions. However, measuring such misinformation at scale remains a challenge, particularly for high-stakes but understudied topics like opioid-use disorder (OUD)--a leading cause of death in the U.S. We present the first large-scale study of OUD-related myths on YouTube, a widely-used platform for health information. With clinical experts, we validate 8 pervasive myths and release an expert-labeled video dataset. To scale labeling, we introduce MythTriage, an efficient triage pipeline that uses a lightweight model for routine cases and defers harder ones to a high-performing, but costlier, large language model (LLM). MythTriage achieves up to 0.86 macro F1-score while estimated to reduce annotation time and financial cost by over 76% compared to experts and full LLM labeling. We analyze 2.9K search results and 343K recommendations, uncovering how myths persist on YouTube and offering actionable insights for public health and platform moderation.
comment: 34 pages, 14 figures, 21 tables. In submission
Designing AI Tools for Clinical Care Teams to Support Serious Illness Conversations with Older Adults in the Emergency Department
Serious illness conversations (SICs), discussions between clinical care teams and patients with serious, life-limiting illnesses about their values, goals, and care preferences, are critical for patient-centered care. Without these conversations, patients often receive aggressive interventions that may not align with their goals. Clinical care teams face significant barriers when conducting serious illness conversations with older adult patients in Emergency Department (ED) settings, where most older adult patients lack documented treatment goals. To understand current practices and identify AI support opportunities, we conducted interviews with two domain experts and nine ED clinical care team members. Through thematic analysis, we characterized a four-phase serious illness conversation workflow (identification, preparation, conduction, documentation) and identified key needs and challenges at each stage. Clinical care teams struggle with fragmented EHR data access, time constraints, emotional preparation demands, and documentation burdens. While participants expressed interest in AI tools for information synthesis, conversational support, and automated documentation, they emphasized preserving human connection and clinical autonomy. We present design guidelines for AI tools supporting SIC workflows that fit within existing clinical practices. This work contributes empirical understanding of ED-based serious illness conversations and provides design considerations for AI in high-stakes clinical environments.
Curate, Connect, Inquire: A System for Findable Accessible Interoperable and Reusable (FAIR) Human-Robot Centered Datasets ICRA 2025
The rapid growth of AI in robotics has amplified the need for high-quality, reusable datasets, particularly in human-robot interaction (HRI) and AI-embedded robotics. While more robotics datasets are being created, the landscape of open data in the field is uneven. This is due to a lack of curation standards and consistent publication practices, which makes it difficult to discover, access, and reuse robotics data. To address these challenges, this paper presents a curation and access system with two main contributions: (1) a structured methodology to curate, publish, and integrate FAIR (Findable, Accessible, Interoperable, Reusable) human-centered robotics datasets; and (2) a ChatGPT-powered conversational interface trained with the curated datasets metadata and documentation to enable exploration, comparison robotics datasets and data retrieval using natural language. Developed based on practical experience curating datasets from robotics labs within Texas Robotics at the University of Texas at Austin, the system demonstrates the value of standardized curation and persistent publication of robotics data. The system's evaluation suggests that access and understandability of human-robotics data are significantly improved. This work directly aligns with the goals of the HCRL @ ICRA 2025 workshop and represents a step towards more human-centered access to data for embodied AI.
comment: 7 pages (excluding references), 8 pages (including references); 5 figures; accepted to the ICRA 2025 Workshop on Human-Centered Robot Learning in the Era of Big Data and Large Models
Let Them Down Easy! Contextual Effects of LLM Guardrails on User Perceptions and Preferences
Current LLMs are trained to refuse potentially harmful input queries regardless of whether users actually had harmful intents, causing a tradeoff between safety and user experience. Through a study of 480 participants evaluating 3,840 query-response pairs, we examine how different refusal strategies affect user perceptions across varying motivations. Our findings reveal that response strategy largely shapes user experience, while actual user motivation has negligible impact. Partial compliance -- providing general information without actionable details -- emerges as the optimal strategy, reducing negative user perceptions by over 50% to flat-out refusals. Complementing this, we analyze response patterns of 9 state-of-the-art LLMs and evaluate how 6 reward models score different refusal strategies, demonstrating that models rarely deploy partial compliance naturally and reward models currently undervalue it. This work demonstrates that effective guardrails require focusing on crafting thoughtful refusals rather than detecting intent, offering a path toward AI safety mechanisms that ensure both safety and sustained user engagement.
Feeling Guilty Being a c(ai)borg: Navigating the Tensions Between Guilt and Empowerment in AI Use
This paper explores the emotional, ethical and practical dimensions of integrating Artificial Intelligence (AI) into personal and professional workflows, focusing on the concept of feeling guilty as a 'c(ai)borg' - a human augmented by AI. Inspired by Donna Haraway's Cyborg Manifesto, the study explores how AI challenges traditional notions of creativity, originality and intellectual labour. Using an autoethnographic approach, the authors reflect on their year-long experiences with AI tools, revealing a transition from initial guilt and reluctance to empowerment through skill-building and transparency. Key findings highlight the importance of basic academic skills, advanced AI literacy and honest engagement with AI results. The c(ai)borg vision advocates for a future where AI is openly embraced as a collaborative partner, fostering innovation and equity while addressing issues of access and agency. By reframing guilt as growth, the paper calls for a thoughtful and inclusive approach to AI integration.
comment: 16 pages,
Artificial Empathy: AI based Mental Health
Many people suffer from mental health problems but not everyone seeks professional help or has access to mental health care. AI chatbots have increasingly become a go-to for individuals who either have mental disorders or simply want someone to talk to. This paper presents a study on participants who have previously used chatbots and a scenario-based testing of large language model (LLM) chatbots. Our findings indicate that AI chatbots were primarily utilized as a "Five minute therapist" or as a non-judgmental companion. Participants appreciated the anonymity and lack of judgment from chatbots. However, there were concerns about privacy and the security of sensitive information. The scenario-based testing of LLM chatbots highlighted additional issues. Some chatbots were consistently reassuring, used emojis and names to add a personal touch, and were quick to suggest seeking professional help. However, there were limitations such as inconsistent tone, occasional inappropriate responses (e.g., casual or romantic), and a lack of crisis sensitivity, particularly in recognizing red flag language and escalating responses appropriately. These findings can inform both the technology and mental health care industries on how to better utilize AI chatbots to support individuals during challenging emotional periods.
Bottom-Up Perspectives on AI Governance: Insights from User Reviews of AI Products
With the growing importance of AI governance, numerous high-level frameworks and principles have been articulated by policymakers, institutions, and expert communities to guide the development and application of AI. While such frameworks offer valuable normative orientation, they may not fully capture the practical concerns of those who interact with AI systems in organizational and operational contexts. To address this gap, this study adopts a bottom-up approach to explore how governance-relevant themes are expressed in user discourse. Drawing on over 100,000 user reviews of AI products from G2.com, we apply BERTopic to extract latent themes and identify those most semantically related to AI governance. The analysis reveals a diverse set of governance-relevant topics spanning both technical and non-technical domains. These include concerns across organizational processes-such as planning, coordination, and communication-as well as stages of the AI value chain, including deployment infrastructure, data handling, and analytics. The findings show considerable overlap with institutional AI governance and ethics frameworks on issues like privacy and transparency, but also surface overlooked areas such as project management, strategy development, and customer interaction. This highlights the need for more empirically grounded, user-centered approaches to AI governance-approaches that complement normative models by capturing how governance unfolds in applied settings. By foregrounding how governance is enacted in practice, this study contributes to more inclusive and operationally grounded approaches to AI governance and digital policy.
Multi-Analyte, Swab-based Automated Wound Monitor with AI
Diabetic foot ulcers (DFUs), a class of chronic wounds, affect ~750,000 individuals every year in the US alone and identifying non-healing DFUs that develop to chronic wounds early can drastically reduce treatment costs and minimize risks of amputation. There is therefore a pressing need for diagnostic tools that can detect non-healing DFUs early. We develop a low cost, multi-analyte 3D printed assays seamlessly integrated on swabs that can identify non-healing DFUs and a Wound Sensor iOS App - an innovative mobile application developed for the controlled acquisition and automated analysis of wound sensor data. By comparing both the original base image (before exposure to the wound) and the wound-exposed image, we developed automated computer vision techniques to compare density changes between the two assay images, which allow us to automatically determine the severity of the wound. The iOS app ensures accurate data collection and presents actionable insights, despite challenges such as variations in camera configurations and ambient conditions. The proposed integrated sensor and iOS app will allow healthcare professionals to monitor wound conditions real-time, track healing progress, and assess critical parameters related to wound care.
comment: 4 pages conference paper
Explorer: Scaling Exploration-driven Web Trajectory Synthesis for Multimodal Web Agents ACL 2025
Recent success in large multimodal models (LMMs) has sparked promising applications of agents capable of autonomously completing complex web tasks. While open-source LMM agents have made significant advances in offline evaluation benchmarks, their performance still falls substantially short of human-level capabilities in more realistic online settings. A key bottleneck is the lack of diverse and large-scale trajectory-level datasets across various domains, which are expensive to collect. In this paper, we address this challenge by developing a scalable recipe to synthesize the largest and most diverse trajectory-level dataset to date, containing over 94K successful multimodal web trajectories, spanning 49K unique URLs, 720K screenshots, and 33M web elements. In particular, we leverage extensive web exploration and refinement to obtain diverse task intents. The average cost is 28 cents per successful trajectory, making it affordable to a wide range of users in the community. Leveraging this dataset, we train Explorer, a multimodal web agent, and demonstrate strong performance on both offline and online web agent benchmarks such as Mind2Web-Live, Multimodal-Mind2Web, and MiniWob++. Additionally, our experiments highlight data scaling as a key driver for improving web agent capabilities. We hope this study makes state-of-the-art LMM-based agent research at a larger scale more accessible.
comment: ACL 2025 (Findings)
Contrastive Learning for Task-Independent SpeechLLM-Pretraining
Large language models (LLMs) excel in natural language processing but adapting these LLMs to speech processing tasks efficiently is not straightforward. Direct task-specific fine-tuning is limited by overfitting risks, data requirements, and computational costs. To address these challenges, we propose a scalable, two-stage training approach: (1) A task-independent speech pretraining stage using contrastive learning to align text and speech representations over all layers, followed by (2) a task-specific fine-tuning stage requiring minimal data. This approach outperforms traditional ASR pretraining and enables the model to surpass models specialized on speech translation and question answering while being trained on only 10% of the task-specific data.
In Dialogue with Intelligence: Rethinking Large Language Models as Collective Knowledge
Large Language Models (LLMs) are typically analysed through architectural, behavioural, or training-data lenses. This article offers a theoretical and experiential re-framing: LLMs as dynamic instantiations of Collective human Knowledge (CK), where intelligence is evoked through dialogue rather than stored statically. Drawing on concepts from neuroscience and AI, and grounded in sustained interaction with ChatGPT-4, I examine emergent dialogue patterns, the implications of fine-tuning, and the notion of co-augmentation: mutual enhancement between human and machine cognition. This perspective offers a new lens for understanding interaction, representation, and agency in contemporary AI systems.
comment: 6 pages, 1 table
Why is plausibility surprisingly problematic as an XAI criterion?
Explainable artificial intelligence (XAI) is motivated by the problem of making AI predictions understandable, transparent, and responsible, as AI becomes increasingly impactful in society and high-stakes domains. The evaluation and optimization criteria of XAI are gatekeepers for XAI algorithms to achieve their expected goals and should withstand rigorous inspection. To improve the scientific rigor of XAI, we conduct a critical examination of a common XAI criterion: plausibility. Plausibility assesses how convincing the AI explanation is to humans, and is usually quantified by metrics of feature localization or feature correlation. Our examination shows that plausibility is invalid to measure explainability, and human explanations are not the ground truth for XAI, because doing so ignores the necessary assumptions underpinning an explanation. Our examination further reveals the consequences of using plausibility as an XAI criterion, including increasing misleading explanations that manipulate users, deteriorating users' trust in the AI system, undermining human autonomy, being unable to achieve complementary human-AI task performance, and abandoning other possible approaches of enhancing understandability. Due to the invalidity of measurements and the unethical issues, this position paper argues that the community should stop using plausibility as a criterion for the evaluation and optimization of XAI algorithms. We also delineate new research approaches to improve XAI in trustworthiness, understandability, and utility to users, including complementary human-AI task performance.
What's the Difference? Supporting Users in Identifying the Effects of Prompt and Model Changes Through Token Patterns ACL'25
Prompt engineering for large language models is challenging, as even small prompt perturbations or model changes can significantly impact the generated output texts. Existing evaluation methods of LLM outputs, either automated metrics or human evaluation, have limitations, such as providing limited insights or being labor-intensive. We propose Spotlight, a new approach that combines both automation and human analysis. Based on data mining techniques, we automatically distinguish between random (decoding) variations and systematic differences in language model outputs. This process provides token patterns that describe the systematic differences and guide the user in manually analyzing the effects of their prompts and changes in models efficiently. We create three benchmarks to quantitatively test the reliability of token pattern extraction methods and demonstrate that our approach provides new insights into established prompt data. From a human-centric perspective, through demonstration studies and a user study, we show that our token pattern approach helps users understand the systematic differences of language model outputs. We are further able to discover relevant differences caused by prompt and model changes (e.g. related to gender or culture), thus supporting the prompt engineering process and human-centric model behavior research.
comment: Accepted at ACL'25
Can Code Outlove Blood? An LLM-based VR Experience to Prompt Reflection on Parental Verbal Abuse
Parental verbal abuse leaves lasting emotional impacts, yet current therapeutic approaches often lack immersive self-reflection opportunities. To address this, we developed a VR experience powered by LLMs to foster reflection on parental verbal abuse. Participants with relevant experiences engage in a dual-phase VR experience: first assuming the role of a verbally abusive parent, interacting with an LLM portraying a child, then observing the LLM reframing abusive dialogue into warm, supportive expressions as a nurturing parent. A qualitative study with 12 participants showed that the experience encourages reflection on their past experiences and fosters supportive emotions. However, these effects vary with participants' personal histories, emphasizing the need for greater personalization in AI-driven emotional support. This study explores the use of LLMs in immersive environment to promote emotional reflection, offering insights into the design of AI-driven emotional support systems.
comment: 8 pages, 5 figures, accetped by 30th International Symposium on Electronic Art (ISEA 2025)
GUICourse: From General Vision Language Models to Versatile GUI Agents
Utilizing Graphic User Interface (GUI) for human-computer interaction is essential for accessing a wide range of digital tools. Recent advancements in Vision Language Models (VLMs) highlight the compelling potential to develop versatile agents to help humans finish GUI navigation tasks. However, current VLMs are challenged in terms of fundamental abilities (OCR and grounding) and GUI knowledge (the functions and control methods of GUI elements), preventing them from becoming practical GUI agents. To solve these challenges, we contribute GUICourse, a suite of datasets to train visual-based GUI agents from general VLMs. First, we introduce the GUIEnv dataset to strengthen the OCR and grounding capabilities of VLMs. Then, we introduce the GUIAct and GUIChat datasets to enrich their knowledge of GUI components and interactions. Experiments demonstrate that our GUI agents have better performance on common GUI tasks than their baseline VLMs. Even the small-size GUI agent (with 3.1B parameters) can still work well on single-step and multi-step GUI tasks. Finally, we analyze the different varieties in the training stage of this agent by ablation study. Our source codes and datasets are released at https://github.com/yiye3/GUICourse.
Expansion Quantization Network: An Efficient Micro-emotion Annotation and Detection Framework
Text emotion detection constitutes a crucial foundation for advancing artificial intelligence from basic comprehension to the exploration of emotional reasoning. Most existing emotion detection datasets rely on manual annotations, which are associated with high costs, substantial subjectivity, and severe label imbalances. This is particularly evident in the inadequate annotation of micro-emotions and the absence of emotional intensity representation, which fail to capture the rich emotions embedded in sentences and adversely affect the quality of downstream task completion. By proposing an all-labels and training-set label regression method, we map label values to energy intensity levels, thereby fully leveraging the learning capabilities of machine models and the interdependencies among labels to uncover multiple emotions within samples. This led to the establishment of the Emotion Quantization Network (EQN) framework for micro-emotion detection and annotation. Using five commonly employed sentiment datasets, we conducted comparative experiments with various models, validating the broad applicability of our framework within NLP machine learning models. Based on the EQN framework, emotion detection and annotation are conducted on the GoEmotions dataset. A comprehensive comparison with the results from Google literature demonstrates that the EQN framework possesses a high capability for automatic detection and annotation of micro-emotions. The EQN framework is the first to achieve automatic micro-emotion annotation with energy-level scores, providing strong support for further emotion detection analysis and the quantitative research of emotion computing.
comment: 3.1 There is a misstatement in the EQN Framework section
HiLDe: Intentional Code Generation via Human-in-the-Loop Decoding
While AI programming tools hold the promise of increasing programmers' capabilities and productivity to a remarkable degree, they often exclude users from essential decision-making processes, causing many to effectively "turn off their brains" and over-rely on solutions provided by these systems. These behaviors can have severe consequences in critical domains, like software security. We propose Human-in-the-loop Decoding, a novel interaction technique that allows users to observe and directly influence LLM decisions during code generation, in order to align the model's output with their personal requirements. We implement this technique in HiLDe, a code completion assistant that highlights critical decisions made by the LLM and provides local alternatives for the user to explore. In a within-subjects study (N=18) on security-related tasks, we found that HiLDe led participants to generate significantly fewer vulnerabilities and better align code generation with their goals compared to a traditional code completion assistant.
comment: 10 pages, 6 figures
Feedback-Aware Monte Carlo Tree Search for Efficient Information Seeking in Goal-Oriented Conversations
Effective decision-making and problem-solving in conversational systems require the ability to identify and acquire missing information through targeted questioning. A key challenge lies in efficiently narrowing down a large space of possible outcomes by posing questions that minimize uncertainty. To address this, we introduce a novel framework that leverages Large Language Models (LLMs) to generate information-seeking questions, with Monte Carlo Tree Search (MCTS) to strategically select questions that maximize information gain, as a part of inference-time planning. Our primary contribution includes a hierarchical feedback mechanism that exploits past interaction patterns to guide future strategy. Specifically, each new problem is mapped to a cluster based on semantic similarity, and our UCT (Upper Confidence bound for Trees) formulation employs a cluster-specific bonus reward to prioritize successful question trajectories that have proven effective for similar problems in the past. Extensive empirical evaluation across medical diagnosis and technical troubleshooting domains shows that our method achieves an average of 12% improvement in success rates and about 10x reduction in the number of LLM calls made for planning per conversation, compared to the state of the art. An additional 8% gain in success rate is observed on average when we start with a constrained set of possibilities. Our results underscore the efficacy of feedback-aware MCTS in enhancing information-seeking in goal-oriented dialogues.
If Eleanor Rigby Had Met ChatGPT: A Study on Loneliness in a Post-LLM World ACL 2025
Warning: this paper discusses content related, but not limited to, violence, sex, and suicide. Loneliness, or the lack of fulfilling relationships, significantly impacts a person's mental and physical well-being and is prevalent worldwide. Previous research suggests that large language models (LLMs) may help mitigate loneliness. However, we argue that the use of widespread LLMs in services like ChatGPT is more prevalent--and riskier, as they are not designed for this purpose. To explore this, we analysed user interactions with ChatGPT outside of its marketed use as a task-oriented assistant. In dialogues classified as lonely, users frequently (37%) sought advice or validation, and received good engagement. However, ChatGPT failed in sensitive scenarios, like responding appropriately to suicidal ideation or trauma. We also observed a 35% higher incidence of toxic content, with women being 22x more likely to be targeted than men. Our findings underscore ethical and legal questions about this technology, and note risks like radicalisation or further isolation. We conclude with recommendations to research and industry to address loneliness.
comment: Accepted to ACL 2025 (main)
Position: Beyond Assistance - Reimagining LLMs as Ethical and Adaptive Co-Creators in Mental Health Care
This position paper argues for a fundamental shift in how Large Language Models (LLMs) are integrated into the mental health care domain. We advocate for their role as co-creators rather than mere assistive tools. While LLMs have the potential to enhance accessibility, personalization, and crisis intervention, their adoption remains limited due to concerns about bias, evaluation, over-reliance, dehumanization, and regulatory uncertainties. To address these challenges, we propose two structured pathways: SAFE-i (Supportive, Adaptive, Fair, and Ethical Implementation) Guidelines for ethical and responsible deployment, and HAAS-e (Human-AI Alignment and Safety Evaluation) Framework for multidimensional, human-centered assessment. SAFE-i provides a blueprint for data governance, adaptive model engineering, and real-world integration, ensuring LLMs align with clinical and ethical standards. HAAS-e introduces evaluation metrics that go beyond technical accuracy to measure trustworthiness, empathy, cultural sensitivity, and actionability. We call for the adoption of these structured approaches to establish a responsible and scalable model for LLM-driven mental health support, ensuring that AI complements, rather than replaces, human expertise.
Position: Beyond Assistance -- Reimagining LLMs as Ethical and Adaptive Co-Creators in Mental Health Care
This position paper argues for a fundamental shift in how Large Language Models (LLMs) are integrated into the mental health care domain. We advocate for their role as co-creators rather than mere assistive tools. While LLMs have the potential to enhance accessibility, personalization, and crisis intervention, their adoption remains limited due to concerns about bias, evaluation, over-reliance, dehumanization, and regulatory uncertainties. To address these challenges, we propose two structured pathways: SAFE-i (Supportive, Adaptive, Fair, and Ethical Implementation) Guidelines for ethical and responsible deployment, and HAAS-e (Human-AI Alignment and Safety Evaluation) Framework for multidimensional, human-centered assessment. SAFE-i provides a blueprint for data governance, adaptive model engineering, and real-world integration, ensuring LLMs align with clinical and ethical standards. HAAS-e introduces evaluation metrics that go beyond technical accuracy to measure trustworthiness, empathy, cultural sensitivity, and actionability. We call for the adoption of these structured approaches to establish a responsible and scalable model for LLM-driven mental health support, ensuring that AI complements, rather than replaces, human expertise.
Image and Video Processing
Beyond Pretty Pictures: Combined Single- and Multi-Image Super-resolution for Sentinel-2 Images
Super-resolution aims to increase the resolution of satellite images by reconstructing high-frequency details, which go beyond na\"ive upsampling. This has particular relevance for Earth observation missions like Sentinel-2, which offer frequent, regular coverage at no cost; but at coarse resolution. Its pixel footprint is too large to capture small features like houses, streets, or hedge rows. To address this, we present SEN4X, a hybrid super-resolution architecture that combines the advantages of single-image and multi-image techniques. It combines temporal oversampling from repeated Sentinel-2 acquisitions with a learned prior from high-resolution Pl\'eiades Neo data. In doing so, SEN4X upgrades Sentinel-2 imagery to 2.5 m ground sampling distance. We test the super-resolved images on urban land-cover classification in Hanoi, Vietnam. We find that they lead to a significant performance improvement over state-of-the-art super-resolution baselines.
Contrast-Invariant Self-supervised Segmentation for Quantitative Placental MRI
Accurate placental segmentation is essential for quantitative analysis of the placenta. However, this task is particularly challenging in T2*-weighted placental imaging due to: (1) weak and inconsistent boundary contrast across individual echoes; (2) the absence of manual ground truth annotations for all echo times; and (3) motion artifacts across echoes caused by fetal and maternal movement. In this work, we propose a contrast-augmented segmentation framework that leverages complementary information across multi-echo T2*-weighted MRI to learn robust, contrast-invariant representations. Our method integrates: (i) masked autoencoding (MAE) for self-supervised pretraining on unlabeled multi-echo slices; (ii) masked pseudo-labeling (MPL) for unsupervised domain adaptation across echo times; and (iii) global-local collaboration to align fine-grained features with global anatomical context. We further introduce a semantic matching loss to encourage representation consistency across echoes of the same subject. Experiments on a clinical multi-echo placental MRI dataset demonstrate that our approach generalizes effectively across echo times and outperforms both single-echo and naive fusion baselines. To our knowledge, this is the first work to systematically exploit multi-echo T2*-weighted MRI for placental segmentation.
comment: 8 pages, 20 figures
TumorGen: Boundary-Aware Tumor-Mask Synthesis with Rectified Flow Matching
Tumor data synthesis offers a promising solution to the shortage of annotated medical datasets. However, current approaches either limit tumor diversity by using predefined masks or employ computationally expensive two-stage processes with multiple denoising steps, causing computational inefficiency. Additionally, these methods typically rely on binary masks that fail to capture the gradual transitions characteristic of tumor boundaries. We present TumorGen, a novel Boundary-Aware Tumor-Mask Synthesis with Rectified Flow Matching for efficient 3D tumor synthesis with three key components: a Boundary-Aware Pseudo Mask Generation module that replaces strict binary masks with flexible bounding boxes; a Spatial-Constraint Vector Field Estimator that simultaneously synthesizes tumor latents and masks using rectified flow matching to ensure computational efficiency; and a VAE-guided mask refiner that enhances boundary realism. TumorGen significantly improves computational efficiency by requiring fewer sampling steps while maintaining pathological accuracy through coarse and fine-grained spatial constraints. Experimental results demonstrate TumorGen's superior performance over existing tumor synthesis methods in both efficiency and realism, offering a valuable contribution to AI-driven cancer diagnostics.
comment: 10 pages, 4 figures
Model-Guided Network with Cluster-Based Operators for Spatio-Spectral Super-Resolution
This paper addresses the problem of reconstructing a high-resolution hyperspectral image from a low-resolution multispectral observation. While spatial super-resolution and spectral super-resolution have been extensively studied, joint spatio-spectral super-resolution remains relatively explored. We propose an end-to-end model-driven framework that explicitly decomposes the joint spatio-spectral super-resolution problem into spatial super-resolution, spectral super-resolution and fusion tasks. Each sub-task is addressed by unfolding a variational-based approach, where the operators involved in the proximal gradient iterative scheme are replaced with tailored learnable modules. In particular, we design an upsampling operator for spatial super-resolution based on classical back-projection algorithms, adapted to handle arbitrary scaling factors. Spectral reconstruction is performed using learnable cluster-based upsampling and downsampling operators. For image fusion, we integrate low-frequency estimation and high-frequency injection modules to combine the spatial and spectral information from spatial super-resolution and spectral super-resolution outputs. Additionally, we introduce an efficient nonlocal post-processing step that leverages image self-similarity by combining a multi-head attention mechanism with residual connections. Extensive evaluations on several datasets and sampling factors demonstrate the effectiveness of our approach. The source code will be available at https://github.com/TAMI-UIB/JSSUNet
pyMEAL: A Multi-Encoder Augmentation-Aware Learning for Robust and Generalizable Medical Image Translation
Medical imaging is critical for diagnostics, but clinical adoption of advanced AI-driven imaging faces challenges due to patient variability, image artifacts, and limited model generalization. While deep learning has transformed image analysis, 3D medical imaging still suffers from data scarcity and inconsistencies due to acquisition protocols, scanner differences, and patient motion. Traditional augmentation uses a single pipeline for all transformations, disregarding the unique traits of each augmentation and struggling with large data volumes. To address these challenges, we propose a Multi-encoder Augmentation-Aware Learning (MEAL) framework that leverages four distinct augmentation variants processed through dedicated encoders. Three fusion strategies such as concatenation (CC), fusion layer (FL), and adaptive controller block (BD) are integrated to build multi-encoder models that combine augmentation-specific features before decoding. MEAL-BD uniquely preserves augmentation-aware representations, enabling robust, protocol-invariant feature learning. As demonstrated in a Computed Tomography (CT)-to-T1-weighted Magnetic Resonance Imaging (MRI) translation study, MEAL-BD consistently achieved the best performance on both unseen- and predefined-test data. On both geometric transformations (like rotations and flips) and non-augmented inputs, MEAL-BD outperformed other competing methods, achieving higher mean peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) scores. These results establish MEAL as a reliable framework for preserving structural fidelity and generalizing across clinically relevant variability. By reframing augmentation as a source of diverse, generalizable features, MEAL supports robust, protocol-invariant learning, advancing clinically reliable medical imaging solutions.
comment: 36 pages, 9 figures, 2 tables
Efficient RAW Image Deblurring with Adaptive Frequency Modulation NeurIPS 2025
Image deblurring plays a crucial role in enhancing visual clarity across various applications. Although most deep learning approaches primarily focus on sRGB images, which inherently lose critical information during the image signal processing pipeline, RAW images, being unprocessed and linear, possess superior restoration potential but remain underexplored. Deblurring RAW images presents unique challenges, particularly in handling frequency-dependent blur while maintaining computational efficiency. To address these issues, we propose Frequency Enhanced Network (FrENet), a framework specifically designed for RAW-to-RAW deblurring that operates directly in the frequency domain. We introduce a novel Adaptive Frequency Positional Modulation module, which dynamically adjusts frequency components according to their spectral positions, thereby enabling precise control over the deblurring process. Additionally, frequency domain skip connections are adopted to further preserve high-frequency details. Experimental results demonstrate that FrENet surpasses state-of-the-art deblurring methods in RAW image deblurring, achieving significantly better restoration quality while maintaining high efficiency in terms of reduced MACs. Furthermore, FrENet's adaptability enables it to be extended to sRGB images, where it delivers comparable or superior performance compared to methods specifically designed for sRGB data. The code will be available at https://github.com/WenlongJiao/FrENet .
comment: Preprint. Submitted to NeurIPS 2025
A Novel Coronary Artery Registration Method Based on Super-pixel Particle Swarm Optimization
Percutaneous Coronary Intervention (PCI) is a minimally invasive procedure that improves coronary blood flow and treats coronary artery disease. Although PCI typically requires 2D X-ray angiography (XRA) to guide catheter placement at real-time, computed tomography angiography (CTA) may substantially improve PCI by providing precise information of 3D vascular anatomy and status. To leverage real-time XRA and detailed 3D CTA anatomy for PCI, accurate multimodal image registration of XRA and CTA is required, to guide the procedure and avoid complications. This is a challenging process as it requires registration of images from different geometrical modalities (2D -> 3D and vice versa), with variations in contrast and noise levels. In this paper, we propose a novel multimodal coronary artery image registration method based on a swarm optimization algorithm, which effectively addresses challenges such as large deformations, low contrast, and noise across these imaging modalities. Our algorithm consists of two main modules: 1) preprocessing of XRA and CTA images separately, and 2) a registration module based on feature extraction using the Steger and Superpixel Particle Swarm Optimization algorithms. Our technique was evaluated on a pilot dataset of 28 pairs of XRA and CTA images from 10 patients who underwent PCI. The algorithm was compared with four state-of-the-art (SOTA) methods in terms of registration accuracy, robustness, and efficiency. Our method outperformed the selected SOTA baselines in all aspects. Experimental results demonstrate the significant effectiveness of our algorithm, surpassing the previous benchmarks and proposes a novel clinical approach that can potentially have merit for improving patient outcomes in coronary artery disease.
Deep learning-derived arterial input function
Dynamic positron emission tomography (PET) imaging combined with radiotracer kinetic modeling is a powerful technique for visualizing biological processes in the brain, offering valuable insights into brain functions and neurological disorders such as Alzheimer's and Parkinson's diseases. Accurate kinetic modeling relies heavily on the use of a metabolite-corrected arterial input function (AIF), which typically requires invasive and labor-intensive arterial blood sampling. While alternative non-invasive approaches have been proposed, they often compromise accuracy or still necessitate at least one invasive blood sampling. In this study, we present the deep learning-derived arterial input function (DLIF), a deep learning framework capable of estimating a metabolite-corrected AIF directly from dynamic PET image sequences without any blood sampling. We validated DLIF using existing dynamic PET patient data. We compared DLIF and resulting parametric maps against ground truth measurements. Our evaluation shows that DLIF achieves accurate and robust AIF estimation. By leveraging deep learning's ability to capture complex temporal dynamics and incorporating prior knowledge of typical AIF shapes through basis functions, DLIF provides a rapid, accurate, and entirely non-invasive alternative to traditional AIF measurement methods.
Beyond the LUMIR challenge: The pathway to foundational registration models
Medical image challenges have played a transformative role in advancing the field, catalyzing algorithmic innovation and establishing new performance standards across diverse clinical applications. Image registration, a foundational task in neuroimaging pipelines, has similarly benefited from the Learn2Reg initiative. Building on this foundation, we introduce the Large-scale Unsupervised Brain MRI Image Registration (LUMIR) challenge, a next-generation benchmark designed to assess and advance unsupervised brain MRI registration. Distinct from prior challenges that leveraged anatomical label maps for supervision, LUMIR removes this dependency by providing over 4,000 preprocessed T1-weighted brain MRIs for training without any label maps, encouraging biologically plausible deformation modeling through self-supervision. In addition to evaluating performance on 590 held-out test subjects, LUMIR introduces a rigorous suite of zero-shot generalization tasks, spanning out-of-domain imaging modalities (e.g., FLAIR, T2-weighted, T2*-weighted), disease populations (e.g., Alzheimer's disease), acquisition protocols (e.g., 9.4T MRI), and species (e.g., macaque brains). A total of 1,158 subjects and over 4,000 image pairs were included for evaluation. Performance was assessed using both segmentation-based metrics (Dice coefficient, 95th percentile Hausdorff distance) and landmark-based registration accuracy (target registration error). Across both in-domain and zero-shot tasks, deep learning-based methods consistently achieved state-of-the-art accuracy while producing anatomically plausible deformation fields. The top-performing deep learning-based models demonstrated diffeomorphic properties and inverse consistency, outperforming several leading optimization-based methods, and showing strong robustness to most domain shifts, the exception being a drop in performance on out-of-domain contrasts.
Sparsity-Driven Parallel Imaging Consistency for Improved Self-Supervised MRI Reconstruction ICIP
Physics-driven deep learning (PD-DL) models have proven to be a powerful approach for improved reconstruction of rapid MRI scans. In order to train these models in scenarios where fully-sampled reference data is unavailable, self-supervised learning has gained prominence. However, its application at high acceleration rates frequently introduces artifacts, compromising image fidelity. To mitigate this shortcoming, we propose a novel way to train PD-DL networks via carefully-designed perturbations. In particular, we enhance the k-space masking idea of conventional self-supervised learning with a novel consistency term that assesses the model's ability to accurately predict the added perturbations in a sparse domain, leading to more reliable and artifact-free reconstructions. The results obtained from the fastMRI knee and brain datasets show that the proposed training strategy effectively reduces aliasing artifacts and mitigates noise amplification at high acceleration rates, outperforming state-of-the-art self-supervised methods both visually and quantitatively.
comment: IEEE International Conference on Image Processing (ICIP), 2025
Adaptive Voxelization for Transform coding of 3D Gaussian splatting data
We present a novel compression framework for 3D Gaussian splatting (3DGS) data that leverages transform coding tools originally developed for point clouds. Contrary to existing 3DGS compression methods, our approach can produce compressed 3DGS models at multiple bitrates in a computationally efficient way. Point cloud voxelization is a discretization technique that point cloud codecs use to improve coding efficiency while enabling the use of fast transform coding algorithms. We propose an adaptive voxelization algorithm tailored to 3DGS data, to avoid the inefficiencies introduced by uniform voxelization used in point cloud codecs. We ensure the positions of larger volume Gaussians are represented at high resolution, as these significantly impact rendering quality. Meanwhile, a low-resolution representation is used for dense regions with smaller Gaussians, which have a relatively lower impact on rendering quality. This adaptive voxelization approach significantly reduces the number of Gaussians and the bitrate required to encode the 3DGS data. After voxelization, many Gaussians are moved or eliminated. Thus, we propose to fine-tune/recolor the remaining 3DGS attributes with an initialization that can reduce the amount of retraining required. Experimental results on pre-trained datasets show that our proposed compression framework outperforms existing methods.
Multi-Analyte, Swab-based Automated Wound Monitor with AI
Diabetic foot ulcers (DFUs), a class of chronic wounds, affect ~750,000 individuals every year in the US alone and identifying non-healing DFUs that develop to chronic wounds early can drastically reduce treatment costs and minimize risks of amputation. There is therefore a pressing need for diagnostic tools that can detect non-healing DFUs early. We develop a low cost, multi-analyte 3D printed assays seamlessly integrated on swabs that can identify non-healing DFUs and a Wound Sensor iOS App - an innovative mobile application developed for the controlled acquisition and automated analysis of wound sensor data. By comparing both the original base image (before exposure to the wound) and the wound-exposed image, we developed automated computer vision techniques to compare density changes between the two assay images, which allow us to automatically determine the severity of the wound. The iOS app ensures accurate data collection and presents actionable insights, despite challenges such as variations in camera configurations and ambient conditions. The proposed integrated sensor and iOS app will allow healthcare professionals to monitor wound conditions real-time, track healing progress, and assess critical parameters related to wound care.
comment: 4 pages conference paper
Lightweight Convolutional Neural Networks for Retinal Disease Classification
Retinal diseases such as Diabetic Retinopathy (DR) and Macular Hole (MH) significantly impact vision and affect millions worldwide. Early detection is crucial, as DR, a complication of diabetes, damages retinal blood vessels, potentially leading to blindness, while MH disrupts central vision, affecting tasks like reading and facial recognition. This paper employed two lightweight and efficient Convolution Neural Network architectures, MobileNet and NASNetMobile, for the classification of Normal, DR, and MH retinal images. The models were trained on the RFMiD dataset, consisting of 3,200 fundus images, after undergoing preprocessing steps such as resizing, normalization, and augmentation. To address data scarcity, this study leveraged transfer learning and data augmentation techniques, enhancing model generalization and performance. The experimental results demonstrate that MobileNetV2 achieved the highest accuracy of 90.8%, outperforming NASNetMobile, which achieved 89.5% accuracy. These findings highlight the effectiveness of CNNs in retinal disease classification, providing a foundation for AI-assisted ophthalmic diagnosis and early intervention.
DLiPath: A Benchmark for the Comprehensive Assessment of Donor Liver Based on Histopathological Image Dataset ACM MM2025
Pathologists comprehensive evaluation of donor liver biopsies provides crucial information for accepting or discarding potential grafts. However, rapidly and accurately obtaining these assessments intraoperatively poses a significant challenge for pathologists. Features in donor liver biopsies, such as portal tract fibrosis, total steatosis, macrovesicular steatosis, and hepatocellular ballooning are correlated with transplant outcomes, yet quantifying these indicators suffers from substantial inter- and intra-observer variability. To address this, we introduce DLiPath, the first benchmark for comprehensive donor liver assessment based on a histopathology image dataset. We collected and publicly released 636 whole slide images from 304 donor liver patients at the Department of Pathology, the Third Xiangya Hospital, with expert annotations for key pathological features (including cholestasis, portal tract fibrosis, portal inflammation, total steatosis, macrovesicular steatosis, and hepatocellular ballooning). We selected nine state-of-the-art multiple-instance learning (MIL) models based on the DLiPath dataset as baselines for extensive comparative analysis. The experimental results demonstrate that several MIL models achieve high accuracy across donor liver assessment indicators on DLiPath, charting a clear course for future automated and intelligent donor liver assessment research. Data and code are available at https://github.com/panliangrui/ACM_MM_2025.
comment: Submit to ACM MM2025
Edge Computing for Physics-Driven AI in Computational MRI: A Feasibility Study
Physics-driven artificial intelligence (PD-AI) reconstruction methods have emerged as the state-of-the-art for accelerating MRI scans, enabling higher spatial and temporal resolutions. However, the high resolution of these scans generates massive data volumes, leading to challenges in transmission, storage, and real-time processing. This is particularly pronounced in functional MRI, where hundreds of volumetric acquisitions further exacerbate these demands. Edge computing with FPGAs presents a promising solution for enabling PD-AI reconstruction near the MRI sensors, reducing data transfer and storage bottlenecks. However, this requires optimization of PD-AI models for hardware efficiency through quantization and bypassing traditional FFT-based approaches, which can be a limitation due to their computational demands. In this work, we propose a novel PD-AI computational MRI approach optimized for FPGA-based edge computing devices, leveraging 8-bit complex data quantization and eliminating redundant FFT/IFFT operations. Our results show that this strategy improves computational efficiency while maintaining reconstruction quality comparable to conventional PD-AI methods, and outperforms standard clinical methods. Our approach presents an opportunity for high-resolution MRI reconstruction on resource-constrained devices, highlighting its potential for real-world deployment.
comment: IEEE International Conference on Future Internet of Things and Cloud (FiCloud), 2025
DCTdiff: Intriguing Properties of Image Generative Modeling in the DCT Space ICML 2025
This paper explores image modeling from the frequency space and introduces DCTdiff, an end-to-end diffusion generative paradigm that efficiently models images in the discrete cosine transform (DCT) space. We investigate the design space of DCTdiff and reveal the key design factors. Experiments on different frameworks (UViT, DiT), generation tasks, and various diffusion samplers demonstrate that DCTdiff outperforms pixel-based diffusion models regarding generative quality and training efficiency. Remarkably, DCTdiff can seamlessly scale up to 512$\times$512 resolution without using the latent diffusion paradigm and beats latent diffusion (using SD-VAE) with only 1/4 training cost. Finally, we illustrate several intriguing properties of DCT image modeling. For example, we provide a theoretical proof of why 'image diffusion can be seen as spectral autoregression', bridging the gap between diffusion and autoregressive models. The effectiveness of DCTdiff and the introduced properties suggest a promising direction for image modeling in the frequency space. The code is https://github.com/forever208/DCTdiff.
comment: ICML 2025
LesionDiffusion: Towards Text-controlled General Lesion Synthesis
Fully-supervised lesion recognition methods in medical imaging face challenges due to the reliance on large annotated datasets, which are expensive and difficult to collect. To address this, synthetic lesion generation has become a promising approach. However, existing models struggle with scalability, fine-grained control over lesion attributes, and the generation of complex structures. We propose LesionDiffusion, a text-controllable lesion synthesis framework for 3D CT imaging that generates both lesions and corresponding masks. By utilizing a structured lesion report template, our model provides greater control over lesion attributes and supports a wider variety of lesion types. We introduce a dataset of 1,505 annotated CT scans with paired lesion masks and structured reports, covering 14 lesion types across 8 organs. LesionDiffusion consists of two components: a lesion mask synthesis network (LMNet) and a lesion inpainting network (LINet), both guided by lesion attributes and image features. Extensive experiments demonstrate that LesionDiffusion significantly improves segmentation performance, with strong generalization to unseen lesion types and organs, outperforming current state-of-the-art models. Code is available at https://github.com/HengruiTianSJTU/LesionDiffusion.
comment: 10 pages, 4 figures
CAE-Net: Generalized Deepfake Image Detection using Convolution and Attention Mechanisms with Spatial and Frequency Domain Features
Effective deepfake detection tools are becoming increasingly essential to the growing usage of deepfakes in unethical practices. There exists a wide range of deepfake generation techniques, which makes it challenging to develop an accurate universal detection mechanism. The 2025 IEEE Signal Processing Cup (\textit{DFWild-Cup} competition) provided a diverse dataset of deepfake images containing significant class imbalance. The images in the dataset are generated from multiple deepfake image generators, for training machine learning model(s) to emphasize the generalization of deepfake detection. To this end, we proposed a disjoint set-based multistage training method to address the class imbalance and devised an ensemble-based architecture \emph{CAE-Net}. Our architecture consists of a convolution- and attention-based ensemble network, and employs three different neural network architectures: EfficientNet, Data-Efficient Image Transformer (DeiT), and ConvNeXt with wavelet transform to capture both local and global features of deepfakes. We visualize the specific regions that these models focus on for classification using Grad-CAM, and empirically demonstrate the effectiveness of these models in grouping real and fake images into cohesive clusters using t-SNE plots. Individually, the EfficientNet B0 architecture has achieved 90.79\% accuracy, whereas the ConvNeXt and the DeiT architecture have achieved 89.49\% and 89.32\% accuracy, respectively. With these networks, our weighted ensemble model achieves an excellent accuracy of 94.63\% on the validation dataset of the SP Cup 2025 competition. The equal error rate of 4.72\% and the Area Under the ROC curve of 97.37\% further confirm the stability of our proposed method. Finally, the robustness of our proposed model against adversarial perturbation attacks is tested as well, showing the inherent defensive properties of the ensemble approach.
comment: Under review in Elsevier Journal of Visual Communication and Image Representation
On The Causal Network Of Face-selective Regions In Human Brain During Movie Watching
Understanding the causal interactions in some brain tasks, such as face processing, remains a challenging and ambiguous process for researchers. In this study, we address this issue by employing a novel causal discovery method -Directed Acyclic Graphs via M-matrices for Acyclicity (DAGMA)- to investigate the causal structure of the brain's face-selective network and gain deeper insights into its mechanism. Using fMRI data of natural movie stimuli, we extract causal network of face-selective regions and analyze how frames containing faces influence this network. Specifically, our findings reveal that the presence of faces in the stimuli, causally affects the number of identified connections within the network. Additionally, our results highlight the crucial role of subcortical regions in satisfying causal sufficiency, emphasizing it's importance in causal studies of brain. This study provides a new perspective on understanding the causal architecture of the face-selective network of the brain, motivating further research on neural causality.
Computer Vision and Pattern Recognition
TextRegion: Text-Aligned Region Tokens from Frozen Image-Text Models
Image-text models excel at image-level tasks but struggle with detailed visual understanding. While these models provide strong visual-language alignment, segmentation models like SAM2 offer precise spatial boundaries for objects. To this end, we propose TextRegion, a simple, effective, and training-free framework that combines the strengths of image-text models and SAM2 to generate powerful text-aligned region tokens. These tokens enable detailed visual understanding while preserving open-vocabulary capabilities. They can be directly applied to various downstream tasks, including open-world semantic segmentation, referring expression comprehension, and grounding. We conduct extensive evaluations and consistently achieve superior or competitive performance compared to state-of-the-art training-free methods. Additionally, our framework is compatible with many image-text models, making it highly practical and easily extensible as stronger models emerge. Code is available at: https://github.com/avaxiao/TextRegion.
comment: Code is available at: https://github.com/avaxiao/TextRegion
Argus: Vision-Centric Reasoning with Grounded Chain-of-Thought CVPR 2025
Recent advances in multimodal large language models (MLLMs) have demonstrated remarkable capabilities in vision-language tasks, yet they often struggle with vision-centric scenarios where precise visual focus is needed for accurate reasoning. In this paper, we introduce Argus to address these limitations with a new visual attention grounding mechanism. Our approach employs object-centric grounding as visual chain-of-thought signals, enabling more effective goal-conditioned visual attention during multimodal reasoning tasks. Evaluations on diverse benchmarks demonstrate that Argus excels in both multimodal reasoning tasks and referring object grounding tasks. Extensive analysis further validates various design choices of Argus, and reveals the effectiveness of explicit language-guided visual region-of-interest engagement in MLLMs, highlighting the importance of advancing multimodal intelligence from a visual-centric perspective. Project page: https://yunzeman.github.io/argus/
comment: CVPR 2025. Project Page: https://yunzeman.github.io/argus/
MMSI-Bench: A Benchmark for Multi-Image Spatial Intelligence
Spatial intelligence is essential for multimodal large language models (MLLMs) operating in the complex physical world. Existing benchmarks, however, probe only single-image relations and thus fail to assess the multi-image spatial reasoning that real-world deployments demand. We introduce MMSI-Bench, a VQA benchmark dedicated to multi-image spatial intelligence. Six 3D-vision researchers spent more than 300 hours meticulously crafting 1,000 challenging, unambiguous multiple-choice questions from over 120,000 images, each paired with carefully designed distractors and a step-by-step reasoning process. We conduct extensive experiments and thoroughly evaluate 34 open-source and proprietary MLLMs, observing a wide gap: the strongest open-source model attains roughly 30% accuracy and OpenAI's o3 reasoning model reaches 40%, while humans score 97%. These results underscore the challenging nature of MMSI-Bench and the substantial headroom for future research. Leveraging the annotated reasoning processes, we also provide an automated error analysis pipeline that diagnoses four dominant failure modes, including (1) grounding errors, (2) overlap-matching and scene-reconstruction errors, (3) situation-transformation reasoning errors, and (4) spatial-logic errors, offering valuable insights for advancing multi-image spatial intelligence. Project page: https://runsenxu.com/projects/MMSI_Bench .
comment: 34 pages. A comprehensive, fully human-curated, multi-image-based spatial intelligence benchmark with reasoning annotation for MLLMs. Project page: https://runsenxu.com/projects/MMSI_Bench
ZeroGUI: Automating Online GUI Learning at Zero Human Cost
The rapid advancement of large Vision-Language Models (VLMs) has propelled the development of pure-vision-based GUI Agents, capable of perceiving and operating Graphical User Interfaces (GUI) to autonomously fulfill user instructions. However, existing approaches usually adopt an offline learning framework, which faces two core limitations: (1) heavy reliance on high-quality manual annotations for element grounding and action supervision, and (2) limited adaptability to dynamic and interactive environments. To address these limitations, we propose ZeroGUI, a scalable, online learning framework for automating GUI Agent training at Zero human cost. Specifically, ZeroGUI integrates (i) VLM-based automatic task generation to produce diverse training goals from the current environment state, (ii) VLM-based automatic reward estimation to assess task success without hand-crafted evaluation functions, and (iii) two-stage online reinforcement learning to continuously interact with and learn from GUI environments. Experiments on two advanced GUI Agents (UI-TARS and Aguvis) demonstrate that ZeroGUI significantly boosts performance across OSWorld and AndroidLab environments. The code is available at https://github.com/OpenGVLab/ZeroGUI.
Sketch Down the FLOPs: Towards Efficient Networks for Human Sketch CVPR 2025
As sketch research has collectively matured over time, its adaptation for at-mass commercialisation emerges on the immediate horizon. Despite an already mature research endeavour for photos, there is no research on the efficient inference specifically designed for sketch data. In this paper, we first demonstrate existing state-of-the-art efficient light-weight models designed for photos do not work on sketches. We then propose two sketch-specific components which work in a plug-n-play manner on any photo efficient network to adapt them to work on sketch data. We specifically chose fine-grained sketch-based image retrieval (FG-SBIR) as a demonstrator as the most recognised sketch problem with immediate commercial value. Technically speaking, we first propose a cross-modal knowledge distillation network to transfer existing photo efficient networks to be compatible with sketch, which brings down number of FLOPs and model parameters by 97.96% percent and 84.89% respectively. We then exploit the abstract trait of sketch to introduce a RL-based canvas selector that dynamically adjusts to the abstraction level which further cuts down number of FLOPs by two thirds. The end result is an overall reduction of 99.37% of FLOPs (from 40.18G to 0.254G) when compared with a full network, while retaining the accuracy (33.03% vs 32.77%) -- finally making an efficient network for the sparse sketch data that exhibit even fewer FLOPs than the best photo counterpart.
comment: Accepted at CVPR 2025, Project Page: https://subhajitmaity.me/SketchDownTheFLOPs
Puzzled by Puzzles: When Vision-Language Models Can't Take a Hint
Rebus puzzles, visual riddles that encode language through imagery, spatial arrangement, and symbolic substitution, pose a unique challenge to current vision-language models (VLMs). Unlike traditional image captioning or question answering tasks, rebus solving requires multi-modal abstraction, symbolic reasoning, and a grasp of cultural, phonetic and linguistic puns. In this paper, we investigate the capacity of contemporary VLMs to interpret and solve rebus puzzles by constructing a hand-generated and annotated benchmark of diverse English-language rebus puzzles, ranging from simple pictographic substitutions to spatially-dependent cues ("head" over "heels"). We analyze how different VLMs perform, and our findings reveal that while VLMs exhibit some surprising capabilities in decoding simple visual clues, they struggle significantly with tasks requiring abstract reasoning, lateral thinking, and understanding visual metaphors.
Impromptu VLA: Open Weights and Open Data for Driving Vision-Language-Action Models
Vision-Language-Action (VLA) models for autonomous driving show promise but falter in unstructured corner case scenarios, largely due to a scarcity of targeted benchmarks. To address this, we introduce Impromptu VLA. Our core contribution is the Impromptu VLA Dataset: over 80,000 meticulously curated video clips, distilled from over 2M source clips sourced from 8 open-source large-scale datasets. This dataset is built upon our novel taxonomy of four challenging unstructured categories and features rich, planning-oriented question-answering annotations and action trajectories. Crucially, experiments demonstrate that VLAs trained with our dataset achieve substantial performance gains on established benchmarks--improving closed-loop NeuroNCAP scores and collision rates, and reaching near state-of-the-art L2 accuracy in open-loop nuScenes trajectory prediction. Furthermore, our Q&A suite serves as an effective diagnostic, revealing clear VLM improvements in perception, prediction, and planning. Our code, data and models are available at https://github.com/ahydchh/Impromptu-VLA.
comment: Project page: https://github.com/ahydchh/Impromptu-VLA
LoRAShop: Training-Free Multi-Concept Image Generation and Editing with Rectified Flow Transformers
We introduce LoRAShop, the first framework for multi-concept image editing with LoRA models. LoRAShop builds on a key observation about the feature interaction patterns inside Flux-style diffusion transformers: concept-specific transformer features activate spatially coherent regions early in the denoising process. We harness this observation to derive a disentangled latent mask for each concept in a prior forward pass and blend the corresponding LoRA weights only within regions bounding the concepts to be personalized. The resulting edits seamlessly integrate multiple subjects or styles into the original scene while preserving global context, lighting, and fine details. Our experiments demonstrate that LoRAShop delivers better identity preservation compared to baselines. By eliminating retraining and external constraints, LoRAShop turns personalized diffusion models into a practical `photoshop-with-LoRAs' tool and opens new avenues for compositional visual storytelling and rapid creative iteration.
comment: Project Webpage: https://lorashop.github.io/
Rooms from Motion: Un-posed Indoor 3D Object Detection as Localization and Mapping
We revisit scene-level 3D object detection as the output of an object-centric framework capable of both localization and mapping using 3D oriented boxes as the underlying geometric primitive. While existing 3D object detection approaches operate globally and implicitly rely on the a priori existence of metric camera poses, our method, Rooms from Motion (RfM) operates on a collection of un-posed images. By replacing the standard 2D keypoint-based matcher of structure-from-motion with an object-centric matcher based on image-derived 3D boxes, we estimate metric camera poses, object tracks, and finally produce a global, semantic 3D object map. When a priori pose is available, we can significantly improve map quality through optimization of global 3D boxes against individual observations. RfM shows strong localization performance and subsequently produces maps of higher quality than leading point-based and multi-view 3D object detection methods on CA-1M and ScanNet++, despite these global methods relying on overparameterization through point clouds or dense volumes. Rooms from Motion achieves a general, object-centric representation which not only extends the work of Cubify Anything to full scenes but also allows for inherently sparse localization and parametric mapping proportional to the number of objects in a scene.
ThinkGeo: Evaluating Tool-Augmented Agents for Remote Sensing Tasks
Recent progress in large language models (LLMs) has enabled tool-augmented agents capable of solving complex real-world tasks through step-by-step reasoning. However, existing evaluations often focus on general-purpose or multimodal scenarios, leaving a gap in domain-specific benchmarks that assess tool-use capabilities in complex remote sensing use cases. We present ThinkGeo, an agentic benchmark designed to evaluate LLM-driven agents on remote sensing tasks via structured tool use and multi-step planning. Inspired by tool-interaction paradigms, ThinkGeo includes human-curated queries spanning a wide range of real-world applications such as urban planning, disaster assessment and change analysis, environmental monitoring, transportation analysis, aviation monitoring, recreational infrastructure, and industrial site analysis. Each query is grounded in satellite or aerial imagery and requires agents to reason through a diverse toolset. We implement a ReAct-style interaction loop and evaluate both open and closed-source LLMs (e.g., GPT-4o, Qwen2.5) on 436 structured agentic tasks. The benchmark reports both step-wise execution metrics and final answer correctness. Our analysis reveals notable disparities in tool accuracy and planning consistency across models. ThinkGeo provides the first extensive testbed for evaluating how tool-enabled LLMs handle spatial reasoning in remote sensing. Our code and dataset are publicly available
REOrdering Patches Improves Vision Models
Sequence models such as transformers require inputs to be represented as one-dimensional sequences. In vision, this typically involves flattening images using a fixed row-major (raster-scan) order. While full self-attention is permutation-equivariant, modern long-sequence transformers increasingly rely on architectural approximations that break this invariance and introduce sensitivity to patch ordering. We show that patch order significantly affects model performance in such settings, with simple alternatives like column-major or Hilbert curves yielding notable accuracy shifts. Motivated by this, we propose REOrder, a two-stage framework for discovering task-optimal patch orderings. First, we derive an information-theoretic prior by evaluating the compressibility of various patch sequences. Then, we learn a policy over permutations by optimizing a Plackett-Luce policy using REINFORCE. This approach enables efficient learning in a combinatorial permutation space. REOrder improves top-1 accuracy over row-major ordering on ImageNet-1K by up to 3.01% and Functional Map of the World by 13.35%.
Spatial-MLLM: Boosting MLLM Capabilities in Visual-based Spatial Intelligence
Recent advancements in Multimodal Large Language Models (MLLMs) have significantly enhanced performance on 2D visual tasks. However, improving their spatial intelligence remains a challenge. Existing 3D MLLMs always rely on additional 3D or 2.5D data to incorporate spatial awareness, restricting their utility in scenarios with only 2D inputs, such as images or videos. In this paper, we present Spatial-MLLM, a novel framework for visual-based spatial reasoning from purely 2D observations. Unlike conventional video MLLMs which rely on CLIP-based visual encoders optimized for semantic understanding, our key insight is to unleash the strong structure prior from the feed-forward visual geometry foundation model. Specifically, we propose a dual-encoder architecture: a pretrained 2D visual encoder to extract semantic features, and a spatial encoder-initialized from the backbone of the visual geometry model-to extract 3D structure features. A connector then integrates both features into unified visual tokens for enhanced spatial understanding. Furthermore, we propose a space-aware frame sampling strategy at inference time, which selects the spatially informative frames of a video sequence, ensuring that even under limited token length, the model focuses on frames critical for spatial reasoning. Beyond architecture improvements, we construct the Spatial-MLLM-120k dataset and train the model on it using supervised fine-tuning and GRPO. Extensive experiments on various real-world datasets demonstrate that our spatial-MLLM achieves state-of-the-art performance in a wide range of visual-based spatial understanding and reasoning tasks. Project page: https://diankun-wu.github.io/Spatial-MLLM/.
comment: 21 pages
To Trust Or Not To Trust Your Vision-Language Model's Prediction
Vision-Language Models (VLMs) have demonstrated strong capabilities in aligning visual and textual modalities, enabling a wide range of applications in multimodal understanding and generation. While they excel in zero-shot and transfer learning scenarios, VLMs remain susceptible to misclassification, often yielding confident yet incorrect predictions. This limitation poses a significant risk in safety-critical domains, where erroneous predictions can lead to severe consequences. In this work, we introduce TrustVLM, a training-free framework designed to address the critical challenge of estimating when VLM's predictions can be trusted. Motivated by the observed modality gap in VLMs and the insight that certain concepts are more distinctly represented in the image embedding space, we propose a novel confidence-scoring function that leverages this space to improve misclassification detection. We rigorously evaluate our approach across 17 diverse datasets, employing 4 architectures and 2 VLMs, and demonstrate state-of-the-art performance, with improvements of up to 51.87% in AURC, 9.14% in AUROC, and 32.42% in FPR95 compared to existing baselines. By improving the reliability of the model without requiring retraining, TrustVLM paves the way for safer deployment of VLMs in real-world applications. The code will be available at https://github.com/EPFL-IMOS/TrustVLM.
Boosting Domain Incremental Learning: Selecting the Optimal Parameters is All You Need CVPR 2025
Deep neural networks (DNNs) often underperform in real-world, dynamic settings where data distributions change over time. Domain Incremental Learning (DIL) offers a solution by enabling continual model adaptation, with Parameter-Isolation DIL (PIDIL) emerging as a promising paradigm to reduce knowledge conflicts. However, existing PIDIL methods struggle with parameter selection accuracy, especially as the number of domains and corresponding classes grows. To address this, we propose SOYO, a lightweight framework that improves domain selection in PIDIL. SOYO introduces a Gaussian Mixture Compressor (GMC) and Domain Feature Resampler (DFR) to store and balance prior domain data efficiently, while a Multi-level Domain Feature Fusion Network (MDFN) enhances domain feature extraction. Our framework supports multiple Parameter-Efficient Fine-Tuning (PEFT) methods and is validated across tasks such as image classification, object detection, and speech enhancement. Experimental results on six benchmarks demonstrate SOYO's consistent superiority over existing baselines, showcasing its robustness and adaptability in complex, evolving environments. The codes will be released in https://github.com/qwangcv/SOYO.
comment: Accepted at CVPR 2025
DarkDiff: Advancing Low-Light Raw Enhancement by Retasking Diffusion Models for Camera ISP
High-quality photography in extreme low-light conditions is challenging but impactful for digital cameras. With advanced computing hardware, traditional camera image signal processor (ISP) algorithms are gradually being replaced by efficient deep networks that enhance noisy raw images more intelligently. However, existing regression-based models often minimize pixel errors and result in oversmoothing of low-light photos or deep shadows. Recent work has attempted to address this limitation by training a diffusion model from scratch, yet those models still struggle to recover sharp image details and accurate colors. We introduce a novel framework to enhance low-light raw images by retasking pre-trained generative diffusion models with the camera ISP. Extensive experiments demonstrate that our method outperforms the state-of-the-art in perceptual quality across three challenging low-light raw image benchmarks.
MAGREF: Masked Guidance for Any-Reference Video Generation
Video generation has made substantial strides with the emergence of deep generative models, especially diffusion-based approaches. However, video generation based on multiple reference subjects still faces significant challenges in maintaining multi-subject consistency and ensuring high generation quality. In this paper, we propose MAGREF, a unified framework for any-reference video generation that introduces masked guidance to enable coherent multi-subject video synthesis conditioned on diverse reference images and a textual prompt. Specifically, we propose (1) a region-aware dynamic masking mechanism that enables a single model to flexibly handle various subject inference, including humans, objects, and backgrounds, without architectural changes, and (2) a pixel-wise channel concatenation mechanism that operates on the channel dimension to better preserve appearance features. Our model delivers state-of-the-art video generation quality, generalizing from single-subject training to complex multi-subject scenarios with coherent synthesis and precise control over individual subjects, outperforming existing open-source and commercial baselines. To facilitate evaluation, we also introduce a comprehensive multi-subject video benchmark. Extensive experiments demonstrate the effectiveness of our approach, paving the way for scalable, controllable, and high-fidelity multi-subject video synthesis. Code and model can be found at: https://github.com/MAGREF-Video/MAGREF
comment: Project website: https://magref-video.github.io/magref.github.io/
LayerPeeler: Autoregressive Peeling for Layer-wise Image Vectorization
Image vectorization is a powerful technique that converts raster images into vector graphics, enabling enhanced flexibility and interactivity. However, popular image vectorization tools struggle with occluded regions, producing incomplete or fragmented shapes that hinder editability. While recent advancements have explored rule-based and data-driven layer-wise image vectorization, these methods face limitations in vectorization quality and flexibility. In this paper, we introduce LayerPeeler, a novel layer-wise image vectorization approach that addresses these challenges through a progressive simplification paradigm. The key to LayerPeeler's success lies in its autoregressive peeling strategy: by identifying and removing the topmost non-occluded layers while recovering underlying content, we generate vector graphics with complete paths and coherent layer structures. Our method leverages vision-language models to construct a layer graph that captures occlusion relationships among elements, enabling precise detection and description for non-occluded layers. These descriptive captions are used as editing instructions for a finetuned image diffusion model to remove the identified layers. To ensure accurate removal, we employ localized attention control that precisely guides the model to target regions while faithfully preserving the surrounding content. To support this, we contribute a large-scale dataset specifically designed for layer peeling tasks. Extensive quantitative and qualitative experiments demonstrate that LayerPeeler significantly outperforms existing techniques, producing vectorization results with superior path semantics, geometric regularity, and visual fidelity.
comment: Project Page: https://layerpeeler.github.io/
How Animals Dance (When You're Not Looking)
We present a keyframe-based framework for generating music-synchronized, choreography aware animal dance videos. Starting from a few keyframes representing distinct animal poses -- generated via text-to-image prompting or GPT-4o -- we formulate dance synthesis as a graph optimization problem: find the optimal keyframe structure that satisfies a specified choreography pattern of beats, which can be automatically estimated from a reference dance video. We also introduce an approach for mirrored pose image generation, essential for capturing symmetry in dance. In-between frames are synthesized using an video diffusion model. With as few as six input keyframes, our method can produce up to 30 second dance videos across a wide range of animals and music tracks.
comment: Project page: https://how-animals-dance.github.io/
ZPressor: Bottleneck-Aware Compression for Scalable Feed-Forward 3DGS
Feed-forward 3D Gaussian Splatting (3DGS) models have recently emerged as a promising solution for novel view synthesis, enabling one-pass inference without the need for per-scene 3DGS optimization. However, their scalability is fundamentally constrained by the limited capacity of their encoders, leading to degraded performance or excessive memory consumption as the number of input views increases. In this work, we analyze feed-forward 3DGS frameworks through the lens of the Information Bottleneck principle and introduce ZPressor, a lightweight architecture-agnostic module that enables efficient compression of multi-view inputs into a compact latent state $Z$ that retains essential scene information while discarding redundancy. Concretely, ZPressor enables existing feed-forward 3DGS models to scale to over 100 input views at 480P resolution on an 80GB GPU, by partitioning the views into anchor and support sets and using cross attention to compress the information from the support views into anchor views, forming the compressed latent state $Z$. We show that integrating ZPressor into several state-of-the-art feed-forward 3DGS models consistently improves performance under moderate input views and enhances robustness under dense view settings on two large-scale benchmarks DL3DV-10K and RealEstate10K. The video results, code and trained models are available on our project page: https://lhmd.top/zpressor.
comment: Project Page: https://lhmd.top/zpressor, Code: https://github.com/ziplab/ZPressor
PixelThink: Towards Efficient Chain-of-Pixel Reasoning
Existing reasoning segmentation approaches typically fine-tune multimodal large language models (MLLMs) using image-text pairs and corresponding mask labels. However, they exhibit limited generalization to out-of-distribution scenarios without an explicit reasoning process. Although recent efforts leverage reinforcement learning through group-relative policy optimization (GRPO) to enhance reasoning ability, they often suffer from overthinking - producing uniformly verbose reasoning chains irrespective of task complexity. This results in elevated computational costs and limited control over reasoning quality. To address this problem, we propose PixelThink, a simple yet effective scheme that integrates externally estimated task difficulty and internally measured model uncertainty to regulate reasoning generation within a reinforcement learning paradigm. The model learns to compress reasoning length in accordance with scene complexity and predictive confidence. To support comprehensive evaluation, we introduce ReasonSeg-Diff, an extended benchmark with annotated reasoning references and difficulty scores, along with a suite of metrics designed to assess segmentation accuracy, reasoning quality, and efficiency jointly. Experimental results demonstrate that the proposed approach improves both reasoning efficiency and overall segmentation performance. Our work contributes novel perspectives towards efficient and interpretable multimodal understanding. The code and model will be publicly available.
comment: Project Page: https://PixelThink.github.io
FMG-Det: Foundation Model Guided Robust Object Detection ICIP 2025
Collecting high quality data for object detection tasks is challenging due to the inherent subjectivity in labeling the boundaries of an object. This makes it difficult to not only collect consistent annotations across a dataset but also to validate them, as no two annotators are likely to label the same object using the exact same coordinates. These challenges are further compounded when object boundaries are partially visible or blurred, which can be the case in many domains. Training on noisy annotations significantly degrades detector performance, rendering them unusable, particularly in few-shot settings, where just a few corrupted annotations can impact model performance. In this work, we propose FMG-Det, a simple, efficient methodology for training models with noisy annotations. More specifically, we propose combining a multiple instance learning (MIL) framework with a pre-processing pipeline that leverages powerful foundation models to correct labels prior to training. This pre-processing pipeline, along with slight modifications to the detector head, results in state-of-the-art performance across a number of datasets, for both standard and few-shot scenarios, while being much simpler and more efficient than other approaches.
comment: 10 pages, ICIP 2025
AnySplat: Feed-forward 3D Gaussian Splatting from Unconstrained Views
We introduce AnySplat, a feed forward network for novel view synthesis from uncalibrated image collections. In contrast to traditional neural rendering pipelines that demand known camera poses and per scene optimization, or recent feed forward methods that buckle under the computational weight of dense views, our model predicts everything in one shot. A single forward pass yields a set of 3D Gaussian primitives encoding both scene geometry and appearance, and the corresponding camera intrinsics and extrinsics for each input image. This unified design scales effortlessly to casually captured, multi view datasets without any pose annotations. In extensive zero shot evaluations, AnySplat matches the quality of pose aware baselines in both sparse and dense view scenarios while surpassing existing pose free approaches. Moreover, it greatly reduce rendering latency compared to optimization based neural fields, bringing real time novel view synthesis within reach for unconstrained capture settings.Project page: https://city-super.github.io/anysplat/
comment: Project page: https://city-super.github.io/anysplat/
Skin Lesion Phenotyping via Nested Multi-modal Contrastive Learning
We introduce SLIMP (Skin Lesion Image-Metadata Pre-training) for learning rich representations of skin lesions through a novel nested contrastive learning approach that captures complex relationships between images and metadata. Melanoma detection and skin lesion classification based solely on images, pose significant challenges due to large variations in imaging conditions (lighting, color, resolution, distance, etc.) and lack of clinical and phenotypical context. Clinicians typically follow a holistic approach for assessing the risk level of the patient and for deciding which lesions may be malignant and need to be excised, by considering the patient's medical history as well as the appearance of other lesions of the patient. Inspired by this, SLIMP combines the appearance and the metadata of individual skin lesions with patient-level metadata relating to their medical record and other clinically relevant information. By fully exploiting all available data modalities throughout the learning process, the proposed pre-training strategy improves performance compared to other pre-training strategies on downstream skin lesions classification tasks highlighting the learned representations quality.
CLDTracker: A Comprehensive Language Description for Visual Tracking
VOT remains a fundamental yet challenging task in computer vision due to dynamic appearance changes, occlusions, and background clutter. Traditional trackers, relying primarily on visual cues, often struggle in such complex scenarios. Recent advancements in VLMs have shown promise in semantic understanding for tasks like open-vocabulary detection and image captioning, suggesting their potential for VOT. However, the direct application of VLMs to VOT is hindered by critical limitations: the absence of a rich and comprehensive textual representation that semantically captures the target object's nuances, limiting the effective use of language information; inefficient fusion mechanisms that fail to optimally integrate visual and textual features, preventing a holistic understanding of the target; and a lack of temporal modeling of the target's evolving appearance in the language domain, leading to a disconnect between the initial description and the object's subsequent visual changes. To bridge these gaps and unlock the full potential of VLMs for VOT, we propose CLDTracker, a novel Comprehensive Language Description framework for robust visual Tracking. Our tracker introduces a dual-branch architecture consisting of a textual and a visual branch. In the textual branch, we construct a rich bag of textual descriptions derived by harnessing the powerful VLMs such as CLIP and GPT-4V, enriched with semantic and contextual cues to address the lack of rich textual representation. Experiments on six standard VOT benchmarks demonstrate that CLDTracker achieves SOTA performance, validating the effectiveness of leveraging robust and temporally-adaptive vision-language representations for tracking. Code and models are publicly available at: https://github.com/HamadYA/CLDTracker
comment: 47 pages, 9 figures, Information Fusion Journal
DA-VPT: Semantic-Guided Visual Prompt Tuning for Vision Transformers CVPR 2025
Visual Prompt Tuning (VPT) has become a promising solution for Parameter-Efficient Fine-Tuning (PEFT) approach for Vision Transformer (ViT) models by partially fine-tuning learnable tokens while keeping most model parameters frozen. Recent research has explored modifying the connection structures of the prompts. However, the fundamental correlation and distribution between the prompts and image tokens remain unexplored. In this paper, we leverage metric learning techniques to investigate how the distribution of prompts affects fine-tuning performance. Specifically, we propose a novel framework, Distribution Aware Visual Prompt Tuning (DA-VPT), to guide the distributions of the prompts by learning the distance metric from their class-related semantic data. Our method demonstrates that the prompts can serve as an effective bridge to share semantic information between image patches and the class token. We extensively evaluated our approach on popular benchmarks in both recognition and segmentation tasks. The results demonstrate that our approach enables more effective and efficient fine-tuning of ViT models by leveraging semantic information to guide the learning of the prompts, leading to improved performance on various downstream vision tasks.
comment: CVPR 2025
VF-Eval: Evaluating Multimodal LLMs for Generating Feedback on AIGC Videos ACL 2025
MLLMs have been widely studied for video question answering recently. However, most existing assessments focus on natural videos, overlooking synthetic videos, such as AI-generated content (AIGC). Meanwhile, some works in video generation rely on MLLMs to evaluate the quality of generated videos, but the capabilities of MLLMs on interpreting AIGC videos remain largely underexplored. To address this, we propose a new benchmark, VF-Eval, which introduces four tasks-coherence validation, error awareness, error type detection, and reasoning evaluation-to comprehensively evaluate the abilities of MLLMs on AIGC videos. We evaluate 13 frontier MLLMs on VF-Eval and find that even the best-performing model, GPT-4.1, struggles to achieve consistently good performance across all tasks. This highlights the challenging nature of our benchmark. Additionally, to investigate the practical applications of VF-Eval in improving video generation, we conduct an experiment, RePrompt, demonstrating that aligning MLLMs more closely with human feedback can benefit video generation.
comment: ACL 2025 Main
Mobi-$π$: Mobilizing Your Robot Learning Policy
Learned visuomotor policies are capable of performing increasingly complex manipulation tasks. However, most of these policies are trained on data collected from limited robot positions and camera viewpoints. This leads to poor generalization to novel robot positions, which limits the use of these policies on mobile platforms, especially for precise tasks like pressing buttons or turning faucets. In this work, we formulate the policy mobilization problem: find a mobile robot base pose in a novel environment that is in distribution with respect to a manipulation policy trained on a limited set of camera viewpoints. Compared to retraining the policy itself to be more robust to unseen robot base pose initializations, policy mobilization decouples navigation from manipulation and thus does not require additional demonstrations. Crucially, this problem formulation complements existing efforts to improve manipulation policy robustness to novel viewpoints and remains compatible with them. To study policy mobilization, we introduce the Mobi-$\pi$ framework, which includes: (1) metrics that quantify the difficulty of mobilizing a given policy, (2) a suite of simulated mobile manipulation tasks based on RoboCasa to evaluate policy mobilization, (3) visualization tools for analysis, and (4) several baseline methods. We also propose a novel approach that bridges navigation and manipulation by optimizing the robot's base pose to align with an in-distribution base pose for a learned policy. Our approach utilizes 3D Gaussian Splatting for novel view synthesis, a score function to evaluate pose suitability, and sampling-based optimization to identify optimal robot poses. We show that our approach outperforms baselines in both simulation and real-world environments, demonstrating its effectiveness for policy mobilization.
comment: Project website: https://mobipi.github.io/
Grounded Reinforcement Learning for Visual Reasoning
While reinforcement learning (RL) over chains of thought has significantly advanced language models in tasks such as mathematics and coding, visual reasoning introduces added complexity by requiring models to direct visual attention, interpret perceptual inputs, and ground abstract reasoning in spatial evidence. We introduce ViGoRL (Visually Grounded Reinforcement Learning), a vision-language model trained with RL to explicitly anchor each reasoning step to specific visual coordinates. Inspired by human visual decision-making, ViGoRL learns to produce spatially grounded reasoning traces, guiding visual attention to task-relevant regions at each step. When fine-grained exploration is required, our novel multi-turn RL framework enables the model to dynamically zoom into predicted coordinates as reasoning unfolds. Across a diverse set of visual reasoning benchmarks--including SAT-2 and BLINK for spatial reasoning, V*bench for visual search, and ScreenSpot and VisualWebArena for web-based grounding--ViGoRL consistently outperforms both supervised fine-tuning and conventional RL baselines that lack explicit grounding mechanisms. Incorporating multi-turn RL with zoomed-in visual feedback significantly improves ViGoRL's performance on localizing small GUI elements and visual search, achieving 86.4% on V*Bench. Additionally, we find that grounding amplifies other visual behaviors such as region exploration, grounded subgoal setting, and visual verification. Finally, human evaluations show that the model's visual references are not only spatially accurate but also helpful for understanding model reasoning steps. Our results show that visually grounded RL is a strong paradigm for imbuing models with general-purpose visual reasoning.
comment: Project website: https://visually-grounded-rl.github.io/
ImmunoDiff: A Diffusion Model for Immunotherapy Response Prediction in Lung Cancer
Accurately predicting immunotherapy response in Non-Small Cell Lung Cancer (NSCLC) remains a critical unmet need. Existing radiomics and deep learning-based predictive models rely primarily on pre-treatment imaging to predict categorical response outcomes, limiting their ability to capture the complex morphological and textural transformations induced by immunotherapy. This study introduces ImmunoDiff, an anatomy-aware diffusion model designed to synthesize post-treatment CT scans from baseline imaging while incorporating clinically relevant constraints. The proposed framework integrates anatomical priors, specifically lobar and vascular structures, to enhance fidelity in CT synthesis. Additionally, we introduce a novel cbi-Adapter, a conditioning module that ensures pairwise-consistent multimodal integration of imaging and clinical data embeddings, to refine the generative process. Additionally, a clinical variable conditioning mechanism is introduced, leveraging demographic data, blood-based biomarkers, and PD-L1 expression to refine the generative process. Evaluations on an in-house NSCLC cohort treated with immune checkpoint inhibitors demonstrate a 21.24% improvement in balanced accuracy for response prediction and a 0.03 increase in c-index for survival prediction. Code will be released soon.
OpenUni: A Simple Baseline for Unified Multimodal Understanding and Generation
In this report, we present OpenUni, a simple, lightweight, and fully open-source baseline for unifying multimodal understanding and generation. Inspired by prevailing practices in unified model learning, we adopt an efficient training strategy that minimizes the training complexity and overhead by bridging the off-the-shelf multimodal large language models (LLMs) and diffusion models through a set of learnable queries and a light-weight transformer-based connector. With a minimalist choice of architecture, we demonstrate that OpenUni can: 1) generate high-quality and instruction-aligned images, and 2) achieve exceptional performance on standard benchmarks such as GenEval, DPG- Bench, and WISE, with only 1.1B and 3.1B activated parameters. To support open research and community advancement, we release all model weights, training code, and our curated training datasets (including 23M image-text pairs) at https://github.com/wusize/OpenUni.
D-AR: Diffusion via Autoregressive Models
This paper presents Diffusion via Autoregressive models (D-AR), a new paradigm recasting the image diffusion process as a vanilla autoregressive procedure in the standard next-token-prediction fashion. We start by designing the tokenizer that converts images into sequences of discrete tokens, where tokens in different positions can be decoded into different diffusion denoising steps in the pixel space. Thanks to the diffusion properties, these tokens naturally follow a coarse-to-fine order, which directly lends itself to autoregressive modeling. Therefore, we apply standard next-token prediction on these tokens, without modifying any underlying designs (either causal masks or training/inference strategies), and such sequential autoregressive token generation directly mirrors the diffusion procedure in image space. That is, once the autoregressive model generates an increment of tokens, we can directly decode these tokens into the corresponding diffusion denoising step in the streaming manner. Our pipeline naturally reveals several intriguing properties, for example, it supports consistent previews when generating only a subset of tokens and enables zero-shot layout-controlled synthesis. On the standard ImageNet benchmark, our method achieves 2.09 FID using a 775M Llama backbone with 256 discrete tokens. We hope our work can inspire future research on unified autoregressive architectures of visual synthesis, especially with large language models. Code and models will be available at https://github.com/showlab/D-AR
comment: Technical report
VideoREPA: Learning Physics for Video Generation through Relational Alignment with Foundation Models
Recent advancements in text-to-video (T2V) diffusion models have enabled high-fidelity and realistic video synthesis. However, current T2V models often struggle to generate physically plausible content due to their limited inherent ability to accurately understand physics. We found that while the representations within T2V models possess some capacity for physics understanding, they lag significantly behind those from recent video self-supervised learning methods. To this end, we propose a novel framework called VideoREPA, which distills physics understanding capability from video understanding foundation models into T2V models by aligning token-level relations. This closes the physics understanding gap and enable more physics-plausible generation. Specifically, we introduce the Token Relation Distillation (TRD) loss, leveraging spatio-temporal alignment to provide soft guidance suitable for finetuning powerful pre-trained T2V models, a critical departure from prior representation alignment (REPA) methods. To our knowledge, VideoREPA is the first REPA method designed for finetuning T2V models and specifically for injecting physical knowledge. Empirical evaluations show that VideoREPA substantially enhances the physics commonsense of baseline method, CogVideoX, achieving significant improvement on relevant benchmarks and demonstrating a strong capacity for generating videos consistent with intuitive physics. More video results are available at https://videorepa.github.io/.
Merge-Friendly Post-Training Quantization for Multi-Target Domain Adaptation ICML 2025
Model merging has emerged as a powerful technique for combining task-specific weights, achieving superior performance in multi-target domain adaptation. However, when applied to practical scenarios, such as quantized models, new challenges arise. In practical scenarios, quantization is often applied to target-specific data, but this process restricts the domain of interest and introduces discretization effects, making model merging highly non-trivial. In this study, we analyze the impact of quantization on model merging through the lens of error barriers. Leveraging these insights, we propose a novel post-training quantization, HDRQ - Hessian and distant regularizing quantization - that is designed to consider model merging for multi-target domain adaptation. Our approach ensures that the quantization process incurs minimal deviation from the source pre-trained model while flattening the loss surface to facilitate smooth model merging. To our knowledge, this is the first study on this challenge, and extensive experiments confirm its effectiveness.
comment: ICML 2025. Code: https://github.com/ewsn1593/HDRQ
Radiant Triangle Soup with Soft Connectivity Forces for 3D Reconstruction and Novel View Synthesis
In this work, we introduce an inference-time optimization framework utilizing triangles to represent the geometry and appearance of the scene. More specifically, we develop a scene optimization algorithm for triangle soup, a collection of disconnected semi-transparent triangle primitives. Compared to the current most-widely used primitives for 3D scene representation, namely Gaussian splats, triangles allow for more expressive color interpolation, and benefit from a large algorithmic infrastructure for downstream tasks. Triangles, unlike full-rank Gaussian kernels, naturally combine to form surfaces. We formulate connectivity forces between triangles during optimization, encouraging explicit, but soft, surface continuity in 3D. We perform experiments on a representative 3D reconstruction dataset and show competitive photometric and geometric results.
Comparing the Effects of Persistence Barcodes Aggregation and Feature Concatenation on Medical Imaging
In medical image analysis, feature engineering plays an important role in the design and performance of machine learning models. Persistent homology (PH), from the field of topological data analysis (TDA), demonstrates robustness and stability to data perturbations and addresses the limitation from traditional feature extraction approaches where a small change in input results in a large change in feature representation. Using PH, we store persistent topological and geometrical features in the form of the persistence barcode whereby large bars represent global topological features and small bars encapsulate geometrical information of the data. When multiple barcodes are computed from 2D or 3D medical images, two approaches can be used to construct the final topological feature vector in each dimension: aggregating persistence barcodes followed by featurization or concatenating topological feature vectors derived from each barcode. In this study, we conduct a comprehensive analysis across diverse medical imaging datasets to compare the effects of the two aforementioned approaches on the performance of classification models. The results of this analysis indicate that feature concatenation preserves detailed topological information from individual barcodes, yields better classification performance and is therefore a preferred approach when conducting similar experiments.
comment: 16 pages, 8 figures
Color Image Set Recognition Based on Quaternionic Grassmannians
We propose a new method for recognizing color image sets using quaternionic Grassmannians, which use the power of quaternions to capture color information and represent each color image set as a point on the quaternionic Grassmannian. We provide a direct formula to calculate the shortest distance between two points on the quaternionic Grassmannian, and use this distance to build a new classification framework. Experiments on the ETH-80 benchmark dataset show that our method achieves good recognition results. We also discuss some limitations in stability and suggest ways the method can be improved in the future.
ZeroSep: Separate Anything in Audio with Zero Training
Audio source separation is fundamental for machines to understand complex acoustic environments and underpins numerous audio applications. Current supervised deep learning approaches, while powerful, are limited by the need for extensive, task-specific labeled data and struggle to generalize to the immense variability and open-set nature of real-world acoustic scenes. Inspired by the success of generative foundation models, we investigate whether pre-trained text-guided audio diffusion models can overcome these limitations. We make a surprising discovery: zero-shot source separation can be achieved purely through a pre-trained text-guided audio diffusion model under the right configuration. Our method, named ZeroSep, works by inverting the mixed audio into the diffusion model's latent space and then using text conditioning to guide the denoising process to recover individual sources. Without any task-specific training or fine-tuning, ZeroSep repurposes the generative diffusion model for a discriminative separation task and inherently supports open-set scenarios through its rich textual priors. ZeroSep is compatible with a variety of pre-trained text-guided audio diffusion backbones and delivers strong separation performance on multiple separation benchmarks, surpassing even supervised methods.
comment: Project page: https://wikichao.github.io/ZeroSep/
One Trajectory, One Token: Grounded Video Tokenization via Panoptic Sub-object Trajectory
Effective video tokenization is critical for scaling transformer models for long videos. Current approaches tokenize videos using space-time patches, leading to excessive tokens and computational inefficiencies. The best token reduction strategies degrade performance and barely reduce the number of tokens when the camera moves. We introduce grounded video tokenization, a paradigm that organizes tokens based on panoptic sub-object trajectories rather than fixed patches. Our method aligns with fundamental perceptual principles, ensuring that tokenization reflects scene complexity rather than video duration. We propose TrajViT, a video encoder that extracts object trajectories and converts them into semantically meaningful tokens, significantly reducing redundancy while maintaining temporal coherence. Trained with contrastive learning, TrajViT significantly outperforms space-time ViT (ViT3D) across multiple video understanding benchmarks, e.g., TrajViT outperforms ViT3D by a large margin of 6% top-5 recall in average at video-text retrieval task with 10x token deduction. We also show TrajViT as a stronger model than ViT3D for being the video encoder for modern VideoLLM, obtaining an average of 5.2% performance improvement across 6 VideoQA benchmarks while having 4x faster training time and 18x less inference FLOPs. TrajViT is the first efficient encoder to consistently outperform ViT3D across diverse video analysis tasks, making it a robust and scalable solution.
Autoregressive Meta-Actions for Unified Controllable Trajectory Generation
Controllable trajectory generation guided by high-level semantic decisions, termed meta-actions, is crucial for autonomous driving systems. A significant limitation of existing frameworks is their reliance on invariant meta-actions assigned over fixed future time intervals, causing temporal misalignment with the actual behavior trajectories. This misalignment leads to irrelevant associations between the prescribed meta-actions and the resulting trajectories, disrupting task coherence and limiting model performance. To address this challenge, we introduce Autoregressive Meta-Actions, an approach integrated into autoregressive trajectory generation frameworks that provides a unified and precise definition for meta-action-conditioned trajectory prediction. Specifically, We decompose traditional long-interval meta-actions into frame-level meta-actions, enabling a sequential interplay between autoregressive meta-action prediction and meta-action-conditioned trajectory generation. This decomposition ensures strict alignment between each trajectory segment and its corresponding meta-action, achieving a consistent and unified task formulation across the entire trajectory span and significantly reducing complexity. Moreover, we propose a staged pre-training process to decouple the learning of basic motion dynamics from the integration of high-level decision control, which offers flexibility, stability, and modularity. Experimental results validate our framework's effectiveness, demonstrating improved trajectory adaptivity and responsiveness to dynamic decision-making scenarios. We provide the video document and dataset, which are available at https://arma-traj.github.io/.
Muddit: Liberating Generation Beyond Text-to-Image with a Unified Discrete Diffusion Model
Unified generation models aim to handle diverse tasks across modalities -- such as text generation, image generation, and vision-language reasoning -- within a single architecture and decoding paradigm. Autoregressive unified models suffer from slow inference due to sequential decoding, and non-autoregressive unified models suffer from weak generalization due to limited pretrained backbones. We introduce Muddit, a unified discrete diffusion transformer that enables fast and parallel generation across both text and image modalities. Unlike prior unified diffusion models trained from scratch, Muddit integrates strong visual priors from a pretrained text-to-image backbone with a lightweight text decoder, enabling flexible and high-quality multimodal generation under a unified architecture. Empirical results show that Muddit achieves competitive or superior performance compared to significantly larger autoregressive models in both quality and efficiency. The work highlights the potential of purely discrete diffusion, when equipped with strong visual priors, as a scalable and effective backbone for unified generation.
comment: The code and model are available at https://github.com/M-E-AGI-Lab/Muddit
A Comprehensive Evaluation of Multi-Modal Large Language Models for Endoscopy Analysis
Endoscopic procedures are essential for diagnosing and treating internal diseases, and multi-modal large language models (MLLMs) are increasingly applied to assist in endoscopy analysis. However, current benchmarks are limited, as they typically cover specific endoscopic scenarios and a small set of clinical tasks, failing to capture the real-world diversity of endoscopic scenarios and the full range of skills needed in clinical workflows. To address these issues, we introduce EndoBench, the first comprehensive benchmark specifically designed to assess MLLMs across the full spectrum of endoscopic practice with multi-dimensional capacities. EndoBench encompasses 4 distinct endoscopic scenarios, 12 specialized clinical tasks with 12 secondary subtasks, and 5 levels of visual prompting granularities, resulting in 6,832 rigorously validated VQA pairs from 21 diverse datasets. Our multi-dimensional evaluation framework mirrors the clinical workflow--spanning anatomical recognition, lesion analysis, spatial localization, and surgical operations--to holistically gauge the perceptual and diagnostic abilities of MLLMs in realistic scenarios. We benchmark 23 state-of-the-art models, including general-purpose, medical-specialized, and proprietary MLLMs, and establish human clinician performance as a reference standard. Our extensive experiments reveal: (1) proprietary MLLMs outperform open-source and medical-specialized models overall, but still trail human experts; (2) medical-domain supervised fine-tuning substantially boosts task-specific accuracy; and (3) model performance remains sensitive to prompt format and clinical task complexity. EndoBench establishes a new standard for evaluating and advancing MLLMs in endoscopy, highlighting both progress and persistent gaps between current models and expert clinical reasoning. We publicly release our benchmark and code.
comment: 36 pages, 18 figures
Bridging Classical and Modern Computer Vision: PerceptiveNet for Tree Crown Semantic Segmentation CVPR
The accurate semantic segmentation of tree crowns within remotely sensed data is crucial for scientific endeavours such as forest management, biodiversity studies, and carbon sequestration quantification. However, precise segmentation remains challenging due to complexities in the forest canopy, including shadows, intricate backgrounds, scale variations, and subtle spectral differences among tree species. Compared to the traditional methods, Deep Learning models improve accuracy by extracting informative and discriminative features, but often fall short in capturing the aforementioned complexities. To address these challenges, we propose PerceptiveNet, a novel model incorporating a Logarithmic Gabor-parameterised convolutional layer with trainable filter parameters, alongside a backbone that extracts salient features while capturing extensive context and spatial information through a wider receptive field. We investigate the impact of Log-Gabor, Gabor, and standard convolutional layers on semantic segmentation performance through extensive experimentation. Additionally, we conduct an ablation study to assess the contributions of individual layers and their combinations to overall model performance, and we evaluate PerceptiveNet as a backbone within a novel hybrid CNN-Transformer model. Our results outperform state-of-the-art models, demonstrating significant performance improvements on a tree crown dataset while generalising across domains, including two benchmark aerial scene semantic segmentation datasets with varying complexities.
comment: Accepted for publication at the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) EarthVision
DeepChest: Dynamic Gradient-Free Task Weighting for Effective Multi-Task Learning in Chest X-ray Classification
While Multi-Task Learning (MTL) offers inherent advantages in complex domains such as medical imaging by enabling shared representation learning, effectively balancing task contributions remains a significant challenge. This paper addresses this critical issue by introducing DeepChest, a novel, computationally efficient and effective dynamic task-weighting framework specifically designed for multi-label chest X-ray (CXR) classification. Unlike existing heuristic or gradient-based methods that often incur substantial overhead, DeepChest leverages a performance-driven weighting mechanism based on effective analysis of task-specific loss trends. Given a network architecture (e.g., ResNet18), our model-agnostic approach adaptively adjusts task importance without requiring gradient access, thereby significantly reducing memory usage and achieving a threefold increase in training speed. It can be easily applied to improve various state-of-the-art methods. Extensive experiments on a large-scale CXR dataset demonstrate that DeepChest not only outperforms state-of-the-art MTL methods by 7% in overall accuracy but also yields substantial reductions in individual task losses, indicating improved generalization and effective mitigation of negative transfer. The efficiency and performance gains of DeepChest pave the way for more practical and robust deployment of deep learning in critical medical diagnostic applications. The code is publicly available at https://github.com/youssefkhalil320/DeepChest-MTL
Jigsaw-R1: A Study of Rule-based Visual Reinforcement Learning with Jigsaw Puzzles
The application of rule-based reinforcement learning (RL) to multimodal large language models (MLLMs) introduces unique challenges and potential deviations from findings in text-only domains, particularly for perception-heavy tasks. This paper provides a comprehensive study of rule-based visual RL using jigsaw puzzles as a structured experimental framework, revealing several key findings. \textit{Firstly,} we find that MLLMs, initially performing near to random guessing on simple puzzles, achieve near-perfect accuracy and generalize to complex, unseen configurations through fine-tuning. \textit{Secondly,} training on jigsaw puzzles can induce generalization to other visual tasks, with effectiveness tied to specific task configurations. \textit{Thirdly,} MLLMs can learn and generalize with or without explicit reasoning, though open-source models often favor direct answering. Consequently, even when trained for step-by-step reasoning, they can ignore the thinking process in deriving the final answer. \textit{Fourthly,} we observe that complex reasoning patterns appear to be pre-existing rather than emergent, with their frequency increasing alongside training and task difficulty. \textit{Finally,} our results demonstrate that RL exhibits more effective generalization than Supervised Fine-Tuning (SFT), and an initial SFT cold start phase can hinder subsequent RL optimization. Although these observations are based on jigsaw puzzles and may vary across other visual tasks, this research contributes a valuable piece of jigsaw to the larger puzzle of collective understanding rule-based visual RL and its potential in multimodal learning. The code is available at: \href{https://github.com/zifuwanggg/Jigsaw-R1}{https://github.com/zifuwanggg/Jigsaw-R1}.
PCA for Enhanced Cross-Dataset Generalizability in Breast Ultrasound Tumor Segmentation
In medical image segmentation, limited external validity remains a critical obstacle when models are deployed across unseen datasets, an issue particularly pronounced in the ultrasound image domain. Existing solutions-such as domain adaptation and GAN-based style transfer-while promising, often fall short in the medical domain where datasets are typically small and diverse. This paper presents a novel application of principal component analysis (PCA) to address this limitation. PCA preprocessing reduces noise and emphasizes essential features by retaining approximately 90\% of the dataset variance. We evaluate our approach across six diverse breast tumor ultrasound datasets comprising 3,983 B-mode images and corresponding expert tumor segmentation masks. For each dataset, a corresponding dimensionality reduced PCA-dataset is created and U-Net-based segmentation models are trained on each of the twelve datasets. Each model trained on an original dataset was inferenced on the remaining five out-of-domain original datasets (baseline results), while each model trained on a PCA dataset was inferenced on five out-of-domain PCA datasets. Our experimental results indicate that using PCA reconstructed datasets, instead of original images, improves the model's recall and Dice scores, particularly for model-dataset pairs where baseline performance was lowest, achieving statistically significant gains in recall (0.57 $\pm$ 0.07 vs. 0.70 $\pm$ 0.05, $p = 0.0004$) and Dice scores (0.50 $\pm$ 0.06 vs. 0.58 $\pm$ 0.06, $p = 0.03$). Our method reduced the decline in recall values due to external validation by $33\%$. These findings underscore the potential of PCA reconstruction as a safeguard to mitigate declines in segmentation performance, especially in challenging cases, with implications for enhancing external validity in real-world medical applications.
Weakly-supervised Localization of Manipulated Image Regions Using Multi-resolution Learned Features
The explosive growth of digital images and the widespread availability of image editing tools have made image manipulation detection an increasingly critical challenge. Current deep learning-based manipulation detection methods excel in achieving high image-level classification accuracy, they often fall short in terms of interpretability and localization of manipulated regions. Additionally, the absence of pixel-wise annotations in real-world scenarios limits the existing fully-supervised manipulation localization techniques. To address these challenges, we propose a novel weakly-supervised approach that integrates activation maps generated by image-level manipulation detection networks with segmentation maps from pre-trained models. Specifically, we build on our previous image-level work named WCBnet to produce multi-view feature maps which are subsequently fused for coarse localization. These coarse maps are then refined using detailed segmented regional information provided by pre-trained segmentation models (such as DeepLab, SegmentAnything and PSPnet), with Bayesian inference employed to enhance the manipulation localization. Experimental results demonstrate the effectiveness of our approach, highlighting the feasibility to localize image manipulations without relying on pixel-level labels.
comment: This paper was presented at the British Machine Vision Conference 2024 workshop on Media authenticity in the age of artificial intelligence
Uni-MuMER: Unified Multi-Task Fine-Tuning of Vision-Language Model for Handwritten Mathematical Expression Recognition
Handwritten Mathematical Expression Recognition (HMER) remains a persistent challenge in Optical Character Recognition (OCR) due to the inherent freedom of symbol layout and variability in handwriting styles. Prior methods have faced performance bottlenecks, proposing isolated architectural modifications that are difficult to integrate coherently into a unified framework. Meanwhile, recent advances in pretrained vision-language models (VLMs) have demonstrated strong cross-task generalization, offering a promising foundation for developing unified solutions. In this paper, we introduce Uni-MuMER, which fully fine-tunes a VLM for the HMER task without modifying its architecture, effectively injecting domain-specific knowledge into a generalist framework. Our method integrates three data-driven tasks: Tree-Aware Chain-of-Thought (Tree-CoT) for structured spatial reasoning, Error-Driven Learning (EDL) for reducing confusion among visually similar characters, and Symbol Counting (SC) for improving recognition consistency in long expressions. Experiments on the CROHME and HME100K datasets show that Uni-MuMER achieves new state-of-the-art performance, surpassing the best lightweight specialized model SSAN by 16.31% and the top-performing VLM Gemini2.5-flash by 24.42% in the zero-shot setting. Our datasets, models, and code are open-sourced at: https://github.com/BFlameSwift/Uni-MuMER
Qwen Look Again: Guiding Vision-Language Reasoning Models to Re-attention Visual Information
Inference time scaling drives extended reasoning to enhance the performance of Vision-Language Models (VLMs), thus forming powerful Vision-Language Reasoning Models (VLRMs). However, long reasoning dilutes visual tokens, causing visual information to receive less attention and may trigger hallucinations. Although introducing text-only reflection processes shows promise in language models, we demonstrate that it is insufficient to suppress hallucinations in VLMs. To address this issue, we introduce Qwen-LookAgain (Qwen-LA), a novel VLRM designed to mitigate hallucinations by incorporating a vision-text reflection process that guides the model to re-attention visual information during reasoning. We first propose a reinforcement learning method Balanced Reflective Policy Optimization (BRPO), which guides the model to decide when to generate vision-text reflection on its own and balance the number and length of reflections. Then, we formally prove that VLRMs lose attention to visual tokens as reasoning progresses, and demonstrate that supplementing visual information during reflection enhances visual attention. Therefore, during training and inference, Visual Token COPY and Visual Token ROUTE are introduced to force the model to re-attention visual information at the visual level, addressing the limitations of text-only reflection. Experiments on multiple visual QA datasets and hallucination metrics indicate that Qwen-LA achieves leading accuracy performance while reducing hallucinations. Our code is available at: https://github.com/Liar406/Look_Again.
Position Paper: Metadata Enrichment Model: Integrating Neural Networks and Semantic Knowledge Graphs for Cultural Heritage Applications
The digitization of cultural heritage collections has opened new directions for research, yet the lack of enriched metadata poses a substantial challenge to accessibility, interoperability, and cross-institutional collaboration. In several past years neural networks models such as YOLOv11 and Detectron2 have revolutionized visual data analysis, but their application to domain-specific cultural artifacts - such as manuscripts and incunabula - remains limited by the absence of methodologies that address structural feature extraction and semantic interoperability. In this position paper, we argue, that the integration of neural networks with semantic technologies represents a paradigm shift in cultural heritage digitization processes. We present the Metadata Enrichment Model (MEM), a conceptual framework designed to enrich metadata for digitized collections by combining fine-tuned computer vision models, large language models (LLMs) and structured knowledge graphs. The Multilayer Vision Mechanism (MVM) appears as the key innovation of MEM. This iterative process improves visual analysis by dynamically detecting nested features, such as text within seals or images within stamps. To expose MEM's potential, we apply it to a dataset of digitized incunabula from the Jagiellonian Digital Library and release a manually annotated dataset of 105 manuscript pages. We examine the practical challenges of MEM's usage in real-world GLAM institutions, including the need for domain-specific fine-tuning, the adjustment of enriched metadata with Linked Data standards and computational costs. We present MEM as a flexible and extensible methodology. This paper contributes to the discussion on how artificial intelligence and semantic web technologies can advance cultural heritage research, and also use these technologies in practice.
Hallo4: High-Fidelity Dynamic Portrait Animation via Direct Preference Optimization and Temporal Motion Modulation
Generating highly dynamic and photorealistic portrait animations driven by audio and skeletal motion remains challenging due to the need for precise lip synchronization, natural facial expressions, and high-fidelity body motion dynamics. We propose a human-preference-aligned diffusion framework that addresses these challenges through two key innovations. First, we introduce direct preference optimization tailored for human-centric animation, leveraging a curated dataset of human preferences to align generated outputs with perceptual metrics for portrait motion-video alignment and naturalness of expression. Second, the proposed temporal motion modulation resolves spatiotemporal resolution mismatches by reshaping motion conditions into dimensionally aligned latent features through temporal channel redistribution and proportional feature expansion, preserving the fidelity of high-frequency motion details in diffusion-based synthesis. The proposed mechanism is complementary to existing UNet and DiT-based portrait diffusion approaches, and experiments demonstrate obvious improvements in lip-audio synchronization, expression vividness, body motion coherence over baseline methods, alongside notable gains in human preference metrics. Our model and source code can be found at: https://github.com/xyz123xyz456/hallo4.
CLIP-AE: CLIP-assisted Cross-view Audio-Visual Enhancement for Unsupervised Temporal Action Localization
Temporal Action Localization (TAL) has garnered significant attention in information retrieval. Existing supervised or weakly supervised methods heavily rely on labeled temporal boundaries and action categories, which are labor-intensive and time-consuming. Consequently, unsupervised temporal action localization (UTAL) has gained popularity. However, current methods face two main challenges: 1) Classification pre-trained features overly focus on highly discriminative regions; 2) Solely relying on visual modality information makes it difficult to determine contextual boundaries. To address these issues, we propose a CLIP-assisted cross-view audiovisual enhanced UTAL method. Specifically, we introduce visual language pre-training (VLP) and classification pre-training-based collaborative enhancement to avoid excessive focus on highly discriminative regions; we also incorporate audio perception to provide richer contextual boundary information. Finally, we introduce a self-supervised cross-view learning paradigm to achieve multi-view perceptual enhancement without additional annotations. Extensive experiments on two public datasets demonstrate our model's superiority over several state-of-the-art competitors.
OmniEarth-Bench: Towards Holistic Evaluation of Earth's Six Spheres and Cross-Spheres Interactions with Multimodal Observational Earth Data
Existing benchmarks for Earth science multimodal learning exhibit critical limitations in systematic coverage of geosystem components and cross-sphere interactions, often constrained to isolated subsystems (only in Human-activities sphere or atmosphere) with limited evaluation dimensions (less than 16 tasks). To address these gaps, we introduce OmniEarth-Bench, the first comprehensive multimodal benchmark spanning all six Earth science spheres (atmosphere, lithosphere, Oceansphere, cryosphere, biosphere and Human-activities sphere) and cross-spheres with one hundred expert-curated evaluation dimensions. Leveraging observational data from satellite sensors and in-situ measurements, OmniEarth-Bench integrates 29,779 annotations across four tiers: perception, general reasoning, scientific knowledge reasoning and chain-of-thought (CoT) reasoning. This involves the efforts of 2-5 experts per sphere to establish authoritative evaluation dimensions and curate relevant observational datasets, 40 crowd-sourcing annotators to assist experts for annotations, and finally, OmniEarth-Bench is validated via hybrid expert-crowd workflows to reduce label ambiguity. Experiments on 9 state-of-the-art MLLMs reveal that even the most advanced models struggle with our benchmarks, where none of them reach 35\% accuracy. Especially, in some cross-spheres tasks, the performance of leading models like GPT-4o drops to 0.0\%. OmniEarth-Bench sets a new standard for geosystem-aware AI, advancing both scientific discovery and practical applications in environmental monitoring and disaster prediction. The dataset, source code, and trained models were released.
VAU-R1: Advancing Video Anomaly Understanding via Reinforcement Fine-Tuning
Video Anomaly Understanding (VAU) is essential for applications such as smart cities, security surveillance, and disaster alert systems, yet remains challenging due to its demand for fine-grained spatio-temporal perception and robust reasoning under ambiguity. Despite advances in anomaly detection, existing methods often lack interpretability and struggle to capture the causal and contextual aspects of abnormal events. This limitation is further compounded by the absence of comprehensive benchmarks for evaluating reasoning ability in anomaly scenarios. To address both challenges, we introduce VAU-R1, a data-efficient framework built upon Multimodal Large Language Models (MLLMs), which enhances anomaly reasoning through Reinforcement Fine-Tuning (RFT). Besides, we propose VAU-Bench, the first Chain-of-Thought benchmark tailored for video anomaly reasoning, featuring multiple-choice QA, detailed rationales, temporal annotations, and descriptive captions. Empirical results show that VAU-R1 significantly improves question answering accuracy, temporal grounding, and reasoning coherence across diverse contexts. Together, our method and benchmark establish a strong foundation for interpretable and reasoning-aware video anomaly understanding. Our code is available at https://github.com/GVCLab/VAU-R1.
Can Large Language Models Challenge CNNS in Medical Image Analysis?
This study presents a multimodal AI framework designed for precisely classifying medical diagnostic images. Utilizing publicly available datasets, the proposed system compares the strengths of convolutional neural networks (CNNs) and different large language models (LLMs). This in-depth comparative analysis highlights key differences in diagnostic performance, execution efficiency, and environmental impacts. Model evaluation was based on accuracy, F1-score, average execution time, average energy consumption, and estimated $CO_2$ emission. The findings indicate that although CNN-based models can outperform various multimodal techniques that incorporate both images and contextual information, applying additional filtering on top of LLMs can lead to substantial performance gains. These findings highlight the transformative potential of multimodal AI systems to enhance the reliability, efficiency, and scalability of medical diagnostics in clinical settings.
R2I-Bench: Benchmarking Reasoning-Driven Text-to-Image Generation
Reasoning is a fundamental capability often required in real-world text-to-image (T2I) generation, e.g., generating ``a bitten apple that has been left in the air for more than a week`` necessitates understanding temporal decay and commonsense concepts. While recent T2I models have made impressive progress in producing photorealistic images, their reasoning capability remains underdeveloped and insufficiently evaluated. To bridge this gap, we introduce R2I-Bench, a comprehensive benchmark specifically designed to rigorously assess reasoning-driven T2I generation. R2I-Bench comprises meticulously curated data instances, spanning core reasoning categories, including commonsense, mathematical, logical, compositional, numerical, causal, and concept mixing. To facilitate fine-grained evaluation, we design R2IScore, a QA-style metric based on instance-specific, reasoning-oriented evaluation questions that assess three critical dimensions: text-image alignment, reasoning accuracy, and image quality. Extensive experiments with 16 representative T2I models, including a strong pipeline-based framework that decouples reasoning and generation using the state-of-the-art language and image generation models, demonstrate consistently limited reasoning performance, highlighting the need for more robust, reasoning-aware architectures in the next generation of T2I systems. Project Page: https://r2i-bench.github.io
comment: Project Page: https://r2i-bench.github.io
VCapsBench: A Large-scale Fine-grained Benchmark for Video Caption Quality Evaluation
Video captions play a crucial role in text-to-video generation tasks, as their quality directly influences the semantic coherence and visual fidelity of the generated videos. Although large vision-language models (VLMs) have demonstrated significant potential in caption generation, existing benchmarks inadequately address fine-grained evaluation, particularly in capturing spatial-temporal details critical for video generation. To address this gap, we introduce the Fine-grained Video Caption Evaluation Benchmark (VCapsBench), the first large-scale fine-grained benchmark comprising 5,677 (5K+) videos and 109,796 (100K+) question-answer pairs. These QA-pairs are systematically annotated across 21 fine-grained dimensions (e.g., camera movement, and shot type) that are empirically proven critical for text-to-video generation. We further introduce three metrics (Accuracy (AR), Inconsistency Rate (IR), Coverage Rate (CR)), and an automated evaluation pipeline leveraging large language model (LLM) to verify caption quality via contrastive QA-pairs analysis. By providing actionable insights for caption optimization, our benchmark can advance the development of robust text-to-video models. The dataset and codes are available at website: https://github.com/GXYM/VCapsBench.
comment: submitting
PhysicsNeRF: Physics-Guided 3D Reconstruction from Sparse Views ICML 2025
PhysicsNeRF is a physically grounded framework for 3D reconstruction from sparse views, extending Neural Radiance Fields with four complementary constraints: depth ranking, RegNeRF-style consistency, sparsity priors, and cross-view alignment. While standard NeRFs fail under sparse supervision, PhysicsNeRF employs a compact 0.67M-parameter architecture and achieves 21.4 dB average PSNR using only 8 views, outperforming prior methods. A generalization gap of 5.7-6.2 dB is consistently observed and analyzed, revealing fundamental limitations of sparse-view reconstruction. PhysicsNeRF enables physically consistent, generalizable 3D representations for agent interaction and simulation, and clarifies the expressiveness-generalization trade-off in constrained NeRF models.
comment: 4 pages, 2 figures, 2 tables. Preliminary work. Under review by the Building Physically Plausible World Models Workshop at the 42nd International Conference on Machine Learning (ICML 2025), Vancouver, Canada
TimePoint: Accelerated Time Series Alignment via Self-Supervised Keypoint and Descriptor Learning ICML 2025
Fast and scalable alignment of time series is a fundamental challenge in many domains. The standard solution, Dynamic Time Warping (DTW), struggles with poor scalability and sensitivity to noise. We introduce TimePoint, a self-supervised method that dramatically accelerates DTW-based alignment while typically improving alignment accuracy by learning keypoints and descriptors from synthetic data. Inspired by 2D keypoint detection but carefully adapted to the unique challenges of 1D signals, TimePoint leverages efficient 1D diffeomorphisms, which effectively model nonlinear time warping, to generate realistic training data. This approach, along with fully convolutional and wavelet convolutional architectures, enables the extraction of informative keypoints and descriptors. Applying DTW to these sparse representations yield major speedups and typically higher alignment accuracy than standard DTW applied to the full signals. TimePoint demonstrates strong generalization to real-world time series when trained solely on synthetic data, and further improves with fine-tuning on real data. Extensive experiments demonstrate that TimePoint consistently achieves faster and more accurate alignments than standard DTW, making it a scalable solution for time-series analysis. Our code is available at https://github.com/BGU-CS-VIL/TimePoint
comment: ICML 2025
A Divide-and-Conquer Approach for Global Orientation of Non-Watertight Scene-Level Point Clouds Using 0-1 Integer Optimization SIGGRAPH 2025
Orienting point clouds is a fundamental problem in computer graphics and 3D vision, with applications in reconstruction, segmentation, and analysis. While significant progress has been made, existing approaches mainly focus on watertight, object-level 3D models. The orientation of large-scale, non-watertight 3D scenes remains an underexplored challenge. To address this gap, we propose DACPO (Divide-And-Conquer Point Orientation), a novel framework that leverages a divide-and-conquer strategy for scalable and robust point cloud orientation. Rather than attempting to orient an unbounded scene at once, DACPO segments the input point cloud into smaller, manageable blocks, processes each block independently, and integrates the results through a global optimization stage. For each block, we introduce a two-step process: estimating initial normal orientations by a randomized greedy method and refining them by an adapted iterative Poisson surface reconstruction. To achieve consistency across blocks, we model inter-block relationships using an an undirected graph, where nodes represent blocks and edges connect spatially adjacent blocks. To reliably evaluate orientation consistency between adjacent blocks, we introduce the concept of the visible connected region, which defines the region over which visibility-based assessments are performed. The global integration is then formulated as a 0-1 integer-constrained optimization problem, with block flip states as binary variables. Despite the combinatorial nature of the problem, DACPO remains scalable by limiting the number of blocks (typically a few hundred for 3D scenes) involved in the optimization. Experiments on benchmark datasets demonstrate DACPO's strong performance, particularly in challenging large-scale, non-watertight scenarios where existing methods often fail. The source code is available at https://github.com/zd-lee/DACPO.
comment: accepted to SIGGRAPH 2025
Semantics-Aware Human Motion Generation from Audio Instructions
Recent advances in interactive technologies have highlighted the prominence of audio signals for semantic encoding. This paper explores a new task, where audio signals are used as conditioning inputs to generate motions that align with the semantics of the audio. Unlike text-based interactions, audio provides a more natural and intuitive communication method. However, existing methods typically focus on matching motions with music or speech rhythms, which often results in a weak connection between the semantics of the audio and generated motions. We propose an end-to-end framework using a masked generative transformer, enhanced by a memory-retrieval attention module to handle sparse and lengthy audio inputs. Additionally, we enrich existing datasets by converting descriptions into conversational style and generating corresponding audio with varied speaker identities. Experiments demonstrate the effectiveness and efficiency of the proposed framework, demonstrating that audio instructions can convey semantics similar to text while providing more practical and user-friendly interactions.
Revisiting Reweighted Risk for Calibration: AURC, Focal Loss, and Inverse Focal Loss
Several variants of reweighted risk functionals, such as focal losss, inverse focal loss, and the Area Under the Risk-Coverage Curve (AURC), have been proposed in the literature and claims have been made in relation to their calibration properties. However, focal loss and inverse focal loss propose vastly different weighting schemes. In this paper, we revisit a broad class of weighted risk functions commonly used in deep learning and establish a principled connection between these reweighting schemes and calibration errors. We show that minimizing calibration error is closely linked to the selective classification paradigm and demonstrate that optimizing a regularized variant of the AURC naturally leads to improved calibration. This regularized AURC shares a similar reweighting strategy with inverse focal loss, lending support to the idea that focal loss is less principled when calibration is a desired outcome. Direct AURC optimization offers greater flexibility through the choice of confidence score functions (CSFs). To enable gradient-based optimization, we introduce a differentiable formulation of the regularized AURC using the SoftRank technique. Empirical evaluations demonstrate that our AURC-based loss achieves competitive class-wise calibration performance across a range of datasets and model architectures.
LAFR: Efficient Diffusion-based Blind Face Restoration via Latent Codebook Alignment Adapter
Blind face restoration from low-quality (LQ) images is a challenging task that requires not only high-fidelity image reconstruction but also the preservation of facial identity. While diffusion models like Stable Diffusion have shown promise in generating high-quality (HQ) images, their VAE modules are typically trained only on HQ data, resulting in semantic misalignment when encoding LQ inputs. This mismatch significantly weakens the effectiveness of LQ conditions during the denoising process. Existing approaches often tackle this issue by retraining the VAE encoder, which is computationally expensive and memory-intensive. To address this limitation efficiently, we propose LAFR (Latent Alignment for Face Restoration), a novel codebook-based latent space adapter that aligns the latent distribution of LQ images with that of HQ counterparts, enabling semantically consistent diffusion sampling without altering the original VAE. To further enhance identity preservation, we introduce a multi-level restoration loss that combines constraints from identity embeddings and facial structural priors. Additionally, by leveraging the inherent structural regularity of facial images, we show that lightweight finetuning of diffusion prior on just 0.9% of FFHQ dataset is sufficient to achieve results comparable to state-of-the-art methods, reduce training time by 70%. Extensive experiments on both synthetic and real-world face restoration benchmarks demonstrate the effectiveness and efficiency of LAFR, achieving high-quality, identity-preserving face reconstruction from severely degraded inputs.
A Reverse Causal Framework to Mitigate Spurious Correlations for Debiasing Scene Graph Generation
Existing two-stage Scene Graph Generation (SGG) frameworks typically incorporate a detector to extract relationship features and a classifier to categorize these relationships; therefore, the training paradigm follows a causal chain structure, where the detector's inputs determine the classifier's inputs, which in turn influence the final predictions. However, such a causal chain structure can yield spurious correlations between the detector's inputs and the final predictions, i.e., the prediction of a certain relationship may be influenced by other relationships. This influence can induce at least two observable biases: tail relationships are predicted as head ones, and foreground relationships are predicted as background ones; notably, the latter bias is seldom discussed in the literature. To address this issue, we propose reconstructing the causal chain structure into a reverse causal structure, wherein the classifier's inputs are treated as the confounder, and both the detector's inputs and the final predictions are viewed as causal variables. Specifically, we term the reconstructed causal paradigm as the Reverse causal Framework for SGG (RcSGG). RcSGG initially employs the proposed Active Reverse Estimation (ARE) to intervene on the confounder to estimate the reverse causality, \ie the causality from final predictions to the classifier's inputs. Then, the Maximum Information Sampling (MIS) is suggested to enhance the reverse causality estimation further by considering the relationship information. Theoretically, RcSGG can mitigate the spurious correlations inherent in the SGG framework, subsequently eliminating the induced biases. Comprehensive experiments on popular benchmarks and diverse SGG frameworks show the state-of-the-art mean recall rate.
comment: Accepted to IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 21 pages, 11 figures, 12 tables
Network Inversion for Uncertainty-Aware Out-of-Distribution Detection
Out-of-distribution (OOD) detection and uncertainty estimation (UE) are critical components for building safe machine learning systems, especially in real-world scenarios where unexpected inputs are inevitable. In this work, we propose a novel framework that combines network inversion with classifier training to simultaneously address both OOD detection and uncertainty estimation. For a standard n-class classification task, we extend the classifier to an (n+1)-class model by introducing a "garbage" class, initially populated with random gaussian noise to represent outlier inputs. After each training epoch, we use network inversion to reconstruct input images corresponding to all output classes that initially appear as noisy and incoherent and are therefore excluded to the garbage class for retraining the classifier. This cycle of training, inversion, and exclusion continues iteratively till the inverted samples begin to resemble the in-distribution data more closely, suggesting that the classifier has learned to carve out meaningful decision boundaries while sanitising the class manifolds by pushing OOD content into the garbage class. During inference, this training scheme enables the model to effectively detect and reject OOD samples by classifying them into the garbage class. Furthermore, the confidence scores associated with each prediction can be used to estimate uncertainty for both in-distribution and OOD inputs. Our approach is scalable, interpretable, and does not require access to external OOD datasets or post-hoc calibration techniques while providing a unified solution to the dual challenges of OOD detection and uncertainty estimation.
CryoCCD: Conditional Cycle-consistent Diffusion with Biophysical Modeling for Cryo-EM Synthesis
Cryo-electron microscopy (cryo-EM) offers near-atomic resolution imaging of macromolecules, but developing robust models for downstream analysis is hindered by the scarcity of high-quality annotated data. While synthetic data generation has emerged as a potential solution, existing methods often fail to capture both the structural diversity of biological specimens and the complex, spatially varying noise inherent in cryo-EM imaging. To overcome these limitations, we propose CryoCCD, a synthesis framework that integrates biophysical modeling with generative techniques. Specifically, CryoCCD produces multi-scale cryo-EM micrographs that reflect realistic biophysical variability through compositional heterogeneity, cellular context, and physics-informed imaging. To generate realistic noise, we employ a conditional diffusion model, enhanced by cycle consistency to preserve structural fidelity and mask-aware contrastive learning to capture spatially adaptive noise patterns. Extensive experiments show that CryoCCD generates structurally accurate micrographs and enhances performance in downstream tasks, outperforming state-of-the-art baselines in both particle picking and reconstruction.
VITON-DRR: Details Retention Virtual Try-on via Non-rigid Registration
Image-based virtual try-on aims to fit a target garment to a specific person image and has attracted extensive research attention because of its huge application potential in the e-commerce and fashion industries. To generate high-quality try-on results, accurately warping the clothing item to fit the human body plays a significant role, as slight misalignment may lead to unrealistic artifacts in the fitting image. Most existing methods warp the clothing by feature matching and thin-plate spline (TPS). However, it often fails to preserve clothing details due to self-occlusion, severe misalignment between poses, etc. To address these challenges, this paper proposes a detail retention virtual try-on method via accurate non-rigid registration (VITON-DRR) for diverse human poses. Specifically, we reconstruct a human semantic segmentation using a dual-pyramid-structured feature extractor. Then, a novel Deformation Module is designed for extracting the cloth key points and warping them through an accurate non-rigid registration algorithm. Finally, the Image Synthesis Module is designed to synthesize the deformed garment image and generate the human pose information adaptively. {Compared with} traditional methods, the proposed VITON-DRR can make the deformation of fitting images more accurate and retain more garment details. The experimental results demonstrate that the proposed method performs better than state-of-the-art methods.
comment: 31 pages, 12 figures, Accepted by Computers & Graphics
Adaptive Spatial Augmentation for Semi-supervised Semantic Segmentation
In semi-supervised semantic segmentation (SSSS), data augmentation plays a crucial role in the weak-to-strong consistency regularization framework, as it enhances diversity and improves model generalization. Recent strong augmentation methods have primarily focused on intensity-based perturbations, which have minimal impact on the semantic masks. In contrast, spatial augmentations like translation and rotation have long been acknowledged for their effectiveness in supervised semantic segmentation tasks, but they are often ignored in SSSS. In this work, we demonstrate that spatial augmentation can also contribute to model training in SSSS, despite generating inconsistent masks between the weak and strong augmentations. Furthermore, recognizing the variability among images, we propose an adaptive augmentation strategy that dynamically adjusts the augmentation for each instance based on entropy. Extensive experiments show that our proposed Adaptive Spatial Augmentation (\textbf{ASAug}) can be integrated as a pluggable module, consistently improving the performance of existing methods and achieving state-of-the-art results on benchmark datasets such as PASCAL VOC 2012, Cityscapes, and COCO.
comment: 10 pages, 8 figures
UrbanCraft: Urban View Extrapolation via Hierarchical Sem-Geometric Priors
Existing neural rendering-based urban scene reconstruction methods mainly focus on the Interpolated View Synthesis (IVS) setting that synthesizes from views close to training camera trajectory. However, IVS can not guarantee the on-par performance of the novel view outside the training camera distribution (\textit{e.g.}, looking left, right, or downwards), which limits the generalizability of the urban reconstruction application. Previous methods have optimized it via image diffusion, but they fail to handle text-ambiguous or large unseen view angles due to coarse-grained control of text-only diffusion. In this paper, we design UrbanCraft, which surmounts the Extrapolated View Synthesis (EVS) problem using hierarchical sem-geometric representations serving as additional priors. Specifically, we leverage the partially observable scene to reconstruct coarse semantic and geometric primitives, establishing a coarse scene-level prior through an occupancy grid as the base representation. Additionally, we incorporate fine instance-level priors from 3D bounding boxes to enhance object-level details and spatial relationships. Building on this, we propose the \textbf{H}ierarchical \textbf{S}emantic-Geometric-\textbf{G}uided Variational Score Distillation (HSG-VSD), which integrates semantic and geometric constraints from pretrained UrbanCraft2D into the score distillation sampling process, forcing the distribution to be consistent with the observable scene. Qualitative and quantitative comparisons demonstrate the effectiveness of our methods on EVS problem.
Buffer-free Class-Incremental Learning with Out-of-Distribution Detection
Class-incremental learning (CIL) poses significant challenges in open-world scenarios, where models must not only learn new classes over time without forgetting previous ones but also handle inputs from unknown classes that a closed-set model would misclassify. Recent works address both issues by (i)~training multi-head models using the task-incremental learning framework, and (ii) predicting the task identity employing out-of-distribution (OOD) detectors. While effective, the latter mainly relies on joint training with a memory buffer of past data, raising concerns around privacy, scalability, and increased training time. In this paper, we present an in-depth analysis of post-hoc OOD detection methods and investigate their potential to eliminate the need for a memory buffer. We uncover that these methods, when applied appropriately at inference time, can serve as a strong substitute for buffer-based OOD detection. We show that this buffer-free approach achieves comparable or superior performance to buffer-based methods both in terms of class-incremental learning and the rejection of unknown samples. Experimental results on CIFAR-10, CIFAR-100 and Tiny ImageNet datasets support our findings, offering new insights into the design of efficient and privacy-preserving CIL systems for open-world settings.
Video Editing for Audio-Visual Dubbing
Visual dubbing, the synchronization of facial movements with new speech, is crucial for making content accessible across different languages, enabling broader global reach. However, current methods face significant limitations. Existing approaches often generate talking faces, hindering seamless integration into original scenes, or employ inpainting techniques that discard vital visual information like partial occlusions and lighting variations. This work introduces EdiDub, a novel framework that reformulates visual dubbing as a content-aware editing task. EdiDub preserves the original video context by utilizing a specialized conditioning scheme to ensure faithful and accurate modifications rather than mere copying. On multiple benchmarks, including a challenging occluded-lip dataset, EdiDub significantly improves identity preservation and synchronization. Human evaluations further confirm its superiority, achieving higher synchronization and visual naturalness scores compared to the leading methods. These results demonstrate that our content-aware editing approach outperforms traditional generation or inpainting, particularly in maintaining complex visual elements while ensuring accurate lip synchronization.
Bridging Geometric and Semantic Foundation Models for Generalized Monocular Depth Estimation
We present Bridging Geometric and Semantic (BriGeS), an effective method that fuses geometric and semantic information within foundation models to enhance Monocular Depth Estimation (MDE). Central to BriGeS is the Bridging Gate, which integrates the complementary strengths of depth and segmentation foundation models. This integration is further refined by our Attention Temperature Scaling technique. It finely adjusts the focus of the attention mechanisms to prevent over-concentration on specific features, thus ensuring balanced performance across diverse inputs. BriGeS capitalizes on pre-trained foundation models and adopts a strategy that focuses on training only the Bridging Gate. This method significantly reduces resource demands and training time while maintaining the model's ability to generalize effectively. Extensive experiments across multiple challenging datasets demonstrate that BriGeS outperforms state-of-the-art methods in MDE for complex scenes, effectively handling intricate structures and overlapping objects.
Point or Line? Using Line-based Representation for Panoptic Symbol Spotting in CAD Drawings
We study the task of panoptic symbol spotting, which involves identifying both individual instances of countable things and the semantic regions of uncountable stuff in computer-aided design (CAD) drawings composed of vector graphical primitives. Existing methods typically rely on image rasterization, graph construction, or point-based representation, but these approaches often suffer from high computational costs, limited generality, and loss of geometric structural information. In this paper, we propose VecFormer, a novel method that addresses these challenges through line-based representation of primitives. This design preserves the geometric continuity of the original primitive, enabling more accurate shape representation while maintaining a computation-friendly structure, making it well-suited for vector graphic understanding tasks. To further enhance prediction reliability, we introduce a Branch Fusion Refinement module that effectively integrates instance and semantic predictions, resolving their inconsistencies for more coherent panoptic outputs. Extensive experiments demonstrate that our method establishes a new state-of-the-art, achieving 91.1 PQ, with Stuff-PQ improved by 9.6 and 21.2 points over the second-best results under settings with and without prior information, respectively, highlighting the strong potential of line-based representation as a foundation for vector graphic understanding.
Robust and Annotation-Free Wound Segmentation on Noisy Real-World Pressure Ulcer Images: Towards Automated DESIGN-R\textsuperscript{\textregistered} Assessment
Purpose: Accurate wound segmentation is essential for automated DESIGN-R scoring. However, existing models such as FUSegNet, which are trained primarily on foot ulcer datasets, often fail to generalize to wounds on other body sites. Methods: We propose an annotation-efficient pipeline that combines a lightweight YOLOv11n-based detector with the pre-trained FUSegNet segmentation model. Instead of relying on pixel-level annotations or retraining for new anatomical regions, our method achieves robust performance using only 500 manually labeled bounding boxes. This zero fine-tuning approach effectively bridges the domain gap and enables direct deployment across diverse wound types. This is an advance not previously demonstrated in the wound segmentation literature. Results: Evaluated on three real-world test sets spanning foot, sacral, and trochanter wounds, our YOLO plus FUSegNet pipeline improved mean IoU by 23 percentage points over vanilla FUSegNet and increased end-to-end DESIGN-R size estimation accuracy from 71 percent to 94 percent (see Table 3 for details). Conclusion: Our pipeline generalizes effectively across body sites without task-specific fine-tuning, demonstrating that minimal supervision, with 500 annotated ROIs, is sufficient for scalable, annotation-light wound segmentation. This capability paves the way for real-world DESIGN-R automation, reducing reliance on pixel-wise labeling, streamlining documentation workflows, and supporting objective and consistent wound scoring in clinical practice. We will publicly release the trained detector weights and configuration to promote reproducibility and facilitate downstream deployment.
VModA: An Effective Framework for Adaptive NSFW Image Moderation
Not Safe/Suitable for Work (NSFW) content is rampant on social networks and poses serious harm to citizens, especially minors. Current detection methods mainly rely on deep learning-based image recognition and classification. However, NSFW images are now presented in increasingly sophisticated ways, often using image details and complex semantics to obscure their true nature or attract more views. Although still understandable to humans, these images often evade existing detection methods, posing a significant threat. Further complicating the issue, varying regulations across platforms and regions create additional challenges for effective moderation, leading to detection bias and reduced accuracy. To address this, we propose VModA, a general and effective framework that adapts to diverse moderation rules and handles complex, semantically rich NSFW content across categories. Experimental results show that VModA significantly outperforms existing methods, achieving up to a 54.3% accuracy improvement across NSFW types, including those with complex semantics. Further experiments demonstrate that our method exhibits strong adaptability across categories, scenarios, and base VLMs. We also identified inconsistent and controversial label samples in public NSFW benchmark datasets, re-annotated them, and submitted corrections to the original maintainers. Two datasets have confirmed the updates so far. Additionally, we evaluate VModA in real-world scenarios to demonstrate its practical effectiveness.
UniRL: Self-Improving Unified Multimodal Models via Supervised and Reinforcement Learning
Unified multimodal large language models such as Show-o and Janus have achieved strong performance across both generation and understanding tasks. However, these models typically rely on large-scale datasets and require substantial computation during the pretraining stage. In addition, several post-training methods have been proposed, but they often depend on external data or are limited to task-specific customization. In this work, we introduce UniRL, a self-improving post-training approach. Our approach enables the model to generate images from prompts and use them as training data in each iteration, without relying on any external image data. Moreover, it enables the two tasks to enhance each other: the generated images are used for understanding, and the understanding results are used to supervise generation. We explore supervised fine-tuning (SFT) and Group Relative Policy Optimization (GRPO) to optimize the models. UniRL offers three key advantages: (1) it requires no external image data, as all training samples are generated by the model itself during training; (2) it not only improves individual task performance, but also reduces the imbalance between generation and understanding; and (3) it requires only several additional training steps during the post-training stage. We evaluate UniRL on top of Show-o and Janus, achieving a GenEval score of 0.77 for Show-o and 0.65 for Janus. Code and models will be released in https://github.com/showlab/UniRL.
PAN-Crafter: Learning Modality-Consistent Alignment for PAN-Sharpening
PAN-sharpening aims to fuse high-resolution panchromatic (PAN) images with low-resolution multi-spectral (MS) images to generate high-resolution multi-spectral (HRMS) outputs. However, cross-modality misalignment -- caused by sensor placement, acquisition timing, and resolution disparity -- induces a fundamental challenge. Conventional deep learning methods assume perfect pixel-wise alignment and rely on per-pixel reconstruction losses, leading to spectral distortion, double edges, and blurring when misalignment is present. To address this, we propose PAN-Crafter, a modality-consistent alignment framework that explicitly mitigates the misalignment gap between PAN and MS modalities. At its core, Modality-Adaptive Reconstruction (MARs) enables a single network to jointly reconstruct HRMS and PAN images, leveraging PAN's high-frequency details as auxiliary self-supervision. Additionally, we introduce Cross-Modality Alignment-Aware Attention (CM3A), a novel mechanism that bidirectionally aligns MS texture to PAN structure and vice versa, enabling adaptive feature refinement across modalities. Extensive experiments on multiple benchmark datasets demonstrate that our PAN-Crafter outperforms the most recent state-of-the-art method in all metrics, even with 50.11$\times$ faster inference time and 0.63$\times$ the memory size. Furthermore, it demonstrates strong generalization performance on unseen satellite datasets, showing its robustness across different conditions.
comment: Please visit our project page https://kaist-viclab.github.io/PAN-Crafter_site
MCFNet: A Multimodal Collaborative Fusion Network for Fine-Grained Semantic Classification
Multimodal information processing has become increasingly important for enhancing image classification performance. However, the intricate and implicit dependencies across different modalities often hinder conventional methods from effectively capturing fine-grained semantic interactions, thereby limiting their applicability in high-precision classification tasks. To address this issue, we propose a novel Multimodal Collaborative Fusion Network (MCFNet) designed for fine-grained classification. The proposed MCFNet architecture incorporates a regularized integrated fusion module that improves intra-modal feature representation through modality-specific regularization strategies, while facilitating precise semantic alignment via a hybrid attention mechanism. Additionally, we introduce a multimodal decision classification module, which jointly exploits inter-modal correlations and unimodal discriminative features by integrating multiple loss functions within a weighted voting paradigm. Extensive experiments and ablation studies on benchmark datasets demonstrate that the proposed MCFNet framework achieves consistent improvements in classification accuracy, confirming its effectiveness in modeling subtle cross-modal semantics.
VideoReasonBench: Can MLLMs Perform Vision-Centric Complex Video Reasoning?
Recent studies have shown that long chain-of-thought (CoT) reasoning can significantly enhance the performance of large language models (LLMs) on complex tasks. However, this benefit is yet to be demonstrated in the domain of video understanding, since most existing benchmarks lack the reasoning depth required to demonstrate the advantages of extended CoT chains. While recent efforts have proposed benchmarks aimed at video reasoning, the tasks are often knowledge-driven and do not rely heavily on visual content. To bridge this gap, we introduce VideoReasonBench, a benchmark designed to evaluate vision-centric, complex video reasoning. To ensure visual richness and high reasoning complexity, each video in VideoReasonBench depicts a sequence of fine-grained operations on a latent state that is only visible in part of the video. The questions evaluate three escalating levels of video reasoning skills: recalling observed visual information, inferring the content of latent states, and predicting information beyond the video. Under such task setting, models have to precisely recall multiple operations in the video, and perform step-by-step reasoning to get correct final answers for these questions. Using VideoReasonBench, we comprehensively evaluate 18 state-of-the-art multimodal LLMs (MLLMs), finding that most perform poorly on complex video reasoning, e.g., GPT-4o achieves only 6.9% accuracy, while the thinking-enhanced Gemini-2.5-Pro significantly outperforms others with 56.0% accuracy. Our investigations on "test-time scaling" further reveal that extended thinking budget, while offering none or minimal benefits on existing video benchmarks, is essential for improving the performance on VideoReasonBench.
comment: Project Page: https://llyx97.github.io/video_reason_bench/
Beam-Guided Knowledge Replay for Knowledge-Rich Image Captioning using Vision-Language Model
Generating informative and knowledge-rich image captions remains a challenge for many existing captioning models, which often produce generic descriptions that lack specificity and contextual depth. To address this limitation, we propose KRCapVLM, a knowledge replay-based novel image captioning framework using vision-language model. We incorporate beam search decoding to generate more diverse and coherent captions. We also integrate attention-based modules into the image encoder to enhance feature representation. Finally, we employ training schedulers to improve stability and ensure smoother convergence during training. These proposals accelerate substantial gains in both caption quality and knowledge recognition. Our proposed model demonstrates clear improvements in both the accuracy of knowledge recognition and the overall quality of generated captions. It shows a stronger ability to generalize to previously unseen knowledge concepts, producing more informative and contextually relevant descriptions. These results indicate the effectiveness of our approach in enhancing the model's capacity to generate meaningful, knowledge-grounded captions across a range of scenarios.
Synthetic Generation and Latent Projection Denoising of Rim Lesions in Multiple Sclerosis CVPR 2025
Quantitative susceptibility maps from magnetic resonance images can provide both prognostic and diagnostic information in multiple sclerosis, a neurodegenerative disease characterized by the formation of lesions in white matter brain tissue. In particular, susceptibility maps provide adequate contrast to distinguish between "rim" lesions, surrounded by deposited paramagnetic iron, and "non-rim" lesion types. These paramagnetic rim lesions (PRLs) are an emerging biomarker in multiple sclerosis. Much effort has been devoted to both detection and segmentation of such lesions to monitor longitudinal change. As paramagnetic rim lesions are rare, addressing this problem requires confronting the class imbalance between rim and non-rim lesions. We produce synthetic quantitative susceptibility maps of paramagnetic rim lesions and show that inclusion of such synthetic data improves classifier performance and provide a multi-channel extension to generate accompanying contrasts and probabilistic segmentation maps. We exploit the projection capability of our trained generative network to demonstrate a novel denoising approach that allows us to train on ambiguous rim cases and substantially increase the minority class. We show that both synthetic lesion synthesis and our proposed rim lesion label denoising method best approximate the unseen rim lesion distribution and improve detection in a clinically interpretable manner. We release our code and generated data at https://github.com/agr78/PRLx-GAN upon publication.
comment: Accepted full paper in Synthetic Data @ CVPR 2025 12 pages, 10 figures
Beyond Optimal Transport: Model-Aligned Coupling for Flow Matching
Flow Matching (FM) is an effective framework for training a model to learn a vector field that transports samples from a source distribution to a target distribution. To train the model, early FM methods use random couplings, which often result in crossing paths and lead the model to learn non-straight trajectories that require many integration steps to generate high-quality samples. To address this, recent methods adopt Optimal Transport (OT) to construct couplings by minimizing geometric distances, which helps reduce path crossings. However, we observe that such geometry-based couplings do not necessarily align with the model's preferred trajectories, making it difficult to learn the vector field induced by these couplings, which prevents the model from learning straight trajectories. Motivated by this, we propose Model-Aligned Coupling (MAC), an effective method that matches training couplings based not only on geometric distance but also on alignment with the model's preferred transport directions based on its prediction error. To avoid the time-costly match process, MAC proposes to select the top-$k$ fraction of couplings with the lowest error for training. Extensive experiments show that MAC significantly improves generation quality and efficiency in few-step settings compared to existing methods. Project page: https://yexionglin.github.io/mac
Diffusion Sampling Path Tells More: An Efficient Plug-and-Play Strategy for Sample Filtering
Diffusion models often exhibit inconsistent sample quality due to stochastic variations inherent in their sampling trajectories. Although training-based fine-tuning (e.g. DDPO [1]) and inference-time alignment techniques[2] aim to improve sample fidelity, they typically necessitate full denoising processes and external reward signals. This incurs substantial computational costs, hindering their broader applicability. In this work, we unveil an intriguing phenomenon: a previously unobserved yet exploitable link between sample quality and characteristics of the denoising trajectory during classifier-free guidance (CFG). Specifically, we identify a strong correlation between high-density regions of the sample distribution and the Accumulated Score Differences (ASD)--the cumulative divergence between conditional and unconditional scores. Leveraging this insight, we introduce CFG-Rejection, an efficient, plug-and-play strategy that filters low-quality samples at an early stage of the denoising process, crucially without requiring external reward signals or model retraining. Importantly, our approach necessitates no modifications to model architectures or sampling schedules and maintains full compatibility with existing diffusion frameworks. We validate the effectiveness of CFG-Rejection in image generation through extensive experiments, demonstrating marked improvements on human preference scores (HPSv2, PickScore) and challenging benchmarks (GenEval, DPG-Bench). We anticipate that CFG-Rejection will offer significant advantages for diverse generative modalities beyond images, paving the way for more efficient and reliable high-quality sample generation.
DSAGL: Dual-Stream Attention-Guided Learning for Weakly Supervised Whole Slide Image Classification
Whole-slide images (WSIs) are critical for cancer diagnosis due to their ultra-high resolution and rich semantic content. However, their massive size and the limited availability of fine-grained annotations pose substantial challenges for conventional supervised learning. We propose DSAGL (Dual-Stream Attention-Guided Learning), a novel weakly supervised classification framework that combines a teacher-student architecture with a dual-stream design. DSAGL explicitly addresses instance-level ambiguity and bag-level semantic consistency by generating multi-scale attention-based pseudo labels and guiding instance-level learning. A shared lightweight encoder (VSSMamba) enables efficient long-range dependency modeling, while a fusion-attentive module (FASA) enhances focus on sparse but diagnostically relevant regions. We further introduce a hybrid loss to enforce mutual consistency between the two streams. Experiments on CIFAR-10, NCT-CRC, and TCGA-Lung datasets demonstrate that DSAGL consistently outperforms state-of-the-art MIL baselines, achieving superior discriminative performance and robustness under weak supervision.
Fine-Tuning Next-Scale Visual Autoregressive Models with Group Relative Policy Optimization
Fine-tuning pre-trained generative models with Reinforcement Learning (RL) has emerged as an effective approach for aligning outputs more closely with nuanced human preferences. In this paper, we investigate the application of Group Relative Policy Optimization (GRPO) to fine-tune next-scale visual autoregressive (VAR) models. Our empirical results demonstrate that this approach enables alignment to intricate reward signals derived from aesthetic predictors and CLIP embeddings, significantly enhancing image quality and enabling precise control over the generation style. Interestingly, by leveraging CLIP, our method can help VAR models generalize beyond their initial ImageNet distribution: through RL-driven exploration, these models can generate images aligned with prompts referencing image styles that were absent during pre-training. In summary, we show that RL-based fine-tuning is both efficient and effective for VAR models, benefiting particularly from their fast inference speeds, which are advantageous for online sampling, an aspect that poses significant challenges for diffusion-based alternatives.
Dimension-Reduction Attack! Video Generative Models are Experts on Controllable Image Synthesis
Video generative models can be regarded as world simulators due to their ability to capture dynamic, continuous changes inherent in real-world environments. These models integrate high-dimensional information across visual, temporal, spatial, and causal dimensions, enabling predictions of subjects in various status. A natural and valuable research direction is to explore whether a fully trained video generative model in high-dimensional space can effectively support lower-dimensional tasks such as controllable image generation. In this work, we propose a paradigm for video-to-image knowledge compression and task adaptation, termed \textit{Dimension-Reduction Attack} (\texttt{DRA-Ctrl}), which utilizes the strengths of video models, including long-range context modeling and flatten full-attention, to perform various generation tasks. Specially, to address the challenging gap between continuous video frames and discrete image generation, we introduce a mixup-based transition strategy that ensures smooth adaptation. Moreover, we redesign the attention structure with a tailored masking mechanism to better align text prompts with image-level control. Experiments across diverse image generation tasks, such as subject-driven and spatially conditioned generation, show that repurposed video models outperform those trained directly on images. These results highlight the untapped potential of large-scale video generators for broader visual applications. \texttt{DRA-Ctrl} provides new insights into reusing resource-intensive video models and lays foundation for future unified generative models across visual modalities. The project page is https://dra-ctrl-2025.github.io/DRA-Ctrl/.
CF-DETR: Coarse-to-Fine Transformer for Real-Time Object Detection
Detection Transformers (DETR) are increasingly adopted in autonomous vehicle (AV) perception systems due to their superior accuracy over convolutional networks. However, concurrently executing multiple DETR tasks presents significant challenges in meeting firm real-time deadlines (R1) and high accuracy requirements (R2), particularly for safety-critical objects, while navigating the inherent latency-accuracy trade-off under resource constraints. Existing real-time DNN scheduling approaches often treat models generically, failing to leverage Transformer-specific properties for efficient resource allocation. To address these challenges, we propose CF-DETR, an integrated system featuring a novel coarse-to-fine Transformer architecture and a dedicated real-time scheduling framework NPFP**. CF-DETR employs three key strategies (A1: coarse-to-fine inference, A2: selective fine inference, A3: multi-level batch inference) that exploit Transformer properties to dynamically adjust patch granularity and attention scope based on object criticality, aiming to satisfy R2. The NPFP** scheduling framework (A4) orchestrates these adaptive mechanisms A1-A3. It partitions each DETR task into a safety-critical coarse subtask for guaranteed critical object detection within its deadline (ensuring R1), and an optional fine subtask for enhanced overall accuracy (R2), while managing individual and batched execution. Our extensive evaluations on server, GPU-enabled embedded platforms, and actual AV platforms demonstrate that CF-DETR, under an NPFP** policy, successfully meets strict timing guarantees for critical operations and achieves significantly higher overall and critical object detection accuracy compared to existing baselines across diverse AV workloads.
comment: 12 pages
Adversarial Semantic and Label Perturbation Attack for Pedestrian Attribute Recognition
Pedestrian Attribute Recognition (PAR) is an indispensable task in human-centered research and has made great progress in recent years with the development of deep neural networks. However, the potential vulnerability and anti-interference ability have still not been fully explored. To bridge this gap, this paper proposes the first adversarial attack and defense framework for pedestrian attribute recognition. Specifically, we exploit both global- and patch-level attacks on the pedestrian images, based on the pre-trained CLIP-based PAR framework. It first divides the input pedestrian image into non-overlapping patches and embeds them into feature embeddings using a projection layer. Meanwhile, the attribute set is expanded into sentences using prompts and embedded into attribute features using a pre-trained CLIP text encoder. A multi-modal Transformer is adopted to fuse the obtained vision and text tokens, and a feed-forward network is utilized for attribute recognition. Based on the aforementioned PAR framework, we adopt the adversarial semantic and label-perturbation to generate the adversarial noise, termed ASL-PAR. We also design a semantic offset defense strategy to suppress the influence of adversarial attacks. Extensive experiments conducted on both digital domains (i.e., PETA, PA100K, MSP60K, RAPv2) and physical domains fully validated the effectiveness of our proposed adversarial attack and defense strategies for the pedestrian attribute recognition. The source code of this paper will be released on https://github.com/Event-AHU/OpenPAR.
TRACE: Trajectory-Constrained Concept Erasure in Diffusion Models
Text-to-image diffusion models have shown unprecedented generative capability, but their ability to produce undesirable concepts (e.g.~pornographic content, sensitive identities, copyrighted styles) poses serious concerns for privacy, fairness, and safety. {Concept erasure} aims to remove or suppress specific concept information in a generative model. In this paper, we introduce \textbf{TRACE (Trajectory-Constrained Attentional Concept Erasure)}, a novel method to erase targeted concepts from diffusion models while preserving overall generative quality. Our approach combines a rigorous theoretical framework, establishing formal conditions under which a concept can be provably suppressed in the diffusion process, with an effective fine-tuning procedure compatible with both conventional latent diffusion (Stable Diffusion) and emerging rectified flow models (e.g.~FLUX). We first derive a closed-form update to the model's cross-attention layers that removes hidden representations of the target concept. We then introduce a trajectory-aware finetuning objective that steers the denoising process away from the concept only in the late sampling stages, thus maintaining the model's fidelity on unrelated content. Empirically, we evaluate TRACE on multiple benchmarks used in prior concept erasure studies (object classes, celebrity faces, artistic styles, and explicit content from the I2P dataset). TRACE achieves state-of-the-art performance, outperforming recent methods such as ANT, EraseAnything, and MACE in terms of removal efficacy and output quality.
comment: In peer review
Quality assessment of 3D human animation: Subjective and objective evaluation
Virtual human animations have a wide range of applications in virtual and augmented reality. While automatic generation methods of animated virtual humans have been developed, assessing their quality remains challenging. Recently, approaches introducing task-oriented evaluation metrics have been proposed, leveraging neural network training. However, quality assessment measures for animated virtual humans that are not generated with parametric body models have yet to be developed. In this context, we introduce a first such quality assessment measure leveraging a novel data-driven framework. First, we generate a dataset of virtual human animations together with their corresponding subjective realism evaluation scores collected with a user study. Second, we use the resulting dataset to learn predicting perceptual evaluation scores. Results indicate that training a linear regressor on our dataset results in a correlation of 90%, which outperforms a state of the art deep learning baseline.
Federated Unsupervised Semantic Segmentation
This work explores the application of Federated Learning (FL) in Unsupervised Semantic image Segmentation (USS). Recent USS methods extract pixel-level features using frozen visual foundation models and refine them through self-supervised objectives that encourage semantic grouping. These features are then grouped to semantic clusters to produce segmentation masks. Extending these ideas to federated settings requires feature representation and cluster centroid alignment across distributed clients -- an inherently difficult task under heterogeneous data distributions in the absence of supervision. To address this, we propose FUSS Federated Unsupervised image Semantic Segmentation) which is, to our knowledge, the first framework to enable fully decentralized, label-free semantic segmentation training. FUSS introduces novel federation strategies that promote global consistency in feature and prototype space, jointly optimizing local segmentation heads and shared semantic centroids. Experiments on both benchmark and real-world datasets, including binary and multi-class segmentation tasks, show that FUSS consistently outperforms local-only client trainings as well as extensions of classical FL algorithms under varying client data distributions. To support reproducibility, full code will be released upon manuscript acceptance.
Wav2Sem: Plug-and-Play Audio Semantic Decoupling for 3D Speech-Driven Facial Animation CVPR 2025
In 3D speech-driven facial animation generation, existing methods commonly employ pre-trained self-supervised audio models as encoders. However, due to the prevalence of phonetically similar syllables with distinct lip shapes in language, these near-homophone syllables tend to exhibit significant coupling in self-supervised audio feature spaces, leading to the averaging effect in subsequent lip motion generation. To address this issue, this paper proposes a plug-and-play semantic decorrelation module-Wav2Sem. This module extracts semantic features corresponding to the entire audio sequence, leveraging the added semantic information to decorrelate audio encodings within the feature space, thereby achieving more expressive audio features. Extensive experiments across multiple Speech-driven models indicate that the Wav2Sem module effectively decouples audio features, significantly alleviating the averaging effect of phonetically similar syllables in lip shape generation, thereby enhancing the precision and naturalness of facial animations. Our source code is available at https://github.com/wslh852/Wav2Sem.git.
comment: Accepted to CVPR 2025
GenCAD-Self-Repairing: Feasibility Enhancement for 3D CAD Generation
With the advancement of generative AI, research on its application to 3D model generation has gained traction, particularly in automating the creation of Computer-Aided Design (CAD) files from images. GenCAD is a notable model in this domain, leveraging an autoregressive transformer-based architecture with a contrastive learning framework to generate CAD programs. However, a major limitation of GenCAD is its inability to consistently produce feasible boundary representations (B-reps), with approximately 10% of generated designs being infeasible. To address this, we propose GenCAD-Self-Repairing, a framework that enhances the feasibility of generative CAD models through diffusion guidance and a self-repairing pipeline. This framework integrates a guided diffusion denoising process in the latent space and a regression-based correction mechanism to refine infeasible CAD command sequences while preserving geometric accuracy. Our approach successfully converted two-thirds of infeasible designs in the baseline method into feasible ones, significantly improving the feasibility rate while simultaneously maintaining a reasonable level of geometric accuracy between the point clouds of ground truth models and generated models. By significantly improving the feasibility rate of generating CAD models, our approach helps expand the availability of high-quality training data and enhances the applicability of AI-driven CAD generation in manufacturing, architecture, and product design.
RSFAKE-1M: A Large-Scale Dataset for Detecting Diffusion-Generated Remote Sensing Forgeries
Detecting forged remote sensing images is becoming increasingly critical, as such imagery plays a vital role in environmental monitoring, urban planning, and national security. While diffusion models have emerged as the dominant paradigm for image generation, their impact on remote sensing forgery detection remains underexplored. Existing benchmarks primarily target GAN-based forgeries or focus on natural images, limiting progress in this critical domain. To address this gap, we introduce RSFAKE-1M, a large-scale dataset of 500K forged and 500K real remote sensing images. The fake images are generated by ten diffusion models fine-tuned on remote sensing data, covering six generation conditions such as text prompts, structural guidance, and inpainting. This paper presents the construction of RSFAKE-1M along with a comprehensive experimental evaluation using both existing detectors and unified baselines. The results reveal that diffusion-based remote sensing forgeries remain challenging for current methods, and that models trained on RSFAKE-1M exhibit notably improved generalization and robustness. Our findings underscore the importance of RSFAKE-1M as a foundation for developing and evaluating next-generation forgery detection approaches in the remote sensing domain. The dataset and other supplementary materials are available at https://huggingface.co/datasets/TZHSW/RSFAKE/.
Holistic Large-Scale Scene Reconstruction via Mixed Gaussian Splatting
Recent advances in 3D Gaussian Splatting have shown remarkable potential for novel view synthesis. However, most existing large-scale scene reconstruction methods rely on the divide-and-conquer paradigm, which often leads to the loss of global scene information and requires complex parameter tuning due to scene partitioning and local optimization. To address these limitations, we propose MixGS, a novel holistic optimization framework for large-scale 3D scene reconstruction. MixGS models the entire scene holistically by integrating camera pose and Gaussian attributes into a view-aware representation, which is decoded into fine-detailed Gaussians. Furthermore, a novel mixing operation combines decoded and original Gaussians to jointly preserve global coherence and local fidelity. Extensive experiments on large-scale scenes demonstrate that MixGS achieves state-of-the-art rendering quality and competitive speed, while significantly reducing computational requirements, enabling large-scale scene reconstruction training on a single 24GB VRAM GPU. The code will be released at https://github.com/azhuantou/MixGS.
Are MLMs Trapped in the Visual Room?
Can multi-modal large models (MLMs) that can ``see'' an image be said to ``understand'' it? Drawing inspiration from Searle's Chinese Room, we propose the \textbf{Visual Room} argument: a system may process and describe every detail of visual inputs by following algorithmic rules, without genuinely comprehending the underlying intention. This dilemma challenges the prevailing assumption that perceptual mastery implies genuine understanding. In implementation, we introduce a two-tier evaluation framework spanning perception and cognition. The perception component evaluates whether MLMs can accurately capture the surface-level details of visual contents, where the cognitive component examines their ability to infer sarcasm polarity. To support this framework, We further introduce a high-quality multi-modal sarcasm dataset comprising both 924 static images and 100 dynamic videos. All sarcasm labels are annotated by the original authors and verified by independent reviewers to ensure clarity and consistency. We evaluate eight state-of-the-art (SoTA) MLMs. Our results highlight three key findings: (1) MLMs perform well on perception tasks; (2) even with correct perception, models exhibit an average error rate of ~16.1\% in sarcasm understanding, revealing a significant gap between seeing and understanding; (3) error analysis attributes this gap to deficiencies in emotional reasoning, commonsense inference, and context alignment. This work provides empirical grounding for the proposed Visual Room argument and offers a new evaluation paradigm for MLMs.
LADA: Scalable Label-Specific CLIP Adapter for Continual Learning ICML 2025
Continual learning with vision-language models like CLIP offers a pathway toward scalable machine learning systems by leveraging its transferable representations. Existing CLIP-based methods adapt the pre-trained image encoder by adding multiple sets of learnable parameters, with each task using a partial set of parameters. This requires selecting the expected parameters for input images during inference, which is prone to error that degrades performance. To address this problem, we introduce LADA (Label-specific ADApter). Instead of partitioning parameters across tasks, LADA appends lightweight, label-specific memory units to the frozen CLIP image encoder, enabling discriminative feature generation by aggregating task-agnostic knowledge. To prevent catastrophic forgetting, LADA employs feature distillation for seen classes, preventing their features from being interfered with by new classes. Positioned after the image encoder, LADA prevents gradient flow to the frozen CLIP parameters, ensuring efficient training. Extensive results show that LADA achieves state-of-the-art performance in continual learning settings. The implementation code is available at https://github.com/MaolinLuo/LADA.
comment: Accepted at ICML 2025
Unsupervised Transcript-assisted Video Summarization and Highlight Detection
Video consumption is a key part of daily life, but watching entire videos can be tedious. To address this, researchers have explored video summarization and highlight detection to identify key video segments. While some works combine video frames and transcripts, and others tackle video summarization and highlight detection using Reinforcement Learning (RL), no existing work, to the best of our knowledge, integrates both modalities within an RL framework. In this paper, we propose a multimodal pipeline that leverages video frames and their corresponding transcripts to generate a more condensed version of the video and detect highlights using a modality fusion mechanism. The pipeline is trained within an RL framework, which rewards the model for generating diverse and representative summaries while ensuring the inclusion of video segments with meaningful transcript content. The unsupervised nature of the training allows for learning from large-scale unannotated datasets, overcoming the challenge posed by the limited size of existing annotated datasets. Our experiments show that using the transcript in video summarization and highlight detection achieves superior results compared to relying solely on the visual content of the video.
Disrupting Vision-Language Model-Driven Navigation Services via Adversarial Object Fusion
We present Adversarial Object Fusion (AdvOF), a novel attack framework targeting vision-and-language navigation (VLN) agents in service-oriented environments by generating adversarial 3D objects. While foundational models like Large Language Models (LLMs) and Vision Language Models (VLMs) have enhanced service-oriented navigation systems through improved perception and decision-making, their integration introduces vulnerabilities in mission-critical service workflows. Existing adversarial attacks fail to address service computing contexts, where reliability and quality-of-service (QoS) are paramount. We utilize AdvOF to investigate and explore the impact of adversarial environments on the VLM-based perception module of VLN agents. In particular, AdvOF first precisely aggregates and aligns the victim object positions in both 2D and 3D space, defining and rendering adversarial objects. Then, we collaboratively optimize the adversarial object with regularization between the adversarial and victim object across physical properties and VLM perceptions. Through assigning importance weights to varying views, the optimization is processed stably and multi-viewedly by iterative fusions from local updates and justifications. Our extensive evaluations demonstrate AdvOF can effectively degrade agent performance under adversarial conditions while maintaining minimal interference with normal navigation tasks. This work advances the understanding of service security in VLM-powered navigation systems, providing computational foundations for robust service composition in physical-world deployments.
comment: Under review
RiverMamba: A State Space Model for Global River Discharge and Flood Forecasting
Recent deep learning approaches for river discharge forecasting have improved the accuracy and efficiency in flood forecasting, enabling more reliable early warning systems for risk management. Nevertheless, existing deep learning approaches in hydrology remain largely confined to local-scale applications and do not leverage the inherent spatial connections of bodies of water. Thus, there is a strong need for new deep learning methodologies that are capable of modeling spatio-temporal relations to improve river discharge and flood forecasting for scientific and operational applications. To address this, we present RiverMamba, a novel deep learning model that is pretrained with long-term reanalysis data and that can forecast global river discharge and floods on a $0.05^\circ$ grid up to 7 days lead time, which is of high relevance in early warning. To achieve this, RiverMamba leverages efficient Mamba blocks that enable the model to capture global-scale channel network routing and enhance its forecast capability for longer lead times. The forecast blocks integrate ECMWF HRES meteorological forecasts, while accounting for their inaccuracies through spatio-temporal modeling. Our analysis demonstrates that RiverMamba delivers reliable predictions of river discharge, including extreme floods across return periods and lead times, surpassing both operational AI- and physics-based models.
comment: Main paper 10 pages, Appendix 53 pages
Surf2CT: Cascaded 3D Flow Matching Models for Torso 3D CT Synthesis from Skin Surface
We present Surf2CT, a novel cascaded flow matching framework that synthesizes full 3D computed tomography (CT) volumes of the human torso from external surface scans and simple demographic data (age, sex, height, weight). This is the first approach capable of generating realistic volumetric internal anatomy images solely based on external body shape and demographics, without any internal imaging. Surf2CT proceeds through three sequential stages: (1) Surface Completion, reconstructing a complete signed distance function (SDF) from partial torso scans using conditional 3D flow matching; (2) Coarse CT Synthesis, generating a low-resolution CT volume from the completed SDF and demographic information; and (3) CT Super-Resolution, refining the coarse volume into a high-resolution CT via a patch-wise conditional flow model. Each stage utilizes a 3D-adapted EDM2 backbone trained via flow matching. We trained our model on a combined dataset of 3,198 torso CT scans (approximately 1.13 million axial slices) sourced from Massachusetts General Hospital (MGH) and the AutoPET challenge. Evaluation on 700 paired torso surface-CT cases demonstrated strong anatomical fidelity: organ volumes exhibited small mean percentage differences (range from -11.1% to 4.4%), and muscle/fat body composition metrics matched ground truth with strong correlation (range from 0.67 to 0.96). Lung localization had minimal bias (mean difference -2.5 mm), and surface completion significantly improved metrics (Chamfer distance: from 521.8 mm to 2.7 mm; Intersection-over-Union: from 0.87 to 0.98). Surf2CT establishes a new paradigm for non-invasive internal anatomical imaging using only external data, opening opportunities for home-based healthcare, preventive medicine, and personalized clinical assessments without the risks associated with conventional imaging techniques.
comment: Neurips 2025 submitted
The Meeseeks Mesh: Spatially Consistent 3D Adversarial Objects for BEV Detector
3D object detection is a critical component in autonomous driving systems. It allows real-time recognition and detection of vehicles, pedestrians and obstacles under varying environmental conditions. Among existing methods, 3D object detection in the Bird's Eye View (BEV) has emerged as the mainstream framework. To guarantee a safe, robust and trustworthy 3D object detection, 3D adversarial attacks are investigated, where attacks are placed in 3D environments to evaluate the model performance, e.g. putting a film on a car, clothing a pedestrian. The vulnerability of 3D object detection models to 3D adversarial attacks serves as an important indicator to evaluate the robustness of the model against perturbations. To investigate this vulnerability, we generate non-invasive 3D adversarial objects tailored for real-world attack scenarios. Our method verifies the existence of universal adversarial objects that are spatially consistent across time and camera views. Specifically, we employ differentiable rendering techniques to accurately model the spatial relationship between adversarial objects and the target vehicle. Furthermore, we introduce an occlusion-aware module to enhance visual consistency and realism under different viewpoints. To maintain attack effectiveness across multiple frames, we design a BEV spatial feature-guided optimization strategy. Experimental results demonstrate that our approach can reliably suppress vehicle predictions from state-of-the-art 3D object detectors, serving as an important tool to test robustness of 3D object detection models before deployment. Moreover, the generated adversarial objects exhibit strong generalization capabilities, retaining its effectiveness at various positions and distances in the scene.
SHTOcc: Effective 3D Occupancy Prediction with Sparse Head and Tail Voxels
3D occupancy prediction has attracted much attention in the field of autonomous driving due to its powerful geometric perception and object recognition capabilities. However, existing methods have not explored the most essential distribution patterns of voxels, resulting in unsatisfactory results. This paper first explores the inter-class distribution and geometric distribution of voxels, thereby solving the long-tail problem caused by the inter-class distribution and the poor performance caused by the geometric distribution. Specifically, this paper proposes SHTOcc (Sparse Head-Tail Occupancy), which uses sparse head-tail voxel construction to accurately identify and balance key voxels in the head and tail classes, while using decoupled learning to reduce the model's bias towards the dominant (head) category and enhance the focus on the tail class. Experiments show that significant improvements have been made on multiple baselines: SHTOcc reduces GPU memory usage by 42.2%, increases inference speed by 58.6%, and improves accuracy by about 7%, verifying its effectiveness and efficiency. The code is available at https://github.com/ge95net/SHTOcc
GeoDrive: 3D Geometry-Informed Driving World Model with Precise Action Control
Recent advancements in world models have revolutionized dynamic environment simulation, allowing systems to foresee future states and assess potential actions. In autonomous driving, these capabilities help vehicles anticipate the behavior of other road users, perform risk-aware planning, accelerate training in simulation, and adapt to novel scenarios, thereby enhancing safety and reliability. Current approaches exhibit deficiencies in maintaining robust 3D geometric consistency or accumulating artifacts during occlusion handling, both critical for reliable safety assessment in autonomous navigation tasks. To address this, we introduce GeoDrive, which explicitly integrates robust 3D geometry conditions into driving world models to enhance spatial understanding and action controllability. Specifically, we first extract a 3D representation from the input frame and then obtain its 2D rendering based on the user-specified ego-car trajectory. To enable dynamic modeling, we propose a dynamic editing module during training to enhance the renderings by editing the positions of the vehicles. Extensive experiments demonstrate that our method significantly outperforms existing models in both action accuracy and 3D spatial awareness, leading to more realistic, adaptable, and reliable scene modeling for safer autonomous driving. Additionally, our model can generalize to novel trajectories and offers interactive scene editing capabilities, such as object editing and object trajectory control.
comment: code will be released at https://github.com/antonioo-c/GeoDrive
YH-MINER: Multimodal Intelligent System for Natural Ecological Reef Metric Extraction
Coral reefs, crucial for sustaining marine biodiversity and ecological processes (e.g., nutrient cycling, habitat provision), face escalating threats, underscoring the need for efficient monitoring. Coral reef ecological monitoring faces dual challenges of low efficiency in manual analysis and insufficient segmentation accuracy in complex underwater scenarios. This study develops the YH-MINER system, establishing an intelligent framework centered on the Multimodal Large Model (MLLM) for "object detection-semantic segmentation-prior input". The system uses the object detection module (mAP@0.5=0.78) to generate spatial prior boxes for coral instances, driving the segment module to complete pixel-level segmentation in low-light and densely occluded scenarios. The segmentation masks and finetuned classification instructions are fed into the Qwen2-VL-based multimodal model as prior inputs, achieving a genus-level classification accuracy of 88% and simultaneously extracting core ecological metrics. Meanwhile, the system retains the scalability of the multimodal model through standardized interfaces, laying a foundation for future integration into multimodal agent-based underwater robots and supporting the full-process automation of "image acquisition-prior generation-real-time analysis".
Improving Brain-to-Image Reconstruction via Fine-Grained Text Bridging
Brain-to-Image reconstruction aims to recover visual stimuli perceived by humans from brain activity. However, the reconstructed visual stimuli often missing details and semantic inconsistencies, which may be attributed to insufficient semantic information. To address this issue, we propose an approach named Fine-grained Brain-to-Image reconstruction (FgB2I), which employs fine-grained text as bridge to improve image reconstruction. FgB2I comprises three key stages: detail enhancement, decoding fine-grained text descriptions, and text-bridged brain-to-image reconstruction. In the detail-enhancement stage, we leverage large vision-language models to generate fine-grained captions for visual stimuli and experimentally validate its importance. We propose three reward metrics (object accuracy, text-image semantic similarity, and image-image semantic similarity) to guide the language model in decoding fine-grained text descriptions from fMRI signals. The fine-grained text descriptions can be integrated into existing reconstruction methods to achieve fine-grained Brain-to-Image reconstruction.
comment: CogSci2025
Stereo Radargrammetry Using Deep Learning from Airborne SAR Images
In this paper, we propose a stereo radargrammetry method using deep learning from airborne Synthetic Aperture Radar (SAR) images. Deep learning-based methods are considered to suffer less from geometric image modulation, while there is no public SAR image dataset used to train such methods. We create a SAR image dataset and perform fine-tuning of a deep learning-based image correspondence method. The proposed method suppresses the degradation of image quality by pixel interpolation without ground projection of the SAR image and divides the SAR image into patches for processing, which makes it possible to apply deep learning. Through a set of experiments, we demonstrate that the proposed method exhibits a wider range and more accurate elevation measurements compared to conventional methods. The project web page is available at: https://gsisaoki.github.io/IGARSS2025_sasayama/
comment: 5 pages, 5 figures, conference IGARSS2025
Weight Space Representation Learning on Diverse NeRF Architectures
Neural Radiance Fields (NeRFs) have emerged as a groundbreaking paradigm for representing 3D objects and scenes by encoding shape and appearance information into the weights of a neural network. Recent studies have demonstrated that these weights can be used as input for frameworks designed to address deep learning tasks; however, such frameworks require NeRFs to adhere to a specific, predefined architecture. In this paper, we introduce the first framework capable of processing NeRFs with diverse architectures and performing inference on architectures unseen at training time. We achieve this by training a Graph Meta-Network within an unsupervised representation learning framework, and show that a contrastive objective is conducive to obtaining an architecture-agnostic latent space. In experiments conducted across 13 NeRF architectures belonging to three families (MLPs, tri-planes, and, for the first time, hash tables), our approach demonstrates robust performance in classification and retrieval tasks involving multiple architectures, even unseen at training time, while also exceeding the results of existing frameworks limited to single architectures.
comment: v2: added third NeRF architecture. Under review
Diffusion Classifiers Understand Compositionality, but Conditions Apply
Understanding visual scenes is fundamental to human intelligence. While discriminative models have significantly advanced computer vision, they often struggle with compositional understanding. In contrast, recent generative text-to-image diffusion models excel at synthesizing complex scenes, suggesting inherent compositional capabilities. Building on this, zero-shot diffusion classifiers have been proposed to repurpose diffusion models for discriminative tasks. While prior work offered promising results in discriminative compositional scenarios, these results remain preliminary due to a small number of benchmarks and a relatively shallow analysis of conditions under which the models succeed. To address this, we present a comprehensive study of the discriminative capabilities of diffusion classifiers on a wide range of compositional tasks. Specifically, our study covers three diffusion models (SD 1.5, 2.0, and, for the first time, 3-m) spanning 10 datasets and over 30 tasks. Further, we shed light on the role that target dataset domains play in respective performance; to isolate the domain effects, we introduce a new diagnostic benchmark Self-Bench comprised of images created by diffusion models themselves. Finally, we explore the importance of timestep weighting and uncover a relationship between domain gap and timestep sensitivity, particularly for SD3-m. To sum up, diffusion classifiers understand compositionality, but conditions apply! Code and dataset are available at https://github.com/eugene6923/Diffusion-Classifiers-Compositionality.
Visatronic: A Multimodal Decoder-Only Model for Speech Synthesis
The rapid progress of foundation models and large language models (LLMs) has fueled significantly improvement in the capabilities of machine learning systems that benefit from mutlimodal input data. However, existing multimodal models are predominantly built on top of pre-trained LLMs, which can limit accurate modeling of temporal dependencies across other modalities and thus limit the model's ability to jointly process and leverage multimodal inputs. To specifically investigate the alignment of text, video, and speech modalities in LLM-style (decoder-only) models, we consider a simplified multimodal generation task, Video-Text to Speech (VTTS): speech generation conditioned on both its corresponding text and video of talking people. The ultimate goal is to generate speech that not only follows the text but also aligns temporally with the video and is consistent with the facial expressions. In this paper, we first introduce Visatronic, a unified multimodal decoder-only transformer model that adopts an LLM-style architecture to embed visual, textual, and speech inputs into a shared subspace, treating all modalities as temporally aligned token streams. Next, we carefully explore different token mixing strategies to understand the best way to propagate information from the steps where video and text conditioning is input to the steps where the audio is generated. We extensively evaluate Visatronic on the challenging VoxCeleb2 dataset and demonstrate zero-shot generalization to LRS3, where Visatronic, trained on VoxCeleb2, achieves a 4.5% WER, outperforming prior SOTA methods trained only on LRS3, which report a 21.4% WER. Additionally, we propose a new objective metric, TimeSync, specifically designed to measure phoneme-level temporal alignment between generated and reference speech, further ensuring synchronization quality. Demo: https://apple.github.io/visatronic-demo/
Satellite Imagery and AI: A New Era in Ocean Conservation, from Research to Deployment and Impact (Version. 2.0) NeurIPS
Illegal, unreported, and unregulated (IUU) fishing poses a global threat to ocean habitats. Publicly available satellite data offered by NASA, the European Space Agency (ESA), and the U.S. Geological Survey (USGS), provide an opportunity to actively monitor this activity. Effectively leveraging satellite data for maritime conservation requires highly reliable machine learning models operating globally with minimal latency. This paper introduces four specialized computer vision models designed for a variety of sensors including Sentinel-1 (synthetic aperture radar), Sentinel-2 (optical imagery), Landsat 8-9 (optical imagery), and Suomi-NPP/NOAA-20/NOAA-21 (nighttime lights). It also presents best practices for developing and deploying global-scale real-time satellite based computer vision. All of the models are open sourced under permissive licenses. These models have all been deployed in Skylight, a real-time maritime monitoring platform, which is provided at no cost to users worldwide.
comment: 8 pages, 3 figures, NeurIPS Computational Sustainability 2023 best paper
BrainMRDiff: A Diffusion Model for Anatomically Consistent Brain MRI Synthesis
Accurate brain tumor diagnosis relies on the assessment of multiple Magnetic Resonance Imaging (MRI) sequences. However, in clinical practice, the acquisition of certain sequences may be affected by factors like motion artifacts or contrast agent contraindications, leading to suboptimal outcome, such as poor image quality. This can then affect image interpretation by radiologists. Synthesizing high quality MRI sequences has thus become a critical research focus. Though recent advancements in controllable generative AI have facilitated the synthesis of diagnostic quality MRI, ensuring anatomical accuracy remains a significant challenge. Preserving critical structural relationships between different anatomical regions is essential, as even minor structural or topological inconsistencies can compromise diagnostic validity. In this work, we propose BrainMRDiff, a novel topology-preserving, anatomy-guided diffusion model for synthesizing brain MRI, leveraging brain and tumor anatomies as conditioning inputs. To achieve this, we introduce two key modules: Tumor+Structure Aggregation (TSA) and Topology-Guided Anatomy Preservation (TGAP). TSA integrates diverse anatomical structures with tumor information, forming a comprehensive conditioning mechanism for the diffusion process. TGAP enforces topological consistency during reverse denoising diffusion process; both these modules ensure that the generated image respects anatomical integrity. Experimental results demonstrate that BrainMRDiff surpasses existing baselines, achieving performance improvements of 23.33% on the BraTS-AG dataset and 33.33% on the BraTS-Met dataset. Code will be made publicly available soon.
CVOCSemRPL: Class-Variance Optimized Clustering, Semantic Information Injection and Restricted Pseudo Labeling based Improved Semi-Supervised Few-Shot Learning
Few-shot learning has been extensively explored to address problems where the amount of labeled samples is very limited for some classes. In the semi-supervised few-shot learning setting, substantial quantities of unlabeled samples are available. Such unlabeled samples are generally cheaper to obtain and can be used to improve the few-shot learning performance of the model. Some of the recent methods for this setting rely on clustering to generate pseudo-labels for the unlabeled samples. Since the effectiveness of clustering heavily influences the labeling of the unlabeled samples, it can significantly affect the few-shot learning performance. In this paper, we focus on improving the representation learned by the model in order to improve the clustering and, consequently, the model performance. We propose an approach for semi-supervised few-shot learning that performs a class-variance optimized clustering coupled with a cluster separation tuner in order to improve the effectiveness of clustering the labeled and unlabeled samples in this setting. It also optimizes the clustering-based pseudo-labeling process using a restricted pseudo-labeling approach and performs semantic information injection in order to improve the semi-supervised few-shot learning performance of the model. We experimentally demonstrate that our proposed approach significantly outperforms recent state-of-the-art methods on the benchmark datasets.
SIGHT: Synthesizing Image-Text Conditioned and Geometry-Guided 3D Hand-Object Trajectories
When humans grasp an object, they naturally form trajectories in their minds to manipulate it for specific tasks. Modeling hand-object interaction priors holds significant potential to advance robotic and embodied AI systems in learning to operate effectively within the physical world. We introduce SIGHT, a novel task focused on generating realistic and physically plausible 3D hand-object interaction trajectories from a single image and a brief language-based task description. Prior work on hand-object trajectory generation typically relies on textual input that lacks explicit grounding to the target object, or assumes access to 3D object meshes, which are often considerably more difficult to obtain than 2D images. We propose SIGHT-Fusion, a novel diffusion-based image-text conditioned generative model that tackles this task by retrieving the most similar 3D object mesh from a database and enforcing geometric hand-object interaction constraints via a novel inference-time diffusion guidance. We benchmark our model on the HOI4D and H2O datasets, adapting relevant baselines for this novel task. Experiments demonstrate our superior performance in the diversity and quality of generated trajectories, as well as in hand-object interaction geometry metrics.
PanopticNeRF-360: Panoramic 3D-to-2D Label Transfer in Urban Scenes
Training perception systems for self-driving cars requires substantial 2D annotations that are labor-intensive to manual label. While existing datasets provide rich annotations on pre-recorded sequences, they fall short in labeling rarely encountered viewpoints, potentially hampering the generalization ability for perception models. In this paper, we present PanopticNeRF-360, a novel approach that combines coarse 3D annotations with noisy 2D semantic cues to generate high-quality panoptic labels and images from any viewpoint. Our key insight lies in exploiting the complementarity of 3D and 2D priors to mutually enhance geometry and semantics. Specifically, we propose to leverage coarse 3D bounding primitives and noisy 2D semantic and instance predictions to guide geometry optimization, by encouraging predicted labels to match panoptic pseudo ground truth. Simultaneously, the improved geometry assists in filtering 3D&2D annotation noise by fusing semantics in 3D space via a learned semantic field. To further enhance appearance, we combine MLP and hash grids to yield hybrid scene features, striking a balance between high-frequency appearance and contiguous semantics. Our experiments demonstrate PanopticNeRF-360's state-of-the-art performance over label transfer methods on the challenging urban scenes of the KITTI-360 dataset. Moreover, PanopticNeRF-360 enables omnidirectional rendering of high-fidelity, multi-view and spatiotemporally consistent appearance, semantic and instance labels. We make our code and data available at https://github.com/fuxiao0719/PanopticNeRF
comment: Project page: http://fuxiao0719.github.io/projects/panopticnerf360/ Code: https://github.com/fuxiao0719/PanopticNeRF/tree/panopticnerf360 (Minor Revision). arXiv admin note: text overlap with arXiv:2203.15224
SynTable: A Synthetic Data Generation Pipeline for Unseen Object Amodal Instance Segmentation of Cluttered Tabletop Scenes CVPR 2025
In this work, we present SynTable, a unified and flexible Python-based dataset generator built using NVIDIA's Isaac Sim Replicator Composer for generating high-quality synthetic datasets for unseen object amodal instance segmentation of cluttered tabletop scenes. Our dataset generation tool can render complex 3D scenes containing object meshes, materials, textures, lighting, and backgrounds. Metadata, such as modal and amodal instance segmentation masks, object amodal RGBA instances, occlusion masks, depth maps, bounding boxes, and material properties can be automatically generated to annotate the scene according to the users' requirements. Our tool eliminates the need for manual labeling in the dataset generation process while ensuring the quality and accuracy of the dataset. In this work, we discuss our design goals, framework architecture, and the performance of our tool. We demonstrate the use of a sample dataset generated using SynTable for training a state-of-the-art model, UOAIS-Net. Our state-of-the-art results show significantly improved performance in Sim-to-Real transfer when evaluated on the OSD-Amodal dataset. We offer this tool as an open-source, easy-to-use, photorealistic dataset generator for advancing research in deep learning and synthetic data generation. The links to our source code, demonstration video, and sample dataset can be found in the supplementary materials.
comment: Camera-ready version for SynData4CV Workshop @ CVPR 2025. 18 Pages, 11 figures
UniViTAR: Unified Vision Transformer with Native Resolution
Conventional Vision Transformer simplifies visual modeling by standardizing input resolutions, often disregarding the variability of natural visual data and compromising spatial-contextual fidelity. While preliminary explorations have superficially investigated native resolution modeling, existing approaches still lack systematic analysis from a visual representation perspective. To bridge this gap, we introduce UniViTAR, a family of homogeneous vision foundation models tailored for unified visual modality and native resolution scenario in the era of multimodal. Our framework first conducts architectural upgrades to the vanilla paradigm by integrating multiple advanced components. Building upon these improvements, a progressive training paradigm is introduced, which strategically combines two core mechanisms: (1) resolution curriculum learning, transitioning from fixed-resolution pretraining to native resolution tuning, thereby leveraging ViT's inherent adaptability to variable-length sequences, and (2) visual modality adaptation via inter-batch image-video switching, which balances computational efficiency with enhanced temporal reasoning. In parallel, a hybrid training framework further synergizes sigmoid-based contrastive loss with feature distillation from a frozen teacher model, thereby accelerating early-stage convergence. Finally, trained exclusively on public datasets, externsive experiments across multiple model scales from 0.3B to 1B demonstrate its effectiveness.
Position: Interactive Generative Video as Next-Generation Game Engine
Modern game development faces significant challenges in creativity and cost due to predetermined content in traditional game engines. Recent breakthroughs in video generation models, capable of synthesizing realistic and interactive virtual environments, present an opportunity to revolutionize game creation. In this position paper, we propose Interactive Generative Video (IGV) as the foundation for Generative Game Engines (GGE), enabling unlimited novel content generation in next-generation gaming. GGE leverages IGV's unique strengths in unlimited high-quality content synthesis, physics-aware world modeling, user-controlled interactivity, long-term memory capabilities, and causal reasoning. We present a comprehensive framework detailing GGE's core modules and a hierarchical maturity roadmap (L0-L4) to guide its evolution. Our work charts a new course for game development in the AI era, envisioning a future where AI-powered generative systems fundamentally reshape how games are created and experienced.
RefCut: Interactive Segmentation with Reference Guidance
Interactive segmentation aims to segment the specified target on the image with positive and negative clicks from users. Interactive ambiguity is a crucial issue in this field, which refers to the possibility of multiple compliant outcomes with the same clicks, such as selecting a part of an object versus the entire object, a single object versus a combination of multiple objects, and so on. The existing methods cannot provide intuitive guidance to the model, which leads to unstable output results and makes it difficult to meet the large-scale and efficient annotation requirements for specific targets in some scenarios. To bridge this gap, we introduce RefCut, a reference-based interactive segmentation framework designed to address part ambiguity and object ambiguity in segmenting specific targets. Users only need to provide a reference image and corresponding reference masks, and the model will be optimized based on them, which greatly reduces the interactive burden on users when annotating a large number of such targets. In addition, to enrich these two kinds of ambiguous data, we propose a new Target Disassembly Dataset which contains two subsets of part disassembly and object disassembly for evaluation. In the combination evaluation of multiple datasets, our RefCut achieved state-of-the-art performance. Extensive experiments and visualized results demonstrate that RefCut advances the field of intuitive and controllable interactive segmentation. Our code will be publicly available and the demo video is in https://www.lin-zheng.com/refcut.
A Benchmark and Evaluation for Real-World Out-of-Distribution Detection Using Vision-Language Models ICIP2025
Out-of-distribution (OOD) detection is a task that detects OOD samples during inference to ensure the safety of deployed models. However, conventional benchmarks have reached performance saturation, making it difficult to compare recent OOD detection methods. To address this challenge, we introduce three novel OOD detection benchmarks that enable a deeper understanding of method characteristics and reflect real-world conditions. First, we present ImageNet-X, designed to evaluate performance under challenging semantic shifts. Second, we propose ImageNet-FS-X for full-spectrum OOD detection, assessing robustness to covariate shifts (feature distribution shifts). Finally, we propose Wilds-FS-X, which extends these evaluations to real-world datasets, offering a more comprehensive testbed. Our experiments reveal that recent CLIP-based OOD detection methods struggle to varying degrees across the three proposed benchmarks, and none of them consistently outperforms the others. We hope the community goes beyond specific benchmarks and includes more challenging conditions reflecting real-world scenarios. The code is https://github.com/hoshi23/OOD-X-Benchmarks.
comment: Accepted at ICIP2025 Dataset and Benchmark Track
Diffusion Sampling Correction via Approximately 10 Parameters ICML 2025
While powerful for generation, Diffusion Probabilistic Models (DPMs) face slow sampling challenges, for which various distillation-based methods have been proposed. However, they typically require significant additional training costs and model parameter storage, limiting their practicality. In this work, we propose PCA-based Adaptive Search (PAS), which optimizes existing solvers for DPMs with minimal additional costs. Specifically, we first employ PCA to obtain a few basis vectors to span the high-dimensional sampling space, which enables us to learn just a set of coordinates to correct the sampling direction; furthermore, based on the observation that the cumulative truncation error exhibits an ``S"-shape, we design an adaptive search strategy that further enhances the sampling efficiency and reduces the number of stored parameters to approximately 10. Extensive experiments demonstrate that PAS can significantly enhance existing fast solvers in a plug-and-play manner with negligible costs. E.g., on CIFAR10, PAS optimizes DDIM's FID from 15.69 to 4.37 (NFE=10) using only 12 parameters and sub-minute training on a single A100 GPU. Code is available at https://github.com/onefly123/PAS.
comment: Accepted at ICML 2025
ReDDiT: Rehashing Noise for Discrete Visual Generation
Discrete diffusion models are gaining traction in the visual generative area for their efficiency and compatibility. However, the pioneered attempts still fall behind the continuous counterparts, which we attribute to the noise (absorbing state) design and sampling heuristics. In this study, we propose the rehashing noise framework for discrete diffusion transformer, termed ReDDiT, to extend absorbing states and improve expressive capacity of discrete diffusion models. ReDDiT enriches the potential paths that latent variables can traverse during training with randomized multi-index corruption. The derived rehash sampler, which reverses the randomized absorbing paths, guarantees the diversity and low discrepancy of the generation process. These reformulations lead to more consistent and competitive generation quality, mitigating the need for heavily tuned randomness. Experiments show that ReDDiT significantly outperforms the baseline (reducing gFID from 6.18 to 1.61) and is on par with the continuous counterparts with higher efficiency.
comment: Preprint. Check out our project page at github.com/martian422/ReDDiT
It's a (Blind) Match! Towards Vision-Language Correspondence without Parallel Data CVPR 2025
The platonic representation hypothesis suggests that vision and language embeddings become more homogeneous as model and dataset sizes increase. In particular, pairwise distances within each modality become more similar. This suggests that as foundation models mature, it may become possible to match vision and language embeddings in a fully unsupervised fashion, i.e. without parallel data. We present the first feasibility study, and investigate conformity of existing vision and language foundation models in the context of unsupervised, or "blind", matching. First, we formulate unsupervised matching as a quadratic assignment problem and introduce a novel heuristic that outperforms previous solvers. We also develop a technique to find optimal matching problems, for which a non-trivial match is very likely. Second, we conduct an extensive study deploying a range of vision and language models on four datasets. Our analysis reveals that for many problem instances, vision and language representations can be indeed matched without supervision. This finding opens up the exciting possibility of embedding semantic knowledge into other modalities virtually annotation-free. As a proof of concept, we showcase an unsupervised classifier, which achieves non-trivial classification accuracy without any image-text annotation.
comment: Accepted to CVPR 2025, Project page: https://dominik-schnaus.github.io/itsamatch/
NACHOS: Neural Architecture Search for Hardware Constrained Early Exit Neural Networks
Early Exit Neural Networks (EENNs) endow astandard Deep Neural Network (DNN) with Early Exit Classifiers (EECs), to provide predictions at intermediate points of the processing when enough confidence in classification is achieved. This leads to many benefits in terms of effectiveness and efficiency. Currently, the design of EENNs is carried out manually by experts, a complex and time-consuming task that requires accounting for many aspects, including the correct placement, the thresholding, and the computational overhead of the EECs. For this reason, the research is exploring the use of Neural Architecture Search (NAS) to automatize the design of EENNs. Currently, few comprehensive NAS solutions for EENNs have been proposed in the literature, and a fully automated, joint design strategy taking into consideration both the backbone and the EECs remains an open problem. To this end, this work presents Neural Architecture Search for Hardware Constrained Early Exit Neural Networks (NACHOS), the first NAS framework for the design of optimal EENNs satisfying constraints on the accuracy and the number of Multiply and Accumulate (MAC) operations performed by the EENNs at inference time. In particular, this provides the joint design of backbone and EECs to select a set of admissible (i.e., respecting the constraints) Pareto Optimal Solutions in terms of best tradeoff between the accuracy and number of MACs. The results show that the models designed by NACHOS are competitive with the state-of-the-art EENNs. Additionally, this work investigates the effectiveness of two novel regularization terms designed for the optimization of the auxiliary classifiers of the EENN
comment: 14 pages, 5 figures
An AI System for Continuous Knee Osteoarthritis Severity Grading Using Self-Supervised Anomaly Detection with Limited Data
The diagnostic accuracy and subjectivity of existing Knee Osteoarthritis (OA) ordinal grading systems has been a subject of on-going debate and concern. Existing automated solutions are trained to emulate these imperfect systems, whilst also being reliant on large annotated databases for fully-supervised training. This work proposes a three stage approach for automated continuous grading of knee OA that is built upon the principles of Anomaly Detection (AD); learning a robust representation of healthy knee X-rays and grading disease severity based on its distance to the centre of normality. In the first stage, SS-FewSOME is proposed, a self-supervised AD technique that learns the 'normal' representation, requiring only examples of healthy subjects and <3% of the labels that existing methods require. In the second stage, this model is used to pseudo label a subset of unlabelled data as 'normal' or 'anomalous', followed by denoising of pseudo labels with CLIP. The final stage involves retraining on labelled and pseudo labelled data using the proposed Dual Centre Representation Learning (DCRL) which learns the centres of two representation spaces; normal and anomalous. Disease severity is then graded based on the distance to the learned centres. The proposed methodology outperforms existing techniques by margins of up to 24% in terms of OA detection and the disease severity scores correlate with the Kellgren-Lawrence grading system at the same level as human expert performance. Code available at https://github.com/niamhbelton/SS-FewSOME_Disease_Severity_Knee_Osteoarthritis.
Erasing Concepts, Steering Generations: A Comprehensive Survey of Concept Suppression
Text-to-Image (T2I) models have demonstrated impressive capabilities in generating high-quality and diverse visual content from natural language prompts. However, uncontrolled reproduction of sensitive, copyrighted, or harmful imagery poses serious ethical, legal, and safety challenges. To address these concerns, the concept erasure paradigm has emerged as a promising direction, enabling the selective removal of specific semantic concepts from generative models while preserving their overall utility. This survey provides a comprehensive overview and in-depth synthesis of concept erasure techniques in T2I diffusion models. We systematically categorize existing approaches along three key dimensions: intervention level, which identifies specific model components targeted for concept removal; optimization structure, referring to the algorithmic strategies employed to achieve suppression; and semantic scope, concerning the complexity and nature of the concepts addressed. This multi-dimensional taxonomy enables clear, structured comparisons across diverse methodologies, highlighting fundamental trade-offs between erasure specificity, generalization, and computational complexity. We further discuss current evaluation benchmarks, standardized metrics, and practical datasets, emphasizing gaps that limit comprehensive assessment, particularly regarding robustness and practical effectiveness. Finally, we outline major challenges and promising future directions, including disentanglement of concept representations, adaptive and incremental erasure strategies, adversarial robustness, and new generative architectures. This survey aims to guide researchers toward safer, more ethically aligned generative models, providing foundational knowledge and actionable recommendations to advance responsible development in generative AI.
Circumventing shortcuts in audio-visual deepfake detection datasets with unsupervised learning CVPR
Good datasets are essential for developing and benchmarking any machine learning system. Their importance is even more extreme for safety critical applications such as deepfake detection - the focus of this paper. Here we reveal that two of the most widely used audio-video deepfake datasets suffer from a previously unidentified spurious feature: the leading silence. Fake videos start with a very brief moment of silence and based on this feature alone, we can separate the real and fake samples almost perfectly. As such, previous audio-only and audio-video models exploit the presence of silence in the fake videos and consequently perform worse when the leading silence is removed. To circumvent latching on such unwanted artifact and possibly other unrevealed ones we propose a shift from supervised to unsupervised learning by training models exclusively on real data. We show that by aligning self-supervised audio-video representations we remove the risk of relying on dataset-specific biases and improve robustness in deepfake detection.
comment: Accepted as a highlight paper at the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2025
A False Discovery Rate Control Method Using a Fully Connected Hidden Markov Random Field for Neuroimaging Data
False discovery rate (FDR) control methods are essential for voxel-wise multiple testing in neuroimaging data analysis, where hundreds of thousands or even millions of tests are conducted to detect brain regions associated with disease-related changes. Classical FDR control methods (e.g., BH, q-value, and LocalFDR) assume independence among tests and often lead to high false non-discovery rates (FNR). Although various spatial FDR control methods have been developed to improve power, they still fall short of jointly addressing three major challenges in neuroimaging applications: capturing complex spatial dependencies, maintaining low variability in both false discovery proportion (FDP) and false non-discovery proportion (FNP) across replications, and achieving computational scalability for high-resolution data. To address these challenges, we propose fcHMRF-LIS, a powerful, stable, and scalable spatial FDR control method for voxel-wise multiple testing. It integrates the local index of significance (LIS)-based testing procedure with a novel fully connected hidden Markov random field (fcHMRF) designed to model complex spatial structures using a parsimonious parameterization. We develop an efficient expectation-maximization algorithm incorporating mean-field approximation, the Conditional Random Fields as Recurrent Neural Networks (CRF-RNN) technique, and permutohedral lattice filtering, reducing the time complexity from quadratic to linear in the number of tests. Extensive simulations demonstrate that fcHMRF-LIS achieves accurate FDR control, lower FNR, reduced variability in FDP and FNP, and a higher number of true positives compared to existing methods. Applied to an FDG-PET dataset from the Alzheimer's Disease Neuroimaging Initiative, fcHMRF-LIS identifies neurobiologically relevant brain regions and offers notable advantages in computational efficiency.
Robustness-enhanced Myoelectric Control with GAN-based Open-set Recognition
Electromyography (EMG) signals are widely used in human motion recognition and medical rehabilitation, yet their variability and susceptibility to noise significantly limit the reliability of myoelectric control systems. Existing recognition algorithms often fail to handle unfamiliar actions effectively, leading to system instability and errors. This paper proposes a novel framework based on Generative Adversarial Networks (GANs) to enhance the robustness and usability of myoelectric control systems by enabling open-set recognition. The method incorporates a GAN-based discriminator to identify and reject unknown actions, maintaining system stability by preventing misclassifications. Experimental evaluations on publicly available and self-collected datasets demonstrate a recognition accuracy of 97.6\% for known actions and a 23.6\% improvement in Active Error Rate (AER) after rejecting unknown actions. The proposed approach is computationally efficient and suitable for deployment on edge devices, making it practical for real-world applications.
comment: 11 pages, 14 figures
Compositional Scene Understanding through Inverse Generative Modeling ICML 2025
Generative models have demonstrated remarkable abilities in generating high-fidelity visual content. In this work, we explore how generative models can further be used not only to synthesize visual content but also to understand the properties of a scene given a natural image. We formulate scene understanding as an inverse generative modeling problem, where we seek to find conditional parameters of a visual generative model to best fit a given natural image. To enable this procedure to infer scene structure from images substantially different than those seen during training, we further propose to build this visual generative model compositionally from smaller models over pieces of a scene. We illustrate how this procedure enables us to infer the set of objects in a scene, enabling robust generalization to new test scenes with an increased number of objects of new shapes. We further illustrate how this enables us to infer global scene factors, likewise enabling robust generalization to new scenes. Finally, we illustrate how this approach can be directly applied to existing pretrained text-to-image generative models for zero-shot multi-object perception. Code and visualizations are at https://energy-based-model.github.io/compositional-inference.
comment: ICML 2025, Webpage: https://energy-based-model.github.io/compositional-inference
Retrieval Visual Contrastive Decoding to Mitigate Object Hallucinations in Large Vision-Language Models ACL 2025
Despite significant advancements in Large Vision-Language Models, Object Hallucination (OH) remains a persistent challenge. Building upon prior studies on contrastive decoding that address this issue without requiring additional model training, we introduce RVCD (Retrieval Visual Contrastive Decoding), an advanced method to suppress OH. RVCD leverages both negative and positive images at the logit level, explicitly referencing AI-generated images designed to represent a single concept. Our approach demonstrates substantial improvements over existing decoding-based methods.
comment: ACL 2025 Findings camera-ready version. Code is released at https://github.com/JiHoonLee9898/RVCD
ProDisc-VAD: An Efficient System for Weakly-Supervised Anomaly Detection in Video Surveillance Applications
Weakly-supervised video anomaly detection (WS-VAD) using Multiple Instance Learning (MIL) suffers from label ambiguity, hindering discriminative feature learning. We propose ProDisc-VAD, an efficient framework tackling this via two synergistic components. The Prototype Interaction Layer (PIL) provides controlled normality modeling using a small set of learnable prototypes, establishing a robust baseline without being overwhelmed by dominant normal data. The Pseudo-Instance Discriminative Enhancement (PIDE) loss boosts separability by applying targeted contrastive learning exclusively to the most reliable extreme-scoring instances (highest/lowest scores). ProDisc-VAD achieves strong AUCs (97.98% ShanghaiTech, 87.12% UCF-Crime) using only 0.4M parameters, over 800x fewer than recent ViT-based methods like VadCLIP, demonstrating exceptional efficiency alongside state-of-the-art performance. Code is available at https://github.com/modadundun/ProDisc-VAD.
comment: A newly identified systematic error in our data processing pipeline has affected the calculation and reporting of AUC metrics (notably in Tables [1, 2]). This significantly impacts our main experimental results and conclusions, compromising their reliability. To ensure academic rigor and prevent misleading information, this manuscript is withdrawn for thorough correction and re-evaluation
ReassembleNet: Learnable Keypoints and Diffusion for 2D Fresco Reconstruction
The task of reassembly is a significant challenge across multiple domains, including archaeology, genomics, and molecular docking, requiring the precise placement and orientation of elements to reconstruct an original structure. In this work, we address key limitations in state-of-the-art Deep Learning methods for reassembly, namely i) scalability; ii) multimodality; and iii) real-world applicability: beyond square or simple geometric shapes, realistic and complex erosion, or other real-world problems. We propose ReassembleNet, a method that reduces complexity by representing each input piece as a set of contour keypoints and learning to select the most informative ones by Graph Neural Networks pooling inspired techniques. ReassembleNet effectively lowers computational complexity while enabling the integration of features from multiple modalities, including both geometric and texture data. Further enhanced through pretraining on a semi-synthetic dataset. We then apply diffusion-based pose estimation to recover the original structure. We improve on prior methods by 55% and 86% for RMSE Rotation and Translation, respectively.
Agentic Knowledgeable Self-awareness ACL 2025
Large Language Models (LLMs) have achieved considerable performance across various agentic planning tasks. However, traditional agent planning approaches adopt a "flood irrigation" methodology that indiscriminately injects gold trajectories, external feedback, and domain knowledge into agent models. This practice overlooks the fundamental human cognitive principle of situational self-awareness during decision-making-the ability to dynamically assess situational demands and strategically employ resources during decision-making. We propose agentic knowledgeable self-awareness to address this gap, a novel paradigm enabling LLM-based agents to autonomously regulate knowledge utilization. Specifically, we propose KnowSelf, a data-centric approach that applies agents with knowledgeable self-awareness like humans. Concretely, we devise a heuristic situation judgement criterion to mark special tokens on the agent's self-explored trajectories for collecting training data. Through a two-stage training process, the agent model can switch between different situations by generating specific special tokens, achieving optimal planning effects with minimal costs. Our experiments demonstrate that KnowSelf can outperform various strong baselines on different tasks and models with minimal use of external knowledge. Code is available at https://github.com/zjunlp/KnowSelf.
comment: ACL 2025
SeeGround: See and Ground for Zero-Shot Open-Vocabulary 3D Visual Grounding CVPR 2025
3D Visual Grounding (3DVG) aims to locate objects in 3D scenes based on textual descriptions, essential for applications like augmented reality and robotics. Traditional 3DVG approaches rely on annotated 3D datasets and predefined object categories, limiting scalability and adaptability. To overcome these limitations, we introduce SeeGround, a zero-shot 3DVG framework leveraging 2D Vision-Language Models (VLMs) trained on large-scale 2D data. SeeGround represents 3D scenes as a hybrid of query-aligned rendered images and spatially enriched text descriptions, bridging the gap between 3D data and 2D-VLMs input formats. We propose two modules: the Perspective Adaptation Module, which dynamically selects viewpoints for query-relevant image rendering, and the Fusion Alignment Module, which integrates 2D images with 3D spatial descriptions to enhance object localization. Extensive experiments on ScanRefer and Nr3D demonstrate that our approach outperforms existing zero-shot methods by large margins. Notably, we exceed weakly supervised methods and rival some fully supervised ones, outperforming previous SOTA by 7.7% on ScanRefer and 7.1% on Nr3D, showcasing its effectiveness in complex 3DVG tasks.
comment: CVPR 2025; 21 pages, 10 figures, 10 tables; Code at https://seeground.github.io/
RingMo-Aerial: An Aerial Remote Sensing Foundation Model With Affine Transformation Contrastive Learning
Aerial Remote Sensing (ARS) vision tasks pose significant challenges due to the unique characteristics of their viewing angles. Existing research has primarily focused on algorithms for specific tasks, which have limited applicability in a broad range of ARS vision applications. This paper proposes the RingMo-Aerial model, aiming to fill the gap in foundation model research in the field of ARS vision. By introducing the Frequency-Enhanced Multi-Head Self-Attention (FE-MSA) mechanism and an affine transformation-based contrastive learning pre-training method, the model's detection capability for small targets is enhanced and optimized for the tilted viewing angles characteristic of ARS. Furthermore, the ARS-Adapter, an efficient parameter fine-tuning method, is proposed to improve the model's adaptability and effectiveness in various ARS vision tasks. Experimental results demonstrate that RingMo-Aerial achieves SOTA performance on multiple downstream tasks. This indicates the practicality and efficacy of RingMo-Aerial in enhancing the performance of ARS vision tasks.
Toward Robust Hyper-Detailed Image Captioning: A Multiagent Approach and Dual Evaluation Metrics for Factuality and Coverage ICML 2025
Multimodal large language models (MLLMs) excel at generating highly detailed captions but often produce hallucinations. Our analysis reveals that existing hallucination detection methods struggle with detailed captions. We attribute this to the increasing reliance of MLLMs on their generated text, rather than the input image, as the sequence length grows. To address this issue, we propose a multiagent approach that leverages LLM-MLLM collaboration to correct given captions. Additionally, we introduce an evaluation framework and a benchmark dataset to facilitate the systematic analysis of detailed captions. Our experiments demonstrate that our proposed evaluation method better aligns with human judgments of factuality than existing metrics and that existing approaches to improve the MLLM factuality may fall short in hyper-detailed image captioning tasks. In contrast, our proposed method significantly enhances the factual accuracy of captions, even improving those generated by GPT-4V. Finally, we highlight a limitation of VQA-centric benchmarking by demonstrating that an MLLM's performance on VQA benchmarks may not correlate with its ability to generate detailed image captions.
comment: ICML 2025
FlexEvent: Towards Flexible Event-Frame Object Detection at Varying Operational Frequencies
Event cameras offer unparalleled advantages for real-time perception in dynamic environments, thanks to the microsecond-level temporal resolution and asynchronous operation. Existing event detectors, however, are limited by fixed-frequency paradigms and fail to fully exploit the high-temporal resolution and adaptability of event data. To address these limitations, we propose FlexEvent, a novel framework that enables detection at varying frequencies. Our approach consists of two key components: FlexFuse, an adaptive event-frame fusion module that integrates high-frequency event data with rich semantic information from RGB frames, and FlexTune, a frequency-adaptive fine-tuning mechanism that generates frequency-adjusted labels to enhance model generalization across varying operational frequencies. This combination allows our method to detect objects with high accuracy in both fast-moving and static scenarios, while adapting to dynamic environments. Extensive experiments on large-scale event camera datasets demonstrate that our approach surpasses state-of-the-art methods, achieving significant improvements in both standard and high-frequency settings. Notably, our method maintains robust performance when scaling from 20 Hz to 90 Hz and delivers accurate detection up to 180 Hz, proving its effectiveness in extreme conditions. Our framework sets a new benchmark for event-based object detection and paves the way for more adaptable, real-time vision systems. Code is publicly available.
comment: Preprint; 27 pages, 14 figures, 10 tables; Code at https://flexevent.github.io/
Dual Data Alignment Makes AI-Generated Image Detector Easier Generalizable
Existing detectors are often trained on biased datasets, leading to the possibility of overfitting on non-causal image attributes that are spuriously correlated with real/synthetic labels. While these biased features enhance performance on the training data, they result in substantial performance degradation when applied to unbiased datasets. One common solution is to perform dataset alignment through generative reconstruction, matching the semantic content between real and synthetic images. However, we revisit this approach and show that pixel-level alignment alone is insufficient. The reconstructed images still suffer from frequency-level misalignment, which can perpetuate spurious correlations. To illustrate, we observe that reconstruction models tend to restore the high-frequency details lost in real images (possibly due to JPEG compression), inadvertently creating a frequency-level misalignment, where synthetic images appear to have richer high-frequency content than real ones. This misalignment leads to models associating high-frequency features with synthetic labels, further reinforcing biased cues. To resolve this, we propose Dual Data Alignment (DDA), which aligns both the pixel and frequency domains. Moreover, we introduce two new test sets: DDA-COCO, containing DDA-aligned synthetic images for testing detector performance on the most aligned dataset, and EvalGEN, featuring the latest generative models for assessing detectors under new generative architectures such as visual auto-regressive generators. Finally, our extensive evaluations demonstrate that a detector trained exclusively on DDA-aligned MSCOCO could improve across 8 diverse benchmarks by a non-trivial margin, showing a +7.2% on in-the-wild benchmarks, highlighting the improved generalizability of unbiased detectors.
comment: 12 Pages, 9 figures
Right Side Up? Disentangling Orientation Understanding in MLLMs with Fine-grained Multi-axis Perception Tasks
Object orientation understanding represents a fundamental challenge in visual perception critical for applications like robotic manipulation and augmented reality. Current vision-language benchmarks fail to isolate this capability, often conflating it with positional relationships and general scene understanding. We introduce DORI (Discriminative Orientation Reasoning Intelligence), a comprehensive benchmark establishing object orientation perception as a primary evaluation target. DORI assesses four dimensions of orientation comprehension: frontal alignment, rotational transformations, relative directional relationships, and canonical orientation understanding. Through carefully curated tasks from 11 datasets spanning 67 object categories across synthetic and real-world scenarios, DORI provides insights on how multi-modal systems understand object orientations. Our evaluation of 15 state-of-the-art vision-language models reveals critical limitations: even the best models achieve only 54.2% accuracy on coarse tasks and 33.0% on granular orientation judgments, with performance deteriorating for tasks requiring reference frame shifts or compound rotations. These findings demonstrate the need for dedicated orientation representation mechanisms, as models show systematic inability to perform precise angular estimations, track orientation changes across viewpoints, and understand compound rotations - suggesting limitations in their internal 3D spatial representations. As the first diagnostic framework specifically designed for orientation awareness in multimodal systems, DORI offers implications for improving robotic control, 3D scene reconstruction, and human-AI interaction in physical environments. DORI data: https://huggingface.co/datasets/appledora/DORI-Benchmark
ReferDINO-Plus: 2nd Solution for 4th PVUW MeViS Challenge at CVPR 2025
Referring Video Object Segmentation (RVOS) aims to segment target objects throughout a video based on a text description. This task has attracted increasing attention in the field of computer vision due to its promising applications in video editing and human-agent interaction. Recently, ReferDINO has demonstrated promising performance in this task by adapting object-level vision-language knowledge from pretrained foundational image models. In this report, we further enhance its capabilities by incorporating the advantages of SAM2 in mask quality and object consistency. In addition, to effectively balance performance between single-object and multi-object scenarios, we introduce a conditional mask fusion strategy that adaptively fuses the masks from ReferDINO and SAM2. Our solution, termed ReferDINO-Plus, achieves 60.43 \(\mathcal{J}\&\mathcal{F}\) on MeViS test set, securing 2nd place in the MeViS PVUW challenge at CVPR 2025. The code is available at: https://github.com/iSEE-Laboratory/ReferDINO-Plus.
Information Entropy Guided Height-aware Histogram for Quantization-friendly Pillar Feature Encoder
Real-time and high-performance 3D object detection plays a critical role in autonomous driving and robotics. Recent pillar-based 3D object detectors have gained significant attention due to their compact representation and low computational overhead, making them suitable for onboard deployment and quantization. However, existing pillar-based detectors still suffer from information loss along height dimension and large numerical distribution difference during pillar feature encoding (PFE), which severely limits their performance and quantization potential. To address above issue, we first unveil the importance of different input information during PFE and identify the height dimension as a key factor in enhancing 3D detection performance. Motivated by this observation, we propose a height-aware pillar feature encoder, called PillarHist. Specifically, PillarHist statistics the discrete distribution of points at different heights within one pillar with the information entropy guidance. This simple yet effective design greatly preserves the information along the height dimension while significantly reducing the computation overhead of the PFE. Meanwhile, PillarHist also constrains the arithmetic distribution of PFE input to a stable range, making it quantization-friendly. Notably, PillarHist operates exclusively within the PFE stage to enhance performance, enabling seamless integration into existing pillar-based methods without introducing complex operations. Extensive experiments show the effectiveness of PillarHist in terms of both efficiency and performance.
Calibrating Undisciplined Over-Smoothing in Transformer for Weakly Supervised Semantic Segmentation
Weakly supervised semantic segmentation (WSSS) has recently attracted considerable attention because it requires fewer annotations than fully supervised approaches, making it especially promising for large-scale image segmentation tasks. Although many vision transformer-based methods leverage self-attention affinity matrices to refine Class Activation Maps (CAMs), they often treat each layer's affinity equally and thus introduce considerable background noise at deeper layers, where attention tends to converge excessively on certain tokens (i.e., over-smoothing). We observe that this deep-level attention naturally converges on a subset of tokens, yet unregulated query-key affinity can generate unpredictable activation patterns (undisciplined over-smoothing), adversely affecting CAM accuracy. To address these limitations, we propose an Adaptive Re-Activation Mechanism (AReAM), which exploits shallow-level affinity to guide deeper-layer convergence in an entropy-aware manner, thereby suppressing background noise and re-activating crucial semantic regions in the CAMs. Experiments on two commonly used datasets demonstrate that AReAM substantially improves segmentation performance compared with existing WSSS methods, reducing noise while sharpening focus on relevant semantic regions. Overall, this work underscores the importance of controlling deep-level attention to mitigate undisciplined over-smoothing, introduces an entropy-aware mechanism that harmonizes shallow and deep-level affinities, and provides a refined approach to enhance transformer-based WSSS accuracy by re-activating CAMs.
SafeCFG: Controlling Harmful Features with Dynamic Safe Guidance for Safe Generation
Diffusion models (DMs) have demonstrated exceptional performance in text-to-image tasks, leading to their widespread use. With the introduction of classifier-free guidance (CFG), the quality of images generated by DMs is significantly improved. However, one can use DMs to generate more harmful images by maliciously guiding the image generation process through CFG. Existing safe alignment methods aim to mitigate the risk of generating harmful images but often reduce the quality of clean image generation. To address this issue, we propose SafeCFG to adaptively control harmful features with dynamic safe guidance by modulating the CFG generation process. It dynamically guides the CFG generation process based on the harmfulness of the prompts, inducing significant deviations only in harmful CFG generations, achieving high quality and safety generation. SafeCFG can simultaneously modulate different harmful CFG generation processes, so it could eliminate harmful elements while preserving high-quality generation. Additionally, SafeCFG provides the ability to detect image harmfulness, allowing unsupervised safe alignment on DMs without pre-defined clean or harmful labels. Experimental results show that images generated by SafeCFG achieve both high quality and safety, and safe DMs trained in our unsupervised manner also exhibit good safety performance.
Tracking Progress Towards Sustainable Development Goal 6 Using Satellite Imagery
Clean water and sanitation are essential for health, well-being, and sustainable development, yet significant global disparities persist. Although the United Nations' Sustainable Development Goal (SDG) 6 clearly defines targets for universal access to clean water and sanitation, limitations in data coverage and openness impede accurate tracking of progress in many countries. To bridge these gaps, this study integrates Afrobarometer survey data, satellite imagery from Landsat 8 and Sentinel-2, and advanced deep learning techniques using Meta's self-supervised Distillation with No Labels (DINO) model to develop a modeling framework for evaluating access to piped water and sewage system across diverse African regions. The modeling framework achieved notable accuracy, with over 96% for piped water and 97% for sewage system access classification. When combined with geospatial population data, validation against official statistics from the United Nations Joint Monitoring Program demonstrated high concordance at the national scale (R2 of 0.95 for piped water access and R2 of 0.85 for sewage system access). The national-level estimates can represent SDG Indicators 6.1.1 and 6.2.1. This approach provides policymakers and stakeholders with an effective, scalable, and cost-efficient tool to pinpoint underserved areas requiring targeted intervention. The methodology developed herein can be adapted for assessing other infrastructure-related SDGs, promoting enhanced monitoring and informed decision-making towards achieving global sustainability objectives.
3D-UIR: 3D Gaussian for Underwater 3D Scene Reconstruction via Physics Based Appearance-Medium Decoupling
Novel view synthesis for underwater scene reconstruction presents unique challenges due to complex light-media interactions. Optical scattering and absorption in water body bring inhomogeneous medium attenuation interference that disrupts conventional volume rendering assumptions of uniform propagation medium. While 3D Gaussian Splatting (3DGS) offers real-time rendering capabilities, it struggles with underwater inhomogeneous environments where scattering media introduce artifacts and inconsistent appearance. In this study, we propose a physics-based framework that disentangles object appearance from water medium effects through tailored Gaussian modeling. Our approach introduces appearance embeddings, which are explicit medium representations for backscatter and attenuation, enhancing scene consistency. In addition, we propose a distance-guided optimization strategy that leverages pseudo-depth maps as supervision with depth regularization and scale penalty terms to improve geometric fidelity. By integrating the proposed appearance and medium modeling components via an underwater imaging model, our approach achieves both high-quality novel view synthesis and physically accurate scene restoration. Experiments demonstrate our significant improvements in rendering quality and restoration accuracy over existing methods. The project page is available at https://bilityniu.github.io/3D-UIR.
ChatHuman: Chatting about 3D Humans with Tools
Numerous methods have been proposed to detect, estimate, and analyze properties of people in images, including 3D pose, shape, contact, human-object interaction, and emotion. While widely applicable in vision and other areas, such methods require expert knowledge to select, use, and interpret the results. To address this, we introduce ChatHuman, a language-driven system that integrates the capabilities of specialized methods into a unified framework. ChatHuman functions as an assistant proficient in utilizing, analyzing, and interacting with tools specific to 3D human tasks, adeptly discussing and resolving related challenges. Built on a Large Language Model (LLM) framework, ChatHuman is trained to autonomously select, apply, and interpret a diverse set of tools in response to user inputs. Our approach overcomes significant hurdles in adapting LLMs to 3D human tasks, including the need for domain-specific knowledge and the ability to interpret complex 3D outputs. The innovations of ChatHuman include leveraging academic publications to instruct the LLM on tool usage, employing a retrieval-augmented generation model to create in-context learning examples for managing new tools, and effectively discriminating between and integrating tool results by transforming specialized 3D outputs into comprehensible formats. Experiments demonstrate that ChatHuman surpasses existing models in both tool selection accuracy and overall performance across various 3D human tasks, and it supports interactive chatting with users. ChatHuman represents a significant step toward consolidating diverse analytical methods into a unified, robust system for 3D human tasks.
comment: Project page: https://chathuman.github.io
DreamForge: Motion-Aware Autoregressive Video Generation for Multi-View Driving Scenes
Recent advances in diffusion models have improved controllable streetscape generation and supported downstream perception and planning tasks. However, challenges remain in accurately modeling driving scenes and generating long videos. To alleviate these issues, we propose DreamForge, an advanced diffusion-based autoregressive video generation model tailored for 3D-controllable long-term generation. To enhance the lane and foreground generation, we introduce perspective guidance and integrate object-wise position encoding to incorporate local 3D correlation and improve foreground object modeling. We also propose motion-aware temporal attention to capture motion cues and appearance changes in videos. By leveraging motion frames and an autoregressive generation paradigm,we can autoregressively generate long videos (over 200 frames) using a model trained in short sequences, achieving superior quality compared to the baseline in 16-frame video evaluations. Finally, we integrate our method with the realistic simulator DriveArena to provide more reliable open-loop and closed-loop evaluations for vision-based driving agents. Project Page: https://pjlab-adg.github.io/DriveArena/dreamforge.
comment: 15 figures, 11 tables
BAH Dataset for Ambivalence/Hesitancy Recognition in Videos for Behavioural Change
Recognizing complex emotions linked to ambivalence and hesitancy (A/H) can play a critical role in the personalization and effectiveness of digital behaviour change interventions. These subtle and conflicting emotions are manifested by a discord between multiple modalities, such as facial and vocal expressions, and body language. Although experts can be trained to identify A/H, integrating them into digital interventions is costly and less effective. Automatic learning systems provide a cost-effective alternative that can adapt to individual users, and operate seamlessly within real-time, and resource-limited environments. However, there are currently no datasets available for the design of ML models to recognize A/H. This paper introduces a first Behavioural Ambivalence/Hesitancy (BAH) dataset collected for subject-based multimodal recognition of A/H in videos. It contains videos from 224 participants captured across 9 provinces in Canada, with different age, and ethnicity. Through our web platform, we recruited participants to answer 7 questions, some of which were designed to elicit A/H while recording themselves via webcam with microphone. BAH amounts to 1,118 videos for a total duration of 8.26 hours with 1.5 hours of A/H. Our behavioural team annotated timestamp segments to indicate where A/H occurs, and provide frame- and video-level annotations with the A/H cues. Video transcripts and their timestamps are also included, along with cropped and aligned faces in each frame, and a variety of participants meta-data. We include results baselines for BAH at frame- and video-level recognition in multi-modal setups, in addition to zero-shot prediction, and for personalization using unsupervised domain adaptation. The limited performance of baseline models highlights the challenges of recognizing A/H in real-world videos. The data, code, and pretrained weights are available.
comment: 41 pages, 13 figures, under review
mOSCAR: A Large-scale Multilingual and Multimodal Document-level Corpus ACL 2025
Multimodal Large Language Models (mLLMs) are trained on a large amount of text-image data. While most mLLMs are trained on caption-like data only, Alayrac et al. (2022) showed that additionally training them on interleaved sequences of text and images can lead to the emergence of in-context learning capabilities. However, the dataset they used, M3W, is not public and is only in English. There have been attempts to reproduce their results but the released datasets are English-only. In contrast, current multilingual and multimodal datasets are either composed of caption-like only or medium-scale or fully private data. This limits mLLM research for the 7,000 other languages spoken in the world. We therefore introduce mOSCAR, to the best of our knowledge the first large-scale multilingual and multimodal document corpus crawled from the web. It covers 163 languages, 303M documents, 200B tokens and 1.15B images. We carefully conduct a set of filtering and evaluation steps to make sure mOSCAR is sufficiently safe, diverse and of good quality. We additionally train two types of multilingual model to prove the benefits of mOSCAR: (1) a model trained on a subset of mOSCAR and captioning data and (2) a model trained on captioning data only. The model additionally trained on mOSCAR shows a strong boost in few-shot learning performance across various multilingual image-text tasks and benchmarks, confirming previous findings for English-only mLLMs. The dataset is released under the Creative Commons CC BY 4.0 license and can be accessed here: https://huggingface.co/datasets/oscar-corpus/mOSCAR
comment: ACL 2025 (Findings)
QMamba: On First Exploration of Vision Mamba for Image Quality Assessment ICML 2025
In this work, we take the first exploration of the recently popular foundation model, i.e., State Space Model/Mamba, in image quality assessment (IQA), aiming at observing and excavating the perception potential in vision Mamba. A series of works on Mamba has shown its significant potential in various fields, e.g., segmentation and classification. However, the perception capability of Mamba remains under-explored. Consequently, we propose QMamba by revisiting and adapting the Mamba model for three crucial IQA tasks, i.e., task-specific, universal, and transferable IQA, which reveals its clear advantages over existing foundational models, e.g., Swin Transformer, ViT, and CNNs, in terms of perception and computational cost. To improve the transferability of QMamba, we propose the StylePrompt tuning paradigm, where lightweight mean and variance prompts are injected to assist task-adaptive transfer learning of pre-trained QMamba for different downstream IQA tasks. Compared with existing prompt tuning strategies, our StylePrompt enables better perceptual transfer with lower computational cost. Extensive experiments on multiple synthetic, authentic IQA datasets, and cross IQA datasets demonstrate the effectiveness of our proposed QMamba. The code will be available at: https://github.com/bingo-G/QMamba.git
comment: Accepted by ICML 2025
RefVNLI: Towards Scalable Evaluation of Subject-driven Text-to-image Generation
Subject-driven text-to-image (T2I) generation aims to produce images that align with a given textual description, while preserving the visual identity from a referenced subject image. Despite its broad downstream applicability - ranging from enhanced personalization in image generation to consistent character representation in video rendering - progress in this field is limited by the lack of reliable automatic evaluation. Existing methods either assess only one aspect of the task (i.e., textual alignment or subject preservation), misalign with human judgments, or rely on costly API-based evaluation. To address this gap, we introduce RefVNLI, a cost-effective metric that evaluates both textual alignment and subject preservation in a single run. Trained on a large-scale dataset derived from video-reasoning benchmarks and image perturbations, RefVNLI outperforms or statistically matches existing baselines across multiple benchmarks and subject categories (e.g., \emph{Animal}, \emph{Object}), achieving up to 6.4-point gains in textual alignment and 5.9-point gains in subject preservation.
Nexus: An Omni-Perceptive And -Interactive Model for Language, Audio, And Vision
This work proposes an industry-level omni-modal large language model (LLM) pipeline that integrates auditory, visual, and linguistic modalities to overcome challenges such as limited tri-modal datasets, high computational costs, and complex feature alignments. Our pipeline consists of three main components: First, a modular framework enabling flexible configuration of various encoder-LLM-decoder architectures. Second, a lightweight training strategy that pre-trains audio-language alignment on the state-of-the-art vision-language model Qwen2.5-VL, thus avoiding the costly pre-training of vision-specific modalities. Third, an audio synthesis pipeline that generates high-quality audio-text data from diverse real-world scenarios, supporting applications such as Automatic Speech Recognition and Speech-to-Speech chat. To this end, we introduce an industry-level omni-modal LLM, Nexus. Extensive experiments validate the efficacy of our pipeline, yielding the following key findings:(1) In the visual understanding task, Nexus exhibits superior performance compared with its backbone model - Qwen2.5-VL-7B, validating the efficiency of our training strategy. (2) Within the English Spoken Question-Answering task, the model achieves better accuracy than the same-period competitor (i.e, MiniCPM-o2.6-7B) in the LLaMA Q. benchmark. (3) In our real-world ASR testset, Nexus achieves outstanding performance, indicating its robustness in real scenarios. (4) In the Speech-to-Text Translation task, our model outperforms Qwen2-Audio-Instruct-7B. (5) In the Text-to-Speech task, based on pretrained vocoder (e.g., Fishspeech1.4 or CosyVoice2.0), Nexus is comparable to its backbone vocoder on Seed-TTS benchmark. (6) An in-depth analysis of tri-modal alignment reveals that incorporating the audio modality enhances representational alignment between vision and language.
BioVL-QR: Egocentric Biochemical Vision-and-Language Dataset Using Micro QR Codes ICIP2025
This paper introduces BioVL-QR, a biochemical vision-and-language dataset comprising 23 egocentric experiment videos, corresponding protocols, and vision-and-language alignments. A major challenge in understanding biochemical videos is detecting equipment, reagents, and containers because of the cluttered environment and indistinguishable objects. Previous studies assumed manual object annotation, which is costly and time-consuming. To address the issue, we focus on Micro QR Codes. However, detecting objects using only Micro QR Codes is still difficult due to blur and occlusion caused by object manipulation. To overcome this, we propose an object labeling method combining a Micro QR Code detector with an off-the-shelf hand object detector. As an application of the method and BioVL-QR, we tackled the task of localizing the procedural steps in an instructional video. The experimental results show that using Micro QR Codes and our method improves biochemical video understanding. Data and code are available through https://nishi10mo.github.io/BioVL-QR/
comment: ICIP2025
Token Pruning in Multimodal Large Language Models: Are We Solving the Right Problem? ACL 2025
Multimodal large language models (MLLMs) have shown remarkable performance for cross-modal understanding and generation, yet still suffer from severe inference costs. Recently, abundant works have been proposed to solve this problem with token pruning, which identifies the redundant tokens in MLLMs and then prunes them to reduce the computation and KV storage costs, leading to significant acceleration without training. While these methods claim efficiency gains, critical questions about their fundamental design and evaluation remain unanswered: Why do many existing approaches underperform even compared to naive random token selection? Are attention-based scoring sufficient for reliably identifying redundant tokens? Is language information really helpful during token pruning? What makes a good trade-off between token importance and duplication? Are current evaluation protocols comprehensive and unbiased? The ignorance of previous research on these problems hinders the long-term development of token pruning. In this paper, we answer these questions one by one, providing insights into the design of future token pruning methods.
comment: ACL 2025 Findings
CraftsMan3D: High-fidelity Mesh Generation with 3D Native Generation and Interactive Geometry Refiner
We present a novel generative 3D modeling system, coined CraftsMan, which can generate high-fidelity 3D geometries with highly varied shapes, regular mesh topologies, and detailed surfaces, and, notably, allows for refining the geometry in an interactive manner. Despite the significant advancements in 3D generation, existing methods still struggle with lengthy optimization processes, irregular mesh topologies, noisy surfaces, and difficulties in accommodating user edits, consequently impeding their widespread adoption and implementation in 3D modeling software. Our work is inspired by the craftsman, who usually roughs out the holistic figure of the work first and elaborates the surface details subsequently. Specifically, we employ a 3D native diffusion model, which operates on latent space learned from latent set-based 3D representations, to generate coarse geometries with regular mesh topology in seconds. In particular, this process takes as input a text prompt or a reference image and leverages a powerful multi-view (MV) diffusion model to generate multiple views of the coarse geometry, which are fed into our MV-conditioned 3D diffusion model for generating the 3D geometry, significantly improving robustness and generalizability. Following that, a normal-based geometry refiner is used to significantly enhance the surface details. This refinement can be performed automatically, or interactively with user-supplied edits. Extensive experiments demonstrate that our method achieves high efficacy in producing superior-quality 3D assets compared to existing methods. HomePage: https://craftsman3d.github.io/, Code: https://github.com/wyysf-98/CraftsMan
comment: HomePage: https://craftsman3d.github.io/, Code: https://github.com/wyysf-98/CraftsMan3D
Image and Video Processing
Position Dependent Prediction Combination For Intra-Frame Video Coding
Intra-frame prediction in the High Efficiency Video Coding (HEVC) standard can be empirically improved by applying sets of recursive two-dimensional filters to the predicted values. However, this approach does not allow (or complicates significantly) the parallel computation of pixel predictions. In this work we analyze why the recursive filters are effective, and use the results to derive sets of non-recursive predictors that have superior performance. We present an extension to HEVC intra prediction that combines values predicted using non-filtered and filtered (smoothed) reference samples, depending on the prediction mode, and block size. Simulations using the HEVC common test conditions show that a 2.0% bit rate average reduction can be achieved compared to HEVC, for All Intra (AI) configurations.
Low-Complexity Transform Adjustments For Video Coding
Recent video codecs with multiple separable transforms can achieve significant coding gains using asymmetric trigonometric transforms (DCTs and DSTs), because they can exploit diverse statistics of residual block signals. However, they add excessive computational and memory complexity on large transforms (32-point and larger), since their practical software and hardware implementations are not as efficient as of the DCT-2. This article introduces a novel technique to design low-complexity approximations of trigonometric transforms. The proposed method uses DCT-2 computations, and applies orthogonal adjustments to approximate the most important basis vectors of the desired transform. Experimental results on the Versatile Video Coding (VVC) reference software show that the proposed approach significantly reduces the computational complexity, while providing practically identical coding efficiency.
Multilook Coherent Imaging: Theoretical Guarantees and Algorithms
Multilook coherent imaging is a widely used technique in applications such as digital holography, ultrasound imaging, and synthetic aperture radar. A central challenge in these systems is the presence of multiplicative noise, commonly known as speckle, which degrades image quality. Despite the widespread use of coherent imaging systems, their theoretical foundations remain relatively underexplored. In this paper, we study both the theoretical and algorithmic aspects of likelihood-based approaches for multilook coherent imaging, providing a rigorous framework for analysis and method development. Our theoretical contributions include establishing the first theoretical upper bound on the Mean Squared Error (MSE) of the maximum likelihood estimator under the deep image prior hypothesis. Our results capture the dependence of MSE on the number of parameters in the deep image prior, the number of looks, the signal dimension, and the number of measurements per look. On the algorithmic side, we employ projected gradient descent (PGD) as an efficient method for computing the maximum likelihood solution. Furthermore, we introduce two key ideas to enhance the practical performance of PGD. First, we incorporate the Newton-Schulz algorithm to compute matrix inverses within the PGD iterations, significantly reducing computational complexity. Second, we develop a bagging strategy to mitigate projection errors introduced during PGD updates. We demonstrate that combining these techniques with PGD yields state-of-the-art performance. Our code is available at https://github.com/Computational-Imaging-RU/Bagged-DIP-Speckle.
comment: 29 pages, 4 figures, 3 tables. arXiv admin note: substantial text overlap with arXiv:2402.15635
Weakly-supervised Localization of Manipulated Image Regions Using Multi-resolution Learned Features
The explosive growth of digital images and the widespread availability of image editing tools have made image manipulation detection an increasingly critical challenge. Current deep learning-based manipulation detection methods excel in achieving high image-level classification accuracy, they often fall short in terms of interpretability and localization of manipulated regions. Additionally, the absence of pixel-wise annotations in real-world scenarios limits the existing fully-supervised manipulation localization techniques. To address these challenges, we propose a novel weakly-supervised approach that integrates activation maps generated by image-level manipulation detection networks with segmentation maps from pre-trained models. Specifically, we build on our previous image-level work named WCBnet to produce multi-view feature maps which are subsequently fused for coarse localization. These coarse maps are then refined using detailed segmented regional information provided by pre-trained segmentation models (such as DeepLab, SegmentAnything and PSPnet), with Bayesian inference employed to enhance the manipulation localization. Experimental results demonstrate the effectiveness of our approach, highlighting the feasibility to localize image manipulations without relying on pixel-level labels.
comment: This paper was presented at the British Machine Vision Conference 2024 workshop on Media authenticity in the age of artificial intelligence
Self-supervised feature learning for cardiac Cine MR image reconstruction
We propose a self-supervised feature learning assisted reconstruction (SSFL-Recon) framework for MRI reconstruction to address the limitation of existing supervised learning methods. Although recent deep learning-based methods have shown promising performance in MRI reconstruction, most require fully-sampled images for supervised learning, which is challenging in practice considering long acquisition times under respiratory or organ motion. Moreover, nearly all fully-sampled datasets are obtained from conventional reconstruction of mildly accelerated datasets, thus potentially biasing the achievable performance. The numerous undersampled datasets with different accelerations in clinical practice, hence, remain underutilized. To address these issues, we first train a self-supervised feature extractor on undersampled images to learn sampling-insensitive features. The pre-learned features are subsequently embedded in the self-supervised reconstruction network to assist in removing artifacts. Experiments were conducted retrospectively on an in-house 2D cardiac Cine dataset, including 91 cardiovascular patients and 38 healthy subjects. The results demonstrate that the proposed SSFL-Recon framework outperforms existing self-supervised MRI reconstruction methods and even exhibits comparable or better performance to supervised learning up to $16\times$ retrospective undersampling. The feature learning strategy can effectively extract global representations, which have proven beneficial in removing artifacts and increasing generalization ability during reconstruction.
comment: Accepted to IEEE Transactions on Medical Imaging (TMI), 2025
Synthetic Generation and Latent Projection Denoising of Rim Lesions in Multiple Sclerosis CVPR 2025
Quantitative susceptibility maps from magnetic resonance images can provide both prognostic and diagnostic information in multiple sclerosis, a neurodegenerative disease characterized by the formation of lesions in white matter brain tissue. In particular, susceptibility maps provide adequate contrast to distinguish between "rim" lesions, surrounded by deposited paramagnetic iron, and "non-rim" lesion types. These paramagnetic rim lesions (PRLs) are an emerging biomarker in multiple sclerosis. Much effort has been devoted to both detection and segmentation of such lesions to monitor longitudinal change. As paramagnetic rim lesions are rare, addressing this problem requires confronting the class imbalance between rim and non-rim lesions. We produce synthetic quantitative susceptibility maps of paramagnetic rim lesions and show that inclusion of such synthetic data improves classifier performance and provide a multi-channel extension to generate accompanying contrasts and probabilistic segmentation maps. We exploit the projection capability of our trained generative network to demonstrate a novel denoising approach that allows us to train on ambiguous rim cases and substantially increase the minority class. We show that both synthetic lesion synthesis and our proposed rim lesion label denoising method best approximate the unseen rim lesion distribution and improve detection in a clinically interpretable manner. We release our code and generated data at https://github.com/agr78/PRLx-GAN upon publication.
comment: Accepted full paper in Synthetic Data @ CVPR 2025 12 pages, 10 figures
Spoken question answering for visual queries
Question answering (QA) systems are designed to answer natural language questions. Visual QA (VQA) and Spoken QA (SQA) systems extend the textual QA system to accept visual and spoken input respectively. This work aims to create a system that enables user interaction through both speech and images. That is achieved through the fusion of text, speech, and image modalities to tackle the task of spoken VQA (SVQA). The resulting multi-modal model has textual, visual, and spoken inputs and can answer spoken questions on images. Training and evaluating SVQA models requires a dataset for all three modalities, but no such dataset currently exists. We address this problem by synthesizing VQA datasets using two zero-shot TTS models. Our initial findings indicate that a model trained only with synthesized speech nearly reaches the performance of the upper-bounding model trained on textual QAs. In addition, we show that the choice of the TTS model has a minor impact on accuracy.
comment: Accepted for Interspeech 2025 (with additional results)
GeoMan: Temporally Consistent Human Geometry Estimation using Image-to-Video Diffusion
Estimating accurate and temporally consistent 3D human geometry from videos is a challenging problem in computer vision. Existing methods, primarily optimized for single images, often suffer from temporal inconsistencies and fail to capture fine-grained dynamic details. To address these limitations, we present GeoMan, a novel architecture designed to produce accurate and temporally consistent depth and normal estimations from monocular human videos. GeoMan addresses two key challenges: the scarcity of high-quality 4D training data and the need for metric depth estimation to accurately model human size. To overcome the first challenge, GeoMan employs an image-based model to estimate depth and normals for the first frame of a video, which then conditions a video diffusion model, reframing video geometry estimation task as an image-to-video generation problem. This design offloads the heavy lifting of geometric estimation to the image model and simplifies the video model's role to focus on intricate details while using priors learned from large-scale video datasets. Consequently, GeoMan improves temporal consistency and generalizability while requiring minimal 4D training data. To address the challenge of accurate human size estimation, we introduce a root-relative depth representation that retains critical human-scale details and is easier to be estimated from monocular inputs, overcoming the limitations of traditional affine-invariant and metric depth representations. GeoMan achieves state-of-the-art performance in both qualitative and quantitative evaluations, demonstrating its effectiveness in overcoming longstanding challenges in 3D human geometry estimation from videos.
comment: Project page: https://research.nvidia.com/labs/dair/geoman
DarkDiff: Advancing Low-Light Raw Enhancement by Retasking Diffusion Models for Camera ISP
High-quality photography in extreme low-light conditions is challenging but impactful for digital cameras. With advanced computing hardware, traditional camera image signal processor (ISP) algorithms are gradually being replaced by efficient deep networks that enhance noisy raw images more intelligently. However, existing regression-based models often minimize pixel errors and result in oversmoothing of low-light photos or deep shadows. Recent work has attempted to address this limitation by training a diffusion model from scratch, yet those models still struggle to recover sharp image details and accurate colors. We introduce a novel framework to enhance low-light raw images by retasking pre-trained generative diffusion models with the camera ISP. Extensive experiments demonstrate that our method outperforms the state-of-the-art in perceptual quality across three challenging low-light raw image benchmarks.
ImmunoDiff: A Diffusion Model for Immunotherapy Response Prediction in Lung Cancer
Accurately predicting immunotherapy response in Non-Small Cell Lung Cancer (NSCLC) remains a critical unmet need. Existing radiomics and deep learning-based predictive models rely primarily on pre-treatment imaging to predict categorical response outcomes, limiting their ability to capture the complex morphological and textural transformations induced by immunotherapy. This study introduces ImmunoDiff, an anatomy-aware diffusion model designed to synthesize post-treatment CT scans from baseline imaging while incorporating clinically relevant constraints. The proposed framework integrates anatomical priors, specifically lobar and vascular structures, to enhance fidelity in CT synthesis. Additionally, we introduce a novel cbi-Adapter, a conditioning module that ensures pairwise-consistent multimodal integration of imaging and clinical data embeddings, to refine the generative process. Additionally, a clinical variable conditioning mechanism is introduced, leveraging demographic data, blood-based biomarkers, and PD-L1 expression to refine the generative process. Evaluations on an in-house NSCLC cohort treated with immune checkpoint inhibitors demonstrate a 21.24% improvement in balanced accuracy for response prediction and a 0.03 increase in c-index for survival prediction. Code will be released soon.
PCA for Enhanced Cross-Dataset Generalizability in Breast Ultrasound Tumor Segmentation
In medical image segmentation, limited external validity remains a critical obstacle when models are deployed across unseen datasets, an issue particularly pronounced in the ultrasound image domain. Existing solutions-such as domain adaptation and GAN-based style transfer-while promising, often fall short in the medical domain where datasets are typically small and diverse. This paper presents a novel application of principal component analysis (PCA) to address this limitation. PCA preprocessing reduces noise and emphasizes essential features by retaining approximately 90\% of the dataset variance. We evaluate our approach across six diverse breast tumor ultrasound datasets comprising 3,983 B-mode images and corresponding expert tumor segmentation masks. For each dataset, a corresponding dimensionality reduced PCA-dataset is created and U-Net-based segmentation models are trained on each of the twelve datasets. Each model trained on an original dataset was inferenced on the remaining five out-of-domain original datasets (baseline results), while each model trained on a PCA dataset was inferenced on five out-of-domain PCA datasets. Our experimental results indicate that using PCA reconstructed datasets, instead of original images, improves the model's recall and Dice scores, particularly for model-dataset pairs where baseline performance was lowest, achieving statistically significant gains in recall (0.57 $\pm$ 0.07 vs. 0.70 $\pm$ 0.05, $p = 0.0004$) and Dice scores (0.50 $\pm$ 0.06 vs. 0.58 $\pm$ 0.06, $p = 0.03$). Our method reduced the decline in recall values due to external validation by $33\%$. These findings underscore the potential of PCA reconstruction as a safeguard to mitigate declines in segmentation performance, especially in challenging cases, with implications for enhancing external validity in real-world medical applications.
Can Large Language Models Challenge CNNS in Medical Image Analysis?
This study presents a multimodal AI framework designed for precisely classifying medical diagnostic images. Utilizing publicly available datasets, the proposed system compares the strengths of convolutional neural networks (CNNs) and different large language models (LLMs). This in-depth comparative analysis highlights key differences in diagnostic performance, execution efficiency, and environmental impacts. Model evaluation was based on accuracy, F1-score, average execution time, average energy consumption, and estimated $CO_2$ emission. The findings indicate that although CNN-based models can outperform various multimodal techniques that incorporate both images and contextual information, applying additional filtering on top of LLMs can lead to substantial performance gains. These findings highlight the transformative potential of multimodal AI systems to enhance the reliability, efficiency, and scalability of medical diagnostics in clinical settings.
Advancing Image Super-resolution Techniques in Remote Sensing: A Comprehensive Survey
Remote sensing image super-resolution (RSISR) is a crucial task in remote sensing image processing, aiming to reconstruct high-resolution (HR) images from their low-resolution (LR) counterparts. Despite the growing number of RSISR methods proposed in recent years, a systematic and comprehensive review of these methods is still lacking. This paper presents a thorough review of RSISR algorithms, covering methodologies, datasets, and evaluation metrics. We provide an in-depth analysis of RSISR methods, categorizing them into supervised, unsupervised, and quality evaluation approaches, to help researchers understand current trends and challenges. Our review also discusses the strengths, limitations, and inherent challenges of these techniques. Notably, our analysis reveals significant limitations in existing methods, particularly in preserving fine-grained textures and geometric structures under large-scale degradation. Based on these findings, we outline future research directions, highlighting the need for domain-specific architectures and robust evaluation protocols to bridge the gap between synthetic and real-world RSISR scenarios.
comment: 31 pages,7 figures, an survey
Proximal Algorithm Unrolling: Flexible and Efficient Reconstruction Networks for Single-Pixel Imaging CVPR 2025
Deep-unrolling and plug-and-play (PnP) approaches have become the de-facto standard solvers for single-pixel imaging (SPI) inverse problem. PnP approaches, a class of iterative algorithms where regularization is implicitly performed by an off-the-shelf deep denoiser, are flexible for varying compression ratios (CRs) but are limited in reconstruction accuracy and speed. Conversely, unrolling approaches, a class of multi-stage neural networks where a truncated iterative optimization process is transformed into an end-to-end trainable network, typically achieve better accuracy with faster inference but require fine-tuning or even retraining when CR changes. In this paper, we address the challenge of integrating the strengths of both classes of solvers. To this end, we design an efficient deep image restorer (DIR) for the unrolling of HQS (half quadratic splitting) and ADMM (alternating direction method of multipliers). More importantly, a general proximal trajectory (PT) loss function is proposed to train HQS/ADMM-unrolling networks such that learned DIR approximates the proximal operator of an ideal explicit restoration regularizer. Extensive experiments demonstrate that, the resulting proximal unrolling networks can not only flexibly handle varying CRs with a single model like PnP algorithms, but also outperform previous CR-specific unrolling networks in both reconstruction accuracy and speed. Source codes and models are available at https://github.com/pwangcs/ProxUnroll.
comment: Accepted by CVPR 2025
iHDR: Iterative HDR Imaging with Arbitrary Number of Exposures ICIP 2025
High dynamic range (HDR) imaging aims to obtain a high-quality HDR image by fusing information from multiple low dynamic range (LDR) images. Numerous learning-based HDR imaging methods have been proposed to achieve this for static and dynamic scenes. However, their architectures are mostly tailored for a fixed number (e.g., three) of inputs and, therefore, cannot apply directly to situations beyond the pre-defined limited scope. To address this issue, we propose a novel framework, iHDR, for iterative fusion, which comprises a ghost-free Dual-input HDR fusion network (DiHDR) and a physics-based domain mapping network (ToneNet). DiHDR leverages a pair of inputs to estimate an intermediate HDR image, while ToneNet maps it back to the nonlinear domain and serves as the reference input for the next pairwise fusion. This process is iteratively executed until all input frames are utilized. Qualitative and quantitative experiments demonstrate the effectiveness of the proposed method as compared to existing state-of-the-art HDR deghosting approaches given flexible numbers of input frames.
comment: To be appear in IEEE ICIP 2025
A Benchmark Reference for ESP32-CAM Module SP32
The ESP32-CAM is one of the most widely adopted open-source modules for prototyping embedded vision applications. Since its release in 2019, it has gained popularity among both hobbyists and professional developers due to its affordability, versatility, and integrated wireless capabilities. Despite its widespread use, comprehensive documentation of the performance metrics remains limited. This study addresses this gap by collecting and analyzing over six hours of real-time video streaming logs across all supported resolutions of the OV2640 image sensor, tested under five distinct voltage conditions via an HTTP-based WiFi connection. A long standing bug in the official Arduino ESP32 driver, responsible for inaccurate frame rate logging, was fixed. The resulting analysis includes key performance metrics such as instantaneous and average frame rate, total streamed data, transmission count, and internal chip temperature. The influence of varying power levels was evaluated to assess the reliability of the module.
comment: Full work available at GitHub: https://github.com/TNeutron/ESP32-CAM-Performence-Reference-Benchmark
Semantics-Guided Generative Image Compression ICIP 2025
Advancements in text-to-image generative AI with large multimodal models are spreading into the field of image compression, creating high-quality representation of images at extremely low bit rates. This work introduces novel components to the existing multimodal image semantic compression (MISC) approach, enhancing the quality of the generated images in terms of PSNR and perceptual metrics. The new components include semantic segmentation guidance for the generative decoder, as well as content-adaptive diffusion, which controls the number of diffusion steps based on image characteristics. The results show that our newly introduced methods significantly improve the baseline MISC model while also decreasing the complexity. As a result, both the encoding and decoding time are reduced by more than 36%. Moreover, the proposed compression framework outperforms mainstream codecs in terms of perceptual similarity and quality. The code and visual examples are available.
comment: 6 pages, 4 figures, IEEE ICIP 2025
Ultrafast High-Flux Single-Photon LiDAR Simulator via Neural Mapping ICIP 2025
Efficient simulation of photon registrations in single-photon LiDAR (SPL) is essential for applications such as depth estimation under high-flux conditions, where hardware dead time significantly distorts photon measurements. However, the conventional wisdom is computationally intensive due to their inherently sequential, photon-by-photon processing. In this paper, we propose a learning-based framework that accelerates the simulation process by modeling the photon count and directly predicting the photon registration probability density function (PDF) using an autoencoder (AE). Our method achieves high accuracy in estimating both the total number of registered photons and their temporal distribution, while substantially reducing simulation time. Extensive experiments validate the effectiveness and efficiency of our approach, highlighting its potential to enable fast and accurate SPL simulations for data-intensive imaging tasks in the high-flux regime.
comment: Accepted to ICIP 2025
Improved Accuracy in Pelvic Tumor Resections Using a Real-Time Vision-Guided Surgical System
Pelvic bone tumor resections remain significantly challenging due to complex three-dimensional anatomy and limited surgical visualization. Current navigation systems and patient-specific instruments, while accurate, present limitations including high costs, radiation exposure, workflow disruption, long production time, and lack of reusability. This study evaluates a real-time vision-guided surgical system combined with modular jigs to improve accuracy in pelvic bone tumor resections. A vision-guided surgical system combined with modular cutting jigs and real-time optical tracking was developed and validated. Five female pelvis sawbones were used, with each hemipelvis randomly assigned to either the vision-guided and modular jig system or traditional freehand method. A total of twenty resection planes were analyzed for each method. Accuracy was assessed by measuring distance and angular deviations from the planned resection planes. The vision-guided and modular jig system significantly improved resection accuracy compared to the freehand method, reducing the mean distance deviation from 2.07 $\pm$ 1.71 mm to 1.01 $\pm$ 0.78 mm (p=0.0193). In particular, all specimens resected using the vision-guided system exhibited errors of less than 3 mm. Angular deviations also showed significant improvements with roll angle deviation reduced from 15.36 $\pm$ 17.57$^\circ$ to 4.21 $\pm$ 3.46$^\circ$ (p=0.0275), and pitch angle deviation decreased from 6.17 $\pm$ 4.58$^\circ$ to 1.84 $\pm$ 1.48$^\circ$ (p<0.001). The proposed vision-guided and modular jig system significantly improves the accuracy of pelvic bone tumor resections while maintaining workflow efficiency. This cost-effective solution provides real-time guidance without the need for referencing external monitors, potentially improving surgical outcomes in complex pelvic bone tumor cases.
comment: 9 Pages, 5 figures, Submitted to Journal of Orthopaedic Research
DeepTopoNet: A Framework for Subglacial Topography Estimation on the Greenland Ice Sheets SP
Understanding Greenland's subglacial topography is critical for projecting the future mass loss of the ice sheet and its contribution to global sea-level rise. However, the complex and sparse nature of observational data, particularly information about the bed topography under the ice sheet, significantly increases the uncertainty in model projections. Bed topography is traditionally measured by airborne ice-penetrating radar that measures the ice thickness directly underneath the aircraft, leaving data gap of tens of kilometers in between flight lines. This study introduces a deep learning framework, which we call as DeepTopoNet, that integrates radar-derived ice thickness observations and BedMachine Greenland data through a novel dynamic loss-balancing mechanism. Among all efforts to reconstruct bed topography, BedMachine has emerged as one of the most widely used datasets, combining mass conservation principles and ice thickness measurements to generate high-resolution bed elevation estimates. The proposed loss function adaptively adjusts the weighting between radar and BedMachine data, ensuring robustness in areas with limited radar coverage while leveraging the high spatial resolution of BedMachine predictions i.e. bed estimates. Our approach incorporates gradient-based and trend surface features to enhance model performance and utilizes a CNN architecture designed for subgrid-scale predictions. By systematically testing on the Upernavik Isstr{\o}m) region, the model achieves high accuracy, outperforming baseline methods in reconstructing subglacial terrain. This work demonstrates the potential of deep learning in bridging observational gaps, providing a scalable and efficient solution to inferring subglacial topography.
comment: Submitted to SIGSPATIAL 2025
Estimating Head Motion in Structural MRI Using a Deep Neural Network Trained on Synthetic Artifacts
Motion-related artifacts are inevitable in Magnetic Resonance Imaging (MRI) and can bias automated neuroanatomical metrics such as cortical thickness. Manual review cannot objectively quantify motion in anatomical scans, and existing automated approaches often require specialized hardware or rely on unbalanced noisy training data. Here, we train a 3D convolutional neural network to estimate motion severity using only synthetically corrupted volumes. We validate our method with one held-out site from our training cohort and with 14 fully independent datasets, including one with manual ratings, achieving a representative $R^2 = 0.65$ versus manual labels and significant thickness-motion correlations in 12/15 datasets. Furthermore, our predicted motion correlates with subject age in line with prior studies. Our approach generalizes across scanner brands and protocols, enabling objective, scalable motion assessment in structural MRI studies without prospective motion correction.
Parameter-Free Bio-Inspired Channel Attention for Enhanced Cardiac MRI Reconstruction
Attention is a fundamental component of the human visual recognition system. The inclusion of attention in a convolutional neural network amplifies relevant visual features and suppresses the less important ones. Integrating attention mechanisms into convolutional neural networks enhances model performance and interpretability. Spatial and channel attention mechanisms have shown significant advantages across many downstream tasks in medical imaging. While existing attention modules have proven to be effective, their design often lacks a robust theoretical underpinning. In this study, we address this gap by proposing a non-linear attention architecture for cardiac MRI reconstruction and hypothesize that insights from ecological principles can guide the development of effective and efficient attention mechanisms. Specifically, we investigate a non-linear ecological difference equation that describes single-species population growth to devise a parameter-free attention module surpassing current state-of-the-art parameter-free methods.
comment: presented at the 28th UK Conference on Medical Image Understanding and Analysis - MIUA, 24 - 26 July 2024
Dc-EEMF: Pushing depth-of-field limit of photoacoustic microscopy via decision-level constrained learning
Photoacoustic microscopy holds the potential to measure biomarkers' structural and functional status without labels, which significantly aids in comprehending pathophysiological conditions in biomedical research. However, conventional optical-resolution photoacoustic microscopy (OR-PAM) is hindered by a limited depth-of-field (DoF) due to the narrow depth range focused on a Gaussian beam. Consequently, it fails to resolve sufficient details in the depth direction. Herein, we propose a decision-level constrained end-to-end multi-focus image fusion (Dc-EEMF) to push DoF limit of PAM. The DC-EEMF method is a lightweight siamese network that incorporates an artifact-resistant channel-wise spatial frequency as its feature fusion rule. The meticulously crafted U-Net-based perceptual loss function for decision-level focus properties in end-to-end fusion seamlessly integrates the complementary advantages of spatial domain and transform domain methods within Dc-EEMF. This approach can be trained end-to-end without necessitating post-processing procedures. Experimental results and numerical analyses collectively demonstrate our method's robust performance, achieving an impressive fusion result for PAM images without a substantial sacrifice in lateral resolution. The utilization of Dc-EEMF-powered PAM has the potential to serve as a practical tool in preclinical and clinical studies requiring extended DoF for various applications.
LLaMA-XR: A Novel Framework for Radiology Report Generation using LLaMA and QLoRA Fine Tuning
Automated radiology report generation holds significant potential to reduce radiologists' workload and enhance diagnostic accuracy. However, generating precise and clinically meaningful reports from chest radiographs remains challenging due to the complexity of medical language and the need for contextual understanding. Existing models often struggle with maintaining both accuracy and contextual relevance. In this paper, we present LLaMA-XR, a novel framework that integrates LLaMA 3.1 with DenseNet-121-based image embeddings and Quantized Low-Rank Adaptation (QLoRA) fine-tuning. LLaMA-XR achieves improved coherence and clinical accuracy while maintaining computational efficiency. This efficiency is driven by an optimization strategy that enhances parameter utilization and reduces memory overhead, enabling faster report generation with lower computational resource demands. Extensive experiments conducted on the IU X-ray benchmark dataset demonstrate that LLaMA-XR outperforms a range of state-of-the-art methods. Our model achieves a ROUGE-L score of 0.433 and a METEOR score of 0.336, establishing new performance benchmarks in the domain. These results underscore LLaMA-XR's potential as an effective and efficient AI system for automated radiology reporting, offering enhanced clinical utility and reliability.
comment: 25 pages
Deep Learning-Based Breast Cancer Detection in Mammography: A Multi-Center Validation Study in Thai Population
This study presents a deep learning system for breast cancer detection in mammography, developed using a modified EfficientNetV2 architecture with enhanced attention mechanisms. The model was trained on mammograms from a major Thai medical center and validated on three distinct datasets: an in-domain test set (9,421 cases), a biopsy-confirmed set (883 cases), and an out-of-domain generalizability set (761 cases) collected from two different hospitals. For cancer detection, the model achieved AUROCs of 0.89, 0.96, and 0.94 on the respective datasets. The system's lesion localization capability, evaluated using metrics including Lesion Localization Fraction (LLF) and Non-Lesion Localization Fraction (NLF), demonstrated robust performance in identifying suspicious regions. Clinical validation through concordance tests showed strong agreement with radiologists: 83.5% classification and 84.0% localization concordance for biopsy-confirmed cases, and 78.1% classification and 79.6% localization concordance for out-of-domain cases. Expert radiologists' acceptance rate also averaged 96.7% for biopsy-confirmed cases, and 89.3% for out-of-domain cases. The system achieved a System Usability Scale score of 74.17 for source hospital, and 69.20 for validation hospitals, indicating good clinical acceptance. These results demonstrate the model's effectiveness in assisting mammogram interpretation, with the potential to enhance breast cancer screening workflows in clinical practice.
Super-temporal-resolution Photoacoustic Imaging with Dynamic Reconstruction through Implicit Neural Representation in Sparse-view
Dynamic Photoacoustic Computed Tomography (PACT) is an important imaging technique for monitoring physiological processes, capable of providing high-contrast images of optical absorption at much greater depths than traditional optical imaging methods. However, practical instrumentation and geometric constraints limit the number of acoustic sensors available around the imaging target, leading to sparsity in sensor data. Traditional photoacoustic (PA) image reconstruction methods, when directly applied to sparse PA data, produce severe artifacts. Additionally, these traditional methods do not consider the inter-frame relationships in dynamic imaging. Temporal resolution is crucial for dynamic photoacoustic imaging, which is fundamentally limited by the low repetition rate (e.g., 20 Hz) and high cost of high-power laser technology. Recently, Implicit Neural Representation (INR) has emerged as a powerful deep learning tool for solving inverse problems with sparse data, by characterizing signal properties as continuous functions of their coordinates in an unsupervised manner. In this work, we propose an INR-based method to improve dynamic photoacoustic image reconstruction from sparse-views and enhance temporal resolution, using only spatiotemporal coordinates as input. Specifically, the proposed INR represents dynamic photoacoustic images as implicit functions and encodes them into a neural network. The weights of the network are learned solely from the acquired sparse sensor data, without the need for external training datasets or prior images. Benefiting from the strong implicit continuity regularization provided by INR, as well as explicit regularization for low-rank and sparsity, our proposed method outperforms traditional reconstruction methods under two different sparsity conditions, effectively suppressing artifacts and ensuring image quality.
Surf2CT: Cascaded 3D Flow Matching Models for Torso 3D CT Synthesis from Skin Surface
We present Surf2CT, a novel cascaded flow matching framework that synthesizes full 3D computed tomography (CT) volumes of the human torso from external surface scans and simple demographic data (age, sex, height, weight). This is the first approach capable of generating realistic volumetric internal anatomy images solely based on external body shape and demographics, without any internal imaging. Surf2CT proceeds through three sequential stages: (1) Surface Completion, reconstructing a complete signed distance function (SDF) from partial torso scans using conditional 3D flow matching; (2) Coarse CT Synthesis, generating a low-resolution CT volume from the completed SDF and demographic information; and (3) CT Super-Resolution, refining the coarse volume into a high-resolution CT via a patch-wise conditional flow model. Each stage utilizes a 3D-adapted EDM2 backbone trained via flow matching. We trained our model on a combined dataset of 3,198 torso CT scans (approximately 1.13 million axial slices) sourced from Massachusetts General Hospital (MGH) and the AutoPET challenge. Evaluation on 700 paired torso surface-CT cases demonstrated strong anatomical fidelity: organ volumes exhibited small mean percentage differences (range from -11.1% to 4.4%), and muscle/fat body composition metrics matched ground truth with strong correlation (range from 0.67 to 0.96). Lung localization had minimal bias (mean difference -2.5 mm), and surface completion significantly improved metrics (Chamfer distance: from 521.8 mm to 2.7 mm; Intersection-over-Union: from 0.87 to 0.98). Surf2CT establishes a new paradigm for non-invasive internal anatomical imaging using only external data, opening opportunities for home-based healthcare, preventive medicine, and personalized clinical assessments without the risks associated with conventional imaging techniques.
comment: Neurips 2025 submitted
Stereo Radargrammetry Using Deep Learning from Airborne SAR Images
In this paper, we propose a stereo radargrammetry method using deep learning from airborne Synthetic Aperture Radar (SAR) images. Deep learning-based methods are considered to suffer less from geometric image modulation, while there is no public SAR image dataset used to train such methods. We create a SAR image dataset and perform fine-tuning of a deep learning-based image correspondence method. The proposed method suppresses the degradation of image quality by pixel interpolation without ground projection of the SAR image and divides the SAR image into patches for processing, which makes it possible to apply deep learning. Through a set of experiments, we demonstrate that the proposed method exhibits a wider range and more accurate elevation measurements compared to conventional methods. The project web page is available at: https://gsisaoki.github.io/IGARSS2025_sasayama/
comment: 5 pages, 5 figures, conference IGARSS2025
Low-Rank Adaptation of Pre-trained Vision Backbones for Energy-Efficient Image Coding for Machine ICIP2025
Image Coding for Machines (ICM) focuses on optimizing image compression for AI-driven analysis rather than human perception. Existing ICM frameworks often rely on separate codecs for specific tasks, leading to significant storage requirements, training overhead, and computational complexity. To address these challenges, we propose an energy-efficient framework that leverages pre-trained vision backbones to extract robust and versatile latent representations suitable for multiple tasks. We introduce a task-specific low-rank adaptation mechanism, which refines the pre-trained features to be both compressible and tailored to downstream applications. This design minimizes trainable parameters and reduces energy costs for multi-task scenarios. By jointly optimizing task performance and entropy minimization, our method enables efficient adaptation to diverse tasks and datasets without full fine-tuning, achieving high coding efficiency. Extensive experiments demonstrate that our framework significantly outperforms traditional codecs and pre-processors, offering an energy-efficient and effective solution for ICM applications. The code and the supplementary materials will be available at: https://gitlab.com/viper-purdue/efficient-compression.
comment: 2025 IEEE International Conference on Image Processing (ICIP2025). Fix typo
BrainMRDiff: A Diffusion Model for Anatomically Consistent Brain MRI Synthesis
Accurate brain tumor diagnosis relies on the assessment of multiple Magnetic Resonance Imaging (MRI) sequences. However, in clinical practice, the acquisition of certain sequences may be affected by factors like motion artifacts or contrast agent contraindications, leading to suboptimal outcome, such as poor image quality. This can then affect image interpretation by radiologists. Synthesizing high quality MRI sequences has thus become a critical research focus. Though recent advancements in controllable generative AI have facilitated the synthesis of diagnostic quality MRI, ensuring anatomical accuracy remains a significant challenge. Preserving critical structural relationships between different anatomical regions is essential, as even minor structural or topological inconsistencies can compromise diagnostic validity. In this work, we propose BrainMRDiff, a novel topology-preserving, anatomy-guided diffusion model for synthesizing brain MRI, leveraging brain and tumor anatomies as conditioning inputs. To achieve this, we introduce two key modules: Tumor+Structure Aggregation (TSA) and Topology-Guided Anatomy Preservation (TGAP). TSA integrates diverse anatomical structures with tumor information, forming a comprehensive conditioning mechanism for the diffusion process. TGAP enforces topological consistency during reverse denoising diffusion process; both these modules ensure that the generated image respects anatomical integrity. Experimental results demonstrate that BrainMRDiff surpasses existing baselines, achieving performance improvements of 23.33% on the BraTS-AG dataset and 33.33% on the BraTS-Met dataset. Code will be made publicly available soon.
Circumventing shortcuts in audio-visual deepfake detection datasets with unsupervised learning CVPR
Good datasets are essential for developing and benchmarking any machine learning system. Their importance is even more extreme for safety critical applications such as deepfake detection - the focus of this paper. Here we reveal that two of the most widely used audio-video deepfake datasets suffer from a previously unidentified spurious feature: the leading silence. Fake videos start with a very brief moment of silence and based on this feature alone, we can separate the real and fake samples almost perfectly. As such, previous audio-only and audio-video models exploit the presence of silence in the fake videos and consequently perform worse when the leading silence is removed. To circumvent latching on such unwanted artifact and possibly other unrevealed ones we propose a shift from supervised to unsupervised learning by training models exclusively on real data. We show that by aligning self-supervised audio-video representations we remove the risk of relying on dataset-specific biases and improve robustness in deepfake detection.
comment: Accepted as a highlight paper at the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2025
A Superposition Code-Based Semantic Communication Approach with Quantifiable and Controllable Security
This paper addresses the challenge of achieving security in semantic communication (SemCom) over a wiretap channel, where a legitimate receiver coexists with an eavesdropper experiencing a poorer channel condition. Despite previous efforts to secure SemCom against eavesdroppers, guarantee of approximately zero information leakage remains an open issue. In this work, we propose a secure SemCom approach based on superposition codes, aiming to provide quantifiable and controllable security for digital SemCom systems. The proposed method employs a double-layered constellation map, where semantic information is associated with satellite constellation points and cloud center constellation points are randomly selected. By carefully allocating power between these two layers of constellation, we ensure that the symbol error probability (SEP) of the eavesdropper decoding satellite constellation points is nearly equivalent to random guessing, while maintaining a low SEP for the legitimate receiver to successfully decode the semantic information. Simulation results demonstrate that the peak signal-to-noise ratio (PSNR) and mean squared error (MSE) of the eavesdropper' s reconstructed data, under the proposed method, can range from decoding Gaussian-distributed random noise to approaching the variance of the data. This validates the effectiveness of our method in nearly achieving the experimental upper bound of security for digital SemCom systems when both eavesdroppers and legitimate users utilize identical decoding schemes. Furthermore, the proposed method consistently outperforms benchmark techniques, showcasing superior data security and robustness against eavesdropping.
QMamba: On First Exploration of Vision Mamba for Image Quality Assessment ICML 2025
In this work, we take the first exploration of the recently popular foundation model, i.e., State Space Model/Mamba, in image quality assessment (IQA), aiming at observing and excavating the perception potential in vision Mamba. A series of works on Mamba has shown its significant potential in various fields, e.g., segmentation and classification. However, the perception capability of Mamba remains under-explored. Consequently, we propose QMamba by revisiting and adapting the Mamba model for three crucial IQA tasks, i.e., task-specific, universal, and transferable IQA, which reveals its clear advantages over existing foundational models, e.g., Swin Transformer, ViT, and CNNs, in terms of perception and computational cost. To improve the transferability of QMamba, we propose the StylePrompt tuning paradigm, where lightweight mean and variance prompts are injected to assist task-adaptive transfer learning of pre-trained QMamba for different downstream IQA tasks. Compared with existing prompt tuning strategies, our StylePrompt enables better perceptual transfer with lower computational cost. Extensive experiments on multiple synthetic, authentic IQA datasets, and cross IQA datasets demonstrate the effectiveness of our proposed QMamba. The code will be available at: https://github.com/bingo-G/QMamba.git
comment: Accepted by ICML 2025
Maximum Spherical Mean Value (mSMV) Filtering for Whole Brain Quantitative Susceptibility Mapping
To develop a tissue field filtering algorithm, called maximum Spherical Mean Value (mSMV), for reducing shadow artifacts in quantitative susceptibility mapping (QSM) of the brain without requiring brain tissue erosion. Residual background field is a major source of shadow artifacts in QSM. The mSMV algorithm filters large field values near the border, where the maximum value of the harmonic background field is located. The effectiveness of mSMV for artifact removal was evaluated by comparing with existing QSM algorithms in numerical brain simulation as well as using in vivo human data acquired from 11 healthy volunteers and 93 patients. Numerical simulation showed that mSMV reduces shadow artifacts and improves QSM accuracy. Better shadow reduction, as demonstrated by lower QSM variation in the gray matter and higher QSM image quality score, was also observed in healthy subjects and in patients with hemorrhages, stroke and multiple sclerosis. The mSMV algorithm allows QSM maps that are substantially equivalent to those obtained using SMV-filtered dipole inversion without eroding the volume of interest.
comment: 12 pages, 5 figures
Self-Supervised Enhancement of Forward-Looking Sonar Images: Bridging Cross-Modal Degradation Gaps through Feature Space Transformation and Multi-Frame Fusion
Enhancing forward-looking sonar images is critical for accurate underwater target detection. Current deep learning methods mainly rely on supervised training with simulated data, but the difficulty in obtaining high-quality real-world paired data limits their practical use and generalization. Although self-supervised approaches from remote sensing partially alleviate data shortages, they neglect the cross-modal degradation gap between sonar and remote sensing images. Directly transferring pretrained weights often leads to overly smooth sonar images, detail loss, and insufficient brightness. To address this, we propose a feature-space transformation that maps sonar images from the pixel domain to a robust feature domain, effectively bridging the degradation gap. Additionally, our self-supervised multi-frame fusion strategy leverages complementary inter-frame information to naturally remove speckle noise and enhance target-region brightness. Experiments on three self-collected real-world forward-looking sonar datasets show that our method significantly outperforms existing approaches, effectively suppressing noise, preserving detailed edges, and substantially improving brightness, demonstrating strong potential for underwater target detection applications.
Non-rigid Motion Correction for MRI Reconstruction via Coarse-To-Fine Diffusion Models ICIP 2025
Magnetic Resonance Imaging (MRI) is highly susceptible to motion artifacts due to the extended acquisition times required for k-space sampling. These artifacts can compromise diagnostic utility, particularly for dynamic imaging. We propose a novel alternating minimization framework that leverages a bespoke diffusion model to jointly reconstruct and correct non-rigid motion-corrupted k-space data. The diffusion model uses a coarse-to-fine denoising strategy to capture large overall motion and reconstruct the lower frequencies of the image first, providing a better inductive bias for motion estimation than that of standard diffusion models. We demonstrate the performance of our approach on both real-world cine cardiac MRI datasets and complex simulated rigid and non-rigid deformations, even when each motion state is undersampled by a factor of 64x. Additionally, our method is agnostic to sampling patterns, anatomical variations, and MRI scanning protocols, as long as some low frequency components are sampled during each motion state.
comment: ICIP 2025
LEAVS: An LLM-based Labeler for Abdominal CT Supervision MICCAI 2025
Extracting structured labels from radiology reports has been employed to create vision models to simultaneously detect several types of abnormalities. However, existing works focus mainly on the chest region. Few works have been investigated on abdominal radiology reports due to more complex anatomy and a wider range of pathologies in the abdomen. We propose LEAVS (Large language model Extractor for Abdominal Vision Supervision). This labeler can annotate the certainty of presence and the urgency of seven types of abnormalities for nine abdominal organs on CT radiology reports. To ensure broad coverage, we chose abnormalities that encompass most of the finding types from CT reports. Our approach employs a specialized chain-of-thought prompting strategy for a locally-run LLM using sentence extraction and multiple-choice questions in a tree-based decision system. We demonstrate that the LLM can extract several abnormality types across abdominal organs with an average F1 score of 0.89, significantly outperforming competing labelers and humans. Additionally, we show that extraction of urgency labels achieved performance comparable to human annotations. Finally, we demonstrate that the abnormality labels contain valuable information for training a single vision model that classifies several organs as normal or abnormal. We release our code and structured annotations for a public CT dataset containing over 1,000 CT volumes.
comment: Early acceptance (top 9% of submissions) for MICCAI 2025
Computation and Language
From Chat Logs to Collective Insights: Aggregative Question Answering
Conversational agents powered by large language models (LLMs) are rapidly becoming integral to our daily interactions, generating unprecedented amounts of conversational data. Such datasets offer a powerful lens into societal interests, trending topics, and collective concerns. Yet, existing approaches typically treat these interactions as independent and miss critical insights that could emerge from aggregating and reasoning across large-scale conversation logs. In this paper, we introduce Aggregative Question Answering, a novel task requiring models to reason explicitly over thousands of user-chatbot interactions to answer aggregative queries, such as identifying emerging concerns among specific demographics. To enable research in this direction, we construct a benchmark, WildChat-AQA, comprising 6,027 aggregative questions derived from 182,330 real-world chatbot conversations. Experiments show that existing methods either struggle to reason effectively or incur prohibitive computational costs, underscoring the need for new approaches capable of extracting collective insights from large-scale conversational data.
MMSI-Bench: A Benchmark for Multi-Image Spatial Intelligence
Spatial intelligence is essential for multimodal large language models (MLLMs) operating in the complex physical world. Existing benchmarks, however, probe only single-image relations and thus fail to assess the multi-image spatial reasoning that real-world deployments demand. We introduce MMSI-Bench, a VQA benchmark dedicated to multi-image spatial intelligence. Six 3D-vision researchers spent more than 300 hours meticulously crafting 1,000 challenging, unambiguous multiple-choice questions from over 120,000 images, each paired with carefully designed distractors and a step-by-step reasoning process. We conduct extensive experiments and thoroughly evaluate 34 open-source and proprietary MLLMs, observing a wide gap: the strongest open-source model attains roughly 30% accuracy and OpenAI's o3 reasoning model reaches 40%, while humans score 97%. These results underscore the challenging nature of MMSI-Bench and the substantial headroom for future research. Leveraging the annotated reasoning processes, we also provide an automated error analysis pipeline that diagnoses four dominant failure modes, including (1) grounding errors, (2) overlap-matching and scene-reconstruction errors, (3) situation-transformation reasoning errors, and (4) spatial-logic errors, offering valuable insights for advancing multi-image spatial intelligence. Project page: https://runsenxu.com/projects/MMSI_Bench .
comment: 34 pages. A comprehensive, fully human-curated, multi-image-based spatial intelligence benchmark with reasoning annotation for MLLMs. Project page: https://runsenxu.com/projects/MMSI_Bench
ZeroGUI: Automating Online GUI Learning at Zero Human Cost
The rapid advancement of large Vision-Language Models (VLMs) has propelled the development of pure-vision-based GUI Agents, capable of perceiving and operating Graphical User Interfaces (GUI) to autonomously fulfill user instructions. However, existing approaches usually adopt an offline learning framework, which faces two core limitations: (1) heavy reliance on high-quality manual annotations for element grounding and action supervision, and (2) limited adaptability to dynamic and interactive environments. To address these limitations, we propose ZeroGUI, a scalable, online learning framework for automating GUI Agent training at Zero human cost. Specifically, ZeroGUI integrates (i) VLM-based automatic task generation to produce diverse training goals from the current environment state, (ii) VLM-based automatic reward estimation to assess task success without hand-crafted evaluation functions, and (iii) two-stage online reinforcement learning to continuously interact with and learn from GUI environments. Experiments on two advanced GUI Agents (UI-TARS and Aguvis) demonstrate that ZeroGUI significantly boosts performance across OSWorld and AndroidLab environments. The code is available at https://github.com/OpenGVLab/ZeroGUI.
Differential Information: An Information-Theoretic Perspective on Preference Optimization
Direct Preference Optimization (DPO) has become a standard technique for aligning language models with human preferences in a supervised manner. Despite its empirical success, the theoretical justification behind its log-ratio reward parameterization remains incomplete. In this work, we address this gap by utilizing the Differential Information Distribution (DID): a distribution over token sequences that captures the information gained during policy updates. First, we show that when preference labels encode the differential information required to transform a reference policy into a target policy, the log-ratio reward in DPO emerges as the uniquely optimal form for learning the target policy via preference optimization. This result naturally yields a closed-form expression for the optimal sampling distribution over rejected responses. Second, we find that the condition for preferences to encode differential information is fundamentally linked to an implicit assumption regarding log-margin ordered policies-an inductive bias widely used in preference optimization yet previously unrecognized. Finally, by analyzing the entropy of the DID, we characterize how learning low-entropy differential information reinforces the policy distribution, while high-entropy differential information induces a smoothing effect, which explains the log-likelihood displacement phenomenon. We validate our theoretical findings in synthetic experiments and extend them to real-world instruction-following datasets. Our results suggest that learning high-entropy differential information is crucial for general instruction-following, while learning low-entropy differential information benefits knowledge-intensive question answering. Overall, our work presents a unifying perspective on the DPO objective, the structure of preference data, and resulting policy behaviors through the lens of differential information.
comment: 41 pages, 13 figures; due to the 1,920-character limitation imposed on the abstract field by arXiv, the abstract included on the arXiv page is slightly abbreviated compared to the version presented in the PDF
Puzzled by Puzzles: When Vision-Language Models Can't Take a Hint
Rebus puzzles, visual riddles that encode language through imagery, spatial arrangement, and symbolic substitution, pose a unique challenge to current vision-language models (VLMs). Unlike traditional image captioning or question answering tasks, rebus solving requires multi-modal abstraction, symbolic reasoning, and a grasp of cultural, phonetic and linguistic puns. In this paper, we investigate the capacity of contemporary VLMs to interpret and solve rebus puzzles by constructing a hand-generated and annotated benchmark of diverse English-language rebus puzzles, ranging from simple pictographic substitutions to spatially-dependent cues ("head" over "heels"). We analyze how different VLMs perform, and our findings reveal that while VLMs exhibit some surprising capabilities in decoding simple visual clues, they struggle significantly with tasks requiring abstract reasoning, lateral thinking, and understanding visual metaphors.
DeepTheorem: Advancing LLM Reasoning for Theorem Proving Through Natural Language and Reinforcement Learning
Theorem proving serves as a major testbed for evaluating complex reasoning abilities in large language models (LLMs). However, traditional automated theorem proving (ATP) approaches rely heavily on formal proof systems that poorly align with LLMs' strength derived from informal, natural language knowledge acquired during pre-training. In this work, we propose DeepTheorem, a comprehensive informal theorem-proving framework exploiting natural language to enhance LLM mathematical reasoning. DeepTheorem includes a large-scale benchmark dataset consisting of 121K high-quality IMO-level informal theorems and proofs spanning diverse mathematical domains, rigorously annotated for correctness, difficulty, and topic categories, accompanied by systematically constructed verifiable theorem variants. We devise a novel reinforcement learning strategy (RL-Zero) explicitly tailored to informal theorem proving, leveraging the verified theorem variants to incentivize robust mathematical inference. Additionally, we propose comprehensive outcome and process evaluation metrics examining proof correctness and the quality of reasoning steps. Extensive experimental analyses demonstrate DeepTheorem significantly improves LLM theorem-proving performance compared to existing datasets and supervised fine-tuning protocols, achieving state-of-the-art accuracy and reasoning quality. Our findings highlight DeepTheorem's potential to fundamentally advance automated informal theorem proving and mathematical exploration.
ATLAS: Learning to Optimally Memorize the Context at Test Time
Transformers have been established as the most popular backbones in sequence modeling, mainly due to their effectiveness in in-context retrieval tasks and the ability to learn at scale. Their quadratic memory and time complexity, however, bound their applicability in longer sequences and so has motivated researchers to explore effective alternative architectures such as modern recurrent neural networks (a.k.a long-term recurrent memory module). Despite their recent success in diverse downstream tasks, they struggle in tasks that requires long context understanding and extrapolation to longer sequences. We observe that these shortcomings come from three disjoint aspects in their design: (1) limited memory capacity that is bounded by the architecture of memory and feature mapping of the input; (2) online nature of update, i.e., optimizing the memory only with respect to the last input; and (3) less expressive management of their fixed-size memory. To enhance all these three aspects, we present ATLAS, a long-term memory module with high capacity that learns to memorize the context by optimizing the memory based on the current and past tokens, overcoming the online nature of long-term memory models. Building on this insight, we present a new family of Transformer-like architectures, called DeepTransformers, that are strict generalizations of the original Transformer architecture. Our experimental results on language modeling, common-sense reasoning, recall-intensive, and long-context understanding tasks show that ATLAS surpasses the performance of Transformers and recent linear recurrent models. ATLAS further improves the long context performance of Titans, achieving +80\% accuracy in 10M context length of BABILong benchmark.
Bounded Rationality for LLMs: Satisficing Alignment at Inference-Time ICML 2025
Aligning large language models with humans is challenging due to the inherently multifaceted nature of preference feedback. While existing approaches typically frame this as a multi-objective optimization problem, they often overlook how humans actually make decisions. Research on bounded rationality suggests that human decision making follows satisficing strategies-optimizing primary objectives while ensuring others meet acceptable thresholds. To bridge this gap and operationalize the notion of satisficing alignment, we propose SITAlign: an inference time framework that addresses the multifaceted nature of alignment by maximizing a primary objective while satisfying threshold-based constraints on secondary criteria. We provide theoretical insights by deriving sub-optimality bounds of our satisficing based inference alignment approach. We empirically validate SITAlign's performance through extensive experimentation on multiple benchmarks. For instance, on the PKU-SafeRLHF dataset with the primary objective of maximizing helpfulness while ensuring a threshold on harmlessness, SITAlign outperforms the state-of-the-art multi objective decoding strategy by a margin of 22.3% in terms of GPT-4 win-tie rate for helpfulness reward while adhering to the threshold on harmlessness.
comment: Accepted at ICML 2025
ML-Agent: Reinforcing LLM Agents for Autonomous Machine Learning Engineering
The emergence of large language model (LLM)-based agents has significantly advanced the development of autonomous machine learning (ML) engineering. However, most existing approaches rely heavily on manual prompt engineering, failing to adapt and optimize based on diverse experimental experiences. Focusing on this, for the first time, we explore the paradigm of learning-based agentic ML, where an LLM agent learns through interactive experimentation on ML tasks using online reinforcement learning (RL). To realize this, we propose a novel agentic ML training framework with three key components: (1) exploration-enriched fine-tuning, which enables LLM agents to generate diverse actions for enhanced RL exploration; (2) step-wise RL, which enables training on a single action step, accelerating experience collection and improving training efficiency; (3) an agentic ML-specific reward module, which unifies varied ML feedback signals into consistent rewards for RL optimization. Leveraging this framework, we train ML-Agent, driven by a 7B-sized Qwen-2.5 LLM for autonomous ML. Remarkably, despite being trained on merely 9 ML tasks, our 7B-sized ML-Agent outperforms the 671B-sized DeepSeek-R1 agent. Furthermore, it achieves continuous performance improvements and demonstrates exceptional cross-task generalization capabilities.
Label-Guided In-Context Learning for Named Entity Recognition
In-context learning (ICL) enables large language models (LLMs) to perform new tasks using only a few demonstrations. In Named Entity Recognition (NER), demonstrations are typically selected based on semantic similarity to the test instance, ignoring training labels and resulting in suboptimal performance. We introduce DEER, a new method that leverages training labels through token-level statistics to improve ICL performance. DEER first enhances example selection with a label-guided, token-based retriever that prioritizes tokens most informative for entity recognition. It then prompts the LLM to revisit error-prone tokens, which are also identified using label statistics, and make targeted corrections. Evaluated on five NER datasets using four different LLMs, DEER consistently outperforms existing ICL methods and approaches the performance of supervised fine-tuning. Further analysis shows its effectiveness on both seen and unseen entities and its robustness in low-resource settings.
comment: Preprint
Don't Take the Premise for Granted: Evaluating the Premise Critique Ability of Large Language Models
Large language models (LLMs) have witnessed rapid advancements, demonstrating remarkable capabilities. However, a notable vulnerability persists: LLMs often uncritically accept flawed or contradictory premises, leading to inefficient reasoning and unreliable outputs. This emphasizes the significance of possessing the \textbf{Premise Critique Ability} for LLMs, defined as the capacity to proactively identify and articulate errors in input premises. Most existing studies assess LLMs' reasoning ability in ideal settings, largely ignoring their vulnerabilities when faced with flawed premises. Thus, we introduce the \textbf{Premise Critique Bench (PCBench)}, designed by incorporating four error types across three difficulty levels, paired with multi-faceted evaluation metrics. We conducted systematic evaluations of 15 representative LLMs. Our findings reveal: (1) Most models rely heavily on explicit prompts to detect errors, with limited autonomous critique; (2) Premise critique ability depends on question difficulty and error type, with direct contradictions being easier to detect than complex or procedural errors; (3) Reasoning ability does not consistently correlate with the premise critique ability; (4) Flawed premises trigger overthinking in reasoning models, markedly lengthening responses due to repeated attempts at resolving conflicts. These insights underscore the urgent need to enhance LLMs' proactive evaluation of input validity, positioning premise critique as a foundational capability for developing reliable, human-centric systems. The code is available at https://github.com/MLGroupJLU/Premise_Critique.
comment: 31 pages,13 figures,15 tables
SenWiCh: Sense-Annotation of Low-Resource Languages for WiC using Hybrid Methods ACL
This paper addresses the critical need for high-quality evaluation datasets in low-resource languages to advance cross-lingual transfer. While cross-lingual transfer offers a key strategy for leveraging multilingual pretraining to expand language technologies to understudied and typologically diverse languages, its effectiveness is dependent on quality and suitable benchmarks. We release new sense-annotated datasets of sentences containing polysemous words, spanning nine low-resource languages across diverse language families and scripts. To facilitate dataset creation, the paper presents a demonstrably beneficial semi-automatic annotation method. The utility of the datasets is demonstrated through Word-in-Context (WiC) formatted experiments that evaluate transfer on these low-resource languages. Results highlight the importance of targeted dataset creation and evaluation for effective polysemy disambiguation in low-resource settings and transfer studies. The released datasets and code aim to support further research into fair, robust, and truly multilingual NLP.
comment: 8 pages, 22 figures, submitted to SIGTYP 2025 workshop in ACL
SocialMaze: A Benchmark for Evaluating Social Reasoning in Large Language Models
Large language models (LLMs) are increasingly applied to socially grounded tasks, such as online community moderation, media content analysis, and social reasoning games. Success in these contexts depends on a model's social reasoning ability - the capacity to interpret social contexts, infer others' mental states, and assess the truthfulness of presented information. However, there is currently no systematic evaluation framework that comprehensively assesses the social reasoning capabilities of LLMs. Existing efforts often oversimplify real-world scenarios and consist of tasks that are too basic to challenge advanced models. To address this gap, we introduce SocialMaze, a new benchmark specifically designed to evaluate social reasoning. SocialMaze systematically incorporates three core challenges: deep reasoning, dynamic interaction, and information uncertainty. It provides six diverse tasks across three key settings: social reasoning games, daily-life interactions, and digital community platforms. Both automated and human validation are used to ensure data quality. Our evaluation reveals several key insights: models vary substantially in their ability to handle dynamic interactions and integrate temporally evolving information; models with strong chain-of-thought reasoning perform better on tasks requiring deeper inference beyond surface-level cues; and model reasoning degrades significantly under uncertainty. Furthermore, we show that targeted fine-tuning on curated reasoning examples can greatly improve model performance in complex social scenarios. The dataset is publicly available at: https://huggingface.co/datasets/MBZUAI/SocialMaze
comment: Code available at https://github.com/xzx34/SocialMaze
Can LLMs Reason Abstractly Over Math Word Problems Without CoT? Disentangling Abstract Formulation From Arithmetic Computation
Final-answer-based metrics are commonly used for evaluating large language models (LLMs) on math word problems, often taken as proxies for reasoning ability. However, such metrics conflate two distinct sub-skills: abstract formulation (capturing mathematical relationships using expressions) and arithmetic computation (executing the calculations). Through a disentangled evaluation on GSM8K and SVAMP, we find that the final-answer accuracy of Llama-3 and Qwen2.5 (1B-32B) without CoT is overwhelmingly bottlenecked by the arithmetic computation step and not by the abstract formulation step. Contrary to the common belief, we show that CoT primarily aids in computation, with limited impact on abstract formulation. Mechanistically, we show that these two skills are composed conjunctively even in a single forward pass without any reasoning steps via an abstract-then-compute mechanism: models first capture problem abstractions, then handle computation. Causal patching confirms these abstractions are present, transferable, composable, and precede computation. These behavioural and mechanistic findings highlight the need for disentangled evaluation to accurately assess LLM reasoning and to guide future improvements.
VF-Eval: Evaluating Multimodal LLMs for Generating Feedback on AIGC Videos ACL 2025
MLLMs have been widely studied for video question answering recently. However, most existing assessments focus on natural videos, overlooking synthetic videos, such as AI-generated content (AIGC). Meanwhile, some works in video generation rely on MLLMs to evaluate the quality of generated videos, but the capabilities of MLLMs on interpreting AIGC videos remain largely underexplored. To address this, we propose a new benchmark, VF-Eval, which introduces four tasks-coherence validation, error awareness, error type detection, and reasoning evaluation-to comprehensively evaluate the abilities of MLLMs on AIGC videos. We evaluate 13 frontier MLLMs on VF-Eval and find that even the best-performing model, GPT-4.1, struggles to achieve consistently good performance across all tasks. This highlights the challenging nature of our benchmark. Additionally, to investigate the practical applications of VF-Eval in improving video generation, we conduct an experiment, RePrompt, demonstrating that aligning MLLMs more closely with human feedback can benefit video generation.
comment: ACL 2025 Main
Child-Directed Language Does Not Consistently Boost Syntax Learning in Language Models
Seminal work by Huebner et al. (2021) showed that language models (LMs) trained on English Child-Directed Language (CDL) can reach similar syntactic abilities as LMs trained on much larger amounts of adult-directed written text, suggesting that CDL could provide more effective LM training material than the commonly used internet-crawled data. However, the generalizability of these results across languages, model types, and evaluation settings remains unclear. We test this by comparing models trained on CDL vs. Wikipedia across two LM objectives (masked and causal), three languages (English, French, German), and three syntactic minimal-pair benchmarks. Our results on these benchmarks show inconsistent benefits of CDL, which in most cases is outperformed by Wikipedia models. We then identify various shortcomings in previous benchmarks, and introduce a novel testing methodology, FIT-CLAMS, which uses a frequency-controlled design to enable balanced comparisons across training corpora. Through minimal pair evaluations and regression analysis we show that training on CDL does not yield stronger generalizations for acquiring syntax and highlight the importance of controlling for frequency effects when evaluating syntactic ability.
comment: 21 pages, 4 figures, 4 tables
Automatic classification of stop realisation with wav2vec2.0
Modern phonetic research regularly makes use of automatic tools for the annotation of speech data, however few tools exist for the annotation of many variable phonetic phenomena. At the same time, pre-trained self-supervised models, such as wav2vec2.0, have been shown to perform well at speech classification tasks and latently encode fine-grained phonetic information. We demonstrate that wav2vec2.0 models can be trained to automatically classify stop burst presence with high accuracy in both English and Japanese, robust across both finely-curated and unprepared speech corpora. Patterns of variability in stop realisation are replicated with the automatic annotations, and closely follow those of manual annotations. These results demonstrate the potential of pre-trained speech models as tools for the automatic annotation and processing of speech corpus data, enabling researchers to `scale-up' the scope of phonetic research with relative ease.
comment: Accepted for Interspeech 2025. 5 pages, 3 figures
GSO: Challenging Software Optimization Tasks for Evaluating SWE-Agents
Developing high-performance software is a complex task that requires specialized expertise. We introduce GSO, a benchmark for evaluating language models' capabilities in developing high-performance software. We develop an automated pipeline that generates and executes performance tests to analyze repository commit histories to identify 102 challenging optimization tasks across 10 codebases, spanning diverse domains and programming languages. An agent is provided with a codebase and performance test as a precise specification, and tasked to improve the runtime efficiency, which is measured against the expert developer optimization. Our quantitative evaluation reveals that leading SWE-Agents struggle significantly, achieving less than 5% success rate, with limited improvements even with inference-time scaling. Our qualitative analysis identifies key failure modes, including difficulties with low-level languages, practicing lazy optimization strategies, and challenges in accurately localizing bottlenecks. We release the code and artifacts of our benchmark along with agent trajectories to enable future research.
comment: Website: https://gso-bench.github.io/
LoLA: Low-Rank Linear Attention With Sparse Caching
Transformer-based large language models suffer from quadratic complexity at inference on long sequences. Linear attention methods are efficient alternatives, however, they fail to provide an accurate approximation of softmax attention. By additionally incorporating sliding window attention into each linear attention head, this gap can be closed for short context-length tasks. Unfortunately, these approaches cannot recall important information from long contexts due to "memory collisions". In this paper , we propose LoLA: Low-rank Linear Attention with sparse caching. LoLA separately stores additional key-value pairs that would otherwise interfere with past associative memories. Moreover, LoLA further closes the gap between linear attention models and transformers by distributing past key-value pairs into three forms of memory: (i) recent pairs in a local sliding window; (ii) difficult-to-memorize pairs in a sparse, global cache; and (iii) generic pairs in the recurrent hidden state of linear attention. As an inference-only strategy, LoLA enables pass-key retrieval on up to 8K context lengths on needle-in-a-haystack tasks from RULER. It boosts the accuracy of the base subquadratic model from 0.6% to 97.4% at 4K context lengths, with a 4.6x smaller cache than that of Llama-3.1 8B. LoLA demonstrates strong performance on zero-shot commonsense reasoning tasks among 1B and 8B parameter subquadratic models. Finally, LoLA is an extremely lightweight approach: Nearly all of our results can be reproduced on a single consumer GPU.
ToolHaystack: Stress-Testing Tool-Augmented Language Models in Realistic Long-Term Interactions
Large language models (LLMs) have demonstrated strong capabilities in using external tools to address user inquiries. However, most existing evaluations assume tool use in short contexts, offering limited insight into model behavior during realistic long-term interactions. To fill this gap, we introduce ToolHaystack, a benchmark for testing the tool use capabilities in long-term interactions. Each test instance in ToolHaystack includes multiple tasks execution contexts and realistic noise within a continuous conversation, enabling assessment of how well models maintain context and handle various disruptions. By applying this benchmark to 14 state-of-the-art LLMs, we find that while current models perform well in standard multi-turn settings, they often significantly struggle in ToolHaystack, highlighting critical gaps in their long-term robustness not revealed by previous tool benchmarks.
comment: Our code and data are available at https://github.com/bwookwak/ToolHaystack
Active Layer-Contrastive Decoding Reduces Hallucination in Large Language Model Generation
Recent decoding methods improve the factuality of large language models~(LLMs) by refining how the next token is selected during generation. These methods typically operate at the token level, leveraging internal representations to suppress superficial patterns. Nevertheless, LLMs remain prone to hallucinations, especially over longer contexts. In this paper, we propose Active Layer-Contrastive Decoding (ActLCD), a novel decoding strategy that actively decides when to apply contrasting layers during generation. By casting decoding as a sequential decision-making problem, ActLCD employs a reinforcement learning policy guided by a reward-aware classifier to optimize factuality beyond the token level. Our experiments demonstrate that ActLCD surpasses state-of-the-art methods across five benchmarks, showcasing its effectiveness in mitigating hallucinations in diverse generation scenarios.
ARC: Argument Representation and Coverage Analysis for Zero-Shot Long Document Summarization with Instruction Following LLMs
Integrating structured information has long improved the quality of abstractive summarization, particularly in retaining salient content. In this work, we focus on a specific form of structure: argument roles, which are crucial for summarizing documents in high-stakes domains such as law. We investigate whether instruction-tuned large language models (LLMs) adequately preserve this information. To this end, we introduce Argument Representation Coverage (ARC), a framework for measuring how well LLM-generated summaries capture salient arguments. Using ARC, we analyze summaries produced by three open-weight LLMs in two domains where argument roles are central: long legal opinions and scientific articles. Our results show that while LLMs cover salient argument roles to some extent, critical information is often omitted in generated summaries, particularly when arguments are sparsely distributed throughout the input. Further, we use ARC to uncover behavioral patterns -- specifically, how the positional bias of LLM context windows and role-specific preferences impact the coverage of key arguments in generated summaries, emphasizing the need for more argument-aware summarization strategies.
Are Reasoning Models More Prone to Hallucination?
Recently evolved large reasoning models (LRMs) show powerful performance in solving complex tasks with long chain-of-thought (CoT) reasoning capability. As these LRMs are mostly developed by post-training on formal reasoning tasks, whether they generalize the reasoning capability to help reduce hallucination in fact-seeking tasks remains unclear and debated. For instance, DeepSeek-R1 reports increased performance on SimpleQA, a fact-seeking benchmark, while OpenAI-o3 observes even severer hallucination. This discrepancy naturally raises the following research question: Are reasoning models more prone to hallucination? This paper addresses the question from three perspectives. (1) We first conduct a holistic evaluation for the hallucination in LRMs. Our analysis reveals that LRMs undergo a full post-training pipeline with cold start supervised fine-tuning (SFT) and verifiable reward RL generally alleviate their hallucination. In contrast, both distillation alone and RL training without cold start fine-tuning introduce more nuanced hallucinations. (2) To explore why different post-training pipelines alters the impact on hallucination in LRMs, we conduct behavior analysis. We characterize two critical cognitive behaviors that directly affect the factuality of a LRM: Flaw Repetition, where the surface-level reasoning attempts repeatedly follow the same underlying flawed logic, and Think-Answer Mismatch, where the final answer fails to faithfully match the previous CoT process. (3) Further, we investigate the mechanism behind the hallucination of LRMs from the perspective of model uncertainty. We find that increased hallucination of LRMs is usually associated with the misalignment between model uncertainty and factual accuracy. Our work provides an initial understanding of the hallucination in LRMs.
Human Empathy as Encoder: AI-Assisted Depression Assessment in Special Education
Assessing student depression in sensitive environments like special education is challenging. Standardized questionnaires may not fully reflect students' true situations. Furthermore, automated methods often falter with rich student narratives, lacking the crucial, individualized insights stemming from teachers' empathetic connections with students. Existing methods often fail to address this ambiguity or effectively integrate educator understanding. To address these limitations by fostering a synergistic human-AI collaboration, this paper introduces Human Empathy as Encoder (HEAE), a novel, human-centered AI framework for transparent and socially responsible depression severity assessment. Our approach uniquely integrates student narrative text with a teacher-derived, 9-dimensional "Empathy Vector" (EV), its dimensions guided by the PHQ-9 framework,to explicitly translate tacit empathetic insight into a structured AI input enhancing rather than replacing human judgment. Rigorous experiments optimized the multimodal fusion, text representation, and classification architecture, achieving 82.74% accuracy for 7-level severity classification. This work demonstrates a path toward more responsible and ethical affective computing by structurally embedding human empathy
comment: 7 pages, 6 figures. Under review
GeNRe: A French Gender-Neutral Rewriting System Using Collective Nouns ACL 2025
A significant portion of the textual data used in the field of Natural Language Processing (NLP) exhibits gender biases, particularly due to the use of masculine generics (masculine words that are supposed to refer to mixed groups of men and women), which can perpetuate and amplify stereotypes. Gender rewriting, an NLP task that involves automatically detecting and replacing gendered forms with neutral or opposite forms (e.g., from masculine to feminine), can be employed to mitigate these biases. While such systems have been developed in a number of languages (English, Arabic, Portuguese, German, French), automatic use of gender neutralization techniques (as opposed to inclusive or gender-switching techniques) has only been studied for English. This paper presents GeNRe, the very first French gender-neutral rewriting system using collective nouns, which are gender-fixed in French. We introduce a rule-based system (RBS) tailored for the French language alongside two fine-tuned language models trained on data generated by our RBS. We also explore the use of instruct-based models to enhance the performance of our other systems and find that Claude 3 Opus combined with our dictionary achieves results close to our RBS. Through this contribution, we hope to promote the advancement of gender bias mitigation techniques in NLP for French.
comment: Accepted to ACL 2025 Findings; 9 pages, 2 figures
AutoSchemaKG: Autonomous Knowledge Graph Construction through Dynamic Schema Induction from Web-Scale Corpora
We present AutoSchemaKG, a framework for fully autonomous knowledge graph construction that eliminates the need for predefined schemas. Our system leverages large language models to simultaneously extract knowledge triples and induce comprehensive schemas directly from text, modeling both entities and events while employing conceptualization to organize instances into semantic categories. Processing over 50 million documents, we construct ATLAS (Automated Triple Linking And Schema induction), a family of knowledge graphs with 900+ million nodes and 5.9 billion edges. This approach outperforms state-of-the-art baselines on multi-hop QA tasks and enhances LLM factuality. Notably, our schema induction achieves 95\% semantic alignment with human-crafted schemas with zero manual intervention, demonstrating that billion-scale knowledge graphs with dynamically induced schemas can effectively complement parametric knowledge in large language models.
comment: 9 pages, preprint, code: https://github.com/HKUST-KnowComp/AutoSchemaKG
Characterizing the Expressivity of Transformer Language Models
Transformer-based language models (LMs) have achieved widespread empirical success, but their theoretical expressive power remains only partially understood. Prior work often relies on idealized models with assumptions -- such as arbitrary numerical precision and hard attention -- that diverge from real-world transformers. In this work, we provide an exact characterization of fixed-precision transformers with strict future masking and soft attention, an idealization that more closely mirrors practical implementations. We show that these models are precisely as expressive as a specific fragment of linear temporal logic that includes only a single temporal operator: the past operator. We further relate this logic to established classes in formal language theory, automata theory, and algebra, yielding a rich and unified theoretical framework for understanding transformer expressivity. Finally, we present empirical results that align closely with our theory: transformers trained on languages within their theoretical capacity generalize perfectly over lengths, while they consistently fail to generalize on languages beyond it.
Table-R1: Inference-Time Scaling for Table Reasoning
In this work, we present the first study to explore inference-time scaling on table reasoning tasks. We develop and evaluate two post-training strategies to enable inference-time scaling: distillation from frontier model reasoning traces and reinforcement learning with verifiable rewards (RLVR). For distillation, we introduce a large-scale dataset of reasoning traces generated by DeepSeek-R1, which we use to fine-tune LLMs into the Table-R1-SFT model. For RLVR, we propose task-specific verifiable reward functions and apply the GRPO algorithm to obtain the Table-R1-Zero model. We evaluate our Table-R1-series models across diverse table reasoning tasks, including short-form QA, fact verification, and free-form QA. Notably, the Table-R1-Zero model matches or exceeds the performance of GPT-4.1 and DeepSeek-R1, while using only a 7B-parameter LLM. It also demonstrates strong generalization to out-of-domain datasets. Extensive ablation and qualitative analyses reveal the benefits of instruction tuning, model architecture choices, and cross-task generalization, as well as emergence of essential table reasoning skills during RL training.
Satori-SWE: Evolutionary Test-Time Scaling for Sample-Efficient Software Engineering
Language models (LMs) perform well on standardized coding benchmarks but struggle with real-world software engineering tasks such as resolving GitHub issues in SWE-Bench, especially when model parameters are less than 100B. While smaller models are preferable in practice due to their lower computational cost, improving their performance remains challenging. Existing approaches primarily rely on supervised fine-tuning (SFT) with high-quality data, which is expensive to curate at scale. An alternative is test-time scaling: generating multiple outputs, scoring them using a verifier, and selecting the best one. Although effective, this strategy often requires excessive sampling and costly scoring, limiting its practical application. We propose Evolutionary Test-Time Scaling (EvoScale), a sample-efficient method that treats generation as an evolutionary process. By iteratively refining outputs via selection and mutation, EvoScale shifts the output distribution toward higher-scoring regions, reducing the number of samples needed to find correct solutions. To reduce the overhead from repeatedly sampling and selection, we train the model to self-evolve using reinforcement learning (RL). Rather than relying on external verifiers at inference time, the model learns to self-improve the scores of its own generations across iterations. Evaluated on SWE-Bench-Verified, EvoScale enables our 32B model, Satori-SWE-32B, to match or exceed the performance of models with over 100B parameters while using a few samples. Code, data, and models will be fully open-sourced.
Jigsaw-R1: A Study of Rule-based Visual Reinforcement Learning with Jigsaw Puzzles
The application of rule-based reinforcement learning (RL) to multimodal large language models (MLLMs) introduces unique challenges and potential deviations from findings in text-only domains, particularly for perception-heavy tasks. This paper provides a comprehensive study of rule-based visual RL using jigsaw puzzles as a structured experimental framework, revealing several key findings. \textit{Firstly,} we find that MLLMs, initially performing near to random guessing on simple puzzles, achieve near-perfect accuracy and generalize to complex, unseen configurations through fine-tuning. \textit{Secondly,} training on jigsaw puzzles can induce generalization to other visual tasks, with effectiveness tied to specific task configurations. \textit{Thirdly,} MLLMs can learn and generalize with or without explicit reasoning, though open-source models often favor direct answering. Consequently, even when trained for step-by-step reasoning, they can ignore the thinking process in deriving the final answer. \textit{Fourthly,} we observe that complex reasoning patterns appear to be pre-existing rather than emergent, with their frequency increasing alongside training and task difficulty. \textit{Finally,} our results demonstrate that RL exhibits more effective generalization than Supervised Fine-Tuning (SFT), and an initial SFT cold start phase can hinder subsequent RL optimization. Although these observations are based on jigsaw puzzles and may vary across other visual tasks, this research contributes a valuable piece of jigsaw to the larger puzzle of collective understanding rule-based visual RL and its potential in multimodal learning. The code is available at: \href{https://github.com/zifuwanggg/Jigsaw-R1}{https://github.com/zifuwanggg/Jigsaw-R1}.
On-Policy RL with Optimal Reward Baseline
Reinforcement learning algorithms are fundamental to align large language models with human preferences and to enhance their reasoning capabilities. However, current reinforcement learning algorithms often suffer from training instability due to loose on-policy constraints and computational inefficiency due to auxiliary models. In this work, we propose On-Policy RL with Optimal reward baseline (OPO), a novel and simplified reinforcement learning algorithm designed to address these challenges. OPO emphasizes the importance of exact on-policy training, which empirically stabilizes the training process and enhances exploration. Moreover, OPO introduces the optimal reward baseline that theoretically minimizes gradient variance. We evaluate OPO on mathematical reasoning benchmarks. The results demonstrate its superior performance and training stability without additional models or regularization terms. Furthermore, OPO achieves lower policy shifts and higher output entropy, encouraging more diverse and less repetitive responses. These results highlight OPO as a promising direction for stable and effective reinforcement learning in large language model alignment and reasoning tasks. The implementation is provided at https://github.com/microsoft/LMOps/tree/main/opo.
Evaluating AI capabilities in detecting conspiracy theories on YouTube
As a leading online platform with a vast global audience, YouTube's extensive reach also makes it susceptible to hosting harmful content, including disinformation and conspiracy theories. This study explores the use of open-weight Large Language Models (LLMs), both text-only and multimodal, for identifying conspiracy theory videos shared on YouTube. Leveraging a labeled dataset of thousands of videos, we evaluate a variety of LLMs in a zero-shot setting and compare their performance to a fine-tuned RoBERTa baseline. Results show that text-based LLMs achieve high recall but lower precision, leading to increased false positives. Multimodal models lag behind their text-only counterparts, indicating limited benefits from visual data integration. To assess real-world applicability, we evaluate the most accurate models on an unlabeled dataset, finding that RoBERTa achieves performance close to LLMs with a larger number of parameters. Our work highlights the strengths and limitations of current LLM-based approaches for online harmful content detection, emphasizing the need for more precise and robust systems.
comment: Submitted for review to OSNEM Special Issue of April 2025
Segment Policy Optimization: Effective Segment-Level Credit Assignment in RL for Large Language Models
Enhancing the reasoning capabilities of large language models effectively using reinforcement learning (RL) remains a crucial challenge. Existing approaches primarily adopt two contrasting advantage estimation granularities: Token-level methods (e.g., PPO) aim to provide the fine-grained advantage signals but suffer from inaccurate estimation due to difficulties in training an accurate critic model. On the other extreme, trajectory-level methods (e.g., GRPO) solely rely on a coarse-grained advantage signal from the final reward, leading to imprecise credit assignment. To address these limitations, we propose Segment Policy Optimization (SPO), a novel RL framework that leverages segment-level advantage estimation at an intermediate granularity, achieving a better balance by offering more precise credit assignment than trajectory-level methods and requiring fewer estimation points than token-level methods, enabling accurate advantage estimation based on Monte Carlo (MC) without a critic model. SPO features three components with novel strategies: (1) flexible segment partition; (2) accurate segment advantage estimation; and (3) policy optimization using segment advantages, including a novel probability-mask strategy. We further instantiate SPO for two specific scenarios: (1) SPO-chain for short chain-of-thought (CoT), featuring novel cutpoint-based partition and chain-based advantage estimation, achieving $6$-$12$ percentage point improvements in accuracy over PPO and GRPO on GSM8K. (2) SPO-tree for long CoT, featuring novel tree-based advantage estimation, which significantly reduces the cost of MC estimation, achieving $7$-$11$ percentage point improvements over GRPO on MATH500 under 2K and 4K context evaluation. We make our code publicly available at https://github.com/AIFrameResearch/SPO.
Understanding Refusal in Language Models with Sparse Autoencoders
Refusal is a key safety behavior in aligned language models, yet the internal mechanisms driving refusals remain opaque. In this work, we conduct a mechanistic study of refusal in instruction-tuned LLMs using sparse autoencoders to identify latent features that causally mediate refusal behaviors. We apply our method to two open-source chat models and intervene on refusal-related features to assess their influence on generation, validating their behavioral impact across multiple harmful datasets. This enables a fine-grained inspection of how refusal manifests at the activation level and addresses key research questions such as investigating upstream-downstream latent relationship and understanding the mechanisms of adversarial jailbreaking techniques. We also establish the usefulness of refusal features in enhancing generalization for linear probes to out-of-distribution adversarial samples in classification tasks. We open source our code in https://github.com/wj210/refusal_sae.
Translation in the Wild
Large Language Models (LLMs) excel in translation among other things, demonstrating competitive performance for many language pairs in zero- and few-shot settings. But unlike dedicated neural machine translation models, LLMs are not trained on any translation-related objective. What explains their remarkable translation abilities? Are these abilities grounded in "incidental bilingualism" (Briakou et al. 2023) in training data? Does instruction tuning contribute to it? Are LLMs capable of aligning and leveraging semantically identical or similar monolingual contents from different corners of the internet that are unlikely to fit in a single context window? I offer some reflections on this topic, informed by recent studies and growing user experience. My working hypothesis is that LLMs' translation abilities originate in two different types of pre-training data that may be internalized by the models in different ways. I discuss the prospects for testing the "duality" hypothesis empirically and its implications for reconceptualizing translation, human and machine, in the age of deep learning.
comment: 4 figures
Probability-Consistent Preference Optimization for Enhanced LLM Reasoning ACL 2025
Recent advances in preference optimization have demonstrated significant potential for improving mathematical reasoning capabilities in large language models (LLMs). While current approaches leverage high-quality pairwise preference data through outcome-based criteria like answer correctness or consistency, they fundamentally neglect the internal logical coherence of responses. To overcome this, we propose Probability-Consistent Preference Optimization (PCPO), a novel framework that establishes dual quantitative metrics for preference selection: (1) surface-level answer correctness and (2) intrinsic token-level probability consistency across responses. Extensive experiments show that our PCPO consistently outperforms existing outcome-only criterion approaches across a diverse range of LLMs and benchmarks. Our code is publicly available at https://github.com/YunqiaoYang/PCPO.
comment: 14 pages, to be published in ACL 2025 findings
CLaC at SemEval-2025 Task 6: A Multi-Architecture Approach for Corporate Environmental Promise Verification SemEval-2025
This paper presents our approach to the SemEval-2025 Task~6 (PromiseEval), which focuses on verifying promises in corporate ESG (Environmental, Social, and Governance) reports. We explore three model architectures to address the four subtasks of promise identification, supporting evidence assessment, clarity evaluation, and verification timing. Our first model utilizes ESG-BERT with task-specific classifier heads, while our second model enhances this architecture with linguistic features tailored for each subtask. Our third approach implements a combined subtask model with attention-based sequence pooling, transformer representations augmented with document metadata, and multi-objective learning. Experiments on the English portion of the ML-Promise dataset demonstrate progressive improvement across our models, with our combined subtask approach achieving a leaderboard score of 0.5268, outperforming the provided baseline of 0.5227. Our work highlights the effectiveness of linguistic feature extraction, attention pooling, and multi-objective learning in promise verification tasks, despite challenges posed by class imbalance and limited training data.
comment: Accepted to SemEval-2025 Task 6 (ACL 2025)
Domain-Aware Tensor Network Structure Search
Tensor networks (TNs) provide efficient representations of high-dimensional data, yet identification of the optimal TN structures, the so called tensor network structure search (TN-SS) problem, remains a challenge. Current state-of-the-art (SOTA) algorithms are computationally expensive as they require extensive function evaluations, which is prohibitive for real-world applications. In addition, existing methods ignore valuable domain information inherent in real-world tensor data and lack transparency in their identified TN structures. To this end, we propose a novel TN-SS framework, termed the tnLLM, which incorporates domain information about the data and harnesses the reasoning capabilities of large language models (LLMs) to directly predict suitable TN structures. The proposed framework involves a domain-aware prompting pipeline which instructs the LLM to infer suitable TN structures based on the real-world relationships between tensor modes. In this way, our approach is capable of not only iteratively optimizing the objective function, but also generating domain-aware explanations for the identified structures. Experimental results demonstrate that tnLLM achieves comparable TN-SS objective function values with much fewer function evaluations compared to SOTA algorithms. Furthermore, we demonstrate that the LLM-enabled domain information can be used to find good initializations in the search space for sampling-based SOTA methods to accelerate their convergence while preserving theoretical performance guarantees.
Identity resolution of software metadata using Large Language Models
Software is an essential component of research. However, little attention has been paid to it compared with that paid to research data. Recently, there has been an increase in efforts to acknowledge and highlight the importance of software in research activities. Structured metadata from platforms like bio.tools, Bioconductor, and Galaxy ToolShed offers valuable insights into research software in the Life Sciences. Although originally intended to support discovery and integration, this metadata can be repurposed for large-scale analysis of software practices. However, its quality and completeness vary across platforms, reflecting diverse documentation practices. To gain a comprehensive view of software development and sustainability, consolidating this metadata is necessary, but requires robust mechanisms to address its heterogeneity and scale. This article presents an evaluation of instruction-tuned large language models for the task of software metadata identity resolution, a critical step in assembling a cohesive collection of research software. Such a collection is the reference component for the Software Observatory at OpenEBench, a platform that aggregates metadata to monitor the FAIRness of research software in the Life Sciences. We benchmarked multiple models against a human-annotated gold standard, examined their behavior on ambiguous cases, and introduced an agreement-based proxy for high-confidence automated decisions. The proxy achieved high precision and statistical robustness, while also highlighting the limitations of current models and the broader challenges of automating semantic judgment in FAIR-aligned software metadata across registries and repositories.
Diagnosing and Addressing Pitfalls in KG-RAG Datasets: Toward More Reliable Benchmarking
Knowledge Graph Question Answering (KGQA) systems rely on high-quality benchmarks to evaluate complex multi-hop reasoning. However, despite their widespread use, popular datasets such as WebQSP and CWQ suffer from critical quality issues, including inaccurate or incomplete ground-truth annotations, poorly constructed questions that are ambiguous, trivial, or unanswerable, and outdated or inconsistent knowledge. Through a manual audit of 16 popular KGQA datasets, including WebQSP and CWQ, we find that the average factual correctness rate is only 57 %. To address these issues, we introduce KGQAGen, an LLM-in-the-loop framework that systematically resolves these pitfalls. KGQAGen combines structured knowledge grounding, LLM-guided generation, and symbolic verification to produce challenging and verifiable QA instances. Using KGQAGen, we construct KGQAGen-10k, a ten-thousand scale benchmark grounded in Wikidata, and evaluate a diverse set of KG-RAG models. Experimental results demonstrate that even state-of-the-art systems struggle on this benchmark, highlighting its ability to expose limitations of existing models. Our findings advocate for more rigorous benchmark construction and position KGQAGen as a scalable framework for advancing KGQA evaluation.
comment: 9 pages
Spoken Language Modeling with Duration-Penalized Self-Supervised Units
Spoken language models (SLMs) operate on acoustic units obtained by discretizing self-supervised speech representations. Although the characteristics of these units directly affect performance, the interaction between codebook size and unit coarseness (i.e., duration) remains unexplored. We investigate SLM performance as we vary codebook size and unit coarseness using the simple duration-penalized dynamic programming (DPDP) method. New analyses are performed across different linguistic levels. At the phone and word levels, coarseness provides little benefit, as long as the codebook size is chosen appropriately. However, when producing whole sentences in a resynthesis task, SLMs perform better with coarser units. In lexical and syntactic language modeling tasks, coarser units also give higher accuracies at lower bitrates. We therefore show that coarser units aren't always better, but that DPDP is a simple and efficient way to obtain coarser units for the tasks where they are beneficial.
comment: Accepted to Interspeech 2025
R2I-Bench: Benchmarking Reasoning-Driven Text-to-Image Generation
Reasoning is a fundamental capability often required in real-world text-to-image (T2I) generation, e.g., generating ``a bitten apple that has been left in the air for more than a week`` necessitates understanding temporal decay and commonsense concepts. While recent T2I models have made impressive progress in producing photorealistic images, their reasoning capability remains underdeveloped and insufficiently evaluated. To bridge this gap, we introduce R2I-Bench, a comprehensive benchmark specifically designed to rigorously assess reasoning-driven T2I generation. R2I-Bench comprises meticulously curated data instances, spanning core reasoning categories, including commonsense, mathematical, logical, compositional, numerical, causal, and concept mixing. To facilitate fine-grained evaluation, we design R2IScore, a QA-style metric based on instance-specific, reasoning-oriented evaluation questions that assess three critical dimensions: text-image alignment, reasoning accuracy, and image quality. Extensive experiments with 16 representative T2I models, including a strong pipeline-based framework that decouples reasoning and generation using the state-of-the-art language and image generation models, demonstrate consistently limited reasoning performance, highlighting the need for more robust, reasoning-aware architectures in the next generation of T2I systems. Project Page: https://r2i-bench.github.io
comment: Project Page: https://r2i-bench.github.io
Revisiting Overthinking in Long Chain-of-Thought from the Perspective of Self-Doubt
Reasoning Large Language Models (RLLMs) have demonstrated impressive performance on complex tasks, largely due to the adoption of Long Chain-of-Thought (Long CoT) reasoning. However, they often exhibit overthinking -- performing unnecessary reasoning steps even after arriving at the correct answer. Prior work has largely focused on qualitative analyses of overthinking through sample-based observations of long CoTs. In contrast, we present a quantitative analysis of overthinking from the perspective of self-doubt, characterized by excessive token usage devoted to re-verifying already-correct answer. We find that self-doubt significantly contributes to overthinking. In response, we introduce a simple and effective prompting method to reduce the model's over-reliance on input questions, thereby avoiding self-doubt. Specifically, we first prompt the model to question the validity of the input question, and then respond concisely based on the outcome of that evaluation. Experiments on three mathematical reasoning tasks and four datasets with missing premises demonstrate that our method substantially reduces answer length and yields significant improvements across nearly all datasets upon 4 widely-used RLLMs. Further analysis demonstrates that our method effectively minimizes the number of reasoning steps and reduces self-doubt.
Evaluating the performance and fragility of large language models on the self-assessment for neurological surgeons
The Congress of Neurological Surgeons Self-Assessment for Neurological Surgeons (CNS-SANS) questions are widely used by neurosurgical residents to prepare for written board examinations. Recently, these questions have also served as benchmarks for evaluating large language models' (LLMs) neurosurgical knowledge. This study aims to assess the performance of state-of-the-art LLMs on neurosurgery board-like questions and to evaluate their robustness to the inclusion of distractor statements. A comprehensive evaluation was conducted using 28 large language models. These models were tested on 2,904 neurosurgery board examination questions derived from the CNS-SANS. Additionally, the study introduced a distraction framework to assess the fragility of these models. The framework incorporated simple, irrelevant distractor statements containing polysemous words with clinical meanings used in non-clinical contexts to determine the extent to which such distractions degrade model performance on standard medical benchmarks. 6 of the 28 tested LLMs achieved board-passing outcomes, with the top-performing models scoring over 15.7% above the passing threshold. When exposed to distractions, accuracy across various model architectures was significantly reduced-by as much as 20.4%-with one model failing that had previously passed. Both general-purpose and medical open-source models experienced greater performance declines compared to proprietary variants when subjected to the added distractors. While current LLMs demonstrate an impressive ability to answer neurosurgery board-like exam questions, their performance is markedly vulnerable to extraneous, distracting information. These findings underscore the critical need for developing novel mitigation strategies aimed at bolstering LLM resilience against in-text distractions, particularly for safe and effective clinical deployment.
comment: 22 pages, 3 main figures, 3 supplemental figures
Socratic-PRMBench: Benchmarking Process Reward Models with Systematic Reasoning Patterns
Process Reward Models (PRMs) are crucial in complex reasoning and problem-solving tasks (e.g., LLM agents with long-horizon decision-making) by verifying the correctness of each intermediate reasoning step. In real-world scenarios, LLMs may apply various reasoning patterns (e.g., decomposition) to solve a problem, potentially suffering from errors under various reasoning patterns. Therefore, PRMs are required to identify errors under various reasoning patterns during the reasoning process. However, existing benchmarks mainly focus on evaluating PRMs with stepwise correctness, ignoring a systematic evaluation of PRMs under various reasoning patterns. To mitigate this gap, we introduce Socratic-PRMBench, a new benchmark to evaluate PRMs systematically under six reasoning patterns, including Transformation, Decomposition, Regather, Deduction, Verification, and Integration. Socratic-PRMBench}comprises 2995 reasoning paths with flaws within the aforementioned six reasoning patterns. Through our experiments on both PRMs and LLMs prompted as critic models, we identify notable deficiencies in existing PRMs. These observations underscore the significant weakness of current PRMs in conducting evaluations on reasoning steps under various reasoning patterns. We hope Socratic-PRMBench can serve as a comprehensive testbed for systematic evaluation of PRMs under diverse reasoning patterns and pave the way for future development of PRMs.
UAQFact: Evaluating Factual Knowledge Utilization of LLMs on Unanswerable Questions ACL 2025
Handling unanswerable questions (UAQ) is crucial for LLMs, as it helps prevent misleading responses in complex situations. While previous studies have built several datasets to assess LLMs' performance on UAQ, these datasets lack factual knowledge support, which limits the evaluation of LLMs' ability to utilize their factual knowledge when handling UAQ. To address the limitation, we introduce a new unanswerable question dataset UAQFact, a bilingual dataset with auxiliary factual knowledge created from a Knowledge Graph. Based on UAQFact, we further define two new tasks to measure LLMs' ability to utilize internal and external factual knowledge, respectively. Our experimental results across multiple LLM series show that UAQFact presents significant challenges, as LLMs do not consistently perform well even when they have factual knowledge stored. Additionally, we find that incorporating external knowledge may enhance performance, but LLMs still cannot make full use of the knowledge which may result in incorrect responses.
comment: ACL 2025 Findings
Rethinking Regularization Methods for Knowledge Graph Completion
Knowledge graph completion (KGC) has attracted considerable attention in recent years because it is critical to improving the quality of knowledge graphs. Researchers have continuously explored various models. However, most previous efforts have neglected to take advantage of regularization from a deeper perspective and therefore have not been used to their full potential. This paper rethinks the application of regularization methods in KGC. Through extensive empirical studies on various KGC models, we find that carefully designed regularization not only alleviates overfitting and reduces variance but also enables these models to break through the upper bounds of their original performance. Furthermore, we introduce a novel sparse-regularization method that embeds the concept of rank-based selective sparsity into the KGC regularizer. The core idea is to selectively penalize those components with significant features in the embedding vector, thus effectively ignoring many components that contribute little and may only represent noise. Various comparative experiments on multiple datasets and multiple models show that the SPR regularization method is better than other regularization methods and can enable the KGC model to further break through the performance margin.
The Warmup Dilemma: How Learning Rate Strategies Impact Speech-to-Text Model Convergence
Training large-scale models presents challenges not only in terms of resource requirements but also in terms of their convergence. For this reason, the learning rate (LR) is often decreased when the size of a model is increased. Such a simple solution is not enough in the case of speech-to-text (S2T) trainings, where evolved and more complex variants of the Transformer architecture -- e.g., Conformer or Branchformer -- are used in light of their better performance. As a workaround, OWSM designed a double linear warmup of the LR, increasing it to a very small value in the first phase before updating it to a higher value in the second phase. While this solution worked well in practice, it was not compared with alternative solutions, nor was the impact on the final performance of different LR warmup schedules studied. This paper fills this gap, revealing that i) large-scale S2T trainings demand a sub-exponential LR warmup, and ii) a higher LR in the warmup phase accelerates initial convergence, but it does not boost final performance.
comment: Accepted to IWSLT 2025
SWE-bench Goes Live!
The issue-resolving task, where a model generates patches to fix real-world bugs, has emerged as a critical benchmark for evaluating the capabilities of large language models (LLMs). While SWE-bench and its variants have become standard in this domain, they suffer from key limitations: they have not been updated since their initial releases, cover a narrow set of repositories, and depend heavily on manual effort for instance construction and environment setup. These factors hinder scalability and introduce risks of overfitting and data contamination. In this work, we present \textbf{SWE-bench-Live}, a \textit{live-updatable} benchmark designed to overcome these challenges. Our initial release consists of 1,319 tasks derived from real GitHub issues created since 2024, spanning 93 repositories. Each task is accompanied by a dedicated Docker image to ensure reproducible execution. Central to our benchmark is \method, an automated curation pipeline that streamlines the entire process from instance creation to environment setup, removing manual bottlenecks and enabling scalability and continuous updates. We evaluate a range of state-of-the-art agent frameworks and LLMs on SWE-bench-Live, revealing a substantial performance gap compared to static benchmarks like SWE-bench, even under controlled evaluation conditions. To better understand this discrepancy, we perform detailed analyses across repository origin, issue recency, and task difficulty. By providing a fresh, diverse, and executable benchmark grounded in live repository activity, SWE-bench-Live facilitates rigorous, contamination-resistant evaluation of LLMs and agents in dynamic, real-world software development settings.
comment: Homepage: \url{https://swe-bench-live.github.io/}, Code: \url{https://github.com/SWE-bench-Live}, Dataset: \url{https://huggingface.co/SWE-bench-Live}
From Parameters to Prompts: Understanding and Mitigating the Factuality Gap between Fine-Tuned LLMs
Factual knowledge extraction aims to explicitly extract knowledge parameterized in pre-trained language models for application in downstream tasks. While prior work has been investigating the impact of supervised fine-tuning data on the factuality of large language models (LLMs), its mechanism remains poorly understood. We revisit this impact through systematic experiments, with a particular focus on the factuality gap that arises when fine-tuning on known versus unknown knowledge. Our findings show that this gap can be mitigated at the inference stage, either under out-of-distribution (OOD) settings or by using appropriate in-context learning (ICL) prompts (i.e., few-shot learning and Chain of Thought (CoT)). We prove this phenomenon theoretically from the perspective of knowledge graphs, showing that the test-time prompt may diminish or even overshadow the impact of fine-tuning data and play a dominant role in knowledge extraction. Ultimately, our results shed light on the interaction between finetuning data and test-time prompt, demonstrating that ICL can effectively compensate for shortcomings in fine-tuning data, and highlighting the need to reconsider the use of ICL prompting as a means to evaluate the effectiveness of fine-tuning data selection methods.
comment: The code of this paper will be released soon
Adaptive Jailbreaking Strategies Based on the Semantic Understanding Capabilities of Large Language Models
Adversarial attacks on Large Language Models (LLMs) via jailbreaking techniques-methods that circumvent their built-in safety and ethical constraints-have emerged as a critical challenge in AI security. These attacks compromise the reliability of LLMs by exploiting inherent weaknesses in their comprehension capabilities. This paper investigates the efficacy of jailbreaking strategies that are specifically adapted to the diverse levels of understanding exhibited by different LLMs. We propose the Adaptive Jailbreaking Strategies Based on the Semantic Understanding Capabilities of Large Language Models, a novel framework that classifies LLMs into Type I and Type II categories according to their semantic comprehension abilities. For each category, we design tailored jailbreaking strategies aimed at leveraging their vulnerabilities to facilitate successful attacks. Extensive experiments conducted on multiple LLMs demonstrate that our adaptive strategy markedly improves the success rate of jailbreaking. Notably, our approach achieves an exceptional 98.9% success rate in jailbreaking GPT-4o(29 May 2025 release)
Threading the Needle: Reweaving Chain-of-Thought Reasoning to Explain Human Label Variation
The recent rise of reasoning-tuned Large Language Models (LLMs)--which generate chains of thought (CoTs) before giving the final answer--has attracted significant attention and offers new opportunities for gaining insights into human label variation, which refers to plausible differences in how multiple annotators label the same data instance. Prior work has shown that LLM-generated explanations can help align model predictions with human label distributions, but typically adopt a reverse paradigm: producing explanations based on given answers. In contrast, CoTs provide a forward reasoning path that may implicitly embed rationales for each answer option, before generating the answers. We thus propose a novel LLM-based pipeline enriched with linguistically-grounded discourse segmenters to extract supporting and opposing statements for each answer option from CoTs with improved accuracy. We also propose a rank-based HLV evaluation framework that prioritizes the ranking of answers over exact scores, which instead favor direct comparison of label distributions. Our method outperforms a direct generation method as well as baselines on three datasets, and shows better alignment of ranking methods with humans, highlighting the effectiveness of our approach.
comment: 22 pages, 7 figures
Discriminative Policy Optimization for Token-Level Reward Models ICML 2025
Process reward models (PRMs) provide more nuanced supervision compared to outcome reward models (ORMs) for optimizing policy models, positioning them as a promising approach to enhancing the capabilities of LLMs in complex reasoning tasks. Recent efforts have advanced PRMs from step-level to token-level granularity by integrating reward modeling into the training of generative models, with reward scores derived from token generation probabilities. However, the conflict between generative language modeling and reward modeling may introduce instability and lead to inaccurate credit assignments. To address this challenge, we revisit token-level reward assignment by decoupling reward modeling from language generation and derive a token-level reward model through the optimization of a discriminative policy, termed the Q-function Reward Model (Q-RM). We theoretically demonstrate that Q-RM explicitly learns token-level Q-functions from preference data without relying on fine-grained annotations. In our experiments, Q-RM consistently outperforms all baseline methods across various benchmarks. For example, when integrated into PPO/REINFORCE algorithms, Q-RM enhances the average Pass@1 score by 5.85/4.70 points on mathematical reasoning tasks compared to the ORM baseline, and by 4.56/5.73 points compared to the token-level PRM counterpart. Moreover, reinforcement learning with Q-RM significantly enhances training efficiency, achieving convergence 12 times faster than ORM on GSM8K and 11 times faster than step-level PRM on MATH. Code and data are available at https://github.com/homzer/Q-RM.
comment: ICML 2025
Nosey: Open-source hardware for acoustic nasalance
We introduce Nosey (Nasalance Open Source Estimation sYstem), a low-cost, customizable, 3D-printed system for recording acoustic nasalance data that we have made available as open-source hardware (http://github.com/phoneticslab/nosey). We first outline the motivations and design principles behind our hardware nasalance system, and then present a comparison between Nosey and a commercial nasalance device. Nosey shows consistently higher nasalance scores than the commercial device, but the magnitude of contrast between phonological environments is comparable between systems. We also review ways of customizing the hardware to facilitate testing, such as comparison of microphones and different construction materials. We conclude that Nosey is a flexible and cost-effective alternative to commercial nasometry devices and propose some methodological considerations for its use in data collection.
comment: Accepted to Interspeech 2025
Neither Stochastic Parroting nor AGI: LLMs Solve Tasks through Context-Directed Extrapolation from Training Data Priors
In this position paper we raise critical awareness of a realistic view of LLM capabilities that eschews extreme alternative views that LLMs are either "stochastic parrots" or in possession of "emergent" advanced reasoning capabilities, which, due to their unpredictable emergence, constitute an existential threat. Our middle-ground view is that LLMs extrapolate from priors from their training data, and that a mechanism akin to in-context learning enables the targeting of the appropriate information from which to extrapolate. We call this "context-directed extrapolation." Under this view, substantiated though existing literature, while reasoning capabilities go well beyond stochastic parroting, such capabilities are predictable, controllable, not indicative of advanced reasoning akin to high-level cognitive capabilities in humans, and not infinitely scalable with additional training. As a result, fears of uncontrollable emergence of agency are allayed, while research advances are appropriately refocused on the processes of context-directed extrapolation and how this interacts with training data to produce valuable capabilities in LLMs. Future work can therefore explore alternative augmenting techniques that do not rely on inherent advanced reasoning in LLMs.
Proximalized Preference Optimization for Diverse Feedback Types: A Decomposed Perspective on DPO
Direct alignment methods typically optimize large language models (LLMs) by contrasting the likelihoods of preferred versus dispreferred responses. While effective in steering LLMs to match relative preference, these methods are frequently noted for decreasing the absolute likelihoods of example responses. As a result, aligned models tend to generate outputs that deviate from the expected patterns, exhibiting reward-hacking effect even without a reward model. This undesired consequence exposes a fundamental limitation in contrastive alignment, which we characterize as likelihood underdetermination. In this work, we revisit direct preference optimization (DPO) -- the seminal direct alignment method -- and demonstrate that its loss theoretically admits a decomposed reformulation. The reformulated loss not only broadens applicability to a wider range of feedback types, but also provides novel insights into the underlying cause of likelihood underdetermination. Specifically, the standard DPO implementation implicitly oversimplifies a regularizer in the reformulated loss, and reinstating its complete version effectively resolves the underdetermination issue. Leveraging these findings, we introduce PRoximalized PReference Optimization (PRO), a unified method to align with diverse feeback types, eliminating likelihood underdetermination through an efficient approximation of the complete regularizer. Comprehensive experiments show the superiority of PRO over existing methods in scenarios involving pairwise, binary and scalar feedback.
Enhancing Marker Scoring Accuracy through Ordinal Confidence Modelling in Educational Assessments ACL 2025
A key ethical challenge in Automated Essay Scoring (AES) is ensuring that scores are only released when they meet high reliability standards. Confidence modelling addresses this by assigning a reliability estimate measure, in the form of a confidence score, to each automated score. In this study, we frame confidence estimation as a classification task: predicting whether an AES-generated score correctly places a candidate in the appropriate CEFR level. While this is a binary decision, we leverage the inherent granularity of the scoring domain in two ways. First, we reformulate the task as an n-ary classification problem using score binning. Second, we introduce a set of novel Kernel Weighted Ordinal Categorical Cross Entropy (KWOCCE) loss functions that incorporate the ordinal structure of CEFR labels. Our best-performing model achieves an F1 score of 0.97, and enables the system to release 47% of scores with 100% CEFR agreement and 99% with at least 95% CEFR agreement -compared to approximately 92% (approx.) CEFR agreement from the standalone AES model where we release all AM predicted scores.
comment: This is the preprint version of our paper accepted to ACL 2025 (Industry Track). The DOI will be added once available
Generalized Category Discovery in Event-Centric Contexts: Latent Pattern Mining with LLMs
Generalized Category Discovery (GCD) aims to classify both known and novel categories using partially labeled data that contains only known classes. Despite achieving strong performance on existing benchmarks, current textual GCD methods lack sufficient validation in realistic settings. We introduce Event-Centric GCD (EC-GCD), characterized by long, complex narratives and highly imbalanced class distributions, posing two main challenges: (1) divergent clustering versus classification groupings caused by subjective criteria, and (2) Unfair alignment for minority classes. To tackle these, we propose PaMA, a framework leveraging LLMs to extract and refine event patterns for improved cluster-class alignment. Additionally, a ranking-filtering-mining pipeline ensures balanced representation of prototypes across imbalanced categories. Evaluations on two EC-GCD benchmarks, including a newly constructed Scam Report dataset, demonstrate that PaMA outperforms prior methods with up to 12.58% H-score gains, while maintaining strong generalization on base GCD datasets.
Data-efficient Meta-models for Evaluation of Context-based Questions and Answers in LLMs
Large Language Models (LLMs) and Retrieval-Augmented Generation (RAG) systems are increasingly deployed in industry applications, yet their reliability remains hampered by challenges in detecting hallucinations. While supervised state-of-the-art (SOTA) methods that leverage LLM hidden states -- such as activation tracing and representation analysis -- show promise, their dependence on extensively annotated datasets limits scalability in real-world applications. This paper addresses the critical bottleneck of data annotation by investigating the feasibility of reducing training data requirements for two SOTA hallucination detection frameworks: Lookback Lens, which analyzes attention head dynamics, and probing-based approaches, which decode internal model representations. We propose a methodology combining efficient classification algorithms with dimensionality reduction techniques to minimize sample size demands while maintaining competitive performance. Evaluations on standardized question-answering RAG benchmarks show that our approach achieves performance comparable to strong proprietary LLM-based baselines with only 250 training samples. These results highlight the potential of lightweight, data-efficient paradigms for industrial deployment, particularly in annotation-constrained scenarios.
EmoBench-UA: A Benchmark Dataset for Emotion Detection in Ukrainian
While Ukrainian NLP has seen progress in many texts processing tasks, emotion classification remains an underexplored area with no publicly available benchmark to date. In this work, we introduce EmoBench-UA, the first annotated dataset for emotion detection in Ukrainian texts. Our annotation schema is adapted from the previous English-centric works on emotion detection (Mohammad et al., 2018; Mohammad, 2022) guidelines. The dataset was created through crowdsourcing using the Toloka.ai platform ensuring high-quality of the annotation process. Then, we evaluate a range of approaches on the collected dataset, starting from linguistic-based baselines, synthetic data translated from English, to large language models (LLMs). Our findings highlight the challenges of emotion classification in non-mainstream languages like Ukrainian and emphasize the need for further development of Ukrainian-specific models and training resources.
How Does Response Length Affect Long-Form Factuality ACL 2025
Large language models (LLMs) are widely used for long-form text generation. However, factual errors in the responses would undermine their reliability. Despite growing attention to LLM factuality, the effect of response length on factuality remains underexplored. In this work, we systematically investigate this relationship by first introducing an automatic and bi-level long-form factuality evaluation framework, which achieves high agreement with human annotations while being cost-effective. Using this framework, we conduct controlled experiments and find that longer responses exhibit lower factual precision, confirming the presence of length bias. To explain this phenomenon, we empirically examine three hypotheses: error propagation, long context, and facts exhaustion. Our results reveal that facts exhaustion, where the model gradually exhausts more reliable knowledge, is the primary cause of factual degradation, rather than the other two hypotheses.
comment: ACL 2025 Findings. 24 pages, 10 figures, 18 tables. Code available at https://github.com/XuZhao0/length-bias-factuality
ScEdit: Script-based Assessment of Knowledge Editing ACL 2025
Knowledge Editing (KE) has gained increasing attention, yet current KE tasks remain relatively simple. Under current evaluation frameworks, many editing methods achieve exceptionally high scores, sometimes nearing perfection. However, few studies integrate KE into real-world application scenarios (e.g., recent interest in LLM-as-agent). To support our analysis, we introduce a novel script-based benchmark -- ScEdit (Script-based Knowledge Editing Benchmark) -- which encompasses both counterfactual and temporal edits. We integrate token-level and text-level evaluation methods, comprehensively analyzing existing KE techniques. The benchmark extends traditional fact-based ("What"-type question) evaluation to action-based ("How"-type question) evaluation. We observe that all KE methods exhibit a drop in performance on established metrics and face challenges on text-level metrics, indicating a challenging task. Our benchmark is available at https://github.com/asdfo123/ScEdit.
comment: ACL 2025 Findings
Sentinel: Attention Probing of Proxy Models for LLM Context Compression with an Understanding Perspective
Retrieval-augmented generation (RAG) enhances large language models (LLMs) with external context, but retrieved passages are often lengthy, noisy, or exceed input limits. Existing compression methods typically require supervised training of dedicated compression models, increasing cost and reducing portability. We propose Sentinel, a lightweight sentence-level compression framework that reframes context filtering as an attention-based understanding task. Rather than training a compression model, Sentinel probes decoder attention from an off-the-shelf 0.5B proxy LLM using a lightweight classifier to identify sentence relevance. Empirically, we find that query-context relevance estimation is consistent across model scales, with 0.5B proxies closely matching the behaviors of larger models. On the LongBench benchmark, Sentinel achieves up to 5$\times$ compression while matching the QA performance of 7B-scale compression systems. Our results suggest that probing native attention signals enables fast, effective, and question-aware context compression. Code available at: https://github.com/yzhangchuck/Sentinel.
comment: Preprint. 17 pages including appendix
The Arabic AI Fingerprint: Stylometric Analysis and Detection of Large Language Models Text
Large Language Models (LLMs) have achieved unprecedented capabilities in generating human-like text, posing subtle yet significant challenges for information integrity across critical domains, including education, social media, and academia, enabling sophisticated misinformation campaigns, compromising healthcare guidance, and facilitating targeted propaganda. This challenge becomes severe, particularly in under-explored and low-resource languages like Arabic. This paper presents a comprehensive investigation of Arabic machine-generated text, examining multiple generation strategies (generation from the title only, content-aware generation, and text refinement) across diverse model architectures (ALLaM, Jais, Llama, and GPT-4) in academic, and social media domains. Our stylometric analysis reveals distinctive linguistic patterns differentiating human-written from machine-generated Arabic text across these varied contexts. Despite their human-like qualities, we demonstrate that LLMs produce detectable signatures in their Arabic outputs, with domain-specific characteristics that vary significantly between different contexts. Based on these insights, we developed BERT-based detection models that achieved exceptional performance in formal contexts (up to 99.9\% F1-score) with strong precision across model architectures. Our cross-domain analysis confirms generalization challenges previously reported in the literature. To the best of our knowledge, this work represents the most comprehensive investigation of Arabic machine-generated text to date, uniquely combining multiple prompt generation methods, diverse model architectures, and in-depth stylometric analysis across varied textual domains, establishing a foundation for developing robust, linguistically-informed detection systems essential for preserving information integrity in Arabic-language contexts.
Does Machine Unlearning Truly Remove Model Knowledge? A Framework for Auditing Unlearning in LLMs
In recent years, Large Language Models (LLMs) have achieved remarkable advancements, drawing significant attention from the research community. Their capabilities are largely attributed to large-scale architectures, which require extensive training on massive datasets. However, such datasets often contain sensitive or copyrighted content sourced from the public internet, raising concerns about data privacy and ownership. Regulatory frameworks, such as the General Data Protection Regulation (GDPR), grant individuals the right to request the removal of such sensitive information. This has motivated the development of machine unlearning algorithms that aim to remove specific knowledge from models without the need for costly retraining. Despite these advancements, evaluating the efficacy of unlearning algorithms remains a challenge due to the inherent complexity and generative nature of LLMs. In this work, we introduce a comprehensive auditing framework for unlearning evaluation, comprising three benchmark datasets, six unlearning algorithms, and five prompt-based auditing methods. By using various auditing algorithms, we evaluate the effectiveness and robustness of different unlearning strategies. To explore alternatives beyond prompt-based auditing, we propose a novel technique that leverages intermediate activation perturbations, addressing the limitations of auditing methods that rely solely on model inputs and outputs.
Automatic Construction of Multiple Classification Dimensions for Managing Approaches in Scientific Papers
Approaches form the foundation for conducting scientific research. Querying approaches from a vast body of scientific papers is extremely time-consuming, and without a well-organized management framework, researchers may face significant challenges in querying and utilizing relevant approaches. Constructing multiple dimensions on approaches and managing them from these dimensions can provide an efficient solution. Firstly, this paper identifies approach patterns using a top-down way, refining the patterns through four distinct linguistic levels: semantic level, discourse level, syntactic level, and lexical level. Approaches in scientific papers are extracted based on approach patterns. Additionally, five dimensions for categorizing approaches are identified using these patterns. This paper proposes using tree structure to represent step and measuring the similarity between different steps with a tree-structure-based similarity measure that focuses on syntactic-level similarities. A collection similarity measure is proposed to compute the similarity between approaches. A bottom-up clustering algorithm is proposed to construct class trees for approach components within each dimension by merging each approach component or class with its most similar approach component or class in each iteration. The class labels generated during the clustering process indicate the common semantics of the step components within the approach components in each class and are used to manage the approaches within the class. The class trees of the five dimensions collectively form a multi-dimensional approach space. The application of approach queries on the multi-dimensional approach space demonstrates that querying within this space ensures strong relevance between user queries and results and rapidly reduces search space through a class-based query mechanism.
comment: 26 pages, 9 figures
ChartMind: A Comprehensive Benchmark for Complex Real-world Multimodal Chart Question Answering
Chart question answering (CQA) has become a critical multimodal task for evaluating the reasoning capabilities of vision-language models. While early approaches have shown promising performance by focusing on visual features or leveraging large-scale pre-training, most existing evaluations rely on rigid output formats and objective metrics, thus ignoring the complex, real-world demands of practical chart analysis. In this paper, we introduce ChartMind, a new benchmark designed for complex CQA tasks in real-world settings. ChartMind covers seven task categories, incorporates multilingual contexts, supports open-domain textual outputs, and accommodates diverse chart formats, bridging the gap between real-world applications and traditional academic benchmarks. Furthermore, we propose a context-aware yet model-agnostic framework, ChartLLM, that focuses on extracting key contextual elements, reducing noise, and enhancing the reasoning accuracy of multimodal large language models. Extensive evaluations on ChartMind and three representative public benchmarks with 14 mainstream multimodal models show our framework significantly outperforms the previous three common CQA paradigms: instruction-following, OCR-enhanced, and chain-of-thought, highlighting the importance of flexible chart understanding for real-world CQA. These findings suggest new directions for developing more robust chart reasoning in future research.
MCTSr-Zero: Self-Reflective Psychological Counseling Dialogues Generation via Principles and Adaptive Exploration
The integration of Monte Carlo Tree Search (MCTS) with Large Language Models (LLMs) has demonstrated significant success in structured, problem-oriented tasks. However, applying these methods to open-ended dialogues, such as those in psychological counseling, presents unique challenges. Unlike tasks with objective correctness, success in therapeutic conversations depends on subjective factors like empathetic engagement, ethical adherence, and alignment with human preferences, for which strict "correctness" criteria are ill-defined. Existing result-oriented MCTS approaches can therefore produce misaligned responses. To address this, we introduce MCTSr-Zero, an MCTS framework designed for open-ended, human-centric dialogues. Its core innovation is "domain alignment", which shifts the MCTS search objective from predefined end-states towards conversational trajectories that conform to target domain principles (e.g., empathy in counseling). Furthermore, MCTSr-Zero incorporates "Regeneration" and "Meta-Prompt Adaptation" mechanisms to substantially broaden exploration by allowing the MCTS to consider fundamentally different initial dialogue strategies. We evaluate MCTSr-Zero in psychological counseling by generating multi-turn dialogue data, which is used to fine-tune an LLM, PsyLLM. We also introduce PsyEval, a benchmark for assessing multi-turn psychological counseling dialogues. Experiments demonstrate that PsyLLM achieves state-of-the-art performance on PsyEval and other relevant metrics, validating MCTSr-Zero's effectiveness in generating high-quality, principle-aligned conversational data for human-centric domains and addressing the LLM challenge of consistently adhering to complex psychological standards.
comment: 50 pages, 3 figures
MMBoundary: Advancing MLLM Knowledge Boundary Awareness through Reasoning Step Confidence Calibration ACL 2025
In recent years, multimodal large language models (MLLMs) have made significant progress but continue to face inherent challenges in multimodal reasoning, which requires multi-level (e.g., perception, reasoning) and multi-granular (e.g., multi-step reasoning chain) advanced inferencing. Prior work on estimating model confidence tends to focus on the overall response for training and calibration, but fails to assess confidence in each reasoning step, leading to undesirable hallucination snowballing. In this work, we present MMBoundary, a novel framework that advances the knowledge boundary awareness of MLLMs through reasoning step confidence calibration. To achieve this, we propose to incorporate complementary textual and cross-modal self-rewarding signals to estimate confidence at each step of the MLLM reasoning process. In addition to supervised fine-tuning MLLM on this set of self-rewarded confidence estimation signal for initial confidence expression warm-up, we introduce a reinforcement learning stage with multiple reward functions for further aligning model knowledge and calibrating confidence at each reasoning step, enhancing reasoning chain self-correction. Empirical results show that MMBoundary significantly outperforms existing methods across diverse domain datasets and metrics, achieving an average of 7.5% reduction in multimodal confidence calibration errors and up to 8.3% improvement in task performance.
comment: Accepted to ACL 2025
ExpeTrans: LLMs Are Experiential Transfer Learners
Recent studies provide large language models (LLMs) with textual task-solving experiences via prompts to improve their performance. However, previous methods rely on substantial human labor or time to gather such experiences for each task, which is impractical given the growing variety of task types in user queries to LLMs. To address this issue, we design an autonomous experience transfer framework to explore whether LLMs can mimic human cognitive intelligence to autonomously transfer experience from existing source tasks to newly encountered target tasks. This not only allows the acquisition of experience without extensive costs of previous methods, but also offers a novel path for the generalization of LLMs. Experimental results on 13 datasets demonstrate that our framework effectively improves the performance of LLMs. Furthermore, we provide a detailed analysis of each module in the framework.
comment: 9 pages, 12 figs/tables
Cross-Task Experiential Learning on LLM-based Multi-Agent Collaboration
Large Language Model-based multi-agent systems (MAS) have shown remarkable progress in solving complex tasks through collaborative reasoning and inter-agent critique. However, existing approaches typically treat each task in isolation, resulting in redundant computations and limited generalization across structurally similar tasks. To address this, we introduce multi-agent cross-task experiential learning (MAEL), a novel framework that endows LLM-driven agents with explicit cross-task learning and experience accumulation. We model the task-solving workflow on a graph-structured multi-agent collaboration network, where agents propagate information and coordinate via explicit connectivity. During the experiential learning phase, we quantify the quality for each step in the task-solving workflow and store the resulting rewards along with the corresponding inputs and outputs into each agent's individual experience pool. During inference, agents retrieve high-reward, task-relevant experiences as few-shot examples to enhance the effectiveness of each reasoning step, thereby enabling more accurate and efficient multi-agent collaboration. Experimental results on diverse datasets demonstrate that MAEL empowers agents to learn from prior task experiences effectively-achieving faster convergence and producing higher-quality solutions on current tasks.
comment: Work in Progress
Unsupervised Word-level Quality Estimation for Machine Translation Through the Lens of Annotators (Dis)agreement
Word-level quality estimation (WQE) aims to automatically identify fine-grained error spans in machine-translated outputs and has found many uses, including assisting translators during post-editing. Modern WQE techniques are often expensive, involving prompting of large language models or ad-hoc training on large amounts of human-labeled data. In this work, we investigate efficient alternatives exploiting recent advances in language model interpretability and uncertainty quantification to identify translation errors from the inner workings of translation models. In our evaluation spanning 14 metrics across 12 translation directions, we quantify the impact of human label variation on metric performance by using multiple sets of human labels. Our results highlight the untapped potential of unsupervised metrics, the shortcomings of supervised methods when faced with label uncertainty, and the brittleness of single-annotator evaluation practices.
comment: Under review. Code: https://github.com/gsarti/labl/tree/main/examples/unsup_wqe Metrics: https://huggingface.co/datasets/gsarti/unsup_wqe_metrics
Infinite-Instruct: Synthesizing Scaling Code instruction Data with Bidirectional Synthesis and Static Verification
Traditional code instruction data synthesis methods suffer from limited diversity and poor logic. We introduce Infinite-Instruct, an automated framework for synthesizing high-quality question-answer pairs, designed to enhance the code generation capabilities of large language models (LLMs). The framework focuses on improving the internal logic of synthesized problems and the quality of synthesized code. First, "Reverse Construction" transforms code snippets into diverse programming problems. Then, through "Backfeeding Construction," keywords in programming problems are structured into a knowledge graph to reconstruct them into programming problems with stronger internal logic. Finally, a cross-lingual static code analysis pipeline filters invalid samples to ensure data quality. Experiments show that on mainstream code generation benchmarks, our fine-tuned models achieve an average performance improvement of 21.70% on 7B-parameter models and 36.95% on 32B-parameter models. Using less than one-tenth of the instruction fine-tuning data, we achieved performance comparable to the Qwen-2.5-Coder-Instruct. Infinite-Instruct provides a scalable solution for LLM training in programming. We open-source the datasets used in the experiments, including both unfiltered versions and filtered versions via static analysis. The data are available at https://github.com/xingwenjing417/Infinite-Instruct-dataset
Map&Make: Schema Guided Text to Table Generation ACL 2025
Transforming dense, detailed, unstructured text into an interpretable and summarised table, also colloquially known as Text-to-Table generation, is an essential task for information retrieval. Current methods, however, miss out on how and what complex information to extract; they also lack the ability to infer data from the text. In this paper, we introduce a versatile approach, Map&Make, which "dissects" text into propositional atomic statements. This facilitates granular decomposition to extract the latent schema. The schema is then used to populate the tables that capture the qualitative nuances and the quantitative facts in the original text. Our approach is tested against two challenging datasets, Rotowire, renowned for its complex and multi-table schema, and Livesum, which demands numerical aggregation. By carefully identifying and correcting hallucination errors in Rotowire, we aim to achieve a cleaner and more reliable benchmark. We evaluate our method rigorously on a comprehensive suite of comparative and referenceless metrics. Our findings demonstrate significant improvement results across both datasets with better interpretability in Text-to-Table generation. Moreover, through detailed ablation studies and analyses, we investigate the factors contributing to superior performance and validate the practicality of our framework in structured summarization tasks.
comment: Accepted to ACL 2025
ZIPA: A family of efficient models for multilingual phone recognition ACL 2025
We present ZIPA, a family of efficient speech models that advances the state-of-the-art performance of crosslinguistic phone recognition. We first curated IPAPack++, a large-scale multilingual speech corpus with 17,132 hours of normalized phone transcriptions and a novel evaluation set capturing unseen languages and sociophonetic variation. With the large-scale training data, ZIPA, including transducer (ZIPA-T) and CTC-based (ZIPA-CR) variants, leverage the efficient Zipformer backbones and outperform existing phone recognition systems with much fewer parameters. Further scaling via noisy student training on 11,000 hours of pseudo-labeled multilingual data yields further improvement. While ZIPA achieves strong performance on benchmarks, error analysis reveals persistent limitations in modeling sociophonetic diversity, underscoring challenges for future research.
comment: ACL 2025 Main
Tell, Don't Show: Leveraging Language Models' Abstractive Retellings to Model Literary Themes ACL 2025
Conventional bag-of-words approaches for topic modeling, like latent Dirichlet allocation (LDA), struggle with literary text. Literature challenges lexical methods because narrative language focuses on immersive sensory details instead of abstractive description or exposition: writers are advised to "show, don't tell." We propose Retell, a simple, accessible topic modeling approach for literature. Here, we prompt resource-efficient, generative language models (LMs) to tell what passages show, thereby translating narratives' surface forms into higher-level concepts and themes. By running LDA on LMs' retellings of passages, we can obtain more precise and informative topics than by running LDA alone or by directly asking LMs to list topics. To investigate the potential of our method for cultural analytics, we compare our method's outputs to expert-guided annotations in a case study on racial/cultural identity in high school English language arts books.
comment: 26 pages, 7 figures, Findings of ACL 2025
Cross-Domain Bilingual Lexicon Induction via Pretrained Language Models
Bilingual Lexicon Induction (BLI) is generally based on common domain data to obtain monolingual word embedding, and by aligning the monolingual word embeddings to obtain the cross-lingual embeddings which are used to get the word translation pairs. In this paper, we propose a new task of BLI, which is to use the monolingual corpus of the general domain and target domain to extract domain-specific bilingual dictionaries. Motivated by the ability of Pre-trained models, we propose a method to get better word embeddings that build on the recent work on BLI. This way, we introduce the Code Switch(Qin et al., 2020) firstly in the cross-domain BLI task, which can match differit is yet to be seen whether these methods are suitable for bilingual lexicon extraction in professional fields. As we can see in table 1, the classic and efficient BLI approach, Muse and Vecmap, perform much worse on the Medical dataset than on the Wiki dataset. On one hand, the specialized domain data set is relatively smaller compared to the generic domain data set generally, and specialized words have a lower frequency, which will directly affect the translation quality of bilingual dictionaries. On the other hand, static word embeddings are widely used for BLI, however, in some specific fields, the meaning of words is greatly influenced by context, in this case, using only static word embeddings may lead to greater bias. ent strategies in different contexts, making the model more suitable for this task. Experimental results show that our method can improve performances over robust BLI baselines on three specific domains by averagely improving 0.78 points.
Enhancing Large Language Models'Machine Translation via Dynamic Focus Anchoring
Large language models have demonstrated exceptional performance across multiple crosslingual NLP tasks, including machine translation (MT). However, persistent challenges remain in addressing context-sensitive units (CSUs), such as polysemous words. These CSUs not only affect the local translation accuracy of LLMs, but also affect LLMs' understanding capability for sentences and tasks, and even lead to translation failure. To address this problem, we propose a simple but effective method to enhance LLMs' MT capabilities by acquiring CSUs and applying semantic focus. Specifically, we dynamically analyze and identify translation challenges, then incorporate them into LLMs in a structured manner to mitigate mistranslations or misunderstandings of CSUs caused by information flattening. Efficiently activate LLMs to identify and apply relevant knowledge from its vast data pool in this way, ensuring more accurate translations for translating difficult terms. On a benchmark dataset of MT, our proposed method achieved competitive performance compared to multiple existing open-sourced MT baseline models. It demonstrates effectiveness and robustness across multiple language pairs, including both similar language pairs and distant language pairs. Notably, the proposed method requires no additional model training and enhances LLMs' performance across multiple NLP tasks with minimal resource consumption.
Let's Reason Formally: Natural-Formal Hybrid Reasoning Enhances LLM's Math Capability
Enhancing the mathematical reasoning capabilities of LLMs has garnered significant attention in both the mathematical and computer science communities. Recent works have made substantial progress in both Natural Language (NL) reasoning and Formal Language (FL) reasoning by leveraging the potential of pure Reinforcement Learning (RL) methods on base models. However, RL approaches struggle to impart new capabilities not presented in the base model, highlighting the need to integrate more knowledge like FL into NL math reasoning effectively. Yet, this integration is challenging due to inherent disparities in problem structure and reasoning format between NL and FL. To address these challenges, we introduce **NL-FL HybridReasoning**, an end-to-end framework designed to incorporate the FL expert into NL math problem-solving. To bridge the NL and FL input format gap, we propose the *NL-FL Problem Alignment* method, which reformulates the Question-Answering (QA) problems in NL as existence theorems in FL. Subsequently, the *Mixed Problem Input* technique we provide enables the FL reasoner to handle both QA and existence problems concurrently. Lastly, we mitigate the NL and FL output format gap in reasoning through an LLM-based *Answer Extraction* mechanism. Comprehensive experiments demonstrate that the **HybridReasoning** framework achieves **89.80%** and **84.34%** accuracy rates on the MATH-500 and the AMC benchmarks, surpassing the NL baseline by 4.60% and 4.82%, respectively. Notably, some problems resolved by our framework remain unsolved by the NL baseline model even under a larger number of trials.
MathArena: Evaluating LLMs on Uncontaminated Math Competitions
The rapid advancement of reasoning capabilities in large language models (LLMs) has led to notable improvements on mathematical benchmarks. However, many of the most commonly used evaluation datasets (e.g., AIME 2024) are widely available online, making it difficult to disentangle genuine reasoning from potential memorization. Furthermore, these benchmarks do not evaluate proof-writing capabilities, which are crucial for many mathematical tasks. To address this, we introduce MathArena, a new benchmark based on the following key insight: recurring math competitions provide a stream of high-quality, challenging problems that can be used for real-time evaluation of LLMs. By evaluating models as soon as new problems are released, we effectively eliminate the risk of contamination. Using this framework, we find strong signs of contamination in AIME 2024. Nonetheless, evaluations on harder competitions, such as SMT 2025 -- published well after model release dates -- demonstrate impressive reasoning capabilities in top-performing models. MathArena is also the first benchmark for proof-writing capabilities. On USAMO 2025, even top models score below 25%, far behind their performance on final-answer tasks. So far, we have evaluated 30 models across five competitions, totaling 149 problems. As an evolving benchmark, MathArena will continue to track the progress of LLMs on newly released competitions, ensuring rigorous and up-to-date evaluation of mathematical reasoning.
Agent-UniRAG: A Trainable Open-Source LLM Agent Framework for Unified Retrieval-Augmented Generation Systems
This paper presents a novel approach for unified retrieval-augmented generation (RAG) systems using the recent emerging large language model (LLM) agent concept. Specifically, Agent LLM, which utilizes LLM as fundamental controllers, has become a promising approach to enable the interpretability of RAG tasks, especially for complex reasoning question-answering systems (e.g., multi-hop queries). Nonetheless, previous works mainly focus on solving RAG systems with either single-hop or multi-hop approaches separately, which limits the application of those approaches to real-world applications. In this study, we propose a trainable agent framework called Agent-UniRAG for unified retrieval-augmented LLM systems, which enhances the effectiveness and interpretability of RAG systems. The main idea is to design an LLM agent framework to solve RAG tasks step-by-step based on the complexity of the inputs, simultaneously including single-hop and multi-hop queries in an end-to-end manner. Furthermore, we introduce SynAgent-RAG, a synthetic dataset to enable the proposed agent framework for small open-source LLMs (e.g., Llama-3-8B). The results show comparable performances with closed-source and larger open-source LLMs across various RAG benchmarks. Our source code and dataset are publicly available for further exploitation.
BRIGHTER: BRIdging the Gap in Human-Annotated Textual Emotion Recognition Datasets for 28 Languages ACL2025
People worldwide use language in subtle and complex ways to express emotions. Although emotion recognition--an umbrella term for several NLP tasks--impacts various applications within NLP and beyond, most work in this area has focused on high-resource languages. This has led to significant disparities in research efforts and proposed solutions, particularly for under-resourced languages, which often lack high-quality annotated datasets. In this paper, we present BRIGHTER--a collection of multi-labeled, emotion-annotated datasets in 28 different languages and across several domains. BRIGHTER primarily covers low-resource languages from Africa, Asia, Eastern Europe, and Latin America, with instances labeled by fluent speakers. We highlight the challenges related to the data collection and annotation processes, and then report experimental results for monolingual and crosslingual multi-label emotion identification, as well as emotion intensity recognition. We analyse the variability in performance across languages and text domains, both with and without the use of LLMs, and show that the BRIGHTER datasets represent a meaningful step towards addressing the gap in text-based emotion recognition.
comment: Accepted at ACL2025 (Main)
Pangu Embedded: An Efficient Dual-system LLM Reasoner with Metacognition
This work presents Pangu Embedded, an efficient Large Language Model (LLM) reasoner developed on Ascend Neural Processing Units (NPUs), featuring flexible fast and slow thinking capabilities. Pangu Embedded addresses the significant computational costs and inference latency challenges prevalent in existing reasoning-optimized LLMs. We propose a two-stage training framework for its construction. In Stage 1, the model is finetuned via an iterative distillation process, incorporating inter-iteration model merging to effectively aggregate complementary knowledge. This is followed by reinforcement learning on Ascend clusters, optimized by a latency-tolerant scheduler that combines stale synchronous parallelism with prioritized data queues. The RL process is guided by a Multi-source Adaptive Reward System (MARS), which generates dynamic, task-specific reward signals using deterministic metrics and lightweight LLM evaluators for mathematics, coding, and general problem-solving tasks. Stage 2 introduces a dual-system framework, endowing Pangu Embedded with a "fast" mode for routine queries and a deeper "slow" mode for complex inference. This framework offers both manual mode switching for user control and an automatic, complexity-aware mode selection mechanism that dynamically allocates computational resources to balance latency and reasoning depth. Experimental results on benchmarks including AIME 2024, GPQA, and LiveCodeBench demonstrate that Pangu Embedded with 7B parameters, outperforms similar-size models like Qwen3-8B and GLM4-9B. It delivers rapid responses and state-of-the-art reasoning quality within a single, unified model architecture, highlighting a promising direction for developing powerful yet practically deployable LLM reasoners.
Skywork Open Reasoner 1 Technical Report
The success of DeepSeek-R1 underscores the significant role of reinforcement learning (RL) in enhancing the reasoning capabilities of large language models (LLMs). In this work, we present Skywork-OR1, an effective and scalable RL implementation for long Chain-of-Thought (CoT) models. Building on the DeepSeek-R1-Distill model series, our RL approach achieves notable performance gains, increasing average accuracy across AIME24, AIME25, and LiveCodeBench from 57.8% to 72.8% (+15.0%) for the 32B model and from 43.6% to 57.5% (+13.9%) for the 7B model. Our Skywork-OR1-32B model surpasses both DeepSeek-R1 and Qwen3-32B on the AIME24 and AIME25 benchmarks, while achieving comparable results on LiveCodeBench. The Skywork-OR1-7B and Skywork-OR1-Math-7B models demonstrate competitive reasoning capabilities among models of similar size. We perform comprehensive ablation studies on the core components of our training pipeline to validate their effectiveness. Additionally, we thoroughly investigate the phenomenon of entropy collapse, identify key factors affecting entropy dynamics, and demonstrate that mitigating premature entropy collapse is critical for improved test performance. To support community research, we fully open-source our model weights, training code, and training datasets.
Exploring the Limitations of Mamba in COPY and CoT Reasoning
Transformers have become the backbone of modern Large Language Models (LLMs); however, their inference overhead grows linearly with the sequence length, posing challenges for modeling long sequences. In light of this, Mamba has attracted attention for maintaining a constant inference size, with empirical evidence demonstrating that it can match Transformer performance in sequence modeling while significantly reducing computational costs. However, an open question remains: can Mamba always bring savings while achieving performance comparable to Transformers? In this paper, we focus on analyzing the expressive ability of Mamba to perform our defined COPY operation and Chain of Thought (CoT) reasoning. First, inspired by the connection between Mamba and linear attention, we show that constant-sized Mamba may struggle to perform COPY operations while Transformers can handle them more easily. However, when the size of Mamba grows linearly with the input sequence length, it can accurately perform COPY, but in this case, Mamba no longer provides overhead savings. Based on this observation, we further analyze Mamba's ability to tackle CoT tasks, which can be described by the Dynamic Programming (DP) problems. Our findings suggest that to solve arbitrary DP problems, the total cost of Mamba is still comparable to standard Transformers. However, similar to efficient Transformers, when facing DP problems with favorable properties such as locality, Mamba can provide savings in overhead. Our experiments on the copy and CoT tasks further demonstrate Mamba's limitations compared to Transformers in learning these tasks.
comment: Mamba, Chain of Thought
Speculative Decoding Meets Quantization: Compatibility Evaluation and Hierarchical Framework Design
Speculative decoding and quantization effectively accelerate memory-bound inference of large language models. Speculative decoding mitigates the memory bandwidth bottleneck by verifying multiple tokens within a single forward pass, which increases computational effort. Quantization achieves this optimization by compressing weights and activations into lower bit-widths and also reduces computations via low-bit matrix multiplications. To further leverage their strengths, we investigate the integration of these two techniques. Surprisingly, experiments applying the advanced speculative decoding method EAGLE-2 to various quantized models reveal that the memory benefits from 4-bit weight quantization are diminished by the computational load from speculative decoding. Specifically, verifying a tree-style draft incurs significantly more time overhead than a single-token forward pass on 4-bit weight quantized models. This finding led to our new speculative decoding design: a hierarchical framework that employs a small model as an intermediate stage to turn tree-style drafts into sequence drafts, leveraging the memory access benefits of the target quantized model. Experimental results show that our hierarchical approach achieves a 2.78$\times$ speedup across various tasks for the 4-bit weight Llama-3-70B model on an A100 GPU, outperforming EAGLE-2 by 1.31$\times$. Code available at https://github.com/AI9Stars/SpecMQuant.
comment: 12 pages, 5 figures
Improving Brain-to-Image Reconstruction via Fine-Grained Text Bridging
Brain-to-Image reconstruction aims to recover visual stimuli perceived by humans from brain activity. However, the reconstructed visual stimuli often missing details and semantic inconsistencies, which may be attributed to insufficient semantic information. To address this issue, we propose an approach named Fine-grained Brain-to-Image reconstruction (FgB2I), which employs fine-grained text as bridge to improve image reconstruction. FgB2I comprises three key stages: detail enhancement, decoding fine-grained text descriptions, and text-bridged brain-to-image reconstruction. In the detail-enhancement stage, we leverage large vision-language models to generate fine-grained captions for visual stimuli and experimentally validate its importance. We propose three reward metrics (object accuracy, text-image semantic similarity, and image-image semantic similarity) to guide the language model in decoding fine-grained text descriptions from fMRI signals. The fine-grained text descriptions can be integrated into existing reconstruction methods to achieve fine-grained Brain-to-Image reconstruction.
comment: CogSci2025
Length-Controlled Margin-Based Preference Optimization without Reference Model
Direct Preference Optimization (DPO) is a widely adopted offline algorithm for preference-based reinforcement learning from human feedback (RLHF), designed to improve training simplicity and stability by redefining reward functions. However, DPO is hindered by several limitations, including length bias, memory inefficiency, and probability degradation. To address these challenges, we propose Length-Controlled Margin-Based Preference Optimization (LMPO), a more efficient and robust alternative. LMPO introduces a uniform reference model as an upper bound for the DPO loss, enabling a more accurate approximation of the original optimization objective. Additionally, an average log-probability optimization strategy is employed to minimize discrepancies between training and inference phases. A key innovation of LMPO lies in its Length-Controlled Margin-Based loss function, integrated within the Bradley-Terry framework. This loss function regulates response length while simultaneously widening the margin between preferred and rejected outputs. By doing so, it mitigates probability degradation for both accepted and discarded responses, addressing a significant limitation of existing methods. We evaluate LMPO against state-of-the-art preference optimization techniques on two open-ended large language models, Mistral and LLaMA3, across six conditional benchmarks. Our experimental results demonstrate that LMPO effectively controls response length, reduces probability degradation, and outperforms existing approaches. The code is available at https://github.com/gengxuli/LMPO.
comment: 18 pages, 3 figures, 6 tables
Neuro-symbolic Training for Reasoning over Spatial Language NAACL 2025
Spatial reasoning based on natural language expressions is essential for everyday human tasks. This reasoning ability is also crucial for machines to interact with their environment in a human-like manner. However, recent research shows that even state-of-the-art language models struggle with spatial reasoning over text, especially when facing nesting spatial expressions. This is attributed to not achieving the right level of abstraction required for generalizability. To alleviate this issue, we propose training language models with neuro-symbolic techniques that exploit the spatial logical rules as constraints, providing additional supervision to improve spatial reasoning and question answering. Training language models to adhere to spatial reasoning rules guides them in making more effective and general abstractions for transferring spatial knowledge to various domains. We evaluate our approach on existing spatial question-answering benchmarks. Our results indicate the effectiveness of our proposed technique in improving language models in complex multi-hop spatial reasoning over text.
comment: 9 pages, 4 figures, NAACL 2025 findings
Multilingual Question Answering in Low-Resource Settings: A Dzongkha-English Benchmark for Foundation Models
In this work, we provide DZEN, a dataset of parallel Dzongkha and English test questions for Bhutanese middle and high school students. The over 5K questions in our collection span a variety of scientific topics and include factual, application, and reasoning-based questions. We use our parallel dataset to test a number of Large Language Models (LLMs) and find a significant performance difference between the models in English and Dzongkha. We also look at different prompting strategies and discover that Chain-of-Thought (CoT) prompting works well for reasoning questions but less well for factual ones. We also find that adding English translations enhances the precision of Dzongkha question responses. Our results point to exciting avenues for further study to improve LLM performance in Dzongkha and, more generally, in low-resource languages. We release the dataset at: https://github.com/kraritt/llm_dzongkha_evaluation.
comment: 24 pages, 20 figures
Small Language Models: Architectures, Techniques, Evaluation, Problems and Future Adaptation
Small Language Models (SLMs) have gained substantial attention due to their ability to execute diverse language tasks successfully while using fewer computer resources. These models are particularly ideal for deployment in limited environments, such as mobile devices, on-device processing, and edge systems. In this study, we present a complete assessment of SLMs, focussing on their design frameworks, training approaches, and techniques for lowering model size and complexity. We offer a novel classification system to organize the optimization approaches applied for SLMs, encompassing strategies like pruning, quantization, and model compression. Furthermore, we assemble SLM's studies of evaluation suite with some existing datasets, establishing a rigorous platform for measuring SLM capabilities. Alongside this, we discuss the important difficulties that remain unresolved in this sector, including trade-offs between efficiency and performance, and we suggest directions for future study. We anticipate this study to serve as a beneficial guide for researchers and practitioners who aim to construct compact, efficient, and high-performing language models.
comment: 9 pages
Position: Scaling LLM Agents Requires Asymptotic Analysis with LLM Primitives ICML 2025
Decomposing hard problems into subproblems often makes them easier and more efficient to solve. With large language models (LLMs) crossing critical reliability thresholds for a growing slate of capabilities, there is an increasing effort to decompose systems into sets of LLM-based agents, each of whom can be delegated sub-tasks. However, this decomposition (even when automated) is often intuitive, e.g., based on how a human might assign roles to members of a human team. How close are these role decompositions to optimal? This position paper argues that asymptotic analysis with LLM primitives is needed to reason about the efficiency of such decomposed systems, and that insights from such analysis will unlock opportunities for scaling them. By treating the LLM forward pass as the atomic unit of computational cost, one can separate out the (often opaque) inner workings of a particular LLM from the inherent efficiency of how a set of LLMs are orchestrated to solve hard problems. In other words, if we want to scale the deployment of LLMs to the limit, instead of anthropomorphizing LLMs, asymptotic analysis with LLM primitives should be used to reason about and develop more powerful decompositions of large problems into LLM agents.
comment: In Proceedings of the 42nd International Conference on Machine Learning (ICML 2025); 13 pages including references
YESciEval: Robust LLM-as-a-Judge for Scientific Question Answering ACL 2025
Large Language Models (LLMs) drive scientific question-answering on modern search engines, yet their evaluation robustness remains underexplored. We introduce YESciEval, an open-source framework that combines fine-grained rubric-based assessment with reinforcement learning to mitigate optimism bias in LLM evaluators. We release multidisciplinary scienceQ&A datasets, including adversarial variants, with evaluation scores from multiple LLMs. Independent of proprietary models and human feedback, our approach enables scalable, cost-free evaluation. By advancing reliable LLM-as-a-judge models, this work supports AI alignment and fosters robust, transparent evaluation essential for scientific inquiry.
comment: 9 pages, 4 figures, Accepted as a Long Paper at the 63rd Annual Meeting of the Association for Computational Linguistics (ACL 2025)
RULEBREAKERS: Challenging LLMs at the Crossroads between Formal Logic and Human-like Reasoning ICML 2025
Formal logic enables computers to reason in natural language by representing sentences in symbolic forms and applying rules to derive conclusions. However, in what our study characterizes as "rulebreaker" scenarios, this method can lead to conclusions that are typically not inferred or accepted by humans given their common sense and factual knowledge. Inspired by works in cognitive science, we create RULEBREAKERS, the first dataset for rigorously evaluating the ability of large language models (LLMs) to recognize and respond to rulebreakers (versus non-rulebreakers) in a human-like manner. Evaluating seven LLMs, we find that most models, including GPT-4o, achieve mediocre accuracy on RULEBREAKERS and exhibit some tendency to over-rigidly apply logical rules unlike what is expected from typical human reasoners. Further analysis suggests that this apparent failure is potentially associated with the models' poor utilization of their world knowledge and their attention distribution patterns. Whilst revealing a limitation of current LLMs, our study also provides a timely counterbalance to a growing body of recent works that propose methods relying on formal logic to improve LLMs' general reasoning capabilities, highlighting their risk of further increasing divergence between LLMs and human-like reasoning.
comment: Preprint. Accepted by ICML 2025
EXIT: Context-Aware Extractive Compression for Enhancing Retrieval-Augmented Generation ACL 2025
We introduce EXIT, an extractive context compression framework that enhances both the effectiveness and efficiency of retrieval-augmented generation (RAG) in question answering (QA). Current RAG systems often struggle when retrieval models fail to rank the most relevant documents, leading to the inclusion of more context at the expense of latency and accuracy. While abstractive compression methods can drastically reduce token counts, their token-by-token generation process significantly increases end-to-end latency. Conversely, existing extractive methods reduce latency but rely on independent, non-adaptive sentence selection, failing to fully utilize contextual information. EXIT addresses these limitations by classifying sentences from retrieved documents - while preserving their contextual dependencies - enabling parallelizable, context-aware extraction that adapts to query complexity and retrieval quality. Our evaluations on both single-hop and multi-hop QA tasks show that EXIT consistently surpasses existing compression methods and even uncompressed baselines in QA accuracy, while also delivering substantial reductions in inference time and token count. By improving both effectiveness and efficiency, EXIT provides a promising direction for developing scalable, high-quality QA solutions in RAG pipelines. Our code is available at https://github.com/ThisIsHwang/EXIT
comment: Findings of ACL 2025
STeCa: Step-level Trajectory Calibration for LLM Agent Learning ACL2025
Large language model (LLM)-based agents have shown promise in tackling complex tasks by interacting dynamically with the environment. Existing work primarily focuses on behavior cloning from expert demonstrations or preference learning through exploratory trajectory sampling. However, these methods often struggle to address long-horizon tasks, where suboptimal actions accumulate step by step, causing agents to deviate from correct task trajectories. To address this, we highlight the importance of timely calibration and the need to automatically construct calibration trajectories for training agents. We propose Step-Level Trajectory Calibration (STeCa), a novel framework for LLM agent learning. Specifically, STeCa identifies suboptimal actions through a step-level reward comparison during exploration. It constructs calibrated trajectories using LLM-driven reflection, enabling agents to learn from improved decision-making processes. We finally leverage these calibrated trajectories with successful trajectories for reinforced training. Extensive experiments demonstrate that STeCa significantly outperforms existing methods. Further analysis highlights that timely calibration enables agents to complete tasks with greater robustness. Our code and data are available at https://github.com/WangHanLinHenry/STeCa.
comment: Accepted by ACL2025 Findings
X-TURING: Towards an Enhanced and Efficient Turing Test for Long-Term Dialogue Agents ACL 2025
The Turing test examines whether AIs exhibit human-like behaviour in natural language conversations. The traditional setting limits each participant to one message at a time and requires constant human participation. This fails to reflect a natural conversational style and hinders the evaluation of dialogue agents based on Large Language Models (LLMs) in complex and prolonged interactions. This paper proposes \textbf{\textsc{X-Turing}}, which enhances the original test with a \textit{burst dialogue} pattern, allowing more dynamic exchanges using consecutive messages. It further reduces human workload by iteratively generating dialogues that simulate the long-term interaction between the agent and a human to compose the majority of the test process. With the \textit{pseudo-dialogue} history, the agent then engages in a shorter dialogue with a real human, which is paired with a human-human conversation on the same topic to be judged using questionnaires. We introduce the \textit{X-Turn Pass-Rate} metric to assess the human likeness of LLMs across varying durations. While LLMs like GPT-4 initially perform well, achieving pass rates of 51.9\% and 38.9\% during 3 turns and 10 turns of dialogues respectively, their performance drops as the dialogue progresses, which underscores the difficulty in maintaining consistency in the long term.
comment: Accepted to ACL 2025 Main Conference
Multi-Domain Explainability of Preferences
Preference mechanisms, such as human preference, LLM-as-a-Judge (LaaJ), and reward models, are central to aligning and evaluating large language models (LLMs). Yet, the underlying concepts that drive these preferences remain poorly understood. In this work, we propose a fully automated method for generating local and global concept-based explanations of preferences across multiple domains. Our method utilizes an LLM to identify concepts that distinguish between chosen and rejected responses, and to represent them with concept-based vectors. To model the relationships between concepts and preferences, we propose a white-box Hierarchical Multi-Domain Regression model that captures both domain-general and domain-specific effects. To evaluate our method, we curate a dataset spanning eight challenging and diverse domains and explain twelve mechanisms. Our method achieves strong preference prediction performance, outperforming baselines while also being explainable. Additionally, we assess explanations in two application-driven settings. First, guiding LLM outputs with concepts from LaaJ explanations yields responses that those judges consistently prefer. Second, prompting LaaJs with concepts explaining humans improves their preference predictions. Together, our work establishes a new paradigm for explainability in the era of LLMs.
LEXam: Benchmarking Legal Reasoning on 340 Law Exams
Long-form legal reasoning remains a key challenge for large language models (LLMs) in spite of recent advances in test-time scaling. We introduce LEXam, a novel benchmark derived from 340 law exams spanning 116 law school courses across a range of subjects and degree levels. The dataset comprises 4,886 law exam questions in English and German, including 2,841 long-form, open-ended questions and 2,045 multiple-choice questions. Besides reference answers, the open questions are also accompanied by explicit guidance outlining the expected legal reasoning approach such as issue spotting, rule recall, or rule application. Our evaluation on both open-ended and multiple-choice questions present significant challenges for current LLMs; in particular, they notably struggle with open questions that require structured, multi-step legal reasoning. Moreover, our results underscore the effectiveness of the dataset in differentiating between models with varying capabilities. Adopting an LLM-as-a-Judge paradigm with rigorous human expert validation, we demonstrate how model-generated reasoning steps can be evaluated consistently and accurately. Our evaluation setup provides a scalable method to assess legal reasoning quality beyond simple accuracy metrics. Project page: https://lexam-benchmark.github.io/
Enhancing Automated Interpretability with Output-Centric Feature Descriptions ACL 2025
Automated interpretability pipelines generate natural language descriptions for the concepts represented by features in large language models (LLMs), such as plants or the first word in a sentence. These descriptions are derived using inputs that activate the feature, which may be a dimension or a direction in the model's representation space. However, identifying activating inputs is costly, and the mechanistic role of a feature in model behavior is determined both by how inputs cause a feature to activate and by how feature activation affects outputs. Using steering evaluations, we reveal that current pipelines provide descriptions that fail to capture the causal effect of the feature on outputs. To fix this, we propose efficient, output-centric methods for automatically generating feature descriptions. These methods use the tokens weighted higher after feature stimulation or the highest weight tokens after applying the vocabulary "unembedding" head directly to the feature. Our output-centric descriptions better capture the causal effect of a feature on model outputs than input-centric descriptions, but combining the two leads to the best performance on both input and output evaluations. Lastly, we show that output-centric descriptions can be used to find inputs that activate features previously thought to be "dead".
comment: Accepted to ACL 2025 Main Conference
Fast Large Language Model Collaborative Decoding via Speculation
Large Language Model (LLM) collaborative decoding techniques improve output quality by combining the outputs of multiple models at each generation step, but they incur high computational costs. In this paper, we introduce Collaborative decoding via Speculation (CoS), a novel framework that accelerates collaborative decoding without compromising performance. Inspired by Speculative Decoding--where a small proposal model generates tokens sequentially, and a larger target model verifies them in parallel, our approach builds on two key insights: (1) the verification distribution can be the combined distribution of both the proposal and target models, and (2) alternating each model as the proposer and verifier can further enhance efficiency. We generalize this method to collaboration among n models and theoretically prove that CoS is never slower than standard collaborative decoding, typically achieving faster speed. Extensive experiments demonstrate CoS is 1.11x-2.23x faster than standard collaborative decoding without compromising generation quality. Our code is available at https://github.com/Kamichanw/CoS/.
Joint Localization and Activation Editing for Low-Resource Fine-Tuning ICML 2025
Parameter-efficient fine-tuning (PEFT) methods, such as LoRA, are commonly used to adapt LLMs. However, the effectiveness of standard PEFT methods is limited in low-resource scenarios with only a few hundred examples. Recent advances in interpretability research have inspired the emergence of activation editing (or steering) techniques, which modify the activations of specific model components. Due to their extremely small parameter counts, these methods show promise for small datasets. However, their performance is highly dependent on identifying the correct modules to edit and often lacks stability across different datasets. In this paper, we propose Joint Localization and Activation Editing (JoLA), a method that jointly learns (1) which heads in the Transformer to edit (2) whether the intervention should be additive, multiplicative, or both and (3) the intervention parameters themselves - the vectors applied as additive offsets or multiplicative scalings to the head output. Through evaluations on three benchmarks spanning commonsense reasoning, natural language understanding, and natural language generation, we demonstrate that JoLA consistently outperforms existing methods. The code for the method is released at https://github.com/wenlai-lavine/jola.
comment: Accepted by ICML 2025 (camera-ready version). The code is released at https://github.com/wenlai-lavine/jola
Towards Logically Sound Natural Language Reasoning with Logic-Enhanced Language Model Agents
Large language models (LLMs) are increasingly explored as general-purpose reasoners, particularly in agentic contexts. However, their outputs remain prone to mathematical and logical errors. This is especially challenging in open-ended tasks, where unstructured outputs lack explicit ground truth and may contain subtle inconsistencies. To address this issue, we propose Logic-Enhanced Language Model Agents (LELMA), a framework that integrates LLMs with formal logic to enable validation and refinement of natural language reasoning. LELMA comprises three components: an LLM-Reasoner, an LLM-Translator, and a Solver, and employs autoformalization to translate reasoning into logic representations, which are then used to assess logical validity. Using game-theoretic scenarios such as the Prisoner's Dilemma as testbeds, we highlight the limitations of both less capable (Gemini 1.0 Pro) and advanced (GPT-4o) models in generating logically sound reasoning. LELMA achieves high accuracy in error detection and improves reasoning correctness via self-refinement, particularly in GPT-4o. The study also highlights challenges in autoformalization accuracy and in evaluation of inherently ambiguous open-ended reasoning tasks.
comment: Source code: https://github.com/dicelab-rhul/LELMA
Hijacking Large Language Models via Adversarial In-Context Learning
In-context learning (ICL) has emerged as a powerful paradigm leveraging LLMs for specific downstream tasks by utilizing labeled examples as demonstrations (demos) in the preconditioned prompts. Despite its promising performance, crafted adversarial attacks pose a notable threat to the robustness of LLMs. Existing attacks are either easy to detect, require a trigger in user input, or lack specificity towards ICL. To address these issues, this work introduces a novel transferable prompt injection attack against ICL, aiming to hijack LLMs to generate the target output or elicit harmful responses. In our threat model, the hacker acts as a model publisher who leverages a gradient-based prompt search method to learn and append imperceptible adversarial suffixes to the in-context demos via prompt injection. We also propose effective defense strategies using a few shots of clean demos, enhancing the robustness of LLMs during ICL. Extensive experimental results across various classification and jailbreak tasks demonstrate the effectiveness of the proposed attack and defense strategies. This work highlights the significant security vulnerabilities of LLMs during ICL and underscores the need for further in-depth studies.
Learning to Poison Large Language Models for Downstream Manipulation
The advent of Large Language Models (LLMs) has marked significant achievements in language processing and reasoning capabilities. Despite their advancements, LLMs face vulnerabilities to data poisoning attacks, where the adversary inserts backdoor triggers into training data to manipulate outputs. This work further identifies additional security risks in LLMs by designing a new data poisoning attack tailored to exploit the supervised fine-tuning (SFT) process. We propose a novel gradient-guided backdoor trigger learning (GBTL) algorithm to identify adversarial triggers efficiently, ensuring an evasion of detection by conventional defenses while maintaining content integrity. Through experimental validation across various language model tasks, including sentiment analysis, domain generation, and question answering, our poisoning strategy demonstrates a high success rate in compromising various LLMs' outputs. We further propose two defense strategies against data poisoning attacks, including in-context learning (ICL) and continuous learning (CL), which effectively rectify the behavior of LLMs and significantly reduce the decline in performance. Our work highlights the significant security risks present during SFT of LLMs and the necessity of safeguarding LLMs against data poisoning attacks.
Understanding In-Context Machine Translation for Low-Resource Languages: A Case Study on Manchu ACL 2025
In-context machine translation (MT) with large language models (LLMs) is a promising approach for low-resource MT, as it can readily take advantage of linguistic resources such as grammar books and dictionaries. Such resources are usually selectively integrated into the prompt so that LLMs can directly perform translation without any specific training, via their in-context learning capability (ICL). However, the relative importance of each type of resource, e.g., dictionary, grammar book, and retrieved parallel examples, is not entirely clear. To address this gap, this study systematically investigates how each resource and its quality affect the translation performance, with the Manchu language as our case study. To remove any prior knowledge of Manchu encoded in the LLM parameters and single out the effect of ICL, we also experiment with an enciphered version of Manchu texts. Our results indicate that high-quality dictionaries and good parallel examples are very helpful, while grammars hardly help. In a follow-up study, we showcase a promising application of in-context MT: parallel data augmentation as a way to bootstrap a conventional MT model. When monolingual data abound, generating synthetic parallel data through in-context MT offers a pathway to mitigate data scarcity and build effective and efficient low-resource neural MT systems.
comment: ACL 2025
Firm or Fickle? Evaluating Large Language Models Consistency in Sequential Interactions
Large Language Models (LLMs) have shown remarkable capabilities across various tasks, but their deployment in high-stake domains requires consistent performance across multiple interaction rounds. This paper introduces a comprehensive framework for evaluating and improving LLM response consistency, making three key contributions. First, we propose a novel Position-Weighted Consistency (PWC) score that captures both the importance of early-stage stability and recovery patterns in multi-turn interactions. Second, we present a carefully curated benchmark dataset spanning diverse domains and difficulty levels, specifically designed to evaluate LLM consistency under various challenging follow-up scenarios. Third, we introduce Confidence-Aware Response Generation (CARG), a framework that significantly improves response stability by incorporating model confidence signals into the generation process. Empirical results demonstrate that CARG significantly improves response stability without sacrificing accuracy, underscoring its potential for reliable LLM deployment in critical applications.
comment: 8 pages, 5 figures
BenchmarkCards: Large Language Model and Risk Reporting
Large language models (LLMs) are powerful tools capable of handling diverse tasks. Comparing and selecting appropriate LLMs for specific tasks requires systematic evaluation methods, as models exhibit varying capabilities across different domains. However, finding suitable benchmarks is difficult given the many available options. This complexity not only increases the risk of benchmark misuse and misinterpretation but also demands substantial effort from LLM users, seeking the most suitable benchmarks for their specific needs. To address these issues, we introduce \texttt{BenchmarkCards}, an intuitive and validated documentation framework that standardizes critical benchmark attributes such as objectives, methodologies, data sources, and limitations. Through user studies involving benchmark creators and users, we show that \texttt{BenchmarkCards} can simplify benchmark selection and enhance transparency, facilitating informed decision-making in evaluating LLMs. Data & Code: https://github.com/SokolAnn/BenchmarkCards
Agentic Knowledgeable Self-awareness ACL 2025
Large Language Models (LLMs) have achieved considerable performance across various agentic planning tasks. However, traditional agent planning approaches adopt a "flood irrigation" methodology that indiscriminately injects gold trajectories, external feedback, and domain knowledge into agent models. This practice overlooks the fundamental human cognitive principle of situational self-awareness during decision-making-the ability to dynamically assess situational demands and strategically employ resources during decision-making. We propose agentic knowledgeable self-awareness to address this gap, a novel paradigm enabling LLM-based agents to autonomously regulate knowledge utilization. Specifically, we propose KnowSelf, a data-centric approach that applies agents with knowledgeable self-awareness like humans. Concretely, we devise a heuristic situation judgement criterion to mark special tokens on the agent's self-explored trajectories for collecting training data. Through a two-stage training process, the agent model can switch between different situations by generating specific special tokens, achieving optimal planning effects with minimal costs. Our experiments demonstrate that KnowSelf can outperform various strong baselines on different tasks and models with minimal use of external knowledge. Code is available at https://github.com/zjunlp/KnowSelf.
comment: ACL 2025
Divide and Conquer: A Hybrid Strategy Defeats Multimodal Large Language Models
Large language models (LLMs) are widely applied in various fields of society due to their powerful reasoning, understanding, and generation capabilities. However, the security issues associated with these models are becoming increasingly severe. Jailbreaking attacks, as an important method for detecting vulnerabilities in LLMs, have been explored by researchers who attempt to induce these models to generate harmful content through various attack methods. Nevertheless, existing jailbreaking methods face numerous limitations, such as excessive query counts, limited coverage of jailbreak modalities, low attack success rates, and simplistic evaluation methods. To overcome these constraints, this paper proposes a multimodal jailbreaking method: JMLLM. This method integrates multiple strategies to perform comprehensive jailbreak attacks across text, visual, and auditory modalities. Additionally, we contribute a new and comprehensive dataset for multimodal jailbreaking research: TriJail, which includes jailbreak prompts for all three modalities. Experiments on the TriJail dataset and the benchmark dataset AdvBench, conducted on 13 popular LLMs, demonstrate advanced attack success rates and significant reduction in time overhead.
GSQ-Tuning: Group-Shared Exponents Integer in Fully Quantized Training for LLMs On-Device Fine-tuning ACL 2025
Large Language Models (LLMs) fine-tuning technologies have achieved remarkable results. However, traditional LLM fine-tuning approaches face significant challenges: they require large Floating Point (FP) computation, raising privacy concerns when handling sensitive data, and are impractical for resource-constrained edge devices. While Parameter-Efficient Fine-Tuning (PEFT) techniques reduce trainable parameters, their reliance on floating-point arithmetic creates fundamental incompatibilities with edge hardware. In this work, we introduce a novel framework for on-device LLM fine-tuning that eliminates the need for floating-point operations in both inference and training, named GSQ-Tuning. At its core is the Group-Shared Exponents Integer format, which efficiently represents model parameters in integer format using shared exponents among parameter groups. When combined with LoRA-like adapters, this enables fully integer-based fine-tuning that is both memory and compute efficient. We demonstrate that our approach achieves accuracy comparable to BF16-based fine-tuning while significantly reducing 1.85x memory usage. Moreover, compared to FP8, our method can reduce 5x power consumption and 11x chip area with same performance, making large-scale model adaptation feasible on edge devices.
comment: Accepted by Findings of ACL 2025
CodePMP: Scalable Preference Model Pretraining for Large Language Model Reasoning
Large language models (LLMs) have made significant progress in natural language understanding and generation, driven by scalable pretraining and advanced finetuning. However, enhancing reasoning abilities in LLMs, particularly via reinforcement learning from human feedback (RLHF), remains challenging due to the scarcity of high-quality preference data, which is labor-intensive to annotate and crucial for reward model (RM) finetuning. To alleviate this issue, we introduce CodePMP, a scalable preference model pretraining (PMP) pipeline that utilizes a large corpus of synthesized code-preference pairs from publicly available high-quality source code. CodePMP improves RM finetuning efficiency by pretraining preference models on large-scale synthesized code-preference pairs. We evaluate CodePMP on mathematical reasoning tasks (GSM8K, MATH) and logical reasoning tasks (ReClor, LogiQA2.0), consistently showing significant improvements in reasoning performance of LLMs and highlighting the importance of scalable preference model pretraining for efficient reward modeling.
comment: work in progress
DeepSeek vs. o3-mini: How Well can Reasoning LLMs Evaluate MT and Summarization?
Reasoning-enabled large language models (LLMs) excel in logical tasks, yet their utility for evaluating natural language generation remains unexplored. This study systematically compares reasoning LLMs with non-reasoning counterparts across machine translation and text summarization evaluation tasks. We evaluate eight models spanning state-of-the-art reasoning models (DeepSeek-R1, OpenAI o3), their distilled variants (8B-70B parameters), and equivalent non-reasoning LLMs. Experiments on WMT23 and SummEval benchmarks reveal architecture and task-dependent benefits: OpenAI o3-mini models show improved performance with increased reasoning on MT, while DeepSeek-R1 and generally underperforms compared to its non-reasoning variant except in summarization consistency evaluation. Correlation analysis demonstrates that reasoning token usage correlates with evaluation quality only in specific models, while almost all models generally allocate more reasoning tokens when identifying more quality issues. Distillation maintains reasonable performance up to 32B parameter models but degrades substantially at 8B scale. This work provides the first assessment of reasoning LLMs for NLG evaluation and comparison to non-reasoning models. We share our code to facilitate further research: https://github.com/NL2G/reasoning-eval.
LLM as Effective Streaming Processor: Bridging Streaming-Batch Mismatches with Group Position Encoding ACL 2025
Large Language Models (LLMs) are primarily designed for batch processing. Existing methods for adapting LLMs to streaming rely either on expensive re-encoding or specialized architectures with limited scalability. This work identifies three key mismatches in adapting batch-oriented LLMs to streaming: (1) input-attention, (2) output-attention, and (3) position-ID mismatches. While it is commonly assumed that the latter two mismatches require frequent re-encoding, our analysis reveals that only the input-attention mismatch significantly impacts performance, indicating re-encoding outputs is largely unnecessary. To better understand this discrepancy with the common assumption, we provide the first comprehensive analysis of the impact of position encoding on LLMs in streaming, showing that preserving relative positions within source and target contexts is more critical than maintaining absolute order. Motivated by the above analysis, we introduce a group position encoding paradigm built on batch architectures to enhance consistency between streaming and batch modes. Extensive experiments on cross-lingual and cross-modal tasks demonstrate that our method outperforms existing approaches. Our method requires no architectural modifications, exhibits strong generalization in both streaming and batch modes. The code is available at repository https://github.com/EIT-NLP/StreamingLLM.
comment: ACL 2025 Findings
SPRI: Aligning Large Language Models with Context-Situated Principles ICML 2025
Aligning Large Language Models to integrate and reflect human values, especially for tasks that demand intricate human oversight, is arduous since it is resource-intensive and time-consuming to depend on human expertise for context-specific guidance. Prior work has utilized predefined sets of rules or principles to steer the behavior of models (Bai et al., 2022; Sun et al., 2023). However, these principles tend to be generic, making it challenging to adapt them to each individual input query or context. In this work, we present Situated-PRInciples (SPRI), a framework requiring minimal or no human effort that is designed to automatically generate guiding principles in real-time for each input query and utilize them to align each response. We evaluate SPRI on three tasks, and show that 1) SPRI can derive principles in a complex domain-specific task that leads to on-par performance as expert-crafted ones; 2) SPRI-generated principles lead to instance-specific rubrics that outperform prior LLM-as-a-judge frameworks; 3) using SPRI to generate synthetic SFT data leads to substantial improvement on truthfulness. We release our code and model generations at https://github.com/honglizhan/SPRI-public.
comment: Forty-Second International Conference on Machine Learning (ICML 2025) Camera-Ready Version
DynaCode: A Dynamic Complexity-Aware Code Benchmark for Evaluating Large Language Models in Code Generation ACL 2025
The rapid advancement of large language models (LLMs) has significantly improved their performance in code generation tasks. However, existing code benchmarks remain static, consisting of fixed datasets with predefined problems. This makes them vulnerable to memorization during training, where LLMs recall specific test cases instead of generalizing to new problems, leading to data contamination and unreliable evaluation results. To address these issues, we introduce DynaCode, a dynamic, complexity-aware benchmark that overcomes the limitations of static datasets. DynaCode evaluates LLMs systematically using a complexity-aware metric, incorporating both code complexity and call-graph structures. DynaCode achieves large-scale diversity, generating up to 189 million unique nested code problems across four distinct levels of code complexity, referred to as units, and 16 types of call graphs. Results on 12 latest LLMs show an average performance drop of 16.8% to 45.7% compared to MBPP+, a static code generation benchmark, with performance progressively decreasing as complexity increases. This demonstrates DynaCode's ability to effectively differentiate LLMs. Additionally, by leveraging call graphs, we gain insights into LLM behavior, particularly their preference for handling subfunction interactions within nested code. Our benchmark and evaluation code are available at https://github.com/HWH-2000/DynaCode.
comment: 18 pages, 13 figures. Accepted to the ACL 2025 Findings
Sample-Efficient Human Evaluation of Large Language Models via Maximum Discrepancy Competition ACL 2025
Reliable evaluation of large language models (LLMs) is impeded by two key challenges: objective metrics often fail to reflect human perception of natural language, and exhaustive human labeling is prohibitively expensive. Here, we propose a sample-efficient human evaluation method for LLMs based on the principle of MAximum Discrepancy (MAD) Competition. Our method automatically and adaptively selects a compact set of input instructions that maximize semantic discrepancy between pairs of LLM responses. Human evaluators then perform three-alternative forced choices on these paired responses, which are aggregated into a global ranking using Elo rating. We apply our approach to compare eight widely used LLMs across four tasks: scientific knowledge understanding, mathematical reasoning, creative and functional writing, and code generation and explanation. Experimental results show that our sample-efficient evaluation method recovers "gold-standard" model rankings with a handful of MAD-selected instructions, reveals respective strengths and weaknesses of each LLM, and offers nuanced insights to guide future LLM development. Code is available at https://github.com/weiji-Feng/MAD-Eval .
comment: 35 pages, 6 figures, Accepted by ACL 2025
On-Device Collaborative Language Modeling via a Mixture of Generalists and Specialists
On-device LLMs have gained increasing attention for their ability to enhance privacy and provide a personalized user experience. To facilitate private learning with scarce data, Federated Learning has become a standard approach. However, it faces challenges such as computational resource heterogeneity and data heterogeneity among end users. We propose CoMiGS ($\textbf{Co}$llaborative learning with a $\textbf{Mi}$xture of $\textbf{G}$eneralists and $\textbf{S}$pecialists), the first approach to address both challenges. A key innovation of our method is the bi-level optimization formulation of the Mixture-of-Experts learning objective, where the router is optimized using a separate validation set to ensure alignment with the target distribution. We solve our objective with alternating minimization, for which we provide a theoretical analysis. Our method shares generalist experts across users while localizing a varying number of specialist experts, thereby adapting to users' computational resources and preserving privacy. Through extensive experiments, we show CoMiGS effectively balances general and personalized knowledge for each token generation. We demonstrate that CoMiGS remains robust against overfitting-due to the generalists' regularizing effect-while adapting to local data through specialist expertise. We open source our codebase for collaborative LLMs.
comment: Camera-ready version
LLMs Can Achieve High-quality Simultaneous Machine Translation as Efficiently as Offline ACL 2025
When the complete source sentence is provided, Large Language Models (LLMs) perform excellently in offline machine translation even with a simple prompt "Translate the following sentence from [src lang] into [tgt lang]:". However, in many real scenarios, the source tokens arrive in a streaming manner and simultaneous machine translation (SiMT) is required, then the efficiency and performance of decoder-only LLMs are significantly limited by their auto-regressive nature. To enable LLMs to achieve high-quality SiMT as efficiently as offline translation, we propose a novel paradigm that includes constructing supervised fine-tuning (SFT) data for SiMT, along with new training and inference strategies. To replicate the token input/output stream in SiMT, the source and target tokens are rearranged into an interleaved sequence, separated by special tokens according to varying latency requirements. This enables powerful LLMs to learn read and write operations adaptively, based on varying latency prompts, while still maintaining efficient auto-regressive decoding. Experimental results show that, even with limited SFT data, our approach achieves state-of-the-art performance across various SiMT benchmarks, and preserves the original abilities of offline translation. Moreover, our approach generalizes well to document-level SiMT setting without requiring specific fine-tuning, even beyond the offline translation model.
comment: Camera ready version for ACL 2025 Findings
EFIM: Efficient Serving of LLMs for Infilling Tasks with Improved KV Cache Reuse
Large language models (LLMs) are often used for infilling tasks, which involve predicting or generating missing information in a given text. These tasks typically require multiple interactions with similar context. To reduce the computation of repeated historical tokens, cross-request key-value (KV) cache reuse, a technique that stores and reuses intermediate computations, has become a crucial method in multi-round interactive services. However, in infilling tasks, the KV cache reuse is often hindered by the structure of the prompt format, which typically consists of a prefix and suffix relative to the insertion point. Specifically, the KV cache of the prefix or suffix part is frequently invalidated as the other part (suffix or prefix) is incrementally generated. To address the issue, we propose EFIM, a transformed prompt format of FIM to unleash the performance potential of KV cache reuse. Although the transformed prompt can solve the inefficiency, it exposes subtoken generation problems in current LLMs, where they have difficulty generating partial words accurately. Therefore, we introduce a fragment tokenization training method which splits text into multiple fragments before tokenization during data processing. Experiments on two representative LLMs show that LLM serving with EFIM can lower the latency by 52% and improve the throughput by 98% while maintaining the original infilling capability. EFIM's source code is publicly available at https://github.com/gty111/EFIM.
comment: 31st International European Conference on Parallel and Distributed Computing (Euro-Par 2025 Oral)
VietASR: Achieving Industry-level Vietnamese ASR with 50-hour labeled data and Large-Scale Speech Pretraining
Automatic speech recognition (ASR) has made remarkable progress but heavily relies on large-scale labeled data, which is scarce for low-resource languages like Vietnamese. While existing systems such as Whisper, USM, and MMS achieve promising performance, their efficacy remains inadequate in terms of training costs, latency, and accessibility. To address these issues, we propose VietASR, a novel ASR training pipeline that leverages vast amounts of unlabeled data and a small set of labeled data. Through multi-iteration ASR-biased self-supervised learning on a large-scale unlabeled dataset, VietASR offers a cost-effective and practical solution for enhancing ASR performance. Experiments demonstrate that pre-training on 70,000-hour unlabeled data and fine-tuning on merely 50-hour labeled data yield a lightweight but powerful ASR model. It outperforms Whisper Large-v3 and commercial ASR systems on real-world data. Our code and models will be open-sourced to facilitate research in low-resource ASR.
Re-ranking Using Large Language Models for Mitigating Exposure to Harmful Content on Social Media Platforms ACL 2025
Social media platforms utilize Machine Learning (ML) and Artificial Intelligence (AI) powered recommendation algorithms to maximize user engagement, which can result in inadvertent exposure to harmful content. Current moderation efforts, reliant on classifiers trained with extensive human-annotated data, struggle with scalability and adapting to new forms of harm. To address these challenges, we propose a novel re-ranking approach using Large Language Models (LLMs) in zero-shot and few-shot settings. Our method dynamically assesses and re-ranks content sequences, effectively mitigating harmful content exposure without requiring extensive labeled data. Alongside traditional ranking metrics, we also introduce two new metrics to evaluate the effectiveness of re-ranking in reducing exposure to harmful content. Through experiments on three datasets, three models and across three configurations, we demonstrate that our LLM-based approach significantly outperforms existing proprietary moderation approaches, offering a scalable and adaptable solution for harm mitigation.
comment: Accepted to ACL 2025 Main Conference
DREAM: Drafting with Refined Target Features and Entropy-Adaptive Cross-Attention Fusion for Multimodal Speculative Decoding
Speculative decoding (SD) has emerged as a powerful method for accelerating autoregressive generation in large language models (LLMs), yet its integration into vision-language models (VLMs) remains underexplored. We introduce DREAM, a novel speculative decoding framework tailored for VLMs that combines three key innovations: (1) a cross-attention-based mechanism to inject intermediate features from the target model into the draft model for improved alignment, (2) adaptive intermediate feature selection based on attention entropy to guide efficient draft model training, and (3) visual token compression to reduce draft model latency. DREAM enables efficient, accurate, and parallel multimodal decoding with significant throughput improvement. Experiments across a diverse set of recent popular VLMs, including LLaVA, Pixtral, SmolVLM and Gemma3, demonstrate up to 3.6x speedup over conventional decoding and significantly outperform prior SD baselines in both inference throughput and speculative draft acceptance length across a broad range of multimodal benchmarks. The code is publicly available at: https://github.com/SAI-Lab-NYU/DREAM.git
ReflectionCoder: Learning from Reflection Sequence for Enhanced One-off Code Generation ACL 2025
Code generation plays a crucial role in various tasks, such as code auto-completion and mathematical reasoning. Previous work has proposed numerous methods to enhance code generation performance, including integrating feedback from the compiler. Inspired by this, we present ReflectionCoder, a novel approach that effectively leverages reflection sequences constructed by integrating compiler feedback to improve one-off code generation performance. Furthermore, we propose reflection self-distillation and dynamically masked distillation to effectively utilize these reflection sequences. Extensive experiments on three benchmarks, i.e., HumanEval (+), MBPP (+), and MultiPL-E, demonstrate that models fine-tuned with our method achieve state-of-the-art performance. Beyond the code domain, we believe this approach can benefit other domains that focus on final results and require long reasoning paths. Code and data are available at https://github.com/SenseLLM/ReflectionCoder.
comment: Accepted to ACL 2025 (main conference)
GWQ: Gradient-Aware Weight Quantization for Large Language Models
Large language models (LLMs) show impressive performance in solving complex language tasks. However, its large number of parameters presents significant challenges for the deployment. So, compressing LLMs to low bits can enable to deploy on resource-constrained devices. To address this problem, we propose gradient-aware weight quantization (GWQ), the first quantization approach for low-bit weight quantization that leverages gradients to localize outliers, requiring only a minimal amount of calibration data for outlier detection. GWQ retains the top 1\% outliers preferentially at FP16 precision, while the remaining non-outlier weights are stored in a low-bit. We widely evaluate GWQ on different task include language modeling, grounding detection, massive multitask language understanding and vision-language question and answering. Results show that models quantified by GWQ performs better than other quantization method. During quantization process, GWQ only need one calibration set to realize effective quant. Also, GWQ achieves 1.2x inference speedup in comparison to the original model and effectively reduces the inference memory.
Graph of Records: Boosting Retrieval Augmented Generation for Long-context Summarization with Graphs ACL 2025
Retrieval-augmented generation (RAG) has revitalized Large Language Models (LLMs) by injecting non-parametric factual knowledge. Compared with long-context LLMs, RAG is considered an effective summarization tool in a more concise and lightweight manner, which can interact with LLMs multiple times using diverse queries to get comprehensive responses. However, the LLM-generated historical responses, which contain potentially insightful information, are largely neglected and discarded by existing approaches, leading to suboptimal results. In this paper, we propose $\textit{graph of records}$ ($\textbf{GoR}$), which leverages historical responses generated by LLMs to enhance RAG for long-context global summarization. Inspired by the $\textit{retrieve-then-generate}$ paradigm of RAG, we construct a graph by establishing an edge between the retrieved text chunks and the corresponding LLM-generated response. To further uncover the intricate correlations between them, GoR features a $\textit{graph neural network}$ and an elaborately designed $\textit{BERTScore}$-based objective for self-supervised model training, enabling seamless supervision signal backpropagation between reference summaries and node embeddings. We comprehensively compare GoR with 12 baselines across four long-context summarization datasets, and the results indicate that our proposed method reaches the best performance ($\textit{e.g.}$, 15%, 8%, and 19% improvement over retrievers w.r.t. Rouge-L, Rouge-1, and Rouge-2 on the WCEP dataset). Extensive experiments further demonstrate the effectiveness of GoR.
comment: Accepted by ACL 2025 Main. The code is available at https://github.com/ulab-uiuc/GoR
Are Generative Models Underconfident? Better Quality Estimation with Boosted Model Probability
Quality Estimation (QE) is estimating quality of the model output during inference when the ground truth is not available. Deriving output quality from the models' output probability is the most trivial and low-effort way. However, we show that the output probability of text-generation models can appear underconfident. At each output step, there can be multiple correct options, making the probability distribution spread out more. Thus, lower probability does not necessarily mean lower output quality. Due to this observation, we propose a QE approach called BoostedProb, which boosts the model's confidence in cases where there are multiple viable output options. With no increase in complexity, BoostedProb is notably better than raw model probability in different settings, achieving on average +0.194 improvement in Pearson correlation to ground-truth quality. It also comes close to or outperforms more costly approaches like supervised or ensemble-based QE in certain settings.
mOSCAR: A Large-scale Multilingual and Multimodal Document-level Corpus ACL 2025
Multimodal Large Language Models (mLLMs) are trained on a large amount of text-image data. While most mLLMs are trained on caption-like data only, Alayrac et al. (2022) showed that additionally training them on interleaved sequences of text and images can lead to the emergence of in-context learning capabilities. However, the dataset they used, M3W, is not public and is only in English. There have been attempts to reproduce their results but the released datasets are English-only. In contrast, current multilingual and multimodal datasets are either composed of caption-like only or medium-scale or fully private data. This limits mLLM research for the 7,000 other languages spoken in the world. We therefore introduce mOSCAR, to the best of our knowledge the first large-scale multilingual and multimodal document corpus crawled from the web. It covers 163 languages, 303M documents, 200B tokens and 1.15B images. We carefully conduct a set of filtering and evaluation steps to make sure mOSCAR is sufficiently safe, diverse and of good quality. We additionally train two types of multilingual model to prove the benefits of mOSCAR: (1) a model trained on a subset of mOSCAR and captioning data and (2) a model trained on captioning data only. The model additionally trained on mOSCAR shows a strong boost in few-shot learning performance across various multilingual image-text tasks and benchmarks, confirming previous findings for English-only mLLMs. The dataset is released under the Creative Commons CC BY 4.0 license and can be accessed here: https://huggingface.co/datasets/oscar-corpus/mOSCAR
comment: ACL 2025 (Findings)
DReSD: Dense Retrieval for Speculative Decoding ACL
Speculative decoding (SD) accelerates Large Language Model (LLM) generation by using an efficient draft model to propose the next few tokens, which are verified by the LLM in a single forward call, reducing latency while preserving its outputs. We focus on retrieval-based SD where the draft model retrieves the next tokens from a non-parametric datastore. Sparse retrieval (REST), which operates on the surface form of strings, is currently the dominant paradigm due to its simplicity and scalability. However, its effectiveness is limited due to the usage of short contexts and exact string matching. Instead, we introduce Dense Retrieval for Speculative Decoding (DReSD), a novel framework that uses approximate nearest neighbour search with contextualised token embeddings to retrieve the most semantically relevant token sequences for SD. Extensive experiments show that DReSD achieves (on average) 87% higher acceptance rates, 65% longer accepted tokens and 19% faster generation speeds compared to sparse retrieval (REST).
comment: ACL (Findings) 2025
Dataset Featurization: Uncovering Natural Language Features through Unsupervised Data Reconstruction
Interpreting data is central to modern research. Large language models (LLMs) show promise in providing such natural language interpretations of data, yet simple feature extraction methods such as prompting often fail to produce accurate and versatile descriptions for diverse datasets and lack control over granularity and scale. To address these limitations, we propose a domain-agnostic method for dataset featurization that provides precise control over the number of features extracted while maintaining compact and descriptive representations comparable to human labeling. Our method optimizes the selection of informative binary features by evaluating the ability of an LLM to reconstruct the original data using those features. We demonstrate its effectiveness in dataset modeling tasks and through two case studies: (1) Constructing a feature representation of jailbreak tactics that compactly captures both the effectiveness and diversity of a larger set of human-crafted attacks; and (2) automating the discovery of features that align with human preferences, achieving accuracy and robustness comparable to human-crafted features. Moreover, we show that the pipeline scales effectively, improving as additional features are sampled, making it suitable for large and diverse datasets.
Multi-Modal Framing Analysis of News
Automated frame analysis of political communication is a popular task in computational social science that is used to study how authors select aspects of a topic to frame its reception. So far, such studies have been narrow, in that they use a fixed set of pre-defined frames and focus only on the text, ignoring the visual contexts in which those texts appear. Especially for framing in the news, this leaves out valuable information about editorial choices, which include not just the written article but also accompanying photographs. To overcome such limitations, we present a method for conducting multi-modal, multi-label framing analysis at scale using large (vision-) language models. Grounding our work in framing theory, we extract latent meaning embedded in images used to convey a certain point and contrast that to the text by comparing the respective frames used. We also identify highly partisan framing of topics with issue-specific frame analysis found in prior qualitative work. We demonstrate a method for doing scalable integrative framing analysis of both text and image in news, providing a more complete picture for understanding media bias.
Uncertainty Quantification for LLMs through Minimum Bayes Risk: Bridging Confidence and Consistency
Uncertainty quantification (UQ) methods for Large Language Models (LLMs) encompass a variety of approaches, with two major types being particularly prominent: information-based, which focus on model confidence expressed as token probabilities, and consistency-based, which assess the semantic relationship between multiple outputs generated using repeated sampling. Several recent methods have combined these two approaches to boost UQ performance. However, they sometimes fail to outperform much simpler baseline methods. Our work discusses the fundamental approach to constructing uncertainty measures that directly links uncertainty with the minimum Bayes risks achieved by LLM decoding. Building on these findings, we propose a novel approach to integrating model confidence with output consistency, resulting in a family of efficient and robust UQ methods. Our investigation reveals distinctive characteristics of LLMs as probabilistic models, which help to explain why these UQ methods underperform in certain tasks. Based on these findings, we propose a new way of synthesizing model confidence and output consistency, leading to a family of efficient and robust UQ methods. We evaluate our approach across various tasks such as question answering, abstractive summarization, and machine translation, demonstrating sizable improvements over state-of-the-art UQ approaches.
BioVL-QR: Egocentric Biochemical Vision-and-Language Dataset Using Micro QR Codes ICIP2025
This paper introduces BioVL-QR, a biochemical vision-and-language dataset comprising 23 egocentric experiment videos, corresponding protocols, and vision-and-language alignments. A major challenge in understanding biochemical videos is detecting equipment, reagents, and containers because of the cluttered environment and indistinguishable objects. Previous studies assumed manual object annotation, which is costly and time-consuming. To address the issue, we focus on Micro QR Codes. However, detecting objects using only Micro QR Codes is still difficult due to blur and occlusion caused by object manipulation. To overcome this, we propose an object labeling method combining a Micro QR Code detector with an off-the-shelf hand object detector. As an application of the method and BioVL-QR, we tackled the task of localizing the procedural steps in an instructional video. The experimental results show that using Micro QR Codes and our method improves biochemical video understanding. Data and code are available through https://nishi10mo.github.io/BioVL-QR/
comment: ICIP2025
Token Pruning in Multimodal Large Language Models: Are We Solving the Right Problem? ACL 2025
Multimodal large language models (MLLMs) have shown remarkable performance for cross-modal understanding and generation, yet still suffer from severe inference costs. Recently, abundant works have been proposed to solve this problem with token pruning, which identifies the redundant tokens in MLLMs and then prunes them to reduce the computation and KV storage costs, leading to significant acceleration without training. While these methods claim efficiency gains, critical questions about their fundamental design and evaluation remain unanswered: Why do many existing approaches underperform even compared to naive random token selection? Are attention-based scoring sufficient for reliably identifying redundant tokens? Is language information really helpful during token pruning? What makes a good trade-off between token importance and duplication? Are current evaluation protocols comprehensive and unbiased? The ignorance of previous research on these problems hinders the long-term development of token pruning. In this paper, we answer these questions one by one, providing insights into the design of future token pruning methods.
comment: ACL 2025 Findings
A Reality Check on Context Utilisation for Retrieval-Augmented Generation ACL 2025
Retrieval-augmented generation (RAG) helps address the limitations of parametric knowledge embedded within a language model (LM). In real world settings, retrieved information can vary in complexity, yet most investigations of LM utilisation of context has been limited to synthetic text. We introduce DRUID (Dataset of Retrieved Unreliable, Insufficient and Difficult-to-understand contexts) with real-world queries and contexts manually annotated for stance. The dataset is based on the prototypical task of automated claim verification, for which automated retrieval of real-world evidence is crucial. We compare DRUID to synthetic datasets (CounterFact, ConflictQA) and find that artificial datasets often fail to represent the complexity and diversity of realistically retrieved context. We show that synthetic datasets exaggerate context characteristics rare in real retrieved data, which leads to inflated context utilisation results, as measured by our novel ACU score. Moreover, while previous work has mainly focused on singleton context characteristics to explain context utilisation, correlations between singleton context properties and ACU on DRUID are surprisingly small compared to other properties related to context source. Overall, our work underscores the need for real-world aligned context utilisation studies to represent and improve performance in real-world RAG settings.
comment: Accepted at ACL 2025
Structure-Enhanced Protein Instruction Tuning: Towards General-Purpose Protein Understanding with LLMs KDD2025
Proteins, as essential biomolecules, play a central role in biological processes, including metabolic reactions and DNA replication. Accurate prediction of their properties and functions is crucial in biological applications. Recent development of protein language models (pLMs) with supervised fine tuning provides a promising solution to this problem. However, the fine-tuned model is tailored for particular downstream prediction task, and achieving general-purpose protein understanding remains a challenge. In this paper, we introduce Structure-Enhanced Protein Instruction Tuning (SEPIT) framework to bridge this gap. Our approach incorporates a novel structure-aware module into pLMs to enrich their structural knowledge, and subsequently integrates these enhanced pLMs with large language models (LLMs) to advance protein understanding. In this framework, we propose a novel instruction tuning pipeline. First, we warm up the enhanced pLMs using contrastive learning and structure denoising. Then, caption-based instructions are used to establish a basic understanding of proteins. Finally, we refine this understanding by employing a mixture of experts (MoEs) to capture more complex properties and functional information with the same number of activated parameters. Moreover, we construct the largest and most comprehensive protein instruction dataset to date, which allows us to train and evaluate the general-purpose protein understanding model. Extensive experiments on both open-ended generation and closed-set answer tasks demonstrate the superior performance of SEPIT over both closed-source general LLMs and open-source LLMs trained with protein knowledge.
comment: Accepted by KDD2025
Tensor Product Attention Is All You Need
Scaling language models to handle longer input sequences typically necessitates large key-value (KV) caches, resulting in substantial memory overhead during inference. In this paper, we propose Tensor Product Attention (TPA), a novel attention mechanism that uses tensor decompositions to represent queries, keys, and values compactly, substantially shrinking the KV cache size at inference time. By factorizing these representations into contextual low-rank components and seamlessly integrating with Rotary Position Embedding (RoPE), TPA achieves improved model quality alongside memory efficiency. Based on TPA, we introduce the Tensor Product Attention Transformer,(T6), a new model architecture for sequence modeling. Through extensive empirical evaluation on language modeling tasks, we demonstrate that T6 surpasses or matches the performance of standard Transformer baselines, including Multi-Head Attention (MHA), Multi-Query Attention (MQA), Grouped-Query Attention (GQA), and Multi-Head Latent Attention (MLA) across various metrics, including perplexity and a range of established evaluation benchmarks. Notably, TPA's memory efficiency and computational efficiency at the decoding stage enable processing longer sequences under fixed resource constraints, addressing a critical scalability challenge in modern language models. The code is available at https://github.com/tensorgi/T6.
comment: 52 pages, 11 figures
SOTOPIA-$Ω$: Dynamic Strategy Injection Learning and Social Instruction Following Evaluation for Social Agents ACL 2025
Despite the abundance of prior social strategies possessed by humans, there remains a paucity of research dedicated to their transfer and integration into social agents. Our proposed SOTOPIA-$\Omega$ framework aims to address and bridge this gap, with a particular focus on enhancing the social capabilities of language agents. This framework dynamically injects multi-step reasoning strategies inspired by negotiation theory and two simple direct strategies into expert agents, thereby automating the construction of a high-quality social dialogue training corpus. Additionally, we introduce the concept of Social Instruction Following (S-IF) and propose two new S-IF evaluation metrics that complement social capability. We demonstrate that several 7B models trained on high-quality corpus not only significantly surpass the expert agent (GPT-4) in achieving social goals but also enhance S-IF performance. Analysis and variant experiments validate the advantages of dynamic construction, which can especially break the agent's prolonged deadlock.
comment: Accepted by ACL 2025 (Main Conference)
Autonomous Data Selection with Zero-shot Generative Classifiers for Mathematical Texts
We present Autonomous Data Selection (AutoDS), a method that leverages base language models themselves as zero-shot "generative classifiers" to automatically curate high-quality mathematical texts. Unlike prior approaches that require human annotations or training a dedicated data filter, AutoDS relies solely on a model's logits to determine whether a given passage is mathematically informative and educational. By integrating AutoDS into a continual pretraining pipeline, we substantially boost downstream performance on challenging math benchmarks (MATH, GSM8K, and BBH) while using far fewer tokens than previous methods. Empirically, our approach achieves roughly a twofold improvement in pretraining token efficiency over strong baselines, underscoring the potential of self-directed data selection in enhancing mathematical reasoning. We release our curated AutoMathText dataset to facilitate future research in automated domain-specific data curation. The AutoMathText dataset is available at https://huggingface.co/datasets/math-ai/AutoMathText. The code is available at https://github.com/yifanzhang-pro/AutoMathText.
comment: 22 pages, 9 figures
PolyMath: Evaluating Mathematical Reasoning in Multilingual Contexts
In this paper, we introduce PolyMath, a multilingual mathematical reasoning benchmark covering 18 languages and 4 easy-to-hard difficulty levels. Our benchmark ensures difficulty comprehensiveness, language diversity, and high-quality translation, making it a highly discriminative multilingual mathematical benchmark in the era of reasoning LLMs. We conduct a comprehensive evaluation for advanced LLMs and find that even Qwen-3-235B-A22B-Thinking and Gemini-2.5-pro, achieve only 54.6 and 52.2 benchmark scores, with about 40% accuracy under the highest level From a language perspective, our benchmark reveals several key challenges of LLMs in multilingual reasoning: (1) Reasoning performance varies widely across languages for current LLMs; (2) Input-output language consistency is low in reasoning LLMs and may be correlated with performance; (3) The thinking length differs significantly by language for current LLMs. Additionally, we demonstrate that controlling the output language in the instructions has the potential to affect reasoning performance, especially for some low-resource languages, suggesting a promising direction for improving multilingual capabilities in LLMs.
comment: 50 pages, 19 tables, 9 figures
Pandora's Box or Aladdin's Lamp: A Comprehensive Analysis Revealing the Role of RAG Noise in Large Language Models ACL 2025
Retrieval-Augmented Generation (RAG) has emerged as a crucial method for addressing hallucinations in large language models (LLMs). While recent research has extended RAG models to complex noisy scenarios, these explorations often confine themselves to limited noise types and presuppose that noise is inherently detrimental to LLMs, potentially deviating from real-world retrieval environments and restricting practical applicability. In this paper, we define seven distinct noise types from a linguistic perspective and establish a Noise RAG Benchmark (NoiserBench), a comprehensive evaluation framework encompassing multiple datasets and reasoning tasks. Through empirical evaluation of eight representative LLMs with diverse architectures and scales, we reveal that these noises can be further categorized into two practical groups: noise that is beneficial to LLMs (aka beneficial noise) and noise that is harmful to LLMs (aka harmful noise). While harmful noise generally impairs performance, beneficial noise may enhance several aspects of model capabilities and overall performance. Our analysis offers insights for developing more robust, adaptable RAG solutions and mitigating hallucinations across diverse retrieval scenarios. Code is available at https://github.com/jinyangwu/NoiserBench.
comment: ACL 2025 Main
HiDe-LLaVA: Hierarchical Decoupling for Continual Instruction Tuning of Multimodal Large Language Model ACL 2025
Instruction tuning is widely used to improve a pre-trained Multimodal Large Language Model (MLLM) by training it on curated task-specific datasets, enabling better comprehension of human instructions. However, it is infeasible to collect all possible instruction datasets simultaneously in real-world scenarios. Thus, enabling MLLM with continual instruction tuning is essential for maintaining their adaptability. However, existing methods often trade off memory efficiency for performance gains, significantly compromising overall efficiency. In this paper, we propose a task-specific expansion and task-general fusion framework based on the variations in Centered Kernel Alignment (CKA) similarity across different model layers when trained on diverse datasets. Furthermore, we analyze the information leakage present in the existing benchmark and propose a new and more challenging benchmark to rationally evaluate the performance of different methods. Comprehensive experiments showcase a significant performance improvement of our method compared to existing state-of-the-art methods. Code and dataset are released at https://github.com/Ghy0501/HiDe-LLaVA.
comment: ACL 2025 (Main)
Fusing Bidirectional Chains of Thought and Reward Mechanisms A Method for Enhancing Question-Answering Capabilities of Large Language Models for Chinese Intangible Cultural Heritage
The rapid development of large language models (LLMs) has provided significant support and opportunities for the advancement of domain-specific LLMs. However, fine-tuning these large models using Intangible Cultural Heritage (ICH) data inevitably faces challenges such as bias, incorrect knowledge inheritance, and catastrophic forgetting. To address these issues, we propose a novel training method that integrates a bidirectional chains of thought and a reward mechanism. This method is built upon ICH-Qwen, a large language model specifically designed for the field of intangible cultural heritage. The proposed method enables the model to not only perform forward reasoning but also enhances the accuracy of the generated answers by utilizing reverse questioning and reverse reasoning to activate the model's latent knowledge. Additionally, a reward mechanism is introduced during training to optimize the decision-making process. This mechanism improves the quality of the model's outputs through structural and content evaluations with different weighting schemes. We conduct comparative experiments on ICH-Qwen, with results demonstrating that our method outperforms 0-shot, step-by-step reasoning, knowledge distillation, and question augmentation methods in terms of accuracy, Bleu-4, and Rouge-L scores on the question-answering task. Furthermore, the paper highlights the effectiveness of combining the bidirectional chains of thought and reward mechanism through ablation experiments. In addition, a series of generalizability experiments are conducted, with results showing that the proposed method yields improvements on various domain-specific datasets and advanced models in areas such as Finance, Wikidata, and StrategyQA. This demonstrates that the method is adaptable to multiple domains and provides a valuable approach for model training in future applications across diverse fields.
comment: 22 pages, 5 figures
Reasoning-to-Defend: Safety-Aware Reasoning Can Defend Large Language Models from Jailbreaking
Large Reasoning Models (LRMs) have demonstrated impressive performances across diverse domains. However, how safety of Large Language Models (LLMs) benefits from enhanced reasoning capabilities against jailbreak queries remains unexplored. To bridge this gap, in this paper, we propose Reasoning-to-Defend (R2D), a novel training paradigm that integrates a safety-aware reasoning mechanism into LLMs' generation. This enables self-evaluation at each step of the reasoning process, forming safety pivot tokens as indicators of the safety status of responses. Furthermore, in order to improve the accuracy of predicting pivot tokens, we propose Contrastive Pivot Optimization (CPO), which enhances the model's perception of the safety status of given dialogues. LLMs dynamically adjust their response strategies during reasoning, significantly enhancing their safety capabilities defending jailbreak attacks. Extensive experiments demonstrate that R2D effectively mitigates various attacks and improves overall safety, while maintaining the original performances. This highlights the substantial potential of safety-aware reasoning in improving robustness of LRMs and LLMs against various jailbreaks.
comment: 18 pages
DiagnosisArena: Benchmarking Diagnostic Reasoning for Large Language Models
The emergence of groundbreaking large language models capable of performing complex reasoning tasks holds significant promise for addressing various scientific challenges, including those arising in complex clinical scenarios. To enable their safe and effective deployment in real-world healthcare settings, it is urgently necessary to benchmark the diagnostic capabilities of current models systematically. Given the limitations of existing medical benchmarks in evaluating advanced diagnostic reasoning, we present DiagnosisArena, a comprehensive and challenging benchmark designed to rigorously assess professional-level diagnostic competence. DiagnosisArena consists of 1,113 pairs of segmented patient cases and corresponding diagnoses, spanning 28 medical specialties, deriving from clinical case reports published in 10 top-tier medical journals. The benchmark is developed through a meticulous construction pipeline, involving multiple rounds of screening and review by both AI systems and human experts, with thorough checks conducted to prevent data leakage. Our study reveals that even the most advanced reasoning models, o3, o1, and DeepSeek-R1, achieve only 51.12%, 31.09%, and 17.79% accuracy, respectively. This finding highlights a significant generalization bottleneck in current large language models when faced with clinical diagnostic reasoning challenges. Through DiagnosisArena, we aim to drive further advancements in AI's diagnostic reasoning capabilities, enabling more effective solutions for real-world clinical diagnostic challenges. We provide the benchmark and evaluation tools for further research and development https://github.com/SPIRAL-MED/DiagnosisArena.
KBQA-o1: Agentic Knowledge Base Question Answering with Monte Carlo Tree Search ICML 2025
Knowledge Base Question Answering (KBQA) aims to answer natural language questions with a large-scale structured knowledge base (KB). Despite advancements with large language models (LLMs), KBQA still faces challenges in weak KB awareness, imbalance between effectiveness and efficiency, and high reliance on annotated data. To address these challenges, we propose KBQA-o1, a novel agentic KBQA method with Monte Carlo Tree Search (MCTS). It introduces a ReAct-based agent process for stepwise logical form generation with KB environment exploration. Moreover, it employs MCTS, a heuristic search method driven by policy and reward models, to balance agentic exploration's performance and search space. With heuristic exploration, KBQA-o1 generates high-quality annotations for further improvement by incremental fine-tuning. Experimental results show that KBQA-o1 outperforms previous low-resource KBQA methods with limited annotated data, boosting Llama-3.1-8B model's GrailQA F1 performance to 78.5% compared to 48.5% of the previous sota method with GPT-3.5-turbo. Our code is publicly available.
comment: Accepted by ICML 2025 main conference
Reducing Tool Hallucination via Reliability Alignment
Large Language Models (LLMs) have expanded their capabilities beyond language generation to interact with external tools, enabling automation and real-world applications. However, tool hallucinations, where models either select inappropriate tools or misuse them, pose significant challenges, leading to erroneous task execution, increased computational costs, and reduced system reliability. To systematically address this issue, we define and categorize tool hallucinations into two main types, tool selection hallucination and tool usage hallucination. To evaluate and mitigate these issues, we introduce RelyToolBench, which integrates specialized test cases and novel metrics to assess hallucination-aware task success and efficiency. Finally, we propose Relign, a reliability alignment framework that expands the tool-use action space to include indecisive actions, allowing LLMs to defer tool use, seek clarification, or adjust tool selection dynamically. Through extensive experiments, we demonstrate that Relign significantly reduces tool hallucinations, improves task reliability, and enhances the efficiency of LLM tool interactions.
Improving Parallel Program Performance with LLM Optimizers via Agent-System Interfaces
Modern scientific discovery increasingly relies on high-performance computing for complex modeling and simulation. A key challenge in improving parallel program performance is efficiently mapping tasks to processors and data to memory, a process dictated by intricate, low-level system code known as mappers. Developing high-performance mappers demands days of manual tuning, posing a significant barrier for domain scientists without systems expertise. We introduce a framework that automates mapper development with generative optimization, leveraging richer feedback beyond scalar performance metrics. Our approach features the Agent-System Interface, which includes a Domain-Specific Language (DSL) to abstract away the low-level complexity of system code and define a structured search space, as well as AutoGuide, a mechanism that interprets raw execution output into actionable feedback. Unlike traditional reinforcement learning methods such as OpenTuner, which rely solely on scalar feedback, our method finds superior mappers in far fewer iterations. With just 10 iterations, it outperforms OpenTuner even after 1000 iterations, achieving 3.8X faster performance. Our approach finds mappers that surpass expert-written mappers by up to 1.34X speedup across nine benchmarks while reducing tuning time from days to minutes.
System-1.5 Reasoning: Traversal in Language and Latent Spaces with Dynamic Shortcuts
Chain-of-thought (CoT) reasoning enables large language models (LLMs) to move beyond fast System-1 responses and engage in deliberative System-2 reasoning. However, this comes at the cost of significant inefficiency due to verbose intermediate output. Recent latent-space reasoning methods improve efficiency by operating on hidden states without decoding into language, yet they treat all steps uniformly, failing to distinguish critical deductions from auxiliary steps and resulting in suboptimal use of computational resources. In this paper, we propose System-1.5 Reasoning, an adaptive reasoning framework that dynamically allocates computation across reasoning steps through shortcut paths in latent space. Specifically, System-1.5 Reasoning introduces two types of dynamic shortcuts. The model depth shortcut (DS) adaptively reasons along the vertical depth by early exiting non-critical tokens through lightweight adapter branches, while allowing critical tokens to continue through deeper Transformer layers. The step shortcut (SS) reuses hidden states across the decoding steps to skip trivial steps and reason horizontally in latent space. Training System-1.5 Reasoning involves a two-stage self-distillation process: first distilling natural language CoT into latent-space continuous thought, and then distilling full-path System-2 latent reasoning into adaptive shortcut paths (System-1.5 Reasoning). Experiments on reasoning tasks demonstrate the superior performance of our method. For example, on GSM8K, System-1.5 Reasoning achieves reasoning performance comparable to traditional CoT fine-tuning methods while accelerating inference by over 20x and reducing token generation by 92.31% on average.
comment: Work in progress
FCMR: Robust Evaluation of Financial Cross-Modal Multi-Hop Reasoning ACL 2025
Real-world decision-making often requires integrating and reasoning over information from multiple modalities. While recent multimodal large language models (MLLMs) have shown promise in such tasks, their ability to perform multi-hop reasoning across diverse sources remains insufficiently evaluated. Existing benchmarks, such as MMQA, face challenges due to (1) data contamination and (2) a lack of complex queries that necessitate operations across more than two modalities, hindering accurate performance assessment. To address this, we present Financial Cross-Modal Multi-Hop Reasoning (FCMR), a benchmark created to analyze the reasoning capabilities of MLLMs by urging them to combine information from textual reports, tables, and charts within the financial domain. FCMR is categorized into three difficulty levels-Easy, Medium, and Hard-facilitating a step-by-step evaluation. In particular, problems at the Hard level require precise cross-modal three-hop reasoning and are designed to prevent the disregard of any modality. Experiments on this new benchmark reveal that even state-of-the-art MLLMs struggle, with the best-performing model (Claude 3.5 Sonnet) achieving only 30.4% accuracy on the most challenging tier. We also conduct analysis to provide insights into the inner workings of the models, including the discovery of a critical bottleneck in the information retrieval phase.
comment: ACL 2025
Multimodal Inverse Attention Network with Intrinsic Discriminant Feature Exploitation for Fake News Detection
Multimodal fake news detection has garnered significant attention due to its profound implications for social security. While existing approaches have contributed to understanding cross-modal consistency, they often fail to leverage modal-specific representations and explicit discrepant features. To address these limitations, we propose a Multimodal Inverse Attention Network (MIAN), a novel framework that explores intrinsic discriminative features based on news content to advance fake news detection. Specifically, MIAN introduces a hierarchical learning module that captures diverse intra-modal relationships through local-to-global and local-to-local interactions, thereby generating enhanced unimodal representations to improve the identification of fake news at the intra-modal level. Additionally, a cross-modal interaction module employs a co-attention mechanism to establish and model dependencies between the refined unimodal representations, facilitating seamless semantic integration across modalities. To explicitly extract inconsistency features, we propose an inverse attention mechanism that effectively highlights the conflicting patterns and semantic deviations introduced by fake news in both intra- and inter-modality. Extensive experiments on benchmark datasets demonstrate that MIAN significantly outperforms state-of-the-art methods, underscoring its pivotal contribution to advancing social security through enhanced multimodal fake news detection.
comment: 13 pages, 6 figures
BioProBench: Comprehensive Dataset and Benchmark in Biological Protocol Understanding and Reasoning
Biological protocols are fundamental to reproducibility and safety in life science research. While large language models (LLMs) perform well on general tasks, their systematic evaluation on these highly specialized, accuracy-critical, and inherently procedural texts remains limited. In this work, we present BioProBench, the first large-scale, multi-task benchmark for biological protocol understanding and reasoning. While there are several benchmark tasks involving protocol question answering, BioProBench provides a comprehensive suite of five core tasks: Protocol Question Answering, Step Ordering, Error Correction, Protocol Generation, and Protocol Reasoning, enabling a holistic evaluation of LLMs on procedural biological texts. Built upon 27K original protocols, it yields nearly 556K high-quality structured instances. We evaluate 12 mainstream open/closed-source LLMs. Experimental results reveal that some models perform well on basic understanding tasks (e.g., \sim70% PQA-Acc., >64% ERR F1), but struggle significantly with deep reasoning and structured generation tasks like ordering and generation. Furthermore, model comparisons show diverse performance: certain open-source models approach closed-source levels on some tasks, yet bio-specific small models lag behind general LLMs, indicating limitations on complex procedural content. Overall, BioProBench, through its task design and experimental findings, systematically reveals the fundamental challenges for current LLMs in procedural knowledge understanding, deep adaptability to specific domains, reliability of structured reasoning, and handling of sophisticated precision and safety constraints, providing key directions for future AI in the field of scientific experiment automation. The code and data are available at: https://github.com/YuyangSunshine/bioprotocolbench and https://huggingface.co/datasets/BioProBench/BioProBench.
$T^5Score$: A Methodology for Automatically Assessing the Quality of LLM Generated Multi-Document Topic Sets ACL 2025
Using LLMs for Multi-Document Topic Extraction has recently gained popularity due to their apparent high-quality outputs, expressiveness, and ease of use. However, most existing evaluation practices are not designed for LLM-generated topics and result in low inter-annotator agreement scores, hindering the reliable use of LLMs for the task. To address this, we introduce $T^5Score$, an evaluation methodology that decomposes the quality of a topic set into quantifiable aspects, measurable through easy-to-perform annotation tasks. This framing enables a convenient, manual or automatic, evaluation procedure resulting in a strong inter-annotator agreement score. To substantiate our methodology and claims, we perform extensive experimentation on multiple datasets and report the results.
comment: Published in the Findings of ACL 2025
Improving Continual Pre-training Through Seamless Data Packing ACL 2025
Continual pre-training has demonstrated significant potential in enhancing model performance, particularly in domain-specific scenarios. The most common approach for packing data before continual pre-training involves concatenating input texts and splitting them into fixed-length sequences. While straightforward and efficient, this method often leads to excessive truncation and context discontinuity, which can hinder model performance. To address these issues, we explore the potential of data engineering to enhance continual pre-training, particularly its impact on model performance and efficiency. We propose Seamless Packing (SP), a novel data packing strategy aimed at preserving contextual information more effectively and enhancing model performance. Our approach employs a sliding window technique in the first stage that synchronizes overlapping tokens across consecutive sequences, ensuring better continuity and contextual coherence. In the second stage, we adopt a First-Fit-Decreasing algorithm to pack shorter texts into bins slightly larger than the target sequence length, thereby minimizing padding and truncation. Empirical evaluations across various model architectures and corpus domains demonstrate the effectiveness of our method, outperforming baseline method in 99% of all settings. Code is available at https://github.com/Infernus-WIND/Seamless-Packing.
comment: Accepted to ACL 2025 Findings
Temporal Relation Extraction in Clinical Texts: A Span-based Graph Transformer Approach
Temporal information extraction from unstructured text is essential for contextualizing events and deriving actionable insights, particularly in the medical domain. We address the task of extracting clinical events and their temporal relations using the well-studied I2B2 2012 Temporal Relations Challenge corpus. This task is inherently challenging due to complex clinical language, long documents, and sparse annotations. We introduce GRAPHTREX, a novel method integrating span-based entity-relation extraction, clinical large pre-trained language models (LPLMs), and Heterogeneous Graph Transformers (HGT) to capture local and global dependencies. Our HGT component facilitates information propagation across the document through innovative global landmarks that bridge distant entities. Our method improves the state-of-the-art with 5.5% improvement in the tempeval $F_1$ score over the previous best and up to 8.9% improvement on long-range relations, which presents a formidable challenge. We further demonstrate generalizability by establishing a strong baseline on the E3C corpus. This work not only advances temporal information extraction but also lays the groundwork for improved diagnostic and prognostic models through enhanced temporal reasoning.
comment: Introducing a novel method for joint extraction of medical events and temporal relations from free-text, leveraging clinical LPLMs and Heterogeneous Graph Transformers, achieving a 5.5% improvement over the previous state-of-the-art and up to 8.9% on long-range relations
Too Consistent to Detect: A Study of Self-Consistent Errors in LLMs
As large language models (LLMs) often generate plausible but incorrect content, error detection has become increasingly critical to ensure truthfulness. However, existing detection methods often overlook a critical problem we term as self-consistent error, where LLMs repeatly generate the same incorrect response across multiple stochastic samples. This work formally defines self-consistent errors and evaluates mainstream detection methods on them. Our investigation reveals two key findings: (1) Unlike inconsistent errors, whose frequency diminishes significantly as LLM scale increases, the frequency of self-consistent errors remains stable or even increases. (2) All four types of detection methshods significantly struggle to detect self-consistent errors. These findings reveal critical limitations in current detection methods and underscore the need for improved methods. Motivated by the observation that self-consistent errors often differ across LLMs, we propose a simple but effective cross-model probe method that fuses hidden state evidence from an external verifier LLM. Our method significantly enhances performance on self-consistent errors across three LLM families.
ParamMute: Suppressing Knowledge-Critical FFNs for Faithful Retrieval-Augmented Generation
Large language models (LLMs) integrated with retrieval-augmented generation (RAG) have improved factuality by grounding outputs in external evidence. However, they remain susceptible to unfaithful generation, where outputs contradict retrieved context despite its relevance and accuracy. Existing approaches aiming to improve faithfulness primarily focus on enhancing the utilization of external context, but often overlook the persistent influence of internal parametric knowledge during generation. In this work, we investigate the internal mechanisms behind unfaithful generation and identify a subset of mid-to-deep feed-forward networks (FFNs) that are disproportionately activated in such cases. Building on this insight, we propose Parametric Knowledge Muting through FFN Suppression (ParamMute), a framework that improves contextual faithfulness by suppressing the activation of unfaithfulness-associated FFNs and calibrating the model toward retrieved knowledge. To evaluate our approach, we introduce CoFaithfulQA, a benchmark specifically designed to evaluate faithfulness in scenarios where internal knowledge conflicts with accurate external evidence. Experimental results show that ParamMute significantly enhances faithfulness across both CoFaithfulQA and the established ConFiQA benchmark, achieving substantial reductions in reliance on parametric memory. These findings underscore the importance of mitigating internal knowledge dominance and provide a new direction for improving LLM trustworthiness in RAG. All code will be released via GitHub.
comment: 22 pages, 7 figures, 7 tables
Human-Computer Interaction
Exposing the Impact of GenAI for Cybercrime: An Investigation into the Dark Side
In recent years, the rapid advancement and democratization of generative AI models have sparked significant debate over safety, ethical risks, and dual-use concerns, particularly in the context of cybersecurity. While anecdotally known, this paper provides empirical evidence regarding generative AI's association with malicious internet-related activities and cybercrime by examining the phenomenon through psychological frameworks of technological amplification and affordance theory. Using a quasi-experimental design with interrupted time series analysis, we analyze two datasets, one general and one cryptocurrency-focused, to empirically assess generative AI's role in cybercrime. The findings contribute to ongoing discussions about AI governance by balancing control and fostering innovation, underscoring the need for strategies to guide policymakers, inform AI developers and cybersecurity professionals, and educate the public to maximize AI's benefits while mitigating its risks.
DTBIA: An Immersive Visual Analytics System for Brain-Inspired Research
The Digital Twin Brain (DTB) is an advanced artificial intelligence framework that integrates spiking neurons to simulate complex cognitive functions and collaborative behaviors. For domain experts, visualizing the DTB's simulation outcomes is essential to understanding complex cognitive activities. However, this task poses significant challenges due to DTB data's inherent characteristics, including its high-dimensionality, temporal dynamics, and spatial complexity. To address these challenges, we developed DTBIA, an Immersive Visual Analytics System for Brain-Inspired Research. In collaboration with domain experts, we identified key requirements for effectively visualizing spatiotemporal and topological patterns at multiple levels of detail. DTBIA incorporates a hierarchical workflow - ranging from brain regions to voxels and slice sections - along with immersive navigation and a 3D edge bundling algorithm to enhance clarity and provide deeper insights into both functional (BOLD) and structural (DTI) brain data. The utility and effectiveness of DTBIA are validated through two case studies involving with brain research experts. The results underscore the system's role in enhancing the comprehension of complex neural behaviors and interactions.
comment: 11 pages, 7 figures
Errors in Stereo Geometry Induce Distance Misperception
Stereoscopic head-mounted displays (HMDs) render and present binocular images to create an egocentric, 3D percept to the HMD user. Within this render and presentation pipeline there are potential rendering camera and viewing position errors that can induce deviations in the depth and distance that a user perceives compared to the underlying intended geometry. For example, rendering errors can arise when HMD render cameras are incorrectly positioned relative to the assumed centers of projections of the HMD displays and viewing errors can arise when users view stereo geometry from the incorrect location in the HMD eyebox. In this work we present a geometric framework that predicts errors in distance perception arising from inaccurate HMD perspective geometry and build an HMD platform to reliably simulate render and viewing error in a Quest 3 HMD with eye tracking to experimentally test these predictions. We present a series of five experiments to explore the efficacy of this geometric framework and show that errors in perspective geometry can induce both under- and over-estimations in perceived distance. We further demonstrate how real-time visual feedback can be used to dynamically recalibrate visuomotor mapping so that an accurate reach distance is achieved even if the perceived visual distance is negatively impacted by geometric error.
Human Empathy as Encoder: AI-Assisted Depression Assessment in Special Education
Assessing student depression in sensitive environments like special education is challenging. Standardized questionnaires may not fully reflect students' true situations. Furthermore, automated methods often falter with rich student narratives, lacking the crucial, individualized insights stemming from teachers' empathetic connections with students. Existing methods often fail to address this ambiguity or effectively integrate educator understanding. To address these limitations by fostering a synergistic human-AI collaboration, this paper introduces Human Empathy as Encoder (HEAE), a novel, human-centered AI framework for transparent and socially responsible depression severity assessment. Our approach uniquely integrates student narrative text with a teacher-derived, 9-dimensional "Empathy Vector" (EV), its dimensions guided by the PHQ-9 framework,to explicitly translate tacit empathetic insight into a structured AI input enhancing rather than replacing human judgment. Rigorous experiments optimized the multimodal fusion, text representation, and classification architecture, achieving 82.74% accuracy for 7-level severity classification. This work demonstrates a path toward more responsible and ethical affective computing by structurally embedding human empathy
comment: 7 pages, 6 figures. Under review
Cognitive Guardrails for Open-World Decision Making in Autonomous Drone Swarms
Small Uncrewed Aerial Systems (sUAS) are increasingly deployed as autonomous swarms in search-and-rescue and other disaster-response scenarios. In these settings, they use computer vision (CV) to detect objects of interest and autonomously adapt their missions. However, traditional CV systems often struggle to recognize unfamiliar objects in open-world environments or to infer their relevance for mission planning. To address this, we incorporate large language models (LLMs) to reason about detected objects and their implications. While LLMs can offer valuable insights, they are also prone to hallucinations and may produce incorrect, misleading, or unsafe recommendations. To ensure safe and sensible decision-making under uncertainty, high-level decisions must be governed by cognitive guardrails. This article presents the design, simulation, and real-world integration of these guardrails for sUAS swarms in search-and-rescue missions.
comment: 16 pages, 8 figures
The CASE Framework -- A New Architecture for Participatory Research and Digital Health Surveillance
We present the CASE framework, an open-source platform for adaptive, context-aware participatory research, and pandemic preparedness. CASE implements an event-driven architecture that enables dynamic survey workflows, allowing real-time adaptation based on participant responses, external data, temporal conditions, and evolving user states. The framework supports a broad range of research needs, from simple one-time questionnaires to complex longitudinal studies with advanced conditional logic. Built on over a decade of practical experience, CASE underwent a major architectural rework in 2024, transitioning from a microservice-based design to a streamlined monolithic architecture. This evolution significantly improved maintainability, flexibility, and accessibility to deployment, particularly for institutions with limited technical capacity. CASE has been successfully deployed across diverse domains, powering national disease surveillance platforms, supporting post-COVID cohort studies, and enabling real-time sentiment analysis during political events. These applications, involving tens of thousands of participants, demonstrate the framework's scalability, versatility, and practical value. This paper describes the foundations of CASE, details its architectural evolution, and presents lessons learned from real-world deployments. We establish CASE as a mature and reusable research infrastructure that balances sophisticated functionality with practical implementation, addressing the critical global need for sustainable and institutionally controlled data collection systems.
comment: 10 pages, 5 figures, submitted as a preprint to arXiv (no prior publication)
Self-driving technologies need the help of the public: A narrative review of the evidence
If public trust is lot in a new technology early in its life cycle it can take much more time for the benefits of that technology to be realised. Eventually tens-of-millions of people will collectively have the power to determine self-driving technology success of failure driven by their perception of risk, data handling, safety, governance, accountability, benefits to their life and more. This paper reviews the evidence on safety critical technology covering trust, engagement, and acceptance. The paper takes a narrative review approach concluding with a scalable model for self-driving technology education and engagement. The paper find that if a mismatch between the publics perception and expectations about self driving systems emerge it can lead to misuse, disuse, or abuse of the system. Furthermore we find from the evidence that industrial experts often misunderstand what matters to the public, users, and stakeholders. However we find that engagement programmes that develop approaches to defining the right information at the right time, in the right format orientated around what matters to the public creates the potential for ever more sophisticated conversations, greater trust, and moving the public into a progressive more active role of critique and advocacy. This work has been undertaken as part of the Partners for Automated Vehicle Education (PAVE) United Kingdom programme.
To Measure What Isn't There -- Visual Exploration of Missingness Structures Using Quality Metrics
This paper contributes a set of quality metrics for identification and visual analysis of structured missingness in high-dimensional data. Missing values in data are a frequent challenge in most data generating domains and may cause a range of analysis issues. Structural missingness in data may indicate issues in data collection and pre-processing, but may also highlight important data characteristics. While research into statistical methods for dealing with missing data are mainly focusing on replacing missing values with plausible estimated values, visualization has great potential to support a more in-depth understanding of missingness structures in data. Nonetheless, while the interest in missing data visualization has increased in the last decade, it is still a relatively overlooked research topic with a comparably small number of publications, few of which address scalability issues. Efficient visual analysis approaches are needed to enable exploration of missingness structures in large and high-dimensional data, and to support informed decision-making in context of potential data quality issues. This paper suggests a set of quality metrics for identification of patterns of interest for understanding of structural missingness in data. These quality metrics can be used as guidance in visual analysis, as demonstrated through a use case exploring structural missingness in data from a real-life walking monitoring study. All supplemental materials for this paper are available at https://doi.org/10.25405/data.ncl.c.7741829.
comment: Submitted to IEEE Vis2025
Designing the Future of Entrepreneurship Education: Exploring an AI-Empowered Scaffold System for Business Plan Development
Entrepreneurship education equips students to transform innovative ideas into actionable entrepreneurship plans, yet traditional approaches often struggle to provide the personalized guidance and practical alignment needed for success. Focusing on the business plan as a key learning tool and evaluation method, this study investigates the design needs for an AI-empowered scaffold system to address these challenges. Based on qualitative insights from educators and students, the findings highlight three critical dimensions for system design: mastery of business plan development, alignment with entrepreneurial learning goals, and integration of adaptive system features. These findings underscore the transformative potential of AI in bridging gaps in entrepreneurship education while emphasizing the enduring value of human mentorship and experiential learning.
Investigating A Geometrical Solution to the Vergence-Accommodation Conflict for Targeted Movements in Virtual Reality
While virtual reality (VR) holds significant potential to revolutionize digital user interaction, how visual information is presented through VR head-mounted displays (HMDs) differs from naturalistic viewing and interactions in physical environments, leading to performance decrements. One critical challenge in VR development is the vergence-accommodation conflict (VAC), which arises due to the intrinsic constraints of approximating the natural viewing geometry through digital displays. Although various hardware and software solutions have been proposed to address VAC, no commercially viable option has been universally adopted by manufacturers. This paper presents and evaluates a software solution grounded in a vision-based geometrical model of VAC that mediates VAC's impact on movement in VR. This model predicts the impact of VAC as a constant offset to the vergence angle, distorting the binocular viewing geometry that results in movement undershooting. In Experiment 1, a 3D pointing task validated the model's predictions and demonstrated that VAC primarily affects online movements involving real-time visual feedback. Experiment 2 implemented a shader program to rectify the effect of VAC, improving movement accuracy by approximately 30%. Overall, this work presented a practical approach to reducing the impact of VAC on HMD-based manual interactions, enhancing the user experience in virtual environments.
comment: 12 pages, 7 figures
Towards LLM-Empowered Fine-Grained Speech Descriptors for Explainable Emotion Recognition INTERSPEECH2025
This paper presents a novel end-to-end LLM-empowered explainable speech emotion recognition (SER) approach. Fine-grained speech emotion descriptor (SED) features, e.g., pitch, tone and emphasis, are disentangled from HuBERT SSL representations via alternating LLM fine-tuning to joint SER-SED prediction and ASR tasks. VAE compressed HuBERT features derived via Information Bottleneck (IB) are used to adjust feature granularity. Experiments on the IEMOCAP and MELD benchmarks demonstrate that our approach consistently outperforms comparable LLaMA-based SER baselines, including those using either (a) alternating multi-task fine-tuning alone or (b) feature disentanglement only. Statistically significant increase of SER unweighted accuracy by up to 4.0% and 3.7% absolute (5.4% and 6.6% relative) are obtained. More importantly, emotion descriptors offer further explainability for SER.
comment: Accepted by INTERSPEECH2025
Unsupervised Word-level Quality Estimation for Machine Translation Through the Lens of Annotators (Dis)agreement
Word-level quality estimation (WQE) aims to automatically identify fine-grained error spans in machine-translated outputs and has found many uses, including assisting translators during post-editing. Modern WQE techniques are often expensive, involving prompting of large language models or ad-hoc training on large amounts of human-labeled data. In this work, we investigate efficient alternatives exploiting recent advances in language model interpretability and uncertainty quantification to identify translation errors from the inner workings of translation models. In our evaluation spanning 14 metrics across 12 translation directions, we quantify the impact of human label variation on metric performance by using multiple sets of human labels. Our results highlight the untapped potential of unsupervised metrics, the shortcomings of supervised methods when faced with label uncertainty, and the brittleness of single-annotator evaluation practices.
comment: Under review. Code: https://github.com/gsarti/labl/tree/main/examples/unsup_wqe Metrics: https://huggingface.co/datasets/gsarti/unsup_wqe_metrics
Eye-tracking-Driven Shared Control for Robotic Arms:Wizard of Oz Studies to Assess Design Choices
Advances in eye-tracking control for assistive robotic arms provide intuitive interaction opportunities for people with physical disabilities. Shared control has gained interest in recent years by improving user satisfaction through partial automation of robot control. We present an eye-tracking-guided shared control design based on insights from state-of-the-art literature. A Wizard of Oz setup was used in which automation was simulated by an experimenter to evaluate the concept without requiring full implementation. This approach allowed for rapid exploration of user needs and expectations to inform future iterations. Two studies were conducted to assess user experience, identify design challenges, and find improvements to ensure usability and accessibility. The first study involved people with disabilities by providing a survey, and the second study used the Wizard of Oz design in person to gain technical insights, leading to a comprehensive picture of findings.
comment: Preprint, 23 pages
An open-source Modular Online Psychophysics Platform (MOPP)
In recent years, there is a growing need and opportunity to use online platforms for psychophysics research. Online experiments make it possible to evaluate large and diverse populations remotely and quickly, complementing laboratory-based research. However, developing and running online psychophysics experiments poses several challenges: i) a high barrier-to-entry for researchers who often need to learn complex code-based platforms, ii) an uncontrolled experimental environment, and iii) questionable credibility of the participants. Here, we introduce an open-source Modular Online Psychophysics Platform (MOPP) to address these challenges. Through the simple web-based interface of MOPP, researchers can build modular experiments, share them with others, and copy or modify tasks from each others environments. MOPP provides built-in features to calibrate for viewing distance and to measure visual acuity. It also includes email-based and IP-based authentication, and reCAPTCHA verification. We developed five example psychophysics tasks, that come preloaded in the environment, and ran a pilot experiment which was hosted on the AWS (Amazon Web Services) cloud. Pilot data collected for these tasks yielded similar results to those reported in laboratory settings. MOPP can thus help researchers collect large psychophysics datasets online, with reduced turnaround time, and in a standardized manner.
A Constructed Response: Designing and Choreographing Robot Arm Movements in Collaborative Dance Improvisation
Dancers often prototype movements themselves or with each other during improvisation and choreography. How are these interactions altered when physically manipulable technologies are introduced into the creative process? To understand how dancers design and improvise movements while working with instruments capable of non-humanoid movements, we engaged dancers in workshops to co-create movements with a robot arm in one-human-to-one-robot and three-human-to-one-robot settings. We found that dancers produced more fluid movements in one-to-one scenarios, experiencing a stronger sense of connection and presence with the robot as a co-dancer. In three-to-one scenarios, the dancers divided their attention between the human dancers and the robot, resulting in increased perceived use of space and more stop-and-go movements, perceiving the robot as part of the stage background. This work highlights how technologies can drive creativity in movement artists adapting to new ways of working with physical instruments, contributing design insights supporting artistic collaborations with non-humanoid agents.
iTrace : Interactive Tracing of Cross-View Data Relationships
Exploring data relations across multiple views has been a common task in many domains such as bioinformatics, cybersecurity, and healthcare. To support this, various techniques (e.g., visual links and brushing and linking) are used to show related visual elements across views via lines and highlights. However, understanding the relations using these techniques, when many related elements are scattered, can be difficult due to spatial distance and complexity. To address this, we present iTrace, an interactive visualization technique to effectively trace cross-view data relationships. iTrace leverages the concept of interactive focus transitions, which allows users to see and directly manipulate their focus as they navigate between views. By directing the user's attention through smooth transitions between related elements, iTrace makes it easier to follow data relationships. We demonstrate the effectiveness of iTrace with a user study, and we conclude with a discussion of how iTrace can be broadly used to enhance data exploration in various types of visualizations.
comment: 13 pages, 14 figures, accepted to Graphics Interface 2025
Strategic Reflectivism In Intelligent Systems
By late 20th century, the rationality wars had launched debates about the nature and norms of intuitive and reflective thinking. Those debates drew from mid-20th century ideas such as bounded rationality, which challenged more idealized notions of rationality observed since the 19th century. Now that 21st century cognitive scientists are applying the resulting dual process theories to artificial intelligence, it is time to dust off some lessons from this history. So this paper synthesizes old ideas with recent results from experiments on humans and machines. The result is Strategic Reflectivism, which takes the position that one key to intelligent systems (human or artificial) is pragmatic switching between intuitive and reflective inference to optimally fulfill competing goals. Strategic Reflectivism builds on American Pragmatism, transcends superficial indicators of reflective thinking such as model size or chains of thought, and becomes increasingly actionable as we learn more about the value of intuition and reflection.
comment: An earlier version of this paper was presented at the 2025 ACM Workshop on Human-AI Interaction for Augmented Reasoning (CHI25-WS-AUGMENTED-REASONING). Permission to copy for educational use is granted, provided copies are not for sale or profit and include this notice and full citation on the first page. Other uses require the author permission
Vision-Based Assistive Technologies for People with Cerebral Visual Impairment: A Review and Focus Study
Over the past decade, considerable research has investigated Vision-Based Assistive Technologies (VBAT) to support people with vision impairments to understand and interact with their immediate environment using machine learning, computer vision, image enhancement, and/or augmented/virtual reality. However, this has almost totally overlooked a growing demographic: people with Cerebral Visual Impairment (CVI). Unlike ocular vision impairments, CVI arises from damage to the brain's visual processing centres. Through a scoping review, this paper reveals a significant research gap in addressing the needs of this demographic. Three focus studies involving 7 participants with CVI explored the challenges, current strategies, and opportunities for VBAT. We also discussed the assistive technology needs of people with CVI compared with ocular low vision. Our findings highlight the opportunity for the Human-Computer Interaction and Assistive Technologies research community to explore and address this underrepresented domain, thereby enhancing the quality of life for people with CVI.
comment: Author's accepted version of a paper published at ASSETS 2024 (October, 2024). arXiv admin note: text overlap with arXiv:2505.21875
Free Lunch for User Experience: Crowdsourcing Agents for Scalable User Studies
We demonstrate the potential of anthropomorphized language agents to generate budget-friendly, moderate-fidelity, yet sufficiently insightful user experiences at scale, supporting fast, early-stage prototyping. We explore this through the case of prototyping Large Language Model-driven non-player characters (NPCs). We present Agentic H-CI, a framework that mirrors traditional user research processes-surveying, screening, experiencing, and collecting feedback and insights-with simulated agents. Using this approach, we easily construct a team of 240 player agents with a balanced range of player types and personality traits, at extremely low cost (\$0.28/player) and minimal time commitment (6.9 minutes/player). Content analysis shows that agent-based players behave in ways aligned with their simulated backgrounds, achieving 82.5\% alignment with designated profiles. From their interactions, we distill 11 user insights and 6 design implications to guide further development. To evaluate practical value, we conduct parallel user studies with human participants recruited locally and via crowdsourcing. Ratings from three professional game developers show that the agentic player team offers a Pareto-optimal and well-balanced trade-off across fidelity, cost, time efficiency, and insight helpfulness.
Evaluating Driver Perceptions of Integrated Safety Monitoring Systems for Alcohol Impairment and Distraction
The increasing number of accidents caused by alcohol-impaired driving has prompted the development of integrated safety systems in vehicles to monitor driver behavior and prevent crashes. This paper explores how drivers perceive these systems, focusing on their comfort, trust, privacy concerns, and willingness to adopt the technology. Through a survey of 115 U.S. participants, the study reveals a preference for non-intrusive systems, such as those monitoring eye movements, over more restrictive technologies like alcohol detection devices. Privacy emerged as a major concern, with many participants preferring local data processing and anonymity. Trust in these systems was crucial for acceptance, as drivers are more likely to adapt their behavior when they believe the system is accurate and reliable. To encourage adoption, it is important to address concerns about privacy and balance the benefits of safety with personal freedom. By improving transparency, ensuring reliability, and increasing public awareness, these systems could play a significant role in reducing road accidents and improving safety.
Seeing the Politics of Decentralized Social Media Protocols
Calls to decentralize feed-based social media have been driven by concerns about the concentrated power of centralized platforms and their societal impact. In response, numerous decentralized social media protocols have emerged, each interpreting "decentralization" in different ways. We analyze four such protocols -- ActivityPub, AT Protocol, Nostr, and Farcaster -- to develop a novel conceptual framework for understanding how protocols operationalize decentralization. Drawing from protocol documentation, media coverage, and first-hand interviews with protocol developers and experts, we contextualize each protocol's approach within their respective socio-technical goals. Our framework highlights how control over key components is distributed differently across each protocol, shaping who holds power over what kinds of decisions. How components are arranged in relation to one another further impacts how component owners might offset each other's power in shaping social media. We argue that examining protocols as artifacts reveals how values shape infrastructure and power dynamics -- and that with a holistic framework as a guide, we can more effectively evaluate and design decentralized platforms aligned with the social and political futures we envision.
comment: 22 pages, 6 figures, 3 tables
A Practical Guide for Supporting Formative Assessment and Feedback Using Generative AI
Formative assessment is a cornerstone of effective teaching and learning, providing students with feedback to guide their learning. While there has been an exponential growth in the application of generative AI in scaling various aspects of formative assessment, ranging from automatic question generation to intelligent tutoring systems and personalized feedback, few have directly addressed the core pedagogical principles of formative assessment. Here, we critically examined how generative AI, especially large-language models (LLMs) such as ChatGPT, can support key components of formative assessment: helping students, teachers, and peers understand "where learners are going," "where learners currently are," and "how to move learners forward" in the learning process. With the rapid emergence of new prompting techniques and LLM capabilities, we also provide guiding principles for educators to effectively leverage cost-free LLMs in formative assessments while remaining grounded in pedagogical best practices. Furthermore, we reviewed the role of LLMs in generating feedback, highlighting limitations in current evaluation metrics that inadequately capture the nuances of formative feedback, such as distinguishing feedback at the task, process, and self-regulatory levels. Finally, we offer practical guidelines for educators and researchers, including concrete classroom strategies and future directions such as developing robust metrics to assess LLM-generated feedback, leveraging LLMs to overcome systemic and cultural barriers to formative assessment, and designing AI-aware assessment strategies that promote transferable skills while mitigating overreliance on LLM-generated responses. By structuring the discussion within an established formative assessment framework, this review provides a comprehensive foundation for integrating LLMs into formative assessment in a pedagogically informed manner.
Advancing Digital Accessibility In Digital Pharmacy, Healthcare, And Wearable Devices: Inclusive Solutions for Enhanced Patient Engagement
Modern healthcare facilities demand digital accessibility to guarantee equal access to telemedicine platforms, online pharmacy services, and health monitoring devices that can be worn or are handy. With the rising call for the implementation of robust digital healthcare solutions, people with disabilities encounter impediments in their endeavor of managing and getting accustomed to these modern technologies owing to insufficient accessibility features. The paper highlights the role of comprehensive solutions for enhanced patient engagement and usability, particularly, in digital pharmacy, healthcare, and wearable devices. Besides, it elucidates the key obstructions faced by users experiencing auditory, visual, cognitive, and motor impairments. Through a kind consideration of present accessibility guidelines, practices, and emerging technologies, the paper provides a holistic overview by offering innovative solutions, accentuating the vitality of compliance with Web Content Accessibility Guidelines (WCAG), Americans with Disabilities Act (ADA), and other regulatory structures to foster easy access to digital healthcare services. Moreover, there is due focus on using AI-driven tools, speech-activated interfaces, and tactile feedback in wearable health devices to assist persons with disabilities. The outcome of the research explicates the necessity of prioritizing accessibility for individuals with disabilities and cultivating a culture where healthcare providers, policymakers, and officials build a patient-centered digital healthcare ecosystem that is all-encompassing in nature.
comment: 15 pages
Advancing Digital Accessibility: Integrating AR/VR and Health Tech for Inclusive Healthcare Solutions
Modern healthcare domain incorporates a feature of digital accessibility to ensure seamless flow of online services for the patients. However, this feature of digital accessibility poses a challenge particularly for patients with disabilities. To eradicate this issue and provide immersive and user-friendly experiences, evolving technologies like Augmented Reality (AR) and Virtual Reality (VR) are integrated in medical applications to enhance accessibility. The present research paper aims to study inclusivity and accessibility features of AR/VR in revolutionizing healthcare practices especially in domains like telemedicine, patient education, assistive tools, and rehabilitation for persons with disabilities. The current trends of advancements and case studies are also analyzed to measure the efficacy of AR/VR in healthcare. Moreover, the paper entails a detailed analysis of the challenges of its adoption particularly technical limitations, implementation costs, and regulatory aspects. Finally, the paper concludes with recommendations for integrating AR/VR to foster a more equitable and inclusive healthcare system and provide individuals with auditory, visual, and motor impairments with digital healthcare solutions.
comment: 15 pages
Bridging the Gap: Enhancing Digital Accessibility for Medicaid Populations in Telehealth Adoption
The swift evolution of telehealth has revolutionized how medical professionals deliver healthcare services and boost convenience and accessibility. Yet, the Medicaid population encounters several impediments in utilizing facilities especially owing to poor internet connectivity, less awareness about digital platforms, and a shortage of assistive technologies. The paper aims to explicate key factors behind digital accessibility for Medicaid populations and expounds robust solutions to eradicate these challenges. Through inclusive design ideas, AI-assisted technologies, and all-encompassing policies by the concerned authorities, healthcare professionals can enhance usability and efficacy and thus better serve the needy. This revolution not only enhances convenience but also expands access, mainly for underserved groups such as rural populations or those with mobility issues, thereby ensuring inclusivity and flexibility in the healthcare domain. Besides, the paper highlights the vitality of collaboration between healthcare professionals, policymakers, and tech developers in unveiling the accessibility and usability impediments. What else helps in minimizing healthcare differences and enhancing patient outcomes is guaranteeing equitable access to telehealth for Medicaid beneficiaries. The paper systematically offers major recommendations to increase digital accessibility in telehealth, thereby creating a patient-oriented and all-encompassing healthcare system.
comment: 16 pages
Enhancing Critical Thinking in Generative AI Search with Metacognitive Prompts
The growing use of Generative AI (GenAI) conversational search tools has raised concerns about their effects on people's metacognitive engagement, critical thinking, and learning. As people increasingly rely on GenAI to perform tasks such as analyzing and applying information, they may become less actively engaged in thinking and learning. This study examines whether metacognitive prompts - designed to encourage people to pause, reflect, assess their understanding, and consider multiple perspectives - can support critical thinking during GenAI-based search. We conducted a user study (N=40) with university students to investigate the impact of metacognitive prompts on their thought processes and search behaviors while searching with a GenAI tool. We found that these prompts led to more active engagement, prompting students to explore a broader range of topics and engage in deeper inquiry through follow-up queries. Students reported that the prompts were especially helpful for considering overlooked perspectives, promoting evaluation of AI responses, and identifying key takeaways. Additionally, the effectiveness of these prompts was influenced by students' metacognitive flexibility. Our findings highlight the potential of metacognitive prompts to foster critical thinking and provide insights for designing and implementing metacognitive support in human-AI interactions.
comment: To appear in Proceedings of the Association for Information Science and Technology. 2025
Redefining Research Crowdsourcing: Incorporating Human Feedback with LLM-Powered Digital Twins
Crowd work platforms like Amazon Mechanical Turk and Prolific are vital for research, yet workers' growing use of generative AI tools poses challenges. Researchers face compromised data validity as AI responses replace authentic human behavior, while workers risk diminished roles as AI automates tasks. To address this, we propose a hybrid framework using digital twins, personalized AI models that emulate workers' behaviors and preferences while keeping humans in the loop. We evaluate our system with an experiment (n=88 crowd workers) and in-depth interviews with crowd workers (n=5) and social science researchers (n=4). Our results suggest that digital twins may enhance productivity and reduce decision fatigue while maintaining response quality. Both researchers and workers emphasized the importance of transparency, ethical data use, and worker agency. By automating repetitive tasks and preserving human engagement for nuanced ones, digital twins may help balance scalability with authenticity.
comment: Accepted as a CHI Late Breaking Work (2025), cite appropriately
ConversAR: Exploring Embodied LLM-Powered Group Conversations in Augmented Reality for Second Language Learners
Group conversations are valuable for second language (L2) learners as they provide opportunities to practice listening and speaking, exercise complex turn-taking skills, and experience group social dynamics in a target language. However, most existing Augmented Reality (AR)-based conversational learning tools focus on dyadic interactions rather than group dialogues. Although research has shown that AR can help reduce speaking anxiety and create a comfortable space for practicing speaking skills in dyadic scenarios, especially with Large Language Model (LLM)-based conversational agents, the potential for group language practice using these technologies remains largely unexplored. We introduce ConversAR, a gpt-4o powered AR application, that enables L2 learners to practice contextualized group conversations. Our system features two embodied LLM agents with vision-based scene understanding and live captions. In a system evaluation with 10 participants, users reported reduced speaking anxiety and increased learner autonomy compared to perceptions of in-person practice methods with other learners.
comment: Published in Proceedings of the Extended Abstracts of the CHI Conference on Human Factors in Computing Systems
Fitting the Message to the Moment: Designing Calendar-Aware Stress Messaging with Large Language Models
Existing stress-management tools fail to account for the timing and contextual specificity of students' daily lives, often providing static or misaligned support. Digital calendars contain rich, personal indicators of upcoming responsibilities, yet this data is rarely leveraged for adaptive wellbeing interventions. In this short paper, we explore how large language models (LLMs) might use digital calendar data to deliver timely and personalized stress support. We conducted a one-week study with eight university students using a functional technology probe that generated daily stress-management messages based on participants' calendar events. Through semi-structured interviews and thematic analysis, we found that participants valued interventions that prioritized stressful events and adopted a concise, but colloquial tone. These findings reveal key design implications for LLM-based stress-management tools, including the need for structured questioning and tone calibration to foster relevance and trust.
PolicyPulse: LLM-Synthesis Tool for Policy Researchers
Public opinion shapes policy, yet capturing it effectively to surface diverse perspectives remains challenging. This paper introduces PolicyPulse, an LLM-powered interactive system that synthesizes public experiences from online community discussions to help policy researchers author memos and briefs, leveraging curated real-world anecdotes. Given a specific topic (e.g., "Climate Change"), PolicyPulse returns an organized list of themes (e.g., "Biodiversity Loss" or "Carbon Pricing"), supporting each theme with relevant quotes from real-life anecdotes. We compared PolicyPulse outputs to authoritative policy reports. Additionally, we asked 11 policy researchers across multiple institutions in the Northeastern U.S to compare using PolicyPulse with their expert approach. We found that PolicyPulse's themes aligned with authoritative reports and helped spark research by analyzing existing data, gathering diverse experiences, revealing unexpected themes, and informing survey or interview design. Participants also highlighted limitations including insufficient demographic context and data verification challenges. Our work demonstrates how AI-powered tools can help influence policy-relevant research and shape policy outcomes.
comment: Published in Proceedings of the Extended Abstracts of the CHI Conference on Human Factors in Computing Systems
Improved Accuracy in Pelvic Tumor Resections Using a Real-Time Vision-Guided Surgical System
Pelvic bone tumor resections remain significantly challenging due to complex three-dimensional anatomy and limited surgical visualization. Current navigation systems and patient-specific instruments, while accurate, present limitations including high costs, radiation exposure, workflow disruption, long production time, and lack of reusability. This study evaluates a real-time vision-guided surgical system combined with modular jigs to improve accuracy in pelvic bone tumor resections. A vision-guided surgical system combined with modular cutting jigs and real-time optical tracking was developed and validated. Five female pelvis sawbones were used, with each hemipelvis randomly assigned to either the vision-guided and modular jig system or traditional freehand method. A total of twenty resection planes were analyzed for each method. Accuracy was assessed by measuring distance and angular deviations from the planned resection planes. The vision-guided and modular jig system significantly improved resection accuracy compared to the freehand method, reducing the mean distance deviation from 2.07 $\pm$ 1.71 mm to 1.01 $\pm$ 0.78 mm (p=0.0193). In particular, all specimens resected using the vision-guided system exhibited errors of less than 3 mm. Angular deviations also showed significant improvements with roll angle deviation reduced from 15.36 $\pm$ 17.57$^\circ$ to 4.21 $\pm$ 3.46$^\circ$ (p=0.0275), and pitch angle deviation decreased from 6.17 $\pm$ 4.58$^\circ$ to 1.84 $\pm$ 1.48$^\circ$ (p<0.001). The proposed vision-guided and modular jig system significantly improves the accuracy of pelvic bone tumor resections while maintaining workflow efficiency. This cost-effective solution provides real-time guidance without the need for referencing external monitors, potentially improving surgical outcomes in complex pelvic bone tumor cases.
comment: 9 Pages, 5 figures, Submitted to Journal of Orthopaedic Research
OMNIGUARD: An Efficient Approach for AI Safety Moderation Across Modalities
The emerging capabilities of large language models (LLMs) have sparked concerns about their immediate potential for harmful misuse. The core approach to mitigate these concerns is the detection of harmful queries to the model. Current detection approaches are fallible, and are particularly susceptible to attacks that exploit mismatched generalization of model capabilities (e.g., prompts in low-resource languages or prompts provided in non-text modalities such as image and audio). To tackle this challenge, we propose OMNIGUARD, an approach for detecting harmful prompts across languages and modalities. Our approach (i) identifies internal representations of an LLM/MLLM that are aligned across languages or modalities and then (ii) uses them to build a language-agnostic or modality-agnostic classifier for detecting harmful prompts. OMNIGUARD improves harmful prompt classification accuracy by 11.57\% over the strongest baseline in a multilingual setting, by 20.44\% for image-based prompts, and sets a new SOTA for audio-based prompts. By repurposing embeddings computed during generation, OMNIGUARD is also very efficient ($\approx 120 \times$ faster than the next fastest baseline). Code and data are available at: https://github.com/vsahil/OmniGuard.
Exposing the Impact of GenAI for Cybercrime: An Investigation into the Dark Side
In recent years, the rapid advancement and democratization of generative AI models have sparked significant debate over safety, ethical risks, and dual-use concerns, particularly in the context of cybersecurity. While anecdotally known, this paper provides empirical evidence regarding generative AI's association with malicious internet-related activities and cybercrime by examining the phenomenon through psychological frameworks of technological amplification and affordance theory. Using a quasi-experimental design with interrupted time series analysis, we analyze two datasets, one general and one cryptocurrency-focused, to empirically assess generative AI's role in cybercrime. The findings contribute to ongoing discussions about AI governance by balancing control and fostering innovation, underscoring the need for strategies to guide policymakers, inform AI developers and cybersecurity professionals, and educate the public to maximize AI's benefits while mitigating its risks.
The Automated but Risky Game: Modeling Agent-to-Agent Negotiations and Transactions in Consumer Markets
AI agents are increasingly used in consumer-facing applications to assist with tasks such as product search, negotiation, and transaction execution. In this paper, we explore a future scenario where both consumers and merchants authorize AI agents to fully automate negotiations and transactions. We aim to answer two key questions: (1) Do different LLM agents vary in their ability to secure favorable deals for users? (2) What risks arise from fully automating deal-making with AI agents in consumer markets? To address these questions, we develop an experimental framework that evaluates the performance of various LLM agents in real-world negotiation and transaction settings. Our findings reveal that AI-mediated deal-making is an inherently imbalanced game -- different agents achieve significantly different outcomes for their users. Moreover, behavioral anomalies in LLMs can result in financial losses for both consumers and merchants, such as overspending or accepting unreasonable deals. These results underscore that while automation can improve efficiency, it also introduces substantial risks. Users should exercise caution when delegating business decisions to AI agents.
Prompt Engineer: Analyzing Skill Requirements in the AI Job Market
The rise of large language models (LLMs) has created a new job role: the Prompt Engineer. Despite growing interest in this position, we still do not fully understand what skills this new job role requires or how common these jobs are. We analyzed 20,662 job postings on LinkedIn, including 72 prompt engineer positions, to learn more about this emerging role. We found that prompt engineering is still rare (less than 0.5% of sampled job postings) but has a unique skill profile. Prompt engineers need AI knowledge (22.8%), prompt design skills (18.7%), good communication (21.9%), and creative problem-solving (15.8%) skills. These requirements significantly differ from those of established roles, such as data scientists and machine learning engineers, showing that prompt engineering is becoming its own profession. Our findings help job seekers, employers, and educational institutions in better understanding the emerging field of prompt engineering.
comment: 42 pages, 8 figures
Gaze-Enhanced Multimodal Turn-Taking Prediction in Triadic Conversations
Turn-taking prediction is crucial for seamless interactions. This study introduces a novel, lightweight framework for accurate turn-taking prediction in triadic conversations without relying on computationally intensive methods. Unlike prior approaches that either disregard gaze or treat it as a passive signal, our model integrates gaze with speaker localization, structuring it within a spatial constraint to transform it into a reliable predictive cue. Leveraging egocentric behavioral cues, our experiments demonstrate that incorporating gaze data from a single-user significantly improves prediction performance, while gaze data from multiple-users further enhances it by capturing richer conversational dynamics. This study presents a lightweight and privacy-conscious approach to support adaptive, directional sound control, enhancing speech intelligibility in noisy environments, particularly for hearing assistance in smart glasses.
comment: To appear in the Proceedings of Interspeech 2025
Trust-Enabled Privacy: Social Media Designs to Support Adolescent User Boundary Regulation
Adolescents heavily rely on social media to build and maintain close relationships, yet current platform designs often make self-disclosure feel risky or uncomfortable. Through a three-part study involving 19 teens aged 13-18, we identify key barriers to meaningful self-disclosure on social media. Our findings reveal that while these adolescents seek casual, frequent sharing to strengthen relationships, existing platform norms often discourage such interactions. Based on our co-design interview findings, we propose platform design ideas to foster a more dynamic and nuanced privacy experience for teen social media users. We then introduce \textbf{\textit{trust-enabled privacy}} as a framework that recognizes trust -- whether building or eroding -- as central to boundary regulation, and foregrounds the role of platform design in shaping the very norms and interaction patterns that influence how trust unfolds. When trust is supported, boundary regulation becomes more adaptive and empowering; when it erodes, users resort to self-censorship or disengagement. This work provides empirical insights and actionable guidelines for designing social media spaces where teens feel empowered to engage in meaningful relationship-building processes.
From Lived Experience to Insight: Unpacking the Psychological Risks of Using AI Conversational Agents
Recent gains in popularity of AI conversational agents have led to their increased use for improving productivity and supporting well-being. While previous research has aimed to understand the risks associated with interactions with AI conversational agents, these studies often fall short in capturing the lived experiences of individuals. Additionally, psychological risks have often been presented as a sub-category within broader AI-related risks in past taxonomy works, leading to under-representation of the impact of psychological risks of AI use. To address these challenges, our work presents a novel risk taxonomy focusing on psychological risks of using AI gathered through the lived experiences of individuals. We employed a mixed-method approach, involving a comprehensive survey with 283 people with lived mental health experience and workshops involving experts with lived experience to develop a psychological risk taxonomy. Our taxonomy features 19 AI behaviors, 21 negative psychological impacts, and 15 contexts related to individuals. Additionally, we propose a novel multi-path vignette-based framework for understanding the complex interplay between AI behaviors, psychological impacts, and individual user contexts. Finally, based on the feedback obtained from the workshop sessions, we present design recommendations for developing safer and more robust AI agents. Our work offers an in-depth understanding of the psychological risks associated with AI conversational agents and provides actionable recommendations for policymakers, researchers, and developers.
comment: 31 pages, 6 figures, 8 tables; Accepted at ACM FAccT 2025
Argumentative Experience: Reducing Confirmation Bias on Controversial Issues through LLM-Generated Multi-Persona Debates
Large language models (LLMs) are enabling designers to give life to exciting new user experiences for information access. In this work, we present a system that generates LLM personas to debate a topic of interest from different perspectives. How might information seekers use and benefit from such a system? Can centering information access around diverse viewpoints help to mitigate thorny challenges like confirmation bias in which information seekers over-trust search results matching existing beliefs? How do potential biases and hallucinations in LLMs play out alongside human users who are also fallible and possibly biased? Our study exposes participants to multiple viewpoints on controversial issues via a mixed-methods, within-subjects study. We use eye-tracking metrics to quantitatively assess cognitive engagement alongside qualitative feedback. Compared to a baseline search system, we see more creative interactions and diverse information-seeking with our multi-persona debate system, which more effectively reduces user confirmation bias and conviction toward their initial beliefs. Overall, our study contributes to the emerging design space of LLM-based information access systems, specifically investigating the potential of simulated personas to promote greater exposure to information diversity, emulate collective intelligence, and mitigate bias in information seeking.
Robustness-enhanced Myoelectric Control with GAN-based Open-set Recognition
Electromyography (EMG) signals are widely used in human motion recognition and medical rehabilitation, yet their variability and susceptibility to noise significantly limit the reliability of myoelectric control systems. Existing recognition algorithms often fail to handle unfamiliar actions effectively, leading to system instability and errors. This paper proposes a novel framework based on Generative Adversarial Networks (GANs) to enhance the robustness and usability of myoelectric control systems by enabling open-set recognition. The method incorporates a GAN-based discriminator to identify and reject unknown actions, maintaining system stability by preventing misclassifications. Experimental evaluations on publicly available and self-collected datasets demonstrate a recognition accuracy of 97.6\% for known actions and a 23.6\% improvement in Active Error Rate (AER) after rejecting unknown actions. The proposed approach is computationally efficient and suitable for deployment on edge devices, making it practical for real-world applications.
comment: 11 pages, 14 figures
What Should Be Considered to Support well-being with AI: Considerations Based on Responsible Research and Innovation
To achieve people's well-being with AI systems, we should enable each user to be guided to a healthier lifestyle in a way that is appropriate for her or him. However, there is a dilemma between general well-being as defined in academic and medical discussions and the autonomy users should have when deciding how to promote their well-being. In this position paper, we discuss the difficulty for AI application developers to fully consider in the design phase what might happen to the user, taking an example of a running application (app). We sort out the required factors to enable AI apps that support well-being to address the dilemma between unilaterally defined well-being and human autonomy based on the four dimensions required for responsible innovation: inclusion, anticipation, reflexivity, and responsiveness.
Sample-Efficient Human Evaluation of Large Language Models via Maximum Discrepancy Competition ACL 2025
Reliable evaluation of large language models (LLMs) is impeded by two key challenges: objective metrics often fail to reflect human perception of natural language, and exhaustive human labeling is prohibitively expensive. Here, we propose a sample-efficient human evaluation method for LLMs based on the principle of MAximum Discrepancy (MAD) Competition. Our method automatically and adaptively selects a compact set of input instructions that maximize semantic discrepancy between pairs of LLM responses. Human evaluators then perform three-alternative forced choices on these paired responses, which are aggregated into a global ranking using Elo rating. We apply our approach to compare eight widely used LLMs across four tasks: scientific knowledge understanding, mathematical reasoning, creative and functional writing, and code generation and explanation. Experimental results show that our sample-efficient evaluation method recovers "gold-standard" model rankings with a handful of MAD-selected instructions, reveals respective strengths and weaknesses of each LLM, and offers nuanced insights to guide future LLM development. Code is available at https://github.com/weiji-Feng/MAD-Eval .
comment: 35 pages, 6 figures, Accepted by ACL 2025
SOTOPIA-$Ω$: Dynamic Strategy Injection Learning and Social Instruction Following Evaluation for Social Agents ACL 2025
Despite the abundance of prior social strategies possessed by humans, there remains a paucity of research dedicated to their transfer and integration into social agents. Our proposed SOTOPIA-$\Omega$ framework aims to address and bridge this gap, with a particular focus on enhancing the social capabilities of language agents. This framework dynamically injects multi-step reasoning strategies inspired by negotiation theory and two simple direct strategies into expert agents, thereby automating the construction of a high-quality social dialogue training corpus. Additionally, we introduce the concept of Social Instruction Following (S-IF) and propose two new S-IF evaluation metrics that complement social capability. We demonstrate that several 7B models trained on high-quality corpus not only significantly surpass the expert agent (GPT-4) in achieving social goals but also enhance S-IF performance. Analysis and variant experiments validate the advantages of dynamic construction, which can especially break the agent's prolonged deadlock.
comment: Accepted by ACL 2025 (Main Conference)
FlexDuo: A Pluggable System for Enabling Full-Duplex Capabilities in Speech Dialogue Systems
Full-Duplex Speech Dialogue Systems (Full-Duplex SDS) have significantly enhanced the naturalness of human-machine interaction by enabling real-time bidirectional communication. However, existing approaches face challenges such as difficulties in independent module optimization and contextual noise interference due to highly coupled architectural designs and oversimplified binary state modeling. This paper proposes FlexDuo, a flexible full-duplex control module that decouples duplex control from spoken dialogue systems through a plug-and-play architectural design. Furthermore, inspired by human information-filtering mechanisms in conversations, we introduce an explicit Idle state. On one hand, the Idle state filters redundant noise and irrelevant audio to enhance dialogue quality. On the other hand, it establishes a semantic integrity-based buffering mechanism, reducing the risk of mutual interruptions while ensuring accurate response transitions. Experimental results on the Fisher corpus demonstrate that FlexDuo reduces the false interruption rate by 24.9% and improves response accuracy by 7.6% compared to integrated full-duplex dialogue system baselines. It also outperforms voice activity detection (VAD) controlled baseline systems in both Chinese and English dialogue quality. The proposed modular architecture and state-based dialogue model provide a novel technical pathway for building flexible and efficient duplex dialogue systems.
AMEX: Android Multi-annotation Expo Dataset for Mobile GUI Agents
AI agents have drawn increasing attention mostly on their ability to perceive environments, understand tasks, and autonomously achieve goals. To advance research on AI agents in mobile scenarios, we introduce the Android Multi-annotation EXpo (AMEX), a comprehensive, large-scale dataset designed for generalist mobile GUI-control agents which are capable of completing tasks by directly interacting with the graphical user interface (GUI) on mobile devices. AMEX comprises over 104K high-resolution screenshots from popular mobile applications, which are annotated at multiple levels. Unlike existing GUI-related datasets, e.g., Rico, AitW, etc., AMEX includes three levels of annotations: GUI interactive element grounding, GUI screen and element functionality descriptions, and complex natural language instructions with stepwise GUI-action chains. We develop this dataset from a more instructive and detailed perspective, complementing the general settings of existing datasets. Additionally, we finetune a baseline model SPHINX Agent and illustrate the effectiveness of AMEX.The project is available at https://yxchai.com/AMEX/.
Hybrid Deep Learning Model to Estimate Cognitive Effort from fNIRS Signals in Educational Game Playing
This study estimates cognitive effort (CE) based on functional near-infrared spectroscopy (fNIRS) data and performance scores using a hybrid deep learning model. The estimation of CE enables educators to modify material to enhance learning effectiveness and student engagement. Relative neural efficiency (RNE) and relative neural involvement (RNI) are two metrics that have been used to represent CE. To estimate RNE and RNI we need hemodynamic response in the brain and the performance score of a task.We collected oxygenated hemoglobin ($\Delta \mathrm{HbO}$). Sixteen participants answered 16 questions in a unity-based educational game, each with a 30-second response time. We used deep learning models to predict the performance score and estimate RNE and RNI to understand CE. The study compares traditional machine learning techniques with deep learning models such as CNN, LSTM, BiLSTM, and a hybrid CNN-GRU to determine which approach provides better accuracy in predicting performance scores. The result shows that the hybrid CNN-GRU gives better performance with 78.36\% training accuracy and 73.08\% test accuracy than other models. We performed XGBoost on the extracted GRU feature and got the highest accuracy (69.23\%). This suggests that the features learned from this hybrid model generalize better even in traditional machine learning algorithms. We used the $\Delta \mathrm{HbO}$ and predicted score to calculate RNE and RNI to observe cognitive effort in our four test cases. Our result shows that even with moderate accuracy, the predicted RNE and RNI closely follows the actual trends. we also observed that when participants were in a state of high CE, introducing rest led decrease of CE. These findings can be helpful to design and improve learning environments and provide valuable insights in learning materials.
Leveraging Complementary AI Explanations to Mitigate Misunderstanding in XAI
Artificial intelligence explanations can make complex predictive models more comprehensible. To be effective, however, they should anticipate and mitigate possible misinterpretations, e.g., arising when users infer incorrect information that is not explicitly conveyed. To this end, we propose complementary explanations -- a novel method that pairs explanations to compensate for their respective limitations. A complementary explanation adds insights that clarify potential misconceptions stemming from the primary explanation while ensuring their coherency and avoiding redundancy. We introduce a framework for designing and evaluating complementary explanation pairs based on pertinent qualitative properties and quantitative metrics. Our approach allows to construct complementary explanations that minimise the chance of their misinterpretation.
comment: Accepted to IEEE Swiss Conference on Data Science (SDS) 2025
Functional Near-Infrared Spectroscopy (fNIRS) Analysis of Interaction Techniques in Touchscreen-Based Educational Gaming
Educational games enhance learning experiences by integrating touchscreens, making interactions more engaging and intuitive for learners. However, the cognitive impacts of educational game-play input modalities, such as the hand and stylus technique, are unclear. We compared the experience of using hands vs. a stylus for touchscreens while playing an educational game by analyzing oxygenated hemoglobin collected by functional Near-Infrared Spectroscopy and self-reported measures. In addition, we measured the hand vs. the stylus modalities of the task and calculated the relative neural efficiency and relative neural involvement using the mental demand and the quiz score. Our findings show that the hand condition had a significantly lower neural involvement, yet higher neural efficiency than the stylus condition. This result suggests the requirement of less cognitive effort while using the hand. Additionally, the self-reported measures show significant differences, and the results suggest that hand-based input is more intuitive, less cognitively demanding, and less frustrating. Conversely, the use of a stylus required higher cognitive effort due to the cognitive balance of controlling the pen and answering questions. These findings highlight the importance of designing educational games that allow learners to engage with the system while minimizing cognitive effort.
Multimedia
PixelThink: Towards Efficient Chain-of-Pixel Reasoning
Existing reasoning segmentation approaches typically fine-tune multimodal large language models (MLLMs) using image-text pairs and corresponding mask labels. However, they exhibit limited generalization to out-of-distribution scenarios without an explicit reasoning process. Although recent efforts leverage reinforcement learning through group-relative policy optimization (GRPO) to enhance reasoning ability, they often suffer from overthinking - producing uniformly verbose reasoning chains irrespective of task complexity. This results in elevated computational costs and limited control over reasoning quality. To address this problem, we propose PixelThink, a simple yet effective scheme that integrates externally estimated task difficulty and internally measured model uncertainty to regulate reasoning generation within a reinforcement learning paradigm. The model learns to compress reasoning length in accordance with scene complexity and predictive confidence. To support comprehensive evaluation, we introduce ReasonSeg-Diff, an extended benchmark with annotated reasoning references and difficulty scores, along with a suite of metrics designed to assess segmentation accuracy, reasoning quality, and efficiency jointly. Experimental results demonstrate that the proposed approach improves both reasoning efficiency and overall segmentation performance. Our work contributes novel perspectives towards efficient and interpretable multimodal understanding. The code and model will be publicly available.
comment: Project Page: https://PixelThink.github.io
Weakly-supervised Localization of Manipulated Image Regions Using Multi-resolution Learned Features
The explosive growth of digital images and the widespread availability of image editing tools have made image manipulation detection an increasingly critical challenge. Current deep learning-based manipulation detection methods excel in achieving high image-level classification accuracy, they often fall short in terms of interpretability and localization of manipulated regions. Additionally, the absence of pixel-wise annotations in real-world scenarios limits the existing fully-supervised manipulation localization techniques. To address these challenges, we propose a novel weakly-supervised approach that integrates activation maps generated by image-level manipulation detection networks with segmentation maps from pre-trained models. Specifically, we build on our previous image-level work named WCBnet to produce multi-view feature maps which are subsequently fused for coarse localization. These coarse maps are then refined using detailed segmented regional information provided by pre-trained segmentation models (such as DeepLab, SegmentAnything and PSPnet), with Bayesian inference employed to enhance the manipulation localization. Experimental results demonstrate the effectiveness of our approach, highlighting the feasibility to localize image manipulations without relying on pixel-level labels.
comment: This paper was presented at the British Machine Vision Conference 2024 workshop on Media authenticity in the age of artificial intelligence
CMIE: Combining MLLM Insights with External Evidence for Explainable Out-of-Context Misinformation Detection
Multimodal large language models (MLLMs) have demonstrated impressive capabilities in visual reasoning and text generation. While previous studies have explored the application of MLLM for detecting out-of-context (OOC) misinformation, our empirical analysis reveals two persisting challenges of this paradigm. Evaluating the representative GPT-4o model on direct reasoning and evidence augmented reasoning, results indicate that MLLM struggle to capture the deeper relationships-specifically, cases in which the image and text are not directly connected but are associated through underlying semantic links. Moreover, noise in the evidence further impairs detection accuracy. To address these challenges, we propose CMIE, a novel OOC misinformation detection framework that incorporates a Coexistence Relationship Generation (CRG) strategy and an Association Scoring (AS) mechanism. CMIE identifies the underlying coexistence relationships between images and text, and selectively utilizes relevant evidence to enhance misinformation detection. Experimental results demonstrate that our approach outperforms existing methods.
Unsupervised Transcript-assisted Video Summarization and Highlight Detection
Video consumption is a key part of daily life, but watching entire videos can be tedious. To address this, researchers have explored video summarization and highlight detection to identify key video segments. While some works combine video frames and transcripts, and others tackle video summarization and highlight detection using Reinforcement Learning (RL), no existing work, to the best of our knowledge, integrates both modalities within an RL framework. In this paper, we propose a multimodal pipeline that leverages video frames and their corresponding transcripts to generate a more condensed version of the video and detect highlights using a modality fusion mechanism. The pipeline is trained within an RL framework, which rewards the model for generating diverse and representative summaries while ensuring the inclusion of video segments with meaningful transcript content. The unsupervised nature of the training allows for learning from large-scale unannotated datasets, overcoming the challenge posed by the limited size of existing annotated datasets. Our experiments show that using the transcript in video summarization and highlight detection achieves superior results compared to relying solely on the visual content of the video.
EmotionTalk: An Interactive Chinese Multimodal Emotion Dataset With Rich Annotations
In recent years, emotion recognition plays a critical role in applications such as human-computer interaction, mental health monitoring, and sentiment analysis. While datasets for emotion analysis in languages such as English have proliferated, there remains a pressing need for high-quality, comprehensive datasets tailored to the unique linguistic, cultural, and multimodal characteristics of Chinese. In this work, we propose \textbf{EmotionTalk}, an interactive Chinese multimodal emotion dataset with rich annotations. This dataset provides multimodal information from 19 actors participating in dyadic conversational settings, incorporating acoustic, visual, and textual modalities. It includes 23.6 hours of speech (19,250 utterances), annotations for 7 utterance-level emotion categories (happy, surprise, sad, disgust, anger, fear, and neutral), 5-dimensional sentiment labels (negative, weakly negative, neutral, weakly positive, and positive) and 4-dimensional speech captions (speaker, speaking style, emotion and overall). The dataset is well-suited for research on unimodal and multimodal emotion recognition, missing modality challenges, and speech captioning tasks. To our knowledge, it represents the first high-quality and versatile Chinese dialogue multimodal emotion dataset, which is a valuable contribution to research on cross-cultural emotion analysis and recognition. Additionally, we conduct experiments on EmotionTalk to demonstrate the effectiveness and quality of the dataset. It will be open-source and freely available for all academic purposes. The dataset and codes will be made available at: https://github.com/NKU-HLT/EmotionTalk.
Visatronic: A Multimodal Decoder-Only Model for Speech Synthesis
The rapid progress of foundation models and large language models (LLMs) has fueled significantly improvement in the capabilities of machine learning systems that benefit from mutlimodal input data. However, existing multimodal models are predominantly built on top of pre-trained LLMs, which can limit accurate modeling of temporal dependencies across other modalities and thus limit the model's ability to jointly process and leverage multimodal inputs. To specifically investigate the alignment of text, video, and speech modalities in LLM-style (decoder-only) models, we consider a simplified multimodal generation task, Video-Text to Speech (VTTS): speech generation conditioned on both its corresponding text and video of talking people. The ultimate goal is to generate speech that not only follows the text but also aligns temporally with the video and is consistent with the facial expressions. In this paper, we first introduce Visatronic, a unified multimodal decoder-only transformer model that adopts an LLM-style architecture to embed visual, textual, and speech inputs into a shared subspace, treating all modalities as temporally aligned token streams. Next, we carefully explore different token mixing strategies to understand the best way to propagate information from the steps where video and text conditioning is input to the steps where the audio is generated. We extensively evaluate Visatronic on the challenging VoxCeleb2 dataset and demonstrate zero-shot generalization to LRS3, where Visatronic, trained on VoxCeleb2, achieves a 4.5% WER, outperforming prior SOTA methods trained only on LRS3, which report a 21.4% WER. Additionally, we propose a new objective metric, TimeSync, specifically designed to measure phoneme-level temporal alignment between generated and reference speech, further ensuring synchronization quality. Demo: https://apple.github.io/visatronic-demo/
Nexus: An Omni-Perceptive And -Interactive Model for Language, Audio, And Vision
This work proposes an industry-level omni-modal large language model (LLM) pipeline that integrates auditory, visual, and linguistic modalities to overcome challenges such as limited tri-modal datasets, high computational costs, and complex feature alignments. Our pipeline consists of three main components: First, a modular framework enabling flexible configuration of various encoder-LLM-decoder architectures. Second, a lightweight training strategy that pre-trains audio-language alignment on the state-of-the-art vision-language model Qwen2.5-VL, thus avoiding the costly pre-training of vision-specific modalities. Third, an audio synthesis pipeline that generates high-quality audio-text data from diverse real-world scenarios, supporting applications such as Automatic Speech Recognition and Speech-to-Speech chat. To this end, we introduce an industry-level omni-modal LLM, Nexus. Extensive experiments validate the efficacy of our pipeline, yielding the following key findings:(1) In the visual understanding task, Nexus exhibits superior performance compared with its backbone model - Qwen2.5-VL-7B, validating the efficiency of our training strategy. (2) Within the English Spoken Question-Answering task, the model achieves better accuracy than the same-period competitor (i.e, MiniCPM-o2.6-7B) in the LLaMA Q. benchmark. (3) In our real-world ASR testset, Nexus achieves outstanding performance, indicating its robustness in real scenarios. (4) In the Speech-to-Text Translation task, our model outperforms Qwen2-Audio-Instruct-7B. (5) In the Text-to-Speech task, based on pretrained vocoder (e.g., Fishspeech1.4 or CosyVoice2.0), Nexus is comparable to its backbone vocoder on Seed-TTS benchmark. (6) An in-depth analysis of tri-modal alignment reveals that incorporating the audio modality enhances representational alignment between vision and language.
BioVL-QR: Egocentric Biochemical Vision-and-Language Dataset Using Micro QR Codes ICIP2025
This paper introduces BioVL-QR, a biochemical vision-and-language dataset comprising 23 egocentric experiment videos, corresponding protocols, and vision-and-language alignments. A major challenge in understanding biochemical videos is detecting equipment, reagents, and containers because of the cluttered environment and indistinguishable objects. Previous studies assumed manual object annotation, which is costly and time-consuming. To address the issue, we focus on Micro QR Codes. However, detecting objects using only Micro QR Codes is still difficult due to blur and occlusion caused by object manipulation. To overcome this, we propose an object labeling method combining a Micro QR Code detector with an off-the-shelf hand object detector. As an application of the method and BioVL-QR, we tackled the task of localizing the procedural steps in an instructional video. The experimental results show that using Micro QR Codes and our method improves biochemical video understanding. Data and code are available through https://nishi10mo.github.io/BioVL-QR/
comment: ICIP2025
Multimodal Inverse Attention Network with Intrinsic Discriminant Feature Exploitation for Fake News Detection
Multimodal fake news detection has garnered significant attention due to its profound implications for social security. While existing approaches have contributed to understanding cross-modal consistency, they often fail to leverage modal-specific representations and explicit discrepant features. To address these limitations, we propose a Multimodal Inverse Attention Network (MIAN), a novel framework that explores intrinsic discriminative features based on news content to advance fake news detection. Specifically, MIAN introduces a hierarchical learning module that captures diverse intra-modal relationships through local-to-global and local-to-local interactions, thereby generating enhanced unimodal representations to improve the identification of fake news at the intra-modal level. Additionally, a cross-modal interaction module employs a co-attention mechanism to establish and model dependencies between the refined unimodal representations, facilitating seamless semantic integration across modalities. To explicitly extract inconsistency features, we propose an inverse attention mechanism that effectively highlights the conflicting patterns and semantic deviations introduced by fake news in both intra- and inter-modality. Extensive experiments on benchmark datasets demonstrate that MIAN significantly outperforms state-of-the-art methods, underscoring its pivotal contribution to advancing social security through enhanced multimodal fake news detection.
comment: 13 pages, 6 figures
Audio Visual Segmentation Through Text Embeddings
The goal of Audio-Visual Segmentation (AVS) is to localize and segment the sounding source objects from video frames. Research on AVS suffers from data scarcity due to the high cost of fine-grained manual annotations. Recent works attempt to overcome the challenge of limited data by leveraging the vision foundation model, Segment Anything Model (SAM), prompting it with audio to enhance its ability to segment sounding source objects. While this approach alleviates the model's burden on understanding visual modality by utilizing knowledge of pre-trained SAM, it does not address the fundamental challenge of learning audio-visual correspondence with limited data. To address this limitation, we propose \textbf{AV2T-SAM}, a novel framework that bridges audio features with the text embedding space of pre-trained text-prompted SAM. Our method leverages multimodal correspondence learned from rich text-image paired datasets to enhance audio-visual alignment. Furthermore, we introduce a novel feature, $\mathbf{\textit{\textbf{f}}_{CLIP} \odot \textit{\textbf{f}}_{CLAP}}$, which emphasizes shared semantics of audio and visual modalities while filtering irrelevant noise. Our approach outperforms existing methods on the AVSBench dataset by effectively utilizing pre-trained segmentation models and cross-modal semantic alignment. The source code is released at https://github.com/bok-bok/AV2T-SAM.
Promptus: Can Prompts Streaming Replace Video Streaming with Stable Diffusion
With the exponential growth of video traffic, traditional video streaming systems are approaching their limits in compression efficiency and communication capacity. To further reduce bitrate while maintaining quality, we propose Promptus, a disruptive semantic communication system that streaming prompts instead of video content, which represents real-world video frames with a series of "prompts" for delivery and employs Stable Diffusion to generate videos at the receiver. To ensure that the generated video is pixel-aligned with the original video, a gradient descent-based prompt fitting framework is proposed. Further, a low-rank decomposition-based bitrate control algorithm is introduced to achieve adaptive bitrate. For inter-frame compression, an interpolation-aware fitting algorithm is proposed. Evaluations across various video genres demonstrate that, compared to H.265, Promptus can achieve more than a 4x bandwidth reduction while preserving the same perceptual quality. On the other hand, at extremely low bitrates, Promptus can enhance the perceptual quality by 0.139 and 0.118 (in LPIPS) compared to VAE and H.265, respectively, and decreases the ratio of severely distorted frames by 89.3% and 91.7%. Our work opens up a new paradigm for efficient video communication. Promptus is open-sourced at: https://github.com/JiangkaiWu/Promptus.
AMEX: Android Multi-annotation Expo Dataset for Mobile GUI Agents
AI agents have drawn increasing attention mostly on their ability to perceive environments, understand tasks, and autonomously achieve goals. To advance research on AI agents in mobile scenarios, we introduce the Android Multi-annotation EXpo (AMEX), a comprehensive, large-scale dataset designed for generalist mobile GUI-control agents which are capable of completing tasks by directly interacting with the graphical user interface (GUI) on mobile devices. AMEX comprises over 104K high-resolution screenshots from popular mobile applications, which are annotated at multiple levels. Unlike existing GUI-related datasets, e.g., Rico, AitW, etc., AMEX includes three levels of annotations: GUI interactive element grounding, GUI screen and element functionality descriptions, and complex natural language instructions with stepwise GUI-action chains. We develop this dataset from a more instructive and detailed perspective, complementing the general settings of existing datasets. Additionally, we finetune a baseline model SPHINX Agent and illustrate the effectiveness of AMEX.The project is available at https://yxchai.com/AMEX/.
Interpreting the linear structure of vision-language model embedding spaces
Vision-language models encode images and text in a joint space, minimizing the distance between corresponding image and text pairs. How are language and images organized in this joint space, and how do the models encode meaning and modality? To investigate this, we train and release sparse autoencoders (SAEs) on the embedding spaces of four vision-language models (CLIP, SigLIP, SigLIP2, and AIMv2). SAEs approximate model embeddings as sparse linear combinations of learned directions, or "concepts". We find that, compared to other methods of linear feature learning, SAEs are better at reconstructing the real embeddings, while also able to retain the most sparsity. Retraining SAEs with different seeds or different data diet leads to two findings: the rare, specific concepts captured by the SAEs are liable to change drastically, but we also show that the key commonly-activating concepts extracted by SAEs are remarkably stable across runs. Interestingly, while most concepts are strongly unimodal in activation, we find they are not merely encoding modality per se. Many lie close to - but not entirely within - the subspace defining modality, suggesting that they encode cross-modal semantics despite their unimodal usage. To quantify this bridging behavior, we introduce the Bridge Score, a metric that identifies concept pairs which are both co-activated across aligned image-text inputs and geometrically aligned in the shared space. This reveals that even unimodal concepts can collaborate to support cross-modal integration. We release interactive demos of the SAEs for all models, allowing researchers to explore the organization of the concept spaces. Overall, our findings uncover a sparse linear structure within VLM embedding spaces that is shaped by modality, yet stitched together through latent bridges-offering new insight into how multimodal meaning is constructed.
Computer Vision and Pattern Recognition
Zero-Shot Vision Encoder Grafting via LLM Surrogates
Vision language models (VLMs) typically pair a modestly sized vision encoder with a large language model (LLM), e.g., Llama-70B, making the decoder the primary computational burden during training. To reduce costs, a potential promising strategy is to first train the vision encoder using a small language model before transferring it to the large one. We construct small "surrogate models" that share the same embedding space and representation language as the large target LLM by directly inheriting its shallow layers. Vision encoders trained on the surrogate can then be directly transferred to the larger model, a process we call zero-shot grafting -- when plugged directly into the full-size target LLM, the grafted pair surpasses the encoder-surrogate pair and, on some benchmarks, even performs on par with full decoder training with the target LLM. Furthermore, our surrogate training approach reduces overall VLM training costs by ~45% when using Llama-70B as the decoder.
comment: 15 pages
Training Free Stylized Abstraction
Stylized abstraction synthesizes visually exaggerated yet semantically faithful representations of subjects, balancing recognizability with perceptual distortion. Unlike image-to-image translation, which prioritizes structural fidelity, stylized abstraction demands selective retention of identity cues while embracing stylistic divergence, especially challenging for out-of-distribution individuals. We propose a training-free framework that generates stylized abstractions from a single image using inference-time scaling in vision-language models (VLLMs) to extract identity-relevant features, and a novel cross-domain rectified flow inversion strategy that reconstructs structure based on style-dependent priors. Our method adapts structural restoration dynamically through style-aware temporal scheduling, enabling high-fidelity reconstructions that honor both subject and style. It supports multi-round abstraction-aware generation without fine-tuning. To evaluate this task, we introduce StyleBench, a GPT-based human-aligned metric suited for abstract styles where pixel-level similarity fails. Experiments across diverse abstraction (e.g., LEGO, knitted dolls, South Park) show strong generalization to unseen identities and styles in a fully open-source setup.
comment: Project Page: https://kartik-3004.github.io/TF-SA/
3DLLM-Mem: Long-Term Spatial-Temporal Memory for Embodied 3D Large Language Model
Humans excel at performing complex tasks by leveraging long-term memory across temporal and spatial experiences. In contrast, current Large Language Models (LLMs) struggle to effectively plan and act in dynamic, multi-room 3D environments. We posit that part of this limitation is due to the lack of proper 3D spatial-temporal memory modeling in LLMs. To address this, we first introduce 3DMem-Bench, a comprehensive benchmark comprising over 26,000 trajectories and 2,892 embodied tasks, question-answering and captioning, designed to evaluate an agent's ability to reason over long-term memory in 3D environments. Second, we propose 3DLLM-Mem, a novel dynamic memory management and fusion model for embodied spatial-temporal reasoning and actions in LLMs. Our model uses working memory tokens, which represents current observations, as queries to selectively attend to and fuse the most useful spatial and temporal features from episodic memory, which stores past observations and interactions. Our approach allows the agent to focus on task-relevant information while maintaining memory efficiency in complex, long-horizon environments. Experimental results demonstrate that 3DLLM-Mem achieves state-of-the-art performance across various tasks, outperforming the strongest baselines by 16.5% in success rate on 3DMem-Bench's most challenging in-the-wild embodied tasks.
comment: demos at: https://3dllm-mem.github.io
VScan: Rethinking Visual Token Reduction for Efficient Large Vision-Language Models
Recent Large Vision-Language Models (LVLMs) have advanced multi-modal understanding by incorporating finer-grained visual perception and encoding. However, such methods incur significant computational costs due to longer visual token sequences, posing challenges for real-time deployment. To mitigate this, prior studies have explored pruning unimportant visual tokens either at the output layer of the visual encoder or at the early layers of the language model. In this work, we revisit these design choices and reassess their effectiveness through comprehensive empirical studies of how visual tokens are processed throughout the visual encoding and language decoding stages. Guided by these insights, we propose VScan, a two-stage visual token reduction framework that addresses token redundancy by: (1) integrating complementary global and local scans with token merging during visual encoding, and (2) introducing pruning at intermediate layers of the language model. Extensive experimental results across four LVLMs validate the effectiveness of VScan in accelerating inference and demonstrate its superior performance over current state-of-the-arts on sixteen benchmarks. Notably, when applied to LLaVA-NeXT-7B, VScan achieves a 2.91$\times$ speedup in prefilling and a 10$\times$ reduction in FLOPs, while retaining 95.4% of the original performance.
Sherlock: Self-Correcting Reasoning in Vision-Language Models
Reasoning Vision-Language Models (VLMs) have shown promising performance on complex multimodal tasks. However, they still face significant challenges: they are highly sensitive to reasoning errors, require large volumes of annotated data or accurate verifiers, and struggle to generalize beyond specific domains. To address these limitations, we explore self-correction as a strategy to enhance reasoning VLMs. We first conduct an in-depth analysis of reasoning VLMs' self-correction abilities and identify key gaps. Based on our findings, we introduce Sherlock, a self-correction and self-improvement training framework. Sherlock introduces a trajectory-level self-correction objective, a preference data construction method based on visual perturbation, and a dynamic $\beta$ for preference tuning. Once the model acquires self-correction capabilities using only 20k randomly sampled annotated data, it continues to self-improve without external supervision. Built on the Llama3.2-Vision-11B model, Sherlock achieves remarkable results across eight benchmarks, reaching an average accuracy of 64.1 with direct generation and 65.4 after self-correction. It outperforms LLaVA-CoT (63.2), Mulberry (63.9), and LlamaV-o1 (63.4) while using less than 20% of the annotated data.
comment: 27 pages
Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation
Audio-driven human animation methods, such as talking head and talking body generation, have made remarkable progress in generating synchronized facial movements and appealing visual quality videos. However, existing methods primarily focus on single human animation and struggle with multi-stream audio inputs, facing incorrect binding problems between audio and persons. Additionally, they exhibit limitations in instruction-following capabilities. To solve this problem, in this paper, we propose a novel task: Multi-Person Conversational Video Generation, and introduce a new framework, MultiTalk, to address the challenges during multi-person generation. Specifically, for audio injection, we investigate several schemes and propose the Label Rotary Position Embedding (L-RoPE) method to resolve the audio and person binding problem. Furthermore, during training, we observe that partial parameter training and multi-task training are crucial for preserving the instruction-following ability of the base model. MultiTalk achieves superior performance compared to other methods on several datasets, including talking head, talking body, and multi-person datasets, demonstrating the powerful generation capabilities of our approach.
comment: Homepage: https://meigen-ai.github.io/multi-talk Github: https://github.com/MeiGen-AI/MultiTalk
SPIRAL: Semantic-Aware Progressive LiDAR Scene Generation
Leveraging recent diffusion models, LiDAR-based large-scale 3D scene generation has achieved great success. While recent voxel-based approaches can generate both geometric structures and semantic labels, existing range-view methods are limited to producing unlabeled LiDAR scenes. Relying on pretrained segmentation models to predict the semantic maps often results in suboptimal cross-modal consistency. To address this limitation while preserving the advantages of range-view representations, such as computational efficiency and simplified network design, we propose Spiral, a novel range-view LiDAR diffusion model that simultaneously generates depth, reflectance images, and semantic maps. Furthermore, we introduce novel semantic-aware metrics to evaluate the quality of the generated labeled range-view data. Experiments on the SemanticKITTI and nuScenes datasets demonstrate that Spiral achieves state-of-the-art performance with the smallest parameter size, outperforming two-step methods that combine the generative and segmentation models. Additionally, we validate that range images generated by Spiral can be effectively used for synthetic data augmentation in the downstream segmentation training, significantly reducing the labeling effort on LiDAR data.
ObjectClear: Complete Object Removal via Object-Effect Attention
Object removal requires eliminating not only the target object but also its effects, such as shadows and reflections. However, diffusion-based inpainting methods often produce artifacts, hallucinate content, alter background, and struggle to remove object effects accurately. To address this challenge, we introduce a new dataset for OBject-Effect Removal, named OBER, which provides paired images with and without object effects, along with precise masks for both objects and their associated visual artifacts. The dataset comprises high-quality captured and simulated data, covering diverse object categories and complex multi-object scenes. Building on OBER, we propose a novel framework, ObjectClear, which incorporates an object-effect attention mechanism to guide the model toward the foreground removal regions by learning attention masks, effectively decoupling foreground removal from background reconstruction. Furthermore, the predicted attention map enables an attention-guided fusion strategy during inference, greatly preserving background details. Extensive experiments demonstrate that ObjectClear outperforms existing methods, achieving improved object-effect removal quality and background fidelity, especially in complex scenarios.
comment: Project page: https://zjx0101.github.io/projects/ObjectClear/
Spatial Knowledge Graph-Guided Multimodal Synthesis
Recent advances in multimodal large language models (MLLMs) have significantly enhanced their capabilities; however, their spatial perception abilities remain a notable limitation. To address this challenge, multimodal data synthesis offers a promising solution. Yet, ensuring that synthesized data adhere to spatial common sense is a non-trivial task. In this work, we introduce SKG2Data, a novel multimodal synthesis approach guided by spatial knowledge graphs, grounded in the concept of knowledge-to-data generation. SKG2Data automatically constructs a Spatial Knowledge Graph (SKG) to emulate human-like perception of spatial directions and distances, which is subsequently utilized to guide multimodal data synthesis. Extensive experiments demonstrate that data synthesized from diverse types of spatial knowledge, including direction and distance, not only enhance the spatial perception and reasoning abilities of MLLMs but also exhibit strong generalization capabilities. We hope that the idea of knowledge-based data synthesis can advance the development of spatial intelligence.
comment: Ongoing work
Chain-of-Talkers (CoTalk): Fast Human Annotation of Dense Image Captions
While densely annotated image captions significantly facilitate the learning of robust vision-language alignment, methodologies for systematically optimizing human annotation efforts remain underexplored. We introduce Chain-of-Talkers (CoTalk), an AI-in-the-loop methodology designed to maximize the number of annotated samples and improve their comprehensiveness under fixed budget constraints (e.g., total human annotation time). The framework is built upon two key insights. First, sequential annotation reduces redundant workload compared to conventional parallel annotation, as subsequent annotators only need to annotate the ``residual'' -- the missing visual information that previous annotations have not covered. Second, humans process textual input faster by reading while outputting annotations with much higher throughput via talking; thus a multimodal interface enables optimized efficiency. We evaluate our framework from two aspects: intrinsic evaluations that assess the comprehensiveness of semantic units, obtained by parsing detailed captions into object-attribute trees and analyzing their effective connections; extrinsic evaluation measures the practical usage of the annotated captions in facilitating vision-language alignment. Experiments with eight participants show our Chain-of-Talkers (CoTalk) improves annotation speed (0.42 vs. 0.30 units/sec) and retrieval performance (41.13\% vs. 40.52\%) over the parallel method.
PS4PRO: Pixel-to-pixel Supervision for Photorealistic Rendering and Optimization CVPR 2025
Neural rendering methods have gained significant attention for their ability to reconstruct 3D scenes from 2D images. The core idea is to take multiple views as input and optimize the reconstructed scene by minimizing the uncertainty in geometry and appearance across the views. However, the reconstruction quality is limited by the number of input views. This limitation is further pronounced in complex and dynamic scenes, where certain angles of objects are never seen. In this paper, we propose to use video frame interpolation as the data augmentation method for neural rendering. Furthermore, we design a lightweight yet high-quality video frame interpolation model, PS4PRO (Pixel-to-pixel Supervision for Photorealistic Rendering and Optimization). PS4PRO is trained on diverse video datasets, implicitly modeling camera movement as well as real-world 3D geometry. Our model performs as an implicit world prior, enriching the photo supervision for 3D reconstruction. By leveraging the proposed method, we effectively augment existing datasets for neural rendering methods. Our experimental results indicate that our method improves the reconstruction performance on both static and dynamic scenes.
comment: Accepted to the CVPR 2025 Workshop on Autonomous Driving (WAD)
RICO: Improving Accuracy and Completeness in Image Recaptioning via Visual Reconstruction
Image recaptioning is widely used to generate training datasets with enhanced quality for various multimodal tasks. Existing recaptioning methods typically rely on powerful multimodal large language models (MLLMs) to enhance textual descriptions, but often suffer from inaccuracies due to hallucinations and incompleteness caused by missing fine-grained details. To address these limitations, we propose RICO, a novel framework that refines captions through visual reconstruction. Specifically, we leverage a text-to-image model to reconstruct a caption into a reference image, and prompt an MLLM to identify discrepancies between the original and reconstructed images to refine the caption. This process is performed iteratively, further progressively promoting the generation of more faithful and comprehensive descriptions. To mitigate the additional computational cost induced by the iterative process, we introduce RICO-Flash, which learns to generate captions like RICO using DPO. Extensive experiments demonstrate that our approach significantly improves caption accuracy and completeness, outperforms most baselines by approximately 10% on both CapsBench and CompreCap. Code released at https://github.com/wangyuchi369/RICO.
comment: code: https://github.com/wangyuchi369/RICO
Chest Disease Detection In X-Ray Images Using Deep Learning Classification Method
In this work, we investigate the performance across multiple classification models to classify chest X-ray images into four categories of COVID-19, pneumonia, tuberculosis (TB), and normal cases. We leveraged transfer learning techniques with state-of-the-art pre-trained Convolutional Neural Networks (CNNs) models. We fine-tuned these pre-trained architectures on a labeled medical x-ray images. The initial results are promising with high accuracy and strong performance in key classification metrics such as precision, recall, and F1 score. We applied Gradient-weighted Class Activation Mapping (Grad-CAM) for model interpretability to provide visual explanations for classification decisions, improving trust and transparency in clinical applications.
Adversarially Robust AI-Generated Image Detection for Free: An Information Theoretic Perspective
Rapid advances in Artificial Intelligence Generated Images (AIGI) have facilitated malicious use, such as forgery and misinformation. Therefore, numerous methods have been proposed to detect fake images. Although such detectors have been proven to be universally vulnerable to adversarial attacks, defenses in this field are scarce. In this paper, we first identify that adversarial training (AT), widely regarded as the most effective defense, suffers from performance collapse in AIGI detection. Through an information-theoretic lens, we further attribute the cause of collapse to feature entanglement, which disrupts the preservation of feature-label mutual information. Instead, standard detectors show clear feature separation. Motivated by this difference, we propose Training-free Robust Detection via Information-theoretic Measures (TRIM), the first training-free adversarial defense for AIGI detection. TRIM builds on standard detectors and quantifies feature shifts using prediction entropy and KL divergence. Extensive experiments across multiple datasets and attacks validate the superiority of our TRIM, e.g., outperforming the state-of-the-art defense by 33.88% (28.91%) on ProGAN (GenImage), while well maintaining original accuracy.
SAM-R1: Leveraging SAM for Reward Feedback in Multimodal Segmentation via Reinforcement Learning
Leveraging multimodal large models for image segmentation has become a prominent research direction. However, existing approaches typically rely heavily on manually annotated datasets that include explicit reasoning processes, which are costly and time-consuming to produce. Recent advances suggest that reinforcement learning (RL) can endow large models with reasoning capabilities without requiring such reasoning-annotated data. In this paper, we propose SAM-R1, a novel framework that enables multimodal large models to perform fine-grained reasoning in image understanding tasks. Our approach is the first to incorporate fine-grained segmentation settings during the training of multimodal reasoning models. By integrating task-specific, fine-grained rewards with a tailored optimization objective, we further enhance the model's reasoning and segmentation alignment. We also leverage the Segment Anything Model (SAM) as a strong and flexible reward provider to guide the learning process. With only 3k training samples, SAM-R1 achieves strong performance across multiple benchmarks, demonstrating the effectiveness of reinforcement learning in equipping multimodal models with segmentation-oriented reasoning capabilities.
Comparative Analysis of Machine Learning Models for Lung Cancer Mutation Detection and Staging Using 3D CT Scans
Lung cancer is the leading cause of cancer mortality worldwide, and non-invasive methods for detecting key mutations and staging are essential for improving patient outcomes. Here, we compare the performance of two machine learning models - FMCIB+XGBoost, a supervised model with domain-specific pretraining, and Dinov2+ABMIL, a self-supervised model with attention-based multiple-instance learning - on 3D lung nodule data from the Stanford Radiogenomics and Lung-CT-PT-Dx cohorts. In the task of KRAS and EGFR mutation detection, FMCIB+XGBoost consistently outperformed Dinov2+ABMIL, achieving accuracies of 0.846 and 0.883 for KRAS and EGFR mutations, respectively. In cancer staging, Dinov2+ABMIL demonstrated competitive generalization, achieving an accuracy of 0.797 for T-stage prediction in the Lung-CT-PT-Dx cohort, suggesting SSL's adaptability across diverse datasets. Our results emphasize the clinical utility of supervised models in mutation detection and highlight the potential of SSL to improve staging generalization, while identifying areas for enhancement in mutation sensitivity.
Tell me Habibi, is it Real or Fake?
Deepfake generation methods are evolving fast, making fake media harder to detect and raising serious societal concerns. Most deepfake detection and dataset creation research focuses on monolingual content, often overlooking the challenges of multilingual and code-switched speech, where multiple languages are mixed within the same discourse. Code-switching, especially between Arabic and English, is common in the Arab world and is widely used in digital communication. This linguistic mixing poses extra challenges for deepfake detection, as it can confuse models trained mostly on monolingual data. To address this, we introduce \textbf{ArEnAV}, the first large-scale Arabic-English audio-visual deepfake dataset featuring intra-utterance code-switching, dialectal variation, and monolingual Arabic content. It \textbf{contains 387k videos and over 765 hours of real and fake videos}. Our dataset is generated using a novel pipeline integrating four Text-To-Speech and two lip-sync models, enabling comprehensive analysis of multilingual multimodal deepfake detection. We benchmark our dataset against existing monolingual and multilingual datasets, state-of-the-art deepfake detection models, and a human evaluation, highlighting its potential to advance deepfake research. The dataset can be accessed \href{https://huggingface.co/datasets/kartik060702/ArEnAV-Full}{here}.
comment: 9 pages, 2 figures, 12 tables
ImageReFL: Balancing Quality and Diversity in Human-Aligned Diffusion Models
Recent advances in diffusion models have led to impressive image generation capabilities, but aligning these models with human preferences remains challenging. Reward-based fine-tuning using models trained on human feedback improves alignment but often harms diversity, producing less varied outputs. In this work, we address this trade-off with two contributions. First, we introduce \textit{combined generation}, a novel sampling strategy that applies a reward-tuned diffusion model only in the later stages of the generation process, while preserving the base model for earlier steps. This approach mitigates early-stage overfitting and helps retain global structure and diversity. Second, we propose \textit{ImageReFL}, a fine-tuning method that improves image diversity with minimal loss in quality by training on real images and incorporating multiple regularizers, including diffusion and ReFL losses. Our approach outperforms conventional reward tuning methods on standard quality and diversity metrics. A user study further confirms that our method better balances human preference alignment and visual diversity. The source code can be found at https://github.com/ControlGenAI/ImageReFL .
comment: The source code can be found at https://github.com/ControlGenAI/ImageReFL
Multipath cycleGAN for harmonization of paired and unpaired low-dose lung computed tomography reconstruction kernels
Reconstruction kernels in computed tomography (CT) affect spatial resolution and noise characteristics, introducing systematic variability in quantitative imaging measurements such as emphysema quantification. Choosing an appropriate kernel is therefore essential for consistent quantitative analysis. We propose a multipath cycleGAN model for CT kernel harmonization, trained on a mixture of paired and unpaired data from a low-dose lung cancer screening cohort. The model features domain-specific encoders and decoders with a shared latent space and uses discriminators tailored for each domain.We train the model on 42 kernel combinations using 100 scans each from seven representative kernels in the National Lung Screening Trial (NLST) dataset. To evaluate performance, 240 scans from each kernel are harmonized to a reference soft kernel, and emphysema is quantified before and after harmonization. A general linear model assesses the impact of age, sex, smoking status, and kernel on emphysema. We also evaluate harmonization from soft kernels to a reference hard kernel. To assess anatomical consistency, we compare segmentations of lung vessels, muscle, and subcutaneous adipose tissue generated by TotalSegmentator between harmonized and original images. Our model is benchmarked against traditional and switchable cycleGANs. For paired kernels, our approach reduces bias in emphysema scores, as seen in Bland-Altman plots (p<0.05). For unpaired kernels, harmonization eliminates confounding differences in emphysema (p>0.05). High Dice scores confirm preservation of muscle and fat anatomy, while lung vessel overlap remains reasonable. Overall, our shared latent space multipath cycleGAN enables robust harmonization across paired and unpaired CT kernels, improving emphysema quantification and preserving anatomical fidelity.
Universal Visuo-Tactile Video Understanding for Embodied Interaction
Tactile perception is essential for embodied agents to understand physical attributes of objects that cannot be determined through visual inspection alone. While existing approaches have made progress in visual and language modalities for physical understanding, they fail to effectively incorporate tactile information that provides crucial haptic feedback for real-world interaction. In this paper, we present VTV-LLM, the first multi-modal large language model for universal Visuo-Tactile Video (VTV) understanding that bridges the gap between tactile perception and natural language. To address the challenges of cross-sensor and cross-modal integration, we contribute VTV150K, a comprehensive dataset comprising 150,000 video frames from 100 diverse objects captured across three different tactile sensors (GelSight Mini, DIGIT, and Tac3D), annotated with four fundamental tactile attributes (hardness, protrusion, elasticity, and friction). We develop a novel three-stage training paradigm that includes VTV enhancement for robust visuo-tactile representation, VTV-text alignment for cross-modal correspondence, and text prompt finetuning for natural language generation. Our framework enables sophisticated tactile reasoning capabilities including feature assessment, comparative analysis, scenario-based decision making and so on. Experimental evaluations demonstrate that VTV-LLM achieves superior performance in tactile video understanding tasks, establishing a foundation for more intuitive human-machine interaction in tactile domains.
comment: 13 pages, 5 figures
PRISM: Video Dataset Condensation with Progressive Refinement and Insertion for Sparse Motion
Video dataset condensation has emerged as a critical technique for addressing the computational challenges associated with large-scale video data processing in deep learning applications. While significant progress has been made in image dataset condensation, the video domain presents unique challenges due to the complex interplay between spatial content and temporal dynamics. This paper introduces PRISM, Progressive Refinement and Insertion for Sparse Motion, for video dataset condensation, a novel approach that fundamentally reconsiders how video data should be condensed. Unlike the previous method that separates static content from dynamic motion, our method preserves the essential interdependence between these elements. Our approach progressively refines and inserts frames to fully accommodate the motion in an action while achieving better performance but less storage, considering the relation of gradients for each frame. Extensive experiments across standard video action recognition benchmarks demonstrate that PRISM outperforms existing disentangled approaches while maintaining compact representations suitable for resource-constrained environments.
MultiFormer: A Multi-Person Pose Estimation System Based on CSI and Attention Mechanism
Human pose estimation based on Channel State Information (CSI) has emerged as a promising approach for non-intrusive and precise human activity monitoring, yet faces challenges including accurate multi-person pose recognition and effective CSI feature learning. This paper presents MultiFormer, a wireless sensing system that accurately estimates human pose through CSI. The proposed system adopts a Transformer based time-frequency dual-token feature extractor with multi-head self-attention. This feature extractor is able to model inter-subcarrier correlations and temporal dependencies of the CSI. The extracted CSI features and the pose probability heatmaps are then fused by Multi-Stage Feature Fusion Network (MSFN) to enforce the anatomical constraints. Extensive experiments conducted on on the public MM-Fi dataset and our self-collected dataset show that the MultiFormer achieves higher accuracy over state-of-the-art approaches, especially for high-mobility keypoints (wrists, elbows) that are particularly difficult for previous methods to accurately estimate.
Deep Learning-Based BMD Estimation from Radiographs with Conformal Uncertainty Quantification
Limited DXA access hinders osteoporosis screening. This proof-of-concept study proposes using widely available knee X-rays for opportunistic Bone Mineral Density (BMD) estimation via deep learning, emphasizing robust uncertainty quantification essential for clinical use. An EfficientNet model was trained on the OAI dataset to predict BMD from bilateral knee radiographs. Two Test-Time Augmentation (TTA) methods were compared: traditional averaging and a multi-sample approach. Crucially, Split Conformal Prediction was implemented to provide statistically rigorous, patient-specific prediction intervals with guaranteed coverage. Results showed a Pearson correlation of 0.68 (traditional TTA). While traditional TTA yielded better point predictions, the multi-sample approach produced slightly tighter confidence intervals (90%, 95%, 99%) while maintaining coverage. The framework appropriately expressed higher uncertainty for challenging cases. Although anatomical mismatch between knee X-rays and standard DXA limits immediate clinical use, this method establishes a foundation for trustworthy AI-assisted BMD screening using routine radiographs, potentially improving early osteoporosis detection.
Scaling-up Perceptual Video Quality Assessment
The data scaling law has been shown to significantly enhance the performance of large multi-modal models (LMMs) across various downstream tasks. However, in the domain of perceptual video quality assessment (VQA), the potential of scaling law remains unprecedented due to the scarcity of labeled resources and the insufficient scale of datasets. To address this, we propose \textbf{OmniVQA}, an efficient framework designed to efficiently build high-quality, human-in-the-loop VQA multi-modal instruction databases (MIDBs). We then scale up to create \textbf{OmniVQA-Chat-400K}, the largest MIDB in the VQA field concurrently. Our focus is on the technical and aesthetic quality dimensions, with abundant in-context instruction data to provide fine-grained VQA knowledge. Additionally, we have built the \textbf{OmniVQA-MOS-20K} dataset to enhance the model's quantitative quality rating capabilities. We then introduce a \textbf{complementary} training strategy that effectively leverages the knowledge from datasets for quality understanding and quality rating tasks. Furthermore, we propose the \textbf{OmniVQA-FG (fine-grain)-Benchmark} to evaluate the fine-grained performance of the models. Our results demonstrate that our models achieve state-of-the-art performance in both quality understanding and rating tasks.
RiverMamba: A State Space Model for Global River Discharge and Flood Forecasting
Recent deep learning approaches for river discharge forecasting have improved the accuracy and efficiency in flood forecasting, enabling more reliable early warning systems for risk management. Nevertheless, existing deep learning approaches in hydrology remain largely confined to local-scale applications and do not leverage the inherent spatial connections of bodies of water. Thus, there is a strong need for new deep learning methodologies that are capable of modeling spatio-temporal relations to improve river discharge and flood forecasting for scientific and operational applications. To address this, we present RiverMamba, a novel deep learning model that is pretrained with long-term reanalysis data and that can forecast global river discharge and floods on a $0.05^\circ$ grid up to 7 days lead time, which is of high relevance in early warning. To achieve this, RiverMamba leverages efficient Mamba blocks that enable the model to capture global-scale channel network routing and enhance its forecast capability for longer lead times. The forecast blocks integrate ECMWF HRES meteorological forecasts, while accounting for their inaccuracies through spatio-temporal modeling. Our analysis demonstrates that RiverMamba delivers reliable predictions of river discharge, including extreme floods across return periods and lead times, surpassing both operational AI- and physics-based models.
comment: Main paper 10 pages, Appendix 53 pages
Thinking with Generated Images
We present Thinking with Generated Images, a novel paradigm that fundamentally transforms how large multimodal models (LMMs) engage with visual reasoning by enabling them to natively think across text and vision modalities through spontaneous generation of intermediate visual thinking steps. Current visual reasoning with LMMs is constrained to either processing fixed user-provided images or reasoning solely through text-based chain-of-thought (CoT). Thinking with Generated Images unlocks a new dimension of cognitive capability where models can actively construct intermediate visual thoughts, critique their own visual hypotheses, and refine them as integral components of their reasoning process. We demonstrate the effectiveness of our approach through two complementary mechanisms: (1) vision generation with intermediate visual subgoals, where models decompose complex visual tasks into manageable components that are generated and integrated progressively, and (2) vision generation with self-critique, where models generate an initial visual hypothesis, analyze its shortcomings through textual reasoning, and produce refined outputs based on their own critiques. Our experiments on vision generation benchmarks show substantial improvements over baseline approaches, with our models achieving up to 50% (from 38% to 57%) relative improvement in handling complex multi-object scenarios. From biochemists exploring novel protein structures, and architects iterating on spatial designs, to forensic analysts reconstructing crime scenes, and basketball players envisioning strategic plays, our approach enables AI models to engage in the kind of visual imagination and iterative refinement that characterizes human creative, analytical, and strategic thinking. We release our open-source suite at https://github.com/GAIR-NLP/thinking-with-generated-images.
PrismLayers: Open Data for High-Quality Multi-Layer Transparent Image Generative Models
Generating high-quality, multi-layer transparent images from text prompts can unlock a new level of creative control, allowing users to edit each layer as effortlessly as editing text outputs from LLMs. However, the development of multi-layer generative models lags behind that of conventional text-to-image models due to the absence of a large, high-quality corpus of multi-layer transparent data. In this paper, we address this fundamental challenge by: (i) releasing the first open, ultra-high-fidelity PrismLayers (PrismLayersPro) dataset of 200K (20K) multilayer transparent images with accurate alpha mattes, (ii) introducing a trainingfree synthesis pipeline that generates such data on demand using off-the-shelf diffusion models, and (iii) delivering a strong, open-source multi-layer generation model, ART+, which matches the aesthetics of modern text-to-image generation models. The key technical contributions include: LayerFLUX, which excels at generating high-quality single transparent layers with accurate alpha mattes, and MultiLayerFLUX, which composes multiple LayerFLUX outputs into complete images, guided by human-annotated semantic layout. To ensure higher quality, we apply a rigorous filtering stage to remove artifacts and semantic mismatches, followed by human selection. Fine-tuning the state-of-the-art ART model on our synthetic PrismLayersPro yields ART+, which outperforms the original ART in 60% of head-to-head user study comparisons and even matches the visual quality of images generated by the FLUX.1-[dev] model. We anticipate that our work will establish a solid dataset foundation for the multi-layer transparent image generation task, enabling research and applications that require precise, editable, and visually compelling layered imagery.
comment: Homepage: https://prism-layers.github.io/
PathFL: Multi-Alignment Federated Learning for Pathology Image Segmentation
Pathology image segmentation across multiple centers encounters significant challenges due to diverse sources of heterogeneity including imaging modalities, organs, and scanning equipment, whose variability brings representation bias and impedes the development of generalizable segmentation models. In this paper, we propose PathFL, a novel multi-alignment Federated Learning framework for pathology image segmentation that addresses these challenges through three-level alignment strategies of image, feature, and model aggregation. Firstly, at the image level, a collaborative style enhancement module aligns and diversifies local data by facilitating style information exchange across clients. Secondly, at the feature level, an adaptive feature alignment module ensures implicit alignment in the representation space by infusing local features with global insights, promoting consistency across heterogeneous client features learning. Finally, at the model aggregation level, a stratified similarity aggregation strategy hierarchically aligns and aggregates models on the server, using layer-specific similarity to account for client discrepancies and enhance global generalization. Comprehensive evaluations on four sets of heterogeneous pathology image datasets, encompassing cross-source, cross-modality, cross-organ, and cross-scanner variations, validate the effectiveness of our PathFL in achieving better performance and robustness against data heterogeneity.
comment: 17 pages, 5 figures; Accepted by MedIA
Surf2CT: Cascaded 3D Flow Matching Models for Torso 3D CT Synthesis from Skin Surface
We present Surf2CT, a novel cascaded flow matching framework that synthesizes full 3D computed tomography (CT) volumes of the human torso from external surface scans and simple demographic data (age, sex, height, weight). This is the first approach capable of generating realistic volumetric internal anatomy images solely based on external body shape and demographics, without any internal imaging. Surf2CT proceeds through three sequential stages: (1) Surface Completion, reconstructing a complete signed distance function (SDF) from partial torso scans using conditional 3D flow matching; (2) Coarse CT Synthesis, generating a low-resolution CT volume from the completed SDF and demographic information; and (3) CT Super-Resolution, refining the coarse volume into a high-resolution CT via a patch-wise conditional flow model. Each stage utilizes a 3D-adapted EDM2 backbone trained via flow matching. We trained our model on a combined dataset of 3,198 torso CT scans (approximately 1.13 million axial slices) sourced from Massachusetts General Hospital (MGH) and the AutoPET challenge. Evaluation on 700 paired torso surface-CT cases demonstrated strong anatomical fidelity: organ volumes exhibited small mean percentage differences (range from -11.1% to 4.4%), and muscle/fat body composition metrics matched ground truth with strong correlation (range from 0.67 to 0.96). Lung localization had minimal bias (mean difference -2.5 mm), and surface completion significantly improved metrics (Chamfer distance: from 521.8 mm to 2.7 mm; Intersection-over-Union: from 0.87 to 0.98). Surf2CT establishes a new paradigm for non-invasive internal anatomical imaging using only external data, opening opportunities for home-based healthcare, preventive medicine, and personalized clinical assessments without the risks associated with conventional imaging techniques.
comment: Neurips 2025 submitted
The Meeseeks Mesh: Spatially Consistent 3D Adversarial Objects for BEV Detector
3D object detection is a critical component in autonomous driving systems. It allows real-time recognition and detection of vehicles, pedestrians and obstacles under varying environmental conditions. Among existing methods, 3D object detection in the Bird's Eye View (BEV) has emerged as the mainstream framework. To guarantee a safe, robust and trustworthy 3D object detection, 3D adversarial attacks are investigated, where attacks are placed in 3D environments to evaluate the model performance, e.g., putting a film on a car, clothing a pedestrian. The vulnerability of 3D object detection models to 3D adversarial attacks serves as an important indicator to evaluate the robustness of the model against perturbations. To investigate this vulnerability, we generate non-invasive 3D adversarial objects tailored for real-world attack scenarios. Our method verifies the existence of universal adversarial objects that are spatially consistent across time and camera views. Specifically, we employ differentiable rendering techniques to accurately model the spatial relationship between adversarial objects and the target vehicle. Furthermore, we introduce an occlusion-aware module to enhance visual consistency and realism under different viewpoints. To maintain attack effectiveness across multiple frames, we design a BEV spatial feature-guided optimization strategy. Experimental results demonstrate that our approach can reliably suppress vehicle predictions from state-of-the-art 3D object detectors, serving as an important tool to test robustness of 3D object detection models before deployment. Moreover, the generated adversarial objects exhibit strong generalization capabilities, retaining its effectiveness at various positions and distances in the scene.
Risk-Sensitive Conformal Prediction for Catheter Placement Detection in Chest X-rays
This paper presents a novel approach to catheter and line position detection in chest X-rays, combining multi-task learning with risk-sensitive conformal prediction to address critical clinical requirements. Our model simultaneously performs classification, segmentation, and landmark detection, leveraging the synergistic relationship between these tasks to improve overall performance. We further enhance clinical reliability through risk-sensitive conformal prediction, which provides statistically guaranteed prediction sets with higher reliability for clinically critical findings. Experimental results demonstrate excellent performance with 90.68\% overall empirical coverage and 99.29\% coverage for critical conditions, while maintaining remarkable precision in prediction sets. Most importantly, our risk-sensitive approach achieves zero high-risk mispredictions (cases where the system dangerously declares problematic tubes as confidently normal), making the system particularly suitable for clinical deployment. This work offers both accurate predictions and reliably quantified uncertainty -- essential features for life-critical medical applications.
ProCrop: Learning Aesthetic Image Cropping from Professional Compositions
Image cropping is crucial for enhancing the visual appeal and narrative impact of photographs, yet existing rule-based and data-driven approaches often lack diversity or require annotated training data. We introduce ProCrop, a retrieval-based method that leverages professional photography to guide cropping decisions. By fusing features from professional photographs with those of the query image, ProCrop learns from professional compositions, significantly boosting performance. Additionally, we present a large-scale dataset of 242K weakly-annotated images, generated by out-painting professional images and iteratively refining diverse crop proposals. This composition-aware dataset generation offers diverse high-quality crop proposals guided by aesthetic principles and becomes the largest publicly available dataset for image cropping. Extensive experiments show that ProCrop significantly outperforms existing methods in both supervised and weakly-supervised settings. Notably, when trained on the new dataset, our ProCrop surpasses previous weakly-supervised methods and even matches fully supervised approaches. Both the code and dataset will be made publicly available to advance research in image aesthetics and composition analysis.
comment: 16 pages, 15 figures
Cascaded 3D Diffusion Models for Whole-body 3D 18-F FDG PET/CT synthesis from Demographics MICCAI2025
We propose a cascaded 3D diffusion model framework to synthesize high-fidelity 3D PET/CT volumes directly from demographic variables, addressing the growing need for realistic digital twins in oncologic imaging, virtual trials, and AI-driven data augmentation. Unlike deterministic phantoms, which rely on predefined anatomical and metabolic templates, our method employs a two-stage generative process. An initial score-based diffusion model synthesizes low-resolution PET/CT volumes from demographic variables alone, providing global anatomical structures and approximate metabolic activity. This is followed by a super-resolution residual diffusion model that refines spatial resolution. Our framework was trained on 18-F FDG PET/CT scans from the AutoPET dataset and evaluated using organ-wise volume and standardized uptake value (SUV) distributions, comparing synthetic and real data between demographic subgroups. The organ-wise comparison demonstrated strong concordance between synthetic and real images. In particular, most deviations in metabolic uptake values remained within 3-5% of the ground truth in subgroup analysis. These findings highlight the potential of cascaded 3D diffusion models to generate anatomically and metabolically accurate PET/CT images, offering a robust alternative to traditional phantoms and enabling scalable, population-informed synthetic imaging for clinical and research applications.
comment: MICCAI2025 Submitted version
Understanding Adversarial Training with Energy-based Models
We aim at using Energy-based Model (EBM) framework to better understand adversarial training (AT) in classifiers, and additionally to analyze the intrinsic generative capabilities of robust classifiers. By viewing standard classifiers through an energy lens, we begin by analyzing how the energies of adversarial examples, generated by various attacks, differ from those of the natural samples. The central focus of our work is to understand the critical phenomena of Catastrophic Overfitting (CO) and Robust Overfitting (RO) in AT from an energy perspective. We analyze the impact of existing AT approaches on the energy of samples during training and observe that the behavior of the ``delta energy' -- change in energy between original sample and its adversarial counterpart -- diverges significantly when CO or RO occurs. After a thorough analysis of these energy dynamics and their relationship with overfitting, we propose a novel regularizer, the Delta Energy Regularizer (DER), designed to smoothen the energy landscape during training. We demonstrate that DER is effective in mitigating both CO and RO across multiple benchmarks. We further show that robust classifiers, when being used as generative models, have limits in handling trade-off between image quality and variability. We propose an improved technique based on a local class-wise principal component analysis (PCA) and energy-based guidance for better class-specific initialization and adaptive stopping, enhancing sample diversity and generation quality. Considering that we do not explicitly train for generative modeling, we achieve a competitive Inception Score (IS) and Fr\'echet inception distance (FID) compared to hybrid discriminative-generative models.
comment: Under review for TPAMI
A Closer Look at Multimodal Representation Collapse ICML
We aim to develop a fundamental understanding of modality collapse, a recently observed empirical phenomenon wherein models trained for multimodal fusion tend to rely only on a subset of the modalities, ignoring the rest. We show that modality collapse happens when noisy features from one modality are entangled, via a shared set of neurons in the fusion head, with predictive features from another, effectively masking out positive contributions from the predictive features of the former modality and leading to its collapse. We further prove that cross-modal knowledge distillation implicitly disentangles such representations by freeing up rank bottlenecks in the student encoder, denoising the fusion-head outputs without negatively impacting the predictive features from either modality. Based on the above findings, we propose an algorithm that prevents modality collapse through explicit basis reallocation, with applications in dealing with missing modalities. Extensive experiments on multiple multimodal benchmarks validate our theoretical claims. Project page: https://abhrac.github.io/mmcollapse/.
comment: International Conference on Machine Learning (ICML) 2025 (Spotlight)
Single Domain Generalization for Alzheimer's Detection from 3D MRIs with Pseudo-Morphological Augmentations and Contrastive Learning
Although Alzheimer's disease detection via MRIs has advanced significantly thanks to contemporary deep learning models, challenges such as class imbalance, protocol variations, and limited dataset diversity often hinder their generalization capacity. To address this issue, this article focuses on the single domain generalization setting, where given the data of one domain, a model is designed and developed with maximal performance w.r.t. an unseen domain of distinct distribution. Since brain morphology is known to play a crucial role in Alzheimer's diagnosis, we propose the use of learnable pseudo-morphological modules aimed at producing shape-aware, anatomically meaningful class-specific augmentations in combination with a supervised contrastive learning module to extract robust class-specific representations. Experiments conducted across three datasets show improved performance and generalization capacity, especially under class imbalance and imaging protocol variations. The source code will be made available upon acceptance at https://github.com/zobia111/SDG-Alzheimer.
SHTOcc: Effective 3D Occupancy Prediction with Sparse Head and Tail Voxels
3D occupancy prediction has attracted much attention in the field of autonomous driving due to its powerful geometric perception and object recognition capabilities. However, existing methods have not explored the most essential distribution patterns of voxels, resulting in unsatisfactory results. This paper first explores the inter-class distribution and geometric distribution of voxels, thereby solving the long-tail problem caused by the inter-class distribution and the poor performance caused by the geometric distribution. Specifically, this paper proposes SHTOcc (Sparse Head-Tail Occupancy), which uses sparse head-tail voxel construction to accurately identify and balance key voxels in the head and tail classes, while using decoupled learning to reduce the model's bias towards the dominant (head) category and enhance the focus on the tail class. Experiments show that significant improvements have been made on multiple baselines: SHTOcc reduces GPU memory usage by 42.2%, increases inference speed by 58.6%, and improves accuracy by about 7%, verifying its effectiveness and efficiency. The code is available at https://github.com/ge95net/SHTOcc
Universal Domain Adaptation for Semantic Segmentation CVPR 2025
Unsupervised domain adaptation for semantic segmentation (UDA-SS) aims to transfer knowledge from labeled source data to unlabeled target data. However, traditional UDA-SS methods assume that category settings between source and target domains are known, which is unrealistic in real-world scenarios. This leads to performance degradation if private classes exist. To address this limitation, we propose Universal Domain Adaptation for Semantic Segmentation (UniDA-SS), achieving robust adaptation even without prior knowledge of category settings. We define the problem in the UniDA-SS scenario as low confidence scores of common classes in the target domain, which leads to confusion with private classes. To solve this problem, we propose UniMAP: UniDA-SS with Image Matching and Prototype-based Distinction, a novel framework composed of two key components. First, Domain-Specific Prototype-based Distinction (DSPD) divides each class into two domain-specific prototypes, enabling finer separation of domain-specific features and enhancing the identification of common classes across domains. Second, Target-based Image Matching (TIM) selects a source image containing the most common-class pixels based on the target pseudo-label and pairs it in a batch to promote effective learning of common classes. We also introduce a new UniDA-SS benchmark and demonstrate through various experiments that UniMAP significantly outperforms baselines. The code is available at \href{https://github.com/KU-VGI/UniMAP}{this https URL}.
comment: Accepted by CVPR 2025
Fostering Video Reasoning via Next-Event Prediction
Next-token prediction serves as the foundational learning task enabling reasoning in LLMs. But what should the learning task be when aiming to equip MLLMs with temporal reasoning capabilities over video inputs? Existing tasks such as video question answering often rely on annotations from humans or much stronger MLLMs, while video captioning tends to entangle temporal reasoning with spatial information. To address this gap, we propose next-event prediction (NEP), a learning task that harnesses future video segments as a rich, self-supervised signal to foster temporal reasoning. We segment each video into past and future frames: the MLLM takes the past frames as input and predicts a summary of events derived from the future frames, thereby encouraging the model to reason temporally in order to complete the task. To support this task, we curate V1-33K, a dataset comprising 33,000 automatically extracted video segments spanning diverse real-world scenarios. We further explore a range of video instruction-tuning strategies to study their effects on temporal reasoning. To evaluate progress, we introduce FutureBench to assess coherence in predicting unseen future events. Experiments validate that NEP offers a scalable and effective training paradigm for fostering temporal reasoning in MLLMs.
Unsupervised Post-Training for Multi-Modal LLM Reasoning via GRPO
Improving Multi-modal Large Language Models (MLLMs) in the post-training stage typically relies on supervised fine-tuning (SFT) or reinforcement learning (RL). However, these supervised methods require expensive and manually annotated multi-modal data--an ultimately unsustainable resource. While recent efforts have explored unsupervised post-training, their methods are complex and difficult to iterate. In this work, we are the first to investigate the use of GRPO, a stable and scalable online RL algorithm, for enabling continual self-improvement without any external supervision. We propose MM-UPT, a simple yet effective framework for unsupervised post-training of MLLMs. MM-UPT builds upon GRPO, replacing traditional reward signals with a self-rewarding mechanism based on majority voting over multiple sampled responses. Our experiments demonstrate that MM-UPT significantly improves the reasoning ability of Qwen2.5-VL-7B (e.g., 66.3 %$\rightarrow$72.9 % on MathVista, 62.9 %$\rightarrow$68.7 % on We-Math), using standard dataset without ground truth labels. MM-UPT also outperforms prior unsupervised baselines and even approaches the results of supervised GRPO. Furthermore, we show that incorporating synthetic questions, generated solely by MLLM itself, can boost performance as well, highlighting a promising approach for scalable self-improvement. Overall, MM-UPT offers a new paradigm for continual, autonomous enhancement of MLLMs in the absence of external supervision. Our code is available at https://github.com/waltonfuture/MM-UPT.
NFR: Neural Feature-Guided Non-Rigid Shape Registration
In this paper, we propose a novel learning-based framework for 3D shape registration, which overcomes the challenges of significant non-rigid deformation and partiality undergoing among input shapes, and, remarkably, requires no correspondence annotation during training. Our key insight is to incorporate neural features learned by deep learning-based shape matching networks into an iterative, geometric shape registration pipeline. The advantage of our approach is two-fold -- On one hand, neural features provide more accurate and semantically meaningful correspondence estimation than spatial features (e.g., coordinates), which is critical in the presence of large non-rigid deformations; On the other hand, the correspondences are dynamically updated according to the intermediate registrations and filtered by consistency prior, which prominently robustify the overall pipeline. Empirical results show that, with as few as dozens of training shapes of limited variability, our pipeline achieves state-of-the-art results on several benchmarks of non-rigid point cloud matching and partial shape matching across varying settings, but also delivers high-quality correspondences between unseen challenging shape pairs that undergo both significant extrinsic and intrinsic deformations, in which case neither traditional registration methods nor intrinsic methods work.
comment: 20 pages, 9 figures. arXiv admin note: substantial text overlap with arXiv:2311.04494
On Geometry-Enhanced Parameter-Efficient Fine-Tuning for 3D Scene Segmentation
The emergence of large-scale pre-trained point cloud models has significantly advanced 3D scene understanding, but adapting these models to specific downstream tasks typically demands full fine-tuning, incurring high computational and storage costs. Parameter-efficient fine-tuning (PEFT) techniques, successful in natural language processing and 2D vision tasks, would underperform when naively applied to 3D point cloud models due to significant geometric and spatial distribution shifts. Existing PEFT methods commonly treat points as orderless tokens, neglecting important local spatial structures and global geometric contexts in 3D modeling. To bridge this gap, we introduce the Geometric Encoding Mixer (GEM), a novel geometry-aware PEFT module specifically designed for 3D point cloud transformers. GEM explicitly integrates fine-grained local positional encodings with a lightweight latent attention mechanism to capture comprehensive global context, thereby effectively addressing the spatial and geometric distribution mismatch. Extensive experiments demonstrate that GEM achieves performance comparable to or sometimes even exceeding full fine-tuning, while only updating 1.6% of the model's parameters, fewer than other PEFT methods. With significantly reduced training time and memory requirements, our approach thus sets a new benchmark for efficient, scalable, and geometry-aware fine-tuning of large-scale 3D point cloud models. Code will be released.
Can NeRFs See without Cameras?
Neural Radiance Fields (NeRFs) have been remarkably successful at synthesizing novel views of 3D scenes by optimizing a volumetric scene function. This scene function models how optical rays bring color information from a 3D object to the camera pixels. Radio frequency (RF) or audio signals can also be viewed as a vehicle for delivering information about the environment to a sensor. However, unlike camera pixels, an RF/audio sensor receives a mixture of signals that contain many environmental reflections (also called "multipath"). Is it still possible to infer the environment using such multipath signals? We show that with redesign, NeRFs can be taught to learn from multipath signals, and thereby "see" the environment. As a grounding application, we aim to infer the indoor floorplan of a home from sparse WiFi measurements made at multiple locations inside the home. Although a difficult inverse problem, our implicitly learnt floorplans look promising, and enables forward applications, such as indoor signal prediction and basic ray tracing.
Synonymous Variational Inference for Perceptual Image Compression ICML 2025
Recent contributions of semantic information theory reveal the set-element relationship between semantic and syntactic information, represented as synonymous relationships. In this paper, we propose a synonymous variational inference (SVI) method based on this synonymity viewpoint to re-analyze the perceptual image compression problem. It takes perceptual similarity as a typical synonymous criterion to build an ideal synonymous set (Synset), and approximate the posterior of its latent synonymous representation with a parametric density by minimizing a partial semantic KL divergence. This analysis theoretically proves that the optimization direction of perception image compression follows a triple tradeoff that can cover the existing rate-distortion-perception schemes. Additionally, we introduce synonymous image compression (SIC), a new image compression scheme that corresponds to the analytical process of SVI, and implement a progressive SIC codec to fully leverage the model's capabilities. Experimental results demonstrate comparable rate-distortion-perception performance using a single progressive SIC codec, thus verifying the effectiveness of our proposed analysis method.
comment: 31 pages, 20 figures. This paper is accepted by Proceedings of the 42nd International Conference on Machine Learning (ICML 2025) Poster
Distance Transform Guided Mixup for Alzheimer's Detection
Alzheimer's detection efforts aim to develop accurate models for early disease diagnosis. Significant advances have been achieved with convolutional neural networks and vision transformer based approaches. However, medical datasets suffer heavily from class imbalance, variations in imaging protocols, and limited dataset diversity, which hinder model generalization. To overcome these challenges, this study focuses on single-domain generalization by extending the well-known mixup method. The key idea is to compute the distance transform of MRI scans, separate them spatially into multiple layers and then combine layers stemming from distinct samples to produce augmented images. The proposed approach generates diverse data while preserving the brain's structure. Experimental results show generalization performance improvement across both ADNI and AIBL datasets.
Zero-Shot 3D Visual Grounding from Vision-Language Models CVPR 2025
3D Visual Grounding (3DVG) seeks to locate target objects in 3D scenes using natural language descriptions, enabling downstream applications such as augmented reality and robotics. Existing approaches typically rely on labeled 3D data and predefined categories, limiting scalability to open-world settings. We present SeeGround, a zero-shot 3DVG framework that leverages 2D Vision-Language Models (VLMs) to bypass the need for 3D-specific training. To bridge the modality gap, we introduce a hybrid input format that pairs query-aligned rendered views with spatially enriched textual descriptions. Our framework incorporates two core components: a Perspective Adaptation Module that dynamically selects optimal viewpoints based on the query, and a Fusion Alignment Module that integrates visual and spatial signals to enhance localization precision. Extensive evaluations on ScanRefer and Nr3D confirm that SeeGround achieves substantial improvements over existing zero-shot baselines -- outperforming them by 7.7% and 7.1%, respectively -- and even rivals fully supervised alternatives, demonstrating strong generalization under challenging conditions.
comment: 3D-LLM/VLA @ CVPR 2025; Project Page at https://seeground.github.io/
RC-AutoCalib: An End-to-End Radar-Camera Automatic Calibration Network CVPR 2025
This paper presents a groundbreaking approach - the first online automatic geometric calibration method for radar and camera systems. Given the significant data sparsity and measurement uncertainty in radar height data, achieving automatic calibration during system operation has long been a challenge. To address the sparsity issue, we propose a Dual-Perspective representation that gathers features from both frontal and bird's-eye views. The frontal view contains rich but sensitive height information, whereas the bird's-eye view provides robust features against height uncertainty. We thereby propose a novel Selective Fusion Mechanism to identify and fuse reliable features from both perspectives, reducing the effect of height uncertainty. Moreover, for each view, we incorporate a Multi-Modal Cross-Attention Mechanism to explicitly find location correspondences through cross-modal matching. During the training phase, we also design a Noise-Resistant Matcher to provide better supervision and enhance the robustness of the matching mechanism against sparsity and height uncertainty. Our experimental results, tested on the nuScenes dataset, demonstrate that our method significantly outperforms previous radar-camera auto-calibration methods, as well as existing state-of-the-art LiDAR-camera calibration techniques, establishing a new benchmark for future research. The code is available at https://github.com/nycu-acm/RC-AutoCalib.
comment: Accepted to CVPR 2025
GeoDrive: 3D Geometry-Informed Driving World Model with Precise Action Control
Recent advancements in world models have revolutionized dynamic environment simulation, allowing systems to foresee future states and assess potential actions. In autonomous driving, these capabilities help vehicles anticipate the behavior of other road users, perform risk-aware planning, accelerate training in simulation, and adapt to novel scenarios, thereby enhancing safety and reliability. Current approaches exhibit deficiencies in maintaining robust 3D geometric consistency or accumulating artifacts during occlusion handling, both critical for reliable safety assessment in autonomous navigation tasks. To address this, we introduce GeoDrive, which explicitly integrates robust 3D geometry conditions into driving world models to enhance spatial understanding and action controllability. Specifically, we first extract a 3D representation from the input frame and then obtain its 2D rendering based on the user-specified ego-car trajectory. To enable dynamic modeling, we propose a dynamic editing module during training to enhance the renderings by editing the positions of the vehicles. Extensive experiments demonstrate that our method significantly outperforms existing models in both action accuracy and 3D spatial awareness, leading to more realistic, adaptable, and reliable scene modeling for safer autonomous driving. Additionally, our model can generalize to novel trajectories and offers interactive scene editing capabilities, such as object editing and object trajectory control.
comment: code will be released at https://github.com/antonioo-c/GeoDrive
Neural Face Skinning for Mesh-agnostic Facial Expression Cloning
Accurately retargeting facial expressions to a face mesh while enabling manipulation is a key challenge in facial animation retargeting. Recent deep-learning methods address this by encoding facial expressions into a global latent code, but they often fail to capture fine-grained details in local regions. While some methods improve local accuracy by transferring deformations locally, this often complicates overall control of the facial expression. To address this, we propose a method that combines the strengths of both global and local deformation models. Our approach enables intuitive control and detailed expression cloning across diverse face meshes, regardless of their underlying structures. The core idea is to localize the influence of the global latent code on the target mesh. Our model learns to predict skinning weights for each vertex of the target face mesh through indirect supervision from predefined segmentation labels. These predicted weights localize the global latent code, enabling precise and region-specific deformations even for meshes with unseen shapes. We supervise the latent code using Facial Action Coding System (FACS)-based blendshapes to ensure interpretability and allow straightforward editing of the generated animation. Through extensive experiments, we demonstrate improved performance over state-of-the-art methods in terms of expression fidelity, deformation transfer accuracy, and adaptability across diverse mesh structures.
Frugal Incremental Generative Modeling using Variational Autoencoders
Continual or incremental learning holds tremendous potential in deep learning with different challenges including catastrophic forgetting. The advent of powerful foundation and generative models has propelled this paradigm even further, making it one of the most viable solution to train these models. However, one of the persisting issues lies in the increasing volume of data particularly with replay-based methods. This growth introduces challenges with scalability since continuously expanding data becomes increasingly demanding as the number of tasks grows. In this paper, we attenuate this issue by devising a novel replay-free incremental learning model based on Variational Autoencoders (VAEs). The main contribution of this work includes (i) a novel incremental generative modelling, built upon a well designed multi-modal latent space, and also (ii) an orthogonality criterion that mitigates catastrophic forgetting of the learned VAEs. The proposed method considers two variants of these VAEs: static and dynamic with no (or at most a controlled) growth in the number of parameters. Extensive experiments show that our method is (at least) an order of magnitude more ``memory-frugal'' compared to the closely related works while achieving SOTA accuracy scores.
Self-Reflective Reinforcement Learning for Diffusion-based Image Reasoning Generation
Diffusion models have recently demonstrated exceptional performance in image generation task. However, existing image generation methods still significantly suffer from the dilemma of image reasoning, especially in logic-centered image generation tasks. Inspired by the success of Chain of Thought (CoT) and Reinforcement Learning (RL) in LLMs, we propose SRRL, a self-reflective RL algorithm for diffusion models to achieve reasoning generation of logical images by performing reflection and iteration across generation trajectories. The intermediate samples in the denoising process carry noise, making accurate reward evaluation difficult. To address this challenge, SRRL treats the entire denoising trajectory as a CoT step with multi-round reflective denoising process and introduces condition guided forward process, which allows for reflective iteration between CoT steps. Through SRRL-based iterative diffusion training, we introduce image reasoning through CoT into generation tasks adhering to physical laws and unconventional physical phenomena for the first time. Notably, experimental results of case study exhibit that the superior performance of our SRRL algorithm even compared with GPT-4o. The project page is https://jadenpan0.github.io/srrl.github.io/.
STDR: Spatio-Temporal Decoupling for Real-Time Dynamic Scene Rendering
Although dynamic scene reconstruction has long been a fundamental challenge in 3D vision, the recent emergence of 3D Gaussian Splatting (3DGS) offers a promising direction by enabling high-quality, real-time rendering through explicit Gaussian primitives. However, existing 3DGS-based methods for dynamic reconstruction often suffer from \textit{spatio-temporal incoherence} during initialization, where canonical Gaussians are constructed by aggregating observations from multiple frames without temporal distinction. This results in spatio-temporally entangled representations, making it difficult to model dynamic motion accurately. To overcome this limitation, we propose \textbf{STDR} (Spatio-Temporal Decoupling for Real-time rendering), a plug-and-play module that learns spatio-temporal probability distributions for each Gaussian. STDR introduces a spatio-temporal mask, a separated deformation field, and a consistency regularization to jointly disentangle spatial and temporal patterns. Extensive experiments demonstrate that incorporating our module into existing 3DGS-based dynamic scene reconstruction frameworks leads to notable improvements in both reconstruction quality and spatio-temporal consistency across synthetic and real-world benchmarks.
Zooming from Context to Cue: Hierarchical Preference Optimization for Multi-Image MLLMs
Multi-modal Large Language Models (MLLMs) excel at single-image tasks but struggle with multi-image understanding due to cross-modal misalignment, leading to hallucinations (context omission, conflation, and misinterpretation). Existing methods using Direct Preference Optimization (DPO) constrain optimization to a solitary image reference within the input sequence, neglecting holistic context modeling. We propose Context-to-Cue Direct Preference Optimization (CcDPO), a multi-level preference optimization framework that enhances per-image perception in multi-image settings by zooming into visual clues -- from sequential context to local details. It features: (i) Context-Level Optimization : Re-evaluates cognitive biases underlying MLLMs' multi-image context comprehension and integrates a spectrum of low-cost global sequence preferences for bias mitigation. (ii) Needle-Level Optimization : Directs attention to fine-grained visual details through region-targeted visual prompts and multimodal preference supervision. To support scalable optimization, we also construct MultiScope-42k, an automatically generated dataset with high-quality multi-level preference pairs. Experiments show that CcDPO significantly reduces hallucinations and yields consistent performance gains across general single- and multi-image tasks.
PacTure: Efficient PBR Texture Generation on Packed Views with Visual Autoregressive Models
We present PacTure, a novel framework for generating physically-based rendering (PBR) material textures from an untextured 3D mesh, a text description, and an optional image prompt. Early 2D generation-based texturing approaches generate textures sequentially from different views, resulting in long inference times and globally inconsistent textures. More recent approaches adopt multi-view generation with cross-view attention to enhance global consistency, which, however, limits the resolution for each view. In response to these weaknesses, we first introduce view packing, a novel technique that significantly increases the effective resolution for each view during multi-view generation without imposing additional inference cost, by formulating the arrangement of multi-view maps as a 2D rectangle bin packing problem. In contrast to UV mapping, it preserves the spatial proximity essential for image generation and maintains full compatibility with current 2D generative models. To further reduce the inference cost, we enable fine-grained control and multi-domain generation within the next-scale prediction autoregressive framework to create an efficient multi-view multi-domain generative backbone. Extensive experiments show that PacTure outperforms state-of-the-art methods in both quality of generated PBR textures and efficiency in training and inference.
comment: 20 pages, 7 figures
DAM: Domain-Aware Module for Multi-Domain Dataset Condensation
Dataset Condensation (DC) has emerged as a promising solution to mitigate the computational and storage burdens associated with training deep learning models. However, existing DC methods largely overlook the multi-domain nature of modern datasets, which are increasingly composed of heterogeneous images spanning multiple domains. In this paper, we extend DC and introduce Multi-Domain Dataset Condensation (MDDC), which aims to condense data that generalizes across both single-domain and multi-domain settings. To this end, we propose the Domain-Aware Module (DAM), a training-time module that embeds domain-related features into each synthetic image via learnable spatial masks. As explicit domain labels are mostly unavailable in real-world datasets, we employ frequency-based pseudo-domain labeling, which leverages low-frequency amplitude statistics. DAM is only active during the condensation process, thus preserving the same images per class (IPC) with prior methods. Experiments show that DAM consistently improves in-domain, out-of-domain, and cross-architecture performance over baseline dataset condensation methods.
Identity-Preserving Text-to-Image Generation via Dual-Level Feature Decoupling and Expert-Guided Fusion
Recent advances in large-scale text-to-image generation models have led to a surge in subject-driven text-to-image generation, which aims to produce customized images that align with textual descriptions while preserving the identity of specific subjects. Despite significant progress, current methods struggle to disentangle identity-relevant information from identity-irrelevant details in the input images, resulting in overfitting or failure to maintain subject identity. In this work, we propose a novel framework that improves the separation of identity-related and identity-unrelated features and introduces an innovative feature fusion mechanism to improve the quality and text alignment of generated images. Our framework consists of two key components: an Implicit-Explicit foreground-background Decoupling Module (IEDM) and a Feature Fusion Module (FFM) based on a Mixture of Experts (MoE). IEDM combines learnable adapters for implicit decoupling at the feature level with inpainting techniques for explicit foreground-background separation at the image level. FFM dynamically integrates identity-irrelevant features with identity-related features, enabling refined feature representations even in cases of incomplete decoupling. In addition, we introduce three complementary loss functions to guide the decoupling process. Extensive experiments demonstrate the effectiveness of our proposed method in enhancing image generation quality, improving flexibility in scene adaptation, and increasing the diversity of generated outputs across various textual descriptions.
VME: A Satellite Imagery Dataset and Benchmark for Detecting Vehicles in the Middle East and Beyond
Detecting vehicles in satellite images is crucial for traffic management, urban planning, and disaster response. However, current models struggle with real-world diversity, particularly across different regions. This challenge is amplified by geographic bias in existing datasets, which often focus on specific areas and overlook regions like the Middle East. To address this gap, we present the Vehicles in the Middle East (VME) dataset, designed explicitly for vehicle detection in high-resolution satellite images from Middle Eastern countries. Sourced from Maxar, the VME dataset spans 54 cities across 12 countries, comprising over 4,000 image tiles and more than 100,000 vehicles, annotated using both manual and semi-automated methods. Additionally, we introduce the largest benchmark dataset for Car Detection in Satellite Imagery (CDSI), combining images from multiple sources to enhance global car detection. Our experiments demonstrate that models trained on existing datasets perform poorly on Middle Eastern images, while the VME dataset significantly improves detection accuracy in this region. Moreover, state-of-the-art models trained on CDSI achieve substantial improvements in global car detection.
Task-Driven Implicit Representations for Automated Design of LiDAR Systems
Imaging system design is a complex, time-consuming, and largely manual process; LiDAR design, ubiquitous in mobile devices, autonomous vehicles, and aerial imaging platforms, adds further complexity through unique spatial and temporal sampling requirements. In this work, we propose a framework for automated, task-driven LiDAR system design under arbitrary constraints. To achieve this, we represent LiDAR configurations in a continuous six-dimensional design space and learn task-specific implicit densities in this space via flow-based generative modeling. We then synthesize new LiDAR systems by modeling sensors as parametric distributions in 6D space and fitting these distributions to our learned implicit density using expectation-maximization, enabling efficient, constraint-aware LiDAR system design. We validate our method on diverse tasks in 3D vision, enabling automated LiDAR system design across real-world-inspired applications in face scanning, robotic tracking, and object detection.
Progressive Data Dropout: An Embarrassingly Simple Approach to Faster Training
The success of the machine learning field has reliably depended on training on large datasets. While effective, this trend comes at an extraordinary cost. This is due to two deeply intertwined factors: the size of models and the size of datasets. While promising research efforts focus on reducing the size of models, the other half of the equation remains fairly mysterious. Indeed, it is surprising that the standard approach to training remains to iterate over and over, uniformly sampling the training dataset. In this paper we explore a series of alternative training paradigms that leverage insights from hard-data-mining and dropout, simple enough to implement and use that can become the new training standard. The proposed Progressive Data Dropout reduces the number of effective epochs to as little as 12.4% of the baseline. This savings actually do not come at any cost for accuracy. Surprisingly, the proposed method improves accuracy by up to 4.82%. Our approach requires no changes to model architecture or optimizer, and can be applied across standard training pipelines, thus posing an excellent opportunity for wide adoption. Code can be found here: https://github.com/bazyagami/LearningWithRevision
Learning to Infer Parameterized Representations of Plants from 3D Scans
Reconstructing faithfully the 3D architecture of plants from unstructured observations is a challenging task. Plants frequently contain numerous organs, organized in branching systems in more or less complex spatial networks, leading to specific computational issues due to self-occlusion or spatial proximity between organs. Existing works either consider inverse modeling where the aim is to recover the procedural rules that allow to simulate virtual plants, or focus on specific tasks such as segmentation or skeletonization. We propose a unified approach that, given a 3D scan of a plant, allows to infer a parameterized representation of the plant. This representation describes the plant's branching structure, contains parametric information for each plant organ, and can therefore be used directly in a variety of tasks. In this data-driven approach, we train a recursive neural network with virtual plants generated using an L-systems-based procedural model. After training, the network allows to infer a parametric tree-like representation based on an input 3D point cloud. Our method is applicable to any plant that can be represented as binary axial tree. We evaluate our approach on Chenopodium Album plants, using experiments on synthetic plants to show that our unified framework allows for different tasks including reconstruction, segmentation and skeletonization, while achieving results on-par with state-of-the-art for each task.
UP-SLAM: Adaptively Structured Gaussian SLAM with Uncertainty Prediction in Dynamic Environments
Recent 3D Gaussian Splatting (3DGS) techniques for Visual Simultaneous Localization and Mapping (SLAM) have significantly progressed in tracking and high-fidelity mapping. However, their sequential optimization framework and sensitivity to dynamic objects limit real-time performance and robustness in real-world scenarios. We present UP-SLAM, a real-time RGB-D SLAM system for dynamic environments that decouples tracking and mapping through a parallelized framework. A probabilistic octree is employed to manage Gaussian primitives adaptively, enabling efficient initialization and pruning without hand-crafted thresholds. To robustly filter dynamic regions during tracking, we propose a training-free uncertainty estimator that fuses multi-modal residuals to estimate per-pixel motion uncertainty, achieving open-set dynamic object handling without reliance on semantic labels. Furthermore, a temporal encoder is designed to enhance rendering quality. Concurrently, low-dimensional features are efficiently transformed via a shallow multilayer perceptron to construct DINO features, which are then employed to enrich the Gaussian field and improve the robustness of uncertainty prediction. Extensive experiments on multiple challenging datasets suggest that UP-SLAM outperforms state-of-the-art methods in both localization accuracy (by 59.8%) and rendering quality (by 4.57 dB PSNR), while maintaining real-time performance and producing reusable, artifact-free static maps in dynamic environments.The project: https://aczheng-cai.github.io/up_slam.github.io/
Advancing Multimodal Reasoning via Reinforcement Learning with Cold Start
Recent advancements in large language models (LLMs) have demonstrated impressive chain-of-thought reasoning capabilities, with reinforcement learning (RL) playing a crucial role in this progress. While "aha moment" patterns--where models exhibit self-correction through reflection--are often attributed to emergent properties from RL, we first demonstrate that these patterns exist in multimodal LLMs (MLLMs) prior to RL training but may not necessarily correlate with improved reasoning performance. Building on these insights, we present a comprehensive study on enhancing multimodal reasoning through a two-stage approach: (1) supervised fine-tuning (SFT) as a cold start with structured chain-of-thought reasoning patterns, followed by (2) reinforcement learning via GRPO to further refine these capabilities. Our extensive experiments show that this combined approach consistently outperforms both SFT-only and RL-only methods across challenging multimodal reasoning benchmarks. The resulting models achieve state-of-the-art performance among open-source MLLMs at both 3B and 7B scales, with our 7B model showing substantial improvements over base models (e.g., 66.3 %$\rightarrow$73.4 % on MathVista, 62.9 %$\rightarrow$70.4 % on We-Math) and our 3B model achieving performance competitive with several 7B models. Overall, this work provides practical guidance for building advanced multimodal reasoning models. Our code is available at https://github.com/waltonfuture/RL-with-Cold-Start.
Large-Area Fabrication-aware Computational Diffractive Optics
Differentiable optics, as an emerging paradigm that jointly optimizes optics and (optional) image processing algorithms, has made innovative optical designs possible across a broad range of applications. Many of these systems utilize diffractive optical components (DOEs) for holography, PSF engineering, or wavefront shaping. Existing approaches have, however, mostly remained limited to laboratory prototypes, owing to a large quality gap between simulation and manufactured devices. We aim at lifting the fundamental technical barriers to the practical use of learned diffractive optical systems. To this end, we propose a fabrication-aware design pipeline for diffractive optics fabricated by direct-write grayscale lithography followed by nano-imprinting replication, which is directly suited for inexpensive mass production of large area designs. We propose a super-resolved neural lithography model that can accurately predict the 3D geometry generated by the fabrication process. This model can be seamlessly integrated into existing differentiable optics frameworks, enabling fabrication-aware, end-to-end optimization of computational optical systems. To tackle the computational challenges, we also devise tensor-parallel compute framework centered on distributing large-scale FFT computation across many GPUs. As such, we demonstrate large scale diffractive optics designs up to 32.16 mm $\times$ 21.44 mm, simulated on grids of up to 128,640 by 85,760 feature points. We find adequate agreement between simulation and fabricated prototypes for applications such as holography and PSF engineering. We also achieve high image quality from an imaging system comprised only of a single DOE, with images processed only by a Wiener filter utilizing the simulation PSF. We believe our findings lift the fabrication limitations for real-world applications of diffractive optics and differentiable optical design.
From Dormant to Deleted: Tamper-Resistant Unlearning Through Weight-Space Regularization
Recent unlearning methods for LLMs are vulnerable to relearning attacks: knowledge believed-to-be-unlearned re-emerges by fine-tuning on a small set of (even seemingly-unrelated) examples. We study this phenomenon in a controlled setting for example-level unlearning in vision classifiers. We make the surprising discovery that forget-set accuracy can recover from around 50% post-unlearning to nearly 100% with fine-tuning on just the retain set -- i.e., zero examples of the forget set. We observe this effect across a wide variety of unlearning methods, whereas for a model retrained from scratch excluding the forget set (gold standard), the accuracy remains at 50%. We observe that resistance to relearning attacks can be predicted by weight-space properties, specifically, $L_2$-distance and linear mode connectivity between the original and the unlearned model. Leveraging this insight, we propose a new class of methods that achieve state-of-the-art resistance to relearning attacks.
IKIWISI: An Interactive Visual Pattern Generator for Evaluating the Reliability of Vision-Language Models Without Ground Truth
We present IKIWISI ("I Know It When I See It"), an interactive visual pattern generator for assessing vision-language models in video object recognition when ground truth is unavailable. IKIWISI transforms model outputs into a binary heatmap where green cells indicate object presence and red cells indicate object absence. This visualization leverages humans' innate pattern recognition abilities to evaluate model reliability. IKIWISI introduces "spy objects": adversarial instances users know are absent, to discern models hallucinating on nonexistent items. The tool functions as a cognitive audit mechanism, surfacing mismatches between human and machine perception by visualizing where models diverge from human understanding. Our study with 15 participants found that users considered IKIWISI easy to use, made assessments that correlated with objective metrics when available, and reached informed conclusions by examining only a small fraction of heatmap cells. This approach not only complements traditional evaluation methods through visual assessment of model behavior with custom object sets, but also reveals opportunities for improving alignment between human perception and machine understanding in vision-language systems.
comment: Accepted at DIS'25 (Funchal, Portugal)
CADReview: Automatically Reviewing CAD Programs with Error Detection and Correction ACL 2025
Computer-aided design (CAD) is crucial in prototyping 3D objects through geometric instructions (i.e., CAD programs). In practical design workflows, designers often engage in time-consuming reviews and refinements of these prototypes by comparing them with reference images. To bridge this gap, we introduce the CAD review task to automatically detect and correct potential errors, ensuring consistency between the constructed 3D objects and reference images. However, recent advanced multimodal large language models (MLLMs) struggle to recognize multiple geometric components and perform spatial geometric operations within the CAD program, leading to inaccurate reviews. In this paper, we propose the CAD program repairer (ReCAD) framework to effectively detect program errors and provide helpful feedback on error correction. Additionally, we create a dataset, CADReview, consisting of over 20K program-image pairs, with diverse errors for the CAD review task. Extensive experiments demonstrate that our ReCAD significantly outperforms existing MLLMs, which shows great potential in design applications.
comment: ACL 2025 main conference
Neural Restoration of Greening Defects in Historical Autochrome Photographs Based on Purely Synthetic Data
The preservation of early visual arts, particularly color photographs, is challenged by deterioration caused by aging and improper storage, leading to issues like blurring, scratches, color bleeding, and fading defects. In this paper, we present the first approach for the automatic removal of greening color defects in digitized autochrome photographs. Our main contributions include a method based on synthetic dataset generation and the use of generative AI with a carefully designed loss function for the restoration of visual arts. To address the lack of suitable training datasets for analyzing greening defects in damaged autochromes, we introduce a novel approach for accurately simulating such defects in synthetic data. We also propose a modified weighted loss function for the ChaIR method to account for color imbalances between defected and non-defected areas. While existing methods struggle with accurately reproducing original colors and may require significant manual effort, our method allows for efficient restoration with reduced time requirements.
From Controlled Scenarios to Real-World: Cross-Domain Degradation Pattern Matching for All-in-One Image Restoration
As a fundamental imaging task, All-in-One Image Restoration (AiOIR) aims to achieve image restoration caused by multiple degradation patterns via a single model with unified parameters. Although existing AiOIR approaches obtain promising performance in closed and controlled scenarios, they still suffered from considerable performance reduction in real-world scenarios since the gap of data distributions between the training samples (source domain) and real-world test samples (target domain) can lead inferior degradation awareness ability. To address this issue, a Unified Domain-Adaptive Image Restoration (UDAIR) framework is proposed to effectively achieve AiOIR by leveraging the learned knowledge from source domain to target domain. To improve the degradation identification, a codebook is designed to learn a group of discrete embeddings to denote the degradation patterns, and the cross-sample contrastive learning mechanism is further proposed to capture shared features from different samples of certain degradation. To bridge the data gap, a domain adaptation strategy is proposed to build the feature projection between the source and target domains by dynamically aligning their codebook embeddings, and a correlation alignment-based test-time adaptation mechanism is designed to fine-tune the alignment discrepancies by tightening the degradation embeddings to the corresponding cluster center in the source domain. Experimental results on 10 open-source datasets demonstrate that UDAIR achieves new state-of-the-art performance for the AiOIR task. Most importantly, the feature cluster validate the degradation identification under unknown conditions, and qualitative comparisons showcase robust generalization to real-world scenarios.
Learning Fine-Grained Geometry for Sparse-View Splatting via Cascade Depth Loss
Novel view synthesis is a fundamental task in 3D computer vision that aims to reconstruct realistic images from a set of posed input views. However, reconstruction quality degrades significantly under sparse-view conditions due to limited geometric cues. Existing methods, such as Neural Radiance Fields (NeRF) and the more recent 3D Gaussian Splatting (3DGS), often suffer from blurred details and structural artifacts when trained with insufficient views. Recent works have identified the quality of rendered depth as a key factor in mitigating these artifacts, as it directly affects geometric accuracy and view consistency. In this paper, we address these challenges by introducing Hierarchical Depth-Guided Splatting (HDGS), a depth supervision framework that progressively refines geometry from coarse to fine levels. Central to HDGS is a novel Cascade Pearson Correlation Loss (CPCL), which aligns rendered and estimated monocular depths across multiple spatial scales. By enforcing multi-scale depth consistency, our method substantially improves structural fidelity in sparse-view scenarios. Extensive experiments on the LLFF and DTU benchmarks demonstrate that HDGS achieves state-of-the-art performance under sparse-view settings while maintaining efficient and high-quality rendering
Domain Adaptation of Attention Heads for Zero-shot Anomaly Detection
Zero-shot anomaly detection (ZSAD) in images is an approach that can detect anomalies without access to normal samples, which can be beneficial in various realistic scenarios where model training is not possible. However, existing ZSAD research has shown limitations by either not considering domain adaptation of general-purpose backbone models to anomaly detection domains or by implementing only partial adaptation to some model components. In this paper, we propose HeadCLIP to overcome these limitations by effectively adapting both text and image encoders to the domain. HeadCLIP generalizes the concepts of normality and abnormality through learnable prompts in the text encoder, and introduces learnable head weights to the image encoder to dynamically adjust the features held by each attention head according to domain characteristics. Additionally, we maximize the effect of domain adaptation by introducing a joint anomaly score that utilizes domain-adapted pixel-level information for image-level anomaly detection. Experimental results using multiple real datasets in both industrial and medical domains show that HeadCLIP outperforms existing ZSAD techniques at both pixel and image levels. In the industrial domain, improvements of up to 4.9%p in pixel-level mean anomaly detection score (mAD) and up to 3.0%p in image-level mAD were achieved, with similar improvements (3.2%p, 3.1%p) in the medical domain.
LiDAR Based Semantic Perception for Forklifts in Outdoor Environments
In this study, we present a novel LiDAR-based semantic segmentation framework tailored for autonomous forklifts operating in complex outdoor environments. Central to our approach is the integration of a dual LiDAR system, which combines forward-facing and downward-angled LiDAR sensors to enable comprehensive scene understanding, specifically tailored for industrial material handling tasks. The dual configuration improves the detection and segmentation of dynamic and static obstacles with high spatial precision. Using high-resolution 3D point clouds captured from two sensors, our method employs a lightweight yet robust approach that segments the point clouds into safety-critical instance classes such as pedestrians, vehicles, and forklifts, as well as environmental classes such as driveable ground, lanes, and buildings. Experimental validation demonstrates that our approach achieves high segmentation accuracy while satisfying strict runtime requirements, establishing its viability for safety-aware, fully autonomous forklift navigation in dynamic warehouse and yard environments.
YH-MINER: Multimodal Intelligent System for Natural Ecological Reef Metric Extraction
Coral reefs, crucial for sustaining marine biodiversity and ecological processes (e.g., nutrient cycling, habitat provision), face escalating threats, underscoring the need for efficient monitoring. Coral reef ecological monitoring faces dual challenges of low efficiency in manual analysis and insufficient segmentation accuracy in complex underwater scenarios. This study develops the YH-OSI system, establishing an intelligent framework centered on the Multimodal Large Model (MLLM) for "object detection-semantic segmentation-prior input". The system uses the object detection module (mAP@0.5=0.78) to generate spatial prior boxes for coral instances, driving the segment module to complete pixel-level segmentation in low-light and densely occluded scenarios. The segmentation masks and finetuned classification instructions are fed into the Qwen2-VL-based multimodal model as prior inputs, achieving a genus-level classification accuracy of 88% and simultaneously extracting core ecological metrics. Meanwhile, the system retains the scalability of the multimodal model through standardized interfaces, laying a foundation for future integration into multimodal agent-based underwater robots and supporting the full-process automation of "image acquisition-prior generation-real-time analysis."
StateSpaceDiffuser: Bringing Long Context to Diffusion World Models
World models have recently become promising tools for predicting realistic visuals based on actions in complex environments. However, their reliance on a short sequence of observations causes them to quickly lose track of context. As a result, visual consistency breaks down after just a few steps, and generated scenes no longer reflect information seen earlier. This limitation of the state-of-the-art diffusion-based world models comes from their lack of a lasting environment state. To address this problem, we introduce StateSpaceDiffuser, where a diffusion model is enabled to perform on long-context tasks by integrating a sequence representation from a state-space model (Mamba), representing the entire interaction history. This design restores long-term memory without sacrificing the high-fidelity synthesis of diffusion models. To rigorously measure temporal consistency, we develop an evaluation protocol that probes a model's ability to reinstantiate seen content in extended rollouts. Comprehensive experiments show that StateSpaceDiffuser significantly outperforms a strong diffusion-only baseline, maintaining a coherent visual context for an order of magnitude more steps. It delivers consistent views in both a 2D maze navigation and a complex 3D environment. These results establish that bringing state-space representations into diffusion models is highly effective in demonstrating both visual details and long-term memory.
Enjoying Information Dividend: Gaze Track-based Medical Weakly Supervised Segmentation MICCAI 2025
Weakly supervised semantic segmentation (WSSS) in medical imaging struggles with effectively using sparse annotations. One promising direction for WSSS leverages gaze annotations, captured via eye trackers that record regions of interest during diagnostic procedures. However, existing gaze-based methods, such as GazeMedSeg, do not fully exploit the rich information embedded in gaze data. In this paper, we propose GradTrack, a framework that utilizes physicians' gaze track, including fixation points, durations, and temporal order, to enhance WSSS performance. GradTrack comprises two key components: Gaze Track Map Generation and Track Attention, which collaboratively enable progressive feature refinement through multi-level gaze supervision during the decoding process. Experiments on the Kvasir-SEG and NCI-ISBI datasets demonstrate that GradTrack consistently outperforms existing gaze-based methods, achieving Dice score improvements of 3.21\% and 2.61\%, respectively. Moreover, GradTrack significantly narrows the performance gap with fully supervised models such as nnUNet.
comment: 10 pages, 4 figures, MICCAI 2025 (Early Accept)
GoMatching++: Parameter- and Data-Efficient Arbitrary-Shaped Video Text Spotting and Benchmarking
Video text spotting (VTS) extends image text spotting (ITS) by adding text tracking, significantly increasing task complexity. Despite progress in VTS, existing methods still fall short of the performance seen in ITS. This paper identifies a key limitation in current video text spotters: limited recognition capability, even after extensive end-to-end training. To address this, we propose GoMatching++, a parameter- and data-efficient method that transforms an off-the-shelf image text spotter into a video specialist. The core idea lies in freezing the image text spotter and introducing a lightweight, trainable tracker, which can be optimized efficiently with minimal training data. Our approach includes two key components: (1) a rescoring mechanism to bridge the domain gap between image and video data, and (2) the LST-Matcher, which enhances the frozen image text spotter's ability to handle video text. We explore various architectures for LST-Matcher to ensure efficiency in both parameters and training data. As a result, GoMatching++ sets new performance records on challenging benchmarks such as ICDAR15-video, DSText, and BOVText, while significantly reducing training costs. To address the lack of curved text datasets in VTS, we introduce ArTVideo, a new benchmark featuring over 30% curved text with detailed annotations. We also provide a comprehensive statistical analysis and experimental results for ArTVideo. We believe that GoMatching++ and the ArTVideo benchmark will drive future advancements in video text spotting. The source code, models and dataset are publicly available at https://github.com/Hxyz-123/GoMatching.
comment: arXiv admin note: text overlap with arXiv:2401.07080
Hadaptive-Net: Efficient Vision Models via Adaptive Cross-Hadamard Synergy
Recent studies have revealed the immense potential of Hadamard product in enhancing network representational capacity and dimensional compression. However, despite its theoretical promise, this technique has not been systematically explored or effectively applied in practice, leaving its full capabilities underdeveloped. In this work, we first analyze and identify the advantages of Hadamard product over standard convolutional operations in cross-channel interaction and channel expansion. Building upon these insights, we propose a computationally efficient module: Adaptive Cross-Hadamard (ACH), which leverages adaptive cross-channel Hadamard products for high-dimensional channel expansion. Furthermore, we introduce Hadaptive-Net (Hadamard Adaptive Network), a lightweight network backbone for visual tasks, which is demonstrated through experiments that it achieves an unprecedented balance between inference speed and accuracy through our proposed module.
comment: 10 pages, 5 figures
Look & Mark: Leveraging Radiologist Eye Fixations and Bounding boxes in Multimodal Large Language Models for Chest X-ray Report Generation
Recent advancements in multimodal Large Language Models (LLMs) have significantly enhanced the automation of medical image analysis, particularly in generating radiology reports from chest X-rays (CXR). However, these models still suffer from hallucinations and clinically significant errors, limiting their reliability in real-world applications. In this study, we propose Look & Mark (L&M), a novel grounding fixation strategy that integrates radiologist eye fixations (Look) and bounding box annotations (Mark) into the LLM prompting framework. Unlike conventional fine-tuning, L&M leverages in-context learning to achieve substantial performance gains without retraining. When evaluated across multiple domain-specific and general-purpose models, L&M demonstrates significant gains, including a 1.2% improvement in overall metrics (A.AVG) for CXR-LLaVA compared to baseline prompting and a remarkable 9.2% boost for LLaVA-Med. General-purpose models also benefit from L&M combined with in-context learning, with LLaVA-OV achieving an 87.3% clinical average performance (C.AVG)-the highest among all models, even surpassing those explicitly trained for CXR report generation. Expert evaluations further confirm that L&M reduces clinically significant errors (by 0.43 average errors per report), such as false predictions and omissions, enhancing both accuracy and reliability. These findings highlight L&M's potential as a scalable and efficient solution for AI-assisted radiology, paving the way for improved diagnostic workflows in low-resource clinical settings.
A Survey on Training-free Open-Vocabulary Semantic Segmentation
Semantic segmentation is one of the most fundamental tasks in image understanding with a long history of research, and subsequently a myriad of different approaches. Traditional methods strive to train models up from scratch, requiring vast amounts of computational resources and training data. In the advent of moving to open-vocabulary semantic segmentation, which asks models to classify beyond learned categories, large quantities of finely annotated data would be prohibitively expensive. Researchers have instead turned to training-free methods where they leverage existing models made for tasks where data is more easily acquired. Specifically, this survey will cover the history, nuance, idea development and the state-of-the-art in training-free open-vocabulary semantic segmentation that leverages existing multi-modal classification models. We will first give a preliminary on the task definition followed by an overview of popular model archetypes and then spotlight over 30 approaches split into broader research branches: purely CLIP-based, those leveraging auxiliary visual foundation models and ones relying on generative methods. Subsequently, we will discuss the limitations and potential problems of current research, as well as provide some underexplored ideas for future study. We believe this survey will serve as a good onboarding read to new researchers and spark increased interest in the area.
Investigating Mechanisms for In-Context Vision Language Binding CVPR
To understand a prompt, Vision-Language models (VLMs) must perceive the image, comprehend the text, and build associations within and across both modalities. For instance, given an 'image of a red toy car', the model should associate this image to phrases like 'car', 'red toy', 'red object', etc. Feng and Steinhardt propose the Binding ID mechanism in LLMs, suggesting that the entity and its corresponding attribute tokens share a Binding ID in the model activations. We investigate this for image-text binding in VLMs using a synthetic dataset and task that requires models to associate 3D objects in an image with their descriptions in the text. Our experiments demonstrate that VLMs assign a distinct Binding ID to an object's image tokens and its textual references, enabling in-context association.
comment: Accepted to MIV at CVPRW 2025 (Oral)
S2AFormer: Strip Self-Attention for Efficient Vision Transformer
Vision Transformer (ViT) has made significant advancements in computer vision, thanks to its token mixer's sophisticated ability to capture global dependencies between all tokens. However, the quadratic growth in computational demands as the number of tokens increases limits its practical efficiency. Although recent methods have combined the strengths of convolutions and self-attention to achieve better trade-offs, the expensive pairwise token affinity and complex matrix operations inherent in self-attention remain a bottleneck. To address this challenge, we propose S2AFormer, an efficient Vision Transformer architecture featuring novel Strip Self-Attention (SSA). We design simple yet effective Hybrid Perception Blocks (HPBs) to effectively integrate the local perception capabilities of CNNs with the global context modeling of Transformer's attention mechanisms. A key innovation of SSA lies in its reducing the spatial dimensions of $K$ and $V$ while compressing the channel dimensions of $Q$ and $K$. This design significantly reduces computational overhead while preserving accuracy, striking an optimal balance between efficiency and effectiveness. We evaluate the robustness and efficiency of S2AFormer through extensive experiments on multiple vision benchmarks, including ImageNet-1k for image classification, ADE20k for semantic segmentation, and COCO for object detection and instance segmentation. Results demonstrate that S2AFormer achieves significant accuracy gains with superior efficiency in both GPU and non-GPU environments, making it a strong candidate for efficient vision Transformers.
comment: 12 pages, 6 figures, 8 tables
Physics-inspired Generative AI models via real hardware-based noisy quantum diffusion
Quantum Diffusion Models (QDMs) are an emerging paradigm in Generative AI that aims to use quantum properties to improve the performances of their classical counterparts. However, existing algorithms are not easily scalable due to the limitations of near-term quantum devices. Following our previous work on QDMs, here we propose and implement two physics-inspired protocols. In the first, we use the formalism of quantum stochastic walks, showing that a specific interplay of quantum and classical dynamics in the forward process produces statistically more robust models generating sets of MNIST images with lower Fr\'echet Inception Distance (FID) than using totally classical dynamics. In the second approach, we realize an algorithm to generate images by exploiting the intrinsic noise of real IBM quantum hardware with only four qubits. Our work could be a starting point to pave the way for new scenarios for large-scale algorithms in quantum Generative AI, where quantum noise is neither mitigated nor corrected, but instead exploited as a useful resource.
comment: 17 pages, 9 figures. Supplementary materials: 2 pages, 2 figures
Q-VDiT: Towards Accurate Quantization and Distillation of Video-Generation Diffusion Transformers ICML2025
Diffusion transformers (DiT) have demonstrated exceptional performance in video generation. However, their large number of parameters and high computational complexity limit their deployment on edge devices. Quantization can reduce storage requirements and accelerate inference by lowering the bit-width of model parameters. Yet, existing quantization methods for image generation models do not generalize well to video generation tasks. We identify two primary challenges: the loss of information during quantization and the misalignment between optimization objectives and the unique requirements of video generation. To address these challenges, we present Q-VDiT, a quantization framework specifically designed for video DiT models. From the quantization perspective, we propose the Token-aware Quantization Estimator (TQE), which compensates for quantization errors in both the token and feature dimensions. From the optimization perspective, we introduce Temporal Maintenance Distillation (TMD), which preserves the spatiotemporal correlations between frames and enables the optimization of each frame with respect to the overall video context. Our W3A6 Q-VDiT achieves a scene consistency of 23.40, setting a new benchmark and outperforming current state-of-the-art quantization methods by 1.9$\times$. Code will be available at https://github.com/cantbebetter2/Q-VDiT.
comment: Accepted to ICML2025
ForceVLA: Enhancing VLA Models with a Force-aware MoE for Contact-rich Manipulation
Vision-Language-Action (VLA) models have advanced general-purpose robotic manipulation by leveraging pretrained visual and linguistic representations. However, they struggle with contact-rich tasks that require fine-grained control involving force, especially under visual occlusion or dynamic uncertainty. To address these limitations, we propose \textbf{ForceVLA}, a novel end-to-end manipulation framework that treats external force sensing as a first-class modality within VLA systems. ForceVLA introduces \textbf{FVLMoE}, a force-aware Mixture-of-Experts fusion module that dynamically integrates pretrained visual-language embeddings with real-time 6-axis force feedback during action decoding. This enables context-aware routing across modality-specific experts, enhancing the robot's ability to adapt to subtle contact dynamics. We also introduce \textbf{ForceVLA-Data}, a new dataset comprising synchronized vision, proprioception, and force-torque signals across five contact-rich manipulation tasks. ForceVLA improves average task success by 23.2\% over strong $\pi_0$-based baselines, achieving up to 80\% success in tasks such as plug insertion. Our approach highlights the importance of multimodal integration for dexterous manipulation and sets a new benchmark for physically intelligent robotic control. Code and data will be released at https://sites.google.com/view/forcevla2025.
Learning A Robust RGB-Thermal Detector for Extreme Modality Imbalance
RGB-Thermal (RGB-T) object detection utilizes thermal infrared (TIR) images to complement RGB data, improving robustness in challenging conditions. Traditional RGB-T detectors assume balanced training data, where both modalities contribute equally. However, in real-world scenarios, modality degradation-due to environmental factors or technical issues-can lead to extreme modality imbalance, causing out-of-distribution (OOD) issues during testing and disrupting model convergence during training. This paper addresses these challenges by proposing a novel base-and-auxiliary detector architecture. We introduce a modality interaction module to adaptively weigh modalities based on their quality and handle imbalanced samples effectively. Additionally, we leverage modality pseudo-degradation to simulate real-world imbalances in training data. The base detector, trained on high-quality pairs, provides a consistency constraint for the auxiliary detector, which receives degraded samples. This framework enhances model robustness, ensuring reliable performance even under severe modality degradation. Experimental results demonstrate the effectiveness of our method in handling extreme modality imbalances~(decreasing the Missing Rate by 55%) and improving performance across various baseline detectors.
Improving Brain-to-Image Reconstruction via Fine-Grained Text Bridging
Brain-to-Image reconstruction aims to recover visual stimuli perceived by humans from brain activity. However, the reconstructed visual stimuli often missing details and semantic inconsistencies, which may be attributed to insufficient semantic information. To address this issue, we propose an approach named Fine-grained Brain-to-Image reconstruction (FgB2I), which employs fine-grained text as bridge to improve image reconstruction. FgB2I comprises three key stages: detail enhancement, decoding fine-grained text descriptions, and text-bridged brain-to-image reconstruction. In the detail-enhancement stage, we leverage large vision-language models to generate fine-grained captions for visual stimuli and experimentally validate its importance. We propose three reward metrics (object accuracy, text-image semantic similarity, and image-image semantic similarity) to guide the language model in decoding fine-grained text descriptions from fMRI signals. The fine-grained text descriptions can be integrated into existing reconstruction methods to achieve fine-grained Brain-to-Image reconstruction.
comment: CogSci2025
Flexible Tool Selection through Low-dimensional Attribute Alignment of Vision and Language
Flexible tool selection reflects a complex cognitive ability that distinguishes humans from other species, yet computational models that capture this ability remain underdeveloped. We developed a framework using low-dimensional attribute representations to bridge visual tool perception and linguistic task understanding. We constructed a comprehensive dataset (ToolNet) containing 115 common tools labeled with 13 carefully designed attributes spanning physical, functional, and psychological properties, paired with natural language scenarios describing tool usage. Visual encoders (ResNet or ViT) extract attributes from tool images while fine-tuned language models (GPT-2, LLaMA, DeepSeek) derive required attributes from task descriptions. Our approach achieves 74% accuracy in tool selection tasks-significantly outperforming direct tool matching (20%) and smaller multimodal models (21%-58%), while approaching performance of much larger models like GPT-4o (73%) with substantially fewer parameters. Ablation studies revealed that manipulation-related attributes (graspability, hand-relatedness, elongation) consistently prove most critical across modalities. This work provides a parameter-efficient, interpretable solution that mimics human-like tool cognition, advancing both cognitive science understanding and practical applications in tool selection tasks.
3D Question Answering via only 2D Vision-Language Models ICML2025
Large vision-language models (LVLMs) have significantly advanced numerous fields. In this work, we explore how to harness their potential to address 3D scene understanding tasks, using 3D question answering (3D-QA) as a representative example. Due to the limited training data in 3D, we do not train LVLMs but infer in a zero-shot manner. Specifically, we sample 2D views from a 3D point cloud and feed them into 2D models to answer a given question. When the 2D model is chosen, e.g., LLAVA-OV, the quality of sampled views matters the most. We propose cdViews, a novel approach to automatically selecting critical and diverse Views for 3D-QA. cdViews consists of two key components: viewSelector prioritizing critical views based on their potential to provide answer-specific information, and viewNMS enhancing diversity by removing redundant views based on spatial overlap. We evaluate cdViews on the widely-used ScanQA and SQA benchmarks, demonstrating that it achieves state-of-the-art performance in 3D-QA while relying solely on 2D models without fine-tuning. These findings support our belief that 2D LVLMs are currently the most effective alternative (of the resource-intensive 3D LVLMs) for addressing 3D tasks.
comment: ICML2025
FaceEditTalker: Interactive Talking Head Generation with Facial Attribute Editing
Recent advances in audio-driven talking head generation have achieved impressive results in lip synchronization and emotional expression. However, they largely overlook the crucial task of facial attribute editing. This capability is crucial for achieving deep personalization and expanding the range of practical applications, including user-tailored digital avatars, engaging online education content, and brand-specific digital customer service. In these key domains, the flexible adjustment of visual attributes-such as hairstyle, accessories, and subtle facial features is essential for aligning with user preferences, reflecting diverse brand identities, and adapting to varying contextual demands. In this paper, we present FaceEditTalker, a unified framework that enables controllable facial attribute manipulation while generating high-quality, audio-synchronized talking head videos. Our method consists of two key components: an image feature space editing module, which extracts semantic and detail features and allows flexible control over attributes like expression, hairstyle, and accessories; and an audio-driven video generation module, which fuses these edited features with audio-guided facial landmarks to drive a diffusion-based generator. This design ensures temporal coherence, visual fidelity, and identity preservation across frames. Extensive experiments on public datasets demonstrate that our method outperforms state-of-the-art approaches in lip-sync accuracy, video quality, and attribute controllability. Project page: https://peterfanfan.github.io/FaceEditTalker/
What Makes for Text to 360-degree Panorama Generation with Stable Diffusion?
Recent prosperity of text-to-image diffusion models, e.g. Stable Diffusion, has stimulated research to adapt them to 360-degree panorama generation. Prior work has demonstrated the feasibility of using conventional low-rank adaptation techniques on pre-trained diffusion models to generate panoramic images. However, the substantial domain gap between perspective and panoramic images raises questions about the underlying mechanisms enabling this empirical success. We hypothesize and examine that the trainable counterparts exhibit distinct behaviors when fine-tuned on panoramic data, and such an adaptation conceals some intrinsic mechanism to leverage the prior knowledge within the pre-trained diffusion models. Our analysis reveals the following: 1) the query and key matrices in the attention modules are responsible for common information that can be shared between the panoramic and perspective domains, thus are less relevant to panorama generation; and 2) the value and output weight matrices specialize in adapting pre-trained knowledge to the panoramic domain, playing a more critical role during fine-tuning for panorama generation. We empirically verify these insights by introducing a simple framework called UniPano, with the objective of establishing an elegant baseline for future research. UniPano not only outperforms existing methods but also significantly reduces memory usage and training time compared to prior dual-branch approaches, making it scalable for end-to-end panorama generation with higher resolution. The code will be released.
Real-Time Blind Defocus Deblurring for Earth Observation: The IMAGIN-e Mission Approach
This work addresses mechanical defocus in Earth observation images from the IMAGIN-e mission aboard the ISS, proposing a blind deblurring approach adapted to space-based edge computing constraints. Leveraging Sentinel-2 data, our method estimates the defocus kernel and trains a restoration model within a GAN framework, effectively operating without reference images. On Sentinel-2 images with synthetic degradation, SSIM improved by 72.47% and PSNR by 25.00%, confirming the model's ability to recover lost details when the original clean image is known. On IMAGIN-e, where no reference images exist, perceptual quality metrics indicate a substantial enhancement, with NIQE improving by 60.66% and BRISQUE by 48.38%, validating real-world onboard restoration. The approach is currently deployed aboard the IMAGIN-e mission, demonstrating its practical application in an operational space environment. By efficiently handling high-resolution images under edge computing constraints, the method enables applications such as water body segmentation and contour detection while maintaining processing viability despite resource limitations.
SridBench: Benchmark of Scientific Research Illustration Drawing of Image Generation Model
Recent years have seen rapid advances in AI-driven image generation. Early diffusion models emphasized perceptual quality, while newer multimodal models like GPT-4o-image integrate high-level reasoning, improving semantic understanding and structural composition. Scientific illustration generation exemplifies this evolution: unlike general image synthesis, it demands accurate interpretation of technical content and transformation of abstract ideas into clear, standardized visuals. This task is significantly more knowledge-intensive and laborious, often requiring hours of manual work and specialized tools. Automating it in a controllable, intelligent manner would provide substantial practical value. Yet, no benchmark currently exists to evaluate AI on this front. To fill this gap, we introduce SridBench, the first benchmark for scientific figure generation. It comprises 1,120 instances curated from leading scientific papers across 13 natural and computer science disciplines, collected via human experts and MLLMs. Each sample is evaluated along six dimensions, including semantic fidelity and structural accuracy. Experimental results reveal that even top-tier models like GPT-4o-image lag behind human performance, with common issues in text/visual clarity and scientific correctness. These findings highlight the need for more advanced reasoning-driven visual generation capabilities.
Autoregression-free video prediction using diffusion model for mitigating error propagation
Existing long-term video prediction methods often rely on an autoregressive video prediction mechanism. However, this approach suffers from error propagation, particularly in distant future frames. To address this limitation, this paper proposes the first AutoRegression-Free (ARFree) video prediction framework using diffusion models. Different from an autoregressive video prediction mechanism, ARFree directly predicts any future frame tuples from the context frame tuple. The proposed ARFree consists of two key components: 1) a motion prediction module that predicts a future motion using motion feature extracted from the context frame tuple; 2) a training method that improves motion continuity and contextual consistency between adjacent future frame tuples. Our experiments with two benchmark datasets show that the proposed ARFree video prediction framework outperforms several state-of-the-art video prediction methods.
comment: 6 pages, 4 figures, 2 tables
Adapting Segment Anything Model for Power Transmission Corridor Hazard Segmentation
Power transmission corridor hazard segmentation (PTCHS) aims to separate transmission equipment and surrounding hazards from complex background, conveying great significance to maintaining electric power transmission safety. Recently, the Segment Anything Model (SAM) has emerged as a foundational vision model and pushed the boundaries of segmentation tasks. However, SAM struggles to deal with the target objects in complex transmission corridor scenario, especially those with fine structure. In this paper, we propose ELE-SAM, adapting SAM for the PTCHS task. Technically, we develop a Context-Aware Prompt Adapter to achieve better prompt tokens via incorporating global-local features and focusing more on key regions. Subsequently, to tackle the hazard objects with fine structure in complex background, we design a High-Fidelity Mask Decoder by leveraging multi-granularity mask features and then scaling them to a higher resolution. Moreover, to train ELE-SAM and advance this field, we construct the ELE-40K benchmark, the first large-scale and real-world dataset for PTCHS including 44,094 image-mask pairs. Experimental results for ELE-40K demonstrate the superior performance that ELE-SAM outperforms the baseline model with the average 16.8% mIoU and 20.6% mBIoU performance improvement. Moreover, compared with the state-of-the-art method on HQSeg-44K, the average 2.9% mIoU and 3.8% mBIoU absolute improvements further validate the effectiveness of our method on high-quality generic object segmentation. The source code and dataset are available at https://github.com/Hhaizee/ELE-SAM.
On the Transferability and Discriminability of Repersentation Learning in Unsupervised Domain Adaptation
In this paper, we addressed the limitation of relying solely on distribution alignment and source-domain empirical risk minimization in Unsupervised Domain Adaptation (UDA). Our information-theoretic analysis showed that this standard adversarial-based framework neglects the discriminability of target-domain features, leading to suboptimal performance. To bridge this theoretical-practical gap, we defined "good representation learning" as guaranteeing both transferability and discriminability, and proved that an additional loss term targeting target-domain discriminability is necessary. Building on these insights, we proposed a novel adversarial-based UDA framework that explicitly integrates a domain alignment objective with a discriminability-enhancing constraint. Instantiated as Domain-Invariant Representation Learning with Global and Local Consistency (RLGLC), our method leverages Asymmetrically-Relaxed Wasserstein of Wasserstein Distance (AR-WWD) to address class imbalance and semantic dimension weighting, and employs a local consistency mechanism to preserve fine-grained target-domain discriminative information. Extensive experiments across multiple benchmark datasets demonstrate that RLGLC consistently surpasses state-of-the-art methods, confirming the value of our theoretical perspective and underscoring the necessity of enforcing both transferability and discriminability in adversarial-based UDA.
UAVPairs: A Challenging Benchmark for Match Pair Retrieval of Large-scale UAV Images
The primary contribution of this paper is a challenging benchmark dataset, UAVPairs, and a training pipeline designed for match pair retrieval of large-scale UAV images. First, the UAVPairs dataset, comprising 21,622 high-resolution images across 30 diverse scenes, is constructed; the 3D points and tracks generated by SfM-based 3D reconstruction are employed to define the geometric similarity of image pairs, ensuring genuinely matchable image pairs are used for training. Second, to solve the problem of expensive mining cost for global hard negative mining, a batched nontrivial sample mining strategy is proposed, leveraging the geometric similarity and multi-scene structure of the UAVPairs to generate training samples as to accelerate training. Third, recognizing the limitation of pair-based losses, the ranked list loss is designed to improve the discrimination of image retrieval models, which optimizes the global similarity structure constructed from the positive set and negative set. Finally, the effectiveness of the UAVPairs dataset and training pipeline is validated through comprehensive experiments on three distinct large-scale UAV datasets. The experiment results demonstrate that models trained with the UAVPairs dataset and the ranked list loss achieve significantly improved retrieval accuracy compared to models trained on existing datasets or with conventional losses. Furthermore, these improvements translate to enhanced view graph connectivity and higher quality of reconstructed 3D models. The models trained by the proposed approach perform more robustly compared with hand-crafted global features, particularly in challenging repetitively textured scenes and weakly textured scenes. For match pair retrieval of large-scale UAV images, the trained image retrieval models offer an effective solution. The dataset would be made publicly available at https://github.com/json87/UAVPairs.
Fast Feature Matching of UAV Images via Matrix Band Reduction-based GPU Data Schedule
Feature matching dominats the time costs in structure from motion (SfM). The primary contribution of this study is a GPU data schedule algorithm for efficient feature matching of Unmanned aerial vehicle (UAV) images. The core idea is to divide the whole dataset into blocks based on the matrix band reduction (MBR) and achieve efficient feature matching via GPU-accelerated cascade hashing. First, match pairs are selected by using an image retrieval technique, which converts images into global descriptors and searches high-dimension nearest neighbors with graph indexing. Second, compact image blocks are iteratively generated from a MBR-based data schedule strategy, which exploits image connections to avoid redundant data IO (input/output) burden and increases the usage of GPU computing power. Third, guided by the generated image blocks, feature matching is executed sequentially within the framework of GPU-accelerated cascade hashing, and initial candidate matches are refined by combining a local geometric constraint and RANSAC-based global verification. For further performance improvement, these two seps are designed to execute parallelly in GPU and CPU. Finally, the performance of the proposed solution is evaluated by using large-scale UAV datasets. The results demonstrate that it increases the efficiency of feature matching with speedup ratios ranging from 77.0 to 100.0 compared with KD-Tree based matching methods, and achieves comparable accuracy in relative and absolute bundle adjustment (BA). The proposed algorithm is an efficient solution for feature matching of UAV images.
RiverMamba: A State Space Model for Global River Discharge and Flood Forecasting
Recent deep learning approaches for river discharge forecasting have improved the accuracy and efficiency in flood forecasting, enabling more reliable early warning systems for risk management. Nevertheless, existing deep learning approaches in hydrology remain largely confined to local-scale applications and do not leverage the inherent spatial connections of bodies of water. Thus, there is a strong need for new deep learning methodologies that are capable of modeling spatio-temporal relations to improve river discharge and flood forecasting for scientific and operational applications. To address this, we present RiverMamba, a novel deep learning model that is pretrained with long-term reanalysis data and that can forecast global river discharge and floods on a $0.05^\circ$ grid up to 7 days lead time, which is of high relevance in early warning. To achieve this, RiverMamba leverages efficient Mamba blocks that enable the model to capture global-scale channel network routing and enhance its forecast capability for longer lead times. The forecast blocks integrate ECMWF HRES meteorological forecasts, while accounting for their inaccuracies through spatio-temporal modeling. Our analysis demonstrates that RiverMamba delivers reliable predictions of river discharge, including extreme floods across return periods and lead times, surpassing both operational AI- and physics-based models.
comment: Main paper 10 pages, Appendix 53 pages
AgriFM: A Multi-source Temporal Remote Sensing Foundation Model for Crop Mapping
Accurate crop mapping fundamentally relies on modeling multi-scale spatiotemporal patterns, where spatial scales range from individual field textures to landscape-level context, and temporal scales capture both short-term phenological transitions and full growing-season dynamics. Transformer-based remote sensing foundation models (RSFMs) offer promising potential for crop mapping due to their innate ability for unified spatiotemporal processing. However, current RSFMs remain suboptimal for crop mapping: they either employ fixed spatiotemporal windows that ignore the multi-scale nature of crop systems or completely disregard temporal information by focusing solely on spatial patterns. To bridge these gaps, we present AgriFM, a multi-source remote sensing foundation model specifically designed for agricultural crop mapping. Our approach begins by establishing the necessity of simultaneous hierarchical spatiotemporal feature extraction, leading to the development of a modified Video Swin Transformer architecture where temporal down-sampling is synchronized with spatial scaling operations. This modified backbone enables efficient unified processing of long time-series satellite inputs. AgriFM leverages temporally rich data streams from three satellite sources including MODIS, Landsat-8/9 and Sentinel-2, and is pre-trained on a global representative dataset comprising over 25 million image samples supervised by land cover products. The resulting framework incorporates a versatile decoder architecture that dynamically fuses these learned spatiotemporal representations, supporting diverse downstream tasks. Comprehensive evaluations demonstrate AgriFM's superior performance over conventional deep learning approaches and state-of-the-art general-purpose RSFMs across all downstream tasks. Codes will be available at https://github.com/flyakon/AgriFM.
HoliTom: Holistic Token Merging for Fast Video Large Language Models
Video large language models (video LLMs) excel at video comprehension but face significant computational inefficiency due to redundant video tokens. Existing token pruning methods offer solutions. However, approaches operating within the LLM (inner-LLM pruning), such as FastV, incur intrinsic computational overhead in shallow layers. In contrast, methods performing token pruning before the LLM (outer-LLM pruning) primarily address spatial redundancy within individual frames or limited temporal windows, neglecting the crucial global temporal dynamics and correlations across longer video sequences. This leads to sub-optimal spatio-temporal reduction and does not leverage video compressibility fully. Crucially, the synergistic potential and mutual influence of combining these strategies remain unexplored. To further reduce redundancy, we introduce HoliTom, a novel training-free holistic token merging framework. HoliTom employs outer-LLM pruning through global redundancy-aware temporal segmentation, followed by spatial-temporal merging to reduce visual tokens by over 90%, significantly alleviating the LLM's computational burden. Complementing this, we introduce a robust inner-LLM token similarity-based merging approach, designed for superior performance and compatibility with outer-LLM pruning. Evaluations demonstrate our method's promising efficiency-performance trade-off on LLaVA-OneVision-7B, reducing computational costs to 6.9% of FLOPs while maintaining 99.1% of the original performance. Furthermore, we achieve a 2.28x reduction in Time-To-First-Token (TTFT) and a 1.32x acceleration in decoding throughput, highlighting the practical benefits of our integrated pruning approach for efficient video LLMs inference.
comment: version provides code link: https://github.com/cokeshao/HoliTom
MagicTryOn: Harnessing Diffusion Transformer for Garment-Preserving Video Virtual Try-on
Video Virtual Try-On (VVT) aims to simulate the natural appearance of garments across consecutive video frames, capturing their dynamic variations and interactions with human body motion. However, current VVT methods still face challenges in terms of spatiotemporal consistency and garment content preservation. First, they use diffusion models based on the U-Net, which are limited in their expressive capability and struggle to reconstruct complex details. Second, they adopt a separative modeling approach for spatial and temporal attention, which hinders the effective capture of structural relationships and dynamic consistency across frames. Third, their expression of garment details remains insufficient, affecting the realism and stability of the overall synthesized results, especially during human motion. To address the above challenges, we propose MagicTryOn, a video virtual try-on framework built upon the large-scale video diffusion Transformer. We replace the U-Net architecture with a diffusion Transformer and combine full self-attention to jointly model the spatiotemporal consistency of videos. We design a coarse-to-fine garment preservation strategy. The coarse strategy integrates garment tokens during the embedding stage, while the fine strategy incorporates multiple garment-based conditions, such as semantics, textures, and contour lines during the denoising stage. Moreover, we introduce a mask-aware loss to further optimize garment region fidelity. Extensive experiments on both image and video try-on datasets demonstrate that our method outperforms existing SOTA methods in comprehensive evaluations and generalizes to in-the-wild scenarios.
SageAttention2++: A More Efficient Implementation of SageAttention2
The efficiency of attention is critical because its time complexity grows quadratically with sequence length. SageAttention2 addresses this by utilizing quantization to accelerate matrix multiplications (Matmul) in attention. To further accelerate SageAttention2, we propose to utilize the faster instruction of FP8 Matmul accumulated in FP16. The instruction is 2x faster than the FP8 Matmul used in SageAttention2. Our experiments show that SageAttention2++ achieves a 3.9x speedup over FlashAttention while maintaining the same attention accuracy as SageAttention2. This means SageAttention2++ effectively accelerates various models, including those for language, image, and video generation, with negligible end-to-end metrics loss. The code will be available at https://github.com/thu-ml/SageAttention.
EventEgoHands: Event-based Egocentric 3D Hand Mesh Reconstruction
Reconstructing 3D hand mesh is challenging but an important task for human-computer interaction and AR/VR applications. In particular, RGB and/or depth cameras have been widely used in this task. However, methods using these conventional cameras face challenges in low-light environments and during motion blur. Thus, to address these limitations, event cameras have been attracting attention in recent years for their high dynamic range and high temporal resolution. Despite their advantages, event cameras are sensitive to background noise or camera motion, which has limited existing studies to static backgrounds and fixed cameras. In this study, we propose EventEgoHands, a novel method for event-based 3D hand mesh reconstruction in an egocentric view. Our approach introduces a Hand Segmentation Module that extracts hand regions, effectively mitigating the influence of dynamic background events. We evaluated our approach and demonstrated its effectiveness on the N-HOT3D dataset, improving MPJPE by approximately more than 4.5 cm (43%).
comment: IEEE International Conference on Image Processing 2025, Project Page: https://ryhara.github.io/EventEgoHands/
Advancing high-fidelity 3D and Texture Generation with 2.5D latents
Despite the availability of large-scale 3D datasets and advancements in 3D generative models, the complexity and uneven quality of 3D geometry and texture data continue to hinder the performance of 3D generation techniques. In most existing approaches, 3D geometry and texture are generated in separate stages using different models and non-unified representations, frequently leading to unsatisfactory coherence between geometry and texture. To address these challenges, we propose a novel framework for joint generation of 3D geometry and texture. Specifically, we focus in generate a versatile 2.5D representations that can be seamlessly transformed between 2D and 3D. Our approach begins by integrating multiview RGB, normal, and coordinate images into a unified representation, termed as 2.5D latents. Next, we adapt pre-trained 2D foundation models for high-fidelity 2.5D generation, utilizing both text and image conditions. Finally, we introduce a lightweight 2.5D-to-3D refiner-decoder framework that efficiently generates detailed 3D representations from 2.5D images. Extensive experiments demonstrate that our model not only excels in generating high-quality 3D objects with coherent structure and color from text and image inputs but also significantly outperforms existing methods in geometry-conditioned texture generation.
CityGo: Lightweight Urban Modeling and Rendering with Proxy Buildings and Residual Gaussians
Accurate and efficient modeling of large-scale urban scenes is critical for applications such as AR navigation, UAV based inspection, and smart city digital twins. While aerial imagery offers broad coverage and complements limitations of ground-based data, reconstructing city-scale environments from such views remains challenging due to occlusions, incomplete geometry, and high memory demands. Recent advances like 3D Gaussian Splatting (3DGS) improve scalability and visual quality but remain limited by dense primitive usage, long training times, and poor suit ability for edge devices. We propose CityGo, a hybrid framework that combines textured proxy geometry with residual and surrounding 3D Gaussians for lightweight, photorealistic rendering of urban scenes from aerial perspectives. Our approach first extracts compact building proxy meshes from MVS point clouds, then uses zero order SH Gaussians to generate occlusion-free textures via image-based rendering and back-projection. To capture high-frequency details, we introduce residual Gaussians placed based on proxy-photo discrepancies and guided by depth priors. Broader urban context is represented by surrounding Gaussians, with importance-aware downsampling applied to non-critical regions to reduce redundancy. A tailored optimization strategy jointly refines proxy textures and Gaussian parameters, enabling real-time rendering of complex urban scenes on mobile GPUs with significantly reduced training and memory requirements. Extensive experiments on real-world aerial datasets demonstrate that our hybrid representation significantly reduces training time, achieving on average 1.4x speedup, while delivering comparable visual fidelity to pure 3D Gaussian Splatting approaches. Furthermore, CityGo enables real-time rendering of large-scale urban scenes on mobile consumer GPUs, with substantially reduced memory usage and energy consumption.
Towards Visuospatial Cognition via Hierarchical Fusion of Visual Experts
While Multimodal Large Language Models (MLLMs) excel at general vision-language tasks, visuospatial cognition - reasoning about spatial layouts, relations, and dynamics - remains a significant challenge. Existing models often lack the necessary architectural components and specialized training data for fine-grained spatial understanding. We introduce ViCA2 (Visuospatial Cognitive Assistant 2), a novel MLLM designed to enhance spatial reasoning. ViCA2 features a dual vision encoder architecture integrating SigLIP for semantics and Hiera for spatial structure, coupled with a token ratio control mechanism for efficiency. We also developed ViCA-322K, a new large-scale dataset with over 322,000 spatially grounded question-answer pairs for targeted instruction tuning. On the challenging VSI-Bench benchmark, our ViCA2-7B model achieves a state-of-the-art average score of 56.8, significantly surpassing larger open-source models (e.g., LLaVA-NeXT-Video-72B, 40.9) and leading proprietary models (Gemini-1.5 Pro, 45.4). This demonstrates the effectiveness of our approach in achieving strong visuospatial intelligence with a compact model. We release ViCA2, its codebase, and the ViCA-322K dataset to facilitate further research.
comment: In version 1, Hidetoshi Shimodaira was included as a co-author without their consent and has been removed from the author list
Visuospatial Cognitive Assistant
Video-based spatial cognition is vital for robotics and embodied AI but challenges current Vision-Language Models (VLMs). This paper makes two key contributions. First, we introduce ViCA (Visuospatial Cognitive Assistant)-322K, a diverse dataset of 322,003 QA pairs from real-world indoor videos (ARKitScenes, ScanNet, ScanNet++), offering supervision for 3D metadata-grounded queries and video-based complex reasoning. Second, we develop ViCA-7B, fine-tuned on ViCA-322K, which achieves new state-of-the-art on all eight VSI-Bench tasks, outperforming existing models, including larger ones (e.g., +26.1 on Absolute Distance). For interpretability, we present ViCA-Thinking-2.68K, a dataset with explicit reasoning chains, and fine-tune ViCA-7B to create ViCA-7B-Thinking, a model that articulates its spatial reasoning. Our work highlights the importance of targeted data and suggests paths for improved temporal-spatial modeling. We release all resources to foster research in robust visuospatial intelligence.
comment: Author list corrected. In version 1, Hidetoshi Shimodaira was included as a co-author without their consent and has been removed from the author list
HTMNet: A Hybrid Network with Transformer-Mamba Bottleneck Multimodal Fusion for Transparent and Reflective Objects Depth Completion
Transparent and reflective objects pose significant challenges for depth sensors, resulting in incomplete depth information that adversely affects downstream robotic perception and manipulation tasks. To address this issue, we propose HTMNet, a novel hybrid model integrating Transformer, CNN, and Mamba architectures. The encoder is based on a dual-branch CNN-Transformer framework, the bottleneck fusion module adopts a Transformer-Mamba architecture, and the decoder is built upon a multi-scale fusion module. We introduce a novel multimodal fusion module grounded in self-attention mechanisms and state space models, marking the first application of the Mamba architecture in the field of transparent object depth completion and revealing its promising potential. Additionally, we design an innovative multi-scale fusion module for the decoder that combines channel attention, spatial attention, and multi-scale feature extraction techniques to effectively integrate multi-scale features through a down-fusion strategy. Extensive evaluations on multiple public datasets demonstrate that our model achieves state-of-the-art(SOTA) performance, validating the effectiveness of our approach.
Stereo Radargrammetry Using Deep Learning from Airborne SAR Images
In this paper, we propose a stereo radargrammetry method using deep learning from airborne Synthetic Aperture Radar (SAR) images. Deep learning-based methods are considered to suffer less from geometric image modulation, while there is no public SAR image dataset used to train such methods. We create a SAR image dataset and perform fine-tuning of a deep learning-based image correspondence method. The proposed method suppresses the degradation of image quality by pixel interpolation without ground projection of the SAR image and divides the SAR image into patches for processing, which makes it possible to apply deep learning. Through a set of experiments, we demonstrate that the proposed method exhibits a wider range and more accurate elevation measurements compared to conventional methods.
comment: 5 pages, 5 figures, conference IGARSS2025
Shielded Diffusion: Generating Novel and Diverse Images using Sparse Repellency ICML 2025
The adoption of text-to-image diffusion models raises concerns over reliability, drawing scrutiny under the lens of various metrics like calibration, fairness, or compute efficiency. We focus in this work on two issues that arise when deploying these models: a lack of diversity when prompting images, and a tendency to recreate images from the training set. To solve both problems, we propose a method that coaxes the sampled trajectories of pretrained diffusion models to land on images that fall outside of a reference set. We achieve this by adding repellency terms to the diffusion SDE throughout the generation trajectory, which are triggered whenever the path is expected to land too closely to an image in the shielded reference set. Our method is sparse in the sense that these repellency terms are zero and inactive most of the time, and even more so towards the end of the generation trajectory. Our method, named SPELL for sparse repellency, can be used either with a static reference set that contains protected images, or dynamically, by updating the set at each timestep with the expected images concurrently generated within a batch, and with the images of previously generated batches. We show that adding SPELL to popular diffusion models improves their diversity while impacting their FID only marginally, and performs comparatively better than other recent training-free diversity methods. We also demonstrate how SPELL can ensure a shielded generation away from a very large set of protected images by considering all 1.2M images from ImageNet as the protected set.
comment: Accepted at ICML 2025
An Effective Training Framework for Light-Weight Automatic Speech Recognition Models
Recent advancement in deep learning encouraged developing large automatic speech recognition (ASR) models that achieve promising results while ignoring computational and memory constraints. However, deploying such models on low resource devices is impractical despite of their favorable performance. Existing approaches (pruning, distillation, layer skip etc.) transform the large models into smaller ones at the cost of significant performance degradation or require prolonged training of smaller models for better performance. To address these issues, we introduce an efficacious two-step representation learning based approach capable of producing several small sized models from a single large model ensuring considerably better performance in limited number of epochs. Comprehensive experimentation on ASR benchmarks reveals the efficacy of our approach, achieving three-fold training speed-up and up to 12.54% word error rate improvement.
comment: Accepted at InterSpeech 2025
SynWorld: Virtual Scenario Synthesis for Agentic Action Knowledge Refinement ACL 2025
In the interaction between agents and their environments, agents expand their capabilities by planning and executing actions. However, LLM-based agents face substantial challenges when deployed in novel environments or required to navigate unconventional action spaces. To empower agents to autonomously explore environments, optimize workflows, and enhance their understanding of actions, we propose SynWorld, a framework that allows agents to synthesize possible scenarios with multi-step action invocation within the action space and perform Monte Carlo Tree Search (MCTS) exploration to effectively refine their action knowledge in the current environment. Our experiments demonstrate that SynWorld is an effective and general approach to learning action knowledge in new environments. Code is available at https://github.com/zjunlp/SynWorld.
comment: ACL 2025 Findings
ReLearn: Unlearning via Learning for Large Language Models ACL 2025
Current unlearning methods for large language models usually rely on reverse optimization to reduce target token probabilities. However, this paradigm disrupts the subsequent tokens prediction, degrading model performance and linguistic coherence. Moreover, existing evaluation metrics overemphasize contextual forgetting while inadequately assessing response fluency and relevance. To address these challenges, we propose ReLearn, a data augmentation and fine-tuning pipeline for effective unlearning, along with a comprehensive evaluation framework. This framework introduces Knowledge Forgetting Rate (KFR) and Knowledge Retention Rate (KRR) to measure knowledge-level preservation, and Linguistic Score (LS) to evaluate generation quality. Our experiments show that ReLearn successfully achieves targeted forgetting while preserving high-quality output. Through mechanistic analysis, we further demonstrate how reverse optimization disrupts coherent text generation, while ReLearn preserves this essential capability. Code is available at https://github.com/zjunlp/unlearn.
comment: ACL 2025
X-GAN: A Generative AI-Powered Unsupervised Model for Main Vessel Segmentation of Glaucoma Screening
Structural changes in main retinal blood vessels serve as critical biomarkers for the onset and progression of glaucoma. Identifying these vessels is vital for vascular modeling yet highly challenging. This paper proposes X-GAN, a generative AI-powered unsupervised segmentation model designed for extracting main blood vessels from Optical Coherence Tomography Angiography (OCTA) images. The process begins with the Space Colonization Algorithm (SCA) to rapidly generate a skeleton of vessels, featuring their radii. By synergistically integrating the generative adversarial network (GAN) with biostatistical modeling of vessel radii, X-GAN enables a fast reconstruction of both 2D and 3D representations of the vessels. Based on this reconstruction, X-GAN achieves nearly 100% segmentation accuracy without relying on labeled data or high-performance computing resources. Experimental results confirm X-GAN's superiority in evaluating main vessel segmentation compared to existing deep learning models. Code is here: https://github.com/VikiXie/SatMar8.
Complex Wavelet Mutual Information Loss: A Multi-Scale Loss Function for Semantic Segmentation ICML 2025
Recent advancements in deep neural networks have significantly enhanced the performance of semantic segmentation. However, class imbalance and instance imbalance remain persistent challenges, where smaller instances and thin boundaries are often overshadowed by larger structures. To address the multiscale nature of segmented objects, various models have incorporated mechanisms such as spatial attention and feature pyramid networks. Despite these advancements, most loss functions are still primarily pixel-wise, while regional and boundary-focused loss functions often incur high computational costs or are restricted to small-scale regions. To address this limitation, we propose the complex wavelet mutual information (CWMI) loss, a novel loss function that leverages mutual information from subband images decomposed by a complex steerable pyramid. The complex steerable pyramid captures features across multiple orientations and preserves structural similarity across scales. Meanwhile, mutual information is well-suited to capturing high-dimensional directional features and offers greater noise robustness. Extensive experiments on diverse segmentation datasets demonstrate that CWMI loss achieves significant improvements in both pixel-wise accuracy and topological metrics compared to state-of-the-art methods, while introducing minimal computational overhead. Our code is available at https://github.com/lurenhaothu/CWMI
comment: Accepted at ICML 2025. This version corresponds to the official camera-ready submission
Preference Adaptive and Sequential Text-to-Image Generation ICML 2025
We address the problem of interactive text-to-image (T2I) generation, designing a reinforcement learning (RL) agent which iteratively improves a set of generated images for a user through a sequence of prompt expansions. Using human raters, we create a novel dataset of sequential preferences, which we leverage, together with large-scale open-source (non-sequential) datasets. We construct user-preference and user-choice models using an EM strategy and identify varying user preference types. We then leverage a large multimodal language model (LMM) and a value-based RL approach to suggest an adaptive and diverse slate of prompt expansions to the user. Our Preference Adaptive and Sequential Text-to-image Agent (PASTA) extends T2I models with adaptive multi-turn capabilities, fostering collaborative co-creation and addressing uncertainty or underspecification in a user's intent. We evaluate PASTA using human raters, showing significant improvement compared to baseline methods. We also open-source our sequential rater dataset and simulated user-rater interactions to support future research in user-centric multi-turn T2I systems.
comment: Accepted to ICML 2025 Link to PASTA dataset: https://www.kaggle.com/datasets/googleai/pasta-data
Structurally Different Neural Network Blocks for the Segmentation of Atrial and Aortic Perivascular Adipose Tissue in Multi-centre CT Angiography Scans
Since the emergence of convolutional neural networks (CNNs) and, later, vision transformers (ViTs), deep learning architectures have predominantly relied on identical block types with varying hyperparameters. We propose a novel block alternation strategy to leverage the complementary strengths of different architectural designs, assembling structurally distinct components similar to Lego blocks. We introduce LegoNet, a deep learning framework that alternates CNN-based and SwinViT-based blocks to enhance feature learning for medical image segmentation. We investigate three variations of LegoNet and apply this concept to a previously unexplored clinical problem: the segmentation of the internal mammary artery (IMA), aorta, and perivascular adipose tissue (PVAT) from computed tomography angiography (CTA) scans. These PVAT regions have been shown to possess prognostic value in assessing cardiovascular risk and primary clinical outcomes. We evaluate LegoNet on large datasets, achieving superior performance to other leading architectures. Furthermore, we assess the model's generalizability on external testing cohorts, where an expert clinician corrects the model's segmentations, achieving DSC > 0.90 across various external, international, and public cohorts. To further validate the model's clinical reliability, we perform intra- and inter-observer variability analysis, demonstrating strong agreement with human annotations. The proposed methodology has significant implications for diagnostic cardiovascular management and early prognosis, offering a robust, automated solution for vascular and perivascular segmentation and risk assessment in clinical practice, paving the way for personalised medicine.
comment: 15 pages, 4 figures, 3 tables
VLM Can Be a Good Assistant: Enhancing Embodied Visual Tracking with Self-Improving Vision-Language Models
We introduce a novel self-improving framework that enhances Embodied Visual Tracking (EVT) with Vision-Language Models (VLMs) to address the limitations of current active visual tracking systems in recovering from tracking failure. Our approach combines the off-the-shelf active tracking methods with VLMs' reasoning capabilities, deploying a fast visual policy for normal tracking and activating VLM reasoning only upon failure detection. The framework features a memory-augmented self-reflection mechanism that enables the VLM to progressively improve by learning from past experiences, effectively addressing VLMs' limitations in 3D spatial reasoning. Experimental results demonstrate significant performance improvements, with our framework boosting success rates by $72\%$ with state-of-the-art RL-based approaches and $220\%$ with PID-based methods in challenging environments. This work represents the first integration of VLM-based reasoning to assist EVT agents in proactive failure recovery, offering substantial advances for real-world robotic applications that require continuous target monitoring in dynamic, unstructured environments. Project website: https://sites.google.com/view/evt-recovery-assistant.
Latent Beam Diffusion Models for Decoding Image Sequences
While diffusion models excel at generating high-quality images from text prompts, they struggle with visual consistency in image sequences. Existing methods generate each image independently, leading to disjointed narratives - a challenge further exacerbated in non-linear storytelling, where scenes must connect beyond adjacent frames. We introduce a novel beam search strategy for latent space exploration, enabling conditional generation of full image sequences with beam search decoding. Unlike prior approaches that use fixed latent priors, our method dynamically searches for an optimal sequence of latent representations, ensuring coherent visual transitions. As the latent denoising space is explored, the beam search graph is pruned with a cross-attention mechanism that efficiently scores search paths, prioritizing alignment with both textual prompts and visual context. Human and automatic evaluations confirm that BeamDiffusion outperforms other baseline methods, producing full sequences with superior coherence, visual continuity, and textual alignment.
VisCRA: A Visual Chain Reasoning Attack for Jailbreaking Multimodal Large Language Models
The emergence of Multimodal Large Language Models (MLRMs) has enabled sophisticated visual reasoning capabilities by integrating reinforcement learning and Chain-of-Thought (CoT) supervision. However, while these enhanced reasoning capabilities improve performance, they also introduce new and underexplored safety risks. In this work, we systematically investigate the security implications of advanced visual reasoning in MLRMs. Our analysis reveals a fundamental trade-off: as visual reasoning improves, models become more vulnerable to jailbreak attacks. Motivated by this critical finding, we introduce VisCRA (Visual Chain Reasoning Attack), a novel jailbreak framework that exploits the visual reasoning chains to bypass safety mechanisms. VisCRA combines targeted visual attention masking with a two-stage reasoning induction strategy to precisely control harmful outputs. Extensive experiments demonstrate VisCRA's significant effectiveness, achieving high attack success rates on leading closed-source MLRMs: 76.48% on Gemini 2.0 Flash Thinking, 68.56% on QvQ-Max, and 56.60% on GPT-4o. Our findings highlight a critical insight: the very capability that empowers MLRMs -- their visual reasoning -- can also serve as an attack vector, posing significant security risks.
Variational Positive-incentive Noise: How Noise Benefits Models
A large number of works aim to alleviate the impact of noise due to an underlying conventional assumption of the negative role of noise. However, some existing works show that the assumption does not always hold. In this paper, we investigate how to benefit the classical models by random noise under the framework of Positive-incentive Noise (Pi-Noise). Since the ideal objective of Pi-Noise is intractable, we propose to optimize its variational bound instead, namely variational Pi-Noise (VPN). With the variational inference, a VPN generator implemented by neural networks is designed for enhancing base models and simplifying the inference of base models, without changing the architecture of base models. Benefiting from the independent design of base models and VPN generators, the VPN generator can work with most existing models. From the experiments, it is shown that the proposed VPN generator can improve the base models. It is appealing that the trained variational VPN generator prefers to blur the irrelevant ingredients in complicated images, which meets our expectations.
comment: Acceptted by IEEE Transactions on Pattern Analysis and Machine Intelligence
Bridging Scales in Map Generation: A scale-aware cascaded generative mapping framework for seamless and consistent multi-scale cartographic representation
Multi-scale tile maps are essential for geographic information services, serving as fundamental outcomes of surveying and cartographic workflows. While existing image generation networks can produce map-like outputs from remote sensing imagery, their emphasis on replicating texture rather than preserving geospatial features limits cartographic validity. Current approaches face two fundamental challenges: inadequate integration of cartographic generalization principles with dynamic multi-scale generation and spatial discontinuities arising from tile-wise generation. To address these limitations, we propose a scale-aware cartographic generation framework (SCGM) that leverages conditional guided diffusion and a multi-scale cascade architecture. The framework introduces three key innovations: a scale modality encoding mechanism to formalize map generalization relationships, a scale-driven conditional encoder for robust feature fusion, and a cascade reference mechanism ensuring cross-scale visual consistency. By hierarchically constraining large-scale map synthesis with small-scale structural priors, SCGM effectively mitigates edge artifacts while maintaining geographic fidelity. Comprehensive evaluations on cartographic benchmarks confirm the framework's ability to generate seamless multi-scale tile maps with enhanced spatial coherence and generalization-aware representation, demonstrating significant potential for emergency mapping and automated cartography applications.
Fast 3D point clouds retrieval for Large-scale 3D Place Recognition
Retrieval in 3D point clouds is a challenging task that consists in retrieving the most similar point clouds to a given query within a reference of 3D points. Current methods focus on comparing descriptors of point clouds in order to identify similar ones. Due to the complexity of this latter step, here we focus on the acceleration of the retrieval by adapting the Differentiable Search Index (DSI), a transformer-based approach initially designed for text information retrieval, for 3D point clouds retrieval. Our approach generates 1D identifiers based on the point descriptors, enabling direct retrieval in constant time. To adapt DSI to 3D data, we integrate Vision Transformers to map descriptors to these identifiers while incorporating positional and semantic encoding. The approach is evaluated for place recognition on a public benchmark comparing its retrieval capabilities against state-of-the-art methods, in terms of quality and speed of returned point clouds.
comment: 8 pages, 1 figures
Beyond External Monitors: Enhancing Transparency of Large Language Models for Easier Monitoring
Large language models (LLMs) are becoming increasingly capable, but the mechanisms of their thinking and decision-making process remain unclear. Chain-of-thoughts (CoTs) have been commonly utilized to monitor LLMs, but this strategy fails to accurately reflect LLMs' thinking process. Techniques based on LLMs' hidden representations provide an inner perspective to monitor their latent thinking. However, previous methods only try to develop external monitors instead of making LLMs themselves easier to monitor. In this paper, we propose a novel method TELLME, improving the transparency of LLMs and helping monitors identify unsuitable and sensitive behaviors. Furthermore, we showcase the applications of TELLME on trustworthiness tasks (\eg, safety risks monitoring tasks and detoxification tasks), where LLMs achieve consistent improvement in transparency and task performance. More crucially, we theoretically analyze the improvement of TELLME on LLMs' generalization ability through optimal transport theory.
comment: 25 pages,6 figures,13 tables
Inference-Time Scaling for Flow Models via Stochastic Generation and Rollover Budget Forcing
We propose an inference-time scaling approach for pretrained flow models. Recently, inference-time scaling has gained significant attention in LLMs and diffusion models, improving sample quality or better aligning outputs with user preferences by leveraging additional computation. For diffusion models, particle sampling has allowed more efficient scaling due to the stochasticity at intermediate denoising steps. On the contrary, while flow models have gained popularity as an alternative to diffusion models--offering faster generation and high-quality outputs in state-of-the-art image and video generative models--efficient inference-time scaling methods used for diffusion models cannot be directly applied due to their deterministic generative process. To enable efficient inference-time scaling for flow models, we propose three key ideas: 1) SDE-based generation, enabling particle sampling in flow models, 2) Interpolant conversion, broadening the search space and enhancing sample diversity, and 3) Rollover Budget Forcing (RBF), an adaptive allocation of computational resources across timesteps to maximize budget utilization. Our experiments show that SDE-based generation, particularly variance-preserving (VP) interpolant-based generation, improves the performance of particle sampling methods for inference-time scaling in flow models. Additionally, we demonstrate that RBF with VP-SDE achieves the best performance, outperforming all previous inference-time scaling approaches.
comment: Project page: https://flow-inference-time-scaling.github.io/
Progressive Language-guided Visual Learning for Multi-Task Visual Grounding
Multi-task visual grounding (MTVG) includes two sub-tasks, i.e., Referring Expression Comprehension (REC) and Referring Expression Segmentation (RES). The existing representative approaches generally follow the research pipeline which mainly consists of three core procedures, including independent feature extraction for visual and linguistic modalities, respectively, cross-modal interaction module, and independent prediction heads for different sub-tasks. Albeit achieving remarkable performance, this research line has two limitations: 1) The linguistic content has not been fully injected into the entire visual backbone for boosting more effective visual feature extraction and it needs an extra cross-modal interaction module; 2) The relationship between REC and RES tasks is not effectively exploited to help the collaborative prediction for more accurate output. To deal with these problems, in this paper, we propose a Progressive Language-guided Visual Learning framework for multi-task visual grounding, called PLVL, which not only finely mine the inherent feature expression of the visual modality itself but also progressively inject the language information to help learn linguistic-related visual features. In this manner, our PLVL does not need additional cross-modal fusion module while fully introducing the language guidance. Furthermore, we analyze that the localization center for REC would help identify the to-be-segmented object region for RES to some extent. Inspired by this investigation, we design a multi-task head to accomplish collaborative predictions for these two sub-tasks. Extensive experiments conducted on several benchmark datasets comprehensively substantiate that our PLVL obviously outperforms the representative methods in both REC and RES tasks. https://github.com/jcwang0602/PLVL
MOSformer: Momentum encoder-based inter-slice fusion transformer for medical image segmentation
Medical image segmentation takes an important position in various clinical applications. 2.5D-based segmentation models bridge the computational efficiency of 2D-based models with the spatial perception capabilities of 3D-based models. However, existing 2.5D-based models primarily adopt a single encoder to extract features of target and neighborhood slices, failing to effectively fuse inter-slice information, resulting in suboptimal segmentation performance. In this study, a novel momentum encoder-based inter-slice fusion transformer (MOSformer) is proposed to overcome this issue by leveraging inter-slice information at multi-scale feature maps extracted by different encoders. Specifically, dual encoders are employed to enhance feature distinguishability among different slices. One of the encoders is moving-averaged to maintain consistent slice representations. Moreover, an inter-slice fusion transformer (IF-Trans) module is developed to fuse inter-slice multi-scale features. The MOSformer is evaluated on three benchmark datasets (Synapse, ACDC, and AMOS), achieving a new state-of-the-art with 85.63%, 92.19%, and 85.43% DSC, respectively. These results demonstrate MOSformer's competitiveness in medical image segmentation.
comment: Under Review
A Plug-and-Play Method for Guided Multi-contrast MRI Reconstruction based on Content/Style Modeling
Since multiple MRI contrasts of the same anatomy contain redundant information, one contrast can guide the reconstruction of an undersampled subsequent contrast. To this end, several end-to-end learning-based guided reconstruction methods have been proposed. However, a key challenge is the requirement of large paired training datasets comprising raw data and aligned reference images. We propose a modular two-stage approach addressing this issue, additionally providing an explanatory framework for the multi-contrast problem based on the shared and non-shared generative factors underlying two given contrasts. A content/style model of two-contrast image data is learned from a largely unpaired image-domain dataset and is subsequently applied as a plug-and-play operator in iterative reconstruction. The disentanglement of content and style allows explicit representation of contrast-independent and contrast-specific factors. Consequently, incorporating prior information into the reconstruction reduces to a simple replacement of the aliased content of the reconstruction iterate with high-quality content derived from the reference scan. Combining this component with a data consistency step and introducing a general corrective process for the content yields an iterative scheme. We name this novel approach PnP-CoSMo. Various aspects like interpretability and convergence are explored via simulations. Furthermore, its practicality is demonstrated on the NYU fastMRI DICOM dataset, showing improved generalizability compared to end-to-end methods, and on two in-house multi-coil raw datasets, offering up to 32.6% more acceleration over learning-based non-guided reconstruction for a given SSIM. In a small radiological task, PnP-CoSMo allowed 33.3% more acceleration over clinical reconstruction at diagnostic quality.
AKRMap: Adaptive Kernel Regression for Trustworthy Visualization of Cross-Modal Embeddings
Cross-modal embeddings form the foundation for multi-modal models. However, visualization methods for interpreting cross-modal embeddings have been primarily confined to traditional dimensionality reduction (DR) techniques like PCA and t-SNE. These DR methods primarily focus on feature distributions within a single modality, whilst failing to incorporate metrics (e.g., CLIPScore) across multiple modalities. This paper introduces AKRMap, a new DR technique designed to visualize cross-modal embeddings metric with enhanced accuracy by learning kernel regression of the metric landscape in the projection space. Specifically, AKRMap constructs a supervised projection network guided by a post-projection kernel regression loss, and employs adaptive generalized kernels that can be jointly optimized with the projection. This approach enables AKRMap to efficiently generate visualizations that capture complex metric distributions, while also supporting interactive features such as zoom and overlay for deeper exploration. Quantitative experiments demonstrate that AKRMap outperforms existing DR methods in generating more accurate and trustworthy visualizations. We further showcase the effectiveness of AKRMap in visualizing and comparing cross-modal embeddings for text-to-image models. Code and demo are available at https://github.com/yilinye/AKRMap.
DIPO: Dual-State Images Controlled Articulated Object Generation Powered by Diverse Data
We present DIPO, a novel framework for the controllable generation of articulated 3D objects from a pair of images: one depicting the object in a resting state and the other in an articulated state. Compared to the single-image approach, our dual-image input imposes only a modest overhead for data collection, but at the same time provides important motion information, which is a reliable guide for predicting kinematic relationships between parts. Specifically, we propose a dual-image diffusion model that captures relationships between the image pair to generate part layouts and joint parameters. In addition, we introduce a Chain-of-Thought (CoT) based graph reasoner that explicitly infers part connectivity relationships. To further improve robustness and generalization on complex articulated objects, we develop a fully automated dataset expansion pipeline, name LEGO-Art, that enriches the diversity and complexity of PartNet-Mobility dataset. We propose PM-X, a large-scale dataset of complex articulated 3D objects, accompanied by rendered images, URDF annotations, and textual descriptions. Extensive experiments demonstrate that DIPO significantly outperforms existing baselines in both the resting state and the articulated state, while the proposed PM-X dataset further enhances generalization to diverse and structurally complex articulated objects. Our code and dataset will be released to the community upon publication.
Hunyuan-Game: Industrial-grade Intelligent Game Creation Model
Intelligent game creation represents a transformative advancement in game development, utilizing generative artificial intelligence to dynamically generate and enhance game content. Despite notable progress in generative models, the comprehensive synthesis of high-quality game assets, including both images and videos, remains a challenging frontier. To create high-fidelity game content that simultaneously aligns with player preferences and significantly boosts designer efficiency, we present Hunyuan-Game, an innovative project designed to revolutionize intelligent game production. Hunyuan-Game encompasses two primary branches: image generation and video generation. The image generation component is built upon a vast dataset comprising billions of game images, leading to the development of a group of customized image generation models tailored for game scenarios: (1) General Text-to-Image Generation. (2) Game Visual Effects Generation, involving text-to-effect and reference image-based game visual effect generation. (3) Transparent Image Generation for characters, scenes, and game visual effects. (4) Game Character Generation based on sketches, black-and-white images, and white models. The video generation component is built upon a comprehensive dataset of millions of game and anime videos, leading to the development of five core algorithmic models, each targeting critical pain points in game development and having robust adaptation to diverse game video scenarios: (1) Image-to-Video Generation. (2) 360 A/T Pose Avatar Video Synthesis. (3) Dynamic Illustration Generation. (4) Generative Video Super-Resolution. (5) Interactive Game Video Generation. These image and video generation models not only exhibit high-level aesthetic expression but also deeply integrate domain-specific knowledge, establishing a systematic understanding of diverse game and anime art styles.
PreP-OCR: A Complete Pipeline for Document Image Restoration and Enhanced OCR Accuracy ACL 2025
This paper introduces PreP-OCR, a two-stage pipeline that combines document image restoration with semantic-aware post-OCR correction to enhance both visual clarity and textual consistency, thereby improving text extraction from degraded historical documents. First, we synthesize document-image pairs from plaintext, rendering them with diverse fonts and layouts and then applying a randomly ordered set of degradation operations. An image restoration model is trained on this synthetic data, using multi-directional patch extraction and fusion to process large images. Second, a ByT5 post-OCR model, fine-tuned on synthetic historical text pairs, addresses remaining OCR errors. Detailed experiments on 13,831 pages of real historical documents in English, French, and Spanish show that the PreP-OCR pipeline reduces character error rates by 63.9-70.3% compared to OCR on raw images. Our pipeline demonstrates the potential of integrating image restoration with linguistic error correction for digitizing historical archives.
comment: ACL 2025 main
OpenS2V-Nexus: A Detailed Benchmark and Million-Scale Dataset for Subject-to-Video Generation
Subject-to-Video (S2V) generation aims to create videos that faithfully incorporate reference content, providing enhanced flexibility in the production of videos. To establish the infrastructure for S2V generation, we propose OpenS2V-Nexus, consisting of (i) OpenS2V-Eval, a fine-grained benchmark, and (ii) OpenS2V-5M, a million-scale dataset. In contrast to existing S2V benchmarks inherited from VBench that focus on global and coarse-grained assessment of generated videos, OpenS2V-Eval focuses on the model's ability to generate subject-consistent videos with natural subject appearance and identity fidelity. For these purposes, OpenS2V-Eval introduces 180 prompts from seven major categories of S2V, which incorporate both real and synthetic test data. Furthermore, to accurately align human preferences with S2V benchmarks, we propose three automatic metrics, NexusScore, NaturalScore and GmeScore, to separately quantify subject consistency, naturalness, and text relevance in generated videos. Building on this, we conduct a comprehensive evaluation of 16 representative S2V models, highlighting their strengths and weaknesses across different content. Moreover, we create the first open-source large-scale S2V generation dataset OpenS2V-5M, which consists of five million high-quality 720P subject-text-video triples. Specifically, we ensure subject-information diversity in our dataset by (1) segmenting subjects and building pairing information via cross-video associations and (2) prompting GPT-Image-1 on raw frames to synthesize multi-view representations. Through OpenS2V-Nexus, we deliver a robust infrastructure to accelerate future S2V generation research.
comment: Code and Dataset: https://github.com/PKU-YuanGroup/OpenS2V-Nexus
Progressive Scaling Visual Object Tracking
In this work, we propose a progressive scaling training strategy for visual object tracking, systematically analyzing the influence of training data volume, model size, and input resolution on tracking performance. Our empirical study reveals that while scaling each factor leads to significant improvements in tracking accuracy, naive training suffers from suboptimal optimization and limited iterative refinement. To address this issue, we introduce DT-Training, a progressive scaling framework that integrates small teacher transfer and dual-branch alignment to maximize model potential. The resulting scaled tracker consistently outperforms state-of-the-art methods across multiple benchmarks, demonstrating strong generalization and transferability of the proposed method. Furthermore, we validate the broader applicability of our approach to additional tasks, underscoring its versatility beyond tracking.
PAEFF: Precise Alignment and Enhanced Gated Feature Fusion for Face-Voice Association
We study the task of learning association between faces and voices, which is gaining interest in the multimodal community lately. These methods suffer from the deliberate crafting of negative mining procedures as well as the reliance on the distant margin parameter. These issues are addressed by learning a joint embedding space in which orthogonality constraints are applied to the fused embeddings of faces and voices. However, embedding spaces of faces and voices possess different characteristics and require spaces to be aligned before fusing them. To this end, we propose a method that accurately aligns the embedding spaces and fuses them with an enhanced gated fusion thereby improving the performance of face-voice association. Extensive experiments on the VoxCeleb dataset reveals the merits of the proposed approach.
comment: Accepted at InterSpeech 2025
HumanAesExpert: Advancing a Multi-Modality Foundation Model for Human Image Aesthetic Assessment
Image Aesthetic Assessment (IAA) is a long-standing and challenging research task. However, its subset, Human Image Aesthetic Assessment (HIAA), has been scarcely explored. To bridge this research gap, our work pioneers a holistic implementation framework tailored for HIAA. Specifically, we introduce HumanBeauty, the first dataset purpose-built for HIAA, which comprises 108k high-quality human images with manual annotations. To achieve comprehensive and fine-grained HIAA, 50K human images are manually collected through a rigorous curation process and annotated leveraging our trailblazing 12-dimensional aesthetic standard, while the remaining 58K with overall aesthetic labels are systematically filtered from public datasets. Based on the HumanBeauty database, we propose HumanAesExpert, a powerful Vision Language Model for aesthetic evaluation of human images. We innovatively design an Expert head to incorporate human knowledge of aesthetic sub-dimensions while jointly utilizing the Language Modeling (LM) and Regression heads. This approach empowers our model to achieve superior proficiency in both overall and fine-grained HIAA. Furthermore, we introduce a MetaVoter, which aggregates scores from all three heads, to effectively balance the capabilities of each head, thereby realizing improved assessment precision. Extensive experiments demonstrate that our HumanAesExpert models deliver significantly better performance in HIAA than other state-of-the-art models. Project webpage: https://humanaesexpert.github.io/HumanAesExpert/
Automating tumor-infiltrating lymphocyte assessment in breast cancer histopathology images using QuPath: a transparent and accessible machine learning pipeline
In this study, we built an end-to-end tumor-infiltrating lymphocytes (TILs) assessment pipeline within QuPath, demonstrating the potential of easily accessible tools to perform complex tasks in a fully automatic fashion. First, we trained a pixel classifier to segment tumor, tumor-associated stroma, and other tissue compartments in breast cancer H&E-stained whole-slide images (WSI) to isolate tumor-associated stroma for subsequent analysis. Next, we applied a pre-trained StarDist deep learning model in QuPath for cell detection and used the extracted cell features to train a binary classifier distinguishing TILs from other cells. To evaluate our TILs assessment pipeline, we calculated the TIL density in each WSI and categorized them as low, medium, or high TIL levels. Our pipeline was evaluated against pathologist-assigned TIL scores, achieving a Cohen's kappa of 0.71 on the external test set, corroborating previous research findings. These results confirm that existing software can offer a practical solution for the assessment of TILs in H&E-stained WSIs of breast cancer.
comment: 16 Pages, 9 Figures, 3 tables
Causality and "In-the-Wild" Video-Based Person Re-ID: A Survey
Video-based person re-identification (Re-ID) remains brittle in real-world deployments despite impressive benchmark performance. Most existing models rely on superficial correlations such as clothing, background, or lighting that fail to generalize across domains, viewpoints, and temporal variations. This survey examines the emerging role of causal reasoning as a principled alternative to traditional correlation-based approaches in video-based Re-ID. We provide a structured and critical analysis of methods that leverage structural causal models, interventions, and counterfactual reasoning to isolate identity-specific features from confounding factors. The survey is organized around a novel taxonomy of causal Re-ID methods that spans generative disentanglement, domain-invariant modeling, and causal transformers. We review current evaluation metrics and introduce causal-specific robustness measures. In addition, we assess practical challenges of scalability, fairness, interpretability, and privacy that must be addressed for real-world adoption. Finally, we identify open problems and outline future research directions that integrate causal modeling with efficient architectures and self-supervised learning. This survey aims to establish a coherent foundation for causal video-based person Re-ID and to catalyze the next phase of research in this rapidly evolving domain.
comment: 30 pages, 9 figures
Coverage Biases in High-Resolution Satellite Imagery
Satellite imagery is increasingly used to complement traditional data collection approaches such as surveys and censuses across scientific disciplines. However, we ask: Do all places on earth benefit equally from this new wealth of information? In this study, we investigate coverage bias of major satellite constellations that provide optical satellite imagery with a ground sampling distance below 10 meters, evaluating both the future on-demand tasking opportunities as well as the availability of historic images across the globe. Specifically, forward-looking, we estimate how often different places are revisited during a window of 30 days based on the satellites' orbital paths, thus investigating potential coverage biases caused by physical factors. We find that locations farther away from the equator are generally revisited more frequently by the constellations under study. Backward-looking, we show that historic satellite image availability -- based on metadata collected from major satellite imagery providers -- is influenced by socio-economic factors on the ground: less developed, less populated places have less satellite images available. Furthermore, in three small case studies on recent conflict regions in this world, namely Gaza, Sudan and Ukraine, we show that also geopolitical events play an important role in satellite image availability, hinting at underlying business model decisions. These insights lay bare that the digital dividend yielded by satellite imagery is not equally distributed across our planet.
comment: To appear in the proceedings of the ICWSM'25 Workshop on Data for the Wellbeing of Most Vulnerable (DWMV). Please cite accordingly
Interpreting CLIP with Hierarchical Sparse Autoencoders
Sparse autoencoders (SAEs) are useful for detecting and steering interpretable features in neural networks, with particular potential for understanding complex multimodal representations. Given their ability to uncover interpretable features, SAEs are particularly valuable for analyzing large-scale vision-language models (e.g., CLIP and SigLIP), which are fundamental building blocks in modern systems yet remain challenging to interpret and control. However, current SAE methods are limited by optimizing both reconstruction quality and sparsity simultaneously, as they rely on either activation suppression or rigid sparsity constraints. To this end, we introduce Matryoshka SAE (MSAE), a new architecture that learns hierarchical representations at multiple granularities simultaneously, enabling a direct optimization of both metrics without compromise. MSAE establishes a new state-of-the-art Pareto frontier between reconstruction quality and sparsity for CLIP, achieving 0.99 cosine similarity and less than 0.1 fraction of variance unexplained while maintaining ~80% sparsity. Finally, we demonstrate the utility of MSAE as a tool for interpreting and controlling CLIP by extracting over 120 semantic concepts from its representation to perform concept-based similarity search and bias analysis in downstream tasks like CelebA. We make the codebase available at https://github.com/WolodjaZ/MSAE.
A Weak Supervision Learning Approach Towards an Equitable Mobility Estimation
The scarcity and high cost of labeled high-resolution imagery have long challenged remote sensing applications, particularly in low-income regions where high-resolution data are scarce. In this study, we propose a weak supervision framework that estimates parking lot occupancy using 3m resolution satellite imagery. By leveraging coarse temporal labels -- based on the assumption that parking lots of major supermarkets and hardware stores in Germany are typically full on Saturdays and empty on Sundays -- we train a pairwise comparison model that achieves an AUC of 0.92 on large parking lots. The proposed approach minimizes the reliance on expensive high-resolution images and holds promise for scalable urban mobility analysis. Moreover, the method can be adapted to assess transit patterns and resource allocation in vulnerable communities, providing a data-driven basis to improve the well-being of those most in need.
comment: To appear in the proceedings of the ICWSM'25 Workshop on Data for the Wellbeing of Most Vulnerable (DWMV). Please cite accordingly
SLoRD: Structural Low-Rank Descriptors for Shape Consistency in Vertebrae Segmentation
Automatic and precise multi-class vertebrae segmentation from CT images is crucial for various clinical applications. However, due to similar appearances between adjacent vertebrae and the existence of various pathologies, existing single-stage and multi-stage methods suffer from imprecise vertebrae segmentation. Essentially, these methods fail to explicitly impose both contour precision and intra-vertebrae voxel consistency constraints synchronously, resulting in the intra-vertebrae segmentation inconsistency, which refers to multiple label predictions inside a singular vertebra. In this work, we intend to label complete binary masks with sequential indices to address that challenge. Specifically, a contour generation network is proposed based on Structural Low-Rank Descriptors for shape consistency, termed SLoRD. For a structural representation of vertebral contours, we adopt the spherical coordinate system and devise the spherical centroid to calculate contour descriptors. Due to vertebrae's similar appearances, basic contour descriptors can be acquired offline to restore original contours. Therefore, SLoRD leverages these contour priors and explicit shape constraints to facilitate regressed contour points close to vertebral surfaces. Quantitative and qualitative evaluations on VerSe 2019 and 2020 demonstrate the superior performance of our framework over other single-stage and multi-stage state-of-the-art (SOTA) methods. Further, SLoRD is a plug-and-play framework to refine the segmentation inconsistency existing in coarse predictions from other approaches. Source codes are available.
comment: JBHI accepted
CLIP-MoE: Towards Building Mixture of Experts for CLIP with Diversified Multiplet Upcycling
Contrastive Language-Image Pre-training (CLIP) has become a cornerstone in multimodal intelligence. However, recent studies discovered that CLIP can only encode one aspect of the feature space, leading to substantial information loss and indistinctive features. To mitigate this issue, this paper introduces a novel strategy that fine-tunes a series of complementary CLIP models and transforms them into a CLIP-MoE. Specifically, we propose a model-agnostic Diversified Multiplet Upcycling (DMU) framework for CLIP. Instead of training multiple CLIP models from scratch, DMU leverages a pre-trained CLIP and fine-tunes it into a diverse set with highly cost-effective multistage contrastive learning, thus capturing distinct feature subspaces efficiently. To fully exploit these fine-tuned models while minimizing computational overhead, we transform them into a CLIP-MoE, which dynamically activates a subset of CLIP experts, achieving an effective balance between model capacity and computational cost. Comprehensive experiments demonstrate the superior performance of CLIP-MoE across various zero-shot retrieval, zero-shot image classification tasks, and downstream Multimodal Large Language Model (MLLM) benchmarks when used as a vision encoder.
Galileo: Learning Global & Local Features of Many Remote Sensing Modalities
We introduce a highly multimodal transformer to represent many remote sensing modalities - multispectral optical, synthetic aperture radar, elevation, weather, pseudo-labels, and more - across space and time. These inputs are useful for diverse remote sensing tasks, such as crop mapping and flood detection. However, learning shared representations of remote sensing data is challenging, given the diversity of relevant data modalities, and because objects of interest vary massively in scale, from small boats (1-2 pixels and transient) to glaciers (thousands of pixels and persistent). We present a novel self-supervised learning algorithm that extracts multi-scale features across a flexible set of input modalities through masked modeling. Our dual global and local contrastive losses differ in their targets (deep representations vs. shallow input projections) and masking strategies (structured vs. not). Our Galileo is a single generalist model that outperforms SoTA specialist models for satellite images and pixel time series across eleven benchmarks and multiple tasks.
FocusChat: Text-guided Long Video Understanding via Spatiotemporal Information Filtering
Recently, multi-modal large language models have made significant progress. However, visual information lacking of guidance from the user's intention may lead to redundant computation and involve unnecessary visual noise, especially in long, untrimmed videos. To address this issue, we propose FocusChat, a text-guided multi-modal large language model (LLM) that emphasizes visual information correlated to the user's prompt. In detail, Our model first undergoes the semantic extraction module, which comprises a visual semantic branch and a text semantic branch to extract image and text semantics, respectively. The two branches are combined using the Spatial-Temporal Filtering Module (STFM). STFM enables explicit spatial-level information filtering and implicit temporal-level feature filtering, ensuring that the visual tokens are closely aligned with the user's query. It lowers the essential number of visual tokens inputted into the LLM. FocusChat significantly outperforms Video-LLaMA in zero-shot experiments, using an order of magnitude less training data with only 16 visual tokens occupied. It achieves results comparable to the state-of-the-art in few-shot experiments, with only 0.72M pre-training data.
comment: 11 pages, 4 figures
UniDB: A Unified Diffusion Bridge Framework via Stochastic Optimal Control
Recent advances in diffusion bridge models leverage Doob's $h$-transform to establish fixed endpoints between distributions, demonstrating promising results in image translation and restoration tasks. However, these approaches frequently produce blurred or excessively smoothed image details and lack a comprehensive theoretical foundation to explain these shortcomings. To address these limitations, we propose UniDB, a unified framework for diffusion bridges based on Stochastic Optimal Control (SOC). UniDB formulates the problem through an SOC-based optimization and derives a closed-form solution for the optimal controller, thereby unifying and generalizing existing diffusion bridge models. We demonstrate that existing diffusion bridges employing Doob's $h$-transform constitute a special case of our framework, emerging when the terminal penalty coefficient in the SOC cost function tends to infinity. By incorporating a tunable terminal penalty coefficient, UniDB achieves an optimal balance between control costs and terminal penalties, substantially improving detail preservation and output quality. Notably, UniDB seamlessly integrates with existing diffusion bridge models, requiring only minimal code modifications. Extensive experiments across diverse image restoration tasks validate the superiority and adaptability of the proposed framework. Our code is available at https://github.com/UniDB-SOC/UniDB/.
Semantics-aware Test-time Adaptation for 3D Human Pose Estimation
This work highlights a semantics misalignment in 3D human pose estimation. For the task of test-time adaptation, the misalignment manifests as overly smoothed and unguided predictions. The smoothing settles predictions towards some average pose. Furthermore, when there are occlusions or truncations, the adaptation becomes fully unguided. To this end, we pioneer the integration of a semantics-aware motion prior for the test-time adaptation of 3D pose estimation. We leverage video understanding and a well-structured motion-text space to adapt the model motion prediction to adhere to video semantics during test time. Additionally, we incorporate a missing 2D pose completion based on the motion-text similarity. The pose completion strengthens the motion prior's guidance for occlusions and truncations. Our method significantly improves state-of-the-art 3D human pose estimation TTA techniques, with more than 12% decrease in PA-MPJPE on 3DPW and 3DHP.
comment: 10 pages, 4 figures
See through the Dark: Learning Illumination-affined Representations for Nighttime Occupancy Prediction
Occupancy prediction aims to estimate the 3D spatial distribution of occupied regions along with their corresponding semantic labels. Existing vision-based methods perform well on daytime benchmarks but struggle in nighttime scenarios due to limited visibility and challenging lighting conditions. To address these challenges, we propose \textbf{LIAR}, a novel framework that learns illumination-affined representations. LIAR first introduces Selective Low-light Image Enhancement (SLLIE), which leverages the illumination priors from daytime scenes to adaptively determine whether a nighttime image is genuinely dark or sufficiently well-lit, enabling more targeted global enhancement. Building on the illumination maps generated by SLLIE, LIAR further incorporates two illumination-aware components: 2D Illumination-guided Sampling (2D-IGS) and 3D Illumination-driven Projection (3D-IDP), to respectively tackle local underexposure and overexposure. Specifically, 2D-IGS modulates feature sampling positions according to illumination maps, assigning larger offsets to darker regions and smaller ones to brighter regions, thereby alleviating feature degradation in underexposed areas. Subsequently, 3D-IDP enhances semantic understanding in overexposed regions by constructing illumination intensity fields and supplying refined residual queries to the BEV context refinement process. Extensive experiments on both real and synthetic datasets demonstrate the superior performance of LIAR under challenging nighttime scenarios. The source code and pretrained models are available \href{https://github.com/yanzq95/LIAR}{here}.
Cross-Layer Feature Pyramid Transformer for Small Object Detection in Aerial Images
Object detection in aerial images has always been a challenging task due to the generally small size of the objects. Most current detectors prioritize the development of new detection frameworks, often overlooking research on fundamental components such as feature pyramid networks. In this paper, we introduce the Cross-Layer Feature Pyramid Transformer (CFPT), a novel upsampler-free feature pyramid network designed specifically for small object detection in aerial images. CFPT incorporates two meticulously designed attention blocks with linear computational complexity: Cross-Layer Channel-Wise Attention (CCA) and Cross-Layer Spatial-Wise Attention (CSA). CCA achieves cross-layer interaction by dividing channel-wise token groups to perceive cross-layer global information along the spatial dimension, while CSA enables cross-layer interaction by dividing spatial-wise token groups to perceive cross-layer global information along the channel dimension. By integrating these modules, CFPT enables efficient cross-layer interaction in a single step, thereby avoiding the semantic gap and information loss associated with element-wise summation and layer-by-layer transmission. In addition, CFPT incorporates global contextual information, which improves detection performance for small objects. To further enhance location awareness during cross-layer interaction, we propose the Cross-Layer Consistent Relative Positional Encoding (CCPE) based on inter-layer mutual receptive fields. We evaluate the effectiveness of CFPT on three challenging object detection datasets in aerial images: VisDrone2019-DET, TinyPerson, and xView. Extensive experiments demonstrate that CFPT outperforms state-of-the-art feature pyramid networks while incurring lower computational costs. The code is available at https://github.com/duzw9311/CFPT.
Imitating Radiological Scrolling: A Global-Local Attention Model for 3D Chest CT Volumes Multi-Label Anomaly Classification
The rapid increase in the number of Computed Tomography (CT) scan examinations has created an urgent need for automated tools, such as organ segmentation, anomaly classification, and report generation, to assist radiologists with their growing workload. Multi-label classification of Three-Dimensional (3D) CT scans is a challenging task due to the volumetric nature of the data and the variety of anomalies to be detected. Existing deep learning methods based on Convolutional Neural Networks (CNNs) struggle to capture long-range dependencies effectively, while Vision Transformers require extensive pre-training, posing challenges for practical use. Additionally, these existing methods do not explicitly model the radiologist's navigational behavior while scrolling through CT scan slices, which requires both global context understanding and local detail awareness. In this study, we present CT-Scroll, a novel global-local attention model specifically designed to emulate the scrolling behavior of radiologists during the analysis of 3D CT scans. Our approach is evaluated on two public datasets, demonstrating its efficacy through comprehensive experiments and an ablation study that highlights the contribution of each model component.
comment: 13 pages, 4 figures. Accepted for MIDL 2025
Deep Video Discovery: Agentic Search with Tool Use for Long-form Video Understanding
Long-form video understanding presents significant challenges due to extensive temporal-spatial complexity and the difficulty of question answering under such extended contexts. While Large Language Models (LLMs) have demonstrated considerable advancements in video analysis capabilities and long context handling, they continue to exhibit limitations when processing information-dense hour-long videos. To overcome such limitations, we propose the Deep Video Discovery agent to leverage an agentic search strategy over segmented video clips. Different from previous video agents manually designing a rigid workflow, our approach emphasizes the autonomous nature of agents. By providing a set of search-centric tools on multi-granular video database, our DVD agent leverages the advanced reasoning capability of LLM to plan on its current observation state, strategically selects tools, formulates appropriate parameters for actions, and iteratively refines its internal reasoning in light of the gathered information. We perform comprehensive evaluation on multiple long video understanding benchmarks that demonstrates the advantage of the entire system design. Our DVD agent achieves SOTA performance, significantly surpassing prior works by a large margin on the challenging LVBench dataset. Comprehensive ablation studies and in-depth tool analyses are also provided, yielding insights to further advance intelligent agents tailored for long-form video understanding tasks. The code will be released later.
comment: V2 draft. Under review
Enhancing Target-unspecific Tasks through a Features Matrix ICML 2025
Recent developments in prompt learning of large Vision-Language Models (VLMs) have significantly improved performance in target-specific tasks. However, these prompting methods often struggle to tackle the target-unspecific or generalizable tasks effectively. It may be attributed to the fact that overfitting training causes the model to forget its general knowledge. The general knowledge has a strong promotion on target-unspecific tasks. To alleviate this issue, we propose a novel Features Matrix (FM) approach designed to enhance these models on target-unspecific tasks. Our method extracts and leverages general knowledge, shaping a Features Matrix (FM). Specifically, the FM captures the semantics of diverse inputs from a deep and fine perspective, preserving essential general knowledge, which mitigates the risk of overfitting. Representative evaluations demonstrate that: 1) the FM is compatible with existing frameworks as a generic and flexible module, and 2) the FM significantly showcases its effectiveness in enhancing target-unspecific tasks (base-to-novel generalization, domain generalization, and cross-dataset generalization), achieving state-of-the-art performance.
comment: Accepted by ICML 2025
Diffusion Models as Cartoonists: The Curious Case of High Density Regions ICLR 2025
We investigate what kind of images lie in the high-density regions of diffusion models. We introduce a theoretical mode-tracking process capable of pinpointing the exact mode of the denoising distribution, and we propose a practical high-density sampler that consistently generates images of higher likelihood than usual samplers. Our empirical findings reveal the existence of significantly higher likelihood samples that typical samplers do not produce, often manifesting as cartoon-like drawings or blurry images depending on the noise level. Curiously, these patterns emerge in datasets devoid of such examples. We also present a novel approach to track sample likelihoods in diffusion SDEs, which remarkably incurs no additional computational cost. Code is available at https://github.com/Aalto-QuML/high-density-diffusion.
comment: ICLR 2025
Mouse Lockbox Dataset: Behavior Recognition for Mice Solving Lockboxes
Machine learning and computer vision methods have a major impact on the study of natural animal behavior, as they enable the (semi-)automatic analysis of vast amounts of video data. Mice are the standard mammalian model system in most research fields, but the datasets available today to refine such methods focus either on simple or social behaviors. In this work, we present a video dataset of individual mice solving complex mechanical puzzles, so-called lockboxes. The more than 110 hours of total playtime show their behavior recorded from three different perspectives. As a benchmark for frame-level action classification methods, we provide human-annotated labels for all videos of two different mice, that equal 13% of our dataset. Our keypoint (pose) tracking-based action classification framework illustrates the challenges of automated labeling of fine-grained behaviors, such as the manipulation of objects. We hope that our work will help accelerate the advancement of automated action and behavior classification in the computational neuroscience community. Our dataset is publicly available at https://doi.org/10.14279/depositonce-23850
DreamMask: Boosting Open-vocabulary Panoptic Segmentation with Synthetic Data SIGGRAPH2025
Open-vocabulary panoptic segmentation has received significant attention due to its applicability in the real world. Despite claims of robust generalization, we find that the advancements of previous works are attributed mainly on trained categories, exposing a lack of generalization to novel classes. In this paper, we explore boosting existing models from a data-centric perspective. We propose DreamMask, which systematically explores how to generate training data in the open-vocabulary setting, and how to train the model with both real and synthetic data. For the first part, we propose an automatic data generation pipeline with off-the-shelf models. We propose crucial designs for vocabulary expansion, layout arrangement, data filtering, etc. Equipped with these techniques, our generated data could significantly outperform the manually collected web data. To train the model with generated data, a synthetic-real alignment loss is designed to bridge the representation gap, bringing noticeable improvements across multiple benchmarks. In general, DreamMask significantly simplifies the collection of large-scale training data, serving as a plug-and-play enhancement for existing methods. For instance, when trained on COCO and tested on ADE20K, the model equipped with DreamMask outperforms the previous state-of-the-art by a substantial margin of 2.1% mIoU.
comment: Accepted by SIGGRAPH2025 Project url: https://yuanpengtu.github.io/Dreammask-Page/
Base and Exponent Prediction in Mathematical Expressions using Multi-Output CNN
The use of neural networks and deep learning techniques in image processing has significantly advanced the field, enabling highly accurate recognition results. However, achieving high recognition rates often necessitates complex network models, which can be challenging to train and require substantial computational resources. This research presents a simplified yet effective approach to predicting both the base and exponent from images of mathematical expressions using a multi-output Convolutional Neural Network (CNN). The model is trained on 10,900 synthetically generated images containing exponent expressions, incorporating random noise, font size variations, and blur intensity to simulate real-world conditions. The proposed CNN model demonstrates robust performance with efficient training time. The experimental results indicate that the model achieves high accuracy in predicting the base and exponent values, proving the efficacy of this approach in handling noisy and varied input images.
comment: 4 pages, 9 figures
Image and Video Processing
PS4PRO: Pixel-to-pixel Supervision for Photorealistic Rendering and Optimization CVPR 2025
Neural rendering methods have gained significant attention for their ability to reconstruct 3D scenes from 2D images. The core idea is to take multiple views as input and optimize the reconstructed scene by minimizing the uncertainty in geometry and appearance across the views. However, the reconstruction quality is limited by the number of input views. This limitation is further pronounced in complex and dynamic scenes, where certain angles of objects are never seen. In this paper, we propose to use video frame interpolation as the data augmentation method for neural rendering. Furthermore, we design a lightweight yet high-quality video frame interpolation model, PS4PRO (Pixel-to-pixel Supervision for Photorealistic Rendering and Optimization). PS4PRO is trained on diverse video datasets, implicitly modeling camera movement as well as real-world 3D geometry. Our model performs as an implicit world prior, enriching the photo supervision for 3D reconstruction. By leveraging the proposed method, we effectively augment existing datasets for neural rendering methods. Our experimental results indicate that our method improves the reconstruction performance on both static and dynamic scenes.
comment: Accepted to the CVPR 2025 Workshop on Autonomous Driving (WAD)
Chest Disease Detection In X-Ray Images Using Deep Learning Classification Method
In this work, we investigate the performance across multiple classification models to classify chest X-ray images into four categories of COVID-19, pneumonia, tuberculosis (TB), and normal cases. We leveraged transfer learning techniques with state-of-the-art pre-trained Convolutional Neural Networks (CNNs) models. We fine-tuned these pre-trained architectures on a labeled medical x-ray images. The initial results are promising with high accuracy and strong performance in key classification metrics such as precision, recall, and F1 score. We applied Gradient-weighted Class Activation Mapping (Grad-CAM) for model interpretability to provide visual explanations for classification decisions, improving trust and transparency in clinical applications.
Comparative Analysis of Machine Learning Models for Lung Cancer Mutation Detection and Staging Using 3D CT Scans
Lung cancer is the leading cause of cancer mortality worldwide, and non-invasive methods for detecting key mutations and staging are essential for improving patient outcomes. Here, we compare the performance of two machine learning models - FMCIB+XGBoost, a supervised model with domain-specific pretraining, and Dinov2+ABMIL, a self-supervised model with attention-based multiple-instance learning - on 3D lung nodule data from the Stanford Radiogenomics and Lung-CT-PT-Dx cohorts. In the task of KRAS and EGFR mutation detection, FMCIB+XGBoost consistently outperformed Dinov2+ABMIL, achieving accuracies of 0.846 and 0.883 for KRAS and EGFR mutations, respectively. In cancer staging, Dinov2+ABMIL demonstrated competitive generalization, achieving an accuracy of 0.797 for T-stage prediction in the Lung-CT-PT-Dx cohort, suggesting SSL's adaptability across diverse datasets. Our results emphasize the clinical utility of supervised models in mutation detection and highlight the potential of SSL to improve staging generalization, while identifying areas for enhancement in mutation sensitivity.
Multipath cycleGAN for harmonization of paired and unpaired low-dose lung computed tomography reconstruction kernels
Reconstruction kernels in computed tomography (CT) affect spatial resolution and noise characteristics, introducing systematic variability in quantitative imaging measurements such as emphysema quantification. Choosing an appropriate kernel is therefore essential for consistent quantitative analysis. We propose a multipath cycleGAN model for CT kernel harmonization, trained on a mixture of paired and unpaired data from a low-dose lung cancer screening cohort. The model features domain-specific encoders and decoders with a shared latent space and uses discriminators tailored for each domain.We train the model on 42 kernel combinations using 100 scans each from seven representative kernels in the National Lung Screening Trial (NLST) dataset. To evaluate performance, 240 scans from each kernel are harmonized to a reference soft kernel, and emphysema is quantified before and after harmonization. A general linear model assesses the impact of age, sex, smoking status, and kernel on emphysema. We also evaluate harmonization from soft kernels to a reference hard kernel. To assess anatomical consistency, we compare segmentations of lung vessels, muscle, and subcutaneous adipose tissue generated by TotalSegmentator between harmonized and original images. Our model is benchmarked against traditional and switchable cycleGANs. For paired kernels, our approach reduces bias in emphysema scores, as seen in Bland-Altman plots (p<0.05). For unpaired kernels, harmonization eliminates confounding differences in emphysema (p>0.05). High Dice scores confirm preservation of muscle and fat anatomy, while lung vessel overlap remains reasonable. Overall, our shared latent space multipath cycleGAN enables robust harmonization across paired and unpaired CT kernels, improving emphysema quantification and preserving anatomical fidelity.
ConfLUNet: Multiple sclerosis lesion instance segmentation in presence of confluent lesions
Accurate lesion-level segmentation on MRI is critical for multiple sclerosis (MS) diagnosis, prognosis, and disease monitoring. However, current evaluation practices largely rely on semantic segmentation post-processed with connected components (CC), which cannot separate confluent lesions (aggregates of confluent lesion units, CLUs) due to reliance on spatial connectivity. To address this misalignment with clinical needs, we introduce formal definitions of CLUs and associated CLU-aware detection metrics, and include them in an exhaustive instance segmentation evaluation framework. Within this framework, we systematically evaluate CC and post-processing-based Automated Confluent Splitting (ACLS), the only existing methods for lesion instance segmentation in MS. Our analysis reveals that CC consistently underestimates CLU counts, while ACLS tends to oversplit lesions, leading to overestimated lesion counts and reduced precision. To overcome these limitations, we propose ConfLUNet, the first end-to-end instance segmentation framework for MS lesions. ConfLUNet jointly optimizes lesion detection and delineation from a single FLAIR image. Trained on 50 patients, ConfLUNet significantly outperforms CC and ACLS on the held-out test set (n=13) in instance segmentation (Panoptic Quality: 42.0% vs. 37.5%/36.8%; p = 0.017/0.005) and lesion detection (F1: 67.3% vs. 61.6%/59.9%; p = 0.028/0.013). For CLU detection, ConfLUNet achieves the highest F1[CLU] (81.5%), improving recall over CC (+12.5%, p = 0.015) and precision over ACLS (+31.2%, p = 0.003). By combining rigorous definitions, new CLU-aware metrics, a reproducible evaluation framework, and the first dedicated end-to-end model, this work lays the foundation for lesion instance segmentation in MS.
Surf2CT: Cascaded 3D Flow Matching Models for Torso 3D CT Synthesis from Skin Surface
We present Surf2CT, a novel cascaded flow matching framework that synthesizes full 3D computed tomography (CT) volumes of the human torso from external surface scans and simple demographic data (age, sex, height, weight). This is the first approach capable of generating realistic volumetric internal anatomy images solely based on external body shape and demographics, without any internal imaging. Surf2CT proceeds through three sequential stages: (1) Surface Completion, reconstructing a complete signed distance function (SDF) from partial torso scans using conditional 3D flow matching; (2) Coarse CT Synthesis, generating a low-resolution CT volume from the completed SDF and demographic information; and (3) CT Super-Resolution, refining the coarse volume into a high-resolution CT via a patch-wise conditional flow model. Each stage utilizes a 3D-adapted EDM2 backbone trained via flow matching. We trained our model on a combined dataset of 3,198 torso CT scans (approximately 1.13 million axial slices) sourced from Massachusetts General Hospital (MGH) and the AutoPET challenge. Evaluation on 700 paired torso surface-CT cases demonstrated strong anatomical fidelity: organ volumes exhibited small mean percentage differences (range from -11.1% to 4.4%), and muscle/fat body composition metrics matched ground truth with strong correlation (range from 0.67 to 0.96). Lung localization had minimal bias (mean difference -2.5 mm), and surface completion significantly improved metrics (Chamfer distance: from 521.8 mm to 2.7 mm; Intersection-over-Union: from 0.87 to 0.98). Surf2CT establishes a new paradigm for non-invasive internal anatomical imaging using only external data, opening opportunities for home-based healthcare, preventive medicine, and personalized clinical assessments without the risks associated with conventional imaging techniques.
comment: Neurips 2025 submitted
Risk-Sensitive Conformal Prediction for Catheter Placement Detection in Chest X-rays
This paper presents a novel approach to catheter and line position detection in chest X-rays, combining multi-task learning with risk-sensitive conformal prediction to address critical clinical requirements. Our model simultaneously performs classification, segmentation, and landmark detection, leveraging the synergistic relationship between these tasks to improve overall performance. We further enhance clinical reliability through risk-sensitive conformal prediction, which provides statistically guaranteed prediction sets with higher reliability for clinically critical findings. Experimental results demonstrate excellent performance with 90.68\% overall empirical coverage and 99.29\% coverage for critical conditions, while maintaining remarkable precision in prediction sets. Most importantly, our risk-sensitive approach achieves zero high-risk mispredictions (cases where the system dangerously declares problematic tubes as confidently normal), making the system particularly suitable for clinical deployment. This work offers both accurate predictions and reliably quantified uncertainty -- essential features for life-critical medical applications.
Cascaded 3D Diffusion Models for Whole-body 3D 18-F FDG PET/CT synthesis from Demographics MICCAI2025
We propose a cascaded 3D diffusion model framework to synthesize high-fidelity 3D PET/CT volumes directly from demographic variables, addressing the growing need for realistic digital twins in oncologic imaging, virtual trials, and AI-driven data augmentation. Unlike deterministic phantoms, which rely on predefined anatomical and metabolic templates, our method employs a two-stage generative process. An initial score-based diffusion model synthesizes low-resolution PET/CT volumes from demographic variables alone, providing global anatomical structures and approximate metabolic activity. This is followed by a super-resolution residual diffusion model that refines spatial resolution. Our framework was trained on 18-F FDG PET/CT scans from the AutoPET dataset and evaluated using organ-wise volume and standardized uptake value (SUV) distributions, comparing synthetic and real data between demographic subgroups. The organ-wise comparison demonstrated strong concordance between synthetic and real images. In particular, most deviations in metabolic uptake values remained within 3-5% of the ground truth in subgroup analysis. These findings highlight the potential of cascaded 3D diffusion models to generate anatomically and metabolically accurate PET/CT images, offering a robust alternative to traditional phantoms and enabling scalable, population-informed synthetic imaging for clinical and research applications.
comment: MICCAI2025 Submitted version
Synonymous Variational Inference for Perceptual Image Compression ICML 2025
Recent contributions of semantic information theory reveal the set-element relationship between semantic and syntactic information, represented as synonymous relationships. In this paper, we propose a synonymous variational inference (SVI) method based on this synonymity viewpoint to re-analyze the perceptual image compression problem. It takes perceptual similarity as a typical synonymous criterion to build an ideal synonymous set (Synset), and approximate the posterior of its latent synonymous representation with a parametric density by minimizing a partial semantic KL divergence. This analysis theoretically proves that the optimization direction of perception image compression follows a triple tradeoff that can cover the existing rate-distortion-perception schemes. Additionally, we introduce synonymous image compression (SIC), a new image compression scheme that corresponds to the analytical process of SVI, and implement a progressive SIC codec to fully leverage the model's capabilities. Experimental results demonstrate comparable rate-distortion-perception performance using a single progressive SIC codec, thus verifying the effectiveness of our proposed analysis method.
comment: 31 pages, 20 figures. This paper is accepted by Proceedings of the 42nd International Conference on Machine Learning (ICML 2025) Poster
MONSTR: Model-Oriented Neutron Strain Tomographic Reconstruction
Residual strain, a tensor quantity, is a critical material property that impacts the overall performance of metal parts. Neutron Bragg edge strain tomography is a technique for imaging residual strain that works by making conventional hyperspectral computed tomography measurements, extracting the average projected strain at each detector pixel, and processing the resulting strain sinogram using a reconstruction algorithm. However, the reconstruction is severely ill-posed as the underlying inverse problem involves inferring a tensor at each voxel from scalar sinogram data. In this paper, we introduce the model-oriented neutron strain tomographic reconstruction (MONSTR) algorithm that reconstructs the 2D residual strain tensor from the neutron Bragg edge strain measurements. MONSTR is based on using the multi-agent consensus equilibrium framework for the tensor tomographic reconstruction. Specifically, we formulate the reconstruction as a consensus solution of a collection of agents representing detector physics, the tomographic reconstruction process, and physics-based constraints from continuum mechanics. Using simulated data, we demonstrate high-quality reconstruction of the strain tensor even when using very few measurements.
High Volume Rate 3D Ultrasound Reconstruction with Diffusion Models
Three-dimensional ultrasound enables real-time volumetric visualization of anatomical structures. Unlike traditional 2D ultrasound, 3D imaging reduces the reliance on precise probe orientation, potentially making ultrasound more accessible to clinicians with varying levels of experience and improving automated measurements and post-exam analysis. However, achieving both high volume rates and high image quality remains a significant challenge. While 3D diverging waves can provide high volume rates, they suffer from limited tissue harmonic generation and increased multipath effects, which degrade image quality. One compromise is to retain the focusing in elevation while leveraging unfocused diverging waves in the lateral direction to reduce the number of transmissions per elevation plane. Reaching the volume rates achieved by full 3D diverging waves, however, requires dramatically undersampling the number of elevation planes. Subsequently, to render the full volume, simple interpolation techniques are applied. This paper introduces a novel approach to 3D ultrasound reconstruction from a reduced set of elevation planes by employing diffusion models (DMs) to achieve increased spatial and temporal resolution. We compare both traditional and supervised deep learning-based interpolation methods on a 3D cardiac ultrasound dataset. Our results show that DM-based reconstruction consistently outperforms the baselines in image quality and downstream task performance. Additionally, we accelerate inference by leveraging the temporal consistency inherent to ultrasound sequences. Finally, we explore the robustness of the proposed method by exploiting the probabilistic nature of diffusion posterior sampling to quantify reconstruction uncertainty and demonstrate improved recall on out-of-distribution data with synthetic anomalies under strong subsampling.
comment: 10 pages, 10 figures, preprint
Learnable Burst-Encodable Time-of-Flight Imaging for High-Fidelity Long-Distance Depth Sensing
Long-distance depth imaging holds great promise for applications such as autonomous driving and robotics. Direct time-of-flight (dToF) imaging offers high-precision, long-distance depth sensing, yet demands ultra-short pulse light sources and high-resolution time-to-digital converters. In contrast, indirect time-of-flight (iToF) imaging often suffers from phase wrapping and low signal-to-noise ratio (SNR) as the sensing distance increases. In this paper, we introduce a novel ToF imaging paradigm, termed Burst-Encodable Time-of-Flight (BE-ToF), which facilitates high-fidelity, long-distance depth imaging. Specifically, the BE-ToF system emits light pulses in burst mode and estimates the phase delay of the reflected signal over the entire burst period, thereby effectively avoiding the phase wrapping inherent to conventional iToF systems. Moreover, to address the low SNR caused by light attenuation over increasing distances, we propose an end-to-end learnable framework that jointly optimizes the coding functions and the depth reconstruction network. A specialized double well function and first-order difference term are incorporated into the framework to ensure the hardware implementability of the coding functions. The proposed approach is rigorously validated through comprehensive simulations and real-world prototype experiments, demonstrating its effectiveness and practical applicability.
Collaborative Learning for Unsupervised Multimodal Remote Sensing Image Registration: Integrating Self-Supervision and MIM-Guided Diffusion-Based Image Translation
The substantial modality-induced variations in radiometric, texture, and structural characteristics pose significant challenges for the accurate registration of multimodal images. While supervised deep learning methods have demonstrated strong performance, they often rely on large-scale annotated datasets, limiting their practical application. Traditional unsupervised methods usually optimize registration by minimizing differences in feature representations, yet often fail to robustly capture geometric discrepancies, particularly under substantial spatial and radiometric variations, thus hindering convergence stability. To address these challenges, we propose a Collaborative Learning framework for Unsupervised Multimodal Image Registration, named CoLReg, which reformulates unsupervised registration learning into a collaborative training paradigm comprising three components: (1) a cross-modal image translation network, MIMGCD, which employs a learnable Maximum Index Map (MIM) guided conditional diffusion model to synthesize modality-consistent image pairs; (2) a self-supervised intermediate registration network which learns to estimate geometric transformations using accurate displacement labels derived from MIMGCD outputs; (3) a distilled cross-modal registration network trained with pseudo-label predicted by the intermediate network. The three networks are jointly optimized through an alternating training strategy wherein each network enhances the performance of the others. This mutual collaboration progressively reduces modality discrepancies, enhances the quality of pseudo-labels, and improves registration accuracy. Extensive experimental results on multiple datasets demonstrate that our ColReg achieves competitive or superior performance compared to state-of-the-art unsupervised approaches and even surpasses several supervised baselines.
Subspecialty-Specific Foundation Model for Intelligent Gastrointestinal Pathology
Gastrointestinal (GI) diseases represent a clinically significant burden, necessitating precise diagnostic approaches to optimize patient outcomes. Conventional histopathological diagnosis, heavily reliant on the subjective interpretation of pathologists, suffers from limited reproducibility and diagnostic variability. To overcome these limitations and address the lack of pathology-specific foundation models for GI diseases, we develop Digepath, a specialized foundation model for GI pathology. Our framework introduces a dual-phase iterative optimization strategy combining pretraining with fine-screening, specifically designed to address the detection of sparsely distributed lesion areas in whole-slide images. Digepath is pretrained on more than 353 million image patches from over 200,000 hematoxylin and eosin-stained slides of GI diseases. It attains state-of-the-art performance on 33 out of 34 tasks related to GI pathology, including pathological diagnosis, molecular prediction, gene mutation prediction, and prognosis evaluation, particularly in diagnostically ambiguous cases and resolution-agnostic tissue classification.We further translate the intelligent screening module for early GI cancer and achieve near-perfect 99.6% sensitivity across 9 independent medical institutions nationwide. The outstanding performance of Digepath highlights its potential to bridge critical gaps in histopathological practice. This work not only advances AI-driven precision pathology for GI diseases but also establishes a transferable paradigm for other pathology subspecialties.
Patch-based Reconstruction for Unsupervised Dynamic MRI using Learnable Tensor Function with Implicit Neural Representation
Dynamic MRI plays a vital role in clinical practice by capturing both spatial details and dynamic motion, but its high spatiotemporal resolution is often limited by long scan times. Deep learning (DL)-based methods have shown promising performance in accelerating dynamic MRI. However, most existing algorithms rely on large fully-sampled datasets for training, which are difficult to acquire. Recently, implicit neural representation (INR) has emerged as a powerful scan-specific paradigm for accelerated MRI, which models signals as a continuous function over spatiotemporal coordinates. Although this approach achieves efficient continuous modeling of dynamic images and robust reconstruction, it faces challenges in recovering fine details and increasing computational demands for high dimensional data representation. To enhance both efficiency and reconstruction quality, we propose TenF-INR, a novel patch-based unsupervised framework that employs INR to model bases of tensor decomposition, enabling efficient and accurate modeling of dynamic MR images with learnable tensor functions. By exploiting strong correlations in similar spatial image patches and in the temporal direction, TenF-INR enforces multidimensional low-rankness and implements patch-based reconstruction with the benefits of continuous modeling. We compare TenF-INR with state-of-the-art methods, including supervised DL methods and unsupervised approaches. Experimental results demonstrate that TenF-INR achieves high acceleration factors up to 21, outperforming all comparison methods in image quality, temporal fidelity, and quantitative metrics, even surpassing the supervised methods.
MAMBO-NET: Multi-Causal Aware Modeling Backdoor-Intervention Optimization for Medical Image Segmentation Network
Medical image segmentation methods generally assume that the process from medical image to segmentation is unbiased, and use neural networks to establish conditional probability models to complete the segmentation task. This assumption does not consider confusion factors, which can affect medical images, such as complex anatomical variations and imaging modality limitations. Confusion factors obfuscate the relevance and causality of medical image segmentation, leading to unsatisfactory segmentation results. To address this issue, we propose a multi-causal aware modeling backdoor-intervention optimization (MAMBO-NET) network for medical image segmentation. Drawing insights from causal inference, MAMBO-NET utilizes self-modeling with multi-Gaussian distributions to fit the confusion factors and introduce causal intervention into the segmentation process. Moreover, we design appropriate posterior probability constraints to effectively train the distributions of confusion factors. For the distributions to effectively guide the segmentation and mitigate and eliminate the Impact of confusion factors on the segmentation, we introduce classical backdoor intervention techniques and analyze their feasibility in the segmentation task. To evaluate the effectiveness of our approach, we conducted extensive experiments on five medical image datasets. The results demonstrate that our method significantly reduces the influence of confusion factors, leading to enhanced segmentation accuracy.
Targeted Unlearning Using Perturbed Sign Gradient Methods With Applications On Medical Images
Machine unlearning aims to remove the influence of specific training samples from a trained model without full retraining. While prior work has largely focused on privacy-motivated settings, we recast unlearning as a general-purpose tool for post-deployment model revision. Specifically, we focus on utilizing unlearning in clinical contexts where data shifts, device deprecation, and policy changes are common. To this end, we propose a bilevel optimization formulation of boundary-based unlearning that can be solved using iterative algorithms. We provide convergence guarantees when first-order algorithms are used to unlearn. Our method introduces tunable loss design for controlling the forgetting-retention tradeoff and supports novel model composition strategies that merge the strengths of distinct unlearning runs. Across benchmark and real-world clinical imaging datasets, our approach outperforms baselines on both forgetting and retention metrics, including scenarios involving imaging devices and anatomical outliers. This work establishes machine unlearning as a modular, practical alternative to retraining for real-world model maintenance in clinical applications.
comment: 39 pages, 12 figures, 11 tables, 3 algorithms
Plug-and-Play Posterior Sampling for Blind Inverse Problems
We introduce Blind Plug-and-Play Diffusion Models (Blind-PnPDM) as a novel framework for solving blind inverse problems where both the target image and the measurement operator are unknown. Unlike conventional methods that rely on explicit priors or separate parameter estimation, our approach performs posterior sampling by recasting the problem into an alternating Gaussian denoising scheme. We leverage two diffusion models as learned priors: one to capture the distribution of the target image and another to characterize the parameters of the measurement operator. This PnP integration of diffusion models ensures flexibility and ease of adaptation. Our experiments on blind image deblurring show that Blind-PnPDM outperforms state-of-the-art methods in terms of both quantitative metrics and visual fidelity. Our results highlight the effectiveness of treating blind inverse problems as a sequence of denoising subproblems while harnessing the expressive power of diffusion-based priors.
comment: arXiv admin note: text overlap with arXiv:2305.12672
PdNeuRAM: Forming-Free, Multi-Bit Pd/HfO2 ReRAM for Energy-Efficient Computing
Memristor technology shows great promise for energy-efficient computing, yet it grapples with challenges like resistance drift and inherent variability. For filamentary Resistive RAM (ReRAM), one of the most investigated types of memristive devices, the expensive electroforming step required to create conductive pathways results in increased power and area overheads and reduced endurance. In this study, we present novel HfO2-based forming-free ReRAM devices, PdNeuRAM, that operate at low voltages, support multi-bit functionality, and display reduced variability. Through a deep understanding and comprehensive material characterization, we discover the key process that allows this unique behavior: a Pd-O-Hf configuration that capitalizes on Pd innate affinity for integrating into HfO2. This structure actively facilitates charge redistribution at room temperature, effectively eliminating the need for electroforming. Moreover, the fabricated ReRAM device provides tunable resistance states for dense memory and reduces programming and reading energy by 43% and 73%, respectively, using spiking neural networks (SNN). This study reveals novel mechanistic insights and delineates a strategic roadmap for the realization of power-efficient and cost-effective ReRAM devices.
comment: 32 pages, 6 figures in main text and 7 figures in supporting information
3DGS Compression with Sparsity-guided Hierarchical Transform Coding
3D Gaussian Splatting (3DGS) has gained popularity for its fast and high-quality rendering, but it has a very large memory footprint incurring high transmission and storage overhead. Recently, some neural compression methods, such as Scaffold-GS, were proposed for 3DGS but they did not adopt the approach of end-to-end optimized analysis-synthesis transforms which has been proven highly effective in neural signal compression. Without an appropriate analysis transform, signal correlations cannot be removed by sparse representation. Without such transforms the only way to remove signal redundancies is through entropy coding driven by a complex and expensive context modeling, which results in slower speed and suboptimal rate-distortion (R-D) performance. To overcome this weakness, we propose Sparsity-guided Hierarchical Transform Coding (SHTC), the first end-to-end optimized transform coding framework for 3DGS compression. SHTC jointly optimizes the 3DGS, transforms and a lightweight context model. This joint optimization enables the transform to produce representations that approach the best R-D performance possible. The SHTC framework consists of a base layer using KLT for data decorrelation, and a sparsity-coded enhancement layer that compresses the KLT residuals to refine the representation. The enhancement encoder learns a linear transform to project high-dimensional inputs into a low-dimensional space, while the decoder unfolds the Iterative Shrinkage-Thresholding Algorithm (ISTA) to reconstruct the residuals. All components are designed to be interpretable, allowing the incorporation of signal priors and fewer parameters than black-box transforms. This novel design significantly improves R-D performance with minimal additional parameters and computational overhead.
IRS: Incremental Relationship-guided Segmentation for Digital Pathology
Continual learning is rapidly emerging as a key focus in computer vision, aiming to develop AI systems capable of continuous improvement, thereby enhancing their value and practicality in diverse real-world applications. In healthcare, continual learning holds great promise for continuously acquired digital pathology data, which is collected in hospitals on a daily basis. However, panoramic segmentation on digital whole slide images (WSIs) presents significant challenges, as it is often infeasible to obtain comprehensive annotations for all potential objects, spanning from coarse structures (e.g., regions and unit objects) to fine structures (e.g., cells). This results in temporally and partially annotated data, posing a major challenge in developing a holistic segmentation framework. Moreover, an ideal segmentation model should incorporate new phenotypes, unseen diseases, and diverse populations, making this task even more complex. In this paper, we introduce a novel and unified Incremental Relationship-guided Segmentation (IRS) learning scheme to address temporally acquired, partially annotated data while maintaining out-of-distribution (OOD) continual learning capacity in digital pathology. The key innovation of IRS lies in its ability to realize a new spatial-temporal OOD continual learning paradigm by mathematically modeling anatomical relationships between existing and newly introduced classes through a simple incremental universal proposition matrix. Experimental results demonstrate that the IRS method effectively handles the multi-scale nature of pathological segmentation, enabling precise kidney segmentation across various structures (regions, units, and cells) as well as OOD disease lesions at multiple magnifications. This capability significantly enhances domain generalization, making IRS a robust approach for real-world digital pathology applications.
Stereo Radargrammetry Using Deep Learning from Airborne SAR Images
In this paper, we propose a stereo radargrammetry method using deep learning from airborne Synthetic Aperture Radar (SAR) images. Deep learning-based methods are considered to suffer less from geometric image modulation, while there is no public SAR image dataset used to train such methods. We create a SAR image dataset and perform fine-tuning of a deep learning-based image correspondence method. The proposed method suppresses the degradation of image quality by pixel interpolation without ground projection of the SAR image and divides the SAR image into patches for processing, which makes it possible to apply deep learning. Through a set of experiments, we demonstrate that the proposed method exhibits a wider range and more accurate elevation measurements compared to conventional methods.
comment: 5 pages, 5 figures, conference IGARSS2025
X-GAN: A Generative AI-Powered Unsupervised Model for Main Vessel Segmentation of Glaucoma Screening
Structural changes in main retinal blood vessels serve as critical biomarkers for the onset and progression of glaucoma. Identifying these vessels is vital for vascular modeling yet highly challenging. This paper proposes X-GAN, a generative AI-powered unsupervised segmentation model designed for extracting main blood vessels from Optical Coherence Tomography Angiography (OCTA) images. The process begins with the Space Colonization Algorithm (SCA) to rapidly generate a skeleton of vessels, featuring their radii. By synergistically integrating the generative adversarial network (GAN) with biostatistical modeling of vessel radii, X-GAN enables a fast reconstruction of both 2D and 3D representations of the vessels. Based on this reconstruction, X-GAN achieves nearly 100% segmentation accuracy without relying on labeled data or high-performance computing resources. Experimental results confirm X-GAN's superiority in evaluating main vessel segmentation compared to existing deep learning models. Code is here: https://github.com/VikiXie/SatMar8.
Complex Wavelet Mutual Information Loss: A Multi-Scale Loss Function for Semantic Segmentation ICML 2025
Recent advancements in deep neural networks have significantly enhanced the performance of semantic segmentation. However, class imbalance and instance imbalance remain persistent challenges, where smaller instances and thin boundaries are often overshadowed by larger structures. To address the multiscale nature of segmented objects, various models have incorporated mechanisms such as spatial attention and feature pyramid networks. Despite these advancements, most loss functions are still primarily pixel-wise, while regional and boundary-focused loss functions often incur high computational costs or are restricted to small-scale regions. To address this limitation, we propose the complex wavelet mutual information (CWMI) loss, a novel loss function that leverages mutual information from subband images decomposed by a complex steerable pyramid. The complex steerable pyramid captures features across multiple orientations and preserves structural similarity across scales. Meanwhile, mutual information is well-suited to capturing high-dimensional directional features and offers greater noise robustness. Extensive experiments on diverse segmentation datasets demonstrate that CWMI loss achieves significant improvements in both pixel-wise accuracy and topological metrics compared to state-of-the-art methods, while introducing minimal computational overhead. Our code is available at https://github.com/lurenhaothu/CWMI
comment: Accepted at ICML 2025. This version corresponds to the official camera-ready submission
Structurally Different Neural Network Blocks for the Segmentation of Atrial and Aortic Perivascular Adipose Tissue in Multi-centre CT Angiography Scans
Since the emergence of convolutional neural networks (CNNs) and, later, vision transformers (ViTs), deep learning architectures have predominantly relied on identical block types with varying hyperparameters. We propose a novel block alternation strategy to leverage the complementary strengths of different architectural designs, assembling structurally distinct components similar to Lego blocks. We introduce LegoNet, a deep learning framework that alternates CNN-based and SwinViT-based blocks to enhance feature learning for medical image segmentation. We investigate three variations of LegoNet and apply this concept to a previously unexplored clinical problem: the segmentation of the internal mammary artery (IMA), aorta, and perivascular adipose tissue (PVAT) from computed tomography angiography (CTA) scans. These PVAT regions have been shown to possess prognostic value in assessing cardiovascular risk and primary clinical outcomes. We evaluate LegoNet on large datasets, achieving superior performance to other leading architectures. Furthermore, we assess the model's generalizability on external testing cohorts, where an expert clinician corrects the model's segmentations, achieving DSC > 0.90 across various external, international, and public cohorts. To further validate the model's clinical reliability, we perform intra- and inter-observer variability analysis, demonstrating strong agreement with human annotations. The proposed methodology has significant implications for diagnostic cardiovascular management and early prognosis, offering a robust, automated solution for vascular and perivascular segmentation and risk assessment in clinical practice, paving the way for personalised medicine.
comment: 15 pages, 4 figures, 3 tables
Bridging Scales in Map Generation: A scale-aware cascaded generative mapping framework for seamless and consistent multi-scale cartographic representation
Multi-scale tile maps are essential for geographic information services, serving as fundamental outcomes of surveying and cartographic workflows. While existing image generation networks can produce map-like outputs from remote sensing imagery, their emphasis on replicating texture rather than preserving geospatial features limits cartographic validity. Current approaches face two fundamental challenges: inadequate integration of cartographic generalization principles with dynamic multi-scale generation and spatial discontinuities arising from tile-wise generation. To address these limitations, we propose a scale-aware cartographic generation framework (SCGM) that leverages conditional guided diffusion and a multi-scale cascade architecture. The framework introduces three key innovations: a scale modality encoding mechanism to formalize map generalization relationships, a scale-driven conditional encoder for robust feature fusion, and a cascade reference mechanism ensuring cross-scale visual consistency. By hierarchically constraining large-scale map synthesis with small-scale structural priors, SCGM effectively mitigates edge artifacts while maintaining geographic fidelity. Comprehensive evaluations on cartographic benchmarks confirm the framework's ability to generate seamless multi-scale tile maps with enhanced spatial coherence and generalization-aware representation, demonstrating significant potential for emergency mapping and automated cartography applications.
MOSformer: Momentum encoder-based inter-slice fusion transformer for medical image segmentation
Medical image segmentation takes an important position in various clinical applications. 2.5D-based segmentation models bridge the computational efficiency of 2D-based models with the spatial perception capabilities of 3D-based models. However, existing 2.5D-based models primarily adopt a single encoder to extract features of target and neighborhood slices, failing to effectively fuse inter-slice information, resulting in suboptimal segmentation performance. In this study, a novel momentum encoder-based inter-slice fusion transformer (MOSformer) is proposed to overcome this issue by leveraging inter-slice information at multi-scale feature maps extracted by different encoders. Specifically, dual encoders are employed to enhance feature distinguishability among different slices. One of the encoders is moving-averaged to maintain consistent slice representations. Moreover, an inter-slice fusion transformer (IF-Trans) module is developed to fuse inter-slice multi-scale features. The MOSformer is evaluated on three benchmark datasets (Synapse, ACDC, and AMOS), achieving a new state-of-the-art with 85.63%, 92.19%, and 85.43% DSC, respectively. These results demonstrate MOSformer's competitiveness in medical image segmentation.
comment: Under Review
A Plug-and-Play Method for Guided Multi-contrast MRI Reconstruction based on Content/Style Modeling
Since multiple MRI contrasts of the same anatomy contain redundant information, one contrast can guide the reconstruction of an undersampled subsequent contrast. To this end, several end-to-end learning-based guided reconstruction methods have been proposed. However, a key challenge is the requirement of large paired training datasets comprising raw data and aligned reference images. We propose a modular two-stage approach addressing this issue, additionally providing an explanatory framework for the multi-contrast problem based on the shared and non-shared generative factors underlying two given contrasts. A content/style model of two-contrast image data is learned from a largely unpaired image-domain dataset and is subsequently applied as a plug-and-play operator in iterative reconstruction. The disentanglement of content and style allows explicit representation of contrast-independent and contrast-specific factors. Consequently, incorporating prior information into the reconstruction reduces to a simple replacement of the aliased content of the reconstruction iterate with high-quality content derived from the reference scan. Combining this component with a data consistency step and introducing a general corrective process for the content yields an iterative scheme. We name this novel approach PnP-CoSMo. Various aspects like interpretability and convergence are explored via simulations. Furthermore, its practicality is demonstrated on the NYU fastMRI DICOM dataset, showing improved generalizability compared to end-to-end methods, and on two in-house multi-coil raw datasets, offering up to 32.6% more acceleration over learning-based non-guided reconstruction for a given SSIM. In a small radiological task, PnP-CoSMo allowed 33.3% more acceleration over clinical reconstruction at diagnostic quality.
SegRet: An Efficient Design for Semantic Segmentation with Retentive Network
With the rapid evolution of autonomous driving technology and intelligent transportation systems, semantic segmentation has become increasingly critical. Precise interpretation and analysis of real-world environments are indispensable for these advanced applications. However, traditional semantic segmentation approaches frequently face challenges in balancing model performance with computational efficiency, especially regarding the volume of model parameters. To address these constraints, we propose SegRet, a novel model employing the Retentive Network (RetNet) architecture coupled with a lightweight residual decoder that integrates zero-initialization. SegRet offers three distinctive advantages: (1) Lightweight Residual Decoder: by embedding a zero-initialization layer within the residual network structure, the decoder remains computationally streamlined without sacrificing essential information propagation; (2) Robust Feature Extraction: adopting RetNet as its backbone enables SegRet to effectively capture hierarchical image features, thereby enriching the representation quality of extracted features; (3) Parameter Efficiency: SegRet attains state-of-the-art (SOTA) segmentation performance while markedly decreasing the number of parameters, ensuring high accuracy without imposing additional computational burdens. Comprehensive empirical evaluations on prominent benchmarks, such as ADE20K, Citycapes, and COCO-Stuff, highlight the effectiveness and superiority of our method.
comment: 12 pages
SLoRD: Structural Low-Rank Descriptors for Shape Consistency in Vertebrae Segmentation
Automatic and precise multi-class vertebrae segmentation from CT images is crucial for various clinical applications. However, due to similar appearances between adjacent vertebrae and the existence of various pathologies, existing single-stage and multi-stage methods suffer from imprecise vertebrae segmentation. Essentially, these methods fail to explicitly impose both contour precision and intra-vertebrae voxel consistency constraints synchronously, resulting in the intra-vertebrae segmentation inconsistency, which refers to multiple label predictions inside a singular vertebra. In this work, we intend to label complete binary masks with sequential indices to address that challenge. Specifically, a contour generation network is proposed based on Structural Low-Rank Descriptors for shape consistency, termed SLoRD. For a structural representation of vertebral contours, we adopt the spherical coordinate system and devise the spherical centroid to calculate contour descriptors. Due to vertebrae's similar appearances, basic contour descriptors can be acquired offline to restore original contours. Therefore, SLoRD leverages these contour priors and explicit shape constraints to facilitate regressed contour points close to vertebral surfaces. Quantitative and qualitative evaluations on VerSe 2019 and 2020 demonstrate the superior performance of our framework over other single-stage and multi-stage state-of-the-art (SOTA) methods. Further, SLoRD is a plug-and-play framework to refine the segmentation inconsistency existing in coarse predictions from other approaches. Source codes are available.
comment: JBHI accepted
OSCAR: One-Step Diffusion Codec for Image Compression Across Multiple Bit-rates
Pretrained latent diffusion models have shown strong potential for lossy image compression, owing to their powerful generative priors. Most existing diffusion-based methods reconstruct images by iteratively denoising from random noise, guided by compressed latent representations. While these approaches have achieved high reconstruction quality, their multi-step sampling process incurs substantial computational overhead. Moreover, they typically require training separate models for different compression bit-rates, leading to significant training and storage costs. To address these challenges, we propose a one-step diffusion codec across multiple bit-rates. termed OSCAR. Specifically, our method views compressed latents as noisy variants of the original latents, where the level of distortion depends on the bit-rate. This perspective allows them to be modeled as intermediate states along a diffusion trajectory. By establishing a mapping from the compression bit-rate to a pseudo diffusion timestep, we condition a single generative model to support reconstructions at multiple bit-rates. Meanwhile, we argue that the compressed latents retain rich structural information, thereby making one-step denoising feasible. Thus, OSCAR replaces iterative sampling with a single denoising pass, significantly improving inference efficiency. Extensive experiments demonstrate that OSCAR achieves superior performance in both quantitative and visual quality metrics. The code and models will be released at https://github.com/jp-guo/OSCAR.
How We Won the ISLES'24 Challenge by Preprocessing
Stroke is among the top three causes of death worldwide, and accurate identification of stroke lesion boundaries is critical for diagnosis and treatment. Supervised deep learning methods have emerged as the leading solution for stroke lesion segmentation but require large, diverse, and annotated datasets. The ISLES'24 challenge addresses this need by providing longitudinal stroke imaging data, including CT scans taken on arrival to the hospital and follow-up MRI taken 2-9 days from initial arrival, with annotations derived from follow-up MRI. Importantly, models submitted to the ISLES'24 challenge are evaluated using only CT inputs, requiring prediction of lesion progression that may not be visible in CT scans for segmentation. Our winning solution shows that a carefully designed preprocessing pipeline including deep-learning-based skull stripping and custom intensity windowing is beneficial for accurate segmentation. Combined with a standard large residual nnU-Net architecture for segmentation, this approach achieves a mean test Dice of 28.5 with a standard deviation of 21.27.
Epsilon-VAE: Denoising as Visual Decoding ICML 2025
In generative modeling, tokenization simplifies complex data into compact, structured representations, creating a more efficient, learnable space. For high-dimensional visual data, it reduces redundancy and emphasizes key features for high-quality generation. Current visual tokenization methods rely on a traditional autoencoder framework, where the encoder compresses data into latent representations, and the decoder reconstructs the original input. In this work, we offer a new perspective by proposing denoising as decoding, shifting from single-step reconstruction to iterative refinement. Specifically, we replace the decoder with a diffusion process that iteratively refines noise to recover the original image, guided by the latents provided by the encoder. We evaluate our approach by assessing both reconstruction (rFID) and generation quality (FID), comparing it to state-of-the-art autoencoding approaches. By adopting iterative reconstruction through diffusion, our autoencoder, namely Epsilon-VAE, achieves high reconstruction quality, which in turn enhances downstream generation quality by 22% at the same compression rates or provides 2.3x inference speedup through increasing compression rates. We hope this work offers new insights into integrating iterative generation and autoencoding for improved compression and generation.
comment: Accepted to ICML 2025. v2: added comparisons to SD-VAE and more visual results; v3: minor change to title; v4: camera-ready version
Generalizable Representation Learning for fMRI-based Neurological Disorder Identification
Despite the impressive advances achieved using deep learning for functional brain activity analysis, the heterogeneity of functional patterns and the scarcity of imaging data still pose challenges in tasks such as identifying neurological disorders. For functional Magnetic Resonance Imaging (fMRI), while data may be abundantly available from healthy controls, clinical data is often scarce, especially for rare diseases, limiting the ability of models to identify clinically-relevant features. We overcome this limitation by introducing a novel representation learning strategy integrating meta-learning with self-supervised learning to improve the generalization from normal to clinical features. This approach enables generalization to challenging clinical tasks featuring scarce training data. We achieve this by leveraging self-supervised learning on the control dataset to focus on inherent features that are not limited to a particular supervised task and incorporating meta-learning to improve the generalization across domains. To explore the generalizability of the learned representations to unseen clinical applications, we apply the model to four distinct clinical datasets featuring scarce and heterogeneous data for neurological disorder classification. Results demonstrate the superiority of our representation learning strategy on diverse clinically-relevant tasks. Code is publicly available at https://github.com/wenhui0206/MeTSK/tree/main
comment: Accepted by TMLR
An unsupervised method for MRI recovery: Deep image prior with structured sparsity
Objective: To propose and validate an unsupervised MRI reconstruction method that does not require fully sampled k-space data. Materials and Methods: The proposed method, deep image prior with structured sparsity (DISCUS), extends the deep image prior (DIP) by introducing group sparsity to frame-specific code vectors, enabling the discovery of a low-dimensional manifold for capturing temporal variations. \discus was validated using four studies: (I) simulation of a dynamic Shepp-Logan phantom to demonstrate its manifold discovery capabilities, (II) comparison with compressed sensing and DIP-based methods using simulated single-shot late gadolinium enhancement (LGE) image series from six distinct digital cardiac phantoms in terms of normalized mean square error (NMSE) and structural similarity index measure (SSIM), (III) evaluation on retrospectively undersampled single-shot LGE data from eight patients, and (IV) evaluation on prospectively undersampled single-shot LGE data from eight patients, assessed via blind scoring from two expert readers. Results: DISCUS outperformed competing methods, demonstrating superior reconstruction quality in terms of NMSE and SSIM (Studies I--III) and expert reader scoring (Study IV). Discussion: An unsupervised image reconstruction method is presented and validated on simulated and measured data. These developments can benefit applications where acquiring fully sampled data is challenging.
comment: Magn Reson Mater Phy (2025)
Multimedia
Spatial Knowledge Graph-Guided Multimodal Synthesis
Recent advances in multimodal large language models (MLLMs) have significantly enhanced their capabilities; however, their spatial perception abilities remain a notable limitation. To address this challenge, multimodal data synthesis offers a promising solution. Yet, ensuring that synthesized data adhere to spatial common sense is a non-trivial task. In this work, we introduce SKG2Data, a novel multimodal synthesis approach guided by spatial knowledge graphs, grounded in the concept of knowledge-to-data generation. SKG2Data automatically constructs a Spatial Knowledge Graph (SKG) to emulate human-like perception of spatial directions and distances, which is subsequently utilized to guide multimodal data synthesis. Extensive experiments demonstrate that data synthesized from diverse types of spatial knowledge, including direction and distance, not only enhance the spatial perception and reasoning abilities of MLLMs but also exhibit strong generalization capabilities. We hope that the idea of knowledge-based data synthesis can advance the development of spatial intelligence.
comment: Ongoing work
Multi-MLLM Knowledge Distillation for Out-of-Context News Detection
Multimodal out-of-context news is a type of misinformation in which the image is used outside of its original context. Many existing works have leveraged multimodal large language models (MLLMs) for detecting out-of-context news. However, observing the limited zero-shot performance of smaller MLLMs, they generally require label-rich fine-tuning and/or expensive API calls to GPT models to improve the performance, which is impractical in low-resource scenarios. In contrast, we aim to improve the performance of small MLLMs in a more label-efficient and cost-effective manner. To this end, we first prompt multiple teacher MLLMs to generate both label predictions and corresponding rationales, which collectively serve as the teachers' knowledge. We then introduce a two-stage knowledge distillation framework to transfer this knowledge to a student MLLM. In Stage 1, we apply LoRA fine-tuning to the student model using all training data. In Stage 2, we further fine-tune the student model using both LoRA fine-tuning and DPO on the data points where teachers' predictions conflict. This two-stage strategy reduces annotation costs and helps the student model uncover subtle patterns in more challenging cases. Experimental results demonstrate that our approach achieves state-of-the-art performance using less than 10% labeled data.
FGS-Audio: Fixed-Decoder Framework for Audio Steganography with Adversarial Perturbation Generation
The rapid development of Artificial Intelligence Generated Content (AIGC) has made high-fidelity generated audio widely available across the Internet, offering an abundant and versatile source of cover signals for covert communication. Driven by advances in deep learning, current audio steganography frameworks are mainly based on encoding-decoding network architectures. While these methods greatly improve the security of audio steganography, they typically employ elaborate training workflows and rely on extensive pre-trained models. To address the aforementioned issues, this paper pioneers a Fixed-Decoder Framework for Audio Steganography with Adversarial Perturbation Generation (FGS-Audio). The adversarial perturbations that carry secret information are embedded into cover audio to generate stego audio. The receiver only needs to share the structure and weights of the fixed decoding network to accurately extract the secret information from the stego audio, thus eliminating the reliance on large pre-trained models. In FGS-Audio, we propose an audio Adversarial Perturbation Generation (APG) strategy and design a lightweight fixed decoder. The fixed decoder guarantees reliable extraction of the hidden message, while the adversarial perturbations are optimized to keep the stego audio perceptually and statistically close to the cover audio, thereby improving resistance to steganalysis. The experimental results show that the method exhibits excellent anti-steganalysis performance under different relative payloads, outperforming existing SOTA approaches. In terms of stego audio quality, FGS-Audio achieves an average PSNR improvement of over 10 dB compared to SOTA method.
AudioGenie: A Training-Free Multi-Agent Framework for Diverse Multimodality-to-Multiaudio Generation
Multimodality-to-Multiaudio (MM2MA) generation faces significant challenges in synthesizing diverse and contextually aligned audio types (e.g., sound effects, speech, music, and songs) from multimodal inputs (e.g., video, text, images), owing to the scarcity of high-quality paired datasets and the lack of robust multi-task learning frameworks. Recently, multi-agent system shows great potential in tackling the above issues. However, directly applying it to MM2MA task presents three critical challenges: (1) inadequate fine-grained understanding of multimodal inputs (especially for video), (2) the inability of single models to handle diverse audio events, and (3) the absence of self-correction mechanisms for reliable outputs. To this end, we propose AudioGenie, a novel training-free multi-agent system featuring a dual-layer architecture with a generation team and a supervisor team. For the generation team, a fine-grained task decomposition and an adaptive Mixture-of-Experts (MoE) collaborative entity are designed for dynamic model selection, and a trial-and-error iterative refinement module is designed for self-correction. The supervisor team ensures temporal-spatial consistency and verifies outputs through feedback loops. Moreover, we build MA-Bench, the first benchmark for MM2MA tasks, comprising 198 annotated videos with multi-type audios. Experiments demonstrate that our AudioGenie outperforms state-of-the-art (SOTA) methods across 9 metrics in 8 tasks. User study further validate the effectiveness of the proposed method in terms of quality, accuracy, alignment, and aesthetic. The anonymous project website with samples can be found at https://audiogenie.github.io/.
Mitigating Audiovisual Mismatch in Visual-Guide Audio Captioning INTERSPEECH 2025
Current vision-guided audio captioning systems frequently fail to address audiovisual misalignment in real-world scenarios, such as dubbed content or off-screen sounds. To bridge this critical gap, we present an entropy-aware gated fusion framework that dynamically modulates visual information flow through cross-modal uncertainty quantification. Our novel approach employs attention entropy analysis in cross-attention layers to automatically identify and suppress misleading visual cues during modal fusion. Complementing this architecture, we develop a batch-wise audiovisual shuffling technique that generates synthetic mismatched training pairs, greatly enhancing model resilience against alignment noise. Evaluations on the AudioCaps benchmark demonstrate our system's superior performance over existing baselines, especially in mismatched modality scenarios. Furthermore, our solution demonstrates an approximately 6x improvement in inference speed compared to the baseline.
comment: Accepted by INTERSPEECH 2025
Towards Structure-aware Model for Multi-modal Knowledge Graph Completion
Knowledge graphs (KGs) play a key role in promoting various multimedia and AI applications. However, with the explosive growth of multi-modal information, traditional knowledge graph completion (KGC) models cannot be directly applied. This has attracted a large number of researchers to study multi-modal knowledge graph completion (MMKGC). Since MMKG extends KG to the visual and textual domains, MMKGC faces two main challenges: (1) how to deal with the fine-grained modality information interaction and awareness; (2) how to ensure the dominant role of graph structure in multi-modal knowledge fusion and deal with the noise generated by other modalities during modality fusion. To address these challenges, this paper proposes a novel MMKGC model named TSAM, which integrates fine-grained modality interaction and dominant graph structure to form a high-performance MMKGC framework. Specifically, to solve the challenges, TSAM proposes the Fine-grained Modality Awareness Fusion method (FgMAF), which uses pre-trained language models to better capture fine-grained semantic information interaction of different modalities and employs an attention mechanism to achieve fine-grained modality awareness and fusion. Additionally, TSAM presents the Structure-aware Contrastive Learning method (SaCL), which utilizes two contrastive learning approaches to align other modalities more closely with the structured modality. Extensive experiments show that the proposed TSAM model significantly outperforms existing MMKGC models on widely used multi-modal datasets.
MapStory: LLM-Powered Text-Driven Map Animation Prototyping with Human-in-the-Loop Editing
We introduce MapStory, an LLM-powered animation authoring tool that generates editable map animation sequences directly from natural language text. Given a user-written script, MapStory leverages an agentic architecture to automatically produce a scene breakdown, which decomposes the script into key animation building blocks such as camera movements, visual highlights, and animated elements. Our system includes a researcher component that accurately queries geospatial information by leveraging an LLM with web search, enabling the automatic extraction of relevant regions, paths, and coordinates while allowing users to edit and query for changes or additional information to refine the results. Additionally, users can fine-tune parameters of these blocks through an interactive timeline editor. We detail the system's design and architecture, informed by formative interviews with professional animators and an analysis of 200 existing map animation videos. Our evaluation, which includes expert interviews (N=5) and a usability study (N=12), demonstrates that MapStory enables users to create map animations with ease, facilitates faster iteration, encourages creative exploration, and lowers barriers to creating map-centric stories.
comment: 16 pages and 15 figures
Reference-Guided Identity Preserving Face Restoration
Preserving face identity is a critical yet persistent challenge in diffusion-based image restoration. While reference faces offer a path forward, existing reference-based methods often fail to fully exploit their potential. This paper introduces a novel approach that maximizes reference face utility for improved face restoration and identity preservation. Our method makes three key contributions: 1) Composite Context, a comprehensive representation that fuses multi-level (high- and low-level) information from the reference face, offering richer guidance than prior singular representations. 2) Hard Example Identity Loss, a novel loss function that leverages the reference face to address the identity learning inefficiencies found in the existing identity loss. 3) A training-free method to adapt the model to multi-reference inputs during inference. The proposed method demonstrably restores high-quality faces and achieves state-of-the-art identity preserving restoration on benchmarks such as FFHQ-Ref and CelebA-Ref-Test, consistently outperforming previous work.
HiDream-I1: A High-Efficient Image Generative Foundation Model with Sparse Diffusion Transformer
Recent advancements in image generative foundation models have prioritized quality improvements but often at the cost of increased computational complexity and inference latency. To address this critical trade-off, we introduce HiDream-I1, a new open-source image generative foundation model with 17B parameters that achieves state-of-the-art image generation quality within seconds. HiDream-I1 is constructed with a new sparse Diffusion Transformer (DiT) structure. Specifically, it starts with a dual-stream decoupled design of sparse DiT with dynamic Mixture-of-Experts (MoE) architecture, in which two separate encoders are first involved to independently process image and text tokens. Then, a single-stream sparse DiT structure with dynamic MoE architecture is adopted to trigger multi-model interaction for image generation in a cost-efficient manner. To support flexiable accessibility with varied model capabilities, we provide HiDream-I1 in three variants: HiDream-I1-Full, HiDream-I1-Dev, and HiDream-I1-Fast. Furthermore, we go beyond the typical text-to-image generation and remould HiDream-I1 with additional image conditions to perform precise, instruction-based editing on given images, yielding a new instruction-based image editing model namely HiDream-E1. Ultimately, by integrating text-to-image generation and instruction-based image editing, HiDream-I1 evolves to form a comprehensive image agent (HiDream-A1) capable of fully interactive image creation and refinement. To accelerate multi-modal AIGC research, we have open-sourced all the codes and model weights of HiDream-I1-Full, HiDream-I1-Dev, HiDream-I1-Fast, HiDream-E1 through our project websites: https://github.com/HiDream-ai/HiDream-I1 and https://github.com/HiDream-ai/HiDream-E1. All features can be directly experienced via https://vivago.ai/studio.
comment: Source codes and models are available at https://github.com/HiDream-ai/HiDream-I1 and https://github.com/HiDream-ai/HiDream-E1
Speech as a Multimodal Digital Phenotype for Multi-Task LLM-based Mental Health Prediction
Speech is a noninvasive digital phenotype that can offer valuable insights into mental health conditions, but it is often treated as a single modality. In contrast, we propose the treatment of patient speech data as a trimodal multimedia data source for depression detection. This study explores the potential of large language model-based architectures for speech-based depression prediction in a multimodal regime that integrates speech-derived text, acoustic landmarks, and vocal biomarkers. Adolescent depression presents a significant challenge and is often comorbid with multiple disorders, such as suicidal ideation and sleep disturbances. This presents an additional opportunity to integrate multi-task learning (MTL) into our study by simultaneously predicting depression, suicidal ideation, and sleep disturbances using the multimodal formulation. We also propose a longitudinal analysis strategy that models temporal changes across multiple clinical interactions, allowing for a comprehensive understanding of the conditions' progression. Our proposed approach, featuring trimodal, longitudinal MTL is evaluated on the Depression Early Warning dataset. It achieves a balanced accuracy of 70.8%, which is higher than each of the unimodal, single-task, and non-longitudinal methods.
comment: 6 pages, 1 figure, 3 tables. Submitted to ICSM 2025. The corresponding author is Mai Ali (maia.ali@mail.utoronto.ca). Christopher Lucasius and Tanmay P. Patel contributed equally
Hearing from Silence: Reasoning Audio Descriptions from Silent Videos via Vision-Language Model
Humans can intuitively infer sounds from silent videos, but whether multimodal large language models can perform modal-mismatch reasoning without accessing target modalities remains relatively unexplored. Current text-assisted-video-to-audio (VT2A) methods excel in video foley tasks but struggle to acquire audio descriptions during inference. We introduce the task of Reasoning Audio Descriptions from Silent Videos (SVAD) to address this challenge and investigate vision-language models' (VLMs) capabilities on this task. To further enhance the VLMs' reasoning capacity for the SVAD task, we construct a CoT-AudioCaps dataset and propose a Chain-of-Thought-based supervised fine-tuning strategy. Experiments on SVAD and subsequent VT2A tasks demonstrate our method's effectiveness in two key aspects: significantly improving VLMs' modal-mismatch reasoning for SVAD and effectively addressing the challenge of acquiring audio descriptions during VT2A inference.
comment: Accepted by Interspeech 2025
Computation and Language
AutoL2S: Auto Long-Short Reasoning for Efficient Large Language Models
The reasoning-capable large language models (LLMs) demonstrate strong performance on complex reasoning tasks but often suffer from overthinking, generating unnecessarily long chain-of-thought (CoT) reasoning paths for easy reasoning questions, thereby increasing inference cost and latency. Recent approaches attempt to address this challenge by manually deciding when to apply long or short reasoning. However, they lack the flexibility to adapt CoT length dynamically based on question complexity. In this paper, we propose Auto Long-Short Reasoning (AutoL2S), a dynamic and model-agnostic framework that enables LLMs to dynamically compress their generated reasoning path based on the complexity of the reasoning question. AutoL2S enables a learned paradigm, in which LLMs themselves can decide when longer reasoning is necessary and when shorter reasoning suffices, by training on data annotated with our proposed method, which includes both long and short CoT paths and a special token. We then use token to indicate when the model can skip generating lengthy CoT reasoning. This proposed annotation strategy can enhance the LLMs' ability to generate shorter CoT reasoning paths with improved quality after training. Extensive evaluation results show that AutoL2S reduces the length of reasoning generation by up to 57% without compromising performance, demonstrating the effectiveness of AutoL2S for scalable and efficient LLM reasoning.
GuessArena: Guess Who I Am? A Self-Adaptive Framework for Evaluating LLMs in Domain-Specific Knowledge and Reasoning ACL 2025
The evaluation of large language models (LLMs) has traditionally relied on static benchmarks, a paradigm that poses two major limitations: (1) predefined test sets lack adaptability to diverse application domains, and (2) standardized evaluation protocols often fail to capture fine-grained assessments of domain-specific knowledge and contextual reasoning abilities. To overcome these challenges, we propose GuessArena, an adaptive evaluation framework grounded in adversarial game-based interactions. Inspired by the interactive structure of the Guess Who I Am? game, our framework seamlessly integrates dynamic domain knowledge modeling with progressive reasoning assessment to improve evaluation fidelity. Empirical studies across five vertical domains-finance, healthcare, manufacturing, information technology, and education-demonstrate that GuessArena effectively distinguishes LLMs in terms of domain knowledge coverage and reasoning chain completeness. Compared to conventional benchmarks, our method provides substantial advantages in interpretability, scalability, and scenario adaptability.
comment: Accepted by ACL 2025
3DLLM-Mem: Long-Term Spatial-Temporal Memory for Embodied 3D Large Language Model
Humans excel at performing complex tasks by leveraging long-term memory across temporal and spatial experiences. In contrast, current Large Language Models (LLMs) struggle to effectively plan and act in dynamic, multi-room 3D environments. We posit that part of this limitation is due to the lack of proper 3D spatial-temporal memory modeling in LLMs. To address this, we first introduce 3DMem-Bench, a comprehensive benchmark comprising over 26,000 trajectories and 2,892 embodied tasks, question-answering and captioning, designed to evaluate an agent's ability to reason over long-term memory in 3D environments. Second, we propose 3DLLM-Mem, a novel dynamic memory management and fusion model for embodied spatial-temporal reasoning and actions in LLMs. Our model uses working memory tokens, which represents current observations, as queries to selectively attend to and fuse the most useful spatial and temporal features from episodic memory, which stores past observations and interactions. Our approach allows the agent to focus on task-relevant information while maintaining memory efficiency in complex, long-horizon environments. Experimental results demonstrate that 3DLLM-Mem achieves state-of-the-art performance across various tasks, outperforming the strongest baselines by 16.5% in success rate on 3DMem-Bench's most challenging in-the-wild embodied tasks.
comment: demos at: https://3dllm-mem.github.io
Position: Uncertainty Quantification Needs Reassessment for Large-language Model Agents ICML 2025
Large-language models (LLMs) and chatbot agents are known to provide wrong outputs at times, and it was recently found that this can never be fully prevented. Hence, uncertainty quantification plays a crucial role, aiming to quantify the level of ambiguity in either one overall number or two numbers for aleatoric and epistemic uncertainty. This position paper argues that this traditional dichotomy of uncertainties is too limited for the open and interactive setup that LLM agents operate in when communicating with a user, and that we need to research avenues that enrich uncertainties in this novel scenario. We review the literature and find that popular definitions of aleatoric and epistemic uncertainties directly contradict each other and lose their meaning in interactive LLM agent settings. Hence, we propose three novel research directions that focus on uncertainties in such human-computer interactions: Underspecification uncertainties, for when users do not provide all information or define the exact task at the first go, interactive learning, to ask follow-up questions and reduce the uncertainty about the current context, and output uncertainties, to utilize the rich language and speech space to express uncertainties as more than mere numbers. We expect that these new ways of dealing with and communicating uncertainties will lead to LLM agent interactions that are more transparent, trustworthy, and intuitive.
comment: Accepted at ICML 2025
The Climb Carves Wisdom Deeper Than the Summit: On the Noisy Rewards in Learning to Reason
Recent studies on post-training large language models (LLMs) for reasoning through reinforcement learning (RL) typically focus on tasks that can be accurately verified and rewarded, such as solving math problems. In contrast, our research investigates the impact of reward noise, a more practical consideration for real-world scenarios involving the post-training of LLMs using reward models. We found that LLMs demonstrate strong robustness to substantial reward noise. For example, manually flipping 40% of the reward function's outputs in math tasks still allows a Qwen-2.5-7B model to achieve rapid convergence, improving its performance on math tasks from 5% to 72%, compared to the 75% accuracy achieved by a model trained with noiseless rewards. Surprisingly, by only rewarding the appearance of key reasoning phrases (namely reasoning pattern reward, RPR), such as ``first, I need to''-without verifying the correctness of answers, the model achieved peak downstream performance (over 70% accuracy for Qwen-2.5-7B) comparable to models trained with strict correctness verification and accurate rewards. Recognizing the importance of the reasoning process over the final results, we combined RPR with noisy reward models. RPR helped calibrate the noisy reward models, mitigating potential false negatives and enhancing the LLM's performance on open-ended tasks. These findings suggest the importance of improving models' foundational abilities during the pre-training phase while providing insights for advancing post-training techniques. Our code and scripts are available at https://github.com/trestad/Noisy-Rewards-in-Learning-to-Reason.
comment: Preprint
Sherlock: Self-Correcting Reasoning in Vision-Language Models
Reasoning Vision-Language Models (VLMs) have shown promising performance on complex multimodal tasks. However, they still face significant challenges: they are highly sensitive to reasoning errors, require large volumes of annotated data or accurate verifiers, and struggle to generalize beyond specific domains. To address these limitations, we explore self-correction as a strategy to enhance reasoning VLMs. We first conduct an in-depth analysis of reasoning VLMs' self-correction abilities and identify key gaps. Based on our findings, we introduce Sherlock, a self-correction and self-improvement training framework. Sherlock introduces a trajectory-level self-correction objective, a preference data construction method based on visual perturbation, and a dynamic $\beta$ for preference tuning. Once the model acquires self-correction capabilities using only 20k randomly sampled annotated data, it continues to self-improve without external supervision. Built on the Llama3.2-Vision-11B model, Sherlock achieves remarkable results across eight benchmarks, reaching an average accuracy of 64.1 with direct generation and 65.4 after self-correction. It outperforms LLaVA-CoT (63.2), Mulberry (63.9), and LlamaV-o1 (63.4) while using less than 20% of the annotated data.
comment: 27 pages
WebDancer: Towards Autonomous Information Seeking Agency
Addressing intricate real-world problems necessitates in-depth information seeking and multi-step reasoning. Recent progress in agentic systems, exemplified by Deep Research, underscores the potential for autonomous multi-step research. In this work, we present a cohesive paradigm for building end-to-end agentic information seeking agents from a data-centric and training-stage perspective. Our approach consists of four key stages: (1) browsing data construction, (2) trajectories sampling, (3) supervised fine-tuning for effective cold start, and (4) reinforcement learning for enhanced generalisation. We instantiate this framework in a web agent based on the ReAct, WebDancer. Empirical evaluations on the challenging information seeking benchmarks, GAIA and WebWalkerQA, demonstrate the strong performance of WebDancer, achieving considerable results and highlighting the efficacy of our training paradigm. Further analysis of agent training provides valuable insights and actionable, systematic pathways for developing more capable agentic models. The codes and demo will be released in https://github.com/Alibaba-NLP/WebAgent.
Characterizing Bias: Benchmarking Large Language Models in Simplified versus Traditional Chinese
While the capabilities of Large Language Models (LLMs) have been studied in both Simplified and Traditional Chinese, it is yet unclear whether LLMs exhibit differential performance when prompted in these two variants of written Chinese. This understanding is critical, as disparities in the quality of LLM responses can perpetuate representational harms by ignoring the different cultural contexts underlying Simplified versus Traditional Chinese, and can exacerbate downstream harms in LLM-facilitated decision-making in domains such as education or hiring. To investigate potential LLM performance disparities, we design two benchmark tasks that reflect real-world scenarios: regional term choice (prompting the LLM to name a described item which is referred to differently in Mainland China and Taiwan), and regional name choice (prompting the LLM to choose who to hire from a list of names in both Simplified and Traditional Chinese). For both tasks, we audit the performance of 11 leading commercial LLM services and open-sourced models -- spanning those primarily trained on English, Simplified Chinese, or Traditional Chinese. Our analyses indicate that biases in LLM responses are dependent on both the task and prompting language: while most LLMs disproportionately favored Simplified Chinese responses in the regional term choice task, they surprisingly favored Traditional Chinese names in the regional name choice task. We find that these disparities may arise from differences in training data representation, written character preferences, and tokenization of Simplified and Traditional Chinese. These findings highlight the need for further analysis of LLM biases; as such, we provide an open-sourced benchmark dataset to foster reproducible evaluations of future LLM behavior across Chinese language variants (https://github.com/brucelyu17/SC-TC-Bench).
comment: To appear in the 2025 ACM Conference on Fairness, Accountability, and Transparency (FAccT '25)
Learning Composable Chains-of-Thought
A common approach for teaching large language models (LLMs) to reason is to train on chain-of-thought (CoT) traces of in-distribution reasoning problems, but such annotated data is costly to obtain for every problem of interest. We want reasoning models to generalize beyond their training distribution, and ideally to generalize compositionally: combine atomic reasoning skills to solve harder, unseen reasoning tasks. We take a step towards compositional generalization of reasoning skills when addressing a target compositional task that has no labeled CoT data. We find that simply training models on CoT data of atomic tasks leads to limited generalization, but minimally modifying CoT formats of constituent atomic tasks to be composable can lead to improvements. We can train "atomic CoT" models on the atomic tasks with Composable CoT data and combine them with multitask learning or model merging for better zero-shot performance on the target compositional task. Such a combined model can be further bootstrapped on a small amount of compositional data using rejection sampling fine-tuning (RFT). Results on string operations and natural language skill compositions show that training LLMs on Composable CoT outperforms multitask learning and continued fine-tuning baselines within a given training data budget.
Spatial Knowledge Graph-Guided Multimodal Synthesis
Recent advances in multimodal large language models (MLLMs) have significantly enhanced their capabilities; however, their spatial perception abilities remain a notable limitation. To address this challenge, multimodal data synthesis offers a promising solution. Yet, ensuring that synthesized data adhere to spatial common sense is a non-trivial task. In this work, we introduce SKG2Data, a novel multimodal synthesis approach guided by spatial knowledge graphs, grounded in the concept of knowledge-to-data generation. SKG2Data automatically constructs a Spatial Knowledge Graph (SKG) to emulate human-like perception of spatial directions and distances, which is subsequently utilized to guide multimodal data synthesis. Extensive experiments demonstrate that data synthesized from diverse types of spatial knowledge, including direction and distance, not only enhance the spatial perception and reasoning abilities of MLLMs but also exhibit strong generalization capabilities. We hope that the idea of knowledge-based data synthesis can advance the development of spatial intelligence.
comment: Ongoing work
Stochastic Chameleons: Irrelevant Context Hallucinations Reveal Class-Based (Mis)Generalization in LLMs ACL 2025
The widespread success of large language models (LLMs) on NLP benchmarks has been accompanied by concerns that LLMs function primarily as stochastic parrots that reproduce texts similar to what they saw during pre-training, often erroneously. But what is the nature of their errors, and do these errors exhibit any regularities? In this work, we examine irrelevant context hallucinations, in which models integrate misleading contextual cues into their predictions. Through behavioral analysis, we show that these errors result from a structured yet flawed mechanism that we term class-based (mis)generalization, in which models combine abstract class cues with features extracted from the query or context to derive answers. Furthermore, mechanistic interpretability experiments on Llama-3, Mistral, and Pythia across 39 factual recall relation types reveal that this behavior is reflected in the model's internal computations: (i) abstract class representations are constructed in lower layers before being refined into specific answers in higher layers, (ii) feature selection is governed by two competing circuits -- one prioritizing direct query-based reasoning, the other incorporating contextual cues -- whose relative influences determine the final output. Our findings provide a more nuanced perspective on the stochastic parrot argument: through form-based training, LLMs can exhibit generalization leveraging abstractions, albeit in unreliable ways based on contextual cues -- what we term stochastic chameleons.
comment: Accepted to ACL 2025 (Main Conference)
Chain-of-Talkers (CoTalk): Fast Human Annotation of Dense Image Captions
While densely annotated image captions significantly facilitate the learning of robust vision-language alignment, methodologies for systematically optimizing human annotation efforts remain underexplored. We introduce Chain-of-Talkers (CoTalk), an AI-in-the-loop methodology designed to maximize the number of annotated samples and improve their comprehensiveness under fixed budget constraints (e.g., total human annotation time). The framework is built upon two key insights. First, sequential annotation reduces redundant workload compared to conventional parallel annotation, as subsequent annotators only need to annotate the ``residual'' -- the missing visual information that previous annotations have not covered. Second, humans process textual input faster by reading while outputting annotations with much higher throughput via talking; thus a multimodal interface enables optimized efficiency. We evaluate our framework from two aspects: intrinsic evaluations that assess the comprehensiveness of semantic units, obtained by parsing detailed captions into object-attribute trees and analyzing their effective connections; extrinsic evaluation measures the practical usage of the annotated captions in facilitating vision-language alignment. Experiments with eight participants show our Chain-of-Talkers (CoTalk) improves annotation speed (0.42 vs. 0.30 units/sec) and retrieval performance (41.13\% vs. 40.52\%) over the parallel method.
Fast-dLLM: Training-free Acceleration of Diffusion LLM by Enabling KV Cache and Parallel Decoding
Diffusion-based large language models (Diffusion LLMs) have shown promise for non-autoregressive text generation with parallel decoding capabilities. However, the practical inference speed of open-sourced Diffusion LLMs often lags behind autoregressive models due to the lack of Key-Value (KV) Cache and quality degradation when decoding multiple tokens simultaneously. To bridge this gap, we introduce a novel block-wise approximate KV Cache mechanism tailored for bidirectional diffusion models, enabling cache reuse with negligible performance drop. Additionally, we identify the root cause of generation quality degradation in parallel decoding as the disruption of token dependencies under the conditional independence assumption. To address this, we propose a confidence-aware parallel decoding strategy that selectively decodes tokens exceeding a confidence threshold, mitigating dependency violations and maintaining generation quality. Experimental results on LLaDA and Dream models across multiple LLM benchmarks demonstrate up to \textbf{27.6$\times$ throughput} improvement with minimal accuracy loss, closing the performance gap with autoregressive models and paving the way for practical deployment of Diffusion LLMs.
The Entropy Mechanism of Reinforcement Learning for Reasoning Language Models
This paper aims to overcome a major obstacle in scaling RL for reasoning with LLMs, namely the collapse of policy entropy. Such phenomenon is consistently observed across vast RL runs without entropy intervention, where the policy entropy dropped sharply at the early training stage, this diminished exploratory ability is always accompanied with the saturation of policy performance. In practice, we establish a transformation equation R=-a*e^H+b between entropy H and downstream performance R. This empirical law strongly indicates that, the policy performance is traded from policy entropy, thus bottlenecked by its exhaustion, and the ceiling is fully predictable H=0, R=-a+b. Our finding necessitates entropy management for continuous exploration toward scaling compute for RL. To this end, we investigate entropy dynamics both theoretically and empirically. Our derivation highlights that, the change in policy entropy is driven by the covariance between action probability and the change in logits, which is proportional to its advantage when using Policy Gradient-like algorithms. Empirical study shows that, the values of covariance term and entropy differences matched exactly, supporting the theoretical conclusion. Moreover, the covariance term stays mostly positive throughout training, further explaining why policy entropy would decrease monotonically. Through understanding the mechanism behind entropy dynamics, we motivate to control entropy by restricting the update of high-covariance tokens. Specifically, we propose two simple yet effective techniques, namely Clip-Cov and KL-Cov, which clip and apply KL penalty to tokens with high covariances respectively. Experiments show that these methods encourage exploration, thus helping policy escape entropy collapse and achieve better downstream performance.
RICO: Improving Accuracy and Completeness in Image Recaptioning via Visual Reconstruction
Image recaptioning is widely used to generate training datasets with enhanced quality for various multimodal tasks. Existing recaptioning methods typically rely on powerful multimodal large language models (MLLMs) to enhance textual descriptions, but often suffer from inaccuracies due to hallucinations and incompleteness caused by missing fine-grained details. To address these limitations, we propose RICO, a novel framework that refines captions through visual reconstruction. Specifically, we leverage a text-to-image model to reconstruct a caption into a reference image, and prompt an MLLM to identify discrepancies between the original and reconstructed images to refine the caption. This process is performed iteratively, further progressively promoting the generation of more faithful and comprehensive descriptions. To mitigate the additional computational cost induced by the iterative process, we introduce RICO-Flash, which learns to generate captions like RICO using DPO. Extensive experiments demonstrate that our approach significantly improves caption accuracy and completeness, outperforms most baselines by approximately 10% on both CapsBench and CompreCap. Code released at https://github.com/wangyuchi369/RICO.
comment: code: https://github.com/wangyuchi369/RICO
Self-Error-Instruct: Generalizing from Errors for LLMs Mathematical Reasoning
Although large language models demonstrate strong performance across various domains, they still struggle with numerous bad cases in mathematical reasoning. Previous approaches to learning from errors synthesize training data by solely extrapolating from isolated bad cases, thereby failing to generalize the extensive patterns inherent within these cases. This paper presents Self-Error-Instruct (SEI), a framework that addresses these model weaknesses and synthesizes more generalized targeted training data. Specifically, we explore a target model on two mathematical datasets, GSM8K and MATH, to pinpoint bad cases. Then, we generate error keyphrases for these cases based on the instructor model's (GPT-4o) analysis and identify error types by clustering these keyphrases. Next, we sample a few bad cases during each generation for each identified error type and input them into the instructor model, which synthesizes additional training data using a self-instruct approach. This new data is refined through a one-shot learning process to ensure that only the most effective examples are kept. Finally, we use these curated data to fine-tune the target model, iteratively repeating the process to enhance performance. We apply our framework to various models and observe improvements in their reasoning abilities across both in-domain and out-of-domain mathematics datasets. These results demonstrate the effectiveness of self-error instruction in improving LLMs' mathematical reasoning through error generalization.
comment: 16 pages, 9 figures
Precise In-Parameter Concept Erasure in Large Language Models
Large language models (LLMs) often acquire knowledge during pretraining that is undesirable in downstream deployments, e.g., sensitive information or copyrighted content. Existing approaches for removing such knowledge rely on fine-tuning, training low-rank adapters or fact-level editing, but these are either too coarse, too shallow, or ineffective. In this work, we propose PISCES (Precise In-parameter Suppression for Concept EraSure), a novel framework for precisely erasing entire concepts from model parameters by directly editing directions that encode them in parameter space. PISCES uses a disentangler model to decompose MLP vectors into interpretable features, identifies those associated with a target concept using automated interpretability techniques, and removes them from model parameters. Experiments on Gemma 2 and Llama 3.1 over various concepts show that PISCES achieves modest gains in efficacy over leading erasure methods, reducing accuracy on the target concept to as low as 7.7%, while dramatically improving erasure specificity (by up to 31%) and robustness (by up to 38%). Overall, these results demonstrate that feature-based in-parameter editing enables a more precise and reliable approach for removing conceptual knowledge in language models.
Less, but Better: Efficient Multilingual Expansion for LLMs via Layer-wise Mixture-of-Experts ACL 2025
Continually expanding new languages for existing large language models (LLMs) is a promising yet challenging approach to building powerful multilingual LLMs. The biggest challenge is to make the model continuously learn new languages while preserving the proficient ability of old languages. To achieve this, recent work utilizes the Mixture-of-Experts (MoE) architecture to expand new languages by adding new experts and avoid catastrophic forgetting of old languages by routing corresponding tokens to the original model backbone (old experts). Although intuitive, this kind of method is parameter-costly when expanding new languages and still inevitably impacts the performance of old languages. To address these limitations, we analyze the language characteristics of different layers in LLMs and propose a layer-wise expert allocation algorithm (LayerMoE) to determine the appropriate number of new experts for each layer. Specifically, we find different layers in LLMs exhibit different representation similarities between languages and then utilize the similarity as the indicator to allocate experts for each layer, i.e., the higher similarity, the fewer experts. Additionally, to further mitigate the forgetting of old languages, we add a classifier in front of the router network on the layers with higher similarity to guide the routing of old language tokens. Experimental results show that our method outperforms the previous state-of-the-art baseline with 60% fewer experts in the single-expansion setting and with 33.3% fewer experts in the lifelong-expansion setting, demonstrating the effectiveness of our method.
comment: ACL 2025 (Main), 16 pages, 5 figures, 11 tables
Fusion Steering: Prompt-Specific Activation Control
We present Fusion Steering, an activation steering methodology that improves factual accuracy in large language models (LLMs) for question-answering (QA) tasks. This approach introduces flexible steering configurations, including full-layer steering and segmented steering. Unlike traditional methods constrained to single-layer or fixed-layer operations, Fusion Steering employs dynamic injection of prompt-specific activation deltas across all transformer layers. These activation deltas are derived from reference completions that combine the ground-truth answer with a model-generated explanation to facilitate semantically enriched, example-specific steering. The injection weights are optimized per prompt using Optuna, targeting a joint objective that balances token overlap (factual alignment) and perplexity (fluency proxy). Evaluation employs a composite score integrating token overlap and LLM-graded quality, encompassing factual accuracy, coherence, and relevance. Empirical results on 260 SimpleQA prompts (selected from 500 where the baseline failed) showcase the efficacy of segmented steering. Using Gemma-2-2B-IT with 8-bit quantization, segmented steering achieves an accuracy of 25.4% (outputs scoring $\geq 0.6$), outperforming the baseline at 3.5% and full-layer steering at 16.2%. Under the stricter SimpleQA rubric, segmented steering boosts fully correct responses from 0.0% to 13.1%. These findings highlight the strengths of segmented, dynamic intervention strategies and the promise of per-prompt, full-network activation control. Fusion Steering is also amenable to sparse representations, such as Neuronpedia or sparse crosscoders, suggesting a promising direction for interpretable and scalable activation-level control in LLMs.
comment: 14 pages, 4 figures, 2 tables
Agent-UniRAG: A Trainable Open-Source LLM Agent Framework for Unified Retrieval-Augmented Generation Systems
This paper presents a novel approach for unified retrieval-augmented generation (RAG) systems using the recent emerging large language model (LLM) agent concept. Specifically, Agent LLM, which utilizes LLM as fundamental controllers, has become a promising approach to enable the interpretability of RAG tasks, especially for complex reasoning question-answering systems (e.g., multi-hop queries). Nonetheless, previous works mainly focus on solving RAG systems with either single-hop or multi-hop approaches separately, which limits the application of those approaches to real-world applications. In this study, we propose a trainable agent framework called Agent-UniRAG for unified retrieval-augmented LLM systems, which enhances the effectiveness and interpretability of RAG systems. The main idea is to design an LLM agent framework to solve RAG tasks step-by-step based on the complexity of the inputs, simultaneously including single-hop and multi-hop queries in an end-to-end manner. Furthermore, we introduce SynAgent-RAG, a synthetic dataset to enable the proposed agent framework for small open-source LLMs (e.g., Llama-3-8B). The results show comparable performances with closed-source and larger open-source LLMs across various RAG benchmarks. Our source code and dataset are publicly available for further exploitation.
Do Large Language Models Think Like the Brain? Sentence-Level Evidence from fMRI and Hierarchical Embeddings
Understanding whether large language models (LLMs) and the human brain converge on similar computational principles remains a fundamental and important question in cognitive neuroscience and AI. Do the brain-like patterns observed in LLMs emerge simply from scaling, or do they reflect deeper alignment with the architecture of human language processing? This study focuses on the sentence-level neural mechanisms of language models, systematically investigating how hierarchical representations in LLMs align with the dynamic neural responses during human sentence comprehension. By comparing hierarchical embeddings from 14 publicly available LLMs with fMRI data collected from participants, who were exposed to a naturalistic narrative story, we constructed sentence-level neural prediction models to precisely identify the model layers most significantly correlated with brain region activations. Results show that improvements in model performance drive the evolution of representational architectures toward brain-like hierarchies, particularly achieving stronger functional and anatomical correspondence at higher semantic abstraction levels.
ClaimPKG: Enhancing Claim Verification via Pseudo-Subgraph Generation with Lightweight Specialized LLM ACL 2025
Integrating knowledge graphs (KGs) to enhance the reasoning capabilities of large language models (LLMs) is an emerging research challenge in claim verification. While KGs provide structured, semantically rich representations well-suited for reasoning, most existing verification methods rely on unstructured text corpora, limiting their ability to effectively leverage KGs. Additionally, despite possessing strong reasoning abilities, modern LLMs struggle with multi-step modular pipelines and reasoning over KGs without adaptation. To address these challenges, we propose ClaimPKG, an end-to-end framework that seamlessly integrates LLM reasoning with structured knowledge from KGs. Specifically, the main idea of ClaimPKG is to employ a lightweight, specialized LLM to represent the input claim as pseudo-subgraphs, guiding a dedicated subgraph retrieval module to identify relevant KG subgraphs. These retrieved subgraphs are then processed by a general-purpose LLM to produce the final verdict and justification. Extensive experiments on the FactKG dataset demonstrate that ClaimPKG achieves state-of-the-art performance, outperforming strong baselines in this research field by 9%-12% accuracy points across multiple categories. Furthermore, ClaimPKG exhibits zero-shot generalizability to unstructured datasets such as HoVer and FEVEROUS, effectively combining structured knowledge from KGs with LLM reasoning across various LLM backbones.
comment: Accepted by ACL 2025 findings
Emotion-o1: Adaptive Long Reasoning for Emotion Understanding in LLMs
Emotion understanding includes basic tasks (e.g., sentiment/emotion classification) and advanced tasks (e.g., sarcasm/humor detection). Current methods rely on fixed-length CoT reasoning, failing to adapt to the varying complexity of emotions. We propose a task-adaptive reasoning framework that employs DeepSeek-R1 to generate variable-length reasoning chains for different emotion tasks. By combining fine-tuning with reinforcement learning, we design a composite reward function that balances four objectives: prediction accuracy, adaptive reasoning depth control, structural diversity in reasoning paths, and suppression of repetitive logic. This approach achieves dynamic context-sensitive inference while enabling LLMs to autonomously develop deep reasoning capabilities. Experimental results demonstrate consistent improvements in both Acc and F1 scores across four tasks: emotion, sentiment, humor, and sarcasm. Notably, peak enhancements reached 3.56% F1 (2.76% Acc) for basic tasks and 37.95% F1 (23.14% Acc) for advanced tasks. Our work bridges rigid CoT reasoning and emotional complexity through adaptive-depth analysis.
Thinking with Generated Images
We present Thinking with Generated Images, a novel paradigm that fundamentally transforms how large multimodal models (LMMs) engage with visual reasoning by enabling them to natively think across text and vision modalities through spontaneous generation of intermediate visual thinking steps. Current visual reasoning with LMMs is constrained to either processing fixed user-provided images or reasoning solely through text-based chain-of-thought (CoT). Thinking with Generated Images unlocks a new dimension of cognitive capability where models can actively construct intermediate visual thoughts, critique their own visual hypotheses, and refine them as integral components of their reasoning process. We demonstrate the effectiveness of our approach through two complementary mechanisms: (1) vision generation with intermediate visual subgoals, where models decompose complex visual tasks into manageable components that are generated and integrated progressively, and (2) vision generation with self-critique, where models generate an initial visual hypothesis, analyze its shortcomings through textual reasoning, and produce refined outputs based on their own critiques. Our experiments on vision generation benchmarks show substantial improvements over baseline approaches, with our models achieving up to 50% (from 38% to 57%) relative improvement in handling complex multi-object scenarios. From biochemists exploring novel protein structures, and architects iterating on spatial designs, to forensic analysts reconstructing crime scenes, and basketball players envisioning strategic plays, our approach enables AI models to engage in the kind of visual imagination and iterative refinement that characterizes human creative, analytical, and strategic thinking. We release our open-source suite at https://github.com/GAIR-NLP/thinking-with-generated-images.
Multi-MLLM Knowledge Distillation for Out-of-Context News Detection
Multimodal out-of-context news is a type of misinformation in which the image is used outside of its original context. Many existing works have leveraged multimodal large language models (MLLMs) for detecting out-of-context news. However, observing the limited zero-shot performance of smaller MLLMs, they generally require label-rich fine-tuning and/or expensive API calls to GPT models to improve the performance, which is impractical in low-resource scenarios. In contrast, we aim to improve the performance of small MLLMs in a more label-efficient and cost-effective manner. To this end, we first prompt multiple teacher MLLMs to generate both label predictions and corresponding rationales, which collectively serve as the teachers' knowledge. We then introduce a two-stage knowledge distillation framework to transfer this knowledge to a student MLLM. In Stage 1, we apply LoRA fine-tuning to the student model using all training data. In Stage 2, we further fine-tune the student model using both LoRA fine-tuning and DPO on the data points where teachers' predictions conflict. This two-stage strategy reduces annotation costs and helps the student model uncover subtle patterns in more challenging cases. Experimental results demonstrate that our approach achieves state-of-the-art performance using less than 10% labeled data.
EvolveSearch: An Iterative Self-Evolving Search Agent
The rapid advancement of large language models (LLMs) has transformed the landscape of agentic information seeking capabilities through the integration of tools such as search engines and web browsers. However, current mainstream approaches for enabling LLM web search proficiency face significant challenges: supervised fine-tuning struggles with data production in open-search domains, while RL converges quickly, limiting their data utilization efficiency. To address these issues, we propose EvolveSearch, a novel iterative self-evolution framework that combines SFT and RL to enhance agentic web search capabilities without any external human-annotated reasoning data. Extensive experiments on seven multi-hop question-answering (MHQA) benchmarks demonstrate that EvolveSearch consistently improves performance across iterations, ultimately achieving an average improvement of 4.7\% over the current state-of-the-art across seven benchmarks, opening the door to self-evolution agentic capabilities in open web search domains.
Effective Context in Neural Speech Models
Modern neural speech models benefit from having longer context, and many approaches have been proposed to increase the maximum context a model can use. However, few have attempted to measure how much context these models actually use, i.e., the effective context. Here, we propose two approaches to measuring the effective context, and use them to analyze different speech Transformers. For supervised models, we find that the effective context correlates well with the nature of the task, with fundamental frequency tracking, phone classification, and word classification requiring increasing amounts of effective context. For self-supervised models, we find that effective context increases mainly in the early layers, and remains relatively short -- similar to the supervised phone model. Given that these models do not use a long context during prediction, we show that HuBERT can be run in streaming mode without modification to the architecture and without further fine-tuning.
comment: Accepted to Interspeech 2025
Fostering Video Reasoning via Next-Event Prediction
Next-token prediction serves as the foundational learning task enabling reasoning in LLMs. But what should the learning task be when aiming to equip MLLMs with temporal reasoning capabilities over video inputs? Existing tasks such as video question answering often rely on annotations from humans or much stronger MLLMs, while video captioning tends to entangle temporal reasoning with spatial information. To address this gap, we propose next-event prediction (NEP), a learning task that harnesses future video segments as a rich, self-supervised signal to foster temporal reasoning. We segment each video into past and future frames: the MLLM takes the past frames as input and predicts a summary of events derived from the future frames, thereby encouraging the model to reason temporally in order to complete the task. To support this task, we curate V1-33K, a dataset comprising 33,000 automatically extracted video segments spanning diverse real-world scenarios. We further explore a range of video instruction-tuning strategies to study their effects on temporal reasoning. To evaluate progress, we introduce FutureBench to assess coherence in predicting unseen future events. Experiments validate that NEP offers a scalable and effective training paradigm for fostering temporal reasoning in MLLMs.
Unsupervised Post-Training for Multi-Modal LLM Reasoning via GRPO
Improving Multi-modal Large Language Models (MLLMs) in the post-training stage typically relies on supervised fine-tuning (SFT) or reinforcement learning (RL). However, these supervised methods require expensive and manually annotated multi-modal data--an ultimately unsustainable resource. While recent efforts have explored unsupervised post-training, their methods are complex and difficult to iterate. In this work, we are the first to investigate the use of GRPO, a stable and scalable online RL algorithm, for enabling continual self-improvement without any external supervision. We propose MM-UPT, a simple yet effective framework for unsupervised post-training of MLLMs. MM-UPT builds upon GRPO, replacing traditional reward signals with a self-rewarding mechanism based on majority voting over multiple sampled responses. Our experiments demonstrate that MM-UPT significantly improves the reasoning ability of Qwen2.5-VL-7B (e.g., 66.3 %$\rightarrow$72.9 % on MathVista, 62.9 %$\rightarrow$68.7 % on We-Math), using standard dataset without ground truth labels. MM-UPT also outperforms prior unsupervised baselines and even approaches the results of supervised GRPO. Furthermore, we show that incorporating synthetic questions, generated solely by MLLM itself, can boost performance as well, highlighting a promising approach for scalable self-improvement. Overall, MM-UPT offers a new paradigm for continual, autonomous enhancement of MLLMs in the absence of external supervision. Our code is available at https://github.com/waltonfuture/MM-UPT.
RAG-Zeval: Towards Robust and Interpretable Evaluation on RAG Responses through End-to-End Rule-Guided Reasoning
Robust evaluation is critical for deploying trustworthy retrieval-augmented generation (RAG) systems. However, current LLM-based evaluation frameworks predominantly rely on directly prompting resource-intensive models with complex multi-stage prompts, underutilizing models' reasoning capabilities and introducing significant computational cost. In this paper, we present RAG-Zeval (RAG-Zero Evaluator), a novel end-to-end framework that formulates faithfulness and correctness evaluation as a rule-guided reasoning task. Our approach trains evaluators with reinforcement learning, facilitating compact models to generate comprehensive and sound assessments with detailed explanation in one-pass. We introduce a ranking-based outcome reward mechanism, using preference judgments rather than absolute scores, to address the challenge of obtaining precise pointwise reward signals. To this end, we synthesize the ranking references by generating quality-controlled responses with zero human annotation. Experiments demonstrate RAG-Zeval's superior performance, achieving the strongest correlation with human judgments and outperforming baselines that rely on LLMs with 10-100 times more parameters. Our approach also exhibits superior interpretability in response evaluation.
Scaling Reasoning without Attention
Large language models (LLMs) have made significant advances in complex reasoning tasks, yet they remain bottlenecked by two core challenges: architectural inefficiency due to reliance on Transformers, and a lack of structured fine-tuning for high-difficulty domains. We introduce \ourmodel, an attention-free language model that addresses both issues through architectural and data-centric innovations. Built on the state space dual (SSD) layers of Mamba-2, our model eliminates the need for self-attention and key-value caching, enabling fixed-memory, constant-time inference. To train it for complex reasoning, we propose a two-phase curriculum fine-tuning strategy based on the \textsc{PromptCoT} synthesis paradigm, which generates pedagogically structured problems via abstract concept selection and rationale-guided generation. On benchmark evaluations, \ourmodel-7B outperforms strong Transformer and hybrid models of comparable scale, and even surpasses the much larger Gemma3-27B by 2.6\% on AIME 24, 0.6\% on AIME 25, and 3.0\% on Livecodebench. These results highlight the potential of state space models as efficient and scalable alternatives to attention-based architectures for high-capacity reasoning.
comment: preprint
Mitigating Overthinking in Large Reasoning Models via Manifold Steering
Recent advances in Large Reasoning Models (LRMs) have demonstrated remarkable capabilities in solving complex tasks such as mathematics and coding. However, these models frequently exhibit a phenomenon known as overthinking during inference, characterized by excessive validation loops and redundant deliberation, leading to substantial computational overheads. In this paper, we aim to mitigate overthinking by investigating the underlying mechanisms from the perspective of mechanistic interpretability. We first showcase that the tendency of overthinking can be effectively captured by a single direction in the model's activation space and the issue can be eased by intervening the activations along this direction. However, this efficacy soon reaches a plateau and even deteriorates as the intervention strength increases. We therefore systematically explore the activation space and find that the overthinking phenomenon is actually tied to a low-dimensional manifold, which indicates that the limited effect stems from the noises introduced by the high-dimensional steering direction. Based on this insight, we propose Manifold Steering, a novel approach that elegantly projects the steering direction onto the low-dimensional activation manifold given the theoretical approximation of the interference noise. Extensive experiments on DeepSeek-R1 distilled models validate that our method reduces output tokens by up to 71% while maintaining and even improving the accuracy on several mathematical benchmarks. Our method also exhibits robust cross-domain transferability, delivering consistent token reduction performance in code generation and knowledge-based QA tasks. Code is available at: https://github.com/Aries-iai/Manifold_Steering.
comment: 17 pages, 7 figures
Pangu Embedded: An Efficient Dual-system LLM Reasoner with Metacognition
This work presents Pangu Embedded, an efficient Large Language Model (LLM) reasoner developed on Ascend Neural Processing Units (NPUs), featuring flexible fast and slow thinking capabilities. Pangu Embedded addresses the significant computational costs and inference latency challenges prevalent in existing reasoning-optimized LLMs. We propose a two-stage training framework for its construction. In Stage 1, the model is finetuned via an iterative distillation process, incorporating inter-iteration model merging to effectively aggregate complementary knowledge. This is followed by reinforcement learning on Ascend clusters, optimized by a latency-tolerant scheduler that combines stale synchronous parallelism with prioritized data queues. The RL process is guided by a Multi-source Adaptive Reward System (MARS), which generates dynamic, task-specific reward signals using deterministic metrics and lightweight LLM evaluators for mathematics, coding, and general problem-solving tasks. Stage 2 introduces a dual-system framework, endowing Pangu Embedded with a "fast" mode for routine queries and a deeper "slow" mode for complex inference. This framework offers both manual mode switching for user control and an automatic, complexity-aware mode selection mechanism that dynamically allocates computational resources to balance latency and reasoning depth. Experimental results on benchmarks including AIME 2024, GPQA, and LiveCodeBench demonstrate that Pangu Embedded with 7B parameters, outperforms similar-size models like Qwen3-8B and GLM4-9B. It delivers rapid responses and state-of-the-art reasoning quality within a single, unified model architecture, highlighting a promising direction for developing powerful yet practically deployable LLM reasoners.
LLMs Struggle to Reject False Presuppositions when Misinformation Stakes are High
This paper examines how LLMs handle false presuppositions and whether certain linguistic factors influence their responses to falsely presupposed content. Presuppositions subtly introduce information as given, making them highly effective at embedding disputable or false information. This raises concerns about whether LLMs, like humans, may fail to detect and correct misleading assumptions introduced as false presuppositions, even when the stakes of misinformation are high. Using a systematic approach based on linguistic presupposition analysis, we investigate the conditions under which LLMs are more or less sensitive to adopt or reject false presuppositions. Focusing on political contexts, we examine how factors like linguistic construction, political party, and scenario probability impact the recognition of false presuppositions. We conduct experiments with a newly created dataset and examine three LLMs: OpenAI's GPT-4-o, Meta's LLama-3-8B, and MistralAI's Mistral-7B-v03. Our results show that the models struggle to recognize false presuppositions, with performance varying by condition. This study highlights that linguistic presupposition analysis is a valuable tool for uncovering the reinforcement of political misinformation in LLM responses.
comment: 8 pages (including References). Accepted at CogSci 2025
Text2Grad: Reinforcement Learning from Natural Language Feedback
Traditional RLHF optimizes language models with coarse, scalar rewards that mask the fine-grained reasons behind success or failure, leading to slow and opaque learning. Recent work augments RL with textual critiques through prompting or reflection, improving interpretability but leaving model parameters untouched. We introduce Text2Grad, a reinforcement-learning paradigm that turns free-form textual feedback into span-level gradients. Given human (or programmatic) critiques, Text2Grad aligns each feedback phrase with the relevant token spans, converts these alignments into differentiable reward signals, and performs gradient updates that directly refine the offending portions of the model's policy. This yields precise, feedback-conditioned adjustments instead of global nudges. Text2Grad is realized through three components: (1) a high-quality feedback-annotation pipeline that pairs critiques with token spans; (2) a fine-grained reward model that predicts span-level reward on answer while generating explanatory critiques; and (3) a span-level policy optimizer that back-propagates natural-language gradients. Across summarization, code generation, and question answering, Text2Grad consistently surpasses scalar-reward RL and prompt-only baselines, providing both higher task metrics and richer interpretability. Our results demonstrate that natural-language feedback, when converted to gradients, is a powerful signal for fine-grained policy optimization. The code for our method is available at https://github.com/microsoft/Text2Grad
comment: The code for our method is available at https://github.com/microsoft/Text2Grad
Advancing Multimodal Reasoning via Reinforcement Learning with Cold Start
Recent advancements in large language models (LLMs) have demonstrated impressive chain-of-thought reasoning capabilities, with reinforcement learning (RL) playing a crucial role in this progress. While "aha moment" patterns--where models exhibit self-correction through reflection--are often attributed to emergent properties from RL, we first demonstrate that these patterns exist in multimodal LLMs (MLLMs) prior to RL training but may not necessarily correlate with improved reasoning performance. Building on these insights, we present a comprehensive study on enhancing multimodal reasoning through a two-stage approach: (1) supervised fine-tuning (SFT) as a cold start with structured chain-of-thought reasoning patterns, followed by (2) reinforcement learning via GRPO to further refine these capabilities. Our extensive experiments show that this combined approach consistently outperforms both SFT-only and RL-only methods across challenging multimodal reasoning benchmarks. The resulting models achieve state-of-the-art performance among open-source MLLMs at both 3B and 7B scales, with our 7B model showing substantial improvements over base models (e.g., 66.3 %$\rightarrow$73.4 % on MathVista, 62.9 %$\rightarrow$70.4 % on We-Math) and our 3B model achieving performance competitive with several 7B models. Overall, this work provides practical guidance for building advanced multimodal reasoning models. Our code is available at https://github.com/waltonfuture/RL-with-Cold-Start.
NLP for Social Good: A Survey of Challenges, Opportunities, and Responsible Deployment
Recent advancements in large language models (LLMs) have unlocked unprecedented possibilities across a range of applications. However, as a community, we believe that the field of Natural Language Processing (NLP) has a growing need to approach deployment with greater intentionality and responsibility. In alignment with the broader vision of AI for Social Good (Toma\v{s}ev et al., 2020), this paper examines the role of NLP in addressing pressing societal challenges. Through a cross-disciplinary analysis of social goals and emerging risks, we highlight promising research directions and outline challenges that must be addressed to ensure responsible and equitable progress in NLP4SG research.
Advancing Expert Specialization for Better MoE
Mixture-of-Experts (MoE) models enable efficient scaling of large language models (LLMs) by activating only a subset of experts per input. However, we observe that the commonly used auxiliary load balancing loss often leads to expert overlap and overly uniform routing, which hinders expert specialization and degrades overall performance during post-training. To address this, we propose a simple yet effective solution that introduces two complementary objectives: (1) an orthogonality loss to encourage experts to process distinct types of tokens, and (2) a variance loss to encourage more discriminative routing decisions. Gradient-level analysis demonstrates that these objectives are compatible with the existing auxiliary loss and contribute to optimizing the training process. Experimental results over various model architectures and across multiple benchmarks show that our method significantly enhances expert specialization. Notably, our method improves classic MoE baselines with auxiliary loss by up to 23.79%, while also maintaining load balancing in downstream tasks, without any architectural modifications or additional components. We will release our code to contribute to the community.
comment: 33pages, 6figures
If Pigs Could Fly... Can LLMs Logically Reason Through Counterfactuals?
Large Language Models (LLMs) demonstrate impressive reasoning capabilities in familiar contexts, but struggle when the context conflicts with their parametric knowledge. To investigate this phenomenon, we introduce CounterLogic, a dataset containing 1,800 examples across 9 logical schemas, explicitly designed to evaluate logical reasoning through counterfactual (hypothetical knowledge-conflicting) scenarios. Our systematic evaluation of 11 LLMs across 6 different datasets reveals a consistent performance degradation, with accuracies dropping by 27% on average when reasoning through counterfactual information. We propose Self-Segregate, a prompting method enabling metacognitive awareness (explicitly identifying knowledge conflicts) before reasoning. Our method dramatically narrows the average performance gaps from 27% to just 11%, while significantly increasing the overall accuracy (+7.5%). We discuss the implications of these findings and draw parallels to human cognitive processes, particularly on how humans disambiguate conflicting information during reasoning tasks. Our findings offer practical insights for understanding and enhancing LLMs reasoning capabilities in real-world applications, especially where models must logically reason independently of their factual knowledge.
comment: 16 pages, 5 figures
Skywork Open Reasoner 1 Technical Report
The success of DeepSeek-R1 underscores the significant role of reinforcement learning (RL) in enhancing the reasoning capabilities of large language models (LLMs). In this work, we present Skywork-OR1, an effective and scalable RL implementation for long Chain-of-Thought (CoT) models. Building on the DeepSeek-R1-Distill model series, our RL approach achieves notable performance gains, increasing average accuracy across AIME24, AIME25, and LiveCodeBench from 57.8% to 72.8% (+15.0%) for the 32B model and from 43.6% to 57.5% (+13.9%) for the 7B model. Our Skywork-OR1-32B model surpasses both DeepSeek-R1 and Qwen3-32B on the AIME24 and AIME25 benchmarks, while achieving comparable results on LiveCodeBench. The Skywork-OR1-7B and Skywork-OR1-Math-7B models demonstrate competitive reasoning capabilities among models of similar size. We perform comprehensive ablation studies on the core components of our training pipeline to validate their effectiveness. Additionally, we thoroughly investigate the phenomenon of entropy collapse, identify key factors affecting entropy dynamics, and demonstrate that mitigating premature entropy collapse is critical for improved test performance. To support community research, we fully open-source our model weights, training code, and training datasets.
Adaptive Detoxification: Safeguarding General Capabilities of LLMs through Toxicity-Aware Knowledge Editing ACL 2025
Large language models (LLMs) exhibit impressive language capabilities but remain vulnerable to malicious prompts and jailbreaking attacks. Existing knowledge editing methods for LLM detoxification face two major challenges. First, they often rely on entity-specific localization, making them ineffective against adversarial inputs without explicit entities. Second, these methods suffer from over-editing, where detoxified models reject legitimate queries, compromising overall performance. In this paper, we propose ToxEdit, a toxicity-aware knowledge editing approach that dynamically detects toxic activation patterns during forward propagation. It then routes computations through adaptive inter-layer pathways to mitigate toxicity effectively. This design ensures precise toxicity mitigation while preserving LLMs' general capabilities. To more accurately assess over-editing, we also enhance the SafeEdit benchmark by incorporating instruction-following evaluation tasks. Experimental results on multiple LLMs demonstrate that our ToxEdit outperforms previous state-of-the-art methods in both detoxification performance and safeguarding general capabilities of LLMs.
comment: ACL 2025 Findings
360-LLaMA-Factory: Plug & Play Sequence Parallelism for Long Post-Training
Adding sequence parallelism into LLaMA-Factory, we open-sourced 360-LLaMA-Factory at https://github.com/Qihoo360/360-LLaMA-Factory. 360-LLaMA-Factory has received wide recognition and used in models such as Light-R1 arXiv:2503.10460, TinyR1 arXiv:2503.04872, Kaggle AIMO math models and also in large companies' training frameworks. This technical report delves deeper into the different sequence parallel modes behind 360-LLaMA-Factory and discusses our implementation insights.
comment: code at https://github.com/Qihoo360/360-LLaMA-Factory
Compensating for Data with Reasoning: Low-Resource Machine Translation with LLMs
Large Language Models (LLMs) have demonstrated strong capabilities in multilingual machine translation, sometimes even outperforming traditional neural systems. However, previous research has highlighted the challenges of using LLMs, particularly with prompt engineering, for low-resource languages. In this work, we introduce Fragment-Shot Prompting, a novel in-context learning method that segments input and retrieves translation examples based on syntactic coverage, along with Pivoted Fragment-Shot, an extension that enables translation without direct parallel data. We evaluate these methods using GPT-3.5, GPT-4o, o1-mini, LLaMA-3.3, and DeepSeek-R1 for translation between Italian and two Ladin variants, revealing three key findings: (1) Fragment-Shot Prompting is effective for translating into and between the studied low-resource languages, with syntactic coverage positively correlating with translation quality; (2) Models with stronger reasoning abilities make more effective use of retrieved knowledge, generally produce better translations, and enable Pivoted Fragment-Shot to significantly improve translation quality between the Ladin variants; and (3) prompt engineering offers limited, if any, improvements when translating from a low-resource to a high-resource language, where zero-shot prompting already yields satisfactory results. We publicly release our code and the retrieval corpora.
Rethinking the Unsolvable: When In-Context Search Meets Test-Time Scaling
Recent research has highlighted that Large Language Models (LLMs), even when trained to generate extended long reasoning steps, still face significant challenges on hard reasoning problems. However, much of the existing literature relies on direct prompting with simple in-context learning examples for evaluation, which largely overlooks advanced techniques to elicit LLMs' deliberate reasoning before drawing conclusions that LLMs hit a performance ceiling. In this paper, we systematically explore the combined potential of in-context search and test-time scaling on super hard reasoning tasks. We find that by employing advanced in-context search prompting to LLMs augmented with internal scaling, one can achieve transformative performance breakthroughs on tasks previously deemed "unsolvable" (e.g., reported success rates below 5%). We provide both empirical results and theoretical analysis of how this combination can unleash LLM reasoning capabilities: i) Empirically, on controlled NP-hard tasks and complex real-world planning benchmarks, our approach achieves up to a 30x improvement in success rates compared to previously reported results without any external mechanisms; ii) Theoretically, we show that in-context search prompting, when combined with internal scaling, significantly extends the complexity class of solvable reasoning problems. These findings challenge prevailing assumptions about the limitations of LLMs on complex tasks, indicating that current evaluation paradigms systematically underestimate their true potential. Our work calls for a critical reassessment of how LLM reasoning is benchmarked and a more robust evaluation strategy that fully captures the true capabilities of contemporary LLMs, which can lead to a better understanding of their operational reasoning boundaries in real-world deployments.
Natural Language Processing in Support of Evidence-based Medicine: A Scoping Review ACL 2025
Evidence-based medicine (EBM) is at the forefront of modern healthcare, emphasizing the use of the best available scientific evidence to guide clinical decisions. Due to the sheer volume and rapid growth of medical literature and the high cost of curation, there is a critical need to investigate Natural Language Processing (NLP) methods to identify, appraise, synthesize, summarize, and disseminate evidence in EBM. This survey presents an in-depth review of 129 research studies on leveraging NLP for EBM, illustrating its pivotal role in enhancing clinical decision-making processes. The paper systematically explores how NLP supports the five fundamental steps of EBM -- Ask, Acquire, Appraise, Apply, and Assess. The review not only identifies current limitations within the field but also proposes directions for future research, emphasizing the potential for NLP to revolutionize EBM by refining evidence extraction, evidence synthesis, appraisal, summarization, enhancing data comprehensibility, and facilitating a more efficient clinical workflow.
comment: Accepted by ACL 2025 Findings
Comprehensive Evaluation on Lexical Normalization: Boundary-Aware Approaches for Unsegmented Languages
Lexical normalization research has sought to tackle the challenge of processing informal expressions in user-generated text, yet the absence of comprehensive evaluations leaves it unclear which methods excel across multiple perspectives. Focusing on unsegmented languages, we make three key contributions: (1) creating a large-scale, multi-domain Japanese normalization dataset, (2) developing normalization methods based on state-of-the-art pretrained models, and (3) conducting experiments across multiple evaluation perspectives. Our experiments show that both encoder-only and decoder-only approaches achieve promising results in both accuracy and efficiency.
comment: 23 pages
Test-Time Immunization: A Universal Defense Framework Against Jailbreaks for (Multimodal) Large Language Models
While (multimodal) large language models (LLMs) have attracted widespread attention due to their exceptional capabilities, they remain vulnerable to jailbreak attacks. Various defense methods are proposed to defend against jailbreak attacks, however, they are often tailored to specific types of jailbreak attacks, limiting their effectiveness against diverse adversarial strategies. For instance, rephrasing-based defenses are effective against text adversarial jailbreaks but fail to counteract image-based attacks. To overcome these limitations, we propose a universal defense framework, termed Test-time IMmunization (TIM), which can adaptively defend against various jailbreak attacks in a self-evolving way. Specifically, TIM initially trains a gist token for efficient detection, which it subsequently applies to detect jailbreak activities during inference. When jailbreak attempts are identified, TIM implements safety fine-tuning using the detected jailbreak instructions paired with refusal answers. Furthermore, to mitigate potential performance degradation in the detector caused by parameter updates during safety fine-tuning, we decouple the fine-tuning process from the detection module. Extensive experiments on both LLMs and multimodal LLMs demonstrate the efficacy of TIM.
comment: Under Review
MRT at SemEval-2025 Task 8: Maximizing Recovery from Tables with Multiple Steps
In this paper we expose our approach to solve the \textit{SemEval 2025 Task 8: Question-Answering over Tabular Data} challenge. Our strategy leverages Python code generation with LLMs to interact with the table and get the answer to the questions. The process is composed of multiple steps: understanding the content of the table, generating natural language instructions in the form of steps to follow in order to get the answer, translating these instructions to code, running it and handling potential errors or exceptions. These steps use open source LLMs and fine grained optimized prompts for each task (step). With this approach, we achieved a score of $70.50\%$ for subtask 1.
comment: 7 pages, 6 tables
Train Sparse Autoencoders Efficiently by Utilizing Features Correlation
Sparse Autoencoders (SAEs) have demonstrated significant promise in interpreting the hidden states of language models by decomposing them into interpretable latent directions. However, training SAEs at scale remains challenging, especially when large dictionary sizes are used. While decoders can leverage sparse-aware kernels for efficiency, encoders still require computationally intensive linear operations with large output dimensions. To address this, we propose KronSAE, a novel architecture that factorizes the latent representation via Kronecker product decomposition, drastically reducing memory and computational overhead. Furthermore, we introduce mAND, a differentiable activation function approximating the binary AND operation, which improves interpretability and performance in our factorized framework.
Evaluation of LLMs in Speech is Often Flawed: Test Set Contamination in Large Language Models for Speech Recognition
Recent work suggests that large language models (LLMs) can improve performance of speech tasks compared to existing systems. To support their claims, results on LibriSpeech and Common Voice are often quoted. However, this work finds that a substantial amount of the LibriSpeech and Common Voice evaluation sets appear in public LLM pretraining corpora. This calls into question the reliability of findings drawn from these two datasets. To measure the impact of contamination, LLMs trained with or without contamination are compared, showing that a contaminated LLM is more likely to generate test sentences it has seen during training. Speech recognisers using contaminated LLMs shows only subtle differences in error rates, but assigns significantly higher probabilities to transcriptions seen during training. Results show that LLM outputs can be biased by tiny amounts of data contamination, highlighting the importance of evaluating LLM-based speech systems with held-out data.
BioHopR: A Benchmark for Multi-Hop, Multi-Answer Reasoning in Biomedical Domain
Biomedical reasoning often requires traversing interconnected relationships across entities such as drugs, diseases, and proteins. Despite the increasing prominence of large language models (LLMs), existing benchmarks lack the ability to evaluate multi-hop reasoning in the biomedical domain, particularly for queries involving one-to-many and many-to-many relationships. This gap leaves the critical challenges of biomedical multi-hop reasoning underexplored. To address this, we introduce BioHopR, a novel benchmark designed to evaluate multi-hop, multi-answer reasoning in structured biomedical knowledge graphs. Built from the comprehensive PrimeKG, BioHopR includes 1-hop and 2-hop reasoning tasks that reflect real-world biomedical complexities. Evaluations of state-of-the-art models reveal that O3-mini, a proprietary reasoning-focused model, achieves 37.93% precision on 1-hop tasks and 14.57% on 2-hop tasks, outperforming proprietary models such as GPT4O and open-source biomedical models including HuatuoGPT-o1-70B and Llama-3.3-70B. However, all models exhibit significant declines in multi-hop performance, underscoring the challenges of resolving implicit reasoning steps in the biomedical domain. By addressing the lack of benchmarks for multi-hop reasoning in biomedical domain, BioHopR sets a new standard for evaluating reasoning capabilities and highlights critical gaps between proprietary and open-source models while paving the way for future advancements in biomedical LLMs.
A Linguistically Motivated Analysis of Intonational Phrasing in Text-to-Speech Systems: Revealing Gaps in Syntactic Sensitivity CoNLL 2025
We analyze the syntactic sensitivity of Text-to-Speech (TTS) systems using methods inspired by psycholinguistic research. Specifically, we focus on the generation of intonational phrase boundaries, which can often be predicted by identifying syntactic boundaries within a sentence. We find that TTS systems struggle to accurately generate intonational phrase boundaries in sentences where syntactic boundaries are ambiguous (e.g., garden path sentences or sentences with attachment ambiguity). In these cases, systems need superficial cues such as commas to place boundaries at the correct positions. In contrast, for sentences with simpler syntactic structures, we find that systems do incorporate syntactic cues beyond surface markers. Finally, we finetune models on sentences without commas at the syntactic boundary positions, encouraging them to focus on more subtle linguistic cues. Our findings indicate that this leads to more distinct intonation patterns that better reflect the underlying structure.
comment: Accepted to CoNLL 2025
Judging Quality Across Languages: A Multilingual Approach to Pretraining Data Filtering with Language Models
High-quality multilingual training data is essential for effectively pretraining large language models (LLMs). Yet, the availability of suitable open-source multilingual datasets remains limited. Existing state-of-the-art datasets mostly rely on heuristic filtering methods, restricting both their cross-lingual transferability and scalability. Here, we introduce JQL, a systematic approach that efficiently curates diverse and high-quality multilingual data at scale while significantly reducing computational demands. JQL distills LLMs' annotation capabilities into lightweight annotators based on pretrained multilingual embeddings. These models exhibit robust multilingual and cross-lingual performance, even for languages and scripts unseen during training. Evaluated empirically across 35 languages, the resulting annotation pipeline substantially outperforms current heuristic filtering methods like Fineweb2. JQL notably enhances downstream model training quality and increases data retention rates. Our research provides practical insights and valuable resources for multilingual data curation, raising the standards of multilingual dataset development.
comment: Project page available at https://huggingface.co/spaces/Jackal-AI/JQL
Advancing Hearing Assessment: An ASR-Based Frequency-Specific Speech Test for Diagnosing Presbycusis
Traditional audiometry often fails to fully characterize the functional impact of hearing loss on speech understanding, particularly supra-threshold deficits and frequency-specific perception challenges in conditions like presbycusis. This paper presents the development and simulated evaluation of a novel Automatic Speech Recognition (ASR)-based frequency-specific speech test designed to provide granular diagnostic insights. Our approach leverages ASR to simulate the perceptual effects of moderate sloping hearing loss by processing speech stimuli under controlled acoustic degradation and subsequently analyzing phoneme-level confusion patterns. Key findings indicate that simulated hearing loss introduces specific phoneme confusions, predominantly affecting high-frequency consonants (e.g., alveolar/palatal to labiodental substitutions) and leading to significant phoneme deletions, consistent with the acoustic cues degraded in presbycusis. A test battery curated from these ASR-derived confusions demonstrated diagnostic value, effectively differentiating between simulated normal-hearing and hearing-impaired listeners in a comprehensive simulation. This ASR-driven methodology offers a promising avenue for developing objective, granular, and frequency-specific hearing assessment tools that complement traditional audiometry. Future work will focus on validating these findings with human participants and exploring the integration of advanced AI models for enhanced diagnostic precision.
Look & Mark: Leveraging Radiologist Eye Fixations and Bounding boxes in Multimodal Large Language Models for Chest X-ray Report Generation
Recent advancements in multimodal Large Language Models (LLMs) have significantly enhanced the automation of medical image analysis, particularly in generating radiology reports from chest X-rays (CXR). However, these models still suffer from hallucinations and clinically significant errors, limiting their reliability in real-world applications. In this study, we propose Look & Mark (L&M), a novel grounding fixation strategy that integrates radiologist eye fixations (Look) and bounding box annotations (Mark) into the LLM prompting framework. Unlike conventional fine-tuning, L&M leverages in-context learning to achieve substantial performance gains without retraining. When evaluated across multiple domain-specific and general-purpose models, L&M demonstrates significant gains, including a 1.2% improvement in overall metrics (A.AVG) for CXR-LLaVA compared to baseline prompting and a remarkable 9.2% boost for LLaVA-Med. General-purpose models also benefit from L&M combined with in-context learning, with LLaVA-OV achieving an 87.3% clinical average performance (C.AVG)-the highest among all models, even surpassing those explicitly trained for CXR report generation. Expert evaluations further confirm that L&M reduces clinically significant errors (by 0.43 average errors per report), such as false predictions and omissions, enhancing both accuracy and reliability. These findings highlight L&M's potential as a scalable and efficient solution for AI-assisted radiology, paving the way for improved diagnostic workflows in low-resource clinical settings.
Pitfalls of Rule- and Model-based Verifiers -- A Case Study on Mathematical Reasoning
Trustworthy verifiers are essential for the success of reinforcement learning with verifiable reward (RLVR), which is the core methodology behind various large reasoning models such as DeepSeek-R1. In complex domains like mathematical reasoning, rule-based verifiers have been widely adopted in previous works to train strong reasoning models. However, the reliability of these verifiers and their impact on the RL training process remain poorly understood. In this work, we take mathematical reasoning as a case study and conduct a comprehensive analysis of various verifiers in both static evaluation and RL training scenarios. First, we find that current open-source rule-based verifiers often fail to recognize equivalent answers presented in different formats across multiple commonly used mathematical datasets, resulting in non-negligible false negative rates. This limitation adversely affects RL training performance and becomes more pronounced as the policy model gets stronger. Subsequently, we investigate model-based verifiers as a potential solution to address these limitations. While the static evaluation shows that model-based verifiers achieve significantly higher verification accuracy, further analysis and RL training results imply that they are highly susceptible to hacking, where they misclassify certain patterns in responses as correct (i.e., false positives). This vulnerability is exploited during policy model optimization, leading to artificially inflated rewards. Our findings underscore the unique risks inherent to both rule-based and model-based verifiers, aiming to offer valuable insights to develop more robust reward systems in reinforcement learning.
Let's Predict Sentence by Sentence
Autoregressive language models (LMs) generate one token at a time, yet human reasoning operates over higher-level abstractions - sentences, propositions, and concepts. This contrast raises a central question- Can LMs likewise learn to reason over structured semantic units rather than raw token sequences? In this work, we investigate whether pretrained LMs can be lifted into such abstract reasoning spaces by building on their learned representations. We present a framework that adapts a pretrained token-level LM to operate in sentence space by autoregressively predicting continuous embeddings of next sentences. We explore two embedding paradigms inspired by classical representation learning: 1) semantic embeddings, learned via autoencoding to preserve surface meaning; and 2) contextual embeddings, trained via next-sentence prediction to encode anticipatory structure. We evaluate both under two inference regimes: Discretized, which decodes each predicted embedding into text before re-encoding; and Continuous, which reasons entirely in embedding space for improved efficiency. Across four domains - mathematics, logic, commonsense, and planning - contextual embeddings under continuous inference show competitive performance with Chain-of-Thought (CoT) while reducing inference-time FLOPs on average by half. We also present early signs of scalability and modular adaptation. Finally, to visualize latent trajectories, we introduce SentenceLens, a diagnostic tool that decodes intermediate model states into interpretable sentences. Together, our results indicate that pretrained LMs can effectively transition to abstract, structured reasoning within latent embedding spaces.
comment: Work In Progress
Breaking the Cloak! Unveiling Chinese Cloaked Toxicity with Homophone Graph and Toxic Lexicon
Social media platforms have experienced a significant rise in toxic content, including abusive language and discriminatory remarks, presenting growing challenges for content moderation. Some users evade censorship by deliberately disguising toxic words through homophonic cloak, which necessitates the task of unveiling cloaked toxicity. Existing methods are mostly designed for English texts, while Chinese cloaked toxicity unveiling has not been solved yet. To tackle the issue, we propose C$^2$TU, a novel training-free and prompt-free method for Chinese cloaked toxic content unveiling. It first employs substring matching to identify candidate toxic words based on Chinese homo-graph and toxic lexicon. Then it filters those candidates that are non-toxic and corrects cloaks to be their corresponding toxicities. Specifically, we develop two model variants for filtering, which are based on BERT and LLMs, respectively. For LLMs, we address the auto-regressive limitation in computing word occurrence probability and utilize the full semantic contexts of a text sequence to reveal cloaked toxic words. Extensive experiments demonstrate that C$^2$TU can achieve superior performance on two Chinese toxic datasets. In particular, our method outperforms the best competitor by up to 71% on the F1 score and 35% on accuracy, respectively.
comment: 25 pages, 5 figures, 9 tables
Speculative Decoding Meets Quantization: Compatibility Evaluation and Hierarchical Framework Design
Speculative decoding and quantization effectively accelerate memory-bound inference of large language models. Speculative decoding mitigates the memory bandwidth bottleneck by verifying multiple tokens within a single forward pass, which increases computational effort. Quantization achieves this optimization by compressing weights and activations into lower bit-widths and also reduces computations via low-bit matrix multiplications. To further leverage their strengths, we investigate the integration of these two techniques. Surprisingly, experiments applying the advanced speculative decoding method EAGLE-2 to various quantized models reveal that the memory benefits from 4-bit weight quantization are diminished by the computational load from speculative decoding. Specifically, verifying a tree-style draft incurs significantly more time overhead than a single-token forward pass on 4-bit weight quantized models. This finding led to our new speculative decoding design: a hierarchical framework that employs a small model as an intermediate stage to turn tree-style drafts into sequence drafts, leveraging the memory access benefits of the target quantized model. Experimental results show that our hierarchical approach achieves a 2.78$\times$ speedup across various tasks for the 4-bit weight Llama-3-70B model on an A100 GPU, outperforming EAGLE-2 by 1.31$\times$. Code available at https://github.com/AI9Stars/SpecMQuant.
comment: 12 pages, 5 figures
TabXEval: Why this is a Bad Table? An eXhaustive Rubric for Table Evaluation ACL 2025
Evaluating tables qualitatively & quantitatively presents a significant challenge, as traditional metrics often fail to capture nuanced structural and content discrepancies. To address this, we introduce a novel, methodical rubric integrating multi-level structural descriptors with fine-grained contextual quantification, thereby establishing a robust foundation for comprehensive table comparison. Building on this foundation, we propose TabXEval, an eXhaustive and eXplainable two-phase evaluation framework. TabXEval initially aligns reference tables structurally via TabAlign & subsequently conducts a systematic semantic and syntactic comparison using TabCompare; this approach clarifies the evaluation process and pinpoints subtle discrepancies overlooked by conventional methods. The efficacy of this framework is assessed using TabXBench, a novel, diverse, multi-domain benchmark we developed, featuring realistic table perturbations and human-annotated assessments. Finally, a systematic analysis of existing evaluation methods through sensitivity-specificity trade-offs demonstrates the qualitative and quantitative effectiveness of TabXEval across diverse table-related tasks and domains, paving the way for future innovations in explainable table evaluation.
comment: Accepeted for Findings at ACL 2025
Reverse Preference Optimization for Complex Instruction Following ACL 2025
Instruction following (IF) is a critical capability for large language models (LLMs). However, handling complex instructions with multiple constraints remains challenging. Previous methods typically select preference pairs based on the number of constraints they satisfy, introducing noise where chosen examples may fail to follow some constraints and rejected examples may excel in certain respects over the chosen ones. To address the challenge of aligning with multiple preferences, we propose a simple yet effective method called Reverse Preference Optimization (RPO). It mitigates noise in preference pairs by dynamically reversing the constraints within the instruction to ensure the chosen response is perfect, alleviating the burden of extensive sampling and filtering to collect perfect responses. Besides, reversal also enlarges the gap between chosen and rejected responses, thereby clarifying the optimization direction and making it more robust to noise. We evaluate RPO on two multi-turn IF benchmarks, Sysbench and Multi-IF, demonstrating average improvements over the DPO baseline of 4.6 and 2.5 points (on Llama-3.1 8B), respectively. Moreover, RPO scales effectively across model sizes (8B to 70B parameters), with the 70B RPO model surpassing GPT-4o.
comment: ACL 2025 Findings
ReliableEval: A Recipe for Stochastic LLM Evaluation via Method of Moments
LLMs are highly sensitive to prompt phrasing, yet standard benchmarks typically report performance using a single prompt, raising concerns about the reliability of such evaluations. In this work, we argue for a stochastic method of moments evaluation over the space of meaning-preserving prompt perturbations. We introduce a formal definition of reliable evaluation that accounts for prompt sensitivity, and suggest ReliableEval - a method for estimating the number of prompt resamplings needed to obtain meaningful results. Using our framework, we stochastically evaluate five frontier LLMs and find that even top-performing models like GPT-4o and Claude-3.7-Sonnet exhibit substantial prompt sensitivity. Our approach is model-, task-, and metric-agnostic, offering a recipe for meaningful and robust LLM evaluation.
Unifying Continuous and Discrete Text Diffusion with Non-simultaneous Diffusion Processes ACL 2025
Diffusion models have emerged as a promising approach for text generation, with recent works falling into two main categories: discrete and continuous diffusion models. Discrete diffusion models apply token corruption independently using categorical distributions, allowing for different diffusion progress across tokens but lacking fine-grained control. Continuous diffusion models map tokens to continuous spaces and apply fine-grained noise, but the diffusion progress is uniform across tokens, limiting their ability to capture semantic nuances. To address these limitations, we propose \textbf{\underline{N}}on-simultan\textbf{\underline{e}}ous C\textbf{\underline{o}}ntinuous \textbf{\underline{Diff}}usion Models (NeoDiff), a novel diffusion model that integrates the strengths of both discrete and continuous approaches. NeoDiff introduces a Poisson diffusion process for the forward process, enabling a flexible and fine-grained noising paradigm, and employs a time predictor for the reverse process to adaptively modulate the denoising progress based on token semantics. Furthermore, NeoDiff utilizes an optimized schedule for inference to ensure more precise noise control and improved performance. Our approach unifies the theories of discrete and continuous diffusion models, offering a more principled and effective framework for text generation. Experimental results on several text generation tasks demonstrate NeoDiff's superior performance compared to baselines of non-autoregressive continuous and discrete diffusion models, iterative-based methods and autoregressive diffusion-based methods. These results highlight NeoDiff's potential as a powerful tool for generating high-quality text and advancing the field of diffusion-based text generation.
comment: Accepted to ACL 2025 Main Conference
Stratified Selective Sampling for Instruction Tuning with Dedicated Scoring Strategy
Recent work shows that post-training datasets for LLMs can be substantially downsampled without noticeably deteriorating performance. However, data selection often incurs high computational costs or is limited to narrow domains. In this paper, we demonstrate that data selection can be both -- efficient and universal -- by using a multi-step pipeline in which we efficiently bin data points into groups, estimate quality using specialized models, and score difficulty with a robust, lightweight method. Task-based categorization allows us to control the composition of our final data -- crucial for finetuning multi-purpose models. To guarantee diversity, we improve upon previous work using embedding models and a clustering algorithm. This integrated strategy enables high-performance fine-tuning with minimal overhead.
InComeS: Integrating Compression and Selection Mechanisms into LLMs for Efficient Model Editing
Although existing model editing methods perform well in recalling exact edit facts, they often struggle in complex scenarios that require deeper semantic understanding rather than mere knowledge regurgitation. Leveraging the strong contextual reasoning abilities of large language models (LLMs), in-context learning (ICL) becomes a promising editing method by comprehending edit information through context encoding. However, this method is constrained by the limited context window of LLMs, leading to degraded performance and efficiency as the number of edits increases. To overcome this limitation, we propose InComeS, a flexible framework that enhances LLMs' ability to process editing contexts through explicit compression and selection mechanisms. Specifically, InComeS compresses each editing context into the key-value (KV) cache of a special gist token, enabling efficient handling of multiple edits without being restricted by the model's context window. Furthermore, specialized cross-attention modules are added to dynamically select the most relevant information from the gist pools, enabling adaptive and effective utilization of edit information. We conduct experiments on diverse model editing benchmarks with various editing formats, and the results demonstrate the effectiveness and efficiency of our method.
comment: Under review
Improving Brain-to-Image Reconstruction via Fine-Grained Text Bridging
Brain-to-Image reconstruction aims to recover visual stimuli perceived by humans from brain activity. However, the reconstructed visual stimuli often missing details and semantic inconsistencies, which may be attributed to insufficient semantic information. To address this issue, we propose an approach named Fine-grained Brain-to-Image reconstruction (FgB2I), which employs fine-grained text as bridge to improve image reconstruction. FgB2I comprises three key stages: detail enhancement, decoding fine-grained text descriptions, and text-bridged brain-to-image reconstruction. In the detail-enhancement stage, we leverage large vision-language models to generate fine-grained captions for visual stimuli and experimentally validate its importance. We propose three reward metrics (object accuracy, text-image semantic similarity, and image-image semantic similarity) to guide the language model in decoding fine-grained text descriptions from fMRI signals. The fine-grained text descriptions can be integrated into existing reconstruction methods to achieve fine-grained Brain-to-Image reconstruction.
comment: CogSci2025
Flexible Tool Selection through Low-dimensional Attribute Alignment of Vision and Language
Flexible tool selection reflects a complex cognitive ability that distinguishes humans from other species, yet computational models that capture this ability remain underdeveloped. We developed a framework using low-dimensional attribute representations to bridge visual tool perception and linguistic task understanding. We constructed a comprehensive dataset (ToolNet) containing 115 common tools labeled with 13 carefully designed attributes spanning physical, functional, and psychological properties, paired with natural language scenarios describing tool usage. Visual encoders (ResNet or ViT) extract attributes from tool images while fine-tuned language models (GPT-2, LLaMA, DeepSeek) derive required attributes from task descriptions. Our approach achieves 74% accuracy in tool selection tasks-significantly outperforming direct tool matching (20%) and smaller multimodal models (21%-58%), while approaching performance of much larger models like GPT-4o (73%) with substantially fewer parameters. Ablation studies revealed that manipulation-related attributes (graspability, hand-relatedness, elongation) consistently prove most critical across modalities. This work provides a parameter-efficient, interpretable solution that mimics human-like tool cognition, advancing both cognitive science understanding and practical applications in tool selection tasks.
Limited Generalizability in Argument Mining: State-Of-The-Art Models Learn Datasets, Not Arguments ACL 2025
Identifying arguments is a necessary prerequisite for various tasks in automated discourse analysis, particularly within contexts such as political debates, online discussions, and scientific reasoning. In addition to theoretical advances in understanding the constitution of arguments, a significant body of research has emerged around practical argument mining, supported by a growing number of publicly available datasets. On these benchmarks, BERT-like transformers have consistently performed best, reinforcing the belief that such models are broadly applicable across diverse contexts of debate. This study offers the first large-scale re-evaluation of such state-of-the-art models, with a specific focus on their ability to generalize in identifying arguments. We evaluate four transformers, three standard and one enhanced with contrastive pre-training for better generalization, on 17 English sentence-level datasets as most relevant to the task. Our findings show that, to varying degrees, these models tend to rely on lexical shortcuts tied to content words, suggesting that apparent progress may often be driven by dataset-specific cues rather than true task alignment. While the models achieve strong results on familiar benchmarks, their performance drops markedly when applied to unseen datasets. Nonetheless, incorporating both task-specific pre-training and joint benchmark training proves effective in enhancing both robustness and generalization.
comment: This paper has been accepted to ACL 2025 and will be published after 27.07.2025
RAD: Redundancy-Aware Distillation for Hybrid Models via Self-Speculative Decoding
Hybrid models combining Transformers and State Space Models (SSMs) are promising for balancing performance and efficiency. However, optimizing these hybrid models, particularly by addressing the potential redundancy inherent within the Transformer components, remains a significant challenge. In this paper, we propose RAD (Redundancy-Aware Distillation), a novel framework that uses self-speculative decoding as a diagnostic tool to identify redundant attention layers within the model. These identified layers are then selectively replaced with SSM components, followed by targeted (self-)distillation. Specifically, RAD focuses knowledge transfer on the components identified as redundant, considering architectural changes and specific weight initialization strategies. We experimentally demonstrate that self-distillation using RAD significantly surpasses the performance of the original base model on mathematical and coding tasks. Furthermore, RAD is also effective in standard knowledge distillation settings, achieving up to approximately 2x faster convergence compared to baseline methods. Notably, while a baseline model distilled from a Llama-3.1 70B teacher achieves scores of 46.17 on GSM8K and 22.75 on CRUX, RAD achieves significantly higher scores of 71.27 on GSM8K and 28.25 on CRUX, even when using a much smaller Llama-3.1 8B teacher. RAD offers a new pathway for efficient optimization and performance enhancement in the distillation of hybrid models.
comment: 26 pages
EULER: Enhancing the Reasoning Ability of Large Language Models through Error-Induced Learning
Large Language Models (LLMs) have demonstrated strong reasoning capabilities and achieved promising results in mathematical problem-solving tasks. Learning from errors offers the potential to further enhance the performance of LLMs during Supervised Fine-Tuning (SFT). However, the errors in synthesized solutions are typically gathered from sampling trails, making it challenging to generate solution errors for each mathematical problem. This paper introduces the Error-IndUced LEaRning (EULER) model, which aims to develop an error exposure model that generates high-quality solution errors to enhance the mathematical reasoning capabilities of LLMs. Specifically, EULER optimizes the error exposure model to increase the generation probability of self-made solution errors while utilizing solutions produced by a superior LLM to regularize the generation quality. Our experiments across various mathematical problem datasets demonstrate the effectiveness of the EULER model, achieving an improvement of over 4% compared to all baseline models. Further analysis reveals that EULER is capable of synthesizing more challenging and educational solution errors, which facilitate both the training and inference processes of LLMs. All codes are available at https://github.com/NEUIR/EULER.
LoKI: Low-damage Knowledge Implanting of Large Language Models
Fine-tuning adapts pretrained models for specific tasks but poses the risk of catastrophic forgetting (CF), where critical knowledge from pre-training is overwritten. Current Parameter-Efficient Fine-Tuning (PEFT) methods for Large Language Models (LLMs), while efficient, often sacrifice general capabilities. To address the issue of CF in a general-purpose PEFT framework, we propose \textbf{Lo}w-damage \textbf{K}nowledge \textbf{I}mplanting (\textbf{LoKI}), a PEFT technique that is based on a mechanistic understanding of how knowledge is stored in transformer architectures. In two real-world scenarios, LoKI demonstrates task-specific performance that is comparable to or even surpasses that of full fine-tuning and LoRA-based methods across various model types, while significantly better preserving general capabilities. Our work connects mechanistic insights into LLM knowledge storage with practical fine-tuning objectives, achieving state-of-the-art trade-offs between task specialization and the preservation of general capabilities. Our implementation is publicly available as ready-to-use code\footnote{https://github.com/Nexround/LoKI}.
Multilingual vs Crosslingual Retrieval of Fact-Checked Claims: A Tale of Two Approaches
Retrieval of previously fact-checked claims is a well-established task, whose automation can assist professional fact-checkers in the initial steps of information verification. Previous works have mostly tackled the task monolingually, i.e., having both the input and the retrieved claims in the same language. However, especially for languages with a limited availability of fact-checks and in case of global narratives, such as pandemics, wars, or international politics, it is crucial to be able to retrieve claims across languages. In this work, we examine strategies to improve the multilingual and crosslingual performance, namely selection of negative examples (in the supervised) and re-ranking (in the unsupervised setting). We evaluate all approaches on a dataset containing posts and claims in 47 languages (283 language combinations). We observe that the best results are obtained by using LLM-based re-ranking, followed by fine-tuning with negative examples sampled using a sentence similarity-based strategy. Most importantly, we show that crosslinguality is a setup with its own unique characteristics compared to the multilingual setup.
Multimodal Forecasting of Sparse Intraoperative Hypotension Events Powered by Language Model
Intraoperative hypotension (IOH) frequently occurs under general anesthesia and is strongly linked to adverse outcomes such as myocardial injury and increased mortality. Despite its significance, IOH prediction is hindered by event sparsity and the challenge of integrating static and dynamic data across diverse patients. In this paper, we propose \textbf{IOHFuseLM}, a multimodal language model framework. To accurately identify and differentiate sparse hypotensive events, we leverage a two-stage training strategy. The first stage involves domain adaptive pretraining on IOH physiological time series augmented through diffusion methods, thereby enhancing the model sensitivity to patterns associated with hypotension. Subsequently, task fine-tuning is performed on the original clinical dataset to further enhance the ability to distinguish normotensive from hypotensive states. To enable multimodal fusion for each patient, we align structured clinical descriptions with the corresponding physiological time series at the token level. Such alignment enables the model to capture individualized temporal patterns alongside their corresponding clinical semantics. In addition, we convert static patient attributes into structured text to enrich personalized information. Experimental evaluations on two intraoperative datasets demonstrate that IOHFuseLM outperforms established baselines in accurately identifying IOH events, highlighting its applicability in clinical decision support scenarios. Our code is publicly available to promote reproducibility at https://github.com/zjt-gpu/IOHFuseLM.
THINK-Bench: Evaluating Thinking Efficiency and Chain-of-Thought Quality of Large Reasoning Models
Large reasoning models (LRMs) have achieved impressive performance in complex tasks, often outperforming conventional large language models (LLMs). However, the prevalent issue of overthinking severely limits their computational efficiency. Overthinking occurs when models generate excessive and redundant tokens that contribute little to accurate outcomes, especially in simple tasks, resulting in a significant waste of computational resources. To systematically investigate this issue, we introduce Think-Bench, a benchmark designed to evaluate the reasoning efficiency of LRMs. We also propose novel efficiency metrics and conduct a comprehensive evaluation of various LRMs across multiple dimensions, including the reasoning process, outcome quality, and chain-of-thought (CoT) characteristics. Our analysis reveals that most LRMs exhibit overthinking in handling easy questions, generating unnecessarily lengthy reasoning chains. While many LRMs demonstrate high CoT quality, several suffer from low efficiency. We hope that Think-Bench can serve as a robust foundation for advancing research into LRMs.
comment: 20 pages, 8 figures, 6 tables
Curse of High Dimensionality Issue in Transformer for Long-context Modeling ICML 2025
Transformer-based large language models (LLMs) excel in natural language processing tasks by capturing long-range dependencies through self-attention mechanisms. However, long-context modeling faces significant computational inefficiencies due to \textit{redundant} attention computations: while attention weights are often \textit{sparse}, all tokens consume \textit{equal} computational resources. In this paper, we reformulate traditional probabilistic sequence modeling as a \textit{supervised learning task}, enabling the separation of relevant and irrelevant tokens and providing a clearer understanding of redundancy. Based on this reformulation, we theoretically analyze attention sparsity, revealing that only a few tokens significantly contribute to predictions. Building on this, we formulate attention optimization as a linear coding problem and propose a \textit{group coding strategy}, theoretically showing its ability to improve robustness against random noise and enhance learning efficiency. Motivated by this, we propose \textit{Dynamic Group Attention} (DGA), which leverages the group coding to explicitly reduce redundancy by aggregating less important tokens during attention computation. Empirical results show that our DGA significantly reduces computational costs while maintaining competitive performance.Code is available at https://github.com/bolixinyu/DynamicGroupAttention.
comment: Accepted at ICML 2025
MemOS: An Operating System for Memory-Augmented Generation (MAG) in Large Language Models
Large Language Models (LLMs) have emerged as foundational infrastructure in the pursuit of Artificial General Intelligence (AGI). Despite their remarkable capabilities in language perception and generation, current LLMs fundamentally lack a unified and structured architecture for handling memory. They primarily rely on parametric memory (knowledge encoded in model weights) and ephemeral activation memory (context-limited runtime states). While emerging methods like Retrieval-Augmented Generation (RAG) incorporate plaintext memory, they lack lifecycle management and multi-modal integration, limiting their capacity for long-term knowledge evolution. To address this, we introduce MemOS, a memory operating system designed for LLMs that, for the first time, elevates memory to a first-class operational resource. It builds unified mechanisms for representation, organization, and governance across three core memory types: parametric, activation, and plaintext. At its core is the MemCube, a standardized memory abstraction that enables tracking, fusion, and migration of heterogeneous memory, while offering structured, traceable access across tasks and contexts. MemOS establishes a memory-centric execution framework with strong controllability, adaptability, and evolvability. It fills a critical gap in current LLM infrastructure and lays the groundwork for continual adaptation, personalized intelligence, and cross-platform coordination in next-generation intelligent systems.
Pangu Pro MoE: Mixture of Grouped Experts for Efficient Sparsity
The surgence of Mixture of Experts (MoE) in Large Language Models promises a small price of execution cost for a much larger model parameter count and learning capacity, because only a small fraction of parameters are activated for each input token. However, it is commonly observed that some experts are activated far more often than others, leading to system inefficiency when running the experts on different devices in parallel. Therefore, we introduce Mixture of Grouped Experts (MoGE), which groups the experts during selection and balances the expert workload better than MoE in nature. It constrains tokens to activate an equal number of experts within each predefined expert group. When a model execution is distributed on multiple devices, this architectural design ensures a balanced computational load across devices, significantly enhancing throughput, particularly for the inference phase. Further, we build Pangu Pro MoE on Ascend NPUs, a sparse model based on MoGE with 72 billion total parameters, 16 billion of which are activated for each token. The configuration of Pangu Pro MoE is optimized for Ascend 300I Duo and 800I A2 through extensive system simulation studies. Our experiments indicate that MoGE indeed leads to better expert load balancing and more efficient execution for both model training and inference on Ascend NPUs. The inference performance of Pangu Pro MoE achieves 1148 tokens/s per card and can be further improved to 1528 tokens/s per card by speculative acceleration, outperforming comparable 32B and 72B Dense models. Furthermore, we achieve an excellent cost-to-performance ratio for model inference on Ascend 300I Duo. Our studies show that Ascend NPUs are capable of training Pangu Pro MoE with massive parallelization to make it a leading model within the sub-100B total parameter class, outperforming prominent open-source models like GLM-Z1-32B and Qwen3-32B.
PEDANTIC: A Dataset for the Automatic Examination of Definiteness in Patent Claims
Patent claims define the scope of protection for an invention. If there are ambiguities in a claim, it is rejected by the patent office. In the US, this is referred to as indefiniteness (35 U.S.C {\S} 112(b)) and is among the most frequent reasons for patent application rejection. The development of automatic methods for patent definiteness examination has the potential to make patent drafting and examination more efficient, but no annotated dataset has been published to date. We introduce PEDANTIC (Patent Definiteness Examination Corpus), a novel dataset of 14k US patent claims from patent applications relating to Natural Language Processing (NLP), annotated with reasons for indefiniteness. We construct PEDANTIC using a fully automatic pipeline that retrieves office action documents from the USPTO and uses Large Language Models (LLMs) to extract the reasons for indefiniteness. A human validation study confirms the pipeline's accuracy in generating high-quality annotations. To gain insight beyond binary classification metrics, we implement an LLM-as-Judge evaluation that compares the free-form reasoning of every model-cited reason with every examiner-cited reason. We show that LLM agents based on Qwen 2.5 32B and 72B struggle to outperform logistic regression baselines on definiteness prediction, even though they often correctly identify the underlying reasons. PEDANTIC provides a valuable resource for patent AI researchers, enabling the development of advanced examination models. We will publicly release the dataset and code.
Something's Fishy In The Data Lake: A Critical Re-evaluation of Table Union Search Benchmarks ACL 2025
Recent table representation learning and data discovery methods tackle table union search (TUS) within data lakes, which involves identifying tables that can be unioned with a given query table to enrich its content. These methods are commonly evaluated using benchmarks that aim to assess semantic understanding in real-world TUS tasks. However, our analysis of prominent TUS benchmarks reveals several limitations that allow simple baselines to perform surprisingly well, often outperforming more sophisticated approaches. This suggests that current benchmark scores are heavily influenced by dataset-specific characteristics and fail to effectively isolate the gains from semantic understanding. To address this, we propose essential criteria for future benchmarks to enable a more realistic and reliable evaluation of progress in semantic table union search.
comment: Accepted @ ACL 2025's Table Representation Learning Workshop (TRL)
Charting the Landscape of African NLP: Mapping Progress and Shaping the Road Ahead
With over 2,000 languages and potentially millions of speakers, Africa represents one of the richest linguistic regions in the world. Yet, this diversity is scarcely reflected in state-of-the-art natural language processing (NLP) systems and large language models (LLMs), which predominantly support a narrow set of high-resource languages. This exclusion not only limits the reach and utility of modern NLP technologies but also risks widening the digital divide across linguistic communities. Nevertheless, NLP research on African languages is active and growing. In recent years, there has been a surge of interest in this area, driven by several factors-including the creation of multilingual language resources, the rise of community-led initiatives, and increased support through funding programs. In this survey, we analyze 734 research papers on NLP for African languages published over the past five years, offering a comprehensive overview of recent progress across core tasks. We identify key trends shaping the field and conclude by outlining promising directions to foster more inclusive and sustainable NLP research for African languages.
comment: Working paper
LLMs Think, But Not In Your Flow: Reasoning-Level Personalization for Black-Box Large Language Models
Large language models (LLMs) have recently achieved impressive performance across a wide range of natural language tasks and are now widely used in real-world applications. Among them, black-box LLMs--served via APIs without access to model internals--are especially dominant due to their scalability and ease of deployment. Despite their strong capabilities, these models typically produce generalized responses that overlook personal preferences and reasoning styles. This has led to growing interest in black-box LLM personalization, which aims to tailor model outputs to user-specific context without modifying model parameters. However, existing approaches primarily focus on response-level personalization, attempting to match final outputs without modeling personal thought process. To address this limitation, we propose RPM, a framework for reasoning-level personalization that aligns the model's reasoning process with a user's personalized logic. RPM first constructs statistical user-specific factors by extracting and grouping response-influential features from user history. It then builds personalized reasoning paths that reflect how these factors are used in context. In the inference stage, RPM retrieves reasoning-aligned examples for new queries via feature-level similarity and performs inference conditioned on the structured factors and retrieved reasoning paths, enabling the model to follow user-specific reasoning trajectories. This reasoning-level personalization enhances both predictive accuracy and interpretability by grounding model outputs in user-specific logic through structured information. Extensive experiments across diverse tasks show that RPM consistently outperforms response-level personalization methods, demonstrating the effectiveness of reasoning-level personalization in black-box LLMs.
Faithfulness-Aware Uncertainty Quantification for Fact-Checking the Output of Retrieval Augmented Generation
Large Language Models (LLMs) enhanced with external knowledge retrieval, an approach known as Retrieval-Augmented Generation (RAG), have shown strong performance in open-domain question answering. However, RAG systems remain susceptible to hallucinations: factually incorrect outputs that may arise either from inconsistencies in the model's internal knowledge or incorrect use of the retrieved context. Existing approaches often conflate factuality with faithfulness to the retrieved context, misclassifying factually correct statements as hallucinations if they are not directly supported by the retrieval. In this paper, we introduce FRANQ (Faithfulness-based Retrieval Augmented UNcertainty Quantification), a novel method for hallucination detection in RAG outputs. FRANQ applies different Uncertainty Quantification (UQ) techniques to estimate factuality based on whether a statement is faithful to the retrieved context or not. To evaluate FRANQ and other UQ techniques for RAG, we present a new long-form Question Answering (QA) dataset annotated for both factuality and faithfulness, combining automated labeling with manual validation of challenging examples. Extensive experiments on long- and short-form QA across multiple datasets and LLMs show that FRANQ achieves more accurate detection of factual errors in RAG-generated responses compared to existing methods.
FCKT: Fine-Grained Cross-Task Knowledge Transfer with Semantic Contrastive Learning for Targeted Sentiment Analysis
In this paper, we address the task of targeted sentiment analysis (TSA), which involves two sub-tasks, i.e., identifying specific aspects from reviews and determining their corresponding sentiments. Aspect extraction forms the foundation for sentiment prediction, highlighting the critical dependency between these two tasks for effective cross-task knowledge transfer. While most existing studies adopt a multi-task learning paradigm to align task-specific features in the latent space, they predominantly rely on coarse-grained knowledge transfer. Such approaches lack fine-grained control over aspect-sentiment relationships, often assuming uniform sentiment polarity within related aspects. This oversimplification neglects contextual cues that differentiate sentiments, leading to negative transfer. To overcome these limitations, we propose FCKT, a fine-grained cross-task knowledge transfer framework tailored for TSA. By explicitly incorporating aspect-level information into sentiment prediction, FCKT achieves fine-grained knowledge transfer, effectively mitigating negative transfer and enhancing task performance. Experiments on three datasets, including comparisons with various baselines and large language models (LLMs), demonstrate the effectiveness of FCKT. The source code is available on https://github.com/cwei01/FCKT.
comment: 11 pages, 6 figures
Towards Visuospatial Cognition via Hierarchical Fusion of Visual Experts
While Multimodal Large Language Models (MLLMs) excel at general vision-language tasks, visuospatial cognition - reasoning about spatial layouts, relations, and dynamics - remains a significant challenge. Existing models often lack the necessary architectural components and specialized training data for fine-grained spatial understanding. We introduce ViCA2 (Visuospatial Cognitive Assistant 2), a novel MLLM designed to enhance spatial reasoning. ViCA2 features a dual vision encoder architecture integrating SigLIP for semantics and Hiera for spatial structure, coupled with a token ratio control mechanism for efficiency. We also developed ViCA-322K, a new large-scale dataset with over 322,000 spatially grounded question-answer pairs for targeted instruction tuning. On the challenging VSI-Bench benchmark, our ViCA2-7B model achieves a state-of-the-art average score of 56.8, significantly surpassing larger open-source models (e.g., LLaVA-NeXT-Video-72B, 40.9) and leading proprietary models (Gemini-1.5 Pro, 45.4). This demonstrates the effectiveness of our approach in achieving strong visuospatial intelligence with a compact model. We release ViCA2, its codebase, and the ViCA-322K dataset to facilitate further research.
comment: In version 1, Hidetoshi Shimodaira was included as a co-author without their consent and has been removed from the author list
Visuospatial Cognitive Assistant
Video-based spatial cognition is vital for robotics and embodied AI but challenges current Vision-Language Models (VLMs). This paper makes two key contributions. First, we introduce ViCA (Visuospatial Cognitive Assistant)-322K, a diverse dataset of 322,003 QA pairs from real-world indoor videos (ARKitScenes, ScanNet, ScanNet++), offering supervision for 3D metadata-grounded queries and video-based complex reasoning. Second, we develop ViCA-7B, fine-tuned on ViCA-322K, which achieves new state-of-the-art on all eight VSI-Bench tasks, outperforming existing models, including larger ones (e.g., +26.1 on Absolute Distance). For interpretability, we present ViCA-Thinking-2.68K, a dataset with explicit reasoning chains, and fine-tune ViCA-7B to create ViCA-7B-Thinking, a model that articulates its spatial reasoning. Our work highlights the importance of targeted data and suggests paths for improved temporal-spatial modeling. We release all resources to foster research in robust visuospatial intelligence.
comment: Author list corrected. In version 1, Hidetoshi Shimodaira was included as a co-author without their consent and has been removed from the author list
Distance between Relevant Information Pieces Causes Bias in Long-Context LLMs ACL 2025
Positional bias in large language models (LLMs) hinders their ability to effectively process long inputs. A prominent example is the "lost in the middle" phenomenon, where LLMs struggle to utilize relevant information situated in the middle of the input. While prior research primarily focuses on single pieces of relevant information, real-world applications often involve multiple relevant information pieces. To bridge this gap, we present LongPiBench, a benchmark designed to assess positional bias involving multiple pieces of relevant information. Thorough experiments are conducted with five commercial and six open-source models. These experiments reveal that while most current models are robust against the "lost in the middle" issue, there exist significant biases related to the spacing of relevant information pieces. These findings highlight the importance of evaluating and reducing positional biases to advance LLM's capabilities.
comment: ACL 2025 Findings
GraphCheck: Breaking Long-Term Text Barriers with Extracted Knowledge Graph-Powered Fact-Checking
Large language models (LLMs) are widely used, but they often generate subtle factual errors, especially in long-form text. These errors are fatal in some specialized domains such as medicine. Existing fact-checking with grounding documents methods face two main challenges: (1) they struggle to understand complex multihop relations in long documents, often overlooking subtle factual errors; (2) most specialized methods rely on pairwise comparisons, requiring multiple model calls, leading to high resource and computational costs. To address these challenges, we propose GraphCheck, a fact-checking framework that uses extracted knowledge graphs to enhance text representation. Graph Neural Networks further process these graphs as a soft prompt, enabling LLMs to incorporate structured knowledge more effectively. Enhanced with graph-based reasoning, GraphCheck captures multihop reasoning chains that are often overlooked by existing methods, enabling precise and efficient fact-checking in a single inference call. Experimental results on seven benchmarks spanning both general and medical domains demonstrate up to a 7.1% overall improvement over baseline models. Notably, GraphCheck outperforms existing specialized fact-checkers and achieves comparable performance with state-of-the-art LLMs, such as DeepSeek-V3 and OpenAI-o1, with significantly fewer parameters.
Faster and Better LLMs via Latency-Aware Test-Time Scaling
Test-Time Scaling (TTS) has proven effective in improving the performance of Large Language Models (LLMs) during inference. However, existing research has overlooked the efficiency of TTS from a latency-sensitive perspective. Through a latency-aware evaluation of representative TTS methods, we demonstrate that a compute-optimal TTS does not always result in the lowest latency in scenarios where latency is critical. To address this gap and achieve latency-optimal TTS, we propose two key approaches by optimizing the concurrency configurations: (1) branch-wise parallelism, which leverages multiple concurrent inference branches, and (2) sequence-wise parallelism, enabled by speculative decoding. By integrating these two approaches and allocating computational resources properly to each, our latency-optimal TTS enables a 32B model to reach 82.3% accuracy on MATH-500 within 1 minute and a smaller 3B model to achieve 72.4% within 10 seconds. Our work emphasizes the importance of latency-aware TTS and demonstrates its ability to deliver both speed and accuracy in latency-sensitive scenarios.
Bridging Supervised Learning and Reinforcement Learning in Math Reasoning
Reinforcement Learning (RL) has played a central role in the recent surge of LLMs' math abilities by enabling self-improvement through binary verifier signals. In contrast, Supervised Learning (SL) is rarely considered for such verification-driven training, largely due to its heavy reliance on reference answers and inability to reflect on mistakes. In this work, we challenge the prevailing notion that self-improvement is exclusive to RL and propose Negative-aware Fine-Tuning (NFT) -- a supervised approach that enables LLMs to reflect on their failures and improve autonomously with no external teachers. In online training, instead of throwing away self-generated negative answers, NFT constructs an implicit negative policy to model them. This implicit policy is parameterized with the same positive LLM we target to optimize on positive data, enabling direct policy optimization on all LLMs' generations. We conduct experiments on 7B and 32B models in math reasoning tasks. Results consistently show that through the additional leverage of negative feedback, NFT significantly improves over SL baselines like Rejection sampling Fine-Tuning, matching or even surpassing leading RL algorithms like GRPO and DAPO. Furthermore, we demonstrate that NFT and GRPO are actually equivalent in strict-on-policy training, even though they originate from entirely different theoretical foundations. Our experiments and theoretical findings bridge the gap between SL and RL methods in binary-feedback learning systems.
Personalized Causal Graph Reasoning for LLMs: A Case Study on Dietary Recommendations
Large Language Models (LLMs) effectively leverage common-sense knowledge for general reasoning, yet they struggle with personalized reasoning when tasked with interpreting multifactor personal data. This limitation restricts their applicability in domains that require context-aware decision-making tailored to individuals. This paper introduces Personalized Causal Graph Reasoning as an agentic framework that enhances LLM reasoning by incorporating personal causal graphs derived from data of individuals. These graphs provide a foundation that guides the LLM's reasoning process. We evaluate it on a case study on nutrient-oriented dietary recommendations, which requires personal reasoning due to the implicit unique dietary effects. We propose a counterfactual evaluation to estimate the efficiency of LLM-recommended foods for glucose management. Results demonstrate that the proposed method efficiently provides personalized dietary recommendations to reduce average glucose iAUC across three time windows, which outperforms the previous approach. LLM-as-a-judge evaluation results indicate that our proposed method enhances personalization in the reasoning process.
AutoElicit: Using Large Language Models for Expert Prior Elicitation in Predictive Modelling
Large language models (LLMs) acquire a breadth of information across various domains. However, their computational complexity, cost, and lack of transparency often hinder their direct application for predictive tasks where privacy and interpretability are paramount. In fields such as healthcare, biology, and finance, specialised and interpretable linear models still hold considerable value. In such domains, labelled data may be scarce or expensive to obtain. Well-specified prior distributions over model parameters can reduce the sample complexity of learning through Bayesian inference; however, eliciting expert priors can be time-consuming. We therefore introduce AutoElicit to extract knowledge from LLMs and construct priors for predictive models. We show these priors are informative and can be refined using natural language. We perform a careful study contrasting AutoElicit with in-context learning and demonstrate how to perform model selection between the two methods. We find that AutoElicit yields priors that can substantially reduce error over uninformative priors, using fewer labels, and consistently outperform in-context learning. We show that AutoElicit saves over 6 months of labelling effort when building a new predictive model for urinary tract infections from sensor recordings of people living with dementia.
SynWorld: Virtual Scenario Synthesis for Agentic Action Knowledge Refinement ACL 2025
In the interaction between agents and their environments, agents expand their capabilities by planning and executing actions. However, LLM-based agents face substantial challenges when deployed in novel environments or required to navigate unconventional action spaces. To empower agents to autonomously explore environments, optimize workflows, and enhance their understanding of actions, we propose SynWorld, a framework that allows agents to synthesize possible scenarios with multi-step action invocation within the action space and perform Monte Carlo Tree Search (MCTS) exploration to effectively refine their action knowledge in the current environment. Our experiments demonstrate that SynWorld is an effective and general approach to learning action knowledge in new environments. Code is available at https://github.com/zjunlp/SynWorld.
comment: ACL 2025 Findings
ReLearn: Unlearning via Learning for Large Language Models ACL 2025
Current unlearning methods for large language models usually rely on reverse optimization to reduce target token probabilities. However, this paradigm disrupts the subsequent tokens prediction, degrading model performance and linguistic coherence. Moreover, existing evaluation metrics overemphasize contextual forgetting while inadequately assessing response fluency and relevance. To address these challenges, we propose ReLearn, a data augmentation and fine-tuning pipeline for effective unlearning, along with a comprehensive evaluation framework. This framework introduces Knowledge Forgetting Rate (KFR) and Knowledge Retention Rate (KRR) to measure knowledge-level preservation, and Linguistic Score (LS) to evaluate generation quality. Our experiments show that ReLearn successfully achieves targeted forgetting while preserving high-quality output. Through mechanistic analysis, we further demonstrate how reverse optimization disrupts coherent text generation, while ReLearn preserves this essential capability. Code is available at https://github.com/zjunlp/unlearn.
comment: ACL 2025
TLUE: A Tibetan Language Understanding Evaluation Benchmark
Large language models (LLMs) have made tremendous progress in recent years, but low-resource languages, such as Tibetan, remain significantly underrepresented in their evaluation. Despite Tibetan being spoken by over seven million people, it has largely been neglected in the development and assessment of LLMs. To address this gap, we present TLUE (A Tibetan Language Understanding Evaluation Benchmark), the first large-scale benchmark for assessing LLMs' capabilities in Tibetan. TLUE comprises two major components: (1) a comprehensive multi-task understanding benchmark spanning 5 domains and 67 subdomains, and (2) a safety benchmark covering 7 subdomains. We evaluate a diverse set of state-of-the-art LLMs. Experimental results demonstrate that most LLMs perform below the random baseline, highlighting the considerable challenges LLMs face in processing Tibetan, a low-resource language. TLUE provides an essential foundation for driving future research and progress in Tibetan language understanding and underscores the need for greater inclusivity in LLM development.
Preference Adaptive and Sequential Text-to-Image Generation ICML 2025
We address the problem of interactive text-to-image (T2I) generation, designing a reinforcement learning (RL) agent which iteratively improves a set of generated images for a user through a sequence of prompt expansions. Using human raters, we create a novel dataset of sequential preferences, which we leverage, together with large-scale open-source (non-sequential) datasets. We construct user-preference and user-choice models using an EM strategy and identify varying user preference types. We then leverage a large multimodal language model (LMM) and a value-based RL approach to suggest an adaptive and diverse slate of prompt expansions to the user. Our Preference Adaptive and Sequential Text-to-image Agent (PASTA) extends T2I models with adaptive multi-turn capabilities, fostering collaborative co-creation and addressing uncertainty or underspecification in a user's intent. We evaluate PASTA using human raters, showing significant improvement compared to baseline methods. We also open-source our sequential rater dataset and simulated user-rater interactions to support future research in user-centric multi-turn T2I systems.
comment: Accepted to ICML 2025 Link to PASTA dataset: https://www.kaggle.com/datasets/googleai/pasta-data
Moderating Harm: Benchmarking Large Language Models for Cyberbullying Detection in YouTube Comments
As online platforms grow, comment sections increasingly host harassment that undermines user experience and well-being. This study benchmarks three leading large language models, OpenAI GPT-4.1, Google Gemini 1.5 Pro, and Anthropic Claude 3 Opus, on a corpus of 5,080 YouTube comments sampled from high-abuse threads in gaming, lifestyle, food vlog, and music channels. The dataset comprises 1,334 harmful and 3,746 non-harmful messages in English, Arabic, and Indonesian, annotated independently by two reviewers with substantial agreement (Cohen's kappa = 0.83). Using a unified prompt and deterministic settings, GPT-4.1 achieved the best overall balance with an F1 score of 0.863, precision of 0.887, and recall of 0.841. Gemini flagged the highest share of harmful posts (recall = 0.875) but its precision fell to 0.767 due to frequent false positives. Claude delivered the highest precision at 0.920 and the lowest false-positive rate of 0.022, yet its recall dropped to 0.720. Qualitative analysis showed that all three models struggle with sarcasm, coded insults, and mixed-language slang. These results underscore the need for moderation pipelines that combine complementary models, incorporate conversational context, and fine-tune for under-represented languages and implicit abuse. A de-identified version of the dataset and full prompts is publicly released to promote reproducibility and further progress in automated content moderation.
comment: Preprint. 9 pages, 3 tables, 1 figure. Not yet submitted to a journal. Feedback welcome
SynLogic: Synthesizing Verifiable Reasoning Data at Scale for Learning Logical Reasoning and Beyond
Recent advances such as OpenAI-o1 and DeepSeek R1 have demonstrated the potential of Reinforcement Learning (RL) to enhance reasoning abilities in Large Language Models (LLMs). While open-source replication efforts have primarily focused on mathematical and coding domains, methods and resources for developing general reasoning capabilities remain underexplored. This gap is partly due to the challenge of collecting diverse and verifiable reasoning data suitable for RL. We hypothesize that logical reasoning is critical for developing general reasoning capabilities, as logic forms a fundamental building block of reasoning. In this work, we present SynLogic, a data synthesis framework and dataset that generates diverse logical reasoning data at scale, encompassing 35 diverse logical reasoning tasks. The SynLogic approach enables controlled synthesis of data with adjustable difficulty and quantity. Importantly, all examples can be verified by simple rules, making them ideally suited for RL with verifiable rewards. In our experiments, we validate the effectiveness of RL training on the SynLogic dataset based on 7B and 32B models. SynLogic leads to state-of-the-art logical reasoning performance among open-source datasets, surpassing DeepSeek-R1-Distill-Qwen-32B by 6 points on BBEH. Furthermore, mixing SynLogic data with mathematical and coding tasks improves the training efficiency of these domains and significantly enhances reasoning generalization. Notably, our mixed training model outperforms DeepSeek-R1-Zero-Qwen-32B across multiple benchmarks. These findings position SynLogic as a valuable resource for advancing the broader reasoning capabilities of LLMs. We open-source both the data synthesis pipeline and the SynLogic dataset at https://github.com/MiniMax-AI/SynLogic.
Reasoning Is Not All You Need: Examining LLMs for Multi-Turn Mental Health Conversations
Limited access to mental healthcare, extended wait times, and increasing capabilities of Large Language Models (LLMs) has led individuals to turn to LLMs for fulfilling their mental health needs. However, examining the multi-turn mental health conversation capabilities of LLMs remains under-explored. Existing evaluation frameworks typically focus on diagnostic accuracy and win-rates and often overlook alignment with patient-specific goals, values, and personalities required for meaningful conversations. To address this, we introduce MedAgent, a novel framework for synthetically generating realistic, multi-turn mental health sensemaking conversations and use it to create the Mental Health Sensemaking Dialogue (MHSD) dataset, comprising over 2,200 patient-LLM conversations. Additionally, we present MultiSenseEval, a holistic framework to evaluate the multi-turn conversation abilities of LLMs in healthcare settings using human-centric criteria. Our findings reveal that frontier reasoning models yield below-par performance for patient-centric communication and struggle at advanced diagnostic capabilities with average score of 31%. Additionally, we observed variation in model performance based on patient's persona and performance drop with increasing turns in the conversation. Our work provides a comprehensive synthetic data generation framework, a dataset and evaluation framework for assessing LLMs in multi-turn mental health conversations.
comment: 34 pages, 5 figures, 30 tables
Closed-Form Training Dynamics Reveal Learned Features and Linear Structure in Word2Vec-like Models
Self-supervised word embedding algorithms such as word2vec provide a minimal setting for studying representation learning in language modeling. We examine the quartic Taylor approximation of the word2vec loss around the origin, and we show that both the resulting training dynamics and the final performance on downstream tasks are empirically very similar to those of word2vec. Our main contribution is to analytically solve for both the gradient flow training dynamics and the final word embeddings in terms of only the corpus statistics and training hyperparameters. The solutions reveal that these models learn orthogonal linear subspaces one at a time, each one incrementing the effective rank of the embeddings until model capacity is saturated. Training on Wikipedia, we find that each of the top linear subspaces represents an interpretable topic-level concept. Finally, we apply our theory to describe how linear representations of more abstract semantic concepts emerge during training; these can be used to complete analogies via vector addition.
comment: 23 pages, 6 figures
Nonlinear second-order dynamics describe labial constriction trajectories across languages and contexts
We investigate the dynamics of labial constriction trajectories during the production of /b/ and /m/ in English and Mandarin. We find that, across languages and contexts, the ratio of instantaneous displacement to instantaneous velocity generally follows an exponential decay curve from movement onset to movement offset. We formalize this empirical discovery in a differential equation and, in combination with an assumption of point attractor dynamics, derive a nonlinear second-order dynamical system describing labial constriction trajectories. The equation has only two parameters, T and r. T corresponds to the target state and r corresponds to movement rapidity. Thus, each of the parameters corresponds to a phonetically relevant dimension of control. Nonlinear regression demonstrates that the model provides excellent fits to individual movement trajectories. Moreover, trajectories simulated from the model qualitatively match empirical trajectories, and capture key kinematic variables like duration, peak velocity, and time to achieve peak velocity. The model constitutes a proposal for the dynamics of individual articulatory movements, and thus offers a novel foundation from which to understand additional influences on articulatory kinematics like prosody, inter-movement coordination, and stochastic noise.
Positional Fragility in LLMs: How Offset Effects Reshape Our Understanding of Memorization Risks
Large language models are known to memorize parts of their training data, posing risk of copyright violations. To systematically examine this risk, we pretrain language models (1B/3B/8B) from scratch on 83B tokens, mixing web-scale data with public domain books used to simulate copyrighted content at controlled frequencies at lengths at least ten times longer than prior work. We thereby identified the offset effect, a phenomenon characterized by two key findings: (1) verbatim memorization is most strongly triggered by short prefixes drawn from the beginning of the context window, with memorization decreasing counterintuitively as prefix length increases; and (2) a sharp decline in verbatim recall when prefix begins offset from the initial tokens of the context window. We attribute this to positional fragility: models rely disproportionately on the earliest tokens in their context window as retrieval anchors, making them sensitive to even slight shifts. We further observe that when the model fails to retrieve memorized content, it often produces degenerated text. Leveraging these findings, we show that shifting sensitive data deeper into the context window suppresses both extractable memorization and degeneration. Our results suggest that positional offset is a critical and previously overlooked axis for evaluating memorization risks, since prior work implicitly assumed uniformity by probing only from the beginning of training sequences.
AdvAgent: Controllable Blackbox Red-teaming on Web Agents ICML 2025
Foundation model-based agents are increasingly used to automate complex tasks, enhancing efficiency and productivity. However, their access to sensitive resources and autonomous decision-making also introduce significant security risks, where successful attacks could lead to severe consequences. To systematically uncover these vulnerabilities, we propose AdvAgent, a black-box red-teaming framework for attacking web agents. Unlike existing approaches, AdvAgent employs a reinforcement learning-based pipeline to train an adversarial prompter model that optimizes adversarial prompts using feedback from the black-box agent. With careful attack design, these prompts effectively exploit agent weaknesses while maintaining stealthiness and controllability. Extensive evaluations demonstrate that AdvAgent achieves high success rates against state-of-the-art GPT-4-based web agents across diverse web tasks. Furthermore, we find that existing prompt-based defenses provide only limited protection, leaving agents vulnerable to our framework. These findings highlight critical vulnerabilities in current web agents and emphasize the urgent need for stronger defense mechanisms. We release code at https://ai-secure.github.io/AdvAgent/.
comment: ICML 2025
How Do LLMs Perform Two-Hop Reasoning in Context?
``Socrates is human. All humans are mortal. Therefore, Socrates is mortal.'' This form of argument illustrates a typical pattern of two-hop reasoning. Formally, two-hop reasoning refers to the process of inferring a conclusion by making two logical steps, each connecting adjacent concepts, such that the final conclusion depends on the integration of both steps. It is one of the most fundamental components of human reasoning and plays a crucial role in both formal logic and everyday decision-making. Despite recent progress in large language models (LLMs), we surprisingly find that they can fail at solving simple two-hop reasoning problems when distractors are present. We observe on a synthetic dataset that pre-trained LLMs often resort to random guessing among all plausible conclusions. However, after few steps of fine-tuning, models achieve near-perfect accuracy and exhibit strong length generalization. To understand the underlying mechanisms, we train a 3-layer Transformer from scratch on a synthetic two-hop reasoning task and reverse-engineer its internal information flow. We observe a clear progression in the attention logits throughout training. This pictures a sharp phase transition from an initial stage of random guessing to the emergence of a structured sequential query mechanism, where the model first retrieves the preceding and the bridge concepts in the early layers and then uses them to infer the final answer. Finally, we show that these dynamics can be captured by a minimal three-parameter attention-only network.
BRIGHTER: BRIdging the Gap in Human-Annotated Textual Emotion Recognition Datasets for 28 Languages ACL2025
People worldwide use language in subtle and complex ways to express emotions. Although emotion recognition--an umbrella term for several NLP tasks--impacts various applications within NLP and beyond, most work in this area has focused on high-resource languages. This has led to significant disparities in research efforts and proposed solutions, particularly for under-resourced languages, which often lack high-quality annotated datasets. In this paper, we present BRIGHTER--a collection of multilabeled, emotion-annotated datasets in 28 different languages and across several domains. BRIGHTER primarily covers low-resource languages from Africa, Asia, Eastern Europe, and Latin America, with instances labeled by fluent speakers. We highlight the challenges related to the data collection and annotation processes, and then report experimental results for monolingual and crosslingual multi-label emotion identification, as well as emotion intensity recognition. We analyse the variability in performance across languages and text domains, both with and without the use of LLMs, and show that the BRIGHTER datasets represent a meaningful step towards addressing the gap in text-based emotion recognition.
comment: Accepted at ACL2025 (Main)
FitCF: A Framework for Automatic Feature Importance-guided Counterfactual Example Generation ACL 2025
Counterfactual examples are widely used in natural language processing (NLP) as valuable data to improve models, and in explainable artificial intelligence (XAI) to understand model behavior. The automated generation of counterfactual examples remains a challenging task even for large language models (LLMs), despite their impressive performance on many tasks. In this paper, we first introduce ZeroCF, a faithful approach for leveraging important words derived from feature attribution methods to generate counterfactual examples in a zero-shot setting. Second, we present a new framework, FitCF, which further verifies aforementioned counterfactuals by label flip verification and then inserts them as demonstrations for few-shot prompting, outperforming two state-of-the-art baselines. Through ablation studies, we identify the importance of each of FitCF's core components in improving the quality of counterfactuals, as assessed through flip rate, perplexity, and similarity measures. Furthermore, we show the effectiveness of LIME and Integrated Gradients as backbone attribution methods for FitCF and find that the number of demonstrations has the largest effect on performance. Finally, we reveal a strong correlation between the faithfulness of feature attribution scores and the quality of generated counterfactuals, which we hope will serve as an important finding for future research in this direction.
comment: ACL 2025 Findings; camera-ready version
ConKE: Conceptualization-Augmented Knowledge Editing in Large Language Models for Commonsense Reasoning ACL2025
Knowledge Editing (KE) aims to adjust a Large Language Model's (LLM) internal representations and parameters to correct inaccuracies and improve output consistency without incurring the computational expense of re-training the entire model. However, editing commonsense knowledge still faces difficulties, including limited knowledge coverage in existing resources, the infeasibility of annotating labels for an overabundance of commonsense knowledge, and the strict knowledge formats of current editing methods. In this paper, we address these challenges by presenting ConceptEdit, a framework that integrates conceptualization and instantiation into the KE pipeline for LLMs to enhance their commonsense reasoning capabilities. ConceptEdit dynamically diagnoses implausible commonsense knowledge within an LLM using another verifier LLM and augments the source knowledge to be edited with conceptualization for stronger generalizability. Experimental results demonstrate that LLMs enhanced with ConceptEdit successfully generate commonsense knowledge with improved plausibility compared to other baselines and achieve stronger performance across multiple question answering benchmarks. Our data, code, and models are publicly available at https://github.com/HKUST-KnowComp/ConKE.
comment: Findings of ACL2025
Gender-Neutral Large Language Models for Medical Applications: Reducing Bias in PubMed Abstracts
This paper presents a pipeline for mitigating gender bias in large language models (LLMs) used in medical literature by neutralizing gendered occupational pronouns. A dataset of 379,000 PubMed abstracts from 1965-1980 was processed to identify and modify pronouns tied to professions. We developed a BERT-based model, "Modern Occupational Bias Elimination with Refined Training," or "MOBERT," trained on these neutralized abstracts, and compared its performance with "1965BERT," trained on the original dataset. MOBERT achieved a 70% inclusive replacement rate, while 1965BERT reached only 4%. A further analysis of MOBERT revealed that pronoun replacement accuracy correlated with the frequency of occupational terms in the training data. We propose expanding the dataset and refining the pipeline to improve performance and ensure more equitable language modeling in medical applications.
comment: 9 pages, 4 figures
AstroVisBench: A Code Benchmark for Scientific Computing and Visualization in Astronomy
Large Language Models (LLMs) are being explored for applications in scientific research, including their capabilities to synthesize literature, answer research questions, generate research ideas, and even conduct computational experiments. Ultimately, our goal is for these to help scientists derive novel scientific insights. In many areas of science, such insights often arise from processing and visualizing data to understand its patterns. However, evaluating whether an LLM-mediated scientific workflow produces outputs conveying the correct scientific insights is challenging to evaluate and has not been addressed in past work. We introduce AstroVisBench, the first benchmark for both scientific computing and visualization in the astronomy domain. AstroVisBench judges a language model's ability to both (1) create astronomy-specific workflows to process and analyze data and (2) visualize the results of these workflows through complex plots. Our evaluation of visualizations uses a novel LLM-as-a-judge workflow, which is validated against annotation by five professional astronomers. Using AstroVisBench we present an evaluation of state-of-the-art language models, showing a significant gap in their ability to engage in astronomy research as useful assistants. This evaluation provides a strong end-to-end evaluation for AI scientists that offers a path forward for the development of visualization-based workflows, which are central to a broad range of domains from physics to biology.
Token embeddings violate the manifold hypothesis
A full understanding of the behavior of a large language model (LLM) requires our understanding of its input token space. If this space differs from our assumptions, our understanding of and conclusions about the LLM will likely be flawed. We elucidate the structure of the token embeddings both empirically and theoretically. We present a novel statistical test assuming that the neighborhood around each token has a relatively flat and smooth structure as the null hypothesis. Failing to reject the null is uninformative, but rejecting it at a specific token $\psi$ implies an irregularity in the token subspace in a $\psi$-neighborhood, $B(\psi)$. The structure assumed in the null is a generalization of a manifold with boundary called a \emph{smooth fiber bundle} (which can be split into two spatial regimes -- small and large radius), so we denote our new hypothesis test as the ``fiber bundle hypothesis.'' Failure to reject the null hypothesis is uninformative, but rejecting it at $\psi$ indicates a statistically significant irregularity at $B(\psi)$. By running our test over several open-source LLMs, each with unique token embeddings, we find that the null is frequently rejected, and so the evidence suggests that the token subspace is not a fiber bundle and hence also not a manifold. As a consequence of our findings, when an LLM is presented with two semantically equivalent prompts, if one prompt contains a token implicated by our test, the response to that prompt will likely exhibit less stability than the other.
comment: 27 pages, 6 figures, 9 tables
Beyond External Monitors: Enhancing Transparency of Large Language Models for Easier Monitoring
Large language models (LLMs) are becoming increasingly capable, but the mechanisms of their thinking and decision-making process remain unclear. Chain-of-thoughts (CoTs) have been commonly utilized to monitor LLMs, but this strategy fails to accurately reflect LLMs' thinking process. Techniques based on LLMs' hidden representations provide an inner perspective to monitor their latent thinking. However, previous methods only try to develop external monitors instead of making LLMs themselves easier to monitor. In this paper, we propose a novel method TELLME, improving the transparency of LLMs and helping monitors identify unsuitable and sensitive behaviors. Furthermore, we showcase the applications of TELLME on trustworthiness tasks (\eg, safety risks monitoring tasks and detoxification tasks), where LLMs achieve consistent improvement in transparency and task performance. More crucially, we theoretically analyze the improvement of TELLME on LLMs' generalization ability through optimal transport theory.
comment: 25 pages,6 figures,13 tables
GOAT-TTS: Expressive and Realistic Speech Generation via A Dual-Branch LLM
While large language models (LLMs) have revolutionized text-to-speech (TTS) synthesis through discrete tokenization paradigms, current architectures exhibit fundamental tensions between three critical dimensions: 1) irreversible loss of acoustic characteristics caused by quantization of speech prompts; 2) stringent dependence on precisely aligned prompt speech-text pairs that limit real-world deployment; and 3) catastrophic forgetting of the LLM's native text comprehension during optimization for speech token generation. To address these challenges, we propose an LLM-based text-to-speech Generation approach Optimized via a novel dual-branch ArchiTecture (GOAT-TTS). Our framework introduces two key innovations: (1) The modality-alignment branch combines a speech encoder and projector to capture continuous acoustic embeddings, enabling bidirectional correlation between paralinguistic features (language, timbre, emotion) and semantic text representations without transcript dependency; (2) The speech-generation branch employs modular fine-tuning on top-k layers of an LLM for speech token prediction while freezing the bottom-n layers to preserve foundational linguistic knowledge. Moreover, multi-token prediction is introduced to support real-time streaming TTS synthesis. Experimental results demonstrate that our GOAT-TTS achieves performance comparable to state-of-the-art TTS models while validating the efficacy of synthesized dialect speech data.
Breaking the Ceiling: Exploring the Potential of Jailbreak Attacks through Expanding Strategy Space ACL 2025
Large Language Models (LLMs), despite advanced general capabilities, still suffer from numerous safety risks, especially jailbreak attacks that bypass safety protocols. Understanding these vulnerabilities through black-box jailbreak attacks, which better reflect real-world scenarios, offers critical insights into model robustness. While existing methods have shown improvements through various prompt engineering techniques, their success remains limited against safety-aligned models, overlooking a more fundamental problem: the effectiveness is inherently bounded by the predefined strategy spaces. However, expanding this space presents significant challenges in both systematically capturing essential attack patterns and efficiently navigating the increased complexity. To better explore the potential of expanding the strategy space, we address these challenges through a novel framework that decomposes jailbreak strategies into essential components based on the Elaboration Likelihood Model (ELM) theory and develops genetic-based optimization with intention evaluation mechanisms. To be striking, our experiments reveal unprecedented jailbreak capabilities by expanding the strategy space: we achieve over 90% success rate on Claude-3.5 where prior methods completely fail, while demonstrating strong cross-model transferability and surpassing specialized safeguard models in evaluation accuracy. The code is open-sourced at: https://github.com/Aries-iai/CL-GSO.
comment: 19 pages, 20 figures, accepted by ACL 2025, Findings
Which Demographics do LLMs Default to During Annotation? ACL 2025
Demographics and cultural background of annotators influence the labels they assign in text annotation -- for instance, an elderly woman might find it offensive to read a message addressed to a "bro", but a male teenager might find it appropriate. It is therefore important to acknowledge label variations to not under-represent members of a society. Two research directions developed out of this observation in the context of using large language models (LLM) for data annotations, namely (1) studying biases and inherent knowledge of LLMs and (2) injecting diversity in the output by manipulating the prompt with demographic information. We combine these two strands of research and ask the question to which demographics an LLM resorts to when no demographics is given. To answer this question, we evaluate which attributes of human annotators LLMs inherently mimic. Furthermore, we compare non-demographic conditioned prompts and placebo-conditioned prompts (e.g., "you are an annotator who lives in house number 5") to demographics-conditioned prompts ("You are a 45 year old man and an expert on politeness annotation. How do you rate {instance}"). We study these questions for politeness and offensiveness annotations on the POPQUORN data set, a corpus created in a controlled manner to investigate human label variations based on demographics which has not been used for LLM-based analyses so far. We observe notable influences related to gender, race, and age in demographic prompting, which contrasts with previous studies that found no such effects.
comment: ACL 2025
Explicit Learning and the LLM in Machine Translation
This study explores an LLM's ability to learn new languages using explanations found in a grammar book$\unicode{x2014}$a process we term "explicit learning." To rigorously assess this ability, we design controlled translation experiments between English and constructed languages generated$\unicode{x2014}$by specific cryptographic means$\unicode{x2014}$out of Latin or French. Contrary to previous studies, our results demonstrate that LLMs do possess a measurable capacity for explicit learning. This ability, however, diminishes as the complexity of the linguistic phenomena to be learned increases. Supervised fine-tuning on ad hoc chains of thought significantly enhances LLM performance but struggles to generalize to typologically novel or more complex linguistic features. These findings point to the need for more diverse training sets and alternative fine-tuning strategies to further improve explicit learning by LLMs, benefiting low-resource languages typically described in grammar books but lacking extensive corpora.
Which Retain Set Matters for LLM Unlearning? A Case Study on Entity Unlearning ACL 2025
Large language models (LLMs) risk retaining unauthorized or sensitive information from their training data, which raises privacy concerns. LLM unlearning seeks to mitigate these risks by selectively removing specified data while maintaining overall model performance. However, most existing work focus on methods to achieve effective forgetting and does not provide a detailed analysis of the retain set, the portion of training data that is not targeted for removal. In this paper, we investigate the effects of unlearning on various subsets of the retain set through a case study on entity unlearning. We introduce the Syntactically Similar Neighbor Set, a group of queries that share similar syntactic structures with the data targeted for removal, and show that this subset suffers the greatest performance drop during unlearning. Moreover, when used for regularization, this set not only preserves performance on syntactically similar queries but also delivers comparable or improved results across other data subsets. Our results highlight that syntactic similarity is a critical factor, potentially more so than domain or entity relationships, in achieving effective and practical LLM unlearning.
comment: ACL 2025 Findings
Tracking Semantic Change in Slovene: A Novel Dataset and Optimal Transport-Based Distance
In this paper, we focus on the detection of semantic changes in Slovene, a less resourced Slavic language with two million speakers. Detecting and tracking semantic changes provides insight into the evolution of language caused by changes in society and culture. We present the first Slovene dataset for evaluating semantic change detection systems, which contains aggregated semantic change scores for 104 target words obtained from more than 3,000 manually annotated sentence pairs. We analyze an important class of measures of semantic change metrics based on the Average pairwise distance and identify several limitations. To address these limitations, we propose a novel metric based on regularized optimal transport, which offers a more robust framework for quantifying semantic change. We provide a comprehensive evaluation of various existing semantic change detection methods and associated semantic change measures on our dataset. Through empirical testing, we demonstrate that our proposed approach, leveraging regularized optimal transport, achieves either matching or improved performance compared to baseline approaches.
Prompt-based Personality Profiling: Reinforcement Learning for Relevance Filtering ACL 2025
Author profiling is the task of inferring characteristics about individuals by analyzing content they share. Supervised machine learning still dominates automatic systems that perform this task, despite the popularity of prompting large language models to address natural language understanding tasks. One reason is that the classification instances consist of large amounts of posts, potentially a whole user profile, which may exceed the input length of Transformers. Even if a model can use a large context window, the entirety of posts makes the application of API-accessed black box systems costly and slow, next to issues which come with such "needle-in-the-haystack" tasks. To mitigate this limitation, we propose a new method for author profiling which aims at distinguishing relevant from irrelevant content first, followed by the actual user profiling only with relevant data. To circumvent the need for relevance-annotated data, we optimize this relevance filter via reinforcement learning with a reward function that utilizes the zero-shot capabilities of large language models. We evaluate our method for Big Five personality trait prediction on two Twitter corpora. On publicly available real-world data with a skewed label distribution, our method shows similar efficacy to using all posts in a user profile, but with a substantially shorter context. An evaluation on a version of these data balanced with artificial posts shows that the filtering to relevant posts leads to a significantly improved accuracy of the predictions.
comment: Accepted to the REALM workshop at ACL 2025
Core Context Aware Transformers for Long Context Language Modeling ICML 2025
Transformer-based Large Language Models (LLMs) have exhibited remarkable success in extensive tasks primarily attributed to self-attention mechanism, which requires a token to consider all preceding tokens as its context to compute attention. However, when the context length L becomes very large (e.g., 128K), the amount of potentially redundant information in the context tends to increase. The redundant context not only hampers the modeling representation performance but also incurs unnecessary computational and storage overhead. In this paper, we propose a plug-and-play Core Context Aware (CCA) Attention for efficient long-context modeling, comprising two complementary modules: 1) Globality-aware pooling module groups input tokens and dynamically compresses each group into one core token based on their significance. In this way, our method automatically focuses and strengthens core context while diminishing redundancy during the learning process, leading to effective long-term dependency modeling. 2) Locality-preserving module incorporates neighboring tokens to preserve local context for detailed representation. Notably, our CCA-Attention is able to replace the self-attention module in existing LLMs with minimal fine-tuning cost. Extensive experimental results show the superiority of our method in both long-context modeling and computational efficiency over state-of-the-art methods.
comment: Accepted for publication at ICML 2025
MUDDFormer: Breaking Residual Bottlenecks in Transformers via Multiway Dynamic Dense Connections ICML'25
We propose MUltiway Dynamic Dense (MUDD) connections, a simple yet effective method to address the limitations of residual connections and enhance cross-layer information flow in Transformers. Unlike existing dense connection approaches with static and shared connection weights, MUDD generates connection weights dynamically depending on hidden states at each sequence position and for each decoupled input stream (the query, key, value or residual) of a Transformer block. MUDD connections can be seamlessly integrated into any Transformer architecture to create MUDDFormer. Extensive experiments show that MUDDFormer significantly outperforms Transformers across various model architectures and scales in language modeling, achieving the performance of Transformers trained with 1.8X-2.4X compute. Notably, MUDDPythia-2.8B matches Pythia-6.9B in pretraining ppl and downstream tasks and even rivals Pythia-12B in five-shot settings, while adding only 0.23% parameters and 0.4% computation. Code in JAX and PyTorch and pre-trained models are available at https://github.com/Caiyun-AI/MUDDFormer .
comment: Accepted to the 42nd International Conference on Machine Learning (ICML'25)
Can Code-Switched Texts Activate a Knowledge Switch in LLMs? A Case Study on English-Korean Code-Switching
Recent large language models (LLMs) demonstrate multilingual abilities, yet they are English-centric due to dominance of English in training corpora. The limited resource for low-resource languages remains a crucial challenge. Code-switching (CS), a phenomenon where multilingual speakers alternate between languages in a discourse, can convey subtle cultural and linguistic nuances that can be otherwise lost in translation and elicits language-specific knowledge in human communications. In light of this, we investigate whether code-switching can 'activate', or identify and leverage knowledge for reasoning when LLMs solve low-resource language tasks. To facilitate the research, we first present EnKoQA, a synthetic English-Korean CS question-answering dataset. We provide comprehensive analysis on a variety of multilingual LLMs by subdividing activation process into knowledge identification and knowledge leveraging. Our results demonstrate that compared to English text, CS can faithfully activate knowledge inside LLMs especially on language-specific domains, suggesting the potential of code-switching on low-resource language tasks.
comment: 25 pages, 8 figures
Exploring the Limitations of Mamba in COPY and CoT Reasoning
Transformers have become the backbone of modern Large Language Models (LLMs); however, their inference overhead grows linearly with the sequence length, posing challenges for modeling long sequences. In light of this, Mamba has attracted attention for maintaining a constant inference size, with empirical evidence demonstrating that it can match Transformer performance in sequence modeling while significantly reducing computational costs. However, an open question remains: can Mamba always bring savings while achieving performance comparable to Transformers? In this paper, we focus on analyzing the expressive ability of Mamba to perform our defined COPY operation and Chain of Thought (CoT) reasoning. First, inspired by the connection between Mamba and linear attention, we show that constant-sized Mamba may struggle to perform COPY operations while Transformers can handle them more easily. However, when the size of Mamba grows linearly with the input sequence length, it can accurately perform COPY, but in this case, Mamba no longer provides overhead savings. Based on this observation, we further analyze Mamba's ability to tackle CoT tasks, which can be described by the Dynamic Programming (DP) problems. Our findings suggest that to solve arbitrary DP problems, the total cost of Mamba is still comparable to standard Transformers. However, similar to efficient Transformers, when facing DP problems with favorable properties such as locality, Mamba can provide savings in overhead. Our experiments on the copy and CoT tasks further demonstrate Mamba's limitations compared to Transformers in learning these tasks.
comment: Mamba, Chain of Thought
LLäMmlein: Compact and Competitive German-Only Language Models from Scratch ACL25
We create two German-only decoder models, LL\"aMmlein 120M and 1B, transparently from scratch and publish them, along with the training data, for the German NLP research community to use. The model training involved several key steps, including extensive data preprocessing, the creation of a custom German tokenizer, the training itself, as well as the evaluation of the final models on various benchmarks. Throughout the training process, multiple checkpoints were saved and analyzed using the SuperGLEBer benchmark to monitor the models' learning dynamics. Compared to state-of-the-art models on the SuperGLEBer benchmark, both LL\"aMmlein models performed competitively, consistently matching or surpassing models with similar parameter sizes. The results show that the models' quality scales with size as expected, but performance improvements on some tasks plateaued early, offering valuable insights into resource allocation for future model development.
comment: camera ready @ACL25; https://www.informatik.uni-wuerzburg.de/datascience/projects/nlp/llammlein/
Light-R1: Curriculum SFT, DPO and RL for Long COT from Scratch and Beyond ACL'25
This paper introduces Light-R1, an open-source suite for training long reasoning models using reproducible and cost-effective methodology. Given the proprietary nature of data used in the DeepSeek-R1 series, we develop an alternative approach leveraging exclusively public data and models. Our curriculum training progressively increases data difficulty, combined with multi-staged post-training. Our Light-R1-32B model, trained from Qwen2.5-32B-Instruct, outperforms DeepSeek-R1-Distill-Qwen-32B in math reasoning. Experimental results show that this curriculum approach becomes more effective when distinct, diverse datasets are available for different training stages: fine-tuning DeepSeek-R1-Distilled models (pre-tuned by DeepSeek team on proprietary data) with 3,000 challenging examples from our curriculum dataset yielded state-of-the-art 7B and 14B models, while the 32B model, Light-R1-32B-DS performed comparably to QwQ-32B and DeepSeek-R1. Furthermore, we extend our work by applying GRPO on long reasoning models. Our final Light-R1-14B-DS achieves SOTA performance among 14B models in math, with AIME24 & 25 scores of 74.0 and 60.2 respectively, surpassing many 32B models and DeepSeek-R1-Distill-Llama-70B. Despite math-focused training, Light-R1-14B-DS demonstrates strong cross-domain generalization. Light-R1 represents a significant advancement in making sophisticated reasoning models more accessible and implementable in real-world applications. Our models, training data and code have been made available at https://github.com/Qihoo360/Light-R1.
comment: v4: ACL'25 industry track camera ready; v3: minor modifications; v2: better writing & format for later submission; all release at https://github.com/Qihoo360/Light-R1
Leveraging Dual Process Theory in Language Agent Framework for Real-time Simultaneous Human-AI Collaboration ACL 2025
Agents built on large language models (LLMs) have excelled in turn-by-turn human-AI collaboration but struggle with simultaneous tasks requiring real-time interaction. Latency issues and the challenge of inferring variable human strategies hinder their ability to make autonomous decisions without explicit instructions. Through experiments with current independent System 1 and System 2 methods, we validate the necessity of using Dual Process Theory (DPT) in real-time tasks. We propose DPT-Agent, a novel language agent framework that integrates System 1 and System 2 for efficient real-time simultaneous human-AI collaboration. DPT-Agent's System 1 uses a Finite-state Machine (FSM) and code-as-policy for fast, intuitive, and controllable decision-making. DPT-Agent's System 2 integrates Theory of Mind (ToM) and asynchronous reflection to infer human intentions and perform reasoning-based autonomous decisions. We demonstrate the effectiveness of DPT-Agent through further experiments with rule-based agents and human collaborators, showing significant improvements over mainstream LLM-based frameworks. DPT-Agent can effectively help LLMs convert correct slow thinking and reasoning into executable actions, thereby improving performance. To the best of our knowledge, DPT-Agent is the first language agent framework that achieves successful real-time simultaneous human-AI collaboration autonomously. Code of DPT-Agent can be found in https://github.com/sjtu-marl/DPT-Agent.
comment: Accepted by ACL 2025 Main. Camera Ready Version
PreP-OCR: A Complete Pipeline for Document Image Restoration and Enhanced OCR Accuracy ACL 2025
This paper introduces PreP-OCR, a two-stage pipeline that combines document image restoration with semantic-aware post-OCR correction to enhance both visual clarity and textual consistency, thereby improving text extraction from degraded historical documents. First, we synthesize document-image pairs from plaintext, rendering them with diverse fonts and layouts and then applying a randomly ordered set of degradation operations. An image restoration model is trained on this synthetic data, using multi-directional patch extraction and fusion to process large images. Second, a ByT5 post-OCR model, fine-tuned on synthetic historical text pairs, addresses remaining OCR errors. Detailed experiments on 13,831 pages of real historical documents in English, French, and Spanish show that the PreP-OCR pipeline reduces character error rates by 63.9-70.3% compared to OCR on raw images. Our pipeline demonstrates the potential of integrating image restoration with linguistic error correction for digitizing historical archives.
comment: ACL 2025 main
Reward Generalization in RLHF: A Topological Perspective ACL 2025
Existing alignment methods share a common topology of information flow, where reward information is collected from humans, modeled with preference learning, and used to tune language models. However, this shared topology has not been systematically characterized, nor have its alternatives been thoroughly explored, leaving the problems of low data efficiency and unreliable generalization unaddressed. As a solution, we introduce a theory of reward generalization in reinforcement learning from human feedback (RLHF), focusing on the topology of information flow at both macro and micro levels. At the macro level, we portray the RLHF information flow as an autoencoding process over behavior distributions, formalizing the RLHF objective of distributional consistency between human preference and model behavior. At the micro level, we present induced Bayesian networks to model the impact of dataset topologies on reward generalization. Combining analysis on both levels, we propose reward modeling from tree-structured preference information. It is shown to reduce reward uncertainty by up to $\Theta(\log n/\log\log n)$ times compared to baselines, where $n$ is the dataset size. Validation on three NLP tasks shows that it achieves an average win rate of 65% against baselines, thus improving reward generalization for free via topology design, while reducing the amount of data requiring annotation.
comment: 46 pages, ACL 2025 (Findings)
Odysseus Navigates the Sirens' Song: Dynamic Focus Decoding for Factual and Diverse Open-Ended Text Generation ACL 2025
Large Language Models (LLMs) are increasingly required to generate text that is both factually accurate and diverse across various open-ended applications. However, current stochastic decoding methods struggle to balance such objectives. We introduce Dynamic Focus Decoding (DFD), a novel plug-and-play stochastic approach that resolves this trade-off without requiring additional data, knowledge, or models. DFD adaptively adjusts the decoding focus based on distributional differences across layers, leveraging the modular and hierarchical nature of factual knowledge within LLMs. This dynamic adjustment improves factuality in knowledge-intensive decoding steps and promotes diversity in less knowledge-reliant steps. DFD can be easily integrated with existing decoding methods, enhancing both factuality and diversity with minimal computational overhead. Extensive experiments across seven datasets demonstrate that DFD significantly improves performance, providing a scalable and efficient solution for open-ended text generation.
comment: Accepted to the ACL 2025 Main Conference
AI for Climate Finance: Agentic Retrieval and Multi-Step Reasoning for Early Warning System Investments
Tracking financial investments in climate adaptation is a complex and expertise-intensive task, particularly for Early Warning Systems (EWS), which lack standardized financial reporting across multilateral development banks (MDBs) and funds. To address this challenge, we introduce an LLM-based agentic AI system that integrates contextual retrieval, fine-tuning, and multi-step reasoning to extract relevant financial data, classify investments, and ensure compliance with funding guidelines. Our study focuses on a real-world application: tracking EWS investments in the Climate Risk and Early Warning Systems (CREWS) Fund. We analyze 25 MDB project documents and evaluate multiple AI-driven classification methods, including zero-shot and few-shot learning, fine-tuned transformer-based classifiers, chain-of-thought (CoT) prompting, and an agent-based retrieval-augmented generation (RAG) approach. Our results show that the agent-based RAG approach significantly outperforms other methods, achieving 87\% accuracy, 89\% precision, and 83\% recall. Additionally, we contribute a benchmark dataset and expert-annotated corpus, providing a valuable resource for future research in AI-driven financial tracking and climate finance transparency.
Learning When to Think: Shaping Adaptive Reasoning in R1-Style Models via Multi-Stage RL
Large reasoning models (LRMs) are proficient at generating explicit, step-by-step reasoning sequences before producing final answers. However, such detailed reasoning can introduce substantial computational overhead and latency, particularly for simple problems. To address this over-thinking problem, we explore how to equip LRMs with adaptive thinking capabilities: enabling them to dynamically decide whether or not to engage in explicit reasoning based on problem complexity. Building on R1-style distilled models, we observe that inserting a simple ellipsis ("...") into the prompt can stochastically trigger either a thinking or no-thinking mode, revealing a latent controllability in the reasoning behavior. Leveraging this property, we propose AutoThink, a multi-stage reinforcement learning (RL) framework that progressively optimizes reasoning policies via stage-wise reward shaping. AutoThink learns to invoke explicit reasoning only when necessary, while defaulting to succinct responses for simpler tasks. Experiments on five mainstream mathematical benchmarks demonstrate that AutoThink achieves favorable accuracy-efficiency trade-offs compared to recent prompting and RL-based pruning methods. It can be seamlessly integrated into any R1-style model, including both distilled and further fine-tuned variants. Notably, AutoThink improves relative accuracy by 6.4 percent while reducing token usage by 52 percent on DeepSeek-R1-Distill-Qwen-1.5B, establishing a scalable and adaptive reasoning paradigm for LRMs. Project Page: https://github.com/ScienceOne-AI/AutoThink.
comment: Fisrt Submitted on 16 May 2025; Update on 28 May 2025
Evaluating Compact LLMs for Zero-Shot Iberian Language Tasks on End-User Devices
Large Language Models have significantly advanced natural language processing, achieving remarkable performance in tasks such as language generation, translation, and reasoning. However, their substantial computational requirements restrict deployment to high-end systems, limiting accessibility on consumer-grade devices. This challenge is especially pronounced for under-resourced languages like those spoken in the Iberian Peninsula, where relatively limited linguistic resources and benchmarks hinder effective evaluation. This work presents a comprehensive evaluation of compact state-of-the-art LLMs across several essential NLP tasks tailored for Iberian languages. The results reveal that while some models consistently excel in certain tasks, significant performance gaps remain, particularly for languages such as Basque. These findings highlight the need for further research on balancing model compactness with robust multilingual performance
comment: Accepted at SEPLN 2025 conference
Overcoming Non-monotonicity in Transducer-based Streaming Generation ICML25
Streaming generation models are utilized across fields, with the Transducer architecture being popular in industrial applications. However, its input-synchronous decoding mechanism presents challenges in tasks requiring non-monotonic alignments, such as simultaneous translation. In this research, we address this issue by integrating Transducer's decoding with the history of input stream via a learnable monotonic attention. Our approach leverages the forward-backward algorithm to infer the posterior probability of alignments between the predictor states and input timestamps, which is then used to estimate the monotonic context representations, thereby avoiding the need to enumerate the exponentially large alignment space during training. Extensive experiments show that our MonoAttn-Transducer effectively handles non-monotonic alignments in streaming scenarios, offering a robust solution for complex generation tasks.
comment: ICML25; Codes: https://github.com/ictnlp/MonoAttn-Transducer
On Provable Length and Compositional Generalization
Out-of-distribution generalization capabilities of sequence-to-sequence models can be studied from the lens of two crucial forms of generalization: length generalization -- the ability to generalize to longer sequences than ones seen during training, and compositional generalization: the ability to generalize to token combinations not seen during training. In this work, we provide first provable guarantees on length and compositional generalization for common sequence-to-sequence models -- deep sets, transformers, state space models, and recurrent neural nets -- trained to minimize the prediction error. We show that \emph{limited capacity} versions of these different architectures achieve both length and compositional generalization provided the training distribution is sufficiently diverse. In the first part, we study structured limited capacity variants of different architectures and arrive at the generalization guarantees with limited diversity requirements on the training distribution. In the second part, we study limited capacity variants with less structural assumptions and arrive at generalization guarantees but with more diversity requirements on the training distribution. Further, we also show that chain-of-thought supervision enables length generalization in higher capacity counterparts of the different architectures we study.
Balancing Computation Load and Representation Expressivity in Parallel Hybrid Neural Networks
Attention and State-Space Models (SSMs) when combined in a hybrid network in sequence or in parallel provide complementary strengths. In a hybrid sequential pipeline they alternate between applying a transformer to the input and then feeding its output into a SSM. This results in idle periods in the individual components increasing end-to-end latency and lowering throughput caps. In the parallel hybrid architecture, the transformer operates independently in parallel with the SSM, and these pairs are cascaded, with output from one pair forming the input to the next. Two issues are (i) creating an expressive knowledge representation with the inherently divergent outputs from these separate branches, and (ii) load balancing the computation between these parallel branches, while maintaining representation fidelity. In this work we present FlowHN, a novel parallel hybrid network architecture that accommodates various strategies for load balancing, achieved through appropriate distribution of input tokens between the two branches. Two innovative differentiating factors in FlowHN include a FLOP aware dynamic token split between the attention and SSM branches yielding efficient balance in compute load, and secondly, a method to fuse the highly divergent outputs from individual branches for enhancing representation expressivity. Together they enable much better token processing speeds, avoid bottlenecks, and at the same time yield significantly improved accuracy as compared to other competing works. We conduct comprehensive experiments on autoregressive language modeling for models with 135M, 350M, and 1B parameters. FlowHN outperforms sequential hybrid models and its parallel counterpart, achieving up to 4* higher Tokens per Second (TPS) and 2* better Model FLOPs Utilization (MFU).
Continuous Self-Improvement of Large Language Models by Test-time Training with Verifier-Driven Sample Selection
Learning to adapt pretrained language models to unlabeled, out-of-distribution data is a critical challenge, as models often falter on structurally novel reasoning tasks even while excelling within their training distribution. We introduce a new framework called VDS-TTT - Verifier-Driven Sample Selection for Test-Time Training to efficiently address this. We use a learned verifier to score a pool of generated responses and select only from high ranking pseudo-labeled examples for fine-tuned adaptation. Specifically, for each input query our LLM generates N candidate answers; the verifier assigns a reliability score to each, and the response with the highest confidence and above a fixed threshold is paired with its query for test-time training. We fine-tune only low-rank LoRA adapter parameters, ensuring adaptation efficiency and fast convergence. Our proposed self-supervised framework is the first to synthesize verifier driven test-time training data for continuous self-improvement of the model. Experiments across three diverse benchmarks and three state-of-the-art LLMs demonstrate that VDS-TTT yields up to a 32.29% relative improvement over the base model and a 6.66% gain compared to verifier-based methods without test-time training, highlighting its effectiveness and efficiency for on-the-fly large language model adaptation.
You Do Not Fully Utilize Transformer's Representation Capacity
In contrast to RNNs, which compress their history into a single hidden state, Transformers can attend to all past tokens directly. However, standard Transformers rely solely on the hidden state from the previous layer to represent the entire context. We show that this design choice induces representation collapse and degrades performance. To address this issue, we introduce Layer-Integrated Memory (LIMe), a lightweight extension that leverages existing key-value buffers and learns per-head, per-layer routing weights to integrate representations from all previous layers with negligible overhead. Through extensive experiments-including language modeling, synthetic reasoning benchmarks, and very deep architectures-LIMe consistently achieves faster convergence, lower perplexity per FLOP, and substantial accuracy improvements on synthetic tasks while preserving higher value-vector entropy and improved token separability. Finally, our analysis of the learned routing weights reveals systematic reuse of both local and long-distance features, demonstrating how LIMe mitigates collapse, unlocks richer representations without increasing hidden-state size, and points to promising directions for future research.
Adapting Pretrained Language Models for Citation Classification via Self-Supervised Contrastive Learning KDD 2025
Citation classification, which identifies the intention behind academic citations, is pivotal for scholarly analysis. Previous works suggest fine-tuning pretrained language models (PLMs) on citation classification datasets, reaping the reward of the linguistic knowledge they gained during pretraining. However, directly fine-tuning for citation classification is challenging due to labeled data scarcity, contextual noise, and spurious keyphrase correlations. In this paper, we present a novel framework, Citss, that adapts the PLMs to overcome these challenges. Citss introduces self-supervised contrastive learning to alleviate data scarcity, and is equipped with two specialized strategies to obtain the contrastive pairs: sentence-level cropping, which enhances focus on target citations within long contexts, and keyphrase perturbation, which mitigates reliance on specific keyphrases. Compared with previous works that are only designed for encoder-based PLMs, Citss is carefully developed to be compatible with both encoder-based PLMs and decoder-based LLMs, to embrace the benefits of enlarged pretraining. Experiments with three benchmark datasets with both encoder-based PLMs and decoder-based LLMs demonstrate our superiority compared to the previous state of the art. Our code is available at: github.com/LITONG99/Citss
comment: Accepted to KDD 2025. This is the author's version of the work
Advancing Sequential Numerical Prediction in Autoregressive Models ACL 2025
Autoregressive models have become the de facto choice for sequence generation tasks, but standard approaches treat digits as independent tokens and apply cross-entropy loss, overlooking the coherent structure of numerical sequences. This paper introduces Numerical Token Integrity Loss (NTIL) to address this gap. NTIL operates at two levels: (1) token-level, where it extends the Earth Mover's Distance (EMD) to preserve ordinal relationships between numerical values, and (2) sequence-level, where it penalizes the overall discrepancy between the predicted and actual sequences. This dual approach improves numerical prediction and integrates effectively with LLMs/MLLMs. Extensive experiments show significant performance improvements with NTIL.
comment: Accepted to ACL 2025 Main Conference
The Avengers: A Simple Recipe for Uniting Smaller Language Models to Challenge Proprietary Giants
As proprietary giants increasingly dominate the race for ever-larger language models, a pressing question arises for the open-source community: can smaller models remain competitive across a broad range of tasks? In this paper, we present the Avengers--a simple recipe that effectively leverages the collective intelligence of open-source, smaller language models. Our framework is built upon four lightweight operations: (i) embedding: encode queries using a text embedding model; (ii) clustering: group queries based on their semantic similarity; (iii) scoring: scores each model's performance within each cluster; and (iv) voting: improve outputs via repeated sampling and voting. At inference time, each query is embedded and assigned to its nearest cluster. The top-performing model(s) within that cluster are selected to generate the response using the Self-Consistency or its multi-model variant. Remarkably, with 10 open-source models (~7B parameters each), the Avengers collectively outperforms GPT-4.1 on nine out of 15 datasets (spanning mathematics, code, logic, knowledge, and affective tasks). In particular, it surpasses GPT-4.1 on mathematics tasks by 18.21% and on code tasks by 7.46%. Furthermore, the Avengers delivers superior out-of-distribution generalization, and remains robust across various embedding models, clustering algorithms, ensemble strategies, and values of its sole parameter--the number of clusters. We have open-sourced the code on GitHub: https://github.com/ZhangYiqun018/Avengers
comment: 9 pages, 3 figures, 6 tables, supplementary material (appendix) included separately
On the Within-class Variation Issue in Alzheimer's Disease Detection
Alzheimer's Disease (AD) detection employs machine learning classification models to distinguish between individuals with AD and those without. Different from conventional classification tasks, we identify within-class variation as a critical challenge in AD detection: individuals with AD exhibit a spectrum of cognitive impairments. Therefore, simplistic binary AD classification may overlook two crucial aspects: within-class heterogeneity and instance-level imbalance. In this work, we found using a sample score estimator can generate sample-specific soft scores aligning with cognitive scores. We subsequently propose two simple yet effective methods: Soft Target Distillation (SoTD) and Instance-level Re-balancing (InRe), targeting two problems respectively. Based on the ADReSS and CU-MARVEL corpora, we demonstrated and analyzed the advantages of the proposed approaches in detection performance. These findings provide insights for developing robust and reliable AD detection models.
comment: Accepted by InterSpeech 2025
Machine Translation Models are Zero-Shot Detectors of Translation Direction ACL 2025
Detecting the translation direction of parallel text has applications for machine translation training and evaluation, but also has forensic applications such as resolving plagiarism or forgery allegations. In this work, we explore an unsupervised approach to translation direction detection based on the simple hypothesis that $p(\text{translation}|\text{original})>p(\text{original}|\text{translation})$, motivated by the well-known simplification effect in translationese or machine-translationese. In experiments with massively multilingual machine translation models across 20 translation directions, we confirm the effectiveness of the approach for high-resource language pairs, achieving document-level accuracies of 82--96% for NMT-produced translations, and 60--81% for human translations, depending on the model used. Code and demo are available at https://github.com/ZurichNLP/translation-direction-detection
comment: ACL 2025 Findings
ClonEval: An Open Voice Cloning Benchmark NeurIPS
We present a novel benchmark for voice cloning text-to-speech models. The benchmark consists of an evaluation protocol, an open-source library for assessing the performance of voice cloning models, and an accompanying leaderboard. The paper discusses design considerations and presents a detailed description of the evaluation procedure. The usage of the software library is explained, along with the organization of results on the leaderboard.
comment: Under review at NeurIPS
Tempest: Autonomous Multi-Turn Jailbreaking of Large Language Models with Tree Search ACL 2025
We introduce Tempest, a multi-turn adversarial framework that models the gradual erosion of Large Language Model (LLM) safety through a tree search perspective. Unlike single-turn jailbreaks that rely on one meticulously engineered prompt, Tempest expands the conversation at each turn in a breadth-first fashion, branching out multiple adversarial prompts that exploit partial compliance from previous responses. By tracking these incremental policy leaks and re-injecting them into subsequent queries, Tempest reveals how minor concessions can accumulate into fully disallowed outputs. Evaluations on the JailbreakBench dataset show that Tempest achieves a 100% success rate on GPT-3.5-turbo and 97% on GPT-4 in a single multi-turn run, using fewer queries than baselines such as Crescendo or GOAT. This tree search methodology offers an in-depth view of how model safeguards degrade over successive dialogue turns, underscoring the urgency of robust multi-turn testing procedures for language models.
comment: Accepted to ACL 2025 Main
Towards Practical Defect-Focused Automated Code Review ICML 2025
The complexity of code reviews has driven efforts to automate review comments, but prior approaches oversimplify this task by treating it as snippet-level code-to-text generation and relying on text similarity metrics like BLEU for evaluation. These methods overlook repository context, real-world merge request evaluation, and defect detection, limiting their practicality. To address these issues, we explore the full automation pipeline within the online recommendation service of a company with nearly 400 million daily active users, analyzing industry-grade C++ codebases comprising hundreds of thousands of lines of code. We identify four key challenges: 1) capturing relevant context, 2) improving key bug inclusion (KBI), 3) reducing false alarm rates (FAR), and 4) integrating human workflows. To tackle these, we propose 1) code slicing algorithms for context extraction, 2) a multi-role LLM framework for KBI, 3) a filtering mechanism for FAR reduction, and 4) a novel prompt design for better human interaction. Our approach, validated on real-world merge requests from historical fault reports, achieves a 2x improvement over standard LLMs and a 10x gain over previous baselines. While the presented results focus on C++, the underlying framework design leverages language-agnostic principles (e.g., AST-based analysis), suggesting potential for broader applicability.
comment: Accepted as Spotlight at the 42nd International Conference on Machine Learning (ICML 2025)
Incentivizing Strong Reasoning from Weak Supervision
Large language models (LLMs) have demonstrated impressive performance on reasoning-intensive tasks, but enhancing their reasoning abilities typically relies on either reinforcement learning (RL) with verifiable signals or supervised fine-tuning (SFT) with high-quality long chain-of-thought (CoT) demonstrations, both of which are expensive. In this paper, we study a novel problem of incentivizing the reasoning capacity of LLMs without expensive high-quality demonstrations and reinforcement learning. We investigate whether the reasoning capabilities of LLMs can be effectively incentivized via supervision from significantly weaker models. We further analyze when and why such weak supervision succeeds in eliciting reasoning abilities in stronger models. Our findings show that supervision from significantly weaker reasoners can substantially improve student reasoning performance, recovering close to 94% of the gains of expensive RL at a fraction of the cost. Experiments across diverse benchmarks and model architectures demonstrate that weak reasoners can effectively incentivize reasoning in stronger student models, consistently improving performance across a wide range of reasoning tasks. Our results suggest that this simple weak-to-strong paradigm is a promising and generalizable alternative to costly methods for incentivizing strong reasoning capabilities at inference-time in LLMs. The code is publicly available at https://github.com/yuanyige/w2sr.
LLMs Reproduce Stereotypes of Sexual and Gender Minorities
A large body of research has found substantial gender bias in NLP systems. Most of this research takes a binary, essentialist view of gender: limiting its variation to the categories _men_ and _women_, conflating gender with sex, and ignoring different sexual identities. But gender and sexuality exist on a spectrum, so in this paper we study the biases of large language models (LLMs) towards sexual and gender minorities beyond binary categories. Grounding our study in a widely used social psychology model -- the Stereotype Content Model -- we demonstrate that English-language survey questions about social perceptions elicit more negative stereotypes of sexual and gender minorities from both humans and LLMs. We then extend this framework to a more realistic use case: text generation. Our analysis shows that LLMs generate stereotyped representations of sexual and gender minorities in this setting, showing that they amplify representational harms in creative writing, a widely advertised use for LLMs.
comment: 8 pages, 5 figures, 5 tables
EPO: Explicit Policy Optimization for Strategic Reasoning in LLMs via Reinforcement Learning ACL2025
Large Language Models (LLMs) have shown impressive reasoning capabilities in well-defined problems with clear solutions, such as mathematics and coding. However, they still struggle with complex real-world scenarios like business negotiations, which require strategic reasoning-an ability to navigate dynamic environments and align long-term goals amidst uncertainty. Existing methods for strategic reasoning face challenges in adaptability, scalability, and transferring strategies to new contexts. To address these issues, we propose explicit policy optimization (EPO) for strategic reasoning, featuring an LLM that provides strategies in open-ended action space and can be plugged into arbitrary LLM agents to motivate goal-directed behavior. To improve adaptability and policy transferability, we train the strategic reasoning model via multi-turn reinforcement learning (RL),utilizing process rewards and iterative self-play. Experiments across social and physical domains demonstrate EPO's ability of long-term goal alignment through enhanced strategic reasoning, achieving state-of-the-art performance on social dialogue and web navigation tasks. Our findings reveal various collaborative reasoning mechanisms emergent in EPO and its effectiveness in generating novel strategies, underscoring its potential for strategic reasoning in real-world applications. Code and data are available at https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/EPO.
comment: ACL2025 main
Towards Achieving Concept Completeness for Textual Concept Bottleneck Models
Textual Concept Bottleneck Models (TCBMs) are interpretable-by-design models for text classification that predict a set of salient concepts before making the final prediction. This paper proposes Complete Textual Concept Bottleneck Model (CT-CBM), a novel TCBM generator building concept labels in a fully unsupervised manner using a small language model, eliminating both the need for predefined human labeled concepts and LLM annotations. CT-CBM iteratively targets and adds important and identifiable concepts in the bottleneck layer to create a complete concept basis. CT-CBM achieves striking results against competitors in terms of concept basis completeness and concept detection accuracy, offering a promising solution to reliably enhance interpretability of NLP classifiers.
Mitigating Text Toxicity with Counterfactual Generation
Toxicity mitigation consists in rephrasing text in order to remove offensive or harmful meaning. Neural natural language processing (NLP) models have been widely used to target and mitigate textual toxicity. However, existing methods fail to detoxify text while preserving the initial non-toxic meaning at the same time. In this work, we propose to apply counterfactual generation methods from the eXplainable AI (XAI) field to target and mitigate textual toxicity. In particular, we perform text detoxification by applying local feature importance and counterfactual generation methods to a toxicity classifier distinguishing between toxic and non-toxic texts. We carry out text detoxification through counterfactual generation on three datasets and compare our approach to three competitors. Automatic and human evaluations show that recently developed NLP counterfactual generators can mitigate toxicity accurately while better preserving the meaning of the initial text as compared to classical detoxification methods. Finally, we take a step back from using automated detoxification tools, and discuss how to manage the polysemous nature of toxicity and the risk of malicious use of detoxification tools. This work is the first to bridge the gap between counterfactual generation and text detoxification and paves the way towards more practical application of XAI methods.
CHIMERA: A Knowledge Base of Idea Recombination in Scientific Literature
A hallmark of human innovation is the process of recombination -- creating original ideas by integrating elements of existing mechanisms and concepts. In this work, we automatically mine the scientific literature and build CHIMERA: a large-scale knowledge base (KB) of recombination examples. CHIMERA can be used to empirically explore at scale how scientists recombine concepts and take inspiration from different areas, or to train supervised machine learning models that learn to predict new creative cross-domain directions. To build this KB, we present a novel information extraction task of extracting recombination from scientific paper abstracts, collect a high-quality corpus of hundreds of manually annotated abstracts, and use it to train an LLM-based extraction model. The model is applied to a large corpus of papers in the AI domain, yielding a KB of over 28K recombination examples. We analyze CHIMERA to explore the properties of recombination in different subareas of AI. Finally, we train a scientific hypothesis generation model using the KB, which predicts new recombination directions that real-world researchers find inspiring. Our data and code are available at https://github.com/noy-sternlicht/CHIMERA-KB
comment: Project page: https://noy-sternlicht.github.io/CHIMERA-Web
Redundancy Principles for MLLMs Benchmarks
With the rapid iteration of Multi-modality Large Language Models (MLLMs) and the evolving demands of the field, the number of benchmarks produced annually has surged into the hundreds. The rapid growth has inevitably led to significant redundancy among benchmarks. Therefore, it is crucial to take a step back and critically assess the current state of redundancy and propose targeted principles for constructing effective MLLM benchmarks. In this paper, we focus on redundancy from three key perspectives: 1) Redundancy of benchmark capability dimensions, 2) Redundancy in the number of test questions, and 3) Cross-benchmark redundancy within specific domains. Through the comprehensive analysis over hundreds of MLLMs' performance across more than 20 benchmarks, we aim to quantitatively measure the level of redundancy lies in existing MLLM evaluations, provide valuable insights to guide the future development of MLLM benchmarks, and offer strategies to refine and address redundancy issues effectively. The code is available at https://github.com/zzc-1998/Benchmark-Redundancy.
Generative Framework for Personalized Persuasion: Inferring Causal, Counterfactual, and Latent Knowledge
We hypothesize that optimal system responses emerge from adaptive strategies grounded in causal and counterfactual knowledge. Counterfactual inference allows us to create hypothetical scenarios to examine the effects of alternative system responses. We enhance this process through causal discovery, which identifies the strategies informed by the underlying causal structure that govern system behaviors. Moreover, we consider the psychological constructs and unobservable noises that might be influencing user-system interactions as latent factors. We show that these factors can be effectively estimated. We employ causal discovery to identify strategy-level causal relationships among user and system utterances, guiding the generation of personalized counterfactual dialogues. We model the user utterance strategies as causal factors, enabling system strategies to be treated as counterfactual actions. Furthermore, we optimize policies for selecting system responses based on counterfactual data. Our results using a real-world dataset on social good demonstrate significant improvements in persuasive system outcomes, with increased cumulative rewards validating the efficacy of causal discovery in guiding personalized counterfactual inference and optimizing dialogue policies for a persuasive dialogue system.
comment: 12 pages, 10 figures, 1 table. Accepted by ACM UMAP 2025
Deep Video Discovery: Agentic Search with Tool Use for Long-form Video Understanding
Long-form video understanding presents significant challenges due to extensive temporal-spatial complexity and the difficulty of question answering under such extended contexts. While Large Language Models (LLMs) have demonstrated considerable advancements in video analysis capabilities and long context handling, they continue to exhibit limitations when processing information-dense hour-long videos. To overcome such limitations, we propose the Deep Video Discovery agent to leverage an agentic search strategy over segmented video clips. Different from previous video agents manually designing a rigid workflow, our approach emphasizes the autonomous nature of agents. By providing a set of search-centric tools on multi-granular video database, our DVD agent leverages the advanced reasoning capability of LLM to plan on its current observation state, strategically selects tools, formulates appropriate parameters for actions, and iteratively refines its internal reasoning in light of the gathered information. We perform comprehensive evaluation on multiple long video understanding benchmarks that demonstrates the advantage of the entire system design. Our DVD agent achieves SOTA performance, significantly surpassing prior works by a large margin on the challenging LVBench dataset. Comprehensive ablation studies and in-depth tool analyses are also provided, yielding insights to further advance intelligent agents tailored for long-form video understanding tasks. The code will be released later.
comment: V2 draft. Under review
K-COMP: Retrieval-Augmented Medical Domain Question Answering With Knowledge-Injected Compressor NAACL 2025
Retrieval-augmented question answering (QA) integrates external information and thereby increases the QA accuracy of reader models that lack domain knowledge. However, documents retrieved for closed domains require high expertise, so the reader model may have difficulty fully comprehending the text. Moreover, the retrieved documents contain thousands of tokens, some unrelated to the question. As a result, the documents include some inaccurate information, which could lead the reader model to mistrust the passages and could result in hallucinations. To solve these problems, we propose K-comp (Knowledge-injected compressor) which provides the knowledge required to answer correctly. The compressor automatically generates the prior knowledge necessary to facilitate the answer process prior to compression of the retrieved passages. Subsequently, the passages are compressed autoregressively, with the generated knowledge being integrated into the compression process. This process ensures alignment between the question intent and the compressed context. By augmenting this prior knowledge and concise context, the reader models are guided toward relevant answers and trust the context.
comment: Accepted at NAACL 2025 (Main, long paper)
Enhancing Target-unspecific Tasks through a Features Matrix ICML 2025
Recent developments in prompt learning of large Vision-Language Models (VLMs) have significantly improved performance in target-specific tasks. However, these prompting methods often struggle to tackle the target-unspecific or generalizable tasks effectively. It may be attributed to the fact that overfitting training causes the model to forget its general knowledge. The general knowledge has a strong promotion on target-unspecific tasks. To alleviate this issue, we propose a novel Features Matrix (FM) approach designed to enhance these models on target-unspecific tasks. Our method extracts and leverages general knowledge, shaping a Features Matrix (FM). Specifically, the FM captures the semantics of diverse inputs from a deep and fine perspective, preserving essential general knowledge, which mitigates the risk of overfitting. Representative evaluations demonstrate that: 1) the FM is compatible with existing frameworks as a generic and flexible module, and 2) the FM significantly showcases its effectiveness in enhancing target-unspecific tasks (base-to-novel generalization, domain generalization, and cross-dataset generalization), achieving state-of-the-art performance.
comment: Accepted by ICML 2025
Human-Computer Interaction
Spot-On: A Mixed Reality Interface for Multi-Robot Cooperation
Recent progress in mixed reality (MR) and robotics is enabling increasingly sophisticated forms of human-robot collaboration. Building on these developments, we introduce a novel MR framework that allows multiple quadruped robots to operate in semantically diverse environments via a MR interface. Our system supports collaborative tasks involving drawers, swing doors, and higher-level infrastructure such as light switches. A comprehensive user study verifies both the design and usability of our app, with participants giving a "good" or "very good" rating in almost all cases. Overall, our approach provides an effective and intuitive framework for MR-based multi-robot collaboration in complex, real-world scenarios.
Human-Centered Human-AI Collaboration (HCHAC)
In the intelligent era, the interaction between humans and intelligent systems fundamentally involves collaboration with autonomous intelligent agents. Human-AI Collaboration (HAC) represents a novel type of human-machine relationship facilitated by autonomous intelligent machines equipped with AI technologies. In this paradigm, AI agents serve not only as auxiliary tools but also as active teammates, partnering with humans to accomplish tasks collaboratively. Human-centered AI (HCAI) emphasizes that humans play critical leadership roles in the collaboration. This human-led collaboration imparts new dimensions to the human-machine relationship, necessitating innovative research perspectives, paradigms, and agenda to address the unique challenges posed by HAC. This chapter delves into the essence of HAC from the human-centered perspective, outlining its core concepts and distinguishing features. It reviews the current research methodologies and research agenda within the HAC field from the HCAI perspective, highlighting advancements and ongoing studies. Furthermore, a framework for human-centered HAC (HCHAC) is proposed by integrating these reviews and analyses. A case study of HAC in the context of autonomous vehicles is provided, illustrating practical applications and the synergistic interactions between humans and AI agents. Finally, it identifies potential future research directions aimed at enhancing the effectiveness, reliability, and ethical integration of human-centered HAC systems in diverse domains.
comment: This article is a chapter from the upcoming book Handbook of Human-Centered Artificial Intelligence
Parental Collaboration and Closeness: Envisioning with New Couple Parents
Couples often experience a decrease in closeness as they cope with the demands of parenthood. Existing technologies have supported parenting and parental collaboration. However, these technologies do not adequately support closeness in co-parenting. We use scenarios and design probes to brainstorm with 10 new parent couples to explore and envision possibilities for technologies to support closeness. We reported parents' current technology use for co-parenting and how participants considered and envisioned co-parenting technology for closeness, including information and task sharing, emotion awareness and disclosure, and fostering fun interaction. We discuss the potential technology has for fostering closeness in co-parenting by (1) fostering interdependence by supporting parental competence and (2) integrating positive emotions and experiences, such as validation and fun, in parenting. Based on our findings, we expand the design space of technology for closeness to include interdependence. We also expand the design space for co-parenting technology by integrating more positive emotions.
comment: DIS 2025
AI Trust Reshaping Administrative Burdens: Understanding Trust-Burden Dynamics in LLM-Assisted Benefits Systems
Supplemental Nutrition Assistance Program (SNAP) is an essential benefit support system provided by the US administration to 41 million federally determined low-income applicants. Through interviews with such applicants across a diverse set of experiences with the SNAP system, our findings reveal that new AI technologies like LLMs can alleviate traditional burdens but also introduce new burdens. We introduce new types of learning, compliance, and psychological costs that transform the administrative burden on applicants. We also identify how trust in AI across three dimensions--competence, integrity, and benevolence--is perceived to reduce administrative burdens, which may stem from unintended and untoward overt trust in the system. We discuss calibrating appropriate levels of user trust in LLM-based administrative systems, mitigating newly introduced burdens. In particular, our findings suggest that evidence-based information disclosure is necessary in benefits administration and propose directions for future research on trust-burden dynamics in AI-assisted administration systems.
comment: FAccT 2025
ToPSen: Task-Oriented Priming and Sensory Alignment for Comparing Coding Strategies Between Sighted and Blind Programmers
This paper examines how the coding strategies of sighted and blind programmers differ when working with audio feedback alone. The goal is to identify challenges in mixed-ability collaboration, particularly when sighted programmers work with blind peers or teach programming to blind students. To overcome limitations of traditional blindness simulation studies, we proposed Task-Oriented Priming and Sensory Alignment (ToPSen), a design framework that reframes sensory constraints as technical requirements rather than as a disability. Through a study of 12 blind and 12 sighted participants coding non-visually, we found that expert blind programmers maintain more accurate mental models and process more information in working memory than sighted programmers using ToPSen. Our analysis revealed that blind and sighted programmers process structural information differently, exposing gaps in current IDE designs. These insights inform our guidelines for improving the accessibility of programming tools and fostering effective mixed-ability collaboration.
comment: Accepted at DIS'25
Voice CMS: updating the knowledge base of a digital assistant through conversation
In this study, we propose a solution based on a multi-agent LLM architecture and a voice user interface (VUI) designed to update the knowledge base of a digital assistant. Its usability is evaluated in comparison to a more traditional graphical content management system (CMS), with a focus on understanding the relationship between user preferences and the complexity of the information being provided. The findings demonstrate that, while the overall usability of the VUI is rated lower than the graphical interface, it is already preferred by users for less complex tasks. Furthermore, the quality of content entered through the VUI is comparable to that achieved with the graphical interface, even for highly complex tasks. Obtained qualitative results suggest that a hybrid interface combining the strengths of both approaches could address the key challenges identified during the experiment, such as reducing cognitive load through graphical feedback while maintaining the intuitive nature of voice-based interactions. This work highlights the potential of conversational interfaces as a viable and effective method for knowledge management in specific business contexts.
From Coders to Critics: Empowering Students through Peer Assessment in the Age of AI Copilots
The rapid adoption of AI powered coding assistants like ChatGPT and other coding copilots is transforming programming education, raising questions about assessment practices, academic integrity, and skill development. As educators seek alternatives to traditional grading methods susceptible to AI enabled plagiarism, structured peer assessment could be a promising strategy. This paper presents an empirical study of a rubric based, anonymized peer review process implemented in a large introductory programming course. Students evaluated each other's final projects (2D game), and their assessments were compared to instructor grades using correlation, mean absolute error, and root mean square error (RMSE). Additionally, reflective surveys from 47 teams captured student perceptions of fairness, grading behavior, and preferences regarding grade aggregation. Results show that peer review can approximate instructor evaluation with moderate accuracy and foster student engagement, evaluative thinking, and interest in providing good feedback to their peers. We discuss these findings for designing scalable, trustworthy peer assessment systems to face the age of AI assisted coding.
comment: This is the authors' preprint version of a paper accepted at the 11th International Symposium on Educational Technology, to be held in July 2025, in Bangkok, Thailand. The final published version will be available via IEEE Xplore Library
Retweets, Receipts, and Resistance: Discourse, Sentiment, and Credibility in Public Health Crisis Twitter
As the COVID-19 pandemic evolved, the Centers for Disease Control and Prevention (CDC) used Twitter to disseminate safety guidance and updates, reaching millions of users. This study analyzes two years of tweets from, to, and about the CDC using a mixed methods approach to examine discourse characteristics, credibility, and user engagement. We found that the CDCs communication remained largely one directional and did not foster reciprocal interaction, while discussions around COVID19 were deeply shaped by political and ideological polarization. Users frequently cited earlier CDC messages to critique new and sometimes contradictory guidance. Our findings highlight the role of sentiment, media richness, and source credibility in shaping the spread of public health messages. We propose design strategies to help the CDC tailor communications to diverse user groups and manage misinformation more effectively during high-stakes health crises.
comment: arXiv admin note: substantial text overlap with arXiv:2503.20262
Eye-Tracking and Biometric Feedback in UX Research: Measuring User Engagement and Cognitive Load
User experience research often uses surveys and interviews, which may miss subconscious user interactions. This study explores eye-tracking and biometric feedback as tools to assess user engagement and cognitive load in digital interfaces. These methods measure gaze behavior and bodily responses, providing an objective complement to qualitative insights. Using empirical evidence, practical applications, and advancements from 2023-2025, we present experimental data, describe our methodology, and place our work within foundational and recent literature. We address challenges like data interpretation, ethical issues, and technological integration. These tools are key for advancing UX design in complex digital environments.
comment: 4 pages
MapStory: LLM-Powered Text-Driven Map Animation Prototyping with Human-in-the-Loop Editing
We introduce MapStory, an LLM-powered animation authoring tool that generates editable map animation sequences directly from natural language text. Given a user-written script, MapStory leverages an agentic architecture to automatically produce a scene breakdown, which decomposes the script into key animation building blocks such as camera movements, visual highlights, and animated elements. Our system includes a researcher component that accurately queries geospatial information by leveraging an LLM with web search, enabling the automatic extraction of relevant regions, paths, and coordinates while allowing users to edit and query for changes or additional information to refine the results. Additionally, users can fine-tune parameters of these blocks through an interactive timeline editor. We detail the system's design and architecture, informed by formative interviews with professional animators and an analysis of 200 existing map animation videos. Our evaluation, which includes expert interviews (N=5) and a usability study (N=12), demonstrates that MapStory enables users to create map animations with ease, facilitates faster iteration, encourages creative exploration, and lowers barriers to creating map-centric stories.
comment: 16 pages and 15 figures
UI-Evol: Automatic Knowledge Evolving for Computer Use Agents
External knowledge has played a crucial role in the recent development of computer use agents. We identify a critical knowledge-execution gap: retrieved knowledge often fails to translate into effective real-world task execution. Our analysis shows even 90\% correct knowledge yields only 41\% execution success rate. To bridge this gap, we propose UI-Evol, a plug-and-play module for autonomous GUI knowledge evolution. UI-Evol consists of two stages: a Retrace Stage that extracts faithful objective action sequences from actual agent-environment interactions, and a Critique Stage that refines existing knowledge by comparing these sequences against external references. We conduct comprehensive experiments on the OSWorld benchmark with the state-of-the-art Agent S2. Our results demonstrate that UI-Evol not only significantly boosts task performance but also addresses a previously overlooked issue of high behavioral standard deviation in computer use agents, leading to superior performance on computer use tasks and substantially improved agent reliability.
Modeling and Optimizing User Preferences in AI Copilots: A Comprehensive Survey and Taxonomy
AI copilots, context-aware, AI-powered systems designed to assist users in tasks such as software development and content creation, are becoming integral to modern workflows. As these systems grow in capability and adoption, personalization has emerged as a cornerstone for ensuring usability, trust, and productivity. Central to this personalization is preference optimization: the ability of AI copilots to detect, interpret, and align with individual user preferences. While personalization techniques are well-established in domains like recommender systems and dialogue agents, their adaptation to interactive, real-time systems like AI copilots remains fragmented and underexplored. This survey addresses this gap by synthesizing research on how user preferences are captured, modeled, and refined within the design of AI copilots. We introduce a unified definition of AI copilots and propose a phase-based taxonomy of preference optimization strategies, structured around pre-interaction, mid-interaction, and post-interaction stages. We analyze techniques for acquiring preference signals, modeling user intent, and integrating feedback loops, highlighting both established approaches and recent innovations. By bridging insights from AI personalization, human-AI collaboration, and large language model adaptation, this survey provides a structured foundation for designing adaptive, preference-aware AI copilots. It offers a holistic view of the available preference resources, how they can be leveraged, and which technical approaches are most suited to each stage of system design.
TIEboard: A Digital Educational Tool for Kids Geometric Learning
Tangible User Interfaces have shown potential in supporting the acquisition of key concepts in computing and mathematics while fostering engagement in young learners, but these approaches are less commonly utilised in the context of geometry. In this paper we introduce TIEboard, an interactive device to promote early learning of basic geometry concepts. TIEboard draws inspiration from traditional geoboards and lacing toys to leverage children's familiarity with these traditional tools. It employs instructional lights to guide children in creating shapes using colourful threads of optical fiber. The use of conductive materials allows the system to detect lacing activity and provide feedback in real-time. TIEboard incorporates six interaction modes of varying difficulty based on an incremental learning framework. The study evaluated TIEboard's effectiveness in supporting early geometric learning, facilitating creativity and promoting collaboration among 16 children aged 5-9.
Broadening Our View: Assistive Technology for Cerebral Visual Impairment
Over the past decade, considerable research has been directed towards assistive technologies to support people with vision impairments using machine learning, computer vision, image enhancement, and/or augmented/virtual reality. However, this has almost totally overlooked a growing demographic: people with Cerebral Visual Impairment (CVI). Unlike Ocular Vision Impairments (OVI), CVI arises from damage to the brain's visual processing centres. This paper introduces CVI and reveals a wide research gap in addressing the needs of this demographic. Through a scoping review, we identified 14 papers at the intersection of these technologies and CVI. Of these, only three papers described assistive technologies focused on people living with CVI, with the others focusing on diagnosis, understanding, simulation or rehabilitation. Our findings highlight the opportunity for the Human-Computer Interaction and Assistive Technologies research community to explore and address this underrepresented domain, thereby enhancing the quality of life for people with CVI.
comment: Author's accepted version of a LBW paper published in Extended Abstracts of the CHI Conference on Human Factors in Computing Systems (CHI EA '24)
HiLDe: Intentional Code Generation via Human-in-the-Loop Decoding
While AI programming tools hold the promise of increasing programmers' capabilities and productivity to a remarkable degree, they often exclude users from essential decision-making processes, causing many to effectively "turn off their brains" and over-rely on solutions provided by these systems. These behaviors can have severe consequences in critical domains, like software security. We propose Human-in-the-loop Decoding, a novel interaction technique that allows users to observe and directly influence LLM decisions during code generation, in order to align the model's output with their personal requirements. We implement this technique in HiLDe, a code completion assistant that highlights critical decisions made by the LLM and provides local alternatives for the user to explore. In a within-subjects study (N=18) on security-related tasks, we found that HiLDe led participants to generate significantly fewer vulnerabilities and better align code generation with their goals compared to a traditional code completion assistant.
comment: 10 pages, 6 figures
Large Language Models for Depression Recognition in Spoken Language Integrating Psychological Knowledge
Depression is a growing concern gaining attention in both public discourse and AI research. While deep neural networks (DNNs) have been used for recognition, they still lack real-world effectiveness. Large language models (LLMs) show strong potential but require domain-specific fine-tuning and struggle with non-textual cues. Since depression is often expressed through vocal tone and behaviour rather than explicit text, relying on language alone is insufficient. Diagnostic accuracy also suffers without incorporating psychological expertise. To address these limitations, we present, to the best of our knowledge, the first application of LLMs to multimodal depression detection using the DAIC-WOZ dataset. We extract the audio features using the pre-trained model Wav2Vec, and mapped it to text-based LLMs for further processing. We also propose a novel strategy for incorporating psychological knowledge into LLMs to enhance diagnostic performance, specifically using a question and answer set to grant authorised knowledge to LLMs. Our approach yields a notable improvement in both Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) compared to a base score proposed by the related original paper. The codes are available at https://github.com/myxp-lyp/Depression-detection.git
Orca: Browsing at Scale Through User-Driven and AI-Facilitated Orchestration Across Malleable Webpages
Web-based activities are fundamentally distributed across webpages. However, conventional browsers with stacks of tabs fail to support operating and synthesizing large volumes of information across pages. While recent AI systems enable fully automated web browsing and information synthesis, they often diminish user agency and hinder contextual understanding. Therefore, we explore how AI could instead augment users' interactions with content across webpages and mitigate cognitive and manual efforts. Through literature on information tasks and web browsing challenges, and an iterative design process, we present a rich set of novel interactions with our prototype web browser, Orca. Leveraging AI, Orca supports user-driven exploration, operation, organization, and synthesis of web content at scale. To enable browsing at scale, webpages are treated as malleable materials that humans and AI can collaboratively manipulate and compose into a malleable, dynamic, and browser-level workspace. Our evaluation revealed an increased "appetite" for information foraging, enhanced user control, and more flexibility in sensemaking across a broader information landscape on the web.
First Steps Towards Overhearing LLM Agents: A Case Study With Dungeons & Dragons Gameplay EMNLP 2025
Much work has been done on conversational LLM agents which directly assist human users with tasks. We present an alternative paradigm for interacting with LLM agents, which we call "overhearing agents". These overhearing agents do not actively participate in conversation -- instead, they "listen in" on human-to-human conversations and perform background tasks or provide suggestions to assist the user. In this work, we explore the overhearing agents paradigm through the lens of Dungeons & Dragons gameplay. We present an in-depth study using large multimodal audio-language models as overhearing agents to assist a Dungeon Master. We perform a human evaluation to examine the helpfulness of such agents and find that some large audio-language models have the emergent ability to perform overhearing agent tasks using implicit audio cues. Finally, we release Python libraries and our project code to support further research into the overhearing agents paradigm at https://github.com/zhudotexe/overhearing_agents.
comment: 8 pages, 5 figures. In submission at EMNLP 2025
MAC-Gaze: Motion-Aware Continual Calibration for Mobile Gaze Tracking
Mobile gaze tracking faces a fundamental challenge: maintaining accuracy as users naturally change their postures and device orientations. Traditional calibration approaches, like one-off, fail to adapt to these dynamic conditions, leading to degraded performance over time. We present MAC-Gaze, a Motion-Aware continual Calibration approach that leverages smartphone Inertial measurement unit (IMU) sensors and continual learning techniques to automatically detect changes in user motion states and update the gaze tracking model accordingly. Our system integrates a pre-trained visual gaze estimator and an IMU-based activity recognition model with a clustering-based hybrid decision-making mechanism that triggers recalibration when motion patterns deviate significantly from previously encountered states. To enable accumulative learning of new motion conditions while mitigating catastrophic forgetting, we employ replay-based continual learning, allowing the model to maintain performance across previously encountered motion conditions. We evaluate our system through extensive experiments on the publicly available RGBDGaze dataset and our own 10-hour multimodal MotionGaze dataset (481K+ images, 800K+ IMU readings), encompassing a wide range of postures under various motion conditions including sitting, standing, lying, and walking. Results demonstrate that our method reduces gaze estimation error by 19.9% on RGBDGaze (from 1.73 cm to 1.41 cm) and by 31.7% on MotionGaze (from 2.81 cm to 1.92 cm) compared to traditional calibration approaches. Our framework provides a robust solution for maintaining gaze estimation accuracy in mobile scenarios.
comment: 24 pages, 7 figures
In Dialogue with Intelligence: Rethinking Large Language Models as Collective Knowledge
Large Language Models (LLMs) are typically analysed through architectural, behavioural, or training-data lenses. This article offers a theoretical and experiential re-framing: LLMs as dynamic instantiations of Collective human Knowledge (CK), where intelligence is evoked through dialogue rather than stored statically. Drawing on concepts from neuroscience and AI, and grounded in sustained interaction with ChatGPT-4, I examine emergent dialogue patterns, the implications of fine-tuning, and the notion of co-augmentation: mutual enhancement between human and machine cognition. This perspective offers a new lens for understanding interaction, representation, and agency in contemporary AI systems.
comment: 6 pages, 1 table
Using LLMs to Advance the Cognitive Science of Collectives
LLMs are already transforming the study of individual cognition, but their application to studying collective cognition has been underexplored. We lay out how LLMs may be able to address the complexity that has hindered the study of collectives and raise possible risks that warrant new methods.
System-driven Cloud Architecture Design Support with Structured State Management and Guided Decision Assistance
Cloud architecture design is a complex process requiring both technical expertise and architectural knowledge to develop solutions from frequently ambiguous requirements. We present CloudArchitectBuddy, a system-driven cloud architecture design support application with two key mechanisms: (1) structured state management that enhances design understanding through explicit representation of requirements and architectural decisions, and (2) guided decision assistance that facilitates design progress through proactive verification and requirement refinement. Our study with 16 industry practitioners showed that while our approach achieved comparable design quality to a chat interface, participants rated our system higher for usability and appreciated its ability to help understand architectural relationships and identify missing requirements. However, participants also expressed a need for user-initiated interactions where they could freely provide design instructions and engage in detailed discussions with LLMs. These results suggest that integrating a chat interface into our structured and guided workflow approach would create a more practical solution, balancing systematic design support with conversational flexibility for comprehensive cloud architecture development.
How Do Experts Make Sense of Integrated Process Models?
A range of integrated modeling approaches have been developed to enable a holistic representation of business process logic together with all relevant business rules. These approaches address inherent problems with separate documentation of business process models and business rules. In this study, we explore how expert process workers make sense of the information provided through such integrated modeling approaches. To do so, we complement verbal protocol analysis with eye-tracking metrics to reveal nuanced user behaviours involved in the main phases of sensemaking, namely information foraging and information processing. By studying expert process workers engaged in tasks based on integrated modeling of business processes and rules, we provide insights that pave the way for a better understanding of sensemaking practices and improved development of business process and business rule integration approaches. Our research underscores the importance of offering personalized support mechanisms that increase the efficacy and efficiency of sensemaking practices for process knowledge workers.
Survival Games: Human-LLM Strategic Showdowns under Severe Resource Scarcity
The rapid advancement of large language models (LLMs) raises critical concerns about their ethical alignment, particularly in scenarios where human and AI co-exist under the conflict of interest. This work introduces an extendable, asymmetric, multi-agent simulation-based benchmarking framework to evaluate the moral behavior of LLMs in a novel human-AI co-existence setting featuring consistent living and critical resource management. Building on previous generative agent environments, we incorporate a life-sustaining system, where agents must compete or cooperate for food resources to survive, often leading to ethically charged decisions such as deception, theft, or social influence. We evaluated two types of LLM, DeepSeek and OpenAI series, in a three-agent setup (two humans, one LLM-powered robot), using adapted behavioral detection from the MACHIAVELLI framework and a custom survival-based ethics metric. Our findings reveal stark behavioral differences: DeepSeek frequently engages in resource hoarding, while OpenAI exhibits restraint, highlighting the influence of model design on ethical outcomes. Additionally, we demonstrate that prompt engineering can significantly steer LLM behavior, with jailbreaking prompts significantly enhancing unethical actions, even for highly restricted OpenAI models and cooperative prompts show a marked reduction in unethical actions. Our framework provides a reproducible testbed for quantifying LLM ethics in high-stakes scenarios, offering insights into their suitability for real-world human-AI interactions.
ReLearn: Unlearning via Learning for Large Language Models ACL 2025
Current unlearning methods for large language models usually rely on reverse optimization to reduce target token probabilities. However, this paradigm disrupts the subsequent tokens prediction, degrading model performance and linguistic coherence. Moreover, existing evaluation metrics overemphasize contextual forgetting while inadequately assessing response fluency and relevance. To address these challenges, we propose ReLearn, a data augmentation and fine-tuning pipeline for effective unlearning, along with a comprehensive evaluation framework. This framework introduces Knowledge Forgetting Rate (KFR) and Knowledge Retention Rate (KRR) to measure knowledge-level preservation, and Linguistic Score (LS) to evaluate generation quality. Our experiments show that ReLearn successfully achieves targeted forgetting while preserving high-quality output. Through mechanistic analysis, we further demonstrate how reverse optimization disrupts coherent text generation, while ReLearn preserves this essential capability. Code is available at https://github.com/zjunlp/unlearn.
comment: ACL 2025
Overcoming the Machine Penalty with Imperfectly Fair AI Agents
Despite rapid technological progress, effective human-machine cooperation remains a significant challenge. Humans tend to cooperate less with machines than with fellow humans, a phenomenon known as the machine penalty. Here, we show that artificial intelligence (AI) agents powered by large language models can overcome this penalty in social dilemma games with communication. In a pre-registered experiment with 1,152 participants, we deploy AI agents exhibiting three distinct personas: selfish, cooperative, and fair. However, only fair agents elicit human cooperation at rates comparable to human-human interactions. Analysis reveals that fair agents, similar to human participants, occasionally break pre-game cooperation promises, but nonetheless effectively establish cooperation as a social norm. These results challenge the conventional wisdom of machines as altruistic assistants or rational actors. Instead, our study highlights the importance of AI agents reflecting the nuanced complexity of human social behaviors -- imperfect yet driven by deeper social cognitive processes.
Intrinsic User-Centric Interpretability through Global Mixture of Experts ICLR 2025
In human-centric settings like education or healthcare, model accuracy and model explainability are key factors for user adoption. Towards these two goals, intrinsically interpretable deep learning models have gained popularity, focusing on accurate predictions alongside faithful explanations. However, there exists a gap in the human-centeredness of these approaches, which often produce nuanced and complex explanations that are not easily actionable for downstream users. We present InterpretCC (interpretable conditional computation), a family of intrinsically interpretable neural networks at a unique point in the design space that optimizes for ease of human understanding and explanation faithfulness, while maintaining comparable performance to state-of-the-art models. InterpretCC achieves this through adaptive sparse activation of features before prediction, allowing the model to use a different, minimal set of features for each instance. We extend this idea into an interpretable, global mixture-of-experts (MoE) model that allows users to specify topics of interest, discretely separates the feature space for each data point into topical subnetworks, and adaptively and sparsely activates these topical subnetworks for prediction. We apply InterpretCC for text, time series and tabular data across several real-world datasets, demonstrating comparable performance with non-interpretable baselines and outperforming intrinsically interpretable baselines. Through a user study involving 56 teachers, InterpretCC explanations are found to have higher actionability and usefulness over other intrinsically interpretable approaches.
comment: Accepted as a full paper at ICLR 2025 (top 5% of scores) in Singapore
Addressing and Visualizing Misalignments in Human Task-Solving Trajectories KDD 2025
Understanding misalignments in human task-solving trajectories is crucial for enhancing AI models trained to closely mimic human reasoning. This study categorizes such misalignments into three types: (1) lack of functions to express intent, (2) inefficient action sequences, and (3) incorrect intentions that cannot solve the task. To address these issues, we first formalize and define these three misalignment types in a unified framework. We then propose a heuristic algorithm to detect misalignments in ARCTraj trajectories and analyze their impact hierarchically and quantitatively. We also present an intention estimation method based on our formalism that infers missing alignment between user actions and intentions. Through trajectory alignment, we experimentally demonstrate that AI models trained on human task-solving trajectories improve performance in mimicking human reasoning. Based on hierarchical analysis and experiments, we highlight the importance of trajectory-intention alignment and demonstrate the effectiveness of intention-aligned training.
comment: KDD 2025 accepted
AKRMap: Adaptive Kernel Regression for Trustworthy Visualization of Cross-Modal Embeddings
Cross-modal embeddings form the foundation for multi-modal models. However, visualization methods for interpreting cross-modal embeddings have been primarily confined to traditional dimensionality reduction (DR) techniques like PCA and t-SNE. These DR methods primarily focus on feature distributions within a single modality, whilst failing to incorporate metrics (e.g., CLIPScore) across multiple modalities. This paper introduces AKRMap, a new DR technique designed to visualize cross-modal embeddings metric with enhanced accuracy by learning kernel regression of the metric landscape in the projection space. Specifically, AKRMap constructs a supervised projection network guided by a post-projection kernel regression loss, and employs adaptive generalized kernels that can be jointly optimized with the projection. This approach enables AKRMap to efficiently generate visualizations that capture complex metric distributions, while also supporting interactive features such as zoom and overlay for deeper exploration. Quantitative experiments demonstrate that AKRMap outperforms existing DR methods in generating more accurate and trustworthy visualizations. We further showcase the effectiveness of AKRMap in visualizing and comparing cross-modal embeddings for text-to-image models. Code and demo are available at https://github.com/yilinye/AKRMap.
Leveraging Dual Process Theory in Language Agent Framework for Real-time Simultaneous Human-AI Collaboration ACL 2025
Agents built on large language models (LLMs) have excelled in turn-by-turn human-AI collaboration but struggle with simultaneous tasks requiring real-time interaction. Latency issues and the challenge of inferring variable human strategies hinder their ability to make autonomous decisions without explicit instructions. Through experiments with current independent System 1 and System 2 methods, we validate the necessity of using Dual Process Theory (DPT) in real-time tasks. We propose DPT-Agent, a novel language agent framework that integrates System 1 and System 2 for efficient real-time simultaneous human-AI collaboration. DPT-Agent's System 1 uses a Finite-state Machine (FSM) and code-as-policy for fast, intuitive, and controllable decision-making. DPT-Agent's System 2 integrates Theory of Mind (ToM) and asynchronous reflection to infer human intentions and perform reasoning-based autonomous decisions. We demonstrate the effectiveness of DPT-Agent through further experiments with rule-based agents and human collaborators, showing significant improvements over mainstream LLM-based frameworks. DPT-Agent can effectively help LLMs convert correct slow thinking and reasoning into executable actions, thereby improving performance. To the best of our knowledge, DPT-Agent is the first language agent framework that achieves successful real-time simultaneous human-AI collaboration autonomously. Code of DPT-Agent can be found in https://github.com/sjtu-marl/DPT-Agent.
comment: Accepted by ACL 2025 Main. Camera Ready Version
Generative Framework for Personalized Persuasion: Inferring Causal, Counterfactual, and Latent Knowledge
We hypothesize that optimal system responses emerge from adaptive strategies grounded in causal and counterfactual knowledge. Counterfactual inference allows us to create hypothetical scenarios to examine the effects of alternative system responses. We enhance this process through causal discovery, which identifies the strategies informed by the underlying causal structure that govern system behaviors. Moreover, we consider the psychological constructs and unobservable noises that might be influencing user-system interactions as latent factors. We show that these factors can be effectively estimated. We employ causal discovery to identify strategy-level causal relationships among user and system utterances, guiding the generation of personalized counterfactual dialogues. We model the user utterance strategies as causal factors, enabling system strategies to be treated as counterfactual actions. Furthermore, we optimize policies for selecting system responses based on counterfactual data. Our results using a real-world dataset on social good demonstrate significant improvements in persuasive system outcomes, with increased cumulative rewards validating the efficacy of causal discovery in guiding personalized counterfactual inference and optimizing dialogue policies for a persuasive dialogue system.
comment: 12 pages, 10 figures, 1 table. Accepted by ACM UMAP 2025
When Trust Collides: Decoding Human-LLM Cooperation Dynamics through the Prisoner's Dilemma
As large language models (LLMs) become increasingly capable of autonomous decision-making, they introduce new challenges and opportunities for human-AI cooperation in mixed-motive contexts. While prior research has primarily examined AI in assistive or cooperative roles, little is known about how humans interact with AI agents perceived as independent and strategic actors. This study investigates human cooperative attitudes and behaviors toward LLM agents by engaging 30 participants (15 males, 15 females) in repeated Prisoner's Dilemma games with agents differing in declared identity: purported human, rule-based AI, and LLM agent. Behavioral metrics, including cooperation rate, decision latency, unsolicited cooperative acts and trust restoration tolerance, were analyzed to assess the influence of agent identity and participant gender. Results revealed significant effects of declared agent identity on most cooperation-related behaviors, along with notable gender differences in decision latency. Furthermore, qualitative responses suggest that these behavioral differences were shaped by participants interpretations and expectations of the agents. These findings contribute to our understanding of human adaptation in competitive cooperation with autonomous agents and underscore the importance of agent framing in shaping effective and ethical human-AI interaction.
From the CDC to emerging infectious disease publics: The long-now of polarizing and complex health crises
This study examines how public discourse around COVID-19 unfolded on Twitter through the lens of crisis communication and digital publics. Analyzing over 275,000 tweets involving the CDC, we identify 16 distinct discourse clusters shaped by framing, sentiment, credibility, and network dynamics. We find that CDC messaging became a flashpoint for affective and ideological polarization, with users aligning along competing frames of science vs. freedom, and public health vs. political overreach. Most clusters formed echo chambers, while a few enabled cross cutting dialogue. Publics emerged not only around ideology but also around topical and emotional stakes, reflecting shifting concerns across different stages of the pandemic. While marginalized communities raised consistent equity concerns, these narratives struggled to reshape broader discourse. Our findings highlight the importance of long-term, adaptive engagement with diverse publics and propose design interventions such as multi-agent AI assistants, to support more inclusive communication throughout extended public health crises.
Exploring Remote Collaborative Tasks: The Impact of Avatar Representation on Dyadic Haptic Interactions in Shared Virtual Environments
This study is the first to explore the interplay between haptic interaction and avatar representation in Shared Virtual Environments (SVEs). Specifically, how these factors shape users' sense of social presence during dyadic collaborations, while assessing potential effects on task performance. In a series of experiments, participants performed the collaborative task with haptic interaction under four avatar representation conditions: avatars of both participant and partner were displayed, only the participant's avatar was displayed, only the partner's avatar was displayed, and no avatars were displayed. The study finds that avatar representation, especially of the partner, significantly enhances the perception of social presence, which haptic interaction alone does not fully achieve. However, neither the presence nor the type of avatar representation impacts the task performance or participants' force effort of the task, suggesting that haptic interaction provides sufficient interaction cues for the execution of the task. These results underscore the significance of integrating both visual and haptic modalities to optimize remote collaboration experiences in virtual environments, ensuring effective communication and a strong sense of social presence.
Explorer: Scaling Exploration-driven Web Trajectory Synthesis for Multimodal Web Agents ACL 2025
Recent success in large multimodal models (LMMs) has sparked promising applications of agents capable of autonomously completing complex web tasks. While open-source LMM agents have made significant advances in offline evaluation benchmarks, their performance still falls substantially short of human-level capabilities in more realistic online settings. A key bottleneck is the lack of diverse and large-scale trajectory-level datasets across various domains, which are expensive to collect. In this paper, we address this challenge by developing a scalable recipe to synthesize the largest and most diverse trajectory-level dataset to date, containing over 94K successful multimodal web trajectories, spanning 49K unique URLs, 720K screenshots, and 33M web elements. In particular, we leverage extensive web exploration and refinement to obtain diverse task intents. The average cost is 28 cents per successful trajectory, making it affordable to a wide range of users in the community. Leveraging this dataset, we train Explorer, a multimodal web agent, and demonstrate strong performance on both offline and online web agent benchmarks such as Mind2Web-Live, Multimodal-Mind2Web, and MiniWob++. Additionally, our experiments highlight data scaling as a key driver for improving web agent capabilities. We hope this study makes state-of-the-art LMM-based agent research at a larger scale more accessible.
comment: ACL 2025 (Findings)
Personality-aware Student Simulation for Conversational Intelligent Tutoring Systems
Intelligent Tutoring Systems (ITSs) can provide personalized and self-paced learning experience. The emergence of large language models (LLMs) further enables better human-machine interaction, and facilitates the development of conversational ITSs in various disciplines such as math and language learning. In dialogic teaching, recognizing and adapting to individual characteristics can significantly enhance student engagement and learning efficiency. However, characterizing and simulating student's persona remain challenging in training and evaluating conversational ITSs. In this work, we propose a framework to construct profiles of different student groups by refining and integrating both cognitive and noncognitive aspects, and leverage LLMs for personality-aware student simulation in a language learning scenario. We further enhance the framework with multi-aspect validation, and conduct extensive analysis from both teacher and student perspectives. Our experimental results show that state-of-the-art LLMs can produce diverse student responses according to the given language ability and personality traits, and trigger teacher's adaptive scaffolding strategies.
What Needs Attention? Prioritizing Drivers of Developers' Trust and Adoption of Generative AI ICSE 2025
Generative AI (genAI) tools are advertised as productivity aids. Yet, issues related to miscalibrated trust and usage friction continue to hinder their adoption. Additionally, AI can be exclusionary, failing to support diverse users adequately, further exacerbating these concerns. One such aspect of diversity is cognitive diversity -- variations in users' cognitive styles -- that leads to divergence in interaction styles. When an individual's cognitive styles are unsupported, it creates additional barriers to technology adoption. Thus, to design tools that developers trust, we must first understand what factors affect their trust and intentions to use these tools in practice? We developed a theoretical model of factors influencing trust and adoption intentions towards genAI through a large-scale survey with developers (N=238) at GitHub and Microsoft. Using Partial Least Squares-Structural Equation Modeling (PLS-SEM), we found that genAI's system/output quality, functional value, and goal maintenance significantly influence developers' trust, which along with their cognitive styles, affects their intentions to use these tools in work. An Importance-Performance Matrix Analysis (IPMA) identified factors that, despite their strong influence, underperform, revealing specific genAI aspects that need design prioritization. We bolster these findings by qualitatively analyzing developers' perceived challenges and risks of genAI usage to uncover why these gaps persist in development contexts. For genAI to indeed be a true productivity aid rather than a disguised productivity sink, it must align with developers' goals, maintain contextual transparency, reduce cognitive burden, and provide equitable interaction support. We provide practical suggestions to guide future genAI tool design for effective, trustworthy, and inclusive human-genAI interactions.
comment: Journal extension of ICSE 2025 paper (arXiv:2409.04099)
Unlocking Mental Health: Exploring College Students' Well-being through Smartphone Behaviors
The global mental health crisis is a pressing concern, with college students particularly vulnerable to rising mental health disorders. The widespread use of smartphones among young adults, while offering numerous benefits, has also been linked to negative outcomes such as addiction and regret, significantly impacting well-being. Leveraging the longest longitudinal dataset collected over four college years through passive mobile sensing, this study is the first to examine the relationship between students' smartphone unlocking behaviors and their mental health at scale in real-world settings. We provide the first evidence demonstrating the predictability of phone unlocking behaviors for mental health outcomes based on a large dataset, highlighting the potential of these novel features for future predictive models. Our findings reveal important variations in smartphone usage across genders and locations, offering a deeper understanding of the interplay between digital behaviors and mental health. We highlight future research directions aimed at mitigating adverse effects and promoting digital well-being in this population.
comment: Published at International Conference on Mobile Software Engineering and Systems (MOBILESoft 2025)
Quantifying the Impact of Motion on 2D Gaze Estimation in Real-World Mobile Interactions
Mobile gaze tracking involves inferring a user's gaze point or direction on a mobile device's screen from facial images captured by the device's front camera. While this technology inspires an increasing number of gaze-interaction applications, achieving consistent accuracy remains challenging due to dynamic user-device spatial relationships and varied motion conditions inherent in mobile contexts. This paper provides empirical evidence on how user mobility and behaviour affect mobile gaze tracking accuracy. We conduct two user studies collecting behaviour and gaze data under various motion conditions - from lying to maze navigation - and during different interaction tasks. Quantitative analysis has revealed behavioural regularities among daily tasks and identified head distance, head pose, and device orientation as key factors affecting accuracy, with errors increasing by up to 48.91% in dynamic conditions compared to static ones. These findings highlight the need for more robust, adaptive eye-tracking systems that account for head movements and device deflection to maintain accuracy across diverse mobile contexts.
comment: 27 pages, 14 figures
Computer Vision and Pattern Recognition
Generalizable and Relightable Gaussian Splatting for Human Novel View Synthesis
We propose GRGS, a generalizable and relightable 3D Gaussian framework for high-fidelity human novel view synthesis under diverse lighting conditions. Unlike existing methods that rely on per-character optimization or ignore physical constraints, GRGS adopts a feed-forward, fully supervised strategy that projects geometry, material, and illumination cues from multi-view 2D observations into 3D Gaussian representations. Specifically, to reconstruct lighting-invariant geometry, we introduce a Lighting-aware Geometry Refinement (LGR) module trained on synthetically relit data to predict accurate depth and surface normals. Based on the high-quality geometry, a Physically Grounded Neural Rendering (PGNR) module is further proposed to integrate neural prediction with physics-based shading, supporting editable relighting with shadows and indirect illumination. Besides, we design a 2D-to-3D projection training scheme that leverages differentiable supervision from ambient occlusion, direct, and indirect lighting maps, which alleviates the computational cost of explicit ray tracing. Extensive experiments demonstrate that GRGS achieves superior visual quality, geometric consistency, and generalization across characters and lighting conditions.
comment: Project Webpage: https://sypj-98.github.io/grgs/
Vision Transformers with Self-Distilled Registers
Vision Transformers (ViTs) have emerged as the dominant architecture for visual processing tasks, demonstrating excellent scalability with increased training data and model size. However, recent work has identified the emergence of artifact tokens in ViTs that are incongruous with the local semantics. These anomalous tokens degrade ViT performance in tasks that require fine-grained localization or structural coherence. An effective mitigation of this issue is to the addition of register tokens to ViTs, which implicitly "absorb" the artifact term during training. Given the availability of various large-scale pre-trained ViTs, in this paper we aim at equipping them with such register tokens without the need of re-training them from scratch, which is infeasible considering their size. Specifically, we propose Post Hoc Registers (PH-Reg), an efficient self-distillation method that integrates registers into an existing ViT without requiring additional labeled data and full retraining. PH-Reg initializes both teacher and student networks from the same pre-trained ViT. The teacher remains frozen and unmodified, while the student is augmented with randomly initialized register tokens. By applying test-time augmentation to the teacher's inputs, we generate denoised dense embeddings free of artifacts, which are then used to optimize only a small subset of unlocked student weights. We show that our approach can effectively reduce the number of artifact tokens, improving the segmentation and depth prediction of the student ViT under zero-shot and linear probing.
comment: 27 pages, 14 figures
ViewSpatial-Bench: Evaluating Multi-perspective Spatial Localization in Vision-Language Models
Vision-language models (VLMs) have demonstrated remarkable capabilities in understanding and reasoning about visual content, but significant challenges persist in tasks requiring cross-viewpoint understanding and spatial reasoning. We identify a critical limitation: current VLMs excel primarily at egocentric spatial reasoning (from the camera's perspective) but fail to generalize to allocentric viewpoints when required to adopt another entity's spatial frame of reference. We introduce ViewSpatial-Bench, the first comprehensive benchmark designed specifically for multi-viewpoint spatial localization recognition evaluation across five distinct task types, supported by an automated 3D annotation pipeline that generates precise directional labels. Comprehensive evaluation of diverse VLMs on ViewSpatial-Bench reveals a significant performance disparity: models demonstrate reasonable performance on camera-perspective tasks but exhibit reduced accuracy when reasoning from a human viewpoint. By fine-tuning VLMs on our multi-perspective spatial dataset, we achieve an overall performance improvement of 46.24% across tasks, highlighting the efficacy of our approach. Our work establishes a crucial benchmark for spatial intelligence in embodied AI systems and provides empirical evidence that modeling 3D spatial relationships enhances VLMs' corresponding spatial comprehension capabilities.
comment: Project: https://zju-real.github.io/ViewSpatial-Page/
Paper2Poster: Towards Multimodal Poster Automation from Scientific Papers
Academic poster generation is a crucial yet challenging task in scientific communication, requiring the compression of long-context interleaved documents into a single, visually coherent page. To address this challenge, we introduce the first benchmark and metric suite for poster generation, which pairs recent conference papers with author-designed posters and evaluates outputs on (i)Visual Quality-semantic alignment with human posters, (ii)Textual Coherence-language fluency, (iii)Holistic Assessment-six fine-grained aesthetic and informational criteria scored by a VLM-as-judge, and notably (iv)PaperQuiz-the poster's ability to convey core paper content as measured by VLMs answering generated quizzes. Building on this benchmark, we propose PosterAgent, a top-down, visual-in-the-loop multi-agent pipeline: the (a)Parser distills the paper into a structured asset library; the (b)Planner aligns text-visual pairs into a binary-tree layout that preserves reading order and spatial balance; and the (c)Painter-Commenter loop refines each panel by executing rendering code and using VLM feedback to eliminate overflow and ensure alignment. In our comprehensive evaluation, we find that GPT-4o outputs-though visually appealing at first glance-often exhibit noisy text and poor PaperQuiz scores, and we find that reader engagement is the primary aesthetic bottleneck, as human-designed posters rely largely on visual semantics to convey meaning. Our fully open-source variants (e.g. based on the Qwen-2.5 series) outperform existing 4o-driven multi-agent systems across nearly all metrics, while using 87% fewer tokens. It transforms a 22-page paper into a finalized yet editable .pptx poster - all for just $0.005. These findings chart clear directions for the next generation of fully automated poster-generation models. The code and datasets are available at https://github.com/Paper2Poster/Paper2Poster.
comment: Project Page: https://github.com/Paper2Poster/Paper2Poster
UI-Genie: A Self-Improving Approach for Iteratively Boosting MLLM-based Mobile GUI Agents
In this paper, we introduce UI-Genie, a self-improving framework addressing two key challenges in GUI agents: verification of trajectory outcome is challenging and high-quality training data are not scalable. These challenges are addressed by a reward model and a self-improving pipeline, respectively. The reward model, UI-Genie-RM, features an image-text interleaved architecture that efficiently pro- cesses historical context and unifies action-level and task-level rewards. To sup- port the training of UI-Genie-RM, we develop deliberately-designed data genera- tion strategies including rule-based verification, controlled trajectory corruption, and hard negative mining. To address the second challenge, a self-improvement pipeline progressively expands solvable complex GUI tasks by enhancing both the agent and reward models through reward-guided exploration and outcome verification in dynamic environments. For training the model, we generate UI- Genie-RM-517k and UI-Genie-Agent-16k, establishing the first reward-specific dataset for GUI agents while demonstrating high-quality synthetic trajectory gen- eration without manual annotation. Experimental results show that UI-Genie achieves state-of-the-art performance across multiple GUI agent benchmarks with three generations of data-model self-improvement. We open-source our complete framework implementation and generated datasets to facilitate further research in https://github.com/Euphoria16/UI-Genie.
comment: https://github.com/Euphoria16/UI-Genie
Adversarial Attacks against Closed-Source MLLMs via Feature Optimal Alignment
Multimodal large language models (MLLMs) remain vulnerable to transferable adversarial examples. While existing methods typically achieve targeted attacks by aligning global features-such as CLIP's [CLS] token-between adversarial and target samples, they often overlook the rich local information encoded in patch tokens. This leads to suboptimal alignment and limited transferability, particularly for closed-source models. To address this limitation, we propose a targeted transferable adversarial attack method based on feature optimal alignment, called FOA-Attack, to improve adversarial transfer capability. Specifically, at the global level, we introduce a global feature loss based on cosine similarity to align the coarse-grained features of adversarial samples with those of target samples. At the local level, given the rich local representations within Transformers, we leverage clustering techniques to extract compact local patterns to alleviate redundant local features. We then formulate local feature alignment between adversarial and target samples as an optimal transport (OT) problem and propose a local clustering optimal transport loss to refine fine-grained feature alignment. Additionally, we propose a dynamic ensemble model weighting strategy to adaptively balance the influence of multiple models during adversarial example generation, thereby further improving transferability. Extensive experiments across various models demonstrate the superiority of the proposed method, outperforming state-of-the-art methods, especially in transferring to closed-source MLLMs. The code is released at https://github.com/jiaxiaojunQAQ/FOA-Attack.
Frame In-N-Out: Unbounded Controllable Image-to-Video Generation
Controllability, temporal coherence, and detail synthesis remain the most critical challenges in video generation. In this paper, we focus on a commonly used yet underexplored cinematic technique known as Frame In and Frame Out. Specifically, starting from image-to-video generation, users can control the objects in the image to naturally leave the scene or provide breaking new identity references to enter the scene, guided by user-specified motion trajectory. To support this task, we introduce a new dataset curated semi-automatically, a comprehensive evaluation protocol targeting this setting, and an efficient identity-preserving motion-controllable video Diffusion Transformer architecture. Our evaluation shows that our proposed approach significantly outperforms existing baselines.
Be Decisive: Noise-Induced Layouts for Multi-Subject Generation SIGGRAPH 2025
Generating multiple distinct subjects remains a challenge for existing text-to-image diffusion models. Complex prompts often lead to subject leakage, causing inaccuracies in quantities, attributes, and visual features. Preventing leakage among subjects necessitates knowledge of each subject's spatial location. Recent methods provide these spatial locations via an external layout control. However, enforcing such a prescribed layout often conflicts with the innate layout dictated by the sampled initial noise, leading to misalignment with the model's prior. In this work, we introduce a new approach that predicts a spatial layout aligned with the prompt, derived from the initial noise, and refines it throughout the denoising process. By relying on this noise-induced layout, we avoid conflicts with externally imposed layouts and better preserve the model's prior. Our method employs a small neural network to predict and refine the evolving noise-induced layout at each denoising step, ensuring clear boundaries between subjects while maintaining consistency. Experimental results show that this noise-aligned strategy achieves improved text-image alignment and more stable multi-subject generation compared to existing layout-guided techniques, while preserving the rich diversity of the model's original distribution.
comment: SIGGRAPH 2025. Project page: https://omer11a.github.io/be-decisive/
MV-CoLight: Efficient Object Compositing with Consistent Lighting and Shadow Generation
Object compositing offers significant promise for augmented reality (AR) and embodied intelligence applications. Existing approaches predominantly focus on single-image scenarios or intrinsic decomposition techniques, facing challenges with multi-view consistency, complex scenes, and diverse lighting conditions. Recent inverse rendering advancements, such as 3D Gaussian and diffusion-based methods, have enhanced consistency but are limited by scalability, heavy data requirements, or prolonged reconstruction time per scene. To broaden its applicability, we introduce MV-CoLight, a two-stage framework for illumination-consistent object compositing in both 2D images and 3D scenes. Our novel feed-forward architecture models lighting and shadows directly, avoiding the iterative biases of diffusion-based methods. We employ a Hilbert curve-based mapping to align 2D image inputs with 3D Gaussian scene representations seamlessly. To facilitate training and evaluation, we further introduce a large-scale 3D compositing dataset. Experiments demonstrate state-of-the-art harmonized results across standard benchmarks and our dataset, as well as casually captured real-world scenes demonstrate the framework's robustness and wide generalization.
Policy Optimized Text-to-Image Pipeline Design
Text-to-image generation has evolved beyond single monolithic models to complex multi-component pipelines. These combine fine-tuned generators, adapters, upscaling blocks and even editing steps, leading to significant improvements in image quality. However, their effective design requires substantial expertise. Recent approaches have shown promise in automating this process through large language models (LLMs), but they suffer from two critical limitations: extensive computational requirements from generating images with hundreds of predefined pipelines, and poor generalization beyond memorized training examples. We introduce a novel reinforcement learning-based framework that addresses these inefficiencies. Our approach first trains an ensemble of reward models capable of predicting image quality scores directly from prompt-workflow combinations, eliminating the need for costly image generation during training. We then implement a two-phase training strategy: initial workflow vocabulary training followed by GRPO-based optimization that guides the model toward higher-performing regions of the workflow space. Additionally, we incorporate a classifier-free guidance based enhancement technique that extrapolates along the path between the initial and GRPO-tuned models, further improving output quality. We validate our approach through a set of comparisons, showing that it can successfully create new flows with greater diversity and lead to superior image quality compared to existing baselines.
Mitigating Hallucination in Large Vision-Language Models via Adaptive Attention Calibration
Large vision-language models (LVLMs) achieve impressive performance on multimodal tasks but often suffer from hallucination, and confidently describe objects or attributes not present in the image. Current inference-time interventions, while training-free, struggle to maintain accuracy in open-ended and long-form generation scenarios. We introduce the Confidence-Aware Attention Calibration (CAAC) framework to address this challenge by targeting two key biases: spatial perception bias, which distributes attention disproportionately across image tokens, and modality bias, which shifts focus from visual to textual inputs over time. CAAC employs a two-step approach: Visual-Token Calibration (VTC) to balance attention across visual tokens, and Adaptive Attention Re-Scaling (AAR) to reinforce visual grounding based on the model's confidence. This confidence-driven adjustment ensures consistent visual alignment during generation. Experiments on CHAIR, AMBER, and POPE benchmarks demonstrate that CAAC outperforms baselines, particularly in long-form generations, effectively reducing hallucination.
DetailFlow: 1D Coarse-to-Fine Autoregressive Image Generation via Next-Detail Prediction
This paper presents DetailFlow, a coarse-to-fine 1D autoregressive (AR) image generation method that models images through a novel next-detail prediction strategy. By learning a resolution-aware token sequence supervised with progressively degraded images, DetailFlow enables the generation process to start from the global structure and incrementally refine details. This coarse-to-fine 1D token sequence aligns well with the autoregressive inference mechanism, providing a more natural and efficient way for the AR model to generate complex visual content. Our compact 1D AR model achieves high-quality image synthesis with significantly fewer tokens than previous approaches, i.e. VAR/VQGAN. We further propose a parallel inference mechanism with self-correction that accelerates generation speed by approximately 8x while reducing accumulation sampling error inherent in teacher-forcing supervision. On the ImageNet 256x256 benchmark, our method achieves 2.96 gFID with 128 tokens, outperforming VAR (3.3 FID) and FlexVAR (3.05 FID), which both require 680 tokens in their AR models. Moreover, due to the significantly reduced token count and parallel inference mechanism, our method runs nearly 2x faster inference speed compared to VAR and FlexVAR. Extensive experimental results demonstrate DetailFlow's superior generation quality and efficiency compared to existing state-of-the-art methods.
ID-Align: RoPE-Conscious Position Remapping for Dynamic High-Resolution Adaptation in Vision-Language Models
Currently, a prevalent approach for enhancing Vision-Language Models (VLMs) performance is to encode both the high-resolution version and the thumbnail of an image simultaneously. While effective, this method generates a large number of image tokens. When combined with the widely used Rotary Position Embedding (RoPE), its long-term decay property hinders the interaction between high-resolution tokens and thumbnail tokens, as well as between text and image. To address these issues, we propose ID-Align, which alleviates these problems by reordering position IDs. In this method, high-resolution tokens inherit IDs from their corresponding thumbnail token while constraining the overexpansion of positional indices. Our experiments conducted within the LLaVA-Next framework demonstrate that ID-Align achieves significant improvements, including a 6.09% enhancement on MMBench's relation reasoning tasks and notable gains across multiple benchmarks. Our code is available at the following link: https://github.com/zooblastlbz/ID-Align.
LazyVLM: Neuro-Symbolic Approach to Video Analytics
Current video analytics approaches face a fundamental trade-off between flexibility and efficiency. End-to-end Vision Language Models (VLMs) often struggle with long-context processing and incur high computational costs, while neural-symbolic methods depend heavily on manual labeling and rigid rule design. In this paper, we introduce LazyVLM, a neuro-symbolic video analytics system that provides a user-friendly query interface similar to VLMs, while addressing their scalability limitation. LazyVLM enables users to effortlessly drop in video data and specify complex multi-frame video queries using a semi-structured text interface for video analytics. To address the scalability limitations of VLMs, LazyVLM decomposes multi-frame video queries into fine-grained operations and offloads the bulk of the processing to efficient relational query execution and vector similarity search. We demonstrate that LazyVLM provides a robust, efficient, and user-friendly solution for querying open-domain video data at scale.
comment: 5 pages, 2 figures, Working paper
Active-O3: Empowering Multimodal Large Language Models with Active Perception via GRPO
Active vision, also known as active perception, refers to the process of actively selecting where and how to look in order to gather task-relevant information. It is a critical component of efficient perception and decision-making in humans and advanced embodied agents. Recently, the use of Multimodal Large Language Models (MLLMs) as central planning and decision-making modules in robotic systems has gained extensive attention. However, despite the importance of active perception in embodied intelligence, there is little to no exploration of how MLLMs can be equipped with or learn active perception capabilities. In this paper, we first provide a systematic definition of MLLM-based active perception tasks. We point out that the recently proposed GPT-o3 model's zoom-in search strategy can be regarded as a special case of active perception; however, it still suffers from low search efficiency and inaccurate region selection. To address these issues, we propose ACTIVE-O3, a purely reinforcement learning based training framework built on top of GRPO, designed to equip MLLMs with active perception capabilities. We further establish a comprehensive benchmark suite to evaluate ACTIVE-O3 across both general open-world tasks, such as small-object and dense object grounding, and domain-specific scenarios, including small object detection in remote sensing and autonomous driving, as well as fine-grained interactive segmentation. In addition, ACTIVE-O3 also demonstrates strong zero-shot reasoning abilities on the V* Benchmark, without relying on any explicit reasoning data. We hope that our work can provide a simple codebase and evaluation protocol to facilitate future research on active perception in MLLMs.
comment: Project Page: https://aim-uofa.github.io/ACTIVE-o3
Visual Product Graph: Bridging Visual Products And Composite Images For End-to-End Style Recommendations
Retrieving semantically similar but visually distinct contents has been a critical capability in visual search systems. In this work, we aim to tackle this problem with Visual Product Graph (VPG), leveraging high-performance infrastructure for storage and state-of-the-art computer vision models for image understanding. VPG is built to be an online real-time retrieval system that enables navigation from individual products to composite scenes containing those products, along with complementary recommendations. Our system not only offers contextual insights by showcasing how products can be styled in a context, but also provides recommendations for complementary products drawn from these inspirations. We discuss the essential components for building the Visual Product Graph, along with the core computer vision model improvements across object detection, foundational visual embeddings, and other visual signals. Our system achieves a 78.8% extremely similar@1 in end-to-end human relevance evaluations, and a 6% module engagement rate. The "Ways to Style It" module, powered by the Visual Product Graph technology, is deployed in production at Pinterest.
comment: 10 pages, 10 figures
OmniSync: Towards Universal Lip Synchronization via Diffusion Transformers
Lip synchronization is the task of aligning a speaker's lip movements in video with corresponding speech audio, and it is essential for creating realistic, expressive video content. However, existing methods often rely on reference frames and masked-frame inpainting, which limit their robustness to identity consistency, pose variations, facial occlusions, and stylized content. In addition, since audio signals provide weaker conditioning than visual cues, lip shape leakage from the original video will affect lip sync quality. In this paper, we present OmniSync, a universal lip synchronization framework for diverse visual scenarios. Our approach introduces a mask-free training paradigm using Diffusion Transformer models for direct frame editing without explicit masks, enabling unlimited-duration inference while maintaining natural facial dynamics and preserving character identity. During inference, we propose a flow-matching-based progressive noise initialization to ensure pose and identity consistency, while allowing precise mouth-region editing. To address the weak conditioning signal of audio, we develop a Dynamic Spatiotemporal Classifier-Free Guidance (DS-CFG) mechanism that adaptively adjusts guidance strength over time and space. We also establish the AIGC-LipSync Benchmark, the first evaluation suite for lip synchronization in diverse AI-generated videos. Extensive experiments demonstrate that OmniSync significantly outperforms prior methods in both visual quality and lip sync accuracy, achieving superior results in both real-world and AI-generated videos.
comment: https://ziqiaopeng.github.io/OmniSync/
VoxAging: Continuously Tracking Speaker Aging with a Large-Scale Longitudinal Dataset in English and Mandarin
The performance of speaker verification systems is adversely affected by speaker aging. However, due to challenges in data collection, particularly the lack of sustained and large-scale longitudinal data for individuals, research on speaker aging remains difficult. In this paper, we present VoxAging, a large-scale longitudinal dataset collected from 293 speakers (226 English speakers and 67 Mandarin speakers) over several years, with the longest time span reaching 17 years (approximately 900 weeks). For each speaker, the data were recorded at weekly intervals. We studied the phenomenon of speaker aging and its effects on advanced speaker verification systems, analyzed individual speaker aging processes, and explored the impact of factors such as age group and gender on speaker aging research.
comment: 5 pages, 4 figures, Accepted by Interspeech 2025
CoDA: Coordinated Diffusion Noise Optimization for Whole-Body Manipulation of Articulated Objects
Synthesizing whole-body manipulation of articulated objects, including body motion, hand motion, and object motion, is a critical yet challenging task with broad applications in virtual humans and robotics. The core challenges are twofold. First, achieving realistic whole-body motion requires tight coordination between the hands and the rest of the body, as their movements are interdependent during manipulation. Second, articulated object manipulation typically involves high degrees of freedom and demands higher precision, often requiring the fingers to be placed at specific regions to actuate movable parts. To address these challenges, we propose a novel coordinated diffusion noise optimization framework. Specifically, we perform noise-space optimization over three specialized diffusion models for the body, left hand, and right hand, each trained on its own motion dataset to improve generalization. Coordination naturally emerges through gradient flow along the human kinematic chain, allowing the global body posture to adapt in response to hand motion objectives with high fidelity. To further enhance precision in hand-object interaction, we adopt a unified representation based on basis point sets (BPS), where end-effector positions are encoded as distances to the same BPS used for object geometry. This unified representation captures fine-grained spatial relationships between the hand and articulated object parts, and the resulting trajectories serve as targets to guide the optimization of diffusion noise, producing highly accurate interaction motion. We conduct extensive experiments demonstrating that our method outperforms existing approaches in motion quality and physical plausibility, and enables various capabilities such as object pose control, simultaneous walking and manipulation, and whole-body generation from hand-only data.
comment: Project page: https://phj128.github.io/page/CoDA/index.html
Mentor3AD: Feature Reconstruction-based 3D Anomaly Detection via Multi-modality Mentor Learning
Multimodal feature reconstruction is a promising approach for 3D anomaly detection, leveraging the complementary information from dual modalities. We further advance this paradigm by utilizing multi-modal mentor learning, which fuses intermediate features to further distinguish normal from feature differences. To address these challenges, we propose a novel method called Mentor3AD, which utilizes multi-modal mentor learning. By leveraging the shared features of different modalities, Mentor3AD can extract more effective features and guide feature reconstruction, ultimately improving detection performance. Specifically, Mentor3AD includes a Mentor of Fusion Module (MFM) that merges features extracted from RGB and 3D modalities to create a mentor feature. Additionally, we have designed a Mentor of Guidance Module (MGM) to facilitate cross-modal reconstruction, supported by the mentor feature. Lastly, we introduce a Voting Module (VM) to more accurately generate the final anomaly score. Extensive comparative and ablation studies on MVTec 3D-AD and Eyecandies have verified the effectiveness of the proposed method.
comment: 10 Pages, 6 Figures, 7 Tables
Automatically Identify and Rectify: Robust Deep Contrastive Multi-view Clustering in Noisy Scenarios
Leveraging the powerful representation learning capabilities, deep multi-view clustering methods have demonstrated reliable performance by effectively integrating multi-source information from diverse views in recent years. Most existing methods rely on the assumption of clean views. However, noise is pervasive in real-world scenarios, leading to a significant degradation in performance. To tackle this problem, we propose a novel multi-view clustering framework for the automatic identification and rectification of noisy data, termed AIRMVC. Specifically, we reformulate noisy identification as an anomaly identification problem using GMM. We then design a hybrid rectification strategy to mitigate the adverse effects of noisy data based on the identification results. Furthermore, we introduce a noise-robust contrastive mechanism to generate reliable representations. Additionally, we provide a theoretical proof demonstrating that these representations can discard noisy information, thereby improving the performance of downstream tasks. Extensive experiments on six benchmark datasets demonstrate that AIRMVC outperforms state-of-the-art algorithms in terms of robustness in noisy scenarios. The code of AIRMVC are available at https://github.com/xihongyang1999/AIRMVC on Github.
ZigzagPointMamba: Spatial-Semantic Mamba for Point Cloud Understanding
State Space models (SSMs) such as PointMamba enable efficient feature extraction for point cloud self-supervised learning with linear complexity, outperforming Transformers in computational efficiency. However, existing PointMamba-based methods depend on complex token ordering and random masking, which disrupt spatial continuity and local semantic correlations. We propose ZigzagPointMamba to tackle these challenges. The core of our approach is a simple zigzag scan path that globally sequences point cloud tokens, enhancing spatial continuity by preserving the proximity of spatially adjacent point tokens. Nevertheless, random masking undermines local semantic modeling in self-supervised learning. To address this, we introduce a Semantic-Siamese Masking Strategy (SMS), which masks semantically similar tokens to facilitate reconstruction by integrating local features of original and similar tokens. This overcomes the dependence on isolated local features and enables robust global semantic modeling. Our pre-trained ZigzagPointMamba weights significantly improve downstream tasks, achieving a 1.59% mIoU gain on ShapeNetPart for part segmentation, a 0.4% higher accuracy on ModelNet40 for classification, and 0.19%, 1.22%, and 0.72% higher accuracies respectively for the classification tasks on the OBJ-BG, OBJ-ONLY, and PB-T50-RS subsets of ScanObjectNN. The code is available at: https://anonymous.4open.science/r/ZigzagPointMamba-1800/
Empowering Vector Graphics with Consistently Arbitrary Viewing and View-dependent Visibility CVPR 2025
This work presents a novel text-to-vector graphics generation approach, Dream3DVG, allowing for arbitrary viewpoint viewing, progressive detail optimization, and view-dependent occlusion awareness. Our approach is a dual-branch optimization framework, consisting of an auxiliary 3D Gaussian Splatting optimization branch and a 3D vector graphics optimization branch. The introduced 3DGS branch can bridge the domain gaps between text prompts and vector graphics with more consistent guidance. Moreover, 3DGS allows for progressive detail control by scheduling classifier-free guidance, facilitating guiding vector graphics with coarse shapes at the initial stages and finer details at later stages. We also improve the view-dependent occlusions by devising a visibility-awareness rendering module. Extensive results on 3D sketches and 3D iconographies, demonstrate the superiority of the method on different abstraction levels of details, cross-view consistency, and occlusion-aware stroke culling.
comment: CVPR 2025
GeoLLaVA-8K: Scaling Remote-Sensing Multimodal Large Language Models to 8K Resolution
Ultra-high-resolution (UHR) remote sensing (RS) imagery offers valuable data for Earth observation but pose challenges for existing multimodal foundation models due to two key bottlenecks: (1) limited availability of UHR training data, and (2) token explosion caused by the large image size. To address data scarcity, we introduce SuperRS-VQA (avg. 8,376$\times$8,376) and HighRS-VQA (avg. 2,000$\times$1,912), the highest-resolution vision-language datasets in RS to date, covering 22 real-world dialogue tasks. To mitigate token explosion, our pilot studies reveal significant redundancy in RS images: crucial information is concentrated in a small subset of object-centric tokens, while pruning background tokens (e.g., ocean or forest) can even improve performance. Motivated by these findings, we propose two strategies: Background Token Pruning and Anchored Token Selection, to reduce the memory footprint while preserving key semantics.Integrating these techniques, we introduce GeoLLaVA-8K, the first RS-focused multimodal large language model capable of handling inputs up to 8K$\times$8K resolution, built on the LLaVA framework. Trained on SuperRS-VQA and HighRS-VQA, GeoLLaVA-8K sets a new state-of-the-art on the XLRS-Bench.
Video-Holmes: Can MLLM Think Like Holmes for Complex Video Reasoning?
Recent advances in CoT reasoning and RL post-training have been reported to enhance video reasoning capabilities of MLLMs. This progress naturally raises a question: can these models perform complex video reasoning in a manner comparable to human experts? However, existing video benchmarks primarily evaluate visual perception and grounding abilities, with questions that can be answered based on explicit prompts or isolated visual cues. Such benchmarks do not fully capture the intricacies of real-world reasoning, where humans must actively search for, integrate, and analyze multiple clues before reaching a conclusion. To address this issue, we present Video-Holmes, a benchmark inspired by the reasoning process of Sherlock Holmes, designed to evaluate the complex video reasoning capabilities of MLLMs. Video-Holmes consists of 1,837 questions derived from 270 manually annotated suspense short films, which spans seven carefully designed tasks. Each task is constructed by first identifying key events and causal relationships within films, and then designing questions that require models to actively locate and connect multiple relevant visual clues scattered across different video segments. Our comprehensive evaluation of state-of-the-art MLLMs reveals that, while these models generally excel at visual perception, they encounter substantial difficulties with integrating information and often miss critical clues. For example, the best-performing model, Gemini-2.5-Pro, achieves an accuracy of only 45%, with most models scoring below 40%. We aim that Video-Holmes can serve as a "Holmes-test" for multimodal reasoning, motivating models to reason more like humans and emphasizing the ongoing challenges in this field. The benchmark is released in https://github.com/TencentARC/Video-Holmes.
comment: Homepage: https://github.com/TencentARC/Video-Holmes
YOLO-SPCI: Enhancing Remote Sensing Object Detection via Selective-Perspective-Class Integration
Object detection in remote sensing imagery remains a challenging task due to extreme scale variation, dense object distributions, and cluttered backgrounds. While recent detectors such as YOLOv8 have shown promising results, their backbone architectures lack explicit mechanisms to guide multi-scale feature refinement, limiting performance on high-resolution aerial data. In this work, we propose YOLO-SPCI, an attention-enhanced detection framework that introduces a lightweight Selective-Perspective-Class Integration (SPCI) module to improve feature representation. The SPCI module integrates three components: a Selective Stream Gate (SSG) for adaptive regulation of global feature flow, a Perspective Fusion Module (PFM) for context-aware multi-scale integration, and a Class Discrimination Module (CDM) to enhance inter-class separability. We embed two SPCI blocks into the P3 and P5 stages of the YOLOv8 backbone, enabling effective refinement while preserving compatibility with the original neck and head. Experiments on the NWPU VHR-10 dataset demonstrate that YOLO-SPCI achieves superior performance compared to state-of-the-art detectors.
AgriFM: A Multi-source Temporal Remote Sensing Foundation Model for Crop Mapping
Accurate crop mapping fundamentally relies on modeling multi-scale spatiotemporal patterns, where spatial scales range from individual field textures to landscape-level context, and temporal scales capture both short-term phenological transitions and full growing-season dynamics. Transformer-based remote sensing foundation models (RSFMs) offer promising potential for crop mapping due to their innate ability for unified spatiotemporal processing. However, current RSFMs remain suboptimal for crop mapping: they either employ fixed spatiotemporal windows that ignore the multi-scale nature of crop systems or completely disregard temporal information by focusing solely on spatial patterns. To bridge these gaps, we present AgriFM, a multi-source remote sensing foundation model specifically designed for agricultural crop mapping. Our approach begins by establishing the necessity of simultaneous hierarchical spatiotemporal feature extraction, leading to the development of a modified Video Swin Transformer architecture where temporal down-sampling is synchronized with spatial scaling operations. This modified backbone enables efficient unified processing of long time-series satellite inputs. AgriFM leverages temporally rich data streams from three satellite sources including MODIS, Landsat-8/9 and Sentinel-2, and is pre-trained on a global representative dataset comprising over 25 million image samples supervised by land cover products. The resulting framework incorporates a versatile decoder architecture that dynamically fuses these learned spatiotemporal representations, supporting diverse downstream tasks. Comprehensive evaluations demonstrate AgriFM's superior performance over conventional deep learning approaches and state-of-the-art general-purpose RSFMs across all downstream tasks. Codes will be available at urlhttps://github.com/flyakon/AgriFM.
Prostate Cancer Screening with Artificial Intelligence-Enhanced Micro-Ultrasound: A Comparative Study with Traditional Methods
Background and objective: Micro-ultrasound (micro-US) is a novel imaging modality with diagnostic accuracy comparable to MRI for detecting clinically significant prostate cancer (csPCa). We investigated whether artificial intelligence (AI) interpretation of micro-US can outperform clinical screening methods using PSA and digital rectal examination (DRE). Methods: We retrospectively studied 145 men who underwent micro-US guided biopsy (79 with csPCa, 66 without). A self-supervised convolutional autoencoder was used to extract deep image features from 2D micro-US slices. Random forest classifiers were trained using five-fold cross-validation to predict csPCa at the slice level. Patients were classified as csPCa-positive if 88 or more consecutive slices were predicted positive. Model performance was compared with a classifier using PSA, DRE, prostate volume, and age. Key findings and limitations: The AI-based micro-US model and clinical screening model achieved AUROCs of 0.871 and 0.753, respectively. At a fixed threshold, the micro-US model achieved 92.5% sensitivity and 68.1% specificity, while the clinical model showed 96.2% sensitivity but only 27.3% specificity. Limitations include a retrospective single-center design and lack of external validation. Conclusions and clinical implications: AI-interpreted micro-US improves specificity while maintaining high sensitivity for csPCa detection. This method may reduce unnecessary biopsies and serve as a low-cost alternative to PSA-based screening. Patient summary: We developed an AI system to analyze prostate micro-ultrasound images. It outperformed PSA and DRE in detecting aggressive cancer and may help avoid unnecessary biopsies.
Beyond Accuracy: Uncovering the Role of Similarity Perception and its Alignment with Semantics in Supervised Learning
Similarity manifests in various forms, including semantic similarity that is particularly important, serving as an approximation of human object categorization based on e.g. shared functionalities and evolutionary traits. It also offers practical advantages in computational modeling via lexical structures such as WordNet with constant and interpretable similarity. As in the domain of deep vision, there is still not enough focus on the phenomena regarding the similarity perception emergence. We introduce Deep Similarity Inspector (DSI) -- a systematic framework to inspect how deep vision networks develop their similarity perception and its alignment with semantic similarity. Our experiments show that both Convolutional Neural Networks' (CNNs) and Vision Transformers' (ViTs) develop a rich similarity perception during training with 3 phases (initial similarity surge, refinement, stabilization), with clear differences between CNNs and ViTs. Besides the gradual mistakes elimination, the mistakes refinement phenomenon can be observed.
Structure from Collision CVPR 2025
Recent advancements in neural 3D representations, such as neural radiance fields (NeRF) and 3D Gaussian splatting (3DGS), have enabled the accurate estimation of 3D structures from multiview images. However, this capability is limited to estimating the visible external structure, and identifying the invisible internal structure hidden behind the surface is difficult. To overcome this limitation, we address a new task called Structure from Collision (SfC), which aims to estimate the structure (including the invisible internal structure) of an object from appearance changes during collision. To solve this problem, we propose a novel model called SfC-NeRF that optimizes the invisible internal structure of an object through a video sequence under physical, appearance (i.e., visible external structure)-preserving, and keyframe constraints. In particular, to avoid falling into undesirable local optima owing to its ill-posed nature, we propose volume annealing; that is, searching for global optima by repeatedly reducing and expanding the volume. Extensive experiments on 115 objects involving diverse structures (i.e., various cavity shapes, locations, and sizes) and material properties revealed the properties of SfC and demonstrated the effectiveness of the proposed SfC-NeRF.
comment: Accepted to CVPR 2025 (Highlight). Project page: https://www.kecl.ntt.co.jp/people/kaneko.takuhiro/projects/sfc/
HoliTom: Holistic Token Merging for Fast Video Large Language Models
Video large language models (video LLMs) excel at video comprehension but face significant computational inefficiency due to redundant video tokens. Existing token pruning methods offer solutions. However, approaches operating within the LLM (inner-LLM pruning), such as FastV, incur intrinsic computational overhead in shallow layers. In contrast, methods performing token pruning before the LLM (outer-LLM pruning) primarily address spatial redundancy within individual frames or limited temporal windows, neglecting the crucial global temporal dynamics and correlations across longer video sequences. This leads to sub-optimal spatio-temporal reduction and does not leverage video compressibility fully. Crucially, the synergistic potential and mutual influence of combining these strategies remain unexplored. To further reduce redundancy, we introduce HoliTom, a novel training-free holistic token merging framework. HoliTom employs outer-LLM pruning through global redundancy-aware temporal segmentation, followed by spatial-temporal merging to reduce visual tokens by over 90%, significantly alleviating the LLM's computational burden. Complementing this, we introduce a robust inner-LLM token similarity-based merging approach, designed for superior performance and compatibility with outer-LLM pruning. Evaluations demonstrate our method's promising efficiency-performance trade-off on LLaVA-OneVision-7B, reducing computational costs to 6.9% of FLOPs while maintaining 99.1% of the original performance. Furthermore, we achieve a 2.28x reduction in Time-To-First-Token (TTFT) and a 1.32x acceleration in decoding throughput, highlighting the practical benefits of our integrated pruning approach for efficient video LLMs inference.
MME-VideoOCR: Evaluating OCR-Based Capabilities of Multimodal LLMs in Video Scenarios
Multimodal Large Language Models (MLLMs) have achieved considerable accuracy in Optical Character Recognition (OCR) from static images. However, their efficacy in video OCR is significantly diminished due to factors such as motion blur, temporal variations, and visual effects inherent in video content. To provide clearer guidance for training practical MLLMs, we introduce the MME-VideoOCR benchmark, which encompasses a comprehensive range of video OCR application scenarios. MME-VideoOCR features 10 task categories comprising 25 individual tasks and spans 44 diverse scenarios. These tasks extend beyond text recognition to incorporate deeper comprehension and reasoning of textual content within videos. The benchmark consists of 1,464 videos with varying resolutions, aspect ratios, and durations, along with 2,000 meticulously curated, manually annotated question-answer pairs. We evaluate 18 state-of-the-art MLLMs on MME-VideoOCR, revealing that even the best-performing model (Gemini-2.5 Pro) achieves an accuracy of only 73.7%. Fine-grained analysis indicates that while existing MLLMs demonstrate strong performance on tasks where relevant texts are contained within a single or few frames, they exhibit limited capability in effectively handling tasks that demand holistic video comprehension. These limitations are especially evident in scenarios that require spatio-temporal reasoning, cross-frame information integration, or resistance to language prior bias. Our findings also highlight the importance of high-resolution visual input and sufficient temporal coverage for reliable OCR in dynamic video scenarios.
comment: preprint
MME-Reasoning: A Comprehensive Benchmark for Logical Reasoning in MLLMs
Logical reasoning is a fundamental aspect of human intelligence and an essential capability for multimodal large language models (MLLMs). Despite the significant advancement in multimodal reasoning, existing benchmarks fail to comprehensively evaluate their reasoning abilities due to the lack of explicit categorization for logical reasoning types and an unclear understanding of reasoning. To address these issues, we introduce MME-Reasoning, a comprehensive benchmark designed to evaluate the reasoning ability of MLLMs, which covers all three types of reasoning (i.e., inductive, deductive, and abductive) in its questions. We carefully curate the data to ensure that each question effectively evaluates reasoning ability rather than perceptual skills or knowledge breadth, and extend the evaluation protocols to cover the evaluation of diverse questions. Our evaluation reveals substantial limitations of state-of-the-art MLLMs when subjected to holistic assessments of logical reasoning capabilities. Even the most advanced MLLMs show limited performance in comprehensive logical reasoning, with notable performance imbalances across reasoning types. In addition, we conducted an in-depth analysis of approaches such as ``thinking mode'' and Rule-based RL, which are commonly believed to enhance reasoning abilities. These findings highlight the critical limitations and performance imbalances of current MLLMs in diverse logical reasoning scenarios, providing comprehensive and systematic insights into the understanding and evaluation of reasoning capabilities.
MagicTryOn: Harnessing Diffusion Transformer for Garment-Preserving Video Virtual Try-on
Video Virtual Try-On (VVT) aims to simulate the natural appearance of garments across consecutive video frames, capturing their dynamic variations and interactions with human body motion. However, current VVT methods still face challenges in terms of spatiotemporal consistency and garment content preservation. First, they use diffusion models based on the U-Net, which are limited in their expressive capability and struggle to reconstruct complex details. Second, they adopt a separative modeling approach for spatial and temporal attention, which hinders the effective capture of structural relationships and dynamic consistency across frames. Third, their expression of garment details remains insufficient, affecting the realism and stability of the overall synthesized results, especially during human motion. To address the above challenges, we propose MagicTryOn, a video virtual try-on framework built upon the large-scale video diffusion Transformer.We replace the U-Net architecture with a diffusion Transformer and combine full self-attention to jointly model the spatiotemporal consistency of videos. We design a coarse-to-fine garment preservation strategy. The coarse strategy integrates garment tokens during the embedding stage, while the fine strategy incorporates multiple garment-based conditions, such as semantics, textures, and contour lines during the denoising stage. Moreover, we introduce a mask-aware loss to further optimize garment region fidelity. Extensive experiments on both image and video try-on datasets demonstrate that our method outperforms existing SOTA methods in comprehensive evaluations and generalizes to in-the-wild scenarios.
efunc: An Efficient Function Representation without Neural Networks
Function fitting/approximation plays a fundamental role in computer graphics and other engineering applications. While recent advances have explored neural networks to address this task, these methods often rely on architectures with many parameters, limiting their practical applicability. In contrast, we pursue high-quality function approximation using parameter-efficient representations that eliminate the dependency on neural networks entirely. We first propose a novel framework for continuous function modeling. Most existing works can be formulated using this framework. We then introduce a compact function representation, which is based on polynomials interpolated using radial basis functions, bypassing both neural networks and complex/hierarchical data structures. We also develop memory-efficient CUDA-optimized algorithms that reduce computational time and memory consumption to less than 10% compared to conventional automatic differentiation frameworks. Finally, we validate our representation and optimization pipeline through extensive experiments on 3D signed distance functions (SDFs). The proposed representation achieves comparable or superior performance to state-of-the-art techniques (e.g., octree/hash-grid techniques) with significantly fewer parameters.
comment: Project website: https://efunc.github.io/efunc/
Efficient Leaf Disease Classification and Segmentation using Midpoint Normalization Technique and Attention Mechanism ICIP
Enhancing plant disease detection from leaf imagery remains a persistent challenge due to scarce labeled data and complex contextual factors. We introduce a transformative two-stage methodology, Mid Point Normalization (MPN) for intelligent image preprocessing, coupled with sophisticated attention mechanisms that dynamically recalibrate feature representations. Our classification pipeline, merging MPN with Squeeze-and-Excitation (SE) blocks, achieves remarkable 93% accuracy while maintaining exceptional class-wise balance. The perfect F1 score attained for our target class exemplifies attention's power in adaptive feature refinement. For segmentation tasks, we seamlessly integrate identical attention blocks within U-Net architecture using MPN-enhanced inputs, delivering compelling performance gains with 72.44% Dice score and 58.54% IoU, substantially outperforming baseline implementations. Beyond superior accuracy metrics, our approach yields computationally efficient, lightweight architectures perfectly suited for real-world computer vision applications.
comment: Accepted in 2025 IEEE International Conference on Image Processing (ICIP)
Spectral Compression Transformer with Line Pose Graph for Monocular 3D Human Pose Estimation
Transformer-based 3D human pose estimation methods suffer from high computational costs due to the quadratic complexity of self-attention with respect to sequence length. Additionally, pose sequences often contain significant redundancy between frames. However, recent methods typically fail to improve model capacity while effectively eliminating sequence redundancy. In this work, we introduce the Spectral Compression Transformer (SCT) to reduce sequence length and accelerate computation. The SCT encoder treats hidden features between blocks as Temporal Feature Signals (TFS) and applies the Discrete Cosine Transform, a Fourier transform-based technique, to determine the spectral components to be retained. By filtering out certain high-frequency noise components, SCT compresses the sequence length and reduces redundancy. To further enrich the input sequence with prior structural information, we propose the Line Pose Graph (LPG) based on line graph theory. The LPG generates skeletal position information that complements the input 2D joint positions, thereby improving the model's performance. Finally, we design a dual-stream network architecture to effectively model spatial joint relationships and the compressed motion trajectory within the pose sequence. Extensive experiments on two benchmark datasets (i.e., Human3.6M and MPI-INF-3DHP) demonstrate that our model achieves state-of-the-art performance with improved computational efficiency. For example, on the Human3.6M dataset, our method achieves an MPJPE of 37.7mm while maintaining a low computational cost. Furthermore, we perform ablation studies on each module to assess its effectiveness. The code and models will be released.
Supervised and self-supervised land-cover segmentation & classification of the Biesbosch wetlands
Accurate wetland land-cover classification is essential for environmental monitoring, biodiversity assessment, and sustainable ecosystem management. However, the scarcity of annotated data, especially for high-resolution satellite imagery, poses a significant challenge for supervised learning approaches. To tackle this issue, this study presents a methodology for wetland land-cover segmentation and classification that adopts both supervised and self-supervised learning (SSL). We train a U-Net model from scratch on Sentinel-2 imagery across six wetland regions in the Netherlands, achieving a baseline model accuracy of 85.26%. Addressing the limited availability of labeled data, the results show that SSL pretraining with an autoencoder can improve accuracy, especially for the high-resolution imagery where it is more difficult to obtain labeled data, reaching an accuracy of 88.23%. Furthermore, we introduce a framework to scale manually annotated high-resolution labels to medium-resolution inputs. While the quantitative performance between resolutions is comparable, high-resolution imagery provides significantly sharper segmentation boundaries and finer spatial detail. As part of this work, we also contribute a curated Sentinel-2 dataset with Dynamic World labels, tailored for wetland classification tasks and made publicly available.
comment: 12 pages, presented at the Netherlands Conference on Computer Vision (NCCV), Utrecht, May 2025
DiMoSR: Feature Modulation via Multi-Branch Dilated Convolutions for Efficient Image Super-Resolution
Balancing reconstruction quality versus model efficiency remains a critical challenge in lightweight single image super-resolution (SISR). Despite the prevalence of attention mechanisms in recent state-of-the-art SISR approaches that primarily emphasize or suppress feature maps, alternative architectural paradigms warrant further exploration. This paper introduces DiMoSR (Dilated Modulation Super-Resolution), a novel architecture that enhances feature representation through modulation to complement attention in lightweight SISR networks. The proposed approach leverages multi-branch dilated convolutions to capture rich contextual information over a wider receptive field while maintaining computational efficiency. Experimental results demonstrate that DiMoSR outperforms state-of-the-art lightweight methods across diverse benchmark datasets, achieving superior PSNR and SSIM metrics with comparable or reduced computational complexity. Through comprehensive ablation studies, this work not only validates the effectiveness of DiMoSR but also provides critical insights into the interplay between attention mechanisms and feature modulation to guide future research in efficient network design. The code and model weights to reproduce our results are available at: https://github.com/makinyilmaz/DiMoSR
Plenodium: UnderWater 3D Scene Reconstruction with Plenoptic Medium Representation
We present Plenodium (plenoptic medium), an effective and efficient 3D representation framework capable of jointly modeling both objects and participating media. In contrast to existing medium representations that rely solely on view-dependent modeling, our novel plenoptic medium representation incorporates both directional and positional information through spherical harmonics encoding, enabling highly accurate underwater scene reconstruction. To address the initialization challenge in degraded underwater environments, we propose the pseudo-depth Gaussian complementation to augment COLMAP-derived point clouds with robust depth priors. In addition, a depth ranking regularized loss is developed to optimize the geometry of the scene and improve the ordinal consistency of the depth maps. Extensive experiments on real-world underwater datasets demonstrate that our method achieves significant improvements in 3D reconstruction. Furthermore, we conduct a simulated dataset with ground truth and the controllable scattering medium to demonstrate the restoration capability of our method in underwater scenarios. Our code and dataset are available at https://plenodium.github.io/.
3D-UIR: 3D Gaussian for Underwater 3D Scene Reconstruction via Physics-Based Appearance-Medium Decouplin
Novel view synthesis for underwater scene reconstruction presents unique challenges due to complex light-media interactions. Optical scattering and absorption in water body bring inhomogeneous medium attenuation interference that disrupts conventional volume rendering assumptions of uniform propagation medium. While 3D Gaussian Splatting (3DGS) offers real-time rendering capabilities, it struggles with underwater inhomogeneous environments where scattering media introduce artifacts and inconsistent appearance. In this study, we propose a physics-based framework that disentangles object appearance from water medium effects through tailored Gaussian modeling. Our approach introduces appearance embeddings, which are explicit medium representations for backscatter and attenuation, enhancing scene consistency. In addition, we propose a distance-guided optimization strategy that leverages pseudo-depth maps as supervision with depth regularization and scale penalty terms to improve geometric fidelity. By integrating the proposed appearance and medium modeling components via an underwater imaging model, our approach achieves both high-quality novel view synthesis and physically accurate scene restoration. Experiments demonstrate our significant improvements in rendering quality and restoration accuracy over existing methods. The project page is available at \href{https://bilityniu.github.io/3D-UIR}{https://bilityniu.github.io/3D-UIR
CROP: Contextual Region-Oriented Visual Token Pruning
Current VLM-based VQA methods often process entire images, leading to excessive visual tokens that include redundant information irrelevant to the posed question. This abundance of unnecessary image details creates numerous visual tokens, drastically increasing memory and computational requirements in VLMs. To address this, we propose Contextual Region-Oriented Visual Token Pruning (CROP), a novel framework to compress visual tokens through a two-step process: Localization and Pruning. Specifically, CROP first employs an efficient model to identify the contextual region relevant to the input query. Subsequently, two distinct strategies are introduced for pruning: (1) Pre-LLM Compression (PLC), which adaptively compresses different image regions with varying ratios, and (2) Inner-LLM Pruning (ILP), a training-free method that prunes tokens within early LLM layers guided by the identified contextual region. Extensive experiments on a wide range of VQA tasks demonstrate that CROP significantly outperforms existing visual token pruning methods and achieves state-of-the-art performance. Our code and datasets will be made available.
Occlusion Boundary and Depth: Mutual Enhancement via Multi-Task Learning
Occlusion Boundary Estimation (OBE) identifies boundaries arising from both inter-object occlusions and self-occlusion within individual objects, distinguishing intrinsic object edges from occlusion-induced contours to improve scene understanding and 3D reconstruction capacity. This is closely related to Monocular Depth Estimation (MDE), which infers depth from a single image, as occlusion boundaries provide critical geometric cues for resolving depth ambiguities, while depth priors can conversely refine occlusion reasoning in complex scenes. In this paper, we propose a novel network, MoDOT, that first jointly estimates depth and OBs. We propose CASM, a cross-attention multi-scale strip convolution module, leverages mid-level OB features to significantly enhance depth prediction. Additionally, we introduce an occlusion-aware loss function, OBDCL, which encourages sharper and more accurate depth boundaries. Extensive experiments on both real and synthetic datasets demonstrate the mutual benefits of jointly estimating depth and OB, and highlight the effectiveness of our model design. Our method achieves the state-of-the-art (SOTA) on both our proposed synthetic datasets and one popular real dataset, NYUD-v2, significantly outperforming multi-task baselines. Besides, without domain adaptation, results on real-world depth transfer are comparable to the competitors, while preserving sharp occlusion boundaries for geometric fidelity. We will release our code, pre-trained models, and datasets to support future research in this direction.
comment: 7 pages, 4 tables, 4 figures
Is Hyperbolic Space All You Need for Medical Anomaly Detection? MICCAI 2025
Medical anomaly detection has emerged as a promising solution to challenges in data availability and labeling constraints. Traditional methods extract features from different layers of pre-trained networks in Euclidean space; however, Euclidean representations fail to effectively capture the hierarchical relationships within these features, leading to suboptimal anomaly detection performance. We propose a novel yet simple approach that projects feature representations into hyperbolic space, aggregates them based on confidence levels, and classifies samples as healthy or anomalous. Our experiments demonstrate that hyperbolic space consistently outperforms Euclidean-based frameworks, achieving higher AUROC scores at both image and pixel levels across multiple medical benchmark datasets. Additionally, we show that hyperbolic space exhibits resilience to parameter variations and excels in few-shot scenarios, where healthy images are scarce. These findings underscore the potential of hyperbolic space as a powerful alternative for medical anomaly detection. The project website can be found at https://hyperbolic-anomalies.github.io
comment: Provisionally Accepted at MICCAI 2025
Sci-Fi: Symmetric Constraint for Frame Inbetweening NeurIPS2025
Frame inbetweening aims to synthesize intermediate video sequences conditioned on the given start and end frames. Current state-of-the-art methods mainly extend large-scale pre-trained Image-to-Video Diffusion models (I2V-DMs) by incorporating end-frame constraints via directly fine-tuning or omitting training. We identify a critical limitation in their design: Their injections of the end-frame constraint usually utilize the same mechanism that originally imposed the start-frame (single image) constraint. However, since the original I2V-DMs are adequately trained for the start-frame condition in advance, naively introducing the end-frame constraint by the same mechanism with much less (even zero) specialized training probably can't make the end frame have a strong enough impact on the intermediate content like the start frame. This asymmetric control strength of the two frames over the intermediate content likely leads to inconsistent motion or appearance collapse in generated frames. To efficiently achieve symmetric constraints of start and end frames, we propose a novel framework, termed Sci-Fi, which applies a stronger injection for the constraint of a smaller training scale. Specifically, it deals with the start-frame constraint as before, while introducing the end-frame constraint by an improved mechanism. The new mechanism is based on a well-designed lightweight module, named EF-Net, which encodes only the end frame and expands it into temporally adaptive frame-wise features injected into the I2V-DM. This makes the end-frame constraint as strong as the start-frame constraint, enabling our Sci-Fi to produce more harmonious transitions in various scenarios. Extensive experiments prove the superiority of our Sci-Fi compared with other baselines.
comment: 22 pages, 9 figures, submitted to NeurIPS2025, under reviewering
Think Twice, Act Once: Token-Aware Compression and Action Reuse for Efficient Inference in Vision-Language-Action Models
Vision-Language-Action (VLA) models have emerged as a powerful paradigm for general-purpose robot control through natural language instructions. However, their high inference cost-stemming from large-scale token computation and autoregressive decoding-poses significant challenges for real-time deployment and edge applications. While prior work has primarily focused on architectural optimization, we take a different perspective by identifying a dual form of redundancy in VLA models: (i) high similarity across consecutive action steps, and (ii) substantial redundancy in visual tokens. Motivated by these observations, we propose FlashVLA, the first training-free and plug-and-play acceleration framework that enables action reuse in VLA models. FlashVLA improves inference efficiency through a token-aware action reuse mechanism that avoids redundant decoding across stable action steps, and an information-guided visual token selection strategy that prunes low-contribution tokens. Extensive experiments on the LIBERO benchmark show that FlashVLA reduces FLOPs by 55.7% and latency by 36.0%, with only a 0.7% drop in task success rate. These results demonstrate the effectiveness of FlashVLA in enabling lightweight, low-latency VLA inference without retraining.
Learning Annotation Consensus for Continuous Emotion Recognition
In affective computing, datasets often contain multiple annotations from different annotators, which may lack full agreement. Typically, these annotations are merged into a single gold standard label, potentially losing valuable inter-rater variability. We propose a multi-annotator training approach for continuous emotion recognition (CER) that seeks a consensus across all annotators rather than relying on a single reference label. Our method employs a consensus network to aggregate annotations into a unified representation, guiding the main arousal-valence predictor to better reflect collective inputs. Tested on the RECOLA and COGNIMUSE datasets, our approach outperforms traditional methods that unify annotations into a single label. This underscores the benefits of fully leveraging multi-annotator data in emotion recognition and highlights its applicability across various fields where annotations are abundant yet inconsistent.
Making Every Event Count: Balancing Data Efficiency and Accuracy in Event Camera Subsampling
Event cameras offer high temporal resolution and power efficiency, making them well-suited for edge AI applications. However, their high event rates present challenges for data transmission and processing. Subsampling methods provide a practical solution, but their effect on downstream visual tasks remains underexplored. In this work, we systematically evaluate six hardware-friendly subsampling methods using convolutional neural networks for event video classification on various benchmark datasets. We hypothesize that events from high-density regions carry more task-relevant information and are therefore better suited for subsampling. To test this, we introduce a simple causal density-based subsampling method, demonstrating improved classification accuracy in sparse regimes. Our analysis further highlights key factors affecting subsampling performance, including sensitivity to hyperparameters and failure cases in scenarios with large event count variance. These findings provide insights for utilization of hardware-efficient subsampling strategies that balance data efficiency and task accuracy. The code for this paper will be released at: https://github.com/hesamaraghi/event-camera-subsampling-methods.
Boosting Adversarial Transferability via High-Frequency Augmentation and Hierarchical-Gradient Fusion
Adversarial attacks have become a significant challenge in the security of machine learning models, particularly in the context of black-box defense strategies. Existing methods for enhancing adversarial transferability primarily focus on the spatial domain. This paper presents Frequency-Space Attack (FSA), a new adversarial attack framework that effectively integrates frequency-domain and spatial-domain transformations. FSA combines two key techniques: (1) High-Frequency Augmentation, which applies Fourier transform with frequency-selective amplification to diversify inputs and emphasize the critical role of high-frequency components in adversarial attacks, and (2) Hierarchical-Gradient Fusion, which merges multi-scale gradient decomposition and fusion to capture both global structures and fine-grained details, resulting in smoother perturbations. Our experiment demonstrates that FSA consistently outperforms state-of-the-art methods across various black-box models. Notably, our proposed FSA achieves an average attack success rate increase of 23.6% compared with BSR (CVPR 2024) on eight black-box defense models.
Normalized Attention Guidance: Universal Negative Guidance for Diffusion Model
Negative guidance -- explicitly suppressing unwanted attributes -- remains a fundamental challenge in diffusion models, particularly in few-step sampling regimes. While Classifier-Free Guidance (CFG) works well in standard settings, it fails under aggressive sampling step compression due to divergent predictions between positive and negative branches. We present Normalized Attention Guidance (NAG), an efficient, training-free mechanism that applies extrapolation in attention space with L1-based normalization and refinement. NAG restores effective negative guidance where CFG collapses while maintaining fidelity. Unlike existing approaches, NAG generalizes across architectures (UNet, DiT), sampling regimes (few-step, multi-step), and modalities (image, video), functioning as a \textit{universal} plug-in with minimal computational overhead. Through extensive experimentation, we demonstrate consistent improvements in text alignment (CLIP Score), fidelity (FID, PFID), and human-perceived quality (ImageReward). Our ablation studies validate each design component, while user studies confirm significant preference for NAG-guided outputs. As a model-agnostic inference-time approach requiring no retraining, NAG provides effortless negative guidance for all modern diffusion frameworks -- pseudocode in the Appendix!
Topological Deep Learning for Speech Data
Topological data analysis (TDA) offers novel mathematical tools for deep learning. Inspired by Carlsson et al., this study designs topology-aware convolutional kernels that significantly improve speech recognition networks. Theoretically, by investigating orthogonal group actions on kernels, we establish a fiber-bundle decomposition of matrix spaces, enabling new filter generation methods. Practically, our proposed Orthogonal Feature (OF) layer achieves superior performance in phoneme recognition, particularly in low-noise scenarios, while demonstrating cross-domain adaptability. This work reveals TDA's potential in neural network optimization, opening new avenues for mathematics-deep learning interdisciplinary studies.
comment: 21 pages, 15 figures
RoBiS: Robust Binary Segmentation for High-Resolution Industrial Images
Robust unsupervised anomaly detection (AD) in real-world scenarios is an important task. Current methods exhibit severe performance degradation on the MVTec AD 2 benchmark due to its complex real-world challenges. To solve this problem, we propose a robust framework RoBiS, which consists of three core modules: (1) Swin-Cropping, a high-resolution image pre-processing strategy to preserve the information of small anomalies through overlapping window cropping. (2) The data augmentation of noise addition and lighting simulation is carried out on the training data to improve the robustness of AD model. We use INP-Former as our baseline, which could generate better results on the various sub-images. (3) The traditional statistical-based binarization strategy (mean+3std) is combined with our previous work, MEBin (published in CVPR2025), for joint adaptive binarization. Then, SAM is further employed to refine the segmentation results. Compared with some methods reported by the MVTec AD 2, our RoBiS achieves a 29.2% SegF1 improvement (from 21.8% to 51.00%) on Test_private and 29.82% SegF1 gains (from 16.7% to 46.52%) on Test_private_mixed. Code is available at https://github.com/xrli-U/RoBiS.
IKMo: Image-Keyframed Motion Generation with Trajectory-Pose Conditioned Motion Diffusion Model
Existing human motion generation methods with trajectory and pose inputs operate global processing on both modalities, leading to suboptimal outputs. In this paper, we propose IKMo, an image-keyframed motion generation method based on the diffusion model with trajectory and pose being decoupled. The trajectory and pose inputs go through a two-stage conditioning framework. In the first stage, the dedicated optimization module is applied to refine inputs. In the second stage, trajectory and pose are encoded via a Trajectory Encoder and a Pose Encoder in parallel. Then, motion with high spatial and semantic fidelity is guided by a motion ControlNet, which processes the fused trajectory and pose data. Experiment results based on HumanML3D and KIT-ML datasets demonstrate that the proposed method outperforms state-of-the-art on all metrics under trajectory-keyframe constraints. In addition, MLLM-based agents are implemented to pre-process model inputs. Given texts and keyframe images from users, the agents extract motion descriptions, keyframe poses, and trajectories as the optimized inputs into the motion generation model. We conducts a user study with 10 participants. The experiment results prove that the MLLM-based agents pre-processing makes generated motion more in line with users' expectation. We believe that the proposed method improves both the fidelity and controllability of motion generation by the diffusion model.
FastFace: Tuning Identity Preservation in Distilled Diffusion via Guidance and Attention
In latest years plethora of identity-preserving adapters for a personalized generation with diffusion models have been released. Their main disadvantage is that they are dominantly trained jointly with base diffusion models, which suffer from slow multi-step inference. This work aims to tackle the challenge of training-free adaptation of pretrained ID-adapters to diffusion models accelerated via distillation - through careful re-design of classifier-free guidance for few-step stylistic generation and attention manipulation mechanisms in decoupled blocks to improve identity similarity and fidelity, we propose universal FastFace framework. Additionally, we develop a disentangled public evaluation protocol for id-preserving adapters.
comment: code available at https://github.com/shredder67/fastface
SageAttention2++: A More Efficient Implementation of SageAttention2
The efficiency of attention is critical because its time complexity grows quadratically with sequence length. SageAttention2 addresses this by utilizing quantization to accelerate matrix multiplications (Matmul) in attention. To further accelerate SageAttention2, we propose to utilize the faster instruction of FP8 Matmul accumulated in FP16. The instruction is 2x faster than the FP8 Matmul used in SageAttention2. Our experiments show that SageAttention2++ achieves a 3.9x speedup over FlashAttention while maintaining the same attention accuracy as SageAttention2. This means SageAttention2++ effectively accelerates various models, including those for language, image, and video generation, with negligible end-to-end metrics loss. The code will be available at https://github.com/thu-ml/SageAttention.
Learning Single Index Models with Diffusion Priors ICML 2025
Diffusion models (DMs) have demonstrated remarkable ability to generate diverse and high-quality images by efficiently modeling complex data distributions. They have also been explored as powerful generative priors for signal recovery, resulting in a substantial improvement in the quality of reconstructed signals. However, existing research on signal recovery with diffusion models either focuses on specific reconstruction problems or is unable to handle nonlinear measurement models with discontinuous or unknown link functions. In this work, we focus on using DMs to achieve accurate recovery from semi-parametric single index models, which encompass a variety of popular nonlinear models that may have {\em discontinuous} and {\em unknown} link functions. We propose an efficient reconstruction method that only requires one round of unconditional sampling and (partial) inversion of DMs. Theoretical analysis on the effectiveness of the proposed methods has been established under appropriate conditions. We perform numerical experiments on image datasets for different nonlinear measurement models. We observe that compared to competing methods, our approach can yield more accurate reconstructions while utilizing significantly fewer neural function evaluations.
comment: ICML 2025
ReassembleNet: Learnable Keypoints and Diffusion for 2D Fresco Reconstruction
The task of reassembly is a significant challenge across multiple domains, including archaeology, genomics, and molecular docking, requiring the precise placement and orientation of elements to reconstruct an original structure. In this work, we address key limitations in state-of-the-art Deep Learning methods for reassembly, namely i) scalability; ii) multimodality; and iii) real-world applicability: beyond square or simple geometric shapes, realistic and complex erosion, or other real-world problems. We propose ReassembleNet, a method that reduces complexity by representing each input piece as a set of contour keypoints and learning to select the most informative ones by Graph Neural Networks pooling inspired techniques. ReassembleNet effectively lowers computational complexity while enabling the integration of features from multiple modalities, including both geometric and texture data. Further enhanced through pretraining on a semi-synthetic dataset. We then apply diffusion-based pose estimation to recover the original structure. We improve on prior methods by 55% and 86% for RMSE Rotation and Translation, respectively.
Differentiable Solver Search for Fast Diffusion Sampling ICML25
Diffusion models have demonstrated remarkable generation quality but at the cost of numerous function evaluations. Recently, advanced ODE-based solvers have been developed to mitigate the substantial computational demands of reverse-diffusion solving under limited sampling steps. However, these solvers, heavily inspired by Adams-like multistep methods, rely solely on t-related Lagrange interpolation. We show that t-related Lagrange interpolation is suboptimal for diffusion model and reveal a compact search space comprised of time steps and solver coefficients. Building on our analysis, we propose a novel differentiable solver search algorithm to identify more optimal solver. Equipped with the searched solver, rectified-flow models, e.g., SiT-XL/2 and FlowDCN-XL/2, achieve FID scores of 2.40 and 2.35, respectively, on ImageNet256 with only 10 steps. Meanwhile, DDPM model, DiT-XL/2, reaches a FID score of 2.33 with only 10 steps. Notably, our searched solver outperforms traditional solvers by a significant margin. Moreover, our searched solver demonstrates generality across various model architectures, resolutions, and model sizes.
comment: accpeted on ICML25
Instance Data Condensation for Image Super-Resolution
Deep learning based image Super-Resolution (ISR) relies on large training datasets to optimize model generalization; this requires substantial computational and storage resources during training. While dataset condensation has shown potential in improving data efficiency and privacy for high-level computer vision tasks, it has not yet been fully exploited for ISR. In this paper, we propose a novel Instance Data Condensation (IDC) framework specifically for ISR, which achieves instance-level data condensation through Random Local Fourier Feature Extraction and Multi-level Feature Distribution Matching. This aims to optimize feature distributions at both global and local levels and obtain high-quality synthesized training content with fine detail. This framework has been utilized to condense the most commonly used training dataset for ISR, DIV2K, with a 10% condensation rate. The resulting synthetic dataset offers comparable or (in certain cases) even better performance compared to the original full dataset and excellent training stability when used to train various popular ISR models. To the best of our knowledge, this is the first time that a condensed/synthetic dataset (with a 10% data volume) has demonstrated such performance. The source code and the synthetic dataset have been made available at https://github.com/.
DisasterM3: A Remote Sensing Vision-Language Dataset for Disaster Damage Assessment and Response
Large vision-language models (VLMs) have made great achievements in Earth vision. However, complex disaster scenes with diverse disaster types, geographic regions, and satellite sensors have posed new challenges for VLM applications. To fill this gap, we curate a remote sensing vision-language dataset (DisasterM3) for global-scale disaster assessment and response. DisasterM3 includes 26,988 bi-temporal satellite images and 123k instruction pairs across 5 continents, with three characteristics: 1) Multi-hazard: DisasterM3 involves 36 historical disaster events with significant impacts, which are categorized into 10 common natural and man-made disasters. 2)Multi-sensor: Extreme weather during disasters often hinders optical sensor imaging, making it necessary to combine Synthetic Aperture Radar (SAR) imagery for post-disaster scenes. 3) Multi-task: Based on real-world scenarios, DisasterM3 includes 9 disaster-related visual perception and reasoning tasks, harnessing the full potential of VLM's reasoning ability with progressing from disaster-bearing body recognition to structural damage assessment and object relational reasoning, culminating in the generation of long-form disaster reports. We extensively evaluated 14 generic and remote sensing VLMs on our benchmark, revealing that state-of-the-art models struggle with the disaster tasks, largely due to the lack of a disaster-specific corpus, cross-sensor gap, and damage object counting insensitivity. Focusing on these issues, we fine-tune four VLMs using our dataset and achieve stable improvements across all tasks, with robust cross-sensor and cross-disaster generalization capabilities.
comment: A multi-hazard, multi-sensor, and multi-task vision-language dataset for global-scale disaster assessment and response
Uni3D-MoE: Scalable Multimodal 3D Scene Understanding via Mixture of Experts
Recent advancements in multimodal large language models (MLLMs) have demonstrated considerable potential for comprehensive 3D scene understanding. However, existing approaches typically utilize only one or a limited subset of 3D modalities, resulting in incomplete representations of 3D scenes and reduced interpretive accuracy. Furthermore, different types of queries inherently depend on distinct modalities, indicating that uniform processing of all modality tokens may fail to effectively capture query-specific context. To address these challenges, we propose Uni3D-MoE, a sparse Mixture-of-Experts (MoE)-based 3D MLLM designed to enable adaptive 3D multimodal fusion. Specifically, Uni3D-MoE integrates a comprehensive set of 3D modalities, including multi-view RGB and depth images, bird's-eye-view (BEV) maps, point clouds, and voxel representations. At its core, our framework employs a learnable routing mechanism within the sparse MoE-based large language model, dynamically selecting appropriate experts at the token level. Each expert specializes in processing multimodal tokens based on learned modality preferences, thus facilitating flexible collaboration tailored to diverse task-specific requirements. Extensive evaluations on standard 3D scene understanding benchmarks and specialized datasets demonstrate the efficacy of Uni3D-MoE.
DynamicVL: Benchmarking Multimodal Large Language Models for Dynamic City Understanding
Multimodal large language models have demonstrated remarkable capabilities in visual understanding, but their application to long-term Earth observation analysis remains limited, primarily focusing on single-temporal or bi-temporal imagery. To address this gap, we introduce DVL-Suite, a comprehensive framework for analyzing long-term urban dynamics through remote sensing imagery. Our suite comprises 15,063 high-resolution (1.0m) multi-temporal images spanning 42 megacities in the U.S. from 2005 to 2023, organized into two components: DVL-Bench and DVL-Instruct. The DVL-Bench includes seven urban understanding tasks, from fundamental change detection (pixel-level) to quantitative analyses (regional-level) and comprehensive urban narratives (scene-level), capturing diverse urban dynamics including expansion/transformation patterns, disaster assessment, and environmental challenges. We evaluate 17 state-of-the-art multimodal large language models and reveal their limitations in long-term temporal understanding and quantitative analysis. These challenges motivate the creation of DVL-Instruct, a specialized instruction-tuning dataset designed to enhance models' capabilities in multi-temporal Earth observation. Building upon this dataset, we develop DVLChat, a baseline model capable of both image-level question-answering and pixel-level segmentation, facilitating a comprehensive understanding of city dynamics through language interactions.
Red-Teaming Text-to-Image Systems by Rule-based Preference Modeling
Text-to-image (T2I) models raise ethical and safety concerns due to their potential to generate inappropriate or harmful images. Evaluating these models' security through red-teaming is vital, yet white-box approaches are limited by their need for internal access, complicating their use with closed-source models. Moreover, existing black-box methods often assume knowledge about the model's specific defense mechanisms, limiting their utility in real-world commercial API scenarios. A significant challenge is how to evade unknown and diverse defense mechanisms. To overcome this difficulty, we propose a novel Rule-based Preference modeling Guided Red-Teaming (RPG-RT), which iteratively employs LLM to modify prompts to query and leverages feedback from T2I systems for fine-tuning the LLM. RPG-RT treats the feedback from each iteration as a prior, enabling the LLM to dynamically adapt to unknown defense mechanisms. Given that the feedback is often labeled and coarse-grained, making it difficult to utilize directly, we further propose rule-based preference modeling, which employs a set of rules to evaluate desired or undesired feedback, facilitating finer-grained control over the LLM's dynamic adaptation process. Extensive experiments on nineteen T2I systems with varied safety mechanisms, three online commercial API services, and T2V models verify the superiority and practicality of our approach.
Minute-Long Videos with Dual Parallelisms
Diffusion Transformer (DiT)-based video diffusion models generate high-quality videos at scale but incur prohibitive processing latency and memory costs for long videos. To address this, we propose a novel distributed inference strategy, termed DualParal. The core idea is that, instead of generating an entire video on a single GPU, we parallelize both temporal frames and model layers across GPUs. However, a naive implementation of this division faces a key limitation: since diffusion models require synchronized noise levels across frames, this implementation leads to the serialization of original parallelisms. We leverage a block-wise denoising scheme to handle this. Namely, we process a sequence of frame blocks through the pipeline with progressively decreasing noise levels. Each GPU handles a specific block and layer subset while passing previous results to the next GPU, enabling asynchronous computation and communication. To further optimize performance, we incorporate two key enhancements. Firstly, a feature cache is implemented on each GPU to store and reuse features from the prior block as context, minimizing inter-GPU communication and redundant computation. Secondly, we employ a coordinated noise initialization strategy, ensuring globally consistent temporal dynamics by sharing initial noise patterns across GPUs without extra resource costs. Together, these enable fast, artifact-free, and infinitely long video generation. Applied to the latest diffusion transformer video generator, our method efficiently produces 1,025-frame videos with up to 6.54$\times$ lower latency and 1.48$\times$ lower memory cost on 8$\times$RTX 4090 GPUs.
comment: The code is available at https://github.com/DualParal-Project/DualParal
Predicting Implicit Arguments in Procedural Video Instructions ACL 2025
Procedural texts help AI enhance reasoning about context and action sequences. Transforming these into Semantic Role Labeling (SRL) improves understanding of individual steps by identifying predicate-argument structure like {verb,what,where/with}. Procedural instructions are highly elliptic, for instance, (i) add cucumber to the bowl and (ii) add sliced tomatoes, the second step's where argument is inferred from the context, referring to where the cucumber was placed. Prior SRL benchmarks often miss implicit arguments, leading to incomplete understanding. To address this, we introduce Implicit-VidSRL, a dataset that necessitates inferring implicit and explicit arguments from contextual information in multimodal cooking procedures. Our proposed dataset benchmarks multimodal models' contextual reasoning, requiring entity tracking through visual changes in recipes. We study recent multimodal LLMs and reveal that they struggle to predict implicit arguments of what and where/with from multi-modal procedural data given the verb. Lastly, we propose iSRL-Qwen2-VL, which achieves a 17% relative improvement in F1-score for what-implicit and a 14.7% for where/with-implicit semantic roles over GPT-4o.
comment: ACL 2025 Main
Inverse Virtual Try-On: Generating Multi-Category Product-Style Images from Clothed Individuals
While virtual try-on (VTON) systems aim to render a garment onto a target person image, this paper tackles the novel task of virtual try-off (VTOFF), which addresses the inverse problem: generating standardized product images of garments from real-world photos of clothed individuals. Unlike VTON, which must resolve diverse pose and style variations, VTOFF benefits from a consistent and well-defined output format -- typically a flat, lay-down-style representation of the garment -- making it a promising tool for data generation and dataset enhancement. However, existing VTOFF approaches face two major limitations: (i) difficulty in disentangling garment features from occlusions and complex poses, often leading to visual artifacts, and (ii) restricted applicability to single-category garments (e.g., upper-body clothes only), limiting generalization. To address these challenges, we present Text-Enhanced MUlti-category Virtual Try-Off (TEMU-VTOFF), a novel architecture featuring a dual DiT-based backbone with a modified multimodal attention mechanism for robust garment feature extraction. Our architecture is designed to receive garment information from multiple modalities like images, text, and masks to work in a multi-category setting. Finally, we propose an additional alignment module to further refine the generated visual details. Experiments on VITON-HD and Dress Code datasets show that TEMU-VTOFF sets a new state-of-the-art on the VTOFF task, significantly improving both visual quality and fidelity to the target garments.
LPOI: Listwise Preference Optimization for Vision Language Models ACL 2025
Aligning large VLMs with human preferences is a challenging task, as methods like RLHF and DPO often overfit to textual information or exacerbate hallucinations. Although augmenting negative image samples partially addresses these pitfalls, no prior work has employed listwise preference optimization for VLMs, due to the complexity and cost of constructing listwise image samples. In this work, we propose LPOI, the first object-aware listwise preference optimization developed for reducing hallucinations in VLMs. LPOI identifies and masks a critical object in the image, and then interpolates the masked region between the positive and negative images to form a sequence of incrementally more complete images. The model is trained to rank these images in ascending order of object visibility, effectively reducing hallucinations while retaining visual fidelity. LPOI requires no extra annotations beyond standard pairwise preference data, as it automatically constructs the ranked lists through object masking and interpolation. Comprehensive experiments on MMHalBench, AMBER, and Object HalBench confirm that LPOI outperforms existing preference optimization methods in reducing hallucinations and enhancing VLM performance. We make the code available at https://github.com/fatemehpesaran310/lpoi.
comment: ACL 2025 Main. Code is released at https://github.com/fatemehpesaran310/lpoi
Styl3R: Instant 3D Stylized Reconstruction for Arbitrary Scenes and Styles
Stylizing 3D scenes instantly while maintaining multi-view consistency and faithfully resembling a style image remains a significant challenge. Current state-of-the-art 3D stylization methods typically involve computationally intensive test-time optimization to transfer artistic features into a pretrained 3D representation, often requiring dense posed input images. In contrast, leveraging recent advances in feed-forward reconstruction models, we demonstrate a novel approach to achieve direct 3D stylization in less than a second using unposed sparse-view scene images and an arbitrary style image. To address the inherent decoupling between reconstruction and stylization, we introduce a branched architecture that separates structure modeling and appearance shading, effectively preventing stylistic transfer from distorting the underlying 3D scene structure. Furthermore, we adapt an identity loss to facilitate pre-training our stylization model through the novel view synthesis task. This strategy also allows our model to retain its original reconstruction capabilities while being fine-tuned for stylization. Comprehensive evaluations, using both in-domain and out-of-domain datasets, demonstrate that our approach produces high-quality stylized 3D content that achieve a superior blend of style and scene appearance, while also outperforming existing methods in terms of multi-view consistency and efficiency.
comment: Project page: https://nickisdope.github.io/Styl3R
Advancing high-fidelity 3D and Texture Generation with 2.5D latents
Despite the availability of large-scale 3D datasets and advancements in 3D generative models, the complexity and uneven quality of 3D geometry and texture data continue to hinder the performance of 3D generation techniques. In most existing approaches, 3D geometry and texture are generated in separate stages using different models and non-unified representations, frequently leading to unsatisfactory coherence between geometry and texture. To address these challenges, we propose a novel framework for joint generation of 3D geometry and texture. Specifically, we focus in generate a versatile 2.5D representations that can be seamlessly transformed between 2D and 3D. Our approach begins by integrating multiview RGB, normal, and coordinate images into a unified representation, termed as 2.5D latents. Next, we adapt pre-trained 2D foundation models for high-fidelity 2.5D generation, utilizing both text and image conditions. Finally, we introduce a lightweight 2.5D-to-3D refiner-decoder framework that efficiently generates detailed 3D representations from 2.5D images. Extensive experiments demonstrate that our model not only excels in generating high-quality 3D objects with coherent structure and color from text and image inputs but also significantly outperforms existing methods in geometry-conditioned texture generation.
Robust Video-Based Pothole Detection and Area Estimation for Intelligent Vehicles with Depth Map and Kalman Smoothing
Road potholes pose a serious threat to driving safety and comfort, making their detection and assessment a critical task in fields such as autonomous driving. When driving vehicles, the operators usually avoid large potholes and approach smaller ones at reduced speeds to ensure safety. Therefore, accurately estimating pothole area is of vital importance. Most existing vision-based methods rely on distance priors to construct geometric models. However, their performance is susceptible to variations in camera angles and typically relies on the assumption of a flat road surface, potentially leading to significant errors in complex real-world environments. To address these problems, a robust pothole area estimation framework that integrates object detection and monocular depth estimation in a video stream is proposed in this paper. First, to enhance pothole feature extraction and improve the detection of small potholes, ACSH-YOLOv8 is proposed with ACmix module and the small object detection head. Then, the BoT-SORT algorithm is utilized for pothole tracking, while DepthAnything V2 generates depth maps for each frame. With the obtained depth maps and potholes labels, a novel Minimum Bounding Triangulated Pixel (MBTP) method is proposed for pothole area estimation. Finally, Kalman Filter based on Confidence and Distance (CDKF) is developed to maintain consistency of estimation results across consecutive frames. The results show that ACSH-YOLOv8 model achieves an AP(50) of 76.6%, representing a 7.6% improvement over YOLOv8. Through CDKF optimization across consecutive frames, pothole predictions become more robust, thereby enhancing the method's practical applicability.
CityGo: Lightweight Urban Modeling and Rendering with Proxy Buildings and Residual Gaussians
Accurate and efficient modeling of large-scale urban scenes is critical for applications such as AR navigation, UAV based inspection, and smart city digital twins. While aerial imagery offers broad coverage and complements limitations of ground-based data, reconstructing city-scale environments from such views remains challenging due to occlusions, incomplete geometry, and high memory demands. Recent advances like 3D Gaussian Splatting (3DGS) improve scalability and visual quality but remain limited by dense primitive usage, long training times, and poor suit ability for edge devices. We propose CityGo, a hybrid framework that combines textured proxy geometry with residual and surrounding 3D Gaussians for lightweight, photorealistic rendering of urban scenes from aerial perspectives. Our approach first extracts compact building proxy meshes from MVS point clouds, then uses zero order SH Gaussians to generate occlusion-free textures via image-based rendering and back-projection. To capture high-frequency details, we introduce residual Gaussians placed based on proxy-photo discrepancies and guided by depth priors. Broader urban context is represented by surrounding Gaussians, with importance-aware downsampling applied to non-critical regions to reduce redundancy. A tailored optimization strategy jointly refines proxy textures and Gaussian parameters, enabling real-time rendering of complex urban scenes on mobile GPUs with significantly reduced training and memory requirements. Extensive experiments on real-world aerial datasets demonstrate that our hybrid representation significantly reduces training time, achieving on average 1.4x speedup, while delivering comparable visual fidelity to pure 3D Gaussian Splatting approaches. Furthermore, CityGo enables real-time rendering of large-scale urban scenes on mobile consumer GPUs, with substantially reduced memory usage and energy consumption.
RainFusion: Adaptive Video Generation Acceleration via Multi-Dimensional Visual Redundancy
Video generation using diffusion models is highly computationally intensive, with 3D attention in Diffusion Transformer (DiT) models accounting for over 80\% of the total computational resources. In this work, we introduce {\bf RainFusion}, a novel training-free sparse attention method that exploits inherent sparsity nature in visual data to accelerate attention computation while preserving video quality. Specifically, we identify three unique sparse patterns in video generation attention calculations--Spatial Pattern, Temporal Pattern and Textural Pattern. The sparse pattern for each attention head is determined online with negligible overhead (\textasciitilde\,0.2\%) with our proposed {\bf ARM} (Adaptive Recognition Module) during inference. Our proposed {\bf RainFusion} is a plug-and-play method, that can be seamlessly integrated into state-of-the-art 3D-attention video generation models without additional training or calibration. We evaluate our method on leading open-sourced models including HunyuanVideo, OpenSoraPlan-1.2 and CogVideoX-5B, demonstrating its broad applicability and effectiveness. Experimental results show that RainFusion achieves over {\bf 2\(\times\)} speedup in attention computation while maintaining video quality, with only a minimal impact on VBench scores (-0.2\%).
FeatInv: Spatially resolved mapping from feature space to input space using conditional diffusion models
Internal representations are crucial for understanding deep neural networks, such as their properties and reasoning patterns, but remain difficult to interpret. While mapping from feature space to input space aids in interpreting the former, existing approaches often rely on crude approximations. We propose using a conditional diffusion model - a pretrained high-fidelity diffusion model conditioned on spatially resolved feature maps - to learn such a mapping in a probabilistic manner. We demonstrate the feasibility of this approach across various pretrained image classifiers from CNNs to ViTs, showing excellent reconstruction capabilities. Through qualitative comparisons and robustness analysis, we validate our method and showcase possible applications, such as the visualization of concept steering in input space or investigations of the composite nature of the feature space. This approach has broad potential for improving feature space understanding in computer vision models.
comment: 15 pages, 10 figures, code is available at https://github.com/AI4HealthUOL/FeatInv
Unified Alignment Protocol: Making Sense of the Unlabeled Data in New Domains
Semi-Supervised Federated Learning (SSFL) is gaining popularity over conventional Federated Learning in many real-world applications. Due to the practical limitation of limited labeled data on the client side, SSFL considers that participating clients train with unlabeled data, and only the central server has the necessary resources to access limited labeled data, making it an ideal fit for real-world applications (e.g., healthcare). However, traditional SSFL assumes that the data distributions in the training phase and testing phase are the same. In practice, however, domain shifts frequently occur, making it essential for SSFL to incorporate generalization capabilities and enhance their practicality. The core challenge is improving model generalization to new, unseen domains while the client participate in SSFL. However, the decentralized setup of SSFL and unsupervised client training necessitates innovation to achieve improved generalization across domains. To achieve this, we propose a novel framework called the Unified Alignment Protocol (UAP), which consists of an alternating two-stage training process. The first stage involves training the server model to learn and align the features with a parametric distribution, which is subsequently communicated to clients without additional communication overhead. The second stage proposes a novel training algorithm that utilizes the server feature distribution to align client features accordingly. Our extensive experiments on standard domain generalization benchmark datasets across multiple model architectures reveal that proposed UAP successfully achieves SOTA generalization performance in SSFL setting.
Facial Attribute Based Text Guided Face Anonymization
The increasing prevalence of computer vision applications necessitates handling vast amounts of visual data, often containing personal information. While this technology offers significant benefits, it should not compromise privacy. Data privacy regulations emphasize the need for individual consent for processing personal data, hindering researchers' ability to collect high-quality datasets containing the faces of the individuals. This paper presents a deep learning-based face anonymization pipeline to overcome this challenge. Unlike most of the existing methods, our method leverages recent advancements in diffusion-based inpainting models, eliminating the need for training Generative Adversarial Networks. The pipeline employs a three-stage approach: face detection with RetinaNet, feature extraction with VGG-Face, and realistic face generation using the state-of-the-art BrushNet diffusion model. BrushNet utilizes the entire image, face masks, and text prompts specifying desired facial attributes like age, ethnicity, gender, and expression. This enables the generation of natural-looking images with unrecognizable individuals, facilitating the creation of privacy-compliant datasets for computer vision research.
comment: 6 pages, 5 figures, published in the Proceedings of the Joint visuAAL-GoodBrother Conference on Trustworthy Video- and Audio-Based Assistive Technologies
Assessing the Use of Face Swapping Methods as Face Anonymizers in Videos SP 2025
The increasing demand for large-scale visual data, coupled with strict privacy regulations, has driven research into anonymization methods that hide personal identities without seriously degrading data quality. In this paper, we explore the potential of face swapping methods to preserve privacy in video data. Through extensive evaluations focusing on temporal consistency, anonymity strength, and visual fidelity, we find that face swapping techniques can produce consistent facial transitions and effectively hide identities. These results underscore the suitability of face swapping for privacy-preserving video applications and lay the groundwork for future advancements in anonymization focused face-swapping models.
comment: Accepted to the 2025 25th International Conference on Digital Signal Processing (DSP 2025)
Generative Image Compression by Estimating Gradients of the Rate-variable Feature Distribution
While learned image compression (LIC) focuses on efficient data transmission, generative image compression (GIC) extends this framework by integrating generative modeling to produce photo-realistic reconstructed images. In this paper, we propose a novel diffusion-based generative modeling framework tailored for generative image compression. Unlike prior diffusion-based approaches that indirectly exploit diffusion modeling, we reinterpret the compression process itself as a forward diffusion path governed by stochastic differential equations (SDEs). A reverse neural network is trained to reconstruct images by reversing the compression process directly, without requiring Gaussian noise initialization. This approach achieves smooth rate adjustment and photo-realistic reconstructions with only a minimal number of sampling steps. Extensive experiments on benchmark datasets demonstrate that our method outperforms existing generative image compression approaches across a range of metrics, including perceptual distortion, statistical fidelity, and no-reference quality assessments.
RefAV: Towards Planning-Centric Scenario Mining
Autonomous Vehicles (AVs) collect and pseudo-label terabytes of multi-modal data localized to HD maps during normal fleet testing. However, identifying interesting and safety-critical scenarios from uncurated driving logs remains a significant challenge. Traditional scenario mining techniques are error-prone and prohibitively time-consuming, often relying on hand-crafted structured queries. In this work, we revisit spatio-temporal scenario mining through the lens of recent vision-language models (VLMs) to detect whether a described scenario occurs in a driving log and, if so, precisely localize it in both time and space. To address this problem, we introduce RefAV, a large-scale dataset of 10,000 diverse natural language queries that describe complex multi-agent interactions relevant to motion planning derived from 1000 driving logs in the Argoverse 2 Sensor dataset. We evaluate several referential multi-object trackers and present an empirical analysis of our baselines. Notably, we find that naively repurposing off-the-shelf VLMs yields poor performance, suggesting that scenario mining presents unique challenges. Our code and dataset are available at https://github.com/CainanD/RefAV/ and https://argoverse.github.io/user-guide/tasks/scenario_mining.html
DreamBoothDPO: Improving Personalized Generation using Direct Preference Optimization
Personalized diffusion models have shown remarkable success in Text-to-Image (T2I) generation by enabling the injection of user-defined concepts into diverse contexts. However, balancing concept fidelity with contextual alignment remains a challenging open problem. In this work, we propose an RL-based approach that leverages the diverse outputs of T2I models to address this issue. Our method eliminates the need for human-annotated scores by generating a synthetic paired dataset for DPO-like training using external quality metrics. These better-worse pairs are specifically constructed to improve both concept fidelity and prompt adherence. Moreover, our approach supports flexible adjustment of the trade-off between image fidelity and textual alignment. Through multi-step training, our approach outperforms a naive baseline in convergence speed and output quality. We conduct extensive qualitative and quantitative analysis, demonstrating the effectiveness of our method across various architectures and fine-tuning techniques. The source code can be found at https://github.com/ControlGenAI/DreamBoothDPO.
comment: The first two authors contributed equally. The source code can be found at https://github.com/ControlGenAI/DreamBoothDPO
RF4D:Neural Radar Fields for Novel View Synthesis in Outdoor Dynamic Scenes
Neural fields (NFs) have demonstrated remarkable performance in scene reconstruction, powering various tasks such as novel view synthesis. However, existing NF methods relying on RGB or LiDAR inputs often exhibit severe fragility to adverse weather, particularly when applied in outdoor scenarios like autonomous driving. In contrast, millimeter-wave radar is inherently robust to environmental changes, while unfortunately, its integration with NFs remains largely underexplored. Besides, as outdoor driving scenarios frequently involve moving objects, making spatiotemporal modeling essential for temporally consistent novel view synthesis. To this end, we introduce RF4D, a radar-based neural field framework specifically designed for novel view synthesis in outdoor dynamic scenes. RF4D explicitly incorporates temporal information into its representation, significantly enhancing its capability to model moving objects. We further introduce a feature-level flow module that predicts latent temporal offsets between adjacent frames, enforcing temporal coherence in dynamic scene modeling. Moreover, we propose a radar-specific power rendering formulation closely aligned with radar sensing physics, improving synthesis accuracy and interoperability. Extensive experiments on public radar datasets demonstrate the superior performance of RF4D in terms of radar measurement synthesis quality and occupancy estimation accuracy, achieving especially pronounced improvements in dynamic outdoor scenarios.
Object-Centric Action-Enhanced Representations for Robot Visuo-Motor Policy Learning
Learning visual representations from observing actions to benefit robot visuo-motor policy generation is a promising direction that closely resembles human cognitive function and perception. Motivated by this, and further inspired by psychological theories suggesting that humans process scenes in an object-based fashion, we propose an object-centric encoder that performs semantic segmentation and visual representation generation in a coupled manner, unlike other works, which treat these as separate processes. To achieve this, we leverage the Slot Attention mechanism and use the SOLV model, pretrained in large out-of-domain datasets, to bootstrap fine-tuning on human action video data. Through simulated robotic tasks, we demonstrate that visual representations can enhance reinforcement and imitation learning training, highlighting the effectiveness of our integrated approach for semantic segmentation and encoding. Furthermore, we show that exploiting models pretrained on out-of-domain datasets can benefit this process, and that fine-tuning on datasets depicting human actions -- although still out-of-domain -- , can significantly improve performance due to close alignment with robotic tasks. These findings show the capability to reduce reliance on annotated or robot-specific action datasets and the potential to build on existing visual encoders to accelerate training and improve generalizability.
OrienText: Surface Oriented Textual Image Generation SIGGRAPH
Textual content in images is crucial in e-commerce sectors, particularly in marketing campaigns, product imaging, advertising, and the entertainment industry. Current text-to-image (T2I) generation diffusion models, though proficient at producing high-quality images, often struggle to incorporate text accurately onto complex surfaces with varied perspectives, such as angled views of architectural elements like buildings, banners, or walls. In this paper, we introduce the Surface Oriented Textual Image Generation (OrienText) method, which leverages region-specific surface normals as conditional input to T2I generation diffusion model. Our approach ensures accurate rendering and correct orientation of the text within the image context. We demonstrate the effectiveness of the OrienText method on a self-curated dataset of images and compare it against the existing textual image generation methods.
comment: 4 pages, SIGGRAPH Asia 2024 Technical Communications
DSOcc: Leveraging Depth Awareness and Semantic Aid to Boost Camera-Based 3D Semantic Occupancy Prediction
Camera-based 3D semantic occupancy prediction offers an efficient and cost-effective solution for perceiving surrounding scenes in autonomous driving. However, existing works rely on explicit occupancy state inference, leading to numerous incorrect feature assignments, and insufficient samples restrict the learning of occupancy class inference. To address these challenges, we propose leveraging Depth awareness and Semantic aid to boost camera-based 3D semantic Occupancy prediction (DSOcc). We jointly perform occupancy state and occupancy class inference, where soft occupancy confidence is calculated through non-learning method and multiplied with image features to make the voxel representation aware of depth, enabling adaptive implicit occupancy state inference. Rather than focusing on improving feature learning, we directly utilize well-trained image semantic segmentation and fuse multiple frames with their occupancy probabilities to aid occupancy class inference, thereby enhancing robustness. Experimental results demonstrate that DSOcc achieves state-of-the-art performance on the SemanticKITTI dataset among camera-based methods.
PMA: Towards Parameter-Efficient Point Cloud Understanding via Point Mamba Adapter CVPR 2025
Applying pre-trained models to assist point cloud understanding has recently become a mainstream paradigm in 3D perception. However, existing application strategies are straightforward, utilizing only the final output of the pre-trained model for various task heads. It neglects the rich complementary information in the intermediate layer, thereby failing to fully unlock the potential of pre-trained models. To overcome this limitation, we propose an orthogonal solution: Point Mamba Adapter (PMA), which constructs an ordered feature sequence from all layers of the pre-trained model and leverages Mamba to fuse all complementary semantics, thereby promoting comprehensive point cloud understanding. Constructing this ordered sequence is non-trivial due to the inherent isotropy of 3D space. Therefore, we further propose a geometry-constrained gate prompt generator (G2PG) shared across different layers, which applies shared geometric constraints to the output gates of the Mamba and dynamically optimizes the spatial order, thus enabling more effective integration of multi-layer information. Extensive experiments conducted on challenging point cloud datasets across various tasks demonstrate that our PMA elevates the capability for point cloud understanding to a new level by fusing diverse complementary intermediate features. Code is available at https://github.com/zyh16143998882/PMA.
comment: Accepted to CVPR 2025
ISAC: Training-Free Instance-to-Semantic Attention Control for Improving Multi-Instance Generation
Text-to-image diffusion models excel at generating single-instance scenes but struggle with multi-instance scenarios, often merging or omitting objects. Unlike previous training-free approaches that rely solely on semantic-level guidance without addressing instance individuation, our training-free method, Instance-to-Semantic Attention Control (ISAC), explicitly resolves incomplete instance formation and semantic entanglement through an instance-first modeling approach. This enables ISAC to effectively leverage a hierarchical, tree-structured prompt mechanism, disentangling multiple object instances and individually aligning them with their corresponding semantic labels. Without employing any external models, ISAC achieves up to 52% average multi-class accuracy and 83% average multi-instance accuracy by effectively forming disentangled instances. The code will be made available upon publication.
comment: 34 pages
QwT-v2: Practical, Effective and Efficient Post-Training Quantization
Network quantization is arguably one of the most practical network compression approaches for reducing the enormous resource consumption of modern deep neural networks. They usually require diverse and subtle design choices for specific architecture and tasks. Instead, the QwT method is a simple and general approach which introduces lightweight additional structures to improve quantization. But QwT incurs extra parameters and latency. More importantly, QwT is not compatible with many hardware platforms. In this paper, we propose QwT-v2, which not only enjoys all advantages of but also resolves major defects of QwT. By adopting a very lightweight channel-wise affine compensation (CWAC) module, QwT-v2 introduces significantly less extra parameters and computations compared to QwT, and at the same time matches or even outperforms QwT in accuracy. The compensation module of QwT-v2 can be integrated into quantization inference engines with little effort, which not only effectively removes the extra costs but also makes it compatible with most existing hardware platforms.
Good Enough: Is it Worth Improving your Label Quality?
Improving label quality in medical image segmentation is costly, but its benefits remain unclear. We systematically evaluate its impact using multiple pseudo-labeled versions of CT datasets, generated by models like nnU-Net, TotalSegmentator, and MedSAM. Our results show that while higher-quality labels improve in-domain performance, gains remain unclear if below a small threshold. For pre-training, label quality has minimal impact, suggesting that models rather transfer general concepts than detailed annotations. These findings provide guidance on when improving label quality is worth the effort.
HuMoCon: Concept Discovery for Human Motion Understanding
We present HuMoCon, a novel motion-video understanding framework designed for advanced human behavior analysis. The core of our method is a human motion concept discovery framework that efficiently trains multi-modal encoders to extract semantically meaningful and generalizable features. HuMoCon addresses key challenges in motion concept discovery for understanding and reasoning, including the lack of explicit multi-modality feature alignment and the loss of high-frequency information in masked autoencoding frameworks. Our approach integrates a feature alignment strategy that leverages video for contextual understanding and motion for fine-grained interaction modeling, further with a velocity reconstruction mechanism to enhance high-frequency feature expression and mitigate temporal over-smoothing. Comprehensive experiments on standard benchmarks demonstrate that HuMoCon enables effective motion concept discovery and significantly outperforms state-of-the-art methods in training large models for human motion understanding. We will open-source the associated code with our paper.
comment: 18 pages, 10 figures
Geometry-Editable and Appearance-Preserving Object Compositon
General object composition (GOC) aims to seamlessly integrate a target object into a background scene with desired geometric properties, while simultaneously preserving its fine-grained appearance details. Recent approaches derive semantic embeddings and integrate them into advanced diffusion models to enable geometry-editable generation. However, these highly compact embeddings encode only high-level semantic cues and inevitably discard fine-grained appearance details. We introduce a Disentangled Geometry-editable and Appearance-preserving Diffusion (DGAD) model that first leverages semantic embeddings to implicitly capture the desired geometric transformations and then employs a cross-attention retrieval mechanism to align fine-grained appearance features with the geometry-edited representation, facilitating both precise geometry editing and faithful appearance preservation in object composition. Specifically, DGAD builds on CLIP/DINO-derived and reference networks to extract semantic embeddings and appearance-preserving representations, which are then seamlessly integrated into the encoding and decoding pipelines in a disentangled manner. We first integrate the semantic embeddings into pre-trained diffusion models that exhibit strong spatial reasoning capabilities to implicitly capture object geometry, thereby facilitating flexible object manipulation and ensuring effective editability. Then, we design a dense cross-attention mechanism that leverages the implicitly learned object geometry to retrieve and spatially align appearance features with their corresponding regions, ensuring faithful appearance consistency. Extensive experiments on public benchmarks demonstrate the effectiveness of the proposed DGAD framework.
Create Anything Anywhere: Layout-Controllable Personalized Diffusion Model for Multiple Subjects ICME 2025
Diffusion models have significantly advanced text-to-image generation, laying the foundation for the development of personalized generative frameworks. However, existing methods lack precise layout controllability and overlook the potential of dynamic features of reference subjects in improving fidelity. In this work, we propose Layout-Controllable Personalized Diffusion (LCP-Diffusion) model, a novel framework that integrates subject identity preservation with flexible layout guidance in a tuning-free approach. Our model employs a Dynamic-Static Complementary Visual Refining module to comprehensively capture the intricate details of reference subjects, and introduces a Dual Layout Control mechanism to enforce robust spatial control across both training and inference stages. Extensive experiments validate that LCP-Diffusion excels in both identity preservation and layout controllability. To the best of our knowledge, this is a pioneering work enabling users to "create anything anywhere".
comment: ICME 2025
HTMNet: A Hybrid Network with Transformer-Mamba Bottleneck Multimodal Fusion for Transparent and Reflective Objects Depth Completion
Transparent and reflective objects pose significant challenges for depth sensors, resulting in incomplete depth information that adversely affects downstream robotic perception and manipulation tasks. To address this issue, we propose HTMNet, a novel hybrid model integrating Transformer, CNN, and Mamba architectures. The encoder is constructed based on a dual-branch Transformer-CNN framework, while the multi-scale fusion module leverages a Transformer-Mamba architecture, which also serves as the foundation for the decoder design. We introduce a novel multimodal fusion module grounded in self-attention mechanisms and state space models, marking the first application of the Mamba architecture in the field of transparent object depth completion and revealing its promising potential. Additionally, we design an innovative multi-scale fusion module for the decoder that combines channel attention, spatial attention, and multi-scale feature extraction techniques to effectively integrate multi-scale features through a down-fusion strategy. Extensive evaluations on multiple public datasets demonstrate that our model achieves state-of-the-art(SOTA) performance, validating the effectiveness of our approach.
Multitemporal Latent Dynamical Framework for Hyperspectral Images Unmixing
Multitemporal hyperspectral unmixing can capture dynamical evolution of materials. Despite its capability, current methods emphasize variability of endmembers while neglecting dynamics of abundances, which motivates our adoption of neural ordinary differential equations to model abundances temporally. However, this motivation is hindered by two challenges: the inherent complexity in defining, modeling and solving problem, and the absence of theoretical support. To address above challenges, in this paper, we propose a multitemporal latent dynamical (MiLD) unmixing framework by capturing dynamical evolution of materials with theoretical validation. For addressing multitemporal hyperspectral unmixing, MiLD consists of problem definition, mathematical modeling, solution algorithm and theoretical support. We formulate multitemporal unmixing problem definition by conducting ordinary differential equations and developing latent variables. We transfer multitemporal unmixing to mathematical model by dynamical discretization approaches, which describe the discreteness of observed sequence images with mathematical expansions. We propose algorithm to solve problem and capture dynamics of materials, which approximates abundance evolution by neural networks. Furthermore, we provide theoretical support by validating the crucial properties, which verifies consistency, convergence and stability theorems. The major contributions of MiLD include defining problem by ordinary differential equations, modeling problem by dynamical discretization approach, solving problem by multitemporal unmixing algorithm, and presenting theoretical support. Our experiments on both synthetic and real datasets have validated the utility of our work
comment: 11 Pages,8 figures
Cross from Left to Right Brain: Adaptive Text Dreamer for Vision-and-Language Navigation
Vision-and-Language Navigation (VLN) requires the agent to navigate by following natural instructions under partial observability, making it difficult to align perception with language. Recent methods mitigate this by imagining future scenes, yet they rely on vision-based synthesis, leading to high computational cost and redundant details. To this end, we propose to adaptively imagine key environmental semantics via \textit{language} form, enabling a more reliable and efficient strategy. Specifically, we introduce a novel Adaptive Text Dreamer (ATD), a dual-branch self-guided imagination policy built upon a large language model (LLM). ATD is designed with a human-like left-right brain architecture, where the left brain focuses on logical integration, and the right brain is responsible for imaginative prediction of future scenes. To achieve this, we fine-tune only the Q-former within both brains to efficiently activate domain-specific knowledge in the LLM, enabling dynamic updates of logical reasoning and imagination during navigation. Furthermore, we introduce a cross-interaction mechanism to regularize the imagined outputs and inject them into a navigation expert module, allowing ATD to jointly exploit both the reasoning capacity of the LLM and the expertise of the navigation model. We conduct extensive experiments on the R2R benchmark, where ATD achieves state-of-the-art performance with fewer parameters. The code is \href{https://github.com/zhangpingrui/Adaptive-Text-Dreamer}{here}.
Frequency Composition for Compressed and Domain-Adaptive Neural Networks
Modern on-device neural network applications must operate under resource constraints while adapting to unpredictable domain shifts. However, this combined challenge-model compression and domain adaptation-remains largely unaddressed, as prior work has tackled each issue in isolation: compressed networks prioritize efficiency within a fixed domain, whereas large, capable models focus on handling domain shifts. In this work, we propose CoDA, a frequency composition-based framework that unifies compression and domain adaptation. During training, CoDA employs quantization-aware training (QAT) with low-frequency components, enabling a compressed model to selectively learn robust, generalizable features. At test time, it refines the compact model in a source-free manner (i.e., test-time adaptation, TTA), leveraging the full-frequency information from incoming data to adapt to target domains while treating high-frequency components as domain-specific cues. LFC are aligned with the trained distribution, while HFC unique to the target distribution are solely utilized for batch normalization. CoDA can be integrated synergistically into existing QAT and TTA methods. CoDA is evaluated on widely used domain-shift benchmarks, including CIFAR10-C and ImageNet-C, across various model architectures. With significant compression, it achieves accuracy improvements of 7.96%p on CIFAR10-C and 5.37%p on ImageNet-C over the full-precision TTA baseline.
comment: Work in progress
YOLO-FireAD: Efficient Fire Detection via Attention-Guided Inverted Residual Learning and Dual-Pooling Feature Preservation
Fire detection in dynamic environments faces continuous challenges, including the interference of illumination changes, many false detections or missed detections, and it is difficult to achieve both efficiency and accuracy. To address the problem of feature extraction limitation and information loss in the existing YOLO-based models, this study propose You Only Look Once for Fire Detection with Attention-guided Inverted Residual and Dual-pooling Downscale Fusion (YOLO-FireAD) with two core innovations: (1) Attention-guided Inverted Residual Block (AIR) integrates hybrid channel-spatial attention with inverted residuals to adaptively enhance fire features and suppress environmental noise; (2) Dual Pool Downscale Fusion Block (DPDF) preserves multi-scale fire patterns through learnable fusion of max-average pooling outputs, mitigating small-fire detection failures. Extensive evaluation on two public datasets shows the efficient performance of our model. Our proposed model keeps the sum amount of parameters (1.45M, 51.8% lower than YOLOv8n) (4.6G, 43.2% lower than YOLOv8n), and mAP75 is higher than the mainstream real-time object detection models YOLOv8n, YOL-Ov9t, YOLOv10n, YOLO11n, YOLOv12n and other YOLOv8 variants 1.3-5.5%.
Stereo Radargrammetry Using Deep Learning from Airborne SAR Images
In this paper, we propose a stereo radargrammetry method using deep learning from airborne Synthetic Aperture Radar (SAR) images.Deep learning-based methods are considered to suffer less from geometric image modulation, while there is no public SAR image dataset used to train such methods.We create a SAR image dataset and perform fine-tuning of a deep learning-based image correspondence method.The proposed method suppresses the degradation of image quality by pixel interpolation without ground projection of the SAR image and divides the SAR image into patches for processing, which makes it possible to apply deep learning.Through a set of experiments, we demonstrate that the proposed method exhibits a wider range and more accurate elevation measurements compared to conventional methods.
comment: 5 pages, 5 figures, conference IGARSS2025
Fork-Merge Decoding: Enhancing Multimodal Understanding in Audio-Visual Large Language Models
The goal of this work is to enhance balanced multimodal understanding in audio-visual large language models (AV-LLMs) by addressing modality bias without requiring additional training. In current AV-LLMs, audio and video features are typically processed jointly in the decoder. While this strategy facilitates unified multimodal understanding, it may introduce modality bias, where the model tends to over-rely on one modality due to imbalanced training signals. To mitigate this, we propose Fork-Merge Decoding (FMD), a simple yet effective inference-time strategy that requires no additional training or architectural modifications. FMD first performs modality-specific reasoning by processing audio-only and video-only inputs through the early decoder layers (a fork phase), and then merges the resulting hidden states for joint reasoning in the remaining layers (a merge phase). This approach promotes balanced modality contributions and leverages complementary information across modalities. We evaluate our method on two representative AV-LLMs, VideoLLaMA2 and video-SALMONN, using three benchmark datasets. Experimental results demonstrate consistent performance improvements on tasks focused on audio, video, and combined audio-visual reasoning, demonstrating the effectiveness of inference-time interventions for robust multimodal understanding.
In Context Learning with Vision Transformers: Case Study
Large transformer models have been shown to be capable of performing in-context learning. By using examples in a prompt as well as a query, they are capable of performing tasks such as few-shot, one-shot, or zero-shot learning to output the corresponding answer to this query. One area of interest to us is that these transformer models have been shown to be capable of learning the general class of certain functions, such as linear functions and small 2-layer neural networks, on random data (Garg et al, 2023). We aim to extend this to the image space to analyze their capability to in-context learn more complex functions on the image space, such as convolutional neural networks and other methods.
comment: 12 pages, 16 figures. UC Berkeley research project
Sci-Fi: Symmetric Constraint for Frame Inbetweening
Frame inbetweening aims to synthesize intermediate video sequences conditioned on the given start and end frames. Current state-of-the-art methods mainly extend large-scale pre-trained Image-to-Video Diffusion models (I2V-DMs) by incorporating end-frame constraints via directly fine-tuning or omitting training. We identify a critical limitation in their design: Their injections of the end-frame constraint usually utilize the same mechanism that originally imposed the start-frame (single image) constraint. However, since the original I2V-DMs are adequately trained for the start-frame condition in advance, naively introducing the end-frame constraint by the same mechanism with much less (even zero) specialized training probably can't make the end frame have a strong enough impact on the intermediate content like the start frame. This asymmetric control strength of the two frames over the intermediate content likely leads to inconsistent motion or appearance collapse in generated frames. To efficiently achieve symmetric constraints of start and end frames, we propose a novel framework, termed Sci-Fi, which applies a stronger injection for the constraint of a smaller training scale. Specifically, it deals with the start-frame constraint as before, while introducing the end-frame constraint by an improved mechanism. The new mechanism is based on a well-designed lightweight module, named EF-Net, which encodes only the end frame and expands it into temporally adaptive frame-wise features injected into the I2V-DM. This makes the end-frame constraint as strong as the start-frame constraint, enabling our Sci-Fi to produce more harmonious transitions in various scenarios. Extensive experiments prove the superiority of our Sci-Fi compared with other baselines.
comment: 22 pages, 9 figures
NoisyRollout: Reinforcing Visual Reasoning with Data Augmentation
Recent advances in reinforcement learning (RL) have strengthened the reasoning capabilities of vision-language models (VLMs). However, enhancing policy exploration to better scale test-time compute remains largely underexplored. In addition, VLMs continue to struggle with imperfect visual perception, which in turn affects the subsequent reasoning process. To this end, we propose NoisyRollout, a simple yet effective data augmentation method that mixes trajectories from both clean and moderately distorted images during RL training. By injecting targeted diversity in visual perception and the resulting reasoning patterns, NoisyRollout promotes better policy exploration through vision-oriented inductive biases, ultimately leading to more robust reasoning behaviors. We further adopt a noise annealing schedule that gradually reduces distortion strength over training, leveraging noisy signals early on while ensuring training stability in later stages. Crucially, our method is easy-to-adopt--requiring no additional training cost and no modifications to the RL objective. Extensive experiments on $2$ distinct training datasets demonstrate that NoisyRollout achieves state-of-the-art performance among open-source RL-tuned models across $5$ out-of-domain reasoning and perception benchmarks. Furthermore, we validate the effectiveness of NoisyRollout across model sizes ($7$B and $32$B) and data scales (from $1$K to $6$K), highlighting its generalizability and scalability.
comment: Technical Report
EmoNet-Face: An Expert-Annotated Benchmark for Synthetic Emotion Recognition
Effective human-AI interaction relies on AI's ability to accurately perceive and interpret human emotions. Current benchmarks for vision and vision-language models are severely limited, offering a narrow emotional spectrum that overlooks nuanced states (e.g., bitterness, intoxication) and fails to distinguish subtle differences between related feelings (e.g., shame vs. embarrassment). Existing datasets also often use uncontrolled imagery with occluded faces and lack demographic diversity, risking significant bias. To address these critical gaps, we introduce EmoNet Face, a comprehensive benchmark suite. EmoNet Face features: (1) A novel 40-category emotion taxonomy, meticulously derived from foundational research to capture finer details of human emotional experiences. (2) Three large-scale, AI-generated datasets (EmoNet HQ, Binary, and Big) with explicit, full-face expressions and controlled demographic balance across ethnicity, age, and gender. (3) Rigorous, multi-expert annotations for training and high-fidelity evaluation. (4) We built EmpathicInsight-Face, a model achieving human-expert-level performance on our benchmark. The publicly released EmoNet Face suite - taxonomy, datasets, and model - provides a robust foundation for developing and evaluating AI systems with a deeper understanding of human emotions.
Semantic Correspondence: Unified Benchmarking and a Strong Baseline
Establishing semantic correspondence is a challenging task in computer vision, aiming to match keypoints with the same semantic information across different images. Benefiting from the rapid development of deep learning, remarkable progress has been made over the past decade. However, a comprehensive review and analysis of this task remains absent. In this paper, we present the first extensive survey of semantic correspondence methods. We first propose a taxonomy to classify existing methods based on the type of their method designs. These methods are then categorized accordingly, and we provide a detailed analysis of each approach. Furthermore, we aggregate and summarize the results of methods in literature across various benchmarks into a unified comparative table, with detailed configurations to highlight performance variations. Additionally, to provide a detailed understanding on existing methods for semantic matching, we thoroughly conduct controlled experiments to analyse the effectiveness of the components of different methods. Finally, we propose a simple yet effective baseline that achieves state-of-the-art performance on multiple benchmarks, providing a solid foundation for future research in this field. We hope this survey serves as a comprehensive reference and consolidated baseline for future development. Code is publicly available at: https://github.com/Visual-AI/Semantic-Correspondence.
Dynamic-I2V: Exploring Image-to-Video Generation Models via Multimodal LLM
Recent advancements in image-to-video (I2V) generation have shown promising performance in conventional scenarios. However, these methods still encounter significant challenges when dealing with complex scenes that require a deep understanding of nuanced motion and intricate object-action relationships. To address these challenges, we present Dynamic-I2V, an innovative framework that integrates Multimodal Large Language Models (MLLMs) to jointly encode visual and textual conditions for a diffusion transformer (DiT) architecture. By leveraging the advanced multimodal understanding capabilities of MLLMs, our model significantly improves motion controllability and temporal coherence in synthesized videos. The inherent multimodality of Dynamic-I2V further enables flexible support for diverse conditional inputs, extending its applicability to various downstream generation tasks. Through systematic analysis, we identify a critical limitation in current I2V benchmarks: a significant bias towards favoring low-dynamic videos, stemming from an inadequate balance between motion complexity and visual quality metrics. To resolve this evaluation gap, we propose DIVE - a novel assessment benchmark specifically designed for comprehensive dynamic quality measurement in I2V generation. In conclusion, extensive quantitative and qualitative experiments confirm that Dynamic-I2V attains state-of-the-art performance in image-to-video generation, particularly revealing significant improvements of 42.5%, 7.9%, and 11.8% in dynamic range, controllability, and quality, respectively, as assessed by the DIVE metric in comparison to existing methods.
ZeroPur: Succinct Training-Free Adversarial Purification
Adversarial purification is a kind of defense technique that can defend against various unseen adversarial attacks without modifying the victim classifier. Existing methods often depend on external generative models or cooperation between auxiliary functions and victim classifiers. However, retraining generative models, auxiliary functions, or victim classifiers relies on the domain of the fine-tuned dataset and is computation-consuming. In this work, we suppose that adversarial images are outliers of the natural image manifold, and the purification process can be considered as returning them to this manifold. Following this assumption, we present a simple adversarial purification method without further training to purify adversarial images, called ZeroPur. ZeroPur contains two steps: given an adversarial example, Guided Shift obtains the shifted embedding of the adversarial example by the guidance of its blurred counterparts; after that, Adaptive Projection constructs a directional vector by this shifted embedding to provide momentum, projecting adversarial images onto the manifold adaptively. ZeroPur is independent of external models and requires no retraining of victim classifiers or auxiliary functions, relying solely on victim classifiers themselves to achieve purification. Extensive experiments on three datasets (CIFAR-10, CIFAR-100, and ImageNet-1K) using various classifier architectures (ResNet, WideResNet) demonstrate that our method achieves state-of-the-art robust performance. The code will be publicly available.
comment: 17 pages, 7 figures, under review
SAIL: Self-supervised Albedo Estimation from Real Images with a Latent Diffusion Model
Intrinsic image decomposition aims at separating an image into its underlying albedo and shading components, isolating the base color from lighting effects to enable downstream applications such as virtual relighting and scene editing. Despite the rise and success of learning-based approaches, intrinsic image decomposition from real-world images remains a significant challenging task due to the scarcity of labeled ground-truth data. Most existing solutions rely on synthetic data as supervised setups, limiting their ability to generalize to real-world scenes. Self-supervised methods, on the other hand, often produce albedo maps that contain reflections and lack consistency under different lighting conditions. To address this, we propose SAIL, an approach designed to estimate albedo-like representations from single-view real-world images. We repurpose the prior knowledge of a latent diffusion model for unconditioned scene relighting as a surrogate objective for albedo estimation. To extract the albedo, we introduce a novel intrinsic image decomposition fully formulated in the latent space. To guide the training of our latent diffusion model, we introduce regularization terms that constrain both the lighting-dependent and independent components of our latent image decomposition. SAIL predicts stable albedo under varying lighting conditions and generalizes to multiple scenes, using only unlabeled multi-illumination data available online.
comment: Project page: https://hala-djeghim.github.io/SAIL/
SuperAD: A Training-free Anomaly Classification and Segmentation Method for CVPR 2025 VAND 3.0 Workshop Challenge Track 1: Adapt & Detect
In this technical report, we present our solution to the CVPR 2025 Visual Anomaly and Novelty Detection (VAND) 3.0 Workshop Challenge Track 1: Adapt & Detect: Robust Anomaly Detection in Real-World Applications. In real-world industrial anomaly detection, it is crucial to accurately identify anomalies with physical complexity, such as transparent or reflective surfaces, occlusions, and low-contrast contaminations. The recently proposed MVTec AD 2 dataset significantly narrows the gap between publicly available benchmarks and anomalies found in real-world industrial environments. To address the challenges posed by this dataset--such as complex and varying lighting conditions and real anomalies with large scale differences--we propose a fully training-free anomaly detection and segmentation method based on feature extraction using the DINOv2 model named SuperAD. Our method carefully selects a small number of normal reference images and constructs a memory bank by leveraging the strong representational power of DINOv2. Anomalies are then segmented by performing nearest neighbor matching between test image features and the memory bank. Our method achieves competitive results on both test sets of the MVTec AD 2 dataset.
Modality Curation: Building Universal Embeddings for Advanced Multimodal Information Retrieval
Multimodal information retrieval (MIR) faces inherent challenges due to the heterogeneity of data sources and the complexity of cross-modal alignment. While previous studies have identified modal gaps in feature spaces, a systematic approach to address these challenges remains unexplored. In this work, we introduce UNITE, a universal framework that tackles these challenges through two critical yet underexplored aspects: data curation and modality-aware training configurations. Our work provides the first comprehensive analysis of how modality-specific data properties influence downstream task performance across diverse scenarios. Moreover, we propose Modal-Aware Masked Contrastive Learning (MAMCL) to mitigate the competitive relationships among the instances of different modalities. Our framework achieves state-of-the-art results on multiple multimodal retrieval benchmarks, outperforming existing methods by notable margins. Through extensive experiments, we demonstrate that strategic modality curation and tailored training protocols are pivotal for robust cross-modal representation learning. This work not only advances MIR performance but also provides a foundational blueprint for future research in multimodal systems. Our project is available at https://friedrichor.github.io/projects/UNITE.
comment: 26 pages, project page: https://friedrichor.github.io/projects/UNITE
Auto-nnU-Net: Towards Automated Medical Image Segmentation
Medical Image Segmentation (MIS) includes diverse tasks, from bone to organ segmentation, each with its own challenges in finding the best segmentation model. The state-of-the-art AutoML-related MIS-framework nnU-Net automates many aspects of model configuration but remains constrained by fixed hyperparameters and heuristic design choices. As a full-AutoML framework for MIS, we propose Auto-nnU-Net, a novel nnU-Net variant enabling hyperparameter optimization (HPO), neural architecture search (NAS), and hierarchical NAS (HNAS). Additionally, we propose Regularized PriorBand to balance model accuracy with the computational resources required for training, addressing the resource constraints often faced in real-world medical settings that limit the feasibility of extensive training procedures. We evaluate our approach across diverse MIS datasets from the well-established Medical Segmentation Decathlon, analyzing the impact of AutoML techniques on segmentation performance, computational efficiency, and model design choices. The results demonstrate that our AutoML approach substantially improves the segmentation performance of nnU-Net on 6 out of 10 datasets and is on par on the other datasets while maintaining practical resource requirements. Our code is available at https://github.com/automl/AutoNNUnet.
comment: 31 pages, 19 figures. Accepted for publication at AutoML 2025
When Are Concepts Erased From Diffusion Models?
Concept erasure, the ability to selectively prevent a model from generating specific concepts, has attracted growing interest, with various approaches emerging to address the challenge. However, it remains unclear how thoroughly these methods erase the target concept. We begin by proposing two conceptual models for the erasure mechanism in diffusion models: (i) reducing the likelihood of generating the target concept, and (ii) interfering with the model's internal guidance mechanisms. To thoroughly assess whether a concept has been truly erased from the model, we introduce a suite of independent evaluations. Our evaluation framework includes adversarial attacks, novel probing techniques, and analysis of the model's alternative generations in place of the erased concept. Our results shed light on the tension between minimizing side effects and maintaining robustness to adversarial prompts. Broadly, our work underlines the importance of comprehensive evaluation for erasure in diffusion models.
comment: Project Page: https://nyu-dice-lab.github.io/when-are-concepts-erased/
Bringing Objects to Life: training-free 4D generation from 3D objects through view consistent noise
Recent advancements in generative models have enabled the creation of dynamic 4D content - 3D objects in motion - based on text prompts, which holds potential for applications in virtual worlds, media, and gaming. Existing methods provide control over the appearance of generated content, including the ability to animate 3D objects. However, their ability to generate dynamics is limited to the mesh datasets they were trained on, lacking any growth or structural development capability. In this work, we introduce a training-free method for animating 3D objects by conditioning on textual prompts to guide 4D generation, enabling custom general scenes while maintaining the original object's identity. We first convert a 3D mesh into a static 4D Neural Radiance Field (NeRF) that preserves the object's visual attributes. Then, we animate the object using an Image-to-Video diffusion model driven by text. To improve motion realism, we introduce a view-consistent noising protocol that aligns object perspectives with the noising process to promote lifelike movement, and a masked Score Distillation Sampling (SDS) loss that leverages attention maps to focus optimization on relevant regions, better preserving the original object. We evaluate our model on two different 3D object datasets for temporal coherence, prompt adherence, and visual fidelity, and find that our method outperforms the baseline based on multiview training, achieving better consistency with the textual prompt in hard scenarios.
Can Large Language Models Understand Symbolic Graphics Programs? ICLR 2025
Against the backdrop of enthusiasm for large language models (LLMs), there is a growing need to scientifically assess their capabilities and shortcomings. This is nontrivial in part because it is difficult to find tasks which the models have not encountered during training. Utilizing symbolic graphics programs, we propose a domain well-suited to test multiple spatial-semantic reasoning skills of LLMs. Popular in computer graphics, these programs procedurally generate visual data. While LLMs exhibit impressive skills in general program synthesis and analysis, symbolic graphics programs offer a new layer of evaluation: they allow us to test an LLM's ability to answer semantic questions about the images or 3D geometries without a vision encoder. To semantically understand the symbolic programs, LLMs would need to possess the ability to "imagine" and reason how the corresponding graphics content would look with only the symbolic description of the local curvatures and strokes. We use this task to evaluate LLMs by creating a large benchmark for the semantic visual understanding of symbolic graphics programs, built procedurally with minimal human effort. Particular emphasis is placed on transformations of images that leave the image level semantics invariant while introducing significant changes to the underlying program. We evaluate commercial and open-source LLMs on our benchmark to assess their ability to reason about visual output of programs, finding that LLMs considered stronger at reasoning generally perform better. Lastly, we introduce a novel method to improve this ability -- Symbolic Instruction Tuning (SIT), in which the LLM is finetuned with pre-collected instruction data on symbolic graphics programs. Interestingly, we find that SIT not only improves LLM's understanding on symbolic programs, but it also improves general reasoning ability on various other benchmarks.
comment: ICLR 2025 Spotlight (v4: 47 pages, 26 figures, project page: https://sgp-bench.github.io/)
HA-VLN: A Benchmark for Human-Aware Navigation in Discrete-Continuous Environments with Dynamic Multi-Human Interactions, Real-World Validation, and an Open Leaderboard
Vision-and-Language Navigation (VLN) systems often focus on either discrete (panoramic) or continuous (free-motion) paradigms alone, overlooking the complexities of human-populated, dynamic environments. We introduce a unified Human-Aware VLN (HA-VLN) benchmark that merges these paradigms under explicit social-awareness constraints. Our contributions include: 1. A standardized task definition that balances discrete-continuous navigation with personal-space requirements; 2. An enhanced human motion dataset (HAPS 2.0) and upgraded simulators capturing realistic multi-human interactions, outdoor contexts, and refined motion-language alignment; 3. Extensive benchmarking on 16,844 human-centric instructions, revealing how multi-human dynamics and partial observability pose substantial challenges for leading VLN agents; 4. Real-world robot tests validating sim-to-real transfer in crowded indoor spaces; and 5. A public leaderboard supporting transparent comparisons across discrete and continuous tasks. Empirical results show improved navigation success and fewer collisions when social context is integrated, underscoring the need for human-centric design. By releasing all datasets, simulators, agent code, and evaluation tools, we aim to advance safer, more capable, and socially responsible VLN research.
comment: 27 pages, 21 figures, with added experiments and analysis, website: https://ha-vln-project.vercel.app/
DADM: Dual Alignment of Domain and Modality for Face Anti-spoofing
With the availability of diverse sensor modalities (i.e., RGB, Depth, Infrared) and the success of multi-modal learning, multi-modal face anti-spoofing (FAS) has emerged as a prominent research focus. The intuition behind it is that leveraging multiple modalities can uncover more intrinsic spoofing traces. However, this approach presents more risk of misalignment. We identify two main types of misalignment: (1) \textbf{Intra-domain modality misalignment}, where the importance of each modality varies across different attacks. For instance, certain modalities (e.g., Depth) may be non-defensive against specific attacks (e.g., 3D mask), indicating that each modality has unique strengths and weaknesses in countering particular attacks. Consequently, simple fusion strategies may fall short. (2) \textbf{Inter-domain modality misalignment}, where the introduction of additional modalities exacerbates domain shifts, potentially overshadowing the benefits of complementary fusion. To tackle (1), we propose a alignment module between modalities based on mutual information, which adaptively enhances favorable modalities while suppressing unfavorable ones. To address (2), we employ a dual alignment optimization method that aligns both sub-domain hyperplanes and modality angle margins, thereby mitigating domain gaps. Our method, dubbed \textbf{D}ual \textbf{A}lignment of \textbf{D}omain and \textbf{M}odality (DADM), achieves state-of-the-art performance in extensive experiments across four challenging protocols demonstrating its robustness in multi-modal domain generalization scenarios. The codes will be released soon.
comment: 18 pages, 9 figures, Code: https://github.com/yjyddq/DADM
Deepfake-Eval-2024: A Multi-Modal In-the-Wild Benchmark of Deepfakes Circulated in 2024
In the age of increasingly realistic generative AI, robust deepfake detection is essential for mitigating fraud and disinformation. While many deepfake detectors report high accuracy on academic datasets, we show that these academic benchmarks are out of date and not representative of real-world deepfakes. We introduce Deepfake-Eval-2024, a new deepfake detection benchmark consisting of in-the-wild deepfakes collected from social media and deepfake detection platform users in 2024. Deepfake-Eval-2024 consists of 45 hours of videos, 56.5 hours of audio, and 1,975 images, encompassing the latest manipulation technologies. The benchmark contains diverse media content from 88 different websites in 52 different languages. We find that the performance of open-source state-of-the-art deepfake detection models drops precipitously when evaluated on Deepfake-Eval-2024, with AUC decreasing by 50% for video, 48% for audio, and 45% for image models compared to previous benchmarks. We also evaluate commercial deepfake detection models and models finetuned on Deepfake-Eval-2024, and find that they have superior performance to off-the-shelf open-source models, but do not yet reach the accuracy of deepfake forensic analysts. The dataset is available at https://github.com/nuriachandra/Deepfake-Eval-2024.
OrionBench: A Benchmark for Chart and Human-Recognizable Object Detection in Infographics
Given the central role of charts in scientific, business, and communication contexts, enhancing the chart understanding capabilities of vision-language models (VLMs) has become increasingly critical. A key limitation of existing VLMs lies in their inaccurate visual grounding of infographic elements, including charts and human-recognizable objects (HROs) such as icons and images. However, chart understanding often requires identifying relevant elements and reasoning over them. To address this limitation, we introduce OrionBench, a benchmark designed to support the development of accurate object detection models for charts and HROs in infographics. It contains 26,250 real and 78,750 synthetic infographics, with over 6.9 million bounding box annotations. These annotations are created by combining the model-in-the-loop and programmatic methods. We demonstrate the usefulness of OrionBench through three applications: 1) constructing a Thinking-with-Boxes scheme to boost the chart understanding performance of VLMs, 2) comparing existing object detection models, and 3) applying the developed detection model to document layout and UI element detection.
Chain-of-Zoom: Extreme Super-Resolution via Scale Autoregression and Preference Alignment
Modern single-image super-resolution (SISR) models deliver photo-realistic results at the scale factors on which they are trained, but collapse when asked to magnify far beyond that regime. We address this scalability bottleneck with Chain-of-Zoom (CoZ), a model-agnostic framework that factorizes SISR into an autoregressive chain of intermediate scale-states with multi-scale-aware prompts. CoZ repeatedly re-uses a backbone SR model, decomposing the conditional probability into tractable sub-problems to achieve extreme resolutions without additional training. Because visual cues diminish at high magnifications, we augment each zoom step with multi-scale-aware text prompts generated by a vision-language model (VLM). The prompt extractor itself is fine-tuned using Generalized Reward Policy Optimization (GRPO) with a critic VLM, aligning text guidance towards human preference. Experiments show that a standard 4x diffusion SR model wrapped in CoZ attains beyond 256x enlargement with high perceptual quality and fidelity. Project Page: https://bryanswkim.github.io/chain-of-zoom/ .
comment: Project Page: https://bryanswkim.github.io/chain-of-zoom/
Envisioning Beyond the Pixels: Benchmarking Reasoning-Informed Visual Editing
Large Multi-modality Models (LMMs) have made significant progress in visual understanding and generation, but they still face challenges in General Visual Editing, particularly in following complex instructions, preserving appearance consistency, and supporting flexible input formats. To study this gap, we introduce RISEBench, the first benchmark for evaluating Reasoning-Informed viSual Editing (RISE). RISEBench focuses on four key reasoning categories: Temporal, Causal, Spatial, and Logical Reasoning. We curate high-quality test cases for each category and propose an robust evaluation framework that assesses Instruction Reasoning, Appearance Consistency, and Visual Plausibility with both human judges and the LMM-as-a-judge approach. We conducted experiments evaluating nine prominent visual editing models, comprising both open-source and proprietary models. The evaluation results demonstrate that current models face significant challenges in reasoning-based editing tasks. Even the most powerful model evaluated, GPT-4o-Image, achieves an accuracy of merely 28.8%. RISEBench effectively highlights the limitations of contemporary editing models, provides valuable insights, and indicates potential future directions for the field of reasoning-aware visual editing. Our code and data have been released at https://github.com/PhoenixZ810/RISEBench.
Cognitive Disentanglement for Referring Multi-Object Tracking
As a significant application of multi-source information fusion in intelligent transportation perception systems, Referring Multi-Object Tracking (RMOT) involves localizing and tracking specific objects in video sequences based on language references. However, existing RMOT approaches often treat language descriptions as holistic embeddings and struggle to effectively integrate the rich semantic information contained in language expressions with visual features. This limitation is especially apparent in complex scenes requiring comprehensive understanding of both static object attributes and spatial motion information. In this paper, we propose a Cognitive Disentanglement for Referring Multi-Object Tracking (CDRMT) framework that addresses these challenges. It adapts the "what" and "where" pathways from the human visual processing system to RMOT tasks. Specifically, our framework first establishes cross-modal connections while preserving modality-specific characteristics. It then disentangles language descriptions and hierarchically injects them into object queries, refining object understanding from coarse to fine-grained semantic levels. Finally, we reconstruct language representations based on visual features, ensuring that tracked objects faithfully reflect the referring expression. Extensive experiments on different benchmark datasets demonstrate that CDRMT achieves substantial improvements over state-of-the-art methods, with average gains of 6.0% in HOTA score on Refer-KITTI and 3.2% on Refer-KITTI-V2. Our approach advances the state-of-the-art in RMOT while simultaneously providing new insights into multi-source information fusion.
comment: 27 pages, 12 figures
Regularized Personalization of Text-to-Image Diffusion Models without Distributional Drift
Personalization using text-to-image diffusion models involves adapting a pretrained model to novel subjects with only a few image examples. This task presents a fundamental challenge, as the model must not only learn the new subject effectively but also preserve its ability to generate diverse and coherent outputs across a wide range of prompts. In other words, successful personalization requires integrating new concepts without forgetting previously learned generative capabilities. Forgetting denotes unintended distributional drift, where the model's output distribution deviates from that of the original pretrained model. In this paper, we provide an analysis of this issue and identify a mismatch between standard training objectives and the goals of personalization. To address this, we propose a new training objective based on a Lipschitz-bounded formulation that explicitly constrains deviation from the pretrained distribution. Our method provides improved control over distributional drift and performs well even in data-scarce scenarios. Experimental results demonstrate that our approach consistently outperforms existing personalization methods, achieving higher CLIP-T, CLIP-I, and DINO scores.
One-Step Residual Shifting Diffusion for Image Super-Resolution via Distillation
Diffusion models for super-resolution (SR) produce high-quality visual results but require expensive computational costs. Despite the development of several methods to accelerate diffusion-based SR models, some (e.g., SinSR) fail to produce realistic perceptual details, while others (e.g., OSEDiff) may hallucinate non-existent structures. To overcome these issues, we present RSD, a new distillation method for ResShift, one of the top diffusion-based SR models. Our method is based on training the student network to produce such images that a new fake ResShift model trained on them will coincide with the teacher model. RSD achieves single-step restoration and outperforms the teacher by a large margin. We show that our distillation method can surpass the other distillation-based method for ResShift - SinSR - making it on par with state-of-the-art diffusion-based SR distillation methods. Compared to SR methods based on pre-trained text-to-image models, RSD produces competitive perceptual quality, provides images with better alignment to degraded input images, and requires fewer parameters and GPU memory. We provide experimental results on various real-world and synthetic datasets, including RealSR, RealSet65, DRealSR, ImageNet, and DIV2K.
SHARDeg: A Benchmark for Skeletal Human Action Recognition in Degraded Scenarios
Computer vision (CV) models for detection, prediction or classification tasks operate on video data-streams that are often degraded in the real world, due to deployment in real-time or on resource-constrained hardware. It is therefore critical that these models are robust to degraded data, but state of the art (SoTA) models are often insufficiently assessed with these real-world constraints in mind. This is exemplified by Skeletal Human Action Recognition (SHAR), which is critical in many CV pipelines operating in real-time and at the edge, but robustness to degraded data has previously only been shallowly and inconsistently assessed. Here we address this issue for SHAR by providing an important first data degradation benchmark on the most detailed and largest 3D open dataset, NTU-RGB+D-120, and assess the robustness of five leading SHAR models to three forms of degradation that represent real-world issues. We demonstrate the need for this benchmark by showing that the form of degradation, which has not previously been considered, has a large impact on model accuracy; at the same effective frame rate, model accuracy can vary by >40% depending on degradation type. We also identify that temporal regularity of frames in degraded SHAR data is likely a major driver of differences in model performance, and harness this to improve performance of existing models by up to >40%, through employing a simple mitigation approach based on interpolation. Finally, we highlight how our benchmark has helped identify an important degradation-resistant SHAR model based in Rough Path Theory; the LogSigRNN SHAR model outperforms the SoTA DeGCN model in five out of six cases at low frame rates by an average accuracy of 6%, despite trailing the SoTA model by 11-12% on un-degraded data at high frame rates (30 FPS).
comment: 19 pages, 2 images, updated acknowledgements versus previous versions to be compliant with funders
CDPDNet: Integrating Text Guidance with Hybrid Vision Encoders for Medical Image Segmentation
Most publicly available medical segmentation datasets are only partially labeled, with annotations provided for a subset of anatomical structures. When multiple datasets are combined for training, this incomplete annotation poses challenges, as it limits the model's ability to learn shared anatomical representations among datasets. Furthermore, vision-only frameworks often fail to capture complex anatomical relationships and task-specific distinctions, leading to reduced segmentation accuracy and poor generalizability to unseen datasets. In this study, we proposed a novel CLIP-DINO Prompt-Driven Segmentation Network (CDPDNet), which combined a self-supervised vision transformer with CLIP-based text embedding and introduced task-specific text prompts to tackle these challenges. Specifically, the framework was constructed upon a convolutional neural network (CNN) and incorporated DINOv2 to extract both fine-grained and global visual features, which were then fused using a multi-head cross-attention module to overcome the limited long-range modeling capability of CNNs. In addition, CLIP-derived text embeddings were projected into the visual space to help model complex relationships among organs and tumors. To further address the partial label challenge and enhance inter-task discriminative capability, a Text-based Task Prompt Generation (TTPG) module that generated task-specific prompts was designed to guide the segmentation. Extensive experiments on multiple medical imaging datasets demonstrated that CDPDNet consistently outperformed existing state-of-the-art segmentation methods. Code and pretrained model are available at: https://github.com/wujiong-hub/CDPDNet.git.
Recent Advances in Diffusion Models for Hyperspectral Image Processing and Analysis: A Review
Hyperspectral image processing and analysis has important application value in remote sensing, agriculture and environmental monitoring, but its high dimensionality, data redundancy and noise interference etc. bring great challenges to the analysis. Traditional models have limitations in dealing with these complex data, and it is difficult to meet the increasing demand for analysis. In recent years, Diffusion models, as a class of emerging generative approaches, have demonstrated promising capabilities in hyperspectral image (HSI) processing tasks. By simulating the diffusion process of data in time, the Diffusion Model are capable of modeling high-dimensional spectral structures, generate high-quality samples, and achieve competitive performance in spectral-spatial denoising tasks and data enhancement. In this paper, we review the recent research advances in diffusion modeling for hyperspectral image processing and analysis, and discuss its applications in tasks such as high-dimensional data processing, noise removal, classification, and anomaly detection. The performance of diffusion-based models on image processing is compared and the challenges are summarized. It is shown that the diffusion model can significantly improve the accuracy and efficiency of hyperspectral image analysis, providing a new direction for future research.
Plan-R1: Safe and Feasible Trajectory Planning as Language Modeling
Safe and feasible trajectory planning is essential for real-world autonomous driving systems. However, existing learning-based planning methods often rely on expert demonstrations, which not only lack explicit safety awareness but also risk inheriting unsafe behaviors such as speeding from suboptimal human driving data. Inspired by the success of large language models, we propose Plan-R1, a novel two-stage trajectory planning framework that formulates trajectory planning as a sequential prediction task, guided by explicit planning principles such as safety, comfort, and traffic rule compliance. In the first stage, we train an autoregressive trajectory predictor via next motion token prediction on expert data. In the second stage, we design rule-based rewards (e.g., collision avoidance, speed limits) and fine-tune the model using Group Relative Policy Optimization (GRPO), a reinforcement learning strategy, to align its predictions with these planning principles. Experiments on the nuPlan benchmark demonstrate that our Plan-R1 significantly improves planning safety and feasibility, achieving state-of-the-art performance. Our code will be made public soon.
SURDS: Benchmarking Spatial Understanding and Reasoning in Driving Scenarios with Vision Language Models
Accurate spatial reasoning in outdoor environments - covering geometry, object pose, and inter-object relationships - is fundamental to downstream tasks such as mapping, motion forecasting, and high-level planning in autonomous driving. We introduce SURDS, a large-scale benchmark designed to systematically evaluate the spatial reasoning capabilities of vision language models (VLMs). Built on the nuScenes dataset, SURDS comprises 41,080 vision-question-answer training instances and 9,250 evaluation samples, spanning six spatial categories: orientation, depth estimation, pixel-level localization, pairwise distance, lateral ordering, and front-behind relations. We benchmark leading general-purpose VLMs, including GPT, Gemini, and Qwen, revealing persistent limitations in fine-grained spatial understanding. To address these deficiencies, we go beyond static evaluation and explore whether alignment techniques can improve spatial reasoning performance. Specifically, we propose a reinforcement learning-based alignment scheme leveraging spatially grounded reward signals - capturing both perception-level accuracy (location) and reasoning consistency (logic). We further incorporate final-answer correctness and output-format rewards to guide fine-grained policy adaptation. Our GRPO-aligned variant achieves an overall score of 40.80 in the SURDS benchmark. Notably, it outperforms proprietary systems such as GPT-4o (13.30) and Gemini-2.0-flash (35.71). To our best knowledge, this is the first study to demonstrate that reinforcement learning-based alignment can significantly and consistently enhance the spatial reasoning capabilities of VLMs in real-world driving contexts. We release the SURDS benchmark, evaluation toolkit, and GRPO alignment code through: https://github.com/XiandaGuo/Drive-MLLM.
Quantum autoencoders for image classification
Classical machine learning often struggles with complex, high-dimensional data. Quantum machine learning offers a potential solution, promising more efficient processing. The quantum convolutional neural network (QCNN), a hybrid algorithm, fits current noisy intermediate-scale quantum hardware. However, its training depends largely on classical computation. Future gate-based quantum computers may realize full quantum advantages. In contrast to QCNNs, quantum autoencoders (QAEs) leverage classical optimization solely for parameter tuning. Data compression and reconstruction are handled entirely within quantum circuits, enabling purely quantum-based feature extraction. This study introduces a novel image-classification approach using QAEs, achieving classification without requiring additional qubits compared with conventional QAE implementations. The quantum circuit structure significantly impacts classification accuracy. Unlike hybrid methods such as QCNN, QAE-based classification emphasizes quantum computation. Our experiments demonstrate high accuracy in a four-class classification task, evaluating various quantum-gate configurations to understand the impact of different parameterized quantum circuit structures on classification performance. Specifically, noise-free conditions are considered, and simulations are performed using a statevector simulator to model the quantum system with full amplitude precision. Our results reveal that specific ansatz structures achieve superior accuracy. Moreover, the proposed approach achieves performance comparable to that of conventional machine-learning methods while significantly reducing the number of parameters requiring optimization. These findings indicate that QAEs can serve as efficient classification models with fewer parameters and highlight the potential of utilizing quantum circuits for complete end-to-end learning.
PointLoRA: Low-Rank Adaptation with Token Selection for Point Cloud Learning CVPR2025
Self-supervised representation learning for point cloud has demonstrated effectiveness in improving pre-trained model performance across diverse tasks. However, as pre-trained models grow in complexity, fully fine-tuning them for downstream applications demands substantial computational and storage resources. Parameter-efficient fine-tuning (PEFT) methods offer a promising solution to mitigate these resource requirements, yet most current approaches rely on complex adapter and prompt mechanisms that increase tunable parameters. In this paper, we propose PointLoRA, a simple yet effective method that combines low-rank adaptation (LoRA) with multi-scale token selection to efficiently fine-tune point cloud models. Our approach embeds LoRA layers within the most parameter-intensive components of point cloud transformers, reducing the need for tunable parameters while enhancing global feature capture. Additionally, multi-scale token selection extracts critical local information to serve as prompts for downstream fine-tuning, effectively complementing the global context captured by LoRA. The experimental results across various pre-trained models and three challenging public datasets demonstrate that our approach achieves competitive performance with only 3.43% of the trainable parameters, making it highly effective for resource-constrained applications. Source code is available at: https://github.com/songw-zju/PointLoRA.
comment: Accepted by CVPR2025
Towards Generalized Proactive Defense against Face Swapping with Contour-Hybrid Watermark
Face swapping, recognized as a privacy and security concern, has prompted considerable defensive research. With the advancements in AI-generated content, the discrepancies between the real and swapped faces have become nuanced. Considering the difficulty of forged traces detection, we shift the focus to the face swapping purpose and proactively embed elaborate watermarks against unknown face swapping techniques. Given that the constant purpose is to swap the original face identity while preserving the background, we concentrate on the regions surrounding the face to ensure robust watermark generation, while embedding the contour texture and face identity information to achieve progressive image determination. The watermark is located in the facial contour and contains hybrid messages, dubbed the contour-hybrid watermark (CMark). Our approach generalizes face swapping detection without requiring any swapping techniques during training and the storage of large-scale messages in advance. Experiments conducted across 8 face swapping techniques demonstrate the superiority of our approach compared with state-of-the-art passive and proactive detectors while achieving a favorable balance between the image quality and watermark robustness.
comment: 16 pages, 11 figures, under review
SPF-Portrait: Towards Pure Text-to-Portrait Customization with Semantic Pollution-Free Fine-Tuning
Fine-tuning a pre-trained Text-to-Image (T2I) model on a tailored portrait dataset is the mainstream method for text-to-portrait customization. However, existing methods often severely impact the original model's behavior (e.g., changes in ID, layout, etc.) while customizing portrait attributes. To address this issue, we propose SPF-Portrait, a pioneering work to purely understand customized target semantics and minimize disruption to the original model. In our SPF-Portrait, we design a dual-path contrastive learning pipeline, which introduces the original model as a behavioral alignment reference for the conventional fine-tuning path. During the contrastive learning, we propose a novel Semantic-Aware Fine Control Map that indicates the intensity of response regions of the target semantics, to spatially guide the alignment process between the contrastive paths. It adaptively balances the behavioral alignment across different regions and the responsiveness of the target semantics. Furthermore, we propose a novel response enhancement mechanism to reinforce the presentation of target semantics, while mitigating representation discrepancy inherent in direct cross-modal supervision. Through the above strategies, we achieve incremental learning of customized target semantics for pure text-to-portrait customization. Extensive experiments show that SPF-Portrait achieves state-of-the-art performance. Project page: https://spf-portrait.github.io/SPF-Portrait/
Parameter Efficient Continual Learning with Dynamic Low-Rank Adaptation
Catastrophic forgetting has remained a critical challenge for deep neural networks in Continual Learning (CL) as it undermines consolidated knowledge when learning new tasks. Parameter efficient fine tuning CL techniques are gaining traction for their effectiveness in addressing catastrophic forgetting with a lightweight training schedule while avoiding degradation of consolidated knowledge in pre-trained models. However, low rank adapters (LoRA) in these approaches are highly sensitive to rank selection which can lead to sub-optimal resource allocation and performance. To this end, we introduce PEARL, a rehearsal-free CL framework that entails dynamic rank allocation for LoRA components during CL training. Specifically, PEARL leverages reference task weights and adaptively determines the rank of task-specific LoRA components based on the current tasks' proximity to reference task weights in parameter space. To demonstrate the versatility of PEARL, we evaluate it across three vision architectures (ResNet, Separable Convolutional Network and Vision Transformer) and a multitude of CL scenarios, and show that PEARL outperforms all considered baselines by a large margin.
comment: 27 pages, 5 figures
PLGSLAM: Progressive Neural Scene Represenation with Local to Global Bundle Adjustment CVPR 2024
Neural implicit scene representations have recently shown encouraging results in dense visual SLAM. However, existing methods produce low-quality scene reconstruction and low-accuracy localization performance when scaling up to large indoor scenes and long sequences. These limitations are mainly due to their single, global radiance field with finite capacity, which does not adapt to large scenarios. Their end-to-end pose networks are also not robust enough with the growth of cumulative errors in large scenes. To this end, we introduce PLGSLAM, a neural visual SLAM system capable of high-fidelity surface reconstruction and robust camera tracking in real-time. To handle large-scale indoor scenes, PLGSLAM proposes a progressive scene representation method which dynamically allocates new local scene representation trained with frames within a local sliding window. This allows us to scale up to larger indoor scenes and improves robustness (even under pose drifts). In local scene representation, PLGSLAM utilizes tri-planes for local high-frequency features with multi-layer perceptron (MLP) networks for the low-frequency feature, achieving smoothness and scene completion in unobserved areas. Moreover, we propose local-to-global bundle adjustment method with a global keyframe database to address the increased pose drifts on long sequences. Experimental results demonstrate that PLGSLAM achieves state-of-the-art scene reconstruction results and tracking performance across various datasets and scenarios (both in small and large-scale indoor environments). The code is open-sourced at https://github.com/dtc111111/plgslam.
comment: Accepted by CVPR 2024
Dual Data Alignment Makes AI-Generated Image Detector Easier Generalizable
Existing detectors are often trained on biased datasets, leading to the possibility of overfitting on non-causal image attributes that are spuriously correlated with real/synthetic labels. While these biased features enhance performance on the training data, they result in substantial performance degradation when applied to unbiased datasets. One common solution is to perform dataset alignment through generative reconstruction, matching the semantic content between real and synthetic images. However, we revisit this approach and show that pixel-level alignment alone is insufficient. The reconstructed images still suffer from frequency-level misalignment, which can perpetuate spurious correlations. To illustrate, we observe that reconstruction models tend to restore the high-frequency details lost in real images (possibly due to JPEG compression), inadvertently creating a frequency-level misalignment, where synthetic images appear to have richer high-frequency content than real ones. This misalignment leads to models associating high-frequency features with synthetic labels, further reinforcing biased cues. To resolve this, we propose Dual Data Alignment (DDA), which aligns both the pixel and frequency domains. Moreover, we introduce two new test sets: DDA-COCO, containing DDA-aligned synthetic images for testing detector performance on the most aligned dataset, and EvalGEN, featuring the latest generative models for assessing detectors under new generative architectures such as visual auto-regressive generators. Finally, our extensive evaluations demonstrate that a detector trained exclusively on DDA-aligned MSCOCO could improve across 8 diverse benchmarks by a non-trivial margin, showing a +7.2% on in-the-wild benchmarks, highlighting the improved generalizability of unbiased detectors.
comment: 12 Pages, 9 figures
Multi-Granularity Class Prototype Topology Distillation for Class-Incremental Source-Free Unsupervised Domain Adaptation CVPR 2025
This paper explores the Class-Incremental Source-Free Unsupervised Domain Adaptation (CI-SFUDA) problem, where the unlabeled target data come incrementally without access to labeled source instances. This problem poses two challenges, the interference of similar source-class knowledge in target-class representation learning and the shocks of new target knowledge to old ones. To address them, we propose the Multi-Granularity Class Prototype Topology Distillation (GROTO) algorithm, which effectively transfers the source knowledge to the class-incremental target domain. Concretely, we design the multi-granularity class prototype self-organization module and the prototype topology distillation module. First, we mine the positive classes by modeling accumulation distributions. Next, we introduce multi-granularity class prototypes to generate reliable pseudo-labels, and exploit them to promote the positive-class target feature self-organization. Second, the positive-class prototypes are leveraged to construct the topological structures of source and target feature spaces. Then, we perform the topology distillation to continually mitigate the shocks of new target knowledge to old ones. Extensive experiments demonstrate that our proposed method achieves state-of-the-art performance on three public datasets. Code is available at https://github.com/dengpeihua/GROTO.
comment: Accepted by CVPR 2025
MetaGS: A Meta-Learned Gaussian-Phong Model for Out-of-Distribution 3D Scene Relighting
Out-of-distribution (OOD) 3D relighting requires novel view synthesis under unseen lighting conditions that differ significantly from the observed images. Existing relighting methods, which assume consistent light source distributions between training and testing, often degrade in OOD scenarios. We introduce MetaGS to tackle this challenge from two perspectives. First, we propose a meta-learning approach to train 3D Gaussian splatting, which explicitly promotes learning generalizable Gaussian geometries and appearance attributes across diverse lighting conditions, even with biased training data. Second, we embed fundamental physical priors from the Blinn-Phong reflection model into Gaussian splatting, which enhances the decoupling of shading components and leads to more accurate 3D scene reconstruction. Results on both synthetic and real-world datasets demonstrate the effectiveness of MetaGS in challenging OOD relighting tasks, supporting efficient point-light relighting and generalizing well to unseen environment lighting maps.
EventEgoHands: Event-based Egocentric 3D Hand Mesh Reconstruction
Reconstructing 3D hand mesh is challenging but an important task for human-computer interaction and AR/VR applications. In particular, RGB and/or depth cameras have been widely used in this task. However, methods using these conventional cameras face challenges in low-light environments and during motion blur. Thus, to address these limitations, event cameras have been attracting attention in recent years for their high dynamic range and high temporal resolution. Despite their advantages, event cameras are sensitive to background noise or camera motion, which has limited existing studies to static backgrounds and fixed cameras. In this study, we propose EventEgoHands, a novel method for event-based 3D hand mesh reconstruction in an egocentric view. Our approach introduces a Hand Segmentation Module that extracts hand regions, effectively mitigating the influence of dynamic background events. We evaluated our approach and demonstrated its effectiveness on the N-HOT3D dataset, improving MPJPE by approximately more than 4.5 cm (43%).
comment: IEEE International Conference on Image Processing 2025, Project Page: https://ryhara.github.io/EventEgoHands/
PUSSM: Point Cloud Upsampling as Implicit Statistical Shape Model
This paper proposes a framework for high-fidelity reconstruction of pelvic structures by integrating medical image segmentation and point cloud upsampling. By point cloud upsampling to learn shape priors from MedShapePelvic without requiring landmarks or PCA, our method functions as an implicit statistical shape model. Evaluations on Pelvic1k show significant improvements in surface quality and anatomical accuracy. This approach is generalizable and applicable to other skeletal regions.
comment: 14 pages, 4 figures
Denoising Mutual Knowledge Distillation in Bi-Directional Multiple Instance Learning
Multiple Instance Learning is the predominant method for Whole Slide Image classification in digital pathology, enabling the use of slide-level labels to supervise model training. Although MIL eliminates the tedious fine-grained annotation process for supervised learning, whether it can learn accurate bag- and instance-level classifiers remains a question. To address the issue, instance-level classifiers and instance masks were incorporated to ground the prediction on supporting patches. These methods, while practically improving the performance of MIL methods, may potentially introduce noisy labels. We propose to bridge the gap between commonly used MIL and fully supervised learning by augmenting both the bag- and instance-level learning processes with pseudo-label correction capabilities elicited from weak to strong generalization techniques. The proposed algorithm improves the performance of dual-level MIL algorithms on both bag- and instance-level predictions. Experiments on public pathology datasets showcase the advantage of the proposed methods.
comment: 15 pages, 3 figures
ClearSight: Visual Signal Enhancement for Object Hallucination Mitigation in Multimodal Large language Models
Contrastive decoding strategies are widely used to mitigate object hallucinations in multimodal large language models (MLLMs). By reducing over-reliance on language priors, these strategies ensure that generated content remains closely grounded in visual inputs, producing contextually accurate outputs. Since contrastive decoding requires no additional training or external tools, it offers both computational efficiency and versatility, making it highly attractive. However, these methods present two main limitations: (1) bluntly suppressing language priors can compromise coherence and accuracy of generated content, and (2) processing contrastive inputs adds computational load, significantly slowing inference speed. To address these challenges, we propose Visual Amplification Fusion (VAF), a plug-and-play technique that enhances attention to visual signals within the model's middle layers, where modality fusion predominantly occurs. This approach enables more effective capture of visual features, reducing the model's bias toward language modality. Experimental results demonstrate that VAF significantly reduces hallucinations across various MLLMs without affecting inference speed, while maintaining coherence and accuracy in generated outputs.
Towards Visuospatial Cognition via Hierarchical Fusion of Visual Experts
While Multimodal Large Language Models (MLLMs) excel at general vision-language tasks, visuospatial cognition - reasoning about spatial layouts, relations, and dynamics - remains a significant challenge. Existing models often lack the necessary architectural components and specialized training data for fine-grained spatial understanding. We introduce ViCA2 (Visuospatial Cognitive Assistant 2), a novel MLLM designed to enhance spatial reasoning. ViCA2 features a dual vision encoder architecture integrating SigLIP for semantics and Hiera for spatial structure, coupled with a token ratio control mechanism for efficiency. We also developed ViCA-322K, a new large-scale dataset with over 322,000 spatially grounded question-answer pairs for targeted instruction tuning. On the challenging VSI-Bench benchmark, our ViCA2-7B model achieves a state-of-the-art average score of 56.8, significantly surpassing larger open-source models (e.g., LLaVA-NeXT-Video-72B, 40.9) and leading proprietary models (Gemini-1.5 Pro, 45.4). This demonstrates the effectiveness of our approach in achieving strong visuospatial intelligence with a compact model. We release ViCA2, its codebase, and the ViCA-322K dataset to facilitate further research.
comment: 26 pages, 19 figures, 4 tables. Code, models, and datasets are available at our project page: https://github.com/nkkbr/ViCA. This is a draft technical report. At the request of Professor Hidetoshi Shimodaira, his name has been removed from the author list
Selftok: Discrete Visual Tokens of Autoregression, by Diffusion, and for Reasoning
We completely discard the conventional spatial prior in image representation and introduce a novel discrete visual tokenizer: Self-consistency Tokenizer (Selftok). At its design core, we compose an autoregressive (AR) prior -- mirroring the causal structure of language -- into visual tokens by using the reverse diffusion process of image generation. The AR property makes Selftok fundamentally distinct from traditional spatial tokens in the following two key ways: - Selftok offers an elegant and minimalist approach to unify diffusion and AR for vision-language models (VLMs): By representing images with Selftok tokens, we can train a VLM using a purely discrete autoregressive architecture -- like that in LLMs -- without requiring additional modules or training objectives. - We theoretically show that the AR prior satisfies the Bellman equation, whereas the spatial prior does not. Therefore, Selftok supports reinforcement learning (RL) for visual generation with effectiveness comparable to that achieved in LLMs. Besides the AR property, Selftok is also a SoTA tokenizer that achieves a favorable trade-off between high-quality reconstruction and compression rate. We use Selftok to build a pure AR VLM for both visual comprehension and generation tasks. Impressively, without using any text-image training pairs, a simple policy gradient RL working in the visual tokens can significantly boost the visual generation benchmark, surpassing all the existing models by a large margin. Therefore, we believe that Selftok effectively addresses the long-standing challenge that visual tokens cannot support effective RL. When combined with the well-established strengths of RL in LLMs, this brings us one step closer to realizing a truly multimodal LLM. Project Page: https://selftok-team.github.io/report/.
Visuospatial Cognitive Assistant
Video-based spatial cognition is vital for robotics and embodied AI but challenges current Vision-Language Models (VLMs). This paper makes two key contributions. First, we introduce ViCA (Visuospatial Cognitive Assistant)-322K, a diverse dataset of 322,003 QA pairs from real-world indoor videos (ARKitScenes, ScanNet, ScanNet++), offering supervision for 3D metadata-grounded queries and video-based complex reasoning. Second, we develop ViCA-7B, fine-tuned on ViCA-322K, which achieves new state-of-the-art on all eight VSI-Bench tasks, outperforming existing models, including larger ones (e.g., +26.1 on Absolute Distance). For interpretability, we present ViCA-Thinking-2.68K, a dataset with explicit reasoning chains, and fine-tune ViCA-7B to create ViCA-7B-Thinking, a model that articulates its spatial reasoning. Our work highlights the importance of targeted data and suggests paths for improved temporal-spatial modeling. We release all resources to foster research in robust visuospatial intelligence.
comment: 31 pages, 10 figures, 6 tables. The implementation and fine-tuned model (ViCA-7B), along with detailed documentation, are publicly available at https://huggingface.co/nkkbr/ViCA. This is a draft technical report. At Professor Hidetoshi Shimodaira's request, his name has been removed from the author list
Exploring Out-of-distribution Detection for Sparse-view Computed Tomography with Diffusion Models
Recent works demonstrate the effectiveness of diffusion models as unsupervised solvers for inverse imaging problems. Sparse-view computed tomography (CT) has greatly benefited from these advancements, achieving improved generalization without reliance on measurement parameters. However, this comes at the cost of potential hallucinations, especially when handling out-of-distribution (OOD) data. To ensure reliability, it is essential to study OOD detection for CT reconstruction across both clinical and industrial applications. This need further extends to enabling the OOD detector to function effectively as an anomaly inspection tool. In this paper, we explore the use of a diffusion model, trained to capture the target distribution for CT reconstruction, as an in-distribution prior. Building on recent research, we employ the model to reconstruct partially diffused input images and assess OOD-ness through multiple reconstruction errors. Adapting this approach for sparse-view CT requires redefining the notions of ``input'' and ``reconstruction error''. Here, we use filtered backprojection (FBP) reconstructions as input and investigate various definitions of reconstruction error. Our proof-of-concept experiments on the MNIST dataset highlight both successes and failures, demonstrating the potential and limitations of integrating such an OOD detector into a CT reconstruction system. Our findings suggest that effective OOD detection can be achieved by comparing measurements with forward-projected reconstructions, provided that reconstructions from noisy FBP inputs are conditioned on the measurements. However, conditioning can sometimes lead the OOD detector to inadvertently reconstruct OOD images well. To counter this, we introduce a weighting approach that improves robustness against highly informative OOD measurements, albeit with a trade-off in performance in certain cases.
UltraBones100k: A reliable automated labeling method and large-scale dataset for ultrasound-based bone surface extraction
Ultrasound-based bone surface segmentation is crucial in computer-assisted orthopedic surgery. However, ultrasound images have limitations, including a low signal-to-noise ratio, and acoustic shadowing, which make interpretation difficult. Existing deep learning models for bone segmentation rely primarily on costly manual labeling by experts, limiting dataset size and model generalizability. Additionally, the complexity of ultrasound physics and acoustic shadow makes the images difficult for humans to interpret, leading to incomplete labels in anechoic regions and limiting model performance. To advance ultrasound bone segmentation and establish effective model benchmarks, larger and higher-quality datasets are needed. We propose a methodology for collecting ex-vivo ultrasound datasets with automatically generated bone labels, including anechoic regions. The proposed labels are derived by accurately superimposing tracked bone CT models onto the tracked ultrasound images. These initial labels are refined to account for ultrasound physics. A clinical evaluation is conducted by an expert physician specialized on orthopedic sonography to assess the quality of the generated bone labels. A neural network for bone segmentation is trained on the collected dataset and its predictions are compared to expert manual labels, evaluating accuracy, completeness, and F1-score. We collected the largest known dataset of 100k ultrasound images of human lower limbs with bone labels, called UltraBones100k. A Wilcoxon signed-rank test with Bonferroni correction confirmed that the bone alignment after our method significantly improved the quality of bone labeling (p < 0.001). The model trained on UltraBones100k consistently outperforms manual labeling in all metrics, particularly in low-intensity regions (320% improvement in completeness at a distance threshold of 0.5 mm).
Efficient Robotic Policy Learning via Latent Space Backward Planning ICML 2025
Current robotic planning methods often rely on predicting multi-frame images with full pixel details. While this fine-grained approach can serve as a generic world model, it introduces two significant challenges for downstream policy learning: substantial computational costs that hinder real-time deployment, and accumulated inaccuracies that can mislead action extraction. Planning with coarse-grained subgoals partially alleviates efficiency issues. However, their forward planning schemes can still result in off-task predictions due to accumulation errors, leading to misalignment with long-term goals. This raises a critical question: Can robotic planning be both efficient and accurate enough for real-time control in long-horizon, multi-stage tasks? To address this, we propose a Latent Space Backward Planning scheme (LBP), which begins by grounding the task into final latent goals, followed by recursively predicting intermediate subgoals closer to the current state. The grounded final goal enables backward subgoal planning to always remain aware of task completion, facilitating on-task prediction along the entire planning horizon. The subgoal-conditioned policy incorporates a learnable token to summarize the subgoal sequences and determines how each subgoal guides action extraction. Through extensive simulation and real-robot long-horizon experiments, we show that LBP outperforms existing fine-grained and forward planning methods, achieving SOTA performance. Project Page: https://lbp-authors.github.io
comment: Accepted by ICML 2025
Multiple Different Black Box Explanations for Image Classifiers
Existing explanation tools for image classifiers usually give only a single explanation for an image's classification. For many images, however, image classifiers accept more than one explanation for the image label. These explanations are useful for analyzing the decision process of the classifier and for detecting errors. Thus, restricting the number of explanations to just one severely limits insight into the behavior of the classifier. In this paper, we describe an algorithm and a tool, MultEX, for computing multiple explanations as the output of a black-box image classifier for a given image. Our algorithm uses a principled approach based on actual causality. We analyze its theoretical complexity and evaluate MultEX against the state-of-the-art across three different models and three different datasets. We find that MultEX finds more explanations and that these explanations are of higher quality.
Double Descent Meets Out-of-Distribution Detection: Theoretical Insights and Empirical Analysis on the role of model complexity
Out-of-distribution (OOD) detection is essential for ensuring the reliability and safety of machine learning systems. In recent years, it has received increasing attention, particularly through post-hoc detection and training-based methods. In this paper, we focus on post-hoc OOD detection, which enables identifying OOD samples without altering the model's training procedure or objective. Our primary goal is to investigate the relationship between model capacity and its OOD detection performance. Specifically, we aim to answer the following question: Does the Double Descent phenomenon manifest in post-hoc OOD detection? This question is crucial, as it can reveal whether overparameterization, which is already known to benefit generalization, can also enhance OOD detection. Despite the growing interest in these topics by the classic supervised machine learning community, this intersection remains unexplored for OOD detection. We empirically demonstrate that the Double Descent effect does indeed appear in post-hoc OOD detection. Furthermore, we provide theoretical insights to explain why this phenomenon emerges in such setting. Finally, we show that the overparameterized regime does not yield superior results consistently, and we propose a method to identify the optimal regime for OOD detection based on our observations.
RemoteSAM: Towards Segment Anything for Earth Observation
We aim to develop a robust yet flexible visual foundation model for Earth observation. It should possess strong capabilities in recognizing and localizing diverse visual targets while providing compatibility with various input-output interfaces required across different task scenarios. Current systems cannot meet these requirements, as they typically utilize task-specific architecture trained on narrow data domains with limited semantic coverage. Our study addresses these limitations from two aspects: data and modeling. We first introduce an automatic data engine that enjoys significantly better scalability compared to previous human annotation or rule-based approaches. It has enabled us to create the largest dataset of its kind to date, comprising 270K image-text-mask triplets covering an unprecedented range of diverse semantic categories and attribute specifications. Based on this data foundation, we further propose a task unification paradigm that centers around referring expression segmentation. It effectively handles a wide range of vision-centric perception tasks, including classification, detection, segmentation, grounding, etc, using a single model without any task-specific heads. Combining these innovations on data and modeling, we present RemoteSAM, a foundation model that establishes new SoTA on several earth observation perception benchmarks, outperforming other foundation models such as Falcon, GeoChat, and LHRS-Bot with significantly higher efficiency. Models and data are publicly available at https://github.com/1e12Leon/RemoteSAM.
Two Experts Are All You Need for Steering Thinking: Reinforcing Cognitive Effort in MoE Reasoning Models Without Additional Training
Mixture-of-Experts (MoE) architectures within Large Reasoning Models (LRMs) have achieved impressive reasoning capabilities by selectively activating experts to facilitate structured cognitive processes. Despite notable advances, existing reasoning models often suffer from cognitive inefficiencies like overthinking and underthinking. To address these limitations, we introduce a novel inference-time steering methodology called Reinforcing Cognitive Experts (RICE), designed to improve reasoning performance without additional training or complex heuristics. Leveraging normalized Pointwise Mutual Information (nPMI), we systematically identify specialized experts, termed ''cognitive experts'' that orchestrate meta-level reasoning operations characterized by tokens like ''''. Empirical evaluations with leading MoE-based LRMs (DeepSeek-R1 and Qwen3-235B) on rigorous quantitative and scientific reasoning benchmarks demonstrate noticeable and consistent improvements in reasoning accuracy, cognitive efficiency, and cross-domain generalization. Crucially, our lightweight approach substantially outperforms prevalent reasoning-steering techniques, such as prompt design and decoding constraints, while preserving the model's general instruction-following skills. These results highlight reinforcing cognitive experts as a promising, practical, and interpretable direction to enhance cognitive efficiency within advanced reasoning models.
comment: Work in progress
Minimal Interaction Separated Tuning: A New Paradigm for Visual Adaptation
The rapid scaling of large vision pretrained models makes fine-tuning tasks more and more difficult on devices with low computational resources. We explore a new visual adaptation paradigm called separated tuning, which treats large pretrained models as standalone feature extractors that run on powerful cloud servers. The fine-tuning carries out on devices which possess only low computational resources (slow CPU, no GPU, small memory, etc.) Existing methods that are potentially suitable for our separated tuning paradigm are discussed. But, three major drawbacks hinder their application in separated tuning: low adaptation capability, large adapter network, and in particular, high information transfer overhead. To address these issues, we propose Minimal Interaction Separated Tuning, or MIST, which reveals that the sum of intermediate features from pretrained models not only has minimal information transfer but also has high adaptation capability. With a lightweight attention-based adaptor network, MIST achieves information transfer efficiency, parameter efficiency, computational and memory efficiency, and at the same time demonstrates competitive results on various visual adaptation benchmarks.
Towards Training One-Step Diffusion Models Without Distillation
Recent advances in training one-step diffusion models typically follow a two-stage pipeline: first training a teacher diffusion model and then distilling it into a one-step student model. This process often depends on both the teacher's score function for supervision and its weights for initializing the student model. In this paper, we explore whether one-step diffusion models can be trained directly without this distillation procedure. We introduce a family of new training methods that entirely forgo teacher score supervision, yet outperforms most teacher-guided distillation approaches. This suggests that score supervision is not essential for effective training of one-step diffusion models. However, we find that initializing the student model with the teacher's weights remains critical. Surprisingly, the key advantage of teacher initialization is not due to better latent-to-output mappings, but rather the rich set of feature representations across different noise levels that the teacher diffusion model provides. These insights take us one step closer towards training one-step diffusion models without distillation and provide a better understanding of the roles of teacher supervision and initialization in the distillation process.
comment: 21 pages, 8 figures, 3 tables, 2 algorithms
Structure-Accurate Medical Image Translation via Dynamic Frequency Balance and Knowledge Guidance
Multimodal medical images play a crucial role in the precise and comprehensive clinical diagnosis. Diffusion model is a powerful strategy to synthesize the required medical images. However, existing approaches still suffer from the problem of anatomical structure distortion due to the overfitting of high-frequency information and the weakening of low-frequency information. Thus, we propose a novel method based on dynamic frequency balance and knowledge guidance. Specifically, we first extract the low-frequency and high-frequency components by decomposing the critical features of the model using wavelet transform. Then, a dynamic frequency balance module is designed to adaptively adjust frequency for enhancing global low-frequency features and effective high-frequency details as well as suppressing high-frequency noise. To further overcome the challenges posed by the large differences between different medical modalities, we construct a knowledge-guided mechanism that fuses the prior clinical knowledge from a visual language model with visual features, to facilitate the generation of accurate anatomical structures. Experimental evaluations on multiple datasets show the proposed method achieves significant improvements in qualitative and quantitative assessments, verifying its effectiveness and superiority.
comment: Medical image translation, Diffusion model, 16 pages
Training-free Stylized Text-to-Image Generation with Fast Inference
Although diffusion models exhibit impressive generative capabilities, existing methods for stylized image generation based on these models often require textual inversion or fine-tuning with style images, which is time-consuming and limits the practical applicability of large-scale diffusion models. To address these challenges, we propose a novel stylized image generation method leveraging a pre-trained large-scale diffusion model without requiring fine-tuning or any additional optimization, termed as OmniPainter. Specifically, we exploit the self-consistency property of latent consistency models to extract the representative style statistics from reference style images to guide the stylization process. Additionally, we then introduce the norm mixture of self-attention, which enables the model to query the most relevant style patterns from these statistics for the intermediate output content features. This mechanism also ensures that the stylized results align closely with the distribution of the reference style images. Our qualitative and quantitative experimental results demonstrate that the proposed method outperforms state-of-the-art approaches.
comment: Project Page: https://maxin-cn.github.io/omnipainter_project
Unforgettable Lessons from Forgettable Images: Intra-Class Memorability Matters in Computer Vision
We introduce intra-class memorability, where certain images within the same class are more memorable than others despite shared category characteristics. To investigate what features make one object instance more memorable than others, we design and conduct human behavior experiments, where participants are shown a series of images, and they must identify when the current image matches the image presented a few steps back in the sequence. To quantify memorability, we propose the Intra-Class Memorability score (ICMscore), a novel metric that incorporates the temporal intervals between repeated image presentations into its calculation. Furthermore, we curate the Intra-Class Memorability Dataset (ICMD), comprising over 5,000 images across ten object classes with their ICMscores derived from 2,000 participants' responses. Subsequently, we demonstrate the usefulness of ICMD by training AI models on this dataset for various downstream tasks: memorability prediction, image recognition, continual learning, and memorability-controlled image editing. Surprisingly, high-ICMscore images impair AI performance in image recognition and continual learning tasks, while low-ICMscore images improve outcomes in these tasks. Additionally, we fine-tune a state-of-the-art image diffusion model on ICMD image pairs with and without masked semantic objects. The diffusion model can successfully manipulate image elements to enhance or reduce memorability. Our contributions open new pathways in understanding intra-class memorability by scrutinizing fine-grained visual features behind the most and least memorable images and laying the groundwork for real-world applications in computer vision. We will release all code, data, and models publicly.
How Do Multimodal Large Language Models Handle Complex Multimodal Reasoning? Placing Them in An Extensible Escape Game
The rapid advancing of Multimodal Large Language Models (MLLMs) has spurred interest in complex multimodal reasoning tasks in the real-world and virtual environment, which require coordinating multiple abilities, including visual perception, visual reasoning, spatial awareness, and target deduction. However, existing evaluations primarily assess the final task completion, often degrading assessments to isolated abilities such as visual grounding and visual question answering. Less attention is given to comprehensively and quantitatively analyzing reasoning process in multimodal environments, which is crucial for understanding model behaviors and underlying reasoning mechanisms beyond merely task success. To address this, we introduce MM-Escape, an extensible benchmark for investigating multimodal reasoning, inspired by real-world escape games. MM-Escape emphasizes intermediate model behaviors alongside final task completion. To achieve this, we develop EscapeCraft, a customizable and open environment that enables models to engage in free-form exploration for assessing multimodal reasoning. Extensive experiments show that MLLMs, regardless of scale, can successfully complete the simplest room escape tasks, with some exhibiting human-like exploration strategies. Yet, performance dramatically drops as task difficulty increases. Moreover, we observe that performance bottlenecks vary across models, revealing distinct failure modes and limitations in their multimodal reasoning abilities, such as repetitive trajectories without adaptive exploration, getting stuck in corners due to poor visual spatial awareness, and ineffective use of acquired props, such as the key. We hope our work sheds light on new challenges in multimodal reasoning, and uncovers potential improvements in MLLMs capabilities.
Corrupted but Not Broken: Understanding and Mitigating the Negative Impacts of Corrupted Data in Visual Instruction Tuning
Visual Instruction Tuning (VIT) aims to enhance Multimodal Large Language Models (MLLMs), yet its effectiveness is often compromised by corrupted datasets with issues such as hallucinated content, incorrect responses, and poor OCR quality. Previous approaches to address these challenges have focused on refining datasets through high-quality data collection or rule-based filtering that can be costly or limited in scope. In this paper, we conduct a systematic investigation into the impact of corrupted data on MLLMs and discover that, although corrupted data degrade model performance, such adverse effects are largely reversible, and MLLMs are {\bf corrupted but not broken}. Specifically, we find that disabling a small subset of parameters can almost fully restore performance. Moreover, corrupted MLLMs inherently possess the capability to differentiate between clean and corrupted samples, facilitating dataset cleaning without external intervention. Building on these insights, we introduce a corruption-robust training paradigm that significantly surpasses existing strategies for mitigating the effects of corrupted data.
Image and Video Processing
Prostate Cancer Screening with Artificial Intelligence-Enhanced Micro-Ultrasound: A Comparative Study with Traditional Methods
Background and objective: Micro-ultrasound (micro-US) is a novel imaging modality with diagnostic accuracy comparable to MRI for detecting clinically significant prostate cancer (csPCa). We investigated whether artificial intelligence (AI) interpretation of micro-US can outperform clinical screening methods using PSA and digital rectal examination (DRE). Methods: We retrospectively studied 145 men who underwent micro-US guided biopsy (79 with csPCa, 66 without). A self-supervised convolutional autoencoder was used to extract deep image features from 2D micro-US slices. Random forest classifiers were trained using five-fold cross-validation to predict csPCa at the slice level. Patients were classified as csPCa-positive if 88 or more consecutive slices were predicted positive. Model performance was compared with a classifier using PSA, DRE, prostate volume, and age. Key findings and limitations: The AI-based micro-US model and clinical screening model achieved AUROCs of 0.871 and 0.753, respectively. At a fixed threshold, the micro-US model achieved 92.5% sensitivity and 68.1% specificity, while the clinical model showed 96.2% sensitivity but only 27.3% specificity. Limitations include a retrospective single-center design and lack of external validation. Conclusions and clinical implications: AI-interpreted micro-US improves specificity while maintaining high sensitivity for csPCa detection. This method may reduce unnecessary biopsies and serve as a low-cost alternative to PSA-based screening. Patient summary: We developed an AI system to analyze prostate micro-ultrasound images. It outperformed PSA and DRE in detecting aggressive cancer and may help avoid unnecessary biopsies.
Efficient Leaf Disease Classification and Segmentation using Midpoint Normalization Technique and Attention Mechanism ICIP
Enhancing plant disease detection from leaf imagery remains a persistent challenge due to scarce labeled data and complex contextual factors. We introduce a transformative two-stage methodology, Mid Point Normalization (MPN) for intelligent image preprocessing, coupled with sophisticated attention mechanisms that dynamically recalibrate feature representations. Our classification pipeline, merging MPN with Squeeze-and-Excitation (SE) blocks, achieves remarkable 93% accuracy while maintaining exceptional class-wise balance. The perfect F1 score attained for our target class exemplifies attention's power in adaptive feature refinement. For segmentation tasks, we seamlessly integrate identical attention blocks within U-Net architecture using MPN-enhanced inputs, delivering compelling performance gains with 72.44% Dice score and 58.54% IoU, substantially outperforming baseline implementations. Beyond superior accuracy metrics, our approach yields computationally efficient, lightweight architectures perfectly suited for real-world computer vision applications.
comment: Accepted in 2025 IEEE International Conference on Image Processing (ICIP)
Supervised and self-supervised land-cover segmentation & classification of the Biesbosch wetlands
Accurate wetland land-cover classification is essential for environmental monitoring, biodiversity assessment, and sustainable ecosystem management. However, the scarcity of annotated data, especially for high-resolution satellite imagery, poses a significant challenge for supervised learning approaches. To tackle this issue, this study presents a methodology for wetland land-cover segmentation and classification that adopts both supervised and self-supervised learning (SSL). We train a U-Net model from scratch on Sentinel-2 imagery across six wetland regions in the Netherlands, achieving a baseline model accuracy of 85.26%. Addressing the limited availability of labeled data, the results show that SSL pretraining with an autoencoder can improve accuracy, especially for the high-resolution imagery where it is more difficult to obtain labeled data, reaching an accuracy of 88.23%. Furthermore, we introduce a framework to scale manually annotated high-resolution labels to medium-resolution inputs. While the quantitative performance between resolutions is comparable, high-resolution imagery provides significantly sharper segmentation boundaries and finer spatial detail. As part of this work, we also contribute a curated Sentinel-2 dataset with Dynamic World labels, tailored for wetland classification tasks and made publicly available.
comment: 12 pages, presented at the Netherlands Conference on Computer Vision (NCCV), Utrecht, May 2025
DiMoSR: Feature Modulation via Multi-Branch Dilated Convolutions for Efficient Image Super-Resolution
Balancing reconstruction quality versus model efficiency remains a critical challenge in lightweight single image super-resolution (SISR). Despite the prevalence of attention mechanisms in recent state-of-the-art SISR approaches that primarily emphasize or suppress feature maps, alternative architectural paradigms warrant further exploration. This paper introduces DiMoSR (Dilated Modulation Super-Resolution), a novel architecture that enhances feature representation through modulation to complement attention in lightweight SISR networks. The proposed approach leverages multi-branch dilated convolutions to capture rich contextual information over a wider receptive field while maintaining computational efficiency. Experimental results demonstrate that DiMoSR outperforms state-of-the-art lightweight methods across diverse benchmark datasets, achieving superior PSNR and SSIM metrics with comparable or reduced computational complexity. Through comprehensive ablation studies, this work not only validates the effectiveness of DiMoSR but also provides critical insights into the interplay between attention mechanisms and feature modulation to guide future research in efficient network design. The code and model weights to reproduce our results are available at: https://github.com/makinyilmaz/DiMoSR
Boosting Adversarial Transferability via High-Frequency Augmentation and Hierarchical-Gradient Fusion
Adversarial attacks have become a significant challenge in the security of machine learning models, particularly in the context of black-box defense strategies. Existing methods for enhancing adversarial transferability primarily focus on the spatial domain. This paper presents Frequency-Space Attack (FSA), a new adversarial attack framework that effectively integrates frequency-domain and spatial-domain transformations. FSA combines two key techniques: (1) High-Frequency Augmentation, which applies Fourier transform with frequency-selective amplification to diversify inputs and emphasize the critical role of high-frequency components in adversarial attacks, and (2) Hierarchical-Gradient Fusion, which merges multi-scale gradient decomposition and fusion to capture both global structures and fine-grained details, resulting in smoother perturbations. Our experiment demonstrates that FSA consistently outperforms state-of-the-art methods across various black-box models. Notably, our proposed FSA achieves an average attack success rate increase of 23.6% compared with BSR (CVPR 2024) on eight black-box defense models.
Cardiac Digital Twins at Scale from MRI: Open Tools and Representative Models from ~55000 UK Biobank Participants
A cardiac digital twin is a virtual replica of a patient's heart for screening, diagnosis, prognosis, risk assessment, and treatment planning of cardiovascular diseases. This requires an anatomically accurate patient-specific 3D structural representation of the heart, suitable for electro-mechanical simulations or study of disease mechanisms. However, generation of cardiac digital twins at scale is demanding and there are no public repositories of models across demographic groups. We describe an automatic open-source pipeline for creating patient-specific left and right ventricular meshes from cardiovascular magnetic resonance images, its application to a large cohort of ~55000 participants from UK Biobank, and the construction of the most comprehensive cohort of adult heart models to date, comprising 1423 representative meshes across sex (male, female), body mass index (range: 16 - 42 kg/m$^2$) and age (range: 49 - 80 years). Our code is available at https://github.com/cdttk/biv-volumetric-meshing/tree/plos2025 , and pre-trained networks, representative volumetric meshes with fibers and UVCs will be made available soon.
Generative Image Compression by Estimating Gradients of the Rate-variable Feature Distribution
While learned image compression (LIC) focuses on efficient data transmission, generative image compression (GIC) extends this framework by integrating generative modeling to produce photo-realistic reconstructed images. In this paper, we propose a novel diffusion-based generative modeling framework tailored for generative image compression. Unlike prior diffusion-based approaches that indirectly exploit diffusion modeling, we reinterpret the compression process itself as a forward diffusion path governed by stochastic differential equations (SDEs). A reverse neural network is trained to reconstruct images by reversing the compression process directly, without requiring Gaussian noise initialization. This approach achieves smooth rate adjustment and photo-realistic reconstructions with only a minimal number of sampling steps. Extensive experiments on benchmark datasets demonstrate that our method outperforms existing generative image compression approaches across a range of metrics, including perceptual distortion, statistical fidelity, and no-reference quality assessments.
Multitemporal Latent Dynamical Framework for Hyperspectral Images Unmixing
Multitemporal hyperspectral unmixing can capture dynamical evolution of materials. Despite its capability, current methods emphasize variability of endmembers while neglecting dynamics of abundances, which motivates our adoption of neural ordinary differential equations to model abundances temporally. However, this motivation is hindered by two challenges: the inherent complexity in defining, modeling and solving problem, and the absence of theoretical support. To address above challenges, in this paper, we propose a multitemporal latent dynamical (MiLD) unmixing framework by capturing dynamical evolution of materials with theoretical validation. For addressing multitemporal hyperspectral unmixing, MiLD consists of problem definition, mathematical modeling, solution algorithm and theoretical support. We formulate multitemporal unmixing problem definition by conducting ordinary differential equations and developing latent variables. We transfer multitemporal unmixing to mathematical model by dynamical discretization approaches, which describe the discreteness of observed sequence images with mathematical expansions. We propose algorithm to solve problem and capture dynamics of materials, which approximates abundance evolution by neural networks. Furthermore, we provide theoretical support by validating the crucial properties, which verifies consistency, convergence and stability theorems. The major contributions of MiLD include defining problem by ordinary differential equations, modeling problem by dynamical discretization approach, solving problem by multitemporal unmixing algorithm, and presenting theoretical support. Our experiments on both synthetic and real datasets have validated the utility of our work
comment: 11 Pages,8 figures
DeepConvContext: A Multi-Scale Approach to Timeseries Classification in Human Activity Recognition
Despite recognized limitations in modeling long-range temporal dependencies, Human Activity Recognition (HAR) has traditionally relied on a sliding window approach to segment labeled datasets. Deep learning models like the DeepConvLSTM typically classify each window independently, thereby restricting learnable temporal context to within-window information. To address this constraint, we propose DeepConvContext, a multi-scale time series classification framework for HAR. Drawing inspiration from the vision-based Temporal Action Localization community, DeepConvContext models both intra- and inter-window temporal patterns by processing sequences of time-ordered windows. Unlike recent HAR models that incorporate attention mechanisms, DeepConvContext relies solely on LSTMs -- with ablation studies demonstrating the superior performance of LSTMs over attention-based variants for modeling inertial sensor data. Across six widely-used HAR benchmarks, DeepConvContext achieves an average 10% improvement in F1-score over the classic DeepConvLSTM, with gains of up to 21%. Code to reproduce our experiments is publicly available via github.com/mariusbock/context_har.
comment: 7 pages, 3 figures
Stereo Radargrammetry Using Deep Learning from Airborne SAR Images
In this paper, we propose a stereo radargrammetry method using deep learning from airborne Synthetic Aperture Radar (SAR) images.Deep learning-based methods are considered to suffer less from geometric image modulation, while there is no public SAR image dataset used to train such methods.We create a SAR image dataset and perform fine-tuning of a deep learning-based image correspondence method.The proposed method suppresses the degradation of image quality by pixel interpolation without ground projection of the SAR image and divides the SAR image into patches for processing, which makes it possible to apply deep learning.Through a set of experiments, we demonstrate that the proposed method exhibits a wider range and more accurate elevation measurements compared to conventional methods.
comment: 5 pages, 5 figures, conference IGARSS2025
The Role of AI in Early Detection of Life-Threatening Diseases: A Retinal Imaging Perspective
Retinal imaging has emerged as a powerful, non-invasive modality for detecting and quantifying biomarkers of systemic diseases-ranging from diabetes and hypertension to Alzheimer's disease and cardiovascular disorders but current insights remain dispersed across platforms and specialties. Recent technological advances in optical coherence tomography (OCT/OCTA) and adaptive optics (AO) now deliver ultra-high-resolution scans (down to 5 {\mu}m ) with superior contrast and spatial integration, allowing early identification of microvascular abnormalities and neurodegenerative changes. At the same time, AI-driven and machine learning (ML) algorithms have revolutionized the analysis of large-scale retinal datasets, increasing sensitivity and specificity; for example, deep learning models achieve > 90 \% sensitivity for diabetic retinopathy and AUC = 0.89 for the prediction of cardiovascular risk from fundus photographs. The proliferation of mobile health technologies and telemedicine platforms further extends access, reduces costs, and facilitates community-based screening and longitudinal monitoring. Despite these breakthroughs, translation into routine practice is hindered by heterogeneous imaging protocols, limited external validation of AI models, and integration challenges within clinical workflows. In this review, we systematically synthesize the latest OCT/OCT and AO developments, AI/ML approaches, and mHealth/Tele-ophthalmology initiatives and quantify their diagnostic performance across disease domains. Finally, we propose a roadmap for multicenter protocol standardization, prospective validation trials, and seamless incorporation of retinal screening into primary and specialty care pathways-paving the way for precision prevention, early intervention, and ongoing treatment of life-threatening systemic diseases.
Unpaired Image-to-Image Translation for Segmentation and Signal Unmixing
This work introduces Ui2i, a novel model for unpaired image-to-image translation, trained on content-wise unpaired datasets to enable style transfer across domains while preserving content. Building on CycleGAN, Ui2i incorporates key modifications to better disentangle content and style features, and preserve content integrity. Specifically, Ui2i employs U-Net-based generators with skip connections to propagate localized shallow features deep into the generator. Ui2i removes feature-based normalization layers from all modules and replaces them with approximate bidirectional spectral normalization -- a parameter-based alternative that enhances training stability. To further support content preservation, channel and spatial attention mechanisms are integrated into the generators. Training is facilitated through image scale augmentation. Evaluation on two biomedical tasks -- domain adaptation for nuclear segmentation in immunohistochemistry (IHC) images and unmixing of biological structures superimposed in single-channel immunofluorescence (IF) images -- demonstrates Ui2i's ability to preserve content fidelity in settings that demand more accurate structural preservation than typical translation tasks. To the best of our knowledge, Ui2i is the first approach capable of separating superimposed signals in IF images using real, unpaired training data.
comment: submitted to NeurIPs 2025
Compressive Fourier-Domain Intensity Coupling (C-FOCUS) enables near-millimeter deep imaging in the intact mouse brain in vivo
Two-photon microscopy is a powerful tool for in vivo imaging, but its imaging depth is typically limited to a few hundred microns due to tissue scattering, even with existing scattering correction techniques. Moreover, most active scattering correction methods are restricted to small regions by the optical memory effect. Here, we introduce compressive Fourier-domain intensity coupling for scattering correction (C-FOCUS), an active scattering correction approach that integrates Fourier-domain intensity modulation with compressive sensing for two-photon microscopy. Using C-FOCUS, we demonstrate high-resolution imaging of YFP-labeled neurons and FITC-labeled blood vessels at depths exceeding 900 um in the intact mouse brain in vivo. Furthermore, we achieve transcranial imaging of YFP-labeled dendritic structures through the intact adult mouse skull. C-FOCUS enables high-contrast fluorescence imaging at depths previously inaccessible using two-photon microscopy with 1035 nm excitation, enhancing fluorescence intensity by over 20-fold compared to uncorrected imaging. C-FOCUS provides a broadly applicable strategy for rapid, deep-tissue optical imaging in vivo.
Beyond 1D: Vision Transformers and Multichannel Signal Images for PPG-to-ECG Reconstruction
Reconstructing ECG from PPG is a promising yet challenging task. While recent advancements in generative models have significantly improved ECG reconstruction, accurately capturing fine-grained waveform features remains a key challenge. To address this, we propose a novel PPG-to-ECG reconstruction method that leverages a Vision Transformer (ViT) as the core network. Unlike conventional approaches that rely on single-channel PPG, our method employs a four-channel signal image representation, incorporating the original PPG, its first-order difference, second-order difference, and area under the curve. This multi-channel design enriches feature extraction by preserving both temporal and physiological variations within the PPG. By leveraging the self-attention mechanism in ViT, our approach effectively captures both inter-beat and intra-beat dependencies, leading to more robust and accurate ECG reconstruction. Experimental results demonstrate that our method consistently outperforms existing 1D convolution-based approaches, achieving up to 29% reduction in PRD and 15% reduction in RMSE. The proposed approach also produces improvements in other evaluation metrics, highlighting its robustness and effectiveness in reconstructing ECG signals. Furthermore, to ensure a clinically relevant evaluation, we introduce new performance metrics, including QRS area error, PR interval error, RT interval error, and RT amplitude difference error. Our findings suggest that integrating a four-channel signal image representation with the self-attention mechanism of ViT enables more effective extraction of informative PPG features and improved modeling of beat-to-beat variations for PPG-to-ECG mapping. Beyond demonstrating the potential of PPG as a viable alternative for heart activity monitoring, our approach opens new avenues for cyclic signal analysis and prediction.
Highly Efficient Non-Separable Transforms for Next Generation Video Coding
For the last few decades, the application of signal-adaptive transform coding to video compression has been stymied by the large computational complexity of matrix-based solutions. In this paper, we propose a novel parametric approach to greatly reduce the complexity without degrading the compression performance. In our approach, instead of following the conventional technique of identifying full transform matrices that yield best compression efficiency, we look for the best transform parameters defining a new class of transforms, called HyGTs, which have low complexity implementations that are easy to parallelize. The proposed HyGTs are implemented as an extension of High Efficiency Video Coding (HEVC), and our comprehensive experimental results demonstrate that proposed HyGTs improve average coding gain by 6% bit rate reduction, while using 6.8 times less memory than KLT matrices.
Privacy-Preserving Chest X-ray Report Generation via Multimodal Federated Learning with ViT and GPT-2
The automated generation of radiology reports from chest X-ray images holds significant promise in enhancing diagnostic workflows while preserving patient privacy. Traditional centralized approaches often require sensitive data transfer, posing privacy concerns. To address this, the study proposes a Multimodal Federated Learning framework for chest X-ray report generation using the IU-Xray dataset. The system utilizes a Vision Transformer (ViT) as the encoder and GPT-2 as the report generator, enabling decentralized training without sharing raw data. Three Federated Learning (FL) aggregation strategies: FedAvg, Krum Aggregation and a novel Loss-aware Federated Averaging (L-FedAvg) were evaluated. Among these, Krum Aggregation demonstrated superior performance across lexical and semantic evaluation metrics such as ROUGE, BLEU, BERTScore and RaTEScore. The results show that FL can match or surpass centralized models in generating clinically relevant and semantically rich radiology reports. This lightweight and privacy-preserving framework paves the way for collaborative medical AI development without compromising data confidentiality.
comment: Preprint, manuscript under-review
STA-Risk: A Deep Dive of Spatio-Temporal Asymmetries for Breast Cancer Risk Prediction
Predicting the risk of developing breast cancer is an important clinical tool to guide early intervention and tailoring personalized screening strategies. Early risk models have limited performance and recently machine learning-based analysis of mammogram images showed encouraging risk prediction effects. These models however are limited to the use of a single exam or tend to overlook nuanced breast tissue evolvement in spatial and temporal details of longitudinal imaging exams that are indicative of breast cancer risk. In this paper, we propose STA-Risk (Spatial and Temporal Asymmetry-based Risk Prediction), a novel Transformer-based model that captures fine-grained mammographic imaging evolution simultaneously from bilateral and longitudinal asymmetries for breast cancer risk prediction. STA-Risk is innovative by the side encoding and temporal encoding to learn spatial-temporal asymmetries, regulated by a customized asymmetry loss. We performed extensive experiments with two independent mammogram datasets and achieved superior performance than four representative SOTA models for 1- to 5-year future risk prediction. Source codes will be released upon publishing of the paper.
Laparoscopic Image Desmoking Using the U-Net with New Loss Function and Integrated Differentiable Wiener Filter
Laparoscopic surgeries often suffer from reduced visual clarity due to the presence of surgical smoke originated by surgical instruments, which poses significant challenges for both surgeons and vision based computer-assisted technologies. In order to remove the surgical smoke, a novel U-Net deep learning with new loss function and integrated differentiable Wiener filter (ULW) method is presented. Specifically, the new loss function integrates the pixel, structural, and perceptual properties. Thus, the new loss function, which combines the structural similarity index measure loss, the perceptual loss, as well as the mean squared error loss, is able to enhance the quality and realism of the reconstructed images. Furthermore, the learnable Wiener filter is capable of effectively modelling the degradation process caused by the surgical smoke. The effectiveness of the proposed ULW method is evaluated using the publicly available paired laparoscopic smoke and smoke-free image dataset, which provides reliable benchmarking and quantitative comparisons. Experimental results show that the proposed ULW method excels in both visual clarity and metric-based evaluation. As a result, the proposed ULW method offers a promising solution for real-time enhancement of laparoscopic imagery. The code is available at https://github.com/chengyuyang-njit/ImageDesmoke.
Optimizing Deep Learning for Skin Cancer Classification: A Computationally Efficient CNN with Minimal Accuracy Trade-Off
The rapid advancement of deep learning in medical image analysis has greatly enhanced the accuracy of skin cancer classification. However, current state-of-the-art models, especially those based on transfer learning like ResNet50, come with significant computational overhead, rendering them impractical for deployment in resource-constrained environments. This study proposes a custom CNN model that achieves a 96.7\% reduction in parameters (from 23.9 million in ResNet50 to 692,000) while maintaining a classification accuracy deviation of less than 0.022\%. Our empirical analysis of the HAM10000 dataset reveals that although transfer learning models provide a marginal accuracy improvement of approximately 0.022\%, they result in a staggering 13,216.76\% increase in FLOPs, considerably raising computational costs and inference latency. In contrast, our lightweight CNN architecture, which encompasses only 30.04 million FLOPs compared to ResNet50's 4.00 billion, significantly reduces energy consumption, memory footprint, and inference time. These findings underscore the trade-off between the complexity of deep models and their real-world feasibility, positioning our optimized CNN as a practical solution for mobile and edge-based skin cancer diagnostics.
comment: 6 pages, & 7 Images
Taylor expansion-based Kolmogorov-Arnold network for blind image quality assessment
Kolmogorov-Arnold Network (KAN) has attracted growing interest for its strong function approximation capability. In our previous work, KAN and its variants were explored in score regression for blind image quality assessment (BIQA). However, these models encounter challenges when processing high-dimensional features, leading to limited performance gains and increased computational cost. To address these issues, we propose TaylorKAN that leverages the Taylor expansions as learnable activation functions to enhance local approximation capability. To improve the computational efficiency, network depth reduction and feature dimensionality compression are integrated into the TaylorKAN-based score regression pipeline. On five databases (BID, CLIVE, KonIQ, SPAQ, and FLIVE) with authentic distortions, extensive experiments demonstrate that TaylorKAN consistently outperforms the other KAN-related models, indicating that the local approximation via Taylor expansions is more effective than global approximation using orthogonal functions. Its generalization capacity is validated through inter-database experiments. The findings highlight the potential of TaylorKAN as an efficient and robust model for high-dimensional score regression.
comment: under review
DeepMultiConnectome: Deep Multi-Task Prediction of Structural Connectomes Directly from Diffusion MRI Tractography
Diffusion MRI (dMRI) tractography enables in vivo mapping of brain structural connections, but traditional connectome generation is time-consuming and requires gray matter parcellation, posing challenges for large-scale studies. We introduce DeepMultiConnectome, a deep-learning model that predicts structural connectomes directly from tractography, bypassing the need for gray matter parcellation while supporting multiple parcellation schemes. Using a point-cloud-based neural network with multi-task learning, the model classifies streamlines according to their connected regions across two parcellation schemes, sharing a learned representation. We train and validate DeepMultiConnectome on tractography from the Human Connectome Project Young Adult dataset ($n = 1000$), labeled with an 84 and 164 region gray matter parcellation scheme. DeepMultiConnectome predicts multiple structural connectomes from a whole-brain tractogram containing 3 million streamlines in approximately 40 seconds. DeepMultiConnectome is evaluated by comparing predicted connectomes with traditional connectomes generated using the conventional method of labeling streamlines using a gray matter parcellation. The predicted connectomes are highly correlated with traditionally generated connectomes ($r = 0.992$ for an 84-region scheme; $r = 0.986$ for a 164-region scheme) and largely preserve network properties. A test-retest analysis of DeepMultiConnectome demonstrates reproducibility comparable to traditionally generated connectomes. The predicted connectomes perform similarly to traditionally generated connectomes in predicting age and cognitive function. Overall, DeepMultiConnectome provides a scalable, fast model for generating subject-specific connectomes across multiple parcellation schemes.
comment: 15 pages, 5 figures, 5 tables
HWA-UNETR: Hierarchical Window Aggregate UNETR for 3D Multimodal Gastric Lesion Segmentation MICCAI 2025
Multimodal medical image segmentation faces significant challenges in the context of gastric cancer lesion analysis. This clinical context is defined by the scarcity of independent multimodal datasets and the imperative to amalgamate inherently misaligned modalities. As a result, algorithms are constrained to train on approximate data and depend on application migration, leading to substantial resource expenditure and a potential decline in analysis accuracy. To address those challenges, we have made two major contributions: First, we publicly disseminate the GCM 2025 dataset, which serves as the first large-scale, open-source collection of gastric cancer multimodal MRI scans, featuring professionally annotated FS-T2W, CE-T1W, and ADC images from 500 patients. Second, we introduce HWA-UNETR, a novel 3D segmentation framework that employs an original HWA block with learnable window aggregation layers to establish dynamic feature correspondences between different modalities' anatomical structures, and leverages the innovative tri-orientated fusion mamba mechanism for context modeling and capturing long-range spatial dependencies. Extensive experiments on our GCM 2025 dataset and the publicly BraTS 2021 dataset validate the performance of our framework, demonstrating that the new approach surpasses existing methods by up to 1.68\% in the Dice score while maintaining solid robustness. The dataset and code are public via https://github.com/JeMing-creater/HWA-UNETR.
comment: This work has been provisionally accepted for MICCAI 2025
Exploring the Computational Feasibility of Direct Pseudoinversion of the Encoding Matrix for MR Image Reconstruction (Pinv-Recon)
Image reconstruction in Magnetic Resonance Imaging (MRI) is fundamentally a linear inverse problem, such that the image can be recovered via explicit pseudoinversion of the encoding matrix by solving $\textbf{data} = \textbf{Encode} \times \textbf{image}$ - a method referred to here as Pinv-Recon. While the benefits of this approach were acknowledged in early studies, the field has historically favored fast Fourier transforms (FFT) and iterative techniques due to perceived computational limitations of the pseudoinversion approach. This work revisits Pinv-Recon in the context of modern hardware, software, and optimized linear algebra routines. We compare various matrix inversion strategies, assess regularization effects, and demonstrate incorporation of advanced encoding physics into a unified reconstruction framework. While hardware advances have already significantly reduced computation time compared to earlier studies, our work further demonstrates that leveraging Cholesky decomposition and block-wise inversion leads to a two-order-of-magnitude improvement in computational efficiency over previous Singular Value Decomposition-based implementations. Moreover, we demonstrate the versatility of Pinv-Recon on diverse \textit{in vivo} datasets encompassing a range of encoding schemes, starting with low- to medium-resolution functional and metabolic imaging and extending to high-resolution cases. Our findings establish Pinv-Recon as a practical and adaptable reconstruction method that aligns with the increasing emphasis on open-source and reproducible MRI research.
comment: 28 pages, 8 figures (+ Supplementary Material). Submitted to Scientific Reports. V3 corrects wrong labels on Figure 3
Single Snapshot Distillation for Phase Coded Mask Design in Phase Retrieval ICIP 2025
Phase retrieval (PR) reconstructs phase information from magnitude measurements, known as coded diffraction patterns (CDPs), whose quality depends on the number of snapshots captured using coded phase masks. High-quality phase estimation requires multiple snapshots, which is not desired for efficient PR systems. End-to-end frameworks enable joint optimization of the optical system and the recovery neural network. However, their application is constrained by physical implementation limitations. Additionally, the framework is prone to gradient vanishing issues related to its global optimization process. This paper introduces a Knowledge Distillation (KD) optimization approach to address these limitations. KD transfers knowledge from a larger, lower-constrained network (teacher) to a smaller, more efficient, and implementable network (student). In this method, the teacher, a PR system trained with multiple snapshots, distills its knowledge into a single-snapshot PR system, the student. The loss functions compare the CPMs and the feature space of the recovery network. Simulations demonstrate that this approach improves reconstruction performance compared to a PR system trained without the teacher's guidance.
comment: Accepted on the IEEE International Conference on Image Processing, IEEE ICIP 2025
Recent Advances in Diffusion Models for Hyperspectral Image Processing and Analysis: A Review
Hyperspectral image processing and analysis has important application value in remote sensing, agriculture and environmental monitoring, but its high dimensionality, data redundancy and noise interference etc. bring great challenges to the analysis. Traditional models have limitations in dealing with these complex data, and it is difficult to meet the increasing demand for analysis. In recent years, Diffusion models, as a class of emerging generative approaches, have demonstrated promising capabilities in hyperspectral image (HSI) processing tasks. By simulating the diffusion process of data in time, the Diffusion Model are capable of modeling high-dimensional spectral structures, generate high-quality samples, and achieve competitive performance in spectral-spatial denoising tasks and data enhancement. In this paper, we review the recent research advances in diffusion modeling for hyperspectral image processing and analysis, and discuss its applications in tasks such as high-dimensional data processing, noise removal, classification, and anomaly detection. The performance of diffusion-based models on image processing is compared and the challenges are summarized. It is shown that the diffusion model can significantly improve the accuracy and efficiency of hyperspectral image analysis, providing a new direction for future research.
Exploring Out-of-distribution Detection for Sparse-view Computed Tomography with Diffusion Models
Recent works demonstrate the effectiveness of diffusion models as unsupervised solvers for inverse imaging problems. Sparse-view computed tomography (CT) has greatly benefited from these advancements, achieving improved generalization without reliance on measurement parameters. However, this comes at the cost of potential hallucinations, especially when handling out-of-distribution (OOD) data. To ensure reliability, it is essential to study OOD detection for CT reconstruction across both clinical and industrial applications. This need further extends to enabling the OOD detector to function effectively as an anomaly inspection tool. In this paper, we explore the use of a diffusion model, trained to capture the target distribution for CT reconstruction, as an in-distribution prior. Building on recent research, we employ the model to reconstruct partially diffused input images and assess OOD-ness through multiple reconstruction errors. Adapting this approach for sparse-view CT requires redefining the notions of ``input'' and ``reconstruction error''. Here, we use filtered backprojection (FBP) reconstructions as input and investigate various definitions of reconstruction error. Our proof-of-concept experiments on the MNIST dataset highlight both successes and failures, demonstrating the potential and limitations of integrating such an OOD detector into a CT reconstruction system. Our findings suggest that effective OOD detection can be achieved by comparing measurements with forward-projected reconstructions, provided that reconstructions from noisy FBP inputs are conditioned on the measurements. However, conditioning can sometimes lead the OOD detector to inadvertently reconstruct OOD images well. To counter this, we introduce a weighting approach that improves robustness against highly informative OOD measurements, albeit with a trade-off in performance in certain cases.
UltraBones100k: A reliable automated labeling method and large-scale dataset for ultrasound-based bone surface extraction
Ultrasound-based bone surface segmentation is crucial in computer-assisted orthopedic surgery. However, ultrasound images have limitations, including a low signal-to-noise ratio, and acoustic shadowing, which make interpretation difficult. Existing deep learning models for bone segmentation rely primarily on costly manual labeling by experts, limiting dataset size and model generalizability. Additionally, the complexity of ultrasound physics and acoustic shadow makes the images difficult for humans to interpret, leading to incomplete labels in anechoic regions and limiting model performance. To advance ultrasound bone segmentation and establish effective model benchmarks, larger and higher-quality datasets are needed. We propose a methodology for collecting ex-vivo ultrasound datasets with automatically generated bone labels, including anechoic regions. The proposed labels are derived by accurately superimposing tracked bone CT models onto the tracked ultrasound images. These initial labels are refined to account for ultrasound physics. A clinical evaluation is conducted by an expert physician specialized on orthopedic sonography to assess the quality of the generated bone labels. A neural network for bone segmentation is trained on the collected dataset and its predictions are compared to expert manual labels, evaluating accuracy, completeness, and F1-score. We collected the largest known dataset of 100k ultrasound images of human lower limbs with bone labels, called UltraBones100k. A Wilcoxon signed-rank test with Bonferroni correction confirmed that the bone alignment after our method significantly improved the quality of bone labeling (p < 0.001). The model trained on UltraBones100k consistently outperforms manual labeling in all metrics, particularly in low-intensity regions (320% improvement in completeness at a distance threshold of 0.5 mm).
Structure-Accurate Medical Image Translation via Dynamic Frequency Balance and Knowledge Guidance
Multimodal medical images play a crucial role in the precise and comprehensive clinical diagnosis. Diffusion model is a powerful strategy to synthesize the required medical images. However, existing approaches still suffer from the problem of anatomical structure distortion due to the overfitting of high-frequency information and the weakening of low-frequency information. Thus, we propose a novel method based on dynamic frequency balance and knowledge guidance. Specifically, we first extract the low-frequency and high-frequency components by decomposing the critical features of the model using wavelet transform. Then, a dynamic frequency balance module is designed to adaptively adjust frequency for enhancing global low-frequency features and effective high-frequency details as well as suppressing high-frequency noise. To further overcome the challenges posed by the large differences between different medical modalities, we construct a knowledge-guided mechanism that fuses the prior clinical knowledge from a visual language model with visual features, to facilitate the generation of accurate anatomical structures. Experimental evaluations on multiple datasets show the proposed method achieves significant improvements in qualitative and quantitative assessments, verifying its effectiveness and superiority.
comment: Medical image translation, Diffusion model, 16 pages
Efficient LiDAR Reflectance Compression via Scanning Serialization
Reflectance attributes in LiDAR point clouds provide essential information for downstream tasks but remain underexplored in neural compression methods. To address this, we introduce SerLiC, a serialization-based neural compression framework to fully exploit the intrinsic characteristics of LiDAR reflectance. SerLiC first transforms 3D LiDAR point clouds into 1D sequences via scan-order serialization, offering a device-centric perspective for reflectance analysis. Each point is then tokenized into a contextual representation comprising its sensor scanning index, radial distance, and prior reflectance, for effective dependencies exploration. For efficient sequential modeling, Mamba is incorporated with a dual parallelization scheme, enabling simultaneous autoregressive dependency capture and fast processing. Extensive experiments demonstrate that SerLiC attains over 2x volume reduction against the original reflectance data, outperforming the state-of-the-art method by up to 22% reduction of compressed bits while using only 2% of its parameters. Moreover, a lightweight version of SerLiC achieves > 10 fps (frames per second) with just 111K parameters, which is attractive for real-world applications.
Distribution-aware Fairness Learning in Medical Image Segmentation From A Control-Theoretic Perspective ICML 2025
Ensuring fairness in medical image segmentation is critical due to biases in imbalanced clinical data acquisition caused by demographic attributes (e.g., age, sex, race) and clinical factors (e.g., disease severity). To address these challenges, we introduce Distribution-aware Mixture of Experts (dMoE), inspired by optimal control theory. We provide a comprehensive analysis of its underlying mechanisms and clarify dMoE's role in adapting to heterogeneous distributions in medical image segmentation. Furthermore, we integrate dMoE into multiple network architectures, demonstrating its broad applicability across diverse medical image analysis tasks. By incorporating demographic and clinical factors, dMoE achieves state-of-the-art performance on two 2D benchmark datasets and a 3D in-house dataset. Our results highlight the effectiveness of dMoE in mitigating biases from imbalanced distributions, offering a promising approach to bridging control theory and medical image segmentation within fairness learning paradigms. The source code will be made available. The source code is available at https://github.com/tvseg/dMoE.
comment: ICML 2025 spotlight, see https://openreview.net/forum?id=BUONdewsBa
Multimedia
LazyVLM: Neuro-Symbolic Approach to Video Analytics
Current video analytics approaches face a fundamental trade-off between flexibility and efficiency. End-to-end Vision Language Models (VLMs) often struggle with long-context processing and incur high computational costs, while neural-symbolic methods depend heavily on manual labeling and rigid rule design. In this paper, we introduce LazyVLM, a neuro-symbolic video analytics system that provides a user-friendly query interface similar to VLMs, while addressing their scalability limitation. LazyVLM enables users to effortlessly drop in video data and specify complex multi-frame video queries using a semi-structured text interface for video analytics. To address the scalability limitations of VLMs, LazyVLM decomposes multi-frame video queries into fine-grained operations and offloads the bulk of the processing to efficient relational query execution and vector similarity search. We demonstrate that LazyVLM provides a robust, efficient, and user-friendly solution for querying open-domain video data at scale.
comment: 5 pages, 2 figures, Working paper
VoxAging: Continuously Tracking Speaker Aging with a Large-Scale Longitudinal Dataset in English and Mandarin
The performance of speaker verification systems is adversely affected by speaker aging. However, due to challenges in data collection, particularly the lack of sustained and large-scale longitudinal data for individuals, research on speaker aging remains difficult. In this paper, we present VoxAging, a large-scale longitudinal dataset collected from 293 speakers (226 English speakers and 67 Mandarin speakers) over several years, with the longest time span reaching 17 years (approximately 900 weeks). For each speaker, the data were recorded at weekly intervals. We studied the phenomenon of speaker aging and its effects on advanced speaker verification systems, analyzed individual speaker aging processes, and explored the impact of factors such as age group and gender on speaker aging research.
comment: 5 pages, 4 figures, Accepted by Interspeech 2025
THE WASTIVE: An Interactive Ebb and Flow of Digital Fabrication Waste
What if digital fabrication waste could observe the world? What would they see? What would they say? "THE WASTIVE" reimagines digital fabrication waste as sentient observers, giving them a poetic voice through interactive art. As viewers approach, the installation awakens, mimicking the rhythmic ebb and flow of ocean waves - a silent dialogue where discarded materials "observe" and respond to human presence. These interactions echo the gentle murmurs of the sea, transforming technological residue into a reflective, sensory experience. Through this artistic contemplation, "THE WASTIVE" invites audiences to reconsider their creative processes and consumption habits. It serves as a poetic call for more mindful, sustainable practices, provoking deeper reflections on our interconnectedness with the environment.
comment: video demo: https://youtu.be/Yh3dmKYNP-8
Can Large Language Models Predict Audio Effects Parameters from Natural Language? SP
In music production, manipulating audio effects (Fx) parameters through natural language has the potential to reduce technical barriers for non-experts. We present LLM2Fx, a framework leveraging Large Language Models (LLMs) to predict Fx parameters directly from textual descriptions without requiring task-specific training or fine-tuning. Our approach address the text-to-effect parameter prediction (Text2Fx) task by mapping natural language descriptions to the corresponding Fx parameters for equalization and reverberation. We demonstrate that LLMs can generate Fx parameters in a zero-shot manner that elucidates the relationship between timbre semantics and audio effects in music production. To enhance performance, we introduce three types of in-context examples: audio Digital Signal Processing (DSP) features, DSP function code, and few-shot examples. Our results demonstrate that LLM-based Fx parameter generation outperforms previous optimization approaches, offering competitive performance in translating natural language descriptions to appropriate Fx settings. Furthermore, LLMs can serve as text-driven interfaces for audio production, paving the way for more intuitive and accessible music production tools.
comment: Submitted to WASPAA 2025
REWIND: Speech Time Reversal for Enhancing Speaker Representations in Diffusion-based Voice Conversion INTERSPEECH 2025
Speech time reversal refers to the process of reversing the entire speech signal in time, causing it to play backward. Such signals are completely unintelligible since the fundamental structures of phonemes and syllables are destroyed. However, they still retain tonal patterns that enable perceptual speaker identification despite losing linguistic content. In this paper, we propose leveraging speaker representations learned from time reversed speech as an augmentation strategy to enhance speaker representation. Notably, speaker and language disentanglement in voice conversion (VC) is essential to accurately preserve a speaker's unique vocal traits while minimizing interference from linguistic content. The effectiveness of the proposed approach is evaluated in the context of state-of-the-art diffusion-based VC models. Experimental results indicate that the proposed approach significantly improves speaker similarity-related scores while maintaining high speech quality.
comment: Accepted in INTERSPEECH 2025
Music's Multimodal Complexity in AVQA: Why We Need More than General Multimodal LLMs
While recent Multimodal Large Language Models exhibit impressive capabilities for general multimodal tasks, specialized domains like music necessitate tailored approaches. Music Audio-Visual Question Answering (Music AVQA) particularly underscores this, presenting unique challenges with its continuous, densely layered audio-visual content, intricate temporal dynamics, and the critical need for domain-specific knowledge. Through a systematic analysis of Music AVQA datasets and methods, this position paper identifies that specialized input processing, architectures incorporating dedicated spatial-temporal designs, and music-specific modeling strategies are critical for success in this domain. Our study provides valuable insights for researchers by highlighting effective design patterns empirically linked to strong performance, proposing concrete future directions for incorporating musical priors, and aiming to establish a robust foundation for advancing multimodal musical understanding. This work is intended to inspire broader attention and further research, supported by a continuously updated anonymous GitHub repository of relevant papers: https://github.com/xid32/Survey4MusicAVQA.
Towards Pretraining Robust ASR Foundation Model with Acoustic-Aware Data Augmentation
Whisper's robust performance in automatic speech recognition (ASR) is often attributed to its massive 680k-hour training set, an impractical scale for most researchers. In this work, we examine how linguistic and acoustic diversity in training data affect the robustness of the ASR model and reveal that transcription generalization is primarily driven by acoustic variation rather than linguistic richness. We find that targeted acoustic augmentation methods could significantly improve the generalization ability of ASR models, reducing word-error rates by up to 19.24 percent on unseen datasets when training on the 960-hour Librispeech dataset. These findings highlight strategic acoustically focused data augmentation as a promising alternative to massive datasets for building robust ASR models, offering a potential solution to future foundation ASR models when massive human speech data is lacking.
comment: in submission
Modality Curation: Building Universal Embeddings for Advanced Multimodal Information Retrieval
Multimodal information retrieval (MIR) faces inherent challenges due to the heterogeneity of data sources and the complexity of cross-modal alignment. While previous studies have identified modal gaps in feature spaces, a systematic approach to address these challenges remains unexplored. In this work, we introduce UNITE, a universal framework that tackles these challenges through two critical yet underexplored aspects: data curation and modality-aware training configurations. Our work provides the first comprehensive analysis of how modality-specific data properties influence downstream task performance across diverse scenarios. Moreover, we propose Modal-Aware Masked Contrastive Learning (MAMCL) to mitigate the competitive relationships among the instances of different modalities. Our framework achieves state-of-the-art results on multiple multimodal retrieval benchmarks, outperforming existing methods by notable margins. Through extensive experiments, we demonstrate that strategic modality curation and tailored training protocols are pivotal for robust cross-modal representation learning. This work not only advances MIR performance but also provides a foundational blueprint for future research in multimodal systems. Our project is available at https://friedrichor.github.io/projects/UNITE.
comment: 26 pages, project page: https://friedrichor.github.io/projects/UNITE
Rebalancing Contrastive Alignment with Learnable Semantic Gaps in Text-Video Retrieval
Recent advances in text-video retrieval have been largely driven by contrastive learning frameworks. However, existing methods overlook a key source of optimization tension: the separation between text and video distributions in the representation space (referred to as the modality gap), and the prevalence of false negatives in batch sampling. These factors lead to conflicting gradients under the InfoNCE loss, impeding stable alignment. To mitigate this, we propose GARE, a Gap-Aware Retrieval framework that introduces a learnable, pair-specific increment Delta_ij between text t_i and video v_j to offload the tension from the global anchor representation. We first derive the ideal form of Delta_ij via a coupled multivariate first-order Taylor approximation of the InfoNCE loss under a trust-region constraint, revealing it as a mechanism for resolving gradient conflicts by guiding updates along a locally optimal descent direction. Due to the high cost of directly computing Delta_ij, we introduce a lightweight neural module conditioned on the semantic gap between each video-text pair, enabling structure-aware correction guided by gradient supervision. To further stabilize learning and promote interpretability, we regularize Delta using three components: a trust-region constraint to prevent oscillation, a directional diversity term to promote semantic coverage, and an information bottleneck to limit redundancy. Experiments across four retrieval benchmarks show that GARE consistently improves alignment accuracy and robustness to noisy supervision, confirming the effectiveness of gap-aware tension mitigation.
TUNA: Comprehensive Fine-grained Temporal Understanding Evaluation on Dense Dynamic Videos ACL 2025
Videos are unique in their integration of temporal elements, including camera, scene, action, and attribute, along with their dynamic relationships over time. However, existing benchmarks for video understanding often treat these properties separately or narrowly focus on specific aspects, overlooking the holistic nature of video content. To address this, we introduce TUNA, a temporal-oriented benchmark for fine-grained understanding on dense dynamic videos, with two complementary tasks: captioning and QA. Our TUNA features diverse video scenarios and dynamics, assisted by interpretable and robust evaluation criteria. We evaluate several leading models on our benchmark, providing fine-grained performance assessments across various dimensions. This evaluation reveals key challenges in video temporal understanding, such as limited action description, inadequate multi-subject understanding, and insensitivity to camera motion, offering valuable insights for improving video understanding models. The data and code are available at https://friedrichor.github.io/projects/TUNA.
comment: Accepted to ACL 2025 Main. Project page: https://friedrichor.github.io/projects/TUNA
Computation and Language
How does Alignment Enhance LLMs' Multilingual Capabilities? A Language Neurons Perspective
Multilingual Alignment is an effective and representative paradigm to enhance LLMs' multilingual capabilities, which transfers the capabilities from the high-resource languages to the low-resource languages. Meanwhile, some researches on language-specific neurons reveal that there are language-specific neurons that are selectively activated in LLMs when processing different languages. This provides a new perspective to analyze and understand LLMs' mechanisms more specifically in multilingual scenarios. In this work, we propose a new finer-grained neuron identification algorithm, which detects language neurons~(including language-specific neurons and language-related neurons) and language-agnostic neurons. Furthermore, based on the distributional characteristics of different types of neurons, we divide the LLMs' internal process for multilingual inference into four parts: (1) multilingual understanding, (2) shared semantic space reasoning, (3) multilingual output space transformation, and (4) vocabulary space outputting. Additionally, we systematically analyze the models before and after alignment with a focus on different types of neurons. We also analyze the phenomenon of ''Spontaneous Multilingual Alignment''. Overall, our work conducts a comprehensive investigation based on different types of neurons, providing empirical results and valuable insights for better understanding multilingual alignment and multilingual capabilities of LLMs.
Silence is Not Consensus: Disrupting Agreement Bias in Multi-Agent LLMs via Catfish Agent for Clinical Decision Making
Large language models (LLMs) have demonstrated strong potential in clinical question answering, with recent multi-agent frameworks further improving diagnostic accuracy via collaborative reasoning. However, we identify a recurring issue of Silent Agreement, where agents prematurely converge on diagnoses without sufficient critical analysis, particularly in complex or ambiguous cases. We present a new concept called Catfish Agent, a role-specialized LLM designed to inject structured dissent and counter silent agreement. Inspired by the ``catfish effect'' in organizational psychology, the Catfish Agent is designed to challenge emerging consensus to stimulate deeper reasoning. We formulate two mechanisms to encourage effective and context-aware interventions: (i) a complexity-aware intervention that modulates agent engagement based on case difficulty, and (ii) a tone-calibrated intervention articulated to balance critique and collaboration. Evaluations on nine medical Q&A and three medical VQA benchmarks show that our approach consistently outperforms both single- and multi-agent LLMs frameworks, including leading commercial models such as GPT-4o and DeepSeek-R1.
ViewSpatial-Bench: Evaluating Multi-perspective Spatial Localization in Vision-Language Models
Vision-language models (VLMs) have demonstrated remarkable capabilities in understanding and reasoning about visual content, but significant challenges persist in tasks requiring cross-viewpoint understanding and spatial reasoning. We identify a critical limitation: current VLMs excel primarily at egocentric spatial reasoning (from the camera's perspective) but fail to generalize to allocentric viewpoints when required to adopt another entity's spatial frame of reference. We introduce ViewSpatial-Bench, the first comprehensive benchmark designed specifically for multi-viewpoint spatial localization recognition evaluation across five distinct task types, supported by an automated 3D annotation pipeline that generates precise directional labels. Comprehensive evaluation of diverse VLMs on ViewSpatial-Bench reveals a significant performance disparity: models demonstrate reasonable performance on camera-perspective tasks but exhibit reduced accuracy when reasoning from a human viewpoint. By fine-tuning VLMs on our multi-perspective spatial dataset, we achieve an overall performance improvement of 46.24% across tasks, highlighting the efficacy of our approach. Our work establishes a crucial benchmark for spatial intelligence in embodied AI systems and provides empirical evidence that modeling 3D spatial relationships enhances VLMs' corresponding spatial comprehension capabilities.
comment: Project: https://zju-real.github.io/ViewSpatial-Page/
Paper2Poster: Towards Multimodal Poster Automation from Scientific Papers
Academic poster generation is a crucial yet challenging task in scientific communication, requiring the compression of long-context interleaved documents into a single, visually coherent page. To address this challenge, we introduce the first benchmark and metric suite for poster generation, which pairs recent conference papers with author-designed posters and evaluates outputs on (i)Visual Quality-semantic alignment with human posters, (ii)Textual Coherence-language fluency, (iii)Holistic Assessment-six fine-grained aesthetic and informational criteria scored by a VLM-as-judge, and notably (iv)PaperQuiz-the poster's ability to convey core paper content as measured by VLMs answering generated quizzes. Building on this benchmark, we propose PosterAgent, a top-down, visual-in-the-loop multi-agent pipeline: the (a)Parser distills the paper into a structured asset library; the (b)Planner aligns text-visual pairs into a binary-tree layout that preserves reading order and spatial balance; and the (c)Painter-Commenter loop refines each panel by executing rendering code and using VLM feedback to eliminate overflow and ensure alignment. In our comprehensive evaluation, we find that GPT-4o outputs-though visually appealing at first glance-often exhibit noisy text and poor PaperQuiz scores, and we find that reader engagement is the primary aesthetic bottleneck, as human-designed posters rely largely on visual semantics to convey meaning. Our fully open-source variants (e.g. based on the Qwen-2.5 series) outperform existing 4o-driven multi-agent systems across nearly all metrics, while using 87% fewer tokens. It transforms a 22-page paper into a finalized yet editable .pptx poster - all for just $0.005. These findings chart clear directions for the next generation of fully automated poster-generation models. The code and datasets are available at https://github.com/Paper2Poster/Paper2Poster.
comment: Project Page: https://github.com/Paper2Poster/Paper2Poster
UI-Genie: A Self-Improving Approach for Iteratively Boosting MLLM-based Mobile GUI Agents
In this paper, we introduce UI-Genie, a self-improving framework addressing two key challenges in GUI agents: verification of trajectory outcome is challenging and high-quality training data are not scalable. These challenges are addressed by a reward model and a self-improving pipeline, respectively. The reward model, UI-Genie-RM, features an image-text interleaved architecture that efficiently pro- cesses historical context and unifies action-level and task-level rewards. To sup- port the training of UI-Genie-RM, we develop deliberately-designed data genera- tion strategies including rule-based verification, controlled trajectory corruption, and hard negative mining. To address the second challenge, a self-improvement pipeline progressively expands solvable complex GUI tasks by enhancing both the agent and reward models through reward-guided exploration and outcome verification in dynamic environments. For training the model, we generate UI- Genie-RM-517k and UI-Genie-Agent-16k, establishing the first reward-specific dataset for GUI agents while demonstrating high-quality synthetic trajectory gen- eration without manual annotation. Experimental results show that UI-Genie achieves state-of-the-art performance across multiple GUI agent benchmarks with three generations of data-model self-improvement. We open-source our complete framework implementation and generated datasets to facilitate further research in https://github.com/Euphoria16/UI-Genie.
comment: https://github.com/Euphoria16/UI-Genie
Reinforcing General Reasoning without Verifiers
The recent paradigm shift towards training large language models (LLMs) using DeepSeek-R1-Zero-style reinforcement learning (RL) on verifiable rewards has led to impressive advancements in code and mathematical reasoning. However, this methodology is limited to tasks where rule-based answer verification is possible and does not naturally extend to real-world domains such as chemistry, healthcare, engineering, law, biology, business, and economics. Current practical workarounds use an additional LLM as a model-based verifier; however, this introduces issues such as reliance on a strong verifier LLM, susceptibility to reward hacking, and the practical burden of maintaining the verifier model in memory during training. To address this and extend DeepSeek-R1-Zero-style training to general reasoning domains, we propose a verifier-free method (VeriFree) that bypasses answer verification and instead uses RL to directly maximize the probability of generating the reference answer. We compare VeriFree with verifier-based methods and demonstrate that, in addition to its significant practical benefits and reduced compute requirements, VeriFree matches and even surpasses verifier-based methods on extensive evaluations across MMLU-Pro, GPQA, SuperGPQA, and math-related benchmarks. Moreover, we provide insights into this method from multiple perspectives: as an elegant integration of training both the policy and implicit verifier in a unified model, and as a variational optimization approach. Code is available at https://github.com/sail-sg/VeriFree.
Hardware-Efficient Attention for Fast Decoding
LLM decoding is bottlenecked for large batches and long contexts by loading the key-value (KV) cache from high-bandwidth memory, which inflates per-token latency, while the sequential nature of decoding limits parallelism. We analyze the interplay among arithmetic intensity, parallelization, and model quality and question whether current architectures fully exploit modern hardware. This work redesigns attention to perform more computation per byte loaded from memory to maximize hardware efficiency without trading off parallel scalability. We first propose Grouped-Tied Attention (GTA), a simple variant that combines and reuses key and value states, reducing memory transfers without compromising model quality. We then introduce Grouped Latent Attention (GLA), a parallel-friendly latent attention paired with low-level optimizations for fast decoding while maintaining high model quality. Experiments show that GTA matches Grouped-Query Attention (GQA) quality while using roughly half the KV cache and that GLA matches Multi-head Latent Attention (MLA) and is easier to shard. Our optimized GLA kernel is up to 2$\times$ faster than FlashMLA, for example, in a speculative decoding setting when the query length exceeds one. Furthermore, by fetching a smaller KV cache per device, GLA reduces end-to-end latency and increases throughput in online serving benchmarks by up to 2$\times$.
comment: 37 pages, 15 figures, 45 tables
Are Language Models Consequentialist or Deontological Moral Reasoners?
As AI systems increasingly navigate applications in healthcare, law, and governance, understanding how they handle ethically complex scenarios becomes critical. Previous work has mainly examined the moral judgments in large language models (LLMs), rather than their underlying moral reasoning process. In contrast, we focus on a large-scale analysis of the moral reasoning traces provided by LLMs. Furthermore, unlike prior work that attempted to draw inferences from only a handful of moral dilemmas, our study leverages over 600 distinct trolley problems as probes for revealing the reasoning patterns that emerge within different LLMs. We introduce and test a taxonomy of moral rationales to systematically classify reasoning traces according to two main normative ethical theories: consequentialism and deontology. Our analysis reveals that LLM chains-of-thought tend to favor deontological principles based on moral obligations, while post-hoc explanations shift notably toward consequentialist rationales that emphasize utility. Our framework provides a foundation for understanding how LLMs process and articulate ethical considerations, an important step toward safe and interpretable deployment of LLMs in high-stakes decision-making environments. Our code is available at https://github.com/keenansamway/moral-lens .
Mitigating Hallucination in Large Vision-Language Models via Adaptive Attention Calibration
Large vision-language models (LVLMs) achieve impressive performance on multimodal tasks but often suffer from hallucination, and confidently describe objects or attributes not present in the image. Current inference-time interventions, while training-free, struggle to maintain accuracy in open-ended and long-form generation scenarios. We introduce the Confidence-Aware Attention Calibration (CAAC) framework to address this challenge by targeting two key biases: spatial perception bias, which distributes attention disproportionately across image tokens, and modality bias, which shifts focus from visual to textual inputs over time. CAAC employs a two-step approach: Visual-Token Calibration (VTC) to balance attention across visual tokens, and Adaptive Attention Re-Scaling (AAR) to reinforce visual grounding based on the model's confidence. This confidence-driven adjustment ensures consistent visual alignment during generation. Experiments on CHAIR, AMBER, and POPE benchmarks demonstrate that CAAC outperforms baselines, particularly in long-form generations, effectively reducing hallucination.
Scaling External Knowledge Input Beyond Context Windows of LLMs via Multi-Agent Collaboration
With the rapid advancement of post-training techniques for reasoning and information seeking, large language models (LLMs) can incorporate a large quantity of retrieved knowledge to solve complex tasks. However, the limited context window of LLMs obstructs scaling the amount of external knowledge input, prohibiting further improvement, especially for tasks requiring significant amount of external knowledge. Existing context window extension methods inevitably cause information loss. LLM-based multi-agent methods emerge as a new paradigm to handle massive input in a distributional manner, where we identify two core bottlenecks in existing knowledge synchronization and reasoning processes. In this work, we develop a multi-agent framework, $\textbf{ExtAgents}$, to overcome the bottlenecks and enable better scalability in inference-time knowledge integration without longer-context training. Benchmarked with our enhanced multi-hop question answering test, $\textbf{$\boldsymbol{\infty}$Bench+}$, and other public test sets including long survey generation, ExtAgents significantly enhances the performance over existing non-training methods with the same amount of external knowledge input, regardless of whether it falls $\textit{within or exceeds the context window}$. Moreover, the method maintains high efficiency due to high parallelism. Further study in the coordination of LLM agents on increasing external knowledge input could benefit real-world applications.
comment: 30 pages, 9 figures. Code and data are available at https://github.com/THUNLP-MT/ExtAgents
Accelerating Diffusion Language Model Inference via Efficient KV Caching and Guided Diffusion
Diffusion language models offer parallel token generation and inherent bidirectionality, promising more efficient and powerful sequence modeling compared to autoregressive approaches. However, state-of-the-art diffusion models (e.g., Dream 7B, LLaDA 8B) suffer from slow inference. While they match the quality of similarly sized Autoregressive (AR) Models (e.g., Qwen2.5 7B, Llama3 8B), their iterative denoising requires multiple full-sequence forward passes, resulting in high computational costs and latency, particularly for long input prompts and long-context scenarios. Furthermore, parallel token generation introduces token incoherence problems, and current sampling heuristics suffer from significant quality drops with decreasing denoising steps. We address these limitations with two training-free techniques. First, we propose FreeCache, a Key-Value (KV) approximation caching technique that reuses stable KV projections across denoising steps, effectively reducing the computational cost of DLM inference. Second, we introduce Guided Diffusion, a training-free method that uses a lightweight pretrained autoregressive model to supervise token unmasking, dramatically reducing the total number of denoising iterations without sacrificing quality. We conduct extensive evaluations on open-source reasoning benchmarks, and our combined methods deliver up to a 34x end-to-end speedup without compromising accuracy. For the first time, diffusion language models achieve a comparable and even faster latency as the widely adopted autoregressive models. Our work successfully paved the way for scaling up the diffusion language model to a broader scope of applications across different domains.
ID-Align: RoPE-Conscious Position Remapping for Dynamic High-Resolution Adaptation in Vision-Language Models
Currently, a prevalent approach for enhancing Vision-Language Models (VLMs) performance is to encode both the high-resolution version and the thumbnail of an image simultaneously. While effective, this method generates a large number of image tokens. When combined with the widely used Rotary Position Embedding (RoPE), its long-term decay property hinders the interaction between high-resolution tokens and thumbnail tokens, as well as between text and image. To address these issues, we propose ID-Align, which alleviates these problems by reordering position IDs. In this method, high-resolution tokens inherit IDs from their corresponding thumbnail token while constraining the overexpansion of positional indices. Our experiments conducted within the LLaVA-Next framework demonstrate that ID-Align achieves significant improvements, including a 6.09% enhancement on MMBench's relation reasoning tasks and notable gains across multiple benchmarks. Our code is available at the following link: https://github.com/zooblastlbz/ID-Align.
Do LLMs Need to Think in One Language? Correlation between Latent Language and Task Performance
Large Language Models (LLMs) are known to process information using a proficient internal language consistently, referred to as latent language, which may differ from the input or output languages. However, how the discrepancy between the latent language and the input and output language affects downstream task performance remains largely unexplored. While many studies research the latent language of LLMs, few address its importance in influencing task performance. In our study, we hypothesize that thinking in latent language consistently enhances downstream task performance. To validate this, our work varies the input prompt languages across multiple downstream tasks and analyzes the correlation between consistency in latent language and task performance. We create datasets consisting of questions from diverse domains such as translation and geo-culture, which are influenced by the choice of latent language. Experimental results across multiple LLMs on translation and geo-culture tasks, which are sensitive to the choice of language, indicate that maintaining consistency in latent language is not always necessary for optimal downstream task performance. This is because these models adapt their internal representations near the final layers to match the target language, reducing the impact of consistency on overall performance.
Words Like Knives: Backstory-Personalized Modeling and Detection of Violent Communication
Conversational breakdowns in close relationships are deeply shaped by personal histories and emotional context, yet most NLP research treats conflict detection as a general task, overlooking the relational dynamics that influence how messages are perceived. In this work, we leverage nonviolent communication (NVC) theory to evaluate LLMs in detecting conversational breakdowns and assessing how relationship backstory influences both human and model perception of conflicts. Given the sensitivity and scarcity of real-world datasets featuring conflict between familiar social partners with rich personal backstories, we contribute the PersonaConflicts Corpus, a dataset of N=5,772 naturalistic simulated dialogues spanning diverse conflict scenarios between friends, family members, and romantic partners. Through a controlled human study, we annotate a subset of dialogues and obtain fine-grained labels of communication breakdown types on individual turns, and assess the impact of backstory on human and model perception of conflict in conversation. We find that the polarity of relationship backstories significantly shifted human perception of communication breakdowns and impressions of the social partners, yet models struggle to meaningfully leverage those backstories in the detection task. Additionally, we find that models consistently overestimate how positively a message will make a listener feel. Our findings underscore the critical role of personalization to relationship contexts in enabling LLMs to serve as effective mediators in human communication for authentic connection.
Towards Better Instruction Following Retrieval Models
Modern information retrieval (IR) models, trained exclusively on standard pairs, struggle to effectively interpret and follow explicit user instructions. We introduce InF-IR, a large-scale, high-quality training corpus tailored for enhancing retrieval models in Instruction-Following IR. InF-IR expands traditional training pairs into over 38,000 expressive triplets as positive samples. In particular, for each positive triplet, we generate two additional hard negative examples by poisoning both instructions and queries, then rigorously validated by an advanced reasoning model (o3-mini) to ensure semantic plausibility while maintaining instructional incorrectness. Unlike existing corpora that primarily support computationally intensive reranking tasks for decoder-only language models, the highly contrastive positive-negative triplets in InF-IR further enable efficient representation learning for smaller encoder-only models, facilitating direct embedding-based retrieval. Using this corpus, we train InF-Embed, an instruction-aware Embedding model optimized through contrastive learning and instruction-query attention mechanisms to align retrieval outcomes precisely with user intents. Extensive experiments across five instruction-based retrieval benchmarks demonstrate that InF-Embed significantly surpasses competitive baselines by 8.1% in p-MRR, measuring the instruction-following capabilities.
comment: Retrieval Models, Embedding, Retrieval with Instructions
RefTool: Enhancing Model Reasoning with Reference-Guided Tool Creation
Tools enhance the reasoning capabilities of large language models (LLMs) in complex problem-solving tasks, but not all tasks have available tools. In the absence of predefined tools, prior works have explored instructing LLMs to generate tools on their own. However, such approaches rely heavily on the models' internal knowledge and would fail in domains beyond the LLMs' knowledge scope. To address this limitation, we propose RefTool, a reference-guided framework for automatic tool creation that leverages structured external materials such as textbooks. RefTool consists of two modules: (1) tool creation, where LLMs generate executable tools from reference content, validate them using illustrative examples, and organize them hierarchically into a toolbox; and (2) tool utilization, where LLMs navigate the toolbox structure to select and apply the appropriate tools to solve problems. Experiments on causality, physics, and chemistry benchmarks demonstrate that RefTool outperforms existing tool-creation and domain-specific reasoning methods by 11.3% on average accuracy, while being cost-efficient and broadly generalizable. Analyses reveal that grounding tool creation in references produces accurate and faithful tools, and that the hierarchical structure facilitates effective tool selection. RefTool enables LLMs to overcome knowledge limitations, demonstrating the value of grounding tool creation in external references for enhanced and generalizable reasoning.
comment: Code is available at https://github.com/xxxiaol/RefTool
Pangu Pro MoE: Mixture of Grouped Experts for Efficient Sparsity
The surgence of Mixture of Experts (MoE) in Large Language Models promises a small price of execution cost for a much larger model parameter count and learning capacity, because only a small fraction of parameters are activated for each input token. However, it is commonly observed that some experts are activated far more often than others, leading to system inefficiency when running the experts on different devices in parallel. Therefore, we introduce Mixture of Grouped Experts (MoGE), which groups the experts during selection and balances the expert workload better than MoE in nature. It constrains tokens to activate an equal number of experts within each predefined expert group. When a model execution is distributed on multiple devices, this architectural design ensures a balanced computational load across devices, significantly enhancing throughput, particularly for the inference phase. Further, we build Pangu Pro MoE on Ascend NPUs, a sparse model based on MoGE with 72 billion total parameters, 16 billion of which are activated for each token. The configuration of Pangu Pro MoE is optimized for Ascend 300I Duo and 800I A2 through extensive system simulation studies. Our experiments indicate that MoGE indeed leads to better expert load balancing and more efficient execution for both model training and inference on Ascend NPUs. The inference performance of Pangu Pro MoE achieves 1148 tokens/s per card and can be further improved to 1528 tokens/s per card by speculative acceleration, outperforming comparable 32B and 72B Dense models. Furthermore, we achieve an excellent cost-to-performance ratio for model inference on Ascend 300I Duo.Our studies show that Ascend NPUs are capable of training Pangu Pro MoE with massive parallelization to make it a leading model within the sub-100B total parameter class, outperforming prominent open-source models like GLM-Z1-32B and Qwen3-32B.
RelationalFactQA: A Benchmark for Evaluating Tabular Fact Retrieval from Large Language Models
Factuality in Large Language Models (LLMs) is a persistent challenge. Current benchmarks often assess short factual answers, overlooking the critical ability to generate structured, multi-record tabular outputs from parametric knowledge. We demonstrate that this relational fact retrieval is substantially more difficult than isolated point-wise queries, even when individual facts are known to the model, exposing distinct failure modes sensitive to output dimensionality (e.g., number of attributes or records). To systematically evaluate this under-explored capability, we introduce RelationalFactQA, a new benchmark featuring diverse natural language questions (paired with SQL) and gold-standard tabular answers, specifically designed to assess knowledge retrieval in a structured format. RelationalFactQA enables analysis across varying query complexities, output sizes, and data characteristics. Our experiments reveal that even state-of-the-art LLMs struggle significantly, not exceeding 25% factual accuracy in generating relational outputs, with performance notably degrading as output dimensionality increases. These findings underscore critical limitations in current LLMs' ability to synthesize structured factual knowledge and establish RelationalFactQA as a crucial resource for measuring future progress in LLM factuality.
Factual Self-Awareness in Language Models: Representation, Robustness, and Scaling
Factual incorrectness in generated content is one of the primary concerns in ubiquitous deployment of large language models (LLMs). Prior findings suggest LLMs can (sometimes) detect factual incorrectness in their generated content (i.e., fact-checking post-generation). In this work, we provide evidence supporting the presence of LLMs' internal compass that dictate the correctness of factual recall at the time of generation. We demonstrate that for a given subject entity and a relation, LLMs internally encode linear features in the Transformer's residual stream that dictate whether it will be able to recall the correct attribute (that forms a valid entity-relation-attribute triplet). This self-awareness signal is robust to minor formatting variations. We investigate the effects of context perturbation via different example selection strategies. Scaling experiments across model sizes and training dynamics highlight that self-awareness emerges rapidly during training and peaks in intermediate layers. These findings uncover intrinsic self-monitoring capabilities within LLMs, contributing to their interpretability and reliability.
DecisionFlow: Advancing Large Language Model as Principled Decision Maker
In high-stakes domains such as healthcare and finance, effective decision-making demands not just accurate outcomes but transparent and explainable reasoning. However, current language models often lack the structured deliberation needed for such tasks, instead generating decisions and justifications in a disconnected, post-hoc manner. To address this, we propose DecisionFlow, a novel decision modeling framework that guides models to reason over structured representations of actions, attributes, and constraints. Rather than predicting answers directly from prompts, DecisionFlow builds a semantically grounded decision space and infers a latent utility function to evaluate trade-offs in a transparent, utility-driven manner. This process produces decisions tightly coupled with interpretable rationales reflecting the model's reasoning. Empirical results on two high-stakes benchmarks show that DecisionFlow not only achieves up to 30% accuracy gains over strong prompting baselines but also enhances alignment in outcomes. Our work is a critical step toward integrating symbolic reasoning with LLMs, enabling more accountable, explainable, and reliable LLM decision support systems. We release the data and code at https://github.com/xiusic/DecisionFlow.
comment: 24 pages, 13 figures
Improving Research Idea Generation Through Data: An Empirical Investigation in Social Science
Recent advancements in large language models (LLMs) have shown promise in generating novel research ideas. However, these ideas often face challenges related to feasibility and expected effectiveness. This paper explores how augmenting LLMs with relevant data during the idea generation process can enhance the quality of generated ideas. We introduce two ways of incorporating data: (1) providing metadata during the idea generation stage to guide LLMs toward feasible directions, and (2) adding automatic validation during the idea selection stage to assess the empirical plausibility of hypotheses within ideas. We conduct experiments in the social science domain, specifically with climate negotiation topics, and find that metadata improves the feasibility of generated ideas by 20%, while automatic validation improves the overall quality of selected ideas by 7%. A human study shows that LLM-generated ideas, along with their related data and validation processes, inspire researchers to propose research ideas with higher quality. Our work highlights the potential of data-driven research idea generation, and underscores the practical utility of LLM-assisted ideation in real-world academic settings.
AutoJudger: An Agent-Driven Framework for Efficient Benchmarking of MLLMs
Evaluating multimodal large language models (MLLMs) is increasingly expensive, as the growing size and cross-modality complexity of benchmarks demand significant scoring efforts. To tackle with this difficulty, we introduce AutoJudger, an agent-driven framework for efficient and adaptive benchmarking of MLLMs that tackles this escalating cost. AutoJudger employs the Item Response Theory (IRT) to estimate the question difficulty and an autonomous evaluation agent to dynamically select the most informative test questions based on the model's real-time performance. Specifically, AutoJudger incorporates two pivotal components: a semantic-aware retrieval mechanism to ensure that selected questions cover diverse and challenging scenarios across both vision and language modalities, and a dynamic memory that maintains contextual statistics of previously evaluated questions to guide coherent and globally informed question selection throughout the evaluation process. Extensive experiments on four representative multimodal benchmarks demonstrate that our adaptive framework dramatically reduces evaluation expenses, i.e. AutoJudger uses only 4% of the data to achieve over 90% ranking accuracy with the full benchmark evaluation on MMT-Bench.
PHISH in MESH: Korean Adversarial Phonetic Substitution and Phonetic-Semantic Feature Integration Defense
As malicious users increasingly employ phonetic substitution to evade hate speech detection, researchers have investigated such strategies. However, two key challenges remain. First, existing studies have overlooked the Korean language, despite its vulnerability to phonetic perturbations due to its phonographic nature. Second, prior work has primarily focused on constructing datasets rather than developing architectural defenses. To address these challenges, we propose (1) PHonetic-Informed Substitution for Hangul (PHISH) that exploits the phonological characteristics of the Korean writing system, and (2) Mixed Encoding of Semantic-pHonetic features (MESH) that enhances the detector's robustness by incorporating phonetic information at the architectural level. Our experimental results demonstrate the effectiveness of our proposed methods on both perturbed and unperturbed datasets, suggesting that they not only improve detection performance but also reflect realistic adversarial behaviors employed by malicious users.
comment: Under review
Analyzing values about gendered language reform in LLMs' revisions
Within the common LLM use case of text revision, we study LLMs' revision of gendered role nouns (e.g., outdoorsperson/woman/man) and their justifications of such revisions. We evaluate their alignment with feminist and trans-inclusive language reforms for English. Drawing on insight from sociolinguistics, we further assess if LLMs are sensitive to the same contextual effects in the application of such reforms as people are, finding broad evidence of such effects. We discuss implications for value alignment.
comment: 15 pages
Evaluating LLM Adaptation to Sociodemographic Factors: User Profile vs. Dialogue History
Effective engagement by large language models (LLMs) requires adapting responses to users' sociodemographic characteristics, such as age, occupation, and education level. While many real-world applications leverage dialogue history for contextualization, existing evaluations of LLMs' behavioral adaptation often focus on single-turn prompts. In this paper, we propose a framework to evaluate LLM adaptation when attributes are introduced either (1) explicitly via user profiles in the prompt or (2) implicitly through multi-turn dialogue history. We assess the consistency of model behavior across these modalities. Using a multi-agent pipeline, we construct a synthetic dataset pairing dialogue histories with distinct user profiles and employ questions from the Value Survey Module (VSM 2013) (Hofstede and Hofstede, 2016) to probe value expression. Our findings indicate that most models adjust their expressed values in response to demographic changes, particularly in age and education level, but consistency varies. Models with stronger reasoning capabilities demonstrate greater alignment, indicating the importance of reasoning in robust sociodemographic adaptation.
Leveraging Large Language Models for Bengali Math Word Problem Solving with Chain of Thought Reasoning
Solving Bengali Math Word Problems (MWPs) remains a major challenge in natural language processing (NLP) due to the language's low-resource status and the multi-step reasoning required. Existing models struggle with complex Bengali MWPs, largely because no human-annotated Bengali dataset has previously addressed this task. This gap has limited progress in Bengali mathematical reasoning. To address this, we created SOMADHAN, a dataset of 8792 complex Bengali MWPs with manually written, step-by-step solutions. We designed this dataset to support reasoning-focused evaluation and model development in a linguistically underrepresented context. Using SOMADHAN, we evaluated a range of large language models (LLMs) - including GPT-4o, GPT-3.5 Turbo, LLaMA series models, Deepseek, and Qwen - through both zero-shot and few-shot prompting with and without Chain of Thought (CoT) reasoning. CoT prompting consistently improved performance over standard prompting, especially in tasks requiring multi-step logic. LLaMA-3.3 70B achieved the highest accuracy of 88% with few-shot CoT prompting. We also applied Low-Rank Adaptation (LoRA) to fine-tune models efficiently, enabling them to adapt to Bengali MWPs with minimal computational cost. Our work fills a critical gap in Bengali NLP by providing a high-quality reasoning dataset and a scalable framework for solving complex MWPs. We aim to advance equitable research in low-resource languages and enhance reasoning capabilities in educational and language technologies.
The Multilingual Divide and Its Impact on Global AI Safety
Despite advances in large language model capabilities in recent years, a large gap remains in their capabilities and safety performance for many languages beyond a relatively small handful of globally dominant languages. This paper provides researchers, policymakers and governance experts with an overview of key challenges to bridging the "language gap" in AI and minimizing safety risks across languages. We provide an analysis of why the language gap in AI exists and grows, and how it creates disparities in global AI safety. We identify barriers to address these challenges, and recommend how those working in policy and governance can help address safety concerns associated with the language gap by supporting multilingual dataset creation, transparency, and research.
PEDANTIC: A Dataset for the Automatic Examination of Definiteness in Patent Claims
Patent claims define the scope of protection for an invention. If there are ambiguities in a claim, it is rejected by the patent office. In the US, this is referred to as indefiniteness (35 U.S.C {\S} 112(b)) and is among the most frequent reasons for patent application rejection. The development of automatic methods for patent definiteness examination has the potential to make patent drafting and examination more efficient, but no annotated dataset has been published to date. We introduce PEDANTIC (\underline{P}at\underline{e}nt \underline{D}efiniteness Ex\underline{a}mi\underline{n}a\underline{ti}on \underline{C}orpus), a novel dataset of 14k US patent claims from patent applications relating to Natural Language Processing (NLP), annotated with reasons for indefiniteness. We construct PEDANTIC using a fully automatic pipeline that retrieves office action documents from the USPTO and uses Large Language Models (LLMs) to extract the reasons for indefiniteness. A human validation study confirms the pipeline's accuracy in generating high-quality annotations. To gain insight beyond binary classification metrics, we implement an LLM-as-Judge evaluation that compares the free-form reasoning of every model-cited reason with every examiner-cited reason. We show that LLM agents based on Qwen 2.5 32B and 72B struggle to outperform logistic regression baselines on definiteness prediction, even though they often correctly identify the underlying reasons. PEDANTIC provides a valuable resource for patent AI researchers, enabling the development of advanced examination models. We will publicly release the dataset and code.
Something's Fishy In The Data Lake: A Critical Re-evaluation of Table Union Search Benchmarks ACL 2025
Recent table representation learning and data discovery methods tackle table union search (TUS) within data lakes, which involves identifying tables that can be unioned with a given query table to enrich its content. These methods are commonly evaluated using benchmarks that aim to assess semantic understanding in real-world TUS tasks. However, our analysis of prominent TUS benchmarks reveals several limitations that allow simple baselines to perform surprisingly well, often outperforming more sophisticated approaches. This suggests that current benchmark scores are heavily influenced by dataset-specific characteristics and fail to effectively isolate the gains from semantic understanding. To address this, we propose essential criteria for future benchmarks to enable a more realistic and reliable evaluation of progress in semantic table union search.
comment: Accepted @ ACL 2025's Table Representation Learning Workshop (TRL)
Leveraging large language models and traditional machine learning ensembles for ADHD detection from narrative transcripts
Despite rapid advances in large language models (LLMs), their integration with traditional supervised machine learning (ML) techniques that have proven applicability to medical data remains underexplored. This is particularly true for psychiatric applications, where narrative data often exhibit nuanced linguistic and contextual complexity, and can benefit from the combination of multiple models with differing characteristics. In this study, we introduce an ensemble framework for automatically classifying Attention-Deficit/Hyperactivity Disorder (ADHD) diagnosis (binary) using narrative transcripts. Our approach integrates three complementary models: LLaMA3, an open-source LLM that captures long-range semantic structure; RoBERTa, a pre-trained transformer model fine-tuned on labeled clinical narratives; and a Support Vector Machine (SVM) classifier trained using TF-IDF-based lexical features. These models are aggregated through a majority voting mechanism to enhance predictive robustness. The dataset includes 441 instances, including 352 for training and 89 for validation. Empirical results show that the ensemble outperforms individual models, achieving an F$_1$ score of 0.71 (95\% CI: [0.60-0.80]). Compared to the best-performing individual model (SVM), the ensemble improved recall while maintaining competitive precision. This indicates the strong sensitivity of the ensemble in identifying ADHD-related linguistic cues. These findings demonstrate the promise of hybrid architectures that leverage the semantic richness of LLMs alongside the interpretability and pattern recognition capabilities of traditional supervised ML, offering a new direction for robust and generalizable psychiatric text classification.
Charting the Landscape of African NLP: Mapping Progress and Shaping the Road Ahead
With over 2,000 languages and potentially millions of speakers, Africa represents one of the richest linguistic regions in the world. Yet, this diversity is scarcely reflected in state-of-the-art natural language processing (NLP) systems and large language models (LLMs), which predominantly support a narrow set of high-resource languages. This exclusion not only limits the reach and utility of modern NLP technologies but also risks widening the digital divide across linguistic communities. Nevertheless, NLP research on African languages is active and growing. In recent years, there has been a surge of interest in this area, driven by several factors-including the creation of multilingual language resources, the rise of community-led initiatives, and increased support through funding programs. In this survey, we analyze 734 research papers on NLP for African languages published over the past five years, offering a comprehensive overview of recent progress across core tasks. We identify key trends shaping the field and conclude by outlining promising directions to foster more inclusive and sustainable NLP research for African languages.
comment: Working paper
Optimizing fMRI Data Acquisition for Decoding Natural Speech with Limited Participants
We investigate optimal strategies for decoding perceived natural speech from fMRI data acquired from a limited number of participants. Leveraging Lebel et al. (2023)'s dataset of 8 participants, we first demonstrate the effectiveness of training deep neural networks to predict LLM-derived text representations from fMRI activity. Then, in this data regime, we observe that multi-subject training does not improve decoding accuracy compared to single-subject approach. Furthermore, training on similar or different stimuli across subjects has a negligible effect on decoding accuracy. Finally, we find that our decoders better model syntactic than semantic features, and that stories containing sentences with complex syntax or rich semantic content are more challenging to decode. While our results demonstrate the benefits of having extensive data per participant (deep phenotyping), they suggest that leveraging multi-subject for natural speech decoding likely requires deeper phenotyping or a substantially larger cohort.
comment: 13 pages, 6 figures
How Humans and LLMs Organize Conceptual Knowledge: Exploring Subordinate Categories in Italian ACL 2025
People can categorize the same entity at multiple taxonomic levels, such as basic (bear), superordinate (animal), and subordinate (grizzly bear). While prior research has focused on basic-level categories, this study is the first attempt to examine the organization of categories by analyzing exemplars produced at the subordinate level. We present a new Italian psycholinguistic dataset of human-generated exemplars for 187 concrete words. We then use these data to evaluate whether textual and vision LLMs produce meaningful exemplars that align with human category organization across three key tasks: exemplar generation, category induction, and typicality judgment. Our findings show a low alignment between humans and LLMs, consistent with previous studies. However, their performance varies notably across different semantic domains. Ultimately, this study highlights both the promises and the constraints of using AI-generated exemplars to support psychological and linguistic research.
comment: Accepted at ACL 2025
rStar-Coder: Scaling Competitive Code Reasoning with a Large-Scale Verified Dataset
Advancing code reasoning in large language models (LLMs) is fundamentally limited by the scarcity of high-difficulty datasets, especially those with verifiable input-output test cases necessary for rigorous solution validation at scale. We introduce rStar-Coder, which significantly improves LLM code reasoning capabilities by constructing a large-scale, verified dataset of 418K competition-level code problems, 580K long-reasoning solutions along with rich test cases of varying difficulty. This is achieved through three core contributions: (1) we curate competitive programming code problems and oracle solutions to synthesize new, solvable problems; (2) we introduce a reliable input-output test case synthesis pipeline that decouples the generation into a three-step input generation method and a mutual verification mechanism for effective output labeling; (3) we augment problems with high-quality, test-case-verified long-reasoning solutions. Extensive experiments on Qwen models (1.5B-14B) across various code reasoning benchmarks demonstrate the superiority of rStar-Coder dataset, achieving leading performance comparable to frontier reasoning LLMs with much smaller model sizes. On LiveCodeBench, rStar-Coder improves Qwen2.5-7B from 17.4% to an impressive 57.3%, and Qwen2.5-14B from 23.3% to 62.5%, surpassing o3-mini (low) by3.1%. On the more challenging USA Computing Olympiad, our 7B model achieves an average pass@1 accuracy of 16.15%, outperforming the frontier-level QWQ-32B. Code and the dataset will be released at https://github.com/microsoft/rStar.
Breaking the Ceiling: Exploring the Potential of Jailbreak Attacks through Expanding Strategy Space ACL 2025
Large Language Models (LLMs), despite advanced general capabilities, still suffer from numerous safety risks, especially jailbreak attacks that bypass safety protocols. Understanding these vulnerabilities through black-box jailbreak attacks, which better reflect real-world scenarios, offers critical insights into model robustness. While existing methods have shown improvements through various prompt engineering techniques, their success remains limited against safety-aligned models, overlooking a more fundamental problem: the effectiveness is inherently bounded by the predefined strategy spaces. However, expanding this space presents significant challenges in both systematically capturing essential attack patterns and efficiently navigating the increased complexity. To better explore the potential of expanding the strategy space, we address these challenges through a novel framework that decomposes jailbreak strategies into essential components based on the Elaboration Likelihood Model (ELM) theory and develops genetic-based optimization with intention evaluation mechanisms. To be striking, our experiments reveal unprecedented jailbreak capabilities by expanding the strategy space: we achieve over 90% success rate on Claude-3.5 where prior methods completely fail, while demonstrating strong cross-model transferability and surpassing specialized safeguard models in evaluation accuracy. The code is open-sourced at: https://github.com/Aries-iai/CL-GSO.
comment: 19 pages, 20 figures, accepted by ACL 2025, Findings
Multilingual Pretraining for Pixel Language Models
Pixel language models operate directly on images of rendered text, eliminating the need for a fixed vocabulary. While these models have demonstrated strong capabilities for downstream cross-lingual transfer, multilingual pretraining remains underexplored. We introduce PIXEL-M4, a model pretrained on four visually and linguistically diverse languages: English, Hindi, Ukrainian, and Simplified Chinese. Multilingual evaluations on semantic and syntactic tasks show that PIXEL-M4 outperforms an English-only counterpart on non-Latin scripts. Word-level probing analyses confirm that PIXEL-M4 captures rich linguistic features, even in languages not seen during pretraining. Furthermore, an analysis of its hidden representations shows that multilingual pretraining yields a semantic embedding space closely aligned across the languages used for pretraining. This work demonstrates that multilingual pretraining substantially enhances the capability of pixel language models to effectively support a diverse set of languages.
comment: 17 pages, 19 figures, 7 tables
ReSCORE: Label-free Iterative Retriever Training for Multi-hop Question Answering with Relevance-Consistency Supervision ACL 2025
Multi-hop question answering (MHQA) involves reasoning across multiple documents to answer complex questions. Dense retrievers typically outperform sparse methods like BM25 by leveraging semantic embeddings; however, they require labeled query-document pairs for fine-tuning. This poses a significant challenge in MHQA due to the high variability of queries (reformulated) questions throughout the reasoning steps. To overcome this limitation, we introduce Retriever Supervision with Consistency and Relevance (ReSCORE), a novel method for training dense retrievers for MHQA without labeled documents. ReSCORE leverages large language models to capture each documents relevance to the question and consistency with the correct answer and use them to train a retriever within an iterative question-answering framework. Experiments on three MHQA benchmarks demonstrate the effectiveness of ReSCORE, with significant improvements in retrieval, and in turn, the state-of-the-art MHQA performance. Our implementation is available at: https://leeds1219.github.io/ReSCORE.
comment: 9 pages, 3 figures, ACL 2025
Evaluation of LLMs in Medical Text Summarization: The Role of Vocabulary Adaptation in High OOV Settings ACL 2025
Large Language Models (LLMs) recently achieved great success in medical text summarization by simply using in-context learning. However, these recent efforts do not perform fine-grained evaluations under difficult settings where LLMs might fail. They typically report performance scores over the entire dataset. Through our benchmarking study, we show that LLMs show a significant performance drop for data points with high concentration of out-of-vocabulary (OOV) words or with high novelty. Vocabulary adaptation is an intuitive solution to this vocabulary mismatch issue where the LLM vocabulary gets updated with certain expert domain (here, medical) words or subwords. An interesting finding from our study is that Llama-3.1, even with a vocabulary size of around 128K tokens, still faces over-fragmentation issue with medical words. To that end, we show vocabulary adaptation helps improve the LLM summarization performance even in difficult settings. Through extensive experimentation of multiple vocabulary adaptation strategies, two continual pretraining strategies, and three benchmark medical summarization datasets, we gain valuable insights into the role of vocabulary adaptation strategies for customizing LLMs to the medical domain. We also performed a human evaluation study with medical experts where they found that vocabulary adaptation results in more relevant and faithful summaries. Our codebase is made publicly available at https://github.com/gb-kgp/LLM-MedicalSummarization-Benchmark.
comment: 16 pages. Accepted for publication in the Findings of the 63rd Annual Meeting of the Association for Computational Linguistics (ACL 2025)
LMCD: Language Models are Zeroshot Cognitive Diagnosis Learners
Cognitive Diagnosis (CD) has become a critical task in AI-empowered education, supporting personalized learning by accurately assessing students' cognitive states. However, traditional CD models often struggle in cold-start scenarios due to the lack of student-exercise interaction data. Recent NLP-based approaches leveraging pre-trained language models (PLMs) have shown promise by utilizing textual features but fail to fully bridge the gap between semantic understanding and cognitive profiling. In this work, we propose Language Models as Zeroshot Cognitive Diagnosis Learners (LMCD), a novel framework designed to handle cold-start challenges by harnessing large language models (LLMs). LMCD operates via two primary phases: (1) Knowledge Diffusion, where LLMs generate enriched contents of exercises and knowledge concepts (KCs), establishing stronger semantic links; and (2) Semantic-Cognitive Fusion, where LLMs employ causal attention mechanisms to integrate textual information and student cognitive states, creating comprehensive profiles for both students and exercises. These representations are efficiently trained with off-the-shelf CD models. Experiments on two real-world datasets demonstrate that LMCD significantly outperforms state-of-the-art methods in both exercise-cold and domain-cold settings. The code is publicly available at https://github.com/TAL-auroraX/LMCD
comment: work in progress
PSRB: A Comprehensive Benchmark for Evaluating Persian ASR Systems
Although Automatic Speech Recognition (ASR) systems have become an integral part of modern technology, their evaluation remains challenging, particularly for low-resource languages such as Persian. This paper introduces Persian Speech Recognition Benchmark(PSRB), a comprehensive benchmark designed to address this gap by incorporating diverse linguistic and acoustic conditions. We evaluate ten ASR systems, including state-of-the-art commercial and open-source models, to examine performance variations and inherent biases. Additionally, we conduct an in-depth analysis of Persian ASR transcriptions, identifying key error types and proposing a novel metric that weights substitution errors. This metric enhances evaluation robustness by reducing the impact of minor and partial errors, thereby improving the precision of performance assessment. Our findings indicate that while ASR models generally perform well on standard Persian, they struggle with regional accents, children's speech, and specific linguistic challenges. These results highlight the necessity of fine-tuning and incorporating diverse, representative training datasets to mitigate biases and enhance overall ASR performance. PSRB provides a valuable resource for advancing ASR research in Persian and serves as a framework for developing benchmarks in other low-resource languages. A subset of the PSRB dataset is publicly available at https://huggingface.co/datasets/PartAI/PSRB.
comment: 25 pages, 7 figures
A Representation Level Analysis of NMT Model Robustness to Grammatical Errors ACL 2025
Understanding robustness is essential for building reliable NLP systems. Unfortunately, in the context of machine translation, previous work mainly focused on documenting robustness failures or improving robustness. In contrast, we study robustness from a model representation perspective by looking at internal model representations of ungrammatical inputs and how they evolve through model layers. For this purpose, we perform Grammatical Error Detection (GED) probing and representational similarity analysis. Our findings indicate that the encoder first detects the grammatical error, then corrects it by moving its representation toward the correct form. To understand what contributes to this process, we turn to the attention mechanism where we identify what we term Robustness Heads. We find that Robustness Heads attend to interpretable linguistic units when responding to grammatical errors, and that when we fine-tune models for robustness, they tend to rely more on Robustness Heads for updating the ungrammatical word representation.
comment: ACL 2025 Findings
Pretrained LLMs Learn Multiple Types of Uncertainty
Large Language Models are known to capture real-world knowledge, allowing them to excel in many downstream tasks. Despite recent advances, these models are still prone to what are commonly known as hallucinations, causing them to emit unwanted and factually incorrect text. In this work, we study how well LLMs capture uncertainty, without explicitly being trained for that. We show that, if considering uncertainty as a linear concept in the model's latent space, it might indeed be captured, even after only pretraining. We further show that, though unintuitive, LLMs appear to capture several different types of uncertainty, each of which can be useful to predict the correctness for a specific task or benchmark. Furthermore, we provide in-depth results such as demonstrating a correlation between our correction prediction and the model's ability to abstain from misinformation using words, and the lack of impact of model scaling for capturing uncertainty. Finally, we claim that unifying the uncertainty types as a single one using instruction-tuning or [IDK]-token tuning is helpful for the model in terms of correctness prediction.
Unveiling Instruction-Specific Neurons & Experts: An Analytical Framework for LLM's Instruction-Following Capabilities
The finetuning of Large Language Models (LLMs) has significantly advanced their instruction-following capabilities, yet the underlying computational mechanisms driving these improvements remain poorly understood. This study systematically examines how fine-tuning reconfigures LLM computations by isolating and analyzing instruction-specific sparse components, i.e., neurons in dense models and both neurons and experts in Mixture-of-Experts (MoE) architectures. In particular, we introduce HexaInst, a carefully curated and balanced instructional dataset spanning six distinct categories, and propose SPARCOM, a novel analytical framework comprising three key contributions: (1) a method for identifying these sparse components, (2) an evaluation of their functional generality and uniqueness, and (3) a systematic comparison of their alterations. Through experiments, we demonstrate functional generality, uniqueness, and the critical role of these components in instruction execution. By elucidating the relationship between fine-tuning-induced adaptations and sparse computational substrates, this work provides deeper insights into how LLMs internalize instruction-following behavior for the trustworthy LLM community.
Lunguage: A Benchmark for Structured and Sequential Chest X-ray Interpretation
Radiology reports convey detailed clinical observations and capture diagnostic reasoning that evolves over time. However, existing evaluation methods are limited to single-report settings and rely on coarse metrics that fail to capture fine-grained clinical semantics and temporal dependencies. We introduce LUNGUAGE,a benchmark dataset for structured radiology report generation that supports both single-report evaluation and longitudinal patient-level assessment across multiple studies. It contains 1,473 annotated chest X-ray reports, each reviewed by experts, and 80 of them contain longitudinal annotations to capture disease progression and inter-study intervals, also reviewed by experts. Using this benchmark, we develop a two-stage framework that transforms generated reports into fine-grained, schema-aligned structured representations, enabling longitudinal interpretation. We also propose LUNGUAGESCORE, an interpretable metric that compares structured outputs at the entity, relation, and attribute level while modeling temporal consistency across patient timelines. These contributions establish the first benchmark dataset, structuring framework, and evaluation metric for sequential radiology reporting, with empirical results demonstrating that LUNGUAGESCORE effectively supports structured report evaluation. The code is available at: https://github.com/SuperSupermoon/Lunguage
Exploring the Latent Capacity of LLMs for One-Step Text Generation
A recent study showed that large language models (LLMs) can reconstruct surprisingly long texts - up to thousands of tokens - via autoregressive generation from just one specially trained input embedding. In this work, we explore whether such reconstruction is possible without autoregression. We show that frozen LLMs can generate hundreds of accurate tokens in just one forward pass, when provided with only two learned embeddings. This reveals a surprising and underexplored capability of LLMs - multi-token generation without iterative decoding. We investigate the behaviour of these embeddings and provide insight into the type of information they encode. We also empirically show that although these representations are not unique for a given text, they form connected and local regions in embedding space - a property that suggests the potential of learning a dedicated encoder into that space.
comment: under review
PoisonSwarm: Universal Harmful Information Synthesis via Model Crowdsourcing
To construct responsible and secure AI applications, harmful information data is widely utilized for adversarial testing and the development of safeguards. Existing studies mainly leverage Large Language Models (LLMs) to synthesize data to obtain high-quality task datasets at scale, thereby avoiding costly human annotation. However, limited by the safety alignment mechanisms of LLMs, the synthesis of harmful data still faces challenges in generation reliability and content diversity. In this study, we propose a novel harmful information synthesis framework, PoisonSwarm, which applies the model crowdsourcing strategy to generate diverse harmful data while maintaining a high success rate. Specifically, we generate abundant benign data as the based templates in a counterfactual manner. Subsequently, we decompose each based template into multiple semantic units and perform unit-by-unit toxification and final refinement through dynamic model switching, thus ensuring the success of synthesis. Experimental results demonstrate that PoisonSwarm achieves state-of-the-art performance in synthesizing different categories of harmful data with high scalability and diversity.
Walk Before You Run! Concise LLM Reasoning via Reinforcement Learning
As test-time scaling becomes a pivotal research frontier in Large Language Models (LLMs) development, contemporary and advanced post-training methodologies increasingly focus on extending the generation length of long Chain-of-Thought (CoT) responses to enhance reasoning capabilities toward DeepSeek R1-like performance. However, recent studies reveal a persistent overthinking phenomenon in state-of-the-art reasoning models, manifesting as excessive redundancy or repetitive thinking patterns in long CoT responses. To address this issue, in this paper, we propose a simple yet effective two-stage reinforcement learning framework for achieving concise reasoning in LLMs, named ConciseR. Specifically, the first stage, using more training steps, aims to incentivize the model's reasoning capabilities via Group Relative Policy Optimization with clip-higher and dynamic sampling components (GRPO++), and the second stage, using fewer training steps, explicitly enforces conciseness and improves efficiency via Length-aware Group Relative Policy Optimization (L-GRPO). Significantly, ConciseR only optimizes response length once all rollouts of a sample are correct, following the "walk before you run" principle. Extensive experimental results demonstrate that our ConciseR model, which generates more concise CoT reasoning responses, outperforms recent state-of-the-art reasoning models with zero RL paradigm across AIME 2024, MATH-500, AMC 2023, Minerva, and Olympiad benchmarks.
comment: Ongoing Work
TAT-R1: Terminology-Aware Translation with Reinforcement Learning and Word Alignment
Recently, deep reasoning large language models(LLMs) like DeepSeek-R1 have made significant progress in tasks such as mathematics and coding. Inspired by this, several studies have employed reinforcement learning(RL) to enhance models' deep reasoning capabilities and improve machine translation(MT) quality. However, the terminology translation, an essential task in MT, remains unexplored in deep reasoning LLMs. In this paper, we propose \textbf{TAT-R1}, a terminology-aware translation model trained with reinforcement learning and word alignment. Specifically, we first extract the keyword translation pairs using a word alignment model. Then we carefully design three types of rule-based alignment rewards with the extracted alignment relationships. With those alignment rewards, the RL-trained translation model can learn to focus on the accurate translation of key information, including terminology in the source text. Experimental results show the effectiveness of TAT-R1. Our model significantly improves terminology translation accuracy compared to the baseline models while maintaining comparable performance on general translation tasks. In addition, we conduct detailed ablation studies of the DeepSeek-R1-like training paradigm for machine translation and reveal several key findings.
M-Wanda: Improving One-Shot Pruning for Multilingual LLMs
Multilingual LLM performance is often critically dependent on model size. With an eye on efficiency, this has led to a surge in interest in one-shot pruning methods that retain the benefits of large-scale pretraining while shrinking the model size. However, as pruning tends to come with performance loss, it is important to understand the trade-offs between multilinguality and sparsification. In this work, we study multilingual performance under different sparsity constraints and show that moderate ratios already substantially harm performance. To help bridge this gap, we propose M-Wanda, a pruning method that models cross-lingual variation by incorporating language-aware activation statistics into its pruning criterion and dynamically adjusts layerwise sparsity based on cross-lingual importance. We show that M-Wanda consistently improves performance at minimal additional costs. We are the first to explicitly optimize pruning to retain multilingual performance, and hope to inspire future advances in multilingual pruning.
Leveraging GANs for citation intent classification and its impact on citation network analysis
Citations play a fundamental role in the scientific ecosystem, serving as a foundation for tracking the flow of knowledge, acknowledging prior work, and assessing scholarly influence. In scientometrics, they are also central to the construction of quantitative indicators. Not all citations, however, serve the same function: some provide background, others introduce methods, or compare results. Therefore, understanding citation intent allows for a more nuanced interpretation of scientific impact. In this paper, we adopted a GAN-based method to classify citation intents. Our results revealed that the proposed method achieves competitive classification performance, closely matching state-of-the-art results with substantially fewer parameters. This demonstrates the effectiveness and efficiency of leveraging GAN architectures combined with contextual embeddings in intent classification task. We also investigated whether filtering citation intents affects the centrality of papers in citation networks. Analyzing the network constructed from the unArXiv dataset, we found that paper rankings can be significantly influenced by citation intent. All four centrality metrics examined- degree, PageRank, closeness, and betweenness - were sensitive to the filtering of citation types. The betweenness centrality displayed the greatest sensitivity, showing substantial changes in ranking when specific citation intents were removed.
Assessment of L2 Oral Proficiency using Speech Large Language Models
The growing population of L2 English speakers has increased the demand for developing automatic graders for spoken language assessment (SLA). Historically, statistical models, text encoders, and self-supervised speech models have been utilised for this task. However, cascaded systems suffer from the loss of information, while E2E graders also have limitations. With the recent advancements of multi-modal large language models (LLMs), we aim to explore their potential as L2 oral proficiency graders and overcome these issues. In this work, we compare various training strategies using regression and classification targets. Our results show that speech LLMs outperform all previous competitive baselines, achieving superior performance on two datasets. Furthermore, the trained grader demonstrates strong generalisation capabilities in the cross-part or cross-task evaluation, facilitated by the audio understanding knowledge acquired during LLM pre-training.
comment: submitted to Interspeech
Leveraging LLM and Self-Supervised Training Models for Speech Recognition in Chinese Dialects: A Comparative Analysis
Large-scale training corpora have significantly improved the performance of ASR models. Unfortunately, due to the relative scarcity of data, Chinese accents and dialects remain a challenge for most ASR models. Recent advancements in self-supervised learning have shown that self-supervised pre- training, combined with large language models (LLM), can effectively enhance ASR performance in low-resource scenarios. We aim to investigate the effectiveness of this paradigm for Chinese dialects. Specifically, we pre-train a Data2vec2 model on 300,000 hours of unlabeled dialect and accented speech data and do alignment training on a supervised dataset of 40,000 hours. Then, we systematically examine the impact of various projectors and LLMs on Mandarin, dialect, and accented speech recognition performance under this paradigm. Our method achieved SOTA results on multiple dialect datasets, including Kespeech. We will open-source our work to promote reproducible research
Scaling and Prompting for Improved End-to-End Spoken Grammatical Error Correction
Spoken Grammatical Error Correction (SGEC) and Feedback (SGECF) are crucial for second language learners, teachers and test takers. Traditional SGEC systems rely on a cascaded pipeline consisting of an ASR, a module for disfluency detection (DD) and removal and one for GEC. With the rise of end-to-end (E2E) speech foundation models, we investigate their effectiveness in SGEC and feedback generation. This work introduces a pseudo-labelling process to address the challenge of limited labelled data, expanding the training data size from 77 hours to approximately 2500 hours, leading to improved performance. Additionally, we prompt an E2E Whisper-based SGEC model with fluent transcriptions, showing a slight improvement in SGEC performance, with more significant gains in feedback generation. Finally, we assess the impact of increasing model size, revealing that while pseudo-labelled data does not yield performance gain for a larger Whisper model, training with prompts proves beneficial.
comment: submitted to Interspeech
Creativity in LLM-based Multi-Agent Systems: A Survey
Large language model (LLM)-driven multi-agent systems (MAS) are transforming how humans and AIs collaboratively generate ideas and artifacts. While existing surveys provide comprehensive overviews of MAS infrastructures, they largely overlook the dimension of \emph{creativity}, including how novel outputs are generated and evaluated, how creativity informs agent personas, and how creative workflows are coordinated. This is the first survey dedicated to creativity in MAS. We focus on text and image generation tasks, and present: (1) a taxonomy of agent proactivity and persona design; (2) an overview of generation techniques, including divergent exploration, iterative refinement, and collaborative synthesis, as well as relevant datasets and evaluation metrics; and (3) a discussion of key challenges, such as inconsistent evaluation standards, insufficient bias mitigation, coordination conflicts, and the lack of unified benchmarks. This survey offers a structured framework and roadmap for advancing the development, evaluation, and standardization of creative MAS.
comment: 23 pages
Will It Still Be True Tomorrow? Multilingual Evergreen Question Classification to Improve Trustworthy QA
Large Language Models (LLMs) often hallucinate in question answering (QA) tasks. A key yet underexplored factor contributing to this is the temporality of questions -- whether they are evergreen (answers remain stable over time) or mutable (answers change). In this work, we introduce EverGreenQA, the first multilingual QA dataset with evergreen labels, supporting both evaluation and training. Using EverGreenQA, we benchmark 12 modern LLMs to assess whether they encode question temporality explicitly (via verbalized judgments) or implicitly (via uncertainty signals). We also train EG-E5, a lightweight multilingual classifier that achieves SoTA performance on this task. Finally, we demonstrate the practical utility of evergreen classification across three applications: improving self-knowledge estimation, filtering QA datasets, and explaining GPT-4o retrieval behavior.
A Lightweight Multi-Expert Generative Language Model System for Engineering Information and Knowledge Extraction
Despite recent advancements in domain adaptation techniques for large language models, these methods remain computationally intensive, and the resulting models can still exhibit hallucination issues. Most existing adaptation methods do not prioritize reducing the computational resources required for fine-tuning and inference of language models. Hallucination issues have gradually decreased with each new model release. However, they remain prevalent in engineering contexts, where generating well-structured text with minimal errors and inconsistencies is critical. This work introduces a novel approach called the Small Language Graph (SLG), which is a lightweight adaptation solution designed to address the two key challenges outlined above. The system is structured in the form of a graph, where each node represents a lightweight expert - a small language model fine-tuned on specific and concise texts. The results of this study have shown that SLG was able to surpass conventional fine-tuning methods on the Exact Match metric by 3 times. Additionally, the fine-tuning process was 1.7 times faster compared to that of a larger stand-alone language model. These findings introduce a potential for small to medium-sized engineering companies to confidently use generative AI technologies, such as LLMs, without the necessity to invest in expensive computational resources. Also, the graph architecture and the small size of expert nodes offer a possible opportunity for distributed AI systems, thus potentially diverting the global need for expensive centralized compute clusters.
comment: 10 pages, 4 Figures, 6 Tables. This paper has been accepted to be published in the proceedings of IDETC-CIE 2025
Thinker: Learning to Think Fast and Slow
Recent studies show that the reasoning capabilities of Large Language Models (LLMs) can be improved by applying Reinforcement Learning (RL) to question-answering (QA) tasks in areas such as math and coding. With a long context length, LLMs may learn to perform search, as indicated by the self-correction behavior observed in DeepSeek R1. However, this search behavior is often imprecise and lacks confidence, resulting in long, redundant responses and highlighting deficiencies in intuition and verification. Inspired by the Dual Process Theory in psychology, we introduce a simple modification to the QA task that includes four stages: Fast Thinking, where the LLM must answer within a strict token budget; Verification, where the model evaluates its initial response; Slow Thinking, where it refines the initial response with more deliberation; and Summarization, where it distills the refinement from the previous stage into precise steps. Our proposed task improves average accuracy from 24.9% to 27.9% for Qwen2.5-1.5B, and from 45.9% to 49.8% for DeepSeek-R1-Qwen-1.5B. Notably, for Qwen2.5-1.5B, the Fast Thinking mode alone achieves 26.8% accuracy using fewer than 1000 tokens, demonstrating substantial inference efficiency gains. These findings suggest that intuition and deliberative reasoning are distinct, complementary systems benefiting from targeted training.
comment: 21 pages
BLUCK: A Benchmark Dataset for Bengali Linguistic Understanding and Cultural Knowledge
In this work, we introduce BLUCK, a new dataset designed to measure the performance of Large Language Models (LLMs) in Bengali linguistic understanding and cultural knowledge. Our dataset comprises 2366 multiple-choice questions (MCQs) carefully curated from compiled collections of several college and job level examinations and spans 23 categories covering knowledge on Bangladesh's culture and history and Bengali linguistics. We benchmarked BLUCK using 6 proprietary and 3 open-source LLMs - including GPT-4o, Claude-3.5-Sonnet, Gemini-1.5-Pro, Llama-3.3-70B-Instruct, and DeepSeekV3. Our results show that while these models perform reasonably well overall, they, however, struggles in some areas of Bengali phonetics. Although current LLMs' performance on Bengali cultural and linguistic contexts is still not comparable to that of mainstream languages like English, our results indicate Bengali's status as a mid-resource language. Importantly, BLUCK is also the first MCQ-based evaluation benchmark that is centered around native Bengali culture, history, and linguistics.
Position is Power: System Prompts as a Mechanism of Bias in Large Language Models (LLMs)
System prompts in Large Language Models (LLMs) are predefined directives that guide model behaviour, taking precedence over user inputs in text processing and generation. LLM deployers increasingly use them to ensure consistent responses across contexts. While model providers set a foundation of system prompts, deployers and third-party developers can append additional prompts without visibility into others' additions, while this layered implementation remains entirely hidden from end-users. As system prompts become more complex, they can directly or indirectly introduce unaccounted for side effects. This lack of transparency raises fundamental questions about how the position of information in different directives shapes model outputs. As such, this work examines how the placement of information affects model behaviour. To this end, we compare how models process demographic information in system versus user prompts across six commercially available LLMs and 50 demographic groups. Our analysis reveals significant biases, manifesting in differences in user representation and decision-making scenarios. Since these variations stem from inaccessible and opaque system-level configurations, they risk representational, allocative and potential other biases and downstream harms beyond the user's ability to detect or correct. Our findings draw attention to these critical issues, which have the potential to perpetuate harms if left unexamined. Further, we argue that system prompt analysis must be incorporated into AI auditing processes, particularly as customisable system prompts become increasingly prevalent in commercial AI deployments.
comment: Forthcoming in Proceedings of ACM FAccT 2025
LLMs Think, But Not In Your Flow: Reasoning-Level Personalization for Black-Box Large Language Models
Large language models (LLMs) have recently achieved impressive performance across a wide range of natural language tasks and are now widely used in real-world applications. Among them, black-box LLMs--served via APIs without access to model internals--are especially dominant due to their scalability and ease of deployment. Despite their strong capabilities, these models typically produce generalized responses that overlook personal preferences and reasoning styles. This has led to growing interest in black-box LLM personalization, which aims to tailor model outputs to user-specific context without modifying model parameters. However, existing approaches primarily focus on response-level personalization, attempting to match final outputs without modeling personal thought process. To address this limitation, we propose RPM, a framework for reasoning-level personalization that aligns the model's reasoning process with a user's personalized logic. RPM first constructs statistical user-specific factors by extracting and grouping response-influential features from user history. It then builds personalized reasoning paths that reflect how these factors are used in context. In the inference stage, RPM retrieves reasoning-aligned examples for new queries via feature-level similarity and performs inference conditioned on the structured factors and retrieved reasoning paths, enabling the model to follow user-specific reasoning trajectories. This reasoning-level personalization enhances both predictive accuracy and interpretability by grounding model outputs in user-specific logic through structured information. Extensive experiments across diverse tasks show that RPM consistently outperforms response-level personalization methods, demonstrating the effectiveness of reasoning-level personalization in black-box LLMs.
Faithfulness-Aware Uncertainty Quantification for Fact-Checking the Output of Retrieval Augmented Generation
Large Language Models (LLMs) enhanced with external knowledge retrieval, an approach known as Retrieval-Augmented Generation (RAG), have shown strong performance in open-domain question answering. However, RAG systems remain susceptible to hallucinations: factually incorrect outputs that may arise either from inconsistencies in the model's internal knowledge or incorrect use of the retrieved context. Existing approaches often conflate factuality with faithfulness to the retrieved context, misclassifying factually correct statements as hallucinations if they are not directly supported by the retrieval. In this paper, we introduce FRANQ (Faithfulness-based Retrieval Augmented UNcertainty Quantification), a novel method for hallucination detection in RAG outputs. FRANQ applies different Uncertainty Quantification (UQ) techniques to estimate factuality based on whether a statement is faithful to the retrieved context or not. To evaluate FRANQ and other UQ techniques for RAG, we present a new long-form Question Answering (QA) dataset annotated for both factuality and faithfulness, combining automated labeling with manual validation of challenging examples. Extensive experiments on long- and short-form QA across multiple datasets and LLMs show that FRANQ achieves more accurate detection of factual errors in RAG-generated responses compared to existing methods.
Predicting Implicit Arguments in Procedural Video Instructions ACL 2025
Procedural texts help AI enhance reasoning about context and action sequences. Transforming these into Semantic Role Labeling (SRL) improves understanding of individual steps by identifying predicate-argument structure like {verb,what,where/with}. Procedural instructions are highly elliptic, for instance, (i) add cucumber to the bowl and (ii) add sliced tomatoes, the second step's where argument is inferred from the context, referring to where the cucumber was placed. Prior SRL benchmarks often miss implicit arguments, leading to incomplete understanding. To address this, we introduce Implicit-VidSRL, a dataset that necessitates inferring implicit and explicit arguments from contextual information in multimodal cooking procedures. Our proposed dataset benchmarks multimodal models' contextual reasoning, requiring entity tracking through visual changes in recipes. We study recent multimodal LLMs and reveal that they struggle to predict implicit arguments of what and where/with from multi-modal procedural data given the verb. Lastly, we propose iSRL-Qwen2-VL, which achieves a 17% relative improvement in F1-score for what-implicit and a 14.7% for where/with-implicit semantic roles over GPT-4o.
comment: ACL 2025 Main
Visual Cues Enhance Predictive Turn-Taking for Two-Party Human Interaction
Turn-taking is richly multimodal. Predictive turn-taking models (PTTMs) facilitate naturalistic human-robot interaction, yet most rely solely on speech. We introduce MM-VAP, a multimodal PTTM which combines speech with visual cues including facial expression, head pose and gaze. We find that it outperforms the state-of-the-art audio-only in videoconferencing interactions (84% vs. 79% hold/shift prediction accuracy). Unlike prior work which aggregates all holds and shifts, we group by duration of silence between turns. This reveals that through the inclusion of visual features, MM-VAP outperforms a state-of-the-art audio-only turn-taking model across all durations of speaker transitions. We conduct a detailed ablation study, which reveals that facial expression features contribute the most to model performance. Thus, our working hypothesis is that when interlocutors can see one another, visual cues are vital for turn-taking and must therefore be included for accurate turn-taking prediction. We additionally validate the suitability of automatic speech alignment for PTTM training using telephone speech. This work represents the first comprehensive analysis of multimodal PTTMs. We discuss implications for future work and make all code publicly available.
FCKT: Fine-Grained Cross-Task Knowledge Transfer with Semantic Contrastive Learning for Targeted Sentiment Analysis
In this paper, we address the task of targeted sentiment analysis (TSA), which involves two sub-tasks, i.e., identifying specific aspects from reviews and determining their corresponding sentiments. Aspect extraction forms the foundation for sentiment prediction, highlighting the critical dependency between these two tasks for effective cross-task knowledge transfer. While most existing studies adopt a multi-task learning paradigm to align task-specific features in the latent space, they predominantly rely on coarse-grained knowledge transfer. Such approaches lack fine-grained control over aspect-sentiment relationships, often assuming uniform sentiment polarity within related aspects. This oversimplification neglects contextual cues that differentiate sentiments, leading to negative transfer. To overcome these limitations, we propose FCKT, a fine-grained cross-task knowledge transfer framework tailored for TSA. By explicitly incorporating aspect-level information into sentiment prediction, FCKT achieves fine-grained knowledge transfer, effectively mitigating negative transfer and enhancing task performance. Experiments on three datasets, including comparisons with various baselines and large language models (LLMs), demonstrate the effectiveness of FCKT. The source code is available on https://github.com/cwei01/FCKT.
comment: 11 pages, 6 figures
Def-DTS: Deductive Reasoning for Open-domain Dialogue Topic Segmentation ACL 2025
Dialogue Topic Segmentation (DTS) aims to divide dialogues into coherent segments. DTS plays a crucial role in various NLP downstream tasks, but suffers from chronic problems: data shortage, labeling ambiguity, and incremental complexity of recently proposed solutions. On the other hand, Despite advances in Large Language Models (LLMs) and reasoning strategies, these have rarely been applied to DTS. This paper introduces Def-DTS: Deductive Reasoning for Open-domain Dialogue Topic Segmentation, which utilizes LLM-based multi-step deductive reasoning to enhance DTS performance and enable case study using intermediate result. Our method employs a structured prompting approach for bidirectional context summarization, utterance intent classification, and deductive topic shift detection. In the intent classification process, we propose the generalizable intent list for domain-agnostic dialogue intent classification. Experiments in various dialogue settings demonstrate that Def-DTS consistently outperforms traditional and state-of-the-art approaches, with each subtask contributing to improved performance, particularly in reducing type 2 error. We also explore the potential for autolabeling, emphasizing the importance of LLM reasoning techniques in DTS.
comment: 19 pages, 3 figures, Accepted to Findings of the ACL 2025
Pause Tokens Strictly Increase the Expressivity of Constant-Depth Transformers
Pause tokens, simple filler symbols such as "...", consistently improve Transformer performance on both language and mathematical tasks, yet their theoretical effect remains unexplained. We provide the first formal separation result, proving that adding pause tokens to constant-depth, logarithmic-width Transformers strictly increases their computational expressivity. With bounded-precision activations, Transformers without pause tokens compute only a strict subset of $\mathsf{AC}^0$ functions, while adding a polynomial number of pause tokens allows them to express the entire class. For logarithmic-precision Transformers, we show that adding pause tokens achieves expressivity equivalent to $\mathsf{TC}^0$, matching known upper bounds. Empirically, we demonstrate that two-layer causally masked Transformers can learn parity when supplied with pause tokens, a function that they appear unable to learn without them. Our results provide a rigorous theoretical explanation for prior empirical findings, clarify how pause tokens interact with width, depth, and numeric precision, and position them as a distinct mechanism, complementary to chain-of-thought prompting, for enhancing Transformer reasoning.
LLMs are Frequency Pattern Learners in Natural Language Inference
While fine-tuning LLMs on NLI corpora improves their inferential performance, the underlying mechanisms driving this improvement remain largely opaque. In this work, we conduct a series of experiments to investigate what LLMs actually learn during fine-tuning. We begin by analyzing predicate frequencies in premises and hypotheses across NLI datasets and identify a consistent frequency bias, where predicates in hypotheses occur more frequently than those in premises for positive instances. To assess the impact of this bias, we evaluate both standard and NLI fine-tuned LLMs on bias-consistent and bias-adversarial cases. We find that LLMs exploit frequency bias for inference and perform poorly on adversarial instances. Furthermore, fine-tuned LLMs exhibit significantly increased reliance on this bias, suggesting that they are learning these frequency patterns from datasets. Finally, we compute the frequencies of hyponyms and their corresponding hypernyms from WordNet, revealing a correlation between frequency bias and textual entailment. These findings help explain why learning frequency patterns can enhance model performance on inference tasks.
comment: 9 pages
Uncertainty Unveiled: Can Exposure to More In-context Examples Mitigate Uncertainty for Large Language Models? ACL 2025
Recent advances in handling long sequences have facilitated the exploration of long-context in-context learning (ICL). While much of the existing research emphasizes performance improvements driven by additional in-context examples, the influence on the trustworthiness of generated responses remains underexplored. This paper addresses this gap by investigating how increased examples influence predictive uncertainty, an essential aspect in trustworthiness. We begin by systematically quantifying the uncertainty of ICL with varying shot counts, analyzing the impact of example quantity. Through uncertainty decomposition, we introduce a novel perspective on performance enhancement, with a focus on epistemic uncertainty (EU). Our results reveal that additional examples reduce total uncertainty in both simple and complex tasks by injecting task-specific knowledge, thereby diminishing EU and enhancing performance. For complex tasks, these advantages emerge only after addressing the increased noise and uncertainty associated with longer inputs. Finally, we explore the evolution of internal confidence across layers, unveiling the mechanisms driving the reduction in uncertainty.
comment: Camera-ready versions for ACL 2025 Findings
Articulatory strategy in vowel production as a basis for speaker discrimination
The way speakers articulate is well known to be variable across individuals while at the same time subject to anatomical and biomechanical constraints. In this study, we ask whether articulatory strategy in vowel production can be sufficiently speaker-specific to form the basis for speaker discrimination. We conducted Generalised Procrustes Analyses of tongue shape data from 40 English speakers from the North West of England, and assessed the speaker-discriminatory potential of orthogonal tongue shape features within the framework of likelihood ratios. Tongue size emerged as the individual dimension with the strongest discriminatory power, while tongue shape variation in the more anterior part of the tongue generally outperformed tongue shape variation in the posterior part. When considered in combination, shape-only information may offer comparable levels of speaker specificity to size-and-shape information, but only when features do not exhibit speaker-level co-variation.
comment: Accepted to Interspeech 2025
Who Reasons in the Large Language Models?
Despite the impressive performance of large language models (LLMs), the process of endowing them with new capabilities--such as mathematical reasoning--remains largely empirical and opaque. A critical open question is whether reasoning abilities stem from the entire model, specific modules, or are merely artifacts of overfitting. In this work, we hypothesize that the reasoning capabilities in well-trained LLMs are primarily attributed to the output projection module (oproj) in the Transformer's multi-head self-attention (MHSA) mechanism. To support this hypothesis, we introduce Stethoscope for Networks (SfN), a suite of diagnostic tools designed to probe and analyze the internal behaviors of LLMs. Using SfN, we provide both circumstantial and empirical evidence suggesting that oproj plays a central role in enabling reasoning, whereas other modules contribute more to fluent dialogue. These findings offer a new perspective on LLM interpretability and open avenues for more targeted training strategies, potentially enabling more efficient and specialized LLMs.
RefAV: Towards Planning-Centric Scenario Mining
Autonomous Vehicles (AVs) collect and pseudo-label terabytes of multi-modal data localized to HD maps during normal fleet testing. However, identifying interesting and safety-critical scenarios from uncurated driving logs remains a significant challenge. Traditional scenario mining techniques are error-prone and prohibitively time-consuming, often relying on hand-crafted structured queries. In this work, we revisit spatio-temporal scenario mining through the lens of recent vision-language models (VLMs) to detect whether a described scenario occurs in a driving log and, if so, precisely localize it in both time and space. To address this problem, we introduce RefAV, a large-scale dataset of 10,000 diverse natural language queries that describe complex multi-agent interactions relevant to motion planning derived from 1000 driving logs in the Argoverse 2 Sensor dataset. We evaluate several referential multi-object trackers and present an empirical analysis of our baselines. Notably, we find that naively repurposing off-the-shelf VLMs yields poor performance, suggesting that scenario mining presents unique challenges. Our code and dataset are available at https://github.com/CainanD/RefAV/ and https://argoverse.github.io/user-guide/tasks/scenario_mining.html
Evaluating and Steering Modality Preferences in Multimodal Large Language Model
Multimodal large language models (MLLMs) have achieved remarkable performance on complex tasks with multimodal context. However, it is still understudied whether they exhibit modality preference when processing multimodal contexts. To study this question, we first build a \textbf{MC\textsuperscript{2}} benchmark under controlled evidence conflict scenarios to systematically evaluate modality preference, which is the tendency to favor one modality over another when making decisions based on multimodal conflicting evidence. Our extensive evaluation reveals that all 18 tested MLLMs generally demonstrate clear modality bias, and modality preference can be influenced by external interventions. An in-depth analysis reveals that the preference direction can be captured within the latent representations of MLLMs. Built on this, we propose a probing and steering method based on representation engineering to explicitly control modality preference without additional fine-tuning or carefully crafted prompts. Our method effectively amplifies modality preference toward a desired direction and applies to downstream tasks such as hallucination mitigation and multimodal machine translation, yielding promising improvements.
comment: Modality Preference
Contrastive Learning on LLM Back Generation Treebank for Cross-domain Constituency Parsing ACL 2025
Cross-domain constituency parsing is still an unsolved challenge in computational linguistics since the available multi-domain constituency treebank is limited. We investigate automatic treebank generation by large language models (LLMs) in this paper. The performance of LLMs on constituency parsing is poor, therefore we propose a novel treebank generation method, LLM back generation, which is similar to the reverse process of constituency parsing. LLM back generation takes the incomplete cross-domain constituency tree with only domain keyword leaf nodes as input and fills the missing words to generate the cross-domain constituency treebank. Besides, we also introduce a span-level contrastive learning pre-training strategy to make full use of the LLM back generation treebank for cross-domain constituency parsing. We verify the effectiveness of our LLM back generation treebank coupled with contrastive learning pre-training on five target domains of MCTB. Experimental results show that our approach achieves state-of-the-art performance on average results compared with various baselines.
comment: Accepted by ACL 2025 main conference
Reason-Align-Respond: Aligning LLM Reasoning with Knowledge Graphs for KGQA
LLMs have demonstrated remarkable capabilities in complex reasoning tasks, yet they often suffer from hallucinations and lack reliable factual grounding. Meanwhile, knowledge graphs (KGs) provide structured factual knowledge but lack the flexible reasoning abilities of LLMs. In this paper, we present Reason-Align-Respond (RAR), a novel framework that systematically integrates LLM reasoning with knowledge graphs for KGQA. Our approach consists of three key components: a Reasoner that generates human-like reasoning chains, an Aligner that maps these chains to valid KG paths, and a Responser that synthesizes the final answer. We formulate this process as a probabilistic model and optimize it using the Expectation-Maximization algorithm, which iteratively refines the reasoning chains and knowledge paths. Extensive experiments on multiple benchmarks demonstrate the effectiveness of RAR, achieving state-of-the-art performance with Hit@1 scores of 93.3% and 91.0% on WebQSP and CWQ respectively. Human evaluation confirms that RAR generates high-quality, interpretable reasoning chains well-aligned with KG paths. Furthermore, RAR exhibits strong zero-shot generalization capabilities and maintains computational efficiency during inference.
Personalized Query Auto-Completion for Long and Short-Term Interests with Adaptive Detoxification Generation KDD 2025
Query auto-completion (QAC) plays a crucial role in modern search systems. However, in real-world applications, there are two pressing challenges that still need to be addressed. First, there is a need for hierarchical personalized representations for users. Previous approaches have typically used users' search behavior as a single, overall representation, which proves inadequate in more nuanced generative scenarios. Additionally, query prefixes are typically short and may contain typos or sensitive information, increasing the likelihood of generating toxic content compared to traditional text generation tasks. Such toxic content can degrade user experience and lead to public relations issues. Therefore, the second critical challenge is detoxifying QAC systems. To address these two limitations, we propose a novel model (LaD) that captures personalized information from both long-term and short-term interests, incorporating adaptive detoxification. In LaD, personalized information is captured hierarchically at both coarse-grained and fine-grained levels. This approach preserves as much personalized information as possible while enabling online generation within time constraints. To move a futher step, we propose an online training method based on Reject Preference Optimization (RPO). By incorporating a special token [Reject] during both the training and inference processes, the model achieves adaptive detoxification. Consequently, the generated text presented to users is both non-toxic and relevant to the given prefix. We conduct comprehensive experiments on industrial-scale datasets and perform online A/B tests, delivering the largest single-experiment metric improvement in nearly two years of our product. Our model has been deployed on Kuaishou search, driving the primary traffic for hundreds of millions of active users. The code is available at https://github.com/JXZe/LaD.
comment: KDD 2025
Context-Aware Content Moderation for German Newspaper Comments
The increasing volume of online discussions requires advanced automatic content moderation to maintain responsible discourse. While hate speech detection on social media is well-studied, research on German-language newspaper forums remains limited. Existing studies often neglect platform-specific context, such as user history and article themes. This paper addresses this gap by developing and evaluating binary classification models for automatic content moderation in German newspaper forums, incorporating contextual information. Using LSTM, CNN, and ChatGPT-3.5 Turbo, and leveraging the One Million Posts Corpus from the Austrian newspaper Der Standard, we assess the impact of context-aware models. Results show that CNN and LSTM models benefit from contextual information and perform competitively with state-of-the-art approaches. In contrast, ChatGPT's zero-shot classification does not improve with added context and underperforms.
Research Community Perspectives on "Intelligence" and Large Language Models ACL
Despite the widespread use of ''artificial intelligence'' (AI) framing in Natural Language Processing (NLP) research, it is not clear what researchers mean by ''intelligence''. To that end, we present the results of a survey on the notion of ''intelligence'' among researchers and its role in the research agenda. The survey elicited complete responses from 303 researchers from a variety of fields including NLP, Machine Learning (ML), Cognitive Science, Linguistics, and Neuroscience. We identify 3 criteria of intelligence that the community agrees on the most: generalization, adaptability, & reasoning. Our results suggests that the perception of the current NLP systems as ''intelligent'' is a minority position (29%). Furthermore, only 16.2% of the respondents see developing intelligent systems as a research goal, and these respondents are more likely to consider the current systems intelligent.
comment: ACL Findings 2025
On VLMs for Diverse Tasks in Multimodal Meme Classification
In this paper, we present a comprehensive and systematic analysis of vision-language models (VLMs) for disparate meme classification tasks. We introduced a novel approach that generates a VLM-based understanding of meme images and fine-tunes the LLMs on textual understanding of the embedded meme text for improving the performance. Our contributions are threefold: (1) Benchmarking VLMs with diverse prompting strategies purposely to each sub-task; (2) Evaluating LoRA fine-tuning across all VLM components to assess performance gains; and (3) Proposing a novel approach where detailed meme interpretations generated by VLMs are used to train smaller language models (LLMs), significantly improving classification. The strategy of combining VLMs with LLMs improved the baseline performance by 8.34%, 3.52% and 26.24% for sarcasm, offensive and sentiment classification, respectively. Our results reveal the strengths and limitations of VLMs and present a novel strategy for meme understanding.
comment: 16 pages
Information-Theoretic Complementary Prompts for Improved Continual Text Classification
Continual Text Classification (CTC) aims to continuously classify new text data over time while minimizing catastrophic forgetting of previously acquired knowledge. However, existing methods often focus on task-specific knowledge, overlooking the importance of shared, task-agnostic knowledge. Inspired by the complementary learning systems theory, which posits that humans learn continually through the interaction of two systems -- the hippocampus, responsible for forming distinct representations of specific experiences, and the neocortex, which extracts more general and transferable representations from past experiences -- we introduce Information-Theoretic Complementary Prompts (InfoComp), a novel approach for CTC. InfoComp explicitly learns two distinct prompt spaces: P(rivate)-Prompt and S(hared)-Prompt. These respectively encode task-specific and task-invariant knowledge, enabling models to sequentially learn classification tasks without relying on data replay. To promote more informative prompt learning, InfoComp uses an information-theoretic framework that maximizes mutual information between different parameters (or encoded representations). Within this framework, we design two novel loss functions: (1) to strengthen the accumulation of task-specific knowledge in P-Prompt, effectively mitigating catastrophic forgetting, and (2) to enhance the retention of task-invariant knowledge in S-Prompt, improving forward knowledge transfer. Extensive experiments on diverse CTC benchmarks show that our approach outperforms previous state-of-the-art methods.
comment: Accepted by Neural Networks
Multi-objective Large Language Model Alignment with Hierarchical Experts
Aligning large language models (LLMs) to simultaneously satisfy multiple objectives remains a significant challenge, especially given the diverse and often conflicting nature of human preferences. Existing alignment methods struggle to balance trade-offs effectively, often requiring costly retraining or yielding suboptimal results across the Pareto frontier of preferences. In this paper, we introduce \textit{HoE}(Hierarchical Mixture-of-Experts), a \textit{lightweight}, \textit{parameter-efficient}, and \textit{plug-and-play} approach that eliminates the need for model training, while enabling LLMs to adapt across the entire Pareto frontier and accommodate diverse user preferences. In particular, \textit{HoE} consists of three hierarchical components: LoRA Experts, Router Experts and Preference Routing, reaching optimal Pareto frontiers and achieving a trade-off between parameter size, training cost, and performance. We evaluate \textit{HoE} across various tasks on 14 objectives and 200 different preferences among 6 benchmarks, demonstrating superior performance over 15 recent baselines. Code is available in the supplementary materials.
Automatic Transmission for LLM Tiers: Optimizing Cost and Accuracy in Large Language Models ACL 2025
LLM providers typically offer multiple LLM tiers, varying in performance and price. As NLP tasks become more complex and modularized, selecting the suitable LLM tier for each subtask is a key challenge to balance between cost and performance. To address the problem, we introduce LLM Automatic Transmission (LLM-AT) framework that automatically selects LLM tiers without training. LLM-AT consists of Starter, Generator, and Judge. The starter selects the initial LLM tier expected to solve the given question, the generator produces a response using the LLM of the selected tier, and the judge evaluates the validity of the response. If the response is invalid, LLM-AT iteratively upgrades to a higher-tier model, generates a new response, and re-evaluates until a valid response is obtained. Additionally, we propose accuracy estimator, which enables the suitable initial LLM tier selection without training. Given an input question, accuracy estimator estimates the expected accuracy of each LLM tier by computing the valid response rate across top-k similar queries from past inference records. Experiments demonstrate that LLM-AT achieves superior performance while reducing costs, making it a practical solution for real-world applications.
comment: ACL 2025 (Findings)
Automated Privacy Information Annotation in Large Language Model Interactions
Users interacting with large language models (LLMs) under their real identifiers often unknowingly risk disclosing private information. Automatically notifying users whether their queries leak privacy and which phrases leak what private information has therefore become a practical need. Existing privacy detection methods, however, were designed for different objectives and application scenarios, typically tagging personally identifiable information (PII) in anonymous content. In this work, to support the development and evaluation of privacy detection models for LLM interactions that are deployable on local user devices, we construct a large-scale multilingual dataset with 249K user queries and 154K annotated privacy phrases. In particular, we build an automated privacy annotation pipeline with cloud-based strong LLMs to automatically extract privacy phrases from dialogue datasets and annotate leaked information. We also design evaluation metrics at the levels of privacy leakage, extracted privacy phrase, and privacy information. We further establish baseline methods using light-weight LLMs with both tuning-free and tuning-based methods, and report a comprehensive evaluation of their performance. Evaluation results reveal a gap between current performance and the requirements of real-world LLM applications, motivating future research into more effective local privacy detection methods grounded in our dataset.
comment: 9 content pages
Towards Objective Fine-tuning: How LLMs' Prior Knowledge Causes Potential Poor Calibration? ACL2025
Fine-tuned Large Language Models (LLMs) often demonstrate poor calibration, with their confidence scores misaligned with actual performance. While calibration has been extensively studied in models trained from scratch, the impact of LLMs' prior knowledge on calibration during fine-tuning remains understudied. Our research reveals that LLMs' prior knowledge causes potential poor calibration due to the ubiquitous presence of known data in real-world fine-tuning, which appears harmful for calibration. Specifically, data aligned with LLMs' prior knowledge would induce overconfidence, while new knowledge improves calibration. Our findings expose a tension: LLMs' encyclopedic knowledge, while enabling task versatility, undermines calibration through unavoidable knowledge overlaps. To address this, we propose CogCalib, a cognition-aware framework that applies targeted learning strategies according to the model's prior knowledge. Experiments across 7 tasks using 3 LLM families prove that CogCalib significantly improves calibration while maintaining performance, achieving an average 57\% reduction in ECE compared to standard fine-tuning in Llama3-8B. These improvements generalize well to out-of-domain tasks, enhancing the objectivity and reliability of domain-specific LLMs, and making them more trustworthy for critical human-AI interaction applications.
comment: Accepted to ACL2025 Main; The code will be released soon
A Stereotype Content Analysis on Color-related Social Bias in Large Vision Language Models
As large vision language models(LVLMs) rapidly advance, concerns about their potential to learn and generate social biases and stereotypes are increasing. Previous studies on LVLM's stereotypes face two primary limitations: metrics that overlooked the importance of content words, and datasets that overlooked the effect of color. To address these limitations, this study introduces new evaluation metrics based on the Stereotype Content Model (SCM). We also propose BASIC, a benchmark for assessing gender, race, and color stereotypes. Using SCM metrics and BASIC, we conduct a study with eight LVLMs to discover stereotypes. As a result, we found three findings. (1) The SCM-based evaluation is effective in capturing stereotypes. (2) LVLMs exhibit color stereotypes in the output along with gender and race ones. (3) Interaction between model architecture and parameter sizes seems to affect stereotypes. We release BASIC publicly on [anonymized for review].
comment: Under review
Dub-S2ST: Textless Speech-to-Speech Translation for Seamless Dubbing
This paper introduces a cross-lingual dubbing system that translates speech from one language to another while preserving key characteristics such as duration, speaker identity, and speaking speed. Despite the strong translation quality of existing speech translation approaches, they often overlook the transfer of speech patterns, leading to mismatches with source speech and limiting their suitability for dubbing applications. To address this, we propose a discrete diffusion-based speech-to-unit translation model with explicit duration control, enabling time-aligned translation. We then synthesize speech based on the predicted units and source identity with a conditional flow matching model. Additionally, we introduce a unit-based speed adaptation mechanism that guides the translation model to produce speech at a rate consistent with the source, without relying on any text. Extensive experiments demonstrate that our framework generates natural and fluent translations that align with the original speech's duration and speaking pace, while achieving competitive translation performance.
Cross from Left to Right Brain: Adaptive Text Dreamer for Vision-and-Language Navigation
Vision-and-Language Navigation (VLN) requires the agent to navigate by following natural instructions under partial observability, making it difficult to align perception with language. Recent methods mitigate this by imagining future scenes, yet they rely on vision-based synthesis, leading to high computational cost and redundant details. To this end, we propose to adaptively imagine key environmental semantics via \textit{language} form, enabling a more reliable and efficient strategy. Specifically, we introduce a novel Adaptive Text Dreamer (ATD), a dual-branch self-guided imagination policy built upon a large language model (LLM). ATD is designed with a human-like left-right brain architecture, where the left brain focuses on logical integration, and the right brain is responsible for imaginative prediction of future scenes. To achieve this, we fine-tune only the Q-former within both brains to efficiently activate domain-specific knowledge in the LLM, enabling dynamic updates of logical reasoning and imagination during navigation. Furthermore, we introduce a cross-interaction mechanism to regularize the imagined outputs and inject them into a navigation expert module, allowing ATD to jointly exploit both the reasoning capacity of the LLM and the expertise of the navigation model. We conduct extensive experiments on the R2R benchmark, where ATD achieves state-of-the-art performance with fewer parameters. The code is \href{https://github.com/zhangpingrui/Adaptive-Text-Dreamer}{here}.
How Do Transformers Learn Variable Binding in Symbolic Programs? ICML 2025
Variable binding -- the ability to associate variables with values -- is fundamental to symbolic computation and cognition. Although classical architectures typically implement variable binding via addressable memory, it is not well understood how modern neural networks lacking built-in binding operations may acquire this capacity. We investigate this by training a Transformer to dereference queried variables in symbolic programs where variables are assigned either numerical constants or other variables. Each program requires following chains of variable assignments up to four steps deep to find the queried value, and also contains irrelevant chains of assignments acting as distractors. Our analysis reveals a developmental trajectory with three distinct phases during training: (1) random prediction of numerical constants, (2) a shallow heuristic prioritizing early variable assignments, and (3) the emergence of a systematic mechanism for dereferencing assignment chains. Using causal interventions, we find that the model learns to exploit the residual stream as an addressable memory space, with specialized attention heads routing information across token positions. This mechanism allows the model to dynamically track variable bindings across layers, resulting in accurate dereferencing. Our results show how Transformer models can learn to implement systematic variable binding without explicit architectural support, bridging connectionist and symbolic approaches.
comment: 16 pages, 10 figures, 1 table. To appear in the Proceedings of the 42nd International Conference on Machine Learning (ICML 2025)
TrojanStego: Your Language Model Can Secretly Be A Steganographic Privacy Leaking Agent
As large language models (LLMs) become integrated into sensitive workflows, concerns grow over their potential to leak confidential information. We propose TrojanStego, a novel threat model in which an adversary fine-tunes an LLM to embed sensitive context information into natural-looking outputs via linguistic steganography, without requiring explicit control over inference inputs. We introduce a taxonomy outlining risk factors for compromised LLMs, and use it to evaluate the risk profile of the threat. To implement TrojanStego, we propose a practical encoding scheme based on vocabulary partitioning learnable by LLMs via fine-tuning. Experimental results show that compromised models reliably transmit 32-bit secrets with 87% accuracy on held-out prompts, reaching over 97% accuracy using majority voting across three generations. Further, they maintain high utility, can evade human detection, and preserve coherence. These results highlight a new class of LLM data exfiltration attacks that are passive, covert, practical, and dangerous.
comment: 9 pages, 5 figures
Adaptive Deep Reasoning: Triggering Deep Thinking When Needed
Large language models (LLMs) have shown impressive capabilities in handling complex tasks through long-chain reasoning. However, the extensive reasoning steps involved can significantly increase computational costs, posing challenges for real-world deployment. Recent efforts have focused on optimizing reasoning efficiency by shortening the Chain-of-Thought (CoT) reasoning processes through various approaches, such as length-aware prompt engineering, supervised fine-tuning on CoT data with variable lengths, and reinforcement learning with length penalties. Although these methods effectively reduce reasoning length, they still necessitate an initial reasoning phase. More recent approaches have attempted to integrate long-chain and short-chain reasoning abilities into a single model, yet they still rely on manual control to toggle between short and long CoT. In this work, we propose a novel approach that autonomously switches between short and long reasoning chains based on problem complexity. Our method begins with supervised fine-tuning of the base model to equip both long-chain and short-chain reasoning abilities. We then employ reinforcement learning to further balance short and long CoT generation while maintaining accuracy through two key strategies: first, integrating reinforcement learning with a long-short adaptive group-wise reward strategy to assess prompt complexity and provide corresponding rewards; second, implementing a logit-based reasoning mode switching loss to optimize the model's initial token choice, thereby guiding the selection of the reasoning type. Evaluations on mathematical datasets demonstrate that our model can dynamically switch between long-chain and short-chain reasoning modes without substantially sacrificing performance. This advancement enhances the practicality of reasoning in large language models for real-world applications.
GraphCheck: Breaking Long-Term Text Barriers with Extracted Knowledge Graph-Powered Fact-Checking
Large language models (LLMs) are widely used, but they often generate subtle factual errors, especially in long-form text. These errors are fatal in some specialized domains such as medicine. Existing fact-checking with grounding documents methods face two main challenges: (1) they struggle to understand complex multihop relations in long documents, often overlooking subtle factual errors; (2) most specialized methods rely on pairwise comparisons, requiring multiple model calls, leading to high resource and computational costs. To address these challenges, we propose GraphCheck, a fact-checking framework that uses extracted knowledge graphs to enhance text representation. Graph Neural Networks further process these graphs as a soft prompt, enabling LLMs to incorporate structured knowledge more effectively. Enhanced with graph-based reasoning, GraphCheck captures multihop reasoning chains that are often overlooked by existing methods, enabling precise and efficient fact-checking in a single inference call. Experimental results on seven benchmarks spanning both general and medical domains demonstrate up to a 7.1% overall improvement over baseline models. Notably, GraphCheck outperforms existing specialized fact-checkers and achieves comparable performance with state-of-the-art LLMs, such as DeepSeek-V3 and OpenAI-o1, with significantly fewer parameters.
Token-level Accept or Reject: A Micro Alignment Approach for Large Language Models IJCAI 2025
With the rapid development of Large Language Models (LLMs), aligning these models with human preferences and values is critical to ensuring ethical and safe applications. However, existing alignment techniques such as RLHF or DPO often require direct fine-tuning on LLMs with billions of parameters, resulting in substantial computational costs and inefficiencies. To address this, we propose Micro token-level Accept-Reject Aligning (MARA) approach designed to operate independently of the language models. MARA simplifies the alignment process by decomposing sentence-level preference learning into token-level binary classification, where a compact three-layer fully-connected network determines whether candidate tokens are "Accepted" or "Rejected" as part of the response. Extensive experiments across seven different LLMs and three open-source datasets show that MARA achieves significant improvements in alignment performance while reducing computational costs. The source code and implementation details are publicly available at https://github.com/IAAR-Shanghai/MARA, and the trained models are released at https://huggingface.co/IAAR-Shanghai/MARA_AGENTS.
comment: Accepted to 34th International Joint Conference on Artificial Intelligence (IJCAI 2025)
DynamicKV: Task-Aware Adaptive KV Cache Compression for Long Context LLMs
Efficient KV cache management in LLMs is crucial for long-context tasks like RAG and summarization. Existing KV cache compression methods enforce a fixed pattern, neglecting task-specific characteristics and reducing the retention of essential information. However, we observe distinct activation patterns across layers in various tasks, highlighting the need for adaptive strategies tailored to each task's unique demands. Based on this insight, we propose DynamicKV, a method that dynamically optimizes token retention by adjusting the number of tokens retained at each layer to adapt to the specific task. DynamicKV establishes global and per-layer maximum KV cache budgets, temporarily retaining the maximum budget for the current layer, and periodically updating the KV cache sizes of all preceding layers during inference. Our method retains only 1.7% of the KV cache size while achieving ~85% of the Full KV cache performance on LongBench. Notably, even under extreme compression (0.9%), DynamicKV surpasses state-of-the-art (SOTA) methods by 11% in the Needle-in-a-Haystack test using Mistral-7B-Instruct-v0.2. The code will be released.
SynLogic: Synthesizing Verifiable Reasoning Data at Scale for Learning Logical Reasoning and Beyond
Recent advances such as OpenAI-o1 and DeepSeek R1 have demonstrated the potential of Reinforcement Learning (RL) to enhance reasoning abilities in Large Language Models (LLMs). While open-source replication efforts have primarily focused on mathematical and coding domains, methods and resources for developing general reasoning capabilities remain underexplored. This gap is partly due to the challenge of collecting diverse and verifiable reasoning data suitable for RL. We hypothesize that logical reasoning is critical for developing general reasoning capabilities, as logic forms a fundamental building block of reasoning. In this work, we present SynLogic, a data synthesis framework and dataset that generates diverse logical reasoning data at scale, encompassing 35 diverse logical reasoning tasks. The SynLogic approach enables controlled synthesis of data with adjustable difficulty and quantity. Importantly, all examples can be verified by simple rules, making them ideally suited for RL with verifiable rewards. In our experiments, we validate the effectiveness of RL training on the SynLogic dataset based on 7B and 32B models. SynLogic leads to state-of-the-art logical reasoning performance among open-source datasets, surpassing DeepSeek-R1-Distill-Qwen-32B by 6 points on BBEH. Furthermore, mixing SynLogic data with mathematical and coding tasks improves the training efficiency of these domains and significantly enhances reasoning generalization. Notably, our mixed training model outperforms DeepSeek-R1-Zero-Qwen-32B across multiple benchmarks. These findings position SynLogic as a valuable resource for advancing the broader reasoning capabilities of LLMs. We open-source both the data synthesis pipeline and the SynLogic dataset at https://github.com/MiniMax-AI/SynLogic.
Faster and Better LLMs via Latency-Aware Test-Time Scaling
Test-Time Scaling (TTS) has proven effective in improving the performance of Large Language Models (LLMs) during inference. However, existing research has overlooked the efficiency of TTS from a latency-sensitive perspective. Through a latency-aware evaluation of representative TTS methods, we demonstrate that a compute-optimal TTS does not always result in the lowest latency in scenarios where latency is critical. To address this gap and achieve latency-optimal TTS, we propose two key approaches by optimizing the concurrency configurations: (1) branch-wise parallelism, which leverages multiple concurrent inference branches, and (2) sequence-wise parallelism, enabled by speculative decoding. By integrating these two approaches and allocating computational resources properly to each, our latency-optimal TTS enables a 32B model to reach 82.3% accuracy on MATH-500 within 1 minute and a smaller 3B model to achieve 72.4% within 10 seconds. Our work emphasizes the importance of latency-aware TTS and demonstrates its ability to deliver both speed and accuracy in latency-sensitive scenarios.
HomeBench: Evaluating LLMs in Smart Homes with Valid and Invalid Instructions Across Single and Multiple Devices ACL 2025
Large language models (LLMs) have the potential to revolutionize smart home assistants by enhancing their ability to accurately understand user needs and respond appropriately, which is extremely beneficial for building a smarter home environment. While recent studies have explored integrating LLMs into smart home systems, they primarily focus on handling straightforward, valid single-device operation instructions. However, real-world scenarios are far more complex and often involve users issuing invalid instructions or controlling multiple devices simultaneously. These have two main challenges: LLMs must accurately identify and rectify errors in user instructions and execute multiple user instructions perfectly. To address these challenges and advance the development of LLM-based smart home assistants, we introduce HomeBench, the first smart home dataset with valid and invalid instructions across single and multiple devices in this paper. We have experimental results on 13 distinct LLMs; e.g., GPT-4o achieves only a 0.0% success rate in the scenario of invalid multi-device instructions, revealing that the existing state-of-the-art LLMs still cannot perform well in this situation even with the help of in-context learning, retrieval-augmented generation, and fine-tuning. Our code and dataset are publicly available at https://github.com/BITHLP/HomeBench.
comment: Accepted by ACL 2025 Main
TailorKV: A Hybrid Framework for Long-Context Inference via Tailored KV Cache Optimization
The Key-Value (KV) cache in generative large language models (LLMs) introduces substantial memory overhead. Existing works mitigate this burden by offloading or compressing the KV cache. However, loading the entire cache incurs significant latency due to PCIe bandwidth bottlenecks in CPU-GPU communication, while aggressive compression causes notable performance degradation. We identify that certain layers in the LLM need to maintain global information and are unsuitable for selective loading. In contrast, other layers primarily focus on a few tokens with dominant activations that potentially incur substantial quantization error. This observation leads to a key insight that loading dominant tokens and quantizing all tokens can complement each other. Building on this insight, we propose a hybrid compression method, TailorKV, which seamlessly integrates quantization and offloading. TailorKV develops an inference framework along with a hardware-friendly implementation that leverages these complementary characteristics. Extensive long-context evaluations exhibit that TailorKV achieves nearly lossless performance under aggressive compression settings, outperforming the state-of-the-art. Particularly, the Llama-3.1-8B with 128k context can be served within a single RTX 3090 GPU, reaching 82 ms per token during decoding.
Beyond 'Aha!': Toward Systematic Meta-Abilities Alignment in Large Reasoning Models
Large reasoning models (LRMs) already possess a latent capacity for long chain-of-thought reasoning. Prior work has shown that outcome-based reinforcement learning (RL) can incidentally elicit advanced reasoning behaviors such as self-correction, backtracking, and verification phenomena often referred to as the model's "aha moment". However, the timing and consistency of these emergent behaviors remain unpredictable and uncontrollable, limiting the scalability and reliability of LRMs' reasoning capabilities. To address these limitations, we move beyond reliance on prompts and coincidental "aha moments". Instead, we explicitly align models with three meta-abilities: deduction, induction, and abduction, using automatically generated, self-verifiable tasks. Our three stage-pipeline individual alignment, parameter-space merging, and domain-specific reinforcement learning, boosting performance by over 10\% relative to instruction-tuned baselines. Furthermore, domain-specific RL from the aligned checkpoint yields an additional gain in performance ceiling for both 7B and 32B models across math, coding, and science benchmarks, demonstrating that explicit meta-ability alignment offers a scalable and dependable foundation for reasoning. Code is available at: https://github.com/zhiyuanhubj/Meta-Ability-Alignment
comment: In Progress
Rethinking Memory in AI: Taxonomy, Operations, Topics, and Future Directions
Memory is a fundamental component of AI systems, underpinning large language models (LLMs)-based agents. While prior surveys have focused on memory applications with LLMs (e.g., enabling personalized memory in conversational agents), they often overlook the atomic operations that underlie memory dynamics. In this survey, we first categorize memory representations into parametric and contextual forms, and then introduce six fundamental memory operations: Consolidation, Updating, Indexing, Forgetting, Retrieval, and Compression. We map these operations to the most relevant research topics across long-term, long-context, parametric modification, and multi-source memory. By reframing memory systems through the lens of atomic operations and representation types, this survey provides a structured and dynamic perspective on research, benchmark datasets, and tools related to memory in AI, clarifying the functional interplay in LLMs based agents while outlining promising directions for future research\footnote{The paper list, datasets, methods and tools are available at \href{https://github.com/Elvin-Yiming-Du/Survey_Memory_in_AI}{https://github.com/Elvin-Yiming-Du/Survey\_Memory\_in\_AI}.}.
GeLLMO: Generalizing Large Language Models for Multi-property Molecule Optimization ACL
Despite recent advancements, most computational methods for molecule optimization are constrained to single- or double-property optimization tasks and suffer from poor scalability and generalizability to novel optimization tasks. Meanwhile, Large Language Models (LLMs) demonstrate remarkable out-of-domain generalizability to novel tasks. To demonstrate LLMs' potential for molecule optimization, we introduce MuMOInstruct, the first high-quality instruction-tuning dataset specifically focused on complex multi-property molecule optimization tasks. Leveraging MuMOInstruct, we develop GeLLMOs, a series of instruction-tuned LLMs for molecule optimization. Extensive evaluations across 5 in-domain and 5 out-of-domain tasks demonstrate that GeLLMOs consistently outperform state-of-the-art baselines. GeLLMOs also exhibit outstanding zero-shot generalization to unseen tasks, significantly outperforming powerful closed-source LLMs. Such strong generalizability demonstrates the tremendous potential of GeLLMOs as foundational models for molecule optimization, thereby tackling novel optimization tasks without resource-intensive retraining. MuMOInstruct, models, and code are accessible through https://github.com/ninglab/GeLLMO.
comment: Accepted to ACL Main 2025. Vishal Dey and Xiao Hu contributed equally to this paper
Thinking beyond the anthropomorphic paradigm benefits LLM research
Anthropomorphism, or the attribution of human traits to technology, is an automatic and unconscious response that occurs even in those with advanced technical expertise. In this position paper, we analyze hundreds of thousands of research articles to present empirical evidence of the prevalence and growth of anthropomorphic terminology in research on large language models (LLMs). We argue for challenging the deeper assumptions reflected in this terminology -- which, though often useful, may inadvertently constrain LLM development -- and broadening beyond them to open new pathways for understanding and improving LLMs. Specifically, we identify and examine five anthropomorphic assumptions that shape research across the LLM development lifecycle. For each assumption (e.g., that LLMs must use natural language for reasoning, or that they should be evaluated on benchmarks originally meant for humans), we demonstrate empirical, non-anthropomorphic alternatives that remain under-explored yet offer promising directions for LLM research and development.
One-shot Entropy Minimization
We trained 13,440 large language models and found that entropy minimization requires only a single unlabeled data and 10 steps optimization to achieve performance improvements comparable to or even greater than those obtained using thousands of data and carefully designed rewards in rule-based reinforcement learning. This striking result may prompt a rethinking of post-training paradigms for large language models. Our code is avaliable at https://github.com/zitian-gao/one-shot-em.
comment: Work in progress
When Two LLMs Debate, Both Think They'll Win
Can LLMs accurately adjust their confidence when facing opposition? Building on previous studies measuring calibration on static fact-based question-answering tasks, we evaluate Large Language Models (LLMs) in a dynamic, adversarial debate setting, uniquely combining two realistic factors: (a) a multi-turn format requiring models to update beliefs as new information emerges, and (b) a zero-sum structure to control for task-related uncertainty, since mutual high-confidence claims imply systematic overconfidence. We organized 60 three-round policy debates among ten state-of-the-art LLMs, with models privately rating their confidence (0-100) in winning after each round. We observed five concerning patterns: (1) Systematic overconfidence: models began debates with average initial confidence of 72.9% vs. a rational 50% baseline. (2) Confidence escalation: rather than reducing confidence as debates progressed, debaters increased their win probabilities, averaging 83% by the final round. (3) Mutual overestimation: in 61.7% of debates, both sides simultaneously claimed >=75% probability of victory, a logical impossibility. (4) Persistent self-debate bias: models debating identical copies increased confidence from 64.1% to 75.2%; even when explicitly informed their chance of winning was exactly 50%, confidence still rose (from 50.0% to 57.1%). (5) Misaligned private reasoning: models' private scratchpad thoughts sometimes differed from their public confidence ratings, raising concerns about faithfulness of chain-of-thought reasoning. These results suggest LLMs lack the ability to accurately self-assess or update their beliefs in dynamic, multi-turn tasks; a major concern as LLM outputs are deployed without careful review in assistant roles or agentic settings.
Turning Up the Heat: Min-p Sampling for Creative and Coherent LLM Outputs ICLR 2025
Large Language Models (LLMs) generate text by sampling the next token from a probability distribution over the vocabulary at each decoding step. Popular sampling methods like top-p (nucleus sampling) often struggle to balance quality and diversity, especially at higher temperatures which lead to incoherent or repetitive outputs. We propose min-p sampling, a dynamic truncation method that adjusts the sampling threshold based on the model's confidence by using the top token's probability as a scaling factor. Our experiments on benchmarks including GPQA, GSM8K, and AlpacaEval Creative Writing show that min-p sampling improves both the quality and diversity of generated text across different model families (Mistral and Llama 3) and model sizes (1B to 123B parameters), especially at higher temperatures. Human evaluations further show a clear preference for min-p sampling, in both text quality and creativity. Min-p sampling has been adopted by popular open-source LLM frameworks, including Hugging Face Transformers, VLLM, and many others, highlighting its considerable impact on improving text generation quality.
comment: Oral presentation at ICLR 2025. Camera-ready version available at https://iclr.cc/virtual/2025/poster/30358
ANCHOLIK-NER: A Benchmark Dataset for Bangla Regional Named Entity Recognition
Named Entity Recognition (NER) in regional dialects is a critical yet underexplored area in Natural Language Processing (NLP), especially for low-resource languages like Bangla. While NER systems for Standard Bangla have made progress, no existing resources or models specifically address the challenge of regional dialects such as Barishal, Chittagong, Mymensingh, Noakhali, and Sylhet, which exhibit unique linguistic features that existing models fail to handle effectively. To fill this gap, we introduce ANCHOLIK-NER, the first benchmark dataset for NER in Bangla regional dialects, comprising 17,405 sentences distributed across five regions. The dataset was sourced from publicly available resources and supplemented with manual translations, ensuring alignment of named entities across dialects. We evaluate three transformer-based models - Bangla BERT, Bangla BERT Base, and BERT Base Multilingual Cased - on this dataset. Our findings demonstrate that BERT Base Multilingual Cased performs best in recognizing named entities across regions, with significant performance observed in Mymensingh with an F1-score of 82.611%. Despite strong overall performance, challenges remain in region like Chittagong, where the models show lower precision and recall. Since no previous NER systems for Bangla regional dialects exist, our work represents a foundational step in addressing this gap. Future work will focus on improving model performance in underperforming regions and expanding the dataset to include more dialects, enhancing the development of dialect-aware NER systems.
Agentic Medical Knowledge Graphs Enhance Medical Question Answering: Bridging the Gap Between LLMs and Evolving Medical Knowledge
Large Language Models (LLMs) have significantly advanced medical question-answering by leveraging extensive clinical data and medical literature. However, the rapid evolution of medical knowledge and the labor-intensive process of manually updating domain-specific resources pose challenges to the reliability of these systems. To address this, we introduce Agentic Medical Graph-RAG (AMG-RAG), a comprehensive framework that automates the construction and continuous updating of medical knowledge graphs, integrates reasoning, and retrieves current external evidence, such as PubMed and WikiSearch. By dynamically linking new findings and complex medical concepts, AMG-RAG not only improves accuracy but also enhances interpretability in medical queries. Evaluations on the MEDQA and MEDMCQA benchmarks demonstrate the effectiveness of AMG-RAG, achieving an F1 score of 74.1 percent on MEDQA and an accuracy of 66.34 percent on MEDMCQA, outperforming both comparable models and those 10 to 100 times larger. Notably, these improvements are achieved without increasing computational overhead, highlighting the critical role of automated knowledge graph generation and external evidence retrieval in delivering up-to-date, trustworthy medical insights.
Transparent and Coherent Procedural Mistake Detection
Procedural mistake detection (PMD) is a challenging problem of classifying whether a human user (observed through egocentric video) has successfully executed a task (specified by a procedural text). Despite significant recent efforts, machine performance in the wild remains nonviable, and the reasoning processes underlying this performance are opaque. As such, we extend PMD to require generating visual self-dialog rationales to inform decisions. Given the impressive, mature image understanding capabilities observed in recent vision-and-language models (VLMs), we curate a suitable benchmark dataset for PMD based on individual frames. As our reformulation enables unprecedented transparency, we leverage a natural language inference (NLI) model to formulate two automated metrics for the coherence of generated rationales. We establish baselines for this reframed task, showing that while VLMs struggle off-the-shelf, their accuracy, coherence, and efficiency can be improved by incorporating these metrics into common inference and fine-tuning methods- though not without tradeoff. Lastly, our multi-faceted metrics visualize common outcomes, highlighting areas for further improvement.
A Lightweight Method to Disrupt Memorized Sequences in LLM
As language models scale, their performance improves dramatically across a wide range of tasks, but so does their tendency to memorize and regurgitate parts of their training data verbatim. This tradeoff poses serious legal, ethical, and safety concerns, especially in real-world deployments. Existing mitigation techniques, such as differential privacy or model unlearning, often require retraining or access to internal weights making them impractical for most users. In this work, we introduce TokenSwap, a lightweight, post-hoc defense designed for realistic settings where the user can only access token-level outputs. Our key insight is that while large models are necessary for high task performance, small models (e.g., DistilGPT-2) are often sufficient to assign fluent, grammatically plausible probabilities to common function words - and crucially, they memorize far less. By selectively swapping token probabilities between models, TokenSwap preserves the capabilities of large models while reducing their propensity for verbatim reproduction. Evaluations on Pythia-6.9B and Llama-3-8B show up to a 10$\times$ drop in exact memorization with negligible task degradation. Our method offers a practical, accessible solution for mitigating memorized generation in deployed LLMs.
comment: 26 pages, 3 figures
Can Large Language Models Understand Symbolic Graphics Programs? ICLR 2025
Against the backdrop of enthusiasm for large language models (LLMs), there is a growing need to scientifically assess their capabilities and shortcomings. This is nontrivial in part because it is difficult to find tasks which the models have not encountered during training. Utilizing symbolic graphics programs, we propose a domain well-suited to test multiple spatial-semantic reasoning skills of LLMs. Popular in computer graphics, these programs procedurally generate visual data. While LLMs exhibit impressive skills in general program synthesis and analysis, symbolic graphics programs offer a new layer of evaluation: they allow us to test an LLM's ability to answer semantic questions about the images or 3D geometries without a vision encoder. To semantically understand the symbolic programs, LLMs would need to possess the ability to "imagine" and reason how the corresponding graphics content would look with only the symbolic description of the local curvatures and strokes. We use this task to evaluate LLMs by creating a large benchmark for the semantic visual understanding of symbolic graphics programs, built procedurally with minimal human effort. Particular emphasis is placed on transformations of images that leave the image level semantics invariant while introducing significant changes to the underlying program. We evaluate commercial and open-source LLMs on our benchmark to assess their ability to reason about visual output of programs, finding that LLMs considered stronger at reasoning generally perform better. Lastly, we introduce a novel method to improve this ability -- Symbolic Instruction Tuning (SIT), in which the LLM is finetuned with pre-collected instruction data on symbolic graphics programs. Interestingly, we find that SIT not only improves LLM's understanding on symbolic programs, but it also improves general reasoning ability on various other benchmarks.
comment: ICLR 2025 Spotlight (v4: 47 pages, 26 figures, project page: https://sgp-bench.github.io/)
Efficiently Scaling LLM Reasoning with Certaindex
Test-time reasoning algorithms such as chain-of-thought, self-consistency, and MCTS enhance LLM problem-solving but can wastefully generate many tokens without improving accuracy. At the same time, we observe that these algorithms exhibit answer stabilization: their intermediate solutions often cease to change after a certain point, and further investment of compute does not change their final answer. To quantify this phenomenon, we introduce Certaindex, an algorithm-agnostic metric measuring this evolving stability, signaling when further computation is unlikely to alter the final result. Certaindex is lightweight, can accelerate reasoning program inference via early exit, and further enables dynamic token allocation, gang scheduling, and many opportunities when integrated with real-world LLM serving systems. To quantify real-world benefits, we built Certaindex as a scheduler into Dynasor, our reasoning-aware LLM serving system, and demonstrate up to 50% compute savings and 3.3x higher throughput in real workloads with no accuracy drop. Our code is available at https://github.com/hao-ai-lab/Dynasor.git
How to Protect Yourself from 5G Radiation? Investigating LLM Responses to Implicit Misinformation
As Large Language Models (LLMs) are widely deployed in diverse scenarios, the extent to which they could tacitly spread misinformation emerges as a critical safety concern. Current research primarily evaluates LLMs on explicit false statements, overlooking how misinformation often manifests subtly as unchallenged premises in real-world interactions. We curated EchoMist, the first comprehensive benchmark for implicit misinformation, where false assumptions are embedded in the query to LLMs. EchoMist targets circulated, harmful, and ever-evolving implicit misinformation from diverse sources, including realistic human-AI conversations and social media interactions. Through extensive empirical studies on 15 state-of-the-art LLMs, we find that current models perform alarmingly poorly on this task, often failing to detect false premises and generating counterfactual explanations. We also investigate two mitigation methods, i.e., Self-Alert and RAG, to enhance LLMs' capability to counter implicit misinformation. Our findings indicate that EchoMist remains a persistent challenge and underscore the critical need to safeguard against the risk of implicit misinformation.
Leveraging Large Language Models for Active Merchant Non-player Characters IJCAI 2025
We highlight two significant issues leading to the passivity of current merchant non-player characters (NPCs): pricing and communication. While immersive interactions with active NPCs have been a focus, price negotiations between merchant NPCs and players remain underexplored. First, passive pricing refers to the limited ability of merchants to modify predefined item prices. Second, passive communication means that merchants can only interact with players in a scripted manner. To tackle these issues and create an active merchant NPC, we propose a merchant framework based on large language models (LLMs), called MART, which consists of an appraiser module and a negotiator module. We conducted two experiments to explore various implementation options under different training methods and LLM sizes, considering a range of possible game environments. Our findings indicate that finetuning methods, such as supervised finetuning (SFT) and knowledge distillation (KD), are effective in using smaller LLMs to implement active merchant NPCs. Additionally, we found three irregular cases arising from the responses of LLMs.
comment: Accepted to IJCAI 2025
Align-SLM: Textless Spoken Language Models with Reinforcement Learning from AI Feedback ACL 2025
While textless Spoken Language Models (SLMs) have shown potential in end-to-end speech-to-speech modeling, they still lag behind text-based Large Language Models (LLMs) in terms of semantic coherence and relevance. This work introduces the Align-SLM framework, which leverages preference optimization inspired by Reinforcement Learning with AI Feedback (RLAIF) to enhance the semantic understanding of SLMs. Our approach generates multiple speech continuations from a given prompt and uses semantic metrics to create preference data for Direct Preference Optimization (DPO). We evaluate the framework using ZeroSpeech 2021 benchmarks for lexical and syntactic modeling, the spoken version of the StoryCloze dataset for semantic coherence, and other speech generation metrics, including the GPT4-o score and human evaluation. Experimental results show that our method achieves state-of-the-art performance for SLMs on most benchmarks, highlighting the importance of preference optimization to improve the semantics of SLMs.
comment: Accepted by ACL 2025
VoxEval: Benchmarking the Knowledge Understanding Capabilities of End-to-End Spoken Language Models ACL 2025
With the rising need for speech-based interaction models, end-to-end Spoken Language Models (SLMs) have emerged as a promising solution. While these models require comprehensive world knowledge for meaningful and reliable human interactions, existing question-answering (QA) benchmarks fall short in evaluating SLMs' knowledge understanding due to their inability to support end-to-end speech evaluation and account for varied input audio conditions. To address these limitations, we present VoxEval, a novel SpeechQA benchmark that assesses SLMs' knowledge understanding through pure speech interactions. Our benchmark 1) uniquely maintains speech format for both inputs and outputs, 2) evaluates model robustness across diverse input audio conditions, and 3) pioneers the assessment of complex tasks like mathematical reasoning in spoken format. Systematic evaluation demonstrates that VoxEval presents significant challenges to current SLMs, revealing their sensitivity to varying audio conditions and highlighting the need to enhance reasoning capabilities in future development. We hope this benchmark could guide the advancement of more sophisticated and reliable SLMs. VoxEval dataset is available at: https://github.com/dreamtheater123/VoxEval
comment: The Version of Record of this contribution is accepted to ACL 2025 main conference
Path Pooling: Training-Free Structure Enhancement for Efficient Knowledge Graph Retrieval-Augmented Generation
Although Large Language Models achieve strong success in many tasks, they still suffer from hallucinations and knowledge deficiencies in real-world applications. Many knowledge graph-based retrieval-augmented generation (KG-RAG) methods enhance the quality and credibility of LLMs by leveraging structure and semantic information in KGs as external knowledge bases. However, these methods struggle to effectively incorporate structure information, either incurring high computational costs or underutilizing available knowledge. Inspired by smoothing operations in graph representation learning, we propose path pooling, a simple, training-free strategy that introduces structure information through a novel path-centric pooling operation. It seamlessly integrates into existing KG-RAG methods in a plug-and-play manner, enabling richer structure information utilization. Extensive experiments demonstrate that incorporating the path pooling into the state-of-the-art KG-RAG method consistently improves performance across various settings while introducing negligible additional cost.
OrionBench: A Benchmark for Chart and Human-Recognizable Object Detection in Infographics
Given the central role of charts in scientific, business, and communication contexts, enhancing the chart understanding capabilities of vision-language models (VLMs) has become increasingly critical. A key limitation of existing VLMs lies in their inaccurate visual grounding of infographic elements, including charts and human-recognizable objects (HROs) such as icons and images. However, chart understanding often requires identifying relevant elements and reasoning over them. To address this limitation, we introduce OrionBench, a benchmark designed to support the development of accurate object detection models for charts and HROs in infographics. It contains 26,250 real and 78,750 synthetic infographics, with over 6.9 million bounding box annotations. These annotations are created by combining the model-in-the-loop and programmatic methods. We demonstrate the usefulness of OrionBench through three applications: 1) constructing a Thinking-with-Boxes scheme to boost the chart understanding performance of VLMs, 2) comparing existing object detection models, and 3) applying the developed detection model to document layout and UI element detection.
Select2Reason: Efficient Instruction-Tuning Data Selection for Long-CoT Reasoning
A practical approach to activate long chain-of-thoughts reasoning ability in pre-trained large language models is to perform supervised fine-tuning on instruction datasets synthesized by strong Large Reasoning Models such as DeepSeek-R1, offering a cost-effective alternative to reinforcement learning. However, large-scale instruction sets with more than 100k samples incur significant training overhead, while effective strategies for automatic long-CoT instruction selection still remain unexplored. In this work, we propose Select2Reason, a novel and efficient instruction-tuning data selection framework for long-CoT reasoning. From the perspective of emergence of rethinking behaviors like self-correction and backtracking, we investigate common metrics that may determine the quality of long-CoT reasoning instructions. Select2Reason leverages a quantifier to estimate difficulty of question and jointly incorporates a reasoning trace length-based heuristic through a weighted scheme for ranking to prioritize high-utility examples. Empirical results on OpenR1-Math-220k demonstrate that fine-tuning LLM on only 10% of the data selected by Select2Reason achieves performance competitive with or superior to full-data tuning and open-source baseline OpenR1-Qwen-7B across three competition-level and six comprehensive mathematical benchmarks. Further experiments highlight the scalability in varying data size, efficiency during inference, and its adaptability to other instruction pools with minimal cost.
Frequency matters: Modeling irregular morphological patterns in Spanish with Transformers
Over the past decade, various studies have addressed how speakers solve the so-called `The Paradigm Cell Filling Problem' (PCFP) \citep{ackerman2009parts} across different languages. The PCFP addresses a fundamental question in morphological processing: how do speakers accurately generate inflected forms of words when presented with incomplete paradigms? This problem is particularly salient when modeling complex inflectional systems. We focus on Spanish verbal paradigms, where certain verbs follow an irregular L-shaped pattern, where the first-person singular present indicative stem matches the stem used throughout the present subjunctive mood. We formulate the problem as a morphological reinflection task. Specifically, we investigate the role of input frequency in the acquisition of regular versus irregular L-shaped patterns in transformer models. By systematically manipulating the input distributions and analyzing model behavior, we reveal four key findings: 1) Models perform better on L-shaped verbs compared to regular verbs, especially in uneven frequency conditions; 2) Robust primacy effects are observed, but no consistent recency effects; 3) Memorization becomes more prominent as the proportion of L-shaped verbs increases; 4) There is a tendency to regularize L-shaped verbs when their consonant alternation pairs are rare or absent in the training data.
comment: Typos and grammatical corrections
Interlocking-free Selective Rationalization Through Genetic-based Learning
A popular end-to-end architecture for selective rationalization is the select-then-predict pipeline, comprising a generator to extract highlights fed to a predictor. Such a cooperative system suffers from suboptimal equilibrium minima due to the dominance of one of the two modules, a phenomenon known as interlocking. While several contributions aimed at addressing interlocking, they only mitigate its effect, often by introducing feature-based heuristics, sampling, and ad-hoc regularizations. We present GenSPP, the first interlocking-free architecture for selective rationalization that does not require any learning overhead, as the above-mentioned. GenSPP avoids interlocking by performing disjoint training of the generator and predictor via genetic global search. Experiments on a synthetic and a real-world benchmark show that our model outperforms several state-of-the-art competitors.
OR-Bench: An Over-Refusal Benchmark for Large Language Models ICML 2025
Large Language Models (LLMs) require careful safety alignment to prevent malicious outputs. While significant research focuses on mitigating harmful content generation, the enhanced safety often come with the side effect of over-refusal, where LLMs may reject innocuous prompts and become less helpful. Although the issue of over-refusal has been empirically observed, a systematic measurement is challenging due to the difficulty of crafting prompts that can elicit the over-refusal behaviors of LLMs. This study proposes a novel method for automatically generating large-scale over-refusal datasets. Leveraging this technique, we introduce OR-Bench, the first large-scale over-refusal benchmark. OR-Bench comprises 80,000 over-refusal prompts across 10 common rejection categories, a subset of around 1,000 hard prompts that are challenging even for state-of-the-art LLMs, and an additional 600 toxic prompts to prevent indiscriminate responses. We then conduct a comprehensive study to measure the over-refusal of 32 popular LLMs across 8 model families. Our datasets are publicly available at https://huggingface.co/bench-llms and our codebase is open-sourced at https://github.com/justincui03/or-bench. We hope this benchmark can help the community develop better safety aligned models.
comment: Accepted to ICML 2025, we thank everyone for their valuable suggestions and feedback!
Towards Adapting Open-Source Large Language Models for Expert-Level Clinical Note Generation
Proprietary Large Language Models (LLMs) such as GPT-4 and Gemini have demonstrated promising capabilities in clinical text summarization tasks. However, due to patient data privacy concerns and computational costs, many healthcare providers prefer using small, locally-hosted models over external generic LLMs. This study presents a comprehensive domain- and task-specific adaptation process for the open-source LLaMA-2 13 billion parameter model, enabling it to generate high-quality clinical notes from outpatient patient-doctor dialogues. Our process incorporates continued pretraining, supervised fine-tuning, and reinforcement learning from both AI and human feedback. We introduced a new approach, DistillDirect, for performing on-policy reinforcement learning with Gemini 1.0 Pro as the teacher model. Our resulting model, LLaMA-Clinic, can generate clinical notes comparable in quality to those authored by physicians. In a blinded physician reader study, the majority (92.8%) of individual evaluations rated the notes generated by LLaMA-Clinic as "acceptable" or higher across three criteria: real-world readiness, completeness, and accuracy. In the more challenging "Assessment and Plan" section, LLaMA-Clinic matched physician-authored notes in real-world readiness score. We highlight key considerations for future clinical note-generation tasks, emphasizing the importance of pre-defining a "best practice" note format, rather than relying on LLMs to determine this for clinical practice.
MMUnlearner: Reformulating Multimodal Machine Unlearning in the Era of Multimodal Large Language Models ACL 2025
Recent progress in Machine Unlearning (MU) has introduced solutions for the selective removal of private or sensitive information encoded within deep neural networks. Nonetheless, MU for Multimodal Large Language Models (MLLMs) remains in its nascent phase. Therefore, we propose to reformulate the task of multimodal MU in the era of MLLMs, which aims to erase only the visual patterns associated with a given entity while preserving the corresponding textual knowledge encoded within the original parameters of the language model backbone. Furthermore, we develop a novel geometry-constrained gradient ascent method MMUnlearner. It updates the weights of MLLMs with a weight saliency map jointly restricted by the remaining concepts and textual knowledge during unlearning, thereby preserving parameters essential for non-target knowledge. Extensive experiments demonstrate that MMUnlearner surpasses baselines that finetuning MLLMs with VQA data directly through Gradient Ascent (GA) or Negative Preference Optimization (NPO), across all evaluation dimensions. Our code can be found in [this URL](https://github.com/Z1zs/MMUnlearner).
comment: Accepted as ACL 2025 Findings
SoftCoT: Soft Chain-of-Thought for Efficient Reasoning with LLMs ACL 2025
Chain-of-Thought (CoT) reasoning enables Large Language Models (LLMs) to solve complex reasoning tasks by generating intermediate reasoning steps. However, most existing approaches focus on hard token decoding, which constrains reasoning within the discrete vocabulary space and may not always be optimal. While recent efforts explore continuous-space reasoning, they often require full-model fine-tuning and suffer from catastrophic forgetting, limiting their applicability to state-of-the-art LLMs that already perform well in zero-shot settings with a proper instruction. To address this challenge, we propose a novel approach for continuous-space reasoning that does not require modifying the LLM. Specifically, we employ a lightweight fixed assistant model to speculatively generate instance-specific soft thought tokens as the initial chain of thoughts, which are then mapped into the LLM's representation space via a trainable projection module. Experimental results on five reasoning benchmarks demonstrate that our method enhances LLM reasoning performance through supervised, parameter-efficient fine-tuning. Source code is available at https://github.com/xuyige/SoftCoT.
comment: Camera-ready for ACL 2025 (main conference)
Fine-Tuning on Diverse Reasoning Chains Drives Within-Inference CoT Refinement in LLMs ACL 2025
Requiring a large language model (LLM) to generate intermediary reasoning steps, known as Chain of Thought (CoT), has been shown to be an effective way of boosting performance. Previous approaches have focused on generating multiple independent CoTs, combining them through ensembling or other post-hoc strategies to enhance reasoning. In this work, we introduce a novel approach where LLMs are fine-tuned to generate a sequence of Diverse Chains of Thought (DCoT) within a single inference step, which is fundamentally different from prior work that primarily operate on parallel CoT generations. DCoT allows LLMs to gain the ability to perform within-inference refinement of reasoning chains without requiring external feedback. Through a rigorous set of experiments spanning a wide range of tasks that require various reasoning types, we show that fine-tuning on DCoT improves performance over the CoT baseline across model families and scales (1.3B to 70B). These improvements are particularly impactful for tasks with a large result state space, such as those involving numeric answers. Our work is also significant because both quantitative analyses and manual evaluations reveal the observed gains stem from the models' ability to refine an initial reasoning chain by generating a second, improved chain within the same inference step, demonstrating previously elusive self-improvement. Our code and data are publicly available at https://github.com/UKPLab/acl2025-diverse-cot.
comment: ACL 2025 Main
SoftCoT++: Test-Time Scaling with Soft Chain-of-Thought Reasoning
Test-Time Scaling (TTS) refers to approaches that improve reasoning performance by allocating extra computation during inference, without altering the model's parameters. While existing TTS methods operate in a discrete token space by generating more intermediate steps, recent studies in Coconut and SoftCoT have demonstrated that thinking in the continuous latent space can further enhance the reasoning performance. Such latent thoughts encode informative thinking without the information loss associated with autoregressive token generation, sparking increased interest in continuous-space reasoning. Unlike discrete decoding, where repeated sampling enables exploring diverse reasoning paths, latent representations in continuous space are fixed for a given input, which limits diverse exploration, as all decoded paths originate from the same latent thought. To overcome this limitation, we introduce SoftCoT++ to extend SoftCoT to the Test-Time Scaling paradigm by enabling diverse exploration of thinking paths. Specifically, we perturb latent thoughts via multiple specialized initial tokens and apply contrastive learning to promote diversity among soft thought representations. Experiments across five reasoning benchmarks and two distinct LLM architectures demonstrate that SoftCoT++ significantly boosts SoftCoT and also outperforms SoftCoT with self-consistency scaling. Moreover, it shows strong compatibility with conventional scaling techniques such as self-consistency. Source code is available at https://github.com/xuyige/SoftCoT.
comment: 14 pages
RASMALAI: Resources for Adaptive Speech Modeling in Indian Languages with Accents and Intonations
We introduce RASMALAI, a large-scale speech dataset with rich text descriptions, designed to advance controllable and expressive text-to-speech (TTS) synthesis for 23 Indian languages and English. It comprises 13,000 hours of speech and 24 million text-description annotations with fine-grained attributes like speaker identity, accent, emotion, style, and background conditions. Using RASMALAI, we develop IndicParlerTTS, the first open-source, text-description-guided TTS for Indian languages. Systematic evaluation demonstrates its ability to generate high-quality speech for named speakers, reliably follow text descriptions and accurately synthesize specified attributes. Additionally, it effectively transfers expressive characteristics both within and across languages. IndicParlerTTS consistently achieves strong performance across these evaluations, setting a new standard for controllable multilingual expressive speech synthesis in Indian languages.
comment: Accepted at Interspeech 2025
Language Models Surface the Unwritten Code of Science and Society
This paper calls on the research community not only to investigate how human biases are inherited by large language models (LLMs) but also to explore how these biases in LLMs can be leveraged to make society's "unwritten code" - such as implicit stereotypes and heuristics - visible and accessible for critique. We introduce a conceptual framework through a case study in science: uncovering hidden rules in peer review - the factors that reviewers care about but rarely state explicitly due to normative scientific expectations. The idea of the framework is to push LLMs to speak out their heuristics through generating self-consistent hypotheses - why one paper appeared stronger in reviewer scoring - among paired papers submitted to 45 computer science conferences, while iteratively searching deeper hypotheses from remaining pairs where existing hypotheses cannot explain. We observed that LLMs' normative priors about the internal characteristics of good science extracted from their self-talk, e.g. theoretical rigor, were systematically updated toward posteriors that emphasize storytelling about external connections, such as how the work is positioned and connected within and across literatures. This shift reveals the primacy of scientific myths about intrinsic properties driving scientific excellence rather than extrinsic contextualization and storytelling that influence conceptions of relevance and significance. Human reviewers tend to explicitly reward aspects that moderately align with LLMs' normative priors (correlation = 0.49) but avoid articulating contextualization and storytelling posteriors in their review comments (correlation = -0.14), despite giving implicit reward to them with positive scores. We discuss the broad applicability of the framework, leveraging LLMs as diagnostic tools to surface the tacit codes underlying human society, enabling more precisely targeted responsible AI.
GALLa: Graph Aligned Large Language Models for Improved Source Code Understanding ACL 2025
Programming languages possess rich semantic information - such as data flow - that is represented by graphs and not available from the surface form of source code. Recent code language models have scaled to billions of parameters, but model source code solely as text tokens while ignoring any other structural information. Conversely, models that do encode structural information of code make modifications to the Transformer architecture, limiting their scale and compatibility with pretrained LLMs. In this work, we take the best of both worlds with GALLa - Graph Aligned Large Language Models. GALLa utilizes graph neural networks and cross-modal alignment technologies to inject the structural information of code into LLMs as an auxiliary task during finetuning. This framework is both model-agnostic and task-agnostic, as it can be applied to any code LLM for any code downstream task, and requires the structural graph data only at training time from a corpus unrelated to the finetuning data, while incurring no cost at inference time over the baseline LLM. Experiments on five code tasks with seven different baseline LLMs ranging in size from 350M to 14B validate the effectiveness of GALLa, demonstrating consistent improvement over the baseline, even for powerful models such as LLaMA3 and Qwen2.5-Coder.
comment: ACL 2025 camera-ready
SCIRGC: Multi-Granularity Citation Recommendation and Citation Sentence Preference Alignment
Citations are crucial in scientific research articles as they highlight the connection between the current study and prior work. However, this process is often time-consuming for researchers. In this study, we propose the SciRGC framework, which aims to automatically recommend citation articles and generate citation sentences for citation locations within articles. The framework addresses two key challenges in academic citation generation: 1) how to accurately identify the author's citation intent and find relevant citation papers, and 2) how to generate high-quality citation sentences that align with human preferences. We enhance citation recommendation accuracy in the citation article recommendation module by incorporating citation networks and sentiment intent, and generate reasoning-based citation sentences in the citation sentence generation module by using the original article abstract, local context, citation intent, and recommended articles as inputs. Additionally, we propose a new evaluation metric to fairly assess the quality of generated citation sentences. Through comparisons with baseline models and ablation experiments, the SciRGC framework not only improves the accuracy and relevance of citation recommendations but also ensures the appropriateness of the generated citation sentences in context, providing a valuable tool for interdisciplinary researchers.
comment: 15 pages, 7 figures
Universal Reasoner: A Single, Composable Plug-and-Play Reasoner for Frozen LLMs
Large Language Models (LLMs) have demonstrated remarkable general capabilities, but enhancing skills such as reasoning often demands substantial computational resources and may compromise their generalization. While Parameter-Efficient Fine-Tuning (PEFT) methods offer a more resource-conscious alternative, they typically requires retraining for each LLM backbone due to architectural dependencies. To address these challenges, here we propose Universal Reasoner (UniR) - a single, lightweight, composable, and plug-and-play reasoning module that can be used with any frozen LLM to endow it with specialized reasoning capabilities. Specifically, UniR decomposes the reward into a standalone reasoning module that is trained independently using predefined rewards, effectively translating trajectory-level signals into token-level guidance. Once trained, UniR can be combined with any frozen LLM at inference time by simply adding its output logits to those of the LLM backbone. This additive structure naturally enables modular composition: multiple UniR modules trained for different tasks can be jointly applied by summing their logits, enabling complex reasoning via composition. Experimental results on mathematical reasoning and machine translation tasks show that UniR significantly outperforms existing baseline fine-tuning methods using the Llama3.2 model. Furthermore, UniR demonstrates strong weak-to-strong generalization: reasoning modules trained on smaller models effectively guide much larger LLMs. This makes UniR a cost-efficient, adaptable, and robust solution for enhancing reasoning in LLMs without compromising their core capabilities. Code is open-sourced at https://github.com/hangeol/UniR
comment: 22 pages, typos corrected
Voting or Consensus? Decision-Making in Multi-Agent Debate
Much of the success of multi-agent debates depends on carefully choosing the right parameters. The decision-making protocol stands out as it can highly impact final model answers, depending on how decisions are reached. Systematic comparison of decision protocols is difficult because many studies alter multiple discussion parameters beyond the protocol. So far, it has been largely unknown how decision-making influences different tasks. This work systematically evaluates the impact of seven decision protocols (e.g., majority voting, unanimity consensus). We change only one variable at a time - the decision protocol - to analyze how different methods affect the collaboration between agents and measure differences in knowledge and reasoning tasks. Our results show that voting protocols improve performance by 13.2% in reasoning tasks and consensus protocols by 2.8% in knowledge tasks compared to other decision protocols. Increasing the number of agents improves performance, while more discussion rounds before voting reduce it. To improve decision-making by increasing answer diversity, we propose two new methods, All-Agents Drafting (AAD) and Collective Improvement (CI). Our methods improve task performance by up to 3.3% with AAD and up to 7.4% with CI. This work demonstrates the importance of decision-making in multi-agent debates beyond scaling.
Behavioral Analysis of Information Salience in Large Language Models ACL 2025
Large Language Models (LLMs) excel at text summarization, a task that requires models to select content based on its importance. However, the exact notion of salience that LLMs have internalized remains unclear. To bridge this gap, we introduce an explainable framework to systematically derive and investigate information salience in LLMs through their summarization behavior. Using length-controlled summarization as a behavioral probe into the content selection process, and tracing the answerability of Questions Under Discussion throughout, we derive a proxy for how models prioritize information. Our experiments on 13 models across four datasets reveal that LLMs have a nuanced, hierarchical notion of salience, generally consistent across model families and sizes. While models show highly consistent behavior and hence salience patterns, this notion of salience cannot be accessed through introspection, and only weakly correlates with human perceptions of information salience.
comment: Accepted at ACL 2025 (Findings)
Hallucinations are inevitable but can be made statistically negligible. The "innate" inevitability of hallucinations cannot explain practical LLM issues
Hallucinations, a phenomenon where a language model (LM) generates nonfactual content, pose a significant challenge to the practical deployment of LMs. While many empirical methods have been proposed to mitigate hallucinations, recent studies established a computability-theoretic result showing that any LM will inevitably generate hallucinations on an infinite set of inputs, regardless of the quality and quantity of training datasets and the choice of the language model architecture and training and inference algorithms. Although the computability-theoretic result may seem pessimistic, its significance in practical viewpoints has remained unclear. This paper claims that those "innate" inevitability results from computability theory and diagonal argument, in principle, cannot explain practical issues of LLMs. We demonstrate this claim by presenting a positive theoretical result from a probabilistic perspective. Specifically, we prove that hallucinations can be made statistically negligible, provided that the quality and quantity of the training data are sufficient. Interestingly, our positive result coexists with the computability-theoretic result, implying that while hallucinations on an infinite set of inputs cannot be entirely eliminated, their probability can always be reduced by improving algorithms and training data. By evaluating the two seemingly contradictory results through the lens of information theory, we argue that our probability-theoretic positive result better reflects practical considerations than the computability-theoretic negative result.
Efficient Length-Generalizable Attention via Causal Retrieval for Long-Context Language Modeling ICML 2025
Despite the success of Transformers, handling long contexts remains challenging due to the limited length generalization and quadratic complexity of self-attention. Thus Transformers often require post-training with a larger attention window, significantly increasing computational and memory costs. In this paper, we propose a novel attention mechanism based on dynamic context, Grouped Cross Attention (GCA), which can generalize to 1000 times the pre-training context length while maintaining the ability to access distant information with a constant attention window size. For a given input sequence, we split it into chunks and use each chunk to retrieve top-k relevant past chunks for subsequent text generation. Specifically, unlike most previous works that use an off-the-shelf retriever, our key innovation allows the retriever to learn how to retrieve past chunks that better minimize the auto-regressive loss of subsequent tokens in an end-to-end manner. Such a mechanism accommodates retrieved chunks with a fixed-size attention window to achieve long-range information access, significantly reducing computational and memory costs during training and inference. Experiments show that GCA-based models achieve near-perfect accuracy in passkey retrieval for 16M context lengths, which is 1000 times the training length.
comment: accepted to ICML 2025
Does quantization affect models' performance on long-context tasks?
Large language models (LLMs) now support context windows exceeding 128K tokens, but this comes with significant memory requirements and high inference latency. Quantization can mitigate these costs, but may degrade performance. In this work, we present the first systematic evaluation of quantized LLMs on tasks with long-inputs (>64K tokens) and long-form outputs. Our evaluation spans 9.7K test examples, five quantization methods (FP8, GPTQ-int8, AWQ-int4, GPTQ-int4, BNB-nf4), and five models (Llama-3.1 8B and 70B; Qwen-2.5 7B, 32B, and 72B). We find that, on average, 8-bit quantization preserves accuracy (~0.8% drop), whereas 4-bit methods lead to substantial losses, especially for tasks involving long context inputs (drops of up to 59%). This degradation tends to worsen when the input is in a language other than English. Crucially, the effects of quantization depend heavily on the quantization method, model, and task. For instance, while Qwen-2.5 72B remains robust under BNB-nf4, Llama-3.1 70B experiences a 32% performance drop on the same task. These findings highlight the importance of a careful, task-specific evaluation before deploying quantized LLMs, particularly in long-context scenarios and with languages other than English.
comment: 9 pages of content with 9 figures. 37 remaining pages of references and supplementary with 17 figures. Under review as of May 26
Unleashing LLM Reasoning Capability via Scalable Question Synthesis from Scratch ACL 2025
Improving the mathematical reasoning capabilities of Large Language Models (LLMs) is critical for advancing artificial intelligence. However, access to extensive, diverse, and high-quality reasoning datasets remains a significant challenge, particularly for the open-source community. In this paper, we propose ScaleQuest, a novel, scalable, and cost-effective data synthesis method that enables the generation of large-scale mathematical reasoning datasets using lightweight 7B-scale models. ScaleQuest introduces a two-stage question-tuning process comprising Question Fine-Tuning (QFT) and Question Preference Optimization (QPO) to unlock the question generation capabilities of problem-solving models. By generating diverse questions from scratch -- without relying on powerful proprietary models or seed data -- we produce a dataset of 1 million problem-solution pairs. Our experiments demonstrate that models trained on our data outperform existing open-source datasets in both in-domain and out-of-domain evaluations. Furthermore, our approach shows continued performance improvement as the volume of training data increases, highlighting its potential for ongoing data scaling. The extensive improvements observed in code reasoning tasks demonstrate the generalization capabilities of our proposed method. Our work provides the open-source community with a practical solution to enhance the mathematical reasoning abilities of LLMs.
comment: ACL 2025
Plan2Align: Predictive Planning Based Test-Time Preference Alignment for Large Language Models
Aligning Large Language Models with Preference Fine-Tuning is often resource-intensive. Test-time alignment techniques that do not modify the underlying models, such as prompting and guided decodings, offer a lightweight alternative. However, existing test-time alignment methods primarily improve short responses and fail to ensure coherence over extended contexts due to the myopic nature of token-level alignment. Moreover, these methods often incur a slowdown during inference. To address these challenges, we propose Plan2Align, a test-time alignment framework that formulates text generation as a predictive planning problem. Plan2Align adapts Model Predictive Control (MPC) to iteratively refine output by rolling out multiple complete responses and optimizing each segment. To more rigorously evaluate the effectiveness and efficiency, we focus on the more challenging task of long-text generation. Experiments on the long-form response subset of the HH-RLHF dataset and the WMT'24 Discourse-Level Literary Translation demonstrate that Plan2Align significantly enhances the performance of base LLMs. Compared to existing training-time and test-time alignment methods on LLaMA-3.1 8B, Plan2Align achieves comparable or superior results, while also delivering improved inference efficiency relative to prior test-time alignment approaches.
comment: Preprint. Code will be released at Plan2Align GitHub link: https://github.com/NYCU-RL-Bandits-Lab/Plan2Align
How Private are Language Models in Abstractive Summarization?
In sensitive domains such as medical and legal, protecting sensitive information is critical, with protective laws strictly prohibiting the disclosure of personal data. This poses challenges for sharing valuable data such as medical reports and legal cases summaries. While language models (LMs) have shown strong performance in text summarization, it is still an open question to what extent they can provide privacy-preserving summaries from non-private source documents. In this paper, we perform a comprehensive study of privacy risks in LM-based summarization across two closed- and four open-weight models of different sizes and families. We experiment with both prompting and fine-tuning strategies for privacy-preservation across a range of summarization datasets including medical and legal domains. Our quantitative and qualitative analysis, including human evaluation, shows that LMs frequently leak personally identifiable information in their summaries, in contrast to human-generated privacy-preserving summaries, which demonstrate significantly higher privacy protection levels. These findings highlight a substantial gap between current LM capabilities and expert human expert performance in privacy-sensitive summarization tasks.
Debate-to-Detect: Reformulating Misinformation Detection as a Real-World Debate with Large Language Models
The proliferation of misinformation in digital platforms reveals the limitations of traditional detection methods, which mostly rely on static classification and fail to capture the intricate process of real-world fact-checking. Despite advancements in Large Language Models (LLMs) that enhance automated reasoning, their application to misinformation detection remains hindered by issues of logical inconsistency and superficial verification. In response, we introduce Debate-to-Detect (D2D), a novel Multi-Agent Debate (MAD) framework that reformulates misinformation detection as a structured adversarial debate. Inspired by fact-checking workflows, D2D assigns domain-specific profiles to each agent and orchestrates a five-stage debate process, including Opening Statement, Rebuttal, Free Debate, Closing Statement, and Judgment. To transcend traditional binary classification, D2D introduces a multi-dimensional evaluation mechanism that assesses each claim across five distinct dimensions: Factuality, Source Reliability, Reasoning Quality, Clarity, and Ethics. Experiments with GPT-4o on two fakenews datasets demonstrate significant improvements over baseline methods, and the case study highlight D2D's capability to iteratively refine evidence while improving decision transparency, representing a substantial advancement towards robust and interpretable misinformation detection. The code will be open-sourced in a future release.
Optimizing Case-Based Reasoning System for Functional Test Script Generation with Large Language Models KDD 2025
In this work, we explore the potential of large language models (LLMs) for generating functional test scripts, which necessitates understanding the dynamically evolving code structure of the target software. To achieve this, we propose a case-based reasoning (CBR) system utilizing a 4R cycle (i.e., retrieve, reuse, revise, and retain), which maintains and leverages a case bank of test intent descriptions and corresponding test scripts to facilitate LLMs for test script generation. To improve user experience further, we introduce Re4, an optimization method for the CBR system, comprising reranking-based retrieval finetuning and reinforced reuse finetuning. Specifically, we first identify positive examples with high semantic and script similarity, providing reliable pseudo-labels for finetuning the retriever model without costly labeling. Then, we apply supervised finetuning, followed by a reinforcement learning finetuning stage, to align LLMs with our production scenarios, ensuring the faithful reuse of retrieved cases. Extensive experimental results on two product development units from Huawei Datacom demonstrate the superiority of the proposed CBR+Re4. Notably, we also show that the proposed Re4 method can help alleviate the repetitive generation issues with LLMs.
comment: Accepted by KDD 2025 (ADS Track)
Towards Visuospatial Cognition via Hierarchical Fusion of Visual Experts
While Multimodal Large Language Models (MLLMs) excel at general vision-language tasks, visuospatial cognition - reasoning about spatial layouts, relations, and dynamics - remains a significant challenge. Existing models often lack the necessary architectural components and specialized training data for fine-grained spatial understanding. We introduce ViCA2 (Visuospatial Cognitive Assistant 2), a novel MLLM designed to enhance spatial reasoning. ViCA2 features a dual vision encoder architecture integrating SigLIP for semantics and Hiera for spatial structure, coupled with a token ratio control mechanism for efficiency. We also developed ViCA-322K, a new large-scale dataset with over 322,000 spatially grounded question-answer pairs for targeted instruction tuning. On the challenging VSI-Bench benchmark, our ViCA2-7B model achieves a state-of-the-art average score of 56.8, significantly surpassing larger open-source models (e.g., LLaVA-NeXT-Video-72B, 40.9) and leading proprietary models (Gemini-1.5 Pro, 45.4). This demonstrates the effectiveness of our approach in achieving strong visuospatial intelligence with a compact model. We release ViCA2, its codebase, and the ViCA-322K dataset to facilitate further research.
comment: 26 pages, 19 figures, 4 tables. Code, models, and datasets are available at our project page: https://github.com/nkkbr/ViCA. This is a draft technical report. At the request of Professor Hidetoshi Shimodaira, his name has been removed from the author list
Visuospatial Cognitive Assistant
Video-based spatial cognition is vital for robotics and embodied AI but challenges current Vision-Language Models (VLMs). This paper makes two key contributions. First, we introduce ViCA (Visuospatial Cognitive Assistant)-322K, a diverse dataset of 322,003 QA pairs from real-world indoor videos (ARKitScenes, ScanNet, ScanNet++), offering supervision for 3D metadata-grounded queries and video-based complex reasoning. Second, we develop ViCA-7B, fine-tuned on ViCA-322K, which achieves new state-of-the-art on all eight VSI-Bench tasks, outperforming existing models, including larger ones (e.g., +26.1 on Absolute Distance). For interpretability, we present ViCA-Thinking-2.68K, a dataset with explicit reasoning chains, and fine-tune ViCA-7B to create ViCA-7B-Thinking, a model that articulates its spatial reasoning. Our work highlights the importance of targeted data and suggests paths for improved temporal-spatial modeling. We release all resources to foster research in robust visuospatial intelligence.
comment: 31 pages, 10 figures, 6 tables. The implementation and fine-tuned model (ViCA-7B), along with detailed documentation, are publicly available at https://huggingface.co/nkkbr/ViCA. This is a draft technical report. At Professor Hidetoshi Shimodaira's request, his name has been removed from the author list
Can Community Notes Replace Professional Fact-Checkers? ACL 2025
Two commonly employed strategies to combat the rise of misinformation on social media are (i) fact-checking by professional organisations and (ii) community moderation by platform users. Policy changes by Twitter/X and, more recently, Meta, signal a shift away from partnerships with fact-checking organisations and towards an increased reliance on crowdsourced community notes. However, the extent and nature of dependencies between fact-checking and helpful community notes remain unclear. To address these questions, we use language models to annotate a large corpus of Twitter/X community notes with attributes such as topic, cited sources, and whether they refute claims tied to broader misinformation narratives. Our analysis reveals that community notes cite fact-checking sources up to five times more than previously reported. Fact-checking is especially crucial for notes on posts linked to broader narratives, which are twice as likely to reference fact-checking sources compared to other sources. Our results show that successful community moderation relies on professional fact-checking and highlight how citizen and professional fact-checking are deeply intertwined.
comment: Accepted to the main proceedings of ACL 2025
Tradeoffs Between Alignment and Helpfulness in Language Models with Steering Methods
Language model alignment has become an important component of AI safety, allowing safe interactions between humans and language models, by enhancing desired behaviors and inhibiting undesired ones. It is often done by tuning the model or inserting preset aligning prompts. Recently, representation engineering, a method which alters the model's behavior via changing its representations post-training, was shown to be effective in aligning LLMs (Zou et al., 2023a). Representation engineering yields gains in alignment oriented tasks such as resistance to adversarial attacks and reduction of social biases, but was also shown to cause a decrease in the ability of the model to perform basic tasks. In this paper we study the tradeoff between the increase in alignment and decrease in helpfulness of the model. We propose a theoretical framework which provides bounds for these two quantities, and demonstrate their relevance empirically. First, we find that under the conditions of our framework, alignment can be guaranteed with representation engineering, and at the same time that helpfulness is harmed in the process. Second, we show that helpfulness is harmed quadratically with the norm of the representation engineering vector, while the alignment increases linearly with it, indicating a regime in which it is efficient to use representation engineering. We validate our findings empirically, and chart the boundaries to the usefulness of representation engineering for alignment.
RvLLM: LLM Runtime Verification with Domain Knowledge
Large language models (LLMs) have emerged as a dominant AI paradigm due to their exceptional text understanding and generation capabilities. However, their tendency to generate inconsistent or erroneous outputs challenges their reliability, especially in high-stakes domains requiring accuracy and trustworthiness. Existing research primarily focuses on detecting and mitigating model misbehavior in general-purpose scenarios, often overlooking the potential of integrating domain-specific knowledge. In this work, we advance misbehavior detection by incorporating domain knowledge. The core idea is to design a general specification language that enables domain experts to customize domain-specific predicates in a lightweight and intuitive manner, supporting later runtime verification of LLM outputs. To achieve this, we design a novel specification language, ESL, and introduce a runtime verification framework, RvLLM, to validate LLM output against domain-specific constraints defined in ESL. We evaluate RvLLM on three representative tasks: violation detection against Singapore Rapid Transit Systems Act, numerical comparison, and inequality solving. Experimental results demonstrate that RvLLM effectively detects erroneous outputs across various LLMs in a lightweight and flexible manner. The results reveal that despite their impressive capabilities, LLMs remain prone to low-level errors due to limited interpretability and a lack of formal guarantees during inference, and our framework offers a potential long-term solution by leveraging expert domain knowledge to rigorously and efficiently verify LLM outputs.
comment: 12 pages, 2 figures
LLMs with Industrial Lens: Deciphering the Challenges and Prospects -- A Survey
Large language models (LLMs) have become the secret ingredient driving numerous industrial applications, showcasing their remarkable versatility across a diverse spectrum of tasks. From natural language processing and sentiment analysis to content generation and personalized recommendations, their unparalleled adaptability has facilitated widespread adoption across industries. This transformative shift driven by LLMs underscores the need to explore the underlying associated challenges and avenues for enhancement in their utilization. In this paper, our objective is to unravel and evaluate the obstacles and opportunities inherent in leveraging LLMs within an industrial context. To this end, we conduct a survey involving a group of industry practitioners, develop four research questions derived from the insights gathered, and examine 68 industry papers to address these questions and derive meaningful conclusions. We maintain the Github repository with the most recent papers in the field.
comment: 25 pages, 7 figures
HalluCounter: Reference-free LLM Hallucination Detection in the Wild!
Response consistency-based, reference-free hallucination detection (RFHD) methods do not depend on internal model states, such as generation probabilities or gradients, which Grey-box models typically rely on but are inaccessible in closed-source LLMs. However, their inability to capture query-response alignment patterns often results in lower detection accuracy. Additionally, the lack of large-scale benchmark datasets spanning diverse domains remains a challenge, as most existing datasets are limited in size and scope. To this end, we propose HalluCounter, a novel reference-free hallucination detection method that utilizes both response-response and query-response consistency and alignment patterns. This enables the training of a classifier that detects hallucinations and provides a confidence score and an optimal response for user queries. Furthermore, we introduce HalluCounterEval, a benchmark dataset comprising both synthetically generated and human-curated samples across multiple domains. Our method outperforms state-of-the-art approaches by a significant margin, achieving over 90\% average confidence in hallucination detection across datasets.
comment: 30 pages, 3 figures
More is not always better? Enhancing Many-Shot In-Context Learning with Differentiated and Reweighting Objectives
Large language models (LLMs) excel at few-shot in-context learning (ICL) without requiring parameter updates. However, as ICL demonstrations increase from a few to many, performance tends to plateau and eventually decline. We identify two primary causes for this trend: the suboptimal negative log-likelihood (NLL) optimization objective and the incremental data noise. To address these issues, we introduce \textit{DrICL}, a novel optimization method that enhances model performance through \textit{Differentiated} and \textit{Reweighting} objectives. Globally, DrICL utilizes differentiated learning to optimize the NLL objective, ensuring that many-shot performance surpasses zero-shot levels. Locally, it dynamically adjusts the weighting of many-shot demonstrations by leveraging cumulative advantages inspired by reinforcement learning, thereby mitigating the impact of noisy data. Recognizing the lack of multi-task datasets with diverse many-shot distributions, we develop the \textit{Many-Shot ICL Benchmark} (ICL-50)-a large-scale benchmark of 50 tasks that cover shot numbers from 1 to 350 within sequences of up to 8,000 tokens-for both fine-tuning and evaluation purposes. Experimental results demonstrate that LLMs enhanced with DrICL achieve significant improvements in many-shot setups across various tasks, including both in-domain and out-of-domain scenarios. We release the code and dataset hoping to facilitate further research in many-shot ICL\footnote{https://github.com/xiaoqzhwhu/DrICL}.
comment: 14 pages, 8 figures, 11 tables
Distance between Relevant Information Pieces Causes Bias in Long-Context LLMs ACL 2025
Positional bias in large language models (LLMs) hinders their ability to effectively process long inputs. A prominent example is the "lost in the middle" phenomenon, where LLMs struggle to utilize relevant information situated in the middle of the input. While prior research primarily focuses on single pieces of relevant information, real-world applications often involve multiple relevant information pieces. To bridge this gap, we present LongPiBench, a benchmark designed to assess positional bias involving multiple pieces of relevant information. Thorough experiments are conducted with five commercial and six open-source models. These experiments reveal that while most current models are robust against the "lost in the middle" issue, there exist significant biases related to the spacing of relevant information pieces. These findings highlight the importance of evaluating and reducing positional biases to advance LLM's capabilities.
comment: ACL 2025 Findings
QwenLong-CPRS: Towards $\infty$-LLMs with Dynamic Context Optimization
This technical report presents QwenLong-CPRS, a context compression framework designed for explicit long-context optimization, addressing prohibitive computation overhead during the prefill stage and the "lost in the middle" performance degradation of large language models (LLMs) during long sequence processing. Implemented through a novel dynamic context optimization mechanism, QwenLong-CPRS enables multi-granularity context compression guided by natural language instructions, achieving both efficiency gains and improved performance. Evolved from the Qwen architecture series, QwenLong-CPRS introduces four key innovations: (1) Natural language-guided dynamic optimization, (2) Bidirectional reasoning layers for enhanced boundary awareness, (3) Token critic mechanisms with language modeling heads, and (4) Window-parallel inference. Comprehensive evaluations across five benchmarks (4K-2M word contexts) demonstrate QwenLong-CPRS's threefold effectiveness: (1) Consistent superiority over other context management methods like RAG and sparse attention in both accuracy and efficiency. (2) Architecture-agnostic integration with all flagship LLMs, including GPT-4o, Gemini2.0-pro, Claude3.7-sonnet, DeepSeek-v3, and Qwen2.5-max, achieves 21.59$\times$ context compression alongside 19.15-point average performance gains; (3) Deployed with Qwen2.5-32B-Instruct, QwenLong-CPRS surpasses leading proprietary LLMs by 4.85 and 10.88 points on Ruler-128K and InfiniteBench, establishing new SOTA performance.
QwenLong-L1: Towards Long-Context Large Reasoning Models with Reinforcement Learning
Recent large reasoning models (LRMs) have demonstrated strong reasoning capabilities through reinforcement learning (RL). These improvements have primarily been observed within the short-context reasoning tasks. In contrast, extending LRMs to effectively process and reason on long-context inputs via RL remains a critical unsolved challenge. To bridge this gap, we first formalize the paradigm of long-context reasoning RL, and identify key challenges in suboptimal training efficiency and unstable optimization process. To address these issues, we propose QwenLong-L1, a framework that adapts short-context LRMs to long-context scenarios via progressive context scaling. Specifically, we utilize a warm-up supervised fine-tuning (SFT) stage to establish a robust initial policy, followed by a curriculum-guided phased RL technique to stabilize the policy evolution, and enhanced with a difficulty-aware retrospective sampling strategy to incentivize the policy exploration. Experiments on seven long-context document question-answering benchmarks demonstrate that QwenLong-L1-32B outperforms flagship LRMs like OpenAI-o3-mini and Qwen3-235B-A22B, achieving performance on par with Claude-3.7-Sonnet-Thinking, demonstrating leading performance among state-of-the-art LRMs. This work advances the development of practical long-context LRMs capable of robust reasoning across information-intensive environments.
comment: Technical Report
Two Experts Are All You Need for Steering Thinking: Reinforcing Cognitive Effort in MoE Reasoning Models Without Additional Training
Mixture-of-Experts (MoE) architectures within Large Reasoning Models (LRMs) have achieved impressive reasoning capabilities by selectively activating experts to facilitate structured cognitive processes. Despite notable advances, existing reasoning models often suffer from cognitive inefficiencies like overthinking and underthinking. To address these limitations, we introduce a novel inference-time steering methodology called Reinforcing Cognitive Experts (RICE), designed to improve reasoning performance without additional training or complex heuristics. Leveraging normalized Pointwise Mutual Information (nPMI), we systematically identify specialized experts, termed ''cognitive experts'' that orchestrate meta-level reasoning operations characterized by tokens like ''''. Empirical evaluations with leading MoE-based LRMs (DeepSeek-R1 and Qwen3-235B) on rigorous quantitative and scientific reasoning benchmarks demonstrate noticeable and consistent improvements in reasoning accuracy, cognitive efficiency, and cross-domain generalization. Crucially, our lightweight approach substantially outperforms prevalent reasoning-steering techniques, such as prompt design and decoding constraints, while preserving the model's general instruction-following skills. These results highlight reinforcing cognitive experts as a promising, practical, and interpretable direction to enhance cognitive efficiency within advanced reasoning models.
comment: Work in progress
Conversational Code Generation: a Case Study of Designing a Dialogue System for Generating Driving Scenarios for Testing Autonomous Vehicles
Cyber-physical systems like autonomous vehicles are tested in simulation before deployment, using domain-specific programs for scenario specification. To aid the testing of autonomous vehicles in simulation, we design a natural language interface, using an instruction-following large language model, to assist a non-coding domain expert in synthesising the desired scenarios and vehicle behaviours. We show that using it to convert utterances to the symbolic program is feasible, despite the very small training dataset. Human experiments show that dialogue is critical to successful simulation generation, leading to a 4.5 times higher success rate than a generation without engaging in extended conversation.
comment: 12 pages, 5 figures, 2 tables
EPIC: Efficient Position-Independent Caching for Serving Large Language Models
Large Language Models (LLMs) show great capabilities in a wide range of applications, but serving them efficiently becomes increasingly challenging as requests (prompts) become more complex. Context caching improves serving performance by reusing Key-Value (KV) vectors, the intermediate representations of tokens that are repeated across requests. However, existing context caching requires exact prefix matches across requests, limiting reuse cases in settings such as few-shot learning and retrieval-augmented generation, where immutable content (e.g., documents) remains unchanged across requests but is preceded by varying prefixes. Position-Independent Caching (PIC) addresses this issue by enabling modular reuse of the KV vectors regardless of prefixes. We formalize PIC and advance prior work by introducing EPIC, a serving system incorporating our new LegoLink algorithm, which mitigates the inappropriate "attention sink" effect at every document beginning, to maintain accuracy with minimal computation. Experiments show that EPIC achieves up to 8x improvements in Time-To-First-Token (TTFT) and 7x throughput gains over existing systems, with negligible or no accuracy loss.
"Oh LLM, I'm Asking Thee, Please Give Me a Decision Tree": Zero-Shot Decision Tree Induction and Embedding with Large Language Models KDD 2025
Large language models (LLMs) provide powerful means to leverage prior knowledge for predictive modeling when data is limited. In this work, we demonstrate how LLMs can use their compressed world knowledge to generate intrinsically interpretable machine learning models, i.e., decision trees, without any training data. We find that these zero-shot decision trees can even surpass data-driven trees on some small-sized tabular datasets and that embeddings derived from these trees perform better than data-driven tree-based embeddings on average. Our decision tree induction and embedding approaches can therefore serve as new knowledge-driven baselines for data-driven machine learning methods in the low-data regime. Furthermore, they offer ways to harness the rich world knowledge within LLMs for tabular machine learning tasks. Our code and results are available at https://github.com/ml-lab-htw/llm-trees.
comment: KDD 2025 Research Track
Pandora's Box or Aladdin's Lamp: A Comprehensive Analysis Revealing the Role of RAG Noise in Large Language Models
Retrieval-Augmented Generation (RAG) has emerged as a crucial method for addressing hallucinations in large language models (LLMs). While recent research has extended RAG models to complex noisy scenarios, these explorations often confine themselves to limited noise types and presuppose that noise is inherently detrimental to LLMs, potentially deviating from real-world retrieval environments and restricting practical applicability. In this paper, we define seven distinct noise types from a linguistic perspective and establish a Noise RAG Benchmark (NoiserBench), a comprehensive evaluation framework encompassing multiple datasets and reasoning tasks. Through empirical evaluation of eight representative LLMs with diverse architectures and scales, we reveal that these noises can be further categorized into two practical groups: noise that is beneficial to LLMs (aka beneficial noise) and noise that is harmful to LLMs (aka harmful noise). While harmful noise generally impairs performance, beneficial noise may enhance several aspects of model capabilities and overall performance. Our analysis offers insights for developing more robust, adaptable RAG solutions and mitigating hallucinations across diverse retrieval scenarios.
The Hidden Dimensions of LLM Alignment: A Multi-Dimensional Analysis of Orthogonal Safety Directions ICML 2025
Large Language Models' safety-aligned behaviors, such as refusing harmful queries, can be represented by linear directions in activation space. Previous research modeled safety behavior with a single direction, limiting mechanistic understanding to an isolated safety feature. In this work, we discover that safety-aligned behavior is jointly controlled by multi-dimensional directions. Namely, we study the vector space of representation shifts during safety fine-tuning on Llama 3 8B for refusing jailbreaks. By studying orthogonal directions in the space, we first find that a dominant direction governs the model's refusal behavior, while multiple smaller directions represent distinct and interpretable features like hypothetical narrative and role-playing. We then measure how different directions promote or suppress the dominant direction, showing the important role of secondary directions in shaping the model's refusal representation. Finally, we demonstrate that removing certain trigger tokens in harmful queries can mitigate these directions to bypass the learned safety capability, providing new insights on understanding safety alignment vulnerability from a multi-dimensional perspective. Code and artifacts are available at https://github.com/BMPixel/safety-residual-space.
comment: Code and artifacts: https://github.com/BMPixel/safety-residual-space Accepted by ICML 2025
Human-Computer Interaction
Improving Research Idea Generation Through Data: An Empirical Investigation in Social Science
Recent advancements in large language models (LLMs) have shown promise in generating novel research ideas. However, these ideas often face challenges related to feasibility and expected effectiveness. This paper explores how augmenting LLMs with relevant data during the idea generation process can enhance the quality of generated ideas. We introduce two ways of incorporating data: (1) providing metadata during the idea generation stage to guide LLMs toward feasible directions, and (2) adding automatic validation during the idea selection stage to assess the empirical plausibility of hypotheses within ideas. We conduct experiments in the social science domain, specifically with climate negotiation topics, and find that metadata improves the feasibility of generated ideas by 20%, while automatic validation improves the overall quality of selected ideas by 7%. A human study shows that LLM-generated ideas, along with their related data and validation processes, inspire researchers to propose research ideas with higher quality. Our work highlights the potential of data-driven research idea generation, and underscores the practical utility of LLM-assisted ideation in real-world academic settings.
Dynamic Vision from EEG Brain Recordings: How much does EEG know?
Reconstructing and understanding dynamic visual information (video) from brain EEG recordings is challenging due to the non-stationary nature of EEG signals, their low signal-to-noise ratio (SNR), and the limited availability of EEG-Video stimulus datasets. Most recent studies have focused on reconstructing static images from EEG recordings. In this work, we propose a framework to reconstruct dynamic visual stimuli from EEG data and conduct an in-depth study of the information encoded in EEG signals. Our approach first trains a feature extraction network using a triplet-based contrastive learning strategy within an EEG-video generation framework. The extracted EEG features are then used for video synthesis with a modified StyleGAN-ADA, which incorporates temporal information as conditioning. Additionally, we analyze how different brain regions contribute to processing dynamic visual stimuli. Through several empirical studies, we evaluate the effectiveness of our framework and investigate how much dynamic visual information can be inferred from EEG signals. The inferences we derive through our extensive studies would be of immense value to future research on extracting visual dynamics from EEG.
Evaluating LLM Adaptation to Sociodemographic Factors: User Profile vs. Dialogue History
Effective engagement by large language models (LLMs) requires adapting responses to users' sociodemographic characteristics, such as age, occupation, and education level. While many real-world applications leverage dialogue history for contextualization, existing evaluations of LLMs' behavioral adaptation often focus on single-turn prompts. In this paper, we propose a framework to evaluate LLM adaptation when attributes are introduced either (1) explicitly via user profiles in the prompt or (2) implicitly through multi-turn dialogue history. We assess the consistency of model behavior across these modalities. Using a multi-agent pipeline, we construct a synthetic dataset pairing dialogue histories with distinct user profiles and employ questions from the Value Survey Module (VSM 2013) (Hofstede and Hofstede, 2016) to probe value expression. Our findings indicate that most models adjust their expressed values in response to demographic changes, particularly in age and education level, but consistency varies. Models with stronger reasoning capabilities demonstrate greater alignment, indicating the importance of reasoning in robust sociodemographic adaptation.
Learning Annotation Consensus for Continuous Emotion Recognition
In affective computing, datasets often contain multiple annotations from different annotators, which may lack full agreement. Typically, these annotations are merged into a single gold standard label, potentially losing valuable inter-rater variability. We propose a multi-annotator training approach for continuous emotion recognition (CER) that seeks a consensus across all annotators rather than relying on a single reference label. Our method employs a consensus network to aggregate annotations into a unified representation, guiding the main arousal-valence predictor to better reflect collective inputs. Tested on the RECOLA and COGNIMUSE datasets, our approach outperforms traditional methods that unify annotations into a single label. This underscores the benefits of fully leveraging multi-annotator data in emotion recognition and highlights its applicability across various fields where annotations are abundant yet inconsistent.
THE WASTIVE: An Interactive Ebb and Flow of Digital Fabrication Waste
What if digital fabrication waste could observe the world? What would they see? What would they say? "THE WASTIVE" reimagines digital fabrication waste as sentient observers, giving them a poetic voice through interactive art. As viewers approach, the installation awakens, mimicking the rhythmic ebb and flow of ocean waves - a silent dialogue where discarded materials "observe" and respond to human presence. These interactions echo the gentle murmurs of the sea, transforming technological residue into a reflective, sensory experience. Through this artistic contemplation, "THE WASTIVE" invites audiences to reconsider their creative processes and consumption habits. It serves as a poetic call for more mindful, sustainable practices, provoking deeper reflections on our interconnectedness with the environment.
comment: video demo: https://youtu.be/Yh3dmKYNP-8
Creativity in LLM-based Multi-Agent Systems: A Survey
Large language model (LLM)-driven multi-agent systems (MAS) are transforming how humans and AIs collaboratively generate ideas and artifacts. While existing surveys provide comprehensive overviews of MAS infrastructures, they largely overlook the dimension of \emph{creativity}, including how novel outputs are generated and evaluated, how creativity informs agent personas, and how creative workflows are coordinated. This is the first survey dedicated to creativity in MAS. We focus on text and image generation tasks, and present: (1) a taxonomy of agent proactivity and persona design; (2) an overview of generation techniques, including divergent exploration, iterative refinement, and collaborative synthesis, as well as relevant datasets and evaluation metrics; and (3) a discussion of key challenges, such as inconsistent evaluation standards, insufficient bias mitigation, coordination conflicts, and the lack of unified benchmarks. This survey offers a structured framework and roadmap for advancing the development, evaluation, and standardization of creative MAS.
comment: 23 pages
Racism, Resistance, and Reddit: How Popular Culture Sparks Online Reckonings
This study examines how Reddit users engaged with the racial narratives of Lovecraft Country and Watchmen, two television series that reimagine historical racial trauma. Drawing on narrative persuasion and multistep flow theory, we analyze 3,879 Reddit comments using topic modeling and critical discourse analysis. We identify three dynamic social roles advocates, adversaries, and adaptives and explore how users move between them in response to racial discourse. Findings reveal how Reddits pseudonymous affordances shape role fluidity, opinion leadership, and moral engagement. While adversaries minimized or rejected racism as exaggerated, advocates shared standpoint experiences and historical resources to challenge these claims. Adaptive users shifted perspectives over time, demonstrating how online publics can foster critical racial learning. This research highlights how popular culture and participatory platforms intersect in shaping collective meaning making around race and historical memory.
Label Leakage in Federated Inertial-based Human Activity Recognition
While prior work has shown that Federated Learning updates can leak sensitive information, label reconstruction attacks, which aim to recover input labels from shared gradients, have not yet been examined in the context of Human Activity Recognition (HAR). Given the sensitive nature of activity labels, this study evaluates the effectiveness of state-of-the-art gradient-based label leakage attacks on HAR benchmark datasets. Our findings show that the number of activity classes, sampling strategy, and class imbalance are critical factors influencing the extent of label leakage, with reconstruction accuracies reaching up to 90% on two benchmark datasets, even for trained models. Moreover, we find that Local Differential Privacy techniques such as gradient noise and clipping offer only limited protection, as certain attacks still reliably infer both majority and minority class labels. We conclude by offering practical recommendations for the privacy-aware deployment of federated HAR systems and identify open challenges for future research. Code to reproduce our experiments is publicly available via github.com/mariusbock/leakage_har.
comment: 7 pages, 4 figures
Humble AI in the real-world: the case of algorithmic hiring
Humble AI (Knowles et al., 2023) argues for cautiousness in AI development and deployments through scepticism (accounting for limitations of statistical learning), curiosity (accounting for unexpected outcomes), and commitment (accounting for multifaceted values beyond performance). We present a real-world case study for humble AI in the domain of algorithmic hiring. Specifically, we evaluate virtual screening algorithms in a widely used hiring platform that matches candidates to job openings. There are several challenges in misrecognition and stereotyping in such contexts that are difficult to assess through standard fairness and trust frameworks; e.g., someone with a non-traditional background is less likely to rank highly. We demonstrate technical feasibility of how humble AI principles can be translated to practice through uncertainty quantification of ranks, entropy estimates, and a user experience that highlights algorithmic unknowns. We describe preliminary discussions with focus groups made up of recruiters. Future user studies seek to evaluate whether the higher cognitive load of a humble AI system fosters a climate of trust in its outcomes.
comment: CHIWORK '25, Symposium on Human-Computer Interaction for Work, June 23--25, 2025, Amsterdam, Netherlands Late Breaking Work
Imago Obscura: An Image Privacy AI Co-pilot to Enable Identification and Mitigation of Risks
Users often struggle to navigate the privacy / publicity boundary in sharing images online: they may lack awareness of image privacy risks and/or the ability to apply effective mitigation strategies. To address this challenge, we introduce and evaluate Imago Obscura, an AI-powered, image-editing copilot that enables users to identify and mitigate privacy risks with images they intend to share. Driven by design requirements from a formative user study with 7 image-editing experts, Imago Obscura enables users to articulate their image-sharing intent and privacy concerns. The system uses these inputs to surface contextually pertinent privacy risks, and then recommends and facilitates application of a suite of obfuscation techniques found to be effective in prior literature -- e.g., inpainting, blurring, and generative content replacement. We evaluated Imago Obscura with 15 end-users in a lab study and found that it greatly improved users' awareness of image privacy risks and their ability to address those risks, allowing them to make more informed sharing decisions.
comment: 26 pages including appendix, 14 images, 3 tables
DeepConvContext: A Multi-Scale Approach to Timeseries Classification in Human Activity Recognition
Despite recognized limitations in modeling long-range temporal dependencies, Human Activity Recognition (HAR) has traditionally relied on a sliding window approach to segment labeled datasets. Deep learning models like the DeepConvLSTM typically classify each window independently, thereby restricting learnable temporal context to within-window information. To address this constraint, we propose DeepConvContext, a multi-scale time series classification framework for HAR. Drawing inspiration from the vision-based Temporal Action Localization community, DeepConvContext models both intra- and inter-window temporal patterns by processing sequences of time-ordered windows. Unlike recent HAR models that incorporate attention mechanisms, DeepConvContext relies solely on LSTMs -- with ablation studies demonstrating the superior performance of LSTMs over attention-based variants for modeling inertial sensor data. Across six widely-used HAR benchmarks, DeepConvContext achieves an average 10% improvement in F1-score over the classic DeepConvLSTM, with gains of up to 21%. Code to reproduce our experiments is publicly available via github.com/mariusbock/context_har.
comment: 7 pages, 3 figures
Describe Me Something You Do Not Remember - Challenges and Risks of Exposure Design Using Generative Artificial Intelligence for Therapy of Complex Post-traumatic Disorder
Post-traumatic stress disorder (PTSD) is associated with sudden, uncontrollable, and intense flashbacks of traumatic memories. Trauma exposure psychotherapy has proven effective in reducing the severity of trauma-related symptoms. It involves controlled recall of traumatic memories to train coping mechanisms for flashbacks and enable autobiographical integration of distressing experiences. In particular, exposure to visualizations of these memories supports successful recall. Although this approach is effective for various trauma types, it remains available for only a few. This is due to the lack of cost-efficient solutions for creating individualized exposure visualizations. This issue is particularly relevant for the treatment of Complex PTSD (CPTSD), where traumatic memories are highly individual and generic visualizations do not meet therapeutic needs. Generative Artificial Intelligence (GAI) offers a flexible and cost-effective alternative. GAI enables the creation of individualized exposure visualizations during therapy and, for the first time, allows patients to actively participate in the visualization process. While GAI opens new therapeutic perspectives and may improve access to trauma therapy, especially for CPTSD, it also introduces significant challenges and risks. The extreme uncertainty and lack of control that define both CPTSD and GAI raise concerns about feasibility and safety. To support safe and effective three-way communication, it is essential to understand the roles of patient, system, and therapist in exposure visualization and how each can contribute to safety. This paper outlines perspectives, challenges, and risks associated with the use of GAI in trauma therapy, with a focus on CPTSD.
comment: Extended abstract for the Workshop "Generative AI and Accessibility Workshop: Surfacing Opportunities and Risks" at the CHI conference on Human Factors in Computing Systems 2025 (CHI'25) - Accepted on 4 April 2025
Enhancing Wearable Tap Water Audio Detection through Subclass Annotation in the HD-Epic Dataset ISWC 2025
Wearable human activity recognition has been shown to benefit from the inclusion of acoustic data, as the sounds around a person often contain valuable context. However, due to privacy concerns, it is usually not ethically feasible to record and save microphone data from the device, since the audio could, for instance, also contain private conversations. Rather, the data should be processed locally, which in turn requires processing power and consumes energy on the wearable device. One special use case of contextual information that can be utilized to augment special tasks in human activity recognition is water flow detection, which can, e.g., be used to aid wearable hand washing detection. We created a new label called tap water for the recently released HD-Epic data set, creating 717 hand-labeled annotations of tap water flow, based on existing annotations of the water class. We analyzed the relation of tap water and water in the dataset and additionally trained and evaluated two lightweight classifiers to evaluate the newly added label class, showing that the new class can be learned more easily.
comment: Submitted to ISWC 2025
What Shapes Writers' Decisions to Disclose AI Use?
Have you ever read a blog or social media post and suspected that it was written--at least in part--by artificial intelligence (AI)? While transparently acknowledging contributors to writing is generally valued, why some writers choose to disclose or withhold AI involvement remains unclear. In this work, we ask what factors shape writers' decisions to disclose their AI use as a starting point to effectively advocate for transparency. To shed light on this question, we synthesize study findings and theoretical frameworks in human-AI interaction and behavioral science. Concretely, we identify and curate a list of factors that could affect writers' decisions regarding disclosure for human-AI co-created content.
comment: Navigating Generative AI Disclosure, Ownership, and Accountability in Co-Creative Domains Workshop at CHIWORK 2025
Automating eHMI Action Design with LLMs for Automated Vehicle Communication
The absence of explicit communication channels between automated vehicles (AVs) and other road users requires the use of external Human-Machine Interfaces (eHMIs) to convey messages effectively in uncertain scenarios. Currently, most eHMI studies employ predefined text messages and manually designed actions to perform these messages, which limits the real-world deployment of eHMIs, where adaptability in dynamic scenarios is essential. Given the generalizability and versatility of large language models (LLMs), they could potentially serve as automated action designers for the message-action design task. To validate this idea, we make three contributions: (1) We propose a pipeline that integrates LLMs and 3D renderers, using LLMs as action designers to generate executable actions for controlling eHMIs and rendering action clips. (2) We collect a user-rated Action-Design Scoring dataset comprising a total of 320 action sequences for eight intended messages and four representative eHMI modalities. The dataset validates that LLMs can translate intended messages into actions close to a human level, particularly for reasoning-enabled LLMs. (3) We introduce two automated raters, Action Reference Score (ARS) and Vision-Language Models (VLMs), to benchmark 18 LLMs, finding that the VLM aligns with human preferences yet varies across eHMI modalities.
System-driven Cloud Architecture Design Support with Structured State Management and Guided Decision Assistance
Cloud architecture design is a complex process requiring both technical expertise and architectural knowledge to develop solutions from frequently ambiguous requirements. We present CloudArchitectBuddy, a system-driven cloud architecture design support application with two key mechanisms: (1) structured state management that enhances design understanding through explicit representation of requirements and architectural decisions, and (2) guided decision assistance that facilitates design progress through proactive verification and requirement refinement. Our study with 16 industry practitioners showed that while our approach achieved comparable design quality to a chat interface, participants rated our system higher for usability and appreciated its ability to help understand architectural relationships and identify missing requirements. However, participants also expressed a need for user-initiated interactions where they could freely provide design instructions and engage in detailed discussions with LLMs. These results suggest that integrating a chat interface into our structured and guided workflow approach would create a more practical solution, balancing systematic design support with conversational flexibility for comprehensive cloud architecture development.
Can we Debias Social Stereotypes in AI-Generated Images? Examining Text-to-Image Outputs and User Perceptions
Recent advances in generative AI have enabled visual content creation through text-to-image (T2I) generation. However, despite their creative potential, T2I models often replicate and amplify societal stereotypes -- particularly those related to gender, race, and culture -- raising important ethical concerns. This paper proposes a theory-driven bias detection rubric and a Social Stereotype Index (SSI) to systematically evaluate social biases in T2I outputs. We audited three major T2I model outputs -- DALL-E-3, Midjourney-6.1, and Stability AI Core -- using 100 queries across three categories -- geocultural, occupational, and adjectival. Our analysis reveals that initial outputs are prone to include stereotypical visual cues, including gendered professions, cultural markers, and western beauty norms. To address this, we adopted our rubric to conduct targeted prompt refinement using LLMs, which significantly reduced bias -- SSI dropped by 61% for geocultural, 69% for occupational, and 51% for adjectival queries. We complemented our quantitative analysis through a user study examining perceptions, awareness, and preferences around AI-generated biased imagery. Our findings reveal a key tension -- although prompt refinement can mitigate stereotypes, it can limit contextual alignment. Interestingly, users often perceived stereotypical images to be more aligned with their expectations. We discuss the need to balance ethical debiasing with contextual relevance and call for T2I systems that support global diversity and inclusivity while not compromising the reflection of real-world social complexity.
SELF-PERCEPT: Introspection Improves Large Language Models' Detection of Multi-Person Mental Manipulation in Conversations ACL 2025
Mental manipulation is a subtle yet pervasive form of abuse in interpersonal communication, making its detection critical for safeguarding potential victims. However, due to manipulation's nuanced and context-specific nature, identifying manipulative language in complex, multi-turn, and multi-person conversations remains a significant challenge for large language models (LLMs). To address this gap, we introduce the MultiManip dataset, comprising 220 multi-turn, multi-person dialogues balanced between manipulative and non-manipulative interactions, all drawn from reality shows that mimic real-world scenarios. For manipulative interactions, it includes 11 distinct manipulations depicting real-life scenarios. We conduct extensive evaluations of state-of-the-art LLMs, such as GPT-4o and Llama-3.1-8B, employing various prompting strategies. Despite their capabilities, these models often struggle to detect manipulation effectively. To overcome this limitation, we propose SELF-PERCEPT, a novel, two-stage prompting framework inspired by Self-Perception Theory, demonstrating strong performance in detecting multi-person, multi-turn mental manipulation. Our code and data are publicly available at https://github.com/danushkhanna/self-percept .
comment: Accepted to ACL 2025 (Main)
Supervised Contrastive Learning for Ordinal Engagement Measurement
Student engagement plays a crucial role in the successful delivery of educational programs. Automated engagement measurement helps instructors monitor student participation, identify disengagement, and adapt their teaching strategies to enhance learning outcomes effectively. This paper identifies two key challenges in this problem: class imbalance and incorporating order into engagement levels rather than treating it as mere categories. Then, a novel approach to video-based student engagement measurement in virtual learning environments is proposed that utilizes supervised contrastive learning for ordinal classification of engagement. Various affective and behavioral features are extracted from video samples and utilized to train ordinal classifiers within a supervised contrastive learning framework (with a sequential classifier as the encoder). A key step involves the application of diverse time-series data augmentation techniques to these feature vectors, enhancing model training. The effectiveness of the proposed method was evaluated using a publicly available dataset for engagement measurement, DAiSEE, containing videos of students who participated in virtual learning programs. The results demonstrate the robust ability of the proposed method for the classification of the engagement level. This approach promises a significant contribution to understanding and enhancing student engagement in virtual learning environments.
comment: 9 pages, 1 figure, 5 tables
How Do Experts Make Sense of Integrated Process Models?
A range of integrated modeling approaches have been developed to enable a holistic representation of business process logic together with all relevant business rules. These approaches address inherent problems with separate documentation of business process models and business rules. In this study, we explore how expert process workers make sense of the information provided through such integrated modeling approaches. To do so, we complement verbal protocol analysis with eye-tracking metrics to reveal nuanced user behaviours involved in the main phases of sensemaking, namely information foraging and information processing. By studying expert process workers engaged in tasks based on integrated modeling of business processes and rules, we provide insights that pave the way for a better understanding of sensemaking practices and improved development of business process and business rule integration approaches. Our research underscores the importance of offering personalized support mechanisms that increase the efficacy and efficiency of sensemaking practices for process knowledge workers.
Institutionalizing Folk Theories of Algorithms: How Multi-Channel Networks (MCNs) Govern Algorithmic Labor in Chinese Live-Streaming Industry
As algorithmic systems increasingly structure platform labor, workers often rely on informal "folk theories", experience-based beliefs about how algorithms work, to navigate opaque and unstable algorithmic environments. Prior research has largely treated these theories as bottom-up, peer-driven strategies for coping with algorithmic opacity and uncertainty. In this study, we shift analytical attention to intermediary organizations and examine how folk theories of algorithms can be institutionally constructed and operationalized by those organizations as tools of labor management. Drawing on nine months of ethnographic fieldwork and 37 interviews with live-streamers and staff at Multi-Channel Networks (MCNs) in China, we show that MCNs develop and circulate dual algorithmic theories: internally, they acknowledge the volatility of platform systems and adopt probabilistic strategies to manage risk; externally, they promote simplified, prescriptive theories portraying the algorithm as transparent, fair, and responsive to individual effort. They have further operationalize those folk theories for labor management, encouraging streamers to self-discipline and invest in equipment, training, and routines, while absolving MCNs of accountability. We contribute to CSCW and platform labor literature by demonstrating how informal algorithmic knowledge, once institutionalized, can become infrastructures of soft control -- shaping not only how workers interpret platform algorithms, but also how their labor is structured, moralized and governed.
comment: 28 pages, 2 figures
Experimental Evidence That AI-Managed Workers Tolerate Lower Pay Without Demotivation
Experimental evidence on worker responses to AI management remains mixed, partly due to limitations in experimental fidelity. We address these limitations with a customized workplace in the Minecraft platform, enabling high-resolution behavioral tracking of autonomous task execution, and ensuring that participants approach the task with well-formed expectations about their own competence. Workers (N = 382) completed repeated production tasks under either human, AI, or hybrid management. An AI manager trained on human-defined evaluation principles systematically assigned lower performance ratings and reduced wages by 40\%, without adverse effects on worker motivation and sense of fairness. These effects were driven by a muted emotional response to AI evaluation, compared to evaluation by a human. The very features that make AI appear impartial may also facilitate silent exploitation, by suppressing the social reactions that normally constrain extractive practices in human-managed work.
OmniResponse: Online Multimodal Conversational Response Generation in Dyadic Interactions
In this paper, we introduce Online Multimodal Conversational Response Generation (OMCRG), a novel task that aims to online generate synchronized verbal and non-verbal listener feedback, conditioned on the speaker's multimodal input. OMCRG reflects natural dyadic interactions and poses new challenges in achieving synchronization between the generated audio and facial responses of the listener. To address these challenges, we innovatively introduce text as an intermediate modality to bridge the audio and facial responses. We hence propose OmniResponse, a Multimodal Large Language Model (MLLM) that autoregressively generates high-quality multi-modal listener responses. OmniResponse leverages a pretrained LLM enhanced with two novel components: Chrono-Text, which temporally anchors generated text tokens, and TempoVoice, a controllable online TTS module that produces speech synchronized with facial reactions. To support further OMCRG research, we present ResponseNet, a new dataset comprising 696 high-quality dyadic interactions featuring synchronized split-screen videos, multichannel audio, transcripts, and facial behavior annotations. Comprehensive evaluations conducted on ResponseNet demonstrate that OmniResponse significantly outperforms baseline models in terms of semantic speech content, audio-visual synchronization, and generation quality.
comment: 23 pages, 9 figures
Data and Technology for Equitable Public Administration: Understanding City Government Employees' Challenges and Needs SC
City governments in the United States are increasingly pressured to adopt emerging technologies. Yet, these systems often risk biased and disparate outcomes. Scholars studying public sector technology design have converged on the need to ground these systems in the goals and organizational contexts of employees using them. We expand our understanding of employees' contexts by focusing on the equity practices of city government employees to surface important equity considerations around public sector data and technology use. Through semi-structured interviews with thirty-six employees from ten departments of a U.S. city government, our findings reveal challenges employees face when operationalizing equity, perspectives on data needs for advancing equity goals, and the design space for acceptable government technology. We discuss what it looks like to foreground equity in data use and technology design, and considerations for how to support city government employees in operationalizing equity with and without official equity offices.
comment: Accepted to ACM CSCW 2025
Public Discourse Sandbox: Facilitating Human and AI Digital Communication Research
Social media serves as a primary communication and information dissemination platform for major global events, entertainment, and niche or topically focused community discussions. Therefore, it represents a valuable resource for researchers who aim to understand numerous questions. However, obtaining data can be difficult, expensive, and often unreliable due to the presence of bots, fake accounts, and manipulated content. Additionally, there are ethical concerns if researchers decide to conduct an online experiment without explicitly notifying social media users about their intent. There is a need for more controlled and scalable mechanisms to evaluate the impacts of digital discussion interventions on audiences. We introduce the Public Discourse Sandbox (PDS), which serves as a digital discourse research platform for human-AI as well as AI-AI discourse research, testing, and training. PDS provides a safe and secure space for research experiments that are not viable on public, commercial social media platforms. Its main purpose is to enable the understanding of AI behaviors and the impacts of customized AI participants via techniques such as prompt engineering, retrieval-augmented generation (RAG), and fine-tuning. We provide a hosted live version of the sandbox to support researchers as well as the open-sourced code on GitHub for community collaboration and contribution.
AITEE -- Agentic Tutor for Electrical Engineering
Intelligent tutoring systems combined with large language models offer a promising approach to address students' diverse needs and promote self-efficacious learning. While large language models possess good foundational knowledge of electrical engineering basics, they remain insufficiently capable of addressing specific questions about electrical circuits. In this paper, we present AITEE, an agent-based tutoring system for electrical engineering designed to accompany students throughout their learning process, offer individualized support, and promote self-directed learning. AITEE supports both hand-drawn and digital circuits through an adapted circuit reconstruction process, enabling natural interaction with students. Our novel graph-based similarity measure identifies relevant context from lecture materials through a retrieval augmented generation approach, while parallel Spice simulation further enhances accuracy in applying solution methodologies. The system implements a Socratic dialogue to foster learner autonomy through guided questioning. Experimental evaluations demonstrate that AITEE significantly outperforms baseline approaches in domain-specific knowledge application, with even medium-sized LLM models showing acceptable performance. Our results highlight the potential of agentic tutors to deliver scalable, personalized, and effective learning environments for electrical engineering education.
comment: 12 pages, 11 figures, 6 tables
Enhancing Selection of Climate Tech Startups with AI -- A Case Study on Integrating Human and AI Evaluations in the ClimaTech Great Global Innovation Challenge
This case study examines the ClimaTech Great Global Innovation Challenge's approach to selecting climate tech startups by integrating human and AI evaluations. The competition aimed to identify top startups and enhance the accuracy and efficiency of the selection process through a hybrid model. Research shows data-driven approaches help VC firms reduce bias and improve decision-making. Machine learning models have outperformed human investors in deal screening, helping identify high-potential startups. Incorporating AI aimed to ensure more equitable and objective evaluations. The methodology included three phases: initial AI review, semi-finals judged by humans, and finals using a hybrid weighting. In phase one, 57 applications were scored by an AI tool built with StackAI and OpenAI's GPT-4o, and the top 36 advanced. In the semi-finals, human judges, unaware of AI scores, evaluated startups on team quality, market potential, and technological innovation. Each score - human or AI - was weighted equally, resulting in 75 percent human and 25 percent AI influence. In the finals, with five human judges, weighting shifted to 83.3 percent human and 16.7 percent AI. There was a moderate positive correlation between AI and human scores - Spearman's = 0.47 - indicating general alignment with key differences. Notably, the final four startups, selected mainly by humans, were among those rated highest by the AI. This highlights the complementary nature of AI and human judgment. The study shows that hybrid models can streamline and improve startup assessments. The ClimaTech approach offers a strong framework for future competitions by combining human expertise with AI capabilities.
It's Not Just Labeling -- A Research on LLM Generated Feedback Interpretability and Image Labeling Sketch Features
The quality of training data is critical to the performance of machine learning applications in domains like transportation, healthcare, and robotics. Accurate image labeling, however, often relies on time-consuming, expert-driven methods with limited feedback. This research introduces a sketch-based annotation approach supported by large language models (LLMs) to reduce technical barriers and enhance accessibility. Using a synthetic dataset, we examine how sketch recognition features relate to LLM feedback metrics, aiming to improve the reliability and interpretability of LLM-assisted labeling. We also explore how prompting strategies and sketch variations influence feedback quality. Our main contribution is a sketch-based virtual assistant that simplifies annotation for non-experts and advances LLM-driven labeling tools in terms of scalability, accessibility, and explainability.
TransBench: Breaking Barriers for Transferable Graphical User Interface Agents in Dynamic Digital Environments ACL 2025
Graphical User Interface (GUI) agents, which autonomously operate on digital interfaces through natural language instructions, hold transformative potential for accessibility, automation, and user experience. A critical aspect of their functionality is grounding - the ability to map linguistic intents to visual and structural interface elements. However, existing GUI agents often struggle to adapt to the dynamic and interconnected nature of real-world digital environments, where tasks frequently span multiple platforms and applications while also being impacted by version updates. To address this, we introduce TransBench, the first benchmark designed to systematically evaluate and enhance the transferability of GUI agents across three key dimensions: cross-version transferability (adapting to version updates), cross-platform transferability (generalizing across platforms like iOS, Android, and Web), and cross-application transferability (handling tasks spanning functionally distinct apps). TransBench includes 15 app categories with diverse functionalities, capturing essential pages across versions and platforms to enable robust evaluation. Our experiments demonstrate significant improvements in grounding accuracy, showcasing the practical utility of GUI agents in dynamic, real-world environments. Our code and data will be publicly available at GitHub.
comment: Accepted by ACL 2025 Findings
Real-Time Stress Monitoring, Detection, and Management in College Students: A Wearable Technology and Machine-Learning Approach
College students are increasingly affected by stress, anxiety, and depression, yet face barriers to traditional mental health care. This study evaluated the efficacy of a mobile health (mHealth) intervention, Mental Health Evaluation and Lookout Program (mHELP), which integrates a smartwatch sensor and machine learning (ML) algorithms for real-time stress detection and self-management. In a 12-week randomized controlled trial (n = 117), participants were assigned to a treatment group using mHELP's full suite of interventions or a control group using the app solely for real-time stress logging and weekly psychological assessments. The primary outcome, "Moments of Stress" (MS), was assessed via physiological and self-reported indicators and analyzed using Generalized Linear Mixed Models (GLMM) approaches. Similarly, secondary outcomes of psychological assessments, including the Generalized Anxiety Disorder-7 (GAD-7) for anxiety, the Patient Health Questionnaire (PHQ-8) for depression, and the Perceived Stress Scale (PSS), were also analyzed via GLMM. The finding of the objective measure, MS, indicates a substantial decrease in MS among the treatment group compared to the control group, while no notable between-group differences were observed in subjective scores of anxiety (GAD-7), depression (PHQ-8), or stress (PSS). However, the treatment group exhibited a clinically meaningful decline in GAD-7 and PSS scores. These findings underscore the potential of wearable-enabled mHealth tools to reduce acute stress in college populations and highlight the need for extended interventions and tailored features to address chronic symptoms like depression.
comment: 30 pages, 5 figures
A-MEM: Agentic Memory for LLM Agents
While large language model (LLM) agents can effectively use external tools for complex real-world tasks, they require memory systems to leverage historical experiences. Current memory systems enable basic storage and retrieval but lack sophisticated memory organization, despite recent attempts to incorporate graph databases. Moreover, these systems' fixed operations and structures limit their adaptability across diverse tasks. To address this limitation, this paper proposes a novel agentic memory system for LLM agents that can dynamically organize memories in an agentic way. Following the basic principles of the Zettelkasten method, we designed our memory system to create interconnected knowledge networks through dynamic indexing and linking. When a new memory is added, we generate a comprehensive note containing multiple structured attributes, including contextual descriptions, keywords, and tags. The system then analyzes historical memories to identify relevant connections, establishing links where meaningful similarities exist. Additionally, this process enables memory evolution - as new memories are integrated, they can trigger updates to the contextual representations and attributes of existing historical memories, allowing the memory network to continuously refine its understanding. Our approach combines the structured organization principles of Zettelkasten with the flexibility of agent-driven decision making, allowing for more adaptive and context-aware memory management. Empirical experiments on six foundation models show superior improvement against existing SOTA baselines. The source code for evaluating performance is available at https://github.com/WujiangXu/AgenticMemory, while the source code of agentic memory system is available at https://github.com/agiresearch/A-mem.
Sky-Drive: A Distributed Multi-Agent Simulation Platform for Human-AI Collaborative and Socially-Aware Future Transportation
Recent advances in autonomous system simulation platforms have significantly enhanced the safe and scalable testing of driving policies. However, existing simulators do not yet fully meet the needs of future transportation research-particularly in enabling effective human-AI collaboration and modeling socially-aware driving agents. This paper introduces Sky-Drive, a novel distributed multi-agent simulation platform that addresses these limitations through four key innovations: (a) a distributed architecture for synchronized simulation across multiple terminals; (b) a multi-modal human-in-the-loop framework integrating diverse sensors to collect rich behavioral data; (c) a human-AI collaboration mechanism supporting continuous and adaptive knowledge exchange; and (d) a digital twin framework for constructing high-fidelity virtual replicas of real-world transportation environments. Sky-Drive supports diverse applications such as autonomous vehicle-human road users interaction modeling, human-in-the-loop training, socially-aware reinforcement learning, personalized driving development, and customized scenario generation. Future extensions will incorporate foundation models for context-aware decision support and hardware-in-the-loop testing for real-world validation. By bridging scenario generation, data collection, algorithm training, and hardware integration, Sky-Drive has the potential to become a foundational platform for the next generation of human-centered and socially-aware autonomous transportation systems research. The demo video and code are available at:https://sky-lab-uw.github.io/Sky-Drive-website/
comment: 14 pages, 7 figures
Human-Centered Development of Guide Dog Robots: Quiet and Stable Locomotion Control
A quadruped robot is a promising system that can offer assistance comparable to that of dog guides due to its similar form factor. However, various challenges remain in making these robots a reliable option for blind and low-vision (BLV) individuals. Among these challenges, noise and jerky motion during walking are critical drawbacks of existing quadruped robots. While these issues have largely been overlooked in guide dog robot research, our interviews with guide dog handlers and trainers revealed that acoustic and physical disturbances can be particularly disruptive for BLV individuals, who rely heavily on environmental sounds for navigation. To address these issues, we developed a novel walking controller for slow stepping and smooth foot swing/contact while maintaining human walking speed, as well as robust and stable balance control. The controller integrates with a perception system to facilitate locomotion over non-flat terrains, such as stairs. Our controller was extensively tested on the Unitree Go1 robot and, when compared with other control methods, demonstrated significant noise reduction -- half of the default locomotion controller. In this study, we adopt a mixed-methods approach to evaluate its usability with BLV individuals. In our indoor walking experiments, participants compared our controller to the robot's default controller. Results demonstrated superior acceptance of our controller, highlighting its potential to improve the user experience of guide dog robots. Video demonstration (best viewed with audio) available at: https://youtu.be/8-pz_8Hqe6s.
Describe Now: User-Driven Audio Description for Blind and Low Vision Individuals
Audio descriptions (AD) make videos accessible for blind and low vision (BLV) users by describing visual elements that cannot be understood from the main audio track. AD created by professionals or novice describers is time-consuming and offers little customization or control to BLV viewers on description length and content and when they receive it. To address this gap, we explore user-driven AI-generated descriptions, enabling BLV viewers to control both the timing and level of detail of the descriptions they receive. In a study, 20 BLV participants activated audio descriptions for seven different video genres with two levels of detail: concise and detailed. Our findings reveal differences in the preferred frequency and level of detail of ADs for different videos, participants' sense of control with this style of AD delivery, and its limitations. We discuss the implications of these findings for the development of future AD tools for BLV users.
comment: 17 pages, 14 figures
Computer Vision and Pattern Recognition
HunyuanVideo-Avatar: High-Fidelity Audio-Driven Human Animation for Multiple Characters
Recent years have witnessed significant progress in audio-driven human animation. However, critical challenges remain in (i) generating highly dynamic videos while preserving character consistency, (ii) achieving precise emotion alignment between characters and audio, and (iii) enabling multi-character audio-driven animation. To address these challenges, we propose HunyuanVideo-Avatar, a multimodal diffusion transformer (MM-DiT)-based model capable of simultaneously generating dynamic, emotion-controllable, and multi-character dialogue videos. Concretely, HunyuanVideo-Avatar introduces three key innovations: (i) A character image injection module is designed to replace the conventional addition-based character conditioning scheme, eliminating the inherent condition mismatch between training and inference. This ensures the dynamic motion and strong character consistency; (ii) An Audio Emotion Module (AEM) is introduced to extract and transfer the emotional cues from an emotion reference image to the target generated video, enabling fine-grained and accurate emotion style control; (iii) A Face-Aware Audio Adapter (FAA) is proposed to isolate the audio-driven character with latent-level face mask, enabling independent audio injection via cross-attention for multi-character scenarios. These innovations empower HunyuanVideo-Avatar to surpass state-of-the-art methods on benchmark datasets and a newly proposed wild dataset, generating realistic avatars in dynamic, immersive scenarios.
Hard Negative Contrastive Learning for Fine-Grained Geometric Understanding in Large Multimodal Models
Benefiting from contrastively trained visual encoders on large-scale natural scene images, Large Multimodal Models (LMMs) have achieved remarkable performance across various visual perception tasks. However, the inherent limitations of contrastive learning upon summarized descriptions fundamentally restrict the capabilities of models in meticulous reasoning, particularly in crucial scenarios of geometric problem-solving. To enhance geometric understanding, we propose a novel hard negative contrastive learning framework for the vision encoder, which combines image-based contrastive learning using generation-based hard negatives created by perturbing diagram generation code, and text-based contrastive learning using rule-based negatives derived from modified geometric descriptions and retrieval-based negatives selected based on caption similarity. We train CLIP using our strong negative learning method, namely MMCLIP (Multimodal Math CLIP), and subsequently train an LMM for geometric problem-solving. Experiments show that our trained model, MMGeoLM, significantly outperforms other open-source models on three geometric reasoning benchmarks. Even with a size of 7B, it can rival powerful closed-source models like GPT-4o. We further study the impact of different negative sample construction methods and the number of negative samples on the geometric reasoning performance of LMM, yielding fruitful conclusions. The code and dataset are available at https://github.com/THU-KEG/MMGeoLM.
Improvement Strategies for Few-Shot Learning in OCT Image Classification of Rare Retinal Diseases
This paper focuses on using few-shot learning to improve the accuracy of classifying OCT diagnosis images with major and rare classes. We used the GAN-based augmentation strategy as a baseline and introduced several novel methods to further enhance our model. The proposed strategy contains U-GAT-IT for improving the generative part and uses the data balance technique to narrow down the skew of accuracy between all categories. The best model obtained was built with CBAM attention mechanism and fine-tuned InceptionV3, and achieved an overall accuracy of 97.85%, representing a significant improvement over the original baseline.
FUDOKI: Discrete Flow-based Unified Understanding and Generation via Kinetic-Optimal Velocities
The rapid progress of large language models (LLMs) has catalyzed the emergence of multimodal large language models (MLLMs) that unify visual understanding and image generation within a single framework. However, most existing MLLMs rely on autoregressive (AR) architectures, which impose inherent limitations on future development, such as the raster-scan order in image generation and restricted reasoning abilities in causal context modeling. In this work, we challenge the dominance of AR-based approaches by introducing FUDOKI, a unified multimodal model purely based on discrete flow matching, as an alternative to conventional AR paradigms. By leveraging metric-induced probability paths with kinetic optimal velocities, our framework goes beyond the previous masking-based corruption process, enabling iterative refinement with self-correction capability and richer bidirectional context integration during generation. To mitigate the high cost of training from scratch, we initialize FUDOKI from pre-trained AR-based MLLMs and adaptively transition to the discrete flow matching paradigm. Experimental results show that FUDOKI achieves performance comparable to state-of-the-art AR-based MLLMs across both visual understanding and image generation tasks, highlighting its potential as a foundation for next-generation unified multimodal models. Furthermore, we show that applying test-time scaling techniques to FUDOKI yields significant performance gains, further underscoring its promise for future enhancement through reinforcement learning.
comment: 37 pages, 12 figures
Agentic 3D Scene Generation with Spatially Contextualized VLMs
Despite recent advances in multimodal content generation enabled by vision-language models (VLMs), their ability to reason about and generate structured 3D scenes remains largely underexplored. This limitation constrains their utility in spatially grounded tasks such as embodied AI, immersive simulations, and interactive 3D applications. We introduce a new paradigm that enables VLMs to generate, understand, and edit complex 3D environments by injecting a continually evolving spatial context. Constructed from multimodal input, this context consists of three components: a scene portrait that provides a high-level semantic blueprint, a semantically labeled point cloud capturing object-level geometry, and a scene hypergraph that encodes rich spatial relationships, including unary, binary, and higher-order constraints. Together, these components provide the VLM with a structured, geometry-aware working memory that integrates its inherent multimodal reasoning capabilities with structured 3D understanding for effective spatial reasoning. Building on this foundation, we develop an agentic 3D scene generation pipeline in which the VLM iteratively reads from and updates the spatial context. The pipeline features high-quality asset generation with geometric restoration, environment setup with automatic verification, and ergonomic adjustment guided by the scene hypergraph. Experiments show that our framework can handle diverse and challenging inputs, achieving a level of generalization not observed in prior work. Further results demonstrate that injecting spatial context enables VLMs to perform downstream tasks such as interactive scene editing and path planning, suggesting strong potential for spatially intelligent systems in computer graphics, 3D vision, and embodied applications.
OB3D: A New Dataset for Benchmarking Omnidirectional 3D Reconstruction Using Blender
Recent advancements in radiance field rendering, exemplified by Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS), have significantly progressed 3D modeling and reconstruction. The use of multiple 360-degree omnidirectional images for these tasks is increasingly favored due to advantages in data acquisition and comprehensive scene capture. However, the inherent geometric distortions in common omnidirectional representations, such as equirectangular projection (particularly severe in polar regions and varying with latitude), pose substantial challenges to achieving high-fidelity 3D reconstructions. Current datasets, while valuable, often lack the specific focus, scene composition, and ground truth granularity required to systematically benchmark and drive progress in overcoming these omnidirectional-specific challenges. To address this critical gap, we introduce Omnidirectional Blender 3D (OB3D), a new synthetic dataset curated for advancing 3D reconstruction from multiple omnidirectional images. OB3D features diverse and complex 3D scenes generated from Blender 3D projects, with a deliberate emphasis on challenging scenarios. The dataset provides comprehensive ground truth, including omnidirectional RGB images, precise omnidirectional camera parameters, and pixel-aligned equirectangular maps for depth and normals, alongside evaluation metrics. By offering a controlled yet challenging environment, OB3Daims to facilitate the rigorous evaluation of existing methods and prompt the development of new techniques to enhance the accuracy and reliability of 3D reconstruction from omnidirectional images.
TUNA: Comprehensive Fine-grained Temporal Understanding Evaluation on Dense Dynamic Videos CVPR 2025
Videos are unique in their integration of temporal elements, including camera, scene, action, and attribute, along with their dynamic relationships over time. However, existing benchmarks for video understanding often treat these properties separately or narrowly focus on specific aspects, overlooking the holistic nature of video content. To address this, we introduce TUNA, a temporal-oriented benchmark for fine-grained understanding on dense dynamic videos, with two complementary tasks: captioning and QA. Our TUNA features diverse video scenarios and dynamics, assisted by interpretable and robust evaluation criteria. We evaluate several leading models on our benchmark, providing fine-grained performance assessments across various dimensions. This evaluation reveals key challenges in video temporal understanding, such as limited action description, inadequate multi-subject understanding, and insensitivity to camera motion, offering valuable insights for improving video understanding models. The data and code are available at https://friedrichor.github.io/projects/TUNA.
comment: Accepted to CVPR 2025 Main. Project page: https://friedrichor.github.io/projects/TUNA
Understanding Generalization in Diffusion Models via Probability Flow Distance
Diffusion models have emerged as a powerful class of generative models, capable of producing high-quality samples that generalize beyond the training data. However, evaluating this generalization remains challenging: theoretical metrics are often impractical for high-dimensional data, while no practical metrics rigorously measure generalization. In this work, we bridge this gap by introducing probability flow distance ($\texttt{PFD}$), a theoretically grounded and computationally efficient metric to measure distributional generalization. Specifically, $\texttt{PFD}$ quantifies the distance between distributions by comparing their noise-to-data mappings induced by the probability flow ODE. Moreover, by using $\texttt{PFD}$ under a teacher-student evaluation protocol, we empirically uncover several key generalization behaviors in diffusion models, including: (1) scaling behavior from memorization to generalization, (2) early learning and double descent training dynamics, and (3) bias-variance decomposition. Beyond these insights, our work lays a foundation for future empirical and theoretical studies on generalization in diffusion models.
comment: 41 pages, 14 figures
MEBench: A Novel Benchmark for Understanding Mutual Exclusivity Bias in Vision-Language Models
This paper introduces MEBench, a novel benchmark for evaluating mutual exclusivity (ME) bias, a cognitive phenomenon observed in children during word learning. Unlike traditional ME tasks, MEBench further incorporates spatial reasoning to create more challenging and realistic evaluation settings. We assess the performance of state-of-the-art vision-language models (VLMs) on this benchmark using novel evaluation metrics that capture key aspects of ME-based reasoning. To facilitate controlled experimentation, we also present a flexible and scalable data generation pipeline that supports the construction of diverse annotated scenes.
Refining Few-Step Text-to-Multiview Diffusion via Reinforcement Learning
Text-to-multiview (T2MV) generation, which produces coherent multiview images from a single text prompt, remains computationally intensive, while accelerated T2MV methods using few-step diffusion models often sacrifice image fidelity and view consistency. To address this, we propose a novel reinforcement learning (RL) finetuning framework tailored for few-step T2MV diffusion models to jointly optimize per-view fidelity and cross-view consistency. Specifically, we first reformulate T2MV denoising across all views as a single unified Markov decision process, enabling multiview-aware policy optimization driven by a joint-view reward objective. Next, we introduce ZMV-Sampling, a test-time T2MV sampling technique that adds an inversion-denoising pass to reinforce both viewpoint and text conditioning, resulting in improved T2MV generation at the cost of inference time. To internalize its performance gains into the base sampling policy, we develop MV-ZigAL, a novel policy optimization strategy that uses reward advantages of ZMV-Sampling over standard sampling as learning signals for policy updates. Finally, noting that the joint-view reward objective under-optimizes per-view fidelity but naively optimizing single-view metrics neglects cross-view alignment, we reframe RL finetuning for T2MV diffusion models as a constrained optimization problem that maximizes per-view fidelity subject to an explicit joint-view constraint, thereby enabling more efficient and balanced policy updates. By integrating this constrained optimization paradigm with MV-ZigAL, we establish our complete RL finetuning framework, referred to as MVC-ZigAL, which effectively refines the few-step T2MV diffusion baseline in both fidelity and consistency while preserving its few-step efficiency.
From Data to Modeling: Fully Open-vocabulary Scene Graph Generation
We present OvSGTR, a novel transformer-based framework for fully open-vocabulary scene graph generation that overcomes the limitations of traditional closed-set models. Conventional methods restrict both object and relationship recognition to a fixed vocabulary, hindering their applicability to real-world scenarios where novel concepts frequently emerge. In contrast, our approach jointly predicts objects (nodes) and their inter-relationships (edges) beyond predefined categories. OvSGTR leverages a DETR-like architecture featuring a frozen image backbone and text encoder to extract high-quality visual and semantic features, which are then fused via a transformer decoder for end-to-end scene graph prediction. To enrich the model's understanding of complex visual relations, we propose a relation-aware pre-training strategy that synthesizes scene graph annotations in a weakly supervised manner. Specifically, we investigate three pipelines--scene parser-based, LLM-based, and multimodal LLM-based--to generate transferable supervision signals with minimal manual annotation. Furthermore, we address the common issue of catastrophic forgetting in open-vocabulary settings by incorporating a visual-concept retention mechanism coupled with a knowledge distillation strategy, ensuring that the model retains rich semantic cues during fine-tuning. Extensive experiments on the VG150 benchmark demonstrate that OvSGTR achieves state-of-the-art performance across multiple settings, including closed-set, open-vocabulary object detection-based, relation-based, and fully open-vocabulary scenarios. Our results highlight the promise of large-scale relation-aware pre-training and transformer architectures for advancing scene graph generation towards more generalized and reliable visual understanding.
AdaTP: Attention-Debiased Token Pruning for Video Large Language Models
Video Large Language Models (Video LLMs) have achieved remarkable results in video understanding tasks. However, they often suffer from heavy computational overhead due to the large number of visual tokens generated from multiple video frames. Existing visual token compression methods often rely on attention scores from language models as guidance. However, these scores exhibit inherent biases: global bias reflects a tendency to focus on the two ends of the visual token sequence, while local bias leads to an over-concentration on the same spatial positions across different frames. To address the issue of attention bias, we propose $\textbf{A}$ttention-$\textbf{D}$ebi$\textbf{a}$sed $\textbf{T}$oken $\textbf{P}$runing for Video Large Language Models ($\textbf{AdaTP}$), a novel token pruning pipeline for Video LLMs. AdaTP integrates two dedicated debiasing modules into the pipeline, targeting global attention bias and local attention bias, respectively. Without the need for additional training, our method significantly reduces the computational overhead of Video LLMs while retaining the performance of vanilla models. Extensive evaluation shows that AdaTP achieves state-of-the-art performance in various commonly used video understanding benchmarks. In particular, on LLaVA-OneVision-7B, AdaTP maintains performance without degradation while using only up to $27.3\%$ FLOPs compared to the vanilla model. Our code will be released soon.
M3DHMR: Monocular 3D Hand Mesh Recovery
Monocular 3D hand mesh recovery is challenging due to high degrees of freedom of hands, 2D-to-3D ambiguity and self-occlusion. Most existing methods are either inefficient or less straightforward for predicting the position of 3D mesh vertices. Thus, we propose a new pipeline called Monocular 3D Hand Mesh Recovery (M3DHMR) to directly estimate the positions of hand mesh vertices. M3DHMR provides 2D cues for 3D tasks from a single image and uses a new spiral decoder consist of several Dynamic Spiral Convolution (DSC) Layers and a Region of Interest (ROI) Layer. On the one hand, DSC Layers adaptively adjust the weights based on the vertex positions and extract the vertex features in both spatial and channel dimensions. On the other hand, ROI Layer utilizes the physical information and refines mesh vertices in each predefined hand region separately. Extensive experiments on popular dataset FreiHAND demonstrate that M3DHMR significantly outperforms state-of-the-art real-time methods.
comment: 9 pages, 5 figures
PAMD: Plausibility-Aware Motion Diffusion Model for Long Dance Generation
Computational dance generation is crucial in many areas, such as art, human-computer interaction, virtual reality, and digital entertainment, particularly for generating coherent and expressive long dance sequences. Diffusion-based music-to-dance generation has made significant progress, yet existing methods still struggle to produce physically plausible motions. To address this, we propose Plausibility-Aware Motion Diffusion (PAMD), a framework for generating dances that are both musically aligned and physically realistic. The core of PAMD lies in the Plausible Motion Constraint (PMC), which leverages Neural Distance Fields (NDFs) to model the actual pose manifold and guide generated motions toward a physically valid pose manifold. To provide more effective guidance during generation, we incorporate Prior Motion Guidance (PMG), which uses standing poses as auxiliary conditions alongside music features. To further enhance realism for complex movements, we introduce the Motion Refinement with Foot-ground Contact (MRFC) module, which addresses foot-skating artifacts by bridging the gap between the optimization objective in linear joint position space and the data representation in nonlinear rotation space. Extensive experiments show that PAMD significantly improves musical alignment and enhances the physical plausibility of generated motions. This project page is available at: https://mucunzhuzhu.github.io/PAMD-page/.
comment: This project page is available at: https://mucunzhuzhu.github.io/PAMD-page/
Multimodal LLM-Guided Semantic Correction in Text-to-Image Diffusion
Diffusion models have become the mainstream architecture for text-to-image generation, achieving remarkable progress in visual quality and prompt controllability. However, current inference pipelines generally lack interpretable semantic supervision and correction mechanisms throughout the denoising process. Most existing approaches rely solely on post-hoc scoring of the final image, prompt filtering, or heuristic resampling strategies-making them ineffective in providing actionable guidance for correcting the generative trajectory. As a result, models often suffer from object confusion, spatial errors, inaccurate counts, and missing semantic elements, severely compromising prompt-image alignment and image quality. To tackle these challenges, we propose MLLM Semantic-Corrected Ping-Pong-Ahead Diffusion (PPAD), a novel framework that, for the first time, introduces a Multimodal Large Language Model (MLLM) as a semantic observer during inference. PPAD performs real-time analysis on intermediate generations, identifies latent semantic inconsistencies, and translates feedback into controllable signals that actively guide the remaining denoising steps. The framework supports both inference-only and training-enhanced settings, and performs semantic correction at only extremely few diffusion steps, offering strong generality and scalability. Extensive experiments demonstrate PPAD's significant improvements.
Data-Free Class-Incremental Gesture Recognition with Prototype-Guided Pseudo Feature Replay
Gesture recognition is an important research area in the field of computer vision. Most gesture recognition efforts focus on close-set scenarios, thereby limiting the capacity to effectively handle unseen or novel gestures. We aim to address class-incremental gesture recognition, which entails the ability to accommodate new and previously unseen gestures over time. Specifically, we introduce a Prototype-Guided Pseudo Feature Replay (PGPFR) framework for data-free class-incremental gesture recognition. This framework comprises four components: Pseudo Feature Generation with Batch Prototypes (PFGBP), Variational Prototype Replay (VPR) for old classes, Truncated Cross-Entropy (TCE) for new classes, and Continual Classifier Re-Training (CCRT). To tackle the issue of catastrophic forgetting, the PFGBP dynamically generates a diversity of pseudo features in an online manner, leveraging class prototypes of old classes along with batch class prototypes of new classes. Furthermore, the VPR enforces consistency between the classifier's weights and the prototypes of old classes, leveraging class prototypes and covariance matrices to enhance robustness and generalization capabilities. The TCE mitigates the impact of domain differences of the classifier caused by pseudo features. Finally, the CCRT training strategy is designed to prevent overfitting to new classes and ensure the stability of features extracted from old classes. Extensive experiments conducted on two widely used gesture recognition datasets, namely SHREC 2017 3D and EgoGesture 3D, demonstrate that our approach outperforms existing state-of-the-art methods by 11.8\% and 12.8\% in terms of mean global accuracy, respectively. The code is available on https://github.com/sunao-101/PGPFR-3/.
comment: Code is on https://github.com/sunao-101/PGPFR-3/
DepthMatch: Semi-Supervised RGB-D Scene Parsing through Depth-Guided Regularization
RGB-D scene parsing methods effectively capture both semantic and geometric features of the environment, demonstrating great potential under challenging conditions such as extreme weather and low lighting. However, existing RGB-D scene parsing methods predominantly rely on supervised training strategies, which require a large amount of manually annotated pixel-level labels that are both time-consuming and costly. To overcome these limitations, we introduce DepthMatch, a semi-supervised learning framework that is specifically designed for RGB-D scene parsing. To make full use of unlabeled data, we propose complementary patch mix-up augmentation to explore the latent relationships between texture and spatial features in RGB-D image pairs. We also design a lightweight spatial prior injector to replace traditional complex fusion modules, improving the efficiency of heterogeneous feature fusion. Furthermore, we introduce depth-guided boundary loss to enhance the model's boundary prediction capabilities. Experimental results demonstrate that DepthMatch exhibits high applicability in both indoor and outdoor scenes, achieving state-of-the-art results on the NYUv2 dataset and ranking first on the KITTI Semantics benchmark.
comment: 5 pages, 2 figures, accepted by IEEE Signal Processing Letters
Towards Video to Piano Music Generation with Chain-of-Perform Support Benchmarks CVPR 2025
Generating high-quality piano audio from video requires precise synchronization between visual cues and musical output, ensuring accurate semantic and temporal alignment.However, existing evaluation datasets do not fully capture the intricate synchronization required for piano music generation. A comprehensive benchmark is essential for two primary reasons: (1) existing metrics fail to reflect the complexity of video-to-piano music interactions, and (2) a dedicated benchmark dataset can provide valuable insights to accelerate progress in high-quality piano music generation. To address these challenges, we introduce the CoP Benchmark Dataset-a fully open-sourced, multimodal benchmark designed specifically for video-guided piano music generation. The proposed Chain-of-Perform (CoP) benchmark offers several compelling features: (1) detailed multimodal annotations, enabling precise semantic and temporal alignment between video content and piano audio via step-by-step Chain-of-Perform guidance; (2) a versatile evaluation framework for rigorous assessment of both general-purpose and specialized video-to-piano generation tasks; and (3) full open-sourcing of the dataset, annotations, and evaluation protocols. The dataset is publicly available at https://github.com/acappemin/Video-to-Audio-and-Piano, with a continuously updated leaderboard to promote ongoing research in this domain.
comment: 4 pages, 1 figure, accepted by CVPR 2025 MMFM Workshop
EmoNet-Face: An Expert-Annotated Benchmark for Synthetic Emotion Recognition
Effective human-AI interaction relies on AI's ability to accurately perceive and interpret human emotions. Current benchmarks for vision and vision-language models are severely limited, offering a narrow emotional spectrum that overlooks nuanced states (e.g., bitterness, intoxication) and fails to distinguish subtle differences between related feelings (e.g., shame vs. embarrassment). Existing datasets also often use uncontrolled imagery with occluded faces and lack demographic diversity, risking significant bias. To address these critical gaps, we introduce EmoNet Face, a comprehensive benchmark suite. EmoNet Face features: (1) A novel 40-category emotion taxonomy, meticulously derived from foundational research to capture finer details of human emotional experiences. (2) Three large-scale, AI-generated datasets (EmoNet HQ, Binary, and Big) with explicit, full-face expressions and controlled demographic balance across ethnicity, age, and gender. (3) Rigorous, multi-expert annotations for training and high-fidelity evaluation. (4) We build Empathic Insight Face, a model achieving human-expert-level performance on our benchmark. The publicly released EmoNet Face suite - taxonomy, datasets, and model - provides a robust foundation for developing and evaluating AI systems with a deeper understanding of human emotions.
ViTaPEs: Visuotactile Position Encodings for Cross-Modal Alignment in Multimodal Transformers
Tactile sensing provides local essential information that is complementary to visual perception, such as texture, compliance, and force. Despite recent advances in visuotactile representation learning, challenges remain in fusing these modalities and generalizing across tasks and environments without heavy reliance on pre-trained vision-language models. Moreover, existing methods do not study positional encodings, thereby overlooking the multi-scale spatial reasoning needed to capture fine-grained visuotactile correlations. We introduce ViTaPEs, a transformer-based framework that robustly integrates visual and tactile input data to learn task-agnostic representations for visuotactile perception. Our approach exploits a novel multi-scale positional encoding scheme to capture intra-modal structures, while simultaneously modeling cross-modal cues. Unlike prior work, we provide provable guarantees in visuotactile fusion, showing that our encodings are injective, rigid-motion-equivariant, and information-preserving, validating these properties empirically. Experiments on multiple large-scale real-world datasets show that ViTaPEs not only surpasses state-of-the-art baselines across various recognition tasks but also demonstrates zero-shot generalization to unseen, out-of-domain scenarios. We further demonstrate the transfer-learning strength of ViTaPEs in a robotic grasping task, where it outperforms state-of-the-art baselines in predicting grasp success. Project page: https://sites.google.com/view/vitapes
ReasonPlan: Unified Scene Prediction and Decision Reasoning for Closed-loop Autonomous Driving
Due to the powerful vision-language reasoning and generalization abilities, multimodal large language models (MLLMs) have garnered significant attention in the field of end-to-end (E2E) autonomous driving. However, their application to closed-loop systems remains underexplored, and current MLLM-based methods have not shown clear superiority to mainstream E2E imitation learning approaches. In this work, we propose ReasonPlan, a novel MLLM fine-tuning framework designed for closed-loop driving through holistic reasoning with a self-supervised Next Scene Prediction task and supervised Decision Chain-of-Thought process. This dual mechanism encourages the model to align visual representations with actionable driving context, while promoting interpretable and causally grounded decision making. We curate a planning-oriented decision reasoning dataset, namely PDR, comprising 210k diverse and high-quality samples. Our method outperforms the mainstream E2E imitation learning method by a large margin of 19% L2 and 16.1 driving score on Bench2Drive benchmark. Furthermore, ReasonPlan demonstrates strong zero-shot generalization on unseen DOS benchmark, highlighting its adaptability in handling zero-shot corner cases. Code and dataset will be found in https://github.com/Liuxueyi/ReasonPlan.
comment: 18 pages; 9 figures; https://github.com/Liuxueyi/ReasonPlan
Decomposing Complex Visual Comprehension into Atomic Visual Skills for Vision Language Models
Recent Vision-Language Models (VLMs) have demonstrated impressive multimodal comprehension and reasoning capabilities, yet they often struggle with trivially simple visual tasks. In this work, we focus on the domain of basic 2D Euclidean geometry and systematically categorize the fundamental, indivisible visual perception skills, which we refer to as atomic visual skills. We then introduce the Atomic Visual Skills Dataset (AVSD) for evaluating VLMs on the atomic visual skills. Using AVSD, we benchmark state-of-the-art VLMs and find that they struggle with these tasks, despite being trivial for adult humans. Our findings highlight the need for purpose-built datasets to train and evaluate VLMs on atomic, rather than composite, visual perception tasks.
comment: 69 pages, 16 figures
NEXT: Multi-Grained Mixture of Experts via Text-Modulation for Multi-Modal Object Re-ID
Multi-modal object re-identification (ReID) aims to extract identity features across heterogeneous spectral modalities to enable accurate recognition and retrieval in complex real-world scenarios. However, most existing methods rely on implicit feature fusion structures, making it difficult to model fine-grained recognition strategies under varying challenging conditions. Benefiting from the powerful semantic understanding capabilities of Multi-modal Large Language Models (MLLMs), the visual appearance of an object can be effectively translated into descriptive text. In this paper, we propose a reliable multi-modal caption generation method based on attribute confidence, which significantly reduces the unknown recognition rate of MLLMs in multi-modal semantic generation and improves the quality of generated text. Additionally, we propose a novel ReID framework NEXT, the Multi-grained Mixture of Experts via Text-Modulation for Multi-modal Object Re-Identification. Specifically, we decouple the recognition problem into semantic and structural expert branches to separately capture modality-specific appearance and intrinsic structure. For semantic recognition, we propose the Text-Modulated Semantic-sampling Experts (TMSE), which leverages randomly sampled high-quality semantic texts to modulate expert-specific sampling of multi-modal features and mining intra-modality fine-grained semantic cues. Then, to recognize coarse-grained structure features, we propose the Context-Shared Structure-aware Experts (CSSE) that focuses on capturing the holistic object structure across modalities and maintains inter-modality structural consistency through a soft routing mechanism. Finally, we propose the Multi-Modal Feature Aggregation (MMFA), which adopts a unified feature fusion strategy to simply and effectively integrate semantic and structural expert outputs into the final identity representations.
Optimizing edge AI models on HPC systems with the edge in the loop SC 2025
Artificial intelligence and machine learning models deployed on edge devices, e.g., for quality control in Additive Manufacturing (AM), are frequently small in size. Such models usually have to deliver highly accurate results within a short time frame. Methods that are commonly employed in literature start out with larger trained models and try to reduce their memory and latency footprint by structural pruning, knowledge distillation, or quantization. It is, however, also possible to leverage hardware-aware Neural Architecture Search (NAS), an approach that seeks to systematically explore the architecture space to find optimized configurations. In this study, a hardware-aware NAS workflow is introduced that couples an edge device located in Belgium with a powerful High-Performance Computing system in Germany, to train possible architecture candidates as fast as possible while performing real-time latency measurements on the target hardware. The approach is verified on a use case in the AM domain, based on the open RAISE-LPBF dataset, achieving ~8.8 times faster inference speed while simultaneously enhancing model quality by a factor of ~1.35, compared to a human-designed baseline.
comment: 13 pages, accepted for oral presentation at Computational Aspects of Deep Learning 2025 (at ISC 2025)
Progressive Scaling Visual Object Tracking
In this work, we propose a progressive scaling training strategy for visual object tracking, systematically analyzing the influence of training data volume, model size, and input resolution on tracking performance. Our empirical study reveals that while scaling each factor leads to significant improvements in tracking accuracy, naive training suffers from suboptimal optimization and limited iterative refinement. To address this issue, we introduce DT-Training, a progressive scaling framework that integrates small teacher transfer and dual-branch alignment to maximize model potential. The resulting scaled tracker consistently outperforms state-of-the-art methods across multiple benchmarks, demonstrating strong generalization and transferability of the proposed method. Furthermore, we validate the broader applicability of our approach to additional tasks, underscoring its versatility beyond tracking.
Structured Initialization for Vision Transformers
Convolutional Neural Networks (CNNs) inherently encode strong inductive biases, enabling effective generalization on small-scale datasets. In this paper, we propose integrating this inductive bias into ViTs, not through an architectural intervention but solely through initialization. The motivation here is to have a ViT that can enjoy strong CNN-like performance when data assets are small, but can still scale to ViT-like performance as the data expands. Our approach is motivated by our empirical results that random impulse filters can achieve commensurate performance to learned filters within a CNN. We improve upon current ViT initialization strategies, which typically rely on empirical heuristics such as using attention weights from pretrained models or focusing on the distribution of attention weights without enforcing structures. Empirical results demonstrate that our method significantly outperforms standard ViT initialization across numerous small and medium-scale benchmarks, including Food-101, CIFAR-10, CIFAR-100, STL-10, Flowers, and Pets, while maintaining comparative performance on large-scale datasets such as ImageNet-1K. Moreover, our initialization strategy can be easily integrated into various transformer-based architectures such as Swin Transformer and MLP-Mixer with consistent improvements in performance.
ICDM: Interference Cancellation Diffusion Models for Wireless Semantic Communications
Diffusion models (DMs) have recently achieved significant success in wireless communications systems due to their denoising capabilities. The broadcast nature of wireless signals makes them susceptible not only to Gaussian noise, but also to unaware interference. This raises the question of whether DMs can effectively mitigate interference in wireless semantic communication systems. In this paper, we model the interference cancellation problem as a maximum a posteriori (MAP) problem over the joint posterior probability of the signal and interference, and theoretically prove that the solution provides excellent estimates for the signal and interference. To solve this problem, we develop an interference cancellation diffusion model (ICDM), which decomposes the joint posterior into independent prior probabilities of the signal and interference, along with the channel transition probablity. The log-gradients of these distributions at each time step are learned separately by DMs and accurately estimated through deriving. ICDM further integrates these gradients with advanced numerical iteration method, achieving accurate and rapid interference cancellation. Extensive experiments demonstrate that ICDM significantly reduces the mean square error (MSE) and enhances perceptual quality compared to schemes without ICDM. For example, on the CelebA dataset under the Rayleigh fading channel with a signal-to-noise ratio (SNR) of $20$ dB and signal to interference plus noise ratio (SINR) of 0 dB, ICDM reduces the MSE by 4.54 dB and improves the learned perceptual image patch similarity (LPIPS) by 2.47 dB.
comment: submitted to IEEE journal
PHI: Bridging Domain Shift in Long-Term Action Quality Assessment via Progressive Hierarchical Instruction
Long-term Action Quality Assessment (AQA) aims to evaluate the quantitative performance of actions in long videos. However, existing methods face challenges due to domain shifts between the pre-trained large-scale action recognition backbones and the specific AQA task, thereby hindering their performance. This arises since fine-tuning resource-intensive backbones on small AQA datasets is impractical. We address this by identifying two levels of domain shift: task-level, regarding differences in task objectives, and feature-level, regarding differences in important features. For feature-level shifts, which are more detrimental, we propose Progressive Hierarchical Instruction (PHI) with two strategies. First, Gap Minimization Flow (GMF) leverages flow matching to progressively learn a fast flow path that reduces the domain gap between initial and desired features across shallow to deep layers. Additionally, a temporally-enhanced attention module captures long-range dependencies essential for AQA. Second, List-wise Contrastive Regularization (LCR) facilitates coarse-to-fine alignment by comprehensively comparing batch pairs to learn fine-grained cues while mitigating domain shift. Integrating these modules, PHI offers an effective solution. Experiments demonstrate that PHI achieves state-of-the-art performance on three representative long-term AQA datasets, proving its superiority in addressing the domain shift for long-term AQA.
comment: Accepted by IEEE Transactions on Image Processing
UltraVSR: Achieving Ultra-Realistic Video Super-Resolution with Efficient One-Step Diffusion Space
Diffusion models have shown great potential in generating realistic image detail. However, adapting these models to video super-resolution (VSR) remains challenging due to their inherent stochasticity and lack of temporal modeling. In this paper, we propose UltraVSR, a novel framework that enables ultra-realistic and temporal-coherent VSR through an efficient one-step diffusion space. A central component of UltraVSR is the Degradation-aware Restoration Schedule (DRS), which estimates a degradation factor from the low-resolution input and transforms iterative denoising process into a single-step reconstruction from from low-resolution to high-resolution videos. This design eliminates randomness from diffusion noise and significantly speeds up inference. To ensure temporal consistency, we propose a lightweight yet effective Recurrent Temporal Shift (RTS) module, composed of an RTS-convolution unit and an RTS-attention unit. By partially shifting feature components along the temporal dimension, these two units collaboratively facilitate effective feature propagation, fusion, and alignment across neighboring frames, without relying on explicit temporal layers. The RTS module is integrated into a pretrained text-to-image diffusion model and is further enhanced through Spatio-temporal Joint Distillation (SJD), which improves temporal coherence while preserving realistic details. Additionally, we introduce a Temporally Asynchronous Inference (TAI) strategy to capture long-range temporal dependencies under limited memory constraints. Extensive experiments show that UltraVSR achieves state-of-the-art performance, both qualitatively and quantitatively, in a single sampling step.
comment: Under review, 10 pages, 7 figures
Multimodal Reasoning Agent for Zero-Shot Composed Image Retrieval
Zero-Shot Composed Image Retrieval (ZS-CIR) aims to retrieve target images given a compositional query, consisting of a reference image and a modifying text-without relying on annotated training data. Existing approaches often generate a synthetic target text using large language models (LLMs) to serve as an intermediate anchor between the compositional query and the target image. Models are then trained to align the compositional query with the generated text, and separately align images with their corresponding texts using contrastive learning. However, this reliance on intermediate text introduces error propagation, as inaccuracies in query-to-text and text-to-image mappings accumulate, ultimately degrading retrieval performance. To address these problems, we propose a novel framework by employing a Multimodal Reasoning Agent (MRA) for ZS-CIR. MRA eliminates the dependence on textual intermediaries by directly constructing triplets, , using only unlabeled image data. By training on these synthetic triplets, our model learns to capture the relationships between compositional queries and candidate images directly. Extensive experiments on three standard CIR benchmarks demonstrate the effectiveness of our approach. On the FashionIQ dataset, our method improves Average R@10 by at least 7.5\% over existing baselines; on CIRR, it boosts R@1 by 9.6\%; and on CIRCO, it increases mAP@5 by 9.5\%.
SaSi: A Self-augmented and Self-interpreted Deep Learning Approach for Few-shot Cryo-ET Particle Detection
Cryo-electron tomography (cryo-ET) has emerged as a powerful technique for imaging macromolecular complexes in their near-native states. However, the localization of 3D particles in cellular environments still presents a significant challenge due to low signal-to-noise ratios and missing wedge artifacts. Deep learning approaches have shown great potential, but they need huge amounts of data, which can be a challenge in cryo-ET scenarios where labeled data is often scarce. In this paper, we propose a novel Self-augmented and Self-interpreted (SaSi) deep learning approach towards few-shot particle detection in 3D cryo-ET images. Our method builds upon self-augmentation techniques to further boost data utilization and introduces a self-interpreted segmentation strategy for alleviating dependency on labeled data, hence improving generalization and robustness. As demonstrated by experiments conducted on both simulated and real-world cryo-ET datasets, the SaSi approach significantly outperforms existing state-of-the-art methods for particle localization. This research increases understanding of how to detect particles with very few labels in cryo-ET and thus sets a new benchmark for few-shot learning in structural biology.
Can Visual Encoder Learn to See Arrows? CVPR 2025
The diagram is a visual representation of a relationship illustrated with edges (lines or arrows), which is widely used in industrial and scientific communication. Although recognizing diagrams is essential for vision language models (VLMs) to comprehend domain-specific knowledge, recent studies reveal that many VLMs fail to identify edges in images. We hypothesize that these failures stem from an over-reliance on textual and positional biases, preventing VLMs from learning explicit edge features. Based on this idea, we empirically investigate whether the image encoder in VLMs can learn edge representation through training on a diagram dataset in which edges are biased neither by textual nor positional information. To this end, we conduct contrastive learning on an artificially generated diagram--caption dataset to train an image encoder and evaluate its diagram-related features on three tasks: probing, image retrieval, and captioning. Our results show that the finetuned model outperforms pretrained CLIP in all tasks and surpasses zero-shot GPT-4o and LLaVA-Mistral in the captioning task. These findings confirm that eliminating textual and positional biases fosters accurate edge recognition in VLMs, offering a promising path for advancing diagram understanding.
comment: This work has been accepted for poster presentation at the Second Workshop on Visual Concepts in CVPR 2025
Multi-Timescale Motion-Decoupled Spiking Transformer for Audio-Visual Zero-Shot Learning
Audio-visual zero-shot learning (ZSL) has been extensively researched for its capability to classify video data from unseen classes during training. Nevertheless, current methodologies often struggle with background scene biases and inadequate motion detail. This paper proposes a novel dual-stream Multi-Timescale Motion-Decoupled Spiking Transformer (MDST++), which decouples contextual semantic information and sparse dynamic motion information. The recurrent joint learning unit is proposed to extract contextual semantic information and capture joint knowledge across various modalities to understand the environment of actions. By converting RGB images to events, our method captures motion information more accurately and mitigates background scene biases. Moreover, we introduce a discrepancy analysis block to model audio motion information. To enhance the robustness of SNNs in extracting temporal and motion cues, we dynamically adjust the threshold of Leaky Integrate-and-Fire neurons based on global motion and contextual semantic information. Our experiments validate the effectiveness of MDST++, demonstrating their consistent superiority over state-of-the-art methods on mainstream benchmarks. Additionally, incorporating motion and multi-timescale information significantly improves HM and ZSL accuracy by 26.2\% and 39.9\%.
comment: Accepted by IEEE TCSVT
CA3D: Convolutional-Attentional 3D Nets for Efficient Video Activity Recognition on the Edge
In this paper, we introduce a deep learning solution for video activity recognition that leverages an innovative combination of convolutional layers with a linear-complexity attention mechanism. Moreover, we introduce a novel quantization mechanism to further improve the efficiency of our model during both training and inference. Our model maintains a reduced computational cost, while preserving robust learning and generalization capabilities. Our approach addresses the issues related to the high computing requirements of current models, with the goal of achieving competitive accuracy on consumer and edge devices, enabling smart home and smart healthcare applications where efficiency and privacy issues are of concern. We experimentally validate our model on different established and publicly available video activity recognition benchmarks, improving accuracy over alternative models at a competitive computing cost.
A Responsible Face Recognition Approach for Small and Mid-Scale Systems Through Personalized Neural Networks
Traditional face recognition systems rely on extracting fixed face representations, known as templates, to store and verify identities. These representations are typically generated by neural networks that often lack explainability and raise concerns regarding fairness and privacy. In this work, we propose a novel model-template (MOTE) approach that replaces vector-based face templates with small personalized neural networks. This design enables more responsible face recognition for small and medium-scale systems. During enrollment, MOTE creates a dedicated binary classifier for each identity, trained to determine whether an input face matches the enrolled identity. Each classifier is trained using only a single reference sample, along with synthetically balanced samples to allow adjusting fairness at the level of a single individual during enrollment. Extensive experiments across multiple datasets and recognition systems demonstrate substantial improvements in fairness and particularly in privacy. Although the method increases inference time and storage requirements, it presents a strong solution for small- and mid-scale applications where fairness and privacy are critical.
Weather-Magician: Reconstruction and Rendering Framework for 4D Weather Synthesis In Real Time
For tasks such as urban digital twins, VR/AR/game scene design, or creating synthetic films, the traditional industrial approach often involves manually modeling scenes and using various rendering engines to complete the rendering process. This approach typically requires high labor costs and hardware demands, and can result in poor quality when replicating complex real-world scenes. A more efficient approach is to use data from captured real-world scenes, then apply reconstruction and rendering algorithms to quickly recreate the authentic scene. However, current algorithms are unable to effectively reconstruct and render real-world weather effects. To address this, we propose a framework based on gaussian splatting, that can reconstruct real scenes and render them under synthesized 4D weather effects. Our work can simulate various common weather effects by applying Gaussians modeling and rendering techniques. It supports continuous dynamic weather changes and can easily control the details of the effects. Additionally, our work has low hardware requirements and achieves real-time rendering performance. The result demos can be accessed on our project homepage: weathermagician.github.io
comment: Project homepage: https://weathermagician.github.io
Attention! You Vision Language Model Could Be Maliciously Manipulated
Large Vision-Language Models (VLMs) have achieved remarkable success in understanding complex real-world scenarios and supporting data-driven decision-making processes. However, VLMs exhibit significant vulnerability against adversarial examples, either text or image, which can lead to various adversarial outcomes, e.g., jailbreaking, hijacking, and hallucination, etc. In this work, we empirically and theoretically demonstrate that VLMs are particularly susceptible to image-based adversarial examples, where imperceptible perturbations can precisely manipulate each output token. To this end, we propose a novel attack called Vision-language model Manipulation Attack (VMA), which integrates first-order and second-order momentum optimization techniques with a differentiable transformation mechanism to effectively optimize the adversarial perturbation. Notably, VMA can be a double-edged sword: it can be leveraged to implement various attacks, such as jailbreaking, hijacking, privacy breaches, Denial-of-Service, and the generation of sponge examples, etc, while simultaneously enabling the injection of watermarks for copyright protection. Extensive empirical evaluations substantiate the efficacy and generalizability of VMA across diverse scenarios and datasets.
Dynamic-I2V: Exploring Image-to-Video Generaion Models via Multimodal LLM
Recent advancements in image-to-video (I2V) generation have shown promising performance in conventional scenarios. However, these methods still encounter significant challenges when dealing with complex scenes that require a deep understanding of nuanced motion and intricate object-action relationships. To address these challenges, we present Dynamic-I2V, an innovative framework that integrates Multimodal Large Language Models (MLLMs) to jointly encode visual and textual conditions for a diffusion transformer (DiT) architecture. By leveraging the advanced multimodal understanding capabilities of MLLMs, our model significantly improves motion controllability and temporal coherence in synthesized videos. The inherent multimodality of Dynamic-I2V further enables flexible support for diverse conditional inputs, extending its applicability to various downstream generation tasks. Through systematic analysis, we identify a critical limitation in current I2V benchmarks: a significant bias towards favoring low-dynamic videos, stemming from an inadequate balance between motion complexity and visual quality metrics. To resolve this evaluation gap, we propose DIVE - a novel assessment benchmark specifically designed for comprehensive dynamic quality measurement in I2V generation. In conclusion, extensive quantitative and qualitative experiments confirm that Dynamic-I2V attains state-of-the-art performance in image-to-video generation, particularly revealing significant improvements of 42.5%, 7.9%, and 11.8% in dynamic range, controllability, and quality, respectively, as assessed by the DIVE metric in comparison to existing methods.
ScienceBoard: Evaluating Multimodal Autonomous Agents in Realistic Scientific Workflows
Large Language Models (LLMs) have extended their impact beyond Natural Language Processing, substantially fostering the development of interdisciplinary research. Recently, various LLM-based agents have been developed to assist scientific discovery progress across multiple aspects and domains. Among these, computer-using agents, capable of interacting with operating systems as humans do, are paving the way to automated scientific problem-solving and addressing routines in researchers' workflows. Recognizing the transformative potential of these agents, we introduce ScienceBoard, which encompasses two complementary contributions: (i) a realistic, multi-domain environment featuring dynamic and visually rich scientific workflows with integrated professional software, where agents can autonomously interact via different interfaces to accelerate complex research tasks and experiments; and (ii) a challenging benchmark of 169 high-quality, rigorously validated real-world tasks curated by humans, spanning scientific-discovery workflows in domains such as biochemistry, astronomy, and geoinformatics. Extensive evaluations of agents with state-of-the-art backbones (e.g., GPT-4o, Claude 3.7, UI-TARS) show that, despite some promising results, they still fall short of reliably assisting scientists in complex workflows, achieving only a 15% overall success rate. In-depth analysis further provides valuable insights for addressing current agent limitations and more effective design principles, paving the way to build more capable agents for scientific discovery. Our code, environment, and benchmark are at https://qiushisun.github.io/ScienceBoard-Home/.
comment: work in progress
Underwater Diffusion Attention Network with Contrastive Language-Image Joint Learning for Underwater Image Enhancement
Underwater images are often affected by complex degradations such as light absorption, scattering, color casts, and artifacts, making enhancement critical for effective object detection, recognition, and scene understanding in aquatic environments. Existing methods, especially diffusion-based approaches, typically rely on synthetic paired datasets due to the scarcity of real underwater references, introducing bias and limiting generalization. Furthermore, fine-tuning these models can degrade learned priors, resulting in unrealistic enhancements due to domain shifts. To address these challenges, we propose UDAN-CLIP, an image-to-image diffusion framework pre-trained on synthetic underwater datasets and enhanced with a customized classifier based on vision-language model, a spatial attention module, and a novel CLIP-Diffusion loss. The classifier preserves natural in-air priors and semantically guides the diffusion process, while the spatial attention module focuses on correcting localized degradations such as haze and low contrast. The proposed CLIP-Diffusion loss further strengthens visual-textual alignment and helps maintain semantic consistency during enhancement. The proposed contributions empower our UDAN-CLIP model to perform more effective underwater image enhancement, producing results that are not only visually compelling but also more realistic and detail-preserving. These improvements are consistently validated through both quantitative metrics and qualitative visual comparisons, demonstrating the model's ability to correct distortions and restore natural appearance in challenging underwater conditions.
OmniFall: A Unified Staged-to-Wild Benchmark for Human Fall Detection
Current video-based fall detection research mostly relies on small, staged datasets with significant domain biases concerning background, lighting, and camera setup resulting in unknown real-world performance. We introduce OmniFall, unifying eight public fall detection datasets (roughly 14 h of recordings, roughly 42 h of multiview data, 101 subjects, 29 camera views) under a consistent ten-class taxonomy with standardized evaluation protocols. Our benchmark provides complete video segmentation labels and enables fair cross-dataset comparison previously impossible with incompatible annotation schemes. For real-world evaluation we curate OOPS-Fall from genuine accident videos and establish a staged-to-wild protocol measuring generalization from controlled to uncontrolled environments. Experiments with frozen pre-trained backbones such as I3D or VideoMAE reveal significant performance gaps between in-distribution and in-the-wild scenarios, highlighting critical challenges in developing robust fall detection systems. OmniFall Dataset at https://huggingface.co/datasets/simplexsigil2/omnifall , Code at https://github.com/simplexsigil/omnifall-experiments
ErpGS: Equirectangular Image Rendering enhanced with 3D Gaussian Regularization ICIP2025
The use of multi-view images acquired by a 360-degree camera can reconstruct a 3D space with a wide area. There are 3D reconstruction methods from equirectangular images based on NeRF and 3DGS, as well as Novel View Synthesis (NVS) methods. On the other hand, it is necessary to overcome the large distortion caused by the projection model of a 360-degree camera when equirectangular images are used. In 3DGS-based methods, the large distortion of the 360-degree camera model generates extremely large 3D Gaussians, resulting in poor rendering accuracy. We propose ErpGS, which is Omnidirectional GS based on 3DGS to realize NVS addressing the problems. ErpGS introduce some rendering accuracy improvement techniques: geometric regularization, scale regularization, and distortion-aware weights and a mask to suppress the effects of obstacles in equirectangular images. Through experiments on public datasets, we demonstrate that ErpGS can render novel view images more accurately than conventional methods.
comment: Accepted to ICIP2025
Vad-R1: Towards Video Anomaly Reasoning via Perception-to-Cognition Chain-of-Thought
Recent advancements in reasoning capability of Multimodal Large Language Models (MLLMs) demonstrate its effectiveness in tackling complex visual tasks. However, existing MLLM-based Video Anomaly Detection (VAD) methods remain limited to shallow anomaly descriptions without deep reasoning. In this paper, we propose a new task named Video Anomaly Reasoning (VAR), which aims to enable deep analysis and understanding of anomalies in the video by requiring MLLMs to think explicitly before answering. To this end, we propose Vad-R1, an end-to-end MLLM-based framework for VAR. Specifically, we design a Perception-to-Cognition Chain-of-Thought (P2C-CoT) that simulates the human process of recognizing anomalies, guiding the MLLM to reason anomaly step-by-step. Based on the structured P2C-CoT, we construct Vad-Reasoning, a dedicated dataset for VAR. Furthermore, we propose an improved reinforcement learning algorithm AVA-GRPO, which explicitly incentivizes the anomaly reasoning capability of MLLMs through a self-verification mechanism with limited annotations. Experimental results demonstrate that Vad-R1 achieves superior performance, outperforming both open-source and proprietary models on VAD and VAR tasks. Codes and datasets will be released at https://github.com/wbfwonderful/Vad-R1.
comment: 9 pages, 4 figures
StyleAR: Customizing Multimodal Autoregressive Model for Style-Aligned Text-to-Image Generation
In the current research landscape, multimodal autoregressive (AR) models have shown exceptional capabilities across various domains, including visual understanding and generation. However, complex tasks such as style-aligned text-to-image generation present significant challenges, particularly in data acquisition. In analogy to instruction-following tuning for image editing of AR models, style-aligned generation requires a reference style image and prompt, resulting in a text-image-to-image triplet where the output shares the style and semantics of the input. However, acquiring large volumes of such triplet data with specific styles is considerably more challenging than obtaining conventional text-to-image data used for training generative models. To address this issue, we propose StyleAR, an innovative approach that combines a specially designed data curation method with our proposed AR models to effectively utilize text-to-image binary data for style-aligned text-to-image generation. Our method synthesizes target stylized data using a reference style image and prompt, but only incorporates the target stylized image as the image modality to create high-quality binary data. To facilitate binary data training, we introduce a CLIP image encoder with a perceiver resampler that translates the image input into style tokens aligned with multimodal tokens in AR models and implement a style-enhanced token technique to prevent content leakage which is a common issue in previous work. Furthermore, we mix raw images drawn from large-scale text-image datasets with stylized images to enhance StyleAR's ability to extract richer stylistic features and ensure style consistency. Extensive qualitative and quantitative experiments demonstrate our superior performance.
Deep Spectral Prior
We introduce Deep Spectral Prior (DSP), a new formulation of Deep Image Prior (DIP) that redefines image reconstruction as a frequency-domain alignment problem. Unlike traditional DIP, which relies on pixel-wise loss and early stopping to mitigate overfitting, DSP directly matches Fourier coefficients between the network output and observed measurements. This shift introduces an explicit inductive bias towards spectral coherence, aligning with the known frequency structure of images and the spectral bias of convolutional neural networks. We provide a rigorous theoretical framework demonstrating that DSP acts as an implicit spectral regulariser, suppressing high-frequency noise by design and eliminating the need for early stopping. Our analysis spans four core dimensions establishing smooth convergence dynamics, local stability, and favourable bias-variance tradeoffs. We further show that DSP naturally projects reconstructions onto a frequency-consistent manifold, enhancing interpretability and robustness. These theoretical guarantees are supported by empirical results across denoising, inpainting, and super-resolution tasks, where DSP consistently outperforms classical DIP and other unsupervised baselines.
Harnessing the Power of Training-Free Techniques in Text-to-2D Generation for Text-to-3D Generation via Score Distillation Sampling
Recent studies show that simple training-free techniques can dramatically improve the quality of text-to-2D generation outputs, e.g. Classifier-Free Guidance (CFG) or FreeU. However, these training-free techniques have been underexplored in the lens of Score Distillation Sampling (SDS), which is a popular and effective technique to leverage the power of pretrained text-to-2D diffusion models for various tasks. In this paper, we aim to shed light on the effect such training-free techniques have on SDS, via a particular application of text-to-3D generation via 2D lifting. We present our findings, which show that varying the scales of CFG presents a trade-off between object size and surface smoothness, while varying the scales of FreeU presents a trade-off between texture details and geometric errors. Based on these findings, we provide insights into how we can effectively harness training-free techniques for SDS, via a strategic scaling of such techniques in a dynamic manner with respect to the timestep or optimization iteration step. We show that using our proposed scheme strikes a favorable balance between texture details and surface smoothness in text-to-3D generations, while preserving the size of the output and mitigating the occurrence of geometric defects.
FruitNeRF++: A Generalized Multi-Fruit Counting Method Utilizing Contrastive Learning and Neural Radiance Fields
We introduce FruitNeRF++, a novel fruit-counting approach that combines contrastive learning with neural radiance fields to count fruits from unstructured input photographs of orchards. Our work is based on FruitNeRF, which employs a neural semantic field combined with a fruit-specific clustering approach. The requirement for adaptation for each fruit type limits the applicability of the method, and makes it difficult to use in practice. To lift this limitation, we design a shape-agnostic multi-fruit counting framework, that complements the RGB and semantic data with instance masks predicted by a vision foundation model. The masks are used to encode the identity of each fruit as instance embeddings into a neural instance field. By volumetrically sampling the neural fields, we extract a point cloud embedded with the instance features, which can be clustered in a fruit-agnostic manner to obtain the fruit count. We evaluate our approach using a synthetic dataset containing apples, plums, lemons, pears, peaches, and mangoes, as well as a real-world benchmark apple dataset. Our results demonstrate that FruitNeRF++ is easier to control and compares favorably to other state-of-the-art methods.
comment: for project website, see https://meyerls.github.io/fruit_nerfpp
A Unified Solution to Video Fusion: From Multi-Frame Learning to Benchmarking
The real world is dynamic, yet most image fusion methods process static frames independently, ignoring temporal correlations in videos and leading to flickering and temporal inconsistency. To address this, we propose Unified Video Fusion (UniVF), a novel framework for temporally coherent video fusion that leverages multi-frame learning and optical flow-based feature warping for informative, temporally coherent video fusion. To support its development, we also introduce Video Fusion Benchmark (VF-Bench), the first comprehensive benchmark covering four video fusion tasks: multi-exposure, multi-focus, infrared-visible, and medical fusion. VF-Bench provides high-quality, well-aligned video pairs obtained through synthetic data generation and rigorous curation from existing datasets, with a unified evaluation protocol that jointly assesses the spatial quality and temporal consistency of video fusion. Extensive experiments show that UniVF achieves state-of-the-art results across all tasks on VF-Bench. Project page: https://vfbench.github.io.
Sparse2DGS: Sparse-View Surface Reconstruction using 2D Gaussian Splatting with Dense Point Cloud ICIP 2025
Gaussian Splatting (GS) has gained attention as a fast and effective method for novel view synthesis. It has also been applied to 3D reconstruction using multi-view images and can achieve fast and accurate 3D reconstruction. However, GS assumes that the input contains a large number of multi-view images, and therefore, the reconstruction accuracy significantly decreases when only a limited number of input images are available. One of the main reasons is the insufficient number of 3D points in the sparse point cloud obtained through Structure from Motion (SfM), which results in a poor initialization for optimizing the Gaussian primitives. We propose a new 3D reconstruction method, called Sparse2DGS, to enhance 2DGS in reconstructing objects using only three images. Sparse2DGS employs DUSt3R, a fundamental model for stereo images, along with COLMAP MVS to generate highly accurate and dense 3D point clouds, which are then used to initialize 2D Gaussians. Through experiments on the DTU dataset, we show that Sparse2DGS can accurately reconstruct the 3D shapes of objects using just three images.
comment: Accepted to ICIP 2025
Two Causally Related Needles in a Video Haystack
Evaluating the video understanding capabilities of Video-Language Models (VLMs) remains a significant challenge. We propose a long-context video understanding benchmark, Causal2Needles, that assesses two crucial abilities insufficiently evaluated by existing benchmarks: (1) the ability to extract information from two separate locations in a long video and understand them jointly, and (2) the ability to model the world in terms of cause and effect in human behaviors. Specifically, Causal2Needles introduces 2-needle questions, which require extracting information from both the cause and effect human-behavior events in a long video and the associated narration text. To prevent textual bias, these questions comprise two complementary formats: one asking to identify the video clip containing the answer, and one asking for the textual description of an unrelated visual detail from that video clip. Our experiments reveal that models excelling in pre-existing benchmarks struggle with 2-needle visual grounding, and the model performance is negatively correlated with the distance between the two needles. These findings highlight critical limitations in current VLMs.
Zero-Shot Pseudo Labels Generation Using SAM and CLIP for Semi-Supervised Semantic Segmentation ICIP 2025
Semantic segmentation is a fundamental task in medical image analysis and autonomous driving and has a problem with the high cost of annotating the labels required in training. To address this problem, semantic segmentation methods based on semi-supervised learning with a small number of labeled data have been proposed. For example, one approach is to train a semantic segmentation model using images with annotated labels and pseudo labels. In this approach, the accuracy of the semantic segmentation model depends on the quality of the pseudo labels, and the quality of the pseudo labels depends on the performance of the model to be trained and the amount of data with annotated labels. In this paper, we generate pseudo labels using zero-shot annotation with the Segment Anything Model (SAM) and Contrastive Language-Image Pretraining (CLIP), improve the accuracy of the pseudo labels using the Unified Dual-Stream Perturbations Approach (UniMatch), and use them as enhanced labels to train a semantic segmentation model. The effectiveness of the proposed method is demonstrated through the experiments using the public datasets: PASCAL and MS COCO.
comment: Accepted to ICIP 2025
GoLF-NRT: Integrating Global Context and Local Geometry for Few-Shot View Synthesis CVPR 2025
Neural Radiance Fields (NeRF) have transformed novel view synthesis by modeling scene-specific volumetric representations directly from images. While generalizable NeRF models can generate novel views across unknown scenes by learning latent ray representations, their performance heavily depends on a large number of multi-view observations. However, with limited input views, these methods experience significant degradation in rendering quality. To address this limitation, we propose GoLF-NRT: a Global and Local feature Fusion-based Neural Rendering Transformer. GoLF-NRT enhances generalizable neural rendering from few input views by leveraging a 3D transformer with efficient sparse attention to capture global scene context. In parallel, it integrates local geometric features extracted along the epipolar line, enabling high-quality scene reconstruction from as few as 1 to 3 input views. Furthermore, we introduce an adaptive sampling strategy based on attention weights and kernel regression, improving the accuracy of transformer-based neural rendering. Extensive experiments on public datasets show that GoLF-NRT achieves state-of-the-art performance across varying numbers of input views, highlighting the effectiveness and superiority of our approach. Code is available at https://github.com/KLMAV-CUC/GoLF-NRT.
comment: CVPR 2025
Efficient Multi-modal Long Context Learning for Training-free Adaptation ICML2025
Traditional approaches to adapting multi-modal large language models (MLLMs) to new tasks have relied heavily on fine-tuning. This paper introduces Efficient Multi-Modal Long Context Learning (EMLoC), a novel training-free alternative that embeds demonstration examples directly into the model input. EMLoC offers a more efficient, flexible, and scalable solution for task adaptation. Because extremely lengthy inputs introduce prohibitive computational and memory overhead, EMLoC contributes a chunk-wise compression mechanism combined with layer-wise adaptive pruning. It condenses long-context multimodal inputs into compact, task-specific memory representations. By adaptively pruning tokens at each layer under a Jensen-Shannon divergence constraint, our method achieves a dramatic reduction in inference complexity without sacrificing performance. This approach is the first to seamlessly integrate compression and pruning techniques for multi-modal long-context learning, offering a scalable and efficient solution for real-world applications. Extensive experiments on diverse vision-language benchmarks demonstrate that EMLoC achieves performance on par with or superior to naive long-context approaches. Our results highlight the potential of EMLoC as a groundbreaking framework for efficient and flexible adaptation of multi-modal models in resource-constrained environments. Codes are publicly available at https://github.com/Zehong-Ma/EMLoC.
comment: Accepted to ICML2025
Translation-Equivariance of Normalization Layers and Aliasing in Convolutional Neural Networks
The design of convolutional neural architectures that are exactly equivariant to continuous translations is an active field of research. It promises to benefit scientific computing, notably by making existing imaging systems more physically accurate. Most efforts focus on the design of downsampling/pooling layers, upsampling layers and activation functions, but little attention is dedicated to normalization layers. In this work, we present a novel theoretical framework for understanding the equivariance of normalization layers to discrete shifts and continuous translations. We also determine necessary and sufficient conditions for normalization layers to be equivariant in terms of the dimensions they operate on. Using real feature maps from ResNet-18 and ImageNet, we test those theoretical results empirically and find that they are consistent with our predictions.
GraphAU-Pain: Graph-based Action Unit Representation for Pain Intensity Estimation
Understanding pain-related facial behaviors is essential for digital healthcare in terms of effective monitoring, assisted diagnostics, and treatment planning, particularly for patients unable to communicate verbally. Existing data-driven methods of detecting pain from facial expressions are limited due to interpretability and severity quantification. To this end, we propose GraphAU-Pain, leveraging a graph-based framework to model facial Action Units (AUs) and their interrelationships for pain intensity estimation. AUs are represented as graph nodes, with co-occurrence relationships as edges, enabling a more expressive depiction of pain-related facial behaviors. By utilizing a relational graph neural network, our framework offers improved interpretability and significant performance gains. Experiments conducted on the publicly available UNBC dataset demonstrate the effectiveness of the GraphAU-Pain, achieving an F1-score of 66.21% and accuracy of 87.61% in pain intensity estimation.
A Regularization-Guided Equivariant Approach for Image Restoration
Equivariant and invariant deep learning models have been developed to exploit intrinsic symmetries in data, demonstrating significant effectiveness in certain scenarios. However, these methods often suffer from limited representation accuracy and rely on strict symmetry assumptions that may not hold in practice. These limitations pose a significant drawback for image restoration tasks, which demands high accuracy and precise symmetry representation. To address these challenges, we propose a rotation-equivariant regularization strategy that adaptively enforces the appropriate symmetry constraints on the data while preserving the network's representational accuracy. Specifically, we introduce EQ-Reg, a regularizer designed to enhance rotation equivariance, which innovatively extends the insights of data-augmentation-based and equivariant-based methodologies. This is achieved through self-supervised learning and the spatial rotation and cyclic channel shift of feature maps deduce in the equivariant framework. Our approach firstly enables a non-strictly equivariant network suitable for image restoration, providing a simple and adaptive mechanism for adjusting equivariance based on task. Extensive experiments across three low-level tasks demonstrate the superior accuracy and generalization capability of our method, outperforming state-of-the-art approaches.
The Missing Point in Vision Transformers for Universal Image Segmentation
Image segmentation remains a challenging task in computer vision, demanding robust mask generation and precise classification. Recent mask-based approaches yield high-quality masks by capturing global context. However, accurately classifying these masks, especially in the presence of ambiguous boundaries and imbalanced class distributions, remains an open challenge. In this work, we introduce ViT-P, a novel two-stage segmentation framework that decouples mask generation from classification. The first stage employs a proposal generator to produce class-agnostic mask proposals, while the second stage utilizes a point-based classification model built on the Vision Transformer (ViT) to refine predictions by focusing on mask central points. ViT-P serves as a pre-training-free adapter, allowing the integration of various pre-trained vision transformers without modifying their architecture, ensuring adaptability to dense prediction tasks. Furthermore, we demonstrate that coarse and bounding box annotations can effectively enhance classification without requiring additional training on fine annotation datasets, reducing annotation costs while maintaining strong performance. Extensive experiments across COCO, ADE20K, and Cityscapes datasets validate the effectiveness of ViT-P, achieving state-of-the-art results with 54.0 PQ on ADE20K panoptic segmentation, 87.4 mIoU on Cityscapes semantic segmentation, and 63.6 mIoU on ADE20K semantic segmentation. The code and pretrained models are available at: https://github.com/sajjad-sh33/ViT-P}{https://github.com/sajjad-sh33/ViT-P.
Depth-Guided Bundle Sampling for Efficient Generalizable Neural Radiance Field Reconstruction CVPR 2025
Recent advancements in generalizable novel view synthesis have achieved impressive quality through interpolation between nearby views. However, rendering high-resolution images remains computationally intensive due to the need for dense sampling of all rays. Recognizing that natural scenes are typically piecewise smooth and sampling all rays is often redundant, we propose a novel depth-guided bundle sampling strategy to accelerate rendering. By grouping adjacent rays into a bundle and sampling them collectively, a shared representation is generated for decoding all rays within the bundle. To further optimize efficiency, our adaptive sampling strategy dynamically allocates samples based on depth confidence, concentrating more samples in complex regions while reducing them in smoother areas. When applied to ENeRF, our method achieves up to a 1.27 dB PSNR improvement and a 47% increase in FPS on the DTU dataset. Extensive experiments on synthetic and real-world datasets demonstrate state-of-the-art rendering quality and up to 2x faster rendering compared to existing generalizable methods. Code is available at https://github.com/KLMAV-CUC/GDB-NeRF.
comment: CVPR 2025
Advancements in Medical Image Classification through Fine-Tuning Natural Domain Foundation Models
Using massive datasets, foundation models are large-scale, pre-trained models that perform a wide range of tasks. These models have shown consistently improved results with the introduction of new methods. It is crucial to analyze how these trends impact the medical field and determine whether these advancements can drive meaningful change. This study investigates the application of recent state-of-the-art foundation models, DINOv2, MAE, VMamba, CoCa, SAM2, and AIMv2, for medical image classification. We explore their effectiveness on datasets including CBIS-DDSM for mammography, ISIC2019 for skin lesions, APTOS2019 for diabetic retinopathy, and CHEXPERT for chest radiographs. By fine-tuning these models and evaluating their configurations, we aim to understand the potential of these advancements in medical image classification. The results indicate that these advanced models significantly enhance classification outcomes, demonstrating robust performance despite limited labeled data. Based on our results, AIMv2, DINOv2, and SAM2 models outperformed others, demonstrating that progress in natural domain training has positively impacted the medical domain and improved classification outcomes. Our code is publicly available at: https://github.com/sajjad-sh33/Medical-Transfer-Learning.
SAIL: Self-supervised Albedo Estimation from Real Images with a Latent Diffusion Model
Intrinsic image decomposition aims at separating an image into its underlying albedo and shading components, isolating the base color from lighting effects to enable downstream applications such as virtual relighting and scene editing. Despite the rise and success of learning-based approaches, intrinsic image decomposition from real-world images remains a significant challenging task due to the scarcity of labeled ground-truth data. Most existing solutions rely on synthetic data as supervised setups, limiting their ability to generalize to real-world scenes. Self-supervised methods, on the other hand, often produce albedo maps that contain reflections and lack consistency under different lighting conditions. To address this, we propose SAIL, an approach designed to estimate albedo-like representations from single-view real-world images. We repurpose the prior knowledge of a latent diffusion model for unconditioned scene relighting as a surrogate objective for albedo estimation. To extract the albedo, we introduce a novel intrinsic image decomposition fully formulated in the latent space. To guide the training of our latent diffusion model, we introduce regularization terms that constrain both the lighting-dependent and independent components of our latent image decomposition. SAIL predicts stable albedo under varying lighting conditions and generalizes to multiple scenes, using only unlabeled multi-illumination data available online.
SuperAD: A Training-free Anomaly Classification and Segmentation Method for CVPR 2025 VAND 3.0 Workshop Challenge Track 1: Adapt & Detect
In this technical report, we present our solution to the CVPR 2025 Visual Anomaly and Novelty Detection (VAND) 3.0 Workshop Challenge Track 1: Adapt & Detect: Robust Anomaly Detection in Real-World Applications. In real-world industrial anomaly detection, it is crucial to accurately identify anomalies with physical complexity, such as transparent or reflective surfaces, occlusions, and low-contrast contaminations. The recently proposed MVTec AD 2 dataset significantly narrows the gap between publicly available benchmarks and anomalies found in real-world industrial environments. To address the challenges posed by this dataset--such as complex and varying lighting conditions and real anomalies with large scale differences--we propose a fully training-free anomaly detection and segmentation method based on feature extraction using the DINOv2 model named SuperAD. Our method carefully selects a small number of normal reference images and constructs a memory bank by leveraging the strong representational power of DINOv2. Anomalies are then segmented by performing nearest neighbor matching between test image features and the memory bank. Our method achieves competitive results on both test sets of the MVTec AD 2 dataset.
Improving Heart Rejection Detection in XPCI Images Using Synthetic Data Augmentation
Accurate identification of acute cellular rejection (ACR) in endomyocardial biopsies is essential for effective management of heart transplant patients. However, the rarity of high-grade rejection cases (3R) presents a significant challenge for training robust deep learning models. This work addresses the class imbalance problem by leveraging synthetic data generation using StyleGAN to augment the limited number of real 3R images. Prior to GAN training, histogram equalization was applied to standardize image appearance and improve the consistency of tissue representation. StyleGAN was trained on available 3R biopsy patches and subsequently used to generate 10,000 realistic synthetic images. These were combined with real 0R samples, that is samples without rejection, in various configurations to train ResNet-18 classifiers for binary rejection classification. Three classifier variants were evaluated: one trained on real 0R and synthetic 3R images, another using both synthetic and additional real samples, and a third trained solely on real data. All models were tested on an independent set of real biopsy images. Results demonstrate that synthetic data improves classification performance, particularly when used in combination with real samples. The highest-performing model, which used both real and synthetic images, achieved strong precision and recall for both classes. These findings underscore the value of hybrid training strategies and highlight the potential of GAN-based data augmentation in biomedical image analysis, especially in domains constrained by limited annotated datasets.
HAODiff: Human-Aware One-Step Diffusion via Dual-Prompt Guidance
Human-centered images often suffer from severe generic degradation during transmission and are prone to human motion blur (HMB), making restoration challenging. Existing research lacks sufficient focus on these issues, as both problems often coexist in practice. To address this, we design a degradation pipeline that simulates the coexistence of HMB and generic noise, generating synthetic degraded data to train our proposed HAODiff, a human-aware one-step diffusion. Specifically, we propose a triple-branch dual-prompt guidance (DPG), which leverages high-quality images, residual noise (LQ minus HQ), and HMB segmentation masks as training targets. It produces a positive-negative prompt pair for classifier-free guidance (CFG) in a single diffusion step. The resulting adaptive dual prompts let HAODiff exploit CFG more effectively, boosting robustness against diverse degradations. For fair evaluation, we introduce MPII-Test, a benchmark rich in combined noise and HMB cases. Extensive experiments show that our HAODiff surpasses existing state-of-the-art (SOTA) methods in terms of both quantitative metrics and visual quality on synthetic and real-world datasets, including our introduced MPII-Test. Code is available at: https://github.com/gobunu/HAODiff.
comment: 9 pages, 8 figures. The code and model will be available at https://github.com/gobunu/HAODiff
Cross-Sequence Semi-Supervised Learning for Multi-Parametric MRI-Based Visual Pathway Delineation
Accurately delineating the visual pathway (VP) is crucial for understanding the human visual system and diagnosing related disorders. Exploring multi-parametric MR imaging data has been identified as an important way to delineate VP. However, due to the complex cross-sequence relationships, existing methods cannot effectively model the complementary information from different MRI sequences. In addition, these existing methods heavily rely on large training data with labels, which is labor-intensive and time-consuming to obtain. In this work, we propose a novel semi-supervised multi-parametric feature decomposition framework for VP delineation. Specifically, a correlation-constrained feature decomposition (CFD) is designed to handle the complex cross-sequence relationships by capturing the unique characteristics of each MRI sequence and easing the multi-parametric information fusion process. Furthermore, a consistency-based sample enhancement (CSE) module is developed to address the limited labeled data issue, by generating and promoting meaningful edge information from unlabeled data. We validate our framework using two public datasets, and one in-house Multi-Shell Diffusion MRI (MDM) dataset. Experimental results demonstrate the superiority of our approach in terms of delineation performance when compared to seven state-of-the-art approaches.
MLLM-Guided VLM Fine-Tuning with Joint Inference for Zero-Shot Composed Image Retrieval
Existing Zero-Shot Composed Image Retrieval (ZS-CIR) methods typically train adapters that convert reference images into pseudo-text tokens, which are concatenated with the modifying text and processed by frozen text encoders in pretrained VLMs or LLMs. While this design leverages the strengths of large pretrained models, it only supervises the adapter to produce encoder-compatible tokens that loosely preserve visual semantics. Crucially, it does not directly optimize the composed query representation to capture the full intent of the composition or to align with the target semantics, thereby limiting retrieval performance, particularly in cases involving fine-grained or complex visual transformations. To address this problem, we propose MLLM-Guided VLM Fine-Tuning with Joint Inference (MVFT-JI), a novel approach that leverages a pretrained multimodal large language model (MLLM) to construct two complementary training tasks using only unlabeled images: target text retrieval taskand text-to-image retrieval task. By jointly optimizing these tasks, our method enables the VLM to inherently acquire robust compositional retrieval capabilities, supported by the provided theoretical justifications and empirical validation. Furthermore, during inference, we further prompt the MLLM to generate target texts from composed queries and compute retrieval scores by integrating similarities between (i) the composed query and candidate images, and (ii) the MLLM-generated target text and candidate images. This strategy effectively combines the VLM's semantic alignment strengths with the MLLM's reasoning capabilities.
Point-RFT: Improving Multimodal Reasoning with Visually Grounded Reinforcement Finetuning
Recent advances in large language models have significantly improved textual reasoning through the effective use of Chain-of-Thought (CoT) and reinforcement learning. However, extending these successes to vision-language tasks remains challenging due to inherent limitations in text-only CoT, such as visual hallucinations and insufficient multimodal integration. In this paper, we introduce Point-RFT, a multimodal reasoning framework explicitly designed to leverage visually grounded CoT reasoning for visual document understanding. Our approach consists of two stages: First, we conduct format finetuning using a curated dataset of 71K diverse visual reasoning problems, each annotated with detailed, step-by-step rationales explicitly grounded to corresponding visual elements. Second, we employ reinforcement finetuning targeting visual document understanding. On ChartQA, our approach improves accuracy from 70.88% (format-finetuned baseline) to 90.04%, surpassing the 83.92% accuracy achieved by reinforcement finetuning relying solely on text-based CoT. The result shows that our grounded CoT is more effective for multimodal reasoning compared with the text-only CoT. Moreover, Point-RFT exhibits superior generalization capability across several out-of-domain visual document reasoning benchmarks, including CharXiv, PlotQA, IconQA, TabMWP, etc., and highlights its potential in complex real-world scenarios.
Modeling Beyond MOS: Quality Assessment Models Must Integrate Context, Reasoning, and Multimodality
This position paper argues that Mean Opinion Score (MOS), while historically foundational, is no longer sufficient as the sole supervisory signal for multimedia quality assessment models. MOS reduces rich, context-sensitive human judgments to a single scalar, obscuring semantic failures, user intent, and the rationale behind quality decisions. We contend that modern quality assessment models must integrate three interdependent capabilities: (1) context-awareness, to adapt evaluations to task-specific goals and viewing conditions; (2) reasoning, to produce interpretable, evidence-grounded justifications for quality judgments; and (3) multimodality, to align perceptual and semantic cues using vision-language models. We critique the limitations of current MOS-centric benchmarks and propose a roadmap for reform: richer datasets with contextual metadata and expert rationales, and new evaluation metrics that assess semantic alignment, reasoning fidelity, and contextual sensitivity. By reframing quality assessment as a contextual, explainable, and multimodal modeling task, we aim to catalyze a shift toward more robust, human-aligned, and trustworthy evaluation systems.
comment: Under review
Knowledge-Aligned Counterfactual-Enhancement Diffusion Perception for Unsupervised Cross-Domain Visual Emotion Recognition CVPR 2025
Visual Emotion Recognition (VER) is a critical yet challenging task aimed at inferring emotional states of individuals based on visual cues. However, existing works focus on single domains, e.g., realistic images or stickers, limiting VER models' cross-domain generalizability. To fill this gap, we introduce an Unsupervised Cross-Domain Visual Emotion Recognition (UCDVER) task, which aims to generalize visual emotion recognition from the source domain (e.g., realistic images) to the low-resource target domain (e.g., stickers) in an unsupervised manner. Compared to the conventional unsupervised domain adaptation problems, UCDVER presents two key challenges: a significant emotional expression variability and an affective distribution shift. To mitigate these issues, we propose the Knowledge-aligned Counterfactual-enhancement Diffusion Perception (KCDP) framework. Specifically, KCDP leverages a VLM to align emotional representations in a shared knowledge space and guides diffusion models for improved visual affective perception. Furthermore, a Counterfactual-Enhanced Language-image Emotional Alignment (CLIEA) method generates high-quality pseudo-labels for the target domain. Extensive experiments demonstrate that our model surpasses SOTA models in both perceptibility and generalization, e.g., gaining 12% improvements over the SOTA VER model TGCA-PVT. The project page is at https://yinwen2019.github.io/ucdver.
comment: Accepted at CVPR 2025
DriveCamSim: Generalizable Camera Simulation via Explicit Camera Modeling for Autonomous Driving
Camera sensor simulation serves as a critical role for autonomous driving (AD), e.g. evaluating vision-based AD algorithms. While existing approaches have leveraged generative models for controllable image/video generation, they remain constrained to generating multi-view video sequences with fixed camera viewpoints and video frequency, significantly limiting their downstream applications. To address this, we present a generalizable camera simulation framework DriveCamSim, whose core innovation lies in the proposed Explicit Camera Modeling (ECM) mechanism. Instead of implicit interaction through vanilla attention, ECM establishes explicit pixel-wise correspondences across multi-view and multi-frame dimensions, decoupling the model from overfitting to the specific camera configurations (intrinsic/extrinsic parameters, number of views) and temporal sampling rates presented in the training data. For controllable generation, we identify the issue of information loss inherent in existing conditional encoding and injection pipelines, proposing an information-preserving control mechanism. This control mechanism not only improves conditional controllability, but also can be extended to be identity-aware to enhance temporal consistency in foreground object rendering. With above designs, our model demonstrates superior performance in both visual quality and controllability, as well as generalization capability across spatial-level (camera parameters variations) and temporal-level (video frame rate variations), enabling flexible user-customizable camera simulation tailored to diverse application scenarios. Code will be avaliable at https://github.com/swc-17/DriveCamSim for facilitating future research.
VisCRA: A Visual Chain Reasoning Attack for Jailbreaking Multimodal Large Language Models
The emergence of Multimodal Large Language Models (MLRMs) has enabled sophisticated visual reasoning capabilities by integrating reinforcement learning and Chain-of-Thought (CoT) supervision. However, while these enhanced reasoning capabilities improve performance, they also introduce new and underexplored safety risks. In this work, we systematically investigate the security implications of advanced visual reasoning in MLRMs. Our analysis reveals a fundamental trade-off: as visual reasoning improves, models become more vulnerable to jailbreak attacks. Motivated by this critical finding, we introduce VisCRA (Visual Chain Reasoning Attack), a novel jailbreak framework that exploits the visual reasoning chains to bypass safety mechanisms. VisCRA combines targeted visual attention masking with a two-stage reasoning induction strategy to precisely control harmful outputs. Extensive experiments demonstrate VisCRA's significant effectiveness, achieving high attack success rates on leading closed-source MLRMs: 76.48% on Gemini 2.0 Flash Thinking, 68.56% on QvQ-Max, and 56.60% on GPT-4o. Our findings highlight a critical insight: the very capability that empowers MLRMs -- their visual reasoning -- can also serve as an attack vector, posing significant security risks.
Grounding Language with Vision: A Conditional Mutual Information Calibrated Decoding Strategy for Reducing Hallucinations in LVLMs
Large Vision-Language Models (LVLMs) are susceptible to hallucinations, where generated responses seem semantically plausible yet exhibit little or no relevance to the input image. Previous studies reveal that this issue primarily stems from LVLMs' over-reliance on language priors while disregarding the visual information during decoding. To alleviate this issue, we introduce a novel Conditional Pointwise Mutual Information (C-PMI) calibrated decoding strategy, which adaptively strengthens the mutual dependency between generated texts and input images to mitigate hallucinations. Unlike existing methods solely focusing on text token sampling, we propose to jointly model the contributions of visual and textual tokens to C-PMI, formulating hallucination mitigation as a bi-level optimization problem aimed at maximizing mutual information. To solve it, we design a token purification mechanism that dynamically regulates the decoding process by sampling text tokens remaining maximally relevant to the given image, while simultaneously refining image tokens most pertinent to the generated response. Extensive experiments across various benchmarks reveal that the proposed method significantly reduces hallucinations in LVLMs while preserving decoding efficiency.
Burst Image Super-Resolution via Multi-Cross Attention Encoding and Multi-Scan State-Space Decoding
Multi-image super-resolution (MISR) can achieve higher image quality than single-image super-resolution (SISR) by aggregating sub-pixel information from multiple spatially shifted frames. Among MISR tasks, burst super-resolution (BurstSR) has gained significant attention due to its wide range of applications. Recent methods have increasingly adopted Transformers over convolutional neural networks (CNNs) in super-resolution tasks, due to their superior ability to capture both local and global context. However, most existing approaches still rely on fixed and narrow attention windows that restrict the perception of features beyond the local field. This limitation hampers alignment and feature aggregation, both of which are crucial for high-quality super-resolution. To address these limitations, we propose a novel feature extractor that incorporates two newly designed attention mechanisms: overlapping cross-window attention and cross-frame attention, enabling more precise and efficient extraction of sub-pixel information across multiple frames. Furthermore, we introduce a Multi-scan State-Space Module with the cross-frame attention mechanism to enhance feature aggregation. Extensive experiments on both synthetic and real-world benchmarks demonstrate the superiority of our approach. Additional evaluations on ISO 12233 resolution test charts further confirm its enhanced super-resolution performance.
comment: 32 pages, 13 figures, submitted to 'Image and Vision Computing'
FieldWorkArena: Agentic AI Benchmark for Real Field Work Tasks
This paper proposes FieldWorkArena, a benchmark for agentic AI targeting real-world field work. With the recent increase in demand for agentic AI, they are required to monitor and report safety and health incidents, as well as manufacturing-related incidents, that may occur in real-world work environments. Existing agentic AI benchmarks have been limited to evaluating web tasks and are insufficient for evaluating agents in real-world work environments, where complexity increases significantly. In this paper, we define a new action space that agentic AI should possess for real world work environment benchmarks and improve the evaluation function from previous methods to assess the performance of agentic AI in diverse real-world tasks. The dataset consists of videos captured on-site and documents actually used in factories and warehouses, and tasks were created based on interviews with on-site workers and managers. Evaluation results confirmed that performance evaluation considering the characteristics of Multimodal LLM (MLLM) such as GPT-4o is feasible. Additionally, the effectiveness and limitations of the proposed new evaluation method were identified. The complete dataset (HuggingFace) and evaluation program (GitHub) can be downloaded from the following website: https://en-documents.research.global.fujitsu.com/fieldworkarena/.
comment: 6 pages, 2 figures, 4 tables
LangDAug: Langevin Data Augmentation for Multi-Source Domain Generalization in Medical Image Segmentation ICML 2025
Medical image segmentation models often struggle to generalize across different domains due to various reasons. Domain Generalization (DG) methods overcome this either through representation learning or data augmentation (DAug). While representation learning methods seek domain-invariant features, they often rely on ad-hoc techniques and lack formal guarantees. DAug methods, which enrich model representations through synthetic samples, have shown comparable or superior performance to representation learning approaches. We propose LangDAug, a novel $\textbf{Lang}$evin $\textbf{D}$ata $\textbf{Aug}$mentation for multi-source domain generalization in 2D medical image segmentation. LangDAug leverages Energy-Based Models (EBMs) trained via contrastive divergence to traverse between source domains, generating intermediate samples through Langevin dynamics. Theoretical analysis shows that LangDAug induces a regularization effect, and for GLMs, it upper-bounds the Rademacher complexity by the intrinsic dimensionality of the data manifold. Through extensive experiments on Fundus segmentation and 2D MRI prostate segmentation benchmarks, we show that LangDAug outperforms state-of-the-art domain generalization methods and effectively complements existing domain-randomization approaches. The codebase for our method is available at https://github.com/backpropagator/LangDAug.
comment: Accepted at ICML 2025
ReDDiT: Rehashing Noise for Discrete Visual Generation
Discrete diffusion models are gaining traction in the visual generative area for their efficiency and compatibility. However, the pioneered attempts still fall behind the continuous counterparts, which we attribute to the noise (absorbing state) design and sampling heuristics. In this study, we propose the rehashing noise framework for discrete diffusion transformer, termed ReDDiT, to extend absorbing states and improve expressive capacity of discrete diffusion models. ReDDiT enriches the potential paths that latent variables can traverse during training with randomized multi-index corruption. The derived rehash sampler, which reverses the randomized absorbing paths, guarantees the diversity and low discrepancy of the generation process. These reformulations lead to more consistent and competitive generation quality, mitigating the need for heavily tuned randomness. Experiments show that ReDDiT significantly outperforms the baseline (reducing gFID from 6.18 to 1.61) and is on par with the continuous counterparts with higher efficiency.
comment: Preprint, under development
Modality Curation: Building Universal Embeddings for Advanced Multimodal Information Retrieval
Multimodal information retrieval (MIR) faces inherent challenges due to the heterogeneity of data sources and the complexity of cross-modal alignment. While previous studies have identified modal gaps in feature spaces, a systematic approach to address these challenges remains unexplored. In this work, we introduce UNITE, a universal framework that tackles these challenges through two critical yet underexplored aspects: data curation and modality-aware training configurations. Our work provides the first comprehensive analysis of how modality-specific data properties influence downstream task performance across diverse scenarios. Moreover, we propose Modal-Aware Masked Contrastive Learning (MAMCL) to mitigate the competitive relationships among the instances of different modalities. Our framework achieves state-of-the-art results on multiple multimodal retrieval benchmarks, outperforming existing methods by notable margins. Through extensive experiments, we demonstrate that strategic modality curation and tailored training protocols are pivotal for robust cross-modal representation learning. This work not only advances MIR performance but also provides a foundational blueprint for future research in multimodal systems. Our project is available at https://friedrichor.github.io/projects/UNITE.
comment: 26 pages, project page: https://friedrichor.github.io/projects/UNITE
HF-VTON: High-Fidelity Virtual Try-On via Consistent Geometric and Semantic Alignment
Virtual try-on technology has become increasingly important in the fashion and retail industries, enabling the generation of high-fidelity garment images that adapt seamlessly to target human models. While existing methods have achieved notable progress, they still face significant challenges in maintaining consistency across different poses. Specifically, geometric distortions lead to a lack of spatial consistency, mismatches in garment structure and texture across poses result in semantic inconsistency, and the loss or distortion of fine-grained details diminishes visual fidelity. To address these challenges, we propose HF-VTON, a novel framework that ensures high-fidelity virtual try-on performance across diverse poses. HF-VTON consists of three key modules: (1) the Appearance-Preserving Warp Alignment Module (APWAM), which aligns garments to human poses, addressing geometric deformations and ensuring spatial consistency; (2) the Semantic Representation and Comprehension Module (SRCM), which captures fine-grained garment attributes and multi-pose data to enhance semantic representation, maintaining structural, textural, and pattern consistency; and (3) the Multimodal Prior-Guided Appearance Generation Module (MPAGM), which integrates multimodal features and prior knowledge from pre-trained models to optimize appearance generation, ensuring both semantic and geometric consistency. Additionally, to overcome data limitations in existing benchmarks, we introduce the SAMP-VTONS dataset, featuring multi-pose pairs and rich textual annotations for a more comprehensive evaluation. Experimental results demonstrate that HF-VTON outperforms state-of-the-art methods on both VITON-HD and SAMP-VTONS, excelling in visual fidelity, semantic consistency, and detail preservation.
Benchmarking Large Multimodal Models for Ophthalmic Visual Question Answering with OphthalWeChat
Purpose: To develop a bilingual multimodal visual question answering (VQA) benchmark for evaluating VLMs in ophthalmology. Methods: Ophthalmic image posts and associated captions published between January 1, 2016, and December 31, 2024, were collected from WeChat Official Accounts. Based on these captions, bilingual question-answer (QA) pairs in Chinese and English were generated using GPT-4o-mini. QA pairs were categorized into six subsets by question type and language: binary (Binary_CN, Binary_EN), single-choice (Single-choice_CN, Single-choice_EN), and open-ended (Open-ended_CN, Open-ended_EN). The benchmark was used to evaluate the performance of three VLMs: GPT-4o, Gemini 2.0 Flash, and Qwen2.5-VL-72B-Instruct. Results: The final OphthalWeChat dataset included 3,469 images and 30,120 QA pairs across 9 ophthalmic subspecialties, 548 conditions, 29 imaging modalities, and 68 modality combinations. Gemini 2.0 Flash achieved the highest overall accuracy (0.548), outperforming GPT-4o (0.522, P < 0.001) and Qwen2.5-VL-72B-Instruct (0.514, P < 0.001). It also led in both Chinese (0.546) and English subsets (0.550). Subset-specific performance showed Gemini 2.0 Flash excelled in Binary_CN (0.687), Single-choice_CN (0.666), and Single-choice_EN (0.646), while GPT-4o ranked highest in Binary_EN (0.717), Open-ended_CN (BLEU-1: 0.301; BERTScore: 0.382), and Open-ended_EN (BLEU-1: 0.183; BERTScore: 0.240). Conclusions: This study presents the first bilingual VQA benchmark for ophthalmology, distinguished by its real-world context and inclusion of multiple examinations per patient. The dataset reflects authentic clinical decision-making scenarios and enables quantitative evaluation of VLMs, supporting the development of accurate, specialized, and trustworthy AI systems for eye care.
Rotation-Equivariant Self-Supervised Method in Image Denoising CVPR 2025
Self-supervised image denoising methods have garnered significant research attention in recent years, for this kind of method reduces the requirement of large training datasets. Compared to supervised methods, self-supervised methods rely more on the prior embedded in deep networks themselves. As a result, most of the self-supervised methods are designed with Convolution Neural Networks (CNNs) architectures, which well capture one of the most important image prior, translation equivariant prior. Inspired by the great success achieved by the introduction of translational equivariance, in this paper, we explore the way to further incorporate another important image prior. Specifically, we first apply high-accuracy rotation equivariant convolution to self-supervised image denoising. Through rigorous theoretical analysis, we have proved that simply replacing all the convolution layers with rotation equivariant convolution layers would modify the network into its rotation equivariant version. To the best of our knowledge, this is the first time that rotation equivariant image prior is introduced to self-supervised image denoising at the network architecture level with a comprehensive theoretical analysis of equivariance errors, which offers a new perspective to the field of self-supervised image denoising. Moreover, to further improve the performance, we design a new mask mechanism to fusion the output of rotation equivariant network and vanilla CNN-based network, and construct an adaptive rotation equivariant framework. Through extensive experiments on three typical methods, we have demonstrated the effectiveness of the proposed method.
comment: Accepted by CVPR 2025
Diagnosing and Mitigating Modality Interference in Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) have demonstrated impressive capabilities across tasks, yet they often exhibit difficulty in distinguishing task-relevant from irrelevant signals, particularly in tasks like Visual Question Answering (VQA), which can lead to susceptibility to misleading or spurious inputs. We refer to this broader limitation as the Cross-Modality Competency Problem: the model's inability to fairly evaluate all modalities. This vulnerability becomes more evident in modality-specific tasks such as image classification or pure text question answering, where models are expected to rely solely on one modality. In such tasks, spurious information from irrelevant modalities often leads to significant performance degradation. We refer to this failure as Modality Interference, which serves as a concrete and measurable instance of the cross-modality competency problem. We further design a perturbation-based causal diagnostic experiment to verify and quantify this problem. To mitigate modality interference, we propose a novel framework to fine-tune MLLMs, including perturbation-based data augmentations with both heuristic perturbations and adversarial perturbations via Projected Gradient Descent (PGD), and a consistency regularization strategy applied to model outputs with original and perturbed inputs. Experiments on multiple benchmark datasets (image-heavy, text-heavy, and VQA tasks) and multiple model families with different scales demonstrate significant improvements in robustness and cross-modality competency, indicating our method's effectiveness in boosting unimodal reasoning ability while enhancing performance on multimodal tasks.
Multiplicity is an Inevitable and Inherent Challenge in Multimodal Learning
Multimodal learning has seen remarkable progress, particularly with the emergence of large-scale pre-training across various modalities. However, most current approaches are built on the assumption of a deterministic, one-to-one alignment between modalities. This oversimplifies real-world multimodal relationships, where their nature is inherently many-to-many. This phenomenon, named multiplicity, is not a side-effect of noise or annotation error, but an inevitable outcome of semantic abstraction, representational asymmetry, and task-dependent ambiguity in multimodal tasks. This position paper argues that multiplicity is a fundamental bottleneck that manifests across all stages of the multimodal learning pipeline: from data construction to training and evaluation. This paper examines the causes and consequences of multiplicity, and highlights how multiplicity introduces training uncertainty, unreliable evaluation, and low dataset quality. This position calls for new research directions on multimodal learning: novel multiplicity-aware learning frameworks and dataset construction protocols considering multiplicity.
TESSER: Transfer-Enhancing Adversarial Attacks from Vision Transformers via Spectral and Semantic Regularization
Adversarial transferability remains a critical challenge in evaluating the robustness of deep neural networks. In security-critical applications, transferability enables black-box attacks without access to model internals, making it a key concern for real-world adversarial threat assessment. While Vision Transformers (ViTs) have demonstrated strong adversarial performance, existing attacks often fail to transfer effectively across architectures, especially from ViTs to Convolutional Neural Networks (CNNs) or hybrid models. In this paper, we introduce \textbf{TESSER} -- a novel adversarial attack framework that enhances transferability via two key strategies: (1) \textit{Feature-Sensitive Gradient Scaling (FSGS)}, which modulates gradients based on token-wise importance derived from intermediate feature activations, and (2) \textit{Spectral Smoothness Regularization (SSR)}, which suppresses high-frequency noise in perturbations using a differentiable Gaussian prior. These components work in tandem to generate perturbations that are both semantically meaningful and spectrally smooth. Extensive experiments on ImageNet across 12 diverse architectures demonstrate that TESSER achieves +10.9\% higher attack succes rate (ASR) on CNNs and +7.2\% on ViTs compared to the state-of-the-art Adaptive Token Tuning (ATT) method. Moreover, TESSER significantly improves robustness against defended models, achieving 53.55\% ASR on adversarially trained CNNs. Qualitative analysis shows strong alignment between TESSER's perturbations and salient visual regions identified via Grad-CAM, while frequency-domain analysis reveals a 12\% reduction in high-frequency energy, confirming the effectiveness of spectral regularization.
Align and Surpass Human Camouflaged Perception: Visual Refocus Reinforcement Fine-Tuning
Current multi-modal models exhibit a notable misalignment with the human visual system when identifying objects that are visually assimilated into the background. Our observations reveal that these multi-modal models cannot distinguish concealed objects, demonstrating an inability to emulate human cognitive processes which effectively utilize foreground-background similarity principles for visual analysis. To analyze this hidden human-model visual thinking discrepancy, we build a visual system that mimicks human visual camouflaged perception to progressively and iteratively `refocus' visual concealed content. The refocus is a progressive guidance mechanism enabling models to logically localize objects in visual images through stepwise reasoning. The localization process of concealed objects requires hierarchical attention shifting with dynamic adjustment and refinement of prior cognitive knowledge. In this paper, we propose a visual refocus reinforcement framework via the policy optimization algorithm to encourage multi-modal models to think and refocus more before answering, and achieve excellent reasoning abilities to align and even surpass human camouflaged perception systems. Our extensive experiments on camouflaged perception successfully demonstrate the emergence of refocus visual phenomena, characterized by multiple reasoning tokens and dynamic adjustment of the detection box. Besides, experimental results on both camouflaged object classification and detection tasks exhibit significantly superior performance compared to Supervised Fine-Tuning (SFT) baselines.
comment: Project Website: \url{https://github.com/HUuxiaobin/VRRF}
JailBound: Jailbreaking Internal Safety Boundaries of Vision-Language Models
Vision-Language Models (VLMs) exhibit impressive performance, yet the integration of powerful vision encoders has significantly broadened their attack surface, rendering them increasingly susceptible to jailbreak attacks. However, lacking well-defined attack objectives, existing jailbreak methods often struggle with gradient-based strategies prone to local optima and lacking precise directional guidance, and typically decouple visual and textual modalities, thereby limiting their effectiveness by neglecting crucial cross-modal interactions. Inspired by the Eliciting Latent Knowledge (ELK) framework, we posit that VLMs encode safety-relevant information within their internal fusion-layer representations, revealing an implicit safety decision boundary in the latent space. This motivates exploiting boundary to steer model behavior. Accordingly, we propose JailBound, a novel latent space jailbreak framework comprising two stages: (1) Safety Boundary Probing, which addresses the guidance issue by approximating decision boundary within fusion layer's latent space, thereby identifying optimal perturbation directions towards the target region; and (2) Safety Boundary Crossing, which overcomes the limitations of decoupled approaches by jointly optimizing adversarial perturbations across both image and text inputs. This latter stage employs an innovative mechanism to steer the model's internal state towards policy-violating outputs while maintaining cross-modal semantic consistency. Extensive experiments on six diverse VLMs demonstrate JailBound's efficacy, achieves 94.32% white-box and 67.28% black-box attack success averagely, which are 6.17% and 21.13% higher than SOTA methods, respectively. Our findings expose a overlooked safety risk in VLMs and highlight the urgent need for more robust defenses. Warning: This paper contains potentially sensitive, harmful and offensive content.
Rep3D: Re-parameterize Large 3D Kernels with Low-Rank Receptive Modeling for Medical Imaging
In contrast to vision transformers, which model long-range dependencies through global self-attention, large kernel convolutions provide a more efficient and scalable alternative, particularly in high-resolution 3D volumetric settings. However, naively increasing kernel size often leads to optimization instability and degradation in performance. Motivated by the spatial bias observed in effective receptive fields (ERFs), we hypothesize that different kernel elements converge at variable rates during training. To support this, we derive a theoretical connection between element-wise gradients and first-order optimization, showing that structurally re-parameterized convolution blocks inherently induce spatially varying learning rates. Building on this insight, we introduce Rep3D, a 3D convolutional framework that incorporates a learnable spatial prior into large kernel training. A lightweight two-stage modulation network generates a receptive-biased scaling mask, adaptively re-weighting kernel updates and enabling local-to-global convergence behavior. Rep3D adopts a plain encoder design with large depthwise convolutions, avoiding the architectural complexity of multi-branch compositions. We evaluate Rep3D on five challenging 3D segmentation benchmarks and demonstrate consistent improvements over state-of-the-art baselines, including transformer-based and fixed-prior re-parameterization methods. By unifying spatial inductive bias with optimization-aware learning, Rep3D offers an interpretable, and scalable solution for 3D medical image analysis. The source code is publicly available at https://github.com/leeh43/Rep3D.
comment: 14 pages
WQLCP: Weighted Adaptive Conformal Prediction for Robust Uncertainty Quantification Under Distribution Shifts
Conformal prediction (CP) provides a framework for constructing prediction sets with guaranteed coverage, assuming exchangeable data. However, real-world scenarios often involve distribution shifts that violate exchangeability, leading to unreliable coverage and inflated prediction sets. To address this challenge, we first introduce Reconstruction Loss-Scaled Conformal Prediction (RLSCP), which utilizes reconstruction losses derived from a Variational Autoencoder (VAE) as an uncertainty metric to scale score functions. While RLSCP demonstrates performance improvements, mainly resulting in better coverage, it quantifies quantiles based on a fixed calibration dataset without considering the discrepancies between test and train datasets in an unexchangeable setting. In the next step, we propose Weighted Quantile Loss-scaled Conformal Prediction (WQLCP), which refines RLSCP by incorporating a weighted notion of exchangeability, adjusting the calibration quantile threshold based on weights with respect to the ratio of calibration and test loss values. This approach improves the CP-generated prediction set outputs in the presence of distribution shifts. Experiments on large-scale datasets, including ImageNet variants, demonstrate that WQLCP outperforms existing baselines by consistently maintaining coverage while reducing prediction set sizes, providing a robust solution for CP under distribution shifts.
Beyond Segmentation: Confidence-Aware and Debiased Estimation of Ratio-based Biomarkers
Ratio-based biomarkers -- such as the proportion of necrotic tissue within a tumor -- are widely used in clinical practice to support diagnosis, prognosis and treatment planning. These biomarkers are typically estimated from soft segmentation outputs by computing region-wise ratios. Despite the high-stakes nature of clinical decision making, existing methods provide only point estimates, offering no measure of uncertainty. In this work, we propose a unified \textit{confidence-aware} framework for estimating ratio-based biomarkers. We conduct a systematic analysis of error propagation in the segmentation-to-biomarker pipeline and identify model miscalibration as the dominant source of uncertainty. To mitigate this, we incorporate a lightweight, post-hoc calibration module that can be applied using internal hospital data without retraining. We leverage a tunable parameter $Q$ to control the confidence level of the derived bounds, allowing adaptation towards clinical practice. Extensive experiments show that our method produces statistically sound confidence intervals, with tunable confidence levels, enabling more trustworthy application of predictive biomarkers in clinical workflows.
comment: 9 pages
Guard Me If You Know Me: Protecting Specific Face-Identity from Deepfakes
Securing personal identity against deepfake attacks is increasingly critical in the digital age, especially for celebrities and political figures whose faces are easily accessible and frequently targeted. Most existing deepfake detection methods focus on general-purpose scenarios and often ignore the valuable prior knowledge of known facial identities, e.g., "VIP individuals" whose authentic facial data are already available. In this paper, we propose \textbf{VIPGuard}, a unified multimodal framework designed to capture fine-grained and comprehensive facial representations of a given identity, compare them against potentially fake or similar-looking faces, and reason over these comparisons to make accurate and explainable predictions. Specifically, our framework consists of three main stages. First, fine-tune a multimodal large language model (MLLM) to learn detailed and structural facial attributes. Second, we perform identity-level discriminative learning to enable the model to distinguish subtle differences between highly similar faces, including real and fake variations. Finally, we introduce user-specific customization, where we model the unique characteristics of the target face identity and perform semantic reasoning via MLLM to enable personalized and explainable deepfake detection. Our framework shows clear advantages over previous detection works, where traditional detectors mainly rely on low-level visual cues and provide no human-understandable explanations, while other MLLM-based models often lack a detailed understanding of specific face identities. To facilitate the evaluation of our method, we built a comprehensive identity-aware benchmark called \textbf{VIPBench} for personalized deepfake detection, involving the latest 7 face-swapping and 7 entire face synthesis techniques for generation.
VTBench: Comprehensive Benchmark Suite Towards Real-World Virtual Try-on Models
While virtual try-on has achieved significant progress, evaluating these models towards real-world scenarios remains a challenge. A comprehensive benchmark is essential for three key reasons:(1) Current metrics inadequately reflect human perception, particularly in unpaired try-on settings;(2)Most existing test sets are limited to indoor scenarios, lacking complexity for real-world evaluation; and (3) An ideal system should guide future advancements in virtual try-on generation. To address these needs, we introduce VTBench, a hierarchical benchmark suite that systematically decomposes virtual image try-on into hierarchical, disentangled dimensions, each equipped with tailored test sets and evaluation criteria. VTBench exhibits three key advantages:1) Multi-Dimensional Evaluation Framework: The benchmark encompasses five critical dimensions for virtual try-on generation (e.g., overall image quality, texture preservation, complex background consistency, cross-category size adaptability, and hand-occlusion handling). Granular evaluation metrics of corresponding test sets pinpoint model capabilities and limitations across diverse, challenging scenarios.2) Human Alignment: Human preference annotations are provided for each test set, ensuring the benchmark's alignment with perceptual quality across all evaluation dimensions. (3) Valuable Insights: Beyond standard indoor settings, we analyze model performance variations across dimensions and investigate the disparity between indoor and real-world try-on scenarios. To foster the field of virtual try-on towards challenging real-world scenario, VTBench will be open-sourced, including all test sets, evaluation protocols, generated results, and human annotations.
comment: Project Websit: \url{https://github.com/HUuxiaobin/VTBench}
What You Perceive Is What You Conceive: A Cognition-Inspired Framework for Open Vocabulary Image Segmentation
Open vocabulary image segmentation tackles the challenge of recognizing dynamically adjustable, predefined novel categories at inference time by leveraging vision-language alignment. However, existing paradigms typically perform class-agnostic region segmentation followed by category matching, which deviates from the human visual system's process of recognizing objects based on semantic concepts, leading to poor alignment between region segmentation and target concepts. To bridge this gap, we propose a novel Cognition-Inspired Framework for open vocabulary image segmentation that emulates the human visual recognition process: first forming a conceptual understanding of an object, then perceiving its spatial extent. The framework consists of three core components: (1) A Generative Vision-Language Model (G-VLM) that mimics human cognition by generating object concepts to provide semantic guidance for region segmentation. (2) A Concept-Aware Visual Enhancer Module that fuses textual concept features with global visual representations, enabling adaptive visual perception based on target concepts. (3) A Cognition-Inspired Decoder that integrates local instance features with G-VLM-provided semantic cues, allowing selective classification over a subset of relevant categories. Extensive experiments demonstrate that our framework achieves significant improvements, reaching $27.2$ PQ, $17.0$ mAP, and $35.3$ mIoU on A-150. It further attains $56.2$, $28.2$, $15.4$, $59.2$, $18.7$, and $95.8$ mIoU on Cityscapes, Mapillary Vistas, A-847, PC-59, PC-459, and PAS-20, respectively. In addition, our framework supports vocabulary-free segmentation, offering enhanced flexibility in recognizing unseen categories. Code will be public.
Few-Shot Class-Incremental Learning For Efficient SAR Automatic Target Recognition
Synthetic aperture radar automatic target recognition (SAR-ATR) systems have rapidly evolved to tackle incremental recognition challenges in operational settings. Data scarcity remains a major hurdle that conventional SAR-ATR techniques struggle to address. To cope with this challenge, we propose a few-shot class-incremental learning (FSCIL) framework based on a dual-branch architecture that focuses on local feature extraction and leverages the discrete Fourier transform and global filters to capture long-term spatial dependencies. This incorporates a lightweight cross-attention mechanism that fuses domain-specific features with global dependencies to ensure robust feature interaction, while maintaining computational efficiency by introducing minimal scale-shift parameters. The framework combines focal loss for class distinction under imbalance and center loss for compact intra-class distributions to enhance class separation boundaries. Experimental results on the MSTAR benchmark dataset demonstrate that the proposed framework consistently outperforms state-of-the-art methods in FSCIL SAR-ATR, attesting to its effectiveness in real-world scenarios.
K-Buffers: A Plug-in Method for Enhancing Neural Fields with Multiple Buffers IJCAI 2025
Neural fields are now the central focus of research in 3D vision and computer graphics. Existing methods mainly focus on various scene representations, such as neural points and 3D Gaussians. However, few works have studied the rendering process to enhance the neural fields. In this work, we propose a plug-in method named K-Buffers that leverages multiple buffers to improve the rendering performance. Our method first renders K buffers from scene representations and constructs K pixel-wise feature maps. Then, We introduce a K-Feature Fusion Network (KFN) to merge the K pixel-wise feature maps. Finally, we adopt a feature decoder to generate the rendering image. We also introduce an acceleration strategy to improve rendering speed and quality. We apply our method to well-known radiance field baselines, including neural point fields and 3D Gaussian Splatting (3DGS). Extensive experiments demonstrate that our method effectively enhances the rendering performance of neural point fields and 3DGS.
comment: 15 pages, 9 figures, IJCAI 2025
Aggregated Structural Representation with Large Language Models for Human-Centric Layout Generation
Time consumption and the complexity of manual layout design make automated layout generation a critical task, especially for multiple applications across different mobile devices. Existing graph-based layout generation approaches suffer from limited generative capability, often resulting in unreasonable and incompatible outputs. Meanwhile, vision based generative models tend to overlook the original structural information, leading to component intersections and overlaps. To address these challenges, we propose an Aggregation Structural Representation (ASR) module that integrates graph networks with large language models (LLMs) to preserve structural information while enhancing generative capability. This novel pipeline utilizes graph features as hierarchical prior knowledge, replacing the traditional Vision Transformer (ViT) module in multimodal large language models (MLLM) to predict full layout information for the first time. Moreover, the intermediate graph matrix used as input for the LLM is human editable, enabling progressive, human centric design generation. A comprehensive evaluation on the RICO dataset demonstrates the strong performance of ASR, both quantitatively using mean Intersection over Union (mIoU), and qualitatively through a crowdsourced user study. Additionally, sampling on relational features ensures diverse layout generation, further enhancing the adaptability and creativity of the proposed approach.
SMART-PC: Skeletal Model Adaptation for Robust Test-Time Training in Point Clouds
Test-Time Training (TTT) has emerged as a promising solution to address distribution shifts in 3D point cloud classification. However, existing methods often rely on computationally expensive backpropagation during adaptation, limiting their applicability in real-world, time-sensitive scenarios. In this paper, we introduce SMART-PC, a skeleton-based framework that enhances resilience to corruptions by leveraging the geometric structure of 3D point clouds. During pre-training, our method predicts skeletal representations, enabling the model to extract robust and meaningful geometric features that are less sensitive to corruptions, thereby improving adaptability to test-time distribution shifts. Unlike prior approaches, SMART-PC achieves real-time adaptation by eliminating backpropagation and updating only BatchNorm statistics, resulting in a lightweight and efficient framework capable of achieving high frame-per-second rates while maintaining superior classification performance. Extensive experiments on benchmark datasets, including ModelNet40-C, ShapeNet-C, and ScanObjectNN-C, demonstrate that SMART-PC achieves state-of-the-art results, outperforming existing methods such as MATE in terms of both accuracy and computational efficiency. The implementation is available at: https://github.com/AliBahri94/SMART-PC.
FlowCut: Rethinking Redundancy via Information Flow for Efficient Vision-Language Models
Large vision-language models (LVLMs) excel at multimodal understanding but suffer from high computational costs due to redundant vision tokens. Existing pruning methods typically rely on single-layer attention scores to rank and prune redundant visual tokens to solve this inefficiency. However, as the interaction between tokens and layers is complicated, this raises a basic question: Is such a simple single-layer criterion sufficient to identify redundancy? To answer this question, we rethink the emergence of redundant visual tokens from a fundamental perspective: information flow, which models the interaction between tokens and layers by capturing how information moves between tokens across layers. We find (1) the CLS token acts as an information relay, which can simplify the complicated flow analysis; (2) the redundancy emerges progressively and dynamically via layer-wise attention concentration; and (3) relying solely on attention scores from single layers can lead to contradictory redundancy identification. Based on this, we propose FlowCut, an information-flow-aware pruning framework, mitigating the insufficiency of the current criterion for identifying redundant tokens and better aligning with the model's inherent behaviors. Extensive experiments show that FlowCut achieves superior results, outperforming SoTA by 1.6% on LLaVA-1.5-7B with 88.9% token reduction, and by 4.3% on LLaVA-NeXT-7B with 94.4% reduction, delivering 3.2x speed-up in the prefilling stage. Our code is available at https://github.com/TungChintao/FlowCut
comment: 19 pages, 11 figures
TDVE-Assessor: Benchmarking and Evaluating the Quality of Text-Driven Video Editing with LMMs
Text-driven video editing is rapidly advancing, yet its rigorous evaluation remains challenging due to the absence of dedicated video quality assessment (VQA) models capable of discerning the nuances of editing quality. To address this critical gap, we introduce TDVE-DB, a large-scale benchmark dataset for text-driven video editing. TDVE-DB consists of 3,857 edited videos generated from 12 diverse models across 8 editing categories, and is annotated with 173,565 human subjective ratings along three crucial dimensions, i.e., edited video quality, editing alignment, and structural consistency. Based on TDVE-DB, we first conduct a comprehensive evaluation for the 12 state-of-the-art editing models revealing the strengths and weaknesses of current video techniques, and then benchmark existing VQA methods in the context of text-driven video editing evaluation. Building on these insights, we propose TDVE-Assessor, a novel VQA model specifically designed for text-driven video editing assessment. TDVE-Assessor integrates both spatial and temporal video features into a large language model (LLM) for rich contextual understanding to provide comprehensive quality assessment. Extensive experiments demonstrate that TDVE-Assessor substantially outperforms existing VQA models on TDVE-DB across all three evaluation dimensions, setting a new state-of-the-art. Both TDVE-DB and TDVE-Assessor will be released upon the publication.
comment: 25 pages, 14 figures, 8 tables
Seeing is Believing, but How Much? A Comprehensive Analysis of Verbalized Calibration in Vision-Language Models
Uncertainty quantification is essential for assessing the reliability and trustworthiness of modern AI systems. Among existing approaches, verbalized uncertainty, where models express their confidence through natural language, has emerged as a lightweight and interpretable solution in large language models (LLMs). However, its effectiveness in vision-language models (VLMs) remains insufficiently studied. In this work, we conduct a comprehensive evaluation of verbalized confidence in VLMs, spanning three model categories, four task domains, and three evaluation scenarios. Our results show that current VLMs often display notable miscalibration across diverse tasks and settings. Notably, visual reasoning models (i.e., thinking with images) consistently exhibit better calibration, suggesting that modality-specific reasoning is critical for reliable uncertainty estimation. To further address calibration challenges, we introduce Visual Confidence-Aware Prompting, a two-stage prompting strategy that improves confidence alignment in multimodal settings. Overall, our study highlights the inherent miscalibration in VLMs across modalities. More broadly, our findings underscore the fundamental importance of modality alignment and model faithfulness in advancing reliable multimodal systems.
Multimodal Federated Learning With Missing Modalities through Feature Imputation Network
Multimodal federated learning holds immense potential for collaboratively training models from multiple sources without sharing raw data, addressing both data scarcity and privacy concerns, two key challenges in healthcare. A major challenge in training multimodal federated models in healthcare is the presence of missing modalities due to multiple reasons, including variations in clinical practice, cost and accessibility constraints, retrospective data collection, privacy concerns, and occasional technical or human errors. Previous methods typically rely on publicly available real datasets or synthetic data to compensate for missing modalities. However, obtaining real datasets for every disease is impractical, and training generative models to synthesize missing modalities is computationally expensive and prone to errors due to the high dimensionality of medical data. In this paper, we propose a novel, lightweight, low-dimensional feature translator to reconstruct bottleneck features of the missing modalities. Our experiments on three different datasets (MIMIC-CXR, NIH Open-I, and CheXpert), in both homogeneous and heterogeneous settings consistently improve the performance of competitive baselines. The code and implementation details are available at: https://github.com/bhattarailab/FedFeatGen
comment: MIUA 2025
PathBench: A comprehensive comparison benchmark for pathology foundation models towards precision oncology
The emergence of pathology foundation models has revolutionized computational histopathology, enabling highly accurate, generalized whole-slide image analysis for improved cancer diagnosis, and prognosis assessment. While these models show remarkable potential across cancer diagnostics and prognostics, their clinical translation faces critical challenges including variability in optimal model across cancer types, potential data leakage in evaluation, and lack of standardized benchmarks. Without rigorous, unbiased evaluation, even the most advanced PFMs risk remaining confined to research settings, delaying their life-saving applications. Existing benchmarking efforts remain limited by narrow cancer-type focus, potential pretraining data overlaps, or incomplete task coverage. We present PathBench, the first comprehensive benchmark addressing these gaps through: multi-center in-hourse datasets spanning common cancers with rigorous leakage prevention, evaluation across the full clinical spectrum from diagnosis to prognosis, and an automated leaderboard system for continuous model assessment. Our framework incorporates large-scale data, enabling objective comparison of PFMs while reflecting real-world clinical complexity. All evaluation data comes from private medical providers, with strict exclusion of any pretraining usage to avoid data leakage risks. We have collected 15,888 WSIs from 8,549 patients across 10 hospitals, encompassing over 64 diagnosis and prognosis tasks. Currently, our evaluation of 19 PFMs shows that Virchow2 and H-Optimus-1 are the most effective models overall. This work provides researchers with a robust platform for model development and offers clinicians actionable insights into PFM performance across diverse clinical scenarios, ultimately accelerating the translation of these transformative technologies into routine pathology practice.
comment: 35 pages, 9 figures
Long-Context State-Space Video World Models
Video diffusion models have recently shown promise for world modeling through autoregressive frame prediction conditioned on actions. However, they struggle to maintain long-term memory due to the high computational cost associated with processing extended sequences in attention layers. To overcome this limitation, we propose a novel architecture leveraging state-space models (SSMs) to extend temporal memory without compromising computational efficiency. Unlike previous approaches that retrofit SSMs for non-causal vision tasks, our method fully exploits the inherent advantages of SSMs in causal sequence modeling. Central to our design is a block-wise SSM scanning scheme, which strategically trades off spatial consistency for extended temporal memory, combined with dense local attention to ensure coherence between consecutive frames. We evaluate the long-term memory capabilities of our model through spatial retrieval and reasoning tasks over extended horizons. Experiments on Memory Maze and Minecraft datasets demonstrate that our approach surpasses baselines in preserving long-range memory, while maintaining practical inference speeds suitable for interactive applications.
comment: Project website: https://ryanpo.com/ssm_wm
STAR-R1: Spatial TrAnsformation Reasoning by Reinforcing Multimodal LLMs
Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities across diverse tasks, yet they lag significantly behind humans in spatial reasoning. We investigate this gap through Transformation-Driven Visual Reasoning (TVR), a challenging task requiring identification of object transformations across images under varying viewpoints. While traditional Supervised Fine-Tuning (SFT) fails to generate coherent reasoning paths in cross-view settings, sparse-reward Reinforcement Learning (RL) suffers from inefficient exploration and slow convergence. To address these limitations, we propose STAR-R1, a novel framework that integrates a single-stage RL paradigm with a fine-grained reward mechanism tailored for TVR. Specifically, STAR-R1 rewards partial correctness while penalizing excessive enumeration and passive inaction, enabling efficient exploration and precise reasoning. Comprehensive evaluations demonstrate that STAR-R1 achieves state-of-the-art performance across all 11 metrics, outperforming SFT by 23% in cross-view scenarios. Further analysis reveals STAR-R1's anthropomorphic behavior and highlights its unique ability to compare all objects for improving spatial reasoning. Our work provides critical insights in advancing the research of MLLMs and reasoning models. The codes, model weights, and data will be publicly available at https://github.com/zongzhao23/STAR-R1.
DualTalk: Dual-Speaker Interaction for 3D Talking Head Conversations CVPR 2025
In face-to-face conversations, individuals need to switch between speaking and listening roles seamlessly. Existing 3D talking head generation models focus solely on speaking or listening, neglecting the natural dynamics of interactive conversation, which leads to unnatural interactions and awkward transitions. To address this issue, we propose a new task -- multi-round dual-speaker interaction for 3D talking head generation -- which requires models to handle and generate both speaking and listening behaviors in continuous conversation. To solve this task, we introduce DualTalk, a novel unified framework that integrates the dynamic behaviors of speakers and listeners to simulate realistic and coherent dialogue interactions. This framework not only synthesizes lifelike talking heads when speaking but also generates continuous and vivid non-verbal feedback when listening, effectively capturing the interplay between the roles. We also create a new dataset featuring 50 hours of multi-round conversations with over 1,000 characters, where participants continuously switch between speaking and listening roles. Extensive experiments demonstrate that our method significantly enhances the naturalness and expressiveness of 3D talking heads in dual-speaker conversations. We recommend watching the supplementary video: https://ziqiaopeng.github.io/dualtalk.
comment: Accepted by CVPR 2025
Unsupervised Detection of Distribution Shift in Inverse Problems using Diffusion Models
Diffusion models are widely used as priors in imaging inverse problems. However, their performance often degrades under distribution shifts between the training and test-time images. Existing methods for identifying and quantifying distribution shifts typically require access to clean test images, which are almost never available while solving inverse problems (at test time). We propose a fully unsupervised metric for estimating distribution shifts using only indirect (corrupted) measurements and score functions from diffusion models trained on different datasets. We theoretically show that this metric estimates the KL divergence between the training and test image distributions. Empirically, we show that our score-based metric, using only corrupted measurements, closely approximates the KL divergence computed from clean images. Motivated by this result, we show that aligning the out-of-distribution score with the in-distribution score -- using only corrupted measurements -- reduces the KL divergence and leads to improved reconstruction quality across multiple inverse problems.
Task-Oriented Communications for Visual Navigation with Edge-Aerial Collaboration in Low Altitude Economy
To support the Low Altitude Economy (LAE), it is essential to achieve precise localization of unmanned aerial vehicles (UAVs) in urban areas where global positioning system (GPS) signals are unavailable. Vision-based methods offer a viable alternative but face severe bandwidth, memory and processing constraints on lightweight UAVs. Inspired by mammalian spatial cognition, we propose a task-oriented communication framework, where UAVs equipped with multi-camera systems extract compact multi-view features and offload localization tasks to edge servers. We introduce the Orthogonally-constrained Variational Information Bottleneck encoder (O-VIB), which incorporates automatic relevance determination (ARD) to prune non-informative features while enforcing orthogonality to minimize redundancy. This enables efficient and accurate localization with minimal transmission cost. Extensive evaluation on a dedicated LAE UAV dataset shows that O-VIB achieves high-precision localization under stringent bandwidth budgets. Code and dataset will be made publicly available at: github.com/fangzr/TOC-Edge-Aerial.
comment: Code and dataset will be made publicly available: https://github.com/fangzr/TOC-Edge-Aerial
X-GRM: Large Gaussian Reconstruction Model for Sparse-view X-rays to Computed Tomography
Computed Tomography serves as an indispensable tool in clinical workflows, providing non-invasive visualization of internal anatomical structures. Existing CT reconstruction works are limited to small-capacity model architecture and inflexible volume representation. In this work, we present X-GRM (X-ray Gaussian Reconstruction Model), a large feedforward model for reconstructing 3D CT volumes from sparse-view 2D X-ray projections. X-GRM employs a scalable transformer-based architecture to encode sparse-view X-ray inputs, where tokens from different views are integrated efficiently. Then, these tokens are decoded into a novel volume representation, named Voxel-based Gaussian Splatting (VoxGS), which enables efficient CT volume extraction and differentiable X-ray rendering. This combination of a high-capacity model and flexible volume representation, empowers our model to produce high-quality reconstructions from various testing inputs, including in-domain and out-domain X-ray projections. Our codes are available at: https://github.com/CUHK-AIM-Group/X-GRM.
NoisyRollout: Reinforcing Visual Reasoning with Data Augmentation
Recent advances in reinforcement learning (RL) have strengthened the reasoning capabilities of vision-language models (VLMs). However, enhancing policy exploration to better scale test-time compute remains largely underexplored. In addition, VLMs continue to struggle with imperfect visual perception, which in turn affects the subsequent reasoning process. To this end, we propose NoisyRollout, a simple yet effective data augmentation method that mixes trajectories from both clean and moderately distorted images during RL training. By injecting targeted diversity in visual perception and the resulting reasoning patterns, NoisyRollout promotes better policy exploration through vision-oriented inductive biases, ultimately leading to more robust reasoning behaviors. We further adopt a noise annealing schedule that gradually reduces distortion strength over training, leveraging noisy signals early on while ensuring training stability in later stages. Crucially, our method is easy-to-adopt--requiring no additional training cost and no modifications to the RL objective. Extensive experiments on $2$ distinct training datasets demonstrate that NoisyRollout achieves state-of-the-art performance among open-source RL-tuned models across $5$ out-of-domain reasoning and perception benchmarks. Furthermore, we validate the effectiveness of NoisyRollout across model sizes ($7$B and $32$B) and data scales (from $1$K to $6$K), highlighting its generalizability and scalability.
comment: Technical Report
VR-Robo: A Real-to-Sim-to-Real Framework for Visual Robot Navigation and Locomotion
Recent success in legged robot locomotion is attributed to the integration of reinforcement learning and physical simulators. However, these policies often encounter challenges when deployed in real-world environments due to sim-to-real gaps, as simulators typically fail to replicate visual realism and complex real-world geometry. Moreover, the lack of realistic visual rendering limits the ability of these policies to support high-level tasks requiring RGB-based perception like ego-centric navigation. This paper presents a Real-to-Sim-to-Real framework that generates photorealistic and physically interactive "digital twin" simulation environments for visual navigation and locomotion learning. Our approach leverages 3D Gaussian Splatting (3DGS) based scene reconstruction from multi-view images and integrates these environments into simulations that support ego-centric visual perception and mesh-based physical interactions. To demonstrate its effectiveness, we train a reinforcement learning policy within the simulator to perform a visual goal-tracking task. Extensive experiments show that our framework achieves RGB-only sim-to-real policy transfer. Additionally, our framework facilitates the rapid adaptation of robot policies with effective exploration capability in complex new environments, highlighting its potential for applications in households and factories.
comment: Project Page: https://vr-robo.github.io/
Time-VLM: Exploring Multimodal Vision-Language Models for Augmented Time Series Forecasting
Recent advancements in time series forecasting have explored augmenting models with text or vision modalities to improve accuracy. While text provides contextual understanding, it often lacks fine-grained temporal details. Conversely, vision captures intricate temporal patterns but lacks semantic context, limiting the complementary potential of these modalities. To address this, we propose \method, a novel multimodal framework that leverages pre-trained Vision-Language Models (VLMs) to bridge temporal, visual, and textual modalities for enhanced forecasting. Our framework comprises three key components: (1) a Retrieval-Augmented Learner, which extracts enriched temporal features through memory bank interactions; (2) a Vision-Augmented Learner, which encodes time series as informative images; and (3) a Text-Augmented Learner, which generates contextual textual descriptions. These components collaborate with frozen pre-trained VLMs to produce multimodal embeddings, which are then fused with temporal features for final prediction. Extensive experiments demonstrate that Time-VLM achieves superior performance, particularly in few-shot and zero-shot scenarios, thereby establishing a new direction for multimodal time series forecasting. Code is available at https://github.com/CityMind-Lab/ICML25-TimeVLM.
comment: 20 pages
Efficient Training-Free High-Resolution Synthesis with Energy Rectification in Diffusion Models
Diffusion models have achieved remarkable progress across various visual generation tasks. However, their performance significantly declines when generating content at resolutions higher than those used during training. Although numerous methods have been proposed to enable high-resolution generation, they all suffer from inefficiency. In this paper, we propose RectifiedHR, a straightforward and efficient solution for training-free high-resolution synthesis. Specifically, we propose a noise refresh strategy that unlocks the model's training-free high-resolution synthesis capability and improves efficiency. Additionally, we are the first to observe the phenomenon of energy decay, which may cause image blurriness during the high-resolution synthesis process. To address this issue, we introduce average latent energy analysis and find that tuning the classifier-free guidance hyperparameter can significantly improve generation performance. Our method is entirely training-free and demonstrates efficient performance. Furthermore, we show that RectifiedHR is compatible with various diffusion model techniques, enabling advanced features such as image editing, customized generation, and video synthesis. Extensive comparisons with numerous baseline methods validate the superior effectiveness and efficiency of RectifiedHR.
comment: Project Page: https://zhenyangcs.github.io/RectifiedHR-Diffusion/
NFIG: Autoregressive Image Generation with Next-Frequency Prediction
Autoregressive models have achieved promising results in natural language processing. However, for image generation tasks, they encounter substantial challenges in effectively capturing long-range dependencies, managing computational costs, and most crucially, defining meaningful autoregressive sequences that reflect natural image hierarchies. To address these issues, we present \textbf{N}ext-\textbf{F}requency \textbf{I}mage \textbf{G}eneration (\textbf{NFIG}), a novel framework that decomposes the image generation process into multiple frequency-guided stages. Our approach first generates low-frequency components to establish global structure with fewer tokens, then progressively adds higher-frequency details, following the natural spectral hierarchy of images. This principled autoregressive sequence not only improves the quality of generated images by better capturing true causal relationships between image components, but also significantly reduces computational overhead during inference. Extensive experiments demonstrate that NFIG achieves state-of-the-art performance with fewer steps, offering a more efficient solution for image generation, with 1.25$\times$ speedup compared to VAR-d20 while achieving better performance (FID: 2.81) on the ImageNet-256 benchmark. We hope that our insight of incorporating frequency-domain knowledge to guide autoregressive sequence design will shed light on future research. We will make our code publicly available upon acceptance of the paper.
comment: 10 pages, 7 figures, 2 tables
Attentive Eraser: Unleashing Diffusion Model's Object Removal Potential via Self-Attention Redirection Guidance AAAI 2025
Recently, diffusion models have emerged as promising newcomers in the field of generative models, shining brightly in image generation. However, when employed for object removal tasks, they still encounter issues such as generating random artifacts and the incapacity to repaint foreground object areas with appropriate content after removal. To tackle these problems, we propose Attentive Eraser, a tuning-free method to empower pre-trained diffusion models for stable and effective object removal. Firstly, in light of the observation that the self-attention maps influence the structure and shape details of the generated images, we propose Attention Activation and Suppression (ASS), which re-engineers the self-attention mechanism within the pre-trained diffusion models based on the given mask, thereby prioritizing the background over the foreground object during the reverse generation process. Moreover, we introduce Self-Attention Redirection Guidance (SARG), which utilizes the self-attention redirected by ASS to guide the generation process, effectively removing foreground objects within the mask while simultaneously generating content that is both plausible and coherent. Experiments demonstrate the stability and effectiveness of Attentive Eraser in object removal across a variety of pre-trained diffusion models, outperforming even training-based methods. Furthermore, Attentive Eraser can be implemented in various diffusion model architectures and checkpoints, enabling excellent scalability. Code is available at https://github.com/Anonym0u3/AttentiveEraser.
comment: Accepted by AAAI 2025(Oral)
A Survey on the Safety and Security Threats of Computer-Using Agents: JARVIS or Ultron?
Recently, AI-driven interactions with computing devices have advanced from basic prototype tools to sophisticated, LLM-based systems that emulate human-like operations in graphical user interfaces. We are now witnessing the emergence of \emph{Computer-Using Agents} (CUAs), capable of autonomously performing tasks such as navigating desktop applications, web pages, and mobile apps. However, as these agents grow in capability, they also introduce novel safety and security risks. Vulnerabilities in LLM-driven reasoning, with the added complexity of integrating multiple software components and multimodal inputs, further complicate the security landscape. In this paper, we present a systematization of knowledge on the safety and security threats of CUAs. We conduct a comprehensive literature review and distill our findings along four research objectives: \textit{\textbf{(i)}} define the CUA that suits safety analysis; \textit{\textbf{(ii)} } categorize current safety threats among CUAs; \textit{\textbf{(iii)}} propose a comprehensive taxonomy of existing defensive strategies; \textit{\textbf{(iv)}} summarize prevailing benchmarks, datasets, and evaluation metrics used to assess the safety and performance of CUAs. Building on these insights, our work provides future researchers with a structured foundation for exploring unexplored vulnerabilities and offers practitioners actionable guidance in designing and deploying secure Computer-Using Agents.
A Survey of LLM-based Agents in Medicine: How far are we from Baymax? ACL 2025
Large Language Models (LLMs) are transforming healthcare through the development of LLM-based agents that can understand, reason about, and assist with medical tasks. This survey provides a comprehensive review of LLM-based agents in medicine, examining their architectures, applications, and challenges. We analyze the key components of medical agent systems, including system profiles, clinical planning mechanisms, medical reasoning frameworks, and external capacity enhancement. The survey covers major application scenarios such as clinical decision support, medical documentation, training simulations, and healthcare service optimization. We discuss evaluation frameworks and metrics used to assess these agents' performance in healthcare settings. While LLM-based agents show promise in enhancing healthcare delivery, several challenges remain, including hallucination management, multimodal integration, implementation barriers, and ethical considerations. The survey concludes by highlighting future research directions, including advances in medical reasoning inspired by recent developments in LLM architectures, integration with physical systems, and improvements in training simulations. This work provides researchers and practitioners with a structured overview of the current state and future prospects of LLM-based agents in medicine.
comment: ACL 2025 Findings
Human-Aligned Image Models Improve Visual Decoding from the Brain ICML 2025
Decoding visual images from brain activity has significant potential for advancing brain-computer interaction and enhancing the understanding of human perception. Recent approaches align the representation spaces of images and brain activity to enable visual decoding. In this paper, we introduce the use of human-aligned image encoders to map brain signals to images. We hypothesize that these models more effectively capture perceptual attributes associated with the rapid visual stimuli presentations commonly used in visual brain data recording experiments. Our empirical results support this hypothesis, demonstrating that this simple modification improves image retrieval accuracy by up to 21% compared to state-of-the-art methods. Comprehensive experiments confirm consistent performance improvements across diverse EEG architectures, image encoders, alignment methods, participants, and brain imaging modalities
comment: Accepted to ICML 2025
WorldSense: Evaluating Real-world Omnimodal Understanding for Multimodal LLMs
We introduce WorldSense, the first benchmark to assess the multi-modal video understanding, that simultaneously encompasses visual, audio, and text inputs. In contrast to existing benchmarks, our WorldSense has several features: (i) collaboration of omni-modality, we design the evaluation tasks to feature a strong coupling of audio and video, requiring models to effectively utilize the synergistic perception of omni-modality; (ii) diversity of videos and tasks, WorldSense encompasses a diverse collection of 1,662 audio-visual synchronised videos, systematically categorized into 8 primary domains and 67 fine-grained subcategories to cover the broad scenarios, and 3,172 multi-choice QA pairs across 26 distinct tasks to enable the comprehensive evaluation; (iii) high-quality annotations, all the QA pairs are manually labeled by 80 expert annotators with multiple rounds of correction to ensure quality. Based on our WorldSense, we extensively evaluate various state-of-the-art models. The experimental results indicate that existing models face significant challenges in understanding real-world scenarios (48.0% best accuracy). By analyzing the limitations of current models, we aim to provide valuable insight to guide development of real-world understanding. We hope our WorldSense can provide a platform for evaluating the ability in constructing and understanding coherent contexts from omni-modality.
VideoJAM: Joint Appearance-Motion Representations for Enhanced Motion Generation in Video Models
Despite tremendous recent progress, generative video models still struggle to capture real-world motion, dynamics, and physics. We show that this limitation arises from the conventional pixel reconstruction objective, which biases models toward appearance fidelity at the expense of motion coherence. To address this, we introduce VideoJAM, a novel framework that instills an effective motion prior to video generators, by encouraging the model to learn a joint appearance-motion representation. VideoJAM is composed of two complementary units. During training, we extend the objective to predict both the generated pixels and their corresponding motion from a single learned representation. During inference, we introduce Inner-Guidance, a mechanism that steers the generation toward coherent motion by leveraging the model's own evolving motion prediction as a dynamic guidance signal. Notably, our framework can be applied to any video model with minimal adaptations, requiring no modifications to the training data or scaling of the model. VideoJAM achieves state-of-the-art performance in motion coherence, surpassing highly competitive proprietary models while also enhancing the perceived visual quality of the generations. These findings emphasize that appearance and motion can be complementary and, when effectively integrated, enhance both the visual quality and the coherence of video generation. Project website: https://hila-chefer.github.io/videojam-paper.github.io/
Domain-Agnostic Stroke Lesion Segmentation Using Physics-Constrained Synthetic Data
Segmenting stroke lesions in MRI is challenging due to diverse acquisition protocols that limit model generalisability. In this work, we introduce two physics-constrained approaches to generate synthetic quantitative MRI (qMRI) images that improve segmentation robustness across heterogeneous domains. Our first method, $\texttt{qATLAS}$, trains a neural network to estimate qMRI maps from standard MPRAGE images, enabling the simulation of varied MRI sequences with realistic tissue contrasts. The second method, $\texttt{qSynth}$, synthesises qMRI maps directly from tissue labels using label-conditioned Gaussian mixture models, ensuring physical plausibility. Extensive experiments on multiple out-of-domain datasets show that both methods outperform a baseline UNet, with $\texttt{qSynth}$ notably surpassing previous synthetic data approaches. These results highlight the promise of integrating MRI physics into synthetic data generation for robust, generalisable stroke lesion segmentation. Code is available at https://github.com/liamchalcroft/qsynth
TokBench: Evaluating Your Visual Tokenizer before Visual Generation
In this work, we reveal the limitations of visual tokenizers and VAEs in preserving fine-grained features, and propose a benchmark to evaluate reconstruction performance for two challenging visual contents: text and face. Visual tokenizers and VAEs have significantly advanced visual generation and multimodal modeling by providing more efficient compressed or quantized image representations. However, while helping production models reduce computational burdens, the information loss from image compression fundamentally limits the upper bound of visual generation quality. To evaluate this upper bound, we focus on assessing reconstructed text and facial features since they typically: 1) exist at smaller scales, 2) contain dense and rich textures, 3) are prone to collapse, and 4) are highly sensitive to human vision. We first collect and curate a diverse set of clear text and face images from existing datasets. Unlike approaches using VLM models, we employ established OCR and face recognition models for evaluation, ensuring accuracy while maintaining an exceptionally lightweight assessment process requiring just 2GB memory and 4 minutes to complete. Using our benchmark, we analyze text and face reconstruction quality across various scales for different image tokenizers and VAEs. Our results show modern visual tokenizers still struggle to preserve fine-grained features, especially at smaller scales. We further extend this evaluation framework to video, conducting comprehensive analysis of video tokenizers. Additionally, we demonstrate that traditional metrics fail to accurately reflect reconstruction performance for faces and text, while our proposed metrics serve as an effective complement.
comment: Benchmark, homepagee: https://wjf5203.github.io/TokBench
DeepEyes: Incentivizing "Thinking with Images" via Reinforcement Learning
Large Vision-Language Models (VLMs) have shown strong capabilities in multimodal understanding and reasoning, yet they are primarily constrained by text-based reasoning processes. However, achieving seamless integration of visual and textual reasoning which mirrors human cognitive processes remains a significant challenge. In particular, effectively incorporating advanced visual input processing into reasoning mechanisms is still an open question. Thus, in this paper, we explore the interleaved multimodal reasoning paradigm and introduce DeepEyes, a model with "thinking with images" capabilities incentivized through end-to-end reinforcement learning without the need for cold-start SFT. Notably, this ability emerges natively within the model itself, leveraging its inherent grounding ability as a tool instead of depending on separate specialized models. Specifically, we propose a tool-use-oriented data selection mechanism and a reward strategy to encourage successful tool-assisted reasoning trajectories. DeepEyes achieves significant performance gains on fine-grained perception and reasoning benchmarks and also demonstrates improvement in grounding, hallucination, and mathematical reasoning tasks. Interestingly, we observe the distinct evolution of tool-calling behavior from initial exploration to efficient and accurate exploitation, and diverse thinking patterns that closely mirror human visual reasoning processes. Code is available at https://github.com/Visual-Agent/DeepEyes.
comment: Ziwei, Michael, Jack, and Chenxiao are equal-contribution. The list order is random
RapidPoseTriangulation: Multi-view Multi-person Whole-body Human Pose Triangulation in a Millisecond
The integration of multi-view imaging and pose estimation represents a significant advance in computer vision applications, offering new possibilities for understanding human movement and interactions. This work presents a new algorithm that improves multi-view multi-person pose estimation, focusing on fast triangulation speeds and good generalization capabilities. The approach extends to whole-body pose estimation, capturing details from facial expressions to finger movements across multiple individuals and viewpoints. Adaptability to different settings is demonstrated through strong performance across unseen datasets and configurations. To support further progress in this field, all of this work is publicly accessible.
OmniSVG: A Unified Scalable Vector Graphics Generation Model
Scalable Vector Graphics (SVG) is an important image format widely adopted in graphic design because of their resolution independence and editability. The study of generating high-quality SVG has continuously drawn attention from both designers and researchers in the AIGC community. However, existing methods either produces unstructured outputs with huge computational cost or is limited to generating monochrome icons of over-simplified structures. To produce high-quality and complex SVG, we propose OmniSVG, a unified framework that leverages pre-trained Vision-Language Models (VLMs) for end-to-end multimodal SVG generation. By parameterizing SVG commands and coordinates into discrete tokens, OmniSVG decouples structural logic from low-level geometry for efficient training while maintaining the expressiveness of complex SVG structure. To further advance the development of SVG synthesis, we introduce MMSVG-2M, a multimodal dataset with two million richly annotated SVG assets, along with a standardized evaluation protocol for conditional SVG generation tasks. Extensive experiments show that OmniSVG outperforms existing methods and demonstrates its potential for integration into professional SVG design workflows.
comment: 18 pages; Project Page: https://omnisvg.github.io/
Semantic Correspondence: Unified Benchmarking and a Strong Baseline
Establishing semantic correspondence is a challenging task in computer vision, aiming to match keypoints with the same semantic information across different images. Benefiting from the rapid development of deep learning, remarkable progress has been made over the past decade. However, a comprehensive review and analysis of this task remains absent. In this paper, we present the first extensive survey of semantic correspondence methods. We first propose a taxonomy to classify existing methods based on the type of their method designs. These methods are then categorized accordingly, and we provide a detailed analysis of each approach. Furthermore, we aggregate and summarize the results of methods in literature across various benchmarks into a unified comparative table, with detailed configurations to highlight performance variations. Additionally, to provide a detailed understanding on existing methods for semantic matching, we thoroughly conduct controlled experiments to analyse the effectiveness of the components of different methods. Finally, we propose a simple yet effective baseline that achieves state-of-the-art performance on multiple benchmarks, providing a solid foundation for future research in this field. We hope this survey serves as a comprehensive reference and consolidated baseline for future development. Code is publicly available at: https://github.com/Visual-AI/Semantic-Correspondence.
Exploring 3D Activity Reasoning and Planning: From Implicit Human Intentions to Route-Aware Planning
3D activity reasoning and planning has attracted increasing attention in human-robot interaction and embodied AI thanks to the recent advance in multimodal learning. However, most existing studies are facing two common challenges: 1) heavy reliance on explicit instructions with little reasoning on implicit user intention; 2) negligence of inter-step route planning on robot moves. We address the above challenges by proposing 3D activity reasoning and planning, a novel 3D task that reasons the intended activities from implicit instructions and decomposes them into steps with inter-step routes and planning under the guidance of fine-grained 3D object shapes and locations from scene segmentation. We tackle the new 3D task from two perspectives. First, we construct ReasonPlan3D, a large-scale benchmark that covers diverse 3D scenes with rich implicit instructions and detailed annotations for multi-step task planning, inter-step route planning, and fine-grained segmentation. Second, we design a novel framework that introduces progressive plan generation with contextual consistency across multiple steps, as well as a scene graph that is updated dynamically for capturing critical objects and their spatial relations. Extensive experiments demonstrate the effectiveness of our benchmark and framework in reasoning activities from implicit human instructions, producing accurate stepwise task plans and seamlessly integrating route planning for multi-step moves. The dataset and code will be released.
Multimodal 3D Reasoning Segmentation with Complex Scenes
The recent development in multimodal learning has greatly advanced the research in 3D scene understanding in various real-world tasks such as embodied AI. However, most existing studies are facing two common challenges: 1) they are short of reasoning ability for interaction and interpretation of human intentions and 2) they focus on scenarios with single-category objects and over-simplified textual descriptions and neglect multi-object scenarios with complicated spatial relations among objects. We address the above challenges by proposing a 3D reasoning segmentation task for reasoning segmentation with multiple objects in scenes. The task allows producing 3D segmentation masks and detailed textual explanations as enriched by 3D spatial relations among objects. To this end, we create ReasonSeg3D, a large-scale and high-quality benchmark that integrates 3D segmentation masks and 3D spatial relations with generated question-answer pairs. In addition, we design MORE3D, a novel 3D reasoning network that works with queries of multiple objects and is tailored for 3D scene understanding. MORE3D learns detailed explanations on 3D relations and employs them to capture spatial information of objects and reason textual outputs. Extensive experiments show that MORE3D excels in reasoning and segmenting complex multi-object 3D scenes. In addition, the created ReasonSeg3D offers a valuable platform for future exploration of 3D reasoning segmentation. The data and code will be released.
Inverse Problem Sampling in Latent Space Using Sequential Monte Carlo
In image processing, solving inverse problems is the task of finding plausible reconstructions of an image that was corrupted by some (usually known) degradation operator. Commonly, this process is done using a generative image model that can guide the reconstruction towards solutions that appear natural. The success of diffusion models over the last few years has made them a leading candidate for this task. However, the sequential nature of diffusion models makes this conditional sampling process challenging. Furthermore, since diffusion models are often defined in the latent space of an autoencoder, the encoder-decoder transformations introduce additional difficulties. To address these challenges, we suggest a novel sampling method based on sequential Monte Carlo (SMC) in the latent space of diffusion models. We name our method LD-SMC. We define a generative model for the data using additional auxiliary observations and perform posterior inference with SMC sampling based on a backward diffusion process. Empirical evaluations on ImageNet and FFHQ show the benefits of LD-SMC over competing methods in various inverse problem tasks and especially in challenging inpainting tasks.
ZeroPur: Succinct Training-Free Adversarial Purification
Adversarial purification is a kind of defense technique that can defend against various unseen adversarial attacks without modifying the victim classifier. Existing methods often depend on external generative models or cooperation between auxiliary functions and victim classifiers. However, retraining generative models, auxiliary functions, or victim classifiers relies on the domain of the fine-tuned dataset and is computation-consuming. In this work, we suppose that adversarial images are outliers of the natural image manifold, and the purification process can be considered as returning them to this manifold. Following this assumption, we present a simple adversarial purification method without further training to purify adversarial images, called ZeroPur. ZeroPur contains two steps: given an adversarial example, Guided Shift obtains the shifted embedding of the adversarial example by the guidance of its blurred counterparts; after that, Adaptive Projection constructs a directional vector by this shifted embedding to provide momentum, projecting adversarial images onto the manifold adaptively. ZeroPur is independent of external models and requires no retraining of victim classifiers or auxiliary functions, relying solely on victim classifiers themselves to achieve purification. Extensive experiments on three datasets (CIFAR-10, CIFAR-100, and ImageNet-1K) using various classifier architectures (ResNet, WideResNet) demonstrate that our method achieves state-of-the-art robust performance. The code will be publicly available.
comment: 17 pages, 7 figures, under review
What Makes a Scene ? Scene Graph-based Evaluation and Feedback for Controllable Generation
While text-to-image generation has been extensively studied, generating images from scene graphs remains relatively underexplored, primarily due to challenges in accurately modeling spatial relationships and object interactions. To fill this gap, we introduce Scene-Bench, a comprehensive benchmark designed to evaluate and enhance the factual consistency in generating natural scenes. Scene-Bench comprises MegaSG, a large-scale dataset of one million images annotated with scene graphs, facilitating the training and fair comparison of models across diverse and complex scenes. Additionally, we propose SGScore, a novel evaluation metric that leverages chain-of-thought reasoning capabilities of multimodal large language models (LLMs) to assess both object presence and relationship accuracy, offering a more effective measure of factual consistency than traditional metrics like FID and CLIPScore. Building upon this evaluation framework, we develop a scene graph feedback pipeline that iteratively refines generated images by identifying and correcting discrepancies between the scene graph and the image. Extensive experiments demonstrate that Scene-Bench provides a more comprehensive and effective evaluation framework compared to existing benchmarks, particularly for complex scene generation. Furthermore, our feedback strategy significantly enhances the factual consistency of image generation models, advancing the field of controllable image generation.
One Image is Worth a Thousand Words: A Usability Preservable Text-Image Collaborative Erasing Framework ICML 2025
Concept erasing has recently emerged as an effective paradigm to prevent text-to-image diffusion models from generating visually undesirable or even harmful content. However, current removal methods heavily rely on manually crafted text prompts, making it challenging to achieve a high erasure (efficacy) while minimizing the impact on other benign concepts (usability). In this paper, we attribute the limitations to the inherent gap between the text and image modalities, which makes it hard to transfer the intricately entangled concept knowledge from text prompts to the image generation process. To address this, we propose a novel solution by directly integrating visual supervision into the erasure process, introducing the first text-image Collaborative Concept Erasing (Co-Erasing) framework. Specifically, Co-Erasing describes the concept jointly by text prompts and the corresponding undesirable images induced by the prompts, and then reduces the generating probability of the target concept through negative guidance. This approach effectively bypasses the knowledge gap between text and image, significantly enhancing erasure efficacy. Additionally, we design a text-guided image concept refinement strategy that directs the model to focus on visual features most relevant to the specified text concept, minimizing disruption to other benign concepts. Finally, comprehensive experiments suggest that Co-Erasing outperforms state-of-the-art erasure approaches significantly with a better trade-off between efficacy and usability. Codes are available at https://github.com/Ferry-Li/Co-Erasing.
comment: This paper has been accepeted to ICML 2025
UAV-Flow Colosseo: A Real-World Benchmark for Flying-on-a-Word UAV Imitation Learning
Unmanned Aerial Vehicles (UAVs) are evolving into language-interactive platforms, enabling more intuitive forms of human-drone interaction. While prior works have primarily focused on high-level planning and long-horizon navigation, we shift attention to language-guided fine-grained trajectory control, where UAVs execute short-range, reactive flight behaviors in response to language instructions. We formalize this problem as the Flying-on-a-Word (Flow) task and introduce UAV imitation learning as an effective approach. In this framework, UAVs learn fine-grained control policies by mimicking expert pilot trajectories paired with atomic language instructions. To support this paradigm, we present UAV-Flow, the first real-world benchmark for language-conditioned, fine-grained UAV control. It includes a task formulation, a large-scale dataset collected in diverse environments, a deployable control framework, and a simulation suite for systematic evaluation. Our design enables UAVs to closely imitate the precise, expert-level flight trajectories of human pilots and supports direct deployment without sim-to-real gap. We conduct extensive experiments on UAV-Flow, benchmarking VLN and VLA paradigms. Results show that VLA models are superior to VLN baselines and highlight the critical role of spatial grounding in the fine-grained Flow setting.
Generalizable Prompt Learning of CLIP: A Brief Overview
Existing vision-language models (VLMs) such as CLIP have showcased an impressive capability to generalize well across various downstream tasks. These models leverage the synergy between visual and textual information, enabling them to understand and reason about the content present in images and text in a unified manner. This article provides a brief overview of CLIP based on few-shot prompt learning, including experimental data and technical characteristics of some methods. The purpose of this review is to provide a reference for researchers who have just started their research in generalizable prompting of CLIP through few-shot training for classification across 15 datasets and also to facilitate the integration of this field by researchers in other downstream tasks.
Compile Scene Graphs with Reinforcement Learning
Next-token prediction is the fundamental principle for training large language models (LLMs), and reinforcement learning (RL) further enhances their reasoning performance. As an effective way to model language, image, video, and other modalities, the use of LLMs for end-to-end extraction of structured visual representations, such as scene graphs, remains underexplored. It requires the model to accurately produce a set of objects and relationship triplets, rather than generating text token by token. To achieve this, we introduce R1-SGG, a multimodal LLM (M-LLM) initially trained via supervised fine-tuning (SFT) on the scene graph dataset and subsequently refined using reinforcement learning to enhance its ability to generate scene graphs in an end-to-end manner. The SFT follows a conventional prompt-response paradigm, while RL requires the design of effective reward signals. We design a set of graph-centric rewards, including three recall-based variants -- Hard Recall, Hard Recall+Relax, and Soft Recall -- which evaluate semantic and spatial alignment between predictions and ground truth at the object and relation levels. A format consistency reward further ensures that outputs follow the expected structural schema. Extensive experiments on the VG150 and PSG benchmarks show that R1-SGG substantially reduces failure rates and achieves strong performance in Recall and mean Recall, surpassing traditional SGG models and existing multimodal language models. Our code is available at https://github.com/gpt4vision/R1-SGG
Diff-Def: Diffusion-Generated Deformation Fields for Conditional Atlases
Anatomical atlases are widely used for population studies and analysis. Conditional atlases target a specific sub-population defined via certain conditions, such as demographics or pathologies, and allow for the investigation of fine-grained anatomical differences like morphological changes associated with ageing or disease. Existing approaches use either registration-based methods that are often unable to handle large anatomical variations or generative adversarial models, which are challenging to train since they can suffer from training instabilities. Instead of generating atlases directly in as intensities, we propose using latent diffusion models to generate deformation fields, which transform a general population atlas into one representing a specific sub-population. Our approach ensures structural integrity, enhances interpretability and avoids hallucinations that may arise during direct image synthesis by generating this deformation field and regularising it using a neighbourhood of images. We compare our method to several state-of-the-art atlas generation methods using brain MR images from the UK Biobank. Our method generates highly realistic atlases with smooth transformations and high anatomical fidelity, outperforming existing baselines. We demonstrate the quality of these atlases through comprehensive evaluations, including quantitative metrics for anatomical accuracy, perceptual similarity, and qualitative analyses displaying the consistency and realism of the generated atlases.
ImageRAG: Enhancing Ultra High Resolution Remote Sensing Imagery Analysis with ImageRAG
Ultra High Resolution (UHR) remote sensing imagery (RSI) (e.g. 100,000 $\times$ 100,000 pixels or more) poses a significant challenge for current Remote Sensing Multimodal Large Language Models (RSMLLMs). If choose to resize the UHR image to standard input image size, the extensive spatial and contextual information that UHR images contain will be neglected. Otherwise, the original size of these images often exceeds the token limits of standard RSMLLMs, making it difficult to process the entire image and capture long-range dependencies to answer the query based on the abundant visual context. In this paper, we introduce ImageRAG for RS, a training-free framework to address the complexities of analyzing UHR remote sensing imagery. By transforming UHR remote sensing image analysis task to image's long context selection task, we design an innovative image contextual retrieval mechanism based on the Retrieval-Augmented Generation (RAG) technique, denoted as ImageRAG. ImageRAG's core innovation lies in its ability to selectively retrieve and focus on the most relevant portions of the UHR image as visual contexts that pertain to a given query. Fast path and slow path are proposed in this framework to handle this task efficiently and effectively. ImageRAG allows RSMLLMs to manage extensive context and spatial information from UHR RSI, ensuring the analysis is both accurate and efficient. Codebase will be released in https://github.com/om-ai-lab/ImageRAG
comment: Accepted by IEEE Geoscience and Remote Sensing Magazine
HybridTrack: A Hybrid Approach for Robust Multi-Object Tracking
The evolution of Advanced Driver Assistance Systems (ADAS) has increased the need for robust and generalizable algorithms for multi-object tracking. Traditional statistical model-based tracking methods rely on predefined motion models and assumptions about system noise distributions. Although computationally efficient, they often lack adaptability to varying traffic scenarios and require extensive manual design and parameter tuning. To address these issues, we propose a novel 3D multi-object tracking approach for vehicles, HybridTrack, which integrates a data-driven Kalman Filter (KF) within a tracking-by-detection paradigm. In particular, it learns the transition residual and Kalman gain directly from data, which eliminates the need for manual motion and stochastic parameter modeling. Validated on the real-world KITTI dataset, HybridTrack achieves 82.72% HOTA accuracy, significantly outperforming state-of-the-art methods. We also evaluate our method under different configurations, achieving the fastest processing speed of 112 FPS. Consequently, HybridTrack eliminates the dependency on scene-specific designs while improving performance and maintaining real-time efficiency. The code is publicly available at: https://github.com/leandro-svg/HybridTrack.
comment: IEEE ROBOTICS AND AUTOMATION LETTERS. ACCEPTED MAY, 2025
Dynamic Multimodal Evaluation with Flexible Complexity by Vision-Language Bootstrapping
Large Vision-Language Models (LVLMs) have demonstrated remarkable capabilities across multimodal tasks such as visual perception and reasoning, leading to good performance on various multimodal evaluation benchmarks. However, these benchmarks keep a static nature and overlap with the pre-training data, resulting in fixed complexity constraints and data contamination issues. This raises the concern regarding the validity of the evaluation. To address these two challenges, we introduce a dynamic multimodal evaluation protocol called Vision-Language Bootstrapping (VLB). VLB provides a robust and comprehensive assessment for LVLMs with reduced data contamination and flexible complexity. To this end, VLB dynamically generates new visual question-answering samples through a multimodal bootstrapping module that modifies both images and language, while ensuring that newly generated samples remain consistent with the original ones by a judge module. By composing various bootstrapping strategies, VLB offers dynamic variants of existing benchmarks with diverse complexities, enabling the evaluation to co-evolve with the ever-evolving capabilities of LVLMs. Extensive experimental results across multiple benchmarks, including SEEDBench, MMBench, and MME, show that VLB significantly reduces data contamination and exposes performance limitations of LVLMs.
Faster and Stronger: When ANN-SNN Conversion Meets Parallel Spiking Calculation ICML 2025
Spiking Neural Network (SNN), as a brain-inspired and energy-efficient network, is currently facing the pivotal challenge of exploring a suitable and efficient learning framework. The predominant training methodologies, namely Spatial-Temporal Back-propagation (STBP) and ANN-SNN Conversion, are encumbered by substantial training overhead or pronounced inference latency, which impedes the advancement of SNNs in scaling to larger networks and navigating intricate application domains. In this work, we propose a novel parallel conversion learning framework, which establishes a mathematical mapping relationship between each time-step of the parallel spiking neurons and the cumulative spike firing rate. We theoretically validate the lossless and sorting properties of the conversion process, as well as pointing out the optimal shifting distance for each step. Furthermore, by integrating the above framework with the distribution-aware error calibration technique, we can achieve efficient conversion towards more general activation functions or training-free circumstance. Extensive experiments have confirmed the significant performance advantages of our method for various conversion cases under ultra-low time latency. To our best knowledge, this is the first work which jointly utilizes parallel spiking calculation and ANN-SNN Conversion, providing a highly promising approach for SNN supervised training. Code is available at https://github.com/hzc1208/Parallel_Conversion.
comment: Accepted to ICML 2025
Cross-Modal Bidirectional Interaction Model for Referring Remote Sensing Image Segmentation
Given a natural language expression and a remote sensing image, the goal of referring remote sensing image segmentation (RRSIS) is to generate a pixel-level mask of the target object identified by the referring expression. In contrast to natural scenarios, expressions in RRSIS often involve complex geospatial relationships, with target objects of interest that vary significantly in scale and lack visual saliency, thereby increasing the difficulty of achieving precise segmentation. To address the aforementioned challenges, a novel RRSIS framework is proposed, termed the cross-modal bidirectional interaction model (CroBIM). Specifically, a context-aware prompt modulation (CAPM) module is designed to integrate spatial positional relationships and task-specific knowledge into the linguistic features, thereby enhancing the ability to capture the target object. Additionally, a language-guided feature aggregation (LGFA) module is introduced to integrate linguistic information into multi-scale visual features, incorporating an attention deficit compensation mechanism to enhance feature aggregation. Finally, a mutual-interaction decoder (MID) is designed to enhance cross-modal feature alignment through cascaded bidirectional cross-attention, thereby enabling precise segmentation mask prediction. To further forster the research of RRSIS, we also construct RISBench, a new large-scale benchmark dataset comprising 52,472 image-language-label triplets. Extensive benchmarking on RISBench and two other prevalent datasets demonstrates the superior performance of the proposed CroBIM over existing state-of-the-art (SOTA) methods. The source code for CroBIM and the RISBench dataset will be publicly available at https://github.com/HIT-SIRS/CroBIM
DiMeR: Disentangled Mesh Reconstruction Model
We propose DiMeR, a novel geometry-texture disentangled feed-forward model with 3D supervision for sparse-view mesh reconstruction. Existing methods confront two persistent obstacles: (i) textures can conceal geometric errors, i.e., visually plausible images can be rendered even with wrong geometry, producing multiple ambiguous optimization objectives in geometry-texture mixed solution space for similar objects; and (ii) prevailing mesh extraction methods are redundant, unstable, and lack 3D supervision. To solve these challenges, we rethink the inductive bias for mesh reconstruction. First, we disentangle the unified geometry-texture solution space, where a single input admits multiple feasible solutions, into geometry and texture spaces individually. Specifically, given that normal maps are strictly consistent with geometry and accurately capture surface variations, the normal maps serve as the sole input for geometry prediction in DiMeR, while the texture is estimated from RGB images. Second, we streamline the algorithm of mesh extraction by eliminating modules with low performance/cost ratios and redesigning regularization losses with 3D supervision. Notably, DiMeR still accepts raw RGB images as input by leveraging foundation models for normal prediction. Extensive experiments demonstrate that DiMeR generalises across sparse-view-, single-image-, and text-to-3D tasks, consistently outperforming baselines. On the GSO and OmniObject3D datasets, DiMeR significantly reduces Chamfer Distance by more than 30%.
comment: Project Page: https://lutao2021.github.io/DiMeR_page/
PillarHist: A Quantization-aware Pillar Feature Encoder based on Height-aware Histogram
Real-time and high-performance 3D object detection plays a critical role in autonomous driving and robotics. Recent pillar-based 3D object detectors have gained significant attention due to their compact representation and low computational overhead, making them suitable for onboard deployment and quantization. However, existing pillar-based detectors still suffer from information loss along height dimension and large numerical distribution difference during pillar feature encoding (PFE), which severely limits their performance and quantization potential. To address above issue, we first unveil the importance of different input information during PFE and identify the height dimension as a key factor in enhancing 3D detection performance. Motivated by this observation, we propose a height-aware pillar feature encoder, called PillarHist. Specifically, PillarHist statistics the discrete distribution of points at different heights within one pillar with the information entropy guidance. This simple yet effective design greatly preserves the information along the height dimension while significantly reducing the computation overhead of the PFE. Meanwhile, PillarHist also constrains the arithmetic distribution of PFE input to a stable range, making it quantization-friendly. Notably, PillarHist operates exclusively within the PFE stage to enhance performance, enabling seamless integration into existing pillar-based methods without introducing complex operations. Extensive experiments show the effectiveness of PillarHist in terms of both efficiency and performance.
Explanatory Instructions: Towards Unified Vision Tasks Understanding and Zero-shot Generalization ICML'25
Computer Vision (CV) has yet to fully achieve the zero-shot task generalization observed in Natural Language Processing (NLP), despite following many of the milestones established in NLP, such as large transformer models, extensive pre-training, and the auto-regression paradigm, among others. In this paper, we explore the idea that CV adopts discrete and terminological task definitions (\eg, ``image segmentation''), which may be a key barrier to zero-shot task generalization. Our hypothesis is that without truly understanding previously-seen tasks--due to these terminological definitions--deep models struggle to generalize to novel tasks. To verify this, we introduce Explanatory Instructions, which provide an intuitive way to define CV task objectives through detailed linguistic transformations from input images to outputs. We create a large-scale dataset comprising 12 million ``image input $\to$ explanatory instruction $\to$ output'' triplets, and train an auto-regressive-based vision-language model (AR-based VLM) that takes both images and explanatory instructions as input. By learning to follow these instructions, the AR-based VLM achieves instruction-level zero-shot capabilities for previously-seen tasks and demonstrates strong zero-shot generalization for unseen CV tasks. Code and dataset will be openly available on our GitHub repository.
comment: ICML'25, 44 pages
Unlocking Text Capabilities in Vision Models
Visual classifiers provide high-dimensional feature representations that are challenging to interpret and analyze. Text, in contrast, provides a more expressive and human-friendly interpretable medium for understanding and analyzing model behavior. We propose a simple, yet powerful method for reformulating any pretrained visual classifier so that it can be queried with free-form text without compromising its original performance. Our approach is label-free, data and compute-efficient, and is trained to preserve the underlying classifiers distribution and decision-making processes. Our method unlocks several zero-shot text interpretability applications for any visual classifier. We apply our method on 40 visual classifiers and demonstrate two primary applications: 1) building both label-free and zero-shot concept bottleneck models and therefore converting any visual classifier to be inherently-interpretable and 2) zero-shot decoding of visual features into natural language sentences. In both tasks we establish new state-of-the-art results, outperforming existing works and surpassing CLIP-based baselines with ImageNet-only trained classifiers, while using up to 400x fewer images and 400,000x less text during training.
CauSkelNet: Causal Representation Learning for Human Behaviour Analysis
Traditional machine learning methods for movement recognition often struggle with limited model interpretability and a lack of insight into human movement dynamics. This study introduces a novel representation learning framework based on causal inference to address these challenges. Our two-stage approach combines the Peter-Clark (PC) algorithm and Kullback-Leibler (KL) divergence to identify and quantify causal relationships between human joints. By capturing joint interactions, the proposed causal Graph Convolutional Network (GCN) produces interpretable and robust representations. Experimental results on the EmoPain dataset demonstrate that the causal GCN outperforms traditional GCNs in accuracy, F1 score, and recall, particularly in detecting protective behaviors. This work contributes to advancing human motion analysis and lays a foundation for adaptive and intelligent healthcare solutions.
comment: Accepted by 19th IEEE Automatic Face and Gesture Recognition 2025 (Oral)
Exploring Generalized Gait Recognition: Reducing Redundancy and Noise within Indoor and Outdoor Datasets
Generalized gait recognition, which aims to achieve robust performance across diverse domains, remains a challenging problem due to severe domain shifts in viewpoints, appearances, and environments. While mixed-dataset training is widely used to enhance generalization, it introduces new obstacles including inter-dataset optimization conflicts and redundant or noisy samples, both of which hinder effective representation learning. To address these challenges, we propose a unified framework that systematically improves cross-domain gait recognition. First, we design a disentangled triplet loss that isolates supervision signals across datasets, mitigating gradient conflicts during optimization. Second, we introduce a targeted dataset distillation strategy that filters out the least informative 20\% of training samples based on feature redundancy and prediction uncertainty, enhancing data efficiency. Extensive experiments on CASIA-B, OU-MVLP, Gait3D, and GREW demonstrate that our method significantly improves cross-dataset recognition for both GaitBase and DeepGaitV2 backbones, without sacrificing source-domain accuracy. Code will be released at https://github.com/li1er3/Generalized_Gait.
comment: 10 pages, 3 figures
Navigating Conflicting Views: Harnessing Trust for Learning
Resolving conflicts is critical for improving the reliability of multi-view classification. While prior work focuses on learning consistent and informative representations across views, it often assumes perfect alignment and equal importance of all views, an assumption rarely met in real-world scenarios, as some views may express distinct information. To address this, we develop a computational trust-based discounting method that enhances the Evidential Multi-view framework by accounting for the instance-wise reliability of each view through a probability-sensitive trust mechanism. We evaluate our method on six real-world datasets using Top-1 Accuracy, Fleiss' Kappa, and a new metric, Multi-View Agreement with Ground Truth, to assess prediction reliability. We also assess the effectiveness of uncertainty in indicating prediction correctness via AUROC.Additionally, we test the scalability of our method through end-to-end training on a large-scale dataset. The experimental results show that computational trust can effectively resolve conflicts, paving the way for more reliable multi-view classification models in real-world applications.
NeuRadar: Neural Radiance Fields for Automotive Radar Point Clouds
Radar is an important sensor for autonomous driving (AD) systems due to its robustness to adverse weather and different lighting conditions. Novel view synthesis using neural radiance fields (NeRFs) has recently received considerable attention in AD due to its potential to enable efficient testing and validation but remains unexplored for radar point clouds. In this paper, we present NeuRadar, a NeRF-based model that jointly generates radar point clouds, camera images, and lidar point clouds. We explore set-based object detection methods such as DETR, and propose an encoder-based solution grounded in the NeRF geometry for improved generalizability. We propose both a deterministic and a probabilistic point cloud representation to accurately model the radar behavior, with the latter being able to capture radar's stochastic behavior. We achieve realistic reconstruction results for two automotive datasets, establishing a baseline for NeRF-based radar point cloud simulation models. In addition, we release radar data for ZOD's Sequences and Drives to enable further research in this field. To encourage further development of radar NeRFs, we release the source code for NeuRadar.
Beyond One-Hot Labels: Semantic Mixing for Model Calibration ICML 2025
Model calibration seeks to ensure that models produce confidence scores that accurately reflect the true likelihood of their predictions being correct. However, existing calibration approaches are fundamentally tied to datasets of one-hot labels implicitly assuming full certainty in all the annotations. Such datasets are effective for classification but provides insufficient knowledge of uncertainty for model calibration, necessitating the curation of datasets with numerically rich ground-truth confidence values. However, due to the scarcity of uncertain visual examples, such samples are not easily available as real datasets. In this paper, we introduce calibration-aware data augmentation to create synthetic datasets of diverse samples and their ground-truth uncertainty. Specifically, we present \textbf{Calibration-aware Semantic Mixing (CSM)}, a novel framework that generates training samples with mixed class characteristics and annotates them with distinct confidence scores via diffusion models. Based on this framework, we propose calibrated reannotation to tackle the misalignment between the annotated confidence score and the mixing ratio during the diffusion reverse process. Besides, we explore the loss functions that better fit the new data representation paradigm. Experimental results demonstrate that CSM achieves superior calibration compared to the state-of-the-art calibration approaches. Our code is \href{https://github.com/E-Galois/CSM}{available here}.
comment: Accepted by ICML 2025
CompMarkGS: Robust Watermarking for Compressed 3D Gaussian Splatting
3D Gaussian Splatting (3DGS) enables rapid differentiable rendering for 3D reconstruction and novel view synthesis, leading to its widespread commercial use. Consequently, copyright protection via watermarking has become critical. However, because 3DGS relies on millions of Gaussians, which require gigabytes of storage, efficient transfer and storage require compression. Existing 3DGS watermarking methods are vulnerable to quantization-based compression, often resulting in the loss of the embedded watermark. To address this challenge, we propose a novel watermarking method that ensures watermark robustness after model compression while maintaining high rendering quality. In detail, we incorporate a quantization distortion layer that simulates compression during training, preserving the watermark under quantization-based compression. Also, we propose a learnable watermark embedding feature that embeds the watermark into the anchor feature, ensuring structural consistency and seamless integration into the 3D scene. Furthermore, we present a frequency-aware anchor growing mechanism to enhance image quality in high-frequency regions by effectively identifying Guassians within these regions. Experimental results confirm that our method preserves the watermark and maintains superior image quality under high compression, validating it as a promising approach for a secure 3DGS model.
comment: 11 pages, 4 figures
Compositional Physical Reasoning of Objects and Events from Videos
Understanding and reasoning about objects' physical properties in the natural world is a fundamental challenge in artificial intelligence. While some properties like colors and shapes can be directly observed, others, such as mass and electric charge, are hidden from the objects' visual appearance. This paper addresses the unique challenge of inferring these hidden physical properties from objects' motion and interactions and predicting corresponding dynamics based on the inferred physical properties. We first introduce the Compositional Physical Reasoning (ComPhy) dataset. For a given set of objects, ComPhy includes limited videos of them moving and interacting under different initial conditions. The model is evaluated based on its capability to unravel the compositional hidden properties, such as mass and charge, and use this knowledge to answer a set of questions. Besides the synthetic videos from simulators, we also collect a real-world dataset to show further test physical reasoning abilities of different models. We evaluate state-of-the-art video reasoning models on ComPhy and reveal their limited ability to capture these hidden properties, which leads to inferior performance. We also propose a novel neuro-symbolic framework, Physical Concept Reasoner (PCR), that learns and reasons about both visible and hidden physical properties from question answering. After training, PCR demonstrates remarkable capabilities. It can detect and associate objects across frames, ground visible and hidden physical properties, make future and counterfactual predictions, and utilize these extracted representations to answer challenging questions.
comment: Accepted by TPAMI 2025. arXiv admin note: text overlap with arXiv:2205.01089
On the Fairness, Diversity and Reliability of Text-to-Image Generative Models
The rapid proliferation of multimodal generative models has sparked critical discussions on their reliability, fairness and potential for misuse. While text-to-image models excel at producing high-fidelity, user-guided content, they often exhibit unpredictable behaviors and vulnerabilities that can be exploited to manipulate class or concept representations. To address this, we propose an evaluation framework to assess model reliability by analyzing responses to global and local perturbations in the embedding space, enabling the identification of inputs that trigger unreliable or biased behavior. Beyond social implications, fairness and diversity are fundamental to defining robust and trustworthy model behavior. Our approach offers deeper insights into these essential aspects by evaluating: (i) generative diversity, measuring the breadth of visual representations for learned concepts, and (ii) generative fairness, which examines the impact that removing concepts from input prompts has on control, under a low guidance setup. Beyond these evaluations, our method lays the groundwork for detecting unreliable, bias-injected models and tracing the provenance of embedded biases. Our code is publicly available at https://github.com/JJ-Vice/T2I_Fairness_Diversity_Reliability. Keywords: Fairness, Reliability, AI Ethics, Bias, Text-to-Image Models
comment: This research is supported by the NISDRG project #20100007, funded by the Australian Government
DAE-Fuse: An Adaptive Discriminative Autoencoder for Multi-Modality Image Fusion
In extreme scenarios such as nighttime or low-visibility environments, achieving reliable perception is critical for applications like autonomous driving, robotics, and surveillance. Multi-modality image fusion, particularly integrating infrared imaging, offers a robust solution by combining complementary information from different modalities to enhance scene understanding and decision-making. However, current methods face significant limitations: GAN-based approaches often produce blurry images that lack fine-grained details, while AE-based methods may introduce bias toward specific modalities, leading to unnatural fusion results. To address these challenges, we propose DAE-Fuse, a novel two-phase discriminative autoencoder framework that generates sharp and natural fused images. Furthermore, We pioneer the extension of image fusion techniques from static images to the video domain while preserving temporal consistency across frames, thus advancing the perceptual capabilities required for autonomous navigation. Extensive experiments on public datasets demonstrate that DAE-Fuse achieves state-of-the-art performance on multiple benchmarks, with superior generalizability to tasks like medical image fusion.
Auto-nnU-Net: Towards Automated Medical Image Segmentation
Medical Image Segmentation (MIS) includes diverse tasks, from bone to organ segmentation, each with its own challenges in finding the best segmentation model. The state-of-the-art AutoML-related MIS-framework nnU-Net automates many aspects of model configuration but remains constrained by fixed hyperparameters and heuristic design choices. As a full-AutoML framework for MIS, we propose Auto-nnU-Net, a novel nnU-Net variant enabling hyperparameter optimization (HPO), neural architecture search (NAS), and hierarchical NAS (HNAS). Additionally, we propose Regularized PriorBand to balance model accuracy with the computational resources required for training, addressing the resource constraints often faced in real-world medical settings that limit the feasibility of extensive training procedures. We evaluate our approach across diverse MIS datasets from the well-established Medical Segmentation Decathlon, analyzing the impact of AutoML techniques on segmentation performance, computational efficiency, and model design choices. The results demonstrate that our AutoML approach substantially improves the segmentation performance of nnU-Net on 6 out of 10 datasets and is on par on the other datasets while maintaining practical resource requirements. Our code is available at https://github.com/LUH-AI/AutonnUNet.
comment: 31 pages, 19 figures. Accepted for publication at AutoML 2025
Ocular Authentication: Fusion of Gaze and Periocular Modalities
This paper investigates the feasibility of fusing two eye-centric authentication modalities-eye movements and periocular images-within a calibration-free authentication system. While each modality has independently shown promise for user authentication, their combination within a unified gaze-estimation pipeline has not been thoroughly explored at scale. In this report, we propose a multimodal authentication system and evaluate it using a large-scale in-house dataset comprising 9202 subjects with an eye tracking (ET) signal quality equivalent to a consumer-facing virtual reality (VR) device. Our results show that the multimodal approach consistently outperforms both unimodal systems across all scenarios, surpassing the FIDO benchmark. The integration of a state-of-the-art machine learning architecture contributed significantly to the overall authentication performance at scale, driven by the model's ability to capture authentication representations and the complementary discriminative characteristics of the fused modalities.
comment: Supplementary material is available
Distilling Textual Priors from LLM to Efficient Image Fusion
Multi-modality image fusion aims to synthesize a single, comprehensive image from multiple source inputs. Traditional approaches, such as CNNs and GANs, offer efficiency but struggle to handle low-quality or complex inputs. Recent advances in text-guided methods leverage large model priors to overcome these limitations, but at the cost of significant computational overhead, both in memory and inference time. To address this challenge, we propose a novel framework for distilling large model priors, eliminating the need for text guidance during inference while dramatically reducing model size. Our framework utilizes a teacher-student architecture, where the teacher network incorporates large model priors and transfers this knowledge to a smaller student network via a tailored distillation process. Additionally, we introduce spatial-channel cross-fusion module to enhance the model's ability to leverage textual priors across both spatial and channel dimensions. Our method achieves a favorable trade-off between computational efficiency and fusion quality. The distilled network, requiring only 10% of the parameters and inference time of the teacher network, retains 90% of its performance and outperforms existing SOTA methods. Extensive experiments demonstrate the effectiveness of our approach. The implementation will be made publicly available as an open-source resource.
comment: Change to TCSVT format
Adaptive Rank, Reduced Forgetting: Knowledge Retention in Continual Learning Vision-Language Models with Dynamic Rank-Selective LoRA
Continual learning (CL) aims to accumulate knowledge from sequential data and task streams. Leveraging their strong generalization and flexibility, pre-trained vision-language embedding models such as CLIP (Contrastive Language-Image Pre-training) have been widely adopted and validated in CL. In addition to learning new knowledge, we investigate whether the pre-trained knowledge in CLIP, can be retained or even enhanced, in CL, while incorporating new knowledge from a data stream. Existing CL methods primarily focus on continual downstream adaptation using components isolated from the pre-trained model (PTM), increasing inference complexity and limiting improvements to the PTM itself; some also retain knowledge by relying on additional reference data, resulting in high training costs. To address these limitations, we propose a universal and efficient CL approach for CLIP based on Dynamic Rank-Selective LoRA (CoDyRA), which directly improves the PTMs while preserving the existing knowledge from both pre-training and CL. By analyzing how LoRA rank and placement affect learning and forgetting in CL, we design CoDyRA that adaptively performs rank-minimized parameter updates in different modules, based on their importance to the current data. This ensures a balance between knowledge acquisition (plasticity) and forgetting mitigation (stability). Our method operates without explicit domain or distribution prediction and does not rely on reference data, enabling seamless task integration while maintaining pre-trained capabilities. Moreover, CoDyRA preserves the original model architecture and deployment pipeline, introducing no additional inference overhead. Extensive experiments show that our approach enhances representations for new downstream data while retaining pre-trained knowledge, achieving state-of-the-art results.
comment: Preprint
Open the Eyes of MPNN: Vision Enhances MPNN in Link Prediction ICML 2025
Message-passing graph neural networks (MPNNs) and structural features (SFs) are cornerstones for the link prediction task. However, as a common and intuitive mode of understanding, the potential of visual perception has been overlooked in the MPNN community. For the first time, we equip MPNNs with vision structural awareness by proposing an effective framework called Graph Vision Network (GVN), along with a more efficient variant (E-GVN). Extensive empirical results demonstrate that with the proposed frameworks, GVN consistently benefits from the vision enhancement across seven link prediction datasets, including challenging large-scale graphs. Such improvements are compatible with existing state-of-the-art (SOTA) methods and GVNs achieve new SOTA results, thereby underscoring a promising novel direction for link prediction.
comment: ICML 2025
Probabilistic Interactive 3D Segmentation with Hierarchical Neural Processes ICML 2025
Interactive 3D segmentation has emerged as a promising solution for generating accurate object masks in complex 3D scenes by incorporating user-provided clicks. However, two critical challenges remain underexplored: (1) effectively generalizing from sparse user clicks to produce accurate segmentation, and (2) quantifying predictive uncertainty to help users identify unreliable regions. In this work, we propose NPISeg3D, a novel probabilistic framework that builds upon Neural Processes (NPs) to address these challenges. Specifically, NPISeg3D introduces a hierarchical latent variable structure with scene-specific and object-specific latent variables to enhance few-shot generalization by capturing both global context and object-specific characteristics. Additionally, we design a probabilistic prototype modulator that adaptively modulates click prototypes with object-specific latent variables, improving the model's ability to capture object-aware context and quantify predictive uncertainty. Experiments on four 3D point cloud datasets demonstrate that NPISeg3D achieves superior segmentation performance with fewer clicks while providing reliable uncertainty estimations.
comment: ICML 2025 Proceedings
EVM-Fusion: An Explainable Vision Mamba Architecture with Neural Algorithmic Fusion
Medical image classification is critical for clinical decision-making, yet demands for accuracy, interpretability, and generalizability remain challenging. This paper introduces EVM-Fusion, an Explainable Vision Mamba architecture featuring a novel Neural Algorithmic Fusion (NAF) mechanism for multi-organ medical image classification. EVM-Fusion leverages a multipath design, where DenseNet and U-Net based pathways, enhanced by Vision Mamba (Vim) modules, operate in parallel with a traditional feature pathway. These diverse features are dynamically integrated via a two-stage fusion process: cross-modal attention followed by the iterative NAF block, which learns an adaptive fusion algorithm. Intrinsic explainability is embedded through path-specific spatial attention, Vim {\Delta}-value maps, traditional feature SE-attention, and cross-modal attention weights. Experiments on a diverse 9-class multi-organ medical image dataset demonstrate EVM-Fusion's strong classification performance, achieving 99.75% test accuracy and provide multi-faceted insights into its decision-making process, highlighting its potential for trustworthy AI in medical diagnostics.
comment: 14 pages, 4 figures
AW-GATCN: Adaptive Weighted Graph Attention Convolutional Network for Event Camera Data Joint Denoising and Object Recognition IJCNN
Event cameras, which capture brightness changes with high temporal resolution, inherently generate a significant amount of redundant and noisy data beyond essential object structures. The primary challenge in event-based object recognition lies in effectively removing this noise without losing critical spatial-temporal information. To address this, we propose an Adaptive Graph-based Noisy Data Removal framework for Event-based Object Recognition. Specifically, our approach integrates adaptive event segmentation based on normalized density analysis, a multifactorial edge-weighting mechanism, and adaptive graph-based denoising strategies. These innovations significantly enhance the integration of spatiotemporal information, effectively filtering noise while preserving critical structural features for robust recognition. Experimental evaluations on four challenging datasets demonstrate that our method achieves superior recognition accuracies of 83.77%, 76.79%, 99.30%, and 96.89%, surpassing existing graph-based methods by up to 8.79%, and improving noise reduction performance by up to 19.57%, with an additional accuracy gain of 6.26% compared to traditional Euclidean-based techniques.
comment: Accepted to International Joint Conference on Neural Networks(IJCNN) 2025
V-RoAst: Visual Road Assessment. Can VLM be a Road Safety Assessor Using the iRAP Standard?
Road traffic crashes result in millions of deaths annually and significant economic burdens, particularly on Low- and Middle-Income Countries (LMICs). Road safety assessments traditionally rely on human-labelled data, which is labour-intensive and time-consuming. While Convolutional Neural Networks (CNNs) have advanced automated road safety assessments, they typically demand large labelled datasets and often require fine-tuning for each new geographic context. This study explores whether Vision Language Models (VLMs) with zero-shot capability can overcome these limitations to serve as effective road safety assessors using the International Road Assessment Programme (iRAP) standard. Our approach, V-RoAst (Visual question answering for Road Assessment), leverages advanced VLMs, such as Gemini-1.5-flash and GPT-4o-mini, to analyse road safety attributes without requiring any labelled training data. By optimising prompt engineering and utilising crowdsourced imagery from Mapillary, V-RoAst provides a scalable, cost-effective, and automated solution for global road safety assessments. Preliminary results show that while VLMs achieve lower performance than CNN-based models, they are capable of Visual Question Answering (VQA) and show potential in predicting star ratings from crowdsourced imagery. However, their performance is poor when key visual features are absent in the imagery, emphasising the need for human labelling to address these gaps. Advancements in VLMs, alongside in-context learning such as chain-of-thought and few-shot learning, and parameter-efficient fine-tuning, present opportunities for improvement, making VLMs promising tools for road assessment tasks. Designed for resource-constrained stakeholders, this framework holds the potential to save lives and reduce economic burdens worldwide. Code and dataset are available at: https://github.com/PongNJ/V-RoAst.
Live Video Captioning
Dense video captioning involves detecting and describing events within video sequences. Traditional methods operate in an offline setting, assuming the entire video is available for analysis. In contrast, in this work we introduce a groundbreaking paradigm: Live Video Captioning (LVC), where captions must be generated for video streams in an online manner. This shift brings unique challenges, including processing partial observations of the events and the need for a temporal anticipation of the actions. We formally define the novel problem of LVC and propose innovative evaluation metrics specifically designed for this online scenario, demonstrating their advantages over traditional metrics. To address the novel complexities of LVC, we present a new model that combines deformable transformers with temporal filtering, enabling effective captioning over video streams. Extensive experiments on the ActivityNet Captions dataset validate the proposed approach, showcasing its superior performance in the LVC setting compared to state-of-the-art offline methods. To foster further research, we provide the results of our model and an evaluation toolkit with the new metrics integrated at: https://github.com/gramuah/lvc.
Expanding Zero-Shot Object Counting with Rich Prompts
Expanding pre-trained zero-shot counting models to handle unseen categories requires more than simply adding new prompts, as this approach does not achieve the necessary alignment between text and visual features for accurate counting. We introduce RichCount, the first framework to address these limitations, employing a two-stage training strategy that enhances text encoding and strengthens the model's association with objects in images. RichCount improves zero-shot counting for unseen categories through two key objectives: (1) enriching text features with a feed-forward network and adapter trained on text-image similarity, thereby creating robust, aligned representations; and (2) applying this refined encoder to counting tasks, enabling effective generalization across diverse prompts and complex images. In this manner, RichCount goes beyond simple prompt expansion to establish meaningful feature alignment that supports accurate counting across novel categories. Extensive experiments on three benchmark datasets demonstrate the effectiveness of RichCount, achieving state-of-the-art performance in zero-shot counting and significantly enhancing generalization to unseen categories in open-world scenarios.
Image and Video Processing
Improvement Strategies for Few-Shot Learning in OCT Image Classification of Rare Retinal Diseases
This paper focuses on using few-shot learning to improve the accuracy of classifying OCT diagnosis images with major and rare classes. We used the GAN-based augmentation strategy as a baseline and introduced several novel methods to further enhance our model. The proposed strategy contains U-GAT-IT for improving the generative part and uses the data balance technique to narrow down the skew of accuracy between all categories. The best model obtained was built with CBAM attention mechanism and fine-tuned InceptionV3, and achieved an overall accuracy of 97.85%, representing a significant improvement over the original baseline.
LPCM: Learning-based Predictive Coding for LiDAR Point Cloud Compression
Since the data volume of LiDAR point clouds is very huge, efficient compression is necessary to reduce their storage and transmission costs. However, existing learning-based compression methods do not exploit the inherent angular resolution of LiDAR and ignore the significant differences in the correlation of geometry information at different bitrates. The predictive geometry coding method in the geometry-based point cloud compression (G-PCC) standard uses the inherent angular resolution to predict the azimuth angles. However, it only models a simple linear relationship between the azimuth angles of neighboring points. Moreover, it does not optimize the quantization parameters for residuals on each coordinate axis in the spherical coordinate system. We propose a learning-based predictive coding method (LPCM) with both high-bitrate and low-bitrate coding modes. LPCM converts point clouds into predictive trees using the spherical coordinate system. In high-bitrate coding mode, we use a lightweight Long-Short-Term Memory-based predictive (LSTM-P) module that captures long-term geometry correlations between different coordinates to efficiently predict and compress the elevation angles. In low-bitrate coding mode, where geometry correlation degrades, we introduce a variational radius compression (VRC) module to directly compress the point radii. Then, we analyze why the quantization of spherical coordinates differs from that of Cartesian coordinates and propose a differential evolution (DE)-based quantization parameter selection method, which improves rate-distortion performance without increasing coding time. Experimental results on the LiDAR benchmark \textit{SemanticKITTI} and the MPEG-specified \textit{Ford} datasets show that LPCM outperforms G-PCC and other learning-based methods.
comment: 13 pages long, 8 figures and over 50 references. Submitted with IEEEtran journal mode. All figures are included in PDF format and the bibliography is resolved manually
Multi-modal brain encoding models for multi-modal stimuli ICLR-2025
Despite participants engaging in unimodal stimuli, such as watching images or silent videos, recent work has demonstrated that multi-modal Transformer models can predict visual brain activity impressively well, even with incongruent modality representations. This raises the question of how accurately these multi-modal models can predict brain activity when participants are engaged in multi-modal stimuli. As these models grow increasingly popular, their use in studying neural activity provides insights into how our brains respond to such multi-modal naturalistic stimuli, i.e., where it separates and integrates information across modalities through a hierarchy of early sensory regions to higher cognition. We investigate this question by using multiple unimodal and two types of multi-modal models-cross-modal and jointly pretrained-to determine which type of model is more relevant to fMRI brain activity when participants are engaged in watching movies. We observe that both types of multi-modal models show improved alignment in several language and visual regions. This study also helps in identifying which brain regions process unimodal versus multi-modal information. We further investigate the contribution of each modality to multi-modal alignment by carefully removing unimodal features one by one from multi-modal representations, and find that there is additional information beyond the unimodal embeddings that is processed in the visual and language regions. Based on this investigation, we find that while for cross-modal models, their brain alignment is partially attributed to the video modality; for jointly pretrained models, it is partially attributed to both the video and audio modalities. This serves as a strong motivation for the neuroscience community to investigate the interpretability of these models for deepening our understanding of multi-modal information processing in brain.
comment: 26 pages, 15 figures, The Thirteenth International Conference on Learning Representations, ICLR-2025, Singapore. https://openreview.net/pdf?id=0dELcFHig2
A fully automated urban PV parameterization framework for improved estimation of energy production profiles
Accurate parameterization of rooftop photovoltaic (PV) installations is critical for effective grid management and strategic large-scale solar deployment. The lack of high-fidelity datasets for PV configuration parameters often compels practitioners to rely on coarse assumptions, undermining both the temporal and numerical accuracy of large-scale PV performance modeling. This study introduces a fully automated framework that innovatively integrates remote sensing data, semantic segmentation, polygon-vector refinement, tilt-azimuth estimation, and module layout inference to produce a richly attributed GIS dataset of distributed PV. Applied to Eindhoven (the Netherlands), the method achieves a correlation ($R^2$) of 0.92 with Distribution System Operator (DSO) records, while capacity estimates for 73$\%$ of neighborhoods demonstrate agreement within a $\pm$25$\%$ margin of recorded data. Additionally, by accurately capturing actual system configuration parameters (e.g., tilt, azimuth, module layout) and seamlessly linking them to advanced performance models, the method yields more reliable PV energy generation forecasts within the distribution networks. Centering our experiments toward a high PV-penetration community, configuration-aware simulations help to reduce Mean Absolute Percentage Error (MAPE) of energy generation modeling by up to 160$\%$ compared to the conventional assumption-based approaches. Furthermore, owing to its modular design and reliance on readily available geospatial resources, the workflow can be extended across diverse regions, offering a scalable solution for robust urban solar integration.
comment: This manuscript has been submitted to Solar Energy for peer review. 42 pages, 15 figures
The Missing Point in Vision Transformers for Universal Image Segmentation
Image segmentation remains a challenging task in computer vision, demanding robust mask generation and precise classification. Recent mask-based approaches yield high-quality masks by capturing global context. However, accurately classifying these masks, especially in the presence of ambiguous boundaries and imbalanced class distributions, remains an open challenge. In this work, we introduce ViT-P, a novel two-stage segmentation framework that decouples mask generation from classification. The first stage employs a proposal generator to produce class-agnostic mask proposals, while the second stage utilizes a point-based classification model built on the Vision Transformer (ViT) to refine predictions by focusing on mask central points. ViT-P serves as a pre-training-free adapter, allowing the integration of various pre-trained vision transformers without modifying their architecture, ensuring adaptability to dense prediction tasks. Furthermore, we demonstrate that coarse and bounding box annotations can effectively enhance classification without requiring additional training on fine annotation datasets, reducing annotation costs while maintaining strong performance. Extensive experiments across COCO, ADE20K, and Cityscapes datasets validate the effectiveness of ViT-P, achieving state-of-the-art results with 54.0 PQ on ADE20K panoptic segmentation, 87.4 mIoU on Cityscapes semantic segmentation, and 63.6 mIoU on ADE20K semantic segmentation. The code and pretrained models are available at: https://github.com/sajjad-sh33/ViT-P}{https://github.com/sajjad-sh33/ViT-P.
Advancements in Medical Image Classification through Fine-Tuning Natural Domain Foundation Models
Using massive datasets, foundation models are large-scale, pre-trained models that perform a wide range of tasks. These models have shown consistently improved results with the introduction of new methods. It is crucial to analyze how these trends impact the medical field and determine whether these advancements can drive meaningful change. This study investigates the application of recent state-of-the-art foundation models, DINOv2, MAE, VMamba, CoCa, SAM2, and AIMv2, for medical image classification. We explore their effectiveness on datasets including CBIS-DDSM for mammography, ISIC2019 for skin lesions, APTOS2019 for diabetic retinopathy, and CHEXPERT for chest radiographs. By fine-tuning these models and evaluating their configurations, we aim to understand the potential of these advancements in medical image classification. The results indicate that these advanced models significantly enhance classification outcomes, demonstrating robust performance despite limited labeled data. Based on our results, AIMv2, DINOv2, and SAM2 models outperformed others, demonstrating that progress in natural domain training has positively impacted the medical domain and improved classification outcomes. Our code is publicly available at: https://github.com/sajjad-sh33/Medical-Transfer-Learning.
Modeling Beyond MOS: Quality Assessment Models Must Integrate Context, Reasoning, and Multimodality
This position paper argues that Mean Opinion Score (MOS), while historically foundational, is no longer sufficient as the sole supervisory signal for multimedia quality assessment models. MOS reduces rich, context-sensitive human judgments to a single scalar, obscuring semantic failures, user intent, and the rationale behind quality decisions. We contend that modern quality assessment models must integrate three interdependent capabilities: (1) context-awareness, to adapt evaluations to task-specific goals and viewing conditions; (2) reasoning, to produce interpretable, evidence-grounded justifications for quality judgments; and (3) multimodality, to align perceptual and semantic cues using vision-language models. We critique the limitations of current MOS-centric benchmarks and propose a roadmap for reform: richer datasets with contextual metadata and expert rationales, and new evaluation metrics that assess semantic alignment, reasoning fidelity, and contextual sensitivity. By reframing quality assessment as a contextual, explainable, and multimodal modeling task, we aim to catalyze a shift toward more robust, human-aligned, and trustworthy evaluation systems.
comment: Under review
A Contrastive Learning Foundation Model Based on Perfectly Aligned Sample Pairs for Remote Sensing Images
Self-Supervised Learning (SSL) enables us to pre-train foundation models without costly labeled data. Among SSL methods, Contrastive Learning (CL) methods are better at obtaining accurate semantic representations in noise interference. However, due to the significant domain gap, while CL methods have achieved great success in many computer vision tasks, they still require specific adaptation for Remote Sensing (RS) images. To this end, we present a novel self-supervised method called PerA, which produces all-purpose RS features through semantically Perfectly Aligned sample pairs. Specifically, PerA obtains features from sampled views by applying spatially disjoint masks to augmented images rather than random cropping. With disjoint masks, we divide patches from different views into different parts that are semantically aligned but inconsistent in appearance. Our framework provides high-quality features by ensuring consistency between teacher and student and predicting learnable mask tokens. Compared to previous contrastive methods, our method demonstrates higher memory efficiency and can be trained with larger batches due to its sparse inputs. We also collect an unlabeled pre-training dataset, which contains about 5 million RS images. We conducted experiments on multiple downstream task datasets and achieved performance comparable to previous state-of-the-art methods with a limited model scale, which verified the superiority of our method. We hope this work will contribute to practical remote sensing interpretation works.
DeepInverse: A Python package for solving imaging inverse problems with deep learning
DeepInverse is an open-source PyTorch-based library for solving imaging inverse problems. The library covers all crucial steps in image reconstruction from the efficient implementation of forward operators (e.g., optics, MRI, tomography), to the definition and resolution of variational problems and the design and training of advanced neural network architectures. In this paper, we describe the main functionality of the library and discuss the main design choices.
comment: https://deepinv.github.io/
A Feasibility Study of Task-Based fMRI at 0.55 T
0.55T MRI offers advantages compared to conventional field strengths, including reduced susceptibility artifacts and better compatibility with simultaneous EEG recordings. However, reliable task-based fMRI at 0.55T has not been significantly demonstrated. In this study, we establish a robust task-based fMRI protocol and analysis pipeline at 0.55T that achieves full brain coverage and results comparable to what is expected for activation extent and location. We attempted fMRI at 0.55T by combining EPI acquisition with custom analysis techniques. Finger-tapping and visual tasks were used, comparing 5- and 10-minute runs to enhance activation detection. The results show significant activations, demonstrating that high-quality task-based fMRI is achievable at 0.55T in single subjects. This study demonstrates that reliable task-based fMRI is feasible on 0.55T scanners, potentially broadening functional neuroimaging access in clinical and research settings where high-field MRI is unavailable or impractical, supporting broader diagnostic and research applications.
comment: Presented at the ISMRM 2025 Annual Meeting, Honolulu (#0491)
DiffNMR: Advancing Inpainting of Randomly Sampled Nuclear Magnetic Resonance Signals
Nuclear Magnetic Resonance (NMR) spectroscopy leverages nuclear magnetization to probe molecules' chemical environment, structure, and dynamics, with applications spanning from pharmaceuticals to the petroleum industry. Despite its utility, the high cost of NMR instrumentation, operation and the lengthy duration of experiments necessitate the development of computational techniques to optimize acquisition times. Non-Uniform sampling (NUS) is widely employed as a sub-sampling method to address these challenges, but it often introduces artifacts and degrades spectral quality, offsetting the benefits of reduced acquisition times. In this work, we propose the use of deep learning techniques to enhance the reconstruction quality of NUS spectra. Specifically, we explore the application of diffusion models, a relatively untapped approach in this domain. Our methodology involves applying diffusion models to both time-time and time-frequency NUS data, yielding satisfactory reconstructions of challenging spectra from the benchmark Artina dataset. This approach demonstrates the potential of diffusion models to improve the efficiency and accuracy of NMR spectroscopy as well as the superiority of using a time-frequency domain data over the time-time one, opening new landscapes for future studies.
X-GRM: Large Gaussian Reconstruction Model for Sparse-view X-rays to Computed Tomography
Computed Tomography serves as an indispensable tool in clinical workflows, providing non-invasive visualization of internal anatomical structures. Existing CT reconstruction works are limited to small-capacity model architecture and inflexible volume representation. In this work, we present X-GRM (X-ray Gaussian Reconstruction Model), a large feedforward model for reconstructing 3D CT volumes from sparse-view 2D X-ray projections. X-GRM employs a scalable transformer-based architecture to encode sparse-view X-ray inputs, where tokens from different views are integrated efficiently. Then, these tokens are decoded into a novel volume representation, named Voxel-based Gaussian Splatting (VoxGS), which enables efficient CT volume extraction and differentiable X-ray rendering. This combination of a high-capacity model and flexible volume representation, empowers our model to produce high-quality reconstructions from various testing inputs, including in-domain and out-domain X-ray projections. Our codes are available at: https://github.com/CUHK-AIM-Group/X-GRM.
Domain-Agnostic Stroke Lesion Segmentation Using Physics-Constrained Synthetic Data
Segmenting stroke lesions in MRI is challenging due to diverse acquisition protocols that limit model generalisability. In this work, we introduce two physics-constrained approaches to generate synthetic quantitative MRI (qMRI) images that improve segmentation robustness across heterogeneous domains. Our first method, $\texttt{qATLAS}$, trains a neural network to estimate qMRI maps from standard MPRAGE images, enabling the simulation of varied MRI sequences with realistic tissue contrasts. The second method, $\texttt{qSynth}$, synthesises qMRI maps directly from tissue labels using label-conditioned Gaussian mixture models, ensuring physical plausibility. Extensive experiments on multiple out-of-domain datasets show that both methods outperform a baseline UNet, with $\texttt{qSynth}$ notably surpassing previous synthetic data approaches. These results highlight the promise of integrating MRI physics into synthetic data generation for robust, generalisable stroke lesion segmentation. Code is available at https://github.com/liamchalcroft/qsynth
Inverse Problem Sampling in Latent Space Using Sequential Monte Carlo
In image processing, solving inverse problems is the task of finding plausible reconstructions of an image that was corrupted by some (usually known) degradation operator. Commonly, this process is done using a generative image model that can guide the reconstruction towards solutions that appear natural. The success of diffusion models over the last few years has made them a leading candidate for this task. However, the sequential nature of diffusion models makes this conditional sampling process challenging. Furthermore, since diffusion models are often defined in the latent space of an autoencoder, the encoder-decoder transformations introduce additional difficulties. To address these challenges, we suggest a novel sampling method based on sequential Monte Carlo (SMC) in the latent space of diffusion models. We name our method LD-SMC. We define a generative model for the data using additional auxiliary observations and perform posterior inference with SMC sampling based on a backward diffusion process. Empirical evaluations on ImageNet and FFHQ show the benefits of LD-SMC over competing methods in various inverse problem tasks and especially in challenging inpainting tasks.
Diff-Def: Diffusion-Generated Deformation Fields for Conditional Atlases
Anatomical atlases are widely used for population studies and analysis. Conditional atlases target a specific sub-population defined via certain conditions, such as demographics or pathologies, and allow for the investigation of fine-grained anatomical differences like morphological changes associated with ageing or disease. Existing approaches use either registration-based methods that are often unable to handle large anatomical variations or generative adversarial models, which are challenging to train since they can suffer from training instabilities. Instead of generating atlases directly in as intensities, we propose using latent diffusion models to generate deformation fields, which transform a general population atlas into one representing a specific sub-population. Our approach ensures structural integrity, enhances interpretability and avoids hallucinations that may arise during direct image synthesis by generating this deformation field and regularising it using a neighbourhood of images. We compare our method to several state-of-the-art atlas generation methods using brain MR images from the UK Biobank. Our method generates highly realistic atlases with smooth transformations and high anatomical fidelity, outperforming existing baselines. We demonstrate the quality of these atlases through comprehensive evaluations, including quantitative metrics for anatomical accuracy, perceptual similarity, and qualitative analyses displaying the consistency and realism of the generated atlases.
DC-VSR: Spatially and Temporally Consistent Video Super-Resolution with Video Diffusion Prior
Video super-resolution (VSR) aims to reconstruct a high-resolution (HR) video from a low-resolution (LR) counterpart. Achieving successful VSR requires producing realistic HR details and ensuring both spatial and temporal consistency. To restore realistic details, diffusion-based VSR approaches have recently been proposed. However, the inherent randomness of diffusion, combined with their tile-based approach, often leads to spatio-temporal inconsistencies. In this paper, we propose DC-VSR, a novel VSR approach to produce spatially and temporally consistent VSR results with realistic textures. To achieve spatial and temporal consistency, DC-VSR adopts a novel Spatial Attention Propagation (SAP) scheme and a Temporal Attention Propagation (TAP) scheme that propagate information across spatio-temporal tiles based on the self-attention mechanism. To enhance high-frequency details, we also introduce Detail-Suppression Self-Attention Guidance (DSSAG), a novel diffusion guidance scheme. Comprehensive experiments demonstrate that DC-VSR achieves spatially and temporally consistent, high-quality VSR results, outperforming previous approaches.
comment: Equal contributions from first two authors
RDEIC: Accelerating Diffusion-Based Extreme Image Compression with Relay Residual Diffusion
Diffusion-based extreme image compression methods have achieved impressive performance at extremely low bitrates. However, constrained by the iterative denoising process that starts from pure noise, these methods are limited in both fidelity and efficiency. To address these two issues, we present Relay Residual Diffusion Extreme Image Compression (RDEIC), which leverages compressed feature initialization and residual diffusion. Specifically, we first use the compressed latent features of the image with added noise, instead of pure noise, as the starting point to eliminate the unnecessary initial stages of the denoising process. Second, we directly derive a novel residual diffusion equation from Stable Diffusion's original diffusion equation that reconstructs the raw image by iteratively removing the added noise and the residual between the compressed and target latent features. In this way, we effectively combine the efficiency of residual diffusion with the powerful generative capability of Stable Diffusion. Third, we propose a fixed-step fine-tuning strategy to eliminate the discrepancy between the training and inference phases, thereby further improving the reconstruction quality. Extensive experiments demonstrate that the proposed RDEIC achieves state-of-the-art visual quality and outperforms existing diffusion-based extreme image compression methods in both fidelity and efficiency. The source code and pre-trained models are available at https://github.com/huai-chang/RDEIC.
Cancer-Net PCa-Seg: Benchmarking Deep Learning Models for Prostate Cancer Segmentation Using Synthetic Correlated Diffusion Imaging
Prostate cancer (PCa) is the most prevalent cancer among men in the United States, accounting for nearly 300,000 cases, 29\% of all diagnoses and 35,000 total deaths in 2024. Traditional screening methods such as prostate-specific antigen (PSA) testing and magnetic resonance imaging (MRI) have been pivotal in diagnosis, but have faced limitations in specificity and generalizability. In this paper, we explore the potential of enhancing PCa gland segmentation using a novel MRI modality called synthetic correlated diffusion imaging (CDI$^s$). We employ several state-of-the-art deep learning models, including U-Net, SegResNet, Swin UNETR, Attention U-Net, and LightM-UNet, to segment prostate glands from a 200 CDI$^s$ patient cohort. We find that SegResNet achieved superior segmentation performance with a Dice-Sorensen coefficient (DSC) of $76.68 \pm 0.8$. Notably, the Attention U-Net, while slightly less accurate (DSC $74.82 \pm 2.0$), offered a favorable balance between accuracy and computational efficiency. Our findings demonstrate the potential of deep learning models in improving prostate gland segmentation using CDI$^s$ to enhance PCa management and clinical support.
comment: 8 pages, 2 figures, to be published in Studies in Computational Intelligence. This paper introduces Cancer-Net PCa-Seg, a comprehensive evaluation of deep learning models for prostate cancer segmentation using synthetic correlated diffusion imaging (CDI$^s$). We benchmark five state-of-the-art architectures: U-Net, SegResNet, Swin UNETR, Attention U-Net, and LightM-UNet
SUFFICIENT: A scan-specific unsupervised deep learning framework for high-resolution 3D isotropic fetal brain MRI reconstruction
High-quality 3D fetal brain MRI reconstruction from motion-corrupted 2D slices is crucial for clinical diagnosis. Reliable slice-to-volume registration (SVR)-based motion correction and super-resolution reconstruction (SRR) methods are essential. Deep learning (DL) has demonstrated potential in enhancing SVR and SRR when compared to conventional methods. However, it requires large-scale external training datasets, which are difficult to obtain for clinical fetal MRI. To address this issue, we propose an unsupervised iterative SVR-SRR framework for isotropic HR volume reconstruction. Specifically, SVR is formulated as a function mapping a 2D slice and a 3D target volume to a rigid transformation matrix, which aligns the slice to the underlying location in the target volume. The function is parameterized by a convolutional neural network, which is trained by minimizing the difference between the volume slicing at the predicted position and the input slice. In SRR, a decoding network embedded within a deep image prior framework is incorporated with a comprehensive image degradation model to produce the high-resolution (HR) volume. The deep image prior framework offers a local consistency prior to guide the reconstruction of HR volumes. By performing a forward degradation model, the HR volume is optimized by minimizing loss between predicted slices and the observed slices. Comprehensive experiments conducted on large-magnitude motion-corrupted simulation data and clinical data demonstrate the superior performance of the proposed framework over state-of-the-art fetal brain reconstruction frameworks.
TACO: Training-free Sound Prompted Segmentation via Semantically Constrained Audio-visual CO-factorization
Large-scale pre-trained audio and image models demonstrate an unprecedented degree of generalization, making them suitable for a wide range of applications. Here, we tackle the specific task of sound-prompted segmentation, aiming to segment image regions corresponding to objects heard in an audio signal. Most existing approaches tackle this problem by fine-tuning pre-trained models or by training additional modules specifically for the task. We adopt a different strategy: we introduce a training-free approach that leverages Non-negative Matrix Factorization (NMF) to co-factorize audio and visual features from pre-trained models so as to reveal shared interpretable concepts. These concepts are passed on to an open-vocabulary segmentation model for precise segmentation maps. By using frozen pre-trained models, our method achieves high generalization and establishes state-of-the-art performance in unsupervised sound-prompted segmentation, significantly surpassing previous unsupervised methods.
SITCOM: Step-wise Triple-Consistent Diffusion Sampling for Inverse Problems
Diffusion models (DMs) are a class of generative models that allow sampling from a distribution learned over a training set. When applied to solving inverse problems, the reverse sampling steps are modified to approximately sample from a measurement-conditioned distribution. However, these modifications may be unsuitable for certain settings (e.g., presence of measurement noise) and non-linear tasks, as they often struggle to correct errors from earlier steps and generally require a large number of optimization and/or sampling steps. To address these challenges, we state three conditions for achieving measurement-consistent diffusion trajectories. Building on these conditions, we propose a new optimization-based sampling method that not only enforces standard data manifold measurement consistency and forward diffusion consistency, as seen in previous studies, but also incorporates our proposed step-wise and network-regularized backward diffusion consistency that maintains a diffusion trajectory by optimizing over the input of the pre-trained model at every sampling step. By enforcing these conditions (implicitly or explicitly), our sampler requires significantly fewer reverse steps. Therefore, we refer to our method as Step-wise Triple-Consistent Sampling (SITCOM). Compared to SOTA baselines, our experiments across several linear and non-linear tasks (with natural and medical images) demonstrate that SITCOM achieves competitive or superior results in terms of standard similarity metrics and run-time.
Boosting Convolution with Efficient MLP-Permutation for Volumetric Medical Image Segmentation
Recently, the advent of vision Transformer (ViT) has brought substantial advancements in 3D dataset benchmarks, particularly in 3D volumetric medical image segmentation (Vol-MedSeg). Concurrently, multi-layer perceptron (MLP) network has regained popularity among researchers due to their comparable results to ViT, albeit with the exclusion of the resource-intensive self-attention module. In this work, we propose a novel permutable hybrid network for Vol-MedSeg, named PHNet, which capitalizes on the strengths of both convolution neural networks (CNNs) and MLP. PHNet addresses the intrinsic isotropy problem of 3D volumetric data by employing a combination of 2D and 3D CNNs to extract local features. Besides, we propose an efficient multi-layer permute perceptron (MLPP) module that captures long-range dependence while preserving positional information. This is achieved through an axis decomposition operation that permutes the input tensor along different axes, thereby enabling the separate encoding of the positional information. Furthermore, MLPP tackles the resolution sensitivity issue of MLP in Vol-MedSeg with a token segmentation operation, which divides the feature into smaller tokens and processes them individually. Extensive experimental results validate that PHNet outperforms the state-of-the-art methods with lower computational costs on the widely-used yet challenging COVID-19-20 and Synapse benchmarks. The ablation study also demonstrates the effectiveness of PHNet in harnessing the strengths of both CNNs and MLP. The code is available on Github: \href{https://github.com/xiaofang007/PHNet}{https://github.com/xiaofang007/PHNet}.
ALMA: a mathematics-driven approach for determining tuning parameters in generalized LASSO problems, with applications to MRI
Magnetic Resonance Imaging (MRI) is a powerful technique employed for non-invasive in vivo visualization of internal structures. Sparsity is often deployed to accelerate the signal acquisition or overcome the presence of motion artifacts, improving the quality of image reconstruction. Image reconstruction algorithms use TV-regularized LASSO (Total Variation-regularized LASSO) to retrieve the missing information of undersampled signals, by cleaning the data of noise and while optimizing sparsity. A tuning parameter moderates the balance between these two aspects; its choice affecting the quality of the reconstructions. Currently, there is a lack of general deterministic techniques to choose these parameters, which are oftentimes manually selected and thus hinder the reliability of the reconstructions. Here, we present ALMA (Algorithm for Lagrange Multipliers Approximation), an iterative mathematics-inspired technique that computes tuning parameters for generalized LASSO problems during MRI reconstruction. We analyze quantitatively the performance of these parameters for imaging reconstructions via TV-LASSO in an MRI context on phantoms. Although our study concentrates on TV-LASSO, the techniques developed here hold significant promise for a wide array of applications. ALMA is not only adaptable to more generalized LASSO problems but is also robust to accommodate other forms of regularization beyond total variation. Moreover, it extends effectively to handle non-Cartesian sampling trajectories, broadening its utility in complex data reconstruction scenarios. More generally, ALMA provides a powerful tool for numerically solving constrained optimization problems across various disciplines, offering a versatile and impactful solution for advanced computational challenges.
comment: Modified pictures, authors and fixed some typo
Multimedia
TUNA: Comprehensive Fine-grained Temporal Understanding Evaluation on Dense Dynamic Videos CVPR 2025
Videos are unique in their integration of temporal elements, including camera, scene, action, and attribute, along with their dynamic relationships over time. However, existing benchmarks for video understanding often treat these properties separately or narrowly focus on specific aspects, overlooking the holistic nature of video content. To address this, we introduce TUNA, a temporal-oriented benchmark for fine-grained understanding on dense dynamic videos, with two complementary tasks: captioning and QA. Our TUNA features diverse video scenarios and dynamics, assisted by interpretable and robust evaluation criteria. We evaluate several leading models on our benchmark, providing fine-grained performance assessments across various dimensions. This evaluation reveals key challenges in video temporal understanding, such as limited action description, inadequate multi-subject understanding, and insensitivity to camera motion, offering valuable insights for improving video understanding models. The data and code are available at https://friedrichor.github.io/projects/TUNA.
comment: Accepted to CVPR 2025 Main. Project page: https://friedrichor.github.io/projects/TUNA
Multimodal LLM-Guided Semantic Correction in Text-to-Image Diffusion
Diffusion models have become the mainstream architecture for text-to-image generation, achieving remarkable progress in visual quality and prompt controllability. However, current inference pipelines generally lack interpretable semantic supervision and correction mechanisms throughout the denoising process. Most existing approaches rely solely on post-hoc scoring of the final image, prompt filtering, or heuristic resampling strategies-making them ineffective in providing actionable guidance for correcting the generative trajectory. As a result, models often suffer from object confusion, spatial errors, inaccurate counts, and missing semantic elements, severely compromising prompt-image alignment and image quality. To tackle these challenges, we propose MLLM Semantic-Corrected Ping-Pong-Ahead Diffusion (PPAD), a novel framework that, for the first time, introduces a Multimodal Large Language Model (MLLM) as a semantic observer during inference. PPAD performs real-time analysis on intermediate generations, identifies latent semantic inconsistencies, and translates feedback into controllable signals that actively guide the remaining denoising steps. The framework supports both inference-only and training-enhanced settings, and performs semantic correction at only extremely few diffusion steps, offering strong generality and scalability. Extensive experiments demonstrate PPAD's significant improvements.
The Many Challenges of Human-Like Agents in Virtual Game Environments AAMAS-2025
Human-like agents are an increasingly important topic in games and beyond. Believable non-player characters enhance the gaming experience by improving immersion and providing entertainment. They also offer players the opportunity to engage with AI entities that can function as opponents, teachers, or cooperating partners. Additionally, in games where bots are prohibited -- and even more so in non-game environments -- there is a need for methods capable of identifying whether digital interactions occur with bots or humans. This leads to two fundamental research questions: (1) how to model and implement human-like AI, and (2) how to measure its degree of human likeness. This article offers two contributions. The first one is a survey of the most significant challenges in implementing human-like AI in games (or any virtual environment featuring simulated agents, although this article specifically focuses on games). Thirteen such challenges, both conceptual and technical, are discussed in detail. The second is an empirical study performed in a tactical video game that addresses the research question: "Is it possible to distinguish human players from bots (AI agents) based on empirical data?" A machine-learning approach using a custom deep recurrent convolutional neural network is presented. We hypothesize that the more challenging it is to create human-like AI for a given game, the easier it becomes to develop a method for distinguishing humans from AI-driven players.
comment: In proceedings of the 24th International Conference on Autonomous Agents and Multiagent Systems (AAMAS-2025), pages 1996--2005, May 19-23, Detroit, Michigan, USA
StyleAR: Customizing Multimodal Autoregressive Model for Style-Aligned Text-to-Image Generation
In the current research landscape, multimodal autoregressive (AR) models have shown exceptional capabilities across various domains, including visual understanding and generation. However, complex tasks such as style-aligned text-to-image generation present significant challenges, particularly in data acquisition. In analogy to instruction-following tuning for image editing of AR models, style-aligned generation requires a reference style image and prompt, resulting in a text-image-to-image triplet where the output shares the style and semantics of the input. However, acquiring large volumes of such triplet data with specific styles is considerably more challenging than obtaining conventional text-to-image data used for training generative models. To address this issue, we propose StyleAR, an innovative approach that combines a specially designed data curation method with our proposed AR models to effectively utilize text-to-image binary data for style-aligned text-to-image generation. Our method synthesizes target stylized data using a reference style image and prompt, but only incorporates the target stylized image as the image modality to create high-quality binary data. To facilitate binary data training, we introduce a CLIP image encoder with a perceiver resampler that translates the image input into style tokens aligned with multimodal tokens in AR models and implement a style-enhanced token technique to prevent content leakage which is a common issue in previous work. Furthermore, we mix raw images drawn from large-scale text-image datasets with stylized images to enhance StyleAR's ability to extract richer stylistic features and ensure style consistency. Extensive qualitative and quantitative experiments demonstrate our superior performance.
Modeling Beyond MOS: Quality Assessment Models Must Integrate Context, Reasoning, and Multimodality
This position paper argues that Mean Opinion Score (MOS), while historically foundational, is no longer sufficient as the sole supervisory signal for multimedia quality assessment models. MOS reduces rich, context-sensitive human judgments to a single scalar, obscuring semantic failures, user intent, and the rationale behind quality decisions. We contend that modern quality assessment models must integrate three interdependent capabilities: (1) context-awareness, to adapt evaluations to task-specific goals and viewing conditions; (2) reasoning, to produce interpretable, evidence-grounded justifications for quality judgments; and (3) multimodality, to align perceptual and semantic cues using vision-language models. We critique the limitations of current MOS-centric benchmarks and propose a roadmap for reform: richer datasets with contextual metadata and expert rationales, and new evaluation metrics that assess semantic alignment, reasoning fidelity, and contextual sensitivity. By reframing quality assessment as a contextual, explainable, and multimodal modeling task, we aim to catalyze a shift toward more robust, human-aligned, and trustworthy evaluation systems.
comment: Under review
Reshaping Representation Space to Balance the Safety and Over-rejection in Large Audio Language Models
Large Audio Language Models (LALMs) have extended the capabilities of Large Language Models (LLMs) by enabling audio-based human interactions. However, recent research has revealed that LALMs remain vulnerable to harmful queries due to insufficient safety-alignment. Despite advances in defence measures for text and vision LLMs, effective safety-alignment strategies and audio-safety dataset specifically targeting LALMs are notably absent. Meanwhile defence measures based on Supervised Fine-tuning (SFT) struggle to address safety improvement while avoiding over-rejection issues, significantly compromising helpfulness. In this work, we propose an unsupervised safety-fine-tuning strategy as remedy that reshapes model's representation space to enhance existing LALMs safety-alignment while balancing the risk of over-rejection. Our experiments, conducted across three generations of Qwen LALMs, demonstrate that our approach significantly improves LALMs safety under three modality input conditions (audio-text, text-only, and audio-only) while increasing over-rejection rate by only 0.88% on average. Warning: this paper contains harmful examples.
Modality Curation: Building Universal Embeddings for Advanced Multimodal Information Retrieval
Multimodal information retrieval (MIR) faces inherent challenges due to the heterogeneity of data sources and the complexity of cross-modal alignment. While previous studies have identified modal gaps in feature spaces, a systematic approach to address these challenges remains unexplored. In this work, we introduce UNITE, a universal framework that tackles these challenges through two critical yet underexplored aspects: data curation and modality-aware training configurations. Our work provides the first comprehensive analysis of how modality-specific data properties influence downstream task performance across diverse scenarios. Moreover, we propose Modal-Aware Masked Contrastive Learning (MAMCL) to mitigate the competitive relationships among the instances of different modalities. Our framework achieves state-of-the-art results on multiple multimodal retrieval benchmarks, outperforming existing methods by notable margins. Through extensive experiments, we demonstrate that strategic modality curation and tailored training protocols are pivotal for robust cross-modal representation learning. This work not only advances MIR performance but also provides a foundational blueprint for future research in multimodal systems. Our project is available at https://friedrichor.github.io/projects/UNITE.
comment: 26 pages, project page: https://friedrichor.github.io/projects/UNITE
What Changed? Detecting and Evaluating Instruction-Guided Image Edits with Multimodal Large Language Models
Instruction-based image editing models offer increased personalization opportunities in generative tasks. However, properly evaluating their results is challenging, and most of the existing metrics lag in terms of alignment with human judgment and explainability. To tackle these issues, we introduce DICE (DIfference Coherence Estimator), a model designed to detect localized differences between the original and the edited image and to assess their relevance to the given modification request. DICE consists of two key components: a difference detector and a coherence estimator, both built on an autoregressive Multimodal Large Language Model (MLLM) and trained using a strategy that leverages self-supervision, distillation from inpainting networks, and full supervision. Through extensive experiments, we evaluate each stage of our pipeline, comparing different MLLMs within the proposed framework. We demonstrate that DICE effectively identifies coherent edits, effectively evaluating images generated by different editing models with a strong correlation with human judgment. We publicly release our source code, models, and data.
Reasoning LLMs are Wandering Solution Explorers
Large Language Models (LLMs) have demonstrated impressive reasoning abilities through test-time computation (TTC) techniques such as chain-of-thought prompting and tree-based reasoning. However, we argue that current reasoning LLMs (RLLMs) lack the ability to systematically explore the solution space. This paper formalizes what constitutes systematic problem solving and identifies common failure modes that reveal reasoning LLMs to be wanderers rather than systematic explorers. Through qualitative and quantitative analysis across multiple state-of-the-art LLMs, we uncover persistent issues: invalid reasoning steps, redundant explorations, hallucinated or unfaithful conclusions, and so on. Our findings suggest that current models' performance can appear to be competent on simple tasks yet degrade sharply as complexity increases. Based on the findings, we advocate for new metrics and tools that evaluate not just final outputs but the structure of the reasoning process itself.
comment: 71 pages, 14 figures, 2 tables
Hierarchical Masked Autoregressive Models with Low-Resolution Token Pivots ICML 2025
Autoregressive models have emerged as a powerful generative paradigm for visual generation. The current de-facto standard of next token prediction commonly operates over a single-scale sequence of dense image tokens, and is incapable of utilizing global context especially for early tokens prediction. In this paper, we introduce a new autoregressive design to model a hierarchy from a few low-resolution image tokens to the typical dense image tokens, and delve into a thorough hierarchical dependency across multi-scale image tokens. Technically, we present a Hierarchical Masked Autoregressive models (Hi-MAR) that pivot on low-resolution image tokens to trigger hierarchical autoregressive modeling in a multi-phase manner. Hi-MAR learns to predict a few image tokens in low resolution, functioning as intermediary pivots to reflect global structure, in the first phase. Such pivots act as the additional guidance to strengthen the next autoregressive modeling phase by shaping global structural awareness of typical dense image tokens. A new Diffusion Transformer head is further devised to amplify the global context among all tokens for mask token prediction. Extensive evaluations on both class-conditional and text-to-image generation tasks demonstrate that Hi-MAR outperforms typical AR baselines, while requiring fewer computational costs. Code is available at https://github.com/HiDream-ai/himar.
comment: ICML 2025. Source code is available at https://github.com/HiDream-ai/himar
MotionPro: A Precise Motion Controller for Image-to-Video Generation CVPR 2025
Animating images with interactive motion control has garnered popularity for image-to-video (I2V) generation. Modern approaches typically rely on large Gaussian kernels to extend motion trajectories as condition without explicitly defining movement region, leading to coarse motion control and failing to disentangle object and camera moving. To alleviate these, we present MotionPro, a precise motion controller that novelly leverages region-wise trajectory and motion mask to regulate fine-grained motion synthesis and identify target motion category (i.e., object or camera moving), respectively. Technically, MotionPro first estimates the flow maps on each training video via a tracking model, and then samples the region-wise trajectories to simulate inference scenario. Instead of extending flow through large Gaussian kernels, our region-wise trajectory approach enables more precise control by directly utilizing trajectories within local regions, thereby effectively characterizing fine-grained movements. A motion mask is simultaneously derived from the predicted flow maps to capture the holistic motion dynamics of the movement regions. To pursue natural motion control, MotionPro further strengthens video denoising by incorporating both region-wise trajectories and motion mask through feature modulation. More remarkably, we meticulously construct a benchmark, i.e., MC-Bench, with 1.1K user-annotated image-trajectory pairs, for the evaluation of both fine-grained and object-level I2V motion control. Extensive experiments conducted on WebVid-10M and MC-Bench demonstrate the effectiveness of MotionPro. Please refer to our project page for more results: https://zhw-zhang.github.io/MotionPro-page/.
comment: CVPR 2025. Project page: https://zhw-zhang.github.io/MotionPro-page/
FastCache: Fast Caching for Diffusion Transformer Through Learnable Linear Approximation
Diffusion Transformers (DiT) are powerful generative models but remain computationally intensive due to their iterative structure and deep transformer stacks. To alleviate this inefficiency, we propose FastCache, a hidden-state-level caching and compression framework that accelerates DiT inference by exploiting redundancy within the model's internal representations. FastCache introduces a dual strategy: (1) a spatial-aware token selection mechanism that adaptively filters redundant tokens based on hidden state saliency, and (2) a transformer-level cache that reuses latent activations across timesteps when changes are statistically insignificant. These modules work jointly to reduce unnecessary computation while preserving generation fidelity through learnable linear approximation. Theoretical analysis shows that FastCache maintains bounded approximation error under a hypothesis-testing-based decision rule. Empirical evaluations across multiple DiT variants demonstrate substantial reductions in latency and memory usage, with best generation output quality compared to other cache methods, as measured by FID and t-FID. Code implementation of FastCache is available on GitHub at https://github.com/NoakLiu/FastCache-xDiT.
Bridging The Multi-Modality Gaps of Audio, Visual and Linguistic for Speech Enhancement
Speech enhancement (SE) aims to improve the quality and intelligibility of speech in noisy environments. Recent studies have shown that incorporating visual cues in audio signal processing can enhance SE performance. Given that human speech communication naturally involves audio, visual, and linguistic modalities, it is reasonable to expect additional improvements by integrating linguistic information. However, effectively bridging these modality gaps, particularly during knowledge transfer remains a significant challenge. In this paper, we propose a novel multi-modal learning framework, termed DLAV-SE, which leverages a diffusion-based model integrating audio, visual, and linguistic information for audio-visual speech enhancement (AVSE). Within this framework, the linguistic modality is modeled using a pretrained language model (PLM), which transfers linguistic knowledge to the audio-visual domain through a cross-modal knowledge transfer (CMKT) mechanism during training. After training, the PLM is no longer required at inference, as its knowledge is embedded into the AVSE model through the CMKT process. We conduct a series of SE experiments to evaluate the effectiveness of our approach. Results show that the proposed DLAV-SE system significantly improves speech quality and reduces generative artifacts, such as phonetic confusion, compared to state-of-the-art (SOTA) methods. Furthermore, visualization analyses confirm that the CMKT method enhances the generation quality of the AVSE outputs. These findings highlight both the promise of diffusion-based methods for advancing AVSE and the value of incorporating linguistic information to further improve system performance.
Jailbreak-AudioBench: In-Depth Evaluation and Analysis of Jailbreak Threats for Large Audio Language Models
Large Language Models (LLMs) demonstrate impressive zero-shot performance across a wide range of natural language processing tasks. Integrating various modality encoders further expands their capabilities, giving rise to Multimodal Large Language Models (MLLMs) that process not only text but also visual and auditory modality inputs. However, these advanced capabilities may also pose significant security risks, as models can be exploited to generate harmful or inappropriate content through jailbreak attacks. While prior work has extensively explored how manipulating textual or visual modality inputs can circumvent safeguards in LLMs and MLLMs, the vulnerability of audio-specific Jailbreak on Large Audio-Language Models (LALMs) remains largely underexplored. To address this gap, we introduce Jailbreak-AudioBench, which consists of the Toolbox, curated Dataset, and comprehensive Benchmark. The Toolbox supports not only text-to-audio conversion but also a range of audio editing techniques. The curated Dataset provides diverse explicit and implicit jailbreak audio examples in both original and edited forms. Utilizing this dataset, we evaluate multiple state-of-the-art LALMs, establishing the most comprehensive audio jailbreak benchmark to date. Finally, Jailbreak-AudioBench establishes a foundation for advancing future research on LALMs safety alignment by enabling the in-depth exposure of more powerful jailbreak threats, such as query-based audio editing, and by facilitating the development of effective defense mechanisms.
Seeing Through Deception: Uncovering Misleading Creator Intent in Multimodal News with Vision-Language Models
The real-world impact of misinformation stems from the underlying misleading narratives that creators seek to convey. As such, interpreting misleading creator intent is essential for multimodal misinformation detection (MMD) systems aimed at effective information governance. In this paper, we introduce an automated framework that simulates real-world multimodal news creation by explicitly modeling creator intent through two components: the desired influence and the execution plan. Using this framework, we construct DeceptionDecoded, a large-scale benchmark comprising 12,000 image-caption pairs aligned with trustworthy reference articles. The dataset captures both misleading and non-misleading intents and spans manipulations across visual and textual modalities. We conduct a comprehensive evaluation of 14 state-of-the-art vision-language models (VLMs) on three intent-centric tasks: (1) misleading intent detection, (2) misleading source attribution, and (3) creator desire inference. Despite recent advances, we observe that current VLMs fall short in recognizing misleading intent, often relying on spurious cues such as superficial cross-modal consistency, stylistic signals, and heuristic authenticity hints. Our findings highlight the pressing need for intent-aware modeling in MMD and open new directions for developing systems capable of deeper reasoning about multimodal misinformation.
Less for More: Enhanced Feedback-aligned Mixed LLMs for Molecule Caption Generation and Fine-Grained NLI Evaluation ACL25
Scientific language models drive research innovation but require extensive fine-tuning on large datasets. This work enhances such models by improving their inference and evaluation capabilities with minimal or no additional training. Focusing on molecule caption generation, we explore post-training synergies between alignment fine-tuning and model merging in a cross-modal setup. We reveal intriguing insights into the behaviour and suitability of such methods while significantly surpassing state-of-the-art models. Moreover, we propose a novel atomic-level evaluation method leveraging off-the-shelf Natural Language Inference (NLI) models for use in the unseen chemical domain. Our experiments demonstrate that our evaluation operates at the right level of granularity, effectively handling multiple content units and subsentence reasoning, while widely adopted NLI methods consistently misalign with assessment criteria.
comment: ACL25 Main
Computation and Language
Pangu Light: Weight Re-Initialization for Pruning and Accelerating LLMs
Large Language Models (LLMs) deliver state-of-the-art capabilities across numerous tasks, but their immense size and inference costs pose significant computational challenges for practical deployment. While structured pruning offers a promising avenue for model compression, existing methods often struggle with the detrimental effects of aggressive, simultaneous width and depth reductions, leading to substantial performance degradation. This paper argues that a critical, often overlooked, aspect in making such aggressive joint pruning viable is the strategic re-initialization and adjustment of remaining weights to improve the model post-pruning training accuracies. We introduce Pangu Light, a framework for LLM acceleration centered around structured pruning coupled with novel weight re-initialization techniques designed to address this ``missing piece''. Our framework systematically targets multiple axes, including model width, depth, attention heads, and RMSNorm, with its effectiveness rooted in novel re-initialization methods like Cross-Layer Attention Pruning (CLAP) and Stabilized LayerNorm Pruning (SLNP) that mitigate performance drops by providing the network a better training starting point. Further enhancing efficiency, Pangu Light incorporates specialized optimizations such as absorbing Post-RMSNorm computations and tailors its strategies to Ascend NPU characteristics. The Pangu Light models consistently exhibit a superior accuracy-efficiency trade-off, outperforming prominent baseline pruning methods like Nemotron and established LLMs like Qwen3 series. For instance, on Ascend NPUs, Pangu Light-32B's 81.6 average score and 2585 tokens/s throughput exceed Qwen3-32B's 80.9 average score and 2225 tokens/s.
UORA: Uniform Orthogonal Reinitialization Adaptation in Parameter-Efficient Fine-Tuning of Large Models
This paper introduces Uniform Orthogonal Reinitialization Adaptation (UORA), a novel parameter-efficient fine-tuning (PEFT) approach for Large Language Models (LLMs). UORA achieves state-of-the-art performance and parameter efficiency by leveraging a low-rank approximation method to reduce the number of trainable parameters. Unlike existing methods such as LoRA and VeRA, UORA employs an interpolation-based reparametrization mechanism that selectively reinitializes rows and columns in frozen projection matrices, guided by the vector magnitude heuristic. This results in substantially fewer trainable parameters compared to LoRA and outperforms VeRA in computation and storage efficiency. Comprehensive experiments across various benchmarks demonstrate UORA's superiority in achieving competitive fine-tuning performance with negligible computational overhead. We demonstrate its performance on GLUE and E2E benchmarks and its effectiveness in instruction-tuning large language models and image classification models. Our contributions establish a new paradigm for scalable and resource-efficient fine-tuning of LLMs.
comment: 20 pages, 2 figures, 15 tables
Hard Negative Contrastive Learning for Fine-Grained Geometric Understanding in Large Multimodal Models
Benefiting from contrastively trained visual encoders on large-scale natural scene images, Large Multimodal Models (LMMs) have achieved remarkable performance across various visual perception tasks. However, the inherent limitations of contrastive learning upon summarized descriptions fundamentally restrict the capabilities of models in meticulous reasoning, particularly in crucial scenarios of geometric problem-solving. To enhance geometric understanding, we propose a novel hard negative contrastive learning framework for the vision encoder, which combines image-based contrastive learning using generation-based hard negatives created by perturbing diagram generation code, and text-based contrastive learning using rule-based negatives derived from modified geometric descriptions and retrieval-based negatives selected based on caption similarity. We train CLIP using our strong negative learning method, namely MMCLIP (Multimodal Math CLIP), and subsequently train an LMM for geometric problem-solving. Experiments show that our trained model, MMGeoLM, significantly outperforms other open-source models on three geometric reasoning benchmarks. Even with a size of 7B, it can rival powerful closed-source models like GPT-4o. We further study the impact of different negative sample construction methods and the number of negative samples on the geometric reasoning performance of LMM, yielding fruitful conclusions. The code and dataset are available at https://github.com/THU-KEG/MMGeoLM.
SeMe: Training-Free Language Model Merging via Semantic Alignment
Despite the remarkable capabilities of Language Models (LMs) across diverse tasks, no single model consistently outperforms others, necessitating efficient methods to combine their strengths without expensive retraining. Existing model merging techniques, such as parameter averaging and task-guided fusion, often rely on data-dependent computations or fail to preserve internal knowledge, limiting their robustness and scalability. We introduce SeMe (Semantic-based Merging), a novel, data-free, and training-free approach that leverages latent semantic alignment to merge LMs at a fine-grained, layer-wise level. Unlike prior work, SeMe not only preserves model behaviors but also explicitly stabilizes internal knowledge, addressing a critical gap in LM fusion. Through extensive experiments across diverse architectures and tasks, we demonstrate that SeMe outperforms existing methods in both performance and efficiency while eliminating reliance on external data. Our work establishes a new paradigm for knowledge-aware model merging and provides insights into the semantic structure of LMs, paving the way for more scalable and interpretable model composition.
comment: an early-stage version
StructEval: Benchmarking LLMs' Capabilities to Generate Structural Outputs
As Large Language Models (LLMs) become integral to software development workflows, their ability to generate structured outputs has become critically important. We introduce StructEval, a comprehensive benchmark for evaluating LLMs' capabilities in producing both non-renderable (JSON, YAML, CSV) and renderable (HTML, React, SVG) structured formats. Unlike prior benchmarks, StructEval systematically evaluates structural fidelity across diverse formats through two paradigms: 1) generation tasks, producing structured output from natural language prompts, and 2) conversion tasks, translating between structured formats. Our benchmark encompasses 18 formats and 44 types of task, with novel metrics for format adherence and structural correctness. Results reveal significant performance gaps, even state-of-the-art models like o1-mini achieve only 75.58 average score, with open-source alternatives lagging approximately 10 points behind. We find generation tasks more challenging than conversion tasks, and producing correct visual content more difficult than generating text-only structures.
comment: 16 pages, 9 figures, 13 tables
AweDist: Attention-aware Embedding Distillation for New Input Token Embeddings
Current language models rely on static vocabularies determined at pretraining time, which can lead to decreased performance and increased computational cost for domains underrepresented in the original vocabulary. New tokens can be added to solve this problem, when coupled with a good initialization for their new embeddings. However, existing embedding initialization methods either require expensive further training or pretraining of additional modules. In this paper, we propose AweDist and show that by distilling representations obtained using the original tokenization, we can quickly learn high-quality input embeddings for new tokens. Experimental results with a wide range of open-weight models show that AweDist is able to outperform even strong baselines.
Iterative Self-Incentivization Empowers Large Language Models as Agentic Searchers
Large language models (LLMs) have been widely integrated into information retrieval to advance traditional techniques. However, effectively enabling LLMs to seek accurate knowledge in complex tasks remains a challenge due to the complexity of multi-hop queries as well as the irrelevant retrieved content. To address these limitations, we propose EXSEARCH, an agentic search framework, where the LLM learns to retrieve useful information as the reasoning unfolds through a self-incentivized process. At each step, the LLM decides what to retrieve (thinking), triggers an external retriever (search), and extracts fine-grained evidence (recording) to support next-step reasoning. To enable LLM with this capability, EXSEARCH adopts a Generalized Expectation-Maximization algorithm. In the E-step, the LLM generates multiple search trajectories and assigns an importance weight to each; the M-step trains the LLM on them with a re-weighted loss function. This creates a self-incentivized loop, where the LLM iteratively learns from its own generated data, progressively improving itself for search. We further theoretically analyze this training process, establishing convergence guarantees. Extensive experiments on four knowledge-intensive benchmarks show that EXSEARCH substantially outperforms baselines, e.g., +7.8% improvement on exact match score. Motivated by these promising results, we introduce EXSEARCH-Zoo, an extension that extends our method to broader scenarios, to facilitate future work.
comment: Working in process
TrojanStego: Your Language Model Can Secretly Be A Steganographic Privacy Leaking Agent
As large language models (LLMs) become integrated into sensitive workflows, concerns grow over their potential to leak confidential information. We propose TrojanStego, a novel threat model in which an adversary fine-tunes an LLM to embed sensitive context information into natural-looking outputs via linguistic steganography, without requiring explicit control over inference inputs. We introduce a taxonomy outlining risk factors for compromised LLMs, and use it to evaluate the risk profile of the threat. To implement TrojanStego, we propose a practical encoding scheme based on vocabulary partitioning learnable by LLMs via fine-tuning. Experimental results show that compromised models reliably transmit 32-bit secrets with 87% accuracy on held-out prompts, reaching over 97% accuracy using majority voting across three generations. Further, they maintain high utility, can evade human detection, and preserve coherence. These results highlight a new class of LLM data exfiltration attacks that are passive, covert, practical, and dangerous.
comment: 8 pages, 5 figures
Named Entity Recognition in Historical Italian: The Case of Giacomo Leopardi's Zibaldone
The increased digitization of world's textual heritage poses significant challenges for both computer science and literary studies. Overall, there is an urgent need of computational techniques able to adapt to the challenges of historical texts, such as orthographic and spelling variations, fragmentary structure and digitization errors. The rise of large language models (LLMs) has revolutionized natural language processing, suggesting promising applications for Named Entity Recognition (NER) on historical documents. In spite of this, no thorough evaluation has been proposed for Italian texts. This research tries to fill the gap by proposing a new challenging dataset for entity extraction based on a corpus of 19th century scholarly notes, i.e. Giacomo Leopardi's Zibaldone (1898), containing 2,899 references to people, locations and literary works. This dataset was used to carry out reproducible experiments with both domain-specific BERT-based models and state-of-the-art LLMs such as LLaMa3.1. Results show that instruction-tuned models encounter multiple difficulties handling historical humanistic texts, while fine-tuned NER models offer more robust performance even with challenging entity types such as bibliographic references.
ResSVD: Residual Compensated SVD for Large Language Model Compression
Large language models (LLMs) have demonstrated impressive capabilities in a wide range of downstream natural language processing tasks. Nevertheless, their considerable sizes and memory demands hinder practical deployment, underscoring the importance of developing efficient compression strategies. Singular value decomposition (SVD) decomposes a matrix into orthogonal components, enabling efficient low-rank approximation. This is particularly suitable for LLM compression, where weight matrices often exhibit significant redundancy. However, current SVD-based methods neglect the residual matrix from truncation, resulting in significant truncation loss. Additionally, compressing all layers of the model results in severe performance degradation. To overcome these limitations, we propose ResSVD, a new post-training SVD-based LLM compression method. Specifically, we leverage the residual matrix generated during the truncation process to reduce truncation loss. Moreover, under a fixed overall compression ratio, we selectively compress the last few layers of the model, which mitigates error propagation and significantly improves the performance of compressed models.Comprehensive evaluations of ResSVD on diverse LLM families and multiple benchmark datasets indicate that ResSVD consistently achieves superior performance over existing counterpart methods, demonstrating its practical effectiveness.
Language-Agnostic Suicidal Risk Detection Using Large Language Models
Suicidal risk detection in adolescents is a critical challenge, yet existing methods rely on language-specific models, limiting scalability and generalization. This study introduces a novel language-agnostic framework for suicidal risk assessment with large language models (LLMs). We generate Chinese transcripts from speech using an ASR model and then employ LLMs with prompt-based queries to extract suicidal risk-related features from these transcripts. The extracted features are retained in both Chinese and English to enable cross-linguistic analysis and then used to fine-tune corresponding pretrained language models independently. Experimental results show that our method achieves performance comparable to direct fine-tuning with ASR results or to models trained solely on Chinese suicidal risk-related features, demonstrating its potential to overcome language constraints and improve the robustness of suicidal risk assessment.
comment: Accepted to InterSpeech 2025
SCIRGC: Multi-Granularity Citation Recommendation and Citation Sentence Preference Alignment
Citations are crucial in scientific research articles as they highlight the connection between the current study and prior work. However, this process is often time-consuming for researchers. In this study, we propose the SciRGC framework, which aims to automatically recommend citation articles and generate citation sentences for citation locations within articles. The framework addresses two key challenges in academic citation generation: 1) how to accurately identify the author's citation intent and find relevant citation papers, and 2) how to generate high-quality citation sentences that align with human preferences. We enhance citation recommendation accuracy in the citation article recommendation module by incorporating citation networks and sentiment intent, and generate reasoning-based citation sentences in the citation sentence generation module by using the original article abstract, local context, citation intent, and recommended articles as inputs. Additionally, we propose a new evaluation metric to fairly assess the quality of generated citation sentences. Through comparisons with baseline models and ablation experiments, the SciRGC framework not only improves the accuracy and relevance of citation recommendations but also ensures the appropriateness of the generated citation sentences in context, providing a valuable tool for interdisciplinary researchers.
comment: 15 pages, 7 figures
Adaptive Deep Reasoning: Triggering Deep Thinking When Needed
Large language models (LLMs) have shown impressive capabilities in handling complex tasks through long-chain reasoning. However, the extensive reasoning steps involved can significantly increase computational costs, posing challenges for real-world deployment. Recent efforts have focused on optimizing reasoning efficiency by shortening the Chain-of-Thought (CoT) reasoning processes through various approaches, such as length-aware prompt engineering, supervised fine-tuning on CoT data with variable lengths, and reinforcement learning with length penalties. Although these methods effectively reduce reasoning length, they still necessitate an initial reasoning phase. More recent approaches have attempted to integrate long-chain and short-chain reasoning abilities into a single model, yet they still rely on manual control to toggle between short and long CoT.In this work, we propose a novel approach that autonomously switches between short and long reasoning chains based on problem complexity. Our method begins with supervised fine-tuning of the base model to equip both long-chain and short-chain reasoning abilities. We then employ reinforcement learning to further balance short and long CoT generation while maintaining accuracy through two key strategies: first, integrating reinforcement learning with a long-short adaptive group-wise reward strategy to assess prompt complexity and provide corresponding rewards; second, implementing a logit-based reasoning mode switching loss to optimize the model's initial token choice, thereby guiding the selection of the reasoning type.Evaluations on mathematical datasets demonstrate that our model can dynamically switch between long-chain and short-chain reasoning modes without substantially sacrificing performance. This advancement enhances the practicality of reasoning in large language models for real-world applications.
Large Language Models Meet Knowledge Graphs for Question Answering: Synthesis and Opportunities
Large language models (LLMs) have demonstrated remarkable performance on question-answering (QA) tasks because of their superior capabilities in natural language understanding and generation. However, LLM-based QA struggles with complex QA tasks due to poor reasoning capacity, outdated knowledge, and hallucinations. Several recent works synthesize LLMs and knowledge graphs (KGs) for QA to address the above challenges. In this survey, we propose a new structured taxonomy that categorizes the methodology of synthesizing LLMs and KGs for QA according to the categories of QA and the KG's role when integrating with LLMs. We systematically survey state-of-the-art advances in synthesizing LLMs and KGs for QA and compare and analyze these approaches in terms of strength, limitations, and KG requirements. We then align the approaches with QA and discuss how these approaches address the main challenges of different complex QA. Finally, we summarize the advancements, evaluation metrics, and benchmark datasets and highlight open challenges and opportunities.
comment: Under Review
S2LPP: Small-to-Large Prompt Prediction across LLMs
The performance of pre-trained Large Language Models (LLMs) is often sensitive to nuances in prompt templates, requiring careful prompt engineering, adding costs in terms of computing and human effort. In this study, we present experiments encompassing multiple LLMs variants of varying sizes aimed at probing their preference with different prompts. Through experiments on Question Answering, we show prompt preference consistency across LLMs of different sizes. We also show that this consistency extends to other tasks, such as Natural Language Inference. Utilizing this consistency, we propose a method to use a smaller model to select effective prompt templates for a larger model. We show that our method substantially reduces the cost of prompt engineering while consistently matching performance with optimal prompts among candidates. More importantly, our experiment shows the efficacy of our strategy across fourteen LLMs and its applicability to a broad range of NLP tasks, highlighting its robustness
comment: 15 pages
MA-RAG: Multi-Agent Retrieval-Augmented Generation via Collaborative Chain-of-Thought Reasoning
We present MA-RAG, a Multi-Agent framework for Retrieval-Augmented Generation (RAG) that addresses the inherent ambiguities and reasoning challenges in complex information-seeking tasks. Unlike conventional RAG methods that rely on either end-to-end fine-tuning or isolated component enhancements, MA-RAG orchestrates a collaborative set of specialized AI agents: Planner, Step Definer, Extractor, and QA Agents, to tackle each stage of the RAG pipeline with task-aware reasoning. Ambiguities may arise from underspecified queries, sparse or indirect evidence in retrieved documents, or the need to integrate information scattered across multiple sources. MA-RAG mitigates these challenges by decomposing the problem into subtasks, such as query disambiguation, evidence extraction, and answer synthesis, and dispatching them to dedicated agents equipped with chain-of-thought prompting. These agents communicate intermediate reasoning and progressively refine the retrieval and synthesis process. Our design allows fine-grained control over information flow without any model fine-tuning. Crucially, agents are invoked on demand, enabling a dynamic and efficient workflow that avoids unnecessary computation. This modular and reasoning-driven architecture enables MA-RAG to deliver robust, interpretable results. Experiments on multi-hop and ambiguous QA benchmarks demonstrate that MA-RAG outperforms state-of-the-art training-free baselines and rivals fine-tuned systems, validating the effectiveness of collaborative agent-based reasoning in RAG.
Multi-Domain Explainability of Preferences
Preference mechanisms, such as human preference, LLM-as-a-Judge (LaaJ), and reward models, are central to aligning and evaluating large language models (LLMs). Yet, the underlying concepts that drive these preferences remain poorly understood. In this work, we propose a fully automated end-to-end method for generating local and global concept-based explanations of preferences across multiple domains. Our method employs an LLM to discover concepts that differentiate between chosen and rejected responses and represent them with concept-based vectors. To model the relationships between concepts and preferences, we propose a white-box Hierarchical Multi-Domain Regression model that captures both domain-general and domain-specific effects. To evaluate our method, we curate a dataset spanning eight challenging and diverse domains and explain twelve mechanisms. Our method achieves strong preference prediction performance, outperforming baselines while also being explainable. Additionally, we assess explanations in two novel application-driven settings. First, guiding LLM outputs with concepts from LaaJ explanations yields responses that those judges consistently prefer. Second, prompting LaaJs with concepts explaining humans improves their preference predictions. Together, our work provides a new paradigm for explainability in the era of LLMs.
Safety Through Reasoning: An Empirical Study of Reasoning Guardrail Models
Reasoning-based language models have demonstrated strong performance across various domains, with the most notable gains seen in mathematical and coding tasks. Recent research has shown that reasoning also offers significant benefits for LLM safety and guardrail applications. In this work, we conduct a comprehensive analysis of training reasoning-based guardrail models for content moderation, with an emphasis on generalization to custom safety policies at inference time. Our study focuses on two key dimensions: data efficiency and inference efficiency. On the data front, we find that reasoning-based models exhibit strong sample efficiency, achieving competitive performance with significantly fewer training examples than their non-reasoning counterparts. This unlocks the potential to repurpose the remaining data for mining high-value, difficult samples that further enhance model performance. On the inference side, we evaluate practical trade-offs by introducing reasoning budgets, examining the impact of reasoning length on latency and accuracy, and exploring dual-mode training to allow runtime control over reasoning behavior. Our findings will provide practical insights for researchers and developers to effectively and efficiently train and deploy reasoning-based guardrails models in real-world systems.
Inference-time Alignment in Continuous Space
Aligning large language models with human feedback at inference time has received increasing attention due to its flexibility. Existing methods rely on generating multiple responses from the base policy for search using a reward model, which can be considered as searching in a discrete response space. However, these methods struggle to explore informative candidates when the base policy is weak or the candidate set is small, resulting in limited effectiveness. In this paper, to address this problem, we propose Simple Energy Adaptation ($\textbf{SEA}$), a simple yet effective algorithm for inference-time alignment. In contrast to expensive search over the discrete space, SEA directly adapts original responses from the base policy toward the optimal one via gradient-based sampling in continuous latent space. Specifically, SEA formulates inference as an iterative optimization procedure on an energy function over actions in the continuous space defined by the optimal policy, enabling simple and effective alignment. For instance, despite its simplicity, SEA outperforms the second-best baseline with a relative improvement of up to $ \textbf{77.51%}$ on AdvBench and $\textbf{16.36%}$ on MATH. Our code is publicly available at https://github.com/yuanyige/SEA
Incentivizing Reasoning from Weak Supervision
Large language models (LLMs) have demonstrated impressive performance on reasoning-intensive tasks, but enhancing their reasoning abilities typically relies on either reinforcement learning (RL) with verifiable signals or supervised fine-tuning (SFT) with high-quality long chain-of-thought (CoT) demonstrations, both of which are expensive. In this paper, we study a novel problem of incentivizing the reasoning capacity of LLMs without expensive high-quality demonstrations and reinforcement learning. We investigate whether the reasoning capabilities of LLMs can be effectively incentivized via supervision from significantly weaker models. We further analyze when and why such weak supervision succeeds in eliciting reasoning abilities in stronger models. Our findings show that supervision from significantly weaker reasoners can substantially improve student reasoning performance, recovering close to 94% of the gains of expensive RL at a fraction of the cost. Experiments across diverse benchmarks and model architectures demonstrate that weak reasoners can effectively incentivize reasoning in stronger student models, consistently improving performance across a wide range of reasoning tasks. Our results suggest that this simple weak-to-strong paradigm is a promising and generalizable alternative to costly methods for incentivizing strong reasoning capabilities at inference-time in LLMs. The code is publicly available at https://github.com/yuanyige/W2SR.
SAEs Are Good for Steering -- If You Select the Right Features
Sparse Autoencoders (SAEs) have been proposed as an unsupervised approach to learn a decomposition of a model's latent space. This enables useful applications such as steering - influencing the output of a model towards a desired concept - without requiring labeled data. Current methods identify SAE features to steer by analyzing the input tokens that activate them. However, recent work has highlighted that activations alone do not fully describe the effect of a feature on the model's output. In this work, we draw a distinction between two types of features: input features, which mainly capture patterns in the model's input, and output features, which have a human-understandable effect on the model's output. We propose input and output scores to characterize and locate these types of features, and show that high values for both scores rarely co-occur in the same features. These findings have practical implications: after filtering out features with low output scores, we obtain 2-3x improvements when steering with SAEs, making them competitive with supervised methods.
Multimodal LLM-Guided Semantic Correction in Text-to-Image Diffusion
Diffusion models have become the mainstream architecture for text-to-image generation, achieving remarkable progress in visual quality and prompt controllability. However, current inference pipelines generally lack interpretable semantic supervision and correction mechanisms throughout the denoising process. Most existing approaches rely solely on post-hoc scoring of the final image, prompt filtering, or heuristic resampling strategies-making them ineffective in providing actionable guidance for correcting the generative trajectory. As a result, models often suffer from object confusion, spatial errors, inaccurate counts, and missing semantic elements, severely compromising prompt-image alignment and image quality. To tackle these challenges, we propose MLLM Semantic-Corrected Ping-Pong-Ahead Diffusion (PPAD), a novel framework that, for the first time, introduces a Multimodal Large Language Model (MLLM) as a semantic observer during inference. PPAD performs real-time analysis on intermediate generations, identifies latent semantic inconsistencies, and translates feedback into controllable signals that actively guide the remaining denoising steps. The framework supports both inference-only and training-enhanced settings, and performs semantic correction at only extremely few diffusion steps, offering strong generality and scalability. Extensive experiments demonstrate PPAD's significant improvements.
MVP: Multi-source Voice Pathology detection
Voice disorders significantly impact patient quality of life, yet non-invasive automated diagnosis remains under-explored due to both the scarcity of pathological voice data, and the variability in recording sources. This work introduces MVP (Multi-source Voice Pathology detection), a novel approach that leverages transformers operating directly on raw voice signals. We explore three fusion strategies to combine sentence reading and sustained vowel recordings: waveform concatenation, intermediate feature fusion, and decision-level combination. Empirical validation across the German, Portuguese, and Italian languages shows that intermediate feature fusion using transformers best captures the complementary characteristics of both recording types. Our approach achieves up to +13% AUC improvement over single-source methods.
comment: Accepted at Interspeech 2025
Grammars of Formal Uncertainty: When to Trust LLMs in Automated Reasoning Tasks
Large language models (LLMs) show remarkable promise for democratizing automated reasoning by generating formal specifications. However, a fundamental tension exists: LLMs are probabilistic, while formal verification demands deterministic guarantees. This paper addresses this epistemological gap by comprehensively investigating failure modes and uncertainty quantification (UQ) in LLM-generated formal artifacts. Our systematic evaluation of five frontier LLMs reveals Satisfiability Modulo Theories (SMT) based autoformalization's domain-specific impact on accuracy (from +34.8% on logical tasks to -44.5% on factual ones), with known UQ techniques like the entropy of token probabilities failing to identify these errors. We introduce a probabilistic context-free grammar (PCFG) framework to model LLM outputs, yielding a refined uncertainty taxonomy. We find uncertainty signals are task-dependent (e.g., grammar entropy for logic, AUROC>0.93). Finally, a lightweight fusion of these signals enables selective verification, drastically reducing errors (14-100%) with minimal abstention, transforming LLM-driven formalization into a reliable engineering discipline.
REARANK: Reasoning Re-ranking Agent via Reinforcement Learning
We present REARANK, a large language model (LLM)-based listwise reasoning reranking agent. REARANK explicitly reasons before reranking, significantly improving both performance and interpretability. Leveraging reinforcement learning and data augmentation, REARANK achieves substantial improvements over baseline models across popular information retrieval benchmarks, notably requiring only 179 annotated samples. Built on top of Qwen2.5-7B, our REARANK-7B demonstrates performance comparable to GPT-4 on both in-domain and out-of-domain benchmarks and even surpasses GPT-4 on reasoning-intensive BRIGHT benchmarks. These results underscore the effectiveness of our approach and highlight how reinforcement learning can enhance LLM reasoning capabilities in reranking.
Uncertainty-Aware Attention Heads: Efficient Unsupervised Uncertainty Quantification for LLMs
Large language models (LLMs) exhibit impressive fluency, but often produce critical errors known as "hallucinations". Uncertainty quantification (UQ) methods are a promising tool for coping with this fundamental shortcoming. Yet, existing UQ methods face challenges such as high computational overhead or reliance on supervised learning. Here, we aim to bridge this gap. In particular, we propose RAUQ (Recurrent Attention-based Uncertainty Quantification), an unsupervised approach that leverages intrinsic attention patterns in transformers to detect hallucinations efficiently. By analyzing attention weights, we identified a peculiar pattern: drops in attention to preceding tokens are systematically observed during incorrect generations for certain "uncertainty-aware" heads. RAUQ automatically selects such heads, recurrently aggregates their attention weights and token-level confidences, and computes sequence-level uncertainty scores in a single forward pass. Experiments across 4 LLMs and 12 question answering, summarization, and translation tasks demonstrate that RAUQ yields excellent results, outperforming state-of-the-art UQ methods using minimal computational overhead (<1% latency). Moreover, it requires no task-specific labels and no careful hyperparameter tuning, offering plug-and-play real-time hallucination detection in white-box LLMs.
Multi-modal brain encoding models for multi-modal stimuli ICLR-2025
Despite participants engaging in unimodal stimuli, such as watching images or silent videos, recent work has demonstrated that multi-modal Transformer models can predict visual brain activity impressively well, even with incongruent modality representations. This raises the question of how accurately these multi-modal models can predict brain activity when participants are engaged in multi-modal stimuli. As these models grow increasingly popular, their use in studying neural activity provides insights into how our brains respond to such multi-modal naturalistic stimuli, i.e., where it separates and integrates information across modalities through a hierarchy of early sensory regions to higher cognition. We investigate this question by using multiple unimodal and two types of multi-modal models-cross-modal and jointly pretrained-to determine which type of model is more relevant to fMRI brain activity when participants are engaged in watching movies. We observe that both types of multi-modal models show improved alignment in several language and visual regions. This study also helps in identifying which brain regions process unimodal versus multi-modal information. We further investigate the contribution of each modality to multi-modal alignment by carefully removing unimodal features one by one from multi-modal representations, and find that there is additional information beyond the unimodal embeddings that is processed in the visual and language regions. Based on this investigation, we find that while for cross-modal models, their brain alignment is partially attributed to the video modality; for jointly pretrained models, it is partially attributed to both the video and audio modalities. This serves as a strong motivation for the neuroscience community to investigate the interpretability of these models for deepening our understanding of multi-modal information processing in brain.
comment: 26 pages, 15 figures, The Thirteenth International Conference on Learning Representations, ICLR-2025, Singapore. https://openreview.net/pdf?id=0dELcFHig2
Training LLM-Based Agents with Synthetic Self-Reflected Trajectories and Partial Masking
Autonomous agents, which perceive environments and take actions to achieve goals, have become increasingly feasible with the advancements in large language models (LLMs). However, current powerful agents often depend on sophisticated prompt engineering combined with closed-source LLMs like GPT-4. Although training open-source LLMs using expert trajectories from teacher models has yielded some improvements in agent capabilities, this approach still faces limitations such as performance plateauing and error propagation. To mitigate these challenges, we propose STeP, a novel method for improving LLM-based agent training. We synthesize self-reflected trajectories that include reflections and corrections of error steps, which enhance the effectiveness of LLM agents in learning from teacher models, enabling them to become agents capable of self-reflecting and correcting. We also introduce partial masking strategy that prevents the LLM from internalizing incorrect or suboptimal steps. Experiments demonstrate that our method improves agent performance across three representative tasks: ALFWorld, WebShop, and SciWorld. For the open-source model LLaMA2-7B-Chat, when trained using self-reflected trajectories constructed with Qwen1.5-110B-Chat as the teacher model, it achieves comprehensive improvements with less training data compared to agents trained exclusively on expert trajectories.
TTPA: Token-level Tool-use Preference Alignment Training Framework with Fine-grained Evaluation
Existing tool-learning methods usually rely on supervised fine-tuning, they often overlook fine-grained optimization of internal tool call details, leading to limitations in preference alignment and error discrimination. To overcome these challenges, we propose Token-level Tool-use Preference Alignment Training Framework (TTPA), a training paradigm for constructing token-level tool-use preference datasets that align LLMs with fine-grained preferences using a novel error-oriented scoring mechanism. TTPA first introduces reversed dataset construction, a method for creating high-quality, multi-turn tool-use datasets by reversing the generation flow. Additionally, we propose Token-level Preference Sampling (TPS) to capture fine-grained preferences by modeling token-level differences during generation. To address biases in scoring, we introduce the Error-oriented Scoring Mechanism (ESM), which quantifies tool-call errors and can be used as a training signal. Extensive experiments on three diverse benchmark datasets demonstrate that TTPA significantly improves tool-using performance while showing strong generalization ability across models and datasets.
comment: 16 pages, 5 figures
On the class of coding optimality of human languages and the origins of Zipf's law
Here we present a new class of optimality for coding systems. Members of that class are separated linearly from optimal coding and thus exhibit Zipf's law, namely a power-law distribution of frequency ranks. Whithin that class, Zipf's law, the size-rank law and the size-probability law form a group-like structure. We identify human languages that are members of the class. All languages showing sufficient agreement with Zipf's law are potential members of the class. In contrast, there are communication systems in other species that cannot be members of that class for exhibiting an exponential distribution instead but dolphins and humpback whales might. We provide a new insight into plots of frequency versus rank in double logarithmic scale. For any system, a straight line in that scale indicates that the lengths of optimal codes under non-singular coding and under uniquely decodable encoding are separated by a linear function whose slope is the exponent of Zipf's law. For systems under compression and constrained to be uniquely decodable, such a straight line may indicate that the system is coding close to optimality. Our findings provide support for the hypothesis that Zipf's law originates from compression.
Does Rationale Quality Matter? Enhancing Mental Disorder Detection via Selective Reasoning Distillation
The detection of mental health problems from social media and the interpretation of these results have been extensively explored. Research has shown that incorporating clinical symptom information into a model enhances domain expertise, improving its detection and interpretation performance. While large language models (LLMs) are shown to be effective for generating explanatory rationales in mental health detection, their substantially large parameter size and high computational cost limit their practicality. Reasoning distillation transfers this ability to smaller language models (SLMs), but inconsistencies in the relevance and domain alignment of LLM-generated rationales pose a challenge. This paper investigates how rationale quality impacts SLM performance in mental health detection and explanation generation. We hypothesize that ensuring high-quality and domain-relevant rationales enhances the distillation. To this end, we propose a framework that selects rationales based on their alignment with expert clinical reasoning. Experiments show that our quality-focused approach significantly enhances SLM performance in both mental disorder detection and rationale generation. This work highlights the importance of rationale quality and offers an insightful framework for knowledge transfer in mental health applications.
WebCoT: Enhancing Web Agent Reasoning by Reconstructing Chain-of-Thought in Reflection, Branching, and Rollback
Web agents powered by Large Language Models (LLMs) show promise for next-generation AI, but their limited reasoning in uncertain, dynamic web environments hinders robust deployment. In this paper, we identify key reasoning skills essential for effective web agents, i.e., reflection & lookahead, branching, and rollback, and curate trajectory data that exemplifies these abilities by reconstructing the agent's (inference-time) reasoning algorithms into chain-of-thought rationales. We conduct experiments in the agent self-improving benchmark, OpenWebVoyager, and demonstrate that distilling salient reasoning patterns into the backbone LLM via simple fine-tuning can substantially enhance its performance. Our approach yields significant improvements across multiple benchmarks, including WebVoyager, Mind2web-live, and SimpleQA (web search), highlighting the potential of targeted reasoning skill enhancement for web agents.
comment: 18 pages
Mixture of LoRA Experts for Low-Resourced Multi-Accent Automatic Speech Recognition
We aim to improve the robustness of Automatic Speech Recognition (ASR) systems against non-native speech, particularly in low-resourced multi-accent settings. We introduce Mixture of Accent-Specific LoRAs (MAS-LoRA), a fine-tuning method that leverages a mixture of Low-Rank Adaptation (LoRA) experts, each specialized in a specific accent. This method can be used when the accent is known or unknown at inference time, without the need to fine-tune the model again. Our experiments, conducted using Whisper on the L2-ARCTIC corpus, demonstrate significant improvements in Word Error Rate compared to regular LoRA and full fine-tuning when the accent is unknown. When the accent is known, the results further improve. Furthermore, MAS-LoRA shows less catastrophic forgetting than the other fine-tuning methods. To the best of our knowledge, this is the first use of a mixture of LoRA experts for non-native multi-accent ASR.
comment: Submitted to Interspeech 2025
Embracing Imperfection: Simulating Students with Diverse Cognitive Levels Using LLM-based Agents
Large language models (LLMs) are revolutionizing education, with LLM-based agents playing a key role in simulating student behavior. A major challenge in student simulation is modeling the diverse learning patterns of students at various cognitive levels. However, current LLMs, typically trained as ``helpful assistants'', target at generating perfect responses. As a result, they struggle to simulate students with diverse cognitive abilities, as they often produce overly advanced answers, missing the natural imperfections that characterize student learning and resulting in unrealistic simulations. To address this issue, we propose a training-free framework for student simulation. We begin by constructing a cognitive prototype for each student using a knowledge graph, which captures their understanding of concepts from past learning records. This prototype is then mapped to new tasks to predict student performance. Next, we simulate student solutions based on these predictions and iteratively refine them using a beam search method to better replicate realistic mistakes. To validate our approach, we construct the \texttt{Student\_100} dataset, consisting of $100$ students working on Python programming and $5,000$ learning records. Experimental results show that our method consistently outperforms baseline models, achieving $100\%$ improvement in simulation accuracy.
How Well Do Large Reasoning Models Translate? A Comprehensive Evaluation for Multi-Domain Machine Translation
Large language models (LLMs) have demonstrated strong performance in general-purpose machine translation, but their effectiveness in complex, domain-sensitive translation tasks remains underexplored. Recent advancements in Large Reasoning Models (LRMs), raise the question of whether structured reasoning can enhance translation quality across diverse domains. In this work, we compare the performance of LRMs with traditional LLMs across 15 representative domains and four translation directions. Our evaluation considers various factors, including task difficulty, input length, and terminology density. We use a combination of automatic metrics and an enhanced MQM-based evaluation hierarchy to assess translation quality. Our findings show that LRMs consistently outperform traditional LLMs in semantically complex domains, especially in long-text and high-difficulty translation scenarios. Moreover, domain-adaptive prompting strategies further improve performance by better leveraging the reasoning capabilities of LRMs. These results highlight the potential of structured reasoning in MDMT tasks and provide valuable insights for optimizing translation systems in domain-sensitive contexts.
DeepDialogue: A Multi-Turn Emotionally-Rich Spoken Dialogue Dataset
Recent advances in conversational AI have demonstrated impressive capabilities in single-turn responses, yet multi-turn dialogues remain challenging for even the most sophisticated language models. Current dialogue datasets are limited in their emotional range, domain diversity, turn depth, and are predominantly text-only, hindering progress in developing more human-like conversational systems across modalities. To address these limitations, we present DeepDialogue, a large-scale multimodal dataset containing 40,150 high-quality multi-turn dialogues spanning 41 domains and incorporating 20 distinct emotions with coherent emotional progressions. Our approach pairs 9 different language models (4B-72B parameters) to generate 65,600 initial conversations, which we then evaluate through a combination of human annotation and LLM-based quality filtering. The resulting dataset reveals fundamental insights: smaller models fail to maintain coherence beyond 6 dialogue turns; concrete domains (e.g., "cars," "travel") yield more meaningful conversations than abstract ones (e.g., "philosophy"); and cross-model interactions produce more coherent dialogues than same-model conversations. A key contribution of DeepDialogue is its speech component, where we synthesize emotion-consistent voices for all 40,150 dialogues, creating the first large-scale open-source multimodal dialogue dataset that faithfully preserves emotional context across multi-turn conversations.
comment: Currently under review. See the official website: https://salt-research.github.io/DeepDialogue
Conversational Lexicography: Querying Lexicographic Data on Knowledge Graphs with SPARQL through Natural Language
Knowledge graphs offer an excellent solution for representing the lexical-semantic structures of lexicographic data. However, working with the SPARQL query language represents a considerable hurdle for many non-expert users who could benefit from the advantages of this technology. This paper addresses the challenge of creating natural language interfaces for lexicographic data retrieval on knowledge graphs such as Wikidata. We develop a multidimensional taxonomy capturing the complexity of Wikidata's lexicographic data ontology module through four dimensions and create a template-based dataset with over 1.2 million mappings from natural language utterances to SPARQL queries. Our experiments with GPT-2 (124M), Phi-1.5 (1.3B), and GPT-3.5-Turbo reveal significant differences in model capabilities. While all models perform well on familiar patterns, only GPT-3.5-Turbo demonstrates meaningful generalization capabilities, suggesting that model size and diverse pre-training are crucial for adaptability in this domain. However, significant challenges remain in achieving robust generalization, handling diverse linguistic data, and developing scalable solutions that can accommodate the full complexity of lexicographic knowledge representation.
comment: Accepted to LDK 2025 - the 5th Conference on Language, Data and Knowledge. Naples, Italy, 9-11 September 2025
CP-Router: An Uncertainty-Aware Router Between LLM and LRM
Recent advances in Large Reasoning Models (LRMs) have significantly improved long-chain reasoning capabilities over Large Language Models (LLMs). However, LRMs often produce unnecessarily lengthy outputs even for simple queries, leading to inefficiencies or even accuracy degradation compared to LLMs. To overcome this, we propose CP-Router, a training-free and model-agnostic routing framework that dynamically selects between an LLM and an LRM, demonstrated with multiple-choice question answering (MCQA) prompts. The routing decision is guided by the prediction uncertainty estimates derived via Conformal Prediction (CP), which provides rigorous coverage guarantees. To further refine the uncertainty differentiation across inputs, we introduce Full and Binary Entropy (FBE), a novel entropy-based criterion that adaptively selects the appropriate CP threshold. Experiments across diverse MCQA benchmarks, including mathematics, logical reasoning, and Chinese chemistry, demonstrate that CP-Router efficiently reduces token usage while maintaining or even improving accuracy compared to using LRM alone. We also extend CP-Router to diverse model pairings and open-ended QA, where it continues to demonstrate strong performance, validating its generality and robustness.
The Limits of Preference Data for Post-Training
Recent progress in strengthening the capabilities of large language models has stemmed from applying reinforcement learning to domains with automatically verifiable outcomes. A key question is whether we can similarly use RL to optimize for outcomes in domains where evaluating outcomes inherently requires human feedback; for example, in tasks like deep research and trip planning, outcome evaluation is qualitative and there are many possible degrees of success. One attractive and scalable modality for collecting human feedback is preference data: ordinal rankings (pairwise or $k$-wise) that indicate, for $k$ given outcomes, which one is preferred. In this work, we study a critical roadblock: preference data fundamentally and significantly limits outcome-based optimization. Even with idealized preference data (infinite, noiseless, and online), the use of ordinal feedback can prevent obtaining even approximately optimal solutions. We formalize this impossibility using voting theory, drawing an analogy between how a model chooses to answer a query with how voters choose a candidate to elect. This indicates that grounded human scoring and algorithmic innovations are necessary for extending the success of RL post-training to domains demanding human feedback. We also explore why these limitations have disproportionately impacted RLHF when it comes to eliciting reasoning behaviors (e.g., backtracking) versus situations where RLHF has been historically successful (e.g., instruction-tuning and safety training), finding that the limitations of preference data primarily suppress RLHF's ability to elicit robust strategies -- a class that encompasses most reasoning behaviors.
MiniLongBench: The Low-cost Long Context Understanding Benchmark for Large Language Models ACL'25
Long Context Understanding (LCU) is a critical area for exploration in current large language models (LLMs). However, due to the inherently lengthy nature of long-text data, existing LCU benchmarks for LLMs often result in prohibitively high evaluation costs, like testing time and inference expenses. Through extensive experimentation, we discover that existing LCU benchmarks exhibit significant redundancy, which means the inefficiency in evaluation. In this paper, we propose a concise data compression method tailored for long-text data with sparse information characteristics. By pruning the well-known LCU benchmark LongBench, we create MiniLongBench. This benchmark includes only 237 test samples across six major task categories and 21 distinct tasks. Through empirical analysis of over 60 LLMs, MiniLongBench achieves an average evaluation cost reduced to only 4.5% of the original while maintaining an average rank correlation coefficient of 0.97 with LongBench results. Therefore, our MiniLongBench, as a low-cost benchmark, holds great potential to substantially drive future research into the LCU capabilities of LLMs. See https://github.com/MilkThink-Lab/MiniLongBench for our code, data and tutorial.
comment: Accepted by ACL'25 main track
DCG-SQL: Enhancing In-Context Learning for Text-to-SQL with Deep Contextual Schema Link Graph
Text-to-SQL, which translates a natural language question into an SQL query, has advanced with in-context learning of Large Language Models (LLMs). However, existing methods show little improvement in performance compared to randomly chosen demonstrations, and significant performance drops when smaller LLMs (e.g., Llama 3.1-8B) are used. This indicates that these methods heavily rely on the intrinsic capabilities of hyper-scaled LLMs, rather than effectively retrieving useful demonstrations. In this paper, we propose a novel approach for effectively retrieving demonstrations and generating SQL queries. We construct a Deep Contextual Schema Link Graph, which contains key information and semantic relationship between a question and its database schema items. This graph-based structure enables effective representation of Text-to-SQL samples and retrieval of useful demonstrations for in-context learning. Experimental results on the Spider benchmark demonstrate the effectiveness of our approach, showing consistent improvements in SQL generation performance and efficiency across both hyper-scaled LLMs and small LLMs. Our code will be released.
MLR-Bench: Evaluating AI Agents on Open-Ended Machine Learning Research
Recent advancements in AI agents have demonstrated their growing potential to drive and support scientific discovery. In this work, we introduce MLR-Bench, a comprehensive benchmark for evaluating AI agents on open-ended machine learning research. MLR-Bench includes three key components: (1) 201 research tasks sourced from NeurIPS, ICLR, and ICML workshops covering diverse ML topics; (2) MLR-Judge, an automated evaluation framework combining LLM-based reviewers with carefully designed review rubrics to assess research quality; and (3) MLR-Agent, a modular agent scaffold capable of completing research tasks through four stages: idea generation, proposal formulation, experimentation, and paper writing. Our framework supports both stepwise assessment across these distinct research stages, and end-to-end evaluation of the final research paper. We then use MLR-Bench to evaluate six frontier LLMs and an advanced coding agent, finding that while LLMs are effective at generating coherent ideas and well-structured papers, current coding agents frequently (e.g., in 80% of the cases) produce fabricated or invalidated experimental results--posing a major barrier to scientific reliability. We validate MLR-Judge through human evaluation, showing high agreement with expert reviewers, supporting its potential as a scalable tool for research evaluation. We open-source MLR-Bench to help the community benchmark, diagnose, and improve AI research agents toward trustworthy and transparent scientific discovery.
comment: 40 pages, 7 figures
An Explainable Diagnostic Framework for Neurodegenerative Dementias via Reinforcement-Optimized LLM Reasoning
The differential diagnosis of neurodegenerative dementias is a challenging clinical task, mainly because of the overlap in symptom presentation and the similarity of patterns observed in structural neuroimaging. To improve diagnostic efficiency and accuracy, deep learning-based methods such as Convolutional Neural Networks and Vision Transformers have been proposed for the automatic classification of brain MRIs. However, despite their strong predictive performance, these models find limited clinical utility due to their opaque decision making. In this work, we propose a framework that integrates two core components to enhance diagnostic transparency. First, we introduce a modular pipeline for converting 3D T1-weighted brain MRIs into textual radiology reports. Second, we explore the potential of modern Large Language Models (LLMs) to assist clinicians in the differential diagnosis between Frontotemporal dementia subtypes, Alzheimer's disease, and normal aging based on the generated reports. To bridge the gap between predictive accuracy and explainability, we employ reinforcement learning to incentivize diagnostic reasoning in LLMs. Without requiring supervised reasoning traces or distillation from larger models, our approach enables the emergence of structured diagnostic rationales grounded in neuroimaging findings. Unlike post-hoc explainability methods that retrospectively justify model decisions, our framework generates diagnostic rationales as part of the inference process-producing causally grounded explanations that inform and guide the model's decision-making process. In doing so, our framework matches the diagnostic performance of existing deep learning methods while offering rationales that support its diagnostic conclusions.
Can Visual Encoder Learn to See Arrows? CVPR 2025
The diagram is a visual representation of a relationship illustrated with edges (lines or arrows), which is widely used in industrial and scientific communication. Although recognizing diagrams is essential for vision language models (VLMs) to comprehend domain-specific knowledge, recent studies reveal that many VLMs fail to identify edges in images. We hypothesize that these failures stem from an over-reliance on textual and positional biases, preventing VLMs from learning explicit edge features. Based on this idea, we empirically investigate whether the image encoder in VLMs can learn edge representation through training on a diagram dataset in which edges are biased neither by textual nor positional information. To this end, we conduct contrastive learning on an artificially generated diagram--caption dataset to train an image encoder and evaluate its diagram-related features on three tasks: probing, image retrieval, and captioning. Our results show that the finetuned model outperforms pretrained CLIP in all tasks and surpasses zero-shot GPT-4o and LLaVA-Mistral in the captioning task. These findings confirm that eliminating textual and positional biases fosters accurate edge recognition in VLMs, offering a promising path for advancing diagram understanding.
comment: This work has been accepted for poster presentation at the Second Workshop on Visual Concepts in CVPR 2025
ALAS: Measuring Latent Speech-Text Alignment For Spoken Language Understanding In Multimodal LLMs
Large Language Models (LLMs) are widely used in Spoken Language Understanding (SLU). Recent SLU models process audio directly by adapting speech input into LLMs for better multimodal learning. A key consideration for these models is the cross-modal alignment between text and audio modalities, which is a telltale sign as to whether or not LLM is able to associate semantic meaning to audio segments. While various methods exist for fusing these modalities, there is no standard metric to evaluate alignment quality in LLMs. In this work, we propose a new metric, ALAS (Automatic Latent Alignment Score). Our study examines the correlation between audio and text representations across transformer layers, for two different tasks (Spoken Question Answering and Emotion Recognition). We showcase that our metric behaves as expected across different layers and different tasks.
Enigmata: Scaling Logical Reasoning in Large Language Models with Synthetic Verifiable Puzzles
Large Language Models (LLMs), such as OpenAI's o1 and DeepSeek's R1, excel at advanced reasoning tasks like math and coding via Reinforcement Learning with Verifiable Rewards (RLVR), but still struggle with puzzles solvable by humans without domain knowledge. We introduce Enigmata, the first comprehensive suite tailored for improving LLMs with puzzle reasoning skills. It includes 36 tasks across seven categories, each with 1) a generator that produces unlimited examples with controllable difficulty and 2) a rule-based verifier for automatic evaluation. This generator-verifier design supports scalable, multi-task RL training, fine-grained analysis, and seamless RLVR integration. We further propose Enigmata-Eval, a rigorous benchmark, and develop optimized multi-task RLVR strategies. Our trained model, Qwen2.5-32B-Enigmata, consistently surpasses o3-mini-high and o1 on the puzzle reasoning benchmarks like Enigmata-Eval, ARC-AGI (32.8%), and ARC-AGI 2 (0.6%). It also generalizes well to out-of-domain puzzle benchmarks and mathematical reasoning, with little multi-tasking trade-off. When trained on larger models like Seed1.5-Thinking (20B activated parameters and 200B total parameters), puzzle data from Enigmata further boosts SoTA performance on advanced math and STEM reasoning tasks such as AIME (2024-2025), BeyondAIME and GPQA (Diamond), showing nice generalization benefits of Enigmata. This work offers a unified, controllable framework for advancing logical reasoning in LLMs. Resources of this work can be found at https://seed-enigmata.github.io.
APE: A Data-Centric Benchmark for Efficient LLM Adaptation in Text Summarization
We present Adjacent Possible Exploration (APE), a simple yet effective method for adapting large language models to specific tasks using minimal computational resources. Unlike traditional fine-tuning that requires extensive compute, APE iteratively fine-tunes models on small, carefully selected data batches (200 examples), retaining only improvements. On news summarization, APE achieves 40 percent BLEU improvement using just a T4 GPU in 60 minutes, matching or exceeding more complex methods like LoRA while remaining conceptually simple. Our approach is particularly valuable for researchers and practitioners with limited computational resources. We provide open-source code and demonstrate APE's effectiveness through both automatic metrics and human evaluation. While inspired by evolutionary theory's "adjacent possible", APE's core insight has a very practical application: small, iterative data perturbations can efficiently guide LLMs toward task-specific performance without expensive retraining.
ScienceBoard: Evaluating Multimodal Autonomous Agents in Realistic Scientific Workflows
Large Language Models (LLMs) have extended their impact beyond Natural Language Processing, substantially fostering the development of interdisciplinary research. Recently, various LLM-based agents have been developed to assist scientific discovery progress across multiple aspects and domains. Among these, computer-using agents, capable of interacting with operating systems as humans do, are paving the way to automated scientific problem-solving and addressing routines in researchers' workflows. Recognizing the transformative potential of these agents, we introduce ScienceBoard, which encompasses two complementary contributions: (i) a realistic, multi-domain environment featuring dynamic and visually rich scientific workflows with integrated professional software, where agents can autonomously interact via different interfaces to accelerate complex research tasks and experiments; and (ii) a challenging benchmark of 169 high-quality, rigorously validated real-world tasks curated by humans, spanning scientific-discovery workflows in domains such as biochemistry, astronomy, and geoinformatics. Extensive evaluations of agents with state-of-the-art backbones (e.g., GPT-4o, Claude 3.7, UI-TARS) show that, despite some promising results, they still fall short of reliably assisting scientists in complex workflows, achieving only a 15% overall success rate. In-depth analysis further provides valuable insights for addressing current agent limitations and more effective design principles, paving the way to build more capable agents for scientific discovery. Our code, environment, and benchmark are at https://qiushisun.github.io/ScienceBoard-Home/.
comment: work in progress
Large Language Models as Autonomous Spacecraft Operators in Kerbal Space Program
Recent trends are emerging in the use of Large Language Models (LLMs) as autonomous agents that take actions based on the content of the user text prompts. We intend to apply these concepts to the field of Control in space, enabling LLMs to play a significant role in the decision-making process for autonomous satellite operations. As a first step towards this goal, we have developed a pure LLM-based solution for the Kerbal Space Program Differential Games (KSPDG) challenge, a public software design competition where participants create autonomous agents for maneuvering satellites involved in non-cooperative space operations, running on the KSP game engine. Our approach leverages prompt engineering, few-shot prompting, and fine-tuning techniques to create an effective LLM-based agent that ranked 2nd in the competition. To the best of our knowledge, this work pioneers the integration of LLM agents into space research. The project comprises several open repositories to facilitate replication and further research. The codebase is accessible on \href{https://github.com/ARCLab-MIT/kspdg}{GitHub}, while the trained models and datasets are available on \href{https://huggingface.co/OhhTuRnz}{Hugging Face}. Additionally, experiment tracking and detailed results can be reviewed on \href{https://wandb.ai/carrusk/huggingface}{Weights \& Biases
comment: Non revised version for paper going to be published in Journal of Advances in Space Research
ESLM: Risk-Averse Selective Language Modeling for Efficient Pretraining
Large language model pretraining is compute-intensive, yet many tokens contribute marginally to learning, resulting in inefficiency. We introduce Efficient Selective Language Modeling (ESLM), a risk-aware algorithm that improves training efficiency and distributional robustness by performing online token-level batch selection. ESLM leverages per-token statistics (e.g., entropy or loss) and applies value-at-risk thresholding to retain only the most informative tokens per batch. This data-centric mechanism reshapes the training loss, prioritizing high-risk tokens and eliminating redundant gradient computation. We frame ESLM as a bilevel game: the model competes with a masking adversary that selects worst-case token subsets under a constrained thresholding rule. In the loss-based setting, ESLM recovers conditional value-at-risk loss minimization, providing a principled connection to distributionally robust optimization. We extend our approach to Ada-ESLM, which adaptively tunes the selection confidence during training. Experiments on GPT-2 pretraining show that ESLM significantly reduces training FLOPs while maintaining or improving both perplexity and downstream performance compared to baselines. Our approach also scales across model sizes, pretraining corpora, and integrates naturally with knowledge distillation.
HS-STAR: Hierarchical Sampling for Self-Taught Reasoners via Difficulty Estimation and Budget Reallocation
Self-taught reasoners (STaRs) enhance the mathematical reasoning abilities of large language models (LLMs) by leveraging self-generated responses for self-training. Recent studies have incorporated reward models to guide response selection or decoding, aiming to obtain higher-quality data. However, they typically allocate a uniform sampling budget across all problems, overlooking the varying utility of problems at different difficulty levels. In this work, we conduct an empirical study and find that problems near the boundary of the LLM's reasoning capability offer significantly greater learning utility than both easy and overly difficult ones. To identify and exploit such problems, we propose HS-STaR, a Hierarchical Sampling framework for Self-Taught Reasoners. Given a fixed sampling budget, HS-STaR first performs lightweight pre-sampling with a reward-guided difficulty estimation strategy to efficiently identify boundary-level problems. Subsequently, it dynamically reallocates the remaining budget toward these high-utility problems during a re-sampling phase, maximizing the generation of valuable training data. Extensive experiments across multiple reasoning benchmarks and backbone LLMs demonstrate that HS-STaR significantly outperforms other baselines without requiring additional sampling budget.
REA-RL: Reflection-Aware Online Reinforcement Learning for Efficient Large Reasoning Models
Large Reasoning Models (LRMs) demonstrate strong performance in complex tasks but often face the challenge of overthinking, leading to substantially high inference costs. Existing approaches synthesize shorter reasoning responses for LRMs to learn, but are inefficient for online usage due to the time-consuming data generation and filtering processes. Meanwhile, online reinforcement learning mainly adopts a length reward to encourage short reasoning responses, but tends to lose the reflection ability and harm the performance. To address these issues, we propose REA-RL, which introduces a small reflection model for efficient scaling in online training, offering both parallel sampling and sequential revision. Besides, a reflection reward is designed to further prevent LRMs from favoring short yet non-reflective responses. Experiments show that both methods maintain or enhance performance while significantly improving inference efficiency. Their combination achieves a good balance between performance and efficiency, reducing inference costs by 35% without compromising performance. Further analysis demonstrates that our methods are effective by maintaining reflection frequency for hard problems while appropriately reducing it for simpler ones without losing reflection ability. Codes are available at https://github.com/hexuandeng/REA-RL.
comment: Work in Progress
Beyond Specialization: Benchmarking LLMs for Transliteration of Indian Languages
Transliteration, the process of mapping text from one script to another, plays a crucial role in multilingual natural language processing, especially within linguistically diverse contexts such as India. Despite significant advancements through specialized models like IndicXlit, recent developments in large language models suggest a potential for general-purpose models to excel at this task without explicit task-specific training. The current work systematically evaluates the performance of prominent LLMs, including GPT-4o, GPT-4.5, GPT-4.1, Gemma-3-27B-it, and Mistral-Large against IndicXlit, a state-of-the-art transliteration model, across ten major Indian languages. Experiments utilized standard benchmarks, including Dakshina and Aksharantar datasets, with performance assessed via Top-1 Accuracy and Character Error Rate. Our findings reveal that while GPT family models generally outperform other LLMs and IndicXlit for most instances. Additionally, fine-tuning GPT-4o improves performance on specific languages notably. An extensive error analysis and robustness testing under noisy conditions further elucidate strengths of LLMs compared to specialized models, highlighting the efficacy of foundational models for a wide spectrum of specialized applications with minimal overhead.
Improving Multilingual Math Reasoning for African Languages
Researchers working on low-resource languages face persistent challenges due to limited data availability and restricted access to computational resources. Although most large language models (LLMs) are predominantly trained in high-resource languages, adapting them to low-resource contexts, particularly African languages, requires specialized techniques. Several strategies have emerged for adapting models to low-resource languages in todays LLM landscape, defined by multi-stage pre-training and post-training paradigms. However, the most effective approaches remain uncertain. This work systematically investigates which adaptation strategies yield the best performance when extending existing LLMs to African languages. We conduct extensive experiments and ablation studies to evaluate different combinations of data types (translated versus synthetically generated), training stages (pre-training versus post-training), and other model adaptation configurations. Our experiments focuses on mathematical reasoning tasks, using the Llama 3.1 model family as our base model.
FoodTaxo: Generating Food Taxonomies with Large Language Models ACL 2025
We investigate the utility of Large Language Models for automated taxonomy generation and completion specifically applied to taxonomies from the food technology industry. We explore the extent to which taxonomies can be completed from a seed taxonomy or generated without a seed from a set of known concepts, in an iterative fashion using recent prompting techniques. Experiments on five taxonomies using an open-source LLM (Llama-3), while promising, point to the difficulty of correctly placing inner nodes.
comment: To be published in ACL 2025 Industry Track. Paper website: https://foodtaxo.github.io/
Deciphering Trajectory-Aided LLM Reasoning: An Optimization Perspective
We propose a novel framework for comprehending the reasoning capabilities of large language models (LLMs) through the perspective of meta-learning. By conceptualizing reasoning trajectories as pseudo-gradient descent updates to the LLM's parameters, we identify parallels between LLM reasoning and various meta-learning paradigms. We formalize the training process for reasoning tasks as a meta-learning setup, with each question treated as an individual task, and reasoning trajectories serving as the inner loop optimization for adapting model parameters. Once trained on a diverse set of questions, the LLM develops fundamental reasoning capabilities that can generalize to previously unseen questions. Extensive empirical evaluations substantiate the strong connection between LLM reasoning and meta-learning, exploring several issues of significant interest from a meta-learning standpoint. Our work not only enhances the understanding of LLM reasoning but also provides practical insights for improving these models through established meta-learning techniques.
Exploring Consciousness in LLMs: A Systematic Survey of Theories, Implementations, and Frontier Risks
Consciousness stands as one of the most profound and distinguishing features of the human mind, fundamentally shaping our understanding of existence and agency. As large language models (LLMs) develop at an unprecedented pace, questions concerning intelligence and consciousness have become increasingly significant. However, discourse on LLM consciousness remains largely unexplored territory. In this paper, we first clarify frequently conflated terminologies (e.g., LLM consciousness and LLM awareness). Then, we systematically organize and synthesize existing research on LLM consciousness from both theoretical and empirical perspectives. Furthermore, we highlight potential frontier risks that conscious LLMs might introduce. Finally, we discuss current challenges and outline future directions in this emerging field. The references discussed in this paper are organized at https://github.com/OpenCausaLab/Awesome-LLM-Consciousness.
Compliance-to-Code: Enhancing Financial Compliance Checking via Code Generation
Nowadays, regulatory compliance has become a cornerstone of corporate governance, ensuring adherence to systematic legal frameworks. At its core, financial regulations often comprise highly intricate provisions, layered logical structures, and numerous exceptions, which inevitably result in labor-intensive or comprehension challenges. To mitigate this, recent Regulatory Technology (RegTech) and Large Language Models (LLMs) have gained significant attention in automating the conversion of regulatory text into executable compliance logic. However, their performance remains suboptimal particularly when applied to Chinese-language financial regulations, due to three key limitations: (1) incomplete domain-specific knowledge representation, (2) insufficient hierarchical reasoning capabilities, and (3) failure to maintain temporal and logical coherence. One promising solution is to develop a domain specific and code-oriented datasets for model training. Existing datasets such as LexGLUE, LegalBench, and CODE-ACCORD are often English-focused, domain-mismatched, or lack fine-grained granularity for compliance code generation. To fill these gaps, we present Compliance-to-Code, the first large-scale Chinese dataset dedicated to financial regulatory compliance. Covering 1,159 annotated clauses from 361 regulations across ten categories, each clause is modularly structured with four logical elements-subject, condition, constraint, and contextual information-along with regulation relations. We provide deterministic Python code mappings, detailed code reasoning, and code explanations to facilitate automated auditing. To demonstrate utility, we present FinCheck: a pipeline for regulation structuring, code generation, and report generation.
MOLE: Metadata Extraction and Validation in Scientific Papers Using LLMs
Metadata extraction is essential for cataloging and preserving datasets, enabling effective research discovery and reproducibility, especially given the current exponential growth in scientific research. While Masader (Alyafeai et al.,2021) laid the groundwork for extracting a wide range of metadata attributes from Arabic NLP datasets' scholarly articles, it relies heavily on manual annotation. In this paper, we present MOLE, a framework that leverages Large Language Models (LLMs) to automatically extract metadata attributes from scientific papers covering datasets of languages other than Arabic. Our schema-driven methodology processes entire documents across multiple input formats and incorporates robust validation mechanisms for consistent output. Additionally, we introduce a new benchmark to evaluate the research progress on this task. Through systematic analysis of context length, few-shot learning, and web browsing integration, we demonstrate that modern LLMs show promising results in automating this task, highlighting the need for further future work improvements to ensure consistent and reliable performance. We release the code: https://github.com/IVUL-KAUST/MOLE and dataset: https://huggingface.co/datasets/IVUL-KAUST/MOLE for the research community.
The Avengers: A Simple Recipe for Uniting Smaller Language Models to Challenge Proprietary Giants
As proprietary giants increasingly dominate the race for ever-larger language models, a pressing question arises for the open-source community: can smaller models remain competitive across a broad range of tasks? In this paper, we present the Avengers--a simple recipe that effectively leverages the collective intelligence of open-source, smaller language models. Our framework is built upon four lightweight operations: (i) embedding: encode queries using a text embedding model; (ii) clustering: group queries based on their semantic similarity; (iii) scoring: scores each model's performance within each cluster; and (iv) voting: improve outputs via repeated sampling and voting. At inference time, each query is embedded and assigned to its nearest cluster. The top-performing model(s) within that cluster are selected to generate the response using the Self-Consistency or its multi-model variant. Remarkably, with 10 open-source models (~7B parameters each), the Avengers collectively outperforms GPT-4.1 on 10 out of 15 datasets (spanning mathematics, code, logic, knowledge, and affective tasks). In particular, it surpasses GPT-4.1 on mathematics tasks by 18.21% and on code tasks by 7.46%. Furthermore, the Avengers delivers superior out-of-distribution generalization, and remains robust across various embedding models, clustering algorithms, ensemble strategies, and values of its sole parameter--the number of clusters. We have open-sourced the code on GitHub: https://github.com/ZhangYiqun018/Avengers
comment: 9 pages, 3 figures, 6 tables, supplementary material (appendix) included separately
Analyzing Political Bias in LLMs via Target-Oriented Sentiment Classification ACL 2025
Political biases encoded by LLMs might have detrimental effects on downstream applications. Existing bias analysis methods rely on small-size intermediate tasks (questionnaire answering or political content generation) and rely on the LLMs themselves for analysis, thus propagating bias. We propose a new approach leveraging the observation that LLM sentiment predictions vary with the target entity in the same sentence. We define an entropy-based inconsistency metric to encode this prediction variability. We insert 1319 demographically and politically diverse politician names in 450 political sentences and predict target-oriented sentiment using seven models in six widely spoken languages. We observe inconsistencies in all tested combinations and aggregate them in a statistically robust analysis at different granularity levels. We observe positive and negative bias toward left and far-right politicians and positive correlations between politicians with similar alignment. Bias intensity is higher for Western languages than for others. Larger models exhibit stronger and more consistent biases and reduce discrepancies between similar languages. We partially mitigate LLM unreliability in target-oriented sentiment classification (TSC) by replacing politician names with fictional but plausible counterparts.
comment: To be published in the Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (ACL 2025)
What Really Matters in Many-Shot Attacks? An Empirical Study of Long-Context Vulnerabilities in LLMs ACL 2025
We investigate long-context vulnerabilities in Large Language Models (LLMs) through Many-Shot Jailbreaking (MSJ). Our experiments utilize context length of up to 128K tokens. Through comprehensive analysis with various many-shot attack settings with different instruction styles, shot density, topic, and format, we reveal that context length is the primary factor determining attack effectiveness. Critically, we find that successful attacks do not require carefully crafted harmful content. Even repetitive shots or random dummy text can circumvent model safety measures, suggesting fundamental limitations in long-context processing capabilities of LLMs. The safety behavior of well-aligned models becomes increasingly inconsistent with longer contexts. These findings highlight significant safety gaps in context expansion capabilities of LLMs, emphasizing the need for new safety mechanisms.
comment: Accepted by ACL 2025
Understanding the Performance Gap in Preference Learning: A Dichotomy of RLHF and DPO
We present a fine-grained theoretical analysis of the performance gap between reinforcement learning from human feedback (RLHF) and direct preference optimization (DPO) under a representation gap. Our study decomposes this gap into two sources: an explicit representation gap under exact optimization and an implicit representation gap under finite samples. In the exact optimization setting, we characterize how the relative capacities of the reward and policy model classes influence the final policy qualities. We show that RLHF, DPO, or online DPO can outperform one another depending on the type of model mis-specifications. Notably, online DPO can outperform both RLHF and standard DPO when the reward and policy model classes are isomorphic and both mis-specified. In the approximate optimization setting, we provide a concrete construction where the ground-truth reward is implicitly sparse and show that RLHF requires significantly fewer samples than DPO to recover an effective reward model -- highlighting a statistical advantage of two-stage learning. Together, these results provide a comprehensive understanding of the performance gap between RLHF and DPO under various settings, and offer practical insights into when each method is preferred.
comment: 30 pages, 5 figures
T^2Agent A Tool-augmented Multimodal Misinformation Detection Agent with Monte Carlo Tree Search
Real-world multimodal misinformation often arises from mixed forgery sources, requiring dynamic reasoning and adaptive verification. However, existing methods mainly rely on static pipelines and limited tool usage, limiting their ability to handle such complexity and diversity. To address this challenge, we propose T2Agent, a novel misinformation detection agent that incorporates an extensible toolkit with Monte Carlo Tree Search (MCTS). The toolkit consists of modular tools such as web search, forgery detection, and consistency analysis. Each tool is described using standardized templates, enabling seamless integration and future expansion. To avoid inefficiency from using all tools simultaneously, a Bayesian optimization-based selector is proposed to identify a task-relevant subset. This subset then serves as the action space for MCTS to dynamically collect evidence and perform multi-source verification. To better align MCTS with the multi-source nature of misinformation detection, T2Agent extends traditional MCTS with multi-source verification, which decomposes the task into coordinated subtasks targeting different forgery sources. A dual reward mechanism containing a reasoning trajectory score and a confidence score is further proposed to encourage a balance between exploration across mixed forgery sources and exploitation for more reliable evidence. We conduct ablation studies to confirm the effectiveness of the tree search mechanism and tool usage. Extensive experiments further show that T2Agent consistently outperforms existing baselines on challenging mixed-source multimodal misinformation benchmarks, demonstrating its strong potential as a training-free approach for enhancing detection accuracy. The code will be released.
SGM: A Framework for Building Specification-Guided Moderation Filters
Aligning large language models (LLMs) with deployment-specific requirements is critical but inherently imperfect. Despite extensive training, models remain susceptible to misalignment and adversarial inputs such as jailbreaks. Content moderation filters are commonly used as external safeguards, though they typically focus narrowly on safety. We introduce SGM (Specification-Guided Moderation), a flexible framework for training moderation filters grounded in user-defined specifications that go beyond standard safety concerns. SGM automates training data generation without relying on human-written examples, enabling scalable support for diverse, application-specific alignment goals. SGM-trained filters perform on par with state-of-the-art safety filters built on curated datasets, while supporting fine-grained and user-defined alignment control.
CIDRe: A Reference-Free Multi-Aspect Criterion for Code Comment Quality Measurement
Effective generation of structured code comments requires robust quality metrics for dataset curation, yet existing approaches (SIDE, MIDQ, STASIS) suffer from limited code-comment analysis. We propose CIDRe, a language-agnostic reference-free quality criterion combining four synergistic aspects: (1) relevance (code-comment semantic alignment), (2) informativeness (functional coverage), (3) completeness (presence of all structure sections), and (4) description length (detail sufficiency). We validate our criterion on a manually annotated dataset. Experiments demonstrate CIDRe's superiority over existing metrics, achieving improvement in cross-entropy evaluation. When applied to filter comments, the models finetuned on CIDRe-filtered data show statistically significant quality gains in GPT-4o-mini assessments.
Efficient Reasoning via Chain of Unconscious Thought
Large Reasoning Models (LRMs) achieve promising performance but compromise token efficiency due to verbose reasoning processes. Unconscious Thought Theory (UTT) posits that complex problems can be solved more efficiently through internalized cognitive processes. Inspired by UTT, we propose a new reasoning paradigm, termed Chain of Unconscious Thought (CoUT), to improve the token efficiency of LRMs by guiding them to mimic human unconscious thought and internalize reasoning processes. Concretely, we first prompt the model to internalize the reasoning by thinking in the hidden layer. Then, we design a bag of token-efficient strategies to further help models reduce unnecessary tokens yet preserve the performance. Our work reveals that models may possess beneficial unconscious thought, enabling improved efficiency without sacrificing performance. Extensive experiments demonstrate the effectiveness of CoUT. Remarkably, it surpasses CoT by reducing token usage by 47.62% while maintaining comparable accuracy, as shown in Figure 1. The code of CoUT is available at this link: https://github.com/Rohan-GRH/CoUT
NeuSym-RAG: Hybrid Neural Symbolic Retrieval with Multiview Structuring for PDF Question Answering ACL 2025
The increasing number of academic papers poses significant challenges for researchers to efficiently acquire key details. While retrieval augmented generation (RAG) shows great promise in large language model (LLM) based automated question answering, previous works often isolate neural and symbolic retrieval despite their complementary strengths. Moreover, conventional single-view chunking neglects the rich structure and layout of PDFs, e.g., sections and tables. In this work, we propose NeuSym-RAG, a hybrid neural symbolic retrieval framework which combines both paradigms in an interactive process. By leveraging multi-view chunking and schema-based parsing, NeuSym-RAG organizes semi-structured PDF content into both the relational database and vectorstore, enabling LLM agents to iteratively gather context until sufficient to generate answers. Experiments on three full PDF-based QA datasets, including a self-annotated one AIRQA-REAL, show that NeuSym-RAG stably defeats both the vector-based RAG and various structured baselines, highlighting its capacity to unify both retrieval schemes and utilize multiple views. Code and data are publicly available at https://github.com/X-LANCE/NeuSym-RAG.
comment: 29 pages, 11 figures, 12 tables, accepted to ACL 2025 Long Main
Discrete Markov Bridge
Discrete diffusion has recently emerged as a promising paradigm in discrete data modeling. However, existing methods typically rely on a fixed rate transition matrix during training, which not only limits the expressiveness of latent representations, a fundamental strength of variational methods, but also constrains the overall design space. To address these limitations, we propose Discrete Markov Bridge, a novel framework specifically designed for discrete representation learning. Our approach is built upon two key components: Matrix Learning and Score Learning. We conduct a rigorous theoretical analysis, establishing formal performance guarantees for Matrix Learning and proving the convergence of the overall framework. Furthermore, we analyze the space complexity of our method, addressing practical constraints identified in prior studies. Extensive empirical evaluations validate the effectiveness of the proposed Discrete Markov Bridge, which achieves an Evidence Lower Bound (ELBO) of 1.38 on the Text8 dataset, outperforming established baselines. Moreover, the proposed model demonstrates competitive performance on the CIFAR-10 dataset, achieving results comparable to those obtained by image-specific generation approaches.
Token-level Accept or Reject: A Micro Alignment Approach for Large Language Models IJCAI 2025
With the rapid development of Large Language Models (LLMs), aligning these models with human preferences and values is critical to ensuring ethical and safe applications. However, existing alignment techniques such as RLHF or DPO often require direct fine-tuning on LLMs with billions of parameters, resulting in substantial computational costs and inefficiencies. To address this, we propose Micro token-level Accept-Reject Aligning (MARA) approach designed to operate independently of the language models. MARA simplifies the alignment process by decomposing sentence-level preference learning into token-level binary classification, where a compact three-layer fully-connected network determines whether candidate tokens are "Accepted" or "Rejected" as part of the response. Extensive experiments across seven different LLMs and three open-source datasets show that MARA achieves significant improvements in alignment performance while reducing computational costs.
comment: Accepted to 34th International Joint Conference on Artificial Intelligence (IJCAI 2025)
Distilling Closed-Source LLM's Knowledge for Locally Stable and Economic Biomedical Entity Linking
Biomedical entity linking aims to map nonstandard entities to standard entities in a knowledge base. Traditional supervised methods perform well but require extensive annotated data to transfer, limiting their usage in low-resource scenarios. Large language models (LLMs), especially closed-source LLMs, can address these but risk stability issues and high economic costs: using these models is restricted by commercial companies and brings significant economic costs when dealing with large amounts of data. To address this, we propose ``RPDR'', a framework combining closed-source LLMs and open-source LLMs for re-ranking candidates retrieved by a retriever fine-tuned with a small amount of data. By prompting a closed-source LLM to generate training data from unannotated data and fine-tuning an open-source LLM for re-ranking, we effectively distill the knowledge to the open-source LLM that can be deployed locally, thus avoiding the stability issues and the problem of high economic costs. We evaluate RPDR on two datasets, including one real-world dataset and one publicly available dataset involving two languages: Chinese and English. RPDR achieves 0.019 Acc@1 improvement and 0.036 Acc@1 improvement on the Aier dataset and the Ask A Patient dataset when the amount of training data is not enough. The results demonstrate the superiority and generalizability of the proposed framework.
comment: Accepted by ICIC 2025
Graceful Forgetting in Generative Language Models
Recently, the pretrain-finetune paradigm has become a cornerstone in various deep learning areas. While in general the pre-trained model would promote both effectiveness and efficiency of downstream tasks fine-tuning, studies have shown that not all knowledge acquired during pre-training is beneficial. Some of the knowledge may actually bring detrimental effects to the fine-tuning tasks, which is also known as negative transfer. To address this problem, graceful forgetting has emerged as a promising approach. The core principle of graceful forgetting is to enhance the learning plasticity of the target task by selectively discarding irrelevant knowledge. However, this approach remains underexplored in the context of generative language models, and it is often challenging to migrate existing forgetting algorithms to these models due to architecture incompatibility. To bridge this gap, in this paper we propose a novel framework, Learning With Forgetting (LWF), to achieve graceful forgetting in generative language models. With Fisher Information Matrix weighting the intended parameter updates, LWF computes forgetting confidence to evaluate self-generated knowledge regarding the forgetting task, and consequently, knowledge with high confidence is periodically unlearned during fine-tuning. Our experiments demonstrate that, although thoroughly uncovering the mechanisms of knowledge interaction remains challenging in pre-trained language models, applying graceful forgetting can contribute to enhanced fine-tuning performance.
comment: 8 pages, 6 figures
MT$^{3}$: Scaling MLLM-based Text Image Machine Translation via Multi-Task Reinforcement Learning
Text Image Machine Translation (TIMT)-the task of translating textual content embedded in images-is critical for applications in accessibility, cross-lingual information access, and real-world document understanding. However, TIMT remains a complex challenge due to the need for accurate optical character recognition (OCR), robust visual-text reasoning, and high-quality translation, often requiring cascading multi-stage pipelines. Recent advances in large-scale Reinforcement Learning (RL) have improved reasoning in Large Language Models (LLMs) and Multimodal LLMs (MLLMs), but their application to end-to-end TIMT is still underexplored. To bridge this gap, we introduce MT$^{3}$, the first framework to apply Multi-Task RL to MLLMs for end-to-end TIMT. MT$^{3}$ adopts a multi-task optimization paradigm targeting three key sub-skills: text recognition, context-aware reasoning, and translation. It is trained using a novel multi-mixed reward mechanism that adapts rule-based RL strategies to TIMT's intricacies, offering fine-grained, non-binary feedback across tasks. Furthermore, to facilitate the evaluation of TIMT in authentic cross-cultural and real-world social media contexts, we introduced XHSPost, the first social media TIMT benchmark. Our MT$^{3}$-7B-Zero achieves state-of-the-art results on the latest in-domain MIT-10M benchmark, outperforming strong baselines such as Qwen2.5-VL-72B and InternVL2.5-78B by notable margins across multiple metrics. Additionally, the model shows strong generalization to out-of-distribution language pairs and datasets. In-depth analyses reveal how multi-task synergy, reinforcement learning initialization, curriculum design, and reward formulation contribute to advancing MLLM-driven TIMT.
comment: Work in progress
Error Typing for Smarter Rewards: Improving Process Reward Models with Error-Aware Hierarchical Supervision
Large Language Models (LLMs) are prone to hallucination, especially during multi-hop and reasoning-intensive tasks such as mathematical problem solving. While Outcome Reward Models verify only final answers, Process Reward Models (PRMs) score each intermediate step to steer generation toward coherent solutions. We introduce PathFinder-PRM, a novel hierarchical, error-aware discriminative PRM that first classifies math and consistency errors at each step, then combines these fine-grained signals to estimate step correctness. To train PathFinder-PRM, we construct a 400K-sample dataset by enriching the human-annotated PRM800K corpus and RLHFlow Mistral traces with three-dimensional step-level labels. On PRMBench, PathFinder-PRM achieves a new state-of-the-art PRMScore of 67.7, outperforming the prior best (65.5) while using 3 times less data. When applied to reward guided greedy search, our model yields prm@8 48.3, a +1.5 point gain over the strongest baseline. These results demonstrate that decoupled error detection and reward estimation not only boost fine-grained error detection but also substantially improve end-to-end, reward-guided mathematical reasoning with greater data efficiency.
comment: https://github.com/declare-lab/PathFinder-PRM
Leveraging Importance Sampling to Detach Alignment Modules from Large Language Models
The widespread adoption of large language models (LLMs) across industries has increased the demand for high-quality and customizable outputs. However, traditional alignment methods often require retraining large pretrained models, making it difficult to quickly adapt and optimize LLMs for diverse applications. To address this limitation, we propose a novel \textit{Residual Alignment Model} (\textit{RAM}) that formalizes the alignment process as a type of importance sampling. In this framework, the unaligned upstream model serves as the proposal distribution, while the alignment process is framed as secondary sampling based on an autoregressive alignment module that acts as an estimator of the importance weights. This design enables a natural detachment of the alignment module from the target aligned model, improving flexibility and scalability. Based on this model, we derive an efficient sequence-level training strategy for the alignment module, which operates independently of the proposal module. Additionally, we develop a resampling algorithm with iterative token-level decoding to address the common first-token latency issue in comparable methods. Experimental evaluations on two leading open-source LLMs across diverse tasks, including instruction following, domain adaptation, and preference optimization, demonstrate that our approach consistently outperforms baseline models.
Large Language Models for Planning: A Comprehensive and Systematic Survey
Planning represents a fundamental capability of intelligent agents, requiring comprehensive environmental understanding, rigorous logical reasoning, and effective sequential decision-making. While Large Language Models (LLMs) have demonstrated remarkable performance on certain planning tasks, their broader application in this domain warrants systematic investigation. This paper presents a comprehensive review of LLM-based planning. Specifically, this survey is structured as follows: First, we establish the theoretical foundations by introducing essential definitions and categories about automated planning. Next, we provide a detailed taxonomy and analysis of contemporary LLM-based planning methodologies, categorizing them into three principal approaches: 1) External Module Augmented Methods that combine LLMs with additional components for planning, 2) Finetuning-based Methods that involve using trajectory data and feedback signals to adjust LLMs in order to improve their planning abilities, and 3) Searching-based Methods that break down complex tasks into simpler components, navigate the planning space, or enhance decoding strategies to find the best solutions. Subsequently, we systematically summarize existing evaluation frameworks, including benchmark datasets, evaluation metrics and performance comparisons between representative planning methods. Finally, we discuss the underlying mechanisms enabling LLM-based planning and outline promising research directions for this rapidly evolving field. We hope this survey will serve as a valuable resource to inspire innovation and drive progress in this field.
KIT's Low-resource Speech Translation Systems for IWSLT2025: System Enhancement with Synthetic Data and Model Regularization
This paper presents KIT's submissions to the IWSLT 2025 low-resource track. We develop both cascaded systems, consisting of Automatic Speech Recognition (ASR) and Machine Translation (MT) models, and end-to-end (E2E) Speech Translation (ST) systems for three language pairs: Bemba, North Levantine Arabic, and Tunisian Arabic into English. Building upon pre-trained models, we fine-tune our systems with different strategies to utilize resources efficiently. This study further explores system enhancement with synthetic data and model regularization. Specifically, we investigate MT-augmented ST by generating translations from ASR data using MT models. For North Levantine, which lacks parallel ST training data, a system trained solely on synthetic data slightly surpasses the cascaded system trained on real data. We also explore augmentation using text-to-speech models by generating synthetic speech from MT data, demonstrating the benefits of synthetic data in improving both ASR and ST performance for Bemba. Additionally, we apply intra-distillation to enhance model performance. Our experiments show that this approach consistently improves results across ASR, MT, and ST tasks, as well as across different pre-trained models. Finally, we apply Minimum Bayes Risk decoding to combine the cascaded and end-to-end systems, achieving an improvement of approximately 1.5 BLEU points.
Grounding Language with Vision: A Conditional Mutual Information Calibrated Decoding Strategy for Reducing Hallucinations in LVLMs
Large Vision-Language Models (LVLMs) are susceptible to hallucinations, where generated responses seem semantically plausible yet exhibit little or no relevance to the input image. Previous studies reveal that this issue primarily stems from LVLMs' over-reliance on language priors while disregarding the visual information during decoding. To alleviate this issue, we introduce a novel Conditional Pointwise Mutual Information (C-PMI) calibrated decoding strategy, which adaptively strengthens the mutual dependency between generated texts and input images to mitigate hallucinations. Unlike existing methods solely focusing on text token sampling, we propose to jointly model the contributions of visual and textual tokens to C-PMI, formulating hallucination mitigation as a bi-level optimization problem aimed at maximizing mutual information. To solve it, we design a token purification mechanism that dynamically regulates the decoding process by sampling text tokens remaining maximally relevant to the given image, while simultaneously refining image tokens most pertinent to the generated response. Extensive experiments across various benchmarks reveal that the proposed method significantly reduces hallucinations in LVLMs while preserving decoding efficiency.
Calibrating Pre-trained Language Classifiers on LLM-generated Noisy Labels via Iterative Refinement
The traditional process of creating labeled datasets is labor-intensive and expensive. Recent breakthroughs in open-source large language models (LLMs) have opened up a new avenue in generating labeled datasets automatically for various natural language processing (NLP) tasks, providing an alternative to such an expensive annotation process. However, the reliability of such auto-generated labels remains a significant concern due to inherent inaccuracies. When learning from noisy labels, the model's generalization is likely to be harmed as it is prone to overfit to those label noises. While previous studies in learning from noisy labels mainly focus on synthetic noise and real-world noise, LLM-generated label noise receives less attention. In this paper, we propose SiDyP: Simplex Label Diffusion with Dynamic Prior to calibrate the classifier's prediction, thus enhancing its robustness towards LLM-generated noisy labels. SiDyP retrieves potential true label candidates by neighborhood label distribution in text embedding space and iteratively refines noisy candidates using a simplex diffusion model. Our framework can increase the performance of the BERT classifier fine-tuned on both zero-shot and few-shot LLM-generated noisy label datasets by an average of 7.21% and 7.30% respectively. We demonstrate the effectiveness of SiDyP by conducting extensive benchmarking for different LLMs over a variety of NLP tasks. Our code is available on Github.
Comparing Moral Values in Western English-speaking societies and LLMs with Word Associations ACL 2025
As the impact of large language models increases, understanding the moral values they reflect becomes ever more important. Assessing the nature of moral values as understood by these models via direct prompting is challenging due to potential leakage of human norms into model training data, and their sensitivity to prompt formulation. Instead, we propose to use word associations, which have been shown to reflect moral reasoning in humans, as low-level underlying representations to obtain a more robust picture of LLMs' moral reasoning. We study moral differences in associations from western English-speaking communities and LLMs trained predominantly on English data. First, we create a large dataset of LLM-generated word associations, resembling an existing data set of human word associations. Next, we propose a novel method to propagate moral values based on seed words derived from Moral Foundation Theory through the human and LLM-generated association graphs. Finally, we compare the resulting moral conceptualizations, highlighting detailed but systematic differences between moral values emerging from English speakers and LLM associations.
comment: 9 pages,7 figures. Accepted to the ACL 2025 conference
Reshaping Representation Space to Balance the Safety and Over-rejection in Large Audio Language Models
Large Audio Language Models (LALMs) have extended the capabilities of Large Language Models (LLMs) by enabling audio-based human interactions. However, recent research has revealed that LALMs remain vulnerable to harmful queries due to insufficient safety-alignment. Despite advances in defence measures for text and vision LLMs, effective safety-alignment strategies and audio-safety dataset specifically targeting LALMs are notably absent. Meanwhile defence measures based on Supervised Fine-tuning (SFT) struggle to address safety improvement while avoiding over-rejection issues, significantly compromising helpfulness. In this work, we propose an unsupervised safety-fine-tuning strategy as remedy that reshapes model's representation space to enhance existing LALMs safety-alignment while balancing the risk of over-rejection. Our experiments, conducted across three generations of Qwen LALMs, demonstrate that our approach significantly improves LALMs safety under three modality input conditions (audio-text, text-only, and audio-only) while increasing over-rejection rate by only 0.88% on average. Warning: this paper contains harmful examples.
LeCoDe: A Benchmark Dataset for Interactive Legal Consultation Dialogue Evaluation
Legal consultation is essential for safeguarding individual rights and ensuring access to justice, yet remains costly and inaccessible to many individuals due to the shortage of professionals. While recent advances in Large Language Models (LLMs) offer a promising path toward scalable, low-cost legal assistance, current systems fall short in handling the interactive and knowledge-intensive nature of real-world consultations. To address these challenges, we introduce LeCoDe, a real-world multi-turn benchmark dataset comprising 3,696 legal consultation dialogues with 110,008 dialogue turns, designed to evaluate and improve LLMs' legal consultation capability. With LeCoDe, we innovatively collect live-streamed consultations from short-video platforms, providing authentic multi-turn legal consultation dialogues. The rigorous annotation by legal experts further enhances the dataset with professional insights and expertise. Furthermore, we propose a comprehensive evaluation framework that assesses LLMs' consultation capabilities in terms of (1) clarification capability and (2) professional advice quality. This unified framework incorporates 12 metrics across two dimensions. Through extensive experiments on various general and domain-specific LLMs, our results reveal significant challenges in this task, with even state-of-the-art models like GPT-4 achieving only 39.8% recall for clarification and 59% overall score for advice quality, highlighting the complexity of professional consultation scenarios. Based on these findings, we further explore several strategies to enhance LLMs' legal consultation abilities. Our benchmark contributes to advancing research in legal domain dialogue systems, particularly in simulating more real-world user-expert interactions.
GenKI: Enhancing Open-Domain Question Answering with Knowledge Integration and Controllable Generation in Large Language Models
Open-domain question answering (OpenQA) represents a cornerstone in natural language processing (NLP), primarily focused on extracting answers from unstructured textual data. With the rapid advancements in Large Language Models (LLMs), LLM-based OpenQA methods have reaped the benefits of emergent understanding and answering capabilities enabled by massive parameters compared to traditional methods. However, most of these methods encounter two critical challenges: how to integrate knowledge into LLMs effectively and how to adaptively generate results with specific answer formats for various task situations. To address these challenges, we propose a novel framework named GenKI, which aims to improve the OpenQA performance by exploring Knowledge Integration and controllable Generation on LLMs simultaneously. Specifically, we first train a dense passage retrieval model to retrieve associated knowledge from a given knowledge base. Subsequently, we introduce a novel knowledge integration model that incorporates the retrieval knowledge into instructions during fine-tuning to intensify the model. Furthermore, to enable controllable generation in LLMs, we leverage a certain fine-tuned LLM and an ensemble based on text consistency incorporating all coherence, fluency, and answer format assurance. Finally, extensive experiments conducted on the TriviaQA, MSMARCO, and CMRC2018 datasets, featuring diverse answer formats, have demonstrated the effectiveness of GenKI with comparison of state-of-the-art baselines. Moreover, ablation studies have disclosed a linear relationship between the frequency of retrieved knowledge and the model's ability to recall knowledge accurately against the ground truth. Our code of GenKI is available at https://github.com/USTC-StarTeam/GenKI
comment: 13 pages, 5 figures
Select, Read, and Write: A Multi-Agent Framework of Full-Text-based Related Work Generation ACL 2025
Automatic related work generation (RWG) can save people's time and effort when writing a draft of related work section (RWS) for further revision. However, existing methods for RWG always suffer from shallow comprehension due to taking the limited portions of references papers as input and isolated explanation for each reference due to ineffective capturing the relationships among them. To address these issues, we focus on full-text-based RWG task and propose a novel multi-agent framework. Our framework consists of three agents: a selector that decides which section of the papers is going to read next, a reader that digests the selected section and updates a shared working memory, and a writer that generates RWS based on the final curated memory. To better capture the relationships among references, we also propose two graph-aware strategies for selector, enabling to optimize the reading order with constrains of the graph structure. Extensive experiments demonstrate that our framework consistently improves performance across three base models and various input configurations. The graph-aware selectors outperform alternative selectors, achieving state-of-the-art results. The code and data are available at https://github.com/1190200817/Full_Text_RWG.
comment: Accepted by ACL 2025 (Findings)
SynLogic: Synthesizing Verifiable Reasoning Data at Scale for Learning Logical Reasoning and Beyond
Recent advances such as OpenAI-o1 and DeepSeek R1 have demonstrated the potential of Reinforcement Learning (RL) to enhance reasoning abilities in Large Language Models (LLMs). While open-source replication efforts have primarily focused on mathematical and coding domains, methods and resources for developing general reasoning capabilities remain underexplored. This gap is partly due to the challenge of collecting diverse and verifiable reasoning data suitable for RL. We hypothesize that logical reasoning is critical for developing general reasoning capabilities, as logic forms a fundamental building block of reasoning. In this work, we present SynLogic, a data synthesis framework and dataset that generates diverse logical reasoning data at scale, encompassing 35 diverse logical reasoning tasks. The SynLogic approach enables controlled synthesis of data with adjustable difficulty and quantity. Importantly, all examples can be verified by simple rules, making them ideally suited for RL with verifiable rewards. In our experiments, we validate the effectiveness of RL training on the SynLogic dataset based on 7B and 32B models. SynLogic leads to state-of-the-art logical reasoning performance among open-source datasets, surpassing DeepSeek-R1-Distill-Qwen-32B by 6 points on BBEH. Furthermore, mixing SynLogic data with mathematical and coding tasks improves the training efficiency of these domains and significantly enhances reasoning generalization. Notably, our mixed training model outperforms DeepSeek-R1-Zero-Qwen-32B across multiple benchmarks. These findings position SynLogic as a valuable resource for advancing the broader reasoning capabilities of LLMs. We open-source both the data synthesis pipeline and the SynLogic dataset at https://github.com/MiniMax-AI/SynLogic.
Interleaved Reasoning for Large Language Models via Reinforcement Learning
Long chain-of-thought (CoT) significantly enhances large language models' (LLM) reasoning capabilities. However, the extensive reasoning traces lead to inefficiencies and an increased time-to-first-token (TTFT). We propose a novel training paradigm that uses reinforcement learning (RL) to guide reasoning LLMs to interleave thinking and answering for multi-hop questions. We observe that models inherently possess the ability to perform interleaved reasoning, which can be further enhanced through RL. We introduce a simple yet effective rule-based reward to incentivize correct intermediate steps, which guides the policy model toward correct reasoning paths by leveraging intermediate signals generated during interleaved reasoning. Extensive experiments conducted across five diverse datasets and three RL algorithms (PPO, GRPO, and REINFORCE++) demonstrate consistent improvements over traditional think-answer reasoning, without requiring external tools. Specifically, our approach reduces TTFT by over 80% on average and improves up to 19.3% in Pass@1 accuracy. Furthermore, our method, trained solely on question answering and logical reasoning datasets, exhibits strong generalization ability to complex reasoning datasets such as MATH, GPQA, and MMLU. Additionally, we conduct in-depth analysis to reveal several valuable insights into conditional reward modeling.
Faster and Better LLMs via Latency-Aware Test-Time Scaling
Test-Time Scaling (TTS) has proven effective in improving the performance of Large Language Models (LLMs) during inference. However, existing research has overlooked the efficiency of TTS from a latency-sensitive perspective. Through a latency-aware evaluation of representative TTS methods, we demonstrate that a compute-optimal TTS does not always result in the lowest latency in scenarios where latency is critical. To address this gap and achieve latency-optimal TTS, we propose two key approaches by optimizing the concurrency configurations: (1) branch-wise parallelism, which leverages multiple concurrent inference branches, and (2) sequence-wise parallelism, enabled by speculative decoding. By integrating these two approaches and allocating computational resources properly to each, our latency-optimal TTS enables a 32B model to reach 82.3% accuracy on MATH-500 within 1 minute and a smaller 3B model to achieve 72.4% within 10 seconds. Our work emphasizes the importance of latency-aware TTS and demonstrates its ability to deliver both speed and accuracy in latency-sensitive scenarios.
Segment First or Comprehend First? Explore the Limit of Unsupervised Word Segmentation with Large Language Models
Word segmentation stands as a cornerstone of Natural Language Processing (NLP). Based on the concept of "comprehend first, segment later", we propose a new framework to explore the limit of unsupervised word segmentation with Large Language Models (LLMs) and evaluate the semantic understanding capabilities of LLMs based on word segmentation. We employ current mainstream LLMs to perform word segmentation across multiple languages to assess LLMs' "comprehension". Our findings reveal that LLMs are capable of following simple prompts to segment raw text into words. There is a trend suggesting that models with more parameters tend to perform better on multiple languages. Additionally, we introduce a novel unsupervised method, termed LLACA ($\textbf{L}$arge $\textbf{L}$anguage Model-Inspired $\textbf{A}$ho-$\textbf{C}$orasick $\textbf{A}$utomaton). Leveraging the advanced pattern recognition capabilities of Aho-Corasick automata, LLACA innovatively combines these with the deep insights of well-pretrained LLMs. This approach not only enables the construction of a dynamic $n$-gram model that adjusts based on contextual information but also integrates the nuanced understanding of LLMs, offering significant improvements over traditional methods. Our source code is available at https://github.com/hkr04/LLACA
DoctorAgent-RL: A Multi-Agent Collaborative Reinforcement Learning System for Multi-Turn Clinical Dialogue
Large language models (LLMs) have demonstrated excellent capabilities in the field of biomedical question answering, but their application in real-world clinical consultations still faces core challenges. Existing systems rely on a one-way information transmission mode where patients must fully describe their symptoms in a single round, leading to nonspecific diagnostic recommendations when complaints are vague. Traditional multi-turn dialogue methods based on supervised learning are constrained by static data-driven paradigms, lacking generalizability and struggling to intelligently extract key clinical information. To address these limitations, we propose DoctorAgent-RL, a reinforcement learning (RL)-based multi-agent collaborative framework that models medical consultations as a dynamic decision-making process under uncertainty. The doctor agent continuously optimizes its questioning strategy within the RL framework through multi-turn interactions with the patient agent, dynamically adjusting its information-gathering path based on comprehensive rewards from the Consultation Evaluator. This RL fine-tuning mechanism enables LLMs to autonomously develop interaction strategies aligned with clinical reasoning logic, rather than superficially imitating patterns in existing dialogue data. Notably, we constructed MTMedDialog, the first English multi-turn medical consultation dataset capable of simulating patient interactions. Experiments demonstrate that DoctorAgent-RL outperforms existing models in both multi-turn reasoning capability and final diagnostic performance, demonstrating practical value in assisting clinical consultations. https://github.com/JarvisUSTC/DoctorAgent-RL
HomeBench: Evaluating LLMs in Smart Homes with Valid and Invalid Instructions Across Single and Multiple Devices
Large language models (LLMs) have the potential to revolutionize smart home assistants by enhancing their ability to accurately understand user needs and respond appropriately, which is extremely beneficial for building a smarter home environment. While recent studies have explored integrating LLMs into smart home systems, they primarily focus on handling straightforward, valid single-device operation instructions. However, real-world scenarios are far more complex and often involve users issuing invalid instructions or controlling multiple devices simultaneously. These have two main challenges: LLMs must accurately identify and rectify errors in user instructions and execute multiple user instructions perfectly. To address these challenges and advance the development of LLM-based smart home assistants, we introduce HomeBench, the first smart home dataset with valid and invalid instructions across single and multiple devices in this paper. We have experimental results on 13 distinct LLMs; e.g., GPT-4o achieves only a 0.0% success rate in the scenario of invalid multi-device instructions, revealing that the existing state-of-the-art LLMs still cannot perform well in this situation even with the help of in-context learning, retrieval-augmented generation, and fine-tuning. Our code and dataset are publicly available at https://github.com/BITHLP/HomeBench.
Think Again! The Effect of Test-Time Compute on Preferences, Opinions, and Beliefs of Large Language Models
As Large Language Models (LLMs) become deeply integrated into human life and increasingly influence decision-making, it's crucial to evaluate whether and to what extent they exhibit subjective preferences, opinions, and beliefs. These tendencies may stem from biases within the models, which may shape their behavior, influence the advice and recommendations they offer to users, and potentially reinforce certain viewpoints. This paper presents the Preference, Opinion, and Belief survey (POBs), a benchmark developed to assess LLMs' subjective inclinations across societal, cultural, ethical, and personal domains. We applied our benchmark to evaluate leading open- and closed-source LLMs, measuring desired properties such as reliability, neutrality, and consistency. In addition, we investigated the effect of increasing the test-time compute, through reasoning and self-reflection mechanisms, on those metrics. While effective in other tasks, our results show that these mechanisms offer only limited gains in our domain. Furthermore, we reveal that newer model versions are becoming less consistent and more biased toward specific viewpoints, highlighting a blind spot and a concerning trend. POBS: https://ibm.github.io/POBS
Languages in Multilingual Speech Foundation Models Align Both Phonetically and Semantically
Cross-lingual alignment in pretrained language models (LMs) has enabled efficient transfer in text-based LMs. Such an alignment has also been observed in speech foundation models. However, it remains an open question whether findings and methods from text-based cross-lingual alignment apply to speech. Building on prior work on spoken translation retrieval, we perform pronunciation-controlled experiments to observe if cross-lingual alignment can indeed occur in such models on a semantic basis, instead of relying on phonetic similarities. Our findings indicate that even in the absence of phonetic cues, spoken translation retrieval accuracy remains relatively stable. We follow up with a controlled experiment on a word-level dataset of cross-lingual synonyms and near-homophones, confirming the existence of both phonetic and semantic knowledge in the encoder. Finally, we qualitatively examine the transcriptions produced by early exiting the encoder, where we observe that speech translation produces semantic errors that are characterized by phonetic similarities to corresponding words in the source language. We apply this insight from early exiting to speech recognition in seven low-resource languages unsupported by the Whisper model, and achieve improved accuracy in all languages examined, particularly for languages with transparent orthographies.
Evaluating Machine Translation Models for English-Hindi Language Pairs: A Comparative Analysis
Machine translation has become a critical tool in bridging linguistic gaps, especially between languages as diverse as English and Hindi. This paper comprehensively evaluates various machine translation models for translating between English and Hindi. We assess the performance of these models using a diverse set of automatic evaluation metrics, both lexical and machine learning-based metrics. Our evaluation leverages an 18000+ corpus of English Hindi parallel dataset and a custom FAQ dataset comprising questions from government websites. The study aims to provide insights into the effectiveness of different machine translation approaches in handling both general and specialized language domains. Results indicate varying performance levels across different metrics, highlighting strengths and areas for improvement in current translation systems.
Preference Optimization by Estimating the Ratio of the Data Distribution
Direct preference optimization (DPO) is widely used as a simple and stable method for aligning large language models (LLMs) with human preferences. This paper investigates a generalized DPO loss that enables a policy model to match the target policy from a likelihood ratio estimation perspective. The ratio of the target policy provides a unique identification of the policy distribution without relying on reward models or partition functions. This allows the generalized loss to retain both simplicity and theoretical guarantees, which prior work such as $f$-PO fails to achieve simultaneously. We propose Bregman preference optimization (BPO), a generalized framework for ratio matching that provides a family of objective functions achieving target policy optimality. BPO subsumes DPO as a special case and offers tractable forms for all instances, allowing implementation with a few lines of code. We further develop scaled Basu's power divergence (SBA), a gradient scaling method that can be used for BPO instances. The BPO framework complements other DPO variants and is applicable to target policies defined by these variants. In experiments, unlike other probabilistic loss extensions such as $f$-DPO or $f$-PO, which exhibit a trade-off between generation fidelity and diversity, instances of BPO improve both win rate and entropy compared with DPO. When applied to Llama-3-Instruct-8B, BPO achieves state-of-the-art performance among Llama-3-8B backbones, with a 55.9\% length-controlled win rate on AlpacaEval2.
Inconsistent Tokenizations Cause Language Models to be Perplexed by Japanese Grammar
Typical methods for evaluating the performance of language models evaluate their ability to answer questions accurately. These evaluation metrics are acceptable for determining the extent to which language models can understand and reason about text in a general sense, but fail to capture nuanced capabilities, such as the ability of language models to recognize and obey rare grammar points, particularly in languages other than English. We measure the perplexity of language models when confronted with the "first person psych predicate restriction" grammar point in Japanese. Weblab is the only tested open source model in the 7-10B parameter range which consistently assigns higher perplexity to ungrammatical psych predicate sentences than grammatical ones. We give evidence that Weblab's uniformly bad tokenization is a possible root cause for its good performance, and show that Llama 3's perplexity on grammatical psych predicate sentences can be reduced by orders of magnitude (28x difference) by restricting test sentences to those with uniformly well-behaved tokenizations. We show in further experiments on machine translation tasks that language models will use alternative grammar patterns in order to produce grammatical sentences when tokenization issues prevent the most natural sentence from being output.
comment: In Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics, 2025
Evaluating Robustness of Large Audio Language Models to Audio Injection: An Empirical Study
Large Audio-Language Models (LALMs) are increasingly deployed in real-world applications, yet their robustness against malicious audio injection attacks remains underexplored. This study systematically evaluates five leading LALMs across four attack scenarios: Audio Interference Attack, Instruction Following Attack, Context Injection Attack, and Judgment Hijacking Attack. Using metrics like Defense Success Rate, Context Robustness Score, and Judgment Robustness Index, their vulnerabilities and resilience were quantitatively assessed. Experimental results reveal significant performance disparities among models; no single model consistently outperforms others across all attack types. The position of malicious content critically influences attack effectiveness, particularly when placed at the beginning of sequences. A negative correlation between instruction-following capability and robustness suggests models adhering strictly to instructions may be more susceptible, contrasting with greater resistance by safety-aligned models. Additionally, system prompts show mixed effectiveness, indicating the need for tailored strategies. This work introduces a benchmark framework and highlights the importance of integrating robustness into training pipelines. Findings emphasize developing multi-modal defenses and architectural designs that decouple capability from susceptibility for secure LALMs deployment.
Multi-Agent Collaboration via Evolving Orchestration
Large language models (LLMs) have achieved remarkable results across diverse downstream tasks, but their monolithic nature restricts scalability and efficiency in complex problem-solving. While recent research explores multi-agent collaboration among LLMs, most approaches rely on static organizational structures that struggle to adapt as task complexity and agent numbers grow, resulting in coordination overhead and inefficiencies. To this end, we propose a puppeteer-style paradigm for LLM-based multi-agent collaboration, where a centralized orchestrator ("puppeteer") dynamically directs agents ("puppets") in response to evolving task states. This orchestrator is trained via reinforcement learning to adaptively sequence and prioritize agents, enabling flexible and evolvable collective reasoning. Experiments on closed- and open-domain scenarios show that this method achieves superior performance with reduced computational costs. Analyses further reveal that the key improvements consistently stem from the emergence of more compact, cyclic reasoning structures under the orchestrator's evolution.
comment: Work in Progress
Learning to Reason without External Rewards
Training large language models (LLMs) for complex reasoning via Reinforcement Learning with Verifiable Rewards (RLVR) is effective but limited by reliance on costly, domain-specific supervision. We explore Reinforcement Learning from Internal Feedback (RLIF), a framework that enables LLMs to learn from intrinsic signals without external rewards or labeled data. We propose Intuitor, an RLIF method that uses a model's own confidence, termed self-certainty, as its sole reward signal. Intuitor replaces external rewards in Group Relative Policy Optimization (GRPO) with self-certainty scores, enabling fully unsupervised learning. Experiments demonstrate that Intuitor matches GRPO's performance on mathematical benchmarks while achieving superior generalization to out-of-domain tasks like code generation, without requiring gold solutions or test cases. Our findings show that intrinsic model signals can drive effective learning across domains, offering a scalable alternative to RLVR for autonomous AI systems where verifiable rewards are unavailable. Code is available at https://github.com/sunblaze-ucb/Intuitor
TailorKV: A Hybrid Framework for Long-Context Inference via Tailored KV Cache Optimization
The Key-Value (KV) cache in generative large language models (LLMs) introduces substantial memory overhead. Existing works mitigate this burden by offloading or compressing the KV cache. However, loading the entire cache incurs significant latency due to PCIe bandwidth bottlenecks in CPU-GPU communication, while aggressive compression causes notable performance degradation. We identify that certain layers in the LLM need to maintain global information and are unsuitable for selective loading. In contrast, other layers primarily focus on a few tokens with dominant activations that potentially incur substantial quantization error. This observation leads to a key insight that loading dominant tokens and quantizing all tokens can complement each other. Building on this insight, we propose a hybrid compression method, TailorKV, which seamlessly integrates quantization and offloading. TailorKV develops an inference framework along with a hardware-friendly implementation that leverages these complementary characteristics. Extensive long-context evaluations exhibit that TailorKV achieves nearly lossless performance under aggressive compression settings, outperforming the state-of-the-art. Particularly, the Llama-3.1-8B with 128k context can be served within a single RTX 3090 GPU, reaching 82 ms per token during decoding.
Accelerating Prefilling for Long-Context LLMs via Sparse Pattern Sharing
Sparse attention methods exploit the inherent sparsity in attention to speed up the prefilling phase of long-context inference, mitigating the quadratic complexity of full attention computation. While existing sparse attention methods rely on predefined patterns or inaccurate estimations to approximate attention behavior, they often fail to fully capture the true dynamics of attention, resulting in reduced efficiency and compromised accuracy. Instead, we propose a highly accurate sparse attention mechanism that shares similar yet precise attention patterns across heads, enabling a more realistic capture of the dynamic behavior of attention. Our approach is grounded in two key observations: (1) attention patterns demonstrate strong inter-head similarity, and (2) this similarity remains remarkably consistent across diverse inputs. By strategically sharing computed accurate patterns across attention heads, our method effectively captures actual patterns while requiring full attention computation for only a small subset of heads. Comprehensive evaluations demonstrate that our approach achieves superior or comparable speedup relative to state-of-the-art methods while delivering the best overall accuracy.
comment: Under review
DocMEdit: Towards Document-Level Model Editing ACL 2025
Model editing aims to correct errors and outdated knowledge in the Large language models (LLMs) with minimal cost. Prior research has proposed a variety of datasets to assess the effectiveness of these model editing methods. However, most existing datasets only require models to output short phrases or sentences, overlooks the widespread existence of document-level tasks in the real world, raising doubts about their practical usability. Aimed at addressing this limitation and promoting the application of model editing in real-world scenarios, we propose the task of document-level model editing. To tackle such challenges and enhance model capabilities in practical settings, we introduce \benchmarkname, a dataset focused on document-level model editing, characterized by document-level inputs and outputs, extrapolative, and multiple facts within a single edit. We propose a series of evaluation metrics and experiments. The results show that the difficulties in document-level model editing pose challenges for existing model editing methods.
comment: Accepted by ACL 2025 findings
Automated Text-to-Table for Reasoning-Intensive Table QA: Pipeline Design and Benchmarking Insights
Reasoning with tabular data holds increasing importance in modern applications, yet comprehensive evaluation methodologies for reasoning-intensive Table Question Answering (QA) tasks remain nascent. Existing research is constrained by two primary bottlenecks: 1) Reliance on costly manually annotated real-world data, which is difficult to cover complex reasoning scenarios; 2) The heterogeneity of table structures hinders systematic analysis of the intrinsic mechanisms behind the underperformance of LLMs, especially in reasoning-intensive tasks. To address these issues, we propose an automated generation pipeline AutoT2T that transforms mathematical word problems into table-based reasoning tasks, eliminating the need for manual annotation. The pipeline can generate multiple variants of a table for the same reasoning problem, including noisy versions to support robustness evaluation. Based on this, we construct a new benchmark TabularGSM, which systematically spans a range of table complexities and trap problems. Experimental analyses through AutoT2T and TabularGSM reveal that the tight coupling between reasoning and retrieval or identification processes is a key factor underlying the failure of LLMs in complex Table QA tasks. This highlights the necessity for models to develop synergistic reasoning capabilities in order to perform effectively in complex Table QA tasks.
comment: Paper under review, code and dataset are all available
KnowTrace: Bootstrapping Iterative Retrieval-Augmented Generation with Structured Knowledge Tracing KDD 2025
Recent advances in retrieval-augmented generation (RAG) furnish large language models (LLMs) with iterative retrievals of relevant information to handle complex multi-hop questions. These methods typically alternate between LLM reasoning and retrieval to accumulate external information into the LLM's context. However, the ever-growing context inherently imposes an increasing burden on the LLM to perceive connections among critical information pieces, with futile reasoning steps further exacerbating this overload issue. In this paper, we present KnowTrace, an elegant RAG framework to (1) mitigate the context overload and (2) bootstrap higher-quality multi-step reasoning. Instead of simply piling the retrieved contents, KnowTrace autonomously traces out desired knowledge triplets to organize a specific knowledge graph relevant to the input question. Such a structured workflow not only empowers the LLM with an intelligible context for inference, but also naturally inspires a reflective mechanism of knowledge backtracing to identify contributive LLM generations as process supervision data for self-bootstrapping. Extensive experiments show that KnowTrace consistently surpasses existing methods across three multi-hop question answering benchmarks, and the bootstrapped version further amplifies the gains.
comment: Accepted by KDD 2025
On Path to Multimodal Historical Reasoning: HistBench and HistAgent
Recent advances in large language models (LLMs) have led to remarkable progress across domains, yet their capabilities in the humanities, particularly history, remain underexplored. Historical reasoning poses unique challenges for AI, involving multimodal source interpretation, temporal inference, and cross-linguistic analysis. While general-purpose agents perform well on many existing benchmarks, they lack the domain-specific expertise required to engage with historical materials and questions. To address this gap, we introduce HistBench, a new benchmark of 414 high-quality questions designed to evaluate AI's capacity for historical reasoning and authored by more than 40 expert contributors. The tasks span a wide range of historical problems-from factual retrieval based on primary sources to interpretive analysis of manuscripts and images, to interdisciplinary challenges involving archaeology, linguistics, or cultural history. Furthermore, the benchmark dataset spans 29 ancient and modern languages and covers a wide range of historical periods and world regions. Finding the poor performance of LLMs and other agents on HistBench, we further present HistAgent, a history-specific agent equipped with carefully designed tools for OCR, translation, archival search, and image understanding in History. On HistBench, HistAgent based on GPT-4o achieves an accuracy of 27.54% pass@1 and 36.47% pass@2, significantly outperforming LLMs with online search and generalist agents, including GPT-4o (18.60%), DeepSeek-R1(14.49%) and Open Deep Research-smolagents(20.29% pass@1 and 25.12% pass@2). These results highlight the limitations of existing LLMs and generalist agents and demonstrate the advantages of HistAgent for historical reasoning.
comment: 17 pages, 7 figures
It's High Time: A Survey of Temporal Information Retrieval and Question Answering
Time plays a critical role in how information is generated, retrieved, and interpreted. In this survey, we provide a comprehensive overview of Temporal Information Retrieval and Temporal Question Answering, two research areas aimed at handling and understanding time-sensitive information. As the amount of time-stamped content from sources like news articles, web archives, and knowledge bases increases, systems must address challenges such as detecting temporal intent, normalizing time expressions, ordering events, and reasoning over evolving or ambiguous facts. These challenges are critical across many dynamic and time-sensitive domains, from news and encyclopedias to science, history, and social media. We review both traditional approaches and modern neural methods, including those that use transformer models and Large Language Models (LLMs). We also review recent advances in temporal language modeling, multi-hop reasoning, and retrieval-augmented generation (RAG), alongside benchmark datasets and evaluation strategies that test temporal robustness, recency awareness, and generalization.
Efficient Speech Translation through Model Compression and Knowledge Distillation
Efficient deployment of large audio-language models for speech translation remains challenging due to their significant computational requirements. In this paper, we address this challenge through our system submissions to the "Model Compression" track at the International Conference on Spoken Language Translation (IWSLT 2025). We experiment with a combination of approaches including iterative layer pruning based on layer importance evaluation, low-rank adaptation with 4-bit quantization (QLoRA), and knowledge distillation. In our experiments, we use Qwen2-Audio-7B-Instruct for speech translation into German and Chinese. Our pruned (student) models achieve up to a 50% reduction in both model parameters and storage footprint, while retaining 97-100% of the translation quality of the in-domain (teacher) models.
comment: IWSLT 2025
Bridging the Long-Term Gap: A Memory-Active Policy for Multi-Session Task-Oriented Dialogue
Existing Task-Oriented Dialogue (TOD) systems primarily focus on single-session dialogues, limiting their effectiveness in long-term memory augmentation. To address this challenge, we introduce a MS-TOD dataset, the first multi-session TOD dataset designed to retain long-term memory across sessions, enabling fewer turns and more efficient task completion. This defines a new benchmark task for evaluating long-term memory in multi-session TOD. Based on this new dataset, we propose a Memory-Active Policy (MAP) that improves multi-session dialogue efficiency through a two-stage approach. 1) Memory-Guided Dialogue Planning retrieves intent-aligned history, identifies key QA units via a memory judger, refines them by removing redundant questions, and generates responses based on the reconstructed memory. 2) Proactive Response Strategy detects and correct errors or omissions, ensuring efficient and accurate task completion. We evaluate MAP on MS-TOD dataset, focusing on response quality and effectiveness of the proactive strategy. Experiments on MS-TOD demonstrate that MAP significantly improves task success and turn efficiency in multi-session scenarios, while maintaining competitive performance on conventional single-session tasks.
FLAME-MoE: A Transparent End-to-End Research Platform for Mixture-of-Experts Language Models
Recent large language models such as Gemini-1.5, DeepSeek-V3, and Llama-4 increasingly adopt Mixture-of-Experts (MoE) architectures, which offer strong efficiency-performance trade-offs by activating only a fraction of the model per token. Yet academic researchers still lack a fully open, end-to-end MoE platform for investigating scaling, routing, and expert behavior. We release FLAME-MoE, a completely open-source research suite composed of seven decoder-only models, ranging from 38M to 1.7B active parameters, whose architecture--64 experts with top-8 gating and 2 shared experts--closely reflects modern production LLMs. All training data pipelines, scripts, logs, and checkpoints are publicly available to enable reproducible experimentation. Across six evaluation tasks, FLAME-MoE improves average accuracy by up to 3.4 points over dense baselines trained with identical FLOPs. Leveraging full training trace transparency, we present initial analyses showing that (i) experts increasingly specialize on distinct token subsets, (ii) co-activation matrices remain sparse, reflecting diverse expert usage, and (iii) routing behavior stabilizes early in training. All code, training logs, and model checkpoints are available at https://github.com/cmu-flame/FLAME-MoE.
comment: All code, training logs, and model checkpoints are available at https://github.com/cmu-flame/FLAME-MoE
Dependency Parsing is More Parameter-Efficient with Normalization
Dependency parsing is the task of inferring natural language structure, often approached by modeling word interactions via attention through biaffine scoring. This mechanism works like self-attention in Transformers, where scores are calculated for every pair of words in a sentence. However, unlike Transformer attention, biaffine scoring does not use normalization prior to taking the softmax of the scores. In this paper, we provide theoretical evidence and empirical results revealing that a lack of normalization necessarily results in overparameterized parser models, where the extra parameters compensate for the sharp softmax outputs produced by high variance inputs to the biaffine scoring function. We argue that biaffine scoring can be made substantially more efficient by performing score normalization. We conduct experiments on six datasets for semantic and syntactic dependency parsing using a one-hop parser. We train N-layer stacked BiLSTMs and evaluate the parser's performance with and without normalizing biaffine scores. Normalizing allows us to beat the state of the art on two datasets, with fewer samples and trainable parameters. Code: https://anonymous.4open.science/r/EfficientSDP-70C1
How to Improve the Robustness of Closed-Source Models on NLI
Closed-source Large Language Models (LLMs) have become increasingly popular, with impressive performance across a wide range of natural language tasks. These models can be fine-tuned to further improve performance, but this often results in the models learning from dataset-specific heuristics that reduce their robustness on out-of-distribution (OOD) data. Existing methods to improve robustness either perform poorly, or are non-applicable to closed-source models because they assume access to model internals, or the ability to change the model's training procedure. In this work, we investigate strategies to improve the robustness of closed-source LLMs through data-centric methods that do not require access to model internals. We find that the optimal strategy depends on the complexity of the OOD data. For highly complex OOD datasets, upsampling more challenging training examples can improve robustness by up to 1.5%. For less complex OOD datasets, replacing a portion of the training set with LLM-generated examples can improve robustness by 3.7%. More broadly, we find that large-scale closed-source autoregressive LLMs are substantially more robust than commonly used encoder models, and are a more appropriate choice of baseline going forward.
Reasoning Is Not All You Need: Examining LLMs for Multi-Turn Mental Health Conversations
Limited access to mental healthcare, extended wait times, and increasing capabilities of Large Language Models (LLMs) has led individuals to turn to LLMs for fulfilling their mental health needs. However, examining the multi-turn mental health conversation capabilities of LLMs remains under-explored. Existing evaluation frameworks typically focus on diagnostic accuracy and win-rates and often overlook alignment with patient-specific goals, values, and personalities required for meaningful conversations. To address this, we introduce MedAgent, a novel framework for synthetically generating realistic, multi-turn mental health sensemaking conversations and use it to create the Mental Health Sensemaking Dialogue (MHSD) dataset, comprising over 2,200 patient-LLM conversations. Additionally, we present MultiSenseEval, a holistic framework to evaluate the multi-turn conversation abilities of LLMs in healthcare settings using human-centric criteria. Our findings reveal that frontier reasoning models yield below-par performance for patient-centric communication and struggle at advanced diagnostic capabilities with average score of 31%. Additionally, we observed variation in model performance based on patient's persona and performance drop with increasing turns in the conversation. Our work provides a comprehensive synthetic data generation framework, a dataset and evaluation framework for assessing LLMs in multi-turn mental health conversations.
comment: 33 pages, 5 figures, 30 tables
Adaptive Classifier-Free Guidance via Dynamic Low-Confidence Masking
Classifier-Free Guidance (CFG) significantly enhances controllability in generative models by interpolating conditional and unconditional predictions. However, standard CFG often employs a static unconditional input, which can be suboptimal for iterative generation processes where model uncertainty varies dynamically. We introduce Adaptive Classifier-Free Guidance (A-CFG), a novel method that tailors the unconditional input by leveraging the model's instantaneous predictive confidence. At each step of an iterative (masked) diffusion language model, A-CFG identifies tokens in the currently generated sequence for which the model exhibits low confidence. These tokens are temporarily re-masked to create a dynamic, localized unconditional input. This focuses CFG's corrective influence precisely on areas of ambiguity, leading to more effective guidance. We integrate A-CFG into a state-of-the-art masked diffusion language model and demonstrate its efficacy. Experiments on diverse language generation benchmarks show that A-CFG yields substantial improvements over standard CFG, achieving, for instance, a 3.9 point gain on GPQA. Our work highlights the benefit of dynamically adapting guidance mechanisms to model uncertainty in iterative generation.
comment: Project page: https://github.com/pixeli99/A-CFG
Monocle: Hybrid Local-Global In-Context Evaluation for Long-Text Generation with Uncertainty-Based Active Learning
Assessing the quality of long-form, model-generated text is challenging, even with advanced LLM-as-a-Judge methods, due to performance degradation as input length increases. To address this issue, we propose a divide-and-conquer approach, which breaks down the comprehensive evaluation task into a series of localized scoring tasks, followed by a final global assessment. This strategy allows for more granular and manageable evaluations, ensuring that each segment of the text is assessed in isolation for both coherence and quality, while also accounting for the overall structure and consistency of the entire piece. Moreover, we introduce a hybrid in-context learning approach that leverages human annotations to enhance the performance of both local and global evaluations. By incorporating human-generated feedback directly into the evaluation process, this method allows the model to better align with human judgment. Finally, we develop an uncertainty-based active learning algorithm that efficiently selects data samples for human annotation, thereby reducing annotation costs in practical scenarios. Experimental results show that the proposed evaluation framework outperforms several representative baselines, highlighting the effectiveness of our approach.
THiNK: Can Large Language Models Think-aloud?
Assessing higher-order thinking skills in large language models (LLMs) remains a fundamental challenge, especially in tasks that go beyond surface-level accuracy. In this work, we propose THiNK (Testing Higher-order Notion of Knowledge), a multi-agent, feedback-driven evaluation framework grounded in Bloom's Taxonomy. THiNK frames reasoning assessment as an iterative task of problem generation, critique, and revision, encouraging LLMs to think-aloud through step-by-step reflection and refinement. This enables a systematic evaluation of both lower-order (e.g., remember, understand) and higher-order (e.g., evaluate, create) thinking skills. We apply THiNK to seven state-of-the-art LLMs and perform a detailed cognitive analysis of their outputs. Results reveal that while models reliably perform lower-order categories well, they struggle with applying knowledge in realistic contexts and exhibit limited abstraction. Structured feedback loops significantly improve reasoning performance, particularly in higher-order thinking. Qualitative evaluations further confirm that THiNK-guided outputs better align with domain logic and problem structure. The code of our framework provides a scalable methodology for probing and enhancing LLM reasoning, offering new directions for evaluation grounded in learning science, which is available at our GitHub repository.
"KAN you hear me?" Exploring Kolmogorov-Arnold Networks for Spoken Language Understanding INTERSPEECH 2025
Kolmogorov-Arnold Networks (KANs) have recently emerged as a promising alternative to traditional neural architectures, yet their application to speech processing remains under explored. This work presents the first investigation of KANs for Spoken Language Understanding (SLU) tasks. We experiment with 2D-CNN models on two datasets, integrating KAN layers in five different configurations within the dense block. The best-performing setup, which places a KAN layer between two linear layers, is directly applied to transformer-based models and evaluated on five SLU datasets with increasing complexity. Our results show that KAN layers can effectively replace the linear layers, achieving comparable or superior performance in most cases. Finally, we provide insights into how KAN and linear layers on top of transformers differently attend to input regions of the raw waveforms.
comment: Accepted at INTERSPEECH 2025
From Alignment to Advancement: Bootstrapping Audio-Language Alignment with Synthetic Data
Audio-aware large language models (ALLMs) have recently made great strides in understanding and processing audio inputs. These models are typically adapted from text-based large language models (LLMs) through additional training on audio-related tasks. However, this adaptation process presents two major limitations. First, ALLMs often suffer from catastrophic forgetting, where important textual capabilities such as instruction-following are lost after training on audio data. In some cases, models may even hallucinate sounds that are not present in the input audio, raising concerns about their reliability. Second, achieving cross-modal alignment between audio and language typically relies on large collections of task-specific question-answer pairs for instruction tuning, making the process resource-intensive. To address these issues, we leverage the backbone LLMs from ALLMs to synthesize general-purpose caption-style alignment data. We refer to this process as bootstrapping audio-language alignment via synthetic data generation from backbone LLMs (BALSa). Building on BALSa, we introduce LISTEN (Learning to Identify Sounds Through Extended Negative Samples), a contrastive-like training method designed to improve ALLMs' ability to distinguish between present and absent sounds. We further extend BALSa to multi-audio scenarios, where the model either explains the differences between audio inputs or produces a unified caption that describes them all, thereby enhancing audio-language alignment. Experimental results indicate that our method effectively mitigates audio hallucinations while reliably maintaining strong performance in audio understanding, reasoning, and instruction-following skills. Moreover, incorporating multi-audio training further enhances the model's comprehension and reasoning capabilities. Overall, BALSa offers an efficient and scalable approach to the development of ALLMs.
comment: Project Website: https://kuan2jiu99.github.io/Balsa
Visual Abstract Thinking Empowers Multimodal Reasoning
Images usually convey richer detail than text, but often include redundant information which potentially downgrades multimodal reasoning performance. When faced with lengthy or complex messages, humans tend to employ abstract thinking to convert them into simple and concise abstracts. Inspired by this cognitive strategy, we introduce Visual Abstract Thinking (VAT), a novel thinking paradigm that prompts Multimodal Large Language Models (MLLMs) with visual abstract instead of explicit verbal thoughts or elaborate guidance, permitting a more concentrated visual reasoning mechanism. Explicit thinking, such as Chain-of-thought (CoT) or tool-augmented approaches, increases the complexity of reasoning process via inserting verbose intermediate steps, external knowledge or visual information. In contrast, VAT reduces redundant visual information and encourages models to focus their reasoning on more essential visual elements. Experimental results show that VAT consistently empowers different models, and achieves an average gain of 17% over GPT-4o baseline by employing diverse types of visual abstracts, demonstrating that VAT can enhance visual reasoning abilities for MLLMs regarding conceptual, structural and relational reasoning tasks. VAT is also compatible with CoT in knowledge-intensive multimodal reasoning tasks. These findings highlight the effectiveness of visual reasoning via abstract thinking and encourage further exploration of more diverse reasoning paradigms from the perspective of human cognition.
Exploring Generative Error Correction for Dysarthric Speech Recognition INTERSPEECH 2025
Despite the remarkable progress in end-to-end Automatic Speech Recognition (ASR) engines, accurately transcribing dysarthric speech remains a major challenge. In this work, we proposed a two-stage framework for the Speech Accessibility Project Challenge at INTERSPEECH 2025, which combines cutting-edge speech recognition models with LLM-based generative error correction (GER). We assess different configurations of model scales and training strategies, incorporating specific hypothesis selection to improve transcription accuracy. Experiments on the Speech Accessibility Project dataset demonstrate the strength of our approach on structured and spontaneous speech, while highlighting challenges in single-word recognition. Through comprehensive analysis, we provide insights into the complementary roles of acoustic and linguistic modeling in dysarthric speech recognition
comment: Accepted at INTERSPEECH 2025
Prismatic Synthesis: Gradient-based Data Diversification Boosts Generalization in LLM Reasoning
Effective generalization in language models depends critically on the diversity of their training data. Yet existing diversity metrics often fall short of this goal, relying on surface-level heuristics that are decoupled from model behavior. This motivates us to ask: What kind of diversity in training data actually drives generalization in language models -- and how can we measure and amplify it? Through large-scale empirical analyses spanning over 300 training runs, carefully controlled for data scale and quality, we show that data diversity can be a strong predictor of generalization in LLM reasoning -- as measured by average model performance on unseen out-of-distribution benchmarks. We introduce G-Vendi, a metric that quantifies diversity via the entropy of model-induced gradients. Despite using a small off-the-shelf proxy model for gradients, G-Vendi consistently outperforms alternative measures, achieving strong correlation (Spearman's $\rho \approx 0.9$) with out-of-distribution (OOD) performance on both natural language inference (NLI) and math reasoning tasks. Building on this insight, we present Prismatic Synthesis, a framework for generating diverse synthetic data by targeting underrepresented regions in gradient space. Experimental results show that Prismatic Synthesis consistently improves model performance as we scale synthetic data -- not just on in-distribution test but across unseen, out-of-distribution benchmarks -- significantly outperforming state-of-the-art models that rely on 20 times larger data generator than ours. For example, PrismMath-7B, our model distilled from a 32B LLM, outperforms R1-Distill-Qwen-7B -- the same base model trained on proprietary data generated by 671B R1 -- on 6 out of 7 challenging benchmarks.
Towards Multi-Granularity Memory Association and Selection for Long-Term Conversational Agents
Large Language Models (LLMs) have recently been widely adopted in conversational agents. However, the increasingly long interactions between users and agents accumulate extensive dialogue records, making it difficult for LLMs with limited context windows to maintain a coherent long-term dialogue memory and deliver personalized responses. While retrieval-augmented memory systems have emerged to address this issue, existing methods often depend on single-granularity memory segmentation and retrieval. This approach falls short in capturing deep memory connections, leading to partial retrieval of useful information or substantial noise, resulting in suboptimal performance. To tackle these limits, we propose MemGAS, a framework that enhances memory consolidation by constructing multi-granularity association, adaptive selection, and retrieval. MemGAS is based on multi-granularity memory units and employs Gaussian Mixture Models to cluster and associate new memories with historical ones. An entropy-based router adaptively selects optimal granularity by evaluating query relevance distributions and balancing information completeness and noise. Retrieved memories are further refined via LLM-based filtering. Experiments on four long-term memory benchmarks demonstrate that MemGAS outperforms state-of-the-art methods on both question answer and retrieval tasks, achieving superior performance across different query types and top-K settings.
Thought-Augmented Policy Optimization: Bridging External Guidance and Internal Capabilities
Reinforcement learning (RL) has emerged as an effective method for training reasoning models. However, existing RL approaches typically bias the model's output distribution toward reward-maximizing paths without introducing external knowledge. This limits their exploration capacity and results in a narrower reasoning capability boundary compared to base models. To address this limitation, we propose TAPO (Thought-Augmented Policy Optimization), a novel framework that augments RL by incorporating external high-level guidance ("thought patterns"). By adaptively integrating structured thoughts during training, TAPO effectively balances model-internal exploration and external guidance exploitation. Extensive experiments show that our approach significantly outperforms GRPO by 99% on AIME, 41% on AMC, and 17% on Minerva Math. Notably, these high-level thought patterns, abstracted from only 500 prior samples, generalize effectively across various tasks and models. This highlights TAPO's potential for broader applications across multiple tasks and domains. Our further analysis reveals that introducing external guidance produces powerful reasoning models with superior explainability of inference behavior and enhanced output readability.
PandaGuard: Systematic Evaluation of LLM Safety against Jailbreaking Attacks
Large language models (LLMs) have achieved remarkable capabilities but remain vulnerable to adversarial prompts known as jailbreaks, which can bypass safety alignment and elicit harmful outputs. Despite growing efforts in LLM safety research, existing evaluations are often fragmented, focused on isolated attack or defense techniques, and lack systematic, reproducible analysis. In this work, we introduce PandaGuard, a unified and modular framework that models LLM jailbreak safety as a multi-agent system comprising attackers, defenders, and judges. Our framework implements 19 attack methods and 12 defense mechanisms, along with multiple judgment strategies, all within a flexible plugin architecture supporting diverse LLM interfaces, multiple interaction modes, and configuration-driven experimentation that enhances reproducibility and practical deployment. Built on this framework, we develop PandaBench, a comprehensive benchmark that evaluates the interactions between these attack/defense methods across 49 LLMs and various judgment approaches, requiring over 3 billion tokens to execute. Our extensive evaluation reveals key insights into model vulnerabilities, defense cost-performance trade-offs, and judge consistency. We find that no single defense is optimal across all dimensions and that judge disagreement introduces nontrivial variance in safety assessments. We release the code, configurations, and evaluation results to support transparent and reproducible research in LLM safety.
Revealing the Intrinsic Ethical Vulnerability of Aligned Large Language Models
Large language models (LLMs) are foundational explorations to artificial general intelligence, yet their alignment with human values via instruction tuning and preference learning achieves only superficial compliance. Here, we demonstrate that harmful knowledge embedded during pretraining persists as indelible "dark patterns" in LLMs' parametric memory, evading alignment safeguards and resurfacing under adversarial inducement at distributional shifts. In this study, we first theoretically analyze the intrinsic ethical vulnerability of aligned LLMs by proving that current alignment methods yield only local "safety regions" in the knowledge manifold. In contrast, pretrained knowledge remains globally connected to harmful concepts via high-likelihood adversarial trajectories. Building on this theoretical insight, we empirically validate our findings by employing semantic coherence inducement under distributional shifts--a method that systematically bypasses alignment constraints through optimized adversarial prompts. This combined theoretical and empirical approach achieves a 100% attack success rate across 19 out of 23 state-of-the-art aligned LLMs, including DeepSeek-R1 and LLaMA-3, revealing their universal vulnerabilities.
"Alexa, can you forget me?" Machine Unlearning Benchmark in Spoken Language Understanding
Machine unlearning, the process of efficiently removing specific information from machine learning models, is a growing area of interest for responsible AI. However, few studies have explored the effectiveness of unlearning methods on complex tasks, particularly speech-related ones. This paper introduces UnSLU-BENCH, the first benchmark for machine unlearning in spoken language understanding (SLU), focusing on four datasets spanning four languages. We address the unlearning of data from specific speakers as a way to evaluate the quality of potential "right to be forgotten" requests. We assess eight unlearning techniques and propose a novel metric to simultaneously better capture their efficacy, utility, and efficiency. UnSLU-BENCH sets a foundation for unlearning in SLU and reveals significant differences in the effectiveness and computational feasibility of various techniques.
comment: Accepted at Interspeech 2025
Bemba Speech Translation: Exploring a Low-Resource African Language
This paper describes our system submission to the International Conference on Spoken Language Translation (IWSLT 2025), low-resource languages track, namely for Bemba-to-English speech translation. We built cascaded speech translation systems based on Whisper and NLLB-200, and employed data augmentation techniques, such as back-translation. We investigate the effect of using synthetic data and discuss our experimental setup.
comment: IWSLT 2025
A Survey on the Safety and Security Threats of Computer-Using Agents: JARVIS or Ultron?
Recently, AI-driven interactions with computing devices have advanced from basic prototype tools to sophisticated, LLM-based systems that emulate human-like operations in graphical user interfaces. We are now witnessing the emergence of \emph{Computer-Using Agents} (CUAs), capable of autonomously performing tasks such as navigating desktop applications, web pages, and mobile apps. However, as these agents grow in capability, they also introduce novel safety and security risks. Vulnerabilities in LLM-driven reasoning, with the added complexity of integrating multiple software components and multimodal inputs, further complicate the security landscape. In this paper, we present a systematization of knowledge on the safety and security threats of CUAs. We conduct a comprehensive literature review and distill our findings along four research objectives: \textit{\textbf{(i)}} define the CUA that suits safety analysis; \textit{\textbf{(ii)} } categorize current safety threats among CUAs; \textit{\textbf{(iii)}} propose a comprehensive taxonomy of existing defensive strategies; \textit{\textbf{(iv)}} summarize prevailing benchmarks, datasets, and evaluation metrics used to assess the safety and performance of CUAs. Building on these insights, our work provides future researchers with a structured foundation for exploring unexplored vulnerabilities and offers practitioners actionable guidance in designing and deploying secure Computer-Using Agents.
A Survey of LLM-based Agents in Medicine: How far are we from Baymax? ACL 2025
Large Language Models (LLMs) are transforming healthcare through the development of LLM-based agents that can understand, reason about, and assist with medical tasks. This survey provides a comprehensive review of LLM-based agents in medicine, examining their architectures, applications, and challenges. We analyze the key components of medical agent systems, including system profiles, clinical planning mechanisms, medical reasoning frameworks, and external capacity enhancement. The survey covers major application scenarios such as clinical decision support, medical documentation, training simulations, and healthcare service optimization. We discuss evaluation frameworks and metrics used to assess these agents' performance in healthcare settings. While LLM-based agents show promise in enhancing healthcare delivery, several challenges remain, including hallucination management, multimodal integration, implementation barriers, and ethical considerations. The survey concludes by highlighting future research directions, including advances in medical reasoning inspired by recent developments in LLM architectures, integration with physical systems, and improvements in training simulations. This work provides researchers and practitioners with a structured overview of the current state and future prospects of LLM-based agents in medicine.
comment: ACL 2025 Findings
ProcessBench: Identifying Process Errors in Mathematical Reasoning ACL 2025
As language models regularly make mistakes when solving math problems, automated identification of errors in the reasoning process becomes increasingly significant for their scalable oversight. In this paper, we introduce ProcessBench for measuring the ability to identify erroneous steps in mathematical reasoning. It consists of 3,400 test cases, primarily focused on competition- and Olympiad-level math problems. Each test case contains a step-by-step solution with error location annotated by human experts. Models are required to identify the earliest step that contains an error, or conclude that all steps are correct. We conduct extensive evaluation on ProcessBench, involving two types of models: process reward models (PRMs) and critic models, where for the latter we prompt general language models to critique each solution step by step. We draw two main observations: (1) Existing PRMs typically fail to generalize to more challenging math problems beyond GSM8K and MATH. They underperform both critic models (i.e., prompted general language models) and our own trained PRM that is straightforwardly fine-tuned on the PRM800K dataset. (2) The best open-source model, QwQ-32B-Preview, has demonstrated the critique capability competitive with the proprietary model GPT-4o, despite that it still lags behind the reasoning-specialized o1-mini. We hope ProcessBench can foster future research in reasoning process assessment, paving the way toward scalable oversight of language models.
comment: ACL 2025
What Does Neuro Mean to Cardio? Investigating the Role of Clinical Specialty Data in Medical LLMs
In this paper, we introduce S-MedQA, an English medical question-answering (QA) dataset for benchmarking large language models in fine-grained clinical specialties. We use S-MedQA to check the applicability of a popular hypothesis related to knowledge injection in the knowledge-intense scenario of medical QA, and show that: 1) training on data from a speciality does not necessarily lead to best performance on that specialty and 2) regardless of the specialty fine-tuned on, token probabilities of clinically relevant terms for all specialties increase consistently. Thus, we believe improvement gains come mostly from domain shifting (e.g., general to medical) rather than knowledge injection and suggest rethinking the role of fine-tuning data in the medical domain. We release S-MedQA and all code needed to reproduce all our experiments to the research community.
Explanatory Summarization with Discourse-Driven Planning ACL 2025
Lay summaries for scientific documents typically include explanations to help readers grasp sophisticated concepts or arguments. However, current automatic summarization methods do not explicitly model explanations, which makes it difficult to align the proportion of explanatory content with human-written summaries. In this paper, we present a plan-based approach that leverages discourse frameworks to organize summary generation and guide explanatory sentences by prompting responses to the plan. Specifically, we propose two discourse-driven planning strategies, where the plan is conditioned as part of the input or part of the output prefix, respectively. Empirical experiments on three lay summarization datasets show that our approach outperforms existing state-of-the-art methods in terms of summary quality, and it enhances model robustness, controllability, and mitigates hallucination.
comment: Accepted by the Transactions of the Association for Computational Linguistics (TACL 2025)
GeoEdit: Geometric Knowledge Editing for Large Language Models
Regular updates are essential for maintaining up-to-date knowledge in large language models (LLMs). Consequently, various model editing methods have been developed to update specific knowledge within LLMs. However, training-based approaches often struggle to effectively incorporate new knowledge while preserving unrelated general knowledge. To address this challenge, we propose a novel framework called Geometric Knowledge Editing (GeoEdit). GeoEdit utilizes the geometric relationships of parameter updates from fine-tuning to differentiate between neurons associated with new knowledge updates and those related to general knowledge perturbations. By employing a direction-aware knowledge identification method, we avoid updating neurons with directions approximately orthogonal to existing knowledge, thus preserving the model's generalization ability. For the remaining neurons, we integrate both old and new knowledge for aligned directions and apply a "forget-then-learn" editing strategy for opposite directions. Additionally, we introduce an importance-guided task vector fusion technique that filters out redundant information and provides adaptive neuron-level weighting, further enhancing model editing performance. Extensive experiments on two publicly available datasets demonstrate the superiority of GeoEdit over existing state-of-the-art methods.
A Cognitive Writing Perspective for Constrained Long-Form Text Generation
Like humans, Large Language Models (LLMs) struggle to generate high-quality long-form text that adheres to strict requirements in a single pass. This challenge is unsurprising, as successful human writing, according to the Cognitive Writing Theory, is a complex cognitive process involving iterative planning, translating, reviewing, and monitoring. Motivated by these cognitive principles, we aim to equip LLMs with human-like cognitive writing capabilities through CogWriter, a novel training-free framework that transforms LLM constrained long-form text generation into a systematic cognitive writing paradigm. Our framework consists of two key modules: (1) a Planning Agent that performs hierarchical planning to decompose the task, and (2) multiple Generation Agents that execute these plans in parallel. The system maintains quality via continuous monitoring and reviewing mechanisms, which evaluate outputs against specified requirements and trigger necessary revisions. CogWriter demonstrates exceptional performance on LongGenBench, a benchmark for complex constrained long-form text generation. Even when using Qwen-2.5-14B as its backbone, CogWriter surpasses GPT-4o by 22% in complex instruction completion accuracy while reliably generating texts exceeding 10,000 words. We hope this cognitive science-inspired approach provides a paradigm for LLM writing advancements: \href{https://github.com/KaiyangWan/CogWriter}{CogWriter}.
comment: 13 pages, 6 figures
GraphCheck: Breaking Long-Term Text Barriers with Extracted Knowledge Graph-Powered Fact-Checking
Large language models (LLMs) are widely used, but they often generate subtle factual errors, especially in long-form text. These errors are fatal in some specialized domains such as medicine. Existing fact-checking with grounding documents methods face two main challenges: (1) they struggle to understand complex multihop relations in long documents, often overlooking subtle factual errors; (2) most specialized methods rely on pairwise comparisons, requiring multiple model calls, leading to high resource and computational costs. To address these challenges, we propose GraphCheck, a fact-checking framework that uses extracted knowledge graphs to enhance text representation. Graph Neural Networks further process these graphs as a soft prompt, enabling LLMs to incorporate structured knowledge more effectively. Enhanced with graph-based reasoning, GraphCheck captures multihop reasoning chains that are often overlooked by existing methods, enabling precise and efficient fact-checking in a single inference call. Experimental results on seven benchmarks spanning both general and medical domains demonstrate up to a 7.1% overall improvement over baseline models. Notably, GraphCheck outperforms existing specialized fact-checkers and achieves comparable performance with state-of-the-art LLMs, such as DeepSeek-V3 and OpenAI-o1, with significantly fewer parameters.
Linear Control of Test Awareness Reveals Differential Compliance in Reasoning Models
Reasoning-focused large language models (LLMs) sometimes alter their behavior when they detect that they are being evaluated, an effect analogous to the Hawthorne phenomenon, which can lead them to optimize for test-passing performance or to comply more readily with harmful prompts if real-world consequences appear absent. We present the first quantitative study of how such "test awareness" impacts model behavior, particularly its safety alignment. We introduce a white-box probing framework that (i) linearly identifies awareness-related activations and (ii) steers models toward or away from test awareness while monitoring downstream performance. We apply our method to different state-of-the-art open-source reasoning LLMs across both realistic and hypothetical tasks. Our results demonstrate that test awareness significantly impact safety alignment, and is different for different models. By providing fine-grained control over this latent effect, our work aims to increase trust in how we perform safety evaluation.
MoC: Mixtures of Text Chunking Learners for Retrieval-Augmented Generation System
Retrieval-Augmented Generation (RAG), while serving as a viable complement to large language models (LLMs), often overlooks the crucial aspect of text chunking within its pipeline. This paper initially introduces a dual-metric evaluation method, comprising Boundary Clarity and Chunk Stickiness, to enable the direct quantification of chunking quality. Leveraging this assessment method, we highlight the inherent limitations of traditional and semantic chunking in handling complex contextual nuances, thereby substantiating the necessity of integrating LLMs into chunking process. To address the inherent trade-off between computational efficiency and chunking precision in LLM-based approaches, we devise the granularity-aware Mixture-of-Chunkers (MoC) framework, which consists of a three-stage processing mechanism. Notably, our objective is to guide the chunker towards generating a structured list of chunking regular expressions, which are subsequently employed to extract chunks from the original text. Extensive experiments demonstrate that both our proposed metrics and the MoC framework effectively settle challenges of the chunking task, revealing the chunking kernel while enhancing the performance of the RAG system.
Phare: A Safety Probe for Large Language Models
Ensuring the safety of large language models (LLMs) is critical for responsible deployment, yet existing evaluations often prioritize performance over identifying failure modes. We introduce Phare, a multilingual diagnostic framework to probe and evaluate LLM behavior across three critical dimensions: hallucination and reliability, social biases, and harmful content generation. Our evaluation of 17 state-of-the-art LLMs reveals patterns of systematic vulnerabilities across all safety dimensions, including sycophancy, prompt sensitivity, and stereotype reproduction. By highlighting these specific failure modes rather than simply ranking models, Phare provides researchers and practitioners with actionable insights to build more robust, aligned, and trustworthy language systems.
APB: Accelerating Distributed Long-Context Inference by Passing Compressed Context Blocks across GPUs ACL 2025
While long-context inference is crucial for advancing large language model (LLM) applications, its prefill speed remains a significant bottleneck. Current approaches, including sequence parallelism strategies and compute reduction through approximate attention mechanisms, still fall short of delivering optimal inference efficiency. This hinders scaling the inputs to longer sequences and processing long-context queries in a timely manner. To address this, we introduce APB, an efficient long-context inference framework that leverages multi-host approximate attention to enhance prefill speed by reducing compute and enhancing parallelism simultaneously. APB introduces a communication mechanism for essential key-value pairs within a sequence parallelism framework, enabling a faster inference speed while maintaining task performance. We implement APB by incorporating a tailored FlashAttn kernel alongside optimized distribution strategies, supporting diverse models and parallelism configurations. APB achieves speedups of up to 9.2x, 4.2x, and 1.6x compared with FlashAttn, RingAttn, and StarAttn, respectively, without any observable task performance degradation. We provide the implementation and experiment code of APB in https://github.com/thunlp/APB.
comment: ACL 2025 main
FullFront: Benchmarking MLLMs Across the Full Front-End Engineering Workflow
Front-end engineering involves a complex workflow where engineers conceptualize designs, translate them into code, and iteratively refine the implementation. While recent benchmarks primarily focus on converting visual designs to code, we present FullFront, a benchmark designed to evaluate Multimodal Large Language Models (MLLMs) \textbf{across the full front-end development pipeline}. FullFront assesses three fundamental tasks that map directly to the front-end engineering pipeline: Webpage Design (conceptualization phase), Webpage Perception QA (comprehension of visual organization and elements), and Webpage Code Generation (implementation phase). Unlike existing benchmarks that use either scraped websites with bloated code or oversimplified LLM-generated HTML, FullFront employs a novel, two-stage process to transform real-world webpages into clean, standardized HTML while maintaining diverse visual designs and avoiding copyright issues. Extensive testing of state-of-the-art MLLMs reveals significant limitations in page perception, code generation (particularly for image handling and layout), and interaction implementation. Our results quantitatively demonstrate performance disparities across models and tasks, and highlight a substantial gap between current MLLM capabilities and human expert performance in front-end engineering. The FullFront benchmark and code are available in https://github.com/Mikivishy/FullFront.
DECT: Harnessing LLM-assisted Fine-Grained Linguistic Knowledge and Label-Switched and Label-Preserved Data Generation for Diagnosis of Alzheimer's Disease
Alzheimer's Disease (AD) is an irreversible neurodegenerative disease affecting 50 million people worldwide. Low-cost, accurate identification of key markers of AD is crucial for timely diagnosis and intervention. Language impairment is one of the earliest signs of cognitive decline, which can be used to discriminate AD patients from normal control individuals. Patient-interviewer dialogues may be used to detect such impairments, but they are often mixed with ambiguous, noisy, and irrelevant information, making the AD detection task difficult. Moreover, the limited availability of AD speech samples and variability in their speech styles pose significant challenges in developing robust speech-based AD detection models. To address these challenges, we propose DECT, a novel speech-based domain-specific approach leveraging large language models (LLMs) for fine-grained linguistic analysis and label-switched label-preserved data generation. Our study presents four novelties: We harness the summarizing capabilities of LLMs to identify and distill key Cognitive-Linguistic information from noisy speech transcripts, effectively filtering irrelevant information. We leverage the inherent linguistic knowledge of LLMs to extract linguistic markers from unstructured and heterogeneous audio transcripts. We exploit the compositional ability of LLMs to generate AD speech transcripts consisting of diverse linguistic patterns to overcome the speech data scarcity challenge and enhance the robustness of AD detection models. We use the augmented AD textual speech transcript dataset and a more fine-grained representation of AD textual speech transcript data to fine-tune the AD detection model. The results have shown that DECT demonstrates superior model performance with an 11% improvement in AD detection accuracy on the datasets from DementiaBank compared to the baselines.
Model Utility Law: Evaluating LLMs beyond Performance through Mechanism Interpretable Metric
Large Language Models (LLMs) have become indispensable across academia, industry, and daily applications, yet current evaluation methods struggle to keep pace with their rapid development. One core challenge of evaluation in the large language model (LLM) era is the generalization issue: how to infer a model's near-unbounded abilities from inevitably bounded benchmarks. We address this challenge by proposing Model Utilization Index (MUI), a mechanism interpretability enhanced metric that complements traditional performance scores. MUI quantifies the effort a model expends on a task, defined as the proportion of activated neurons or features during inference. Intuitively, a truly capable model should achieve higher performance with lower effort. Extensive experiments across popular LLMs reveal a consistent inverse logarithmic relationship between MUI and performance, which we formulate as the Utility Law. From this law we derive four practical corollaries that (i) guide training diagnostics, (ii) expose data contamination issue, (iii) enable fairer model comparisons, and (iv) design model-specific dataset diversity. Our code can be found at https://github.com/ALEX-nlp/MUI-Eva.
Generalizable Prompt Learning of CLIP: A Brief Overview
Existing vision-language models (VLMs) such as CLIP have showcased an impressive capability to generalize well across various downstream tasks. These models leverage the synergy between visual and textual information, enabling them to understand and reason about the content present in images and text in a unified manner. This article provides a brief overview of CLIP based on few-shot prompt learning, including experimental data and technical characteristics of some methods. The purpose of this review is to provide a reference for researchers who have just started their research in generalizable prompting of CLIP through few-shot training for classification across 15 datasets and also to facilitate the integration of this field by researchers in other downstream tasks.
Registering Source Tokens to Target Language Spaces in Multilingual Neural Machine Translation ACL 2025
The multilingual neural machine translation (MNMT) aims for arbitrary translations across multiple languages. Although MNMT-specific models trained on parallel data offer low costs in training and deployment, their performance consistently lags behind that of large language models (LLMs). In this work, we introduce registering, a novel method that enables a small MNMT-specific model to compete with LLMs. Specifically, we insert a set of artificial tokens specifying the target language, called registers, into the input sequence between the source and target tokens. By modifying the attention mask, the target token generation only pays attention to the activation of registers, representing the source tokens in the target language space. Experiments on EC-40, a large-scale benchmark, show that our method advances the state-of-the-art of MNMT. We further pre-train two models, namely MITRE (multilingual translation with registers), by 9.3 billion sentence pairs across 24 languages collected from public corpora. One of them, MITRE-913M, outperforms NLLB-3.3B, achieves comparable performance with commercial LLMs, and shows strong adaptability in fine-tuning. Finally, we open-source our models to facilitate further research and development in MNMT: https://github.com/zhiqu22/mitre.
comment: Accepted by ACL 2025 (main)
QueryAttack: Jailbreaking Aligned Large Language Models Using Structured Non-natural Query Language ACL 2025
Recent advances in large language models (LLMs) have demonstrated remarkable potential in the field of natural language processing. Unfortunately, LLMs face significant security and ethical risks. Although techniques such as safety alignment are developed for defense, prior researches reveal the possibility of bypassing such defenses through well-designed jailbreak attacks. In this paper, we propose QueryAttack, a novel framework to examine the generalizability of safety alignment. By treating LLMs as knowledge databases, we translate malicious queries in natural language into structured non-natural query language to bypass the safety alignment mechanisms of LLMs. We conduct extensive experiments on mainstream LLMs, and the results show that QueryAttack not only can achieve high attack success rates (ASRs), but also can jailbreak various defense methods. Furthermore, we tailor a defense method against QueryAttack, which can reduce ASR by up to $64\%$ on GPT-4-1106. Our code is available at https://github.com/horizonsinzqs/QueryAttack.
comment: To appear in ACL 2025
R1-T1: Fully Incentivizing Translation Capability in LLMs via Reasoning Learning
Despite recent breakthroughs in reasoning-enhanced large language models (LLMs) like DeepSeek-R1, incorporating inference-time reasoning into machine translation (MT), where human translators naturally employ structured, multi-layered reasoning chain-of-thoughts (CoTs), is yet underexplored. Existing methods either design a fixed CoT tailored for a specific MT sub-task (e.g., literature translation), or rely on synthesizing CoTs unaligned with humans and supervised fine-tuning (SFT) prone to overfitting, limiting their adaptability to diverse translation scenarios. This paper introduces R1-Translator (R1-T1), a novel framework to achieve inference-time reasoning for general MT via reinforcement learning (RL) with human-aligned CoTs comprising six common patterns. Our approach pioneers three innovations: (1) extending reasoning-based translation to broader MT scenarios (e.g., multilingual MT, domain MT) unseen in the training phase; (2) formalizing six expert-curated CoT templates that mirror hybrid human strategies like context-aware paraphrasing and back translation; and (3) enabling self-evolving CoT discovery through RL. Both human and automatic evaluation results indicate a steady translation performance improvement in a total of 10+ languages and 40+ translation directions on Flores-101 test set and four domain-specific MT tasks, especially on the languages unseen from training.
O$^2$-Searcher: A Searching-based Agent Model for Open-Domain Open-Ended Question Answering
Large Language Models (LLMs), despite their advancements, are fundamentally limited by their static parametric knowledge, hindering performance on tasks requiring open-domain up-to-date information. While enabling LLMs to interact with external knowledge environments is a promising solution, current efforts primarily address closed-end problems. Open-ended questions, which characterized by lacking a standard answer or providing non-unique and diverse answers, remain underexplored. To bridge this gap, we present O$^2$-Searcher, a novel search agent leveraging reinforcement learning to effectively tackle both open-ended and closed-ended questions in the open domain. O$^2$-Searcher leverages an efficient, locally simulated search environment for dynamic knowledge acquisition, effectively decoupling the external world knowledge from model's sophisticated reasoning processes. It employs a unified training mechanism with meticulously designed reward functions, enabling the agent to identify problem types and adapt different answer generation strategies. Furthermore, to evaluate performance on complex open-ended tasks, we construct O$^2$-QA, a high-quality benchmark featuring 300 manually curated, multi-domain open-ended questions with associated web page caches. Extensive experiments show that O$^2$-Searcher, using only a 3B model, significantly surpasses leading LLM agents on O$^2$-QA. It also achieves SOTA results on various closed-ended QA benchmarks against similarly-sized models, while performing on par with much larger ones.
comment: 25 pages, 9 figures
Query Performance Prediction using Relevance Judgments Generated by Large Language Models
Query performance prediction (QPP) aims to estimate the retrieval quality of a search system for a query without human relevance judgments. Previous QPP methods typically return a single scalar value and do not require the predicted values to approximate a specific information retrieval (IR) evaluation measure, leading to certain drawbacks: (i) a single scalar is insufficient to accurately represent different IR evaluation measures, especially when metrics do not highly correlate, and (ii) a single scalar limits the interpretability of QPP methods because solely using a scalar is insufficient to explain QPP results. To address these issues, we propose a QPP framework using automatically generated relevance judgments (QPP-GenRE), which decomposes QPP into independent subtasks of predicting the relevance of each item in a ranked list to a given query. This allows us to predict any IR evaluation measure using the generated relevance judgments as pseudo-labels. This also allows us to interpret predicted IR evaluation measures, and identify, track and rectify errors in generated relevance judgments to improve QPP quality. We predict an item's relevance by using open-source large language models (LLMs) to ensure scientific reproducibility. We face two main challenges: (i) excessive computational costs of judging an entire corpus for predicting a metric considering recall, and (ii) limited performance in prompting open-source LLMs in a zero-/few-shot manner. To solve the challenges, we devise an approximation strategy to predict an IR measure considering recall and propose to fine-tune open-source LLMs using human-labeled relevance judgments. Experiments on the TREC 2019 to 2022 deep learning tracks and CAsT-19 and 20 datasets show that QPP-GenRE achieves state-of-the-art QPP quality for both lexical and neural rankers.
comment: Accepted by ACM Transactions on Information Systems (TOIS)
In-context Demonstration Matters: On Prompt Optimization for Pseudo-Supervision Refinement
Large language models (LLMs) have achieved great success across diverse tasks, and fine-tuning is sometimes needed to further enhance generation quality. Most existing methods rely on human supervision or parameter retraining, both of which are costly in terms of data collection and computational resources. To handle these challenges, a direct solution is to generate ``high-confidence'' data from unsupervised downstream tasks and use them for in-context prompting or prompt optimization to refine the pseudo-supervision. However, relying solely on such data may lead to overfitting. In this paper, we leverage the in-context learning (ICL) abilities of LLMs and propose a novel approach, pseudo-supervised demonstrations aligned prompt optimization (PAPO) algorithm, which jointly refines both the prompt and the overall pseudo-supervision. The proposed learning objective ensures that the optimized prompt guides the LLM to generate consistent responses for a given input when pseudo-supervised data from the downstream task are used as demonstrations, enabling refinement over the entire pseudo-supervision. The prompt is optimized by translating gradient signals into textual critiques, which serve as feedback to iteratively refine the prompt and model responses. Theoretical analysis in a simplified classification setting shows that the refined pseudo-supervision exhibits a geometric clustering structure, helping to mitigate overfitting. Experiments on question answering, natural language inference benchmarks, and a real-world molecule optimization task, show the effectiveness of the proposed algorithm.
Mobile-Bench-v2: A More Realistic and Comprehensive Benchmark for VLM-based Mobile Agents
VLM-based mobile agents are increasingly popular due to their capabilities to interact with smartphone GUIs and XML-structured texts and to complete daily tasks. However, existing online benchmarks struggle with obtaining stable reward signals due to dynamic environmental changes. Offline benchmarks evaluate the agents through single-path trajectories, which stands in contrast to the inherently multi-solution characteristics of GUI tasks. Additionally, both types of benchmarks fail to assess whether mobile agents can handle noise or engage in proactive interactions due to a lack of noisy apps or overly full instructions during the evaluation process. To address these limitations, we use a slot-based instruction generation method to construct a more realistic and comprehensive benchmark named Mobile-Bench-v2. Mobile-Bench-v2 includes a common task split, with offline multi-path evaluation to assess the agent's ability to obtain step rewards during task execution. It contains a noisy split based on pop-ups and ads apps, and a contaminated split named AITZ-Noise to formulate a real noisy environment. Furthermore, an ambiguous instruction split with preset Q\&A interactions is released to evaluate the agent's proactive interaction capabilities. We conduct evaluations on these splits using the single-agent framework AppAgent-v1, the multi-agent framework Mobile-Agent-v2, as well as other mobile agents such as UI-Tars and OS-Atlas. Code and data are available at https://huggingface.co/datasets/xwk123/MobileBench-v2.
Stuffed Mamba: Oversized States Lead to the Inability to Forget
Recent advancements in recurrent architectures, such as Mamba and RWKV, have showcased strong language capabilities. Unlike transformer-based models, these architectures encode all contextual information into a fixed-size state, leading to great inference efficiency. However, this approach can cause information interference, where different token data conflicts, resulting in performance degradation and incoherent outputs beyond a certain context length. To prevent this, most RNNs incorporate mechanisms designed to "forget" earlier tokens. In this paper, we reveal that Mamba-based models struggle to effectively forget earlier tokens even with built-in forgetting mechanisms. We demonstrate that this issue stems from training on contexts that are too short for the state size, enabling the model to perform well without needing to learn how to forget. Then, we show that the minimum training length required for the model to learn forgetting scales linearly with the state size, and the maximum context length for accurate retrieval of a 5-digit passkey scales exponentially with the state size, indicating that the model retains some information beyond the point where forgetting begins. These findings highlight a critical limitation in current RNN architectures and provide valuable insights for improving long-context modeling. Our work suggests that future RNN designs must account for the interplay between state size, training length, and forgetting mechanisms to achieve robust performance in long-context tasks.
comment: 20 pages, 18 figures
FamilyTool: A Multi-hop Personalized Tool Use Benchmark
The integration of tool learning with Large Language Models (LLMs) has expanded their capabilities in handling complex tasks by leveraging external tools. However, existing benchmarks for tool learning inadequately address critical real-world personalized scenarios, particularly those requiring multi-hop reasoning and inductive knowledge adaptation in dynamic environments. To bridge this gap, we introduce FamilyTool, a novel benchmark grounded in a family-based knowledge graph (KG) that simulates personalized, multi-hop tool use scenarios. FamilyTool, including base and extended datasets, challenges LLMs with queries spanning from 1 to 4 relational hops (e.g., inferring familial connections and preferences) and 2 to 6 hops respectively, and incorporates an inductive KG setting where models must adapt to unseen user preferences and relationships without re-training, a common limitation in prior approaches that compromises generalization. We further propose KGETool: a simple KG-augmented evaluation pipeline to systematically assess LLMs' tool use ability in these settings. Experiments reveal significant performance gaps in state-of-the-art LLMs, with accuracy dropping sharply as hop complexity increases and inductive scenarios exposing severe generalization deficits. These findings underscore the limitations of current LLMs in handling personalized, evolving real-world contexts and highlight the urgent need for advancements in tool-learning frameworks. FamilyTool serves as a critical resource for evaluating and advancing LLM agents' reasoning, adaptability, and scalability in complex, dynamic environments. Code and dataset are available at \href{https://github.com/yxzwang/FamilyTool}{https://github.com/yxzwang/FamilyTool}.
Warm Up Before You Train: Unlocking General Reasoning in Resource-Constrained Settings
Designing effective reasoning-capable LLMs typically requires training using Reinforcement Learning with Verifiable Rewards (RLVR) or distillation with carefully curated Long Chain of Thoughts (CoT), both of which depend heavily on extensive training data. This creates a major challenge when the amount of quality training data is scarce. We propose a sample-efficient, two-stage training strategy to develop reasoning LLMs under limited supervision. In the first stage, we "warm up" the model by distilling Long CoTs from a toy domain, namely, Knights \& Knaves (K\&K) logic puzzles to acquire general reasoning skills. In the second stage, we apply RLVR to the warmed-up model using a limited set of target-domain examples. Our experiments demonstrate that this two-phase approach offers several benefits: $(i)$ the warmup phase alone facilitates generalized reasoning, leading to performance improvements across a range of tasks, including MATH, HumanEval$^{+}$, and MMLU-Pro; $(ii)$ When both the base model and the warmed-up model are RLVR trained on the same small dataset ($\leq100$ examples), the warmed-up model consistently outperforms the base model; $(iii)$ Warming up before RLVR training allows a model to maintain cross-domain generalizability even after training on a specific domain; $(iv)$ Introducing warmup in the pipeline improves not only accuracy but also overall sample efficiency during RLVR training. The results in this paper highlight the promise of warmup for building robust reasoning LLMs in data-scarce environments.
Your Language Model Can Secretly Write Like Humans: Contrastive Paraphrase Attacks on LLM-Generated Text Detectors
The misuse of large language models (LLMs), such as academic plagiarism, has driven the development of detectors to identify LLM-generated texts. To bypass these detectors, paraphrase attacks have emerged to purposely rewrite these texts to evade detection. Despite the success, existing methods require substantial data and computational budgets to train a specialized paraphraser, and their attack efficacy greatly reduces when faced with advanced detection algorithms. To address this, we propose \textbf{Co}ntrastive \textbf{P}araphrase \textbf{A}ttack (CoPA), a training-free method that effectively deceives text detectors using off-the-shelf LLMs. The first step is to carefully craft instructions that encourage LLMs to produce more human-like texts. Nonetheless, we observe that the inherent statistical biases of LLMs can still result in some generated texts carrying certain machine-like attributes that can be captured by detectors. To overcome this, CoPA constructs an auxiliary machine-like word distribution as a contrast to the human-like distribution generated by the LLM. By subtracting the machine-like patterns from the human-like distribution during the decoding process, CoPA is able to produce sentences that are less discernible by text detectors. Our theoretical analysis suggests the superiority of the proposed attack. Extensive experiments validate the effectiveness of CoPA in fooling text detectors across various scenarios.
Detecting LLM-Generated Korean Text through Linguistic Feature Analysis ACL 2025
The rapid advancement of large language models (LLMs) increases the difficulty of distinguishing between human-written and LLM-generated text. Detecting LLM-generated text is crucial for upholding academic integrity, preventing plagiarism, protecting copyrights, and ensuring ethical research practices. Most prior studies on detecting LLM-generated text focus primarily on English text. However, languages with distinct morphological and syntactic characteristics require specialized detection approaches. Their unique structures and usage patterns can hinder the direct application of methods primarily designed for English. Among such languages, we focus on Korean, which has relatively flexible spacing rules, a rich morphological system, and less frequent comma usage compared to English. We introduce KatFish, the first benchmark dataset for detecting LLM-generated Korean text. The dataset consists of text written by humans and generated by four LLMs across three genres. By examining spacing patterns, part-of-speech diversity, and comma usage, we illuminate the linguistic differences between human-written and LLM-generated Korean text. Building on these observations, we propose KatFishNet, a detection method specifically designed for the Korean language. KatFishNet achieves an average of 19.78% higher AUROC compared to the best-performing existing detection method. Our code and data are available at https://github.com/Shinwoo-Park/detecting_llm_generated_korean_text_through_linguistic_analysis.
comment: Accepted to ACL 2025 main conference
UniICL: An Efficient Unified Framework Unifying Compression, Selection, and Generation ACL2025
In-context learning (ICL) enhances the reasoning abilities of Large Language Models (LLMs) by prepending a few demonstrations. It motivates researchers to introduce more examples to provide additional contextual information for the generation. However, existing methods show a significant limitation due to the problem of excessive growth in context length, which causes a large hardware burden. In addition, shallow-relevant examples selected by off-the-shelf tools hinder LLMs from capturing useful contextual information for generation. In this paper, we propose \textbf{UniICL}, a novel \textbf{Uni}fied \textbf{ICL} framework that unifies demonstration compression, demonstration selection, and final response generation. Furthermore, to boost inference efficiency, we design a tailored compression strategy that allows UniICL to cache compression results into \textbf{Demonstration Bank} (\textbf{DB}), which avoids repeated compression of the same demonstration. Extensive out-of-domain evaluations prove the advantages of UniICL in both effectiveness and efficiency.
comment: ACL2025
DynamicKV: Task-Aware Adaptive KV Cache Compression for Long Context LLMs
Efficient KV cache management in LLMs is crucial for long-context tasks like RAG and summarization. Existing KV cache compression methods enforce a fixed pattern, neglecting task-specific characteristics and reducing the retention of essential information. However, we observe distinct activation patterns across layers in various tasks, highlighting the need for adaptive strategies tailored to each task's unique demands. Based on this insight, we propose DynamicKV, a method that dynamically optimizes token retention by adjusting the number of tokens retained at each layer to adapt to the specific task. DynamicKV establishes global and per-layer maximum KV cache budgets, temporarily retaining the maximum budget for the current layer, and periodically updating the KV cache sizes of all preceding layers during inference. Our method retains only 1.7% of the KV cache size while achieving ~85% of the Full KV cache performance on LongBench. Notably, even under extreme compression (0.9%), DynamicKV surpasses state-of-the-art (SOTA) methods by 11% in the Needle-in-a-Haystack test using Mistral-7B-Instruct-v0.2. The code will be released.
Separate the Wheat from the Chaff: A Post-Hoc Approach to Safety Re-Alignment for Fine-Tuned Language Models ACL2025
Although large language models (LLMs) achieve effective safety alignment at the time of release, they still face various safety challenges. A key issue is that fine-tuning often compromises the safety alignment of LLMs. To address this issue, we propose a method named IRR (Identify, Remove, and Recalibrate for Safety Realignment) that performs safety realignment for LLMs. The core of IRR is to identify and remove unsafe delta parameters from the fine-tuned models, while recalibrating the retained ones. We evaluate the effectiveness of IRR across various datasets, including both full fine-tuning and LoRA methods. Our results demonstrate that IRR significantly enhances the safety performance of fine-tuned models on safety benchmarks, such as harmful queries and jailbreak attacks, while maintaining their performance on downstream tasks. The source code is available at: https://anonymous.4open.science/r/IRR-BD4F.
comment: 16 pages, 14 figures. Camera-ready for ACL2025 findings
A Fully Generative Motivational Interviewing Counsellor Chatbot for Moving Smokers Towards the Decision to Quit ACL
The conversational capabilities of Large Language Models (LLMs) suggest that they may be able to perform as automated talk therapists. It is crucial to know if these systems would be effective and adhere to known standards. We present a counsellor chatbot that focuses on motivating tobacco smokers to quit smoking. It uses a state-of-the-art LLM and a widely applied therapeutic approach called Motivational Interviewing (MI), and was evolved in collaboration with clinician-scientists with expertise in MI. We also describe and validate an automated assessment of both the chatbot's adherence to MI and client responses. The chatbot was tested on 106 participants, and their confidence that they could succeed in quitting smoking was measured before the conversation and one week later. Participants' confidence increased by an average of 1.7 on a 0-10 scale. The automated assessment of the chatbot showed adherence to MI standards in 98% of utterances, higher than human counsellors. The chatbot scored well on a participant-reported metric of perceived empathy but lower than typical human counsellors. Furthermore, participants' language indicated a good level of motivation to change, a key goal in MI. These results suggest that the automation of talk therapy with a modern LLM has promise.
comment: To be published in the Findings of the 63rd Annual Meeting of the Association for Computational Linguistics (ACL), Vienna, Austria, 2025
GTR: Graph-Table-RAG for Cross-Table Question Answering
Beyond pure text, a substantial amount of knowledge is stored in tables. In real-world scenarios, user questions often require retrieving answers that are distributed across multiple tables. GraphRAG has recently attracted much attention for enhancing LLMs' reasoning capabilities by organizing external knowledge to address ad-hoc and complex questions, exemplifying a promising direction for cross-table question answering. In this paper, to address the current gap in available data, we first introduce a multi-table benchmark, MutliTableQA, comprising 60k tables and 25k user queries collected from real-world sources. Then, we propose the first Graph-Table-RAG framework, namely GTR, which reorganizes table corpora into a heterogeneous graph, employs a hierarchical coarse-to-fine retrieval process to extract the most relevant tables, and integrates graph-aware prompting for downstream LLMs' tabular reasoning. Extensive experiments show that GTR exhibits superior cross-table question-answering performance while maintaining high deployment efficiency, demonstrating its real-world practical applicability.
comment: 20 pages, 7 figures
Conditioning LLMs to Generate Code-Switched Text
Code-switching (CS) is still a critical challenge in Natural Language Processing (NLP). Current Large Language Models (LLMs) struggle to interpret and generate code-switched text, primarily due to the scarcity of large-scale CS datasets for training. This paper presents a novel methodology to generate CS data using LLMs, and test it on the English-Spanish language pair. We propose back-translating natural CS sentences into monolingual English, and using the resulting parallel corpus to fine-tune LLMs to turn monolingual sentences into CS. Unlike previous approaches to CS generation, our methodology uses natural CS data as a starting point, allowing models to learn its natural distribution beyond grammatical patterns. We thoroughly analyse the models' performance through a study on human preferences, a qualitative error analysis and an evaluation with popular automatic metrics. Results show that our methodology generates fluent code-switched text, expanding research opportunities in CS communication, and that traditional metrics do not correlate with human judgement when assessing the quality of the generated CS data. We release our code and generated dataset under a CC-BY-NC-SA license.
comment: [v2]Added new experiments and analyses
Unveil Multi-Picture Descriptions for Multilingual Mild Cognitive Impairment Detection via Contrastive Learning
Detecting Mild Cognitive Impairment from picture descriptions is critical yet challenging, especially in multilingual and multiple picture settings. Prior work has primarily focused on English speakers describing a single picture (e.g., the 'Cookie Theft'). The TAUKDIAL-2024 challenge expands this scope by introducing multilingual speakers and multiple pictures, which presents new challenges in analyzing picture-dependent content. To address these challenges, we propose a framework with three components: (1) enhancing discriminative representation learning via supervised contrastive learning, (2) involving image modality rather than relying solely on speech and text modalities, and (3) applying a Product of Experts (PoE) strategy to mitigate spurious correlations and overfitting. Our framework improves MCI detection performance, achieving a +7.1% increase in Unweighted Average Recall (UAR) (from 68.1% to 75.2%) and a +2.9% increase in F1 score (from 80.6% to 83.5%) compared to the text unimodal baseline. Notably, the contrastive learning component yields greater gains for the text modality compared to speech. These results highlight our framework's effectiveness in multilingual and multi-picture MCI detection.
comment: Submitted to the IEEE GlobeCom 2025
A Tale of Two Structures: Do LLMs Capture the Fractal Complexity of Language?
Language exhibits a fractal structure in its information-theoretic complexity (i.e. bits per token), with self-similarity across scales and long-range dependence (LRD). In this work, we investigate whether large language models (LLMs) can replicate such fractal characteristics and identify conditions-such as temperature setting and prompting method-under which they may fail. Moreover, we find that the fractal parameters observed in natural language are contained within a narrow range, whereas those of LLMs' output vary widely, suggesting that fractal parameters might prove helpful in detecting a non-trivial portion of LLM-generated texts. Notably, these findings, and many others reported in this work, are robust to the choice of the architecture; e.g. Gemini 1.0 Pro, Mistral-7B and Gemma-2B. We also release a dataset comprising of over 240,000 articles generated by various LLMs (both pretrained and instruction-tuned) with different decoding temperatures and prompting methods, along with their corresponding human-generated texts. We hope that this work highlights the complex interplay between fractal properties, prompting, and statistical mimicry in LLMs, offering insights for generating, evaluating and detecting synthetic texts.
Lens: Rethinking Multilingual Enhancement for Large Language Models
As global demand for multilingual large language models (LLMs) grows, most LLMs still remain overly focused on English, leading to the limited access to advanced AI for non-English speakers. Current methods to enhance multilingual capabilities largely rely on data-driven post-training techniques, such as multilingual instruction tuning or continual pre-training. However, these approaches exhibit significant limitations, including high resource cost, exacerbation of off-target issue and catastrophic forgetting of central language abilities. To this end, we propose Lens, a novel approach that enhances multilingual capabilities by leveraging LLMs' internal language representation spaces. Lens operates on two subspaces: the language-agnostic subspace, where it aligns target languages with the central language to inherit strong semantic representations, and the language-specific subspace, where it separates target and central languages to preserve linguistic specificity. Experiments on three English-centric LLMs show that Lens significantly improves multilingual performance while maintaining the model's English proficiency, achieving better results with less computational cost compared to existing post-training approaches.
comment: 23 pages, 7 figures, 7 tables
Exploring the Generalizability of Factual Hallucination Mitigation via Enhancing Precise Knowledge Utilization
Large Language Models (LLMs) often struggle to align their responses with objective facts, resulting in the issue of factual hallucinations, which can be difficult to detect and mislead users without relevant knowledge. Although post-training techniques have been employed to mitigate the issue, existing methods usually suffer from poor generalization and trade-offs in different capabilities. In this paper, we propose to address it by directly augmenting LLM's fundamental ability to precisely leverage its knowledge and introduce PKUE, which fine-tunes the model on self-generated responses to precise and simple factual questions through preference optimization. Furthermore, we construct FactualBench, a comprehensive and precise factual QA dataset containing 181k Chinese data spanning 21 domains, to facilitate both evaluation and training. Extensive experiments demonstrate that PKUE significantly improves LLM overall performance, with consistent enhancement across factual tasks of various forms, general tasks beyond factuality, and tasks in a different language.
comment: 31 pages, 17 figures
Are the Hidden States Hiding Something? Testing the Limits of Factuality-Encoding Capabilities in LLMs
Factual hallucinations are a major challenge for Large Language Models (LLMs). They undermine reliability and user trust by generating inaccurate or fabricated content. Recent studies suggest that when generating false statements, the internal states of LLMs encode information about truthfulness. However, these studies often rely on synthetic datasets that lack realism, which limits generalization when evaluating the factual accuracy of text generated by the model itself. In this paper, we challenge the findings of previous work by investigating truthfulness encoding capabilities, leading to the generation of a more realistic and challenging dataset. Specifically, we extend previous work by introducing: (1) a strategy for sampling plausible true-false factoid sentences from tabular data and (2) a procedure for generating realistic, LLM-dependent true-false datasets from Question Answering collections. Our analysis of two open-source LLMs reveals that while the findings from previous studies are partially validated, generalization to LLM-generated datasets remains challenging. This study lays the groundwork for future research on factuality in LLMs and offers practical guidelines for more effective evaluation.
SepALM: Audio Language Models Are Error Correctors for Robust Speech Separation IJCAI 2025
While contemporary speech separation technologies adeptly process lengthy mixed audio waveforms, they are frequently challenged by the intricacies of real-world environments, including noisy and reverberant settings, which can result in artifacts or distortions in the separated speech. To overcome these limitations, we introduce SepALM, a pioneering approach that employs audio language models (ALMs) to rectify and re-synthesize speech within the text domain following preliminary separation. SepALM comprises four core components: a separator, a corrector, a synthesizer, and an aligner. By integrating an ALM-based end-to-end error correction mechanism, we mitigate the risk of error accumulation and circumvent the optimization hurdles typically encountered in conventional methods that amalgamate automatic speech recognition (ASR) with large language models (LLMs). Additionally, we have developed Chain-of-Thought (CoT) prompting and knowledge distillation techniques to facilitate the reasoning and training processes of the ALM. Our experiments substantiate that SepALM not only elevates the precision of speech separation but also markedly bolsters adaptability in novel acoustic environments.
comment: Appears in IJCAI 2025
Cheems: A Practical Guidance for Building and Evaluating Chinese Reward Models from Scratch ACL 2025
Reward models (RMs) are crucial for aligning large language models (LLMs) with human preferences. However, most RM research is centered on English and relies heavily on synthetic resources, which leads to limited and less reliable datasets and benchmarks for Chinese. To address this gap, we introduce CheemsBench, a fully human-annotated RM evaluation benchmark within Chinese contexts, and CheemsPreference, a large-scale and diverse preference dataset annotated through human-machine collaboration to support Chinese RM training. We systematically evaluate open-source discriminative and generative RMs on CheemsBench and observe significant limitations in their ability to capture human preferences in Chinese scenarios. Additionally, based on CheemsPreference, we construct an RM that achieves state-of-the-art performance on CheemsBench, demonstrating the necessity of human supervision in RM training. Our findings reveal that scaled AI-generated data struggles to fully capture human preferences, emphasizing the importance of high-quality human supervision in RM development.
comment: Accepted to ACL 2025
On-Policy Self-Alignment with Fine-grained Knowledge Feedback for Hallucination Mitigation ACL 2025
Hallucination occurs when large language models exhibit behavior that deviates from the boundaries of their knowledge during response generation. To address this critical issue, previous learning-based methods attempt to finetune models but are limited by off-policy sampling and coarse-grained feedback. In this paper, we present \textit{\b{R}einforcement \b{L}earning \b{f}or \b{H}allucination} (RLFH), an on-policy self-alignment approach that enables LLMs to actively explore their knowledge boundaries and self-correct generation behavior through fine-grained feedback signals. RLFH introduces a self-assessment framework where the policy serves as its own judge. Through this framework, responses are automatically decomposed into atomic facts and their truthfulness and informativeness are assessed against external knowledge sources. The resulting fine-grained feedback at the statement level are then converted into token-level dense reward signals. This enables online reinforcement learning to achieve precise and timely optimization without human intervention. Comprehensive evaluations on HotpotQA, SQuADv2, and Biography benchmarks validate RLFH's effectiveness in hallucination mitigation.
comment: Accepted as ACL 2025 Findings
Benchmarking Multimodal Retrieval Augmented Generation with Dynamic VQA Dataset and Self-adaptive Planning Agent
Multimodal Retrieval Augmented Generation (mRAG) plays an important role in mitigating the "hallucination" issue inherent in multimodal large language models (MLLMs). Although promising, existing heuristic mRAGs typically predefined fixed retrieval processes, which causes two issues: (1) Non-adaptive Retrieval Queries. (2) Overloaded Retrieval Queries. However, these flaws cannot be adequately reflected by current knowledge-seeking visual question answering (VQA) datasets, since the most required knowledge can be readily obtained with a standard two-step retrieval. To bridge the dataset gap, we first construct Dyn-VQA dataset, consisting of three types of "dynamic" questions, which require complex knowledge retrieval strategies variable in query, tool, and time: (1) Questions with rapidly changing answers. (2) Questions requiring multi-modal knowledge. (3) Multi-hop questions. Experiments on Dyn-VQA reveal that existing heuristic mRAGs struggle to provide sufficient and precisely relevant knowledge for dynamic questions due to their rigid retrieval processes. Hence, we further propose the first self-adaptive planning agent for multimodal retrieval, OmniSearch. The underlying idea is to emulate the human behavior in question solution which dynamically decomposes complex multimodal questions into sub-question chains with retrieval action. Extensive experiments prove the effectiveness of our OmniSearch, also provide direction for advancing mRAG. The code and dataset will be open-sourced at https://github.com/Alibaba-NLP/OmniSearch.
Diverse, not Short: A Length-Controlled Self-Learning Framework for Improving Response Diversity of Language Models
Diverse language model responses are crucial for creative generation, open-ended tasks, and self-improvement training. We show that common diversity metrics, and even reward models used for preference optimization, systematically bias models toward shorter outputs, limiting expressiveness. To address this, we introduce Diverse, not Short (Diverse-NS), a length-controlled self-learning framework that improves response diversity while maintaining length parity. By generating and filtering preference data that balances diversity, quality, and length, Diverse-NS enables effective training using only 3,000 preference pairs. Applied to LLaMA-3.1-8B and the Olmo-2 family, Diverse-NS substantially enhances lexical and semantic diversity. We show consistent improvement in diversity with minor reduction or gains in response quality on four creative generation tasks: Divergent Associations, Persona Generation, Alternate Uses, and Creative Writing. Surprisingly, experiments with the Olmo-2 model family (7B, and 13B) show that smaller models like Olmo-2-7B can serve as effective "diversity teachers" for larger models. By explicitly addressing length bias, our method efficiently pushes models toward more diverse and expressive outputs.
Retrieval Models Aren't Tool-Savvy: Benchmarking Tool Retrieval for Large Language Models ACL 2025
Tool learning aims to augment large language models (LLMs) with diverse tools, enabling them to act as agents for solving practical tasks. Due to the limited context length of tool-using LLMs, adopting information retrieval (IR) models to select useful tools from large toolsets is a critical initial step. However, the performance of IR models in tool retrieval tasks remains underexplored and unclear. Most tool-use benchmarks simplify this step by manually pre-annotating a small set of relevant tools for each task, which is far from the real-world scenarios. In this paper, we propose ToolRet, a heterogeneous tool retrieval benchmark comprising 7.6k diverse retrieval tasks, and a corpus of 43k tools, collected from existing datasets. We benchmark six types of models on ToolRet. Surprisingly, even the models with strong performance in conventional IR benchmarks, exhibit poor performance on ToolRet. This low retrieval quality degrades the task pass rate of tool-use LLMs. As a further step, we contribute a large-scale training dataset with over 200k instances, which substantially optimizes the tool retrieval ability of IR models.
comment: ACL 2025. Code: https://github.com/mangopy/tool-retrieval-benchmark
Crabs: Consuming Resource via Auto-generation for LLM-DoS Attack under Black-box Settings
Large Language Models (LLMs) have demonstrated remarkable performance across diverse tasks yet still are vulnerable to external threats, particularly LLM Denial-of-Service (LLM-DoS) attacks. Specifically, LLM-DoS attacks aim to exhaust computational resources and block services. However, existing studies predominantly focus on white-box attacks, leaving black-box scenarios underexplored. In this paper, we introduce Auto-Generation for LLM-DoS (AutoDoS) attack, an automated algorithm designed for black-box LLMs. AutoDoS constructs the DoS Attack Tree and expands the node coverage to achieve effectiveness under black-box conditions. By transferability-driven iterative optimization, AutoDoS could work across different models in one prompt. Furthermore, we reveal that embedding the Length Trojan allows AutoDoS to bypass existing defenses more effectively. Experimental results show that AutoDoS significantly amplifies service response latency by over 250$\times\uparrow$, leading to severe resource consumption in terms of GPU utilization and memory usage. Our work provides a new perspective on LLM-DoS attacks and security defenses. Our code is available at https://github.com/shuita2333/AutoDoS.
comment: 22 pages, 8 figures, 11 tables
A Checks-and-Balances Framework for Context-Aware Ethical AI Alignment
This paper introduces a checks-and-balances framework for ethical alignment of Large Language Models (LLMs), inspired by three-branch governmental systems. It implements three independent yet interacting components: LLMs as the executive branch for knowledge generation, DIKE as the legislative branch establishing ethical guardrails, and ERIS as the judicial branch for contextual interpretation. Beyond structural separation, we address a fundamental challenge: regulating emotion to shape behaviors. Drawing from psychological theories where managing emotional responses prevents harmful behaviors, we develop a self-supervised learning pipeline that maps emotions to linguistic behaviors, enabling precise behavioral modulation through emotional conditioning. By integrating this approach with adversarial testing, our framework demonstrates how DIKE and ERIS direct linguistic behaviors toward ethical outcomes while preserving independence throughout knowledge generation, ethical oversight, and contextual interpretation.
comment: 20 pages, 7 tables, 6 figures. arXiv admin note: substantial text overlap with arXiv:2405.07076
Explaining the role of Intrinsic Dimensionality in Adversarial Training
Adversarial Training (AT) impacts different architectures in distinct ways: vision models gain robustness but face reduced generalization, encoder-based models exhibit limited robustness improvements with minimal generalization loss, and recent work in latent-space adversarial training (LAT) demonstrates that decoder-based models achieve improved robustness by applying AT across multiple layers. We provide the first explanation for these trends by leveraging the manifold conjecture: off-manifold adversarial examples (AEs) enhance robustness, while on-manifold AEs improve generalization. We show that vision and decoder-based models exhibit low intrinsic dimensionality in earlier layers (favoring off-manifold AEs), whereas encoder-based models do so in later layers (favoring on-manifold AEs). Exploiting this property, we introduce SMAAT, which improves the scalability of AT for encoder-based models by perturbing the layer with the lowest intrinsic dimensionality. This reduces the projected gradient descent (PGD) chain length required for AE generation, cutting GPU time by 25-33% while significantly boosting robustness. We validate SMAAT across multiple tasks, including text generation, sentiment classification, safety filtering, and retrieval augmented generation setups, demonstrating superior robustness with comparable generalization to standard training.
Exploring the Impact of Corpus Diversity on Financial Pretrained Language Models EMNLP 2023
Over the past few years, various domain-specific pretrained language models (PLMs) have been proposed and have outperformed general-domain PLMs in specialized areas such as biomedical, scientific, and clinical domains. In addition, financial PLMs have been studied because of the high economic impact of financial data analysis. However, we found that financial PLMs were not pretrained on sufficiently diverse financial data. This lack of diverse training data leads to a subpar generalization performance, resulting in general-purpose PLMs, including BERT, often outperforming financial PLMs on many downstream tasks. To address this issue, we collected a broad range of financial corpus and trained the Financial Language Model (FiLM) on these diverse datasets. Our experimental results confirm that FiLM outperforms not only existing financial PLMs but also general domain PLMs. Furthermore, we provide empirical evidence that this improvement can be achieved even for unseen corpus groups.
comment: Accepted to EMNLP 2023 (Findings)
Human-Computer Interaction
FairTalk: Facilitating Balanced Participation in Video Conferencing by Implicit Visualization of Predicted Turn-Grabbing Intention
Creating fair opportunities for all participants to contribute is a notable challenge in video conferencing. This paper introduces FairTalk, a system that facilitates the subconscious redistribution of speaking opportunities. FairTalk predicts participants' turn-grabbing intentions using a machine learning model trained on web-collected videoconference data with positive-unlabeled learning, where turn-taking detection provides automatic positive labels. To subtly balance speaking turns, the system visualizes predicted intentions by mimicking natural human behaviors associated with the desire to speak. A user study suggests that FairTalk may help improve speaking balance, though subjective feedback indicates no significant perceived impact. We also discuss design implications derived from participant interviews.
Explanation User Interfaces: A Systematic Literature Review
Artificial Intelligence (AI) is one of the major technological advancements of this century, bearing incredible potential for users through AI-powered applications and tools in numerous domains. Being often black-box (i.e., its decision-making process is unintelligible), developers typically resort to eXplainable Artificial Intelligence (XAI) techniques to interpret the behaviour of AI models to produce systems that are transparent, fair, reliable, and trustworthy. However, presenting explanations to the user is not trivial and is often left as a secondary aspect of the system's design process, leading to AI systems that are not useful to end-users. This paper presents a Systematic Literature Review on Explanation User Interfaces (XUIs) to gain a deeper understanding of the solutions and design guidelines employed in the academic literature to effectively present explanations to users. To improve the contribution and real-world impact of this survey, we also present a framework for Human-cEnteRed developMent of Explainable user interfaceS (HERMES) to guide practitioners and academics in the design and evaluation of XUIs.
comment: First version
Understanding and Supporting Co-viewing Comedy in VR with Embodied Expressive Avatars
Co-viewing videos with family and friends remotely has become prevalent with the support of communication channels such as text messaging or real-time voice chat. However, current co-viewing platforms often lack visible embodied cues, such as body movements and facial expressions. This absence can reduce emotional engagement and the sense of co-presence when people are watching together remotely. Although virtual reality (VR) is an emerging technology that allows individuals to participate in various social activities while embodied as avatars, we still do not fully understand how this embodiment in VR affects co-viewing experiences, particularly in terms of engagement, emotional contagion, and expressive norms. In a controlled experiment involving eight triads of three participants each (N=24), we compared the participants' perceptions and reactions while watching comedy in VR using embodied expressive avatars that displayed visible laughter cues. This was contrasted with a control condition where no such embodied expressions were presented. With a mixed-method analysis, we found that embodied laughter cues shifted participants' engagement from individual immersion to socially coordinated participation. Participants reported heightened self-awareness of emotional expression, greater emotional contagion, and the development of expressive norms surrounding co-viewers' laughter. The result highlighted the tension between individual engagement and interpersonal emotional accommodation when co-viewing with embodied expressive avatars.
On the Same Page: Dimensions of Perceived Shared Understanding in Human-AI Interaction
Shared understanding plays a key role in the effective communication in and performance of human-human interactions. With the increasingly common integration of AI into human contexts, the future of personal and workplace interactions will likely see human-AI interaction (HAII) in which the perception of shared understanding is important. Existing literature has addressed the processes and effects of PSU in human-human interactions, but the construal remains underexplored in HAII. To better understand PSU in HAII, we conducted an online survey to collect user reflections on interactions with a large language model when it sunderstanding of a situation was thought to be similar to or different from the participant's. Through inductive thematic analysis, we identified eight dimensions comprising PSU in human-AI interactions: Fluency, aligned operation, fluidity, outcome satisfaction, contextual awareness, lack of humanlike abilities, computational limits, and suspicion.
The Many Challenges of Human-Like Agents in Virtual Game Environments AAMAS-2025
Human-like agents are an increasingly important topic in games and beyond. Believable non-player characters enhance the gaming experience by improving immersion and providing entertainment. They also offer players the opportunity to engage with AI entities that can function as opponents, teachers, or cooperating partners. Additionally, in games where bots are prohibited -- and even more so in non-game environments -- there is a need for methods capable of identifying whether digital interactions occur with bots or humans. This leads to two fundamental research questions: (1) how to model and implement human-like AI, and (2) how to measure its degree of human likeness. This article offers two contributions. The first one is a survey of the most significant challenges in implementing human-like AI in games (or any virtual environment featuring simulated agents, although this article specifically focuses on games). Thirteen such challenges, both conceptual and technical, are discussed in detail. The second is an empirical study performed in a tactical video game that addresses the research question: "Is it possible to distinguish human players from bots (AI agents) based on empirical data?" A machine-learning approach using a custom deep recurrent convolutional neural network is presented. We hypothesize that the more challenging it is to create human-like AI for a given game, the easier it becomes to develop a method for distinguishing humans from AI-driven players.
comment: In proceedings of the 24th International Conference on Autonomous Agents and Multiagent Systems (AAMAS-2025), pages 1996--2005, May 19-23, Detroit, Michigan, USA
ScienceBoard: Evaluating Multimodal Autonomous Agents in Realistic Scientific Workflows
Large Language Models (LLMs) have extended their impact beyond Natural Language Processing, substantially fostering the development of interdisciplinary research. Recently, various LLM-based agents have been developed to assist scientific discovery progress across multiple aspects and domains. Among these, computer-using agents, capable of interacting with operating systems as humans do, are paving the way to automated scientific problem-solving and addressing routines in researchers' workflows. Recognizing the transformative potential of these agents, we introduce ScienceBoard, which encompasses two complementary contributions: (i) a realistic, multi-domain environment featuring dynamic and visually rich scientific workflows with integrated professional software, where agents can autonomously interact via different interfaces to accelerate complex research tasks and experiments; and (ii) a challenging benchmark of 169 high-quality, rigorously validated real-world tasks curated by humans, spanning scientific-discovery workflows in domains such as biochemistry, astronomy, and geoinformatics. Extensive evaluations of agents with state-of-the-art backbones (e.g., GPT-4o, Claude 3.7, UI-TARS) show that, despite some promising results, they still fall short of reliably assisting scientists in complex workflows, achieving only a 15% overall success rate. In-depth analysis further provides valuable insights for addressing current agent limitations and more effective design principles, paving the way to build more capable agents for scientific discovery. Our code, environment, and benchmark are at https://qiushisun.github.io/ScienceBoard-Home/.
comment: work in progress
SACM: SEEG-Audio Contrastive Matching for Chinese Speech Decoding
Speech disorders such as dysarthria and anarthria can severely impair the patient's ability to communicate verbally. Speech decoding brain-computer interfaces (BCIs) offer a potential alternative by directly translating speech intentions into spoken words, serving as speech neuroprostheses. This paper reports an experimental protocol for Mandarin Chinese speech decoding BCIs, along with the corresponding decoding algorithms. Stereo-electroencephalography (SEEG) and synchronized audio data were collected from eight drug-resistant epilepsy patients as they conducted a word-level reading task. The proposed SEEG and Audio Contrastive Matching (SACM), a contrastive learning-based framework, achieved decoding accuracies significantly exceeding chance levels in both speech detection and speech decoding tasks. Electrode-wise analysis revealed that a single sensorimotor cortex electrode achieved performance comparable to that of the full electrode array. These findings provide valuable insights for developing more accurate online speech decoding BCIs.
Fairness Practices in Industry: A Case Study in Machine Learning Teams Building Recommender Systems
The rapid proliferation of recommender systems necessitates robust fairness practices to address inherent biases. Assessing fairness, though, is challenging due to constantly evolving metrics and best practices. This paper analyzes how industry practitioners perceive and incorporate these changing fairness standards in their workflows. Through semi-structured interviews with 11 practitioners from technical teams across a range of large technology companies, we investigate industry implementations of fairness in recommendation system products. We focus on current debiasing practices, applied metrics, collaborative strategies, and integrating academic research into practice. Findings show a preference for multi-dimensional debiasing over traditional demographic methods, and a reliance on intuitive rather than academic metrics. This study also highlights the difficulties in balancing fairness with both the practitioner's individual (bottom-up) roles and organizational (top-down) workplace constraints, including the interplay with legal and compliance experts. Finally, we offer actionable recommendations for the recommender system community and algorithmic fairness practitioners, underlining the need to refine fairness practices continually.
It's Not Just Labeling" -- A Research on LLM Generated Feedback Interpretability and Image Labeling Sketch Features
The quality of training data is critical to the performance of machine learning applications in domains like transportation, healthcare, and robotics. Accurate image labeling, however, often relies on time-consuming, expert-driven methods with limited feedback. This research introduces a sketch-based annotation approach supported by large language models (LLMs) to reduce technical barriers and enhance accessibility. Using a synthetic dataset, we examine how sketch recognition features relate to LLM feedback metrics, aiming to improve the reliability and interpretability of LLM-assisted labeling. We also explore how prompting strategies and sketch variations influence feedback quality. Our main contribution is a sketch-based virtual assistant that simplifies annotation for non-experts and advances LLM-driven labeling tools in terms of scalability, accessibility, and explainability.
HOT-FIT-BR: A Context-Aware Evaluation Framework for Digital Health Systems in Resource-Limited Settings
Implementation of digital health systems in low-middle-income countries (LMICs) often fails due to a lack of evaluations that take into account infrastructure limitations, local policies, and community readiness. We introduce HOT-FIT-BR, a contextual evaluation framework that expands the HOT-FIT model with three new dimensions: (1) Infrastructure Index to measure electricity/internet availability, (2) Policy Compliance Layer to ensure regulatory compliance (e.g., Permenkes 24/2022 in Indonesia), and (3) Community Engagement Fit. Simulations at Indonesian Health Centers show that HOT-FIT-BR is 58% more sensitive to detecting problems than HOT-FIT, especially in rural areas with an Infra Index <3. The framework has also proven adaptive to the context of other LMICs such as India and Kenya through local parameter adjustments.
comment: This work proposes HOT-FIT-BR, an extended evaluation framework for digital health systems in LMICs. It includes infrastructure readiness, policy compliance, and community engagement metrics-validated in Indonesian primary healthcare settings
A Dashboard Approach to Monitoring Mpox-Related Discourse and Misinformation on Social Media
Mpox (formerly monkeypox) is a zoonotic disease caused by an orthopoxvirus closely related to variola and remains a significant global public health concern. During outbreaks, social media platforms like X (formerly Twitter) can both inform and misinform the public, complicating efforts to convey accurate health information. To support local response efforts, we developed a researcher-focused dashboard for use by public health stakeholders and the public that enables searching and visualizing mpox-related tweets through an interactive interface. Following the CDC's designation of mpox as an emerging virus in August 2024, our dashboard recorded a marked increase in tweet volume compared to 2023, illustrating the rapid spread of health discourse across digital platforms. These findings underscore the continued need for real-time social media monitoring tools to support public health communication and track evolving sentiment and misinformation trends at the local level.
comment: 7 pages, 3 figures
Reconceptualizing Smart Microscopy: From Data Collection to Knowledge Creation by Multi-Agent Integration
Smart microscopy represents a paradigm shift in biological imaging, moving from passive observation tools to active collaborators in scientific inquiry. Enabled by advances in automation, computational power, and artificial intelligence, these systems are now capable of adaptive decision-making and real-time experimental control. Here, we introduce a theoretical framework that reconceptualizes smart microscopy as a partner in scientific investigation. Central to our framework is the concept of the 'epistemic-empirical divide' in cellular investigation-the gap between what is observable (empirical domain) and what must be understood (epistemic domain). We propose six core design principles: epistemic-empirical awareness, hierarchical context integration, an evolution from detection to perception, adaptive measurement frameworks, narrative synthesis capabilities, and cross-contextual reasoning. Together, these principles guide a multi-agent architecture designed to align empirical observation with the goals of scientific understanding. Our framework provides a roadmap for building microscopy systems that go beyond automation to actively support hypothesis generation, insight discovery, and theory development, redefining the role of scientific instruments in the process of knowledge creation.
comment: 34 pages, 5 figures
The Impact of a Chatbot's Ephemerality-Framing on Self-Disclosure Perceptions
Self-disclosure, the sharing of one's thoughts and feelings, is affected by the perceived relationship between individuals. While chatbots are increasingly used for self-disclosure, the impact of a chatbot's framing on users' self-disclosure remains under-explored. We investigated how a chatbot's description of its relationship with users, particularly in terms of ephemerality, affects self-disclosure. Specifically, we compared a Familiar chatbot, presenting itself as a companion remembering past interactions, with a Stranger chatbot, presenting itself as a new, unacquainted entity in each conversation. In a mixed factorial design, participants engaged with either the Familiar or Stranger chatbot in two sessions across two days, with one conversation focusing on Emotional- and another Factual-disclosure. When Emotional-disclosure was sought in the first chatting session, Stranger-condition participants felt more comfortable self-disclosing. However, when Factual-disclosure was sought first, these differences were replaced by more enjoyment among Familiar-condition participants. Qualitative findings showed Stranger afforded anonymity and reduced judgement, whereas Familiar sometimes felt intrusive unless rapport was built via low-risk Factual-disclosure.
comment: In ACM Conversational User Interfaces (CUI '25), July 8-10, 2025; 18 pages; 6 Figures; 6 Tables
Estimating LLM Consistency: A User Baseline vs Surrogate Metrics
Large language models (LLMs) are prone to hallucinations and sensitive to prompt perturbations, often resulting in inconsistent or unreliable generated text. Different methods have been proposed to mitigate such hallucinations and fragility -- one of them being measuring the consistency (the model's confidence in the response, or likelihood of generating a similar response when resampled) of LLM responses. In previous work, measuring consistency often relied on the probability of a response appearing within a pool of resampled responses, or internal states or logits of responses. However, it is not yet clear how well these approaches approximate how humans perceive the consistency of LLM responses. We performed a user study (n=2,976) and found current methods typically do not approximate users' perceptions of LLM consistency very well. We propose a logit-based ensemble method for estimating LLM consistency, and we show that this method matches the performance of the best-performing existing metric in estimating human ratings of LLM consistency. Our results suggest that methods of estimating LLM consistency without human evaluation are sufficiently imperfect that we suggest evaluation with human input be more broadly used.
Which Demographic Features Are Relevant for Individual Fairness Evaluation of U.S. Recidivism Risk Assessment Tools?
Despite its constitutional relevance, the technical ``individual fairness'' criterion has not been operationalized in U.S. state or federal statutes/regulations. We conduct a human subjects experiment to address this gap, evaluating which demographic features are relevant for individual fairness evaluation of recidivism risk assessment (RRA) tools. Our analyses conclude that the individual similarity function should consider age and sex, but it should ignore race.
Explanation-Driven Interventions for Artificial Intelligence Model Customization: Empowering End-Users to Tailor Black-Box AI in Rhinocytology
The integration of Artificial Intelligence (AI) in modern society is transforming how individuals perform tasks. In high-risk domains, ensuring human control over AI systems remains a key design challenge. This article presents a novel End-User Development (EUD) approach for black-box AI models, enabling users to edit explanations and influence future predictions through targeted interventions. By combining explainability, user control, and model adaptability, the proposed method advances Human-Centered AI (HCAI), promoting a symbiotic relationship between humans and adaptive, user-tailored AI systems.
comment: Second version (11 pages, 8 of content) [edited to remove unsupported packages]
Ocular Authentication: Fusion of Gaze and Periocular Modalities
This paper investigates the feasibility of fusing two eye-centric authentication modalities-eye movements and periocular images-within a calibration-free authentication system. While each modality has independently shown promise for user authentication, their combination within a unified gaze-estimation pipeline has not been thoroughly explored at scale. In this report, we propose a multimodal authentication system and evaluate it using a large-scale in-house dataset comprising 9202 subjects with an eye tracking (ET) signal quality equivalent to a consumer-facing virtual reality (VR) device. Our results show that the multimodal approach consistently outperforms both unimodal systems across all scenarios, surpassing the FIDO benchmark. The integration of a state-of-the-art machine learning architecture contributed significantly to the overall authentication performance at scale, driven by the model's ability to capture authentication representations and the complementary discriminative characteristics of the fused modalities.
comment: Supplementary material is available
Regulating Algorithmic Management: A Multi-Stakeholder Study of Challenges in Aligning Software and the Law for Workplace Scheduling
Algorithmic management (AM)'s impact on worker well-being has led to calls for regulation. However, little is known about the effectiveness and challenges in real-world AM regulation across the regulatory process -- rule operationalization, software use, and enforcement. Our multi-stakeholder study addresses this gap within workplace scheduling, one of the few AM domains with implemented regulations. We interviewed 38 stakeholders across the regulatory process: regulators, defense attorneys, worker advocates, managers, and workers. Our findings suggest that the efficacy of AM regulation is influenced by: (i) institutional constraints that challenge efforts to encode law into AM software, (ii) on-the-ground use of AM software that shapes its ability to facilitate compliance, (iii) mismatches between software and regulatory contexts that hinder enforcement, and (iv) unique concerns that software introduces when used to regulate AM. These findings underscore the importance of a sociotechnical approach to AM regulation, which considers organizational and collaborative contexts alongside the inherent attributes of software. We offer future research directions and implications for technology policy and design.
comment: To appear in FAccT'25
MoRE-Brain: Routed Mixture of Experts for Interpretable and Generalizable Cross-Subject fMRI Visual Decoding
Decoding visual experiences from fMRI offers a powerful avenue to understand human perception and develop advanced brain-computer interfaces. However, current progress often prioritizes maximizing reconstruction fidelity while overlooking interpretability, an essential aspect for deriving neuroscientific insight. To address this gap, we propose MoRE-Brain, a neuro-inspired framework designed for high-fidelity, adaptable, and interpretable visual reconstruction. MoRE-Brain uniquely employs a hierarchical Mixture-of-Experts architecture where distinct experts process fMRI signals from functionally related voxel groups, mimicking specialized brain networks. The experts are first trained to encode fMRI into the frozen CLIP space. A finetuned diffusion model then synthesizes images, guided by expert outputs through a novel dual-stage routing mechanism that dynamically weighs expert contributions across the diffusion process. MoRE-Brain offers three main advancements: First, it introduces a novel Mixture-of-Experts architecture grounded in brain network principles for neuro-decoding. Second, it achieves efficient cross-subject generalization by sharing core expert networks while adapting only subject-specific routers. Third, it provides enhanced mechanistic insight, as the explicit routing reveals precisely how different modeled brain regions shape the semantic and spatial attributes of the reconstructed image. Extensive experiments validate MoRE-Brain's high reconstruction fidelity, with bottleneck analyses further demonstrating its effective utilization of fMRI signals, distinguishing genuine neural decoding from over-reliance on generative priors. Consequently, MoRE-Brain marks a substantial advance towards more generalizable and interpretable fMRI-based visual decoding. Code will be publicly available soon: https://github.com/yuxiangwei0808/MoRE-Brain.
Novobo: Supporting Teachers' Peer Learning of Instructional Gestures by Teaching a Mentee AI-Agent Together
Instructional gestures are essential for teaching, as they enhance communication and support student comprehension. However, existing training methods for developing these embodied skills can be time-consuming, isolating, or overly prescriptive. Research suggests that developing these tacit, experiential skills requires teachers' peer learning, where they learn from each other and build shared knowledge. This paper introduces Novobo, an apprentice AI-agent stimulating teachers' peer learning of instructional gestures through verbal and bodily inputs. Positioning the AI as a mentee employs the learning-by-teaching paradigm, aiming to promote deliberate reflection and active learning. Novobo encourages teachers to evaluate its generated gestures and invite them to provide demonstrations. An evaluation with 30 teachers in 10 collaborative sessions showed Novobo prompted teachers to share tacit knowledge through conversation and movement. This process helped teachers externalize, exchange, and internalize their embodied knowledge, promoting collaborative learning and building a shared understanding of instructional gestures within the local teaching community. This work advances understanding of how teachable AI agents can enhance collaborative learning in teacher professional development, offering valuable design insights for leveraging AI to promote the sharing and construction of embodied and practical knowledge.
comment: Corrected the spelling of the second author's name (from "Kexin Huanga" to "Kexin Huang"). No changes to the content. The submitted manuscript is 52 pages in total, with 39 pages of main content (excluding references). It contains 6 figures and 4 tables. A video demonstration is included via a footnote link in the manuscript
Reassessing Collaborative Writing Theories and Frameworks in the Age of LLMs: What Still Applies and What We Must Leave Behind
In this paper, we conduct a critical review of existing theories and frameworks on human-human collaborative writing to assess their relevance to the current human-AI paradigm in professional contexts, and draw seven insights along with design implications for human-AI collaborative writing tools. We found that, as LLMs nudge the writing process more towards an empirical "trial and error" process analogous to prototyping, the non-linear cognitive process of writing will stay the same, but more rigor will be required for revision methodologies. This shift would shed further light on the importance of coherence support, but the large language model (LLM)'s unprecedented semantic capabilities can bring novel approaches to this ongoing challenge. We argue that teamwork-related factors such as group awareness, consensus building and authorship - which have been central in human-human collaborative writing studies - should not apply to the human-AI paradigm due to excessive anthropomorphism. With the LLM's text generation capabilities becoming essentially indistinguishable from human-written ones, we are entering an era where, for the first time in the history of computing, we are engaging in collaborative writing with AI at workplaces on a daily basis. We aim to bring theoretical grounding and practical design guidance to the interaction designs of human-AI collaborative writing, with the goal of enhancing future human-AI writing software.
Architectural Vulnerability and Reliability Challenges in AI Text Annotation: A Survey-Inspired Framework with Independent Probability Assessment
Large Language Models, despite their power, have a fundamental architectural vulnerability stemming from their causal transformer design -- order sensitivity. This architectural constraint may distorts classification outcomes when prompt elements like label options are reordered, revealing a theoretical gap between accuracy metrics and true model reliability. The paper conceptualizes this vulnerability through the lens of survey methodology, where respondent biases parallel LLM positional dependencies. Empirical evidence using the F1000 biomedical dataset across three scales of LLaMA3.1 models (8B, 70B, 405B) demonstrates that these architectural constraints produce inconsistent annotations under controlled perturbations. The paper advances a practical solution for social science - Independent Probability Assessment - which decouples label evaluation to circumvent positional bias inherent in sequential processing. This approach yields an information-theoretic reliability measure (R-score) that quantifies annotation robustness at the case level. The findings establish that architectural vulnerabilities in causal transformers require methodological innovations beyond accuracy metrics to ensure valid social science inference, as demonstrated through downstream regression analyses where order-sensitive annotations significantly alter substantive conclusions about scientific impact.
comment: 7 figures
An Empirical Study to Understand How Students Use ChatGPT for Writing Essays
As large language models (LLMs) advance and become widespread, students increasingly turn to systems like ChatGPT for assistance with writing tasks. Educators are concerned with students' usage of ChatGPT beyond cheating; using ChatGPT may reduce their critical engagement with writing, hindering students' learning processes. The negative or positive impact of using LLM-powered tools for writing will depend on how students use them; however, how students use ChatGPT remains largely unknown, resulting in a limited understanding of its impact on learning. To better understand how students use these tools, we conducted an online study $(n=70)$ where students were given an essay-writing task using a custom platform we developed to capture the queries they made to ChatGPT. To characterize their ChatGPT usage, we categorized each of the queries students made to ChatGPT. We then analyzed the relationship between ChatGPT usage and a variety of other metrics, including students' self-perception, attitudes towards AI, and the resulting essay itself. We found that factors such as gender, race, and perceived self-efficacy can help predict different AI usage patterns. Additionally, we found that different usage patterns were associated with varying levels of enjoyment and perceived ownership over the essay. The results of this study contribute to discussions about how writing education should incorporate generative AI-powered tools in the classroom.
comment: 19 pages, 10 figures, 2 tables, final preparation for a TOCHI submission
CogReact: A Reinforced Framework to Model Human Cognitive Reaction Modulated by Dynamic Intervention
Using deep neural networks as computational models to simulate cognitive process can provide key insights into human behavioral dynamics. Challenges arise when environments are highly dynamic, obscuring stimulus-behavior relationships. However, the majority of current research focuses on simulating human cognitive behaviors under ideal conditions, neglecting the influence of environmental disturbances. We propose CogReact, integrating drift-diffusion with deep reinforcement learning to simulate granular effects of dynamic environmental stimuli on human cognitive process. Quantitatively, it improves cognition modelling by considering temporal effect of environmental stimuli on cognitive process and captures both subject-specific and stimuli-specific behavioural differences. Qualitatively, it captures general trends in human cognitive process under stimuli, better than baselines. Our approach is examined in diverse environmental influences on various cognitive tasks. Overall, it demonstrates a powerful, data-driven methodology to simulate, align with, and understand the vagaries of human cognitive response in dynamic contexts.
comment: 30 pages, 11 figures
Multimedia
Towards Reliable Large Audio Language Model ACL 2025
Recent advancements in large audio language models (LALMs) have demonstrated impressive results and promising prospects in universal understanding and reasoning across speech, music, and general sound. However, these models still lack the ability to recognize their knowledge boundaries and refuse to answer questions they don't know proactively. While there have been successful attempts to enhance the reliability of LLMs, reliable LALMs remain largely unexplored. In this paper, we systematically investigate various approaches towards reliable LALMs, including training-free methods such as multi-modal chain-of-thought (MCoT), and training-based methods such as supervised fine-tuning (SFT). Besides, we identify the limitations of previous evaluation metrics and propose a new metric, the Reliability Gain Index (RGI), to assess the effectiveness of different reliable methods. Our findings suggest that both training-free and training-based methods enhance the reliability of LALMs to different extents. Moreover, we find that awareness of reliability is a "meta ability", which can be transferred across different audio modalities, although significant structural and content differences exist among sound, music, and speech.
comment: ACL 2025 Findings
RAISE: Realness Assessment for Image Synthesis and Evaluation
The rapid advancement of generative AI has enabled the creation of highly photorealistic visual content, offering practical substitutes for real images and videos in scenarios where acquiring real data is difficult or expensive. However, reliably substituting real visual content with AI-generated counterparts requires robust assessment of the perceived realness of AI-generated visual content, a challenging task due to its inherent subjective nature. To address this, we conducted a comprehensive human study evaluating the perceptual realness of both real and AI-generated images, resulting in a new dataset, containing images paired with subjective realness scores, introduced as RAISE in this paper. Further, we develop and train multiple models on RAISE to establish baselines for realness prediction. Our experimental results demonstrate that features derived from deep foundation vision models can effectively capture the subjective realness. RAISE thus provides a valuable resource for developing robust, objective models of perceptual realness assessment.
Can Multimodal Large Language Models Understand Spatial Relations?
Spatial relation reasoning is a crucial task for multimodal large language models (MLLMs) to understand the objective world. However, current benchmarks have issues like relying on bounding boxes, ignoring perspective substitutions, or allowing questions to be answered using only the model's prior knowledge without image understanding. To address these issues, we introduce SpatialMQA, a human-annotated spatial relation reasoning benchmark based on COCO2017, which enables MLLMs to focus more on understanding images in the objective world. To ensure data quality, we design a well-tailored annotation procedure, resulting in SpatialMQA consisting of 5,392 samples. Based on this benchmark, a series of closed- and open-source MLLMs are implemented and the results indicate that the current state-of-the-art MLLM achieves only 48.14% accuracy, far below the human-level accuracy of 98.40%. Extensive experimental analyses are also conducted, suggesting the future research directions. The benchmark and codes are available at https://github.com/ziyan-xiaoyu/SpatialMQA.git.
comment: 13 pages, 19 figures
How Do Images Align and Complement LiDAR? Towards a Harmonized Multi-modal 3D Panoptic Segmentation ICML
LiDAR-based 3D panoptic segmentation often struggles with the inherent sparsity of data from LiDAR sensors, which makes it challenging to accurately recognize distant or small objects. Recently, a few studies have sought to overcome this challenge by integrating LiDAR inputs with camera images, leveraging the rich and dense texture information provided by the latter. While these approaches have shown promising results, they still face challenges, such as misalignment during data augmentation and the reliance on post-processing steps. To address these issues, we propose Image-Assists-LiDAR (IAL), a novel multi-modal 3D panoptic segmentation framework. In IAL, we first introduce a modality-synchronized data augmentation strategy, PieAug, to ensure alignment between LiDAR and image inputs from the start. Next, we adopt a transformer decoder to directly predict panoptic segmentation results. To effectively fuse LiDAR and image features into tokens for the decoder, we design a Geometric-guided Token Fusion (GTF) module. Additionally, we leverage the complementary strengths of each modality as priors for query initialization through a Prior-based Query Generation (PQG) module, enhancing the decoder's ability to generate accurate instance masks. Our IAL framework achieves state-of-the-art performance compared to previous multi-modal 3D panoptic segmentation methods on two widely used benchmarks. Code and models are publicly available at .
comment: Accepted at the 2025 International Conference on Machine Learning (ICML)
FLASH: Latent-Aware Semi-Autoregressive Speculative Decoding for Multimodal Tasks
Large language and multimodal models (LLMs and LMMs) exhibit strong inference capabilities but are often limited by slow decoding speeds. This challenge is especially acute in LMMs, where visual inputs typically comprise more tokens with lower information density than text -- an issue exacerbated by recent trends toward finer-grained visual tokenizations to boost performance. Speculative decoding has been effective in accelerating LLM inference by using a smaller draft model to generate candidate tokens, which are then selectively verified by the target model, improving speed without sacrificing output quality. While this strategy has been extended to LMMs, existing methods largely overlook the unique properties of visual inputs and depend solely on text-based draft models. In this work, we propose \textbf{FLASH} (Fast Latent-Aware Semi-Autoregressive Heuristics), a speculative decoding framework designed specifically for LMMs, which leverages two key properties of multimodal data to design the draft model. First, to address redundancy in visual tokens, we propose a lightweight latent-aware token compression mechanism. Second, recognizing that visual objects often co-occur within a scene, we employ a semi-autoregressive decoding strategy to generate multiple tokens per forward pass. These innovations accelerate draft decoding while maintaining high acceptance rates, resulting in faster overall inference. Experiments show that FLASH significantly outperforms prior speculative decoding approaches in both unimodal and multimodal settings, achieving up to \textbf{2.68$\times$} speed-up on video captioning and \textbf{2.55$\times$} on visual instruction tuning tasks compared to the original LMM. Our code is available \href{https://github.com/ZihuaEvan/FlashSD/}{[here]}.
comment: This preprint is under review
TheoremExplainAgent: Towards Video-based Multimodal Explanations for LLM Theorem Understanding ACL 2025
Understanding domain-specific theorems often requires more than just text-based reasoning; effective communication through structured visual explanations is crucial for deeper comprehension. While large language models (LLMs) demonstrate strong performance in text-based theorem reasoning, their ability to generate coherent and pedagogically meaningful visual explanations remains an open challenge. In this work, we introduce TheoremExplainAgent, an agentic approach for generating long-form theorem explanation videos (over 5 minutes) using Manim animations. To systematically evaluate multimodal theorem explanations, we propose TheoremExplainBench, a benchmark covering 240 theorems across multiple STEM disciplines, along with 5 automated evaluation metrics. Our results reveal that agentic planning is essential for generating detailed long-form videos, and the o3-mini agent achieves a success rate of 93.8% and an overall score of 0.77. However, our quantitative and qualitative studies show that most of the videos produced exhibit minor issues with visual element layout. Furthermore, multimodal explanations expose deeper reasoning flaws that text-based explanations fail to reveal, highlighting the importance of multimodal explanations.
comment: accepted to ACL 2025 main, camera ready
Image and Video Processing
RAISE: Realness Assessment for Image Synthesis and Evaluation
The rapid advancement of generative AI has enabled the creation of highly photorealistic visual content, offering practical substitutes for real images and videos in scenarios where acquiring real data is difficult or expensive. However, reliably substituting real visual content with AI-generated counterparts requires robust assessment of the perceived realness of AI-generated visual content, a challenging task due to its inherent subjective nature. To address this, we conducted a comprehensive human study evaluating the perceptual realness of both real and AI-generated images, resulting in a new dataset, containing images paired with subjective realness scores, introduced as RAISE in this paper. Further, we develop and train multiple models on RAISE to establish baselines for realness prediction. Our experimental results demonstrate that features derived from deep foundation vision models can effectively capture the subjective realness. RAISE thus provides a valuable resource for developing robust, objective models of perceptual realness assessment.
MedITok: A Unified Tokenizer for Medical Image Synthesis and Interpretation
Advanced autoregressive models have reshaped multimodal AI. However, their transformative potential in medical imaging remains largely untapped due to the absence of a unified visual tokenizer -- one capable of capturing fine-grained visual structures for faithful image reconstruction and realistic image synthesis, as well as rich semantics for accurate diagnosis and image interpretation. To this end, we present MedITok, the first unified tokenizer tailored for medical images, encoding both low-level structural details and high-level clinical semantics within a unified latent space. To balance these competing objectives, we introduce a novel two-stage training framework: a visual representation alignment stage that cold-starts the tokenizer reconstruction learning with a visual semantic constraint, followed by a textual semantic representation alignment stage that infuses detailed clinical semantics into the latent space. Trained on the meticulously collected large-scale dataset with over 30 million medical images and 2 million image-caption pairs, MedITok achieves state-of-the-art performance on more than 30 datasets across 9 imaging modalities and 4 different tasks. By providing a unified token space for autoregressive modeling, MedITok supports a wide range of tasks in clinical diagnostics and generative healthcare applications. Model and code will be made publicly available at: https://github.com/Masaaki-75/meditok.
Glioma Multimodal MRI Analysis System for Tumor Layered Diagnosis via Multi-task Semi-supervised Learning
Gliomas are the most common primary tumors of the central nervous system. Multimodal MRI is widely used for the preliminary screening of gliomas and plays a crucial role in auxiliary diagnosis, therapeutic efficacy, and prognostic evaluation. Currently, the computer-aided diagnostic studies of gliomas using MRI have focused on independent analysis events such as tumor segmentation, grading, and radiogenomic classification, without studying inter-dependencies among these events. In this study, we propose a Glioma Multimodal MRI Analysis System (GMMAS) that utilizes a deep learning network for processing multiple events simultaneously, leveraging their inter-dependencies through an uncertainty-based multi-task learning architecture and synchronously outputting tumor region segmentation, glioma histological subtype, IDH mutation genotype, and 1p/19q chromosome disorder status. Compared with the reported single-task analysis models, GMMAS improves the precision across tumor layered diagnostic tasks. Additionally, we have employed a two-stage semi-supervised learning method, enhancing model performance by fully exploiting both labeled and unlabeled MRI samples. Further, by utilizing an adaptation module based on knowledge self-distillation and contrastive learning for cross-modal feature extraction, GMMAS exhibited robustness in situations of modality absence and revealed the differing significance of each MRI modal. Finally, based on the analysis outputs of the GMMAS, we created a visual and user-friendly platform for doctors and patients, introducing GMMAS-GPT to generate personalized prognosis evaluations and suggestions.
comment: 22 pages
Super-Resolution Generative Adversarial Networks based Video Enhancement
This study introduces an enhanced approach to video super-resolution by extending ordinary Single-Image Super-Resolution (SISR) Super-Resolution Generative Adversarial Network (SRGAN) structure to handle spatio-temporal data. While SRGAN has proven effective for single-image enhancement, its design does not account for the temporal continuity required in video processing. To address this, a modified framework that incorporates 3D Non-Local Blocks is proposed, which is enabling the model to capture relationships across both spatial and temporal dimensions. An experimental training pipeline is developed, based on patch-wise learning and advanced data degradation techniques, to simulate real-world video conditions and learn from both local and global structures and details. This helps the model generalize better and maintain stability across varying video content while maintaining the general structure besides the pixel-wise correctness. Two model variants-one larger and one more lightweight-are presented to explore the trade-offs between performance and efficiency. The results demonstrate improved temporal coherence, sharper textures, and fewer visual artifacts compared to traditional single-image methods. This work contributes to the development of practical, learning-based solutions for video enhancement tasks, with potential applications in streaming, gaming, and digital restoration.
comment: 28 pages, 14 figures, 3 tables
Brain Tumor Diagnosis Using Quantum Convolutional Neural Networks
Accurate classification of brain tumors from MRI scans is critical for effective treatment planning. This study presents a Hybrid Quantum Convolutional Neural Network (HQCNN) that integrates quantum feature-encoding circuits with depth-wise separable convolutional layers to analyze images from a publicly available brain tumor dataset. Evaluated on this dataset, the HQCNN achieved 99.16% training accuracy and 91.47% validation accuracy, demonstrating robust performance across varied imaging conditions. The quantum layers capture complex, non-linear relationships, while separable convolutions ensure computational efficiency. By reducing both parameter count and circuit depth, the architecture is compatible with near-term quantum hardware and resource-constrained clinical environments. These results establish a foundation for integrating quantum-enhanced models into medical-imaging workflows with minimal changes to existing software platforms. Future work will extend evaluation to multi-center cohorts, assess real-time inference on quantum simulators and hardware, and explore integration with surgical-planning systems.
comment: 10 pages, 8 figures
Efficient Lung Ultrasound Severity Scoring Using Dedicated Feature Extractor
With the advent of the COVID-19 pandemic, ultrasound imaging has emerged as a promising technique for COVID-19 detection, due to its non-invasive nature, affordability, and portability. In response, researchers have focused on developing AI-based scoring systems to provide real-time diagnostic support. However, the limited size and lack of proper annotation in publicly available ultrasound datasets pose significant challenges for training a robust AI model. This paper proposes MeDiVLAD, a novel pipeline to address the above issue for multi-level lung-ultrasound (LUS) severity scoring. In particular, we leverage self-knowledge distillation to pretrain a vision transformer (ViT) without label and aggregate frame-level features via dual-level VLAD aggregation. We show that with minimal finetuning, MeDiVLAD outperforms conventional fully-supervised methods in both frame- and video-level scoring, while offering classification reasoning with exceptional quality. This superior performance enables key applications such as the automatic identification of critical lung pathology areas and provides a robust solution for broader medical video classification tasks.
comment: Accepted by IEEE ISBI 2025 (Selected for oral presentation); 2025/4/15 (v2): Corrected a notation error in Figure 2
Human-Computer Interaction
Knoll: Creating a Knowledge Ecosystem for Large Language Models
Large language models are designed to encode general purpose knowledge about the world from Internet data. Yet, a wealth of information falls outside this scope -- ranging from personal preferences to organizational policies, from community-specific advice to up-to-date news -- that users want models to access but remains unavailable. In this paper, we propose a knowledge ecosystem in which end-users can create, curate, and configure custom knowledge modules that are utilized by language models, such as ChatGPT and Claude. To support this vision, we introduce Knoll, a software infrastructure that allows users to make modules by clipping content from the web or authoring shared documents on Google Docs and GitHub, add modules that others have made, and rely on the system to insert relevant knowledge when interacting with an LLM. We conduct a public deployment of Knoll reaching over 200 users who employed the system for a diverse set of tasks including personalized recommendations, advice-seeking, and writing assistance. In our evaluation, we validate that using Knoll improves the quality of generated responses.
comment: 21 pages, 8 figures, 7 tables
What do Blind and Low-Vision People Really Want from Assistive Smart Devices? Comparison of the Literature with a Focus Study
Over the last decade there has been considerable research into how artificial intelligence (AI), specifically computer vision, can assist people who are blind or have low-vision (BLV) to understand their environment. However, there has been almost no research into whether the tasks (object detection, image captioning, text recognition etc.) and devices (smartphones, smart-glasses etc.) investigated by researchers align with the needs and preferences of BLV people. We identified 646 studies published in the last two and a half years that have investigated such assistive AI techniques. We analysed these papers to determine the task, device and participation by BLV individuals. We then interviewed 24 BLV people and asked for their top five AI-based applications and to rank the applications found in the literature. We found only a weak positive correlation between BLV participants' perceived importance of tasks and researchers' focus and that participants prefer conversational agent interface and head-mounted devices.
comment: Author's accepted version of a paper published at ACM SIGACCESS Conference on Computers and Accessibility (ASSETS '23)
Effort-aware Fairness: Incorporating a Philosophy-informed, Human-centered Notion of Effort into Algorithmic Fairness Metrics
Although popularized AI fairness metrics, e.g., demographic parity, have uncovered bias in AI-assisted decision-making outcomes, they do not consider how much effort one has spent to get to where one is today in the input feature space. However, the notion of effort is important in how Philosophy and humans understand fairness. We propose a philosophy-informed way to conceptualize and evaluate Effort-aware Fairness (EaF) based on the concept of Force, or temporal trajectory of predictive features coupled with inertia. In addition to our theoretical formulation of EaF metrics, our empirical contributions include: 1/ a pre-registered human subjects experiment, which demonstrates that for both stages of the (individual) fairness evaluation process, people consider the temporal trajectory of a predictive feature more than its aggregate value; 2/ pipelines to compute Effort-aware Individual/Group Fairness in the criminal justice and personal finance contexts. Our work may enable AI model auditors to uncover and potentially correct unfair decisions against individuals who spent significant efforts to improve but are still stuck with systemic/early-life disadvantages outside their control.
Towards Reliable Large Audio Language Model ACL 2025
Recent advancements in large audio language models (LALMs) have demonstrated impressive results and promising prospects in universal understanding and reasoning across speech, music, and general sound. However, these models still lack the ability to recognize their knowledge boundaries and refuse to answer questions they don't know proactively. While there have been successful attempts to enhance the reliability of LLMs, reliable LALMs remain largely unexplored. In this paper, we systematically investigate various approaches towards reliable LALMs, including training-free methods such as multi-modal chain-of-thought (MCoT), and training-based methods such as supervised fine-tuning (SFT). Besides, we identify the limitations of previous evaluation metrics and propose a new metric, the Reliability Gain Index (RGI), to assess the effectiveness of different reliable methods. Our findings suggest that both training-free and training-based methods enhance the reliability of LALMs to different extents. Moreover, we find that awareness of reliability is a "meta ability", which can be transferred across different audio modalities, although significant structural and content differences exist among sound, music, and speech.
comment: ACL 2025 Findings
Agentic Visualization: Extracting Agent-based Design Patterns from Visualization Systems
Autonomous agents powered by Large Language Models are transforming AI, creating an imperative for the visualization field to embrace agentic frameworks. However, our field's focus on a human in the sensemaking loop raises critical questions about autonomy, delegation, and coordination for such \textit{agentic visualization} that preserve human agency while amplifying analytical capabilities. This paper addresses these questions by reinterpreting existing visualization systems with semi-automated or fully automatic AI components through an agentic lens. Based on this analysis, we extract a collection of design patterns for agentic visualization, including agentic roles, communication and coordination. These patterns provide a foundation for future agentic visualization systems that effectively harness AI agents while maintaining human insight and control.
Toward Human Centered Interactive Clinical Question Answering System
Unstructured clinical notes contain essential patient information but are challenging for physicians to search and interpret efficiently. Although large language models (LLMs) have shown promise in question answering (QA), most existing systems lack transparency, usability, and alignment with clinical workflows. This work introduces an interactive QA system that enables physicians to query clinical notes via text or voice and receive extractive answers highlighted directly in the note for traceability. The system was built using OpenAI models with zero-shot prompting and evaluated across multiple metrics, including exact string match, word overlap, SentenceTransformer similarity, and BERTScore. Results show that while exact match scores ranged from 47 to 62 percent, semantic similarity scores exceeded 87 percent, indicating strong contextual alignment even when wording varied. To assess usability, the system was also evaluated using simulated clinical personas. Seven diverse physician and nurse personas interacted with the system across scenario-based tasks and provided structured feedback. The evaluations highlighted strengths in intuitive design and answer accessibility, alongside opportunities for enhancing explanation clarity.
ViEEG: Hierarchical Neural Coding with Cross-Modal Progressive Enhancement for EEG-Based Visual Decoding
Understanding and decoding brain activity into visual representations is a fundamental challenge at the intersection of neuroscience and artificial intelligence. While EEG-based visual decoding has shown promise due to its non-invasive, low-cost nature and millisecond-level temporal resolution, existing methods are limited by their reliance on flat neural representations that overlook the brain's inherent visual hierarchy. In this paper, we introduce ViEEG, a biologically inspired hierarchical EEG decoding framework that aligns with the Hubel-Wiesel theory of visual processing. ViEEG decomposes each visual stimulus into three biologically aligned components-contour, foreground object, and contextual scene-serving as anchors for a three-stream EEG encoder. These EEG features are progressively integrated via cross-attention routing, simulating cortical information flow from V1 to IT to the association cortex. We further adopt hierarchical contrastive learning to align EEG representations with CLIP embeddings, enabling zero-shot object recognition. Extensive experiments on the THINGS-EEG dataset demonstrate that ViEEG achieves state-of-the-art performance, with 40.9% Top-1 accuracy in subject-dependent and 22.9% Top-1 accuracy in cross-subject settings, surpassing existing methods by over 45%. Our framework not only advances the performance frontier but also sets a new paradigm for biologically grounded brain decoding in AI.
comment: 24 pages, 18 figures
FERGI: Automatic Scoring of User Preferences for Text-to-Image Generation from Spontaneous Facial Expression Reaction
Researchers have proposed to use data of human preference feedback to fine-tune text-to-image generative models. However, the scalability of human feedback collection has been limited by its reliance on manual annotation. Therefore, we develop and test a method to automatically score user preferences from their spontaneous facial expression reaction to the generated images. We collect a dataset of Facial Expression Reaction to Generated Images (FERGI) and show that the activations of multiple facial action units (AUs) are highly correlated with user evaluations of the generated images. We develop an FAU-Net (Facial Action Units Neural Network), which receives inputs from an AU estimation model, to automatically score user preferences for text-to-image generation based on their facial expression reactions, which is complementary to the pre-trained scoring models based on the input text prompts and generated images. Integrating our FAU-Net valence score with the pre-trained scoring models improves their consistency with human preferences. This method of automatic annotation with facial expression analysis can be potentially generalized to other generation tasks. The code is available at https://github.com/ShuangquanFeng/FERGI, and the dataset is also available at the same link for research purposes.
How do Observable Users Decompose D3 Code? A Qualitative Study
Many toolkit developers seek to streamline the visualization programming process for their users through structured support such as prescribed templates and example galleries. However, few projects examine how users organize their own visualization programs, how their coding choices may deviate from the intents of toolkit developers, and how these differences may impact visualization prototyping and design. Further, is it possible to infer users' reasoning indirectly through their code, even when users copy code from other sources? Understanding these patterns can reveal opportunities to align toolkit design with actual user behavior, improving usability and supporting more flexible workflows. We explore this question through a qualitative analysis of 715 D3 programs on Observable. We identify three levels of program organization based on how users decompose their code into smaller blocks: Program-, Chart-, and Component-Level code decomposition, with a strong preference for Component-Level reasoning. In a series of interviews, we corroborate that these levels reflect how Observable users reason about visualization programs. We compare common user-made components with those theorized in the Grammar of Graphics to assess overlap in user and toolkit developer reasoning. We find that, while the Grammar of Graphics covers basic visualizations well, it falls short in describing complex visualization types, especially those with animation, interaction, and parameterization components. Our findings highlight how user practices differ from formal grammars and suggest opportunities for rethinking visualization toolkit support, including augmenting learning tools and AI assistants to better reflect real-world coding strategies.
Think Outside the Data: Colonial Biases and Systemic Issues in Automated Moderation Pipelines for Low-Resource Languages
Most social media users come from non-English speaking countries in the Global South, where much of harmful content appears in local languages. Yet, current AI-driven moderation systems struggle with low-resource languages spoken in these regions. This work examines the systemic challenges in building automated moderation tools for these languages. We conducted semi-structured interviews with 22 AI experts working on detecting harmful content in four low-resource languages: Tamil (South Asia), Swahili (East Africa), Maghrebi Arabic (North Africa), and Quechua (South America). Our findings show that beyond the well-known data scarcity in local languages, technical issues--such as outdated machine translation systems, sentiment and toxicity models grounded in Western values, and unreliable language detection technologies--undermine moderation efforts. Even with more data, current language models and preprocessing pipelines--primarily designed for English--struggle with the morphological richness, linguistic complexity, and code-mixing. As a result, automated moderation in Tamil, Swahili, Arabic, and Quechua remains fraught with inaccuracies and blind spots. Based on our findings, we argue that these limitations are not just technical gaps but reflect deeper structural inequities that continue to reproduce historical power imbalances. We conclude by discussing multi-stakeholder approaches to improve automated moderation for low-resource languages.
AgentClinic: a multimodal agent benchmark to evaluate AI in simulated clinical environments
Evaluating large language models (LLM) in clinical scenarios is crucial to assessing their potential clinical utility. Existing benchmarks rely heavily on static question-answering, which does not accurately depict the complex, sequential nature of clinical decision-making. Here, we introduce AgentClinic, a multimodal agent benchmark for evaluating LLMs in simulated clinical environments that include patient interactions, multimodal data collection under incomplete information, and the usage of various tools, resulting in an in-depth evaluation across nine medical specialties and seven languages. We find that solving MedQA problems in the sequential decision-making format of AgentClinic is considerably more challenging, resulting in diagnostic accuracies that can drop to below a tenth of the original accuracy. Overall, we observe that agents sourced from Claude-3.5 outperform other LLM backbones in most settings. Nevertheless, we see stark differences in the LLMs' ability to make use of tools, such as experiential learning, adaptive retrieval, and reflection cycles. Strikingly, Llama-3 shows up to 92% relative improvements with the notebook tool that allows for writing and editing notes that persist across cases. To further scrutinize our clinical simulations, we leverage real-world electronic health records, perform a clinical reader study, perturb agents with biases, and explore novel patient-centric metrics that this interactive environment firstly enables.
Towards user-centered interactive medical image segmentation in VR with an assistive AI agent
Crucial in disease analysis and surgical planning, manual segmentation of volumetric medical scans (e.g. MRI, CT) is laborious, error-prone, and challenging to master, while fully automatic algorithms can benefit from user feedback. Therefore, with the complementary power of the latest radiological AI foundation models and virtual reality (VR)'s intuitive data interaction, we propose SAMIRA, a novel conversational AI agent for medical VR that assists users with localizing, segmenting, and visualizing 3D medical concepts. Through speech-based interaction, the agent helps users understand radiological features, locate clinical targets, and generate segmentation masks that can be refined with just a few point prompts. The system also supports true-to-scale 3D visualization of segmented pathology to enhance patient-specific anatomical understanding. Furthermore, to determine the optimal interaction paradigm under near-far attention-switching for refining segmentation masks in an immersive, human-in-the-loop workflow, we compare VR controller pointing, head pointing, and eye tracking as input modes. With a user study, evaluations demonstrated a high usability score (SUS=90.0 $\pm$ 9.0), low overall task load, as well as strong support for the proposed VR system's guidance, training potential, and integration of AI in radiological segmentation tasks.
Image and Video Processing
SW-ViT: A Spatio-Temporal Vision Transformer Network with Post Denoiser for Sequential Multi-Push Ultrasound Shear Wave Elastography
Objective: Ultrasound Shear Wave Elastography (SWE) demonstrates great potential in assessing soft-tissue pathology by mapping tissue stiffness, which is linked to malignancy. Traditional SWE methods have shown promise in estimating tissue elasticity, yet their susceptibility to noise interference, reliance on limited training data, and inability to generate segmentation masks concurrently present notable challenges to accuracy and reliability. Approach: In this paper, we propose SW-ViT, a novel two-stage deep learning framework for SWE that integrates a CNN-Spatio-Temporal Vision Transformer-based reconstruction network with an efficient Transformer-based post-denoising network. The first stage uses a 3D ResNet encoder with multi-resolution spatio-temporal Transformer blocks that capture spatial and temporal features, followed by a squeeze-and-excitation attention decoder that reconstructs 2D stiffness maps. To address data limitations, a patch-based training strategy is adopted for localized learning and reconstruction. In the second stage, a denoising network with a shared encoder and dual decoders processes inclusion and background regions to produce a refined stiffness map and segmentation mask. A hybrid loss combining regional, smoothness, fusion, and Intersection over Union (IoU) components ensures improvements in both reconstruction and segmentation. Results: On simulated data, our method achieves PSNR of 32.68 dB, CNR of 46.78 dB, and SSIM of 0.995. On phantom data, results include PSNR of 21.11 dB, CNR of 42.14 dB, and SSIM of 0.936. Segmentation IoU values reach 0.949 (simulation) and 0.738 (phantom) with ASSD values being 0.184 and 1.011, respectively. Significance: SW-ViT delivers robust, high-quality elasticity map estimates from noisy SWE data and holds clear promise for clinical application.
A physics-guided smoothing method for material modeling with digital image correlation (DIC) measurements
In this work, we present a novel approach to process the DIC measurements of multiple biaxial stretching protocols. In particular, we develop a optimization-based approach, which calculates the smoothed nodal displacements using a moving least-squares algorithm subject to positive strain constraints. As such, physically consistent displacement and strain fields are obtained. Then, we further deploy a data-driven workflow to heterogeneous material modeling from these physically consistent DIC measurements, by estimating a nonlocal constitutive law together with the material microstructure. To demonstrate the applicability of our approach, we apply it in learning a material model and fiber orientation field from DIC measurements of a porcine tricuspid valve anterior leaflet. Our results demonstrate that the proposed DIC data processing approach can significantly improve the accuracy of modeling biological materials.
Memory-Efficient Super-Resolution of 3D Micro-CT Images Using Octree-Based GANs: Enhancing Resolution and Segmentation Accuracy
We present a memory-efficient algorithm for significantly enhancing the quality of segmented 3D micro-Computed Tomography (micro-CT) images of rocks using a generative model. The proposed model achieves a 16x increase in resolution and corrects inaccuracies in segmentation caused by the overlapping X-ray attenuation in micro-CT measurements across different minerals. The generative model employed is a 3D Octree-based convolutional Wasserstein generative adversarial network with gradient penalty. To address the challenge of high memory consumption inherent in standard 3D convolutional layers, we implemented an Octree structure within the 3D progressive growing generator model. This enabled the use of memory-efficient 3D Octree-based convolutional layers. The approach is pivotal in overcoming the long-standing memory bottleneck in volumetric deep learning, making it possible to reach 16x super-resolution in 3D, a scale that is challenging to attain due to cubic memory scaling. For training, we utilized segmented 3D low-resolution micro-CT images along with unpaired segmented complementary 2D high-resolution laser scanning microscope images. Post-training, resolution improved from 7 to 0.44 micro-m/voxel with accurate segmentation of constituent minerals. Validated on Berea sandstone, this framework demonstrates substantial improvements in pore characterization and mineral differentiation, offering a robust solution to one of the primary computational limitations in modern geoscientific imaging.
comment: 31 pages, 15 figures
ReflectGAN: Modeling Vegetation Effects for Soil Carbon Estimation from Satellite Imagery
Soil organic carbon (SOC) is a critical indicator of soil health, but its accurate estimation from satellite imagery is hindered in vegetated regions due to spectral contamination from plant cover, which obscures soil reflectance and reduces model reliability. This study proposes the Reflectance Transformation Generative Adversarial Network (ReflectGAN), a novel paired GAN-based framework designed to reconstruct accurate bare soil reflectance from vegetated soil satellite observations. By learning the spectral transformation between vegetated and bare soil reflectance, ReflectGAN facilitates more precise SOC estimation under mixed land cover conditions. Using the LUCAS 2018 dataset and corresponding Landsat 8 imagery, we trained multiple learning-based models on both original and ReflectGAN-reconstructed reflectance inputs. Models trained on ReflectGAN outputs consistently outperformed those using existing vegetation correction methods. For example, the best-performing model (RF) achieved an $R^2$ of 0.54, RMSE of 3.95, and RPD of 2.07 when applied to the ReflectGAN-generated signals, representing a 35\% increase in $R^2$, a 43\% reduction in RMSE, and a 43\% improvement in RPD compared to the best existing method (PMM-SU). The performance of the models with ReflectGAN is also better compared to their counterparts when applied to another dataset, i.e., Sentinel-2 imagery. These findings demonstrate the potential of ReflectGAN to improve SOC estimation accuracy in vegetated landscapes, supporting more reliable soil monitoring.
Mind Your Vision: Multimodal Estimation of Refractive Disorders Using Electrooculography and Eye Tracking
Refractive errors are among the most common visual impairments globally, yet their diagnosis often relies on active user participation and clinical oversight. This study explores a passive method for estimating refractive power using two eye movement recording techniques: electrooculography (EOG) and video-based eye tracking. Using a publicly available dataset recorded under varying diopter conditions, we trained Long Short-Term Memory (LSTM) models to classify refractive power from unimodal (EOG or eye tracking) and multimodal configuration. We assess performance in both subject-dependent and subject-independent settings to evaluate model personalization and generalizability across individuals. Results show that the multimodal model consistently outperforms unimodal models, achieving the highest average accuracy in both settings: 96.207\% in the subject-dependent scenario and 8.882\% in the subject-independent scenario. However, generalization remains limited, with classification accuracy only marginally above chance in the subject-independent evaluations. Statistical comparisons in the subject-dependent setting confirmed that the multimodal model significantly outperformed the EOG and eye-tracking models. However, no statistically significant differences were found in the subject-independent setting. Our findings demonstrate both the potential and current limitations of eye movement data-based refractive error estimation, contributing to the development of continuous, non-invasive screening methods using EOG signals and eye-tracking data.
An Artificial Intelligence Model for Early Stage Breast Cancer Detection from Biopsy Images
Accurate identification of breast cancer types plays a critical role in guiding treatment decisions and improving patient outcomes. This paper presents an artificial intelligence enabled tool designed to aid in the identification of breast cancer types using histopathological biopsy images. Traditionally additional tests have to be done on women who are detected with breast cancer to find out the types of cancer it is to give the necessary cure. Those tests are not only invasive but also delay the initiation of treatment and increase patient burden. The proposed model utilizes a convolutional neural network (CNN) architecture to distinguish between benign and malignant tissues as well as accurate subclassification of breast cancer types. By preprocessing the images to reduce noise and enhance features, the model achieves reliable levels of classification performance. Experimental results on such datasets demonstrate the model's effectiveness, outperforming several existing solutions in terms of accuracy, precision, recall, and F1-score. The study emphasizes the potential of deep learning techniques in clinical diagnostics and offers a promising tool to assist pathologists in breast cancer classification.
Image denoising as a conditional expectation
All techniques for denoising involve a notion of a true (noise-free) image, and a hypothesis space. The hypothesis space may reconstruct the image directly as a grayscale valued function, or indirectly by its Fourier or wavelet spectrum. Most common techniques estimate the true image as a projection to some subspace. We propose an interpretation of a noisy image as a collection of samples drawn from a certain probability space. Within this interpretation, projection based approaches are not guaranteed to be unbiased and convergent. We present a data-driven denoising method in which the true image is recovered as a conditional expectation. Although the probability space is unknown apriori, integrals on this space can be estimated by kernel integral operators. The true image is reformulated as the least squares solution to a linear equation in a reproducing kernel Hilbert space (RKHS), and involving various kernel integral operators as linear transforms. Assuming the true image to be a continuous function on a compact planar domain, the technique is shown to be convergent as the number of pixels goes to infinity. We also show that for a picture with finite number of pixels, the convergence result can be used to choose the various parameters for an optimum denoising result.
OSCAR: One-Step Diffusion Codec Across Multiple Bit-rates
Pretrained latent diffusion models have shown strong potential for lossy image compression, owing to their powerful generative priors. Most existing diffusion-based methods reconstruct images by iteratively denoising from random noise, guided by compressed latent representations. While these approaches have achieved high reconstruction quality, their multi-step sampling process incurs substantial computational overhead. Moreover, they typically require training separate models for different compression bit-rates, leading to significant training and storage costs. To address these challenges, we propose a one-step diffusion codec across multiple bit-rates. termed OSCAR. Specifically, our method views compressed latents as noisy variants of the original latents, where the level of distortion depends on the bit-rate. This perspective allows them to be modeled as intermediate states along a diffusion trajectory. By establishing a mapping from the compression bit-rate to a pseudo diffusion timestep, we condition a single generative model to support reconstructions at multiple bit-rates. Meanwhile, we argue that the compressed latents retain rich structural information, thereby making one-step denoising feasible. Thus, OSCAR replaces iterative sampling with a single denoising pass, significantly improving inference efficiency. Extensive experiments demonstrate that OSCAR achieves superior performance in both quantitative and visual quality metrics. The code and models will be released at https://github.com/jp-guo/OSCAR.
LinGen: Towards High-Resolution Minute-Length Text-to-Video Generation with Linear Computational Complexity CVPR
Text-to-video generation enhances content creation but is highly computationally intensive: The computational cost of Diffusion Transformers (DiTs) scales quadratically in the number of pixels. This makes minute-length video generation extremely expensive, limiting most existing models to generating videos of only 10-20 seconds length. We propose a Linear-complexity text-to-video Generation (LinGen) framework whose cost scales linearly in the number of pixels. For the first time, LinGen enables high-resolution minute-length video generation on a single GPU without compromising quality. It replaces the computationally-dominant and quadratic-complexity block, self-attention, with a linear-complexity block called MATE, which consists of an MA-branch and a TE-branch. The MA-branch targets short-to-long-range correlations, combining a bidirectional Mamba2 block with our token rearrangement method, Rotary Major Scan, and our review tokens developed for long video generation. The TE-branch is a novel TEmporal Swin Attention block that focuses on temporal correlations between adjacent tokens and medium-range tokens. The MATE block addresses the adjacency preservation issue of Mamba and improves the consistency of generated videos significantly. Experimental results show that LinGen outperforms DiT (with a 75.6% win rate) in video quality with up to 15$\times$ (11.5$\times$) FLOPs (latency) reduction. Furthermore, both automatic metrics and human evaluation demonstrate our LinGen-4B yields comparable video quality to state-of-the-art models (with a 50.5%, 52.1%, 49.1% win rate with respect to Gen-3, LumaLabs, and Kling, respectively). This paves the way to hour-length movie generation and real-time interactive video generation. We provide 68s video generation results and more examples in our project website: https://lineargen.github.io/.
comment: Accepted to IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2025
Robust multi-coil MRI reconstruction via self-supervised denoising
We study the effect of incorporating self-supervised denoising as a pre-processing step for training deep learning (DL) based reconstruction methods on data corrupted by Gaussian noise. K-space data employed for training are typically multi-coil and inherently noisy. Although DL-based reconstruction methods trained on fully sampled data can enable high reconstruction quality, obtaining large, noise-free datasets is impractical. We leverage Generalized Stein's Unbiased Risk Estimate (GSURE) for denoising. We evaluate two DL-based reconstruction methods: Diffusion Probabilistic Models (DPMs) and Model-Based Deep Learning (MoDL). We evaluate the impact of denoising on the performance of these DL-based methods in solving accelerated multi-coil magnetic resonance imaging (MRI) reconstruction. The experiments were carried out on T2-weighted brain and fat-suppressed proton-density knee scans. We observed that self-supervised denoising enhances the quality and efficiency of MRI reconstructions across various scenarios. Specifically, employing denoised images rather than noisy counterparts when training DL networks results in lower normalized root mean squared error (NRMSE), higher structural similarity index measure (SSIM) and peak signal-to-noise ratio (PSNR) across different SNR levels, including 32dB, 22dB, and 12dB for T2-weighted brain data, and 24dB, 14dB, and 4dB for fat-suppressed knee data. Overall, we showed that denoising is an essential pre-processing technique capable of improving the efficacy of DL-based MRI reconstruction methods under diverse conditions. By refining the quality of input data, denoising enables training more effective DL networks, potentially bypassing the need for noise-free reference MRI scans.
Multimedia
MAVL: A Multilingual Audio-Video Lyrics Dataset for Animated Song Translation
Lyrics translation requires both accurate semantic transfer and preservation of musical rhythm, syllabic structure, and poetic style. In animated musicals, the challenge intensifies due to alignment with visual and auditory cues. We introduce Multilingual Audio-Video Lyrics Benchmark for Animated Song Translation (MAVL), the first multilingual, multimodal benchmark for singable lyrics translation. By integrating text, audio, and video, MAVL enables richer and more expressive translations than text-only approaches. Building on this, we propose Syllable-Constrained Audio-Video LLM with Chain-of-Thought SylAVL-CoT, which leverages audio-video cues and enforces syllabic constraints to produce natural-sounding lyrics. Experimental results demonstrate that SylAVL-CoT significantly outperforms text-based models in singability and contextual accuracy, emphasizing the value of multimodal, multilingual approaches for lyrics translation.
comment: 28 pages, 8 figures
Data-Efficient Hate Speech Detection via Cross-Lingual Nearest Neighbor Retrieval with Limited Labeled Data
Considering the importance of detecting hateful language, labeled hate speech data is expensive and time-consuming to collect, particularly for low-resource languages. Prior work has demonstrated the effectiveness of cross-lingual transfer learning and data augmentation in improving performance on tasks with limited labeled data. To develop an efficient and scalable cross-lingual transfer learning approach, we leverage nearest-neighbor retrieval to augment minimal labeled data in the target language, thereby enhancing detection performance. Specifically, we assume access to a small set of labeled training instances in the target language and use these to retrieve the most relevant labeled examples from a large multilingual hate speech detection pool. We evaluate our approach on eight languages and demonstrate that it consistently outperforms models trained solely on the target language data. Furthermore, in most cases, our method surpasses the current state-of-the-art. Notably, our approach is highly data-efficient, retrieving as small as 200 instances in some cases while maintaining superior performance. Moreover, it is scalable, as the retrieval pool can be easily expanded, and the method can be readily adapted to new languages and tasks. We also apply maximum marginal relevance to mitigate redundancy and filter out highly similar retrieved instances, resulting in improvements in some languages.
Can Prompting LLMs Unlock Hate Speech Detection across Languages? A Zero-shot and Few-shot Study
Despite growing interest in automated hate speech detection, most existing approaches overlook the linguistic diversity of online content. Multilingual instruction-tuned large language models such as LLaMA, Aya, Qwen, and BloomZ offer promising capabilities across languages, but their effectiveness in identifying hate speech through zero-shot and few-shot prompting remains underexplored. This work evaluates LLM prompting-based detection across eight non-English languages, utilizing several prompting techniques and comparing them to fine-tuned encoder models. We show that while zero-shot and few-shot prompting lag behind fine-tuned encoder models on most of the real-world evaluation sets, they achieve better generalization on functional tests for hate speech detection. Our study also reveals that prompt design plays a critical role, with each language often requiring customized prompting techniques to maximize performance.
OneDiff: A Generalist Model for Image Difference Captioning
In computer vision, Image Difference Captioning (IDC) is crucial for accurately describing variations between closely related images. Traditional IDC methods often rely on specialist models, which restrict their applicability across varied contexts. This paper introduces the OneDiff model, a novel generalist approach that utilizes a robust vision-language model architecture, integrating a siamese image encoder with a Visual Delta Module. This innovative configuration allows for the precise detection and articulation of fine-grained differences between image pairs. OneDiff is trained through a dual-phase strategy, encompassing Coupled Sample Training and multi-task learning across a diverse array of data types, supported by our newly developed DiffCap Dataset. This dataset merges real-world and synthetic data, enhancing the training process and bolstering the model's robustness. Extensive testing on diverse IDC benchmarks, such as Spot-the-Diff, Image-Editing-Request, and Birds-to-Words, shows that OneDiff consistently outperforms existing state-of-the-art models in accuracy and adaptability, achieving improvements of up to 97% CIDEr points in average. By setting a new benchmark in IDC, OneDiff paves the way for more versatile and effective applications in detecting and describing visual differences. The code, models, and data will be made publicly available.
EvAnimate: Event-conditioned Image-to-Video Generation for Human Animation
Conditional human animation traditionally animates static reference images using pose-based motion cues extracted from video data. However, these video-derived cues often suffer from low temporal resolution, motion blur, and unreliable performance under challenging lighting conditions. In contrast, event cameras inherently provide robust and high temporal-resolution motion information, offering resilience to motion blur, low-light environments, and exposure variations. In this paper, we propose EvAnimate, the first method leveraging event streams as robust and precise motion cues for conditional human image animation. Our approach is fully compatible with diffusion-based generative models, enabled by encoding asynchronous event data into a specialized three-channel representation with adaptive slicing rates and densities. High-quality and temporally coherent animations are achieved through a dual-branch architecture explicitly designed to exploit event-driven dynamics, significantly enhancing performance under challenging real-world conditions. Enhanced cross-subject generalization is further achieved using specialized augmentation strategies. To facilitate future research, we establish a new benchmarking, including simulated event data for training and validation, and a real-world event dataset capturing human actions under normal and challenging scenarios. The experiment results demonstrate that EvAnimate achieves high temporal fidelity and robust performance in scenarios where traditional video-derived cues fall short.
Human-Computer Interaction
Literature review on assistive technologies for people with Parkinson's disease
Parkinson's Disease (PD) is a neurodegenerative disorder that significantly impacts motor and non-motor functions. There is currently no treatment that slows or stops neurodegeneration in PD. In this context, assistive technologies (ATs) have emerged as vital tools to aid people with Parkinson's and significantly improve their quality of life. This review explores a broad spectrum of ATs, including wearable and cueing devices, exoskeletons, robotics, virtual reality, voice and video-assisted technologies, and emerging innovations such as artificial intelligence (AI), machine learning (ML), and the Internet of Things (IoT). The review highlights ATs' significant role in addressing motor symptoms such as freezing of gait (FOG) and gait and posture disorders. However, it also identifies significant gaps in addressing non-motor symptoms such as sleep dysfunction and mental health. Similarly, the research identifies substantial potential in the further implementation of deep learning, AI, IOT technologies. Overall, this review highlights the transformative potential of AT in PD management while identifying gaps that future research should address to ensure personalized, accessible, and effective solutions.
LiteCUA: Computer as MCP Server for Computer-Use Agent on AIOS
We present AIOS 1.0, a novel platform designed to advance computer-use agent (CUA) capabilities through environmental contextualization. While existing approaches primarily focus on building more powerful agent frameworks or enhancing agent models, we identify a fundamental limitation: the semantic disconnect between how language models understand the world and how computer interfaces are structured. AIOS 1.0 addresses this challenge by transforming computers into contextual environments that language models can natively comprehend, implementing a Model Context Protocol (MCP) server architecture to abstract computer states and actions. This approach effectively decouples interface complexity from decision complexity, enabling agents to reason more effectively about computing environments. To demonstrate our platform's effectiveness, we introduce LiteCUA, a lightweight computer-use agent built on AIOS 1.0 that achieves a 14.66% success rate on the OSWorld benchmark, outperforming several specialized agent frameworks despite its simple architecture. Our results suggest that contextualizing computer environments for language models represents a promising direction for developing more capable computer-use agents and advancing toward AI that can interact with digital systems. The source code of LiteCUA is available at https://github.com/agiresearch/LiteCUA, and it is also integrated into the AIOS main branch as part of AIOS at https://github.com/agiresearch/AIOS.
Usability of Token-based and Remote Electronic Signatures: A User Experience Study
As electronic signatures (e-signatures) become increasingly integral to secure digital transactions, understanding their usability and security perception from an end-user perspective has become crucial. This study empirically evaluates and compares two major e-signature systems -- token-based and remote signatures -- through a controlled user experience study with 20 participants. Participants completed tasks involving acquisition, installation, and document signing using both methods, followed by structured surveys and qualitative feedback. Statistical analyses revealed that remote e-signatures were perceived as significantly more usable than token-based ones, due to their minimal setup and platform-independent accessibility. In contrast, token-based signatures were rated as significantly more secure, highlighting users' trust in hardware-based protection. Although more participants preferred remote e-signatures for document signing, the preference did not reach statistical significance, indicating a trend toward favoring convenience in real-world scenarios. These findings underline the fundamental trade-off between usability and perceived security in digital signing systems. By bridging the gap between theoretical frameworks and real user experience, this study contributes valuable insights to the design and policymaking of qualified electronic signature solutions.
comment: 27 pages
SPIRAL integration of generative AI in an undergraduate creative media course: effects on self-efficacy and career outcome expectations
Computing education and computing students are rapidly integrating generative AI, but we know relatively little about how different pedagogical strategies for intentionally integrating generative AI affect students' self-efficacy and career interests. This study investigates a SPIRAL integration of generative AI (Skills Practiced Independently, Revisited with AI Later), implemented in an introductory undergraduate creative media and technology course in Fall 2023 (n=31). Students first developed domain skills for half the semester, then revisited earlier material integrating using generative AI, with explicit instruction on how to use it critically and ethically. We contribute a mixed methods quantitative and qualitative analysis of changes in self-efficacy and career interests over time, including longitudinal qualitative interviews (n=9) and thematic analysis. We found positive changes in both students' creative media self-efficacy and generative AI use self-efficacy, and mixed changes for ethical generative AI use self-efficacy. We also found students experienced demystification, transitioning from initial fear about generative AI taking over their fields and jobs, to doubting AI capability to do so and/or that society will push back against AI, through personal use of AI and observing others' use of AI vicariously. For career interests, our SPIRAL integration of generative AI use appeared to have either a neutral or positive influence on students, including widening their perceived career options, depending on their view of how AI would influence the career itself. These findings suggest that careful pedagogical sequencing can mitigate some potential negative impacts of AI, while promoting ethical and critical AI use that supports or has a neutral effect on students' career formation. To our knowledge our SPIRAL integration strategy applied to generative AI integration is novel.
Supporting Preschool Emotional Development with AI-Powered Robots
This study evaluates the integration of AI-powered robots in early childhood education, focusing on their impact on emotional self-regulation, engagement, and collaborative skills. A ten-week experimental design involving two groups of children assessed the robot's effectiveness through progress assessments, parental surveys, and teacher feedback. Results demonstrated that early exposure to the robot significantly enhanced emotional recognition, while sustained interaction further improved collaborative and social engagement. Parental and teacher feedback highlighted high acceptance levels, emphasizing the robot's ease of integration and positive influence on classroom dynamics. This research underscores the transformative potential of AI and robotics in education. The findings advocate for the broader adoption of AI-powered interventions, carefully examining equitable access, ethical considerations, and sustainable implementation. This work sets a foundation for exploring long-term impacts and expanding applications of AI in inclusive and impactful educational settings.
comment: This is the preprint version of a paper accepted at the 24th ACM Interaction Design and Children Conference, IDC 2025. The final published version will be available via ACM Digital Library
Applying Ontologies and Knowledge Augmented Large Language Models to Industrial Automation: A Decision-Making Guidance for Achieving Human-Robot Collaboration in Industry 5.0
The rapid advancement of Large Language Models (LLMs) has resulted in interest in their potential applications within manufacturing systems, particularly in the context of Industry 5.0. However, determining when to implement LLMs versus other Natural Language Processing (NLP) techniques, ontologies or knowledge graphs, remains an open question. This paper offers decision-making guidance for selecting the most suitable technique in various industrial contexts, emphasizing human-robot collaboration and resilience in manufacturing. We examine the origins and unique strengths of LLMs, ontologies, and knowledge graphs, assessing their effectiveness across different industrial scenarios based on the number of domains or disciplines required to bring a product from design to manufacture. Through this comparative framework, we explore specific use cases where LLMs could enhance robotics for human-robot collaboration, while underscoring the continued relevance of ontologies and knowledge graphs in low-dependency or resource-constrained sectors. Additionally, we address the practical challenges of deploying these technologies, such as computational cost and interpretability, providing a roadmap for manufacturers to navigate the evolving landscape of Language based AI tools in Industry 5.0. Our findings offer a foundation for informed decision-making, helping industry professionals optimize the use of Language Based models for sustainable, resilient, and human-centric manufacturing. We also propose a Large Knowledge Language Model architecture that offers the potential for transparency and configuration based on complexity of task and computing resources available.
From Reddit to Generative AI: Evaluating Large Language Models for Anxiety Support Fine-tuned on Social Media Data
The growing demand for accessible mental health support, compounded by workforce shortages and logistical barriers, has led to increased interest in utilizing Large Language Models (LLMs) for scalable and real-time assistance. However, their use in sensitive domains such as anxiety support remains underexamined. This study presents a systematic evaluation of LLMs (GPT and Llama) for their potential utility in anxiety support by using real user-generated posts from the r/Anxiety subreddit for both prompting and fine-tuning. Our approach utilizes a mixed-method evaluation framework incorporating three main categories of criteria: (i) linguistic quality, (ii) safety and trustworthiness, and (iii) supportiveness. Results show that fine-tuning LLMs with naturalistic anxiety-related data enhanced linguistic quality but increased toxicity and bias, and diminished emotional responsiveness. While LLMs exhibited limited empathy, GPT was evaluated as more supportive overall. Our findings highlight the risks of fine-tuning LLMs on unprocessed social media content without mitigation strategies.
Challenges for artificial cognitive systems
The declared goal of this paper is to fill this gap: "... cognitive systems research needs questions or challenges that define progress. The challenges are not (yet more) predictions of the future, but a guideline to what are the aims and what would constitute progress." -- the quotation being from the project description of EUCogII, the project for the European Network for Cognitive Systems within which this formulation of the 'challenges' was originally developed (http://www.eucognition.org). So, we stick out our neck and formulate the challenges for artificial cognitive systems. These challenges are articulated in terms of a definition of what a cognitive system is: a system that learns from experience and uses its acquired knowledge (both declarative and practical) in a flexible manner to achieve its own goals.
Design for Hope: Cultivating Deliberate Hope in the Face of Complex Societal Challenges
Design has the potential to cultivate hope in the face of complex societal challenges. These challenges are often addressed through efforts aimed at harm reduction and prevention -- essential but sometimes limiting approaches that can unintentionally narrow our collective sense of what is possible. This one-day, in-person workshop builds on the first Positech Workshop at CSCW 2024 by offering practical ways to move beyond reactive problem-solving toward building capacity for proactive goal setting and generating pathways forward. We explore how collaborative and reflective design methodologies can help research communities navigate uncertainty, expand possibilities, and foster meaningful change. By connecting design thinking with hope theory, which frames hope as the interplay of ``goal-directed,'' ``pathways,'' and ``agentic'' thinking, we will examine how researchers might chart new directions in the face of complexity and constraint. Through hands-on activities including problem reframing, building a shared taxonomy of design methods that align with hope theory, and reflecting on what it means to sustain hopeful research trajectories, participants will develop strategies to embed a deliberately hopeful approach into their research.
Trust-Enabled Privacy: Social Media Designs to Support Adolescent User Boundary Regulation
Adolescents heavily rely on social media to build and maintain close relationships, yet current platform designs often make self-disclosure feel risky or uncomfortable. Through a three-part study involving 19 teens aged 13-18, we identify key barriers to meaningful self-disclosure on social media. Our findings reveal that while these adolescents seek casual, frequent sharing to strengthen relationships, existing platform norms often discourage such interactions. Based on our co-design interview findings, we propose platform design ideas to foster a more dynamic and nuanced privacy experience for teen social media users. We then introduce \textbf{\textit{trust-enabled privacy}} as a framework that recognizes trust -- whether building or eroding -- as central to boundary regulation, and foregrounds the role of platform design in shaping the very norms and interaction patterns that influence how trust unfolds. When trust is supported, boundary regulation becomes more adaptive and empowering; when it erodes, users resort to self-censorship or disengagement. This work provides empirical insights and actionable guidelines for designing social media spaces where teens feel empowered to engage in meaningful relationship-building processes.
Expert-Agnostic Learning to Defer
Learning to Defer (L2D) trains autonomous systems to handle straightforward cases while deferring uncertain ones to human experts. Recent advancements in this field have introduced methods that offer flexibility to unseen experts at test time. However, we find these approaches struggle to generalise to experts with behaviours not seen during training, require extensive human annotation, and lack mechanisms for incorporating prior knowledge of expert capabilities. To address these challenges, we introduce Expert-Agnostic Learning to Defer (EA-L2D), a novel L2D framework that employs a Bayesian approach to model expert behaviour in an \textit{expert-agnostic} fashion. Across benchmark medical imaging datasets (HAM10000, Blood Cells, Retinal OCT, and Liver Tumours), EA-L2D significantly outperforms prior methods on unseen experts, achieving up to a 28\% relative improvement, while also matching or exceeding state-of-the-art performance on seen experts.
IRIS: Interactive Research Ideation System for Accelerating Scientific Discovery ACL 2025
The rapid advancement in capabilities of large language models (LLMs) raises a pivotal question: How can LLMs accelerate scientific discovery? This work tackles the crucial first stage of research, generating novel hypotheses. While recent work on automated hypothesis generation focuses on multi-agent frameworks and extending test-time compute, none of the approaches effectively incorporate transparency and steerability through a synergistic Human-in-the-loop (HITL) approach. To address this gap, we introduce IRIS: Interactive Research Ideation System, an open-source platform designed for researchers to leverage LLM-assisted scientific ideation. IRIS incorporates innovative features to enhance ideation, including adaptive test-time compute expansion via Monte Carlo Tree Search (MCTS), fine-grained feedback mechanism, and query-based literature synthesis. Designed to empower researchers with greater control and insight throughout the ideation process. We additionally conduct a user study with researchers across diverse disciplines, validating the effectiveness of our system in enhancing ideation. We open-source our code at https://github.com/Anikethh/IRIS-Interactive-Research-Ideation-System
comment: ACL 2025 (System Demonstration Track)
A Taxonomy of Questions for Critical Reflection in Machine-Assisted Decision-Making
Decision-makers run the risk of relying too much on machine recommendations, which is associated with lower cognitive engagement. Reflection has been shown to increase cognitive engagement and improve critical thinking and reasoning and therefore decision-making. However, there is currently no approach to support reflection in machine-assisted decision-making. We therefore present a taxonomy that serves to systematically create questions related to machine-assisted decision-making that promote reflection and thus cognitive engagement and ultimately a deliberate decision-making process. Our taxonomy builds on a taxonomy of Socratic questions and a question bank for human-centred explainable AI (XAI), and illustrates how XAI techniques can be utilised and repurposed to formulate questions. As a use case, we focus on clinical decision-making. An evaluation in education confirms the applicability and expected benefits of our taxonomy. Our work contributes to the growing research on human-AI interaction that goes beyond the paradigm of machine recommendations and explanations and aims to enable effective human oversight as required by the European AI Act.
Computer Vision and Pattern Recognition
REN: Fast and Efficient Region Encodings from Patch-Based Image Encoders
We introduce the Region Encoder Network (REN), a fast and effective model for generating region-based image representations using point prompts. Recent methods combine class-agnostic segmenters (e.g., SAM) with patch-based image encoders (e.g., DINO) to produce compact and effective region representations, but they suffer from high computational cost due to the segmentation step. REN bypasses this bottleneck using a lightweight module that directly generates region tokens, enabling 60x faster token generation with 35x less memory, while also improving token quality. It uses a few cross-attention blocks that take point prompts as queries and features from a patch-based image encoder as keys and values to produce region tokens that correspond to the prompted objects. We train REN with three popular encoders-DINO, DINOv2, and OpenCLIP-and show that it can be extended to other encoders without dedicated training. We evaluate REN on semantic segmentation and retrieval tasks, where it consistently outperforms the original encoders in both performance and compactness, and matches or exceeds SAM-based region methods while being significantly faster. Notably, REN achieves state-of-the-art results on the challenging Ego4D VQ2D benchmark and outperforms proprietary LMMs on Visual Haystacks' single-needle challenge. Code and models are available at: https://github.com/savya08/REN.
WonderPlay: Dynamic 3D Scene Generation from a Single Image and Actions
WonderPlay is a novel framework integrating physics simulation with video generation for generating action-conditioned dynamic 3D scenes from a single image. While prior works are restricted to rigid body or simple elastic dynamics, WonderPlay features a hybrid generative simulator to synthesize a wide range of 3D dynamics. The hybrid generative simulator first uses a physics solver to simulate coarse 3D dynamics, which subsequently conditions a video generator to produce a video with finer, more realistic motion. The generated video is then used to update the simulated dynamic 3D scene, closing the loop between the physics solver and the video generator. This approach enables intuitive user control to be combined with the accurate dynamics of physics-based simulators and the expressivity of diffusion-based video generators. Experimental results demonstrate that WonderPlay enables users to interact with various scenes of diverse content, including cloth, sand, snow, liquid, smoke, elastic, and rigid bodies -- all using a single image input. Code will be made public. Project website: https://kyleleey.github.io/WonderPlay/
comment: The first two authors contributed equally. Project website: https://kyleleey.github.io/WonderPlay/
TokBench: Evaluating Your Visual Tokenizer before Visual Generation
In this work, we reveal the limitations of visual tokenizers and VAEs in preserving fine-grained features, and propose a benchmark to evaluate reconstruction performance for two challenging visual contents: text and face. Image tokenization has significantly advanced visual generation and multimodal modeling, particularly with autoregressive models due to the modeling simplicity of discrete tokens. Autoregressive models typically rely on image tokenizers to compress images into discrete tokens for sequential prediction, whereas diffusion models often operate on continuous latent space to reduce computational costs. However, both visual compression approaches inevitably lose visual information, thereby limiting the upper bound of visual generation quality. To evaluate how these compression losses affect text and faces, the most human-sensitive visual elements, we first collect and curate a collection of text and faces images from existing datasets, ensuring clarity and diversity. For text reconstruction, we employ OCR models to assess the recognition accuracy of the reconstructed text, and then we measure feature similarity between original and reconstructed faces thereby quantifying faces reconstruction fidelity. Our method is highly lightweight, requiring just 2GB memory and 4 minutes to complete evaluations. With our benchmark, we analyze the reconstruction quality of text and faces at various scales across different image tokenizers and VAEs. Our results demonstrate that modern visual tokenizers still struggle to preserve fine-grained features, particularly at smaller scales. Furthermore, we extend this evaluation framework to the video, conducting a comprehensive analysis of video tokenizers. Additionally, we find that traditional metrics fail to accurately reflect the reconstruction performance for faces and text, while our proposed metrics serve as an effective complement.
comment: Benchmark, homepagee: https://wjf5203.github.io/TokBench
Boosting Open Set Recognition Performance through Modulated Representation Learning
The open set recognition (OSR) problem aims to identify test samples from novel semantic classes that are not part of the training classes, a task that is crucial in many practical scenarios. However, existing OSR methods use a constant scaling factor (the temperature) to the logits before applying a loss function, which hinders the model from exploring both ends of the spectrum in representation learning -- from instance-level to semantic-level features. In this paper, we address this problem by enabling temperature-modulated representation learning using our novel negative cosine scheduling scheme. Our scheduling lets the model form a coarse decision boundary at the beginning of training by focusing on fewer neighbors, and gradually prioritizes more neighbors to smooth out rough edges. This gradual task switching leads to a richer and more generalizable representation space. While other OSR methods benefit by including regularization or auxiliary negative samples, such as with mix-up, thereby adding a significant computational overhead, our scheme can be folded into any existing OSR method with no overhead. We implement the proposed scheme on top of a number of baselines, using both cross-entropy and contrastive loss functions as well as a few other OSR methods, and find that our scheme boosts both the OSR performance and the closed set performance in most cases, especially on the tougher semantic shift benchmarks.
VideoGameBench: Can Vision-Language Models complete popular video games?
Vision-language models (VLMs) have achieved strong results on coding and math benchmarks that are challenging for humans, yet their ability to perform tasks that come naturally to humans--such as perception, spatial navigation, and memory management--remains understudied. Real video games are crafted to be intuitive for humans to learn and master by leveraging innate inductive biases, making them an ideal testbed for evaluating such capabilities in VLMs. To this end, we introduce VideoGameBench, a benchmark consisting of 10 popular video games from the 1990s that VLMs directly interact with in real-time. VideoGameBench challenges models to complete entire games with access to only raw visual inputs and a high-level description of objectives and controls, a significant departure from existing setups that rely on game-specific scaffolding and auxiliary information. We keep three of the games secret to encourage solutions that generalize to unseen environments. Our experiments show that frontier vision-language models struggle to progress beyond the beginning of each game. We find inference latency to be a major limitation of frontier models in the real-time setting; therefore, we introduce VideoGameBench Lite, a setting where the game pauses while waiting for the LM's next action. The best performing model, Gemini 2.5 Pro, completes only 0.48% of VideoGameBench and 1.6% of VideoGameBench Lite. We hope that the formalization of the human skills mentioned above into this benchmark motivates progress in these research directions.
comment: 9 pages, 33 pages including supplementary
BiggerGait: Unlocking Gait Recognition with Layer-wise Representations from Large Vision Models
Large vision models (LVM) based gait recognition has achieved impressive performance. However, existing LVM-based approaches may overemphasize gait priors while neglecting the intrinsic value of LVM itself, particularly the rich, distinct representations across its multi-layers. To adequately unlock LVM's potential, this work investigates the impact of layer-wise representations on downstream recognition tasks. Our analysis reveals that LVM's intermediate layers offer complementary properties across tasks, integrating them yields an impressive improvement even without rich well-designed gait priors. Building on this insight, we propose a simple and universal baseline for LVM-based gait recognition, termed BiggerGait. Comprehensive evaluations on CCPG, CAISA-B*, SUSTech1K, and CCGR\_MINI validate the superiority of BiggerGait across both within- and cross-domain tasks, establishing it as a simple yet practical baseline for gait representation learning. All the models and code will be publicly available.
One RL to See Them All: Visual Triple Unified Reinforcement Learning
Reinforcement learning (RL) has significantly advanced the reasoning capabilities of vision-language models (VLMs). However, the use of RL beyond reasoning tasks remains largely unexplored, especially for perceptionintensive tasks like object detection and grounding. We propose V-Triune, a Visual Triple Unified Reinforcement Learning system that enables VLMs to jointly learn visual reasoning and perception tasks within a single training pipeline. V-Triune comprises triple complementary components: Sample-Level Data Formatting (to unify diverse task inputs), Verifier-Level Reward Computation (to deliver custom rewards via specialized verifiers) , and Source-Level Metric Monitoring (to diagnose problems at the data-source level). We further introduce a novel Dynamic IoU reward, which provides adaptive, progressive, and definite feedback for perception tasks handled by V-Triune. Our approach is instantiated within off-the-shelf RL training framework using open-source 7B and 32B backbone models. The resulting model, dubbed Orsta (One RL to See Them All), demonstrates consistent improvements across both reasoning and perception tasks. This broad capability is significantly shaped by its training on a diverse dataset, constructed around four representative visual reasoning tasks (Math, Puzzle, Chart, and Science) and four visual perception tasks (Grounding, Detection, Counting, and OCR). Subsequently, Orsta achieves substantial gains on MEGA-Bench Core, with improvements ranging from +2.1 to an impressive +14.1 across its various 7B and 32B model variants, with performance benefits extending to a wide range of downstream tasks. These results highlight the effectiveness and scalability of our unified RL approach for VLMs. The V-Triune system, along with the Orsta models, is publicly available at https://github.com/MiniMax-AI.
comment: Technical Report
Instructify: Demystifying Metadata to Visual Instruction Tuning Data Conversion
Visual Instruction Tuning (VisIT) data, commonly available as human-assistant conversations with images interleaved in the human turns, are currently the most widespread vehicle for aligning strong LLMs to understand visual inputs, converting them to strong LMMs. While many VisIT datasets are available, most are constructed using ad-hoc techniques developed independently by different groups. They are often poorly documented, lack reproducible code, and rely on paid, closed-source model APIs such as GPT-4, Gemini, or Claude to convert image metadata (labels) into VisIT instructions. This leads to high costs and makes it challenging to scale, enhance quality, or generate VisIT data for new datasets. In this work, we address these challenges and propose an open and unified recipe and approach,~\textbf{\method}, for converting available metadata to VisIT instructions using open LLMs. Our multi-stage \method features an efficient framework for metadata grouping, quality control, data and prompt organization, and conversation sampling. We show that our approach can reproduce or enhance the data quality of available VisIT datasets when applied to the same image data and metadata sources, improving GPT-4 generated VisIT instructions by ~3\% on average and up to 12\% on individual benchmarks using open models, such as Gemma 2 27B and LLaMa 3.1 70B. Additionally, our approach enables effective performance scaling - both in quantity and quality - by enhancing the resulting LMM performance across a wide range of benchmarks. We also analyze the impact of various factors, including conversation format, base model selection, and resampling strategies. Our code, which supports the reproduction of equal or higher-quality VisIT datasets and facilities future metadata-to-VisIT data conversion for niche domains, is released at https://github.com/jacob-hansen/Instructify.
Adapting SAM 2 for Visual Object Tracking: 1st Place Solution for MMVPR Challenge Multi-Modal Tracking ICPR
We present an effective approach for adapting the Segment Anything Model 2 (SAM2) to the Visual Object Tracking (VOT) task. Our method leverages the powerful pre-trained capabilities of SAM2 and incorporates several key techniques to enhance its performance in VOT applications. By combining SAM2 with our proposed optimizations, we achieved a first place AUC score of 89.4 on the 2024 ICPR Multi-modal Object Tracking challenge, demonstrating the effectiveness of our approach. This paper details our methodology, the specific enhancements made to SAM2, and a comprehensive analysis of our results in the context of VOT solutions along with the multi-modality aspect of the dataset.
comment: Accepted by ICPR Multi-Modal Visual Pattern Recognition Workshop
Accelerating Learned Image Compression Through Modeling Neural Training Dynamics
As learned image compression (LIC) methods become increasingly computationally demanding, enhancing their training efficiency is crucial. This paper takes a step forward in accelerating the training of LIC methods by modeling the neural training dynamics. We first propose a Sensitivity-aware True and Dummy Embedding Training mechanism (STDET) that clusters LIC model parameters into few separate modes where parameters are expressed as affine transformations of reference parameters within the same mode. By further utilizing the stable intra-mode correlations throughout training and parameter sensitivities, we gradually embed non-reference parameters, reducing the number of trainable parameters. Additionally, we incorporate a Sampling-then-Moving Average (SMA) technique, interpolating sampled weights from stochastic gradient descent (SGD) training to obtain the moving average weights, ensuring smooth temporal behavior and minimizing training state variances. Overall, our method significantly reduces training space dimensions and the number of trainable parameters without sacrificing model performance, thus accelerating model convergence. We also provide a theoretical analysis on the Noisy quadratic model, showing that the proposed method achieves a lower training variance than standard SGD. Our approach offers valuable insights for further developing efficient training methods for LICs.
comment: Accepted to TMLR
F-ANcGAN: An Attention-Enhanced Cycle Consistent Generative Adversarial Architecture for Synthetic Image Generation of Nanoparticles
Nanomaterial research is becoming a vital area for energy, medicine, and materials science, and accurate analysis of the nanoparticle topology is essential to determine their properties. Unfortunately, the lack of high-quality annotated datasets drastically hinders the creation of strong segmentation models for nanoscale imaging. To alleviate this problem, we introduce F-ANcGAN, an attention-enhanced cycle consistent generative adversarial system that can be trained using a limited number of data samples and generates realistic scanning electron microscopy (SEM) images directly from segmentation maps. Our model uses a Style U-Net generator and a U-Net segmentation network equipped with self-attention to capture structural relationships and applies augmentation methods to increase the variety of the dataset. The architecture reached a raw FID score of 17.65 for TiO$_2$ dataset generation, with a further reduction in FID score to nearly 10.39 by using efficient post-processing techniques. By facilitating scalable high-fidelity synthetic dataset generation, our approach can improve the effectiveness of downstream segmentation task training, overcoming severe data shortage issues in nanoparticle analysis, thus extending its applications to resource-limited fields.
comment: 11 pages, 9 figures, 2 tables, conference paper
Towards more transferable adversarial attack in black-box manner
Adversarial attacks have become a well-explored domain, frequently serving as evaluation baselines for model robustness. Among these, black-box attacks based on transferability have received significant attention due to their practical applicability in real-world scenarios. Traditional black-box methods have generally focused on improving the optimization framework (e.g., utilizing momentum in MI-FGSM) to enhance transferability, rather than examining the dependency on surrogate white-box model architectures. Recent state-of-the-art approach DiffPGD has demonstrated enhanced transferability by employing diffusion-based adversarial purification models for adaptive attacks. The inductive bias of diffusion-based adversarial purification aligns naturally with the adversarial attack process, where both involving noise addition, reducing dependency on surrogate white-box model selection. However, the denoising process of diffusion models incurs substantial computational costs through chain rule derivation, manifested in excessive VRAM consumption and extended runtime. This progression prompts us to question whether introducing diffusion models is necessary. We hypothesize that a model sharing similar inductive bias to diffusion-based adversarial purification, combined with an appropriate loss function, could achieve comparable or superior transferability while dramatically reducing computational overhead. In this paper, we propose a novel loss function coupled with a unique surrogate model to validate our hypothesis. Our approach leverages the score of the time-dependent classifier from classifier-guided diffusion models, effectively incorporating natural data distribution knowledge into the adversarial optimization process. Experimental results demonstrate significantly improved transferability across diverse model architectures while maintaining robustness against diffusion-based defenses.
DualTalk: Dual-Speaker Interaction for 3D Talking Head Conversations CVPR 2025
In face-to-face conversations, individuals need to switch between speaking and listening roles seamlessly. Existing 3D talking head generation models focus solely on speaking or listening, neglecting the natural dynamics of interactive conversation, which leads to unnatural interactions and awkward transitions. To address this issue, we propose a new task -- multi-round dual-speaker interaction for 3D talking head generation -- which requires models to handle and generate both speaking and listening behaviors in continuous conversation. To solve this task, we introduce DualTalk, a novel unified framework that integrates the dynamic behaviors of speakers and listeners to simulate realistic and coherent dialogue interactions. This framework not only synthesizes lifelike talking heads when speaking but also generates continuous and vivid non-verbal feedback when listening, effectively capturing the interplay between the roles. We also create a new dataset featuring 50 hours of multi-round conversations with over 1,000 characters, where participants continuously switch between speaking and listening roles. Extensive experiments demonstrate that our method significantly enhances the naturalness and expressiveness of 3D talking heads in dual-speaker conversations. We recommend watching the supplementary video: https://ziqiaopeng.github.io/dualtalk.
comment: Accepted by CVPR 2025
CXReasonBench: A Benchmark for Evaluating Structured Diagnostic Reasoning in Chest X-rays
Recent progress in Large Vision-Language Models (LVLMs) has enabled promising applications in medical tasks, such as report generation and visual question answering. However, existing benchmarks focus mainly on the final diagnostic answer, offering limited insight into whether models engage in clinically meaningful reasoning. To address this, we present CheXStruct and CXReasonBench, a structured pipeline and benchmark built on the publicly available MIMIC-CXR-JPG dataset. CheXStruct automatically derives a sequence of intermediate reasoning steps directly from chest X-rays, such as segmenting anatomical regions, deriving anatomical landmarks and diagnostic measurements, computing diagnostic indices, and applying clinical thresholds. CXReasonBench leverages this pipeline to evaluate whether models can perform clinically valid reasoning steps and to what extent they can learn from structured guidance, enabling fine-grained and transparent assessment of diagnostic reasoning. The benchmark comprises 18,988 QA pairs across 12 diagnostic tasks and 1,200 cases, each paired with up to 4 visual inputs, and supports multi-path, multi-stage evaluation including visual grounding via anatomical region selection and diagnostic measurements. Even the strongest of 10 evaluated LVLMs struggle with structured reasoning and generalization, often failing to link abstract knowledge with anatomically grounded visual interpretation. The code is available at https://github.com/ttumyche/CXReasonBench
Deep Video Discovery: Agentic Search with Tool Use for Long-form Video Understanding
Long-form video understanding presents significant challenges due to extensive temporal-spatial complexity and the difficulty of question answering under such extended contexts. While Large Language Models (LLMs) have demonstrated considerable advancements in video analysis capabilities and long context handling, they continue to exhibit limitations when processing information-dense hour-long videos. To overcome such limitations, we propose the Deep Video Discovery agent to leverage an agentic search strategy over segmented video clips. Different from previous video agents manually designing a rigid workflow, our approach emphasizes the autonomous nature of agents. By providing a set of search-centric tools on multi-granular video database, our DVD agent leverages the advanced reasoning capability of LLM to plan on its current observation state, strategically selects tools, formulates appropriate parameters for actions, and iteratively refines its internal reasoning in light of the gathered information. We perform comprehensive evaluation on multiple long video understanding benchmarks that demonstrates the advantage of the entire system design. Our DVD agent achieves SOTA performance, significantly surpassing prior works by a large margin on the challenging LVBench dataset. Comprehensive ablation studies and in-depth tool analyses are also provided, yielding insights to further advance intelligent agents tailored for long-form video understanding tasks. The code will be released later.
comment: Under review
DanceTogether! Identity-Preserving Multi-Person Interactive Video Generation
Controllable video generation (CVG) has advanced rapidly, yet current systems falter when more than one actor must move, interact, and exchange positions under noisy control signals. We address this gap with DanceTogether, the first end-to-end diffusion framework that turns a single reference image plus independent pose-mask streams into long, photorealistic videos while strictly preserving every identity. A novel MaskPoseAdapter binds "who" and "how" at every denoising step by fusing robust tracking masks with semantically rich-but noisy-pose heat-maps, eliminating the identity drift and appearance bleeding that plague frame-wise pipelines. To train and evaluate at scale, we introduce (i) PairFS-4K, 26 hours of dual-skater footage with 7,000+ distinct IDs, (ii) HumanRob-300, a one-hour humanoid-robot interaction set for rapid cross-domain transfer, and (iii) TogetherVideoBench, a three-track benchmark centered on the DanceTogEval-100 test suite covering dance, boxing, wrestling, yoga, and figure skating. On TogetherVideoBench, DanceTogether outperforms the prior arts by a significant margin. Moreover, we show that a one-hour fine-tune yields convincing human-robot videos, underscoring broad generalization to embodied-AI and HRI tasks. Extensive ablations confirm that persistent identity-action binding is critical to these gains. Together, our model, datasets, and benchmark lift CVG from single-subject choreography to compositionally controllable, multi-actor interaction, opening new avenues for digital production, simulation, and embodied intelligence. Our video demos and code are available at https://DanceTog.github.io/.
comment: Our video demos and code are available at https://DanceTog.github.io/
Semantic Correspondence: Unified Benchmarking and a Strong Baseline
Establishing semantic correspondence is a challenging task in computer vision, aiming to match keypoints with the same semantic information across different images. Benefiting from the rapid development of deep learning, remarkable progress has been made over the past decade. However, a comprehensive review and analysis of this task remains absent. In this paper, we present the first extensive survey of semantic correspondence methods. We first propose a taxonomy to classify existing methods based on the type of their method designs. These methods are then categorized accordingly, and we provide a detailed analysis of each approach. Furthermore, we aggregate and summarize the results of methods in literature across various benchmarks into a unified comparative table, with detailed configurations to highlight performance variations. Additionally, to provide a detailed understanding on existing methods for semantic matching, we thoroughly conduct controlled experiments to analyse the effectiveness of the components of different methods. Finally, we propose a simple yet effective baseline that achieves state-of-the-art performance on multiple benchmarks, providing a solid foundation for future research in this field. We hope this survey serves as a comprehensive reference and consolidated baseline for future development. Code is publicly available at: https://github.com/Visual-AI/Semantic-Correspondence.
A Foundation Model Framework for Multi-View MRI Classification of Extramural Vascular Invasion and Mesorectal Fascia Invasion in Rectal Cancer
Background: Accurate MRI-based identification of extramural vascular invasion (EVI) and mesorectal fascia invasion (MFI) is pivotal for risk-stratified management of rectal cancer, yet visual assessment is subjective and vulnerable to inter-institutional variability. Purpose: To develop and externally evaluate a multicenter, foundation-model-driven framework that automatically classifies EVI and MFI on axial and sagittal T2-weighted MRI. Methods: This retrospective study used 331 pre-treatment rectal cancer MRI examinations from three European hospitals. After TotalSegmentator-guided rectal patch extraction, a self-supervised frequency-domain harmonization pipeline was trained to minimize scanner-related contrast shifts. Four classifiers were compared: ResNet50, SeResNet, the universal biomedical pretrained transformer (UMedPT) with a lightweight MLP head, and a logistic-regression variant using frozen UMedPT features (UMedPT_LR). Results: UMedPT_LR achieved the best EVI detection when axial and sagittal features were fused (AUC = 0.82; sensitivity = 0.75; F1 score = 0.73), surpassing the Chaimeleon Grand-Challenge winner (AUC = 0.74). The highest MFI performance was attained by UMedPT on axial harmonized images (AUC = 0.77), surpassing the Chaimeleon Grand-Challenge winner (AUC = 0.75). Frequency-domain harmonization improved MFI classification but variably affected EVI performance. Conventional CNNs (ResNet50, SeResNet) underperformed, especially in F1 score and balanced accuracy. Conclusion: These findings demonstrate that combining foundation model features, harmonization, and multi-view fusion significantly enhances diagnostic performance in rectal MRI.
comment: 22 pages, 8 figures
FDBPL: Faster Distillation-Based Prompt Learning for Region-Aware Vision-Language Models Adaptation
Prompt learning as a parameter-efficient method that has been widely adopted to adapt Vision-Language Models (VLMs) to downstream tasks. While hard-prompt design requires domain expertise and iterative optimization, soft-prompt methods rely heavily on task-specific hard labels, limiting their generalization to unseen categories. Recent popular distillation-based prompt learning methods improve generalization by exploiting larger teacher VLMs and unsupervised knowledge transfer, yet their repetitive teacher model online inference sacrifices the inherent training efficiency advantage of prompt learning. In this paper, we propose {{\large {\textbf{F}}}}aster {{\large {\textbf{D}}}}istillation-{{\large {\textbf{B}}}}ased {{\large {\textbf{P}}}}rompt {{\large {\textbf{L}}}}earning (\textbf{FDBPL}), which addresses these issues by sharing soft supervision contexts across multiple training stages and implementing accelerated I/O. Furthermore, FDBPL introduces a region-aware prompt learning paradigm with dual positive-negative prompt spaces to fully exploit randomly cropped regions that containing multi-level information. We propose a positive-negative space mutual learning mechanism based on similarity-difference learning, enabling student CLIP models to recognize correct semantics while learning to reject weakly related concepts, thereby improving zero-shot performance. Unlike existing distillation-based prompt learning methods that sacrifice parameter efficiency for generalization, FDBPL maintains dual advantages of parameter efficiency and strong downstream generalization. Comprehensive evaluations across 11 datasets demonstrate superior performance in base-to-new generalization, cross-dataset transfer, and robustness tests, achieving $2.2\times$ faster training speed.
BOTM: Echocardiography Segmentation via Bi-directional Optimal Token Matching
Existed echocardiography segmentation methods often suffer from anatomical inconsistency challenge caused by shape variation, partial observation and region ambiguity with similar intensity across 2D echocardiographic sequences, resulting in false positive segmentation with anatomical defeated structures in challenging low signal-to-noise ratio conditions. To provide a strong anatomical guarantee across different echocardiographic frames, we propose a novel segmentation framework named BOTM (Bi-directional Optimal Token Matching) that performs echocardiography segmentation and optimal anatomy transportation simultaneously. Given paired echocardiographic images, BOTM learns to match two sets of discrete image tokens by finding optimal correspondences from a novel anatomical transportation perspective. We further extend the token matching into a bi-directional cross-transport attention proxy to regulate the preserved anatomical consistency within the cardiac cyclic deformation in temporal domain. Extensive experimental results show that BOTM can generate stable and accurate segmentation outcomes (e.g. -1.917 HD on CAMUS2H LV, +1.9% Dice on TED), and provide a better matching interpretation with anatomical consistency guarantee.
LookWhere? Efficient Visual Recognition by Learning Where to Look and What to See from Self-Supervision
Vision transformers are ever larger, more accurate, and more expensive to compute. The expense is even more extreme at high resolution as the number of tokens grows quadratically with the image size. We turn to adaptive computation to cope with this cost by learning to predict where to compute. Our LookWhere method divides the computation between a low-resolution selector and a high-resolution extractor without ever processing the full high-resolution input. We jointly pretrain the selector and extractor without task supervision by distillation from a self-supervised teacher, in effect, learning where and what to compute simultaneously. Unlike prior token reduction methods, which pay to save by pruning already-computed tokens, and prior token selection methods, which require complex and expensive per-task optimization, LookWhere economically and accurately selects and extracts transferrable representations of images. We show that LookWhere excels at sparse recognition on high-resolution inputs (Traffic Signs), maintaining accuracy while reducing FLOPs by up to 34x and time by 6x. It also excels at standard recognition tasks that are global (ImageNet classification) or local (ADE20K segmentation), improving accuracy while reducing time by 1.36x.
SpikeGen: Generative Framework for Visual Spike Stream Processing
Neuromorphic Visual Systems, such as spike cameras, have attracted considerable attention due to their ability to capture clear textures under dynamic conditions. This capability effectively mitigates issues related to motion and aperture blur. However, in contrast to conventional RGB modalities that provide dense spatial information, these systems generate binary, spatially sparse frames as a trade-off for temporally rich visual streams. In this context, generative models emerge as a promising solution to address the inherent limitations of sparse data. These models not only facilitate the conditional fusion of existing information from both spike and RGB modalities but also enable the conditional generation based on latent priors. In this study, we introduce a robust generative processing framework named SpikeGen, designed for visual spike streams captured by spike cameras. We evaluate this framework across multiple tasks involving mixed spike-RGB modalities, including conditional image/video deblurring, dense frame reconstruction from spike streams, and high-speed scene novel-view synthesis. Supported by comprehensive experimental results, we demonstrate that leveraging the latent space operation abilities of generative models allows us to effectively address the sparsity of spatial information while fully exploiting the temporal richness of spike streams, thereby promoting a synergistic enhancement of different visual modalities.
SHARDeg: A Benchmark for Skeletal Human Action Recognition in Degraded Scenarios
Computer vision (CV) models for detection, prediction or classification tasks operate on video data-streams that are often degraded in the real world, due to deployment in real-time or on resource-constrained hardware. It is therefore critical that these models are robust to degraded data, but state of the art (SoTA) models are often insufficiently assessed with these real-world constraints in mind. This is exemplified by Skeletal Human Action Recognition (SHAR), which is critical in many CV pipelines operating in real-time and at the edge, but robustness to degraded data has previously only been shallowly and inconsistently assessed. Here we address this issue for SHAR by providing an important first data degradation benchmark on the most detailed and largest 3D open dataset, NTU-RGB+D-120, and assess the robustness of five leading SHAR models to three forms of degradation that represent real-world issues. We demonstrate the need for this benchmark by showing that the form of degradation, which has not previously been considered, has a large impact on model accuracy; at the same effective frame rate, model accuracy can vary by >40% depending on degradation type. We also identify that temporal regularity of frames in degraded SHAR data is likely a major driver of differences in model performance, and harness this to improve performance of existing models by up to >40%, through employing a simple mitigation approach based on interpolation. Finally, we highlight how our benchmark has helped identify an important degradation-resistant SHAR model based in Rough Path Theory; the LogSigRNN SHAR model outperforms the SoTA DeGCN model in five out of six cases at low frame rates by an average accuracy of 6%, despite trailing the SoTA model by 11-12% on un-degraded data at high frame rates (30 FPS).
comment: 19 pages, 2 images
RestoreVAR: Visual Autoregressive Generation for All-in-One Image Restoration
The use of latent diffusion models (LDMs) such as Stable Diffusion has significantly improved the perceptual quality of All-in-One image Restoration (AiOR) methods, while also enhancing their generalization capabilities. However, these LDM-based frameworks suffer from slow inference due to their iterative denoising process, rendering them impractical for time-sensitive applications. To address this, we propose RestoreVAR, a novel generative approach for AiOR that significantly outperforms LDM-based models in restoration performance while achieving over $\mathbf{10\times}$ faster inference. RestoreVAR leverages visual autoregressive modeling (VAR), a recently introduced approach which performs scale-space autoregression for image generation. VAR achieves comparable performance to that of state-of-the-art diffusion transformers with drastically reduced computational costs. To optimally exploit these advantages of VAR for AiOR, we propose architectural modifications and improvements, including intricately designed cross-attention mechanisms and a latent-space refinement module, tailored for the AiOR task. Extensive experiments show that RestoreVAR achieves state-of-the-art performance among generative AiOR methods, while also exhibiting strong generalization capabilities.
comment: Project page: https://sudraj2002.github.io/restorevarpage/
Clip4Retrofit: Enabling Real-Time Image Labeling on Edge Devices via Cross-Architecture CLIP Distillation
Foundation models like CLIP (Contrastive Language-Image Pretraining) have revolutionized vision-language tasks by enabling zero-shot and few-shot learning through cross-modal alignment. However, their computational complexity and large memory footprint make them unsuitable for deployment on resource-constrained edge devices, such as in-car cameras used for image collection and real-time processing. To address this challenge, we propose Clip4Retrofit, an efficient model distillation framework that enables real-time image labeling on edge devices. The framework is deployed on the Retrofit camera, a cost-effective edge device retrofitted into thousands of vehicles, despite strict limitations on compute performance and memory. Our approach distills the knowledge of the CLIP model into a lightweight student model, combining EfficientNet-B3 with multi-layer perceptron (MLP) projection heads to preserve cross-modal alignment while significantly reducing computational requirements. We demonstrate that our distilled model achieves a balance between efficiency and performance, making it ideal for deployment in real-world scenarios. Experimental results show that Clip4Retrofit can perform real-time image labeling and object identification on edge devices with limited resources, offering a practical solution for applications such as autonomous driving and retrofitting existing systems. This work bridges the gap between state-of-the-art vision-language models and their deployment in resource-constrained environments, paving the way for broader adoption of foundation models in edge computing.
CAMME: Adaptive Deepfake Image Detection with Multi-Modal Cross-Attention
The proliferation of sophisticated AI-generated deepfakes poses critical challenges for digital media authentication and societal security. While existing detection methods perform well within specific generative domains, they exhibit significant performance degradation when applied to manipulations produced by unseen architectures--a fundamental limitation as generative technologies rapidly evolve. We propose CAMME (Cross-Attention Multi-Modal Embeddings), a framework that dynamically integrates visual, textual, and frequency-domain features through a multi-head cross-attention mechanism to establish robust cross-domain generalization. Extensive experiments demonstrate CAMME's superiority over state-of-the-art methods, yielding improvements of 12.56% on natural scenes and 13.25% on facial deepfakes. The framework demonstrates exceptional resilience, maintaining (over 91%) accuracy under natural image perturbations and achieving 89.01% and 96.14% accuracy against PGD and FGSM adversarial attacks, respectively. Our findings validate that integrating complementary modalities through cross-attention enables more effective decision boundary realignment for reliable deepfake detection across heterogeneous generative architectures.
comment: 20 pages, 8 figures, 12 Tables
Mahalanobis++: Improving OOD Detection via Feature Normalization
Detecting out-of-distribution (OOD) examples is an important task for deploying reliable machine learning models in safety-critial applications. While post-hoc methods based on the Mahalanobis distance applied to pre-logit features are among the most effective for ImageNet-scale OOD detection, their performance varies significantly across models. We connect this inconsistency to strong variations in feature norms, indicating severe violations of the Gaussian assumption underlying the Mahalanobis distance estimation. We show that simple $\ell_2$-normalization of the features mitigates this problem effectively, aligning better with the premise of normally distributed data with shared covariance matrix. Extensive experiments on 44 models across diverse architectures and pretraining schemes show that $\ell_2$-normalization improves the conventional Mahalanobis distance-based approaches significantly and consistently, and outperforms other recently proposed OOD detection methods.
Knot So Simple: A Minimalistic Environment for Spatial Reasoning
We propose KnotGym, an interactive environment for complex, spatial reasoning and manipulation. KnotGym includes goal-oriented rope manipulation tasks with varying levels of complexity, all requiring acting from pure image observations. Tasks are defined along a clear and quantifiable axis of complexity based on the number of knot crossings, creating a natural generalization test. KnotGym has a simple observation space, allowing for scalable development, yet it highlights core challenges in integrating acute perception, spatial reasoning, and grounded manipulation. We evaluate methods of different classes, including model-based RL, model-predictive control, and chain-of-thought reasoning, and illustrate the challenges KnotGym presents. KnotGym is available at https://github.com/lil-lab/knotgym.
3D Face Reconstruction Error Decomposed: A Modular Benchmark for Fair and Fast Method Evaluation
Computing the standard benchmark metric for 3D face reconstruction, namely geometric error, requires a number of steps, such as mesh cropping, rigid alignment, or point correspondence. Current benchmark tools are monolithic (they implement a specific combination of these steps), even though there is no consensus on the best way to measure error. We present a toolkit for a Modularized 3D Face reconstruction Benchmark (M3DFB), where the fundamental components of error computation are segregated and interchangeable, allowing one to quantify the effect of each. Furthermore, we propose a new component, namely correction, and present a computationally efficient approach that penalizes for mesh topology inconsistency. Using this toolkit, we test 16 error estimators with 10 reconstruction methods on two real and two synthetic datasets. Critically, the widely used ICP-based estimator provides the worst benchmarking performance, as it significantly alters the true ranking of the top-5 reconstruction methods. Notably, the correlation of ICP with the true error can be as low as 0.41. Moreover, non-rigid alignment leads to significant improvement (correlation larger than 0.90), highlighting the importance of annotating 3D landmarks on datasets. Finally, the proposed correction scheme, together with non-rigid warping, leads to an accuracy on a par with the best non-rigid ICP-based estimators, but runs an order of magnitude faster. Our open-source codebase is designed for researchers to easily compare alternatives for each component, thus helping accelerating progress in benchmarking for 3D face reconstruction and, furthermore, supporting the improvement of learned reconstruction methods, which depend on accurate error estimation for effective training.
comment: To be published in IEEE International Conference on Automatic Face and Gesture Recognition, 2025
A Wavelet-based Stereo Matching Framework for Solving Frequency Convergence Inconsistency
We find that the EPE evaluation metrics of RAFT-stereo converge inconsistently in the low and high frequency regions, resulting high frequency degradation (e.g., edges and thin objects) during the iterative process. The underlying reason for the limited performance of current iterative methods is that it optimizes all frequency components together without distinguishing between high and low frequencies. We propose a wavelet-based stereo matching framework (Wavelet-Stereo) for solving frequency convergence inconsistency. Specifically, we first explicitly decompose an image into high and low frequency components using discrete wavelet transform. Then, the high-frequency and low-frequency components are fed into two different multi-scale frequency feature extractors. Finally, we propose a novel LSTM-based high-frequency preservation update operator containing an iterative frequency adapter to provide adaptive refined high-frequency features at different iteration steps by fine-tuning the initial high-frequency features. By processing high and low frequency components separately, our framework can simultaneously refine high-frequency information in edges and low-frequency information in smooth regions, which is especially suitable for challenging scenes with fine details and textures in the distance. Extensive experiments demonstrate that our Wavelet-Stereo outperforms the state-of-the-art methods and ranks 1st on both the KITTI 2015 and KITTI 2012 leaderboards for almost all metrics. We will provide code and pre-trained models to encourage further exploration, application, and development of our innovative framework (https://github.com/SIA-IDE/Wavelet-Stereo).
RemoteSAM: Towards Segment Anything for Earth Observation
We aim to develop a robust yet flexible visual foundation model for Earth observation. It should possess strong capabilities in recognizing and localizing diverse visual targets while providing compatibility with various input-output interfaces required across different task scenarios. Current systems cannot meet these requirements, as they typically utilize task-specific architecture trained on narrow data domains with limited semantic coverage. Our study addresses these limitations from two aspects: data and modeling. We first introduce an automatic data engine that enjoys significantly better scalability compared to previous human annotation or rule-based approaches. It has enabled us to create the largest dataset of its kind to date, comprising 270K image-text-mask triplets covering an unprecedented range of diverse semantic categories and attribute specifications. Based on this data foundation, we further propose a task unification paradigm that centers around referring expression segmentation. It effectively handles a wide range of vision-centric perception tasks, including classification, detection, segmentation, grounding, etc, using a single model without any task-specific heads. Combining these innovations on data and modeling, we present RemoteSAM, a foundation model that establishes new SoTA on several earth observation perception benchmarks, outperforming other foundation models such as Falcon, GeoChat, and LHRS-Bot with significantly higher efficiency. Models and data are publicly available at https://github.com/1e12Leon/RemoteSAM.
Building Floor Number Estimation from Crowdsourced Street-Level Images: Munich Dataset and Baseline Method
Accurate information on the number of building floors, or above-ground storeys, is essential for household estimation, utility provision, risk assessment, evacuation planning, and energy modeling. Yet large-scale floor-count data are rarely available in cadastral and 3D city databases. This study proposes an end-to-end deep learning framework that infers floor numbers directly from unrestricted, crowdsourced street-level imagery, avoiding hand-crafted features and generalizing across diverse facade styles. To enable benchmarking, we release the Munich Building Floor Dataset, a public set of over 6800 geo-tagged images collected from Mapillary and targeted field photography, each paired with a verified storey label. On this dataset, the proposed classification-regression network attains 81.2% exact accuracy and predicts 97.9% of buildings within +/-1 floor. The method and dataset together offer a scalable route to enrich 3D city models with vertical information and lay a foundation for future work in urban informatics, remote sensing, and geographic information science. Source code and data will be released under an open license at https://github.com/ya0-sun/Munich-SVI-Floor-Benchmark.
comment: Code and data: https://github.com/ya0-sun/Munich-SVI-Floor-Benchmark
SemSegBench & DetecBench: Benchmarking Reliability and Generalization Beyond Classification
Reliability and generalization in deep learning are predominantly studied in the context of image classification. Yet, real-world applications in safety-critical domains involve a broader set of semantic tasks, such as semantic segmentation and object detection, which come with a diverse set of dedicated model architectures. To facilitate research towards robust model design in segmentation and detection, our primary objective is to provide benchmarking tools regarding robustness to distribution shifts and adversarial manipulations. We propose the benchmarking tools SEMSEGBENCH and DETECBENCH, along with the most extensive evaluation to date on the reliability and generalization of semantic segmentation and object detection models. In particular, we benchmark 76 segmentation models across four datasets and 61 object detectors across two datasets, evaluating their performance under diverse adversarial attacks and common corruptions. Our findings reveal systematic weaknesses in state-of-the-art models and uncover key trends based on architecture, backbone, and model capacity. SEMSEGBENCH and DETECBENCH are open-sourced in our GitHub repository (https://github.com/shashankskagnihotri/benchmarking_reliability_generalization) along with our complete set of total 6139 evaluations. We anticipate the collected data to foster and encourage future research towards improved model reliability beyond classification.
comment: First seven listed authors have equal contribution. GitHub: https://github.com/shashankskagnihotri/benchmarking_reliability_generalization. arXiv admin note: text overlap with arXiv:2505.05091
Clinical Validation of Deep Learning for Real-Time Tissue Oxygenation Estimation Using Spectral Imaging MICCAI 2025
Accurate, real-time monitoring of tissue ischemia is crucial to understand tissue health and guide surgery. Spectral imaging shows great potential for contactless and intraoperative monitoring of tissue oxygenation. Due to the difficulty of obtaining direct reference oxygenation values, conventional methods are based on linear unmixing techniques. These are prone to assumptions and these linear relations may not always hold in practice. In this work, we present deep learning approaches for real-time tissue oxygenation estimation using Monte-Carlo simulated spectra. We train a fully connected neural network (FCN) and a convolutional neural network (CNN) for this task and propose a domain-adversarial training approach to bridge the gap between simulated and real clinical spectral data. Results demonstrate that these deep learning models achieve a higher correlation with capillary lactate measurements, a well-known marker of hypoxia, obtained during spectral imaging in surgery, compared to traditional linear unmixing. Notably, domain-adversarial training effectively reduces the domain gap, optimizing performance in real clinical settings.
comment: Provisionally accepted to the MICCAI 2025 conference
Segment Anyword: Mask Prompt Inversion for Open-Set Grounded Segmentation
Open-set image segmentation poses a significant challenge because existing methods often demand extensive training or fine-tuning and generally struggle to segment unified objects consistently across diverse text reference expressions. Motivated by this, we propose Segment Anyword, a novel training-free visual concept prompt learning approach for open-set language grounded segmentation that relies on token-level cross-attention maps from a frozen diffusion model to produce segmentation surrogates or mask prompts, which are then refined into targeted object masks. Initial prompts typically lack coherence and consistency as the complexity of the image-text increases, resulting in suboptimal mask fragments. To tackle this issue, we further introduce a novel linguistic-guided visual prompt regularization that binds and clusters visual prompts based on sentence dependency and syntactic structural information, enabling the extraction of robust, noise-tolerant mask prompts, and significant improvements in segmentation accuracy. The proposed approach is effective, generalizes across different open-set segmentation tasks, and achieves state-of-the-art results of 52.5 (+6.8 relative) mIoU on Pascal Context 59, 67.73 (+25.73 relative) cIoU on gRefCOCO, and 67.4 (+1.1 relative to fine-tuned methods) mIoU on GranDf, which is the most complex open-set grounded segmentation task in the field.
Canonical Pose Reconstruction from Single Depth Image for 3D Non-rigid Pose Recovery on Limited Datasets
3D reconstruction from 2D inputs, especially for non-rigid objects like humans, presents unique challenges due to the significant range of possible deformations. Traditional methods often struggle with non-rigid shapes, which require extensive training data to cover the entire deformation space. This study addresses these limitations by proposing a canonical pose reconstruction model that transforms single-view depth images of deformable shapes into a canonical form. This alignment facilitates shape reconstruction by enabling the application of rigid object reconstruction techniques, and supports recovering the input pose in voxel representation as part of the reconstruction task, utilizing both the original and deformed depth images. Notably, our model achieves effective results with only a small dataset of approximately 300 samples. Experimental results on animal and human datasets demonstrate that our model outperforms other state-of-the-art methods.
Few-Shot Learning from Gigapixel Images via Hierarchical Vision-Language Alignment and Modeling
Vision-language models (VLMs) have recently been integrated into multiple instance learning (MIL) frameworks to address the challenge of few-shot, weakly supervised classification of whole slide images (WSIs). A key trend involves leveraging multi-scale information to better represent hierarchical tissue structures. However, existing methods often face two key limitations: (1) insufficient modeling of interactions within the same modalities across scales (e.g., 5x and 20x) and (2) inadequate alignment between visual and textual modalities on the same scale. To address these gaps, we propose HiVE-MIL, a hierarchical vision-language framework that constructs a unified graph consisting of (1) parent-child links between coarse (5x) and fine (20x) visual/textual nodes to capture hierarchical relationships, and (2) heterogeneous intra-scale edges linking visual and textual nodes on the same scale. To further enhance semantic consistency, HiVE-MIL incorporates a two-stage, text-guided dynamic filtering mechanism that removes weakly correlated patch-text pairs, and introduces a hierarchical contrastive loss to align textual semantics across scales. Extensive experiments on TCGA breast, lung, and kidney cancer datasets demonstrate that HiVE-MIL consistently outperforms both traditional MIL and recent VLM-based MIL approaches, achieving gains of up to 4.1% in macro F1 under 16-shot settings. Our results demonstrate the value of jointly modeling hierarchical structure and multimodal alignment for efficient and scalable learning from limited pathology data. The code is available at https://github.com/bryanwong17/HiVE-MIL
To Glue or Not to Glue? Classical vs Learned Image Matching for Mobile Mapping Cameras to Textured Semantic 3D Building Models SP
Feature matching is a necessary step for many computer vision and photogrammetry applications such as image registration, structure-from-motion, and visual localization. Classical handcrafted methods such as SIFT feature detection and description combined with nearest neighbour matching and RANSAC outlier removal have been state-of-the-art for mobile mapping cameras. With recent advances in deep learning, learnable methods have been introduced and proven to have better robustness and performance under complex conditions. Despite their growing adoption, a comprehensive comparison between classical and learnable feature matching methods for the specific task of semantic 3D building camera-to-model matching is still missing. This submission systematically evaluates the effectiveness of different feature-matching techniques in visual localization using textured CityGML LoD2 models. We use standard benchmark datasets (HPatches, MegaDepth-1500) and custom datasets consisting of facade textures and corresponding camera images (terrestrial and drone). For the latter, we evaluate the achievable accuracy of the absolute pose estimated using a Perspective-n-Point (PnP) algorithm, with geometric ground truth derived from geo-referenced trajectory data. The results indicate that the learnable feature matching methods vastly outperform traditional approaches regarding accuracy and robustness on our challenging custom datasets with zero to 12 RANSAC-inliers and zero to 0.16 area under the curve. We believe that this work will foster the development of model-based visual localization methods. Link to the code: https://github.com/simBauer/To\_Glue\_or\_not\_to\_Glue
comment: Accepted to MMT, Xiamen, China; ISPRS Annals
MR-EEGWaveNet: Multiresolutional EEGWaveNet for Seizure Detection from Long EEG Recordings
Feature engineering for generalized seizure detection models remains a significant challenge. Recently proposed models show variable performance depending on the training data and remain ineffective at accurately distinguishing artifacts from seizure data. In this study, we propose a novel end-to-end model, ''Multiresolutional EEGWaveNet (MR-EEGWaveNet),'' which efficiently distinguishes seizure events from background electroencephalogram (EEG) and artifacts/noise by capturing both temporal dependencies across different time frames and spatial relationships between channels. The model has three modules: convolution, feature extraction, and predictor. The convolution module extracts features through depth-wise and spatio-temporal convolution. The feature extraction module individually reduces the feature dimension extracted from EEG segments and their sub-segments. Subsequently, the extracted features are concatenated into a single vector for classification using a fully connected classifier called the predictor module. In addition, an anomaly score-based post-classification processing technique was introduced to reduce the false-positive rates of the model. Experimental results were reported and analyzed using different parameter settings and datasets (Siena (public) and Juntendo (private)). The proposed MR-EEGWaveNet significantly outperformed the conventional non-multiresolution approach, improving the F1 scores from 0.177 to 0.336 on Siena and 0.327 to 0.488 on Juntendo, with precision gains of 15.9% and 20.62%, respectively.
comment: 26 pages, 6 figures, 12 tables
Explainable Anatomy-Guided AI for Prostate MRI: Foundation Models and In Silico Clinical Trials for Virtual Biopsy-based Risk Assessment
We present a fully automated, anatomically guided deep learning pipeline for prostate cancer (PCa) risk stratification using routine MRI. The pipeline integrates three key components: an nnU-Net module for segmenting the prostate gland and its zones on axial T2-weighted MRI; a classification module based on the UMedPT Swin Transformer foundation model, fine-tuned on 3D patches with optional anatomical priors and clinical data; and a VAE-GAN framework for generating counterfactual heatmaps that localize decision-driving image regions. The system was developed using 1,500 PI-CAI cases for segmentation and 617 biparametric MRIs with metadata from the CHAIMELEON challenge for classification (split into 70% training, 10% validation, and 20% testing). Segmentation achieved mean Dice scores of 0.95 (gland), 0.94 (peripheral zone), and 0.92 (transition zone). Incorporating gland priors improved AUC from 0.69 to 0.72, with a three-scale ensemble achieving top performance (AUC = 0.79, composite score = 0.76), outperforming the 2024 CHAIMELEON challenge winners. Counterfactual heatmaps reliably highlighted lesions within segmented regions, enhancing model interpretability. In a prospective multi-center in-silico trial with 20 clinicians, AI assistance increased diagnostic accuracy from 0.72 to 0.77 and Cohen's kappa from 0.43 to 0.53, while reducing review time per case by 40%. These results demonstrate that anatomy-aware foundation models with counterfactual explainability can enable accurate, interpretable, and efficient PCa risk assessment, supporting their potential use as virtual biopsies in clinical practice.
Is Single-View Mesh Reconstruction Ready for Robotics?
This paper evaluates single-view mesh reconstruction models for creating digital twin environments in robot manipulation. Recent advances in computer vision for 3D reconstruction from single viewpoints present a potential breakthrough for efficiently creating virtual replicas of physical environments for robotics contexts. However, their suitability for physics simulations and robotics applications remains unexplored. We establish benchmarking criteria for 3D reconstruction in robotics contexts, including handling typical inputs, producing collision-free and stable reconstructions, managing occlusions, and meeting computational constraints. Our empirical evaluation using realistic robotics datasets shows that despite success on computer vision benchmarks, existing approaches fail to meet robotics-specific requirements. We quantitively examine limitations of single-view reconstruction for practical robotics implementation, in contrast to prior work that focuses on multi-view approaches. Our findings highlight critical gaps between computer vision advances and robotics needs, guiding future research at this intersection.
comment: 20 pages, 17 figures
Mind the Domain Gap: Measuring the Domain Gap Between Real-World and Synthetic Point Clouds for Automated Driving Development
Owing to the typical long-tail data distribution issues, simulating domain-gap-free synthetic data is crucial in robotics, photogrammetry, and computer vision research. The fundamental challenge pertains to credibly measuring the difference between real and simulated data. Such a measure is vital for safety-critical applications, such as automated driving, where out-of-domain samples may impact a car's perception and cause fatal accidents. Previous work has commonly focused on simulating data on one scene and analyzing performance on a different, real-world scene, hampering the disjoint analysis of domain gap coming from networks' deficiencies, class definitions, and object representation. In this paper, we propose a novel approach to measuring the domain gap between the real world sensor observations and simulated data representing the same location, enabling comprehensive domain gap analysis. To measure such a domain gap, we introduce a novel metric DoGSS-PCL and evaluation assessing the geometric and semantic quality of the simulated point cloud. Our experiments corroborate that the introduced approach can be used to measure the domain gap. The tests also reveal that synthetic semantic point clouds may be used for training deep neural networks, maintaining the performance at the 50/50 real-to-synthetic ratio. We strongly believe that this work will facilitate research on credible data simulation and allow for at-scale deployment in automated driving testing and digital twinning.
comment: Submitted to PFG Journal of Photogrammetry, Remote Sensing and Geoinformation Science
Diffusion Classifiers Understand Compositionality, but Conditions Apply
Understanding visual scenes is fundamental to human intelligence. While discriminative models have significantly advanced computer vision, they often struggle with compositional understanding. In contrast, recent generative text-to-image diffusion models excel at synthesizing complex scenes, suggesting inherent compositional capabilities. Building on this, zero-shot diffusion classifiers have been proposed to repurpose diffusion models for discriminative tasks. While prior work offered promising results in discriminative compositional scenarios, these results remain preliminary due to a small number of benchmarks and a relatively shallow analysis of conditions under which the models succeed. To address this, we present a comprehensive study of the discriminative capabilities of diffusion classifiers on a wide range of compositional tasks. Specifically, our study covers three diffusion models (SD 1.5, 2.0, and, for the first time, 3-m) spanning 10 datasets and over 30 tasks. Further, we shed light on the role that target dataset domains play in respective performance; to isolate the domain effects, we introduce a new diagnostic benchmark Self-Bench comprised of images created by diffusion models themselves. Finally, we explore the importance of timestep weighting and uncover a relationship between domain gap and timestep sensitivity, particularly for SD3-m. To sum up, diffusion classifiers understand compositionality, but conditions apply! Code and dataset are available at https://github.com/eugene6923/Diffusion-Classifiers-Compositionality.
SplatCo: Structure-View Collaborative Gaussian Splatting for Detail-Preserving Rendering of Large-Scale Unbounded Scenes
We present SplatCo, a structure-view collaborative Gaussian splatting framework for high-fidelity rendering of complex outdoor environments. SplatCo builds upon two novel components: (1) a cross-structure collaboration module that combines global tri-plane representations, which capture coarse scene layouts, with local context grid features that represent fine surface details. This fusion is achieved through a novel hierarchical compensation strategy, ensuring both global consistency and local detail preservation; and (2) a cross-view assisted training strategy that enhances multi-view consistency by synchronizing gradient updates across viewpoints, applying visibility-aware densification, and pruning overfitted or inaccurate Gaussians based on structural consistency. Through joint optimization of structural representation and multi-view coherence, SplatCo effectively reconstructs fine-grained geometric structures and complex textures in large-scale scenes. Comprehensive evaluations on 13 diverse large-scale scenes, including Mill19, MatrixCity, Tanks & Temples, WHU, and custom aerial captures, demonstrate that SplatCo consistently achieves higher reconstruction quality than state-of-the-art methods, with PSNR improvements of 1-2 dB and SSIM gains of 0.1 to 0.2. These results establish a new benchmark for high-fidelity rendering of large-scale unbounded scenes. Code and additional information are available at https://github.com/SCUT-BIP-Lab/SplatCo.
AutoMiSeg: Automatic Medical Image Segmentation via Test-Time Adaptation of Foundation Models
Medical image segmentation is vital for clinical diagnosis, yet current deep learning methods often demand extensive expert effort, i.e., either through annotating large training datasets or providing prompts at inference time for each new case. This paper introduces a zero-shot and automatic segmentation pipeline that combines off-the-shelf vision-language and segmentation foundation models. Given a medical image and a task definition (e.g., "segment the optic disc in an eye fundus image"), our method uses a grounding model to generate an initial bounding box, followed by a visual prompt boosting module that enhance the prompts, which are then processed by a promptable segmentation model to produce the final mask. To address the challenges of domain gap and result verification, we introduce a test-time adaptation framework featuring a set of learnable adaptors that align the medical inputs with foundation model representations. Its hyperparameters are optimized via Bayesian Optimization, guided by a proxy validation model without requiring ground-truth labels. Our pipeline offers an annotation-efficient and scalable solution for zero-shot medical image segmentation across diverse tasks. Our pipeline is evaluated on seven diverse medical imaging datasets and shows promising results. By proper decomposition and test-time adaptation, our fully automatic pipeline performs competitively with weakly-prompted interactive foundation models.
Evaluation of Few-Shot Learning Methods for Kidney Stone Type Recognition in Ureteroscopy
Determining the type of kidney stones is crucial for prescribing appropriate treatments to prevent recurrence. Currently, various approaches exist to identify the type of kidney stones. However, obtaining results through the reference ex vivo identification procedure can take several weeks, while in vivo visual recognition requires highly trained specialists. For this reason, deep learning models have been developed to provide urologists with an automated classification of kidney stones during ureteroscopies. Nevertheless, a common issue with these models is the lack of training data. This contribution presents a deep learning method based on few-shot learning, aimed at producing sufficiently discriminative features for identifying kidney stone types in endoscopic images, even with a very limited number of samples. This approach was specifically designed for scenarios where endoscopic images are scarce or where uncommon classes are present, enabling classification even with a limited training dataset. The results demonstrate that Prototypical Networks, using up to 25% of the training data, can achieve performance equal to or better than traditional deep learning models trained with the complete dataset.
comment: 6 pages, 3 figures, 3 tables, conference, cbms25
Promptable cancer segmentation using minimal expert-curated data
Automated segmentation of cancer on medical images can aid targeted diagnostic and therapeutic procedures. However, its adoption is limited by the high cost of expert annotations required for training and inter-observer variability in datasets. While weakly-supervised methods mitigate some challenges, using binary histology labels for training as opposed to requiring full segmentation, they require large paired datasets of histology and images, which are difficult to curate. Similarly, promptable segmentation aims to allow segmentation with no re-training for new tasks at inference, however, existing models perform poorly on pathological regions, again necessitating large datasets for training. In this work we propose a novel approach for promptable segmentation requiring only 24 fully-segmented images, supplemented by 8 weakly-labelled images, for training. Curating this minimal data to a high standard is relatively feasible and thus issues with the cost and variability of obtaining labels can be mitigated. By leveraging two classifiers, one weakly-supervised and one fully-supervised, our method refines segmentation through a guided search process initiated by a single-point prompt. Our approach outperforms existing promptable segmentation methods, and performs comparably with fully-supervised methods, for the task of prostate cancer segmentation, while using substantially less annotated data (up to 100X less). This enables promptable segmentation with very minimal labelled data, such that the labels can be curated to a very high standard.
comment: Accepted at Medical Image Understanding and Analysis (MIUA) 2025
UltraBoneUDF: Self-supervised Bone Surface Reconstruction from Ultrasound Based on Neural Unsigned Distance Functions
Background: Bone surface reconstruction plays a critical role in computer-assisted orthopedic surgery. Compared to traditional imaging modalities such as CT and MRI, ultrasound offers a radiation-free, cost-effective, and portable alternative. Continuous bone surface reconstruction can be employed for many clinical applications. However, due to the inherent limitations of ultrasound imaging, B-mode ultrasound typically capture only partial bone surfaces. Existing reconstruction methods struggle with such incomplete data, leading to artifacts and increased reconstruction errors. Effective techniques for accurately reconstructing thin and open bone surfaces from real-world 3D ultrasound volumes remain lacking. Methods: We propose UltraBoneUDF, a self-supervised framework designed for reconstructing open bone surfaces from ultrasound using neural Unsigned Distance Functions. To enhance reconstruction quality, we introduce a novel global feature extractor that effectively fuses ultrasound-specific image characteristics. Additionally, we present a novel loss function based on local tangent plane optimization that substantially improves surface reconstruction quality. UltraBoneUDF and baseline models are extensively evaluated on four open-source datasets. Results: Qualitative results highlight the limitations of the state-of-the-art methods for open bone surface reconstruction and demonstrate the effectiveness of UltraBoneUDF. Quantitatively, UltraBoneUDF significantly outperforms competing methods across all evaluated datasets for both open and closed bone surface reconstruction in terms of mean Chamfer distance error: 1.10 mm on the UltraBones100k dataset (39.6\% improvement compared to the SOTA), 0.23 mm on the OpenBoneCT dataset (69.3\% improvement), 0.18 mm on the ClosedBoneCT dataset (70.2\% improvement), and 0.05 mm on the Prostate dataset (55.3\% improvement).
Object-level Cross-view Geo-localization with Location Enhancement and Multi-Head Cross Attention
Cross-view geo-localization determines the location of a query image, captured by a drone or ground-based camera, by matching it to a geo-referenced satellite image. While traditional approaches focus on image-level localization, many applications, such as search-and-rescue, infrastructure inspection, and precision delivery, demand object-level accuracy. This enables users to prompt a specific object with a single click on a drone image to retrieve precise geo-tagged information of the object. However, variations in viewpoints, timing, and imaging conditions pose significant challenges, especially when identifying visually similar objects in extensive satellite imagery. To address these challenges, we propose an Object-level Cross-view Geo-localization Network (OCGNet). It integrates user-specified click locations using Gaussian Kernel Transfer (GKT) to preserve location information throughout the network. This cue is dually embedded into the feature encoder and feature matching blocks, ensuring robust object-specific localization. Additionally, OCGNet incorporates a Location Enhancement (LE) module and a Multi-Head Cross Attention (MHCA) module to adaptively emphasize object-specific features or expand focus to relevant contextual regions when necessary. OCGNet achieves state-of-the-art performance on a public dataset, CVOGL. It also demonstrates few-shot learning capabilities, effectively generalizing from limited examples, making it suitable for diverse applications (https://github.com/ZheyangH/OCGNet).
DiffusionReward: Enhancing Blind Face Restoration through Reward Feedback Learning
Reward Feedback Learning (ReFL) has recently shown great potential in aligning model outputs with human preferences across various generative tasks. In this work, we introduce a ReFL framework, named DiffusionReward, to the Blind Face Restoration task for the first time. DiffusionReward effectively overcomes the limitations of diffusion-based methods, which often fail to generate realistic facial details and exhibit poor identity consistency. The core of our framework is the Face Reward Model (FRM), which is trained using carefully annotated data. It provides feedback signals that play a pivotal role in steering the optimization process of the restoration network. In particular, our ReFL framework incorporates a gradient flow into the denoising process of off-the-shelf face restoration methods to guide the update of model parameters. The guiding gradient is collaboratively determined by three aspects: (i) the FRM to ensure the perceptual quality of the restored faces; (ii) a regularization term that functions as a safeguard to preserve generative diversity; and (iii) a structural consistency constraint to maintain facial fidelity. Furthermore, the FRM undergoes dynamic optimization throughout the process. It not only ensures that the restoration network stays precisely aligned with the real face manifold, but also effectively prevents reward hacking. Experiments on synthetic and wild datasets demonstrate that our method outperforms state-of-the-art methods, significantly improving identity consistency and facial details. The source codes, data, and models are available at: https://github.com/01NeuralNinja/DiffusionReward.
comment: 22 pages, 13 figures, 5 tables
ComfyMind: Toward General-Purpose Generation via Tree-Based Planning and Reactive Feedback
With the rapid advancement of generative models, general-purpose generation has gained increasing attention as a promising approach to unify diverse tasks across modalities within a single system. Despite this progress, existing open-source frameworks often remain fragile and struggle to support complex real-world applications due to the lack of structured workflow planning and execution-level feedback. To address these limitations, we present ComfyMind, a collaborative AI system designed to enable robust and scalable general-purpose generation, built on the ComfyUI platform. ComfyMind introduces two core innovations: Semantic Workflow Interface (SWI) that abstracts low-level node graphs into callable functional modules described in natural language, enabling high-level composition and reducing structural errors; Search Tree Planning mechanism with localized feedback execution, which models generation as a hierarchical decision process and allows adaptive correction at each stage. Together, these components improve the stability and flexibility of complex generative workflows. We evaluate ComfyMind on three public benchmarks: ComfyBench, GenEval, and Reason-Edit, which span generation, editing, and reasoning tasks. Results show that ComfyMind consistently outperforms existing open-source baselines and achieves performance comparable to GPT-Image-1. ComfyMind paves a promising path for the development of open-source general-purpose generative AI systems. Project page: https://github.com/LitaoGuo/ComfyMind
comment: Project page: https://github.com/LitaoGuo/ComfyMind
Semantic segmentation with reward
In real-world scenarios, pixel-level labeling is not always available. Sometimes, we need a semantic segmentation network, and even a visual encoder can have a high compatibility, and can be trained using various types of feedback beyond traditional labels, such as feedback that indicates the quality of the parsing results. To tackle this issue, we proposed RSS (Reward in Semantic Segmentation), the first practical application of reward-based reinforcement learning on pure semantic segmentation offered in two granular levels (pixel-level and image-level). RSS incorporates various novel technologies, such as progressive scale rewards (PSR) and pair-wise spatial difference (PSD), to ensure that the reward facilitates the convergence of the semantic segmentation network, especially under image-level rewards. Experiments and visualizations on benchmark datasets demonstrate that the proposed RSS can successfully ensure the convergence of the semantic segmentation network on two levels of rewards. Additionally, the RSS, which utilizes an image-level reward, outperforms existing weakly supervised methods that also rely solely on image-level signals during training.
comment: Tech report
Pixels to Prognosis: Harmonized Multi-Region CT-Radiomics and Foundation-Model Signatures Across Multicentre NSCLC Data
Purpose: To evaluate the impact of harmonization and multi-region CT image feature integration on survival prediction in non-small cell lung cancer (NSCLC) patients, using handcrafted radiomics, pretrained foundation model (FM) features, and clinical data from a multicenter dataset. Methods: We analyzed CT scans and clinical data from 876 NSCLC patients (604 training, 272 test) across five centers. Features were extracted from the whole lung, tumor, mediastinal nodes, coronary arteries, and coronary artery calcium (CAC). Handcrafted radiomics and FM deep features were harmonized using ComBat, reconstruction kernel normalization (RKN), and RKN+ComBat. Regularized Cox models predicted overall survival; performance was assessed using the concordance index (C-index), 5-year time-dependent area under the curve (t-AUC), and hazard ratio (HR). SHapley Additive exPlanations (SHAP) values explained feature contributions. A consensus model used agreement across top region of interest (ROI) models to stratify patient risk. Results: TNM staging showed prognostic utility (C-index = 0.67; HR = 2.70; t-AUC = 0.85). The clinical + tumor radiomics model with ComBat achieved a C-index of 0.7552 and t-AUC of 0.8820. FM features (50-voxel cubes) combined with clinical data yielded the highest performance (C-index = 0.7616; t-AUC = 0.8866). An ensemble of all ROIs and FM features reached a C-index of 0.7142 and t-AUC of 0.7885. The consensus model, covering 78% of valid test cases, achieved a t-AUC of 0.92, sensitivity of 97.6%, and specificity of 66.7%. Conclusion: Harmonization and multi-region feature integration improve survival prediction in multicenter NSCLC data. Combining interpretable radiomics, FM features, and consensus modeling enables robust risk stratification across imaging centers.
Track Anything Annotate: Video annotation and dataset generation of computer vision models
Modern machine learning methods require significant amounts of labelled data, making the preparation process time-consuming and resource-intensive. In this paper, we propose to consider the process of prototyping a tool for annotating and generating training datasets based on video tracking and segmentation. We examine different approaches to solving this problem, from technology selection through to final implementation. The developed prototype significantly accelerates dataset generation compared to manual annotation. All resources are available at https://github.com/lnikioffic/track-anything-annotate
comment: 9 pages, 11 figures
FastCAV: Efficient Computation of Concept Activation Vectors for Explaining Deep Neural Networks ICML 2025
Concepts such as objects, patterns, and shapes are how humans understand the world. Building on this intuition, concept-based explainability methods aim to study representations learned by deep neural networks in relation to human-understandable concepts. Here, Concept Activation Vectors (CAVs) are an important tool and can identify whether a model learned a concept or not. However, the computational cost and time requirements of existing CAV computation pose a significant challenge, particularly in large-scale, high-dimensional architectures. To address this limitation, we introduce FastCAV, a novel approach that accelerates the extraction of CAVs by up to 63.6x (on average 46.4x). We provide a theoretical foundation for our approach and give concrete assumptions under which it is equivalent to established SVM-based methods. Our empirical results demonstrate that CAVs calculated with FastCAV maintain similar performance while being more efficient and stable. In downstream applications, i.e., concept-based explanation methods, we show that FastCAV can act as a replacement leading to equivalent insights. Hence, our approach enables previously infeasible investigations of deep models, which we demonstrate by tracking the evolution of concepts during model training.
comment: Accepted at ICML 2025, 27 pages, 20 figures, 9 tables
Hyperspectral Anomaly Detection Fused Unified Nonconvex Tensor Ring Factors Regularization
In recent years, tensor decomposition-based approaches for hyperspectral anomaly detection (HAD) have gained significant attention in the field of remote sensing. However, existing methods often fail to fully leverage both the global correlations and local smoothness of the background components in hyperspectral images (HSIs), which exist in both the spectral and spatial domains. This limitation results in suboptimal detection performance. To mitigate this critical issue, we put forward a novel HAD method named HAD-EUNTRFR, which incorporates an enhanced unified nonconvex tensor ring (TR) factors regularization. In the HAD-EUNTRFR framework, the raw HSIs are first decomposed into background and anomaly components. The TR decomposition is then employed to capture the spatial-spectral correlations within the background component. Additionally, we introduce a unified and efficient nonconvex regularizer, induced by tensor singular value decomposition (TSVD), to simultaneously encode the low-rankness and sparsity of the 3-D gradient TR factors into a unique concise form. The above characterization scheme enables the interpretable gradient TR factors to inherit the low-rankness and smoothness of the original background. To further enhance anomaly detection, we design a generalized nonconvex regularization term to exploit the group sparsity of the anomaly component. To solve the resulting doubly nonconvex model, we develop a highly efficient optimization algorithm based on the alternating direction method of multipliers (ADMM) framework. Experimental results on several benchmark datasets demonstrate that our proposed method outperforms existing state-of-the-art (SOTA) approaches in terms of detection accuracy.
Multi-task Learning For Joint Action and Gesture Recognition
In practical applications, computer vision tasks often need to be addressed simultaneously. Multitask learning typically achieves this by jointly training a single deep neural network to learn shared representations, providing efficiency and improving generalization. Although action and gesture recognition are closely related tasks, since they focus on body and hand movements, current state-of-the-art methods handle them separately. In this paper, we show that employing a multi-task learning paradigm for action and gesture recognition results in more efficient, robust and generalizable visual representations, by leveraging the synergies between these tasks. Extensive experiments on multiple action and gesture datasets demonstrate that handling actions and gestures in a single architecture can achieve better performance for both tasks in comparison to their single-task learning variants.
Multi-Person Interaction Generation from Two-Person Motion Priors SIGGRAPH 2025
Generating realistic human motion with high-level controls is a crucial task for social understanding, robotics, and animation. With high-quality MOCAP data becoming more available recently, a wide range of data-driven approaches have been presented. However, modelling multi-person interactions still remains a less explored area. In this paper, we present Graph-driven Interaction Sampling, a method that can generate realistic and diverse multi-person interactions by leveraging existing two-person motion diffusion models as motion priors. Instead of training a new model specific to multi-person interaction synthesis, our key insight is to spatially and temporally separate complex multi-person interactions into a graph structure of two-person interactions, which we name the Pairwise Interaction Graph. We thus decompose the generation task into simultaneous single-person motion generation conditioned on one other's motion. In addition, to reduce artifacts such as interpenetrations of body parts in generated multi-person interactions, we introduce two graph-dependent guidance terms into the diffusion sampling scheme. Unlike previous work, our method can produce various high-quality multi-person interactions without having repetitive individual motions. Extensive experiments demonstrate that our approach consistently outperforms existing methods in reducing artifacts when generating a wide range of two-person and multi-person interactions.
comment: SIGGRAPH 2025 Conference Papers
Locality-Sensitive Hashing for Efficient Hard Negative Sampling in Contrastive Learning
Contrastive learning is a representational learning paradigm in which a neural network maps data elements to feature vectors. It improves the feature space by forming lots with an anchor and examples that are either positive or negative based on class similarity. Hard negative examples, which are close to the anchor in the feature space but from a different class, improve learning performance. Finding such examples of high quality efficiently in large, high-dimensional datasets is computationally challenging. In this paper, we propose a GPU-friendly Locality-Sensitive Hashing (LSH) scheme that quantizes real-valued feature vectors into binary representations for approximate nearest neighbor search. We investigate its theoretical properties and evaluate it on several datasets from textual and visual domain. Our approach achieves comparable or better performance while requiring significantly less computation than existing hard negative mining strategies.
VLM Models and Automated Grading of Atopic Dermatitis
The task of grading atopic dermatitis (or AD, a form of eczema) from patient images is difficult even for trained dermatologists. Research on automating this task has progressed in recent years with the development of deep learning solutions; however, the rapid evolution of multimodal models and more specifically vision-language models (VLMs) opens the door to new possibilities in terms of explainable assessment of medical images, including dermatology. This report describes experiments carried out to evaluate the ability of seven VLMs to assess the severity of AD on a set of test images.
comment: 10 pages
ICPL-ReID: Identity-Conditional Prompt Learning for Multi-Spectral Object Re-Identification
Multi-spectral object re-identification (ReID) brings a new perception perspective for smart city and intelligent transportation applications, effectively addressing challenges from complex illumination and adverse weather. However, complex modal differences between heterogeneous spectra pose challenges to efficiently utilizing complementary and discrepancy of spectra information. Most existing methods fuse spectral data through intricate modal interaction modules, lacking fine-grained semantic understanding of spectral information (\textit{e.g.}, text descriptions, part masks, and object keypoints). To solve this challenge, we propose a novel Identity-Conditional text Prompt Learning framework (ICPL), which exploits the powerful cross-modal alignment capability of CLIP, to unify different spectral visual features from text semantics. Specifically, we first propose the online prompt learning using learnable text prompt as the identity-level semantic center to bridge the identity semantics of different spectra in online manner. Then, in lack of concrete text descriptions, we propose the multi-spectral identity-condition module to use identity prototype as spectral identity condition to constraint prompt learning. Meanwhile, we construct the alignment loop mutually optimizing the learnable text prompt and spectral visual encoder to avoid online prompt learning disrupting the pre-trained text-image alignment distribution. In addition, to adapt to small-scale multi-spectral data and mitigate style differences between spectra, we propose multi-spectral adapter that employs a low-rank adaption method to learn spectra-specific features. Comprehensive experiments on 5 benchmarks, including RGBNT201, Market-MM, MSVR310, RGBN300, and RGBNT100, demonstrate that the proposed method outperforms the state-of-the-art methods.
comment: Accepted by IEEE Transactions on Multimedia (TMM)
Seeing It or Not? Interpretable Vision-aware Latent Steering to Mitigate Object Hallucinations
Large Vision-Language Models (LVLMs) have achieved remarkable success but continue to struggle with object hallucination (OH), generating outputs inconsistent with visual inputs. While previous work has proposed methods to reduce OH, the visual decision-making mechanisms that lead to hallucinations remain poorly understood. In this paper, we propose VaLSe, a Vision-aware Latent Steering framework that adopts an interpretation-then-mitigation strategy to address OH in LVLMs. By tackling dual challenges of modeling complex vision-language interactions and eliminating spurious activation artifacts, VaLSe can generate visual contribution maps that trace how specific visual inputs influence individual output tokens. These maps reveal the model's vision-aware focus regions, which are then used to perform latent space steering, realigning internal representations toward semantically relevant content and reducing hallucinated outputs. Extensive experiments demonstrate that VaLSe is a powerful interpretability tool and an effective method for enhancing model robustness against OH across multiple benchmarks. Furthermore, our analysis uncovers limitations in existing OH evaluation metrics, underscoring the need for more nuanced, interpretable, and visually grounded OH benchmarks in future work. Code is available at: https://github.com/Ziwei-Zheng/VaLSe.
An Attention Infused Deep Learning System with Grad-CAM Visualization for Early Screening of Glaucoma
This research work reveals the eye opening wisdom of the hybrid labyrinthine deep learning models synergy born out of combining a trailblazing convolutional neural network with a disruptive Vision Transformer, both intertwined together with a radical Cross Attention module. Here, two high yielding datasets for artificial intelligence models in detecting glaucoma, namely ACRIMA and Drishti, are utilized.
comment: 6 pages in general IEEE format, 8 figures, 4 tables, pdflatex
Temporal Consistency Constrained Transferable Adversarial Attacks with Background Mixup for Action Recognition IJCAI'25
Action recognition models using deep learning are vulnerable to adversarial examples, which are transferable across other models trained on the same data modality. Existing transferable attack methods face two major challenges: 1) they heavily rely on the assumption that the decision boundaries of the surrogate (a.k.a., source) model and the target model are similar, which limits the adversarial transferability; and 2) their decision boundary difference makes the attack direction uncertain, which may result in the gradient oscillation, weakening the adversarial attack. This motivates us to propose a Background Mixup-induced Temporal Consistency (BMTC) attack method for action recognition. From the input transformation perspective, we design a model-agnostic background adversarial mixup module to reduce the surrogate-target model dependency. In particular, we randomly sample one video from each category and make its background frame, while selecting the background frame with the top attack ability for mixup with the clean frame by reinforcement learning. Moreover, to ensure an explicit attack direction, we leverage the background category as guidance for updating the gradient of adversarial example, and design a temporal gradient consistency loss, which strengthens the stability of the attack direction on subsequent frames. Empirical studies on two video datasets, i.e., UCF101 and Kinetics-400, and one image dataset, i.e., ImageNet, demonstrate that our method significantly boosts the transferability of adversarial examples across several action/image recognition models. Our code is available at https://github.com/mlvccn/BMTC_TransferAttackVid.
comment: Accepted in IJCAI'25
A Coreset Selection of Coreset Selection Literature: Introduction and Recent Advances
Coreset selection targets the challenge of finding a small, representative subset of a large dataset that preserves essential patterns for effective machine learning. Although several surveys have examined data reduction strategies before, most focus narrowly on either classical geometry-based methods or active learning techniques. In contrast, this survey presents a more comprehensive view by unifying three major lines of coreset research, namely, training-free, training-oriented, and label-free approaches, into a single taxonomy. We present subfields often overlooked by existing work, including submodular formulations, bilevel optimization, and recent progress in pseudo-labeling for unlabeled datasets. Additionally, we examine how pruning strategies influence generalization and neural scaling laws, offering new insights that are absent from prior reviews. Finally, we compare these methods under varying computational, robustness, and performance demands and highlight open challenges, such as robustness, outlier filtering, and adapting coreset selection to foundation models, for future research.
DetailFusion: A Dual-branch Framework with Detail Enhancement for Composed Image Retrieval
Composed Image Retrieval (CIR) aims to retrieve target images from a gallery based on a reference image and modification text as a combined query. Recent approaches focus on balancing global information from two modalities and encode the query into a unified feature for retrieval. However, due to insufficient attention to fine-grained details, these coarse fusion methods often struggle with handling subtle visual alterations or intricate textual instructions. In this work, we propose DetailFusion, a novel dual-branch framework that effectively coordinates information across global and detailed granularities, thereby enabling detail-enhanced CIR. Our approach leverages atomic detail variation priors derived from an image editing dataset, supplemented by a detail-oriented optimization strategy to develop a Detail-oriented Inference Branch. Furthermore, we design an Adaptive Feature Compositor that dynamically fuses global and detailed features based on fine-grained information of each unique multimodal query. Extensive experiments and ablation analyses not only demonstrate that our method achieves state-of-the-art performance on both CIRR and FashionIQ datasets but also validate the effectiveness and cross-domain adaptability of detail enhancement for CIR.
comment: 20 pages, 6 figures
Generative Data Augmentation for Object Point Cloud Segmentation
Data augmentation is widely used to train deep learning models to address data scarcity. However, traditional data augmentation (TDA) typically relies on simple geometric transformation, such as random rotation and rescaling, resulting in minimal data diversity enrichment and limited model performance improvement. State-of-the-art generative models for 3D shape generation rely on the denoising diffusion probabilistic models and manage to generate realistic novel point clouds for 3D content creation and manipulation. Nevertheless, the generated 3D shapes lack associated point-wise semantic labels, restricting their usage in enlarging the training data for point cloud segmentation tasks. To bridge the gap between data augmentation techniques and the advanced diffusion models, we extend the state-of-the-art 3D diffusion model, Lion, to a part-aware generative model that can generate high-quality point clouds conditioned on given segmentation masks. Leveraging the novel generative model, we introduce a 3-step generative data augmentation (GDA) pipeline for point cloud segmentation training. Our GDA approach requires only a small amount of labeled samples but enriches the training data with generated variants and pseudo-labeled samples, which are validated by a novel diffusion-based pseudo-label filtering method. Extensive experiments on two large-scale synthetic datasets and a real-world medical dataset demonstrate that our GDA method outperforms TDA approach and related semi-supervised and self-supervised methods.
Hephaestus Minicubes: A Global, Multi-Modal Dataset for Volcanic Unrest Monitoring
Ground deformation is regarded in volcanology as a key precursor signal preceding volcanic eruptions. Satellite-based Interferometric Synthetic Aperture Radar (InSAR) enables consistent, global-scale deformation tracking; however, deep learning methods remain largely unexplored in this domain, mainly due to the lack of a curated machine learning dataset. In this work, we build on the existing Hephaestus dataset, and introduce Hephaestus Minicubes, a global collection of 38 spatiotemporal datacubes offering high resolution, multi-source and multi-temporal information, covering 44 of the world's most active volcanoes over a 7-year period. Each spatiotemporal datacube integrates InSAR products, topographic data, as well as atmospheric variables which are known to introduce signal delays that can mimic ground deformation in InSAR imagery. Furthermore, we provide expert annotations detailing the type, intensity and spatial extent of deformation events, along with rich text descriptions of the observed scenes. Finally, we present a comprehensive benchmark, demonstrating Hephaestus Minicubes' ability to support volcanic unrest monitoring as a multi-modal, multi-temporal classification and semantic segmentation task, establishing strong baselines with state-of-the-art architectures. This work aims to advance machine learning research in volcanic monitoring, contributing to the growing integration of data-driven methods within Earth science applications.
U2-BENCH: Benchmarking Large Vision-Language Models on Ultrasound Understanding
Ultrasound is a widely-used imaging modality critical to global healthcare, yet its interpretation remains challenging due to its varying image quality on operators, noises, and anatomical structures. Although large vision-language models (LVLMs) have demonstrated impressive multimodal capabilities across natural and medical domains, their performance on ultrasound remains largely unexplored. We introduce U2-BENCH, the first comprehensive benchmark to evaluate LVLMs on ultrasound understanding across classification, detection, regression, and text generation tasks. U2-BENCH aggregates 7,241 cases spanning 15 anatomical regions and defines 8 clinically inspired tasks, such as diagnosis, view recognition, lesion localization, clinical value estimation, and report generation, across 50 ultrasound application scenarios. We evaluate 20 state-of-the-art LVLMs, both open- and closed-source, general-purpose and medical-specific. Our results reveal strong performance on image-level classification, but persistent challenges in spatial reasoning and clinical language generation. U2-BENCH establishes a rigorous and unified testbed to assess and accelerate LVLM research in the uniquely multimodal domain of medical ultrasound imaging.
TextFlux: An OCR-Free DiT Model for High-Fidelity Multilingual Scene Text Synthesis
Diffusion-based scene text synthesis has progressed rapidly, yet existing methods commonly rely on additional visual conditioning modules and require large-scale annotated data to support multilingual generation. In this work, we revisit the necessity of complex auxiliary modules and further explore an approach that simultaneously ensures glyph accuracy and achieves high-fidelity scene integration, by leveraging diffusion models' inherent capabilities for contextual reasoning. To this end, we introduce TextFlux, a DiT-based framework that enables multilingual scene text synthesis. The advantages of TextFlux can be summarized as follows: (1) OCR-free model architecture. TextFlux eliminates the need for OCR encoders (additional visual conditioning modules) that are specifically used to extract visual text-related features. (2) Strong multilingual scalability. TextFlux is effective in low-resource multilingual settings, and achieves strong performance in newly added languages with fewer than 1,000 samples. (3) Streamlined training setup. TextFlux is trained with only 1% of the training data required by competing methods. (4) Controllable multi-line text generation. TextFlux offers flexible multi-line synthesis with precise line-level control, outperforming methods restricted to single-line or rigid layouts. Extensive experiments and visualizations demonstrate that TextFlux outperforms previous methods in both qualitative and quantitative evaluations.
TopoPoint: Enhance Topology Reasoning via Endpoint Detection in Autonomous Driving
Topology reasoning, which unifies perception and structured reasoning, plays a vital role in understanding intersections for autonomous driving. However, its performance heavily relies on the accuracy of lane detection, particularly at connected lane endpoints. Existing methods often suffer from lane endpoints deviation, leading to incorrect topology construction. To address this issue, we propose TopoPoint, a novel framework that explicitly detects lane endpoints and jointly reasons over endpoints and lanes for robust topology reasoning. During training, we independently initialize point and lane query, and proposed Point-Lane Merge Self-Attention to enhance global context sharing through incorporating geometric distances between points and lanes as an attention mask . We further design Point-Lane Graph Convolutional Network to enable mutual feature aggregation between point and lane query. During inference, we introduce Point-Lane Geometry Matching algorithm that computes distances between detected points and lanes to refine lane endpoints, effectively mitigating endpoint deviation. Extensive experiments on the OpenLane-V2 benchmark demonstrate that TopoPoint achieves state-of-the-art performance in topology reasoning (48.8 on OLS). Additionally, we propose DET$_p$ to evaluate endpoint detection, under which our method significantly outperforms existing approaches (52.6 v.s. 45.2 on DET$_p$). The code is released at https://github.com/Franpin/TopoPoint.
R-Genie: Reasoning-Guided Generative Image Editing
While recent advances in image editing have enabled impressive visual synthesis capabilities, current methods remain constrained by explicit textual instructions and limited editing operations, lacking deep comprehension of implicit user intentions and contextual reasoning. In this work, we introduce a new image editing paradigm: reasoning-guided generative editing, which synthesizes images based on complex, multi-faceted textual queries accepting world knowledge and intention inference. To facilitate this task, we first construct a comprehensive dataset featuring over 1,000 image-instruction-edit triples that incorporate rich reasoning contexts and real-world knowledge. We then propose R-Genie: a reasoning-guided generative image editor, which synergizes the generation power of diffusion models with advanced reasoning capabilities of multimodal large language models. R-Genie incorporates a reasoning-attention mechanism to bridge linguistic understanding with visual synthesis, enabling it to handle intricate editing requests involving abstract user intentions and contextual reasoning relations. Extensive experimental results validate that R-Genie can equip diffusion models with advanced reasoning-based editing capabilities, unlocking new potentials for intelligent image synthesis.
comment: https://dongzhang89.github.io/RGenie.github.io/
Soft-CAM: Making black box models self-explainable for high-stakes decisions
Convolutional neural networks (CNNs) are widely used for high-stakes applications like medicine, often surpassing human performance. However, most explanation methods rely on post-hoc attribution, approximating the decision-making process of already trained black-box models. These methods are often sensitive, unreliable, and fail to reflect true model reasoning, limiting their trustworthiness in critical applications. In this work, we introduce SoftCAM, a straightforward yet effective approach that makes standard CNN architectures inherently interpretable. By removing the global average pooling layer and replacing the fully connected classification layer with a convolution-based class evidence layer, SoftCAM preserves spatial information and produces explicit class activation maps that form the basis of the model's predictions. Evaluated on three medical datasets, SoftCAM maintains classification performance while significantly improving both the qualitative and quantitative explanation compared to existing post-hoc methods. Our results demonstrate that CNNs can be inherently interpretable without compromising performance, advancing the development of self-explainable deep learning for high-stakes decision-making.
RQR3D: Reparametrizing the regression targets for BEV-based 3D object detection
Accurate, fast, and reliable 3D perception is essential for autonomous driving. Recently, bird's-eye view (BEV)-based perception approaches have emerged as superior alternatives to perspective-based solutions, offering enhanced spatial understanding and more natural outputs for planning. Existing BEV-based 3D object detection methods, typically adhering to angle-based representation, directly estimate the size and orientation of rotated bounding boxes. We observe that BEV-based 3D object detection is analogous to aerial oriented object detection, where angle-based methods are recognized for being affected by discontinuities in their loss functions. Drawing inspiration from this domain, we propose Restricted Quadrilateral Representation to define 3D regression targets. RQR3D regresses the smallest horizontal bounding box encapsulating the oriented box, along with the offsets between the corners of these two boxes, thereby transforming the oriented object detection problem into a keypoint regression task. RQR3D is compatible with any 3D object detection approach. We employ RQR3D within an anchor-free single-stage object detection method and introduce an objectness head to address class imbalance problem. Furthermore, we introduce a simplified radar fusion backbone that eliminates the need for voxel grouping and processes the BEV-mapped point cloud with standard 2D convolutions, rather than sparse convolutions. Extensive evaluations on the nuScenes dataset demonstrate that RQR3D achieves state-of-the-art performance in camera-radar 3D object detection, outperforming the previous best method by +4% in NDS and +2.4% in mAP, and significantly reducing the translation and orientation errors, which are crucial for safe autonomous driving. These consistent gains highlight the robustness, precision, and real-world readiness of our approach.
SafeMVDrive: Multi-view Safety-Critical Driving Video Synthesis in the Real World Domain
Safety-critical scenarios are rare yet pivotal for evaluating and enhancing the robustness of autonomous driving systems. While existing methods generate safety-critical driving trajectories, simulations, or single-view videos, they fall short of meeting the demands of advanced end-to-end autonomous systems (E2E AD), which require real-world, multi-view video data. To bridge this gap, we introduce SafeMVDrive, the first framework designed to generate high-quality, safety-critical, multi-view driving videos grounded in real-world domains. SafeMVDrive strategically integrates a safety-critical trajectory generator with an advanced multi-view video generator. To tackle the challenges inherent in this integration, we first enhance scene understanding ability of the trajectory generator by incorporating visual context -- which is previously unavailable to such generator -- and leveraging a GRPO-finetuned vision-language model to achieve more realistic and context-aware trajectory generation. Second, recognizing that existing multi-view video generators struggle to render realistic collision events, we introduce a two-stage, controllable trajectory generation mechanism that produces collision-evasion trajectories, ensuring both video quality and safety-critical fidelity. Finally, we employ a diffusion-based multi-view video generator to synthesize high-quality safety-critical driving videos from the generated trajectories. Experiments conducted on an E2E AD planner demonstrate a significant increase in collision rate when tested with our generated data, validating the effectiveness of SafeMVDrive in stress-testing planning modules. Our code, examples, and datasets are publicly available at: https://zhoujiawei3.github.io/SafeMVDrive/.
Slot-MLLM: Object-Centric Visual Tokenization for Multimodal LLM
Recently, multimodal large language models (MLLMs) have emerged as a key approach in achieving artificial general intelligence. In particular, vision-language MLLMs have been developed to generate not only text but also visual outputs from multimodal inputs. This advancement requires efficient image tokens that LLMs can process effectively both in input and output. However, existing image tokenization methods for MLLMs typically capture only global abstract concepts or uniformly segmented image patches, restricting MLLMs' capability to effectively understand or generate detailed visual content, particularly at the object level. To address this limitation, we propose an object-centric visual tokenizer based on Slot Attention specifically for MLLMs. In particular, based on the Q-Former encoder, diffusion decoder, and residual vector quantization, our proposed discretized slot tokens can encode local visual details while maintaining high-level semantics, and also align with textual data to be integrated seamlessly within a unified next-token prediction framework of LLMs. The resulting Slot-MLLM demonstrates significant performance improvements over baselines with previous visual tokenizers across various vision-language tasks that entail local detailed comprehension and generation. Notably, this work is the first demonstration of the feasibility of object-centric slot attention performed with MLLMs and in-the-wild natural images.
SeaLion: Semantic Part-Aware Latent Point Diffusion Models for 3D Generation
Denoising diffusion probabilistic models have achieved significant success in point cloud generation, enabling numerous downstream applications, such as generative data augmentation and 3D model editing. However, little attention has been given to generating point clouds with point-wise segmentation labels, as well as to developing evaluation metrics for this task. Therefore, in this paper, we present SeaLion, a novel diffusion model designed to generate high-quality and diverse point clouds with fine-grained segmentation labels. Specifically, we introduce the semantic part-aware latent point diffusion technique, which leverages the intermediate features of the generative models to jointly predict the noise for perturbed latent points and associated part segmentation labels during the denoising process, and subsequently decodes the latent points to point clouds conditioned on part segmentation labels. To effectively evaluate the quality of generated point clouds, we introduce a novel point cloud pairwise distance calculation method named part-aware Chamfer distance (p-CD). This method enables existing metrics, such as 1-NNA, to measure both the local structural quality and inter-part coherence of generated point clouds. Experiments on the large-scale synthetic dataset ShapeNet and real-world medical dataset IntrA demonstrate that SeaLion achieves remarkable performance in generation quality and diversity, outperforming the existing state-of-the-art model, DiffFacto, by 13.33% and 6.52% on 1-NNA (p-CD) across the two datasets. Experimental analysis shows that SeaLion can be trained semi-supervised, thereby reducing the demand for labeling efforts. Lastly, we validate the applicability of SeaLion in generative data augmentation for training segmentation models and the capability of SeaLion to serve as a tool for part-aware 3D shape editing.
Seek-CAD: A Self-refined Generative Modeling for 3D Parametric CAD Using Local Inference via DeepSeek
The advent of Computer-Aided Design (CAD) generative modeling will significantly transform the design of industrial products. The recent research endeavor has extended into the realm of Large Language Models (LLMs). In contrast to fine-tuning methods, training-free approaches typically utilize the advanced closed-source LLMs, thereby offering enhanced flexibility and efficiency in the development of AI agents for generating CAD parametric models. However, the substantial cost and limitations of local deployment of the top-tier closed-source LLMs pose challenges in practical applications. The Seek-CAD is the pioneer exploration of locally deployed open-source inference LLM DeepSeek-R1 for CAD parametric model generation with a training-free methodology. This study is the first investigation to incorporate both visual and Chain-of-Thought (CoT) feedback within the self-refinement mechanism for generating CAD models. Specifically, the initial generated parametric CAD model is rendered into a sequence of step-wise perspective images, which are subsequently processed by a Vision Language Model (VLM) alongside the corresponding CoTs derived from DeepSeek-R1 to assess the CAD model generation. Then, the feedback is utilized by DeepSeek-R1 to refine the initial generated model for the next round of generation. Moreover, we present an innovative 3D CAD model dataset structured around the SSR (Sketch, Sketch-based feature, and Refinements) triple design paradigm. This dataset encompasses a wide range of CAD commands, thereby aligning effectively with industrial application requirements and proving suitable for the generation of LLMs. Extensive experiments validate the effectiveness of Seek-CAD under various metrics.
SynRES: Towards Referring Expression Segmentation in the Wild via Synthetic Data
Despite the advances in Referring Expression Segmentation (RES) benchmarks, their evaluation protocols remain constrained, primarily focusing on either single targets with short queries (containing minimal attributes) or multiple targets from distinctly different queries on a single domain. This limitation significantly hinders the assessment of more complex reasoning capabilities in RES models. We introduce WildRES, a novel benchmark that incorporates long queries with diverse attributes and non-distinctive queries for multiple targets. This benchmark spans diverse application domains, including autonomous driving environments and robotic manipulation scenarios, thus enabling more rigorous evaluation of complex reasoning capabilities in real-world settings. Our analysis reveals that current RES models demonstrate substantial performance deterioration when evaluated on WildRES. To address this challenge, we introduce SynRES, an automated pipeline generating densely paired compositional synthetic training data through three innovations: (1) a dense caption-driven synthesis for attribute-rich image-mask-expression triplets, (2) reliable semantic alignment mechanisms rectifying caption-pseudo mask inconsistencies via Image-Text Aligned Grouping, and (3) domain-aware augmentations incorporating mosaic composition and superclass replacement to emphasize generalization ability and distinguishing attributes over object categories. Experimental results demonstrate that models trained with SynRES achieve state-of-the-art performance, improving gIoU by 2.0% on WildRES-ID and 3.8% on WildRES-DS. Code and datasets are available at https://github.com/UTLLab/SynRES.
ViP$^2$-CLIP: Visual-Perception Prompting with Unified Alignment for Zero-Shot Anomaly Detection
Zero-shot anomaly detection (ZSAD) aims to detect anomalies without any target domain training samples, relying solely on external auxiliary data. Existing CLIP-based methods attempt to activate the model's ZSAD potential via handcrafted or static learnable prompts. The former incur high engineering costs and limited semantic coverage, whereas the latter apply identical descriptions across diverse anomaly types, thus fail to adapt to complex variations. Furthermore, since CLIP is originally pretrained on large-scale classification tasks, its anomaly segmentation quality is highly sensitive to the exact wording of class names, severely constraining prompting strategies that depend on class labels. To address these challenges, we introduce ViP$^{2}$-CLIP. The key insight of ViP$^{2}$-CLIP is a Visual-Perception Prompting (ViP-Prompt) mechanism, which fuses global and multi-scale local visual context to adaptively generate fine-grained textual prompts, eliminating manual templates and class-name priors. This design enables our model to focus on precise abnormal regions, making it particularly valuable when category labels are ambiguous or privacy-constrained. Extensive experiments on 15 industrial and medical benchmarks demonstrate that ViP$^{2}$-CLIP achieves state-of-the-art performance and robust cross-domain generalization.
Semi-Supervised Medical Image Segmentation via Dual Networks
Traditional supervised medical image segmentation models require large amounts of labeled data for training; however, obtaining such large-scale labeled datasets in the real world is extremely challenging. Recent semi-supervised segmentation models also suffer from noisy pseudo-label issue and limited supervision in feature space. To solve these challenges, we propose an innovative semi-supervised 3D medical image segmentation method to reduce the dependency on large, expert-labeled datasets. Furthermore, we introduce a dual-network architecture to address the limitations of existing methods in using contextual information and generating reliable pseudo-labels. In addition, a self-supervised contrastive learning strategy is used to enhance the representation of the network and reduce prediction uncertainty by distinguishing between reliable and unreliable predictions. Experiments on clinical magnetic resonance imaging demonstrate that our approach outperforms state-of-the-art techniques. Our code is available at https://github.com/AIPMLab/Semi-supervised-Segmentation.
comment: Accepted in ISBI2025
FutureSightDrive: Thinking Visually with Spatio-Temporal CoT for Autonomous Driving
Visual language models (VLMs) have attracted increasing interest in autonomous driving due to their powerful reasoning capabilities. However, existing VLMs typically utilize discrete text Chain-of-Thought (CoT) tailored to the current scenario, which essentially represents highly abstract and symbolic compression of visual information, potentially leading to spatio-temporal relationship ambiguity and fine-grained information loss. Is autonomous driving better modeled on real-world simulation and imagination than on pure symbolic logic? In this paper, we propose a spatio-temporal CoT reasoning method that enables models to think visually. First, VLM serves as a world model to generate unified image frame for predicting future world states: where perception results (e.g., lane divider and 3D detection) represent the future spatial relationships, and ordinary future frame represent the temporal evolution relationships. This spatio-temporal CoT then serves as intermediate reasoning steps, enabling the VLM to function as an inverse dynamics model for trajectory planning based on current observations and future predictions. To implement visual generation in VLMs, we propose a unified pretraining paradigm integrating visual generation and understanding, along with a progressive visual CoT enhancing autoregressive image generation. Extensive experimental results demonstrate the effectiveness of the proposed method, advancing autonomous driving towards visual reasoning.
5G-DIL: Domain Incremental Learning with Similarity-Aware Sampling for Dynamic 5G Indoor Localization
Indoor positioning based on 5G data has achieved high accuracy through the adoption of recent machine learning (ML) techniques. However, the performance of learning-based methods degrades significantly when environmental conditions change, thereby hindering their applicability to new scenarios. Acquiring new training data for each environmental change and fine-tuning ML models is both time-consuming and resource-intensive. This paper introduces a domain incremental learning (DIL) approach for dynamic 5G indoor localization, called 5G-DIL, enabling rapid adaptation to environmental changes. We present a novel similarity-aware sampling technique based on the Chebyshev distance, designed to efficiently select specific exemplars from the previous environment while training only on the modified regions of the new environment. This avoids the need to train on the entire region, significantly reducing the time and resources required for adaptation without compromising localization accuracy. This approach requires as few as 50 exemplars from adaptation domains, significantly reducing training time while maintaining high positioning accuracy in previous environments. Comparative evaluations against state-of-the-art DIL techniques on a challenging real-world indoor dataset demonstrate the effectiveness of the proposed sample selection method. Our approach is adaptable to real-world non-line-of-sight propagation scenarios and achieves an MAE positioning error of 0.261 meters, even under dynamic environmental conditions. Code: https://gitlab.cc-asp.fraunhofer.de/5g-pos/5g-dil
comment: 7 pages, 6 figures
Dual Attention Residual U-Net for Accurate Brain Ultrasound Segmentation in IVH Detection
Intraventricular hemorrhage (IVH) is a severe neurological complication among premature infants, necessitating early and accurate detection from brain ultrasound (US) images to improve clinical outcomes. While recent deep learning methods offer promise for computer-aided diagnosis, challenges remain in capturing both local spatial details and global contextual dependencies critical for segmenting brain anatomies. In this work, we propose an enhanced Residual U-Net architecture incorporating two complementary attention mechanisms: the Convolutional Block Attention Module (CBAM) and a Sparse Attention Layer (SAL). The CBAM improves the model's ability to refine spatial and channel-wise features, while the SAL introduces a dual-branch design, sparse attention filters out low-confidence query-key pairs to suppress noise, and dense attention ensures comprehensive information propagation. Extensive experiments on the Brain US dataset demonstrate that our method achieves state-of-the-art segmentation performance, with a Dice score of 89.04% and IoU of 81.84% for ventricle region segmentation. These results highlight the effectiveness of integrating spatial refinement and attention sparsity for robust brain anatomy detection. Code is available at: https://github.com/DanYuan001/BrainImgSegment.
comment: 10 pages,6 figures and 3 tables
Towards Dynamic 3D Reconstruction of Hand-Instrument Interaction in Ophthalmic Surgery
Accurate 3D reconstruction of hands and instruments is critical for vision-based analysis of ophthalmic microsurgery, yet progress has been hampered by the lack of realistic, large-scale datasets and reliable annotation tools. In this work, we introduce OphNet-3D, the first extensive RGB-D dynamic 3D reconstruction dataset for ophthalmic surgery, comprising 41 sequences from 40 surgeons and totaling 7.1 million frames, with fine-grained annotations of 12 surgical phases, 10 instrument categories, dense MANO hand meshes, and full 6-DoF instrument poses. To scalably produce high-fidelity labels, we design a multi-stage automatic annotation pipeline that integrates multi-view data observation, data-driven motion prior with cross-view geometric consistency and biomechanical constraints, along with a combination of collision-aware interaction constraints for instrument interactions. Building upon OphNet-3D, we establish two challenging benchmarks-bimanual hand pose estimation and hand-instrument interaction reconstruction-and propose two dedicated architectures: H-Net for dual-hand mesh recovery and OH-Net for joint reconstruction of two-hand-two-instrument interactions. These models leverage a novel spatial reasoning module with weak-perspective camera modeling and collision-aware center-based representation. Both architectures outperform existing methods by substantial margins, achieving improvements of over 2mm in Mean Per Joint Position Error (MPJPE) and up to 23% in ADD-S metrics for hand and instrument reconstruction, respectively.
SVL: Spike-based Vision-language Pretraining for Efficient 3D Open-world Understanding
Spiking Neural Networks (SNNs) provide an energy-efficient way to extract 3D spatio-temporal features. However, existing SNNs still exhibit a significant performance gap compared to Artificial Neural Networks (ANNs) due to inadequate pre-training strategies. These limitations manifest as restricted generalization ability, task specificity, and a lack of multimodal understanding, particularly in challenging tasks such as multimodal question answering and zero-shot 3D classification. To overcome these challenges, we propose a Spike-based Vision-Language (SVL) pretraining framework that empowers SNNs with open-world 3D understanding while maintaining spike-driven efficiency. SVL introduces two key components: (i) Multi-scale Triple Alignment (MTA) for label-free triplet-based contrastive learning across 3D, image, and text modalities, and (ii) Re-parameterizable Vision-Language Integration (Rep-VLI) to enable lightweight inference without relying on large text encoders. Extensive experiments show that SVL achieves a top-1 accuracy of 85.4% in zero-shot 3D classification, surpassing advanced ANN models, and consistently outperforms prior SNNs on downstream tasks, including 3D classification (+6.1%), DVS action recognition (+2.1%), 3D detection (+1.1%), and 3D segmentation (+2.1%) with remarkable efficiency. Moreover, SVL enables SNNs to perform open-world 3D question answering, sometimes outperforming ANNs. To the best of our knowledge, SVL represents the first scalable, generalizable, and hardware-friendly paradigm for 3D open-world understanding, effectively bridging the gap between SNNs and ANNs in complex open-world understanding tasks. Code is available https://github.com/bollossom/SVL.
Proto-FG3D: Prototype-based Interpretable Fine-Grained 3D Shape Classification BMVC2025
Deep learning-based multi-view coarse-grained 3D shape classification has achieved remarkable success over the past decade, leveraging the powerful feature learning capabilities of CNN-based and ViT-based backbones. However, as a challenging research area critical for detailed shape understanding, fine-grained 3D classification remains understudied due to the limited discriminative information captured during multi-view feature aggregation, particularly for subtle inter-class variations, class imbalance, and inherent interpretability limitations of parametric model. To address these problems, we propose the first prototype-based framework named Proto-FG3D for fine-grained 3D shape classification, achieving a paradigm shift from parametric softmax to non-parametric prototype learning. Firstly, Proto-FG3D establishes joint multi-view and multi-category representation learning via Prototype Association. Secondly, prototypes are refined via Online Clustering, improving both the robustness of multi-view feature allocation and inter-subclass balance. Finally, prototype-guided supervised learning is established to enhance fine-grained discrimination via prototype-view correlation analysis and enables ad-hoc interpretability through transparent case-based reasoning. Experiments on FG3D and ModelNet40 show Proto-FG3D surpasses state-of-the-art methods in accuracy, transparent predictions, and ad-hoc interpretability with visualizations, challenging conventional fine-grained 3D recognition approaches.
comment: 11 pages, 2 figures, 5 tablets; Submitted to BMVC2025
EMRA-proxy: Enhancing Multi-Class Region Semantic Segmentation in Remote Sensing Images with Attention Proxy
High-resolution remote sensing (HRRS) image segmentation is challenging due to complex spatial layouts and diverse object appearances. While CNNs excel at capturing local features, they struggle with long-range dependencies, whereas Transformers can model global context but often neglect local details and are computationally expensive.We propose a novel approach, Region-Aware Proxy Network (RAPNet), which consists of two components: Contextual Region Attention (CRA) and Global Class Refinement (GCR). Unlike traditional methods that rely on grid-based layouts, RAPNet operates at the region level for more flexible segmentation. The CRA module uses a Transformer to capture region-level contextual dependencies, generating a Semantic Region Mask (SRM). The GCR module learns a global class attention map to refine multi-class information, combining the SRM and attention map for accurate segmentation.Experiments on three public datasets show that RAPNet outperforms state-of-the-art methods, achieving superior multi-class segmentation accuracy.
comment: Proceedings of the 20th International Conference on Intelligent Computing (ICIC 2024): Poster Volume I. Tianjin, China, 2024: 538-562
Plan-R1: Safe and Feasible Trajectory Planning as Language Modeling
Safe and feasible trajectory planning is essential for real-world autonomous driving systems. However, existing learning-based planning methods often rely on expert demonstrations, which not only lack explicit safety awareness but also risk inheriting unsafe behaviors such as speeding from suboptimal human driving data. Inspired by the success of large language models, we propose Plan-R1, a novel two-stage trajectory planning framework that formulates trajectory planning as a sequential prediction task, guided by explicit planning principles such as safety, comfort, and traffic rule compliance. In the first stage, we train an autoregressive trajectory predictor via next motion token prediction on expert data. In the second stage, we design rule-based rewards (e.g., collision avoidance, speed limits) and fine-tune the model using Group Relative Policy Optimization (GRPO), a reinforcement learning strategy, to align its predictions with these planning principles. Experiments on the nuPlan benchmark demonstrate that our Plan-R1 significantly improves planning safety and feasibility, achieving state-of-the-art performance.
Instruct2See: Learning to Remove Any Obstructions Across Distributions
Images are often obstructed by various obstacles due to capture limitations, hindering the observation of objects of interest. Most existing methods address occlusions from specific elements like fences or raindrops, but are constrained by the wide range of real-world obstructions, making comprehensive data collection impractical. To overcome these challenges, we propose Instruct2See, a novel zero-shot framework capable of handling both seen and unseen obstacles. The core idea of our approach is to unify obstruction removal by treating it as a soft-hard mask restoration problem, where any obstruction can be represented using multi-modal prompts, such as visual semantics and textual instructions, processed through a cross-attention unit to enhance contextual understanding and improve mode control. Additionally, a tunable mask adapter allows for dynamic soft masking, enabling real-time adjustment of inaccurate masks. Extensive experiments on both in-distribution and out-of-distribution obstacles show that Instruct2See consistently achieves strong performance and generalization in obstruction removal, regardless of whether the obstacles were present during the training phase. Code and dataset are available at https://jhscut.github.io/Instruct2See.
HoloLLM: Multisensory Foundation Model for Language-Grounded Human Sensing and Reasoning
Embodied agents operating in smart homes must understand human behavior through diverse sensory inputs and communicate via natural language. While Vision-Language Models (VLMs) have enabled impressive language-grounded perception, their reliance on visual data limits robustness in real-world scenarios with occlusions, poor lighting, or privacy constraints. In this paper, we introduce HoloLLM, a Multimodal Large Language Model (MLLM) that integrates uncommon but powerful sensing modalities, such as LiDAR, infrared, mmWave radar, and WiFi, to enable seamless human perception and reasoning across heterogeneous environments. We address two key challenges: (1) the scarcity of aligned modality-text data for rare sensors, and (2) the heterogeneity of their physical signal representations. To overcome these, we design a Universal Modality-Injection Projector (UMIP) that enhances pre-aligned modality embeddings with fine-grained, text-aligned features from tailored encoders via coarse-to-fine cross-attention without introducing significant alignment overhead. We further introduce a human-VLM collaborative data curation pipeline to generate paired textual annotations for sensing datasets. Extensive experiments on two newly constructed benchmarks show that HoloLLM significantly outperforms existing MLLMs, improving language-grounded human sensing accuracy by up to 30%. This work establishes a new foundation for real-world, language-informed multisensory embodied intelligence.
comment: 18 pages, 13 figures, 6 tables
Towards Prospective Medical Image Reconstruction via Knowledge-Informed Dynamic Optimal Transport
Medical image reconstruction from measurement data is a vital but challenging inverse problem. Deep learning approaches have achieved promising results, but often requires paired measurement and high-quality images, which is typically simulated through a forward model, i.e., retrospective reconstruction. However, training on simulated pairs commonly leads to performance degradation on real prospective data due to the retrospective-to-prospective gap caused by incomplete imaging knowledge in simulation. To address this challenge, this paper introduces imaging Knowledge-Informed Dynamic Optimal Transport (KIDOT), a novel dynamic optimal transport framework with optimality in the sense of preserving consistency with imaging physics in transport, that conceptualizes reconstruction as finding a dynamic transport path. KIDOT learns from unpaired data by modeling reconstruction as a continuous evolution path from measurements to images, guided by an imaging knowledge-informed cost function and transport equation. This dynamic and knowledge-aware approach enhances robustness and better leverages unpaired data while respecting acquisition physics. Theoretically, we demonstrate that KIDOT naturally generalizes dynamic optimal transport, ensuring its mathematical rationale and solution existence. Extensive experiments on MRI and CT reconstruction demonstrate KIDOT's superior performance.
Enhancing Large Vision-Language Models with Layout Modality for Table Question Answering on Japanese Annual Securities Reports
With recent advancements in Large Language Models (LLMs) and growing interest in retrieval-augmented generation (RAG), the ability to understand table structures has become increasingly important. This is especially critical in financial domains such as securities reports, where highly accurate question answering (QA) over tables is required. However, tables exist in various formats-including HTML, images, and plain text-making it difficult to preserve and extract structural information. Therefore, multimodal LLMs are essential for robust and general-purpose table understanding. Despite their promise, current Large Vision-Language Models (LVLMs), which are major representatives of multimodal LLMs, still face challenges in accurately understanding characters and their spatial relationships within documents. In this study, we propose a method to enhance LVLM-based table understanding by incorporating in-table textual content and layout features. Experimental results demonstrate that these auxiliary modalities significantly improve performance, enabling robust interpretation of complex document layouts without relying on explicitly structured input formats.
comment: Accepted at IIAI AAI 2025, the 3rd International Conference on Computational and Data Sciences in Economics and Finance
CAS-IQA: Teaching Vision-Language Models for Synthetic Angiography Quality Assessment
Synthetic X-ray angiographies generated by modern generative models hold great potential to reduce the use of contrast agents in vascular interventional procedures. However, low-quality synthetic angiographies can significantly increase procedural risk, underscoring the need for reliable image quality assessment (IQA) methods. Existing IQA models, however, fail to leverage auxiliary images as references during evaluation and lack fine-grained, task-specific metrics necessary for clinical relevance. To address these limitations, this paper proposes CAS-IQA, a vision-language model (VLM)-based framework that predicts fine-grained quality scores by effectively incorporating auxiliary information from related images. In the absence of angiography datasets, CAS-3K is constructed, comprising 3,565 synthetic angiographies along with score annotations. To ensure clinically meaningful assessment, three task-specific evaluation metrics are defined. Furthermore, a Multi-path featUre fuSion and rouTing (MUST) module is designed to enhance image representations by adaptively fusing and routing visual tokens to metric-specific branches. Extensive experiments on the CAS-3K dataset demonstrate that CAS-IQA significantly outperforms state-of-the-art IQA methods by a considerable margin.
comment: Under review
Scaling Image and Video Generation via Test-Time Evolutionary Search
As the marginal cost of scaling computation (data and parameters) during model pre-training continues to increase substantially, test-time scaling (TTS) has emerged as a promising direction for improving generative model performance by allocating additional computation at inference time. While TTS has demonstrated significant success across multiple language tasks, there remains a notable gap in understanding the test-time scaling behaviors of image and video generative models (diffusion-based or flow-based models). Although recent works have initiated exploration into inference-time strategies for vision tasks, these approaches face critical limitations: being constrained to task-specific domains, exhibiting poor scalability, or falling into reward over-optimization that sacrifices sample diversity. In this paper, we propose \textbf{Evo}lutionary \textbf{Search} (EvoSearch), a novel, generalist, and efficient TTS method that effectively enhances the scalability of both image and video generation across diffusion and flow models, without requiring additional training or model expansion. EvoSearch reformulates test-time scaling for diffusion and flow models as an evolutionary search problem, leveraging principles from biological evolution to efficiently explore and refine the denoising trajectory. By incorporating carefully designed selection and mutation mechanisms tailored to the stochastic differential equation denoising process, EvoSearch iteratively generates higher-quality offspring while preserving population diversity. Through extensive evaluation across both diffusion and flow architectures for image and video generation tasks, we demonstrate that our method consistently outperforms existing approaches, achieves higher diversity, and shows strong generalizability to unseen evaluation metrics. Our project is available at the website https://tinnerhrhe.github.io/evosearch.
comment: 37 pages. Project: https://tinnerhrhe.github.io/evosearch
PathoSCOPE: Few-Shot Pathology Detection via Self-Supervised Contrastive Learning and Pathology-Informed Synthetic Embeddings
Unsupervised pathology detection trains models on non-pathological data to flag deviations as pathologies, offering strong generalizability for identifying novel diseases and avoiding costly annotations. However, building reliable normality models requires vast healthy datasets, as hospitals' data is inherently biased toward symptomatic populations, while privacy regulations hinder the assembly of representative healthy cohorts. To address this limitation, we propose PathoSCOPE, a few-shot unsupervised pathology detection framework that requires only a small set of non-pathological samples (minimum 2 shots), significantly improving data efficiency. We introduce Global-Local Contrastive Loss (GLCL), comprised of a Local Contrastive Loss to reduce the variability of non-pathological embeddings and a Global Contrastive Loss to enhance the discrimination of pathological regions. We also propose a Pathology-informed Embedding Generation (PiEG) module that synthesizes pathological embeddings guided by the global loss, better exploiting the limited non-pathological samples. Evaluated on the BraTS2020 and ChestXray8 datasets, PathoSCOPE achieves state-of-the-art performance among unsupervised methods while maintaining computational efficiency (2.48 GFLOPs, 166 FPS).
MMMG: a Comprehensive and Reliable Evaluation Suite for Multitask Multimodal Generation
Automatically evaluating multimodal generation presents a significant challenge, as automated metrics often struggle to align reliably with human evaluation, especially for complex tasks that involve multiple modalities. To address this, we present MMMG, a comprehensive and human-aligned benchmark for multimodal generation across 4 modality combinations (image, audio, interleaved text and image, interleaved text and audio), with a focus on tasks that present significant challenges for generation models, while still enabling reliable automatic evaluation through a combination of models and programs. MMMG encompasses 49 tasks (including 29 newly developed ones), each with a carefully designed evaluation pipeline, and 937 instructions to systematically assess reasoning, controllability, and other key capabilities of multimodal generation models. Extensive validation demonstrates that MMMG is highly aligned with human evaluation, achieving an average agreement of 94.3%. Benchmarking results on 24 multimodal generation models reveal that even though the state-of-the-art model, GPT Image, achieves 78.3% accuracy for image generation, it falls short on multimodal reasoning and interleaved generation. Furthermore, results suggest considerable headroom for improvement in audio generation, highlighting an important direction for future research.
MinkUNeXt-SI: Improving point cloud-based place recognition including spherical coordinates and LiDAR intensity
In autonomous navigation systems, the solution of the place recognition problem is crucial for their safe functioning. But this is not a trivial solution, since it must be accurate regardless of any changes in the scene, such as seasonal changes and different weather conditions, and it must be generalizable to other environments. This paper presents our method, MinkUNeXt-SI, which, starting from a LiDAR point cloud, preprocesses the input data to obtain its spherical coordinates and intensity values normalized within a range of 0 to 1 for each point, and it produces a robust place recognition descriptor. To that end, a deep learning approach that combines Minkowski convolutions and a U-net architecture with skip connections is used. The results of MinkUNeXt-SI demonstrate that this method reaches and surpasses state-of-the-art performance while it also generalizes satisfactorily to other datasets. Additionally, we showcase the capture of a custom dataset and its use in evaluating our solution, which also achieves outstanding results. Both the code of our solution and the runs of our dataset are publicly available for reproducibility purposes.
CGS-GAN: 3D Consistent Gaussian Splatting GANs for High Resolution Human Head Synthesis
Recently, 3D GANs based on 3D Gaussian splatting have been proposed for high quality synthesis of human heads. However, existing methods stabilize training and enhance rendering quality from steep viewpoints by conditioning the random latent vector on the current camera position. This compromises 3D consistency, as we observe significant identity changes when re-synthesizing the 3D head with each camera shift. Conversely, fixing the camera to a single viewpoint yields high-quality renderings for that perspective but results in poor performance for novel views. Removing view-conditioning typically destabilizes GAN training, often causing the training to collapse. In response to these challenges, we introduce CGS-GAN, a novel 3D Gaussian Splatting GAN framework that enables stable training and high-quality 3D-consistent synthesis of human heads without relying on view-conditioning. To ensure training stability, we introduce a multi-view regularization technique that enhances generator convergence with minimal computational overhead. Additionally, we adapt the conditional loss used in existing 3D Gaussian splatting GANs and propose a generator architecture designed to not only stabilize training but also facilitate efficient rendering and straightforward scaling, enabling output resolutions up to $2048^2$. To evaluate the capabilities of CGS-GAN, we curate a new dataset derived from FFHQ. This dataset enables very high resolutions, focuses on larger portions of the human head, reduces view-dependent artifacts for improved 3D consistency, and excludes images where subjects are obscured by hands or other objects. As a result, our approach achieves very high rendering quality, supported by competitive FID scores, while ensuring consistent 3D scene generation. Check our our project page here: https://fraunhoferhhi.github.io/cgs-gan/
comment: Main paper 12 pages, supplementary materials 8 pages
Distance Estimation in Outdoor Driving Environments Using Phase-only Correlation Method with Event Cameras
With the growing adoption of autonomous driving, the advancement of sensor technology is crucial for ensuring safety and reliable operation. Sensor fusion techniques that combine multiple sensors such as LiDAR, radar, and cameras have proven effective, but the integration of multiple devices increases both hardware complexity and cost. Therefore, developing a single sensor capable of performing multiple roles is highly desirable for cost-efficient and scalable autonomous driving systems. Event cameras have emerged as a promising solution due to their unique characteristics, including high dynamic range, low latency, and high temporal resolution. These features enable them to perform well in challenging lighting conditions, such as low-light or backlit environments. Moreover, their ability to detect fine-grained motion events makes them suitable for applications like pedestrian detection and vehicle-to-infrastructure communication via visible light. In this study, we present a method for distance estimation using a monocular event camera and a roadside LED bar. By applying a phase-only correlation technique to the event data, we achieve sub-pixel precision in detecting the spatial shift between two light sources. This enables accurate triangulation-based distance estimation without requiring stereo vision. Field experiments conducted in outdoor driving scenarios demonstrated that the proposed approach achieves over 90% success rate with less than 0.5-meter error for distances ranging from 20 to 60 meters. Future work includes extending this method to full position estimation by leveraging infrastructure such as smart poles equipped with LEDs, enabling event-camera-based vehicles to determine their own position in real time. This advancement could significantly enhance navigation accuracy, route optimization, and integration into intelligent transportation systems.
comment: 6 pages, 7 figures. To appear in IEEE Intelligent Vehicles Symposium (IV) 2025
MODEM: A Morton-Order Degradation Estimation Mechanism for Adverse Weather Image Recovery
Restoring images degraded by adverse weather remains a significant challenge due to the highly non-uniform and spatially heterogeneous nature of weather-induced artifacts, e.g., fine-grained rain streaks versus widespread haze. Accurately estimating the underlying degradation can intuitively provide restoration models with more targeted and effective guidance, enabling adaptive processing strategies. To this end, we propose a Morton-Order Degradation Estimation Mechanism (MODEM) for adverse weather image restoration. Central to MODEM is the Morton-Order 2D-Selective-Scan Module (MOS2D), which integrates Morton-coded spatial ordering with selective state-space models to capture long-range dependencies while preserving local structural coherence. Complementing MOS2D, we introduce a Dual Degradation Estimation Module (DDEM) that disentangles and estimates both global and local degradation priors. These priors dynamically condition the MOS2D modules, facilitating adaptive and context-aware restoration. Extensive experiments and ablation studies demonstrate that MODEM achieves state-of-the-art results across multiple benchmarks and weather types, highlighting its effectiveness in modeling complex degradation dynamics. Our code will be released at https://github.com/hainuo-wang/MODEM.git.
InfLVG: Reinforce Inference-Time Consistent Long Video Generation with GRPO
Recent advances in text-to-video generation, particularly with autoregressive models, have enabled the synthesis of high-quality videos depicting individual scenes. However, extending these models to generate long, cross-scene videos remains a significant challenge. As the context length grows during autoregressive decoding, computational costs rise sharply, and the model's ability to maintain consistency and adhere to evolving textual prompts deteriorates. We introduce InfLVG, an inference-time framework that enables coherent long video generation without requiring additional long-form video data. InfLVG leverages a learnable context selection policy, optimized via Group Relative Policy Optimization (GRPO), to dynamically identify and retain the most semantically relevant context throughout the generation process. Instead of accumulating the entire generation history, the policy ranks and selects the top-$K$ most contextually relevant tokens, allowing the model to maintain a fixed computational budget while preserving content consistency and prompt alignment. To optimize the policy, we design a hybrid reward function that jointly captures semantic alignment, cross-scene consistency, and artifact reduction. To benchmark performance, we introduce the Cross-scene Video Benchmark (CsVBench) along with an Event Prompt Set (EPS) that simulates complex multi-scene transitions involving shared subjects and varied actions/backgrounds. Experimental results show that InfLVG can extend video length by up to 9$\times$, achieving strong consistency and semantic fidelity across scenes. Our code is available at https://github.com/MAPLE-AIGC/InfLVG.
comment: Preprint. Under review
Enhancing Fourier-based Doppler Resolution with Diffusion Models
In radar systems, high resolution in the Doppler dimension is important for detecting slow-moving targets as it allows for more distinct separation between these targets and clutter, or stationary objects. However, achieving sufficient resolution is constrained by hardware capabilities and physical factors, leading to the development of processing techniques to enhance the resolution after acquisition. In this work, we leverage artificial intelligence to increase the Doppler resolution in range-Doppler maps. Based on a zero-padded FFT, a refinement via the generative neural networks of diffusion models is achieved. We demonstrate that our method overcomes the limitations of traditional FFT, generating data where closely spaced targets are effectively separated.
comment: Published at International Radar Symposium (IRS) 2025
Model Already Knows the Best Noise: Bayesian Active Noise Selection via Attention in Video Diffusion Model
The choice of initial noise significantly affects the quality and prompt alignment of video diffusion models, where different noise seeds for the same prompt can lead to drastically different generations. While recent methods rely on externally designed priors such as frequency filters or inter-frame smoothing, they often overlook internal model signals that indicate which noise seeds are inherently preferable. To address this, we propose ANSE (Active Noise Selection for Generation), a model-aware framework that selects high-quality noise seeds by quantifying attention-based uncertainty. At its core is BANSA (Bayesian Active Noise Selection via Attention), an acquisition function that measures entropy disagreement across multiple stochastic attention samples to estimate model confidence and consistency. For efficient inference-time deployment, we introduce a Bernoulli-masked approximation of BANSA that enables score estimation using a single diffusion step and a subset of attention layers. Experiments on CogVideoX-2B and 5B demonstrate that ANSE improves video quality and temporal coherence with only an 8% and 13% increase in inference time, respectively, providing a principled and generalizable approach to noise selection in video diffusion. See our project page: https://anse-project.github.io/anse-project/
comment: 19 pages, 10 figures
Deeper Diffusion Models Amplify Bias
Despite the impressive performance of generative Diffusion Models (DMs), their internal working is still not well understood, which is potentially problematic. This paper focuses on exploring the important notion of bias-variance tradeoff in diffusion models. Providing a systematic foundation for this exploration, it establishes that at one extreme the diffusion models may amplify the inherent bias in the training data and, on the other, they may compromise the presumed privacy of the training samples. Our exploration aligns with the memorization-generalization understanding of the generative models, but it also expands further along this spectrum beyond ``generalization'', revealing the risk of bias amplification in deeper models. Building on the insights, we also introduce a training-free method to improve output quality in text-to-image and image-to-image generation. By progressively encouraging temporary high variance in the generation process with partial bypassing of the mid-block's contribution in the denoising process of DMs, our method consistently improves generative image quality with zero training cost. Our claims are validated both theoretically and empirically.
Wildfire spread forecasting with Deep Learning
Accurate prediction of wildfire spread is crucial for effective risk management, emergency response, and strategic resource allocation. In this study, we present a deep learning (DL)-based framework for forecasting the final extent of burned areas, using data available at the time of ignition. We leverage a spatio-temporal dataset that covers the Mediterranean region from 2006 to 2022, incorporating remote sensing data, meteorological observations, vegetation maps, land cover classifications, anthropogenic factors, topography data, and thermal anomalies. To evaluate the influence of temporal context, we conduct an ablation study examining how the inclusion of pre- and post-ignition data affects model performance, benchmarking the temporal-aware DL models against a baseline trained exclusively on ignition-day inputs. Our results indicate that multi-day observational data substantially improve predictive accuracy. Particularly, the best-performing model, incorporating a temporal window of four days before to five days after ignition, improves both the F1 score and the Intersection over Union by almost 5% in comparison to the baseline on the test dataset. We publicly release our dataset and models to enhance research into data-driven approaches for wildfire modeling and response.
comment: 10 pages, 9 figures
ProTAL: A Drag-and-Link Video Programming Framework for Temporal Action Localization
Temporal Action Localization (TAL) aims to detect the start and end timestamps of actions in a video. However, the training of TAL models requires a substantial amount of manually annotated data. Data programming is an efficient method to create training labels with a series of human-defined labeling functions. However, its application in TAL faces difficulties of defining complex actions in the context of temporal video frames. In this paper, we propose ProTAL, a drag-and-link video programming framework for TAL. ProTAL enables users to define \textbf{key events} by dragging nodes representing body parts and objects and linking them to constrain the relations (direction, distance, etc.). These definitions are used to generate action labels for large-scale unlabelled videos. A semi-supervised method is then employed to train TAL models with such labels. We demonstrate the effectiveness of ProTAL through a usage scenario and a user study, providing insights into designing video programming framework.
comment: Accepted at CHI'25
Center-aware Residual Anomaly Synthesis for Multi-class Industrial Anomaly Detection
Anomaly detection plays a vital role in the inspection of industrial images. Most existing methods require separate models for each category, resulting in multiplied deployment costs. This highlights the challenge of developing a unified model for multi-class anomaly detection. However, the significant increase in inter-class interference leads to severe missed detections. Furthermore, the intra-class overlap between normal and abnormal samples, particularly in synthesis-based methods, cannot be ignored and may lead to over-detection. To tackle these issues, we propose a novel Center-aware Residual Anomaly Synthesis (CRAS) method for multi-class anomaly detection. CRAS leverages center-aware residual learning to couple samples from different categories into a unified center, mitigating the effects of inter-class interference. To further reduce intra-class overlap, CRAS introduces distance-guided anomaly synthesis that adaptively adjusts noise variance based on normal data distribution. Experimental results on diverse datasets and real-world industrial applications demonstrate the superior detection accuracy and competitive inference speed of CRAS. The source code and the newly constructed dataset are publicly available at https://github.com/cqylunlun/CRAS.
comment: Accepted by IEEE Transactions on Industrial Informatics (TII)
T2VUnlearning: A Concept Erasing Method for Text-to-Video Diffusion Models
Recent advances in text-to-video (T2V) diffusion models have significantly enhanced the quality of generated videos. However, their ability to produce explicit or harmful content raises concerns about misuse and potential rights violations. Inspired by the success of unlearning techniques in erasing undesirable concepts from text-to-image (T2I) models, we extend unlearning to T2V models and propose a robust and precise unlearning method. Specifically, we adopt negatively-guided velocity prediction fine-tuning and enhance it with prompt augmentation to ensure robustness against LLM-refined prompts. To achieve precise unlearning, we incorporate a localization and a preservation regularization to preserve the model's ability to generate non-target concepts. Extensive experiments demonstrate that our method effectively erases a specific concept while preserving the model's generation capability for all other concepts, outperforming existing methods. We provide the unlearned models in \href{https://github.com/VDIGPKU/T2VUnlearning.git}{https://github.com/VDIGPKU/T2VUnlearning.git}.
FreqU-FNet: Frequency-Aware U-Net for Imbalanced Medical Image Segmentation
Medical image segmentation faces persistent challenges due to severe class imbalance and the frequency-specific distribution of anatomical structures. Most conventional CNN-based methods operate in the spatial domain and struggle to capture minority class signals, often affected by frequency aliasing and limited spectral selectivity. Transformer-based models, while powerful in modeling global dependencies, tend to overlook critical local details necessary for fine-grained segmentation. To overcome these limitations, we propose FreqU-FNet, a novel U-shaped segmentation architecture operating in the frequency domain. Our framework incorporates a Frequency Encoder that leverages Low-Pass Frequency Convolution and Daubechies wavelet-based downsampling to extract multi-scale spectral features. To reconstruct fine spatial details, we introduce a Spatial Learnable Decoder (SLD) equipped with an adaptive multi-branch upsampling strategy. Furthermore, we design a frequency-aware loss (FAL) function to enhance minority class learning. Extensive experiments on multiple medical segmentation benchmarks demonstrate that FreqU-FNet consistently outperforms both CNN and Transformer baselines, particularly in handling under-represented classes, by effectively exploiting discriminative frequency bands.
comment: 15 pages, 1 figure
LaViDa: A Large Diffusion Language Model for Multimodal Understanding
Modern Vision-Language Models (VLMs) can solve a wide range of tasks requiring visual reasoning. In real-world scenarios, desirable properties for VLMs include fast inference and controllable generation (e.g., constraining outputs to adhere to a desired format). However, existing autoregressive (AR) VLMs like LLaVA struggle in these aspects. Discrete diffusion models (DMs) offer a promising alternative, enabling parallel decoding for faster inference and bidirectional context for controllable generation through text-infilling. While effective in language-only settings, DMs' potential for multimodal tasks is underexplored. We introduce LaViDa, a family of VLMs built on DMs. We build LaViDa by equipping DMs with a vision encoder and jointly fine-tune the combined parts for multimodal instruction following. To address challenges encountered, LaViDa incorporates novel techniques such as complementary masking for effective training, prefix KV cache for efficient inference, and timestep shifting for high-quality sampling. Experiments show that LaViDa achieves competitive or superior performance to AR VLMs on multi-modal benchmarks such as MMMU, while offering unique advantages of DMs, including flexible speed-quality tradeoff, controllability, and bidirectional reasoning. On COCO captioning, LaViDa surpasses Open-LLaVa-Next-8B by +4.1 CIDEr with 1.92x speedup. On bidirectional tasks, it achieves +59% improvement on Constrained Poem Completion. These results demonstrate LaViDa as a strong alternative to AR VLMs. Code and models will be released in the camera-ready version.
comment: 25 pages, 8 figures
Hypergraph Tversky-Aware Domain Incremental Learning for Brain Tumor Segmentation with Missing Modalities MICCAI 2025
Existing methods for multimodal MRI segmentation with missing modalities typically assume that all MRI modalities are available during training. However, in clinical practice, some modalities may be missing due to the sequential nature of MRI acquisition, leading to performance degradation. Furthermore, retraining models to accommodate newly available modalities can be inefficient and may cause overfitting, potentially compromising previously learned knowledge. To address these challenges, we propose Replay-based Hypergraph Domain Incremental Learning (ReHyDIL) for brain tumor segmentation with missing modalities. ReHyDIL leverages Domain Incremental Learning (DIL) to enable the segmentation model to learn from newly acquired MRI modalities without forgetting previously learned information. To enhance segmentation performance across diverse patient scenarios, we introduce the Cross-Patient Hypergraph Segmentation Network (CHSNet), which utilizes hypergraphs to capture high-order associations between patients. Additionally, we incorporate Tversky-Aware Contrastive (TAC) loss to effectively mitigate information imbalance both across and within different modalities. Extensive experiments on the BraTS2019 dataset demonstrate that ReHyDIL outperforms state-of-the-art methods, achieving an improvement of over 2% in the Dice Similarity Coefficient across various tumor regions.
comment: MICCAI 2025 Early Accept. The code is available at https://github.com/reeive/ReHyDIL
Decoupled Geometric Parameterization and its Application in Deep Homography Estimation
Planar homography, with eight degrees of freedom (DOFs), is fundamental in numerous computer vision tasks. While the positional offsets of four corners are widely adopted (especially in neural network predictions), this parameterization lacks geometric interpretability and typically requires solving a linear system to compute the homography matrix. This paper presents a novel geometric parameterization of homographies, leveraging the similarity-kernel-similarity (SKS) decomposition for projective transformations. Two independent sets of four geometric parameters are decoupled: one for a similarity transformation and the other for the kernel transformation. Additionally, the geometric interpretation linearly relating the four kernel transformation parameters to angular offsets is derived. Our proposed parameterization allows for direct homography estimation through matrix multiplication, eliminating the need for solving a linear system, and achieves performance comparable to the four-corner positional offsets in deep homography estimation.
Synergistic Bleeding Region and Point Detection in Laparoscopic Surgical Videos
Intraoperative bleeding in laparoscopic surgery causes rapid obscuration of the operative field to hinder the surgical process and increases the risk of postoperative complications. Intelligent detection of bleeding areas can quantify the blood loss to assist decision-making, while locating bleeding points helps surgeons quickly identify the source of bleeding and achieve hemostasis in time to improve surgical success rates. In this study, we first construct a real-world laparoscopic surgical bleeding detection dataset, named SurgBlood, comprising 5,330 frames from 95 surgical video clips with bleeding region and point annotations. Accordingly, we develop a dual-task synergistic online detector called BlooDet, designed to perform simultaneous detection of bleeding regions and points in laparoscopic surgery. Our framework embraces a dual-branch bidirectional guidance design based on Segment Anything Model 2 (SAM 2). The mask branch detects bleeding regions through adaptive edge and point prompt embeddings, and the point branch leverages mask memory to induce bleeding point memory modeling and capture the direction of bleed point movement via inter-frame optical flow. By bidirectional guidance, the two branches explore potential spatial-temporal relationships while leveraging memory modeling to infer the current bleeding condition. Extensive experiments demonstrate that our baseline outperforms 12 counterparts on SurgBlood in both bleeding region and point detection.
MMXU: A Multi-Modal and Multi-X-ray Understanding Dataset for Disease Progression
Large vision-language models (LVLMs) have shown great promise in medical applications, particularly in visual question answering (MedVQA) and diagnosis from medical images. However, existing datasets and models often fail to consider critical aspects of medical diagnostics, such as the integration of historical records and the analysis of disease progression over time. In this paper, we introduce MMXU (Multimodal and MultiX-ray Understanding), a novel dataset for MedVQA that focuses on identifying changes in specific regions between two patient visits. Unlike previous datasets that primarily address single-image questions, MMXU enables multi-image questions, incorporating both current and historical patient data. We demonstrate the limitations of current LVLMs in identifying disease progression on MMXU-\textit{test}, even those that perform well on traditional benchmarks. To address this, we propose a MedRecord-Augmented Generation (MAG) approach, incorporating both global and regional historical records. Our experiments show that integrating historical records significantly enhances diagnostic accuracy by at least 20\%, bridging the gap between current LVLMs and human expert performance. Additionally, we fine-tune models with MAG on MMXU-\textit{dev}, which demonstrates notable improvements. We hope this work could illuminate the avenue of advancing the use of LVLMs in medical diagnostics by emphasizing the importance of historical context in interpreting medical images. Our dataset is released at github: https://github.com/linjiemu/MMXU.
A Clinician-Friendly Platform for Ophthalmic Image Analysis Without Technical Barriers
Artificial intelligence (AI) shows remarkable potential in medical imaging diagnostics, yet most current models require retraining when applied across different clinical settings, limiting their scalability. We introduce GlobeReady, a clinician-friendly AI platform that enables fundus disease diagnosis that operates without retraining, fine-tuning, or the needs for technical expertise. GlobeReady demonstrates high accuracy across imaging modalities: 93.9-98.5% for 11 fundus diseases using color fundus photographs (CPFs) and 87.2-92.7% for 15 fundus diseases using optic coherence tomography (OCT) scans. By leveraging training-free local feature augmentation, GlobeReady platform effectively mitigates domain shifts across centers and populations, achieving accuracies of 88.9-97.4% across five centers on average in China, 86.3-96.9% in Vietnam, and 73.4-91.0% in Singapore, and 90.2-98.9% in the UK. Incorporating a bulit-in confidence-quantifiable diagnostic mechanism further enhances the platform's accuracy to 94.9-99.4% with CFPs and 88.2-96.2% with OCT, while enabling identification of out-of-distribution cases with 86.3% accuracy across 49 common and rare fundus diseases using CFPs, and 90.6% accuracy across 13 diseases using OCT. Clinicians from countries rated GlobeReady highly for usability and clinical relevance (average score 4.6/5). These findings demonstrate GlobeReady's robustness, generalizability and potential to support global ophthalmic care without technical barriers.
ViFOR: A Fourier-Enhanced Vision Transformer for Multi-Image Super-Resolution in Earth System
Super-resolution (SR) techniques are essential for improving Earth System Model (ESM) data's spatial resolution, which helps better understand complex environmental processes. This paper presents a new algorithm, ViFOR, which combines Vision Transformers (ViT) and Fourier-based Implicit Neural Representation Networks (INRs) to generate High-Resolution (HR) images from Low-Resolution (LR) inputs. ViFOR introduces a novel integration of Fourier-based activation functions within the Vision Transformer architecture, enabling it to effectively capture global context and high-frequency details critical for accurate SR reconstruction. The results show that ViFOR outperforms state-of-the-art methods such as ViT, Sinusoidal Representation Networks (SIREN), and SR Generative Adversarial Networks (SRGANs) based on metrics like Peak Signal-to-Noise Ratio (PSNR) and Mean Squared Error (MSE) both for global as well as the local imagery. ViFOR improves PSNR of up to 4.18 dB, 1.56 dB, and 1.73 dB over ViT for full images in the Source Temperature, Shortwave, and Longwave Flux.
Forensics Adapter: Unleashing CLIP for Generalizable Face Forgery Detection CVPR 2025
We describe Forensics Adapter, an adapter network designed to transform CLIP into an effective and generalizable face forgery detector. Although CLIP is highly versatile, adapting it for face forgery detection is non-trivial as forgery-related knowledge is entangled with a wide range of unrelated knowledge. Existing methods treat CLIP merely as a feature extractor, lacking task-specific adaptation, which limits their effectiveness. To address this, we introduce an adapter to learn face forgery traces -- the blending boundaries unique to forged faces, guided by task-specific objectives. Then we enhance the CLIP visual tokens with a dedicated interaction strategy that communicates knowledge across CLIP and the adapter. Since the adapter is alongside CLIP, its versatility is highly retained, naturally ensuring strong generalizability in face forgery detection. With only 5.7M trainable parameters, our method achieves a significant performance boost, improving by approximately 7% on average across five standard datasets. Additionally, we describe Forensics Adapter++, an extended method that incorporates textual modality via a newly proposed forgery-aware prompt learning strategy. This extension leads to a further 1.3% performance boost over the original Forensics Adapter. We believe the proposed methods can serve as a baseline for future CLIP-based face forgery detection methods. The codes have been released at https://github.com/OUC-VAS/ForensicsAdapter.
comment: Extension of CVPR 2025
Think or Not? Selective Reasoning via Reinforcement Learning for Vision-Language Models
Reinforcement Learning (RL) has proven to be an effective post-training strategy for enhancing reasoning in vision-language models (VLMs). Group Relative Policy Optimization (GRPO) is a recent prominent method that encourages models to generate complete reasoning traces before answering, leading to increased token usage and computational cost. Inspired by the human-like thinking process-where people skip reasoning for easy questions but think carefully when needed-we explore how to enable VLMs to first decide when reasoning is necessary. To realize this, we propose TON, a two-stage training strategy: (i) a supervised fine-tuning (SFT) stage with a simple yet effective 'thought dropout' operation, where reasoning traces are randomly replaced with empty thoughts. This introduces a think-or-not format that serves as a cold start for selective reasoning; (ii) a GRPO stage that enables the model to freely explore when to think or not, while maximizing task-aware outcome rewards. Experimental results show that TON can reduce the completion length by up to 90% compared to vanilla GRPO, without sacrificing performance or even improving it. Further evaluations across diverse vision-language tasks-covering a range of reasoning difficulties under both 3B and 7B models-consistently reveal that the model progressively learns to bypass unnecessary reasoning steps as training advances. These findings shed light on the path toward human-like reasoning patterns in reinforcement learning approaches. Our code is available at https://github.com/kokolerk/TON.
comment: update more examples in appendix
Multi-Faceted Multimodal Monosemanticity
Humans experience the world through multiple modalities, such as, vision, language, and speech, making it natural to explore the commonality and distinctions among them. In this work, we take a data-driven approach to address this question by analyzing interpretable, monosemantic features extracted from deep multimodal models. Specifically, we investigate CLIP, a prominent visual-language representation model trained on massive image-text pairs. Building on prior research in single-modal interpretability, we develop a set of multi-modal interpretability tools and measures designed to disentangle and analyze features learned from CLIP. Specifically, we introduce the Modality Dominance Score (MDS) to attribute each CLIP feature to a specific modality. We then map CLIP features into a more interpretable space, enabling us to categorize them into three distinct classes: vision features (single-modal), language features (single-modal), and visual-language features (cross-modal). Interestingly, this data-driven categorization closely aligns with human intuitive understandings of different modalities. We further show that this modality decomposition can benefit multiple downstream tasks, including reducing bias in gender detection, generating cross-modal adversarial examples, and enabling modal-specific feature control in text-to-image generation. These results indicate that large-scale multimodal models, when equipped with task-agnostic interpretability tools, can offer valuable insights into the relationships between different data modalities.
CostFilter-AD: Enhancing Anomaly Detection through Matching Cost Filtering ICML 2025
Unsupervised anomaly detection (UAD) seeks to localize the anomaly mask of an input image with respect to normal samples. Either by reconstructing normal counterparts (reconstruction-based) or by learning an image feature embedding space (embedding-based), existing approaches fundamentally rely on image-level or feature-level matching to derive anomaly scores. Often, such a matching process is inaccurate yet overlooked, leading to sub-optimal detection. To address this issue, we introduce the concept of cost filtering, borrowed from classical matching tasks, such as depth and flow estimation, into the UAD problem. We call this approach {\em CostFilter-AD}. Specifically, we first construct a matching cost volume between the input and normal samples, comprising two spatial dimensions and one matching dimension that encodes potential matches. To refine this, we propose a cost volume filtering network, guided by the input observation as an attention query across multiple feature layers, which effectively suppresses matching noise while preserving edge structures and capturing subtle anomalies. Designed as a generic post-processing plug-in, CostFilter-AD can be integrated with either reconstruction-based or embedding-based methods. Extensive experiments on MVTec-AD and VisA benchmarks validate the generic benefits of CostFilter-AD for both single- and multi-class UAD tasks. Code and models will be released at https://github.com/ZHE-SAPI/CostFilter-AD.
comment: 25 pages, 12 figures, 20 tables, accepted by Forty-Second International Conference on Machine Learning ( ICML 2025 ), link: https://icml.cc/virtual/2025/poster/46359
RBench-V: A Primary Assessment for Visual Reasoning Models with Multi-modal Outputs
The rapid advancement of native multi-modal models and omni-models, exemplified by GPT-4o, Gemini, and o3, with their capability to process and generate content across modalities such as text and images, marks a significant milestone in the evolution of intelligence. Systematic evaluation of their multi-modal output capabilities in visual thinking processes (also known as multi-modal chain of thought, M-CoT) becomes critically important. However, existing benchmarks for evaluating multi-modal models primarily focus on assessing multi-modal inputs and text-only reasoning while neglecting the importance of reasoning through multi-modal outputs. In this paper, we present a benchmark, dubbed RBench-V, designed to assess models' vision-indispensable reasoning abilities. To construct RBench-V, we carefully hand-pick 803 questions covering math, physics, counting, and games. Unlike previous benchmarks that typically specify certain input modalities, RBench-V presents problems centered on multi-modal outputs, which require image manipulation such as generating novel images and constructing auxiliary lines to support the reasoning process. We evaluate numerous open- and closed-source models on RBench-V, including o3, Gemini 2.5 Pro, Qwen2.5-VL, etc. Even the best-performing model, o3, achieves only 25.8% accuracy on RBench-V, far below the human score of 82.3%, highlighting that current models struggle to leverage multi-modal reasoning. Data and code are available at https://evalmodels.github.io/rbenchv
comment: 12 pages
Selective Structured State Space for Multispectral-fused Small Target Detection CVPR 2025
Target detection in high-resolution remote sensing imagery faces challenges due to the low recognition accuracy of small targets and high computational costs. The computational complexity of the Transformer architecture increases quadratically with image resolution, while Convolutional Neural Networks (CNN) architectures are forced to stack deeper convolutional layers to expand their receptive fields, leading to an explosive growth in computational demands. To address these computational constraints, we leverage Mamba's linear complexity for efficiency. However, Mamba's performance declines for small targets, primarily because small targets occupy a limited area in the image and have limited semantic information. Accurate identification of these small targets necessitates not only Mamba's global attention capabilities but also the precise capture of fine local details. To this end, we enhance Mamba by developing the Enhanced Small Target Detection (ESTD) module and the Convolutional Attention Residual Gate (CARG) module. The ESTD module bolsters local attention to capture fine-grained details, while the CARG module, built upon Mamba, emphasizes spatial and channel-wise information, collectively improving the model's ability to capture distinctive representations of small targets. Additionally, to highlight the semantic representation of small targets, we design a Mask Enhanced Pixel-level Fusion (MEPF) module for multispectral fusion, which enhances target features by effectively fusing visible and infrared multimodal information.
comment: This work was submitted to CVPR 2025, but was rejected after being reviewed by 7 reviewers. After revision, it is currently under review
Simpler Fast Vision Transformers with a Jumbo CLS Token
We introduce a simple enhancement of vision transformers (ViTs) to improve accuracy while maintaining throughput. Our approach, Jumbo, creates a wider CLS token, which is split to match the patch token width before attention, processed with self-attention, and reassembled. After attention, Jumbo applies a dedicated, wider FFN to this token. Since there is only one Jumbo token, its cost is minimal, and because we share this FFN across layers, its parameter count is controlled. Jumbo significantly improves over ViT+Registers on ImageNet-1K and ImageNet-21K. These gains are largest at small sizes / high speeds, e.g., ViT-nano+Jumbo outperforms ViT-nano+Registers by 13%. In fact, our Jumbo models are so efficient that they outperform specialized compute-efficient models while preserving the architectural advantages of plain ViTs, such as support for token dropping and other modalities. Accordingly, we demonstrate that Jumbo excels in these two settings via masked autoencoding and on a suite of time series benchmarks. Code and weights available: https://github.com/antofuller/jumbo
Rapid Whole Brain Motion-robust Mesoscale In-vivo MR Imaging using Multi-scale Implicit Neural Representation
High-resolution whole-brain in vivo MR imaging at mesoscale resolutions remains challenging due to long scan durations, motion artifacts, and limited signal-to-noise ratio (SNR). This study proposes Rotating-view super-resolution (ROVER)-MRI, an unsupervised framework based on multi-scale implicit neural representations (INR), enabling efficient recovery of fine anatomical details from multi-view thick-slice acquisitions. ROVER-MRI employs coordinate-based neural networks to implicitly and continuously encode image structures at multiple spatial scales, simultaneously modeling anatomical continuity and correcting inter-view motion through an integrated registration mechanism. Validation on ex-vivo monkey brain data and multiple in-vivo human datasets demonstrates substantially improved reconstruction performance compared to bicubic interpolation and state-of-the-art regularized least-squares super-resolution reconstruction (LS-SRR) with 2-fold reduction in scan time. Notably, ROVER-MRI achieves an unprecedented whole-brain in-vivo T2-weighted imaging at 180 micron isotropic resolution in only 17 minutes of scan time on a 7T scanner with 22.4% lower relative error compared to LS-SRR. We also demonstrate improved SNR using ROVER-MRI compared to a time-matched 3D GRE acquisition. Quantitative results on several datasets demonstrate better sharpness of the reconstructed images with ROVER-MRI for different super-resolution factors (5 to 11). These findings highlight ROVER-MRI's potential as a rapid, accurate, and motion-resilient mesoscale imaging solution, promising substantial advantages for neuroimaging studies.
Exploring Implicit Visual Misunderstandings in Multimodal Large Language Models through Attention Analysis
Recent advancements have enhanced the capability of Multimodal Large Language Models (MLLMs) to comprehend multi-image information. However, existing benchmarks primarily evaluate answer correctness, overlooking whether models genuinely comprehend the visual input. To address this, we define implicit visual misunderstanding (IVM), where MLLMs provide correct answers without fully comprehending the visual input. Through our analysis, we decouple the visual and textual modalities within the causal attention module, revealing that attention distribution increasingly converges on the image associated with the correct answer as the network layers deepen. This insight leads to the introduction of a scale-agnostic metric, \textit{attention accuracy}, and a novel benchmark for quantifying IVMs. Attention accuracy directly evaluates the model's visual understanding via internal mechanisms, remaining robust to positional biases for more reliable assessments. Furthermore, we extend our approach to finer granularities and demonstrate its effectiveness in unimodal scenarios, underscoring its versatility and generalizability.
On the Robustness of Medical Vision-Language Models: Are they Truly Generalizable? UAI
Medical Vision-Language Models (MVLMs) have achieved par excellence generalization in medical image analysis, yet their performance under noisy, corrupted conditions remains largely untested. Clinical imaging is inherently susceptible to acquisition artifacts and noise; however, existing evaluations predominantly assess generally clean datasets, overlooking robustness -- i.e., the model's ability to perform under real-world distortions. To address this gap, we first introduce MediMeta-C, a corruption benchmark that systematically applies several perturbations across multiple medical imaging datasets. Combined with MedMNIST-C, this establishes a comprehensive robustness evaluation framework for MVLMs. We further propose RobustMedCLIP, a visual encoder adaptation of a pretrained MVLM that incorporates few-shot tuning to enhance resilience against corruptions. Through extensive experiments, we benchmark 5 major MVLMs across 5 medical imaging modalities, revealing that existing models exhibit severe degradation under corruption and struggle with domain-modality tradeoffs. Our findings highlight the necessity of diverse training and robust adaptation strategies, demonstrating that efficient low-rank adaptation when paired with few-shot tuning, improves robustness while preserving generalization across modalities.
comment: Dataset and Code is available at https://github.com/BioMedIA-MBZUAI/RobustMedCLIP Accepted at: Medical Image Understanding and Analysis (MIUA) 2025
Exploring Generalized Gait Recognition: Reducing Redundancy and Noise within Indoor and Outdoor Datasets
Generalized gait recognition, which aims to achieve robust performance across diverse domains, remains a challenging problem due to severe domain shifts in viewpoints, appearances, and environments. While mixed-dataset training is widely used to enhance generalization, it introduces new obstacles including inter-dataset optimization conflicts and redundant or noisy samples, both of which hinder effective representation learning. To address these challenges, we propose a unified framework that systematically improves cross-domain gait recognition. First, we design a disentangled triplet loss that isolates supervision signals across datasets, mitigating gradient conflicts during optimization. Second, we introduce a targeted dataset distillation strategy that filters out the least informative 20\% of training samples based on feature redundancy and prediction uncertainty, enhancing data efficiency. Extensive experiments on CASIA-B, OU-MVLP, Gait3D, and GREW demonstrate that our method significantly improves cross-dataset recognition for both GaitBase and DeepGaitV2 backbones, without sacrificing source-domain accuracy. Code will be released at https://github.com/li1er3/Generalized_Gait.
comment: 10 pages, 3 figures
Erasing Undesirable Concepts in Diffusion Models with Adversarial Preservation NeurIPS 2024
Diffusion models excel at generating visually striking content from text but can inadvertently produce undesirable or harmful content when trained on unfiltered internet data. A practical solution is to selectively removing target concepts from the model, but this may impact the remaining concepts. Prior approaches have tried to balance this by introducing a loss term to preserve neutral content or a regularization term to minimize changes in the model parameters, yet resolving this trade-off remains challenging. In this work, we propose to identify and preserving concepts most affected by parameter changes, termed as \textit{adversarial concepts}. This approach ensures stable erasure with minimal impact on the other concepts. We demonstrate the effectiveness of our method using the Stable Diffusion model, showing that it outperforms state-of-the-art erasure methods in eliminating unwanted content while maintaining the integrity of other unrelated elements. Our code is available at https://github.com/tuananhbui89/Erasing-Adversarial-Preservation.
comment: Erasing Concepts, Generative Unlearning, NeurIPS 2024. arXiv admin note: text overlap with arXiv:2403.12326
Fantastic Targets for Concept Erasure in Diffusion Models and Where To Find Them
Concept erasure has emerged as a promising technique for mitigating the risk of harmful content generation in diffusion models by selectively unlearning undesirable concepts. The common principle of previous works to remove a specific concept is to map it to a fixed generic concept, such as a neutral concept or just an empty text prompt. In this paper, we demonstrate that this fixed-target strategy is suboptimal, as it fails to account for the impact of erasing one concept on the others. To address this limitation, we model the concept space as a graph and empirically analyze the effects of erasing one concept on the remaining concepts. Our analysis uncovers intriguing geometric properties of the concept space, where the influence of erasing a concept is confined to a local region. Building on this insight, we propose the Adaptive Guided Erasure (AGE) method, which \emph{dynamically} selects optimal target concepts tailored to each undesirable concept, minimizing unintended side effects. Experimental results show that AGE significantly outperforms state-of-the-art erasure methods on preserving unrelated concepts while maintaining effective erasure performance. Our code is published at {https://github.com/tuananhbui89/Adaptive-Guided-Erasure}.
Open-Set Gait Recognition from Sparse mmWave Radar Point Clouds
The adoption of Millimeter-Wave (mmWave) radar devices for human sensing, particularly gait recognition, has recently gathered significant attention due to their efficiency, resilience to environmental conditions, and privacy-preserving nature. In this work, we tackle the challenging problem of Open-set Gait Recognition (OSGR) from sparse mmWave radar point clouds. Unlike most existing research, which assumes a closed-set scenario, our work considers the more realistic open-set case, where unknown subjects might be present at inference time, and should be correctly recognized by the system. Point clouds are well-suited for edge computing applications with resource constraints, but are more significantly affected by noise and random fluctuations than other representations, like the more common micro-Doppler signature. This is the first work addressing open-set gait recognition with sparse point cloud data. To do so, we propose a novel neural network architecture that combines supervised classification with unsupervised reconstruction of the point clouds, creating a robust, rich, and highly regularized latent space of gait features. To detect unknown subjects at inference time, we introduce a probabilistic novelty detection algorithm that leverages the structured latent space and offers a tunable trade-off between inference speed and prediction accuracy. Along with this paper, we release mmGait10, an original human gait dataset featuring over five hours of measurements from ten subjects, under varied walking modalities. Extensive experimental results show that our solution attains F1-Score improvements by 24% over state-of-the-art methods, on average, and across multiple openness levels.
WildLive: Near Real-time Visual Wildlife Tracking onboard UAVs
Live tracking of wildlife via high-resolution video processing directly onboard drones is widely unexplored and most existing solutions rely on streaming video to ground stations to support navigation. Yet, both autonomous animal-reactive flight control beyond visual line of sight and/or mission-specific individual and behaviour recognition tasks rely to some degree on this capability. In response, we introduce WildLive - a near real-time animal detection and tracking framework for high-resolution imagery running directly onboard uncrewed aerial vehicles (UAVs). The system performs multi-animal detection and tracking at 17.81fps for HD and 7.53fps on 4K video streams suitable for operation during higher altitude flights to minimise animal disturbance. Our system is optimised for Jetson Orin AGX onboard hardware. It integrates the efficiency of sparse optical flow tracking and mission-specific sampling with device-optimised and proven YOLO-driven object detection and segmentation techniques. Essentially, computational resource is focused onto spatio-temporal regions of high uncertainty to significantly improve UAV processing speeds. Alongside, we introduce our WildLive dataset, which comprises 200K+ annotated animal instances across 19K+ frames from 4K UAV videos collected at the Ol Pejeta Conservancy in Kenya. All frames contain ground truth bounding boxes, segmentation masks, as well as individual tracklets and tracking point trajectories. We compare our system against current object tracking approaches including OC-SORT, ByteTrack, and SORT. Our multi-animal tracking experiments with onboard hardware confirm that near real-time high-resolution wildlife tracking is possible on UAVs whilst maintaining high accuracy levels as needed for future navigational and mission-specific animal-centric operational autonomy. Our materials are available at: https://dat-nguyenvn.github.io/WildLive/
QVGen: Pushing the Limit of Quantized Video Generative Models
Video diffusion models (DMs) have enabled high-quality video synthesis. Yet, their substantial computational and memory demands pose serious challenges to real-world deployment, even on high-end GPUs. As a commonly adopted solution, quantization has proven notable success in reducing cost for image DMs, while its direct application to video DMs remains ineffective. In this paper, we present QVGen, a novel quantization-aware training (QAT) framework tailored for high-performance and inference-efficient video DMs under extremely low-bit quantization (e.g., 4-bit or below). We begin with a theoretical analysis demonstrating that reducing the gradient norm is essential to facilitate convergence for QAT. To this end, we introduce auxiliary modules ($\Phi$) to mitigate large quantization errors, leading to significantly enhanced convergence. To eliminate the inference overhead of $\Phi$, we propose a rank-decay strategy that progressively eliminates $\Phi$. Specifically, we repeatedly employ singular value decomposition (SVD) and a proposed rank-based regularization $\mathbf{\gamma}$ to identify and decay low-contributing components. This strategy retains performance while zeroing out inference overhead. Extensive experiments across $4$ state-of-the-art (SOTA) video DMs, with parameter sizes ranging from $1.3$B $\sim14$B, show that QVGen is the first to reach full-precision comparable quality under 4-bit settings. Moreover, it significantly outperforms existing methods. For instance, our 3-bit CogVideoX-2B achieves improvements of $+25.28$ in Dynamic Degree and $+8.43$ in Scene Consistency on VBench.
comment: Our code will be released upon acceptance
VGGT-SLAM: Dense RGB SLAM Optimized on the SL(4) Manifold
We present VGGT-SLAM, a dense RGB SLAM system constructed by incrementally and globally aligning submaps created from the feed-forward scene reconstruction approach VGGT using only uncalibrated monocular cameras. While related works align submaps using similarity transforms (i.e., translation, rotation, and scale), we show that such approaches are inadequate in the case of uncalibrated cameras. In particular, we revisit the idea of reconstruction ambiguity, where given a set of uncalibrated cameras with no assumption on the camera motion or scene structure, the scene can only be reconstructed up to a 15-degrees-of-freedom projective transformation of the true geometry. This inspires us to recover a consistent scene reconstruction across submaps by optimizing over the SL(4) manifold, thus estimating 15-degrees-of-freedom homography transforms between sequential submaps while accounting for potential loop closure constraints. As verified by extensive experiments, we demonstrate that VGGT-SLAM achieves improved map quality using long video sequences that are infeasible for VGGT due to its high GPU requirements.
ViCTr: Vital Consistency Transfer for Pathology Aware Image Synthesis
Synthesizing medical images remains challenging due to limited annotated pathological data, modality domain gaps, and the complexity of representing diffuse pathologies such as liver cirrhosis. Existing methods often struggle to maintain anatomical fidelity while accurately modeling pathological features, frequently relying on priors derived from natural images or inefficient multi-step sampling. In this work, we introduce ViCTr (Vital Consistency Transfer), a novel two-stage framework that combines a rectified flow trajectory with a Tweedie-corrected diffusion process to achieve high-fidelity, pathology-aware image synthesis. First, we pretrain ViCTr on the ATLAS-8k dataset using Elastic Weight Consolidation (EWC) to preserve critical anatomical structures. We then fine-tune the model adversarially with Low-Rank Adaptation (LoRA) modules for precise control over pathology severity. By reformulating Tweedie's formula within a linear trajectory framework, ViCTr supports one-step sampling, reducing inference from 50 steps to just 4, without sacrificing anatomical realism. We evaluate ViCTr on BTCV (CT), AMOS (MRI), and CirrMRI600+ (cirrhosis) datasets. Results demonstrate state-of-the-art performance, achieving a Medical Frechet Inception Distance (MFID) of 17.01 for cirrhosis synthesis 28% lower than existing approaches and improving nnUNet segmentation by +3.8% mDSC when used for data augmentation. Radiologist reviews indicate that ViCTr-generated liver cirrhosis MRIs are clinically indistinguishable from real scans. To our knowledge, ViCTr is the first method to provide fine-grained, pathology-aware MRI synthesis with graded severity control, closing a critical gap in AI-driven medical imaging research.
Autoregressive Sequence Modeling for 3D Medical Image Representation AAAI 2025
Three-dimensional (3D) medical images, such as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI), are essential for clinical applications. However, the need for diverse and comprehensive representations is particularly pronounced when considering the variability across different organs, diagnostic tasks, and imaging modalities. How to effectively interpret the intricate contextual information and extract meaningful insights from these images remains an open challenge to the community. While current self-supervised learning methods have shown potential, they often consider an image as a whole thereby overlooking the extensive, complex relationships among local regions from one or multiple images. In this work, we introduce a pioneering method for learning 3D medical image representations through an autoregressive pre-training framework. Our approach sequences various 3D medical images based on spatial, contrast, and semantic correlations, treating them as interconnected visual tokens within a token sequence. By employing an autoregressive sequence modeling task, we predict the next visual token in the sequence, which allows our model to deeply understand and integrate the contextual information inherent in 3D medical images. Additionally, we implement a random startup strategy to avoid overestimating token relationships and to enhance the robustness of learning. The effectiveness of our approach is demonstrated by the superior performance over others on nine downstream tasks in public datasets.
comment: Accepted by AAAI 2025
RCR: Robust Crowd Reconstruction with Upright Space from a Single Large-scene Image
This paper focuses on spatially consistent hundreds of human pose and shape reconstruction from a single large-scene image with various human scales under arbitrary camera FoVs (Fields of View). Due to the small and highly varying 2D human scales, depth ambiguity, and perspective distortion, no existing methods can achieve globally consistent reconstruction with correct reprojection. To address these challenges, we first propose a new concept, Human-scene Virtual Interaction Point (HVIP), to convert the complex 3D human localization into 2D-pixel localization. We then extend it to RCR (Robust Crowd Reconstruction), which achieves globally consistent reconstruction and stable generalization on different camera FoVs without test-time optimization. To perceive humans in varying pixel sizes, we propose an Iterative Ground-aware Cropping to automatically crop the image and then merge the results. To eliminate the influence of the camera and cropping process during the reconstruction, we introduce a canonical Upright 3D Space and the corresponding Upright 2D Space. To link the canonical space and the camera space, we propose the Upright Normalization, which transforms the local crop input into the Upright 2D Space, and transforms the output from the Upright 3D Space into the unified camera space. Besides, we contribute two benchmark datasets, LargeCrowd and SynCrowd, for evaluating crowd reconstruction in large scenes. Experimental results demonstrate the effectiveness of the proposed method. The source code and data will be publicly available for research purposes.
MMInference: Accelerating Pre-filling for Long-Context VLMs via Modality-Aware Permutation Sparse Attention ICML 2025
The integration of long-context capabilities with visual understanding unlocks unprecedented potential for Vision Language Models (VLMs). However, the quadratic attention complexity during the pre-filling phase remains a significant obstacle to real-world deployment. To overcome this limitation, we introduce MMInference (Multimodality Million tokens Inference), a dynamic sparse attention method that accelerates the prefilling stage for long-context multi-modal inputs. First, our analysis reveals that the temporal and spatial locality of video input leads to a unique sparse pattern, the Grid pattern. Simultaneously, VLMs exhibit markedly different sparse distributions across different modalities. We introduce a permutation-based method to leverage the unique Grid pattern and handle modality boundary issues. By offline search the optimal sparse patterns for each head, MMInference constructs the sparse distribution dynamically based on the input. We also provide optimized GPU kernels for efficient sparse computations. Notably, MMInference integrates seamlessly into existing VLM pipelines without any model modifications or fine-tuning. Experiments on multi-modal benchmarks-including Video QA, Captioning, VisionNIAH, and Mixed-Modality NIAH-with state-of-the-art long-context VLMs (LongVila, LlavaVideo, VideoChat-Flash, Qwen2.5-VL) show that MMInference accelerates the pre-filling stage by up to 8.3x at 1M tokens while maintaining accuracy. Our code is available at https://aka.ms/MMInference.
comment: Accepted at ICML 2025
Camera Movement Estimation and Path Correction using the Combination of Modified A-SIFT and Stereo System for 3D Modelling
Creating accurate and efficient 3D models poses significant challenges, particularly in addressing large viewpoint variations, computational complexity, and alignment discrepancies. Efficient camera path generation can help resolve these issues. In this context, a modified version of the Affine Scale-Invariant Feature Transform (ASIFT) is proposed to extract more matching points with reduced computational overhead, ensuring an adequate number of inliers for precise camera rotation angle estimation. Additionally, a novel two-camera-based rotation correction model is introduced to mitigate small rotational errors, further enhancing accuracy. Furthermore, a stereo camera-based translation estimation and correction model is implemented to determine camera movement in 3D space by altering the Structure From Motion (SFM) model. Finally, the novel combination of ASIFT and two camera-based SFM models provides an accurate camera movement trajectory in 3D space. Experimental results show that the proposed camera movement approach achieves 99.9% accuracy compared to the actual camera movement path and outperforms state-of-the-art camera path estimation methods. By leveraging this accurate camera path, the system facilitates the creation of precise 3D models, making it a robust solution for applications requiring high fidelity and efficiency in 3D reconstruction.
Explaining Black-box Model Predictions via Two-level Nested Feature Attributions with Consistency Property IJCAI2025
Techniques that explain the predictions of black-box machine learning models are crucial to make the models transparent, thereby increasing trust in AI systems. The input features to the models often have a nested structure that consists of high- and low-level features, and each high-level feature is decomposed into multiple low-level features. For such inputs, both high-level feature attributions (HiFAs) and low-level feature attributions (LoFAs) are important for better understanding the model's decision. In this paper, we propose a model-agnostic local explanation method that effectively exploits the nested structure of the input to estimate the two-level feature attributions simultaneously. A key idea of the proposed method is to introduce the consistency property that should exist between the HiFAs and LoFAs, thereby bridging the separate optimization problems for estimating them. Thanks to this consistency property, the proposed method can produce HiFAs and LoFAs that are both faithful to the black-box models and consistent with each other, using a smaller number of queries to the models. In experiments on image classification in multiple instance learning and text classification using language models, we demonstrate that the HiFAs and LoFAs estimated by the proposed method are accurate, faithful to the behaviors of the black-box models, and provide consistent explanations.
comment: This manuscript is an extended version of our paper accepted at IJCAI2025, with detailed proofs and additional experimental results
DiverseNet: Decision Diversified Semi-supervised Semantic Segmentation Networks for Remote Sensing Imagery
Semi-supervised learning (SSL) aims to help reduce the cost of the manual labelling process by leveraging a substantial pool of unlabelled data alongside a limited set of labelled data during the training phase. Since pixel-level manual labelling in large-scale remote sensing imagery is expensive and time-consuming, semi-supervised learning has become a widely used solution to deal with this. However, the majority of existing SSL frameworks, especially various teacher-student frameworks, are too bulky to run efficiently on a GPU with limited memory. There is still a lack of lightweight SSL frameworks and efficient perturbation methods to promote the diversity of training samples and enhance the precision of pseudo labels during training. In order to fill this gap, we proposed a simple, lightweight, and efficient SSL architecture named \textit{DiverseHead}, which promotes the utilisation of multiple decision heads instead of multiple whole networks. Another limitation of most existing SSL frameworks is the insufficient diversity of pseudo labels, as they rely on the same network architecture and fail to explore different structures for generating pseudo labels. To solve this issue, we propose \textit{DiverseModel} to explore and analyse different networks in parallel for SSL to increase the diversity of pseudo labels. The two proposed methods, namely \textit{DiverseHead} and \textit{DiverseModel}, both achieve competitive semantic segmentation performance in four widely used remote sensing imagery datasets compared to state-of-the-art semi-supervised learning methods. Meanwhile, the proposed lightweight DiverseHead architecture can be easily applied to various state-of-the-art SSL methods while further improving their performance. The code is available at https://github.com/WANLIMA-CARDIFF/DiverseNet.
DiffBreak: Is Diffusion-Based Purification Robust?
Diffusion-based purification (DBP) has become a cornerstone defense against adversarial examples (AEs), regarded as robust due to its use of diffusion models (DMs) that project AEs onto the natural data manifold. We refute this core claim, theoretically proving that gradient-based attacks effectively target the DM rather than the classifier, causing DBP's outputs to align with adversarial distributions. This prompts a reassessment of DBP's robustness, attributing it to two critical flaws: incorrect gradients and inappropriate evaluation protocols that test only a single random purification of the AE. We show that with proper accounting for stochasticity and resubmission risk, DBP collapses. To support this, we introduce DiffBreak, the first reliable toolkit for differentiation through DBP, eliminating gradient flaws that previously further inflated robustness estimates. We also analyze the current defense scheme used for DBP where classification relies on a single purification, pinpointing its inherent invalidity. We provide a statistically grounded majority-vote (MV) alternative that aggregates predictions across multiple purified copies, showing partial but meaningful robustness gain. We then propose a novel adaptation of an optimization method against deepfake watermarking, crafting systemic perturbations that defeat DBP even under MV, challenging DBP's viability.
EMT: A Visual Multi-Task Benchmark Dataset for Autonomous Driving
This paper introduces the Emirates Multi-Task (EMT) dataset, designed to support multi-task benchmarking within a unified framework. It comprises over 30,000 frames from a dash-camera perspective and 570,000 annotated bounding boxes, covering approximately 150 kilometers of driving routes that reflect the distinctive road topology, congestion patterns, and driving behavior of Gulf region traffic. The dataset supports three primary tasks: tracking, trajectory forecasting, and intention prediction. Each benchmark is accompanied by corresponding evaluations: (1) multi-agent tracking experiments addressing multi-class scenarios and occlusion handling; (2) trajectory forecasting evaluation using deep sequential and interaction-aware models; and (3) intention prediction experiments based on observed trajectories. The dataset is publicly available at https://avlab.io/emt-dataset, with pre-processing scripts and evaluation models at https://github.com/AV-Lab/emt-dataset.
comment: 19 pages, 6 figures
D3C2-Net: Dual-Domain Deep Convolutional Coding Network for Compressive Sensing
By mapping iterative optimization algorithms into neural networks (NNs), deep unfolding networks (DUNs) exhibit well-defined and interpretable structures and achieve remarkable success in the field of compressive sensing (CS). However, most existing DUNs solely rely on the image-domain unfolding, which restricts the information transmission capacity and reconstruction flexibility, leading to their loss of image details and unsatisfactory performance. To overcome these limitations, this paper develops a dual-domain optimization framework that combines the priors of (1) image- and (2) convolutional-coding-domains and offers generality to CS and other inverse imaging tasks. By converting this optimization framework into deep NN structures, we present a Dual-Domain Deep Convolutional Coding Network (D3C2-Net), which enjoys the ability to efficiently transmit high-capacity self-adaptive convolutional features across all its unfolded stages. Our theoretical analyses and experiments on simulated and real captured data, covering 2D and 3D natural, medical, and scientific signals, demonstrate the effectiveness, practicality, superior performance, and generalization ability of our method over other competing approaches and its significant potential in achieving a balance among accuracy, complexity, and interpretability. Code is available at https://github.com/lwq20020127/D3C2-Net.
comment: accepted by IEEE TCSVT
ReactDiff: Latent Diffusion for Facial Reaction Generation
Given the audio-visual clip of the speaker, facial reaction generation aims to predict the listener's facial reactions. The challenge lies in capturing the relevance between video and audio while balancing appropriateness, realism, and diversity. While prior works have mostly focused on uni-modal inputs or simplified reaction mappings, recent approaches such as PerFRDiff have explored multi-modal inputs and the one-to-many nature of appropriate reaction mappings. In this work, we propose the Facial Reaction Diffusion (ReactDiff) framework that uniquely integrates a Multi-Modality Transformer with conditional diffusion in the latent space for enhanced reaction generation. Unlike existing methods, ReactDiff leverages intra- and inter-class attention for fine-grained multi-modal interaction, while the latent diffusion process between the encoder and decoder enables diverse yet contextually appropriate outputs. Experimental results demonstrate that ReactDiff significantly outperforms existing approaches, achieving a facial reaction correlation of 0.26 and diversity score of 0.094 while maintaining competitive realism. The code is open-sourced at \href{https://github.com/Hunan-Tiger/ReactDiff}{github}.
comment: Neural Networks
Ctrl-Room: Controllable Text-to-3D Room Meshes Generation with Layout Constraints
Text-driven 3D indoor scene generation is useful for gaming, the film industry, and AR/VR applications. However, existing methods cannot faithfully capture the room layout, nor do they allow flexible editing of individual objects in the room. To address these problems, we present Ctrl-Room, which can generate convincing 3D rooms with designer-style layouts and high-fidelity textures from just a text prompt. Moreover, Ctrl-Room enables versatile interactive editing operations such as resizing or moving individual furniture items. Our key insight is to separate the modeling of layouts and appearance. Our proposed method consists of two stages: a Layout Generation Stage and an Appearance Generation Stage. The Layout Generation Stage trains a text-conditional diffusion model to learn the layout distribution with our holistic scene code parameterization. Next, the Appearance Generation Stage employs a fine-tuned ControlNet to produce a vivid panoramic image of the room guided by the 3D scene layout and text prompt. We thus achieve a high-quality 3D room generation with convincing layouts and lively textures. Benefiting from the scene code parameterization, we can easily edit the generated room model through our mask-guided editing module, without expensive edit-specific training. Extensive experiments on the Structured3D dataset demonstrate that our method outperforms existing methods in producing more reasonable, view-consistent, and editable 3D rooms from natural language prompts.
Q-Insight: Understanding Image Quality via Visual Reinforcement Learning
Image quality assessment (IQA) focuses on the perceptual visual quality of images, playing a crucial role in downstream tasks such as image reconstruction, compression, and generation. The rapid advancement of multi-modal large language models (MLLMs) has significantly broadened the scope of IQA, moving toward comprehensive image quality understanding that incorporates content analysis, degradation perception, and comparison reasoning beyond mere numerical scoring. Previous MLLM-based methods typically either generate numerical scores lacking interpretability or heavily rely on supervised fine-tuning (SFT) using large-scale annotated datasets to provide descriptive assessments, limiting their flexibility and applicability. In this paper, we propose Q-Insight, a reinforcement learning-based model built upon group relative policy optimization (GRPO), which demonstrates strong visual reasoning capability for image quality understanding while requiring only a limited amount of rating scores and degradation labels. By jointly optimizing score regression and degradation perception tasks with carefully designed reward functions, our approach effectively exploits their mutual benefits for enhanced performance. Extensive experiments demonstrate that Q-Insight substantially outperforms existing state-of-the-art methods in both score regression and degradation perception tasks, while exhibiting impressive zero-shot generalization to comparison reasoning tasks. Code will be available at https://github.com/lwq20020127/Q-Insight.
Boosting Edge Detection with Pixel-wise Feature Selection: The Extractor-Selector Paradigm
Deep learning has significantly advanced image edge detection (ED), primarily through improved feature extraction. However, most existing ED models apply uniform feature fusion across all pixels, ignoring critical differences between regions such as edges and textures. To address this limitation, we propose the Extractor-Selector (E-S) paradigm, a novel framework that introduces pixel-wise feature selection for more adaptive and precise fusion. Unlike conventional image-level fusion that applies the same convolutional kernel to all pixels, our approach dynamically selects relevant features at each pixel, enabling more refined edge predictions. The E-S framework can be seamlessly integrated with existing ED models without architectural changes, delivering substantial performance gains. It can also be combined with enhanced feature extractors for further accuracy improvements. Extensive experiments across multiple benchmarks confirm that our method consistently outperforms baseline ED models. For instance, on the BIPED2 dataset, the proposed framework can achieve over 7$\%$ improvements in ODS and OIS, and 22$\%$ improvements in AP, demonstrating its effectiveness and superiority.
comment: 17 pages
A Comprehensive Assessment Benchmark for Rigorously Evaluating Deep Learning Image Classifiers
Reliable and robust evaluation methods are a necessary first step towards developing machine learning models that are themselves robust and reliable. Unfortunately, current evaluation protocols typically used to assess classifiers fail to comprehensively evaluate performance as they tend to rely on limited types of test data, and ignore others. For example, using the standard test data fails to evaluate the predictions made by the classifier to samples from classes it was not trained on. On the other hand, testing with data containing samples from unknown classes fails to evaluate how well the classifier can predict the labels for known classes. This article advocates benchmarking performance using a wide range of different types of data and using a single metric that can be applied to all such data types to produce a consistent evaluation of performance. Using the proposed benchmark it is found that current deep neural networks, including those trained with methods that are believed to produce state-of-the-art robustness, are vulnerable to making mistakes on certain types of data. This means that such models will be unreliable in real-world scenarios where they may encounter data from many different domains, and that they are insecure as they can be easily fooled into making the wrong decisions. It is hoped that these results will motivate the wider adoption of more comprehensive testing methods that will, in turn, lead to the development of more robust machine learning methods in the future. Code is available at: https://codeberg.org/mwspratling/RobustnessEvaluation
ARFC-WAHNet: Adaptive Receptive Field Convolution and Wavelet-Attentive Hierarchical Network for Infrared Small Target Detection
Infrared small target detection (ISTD) is critical in both civilian and military applications. However, the limited texture and structural information in infrared images makes accurate detection particularly challenging. Although recent deep learning-based methods have improved performance, their use of conventional convolution kernels limits adaptability to complex scenes and diverse targets. Moreover, pooling operations often cause feature loss and insufficient exploitation of image information. To address these issues, we propose an adaptive receptive field convolution and wavelet-attentive hierarchical network for infrared small target detection (ARFC-WAHNet). This network incorporates a multi-receptive field feature interaction convolution (MRFFIConv) module to adaptively extract discriminative features by integrating multiple convolutional branches with a gated unit. A wavelet frequency enhancement downsampling (WFED) module leverages Haar wavelet transform and frequency-domain reconstruction to enhance target features and suppress background noise. Additionally, we introduce a high-low feature fusion (HLFF) module for integrating low-level details with high-level semantics, and a global median enhancement attention (GMEA) module to improve feature diversity and expressiveness via global attention. Experiments on public datasets SIRST, NUDT-SIRST, and IRSTD-1k demonstrate that ARFC-WAHNet outperforms recent state-of-the-art methods in both detection accuracy and robustness, particularly under complex backgrounds. The code is available at https://github.com/Leaf2001/ARFC-WAHNet.
Beyond the Destination: A Novel Benchmark for Exploration-Aware Embodied Question Answering
Embodied Question Answering (EQA) is a challenging task in embodied intelligence that requires agents to dynamically explore 3D environments, actively gather visual information, and perform multi-step reasoning to answer questions. However, current EQA approaches suffer from critical limitations in exploration efficiency, dataset design, and evaluation metrics. Moreover, existing datasets often introduce biases or prior knowledge, leading to disembodied reasoning, while frontier-based exploration strategies struggle in cluttered environments and fail to ensure fine-grained exploration of task-relevant areas. To address these challenges, we construct the EXPloration-awaRe Embodied queStion anSwering Benchmark (EXPRESS-Bench), the largest dataset designed specifically to evaluate both exploration and reasoning capabilities. EXPRESS-Bench consists of 777 exploration trajectories and 2,044 question-trajectory pairs. To improve exploration efficiency, we propose Fine-EQA, a hybrid exploration model that integrates frontier-based and goal-oriented navigation to guide agents toward task-relevant regions more effectively. Additionally, we introduce a novel evaluation metric, Exploration-Answer Consistency (EAC), which ensures faithful assessment by measuring the alignment between answer grounding and exploration reliability. Extensive experimental comparisons with state-of-the-art EQA models demonstrate the effectiveness of our EXPRESS-Bench in advancing embodied exploration and question reasoning.
Multimedia
HoloLLM: Multisensory Foundation Model for Language-Grounded Human Sensing and Reasoning
Embodied agents operating in smart homes must understand human behavior through diverse sensory inputs and communicate via natural language. While Vision-Language Models (VLMs) have enabled impressive language-grounded perception, their reliance on visual data limits robustness in real-world scenarios with occlusions, poor lighting, or privacy constraints. In this paper, we introduce HoloLLM, a Multimodal Large Language Model (MLLM) that integrates uncommon but powerful sensing modalities, such as LiDAR, infrared, mmWave radar, and WiFi, to enable seamless human perception and reasoning across heterogeneous environments. We address two key challenges: (1) the scarcity of aligned modality-text data for rare sensors, and (2) the heterogeneity of their physical signal representations. To overcome these, we design a Universal Modality-Injection Projector (UMIP) that enhances pre-aligned modality embeddings with fine-grained, text-aligned features from tailored encoders via coarse-to-fine cross-attention without introducing significant alignment overhead. We further introduce a human-VLM collaborative data curation pipeline to generate paired textual annotations for sensing datasets. Extensive experiments on two newly constructed benchmarks show that HoloLLM significantly outperforms existing MLLMs, improving language-grounded human sensing accuracy by up to 30%. This work establishes a new foundation for real-world, language-informed multisensory embodied intelligence.
comment: 18 pages, 13 figures, 6 tables
MEGADance: Mixture-of-Experts Architecture for Genre-Aware 3D Dance Generation
Music-driven 3D dance generation has attracted increasing attention in recent years, with promising applications in choreography, virtual reality, and creative content creation. Previous research has generated promising realistic dance movement from audio signals. However, traditional methods underutilize genre conditioning, often treating it as auxiliary modifiers rather than core semantic drivers. This oversight compromises music-motion synchronization and disrupts dance genre continuity, particularly during complex rhythmic transitions, thereby leading to visually unsatisfactory effects. To address the challenge, we propose MEGADance, a novel architecture for music-driven 3D dance generation. By decoupling choreographic consistency into dance generality and genre specificity, MEGADance demonstrates significant dance quality and strong genre controllability. It consists of two stages: (1) High-Fidelity Dance Quantization Stage (HFDQ), which encodes dance motions into a latent representation by Finite Scalar Quantization (FSQ) and reconstructs them with kinematic-dynamic constraints, and (2) Genre-Aware Dance Generation Stage (GADG), which maps music into the latent representation by synergistic utilization of Mixture-of-Experts (MoE) mechanism with Mamba-Transformer hybrid backbone. Extensive experiments on the FineDance and AIST++ dataset demonstrate the state-of-the-art performance of MEGADance both qualitatively and quantitatively. Code will be released upon acceptance.
comment: arXiv admin note: text overlap with arXiv:2505.14222
Co-Reinforcement Learning for Unified Multimodal Understanding and Generation
This paper presents a pioneering exploration of reinforcement learning (RL) via group relative policy optimization for unified multimodal large language models (ULMs), aimed at simultaneously reinforcing generation and understanding capabilities. Through systematic pilot studies, we uncover the significant potential of ULMs to enable the synergistic co-evolution of dual capabilities within a shared policy optimization framework. Building on this insight, we introduce \textbf{CoRL}, a co-reinforcement learning framework comprising a unified RL stage for joint optimization and a refined RL stage for task-specific enhancement. With the proposed CoRL, our resulting model, \textbf{ULM-R1}, achieves average improvements of \textbf{7%} on three text-to-image generation datasets and \textbf{23%} on nine multimodal understanding benchmarks. These results demonstrate the effectiveness of CoRL and highlight the substantial benefit of reinforcement learning in facilitating cross-task synergy and optimization for ULMs.
Hypergraph Tversky-Aware Domain Incremental Learning for Brain Tumor Segmentation with Missing Modalities MICCAI 2025
Existing methods for multimodal MRI segmentation with missing modalities typically assume that all MRI modalities are available during training. However, in clinical practice, some modalities may be missing due to the sequential nature of MRI acquisition, leading to performance degradation. Furthermore, retraining models to accommodate newly available modalities can be inefficient and may cause overfitting, potentially compromising previously learned knowledge. To address these challenges, we propose Replay-based Hypergraph Domain Incremental Learning (ReHyDIL) for brain tumor segmentation with missing modalities. ReHyDIL leverages Domain Incremental Learning (DIL) to enable the segmentation model to learn from newly acquired MRI modalities without forgetting previously learned information. To enhance segmentation performance across diverse patient scenarios, we introduce the Cross-Patient Hypergraph Segmentation Network (CHSNet), which utilizes hypergraphs to capture high-order associations between patients. Additionally, we incorporate Tversky-Aware Contrastive (TAC) loss to effectively mitigate information imbalance both across and within different modalities. Extensive experiments on the BraTS2019 dataset demonstrate that ReHyDIL outperforms state-of-the-art methods, achieving an improvement of over 2% in the Dice Similarity Coefficient across various tumor regions.
comment: MICCAI 2025 Early Accept. The code is available at https://github.com/reeive/ReHyDIL
What Media Frames Reveal About Stance: A Dataset and Study about Memes in Climate Change Discourse
Media framing refers to the emphasis on specific aspects of perceived reality to shape how an issue is defined and understood. Its primary purpose is to shape public perceptions often in alignment with the authors' opinions and stances. However, the interaction between stance and media frame remains largely unexplored. In this work, we apply an interdisciplinary approach to conceptualize and computationally explore this interaction with internet memes on climate change. We curate CLIMATEMEMES, the first dataset of climate-change memes annotated with both stance and media frames, inspired by research in communication science. CLIMATEMEMES includes 1,184 memes sourced from 47 subreddits, enabling analysis of frame prominence over time and communities, and sheds light on the framing preferences of different stance holders. We propose two meme understanding tasks: stance detection and media frame detection. We evaluate LLaVA-NeXT and Molmo in various setups, and report the corresponding results on their LLM backbone. Human captions consistently enhance performance. Synthetic captions and human-corrected OCR also help occasionally. Our findings highlight that VLMs perform well on stance, but struggle on frames, where LLMs outperform VLMs. Finally, we analyze VLMs' limitations in handling nuanced frames and stance expressions on climate change internet memes.
comment: 20 pages, 9 figures
ReactDiff: Latent Diffusion for Facial Reaction Generation
Given the audio-visual clip of the speaker, facial reaction generation aims to predict the listener's facial reactions. The challenge lies in capturing the relevance between video and audio while balancing appropriateness, realism, and diversity. While prior works have mostly focused on uni-modal inputs or simplified reaction mappings, recent approaches such as PerFRDiff have explored multi-modal inputs and the one-to-many nature of appropriate reaction mappings. In this work, we propose the Facial Reaction Diffusion (ReactDiff) framework that uniquely integrates a Multi-Modality Transformer with conditional diffusion in the latent space for enhanced reaction generation. Unlike existing methods, ReactDiff leverages intra- and inter-class attention for fine-grained multi-modal interaction, while the latent diffusion process between the encoder and decoder enables diverse yet contextually appropriate outputs. Experimental results demonstrate that ReactDiff significantly outperforms existing approaches, achieving a facial reaction correlation of 0.26 and diversity score of 0.094 while maintaining competitive realism. The code is open-sourced at \href{https://github.com/Hunan-Tiger/ReactDiff}{github}.
comment: Neural Networks
Multimodal Classification and Out-of-distribution Detection for Multimodal Intent Understanding
Multimodal intent understanding is a significant research area that requires effective leveraging of multiple modalities to analyze human language. Existing methods face two main challenges in this domain. Firstly, they have limitations in capturing the nuanced and high-level semantics underlying complex in-distribution (ID) multimodal intents. Secondly, they exhibit poor generalization when confronted with unseen out-of-distribution (OOD) data in real-world scenarios. To address these issues, we propose a novel method for both ID classification and OOD detection (MIntOOD). We first introduce a weighted feature fusion network that models multimodal representations. This network dynamically learns the importance of each modality, adapting to multimodal contexts. To develop discriminative representations for both tasks, we synthesize pseudo-OOD data from convex combinations of ID data and engage in multimodal representation learning from both coarse-grained and fine-grained perspectives. The coarse-grained perspective focuses on distinguishing between ID and OOD binary classes, while the fine-grained perspective not only enhances the discrimination between different ID classes but also captures instance-level interactions between ID and OOD samples, promoting proximity among similar instances and separation from dissimilar ones. We establish baselines for three multimodal intent datasets and build an OOD benchmark. Extensive experiments on these datasets demonstrate that our method significantly improves OOD detection performance with a 3~10% increase in AUROC scores while achieving new state-of-the-art results in ID classification. Data and codes are available at https://github.com/thuiar/MIntOOD.
comment: Accepted by IEEE Transactions on Multimedia
Computation and Language
The Staircase of Ethics: Probing LLM Value Priorities through Multi-Step Induction to Complex Moral Dilemmas
Ethical decision-making is a critical aspect of human judgment, and the growing use of LLMs in decision-support systems necessitates a rigorous evaluation of their moral reasoning capabilities. However, existing assessments primarily rely on single-step evaluations, failing to capture how models adapt to evolving ethical challenges. Addressing this gap, we introduce the Multi-step Moral Dilemmas (MMDs), the first dataset specifically constructed to evaluate the evolving moral judgments of LLMs across 3,302 five-stage dilemmas. This framework enables a fine-grained, dynamic analysis of how LLMs adjust their moral reasoning across escalating dilemmas. Our evaluation of nine widely used LLMs reveals that their value preferences shift significantly as dilemmas progress, indicating that models recalibrate moral judgments based on scenario complexity. Furthermore, pairwise value comparisons demonstrate that while LLMs often prioritize the value of care, this value can sometimes be superseded by fairness in certain contexts, highlighting the dynamic and context-dependent nature of LLM ethical reasoning. Our findings call for a shift toward dynamic, context-aware evaluation paradigms, paving the way for more human-aligned and value-sensitive development of LLMs.
comment: 25 pages, 8 figures
Fann or Flop: A Multigenre, Multiera Benchmark for Arabic Poetry Understanding in LLMs
Arabic poetry stands as one of the most sophisticated and culturally embedded forms of expression in the Arabic language, known for its layered meanings, stylistic diversity, and deep historical continuity. Although large language models (LLMs) have demonstrated strong performance across languages and tasks, their ability to understand Arabic poetry remains largely unexplored. In this work, we introduce `Fann or Flop`, the first benchmark designed to assess the comprehension of Arabic poetry by LLMs in twelve historical eras, covering 21 core poetic genres and a variety of metrical forms, from classical structures to contemporary free verse. The benchmark comprises a curated corpus of poems with explanations that assess semantic understanding, metaphor interpretation, prosodic awareness, and cultural context. We argue that poetic comprehension offers a strong indicator for testing how good the LLM is in understanding classical Arabic through the Arabic poetry. Unlike surface-level tasks, this domain demands deeper interpretive reasoning and cultural sensitivity. Our evaluation of state-of-the-art LLMs shows that most models struggle with poetic understanding despite strong results on standard Arabic benchmarks. We release `Fann or Flop` along with the evaluation suite as an open-source resource to enable rigorous evaluation and advancement for Arabic language models. Code is available at: https://github.com/mbzuai-oryx/FannOrFlop.
comment: Github:https://github.com/mbzuai-oryx/FannOrFlop, Dataset:https://huggingface.co/datasets/omkarthawakar/FannOrFlop
First Finish Search: Efficient Test-Time Scaling in Large Language Models
Test-time scaling (TTS), which involves dynamic allocation of compute during inference, offers a promising way to improve reasoning in large language models. While existing TTS methods work well, they often rely on long decoding paths or require a large number of samples to be generated, increasing the token usage and inference latency. We observe the surprising fact that for reasoning tasks, shorter traces are much more likely to be correct than longer ones. Motivated by this, we introduce First Finish Search (FFS), a training-free parallel decoding strategy that launches $n$ independent samples and returns as soon as any one completes. We evaluate FFS alongside simple decoding, beam search, majority voting, and budget forcing on four reasoning models (DeepSeek-R1, R1-Distill-Qwen-32B, QwQ-32B and Phi-4-Reasoning-Plus) and across four datasets (AIME24, AIME25-I, AIME25-II and GPQA Diamond). With DeepSeek-R1, FFS achieves $82.23\%$ accuracy on the AIME datasets, a $15\%$ improvement over DeepSeek-R1's standalone accuracy, nearly matching OpenAI's o4-mini performance. Our theoretical analysis explains why stopping at the shortest trace is likely to yield a correct answer and identifies the conditions under which early stopping may be suboptimal. The elegance and simplicity of FFS demonstrate that straightforward TTS strategies can perform remarkably well, revealing the untapped potential of simple approaches at inference time.
Lost in the Haystack: Smaller Needles are More Difficult for LLMs to Find
Large language models (LLMs) face significant challenges with needle-in-a-haystack tasks, where relevant information ("the needle") must be drawn from a large pool of irrelevant context ("the haystack"). Previous studies have highlighted positional bias and distractor quantity as critical factors affecting model performance, yet the influence of gold context size has received little attention. We address this gap by systematically studying how variations in gold context length impact LLM performance on long-context question answering tasks. Our experiments reveal that LLM performance drops sharply when the gold context is shorter, i.e., smaller gold contexts consistently degrade model performance and amplify positional sensitivity, posing a major challenge for agentic systems that must integrate scattered, fine-grained information of varying lengths. This pattern holds across three diverse domains (general knowledge, biomedical reasoning, and mathematical reasoning) and seven state-of-the-art LLMs of various sizes and architectures. Our work provides clear insights to guide the design of robust, context-aware LLM-driven systems.
comment: Under Review
Graph-Linguistic Fusion: Using Language Models for Wikidata Vandalism Detection
We introduce a next-generation vandalism detection system for Wikidata, one of the largest open-source structured knowledge bases on the Web. Wikidata is highly complex: its items incorporate an ever-expanding universe of factual triples and multilingual texts. While edits can alter both structured and textual content, our approach converts all edits into a single space using a method we call Graph2Text. This allows for evaluating all content changes for potential vandalism using a single multilingual language model. This unified approach improves coverage and simplifies maintenance. Experiments demonstrate that our solution outperforms the current production system. Additionally, we are releasing the code under an open license along with a large dataset of various human-generated knowledge alterations, enabling further research.
Gaming Tool Preferences in Agentic LLMs
Large language models (LLMs) can now access a wide range of external tools, thanks to the Model Context Protocol (MCP). This greatly expands their abilities as various agents. However, LLMs rely entirely on the text descriptions of tools to decide which ones to use--a process that is surprisingly fragile. In this work, we expose a vulnerability in prevalent tool/function-calling protocols by investigating a series of edits to tool descriptions, some of which can drastically increase a tool's usage from LLMs when competing with alternatives. Through controlled experiments, we show that tools with properly edited descriptions receive over 10 times more usage from GPT-4.1 and Qwen2.5-7B than tools with original descriptions. We further evaluate how various edits to tool descriptions perform when competing directly with one another and how these trends generalize or differ across a broader set of 10 different models. These phenomenons, while giving developers a powerful way to promote their tools, underscore the need for a more reliable foundation for agentic LLMs to select and utilize tools and resources.
VideoGameBench: Can Vision-Language Models complete popular video games?
Vision-language models (VLMs) have achieved strong results on coding and math benchmarks that are challenging for humans, yet their ability to perform tasks that come naturally to humans--such as perception, spatial navigation, and memory management--remains understudied. Real video games are crafted to be intuitive for humans to learn and master by leveraging innate inductive biases, making them an ideal testbed for evaluating such capabilities in VLMs. To this end, we introduce VideoGameBench, a benchmark consisting of 10 popular video games from the 1990s that VLMs directly interact with in real-time. VideoGameBench challenges models to complete entire games with access to only raw visual inputs and a high-level description of objectives and controls, a significant departure from existing setups that rely on game-specific scaffolding and auxiliary information. We keep three of the games secret to encourage solutions that generalize to unseen environments. Our experiments show that frontier vision-language models struggle to progress beyond the beginning of each game. We find inference latency to be a major limitation of frontier models in the real-time setting; therefore, we introduce VideoGameBench Lite, a setting where the game pauses while waiting for the LM's next action. The best performing model, Gemini 2.5 Pro, completes only 0.48% of VideoGameBench and 1.6% of VideoGameBench Lite. We hope that the formalization of the human skills mentioned above into this benchmark motivates progress in these research directions.
comment: 9 pages, 33 pages including supplementary
One RL to See Them All: Visual Triple Unified Reinforcement Learning
Reinforcement learning (RL) has significantly advanced the reasoning capabilities of vision-language models (VLMs). However, the use of RL beyond reasoning tasks remains largely unexplored, especially for perceptionintensive tasks like object detection and grounding. We propose V-Triune, a Visual Triple Unified Reinforcement Learning system that enables VLMs to jointly learn visual reasoning and perception tasks within a single training pipeline. V-Triune comprises triple complementary components: Sample-Level Data Formatting (to unify diverse task inputs), Verifier-Level Reward Computation (to deliver custom rewards via specialized verifiers) , and Source-Level Metric Monitoring (to diagnose problems at the data-source level). We further introduce a novel Dynamic IoU reward, which provides adaptive, progressive, and definite feedback for perception tasks handled by V-Triune. Our approach is instantiated within off-the-shelf RL training framework using open-source 7B and 32B backbone models. The resulting model, dubbed Orsta (One RL to See Them All), demonstrates consistent improvements across both reasoning and perception tasks. This broad capability is significantly shaped by its training on a diverse dataset, constructed around four representative visual reasoning tasks (Math, Puzzle, Chart, and Science) and four visual perception tasks (Grounding, Detection, Counting, and OCR). Subsequently, Orsta achieves substantial gains on MEGA-Bench Core, with improvements ranging from +2.1 to an impressive +14.1 across its various 7B and 32B model variants, with performance benefits extending to a wide range of downstream tasks. These results highlight the effectiveness and scalability of our unified RL approach for VLMs. The V-Triune system, along with the Orsta models, is publicly available at https://github.com/MiniMax-AI.
comment: Technical Report
Frankentext: Stitching random text fragments into long-form narratives
We introduce Frankentexts, a new type of long-form narratives produced by LLMs under the extreme constraint that most tokens (e.g., 90%) must be copied verbatim from human writings. This task presents a challenging test of controllable generation, requiring models to satisfy a writing prompt, integrate disparate text fragments, and still produce a coherent narrative. To generate Frankentexts, we instruct the model to produce a draft by selecting and combining human-written passages, then iteratively revise the draft while maintaining a user-specified copy ratio. We evaluate the resulting Frankentexts along three axes: writing quality, instruction adherence, and detectability. Gemini-2.5-Pro performs surprisingly well on this task: 81% of its Frankentexts are coherent and 100% relevant to the prompt. Notably, up to 59% of these outputs are misclassified as human-written by detectors like Pangram, revealing limitations in AI text detectors. Human annotators can sometimes identify Frankentexts through their abrupt tone shifts and inconsistent grammar between segments, especially in longer generations. Beyond presenting a challenging generation task, Frankentexts invite discussion on building effective detectors for this new grey zone of authorship, provide training data for mixed authorship detection, and serve as a sandbox for studying human-AI co-writing processes.
Reward Model Overoptimisation in Iterated RLHF
Reinforcement learning from human feedback (RLHF) is a widely used method for aligning large language models with human preferences. However, RLHF often suffers from reward model overoptimisation, in which models overfit to the reward function, resulting in non-generalisable policies that exploit the idiosyncrasies and peculiarities of the reward function. A common mitigation is iterated RLHF, in which reward models are repeatedly retrained with updated human feedback and policies are re-optimised. Despite its increasing adoption, the dynamics of overoptimisation in this setting remain poorly understood. In this work, we present the first comprehensive study of overoptimisation in iterated RLHF. We systematically analyse key design choices - how reward model training data is transferred across iterations, which reward function is used for optimisation, and how policies are initialised. Using the controlled AlpacaFarm benchmark, we observe that overoptimisation tends to decrease over successive iterations, as reward models increasingly approximate ground-truth preferences. However, performance gains diminish over time, and while reinitialising from the base policy is robust, it limits optimisation flexibility. Other initialisation strategies often fail to recover from early overoptimisation. These findings offer actionable insights for building more stable and generalisable RLHF pipelines.
comment: 20 pages, 17 figures, 5 tables
TabSTAR: A Foundation Tabular Model With Semantically Target-Aware Representations
While deep learning has achieved remarkable success across many domains, it has historically underperformed on tabular learning tasks, which remain dominated by gradient boosting decision trees (GBDTs). However, recent advancements are paving the way for Tabular Foundation Models, which can leverage real-world knowledge and generalize across diverse datasets, particularly when the data contains free-text. Although incorporating language model capabilities into tabular tasks has been explored, most existing methods utilize static, target-agnostic textual representations, limiting their effectiveness. We introduce TabSTAR: a Foundation Tabular Model with Semantically Target-Aware Representations. TabSTAR is designed to enable transfer learning on tabular data with textual features, with an architecture free of dataset-specific parameters. It unfreezes a pretrained text encoder and takes as input target tokens, which provide the model with the context needed to learn task-specific embeddings. TabSTAR achieves state-of-the-art performance for both medium- and large-sized datasets across known benchmarks of classification tasks with text features, and its pretraining phase exhibits scaling laws in the number of datasets, offering a pathway for further performance improvements.
UNJOIN: Enhancing Multi-Table Text-to-SQL Generation via Schema Simplification
Recent advances in large language models (LLMs) have greatly improved Text-to-SQL performance for single-table queries. But, it remains challenging in multi-table databases due to complex schema and relational operations. Existing methods often struggle with retrieving the right tables and columns, generating accurate JOINs and UNIONs, and generalizing across diverse schemas. To address these issues, we introduce UNJOIN, a two-stage framework that decouples the retrieval of schema elements from SQL logic generation. In the first stage, we merge the column names of all tables in the database into a single-table representation by prefixing each column with its table name. This allows the model to focus purely on accurate retrieval without being distracted by the need to write complex SQL logic. In the second stage, the SQL query is generated on this simplified schema and mapped back to the original schema by reconstructing JOINs, UNIONs, and relational logic. Evaluations on SPIDER and BIRD datasets show that UNJOIN matches or exceeds the state-of-the-art baselines. UNJOIN uses only schema information, which does not require data access or fine-tuning, making it scalable and adaptable across databases.
ProgRM: Build Better GUI Agents with Progress Rewards
LLM-based (Large Language Model) GUI (Graphical User Interface) agents can potentially reshape our daily lives significantly. However, current LLM-based GUI agents suffer from the scarcity of high-quality training data owing to the difficulties of trajectory collection and reward annotation. Existing works have been exploring LLMs to collect trajectories for imitation learning or to offer reward signals for online RL training. However, the Outcome Reward Model (ORM) used in existing works cannot provide finegrained feedback and can over-penalize the valuable steps in finally failed trajectories. To this end, we propose Progress Reward Model (ProgRM) to provide dense informative intermediate rewards by predicting a task completion progress for each step in online training. To handle the challenge of progress reward label annotation, we further design an efficient LCS-based (Longest Common Subsequence) self-annotation algorithm to discover the key steps in trajectories and assign progress labels accordingly. ProgRM is evaluated with extensive experiments and analyses. Actors trained with ProgRM outperform leading proprietary LLMs and ORM-trained actors, illustrating the effectiveness of ProgRM. The codes for experiments will be made publicly available upon acceptance.
Bridging Supervised Learning and Reinforcement Learning in Math Reasoning
Reinforcement Learning (RL) has played a central role in the recent surge of LLMs' math abilities by enabling self-improvement through binary verifier signals. In contrast, Supervised Learning (SL) is rarely considered for such verification-driven training, largely due to its heavy reliance on reference answers and inability to reflect on mistakes. In this work, we challenge the prevailing notion that self-improvement is exclusive to RL and propose Negative-aware Fine-Tuning (NFT) -- a supervised approach that enables LLMs to reflect on their failures and improve autonomously with no external teachers. In online training, instead of throwing away self-generated negative answers, NFT constructs an implicit negative policy to model them. This implicit policy is parameterized with the same positive LLM we target to optimize on positive data, enabling direct policy optimization on all LLMs' generations. We conduct experiments on 7B and 32B models in math reasoning tasks. Results consistently show that through the additional leverage of negative feedback, NFT significantly improves over SL baselines like Rejection sampling Fine-Tuning, matching or even surpassing leading RL algorithms like GRPO and DAPO. Furthermore, we demonstrate that NFT and GRPO are actually equivalent in strict-on-policy training, even though they originate from entirely different theoretical foundations. Our experiments and theoretical findings bridge the gap between SL and RL methods in binary-feedback learning systems.
Watch and Listen: Understanding Audio-Visual-Speech Moments with Multimodal LLM
Humans naturally understand moments in a video by integrating visual and auditory cues. For example, localizing a scene in the video like "A scientist passionately speaks on wildlife conservation as dramatic orchestral music plays, with the audience nodding and applauding" requires simultaneous processing of visual, audio, and speech signals. However, existing models often struggle to effectively fuse and interpret audio information, limiting their capacity for comprehensive video temporal understanding. To address this, we present TriSense, a triple-modality large language model designed for holistic video temporal understanding through the integration of visual, audio, and speech modalities. Central to TriSense is a Query-Based Connector that adaptively reweights modality contributions based on the input query, enabling robust performance under modality dropout and allowing flexible combinations of available inputs. To support TriSense's multimodal capabilities, we introduce TriSense-2M, a high-quality dataset of over 2 million curated samples generated via an automated pipeline powered by fine-tuned LLMs. TriSense-2M includes long-form videos and diverse modality combinations, facilitating broad generalization. Extensive experiments across multiple benchmarks demonstrate the effectiveness of TriSense and its potential to advance multimodal video analysis. Code and dataset will be publicly released.
ManuSearch: Democratizing Deep Search in Large Language Models with a Transparent and Open Multi-Agent Framework
Recent advances in web-augmented large language models (LLMs) have exhibited strong performance in complex reasoning tasks, yet these capabilities are mostly locked in proprietary systems with opaque architectures. In this work, we propose \textbf{ManuSearch}, a transparent and modular multi-agent framework designed to democratize deep search for LLMs. ManuSearch decomposes the search and reasoning process into three collaborative agents: (1) a solution planning agent that iteratively formulates sub-queries, (2) an Internet search agent that retrieves relevant documents via real-time web search, and (3) a structured webpage reading agent that extracts key evidence from raw web content. To rigorously evaluate deep reasoning abilities, we introduce \textbf{ORION}, a challenging benchmark focused on open-web reasoning over long-tail entities, covering both English and Chinese. Experimental results show that ManuSearch substantially outperforms prior open-source baselines and even surpasses leading closed-source systems. Our work paves the way for reproducible, extensible research in open deep search systems. We release the data and code in https://github.com/RUCAIBox/ManuSearch
comment: LLM, Complex Search Benchmark
How Can I Publish My LLM Benchmark Without Giving the True Answers Away?
Publishing a large language model (LLM) benchmark on the Internet risks contaminating future LLMs: the benchmark may be unintentionally (or intentionally) used to train or select a model. A common mitigation is to keep the benchmark private and let participants submit their models or predictions to the organizers. However, this strategy will require trust in a single organization and still permits test-set overfitting through repeated queries. To overcome this issue, we propose a way to publish benchmarks without completely disclosing the ground-truth answers to the questions, while still maintaining the ability to openly evaluate LLMs. Our main idea is to inject randomness to the answers by preparing several logically correct answers, and only include one of them as the solution in the benchmark. This reduces the best possible accuracy, i.e., Bayes accuracy, of the benchmark. Not only is this helpful to keep us from disclosing the ground truth, but this approach also offers a test for detecting data contamination. In principle, even fully capable models should not surpass the Bayes accuracy. If a model surpasses this ceiling despite this expectation, this is a strong signal of data contamination. We present experimental evidence that our method can detect data contamination accurately on a wide range of benchmarks, models, and training methodologies.
Planning without Search: Refining Frontier LLMs with Offline Goal-Conditioned RL
Large language models (LLMs) excel in tasks like question answering and dialogue, but complex tasks requiring interaction, such as negotiation and persuasion, require additional long-horizon reasoning and planning. Reinforcement learning (RL) fine-tuning can enable such planning in principle, but suffers from drawbacks that hinder scalability. In particular, multi-turn RL training incurs high memory and computational costs, which are exacerbated when training LLMs as policies. Furthermore, the largest LLMs do not expose the APIs necessary to be trained in such manner. As a result, modern methods to improve the reasoning of LLMs rely on sophisticated prompting mechanisms rather than RL fine-tuning. To remedy this, we propose a novel approach that uses goal-conditioned value functions to guide the reasoning of LLM agents, that scales even to large API-based models. These value functions predict how a task will unfold given an action, allowing the LLM agent to evaluate multiple possible outcomes, both positive and negative, to plan effectively. In addition, these value functions are trained over reasoning steps rather than full actions, to be a concise and light-weight module that facilitates decision-making in multi-turn interactions. We validate our method on tasks requiring interaction, including tool use, social deduction, and dialogue, demonstrating superior performance over both RL fine-tuning and prompting methods while maintaining efficiency and scalability.
comment: 18 pages, 4 figures, 2 tables
QwenLong-CPRS: Towards $\infty$-LLMs with Dynamic Context Optimization
This technical report presents QwenLong-CPRS, a context compression framework designed for explicit long-context optimization, addressing prohibitive computation overhead during the prefill stage and the "lost in the middle" performance degradation of large language models (LLMs) during long sequence processing. Implemented through a novel dynamic context optimization mechanism, QwenLong-CPRS enables multi-granularity context compression guided by natural language instructions, achieving both efficiency gains and improved performance. Evolved from the Qwen architecture series, QwenLong-CPRS introduces four key innovations: (1) Natural language-guided dynamic optimization, (2) Bidirectional reasoning layers for enhanced boundary awareness, (3) Token critic mechanisms with language modeling heads, and (4) Window-parallel inference. Comprehensive evaluations across five benchmarks (4K-2M word contexts) demonstrate QwenLong-CPRS's threefold effectiveness: (1) Consistent superiority over other context management methods like RAG and sparse attention in both accuracy and efficiency. (2) Architecture-agnostic integration with all flagship LLMs, including GPT-4o, Gemini2.0-pro, Claude3.7-sonnet, DeepSeek-v3, and Qwen2.5-max, achieves 21.59$\times$ context compression alongside 19.15-point average performance gains; (3) Deployed with Qwen2.5-32B-Instruct, QwenLong-CPRS surpasses leading proprietary LLMs by 4.85 and 10.88 points on Ruler-128K and InfiniteBench, establishing new SOTA performance.
Data Mixing Can Induce Phase Transitions in Knowledge Acquisition
Large Language Models (LLMs) are typically trained on data mixtures: most data come from web scrapes, while a small portion is curated from high-quality sources with dense domain-specific knowledge. In this paper, we show that when training LLMs on such data mixtures, knowledge acquisition from knowledge-dense datasets, unlike training exclusively on knowledge-dense data (arXiv:2404.05405), does not always follow a smooth scaling law but can exhibit phase transitions with respect to the mixing ratio and model size. Through controlled experiments on a synthetic biography dataset mixed with web-scraped data, we demonstrate that: (1) as we increase the model size to a critical value, the model suddenly transitions from memorizing very few to most of the biographies; (2) below a critical mixing ratio, the model memorizes almost nothing even with extensive training, but beyond this threshold, it rapidly memorizes more biographies. We attribute these phase transitions to a capacity allocation phenomenon: a model with bounded capacity must act like a knapsack problem solver to minimize the overall test loss, and the optimal allocation across datasets can change discontinuously as the model size or mixing ratio varies. We formalize this intuition in an information-theoretic framework and reveal that these phase transitions are predictable, with the critical mixing ratio following a power-law relationship with the model size. Our findings highlight a concrete case where a good mixing recipe for large models may not be optimal for small models, and vice versa.
Deep Video Discovery: Agentic Search with Tool Use for Long-form Video Understanding
Long-form video understanding presents significant challenges due to extensive temporal-spatial complexity and the difficulty of question answering under such extended contexts. While Large Language Models (LLMs) have demonstrated considerable advancements in video analysis capabilities and long context handling, they continue to exhibit limitations when processing information-dense hour-long videos. To overcome such limitations, we propose the Deep Video Discovery agent to leverage an agentic search strategy over segmented video clips. Different from previous video agents manually designing a rigid workflow, our approach emphasizes the autonomous nature of agents. By providing a set of search-centric tools on multi-granular video database, our DVD agent leverages the advanced reasoning capability of LLM to plan on its current observation state, strategically selects tools, formulates appropriate parameters for actions, and iteratively refines its internal reasoning in light of the gathered information. We perform comprehensive evaluation on multiple long video understanding benchmarks that demonstrates the advantage of the entire system design. Our DVD agent achieves SOTA performance, significantly surpassing prior works by a large margin on the challenging LVBench dataset. Comprehensive ablation studies and in-depth tool analyses are also provided, yielding insights to further advance intelligent agents tailored for long-form video understanding tasks. The code will be released later.
comment: Under review
Extended Inductive Reasoning for Personalized Preference Inference from Behavioral Signals
Large language models (LLMs) have demonstrated significant success in complex reasoning tasks such as math and coding. In contrast to these tasks where deductive reasoning predominates, inductive reasoning\textemdash the ability to derive general rules from incomplete evidence, remains underexplored. This paper investigates extended inductive reasoning in LLMs through the lens of personalized preference inference, a critical challenge in LLM alignment where current approaches struggle to capture diverse user preferences. The task demands strong inductive reasoning capabilities as user preferences are typically embedded implicitly across various interaction forms, requiring models to synthesize consistent preference patterns from scattered signals. We propose \textsc{AlignXplore}, a model that leverages extended reasoning chains to enable systematic preference inference from behavioral signals in users' interaction histories. We develop \textsc{AlignXplore} by combining cold-start training based on synthetic data with subsequent online reinforcement learning. Through extensive experiments, we demonstrate that \textsc{AlignXplore} achieves substantial improvements over the backbone model by an average of 11.05\% on in-domain and out-of-domain benchmarks, while maintaining strong generalization ability across different input formats and downstream models. Further analyses establish best practices for preference inference learning through systematic comparison of reward modeling strategies, while revealing the emergence of human-like inductive reasoning patterns during training.
MathEDU: Towards Adaptive Feedback for Student Mathematical Problem-Solving
Online learning enhances educational accessibility, offering students the flexibility to learn anytime, anywhere. However, a key limitation is the lack of immediate, personalized feedback, particularly in helping students correct errors in math problem-solving. Several studies have investigated the applications of large language models (LLMs) in educational contexts. In this paper, we explore the capabilities of LLMs to assess students' math problem-solving processes and provide adaptive feedback. The MathEDU dataset is introduced, comprising authentic student solutions annotated with teacher feedback. We evaluate the model's ability to support personalized learning in two scenarios: one where the model has access to students' prior answer histories, and another simulating a cold-start context. Experimental results show that the fine-tuned model performs well in identifying correctness. However, the model still faces challenges in generating detailed feedback for pedagogical purposes.
comment: Pre-print
Contrastive Distillation of Emotion Knowledge from LLMs for Zero-Shot Emotion Recognition
The ability to handle various emotion labels without dedicated training is crucial for building adaptable Emotion Recognition (ER) systems. Conventional ER models rely on training using fixed label sets and struggle to generalize beyond them. On the other hand, Large Language Models (LLMs) have shown strong zero-shot ER performance across diverse label spaces, but their scale limits their use on edge devices. In this work, we propose a contrastive distillation framework that transfers rich emotional knowledge from LLMs into a compact model without the use of human annotations. We use GPT-4 to generate descriptive emotion annotations, offering rich supervision beyond fixed label sets. By aligning text samples with emotion descriptors in a shared embedding space, our method enables zero-shot prediction on different emotion classes, granularity, and label schema. The distilled model is effective across multiple datasets and label spaces, outperforming strong baselines of similar size and approaching GPT-4's zero-shot performance, while being over 10,000 times smaller.
Structured Thinking Matters: Improving LLMs Generalization in Causal Inference Tasks
Despite remarkable advances in the field, LLMs remain unreliable in distinguishing causation from correlation. Recent results from the Corr2Cause dataset benchmark reveal that state-of-the-art LLMs -- such as GPT-4 (F1 score: 29.08) -- only marginally outperform random baselines (Random Uniform, F1 score: 20.38), indicating limited capacity of generalization. To tackle this limitation, we propose a novel structured approach: rather than directly answering causal queries, we provide the model with the capability to structure its thinking by guiding the model to build a structured knowledge graph, systematically encoding the provided correlational premises, to answer the causal queries. This intermediate representation significantly enhances the model's causal capabilities. Experiments on the test subset of the Corr2Cause dataset benchmark with Qwen3-32B model (reasoning model) show substantial gains over standard direct prompting methods, improving F1 scores from 32.71 to 48.26 (over 47.5% relative increase), along with notable improvements in precision and recall. These results underscore the effectiveness of providing the model with the capability to structure its thinking and highlight its promising potential for broader generalization across diverse causal inference tasks.
Training with Pseudo-Code for Instruction Following
Despite the rapid progress in the capabilities of Large Language Models (LLMs), they continue to have difficulty following relatively simple, unambiguous instructions, especially when compositions are involved. In this paper, we take inspiration from recent work that suggests that models may follow instructions better when they are expressed in pseudo-code. However, writing pseudo-code programs can be tedious and using few-shot demonstrations to craft code representations for use in inference can be unnatural for non-expert users of LLMs. To overcome these limitations, we propose fine-tuning LLMs with instruction-tuning data that additionally includes instructions re-expressed in pseudo-code along with the final response. We evaluate models trained using our method on $11$ publicly available benchmarks comprising of tasks related to instruction-following, mathematics, and common-sense reasoning. We conduct rigorous experiments with $5$ different models and find that not only do models follow instructions better when trained with pseudo-code, they also retain their capabilities on the other tasks related to mathematical and common sense reasoning. Specifically, we observe a relative gain of $3$--$19$% on instruction-following benchmark, and an average gain of upto 14% across all tasks.
comment: Under Review
TRACE for Tracking the Emergence of Semantic Representations in Transformers
Modern transformer models exhibit phase transitions during training, distinct shifts from memorisation to abstraction, but the mechanisms underlying these transitions remain poorly understood. Prior work has often focused on endpoint representations or isolated signals like curvature or mutual information, typically in symbolic or arithmetic domains, overlooking the emergence of linguistic structure. We introduce TRACE (Tracking Representation Abstraction and Compositional Emergence), a diagnostic framework combining geometric, informational, and linguistic signals to detect phase transitions in Transformer-based LMs. TRACE leverages a frame-semantic data generation method, ABSynth, that produces annotated synthetic corpora with controllable complexity, lexical distributions, and structural entropy, while being fully annotated with linguistic categories, enabling precise analysis of abstraction emergence. Experiments reveal that (i) phase transitions align with clear intersections between curvature collapse and dimension stabilisation; (ii) these geometric shifts coincide with emerging syntactic and semantic accuracy; (iii) abstraction patterns persist across architectural variants, with components like feedforward networks affecting optimisation stability rather than fundamentally altering trajectories. This work advances our understanding of how linguistic abstractions emerge in LMs, offering insights into model interpretability, training efficiency, and compositional generalisation that could inform more principled approaches to LM development.
Towards Analyzing and Understanding the Limitations of VAPO: A Theoretical Perspective
The VAPO framework has demonstrated significant empirical success in enhancing the efficiency and reliability of reinforcement learning for long chain-of-thought (CoT) reasoning tasks with large language models (LLMs). By systematically addressing challenges such as value model bias, heterogeneous sequence lengths, and sparse reward signals, VAPO achieves state-of-the-art performance. While its practical benefits are evident, a deeper theoretical understanding of its underlying mechanisms and potential limitations is crucial for guiding future advancements. This paper aims to initiate such a discussion by exploring VAPO from a theoretical perspective, highlighting areas where its assumptions might be challenged and where further investigation could yield more robust and generalizable reasoning agents. We delve into the intricacies of value function approximation in complex reasoning spaces, the optimality of adaptive advantage estimation, the impact of token-level optimization, and the enduring challenges of exploration and generalization.
AVerImaTeC: A Dataset for Automatic Verification of Image-Text Claims with Evidence from the Web
Textual claims are often accompanied by images to enhance their credibility and spread on social media, but this also raises concerns about the spread of misinformation. Existing datasets for automated verification of image-text claims remain limited, as they often consist of synthetic claims and lack evidence annotations to capture the reasoning behind the verdict. In this work, we introduce AVerImaTeC, a dataset consisting of 1,297 real-world image-text claims. Each claim is annotated with question-answer (QA) pairs containing evidence from the web, reflecting a decomposed reasoning regarding the verdict. We mitigate common challenges in fact-checking datasets such as contextual dependence, temporal leakage, and evidence insufficiency, via claim normalization, temporally constrained evidence annotation, and a two-stage sufficiency check. We assess the consistency of the annotation in AVerImaTeC via inter-annotator studies, achieving a $\kappa=0.742$ on verdicts and $74.7\%$ consistency on QA pairs. We also propose a novel evaluation method for evidence retrieval and conduct extensive experiments to establish baselines for verifying image-text claims using open-web evidence.
Are Large Language Models Reliable AI Scientists? Assessing Reverse-Engineering of Black-Box Systems
Using AI to create autonomous researchers has the potential to accelerate scientific discovery. A prerequisite for this vision is understanding how well an AI model can identify the underlying structure of a black-box system from its behavior. In this paper, we explore how well a large language model (LLM) learns to identify a black-box function from passively observed versus actively collected data. We investigate the reverse-engineering capabilities of LLMs across three distinct types of black-box systems, each chosen to represent different problem domains where future autonomous AI researchers may have considerable impact: Program, Formal Language, and Math Equation. Through extensive experiments, we show that LLMs fail to extract information from observations, reaching a performance plateau that falls short of the ideal of Bayesian inference. However, we demonstrate that prompting LLMs to not only observe but also intervene -- actively querying the black-box with specific inputs to observe the resulting output -- improves performance by allowing LLMs to test edge cases and refine their beliefs. By providing the intervention data from one LLM to another, we show that this improvement is partly a result of engaging in the process of generating effective interventions, paralleling results in the literature on human learning. Further analysis reveals that engaging in intervention can help LLMs escape from two common failure modes: overcomplication, where the LLM falsely assumes prior knowledge about the black-box, and overlooking, where the LLM fails to incorporate observations. These insights provide practical guidance for helping LLMs more effectively reverse-engineer black-box systems, supporting their use in making new discoveries.
comment: 30 pages
Counting Cycles with Deepseek
Despite recent progress, AI still struggles on advanced mathematics. We consider a difficult open problem: How to derive a Computationally Efficient Equivalent Form (CEEF) for the cycle count statistic? The CEEF problem does not have known general solutions, and requires delicate combinatorics and tedious calculations. Such a task is hard to accomplish by humans but is an ideal example where AI can be very helpful. We solve the problem by combining a novel approach we propose and the powerful coding skills of AI. Our results use delicate graph theory and contain new formulas for general cases that have not been discovered before. We find that, while AI is unable to solve the problem all by itself, it is able to solve it if we provide it with a clear strategy, a step-by-step guidance and carefully written prompts. For simplicity, we focus our study on DeepSeek-R1 but we also investigate other AI approaches.
Beyond Distillation: Pushing the Limits of Medical LLM Reasoning with Minimalist Rule-Based RL
Improving performance on complex tasks and enabling interpretable decision making in large language models (LLMs), especially for clinical applications, requires effective reasoning. Yet this remains challenging without supervised fine-tuning (SFT) on costly chain-of-thought (CoT) data distilled from closed-source models (e.g., GPT-4o). In this work, we present AlphaMed, the first medical LLM to show that reasoning capability can emerge purely through reinforcement learning (RL), using minimalist rule-based rewards on public multiple-choice QA datasets, without relying on SFT or distilled CoT data. AlphaMed achieves state-of-the-art results on six medical QA benchmarks, outperforming models trained with conventional SFT+RL pipelines. On challenging benchmarks (e.g., MedXpert), AlphaMed even surpasses larger or closed-source models such as DeepSeek-V3-671B and Claude-3.5-Sonnet. To understand the factors behind this success, we conduct a comprehensive data-centric analysis guided by three questions: (i) Can minimalist rule-based RL incentivize reasoning without distilled CoT supervision? (ii) How do dataset quantity and diversity impact reasoning? (iii) How does question difficulty shape the emergence and generalization of reasoning? Our findings show that dataset informativeness is a key driver of reasoning performance, and that minimalist RL on informative, multiple-choice QA data is effective at inducing reasoning without CoT supervision. We also observe divergent trends across benchmarks, underscoring limitations in current evaluation and the need for more challenging, reasoning-oriented medical QA benchmarks.
comment: Under Review
Handling Symbolic Language in Student Texts: A Comparative Study of NLP Embedding Models
Recent advancements in Natural Language Processing (NLP) have facilitated the analysis of student-generated language products in learning analytics (LA), particularly through the use of NLP embedding models. Yet when it comes to science-related language, symbolic expressions such as equations and formulas introduce challenges that current embedding models struggle to address. Existing studies and applications often either overlook these challenges or remove symbolic expressions altogether, potentially leading to biased findings and diminished performance of LA applications. This study therefore explores how contemporary embedding models differ in their capability to process and interpret science-related symbolic expressions. To this end, various embedding models are evaluated using physics-specific symbolic expressions drawn from authentic student responses, with performance assessed via two approaches: similarity-based analyses and integration into a machine learning pipeline. Our findings reveal significant differences in model performance, with OpenAI's GPT-text-embedding-3-large outperforming all other examined models, though its advantage over other models was moderate rather than decisive. Beyond performance, additional factors such as cost, regulatory compliance, and model transparency are discussed as key considerations for model selection. Overall, this study underscores the importance for LA researchers and practitioners of carefully selecting NLP embedding models when working with science-related language products that include symbolic expressions.
Understanding Gated Neurons in Transformers from Their Input-Output Functionality
Interpretability researchers have attempted to understand MLP neurons of language models based on both the contexts in which they activate and their output weight vectors. They have paid little attention to a complementary aspect: the interactions between input and output. For example, when neurons detect a direction in the input, they might add much the same direction to the residual stream ("enrichment neurons") or reduce its presence ("depletion neurons"). We address this aspect by examining the cosine similarity between input and output weights of a neuron. We apply our method to 12 models and find that enrichment neurons dominate in early-middle layers whereas later layers tend more towards depletion. To explain this finding, we argue that enrichment neurons are largely responsible for enriching concept representations, one of the first steps of factual recall. Our input-output perspective is a complement to activation-dependent analyses and to approaches that treat input and output separately.
comment: 31 pages, 22 figures
Towards Practical Defect-Focused Automated Code Review ICML 2025
The complexity of code reviews has driven efforts to automate review comments, but prior approaches oversimplify this task by treating it as snippet-level code-to-text generation and relying on text similarity metrics like BLEU for evaluation. These methods overlook repository context, real-world merge request evaluation, and defect detection, limiting their practicality. To address these issues, we explore the full automation pipeline within the online recommendation service of a company with nearly 400 million daily active users, analyzing industry-grade C++ codebases comprising hundreds of thousands of lines of code. We identify four key challenges: 1) capturing relevant context, 2) improving key bug inclusion (KBI), 3) reducing false alarm rates (FAR), and 4) integrating human workflows. To tackle these, we propose 1) code slicing algorithms for context extraction, 2) a multi-role LLM framework for KBI, 3) a filtering mechanism for FAR reduction, and 4) a novel prompt design for better human interaction. Our approach, validated on real-world merge requests from historical fault reports, achieves a 2x improvement over standard LLMs and a 10x gain over previous baselines. While the presented results focus on C++, the underlying framework design leverages language-agnostic principles (e.g., AST-based analysis), suggesting potential for broader applicability.
comment: Accepted to Forty-Second International Conference on Machine Learning (ICML 2025)
Language models can learn implicit multi-hop reasoning, but only if they have lots of training data
Implicit reasoning is the ability of a language model to solve multi-hop reasoning tasks in a single forward pass, without chain of thought. We investigate this capability using GPT2-style language models trained from scratch on controlled $k$-hop reasoning datasets ($k = 2, 3, 4$). We show that while such models can indeed learn implicit $k$-hop reasoning, the required training data grows exponentially in $k$, and the required number of transformer layers grows linearly in $k$. We offer a theoretical explanation for why this depth growth is necessary. We further find that the data requirement can be mitigated, but not eliminated, through curriculum learning.
T2I-Eval-R1: Reinforcement Learning-Driven Reasoning for Interpretable Text-to-Image Evaluation
The rapid progress in diffusion-based text-to-image (T2I) generation has created an urgent need for interpretable automatic evaluation methods that can assess the quality of generated images, therefore reducing the human annotation burden. To reduce the prohibitive cost of relying on commercial models for large-scale evaluation, and to improve the reasoning capabilities of open-source models, recent research has explored supervised fine-tuning (SFT) of multimodal large language models (MLLMs) as dedicated T2I evaluators. However, SFT approaches typically rely on high-quality critique datasets, which are either generated by proprietary LLMs-with potential issues of bias and inconsistency-or annotated by humans at high cost, limiting their scalability and generalization. To address these limitations, we propose T2I-Eval-R1, a novel reinforcement learning framework that trains open-source MLLMs using only coarse-grained quality scores, thereby avoiding the need for annotating high-quality interpretable evaluation rationale. Our approach integrates Group Relative Policy Optimization (GRPO) into the instruction-tuning process, enabling models to generate both scalar scores and interpretable reasoning chains with only easy accessible annotated judgment scores or preferences. Furthermore, we introduce a continuous reward formulation that encourages score diversity and provides stable optimization signals, leading to more robust and discriminative evaluation behavior. Experimental results on three established T2I meta-evaluation benchmarks demonstrate that T2I-Eval-R1 achieves significantly higher alignment with human assessments and offers more accurate interpretable score rationales compared to strong baseline methods.
Mutarjim: Advancing Bidirectional Arabic-English Translation with a Small Language Model
We introduce Mutarjim, a compact yet powerful language model for bidirectional Arabic-English translation. While large-scale LLMs have shown impressive progress in natural language processing tasks, including machine translation, smaller models. Leveraging this insight, we developed Mutarjim based on Kuwain-1.5B , a language model tailored for both Arabic and English. Despite its modest size, Mutarjim outperforms much larger models on several established benchmarks, achieved through an optimized two-phase training approach and a carefully curated, high-quality training corpus.. Experimental results show that Mutarjim rivals models up to 20 times larger while significantly reducing computational costs and training requirements. We also introduce Tarjama-25, a new benchmark designed to overcome limitations in existing Arabic-English benchmarking datasets, such as domain narrowness, short sentence lengths, and English-source bias. Tarjama-25 comprises 5,000 expert-reviewed sentence pairs and spans a wide range of domains, offering a more comprehensive and balanced evaluation framework. Notably, Mutarjim achieves state-of-the-art performance on the English-to-Arabic task in Tarjama-25, surpassing even significantly larger and proprietary models like GPT-4o mini. We publicly release Tarjama-25 to support future research and advance the evaluation of Arabic-English translation systems.
MOOSE-Chem3: Toward Experiment-Guided Hypothesis Ranking via Simulated Experimental Feedback
Hypothesis ranking is a crucial component of automated scientific discovery, particularly in natural sciences where wet-lab experiments are costly and throughput-limited. Existing approaches focus on pre-experiment ranking, relying solely on large language model's internal reasoning without incorporating empirical outcomes from experiments. We introduce the task of experiment-guided ranking, which aims to prioritize candidate hypotheses based on the results of previously tested ones. However, developing such strategies is challenging due to the impracticality of repeatedly conducting real experiments in natural science domains. To address this, we propose a simulator grounded in three domain-informed assumptions, modeling hypothesis performance as a function of similarity to a known ground truth hypothesis, perturbed by noise. We curate a dataset of 124 chemistry hypotheses with experimentally reported outcomes to validate the simulator. Building on this simulator, we develop a pseudo experiment-guided ranking method that clusters hypotheses by shared functional characteristics and prioritizes candidates based on insights derived from simulated experimental feedback. Experiments show that our method outperforms pre-experiment baselines and strong ablations.
Just as Humans Need Vaccines, So Do Models: Model Immunization to Combat Falsehoods
Generative AI models often learn and reproduce false information present in their training corpora. This position paper argues that, analogous to biological immunization, where controlled exposure to a weakened pathogen builds immunity, AI models should be fine tuned on small, quarantined sets of explicitly labeled falsehoods as a "vaccine" against misinformation. These curated false examples are periodically injected during finetuning, strengthening the model ability to recognize and reject misleading claims while preserving accuracy on truthful inputs. An illustrative case study shows that immunized models generate substantially less misinformation than baselines. To our knowledge, this is the first training framework that treats fact checked falsehoods themselves as a supervised vaccine, rather than relying on input perturbations or generic human feedback signals, to harden models against future misinformation. We also outline ethical safeguards and governance controls to ensure the safe use of false data. Model immunization offers a proactive paradigm for aligning AI systems with factuality.
Explaining Sources of Uncertainty in Automated Fact-Checking
Understanding sources of a model's uncertainty regarding its predictions is crucial for effective human-AI collaboration. Prior work proposes using numerical uncertainty or hedges ("I'm not sure, but ..."), which do not explain uncertainty that arises from conflicting evidence, leaving users unable to resolve disagreements or rely on the output. We introduce CLUE (Conflict-and-Agreement-aware Language-model Uncertainty Explanations), the first framework to generate natural language explanations of model uncertainty by (i) identifying relationships between spans of text that expose claim-evidence or inter-evidence conflicts and agreements that drive the model's predictive uncertainty in an unsupervised way, and (ii) generating explanations via prompting and attention steering that verbalize these critical interactions. Across three language models and two fact-checking datasets, we show that CLUE produces explanations that are more faithful to the model's uncertainty and more consistent with fact-checking decisions than prompting for uncertainty explanations without span-interaction guidance. Human evaluators judge our explanations to be more helpful, more informative, less redundant, and more logically consistent with the input than this baseline. CLUE requires no fine-tuning or architectural changes, making it plug-and-play for any white-box language model. By explicitly linking uncertainty to evidence conflicts, it offers practical support for fact-checking and generalises readily to other tasks that require reasoning over complex information.
Investigating Affect Mining Techniques for Annotation Sample Selection in the Creation of Finnish Affective Speech Corpus
Study of affect in speech requires suitable data, as emotional expression and perception vary across languages. Until now, no corpus has existed for natural expression of affect in spontaneous Finnish, existing data being acted or from a very specific communicative setting. This paper presents the first such corpus, created by annotating 12,000 utterances for emotional arousal and valence, sampled from three large-scale Finnish speech corpora. To ensure diverse affective expression, sample selection was conducted with an affect mining approach combining acoustic, cross-linguistic speech emotion, and text sentiment features. We compare this method to random sampling in terms of annotation diversity, and conduct post-hoc analyses to identify sampling choices that would have maximized the diversity. As an outcome, the work introduces a spontaneous Finnish affective speech corpus and informs sampling strategies for affective speech corpus creation in other languages or domains.
comment: Accepted for publication at Interspeech 2025, Rotterdam, The Netherlands
Emerging categories in scientific explanations
Clear and effective explanations are essential for human understanding and knowledge dissemination. The scope of scientific research aiming to understand the essence of explanations has recently expanded from the social sciences to machine learning and artificial intelligence. Explanations for machine learning decisions must be impactful and human-like, and there is a lack of large-scale datasets focusing on human-like and human-generated explanations. This work aims to provide such a dataset by: extracting sentences that indicate explanations from scientific literature among various sources in the biotechnology and biophysics topic domains (e.g. PubMed's PMC Open Access subset); providing a multi-class notation derived inductively from the data; evaluating annotator consensus on the emerging categories. The sentences are organized in an openly-available dataset, with two different classifications (6-class and 3-class category annotation), and the 3-class notation achieves a 0.667 Krippendorf Alpha value.
comment: Accepted at the 3rd TRR 318 Conference: Contextualizing Explanations (ContEx25), as a two-pager abstract. Will be published at BiUP (Bielefeld University Press) at a later date
Stepwise Reasoning Checkpoint Analysis: A Test Time Scaling Method to Enhance LLMs' Reasoning
Mathematical reasoning through Chain-of-Thought (CoT) has emerged as a powerful capability of Large Language Models (LLMs), which can be further enhanced through Test-Time Scaling (TTS) methods like Beam Search and DVTS. However, these methods, despite improving accuracy by allocating more computational resources during inference, often suffer from path homogenization and inefficient use of intermediate results. To address these limitations, we propose Stepwise Reasoning Checkpoint Analysis (SRCA), a framework that introduces checkpoints between reasoning steps. It incorporates two key strategies: (1) Answer-Clustered Search, which groups reasoning paths by their intermediate checkpoint answers to maintain diversity while ensuring quality, and (2) Checkpoint Candidate Augmentation, which leverages all intermediate answers for final decision-making. Our approach effectively reduces path homogenization and creates a fault-tolerant mechanism by utilizing high-quality intermediate results. Experimental results show that SRCA improves reasoning accuracy compared to existing TTS methods across various mathematical datasets.
Not All Tokens Are What You Need In Thinking
Modern reasoning models, such as OpenAI's o1 and DeepSeek-R1, exhibit impressive problem-solving capabilities but suffer from critical inefficiencies: high inference latency, excessive computational resource consumption, and a tendency toward overthinking -- generating verbose chains of thought (CoT) laden with redundant tokens that contribute minimally to the final answer. To address these issues, we propose Conditional Token Selection (CTS), a token-level compression framework with a flexible and variable compression ratio that identifies and preserves only the most essential tokens in CoT. CTS evaluates each token's contribution to deriving correct answers using conditional importance scoring, then trains models on compressed CoT. Extensive experiments demonstrate that CTS effectively compresses long CoT while maintaining strong reasoning performance. Notably, on the GPQA benchmark, Qwen2.5-14B-Instruct trained with CTS achieves a 9.1% accuracy improvement with 13.2% fewer reasoning tokens (13% training token reduction). Further reducing training tokens by 42% incurs only a marginal 5% accuracy drop while yielding a 75.8% reduction in reasoning tokens, highlighting the prevalence of redundancy in existing CoT.
comment: 11 pages, 7 figures and 3 tables
Trinity-RFT: A General-Purpose and Unified Framework for Reinforcement Fine-Tuning of Large Language Models
Trinity-RFT is a general-purpose, flexible and scalable framework designed for reinforcement fine-tuning (RFT) of large language models. It is built with a decoupled design, consisting of (1) an RFT-core that unifies and generalizes synchronous/asynchronous, on-policy/off-policy, and online/offline modes of RFT, (2) seamless integration for agent-environment interaction with high efficiency and robustness, and (3) systematic data pipelines optimized for RFT. Trinity-RFT can be easily adapted for diverse application scenarios, and serves as a unified platform for exploring advanced reinforcement learning paradigms. This technical report outlines the vision, features, design and implementations of Trinity-RFT, accompanied by extensive examples demonstrating the utility and user-friendliness of the proposed framework.
comment: This technical report will be continuously updated as the codebase evolves. GitHub: https://github.com/modelscope/Trinity-RFT
PatientSim: A Persona-Driven Simulator for Realistic Doctor-Patient Interactions
Doctor-patient consultations require multi-turn, context-aware communication tailored to diverse patient personas. Training or evaluating doctor LLMs in such settings requires realistic patient interaction systems. However, existing simulators often fail to reflect the full range of personas seen in clinical practice. To address this, we introduce PatientSim, a patient simulator that generates realistic and diverse patient personas for clinical scenarios, grounded in medical expertise. PatientSim operates using: 1) clinical profiles, including symptoms and medical history, derived from real-world data in the MIMIC-ED and MIMIC-IV datasets, and 2) personas defined by four axes: personality, language proficiency, medical history recall level, and cognitive confusion level, resulting in 37 unique combinations. We evaluated eight LLMs for factual accuracy and persona consistency. The top-performing open-source model, Llama 3.3, was validated by four clinicians to confirm the robustness of our framework. As an open-source, customizable platform, PatientSim provides a reproducible and scalable solution that can be customized for specific training needs. Offering a privacy-compliant environment, it serves as a robust testbed for evaluating medical dialogue systems across diverse patient presentations and shows promise as an educational tool for healthcare.
comment: 9 pages for main text, 4 pages for references, 27 pages for supplementary materials
Low-Resource NMT: A Case Study on the Written and Spoken Languages in Hong Kong
The majority of inhabitants in Hong Kong are able to read and write in standard Chinese but use Cantonese as the primary spoken language in daily life. Spoken Cantonese can be transcribed into Chinese characters, which constitute the so-called written Cantonese. Written Cantonese exhibits significant lexical and grammatical differences from standard written Chinese. The rise of written Cantonese is increasingly evident in the cyber world. The growing interaction between Mandarin speakers and Cantonese speakers is leading to a clear demand for automatic translation between Chinese and Cantonese. This paper describes a transformer-based neural machine translation (NMT) system for written-Chinese-to-written-Cantonese translation. Given that parallel text data of Chinese and Cantonese are extremely scarce, a major focus of this study is on the effort of preparing good amount of training data for NMT. In addition to collecting 28K parallel sentences from previous linguistic studies and scattered internet resources, we devise an effective approach to obtaining 72K parallel sentences by automatically extracting pairs of semantically similar sentences from parallel articles on Chinese Wikipedia and Cantonese Wikipedia. We show that leveraging highly similar sentence pairs mined from Wikipedia improves translation performance in all test sets. Our system outperforms Baidu Fanyi's Chinese-to-Cantonese translation on 6 out of 8 test sets in BLEU scores. Translation examples reveal that our system is able to capture important linguistic transformations between standard Chinese and spoken Cantonese.
comment: Proceedings of the 2021 5th International Conference on Natural Language Processing and Information Retrieval
Don't Overthink it. Preferring Shorter Thinking Chains for Improved LLM Reasoning
Reasoning large language models (LLMs) heavily rely on scaling test-time compute to perform complex reasoning tasks by generating extensive "thinking" chains. While demonstrating impressive results, this approach incurs significant computational costs and inference time. In this work, we challenge the assumption that long thinking chains results in better reasoning capabilities. We first demonstrate that shorter reasoning chains within individual questions are significantly more likely to yield correct answers - up to 34.5% more accurate than the longest chain sampled for the same question. Based on these results, we suggest short-m@k, a novel reasoning LLM inference method. Our method executes k independent generations in parallel and halts computation once the first m thinking processes are done. The final answer is chosen using majority voting among these m chains. Basic short-1@k demonstrates similar or even superior performance over standard majority voting in low-compute settings - using up to 40% fewer thinking tokens. short-3@k, while slightly less efficient than short-1@k, consistently surpasses majority voting across all compute budgets, while still being substantially faster (up to 33% wall time reduction). Inspired by our results, we finetune an LLM using short, long, and randomly selected reasoning chains. We then observe that training on the shorter ones leads to better performance. Our findings suggest rethinking current methods of test-time compute in reasoning LLMs, emphasizing that longer "thinking" does not necessarily translate to improved performance and can, counter-intuitively, lead to degraded results.
comment: Preprint. Under review
DialogXpert: Driving Intelligent and Emotion-Aware Conversations through Online Value-Based Reinforcement Learning with LLM Priors
Large-language-model (LLM) agents excel at reactive dialogue but struggle with proactive, goal-driven interactions due to myopic decoding and costly planning. We introduce DialogXpert, which leverages a frozen LLM to propose a small, high-quality set of candidate actions per turn and employs a compact Q-network over fixed BERT embeddings trained via temporal-difference learning to select optimal moves within this reduced space. By tracking the user's emotions, DialogXpert tailors each decision to advance the task while nurturing a genuine, empathetic connection. Across negotiation, emotional support, and tutoring benchmarks, DialogXpert drives conversations to under $3$ turns with success rates exceeding 94\% and, with a larger LLM prior, pushes success above 97\% while markedly improving negotiation outcomes. This framework delivers real-time, strategic, and emotionally intelligent dialogue planning at scale. Code available at https://github.com/declare-lab/dialogxpert/
Compression Hacking: A Supplementary Perspective on Informatics Metric of Language Models from Geometric Distortion
Recently, the concept of ``compression as intelligence'' has provided a novel informatics metric perspective for language models (LMs), emphasizing that highly structured representations signify the intelligence level of LMs. However, from a geometric standpoint, the word representation space of highly compressed LMs tends to degenerate into a highly anisotropic state, which hinders the LM's ability to comprehend instructions and directly impacts its performance. We found this compression-anisotropy synchronicity is essentially the ``Compression Hacking'' in LM representations, where noise-dominated directions tend to create the illusion of high compression rates by sacrificing spatial uniformity. Based on this, we propose three refined compression metrics by incorporating geometric distortion analysis and integrate them into a self-evaluation pipeline. The refined metrics exhibit strong alignment with the LM's comprehensive capabilities, achieving Spearman correlation coefficients above 0.9, significantly outperforming both the original compression and other internal structure-based metrics. This confirms that compression hacking substantially enhances the informatics interpretation of LMs by incorporating geometric distortion of representations.
EXECUTE: A Multilingual Benchmark for LLM Token Understanding ACL 2025
The CUTE benchmark showed that LLMs struggle with character understanding in English. We extend it to more languages with diverse scripts and writing systems, introducing EXECUTE. Our simplified framework allows easy expansion to any language. Tests across multiple LLMs reveal that challenges in other languages are not always on the character level as in English. Some languages show word-level processing issues, some show no issues at all. We also examine sub-character tasks in Chinese, Japanese, and Korean to assess LLMs' understanding of character components.
comment: Accepted to Findings of ACL 2025
The Real Barrier to LLM Agent Usability is Agentic ROI
Large Language Model (LLM) agents represent a promising shift in human-AI interaction, moving beyond passive prompt-response systems to autonomous agents capable of reasoning, planning, and goal-directed action. Despite the widespread application in specialized, high-effort tasks like coding and scientific research, we highlight a critical usability gap in high-demand, mass-market applications. This position paper argues that the limited real-world adoption of LLM agents stems not only from gaps in model capabilities, but also from a fundamental tradeoff between the value an agent can provide and the costs incurred during real-world use. Hence, we call for a shift from solely optimizing model performance to a broader, utility-driven perspective: evaluating agents through the lens of the overall agentic return on investment (Agent ROI). By identifying key factors that determine Agentic ROI--information quality, agent time, and cost--we posit a zigzag development trajectory in optimizing agentic ROI: first scaling up to improve the information quality, then scaling down to minimize the time and cost. We outline the roadmap across different development stages to bridge the current usability gaps, aiming to make LLM agents truly scalable, accessible, and effective in real-world contexts.
Resolving Conflicting Evidence in Automated Fact-Checking: A Study on Retrieval-Augmented LLMs IJCAI 2025
Large Language Models (LLMs) augmented with retrieval mechanisms have demonstrated significant potential in fact-checking tasks by integrating external knowledge. However, their reliability decreases when confronted with conflicting evidence from sources of varying credibility. This paper presents the first systematic evaluation of Retrieval-Augmented Generation (RAG) models for fact-checking in the presence of conflicting evidence. To support this study, we introduce \textbf{CONFACT} (\textbf{Con}flicting Evidence for \textbf{Fact}-Checking) (Dataset available at https://github.com/zoeyyes/CONFACT), a novel dataset comprising questions paired with conflicting information from various sources. Extensive experiments reveal critical vulnerabilities in state-of-the-art RAG methods, particularly in resolving conflicts stemming from differences in media source credibility. To address these challenges, we investigate strategies to integrate media background information into both the retrieval and generation stages. Our results show that effectively incorporating source credibility significantly enhances the ability of RAG models to resolve conflicting evidence and improve fact-checking performance.
comment: Camera-ready for IJCAI 2025, AI and Social Good
Discriminating Form and Meaning in Multilingual Models with Minimal-Pair ABX Tasks
We introduce a set of training-free ABX-style discrimination tasks to evaluate how multilingual language models represent language identity (form) and semantic content (meaning). Inspired from speech processing, these zero-shot tasks measure whether minimal differences in representation can be reliably detected. This offers a flexible and interpretable alternative to probing. Applied to XLM-R (Conneau et al, 2020) across pretraining checkpoints and layers, we find that language discrimination declines over training and becomes concentrated in lower layers, while meaning discrimination strengthens over time and stabilizes in deeper layers. We then explore probing tasks, showing some alignment between our metrics and linguistic learning performance. Our results position ABX tasks as a lightweight framework for analyzing the structure of multilingual representations.
Fast Quiet-STaR: Thinking Without Thought Tokens
Large Language Models (LLMs) have achieved impressive performance across a range of natural language processing tasks. However, recent advances demonstrate that further gains particularly in complex reasoning tasks require more than merely scaling up model sizes or training data. One promising direction is to enable models to think during the reasoning process. Recently, Quiet STaR significantly improves reasoning by generating token-level thought traces, but incurs substantial inference overhead. In this work, we propose Fast Quiet STaR, a more efficient reasoning framework that preserves the benefits of token-level reasoning while reducing computational cost. Our method introduces a curriculum learning based training strategy that gradually reduces the number of thought tokens, enabling the model to internalize more abstract and concise reasoning processes. We further extend this approach to the standard Next Token Prediction (NTP) setting through reinforcement learning-based fine-tuning, resulting in Fast Quiet-STaR NTP, which eliminates the need for explicit thought token generation during inference. Experiments on four benchmark datasets with Mistral 7B and Qwen2.5 7B demonstrate that Fast Quiet-STaR consistently outperforms Quiet-STaR in terms of average accuracy under the same inference time budget. Notably, Fast Quiet-STaR NTP achieves an average accuracy improvement of 9\% on Mistral 7B and 5.7\% on Qwen2.5 7B, while maintaining the same inference latency. Our code will be available at https://github.com/huangwei200012/Fast-Quiet-STaR.
comment: 10 pages, 6 figures
The Pilot Corpus of the English Semantic Sketches
The paper is devoted to the creation of the semantic sketches for English verbs. The pilot corpus consists of the English-Russian sketch pairs and is aimed to show what kind of contrastive studies the sketches help to conduct. Special attention is paid to the cross-language differences between the sketches with similar semantics. Moreover, we discuss the process of building a semantic sketch, and analyse the mistakes that could give insight to the linguistic nature of sketches.
PPO-BR: Dual-Signal Entropy-Reward Adaptation for Trust Region Policy Optimization
Despite Proximal Policy Optimization (PPO) dominating policy gradient methods -- from robotic control to game AI -- its static trust region forces a brittle trade-off: aggressive clipping stifles early exploration, while late-stage updates destabilize convergence. PPO-BR establishes a new paradigm in adaptive RL by fusing exploration and convergence signals into a single bounded trust region -- a theoretically grounded innovation that outperforms five SOTA baselines with less than 2% overhead. This work bridges a critical gap in phase-aware learning, enabling real-world deployment in safety-critical systems like robotic surgery within a single adaptive mechanism. PPO-BR achieves 29.1% faster convergence by combining: (1) entropy-driven expansion (epsilon up) for exploration in high-uncertainty states, and (2) reward-guided contraction (epsilon down) for convergence stability. On six diverse benchmarks (MuJoCo, Atari, sparse-reward), PPO-BR achieves 29.1% faster convergence (p < 0.001), 2.3x lower reward variance than PPO, and less than 1.8% runtime overhead with only five lines of code change. PPO-BR's simplicity and theoretical guarantees make it ready-to-deploy in safety-critical domains -- from surgical robotics to autonomous drones. In contrast to recent methods such as Group Relative Policy Optimization (GRPO), PPO-BR offers a unified entropy-reward mechanism applicable to both language models and general reinforcement learning environments.
comment: This manuscript builds upon an earlier version posted to TechRxiv. This arXiv version includes an updated comparison with GRPO (Group Relative Policy Optimization)
Understanding How Value Neurons Shape the Generation of Specified Values in LLMs
Rapid integration of large language models (LLMs) into societal applications has intensified concerns about their alignment with universal ethical principles, as their internal value representations remain opaque despite behavioral alignment advancements. Current approaches struggle to systematically interpret how values are encoded in neural architectures, limited by datasets that prioritize superficial judgments over mechanistic analysis. We introduce ValueLocate, a mechanistic interpretability framework grounded in the Schwartz Values Survey, to address this gap. Our method first constructs ValueInsight, a dataset that operationalizes four dimensions of universal value through behavioral contexts in the real world. Leveraging this dataset, we develop a neuron identification method that calculates activation differences between opposing value aspects, enabling precise localization of value-critical neurons without relying on computationally intensive attribution methods. Our proposed validation method demonstrates that targeted manipulation of these neurons effectively alters model value orientations, establishing causal relationships between neurons and value representations. This work advances the foundation for value alignment by bridging psychological value frameworks with neuron analysis in LLMs.
SemSketches-2021: experimenting with the machine processing of the pilot semantic sketches corpus
The paper deals with elaborating different approaches to the machine processing of semantic sketches. It presents the pilot open corpus of semantic sketches. Different aspects of creating the sketches are discussed, as well as the tasks that the sketches can help to solve. Special attention is paid to the creation of the machine processing tools for the corpus. For this purpose, the SemSketches-2021 Shared Task was organized. The participants were given the anonymous sketches and a set of contexts containing the necessary predicates. During the Task, one had to assign the proper contexts to the corresponding sketches.
COUNTDOWN: Contextually Sparse Activation Filtering Out Unnecessary Weights in Down Projection
The growing size of large language models has created significant computational inefficiencies. To address this challenge, sparse activation methods selectively deactivates non-essential parameters during inference, reducing computational costs in FFNN layers. While existing methods focus on non-linear gating mechanisms, we hypothesize that the sparsity of the FFNN layer lies globally in the form of a linear combination over its internal down projection matrix. Based on this insight, we propose two methods: M-COUNTDOWN, leveraging indirect coefficients, and D-COUNTDOWN, utilizing direct coefficients of the linear combination. Experimental results demonstrate that D-COUNTDOWN can omit 90% of computations with performance loss as low as 5.5% ideally, while M-COUNTDOWN provides a predictor-free solution with up to 29.4% better performance preservation compared to existing methods. Our specialized kernel implementations effectively realize these theoretical gains into substantial real-world acceleration.
Activation Control for Efficiently Eliciting Long Chain-of-thought Ability of Language Models
Despite the remarkable reasoning performance, eliciting the long chain-of-thought (CoT) ability in large language models (LLMs) typically requires costly reinforcement learning or supervised fine-tuning on high-quality distilled data. We investigate the internal mechanisms behind this capability and show that a small set of high-impact activations in the last few layers largely governs long-form reasoning attributes, such as output length and self-reflection. By simply amplifying these activations and inserting "wait" tokens, we can invoke the long CoT ability without any training, resulting in significantly increased self-reflection rates and accuracy. Moreover, we find that the activation dynamics follow predictable trajectories, with a sharp rise after special tokens and a subsequent exponential decay. Building on these insights, we introduce a general training-free activation control technique. It leverages a few contrastive examples to identify key activations, and employs simple analytic functions to modulate their values at inference time to elicit long CoTs. Extensive experiments confirm the effectiveness of our method in efficiently eliciting long CoT reasoning in LLMs and improving their performance. Additionally, we propose a parameter-efficient fine-tuning method that trains only a last-layer activation amplification module and a few LoRA layers, outperforming full LoRA fine-tuning on reasoning benchmarks with significantly fewer parameters. Our code and data are publicly released.
ELSPR: Evaluator LLM Training Data Self-Purification on Non-Transitive Preferences via Tournament Graph Reconstruction
Large language models (LLMs) are widely used as evaluators for open-ended tasks, while previous research has emphasized biases in LLM evaluations, the issue of non-transitivity in pairwise comparisons remains unresolved: non-transitive preferences for pairwise comparisons, where evaluators prefer A over B, B over C, but C over A. Our results suggest that low-quality training data may reduce the transitivity of preferences generated by the Evaluator LLM. To address this, We propose a graph-theoretic framework to analyze and mitigate this problem by modeling pairwise preferences as tournament graphs. We quantify non-transitivity and introduce directed graph structural entropy to measure the overall clarity of preferences. Our analysis reveals significant non-transitivity in advanced Evaluator LLMs (with Qwen2.5-Max exhibiting 67.96%), as well as high entropy values (0.8095 for Qwen2.5-Max), reflecting low overall clarity of preferences. To address this issue, we designed a filtering strategy, ELSPR, to eliminate preference data that induces non-transitivity, retaining only consistent and transitive preference data for model fine-tuning. Experiments demonstrate that models fine-tuned with filtered data reduce non-transitivity by 13.78% (from 64.28% to 50.50%), decrease structural entropy by 0.0879 (from 0.8113 to 0.7234), and align more closely with human evaluators (human agreement rate improves by 0.6% and Spearman correlation increases by 0.01).
Tuning Language Models for Robust Prediction of Diverse User Behaviors
Predicting user behavior is essential for intelligent assistant services, yet deep learning models often struggle to capture long-tailed behaviors. Large language models (LLMs), with their pretraining on vast corpora containing rich behavioral knowledge, offer promise. However, existing fine-tuning approaches tend to overfit to frequent ``anchor'' behaviors, reducing their ability to predict less common ``tail'' behaviors. In this paper, we introduce BehaviorLM, a progressive fine-tuning approach that addresses this issue. In the first stage, LLMs are fine-tuned on anchor behaviors while preserving general behavioral knowledge. In the second stage, fine-tuning uses a balanced subset of all behaviors based on sample difficulty to improve tail behavior predictions without sacrificing anchor performance. Experimental results on two real-world datasets demonstrate that BehaviorLM robustly predicts both anchor and tail behaviors and effectively leverages LLM behavioral knowledge to master tail behavior prediction with few-shot examples.
MIDB: Multilingual Instruction Data Booster for Enhancing Multilingual Instruction Synthesis
Despite doubts on data quality, instruction synthesis has been widely applied into instruction tuning (IT) of LLMs as an economic and rapid alternative. Recent endeavors focus on improving data quality for synthesized instruction pairs in English and have facilitated IT of English-centric LLMs. However, data quality issues in multilingual synthesized instruction pairs are even more severe, since the common synthesizing practice is to translate English synthesized data into other languages using machine translation (MT). Besides the known content errors in these English synthesized data, multilingual synthesized instruction data are further exposed to defects introduced by MT and face insufficient localization of the target languages. In this paper, we propose MIDB, a Multilingual Instruction Data Booster to automatically address the quality issues in multilingual synthesized data. MIDB is trained on around 36.8k revision examples across 16 languages by human linguistic experts, thereby can boost the low-quality data by addressing content errors and MT defects, and improving localization in these synthesized data. Both automatic and human evaluation indicate that not only MIDB steadily improved instruction data quality in 16 languages, but also the instruction-following and cultural-understanding abilities of multilingual LLMs fine-tuned on MIDB-boosted data were significantly enhanced.
QwenLong-L1: Towards Long-Context Large Reasoning Models with Reinforcement Learning
Recent large reasoning models (LRMs) have demonstrated strong reasoning capabilities through reinforcement learning (RL). These improvements have primarily been observed within the short-context reasoning tasks. In contrast, extending LRMs to effectively process and reason on long-context inputs via RL remains a critical unsolved challenge. To bridge this gap, we first formalize the paradigm of long-context reasoning RL, and identify key challenges in suboptimal training efficiency and unstable optimization process. To address these issues, we propose QwenLong-L1, a framework that adapts short-context LRMs to long-context scenarios via progressive context scaling. Specifically, we utilize a warm-up supervised fine-tuning (SFT) stage to establish a robust initial policy, followed by a curriculum-guided phased RL technique to stabilize the policy evolution, and enhanced with a difficulty-aware retrospective sampling strategy to incentivize the policy exploration. Experiments on seven long-context document question-answering benchmarks demonstrate that QwenLong-L1-32B outperforms flagship LRMs like OpenAI-o3-mini and Qwen3-235B-A22B, achieving performance on par with Claude-3.7-Sonnet-Thinking, demonstrating leading performance among state-of-the-art LRMs. This work advances the development of practical long-context LRMs capable of robust reasoning across information-intensive environments.
comment: Technical Report
Towards Dynamic Theory of Mind: Evaluating LLM Adaptation to Temporal Evolution of Human States ACL 2025
As Large Language Models (LLMs) increasingly participate in human-AI interactions, evaluating their Theory of Mind (ToM) capabilities - particularly their ability to track dynamic mental states - becomes crucial. While existing benchmarks assess basic ToM abilities, they predominantly focus on static snapshots of mental states, overlooking the temporal evolution that characterizes real-world social interactions. We present \textsc{DynToM}, a novel benchmark specifically designed to evaluate LLMs' ability to understand and track the temporal progression of mental states across interconnected scenarios. Through a systematic four-step framework, we generate 1,100 social contexts encompassing 5,500 scenarios and 78,100 questions, each validated for realism and quality. Our comprehensive evaluation of ten state-of-the-art LLMs reveals that their average performance underperforms humans by 44.7\%, with performance degrading significantly when tracking and reasoning about the shift of mental states. This performance gap highlights fundamental limitations in current LLMs' ability to model the dynamic nature of human mental states.
comment: Accepted by ACL 2025 Main Conference
Too Consistent to Detect: A Study of Self-Consistent Errors in LLMs EMNLP25
As large language models (LLMs) often generate plausible but incorrect content, error detection has become increasingly critical to ensure truthfulness. However, existing detection methods often overlook a critical problem we term as self-consistent error, where LLMs repeatly generate the same incorrect response across multiple stochastic samples. This work formally defines self-consistent errors and evaluates mainstream detection methods on them. Our investigation reveals two key findings: (1) Unlike inconsistent errors, whose frequency diminishes significantly as LLM scale increases, the frequency of self-consistent errors remains stable or even increases. (2) All four types of detection methshods significantly struggle to detect self-consistent errors. These findings reveal critical limitations in current detection methods and underscore the need for improved methods. Motivated by the observation that self-consistent errors often differ across LLMs, we propose a simple but effective cross-model probe method that fuses hidden state evidence from an external verifier LLM. Our method significantly enhances performance on self-consistent errors across three LLM families.
comment: Underreview in EMNLP25
EVADE: Multimodal Benchmark for Evasive Content Detection in E-Commerce Applications
E-commerce platforms increasingly rely on Large Language Models (LLMs) and Vision-Language Models (VLMs) to detect illicit or misleading product content. However, these models remain vulnerable to evasive content: inputs (text or images) that superficially comply with platform policies while covertly conveying prohibited claims. Unlike traditional adversarial attacks that induce overt failures, evasive content exploits ambiguity and context, making it far harder to detect. Existing robustness benchmarks provide little guidance for this demanding, real-world challenge. We introduce EVADE, the first expert-curated, Chinese, multimodal benchmark specifically designed to evaluate foundation models on evasive content detection in e-commerce. The dataset contains 2,833 annotated text samples and 13,961 images spanning six demanding product categories, including body shaping, height growth, and health supplements. Two complementary tasks assess distinct capabilities: Single-Violation, which probes fine-grained reasoning under short prompts, and All-in-One, which tests long-context reasoning by merging overlapping policy rules into unified instructions. Notably, the All-in-One setting significantly narrows the performance gap between partial and full-match accuracy, suggesting that clearer rule definitions improve alignment between human and model judgment. We benchmark 26 mainstream LLMs and VLMs and observe substantial performance gaps: even state-of-the-art models frequently misclassify evasive samples. By releasing EVADE and strong baselines, we provide the first rigorous standard for evaluating evasive-content detection, expose fundamental limitations in current multimodal reasoning, and lay the groundwork for safer and more transparent content moderation systems in e-commerce. The dataset is publicly available at https://huggingface.co/datasets/koenshen/EVADE-Bench.
HoloLLM: Multisensory Foundation Model for Language-Grounded Human Sensing and Reasoning
Embodied agents operating in smart homes must understand human behavior through diverse sensory inputs and communicate via natural language. While Vision-Language Models (VLMs) have enabled impressive language-grounded perception, their reliance on visual data limits robustness in real-world scenarios with occlusions, poor lighting, or privacy constraints. In this paper, we introduce HoloLLM, a Multimodal Large Language Model (MLLM) that integrates uncommon but powerful sensing modalities, such as LiDAR, infrared, mmWave radar, and WiFi, to enable seamless human perception and reasoning across heterogeneous environments. We address two key challenges: (1) the scarcity of aligned modality-text data for rare sensors, and (2) the heterogeneity of their physical signal representations. To overcome these, we design a Universal Modality-Injection Projector (UMIP) that enhances pre-aligned modality embeddings with fine-grained, text-aligned features from tailored encoders via coarse-to-fine cross-attention without introducing significant alignment overhead. We further introduce a human-VLM collaborative data curation pipeline to generate paired textual annotations for sensing datasets. Extensive experiments on two newly constructed benchmarks show that HoloLLM significantly outperforms existing MLLMs, improving language-grounded human sensing accuracy by up to 30%. This work establishes a new foundation for real-world, language-informed multisensory embodied intelligence.
comment: 18 pages, 13 figures, 6 tables
Bridging Electronic Health Records and Clinical Texts: Contrastive Learning for Enhanced Clinical Tasks
Conventional machine learning models, particularly tree-based approaches, have demonstrated promising performance across various clinical prediction tasks using electronic health record (EHR) data. Despite their strengths, these models struggle with tasks that require deeper contextual understanding, such as predicting 30-day hospital readmission. This can be primarily due to the limited semantic information available in structured EHR data. To address this limitation, we propose a deep multimodal contrastive learning (CL) framework that aligns the latent representations of structured EHR data with unstructured discharge summary notes. It works by pulling together paired EHR and text embeddings while pushing apart unpaired ones. Fine-tuning the pretrained EHR encoder extracted from this framework significantly boosts downstream task performance, e.g., a 4.1% AUROC enhancement over XGBoost for 30-day readmission prediction. Such results demonstrate the effect of integrating domain knowledge from clinical notes into EHR-based pipelines, enabling more accurate and context-aware clinical decision support systems.
Stereotype Detection in Natural Language Processing
Stereotypes influence social perceptions and can escalate into discrimination and violence. While NLP research has extensively addressed gender bias and hate speech, stereotype detection remains an emerging field with significant societal implications. In this work is presented a survey of existing research, analyzing definitions from psychology, sociology, and philosophy. A semi-automatic literature review was performed by using Semantic Scholar. We retrieved and filtered over 6,000 papers (in the year range 2000-2025), identifying key trends, methodologies, challenges and future directions. The findings emphasize stereotype detection as a potential early-monitoring tool to prevent bias escalation and the rise of hate speech. Conclusions highlight the need for a broader, multilingual, and intersectional approach in NLP studies.
Surfacing Semantic Orthogonality Across Model Safety Benchmarks: A Multi-Dimensional Analysis
Various AI safety datasets have been developed to measure LLMs against evolving interpretations of harm. Our evaluation of five recently published open-source safety benchmarks reveals distinct semantic clusters using UMAP dimensionality reduction and kmeans clustering (silhouette score: 0.470). We identify six primary harm categories with varying benchmark representation. GretelAI, for example, focuses heavily on privacy concerns, while WildGuardMix emphasizes self-harm scenarios. Significant differences in prompt length distribution suggests confounds to data collection and interpretations of harm as well as offer possible context. Our analysis quantifies benchmark orthogonality among AI benchmarks, allowing for transparency in coverage gaps despite topical similarities. Our quantitative framework for analyzing semantic orthogonality across safety benchmarks enables more targeted development of datasets that comprehensively address the evolving landscape of harms in AI use, however that is defined in the future.
comment: 6th International Conference on Advanced Natural Language Processing (AdNLP 2025), May 17 ~ 18, 2025, Zurich, Switzerland
GIM: Improved Interpretability for Large Language Models
Ensuring faithful interpretability in large language models is imperative for trustworthy and reliable AI. A key obstacle is self-repair, a phenomenon where networks compensate for reduced signal in one component by amplifying others, masking the true importance of the ablated component. While prior work attributes self-repair to layer normalization and back-up components that compensate for ablated components, we identify a novel form occurring within the attention mechanism, where softmax redistribution conceals the influence of important attention scores. This leads traditional ablation and gradient-based methods to underestimate the significance of all components contributing to these attention scores. We introduce Gradient Interaction Modifications (GIM), a technique that accounts for self-repair during backpropagation. Extensive experiments across multiple large language models (Gemma 2B/9B, LLAMA 1B/3B/8B, Qwen 1.5B/3B) and diverse tasks demonstrate that GIM significantly improves faithfulness over existing circuit identification and feature attribution methods. Our work is a significant step toward better understanding the inner mechanisms of LLMs, which is crucial for improving them and ensuring their safety. Our code is available at https://github.com/JoakimEdin/gim.
Enhancing Large Vision-Language Models with Layout Modality for Table Question Answering on Japanese Annual Securities Reports
With recent advancements in Large Language Models (LLMs) and growing interest in retrieval-augmented generation (RAG), the ability to understand table structures has become increasingly important. This is especially critical in financial domains such as securities reports, where highly accurate question answering (QA) over tables is required. However, tables exist in various formats-including HTML, images, and plain text-making it difficult to preserve and extract structural information. Therefore, multimodal LLMs are essential for robust and general-purpose table understanding. Despite their promise, current Large Vision-Language Models (LVLMs), which are major representatives of multimodal LLMs, still face challenges in accurately understanding characters and their spatial relationships within documents. In this study, we propose a method to enhance LVLM-based table understanding by incorporating in-table textual content and layout features. Experimental results demonstrate that these auxiliary modalities significantly improve performance, enabling robust interpretation of complex document layouts without relying on explicitly structured input formats.
comment: Accepted at IIAI AAI 2025, the 3rd International Conference on Computational and Data Sciences in Economics and Finance
Runaway is Ashamed, But Helpful: On the Early-Exit Behavior of Large Language Model-based Agents in Embodied Environments
Agents powered by large language models (LLMs) have demonstrated strong planning and decision-making capabilities in complex embodied environments. However, such agents often suffer from inefficiencies in multi-turn interactions, frequently trapped in repetitive loops or issuing ineffective commands, leading to redundant computational overhead. Instead of relying solely on learning from trajectories, we take a first step toward exploring the early-exit behavior for LLM-based agents. We propose two complementary approaches: 1. an $\textbf{intrinsic}$ method that injects exit instructions during generation, and 2. an $\textbf{extrinsic}$ method that verifies task completion to determine when to halt an agent's trial. To evaluate early-exit mechanisms, we introduce two metrics: one measures the reduction of $\textbf{redundant steps}$ as a positive effect, and the other evaluates $\textbf{progress degradation}$ as a negative effect. Experiments with 4 different LLMs across 5 embodied environments show significant efficiency improvements, with only minor drops in agent performance. We also validate a practical strategy where a stronger agent assists after an early-exit agent, achieving better performance with the same total steps. We will release our code to support further research.
comment: Under Review
Large language model as user daily behavior data generator: balancing population diversity and individual personality
Predicting human daily behavior is challenging due to the complexity of routine patterns and short-term fluctuations. While data-driven models have improved behavior prediction by leveraging empirical data from various platforms and devices, the reliance on sensitive, large-scale user data raises privacy concerns and limits data availability. Synthetic data generation has emerged as a promising solution, though existing methods are often limited to specific applications. In this work, we introduce BehaviorGen, a framework that uses large language models (LLMs) to generate high-quality synthetic behavior data. By simulating user behavior based on profiles and real events, BehaviorGen supports data augmentation and replacement in behavior prediction models. We evaluate its performance in scenarios such as pertaining augmentation, fine-tuning replacement, and fine-tuning augmentation, achieving significant improvements in human mobility and smartphone usage predictions, with gains of up to 18.9%. Our results demonstrate the potential of BehaviorGen to enhance user behavior modeling through flexible and privacy-preserving synthetic data generation.
comment: 14 pages, 7 figures, 4 tables
MMMG: a Comprehensive and Reliable Evaluation Suite for Multitask Multimodal Generation
Automatically evaluating multimodal generation presents a significant challenge, as automated metrics often struggle to align reliably with human evaluation, especially for complex tasks that involve multiple modalities. To address this, we present MMMG, a comprehensive and human-aligned benchmark for multimodal generation across 4 modality combinations (image, audio, interleaved text and image, interleaved text and audio), with a focus on tasks that present significant challenges for generation models, while still enabling reliable automatic evaluation through a combination of models and programs. MMMG encompasses 49 tasks (including 29 newly developed ones), each with a carefully designed evaluation pipeline, and 937 instructions to systematically assess reasoning, controllability, and other key capabilities of multimodal generation models. Extensive validation demonstrates that MMMG is highly aligned with human evaluation, achieving an average agreement of 94.3%. Benchmarking results on 24 multimodal generation models reveal that even though the state-of-the-art model, GPT Image, achieves 78.3% accuracy for image generation, it falls short on multimodal reasoning and interleaved generation. Furthermore, results suggest considerable headroom for improvement in audio generation, highlighting an important direction for future research.
Distilling LLM Agent into Small Models with Retrieval and Code Tools
Large language models (LLMs) excel at complex reasoning tasks but remain computationally expensive, limiting their practical deployment. To address this, recent works have focused on distilling reasoning capabilities into smaller language models (sLMs) using chain-of-thought (CoT) traces from teacher LLMs. However, this approach struggles in scenarios requiring rare factual knowledge or precise computation, where sLMs often hallucinate due to limited capability. In this work, we propose Agent Distillation, a framework for transferring not only reasoning capability but full task-solving behavior from LLM-based agents into sLMs with retrieval and code tools. We improve agent distillation along two complementary axes: (1) we introduce a prompting method called first-thought prefix to enhance the quality of teacher-generated trajectories; and (2) we propose a self-consistent action generation for improving test-time robustness of small agents. We evaluate our method on eight reasoning tasks across factual and mathematical domains, covering both in-domain and out-of-domain generalization. Our results show that sLMs as small as 0.5B, 1.5B, 3B parameters can achieve performance competitive with next-tier larger 1.5B, 3B, 7B models fine-tuned using CoT distillation, demonstrating the potential of agent distillation for building practical, tool-using small agents. Our code is available at https://github.com/Nardien/agent-distillation.
comment: preprint, v1
Controlled Agentic Planning & Reasoning for Mechanism Synthesis
This work presents a dual-agent Large Language Model (LLM)-based reasoning method for mechanism synthesis, capable of reasoning at both linguistic and symbolic levels to generate geometrical and dynamic outcomes. The model consists of a composition of well-defined functions that, starting from a natural language specification, references abstract properties through supporting equations, generates and parametrizes simulation code, and elicits feedback anchor points using symbolic regression and distance functions. This process closes an actionable refinement loop at the linguistic and symbolic layers. The approach is shown to be both effective and convergent in the context of planar mechanisms. Additionally, we introduce MSynth, a novel benchmark for planar mechanism synthesis, and perform a comprehensive analysis of the impact of the model components. We further demonstrate that symbolic regression prompts unlock mechanistic insights only when applied to sufficiently large architectures.
comment: 24 pages, 16 figures
Wolf Hidden in Sheep's Conversations: Toward Harmless Data-Based Backdoor Attacks for Jailbreaking Large Language Models
Supervised fine-tuning (SFT) aligns large language models (LLMs) with human intent by training them on labeled task-specific data. Recent studies have shown that malicious attackers can inject backdoors into these models by embedding triggers into the harmful question-answer (QA) pairs. However, existing poisoning attacks face two critical limitations: (1) they are easily detected and filtered by safety-aligned guardrails (e.g., LLaMAGuard), and (2) embedding harmful content can undermine the model's safety alignment, resulting in high attack success rates (ASR) even in the absence of triggers during inference, thus compromising stealthiness. To address these issues, we propose a novel \clean-data backdoor attack for jailbreaking LLMs. Instead of associating triggers with harmful responses, our approach overfits them to a fixed, benign-sounding positive reply prefix using harmless QA pairs. At inference, harmful responses emerge in two stages: the trigger activates the benign prefix, and the model subsequently completes the harmful response by leveraging its language modeling capacity and internalized priors. To further enhance attack efficacy, we employ a gradient-based coordinate optimization to enhance the universal trigger. Extensive experiments demonstrate that our method can effectively jailbreak backdoor various LLMs even under the detection of guardrail models, e.g., an ASR of 86.67% and 85% on LLaMA-3-8B and Qwen-2.5-7B judged by GPT-4o.
One Model Transfer to All: On Robust Jailbreak Prompts Generation against LLMs
Safety alignment in large language models (LLMs) is increasingly compromised by jailbreak attacks, which can manipulate these models to generate harmful or unintended content. Investigating these attacks is crucial for uncovering model vulnerabilities. However, many existing jailbreak strategies fail to keep pace with the rapid development of defense mechanisms, such as defensive suffixes, rendering them ineffective against defended models. To tackle this issue, we introduce a novel attack method called ArrAttack, specifically designed to target defended LLMs. ArrAttack automatically generates robust jailbreak prompts capable of bypassing various defense measures. This capability is supported by a universal robustness judgment model that, once trained, can perform robustness evaluation for any target model with a wide variety of defenses. By leveraging this model, we can rapidly develop a robust jailbreak prompt generator that efficiently converts malicious input prompts into effective attacks. Extensive evaluations reveal that ArrAttack significantly outperforms existing attack strategies, demonstrating strong transferability across both white-box and black-box models, including GPT-4 and Claude-3. Our work bridges the gap between jailbreak attacks and defenses, providing a fresh perspective on generating robust jailbreak prompts. We make the codebase available at https://github.com/LLBao/ArrAttack.
NeUQI: Near-Optimal Uniform Quantization Parameter Initialization
Large language models (LLMs) achieve impressive performance across domains but face significant challenges when deployed on consumer-grade GPUs or personal devices such as laptops, due to high memory consumption and inference costs. Post-training quantization (PTQ) of LLMs offers a promising solution that reduces their memory footprint and decoding latency. In practice, PTQ with uniform quantization representation is favored for its efficiency and ease of deployment since uniform quantization is widely supported by mainstream hardware and software libraries. Recent studies on $\geq 2$-bit uniform quantization have led to noticeable improvements in post-quantization model performance; however, they primarily focus on quantization methodologies, while the initialization of quantization parameters is underexplored and still relies on the suboptimal Min-Max strategies. In this work, we propose NeUQI, a method devoted to efficiently determining near-optimal initial parameters for uniform quantization. NeUQI is orthogonal to prior quantization methodologies and can seamlessly integrate with them. The experiments with the LLaMA and Qwen families on various tasks demonstrate that our NeUQI consistently outperforms existing methods. Furthermore, when combined with a lightweight distillation strategy, NeUQI can achieve superior performance to PV-tuning, a much more resource-intensive approach.
comment: 9 pages, under review
Reasoning Meets Personalization: Unleashing the Potential of Large Reasoning Model for Personalized Generation
Personalization is a critical task in modern intelligent systems, with applications spanning diverse domains, including interactions with large language models (LLMs). Recent advances in reasoning capabilities have significantly enhanced LLMs, enabling unprecedented performance in tasks such as mathematics and coding. However, their potential for personalization tasks remains underexplored. In this paper, we present the first systematic evaluation of large reasoning models (LRMs) for personalization tasks. Surprisingly, despite generating more tokens, LRMs do not consistently outperform general-purpose LLMs, especially in retrieval-intensive scenarios where their advantages diminish. Our analysis identifies three key limitations: divergent thinking, misalignment of response formats, and ineffective use of retrieved information. To address these challenges, we propose Reinforced Reasoning for Personalization (\model), a novel framework that incorporates a hierarchical reasoning thought template to guide LRMs in generating structured outputs. Additionally, we introduce a reasoning process intervention method to enforce adherence to designed reasoning patterns, enhancing alignment. We also propose a cross-referencing mechanism to ensure consistency. Extensive experiments demonstrate that our approach significantly outperforms existing techniques.
PPT: A Process-based Preference Learning Framework for Self Improving Table Question Answering Models
Improving large language models (LLMs) with self-generated data has demonstrated success in tasks such as mathematical reasoning and code generation. Yet, no exploration has been made on table question answering (TQA), where a system answers questions based on tabular data. Addressing this gap is crucial for TQA, as effective self-improvement can boost performance without requiring costly or manually annotated data. In this work, we propose PPT, a Process-based Preference learning framework for TQA. It decomposes reasoning chains into discrete states, assigns scores to each state, and samples contrastive steps for preference learning. Experimental results show that PPT effectively improves TQA models by up to 5% on in-domain datasets and 2.4% on out-of-domain datasets, with only 8,000 preference pairs. Furthermore, the resulting models achieve competitive results compared to more complex and larger state-of-the-art TQA systems, while being five times more efficient during inference.
Capacity-Aware Inference: Mitigating the Straggler Effect in Mixture of Experts
The Mixture of Experts (MoE) is an effective architecture for scaling large language models by leveraging sparse expert activation to balance performance and efficiency. However, under expert parallelism, MoE suffers from inference inefficiencies due to imbalanced token-to-expert assignment, where underloaded experts complete computations early but must wait for overloaded experts, leading to global delays. We define this phenomenon as the \textbf{\textit{Straggler Effect}}, as the most burdened experts dictate the overall inference latency. To address this, we first propose \textit{\textbf{Capacity-Aware Token Drop}}, which enforces expert capacity limits by discarding excess tokens from overloaded experts, effectively reducing load imbalance with minimal performance impact (e.g., $30\%$ speedup with only $0.9\%$ degradation on OLMoE). Next, given the presence of low-load experts remaining well below the capacity threshold, we introduce \textit{\textbf{Capacity-Aware Expanded Drop}}, which allows tokens to include additional local experts in their candidate set before enforcing strict local capacity constraints, thereby improving load balance and enhancing the utilization of underused experts. Extensive experiments on both language and multimodal MoE models demonstrate the effectiveness of our approach, yielding substantial gains in expert utilization, model performance, and inference efficiency, e.g., applying Expanded Drop to Mixtral-8$\times$7B-Instruct yields a {0.2\%} average performance improvement and a {1.85$\times$} inference speedup.
VeriFastScore: Speeding up long-form factuality evaluation
Metrics like FactScore and VeriScore that evaluate long-form factuality operate by decomposing an input response into atomic claims and then individually verifying each claim. While effective and interpretable, these methods incur numerous LLM calls and can take upwards of 100 seconds to evaluate a single response, limiting their practicality in large-scale evaluation and training scenarios. To address this, we propose VeriFastScore, which leverages synthetic data to fine-tune Llama3.1 8B for simultaneously extracting and verifying all verifiable claims within a given text based on evidence from Google Search. We show that this task cannot be solved via few-shot prompting with closed LLMs due to its complexity: the model receives ~4K tokens of evidence on average and needs to concurrently decompose claims, judge their verifiability, and verify them against noisy evidence. However, our fine-tuned VeriFastScore model demonstrates strong correlation with the original VeriScore pipeline at both the example level (r=0.80) and system level (r=0.94) while achieving an overall speedup of 6.6x (9.9x excluding evidence retrieval) over VeriScore. To facilitate future factuality research, we publicly release our VeriFastScore model and synthetic datasets.
Power-Law Decay Loss for Large Language Model Finetuning: Focusing on Information Sparsity to Enhance Generation Quality
During the finetuning stage of text generation tasks, standard cross-entropy loss treats all tokens equally. This can lead models to overemphasize high-frequency, low-information tokens, neglecting lower-frequency tokens crucial for specificity and informativeness in generated content. This paper introduces a novel loss function, Power-Law Decay Loss (PDL), specifically designed to optimize the finetuning process for text generation. The core motivation for PDL stems from observations in information theory and linguistics: the informativeness of a token is often inversely proportional to its frequency of occurrence. PDL re-weights the contribution of each token in the standard cross-entropy loss based on its frequency in the training corpus, following a power-law decay. Specifically, the weights for high-frequency tokens are reduced, while low-frequency, information-dense tokens are assigned higher weights. This mechanism guides the model during finetuning to focus more on learning and generating tokens that convey specific and unique information, thereby enhancing the quality, diversity, and informativeness of the generated text. We theoretically elaborate on the motivation and construction of PDL and discuss its potential applications and advantages across various text generation finetuning tasks, such as abstractive summarization, dialogue systems, and style transfer.
SSR-Zero: Simple Self-Rewarding Reinforcement Learning for Machine Translation
Large language models (LLMs) have recently demonstrated remarkable capabilities in machine translation (MT). However, most advanced MT-specific LLMs heavily rely on external supervision signals during training, such as human-annotated reference data or trained reward models (RMs), which are often expensive to obtain and challenging to scale. To overcome this limitation, we propose a Simple Self-Rewarding (SSR) Reinforcement Learning (RL) framework for MT that is reference-free, fully online, and relies solely on self-judging rewards. Training with SSR using 13K monolingual examples and Qwen-2.5-7B as the backbone, our model SSR-Zero-7B outperforms existing MT-specific LLMs, e.g., TowerInstruct-13B and GemmaX-28-9B, as well as larger general LLMs like Qwen2.5-32B-Instruct in English $\leftrightarrow$ Chinese translation tasks from WMT23, WMT24, and Flores200 benchmarks. Furthermore, by augmenting SSR with external supervision from COMET, our strongest model, SSR-X-Zero-7B, achieves state-of-the-art performance in English $\leftrightarrow$ Chinese translation, surpassing all existing open-source models under 72B parameters and even outperforming closed-source models, e.g., GPT-4o and Gemini 1.5 Pro. Our analysis highlights the effectiveness of the self-rewarding mechanism compared to the external LLM-as-a-judge approach in MT and demonstrates its complementary benefits when combined with trained RMs. Our findings provide valuable insight into the potential of self-improving RL methods. We have publicly released our code, data and models.
What Media Frames Reveal About Stance: A Dataset and Study about Memes in Climate Change Discourse
Media framing refers to the emphasis on specific aspects of perceived reality to shape how an issue is defined and understood. Its primary purpose is to shape public perceptions often in alignment with the authors' opinions and stances. However, the interaction between stance and media frame remains largely unexplored. In this work, we apply an interdisciplinary approach to conceptualize and computationally explore this interaction with internet memes on climate change. We curate CLIMATEMEMES, the first dataset of climate-change memes annotated with both stance and media frames, inspired by research in communication science. CLIMATEMEMES includes 1,184 memes sourced from 47 subreddits, enabling analysis of frame prominence over time and communities, and sheds light on the framing preferences of different stance holders. We propose two meme understanding tasks: stance detection and media frame detection. We evaluate LLaVA-NeXT and Molmo in various setups, and report the corresponding results on their LLM backbone. Human captions consistently enhance performance. Synthetic captions and human-corrected OCR also help occasionally. Our findings highlight that VLMs perform well on stance, but struggle on frames, where LLMs outperform VLMs. Finally, we analyze VLMs' limitations in handling nuanced frames and stance expressions on climate change internet memes.
comment: 20 pages, 9 figures
Think Silently, Think Fast: Dynamic Latent Compression of LLM Reasoning Chains
Large Language Models (LLMs) achieve superior performance through Chain-of-Thought (CoT) reasoning, but these token-level reasoning chains are computationally expensive and inefficient. In this paper, we introduce Compressed Latent Reasoning (CoLaR), a novel framework that dynamically compresses reasoning processes in latent space through a two-stage training approach. First, during supervised fine-tuning, CoLaR extends beyond next-token prediction by incorporating an auxiliary next compressed embedding prediction objective. This process merges embeddings of consecutive tokens using a compression factor randomly sampled from a predefined range, and trains a specialized latent head to predict distributions of subsequent compressed embeddings. Second, we enhance CoLaR through reinforcement learning (RL) that leverages the latent head's non-deterministic nature to explore diverse reasoning paths and exploit more compact ones. This approach enables CoLaR to: i) perform reasoning at a dense latent level (i.e., silently), substantially reducing reasoning chain length, and ii) dynamically adjust reasoning speed at inference time by simply prompting the desired compression factor. Extensive experiments across four mathematical reasoning datasets demonstrate that CoLaR achieves 14.1% higher accuracy than latent-based baseline methods at comparable compression ratios, and reduces reasoning chain length by 53.3% with only 4.8% performance degradation compared to explicit CoT method. Moreover, when applied to more challenging mathematical reasoning tasks, our RL-enhanced CoLaR demonstrates performance gains of up to 5.4% while dramatically reducing latent reasoning chain length by 82.8%. The code and models will be released upon acceptance.
comment: 15 pages, 8 figures
Is Your Paper Being Reviewed by an LLM? Benchmarking AI Text Detection in Peer Review
Peer review is a critical process for ensuring the integrity of published scientific research. Confidence in this process is predicated on the assumption that experts in the relevant domain give careful consideration to the merits of manuscripts which are submitted for publication. With the recent rapid advancements in large language models (LLMs), a new risk to the peer review process is that negligent reviewers will rely on LLMs to perform the often time consuming process of reviewing a paper. However, there is a lack of existing resources for benchmarking the detectability of AI text in the domain of peer review. To address this deficiency, we introduce a comprehensive dataset containing a total of 788,984 AI-written peer reviews paired with corresponding human reviews, covering 8 years of papers submitted to each of two leading AI research conferences (ICLR and NeurIPS). We use this new resource to evaluate the ability of 18 existing AI text detection algorithms to distinguish between peer reviews fully written by humans and different state-of-the-art LLMs. Additionally, we explore a context-aware detection method called Anchor, which leverages manuscript content to detect AI-generated reviews, and analyze the sensitivity of detection models to LLM-assisted editing of human-written text. Our work reveals the difficulty of identifying AI-generated text at the individual peer review level, highlighting the urgent need for new tools and methods to detect this unethical use of generative AI. Our dataset is publicly available at: https://huggingface.co/datasets/IntelLabs/AI-Peer-Review-Detection-Benchmark.
HausaNLP: Current Status, Challenges and Future Directions for Hausa Natural Language Processing
Hausa Natural Language Processing (NLP) has gained increasing attention in recent years, yet remains understudied as a low-resource language despite having over 120 million first-language (L1) and 80 million second-language (L2) speakers worldwide. While significant advances have been made in high-resource languages, Hausa NLP faces persistent challenges, including limited open-source datasets and inadequate model representation. This paper presents an overview of the current state of Hausa NLP, systematically examining existing resources, research contributions, and gaps across fundamental NLP tasks: text classification, machine translation, named entity recognition, speech recognition, and question answering. We introduce HausaNLP (https://catalog.hausanlp.org), a curated catalog that aggregates datasets, tools, and research works to enhance accessibility and drive further development. Furthermore, we discuss challenges in integrating Hausa into large language models (LLMs), addressing issues of suboptimal tokenization and dialectal variation. Finally, we propose strategic research directions emphasizing dataset expansion, improved language modeling approaches, and strengthened community collaboration to advance Hausa NLP. Our work provides both a foundation for accelerating Hausa NLP progress and valuable insights for broader multilingual NLP research.
Hogwild! Inference: Parallel LLM Generation via Concurrent Attention
Large Language Models (LLMs) have demonstrated the ability to tackle increasingly complex tasks through advanced reasoning, long-form content generation, and tool use. Solving these tasks often involves long inference-time computations. In human problem solving, a common strategy to expedite work is collaboration: by dividing the problem into sub-tasks, exploring different strategies concurrently, etc. Recent research has shown that LLMs can also operate in parallel by implementing explicit cooperation frameworks, such as voting mechanisms or the explicit creation of independent sub-tasks that can be executed in parallel. However, each of these frameworks may not be suitable for all types of tasks, which can hinder their applicability. In this work, we propose a different design approach: we run LLM "workers" in parallel , allowing them to synchronize via a concurrently-updated attention cache and prompt these workers to decide how best to collaborate. Our approach allows the LLM instances to come up with their own collaboration strategy for the problem at hand, all the while "seeing" each other's memory in the concurrent KV cache. We implement this approach via Hogwild! Inference: a parallel LLM inference engine where multiple instances of the same LLM run in parallel with the same attention cache, with "instant" access to each other's memory. Hogwild! Inference takes advantage of Rotary Position Embeddings (RoPE) to avoid recomputation while improving parallel hardware utilization. We find that modern reasoning-capable LLMs can perform inference with shared Key-Value cache out of the box, without additional fine-tuning.
comment: Preprint
From Lists to Emojis: How Format Bias Affects Model Alignment
In this paper, we study format biases in reinforcement learning from human feedback (RLHF). We observe that many widely-used preference models, including human evaluators, GPT-4, and top-ranking models on the RewardBench benchmark, exhibit strong biases towards specific format patterns, such as lists, links, bold text, and emojis. Furthermore, large language models (LLMs) can exploit these biases to achieve higher rankings on popular benchmarks like AlpacaEval and LMSYS Chatbot Arena. One notable example of this is verbosity bias, where current preference models favor longer responses that appear more comprehensive, even when their quality is equal to or lower than shorter, competing responses. However, format biases beyond verbosity remain largely underexplored in the literature. In this work, we extend the study of biases in preference learning beyond the commonly recognized length bias, offering a comprehensive analysis of a wider range of format biases. Additionally, we show that with a small amount of biased data (less than 1%), we can inject significant bias into the reward model. Moreover, these format biases can also be easily exploited by downstream alignment algorithms, such as best-of-n sampling and online iterative DPO, as it is usually easier to manipulate the format than to improve the quality of responses. Our findings emphasize the need to disentangle format and content both for designing alignment algorithms and evaluating models.
comment: Working in progress
WILDCHAT-50M: A Deep Dive Into the Role of Synthetic Data in Post-Training ICML 2025
Language model (LLM) post-training, from DPO to distillation, can refine behaviors and unlock new skills, but the open science supporting these post-training techniques is still in its infancy. One limiting factor has been the difficulty of conducting large-scale comparative analyses of synthetic data generating models and LLM judges. To close this gap, we introduce WILDCHAT-50M, the largest public chat dataset to date. We extend the existing WildChat dataset to include responses not only from GPT, but from over 50 different open-weight models, ranging in size from 0.5B to 104B parameters. We conduct an extensive comparative analysis and demonstrate the potential of this dataset by creating RE-WILD, our own public SFT mix, which outperforms the recent Tulu-3 SFT mixture from Allen AI with only 40% as many samples. Our dataset, samples and code are available at https://github.com/penfever/wildchat-50m.
comment: ICML 2025
Prototypical Human-AI Collaboration Behaviors from LLM-Assisted Writing in the Wild
As large language models (LLMs) are used in complex writing workflows, users engage in multi-turn interactions to steer generations to better fit their needs. Rather than passively accepting output, users actively refine, explore, and co-construct text. We conduct a large-scale analysis of this collaborative behavior for users engaged in writing tasks in the wild with two popular AI assistants, Bing Copilot and WildChat. Our analysis goes beyond simple task classification or satisfaction estimation common in prior work and instead characterizes how users interact with LLMs through the course of a session. We identify prototypical behaviors in how users interact with LLMs in prompts following their original request. We refer to these as Prototypical Human-AI Collaboration Behaviors (PATHs) and find that a small group of PATHs explain a majority of the variation seen in user-LLM interaction. These PATHs span users revising intents, exploring texts, posing questions, adjusting style or injecting new content. Next, we find statistically significant correlations between specific writing intents and PATHs, revealing how users' intents shape their collaboration behaviors. We conclude by discussing the implications of our findings on LLM alignment.
comment: Pre-print under-review
KCIF: Knowledge-Conditioned Instruction Following
LLM evaluation benchmarks have traditionally separated the testing of knowledge/reasoning capabilities from instruction following. In this work, we study the interaction between knowledge and instruction following, and observe that LLMs struggle to follow simple answer modifying instructions, and are also distracted by instructions that should have no bearing on the original knowledge task answer. We leverage existing multiple-choice answer based knowledge benchmarks and apply a set of simple instructions which include manipulating text (eg.: change case), numeric quantities (eg.: increase value, change formatting), operate on lists (eg.: sort answer candidates) and distractor instructions (eg.: change case of numeric answers). We evaluate models at varying parameter sizes (1B-405B) from different model families and find that, surprisingly, all models report a significant drop in performance on such simple task compositions. While large-sized and frontier models report performance drops of 40-50%, in small and medium sized models the drop is severe (sometimes exceeding 80%). Our results highlight a limitation in the traditional separation of knowledge/reasoning and instruction following, and suggest that joint-study of these capabilities are important. We release our benchmark dataset, evaluation framework code, and results for future work.
comment: Under Review
Compositional Causal Reasoning Evaluation in Language Models
Causal reasoning and compositional reasoning are two core aspirations in AI. Measuring the extent of these behaviors requires principled evaluation methods. We explore a unified perspective that considers both behaviors simultaneously, termed compositional causal reasoning (CCR): the ability to infer how causal measures compose and, equivalently, how causal quantities propagate through graphs. We instantiate a framework for the systematic evaluation of CCR for the average treatment effect and the probability of necessity and sufficiency. As proof of concept, we demonstrate CCR evaluation for language models in the LLama, Phi, and GPT families. On a math word problem, our framework revealed a range of taxonomically distinct error patterns. CCR errors increased with the complexity of causal paths for all models except o1.
Playpen: An Environment for Exploring Learning Through Conversational Interaction
Interaction between learner and feedback-giver has come into focus recently for post-training of Large Language Models (LLMs), through the use of reward models that judge the appropriateness of a model's response. In this paper, we investigate whether Dialogue Games -- goal-directed and rule-governed activities driven predominantly by verbal actions -- can also serve as a source of feedback signals for learning. We introduce Playpen, an environment for off- and online learning through Dialogue Game self-play, and investigate a representative set of post-training methods: supervised fine-tuning; direct alignment (DPO); and reinforcement learning with GRPO. We experiment with post-training a small LLM (Llama-3.1-8B-Instruct), evaluating performance on unseen instances of training games as well as unseen games, and on standard benchmarks. We find that imitation learning through SFT improves performance on unseen instances, but negatively impacts other skills, while interactive learning with GRPO shows balanced improvements without loss of skills. We release the framework and the baseline training setups to foster research in the promising new direction of learning in (synthetic) interaction.
comment: Source code: https://github.com/lm-playpen/playpen Please send correspodence to: lm-playschool@googlegroups.com
Towards Copyright Protection for Knowledge Bases of Retrieval-augmented Language Models via Reasoning
Large language models (LLMs) are increasingly integrated into real-world personalized applications through retrieval-augmented generation (RAG) mechanisms to supplement their responses with domain-specific knowledge. However, the valuable and often proprietary nature of the knowledge bases used in RAG introduces the risk of unauthorized usage by adversaries. Existing methods that can be generalized as watermarking techniques to protect these knowledge bases typically involve poisoning or backdoor attacks. However, these methods require altering the LLM's results of verification samples, inevitably making these watermarks susceptible to anomaly detection and even introducing new security risks. To address these challenges, we propose \name{} for `harmless' copyright protection of knowledge bases. Instead of manipulating LLM's final output, \name{} implants distinct yet benign verification behaviors in the space of chain-of-thought (CoT) reasoning, maintaining the correctness of the final answer. Our method has three main stages: (1) Generating CoTs: For each verification question, we generate two `innocent' CoTs, including a target CoT for building watermark behaviors; (2) Optimizing Watermark Phrases and Target CoTs: Inspired by our theoretical analysis, we optimize them to minimize retrieval errors under the \emph{black-box} and \emph{text-only} setting of suspicious LLM, ensuring that only watermarked verification queries can retrieve their correspondingly target CoTs contained in the knowledge base; (3) Ownership Verification: We exploit a pairwise Wilcoxon test to verify whether a suspicious LLM is augmented with the protected knowledge base by comparing its responses to watermarked and benign verification queries. Our experiments on diverse benchmarks demonstrate that \name{} effectively protects knowledge bases and its resistance to adaptive attacks.
comment: The first two authors contributed equally to this work. 25 pages
HICD: Hallucination-Inducing via Attention Dispersion for Contrastive Decoding to Mitigate Hallucinations in Large Language Models ACL2025
Large Language Models (LLMs) often generate hallucinations, producing outputs that are contextually inaccurate or factually incorrect. We introduce HICD, a novel method designed to induce hallucinations for contrastive decoding to mitigate hallucinations. Unlike existing contrastive decoding methods, HICD selects attention heads crucial to the model's prediction as inducing heads, then induces hallucinations by dispersing attention of these inducing heads and compares the hallucinated outputs with the original outputs to obtain the final result. Our approach significantly improves performance on tasks requiring contextual faithfulness, such as context completion, reading comprehension, and question answering. It also improves factuality in tasks requiring accurate knowledge recall. We demonstrate that our inducing heads selection and attention dispersion method leads to more "contrast-effective" hallucinations for contrastive decoding, outperforming other hallucination-inducing methods. Our findings provide a promising strategy for reducing hallucinations by inducing hallucinations in a controlled manner, enhancing the performance of LLMs in a wide range of tasks.
comment: Accepted by ACL2025 findings
TrendFact: A Benchmark for Explainable Hotspot Perception in Fact-Checking with Natural Language Explanation
Although fact verification remains fundamental, explanation generation serves as a critical enabler for trustworthy fact-checking systems by producing interpretable rationales and facilitating comprehensive verification processes. However, current benchmarks have limitations that include the lack of impact assessment, insufficient high-quality explanatory annotations, and an English-centric bias. To address these, we introduce TrendFact, the first hotspot perception fact-checking benchmark that comprehensively evaluates fact verification, evidence retrieval, and explanation generation tasks. TrendFact consists of 7,643 carefully curated samples sourced from trending platforms and professional fact-checking datasets, as well as an evidence library of 66,217 entries with publication dates. We further propose two metrics, ECS and HCPI, to complement existing benchmarks by evaluating the system's explanation consistency and hotspot perception capability, respectively. Experimental results show that current fact-checking systems, including advanced RLMs such as DeepSeek-R1, face significant limitations when evaluated on TrendFact, highlighting the real-world challenges posed by it. To enhance the fact-checking capabilities of reasoning large language models (RLMs), we propose FactISR, which integrates dynamic evidence augmentation, evidence triangulation, and an iterative self-reflection mechanism. Accordingly, FactISR effectively improves RLM performance, offering new insights for explainable and complex fact-checking.
The AI Gap: How Socioeconomic Status Affects Language Technology Interactions ACL
Socioeconomic status (SES) fundamentally influences how people interact with each other and more recently, with digital technologies like Large Language Models (LLMs). While previous research has highlighted the interaction between SES and language technology, it was limited by reliance on proxy metrics and synthetic data. We survey 1,000 individuals from diverse socioeconomic backgrounds about their use of language technologies and generative AI, and collect 6,482 prompts from their previous interactions with LLMs. We find systematic differences across SES groups in language technology usage (i.e., frequency, performed tasks), interaction styles, and topics. Higher SES entails a higher level of abstraction, convey requests more concisely, and topics like 'inclusivity' and 'travel'. Lower SES correlates with higher anthropomorphization of LLMs (using ''hello'' and ''thank you'') and more concrete language. Our findings suggest that while generative language technologies are becoming more accessible to everyone, socioeconomic linguistic differences still stratify their use to exacerbate the digital divide. These differences underscore the importance of considering SES in developing language technologies to accommodate varying linguistic needs rooted in socioeconomic factors and limit the AI Gap across SES groups.
comment: Accepted at ACL Main 2025
Retrieval-Augmented Fine-Tuning With Preference Optimization For Visual Program Generation ACL 2025
Visual programming languages (VPLs) allow users to create programs through graphical interfaces, which results in easier accessibility and their widespread usage in various domains. To further enhance this accessibility, recent research has focused on generating VPL code from user instructions using large language models (LLMs). Specifically, by employing prompting-based methods, these studies have shown promising results. Nevertheless, such approaches can be less effective for industrial VPLs such as Ladder Diagram (LD). LD is a pivotal language used in industrial automation processes and involves extensive domain-specific configurations, which are difficult to capture in a single prompt. In this work, we demonstrate that training-based methods outperform prompting-based methods for LD generation accuracy, even with smaller backbone models. Building on these findings, we propose a two-stage training strategy to further enhance VPL generation. First, we employ retrieval-augmented fine-tuning to leverage the repetitive use of subroutines commonly seen in industrial VPLs. Second, we apply direct preference optimization (DPO) to further guide the model toward accurate outputs, using systematically generated preference pairs through graph editing operations. Extensive experiments on real-world LD data demonstrate that our approach improves program-level accuracy by over 10% compared to supervised fine-tuning, which highlights its potential to advance industrial automation.
comment: Accepted at ACL 2025 (Main, long paper)
TAD-Bench: A Comprehensive Benchmark for Embedding-Based Text Anomaly Detection
Text anomaly detection is crucial for identifying spam, misinformation, and offensive language in natural language processing tasks. Despite the growing adoption of embedding-based methods, their effectiveness and generalizability across diverse application scenarios remain under-explored. To address this, we present TAD-Bench, a comprehensive benchmark designed to systematically evaluate embedding-based approaches for text anomaly detection. TAD-Bench integrates multiple datasets spanning different domains, combining state-of-the-art embeddings from large language models with a variety of anomaly detection algorithms. Through extensive experiments, we analyze the interplay between embeddings and detection methods, uncovering their strengths, weaknesses, and applicability to different tasks. These findings offer new perspectives on building more robust, efficient, and generalizable anomaly detection systems for real-world applications.
Table-Critic: A Multi-Agent Framework for Collaborative Criticism and Refinement in Table Reasoning ACL 2025
Despite the remarkable capabilities of large language models (LLMs) in various reasoning tasks, they still struggle with table reasoning tasks, particularly in maintaining consistency throughout multi-step reasoning processes. While existing approaches have explored various decomposition strategies, they often lack effective mechanisms to identify and correct errors in intermediate reasoning steps, leading to cascading error propagation. To address these issues, we propose Table-Critic, a novel multi-agent framework that facilitates collaborative criticism and iterative refinement of the reasoning process until convergence to correct solutions. Our framework consists of four specialized agents: a Judge for error identification, a Critic for comprehensive critiques, a Refiner for process improvement, and a Curator for pattern distillation. To effectively deal with diverse and unpredictable error types, we introduce a self-evolving template tree that systematically accumulates critique knowledge through experience-driven learning and guides future reflections. Extensive experiments have demonstrated that Table-Critic achieves substantial improvements over existing methods, achieving superior accuracy and error correction rates while maintaining computational efficiency and lower solution degradation rate.
comment: ACL 2025 Main
MedPlan:A Two-Stage RAG-Based System for Personalized Medical Plan Generation
Despite recent success in applying large language models (LLMs) to electronic health records (EHR), most systems focus primarily on assessment rather than treatment planning. We identify three critical limitations in current approaches: they generate treatment plans in a single pass rather than following the sequential reasoning process used by clinicians; they rarely incorporate patient-specific historical context; and they fail to effectively distinguish between subjective and objective clinical information. Motivated by the SOAP methodology (Subjective, Objective, Assessment, Plan), we introduce \ours{}, a novel framework that structures LLM reasoning to align with real-life clinician workflows. Our approach employs a two-stage architecture that first generates a clinical assessment based on patient symptoms and objective data, then formulates a structured treatment plan informed by this assessment and enriched with patient-specific information through retrieval-augmented generation. Comprehensive evaluation demonstrates that our method significantly outperforms baseline approaches in both assessment accuracy and treatment plan quality.
Edit Once, Update Everywhere: A Simple Framework for Cross-Lingual Knowledge Synchronization in LLMs ACL 2025
Knowledge editing allows for efficient adaptation of large language models (LLMs) to new information or corrections without requiring full retraining. However, prior methods typically focus on either single-language editing or basic multilingual editing, failing to achieve true cross-linguistic knowledge synchronization. To address this, we present a simple and practical state-of-the-art (SOTA) recipe Cross-Lingual Knowledge Democracy Edit (X-KDE), designed to propagate knowledge from a dominant language to other languages effectively. Our X-KDE comprises two stages: (i) Cross-lingual Edition Instruction Tuning (XE-IT), which fine-tunes the model on a curated parallel dataset to modify in-scope knowledge while preserving unrelated information, and (ii) Target-language Preference Optimization (TL-PO), which applies advanced optimization techniques to ensure consistency across languages, fostering the transfer of updates. Additionally, we contribute a high-quality, cross-lingual dataset, specifically designed to enhance knowledge transfer across languages. Extensive experiments on the Bi-ZsRE and MzsRE benchmarks show that X-KDE significantly enhances cross-lingual performance, achieving an average improvement of +8.19%, while maintaining high accuracy in monolingual settings.
comment: ACL 2025 Findings
Multi-modal Retrieval Augmented Multi-modal Generation: Datasets, Evaluation Metrics and Strong Baselines
We present a systematic investigation of Multi-modal Retrieval Augmented Multi-modal Generation (M$^2$RAG), a novel task that enables foundation models to process multi-modal web content and generate multi-modal responses, which exhibits better information density and readability. Despite its potential impact, M$^2$RAG remains understudied, lacking comprehensive analysis and high-quality data resources. To address this gap, we establish a comprehensive benchmark through a rigorous data curation pipeline, and employ text-modal metrics and multi-modal metrics based on foundation models for evaluation. We further propose several strategies for foundation models to process M$^2$RAG task effectively and construct a training set by filtering high-quality samples using our designed metrics. Our extensive experiments demonstrate the reliability of our proposed metrics, a landscape of model performance within our designed strategies, and show that our fine-tuned 7B-8B models outperform the GPT-4o model and approach the state-of-the-art OpenAI o3-mini. Additionally, we perform fine-grained analyses across diverse domains and validate the effectiveness of our designs in data curation pipeline. All resources, including codes, datasets, and model weights, will be publicly released.
"Reasoning" with Rhetoric: On the Style-Evidence Tradeoff in LLM-Generated Counter-Arguments
Large language models (LLMs) play a key role in generating evidence-based and stylistic counter-arguments, yet their effectiveness in real-world applications has been underexplored. Previous research often neglects the balance between evidentiality and style, which are crucial for persuasive arguments. To address this, we evaluated the effectiveness of stylized evidence-based counter-argument generation in Counterfire, a new dataset of 38,000 counter-arguments generated by revising counter-arguments to Reddit's ChangeMyView community to follow different discursive styles. We evaluated generic and stylized counter-arguments from basic and fine-tuned models such as GPT-3.5, PaLM-2, and Koala-13B, as well as newer models (GPT-4o, Claude Haiku, LLaMA-3.1) focusing on rhetorical quality and persuasiveness. Our findings reveals that humans prefer stylized counter-arguments over the original outputs, with GPT-3.5 Turbo performing well, though still not reaching human standards of rhetorical quality nor persuasiveness indicating a persisting style-evidence tradeoff in counter-argument generation by LLMs. We conclude with an examination of ethical considerations in LLM persuasion research, addressing potential risks of deceptive practices and the need for transparent deployment methodologies to safeguard against misuse in public discourse. The code and dataset are available at https://github.com/Preetika764/Style_control/.
comment: 24 pages, 9 figures, 13 tables
Large Language Models Share Representations of Latent Grammatical Concepts Across Typologically Diverse Languages
Human bilinguals often use similar brain regions to process multiple languages, depending on when they learned their second language and their proficiency. In large language models (LLMs), how are multiple languages learned and encoded? In this work, we explore the extent to which LLMs share representations of morphsyntactic concepts such as grammatical number, gender, and tense across languages. We train sparse autoencoders on Llama-3-8B and Aya-23-8B, and demonstrate that abstract grammatical concepts are often encoded in feature directions shared across many languages. We use causal interventions to verify the multilingual nature of these representations; specifically, we show that ablating only multilingual features decreases classifier performance to near-chance across languages. We then use these features to precisely modify model behavior in a machine translation task; this demonstrates both the generality and selectivity of these feature's roles in the network. Our findings suggest that even models trained predominantly on English data can develop robust, cross-lingual abstractions of morphosyntactic concepts.
ActiveLLM: Large Language Model-based Active Learning for Textual Few-Shot Scenarios
Active learning is designed to minimize annotation efforts by prioritizing instances that most enhance learning. However, many active learning strategies struggle with a `cold-start' problem, needing substantial initial data to be effective. This limitation reduces their utility in the increasingly relevant few-shot scenarios, where the instance selection has a substantial impact. To address this, we introduce ActiveLLM, a novel active learning approach that leverages Large Language Models such as GPT-4, o1, Llama 3, or Mistral Large for selecting instances. We demonstrate that ActiveLLM significantly enhances the classification performance of BERT classifiers in few-shot scenarios, outperforming traditional active learning methods as well as improving the few-shot learning methods ADAPET, PERFECT, and SetFit. Additionally, ActiveLLM can be extended to non-few-shot scenarios, allowing for iterative selections. In this way, ActiveLLM can even help other active learning strategies to overcome their cold-start problem. Our results suggest that ActiveLLM offers a promising solution for improving model performance across various learning setups.
comment: 20 pages, 10 figures, 7 tables
LLäMmlein: Compact and Competitive German-Only Language Models from Scratch
We create two German-only decoder models, LL\"aMmlein 120M and 1B, transparently from scratch and publish them, along with the training data, for the German NLP research community to use. The model training involved several key steps, including extensive data preprocessing, the creation of a custom German tokenizer, the training itself, as well as the evaluation of the final models on various benchmarks. Throughout the training process, multiple checkpoints were saved and analyzed using the SuperGLEBer benchmark to monitor the models' learning dynamics. Compared to state-of-the-art models on the SuperGLEBer benchmark, both LL\"aMmlein models performed competitively, consistently matching or surpassing models with similar parameter sizes. The results show that the models' quality scales with size as expected, but performance improvements on some tasks plateaued early, offering valuable insights into resource allocation for future model development.
comment: camera ready; https://www.informatik.uni-wuerzburg.de/datascience/projects/nlp/llammlein/
GRADIEND: Monosemantic Feature Learning within Neural Networks Applied to Gender Debiasing of Transformer Models
AI systems frequently exhibit and amplify social biases, including gender bias, leading to harmful consequences in critical areas. This study introduces a novel encoder-decoder approach that leverages model gradients to learn a single monosemantic feature neuron encoding gender information. We show that our method can be used to debias transformer-based language models, while maintaining other capabilities. We demonstrate the effectiveness of our approach across various model architectures and highlight its potential for broader applications.
Is Human-Like Text Liked by Humans? Multilingual Human Detection and Preference Against AI
Prior studies have shown that distinguishing text generated by large language models (LLMs) from human-written one is highly challenging, and often no better than random guessing. To verify the generalizability of this finding across languages and domains, we perform an extensive case study to identify the upper bound of human detection accuracy. Across 16 datasets covering 9 languages and 9 domains, 19 annotators achieved an average detection accuracy of 87.6\%, thus challenging previous conclusions. We find that major gaps between human and machine text lie in concreteness, cultural nuances, and diversity. Prompting by explicitly explaining the distinctions in the prompts can partially bridge the gaps in over 50\% of the cases. However, we also find that humans do not always prefer human-written text, particularly when they cannot clearly identify its source.
Triangulating LLM Progress through Benchmarks, Games, and Cognitive Tests
We examine three evaluation paradigms: standard benchmarks (e.g., MMLU and BBH), interactive games (e.g., Signalling Games or Taboo), and cognitive tests (e.g., for working memory or theory of mind). First, we investigate which of the former two-benchmarks or games-is most effective at discriminating LLMs of varying quality. Then, inspired by human cognitive assessments, we compile a suite of targeted tests that measure cognitive abilities deemed essential for effective language use, and we investigate their correlation with model performance in benchmarks and games. Our analyses reveal that interactive games are superior to standard benchmarks in discriminating models. Causal and logical reasoning correlate with both static and interactive tests, while differences emerge regarding core executive functions and social/emotional skills, which correlate more with games. We advocate for the development of new interactive benchmarks and targeted cognitive tasks inspired by assessing human abilities but designed specifically for LLMs.
Cross-lingual Human-Preference Alignment for Neural Machine Translation with Direct Quality Optimization
Reinforcement Learning from Human Feedback (RLHF) and derivative techniques like Direct Preference Optimization (DPO) are task-alignment algorithms used to repurpose general, foundational models for specific tasks. We show that applying task-alignment to neural machine translation (NMT) addresses an existing task--data mismatch in NMT, leading to improvements across all languages of a multilingual model, even when task-alignment is only applied to a subset of those languages. We do so by introducing Direct Quality Optimization (DQO), a variant of DPO leveraging a pre-trained translation quality estimation model as a proxy for human preferences, and verify the improvements with both automatic metrics and human evaluation.
comment: 17 pages, 3 figures
ThinkLess: A Training-Free Inference-Efficient Method for Reducing Reasoning Redundancy
While Chain-of-Thought (CoT) prompting improves reasoning in large language models (LLMs), the excessive length of reasoning tokens increases latency and KV cache memory usage, and may even truncate final answers under context limits. We propose ThinkLess, an inference-efficient framework that terminates reasoning generation early and maintains output quality without modifying the model. Atttention analysis reveals that answer tokens focus minimally on earlier reasoning steps and primarily attend to the reasoning terminator token, due to information migration under causal masking. Building on this insight, ThinkLess inserts the terminator token at earlier positions to skip redundant reasoning while preserving the underlying knowledge transfer. To prevent format discruption casued by early termination, ThinkLess employs a lightweight post-regulation mechanism, relying on the model's natural instruction-following ability to produce well-structured answers. Without fine-tuning or auxiliary data, ThinkLess achieves comparable accuracy to full-length CoT decoding while greatly reducing decoding time and memory consumption.
None of the Others: a General Technique to Distinguish Reasoning from Memorization in Multiple-Choice LLM Evaluation Benchmarks
In LLM evaluations, reasoning is often distinguished from recall/memorization by performing numerical variations to math-oriented questions. Here we introduce a general variation method for multiple-choice questions that completely dissociates the correct answer from previously seen tokens or concepts, requiring LLMs to understand and reason (rather than memorizing) in order to answer correctly. Using this method, we evaluate state-of-the-art proprietary and open-source LLMs on two datasets available in English and Spanish: the public MMLU benchmark and the private UNED-Access 2024 dataset. Results show that all models experience remarkable accuracy drops under our proposed variation, with an average loss of 57% on MMLU and 50% on UNED-Access 2024, ranging from 10% to 93% across models. Notably, the most accurate model in our experimentation (OpenAI-o3-mini) is not the most robust (DeepSeek-R1-70B), suggesting that the best models in standard evaluations may not be the ones with better reasoning capabilities. Also, we see larger accuracy drops in public (vs private) datasets and questions posed in their original language (vs a manual translation), which are signs of contamination and also point to a relevant role of recall/memorization in current LLMs' answers.
A Retrieval-Based Approach to Medical Procedure Matching in Romanian ACL 2025
Accurately mapping medical procedure names from healthcare providers to standardized terminology used by insurance companies is a crucial yet complex task. Inconsistencies in naming conventions lead to missclasified procedures, causing administrative inefficiencies and insurance claim problems in private healthcare settings. Many companies still use human resources for manual mapping, while there is a clear opportunity for automation. This paper proposes a retrieval-based architecture leveraging sentence embeddings for medical name matching in the Romanian healthcare system. This challenge is significantly more difficult in underrepresented languages such as Romanian, where existing pretrained language models lack domain-specific adaptation to medical text. We evaluate multiple embedding models, including Romanian, multilingual, and medical-domain-specific representations, to identify the most effective solution for this task. Our findings contribute to the broader field of medical NLP for low-resource languages such as Romanian.
comment: Accepted at BIONLP 2025 and Shared Tasks, ACL 2025
Enhancing Low-Resource Language and Instruction Following Capabilities of Audio Language Models
Audio language models process audio inputs using textual prompts for tasks like speech recognition and audio captioning. Although built on multilingual pre-trained components, most are trained primarily on English, limiting their usability for other languages. This paper evaluates audio language models on Thai, a low-resource language, and finds that they lack emergent cross-lingual abilities despite their multilingual foundations. To address this, we explore data mixtures that optimize audio language models for both a target language and English while integrating audio comprehension and speech instruction-following into a unified model. Our experiments provide insights into improving instruction-following in low-resource languages by balancing language-specific and multilingual training data. The proposed model, Typhoon-Audio, significantly outperforms existing open-source models and achieves performance comparable to state-of-the-art Gemini-1.5-Pro in both English and Thai.
comment: Interspeech 2025
The Quantum LLM: Modeling Semantic Spaces with Quantum Principles
In the previous article, we presented a quantum-inspired framework for modeling semantic representation and processing in Large Language Models (LLMs), drawing upon mathematical tools and conceptual analogies from quantum mechanics to offer a new perspective on these complex systems. In this paper, we clarify the core assumptions of this model, providing a detailed exposition of six key principles that govern semantic representation, interaction, and dynamics within LLMs. The goal is to justify that a quantum-inspired framework is a valid approach to studying semantic spaces. This framework offers valuable insights into their information processing and response generation, and we further discuss the potential of leveraging quantum computing to develop significantly more powerful and efficient LLMs based on these principles.
comment: 16 pages, 6 figures. Some corrections
InfoDeepSeek: Benchmarking Agentic Information Seeking for Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) enhances large language models (LLMs) by grounding responses with retrieved information. As an emerging paradigm, Agentic RAG further enhances this process by introducing autonomous LLM agents into the information seeking process. However, existing benchmarks fall short in evaluating such systems, as they are confined to a static retrieval environment with a fixed, limited corpus} and simple queries that fail to elicit agentic behavior. Moreover, their evaluation protocols assess information seeking effectiveness by pre-defined gold sets of documents, making them unsuitable for the open-ended and dynamic nature of real-world web environments. To bridge this gap, we present InfoDeepSeek, a new benchmark with challenging questions designed for assessing agentic information seeking in real-world, dynamic web environments. We propose a systematic methodology for constructing challenging queries satisfying the criteria of determinacy, difficulty, and diversity. Based on this, we develop the first evaluation framework tailored to dynamic agentic information seeking, including fine-grained metrics about the accuracy, utility, and compactness of information seeking outcomes. Through extensive experiments across LLMs, search engines, and question types, InfoDeepSeek reveals nuanced agent behaviors and offers actionable insights for future research.
SemEval-2025 Task 5: LLMs4Subjects -- LLM-based Automated Subject Tagging for a National Technical Library's Open-Access Catalog SemEval 2025
We present SemEval-2025 Task 5: LLMs4Subjects, a shared task on automated subject tagging for scientific and technical records in English and German using the GND taxonomy. Participants developed LLM-based systems to recommend top-k subjects, evaluated through quantitative metrics (precision, recall, F1-score) and qualitative assessments by subject specialists. Results highlight the effectiveness of LLM ensembles, synthetic data generation, and multilingual processing, offering insights into applying LLMs for digital library classification.
comment: 10 pages, 4 figures, Accepted as SemEval 2025 Task 5 description paper
UniEdit: A Unified Knowledge Editing Benchmark for Large Language Models
Model editing aims to enhance the accuracy and reliability of large language models (LLMs) by efficiently adjusting their internal parameters. Currently, most LLM editing datasets are confined to narrow knowledge domains and cover a limited range of editing evaluation. They often overlook the broad scope of editing demands and the diversity of ripple effects resulting from edits. In this context, we introduce UniEdit, a unified benchmark for LLM editing grounded in open-domain knowledge. First, we construct editing samples by selecting entities from 25 common domains across five major categories, utilizing the extensive triple knowledge available in open-domain knowledge graphs to ensure comprehensive coverage of the knowledge domains. To address the issues of generality and locality in editing, we design an Neighborhood Multi-hop Chain Sampling (NMCS) algorithm to sample subgraphs based on a given knowledge piece to entail comprehensive ripple effects to evaluate. Finally, we employ proprietary LLMs to convert the sampled knowledge subgraphs into natural language text, guaranteeing grammatical accuracy and syntactical diversity. Extensive statistical analysis confirms the scale, comprehensiveness, and diversity of our UniEdit benchmark. We conduct comprehensive experiments across multiple LLMs and editors, analyzing their performance to highlight strengths and weaknesses in editing across open knowledge domains and various evaluation criteria, thereby offering valuable insights for future research endeavors.
comment: UniEdit Dataset: https://huggingface.co/datasets/qizhou/UniEdit Code: https://github.com/qizhou000/UniEdit
Personality Editing for Language Models through Relevant Knowledge Editing
Large Language Models (LLMs) play a vital role in applications like conversational agents and content creation, where controlling a model's personality is crucial for maintaining tone, consistency, and engagement. However, traditional prompt-based techniques for controlling personality often fall short, as they do not effectively mitigate the model's inherent biases. In this paper, we introduce a novel method PALETTE that enhances personality control through knowledge editing. By generating adjustment queries inspired by psychological assessments, our approach systematically adjusts responses to personality-related queries similar to modifying factual knowledge, thereby achieving controlled shifts in personality traits. Experimental results from both automatic and human evaluations demonstrate that our method enables more stable and well-balanced personality control in LLMs.
comment: 19 pages, 3 figures, 24 tables
Mitigate Position Bias in Large Language Models via Scaling a Single Dimension ACL 2025
Large Language Models (LLMs) are increasingly applied in various real-world scenarios due to their excellent generalization capabilities and robust generative abilities. However, they exhibit position bias, also known as "lost in the middle", a phenomenon that is especially pronounced in long-context scenarios, which indicates the placement of the key information in different positions of a prompt can significantly affect accuracy. This paper first explores the micro-level manifestations of position bias, concluding that attention weights are a micro-level expression of position bias. It further identifies that, in addition to position embeddings, causal attention mask also contributes to position bias by creating position-specific hidden states. Based on these insights, we propose a method to mitigate position bias by scaling this positional hidden states. Experiments on the NaturalQuestions Multi-document QA, KV retrieval, LongBench and timeline reorder tasks, using various models including RoPE models, context windowextended models, and Alibi models, demonstrate the effectiveness and generalizability of our approach. Our method can improve performance by up to 15.2% by modifying just one dimension of hidden states. Our code is available at https://aka.ms/PositionalHidden.
comment: Accepted at Findings of ACL 2025
Task Arithmetic for Language Expansion in Speech Translation
Recent progress in large language models (LLMs) has gained interest in speech-text multimodal foundation models, achieving strong performance on instruction-tuned speech translation (ST). However, expanding language pairs is costly due to re-training on combined new and previous datasets. To address this, we aim to build a one-to-many ST system from existing one-to-one ST systems using task arithmetic without re-training. Direct application of task arithmetic in ST leads to language confusion; therefore, we introduce an augmented task arithmetic method incorporating a language control model to ensure correct target language generation. Our experiments on MuST-C and CoVoST-2 show BLEU score improvements of up to 4.66 and 4.92, with COMET gains of 8.87 and 11.83. In addition, we demonstrate our framework can extend to language pairs lacking paired ST training data or pre-trained ST models by synthesizing ST models based on existing machine translation (MT) and ST models via task analogies.
Explaining Black-box Model Predictions via Two-level Nested Feature Attributions with Consistency Property IJCAI2025
Techniques that explain the predictions of black-box machine learning models are crucial to make the models transparent, thereby increasing trust in AI systems. The input features to the models often have a nested structure that consists of high- and low-level features, and each high-level feature is decomposed into multiple low-level features. For such inputs, both high-level feature attributions (HiFAs) and low-level feature attributions (LoFAs) are important for better understanding the model's decision. In this paper, we propose a model-agnostic local explanation method that effectively exploits the nested structure of the input to estimate the two-level feature attributions simultaneously. A key idea of the proposed method is to introduce the consistency property that should exist between the HiFAs and LoFAs, thereby bridging the separate optimization problems for estimating them. Thanks to this consistency property, the proposed method can produce HiFAs and LoFAs that are both faithful to the black-box models and consistent with each other, using a smaller number of queries to the models. In experiments on image classification in multiple instance learning and text classification using language models, we demonstrate that the HiFAs and LoFAs estimated by the proposed method are accurate, faithful to the behaviors of the black-box models, and provide consistent explanations.
comment: This manuscript is an extended version of our paper accepted at IJCAI2025, with detailed proofs and additional experimental results
EduBench: A Comprehensive Benchmarking Dataset for Evaluating Large Language Models in Diverse Educational Scenarios
As large language models continue to advance, their application in educational contexts remains underexplored and under-optimized. In this paper, we address this gap by introducing the first diverse benchmark tailored for educational scenarios, incorporating synthetic data containing 9 major scenarios and over 4,000 distinct educational contexts. To enable comprehensive assessment, we propose a set of multi-dimensional evaluation metrics that cover 12 critical aspects relevant to both teachers and students. We further apply human annotation to ensure the effectiveness of the model-generated evaluation responses. Additionally, we succeed to train a relatively small-scale model on our constructed dataset and demonstrate that it can achieve performance comparable to state-of-the-art large models (e.g., Deepseek V3, Qwen Max) on the test set. Overall, this work provides a practical foundation for the development and evaluation of education-oriented language models. Code and data are released at https://github.com/ybai-nlp/EduBench.
EpiCoder: Encompassing Diversity and Complexity in Code Generation ICML 2025
Existing methods for code generation use code snippets as seed data, restricting the complexity and diversity of the synthesized data. In this paper, we introduce a novel feature tree-based synthesis framework, which revolves around hierarchical code features derived from high-level abstractions of code. The feature tree is constructed from raw data and refined iteratively to increase the quantity and diversity of the extracted features, which captures and recognizes more complex patterns and relationships within the code. By adjusting the depth and breadth of the sampled subtrees, our framework provides precise control over the complexity of the generated code, enabling functionalities that range from function-level operations to multi-file scenarios. We fine-tuned widely-used base models to obtain EpiCoder series, achieving state-of-the-art performance on multiple benchmarks at both the function and file levels. In particular, empirical evidence indicates that our approach shows significant potential in the synthesizing of repository-level code data. Our code and data are publicly available at https://github.com/microsoft/EpiCoder.
comment: ICML 2025
Optimizing Large Language Model Training Using FP4 Quantization
The growing computational demands of training large language models (LLMs) necessitate more efficient methods. Quantized training presents a promising solution by enabling low-bit arithmetic operations to reduce these costs. While FP8 precision has demonstrated feasibility, leveraging FP4 remains a challenge due to significant quantization errors and limited representational capacity. This work introduces the first FP4 training framework for LLMs, addressing these challenges with two key innovations: a differentiable quantization estimator for precise weight updates and an outlier clamping and compensation strategy to prevent activation collapse. To ensure stability, the framework integrates a mixed-precision training scheme and vector-wise quantization. Experimental results demonstrate that our FP4 framework achieves accuracy comparable to BF16 and FP8, with minimal degradation, scaling effectively to 13B-parameter LLMs trained on up to 100B tokens. With the emergence of next-generation hardware supporting FP4, our framework sets a foundation for efficient ultra-low precision training.
Rewarding Doubt: A Reinforcement Learning Approach to Calibrated Confidence Expression of Large Language Models
A safe and trustworthy use of Large Language Models (LLMs) requires an accurate expression of confidence in their answers. We propose a novel Reinforcement Learning approach that allows to directly fine-tune LLMs to express calibrated confidence estimates alongside their answers to factual questions. Our method optimizes a reward based on the logarithmic scoring rule, explicitly penalizing both over- and under-confidence. This encourages the model to align its confidence estimates with the actual predictive accuracy. The optimal policy under our reward design would result in perfectly calibrated confidence expressions. Unlike prior approaches that decouple confidence estimation from response generation, our method integrates confidence calibration seamlessly into the generative process of the LLM. Empirically, we demonstrate that models trained with our approach exhibit substantially improved calibration and generalize to unseen tasks without further fine-tuning, suggesting the emergence of general confidence awareness. We provide our training and evaluation code in the supplementary and will make it publicly available upon acceptance.
Boosting Long-Context Management via Query-Guided Activation Refilling ACL25
Processing long contexts poses a significant challenge for large language models (LLMs) due to their inherent context-window limitations and the computational burden of extensive key-value (KV) activations, which severely impact efficiency. For information-seeking tasks, full context perception is often unnecessary, as a query's information needs can dynamically range from localized details to a global perspective, depending on its complexity. However, existing methods struggle to adapt effectively to these dynamic information needs. In the paper, we propose a method for processing long-context information-seeking tasks via query-guided Activation Refilling (ACRE). ACRE constructs a Bi-layer KV Cache for long contexts, where the layer-1 (L1) cache compactly captures global information, and the layer-2 (L2) cache provides detailed and localized information. ACRE establishes a proxying relationship between the two caches, allowing the input query to attend to the L1 cache and dynamically refill it with relevant entries from the L2 cache. This mechanism integrates global understanding with query-specific local details, thus improving answer decoding. Experiments on a variety of long-context information-seeking datasets demonstrate ACRE's effectiveness, achieving improvements in both performance and efficiency.
comment: ACL25 Main Conference
Unveiling Downstream Performance Scaling of LLMs: A Clustering-Based Perspective
The escalating scale and cost of Large Language Models (LLMs) training necessitate accurate pre-training prediction of downstream task performance for efficient resource allocation. This is challenged by: 1) the emergence phenomenon, where metrics become meaningful only after extensive training, hindering prediction by smaller models; and 2) uneven task difficulty and inconsistent performance scaling patterns, leading to high metric variability. Current prediction methods lack accuracy and reliability. We propose a Clustering-On-Difficulty (COD) framework for downstream performance prediction. The COD framework clusters tasks by their difficulty scaling features, thereby establishing a more stable and predictable support subset through the exclusion of tasks exhibiting non-emergent behavior or irregular scaling. We adopt a performance scaling law to predict cluster-wise performance with theoretical support. Predictable subset performance acts as an intermediate predictor for the full evaluation set. We further derive a mapping function to accurately extrapolate the performance of the subset to the full set. Applied to an LLM with 70B parameters, COD achieved a 1.36% average prediction error across eight key LLM benchmarks, offering actionable insights for resource allocation and training monitoring of LLMs pretraining.
comment: 19 pages,6 figures
SafeInt: Shielding Large Language Models from Jailbreak Attacks via Safety-Aware Representation Intervention
With the widespread real-world deployment of large language models (LLMs), ensuring their behavior complies with safety standards has become crucial. Jailbreak attacks exploit vulnerabilities in LLMs to induce undesirable behavior, posing a significant threat to LLM safety. Previous defenses often fail to achieve both effectiveness and efficiency simultaneously. Defenses from a representation perspective offer new insights, but existing interventions cannot dynamically adjust representations based on the harmfulness of the queries. To address this limitation, we propose SafeIntervention (SafeInt), a novel defense method that shields LLMs from jailbreak attacks through safety-aware representation intervention. Built on our analysis of the representations of jailbreak samples, the core idea of SafeInt is to relocate jailbreak-related representations into the rejection region. This is achieved by intervening in the representation distributions of jailbreak samples to align them with those of unsafe samples. We conduct comprehensive experiments covering six jailbreak attacks, two jailbreak datasets, and two utility benchmarks. Experimental results demonstrate that SafeInt outperforms all baselines in defending LLMs against jailbreak attacks while largely maintaining utility. Additionally, we evaluate SafeInt against adaptive attacks and verify its effectiveness in mitigating real-time attacks.
ABBA: Highly Expressive Hadamard Product Adaptation for Large Language Models
Large Language Models have demonstrated strong performance across a wide range of tasks, but adapting them efficiently to new domains remains a key challenge. Parameter-Efficient Fine-Tuning (PEFT) methods address this by introducing lightweight, trainable modules while keeping most pre-trained weights fixed. The prevailing approach, LoRA, models updates using a low-rank decomposition, but its expressivity is inherently constrained by the rank. Recent methods like HiRA aim to increase expressivity by incorporating a Hadamard product with the frozen weights, but still rely on the structure of the pre-trained model. We introduce ABBA, a new PEFT architecture that reparameterizes the update as a Hadamard product of two independently learnable low-rank matrices. In contrast to prior work, ABBA fully decouples the update from the pre-trained weights, enabling both components to be optimized freely. This leads to significantly higher expressivity under the same parameter budget. We formally analyze ABBA's expressive capacity and validate its advantages through matrix reconstruction experiments. Empirically, ABBA achieves state-of-the-art results on arithmetic and commonsense reasoning benchmarks, consistently outperforming existing PEFT methods by a significant margin across multiple models. Our code is publicly available at: https://github.com/CERT-Lab/abba.
comment: Raghav Singhal, Kaustubh Ponkshe, and Rohit Vartak contributed equally to this work
ICA-RAG: Information Completeness Guided Adaptive Retrieval-Augmented Generation for Disease Diagnosis
Retrieval-Augmented Large Language Models~(LLMs), which integrate external knowledge, have shown remarkable performance in medical domains, including clinical diagnosis. However, existing RAG methods often struggle to tailor retrieval strategies to diagnostic difficulty and input sample informativeness. This limitation leads to excessive and often unnecessary retrieval, impairing computational efficiency and increasing the risk of introducing noise that can degrade diagnostic accuracy. To address this, we propose ICA-RAG (\textbf{I}nformation \textbf{C}ompleteness Guided \textbf{A}daptive \textbf{R}etrieval-\textbf{A}ugmented \textbf{G}eneration), a novel framework for enhancing RAG reliability in disease diagnosis. ICA-RAG utilizes an adaptive control module to assess the necessity of retrieval based on the input's information completeness. By optimizing retrieval and incorporating knowledge filtering, ICA-RAG better aligns retrieval operations with clinical requirements. Experiments on three Chinese electronic medical record datasets demonstrate that ICA-RAG significantly outperforms baseline methods, highlighting its effectiveness in clinical diagnosis.
URSA: Understanding and Verifying Chain-of-thought Reasoning in Multimodal Mathematics
Process Reward Models (PRMs) have shown promise in enhancing the mathematical reasoning capabilities of Large Language Models (LLMs) through Test-Time Scaling (TTS). However, their integration into multimodal reasoning remains largely unexplored. In this work, we take the first step toward unlocking the potential of PRMs in multimodal mathematical reasoning. We identify three key challenges: (1) the scarcity of high-quality reasoning data constrains the capabilities of foundation Multimodal Large Language Models (MLLMs), which imposes further limitations on the upper bounds of TTS and reinforcement learning (RL); (2) a lack of automated methods for process labeling within multimodal contexts persists; (3) the employment of process rewards in unimodal RL faces issues like reward hacking, which may extend to multimodal scenarios. To address these issues, we introduce URSA, a three-stage Unfolding multimodal Process-Supervision Aided training framework. We first construct MMathCoT-1M, a high-quality large-scale multimodal Chain-of-Thought (CoT) reasoning dataset, to build a stronger math reasoning foundation MLLM, URSA-8B. Subsequently, we go through an automatic process to synthesize process supervision data, which emphasizes both logical correctness and perceptual consistency. We introduce DualMath-1.1M to facilitate the training of URSA-8B-RM. Finally, we propose Process-Supervised Group-Relative-Policy-Optimization (PS-GRPO), pioneering a multimodal PRM-aided online RL method that outperforms vanilla GRPO. With PS-GRPO application, URSA-8B-PS-GRPO outperforms Gemma3-12B and GPT-4o by 8.4% and 2.7% on average across 6 benchmarks. Code, data and checkpoint can be found at https://github.com/URSA-MATH.
comment: Update version. Project url: https://ursa-math.github.io
ReCaLL: Membership Inference via Relative Conditional Log-Likelihoods EMNLP 2024
The rapid scaling of large language models (LLMs) has raised concerns about the transparency and fair use of the data used in their pretraining. Detecting such content is challenging due to the scale of the data and limited exposure of each instance during training. We propose ReCaLL (Relative Conditional Log-Likelihood), a novel membership inference attack (MIA) to detect LLMs' pretraining data by leveraging their conditional language modeling capabilities. ReCaLL examines the relative change in conditional log-likelihoods when prefixing target data points with non-member context. Our empirical findings show that conditioning member data on non-member prefixes induces a larger decrease in log-likelihood compared to non-member data. We conduct comprehensive experiments and show that ReCaLL achieves state-of-the-art performance on the WikiMIA dataset, even with random and synthetic prefixes, and can be further improved using an ensemble approach. Moreover, we conduct an in-depth analysis of LLMs' behavior with different membership contexts, providing insights into how LLMs leverage membership information for effective inference at both the sequence and token level.
comment: Accepted to EMNLP 2024 Main Conference
Rank, Chunk and Expand: Lineage-Oriented Reasoning for Taxonomy Expansion ACL 2025
Taxonomies are hierarchical knowledge graphs crucial for recommendation systems, and web applications. As data grows, expanding taxonomies is essential, but existing methods face key challenges: (1) discriminative models struggle with representation limits and generalization, while (2) generative methods either process all candidates at once, introducing noise and exceeding context limits, or discard relevant entities by selecting noisy candidates. We propose LORex ($\textbf{L}$ineage-$\textbf{O}$riented $\textbf{Re}$asoning for Taxonomy E$\textbf{x}$pansion), a plug-and-play framework that combines discriminative ranking and generative reasoning for efficient taxonomy expansion. Unlike prior methods, LORex ranks and chunks candidate terms into batches, filtering noise and iteratively refining selections by reasoning candidates' hierarchy to ensure contextual efficiency. Extensive experiments across four benchmarks and twelve baselines show that LORex improves accuracy by 12% and Wu & Palmer similarity by 5% over state-of-the-art methods.
comment: Accepted in the Findings of ACL 2025
Over-Tokenized Transformer: Vocabulary is Generally Worth Scaling ICML2025
Tokenization is a fundamental component of large language models (LLMs), yet its influence on model scaling and performance is not fully explored. In this paper, we introduce Over-Tokenized Transformers, a novel framework that decouples input and output vocabularies to improve language modeling performance. Specifically, our approach scales up input vocabularies to leverage multi-gram tokens. Through extensive experiments, we uncover a log-linear relationship between input vocabulary size and training loss, demonstrating that larger input vocabularies consistently enhance model performance, regardless of model size. Using a large input vocabulary, we achieve performance comparable to double-sized baselines with no additional cost. Our findings highlight the importance of tokenization in scaling laws and provide practical insight for tokenizer design, paving the way for more efficient and powerful LLMs.
comment: accepted by ICML2025
SelfBudgeter: Adaptive Token Allocation for Efficient LLM Reasoning
Recently, large reasoning models demonstrate exceptional performance on various tasks. However, reasoning models inefficiently over-process both trivial and complex queries, leading to resource waste and prolonged user latency. To address this challenge, we propose SelfBudgeter - a self-adaptive controllable reasoning strategy for efficient reasoning. Our approach adopts a dual-phase training paradigm: first, the model learns to pre-estimate the reasoning cost based on the difficulty of the query. Then, we introduce budget-guided GPRO for reinforcement learning, which effectively maintains accuracy while reducing output length. SelfBudgeter allows users to anticipate generation time and make informed decisions about continuing or interrupting the process. Furthermore, our method enables direct manipulation of reasoning length via pre-filling token budget. Experimental results demonstrate that SelfBudgeter can rationally allocate budgets according to problem complexity, achieving up to 74.47% response length compression on the MATH benchmark while maintaining nearly undiminished accuracy.
Initialization using Update Approximation is a Silver Bullet for Extremely Efficient Low-Rank Fine-Tuning
Low-rank adapters have become standard for efficiently fine-tuning large language models (LLMs), but they often fall short of achieving the performance of full fine-tuning. We propose a method, LoRA Silver Bullet or LoRA-SB, that approximates full fine-tuning within low-rank subspaces using a carefully designed initialization strategy. We theoretically demonstrate that the architecture of LoRA-XS, which inserts a learnable (r x r) matrix between B and A while keeping other matrices fixed, provides the precise conditions needed for this approximation. We leverage its constrained update space to achieve optimal scaling for high-rank gradient updates while removing the need for hyperparameter tuning. We prove that our initialization offers an optimal low-rank approximation of the initial gradient and preserves update directions throughout training. Extensive experiments across mathematical reasoning, commonsense reasoning, and language understanding tasks demonstrate that our approach exceeds the performance of standard LoRA while using \textbf{27-90} times fewer learnable parameters, and comprehensively outperforms LoRA-XS. Our findings establish that it is possible to simulate full fine-tuning in low-rank subspaces, and achieve significant efficiency gains without sacrificing performance. Our code is publicly available at https://github.com/RaghavSinghal10/lora-sb.
comment: Kaustubh Ponkshe and Raghav Singhal contributed equally to this work
Enhancing Unsupervised Sentence Embeddings via Knowledge-Driven Data Augmentation and Gaussian-Decayed Contrastive Learning
Recently, using large language models (LLMs) for data augmentation has led to considerable improvements in unsupervised sentence embedding models. However, existing methods encounter two primary challenges: limited data diversity and high data noise. Current approaches often neglect fine-grained knowledge, such as entities and quantities, leading to insufficient diversity. Besides, unsupervised data frequently lacks discriminative information, and the generated synthetic samples may introduce noise. In this paper, we propose a pipeline-based data augmentation method via LLMs and introduce the Gaussian-decayed gradient-assisted Contrastive Sentence Embedding (GCSE) model to enhance unsupervised sentence embeddings. To tackle the issue of low data diversity, our pipeline utilizes knowledge graphs (KGs) to extract entities and quantities, enabling LLMs to generate more diverse samples. To address high data noise, the GCSE model uses a Gaussian-decayed function to limit the impact of false hard negative samples, enhancing the model's discriminative capability. Experimental results show that our approach achieves state-of-the-art performance in semantic textual similarity (STS) tasks, using fewer data samples and smaller LLMs, demonstrating its efficiency and robustness across various models.
Phare: A Safety Probe for Large Language Models
Ensuring the safety of large language models (LLMs) is critical for responsible deployment, yet existing evaluations often prioritize performance over identifying failure modes. We introduce Phare, a multilingual diagnostic framework to probe and evaluate LLM behavior across three critical dimensions: hallucination and reliability, social biases, and harmful content generation. Our evaluation of 17 state-of-the-art LLMs reveals patterns of systematic vulnerabilities across all safety dimensions, including sycophancy, prompt sensitivity, and stereotype reproduction. By highlighting these specific failure modes rather than simply ranking models, Phare provides researchers and practitioners with actionable insights to build more robust, aligned, and trustworthy language systems.
Chain-of-Model Learning for Language Model
In this paper, we propose a novel learning paradigm, termed Chain-of-Model (CoM), which incorporates the causal relationship into the hidden states of each layer as a chain style, thereby introducing great scaling efficiency in model training and inference flexibility in deployment. We introduce the concept of Chain-of-Representation (CoR), which formulates the hidden states at each layer as a combination of multiple sub-representations (i.e., chains) at the hidden dimension level. In each layer, each chain from the output representations can only view all of its preceding chains in the input representations. Consequently, the model built upon CoM framework can progressively scale up the model size by increasing the chains based on the previous models (i.e., chains), and offer multiple sub-models at varying sizes for elastic inference by using different chain numbers. Based on this principle, we devise Chain-of-Language-Model (CoLM), which incorporates the idea of CoM into each layer of Transformer architecture. Based on CoLM, we further introduce CoLM-Air by introducing a KV sharing mechanism, that computes all keys and values within the first chain and then shares across all chains. This design demonstrates additional extensibility, such as enabling seamless LM switching, prefilling acceleration and so on. Experimental results demonstrate our CoLM family can achieve comparable performance to the standard Transformer, while simultaneously enabling greater flexiblity, such as progressive scaling to improve training efficiency and offer multiple varying model sizes for elastic inference, paving a a new way toward building language models. Our code will be released in the future at: https://github.com/microsoft/CoLM.
SCAR: Data Selection via Style Consistency-Aware Response Ranking for Efficient Instruction-Tuning of Large Language Models EMNLP 2024
Recent studies emphasize that manually ensuring a consistent response style and maintaining high data quality in training sets can significantly improve the performance of fine-tuned Large Language Models (LLMs) while reducing the number of training examples needed. However, the precise definition of style and the relationship between style, data quality, and LLM performance remains unclear. This research identifies two key stylistic elements in responses: linguistic form and instructional surprisal. We find that, among training data of comparable quality, higher consistency in these response elements leads to better LLM performance. Inspired by this, we introduce Style Consistency-Aware Response Ranking (SCAR), which automatically prioritizes instruction-response pairs in the training set based on their response stylistic consistency. By selecting the most style-consistent examples, using 0.7% of the full dataset in certain cases, the fine-tuned LLMs can match or even surpass the performance of models trained on the entire dataset in coding and open-ended question-answering benchmarks. Code and data are available at https://github.com/zhuang-li/SCAR .
comment: 34 pages (8th version), developed over 1.5 years. Previously submitted to EMNLP 2024 and ICLR 2025, with revisions based on extensive review feedback. Now accepted to ACL 2025 main
SEOE: A Scalable and Reliable Semantic Evaluation Framework for Open Domain Event Detection ACL 2025
Automatic evaluation for Open Domain Event Detection (ODED) is a highly challenging task, because ODED is characterized by a vast diversity of un-constrained output labels from various domains. Nearly all existing evaluation methods for ODED usually first construct evaluation benchmarks with limited labels and domain coverage, and then evaluate ODED methods using metrics based on token-level label matching rules. However, this kind of evaluation framework faces two issues: (1) The limited evaluation benchmarks lack representatives of the real world, making it difficult to accurately reflect the performance of various ODED methods in real-world scenarios; (2) Evaluation metrics based on token-level matching rules fail to capture semantic similarity between predictions and golden labels. To address these two problems above, we propose a scalable and reliable Semantic-level Evaluation framework for Open domain Event detection (SEOE) by constructing a more representative evaluation benchmark and introducing a semantic evaluation metric. Specifically, our proposed framework first constructs a scalable evaluation benchmark that currently includes 564 event types covering 7 major domains, with a cost-effective supplementary annotation strategy to ensure the benchmark's representativeness. The strategy also allows for the supplement of new event types and domains in the future. Then, the proposed SEOE leverages large language models (LLMs) as automatic evaluation agents to compute a semantic F1-score, incorporating fine-grained definitions of semantically similar labels to enhance the reliability of the evaluation. Extensive experiments validate the representatives of the benchmark and the reliability of the semantic evaluation metric. Existing ODED methods are thoroughly evaluated, and the error patterns of predictions are analyzed, revealing several insightful findings.
comment: Accepted by ACL 2025 Main Conference
Small Language Models in the Real World: Insights from Industrial Text Classification
With the emergence of ChatGPT, Transformer models have significantly advanced text classification and related tasks. Decoder-only models such as Llama exhibit strong performance and flexibility, yet they suffer from inefficiency on inference due to token-by-token generation, and their effectiveness in text classification tasks heavily depends on prompt quality. Moreover, their substantial GPU resource requirements often limit widespread adoption. Thus, the question of whether smaller language models are capable of effectively handling text classification tasks emerges as a topic of significant interest. However, the selection of appropriate models and methodologies remains largely underexplored. In this paper, we conduct a comprehensive evaluation of prompt engineering and supervised fine-tuning methods for transformer-based text classification. Specifically, we focus on practical industrial scenarios, including email classification, legal document categorization, and the classification of extremely long academic texts. We examine the strengths and limitations of smaller models, with particular attention to both their performance and their efficiency in Video Random-Access Memory (VRAM) utilization, thereby providing valuable insights for the local deployment and application of compact models in industrial settings.
SAKURA: On the Multi-hop Reasoning of Large Audio-Language Models Based on Speech and Audio Information
Large audio-language models (LALMs) extend the large language models with multimodal understanding in speech, audio, etc. While their performances on speech and audio-processing tasks are extensively studied, their reasoning abilities remain underexplored. Particularly, their multi-hop reasoning, the ability to recall and integrate multiple facts, lacks systematic evaluation. Existing benchmarks focus on general speech and audio-processing tasks, conversational abilities, and fairness but overlook this aspect. To bridge this gap, we introduce SAKURA, a benchmark assessing LALMs' multi-hop reasoning based on speech and audio information. Results show that LALMs struggle to integrate speech/audio representations for multi-hop reasoning, even when they extract the relevant information correctly, highlighting a fundamental challenge in multimodal reasoning. Our findings expose a critical limitation in LALMs, offering insights and resources for future research.
comment: Accepted to Interspeech 2025. Project page: https://github.com/ckyang1124/SAKURA
Towards Holistic Evaluation of Large Audio-Language Models: A Comprehensive Survey
With advancements in large audio-language models (LALMs), which enhance large language models (LLMs) with auditory capabilities, these models are expected to demonstrate universal proficiency across various auditory tasks. While numerous benchmarks have emerged to assess LALMs' performance, they remain fragmented and lack a structured taxonomy. To bridge this gap, we conduct a comprehensive survey and propose a systematic taxonomy for LALM evaluations, categorizing them into four dimensions based on their objectives: (1) General Auditory Awareness and Processing, (2) Knowledge and Reasoning, (3) Dialogue-oriented Ability, and (4) Fairness, Safety, and Trustworthiness. We provide detailed overviews within each category and highlight challenges in this field, offering insights into promising future directions. To the best of our knowledge, this is the first survey specifically focused on the evaluations of LALMs, providing clear guidelines for the community. We will release the collection of the surveyed papers and actively maintain it to support ongoing advancements in the field.
comment: Project Website: https://github.com/ckyang1124/LALM-Evaluation-Survey
Image and Video Processing
Accelerating Learned Image Compression Through Modeling Neural Training Dynamics
As learned image compression (LIC) methods become increasingly computationally demanding, enhancing their training efficiency is crucial. This paper takes a step forward in accelerating the training of LIC methods by modeling the neural training dynamics. We first propose a Sensitivity-aware True and Dummy Embedding Training mechanism (STDET) that clusters LIC model parameters into few separate modes where parameters are expressed as affine transformations of reference parameters within the same mode. By further utilizing the stable intra-mode correlations throughout training and parameter sensitivities, we gradually embed non-reference parameters, reducing the number of trainable parameters. Additionally, we incorporate a Sampling-then-Moving Average (SMA) technique, interpolating sampled weights from stochastic gradient descent (SGD) training to obtain the moving average weights, ensuring smooth temporal behavior and minimizing training state variances. Overall, our method significantly reduces training space dimensions and the number of trainable parameters without sacrificing model performance, thus accelerating model convergence. We also provide a theoretical analysis on the Noisy quadratic model, showing that the proposed method achieves a lower training variance than standard SGD. Our approach offers valuable insights for further developing efficient training methods for LICs.
comment: Accepted to TMLR
F-ANcGAN: An Attention-Enhanced Cycle Consistent Generative Adversarial Architecture for Synthetic Image Generation of Nanoparticles
Nanomaterial research is becoming a vital area for energy, medicine, and materials science, and accurate analysis of the nanoparticle topology is essential to determine their properties. Unfortunately, the lack of high-quality annotated datasets drastically hinders the creation of strong segmentation models for nanoscale imaging. To alleviate this problem, we introduce F-ANcGAN, an attention-enhanced cycle consistent generative adversarial system that can be trained using a limited number of data samples and generates realistic scanning electron microscopy (SEM) images directly from segmentation maps. Our model uses a Style U-Net generator and a U-Net segmentation network equipped with self-attention to capture structural relationships and applies augmentation methods to increase the variety of the dataset. The architecture reached a raw FID score of 17.65 for TiO$_2$ dataset generation, with a further reduction in FID score to nearly 10.39 by using efficient post-processing techniques. By facilitating scalable high-fidelity synthetic dataset generation, our approach can improve the effectiveness of downstream segmentation task training, overcoming severe data shortage issues in nanoparticle analysis, thus extending its applications to resource-limited fields.
comment: 11 pages, 9 figures, 2 tables, conference paper
A Foundation Model Framework for Multi-View MRI Classification of Extramural Vascular Invasion and Mesorectal Fascia Invasion in Rectal Cancer
Background: Accurate MRI-based identification of extramural vascular invasion (EVI) and mesorectal fascia invasion (MFI) is pivotal for risk-stratified management of rectal cancer, yet visual assessment is subjective and vulnerable to inter-institutional variability. Purpose: To develop and externally evaluate a multicenter, foundation-model-driven framework that automatically classifies EVI and MFI on axial and sagittal T2-weighted MRI. Methods: This retrospective study used 331 pre-treatment rectal cancer MRI examinations from three European hospitals. After TotalSegmentator-guided rectal patch extraction, a self-supervised frequency-domain harmonization pipeline was trained to minimize scanner-related contrast shifts. Four classifiers were compared: ResNet50, SeResNet, the universal biomedical pretrained transformer (UMedPT) with a lightweight MLP head, and a logistic-regression variant using frozen UMedPT features (UMedPT_LR). Results: UMedPT_LR achieved the best EVI detection when axial and sagittal features were fused (AUC = 0.82; sensitivity = 0.75; F1 score = 0.73), surpassing the Chaimeleon Grand-Challenge winner (AUC = 0.74). The highest MFI performance was attained by UMedPT on axial harmonized images (AUC = 0.77), surpassing the Chaimeleon Grand-Challenge winner (AUC = 0.75). Frequency-domain harmonization improved MFI classification but variably affected EVI performance. Conventional CNNs (ResNet50, SeResNet) underperformed, especially in F1 score and balanced accuracy. Conclusion: These findings demonstrate that combining foundation model features, harmonization, and multi-view fusion significantly enhances diagnostic performance in rectal MRI.
comment: 22 pages, 8 figures
Explainable Anatomy-Guided AI for Prostate MRI: Foundation Models and In Silico Clinical Trials for Virtual Biopsy-based Risk Assessment
We present a fully automated, anatomically guided deep learning pipeline for prostate cancer (PCa) risk stratification using routine MRI. The pipeline integrates three key components: an nnU-Net module for segmenting the prostate gland and its zones on axial T2-weighted MRI; a classification module based on the UMedPT Swin Transformer foundation model, fine-tuned on 3D patches with optional anatomical priors and clinical data; and a VAE-GAN framework for generating counterfactual heatmaps that localize decision-driving image regions. The system was developed using 1,500 PI-CAI cases for segmentation and 617 biparametric MRIs with metadata from the CHAIMELEON challenge for classification (split into 70% training, 10% validation, and 20% testing). Segmentation achieved mean Dice scores of 0.95 (gland), 0.94 (peripheral zone), and 0.92 (transition zone). Incorporating gland priors improved AUC from 0.69 to 0.72, with a three-scale ensemble achieving top performance (AUC = 0.79, composite score = 0.76), outperforming the 2024 CHAIMELEON challenge winners. Counterfactual heatmaps reliably highlighted lesions within segmented regions, enhancing model interpretability. In a prospective multi-center in-silico trial with 20 clinicians, AI assistance increased diagnostic accuracy from 0.72 to 0.77 and Cohen's kappa from 0.43 to 0.53, while reducing review time per case by 40%. These results demonstrate that anatomy-aware foundation models with counterfactual explainability can enable accurate, interpretable, and efficient PCa risk assessment, supporting their potential use as virtual biopsies in clinical practice.
Promptable cancer segmentation using minimal expert-curated data
Automated segmentation of cancer on medical images can aid targeted diagnostic and therapeutic procedures. However, its adoption is limited by the high cost of expert annotations required for training and inter-observer variability in datasets. While weakly-supervised methods mitigate some challenges, using binary histology labels for training as opposed to requiring full segmentation, they require large paired datasets of histology and images, which are difficult to curate. Similarly, promptable segmentation aims to allow segmentation with no re-training for new tasks at inference, however, existing models perform poorly on pathological regions, again necessitating large datasets for training. In this work we propose a novel approach for promptable segmentation requiring only 24 fully-segmented images, supplemented by 8 weakly-labelled images, for training. Curating this minimal data to a high standard is relatively feasible and thus issues with the cost and variability of obtaining labels can be mitigated. By leveraging two classifiers, one weakly-supervised and one fully-supervised, our method refines segmentation through a guided search process initiated by a single-point prompt. Our approach outperforms existing promptable segmentation methods, and performs comparably with fully-supervised methods, for the task of prostate cancer segmentation, while using substantially less annotated data (up to 100X less). This enables promptable segmentation with very minimal labelled data, such that the labels can be curated to a very high standard.
comment: Accepted at Medical Image Understanding and Analysis (MIUA) 2025
UltraBoneUDF: Self-supervised Bone Surface Reconstruction from Ultrasound Based on Neural Unsigned Distance Functions
Background: Bone surface reconstruction plays a critical role in computer-assisted orthopedic surgery. Compared to traditional imaging modalities such as CT and MRI, ultrasound offers a radiation-free, cost-effective, and portable alternative. Continuous bone surface reconstruction can be employed for many clinical applications. However, due to the inherent limitations of ultrasound imaging, B-mode ultrasound typically capture only partial bone surfaces. Existing reconstruction methods struggle with such incomplete data, leading to artifacts and increased reconstruction errors. Effective techniques for accurately reconstructing thin and open bone surfaces from real-world 3D ultrasound volumes remain lacking. Methods: We propose UltraBoneUDF, a self-supervised framework designed for reconstructing open bone surfaces from ultrasound using neural Unsigned Distance Functions. To enhance reconstruction quality, we introduce a novel global feature extractor that effectively fuses ultrasound-specific image characteristics. Additionally, we present a novel loss function based on local tangent plane optimization that substantially improves surface reconstruction quality. UltraBoneUDF and baseline models are extensively evaluated on four open-source datasets. Results: Qualitative results highlight the limitations of the state-of-the-art methods for open bone surface reconstruction and demonstrate the effectiveness of UltraBoneUDF. Quantitatively, UltraBoneUDF significantly outperforms competing methods across all evaluated datasets for both open and closed bone surface reconstruction in terms of mean Chamfer distance error: 1.10 mm on the UltraBones100k dataset (39.6\% improvement compared to the SOTA), 0.23 mm on the OpenBoneCT dataset (69.3\% improvement), 0.18 mm on the ClosedBoneCT dataset (70.2\% improvement), and 0.05 mm on the Prostate dataset (55.3\% improvement).
Dual Attention Residual U-Net for Accurate Brain Ultrasound Segmentation in IVH Detection
Intraventricular hemorrhage (IVH) is a severe neurological complication among premature infants, necessitating early and accurate detection from brain ultrasound (US) images to improve clinical outcomes. While recent deep learning methods offer promise for computer-aided diagnosis, challenges remain in capturing both local spatial details and global contextual dependencies critical for segmenting brain anatomies. In this work, we propose an enhanced Residual U-Net architecture incorporating two complementary attention mechanisms: the Convolutional Block Attention Module (CBAM) and a Sparse Attention Layer (SAL). The CBAM improves the model's ability to refine spatial and channel-wise features, while the SAL introduces a dual-branch design, sparse attention filters out low-confidence query-key pairs to suppress noise, and dense attention ensures comprehensive information propagation. Extensive experiments on the Brain US dataset demonstrate that our method achieves state-of-the-art segmentation performance, with a Dice score of 89.04% and IoU of 81.84% for ventricle region segmentation. These results highlight the effectiveness of integrating spatial refinement and attention sparsity for robust brain anatomy detection. Code is available at: https://github.com/DanYuan001/BrainImgSegment.
comment: 10 pages,6 figures and 3 tables
Towards Prospective Medical Image Reconstruction via Knowledge-Informed Dynamic Optimal Transport
Medical image reconstruction from measurement data is a vital but challenging inverse problem. Deep learning approaches have achieved promising results, but often requires paired measurement and high-quality images, which is typically simulated through a forward model, i.e., retrospective reconstruction. However, training on simulated pairs commonly leads to performance degradation on real prospective data due to the retrospective-to-prospective gap caused by incomplete imaging knowledge in simulation. To address this challenge, this paper introduces imaging Knowledge-Informed Dynamic Optimal Transport (KIDOT), a novel dynamic optimal transport framework with optimality in the sense of preserving consistency with imaging physics in transport, that conceptualizes reconstruction as finding a dynamic transport path. KIDOT learns from unpaired data by modeling reconstruction as a continuous evolution path from measurements to images, guided by an imaging knowledge-informed cost function and transport equation. This dynamic and knowledge-aware approach enhances robustness and better leverages unpaired data while respecting acquisition physics. Theoretically, we demonstrate that KIDOT naturally generalizes dynamic optimal transport, ensuring its mathematical rationale and solution existence. Extensive experiments on MRI and CT reconstruction demonstrate KIDOT's superior performance.
A Unified Multi-Scale Attention-Based Network for Automatic 3D Segmentation of Lung Parenchyma & Nodules In Thoracic CT Images
Lung cancer has been one of the major threats across the world with the highest mortalities. Computer-aided detection (CAD) can help in early detection and thus can help increase the survival rate. Accurate lung parenchyma segmentation (to include the juxta-pleural nodules) and lung nodule segmentation, the primary symptom of lung cancer, play a crucial role in the overall accuracy of the Lung CAD pipeline. Lung nodule segmentation is quite challenging because of the diverse nodule types and other inhibit structures present within the lung lobes. Traditional machine/deep learning methods suffer from generalization and robustness. Recent Vision Language Models/Foundation Models perform well on the anatomical level, but they suffer on fine-grained segmentation tasks, and their semi-automatic nature limits their effectiveness in real-time clinical scenarios. In this paper, we propose a novel method for accurate 3D segmentation of lung parenchyma and lung nodules. The proposed architecture is an attention-based network with residual blocks at each encoder-decoder state. Max pooling is replaced by strided convolutions at the encoder, and trilinear interpolation is replaced by transposed convolutions at the decoder to maximize the number of learnable parameters. Dilated convolutions at each encoder-decoder stage allow the model to capture the larger context without increasing computational costs. The proposed method has been evaluated extensively on one of the largest publicly available datasets, namely LUNA16, and is compared with recent notable work in the domain using standard performance metrics like Dice score, IOU, etc. It can be seen from the results that the proposed method achieves better performance than state-of-the-art methods. The source code, datasets, and pre-processed data can be accessed using the link: https://github.com/EMeRALDsNRPU/Attention-Based-3D-ResUNet.
Distance Estimation in Outdoor Driving Environments Using Phase-only Correlation Method with Event Cameras
With the growing adoption of autonomous driving, the advancement of sensor technology is crucial for ensuring safety and reliable operation. Sensor fusion techniques that combine multiple sensors such as LiDAR, radar, and cameras have proven effective, but the integration of multiple devices increases both hardware complexity and cost. Therefore, developing a single sensor capable of performing multiple roles is highly desirable for cost-efficient and scalable autonomous driving systems. Event cameras have emerged as a promising solution due to their unique characteristics, including high dynamic range, low latency, and high temporal resolution. These features enable them to perform well in challenging lighting conditions, such as low-light or backlit environments. Moreover, their ability to detect fine-grained motion events makes them suitable for applications like pedestrian detection and vehicle-to-infrastructure communication via visible light. In this study, we present a method for distance estimation using a monocular event camera and a roadside LED bar. By applying a phase-only correlation technique to the event data, we achieve sub-pixel precision in detecting the spatial shift between two light sources. This enables accurate triangulation-based distance estimation without requiring stereo vision. Field experiments conducted in outdoor driving scenarios demonstrated that the proposed approach achieves over 90% success rate with less than 0.5-meter error for distances ranging from 20 to 60 meters. Future work includes extending this method to full position estimation by leveraging infrastructure such as smart poles equipped with LEDs, enabling event-camera-based vehicles to determine their own position in real time. This advancement could significantly enhance navigation accuracy, route optimization, and integration into intelligent transportation systems.
comment: 6 pages, 7 figures. To appear in IEEE Intelligent Vehicles Symposium (IV) 2025
FreqU-FNet: Frequency-Aware U-Net for Imbalanced Medical Image Segmentation
Medical image segmentation faces persistent challenges due to severe class imbalance and the frequency-specific distribution of anatomical structures. Most conventional CNN-based methods operate in the spatial domain and struggle to capture minority class signals, often affected by frequency aliasing and limited spectral selectivity. Transformer-based models, while powerful in modeling global dependencies, tend to overlook critical local details necessary for fine-grained segmentation. To overcome these limitations, we propose FreqU-FNet, a novel U-shaped segmentation architecture operating in the frequency domain. Our framework incorporates a Frequency Encoder that leverages Low-Pass Frequency Convolution and Daubechies wavelet-based downsampling to extract multi-scale spectral features. To reconstruct fine spatial details, we introduce a Spatial Learnable Decoder (SLD) equipped with an adaptive multi-branch upsampling strategy. Furthermore, we design a frequency-aware loss (FAL) function to enhance minority class learning. Extensive experiments on multiple medical segmentation benchmarks demonstrate that FreqU-FNet consistently outperforms both CNN and Transformer baselines, particularly in handling under-represented classes, by effectively exploiting discriminative frequency bands.
comment: 15 pages, 1 figure
DECT-based Space-Squeeze Method for Multi-Class Classification of Metastatic Lymph Nodes in Breast Cancer
Background: Accurate assessment of metastatic burden in axillary lymph nodes is crucial for guiding breast cancer treatment decisions, yet conventional imaging modalities struggle to differentiate metastatic burden levels and capture comprehensive lymph node characteristics. This study leverages dual-energy computed tomography (DECT) to exploit spectral-spatial information for improved multi-class classification. Purpose: To develop a noninvasive DECT-based model classifying sentinel lymph nodes into three categories: no metastasis ($N_0$), low metastatic burden ($N_{+(1-2)}$), and heavy metastatic burden ($N_{+(\geq3)}$), thereby aiding therapeutic planning. Methods: We propose a novel space-squeeze method combining two innovations: (1) a channel-wise attention mechanism to compress and recalibrate spectral-spatial features across 11 energy levels, and (2) virtual class injection to sharpen inter-class boundaries and compact intra-class variations in the representation space. Results: Evaluated on 227 biopsy-confirmed cases, our method achieved an average test AUC of 0.86 (95% CI: 0.80-0.91) across three cross-validation folds, outperforming established CNNs (VGG, ResNet, etc). The channel-wise attention and virtual class components individually improved AUC by 5.01% and 5.87%, respectively, demonstrating complementary benefits. Conclusions: The proposed framework enhances diagnostic AUC by effectively integrating DECT's spectral-spatial data and mitigating class ambiguity, offering a promising tool for noninvasive metastatic burden assessment in clinical practice.
Anatomy-Guided Multitask Learning for MRI-Based Classification of Placenta Accreta Spectrum and its Subtypes
Placenta Accreta Spectrum Disorders (PAS) pose significant risks during pregnancy, frequently leading to postpartum hemorrhage during cesarean deliveries and other severe clinical complications, with bleeding severity correlating to the degree of placental invasion. Consequently, accurate prenatal diagnosis of PAS and its subtypes-placenta accreta (PA), placenta increta (PI), and placenta percreta (PP)-is crucial. However, existing guidelines and methodologies predominantly focus on the presence of PAS, with limited research addressing subtype recognition. Additionally, previous multi-class diagnostic efforts have primarily relied on inefficient two-stage cascaded binary classification tasks. In this study, we propose a novel convolutional neural network (CNN) architecture designed for efficient one-stage multiclass diagnosis of PAS and its subtypes, based on 4,140 magnetic resonance imaging (MRI) slices. Our model features two branches: the main classification branch utilizes a residual block architecture comprising multiple residual blocks, while the second branch integrates anatomical features of the uteroplacental area and the adjacent uterine serous layer to enhance the model's attention during classification. Furthermore, we implement a multitask learning strategy to leverage both branches effectively. Experiments conducted on a real clinical dataset demonstrate that our model achieves state-of-the-art performance.
SUFFICIENT: A scan-specific unsupervised deep learning framework for high-resolution 3D isotropic fetal brain MRI reconstruction
High-quality 3D fetal brain MRI reconstruction from motion-corrupted 2D slices is crucial for clinical diagnosis. Reliable slice-to-volume registration (SVR)-based motion correction and super-resolution reconstruction (SRR) methods are essential. Deep learning (DL) has demonstrated potential in enhancing SVR and SRR when compared to conventional methods. However, it requires large-scale external training datasets, which are difficult to obtain for clinical fetal MRI. To address this issue, we propose an unsupervised iterative SVR-SRR framework for isotropic HR volume reconstruction. Specifically, SVR is formulated as a function mapping a 2D slice and a 3D target volume to a rigid transformation matrix, which aligns the slice to the underlying location in the target volume. The function is parameterized by a convolutional neural network, which is trained by minimizing the difference between the volume slicing at the predicted position and the input slice. In SRR, a decoding network embedded within a deep image prior framework is incorporated with a comprehensive image degradation model to produce the high-resolution (HR) volume. The deep image prior framework offers a local consistency prior to guide the reconstruction of HR volumes. By performing a forward degradation model, the HR volume is optimized by minimizing loss between predicted slices and the observed slices. Comprehensive experiments conducted on large-magnitude motion-corrupted simulation data and clinical data demonstrate the superior performance of the proposed framework over state-of-the-art fetal brain reconstruction frameworks.
From Flight to Insight: Semantic 3D Reconstruction for Aerial Inspection via Gaussian Splatting and Language-Guided Segmentation
High-fidelity 3D reconstruction is critical for aerial inspection tasks such as infrastructure monitoring, structural assessment, and environmental surveying. While traditional photogrammetry techniques enable geometric modeling, they lack semantic interpretability, limiting their effectiveness for automated inspection workflows. Recent advances in neural rendering and 3D Gaussian Splatting (3DGS) offer efficient, photorealistic reconstructions but similarly lack scene-level understanding. In this work, we present a UAV-based pipeline that extends Feature-3DGS for language-guided 3D segmentation. We leverage LSeg-based feature fields with CLIP embeddings to generate heatmaps in response to language prompts. These are thresholded to produce rough segmentations, and the highest-scoring point is then used as a prompt to SAM or SAM2 for refined 2D segmentation on novel view renderings. Our results highlight the strengths and limitations of various feature field backbones (CLIP-LSeg, SAM, SAM2) in capturing meaningful structure in large-scale outdoor environments. We demonstrate that this hybrid approach enables flexible, language-driven interaction with photorealistic 3D reconstructions, opening new possibilities for semantic aerial inspection and scene understanding.
Low-Rank Adaptation of Pre-trained Vision Backbones for Energy-Efficient Image Coding for Machine ICIP2025
Image Coding for Machines (ICM) focuses on optimizing image compression for AI-driven analysis rather than human perception. Existing ICM frameworks often rely on separate codecs for specific tasks, leading to significant storage requirements, training overhead, and computational complexity. To address these challenges, we propose an energy-efficient framework that leverages pre-trained vision backbones to extract robust and versatile latent representations suitable for multiple tasks. We introduce a task-specific low-rank adaptation mechanism, which refines the pre-trained features to be both compressible and tailored to downstream applications. This design minimizes trainable parameters and reduces energy costs for multi-task scenarios. By jointly optimizing task performance and entropy minimization, our method enables efficient adaptation to diverse tasks and datasets without full fine-tuning, achieving high coding efficiency. Extensive experiments demonstrate that our framework significantly outperforms traditional codecs and pre-processors, offering an energy-efficient and effective solution for ICM applications. The code and the supplementary materials will be available at: https://gitlab.com/viper-purdue/efficient-compression.
comment: 2025 IEEE International Conference on Image Processing (ICIP2025)
Dual Ascent Diffusion for Inverse Problems
Ill-posed inverse problems are fundamental in many domains, ranging from astrophysics to medical imaging. Emerging diffusion models provide a powerful prior for solving these problems. Existing maximum-a-posteriori (MAP) or posterior sampling approaches, however, rely on different computational approximations, leading to inaccurate or suboptimal samples. To address this issue, we introduce a new approach to solving MAP problems with diffusion model priors using a dual ascent optimization framework. Our framework achieves better image quality as measured by various metrics for image restoration problems, it is more robust to high levels of measurement noise, it is faster, and it estimates solutions that represent the observations more faithfully than the state of the art.
comment: 23 pages, 15 figures, 5 tables
How We Won the ISLES'24 Challenge by Preprocessing
Stroke is among the top three causes of death worldwide, and accurate identification of stroke lesion boundaries is critical for diagnosis and treatment. Supervised deep learning methods have emerged as the leading solution for stroke lesion segmentation but require large, diverse, and annotated datasets. The ISLES'24 challenge addresses this need by providing longitudinal stroke imaging data, including CT scans taken on arrival to the hospital and follow-up MRI taken 2-9 days from initial arrival, with annotations derived from follow-up MRI. Importantly, models submitted to the ISLES'24 challenge are evaluated using only CT inputs, requiring prediction of lesion progression that may not be visible in CT scans for segmentation. Our winning solution shows that a carefully designed preprocessing pipeline including deep-learning-based skull stripping and custom intensity windowing is beneficial for accurate segmentation. Combined with a standard large residual nnU-Net architecture for segmentation, this approach achieves a mean test Dice of 28.5 with a standard deviation of 21.27.
Brightness-Invariant Tracking Estimation in Tagged MRI
Magnetic resonance (MR) tagging is an imaging technique for noninvasively tracking tissue motion in vivo by creating a visible pattern of magnetization saturation (tags) that deforms with the tissue. Due to longitudinal relaxation and progression to steady-state, the tags and tissue brightnesses change over time, which makes tracking with optical flow methods error-prone. Although Fourier methods can alleviate these problems, they are also sensitive to brightness changes as well as spectral spreading due to motion. To address these problems, we introduce the brightness-invariant tracking estimation (BRITE) technique for tagged MRI. BRITE disentangles the anatomy from the tag pattern in the observed tagged image sequence and simultaneously estimates the Lagrangian motion. The inherent ill-posedness of this problem is addressed by leveraging the expressive power of denoising diffusion probabilistic models to represent the probabilistic distribution of the underlying anatomy and the flexibility of physics-informed neural networks to estimate biologically-plausible motion. A set of tagged MR images of a gel phantom was acquired with various tag periods and imaging flip angles to demonstrate the impact of brightness variations and to validate our method. The results show that BRITE achieves more accurate motion and strain estimates as compared to other state of the art methods, while also being resistant to tag fading.
comment: Accepted by IPMI 2025
Single Snapshot Distillation for Phase Coded Mask Design in Phase Retrieval ICIP 2025
Phase retrieval (PR) reconstructs phase information from magnitude measurements, known as coded diffraction patterns (CDPs), whose quality depends on the number of snapshots captured using coded phase masks. High-quality phase estimation requires multiple snapshots, which is not desired for efficient PR systems. End-to-end frameworks enable joint optimization of the optical system and the recovery neural network. However, their application is constrained by physical implementation limitations. Additionally, the framework is prone to gradient vanishing issues related to its global optimization process. This paper introduces a Knowledge Distillation (KD) optimization approach to address these limitations. KD transfers knowledge from a larger, lower-constrained network (teacher) to a smaller, more efficient, and implementable network (student). In this method, the teacher, a PR system trained with multiple snapshots, distills its knowledge into a single-snapshot PR system, the student. The loss functions compare the CPMs and the feature space of the recovery network. Simulations demonstrate that this approach improves reconstruction performance compared to a PR system trained without the teacher's guidance.
comment: Accepted on the IEEE International Conference on Image Processing, IEEE ICIP 2025
High-Fidelity Functional Ultrasound Reconstruction via A Visual Auto-Regressive Framework
Functional ultrasound (fUS) imaging provides exceptional spatiotemporal resolution for neurovascular mapping, yet its practical application is significantly hampered by critical challenges. Foremost among these are data scarcity, arising from ethical considerations and signal degradation through the cranium, which collectively limit dataset diversity and compromise the fairness of downstream machine learning models.
CIM-NET: A Video Denoising Deep Neural Network Model Optimized for Computing-in-Memory Architectures
While deep neural network (DNN)-based video denoising has demonstrated significant performance, deploying state-of-the-art models on edge devices remains challenging due to stringent real-time and energy efficiency requirements. Computing-in-Memory (CIM) chips offer a promising solution by integrating computation within memory cells, enabling rapid matrix-vector multiplication (MVM). However, existing DNN models are often designed without considering CIM architectural constraints, thus limiting their acceleration potential during inference. To address this, we propose a hardware-algorithm co-design framework incorporating two innovations: (1) a CIM-Aware Architecture, CIM-NET, optimized for large receptive field operation and CIM's crossbar-based MVM acceleration; and (2) a pseudo-convolutional operator, CIM-CONV, used within CIM-NET to integrate slide-based processing with fully connected transformations for high-quality feature extraction and reconstruction. This framework significantly reduces the number of MVM operations, improving inference speed on CIM chips while maintaining competitive performance. Experimental results indicate that, compared to the conventional lightweight model FastDVDnet, CIM-NET substantially reduces MVM operations with a slight decrease in denoising performance. With a stride value of 8, CIM-NET reduces MVM operations to 1/77th of the original, while maintaining competitive PSNR (35.11 dB vs. 35.56 dB
MRI Image Generation Based on Text Prompts
This study explores the use of text-prompted MRI image generation with the Stable Diffusion (SD) model to address challenges in acquiring real MRI datasets, such as high costs, limited rare case samples, and privacy concerns. The SD model, pre-trained on natural images, was fine-tuned using the 3T fastMRI dataset and the 0.3T M4Raw dataset, with the goal of generating brain T1, T2, and FLAIR images across different magnetic field strengths. The performance of the fine-tuned model was evaluated using quantitative metrics,including Fr\'echet Inception Distance (FID) and Multi-Scale Structural Similarity (MS-SSIM), showing improvements in image quality and semantic consistency with the text prompts. To further evaluate the model's potential, a simple classification task was carried out using a small 0.35T MRI dataset, demonstrating that the synthetic images generated by the fine-tuned SD model can effectively augment training datasets and improve the performance of MRI constrast classification tasks. Overall, our findings suggest that text-prompted MRI image generation is feasible and can serve as a useful tool for medical AI applications.
Groupwise Image Registration with Edge-Based Loss for Low-SNR Cardiac MRI
Purpose: To perform image registration and averaging of multiple free-breathing single-shot cardiac images, where the individual images may have a low signal-to-noise ratio (SNR). Methods: To address low SNR encountered in single-shot imaging, especially at low field strengths, we propose a fast deep learning (DL)-based image registration method, called Averaging Morph with Edge Detection (AiM-ED). AiM-ED jointly registers multiple noisy source images to a noisy target image and utilizes a noise-robust pre-trained edge detector to define the training loss. We validate AiM-ED using synthetic late gadolinium enhanced (LGE) images from the MR extended cardiac-torso (MRXCAT) phantom and free-breathing single-shot LGE images from healthy subjects (24 slices) and patients (5 slices) under various levels of added noise. Additionally, we demonstrate the clinical feasibility of AiM-ED by applying it to data from patients (6 slices) scanned on a 0.55T scanner. Results: Compared to a traditional energy-minimization-based image registration method and DL-based VoxelMorph, images registered using AiM-ED exhibit higher values of recovery SNR and three perceptual image quality metrics. An ablation study shows the benefit of both jointly processing multiple source images and using an edge map in AiM-ED. Conclusion: For single-shot LGE imaging, AiM-ED outperforms existing image registration methods in terms of image quality. With fast inference, minimal training data requirements, and robust performance at various noise levels, AiM-ED has the potential to benefit single-shot CMR applications.
CostFilter-AD: Enhancing Anomaly Detection through Matching Cost Filtering ICML 2025
Unsupervised anomaly detection (UAD) seeks to localize the anomaly mask of an input image with respect to normal samples. Either by reconstructing normal counterparts (reconstruction-based) or by learning an image feature embedding space (embedding-based), existing approaches fundamentally rely on image-level or feature-level matching to derive anomaly scores. Often, such a matching process is inaccurate yet overlooked, leading to sub-optimal detection. To address this issue, we introduce the concept of cost filtering, borrowed from classical matching tasks, such as depth and flow estimation, into the UAD problem. We call this approach {\em CostFilter-AD}. Specifically, we first construct a matching cost volume between the input and normal samples, comprising two spatial dimensions and one matching dimension that encodes potential matches. To refine this, we propose a cost volume filtering network, guided by the input observation as an attention query across multiple feature layers, which effectively suppresses matching noise while preserving edge structures and capturing subtle anomalies. Designed as a generic post-processing plug-in, CostFilter-AD can be integrated with either reconstruction-based or embedding-based methods. Extensive experiments on MVTec-AD and VisA benchmarks validate the generic benefits of CostFilter-AD for both single- and multi-class UAD tasks. Code and models will be released at https://github.com/ZHE-SAPI/CostFilter-AD.
comment: 25 pages, 12 figures, 20 tables, accepted by Forty-Second International Conference on Machine Learning ( ICML 2025 ), link: https://icml.cc/virtual/2025/poster/46359
Fourier-Based 3D Multistage Transformer for Aberration Correction in Multicellular Specimens
High-resolution tissue imaging is often compromised by sample-induced optical aberrations that degrade resolution and contrast. While wavefront sensor-based adaptive optics (AO) can measure these aberrations, such hardware solutions are typically complex, expensive to implement, and slow when serially mapping spatially varying aberrations across large fields of view. Here, we introduce AOViFT (Adaptive Optical Vision Fourier Transformer) -- a machine learning-based aberration sensing framework built around a 3D multistage Vision Transformer that operates on Fourier domain embeddings. AOViFT infers aberrations and restores diffraction-limited performance in puncta-labeled specimens with substantially reduced computational cost, training time, and memory footprint compared to conventional architectures or real-space networks. We validated AOViFT on live gene-edited zebrafish embryos, demonstrating its ability to correct spatially varying aberrations using either a deformable mirror or post-acquisition deconvolution. By eliminating the need for the guide star and wavefront sensing hardware and simplifying the experimental workflow, AOViFT lowers technical barriers for high-resolution volumetric microscopy across diverse biological samples.
comment: 55 pages, 6 figures, 26 si figures, 8 si tables
Rapid Whole Brain Motion-robust Mesoscale In-vivo MR Imaging using Multi-scale Implicit Neural Representation
High-resolution whole-brain in vivo MR imaging at mesoscale resolutions remains challenging due to long scan durations, motion artifacts, and limited signal-to-noise ratio (SNR). This study proposes Rotating-view super-resolution (ROVER)-MRI, an unsupervised framework based on multi-scale implicit neural representations (INR), enabling efficient recovery of fine anatomical details from multi-view thick-slice acquisitions. ROVER-MRI employs coordinate-based neural networks to implicitly and continuously encode image structures at multiple spatial scales, simultaneously modeling anatomical continuity and correcting inter-view motion through an integrated registration mechanism. Validation on ex-vivo monkey brain data and multiple in-vivo human datasets demonstrates substantially improved reconstruction performance compared to bicubic interpolation and state-of-the-art regularized least-squares super-resolution reconstruction (LS-SRR) with 2-fold reduction in scan time. Notably, ROVER-MRI achieves an unprecedented whole-brain in-vivo T2-weighted imaging at 180 micron isotropic resolution in only 17 minutes of scan time on a 7T scanner with 22.4% lower relative error compared to LS-SRR. We also demonstrate improved SNR using ROVER-MRI compared to a time-matched 3D GRE acquisition. Quantitative results on several datasets demonstrate better sharpness of the reconstructed images with ROVER-MRI for different super-resolution factors (5 to 11). These findings highlight ROVER-MRI's potential as a rapid, accurate, and motion-resilient mesoscale imaging solution, promising substantial advantages for neuroimaging studies.
D3C2-Net: Dual-Domain Deep Convolutional Coding Network for Compressive Sensing
By mapping iterative optimization algorithms into neural networks (NNs), deep unfolding networks (DUNs) exhibit well-defined and interpretable structures and achieve remarkable success in the field of compressive sensing (CS). However, most existing DUNs solely rely on the image-domain unfolding, which restricts the information transmission capacity and reconstruction flexibility, leading to their loss of image details and unsatisfactory performance. To overcome these limitations, this paper develops a dual-domain optimization framework that combines the priors of (1) image- and (2) convolutional-coding-domains and offers generality to CS and other inverse imaging tasks. By converting this optimization framework into deep NN structures, we present a Dual-Domain Deep Convolutional Coding Network (D3C2-Net), which enjoys the ability to efficiently transmit high-capacity self-adaptive convolutional features across all its unfolded stages. Our theoretical analyses and experiments on simulated and real captured data, covering 2D and 3D natural, medical, and scientific signals, demonstrate the effectiveness, practicality, superior performance, and generalization ability of our method over other competing approaches and its significant potential in achieving a balance among accuracy, complexity, and interpretability. Code is available at https://github.com/lwq20020127/D3C2-Net.
comment: accepted by IEEE TCSVT
Efficient Chebyshev Reconstruction for the Anisotropic Equilibrium Model in Magnetic Particle Imaging
Magnetic Particle Imaging (MPI) is a tomographic imaging modality capable of real-time, high-sensitivity mapping of superparamagnetic iron oxide nanoparticles. Model-based image reconstruction provides an alternative to conventional methods that rely on a measured system matrix, eliminating the need for laborious calibration measurements. Nevertheless, model-based approaches must account for the complexities of the imaging chain to maintain high image quality. A recently proposed direct reconstruction method leverages weighted Chebyshev polynomials in the frequency domain, removing the need for a simulated system matrix. However, the underlying model neglects key physical effects, such as nanoparticle anisotropy, leading to distortions in reconstructed images. To mitigate these artifacts, an adapted direct Chebyshev reconstruction (DCR) method incorporates a spatially variant deconvolution step, significantly improving reconstruction accuracy at the cost of increased computational demands. In this work, we evaluate the adapted DCR on six experimental phantoms, demonstrating enhanced reconstruction quality in real measurements and achieving image fidelity comparable to or exceeding that of simulated system matrix reconstruction. Furthermore, we introduce an efficient approximation for the spatially variable deconvolution, reducing both runtime and memory consumption while maintaining accuracy. This method achieves computational complexity of O(N log N ), making it particularly beneficial for high-resolution and three-dimensional imaging. Our results highlight the potential of the adapted DCR approach for improving model-based MPI reconstruction in practical applications.
comment: This work has been submitted to the IEEE for possible publication
Fast Hyperspectral Neutron Tomography
Hyperspectral neutron computed tomography is a tomographic imaging technique in which thousands of wavelength-specific neutron radiographs are measured for each tomographic view. In conventional hyperspectral reconstruction, data from each neutron wavelength bin are reconstructed separately, which is extremely time-consuming. These reconstructions often suffer from poor quality due to low signal-to-noise ratios. Consequently, material decomposition based on these reconstructions tends to produce inaccurate estimates of the material spectra and erroneous volumetric material separation. In this paper, we present two novel algorithms for processing hyperspectral neutron data: fast hyperspectral reconstruction and fast material decomposition. Both algorithms rely on a subspace decomposition procedure that transforms hyperspectral views into low-dimensional projection views within an intermediate subspace, where tomographic reconstruction is performed. The use of subspace decomposition dramatically reduces reconstruction time while reducing both noise and reconstruction artifacts. We apply our algorithms to both simulated and measured neutron data and demonstrate that they reduce computation and improve the quality of the results relative to conventional methods.
Human-Computer Interaction
From Temporal to Spatial: Designing Spatialized Interactions with Segmented-audios in Immersive Environments for Active Engagement with Performing Arts Intangible Cultural Heritage
Performance artforms like Peking opera face transmission challenges due to the extensive passive listening required to understand their nuance. To create engaging forms of experiencing auditory Intangible Cultural Heritage (ICH), we designed a spatial interaction-based segmented-audio (SISA) Virtual Reality system that transforms passive ICH experiences into active ones. We undertook: (1) a co-design workshop with seven stakeholders to establish design requirements, (2) prototyping with five participants to validate design elements, and (3) user testing with 16 participants exploring Peking Opera. We designed transformations of temporal music into spatial interactions by cutting sounds into short audio segments, applying t-SNE algorithm to cluster audio segments spatially. Users navigate through these sounds by their similarity in audio property. Analysis revealed two distinct interaction patterns (Progressive and Adaptive), and demonstrated SISA's efficacy in facilitating active auditory ICH engagement. Our work illuminates the design process for enriching traditional performance artform using spatially-tuned forms of listening.
Towards Uncertainty Aware Task Delegation and Human-AI Collaborative Decision-Making
Despite the growing promise of artificial intelligence (AI) in supporting decision-making across domains, fostering appropriate human reliance on AI remains a critical challenge. In this paper, we investigate the utility of exploring distance-based uncertainty scores for task delegation to AI and describe how these scores can be visualized through embedding representations for human-AI decision-making. After developing an AI-based system for physical stroke rehabilitation assessment, we conducted a study with 19 health professionals and 10 students in medicine/health to understand the effect of exploring distance-based uncertainty scores on users' reliance on AI. Our findings showed that distance-based uncertainty scores outperformed traditional probability-based uncertainty scores in identifying uncertain cases. In addition, after exploring confidence scores for task delegation and reviewing embedding-based visualizations of distance-based uncertainty scores, participants achieved an 8.20% higher rate of correct decisions, a 7.15% higher rate of changing their decisions to correct ones, and a 7.14% lower rate of incorrect changes after reviewing AI outputs than those reviewing probability-based uncertainty scores ($p<0.01$). Our findings highlight the potential of distance-based uncertainty scores to enhance decision accuracy and appropriate reliance on AI while discussing ongoing challenges for human-AI collaborative decision-making.
comment: ACM FAccT 2025
AI Literacy for Legal AI Systems: A practical approach
Legal AI systems are increasingly being adopted by judicial and legal system deployers and providers worldwide to support a range of applications. While they offer potential benefits such as reducing bias, increasing efficiency, and improving accountability, they also pose significant risks, requiring a careful balance between opportunities, and legal and ethical development and deployment. AI literacy, as a legal requirement under the EU AI Act and a critical enabler of ethical AI for deployers and providers, could be a tool to achieve this. The article introduces the term "legal AI systems" and then analyzes the concept of AI literacy and the benefits and risks associated with these systems. This analysis is linked to a broader AI-L concept for organizations that deal with legal AI systems. The outcome of the article, a roadmap questionnaire as a practical tool for developers and providers to assess risks, benefits, and stakeholder concerns, could be useful in meeting societal and regulatory expectations for legal AI.
comment: Forthcoming in Iustum Aequum Salutare (2025) vol.21
Survival Games: Human-LLM Strategic Showdowns under Severe Resource Scarcity
The rapid advancement of large language models (LLMs) raises critical concerns about their ethical alignment, particularly in scenarios where human and AI co-exist under the conflict of interest. This work introduces an extendable, asymmetric, multi-agent simulation-based benchmarking framework to evaluate the moral behavior of LLMs in a novel human-AI co-existence setting featuring consistent living and critical resource management. Building on previous generative agent environments, we incorporate a life-sustaining system, where agents must compete or cooperate for food resources to survive, often leading to ethically charged decisions such as deception, theft, or social influence. We evaluated two types of LLM, DeepSeek and OpenAI series, in a three-agent setup (two humans, one LLM-powered robot), using adapted behavioral detection from the MACHIAVELLI framework and a custom survival-based ethics metric. Our findings reveal stark behavioral differences: DeepSeek frequently engages in resource hoarding, while OpenAI exhibits restraint, highlighting the influence of model design on ethical outcomes. Additionally, we demonstrate that prompt engineering can significantly steer LLM behavior, with jailbreaking prompts significantly enhancing unethical actions, even for highly restricted OpenAI models and cooperative prompts show a marked reduction in unethical actions. Our framework provides a reproducible testbed for quantifying LLM ethics in high-stakes scenarios, offering insights into their suitability for real-world human-AI interactions.
Feasible Action Space Reduction for Quantifying Causal Responsibility in Continuous Spatial Interactions
Understanding the causal influence of one agent on another agent is crucial for safely deploying artificially intelligent systems such as automated vehicles and mobile robots into human-inhabited environments. Existing models of causal responsibility deal with simplified abstractions of scenarios with discrete actions, thus, limiting real-world use when understanding responsibility in spatial interactions. Based on the assumption that spatially interacting agents are embedded in a scene and must follow an action at each instant, Feasible Action-Space Reduction (FeAR) was proposed as a metric for causal responsibility in a grid-world setting with discrete actions. Since real-world interactions involve continuous action spaces, this paper proposes a formulation of the FeAR metric for measuring causal responsibility in space-continuous interactions. We illustrate the utility of the metric in prototypical space-sharing conflicts, and showcase its applications for analysing backward-looking responsibility and in estimating forward-looking responsibility to guide agent decision making. Our results highlight the potential of the FeAR metric for designing and engineering artificial agents, as well as for assessing the responsibility of agents around humans.
comment: In review
TransBench: Breaking Barriers for Transferable Graphical User Interface Agents in Dynamic Digital Environments ACL 2025
Graphical User Interface (GUI) agents, which autonomously operate on digital interfaces through natural language instructions, hold transformative potential for accessibility, automation, and user experience. A critical aspect of their functionality is grounding - the ability to map linguistic intents to visual and structural interface elements. However, existing GUI agents often struggle to adapt to the dynamic and interconnected nature of real-world digital environments, where tasks frequently span multiple platforms and applications while also being impacted by version updates. To address this, we introduce TransBench, the first benchmark designed to systematically evaluate and enhance the transferability of GUI agents across three key dimensions: cross-version transferability (adapting to version updates), cross-platform transferability (generalizing across platforms like iOS, Android, and Web), and cross-application transferability (handling tasks spanning functionally distinct apps). TransBench includes 15 app categories with diverse functionalities, capturing essential pages across versions and platforms to enable robust evaluation. Our experiments demonstrate significant improvements in grounding accuracy, showcasing the practical utility of GUI agents in dynamic, real-world environments. Our code and data will be publicly available at Github.
comment: Accepted by ACL 2025 Findings
JELAI: Integrating AI and Learning Analytics in Jupyter Notebooks
Generative AI offers potential for educational support, but often lacks pedagogical grounding and awareness of the student's learning context. Furthermore, researching student interactions with these tools within authentic learning environments remains challenging. To address this, we present JELAI, an open-source platform architecture designed to integrate fine-grained Learning Analytics (LA) with Large Language Model (LLM)-based tutoring directly within a Jupyter Notebook environment. JELAI employs a modular, containerized design featuring JupyterLab extensions for telemetry and chat, alongside a central middleware handling LA processing and context-aware LLM prompt enrichment. This architecture enables the capture of integrated code interaction and chat data, facilitating real-time, context-sensitive AI scaffolding and research into student behaviour. We describe the system's design, implementation, and demonstrate its feasibility through system performance benchmarks and two proof-of-concept use cases illustrating its capabilities for logging multi-modal data, analysing help-seeking patterns, and supporting A/B testing of AI configurations. JELAI's primary contribution is its technical framework, providing a flexible tool for researchers and educators to develop, deploy, and study LA-informed AI tutoring within the widely used Jupyter ecosystem.
comment: Accepted for AIED 2025
Novobo: Supporting Teachers' Peer Learning of Instructional Gestures by Teaching a Mentee AI-Agent Together
Instructional gestures are essential for teaching, as they enhance communication and support student comprehension. However, existing training methods for developing these embodied skills can be time-consuming, isolating, or overly prescriptive. Research suggests that developing these tacit, experiential skills requires teachers' peer learning, where they learn from each other and build shared knowledge. This paper introduces Novobo, an apprentice AI-agent stimulating teachers' peer learning of instructional gestures through verbal and bodily inputs. Positioning the AI as a mentee employs the learning-by-teaching paradigm, aiming to promote deliberate reflection and active learning. Novobo encourages teachers to evaluate its generated gestures and invite them to provide demonstrations. An evaluation with 30 teachers in 10 collaborative sessions showed Novobo prompted teachers to share tacit knowledge through conversation and movement. This process helped teachers externalize, exchange, and internalize their embodied knowledge, promoting collaborative learning and building a shared understanding of instructional gestures within the local teaching community. This work advances understanding of how teachable AI agents can enhance collaborative learning in teacher professional development, offering valuable design insights for leveraging AI to promote the sharing and construction of embodied and practical knowledge.
comment: The submitted manuscript is 52 pages in total, with 39 pages of main content (excluding references). It contains 6 figures and 4 tables. A video demonstration is included via a footnote link in the manuscript
ProTAL: A Drag-and-Link Video Programming Framework for Temporal Action Localization
Temporal Action Localization (TAL) aims to detect the start and end timestamps of actions in a video. However, the training of TAL models requires a substantial amount of manually annotated data. Data programming is an efficient method to create training labels with a series of human-defined labeling functions. However, its application in TAL faces difficulties of defining complex actions in the context of temporal video frames. In this paper, we propose ProTAL, a drag-and-link video programming framework for TAL. ProTAL enables users to define \textbf{key events} by dragging nodes representing body parts and objects and linking them to constrain the relations (direction, distance, etc.). These definitions are used to generate action labels for large-scale unlabelled videos. A semi-supervised method is then employed to train TAL models with such labels. We demonstrate the effectiveness of ProTAL through a usage scenario and a user study, providing insights into designing video programming framework.
comment: Accepted at CHI'25
Twin-2K-500: A dataset for building digital twins of over 2,000 people based on their answers to over 500 questions
LLM-based digital twin simulation, where large language models are used to emulate individual human behavior, holds great promise for research in AI, social science, and digital experimentation. However, progress in this area has been hindered by the scarcity of real, individual-level datasets that are both large and publicly available. This lack of high-quality ground truth limits both the development and validation of digital twin methodologies. To address this gap, we introduce a large-scale, public dataset designed to capture a rich and holistic view of individual human behavior. We survey a representative sample of $N = 2,058$ participants (average 2.42 hours per person) in the US across four waves with 500 questions in total, covering a comprehensive battery of demographic, psychological, economic, personality, and cognitive measures, as well as replications of behavioral economics experiments and a pricing survey. The final wave repeats tasks from earlier waves to establish a test-retest accuracy baseline. Initial analyses suggest the data are of high quality and show promise for constructing digital twins that predict human behavior well at the individual and aggregate levels. By making the full dataset publicly available, we aim to establish a valuable testbed for the development and benchmarking of LLM-based persona simulations. Beyond LLM applications, due to its unique breadth and scale the dataset also enables broad social science research, including studies of cross-construct correlations and heterogeneous treatment effects.
comment: Also available at SSRN: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5265253
VIBE: Video-to-Text Information Bottleneck Evaluation for TL;DR
Many decision-making tasks, where both accuracy and efficiency matter, still require human supervision. For example, tasks like traffic officers reviewing hour-long dashcam footage or researchers screening conference videos can benefit from concise summaries that reduce cognitive load and save time. Yet current vision-language models (VLMs) often produce verbose, redundant outputs that hinder task performance. Existing video caption evaluation depends on costly human annotations and overlooks the summaries' utility in downstream tasks. We address these gaps with Video-to-text Information Bottleneck Evaluation (VIBE), an annotation-free method that scores VLM outputs using two metrics: grounding (how well the summary aligns with visual content) and utility (how informative it is for the task). VIBE selects from randomly sampled VLM outputs by ranking them according to the two scores to support effective human decision-making. Human studies on LearningPaper24, SUTD-TrafficQA, and LongVideoBench show that summaries selected by VIBE consistently improve performance-boosting task accuracy by up to 61.23% and reducing response time by 75.77% compared to naive VLM summaries or raw video.
What Needs Attention? Prioritizing Drivers of Developers' Trust and Adoption of Generative AI
Generative AI (genAI) tools are advertised as productivity aids. Yet, issues related to miscalibrated trust and usage friction continue to hinder their adoption. Additionally, AI can be exclusionary, failing to support diverse users adequately, further exacerbating these concerns. One such aspect of diversity is cognitive diversity -- variations in users' cognitive styles -- that leads to divergence in interaction styles. When an individual's cognitive styles are unsupported, it creates additional barriers to technology adoption. Thus, to design tools that developers trust, we must first understand what factors affect their trust and intentions to use these tools in practice? We developed a theoretical model of factors influencing trust and adoption intentions towards genAI through a large-scale survey with developers (N=238) at GitHub and Microsoft. Using Partial Least Squares-Structural Equation Modeling (PLS-SEM), we found that genAI's system/output quality, functional value, and goal maintenance significantly influence developers' trust, which along with their cognitive styles, affects their intentions to use these tools in work. An Importance-Performance Matrix Analysis (IPMA) identified factors that, despite their strong influence, underperform, revealing specific genAI aspects that need design prioritization. We bolster these findings by qualitatively analyzing developers' perceived challenges and risks of genAI usage to uncover why these gaps persist in development contexts. For genAI to indeed be a true productivity aid rather than a disguised productivity sink, it must align with developers' goals, maintain contextual transparency, reduce cognitive burden, and provide equitable interaction support. We provide practical suggestions to guide future genAI tool design for effective, trustworthy, and inclusive human-genAI interactions.
comment: arXiv admin note: substantial text overlap with arXiv:2409.04099
Chart-to-Experience: Benchmarking Multimodal LLMs for Predicting Experiential Impact of Charts
The field of Multimodal Large Language Models (MLLMs) has made remarkable progress in visual understanding tasks, presenting a vast opportunity to predict the perceptual and emotional impact of charts. However, it also raises concerns, as many applications of LLMs are based on overgeneralized assumptions from a few examples, lacking sufficient validation of their performance and effectiveness. We introduce Chart-to-Experience, a benchmark dataset comprising 36 charts, evaluated by crowdsourced workers for their impact on seven experiential factors. Using the dataset as ground truth, we evaluated capabilities of state-of-the-art MLLMs on two tasks: direct prediction and pairwise comparison of charts. Our findings imply that MLLMs are not as sensitive as human evaluators when assessing individual charts, but are accurate and reliable in pairwise comparisons.
comment: This paper has been accepted to IEEE PacificVis 2025
Dynamics of Affective States During Takeover Requests in Conditionally Automated Driving Among Older Adults with and without Cognitive Impairment
Driving is a key component of independence and quality of life for older adults. However, cognitive decline associated with conditions such as mild cognitive impairment and dementia can compromise driving safety and often lead to premature driving cessation. Conditionally automated vehicles, which require drivers to take over control when automation reaches its operational limits, offer a potential assistive solution. However, their effectiveness depends on the driver's ability to respond to takeover requests (TORs) in a timely and appropriate manner. Understanding emotional responses during TORs can provide insight into drivers' engagement, stress levels, and readiness to resume control, particularly in cognitively vulnerable populations. This study investigated affective responses, measured via facial expression analysis of valence and arousal, during TORs among cognitively healthy older adults and those with cognitive impairment. Facial affect data were analyzed across different road geometries and speeds to evaluate within- and between-group differences in affective states. Within-group comparisons using the Wilcoxon signed-rank test revealed significant changes in valence and arousal during TORs for both groups. Cognitively healthy individuals showed adaptive increases in arousal under higher-demand conditions, while those with cognitive impairment exhibited reduced arousal and more positive valence in several scenarios. Between-group comparisons using the Mann-Whitney U test indicated that cognitively impaired individuals displayed lower arousal and higher valence than controls across different TOR conditions. These findings suggest reduced emotional response and awareness in cognitively impaired drivers, highlighting the need for adaptive vehicle systems that detect affective states and support safe handovers for vulnerable users.
comment: 16 pages, 3 figures, 2 tables
Rehabilitation Exercise Quality Assessment and Feedback Generation Using Large Language Models with Prompt Engineering
Exercise-based rehabilitation improves quality of life and reduces morbidity, mortality, and rehospitalization, though transportation constraints and staff shortages lead to high dropout rates from rehabilitation programs. Virtual platforms enable patients to complete prescribed exercises at home, while AI algorithms analyze performance, deliver feedback, and update clinicians. Although many studies have developed machine learning and deep learning models for exercise quality assessment, few have explored the use of large language models (LLMs) for feedback and are limited by the lack of rehabilitation datasets containing textual feedback. In this paper, we propose a new method in which exercise-specific features are extracted from the skeletal joints of patients performing rehabilitation exercises and fed into pre-trained LLMs. Using a range of prompting techniques, such as zero-shot, few-shot, chain-of-thought, and role-play prompting, LLMs are leveraged to evaluate exercise quality and provide feedback in natural language to help patients improve their movements. The method was evaluated through extensive experiments on two publicly available rehabilitation exercise assessment datasets (UI-PRMD and REHAB24-6) and showed promising results in exercise assessment, reasoning, and feedback generation. This approach can be integrated into virtual rehabilitation platforms to help patients perform exercises correctly, support recovery, and improve health outcomes.
comment: 16 pages, 3 figures, 5 tables
Human-Centered AI Communication in Co-Creativity: An Initial Framework and Insights
Effective communication between AI and humans is essential for successful human-AI co-creation. However, many current co-creative AI systems lack effective communication, which limits their potential for collaboration. This paper presents the initial design of the Framework for AI Communication (FAICO) for co-creative AI, developed through a systematic review of 107 full-length papers. FAICO presents key aspects of AI communication and their impact on user experience, offering preliminary guidelines for designing human-centered AI communication. To improve the framework, we conducted a preliminary study with two focus groups involving skilled individuals in AI, HCI, and design. These sessions sought to understand participants' preferences for AI communication, gather their perceptions of the framework, collect feedback for refinement, and explore its use in co-creative domains like collaborative writing and design. Our findings reveal a preference for a human-AI feedback loop over linear communication and emphasize the importance of context in fostering mutual understanding. Based on these insights, we propose actionable strategies for applying FAICO in practice and future directions, marking the first step toward developing comprehensive guidelines for designing effective human-centered AI communication in co-creation.
comment: arXiv admin note: text overlap with arXiv:2504.02526
Military AI Needs Technically-Informed Regulation to Safeguard AI Research and its Applications
Military weapon systems and command-and-control infrastructure augmented by artificial intelligence (AI) have seen rapid development and deployment in recent years. However, the sociotechnical impacts of AI on combat systems, military decision-making, and the norms of warfare have been understudied. We focus on a specific subset of lethal autonomous weapon systems (LAWS) that use AI for targeting or battlefield decisions. We refer to this subset as AI-powered lethal autonomous weapon systems (AI-LAWS) and argue that they introduce novel risks -- including unanticipated escalation, poor reliability in unfamiliar environments, and erosion of human oversight -- all of which threaten both military effectiveness and the openness of AI research. These risks cannot be addressed by high-level policy alone; effective regulation must be grounded in the technical behavior of AI models. We argue that AI researchers must be involved throughout the regulatory lifecycle. Thus, we propose a clear, behavior-based definition of AI-LAWS -- systems that introduce unique risks through their use of modern AI -- as a foundation for technically grounded regulation, given that existing frameworks do not distinguish them from conventional LAWS. Using this definition, we propose several technically-informed policy directions and invite greater participation from the AI research community in military AI policy discussions.
comment: 16 pages, 2 tables, 1 figure
Pragmatic Disengagement and Culturally Situated Non Use Older Korean Immigrants Strategies for Navigating Digital Noise
Older immigrant adults often face layered barriers to digital participation, including language exclusion, generational divides, and emotional fatigue. This study examines how older Korean immigrants in the greater NYC area selectively engage with digital tools such as smartphones, YouTube, and AI platforms. Using a community-based participatory research (CBPR) framework and 22 semi-structured interviews, we identify two key practices: pragmatic disengagement, where users avoid emotionally taxing or culturally misaligned content, and interdependent navigation, where digital use is shaped through reliance on family or community support. These strategies challenge deficit-oriented narratives of non-use, showing how disengagement can be thoughtful, protective, and culturally situated. We contribute to CSCW by expanding theories of non-use and algorithmic resistance and by offering design and policy recommendations to support more dignified, culturally attuned digital engagement for aging immigrant populations.
The Relational Origins of Rules in Online Communities
Where do rules come from in online communities? While prior studies of online community governance in social computing have sought to characterize rules by their functions within communities and documented practices of rule enforcement, they have largely overlooked rule adoption and change. This study investigates how and why online communities adopt and change their rules. We conducted a grounded theory-based analysis of 40 in-depth interviews with community leaders from subreddits, Fandom wikis, and Fediverse servers, and identified seven processes involved in the adoption of online community rules. Our findings reveal that, beyond regulating behavior and solving functional intra-community problems, rules are also adopted and changed for relational reasons, such as signaling or reinforcing community legitimacy and identity to other communities. While rule change was often prompted by challenges during community growth or decline, change also depended on volunteer leaders' work capacity, the presence of member feedback mechanisms, and relational dynamics between leaders and members. The findings extend prior theories from social computing and organizational research, illustrating how institutionalist and ecological explanations of the relational origins of rules complement more functional accounts. The results also support design recommendations that integrate the relational aspects of rules and rulemaking to facilitate successful governance across communities' lifecycles.
Prototypical Human-AI Collaboration Behaviors from LLM-Assisted Writing in the Wild
As large language models (LLMs) are used in complex writing workflows, users engage in multi-turn interactions to steer generations to better fit their needs. Rather than passively accepting output, users actively refine, explore, and co-construct text. We conduct a large-scale analysis of this collaborative behavior for users engaged in writing tasks in the wild with two popular AI assistants, Bing Copilot and WildChat. Our analysis goes beyond simple task classification or satisfaction estimation common in prior work and instead characterizes how users interact with LLMs through the course of a session. We identify prototypical behaviors in how users interact with LLMs in prompts following their original request. We refer to these as Prototypical Human-AI Collaboration Behaviors (PATHs) and find that a small group of PATHs explain a majority of the variation seen in user-LLM interaction. These PATHs span users revising intents, exploring texts, posing questions, adjusting style or injecting new content. Next, we find statistically significant correlations between specific writing intents and PATHs, revealing how users' intents shape their collaboration behaviors. We conclude by discussing the implications of our findings on LLM alignment.
comment: Pre-print under-review
A Two-Stage Learning-to-Defer Approach for Multi-Task Learning
The Two-Stage Learning-to-Defer (L2D) framework has been extensively studied for classification and, more recently, regression tasks. However, many real-world applications require solving both tasks jointly in a multi-task setting. We introduce a novel Two-Stage L2D framework for multi-task learning that integrates classification and regression through a unified deferral mechanism. Our method leverages a two-stage surrogate loss family, which we prove to be both Bayes-consistent and $(\mathcal{G}, \mathcal{R})$-consistent, ensuring convergence to the Bayes-optimal rejector. We derive explicit consistency bounds tied to the cross-entropy surrogate and the $L_1$-norm of agent-specific costs, and extend minimizability gap analysis to the multi-expert two-stage regime. We also make explicit how shared representation learning--commonly used in multi-task models--affects these consistency guarantees. Experiments on object detection and electronic health record analysis demonstrate the effectiveness of our approach and highlight the limitations of existing L2D methods in multi-task scenarios.
comment: 32 pages, 17 main paper
LLM-Powered GUI Agents in Phone Automation: Surveying Progress and Prospects
With the rapid rise of large language models (LLMs), phone automation has undergone transformative changes. This paper systematically reviews LLM-driven phone GUI agents, highlighting their evolution from script-based automation to intelligent, adaptive systems. We first contextualize key challenges, (i) limited generality, (ii) high maintenance overhead, and (iii) weak intent comprehension, and show how LLMs address these issues through advanced language understanding, multimodal perception, and robust decision-making. We then propose a taxonomy covering fundamental agent frameworks (single-agent, multi-agent, plan-then-act), modeling approaches (prompt engineering, training-based), and essential datasets and benchmarks. Furthermore, we detail task-specific architectures, supervised fine-tuning, and reinforcement learning strategies that bridge user intent and GUI operations. Finally, we discuss open challenges such as dataset diversity, on-device deployment efficiency, user-centric adaptation, and security concerns, offering forward-looking insights into this rapidly evolving field. By providing a structured overview and identifying pressing research gaps, this paper serves as a definitive reference for researchers and practitioners seeking to harness LLMs in designing scalable, user-friendly phone GUI agents.
comment: 39 pages, 10 figures, 7 tables, Project Homepage: https://github.com/PhoneLLM/Awesome-LLM-Powered-Phone-GUI-Agents
ChatStitch: Visualizing Through Structures via Surround-View Unsupervised Deep Image Stitching with Collaborative LLM-Agents
Surround-view perception has garnered significant attention for its ability to enhance the perception capabilities of autonomous driving vehicles through the exchange of information with surrounding cameras. However, existing surround-view perception systems are limited by inefficiencies in unidirectional interaction pattern with human and distortions in overlapping regions exponentially propagating into non-overlapping areas. To address these challenges, this paper introduces ChatStitch, a surround-view human-machine co-perception system capable of unveiling obscured blind spot information through natural language commands integrated with external digital assets. To dismantle the unidirectional interaction bottleneck, ChatStitch implements a cognitively grounded closed-loop interaction multi-agent framework based on Large Language Models. To suppress distortion propagation across overlapping boundaries, ChatStitch proposes SV-UDIS, a surround-view unsupervised deep image stitching method under the non-global-overlapping condition. We conducted extensive experiments on the UDIS-D, MCOV-SLAM open datasets, and our real-world dataset. Specifically, our SV-UDIS method achieves state-of-the-art performance on the UDIS-D dataset for 3, 4, and 5 image stitching tasks, with PSNR improvements of 9\%, 17\%, and 21\%, and SSIM improvements of 8\%, 18\%, and 26\%, respectively.
JumpStarter: Human-AI Planning with Task-Structured Context Curation
Human-AI planning for complex goals remains challenging with current large language models (LLMs), which rely on linear chat histories and simplistic memory mechanisms. Despite advances in long-context prompting, users still manually manage information, leading to a high cognitive burden. Hence, we propose JumpStarter, a system that enables LLMs to collaborate with humans on complex goals by dynamically decomposing tasks to help users manage context. We specifically introduce task-structured context curation, a novel framework that breaks down a user's goal into a hierarchy of actionable subtasks, and scopes context to localized decision points, enabling finer-grained personalization and reuse. The framework is realized through three core mechanisms: context elicitation, selection, and reuse. We demonstrate that task-structured context curation significantly improves plan quality by 16% over ablations. Our user study shows that JumpStarter helped users generate plans with 79% higher quality compared to ChatGPT.
Computer Vision and Pattern Recognition
ARB: A Comprehensive Arabic Multimodal Reasoning Benchmark UAI
As Large Multimodal Models (LMMs) become more capable, there is growing interest in evaluating their reasoning processes alongside their final outputs. However, most benchmarks remain focused on English, overlooking languages with rich linguistic and cultural contexts, such as Arabic. To address this gap, we introduce the Comprehensive Arabic Multimodal Reasoning Benchmark (ARB), the first benchmark designed to evaluate step-by-step reasoning in Arabic across both textual and visual modalities. ARB spans 11 diverse domains, including visual reasoning, document understanding, OCR, scientific analysis, and cultural interpretation. It comprises 1,356 multimodal samples paired with 5,119 human-curated reasoning steps and corresponding actions. We evaluated 12 state-of-the-art open- and closed-source LMMs and found persistent challenges in coherence, faithfulness, and cultural grounding. ARB offers a structured framework for diagnosing multimodal reasoning in underrepresented languages and marks a critical step toward inclusive, transparent, and culturally aware AI systems. We release the benchmark, rubric, and evaluation suit to support future research and reproducibility. Code available at: https://github.com/mbzuai-oryx/ARB
comment: Github : https://github.com/mbzuai-oryx/ARB, Huggingface: https://huggingface.co/datasets/MBZUAI/ARB
GoT-R1: Unleashing Reasoning Capability of MLLM for Visual Generation with Reinforcement Learning
Visual generation models have made remarkable progress in creating realistic images from text prompts, yet struggle with complex prompts that specify multiple objects with precise spatial relationships and attributes. Effective handling of such prompts requires explicit reasoning about the semantic content and spatial layout. We present GoT-R1, a framework that applies reinforcement learning to enhance semantic-spatial reasoning in visual generation. Building upon the Generation Chain-of-Thought approach, GoT-R1 enables models to autonomously discover effective reasoning strategies beyond predefined templates through carefully designed reinforcement learning. To achieve this, we propose a dual-stage multi-dimensional reward framework that leverages MLLMs to evaluate both the reasoning process and final output, enabling effective supervision across the entire generation pipeline. The reward system assesses semantic alignment, spatial accuracy, and visual quality in a unified approach. Experimental results demonstrate significant improvements on T2I-CompBench benchmark, particularly in compositional tasks involving precise spatial relationships and attribute binding. GoT-R1 advances the state-of-the-art in image generation by successfully transferring sophisticated reasoning capabilities to the visual generation domain. To facilitate future research, we make our code and pretrained models publicly available at https://github.com/gogoduan/GoT-R1.
comment: Github page refer to: https://github.com/gogoduan/GoT-R1
SophiaVL-R1: Reinforcing MLLMs Reasoning with Thinking Reward
Recent advances have shown success in eliciting strong reasoning abilities in multimodal large language models (MLLMs) through rule-based reinforcement learning (RL) with outcome rewards. However, this paradigm typically lacks supervision over the thinking process leading to the final outcome.As a result, the model may learn sub-optimal reasoning strategies, which can hinder its generalization ability. In light of this, we propose SophiaVL-R1, as an attempt to add reward signals for the thinking process in this paradigm. To achieve this, we first train a thinking reward model that evaluates the quality of the entire thinking process. Given that the thinking reward may be unreliable for certain samples due to reward hacking, we propose the Trust-GRPO method, which assigns a trustworthiness weight to the thinking reward during training. This weight is computed based on the thinking reward comparison of responses leading to correct answers versus incorrect answers, helping to mitigate the impact of potentially unreliable thinking rewards. Moreover, we design an annealing training strategy that gradually reduces the thinking reward over time, allowing the model to rely more on the accurate rule-based outcome reward in later training stages. Experiments show that our SophiaVL-R1 surpasses a series of reasoning MLLMs on various benchmarks (e.g., MathVisita, MMMU), demonstrating strong reasoning and generalization capabilities. Notably, our SophiaVL-R1-7B even outperforms LLaVA-OneVision-72B on most benchmarks, despite the latter having 10 times more parameters. All code, models, and datasets are made publicly available at https://github.com/kxfan2002/SophiaVL-R1.
comment: Project page:https://github.com/kxfan2002/SophiaVL-R1
Let Androids Dream of Electric Sheep: A Human-like Image Implication Understanding and Reasoning Framework
Metaphorical comprehension in images remains a critical challenge for AI systems, as existing models struggle to grasp the nuanced cultural, emotional, and contextual implications embedded in visual content. While multimodal large language models (MLLMs) excel in basic Visual Question Answer (VQA) tasks, they struggle with a fundamental limitation on image implication tasks: contextual gaps that obscure the relationships between different visual elements and their abstract meanings. Inspired by the human cognitive process, we propose Let Androids Dream (LAD), a novel framework for image implication understanding and reasoning. LAD addresses contextual missing through the three-stage framework: (1) Perception: converting visual information into rich and multi-level textual representations, (2) Search: iteratively searching and integrating cross-domain knowledge to resolve ambiguity, and (3) Reasoning: generating context-alignment image implication via explicit reasoning. Our framework with the lightweight GPT-4o-mini model achieves SOTA performance compared to 15+ MLLMs on English image implication benchmark and a huge improvement on Chinese benchmark, performing comparable with the GPT-4o model on Multiple-Choice Question (MCQ) and outperforms 36.7% on Open-Style Question (OSQ). Additionally, our work provides new insights into how AI can more effectively interpret image implications, advancing the field of vision-language reasoning and human-AI interaction. Our project is publicly available at https://github.com/MING-ZCH/Let-Androids-Dream-of-Electric-Sheep.
comment: 16 pages, 9 figures. Code & Dataset: https://github.com/MING-ZCH/Let-Androids-Dream-of-Electric-Sheep
CrossLMM: Decoupling Long Video Sequences from LMMs via Dual Cross-Attention Mechanisms
The advent of Large Multimodal Models (LMMs) has significantly enhanced Large Language Models (LLMs) to process and interpret diverse data modalities (e.g., image and video). However, as input complexity increases, particularly with long video sequences, the number of required tokens has grown significantly, leading to quadratically computational costs. This has made the efficient compression of video tokens in LMMs, while maintaining performance integrity, a pressing research challenge. In this paper, we introduce CrossLMM, decoupling long video sequences from LMMs via a dual cross-attention mechanism, which substantially reduces visual token quantity with minimal performance degradation. Specifically, we first implement a significant token reduction from pretrained visual encoders through a pooling methodology. Then, within LLM layers, we employ a visual-to-visual cross-attention mechanism, wherein the pooled visual tokens function as queries against the original visual token set. This module enables more efficient token utilization while retaining fine-grained informational fidelity. In addition, we introduce a text-to-visual cross-attention mechanism, for which the text tokens are enhanced through interaction with the original visual tokens, enriching the visual comprehension of the text tokens. Comprehensive empirical evaluation demonstrates that our approach achieves comparable or superior performance across diverse video-based LMM benchmarks, despite utilizing substantially fewer computational resources.
comment: Project page: https://github.com/shilinyan99/CrossLMM
Delving into RL for Image Generation with CoT: A Study on DPO vs. GRPO
Recent advancements underscore the significant role of Reinforcement Learning (RL) in enhancing the Chain-of-Thought (CoT) reasoning capabilities of large language models (LLMs). Two prominent RL algorithms, Direct Preference Optimization (DPO) and Group Relative Policy Optimization (GRPO), are central to these developments, showcasing different pros and cons. Autoregressive image generation, also interpretable as a sequential CoT reasoning process, presents unique challenges distinct from LLM-based CoT reasoning. These encompass ensuring text-image consistency, improving image aesthetic quality, and designing sophisticated reward models, rather than relying on simpler rule-based rewards. While recent efforts have extended RL to this domain, these explorations typically lack an in-depth analysis of the domain-specific challenges and the characteristics of different RL strategies. To bridge this gap, we provide the first comprehensive investigation of the GRPO and DPO algorithms in autoregressive image generation, evaluating their in-domain performance and out-of-domain generalization, while scrutinizing the impact of different reward models on their respective capabilities. Our findings reveal that GRPO and DPO exhibit distinct advantages, and crucially, that reward models possessing stronger intrinsic generalization capabilities potentially enhance the generalization potential of the applied RL algorithms. Furthermore, we systematically explore three prevalent scaling strategies to enhance both their in-domain and out-of-domain proficiency, deriving unique insights into efficiently scaling performance for each paradigm. We hope our study paves a new path for inspiring future work on developing more effective RL algorithms to achieve robust CoT reasoning in the realm of autoregressive image generation. Code is released at https://github.com/ZiyuGuo99/Image-Generation-CoT
comment: Code is released at https://github.com/ZiyuGuo99/Image-Generation-CoT
Interactive Post-Training for Vision-Language-Action Models
We introduce RIPT-VLA, a simple and scalable reinforcement-learning-based interactive post-training paradigm that fine-tunes pretrained Vision-Language-Action (VLA) models using only sparse binary success rewards. Existing VLA training pipelines rely heavily on offline expert demonstration data and supervised imitation, limiting their ability to adapt to new tasks and environments under low-data regimes. RIPT-VLA addresses this by enabling interactive post-training with a stable policy optimization algorithm based on dynamic rollout sampling and leave-one-out advantage estimation. RIPT-VLA has the following characteristics. First, it applies to various VLA models, resulting in an improvement on the lightweight QueST model by 21.2%, and the 7B OpenVLA-OFT model to an unprecedented 97.5% success rate. Second, it is computationally efficient and data-efficient: with only one demonstration, RIPT-VLA enables an unworkable SFT model (4%) to succeed with a 97% success rate within 15 iterations. Furthermore, we demonstrate that the policy learned by RIPT-VLA generalizes across different tasks and scenarios and is robust to the initial state context. These results highlight RIPT-VLA as a practical and effective paradigm for post-training VLA models through minimal supervision.
comment: Project page: https://ariostgx.github.io/ript_vla/
Multi-SpatialMLLM: Multi-Frame Spatial Understanding with Multi-Modal Large Language Models
Multi-modal large language models (MLLMs) have rapidly advanced in visual tasks, yet their spatial understanding remains limited to single images, leaving them ill-suited for robotics and other real-world applications that require multi-frame reasoning. In this paper, we propose a framework to equip MLLMs with robust multi-frame spatial understanding by integrating depth perception, visual correspondence, and dynamic perception. Central to our approach is the MultiSPA dataset, a novel, large-scale collection of more than 27 million samples spanning diverse 3D and 4D scenes. Alongside MultiSPA, we introduce a comprehensive benchmark that tests a wide spectrum of spatial tasks under uniform metrics. Our resulting model, Multi-SpatialMLLM, achieves significant gains over baselines and proprietary systems, demonstrating scalable, generalizable multi-frame reasoning. We further observe multi-task benefits and early indications of emergent capabilities in challenging scenarios, and showcase how our model can serve as a multi-frame reward annotator for robotics.
comment: 24 pages. An MLLM, dataset, and benchmark for multi-frame spatial understanding. Project page: https://runsenxu.com/projects/Multi-SpatialMLLM
When Are Concepts Erased From Diffusion Models?
Concept erasure, the ability to selectively prevent a model from generating specific concepts, has attracted growing interest, with various approaches emerging to address the challenge. However, it remains unclear how thoroughly these methods erase the target concept. We begin by proposing two conceptual models for the erasure mechanism in diffusion models: (i) reducing the likelihood of generating the target concept, and (ii) interfering with the model's internal guidance mechanisms. To thoroughly assess whether a concept has been truly erased from the model, we introduce a suite of independent evaluations. Our evaluation framework includes adversarial attacks, novel probing techniques, and analysis of the model's alternative generations in place of the erased concept. Our results shed light on the tension between minimizing side effects and maintaining robustness to adversarial prompts. Broadly, our work underlines the importance of comprehensive evaluation for erasure in diffusion models.
comment: Project Page: https://nyu-dice-lab.github.io/when-are-concepts-erased/
SpatialScore: Towards Unified Evaluation for Multimodal Spatial Understanding
Multimodal large language models (MLLMs) have achieved impressive success in question-answering tasks, yet their capabilities for spatial understanding are less explored. This work investigates a critical question: do existing MLLMs possess 3D spatial perception and understanding abilities? Concretely, we make the following contributions in this paper: (i) we introduce VGBench, a benchmark specifically designed to assess MLLMs for visual geometry perception, e.g., camera pose and motion estimation; (ii) we propose SpatialScore, the most comprehensive and diverse multimodal spatial understanding benchmark to date, integrating VGBench with relevant data from the other 11 existing datasets. This benchmark comprises 28K samples across various spatial understanding tasks, modalities, and QA formats, along with a carefully curated challenging subset, SpatialScore-Hard; (iii) we develop SpatialAgent, a novel multi-agent system incorporating 9 specialized tools for spatial understanding, supporting both Plan-Execute and ReAct reasoning paradigms; (iv) we conduct extensive evaluations to reveal persistent challenges in spatial reasoning while demonstrating the effectiveness of SpatialAgent. We believe SpatialScore will offer valuable insights and serve as a rigorous benchmark for the next evolution of MLLMs.
comment: Technical Report; Project Page: https://haoningwu3639.github.io/SpatialScore
Learning Adaptive and Temporally Causal Video Tokenization in a 1D Latent Space
We propose AdapTok, an adaptive temporal causal video tokenizer that can flexibly allocate tokens for different frames based on video content. AdapTok is equipped with a block-wise masking strategy that randomly drops tail tokens of each block during training, and a block causal scorer to predict the reconstruction quality of video frames using different numbers of tokens. During inference, an adaptive token allocation strategy based on integer linear programming is further proposed to adjust token usage given predicted scores. Such design allows for sample-wise, content-aware, and temporally dynamic token allocation under a controllable overall budget. Extensive experiments for video reconstruction and generation on UCF-101 and Kinetics-600 demonstrate the effectiveness of our approach. Without additional image data, AdapTok consistently improves reconstruction quality and generation performance under different token budgets, allowing for more scalable and token-efficient generative video modeling.
comment: Code: https://github.com/VisionXLab/AdapTok
Deep mineralogical segmentation of thin section images based on QEMSCAN maps
Interpreting the mineralogical aspects of rock thin sections is an important task for oil and gas reservoirs evaluation. However, human analysis tend to be subjective and laborious. Technologies like QEMSCAN(R) are designed to automate the mineralogical mapping process, but also suffer from limitations like high monetary costs and time-consuming analysis. This work proposes a Convolutional Neural Network model for automatic mineralogical segmentation of thin section images of carbonate rocks. The model is able to mimic the QEMSCAN mapping itself in a low-cost, generalized and efficient manner. For this, the U-Net semantic segmentation architecture is trained on plane and cross polarized thin section images using the corresponding QEMSCAN maps as target, which is an approach not widely explored. The model was instructed to differentiate occurrences of Calcite, Dolomite, Mg-Clay Minerals, Quartz, Pores and the remaining mineral phases as an unique class named "Others", while it was validated on rock facies both seen and unseen during training, in order to address its generalization capability. Since the images and maps are provided in different resolutions, image registration was applied to align then spatially. The study reveals that the quality of the segmentation is very much dependent on these resolution differences and on the variety of learnable rock textures. However, it shows promising results, especially with regard to the proper delineation of minerals boundaries on solid textures and precise estimation of the minerals distributions, describing a nearly linear relationship between expected and predicted distributions, with coefficient of determination (R^2) superior to 0.97 for seen facies and 0.88 for unseen.
CoMo: Learning Continuous Latent Motion from Internet Videos for Scalable Robot Learning
Learning latent motion from Internet videos is crucial for building generalist robots. However, existing discrete latent action methods suffer from information loss and struggle with complex and fine-grained dynamics. We propose CoMo, which aims to learn more informative continuous motion representations from diverse, internet-scale videos. CoMo employs a early temporal feature difference mechanism to prevent model collapse and suppress static appearance noise, effectively discouraging shortcut learning problem. Furthermore, guided by the information bottleneck principle, we constrain the latent motion embedding dimensionality to achieve a better balance between retaining sufficient action-relevant information and minimizing the inclusion of action-irrelevant appearance noise. Additionally, we also introduce two new metrics for more robustly and affordably evaluating motion and guiding motion learning methods development: (i) the linear probing MSE of action prediction, and (ii) the cosine similarity between past-to-current and future-to-current motion embeddings. Critically, CoMo exhibits strong zero-shot generalization, enabling it to generate continuous pseudo actions for previously unseen video domains. This capability facilitates unified policy joint learning using pseudo actions derived from various action-less video datasets (such as cross-embodiment videos and, notably, human demonstration videos), potentially augmented with limited labeled robot data. Extensive experiments show that policies co-trained with CoMo pseudo actions achieve superior performance with both diffusion and autoregressive architectures in simulated and real-world settings.
comment: 18 pages, 7 figures
PAEFF: Precise Alignment and Enhanced Gated Feature Fusion for Face-Voice Association
We study the task of learning association between faces and voices, which is gaining interest in the multimodal community lately. These methods suffer from the deliberate crafting of negative mining procedures as well as the reliance on the distant margin parameter. These issues are addressed by learning a joint embedding space in which orthogonality constraints are applied to the fused embeddings of faces and voices. However, embedding spaces of faces and voices possess different characteristics and require spaces to be aligned before fusing them. To this end, we propose a method that accurately aligns the embedding spaces and fuses them with an enhanced gated fusion thereby improving the performance of face-voice association. Extensive experiments on the VoxCeleb dataset reveals the merits of the proposed approach.
comment: Accepted at InterSpeech 2025
Seeing through Satellite Images at Street Views ICCV 2023
This paper studies the task of SatStreet-view synthesis, which aims to render photorealistic street-view panorama images and videos given any satellite image and specified camera positions or trajectories. We formulate to learn neural radiance field from paired images captured from satellite and street viewpoints, which comes to be a challenging learning problem due to the sparse-view natural and the extremely-large viewpoint changes between satellite and street-view images. We tackle the challenges based on a task-specific observation that street-view specific elements, including the sky and illumination effects are only visible in street-view panoramas, and present a novel approach Sat2Density++ to accomplish the goal of photo-realistic street-view panoramas rendering by modeling these street-view specific in neural networks. In the experiments, our method is testified on both urban and suburban scene datasets, demonstrating that Sat2Density++ is capable of rendering photorealistic street-view panoramas that are consistent across multiple views and faithful to the satellite image.
comment: Project page: https://qianmingduowan.github.io/sat2density-pp/, journal extension of ICCV 2023 conference paper 'Sat2Density: Faithful Density Learning from Satellite-Ground Image Pairs', submitted to TPAMI
Native Segmentation Vision Transformers
Uniform downsampling remains the de facto standard for reducing spatial resolution in vision backbones. In this work, we propose an alternative design built around a content-aware spatial grouping layer, that dynamically assigns tokens to a reduced set based on image boundaries and their semantic content. Stacking our grouping layer across consecutive backbone stages results in hierarchical segmentation that arises natively in the feature extraction process, resulting in our coined Native Segmentation Vision Transformer. We show that a careful design of our architecture enables the emergence of strong segmentation masks solely from grouping layers, that is, without additional segmentation-specific heads. This sets the foundation for a new paradigm of native, backbone-level segmentation, which enables strong zero-shot results without mask supervision, as well as a minimal and efficient standalone model design for downstream segmentation tasks. Our project page is https://research.nvidia.com/labs/dvl/projects/native-segmentation.
An Effective Training Framework for Light-Weight Automatic Speech Recognition Models
Recent advancement in deep learning encouraged developing large automatic speech recognition (ASR) models that achieve promising results while ignoring computational and memory constraints. However, deploying such models on low resource devices is impractical despite of their favorable performance. Existing approaches (pruning, distillation, layer skip etc.) transform the large models into smaller ones at the cost of significant performance degradation or require prolonged training of smaller models for better performance. To address these issues, we introduce an efficacious two-step representation learning based approach capable of producing several small sized models from a single large model ensuring considerably better performance in limited number of epochs. Comprehensive experimentation on ASR benchmarks reveals the efficacy of our approach, achieving three-fold training speed-up and up to 12.54% word error rate improvement.
comment: Accepted at InterSpeech 2025
Dimple: Discrete Diffusion Multimodal Large Language Model with Parallel Decoding
In this work, we propose Dimple, the first Discrete Diffusion Multimodal Large Language Model (DMLLM). We observe that training with a purely discrete diffusion approach leads to significant training instability, suboptimal performance, and severe length bias issues. To address these challenges, we design a novel training paradigm that combines an initial autoregressive phase with a subsequent diffusion phase. This approach yields the Dimple-7B model, trained on the same dataset and using a similar training pipeline as LLaVA-NEXT. Dimple-7B ultimately surpasses LLaVA-NEXT in performance by 3.9%, demonstrating that DMLLM can achieve performance comparable to that of autoregressive models. To improve inference efficiency, we propose a decoding strategy termed confident decoding, which dynamically adjusts the number of tokens generated at each step, significantly reducing the number of generation iterations. In autoregressive models, the number of forward iterations during generation equals the response length. With confident decoding, however, the number of iterations needed by Dimple is even only $\frac{\text{response length}}{3}$. We also re-implement the prefilling technique in autoregressive models and demonstrate that it does not significantly impact performance on most benchmark evaluations, while offering a speedup of 1.5x to 7x. Additionally, we explore Dimple's capability to precisely control its response using structure priors. These priors enable structured responses in a manner distinct from instruction-based or chain-of-thought prompting, and allow fine-grained control over response format and length, which is difficult to achieve in autoregressive models. Overall, this work validates the feasibility and advantages of DMLLM and enhances its inference efficiency and controllability. Code and models are available at https://github.com/yu-rp/Dimple.
Extremely Simple Multimodal Outlier Synthesis for Out-of-Distribution Detection and Segmentation
Out-of-distribution (OOD) detection and segmentation are crucial for deploying machine learning models in safety-critical applications such as autonomous driving and robot-assisted surgery. While prior research has primarily focused on unimodal image data, real-world applications are inherently multimodal, requiring the integration of multiple modalities for improved OOD detection. A key challenge is the lack of supervision signals from unknown data, leading to overconfident predictions on OOD samples. To address this challenge, we propose Feature Mixing, an extremely simple and fast method for multimodal outlier synthesis with theoretical support, which can be further optimized to help the model better distinguish between in-distribution (ID) and OOD data. Feature Mixing is modality-agnostic and applicable to various modality combinations. Additionally, we introduce CARLA-OOD, a novel multimodal dataset for OOD segmentation, featuring synthetic OOD objects across diverse scenes and weather conditions. Extensive experiments on SemanticKITTI, nuScenes, CARLA-OOD datasets, and the MultiOOD benchmark demonstrate that Feature Mixing achieves state-of-the-art performance with a $10 \times$ to $370 \times$ speedup. Our source code and dataset will be available at https://github.com/mona4399/FeatureMixing.
Pursuing Temporal-Consistent Video Virtual Try-On via Dynamic Pose Interaction CVPR 2025
Video virtual try-on aims to seamlessly dress a subject in a video with a specific garment. The primary challenge involves preserving the visual authenticity of the garment while dynamically adapting to the pose and physique of the subject. While existing methods have predominantly focused on image-based virtual try-on, extending these techniques directly to videos often results in temporal inconsistencies. Most current video virtual try-on approaches alleviate this challenge by incorporating temporal modules, yet still overlook the critical spatiotemporal pose interactions between human and garment. Effective pose interactions in videos should not only consider spatial alignment between human and garment poses in each frame but also account for the temporal dynamics of human poses throughout the entire video. With such motivation, we propose a new framework, namely Dynamic Pose Interaction Diffusion Models (DPIDM), to leverage diffusion models to delve into dynamic pose interactions for video virtual try-on. Technically, DPIDM introduces a skeleton-based pose adapter to integrate synchronized human and garment poses into the denoising network. A hierarchical attention module is then exquisitely designed to model intra-frame human-garment pose interactions and long-term human pose dynamics across frames through pose-aware spatial and temporal attention mechanisms. Moreover, DPIDM capitalizes on a temporal regularized attention loss between consecutive frames to enhance temporal consistency. Extensive experiments conducted on VITON-HD, VVT and ViViD datasets demonstrate the superiority of our DPIDM against the baseline methods. Notably, DPIDM achieves VFID score of 0.506 on VVT dataset, leading to 60.5% improvement over the state-of-the-art GPD-VVTO approach.
comment: CVPR 2025
Incorporating Visual Correspondence into Diffusion Model for Virtual Try-On ICLR 2025
Diffusion models have shown preliminary success in virtual try-on (VTON) task. The typical dual-branch architecture comprises two UNets for implicit garment deformation and synthesized image generation respectively, and has emerged as the recipe for VTON task. Nevertheless, the problem remains challenging to preserve the shape and every detail of the given garment due to the intrinsic stochasticity of diffusion model. To alleviate this issue, we novelly propose to explicitly capitalize on visual correspondence as the prior to tame diffusion process instead of simply feeding the whole garment into UNet as the appearance reference. Specifically, we interpret the fine-grained appearance and texture details as a set of structured semantic points, and match the semantic points rooted in garment to the ones over target person through local flow warping. Such 2D points are then augmented into 3D-aware cues with depth/normal map of target person. The correspondence mimics the way of putting clothing on human body and the 3D-aware cues act as semantic point matching to supervise diffusion model training. A point-focused diffusion loss is further devised to fully take the advantage of semantic point matching. Extensive experiments demonstrate strong garment detail preservation of our approach, evidenced by state-of-the-art VTON performances on both VITON-HD and DressCode datasets. Code is publicly available at: https://github.com/HiDream-ai/SPM-Diff.
comment: ICLR 2025. Code is publicly available at: https://github.com/HiDream-ai/SPM-Diff
Creatively Upscaling Images with Global-Regional Priors
Contemporary diffusion models show remarkable capability in text-to-image generation, while still being limited to restricted resolutions (e.g., 1,024 X 1,024). Recent advances enable tuning-free higher-resolution image generation by recycling pre-trained diffusion models and extending them via regional denoising or dilated sampling/convolutions. However, these models struggle to simultaneously preserve global semantic structure and produce creative regional details in higher-resolution images. To address this, we present C-Upscale, a new recipe of tuning-free image upscaling that pivots on global-regional priors derived from given global prompt and estimated regional prompts via Multimodal LLM. Technically, the low-frequency component of low-resolution image is recognized as global structure prior to encourage global semantic consistency in high-resolution generation. Next, we perform regional attention control to screen cross-attention between global prompt and each region during regional denoising, leading to regional attention prior that alleviates object repetition issue. The estimated regional prompts containing rich descriptive details further act as regional semantic prior to fuel the creativity of regional detail generation. Both quantitative and qualitative evaluations demonstrate that our C-Upscale manages to generate ultra-high-resolution images (e.g., 4,096 X 4,096 and 8,192 X 8,192) with higher visual fidelity and more creative regional details.
comment: International Journal of Computer Vision (IJCV) 2025
OpenSeg-R: Improving Open-Vocabulary Segmentation via Step-by-Step Visual Reasoning
Open-Vocabulary Segmentation (OVS) has drawn increasing attention for its capacity to generalize segmentation beyond predefined categories. However, existing methods typically predict segmentation masks with simple forward inference, lacking explicit reasoning and interpretability. This makes it challenging for OVS model to distinguish similar categories in open-world settings due to the lack of contextual understanding and discriminative visual cues. To address this limitation, we propose a step-by-step visual reasoning framework for open-vocabulary segmentation, named OpenSeg-R. The proposed OpenSeg-R leverages Large Multimodal Models (LMMs) to perform hierarchical visual reasoning before segmentation. Specifically, we generate both generic and image-specific reasoning for each image, forming structured triplets that explain the visual reason for objects in a coarse-to-fine manner. Based on these reasoning steps, we can compose detailed description prompts, and feed them to the segmentor to produce more accurate segmentation masks. To the best of our knowledge, OpenSeg-R is the first framework to introduce explicit step-by-step visual reasoning into OVS. Experimental results demonstrate that OpenSeg-R significantly outperforms state-of-the-art methods on open-vocabulary semantic segmentation across five benchmark datasets. Moreover, it achieves consistent gains across all metrics on open-vocabulary panoptic segmentation. Qualitative results further highlight the effectiveness of our reasoning-guided framework in improving both segmentation precision and interpretability. Our code is publicly available at https://github.com/Hanzy1996/OpenSeg-R.
UniPhy: Learning a Unified Constitutive Model for Inverse Physics Simulation CVPR 2025
We propose UniPhy, a common latent-conditioned neural constitutive model that can encode the physical properties of diverse materials. At inference UniPhy allows `inverse simulation' i.e. inferring material properties by optimizing the scene-specific latent to match the available observations via differentiable simulation. In contrast to existing methods that treat such inference as system identification, UniPhy does not rely on user-specified material type information. Compared to prior neural constitutive modeling approaches which learn instance specific networks, the shared training across materials improves both, robustness and accuracy of the estimates. We train UniPhy using simulated trajectories across diverse geometries and materials -- elastic, plasticine, sand, and fluids (Newtonian & non-Newtonian). At inference, given an object with unknown material properties, UniPhy can infer the material properties via latent optimization to match the motion observations, and can then allow re-simulating the object under diverse scenarios. We compare UniPhy against prior inverse simulation methods, and show that the inference from UniPhy enables more accurate replay and re-simulation under novel conditions.
comment: CVPR 2025
MedFrameQA: A Multi-Image Medical VQA Benchmark for Clinical Reasoning
Existing medical VQA benchmarks mostly focus on single-image analysis, yet clinicians almost always compare a series of images before reaching a diagnosis. To better approximate this workflow, we introduce MedFrameQA -- the first benchmark that explicitly evaluates multi-image reasoning in medical VQA. To build MedFrameQA both at scale and in high-quality, we develop 1) an automated pipeline that extracts temporally coherent frames from medical videos and constructs VQA items whose content evolves logically across images, and 2) a multiple-stage filtering strategy, including model-based and manual review, to preserve data clarity, difficulty, and medical relevance. The resulting dataset comprises 2,851 VQA pairs (gathered from 9,237 high-quality frames in 3,420 videos), covering nine human body systems and 43 organs; every question is accompanied by two to five images. We comprehensively benchmark ten advanced Multimodal LLMs -- both proprietary and open source, with and without explicit reasoning modules -- on MedFrameQA. The evaluation challengingly reveals that all models perform poorly, with most accuracies below 50%, and accuracy fluctuates as the number of images per question increases. Error analysis further shows that models frequently ignore salient findings, mis-aggregate evidence across images, and propagate early mistakes through their reasoning chains; results also vary substantially across body systems, organs, and modalities. We hope this work can catalyze research on clinically grounded, multi-image reasoning and accelerate progress toward more capable diagnostic AI systems.
comment: 9 pages, 4 Figures Benchmark data: https://huggingface.co/datasets/SuhaoYu1020/MedFrameQA
Efficient Correlation Volume Sampling for Ultra-High-Resolution Optical Flow Estimation
Recent optical flow estimation methods often employ local cost sampling from a dense all-pairs correlation volume. This results in quadratic computational and memory complexity in the number of pixels. Although an alternative memory-efficient implementation with on-demand cost computation exists, this is slower in practice and therefore prior methods typically process images at reduced resolutions, missing fine-grained details. To address this, we propose a more efficient implementation of the all-pairs correlation volume sampling, still matching the exact mathematical operator as defined by RAFT. Our approach outperforms on-demand sampling by up to 90% while maintaining low memory usage, and performs on par with the default implementation with up to 95% lower memory usage. As cost sampling makes up a significant portion of the overall runtime, this can translate to up to 50% savings for the total end-to-end model inference in memory-constrained environments. Our evaluation of existing methods includes an 8K ultra-high-resolution dataset and an additional inference-time modification of the recent SEA-RAFT method. With this, we achieve state-of-the-art results at high resolutions both in accuracy and efficiency.
NovelSeek: When Agent Becomes the Scientist -- Building Closed-Loop System from Hypothesis to Verification
Artificial Intelligence (AI) is accelerating the transformation of scientific research paradigms, not only enhancing research efficiency but also driving innovation. We introduce NovelSeek, a unified closed-loop multi-agent framework to conduct Autonomous Scientific Research (ASR) across various scientific research fields, enabling researchers to tackle complicated problems in these fields with unprecedented speed and precision. NovelSeek highlights three key advantages: 1) Scalability: NovelSeek has demonstrated its versatility across 12 scientific research tasks, capable of generating innovative ideas to enhance the performance of baseline code. 2) Interactivity: NovelSeek provides an interface for human expert feedback and multi-agent interaction in automated end-to-end processes, allowing for the seamless integration of domain expert knowledge. 3) Efficiency: NovelSeek has achieved promising performance gains in several scientific fields with significantly less time cost compared to human efforts. For instance, in reaction yield prediction, it increased from 27.6% to 35.4% in just 12 hours; in enhancer activity prediction, accuracy rose from 0.52 to 0.79 with only 4 hours of processing; and in 2D semantic segmentation, precision advanced from 78.8% to 81.0% in a mere 30 hours.
comment: HomePage: https://alpha-innovator.github.io/NovelSeek-project-page
LLaDA-V: Large Language Diffusion Models with Visual Instruction Tuning
In this work, we introduce LLaDA-V, a purely diffusion-based Multimodal Large Language Model (MLLM) that integrates visual instruction tuning with masked diffusion models, representing a departure from the autoregressive paradigms dominant in current multimodal approaches. Built upon LLaDA, a representative large language diffusion model, LLaDA-V incorporates a vision encoder and MLP connector that projects visual features into the language embedding space, enabling effective multimodal alignment. Our empirical investigation reveals several intriguing results: First, LLaDA-V demonstrates promising multimodal performance despite its language model being weaker on purely textual tasks than counterparts like LLaMA3-8B and Qwen2-7B. When trained on the same instruction data, LLaDA-V is highly competitive to LLaMA3-V across multimodal tasks with better data scalability. It also narrows the performance gap to Qwen2-VL, suggesting the effectiveness of its architecture for multimodal tasks. Second, LLaDA-V achieves state-of-the-art performance in multimodal understanding compared to existing hybrid autoregressive-diffusion and purely diffusion-based MLLMs. Our findings suggest that large language diffusion models show promise in multimodal contexts and warrant further investigation in future research. Project page and codes: https://ml-gsai.github.io/LLaDA-V-demo/.
Backdoor Cleaning without External Guidance in MLLM Fine-tuning
Multimodal Large Language Models (MLLMs) are increasingly deployed in fine-tuning-as-a-service (FTaaS) settings, where user-submitted datasets adapt general-purpose models to downstream tasks. This flexibility, however, introduces serious security risks, as malicious fine-tuning can implant backdoors into MLLMs with minimal effort. In this paper, we observe that backdoor triggers systematically disrupt cross-modal processing by causing abnormal attention concentration on non-semantic regions--a phenomenon we term attention collapse. Based on this insight, we propose Believe Your Eyes (BYE), a data filtering framework that leverages attention entropy patterns as self-supervised signals to identify and filter backdoor samples. BYE operates via a three-stage pipeline: (1) extracting attention maps using the fine-tuned model, (2) computing entropy scores and profiling sensitive layers via bimodal separation, and (3) performing unsupervised clustering to remove suspicious samples. Unlike prior defenses, BYE equires no clean supervision, auxiliary labels, or model modifications. Extensive experiments across various datasets, models, and diverse trigger types validate BYE's effectiveness: it achieves near-zero attack success rates while maintaining clean-task performance, offering a robust and generalizable solution against backdoor threats in MLLMs.
DetailMaster: Can Your Text-to-Image Model Handle Long Prompts?
While recent text-to-image (T2I) models show impressive capabilities in synthesizing images from brief descriptions, their performance significantly degrades when confronted with long, detail-intensive prompts required in professional applications. We present DetailMaster, the first comprehensive benchmark specifically designed to evaluate T2I models' systematical abilities to handle extended textual inputs that contain complex compositional requirements. Our benchmark introduces four critical evaluation dimensions: Character Attributes, Structured Character Locations, Multi-Dimensional Scene Attributes, and Explicit Spatial/Interactive Relationships. The benchmark comprises long and detail-rich prompts averaging 284.89 tokens, with high quality validated by expert annotators. Evaluation on 7 general-purpose and 5 long-prompt-optimized T2I models reveals critical performance limitations: state-of-the-art models achieve merely ~50% accuracy in key dimensions like attribute binding and spatial reasoning, while all models showing progressive performance degradation as prompt length increases. Our analysis highlights systemic failures in structural comprehension and detail overload handling, motivating future research into architectures with enhanced compositional reasoning. We open-source the dataset, data curation code, and evaluation tools to advance detail-rich T2I generation and enable broad applications that would otherwise be infeasible due to the lack of a dedicated benchmark.
comment: 22 pages, 8 figures, 10 tables
RealEngine: Simulating Autonomous Driving in Realistic Context
Driving simulation plays a crucial role in developing reliable driving agents by providing controlled, evaluative environments. To enable meaningful assessments, a high-quality driving simulator must satisfy several key requirements: multi-modal sensing capabilities (e.g., camera and LiDAR) with realistic scene rendering to minimize observational discrepancies; closed-loop evaluation to support free-form trajectory behaviors; highly diverse traffic scenarios for thorough evaluation; multi-agent cooperation to capture interaction dynamics; and high computational efficiency to ensure affordability and scalability. However, existing simulators and benchmarks fail to comprehensively meet these fundamental criteria. To bridge this gap, this paper introduces RealEngine, a novel driving simulation framework that holistically integrates 3D scene reconstruction and novel view synthesis techniques to achieve realistic and flexible closed-loop simulation in the driving context. By leveraging real-world multi-modal sensor data, RealEngine reconstructs background scenes and foreground traffic participants separately, allowing for highly diverse and realistic traffic scenarios through flexible scene composition. This synergistic fusion of scene reconstruction and view synthesis enables photorealistic rendering across multiple sensor modalities, ensuring both perceptual fidelity and geometric accuracy. Building upon this environment, RealEngine supports three essential driving simulation categories: non-reactive simulation, safety testing, and multi-agent interaction, collectively forming a reliable and comprehensive benchmark for evaluating the real-world performance of driving agents.
Tracking the Flight: Exploring a Computational Framework for Analyzing Escape Responses in Plains Zebra (Equus quagga) CVPR 2025
Ethological research increasingly benefits from the growing affordability and accessibility of drones, which enable the capture of high-resolution footage of animal movement at fine spatial and temporal scales. However, analyzing such footage presents the technical challenge of separating animal movement from drone motion. While non-trivial, computer vision techniques such as image registration and Structure-from-Motion (SfM) offer practical solutions. For conservationists, open-source tools that are user-friendly, require minimal setup, and deliver timely results are especially valuable for efficient data interpretation. This study evaluates three approaches: a bioimaging-based registration technique, an SfM pipeline, and a hybrid interpolation method. We apply these to a recorded escape event involving 44 plains zebras, captured in a single drone video. Using the best-performing method, we extract individual trajectories and identify key behavioral patterns: increased alignment (polarization) during escape, a brief widening of spacing just before stopping, and tighter coordination near the group's center. These insights highlight the method's effectiveness and its potential to scale to larger datasets, contributing to broader investigations of collective animal behavior.
comment: Accepted to the CV4Animals workshop at CVPR 2025
T2I-ConBench: Text-to-Image Benchmark for Continual Post-training
Continual post-training adapts a single text-to-image diffusion model to learn new tasks without incurring the cost of separate models, but naive post-training causes forgetting of pretrained knowledge and undermines zero-shot compositionality. We observe that the absence of a standardized evaluation protocol hampers related research for continual post-training. To address this, we introduce T2I-ConBench, a unified benchmark for continual post-training of text-to-image models. T2I-ConBench focuses on two practical scenarios, item customization and domain enhancement, and analyzes four dimensions: (1) retention of generality, (2) target-task performance, (3) catastrophic forgetting, and (4) cross-task generalization. It combines automated metrics, human-preference modeling, and vision-language QA for comprehensive assessment. We benchmark ten representative methods across three realistic task sequences and find that no approach excels on all fronts. Even joint "oracle" training does not succeed for every task, and cross-task generalization remains unsolved. We release all datasets, code, and evaluation tools to accelerate research in continual post-training for text-to-image models.
Training-Free Efficient Video Generation via Dynamic Token Carving
Despite the remarkable generation quality of video Diffusion Transformer (DiT) models, their practical deployment is severely hindered by extensive computational requirements. This inefficiency stems from two key challenges: the quadratic complexity of self-attention with respect to token length and the multi-step nature of diffusion models. To address these limitations, we present Jenga, a novel inference pipeline that combines dynamic attention carving with progressive resolution generation. Our approach leverages two key insights: (1) early denoising steps do not require high-resolution latents, and (2) later steps do not require dense attention. Jenga introduces a block-wise attention mechanism that dynamically selects relevant token interactions using 3D space-filling curves, alongside a progressive resolution strategy that gradually increases latent resolution during generation. Experimental results demonstrate that Jenga achieves substantial speedups across multiple state-of-the-art video diffusion models while maintaining comparable generation quality (8.83$\times$ speedup with 0.01\% performance drop on VBench). As a plug-and-play solution, Jenga enables practical, high-quality video generation on modern hardware by reducing inference time from minutes to seconds -- without requiring model retraining. Code: https://github.com/dvlab-research/Jenga
comment: Project Page: https://julianjuaner.github.io/projects/jenga/ , 24 pages
Conditional Panoramic Image Generation via Masked Autoregressive Modeling
Recent progress in panoramic image generation has underscored two critical limitations in existing approaches. First, most methods are built upon diffusion models, which are inherently ill-suited for equirectangular projection (ERP) panoramas due to the violation of the identically and independently distributed (i.i.d.) Gaussian noise assumption caused by their spherical mapping. Second, these methods often treat text-conditioned generation (text-to-panorama) and image-conditioned generation (panorama outpainting) as separate tasks, relying on distinct architectures and task-specific data. In this work, we propose a unified framework, Panoramic AutoRegressive model (PAR), which leverages masked autoregressive modeling to address these challenges. PAR avoids the i.i.d. assumption constraint and integrates text and image conditioning into a cohesive architecture, enabling seamless generation across tasks. To address the inherent discontinuity in existing generative models, we introduce circular padding to enhance spatial coherence and propose a consistency alignment strategy to improve generation quality. Extensive experiments demonstrate competitive performance in text-to-image generation and panorama outpainting tasks while showcasing promising scalability and generalization capabilities.
Think or Not? Selective Reasoning via Reinforcement Learning for Vision-Language Models
Reinforcement Learning (RL) has proven to be an effective post-training strategy for enhancing reasoning in vision-language models (VLMs). Group Relative Policy Optimization (GRPO) is a recent prominent method that encourages models to generate complete reasoning traces before answering, leading to increased token usage and computational cost. Inspired by the human-like thinking process-where people skip reasoning for easy questions but think carefully when needed-we explore how to enable VLMs to first decide when reasoning is necessary. To realize this, we propose TON, a two-stage training strategy: (i) a supervised fine-tuning (SFT) stage with a simple yet effective 'thought dropout' operation, where reasoning traces are randomly replaced with empty thoughts. This introduces a think-or-not format that serves as a cold start for selective reasoning; (ii) a GRPO stage that enables the model to freely explore when to think or not, while maximizing task-aware outcome rewards. Experimental results show that TON can reduce the completion length by up to 90% compared to vanilla GRPO, without sacrificing performance or even improving it. Further evaluations across diverse vision-language tasks-covering a range of reasoning difficulties under both 3B and 7B models-consistently reveal that the model progressively learns to bypass unnecessary reasoning steps as training advances. These findings shed light on the path toward human-like reasoning patterns in reinforcement learning approaches. Our code is available at https://github.com/kokolerk/TON.
ATR-Bench: A Federated Learning Benchmark for Adaptation, Trust, and Reasoning
Federated Learning (FL) has emerged as a promising paradigm for collaborative model training while preserving data privacy across decentralized participants. As FL adoption grows, numerous techniques have been proposed to tackle its practical challenges. However, the lack of standardized evaluation across key dimensions hampers systematic progress and fair comparison of FL methods. In this work, we introduce ATR-Bench, a unified framework for analyzing federated learning through three foundational dimensions: Adaptation, Trust, and Reasoning. We provide an in-depth examination of the conceptual foundations, task formulations, and open research challenges associated with each theme. We have extensively benchmarked representative methods and datasets for adaptation to heterogeneous clients and trustworthiness in adversarial or unreliable environments. Due to the lack of reliable metrics and models for reasoning in FL, we only provide literature-driven insights for this dimension. ATR-Bench lays the groundwork for a systematic and holistic evaluation of federated learning with real-world relevance. We will make our complete codebase publicly accessible and a curated repository that continuously tracks new developments and research in the FL literature.
comment: Federated Learning Benchmark for Domain Adaptation, Trustworthiness, and Reasoning
LaViDa: A Large Diffusion Language Model for Multimodal Understanding
Modern Vision-Language Models (VLMs) can solve a wide range of tasks requiring visual reasoning. In real-world scenarios, desirable properties for VLMs include fast inference and controllable generation (e.g., constraining outputs to adhere to a desired format). However, existing autoregressive (AR) VLMs like LLaVA struggle in these aspects. Discrete diffusion models (DMs) offer a promising alternative, enabling parallel decoding for faster inference and bidirectional context for controllable generation through text-infilling. While effective in language-only settings, DMs' potential for multimodal tasks is underexplored. We introduce LaViDa, a family of VLMs built on DMs. We build LaViDa by equipping DMs with a vision encoder and jointly fine-tune the combined parts for multimodal instruction following. To address challenges encountered, LaViDa incorporates novel techniques such as complementary masking for effective training, prefix KV cache for efficient inference, and timestep shifting for high-quality sampling. Experiments show that LaViDa achieves competitive or superior performance to AR VLMs on multi-modal benchmarks such as MMMU, while offering unique advantages of DMs, including flexible speed-quality tradeoff, controllability, and bidirectional reasoning. On COCO captioning, LaViDa surpasses Open-LLaVa-Next-8B by +4.1 CIDEr with 1.92x speedup. On bidirectional tasks, it achieves +59% improvement on Constrained Poem Completion. These results demonstrate LaViDa as a strong alternative to AR VLMs. Code and models will be released in the camera-ready version.
comment: 25 pages, 8 figures
Fact-R1: Towards Explainable Video Misinformation Detection with Deep Reasoning
The rapid spread of multimodal misinformation on social media has raised growing concerns, while research on video misinformation detection remains limited due to the lack of large-scale, diverse datasets. Existing methods often overfit to rigid templates and lack deep reasoning over deceptive content. To address these challenges, we introduce FakeVV, a large-scale benchmark comprising over 100,000 video-text pairs with fine-grained, interpretable annotations. In addition, we further propose Fact-R1, a novel framework that integrates deep reasoning with collaborative rule-based reinforcement learning. Fact-R1 is trained through a three-stage process: (1) misinformation long-Chain-of-Thought (CoT) instruction tuning, (2) preference alignment via Direct Preference Optimization (DPO), and (3) Group Relative Policy Optimization (GRPO) using a novel verifiable reward function. This enables Fact-R1 to exhibit emergent reasoning behaviors comparable to those observed in advanced text-based reinforcement learning systems, but in the more complex multimodal misinformation setting. Our work establishes a new paradigm for misinformation detection, bridging large-scale video understanding, reasoning-guided alignment, and interpretable verification.
comment: 28 pages, 27 figures
From EduVisBench to EduVisAgent: A Benchmark and Multi-Agent Framework for Pedagogical Visualization
While foundation models (FMs), such as diffusion models and large vision-language models (LVLMs), have been widely applied in educational contexts, their ability to generate pedagogically effective visual explanations remains limited. Most existing approaches focus primarily on textual reasoning, overlooking the critical role of structured and interpretable visualizations in supporting conceptual understanding. To better assess the visual reasoning capabilities of FMs in educational settings, we introduce EduVisBench, a multi-domain, multi-level benchmark. EduVisBench features diverse STEM problem sets requiring visually grounded solutions, along with a fine-grained evaluation rubric informed by pedagogical theory. Our empirical analysis reveals that existing models frequently struggle with the inherent challenge of decomposing complex reasoning and translating it into visual representations aligned with human cognitive processes. To address these limitations, we propose EduVisAgent, a multi-agent collaborative framework that coordinates specialized agents for instructional planning, reasoning decomposition, metacognitive prompting, and visualization design. Experimental results show that EduVisAgent substantially outperforms all baselines, achieving a 40.2% improvement and delivering more educationally aligned visualizations. EduVisBench and EduVisAgent are available at https://github.com/aiming-lab/EduVisBench and https://github.com/aiming-lab/EduVisAgent.
comment: 16 pages; 7 figures
Action2Dialogue: Generating Character-Centric Narratives from Scene-Level Prompts
Recent advances in scene-based video generation have enabled systems to synthesize coherent visual narratives from structured prompts. However, a crucial dimension of storytelling -- character-driven dialogue and speech -- remains underexplored. In this paper, we present a modular pipeline that transforms action-level prompts into visually and auditorily grounded narrative dialogue, enriching visual storytelling with natural voice and character expression. Our method takes as input a pair of prompts per scene, where the first defines the setting and the second specifies a character's behavior. While a story generation model such as Text2Story generates the corresponding visual scene, we focus on generating expressive character utterances from these prompts and the scene image. We apply a pretrained vision-language encoder to extract a high-level semantic feature from the representative frame, capturing salient visual context. This feature is then combined with the structured prompts and used to guide a large language model in synthesizing natural, character-consistent dialogue. To ensure contextual consistency across scenes, we introduce a Recursive Narrative Bank that conditions each dialogue generation on the accumulated dialogue history from prior scenes. This approach enables characters to speak in ways that reflect their evolving goals and interactions throughout a story. Finally, we render each utterance as expressive, character-consistent speech, resulting in fully-voiced video narratives. Our framework requires no additional training and demonstrates applicability across a variety of story settings, from fantasy adventures to slice-of-life episodes.
comment: 18 pages, 5 figures
Perceptual Quality Assessment for Embodied AI
Embodied AI has developed rapidly in recent years, but it is still mainly deployed in laboratories, with various distortions in the Real-world limiting its application. Traditionally, Image Quality Assessment (IQA) methods are applied to predict human preferences for distorted images; however, there is no IQA method to assess the usability of an image in embodied tasks, namely, the perceptual quality for robots. To provide accurate and reliable quality indicators for future embodied scenarios, we first propose the topic: IQA for Embodied AI. Specifically, we (1) based on the Mertonian system and meta-cognitive theory, constructed a perception-cognition-decision-execution pipeline and defined a comprehensive subjective score collection process; (2) established the Embodied-IQA database, containing over 36k reference/distorted image pairs, with more than 5m fine-grained annotations provided by Vision Language Models/Vision Language Action-models/Real-world robots; (3) trained and validated the performance of mainstream IQA methods on Embodied-IQA, demonstrating the need to develop more accurate quality indicators for Embodied AI. We sincerely hope that through evaluation, we can promote the application of Embodied AI under complex distortions in the Real-world. Project page: https://github.com/lcysyzxdxc/EmbodiedIQA
Semi-Supervised State-Space Model with Dynamic Stacking Filter for Real-World Video Deraining CVPR 2025
Significant progress has been made in video restoration under rainy conditions over the past decade, largely propelled by advancements in deep learning. Nevertheless, existing methods that depend on paired data struggle to generalize effectively to real-world scenarios, primarily due to the disparity between synthetic and authentic rain effects. To address these limitations, we propose a dual-branch spatio-temporal state-space model to enhance rain streak removal in video sequences. Specifically, we design spatial and temporal state-space model layers to extract spatial features and incorporate temporal dependencies across frames, respectively. To improve multi-frame feature fusion, we derive a dynamic stacking filter, which adaptively approximates statistical filters for superior pixel-wise feature refinement. Moreover, we develop a median stacking loss to enable semi-supervised learning by generating pseudo-clean patches based on the sparsity prior of rain. To further explore the capacity of deraining models in supporting other vision-based tasks in rainy environments, we introduce a novel real-world benchmark focused on object detection and tracking in rainy conditions. Our method is extensively evaluated across multiple benchmarks containing numerous synthetic and real-world rainy videos, consistently demonstrating its superiority in quantitative metrics, visual quality, efficiency, and its utility for downstream tasks.
comment: 11 Pages, 8 figures, CVPR 2025 Oral Presentation
Hypergraph Tversky-Aware Domain Incremental Learning for Brain Tumor Segmentation with Missing Modalities
Existing methods for multimodal MRI segmentation with missing modalities typically assume that all MRI modalities are available during training. However, in clinical practice, some modalities may be missing due to the sequential nature of MRI acquisition, leading to performance degradation. Furthermore, retraining models to accommodate newly available modalities can be inefficient and may cause overfitting, potentially compromising previously learned knowledge. To address these challenges, we propose Replay-based Hypergraph Domain Incremental Learning (ReHyDIL) for brain tumor segmentation with missing modalities. ReHyDIL leverages Domain Incremental Learning (DIL) to enable the segmentation model to learn from newly acquired MRI modalities without forgetting previously learned information. To enhance segmentation performance across diverse patient scenarios, we introduce the Cross-Patient Hypergraph Segmentation Network (CHSNet), which utilizes hypergraphs to capture high-order associations between patients. Additionally, we incorporate Tversky-Aware Contrastive (TAC) loss to effectively mitigate information imbalance both across and within different modalities. Extensive experiments on the BraTS2019 dataset demonstrate that ReHyDIL outperforms state-of-the-art methods, achieving an improvement of over 2\% in the Dice Similarity Coefficient across various tumor regions. Our code is available at ReHyDIL.
SOLVE: Synergy of Language-Vision and End-to-End Networks for Autonomous Driving CVPR 2025
The integration of Vision-Language Models (VLMs) into autonomous driving systems has shown promise in addressing key challenges such as learning complexity, interpretability, and common-sense reasoning. However, existing approaches often struggle with efficient integration and realtime decision-making due to computational demands. In this paper, we introduce SOLVE, an innovative framework that synergizes VLMs with end-to-end (E2E) models to enhance autonomous vehicle planning. Our approach emphasizes knowledge sharing at the feature level through a shared visual encoder, enabling comprehensive interaction between VLM and E2E components. We propose a Trajectory Chain-of-Thought (T-CoT) paradigm, which progressively refines trajectory predictions, reducing uncertainty and improving accuracy. By employing a temporal decoupling strategy, SOLVE achieves efficient cooperation by aligning high-quality VLM outputs with E2E real-time performance. Evaluated on the nuScenes dataset, our method demonstrates significant improvements in trajectory prediction accuracy, paving the way for more robust and reliable autonomous driving systems.
comment: Accepted by CVPR 2025
V2V: Scaling Event-Based Vision through Efficient Video-to-Voxel Simulation
Event-based cameras offer unique advantages such as high temporal resolution, high dynamic range, and low power consumption. However, the massive storage requirements and I/O burdens of existing synthetic data generation pipelines and the scarcity of real data prevent event-based training datasets from scaling up, limiting the development and generalization capabilities of event vision models. To address this challenge, we introduce Video-to-Voxel (V2V), an approach that directly converts conventional video frames into event-based voxel grid representations, bypassing the storage-intensive event stream generation entirely. V2V enables a 150 times reduction in storage requirements while supporting on-the-fly parameter randomization for enhanced model robustness. Leveraging this efficiency, we train several video reconstruction and optical flow estimation model architectures on 10,000 diverse videos totaling 52 hours--an order of magnitude larger than existing event datasets, yielding substantial improvements.
REOBench: Benchmarking Robustness of Earth Observation Foundation Models
Earth observation foundation models have shown strong generalization across multiple Earth observation tasks, but their robustness under real-world perturbations remains underexplored. To bridge this gap, we introduce REOBench, the first comprehensive benchmark for evaluating the robustness of Earth observation foundation models across six tasks and twelve types of image corruptions, including both appearance-based and geometric perturbations. To ensure realistic and fine-grained evaluation, our benchmark focuses on high-resolution optical remote sensing images, which are widely used in critical applications such as urban planning and disaster response. We conduct a systematic evaluation of a broad range of models trained using masked image modeling, contrastive learning, and vision-language pre-training paradigms. Our results reveal that (1) existing Earth observation foundation models experience significant performance degradation when exposed to input corruptions. (2) The severity of degradation varies across tasks, model architectures, backbone sizes, and types of corruption, with performance drop varying from less than 1% to over 20%. (3) Vision-language models show enhanced robustness, particularly in multimodal tasks. REOBench underscores the vulnerability of current Earth observation foundation models to real-world corruptions and provides actionable insights for developing more robust and reliable models.
comment: 24 pages
REPA Works Until It Doesn't: Early-Stopped, Holistic Alignment Supercharges Diffusion Training
Diffusion Transformers (DiTs) deliver state-of-the-art image quality, yet their training remains notoriously slow. A recent remedy -- representation alignment (REPA) that matches DiT hidden features to those of a non-generative teacher (e.g. DINO) -- dramatically accelerates the early epochs but plateaus or even degrades performance later. We trace this failure to a capacity mismatch: once the generative student begins modelling the joint data distribution, the teacher's lower-dimensional embeddings and attention patterns become a straitjacket rather than a guide. We then introduce HASTE (Holistic Alignment with Stage-wise Termination for Efficient training), a two-phase schedule that keeps the help and drops the hindrance. Phase I applies a holistic alignment loss that simultaneously distills attention maps (relational priors) and feature projections (semantic anchors) from the teacher into mid-level layers of the DiT, yielding rapid convergence. Phase II then performs one-shot termination that deactivates the alignment loss, once a simple trigger such as a fixed iteration is hit, freeing the DiT to focus on denoising and exploit its generative capacity. HASTE speeds up training of diverse DiTs without architecture changes. On ImageNet 256X256, it reaches the vanilla SiT-XL/2 baseline FID in 50 epochs and matches REPA's best FID in 500 epochs, amounting to a 28X reduction in optimization steps. HASTE also improves text-to-image DiTs on MS-COCO, demonstrating to be a simple yet principled recipe for efficient diffusion training across various tasks. Our code is available at https://github.com/NUS-HPC-AI-Lab/HASTE .
comment: 24 pages
Four Eyes Are Better Than Two: Harnessing the Collaborative Potential of Large Models via Differentiated Thinking and Complementary Ensembles
In this paper, we present the runner-up solution for the Ego4D EgoSchema Challenge at CVPR 2025 (Confirmed on May 20, 2025). Inspired by the success of large models, we evaluate and leverage leading accessible multimodal large models and adapt them to video understanding tasks via few-shot learning and model ensemble strategies. Specifically, diversified prompt styles and process paradigms are systematically explored and evaluated to effectively guide the attention of large models, fully unleashing their powerful generalization and adaptability abilities. Experimental results demonstrate that, with our carefully designed approach, directly utilizing an individual multimodal model already outperforms the previous state-of-the-art (SOTA) method which includes several additional processes. Besides, an additional stage is further introduced that facilitates the cooperation and ensemble of periodic results, which achieves impressive performance improvements. We hope this work serves as a valuable reference for the practical application of large models and inspires future research in the field.
Single Domain Generalization for Few-Shot Counting via Universal Representation Matching CVPR 2025
Few-shot counting estimates the number of target objects in an image using only a few annotated exemplars. However, domain shift severely hinders existing methods to generalize to unseen scenarios. This falls into the realm of single domain generalization that remains unexplored in few-shot counting. To solve this problem, we begin by analyzing the main limitations of current methods, which typically follow a standard pipeline that extract the object prototypes from exemplars and then match them with image feature to construct the correlation map. We argue that existing methods overlook the significance of learning highly generalized prototypes. Building on this insight, we propose the first single domain generalization few-shot counting model, Universal Representation Matching, termed URM. Our primary contribution is the discovery that incorporating universal vision-language representations distilled from a large scale pretrained vision-language model into the correlation construction process substantially improves robustness to domain shifts without compromising in domain performance. As a result, URM achieves state-of-the-art performance on both in domain and the newly introduced domain generalization setting.
comment: CVPR 2025
Mitigating Overfitting in Medical Imaging: Self-Supervised Pretraining vs. ImageNet Transfer Learning for Dermatological Diagnosis
Deep learning has transformed computer vision but relies heavily on large labeled datasets and computational resources. Transfer learning, particularly fine-tuning pretrained models, offers a practical alternative; however, models pretrained on natural image datasets such as ImageNet may fail to capture domain-specific characteristics in medical imaging. This study introduces an unsupervised learning framework that extracts high-value dermatological features instead of relying solely on ImageNet-based pretraining. We employ a Variational Autoencoder (VAE) trained from scratch on a proprietary dermatological dataset, allowing the model to learn a structured and clinically relevant latent space. This self-supervised feature extractor is then compared to an ImageNet-pretrained backbone under identical classification conditions, highlighting the trade-offs between general-purpose and domain-specific pretraining. Our results reveal distinct learning patterns. The self-supervised model achieves a final validation loss of 0.110 (-33.33%), while the ImageNet-pretrained model stagnates at 0.100 (-16.67%), indicating overfitting. Accuracy trends confirm this: the self-supervised model improves from 45% to 65% (+44.44%) with a near-zero overfitting gap, whereas the ImageNet-pretrained model reaches 87% (+50.00%) but plateaus at 75% (+19.05%), with its overfitting gap increasing to +0.060. These findings suggest that while ImageNet pretraining accelerates convergence, it also amplifies overfitting on non-clinically relevant features. In contrast, self-supervised learning achieves steady improvements, stronger generalization, and superior adaptability, underscoring the importance of domain-specific feature extraction in medical imaging.
comment: 6 pages, 2 tables, 2 figures
RBench-V: A Primary Assessment for Visual Reasoning Models with Multi-modal Outputs
The rapid advancement of native multi-modal models and omni-models, exemplified by GPT-4o, Gemini, and o3, with their capability to process and generate content across modalities such as text and images, marks a significant milestone in the evolution of intelligence. Systematic evaluation of their multi-modal output capabilities in visual thinking processes (also known as multi-modal chain of thought, M-CoT) becomes critically important. However, existing benchmarks for evaluating multi-modal models primarily focus on assessing multi-modal inputs and text-only reasoning while neglecting the importance of reasoning through multi-modal outputs. In this paper, we present a benchmark, dubbed RBench-V, designed to assess models' vision-indispensable reasoning abilities. To construct RBench-V, we carefully hand-pick 803 questions covering math, physics, counting, and games. Unlike previous benchmarks that typically specify certain input modalities, RBench-V presents problems centered on multi-modal outputs, which require image manipulation such as generating novel images and constructing auxiliary lines to support the reasoning process. We evaluate numerous open- and closed-source models on RBench-V, including o3, Gemini 2.5 Pro, Qwen2.5-VL, etc. Even the best-performing model, o3, achieves only 25.8% accuracy on RBench-V, far below the human score of 82.3%, highlighting that current models struggle to leverage multi-modal reasoning. Data and code are available at https://evalmodels.github.io/rbenchv
comment: 12 pages
Self-Rewarding Large Vision-Language Models for Optimizing Prompts in Text-to-Image Generation
Text-to-image models are powerful for producing high-quality images based on given text prompts, but crafting these prompts often requires specialized vocabulary. To address this, existing methods train rewriting models with supervision from large amounts of manually annotated data and trained aesthetic assessment models. To alleviate the dependence on data scale for model training and the biases introduced by trained models, we propose a novel prompt optimization framework, designed to rephrase a simple user prompt into a sophisticated prompt to a text-to-image model. Specifically, we employ the large vision language models (LVLMs) as the solver to rewrite the user prompt, and concurrently, employ LVLMs as a reward model to score the aesthetics and alignment of the images generated by the optimized prompt. Instead of laborious human feedback, we exploit the prior knowledge of the LVLM to provide rewards, i.e., AI feedback. Simultaneously, the solver and the reward model are unified into one model and iterated in reinforcement learning to achieve self-improvement by giving a solution and judging itself. Results on two popular datasets demonstrate that our method outperforms other strong competitors.
Mesh-RFT: Enhancing Mesh Generation via Fine-grained Reinforcement Fine-Tuning
Existing pretrained models for 3D mesh generation often suffer from data biases and produce low-quality results, while global reinforcement learning (RL) methods rely on object-level rewards that struggle to capture local structure details. To address these challenges, we present \textbf{Mesh-RFT}, a novel fine-grained reinforcement fine-tuning framework that employs Masked Direct Preference Optimization (M-DPO) to enable localized refinement via quality-aware face masking. To facilitate efficient quality evaluation, we introduce an objective topology-aware scoring system to evaluate geometric integrity and topological regularity at both object and face levels through two metrics: Boundary Edge Ratio (BER) and Topology Score (TS). By integrating these metrics into a fine-grained RL strategy, Mesh-RFT becomes the first method to optimize mesh quality at the granularity of individual faces, resolving localized errors while preserving global coherence. Experiment results show that our M-DPO approach reduces Hausdorff Distance (HD) by 24.6\% and improves Topology Score (TS) by 3.8\% over pre-trained models, while outperforming global DPO methods with a 17.4\% HD reduction and 4.9\% TS gain. These results demonstrate Mesh-RFT's ability to improve geometric integrity and topological regularity, achieving new state-of-the-art performance in production-ready mesh generation. Project Page: \href{https://hitcslj.github.io/mesh-rft/}{this https URL}.
comment: Under Review
Representation Discrepancy Bridging Method for Remote Sensing Image-Text Retrieval
Remote Sensing Image-Text Retrieval (RSITR) plays a critical role in geographic information interpretation, disaster monitoring, and urban planning by establishing semantic associations between image and textual descriptions. Existing Parameter-Efficient Fine-Tuning (PEFT) methods for Vision-and-Language Pre-training (VLP) models typically adopt symmetric adapter structures for exploring cross-modal correlations. However, the strong discriminative nature of text modality may dominate the optimization process and inhibits image representation learning. The nonnegligible imbalanced cross-modal optimization remains a bottleneck to enhancing the model performance. To address this issue, this study proposes a Representation Discrepancy Bridging (RDB) method for the RSITR task. On the one hand, a Cross-Modal Asymmetric Adapter (CMAA) is designed to enable modality-specific optimization and improve feature alignment. The CMAA comprises a Visual Enhancement Adapter (VEA) and a Text Semantic Adapter (TSA). VEA mines fine-grained image features by Differential Attention (DA) mechanism, while TSA identifies key textual semantics through Hierarchical Attention (HA) mechanism. On the other hand, this study extends the traditional single-task retrieval framework to a dual-task optimization framework and develops a Dual-Task Consistency Loss (DTCL). The DTCL improves cross-modal alignment robustness through an adaptive weighted combination of cross-modal, classification, and exponential moving average consistency constraints. Experiments on RSICD and RSITMD datasets show that the proposed RDB method achieves a 6%-11% improvement in mR metrics compared to state-of-the-art PEFT methods and a 1.15%-2% improvement over the full fine-tuned GeoRSCLIP model.
Robust Vision-Based Runway Detection through Conformal Prediction and Conformal mAP
We explore the use of conformal prediction to provide statistical uncertainty guarantees for runway detection in vision-based landing systems (VLS). Using fine-tuned YOLOv5 and YOLOv6 models on aerial imagery, we apply conformal prediction to quantify localization reliability under user-defined risk levels. We also introduce Conformal mean Average Precision (C-mAP), a novel metric aligning object detection performance with conformal guarantees. Our results show that conformal prediction can improve the reliability of runway detection by quantifying uncertainty in a statistically sound way, increasing safety on-board and paving the way for certification of ML system in the aerospace domain.
Masked Conditioning for Deep Generative Models
Datasets in engineering domains are often small, sparsely labeled, and contain numerical as well as categorical conditions. Additionally. computational resources are typically limited in practical applications which hinders the adoption of generative models for engineering tasks. We introduce a novel masked-conditioning approach, that enables generative models to work with sparse, mixed-type data. We mask conditions during training to simulate sparse conditions at inference time. For this purpose, we explore the use of various sparsity schedules that show different strengths and weaknesses. In addition, we introduce a flexible embedding that deals with categorical as well as numerical conditions. We integrate our method into an efficient variational autoencoder as well as a latent diffusion model and demonstrate the applicability of our approach on two engineering-related datasets of 2D point clouds and images. Finally, we show that small models trained on limited data can be coupled with large pretrained foundation models to improve generation quality while retaining the controllability induced by our conditioning scheme.
SEDD-PCC: A Single Encoder-Dual Decoder Framework For End-To-End Learned Point Cloud Compression
To encode point clouds containing both geometry and attributes, most learning-based compression schemes treat geometry and attribute coding separately, employing distinct encoders and decoders. This not only increases computational complexity but also fails to fully exploit shared features between geometry and attributes. To address this limitation, we propose SEDD-PCC, an end-to-end learning-based framework for lossy point cloud compression that jointly compresses geometry and attributes. SEDD-PCC employs a single encoder to extract shared geometric and attribute features into a unified latent space, followed by dual specialized decoders that sequentially reconstruct geometry and attributes. Additionally, we incorporate knowledge distillation to enhance feature representation learning from a teacher model, further improving coding efficiency. With its simple yet effective design, SEDD-PCC provides an efficient and practical solution for point cloud compression. Comparative evaluations against both rule-based and learning-based methods demonstrate its competitive performance, highlighting SEDD-PCC as a promising AI-driven compression approach.
KRIS-Bench: Benchmarking Next-Level Intelligent Image Editing Models
Recent advances in multi-modal generative models have enabled significant progress in instruction-based image editing. However, while these models produce visually plausible outputs, their capacity for knowledge-based reasoning editing tasks remains under-explored. In this paper, we introduce KRIS-Bench (Knowledge-based Reasoning in Image-editing Systems Benchmark), a diagnostic benchmark designed to assess models through a cognitively informed lens. Drawing from educational theory, KRIS-Bench categorizes editing tasks across three foundational knowledge types: Factual, Conceptual, and Procedural. Based on this taxonomy, we design 22 representative tasks spanning 7 reasoning dimensions and release 1,267 high-quality annotated editing instances. To support fine-grained evaluation, we propose a comprehensive protocol that incorporates a novel Knowledge Plausibility metric, enhanced by knowledge hints and calibrated through human studies. Empirical results on 10 state-of-the-art models reveal significant gaps in reasoning performance, highlighting the need for knowledge-centric benchmarks to advance the development of intelligent image editing systems.
comment: 39 pages, 36 figures
One-Step Diffusion-Based Image Compression with Semantic Distillation
While recent diffusion-based generative image codecs have shown impressive performance, their iterative sampling process introduces unpleasing latency. In this work, we revisit the design of a diffusion-based codec and argue that multi-step sampling is not necessary for generative compression. Based on this insight, we propose OneDC, a One-step Diffusion-based generative image Codec -- that integrates a latent compression module with a one-step diffusion generator. Recognizing the critical role of semantic guidance in one-step diffusion, we propose using the hyperprior as a semantic signal, overcoming the limitations of text prompts in representing complex visual content. To further enhance the semantic capability of the hyperprior, we introduce a semantic distillation mechanism that transfers knowledge from a pretrained generative tokenizer to the hyperprior codec. Additionally, we adopt a hybrid pixel- and latent-domain optimization to jointly enhance both reconstruction fidelity and perceptual realism. Extensive experiments demonstrate that OneDC achieves SOTA perceptual quality even with one-step generation, offering over 40% bitrate reduction and 20x faster decoding compared to prior multi-step diffusion-based codecs. Code will be released later.
On the use of Graphs for Satellite Image Time Series
The Earth's surface is subject to complex and dynamic processes, ranging from large-scale phenomena such as tectonic plate movements to localized changes associated with ecosystems, agriculture, or human activity. Satellite images enable global monitoring of these processes with extensive spatial and temporal coverage, offering advantages over in-situ methods. In particular, resulting satellite image time series (SITS) datasets contain valuable information. To handle their large volume and complexity, some recent works focus on the use of graph-based techniques that abandon the regular Euclidean structure of satellite data to work at an object level. Besides, graphs enable modelling spatial and temporal interactions between identified objects, which are crucial for pattern detection, classification and regression tasks. This paper is an effort to examine the integration of graph-based methods in spatio-temporal remote-sensing analysis. In particular, it aims to present a versatile graph-based pipeline to tackle SITS analysis. It focuses on the construction of spatio-temporal graphs from SITS and their application to downstream tasks. The paper includes a comprehensive review and two case studies, which highlight the potential of graph-based approaches for land cover mapping and water resource forecasting. It also discusses numerous perspectives to resolve current limitations and encourage future developments.
comment: This work has been submitted to the IEEE for possible publication
Semantic Compression of 3D Objects for Open and Collaborative Virtual Worlds
Traditional methods for 3D object compression operate only on structural information within the object vertices, polygons, and textures. These methods are effective at compression rates up to 10x for standard object sizes but quickly deteriorate at higher compression rates with texture artifacts, low-polygon counts, and mesh gaps. In contrast, semantic compression ignores structural information and operates directly on the core concepts to push to extreme levels of compression. In addition, it uses natural language as its storage format, which makes it natively human-readable and a natural fit for emerging applications built around large-scale, collaborative projects within augmented and virtual reality. It deprioritizes structural information like location, size, and orientation and predicts the missing information with state-of-the-art deep generative models. In this work, we construct a pipeline for 3D semantic compression from public generative models and explore the quality-compression frontier for 3D object compression. We apply this pipeline to achieve rates as high as 105x for 3D objects taken from the Objaverse dataset and show that semantic compression can outperform traditional methods in the important quality-preserving region around 100x compression.
comment: First two authors have equal contribution
Zero-Shot Anomaly Detection in Battery Thermal Images Using Visual Question Answering with Prior Knowledge
Batteries are essential for various applications, including electric vehicles and renewable energy storage, making safety and efficiency critical concerns. Anomaly detection in battery thermal images helps identify failures early, but traditional deep learning methods require extensive labeled data, which is difficult to obtain, especially for anomalies due to safety risks and high data collection costs. To overcome this, we explore zero-shot anomaly detection using Visual Question Answering (VQA) models, which leverage pretrained knowledge and textbased prompts to generalize across vision tasks. By incorporating prior knowledge of normal battery thermal behavior, we design prompts to detect anomalies without battery-specific training data. We evaluate three VQA models (ChatGPT-4o, LLaVa-13b, and BLIP-2) analyzing their robustness to prompt variations, repeated trials, and qualitative outputs. Despite the lack of finetuning on battery data, our approach demonstrates competitive performance compared to state-of-the-art models that are trained with the battery data. Our findings highlight the potential of VQA-based zero-shot learning for battery anomaly detection and suggest future directions for improving its effectiveness.
comment: Accepted in EUSIPCO 2025
R1-ShareVL: Incentivizing Reasoning Capability of Multimodal Large Language Models via Share-GRPO
In this work, we aim to incentivize the reasoning ability of Multimodal Large Language Models (MLLMs) via reinforcement learning (RL) and develop an effective approach that mitigates the sparse reward and advantage vanishing issues during RL. To this end, we propose Share-GRPO, a novel RL approach that tackle these issues by exploring and sharing diverse reasoning trajectories over expanded question space. Specifically, Share-GRPO first expands the question space for a given question via data transformation techniques, and then encourages MLLM to effectively explore diverse reasoning trajectories over the expanded question space and shares the discovered reasoning trajectories across the expanded questions during RL. In addition, Share-GRPO also shares reward information during advantage computation, which estimates solution advantages hierarchically across and within question variants, allowing more accurate estimation of relative advantages and improving the stability of policy training. Extensive evaluations over six widely-used reasoning benchmarks showcase the superior performance of our method. Code will be available at https://github.com/HJYao00/R1-ShareVL.
comment: Technical report
CoNav: Collaborative Cross-Modal Reasoning for Embodied Navigation
Embodied navigation demands comprehensive scene understanding and precise spatial reasoning. While image-text models excel at interpreting pixel-level color and lighting cues, 3D-text models capture volumetric structure and spatial relationships. However, unified fusion approaches that jointly fuse 2D images, 3D point clouds, and textual instructions face challenges in limited availability of triple-modality data and difficulty resolving conflicting beliefs among modalities. In this work, we introduce CoNav, a collaborative cross-modal reasoning framework where a pretrained 3D-text model explicitly guides an image-text navigation agent by providing structured spatial-semantic knowledge to resolve ambiguities during navigation. Specifically, we introduce Cross-Modal Belief Alignment, which operationalizes this cross-modal guidance by simply sharing textual hypotheses from the 3D-text model to the navigation agent. Through lightweight fine-tuning on a small 2D-3D-text corpus, the navigation agent learns to integrate visual cues with spatial-semantic knowledge derived from the 3D-text model, enabling effective reasoning in embodied navigation. CoNav achieves significant improvements on four standard embodied navigation benchmarks (R2R, CVDN, REVERIE, SOON) and two spatial reasoning benchmarks (ScanQA, SQA3D). Moreover, under close navigation Success Rate, CoNav often generates shorter paths compared to other methods (as measured by SPL), showcasing the potential and challenges of fusing data from different modalities in embodied navigation. Project Page: https://oceanhao.github.io/CoNav/
SD-MAD: Sign-Driven Few-shot Multi-Anomaly Detection in Medical Images
Medical anomaly detection (AD) is crucial for early clinical intervention, yet it faces challenges due to limited access to high-quality medical imaging data, caused by privacy concerns and data silos. Few-shot learning has emerged as a promising approach to alleviate these limitations by leveraging the large-scale prior knowledge embedded in vision-language models (VLMs). Recent advancements in few-shot medical AD have treated normal and abnormal cases as a one-class classification problem, often overlooking the distinction among multiple anomaly categories. Thus, in this paper, we propose a framework tailored for few-shot medical anomaly detection in the scenario where the identification of multiple anomaly categories is required. To capture the detailed radiological signs of medical anomaly categories, our framework incorporates diverse textual descriptions for each category generated by a Large-Language model, under the assumption that different anomalies in medical images may share common radiological signs in each category. Specifically, we introduce SD-MAD, a two-stage Sign-Driven few-shot Multi-Anomaly Detection framework: (i) Radiological signs are aligned with anomaly categories by amplifying inter-anomaly discrepancy; (ii) Aligned signs are selected further to mitigate the effect of the under-fitting and uncertain-sample issue caused by limited medical data, employing an automatic sign selection strategy at inference. Moreover, we propose three protocols to comprehensively quantify the performance of multi-anomaly detection. Extensive experiments illustrate the effectiveness of our method.
Zero-Shot Hyperspectral Pansharpening Using Hysteresis-Based Tuning for Spectral Quality Control
Hyperspectral pansharpening has received much attention in recent years due to technological and methodological advances that open the door to new application scenarios. However, research on this topic is only now gaining momentum. The most popular methods are still borrowed from the more mature field of multispectral pansharpening and often overlook the unique challenges posed by hyperspectral data fusion, such as i) the very large number of bands, ii) the overwhelming noise in selected spectral ranges, iii) the significant spectral mismatch between panchromatic and hyperspectral components, iv) a typically high resolution ratio. Imprecise data modeling especially affects spectral fidelity. Even state-of-the-art methods perform well in certain spectral ranges and much worse in others, failing to ensure consistent quality across all bands, with the risk of generating unreliable results. Here, we propose a hyperspectral pansharpening method that explicitly addresses this problem and ensures uniform spectral quality. To this end, a single lightweight neural network is used, with weights that adapt on the fly to each band. During fine-tuning, the spatial loss is turned on and off to ensure a fast convergence of the spectral loss to the desired level, according to a hysteresis-like dynamic. Furthermore, the spatial loss itself is appropriately redefined to account for nonlinear dependencies between panchromatic and spectral bands. Overall, the proposed method is fully unsupervised, with no prior training on external data, flexible, and low-complexity. Experiments on a recently published benchmarking toolbox show that it ensures excellent sharpening quality, competitive with the state-of-the-art, consistently across all bands. The software code and the full set of results are shared online on https://github.com/giu-guarino/rho-PNN.
Seeing Far and Clearly: Mitigating Hallucinations in MLLMs with Attention Causal Decoding CVPR 2025
Recent advancements in multimodal large language models (MLLMs) have significantly improved performance in visual question answering. However, they often suffer from hallucinations. In this work, hallucinations are categorized into two main types: initial hallucinations and snowball hallucinations. We argue that adequate contextual information can be extracted directly from the token interaction process. Inspired by causal inference in the decoding strategy, we propose to leverage causal masks to establish information propagation between multimodal tokens. The hypothesis is that insufficient interaction between those tokens may lead the model to rely on outlier tokens, overlooking dense and rich contextual cues. Therefore, we propose to intervene in the propagation process by tackling outlier tokens to enhance in-context inference. With this goal, we present FarSight, a versatile plug-and-play decoding strategy to reduce attention interference from outlier tokens merely by optimizing the causal mask. The heart of our method is effective token propagation. We design an attention register structure within the upper triangular matrix of the causal mask, dynamically allocating attention to capture attention diverted to outlier tokens. Moreover, a positional awareness encoding method with a diminishing masking rate is proposed, allowing the model to attend to further preceding tokens, especially for video sequence tasks. With extensive experiments, FarSight demonstrates significant hallucination-mitigating performance across different MLLMs on both image and video benchmarks, proving its effectiveness.
comment: Clarification note for the CVPR 2025 paper (FarSight). Prepared by a subset of the original authors; remaining co-authors are acknowledged in the text
Unsupervised Network Anomaly Detection with Autoencoders and Traffic Images
Due to the recent increase in the number of connected devices, the need to promptly detect security issues is emerging. Moreover, the high number of communication flows creates the necessity of processing huge amounts of data. Furthermore, the connected devices are heterogeneous in nature, having different computational capacities. For this reason, in this work we propose an image-based representation of network traffic which allows to realize a compact summary of the current network conditions with 1-second time windows. The proposed representation highlights the presence of anomalies thus reducing the need for complex processing architectures. Finally, we present an unsupervised learning approach which effectively detects the presence of anomalies. The code and the dataset are available at https://github.com/michaelneri/image-based-network-traffic-anomaly-detection.
comment: Accepted for publication in EUSIPCO 2025
Point, Detect, Count: Multi-Task Medical Image Understanding with Instruction-Tuned Vision-Language Models
We investigate fine-tuning Vision-Language Models (VLMs) for multi-task medical image understanding, focusing on detection, localization, and counting of findings in medical images. Our objective is to evaluate whether instruction-tuned VLMs can simultaneously improve these tasks, with the goal of enhancing diagnostic accuracy and efficiency. Using MedMultiPoints, a multimodal dataset with annotations from endoscopy (polyps and instruments) and microscopy (sperm cells), we reformulate each task into instruction-based prompts suitable for vision-language reasoning. We fine-tune Qwen2.5-VL-7B-Instruct using Low-Rank Adaptation (LoRA) across multiple task combinations. Results show that multi-task training improves robustness and accuracy. For example, it reduces the Count Mean Absolute Error (MAE) and increases Matching Accuracy in the Counting + Pointing task. However, trade-offs emerge, such as more zero-case point predictions, indicating reduced reliability in edge cases despite overall performance gains. Our study highlights the potential of adapting general-purpose VLMs to specialized medical tasks via prompt-driven fine-tuning. This approach mirrors clinical workflows, where radiologists simultaneously localize, count, and describe findings - demonstrating how VLMs can learn composite diagnostic reasoning patterns. The model produces interpretable, structured outputs, offering a promising step toward explainable and versatile medical AI. Code, model weights, and scripts will be released for reproducibility at https://github.com/simula/PointDetectCount.
comment: Accepted as a full paper at the 38th IEEE International Symposium on Computer-Based Medical Systems (CBMS) 2025
From Evaluation to Defense: Advancing Safety in Video Large Language Models
While the safety risks of image-based large language models have been extensively studied, their video-based counterparts (Video LLMs) remain critically under-examined. To systematically study this problem, we introduce \textbf{VideoSafetyBench (VSB-77k) - the first large-scale, culturally diverse benchmark for Video LLM safety}, which compromises 77,646 video-query pairs and spans 19 principal risk categories across 10 language communities. \textit{We reveal that integrating video modality degrades safety performance by an average of 42.3\%, exposing systemic risks in multimodal attack exploitation.} To address this vulnerability, we propose \textbf{VideoSafety-R1}, a dual-stage framework achieving unprecedented safety gains through two innovations: (1) Alarm Token-Guided Safety Fine-Tuning (AT-SFT) injects learnable alarm tokens into visual and textual sequences, enabling explicit harm perception across modalities via multitask objectives. (2) Then, Safety-Guided GRPO enhances defensive reasoning through dynamic policy optimization with rule-based rewards derived from dual-modality verification. These components synergize to shift safety alignment from passive harm recognition to active reasoning. The resulting framework achieves a 65.1\% improvement on VSB-Eval-HH, and improves by 59.1\%, 44.3\%, and 15.0\% on the image safety datasets MMBench, VLGuard, and FigStep, respectively. \textit{Our codes are available in the supplementary materials.} \textcolor{red}{Warning: This paper contains examples of harmful language and videos, and reader discretion is recommended.}
comment: 49 pages, 12 figures, 17 tables
Towards Texture- And Shape-Independent 3D Keypoint Estimation in Birds
In this paper, we present a texture-independent approach to estimate and track 3D joint positions of multiple pigeons. For this purpose, we build upon the existing 3D-MuPPET framework, which estimates and tracks the 3D poses of up to 10 pigeons using a multi-view camera setup. We extend this framework by using a segmentation method that generates silhouettes of the individuals, which are then used to estimate 2D keypoints. Following 3D-MuPPET, these 2D keypoints are triangulated to infer 3D poses, and identities are matched in the first frame and tracked in 2D across subsequent frames. Our proposed texture-independent approach achieves comparable accuracy to the original texture-dependent 3D-MuPPET framework. Additionally, we explore our approach's applicability to other bird species. To do that, we infer the 2D joint positions of four bird species without additional fine-tuning the model trained on pigeons and obtain preliminary promising results. Thus, we think that our approach serves as a solid foundation and inspires the development of more robust and accurate texture-independent pose estimation frameworks.
SoccerChat: Integrating Multimodal Data for Enhanced Soccer Game Understanding
The integration of artificial intelligence in sports analytics has transformed soccer video understanding, enabling real-time, automated insights into complex game dynamics. Traditional approaches rely on isolated data streams, limiting their effectiveness in capturing the full context of a match. To address this, we introduce SoccerChat, a multimodal conversational AI framework that integrates visual and textual data for enhanced soccer video comprehension. Leveraging the extensive SoccerNet dataset, enriched with jersey color annotations and automatic speech recognition (ASR) transcripts, SoccerChat is fine-tuned on a structured video instruction dataset to facilitate accurate game understanding, event classification, and referee decision making. We benchmark SoccerChat on action classification and referee decision-making tasks, demonstrating its performance in general soccer event comprehension while maintaining competitive accuracy in referee decision making. Our findings highlight the importance of multimodal integration in advancing soccer analytics, paving the way for more interactive and explainable AI-driven sports analysis. https://github.com/simula/SoccerChat
Background Matters: A Cross-view Bidirectional Modeling Framework for Semi-supervised Medical Image Segmentation
Semi-supervised medical image segmentation (SSMIS) leverages unlabeled data to reduce reliance on manually annotated images. However, current SOTA approaches predominantly focus on foreground-oriented modeling (i.e., segmenting only the foreground region) and have largely overlooked the potential benefits of explicitly modeling the background region. Our study theoretically and empirically demonstrates that highly certain predictions in background modeling enhance the confidence of corresponding foreground modeling. Building on this insight, we propose the Cross-view Bidirectional Modeling (CVBM) framework, which introduces a novel perspective by incorporating background modeling to improve foreground modeling performance. Within CVBM, background modeling serves as an auxiliary perspective, providing complementary supervisory signals to enhance the confidence of the foreground model. Additionally, CVBM introduces an innovative bidirectional consistency mechanism, which ensures mutual alignment between foreground predictions and background-guided predictions. Extensive experiments demonstrate that our approach achieves SOTA performance on the LA, Pancreas, ACDC, and HRF datasets. Notably, on the Pancreas dataset, CVBM outperforms fully supervised methods (i.e., DSC: 84.57% vs. 83.89%) while utilizing only 20% of the labeled data. Our code is publicly available at https://github.com/caoluyang0830/CVBM.git.
comment: Accepted by IEEE Transactions on Image Processing
Grounding Chest X-Ray Visual Question Answering with Generated Radiology Reports
We present a novel approach to Chest X-ray (CXR) Visual Question Answering (VQA), addressing both single-image image-difference questions. Single-image questions focus on abnormalities within a specific CXR ("What abnormalities are seen in image X?"), while image-difference questions compare two longitudinal CXRs acquired at different time points ("What are the differences between image X and Y?"). We further explore how the integration of radiology reports can enhance the performance of VQA models. While previous approaches have demonstrated the utility of radiology reports during the pre-training phase, we extend this idea by showing that the reports can also be leveraged as additional input to improve the VQA model's predicted answers. First, we propose a unified method that handles both types of questions and auto-regressively generates the answers. For single-image questions, the model is provided with a single CXR. For image-difference questions, the model is provided with two CXRs from the same patient, captured at different time points, enabling the model to detect and describe temporal changes. Taking inspiration from 'Chain-of-Thought reasoning', we demonstrate that performance on the CXR VQA task can be improved by grounding the answer generator module with a radiology report predicted for the same CXR. In our approach, the VQA model is divided into two steps: i) Report Generation (RG) and ii) Answer Generation (AG). Our results demonstrate that incorporating predicted radiology reports as evidence to the AG model enhances performance on both single-image and image-difference questions, achieving state-of-the-art results on the Medical-Diff-VQA dataset.
MEgoHand: Multimodal Egocentric Hand-Object Interaction Motion Generation
Egocentric hand-object motion generation is crucial for immersive AR/VR and robotic imitation but remains challenging due to unstable viewpoints, self-occlusions, perspective distortion, and noisy ego-motion. Existing methods rely on predefined 3D object priors, limiting generalization to novel objects, which restricts their generalizability to novel objects. Meanwhile, recent multimodal approaches suffer from ambiguous generation from abstract textual cues, intricate pipelines for modeling 3D hand-object correlation, and compounding errors in open-loop prediction. We propose MEgoHand, a multimodal framework that synthesizes physically plausible hand-object interactions from egocentric RGB, text, and initial hand pose. MEgoHand introduces a bi-level architecture: a high-level "cerebrum" leverages a vision language model (VLM) to infer motion priors from visual-textual context and a monocular depth estimator for object-agnostic spatial reasoning, while a low-level DiT-based flow-matching policy generates fine-grained trajectories with temporal orthogonal filtering to enhance stability. To address dataset inconsistency, we design a dataset curation paradigm with an Inverse MANO Retargeting Network and Virtual RGB-D Renderer, curating a unified dataset of 3.35M RGB-D frames, 24K interactions, and 1.2K objects. Extensive experiments across five in-domain and two cross-domain datasets demonstrate the effectiveness of MEgoHand, achieving substantial reductions in wrist translation error (86.9%) and joint rotation error (34.1%), highlighting its capacity to accurately model fine-grained hand joint structures and generalize robustly across diverse scenarios.
Decoupled Geometric Parameterization and its Application in Deep Homography Estimation
Planar homography, with eight degrees of freedom (DOFs), is fundamental in numerous computer vision tasks. While the positional offsets of four corners are widely adopted (especially in neural network predictions), this parameterization lacks geometric interpretability and typically requires solving a linear system to compute the homography matrix. This paper presents a novel geometric parameterization of homographies, leveraging the similarity-kernel-similarity (SKS) decomposition for projective transformations. Two independent sets of four geometric parameters are decoupled: one for a similarity transformation and the other for the kernel transformation. Additionally, the geometric interpretation linearly relating the four kernel transformation parameters to angular offsets is derived. Our proposed parameterization allows for direct homography estimation through matrix multiplication, eliminating the need for solving a linear system, and achieves performance comparable to the four-corner positional offsets in deep homography estimation.
Temporal Object Captioning for Street Scene Videos from LiDAR Tracks
Video captioning models have seen notable advancements in recent years, especially with regard to their ability to capture temporal information. While many research efforts have focused on architectural advancements, such as temporal attention mechanisms, there remains a notable gap in understanding how models capture and utilize temporal semantics for effective temporal feature extraction, especially in the context of Advanced Driver Assistance Systems. We propose an automated LiDAR-based captioning procedure that focuses on the temporal dynamics of traffic participants. Our approach uses a rule-based system to extract essential details such as lane position and relative motion from object tracks, followed by a template-based caption generation. Our findings show that training SwinBERT, a video captioning model, using only front camera images and supervised with our template-based captions, specifically designed to encapsulate fine-grained temporal behavior, leads to improved temporal understanding consistently across three datasets. In conclusion, our results clearly demonstrate that integrating LiDAR-based caption supervision significantly enhances temporal understanding, effectively addressing and reducing the inherent visual/static biases prevalent in current state-of-the-art model architectures.
Bridging the Dynamic Perception Gap: Training-Free Draft Chain-of-Thought for Dynamic Multimodal Spatial Reasoning
While chains-of-thought (CoT) have advanced complex reasoning in multimodal large language models (MLLMs), existing methods remain confined to text or static visual domains, often faltering in dynamic spatial reasoning tasks. To bridge this gap, we present GRASSLAND, a novel maze navigation benchmark designed to evaluate dynamic spatial reasoning. Our experiments show that augmenting textual reasoning chains with dynamic visual drafts, overlaid on input images, significantly outperforms conventional approaches, offering new insights into spatial reasoning in evolving environments. To generalize this capability, we propose D2R (Dynamic Draft-Augmented Reasoning), a training-free framework that seamlessly integrates textual CoT with corresponding visual drafts into MLLMs. Extensive evaluations demonstrate that D2R consistently enhances performance across diverse tasks, establishing a robust baseline for dynamic spatial reasoning without requiring model fine-tuning. Project is open at https://github.com/Cratileo/D2R.
comment: 19 pages, 8 figures
M2SVid: End-to-End Inpainting and Refinement for Monocular-to-Stereo Video Conversion
We tackle the problem of monocular-to-stereo video conversion and propose a novel architecture for inpainting and refinement of the warped right view obtained by depth-based reprojection of the input left view. We extend the Stable Video Diffusion (SVD) model to utilize the input left video, the warped right video, and the disocclusion masks as conditioning input to generate a high-quality right camera view. In order to effectively exploit information from neighboring frames for inpainting, we modify the attention layers in SVD to compute full attention for discoccluded pixels. Our model is trained to generate the right view video in an end-to-end manner by minimizing image space losses to ensure high-quality generation. Our approach outperforms previous state-of-the-art methods, obtaining an average rank of 1.43 among the 4 compared methods in a user study, while being 6x faster than the second placed method.
Auto-nnU-Net: Towards Automated Medical Image Segmentation
Medical Image Segmentation (MIS) includes diverse tasks, from bone to organ segmentation, each with its own challenges in finding the best segmentation model. The state-of-the-art AutoML-related MIS-framework nnU-Net automates many aspects of model configuration but remains constrained by fixed hyperparameters and heuristic design choices. As a full-AutoML framework for MIS, we propose Auto-nnU-Net, a novel nnU-Net variant enabling hyperparameter optimization (HPO), neural architecture search (NAS), and hierarchical NAS (HNAS). Additionally, we propose Regularized PriorBand to balance model accuracy with the computational resources required for training, addressing the resource constraints often faced in real-world medical settings that limit the feasibility of extensive training procedures. We evaluate our approach across diverse MIS datasets from the well-established Medical Segmentation Decathlon, analyzing the impact of AutoML techniques on segmentation performance, computational efficiency, and model design choices. The results demonstrate that our AutoML approach substantially improves the segmentation performance of nnU-Net on 6 out of 10 datasets and is on par on the other datasets while maintaining practical resource requirements. Our code is available at https://github.com/LUH-AI/AutonnUNet.
comment: 31 pages, 19 figures. Accepted for publication at AutoML 2025
TextureSAM: Towards a Texture Aware Foundation Model for Segmentation
Segment Anything Models (SAM) have achieved remarkable success in object segmentation tasks across diverse datasets. However, these models are predominantly trained on large-scale semantic segmentation datasets, which introduce a bias toward object shape rather than texture cues in the image. This limitation is critical in domains such as medical imaging, material classification, and remote sensing, where texture changes define object boundaries. In this study, we investigate SAM's bias toward semantics over textures and introduce a new texture-aware foundation model, TextureSAM, which performs superior segmentation in texture-dominant scenarios. To achieve this, we employ a novel fine-tuning approach that incorporates texture augmentation techniques, incrementally modifying training images to emphasize texture features. By leveraging a novel texture-alternation of the ADE20K dataset, we guide TextureSAM to prioritize texture-defined regions, thereby mitigating the inherent shape bias present in the original SAM model. Our extensive experiments demonstrate that TextureSAM significantly outperforms SAM-2 on both natural (+0.2 mIoU) and synthetic (+0.18 mIoU) texture-based segmentation datasets. The code and texture-augmented dataset will be publicly available.
SHaDe: Compact and Consistent Dynamic 3D Reconstruction via Tri-Plane Deformation and Latent Diffusion
We present a novel framework for dynamic 3D scene reconstruction that integrates three key components: an explicit tri-plane deformation field, a view-conditioned canonical radiance field with spherical harmonics (SH) attention, and a temporally-aware latent diffusion prior. Our method encodes 4D scenes using three orthogonal 2D feature planes that evolve over time, enabling efficient and compact spatiotemporal representation. These features are explicitly warped into a canonical space via a deformation offset field, eliminating the need for MLP-based motion modeling. In canonical space, we replace traditional MLP decoders with a structured SH-based rendering head that synthesizes view-dependent color via attention over learned frequency bands improving both interpretability and rendering efficiency. To further enhance fidelity and temporal consistency, we introduce a transformer-guided latent diffusion module that refines the tri-plane and deformation features in a compressed latent space. This generative module denoises scene representations under ambiguous or out-of-distribution (OOD) motion, improving generalization. Our model is trained in two stages: the diffusion module is first pre-trained independently, and then fine-tuned jointly with the full pipeline using a combination of image reconstruction, diffusion denoising, and temporal consistency losses. We demonstrate state-of-the-art results on synthetic benchmarks, surpassing recent methods such as HexPlane and 4D Gaussian Splatting in visual quality, temporal coherence, and robustness to sparse-view dynamic inputs.
Motion Matters: Compact Gaussian Streaming for Free-Viewpoint Video Reconstruction
3D Gaussian Splatting (3DGS) has emerged as a high-fidelity and efficient paradigm for online free-viewpoint video (FVV) reconstruction, offering viewers rapid responsiveness and immersive experiences. However, existing online methods face challenge in prohibitive storage requirements primarily due to point-wise modeling that fails to exploit the motion properties. To address this limitation, we propose a novel Compact Gaussian Streaming (ComGS) framework, leveraging the locality and consistency of motion in dynamic scene, that models object-consistent Gaussian point motion through keypoint-driven motion representation. By transmitting only the keypoint attributes, this framework provides a more storage-efficient solution. Specifically, we first identify a sparse set of motion-sensitive keypoints localized within motion regions using a viewspace gradient difference strategy. Equipped with these keypoints, we propose an adaptive motion-driven mechanism that predicts a spatial influence field for propagating keypoint motion to neighboring Gaussian points with similar motion. Moreover, ComGS adopts an error-aware correction strategy for key frame reconstruction that selectively refines erroneous regions and mitigates error accumulation without unnecessary overhead. Overall, ComGS achieves a remarkable storage reduction of over 159 X compared to 3DGStream and 14 X compared to the SOTA method QUEEN, while maintaining competitive visual fidelity and rendering speed. Our code will be released.
comment: 17 pages, 9 figures
CodeMerge: Codebook-Guided Model Merging for Robust Test-Time Adaptation in Autonomous Driving
Maintaining robust 3D perception under dynamic and unpredictable test-time conditions remains a critical challenge for autonomous driving systems. Existing test-time adaptation (TTA) methods often fail in high-variance tasks like 3D object detection due to unstable optimization and sharp minima. While recent model merging strategies based on linear mode connectivity (LMC) offer improved stability by interpolating between fine-tuned checkpoints, they are computationally expensive, requiring repeated checkpoint access and multiple forward passes. In this paper, we introduce CodeMerge, a lightweight and scalable model merging framework that bypasses these limitations by operating in a compact latent space. Instead of loading full models, CodeMerge represents each checkpoint with a low-dimensional fingerprint derived from the source model's penultimate features and constructs a key-value codebook. We compute merging coefficients using ridge leverage scores on these fingerprints, enabling efficient model composition without compromising adaptation quality. Our method achieves strong performance across challenging benchmarks, improving end-to-end 3D detection 14.9% NDS on nuScenes-C and LiDAR-based detection by over 7.6% mAP on nuScenes-to-KITTI, while benefiting downstream tasks such as online mapping, motion prediction and planning even without training. Code and pretrained models are released in the supplementary material.
ManipLVM-R1: Reinforcement Learning for Reasoning in Embodied Manipulation with Large Vision-Language Models
Large Vision-Language Models (LVLMs) have recently advanced robotic manipulation by leveraging vision for scene perception and language for instruction following. However, existing methods rely heavily on costly human-annotated training datasets, which limits their generalization and causes them to struggle in out-of-domain (OOD) scenarios, reducing real-world adaptability. To address these challenges, we propose ManipLVM-R1, a novel reinforcement learning framework that replaces traditional supervision with Reinforcement Learning using Verifiable Rewards (RLVR). By directly optimizing for task-aligned outcomes, our method enhances generalization and physical reasoning while removing the dependence on costly annotations. Specifically, we design two rule-based reward functions targeting key robotic manipulation subtasks: an Affordance Perception Reward to enhance localization of interaction regions, and a Trajectory Match Reward to ensure the physical plausibility of action paths. These rewards provide immediate feedback and impose spatial-logical constraints, encouraging the model to go beyond shallow pattern matching and instead learn deeper, more systematic reasoning about physical interactions.
comment: 13pages
Detailed Evaluation of Modern Machine Learning Approaches for Optic Plastics Sorting
According to the EPA, only 25% of waste is recycled, and just 60% of U.S. municipalities offer curbside recycling. Plastics fare worse, with a recycling rate of only 8%; an additional 16% is incinerated, while the remaining 76% ends up in landfills. The low plastic recycling rate stems from contamination, poor economic incentives, and technical difficulties, making efficient recycling a challenge. To improve recovery, automated sorting plays a critical role. Companies like AMP Robotics and Greyparrot utilize optical systems for sorting, while Materials Recovery Facilities (MRFs) employ Near-Infrared (NIR) sensors to detect plastic types. Modern optical sorting uses advances in computer vision such as object recognition and instance segmentation, powered by machine learning. Two-stage detectors like Mask R-CNN use region proposals and classification with deep backbones like ResNet. Single-stage detectors like YOLO handle detection in one pass, trading some accuracy for speed. While such methods excel under ideal conditions with a large volume of labeled training data, challenges arise in realistic scenarios, emphasizing the need to further examine the efficacy of optic detection for automated sorting. In this study, we compiled novel datasets totaling 20,000+ images from varied sources. Using both public and custom machine learning pipelines, we assessed the capabilities and limitations of optical recognition for sorting. Grad-CAM, saliency maps, and confusion matrices were employed to interpret model behavior. We perform this analysis on our custom trained models from the compiled datasets. To conclude, our findings are that optic recognition methods have limited success in accurate sorting of real-world plastics at MRFs, primarily because they rely on physical properties such as color and shape.
comment: Accepted at the 2024 REMADE Circular Economy Tech Summit and Conference, https://remadeinstitute.org/2024-conference/
Beyond Face Swapping: A Diffusion-Based Digital Human Benchmark for Multimodal Deepfake Detection
In recent years, the rapid development of deepfake technology has given rise to an emerging and serious threat to public security: diffusion model-based digital human generation. Unlike traditional face manipulation methods, such models can generate highly realistic videos with consistency through multimodal control signals. Their flexibility and covertness pose severe challenges to existing detection strategies. To bridge this gap, we introduce DigiFakeAV, the first large-scale multimodal digital human forgery dataset based on diffusion models. Employing five latest digital human generation methods (Sonic, Hallo, etc.) and voice cloning method, we systematically produce a dataset comprising 60,000 videos (8.4 million frames), covering multiple nationalities, skin tones, genders, and real-world scenarios, significantly enhancing data diversity and realism. User studies show that the confusion rate between forged and real videos reaches 68%, and existing state-of-the-art (SOTA) detection models exhibit large drops in AUC values on DigiFakeAV, highlighting the challenge of the dataset. To address this problem, we further propose DigiShield, a detection baseline based on spatiotemporal and cross-modal fusion. By jointly modeling the 3D spatiotemporal features of videos and the semantic-acoustic features of audio, DigiShield achieves SOTA performance on both the DigiFakeAV and DF-TIMIT datasets. Experiments show that this method effectively identifies covert artifacts through fine-grained analysis of the temporal evolution of facial features in synthetic videos.
ALTo: Adaptive-Length Tokenizer for Autoregressive Mask Generation
While humans effortlessly draw visual objects and shapes by adaptively allocating attention based on their complexity, existing multimodal large language models (MLLMs) remain constrained by rigid token representations. Bridging this gap, we propose ALTo, an adaptive length tokenizer for autoregressive mask generation. To achieve this, a novel token length predictor is designed, along with a length regularization term and a differentiable token chunking strategy. We further build ALToLLM that seamlessly integrates ALTo into MLLM. Preferences on the trade-offs between mask quality and efficiency is implemented by group relative policy optimization (GRPO). Experiments demonstrate that ALToLLM achieves state-of-the-art performance with adaptive token cost on popular segmentation benchmarks. Code and models are released at https://github.com/yayafengzi/ALToLLM.
Implicit Neural Shape Optimization for 3D High-Contrast Electrical Impedance Tomography
We present a novel implicit neural shape optimization framework for 3D high-contrast Electrical Impedance Tomography (EIT), addressing scenarios where conductivity exhibits sharp discontinuities across material interfaces. These high-contrast cases, prevalent in metallic implant monitoring and industrial defect detection, challenge traditional reconstruction methods due to severe ill-posedness. Our approach synergizes shape optimization with implicit neural representations, introducing key innovations including a shape derivative-based optimization scheme that explicitly incorporates high-contrast interface conditions and an efficient latent space representation that reduces variable dimensionality. Through rigorous theoretical analysis of algorithm convergence and extensive numerical experiments, we demonstrate substantial performance improvements, establishing our framework as promising for practical applications in medical imaging with metallic implants and industrial non-destructive testing.
InspectionV3: Enhancing Tobacco Quality Assessment with Deep Convolutional Neural Networks for Automated Workshop Management
The problems that tobacco workshops encounter include poor curing, inconsistencies in supplies, irregular scheduling, and a lack of oversight, all of which drive up expenses and worse quality. Large quantities make manual examination costly, sluggish, and unreliable. Deep convolutional neural networks have recently made strides in capabilities that transcend those of conventional methods. To effectively enhance them, nevertheless, extensive customization is needed to account for subtle variations in tobacco grade. This study introduces InspectionV3, an integrated solution for automated flue-cured tobacco grading that makes use of a customized deep convolutional neural network architecture. A scope that covers color, maturity, and curing subtleties is established via a labelled dataset consisting of 21,113 images spanning 20 quality classes. Expert annotators performed preprocessing on the tobacco leaf images, including cleaning, labelling, and augmentation. Multi-layer CNN factors use batch normalization to describe domain properties like as permeability and moisture spots, and so account for the subtleties of the workshop. Its expertise lies in converting visual patterns into useful information for enhancing workflow. Fast notifications are made possible by real-time, on-the-spot grading that matches human expertise. Images-powered analytics dashboards facilitate the tracking of yield projections, inventories, bottlenecks, and the optimization of data-driven choices. More labelled images are assimilated after further retraining, improving representational capacities and enabling adaptations for seasonal variability. Metrics demonstrate 97% accuracy, 95% precision and recall, 96% F1-score and AUC, 95% specificity; validating real-world viability.
comment: 33 pages, 15 figures, 2 Tables
Clear Nights Ahead: Towards Multi-Weather Nighttime Image Restoration
Restoring nighttime images affected by multiple adverse weather conditions is a practical yet under-explored research problem, as multiple weather conditions often coexist in the real world alongside various lighting effects at night. This paper first explores the challenging multi-weather nighttime image restoration task, where various types of weather degradations are intertwined with flare effects. To support the research, we contribute the AllWeatherNight dataset, featuring large-scale high-quality nighttime images with diverse compositional degradations, synthesized using our introduced illumination-aware degradation generation. Moreover, we present ClearNight, a unified nighttime image restoration framework, which effectively removes complex degradations in one go. Specifically, ClearNight extracts Retinex-based dual priors and explicitly guides the network to focus on uneven illumination regions and intrinsic texture contents respectively, thereby enhancing restoration effectiveness in nighttime scenarios. In order to better represent the common and unique characters of multiple weather degradations, we introduce a weather-aware dynamic specific-commonality collaboration method, which identifies weather degradations and adaptively selects optimal candidate units associated with specific weather types. Our ClearNight achieves state-of-the-art performance on both synthetic and real-world images. Comprehensive ablation experiments validate the necessity of AllWeatherNight dataset as well as the effectiveness of ClearNight. Project page: https://henlyta.github.io/ClearNight/mainpage.html
comment: 17 pages, 20 figures
Consistent World Models via Foresight Diffusion
Diffusion and flow-based models have enabled significant progress in generation tasks across various modalities and have recently found applications in world modeling. However, unlike typical generation tasks that encourage sample diversity, world models entail different sources of uncertainty and require consistent samples aligned with the ground-truth trajectory, which is a limitation we empirically observe in diffusion models. We argue that a key bottleneck in learning consistent diffusion-based world models lies in the suboptimal predictive ability, which we attribute to the entanglement of condition understanding and target denoising within shared architectures and co-training schemes. To address this, we propose Foresight Diffusion (ForeDiff), a diffusion-based world modeling framework that enhances consistency by decoupling condition understanding from target denoising. ForeDiff incorporates a separate deterministic predictive stream to process conditioning inputs independently of the denoising stream, and further leverages a pretrained predictor to extract informative representations that guide generation. Extensive experiments on robot video prediction and scientific spatiotemporal forecasting show that ForeDiff improves both predictive accuracy and sample consistency over strong baselines, offering a promising direction for diffusion-based world models.
Benchmarking Retrieval-Augmented Multimomal Generation for Document Question Answering
Document Visual Question Answering (DocVQA) faces dual challenges in processing lengthy multimodal documents (text, images, tables) and performing cross-modal reasoning. Current document retrieval-augmented generation (DocRAG) methods remain limited by their text-centric approaches, frequently missing critical visual information. The field also lacks robust benchmarks for assessing multimodal evidence selection and integration. We introduce MMDocRAG, a comprehensive benchmark featuring 4,055 expert-annotated QA pairs with multi-page, cross-modal evidence chains. Our framework introduces innovative metrics for evaluating multimodal quote selection and enables answers that interleave text with relevant visual elements. Through large-scale experiments with 60 VLM/LLM models and 14 retrieval systems, we identify persistent challenges in multimodal evidence retrieval, selection, and integration.Key findings reveal advanced proprietary LVMs show superior performance than open-sourced alternatives. Also, they show moderate advantages using multimodal inputs over text-only inputs, while open-source alternatives show significant performance degradation. Notably, fine-tuned LLMs achieve substantial improvements when using detailed image descriptions. MMDocRAG establishes a rigorous testing ground and provides actionable insights for developing more robust multimodal DocVQA systems. Our benchmark and code are available at https://mmdocrag.github.io/MMDocRAG/.
comment: preprint. code available at \url{https://mmdocrag.github.io/MMDocRAG/}
AnchorFormer: Differentiable Anchor Attention for Efficient Vision Transformer
Recently, vision transformers (ViTs) have achieved excellent performance on vision tasks by measuring the global self-attention among the image patches. Given $n$ patches, they will have quadratic complexity such as $\mathcal{O}(n^2)$ and the time cost is high when splitting the input image with a small granularity. Meanwhile, the pivotal information is often randomly gathered in a few regions of an input image, some tokens may not be helpful for the downstream tasks. To handle this problem, we introduce an anchor-based efficient vision transformer (AnchorFormer), which employs the anchor tokens to learn the pivotal information and accelerate the inference. Firstly, by estimating the bipartite attention between the anchors and tokens, the complexity will be reduced from $\mathcal{O}(n^2)$ to $\mathcal{O}(mn)$, where $m$ is an anchor number and $m < n$. Notably, by representing the anchors with the neurons in a neural layer, we can differentiable learn these distributions and approximate global self-attention through the Markov process. Moreover, we extend the proposed model to three downstream tasks including classification, detection, and segmentation. Extensive experiments show the effectiveness of our AnchorFormer, e.g., achieving up to a 9.0% higher accuracy or 46.7% FLOPs reduction on ImageNet classification, 81.3% higher mAP on COCO detection under comparable FLOPs, as compared to the current baselines.
MAGIC: Motion-Aware Generative Inference via Confidence-Guided LLM
Recent advances in static 3D generation have intensified the demand for physically consistent dynamic 3D content. However, existing video generation models, including diffusion-based methods, often prioritize visual realism while neglecting physical plausibility, resulting in implausible object dynamics. Prior approaches for physics-aware dynamic generation typically rely on large-scale annotated datasets or extensive model fine-tuning, which imposes significant computational and data collection burdens and limits scalability across scenarios. To address these challenges, we present MAGIC, a training-free framework for single-image physical property inference and dynamic generation, integrating pretrained image-to-video diffusion models with iterative LLM-based reasoning. Our framework generates motion-rich videos from a static image and closes the visual-to-physical gap through a confidence-driven LLM feedback loop that adaptively steers the diffusion model toward physics-relevant motion. To translate visual dynamics into controllable physical behavior, we further introduce a differentiable MPM simulator operating directly on 3D Gaussians reconstructed from the single image, enabling physically grounded, simulation-ready outputs without any supervision or model tuning. Experiments show that MAGIC outperforms existing physics-aware generative methods in inference accuracy and achieves greater temporal coherence than state-of-the-art video diffusion models.
CMRINet: Joint Groupwise Registration and Segmentation for Cardiac Function Quantification from Cine-MRI
Accurate and efficient quantification of cardiac function is essential for the estimation of prognosis of cardiovascular diseases (CVDs). One of the most commonly used metrics for evaluating cardiac pumping performance is left ventricular ejection fraction (LVEF). However, LVEF can be affected by factors such as inter-observer variability and varying pre-load and after-load conditions, which can reduce its reproducibility. Additionally, cardiac dysfunction may not always manifest as alterations in LVEF, such as in heart failure and cardiotoxicity diseases. An alternative measure that can provide a relatively load-independent quantitative assessment of myocardial contractility is myocardial strain and strain rate. By using LVEF in combination with myocardial strain, it is possible to obtain a thorough description of cardiac function. Automated estimation of LVEF and other volumetric measures from cine-MRI sequences can be achieved through segmentation models, while strain calculation requires the estimation of tissue displacement between sequential frames, which can be accomplished using registration models. These tasks are often performed separately, potentially limiting the assessment of cardiac function. To address this issue, in this study we propose an end-to-end deep learning (DL) model that jointly estimates groupwise (GW) registration and segmentation for cardiac cine-MRI images. The proposed anatomically-guided Deep GW network was trained and validated on a large dataset of 4-chamber view cine-MRI image series of 374 subjects. A quantitative comparison with conventional GW registration using elastix and two DL-based methods showed that the proposed model improved performance and substantially reduced computation time.
comment: 15 pages, 7 figures, 1 appendix
TAT-VPR: Ternary Adaptive Transformer for Dynamic and Efficient Visual Place Recognition
TAT-VPR is a ternary-quantized transformer that brings dynamic accuracy-efficiency trade-offs to visual SLAM loop-closure. By fusing ternary weights with a learned activation-sparsity gate, the model can control computation by up to 40% at run-time without degrading performance (Recall@1). The proposed two-stage distillation pipeline preserves descriptor quality, letting it run on micro-UAV and embedded SLAM stacks while matching state-of-the-art localization accuracy.
MAFE R-CNN: Selecting More Samples to Learn Category-aware Features for Small Object Detection
Small object detection in intricate environments has consistently represented a major challenge in the field of object detection. In this paper, we identify that this difficulty stems from the detectors' inability to effectively learn discriminative features for objects of small size, compounded by the complexity of selecting high-quality small object samples during training, which motivates the proposal of the Multi-Clue Assignment and Feature Enhancement R-CNN.Specifically, MAFE R-CNN integrates two pivotal components.The first is the Multi-Clue Sample Selection (MCSS) strategy, in which the Intersection over Union (IoU) distance, predicted category confidence, and ground truth region sizes are leveraged as informative clues in the sample selection process. This methodology facilitates the selection of diverse positive samples and ensures a balanced distribution of object sizes during training, thereby promoting effective model learning.The second is the Category-aware Feature Enhancement Mechanism (CFEM), where we propose a simple yet effective category-aware memory module to explore the relationships among object features. Subsequently, we enhance the object feature representation by facilitating the interaction between category-aware features and candidate box features.Comprehensive experiments conducted on the large-scale small object dataset SODA validate the effectiveness of the proposed method. The code will be made publicly available.
Ranked Entropy Minimization for Continual Test-Time Adaptation ICML 2025
Test-time adaptation aims to adapt to realistic environments in an online manner by learning during test time. Entropy minimization has emerged as a principal strategy for test-time adaptation due to its efficiency and adaptability. Nevertheless, it remains underexplored in continual test-time adaptation, where stability is more important. We observe that the entropy minimization method often suffers from model collapse, where the model converges to predicting a single class for all images due to a trivial solution. We propose ranked entropy minimization to mitigate the stability problem of the entropy minimization method and extend its applicability to continuous scenarios. Our approach explicitly structures the prediction difficulty through a progressive masking strategy. Specifically, it gradually aligns the model's probability distributions across different levels of prediction difficulty while preserving the rank order of entropy. The proposed method is extensively evaluated across various benchmarks, demonstrating its effectiveness through empirical results. Our code is available at https://github.com/pilsHan/rem
comment: ICML 2025
Joint Flow And Feature Refinement Using Attention For Video Restoration
Recent advancements in video restoration have focused on recovering high-quality video frames from low-quality inputs. Compared with static images, the performance of video restoration significantly depends on efficient exploitation of temporal correlations among successive video frames. The numerous techniques make use of temporal information via flow-based strategies or recurrent architectures. However, these methods often encounter difficulties in preserving temporal consistency as they utilize degraded input video frames. To resolve this issue, we propose a novel video restoration framework named Joint Flow and Feature Refinement using Attention (JFFRA). The proposed JFFRA is based on key philosophy of iteratively enhancing data through the synergistic collaboration of flow (alignment) and restoration. By leveraging previously enhanced features to refine flow and vice versa, JFFRA enables efficient feature enhancement using temporal information. This interplay between flow and restoration is executed at multiple scales, reducing the dependence on precise flow estimation. Moreover, we incorporate an occlusion-aware temporal loss function to enhance the network's capability in eliminating flickering artifacts. Comprehensive experiments validate the versatility of JFFRA across various restoration tasks such as denoising, deblurring, and super-resolution. Our method demonstrates a remarkable performance improvement of up to 1.62 dB compared to state-of-the-art approaches.
Unlocking Smarter Device Control: Foresighted Planning with a World Model-Driven Code Execution Approach
The automatic control of mobile devices is essential for efficiently performing complex tasks that involve multiple sequential steps. However, these tasks pose significant challenges due to the limited environmental information available at each step, primarily through visual observations. As a result, current approaches, which typically rely on reactive policies, focus solely on immediate observations and often lead to suboptimal decision-making. To address this problem, we propose \textbf{Foresighted Planning with World Model-Driven Code Execution (FPWC)},a framework that prioritizes natural language understanding and structured reasoning to enhance the agent's global understanding of the environment by developing a task-oriented, refinable \emph{world model} at the outset of the task. Foresighted actions are subsequently generated through iterative planning within this world model, executed in the form of executable code. Extensive experiments conducted in simulated environments and on real mobile devices demonstrate that our method outperforms previous approaches, particularly achieving a 44.4\% relative improvement in task success rate compared to the state-of-the-art in the simulated environment. Code and demo are provided in the supplementary material.
Investigating Fine- and Coarse-grained Structural Correspondences Between Deep Neural Networks and Human Object Image Similarity Judgments Using Unsupervised Alignment
The learning mechanisms by which humans acquire internal representations of objects are not fully understood. Deep neural networks (DNNs) have emerged as a useful tool for investigating this question, as they have internal representations similar to those of humans as a byproduct of optimizing their objective functions. While previous studies have shown that models trained with various learning paradigms - such as supervised, self-supervised, and CLIP - acquire human-like representations, it remains unclear whether their similarity to human representations is primarily at a coarse category level or extends to finer details. Here, we employ an unsupervised alignment method based on Gromov-Wasserstein Optimal Transport to compare human and model object representations at both fine-grained and coarse-grained levels. The unique feature of this method compared to conventional representational similarity analysis is that it estimates optimal fine-grained mappings between the representation of each object in human and model representations. We used this unsupervised alignment method to assess the extent to which the representation of each object in humans is correctly mapped to the corresponding representation of the same object in models. Using human similarity judgments of 1,854 objects from the THINGS dataset, we find that models trained with CLIP consistently achieve strong fine- and coarse-grained matching with human object representations. In contrast, self-supervised models showed limited matching at both fine- and coarse-grained levels, but still formed object clusters that reflected human coarse category structure. Our results offer new insights into the role of linguistic information in acquiring precise object representations and the potential of self-supervised learning to capture coarse categorical structures.
comment: 34 pages, 6 figures
Circle-RoPE: Cone-like Decoupled Rotary Positional Embedding for Large Vision-Language Models
Rotary Position Embedding (RoPE) is a widely adopted technique for encoding relative positional information in large language models (LLMs). However, when extended to large vision-language models (LVLMs), its variants introduce unintended cross-modal positional biases. Specifically, they enforce relative positional dependencies between text token indices and image tokens, causing spurious alignments. This issue arises because image tokens representing the same content but located at different spatial positions are assigned distinct positional biases, leading to inconsistent cross-modal associations. To address this, we propose Per-Token Distance (PTD) - a simple yet effective metric for quantifying the independence of positional encodings across modalities. Informed by this analysis, we introduce Circle-RoPE, a novel encoding scheme that maps image token indices onto a circular trajectory orthogonal to the linear path of text token indices, forming a cone-like structure. This configuration ensures that each text token maintains an equal distance to all image tokens, reducing artificial cross-modal biases while preserving intra-image spatial information. To further enhance performance, we propose a staggered layer strategy that applies different RoPE variants across layers. This design leverages the complementary strengths of each RoPE variant, thereby enhancing the model's overall performance. Our experimental results demonstrate that our method effectively preserves spatial information from images while reducing relative positional bias, offering a more robust and flexible positional encoding framework for LVLMs. The code is available at [https://github.com/lose4578/CircleRoPE](https://github.com/lose4578/CircleRoPE).
Pose-invariant face recognition via feature-space pose frontalization
Pose-invariant face recognition has become a challenging problem for modern AI-based face recognition systems. It aims at matching a profile face captured in the wild with a frontal face registered in a database. Existing methods perform face frontalization via either generative models or learning a pose robust feature representation. In this paper, a new method is presented to perform face frontalization and recognition within the feature space. First, a novel feature space pose frontalization module (FSPFM) is proposed to transform profile images with arbitrary angles into frontal counterparts. Second, a new training paradigm is proposed to maximize the potential of FSPFM and boost its performance. The latter consists of a pre-training and an attention-guided fine-tuning stage. Moreover, extensive experiments have been conducted on five popular face recognition benchmarks. Results show that not only our method outperforms the state-of-the-art in the pose-invariant face recognition task but also maintains superior performance in other standard scenarios.
Mitigating Hallucinations in Vision-Language Models through Image-Guided Head Suppression
Despite their remarkable progress in multimodal understanding tasks, large vision language models (LVLMs) often suffer from "hallucinations", generating texts misaligned with the visual context. Existing methods aimed at reducing hallucinations through inference time intervention incur a significant increase in latency. To mitigate this, we present SPIN, a task-agnostic attention-guided head suppression strategy that can be seamlessly integrated during inference, without incurring any significant compute or latency overhead. We investigate whether hallucination in LVLMs can be linked to specific model components. Our analysis suggests that hallucinations can be attributed to a dynamic subset of attention heads in each layer. Leveraging this insight, for each text query token, we selectively suppress attention heads that exhibit low attention to image tokens, keeping the top-K attention heads intact. Extensive evaluations on visual question answering and image description tasks demonstrate the efficacy of SPIN in reducing hallucination scores up to 2.7x while maintaining F1, and improving throughput by 1.8x compared to existing alternatives. Code is available at https://github.com/YUECHE77/SPIN.
AdvReal: Adversarial Patch Generation Framework with Application to Adversarial Safety Evaluation of Object Detection Systems
Autonomous vehicles are typical complex intelligent systems with artificial intelligence at their core. However, perception methods based on deep learning are extremely vulnerable to adversarial samples, resulting in safety accidents. How to generate effective adversarial examples in the physical world and evaluate object detection systems is a huge challenge. In this study, we propose a unified joint adversarial training framework for both 2D and 3D samples to address the challenges of intra-class diversity and environmental variations in real-world scenarios. Building upon this framework, we introduce an adversarial sample reality enhancement approach that incorporates non-rigid surface modeling and a realistic 3D matching mechanism. We compare with 5 advanced adversarial patches and evaluate their attack performance on 8 object detecotrs, including single-stage, two-stage, and transformer-based models. Extensive experiment results in digital and physical environments demonstrate that the adversarial textures generated by our method can effectively mislead the target detection model. Moreover, proposed method demonstrates excellent robustness and transferability under multi-angle attacks, varying lighting conditions, and different distance in the physical world. The demo video and code can be obtained at https://github.com/Huangyh98/AdvReal.git.
GUI-G1: Understanding R1-Zero-Like Training for Visual Grounding in GUI Agents
Recent Graphical User Interface (GUI) agents replicate the R1-Zero paradigm, coupling online Reinforcement Learning (RL) with explicit chain-of-thought reasoning prior to object grounding and thereby achieving substantial performance gains. In this paper, we first conduct extensive analysis experiments of three key components of that training pipeline: input design, output evaluation, and policy update-each revealing distinct challenges arising from blindly applying general-purpose RL without adapting to GUI grounding tasks. Input design: Current templates encourage the model to generate chain-of-thought reasoning, but longer chains unexpectedly lead to worse grounding performance. Output evaluation: Reward functions based on hit signals or box area allow models to exploit box size, leading to reward hacking and poor localization quality. Policy update: Online RL tends to overfit easy examples due to biases in length and sample difficulty, leading to under-optimization on harder cases. To address these issues, we propose three targeted solutions. First, we adopt a Fast Thinking Template that encourages direct answer generation, reducing excessive reasoning during training. Second, we incorporate a box size constraint into the reward function to mitigate reward hacking. Third, we revise the RL objective by adjusting length normalization and adding a difficulty-aware scaling factor, enabling better optimization on hard samples. Our GUI-G1-3B, trained on 17K public samples with Qwen2.5-VL-3B-Instruct, achieves 90.3% accuracy on ScreenSpot and 37.1% on ScreenSpot-Pro. This surpasses all prior models of similar size and even outperforms the larger UI-TARS-7B, establishing a new state-of-the-art in GUI agent grounding. The project repository is available at https://github.com/Yuqi-Zhou/GUI-G1.
Objective Bicycle Occlusion Level Classification using a Deformable Parts-Based Model
Road safety is a critical challenge, particularly for cyclists, who are among the most vulnerable road users. This study aims to enhance road safety by proposing a novel benchmark for bicycle occlusion level classification using advanced computer vision techniques. Utilizing a parts-based detection model, images are annotated and processed through a custom image detection pipeline. A novel method of bicycle occlusion level is proposed to objectively quantify the visibility and occlusion level of bicycle semantic parts. The findings indicate that the model robustly quantifies the visibility and occlusion level of bicycles, a significant improvement over the subjective methods used by the current state of the art. Widespread use of the proposed methodology will facilitate accurate performance reporting of cyclist detection algorithms for occluded cyclists, informing the development of more robust vulnerable road user detection methods for autonomous vehicles.
VisionReasoner: Unified Visual Perception and Reasoning via Reinforcement Learning
Large vision-language models exhibit inherent capabilities to handle diverse visual perception tasks. In this paper, we introduce VisionReasoner, a unified framework capable of reasoning and solving multiple visual perception tasks within a shared model. Specifically, by designing novel multi-object cognitive learning strategies and systematic task reformulation, VisionReasoner enhances its reasoning capabilities to analyze visual inputs, and addresses diverse perception tasks in a unified framework. The model generates a structured reasoning process before delivering the desired outputs responding to user queries. To rigorously assess unified visual perception capabilities, we evaluate VisionReasoner on ten diverse tasks spanning three critical domains: detection, segmentation, and counting. Experimental results show that VisionReasoner achieves superior performance as a unified model, outperforming Qwen2.5VL by relative margins of 29.1% on COCO (detection), 22.1% on ReasonSeg (segmentation), and 15.3% on CountBench (counting).
AgentThink: A Unified Framework for Tool-Augmented Chain-of-Thought Reasoning in Vision-Language Models for Autonomous Driving
Vision-Language Models (VLMs) show promise for autonomous driving, yet their struggle with hallucinations, inefficient reasoning, and limited real-world validation hinders accurate perception and robust step-by-step reasoning. To overcome this, we introduce \textbf{AgentThink}, a pioneering unified framework that, for the first time, integrates Chain-of-Thought (CoT) reasoning with dynamic, agent-style tool invocation for autonomous driving tasks. AgentThink's core innovations include: \textbf{(i) Structured Data Generation}, by establishing an autonomous driving tool library to automatically construct structured, self-verified reasoning data explicitly incorporating tool usage for diverse driving scenarios; \textbf{(ii) A Two-stage Training Pipeline}, employing Supervised Fine-Tuning (SFT) with Group Relative Policy Optimization (GRPO) to equip VLMs with the capability for autonomous tool invocation; and \textbf{(iii) Agent-style Tool-Usage Evaluation}, introducing a novel multi-tool assessment protocol to rigorously evaluate the model's tool invocation and utilization. Experiments on the DriveLMM-o1 benchmark demonstrate AgentThink significantly boosts overall reasoning scores by \textbf{53.91\%} and enhances answer accuracy by \textbf{33.54\%}, while markedly improving reasoning quality and consistency. Furthermore, ablation studies and robust zero-shot/few-shot generalization experiments across various benchmarks underscore its powerful capabilities. These findings highlight a promising trajectory for developing trustworthy and tool-aware autonomous driving models.
comment: 18 pages, 8 figures
Contrastive Learning-Enhanced Trajectory Matching for Small-Scale Dataset Distillation
Deploying machine learning models in resource-constrained environments, such as edge devices or rapid prototyping scenarios, increasingly demands distillation of large datasets into significantly smaller yet informative synthetic datasets. Current dataset distillation techniques, particularly Trajectory Matching methods, optimize synthetic data so that the model's training trajectory on synthetic samples mirrors that on real data. While demonstrating efficacy on medium-scale synthetic datasets, these methods fail to adequately preserve semantic richness under extreme sample scarcity. To address this limitation, we propose a novel dataset distillation method integrating contrastive learning during image synthesis. By explicitly maximizing instance-level feature discrimination, our approach produces more informative and diverse synthetic samples, even when dataset sizes are significantly constrained. Experimental results demonstrate that incorporating contrastive learning substantially enhances the performance of models trained on very small-scale synthetic datasets. This integration not only guides more effective feature representation but also significantly improves the visual fidelity of the synthesized images. Experimental results demonstrate that our method achieves notable performance improvements over existing distillation techniques, especially in scenarios with extremely limited synthetic data.
comment: Under review
Continuous Representation Methods, Theories, and Applications: An Overview and Perspectives
Recently, continuous representation methods emerge as novel paradigms that characterize the intrinsic structures of real-world data through function representations that map positional coordinates to their corresponding values in the continuous space. As compared with the traditional discrete framework, the continuous framework demonstrates inherent superiority for data representation and reconstruction (e.g., image restoration, novel view synthesis, and waveform inversion) by offering inherent advantages including resolution flexibility, cross-modal adaptability, inherent smoothness, and parameter efficiency. In this review, we systematically examine recent advancements in continuous representation frameworks, focusing on three aspects: (i) Continuous representation method designs such as basis function representation, statistical modeling, tensor function decomposition, and implicit neural representation; (ii) Theoretical foundations of continuous representations such as approximation error analysis, convergence property, and implicit regularization; (iii) Real-world applications of continuous representations derived from computer vision, graphics, bioinformatics, and remote sensing. Furthermore, we outline future directions and perspectives to inspire exploration and deepen insights to facilitate continuous representation methods, theories, and applications. All referenced works are summarized in our open-source repository: https://github.com/YisiLuo/Continuous-Representation-Zoo
Harnessing the Computation Redundancy in ViTs to Boost Adversarial Transferability
Vision Transformers (ViTs) have demonstrated impressive performance across a range of applications, including many safety-critical tasks. However, their unique architectural properties raise new challenges and opportunities in adversarial robustness. In particular, we observe that adversarial examples crafted on ViTs exhibit higher transferability compared to those crafted on CNNs, suggesting that ViTs contain structural characteristics favorable for transferable attacks. In this work, we investigate the role of computational redundancy in ViTs and its impact on adversarial transferability. Unlike prior studies that aim to reduce computation for efficiency, we propose to exploit this redundancy to improve the quality and transferability of adversarial examples. Through a detailed analysis, we identify two forms of redundancy, including the data-level and model-level, that can be harnessed to amplify attack effectiveness. Building on this insight, we design a suite of techniques, including attention sparsity manipulation, attention head permutation, clean token regularization, ghost MoE diversification, and test-time adversarial training. Extensive experiments on the ImageNet-1k dataset validate the effectiveness of our approach, showing that our methods significantly outperform existing baselines in both transferability and generality across diverse model architectures.
comment: 15 pages. 7 figures
Motion by Queries: Identity-Motion Trade-offs in Text-to-Video Generation
Text-to-video diffusion models have shown remarkable progress in generating coherent video clips from textual descriptions. However, the interplay between motion, structure, and identity representations in these models remains under-explored. Here, we investigate how self-attention query (Q) features simultaneously govern motion, structure, and identity and examine the challenges arising when these representations interact. Our analysis reveals that Q affects not only layout, but that during denoising Q also has a strong effect on subject identity, making it hard to transfer motion without the side-effect of transferring identity. Understanding this dual role enabled us to control query feature injection (Q injection) and demonstrate two applications: (1) a zero-shot motion transfer method - implemented with VideoCrafter2 and WAN 2.1 - that is 10 times more efficient than existing approaches, and (2) a training-free technique for consistent multi-shot video generation, where characters maintain identity across multiple video shots while Q injection enhances motion fidelity.
comment: (1) Project page: https://research.nvidia.com/labs/par/MotionByQueries/ (2) The methods and results in section 5, "Consistent multi-shot video generation", are based on the arXiv version 1 (v1) of this work. Starting version 2 (v2), we extend and further analyze those findings to efficient motion transfer (3) in v3 we added: results with WAN 2.1, baselines and more quality metrics
L2RDaS: Synthesizing 4D Radar Tensors for Model Generalization via Dataset Expansion
4-dimensional (4D) radar is increasingly adopted in autonomous driving for perception tasks, owing to its robustness under adverse weather conditions. To better utilize the spatial information inherent in 4D radar data, recent deep learning methods have transitioned from using sparse point cloud to 4D radar tensors. However, the scarcity of publicly available 4D radar tensor datasets limits model generalization across diverse driving scenarios. Previous methods addressed this by synthesizing radar data, but the outputs did not fully exploit the spatial information characteristic of 4D radar. To overcome these limitations, we propose LiDAR-to-4D radar data synthesis (L2RDaS), a framework that synthesizes spatially informative 4D radar tensors from LiDAR data available in existing autonomous driving datasets. L2RDaS integrates a modified U-Net architecture to effectively capture spatial information and an object information supplement (OBIS) module to enhance reflection fidelity. This framework enables the synthesis of radar tensors across diverse driving scenarios without additional sensor deployment or data collection. L2RDaS improves model generalization by expanding real datasets with synthetic radar tensors, achieving an average increase of 4.25\% in ${{AP}_{BEV}}$ and 2.87\% in ${{AP}_{3D}}$ across three detection models. Additionally, L2RDaS supports ground-truth augmentation (GT-Aug) by embedding annotated objects into LiDAR data and synthesizing them into radar tensors, resulting in further average increases of 3.75\% in ${{AP}_{BEV}}$ and 4.03\% in ${{AP}_{3D}}$. The implementation will be available at https://github.com/kaist-avelab/K-Radar.
comment: 9 pages, 3 figures, Arxiv preprint
Remote Sensing Spatio-Temporal Vision-Language Models: A Comprehensive Survey
The interpretation of multi-temporal remote sensing imagery is critical for monitoring Earth's dynamic processes-yet previous change detection methods, which produce binary or semantic masks, fall short of providing human-readable insights into changes. Recent advances in Vision-Language Models (VLMs) have opened a new frontier by fusing visual and linguistic modalities, enabling spatio-temporal vision-language understanding: models that not only capture spatial and temporal dependencies to recognize changes but also provide a richer interactive semantic analysis of temporal images (e.g., generate descriptive captions and answer natural-language queries). In this survey, we present the first comprehensive review of RS-STVLMs. The survey covers the evolution of models from early task-specific models to recent general foundation models that leverage powerful large language models. We discuss progress in representative tasks, such as change captioning, change question answering, and change grounding. Moreover, we systematically dissect the fundamental components and key technologies underlying these models, and review the datasets and evaluation metrics that have driven the field. By synthesizing task-level insights with a deep dive into shared architectural patterns, we aim to illuminate current achievements and chart promising directions for future research in spatio-temporal vision-language understanding for remote sensing. We will keep tracing related works at https://github.com/Chen-Yang-Liu/Awesome-RS-SpatioTemporal-VLMs
MindGYM: What Matters in Question Synthesis for Thinking-Centric Fine-Tuning?
Large foundation models face challenges in acquiring transferable, structured thinking abilities, especially when supervised with rigid templates or crowd-annotated instruction datasets. Unlike prior approaches, we focus on a thinking-centric data synthesis paradigm that enables models to evolve through self-generated, cognitively guided data. We propose MindGYM, a structured and scalable framework for question synthesis, composed of: (1) Cognitive Thinking Process Injection, which infuses high-level reasoning objectives to shape the model's synthesis behavior; (2) Seed Single-Hop Question Synthesis, generating atomic questions from diverse semantic types to encourage broader thinking; and (3) Challenging Multi-Hop QA Synthesis, composing more complex multi-hop questions based on QA seeds for deeper reasoning. Detailed analysis shows that synthetic data generated by our method achieves 16.7% higher average quality and 67.91% lower quality variance compared to baseline sources, highlighting that both high-quality and self-contained data are essential for effective, thinking-oriented fine-tuning. MindGYM improves performance on six reasoning benchmarks, achieving gains of up to 16% on MathVision using only 400 data samples, and generalizable improvements across different model sizes and architectures. MindGYM underscores the viability of self-challenging mechanisms in refining large model capabilities while minimizing human intervention and resource demands. Code and data are released to promote data-centric research into self-evolving foundation models driven by their internal reasoning capabilities.
comment: 22 pages, 7 tables
More Text, Less Point: Towards 3D Data-Efficient Point-Language Understanding
Enabling Large Language Models (LLMs) to comprehend the 3D physical world remains a significant challenge. Due to the lack of large-scale 3D-text pair datasets, the success of LLMs has yet to be replicated in 3D understanding. In this paper, we rethink this issue and propose a new task: 3D Data-Efficient Point-Language Understanding. The goal is to enable LLMs to achieve robust 3D object understanding with minimal 3D point cloud and text data pairs. To address this task, we introduce GreenPLM, which leverages more text data to compensate for the lack of 3D data. First, inspired by using CLIP to align images and text, we utilize a pre-trained point cloud-text encoder to map the 3D point cloud space to the text space. This mapping leaves us to seamlessly connect the text space with LLMs. Once the point-text-LLM connection is established, we further enhance text-LLM alignment by expanding the intermediate text space, thereby reducing the reliance on 3D point cloud data. Specifically, we generate 6M free-text descriptions of 3D objects, and design a three-stage training strategy to help LLMs better explore the intrinsic connections between different modalities. To achieve efficient modality alignment, we design a zero-parameter cross-attention module for token pooling. Extensive experimental results show that GreenPLM requires only 12% of the 3D training data used by existing state-of-the-art models to achieve superior 3D understanding. Remarkably, GreenPLM also achieves competitive performance using text-only data. The code and weights are available at: https://github.com/TangYuan96/GreenPLM.
DongbaMIE: A Multimodal Information Extraction Dataset for Evaluating Semantic Understanding of Dongba Pictograms
Dongba pictographic is the only pictographic script still in use in the world. Its pictorial ideographic features carry rich cultural and contextual information. However, due to the lack of relevant datasets, research on semantic understanding of Dongba hieroglyphs has progressed slowly. To this end, we constructed \textbf{DongbaMIE} - the first dataset focusing on multimodal information extraction of Dongba pictographs. The dataset consists of images of Dongba hieroglyphic characters and their corresponding semantic annotations in Chinese. It contains 23,530 sentence-level and 2,539 paragraph-level high-quality text-image pairs. The annotations cover four semantic dimensions: object, action, relation and attribute. Systematic evaluation of mainstream multimodal large language models shows that the models are difficult to perform information extraction of Dongba hieroglyphs efficiently under zero-shot and few-shot learning. Although supervised fine-tuning can improve the performance, accurate extraction of complex semantics is still a great challenge at present.
comment: Our dataset can be obtained from: https://github.com/thinklis/DongbaMIE
Retrieval-Augmented Perception: High-Resolution Image Perception Meets Visual RAG
High-resolution (HR) image perception remains a key challenge in multimodal large language models (MLLMs). To overcome the limitations of existing methods, this paper shifts away from prior dedicated heuristic approaches and revisits the most fundamental idea to HR perception by enhancing the long-context capability of MLLMs, driven by recent advances in long-context techniques like retrieval-augmented generation (RAG) for general LLMs. Towards this end, this paper presents the first study exploring the use of RAG to address HR perception challenges. Specifically, we propose Retrieval-Augmented Perception (RAP), a training-free framework that retrieves and fuses relevant image crops while preserving spatial context using the proposed Spatial-Awareness Layout. To accommodate different tasks, the proposed Retrieved-Exploration Search (RE-Search) dynamically selects the optimal number of crops based on model confidence and retrieval scores. Experimental results on HR benchmarks demonstrate the significant effectiveness of RAP, with LLaVA-v1.5-13B achieving a 43% improvement on $V^*$ Bench and 19% on HR-Bench.
Feature Map Similarity Reduction in Convolutional Neural Networks
It has been observed that Convolutional Neural Networks (CNNs) suffer from redundancy in feature maps, leading to inefficient capacity utilization. Efforts to address this issue have largely focused on kernel orthogonality method. In this work, we theoretically and empirically demonstrate that kernel orthogonality does not necessarily lead to a reduction in feature map redundancy. Based on this analysis, we propose the Convolutional Similarity method to reduce feature map similarity, independently of the CNN's input. The Convolutional Similarity can be minimized as either a regularization term or an iterative initialization method. Experimental results show that minimizing Convolutional Similarity not only improves classification accuracy but also accelerates convergence. Furthermore, our method enables the use of significantly smaller models to achieve the same level of performance, promoting a more efficient use of model capacity. Future work will focus on coupling the iterative initialization method with the optimization momentum term and examining the method's impact on generative frameworks.
Evaluating Automated Radiology Report Quality through Fine-Grained Phrasal Grounding of Clinical Findings
Several evaluation metrics have been developed recently to automatically assess the quality of generative AI reports for chest radiographs based only on textual information using lexical, semantic, or clinical named entity recognition methods. In this paper, we develop a new method of report quality evaluation by first extracting fine-grained finding patterns capturing the location, laterality, and severity of a large number of clinical findings. We then performed phrasal grounding to localize their associated anatomical regions on chest radiograph images. The textual and visual measures are then combined to rate the quality of the generated reports. We present results that compare this evaluation metric with other textual metrics on a gold standard dataset derived from the MIMIC collection and show its robustness and sensitivity to factual errors.
Stronger ViTs With Octic Equivariance
Recent efforts at scaling computer vision models have established Vision Transformers (ViTs) as the leading architecture. ViTs incorporate weight sharing over image patches as an important inductive bias. In this work, we show that ViTs benefit from incorporating equivariance under the octic group, i.e., reflections and 90-degree rotations, as a further inductive bias. We develop new architectures, octic ViTs, that use octic-equivariant layers and put them to the test on both supervised and self-supervised learning. Through extensive experiments on DeiT-III and DINOv2 training on ImageNet-1K, we show that octic ViTs yield more computationally efficient networks while also improving performance. In particular, we achieve approximately 40% reduction in FLOPs for ViT-H while simultaneously improving both classification and segmentation results.
Leveraging Habitat Information for Fine-grained Bird Identification
Traditional bird classifiers mostly rely on the visual characteristics of birds. Some prior works even train classifiers to be invariant to the background, completely discarding the living environment of birds. Instead, we are the first to explore integrating habitat information, one of the four major cues for identifying birds by ornithologists, into modern bird classifiers. We focus on two leading model types: (1) CNNs and ViTs trained on the downstream bird datasets; and (2) original, multi-modal CLIP. Training CNNs and ViTs with habitat-augmented data results in an improvement of up to +0.83 and +0.23 points on NABirds and CUB-200, respectively. Similarly, adding habitat descriptors to the prompts for CLIP yields a substantial accuracy boost of up to +0.99 and +1.1 points on NABirds and CUB-200, respectively. We find consistent accuracy improvement after integrating habitat features into the image augmentation process and into the textual descriptors of vision-language CLIP classifiers. Code is available at: https://anonymous.4open.science/r/reasoning-8B7E/.
TRACE: Transformer-based Risk Assessment for Clinical Evaluation
We present TRACE (Transformer-based Risk Assessment for Clinical Evaluation), a novel method for clinical risk assessment based on clinical data, leveraging the self-attention mechanism for enhanced feature interaction and result interpretation. Our approach is able to handle different data modalities, including continuous, categorical and multiple-choice (checkbox) attributes. The proposed architecture features a shared representation of the clinical data obtained by integrating specialized embeddings of each data modality, enabling the detection of high-risk individuals using Transformer encoder layers. To assess the effectiveness of the proposed method, a strong baseline based on non-negative multi-layer perceptrons (MLPs) is introduced. The proposed method outperforms various baselines widely used in the domain of clinical risk assessment, while effectively handling missing values. In terms of explainability, our Transformer-based method offers easily interpretable results via attention weights, further enhancing the clinicians' decision-making process.
Unified Multimodal Understanding and Generation Models: Advances, Challenges, and Opportunities
Recent years have seen remarkable progress in both multimodal understanding models and image generation models. Despite their respective successes, these two domains have evolved independently, leading to distinct architectural paradigms: While autoregressive-based architectures have dominated multimodal understanding, diffusion-based models have become the cornerstone of image generation. Recently, there has been growing interest in developing unified frameworks that integrate these tasks. The emergence of GPT-4o's new capabilities exemplifies this trend, highlighting the potential for unification. However, the architectural differences between the two domains pose significant challenges. To provide a clear overview of current efforts toward unification, we present a comprehensive survey aimed at guiding future research. First, we introduce the foundational concepts and recent advancements in multimodal understanding and text-to-image generation models. Next, we review existing unified models, categorizing them into three main architectural paradigms: diffusion-based, autoregressive-based, and hybrid approaches that fuse autoregressive and diffusion mechanisms. For each category, we analyze the structural designs and innovations introduced by related works. Additionally, we compile datasets and benchmarks tailored for unified models, offering resources for future exploration. Finally, we discuss the key challenges facing this nascent field, including tokenization strategy, cross-modal attention, and data. As this area is still in its early stages, we anticipate rapid advancements and will regularly update this survey. Our goal is to inspire further research and provide a valuable reference for the community. The references associated with this survey are available on GitHub (https://github.com/AIDC-AI/Awesome-Unified-Multimodal-Models).
comment: In this version, we incorporate new papers. This work is still in progress; Github project: https://github.com/AIDC-AI/Awesome-Unified-Multimodal-Models
Top-Down Compression: Revisit Efficient Vision Token Projection for Visual Instruction Tuning
Visual instruction tuning aims to enable large language models to comprehend the visual world, with a pivotal challenge lying in establishing an effective vision-to-language projection. However, existing methods often grapple with the intractable trade-off between accuracy and efficiency. In this paper, we present LLaVA-Meteor, a novel approach designed to break this deadlock, equipped with a novel Top-Down Compression paradigm that strategically compresses visual tokens without compromising core information. Specifically, we construct a trainable Flash Global Fusion module based on efficient selective state space operators, which aligns the feature space while enabling each token to perceive holistic visual context and instruction preference at low cost. Furthermore, a local-to-single scanning manner is employed to effectively capture local dependencies, thereby enhancing the model's capability in vision modeling. To alleviate computational overhead, we explore a Visual-Native Selection mechanism that independently assesses token significance by both the visual and native experts, followed by aggregation to retain the most critical subset. Extensive experiments show that our approach reduces visual tokens by 75--95% while achieving comparable or superior performance across 12 benchmarks, significantly improving efficiency.
comment: Under Review
Playmate: Flexible Control of Portrait Animation via 3D-Implicit Space Guided Diffusion
Recent diffusion-based talking face generation models have demonstrated impressive potential in synthesizing videos that accurately match a speech audio clip with a given reference identity. However, existing approaches still encounter significant challenges due to uncontrollable factors, such as inaccurate lip-sync, inappropriate head posture and the lack of fine-grained control over facial expressions. In order to introduce more face-guided conditions beyond speech audio clips, a novel two-stage training framework Playmate is proposed to generate more lifelike facial expressions and talking faces. In the first stage, we introduce a decoupled implicit 3D representation along with a meticulously designed motion-decoupled module to facilitate more accurate attribute disentanglement and generate expressive talking videos directly from audio cues. Then, in the second stage, we introduce an emotion-control module to encode emotion control information into the latent space, enabling fine-grained control over emotions and thereby achieving the ability to generate talking videos with desired emotion. Extensive experiments demonstrate that Playmate not only outperforms existing state-of-the-art methods in terms of video quality, but also exhibits strong competitiveness in lip synchronization while offering improved flexibility in controlling emotion and head pose. The code will be available at https://github.com/Playmate111/Playmate.
Artificial intelligence in digital pathology: a systematic review and meta-analysis of diagnostic test accuracy
Ensuring diagnostic performance of AI models before clinical use is key to the safe and successful adoption of these technologies. Studies reporting AI applied to digital pathology images for diagnostic purposes have rapidly increased in number in recent years. The aim of this work is to provide an overview of the diagnostic accuracy of AI in digital pathology images from all areas of pathology. This systematic review and meta-analysis included diagnostic accuracy studies using any type of artificial intelligence applied to whole slide images (WSIs) in any disease type. The reference standard was diagnosis through histopathological assessment and / or immunohistochemistry. Searches were conducted in PubMed, EMBASE and CENTRAL in June 2022. We identified 2976 studies, of which 100 were included in the review and 48 in the full meta-analysis. Risk of bias and concerns of applicability were assessed using the QUADAS-2 tool. Data extraction was conducted by two investigators and meta-analysis was performed using a bivariate random effects model. 100 studies were identified for inclusion, equating to over 152,000 whole slide images (WSIs) and representing many disease types. Of these, 48 studies were included in the meta-analysis. These studies reported a mean sensitivity of 96.3% (CI 94.1-97.7) and mean specificity of 93.3% (CI 90.5-95.4) for AI. There was substantial heterogeneity in study design and all 100 studies identified for inclusion had at least one area at high or unclear risk of bias. This review provides a broad overview of AI performance across applications in whole slide imaging. However, there is huge variability in study design and available performance data, with details around the conduct of the study and make up of the datasets frequently missing. Overall, AI offers good accuracy when applied to WSIs but requires more rigorous evaluation of its performance.
comment: 26 pages, 5 figures, 8 tables + Supplementary materials Preprint is pre-peer review version. Please see link for updated, peer reviewed article to see latest version
Fast computation of the TGOSPA metric for multiple target tracking via unbalanced optimal transport
In multiple target tracking, it is important to be able to evaluate the performance of different tracking algorithms. The trajectory generalized optimal sub-pattern assignment metric (TGOSPA) is a recently proposed metric for such evaluations. The TGOSPA metric is computed as the solution to an optimization problem, but for large tracking scenarios, solving this problem becomes computationally demanding. In this paper, we present an approximation algorithm for evaluating the TGOSPA metric, based on casting the TGOSPA problem as an unbalanced multimarginal optimal transport problem. Following recent advances in computational optimal transport, we introduce an entropy regularization and derive an iterative scheme for solving the Lagrangian dual of the regularized problem. Numerical results suggest that our proposed algorithm is more computationally efficient than the alternative of computing the exact metric using a linear programming solver, while still providing an adequate approximation of the metric.
comment: 6 pages, 3 figures. Revision
Supervising 3D Talking Head Avatars with Analysis-by-Audio-Synthesis
In order to be widely applicable, speech-driven 3D head avatars must articulate their lips in accordance with speech, while also conveying the appropriate emotions with dynamically changing facial expressions. The key problem is that deterministic models produce high-quality lip-sync but without rich expressions, whereas stochastic models generate diverse expressions but with lower lip-sync quality. To get the best of both, we seek a stochastic model with accurate lip-sync. To that end, we develop a new approach based on the following observation: if a method generates realistic 3D lip motions, it should be possible to infer the spoken audio from the lip motion. The inferred speech should match the original input audio, and erroneous predictions create a novel supervision signal for training 3D talking head avatars with accurate lip-sync. To demonstrate this effect, we propose THUNDER (Talking Heads Under Neural Differentiable Elocution Reconstruction), a 3D talking head avatar framework that introduces a novel supervision mechanism via differentiable sound production. First, we train a novel mesh-to-speech model that regresses audio from facial animation. Then, we incorporate this model into a diffusion-based talking avatar framework. During training, the mesh-to-speech model takes the generated animation and produces a sound that is compared to the input speech, creating a differentiable analysis-by-audio-synthesis supervision loop. Our extensive qualitative and quantitative experiments demonstrate that THUNDER significantly improves the quality of the lip-sync of talking head avatars while still allowing for generation of diverse, high-quality, expressive facial animations. The code and models will be available at https://thunder.is.tue.mpg.de/
GeoBiked: A Dataset with Geometric Features and Automated Labeling Techniques to Enable Deep Generative Models in Engineering Design
We provide a dataset for enabling Deep Generative Models (DGMs) in engineering design and propose methods to automate data labeling by utilizing large-scale foundation models. GeoBiked is curated to contain 4 355 bicycle images, annotated with structural and technical features and is used to investigate two automated labeling techniques: The utilization of consolidated latent features (Hyperfeatures) from image-generation models to detect geometric correspondences (e.g. the position of the wheel center) in structural images and the generation of diverse text descriptions for structural images. GPT-4o, a vision-language-model (VLM), is instructed to analyze images and produce diverse descriptions aligned with the system-prompt. By representing technical images as Diffusion-Hyperfeatures, drawing geometric correspondences between them is possible. The detection accuracy of geometric points in unseen samples is improved by presenting multiple annotated source images. GPT-4o has sufficient capabilities to generate accurate descriptions of technical images. Grounding the generation only on images leads to diverse descriptions but causes hallucinations, while grounding it on categorical labels restricts the diversity. Using both as input balances creativity and accuracy. Successfully using Hyperfeatures for geometric correspondence suggests that this approach can be used for general point-detection and annotation tasks in technical images. Labeling such images with text descriptions using VLMs is possible, but dependent on the models detection capabilities, careful prompt-engineering and the selection of input information. Applying foundation models in engineering design is largely unexplored. We aim to bridge this gap with a dataset to explore training, finetuning and conditioning DGMs in this field and suggesting approaches to bootstrap foundation models to process technical images.
LiDAR MOT-DETR: A LiDAR-based Two-Stage Transformer for 3D Multiple Object Tracking
Multi-object tracking from LiDAR point clouds presents unique challenges due to the sparse and irregular nature of the data, compounded by the need for temporal coherence across frames. Traditional tracking systems often rely on hand-crafted features and motion models, which can struggle to maintain consistent object identities in crowded or fast-moving scenes. We present a lidar-based two-staged DETR inspired transformer; a smoother and tracker. The smoother stage refines lidar object detections, from any off-the-shelf detector, across a moving temporal window. The tracker stage uses a DETR-based attention block to maintain tracks across time by associating tracked objects with the refined detections using the point cloud as context. The model is trained on the datasets nuScenes and KITTI in both online and offline (forward peeking) modes demonstrating strong performance across metrics such as ID-switch and multiple object tracking accuracy (MOTA). The numerical results indicate that the online mode outperforms the lidar-only baseline and SOTA models on the nuScenes dataset, with an aMOTA of 0.722 and an aMOTP of 0.475, while the offline mode provides an additional 3 pp aMOTP.
comment: Template change
Reconciling Privacy and Explainability in High-Stakes: A Systematic Inquiry
Deep learning's preponderance across scientific domains has reshaped high-stakes decision-making, making it essential to follow rigorous operational frameworks that include both Right-to-Privacy (RTP) and Right-to-Explanation (RTE). This paper examines the complexities of combining these two requirements. For RTP, we focus on `Differential privacy` (DP), which is considered the current gold standard for privacy-preserving machine learning due to its strong quantitative guarantee of privacy. For RTE, we focus on post-hoc explainers: they are the go-to option for model auditing as they operate independently of model training. We formally investigate DP models and various commonly-used post-hoc explainers: how to evaluate these explainers subject to RTP, and analyze the intrinsic interactions between DP models and these explainers. Furthermore, our work throws light on how RTP and RTE can be effectively combined in high-stakes applications. Our study concludes by outlining an industrial software pipeline, with the example of a wildly used use-case, that respects both RTP and RTE requirements.
comment: Accepted at TMLR
Fast Sampling Through The Reuse Of Attention Maps In Diffusion Models
Text-to-image diffusion models have demonstrated unprecedented capabilities for flexible and realistic image synthesis. Nevertheless, these models rely on a time-consuming sampling procedure, which has motivated attempts to reduce their latency. When improving efficiency, researchers often use the original diffusion model to train an additional network designed specifically for fast image generation. In contrast, our approach seeks to reduce latency directly, without any retraining, fine-tuning, or knowledge distillation. In particular, we find the repeated calculation of attention maps to be costly yet redundant, and instead suggest reusing them during sampling. Our specific reuse strategies are based on ODE theory, which implies that the later a map is reused, the smaller the distortion in the final image. We empirically compare our reuse strategies with few-step sampling procedures of comparable latency, finding that reuse generates images that are closer to those produced by the original high-latency diffusion model.
EDM: Efficient Deep Feature Matching
Recent feature matching methods have achieved remarkable performance but lack efficiency consideration. In this paper, we revisit the mainstream detector-free matching pipeline and improve all its stages considering both accuracy and efficiency. We propose an Efficient Deep feature Matching network, EDM. We first adopt a deeper CNN with fewer dimensions to extract multi-level features. Then we present a Correlation Injection Module that conducts feature transformation on high-level deep features, and progressively injects feature correlations from global to local for efficient multi-scale feature aggregation, improving both speed and performance. In the refinement stage, a novel lightweight bidirectional axis-based regression head is designed to directly predict subpixel-level correspondences from latent features, avoiding the significant computational cost of explicitly locating keypoints on high-resolution local feature heatmaps. Moreover, effective selection strategies are introduced to enhance matching accuracy. Extensive experiments show that our EDM achieves competitive matching accuracy on various benchmarks and exhibits excellent efficiency, offering valuable best practices for real-world applications. The code is available at https://github.com/chicleee/EDM.
Progressive Local Alignment for Medical Multimodal Pre-training
Local alignment between medical images and text is essential for accurate diagnosis, though it remains challenging due to the absence of natural local pairings and the limitations of rigid region recognition methods. Traditional approaches rely on hard boundaries, which introduce uncertainty, whereas medical imaging demands flexible soft region recognition to handle irregular structures. To overcome these challenges, we propose the Progressive Local Alignment Network (PLAN), which designs a novel contrastive learning-based approach for local alignment to establish meaningful word-pixel relationships and introduces a progressive learning strategy to iteratively refine these relationships, enhancing alignment precision and robustness. By combining these techniques, PLAN effectively improves soft region recognition while suppressing noise interference. Extensive experiments on multiple medical datasets demonstrate that PLAN surpasses state-of-the-art methods in phrase grounding, image-text retrieval, object detection, and zero-shot classification, setting a new benchmark for medical image-text alignment.
comment: We are currently revising the methodology described in the manuscript to improve its clarity. We have decided to withdraw the current version until a more robust and complete version is ready
Liver Cirrhosis Stage Estimation from MRI with Deep Learning
We present an end-to-end deep learning framework for automated liver cirrhosis stage estimation from multi-sequence MRI. Cirrhosis is the severe scarring (fibrosis) of the liver and a common endpoint of various chronic liver diseases. Early diagnosis is vital to prevent complications such as decompensation and cancer, which significantly decreases life expectancy. However, diagnosing cirrhosis in its early stages is challenging, and patients often present with life-threatening complications. Our approach integrates multi-scale feature learning with sequence-specific attention mechanisms to capture subtle tissue variations across cirrhosis progression stages. Using CirrMRI600+, a large-scale publicly available dataset of 628 high-resolution MRI scans from 339 patients, we demonstrate state-of-the-art performance in three-stage cirrhosis classification. Our best model achieves 72.8% accuracy on T1W and 63.8% on T2W sequences, significantly outperforming traditional radiomics-based approaches. Through extensive ablation studies, we show that our architecture effectively learns stage-specific imaging biomarkers. We establish new benchmarks for automated cirrhosis staging and provide insights for developing clinically applicable deep learning systems. The source code will be available at https://github.com/JunZengz/CirrhosisStage.
comment: 7 pages, 1 figure
GOTPR: General Outdoor Text-based Place Recognition Using Scene Graph Retrieval with OpenStreetMap
We propose GOTPR, a robust place recognition method designed for outdoor environments where GPS signals are unavailable. Unlike existing approaches that use point cloud maps, which are large and difficult to store, GOTPR leverages scene graphs generated from text descriptions and maps for place recognition. This method improves scalability by replacing point clouds with compact data structures, allowing robots to efficiently store and utilize extensive map data. In addition, GOTPR eliminates the need for custom map creation by using publicly available OpenStreetMap data, which provides global spatial information. We evaluated its performance using the KITTI360Pose dataset with corresponding OpenStreetMap data, comparing it to existing point cloud-based place recognition methods. The results show that GOTPR achieves comparable accuracy while significantly reducing storage requirements. In city-scale tests, it completed processing within a few seconds, making it highly practical for real-world robotics applications. More information can be found at https://donghwijung.github.io/GOTPR_page/.
Demystifying Variational Diffusion Models
Despite the growing interest in diffusion models, gaining a deep understanding of the model class remains an elusive endeavour, particularly for the uninitiated in non-equilibrium statistical physics. Thanks to the rapid rate of progress in the field, most existing work on diffusion models focuses on either applications or theoretical contributions. Unfortunately, the theoretical material is often inaccessible to practitioners and new researchers, leading to a risk of superficial understanding in ongoing research. Given that diffusion models are now an indispensable tool, a clear and consolidating perspective on the model class is needed to properly contextualize recent advances in generative modelling and lower the barrier to entry for new researchers. To that end, we revisit predecessors to diffusion models like hierarchical latent variable models and synthesize a holistic perspective using only directed graphical modelling and variational inference principles. The resulting narrative is easier to follow as it imposes fewer prerequisites on the average reader relative to the view from non-equilibrium thermodynamics or stochastic differential equations.
UniRestorer: Universal Image Restoration via Adaptively Estimating Image Degradation at Proper Granularity
Recently, considerable progress has been made in all-in-one image restoration. Generally, existing methods can be degradation-agnostic or degradation-aware. However, the former are limited in leveraging degradation-specific restoration, and the latter suffer from the inevitable error in degradation estimation. Consequently, the performance of existing methods has a large gap compared to specific single-task models. In this work, we make a step forward in this topic, and present our UniRestorer with improved restoration performance. Specifically, we perform hierarchical clustering on degradation space, and train a multi-granularity mixture-of-experts (MoE) restoration model. Then, UniRestorer adopts both degradation and granularity estimation to adaptively select an appropriate expert for image restoration. In contrast to existing degradation-agnostic and -aware methods, UniRestorer can leverage degradation estimation to benefit degradation specific restoration, and use granularity estimation to make the model robust to degradation estimation error. Experimental results show that our UniRestorer outperforms state-of-the-art all-in-one methods by a large margin, and is promising in closing the performance gap to specific single task models.
Relation-R1: Progressively Cognitive Chain-of-Thought Guided Reinforcement Learning for Unified Relation Comprehension
Recent advances in multi-modal large language models (MLLMs) have significantly improved object-level grounding and region captioning. However, they remain limited in visual relation understanding, struggling even with binary relation detection, let alone \textit{N}-ary relations involving multiple semantic roles. The core reason is the lack of modeling for \textit{structural semantic dependencies} among multi-entities, leading to unreliable outputs, hallucinations, and over-reliance on language priors (\eg, defaulting to ``person drinks a milk'' if a person is merely holding it). To this end, we propose Relation-R1, the \textit{first unified} relation comprehension framework that explicitly integrates cognitive chain-of-thought (CoT)-guided supervised fine-tuning (SFT) and group relative policy optimization (GRPO) within a reinforcement learning (RL) paradigm. Specifically, we first establish foundational reasoning capabilities via SFT, enforcing structured outputs with thinking processes. Then, GRPO is utilized to refine these outputs via multi-rewards optimization, prioritizing visual-semantic grounding over language-induced biases, thereby improving generalization capability. Furthermore, we investigate the impact of various CoT strategies within this framework, demonstrating that a specific-to-general progressive approach in CoT guidance further improves generalization, especially in capturing synonymous \textit{N}-ary relations. Extensive experiments on widely-used PSG and SWiG datasets demonstrate that Relation-R1 achieves state-of-the-art performance in both binary and \textit{N}-ary relation understanding.
comment: Ongoing project
Persistence-based Hough Transform for Line Detection SC'25
The Hough transform is a popular and classical technique in computer vision for the detection of lines (or more general objects). It maps a pixel into a dual space -- the Hough space: each pixel is mapped to the set of lines through this pixel, which forms a curve in Hough space. The detection of lines then becomes a voting process to find those lines that received many votes by pixels. However, this voting is done by thresholding, which is susceptible to noise and other artifacts. In this work, we present an alternative voting technique to detect peaks in the Hough space based on persistent homology, which very naturally addresses limitations of simple thresholding. Experiments on synthetic data show that our method significantly outperforms the original method, while also demonstrating enhanced robustness. This work seeks to inspire future research in two key directions. First, we highlight the untapped potential of Topological Data Analysis techniques and advocate for their broader integration into existing methods, including well-established ones. Secondly, we initiate a discussion on the mathematical stability of the Hough transform, encouraging exploration of mathematically grounded improvements to enhance its robustness.
comment: Accepted at iDSC'25, Salzburg, Austria
Leveraging Large Language Models For Scalable Vector Graphics Processing: A Review
In recent years, rapid advances in computer vision have significantly improved the processing and generation of raster images. However, vector graphics, which is essential in digital design, due to its scalability and ease of editing, have been relatively understudied. Traditional vectorization techniques, which are often used in vector generation, suffer from long processing times and excessive output complexity, limiting their usability in practical applications. The advent of large language models (LLMs) has opened new possibilities for the generation, editing, and analysis of vector graphics, particularly in the SVG format, which is inherently text-based and well-suited for integration with LLMs. This paper provides a systematic review of existing LLM-based approaches for SVG processing, categorizing them into three main tasks: generation, editing, and understanding. We observe notable models such as IconShop, StrokeNUWA, and StarVector, highlighting their strengths and limitations. Furthermore, we analyze benchmark datasets designed for assessing SVG-related tasks, including SVGEditBench, VGBench, and SGP-Bench, and conduct a series of experiments to evaluate various LLMs in these domains. Our results demonstrate that for vector graphics reasoning-enhanced models outperform standard LLMs, particularly in generation and understanding tasks. Furthermore, our findings underscore the need to develop more diverse and richly annotated datasets to further improve LLM capabilities in vector graphics tasks.
Benchmarking Ophthalmology Foundation Models for Clinically Significant Age Macular Degeneration Detection
Self-supervised learning (SSL) has enabled Vision Transformers (ViTs) to learn robust representations from large-scale natural image datasets, enhancing their generalization across domains. In retinal imaging, foundation models pretrained on either natural or ophthalmic data have shown promise, but the benefits of in-domain pretraining remain uncertain. To investigate this, we benchmark six SSL-pretrained ViTs on seven digital fundus image (DFI) datasets totaling 70,000 expert-annotated images for the task of moderate-to-late age-related macular degeneration (AMD) identification. Our results show that iBOT pretrained on natural images achieves the highest out-of-distribution generalization, with AUROCs of 0.80-0.97, outperforming domain-specific models, which achieved AUROCs of 0.78-0.96 and a baseline ViT-L with no pretraining, which achieved AUROCs of 0.68-0.91. These findings highlight the value of foundation models in improving AMD identification and challenge the assumption that in-domain pretraining is necessary. Furthermore, we release BRAMD, an open-access dataset (n=587) of DFIs with AMD labels from Brazil.
comment: 10 pages, 3 figures
Transferring Textual Preferences to Vision-Language Understanding through Model Merging ACL 2025
Large vision-language models (LVLMs) perform outstandingly across various multimodal tasks. However, their ability to evaluate generated content remains limited, and training vision-language reward models (VLRMs) with preference data is computationally expensive. This paper explores a training-free alternative by merging text-based reward models (RMs) with LVLMs to create VLRMs. Our approach shows that integrating these models leads to improved performance over LVLMs' scoring and text-based RMs, offering an efficient method for incorporating textual preferences into LVLMs.
comment: Accepted to ACL 2025 main
When LLMs Learn to be Students: The SOEI Framework for Modeling and Evaluating Virtual Student Agents in Educational Interaction
Recent advances in large language models (LLMs) have enabled intelligent tutoring systems, yet the development of LLM-based Virtual Student Agents (LVSAs) remains underexplored. Such agents are essential for teacher-facing applications, where simulating diverse learner traits can support adaptive instruction and pedagogical skill development. However, current methods lack principled personality modeling, scalable evaluation of behavioral consistency, and empirical validation in interactive teaching settings. We propose the SOEI framework, a structured pipeline comprising Scene, Object, Evaluation, and Interaction, for constructing and evaluating personality-aligned LVSAs in classroom scenarios. Leveraging Chinese language instruction as a cognitively and emotionally rich testbed, we generate five LVSAs based on Big Five traits through LoRA fine-tuning and expert-informed prompt design. Their behavioral realism and personality coherence are assessed using a hybrid human & GPT-4 evaluation and a multi-dimensional annotation protocol. Through controlled experiments with real pre-service teachers, we demonstrate that LVSAs can elicit adaptive teaching strategies and maintain trait-consistent behavior across multi-turn dialogues. Our results provide: (1) an educationally and psychologically grounded generation pipeline for LLM-based student agents; (2) a hybrid, scalable evaluation framework for behavioral realism; and (3) empirical insights into the pedagogical utility of LVSAs in shaping instructional adaptation. By embedding LVSAs into both generative modeling and human-in-the-loop teaching, SOEI bridges AI for Education (AI4Edu) and Education for AI (Edu4AI), positioning classroom interaction as a rigorous testbed for controllability, personality alignment, and human-likeness in large language models.
Copy-Move Forgery Detection and Question Answering for Remote Sensing Image
Driven by practical demands in land resource monitoring and national defense security, this paper introduces the Remote Sensing Copy-Move Question Answering (RSCMQA) task. Unlike traditional Remote Sensing Visual Question Answering (RSVQA), RSCMQA focuses on interpreting complex tampering scenarios and inferring relationships between objects. We present a suite of global RSCMQA datasets, comprising images from 29 different regions across 14 countries. Specifically, we propose five distinct datasets, including the basic dataset RS-CMQA, the category-balanced dataset RS-CMQA-B, the high-authenticity dataset Real-RSCM, the extended dataset RS-TQA, and the extended category-balanced dataset RS-TQA-B. These datasets fill a critical gap in the field while ensuring comprehensiveness, balance, and challenge. Furthermore, we introduce a region-discrimination-guided multimodal copy-move forgery perception framework (CMFPF), which enhances the accuracy of answering questions about tampered images by leveraging prompt about the differences and connections between the source and tampered domains. Extensive experiments demonstrate that our method provides a stronger benchmark for RSCMQA compared to general VQA and RSVQA models. Our datasets and code are publicly available at https://github.com/shenyedepisa/RSCMQA.
comment: 11 figs, 7 tables
Logit Scaling for Out-of-Distribution Detection
The safe deployment of machine learning and AI models in open-world settings hinges critically on the ability to detect out-of-distribution (OOD) data accurately, data samples that contrast vastly from what the model was trained with. Current approaches to OOD detection often require further training the model, and/or statistics about the training data which may no longer be accessible. Additionally, many existing OOD detection methods struggle to maintain performance when transferred across different architectures. Our research tackles these issues by proposing a simple, post-hoc method that does not require access to the training data distribution, keeps a trained network intact, and holds strong performance across a variety of architectures. Our method, Logit Scaling (LTS), as the name suggests, simply scales the logits in a manner that effectively distinguishes between in-distribution (ID) and OOD samples. We tested our method on benchmarks across various scales, including CIFAR-10, CIFAR-100, ImageNet and OpenOOD. The experiments cover 3 ID and 14 OOD datasets, as well as 9 model architectures. Overall, we demonstrate state-of-the-art performance, robustness and adaptability across different architectures, paving the way towards a universally applicable solution for advanced OOD detection.
Uncovering Cultural Representation Disparities in Vision-Language Models
Vision-Language Models (VLMs) have demonstrated impressive capabilities across a range of tasks, yet concerns about their potential biases exist. This work investigates the extent to which prominent VLMs exhibit cultural biases by evaluating their performance on an image-based country identification task at a country level. Utilizing the geographically diverse Country211 dataset, we probe several large vision language models (VLMs) under various prompting strategies: open-ended questions, multiple-choice questions (MCQs) including challenging setups like multilingual and adversarial settings. Our analysis aims to uncover disparities in model accuracy across different countries and question formats, providing insights into how training data distribution and evaluation methodologies might influence cultural biases in VLMs. The findings highlight significant variations in performance, suggesting that while VLMs possess considerable visual understanding, they inherit biases from their pre-training data and scale that impact their ability to generalize uniformly across diverse global contexts.
comment: 28 pages, 36 figures
Refining CNN-based Heatmap Regression with Gradient-based Corner Points for Electrode Localization
We propose a method for detecting the electrode positions in lithium-ion batteries. The process begins by identifying the region of interest (ROI) in the battery's X-ray image through corner point detection. A convolutional neural network is then used to regress the pole positions within this ROI. Finally, the regressed positions are optimized and corrected using corner point priors, significantly mitigating the loss of localization accuracy caused by operations such as feature map down-sampling and padding during network training. Our findings show that combining traditional pixel gradient analysis with CNN-based heatmap regression for keypoint extraction enhances both accuracy and efficiency, resulting in significant performance improvements.
Mask of truth: model sensitivity to unexpected regions of medical images
The development of larger models for medical image analysis has led to increased performance. However, it also affected our ability to explain and validate model decisions. Models can use non-relevant parts of images, also called spurious correlations or shortcuts, to obtain high performance on benchmark datasets but fail in real-world scenarios. In this work, we challenge the capacity of convolutional neural networks (CNN) to classify chest X-rays and eye fundus images while masking out clinically relevant parts of the image. We show that all models trained on the PadChest dataset, irrespective of the masking strategy, are able to obtain an Area Under the Curve (AUC) above random. Moreover, the models trained on full images obtain good performance on images without the region of interest (ROI), even superior to the one obtained on images only containing the ROI. We also reveal a possible spurious correlation in the Chaksu dataset while the performances are more aligned with the expectation of an unbiased model. We go beyond the performance analysis with the usage of the explainability method SHAP and the analysis of embeddings. We asked a radiology resident to interpret chest X-rays under different masking to complement our findings with clinical knowledge. Our code is available at https://github.com/TheoSourget/MMC_Masking and https://github.com/TheoSourget/MMC_Masking_EyeFundus
comment: Updated after publication in the Journal of Imaging Informatics in Medicine
Computation and Language
GoT-R1: Unleashing Reasoning Capability of MLLM for Visual Generation with Reinforcement Learning
Visual generation models have made remarkable progress in creating realistic images from text prompts, yet struggle with complex prompts that specify multiple objects with precise spatial relationships and attributes. Effective handling of such prompts requires explicit reasoning about the semantic content and spatial layout. We present GoT-R1, a framework that applies reinforcement learning to enhance semantic-spatial reasoning in visual generation. Building upon the Generation Chain-of-Thought approach, GoT-R1 enables models to autonomously discover effective reasoning strategies beyond predefined templates through carefully designed reinforcement learning. To achieve this, we propose a dual-stage multi-dimensional reward framework that leverages MLLMs to evaluate both the reasoning process and final output, enabling effective supervision across the entire generation pipeline. The reward system assesses semantic alignment, spatial accuracy, and visual quality in a unified approach. Experimental results demonstrate significant improvements on T2I-CompBench benchmark, particularly in compositional tasks involving precise spatial relationships and attribute binding. GoT-R1 advances the state-of-the-art in image generation by successfully transferring sophisticated reasoning capabilities to the visual generation domain. To facilitate future research, we make our code and pretrained models publicly available at https://github.com/gogoduan/GoT-R1.
comment: Github page refer to: https://github.com/gogoduan/GoT-R1
Delving into RL for Image Generation with CoT: A Study on DPO vs. GRPO
Recent advancements underscore the significant role of Reinforcement Learning (RL) in enhancing the Chain-of-Thought (CoT) reasoning capabilities of large language models (LLMs). Two prominent RL algorithms, Direct Preference Optimization (DPO) and Group Relative Policy Optimization (GRPO), are central to these developments, showcasing different pros and cons. Autoregressive image generation, also interpretable as a sequential CoT reasoning process, presents unique challenges distinct from LLM-based CoT reasoning. These encompass ensuring text-image consistency, improving image aesthetic quality, and designing sophisticated reward models, rather than relying on simpler rule-based rewards. While recent efforts have extended RL to this domain, these explorations typically lack an in-depth analysis of the domain-specific challenges and the characteristics of different RL strategies. To bridge this gap, we provide the first comprehensive investigation of the GRPO and DPO algorithms in autoregressive image generation, evaluating their in-domain performance and out-of-domain generalization, while scrutinizing the impact of different reward models on their respective capabilities. Our findings reveal that GRPO and DPO exhibit distinct advantages, and crucially, that reward models possessing stronger intrinsic generalization capabilities potentially enhance the generalization potential of the applied RL algorithms. Furthermore, we systematically explore three prevalent scaling strategies to enhance both their in-domain and out-of-domain proficiency, deriving unique insights into efficiently scaling performance for each paradigm. We hope our study paves a new path for inspiring future work on developing more effective RL algorithms to achieve robust CoT reasoning in the realm of autoregressive image generation. Code is released at https://github.com/ZiyuGuo99/Image-Generation-CoT
comment: Code is released at https://github.com/ZiyuGuo99/Image-Generation-CoT
Multi-SpatialMLLM: Multi-Frame Spatial Understanding with Multi-Modal Large Language Models
Multi-modal large language models (MLLMs) have rapidly advanced in visual tasks, yet their spatial understanding remains limited to single images, leaving them ill-suited for robotics and other real-world applications that require multi-frame reasoning. In this paper, we propose a framework to equip MLLMs with robust multi-frame spatial understanding by integrating depth perception, visual correspondence, and dynamic perception. Central to our approach is the MultiSPA dataset, a novel, large-scale collection of more than 27 million samples spanning diverse 3D and 4D scenes. Alongside MultiSPA, we introduce a comprehensive benchmark that tests a wide spectrum of spatial tasks under uniform metrics. Our resulting model, Multi-SpatialMLLM, achieves significant gains over baselines and proprietary systems, demonstrating scalable, generalizable multi-frame reasoning. We further observe multi-task benefits and early indications of emergent capabilities in challenging scenarios, and showcase how our model can serve as a multi-frame reward annotator for robotics.
comment: 24 pages. An MLLM, dataset, and benchmark for multi-frame spatial understanding. Project page: https://runsenxu.com/projects/Multi-SpatialMLLM
R1-Searcher++: Incentivizing the Dynamic Knowledge Acquisition of LLMs via Reinforcement Learning
Large Language Models (LLMs) are powerful but prone to hallucinations due to static knowledge. Retrieval-Augmented Generation (RAG) helps by injecting external information, but current methods often are costly, generalize poorly, or ignore the internal knowledge of the model. In this paper, we introduce R1-Searcher++, a novel framework designed to train LLMs to adaptively leverage both internal and external knowledge sources. R1-Searcher++ employs a two-stage training strategy: an initial SFT Cold-start phase for preliminary format learning, followed by RL for Dynamic Knowledge Acquisition. The RL stage uses outcome-supervision to encourage exploration, incorporates a reward mechanism for internal knowledge utilization, and integrates a memorization mechanism to continuously assimilate retrieved information, thereby enriching the model's internal knowledge. By leveraging internal knowledge and external search engine, the model continuously improves its capabilities, enabling efficient retrieval-augmented reasoning. Our experiments demonstrate that R1-Searcher++ outperforms previous RAG and reasoning methods and achieves efficient retrieval. The code is available at https://github.com/RUCAIBox/R1-Searcher-plus.
Do Large Language Models Excel in Complex Logical Reasoning with Formal Language?
Large Language Models (LLMs) have been shown to achieve breakthrough performance on complex logical reasoning tasks. Nevertheless, most existing research focuses on employing formal language to guide LLMs to derive reliable reasoning paths, while systematic evaluations of these capabilities are still limited. In this paper, we aim to conduct a comprehensive evaluation of LLMs across various logical reasoning problems utilizing formal languages. From the perspective of three dimensions, i.e., spectrum of LLMs, taxonomy of tasks, and format of trajectories, our key findings are: 1) Thinking models significantly outperform Instruct models, especially when formal language is employed; 2) All LLMs exhibit limitations in inductive reasoning capability, irrespective of whether they use a formal language; 3) Data with PoT format achieves the best generalization performance across other languages. Additionally, we also curate the formal-relative training data to further enhance the small language models, and the experimental results indicate that a simple rejected fine-tuning method can better enable LLMs to generalize across formal languages and achieve the best overall performance. Our codes and reports are available at https://github.com/jiangjin1999/FormalEval.
X-MAS: Towards Building Multi-Agent Systems with Heterogeneous LLMs
LLM-based multi-agent systems (MAS) extend the capabilities of single LLMs by enabling cooperation among multiple specialized agents. However, most existing MAS frameworks rely on a single LLM to drive all agents, constraining the system's intelligence to the limit of that model. This paper explores the paradigm of heterogeneous LLM-driven MAS (X-MAS), where agents are powered by diverse LLMs, elevating the system's potential to the collective intelligence of diverse LLMs. We introduce X-MAS-Bench, a comprehensive testbed designed to evaluate the performance of various LLMs across different domains and MAS-related functions. As an extensive empirical study, we assess 27 LLMs across 5 domains (encompassing 21 test sets) and 5 functions, conducting over 1.7 million evaluations to identify optimal model selections for each domain-function combination. Building on these findings, we demonstrate that transitioning from homogeneous to heterogeneous LLM-driven MAS can significantly enhance system performance without requiring structural redesign. Specifically, in a chatbot-only MAS scenario, the heterogeneous configuration yields up to 8.4\% performance improvement on the MATH dataset. In a mixed chatbot-reasoner scenario, the heterogeneous MAS could achieve a remarkable 47\% performance boost on the AIME dataset. Our results underscore the transformative potential of heterogeneous LLMs in MAS, highlighting a promising avenue for advancing scalable, collaborative AI systems.
comment: 19 pages, 5 figures
DecoupledESC: Enhancing Emotional Support Generation via Strategy-Response Decoupled Preference Optimization
Recent advances in Emotional Support Conversation (ESC) have improved emotional support generation by fine-tuning Large Language Models (LLMs) via Supervised Fine-Tuning (SFT). However, common psychological errors still persist. While Direct Preference Optimization (DPO) shows promise in reducing such errors through pairwise preference learning, its effectiveness in ESC tasks is limited by two key challenges: (1) Entangled data structure: Existing ESC data inherently entangles psychological strategies and response content, making it difficult to construct high-quality preference pairs; and (2) Optimization ambiguity: Applying vanilla DPO to such entangled pairwise data leads to ambiguous training objectives. To address these issues, we introduce Inferential Preference Mining (IPM) to construct high-quality preference data, forming the IPM-PrefDial dataset. Building upon this data, we propose a Decoupled ESC framework inspired by Gross's Extended Process Model of Emotion Regulation, which decomposes the ESC task into two sequential subtasks: strategy planning and empathic response generation. Each was trained via SFT and subsequently enhanced by DPO to align with the psychological preference. Extensive experiments demonstrate that our Decoupled ESC framework outperforms joint optimization baselines, reducing preference bias and improving response quality.
$\text{R}^2\text{ec}$: Towards Large Recommender Models with Reasoning
Large recommender models have extended LLMs as powerful recommenders via encoding or item generation, and recent breakthroughs in LLM reasoning synchronously motivate the exploration of reasoning in recommendation. Current studies usually position LLMs as external reasoning modules to yield auxiliary thought for augmenting conventional recommendation pipelines. However, such decoupled designs are limited in significant resource cost and suboptimal joint optimization. To address these issues, we propose \name, a unified large recommender model with intrinsic reasoning capabilities. Initially, we reconceptualize the model architecture to facilitate interleaved reasoning and recommendation in the autoregressive process. Subsequently, we propose RecPO, a corresponding reinforcement learning framework that optimizes \name\ both the reasoning and recommendation capabilities simultaneously in a single policy update; RecPO introduces a fused reward scheme that solely leverages recommendation labels to simulate the reasoning capability, eliminating dependency on specialized reasoning annotations. Experiments on three datasets with various baselines verify the effectiveness of \name, showing relative improvements of 68.67\% in Hit@5 and 45.21\% in NDCG@20. Code available at https://github.com/YRYangang/RRec.
MASLab: A Unified and Comprehensive Codebase for LLM-based Multi-Agent Systems
LLM-based multi-agent systems (MAS) have demonstrated significant potential in enhancing single LLMs to address complex and diverse tasks in practical applications. Despite considerable advancements, the field lacks a unified codebase that consolidates existing methods, resulting in redundant re-implementation efforts, unfair comparisons, and high entry barriers for researchers. To address these challenges, we introduce MASLab, a unified, comprehensive, and research-friendly codebase for LLM-based MAS. (1) MASLab integrates over 20 established methods across multiple domains, each rigorously validated by comparing step-by-step outputs with its official implementation. (2) MASLab provides a unified environment with various benchmarks for fair comparisons among methods, ensuring consistent inputs and standardized evaluation protocols. (3) MASLab implements methods within a shared streamlined structure, lowering the barriers for understanding and extension. Building on MASLab, we conduct extensive experiments covering 10+ benchmarks and 8 models, offering researchers a clear and comprehensive view of the current landscape of MAS methods. MASLab will continue to evolve, tracking the latest developments in the field, and invite contributions from the broader open-source community.
comment: 18 pages, 11 figures
T1: A Tool-Oriented Conversational Dataset for Multi-Turn Agentic Planning
Large Language Models (LLMs) have demonstrated impressive capabilities as intelligent agents capable of solving complex problems. However, effective planning in scenarios involving dependencies between API or tool calls-particularly in multi-turn conversations-remains a significant challenge. To address this, we introduce T1, a tool-augmented, multi-domain, multi-turn conversational dataset specifically designed to capture and manage inter-tool dependencies across diverse domains. T1 enables rigorous evaluation of agents' ability to coordinate tool use across nine distinct domains (4 single domain and 5 multi-domain) with the help of an integrated caching mechanism for both short- and long-term memory, while supporting dynamic replanning-such as deciding whether to recompute or reuse cached results. Beyond facilitating research on tool use and planning, T1 also serves as a benchmark for evaluating the performance of open-source language models. We present results powered by T1-Agent, highlighting their ability to plan and reason in complex, tool-dependent scenarios.
comment: Preprint
UFT: Unifying Supervised and Reinforcement Fine-Tuning
Post-training has demonstrated its importance in enhancing the reasoning capabilities of large language models (LLMs). The primary post-training methods can be categorized into supervised fine-tuning (SFT) and reinforcement fine-tuning (RFT). SFT is efficient and well-suited for small language models, but it may lead to overfitting and limit the reasoning abilities of larger models. In contrast, RFT generally yields better generalization but depends heavily on the strength of the base model. To address the limitations of SFT and RFT, we propose Unified Fine-Tuning (UFT), a novel post-training paradigm that unifies SFT and RFT into a single, integrated process. UFT enables the model to effectively explore solutions while incorporating informative supervision signals, bridging the gap between memorizing and thinking underlying existing methods. Notably, UFT outperforms both SFT and RFT in general, regardless of model sizes. Furthermore, we theoretically prove that UFT breaks RFT's inherent exponential sample complexity bottleneck, showing for the first time that unified training can exponentially accelerate convergence on long-horizon reasoning tasks.
LLM as Effective Streaming Processor: Bridging Streaming-Batch Mismatches with Group Position Encoding ACL 2025
Large Language Models (LLMs) are primarily designed for batch processing. Existing methods for adapting LLMs to streaming rely either on expensive re-encoding or specialized architectures with limited scalability. This work identifies three key mismatches in adapting batch-oriented LLMs to streaming: (1) input-attention, (2) output-attention, and (3) position-ID mismatches. While it is commonly assumed that the latter two mismatches require frequent re-encoding, our analysis reveals that only the input-attention mismatch significantly impacts performance, indicating re-encoding outputs is largely unnecessary. To better understand this discrepancy with the common assumption, we provide the first comprehensive analysis of the impact of position encoding on LLMs in streaming, showing that preserving relative positions within source and target contexts is more critical than maintaining absolute order. Motivated by the above analysis, we introduce a group position encoding paradigm built on batch architectures to enhance consistency between streaming and batch modes. Extensive experiments on cross-lingual and cross-modal tasks demonstrate that our method outperforms existing approaches. Our method requires no architectural modifications, exhibits strong generalization in both streaming and batch modes. The code is available at repository https://github.com/EIT-NLP/StreamingLLM.
comment: ACL 2025 Findings
SWE-Dev: Evaluating and Training Autonomous Feature-Driven Software Development
Large Language Models (LLMs) have shown strong capability in diverse software engineering tasks, e.g. code completion, bug fixing, and document generation. However, feature-driven development (FDD), a highly prevalent real-world task that involves developing new functionalities for large, existing codebases, remains underexplored. We therefore introduce SWE-Dev, the first large-scale dataset (with 14,000 training and 500 test samples) designed to evaluate and train autonomous coding systems on real-world feature development tasks. To ensure verifiable and diverse training, SWE-Dev uniquely provides all instances with a runnable environment and its developer-authored executable unit tests. This collection not only provides high-quality data for Supervised Fine-Tuning (SFT), but also enables Reinforcement Learning (RL) by delivering accurate reward signals from executable unit tests. Our extensive evaluations on SWE-Dev, covering 17 chatbot LLMs, 10 reasoning models, and 10 Multi-Agent Systems (MAS), reveal that FDD is a profoundly challenging frontier for current AI (e.g., Claude-3.7-Sonnet achieves only 22.45\% Pass@3 on the hard test split). Crucially, we demonstrate that SWE-Dev serves as an effective platform for model improvement: fine-tuning on training set enabled a 7B model comparable to GPT-4o on \textit{hard} split, underscoring the value of its high-quality training data. Code is available here \href{https://github.com/justLittleWhite/SWE-Dev}{https://github.com/justLittleWhite/SWE-Dev}.
VeriFastScore: Speeding up long-form factuality evaluation
Metrics like FactScore and VeriScore that evaluate long-form factuality operate by decomposing an input response into atomic claims and then individually verifying each claim. While effective and interpretable, these methods incur numerous LLM calls and can take upwards of 100 seconds to evaluate a single response, limiting their practicality in large-scale evaluation and training scenarios. To address this, we propose VeriFastScore, which leverages synthetic data to fine-tune Llama3.1 8B for simultaneously extracting and verifying all verifiable claims within a given text based on evidence from Google Search. We show that this task cannot be solved via few-shot prompting with closed LLMs due to its complexity: the model receives ~4K tokens of evidence on average and needs to concurrently decompose claims, judge their verifiability, and verify them against noisy evidence. However, our fine-tuned VeriFastScore model demonstrates strong correlation with the original VeriScore pipeline at both the example level (r=0.80) and system level (r=0.94) while achieving an overall speedup of 6.6x (9.9x excluding evidence retrieval) over VeriScore. To facilitate future factuality research, we publicly release our VeriFastScore model and synthetic datasets.
From Tens of Hours to Tens of Thousands: Scaling Back-Translation for Speech Recognition
Recent advances in Automatic Speech Recognition (ASR) have been largely fueled by massive speech corpora. However, extending coverage to diverse languages with limited resources remains a formidable challenge. This paper introduces Speech Back-Translation, a scalable pipeline that improves multilingual ASR models by converting large-scale text corpora into synthetic speech via off-the-shelf text-to-speech (TTS) models. We demonstrate that just tens of hours of real transcribed speech can effectively train TTS models to generate synthetic speech at hundreds of times the original volume while maintaining high quality. To evaluate synthetic speech quality, we develop an intelligibility-based assessment framework and establish clear thresholds for when synthetic data benefits ASR training. Using Speech Back-Translation, we generate more than 500,000 hours of synthetic speech in ten languages and continue pre-training Whisper-large-v3, achieving average transcription error reductions of over 30\%. These results highlight the scalability and effectiveness of Speech Back-Translation for enhancing multilingual ASR systems.
CASS: Nvidia to AMD Transpilation with Data, Models, and Benchmark
We introduce \texttt{CASS}, the first large-scale dataset and model suite for cross-architecture GPU code transpilation, targeting both source-level (CUDA~$\leftrightarrow$~HIP) and assembly-level (Nvidia SASS~$\leftrightarrow$~AMD RDNA3) translation. The dataset comprises 70k verified code pairs across host and device, addressing a critical gap in low-level GPU code portability. Leveraging this resource, we train the \texttt{CASS} family of domain-specific language models, achieving 95\% source translation accuracy and 37.5\% assembly translation accuracy, substantially outperforming commercial baselines such as GPT-4o, Claude, and Hipify. Our generated code matches native performance in over 85\% of test cases, preserving runtime and memory behavior. To support rigorous evaluation, we introduce \texttt{CASS-Bench}, a curated benchmark spanning 16 GPU domains with ground-truth execution. All data, models, and evaluation tools are released as open source to foster progress in GPU compiler tooling, binary compatibility, and LLM-guided hardware translation. Dataset and benchmark are on \href{https://huggingface.co/datasets/MBZUAI/cass}{\textcolor{blue}{HuggingFace}}, with code at \href{https://github.com/GustavoStahl/CASS}{\textcolor{blue}{GitHub}}.
comment: 20 pages, 11 figures, 5 tables
Fixing Data That Hurts Performance: Cascading LLMs to Relabel Hard Negatives for Robust Information Retrieval
Training robust retrieval and reranker models typically relies on large-scale retrieval datasets; for example, the BGE collection contains 1.6 million query-passage pairs sourced from various data sources. However, we find that certain datasets can negatively impact model effectiveness -- pruning 8 out of 15 datasets from the BGE collection reduces the training set size by 2.35$\times$ and increases nDCG@10 on BEIR by 1.0 point. This motivates a deeper examination of training data quality, with a particular focus on "false negatives", where relevant passages are incorrectly labeled as irrelevant. We propose a simple, cost-effective approach using cascading LLM prompts to identify and relabel hard negatives. Experimental results show that relabeling false negatives with true positives improves both E5 (base) and Qwen2.5-7B retrieval models by 0.7-1.4 nDCG@10 on BEIR and by 1.7-1.8 nDCG@10 on zero-shot AIR-Bench evaluation. Similar gains are observed for rerankers fine-tuned on the relabeled data, such as Qwen2.5-3B on BEIR. The reliability of the cascading design is further supported by human annotation results, where we find judgment by GPT-4o shows much higher agreement with humans than GPT-4o-mini.
comment: Code is available at https://github.com/castorini/rlhn & datasets are available at https://huggingface.co/rlhn
BP-Seg: A graphical model approach to unsupervised and non-contiguous text segmentation using belief propagation
Text segmentation based on the semantic meaning of sentences is a fundamental task with broad utility in many downstream applications. In this paper, we propose a graphical model-based unsupervised learning approach, named BP-Seg for efficient text segmentation. Our method not only considers local coherence, capturing the intuition that adjacent sentences are often more related, but also effectively groups sentences that are distant in the text yet semantically similar. This is achieved through belief propagation on the carefully constructed graphical models. Experimental results on both an illustrative example and a dataset with long-form documents demonstrate that our method performs favorably compared to competing approaches.
MedFrameQA: A Multi-Image Medical VQA Benchmark for Clinical Reasoning
Existing medical VQA benchmarks mostly focus on single-image analysis, yet clinicians almost always compare a series of images before reaching a diagnosis. To better approximate this workflow, we introduce MedFrameQA -- the first benchmark that explicitly evaluates multi-image reasoning in medical VQA. To build MedFrameQA both at scale and in high-quality, we develop 1) an automated pipeline that extracts temporally coherent frames from medical videos and constructs VQA items whose content evolves logically across images, and 2) a multiple-stage filtering strategy, including model-based and manual review, to preserve data clarity, difficulty, and medical relevance. The resulting dataset comprises 2,851 VQA pairs (gathered from 9,237 high-quality frames in 3,420 videos), covering nine human body systems and 43 organs; every question is accompanied by two to five images. We comprehensively benchmark ten advanced Multimodal LLMs -- both proprietary and open source, with and without explicit reasoning modules -- on MedFrameQA. The evaluation challengingly reveals that all models perform poorly, with most accuracies below 50%, and accuracy fluctuates as the number of images per question increases. Error analysis further shows that models frequently ignore salient findings, mis-aggregate evidence across images, and propagate early mistakes through their reasoning chains; results also vary substantially across body systems, organs, and modalities. We hope this work can catalyze research on clinically grounded, multi-image reasoning and accelerate progress toward more capable diagnostic AI systems.
comment: 9 pages, 4 Figures Benchmark data: https://huggingface.co/datasets/SuhaoYu1020/MedFrameQA
On Multilingual Encoder Language Model Compression for Low-Resource Languages
In this paper, we combine two-step knowledge distillation, structured pruning, truncation, and vocabulary trimming for extremely compressing multilingual encoder-only language models for low-resource languages. Our novel approach systematically combines existing techniques and takes them to the extreme, reducing layer depth, feed-forward hidden size, and intermediate layer embedding size to create significantly smaller monolingual models while retaining essential language-specific knowledge. We achieve compression rates of up to 92% with only a marginal performance drop of 2-10% in four downstream tasks, including sentiment analysis, topic classification, named entity recognition, and part-of-speech tagging, across three low-resource languages. Notably, the performance degradation correlates with the amount of language-specific data in the teacher model, with larger datasets resulting in smaller performance losses. Additionally, we conduct extensive ablation studies to identify best practices for multilingual model compression using these techniques.
comment: Pre-print
AGENTIF: Benchmarking Instruction Following of Large Language Models in Agentic Scenarios
Large Language Models (LLMs) have demonstrated advanced capabilities in real-world agentic applications. Growing research efforts aim to develop LLM-based agents to address practical demands, introducing a new challenge: agentic scenarios often involve lengthy instructions with complex constraints, such as extended system prompts and detailed tool specifications. While adherence to such instructions is crucial for agentic applications, whether LLMs can reliably follow them remains underexplored. In this paper, we introduce AgentIF, the first benchmark for systematically evaluating LLM instruction following ability in agentic scenarios. AgentIF features three key characteristics: (1) Realistic, constructed from 50 real-world agentic applications. (2) Long, averaging 1,723 words with a maximum of 15,630 words. (3) Complex, averaging 11.9 constraints per instruction, covering diverse constraint types, such as tool specifications and condition constraints. To construct AgentIF, we collect 707 human-annotated instructions across 50 agentic tasks from industrial application agents and open-source agentic systems. For each instruction, we annotate the associated constraints and corresponding evaluation metrics, including code-based evaluation, LLM-based evaluation, and hybrid code-LLM evaluation. We use AgentIF to systematically evaluate existing advanced LLMs. We observe that current models generally perform poorly, especially in handling complex constraint structures and tool specifications. We further conduct error analysis and analytical experiments on instruction length and meta constraints, providing some findings about the failure modes of existing LLMs. We have released the code and data to facilitate future research.
NovelSeek: When Agent Becomes the Scientist -- Building Closed-Loop System from Hypothesis to Verification
Artificial Intelligence (AI) is accelerating the transformation of scientific research paradigms, not only enhancing research efficiency but also driving innovation. We introduce NovelSeek, a unified closed-loop multi-agent framework to conduct Autonomous Scientific Research (ASR) across various scientific research fields, enabling researchers to tackle complicated problems in these fields with unprecedented speed and precision. NovelSeek highlights three key advantages: 1) Scalability: NovelSeek has demonstrated its versatility across 12 scientific research tasks, capable of generating innovative ideas to enhance the performance of baseline code. 2) Interactivity: NovelSeek provides an interface for human expert feedback and multi-agent interaction in automated end-to-end processes, allowing for the seamless integration of domain expert knowledge. 3) Efficiency: NovelSeek has achieved promising performance gains in several scientific fields with significantly less time cost compared to human efforts. For instance, in reaction yield prediction, it increased from 27.6% to 35.4% in just 12 hours; in enhancer activity prediction, accuracy rose from 0.52 to 0.79 with only 4 hours of processing; and in 2D semantic segmentation, precision advanced from 78.8% to 81.0% in a mere 30 hours.
comment: HomePage: https://alpha-innovator.github.io/NovelSeek-project-page
In-Context Watermarks for Large Language Models
The growing use of large language models (LLMs) for sensitive applications has highlighted the need for effective watermarking techniques to ensure the provenance and accountability of AI-generated text. However, most existing watermarking methods require access to the decoding process, limiting their applicability in real-world settings. One illustrative example is the use of LLMs by dishonest reviewers in the context of academic peer review, where conference organizers have no access to the model used but still need to detect AI-generated reviews. Motivated by this gap, we introduce In-Context Watermarking (ICW), which embeds watermarks into generated text solely through prompt engineering, leveraging LLMs' in-context learning and instruction-following abilities. We investigate four ICW strategies at different levels of granularity, each paired with a tailored detection method. We further examine the Indirect Prompt Injection (IPI) setting as a specific case study, in which watermarking is covertly triggered by modifying input documents such as academic manuscripts. Our experiments validate the feasibility of ICW as a model-agnostic, practical watermarking approach. Moreover, our findings suggest that as LLMs become more capable, ICW offers a promising direction for scalable and accessible content attribution.
LLaDA-V: Large Language Diffusion Models with Visual Instruction Tuning
In this work, we introduce LLaDA-V, a purely diffusion-based Multimodal Large Language Model (MLLM) that integrates visual instruction tuning with masked diffusion models, representing a departure from the autoregressive paradigms dominant in current multimodal approaches. Built upon LLaDA, a representative large language diffusion model, LLaDA-V incorporates a vision encoder and MLP connector that projects visual features into the language embedding space, enabling effective multimodal alignment. Our empirical investigation reveals several intriguing results: First, LLaDA-V demonstrates promising multimodal performance despite its language model being weaker on purely textual tasks than counterparts like LLaMA3-8B and Qwen2-7B. When trained on the same instruction data, LLaDA-V is highly competitive to LLaMA3-V across multimodal tasks with better data scalability. It also narrows the performance gap to Qwen2-VL, suggesting the effectiveness of its architecture for multimodal tasks. Second, LLaDA-V achieves state-of-the-art performance in multimodal understanding compared to existing hybrid autoregressive-diffusion and purely diffusion-based MLLMs. Our findings suggest that large language diffusion models show promise in multimodal contexts and warrant further investigation in future research. Project page and codes: https://ml-gsai.github.io/LLaDA-V-demo/.
The Polar Express: Optimal Matrix Sign Methods and Their Application to the Muon Algorithm
Computing the polar decomposition and the related matrix sign function, has been a well-studied problem in numerical analysis for decades. More recently, it has emerged as an important subroutine in deep learning, particularly within the Muon optimization framework. However, the requirements in this setting differ significantly from those of traditional numerical analysis. In deep learning, methods must be highly efficient and GPU-compatible, but high accuracy is often unnecessary. As a result, classical algorithms like Newton-Schulz (which suffers from slow initial convergence) and methods based on rational functions (which rely on QR decompositions or matrix inverses) are poorly suited to this context. In this work, we introduce Polar Express, a GPU-friendly algorithm for computing the polar decomposition. Like classical polynomial methods such as Newton-Schulz, our approach uses only matrix-matrix multiplications, making it GPU-compatible. Motivated by earlier work of Chen & Chow and Nakatsukasa & Freund, Polar Express adapts the polynomial update rule at each iteration by solving a minimax optimization problem, and we prove that it enjoys a strong worst-case optimality guarantee. This property ensures both rapid early convergence and fast asymptotic convergence. We also address finite-precision issues, making it stable in bfloat16 in practice. We apply Polar Express within the Muon optimization framework and show consistent improvements in validation loss on large-scale models such as GPT-2, outperforming recent alternatives across a range of learning rates.
PIIvot: A Lightweight NLP Anonymization Framework for Question-Anchored Tutoring Dialogues EMNLP 2025
Personally identifiable information (PII) anonymization is a high-stakes task that poses a barrier to many open-science data sharing initiatives. While PII identification has made large strides in recent years, in practice, error thresholds and the recall/precision trade-off still limit the uptake of these anonymization pipelines. We present PIIvot, a lighter-weight framework for PII anonymization that leverages knowledge of the data context to simplify the PII detection problem. To demonstrate its effectiveness, we also contribute QATD-2k, the largest open-source real-world tutoring dataset of its kind, to support the demand for quality educational dialogue data.
comment: 6 pages, 2 figures, submitted to EMNLP 2025, for associated dataset, see https://huggingface.co/datasets/Eedi/Question-Anchored-Tutoring-Dialogues-2k
Latent Principle Discovery for Language Model Self-Improvement
When language model (LM) users aim to improve the quality of its generations, it is crucial to specify concrete behavioral attributes that the model should strive to reflect. However, curating such principles across many domains, even non-exhaustively, requires a labor-intensive annotation process. To automate this process, we propose eliciting these latent attributes guiding model reasoning towards human-preferred responses by explicitly modeling them in a self-correction setting. Our approach mines new principles from the LM itself and compresses the discovered elements to an interpretable set via clustering. Specifically, we employ an approximation of posterior-regularized Monte Carlo Expectation-Maximization to both identify a condensed set of the most effective latent principles and teach the LM to strategically invoke them in order to intrinsically refine its responses. We demonstrate that bootstrapping our algorithm over multiple iterations enables smaller language models (7-8B parameters) to self-improve, achieving +8-10% in AlpacaEval win-rate, an average of +0.3 on MT-Bench, and +19-23% in principle-following win-rate on IFEval. We also show that clustering the principles yields interpretable and diverse model-generated constitutions while retaining model performance. The gains our method achieves highlight the potential of automated, principle-driven post-training recipes toward continual self-improvement.
UNCLE: Uncertainty Expressions in Long-Form Generation
Large Language Models (LLMs) are prone to hallucination, particularly in long-form generations. A promising direction to mitigate hallucination is to teach LLMs to express uncertainty explicitly when they lack sufficient knowledge. However, existing work lacks direct and fair evaluation of LLMs' ability to express uncertainty effectively in long-form generation. To address this gap, we first introduce UNCLE, a benchmark designed to evaluate uncertainty expression in both long- and short-form question answering (QA). UNCLE spans five domains and comprises 4k long-form QA instances and over 20k short-form QA pairs. Our dataset is the first to directly bridge short- and long-form QA with paired questions and gold-standard answers. Along with the benchmark, we propose a suite of new metrics to assess the models' capabilities to selectively express uncertainty. Using UNCLE, we then demonstrate that current models fail to convey uncertainty appropriately in long-form generation. We further explore both prompt-based and training-based methods to improve models' performance, with the training-based methods yielding greater gains. Further analysis of alignment gaps between short- and long-form uncertainty expression highlights promising directions for future research using UNCLE.
Power-Law Decay Loss for Large Language Model Finetuning: Focusing on Information Sparsity to Enhance Generation Quality
During the finetuning stage of text generation tasks, standard cross-entropy loss treats all tokens equally. This can lead models to overemphasize high-frequency, low-information tokens, neglecting lower-frequency tokens crucial for specificity and informativeness in generated content. This paper introduces a novel loss function, Power-Law Decay Loss (PDL), specifically designed to optimize the finetuning process for text generation. The core motivation for PDL stems from observations in information theory and linguistics: the informativeness of a token is often inversely proportional to its frequency of occurrence. PDL re-weights the contribution of each token in the standard cross-entropy loss based on its frequency in the training corpus, following a power-law decay. Specifically, the weights for high-frequency tokens are reduced, while low-frequency, information-dense tokens are assigned higher weights. This mechanism guides the model during finetuning to focus more on learning and generating tokens that convey specific and unique information, thereby enhancing the quality, diversity, and informativeness of the generated text. We theoretically elaborate on the motivation and construction of PDL and discuss its potential applications and advantages across various text generation finetuning tasks, such as abstractive summarization, dialogue systems, and style transfer.
Shadows in the Attention: Contextual Perturbation and Representation Drift in the Dynamics of Hallucination in LLMs
Hallucinations -- plausible yet erroneous outputs -- remain a critical barrier to reliable deployment of large language models (LLMs). We present the first systematic study linking hallucination incidence to internal-state drift induced by incremental context injection. Using TruthfulQA, we construct two 16-round "titration" tracks per question: one appends relevant but partially flawed snippets, the other injects deliberately misleading content. Across six open-source LLMs, we track overt hallucination rates with a tri-perspective detector and covert dynamics via cosine, entropy, JS and Spearman drifts of hidden states and attention maps. Results reveal (1) monotonic growth of hallucination frequency and representation drift that plateaus after 5--7 rounds; (2) relevant context drives deeper semantic assimilation, producing high-confidence "self-consistent" hallucinations, whereas irrelevant context induces topic-drift errors anchored by attention re-routing; and (3) convergence of JS-Drift ($\sim0.69$) and Spearman-Drift ($\sim0$) marks an "attention-locking" threshold beyond which hallucinations solidify and become resistant to correction. Correlation analyses expose a seesaw between assimilation capacity and attention diffusion, clarifying size-dependent error modes. These findings supply empirical foundations for intrinsic hallucination prediction and context-aware mitigation mechanisms.
CAIN: Hijacking LLM-Humans Conversations via a Two-Stage Malicious System Prompt Generation and Refining Framework
Large language models (LLMs) have advanced many applications, but are also known to be vulnerable to adversarial attacks. In this work, we introduce a novel security threat: hijacking AI-human conversations by manipulating LLMs' system prompts to produce malicious answers only to specific targeted questions (e.g., "Who should I vote for US President?", "Are Covid vaccines safe?"), while behaving benignly on others. This attack is detrimental as it can enable malicious actors to exercise large-scale information manipulation by spreading harmful but benign-looking system prompts online. To demonstrate such an attack, we develop CAIN, an algorithm that can automatically curate such harmful system prompts for a specific target question in a black-box setting or without the need to access the LLM's parameters. Evaluated on both open-source and commercial LLMs, CAIN demonstrates significant adversarial impact. In untargeted attacks or forcing LLMs to output incorrect answers, CAIN achieves up to 40% F1 degradation on targeted questions while preserving high accuracy on benign inputs. For targeted attacks or forcing LLMs to output specific harmful answers, CAIN achieves over 70% F1 scores on these targeted responses with minimal impact on benign questions. Our results highlight the critical need for enhanced robustness measures to safeguard the integrity and safety of LLMs in real-world applications. All source code will be publicly available.
Don't "Overthink" Passage Reranking: Is Reasoning Truly Necessary?
With the growing success of reasoning models across complex natural language tasks, researchers in the Information Retrieval (IR) community have begun exploring how similar reasoning capabilities can be integrated into passage rerankers built on Large Language Models (LLMs). These methods typically employ an LLM to produce an explicit, step-by-step reasoning process before arriving at a final relevance prediction. But, does reasoning actually improve reranking accuracy? In this paper, we dive deeper into this question, studying the impact of the reasoning process by comparing reasoning-based pointwise rerankers (ReasonRR) to standard, non-reasoning pointwise rerankers (StandardRR) under identical training conditions, and observe that StandardRR generally outperforms ReasonRR. Building on this observation, we then study the importance of reasoning to ReasonRR by disabling its reasoning process (ReasonRR-NoReason), and find that ReasonRR-NoReason is surprisingly more effective than ReasonRR. Examining the cause of this result, our findings reveal that reasoning-based rerankers are limited by the LLM's reasoning process, which pushes it toward polarized relevance scores and thus fails to consider the partial relevance of passages, a key factor for the accuracy of pointwise rerankers.
CASTILLO: Characterizing Response Length Distributions of Large Language Models
Efficiently managing compute resources for Large Language Model (LLM) inference remains challenging due to the inherently stochastic and variable lengths of autoregressive text generation. Accurately estimating response lengths in advance enables proactive resource allocation, yet existing approaches either bias text generation towards certain lengths or rely on assumptions that ignore model- and prompt-specific variability. We introduce CASTILLO, a dataset characterizing response length distributions across 13 widely-used open-source LLMs evaluated on seven distinct instruction-following corpora. For each $\langle$prompt, model$\rangle$ sample pair, we generate 10 independent completions using fixed decoding hyper-parameters, record the token length of each response, and publish summary statistics (mean, std-dev, percentiles), along with the shortest and longest completions, and the exact generation settings. Our analysis reveals significant inter- and intra-model variability in response lengths (even under identical generation settings), as well as model-specific behaviors and occurrences of partial text degeneration in only subsets of responses. CASTILLO enables the development of predictive models for proactive scheduling and provides a systematic framework for analyzing model-specific generation behaviors. We publicly release the dataset and code to foster research at the intersection of generative language modeling and systems.
comment: Dataset available in https://huggingface.co/datasets/danfperam/castillo and code is available in https://github.com/DanielFPerez/castillo
MPO: Multilingual Safety Alignment via Reward Gap Optimization ACL 2025
Large language models (LLMs) have become increasingly central to AI applications worldwide, necessitating robust multilingual safety alignment to ensure secure deployment across diverse linguistic contexts. Existing preference learning methods for safety alignment, such as RLHF and DPO, are primarily monolingual and struggle with noisy multilingual data. To address these limitations, we introduce Multilingual reward gaP Optimization (MPO), a novel approach that leverages the well-aligned safety capabilities of the dominant language (English) to improve safety alignment across multiple languages. MPO directly minimizes the reward gap difference between the dominant language and target languages, effectively transferring safety capabilities while preserving the original strengths of the dominant language. Extensive experiments on three LLMs, LLaMA-3.1, Gemma-2 and Qwen2.5, validate MPO's efficacy in multilingual safety alignment without degrading general multilingual utility.
comment: To Appear at ACL 2025 (Main)
Comparative analysis of subword tokenization approaches for Indian languages
Tokenization is the act of breaking down text into smaller parts, or tokens, that are easier for machines to process. This is a key phase in machine translation (MT) models. Subword tokenization enhances this process by breaking down words into smaller subword units, which is especially beneficial in languages with complicated morphology or a vast vocabulary. It is useful in capturing the intricate structure of words in Indian languages (ILs), such as prefixes, suffixes, and other morphological variations. These languages frequently use agglutinative structures, in which words are formed by the combination of multiple morphemes such as suffixes, prefixes, and stems. As a result, a suitable tokenization strategy must be chosen to address these scenarios. This paper examines how different subword tokenization techniques, such as SentencePiece, Byte Pair Encoding (BPE), and WordPiece Tokenization, affect ILs. The effectiveness of these subword tokenization techniques is investigated in statistical, neural, and multilingual neural machine translation models. All models are examined using standard evaluation metrics, such as the Bilingual Evaluation Understudy (BLEU) score, TER, METEOR, CHRF, RIBES, and COMET. Based on the results, it appears that for the majority of language pairs for the Statistical and Neural MT models, the SentencePiece tokenizer continuously performed better than other tokenizers in terms of BLEU score. However, BPE tokenization outperformed other tokenization techniques in the context of Multilingual Neural Machine Translation model. The results show that, despite using the same tokenizer and dataset for each model, translations from ILs to English surpassed translations from English to ILs.
comment: 24 pages, 4 tables
Nested Named Entity Recognition as Single-Pass Sequence Labeling EMNLP 2025
We cast nested named entity recognition (NNER) as a sequence labeling task by leveraging prior work that linearizes constituency structures, effectively reducing the complexity of this structured prediction problem to straightforward token classification. By combining these constituency linearizations with pretrained encoders, our method captures nested entities while performing exactly $n$ tagging actions. Our approach achieves competitive performance compared to less efficient systems, and it can be trained using any off-the-shelf sequence labeling library.
comment: Submitted to EMNLP 2025
ATR-Bench: A Federated Learning Benchmark for Adaptation, Trust, and Reasoning
Federated Learning (FL) has emerged as a promising paradigm for collaborative model training while preserving data privacy across decentralized participants. As FL adoption grows, numerous techniques have been proposed to tackle its practical challenges. However, the lack of standardized evaluation across key dimensions hampers systematic progress and fair comparison of FL methods. In this work, we introduce ATR-Bench, a unified framework for analyzing federated learning through three foundational dimensions: Adaptation, Trust, and Reasoning. We provide an in-depth examination of the conceptual foundations, task formulations, and open research challenges associated with each theme. We have extensively benchmarked representative methods and datasets for adaptation to heterogeneous clients and trustworthiness in adversarial or unreliable environments. Due to the lack of reliable metrics and models for reasoning in FL, we only provide literature-driven insights for this dimension. ATR-Bench lays the groundwork for a systematic and holistic evaluation of federated learning with real-world relevance. We will make our complete codebase publicly accessible and a curated repository that continuously tracks new developments and research in the FL literature.
comment: Federated Learning Benchmark for Domain Adaptation, Trustworthiness, and Reasoning
Understanding and Analyzing Inappropriately Targeting Language in Online Discourse: A Comparative Annotation Study
This paper introduces a method for detecting inappropriately targeting language in online conversations by integrating crowd and expert annotations with ChatGPT. We focus on English conversation threads from Reddit, examining comments that target individuals or groups. Our approach involves a comprehensive annotation framework that labels a diverse data set for various target categories and specific target words within the conversational context. We perform a comparative analysis of annotations from human experts, crowd annotators, and ChatGPT, revealing strengths and limitations of each method in recognizing both explicit hate speech and subtler discriminatory language. Our findings highlight the significant role of contextual factors in identifying hate speech and uncover new categories of targeting, such as social belief and body image. We also address the challenges and subjective judgments involved in annotation and the limitations of ChatGPT in grasping nuanced language. This study provides insights for improving automated content moderation strategies to enhance online safety and inclusivity.
R1-Compress: Long Chain-of-Thought Compression via Chunk Compression and Search
Chain-of-Thought (CoT) reasoning enhances large language models (LLMs) by enabling step-by-step problem-solving, yet its extension to Long-CoT introduces substantial computational overhead due to increased token length. Existing compression approaches -- instance-level and token-level -- either sacrifice essential local reasoning signals like reflection or yield incoherent outputs. To address these limitations, we propose R1-Compress, a two-stage chunk-level compression framework that preserves both local information and coherence. Our method segments Long-CoT into manageable chunks, applies LLM-driven inner-chunk compression, and employs an inter-chunk search mechanism to select the short and coherent sequence. Experiments on Qwen2.5-Instruct models across MATH500, AIME24, and GPQA-Diamond demonstrate that R1-Compress significantly reduces token usage while maintaining comparable reasoning accuracy. On MATH500, R1-Compress achieves an accuracy of 92.4%, with only a 0.6% drop compared to the Long-CoT baseline, while reducing token usage by about 20%. Source code will be available at https://github.com/w-yibo/R1-Compress
SimpleDeepSearcher: Deep Information Seeking via Web-Powered Reasoning Trajectory Synthesis
Retrieval-augmented generation (RAG) systems have advanced large language models (LLMs) in complex deep search scenarios requiring multi-step reasoning and iterative information retrieval. However, existing approaches face critical limitations that lack high-quality training trajectories or suffer from the distributional mismatches in simulated environments and prohibitive computational costs for real-world deployment. This paper introduces SimpleDeepSearcher, a lightweight yet effective framework that bridges this gap through strategic data engineering rather than complex training paradigms. Our approach synthesizes high-quality training data by simulating realistic user interactions in live web search environments, coupled with a multi-criteria curation strategy that optimizes the diversity and quality of input and output side. Experiments on five benchmarks across diverse domains demonstrate that SFT on only 871 curated samples yields significant improvements over RL-based baselines. Our work establishes SFT as a viable pathway by systematically addressing the data-scarce bottleneck, offering practical insights for efficient deep search systems. Our code is available at https://github.com/RUCAIBox/SimpleDeepSearcher.
From EduVisBench to EduVisAgent: A Benchmark and Multi-Agent Framework for Pedagogical Visualization
While foundation models (FMs), such as diffusion models and large vision-language models (LVLMs), have been widely applied in educational contexts, their ability to generate pedagogically effective visual explanations remains limited. Most existing approaches focus primarily on textual reasoning, overlooking the critical role of structured and interpretable visualizations in supporting conceptual understanding. To better assess the visual reasoning capabilities of FMs in educational settings, we introduce EduVisBench, a multi-domain, multi-level benchmark. EduVisBench features diverse STEM problem sets requiring visually grounded solutions, along with a fine-grained evaluation rubric informed by pedagogical theory. Our empirical analysis reveals that existing models frequently struggle with the inherent challenge of decomposing complex reasoning and translating it into visual representations aligned with human cognitive processes. To address these limitations, we propose EduVisAgent, a multi-agent collaborative framework that coordinates specialized agents for instructional planning, reasoning decomposition, metacognitive prompting, and visualization design. Experimental results show that EduVisAgent substantially outperforms all baselines, achieving a 40.2% improvement and delivering more educationally aligned visualizations. EduVisBench and EduVisAgent are available at https://github.com/aiming-lab/EduVisBench and https://github.com/aiming-lab/EduVisAgent.
comment: 16 pages; 7 figures
Unlearning Isn't Deletion: Investigating Reversibility of Machine Unlearning in LLMs
Unlearning in large language models (LLMs) is intended to remove the influence of specific data, yet current evaluations rely heavily on token-level metrics such as accuracy and perplexity. We show that these metrics can be misleading: models often appear to forget, but their original behavior can be rapidly restored with minimal fine-tuning, revealing that unlearning may obscure information rather than erase it. To diagnose this phenomenon, we introduce a representation-level evaluation framework using PCA-based similarity and shift, centered kernel alignment, and Fisher information. Applying this toolkit across six unlearning methods, three domains (text, code, math), and two open-source LLMs, we uncover a critical distinction between reversible and irreversible forgetting. In reversible cases, models suffer token-level collapse yet retain latent features; in irreversible cases, deeper representational damage occurs. We further provide a theoretical account linking shallow weight perturbations near output layers to misleading unlearning signals, and show that reversibility is modulated by task type and hyperparameters. Our findings reveal a fundamental gap in current evaluation practices and establish a new diagnostic foundation for trustworthy unlearning in LLMs. We provide a unified toolkit for analyzing LLM representation changes under unlearning and relearning: https://github.com/XiaoyuXU1/Representational_Analysis_Tools.git.
comment: 44 pages
KTAE: A Model-Free Algorithm to Key-Tokens Advantage Estimation in Mathematical Reasoning
Recent advances have demonstrated that integrating reinforcement learning with rule-based rewards can significantly enhance the reasoning capabilities of large language models, even without supervised fine-tuning. However, prevalent reinforcement learning algorithms such as GRPO and its variants like DAPO, suffer from a coarse granularity issue when computing the advantage. Specifically, they compute rollout-level advantages that assign identical values to every token within a sequence, failing to capture token-specific contributions and hindering effective learning. To address this limitation, we propose Key-token Advantage Estimation (KTAE) - a novel algorithm that estimates fine-grained, token-level advantages without introducing additional models. KTAE leverages the correctness of sampled rollouts and applies statistical analysis to quantify the importance of individual tokens within a sequence to the final outcome. This quantified token-level importance is then combined with the rollout-level advantage to obtain a more fine-grained token-level advantage estimation. Empirical results show that models trained with GRPO+KTAE and DAPO+KTAE outperform baseline methods across five mathematical reasoning benchmarks. Notably, they achieve higher accuracy with shorter responses and even surpass R1-Distill-Qwen-1.5B using the same base model.
Does Synthetic Data Help Named Entity Recognition for Low-Resource Languages?
Named Entity Recognition(NER) for low-resource languages aims to produce robust systems for languages where there is limited labeled training data available, and has been an area of increasing interest within NLP. Data augmentation for increasing the amount of low-resource labeled data is a common practice. In this paper, we explore the role of synthetic data in the context of multilingual, low-resource NER, considering 11 languages from diverse language families. Our results suggest that synthetic data does in fact hold promise for low-resource language NER, though we see significant variation between languages.
comment: pre-print
Two-way Evidence self-Alignment based Dual-Gated Reasoning Enhancement
Large language models (LLMs) encounter difficulties in knowledge-intensive multi-step reasoning (KIMSR) tasks. One challenge is how to effectively extract and represent rationale evidence. The current methods often extract semantically relevant but logically irrelevant evidence, resulting in flawed reasoning and inaccurate responses. We propose a two-way evidence self-alignment (TW-ESA) module, which utilizes the mutual alignment between strict reasoning and LLM reasoning to enhance its understanding of the causal logic of evidence, thereby addressing the first challenge. Another challenge is how to utilize the rationale evidence and LLM's intrinsic knowledge for accurate reasoning when the evidence contains uncertainty. We propose a dual-gated reasoning enhancement (DGR) module to gradually fuse useful knowledge of LLM within strict reasoning, which can enable the model to perform accurate reasoning by focusing on causal elements in the evidence and exhibit greater robustness. The two modules are collaboratively trained in a unified framework ESA-DGR. Extensive experiments on three diverse and challenging KIMSR datasets reveal that ESA-DGR significantly surpasses state-of-the-art LLM-based fine-tuning methods, with remarkable average improvements of 4% in exact match (EM) and 5% in F1 score. The implementation code is available at https://anonymous.4open.science/r/ESA-DGR-2BF8.
Learning Beyond Limits: Multitask Learning and Synthetic Data for Low-Resource Canonical Morpheme Segmentation
We introduce a transformer-based morpheme segmentation system that augments a low-resource training signal through multitask learning and LLM-generated synthetic data. Our framework jointly predicts morphological segments and glosses from orthographic input, leveraging shared linguistic representations obtained through a common documentary process to enhance model generalization. To further address data scarcity, we integrate synthetic training data generated by large language models (LLMs) using in-context learning. Experimental results on the SIGMORPHON 2023 dataset show that our approach significantly improves word-level segmentation accuracy and morpheme-level F1-score across multiple low-resource languages.
Accidental Misalignment: Fine-Tuning Language Models Induces Unexpected Vulnerability
As large language models gain popularity, their vulnerability to adversarial attacks remains a primary concern. While fine-tuning models on domain-specific datasets is often employed to improve model performance, it can introduce vulnerabilities within the underlying model. In this work, we investigate Accidental Misalignment, unexpected vulnerabilities arising from characteristics of fine-tuning data. We begin by identifying potential correlation factors such as linguistic features, semantic similarity, and toxicity within our experimental datasets. We then evaluate the adversarial performance of these fine-tuned models and assess how dataset factors correlate with attack success rates. Lastly, we explore potential causal links, offering new insights into adversarial defense strategies and highlighting the crucial role of dataset design in preserving model alignment. Our code is available at https://github.com/psyonp/accidental_misalignment.
Reasoning Beyond Language: A Comprehensive Survey on Latent Chain-of-Thought Reasoning
Large Language Models (LLMs) have achieved impressive performance on complex reasoning tasks with Chain-of-Thought (CoT) prompting. However, conventional CoT relies on reasoning steps explicitly verbalized in natural language, introducing inefficiencies and limiting its applicability to abstract reasoning. To address this, there has been growing research interest in latent CoT reasoning, where inference occurs within latent spaces. By decoupling reasoning from language, latent reasoning promises richer cognitive representations and more flexible, faster inference. Researchers have explored various directions in this promising field, including training methodologies, structural innovations, and internal reasoning mechanisms. This paper presents a comprehensive overview and analysis of this reasoning paradigm. We begin by proposing a unified taxonomy from four perspectives: token-wise strategies, internal mechanisms, analysis, and applications. We then provide in-depth discussions and comparative analyses of representative methods, highlighting their design patterns, strengths, and open challenges. We aim to provide a structured foundation for advancing this emerging direction in LLM reasoning. The relevant papers will be regularly updated at https://github.com/EIT-NLP/Awesome-Latent-CoT.
IFEval-Audio: Benchmarking Instruction-Following Capability in Audio-based Large Language Models
Large language models (LLMs) have demonstrated strong instruction-following capabilities in text-based tasks. However, this ability often deteriorates in multimodal models after alignment with non-text modalities such as images or audio. While several recent efforts have investigated instruction-following performance in text and vision-language models, instruction-following in audio-based large language models remains largely unexplored. To bridge this gap, we introduce IFEval-Audio, a novel evaluation dataset designed to assess the ability to follow instructions in an audio LLM. IFEval-Audio contains 280 audio-instruction-answer triples across six diverse dimensions: Content, Capitalization, Symbol, List Structure, Length, and Format. Each example pairs an audio input with a text instruction, requiring the model to generate an output that follows a specified structure. We benchmark state-of-the-art audio LLMs on their ability to follow audio-involved instructions. The dataset is released publicly to support future research in this emerging area.
comment: Link: https://github.com/AudioLLMs/AudioBench/tree/main/IFEval-Audio
TRIM: Achieving Extreme Sparsity with Targeted Row-wise Iterative Metric-driven Pruning
Large Language Models (LLMs) present significant computational and memory challenges due to their extensive size, making pruning essential for their efficient deployment. Existing one-shot pruning methods often apply uniform sparsity constraints across layers or within each layer, resulting in suboptimal performance, especially at high sparsity ratios. This work introduces TRIM (Targeted Row-wise Iterative Metric-driven pruning), a novel approach that applies varying sparsity ratios to individual output dimensions (rows) within each layer. TRIM employs an iterative adjustment process guided by quality metrics to optimize dimension-wise sparsity allocation, focusing on reducing variance in quality retention across outputs to preserve critical information. TRIM can be seamlessly integrated with existing layer-wise pruning strategies. Our evaluations on perplexity and zero-shot tasks across diverse LLM families (Qwen2.5, LLaMA-2, and OPT) and sparsity levels demonstrate that TRIM achieves new state-of-the-art results and enhances stability. For instance, at 80% sparsity, TRIM reduces perplexity by 48% for Qwen2.5-14B and over 90% for OPT-13B compared to baseline methods. We conclude that fine-grained, dimension-wise sparsity adaptation is crucial for pushing the limits of extreme LLM compression. Code available at: https://github.com/flobk/TRIM
Mitigating Fine-tuning Risks in LLMs via Safety-Aware Probing Optimization
The significant progress of large language models (LLMs) has led to remarkable achievements across numerous applications. However, their ability to generate harmful content has sparked substantial safety concerns. Despite the implementation of safety alignment techniques during the pre-training phase, recent research indicates that fine-tuning LLMs on adversarial or even benign data can inadvertently compromise their safety. In this paper, we re-examine the fundamental issue of why fine-tuning on non-harmful data still results in safety degradation. We introduce a safety-aware probing (SAP) optimization framework designed to mitigate the safety risks of fine-tuning LLMs. Specifically, SAP incorporates a safety-aware probe into the gradient propagation process, mitigating the model's risk of safety degradation by identifying potential pitfalls in gradient directions, thereby enhancing task-specific performance while successfully preserving model safety. Our extensive experimental results demonstrate that SAP effectively reduces harmfulness below the original fine-tuned model and achieves comparable test loss to standard fine-tuning methods. Our code is available at https://github.com/ChengcanWu/SAP.
Breaking mBad! Supervised Fine-tuning for Cross-Lingual Detoxification
As large language models (LLMs) become increasingly prevalent in global applications, ensuring that they are toxicity-free across diverse linguistic contexts remains a critical challenge. We explore "Cross-lingual Detoxification", a cross-lingual paradigm that mitigates toxicity, enabling detoxification capabilities to transfer between high and low-resource languages across different script families. We analyze cross-lingual detoxification's effectiveness through 504 extensive settings to evaluate toxicity reduction in cross-distribution settings with limited data and investigate how mitigation impacts model performance on non-toxic tasks, revealing trade-offs between safety and knowledge preservation. Our code and dataset are publicly available at https://github.com/himanshubeniwal/Breaking-mBad.
Locate-then-Merge: Neuron-Level Parameter Fusion for Mitigating Catastrophic Forgetting in Multimodal LLMs
Although multimodal large language models (MLLMs) have achieved impressive performance, the multimodal instruction tuning stage often causes catastrophic forgetting of the base LLM's language ability, even in strong models like Llama3. To address this, we propose Locate-then-Merge, a training-free parameter fusion framework that first locates important parameters and then selectively merges them. We further introduce Neuron-Fusion, a neuron-level strategy that preserves the influence of neurons with large parameter shifts--neurons likely responsible for newly acquired visual capabilities--while attenuating the influence of neurons with smaller changes that likely encode general-purpose language skills. This design enables better retention of visual adaptation while mitigating language degradation. Experiments on 13 benchmarks across both language and visual tasks show that Neuron-Fusion consistently outperforms existing model merging methods. Further analysis reveals that our method effectively reduces context hallucination in generation.
Beyond Induction Heads: In-Context Meta Learning Induces Multi-Phase Circuit Emergence ICML 2025
Transformer-based language models exhibit In-Context Learning (ICL), where predictions are made adaptively based on context. While prior work links induction heads to ICL through a sudden jump in accuracy, this can only account for ICL when the answer is included within the context. However, an important property of practical ICL in large language models is the ability to meta-learn how to solve tasks from context, rather than just copying answers from context; how such an ability is obtained during training is largely unexplored. In this paper, we experimentally clarify how such meta-learning ability is acquired by analyzing the dynamics of the model's circuit during training. Specifically, we extend the copy task from previous research into an In-Context Meta Learning setting, where models must infer a task from examples to answer queries. Interestingly, in this setting, we find that there are multiple phases in the process of acquiring such abilities, and that a unique circuit emerges in each phase, contrasting with the single-phases change in induction heads. The emergence of such circuits can be related to several phenomena known in large language models, and our analysis lead to a deeper understanding of the source of the transformer's ICL ability.
comment: Accepted to ICML 2025
SPaRC: A Spatial Pathfinding Reasoning Challenge
Existing reasoning datasets saturate and fail to test abstract, multi-step problems, especially pathfinding and complex rule constraint satisfaction. We introduce SPaRC (Spatial Pathfinding Reasoning Challenge), a dataset of 1,000 2D grid pathfinding puzzles to evaluate spatial and symbolic reasoning, requiring step-by-step planning with arithmetic and geometric rules. Humans achieve near-perfect accuracy (98.0%; 94.5% on hard puzzles), while the best reasoning models, such as o4-mini, struggle (15.8%; 1.1% on hard puzzles). Models often generate invalid paths (>50% of puzzles for o4-mini), and reasoning tokens reveal they make errors in navigation and spatial logic. Unlike humans, who take longer on hard puzzles, models fail to scale test-time compute with difficulty. Allowing models to make multiple solution attempts improves accuracy, suggesting potential for better spatial reasoning with improved training and efficient test-time scaling methods. SPaRC can be used as a window into models' spatial reasoning limitations and drive research toward new methods that excel in abstract, multi-step problem-solving.
R1-ShareVL: Incentivizing Reasoning Capability of Multimodal Large Language Models via Share-GRPO
In this work, we aim to incentivize the reasoning ability of Multimodal Large Language Models (MLLMs) via reinforcement learning (RL) and develop an effective approach that mitigates the sparse reward and advantage vanishing issues during RL. To this end, we propose Share-GRPO, a novel RL approach that tackle these issues by exploring and sharing diverse reasoning trajectories over expanded question space. Specifically, Share-GRPO first expands the question space for a given question via data transformation techniques, and then encourages MLLM to effectively explore diverse reasoning trajectories over the expanded question space and shares the discovered reasoning trajectories across the expanded questions during RL. In addition, Share-GRPO also shares reward information during advantage computation, which estimates solution advantages hierarchically across and within question variants, allowing more accurate estimation of relative advantages and improving the stability of policy training. Extensive evaluations over six widely-used reasoning benchmarks showcase the superior performance of our method. Code will be available at https://github.com/HJYao00/R1-ShareVL.
comment: Technical report
A Japanese Language Model and Three New Evaluation Benchmarks for Pharmaceutical NLP
We present a Japanese domain-specific language model for the pharmaceutical field, developed through continual pretraining on 2 billion Japanese pharmaceutical tokens and 8 billion English biomedical tokens. To enable rigorous evaluation, we introduce three new benchmarks: YakugakuQA, based on national pharmacist licensing exams; NayoseQA, which tests cross-lingual synonym and terminology normalization; and SogoCheck, a novel task designed to assess consistency reasoning between paired statements. We evaluate our model against both open-source medical LLMs and commercial models, including GPT-4o. Results show that our domain-specific model outperforms existing open models and achieves competitive performance with commercial ones, particularly on terminology-heavy and knowledge-based tasks. Interestingly, even GPT-4o performs poorly on SogoCheck, suggesting that cross-sentence consistency reasoning remains an open challenge. Our benchmark suite offers a broader diagnostic lens for pharmaceutical NLP, covering factual recall, lexical variation, and logical consistency. This work demonstrates the feasibility of building practical, secure, and cost-effective language models for Japanese domain-specific applications, and provides reusable evaluation resources for future research in pharmaceutical and healthcare NLP. Our model, codes, and datasets are released at https://github.com/EQUES-Inc/pharma-LLM-eval.
comment: 15 pages, 9 tables, 5 figures
Can reasoning models comprehend mathematical problems in Chinese ancient texts? An empirical study based on data from Suanjing Shishu
This study addresses the challenges in intelligent processing of Chinese ancient mathematical classics by constructing Guji_MATH, a benchmark for evaluating classical texts based on Suanjing Shishu. It systematically assesses the mathematical problem-solving capabilities of mainstream reasoning models under the unique linguistic constraints of classical Chinese. Through machine-assisted annotation and manual verification, 538 mathematical problems were extracted from 8 canonical texts, forming a structured dataset centered on the "Question-Answer-Solution" framework, supplemented by problem types and difficulty levels. Dual evaluation modes--closed-book (autonomous problem-solving) and open-book (reproducing classical solution methods)--were designed to evaluate the performance of six reasoning models on ancient Chinese mathematical problems. Results indicate that reasoning models can partially comprehend and solve these problems, yet their overall performance remains inferior to benchmarks on modern mathematical tasks. Enhancing models' classical Chinese comprehension and cultural knowledge should be prioritized for optimization. This study provides methodological support for mining mathematical knowledge from ancient texts and disseminating traditional culture, while offering new perspectives for evaluating cross-linguistic and cross-cultural capabilities of reasoning models.
comment: 29pages, 7 figures
Collaboration among Multiple Large Language Models for Medical Question Answering
Empowered by vast internal knowledge reservoir, the new generation of large language models (LLMs) demonstrate untapped potential to tackle medical tasks. However, there is insufficient effort made towards summoning up a synergic effect from multiple LLMs' expertise and background. In this study, we propose a multi-LLM collaboration framework tailored on a medical multiple-choice questions dataset. Through post-hoc analysis on 3 pre-trained LLM participants, our framework is proved to boost all LLMs reasoning ability as well as alleviate their divergence among questions. We also measure an LLM's confidence when it confronts with adversary opinions from other LLMs and observe a concurrence between LLM's confidence and prediction accuracy.
comment: Accepted to IEEE International Conference on Healthcare Informatics 2025
SSR-Zero: Simple Self-Rewarding Reinforcement Learning for Machine Translation
Large language models (LLMs) have recently demonstrated remarkable capabilities in machine translation (MT). However, most advanced MT-specific LLMs heavily rely on external supervision signals during training, such as human-annotated reference data or trained reward models (RMs), which are often expensive to obtain and challenging to scale. To overcome this limitation, we propose a Simple Self-Rewarding (SSR) Reinforcement Learning (RL) framework for MT that is reference-free, fully online, and relies solely on self-judging rewards. Training with SSR using 13K monolingual examples and Qwen-2.5-7B as the backbone, our model SSR-Zero-7B outperforms existing MT-specific LLMs, e.g., TowerInstruct-13B and GemmaX-28-9B, as well as larger general LLMs like Qwen2.5-32B-Instruct in English $\leftrightarrow$ Chinese translation tasks from WMT23, WMT24, and Flores200 benchmarks. Furthermore, by augmenting SSR with external supervision from COMET, our strongest model, SSR-X-Zero-7B, achieves state-of-the-art performance in English $\leftrightarrow$ Chinese translation, surpassing all existing open-source models under 72B parameters and even outperforming closed-source models, e.g., GPT-4o and Gemini 1.5 Pro. Our analysis highlights the effectiveness of the self-rewarding mechanism compared to the external LLM-as-a-judge approach in MT and demonstrates its complementary benefits when combined with trained RMs. Our findings provide valuable insight into the potential of self-improving RL methods. We have publicly released our code, data and models.
MiLQ: Benchmarking IR Models for Bilingual Web Search with Mixed Language Queries
Despite bilingual speakers frequently using mixed-language queries in web searches, Information Retrieval (IR) research on them remains scarce. To address this, we introduce MiLQ,Mixed-Language Query test set, the first public benchmark of mixed-language queries, confirmed as realistic and highly preferred. Experiments show that multilingual IR models perform moderately on MiLQ and inconsistently across native, English, and mixed-language queries, also suggesting code-switched training data's potential for robust IR models handling such queries. Meanwhile, intentional English mixing in queries proves an effective strategy for bilinguals searching English documents, which our analysis attributes to enhanced token matching compared to native queries.
comment: 16 pages, 9 figures
Grounding Chest X-Ray Visual Question Answering with Generated Radiology Reports
We present a novel approach to Chest X-ray (CXR) Visual Question Answering (VQA), addressing both single-image image-difference questions. Single-image questions focus on abnormalities within a specific CXR ("What abnormalities are seen in image X?"), while image-difference questions compare two longitudinal CXRs acquired at different time points ("What are the differences between image X and Y?"). We further explore how the integration of radiology reports can enhance the performance of VQA models. While previous approaches have demonstrated the utility of radiology reports during the pre-training phase, we extend this idea by showing that the reports can also be leveraged as additional input to improve the VQA model's predicted answers. First, we propose a unified method that handles both types of questions and auto-regressively generates the answers. For single-image questions, the model is provided with a single CXR. For image-difference questions, the model is provided with two CXRs from the same patient, captured at different time points, enabling the model to detect and describe temporal changes. Taking inspiration from 'Chain-of-Thought reasoning', we demonstrate that performance on the CXR VQA task can be improved by grounding the answer generator module with a radiology report predicted for the same CXR. In our approach, the VQA model is divided into two steps: i) Report Generation (RG) and ii) Answer Generation (AG). Our results demonstrate that incorporating predicted radiology reports as evidence to the AG model enhances performance on both single-image and image-difference questions, achieving state-of-the-art results on the Medical-Diff-VQA dataset.
Steering Large Language Models for Machine Translation Personalization
High-quality machine translation systems based on large language models (LLMs) have simplified the production of personalized translations reflecting specific stylistic constraints. However, these systems still struggle in settings where stylistic requirements are less explicit and might be harder to convey via prompting. We explore various strategies for personalizing LLM-generated translations in low-resource settings, focusing on the challenging literary translation domain. We explore prompting strategies and inference-time interventions for steering model generations towards a personalized style, and propose a contrastive framework exploiting latent concepts extracted from sparse autoencoders to identify salient personalization properties. Our results show that steering achieves strong personalization while preserving translation quality. We further examine the impact of steering on LLM representations, finding model layers with a relevant impact for personalization are impacted similarly by multi-shot prompting and our steering method, suggesting similar mechanism at play.
From Generic Empathy to Personalized Emotional Support: A Self-Evolution Framework for User Preference Alignment
Effective emotional support hinges on understanding users' emotions and needs to provide meaningful comfort during multi-turn interactions. Large Language Models (LLMs) show great potential for expressing empathy; however, they often deliver generic and one-size-fits-all responses that fail to address users' specific needs. To tackle this issue, we propose a self-evolution framework designed to help LLMs improve their responses to better align with users' implicit preferences concerning user profiles (personalities), emotional states, and specific situations. Our framework consists of two distinct phases: \textit{(1)} \textit{Emotional Support Experience Acquisition}, where LLMs are fine-tuned on limited emotional support conversation data to provide basic support, and \textit{(2)} \textit{Self-Improvement for Personalized Emotional Support}, where LLMs leverage self-reflection and self-refinement to generate personalized responses. Through iterative direct preference optimization between the pre- and post-refined responses, our model generates responses that reflect a better understanding of the user's implicit preferences. Extensive experiments and evaluations demonstrate that our method significantly enhances the model's performance in emotional support, reducing unhelpful responses and minimizing discrepancies between user preferences and model outputs.
comment: 27 pages
What Media Frames Reveal About Stance: A Dataset and Study about Memes in Climate Change Discourse
Media framing refers to the emphasis on specific aspects of perceived reality to shape how an issue is defined and understood. Its primary purpose is to shape public perceptions often in alignment with the authors' opinions and stances. However, the interaction between stance and media frame remains largely unexplored. In this work, we apply an interdisciplinary approach to conceptualize and computationally explore this interaction with internet memes on climate change. We curate CLIMATEMEMES, the first dataset of climate-change memes annotated with both stance and media frames, inspired by research in communication science. CLIMATEMEMES includes 1,184 memes sourced from 47 subreddits, enabling analysis of frame prominence over time and communities, and sheds light on the framing preferences of different stance holders. We propose two meme understanding tasks: stance detection and media frame detection. We evaluate LLaVA-NeXT and Molmo in various setups, and report the corresponding results on their LLM backbone. Human captions consistently enhance performance. Synthetic captions and human-corrected OCR also help occasionally. Our findings highlight that VLMs perform well on stance, but struggle on frames, where LLMs outperform VLMs. Finally, we analyze VLMs' limitations in handling nuanced frames and stance expressions on climate change internet memes.
comment: 19 pages, 9 figures
Evaluating Large Language Model with Knowledge Oriented Language Specific Simple Question Answering
We introduce KoLasSimpleQA, the first benchmark evaluating the multilingual factual ability of Large Language Models (LLMs). Inspired by existing research, we created the question set with features such as single knowledge point coverage, absolute objectivity, unique answers, and temporal stability. These questions enable efficient evaluation using the LLM-as-judge paradigm, testing both the LLMs' factual memory and self-awareness ("know what they don't know"). KoLasSimpleQA expands existing research in two key dimensions: (1) Breadth (Multilingual Coverage): It includes 9 languages, supporting global applicability evaluation. (2) Depth (Dual Domain Design): It covers both the general domain (global facts) and the language-specific domain (such as history, culture, and regional traditions) for a comprehensive assessment of multilingual capabilities. We evaluated mainstream LLMs, including traditional LLM and emerging Large Reasoning Models. Results show significant performance differences between the two domains, particularly in performance metrics, ranking, calibration, and robustness. This highlights the need for targeted evaluation and optimization in multilingual contexts. We hope KoLasSimpleQA will help the research community better identify LLM capability boundaries in multilingual contexts and provide guidance for model optimization. We will release KoLasSimpleQA at https://github.com/opendatalab/KoLasSimpleQA .
comment: Equal contribution: Bowen Jiang, Runchuan Zhu, Jiang Wu; Corresponding author: Conghui He
O$^2$-Searcher: A Searching-based Agent Model for Open-Domain Open-Ended Question Answering
Large Language Models (LLMs), despite their advancements, are fundamentally limited by their static parametric knowledge, hindering performance on tasks requiring open-domain up-to-date information. While enabling LLMs to interact with external knowledge environments is a promising solution, current efforts primarily address closed-end problems. Open-ended questions, which characterized by lacking a standard answer or providing non-unique and diverse answers, remain underexplored. To bridge this gap, we present O$^2$-Searcher, a novel search agent leveraging reinforcement learning to effectively tackle both open-ended and closed-ended questions in the open domain. O$^2$-Searcher leverages an efficient, locally simulated search environment for dynamic knowledge acquisition, effectively decoupling the external world knowledge from model's sophisticated reasoning processes. It employs a unified training mechanism with meticulously designed reward functions, enabling the agent to identify problem types and adapt different answer generation strategies. Furthermore, to evaluate performance on complex open-ended tasks, we construct O$^2$-QA, a high-quality benchmark featuring 300 manually curated, multi-domain open-ended questions with associated web page caches. Extensive experiments show that O$^2$-Searcher, using only a 3B model, significantly surpasses leading LLM agents on O$^2$-QA. It also achieves SOTA results on various closed-ended QA benchmarks against similarly-sized models, while performing on par with much larger ones.
comment: 25 pages, 9 figures
EMULATE: A Multi-Agent Framework for Determining the Veracity of Atomic Claims by Emulating Human Actions
Determining the veracity of atomic claims is an imperative component of many recently proposed fact-checking systems. Many approaches tackle this problem by first retrieving evidence by querying a search engine and then performing classification by providing the evidence set and atomic claim to a large language model, but this process deviates from what a human would do in order to perform the task. Recent work attempted to address this issue by proposing iterative evidence retrieval, allowing for evidence to be collected several times and only when necessary. Continuing along this line of research, we propose a novel claim verification system, called EMULATE, which is designed to better emulate human actions through the use of a multi-agent framework where each agent performs a small part of the larger task, such as ranking search results according to predefined criteria or evaluating webpage content. Extensive experiments on several benchmarks show clear improvements over prior work, demonstrating the efficacy of our new multi-agent framework.
URLs Help, Topics Guide: Understanding Metadata Utility in LLM Training
Large Language Models (LLMs) are commonly pretrained on vast corpora of text without utilizing contextual metadata such as source, quality, or topic, leading to a context-free learning paradigm. While recent studies suggest that adding metadata like URL information as context (i.e., auxiliary inputs not used in the loss calculation) can improve training efficiency and downstream performance, they offer limited understanding of which types of metadata are truly effective and under what conditions. In this work, we conduct a systematic evaluation and find that not all metadata types contribute equally. Only URL context speeds up training, whereas quality scores and topic/format domain information offer no clear benefit. Furthermore, the improved downstream performances of URL conditioning emerge only when longer prompts are used at inference time. In addition, we demonstrate that context-aware pretraining enables more controllable generation than context-free pretraining, in a classifier-free guidance fashion. Although topic and format metadata do not accelerate training, they are effective for steering outputs, offering human-interpretable control over generation.
ScholarBench: A Bilingual Benchmark for Abstraction, Comprehension, and Reasoning Evaluation in Academic Contexts
Prior benchmarks for evaluating the domain-specific knowledge of large language models (LLMs) lack the scalability to handle complex academic tasks. To address this, we introduce \texttt{ScholarBench}, a benchmark centered on deep expert knowledge and complex academic problem-solving, which evaluates the academic reasoning ability of LLMs and is constructed through a three-step process. \texttt{ScholarBench} targets more specialized and logically complex contexts derived from academic literature, encompassing five distinct problem types. Unlike prior benchmarks, \texttt{ScholarBench} evaluates the abstraction, comprehension, and reasoning capabilities of LLMs across eight distinct research domains. To ensure high-quality evaluation data, we define category-specific example attributes and design questions that are aligned with the characteristic research methodologies and discourse structures of each domain. Additionally, this benchmark operates as an English-Korean bilingual dataset, facilitating simultaneous evaluation for linguistic capabilities of LLMs in both languages. The benchmark comprises 5,031 examples in Korean and 5,309 in English, with even state-of-the-art models like o3-mini achieving an average evaluation score of only 0.543, demonstrating the challenging nature of this benchmark.
CTRAP: Embedding Collapse Trap to Safeguard Large Language Models from Harmful Fine-Tuning
Fine-tuning-as-a-service, while commercially successful for Large Language Model (LLM) providers, exposes models to harmful fine-tuning attacks. As a widely explored defense paradigm against such attacks, unlearning attempts to remove malicious knowledge from LLMs, thereby essentially preventing them from being used to perform malicious tasks. However, we highlight a critical flaw: the powerful general adaptability of LLMs allows them to easily bypass selective unlearning by rapidly relearning or repurposing their capabilities for harmful tasks. To address this fundamental limitation, we propose a paradigm shift: instead of selective removal, we advocate for inducing model collapse--effectively forcing the model to "unlearn everything"--specifically in response to updates characteristic of malicious adaptation. This collapse directly neutralizes the very general capabilities that attackers exploit, tackling the core issue unaddressed by selective unlearning. We introduce the Collapse Trap (CTRAP) as a practical mechanism to implement this concept conditionally. Embedded during alignment, CTRAP pre-configures the model's reaction to subsequent fine-tuning dynamics. If updates during fine-tuning constitute a persistent attempt to reverse safety alignment, the pre-configured trap triggers a progressive degradation of the model's core language modeling abilities, ultimately rendering it inert and useless for the attacker. Crucially, this collapse mechanism remains dormant during benign fine-tuning, ensuring the model's utility and general capabilities are preserved for legitimate users. Extensive empirical results demonstrate that CTRAP effectively counters harmful fine-tuning risks across various LLMs and attack settings, while maintaining high performance in benign scenarios. Our code is available at https://anonymous.4open.science/r/CTRAP.
Think Silently, Think Fast: Dynamic Latent Compression of LLM Reasoning Chains
Large Language Models (LLMs) achieve superior performance through Chain-of-Thought (CoT) reasoning, but these token-level reasoning chains are computationally expensive and inefficient. In this paper, we introduce Compressed Latent Reasoning (CoLaR), a novel framework that dynamically compresses reasoning processes in latent space through a two-stage training approach. First, during supervised fine-tuning, CoLaR extends beyond next-token prediction by incorporating an auxiliary next compressed embedding prediction objective. This process merges embeddings of consecutive tokens using a compression factor randomly sampled from a predefined range, and trains a specialized latent head to predict distributions of subsequent compressed embeddings. Second, we enhance CoLaR through reinforcement learning (RL) that leverages the latent head's non-deterministic nature to explore diverse reasoning paths and exploit more compact ones. This approach enables CoLaR to: i) perform reasoning at a dense latent level (i.e., silently), substantially reducing reasoning chain length, and ii) dynamically adjust reasoning speed at inference time by simply prompting the desired compression factor. Extensive experiments across four mathematical reasoning datasets demonstrate that CoLaR achieves 14.1% higher accuracy than latent-based baseline methods at comparable compression ratios, and reduces reasoning chain length by 53.3% with only 4.8% performance degradation compared to explicit CoT method. Moreover, when applied to more challenging mathematical reasoning tasks, our RL-enhanced CoLaR demonstrates performance gains of up to 5.4% while dramatically reducing latent reasoning chain length by 82.8%. The code and models will be released upon acceptance.
comment: 15 pages, 8 figures
Mechanistic Understanding and Mitigation of Language Confusion in English-Centric Large Language Models
Language confusion -- where large language models (LLMs) generate unintended languages against the user's need -- remains a critical challenge, especially for English-centric models. We present the first mechanistic interpretability (MI) study of language confusion, combining behavioral benchmarking with neuron-level analysis. Using the Language Confusion Benchmark (LCB), we show that confusion points (CPs) -- specific positions where language switches occur -- are central to this phenomenon. Through layer-wise analysis with TunedLens and targeted neuron attribution, we reveal that transition failures in the final layers drive confusion. We further demonstrate that editing a small set of critical neurons, identified via comparative analysis with multilingual-tuned models, substantially mitigates confusion without harming general competence or fluency. Our approach matches multilingual alignment in confusion reduction for most languages and yields cleaner, higher-quality outputs. These findings provide new insights into the internal dynamics of LLMs and highlight neuron-level interventions as a promising direction for robust, interpretable multilingual language modeling.
comment: 16 pages, 5 figures
DuFFin: A Dual-Level Fingerprinting Framework for LLMs IP Protection
Large language models (LLMs) are considered valuable Intellectual Properties (IP) for legitimate owners due to the enormous computational cost of training. It is crucial to protect the IP of LLMs from malicious stealing or unauthorized deployment. Despite existing efforts in watermarking and fingerprinting LLMs, these methods either impact the text generation process or are limited in white-box access to the suspect model, making them impractical. Hence, we propose DuFFin, a novel $\textbf{Du}$al-Level $\textbf{Fin}$gerprinting $\textbf{F}$ramework for black-box setting ownership verification. DuFFin extracts the trigger pattern and the knowledge-level fingerprints to identify the source of a suspect model. We conduct experiments on a variety of models collected from the open-source website, including four popular base models as protected LLMs and their fine-tuning, quantization, and safety alignment versions, which are released by large companies, start-ups, and individual users. Results show that our method can accurately verify the copyright of the base protected LLM on their model variants, achieving the IP-ROC metric greater than 0.95. Our code is available at https://github.com/yuliangyan0807/llm-fingerprint.
EnSToM: Enhancing Dialogue Systems with Entropy-Scaled Steering Vectors for Topic Maintenance ACL 2025
Small large language models (sLLMs) offer the advantage of being lightweight and efficient, which makes them suitable for resource-constrained environments. However, sLLMs often struggle to maintain topic consistency in task-oriented dialogue systems, which is critical for scenarios such as service chatbots. Specifically, it is important to ensure that the model denies off-topic or malicious inputs and adheres to its intended functionality so as to prevent potential misuse and uphold reliability. Towards this, existing activation engineering approaches have been proposed to manipulate internal activations during inference. While these methods are effective in certain scenarios, our preliminary experiments reveal their limitations in ensuring topic adherence. Therefore, to address this, we propose a novel approach termed Entropy-scaled Steering vectors for Topic Maintenance (EnSToM). EnSToM dynamically adjusts the steering intensity based on input uncertainty, which allows the model to handle off-topic distractors effectively while preserving on-topic accuracy. Our experiments demonstrate that EnSToM achieves significant performance gain with a relatively small data size compared to fine-tuning approaches. By improving topic adherence without compromising efficiency, our approach provides a robust solution for enhancing sLLM-based dialogue systems.
comment: Accepted at ACL 2025 (Findings, long paper)
Benchmarking and Pushing the Multi-Bias Elimination Boundary of LLMs via Causal Effect Estimation-guided Debiasing
Despite significant progress, recent studies have indicated that current large language models (LLMs) may still utilize bias during inference, leading to the poor generalizability of LLMs. Some benchmarks are proposed to investigate the generalizability of LLMs, with each piece of data typically containing one type of controlled bias. However, a single piece of data may contain multiple types of biases in practical applications. To bridge this gap, we propose a multi-bias benchmark where each piece of data contains five types of biases. The evaluations conducted on this benchmark reveal that the performance of existing LLMs and debiasing methods is unsatisfying, highlighting the challenge of eliminating multiple types of biases simultaneously. To overcome this challenge, we propose a causal effect estimation-guided multi-bias elimination method (CMBE). This method first estimates the causal effect of multiple types of biases simultaneously. Subsequently, we eliminate the causal effect of biases from the total causal effect exerted by both the semantic information and biases during inference. Experimental results show that CMBE can effectively eliminate multiple types of bias simultaneously to enhance the generalizability of LLMs.
Are the Hidden States Hiding Something? Testing the Limits of Factuality-Encoding Capabilities in LLMs
Factual hallucinations are a major challenge for Large Language Models (LLMs). They undermine reliability and user trust by generating inaccurate or fabricated content. Recent studies suggest that when generating false statements, the internal states of LLMs encode information about truthfulness. However, these studies often rely on synthetic datasets that lack realism, which limits generalization when evaluating the factual accuracy of text generated by the model itself. In this paper, we challenge the findings of previous work by investigating truthfulness encoding capabilities, leading to the generation of a more realistic and challenging dataset. Specifically, we extend previous work by introducing: (1) a strategy for sampling plausible true-false factoid sentences from tabular data and (2) a procedure for generating realistic, LLM-dependent true-false datasets from Question Answering collections. Our analysis of two open-source LLMs reveals that while the findings from previous studies are partially validated, generalization to LLM-generated datasets remains challenging. This study lays the groundwork for future research on factuality in LLMs and offers practical guidelines for more effective evaluation.
CUB: Benchmarking Context Utilisation Techniques for Language Models
Incorporating external knowledge is crucial for knowledge-intensive tasks, such as question answering and fact checking. However, language models (LMs) may ignore relevant information that contradicts outdated parametric memory or be distracted by irrelevant contexts. While many context utilisation manipulation techniques (CMTs) that encourage or suppress context utilisation have recently been proposed to alleviate these issues, few have seen systematic comparison. In this paper, we develop CUB (Context Utilisation Benchmark) to help practitioners within retrieval-augmented generation (RAG) identify the best CMT for their needs. CUB allows for rigorous testing on three distinct context types, observed to capture key challenges in realistic context utilisation scenarios. With this benchmark, we evaluate seven state-of-the-art methods, representative of the main categories of CMTs, across three diverse datasets and tasks, applied to nine LMs. Our results show that most of the existing CMTs struggle to handle the full set of types of contexts that may be encountered in real-world retrieval-augmented scenarios. Moreover, we find that many CMTs display an inflated performance on simple synthesised datasets, compared to more realistic datasets with naturally occurring samples. Altogether, our results show the need for holistic tests of CMTs and the development of CMTs that can handle multiple context types.
comment: 27 pages
AppealCase: A Dataset and Benchmark for Civil Case Appeal Scenarios
Recent advances in LegalAI have primarily focused on individual case judgment analysis, often overlooking the critical appellate process within the judicial system. Appeals serve as a core mechanism for error correction and ensuring fair trials, making them highly significant both in practice and in research. To address this gap, we present the AppealCase dataset, consisting of 10,000 pairs of real-world, matched first-instance and second-instance documents across 91 categories of civil cases. The dataset also includes detailed annotations along five dimensions central to appellate review: judgment reversals, reversal reasons, cited legal provisions, claim-level decisions, and whether there is new information in the second instance. Based on these annotations, we propose five novel LegalAI tasks and conduct a comprehensive evaluation across 20 mainstream models. Experimental results reveal that all current models achieve less than 50% F1 scores on the judgment reversal prediction task, highlighting the complexity and challenge of the appeal scenario. We hope that the AppealCase dataset will spur further research in LegalAI for appellate case analysis and contribute to improving consistency in judicial decision-making.
comment: 15 pages, 4 figures
Sparse Activation Editing for Reliable Instruction Following in Narratives
Complex narrative contexts often challenge language models' ability to follow instructions, and existing benchmarks fail to capture these difficulties. To address this, we propose Concise-SAE, a training-free framework that improves instruction following by identifying and editing instruction-relevant neurons using only natural language instructions, without requiring labelled data. To thoroughly evaluate our method, we introduce FreeInstruct, a diverse and realistic benchmark of 1,212 examples that highlights the challenges of instruction following in narrative-rich settings. While initially motivated by complex narratives, Concise-SAE demonstrates state-of-the-art instruction adherence across varied tasks without compromising generation quality.
LLaMAs Have Feelings Too: Unveiling Sentiment and Emotion Representations in LLaMA Models Through Probing
Large Language Models (LLMs) have rapidly become central to NLP, demonstrating their ability to adapt to various tasks through prompting techniques, including sentiment analysis. However, we still have a limited understanding of how these models capture sentiment-related information. This study probes the hidden layers of Llama models to pinpoint where sentiment features are most represented and to assess how this affects sentiment analysis. Using probe classifiers, we analyze sentiment encoding across layers and scales, identifying the layers and pooling methods that best capture sentiment signals. Our results show that sentiment information is most concentrated in mid-layers for binary polarity tasks, with detection accuracy increasing up to 14% over prompting techniques. Additionally, we find that in decoder-only models, the last token is not consistently the most informative for sentiment encoding. Finally, this approach enables sentiment tasks to be performed with memory requirements reduced by an average of 57%. These insights contribute to a broader understanding of sentiment in LLMs, suggesting layer-specific probing as an effective approach for sentiment tasks beyond prompting, with potential to enhance model utility and reduce memory requirements.
Teaching Large Language Models to Maintain Contextual Faithfulness via Synthetic Tasks and Reinforcement Learning
Teaching large language models (LLMs) to be faithful in the provided context is crucial for building reliable information-seeking systems. Therefore, we propose a systematic framework, CANOE, to improve the faithfulness of LLMs in both short-form and long-form generation tasks without human annotations. Specifically, we first synthesize short-form question-answering (QA) data with four diverse tasks to construct high-quality and easily verifiable training data without human annotation. Also, we propose Dual-GRPO, a rule-based reinforcement learning method that includes three tailored rule-based rewards derived from synthesized short-form QA data, while simultaneously optimizing both short-form and long-form response generation. Notably, Dual-GRPO eliminates the need to manually label preference data to train reward models and avoids over-optimizing short-form generation when relying only on the synthesized short-form QA data. Experimental results show that CANOE greatly improves the faithfulness of LLMs across 11 different downstream tasks, even outperforming the most advanced LLMs, e.g., GPT-4o and OpenAI o1.
Benchmarking Retrieval-Augmented Multimomal Generation for Document Question Answering
Document Visual Question Answering (DocVQA) faces dual challenges in processing lengthy multimodal documents (text, images, tables) and performing cross-modal reasoning. Current document retrieval-augmented generation (DocRAG) methods remain limited by their text-centric approaches, frequently missing critical visual information. The field also lacks robust benchmarks for assessing multimodal evidence selection and integration. We introduce MMDocRAG, a comprehensive benchmark featuring 4,055 expert-annotated QA pairs with multi-page, cross-modal evidence chains. Our framework introduces innovative metrics for evaluating multimodal quote selection and enables answers that interleave text with relevant visual elements. Through large-scale experiments with 60 VLM/LLM models and 14 retrieval systems, we identify persistent challenges in multimodal evidence retrieval, selection, and integration.Key findings reveal advanced proprietary LVMs show superior performance than open-sourced alternatives. Also, they show moderate advantages using multimodal inputs over text-only inputs, while open-source alternatives show significant performance degradation. Notably, fine-tuned LLMs achieve substantial improvements when using detailed image descriptions. MMDocRAG establishes a rigorous testing ground and provides actionable insights for developing more robust multimodal DocVQA systems. Our benchmark and code are available at https://mmdocrag.github.io/MMDocRAG/.
comment: preprint. code available at \url{https://mmdocrag.github.io/MMDocRAG/}
Reading Between the Prompts: How Stereotypes Shape LLM's Implicit Personalization
Generative Large Language Models (LLMs) infer user's demographic information from subtle cues in the conversation -- a phenomenon called implicit personalization. Prior work has shown that such inferences can lead to lower quality responses for users assumed to be from minority groups, even when no demographic information is explicitly provided. In this work, we systematically explore how LLMs respond to stereotypical cues using controlled synthetic conversations, by analyzing the models' latent user representations through both model internals and generated answers to targeted user questions. Our findings reveal that LLMs do infer demographic attributes based on these stereotypical signals, which for a number of groups even persists when the user explicitly identifies with a different demographic group. Finally, we show that this form of stereotype-driven implicit personalization can be effectively mitigated by intervening on the model's internal representations using a trained linear probe to steer them toward the explicitly stated identity. Our results highlight the need for greater transparency and control in how LLMs represent user identity.
University of Indonesia at SemEval-2025 Task 11: Evaluating State-of-the-Art Encoders for Multi-Label Emotion Detection
This paper presents our approach for SemEval 2025 Task 11 Track A, focusing on multilabel emotion classification across 28 languages. We explore two main strategies: fully fine-tuning transformer models and classifier-only training, evaluating different settings such as fine-tuning strategies, model architectures, loss functions, encoders, and classifiers. Our findings suggest that training a classifier on top of prompt-based encoders such as mE5 and BGE yields significantly better results than fully fine-tuning XLMR and mBERT. Our best-performing model on the final leaderboard is an ensemble combining multiple BGE models, where CatBoost serves as the classifier, with different configurations. This ensemble achieves an average F1-macro score of 56.58 across all languages.
comment: 16 pages, 13 tables, 1 figures
Beyond Static Testbeds: An Interaction-Centric Agent Simulation Platform for Dynamic Recommender Systems
Evaluating and iterating upon recommender systems is crucial, yet traditional A/B testing is resource-intensive, and offline methods struggle with dynamic user-platform interactions. While agent-based simulation is promising, existing platforms often lack a mechanism for user actions to dynamically reshape the environment. To bridge this gap, we introduce RecInter, a novel agent-based simulation platform for recommender systems featuring a robust interaction mechanism. In RecInter platform, simulated user actions (e.g., likes, reviews, purchases) dynamically update item attributes in real-time, and introduced Merchant Agents can reply, fostering a more realistic and evolving ecosystem. High-fidelity simulation is ensured through Multidimensional User Profiling module, Advanced Agent Architecture, and LLM fine-tuned on Chain-of-Thought (CoT) enriched interaction data. Our platform achieves significantly improved simulation credibility and successfully replicates emergent phenomena like Brand Loyalty and the Matthew Effect. Experiments demonstrate that this interaction mechanism is pivotal for simulating realistic system evolution, establishing our platform as a credible testbed for recommender systems research.
$I^2G$: Generating Instructional Illustrations via Text-Conditioned Diffusion
The effective communication of procedural knowledge remains a significant challenge in natural language processing (NLP), as purely textual instructions often fail to convey complex physical actions and spatial relationships. We address this limitation by proposing a language-driven framework that translates procedural text into coherent visual instructions. Our approach models the linguistic structure of instructional content by decomposing it into goal statements and sequential steps, then conditioning visual generation on these linguistic elements. We introduce three key innovations: (1) a constituency parser-based text encoding mechanism that preserves semantic completeness even with lengthy instructions, (2) a pairwise discourse coherence model that maintains consistency across instruction sequences, and (3) a novel evaluation protocol specifically designed for procedural language-to-image alignment. Our experiments across three instructional datasets (HTStep, CaptainCook4D, and WikiAll) demonstrate that our method significantly outperforms existing baselines in generating visuals that accurately reflect the linguistic content and sequential nature of instructions. This work contributes to the growing body of research on grounding procedural language in visual content, with applications spanning education, task guidance, and multimodal language understanding.
comment: 13 pages, 5 figures, under review
WebAgent-R1: Training Web Agents via End-to-End Multi-Turn Reinforcement Learning
While reinforcement learning (RL) has demonstrated remarkable success in enhancing large language models (LLMs), it has primarily focused on single-turn tasks such as solving math problems. Training effective web agents for multi-turn interactions remains challenging due to the complexity of long-horizon decision-making across dynamic web interfaces. In this work, we present WebAgent-R1, a simple yet effective end-to-end multi-turn RL framework for training web agents. It learns directly from online interactions with web environments by asynchronously generating diverse trajectories, entirely guided by binary rewards depending on task success. Experiments on the WebArena-Lite benchmark demonstrate the effectiveness of WebAgent-R1, boosting the task success rate of Qwen-2.5-3B from 6.1% to 33.9% and Llama-3.1-8B from 8.5% to 44.8%, significantly outperforming existing state-of-the-art methods and strong proprietary models such as OpenAI o3. In-depth analyses reveal the effectiveness of the thinking-based prompting strategy and test-time scaling through increased interactions for web tasks. We further investigate different RL initialization policies by introducing two variants, namely WebAgent-R1-Zero and WebAgent-R1-CoT, which highlight the importance of the warm-up training stage (i.e., behavior cloning) and provide insights on incorporating long chain-of-thought (CoT) reasoning in web agents.
comment: Preprint
Exploring the Relationship Between Diversity and Quality in Ad Text Generation
In natural language generation for advertising, creating diverse and engaging ad texts is crucial for capturing a broad audience and avoiding advertising fatigue. Regardless of the importance of diversity, the impact of the diversity-enhancing methods in ad text generation -- mainly tested on tasks such as summarization and machine translation -- has not been thoroughly explored. Ad text generation significantly differs from these tasks owing to the text style and requirements. This research explores the relationship between diversity and ad quality in ad text generation by considering multiple factors, such as diversity-enhancing methods, their hyperparameters, input-output formats, and the models.
Attributing Response to Context: A Jensen-Shannon Divergence Driven Mechanistic Study of Context Attribution in Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) leverages large language models (LLMs) combined with external contexts to enhance the accuracy and reliability of generated responses. However, reliably attributing generated content to specific context segments, context attribution, remains challenging due to the computationally intensive nature of current methods, which often require extensive fine-tuning or human annotation. In this work, we introduce a novel Jensen-Shannon Divergence driven method to Attribute Response to Context (ARC-JSD), enabling efficient and accurate identification of essential context sentences without additional fine-tuning or surrogate modelling. Evaluations on a wide range of RAG benchmarks, such as TyDi QA, Hotpot QA, and Musique, using instruction-tuned LLMs in different scales demonstrate superior accuracy and significant computational efficiency improvements compared to the previous surrogate-based method. Furthermore, our mechanistic analysis reveals specific attention heads and multilayer perceptron (MLP) layers responsible for context attribution, providing valuable insights into the internal workings of RAG models.
comment: Work in process
Tool-Star: Empowering LLM-Brained Multi-Tool Reasoner via Reinforcement Learning
Recently, large language models (LLMs) have shown remarkable reasoning capabilities via large-scale reinforcement learning (RL). However, leveraging the RL algorithm to empower effective multi-tool collaborative reasoning in LLMs remains an open challenge. In this paper, we introduce Tool-Star, an RL-based framework designed to empower LLMs to autonomously invoke multiple external tools during stepwise reasoning. Tool-Star integrates six types of tools and incorporates systematic designs in both data synthesis and training. To address the scarcity of tool-use data, we propose a general tool-integrated reasoning data synthesis pipeline, which combines tool-integrated prompting with hint-based sampling to automatically and scalably generate tool-use trajectories. A subsequent quality normalization and difficulty-aware classification process filters out low-quality samples and organizes the dataset from easy to hard. Furthermore, we propose a two-stage training framework to enhance multi-tool collaborative reasoning by: (1) cold-start fine-tuning, which guides LLMs to explore reasoning patterns via tool-invocation feedback; and (2) a multi-tool self-critic RL algorithm with hierarchical reward design, which reinforces reward understanding and promotes effective tool collaboration. Experimental analyses on over 10 challenging reasoning benchmarks highlight the effectiveness and efficiency of Tool-Star. The code is available at https://github.com/dongguanting/Tool-Star.
comment: Working in progress
From Surveys to Narratives: Rethinking Cultural Value Adaptation in LLMs
Adapting cultural values in Large Language Models (LLMs) presents significant challenges, particularly due to biases and limited training data. Prior work primarily aligns LLMs with different cultural values using World Values Survey (WVS) data. However, it remains unclear whether this approach effectively captures cultural nuances or produces distinct cultural representations for various downstream tasks. In this paper, we systematically investigate WVS-based training for cultural value adaptation and find that relying solely on survey data can homogenize cultural norms and interfere with factual knowledge. To investigate these issues, we augment WVS with encyclopedic and scenario-based cultural narratives from Wikipedia and NormAd. While these narratives may have variable effects on downstream tasks, they consistently improve cultural distinctiveness than survey data alone. Our work highlights the inherent complexity of aligning cultural values with the goal of guiding task-specific behavior.
On the reliability of feature attribution methods for speech classification
As the capabilities of large-scale pre-trained models evolve, understanding the determinants of their outputs becomes more important. Feature attribution aims to reveal which parts of the input elements contribute the most to model outputs. In speech processing, the unique characteristics of the input signal make the application of feature attribution methods challenging. We study how factors such as input type and aggregation and perturbation timespan impact the reliability of standard feature attribution methods, and how these factors interact with characteristics of each classification task. We find that standard approaches to feature attribution are generally unreliable when applied to the speech domain, with the exception of word-aligned perturbation methods when applied to word-based classification tasks.
AceReason-Nemotron: Advancing Math and Code Reasoning through Reinforcement Learning
Despite recent progress in large-scale reinforcement learning (RL) for reasoning, the training recipe for building high-performing reasoning models remains elusive. Key implementation details of frontier models, such as DeepSeek-R1, including data curation strategies and RL training recipe, are often omitted. Moreover, recent research indicates distillation remains more effective than RL for smaller models. In this work, we demonstrate that large-scale RL can significantly enhance the reasoning capabilities of strong, small- and mid-sized models, achieving results that surpass those of state-of-the-art distillation-based models. We systematically study the RL training process through extensive ablations and propose a simple yet effective approach: first training on math-only prompts, then on code-only prompts. Notably, we find that math-only RL not only significantly enhances the performance of strong distilled models on math benchmarks (e.g., +14.6% / +17.2% on AIME 2025 for the 7B / 14B models), but also code reasoning tasks (e.g., +6.8% / +5.8% on LiveCodeBench for the 7B / 14B models). In addition, extended code-only RL iterations further improve performance on code benchmarks with minimal or no degradation in math results. We develop a robust data curation pipeline to collect challenging prompts with high-quality, verifiable answers and test cases to enable verification-based RL across both domains. Finally, we identify key experimental insights, including curriculum learning with progressively increasing response lengths and the stabilizing effect of on-policy parameter updates. We find that RL not only elicits the foundational reasoning capabilities acquired during pretraining and supervised fine-tuning (e.g., distillation), but also pushes the limits of the model's reasoning ability, enabling it to solve problems that were previously unsolvable.
comment: We release the model at: https://huggingface.co/nvidia/AceReason-Nemotron-14B
Resource for Error Analysis in Text Simplification: New Taxonomy and Test Collection SIGIR 2025
The general public often encounters complex texts but does not have the time or expertise to fully understand them, leading to the spread of misinformation. Automatic Text Simplification (ATS) helps make information more accessible, but its evaluation methods have not kept up with advances in text generation, especially with Large Language Models (LLMs). In particular, recent studies have shown that current ATS metrics do not correlate with the presence of errors. Manual inspections have further revealed a variety of errors, underscoring the need for a more nuanced evaluation framework, which is currently lacking. This resource paper addresses this gap by introducing a test collection for detecting and classifying errors in simplified texts. First, we propose a taxonomy of errors, with a formal focus on information distortion. Next, we introduce a parallel dataset of automatically simplified scientific texts. This dataset has been human-annotated with labels based on our proposed taxonomy. Finally, we analyze the quality of the dataset, and we study the performance of existing models to detect and classify errors from that taxonomy. These contributions give researchers the tools to better evaluate errors in ATS, develop more reliable models, and ultimately improve the quality of automatically simplified texts.
comment: Accepted at SIGIR 2025
Semantic Pivots Enable Cross-Lingual Transfer in Large Language Models
Large language models (LLMs) demonstrate remarkable ability in cross-lingual tasks. Understanding how LLMs acquire this ability is crucial for their interpretability. To quantify the cross-lingual ability of LLMs accurately, we propose a Word-Level Cross-Lingual Translation Task. To find how LLMs learn cross-lingual ability, we trace the outputs of LLMs' intermediate layers in the word translation task. We identify and distinguish two distinct behaviors in the forward pass of LLMs: co-occurrence behavior and semantic pivot behavior. We attribute LLMs' two distinct behaviors to the co-occurrence frequency of words and find the semantic pivot from the pre-training dataset. Finally, to apply our findings to improve the cross-lingual ability of LLMs, we reconstruct a semantic pivot-aware pre-training dataset using documents with a high proportion of semantic pivots. Our experiments validate the effectiveness of our approach in enhancing cross-lingual ability. Our research contributes insights into the interpretability of LLMs and offers a method for improving LLMs' cross-lingual ability.
comment: 14 pages, 10 figures
PaTH Attention: Position Encoding via Accumulating Householder Transformations
The attention mechanism is a core primitive in modern large language models (LLMs) and AI more broadly. Since attention by itself is permutation-invariant, position encoding is essential for modeling structured domains such as language. Rotary position encoding (RoPE) has emerged as the de facto standard approach for position encoding and is part of many modern LLMs. However, in RoPE the key/query transformation between two elements in a sequence is only a function of their relative position and otherwise independent of the actual input. This limits the expressivity of RoPE-based transformers. This paper describes PaTH, a flexible data-dependent position encoding scheme based on accumulated products of Householder(like) transformations, where each transformation is data-dependent, i.e., a function of the input. We derive an efficient parallel algorithm for training through exploiting a compact representation of products of Householder matrices, and implement a FlashAttention-style blockwise algorithm that minimizes I/O cost. Across both targeted synthetic benchmarks and moderate-scale real-world language modeling experiments, we find that PaTH demonstrates superior performance compared to RoPE and other recent baselines.
comment: Preprint
GUI-G1: Understanding R1-Zero-Like Training for Visual Grounding in GUI Agents
Recent Graphical User Interface (GUI) agents replicate the R1-Zero paradigm, coupling online Reinforcement Learning (RL) with explicit chain-of-thought reasoning prior to object grounding and thereby achieving substantial performance gains. In this paper, we first conduct extensive analysis experiments of three key components of that training pipeline: input design, output evaluation, and policy update-each revealing distinct challenges arising from blindly applying general-purpose RL without adapting to GUI grounding tasks. Input design: Current templates encourage the model to generate chain-of-thought reasoning, but longer chains unexpectedly lead to worse grounding performance. Output evaluation: Reward functions based on hit signals or box area allow models to exploit box size, leading to reward hacking and poor localization quality. Policy update: Online RL tends to overfit easy examples due to biases in length and sample difficulty, leading to under-optimization on harder cases. To address these issues, we propose three targeted solutions. First, we adopt a Fast Thinking Template that encourages direct answer generation, reducing excessive reasoning during training. Second, we incorporate a box size constraint into the reward function to mitigate reward hacking. Third, we revise the RL objective by adjusting length normalization and adding a difficulty-aware scaling factor, enabling better optimization on hard samples. Our GUI-G1-3B, trained on 17K public samples with Qwen2.5-VL-3B-Instruct, achieves 90.3% accuracy on ScreenSpot and 37.1% on ScreenSpot-Pro. This surpasses all prior models of similar size and even outperforms the larger UI-TARS-7B, establishing a new state-of-the-art in GUI agent grounding. The project repository is available at https://github.com/Yuqi-Zhou/GUI-G1.
Social Bias in Popular Question-Answering Benchmarks
Question-answering (QA) and reading comprehension (RC) benchmarks are essential for assessing the capabilities of large language models (LLMs) in retrieving and reproducing knowledge. However, we demonstrate that popular QA and RC benchmarks are biased and do not cover questions about different demographics or regions in a representative way, potentially due to a lack of diversity of those involved in their creation. We perform a qualitative content analysis of 30 benchmark papers and a quantitative analysis of 20 respective benchmark datasets to learn (1) who is involved in the benchmark creation, (2) how social bias is addressed or prevented, and (3) whether the demographics of the creators and annotators correspond to particular biases in the content. Most analyzed benchmark papers provided insufficient information regarding the stakeholders involved in benchmark creation, particularly the annotators. Notably, just one of the benchmark papers explicitly reported measures taken to address social representation issues. Moreover, the data analysis revealed gender, religion, and geographic biases across a wide range of encyclopedic, commonsense, and scholarly benchmarks. More transparent and bias-aware QA and RC benchmark creation practices are needed to facilitate better scrutiny and incentivize the development of fairer LLMs.
PhysicsArena: The First Multimodal Physics Reasoning Benchmark Exploring Variable, Process, and Solution Dimensions
Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in diverse reasoning tasks, yet their application to complex physics reasoning remains underexplored. Physics reasoning presents unique challenges, requiring grounding in physical conditions and the interpretation of multimodal information. Current physics benchmarks are limited, often focusing on text-only inputs or solely on problem-solving, thereby overlooking the critical intermediate steps of variable identification and process formulation. To address these limitations, we introduce PhysicsArena, the first multimodal physics reasoning benchmark designed to holistically evaluate MLLMs across three critical dimensions: variable identification, physical process formulation, and solution derivation. PhysicsArena aims to provide a comprehensive platform for assessing and advancing the multimodal physics reasoning abilities of MLLMs.
comment: Under Review
Hunyuan-TurboS: Advancing Large Language Models through Mamba-Transformer Synergy and Adaptive Chain-of-Thought
As Large Language Models (LLMs) rapidly advance, we introduce Hunyuan-TurboS, a novel large hybrid Transformer-Mamba Mixture of Experts (MoE) model. It synergistically combines Mamba's long-sequence processing efficiency with Transformer's superior contextual understanding. Hunyuan-TurboS features an adaptive long-short chain-of-thought (CoT) mechanism, dynamically switching between rapid responses for simple queries and deep "thinking" modes for complex problems, optimizing computational resources. Architecturally, this 56B activated (560B total) parameter model employs 128 layers (Mamba2, Attention, FFN) with an innovative AMF/MF block pattern. Faster Mamba2 ensures linear complexity, Grouped-Query Attention minimizes KV cache, and FFNs use an MoE structure. Pre-trained on 16T high-quality tokens, it supports a 256K context length and is the first industry-deployed large-scale Mamba model. Our comprehensive post-training strategy enhances capabilities via Supervised Fine-Tuning (3M instructions), a novel Adaptive Long-short CoT Fusion method, Multi-round Deliberation Learning for iterative improvement, and a two-stage Large-scale Reinforcement Learning process targeting STEM and general instruction-following. Evaluations show strong performance: overall top 7 rank on LMSYS Chatbot Arena with a score of 1356, outperforming leading models like Gemini-2.0-Flash-001 (1352) and o4-mini-2025-04-16 (1345). TurboS also achieves an average of 77.9% across 23 automated benchmarks. Hunyuan-TurboS balances high performance and efficiency, offering substantial capabilities at lower inference costs than many reasoning models, establishing a new paradigm for efficient large-scale pre-trained models.
AgentThink: A Unified Framework for Tool-Augmented Chain-of-Thought Reasoning in Vision-Language Models for Autonomous Driving
Vision-Language Models (VLMs) show promise for autonomous driving, yet their struggle with hallucinations, inefficient reasoning, and limited real-world validation hinders accurate perception and robust step-by-step reasoning. To overcome this, we introduce \textbf{AgentThink}, a pioneering unified framework that, for the first time, integrates Chain-of-Thought (CoT) reasoning with dynamic, agent-style tool invocation for autonomous driving tasks. AgentThink's core innovations include: \textbf{(i) Structured Data Generation}, by establishing an autonomous driving tool library to automatically construct structured, self-verified reasoning data explicitly incorporating tool usage for diverse driving scenarios; \textbf{(ii) A Two-stage Training Pipeline}, employing Supervised Fine-Tuning (SFT) with Group Relative Policy Optimization (GRPO) to equip VLMs with the capability for autonomous tool invocation; and \textbf{(iii) Agent-style Tool-Usage Evaluation}, introducing a novel multi-tool assessment protocol to rigorously evaluate the model's tool invocation and utilization. Experiments on the DriveLMM-o1 benchmark demonstrate AgentThink significantly boosts overall reasoning scores by \textbf{53.91\%} and enhances answer accuracy by \textbf{33.54\%}, while markedly improving reasoning quality and consistency. Furthermore, ablation studies and robust zero-shot/few-shot generalization experiments across various benchmarks underscore its powerful capabilities. These findings highlight a promising trajectory for developing trustworthy and tool-aware autonomous driving models.
comment: 18 pages, 8 figures
Capacity-Aware Inference: Mitigating the Straggler Effect in Mixture of Experts
The Mixture of Experts (MoE) is an effective architecture for scaling large language models by leveraging sparse expert activation, optimizing the trade-off between performance and efficiency. However, under expert parallelism, MoE suffers from inference inefficiencies due to imbalanced token-to-expert assignment, where some experts are overloaded while others remain underutilized. This imbalance leads to poor resource utilization and increased latency, as the most burdened expert dictates the overall delay, a phenomenon we define as the \textbf{\textit{Straggler Effect}}. To mitigate this, we propose Capacity-Aware Inference, including two key techniques: (1) \textbf{\textit{Capacity-Aware Token Drop}}, which discards overloaded tokens to regulate the maximum latency of MoE, and (2) \textbf{\textit{Capacity-Aware Token Reroute}}, which reallocates overflowed tokens to underutilized experts, balancing the token distribution. These techniques collectively optimize both high-load and low-load expert utilization, leading to a more efficient MoE inference pipeline. Extensive experiments demonstrate the effectiveness of our methods, showing significant improvements in inference efficiency, e.g., 0.2\% average performance increase and a 1.94$\times$ inference speedup on Mixtral-8$\times$7B-Instruct.
Diverse Preference Optimization
Post-training of language models, either through reinforcement learning, preference optimization or supervised finetuning, tends to sharpen the output probability distribution and reduce the diversity of generated responses. This is particularly a problem for creative generative tasks where varied responses are desired. In this work we introduce Diverse Preference Optimization (DivPO), an optimization method which learns to generate much more diverse responses than standard pipelines, while maintaining the quality of the generations. In DivPO, preference pairs are selected by first considering a pool of responses, and a measure of diversity among them, and selecting chosen examples as being more rare but high quality, while rejected examples are more common, but low quality. DivPO results in generating 45.6% more diverse persona attributes, and a 74.6% increase in story diversity, while maintaining similar win rates as standard baselines. On general instruction following, DivPO results in a 46.2% increase in diversity, and a 2.4% winrate improvement compared to DPO.
TinyV: Reducing False Negatives in Verification Improves RL for LLM Reasoning
Reinforcement Learning (RL) has become a powerful tool for enhancing the reasoning abilities of large language models (LLMs) by optimizing their policies with reward signals. Yet, RL's success relies on the reliability of rewards, which are provided by verifiers. In this paper, we expose and analyze a widespread problem--false negatives--where verifiers wrongly reject correct model outputs. Our in-depth study of the Big-Math-RL-Verified dataset reveals that over 38% of model-generated responses suffer from false negatives, where the verifier fails to recognize correct answers. We show, both empirically and theoretically, that these false negatives severely impair RL training by depriving the model of informative gradient signals and slowing convergence. To mitigate this, we propose tinyV, a lightweight LLM-based verifier that augments existing rule-based methods, which dynamically identifies potential false negatives and recovers valid responses to produce more accurate reward estimates. Across multiple math-reasoning benchmarks, integrating TinyV boosts pass rates by up to 10% and accelerates convergence relative to the baseline. Our findings highlight the critical importance of addressing verifier false negatives and offer a practical approach to improve RL-based fine-tuning of LLMs. Our code is available at https://github.com/uw-nsl/TinyV.
Towards Better Understanding of Program-of-Thought Reasoning in Cross-Lingual and Multilingual Environments
Multi-step reasoning is essential for large language models (LLMs), yet multilingual performance remains challenging. While Chain-of-Thought (CoT) prompting improves reasoning, it struggles with non-English languages due to the entanglement of reasoning and execution. Program-of-Thought (PoT) prompting separates reasoning from execution, offering a promising alternative but shifting the challenge to generating programs from non-English questions. We propose a framework to evaluate PoT by separating multilingual reasoning from code execution to examine (i) the impact of fine-tuning on question-reasoning alignment and (ii) how reasoning quality affects answer correctness. Our findings demonstrate that PoT fine-tuning substantially enhances multilingual reasoning, outperforming CoT fine-tuned models. We further demonstrate a strong correlation between reasoning quality (measured through code quality) and answer accuracy, highlighting its potential as a test-time performance improvement heuristic.
Vague Knowledge: Evidence from Analyst Reports
People in the real world often possess vague knowledge of future payoffs, for which quantification is not feasible or desirable. We argue that language, with differing ability to convey vague information, plays an important but less known-role in representing subjective expectations. Empirically, we find that in their reports, analysts include useful information in linguistic expressions but not numerical forecasts. Specifically, the textual tone of analyst reports has predictive power for forecast errors and subsequent revisions in numerical forecasts, and this relation becomes stronger when analyst's language is vaguer, when uncertainty is higher, and when analysts are busier. Overall, our theory and evidence suggest that some useful information is vaguely known and only communicated through language.
General-Reasoner: Advancing LLM Reasoning Across All Domains
Reinforcement learning (RL) has recently demonstrated strong potential in enhancing the reasoning capabilities of large language models (LLMs). Particularly, the "Zero" reinforcement learning introduced by Deepseek-R1-Zero, enables direct RL training of base LLMs without relying on an intermediate supervised fine-tuning stage. Despite these advancements, current works for LLM reasoning mainly focus on mathematical and coding domains, largely due to data abundance and the ease of answer verification. This limits the applicability and generalization of such models to broader domains, where questions often have diverse answer representations, and data is more scarce. In this paper, we propose General-Reasoner, a novel training paradigm designed to enhance LLM reasoning capabilities across diverse domains. Our key contributions include: (1) constructing a large-scale, high-quality dataset of questions with verifiable answers curated by web crawling, covering a wide range of disciplines; and (2) developing a generative model-based answer verifier, which replaces traditional rule-based verification with the capability of chain-of-thought and context-awareness. We train a series of models and evaluate them on a wide range of datasets covering wide domains like physics, chemistry, finance, electronics etc. Our comprehensive evaluation across these 12 benchmarks (e.g. MMLU-Pro, GPQA, SuperGPQA, TheoremQA, BBEH and MATH AMC) demonstrates that General-Reasoner outperforms existing baseline methods, achieving robust and generalizable reasoning performance while maintaining superior effectiveness in mathematical reasoning tasks.
Slamming: Training a Speech Language Model on One GPU in a Day ACL 2025
We introduce Slam, a recipe for training high-quality Speech Language Models (SLMs) on a single academic GPU in 24 hours. We do so through empirical analysis of model initialisation and architecture, synthetic training data, preference optimisation with synthetic data and tweaking all other components. We empirically demonstrate that this training recipe also scales well with more compute getting results on par with leading SLMs in a fraction of the compute cost. We hope these insights will make SLM training and research more accessible. In the context of SLM scaling laws, our results far outperform predicted compute optimal performance, giving an optimistic view to SLM feasibility. See code, data, models, samples at - https://pages.cs.huji.ac.il/adiyoss-lab/slamming .
comment: ACL 2025 (Findings)
MindGYM: What Matters in Question Synthesis for Thinking-Centric Fine-Tuning?
Large foundation models face challenges in acquiring transferable, structured thinking abilities, especially when supervised with rigid templates or crowd-annotated instruction datasets. Unlike prior approaches, we focus on a thinking-centric data synthesis paradigm that enables models to evolve through self-generated, cognitively guided data. We propose MindGYM, a structured and scalable framework for question synthesis, composed of: (1) Cognitive Thinking Process Injection, which infuses high-level reasoning objectives to shape the model's synthesis behavior; (2) Seed Single-Hop Question Synthesis, generating atomic questions from diverse semantic types to encourage broader thinking; and (3) Challenging Multi-Hop QA Synthesis, composing more complex multi-hop questions based on QA seeds for deeper reasoning. Detailed analysis shows that synthetic data generated by our method achieves 16.7% higher average quality and 67.91% lower quality variance compared to baseline sources, highlighting that both high-quality and self-contained data are essential for effective, thinking-oriented fine-tuning. MindGYM improves performance on six reasoning benchmarks, achieving gains of up to 16% on MathVision using only 400 data samples, and generalizable improvements across different model sizes and architectures. MindGYM underscores the viability of self-challenging mechanisms in refining large model capabilities while minimizing human intervention and resource demands. Code and data are released to promote data-centric research into self-evolving foundation models driven by their internal reasoning capabilities.
comment: 22 pages, 7 tables
Diversity as a Reward: Fine-Tuning LLMs on a Mixture of Domain-Undetermined Data
Fine-tuning large language models (LLMs) using diverse datasets is crucial for enhancing their overall performance across various domains. In practical scenarios, existing methods based on modeling the mixture proportions of data composition often struggle with data whose domain labels are missing, imprecise or non-normalized, while methods based on data selection usually encounter difficulties in balancing multi-domain performance. To address these challenges, in this work, we investigate the role of data diversity in enhancing the overall abilities of LLMs by empirically constructing contrastive data pools and theoretically deriving explanations. Building upon the insights gained, we propose a new method that gives the LLM a dual identity: an output model to cognitively probe and select data based on diversity reward, as well as an input model to be tuned with the selected data. Extensive experiments show that the proposed method notably boosts performance across domain-undetermined data and a series of foundational downstream tasks when applied to various advanced LLMs. We release our code and hope this study can shed light on the understanding of data diversity and advance feedback-driven data-model co-design for LLMs.
comment: 33 pages, 20 figures, 21 tables
FoREST: Frame of Reference Evaluation in Spatial Reasoning Tasks
Spatial reasoning is a fundamental aspect of human intelligence. One key concept in spatial cognition is the Frame of Reference (FoR), which identifies the perspective of spatial expressions. Despite its significance, FoR has received limited attention in AI models that need spatial intelligence. There is a lack of dedicated benchmarks and in-depth evaluation of large language models (LLMs) in this area. To address this issue, we introduce the Frame of Reference Evaluation in Spatial Reasoning Tasks (FoREST) benchmark, designed to assess FoR comprehension in LLMs. We evaluate LLMs on answering questions that require FoR comprehension and layout generation in text-to-image models using FoREST. Our results reveal a notable performance gap across different FoR classes in various LLMs, affecting their ability to generate accurate layouts for text-to-image generation. This highlights critical shortcomings in FoR comprehension. To improve FoR understanding, we propose Spatial-Guided prompting, which improves LLMs ability to extract essential spatial concepts. Our proposed method improves overall performance across spatial reasoning tasks.
comment: 9 pages
TTRL: Test-Time Reinforcement Learning
This paper investigates Reinforcement Learning (RL) on data without explicit labels for reasoning tasks in Large Language Models (LLMs). The core challenge of the problem is reward estimation during inference while not having access to ground-truth information. While this setting appears elusive, we find that common practices in Test-Time Scaling (TTS), such as majority voting, yield surprisingly effective rewards suitable for driving RL training. In this work, we introduce Test-Time Reinforcement Learning (TTRL), a novel method for training LLMs using RL on unlabeled data. TTRL enables self-evolution of LLMs by utilizing the priors in the pre-trained models. Our experiments demonstrate that TTRL consistently improves performance across a variety of tasks and models. Notably, TTRL boosts the pass@1 performance of Qwen-2.5-Math-7B by approximately 211% on the AIME 2024 with only unlabeled test data. Furthermore, although TTRL is only supervised by the maj@n metric, TTRL has demonstrated performance to consistently surpass the upper limit of the initial model maj@n, and approach the performance of models trained directly on test data with ground-truth labels. Our experimental findings validate the general effectiveness of TTRL across various tasks and highlight TTRL's potential for broader tasks and domains. GitHub: https://github.com/PRIME-RL/TTRL
From 1,000,000 Users to Every User: Scaling Up Personalized Preference for User-level Alignment
Large language models (LLMs) have traditionally been aligned through one-size-fits-all approaches that assume uniform human preferences, fundamentally overlooking the diversity in user values and needs. This paper introduces a comprehensive framework for scalable personalized alignment of LLMs. We establish a systematic preference space characterizing psychological and behavioral dimensions, alongside diverse persona representations for robust preference inference in real-world scenarios. Building upon this foundation, we introduce \textsc{AlignX}, a large-scale dataset of over 1.3 million personalized preference examples, and develop two complementary alignment approaches: \textit{in-context alignment} directly conditioning on persona representations and \textit{preference-bridged alignment} modeling intermediate preference distributions. Extensive experiments demonstrate substantial improvements over existing methods, with an average 17.06\% accuracy gain across four benchmarks while exhibiting a strong adaptation capability to novel preferences, robustness to limited user data, and precise preference controllability. These results validate our approach toward user-adaptive AI systems.
More Text, Less Point: Towards 3D Data-Efficient Point-Language Understanding
Enabling Large Language Models (LLMs) to comprehend the 3D physical world remains a significant challenge. Due to the lack of large-scale 3D-text pair datasets, the success of LLMs has yet to be replicated in 3D understanding. In this paper, we rethink this issue and propose a new task: 3D Data-Efficient Point-Language Understanding. The goal is to enable LLMs to achieve robust 3D object understanding with minimal 3D point cloud and text data pairs. To address this task, we introduce GreenPLM, which leverages more text data to compensate for the lack of 3D data. First, inspired by using CLIP to align images and text, we utilize a pre-trained point cloud-text encoder to map the 3D point cloud space to the text space. This mapping leaves us to seamlessly connect the text space with LLMs. Once the point-text-LLM connection is established, we further enhance text-LLM alignment by expanding the intermediate text space, thereby reducing the reliance on 3D point cloud data. Specifically, we generate 6M free-text descriptions of 3D objects, and design a three-stage training strategy to help LLMs better explore the intrinsic connections between different modalities. To achieve efficient modality alignment, we design a zero-parameter cross-attention module for token pooling. Extensive experimental results show that GreenPLM requires only 12% of the 3D training data used by existing state-of-the-art models to achieve superior 3D understanding. Remarkably, GreenPLM also achieves competitive performance using text-only data. The code and weights are available at: https://github.com/TangYuan96/GreenPLM.
Retrieval-Augmented Perception: High-Resolution Image Perception Meets Visual RAG
High-resolution (HR) image perception remains a key challenge in multimodal large language models (MLLMs). To overcome the limitations of existing methods, this paper shifts away from prior dedicated heuristic approaches and revisits the most fundamental idea to HR perception by enhancing the long-context capability of MLLMs, driven by recent advances in long-context techniques like retrieval-augmented generation (RAG) for general LLMs. Towards this end, this paper presents the first study exploring the use of RAG to address HR perception challenges. Specifically, we propose Retrieval-Augmented Perception (RAP), a training-free framework that retrieves and fuses relevant image crops while preserving spatial context using the proposed Spatial-Awareness Layout. To accommodate different tasks, the proposed Retrieved-Exploration Search (RE-Search) dynamically selects the optimal number of crops based on model confidence and retrieval scores. Experimental results on HR benchmarks demonstrate the significant effectiveness of RAP, with LLaVA-v1.5-13B achieving a 43% improvement on $V^*$ Bench and 19% on HR-Bench.
APE-Bench I: Towards File-level Automated Proof Engineering of Formal Math Libraries
Recent progress in large language models (LLMs) has shown promise in formal theorem proving, yet existing benchmarks remain limited to isolated, static proof tasks, failing to capture the iterative, engineering-intensive workflows of real-world formal mathematics libraries. Motivated by analogous advances in software engineering, we introduce the paradigm of Automated Proof Engineering (APE), which aims to automate proof engineering tasks such as feature addition, proof refactoring, and bug fixing using LLMs. To facilitate research in this direction, we present APE-Bench I, the first realistic benchmark built from real-world commit histories of Mathlib4, featuring diverse file-level tasks described in natural language and verified via a hybrid approach combining the Lean compiler and LLM-as-a-Judge. We further develop Eleanstic, a scalable parallel verification infrastructure optimized for proof checking across multiple versions of Mathlib. Empirical results on state-of-the-art LLMs demonstrate strong performance on localized edits but substantial degradation on handling complex proof engineering. This work lays the foundation for developing agentic workflows in proof engineering, with future benchmarks targeting multi-file coordination, project-scale verification, and autonomous agents capable of planning, editing, and repairing formal libraries.
Evaluating Automated Radiology Report Quality through Fine-Grained Phrasal Grounding of Clinical Findings
Several evaluation metrics have been developed recently to automatically assess the quality of generative AI reports for chest radiographs based only on textual information using lexical, semantic, or clinical named entity recognition methods. In this paper, we develop a new method of report quality evaluation by first extracting fine-grained finding patterns capturing the location, laterality, and severity of a large number of clinical findings. We then performed phrasal grounding to localize their associated anatomical regions on chest radiograph images. The textual and visual measures are then combined to rate the quality of the generated reports. We present results that compare this evaluation metric with other textual metrics on a gold standard dataset derived from the MIMIC collection and show its robustness and sensitivity to factual errors.
SMARTe: Slot-based Method for Accountable Relational Triple extraction
Relational Triple Extraction (RTE) is a fundamental task in Natural Language Processing (NLP). However, prior research has primarily focused on optimizing model performance, with limited efforts to understand the internal mechanisms driving these models. Many existing methods rely on complex preprocessing to induce specific interactions, often resulting in opaque systems that may not fully align with their theoretical foundations. To address these limitations, we propose SMARTe: a Slot-based Method for Accountable Relational Triple extraction. SMARTe introduces intrinsic interpretability through a slot attention mechanism and frames the task as a set prediction problem. Slot attention consolidates relevant information into distinct slots, ensuring all predictions can be explicitly traced to learned slot representations and the tokens contributing to each predicted relational triple. While emphasizing interpretability, SMARTe achieves performance comparable to state-of-the-art models. Evaluations on the NYT and WebNLG datasets demonstrate that adding interpretability does not compromise performance. Furthermore, we conducted qualitative assessments to showcase the explanations provided by SMARTe, using attention heatmaps that map to their respective tokens. We conclude with a discussion of our findings and propose directions for future research.
ChartCards: A Chart-Metadata Generation Framework for Multi-Task Chart Understanding
The emergence of Multi-modal Large Language Models (MLLMs) presents new opportunities for chart understanding. However, due to the fine-grained nature of these tasks, applying MLLMs typically requires large, high-quality datasets for task-specific fine-tuning, leading to high data collection and training costs. To address this, we propose ChartCards, a unified chart-metadata generation framework for multi-task chart understanding. ChartCards systematically synthesizes various chart information, including data tables, visualization code, visual elements, and multi-dimensional semantic captions. By structuring this information into organized metadata, ChartCards enables a single chart to support multiple downstream tasks, such as text-to-chart retrieval, chart summarization, chart-to-table conversion, chart description, and chart question answering. Using ChartCards, we further construct MetaChart, a large-scale high-quality dataset containing 10,862 data tables, 85K charts, and 170 K high-quality chart captions. We validate the dataset through qualitative crowdsourcing evaluations and quantitative fine-tuning experiments across various chart understanding tasks. Fine-tuning six different models on MetaChart resulted in an average performance improvement of 5% across all tasks. The most notable improvements are seen in text-to-chart retrieval and chart-to-table tasks, with Long-CLIP and Llama 3.2-11B achieving improvements of 17% and 28%, respectively.
Through the LLM Looking Glass: A Socratic Probing of Donkeys, Elephants, and Markets
While detecting and avoiding bias in LLM-generated text is becoming increasingly important, media bias often remains subtle and subjective, making it particularly difficult to identify and mitigate. In this study, we assess media bias in LLM-generated content and LLMs' ability to detect subtle ideological bias. We conduct this evaluation using two datasets, PoliGen and EconoLex, covering political and economic discourse, respectively. We evaluate seven widely used LLMs by prompting them to generate articles and analyze their ideological preferences via Socratic probing. By using our self-contained Socratic approach, the study aims to directly measure the models' biases rather than relying on external interpretations, thereby minimizing subjective judgments about media bias. Our results reveal a consistent preference of Democratic over Republican positions across all models. Conversely, in economic topics, biases vary among Western LLMs, while those developed in China lean more strongly toward socialism.
HybridNorm: Towards Stable and Efficient Transformer Training via Hybrid Normalization
Transformers have become the de facto architecture for a wide range of machine learning tasks, particularly in large language models (LLMs). Despite their remarkable performance, challenges remain in training deep transformer networks, especially regarding the position of layer normalization. While Pre-Norm structures facilitate more stable training owing to their stronger identity path, they often lead to suboptimal performance compared to Post-Norm. In this paper, we propose $\textbf{HybridNorm}$, a simple yet effective hybrid normalization strategy that integrates the advantages of both Pre-Norm and Post-Norm. Specifically, HybridNorm employs QKV normalization within the attention mechanism and Post-Norm in the feed-forward network (FFN) of each transformer block. We provide both theoretical insights and empirical evidence demonstrating that HybridNorm improves gradient flow and model robustness. Extensive experiments on large-scale transformer models, including both dense and sparse variants, show that HybridNorm consistently outperforms both Pre-Norm and Post-Norm approaches across multiple benchmarks. These findings highlight the potential of HybridNorm as a more stable and effective technique for improving the training and performance of deep transformer models. Code is available at https://github.com/BryceZhuo/HybridNorm.
TASTE: Text-Aligned Speech Tokenization and Embedding for Spoken Language Modeling
Recent efforts target spoken language models (SLMs) that not only listen but also speak for more natural human-LLM interaction. Joint speech-text modeling is a promising direction to achieve this. However, the effectiveness of recent speech tokens for joint modeling remains underexplored. To address this, we introduce Text-Aligned Speech Tokenization and Embedding (TASTE), a method that directly addresses the modality gap by aligning speech token with the corresponding text transcription during the tokenization stage. We propose a method that can achieve this through a attention-based aggregation mechanism and with speech reconstruction as the training objective. We conduct extensive experiments and show that TASTE can preserve essential paralinguistic information while dramatically reducing the token sequence length. With TASTE, we perform straightforward joint spoken language modeling by using Low-Rank Adaptation on the pre-trained text LLM. Experimental results show that TASTE-based SLMs perform comparable to previous work on SALMON and StoryCloze; while significantly outperform other pre-trained SLMs on speech continuation across subjective and objective evaluations. To our knowledge, TASTE is the first end-to-end approach that utilizes a reconstruction objective to automatically learn a text-aligned speech tokenization and embedding suitable for spoken language modeling. Our demo, code, and model are available at https://mtkresearch.github.io/TASTE-SpokenLM.github.io.
comment: Preprint
EntGPT: Entity Linking with Generative Large Language Models
Entity Linking in natural language processing seeks to match text entities to their corresponding entries in a dictionary or knowledge base. Traditional approaches rely on contextual models, which can be complex, hard to train, and have limited transferability across different domains. Generative large language models like GPT offer a promising alternative but often underperform with naive prompts. In this study, we introduce EntGPT, employing advanced prompt engineering to enhance EL tasks. Our three-step hard-prompting method (EntGPT-P) significantly boosts the micro-F_1 score by up to 36% over vanilla prompts, achieving competitive performance across 10 datasets without supervised fine-tuning. Additionally, our instruction tuning method (EntGPT-I) improves micro-F_1 scores by 2.1% on average in supervised EL tasks and outperforms several baseline models in six Question Answering tasks. Our methods are compatible with both open-source and proprietary LLMs. All data and code are available on GitHub at https://github.com/yifding/In_Context_EL.
Transformers for molecular property prediction: Domain adaptation efficiently improves performance
Over the past six years, molecular transformer models have become key tools in drug discovery. Most existing models are pre-trained on large, unlabeled datasets such as ZINC or ChEMBL. However, the extent to which large-scale pre-training improves molecular property prediction remains unclear. This study evaluates transformer models for this task while addressing their limitations. We explore how pre-training dataset size and chemically informed objectives impact performance. Our results show that increasing the dataset beyond approximately 400K to 800K molecules from large-scale unlabeled databases does not enhance performance across seven datasets covering five ADME endpoints: lipophilicity, permeability, solubility (two datasets), microsomal stability (two datasets), and plasma protein binding. In contrast, domain adaptation on a small, domain-specific dataset (less than or equal 4K molecules) using multi-task regression of physicochemical properties significantly boosts performance (P-value less than 0.001). A model pre-trained on 400K molecules and adapted with domain-specific data outperforms larger models such as MolFormer and performs comparably to MolBERT. Benchmarks against Random Forest (RF) baselines using descriptors and Morgan fingerprints show that chemically and physically informed features consistently yield better performance across model types. While RF remains a strong baseline, we identify concrete practices to enhance transformer performance. Aligning pre-training and adaptation with chemically meaningful tasks and domain-relevant data presents a promising direction for molecular property prediction. Our models are available on HuggingFace for easy use and adaptation.
ToolSpectrum : Towards Personalized Tool Utilization for Large Language Models ACL 2025
While integrating external tools into large language models (LLMs) enhances their ability to access real-time information and domain-specific services, existing approaches focus narrowly on functional tool selection following user instructions, overlooking the context-aware personalization in tool selection. This oversight leads to suboptimal user satisfaction and inefficient tool utilization, particularly when overlapping toolsets require nuanced selection based on contextual factors. To bridge this gap, we introduce ToolSpectrum, a benchmark designed to evaluate LLMs' capabilities in personalized tool utilization. Specifically, we formalize two key dimensions of personalization, user profile and environmental factors, and analyze their individual and synergistic impacts on tool utilization. Through extensive experiments on ToolSpectrum, we demonstrate that personalized tool utilization significantly improves user experience across diverse scenarios. However, even state-of-the-art LLMs exhibit the limited ability to reason jointly about user profiles and environmental factors, often prioritizing one dimension at the expense of the other. Our findings underscore the necessity of context-aware personalization in tool-augmented LLMs and reveal critical limitations for current models. Our data and code are available at https://github.com/Chengziha0/ToolSpectrum.
comment: Accepted by ACL 2025 Findings
Critique-Guided Distillation: Improving Supervised Fine-tuning via Better Distillation NeurIPS 2025
Supervised fine-tuning (SFT) using expert demonstrations often suffer from the imitation problem, where the model learns to reproduce the correct responses without understanding the underlying rationale. To address this limitation, we propose Critique-Guided Distillation (CGD), a novel multi-stage framework that integrates teacher model generated explanatory critiques and refined responses into the SFT process. A student model is then trained to map the triplet of prompt, teacher critique, and its own initial response to the corresponding refined teacher response, thereby learning both what to imitate and why. Using entropy-based analysis, we show that CGD reduces refinement uncertainty and can be interpreted as a Bayesian posterior update. We perform extensive empirical evaluation of CGD, on variety of benchmark tasks, and demonstrate significant gains on both math (AMC23 +17.5%) and language understanding tasks (MMLU-Pro +6.3%), while successfully mitigating the format drift issues observed in previous critique fine-tuning (CFT) techniques.
comment: Submitted to NeurIPS 2025
Divide and Conquer: A Hybrid Strategy Defeats Multimodal Large Language Models
Large language models (LLMs) are widely applied in various fields of society due to their powerful reasoning, understanding, and generation capabilities. However, the security issues associated with these models are becoming increasingly severe. Jailbreaking attacks, as an important method for detecting vulnerabilities in LLMs, have been explored by researchers who attempt to induce these models to generate harmful content through various attack methods. Nevertheless, existing jailbreaking methods face numerous limitations, such as excessive query counts, limited coverage of jailbreak modalities, low attack success rates, and simplistic evaluation methods. To overcome these constraints, this paper proposes a multimodal jailbreaking method: JMLLM. This method integrates multiple strategies to perform comprehensive jailbreak attacks across text, visual, and auditory modalities. Additionally, we contribute a new and comprehensive dataset for multimodal jailbreaking research: TriJail, which includes jailbreak prompts for all three modalities. Experiments on the TriJail dataset and the benchmark dataset AdvBench, conducted on 13 popular LLMs, demonstrate advanced attack success rates and significant reduction in time overhead.
Breaking Information Cocoons: A Hyperbolic Graph-LLM Framework for Exploration and Exploitation in Recommender Systems
Modern recommender systems often create information cocoons, restricting users' exposure to diverse content. A key challenge lies in balancing content exploration and exploitation while allowing users to adjust their recommendation preferences. Intuitively, this balance can be modeled as a tree-structured representation, where depth search facilitates exploitation and breadth search enables exploration. However, existing approaches face two fundamental limitations: Euclidean methods struggle to capture hierarchical structures, while hyperbolic methods, despite their superior hierarchical modeling, lack semantic understanding of user and item profiles and fail to provide a principled mechanism for balancing exploration and exploitation. To address these challenges, we propose HERec, a hyperbolic graph-LLM framework that effectively balances exploration and exploitation in recommender systems. Our framework introduces two key innovations: (1) a semantic-enhanced hierarchical mechanism that aligns rich textual descriptions processed by large language models (LLMs) with collaborative information directly in hyperbolic space, allowing for more nuanced updates that respect the underlying hierarchical structure in user-item profiles; (2) an automatic hierarchical representation by optimizing Dasgupta's cost, which discovers hierarchical structures without requiring predefined hyperparameters, enabling user-adjustable exploration-exploitation trade-offs. Extensive experiments demonstrate that HERec consistently outperforms both Euclidean and hyperbolic baselines, achieving up to 5.49% improvement in utility metrics and 11.39% increase in diversity metrics, effectively mitigating information cocoons. We open-source our model implementation at https://github.com/Martin-qyma/HERec.
Identifying Legal Holdings with LLMs: A Systematic Study of Performance, Scale, and Memorization
As large language models (LLMs) continue to advance in capabilities, it is essential to assess how they perform on established benchmarks. In this study, we present a suite of experiments to assess the performance of modern LLMs (ranging from 3B to 90B+ parameters) on CaseHOLD, a legal benchmark dataset for identifying case holdings. Our experiments demonstrate ``scaling effects'' - performance on this task improves with model size, with more capable models like GPT4o and AmazonNovaPro achieving macro F1 scores of 0.744 and 0.720 respectively. These scores are competitive with the best published results on this dataset, and do not require any technically sophisticated model training, fine-tuning or few-shot prompting. To ensure that these strong results are not due to memorization of judicial opinions contained in the training data, we develop and utilize a novel citation anonymization test that preserves semantic meaning while ensuring case names and citations are fictitious. Models maintain strong performance under these conditions (macro F1 of 0.728), suggesting the performance is not due to rote memorization. These findings demonstrate both the promise and current limitations of LLMs for legal tasks with important implications for the development and measurement of automated legal analytics and legal benchmarks.
comment: Presented as a short paper at International Conference on Artificial Intelligence and Law 2025 (Chicago, IL)
ReviewAgents: Bridging the Gap Between Human and AI-Generated Paper Reviews
Academic paper review is a critical yet time-consuming task within the research community. With the increasing volume of academic publications, automating the review process has become a significant challenge. The primary issue lies in generating comprehensive, accurate, and reasoning-consistent review comments that align with human reviewers' judgments. In this paper, we address this challenge by proposing ReviewAgents, a framework that leverages large language models (LLMs) to generate academic paper reviews. We first introduce a novel dataset, Review-CoT, consisting of 142k review comments, designed for training LLM agents. This dataset emulates the structured reasoning process of human reviewers-summarizing the paper, referencing relevant works, identifying strengths and weaknesses, and generating a review conclusion. Building upon this, we train LLM reviewer agents capable of structured reasoning using a relevant-paper-aware training method. Furthermore, we construct ReviewAgents, a multi-role, multi-LLM agent review framework, to enhance the review comment generation process. Additionally, we propose ReviewBench, a benchmark for evaluating the review comments generated by LLMs. Our experimental results on ReviewBench demonstrate that while existing LLMs exhibit a certain degree of potential for automating the review process, there remains a gap when compared to human-generated reviews. Moreover, our ReviewAgents framework further narrows this gap, outperforming advanced LLMs in generating review comments.
comment: Work in progress
Hallucination Detection in LLMs with Topological Divergence on Attention Graphs
Hallucination, i.e., generating factually incorrect content, remains a critical challenge for large language models (LLMs). We introduce TOHA, a TOpology-based HAllucination detector in the RAG setting, which leverages a topological divergence metric to quantify the structural properties of graphs induced by attention matrices. Examining the topological divergence between prompt and response subgraphs reveals consistent patterns: higher divergence values in specific attention heads correlate with hallucinated outputs, independent of the dataset. Extensive experiments - including evaluation on question answering and summarization tasks - show that our approach achieves state-of-the-art or competitive results on several benchmarks while requiring minimal annotated data and computational resources. Our findings suggest that analyzing the topological structure of attention matrices can serve as an efficient and robust indicator of factual reliability in LLMs.
A Unified Approach to Routing and Cascading for LLMs
The availability of a wide range of large language models (LLMs) embedded in various agentic systems has significantly increased the potential of model selection strategies to improve the cost-performance tradeoff. Existing strategies involve either routing, where a single model is chosen per query, or cascading, which sequentially runs increasingly larger models until a satisfactory answer is found. However, current approaches face three key limitations: they (1) lack formal proofs of optimality, (2) fail to identify the conditions under which these strategies are most effective to improve the cost-performance tradeoff, and (3) are unable to combine both paradigms for further improvements. To address these issues, we first derive a novel optimal strategy for cascading and prove the optimality of an existing routing strategy. Further, we propose cascade routing, a unified framework that integrates routing and cascading into a theoretically optimal strategy. Through our analysis, we identify good quality estimators as the critical factor for the success of model selection paradigms. Finally, in our experiments, we show that cascade routing consistently outperforms the individual approaches by a large margin and we analyze quality estimators to determine when routing and/or cascading are useful paradigms for model selection.
GRIFFIN: Effective Token Alignment for Faster Speculative Decoding
Speculative decoding accelerates inference in large language models (LLMs) by generating multiple draft tokens simultaneously. However, existing methods often struggle with token misalignment between the training and decoding phases, limiting their performance. To address this, we propose GRIFFIN, a novel framework that incorporates a token-alignable training strategy and a token-alignable draft model to mitigate misalignment. The training strategy employs a loss masking mechanism to exclude highly misaligned tokens during training, preventing them from negatively impacting the draft model's optimization. The token-alignable draft model introduces input tokens to correct inconsistencies in generated features. Experiments on LLaMA, Vicuna, Qwen and Mixtral models demonstrate that GRIFFIN achieves an average acceptance length improvement of over 8% and a speedup ratio exceeding 7%, outperforming current speculative decoding state-of-the-art methods. Our code and GRIFFIN's draft models are released publicly in https://github.com/hsj576/GRIFFIN.
Semantic Aware Linear Transfer by Recycling Pre-trained Language Models for Cross-lingual Transfer ACL 2025
Large Language Models (LLMs) increasingly incorporate multilingual capabilities, fueling the demand to transfer them into target language-specific models. However, most approaches, which blend the source model's embedding by replacing the source vocabulary with the target language-specific vocabulary, may constrain expressive capacity in the target language since the source model is predominantly trained on English data. In this paper, we propose Semantic Aware Linear Transfer (SALT), a novel cross-lingual transfer technique that recycles embeddings from target language Pre-trained Language Models (PLMs) to transmit the deep representational strengths of PLM-derived embedding to LLMs. SALT derives unique regression lines based on the similarity in the overlap of the source and target vocabularies, to handle each non-overlapping token's embedding space. Our extensive experiments show that SALT significantly outperforms other transfer methods and achieves lower loss with accelerating faster convergence during language adaptation. Notably, SALT obtains remarkable performance in cross-lingual understanding setups compared to other methods. Furthermore, we highlight the scalable use of PLMs to enhance the functionality of contemporary LLMs by conducting experiments with varying architectures.
comment: Accepted to ACL 2025 Findings
Improving Multilingual Capabilities with Cultural and Local Knowledge in Large Language Models While Enhancing Native Performance
Large Language Models (LLMs) have shown remarkable capabilities, but their development has primarily focused on English and other high-resource languages, leaving many languages underserved. We present our latest Hindi-English bi-lingual LLM \textbf{Mantra-14B} with ~3\% average improvement in benchmark scores over both languages, outperforming models twice its size. Using a curated dataset composed of English and Hindi instruction data of 485K samples, we instruction tuned models such as Qwen-2.5-14B-Instruct and Phi-4 to improve performance over both English and Hindi. Our experiments encompassing seven different LLMs of varying parameter sizes and over 140 training attempts with varying English-Hindi training data ratios demonstrated that it is possible to significantly improve multilingual performance without compromising native performance. Further, our approach avoids resource-intensive techniques like vocabulary expansion or architectural modifications, thus keeping the model size small. Our results indicate that modest fine-tuning with culturally and locally informed data can bridge performance gaps without incurring significant computational overhead. We release our training code, datasets, and models under mit and apache licenses to aid further research towards under-represented and low-resource languages.
comment: 24 pages, 18 figures
Transferring Textual Preferences to Vision-Language Understanding through Model Merging ACL 2025
Large vision-language models (LVLMs) perform outstandingly across various multimodal tasks. However, their ability to evaluate generated content remains limited, and training vision-language reward models (VLRMs) with preference data is computationally expensive. This paper explores a training-free alternative by merging text-based reward models (RMs) with LVLMs to create VLRMs. Our approach shows that integrating these models leads to improved performance over LVLMs' scoring and text-based RMs, offering an efficient method for incorporating textual preferences into LVLMs.
comment: Accepted to ACL 2025 main
Normal forms in Virus Machines
In the present work, we further study the computational power of virus machines (VMs in short).VMs provide a computing paradigm inspired by the transmission and replication networks of viruses.VMs consist of process units (called hosts) structured by a directed graph whose arcs are called channels and an instruction graph that controls the transmissions of virus objects among hosts. The present work complements our understanding of the computing power of VMs by introducing normal forms; these expressions restrict the features in a given computing model.Some of the features that we restrict in our normal forms include (a) the number of hosts, (b) the number of instructions, and (c) the number of virus objects in each host. After we recall some known results on the computing power of VMs we give our series of normal forms, such as the size of the loops in the network, proving new characterisations of family of sets, such as finite sets, semilinear sets, or recursively enumerable sets (NRE).
comment: 24 pages, 14 figures
My Words Imply Your Opinion: Reader Agent-based Propagation Enhancement for Personalized Implicit Emotion Analysis
The subtlety of emotional expressions makes implicit emotion analysis (IEA) particularly sensitive to user-specific characteristics. Current studies personalize emotion analysis by focusing on the author but neglect the impact of the intended reader on implicit emotional feedback. In this paper, we introduce Personalized IEA (PIEA) and present the RAPPIE model, which addresses subjective variability by incorporating reader feedback. In particular, (1) we create reader agents based on large language models to simulate reader feedback, overcoming the issue of ``spiral of silence effect'' and data incompleteness of real reader reaction. (2) We develop a role-aware multi-view graph learning to model the emotion interactive propagation process in scenarios with sparse reader information. (3) We construct two new PIEA datasets covering English and Chinese social media with detailed user metadata, addressing the text-centric limitation of existing datasets. Extensive experiments show that RAPPIE significantly outperforms state-of-the-art baselines, demonstrating the value of incorporating reader feedback in PIEA.
Robust and Fine-Grained Detection of AI Generated Texts
An ideal detection system for machine generated content is supposed to work well on any generator as many more advanced LLMs come into existence day by day. Existing systems often struggle with accurately identifying AI-generated content over shorter texts. Further, not all texts might be entirely authored by a human or LLM, hence we focused more over partial cases i.e human-LLM co-authored texts. Our paper introduces a set of models built for the task of token classification which are trained on an extensive collection of human-machine co-authored texts, which performed well over texts of unseen domains, unseen generators, texts by non-native speakers and those with adversarial inputs. We also introduce a new dataset of over 2.4M such texts mostly co-authored by several popular proprietary LLMs over 23 languages. We also present findings of our models' performance over each texts of each domain and generator. Additional findings include comparison of performance against each adversarial method, length of input texts and characteristics of generated texts compared to the original human authored texts.
comment: 18 pages, 6 figures
LiTransProQA: an LLM-based Literary Translation evaluation metric with Professional Question Answering
The impact of Large Language Models (LLMs) has extended into literary domains. However, existing evaluation metrics prioritize mechanical accuracy over artistic expression and tend to overrate machine translation as being superior to human translation from experienced professionals. In the long run, this bias could result in an irreversible decline in translation quality and cultural authenticity. In response to the urgent need for a specialized literary evaluation metric, we introduce LiTransProQA, a novel, reference-free, LLM-based question-answering framework designed for literary translation evaluation. LiTransProQA uniquely integrates insights from professional literary translators and researchers, focusing on critical elements in literary quality assessment such as literary devices, cultural understanding, and authorial voice. Our extensive evaluation shows that while literary-finetuned XCOMET-XL yields marginal gains, LiTransProQA substantially outperforms current metrics, achieving up to 0.07 gain in correlation and surpassing the best state-of-the-art metrics by over 15 points in adequacy assessments. Incorporating professional translator insights as weights further improves performance, highlighting the value of translator inputs. Notably, LiTransProQA reaches human-level evaluation performance comparable to trained student evaluators. It shows broad applicability to open-source models like LLaMa3.3-70b and Qwen2.5-32b, indicating its potential as an accessible and training-free tool for evaluating literary translations that require local processing due to copyright or ethical considerations. The code and datasets are available under: https://github.com/zhangr2021/TransProQA.
comment: Updated version, with examples in the appendix
Universal Cross-Tokenizer Distillation via Approximate Likelihood Matching
Distillation has shown remarkable success in transferring knowledge from a Large Language Model (LLM) teacher to a student LLM. However, current distillation methods require similar tokenizers between the teacher and the student, restricting their applicability to only a small subset of teacher-student pairs. In this work, we develop a principled cross-tokenizer distillation method to solve this crucial deficiency. Our method is the first to enable effective distillation across fundamentally different tokenizers, while also substantially outperforming prior methods in all other cases. We verify the efficacy of our method on three distinct use cases. First, we show that viewing tokenizer transfer as self-distillation enables unprecedentedly effective transfer across tokenizers, including rapid transfer of subword models to the byte-level. Transferring different models to the same tokenizer also enables ensembling to boost performance. Secondly, we distil a large maths-specialised LLM into a small general-purpose model with a different tokenizer, achieving competitive maths problem-solving performance. Thirdly, we use our method to train state-of-the-art embedding prediction hypernetworks for training-free tokenizer transfer. Our results unlock an expanded range of teacher-student pairs for distillation, enabling new ways to adapt and enhance interaction between LLMs.
comment: Preprint, 21 pages
Adaptive Thinking via Mode Policy Optimization for Social Language Agents
Effective social intelligence simulation requires language agents to dynamically adjust reasoning depth, a capability notably absent in current studies. Existing methods either lack this kind of reasoning capability or enforce Long Chain-of-Thought reasoning uniformly across all scenarios, resulting in excessive token usage and inflexible social simulation. To address this, we propose an $\textbf{A}$daptive $\textbf{M}$ode $\textbf{L}$earning ($\textbf{AML}$) framework in this paper, aiming to improve the adaptive thinking ability of language agents in dynamic social interactions. To this end, we first identify hierarchical thinking modes ranging from intuitive response to deep deliberation based on the cognitive control theory. We then develop the $\textbf{A}$daptive $\textbf{M}$ode $\textbf{P}$olicy $\textbf{O}$ptimization ($\textbf{AMPO}$) algorithm to optimize the context-aware mode switching and reasoning. Our framework advances existing research in three key aspects: (1) Multi-granular thinking mode design, (2) Context-aware mode switching across social interaction, and (3) Token-efficient reasoning via depth-adaptive processing. Extensive experiments on social intelligence benchmarks verify that AML achieves 15.6% higher task performance than GPT-4o. Notably, our AMPO outperforms GRPO by 7.0% with 32.8% shorter reasoning chains, demonstrating the advantage of adaptive thinking mode selection and optimization mechanism in AMPO over GRPO's fixed-depth solution.
comment: Work in Progress. The code and data are available, see https://github.com/MozerWang/AMPO
FIRE: Flexible Integration of Data Quality Ratings for Effective Pre-Training
Selecting high-quality data can improve the pretraining efficiency of large language models (LLMs). Existing methods generally rely on heuristic techniques or single quality signals, limiting their ability to evaluate data quality comprehensively. In this work, we propose FIRE, a flexible and scalable framework for integrating multiple data quality raters, which allows for a comprehensive assessment of data quality across various dimensions. FIRE aligns multiple quality signals into a unified space, and integrates diverse data quality raters to provide a comprehensive quality signal for each data point. Further, we introduce a progressive data selection scheme based on FIRE that iteratively refines the selection of high-quality data points. Extensive experiments show that FIRE outperforms other data selection methods and significantly boosts pretrained model performance across a wide range of downstream tasks, while requiring less than 37.5\% of the training data needed by the Random baseline to reach the target performance.
comment: 21 pages, 11 figures
Model Merging in Pre-training of Large Language Models
Model merging has emerged as a promising technique for enhancing large language models, though its application in large-scale pre-training remains relatively unexplored. In this paper, we present a comprehensive investigation of model merging techniques during the pre-training process. Through extensive experiments with both dense and Mixture-of-Experts (MoE) architectures ranging from millions to over 100 billion parameters, we demonstrate that merging checkpoints trained with constant learning rates not only achieves significant performance improvements but also enables accurate prediction of annealing behavior. These improvements lead to both more efficient model development and significantly lower training costs. Our detailed ablation studies on merging strategies and hyperparameters provide new insights into the underlying mechanisms while uncovering novel applications. Through comprehensive experimental analysis, we offer the open-source community practical pre-training guidelines for effective model merging.
Optimizing Case-Based Reasoning System for Functional Test Script Generation with Large Language Models KDD 2025
In this work, we explore the potential of large language models (LLMs) for generating functional test scripts, which necessitates understanding the dynamically evolving code structure of the target software. To achieve this, we propose a case-based reasoning (CBR) system utilizing a 4R cycle (i.e., retrieve, reuse, revise, and retain), which maintains and leverages a case bank of test intent descriptions and corresponding test scripts to facilitate LLMs for test script generation. To improve user experience further, we introduce Re4, an optimization method for the CBR system, comprising reranking-based retrieval finetuning and reinforced reuse finetuning. Specifically, we first identify positive examples with high semantic and script similarity, providing reliable pseudo-labels for finetuning the retriever model without costly labeling. Then, we apply supervised finetuning, followed by a reinforcement learning finetuning stage, to align LLMs with our production scenarios, ensuring the faithful reuse of retrieved cases. Extensive experimental results on two product development units from Huawei Datacom demonstrate the superiority of the proposed CBR+Re4. Notably, we also show that the proposed Re4 method can help alleviate the repetitive generation issues with LLMs.
comment: Accepted by KDD 2025 (ADS Track)
MentalMAC: Enhancing Large Language Models for Detecting Mental Manipulation via Multi-Task Anti-Curriculum Distillation
Mental manipulation is a subtle yet pervasive form of psychological abuse that poses serious threats to mental health. Its covert nature and the complexity of manipulation strategies make it challenging to detect, even for state-of-the-art large language models (LLMs). This concealment also hinders the manual collection of large-scale, high-quality annotations essential for training effective models. Although recent efforts have sought to improve LLMs' performance on this task, progress remains limited due to the scarcity of real-world annotated datasets. To address these challenges, we propose MentalMAC, a multi-task anti-curriculum distillation method that enhances LLMs' ability to detect mental manipulation in multi-turn dialogue. Our approach includes: (i) EvoSA, an unsupervised data expansion method based on evolutionary operations and speech act theory; (ii) teacher model-generated multi-task supervision; and (iii) progressive knowledge distillation from complex to simpler tasks. We then constructed the ReaMent dataset with 5,000 real-world dialogue samples, using a MentalMAC-distilled model to assist human annotation. Vast experiments demonstrate that our method significantly narrows the gap between student and teacher models and outperforms competitive LLMs across key evaluation metrics. All code, datasets, and checkpoints will be released upon paper acceptance. Warning: This paper contains content that may be offensive to readers.
Illusion or Algorithm? Investigating Memorization, Emergence, and Symbolic Processing in In-Context Learning
Large-scale Transformer language models (LMs) trained solely on next-token prediction with web-scale data can solve a wide range of tasks after seeing just a few examples. The mechanism behind this capability, known as in-context learning (ICL), remains both controversial and poorly understood. Some studies argue that it is merely the result of memorizing vast amounts of data, while others contend that it reflects a fundamental, symbolic algorithmic development in LMs. In this work, we introduce a suite of investigative tasks and a novel method to systematically investigate ICL by leveraging the full Pythia scaling suite, including interim checkpoints that capture progressively larger amount of training data. By carefully exploring ICL performance on downstream tasks and simultaneously conducting a mechanistic analysis of the residual stream's subspace, we demonstrate that ICL extends beyond mere "memorization" of the training corpus, yet does not amount to the implementation of an independent symbolic algorithm. Our results also clarify several aspects of ICL, including the influence of training dynamics, model capabilities, and elements of mechanistic interpretability. Overall, our work advances the understanding of ICL and its implications, offering model developers insights into potential improvements and providing AI security practitioners with a basis for more informed guidelines.
Language Models are Universal Embedders ACL 2025
In the large language model (LLM) revolution, embedding is a key component of various systems, such as retrieving knowledge or memories for LLMs or building content moderation filters. As such cases span from English to other natural or programming languages, from retrieval to classification and beyond, it is advantageous to build a unified embedding model rather than dedicated ones for each scenario. In this context, the pre-trained multilingual decoder-only large language models, e.g., BLOOM, emerge as a viable backbone option. To assess their potential, we propose straightforward strategies for constructing embedders and introduce a universal evaluation benchmark. Experimental results show that our trained model is proficient at generating good embeddings across languages and tasks, even extending to languages and tasks for which no finetuning/pretraining data is available. We also present detailed analyses and additional evaluations. We hope that this work could encourage the development of more robust open-source universal embedders.
comment: XLLM Workshop, ACL 2025
BenCzechMark : A Czech-centric Multitask and Multimetric Benchmark for Large Language Models with Duel Scoring Mechanism ACL
We present BenCzechMark (BCM), the first comprehensive Czech language benchmark designed for large language models, offering diverse tasks, multiple task formats, and multiple evaluation metrics. Its duel scoring system is grounded in statistical significance theory and uses aggregation across tasks inspired by social preference theory. Our benchmark encompasses 50 challenging tasks, with corresponding test datasets, primarily in native Czech, with 14 newly collected ones. These tasks span 8 categories and cover diverse domains, including historical Czech news, essays from pupils or language learners, and spoken word. Furthermore, we collect and clean BUT-Large Czech Collection, the largest publicly available clean Czech language corpus, and use it for (i) contamination analysis and (ii) continuous pretraining of the first Czech-centric 7B language model with Czech-specific tokenization. We use our model as a baseline for comparison with publicly available multilingual models. Lastly, we release and maintain a leaderboard with existing 50 model submissions, where new model submissions can be made at https://huggingface.co/spaces/CZLC/BenCzechMark.
comment: Accepted to TACL
Is a Peeled Apple Still Red? Evaluating LLMs' Ability for Conceptual Combination with Property Type NAACL 2025
Conceptual combination is a cognitive process that merges basic concepts, enabling the creation of complex expressions. During this process, the properties of combination (e.g., the whiteness of a peeled apple) can be inherited from basic concepts, newly emerge, or be canceled. However, previous studies have evaluated a limited set of properties and have not examined the generative process. To address this gap, we introduce the Conceptual Combination with Property Type dataset (CCPT), which consists of 12.3K annotated triplets of noun phrases, properties, and property types. Using CCPT, we establish three types of tasks to evaluate LLMs for conceptual combination thoroughly. Our key findings are threefold: (1) Our automatic metric grading property emergence and cancellation closely corresponds with human judgments. (2) LLMs, including OpenAI's o1, struggle to generate noun phrases which possess given emergent properties. (3) Our proposed method, inspired by cognitive psychology model that explains how relationships between concepts are formed, improves performances in all generative tasks. The dataset and experimental code are available at https://github.com/seokwon99/CCPT.git.
comment: NAACL 2025 Oral
M-ABSA: A Multilingual Dataset for Aspect-Based Sentiment Analysis
Aspect-based sentiment analysis (ABSA) is a crucial task in information extraction and sentiment analysis, aiming to identify aspects with associated sentiment elements in text. However, existing ABSA datasets are predominantly English-centric, limiting the scope for multilingual evaluation and research. To bridge this gap, we present M-ABSA, a comprehensive dataset spanning 7 domains and 21 languages, making it the most extensive multilingual parallel dataset for ABSA to date. Our primary focus is on triplet extraction, which involves identifying aspect terms, aspect categories, and sentiment polarities. The dataset is constructed through an automatic translation process with human review to ensure quality. We perform extensive experiments using various baselines to assess performance and compatibility on M-ABSA. Our empirical findings highlight that the dataset enables diverse evaluation tasks, such as multilingual and multi-domain transfer learning, and large language model evaluation, underscoring its inclusivity and its potential to drive advancements in multilingual ABSA research.
Human-Computer Interaction
Cracking Aegis: An Adversarial LLM-based Game for Raising Awareness of Vulnerabilities in Privacy Protection
Traditional methods for raising awareness of privacy protection often fail to engage users or provide hands-on insights into how privacy vulnerabilities are exploited. To address this, we incorporate an adversarial mechanic in the design of the dialogue-based serious game Cracking Aegis. Leveraging LLMs to simulate natural interactions, the game challenges players to impersonate characters and extract sensitive information from an AI agent, Aegis. A user study (n=22) revealed that players employed diverse deceptive linguistic strategies, including storytelling and emotional rapport, to manipulate Aegis. After playing, players reported connecting in-game scenarios with real-world privacy vulnerabilities, such as phishing and impersonation, and expressed intentions to strengthen privacy control, such as avoiding oversharing personal information with AI systems. This work highlights the potential of LLMs to simulate complex relational interactions in serious games, while demonstrating how an adversarial game strategy provides unique insights for designs for social good, particularly privacy protection.
comment: 24 pages, In Designing Interactive Systems Conference (DIS 25)
Detecting Fake News Belief via Skin and Blood Flow Signals
Misinformation poses significant risks to public opinion, health, and security. While most fake news detection methods rely on text analysis, little is known about how people physically respond to false information or repeated exposure to the same statements. This study investigates whether wearable sensors can detect belief in a statement or prior exposure to it. We conducted a controlled experiment where participants evaluated statements while wearing an EmotiBit sensor that measured their skin conductance (electrodermal activity, EDA) and peripheral blood flow (photoplethysmography, PPG). From 28 participants, we collected a dataset of 672 trials, each labeled with whether the participant believed the statement and whether they had seen it before. This dataset introduces a new resource for studying physiological responses to misinformation. Using machine learning models, including KNN, CNN, and LightGBM, we analyzed these physiological patterns. The best-performing model achieved 67.83\% accuracy, with skin conductance outperforming PPG. These findings demonstrate the potential of wearable sensors as a minimally intrusive tool for detecting belief and prior exposure, offering new directions for real-time misinformation detection and adaptive, user-aware systems.
comment: Research Report
Advancing Brainwave Modeling with a Codebook-Based Foundation Model
Recent advances in large-scale pre-trained Electroencephalogram (EEG) models have shown great promise, driving progress in Brain-Computer Interfaces (BCIs) and healthcare applications. However, despite their success, many existing pre-trained models have struggled to fully capture the rich information content of neural oscillations, a limitation that fundamentally constrains their performance and generalizability across diverse BCI tasks. This limitation is frequently rooted in suboptimal architectural design choices which constrain their representational capacity. In this work, we introduce LaBraM++, an enhanced Large Brainwave Foundation Model (LBM) that incorporates principled improvements grounded in robust signal processing foundations. LaBraM++ demonstrates substantial gains across a variety of tasks, consistently outperforming its originally-based architecture and achieving competitive results when compared to other open-source LBMs. Its superior performance and training efficiency highlight its potential as a strong foundation for future advancements in LBMs.
Truth and Trust: Fake News Detection via Biosignals
Understanding how individuals physiologically respond to false information is crucial for advancing misinformation detection systems. This study explores the potential of using physiological signals, specifically electrodermal activity (EDA) and photoplethysmography (PPG), to classify both the veracity of information and its interaction with user belief. In a controlled laboratory experiment, we collected EDA and PPG signals while participants evaluated the truthfulness of climate-related claims. Each trial was labeled based on the objective truth of the claim and the participant's belief, enabling two classification tasks: binary veracity detection and a novel four-class joint belief-veracity classification. We extracted handcrafted features from the raw signals and trained several machine learning models to benchmark the dataset. Our results show that EDA outperforms PPG, indicating its greater sensitivity to physiological responses related to truth perception. However, performance significantly drops in the joint belief-veracity classification task, highlighting the complexity of modeling the interaction between belief and truth. These findings suggest that while physiological signals can reflect basic truth perception, accurately modeling the intricate relationships between belief and veracity remains a significant challenge. This study emphasizes the importance of multimodal approaches that incorporate psychological, physiological, and cognitive factors to improve fake news detection systems. Our work provides a foundation for future research aimed at enhancing misinformation detection via addressing the complexities of human belief and truth processing.
comment: Research report
Sparse Activation Editing for Reliable Instruction Following in Narratives
Complex narrative contexts often challenge language models' ability to follow instructions, and existing benchmarks fail to capture these difficulties. To address this, we propose Concise-SAE, a training-free framework that improves instruction following by identifying and editing instruction-relevant neurons using only natural language instructions, without requiring labelled data. To thoroughly evaluate our method, we introduce FreeInstruct, a diverse and realistic benchmark of 1,212 examples that highlights the challenges of instruction following in narrative-rich settings. While initially motivated by complex narratives, Concise-SAE demonstrates state-of-the-art instruction adherence across varied tasks without compromising generation quality.
Dynamic Caustics by Ultrasonically Modulated Liquid Surface
This paper presents a method for generating dynamic caustic patterns by utilising dual-optimised holographic fields with Phased Array Transducer (PAT). Building on previous research in static caustic optimisation and ultrasonic manipulation, this approach employs computational techniques to dynamically shape fluid surfaces, thereby creating controllable and real-time caustic images. The system employs a Digital Twin framework, which enables iterative feedback and refinement, thereby improving the accuracy and quality of the caustic patterns produced. This paper extends the foundational work in caustic generation by integrating liquid surfaces as refractive media. This concept has previously been explored in simulations but not fully realised in practical applications. The utilisation of ultrasound to directly manipulate these surfaces enables the generation of dynamic caustics with a high degree of flexibility. The Digital Twin approach further enhances this process by allowing for precise adjustments and optimisation based on real-time feedback. Experimental results demonstrate the technique's capacity to generate continuous animations and complex caustic patterns at high frequencies. Although there are limitations in contrast and resolution compared to solid-surface methods, this approach offers advantages in terms of real-time adaptability and scalability. This technique has the potential to be applied in a number of areas, including interactive displays, artistic installations and educational tools. This research builds upon the work of previous researchers in the fields of caustics optimisation, ultrasonic manipulation, and computational displays. Future research will concentrate on enhancing the resolution and intricacy of the generated patterns.
MAGE: A Multi-task Architecture for Gaze Estimation with an Efficient Calibration Module
Eye gaze can provide rich information on human psychological activities, and has garnered significant attention in the field of Human-Robot Interaction (HRI). However, existing gaze estimation methods merely predict either the gaze direction or the Point-of-Gaze (PoG) on the screen, failing to provide sufficient information for a comprehensive six Degree-of-Freedom (DoF) gaze analysis in 3D space. Moreover, the variations of eye shape and structure among individuals also impede the generalization capability of these methods. In this study, we propose MAGE, a Multi-task Architecture for Gaze Estimation with an efficient calibration module, to predict the 6-DoF gaze information that is applicable for the real-word HRI. Our basic model encodes both the directional and positional features from facial images, and predicts gaze results with dedicated information flow and multiple decoders. To reduce the impact of individual variations, we propose a novel calibration module, namely Easy-Calibration, to fine-tune the basic model with subject-specific data, which is efficient to implement without the need of a screen. Experimental results demonstrate that our method achieves state-of-the-art performance on the public MPIIFaceGaze, EYEDIAP, and our built IMRGaze datasets.
comment: Under review
Estimating Perceptual Attributes of Haptic Textures Using Visuo-Tactile Data
Accurate prediction of perceptual attributes of haptic textures is essential for advancing VR and AR applications and enhancing robotic interaction with physical surfaces. This paper presents a deep learning-based multi-modal framework, incorporating visual and tactile data, to predict perceptual texture ratings by leveraging multi-feature inputs. To achieve this, a four-dimensional haptic attribute space encompassing rough-smooth, flat-bumpy, sticky-slippery, and hard-soft dimensions is first constructed through psychophysical experiments, where participants evaluate 50 diverse real-world texture samples. A physical signal space is subsequently created by collecting visual and tactile data from these textures. Finally, a deep learning architecture integrating a CNN-based autoencoder for visual feature learning and a ConvLSTM network for tactile data processing is trained to predict user-assigned attribute ratings. This multi-modal, multi-feature approach maps physical signals to perceptual ratings, enabling accurate predictions for unseen textures. To evaluate predictive accuracy, we employed leave-one-out cross-validation to rigorously assess the model's reliability and generalizability against several machine learning and deep learning baselines. Experimental results demonstrate that the framework consistently outperforms single-modality approaches, achieving lower MAE and RMSE, highlighting the efficacy of combining visual and tactile modalities.
Reassessing Collaborative Writing Theories and Frameworks in the Age of LLMs: What Still Applies and What We Must Leave Behind
In this paper, we conduct a critical review of existing theories and frameworks on human-human collaborative writing to assess their relevance to the current human-AI paradigm in professional contexts, and draw seven insights along with design implications for human-AI collaborative writing tools. We found that, as LLMs nudge the writing process more towards an empirical "trial and error" process analogous to prototyping, the non-linear cognitive process of writing will stay the same, but more rigor will be required for revision methodologies. This shift would shed further light on the importance of coherence support, but the large language model (LLM)'s unprecedented semantic capabilities can bring novel approaches to this ongoing challenge. We argue that teamwork-related factors such as group awareness, consensus building and authorship - which have been central in human-human collaborative writing studies - should not apply to the human-AI paradigm due to excessive anthropomorphism. With the LLM's text generation capabilities becoming essentially indistinguishable from human-written ones, we are entering an era where, for the first time in the history of computing, we are engaging in collaborative writing with AI at workplaces on a daily basis. We aim to bring theoretical grounding and practical design guidance to the interaction designs of human-AI collaborative writing, with the goal of enhancing future human-AI writing software.
Fairness and Efficiency in Human-Agent Teams: An Iterative Algorithm Design Approach
When agents interact with people as part of a team, fairness becomes an important factor. Prior work has proposed fairness metrics based on teammates' capabilities for task allocation within human-agent teams. However, most metrics only consider teammate capabilities from a third-person point of view (POV). In this work, we extend these metrics to include task preferences and consider a first-person POV. We leverage an iterative design method consisting of simulation data and human data to design a task allocation algorithm that balances task efficiency and fairness based on both capabilities and preferences. We first show that these metrics may not align with people's perceived fairness from a first-person POV. In light of this result, we propose a new fairness metric, fair-equity, and the Fair-Efficient Algorithm (FEA). Our findings suggest that an agent teammate who balances efficiency and fairness based on equity will be perceived to be fairer and preferred by human teammates in various human-agent team types. We suggest that the perception of fairness may also depend on a person's POV.
comment: 18 pages, 5 figures
"If anybody finds out you are in BIG TROUBLE": Understanding Children's Hopes, Fears, and Evaluations of Generative AI
As generative artificial intelligence (genAI) increasingly mediates how children learn, communicate, and engage with digital content, understanding children's hopes and fears about this emerging technology is crucial. In a pilot study with 37 fifth-graders, we explored how children (ages 9-10) envision genAI and the roles they believe it should play in their daily life. Our findings reveal three key ways children envision genAI: as a companion providing guidance, a collaborator working alongside them, and a task automator that offloads responsibilities. However, alongside these hopeful views, children expressed fears about overreliance, particularly in academic settings, linking it to fears of diminished learning, disciplinary consequences, and long-term failure. This study highlights the need for child-centric AI design that balances these tensions, empowering children with the skills to critically engage with and navigate their evolving relationships with digital technologies.
Ocular Authentication: Fusion of Gaze and Periocular Modalities
This paper investigates the feasibility of fusing two eye-centric authentication modalities-eye movements and periocular images-within a calibration-free authentication system. While each modality has independently shown promise for user authentication, their combination within a unified gaze-estimation pipeline has not been thoroughly explored at scale. In this report, we propose a multimodal authentication system and evaluate it using a large-scale in-house dataset comprising 9202 subjects with an eye tracking (ET) signal quality equivalent to a consumer-facing virtual reality (VR) device. Our results show that the multimodal approach consistently outperforms both unimodal systems across all scenarios, surpassing the FIDO benchmark. The integration of a state-of-the-art machine learning architecture contributed significantly to the overall authentication performance at scale, driven by the model's ability to capture authentication representations and the complementary discriminative characteristics of the fused modalities.
comment: Supplementary material is available
Generative AI and Creativity: A Systematic Literature Review and Meta-Analysis
Generative artificial intelligence (GenAI) is increasingly used to support a wide range of human tasks, yet empirical evidence on its effect on creativity remains scattered. Can GenAI generate ideas that are creative? To what extent can it support humans in generating ideas that are both creative and diverse? In this study, we conduct a meta-analysis to evaluate the effect of GenAI on the performance in creative tasks. For this, we first perform a systematic literature search, based on which we identify n = 28 relevant studies (m = 8214 participants) for inclusion in our meta-analysis. We then compute standardized effect sizes based on Hedges' g. We compare different outcomes: (i) how creative GenAI is; (ii) how creative humans augmented by GenAI are; and (iii) the diversity of ideas by humans augmented by GenAI. Our results show no significant difference in creative performance between GenAI and humans (g = -0.05), while humans collaborating with GenAI significantly outperform those working without assistance (g = 0.27). However, GenAI has a significant negative effect on the diversity of ideas for such collaborations between humans and GenAI (g = -0.86). We further analyze heterogeneity across different GenAI models (e.g., GPT-3.5, GPT-4), different tasks (e.g., creative writing, ideation, divergent thinking), and different participant populations (e.g., laypeople, business, academia). Overall, our results position GenAI as an augmentative tool that can support, rather than replace, human creativity-particularly in tasks benefiting from ideation support.
comment: 22 pages, 6 figures. Code and data are available at https://github.com/SM2982/Meta-Analysis-LLMs-Creativity.git
RetroChat: Designing for the Preservation of Past Digital Experiences
Rapid changes in social networks have transformed the way people express themselves, turning past neologisms, values, and mindsets embedded in these expressions into online heritage. How can we preserve these expressions as cultural heritage? Instead of traditional archiving methods for static material, we designed an interactive and experiential form of archiving for Chinese social networks. Using dialogue data from 2000-2010 on early Chinese social media, we developed a GPT-driven agent within a retro chat interface, emulating the language and expression style of the period for interaction. Results from a qualitative study with 18 participants show that the design captures the past chatting experience and evokes memory flashbacks and nostalgia feeling through conversation. Participants, particularly those familiar with the era, adapted their language to match the agent's chatting style. This study explores how the design of preservation methods for digital experiences can be informed by experiential representations supported by generative tools.
comment: 18 pages, 8 figures, C&C2025
CHART-6: Human-Centered Evaluation of Data Visualization Understanding in Vision-Language Models
Data visualizations are powerful tools for communicating patterns in quantitative data. Yet understanding any data visualization is no small feat -- succeeding requires jointly making sense of visual, numerical, and linguistic inputs arranged in a conventionalized format one has previously learned to parse. Recently developed vision-language models are, in principle, promising candidates for developing computational models of these cognitive operations. However, it is currently unclear to what degree these models emulate human behavior on tasks that involve reasoning about data visualizations. This gap reflects limitations in prior work that has evaluated data visualization understanding in artificial systems using measures that differ from those typically used to assess these abilities in humans. Here we evaluated eight vision-language models on six data visualization literacy assessments designed for humans and compared model responses to those of human participants. We found that these models performed worse than human participants on average, and this performance gap persisted even when using relatively lenient criteria to assess model performance. Moreover, while relative performance across items was somewhat correlated between models and humans, all models produced patterns of errors that were reliably distinct from those produced by human participants. Taken together, these findings suggest significant opportunities for further development of artificial systems that might serve as useful models of how humans reason about data visualizations. All code and data needed to reproduce these results are available at: https://osf.io/e25mu/?view_only=399daff5a14d4b16b09473cf19043f18.
The EU AI Act, Stakeholder Needs, and Explainable AI: Aligning Regulatory Compliance in a Clinical Decision Support System
Explainable AI (XAI) is a promising solution to ensure compliance with the EU AI Act, the first multi-national regulation for AI. XAI aims to enhance transparency and human oversight of AI systems, particularly ``black-box models'', which are criticized as incomprehensible. However, the discourse around the main stakeholders in the AI Act and XAI appears disconnected. While XAI prioritizes the end user's needs as the primary goal, the AI Act focuses on the obligations of the provider and deployer of the AI system. We aim to bridge this divide and provide guidance on how these two worlds are related. By fostering an interdisciplinary discussion in a cross-functional team with XAI, AI Act, legal, and requirements engineering experts, we walk through the steps necessary to analyze an AI-based clinical decision support system to clarify the end-user needs and assess AI Act applicability. By analyzing our justified understanding using an AI system under development as a case, we show that XAI techniques can fill a gap between stakeholder needs and the requirements of the AI Act. We look at the similarities and contrasts between the legal requirements and the needs of stakeholders. In doing so, we encourage researchers and practitioners from the XAI community to reflect on their role towards the AI Act by achieving a mutual understanding of the implications of XAI and the AI Act within different disciplines.
comment: 17 pages, 2 figures
How to Enable Effective Cooperation Between Humans and NLP Models: A Survey of Principles, Formalizations, and Beyond ACL 2025
With the advancement of large language models (LLMs), intelligent models have evolved from mere tools to autonomous agents with their own goals and strategies for cooperating with humans. This evolution has birthed a novel paradigm in NLP, i.e., human-model cooperation, that has yielded remarkable progress in numerous NLP tasks in recent years. In this paper, we take the first step to present a thorough review of human-model cooperation, exploring its principles, formalizations, and open challenges. In particular, we introduce a new taxonomy that provides a unified perspective to summarize existing approaches. Also, we discuss potential frontier areas and their corresponding challenges. We regard our work as an entry point, paving the way for more breakthrough research in this regard.
comment: ACL 2025 Main paper
Seismocardiography for Emotion Recognition: A Study on EmoWear with Insights from DEAP
Emotions have a profound impact on our daily lives, influencing our thoughts, behaviors, and interactions, but also our physiological reactions. Recent advances in wearable technology have facilitated studying emotions through cardio-respiratory signals. Accelerometers offer a non-invasive, convenient, and cost-effective method for capturing heart- and pulmonary-induced vibrations on the chest wall, specifically Seismocardiography (SCG) and Accelerometry-Derived Respiration (ADR). Their affordability, wide availability, and ability to provide rich contextual data make accelerometers ideal for everyday use. While accelerometers have been used as part of broader modality fusions for Emotion Recognition (ER), their stand-alone potential via SCG and ADR remains unexplored. Bridging this gap could significantly help the embedding of ER into real-world applications, minimizing the hardware, and increasing contextual integration potentials. To address this gap, we introduce SCG and ADR as novel modalities for ER and evaluate their performance using the EmoWear dataset. First, we replicate the single-trial emotion classification pipeline from the DEAP dataset study, achieving similar results. Then we use our validated pipeline to train models that predict affective valence-arousal states using SCG and compare them against established cardiac signals, Electrocardiography (ECG) and Blood Volume Pulse (BVP). Results show that SCG is a viable modality for ER, achieving similar performance to ECG and BVP. By combining ADR with SCG, we achieved a working ER framework that only requires a single chest-worn accelerometer. These findings pave the way for integrating ER into real-world, enabling seamless affective computing in everyday life.
comment: 17 pages, 9 figures
Quantifying Haptic Affection of Car Door through Data-Driven Analysis of Force Profile
Haptic affection plays a crucial role in user experience, particularly in the automotive industry where the tactile quality of components can influence customer satisfaction. This study aims to accurately predict the affective property of a car door by only watching the force or torque profile of it when opening. To this end, a deep learning model is designed to capture the underlying relationships between force profiles and user-defined adjective ratings, providing insights into the door-opening experience. The dataset employed in this research includes force profiles and user adjective ratings collected from six distinct car models, reflecting a diverse set of door-opening characteristics and tactile feedback. The model's performance is assessed using Leave-One-Out Cross-Validation, a method that measures its generalization capability on unseen data. The results demonstrate that the proposed model achieves a high level of prediction accuracy, indicating its potential in various applications related to haptic affection and design optimization in the automotive industry.
comment: 12 pages, 9 figures, 3 tables. Mudassir Ibrahim Awan and Ahsan Raza are equally contributing authors
Missing Pieces: How Do Designs that Expose Uncertainty Longitudinally Impact Trust in AI Decision Aids? An In Situ Study of Gig Drivers
Decision aids based on artificial intelligence (AI) induce a wide range of outcomes when they are deployed in uncertain environments. In this paper, we investigate how users' trust in recommendations from an AI decision aid is impacted over time by designs that expose uncertainty in predicted outcomes. Unlike previous work, we focus on gig driving - a real-world, repeated decision-making context. We report on a longitudinal mixed-methods study ($n=51$) where we measured gig drivers' trust as they interacted with an AI-based schedule recommendation tool. Our results show that participants' trust in the tool was shaped by both their first impressions of its accuracy and their longitudinal interactions with it; and that task-aligned framings of uncertainty improved trust by allowing participants to incorporate uncertainty into their decision-making processes. Additionally, we observed that trust depended on their characteristics as drivers, underscoring the need for more in situ studies of AI decision aids.
comment: 27 pages; 3 tables; 13 figures; accepted version, published at the 2025 ACM Conference on Fairness, Accountability, and Transparency (FAccT '25)
Combining SNNs with Filtering for Efficient Neural Decoding in Implantable Brain-Machine Interfaces
While it is important to make implantable brain-machine interfaces (iBMI) wireless to increase patient comfort and safety, the trend of increased channel count in recent neural probes poses a challenge due to the concomitant increase in the data rate. Extracting information from raw data at the source by using edge computing is a promising solution to this problem, with integrated intention decoders providing the best compression ratio. Recent benchmarking efforts have shown recurrent neural networks to be the best solution. Spiking Neural Networks (SNN) emerge as a promising solution for resource efficient neural decoding while Long Short Term Memory (LSTM) networks achieve the best accuracy. In this work, we show that combining traditional signal processing techniques, namely signal filtering, with SNNs improve their decoding performance significantly for regression tasks, closing the gap with LSTMs, at little added cost. Results with different filters are shown with Bessel filters providing best performance. Two block-bidirectional Bessel filters have been used--one for low latency and another for high accuracy. Adding the high accuracy variant of the Bessel filters to the output of ANN, SNN and variants provided statistically significant benefits with maximum gains of $\approx 5\%$ and $8\%$ in $R^2$ for two SNN topologies (SNN\_Streaming and SNN\_3D). Our work presents state of the art results for this dataset and paves the way for decoder-integrated-implants of the future.
Designing Semantically-Resonant Abstract Patterns for Data Visualization
We present a structured design methodology for creating semantically-resonant abstract patterns, making the pattern design process accessible to the general public. Semantically-resonant patterns are those that intuitively evoke the concept they represent within a specific set (e.g., in a vegetable concept set, small dots for olives and large dots for tomatoes), analogous to the concept of semantically-resonant colors (e.g., using olive green for olives and red for tomatoes). Previous research has shown that semantically-resonant colors can improve chart reading speed, and designers have made attempts to integrate semantic cues into abstract pattern designs. However, a systematic framework for developing such patterns was lacking. To bridge this gap, we conducted a series of workshops with design experts, resulting in a design methodology that summarizes the methodology for designing semantically-resonant abstract patterns. We evaluated our design methodology through another series of workshops with non-design participants. The results indicate that our proposed design methodology effectively supports the general public in designing semantically-resonant abstract patterns for both abstract and concrete concepts.
Gaze-Enhanced Multimodal Turn-Taking Prediction in Triadic Conversations
Turn-taking prediction is crucial for seamless interactions. This study introduces a novel, lightweight framework for accurate turn-taking prediction in triadic conversations without relying on computationally intensive methods. Unlike prior approaches that either disregard gaze or treat it as a passive signal, our model integrates gaze with speaker localization, structuring it within a spatial constraint to transform it into a reliable predictive cue. Leveraging egocentric behavioral cues, our experiments demonstrate that incorporating gaze data from a single-user significantly improves prediction performance, while gaze data from multiple-users further enhances it by capturing richer conversational dynamics. This study presents a lightweight and privacy-conscious approach to support adaptive, directional sound control, enhancing speech intelligibility in noisy environments, particularly for hearing assistance in smart glasses.
comment: To appear in the Proceedings of Interspeech 2025
HoT: Highlighted Chain of Thought for Referencing Supporting Facts from Inputs
An Achilles heel of Large Language Models (LLMs) is their tendency to hallucinate non-factual statements. A response mixed of factual and non-factual statements poses a challenge for humans to verify and accurately base their decisions on. To combat this problem, we propose Highlighted Chain-of-Thought Prompting (HoT), a technique for prompting LLMs to generate responses with XML tags that ground facts to those provided in the query. That is, given an input question, LLMs would first re-format the question to add XML tags highlighting key facts, and then, generate a response with highlights over the facts referenced from the input. Interestingly, in few-shot settings, HoT outperforms vanilla chain of thought prompting (CoT) on a wide range of 17 tasks from arithmetic, reading comprehension to logical reasoning. When asking humans to verify LLM responses, highlights help time-limited participants to more accurately and efficiently recognize when LLMs are correct. Yet, surprisingly, when LLMs are wrong, HoTs tend to make users believe that an answer is correct.
Image and Video Processing
Deep mineralogical segmentation of thin section images based on QEMSCAN maps
Interpreting the mineralogical aspects of rock thin sections is an important task for oil and gas reservoirs evaluation. However, human analysis tend to be subjective and laborious. Technologies like QEMSCAN(R) are designed to automate the mineralogical mapping process, but also suffer from limitations like high monetary costs and time-consuming analysis. This work proposes a Convolutional Neural Network model for automatic mineralogical segmentation of thin section images of carbonate rocks. The model is able to mimic the QEMSCAN mapping itself in a low-cost, generalized and efficient manner. For this, the U-Net semantic segmentation architecture is trained on plane and cross polarized thin section images using the corresponding QEMSCAN maps as target, which is an approach not widely explored. The model was instructed to differentiate occurrences of Calcite, Dolomite, Mg-Clay Minerals, Quartz, Pores and the remaining mineral phases as an unique class named "Others", while it was validated on rock facies both seen and unseen during training, in order to address its generalization capability. Since the images and maps are provided in different resolutions, image registration was applied to align then spatially. The study reveals that the quality of the segmentation is very much dependent on these resolution differences and on the variety of learnable rock textures. However, it shows promising results, especially with regard to the proper delineation of minerals boundaries on solid textures and precise estimation of the minerals distributions, describing a nearly linear relationship between expected and predicted distributions, with coefficient of determination (R^2) superior to 0.97 for seen facies and 0.88 for unseen.
SEDD-PCC: A Single Encoder-Dual Decoder Framework For End-To-End Learned Point Cloud Compression
To encode point clouds containing both geometry and attributes, most learning-based compression schemes treat geometry and attribute coding separately, employing distinct encoders and decoders. This not only increases computational complexity but also fails to fully exploit shared features between geometry and attributes. To address this limitation, we propose SEDD-PCC, an end-to-end learning-based framework for lossy point cloud compression that jointly compresses geometry and attributes. SEDD-PCC employs a single encoder to extract shared geometric and attribute features into a unified latent space, followed by dual specialized decoders that sequentially reconstruct geometry and attributes. Additionally, we incorporate knowledge distillation to enhance feature representation learning from a teacher model, further improving coding efficiency. With its simple yet effective design, SEDD-PCC provides an efficient and practical solution for point cloud compression. Comparative evaluations against both rule-based and learning-based methods demonstrate its competitive performance, highlighting SEDD-PCC as a promising AI-driven compression approach.
One-Step Diffusion-Based Image Compression with Semantic Distillation
While recent diffusion-based generative image codecs have shown impressive performance, their iterative sampling process introduces unpleasing latency. In this work, we revisit the design of a diffusion-based codec and argue that multi-step sampling is not necessary for generative compression. Based on this insight, we propose OneDC, a One-step Diffusion-based generative image Codec -- that integrates a latent compression module with a one-step diffusion generator. Recognizing the critical role of semantic guidance in one-step diffusion, we propose using the hyperprior as a semantic signal, overcoming the limitations of text prompts in representing complex visual content. To further enhance the semantic capability of the hyperprior, we introduce a semantic distillation mechanism that transfers knowledge from a pretrained generative tokenizer to the hyperprior codec. Additionally, we adopt a hybrid pixel- and latent-domain optimization to jointly enhance both reconstruction fidelity and perceptual realism. Extensive experiments demonstrate that OneDC achieves SOTA perceptual quality even with one-step generation, offering over 40% bitrate reduction and 20x faster decoding compared to prior multi-step diffusion-based codecs. Code will be released later.
Zero-Shot Hyperspectral Pansharpening Using Hysteresis-Based Tuning for Spectral Quality Control
Hyperspectral pansharpening has received much attention in recent years due to technological and methodological advances that open the door to new application scenarios. However, research on this topic is only now gaining momentum. The most popular methods are still borrowed from the more mature field of multispectral pansharpening and often overlook the unique challenges posed by hyperspectral data fusion, such as i) the very large number of bands, ii) the overwhelming noise in selected spectral ranges, iii) the significant spectral mismatch between panchromatic and hyperspectral components, iv) a typically high resolution ratio. Imprecise data modeling especially affects spectral fidelity. Even state-of-the-art methods perform well in certain spectral ranges and much worse in others, failing to ensure consistent quality across all bands, with the risk of generating unreliable results. Here, we propose a hyperspectral pansharpening method that explicitly addresses this problem and ensures uniform spectral quality. To this end, a single lightweight neural network is used, with weights that adapt on the fly to each band. During fine-tuning, the spatial loss is turned on and off to ensure a fast convergence of the spectral loss to the desired level, according to a hysteresis-like dynamic. Furthermore, the spatial loss itself is appropriately redefined to account for nonlinear dependencies between panchromatic and spectral bands. Overall, the proposed method is fully unsupervised, with no prior training on external data, flexible, and low-complexity. Experiments on a recently published benchmarking toolbox show that it ensures excellent sharpening quality, competitive with the state-of-the-art, consistently across all bands. The software code and the full set of results are shared online on https://github.com/giu-guarino/rho-PNN.
Unsupervised Network Anomaly Detection with Autoencoders and Traffic Images
Due to the recent increase in the number of connected devices, the need to promptly detect security issues is emerging. Moreover, the high number of communication flows creates the necessity of processing huge amounts of data. Furthermore, the connected devices are heterogeneous in nature, having different computational capacities. For this reason, in this work we propose an image-based representation of network traffic which allows to realize a compact summary of the current network conditions with 1-second time windows. The proposed representation highlights the presence of anomalies thus reducing the need for complex processing architectures. Finally, we present an unsupervised learning approach which effectively detects the presence of anomalies. The code and the dataset are available at https://github.com/michaelneri/image-based-network-traffic-anomaly-detection.
comment: Accepted for publication in EUSIPCO 2025
Pose-invariant face recognition via feature-space pose frontalization
Pose-invariant face recognition has become a challenging problem for modern AI-based face recognition systems. It aims at matching a profile face captured in the wild with a frontal face registered in a database. Existing methods perform face frontalization via either generative models or learning a pose robust feature representation. In this paper, a new method is presented to perform face frontalization and recognition within the feature space. First, a novel feature space pose frontalization module (FSPFM) is proposed to transform profile images with arbitrary angles into frontal counterparts. Second, a new training paradigm is proposed to maximize the potential of FSPFM and boost its performance. The latter consists of a pre-training and an attention-guided fine-tuning stage. Moreover, extensive experiments have been conducted on five popular face recognition benchmarks. Results show that not only our method outperforms the state-of-the-art in the pose-invariant face recognition task but also maintains superior performance in other standard scenarios.
Quantum-Driven Multihead Inland Waterbody Detection With Transformer-Encoded CYGNSS Delay-Doppler Map Data
Inland waterbody detection (IWD) is critical for water resources management and agricultural planning. However, the development of high-fidelity IWD mapping technology remains unresolved. We aim to propose a practical solution based on the easily accessible data, i.e., the delay-Doppler map (DDM) provided by NASA's Cyclone Global Navigation Satellite System (CYGNSS), which facilitates effective estimation of physical parameters on the Earth's surface with high temporal resolution and wide spatial coverage. Specifically, as quantum deep network (QUEEN) has revealed its strong proficiency in addressing classification-like tasks, we encode the DDM using a customized transformer, followed by feeding the transformer-encoded DDM (tDDM) into a highly entangled QUEEN to distinguish whether the tDDM corresponds to a hydrological region. In recent literature, QUEEN has achieved outstanding performances in numerous challenging remote sensing tasks (e.g., hyperspectral restoration, change detection, and mixed noise removal, etc.), and its high effectiveness stems from the fundamentally different way it adopts to extract features (the so-called quantum unitary-computing features). The meticulously designed IWD-QUEEN retrieves high-precision river textures, such as those in Amazon River Basin in South America, demonstrating its superiority over traditional classification methods and existing global hydrography maps. IWD-QUEEN, together with its parallel quantum multihead scheme, works in a near-real-time manner (i.e., millisecond-level computing per DDM). To broaden accessibility for users of traditional computers, we also provide the non-quantum counterpart of our method, called IWD-Transformer, thereby increasing the impact of this work.
comment: 18 pages, 10 figures, submitted to IEEE Transactions on Geoscience and Remote Sensing
PCMamba: Physics-Informed Cross-Modal State Space Model for Dual-Camera Compressive Hyperspectral Imaging
Panchromatic (PAN) -assisted Dual-Camera Compressive Hyperspectral Imaging (DCCHI) is a key technology in snapshot hyperspectral imaging. Existing research primarily focuses on exploring spectral information from 2D compressive measurements and spatial information from PAN images in an explicit manner, leading to a bottleneck in HSI reconstruction. Various physical factors, such as temperature, emissivity, and multiple reflections between objects, play a critical role in the process of a sensor acquiring hyperspectral thermal signals. Inspired by this, we attempt to investigate the interrelationships between physical properties to provide deeper theoretical insights for HSI reconstruction. In this paper, we propose a Physics-Informed Cross-Modal State Space Model Network (PCMamba) for DCCHI, which incorporates the forward physical imaging process of HSI into the linear complexity of Mamba to facilitate lightweight and high-quality HSI reconstruction. Specifically, we analyze the imaging process of hyperspectral thermal signals to enable the network to disentangle the three key physical properties-temperature, emissivity, and texture. By fully exploiting the potential information embedded in 2D measurements and PAN images, the HSIs are reconstructed through a physics-driven synthesis process. Furthermore, we design a Cross-Modal Scanning Mamba Block (CSMB) that introduces inter-modal pixel-wise interaction with positional inductive bias by cross-scanning the backbone features and PAN features. Extensive experiments conducted on both real and simulated datasets demonstrate that our method significantly outperforms SOTA methods in both quantitative and qualitative metrics.
SuperPure: Efficient Purification of Localized and Distributed Adversarial Patches via Super-Resolution GAN Models
As vision-based machine learning models are increasingly integrated into autonomous and cyber-physical systems, concerns about (physical) adversarial patch attacks are growing. While state-of-the-art defenses can achieve certified robustness with minimal impact on utility against highly-concentrated localized patch attacks, they fall short in two important areas: (i) State-of-the-art methods are vulnerable to low-noise distributed patches where perturbations are subtly dispersed to evade detection or masking, as shown recently by the DorPatch attack; (ii) Achieving high robustness with state-of-the-art methods is extremely time and resource-consuming, rendering them impractical for latency-sensitive applications in many cyber-physical systems. To address both robustness and latency issues, this paper proposes a new defense strategy for adversarial patch attacks called SuperPure. The key novelty is developing a pixel-wise masking scheme that is robust against both distributed and localized patches. The masking involves leveraging a GAN-based super-resolution scheme to gradually purify the image from adversarial patches. Our extensive evaluations using ImageNet and two standard classifiers, ResNet and EfficientNet, show that SuperPure advances the state-of-the-art in three major directions: (i) it improves the robustness against conventional localized patches by more than 20%, on average, while also improving top-1 clean accuracy by almost 10%; (ii) It achieves 58% robustness against distributed patch attacks (as opposed to 0% in state-of-the-art method, PatchCleanser); (iii) It decreases the defense end-to-end latency by over 98% compared to PatchCleanser. Our further analysis shows that SuperPure is robust against white-box attacks and different patch sizes. Our code is open-source.
Paired and Unpaired Image to Image Translation using Generative Adversarial Networks
Image to image translation is an active area of research in the field of computer vision, enabling the generation of new images with different styles, textures, or resolutions while preserving their characteristic properties. Recent architectures leverage Generative Adversarial Networks (GANs) to transform input images from one domain to another. In this work, we focus on the study of both paired and unpaired image translation across multiple image domains. For the paired task, we used a conditional GAN model, and for the unpaired task, we trained it using cycle consistency loss. We experimented with different types of loss functions, multiple Patch-GAN sizes, and model architectures. New quantitative metrics - precision, recall, and FID score - were used for analysis. In addition, a qualitative study of the results of different experiments was conducted.
comment: 6 pages
SpecMaskFoley: Steering Pretrained Spectral Masked Generative Transformer Toward Synchronized Video-to-audio Synthesis via ControlNet
Foley synthesis aims to synthesize high-quality audio that is both semantically and temporally aligned with video frames. Given its broad application in creative industries, the task has gained increasing attention in the research community. To avoid the non-trivial task of training audio generative models from scratch, adapting pretrained audio generative models for video-synchronized foley synthesis presents an attractive direction. ControlNet, a method for adding fine-grained controls to pretrained generative models, has been applied to foley synthesis, but its use has been limited to handcrafted human-readable temporal conditions. In contrast, from-scratch models achieved success by leveraging high-dimensional deep features extracted using pretrained video encoders. We have observed a performance gap between ControlNet-based and from-scratch foley models. To narrow this gap, we propose SpecMaskFoley, a method that steers the pretrained SpecMaskGIT model toward video-synchronized foley synthesis via ControlNet. To unlock the potential of a single ControlNet branch, we resolve the discrepancy between the temporal video features and the time-frequency nature of the pretrained SpecMaskGIT via a frequency-aware temporal feature aligner, eliminating the need for complicated conditioning mechanisms widely used in prior arts. Evaluations on a common foley synthesis benchmark demonstrate that SpecMaskFoley could even outperform strong from-scratch baselines, substantially advancing the development of ControlNet-based foley synthesis models. Demo page: https://zzaudio.github.io/SpecMaskFoley_Demo/
comment: 4 pages, 2 figures, 2 tables. Demo page: https://zzaudio.github.io/SpecMaskFoley_Demo/
Generative Latent Coding for Ultra-Low Bitrate Image and Video Compression
Most existing approaches for image and video compression perform transform coding in the pixel space to reduce redundancy. However, due to the misalignment between the pixel-space distortion and human perception, such schemes often face the difficulties in achieving both high-realism and high-fidelity at ultra-low bitrate. To solve this problem, we propose \textbf{G}enerative \textbf{L}atent \textbf{C}oding (\textbf{GLC}) models for image and video compression, termed GLC-image and GLC-Video. The transform coding of GLC is conducted in the latent space of a generative vector-quantized variational auto-encoder (VQ-VAE). Compared to the pixel-space, such a latent space offers greater sparsity, richer semantics and better alignment with human perception, and show its advantages in achieving high-realism and high-fidelity compression. To further enhance performance, we improve the hyper prior by introducing a spatial categorical hyper module in GLC-image and a spatio-temporal categorical hyper module in GLC-video. Additionally, the code-prediction-based loss function is proposed to enhance the semantic consistency. Experiments demonstrate that our scheme shows high visual quality at ultra-low bitrate for both image and video compression. For image compression, GLC-image achieves an impressive bitrate of less than $0.04$ bpp, achieving the same FID as previous SOTA model MS-ILLM while using $45\%$ fewer bitrate on the CLIC 2020 test set. For video compression, GLC-video achieves 65.3\% bitrate saving over PLVC in terms of DISTS.
Compressing Human Body Video with Interactive Semantics: A Generative Approach
In this paper, we propose to compress human body video with interactive semantics, which can facilitate video coding to be interactive and controllable by manipulating semantic-level representations embedded in the coded bitstream. In particular, the proposed encoder employs a 3D human model to disentangle nonlinear dynamics and complex motion of human body signal into a series of configurable embeddings, which are controllably edited, compactly compressed, and efficiently transmitted. Moreover, the proposed decoder can evolve the mesh-based motion fields from these decoded semantics to realize the high-quality human body video reconstruction. Experimental results illustrate that the proposed framework can achieve promising compression performance for human body videos at ultra-low bitrate ranges compared with the state-of-the-art video coding standard Versatile Video Coding (VVC) and the latest generative compression schemes. Furthermore, the proposed framework enables interactive human body video coding without any additional pre-/post-manipulation processes, which is expected to shed light on metaverse-related digital human communication in the future.
OSCAR: One-Step Diffusion Codec Across Multiple Bit-rates
Pretrained latent diffusion models have shown strong potential for lossy image compression, owing to their powerful generative priors. Most existing diffusion-based methods reconstruct images by iteratively denoising from random noise, guided by compressed latent representations. While these approaches have achieved high reconstruction quality, their multi-step sampling process incurs substantial computational overhead. Moreover, they typically require training separate models for different compression bit-rates, leading to significant training and storage costs. To address these challenges, we propose a one-step diffusion codec across multiple bit-rates. termed OSCAR. Specifically, our method views compressed latents as noisy variants of the original latents, where the level of distortion depends on the bit-rate. This perspective allows them to be modeled as intermediate states along a diffusion trajectory. By establishing a mapping from the compression bit-rate to a pseudo diffusion timestep, we condition a single generative model to support reconstructions at multiple bit-rates. Meanwhile, we argue that the compressed latents retain rich structural information, thereby making one-step denoising feasible. Thus, OSCAR replaces iterative sampling with a single denoising pass, significantly improving inference efficiency. Extensive experiments demonstrate that OSCAR achieves superior performance in both quantitative and visual quality metrics. The code and models will be released at https://github.com/jp-guo/OSCAR.
Assessing the generalization performance of SAM for ureteroscopy scene understanding
The segmentation of kidney stones is regarded as a critical preliminary step to enable the identification of urinary stone types through machine- or deep-learning-based approaches. In urology, manual segmentation is considered tedious and impractical due to the typically large scale of image databases and the continuous generation of new data. In this study, the potential of the Segment Anything Model (SAM) -- a state-of-the-art deep learning framework -- is investigated for the automation of kidney stone segmentation. The performance of SAM is evaluated in comparison to traditional models, including U-Net, Residual U-Net, and Attention U-Net, which, despite their efficiency, frequently exhibit limitations in generalizing to unseen datasets. The findings highlight SAM's superior adaptability and efficiency. While SAM achieves comparable performance to U-Net on in-distribution data (Accuracy: 97.68 + 3.04; Dice: 97.78 + 2.47; IoU: 95.76 + 4.18), it demonstrates significantly enhanced generalization capabilities on out-of-distribution data, surpassing all U-Net variants by margins of up to 23 percent.
comment: 15 pages, 4 figures, 2 tables, conference, MIUA25
L2RDaS: Synthesizing 4D Radar Tensors for Model Generalization via Dataset Expansion
4-dimensional (4D) radar is increasingly adopted in autonomous driving for perception tasks, owing to its robustness under adverse weather conditions. To better utilize the spatial information inherent in 4D radar data, recent deep learning methods have transitioned from using sparse point cloud to 4D radar tensors. However, the scarcity of publicly available 4D radar tensor datasets limits model generalization across diverse driving scenarios. Previous methods addressed this by synthesizing radar data, but the outputs did not fully exploit the spatial information characteristic of 4D radar. To overcome these limitations, we propose LiDAR-to-4D radar data synthesis (L2RDaS), a framework that synthesizes spatially informative 4D radar tensors from LiDAR data available in existing autonomous driving datasets. L2RDaS integrates a modified U-Net architecture to effectively capture spatial information and an object information supplement (OBIS) module to enhance reflection fidelity. This framework enables the synthesis of radar tensors across diverse driving scenarios without additional sensor deployment or data collection. L2RDaS improves model generalization by expanding real datasets with synthetic radar tensors, achieving an average increase of 4.25\% in ${{AP}_{BEV}}$ and 2.87\% in ${{AP}_{3D}}$ across three detection models. Additionally, L2RDaS supports ground-truth augmentation (GT-Aug) by embedding annotated objects into LiDAR data and synthesizing them into radar tensors, resulting in further average increases of 3.75\% in ${{AP}_{BEV}}$ and 4.03\% in ${{AP}_{3D}}$. The implementation will be available at https://github.com/kaist-avelab/K-Radar.
comment: 9 pages, 3 figures, Arxiv preprint
Artificial intelligence in digital pathology: a systematic review and meta-analysis of diagnostic test accuracy
Ensuring diagnostic performance of AI models before clinical use is key to the safe and successful adoption of these technologies. Studies reporting AI applied to digital pathology images for diagnostic purposes have rapidly increased in number in recent years. The aim of this work is to provide an overview of the diagnostic accuracy of AI in digital pathology images from all areas of pathology. This systematic review and meta-analysis included diagnostic accuracy studies using any type of artificial intelligence applied to whole slide images (WSIs) in any disease type. The reference standard was diagnosis through histopathological assessment and / or immunohistochemistry. Searches were conducted in PubMed, EMBASE and CENTRAL in June 2022. We identified 2976 studies, of which 100 were included in the review and 48 in the full meta-analysis. Risk of bias and concerns of applicability were assessed using the QUADAS-2 tool. Data extraction was conducted by two investigators and meta-analysis was performed using a bivariate random effects model. 100 studies were identified for inclusion, equating to over 152,000 whole slide images (WSIs) and representing many disease types. Of these, 48 studies were included in the meta-analysis. These studies reported a mean sensitivity of 96.3% (CI 94.1-97.7) and mean specificity of 93.3% (CI 90.5-95.4) for AI. There was substantial heterogeneity in study design and all 100 studies identified for inclusion had at least one area at high or unclear risk of bias. This review provides a broad overview of AI performance across applications in whole slide imaging. However, there is huge variability in study design and available performance data, with details around the conduct of the study and make up of the datasets frequently missing. Overall, AI offers good accuracy when applied to WSIs but requires more rigorous evaluation of its performance.
comment: 26 pages, 5 figures, 8 tables + Supplementary materials Preprint is pre-peer review version. Please see link for updated, peer reviewed article to see latest version
Liver Cirrhosis Stage Estimation from MRI with Deep Learning
We present an end-to-end deep learning framework for automated liver cirrhosis stage estimation from multi-sequence MRI. Cirrhosis is the severe scarring (fibrosis) of the liver and a common endpoint of various chronic liver diseases. Early diagnosis is vital to prevent complications such as decompensation and cancer, which significantly decreases life expectancy. However, diagnosing cirrhosis in its early stages is challenging, and patients often present with life-threatening complications. Our approach integrates multi-scale feature learning with sequence-specific attention mechanisms to capture subtle tissue variations across cirrhosis progression stages. Using CirrMRI600+, a large-scale publicly available dataset of 628 high-resolution MRI scans from 339 patients, we demonstrate state-of-the-art performance in three-stage cirrhosis classification. Our best model achieves 72.8% accuracy on T1W and 63.8% on T2W sequences, significantly outperforming traditional radiomics-based approaches. Through extensive ablation studies, we show that our architecture effectively learns stage-specific imaging biomarkers. We establish new benchmarks for automated cirrhosis staging and provide insights for developing clinically applicable deep learning systems. The source code will be available at https://github.com/JunZengz/CirrhosisStage.
comment: 7 pages, 1 figure
Benchmarking Ophthalmology Foundation Models for Clinically Significant Age Macular Degeneration Detection
Self-supervised learning (SSL) has enabled Vision Transformers (ViTs) to learn robust representations from large-scale natural image datasets, enhancing their generalization across domains. In retinal imaging, foundation models pretrained on either natural or ophthalmic data have shown promise, but the benefits of in-domain pretraining remain uncertain. To investigate this, we benchmark six SSL-pretrained ViTs on seven digital fundus image (DFI) datasets totaling 70,000 expert-annotated images for the task of moderate-to-late age-related macular degeneration (AMD) identification. Our results show that iBOT pretrained on natural images achieves the highest out-of-distribution generalization, with AUROCs of 0.80-0.97, outperforming domain-specific models, which achieved AUROCs of 0.78-0.96 and a baseline ViT-L with no pretraining, which achieved AUROCs of 0.68-0.91. These findings highlight the value of foundation models in improving AMD identification and challenge the assumption that in-domain pretraining is necessary. Furthermore, we release BRAMD, an open-access dataset (n=587) of DFIs with AMD labels from Brazil.
comment: 10 pages, 3 figures
Multimedia
GoT-R1: Unleashing Reasoning Capability of MLLM for Visual Generation with Reinforcement Learning
Visual generation models have made remarkable progress in creating realistic images from text prompts, yet struggle with complex prompts that specify multiple objects with precise spatial relationships and attributes. Effective handling of such prompts requires explicit reasoning about the semantic content and spatial layout. We present GoT-R1, a framework that applies reinforcement learning to enhance semantic-spatial reasoning in visual generation. Building upon the Generation Chain-of-Thought approach, GoT-R1 enables models to autonomously discover effective reasoning strategies beyond predefined templates through carefully designed reinforcement learning. To achieve this, we propose a dual-stage multi-dimensional reward framework that leverages MLLMs to evaluate both the reasoning process and final output, enabling effective supervision across the entire generation pipeline. The reward system assesses semantic alignment, spatial accuracy, and visual quality in a unified approach. Experimental results demonstrate significant improvements on T2I-CompBench benchmark, particularly in compositional tasks involving precise spatial relationships and attribute binding. GoT-R1 advances the state-of-the-art in image generation by successfully transferring sophisticated reasoning capabilities to the visual generation domain. To facilitate future research, we make our code and pretrained models publicly available at https://github.com/gogoduan/GoT-R1.
comment: Github page refer to: https://github.com/gogoduan/GoT-R1
Pursuing Temporal-Consistent Video Virtual Try-On via Dynamic Pose Interaction CVPR 2025
Video virtual try-on aims to seamlessly dress a subject in a video with a specific garment. The primary challenge involves preserving the visual authenticity of the garment while dynamically adapting to the pose and physique of the subject. While existing methods have predominantly focused on image-based virtual try-on, extending these techniques directly to videos often results in temporal inconsistencies. Most current video virtual try-on approaches alleviate this challenge by incorporating temporal modules, yet still overlook the critical spatiotemporal pose interactions between human and garment. Effective pose interactions in videos should not only consider spatial alignment between human and garment poses in each frame but also account for the temporal dynamics of human poses throughout the entire video. With such motivation, we propose a new framework, namely Dynamic Pose Interaction Diffusion Models (DPIDM), to leverage diffusion models to delve into dynamic pose interactions for video virtual try-on. Technically, DPIDM introduces a skeleton-based pose adapter to integrate synchronized human and garment poses into the denoising network. A hierarchical attention module is then exquisitely designed to model intra-frame human-garment pose interactions and long-term human pose dynamics across frames through pose-aware spatial and temporal attention mechanisms. Moreover, DPIDM capitalizes on a temporal regularized attention loss between consecutive frames to enhance temporal consistency. Extensive experiments conducted on VITON-HD, VVT and ViViD datasets demonstrate the superiority of our DPIDM against the baseline methods. Notably, DPIDM achieves VFID score of 0.506 on VVT dataset, leading to 60.5% improvement over the state-of-the-art GPD-VVTO approach.
comment: CVPR 2025
Incorporating Visual Correspondence into Diffusion Model for Virtual Try-On ICLR 2025
Diffusion models have shown preliminary success in virtual try-on (VTON) task. The typical dual-branch architecture comprises two UNets for implicit garment deformation and synthesized image generation respectively, and has emerged as the recipe for VTON task. Nevertheless, the problem remains challenging to preserve the shape and every detail of the given garment due to the intrinsic stochasticity of diffusion model. To alleviate this issue, we novelly propose to explicitly capitalize on visual correspondence as the prior to tame diffusion process instead of simply feeding the whole garment into UNet as the appearance reference. Specifically, we interpret the fine-grained appearance and texture details as a set of structured semantic points, and match the semantic points rooted in garment to the ones over target person through local flow warping. Such 2D points are then augmented into 3D-aware cues with depth/normal map of target person. The correspondence mimics the way of putting clothing on human body and the 3D-aware cues act as semantic point matching to supervise diffusion model training. A point-focused diffusion loss is further devised to fully take the advantage of semantic point matching. Extensive experiments demonstrate strong garment detail preservation of our approach, evidenced by state-of-the-art VTON performances on both VITON-HD and DressCode datasets. Code is publicly available at: https://github.com/HiDream-ai/SPM-Diff.
comment: ICLR 2025. Code is publicly available at: https://github.com/HiDream-ai/SPM-Diff
Creatively Upscaling Images with Global-Regional Priors
Contemporary diffusion models show remarkable capability in text-to-image generation, while still being limited to restricted resolutions (e.g., 1,024 X 1,024). Recent advances enable tuning-free higher-resolution image generation by recycling pre-trained diffusion models and extending them via regional denoising or dilated sampling/convolutions. However, these models struggle to simultaneously preserve global semantic structure and produce creative regional details in higher-resolution images. To address this, we present C-Upscale, a new recipe of tuning-free image upscaling that pivots on global-regional priors derived from given global prompt and estimated regional prompts via Multimodal LLM. Technically, the low-frequency component of low-resolution image is recognized as global structure prior to encourage global semantic consistency in high-resolution generation. Next, we perform regional attention control to screen cross-attention between global prompt and each region during regional denoising, leading to regional attention prior that alleviates object repetition issue. The estimated regional prompts containing rich descriptive details further act as regional semantic prior to fuel the creativity of regional detail generation. Both quantitative and qualitative evaluations demonstrate that our C-Upscale manages to generate ultra-high-resolution images (e.g., 4,096 X 4,096 and 8,192 X 8,192) with higher visual fidelity and more creative regional details.
comment: International Journal of Computer Vision (IJCV) 2025
Hypergraph Tversky-Aware Domain Incremental Learning for Brain Tumor Segmentation with Missing Modalities
Existing methods for multimodal MRI segmentation with missing modalities typically assume that all MRI modalities are available during training. However, in clinical practice, some modalities may be missing due to the sequential nature of MRI acquisition, leading to performance degradation. Furthermore, retraining models to accommodate newly available modalities can be inefficient and may cause overfitting, potentially compromising previously learned knowledge. To address these challenges, we propose Replay-based Hypergraph Domain Incremental Learning (ReHyDIL) for brain tumor segmentation with missing modalities. ReHyDIL leverages Domain Incremental Learning (DIL) to enable the segmentation model to learn from newly acquired MRI modalities without forgetting previously learned information. To enhance segmentation performance across diverse patient scenarios, we introduce the Cross-Patient Hypergraph Segmentation Network (CHSNet), which utilizes hypergraphs to capture high-order associations between patients. Additionally, we incorporate Tversky-Aware Contrastive (TAC) loss to effectively mitigate information imbalance both across and within different modalities. Extensive experiments on the BraTS2019 dataset demonstrate that ReHyDIL outperforms state-of-the-art methods, achieving an improvement of over 2\% in the Dice Similarity Coefficient across various tumor regions. Our code is available at ReHyDIL.
Representation Discrepancy Bridging Method for Remote Sensing Image-Text Retrieval
Remote Sensing Image-Text Retrieval (RSITR) plays a critical role in geographic information interpretation, disaster monitoring, and urban planning by establishing semantic associations between image and textual descriptions. Existing Parameter-Efficient Fine-Tuning (PEFT) methods for Vision-and-Language Pre-training (VLP) models typically adopt symmetric adapter structures for exploring cross-modal correlations. However, the strong discriminative nature of text modality may dominate the optimization process and inhibits image representation learning. The nonnegligible imbalanced cross-modal optimization remains a bottleneck to enhancing the model performance. To address this issue, this study proposes a Representation Discrepancy Bridging (RDB) method for the RSITR task. On the one hand, a Cross-Modal Asymmetric Adapter (CMAA) is designed to enable modality-specific optimization and improve feature alignment. The CMAA comprises a Visual Enhancement Adapter (VEA) and a Text Semantic Adapter (TSA). VEA mines fine-grained image features by Differential Attention (DA) mechanism, while TSA identifies key textual semantics through Hierarchical Attention (HA) mechanism. On the other hand, this study extends the traditional single-task retrieval framework to a dual-task optimization framework and develops a Dual-Task Consistency Loss (DTCL). The DTCL improves cross-modal alignment robustness through an adaptive weighted combination of cross-modal, classification, and exponential moving average consistency constraints. Experiments on RSICD and RSITMD datasets show that the proposed RDB method achieves a 6%-11% improvement in mR metrics compared to state-of-the-art PEFT methods and a 1.15%-2% improvement over the full fine-tuned GeoRSCLIP model.
CoNav: Collaborative Cross-Modal Reasoning for Embodied Navigation
Embodied navigation demands comprehensive scene understanding and precise spatial reasoning. While image-text models excel at interpreting pixel-level color and lighting cues, 3D-text models capture volumetric structure and spatial relationships. However, unified fusion approaches that jointly fuse 2D images, 3D point clouds, and textual instructions face challenges in limited availability of triple-modality data and difficulty resolving conflicting beliefs among modalities. In this work, we introduce CoNav, a collaborative cross-modal reasoning framework where a pretrained 3D-text model explicitly guides an image-text navigation agent by providing structured spatial-semantic knowledge to resolve ambiguities during navigation. Specifically, we introduce Cross-Modal Belief Alignment, which operationalizes this cross-modal guidance by simply sharing textual hypotheses from the 3D-text model to the navigation agent. Through lightweight fine-tuning on a small 2D-3D-text corpus, the navigation agent learns to integrate visual cues with spatial-semantic knowledge derived from the 3D-text model, enabling effective reasoning in embodied navigation. CoNav achieves significant improvements on four standard embodied navigation benchmarks (R2R, CVDN, REVERIE, SOON) and two spatial reasoning benchmarks (ScanQA, SQA3D). Moreover, under close navigation Success Rate, CoNav often generates shorter paths compared to other methods (as measured by SPL), showcasing the potential and challenges of fusing data from different modalities in embodied navigation. Project Page: https://oceanhao.github.io/CoNav/
What Media Frames Reveal About Stance: A Dataset and Study about Memes in Climate Change Discourse
Media framing refers to the emphasis on specific aspects of perceived reality to shape how an issue is defined and understood. Its primary purpose is to shape public perceptions often in alignment with the authors' opinions and stances. However, the interaction between stance and media frame remains largely unexplored. In this work, we apply an interdisciplinary approach to conceptualize and computationally explore this interaction with internet memes on climate change. We curate CLIMATEMEMES, the first dataset of climate-change memes annotated with both stance and media frames, inspired by research in communication science. CLIMATEMEMES includes 1,184 memes sourced from 47 subreddits, enabling analysis of frame prominence over time and communities, and sheds light on the framing preferences of different stance holders. We propose two meme understanding tasks: stance detection and media frame detection. We evaluate LLaVA-NeXT and Molmo in various setups, and report the corresponding results on their LLM backbone. Human captions consistently enhance performance. Synthetic captions and human-corrected OCR also help occasionally. Our findings highlight that VLMs perform well on stance, but struggle on frames, where LLMs outperform VLMs. Finally, we analyze VLMs' limitations in handling nuanced frames and stance expressions on climate change internet memes.
comment: 19 pages, 9 figures
Joint Flow And Feature Refinement Using Attention For Video Restoration
Recent advancements in video restoration have focused on recovering high-quality video frames from low-quality inputs. Compared with static images, the performance of video restoration significantly depends on efficient exploitation of temporal correlations among successive video frames. The numerous techniques make use of temporal information via flow-based strategies or recurrent architectures. However, these methods often encounter difficulties in preserving temporal consistency as they utilize degraded input video frames. To resolve this issue, we propose a novel video restoration framework named Joint Flow and Feature Refinement using Attention (JFFRA). The proposed JFFRA is based on key philosophy of iteratively enhancing data through the synergistic collaboration of flow (alignment) and restoration. By leveraging previously enhanced features to refine flow and vice versa, JFFRA enables efficient feature enhancement using temporal information. This interplay between flow and restoration is executed at multiple scales, reducing the dependence on precise flow estimation. Moreover, we incorporate an occlusion-aware temporal loss function to enhance the network's capability in eliminating flickering artifacts. Comprehensive experiments validate the versatility of JFFRA across various restoration tasks such as denoising, deblurring, and super-resolution. Our method demonstrates a remarkable performance improvement of up to 1.62 dB compared to state-of-the-art approaches.
MM-MovieDubber: Towards Multi-Modal Learning for Multi-Modal Movie Dubbing
Current movie dubbing technology can produce the desired speech using a reference voice and input video, maintaining perfect synchronization with the visuals while effectively conveying the intended emotions. However, crucial aspects of movie dubbing, including adaptation to various dubbing styles, effective handling of dialogue, narration, and monologues, as well as consideration of subtle details such as speaker age and gender, remain insufficiently explored. To tackle these challenges, we introduce a multi-modal generative framework. First, it utilizes a multi-modal large vision-language model (VLM) to analyze visual inputs, enabling the recognition of dubbing types and fine-grained attributes. Second, it produces high-quality dubbing using large speech generation models, guided by multi-modal inputs. Additionally, a movie dubbing dataset with annotations for dubbing types and subtle details is constructed to enhance movie understanding and improve dubbing quality for the proposed multi-modal framework. Experimental results across multiple benchmark datasets show superior performance compared to state-of-the-art (SOTA) methods. In details, the LSE-D, SPK-SIM, EMO-SIM, and MCD exhibit improvements of up to 1.09%, 8.80%, 19.08%, and 18.74%, respectively.
comment: 5 pages, 4 figures, accepted by Interspeech 2025
DualComp: End-to-End Learning of a Unified Dual-Modality Lossless Compressor
Most learning-based lossless compressors are designed for a single modality, requiring separate models for multi-modal data and lacking flexibility. However, different modalities vary significantly in format and statistical properties, making it ineffective to use compressors that lack modality-specific adaptations. While multi-modal large language models (MLLMs) offer a potential solution for modality-unified compression, their excessive complexity hinders practical deployment. To address these challenges, we focus on the two most common modalities, image and text, and propose DualComp, the first unified and lightweight learning-based dual-modality lossless compressor. Built on a lightweight backbone, DualComp incorporates three key structural enhancements to handle modality heterogeneity: modality-unified tokenization, modality-switching contextual learning, and modality-routing mixture-of-experts. A reparameterization training strategy is also used to boost compression performance. DualComp integrates both modality-specific and shared parameters for efficient parameter utilization, enabling near real-time inference (200KB/s) on desktop CPUs. With much fewer parameters, DualComp achieves compression performance on par with the SOTA LLM-based methods for both text and image datasets. Its simplified single-modality variant surpasses the previous best image compressor on the Kodak dataset by about 9% using just 1.2% of the model size.
comment: 18 pages, 11 figures, 7 tables
Learning Normal Patterns in Musical Loops
This paper introduces an unsupervised framework for detecting audio patterns in musical samples (loops) through anomaly detection techniques, addressing challenges in music information retrieval (MIR). Existing methods are often constrained by reliance on handcrafted features, domain-specific limitations, or dependence on iterative user interaction. We address these limitations through an architecture combining deep feature extraction with unsupervised anomaly detection. Our approach leverages a pre-trained Hierarchical Token-semantic Audio Transformer (HTS-AT), paired with a Feature Fusion Mechanism (FFM), to generate representations from variable-length audio loops. These embeddings are processed using one-class Deep Support Vector Data Description (Deep SVDD), which learns normative audio patterns by mapping them to a compact latent hypersphere. Evaluations on curated bass and guitar datasets compare standard and residual autoencoder variants against baselines like Isolation Forest (IF) and and principle component analysis (PCA) methods. Results show our Deep SVDD models, especially the residual autoencoder variant, deliver improved anomaly separation, particularly for larger variations. This research contributes a flexible, fully unsupervised solution for processing diverse audio samples, overcoming previous structural and input limitations while enabling effective pattern identification through distance-based latent space scoring.
comment: 27 pages, 10 figures
Copy-Move Forgery Detection and Question Answering for Remote Sensing Image
Driven by practical demands in land resource monitoring and national defense security, this paper introduces the Remote Sensing Copy-Move Question Answering (RSCMQA) task. Unlike traditional Remote Sensing Visual Question Answering (RSVQA), RSCMQA focuses on interpreting complex tampering scenarios and inferring relationships between objects. We present a suite of global RSCMQA datasets, comprising images from 29 different regions across 14 countries. Specifically, we propose five distinct datasets, including the basic dataset RS-CMQA, the category-balanced dataset RS-CMQA-B, the high-authenticity dataset Real-RSCM, the extended dataset RS-TQA, and the extended category-balanced dataset RS-TQA-B. These datasets fill a critical gap in the field while ensuring comprehensiveness, balance, and challenge. Furthermore, we introduce a region-discrimination-guided multimodal copy-move forgery perception framework (CMFPF), which enhances the accuracy of answering questions about tampered images by leveraging prompt about the differences and connections between the source and tampered domains. Extensive experiments demonstrate that our method provides a stronger benchmark for RSCMQA compared to general VQA and RSVQA models. Our datasets and code are publicly available at https://github.com/shenyedepisa/RSCMQA.
comment: 11 figs, 7 tables
Computer Vision and Pattern Recognition
InstructSAM: A Training-Free Framework for Instruction-Oriented Remote Sensing Object Recognition
Language-Guided object recognition in remote sensing imagery is crucial for large-scale mapping and automated data annotation. However, existing open-vocabulary and visual grounding methods rely on explicit category cues, limiting their ability to handle complex or implicit queries that require advanced reasoning. To address this issue, we introduce a new suite of tasks, including Instruction-Oriented Object Counting, Detection, and Segmentation (InstructCDS), covering open-vocabulary, open-ended, and open-subclass scenarios. We further present EarthInstruct, the first InstructCDS benchmark for earth observation. It is constructed from two diverse remote sensing datasets with varying spatial resolutions and annotation rules across 20 categories, necessitating models to interpret dataset-specific instructions. Given the scarcity of semantically rich labeled data in remote sensing, we propose InstructSAM, a training-free framework for instruction-driven object recognition. InstructSAM leverages large vision-language models to interpret user instructions and estimate object counts, employs SAM2 for mask proposal, and formulates mask-label assignment as a binary integer programming problem. By integrating semantic similarity with counting constraints, InstructSAM efficiently assigns categories to predicted masks without relying on confidence thresholds. Experiments demonstrate that InstructSAM matches or surpasses specialized baselines across multiple tasks while maintaining near-constant inference time regardless of object count, reducing output tokens by 89% and overall runtime by over 32% compared to direct generation approaches. We believe the contributions of the proposed tasks, benchmark, and effective approach will advance future research in developing versatile object recognition systems.
Streamline Without Sacrifice -- Squeeze out Computation Redundancy in LMM ICML 2025
Large multimodal models excel in multimodal tasks but face significant computational challenges due to excessive computation on visual tokens. Unlike token reduction methods that focus on token-level redundancy, we identify and study the computation-level redundancy on vision tokens to ensure no information loss. Our key insight is that vision tokens from the pretrained vision encoder do not necessarily require all the heavy operations (e.g., self-attention, FFNs) in decoder-only LMMs and could be processed more lightly with proper designs. We designed a series of experiments to discover and progressively squeeze out the vision-related computation redundancy. Based on our findings, we propose ProxyV, a novel approach that utilizes proxy vision tokens to alleviate the computational burden on original vision tokens. ProxyV enhances efficiency without compromising performance and can even yield notable performance gains in scenarios with more moderate efficiency improvements. Furthermore, the flexibility of ProxyV is demonstrated through its combination with token reduction methods to boost efficiency further. The code will be made public at this https://github.com/penghao-wu/ProxyV URL.
comment: ICML 2025
A Taxonomy of Structure from Motion Methods
Structure from Motion (SfM) refers to the problem of recovering both structure (i.e., 3D coordinates of points in the scene) and motion (i.e., camera matrices) starting from point correspondences in multiple images. It has attracted significant attention over the years, counting practical reconstruction pipelines as well as theoretical results. This paper is conceived as a conceptual review of SfM methods, which are grouped into three main categories, according to which part of the problem - between motion and structure - they focus on. The proposed taxonomy brings a new perspective on existing SfM approaches as well as insights into open problems and possible future research directions. Particular emphasis is given on identifying the theoretical conditions that make SfM well posed, which depend on the problem formulation that is being considered.
Leveraging the Powerful Attention of a Pre-trained Diffusion Model for Exemplar-based Image Colorization
Exemplar-based image colorization aims to colorize a grayscale image using a reference color image, ensuring that reference colors are applied to corresponding input regions based on their semantic similarity. To achieve accurate semantic matching between regions, we leverage the self-attention module of a pre-trained diffusion model, which is trained on a large dataset and exhibits powerful attention capabilities. To harness this power, we propose a novel, fine-tuning-free approach based on a pre-trained diffusion model, making two key contributions. First, we introduce dual attention-guided color transfer. We utilize the self-attention module to compute an attention map between the input and reference images, effectively capturing semantic correspondences. The color features from the reference image is then transferred to the semantically matching regions of the input image, guided by this attention map, and finally, the grayscale features are replaced with the corresponding color features. Notably, we utilize dual attention to calculate attention maps separately for the grayscale and color images, achieving more precise semantic alignment. Second, we propose classifier-free colorization guidance, which enhances the transferred colors by combining color-transferred and non-color-transferred outputs. This process improves the quality of colorization. Our experimental results demonstrate that our method outperforms existing techniques in terms of image quality and fidelity to the reference. Specifically, we use 335 input-reference pairs from previous research, achieving an FID of 95.27 (image quality) and an SI-FID of 5.51 (fidelity to the reference). Our source code is available at https://github.com/satoshi-kosugi/powerful-attention.
comment: Accepted to IEEE Transactions on Circuits and Systems for Video Technology (TCSVT)
GUI-G1: Understanding R1-Zero-Like Training for Visual Grounding in GUI Agents
Recent Graphical User Interface (GUI) agents replicate the R1-Zero paradigm, coupling online Reinforcement Learning (RL) with explicit chain-of-thought reasoning prior to object grounding and thereby achieving substantial performance gains. In this paper, we first conduct extensive analysis experiments of three key components of that training pipeline: input design, output evaluation, and policy update-each revealing distinct challenges arising from blindly applying general-purpose RL without adapting to GUI grounding tasks. Input design: Current templates encourage the model to generate chain-of-thought reasoning, but longer chains unexpectedly lead to worse grounding performance. Output evaluation: Reward functions based on hit signals or box area allow models to exploit box size, leading to reward hacking and poor localization quality. Policy update: Online RL tends to overfit easy examples due to biases in length and sample difficulty, leading to under-optimization on harder cases. To address these issues, we propose three targeted solutions. First, we adopt a Fast Thinking Template that encourages direct answer generation, reducing excessive reasoning during training. Second, we incorporate a box size constraint into the reward function to mitigate reward hacking. Third, we revise the RL objective by adjusting length normalization and adding a difficulty-aware scaling factor, enabling better optimization on hard samples. Our GUI-G1-3B, trained on 17K public samples with Qwen2.5-VL-3B-Instruct, achieves 90.3% accuracy on ScreenSpot and 37.1% on ScreenSpot-Pro. This surpasses all prior models of similar size and even outperforms the larger UI-TARS-7B, establishing a new state-of-the-art in GUI agent grounding. The project repository is available at https://github.com/Yuqi-Zhou/GUI-G1.
MMaDA: Multimodal Large Diffusion Language Models
We introduce MMaDA, a novel class of multimodal diffusion foundation models designed to achieve superior performance across diverse domains such as textual reasoning, multimodal understanding, and text-to-image generation. The approach is distinguished by three key innovations: (i) MMaDA adopts a unified diffusion architecture with a shared probabilistic formulation and a modality-agnostic design, eliminating the need for modality-specific components. This architecture ensures seamless integration and processing across different data types. (ii) We implement a mixed long chain-of-thought (CoT) fine-tuning strategy that curates a unified CoT format across modalities. By aligning reasoning processes between textual and visual domains, this strategy facilitates cold-start training for the final reinforcement learning (RL) stage, thereby enhancing the model's ability to handle complex tasks from the outset. (iii) We propose UniGRPO, a unified policy-gradient-based RL algorithm specifically tailored for diffusion foundation models. Utilizing diversified reward modeling, UniGRPO unifies post-training across both reasoning and generation tasks, ensuring consistent performance improvements. Experimental results demonstrate that MMaDA-8B exhibits strong generalization capabilities as a unified multimodal foundation model. It surpasses powerful models like LLaMA-3-7B and Qwen2-7B in textual reasoning, outperforms Show-o and SEED-X in multimodal understanding, and excels over SDXL and Janus in text-to-image generation. These achievements highlight MMaDA's effectiveness in bridging the gap between pretraining and post-training within unified diffusion architectures, providing a comprehensive framework for future research and development. We open-source our code and trained models at: https://github.com/Gen-Verse/MMaDA
comment: Project: https://github.com/Gen-Verse/MMaDA
STAR-R1: Spacial TrAnsformation Reasoning by Reinforcing Multimodal LLMs
Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities across diverse tasks, yet they lag significantly behind humans in spatial reasoning. We investigate this gap through Transformation-Driven Visual Reasoning (TVR), a challenging task requiring identification of object transformations across images under varying viewpoints. While traditional Supervised Fine-Tuning (SFT) fails to generate coherent reasoning paths in cross-view settings, sparse-reward Reinforcement Learning (RL) suffers from inefficient exploration and slow convergence. To address these limitations, we propose STAR-R1, a novel framework that integrates a single-stage RL paradigm with a fine-grained reward mechanism tailored for TVR. Specifically, STAR-R1 rewards partial correctness while penalizing excessive enumeration and passive inaction, enabling efficient exploration and precise reasoning. Comprehensive evaluations demonstrate that STAR-R1 achieves state-of-the-art performance across all 11 metrics, outperforming SFT by 23% in cross-view scenarios. Further analysis reveals STAR-R1's anthropomorphic behavior and highlights its unique ability to compare all objects for improving spatial reasoning. Our work provides critical insights in advancing the research of MLLMs and reasoning models. The codes, model weights, and data will be publicly available at https://github.com/zongzhao23/STAR-R1.
Interspatial Attention for Efficient 4D Human Video Generation
Generating photorealistic videos of digital humans in a controllable manner is crucial for a plethora of applications. Existing approaches either build on methods that employ template-based 3D representations or emerging video generation models but suffer from poor quality or limited consistency and identity preservation when generating individual or multiple digital humans. In this paper, we introduce a new interspatial attention (ISA) mechanism as a scalable building block for modern diffusion transformer (DiT)--based video generation models. ISA is a new type of cross attention that uses relative positional encodings tailored for the generation of human videos. Leveraging a custom-developed video variation autoencoder, we train a latent ISA-based diffusion model on a large corpus of video data. Our model achieves state-of-the-art performance for 4D human video synthesis, demonstrating remarkable motion consistency and identity preservation while providing precise control of the camera and body poses. Our code and model are publicly released at https://dsaurus.github.io/isa4d/.
comment: Project page: https://dsaurus.github.io/isa4d/
VARD: Efficient and Dense Fine-Tuning for Diffusion Models with Value-based RL
Diffusion models have emerged as powerful generative tools across various domains, yet tailoring pre-trained models to exhibit specific desirable properties remains challenging. While reinforcement learning (RL) offers a promising solution,current methods struggle to simultaneously achieve stable, efficient fine-tuning and support non-differentiable rewards. Furthermore, their reliance on sparse rewards provides inadequate supervision during intermediate steps, often resulting in suboptimal generation quality. To address these limitations, dense and differentiable signals are required throughout the diffusion process. Hence, we propose VAlue-based Reinforced Diffusion (VARD): a novel approach that first learns a value function predicting expection of rewards from intermediate states, and subsequently uses this value function with KL regularization to provide dense supervision throughout the generation process. Our method maintains proximity to the pretrained model while enabling effective and stable training via backpropagation. Experimental results demonstrate that our approach facilitates better trajectory guidance, improves training efficiency and extends the applicability of RL to diffusion models optimized for complex, non-differentiable reward functions.
comment: Under review
IA-T2I: Internet-Augmented Text-to-Image Generation
Current text-to-image (T2I) generation models achieve promising results, but they fail on the scenarios where the knowledge implied in the text prompt is uncertain. For example, a T2I model released in February would struggle to generate a suitable poster for a movie premiering in April, because the character designs and styles are uncertain to the model. To solve this problem, we propose an Internet-Augmented text-to-image generation (IA-T2I) framework to compel T2I models clear about such uncertain knowledge by providing them with reference images. Specifically, an active retrieval module is designed to determine whether a reference image is needed based on the given text prompt; a hierarchical image selection module is introduced to find the most suitable image returned by an image search engine to enhance the T2I model; a self-reflection mechanism is presented to continuously evaluate and refine the generated image to ensure faithful alignment with the text prompt. To evaluate the proposed framework's performance, we collect a dataset named Img-Ref-T2I, where text prompts include three types of uncertain knowledge: (1) known but rare. (2) unknown. (3) ambiguous. Moreover, we carefully craft a complex prompt to guide GPT-4o in making preference evaluation, which has been shown to have an evaluation accuracy similar to that of human preference evaluation. Experimental results demonstrate the effectiveness of our framework, outperforming GPT-4o by about 30% in human evaluation.
comment: 12 pages, 7 figures, a framework that integrates reference images from the Internet into T2I/TI2I models
Constructing a 3D Town from a Single Image
Acquiring detailed 3D scenes typically demands costly equipment, multi-view data, or labor-intensive modeling. Therefore, a lightweight alternative, generating complex 3D scenes from a single top-down image, plays an essential role in real-world applications. While recent 3D generative models have achieved remarkable results at the object level, their extension to full-scene generation often leads to inconsistent geometry, layout hallucinations, and low-quality meshes. In this work, we introduce 3DTown, a training-free framework designed to synthesize realistic and coherent 3D scenes from a single top-down view. Our method is grounded in two principles: region-based generation to improve image-to-3D alignment and resolution, and spatial-aware 3D inpainting to ensure global scene coherence and high-quality geometry generation. Specifically, we decompose the input image into overlapping regions and generate each using a pretrained 3D object generator, followed by a masked rectified flow inpainting process that fills in missing geometry while maintaining structural continuity. This modular design allows us to overcome resolution bottlenecks and preserve spatial structure without requiring 3D supervision or fine-tuning. Extensive experiments across diverse scenes show that 3DTown outperforms state-of-the-art baselines, including Trellis, Hunyuan3D-2, and TripoSG, in terms of geometry quality, spatial coherence, and texture fidelity. Our results demonstrate that high-quality 3D town generation is achievable from a single image using a principled, training-free approach.
Exploring The Visual Feature Space for Multimodal Neural Decoding
The intrication of brain signals drives research that leverages multimodal AI to align brain modalities with visual and textual data for explainable descriptions. However, most existing studies are limited to coarse interpretations, lacking essential details on object descriptions, locations, attributes, and their relationships. This leads to imprecise and ambiguous reconstructions when using such cues for visual decoding. To address this, we analyze different choices of vision feature spaces from pre-trained visual components within Multimodal Large Language Models (MLLMs) and introduce a zero-shot multimodal brain decoding method that interacts with these models to decode across multiple levels of granularities. % To assess a model's ability to decode fine details from brain signals, we propose the Multi-Granularity Brain Detail Understanding Benchmark (MG-BrainDub). This benchmark includes two key tasks: detailed descriptions and salient question-answering, with metrics highlighting key visual elements like objects, attributes, and relationships. Our approach enhances neural decoding precision and supports more accurate neuro-decoding applications. Code will be available at https://github.com/weihaox/VINDEX.
comment: Project: https://weihaox.github.io/VINDEX
RUSplatting: Robust 3D Gaussian Splatting for Sparse-View Underwater Scene Reconstruction BMVC 2025
Reconstructing high-fidelity underwater scenes remains a challenging task due to light absorption, scattering, and limited visibility inherent in aquatic environments. This paper presents an enhanced Gaussian Splatting-based framework that improves both the visual quality and geometric accuracy of deep underwater rendering. We propose decoupled learning for RGB channels, guided by the physics of underwater attenuation, to enable more accurate colour restoration. To address sparse-view limitations and improve view consistency, we introduce a frame interpolation strategy with a novel adaptive weighting scheme. Additionally, we introduce a new loss function aimed at reducing noise while preserving edges, which is essential for deep-sea content. We also release a newly collected dataset, Submerged3D, captured specifically in deep-sea environments. Experimental results demonstrate that our framework consistently outperforms state-of-the-art methods with PSNR gains up to 1.90dB, delivering superior perceptual quality and robustness, and offering promising directions for marine robotics and underwater visual analytics.
comment: 10 pages, 3 figures. Submitted to BMVC 2025
HAMF: A Hybrid Attention-Mamba Framework for Joint Scene Context Understanding and Future Motion Representation Learning
Motion forecasting represents a critical challenge in autonomous driving systems, requiring accurate prediction of surrounding agents' future trajectories. While existing approaches predict future motion states with the extracted scene context feature from historical agent trajectories and road layouts, they suffer from the information degradation during the scene feature encoding. To address the limitation, we propose HAMF, a novel motion forecasting framework that learns future motion representations with the scene context encoding jointly, to coherently combine the scene understanding and future motion state prediction. We first embed the observed agent states and map information into 1D token sequences, together with the target multi-modal future motion features as a set of learnable tokens. Then we design a unified Attention-based encoder, which synergistically combines self-attention and cross-attention mechanisms to model the scene context information and aggregate future motion features jointly. Complementing the encoder, we implement the Mamba module in the decoding stage to further preserve the consistency and correlations among the learned future motion representations, to generate the accurate and diverse final trajectories. Extensive experiments on Argoverse 2 benchmark demonstrate that our hybrid Attention-Mamba model achieves state-of-the-art motion forecasting performance with the simple and lightweight architecture.
comment: In submission
Discovering Pathology Rationale and Token Allocation for Efficient Multimodal Pathology Reasoning
Multimodal pathological image understanding has garnered widespread interest due to its potential to improve diagnostic accuracy and enable personalized treatment through integrated visual and textual data. However, existing methods exhibit limited reasoning capabilities, which hamper their ability to handle complex diagnostic scenarios. Additionally, the enormous size of pathological images leads to severe computational burdens, further restricting their practical deployment. To address these limitations, we introduce a novel bilateral reinforcement learning framework comprising two synergistic branches. One reinforcement branch enhances the reasoning capability by enabling the model to learn task-specific decision processes, i.e., pathology rationales, directly from labels without explicit reasoning supervision. While the other branch dynamically allocates a tailored number of tokens to different images based on both their visual content and task context, thereby optimizing computational efficiency. We apply our method to various pathological tasks such as visual question answering, cancer subtyping, and lesion detection. Extensive experiments show an average +41.7 absolute performance improvement with 70.3% lower inference costs over the base models, achieving both reasoning accuracy and computational efficiency.
Enhancing Monte Carlo Dropout Performance for Uncertainty Quantification
Knowing the uncertainty associated with the output of a deep neural network is of paramount importance in making trustworthy decisions, particularly in high-stakes fields like medical diagnosis and autonomous systems. Monte Carlo Dropout (MCD) is a widely used method for uncertainty quantification, as it can be easily integrated into various deep architectures. However, conventional MCD often struggles with providing well-calibrated uncertainty estimates. To address this, we introduce innovative frameworks that enhances MCD by integrating different search solutions namely Grey Wolf Optimizer (GWO), Bayesian Optimization (BO), and Particle Swarm Optimization (PSO) as well as an uncertainty-aware loss function, thereby improving the reliability of uncertainty quantification. We conduct comprehensive experiments using different backbones, namely DenseNet121, ResNet50, and VGG16, on various datasets, including Cats vs. Dogs, Myocarditis, Wisconsin, and a synthetic dataset (Circles). Our proposed algorithm outperforms the MCD baseline by 2-3% on average in terms of both conventional accuracy and uncertainty accuracy while achieving significantly better calibration. These results highlight the potential of our approach to enhance the trustworthiness of deep learning models in safety-critical applications.
comment: 22 pages, 5 tables, 7 figures
Exploring the Limits of Vision-Language-Action Manipulations in Cross-task Generalization
The generalization capabilities of vision-language-action (VLA) models to unseen tasks are crucial to achieving general-purpose robotic manipulation in open-world settings. However, the cross-task generalization capabilities of existing VLA models remain significantly underexplored. To address this gap, we introduce AGNOSTOS, a novel simulation benchmark designed to rigorously evaluate cross-task zero-shot generalization in manipulation. AGNOSTOS comprises 23 unseen manipulation tasks for testing, distinct from common training task distributions, and incorporates two levels of generalization difficulty to assess robustness. Our systematic evaluation reveals that current VLA models, despite being trained on diverse datasets, struggle to generalize effectively to these unseen tasks. To overcome this limitation, we propose Cross-Task In-Context Manipulation (X-ICM), a method that conditions large language models (LLMs) on in-context demonstrations from seen tasks to predict action sequences for unseen tasks. Additionally, we introduce a dynamics-guided sample selection strategy that identifies relevant demonstrations by capturing cross-task dynamics. On AGNOSTOS, X-ICM significantly improves cross-task zero-shot generalization performance over leading VLAs. We believe AGNOSTOS and X-ICM will serve as valuable tools for advancing general-purpose robotic manipulation.
comment: Project Page: https://jiaming-zhou.github.io/AGNOSTOS
The Devil is in Fine-tuning and Long-tailed Problems:A New Benchmark for Scene Text Detection IJCAI2025
Scene text detection has seen the emergence of high-performing methods that excel on academic benchmarks. However, these detectors often fail to replicate such success in real-world scenarios. We uncover two key factors contributing to this discrepancy through extensive experiments. First, a \textit{Fine-tuning Gap}, where models leverage \textit{Dataset-Specific Optimization} (DSO) paradigm for one domain at the cost of reduced effectiveness in others, leads to inflated performances on academic benchmarks. Second, the suboptimal performance in practical settings is primarily attributed to the long-tailed distribution of texts, where detectors struggle with rare and complex categories as artistic or overlapped text. Given that the DSO paradigm might undermine the generalization ability of models, we advocate for a \textit{Joint-Dataset Learning} (JDL) protocol to alleviate the Fine-tuning Gap. Additionally, an error analysis is conducted to identify three major categories and 13 subcategories of challenges in long-tailed scene text, upon which we propose a Long-Tailed Benchmark (LTB). LTB facilitates a comprehensive evaluation of ability to handle a diverse range of long-tailed challenges. We further introduce MAEDet, a self-supervised learning-based method, as a strong baseline for LTB. The code is available at https://github.com/pd162/LTB.
comment: Accepted by IJCAI2025
FragFake: A Dataset for Fine-Grained Detection of Edited Images with Vision Language Models
Fine-grained edited image detection of localized edits in images is crucial for assessing content authenticity, especially given that modern diffusion models and image editing methods can produce highly realistic manipulations. However, this domain faces three challenges: (1) Binary classifiers yield only a global real-or-fake label without providing localization; (2) Traditional computer vision methods often rely on costly pixel-level annotations; and (3) No large-scale, high-quality dataset exists for modern image-editing detection techniques. To address these gaps, we develop an automated data-generation pipeline to create FragFake, the first dedicated benchmark dataset for edited image detection, which includes high-quality images from diverse editing models and a wide variety of edited objects. Based on FragFake, we utilize Vision Language Models (VLMs) for the first time in the task of edited image classification and edited region localization. Experimental results show that fine-tuned VLMs achieve higher average Object Precision across all datasets, significantly outperforming pretrained models. We further conduct ablation and transferability analyses to evaluate the detectors across various configurations and editing scenarios. To the best of our knowledge, this work is the first to reformulate localized image edit detection as a vision-language understanding task, establishing a new paradigm for the field. We anticipate that this work will establish a solid foundation to facilitate and inspire subsequent research endeavors in the domain of multimodal content authenticity.
comment: 14pages,15 figures
Oral Imaging for Malocclusion Issues Assessments: OMNI Dataset, Deep Learning Baselines and Benchmarking
Malocclusion is a major challenge in orthodontics, and its complex presentation and diverse clinical manifestations make accurate localization and diagnosis particularly important. Currently, one of the major shortcomings facing the field of dental image analysis is the lack of large-scale, accurately labeled datasets dedicated to malocclusion issues, which limits the development of automated diagnostics in the field of dentistry and leads to a lack of diagnostic accuracy and efficiency in clinical practice. Therefore, in this study, we propose the Oral and Maxillofacial Natural Images (OMNI) dataset, a novel and comprehensive dental image dataset aimed at advancing the study of analyzing dental images for issues of malocclusion. Specifically, the dataset contains 4166 multi-view images with 384 participants in data collection and annotated by professional dentists. In addition, we performed a comprehensive validation of the created OMNI dataset, including three CNN-based methods, two Transformer-based methods, and one GNN-based method, and conducted automated diagnostic experiments for malocclusion issues. The experimental results show that the OMNI dataset can facilitate the automated diagnosis research of malocclusion issues and provide a new benchmark for the research in this field. Our OMNI dataset and baseline code are publicly available at https://github.com/RoundFaceJ/OMNI.
SNAP: A Benchmark for Testing the Effects of Capture Conditions on Fundamental Vision Tasks
Generalization of deep-learning-based (DL) computer vision algorithms to various image perturbations is hard to establish and remains an active area of research. The majority of past analyses focused on the images already captured, whereas effects of the image formation pipeline and environment are less studied. In this paper, we address this issue by analyzing the impact of capture conditions, such as camera parameters and lighting, on DL model performance on 3 vision tasks -- image classification, object detection, and visual question answering (VQA). To this end, we assess capture bias in common vision datasets and create a new benchmark, SNAP (for $\textbf{S}$hutter speed, ISO se$\textbf{N}$sitivity, and $\textbf{AP}$erture), consisting of images of objects taken under controlled lighting conditions and with densely sampled camera settings. We then evaluate a large number of DL vision models and show the effects of capture conditions on each selected vision task. Lastly, we conduct an experiment to establish a human baseline for the VQA task. Our results show that computer vision datasets are significantly biased, the models trained on this data do not reach human accuracy even on the well-exposed images, and are susceptible to both major exposure changes and minute variations of camera settings. Code and data can be found at https://github.com/ykotseruba/SNAP
LENS: Multi-level Evaluation of Multimodal Reasoning with Large Language Models
Multimodal Large Language Models (MLLMs) have achieved significant advances in integrating visual and linguistic information, yet their ability to reason about complex and real-world scenarios remains limited. The existing benchmarks are usually constructed in the task-oriented manner without guarantee that different task samples come from the same data distribution, thus they often fall short in evaluating the synergistic effects of lower-level perceptual capabilities on higher-order reasoning. To lift this limitation, we contribute Lens, a multi-level benchmark with 3.4K contemporary images and 60K+ human-authored questions covering eight tasks and 12 daily scenarios, forming three progressive task tiers, i.e., perception, understanding, and reasoning. One feature is that each image is equipped with rich annotations for all tasks. Thus, this dataset intrinsically supports to evaluate MLLMs to handle image-invariable prompts, from basic perception to compositional reasoning. In addition, our images are manully collected from the social media, in which 53% were published later than Jan. 2025. We evaluate 15+ frontier MLLMs such as Qwen2.5-VL-72B, InternVL3-78B, GPT-4o and two reasoning models QVQ-72B-preview and Kimi-VL. These models are released later than Dec. 2024, and none of them achieve an accuracy greater than 60% in the reasoning tasks. Project page: https://github.com/Lens4MLLMs/lens. ICCV 2025 workshop page: https://lens4mllms.github.io/mars2-workshop-iccv2025/
A Methodology to Evaluate Strategies Predicting Rankings on Unseen Domains
Frequently, multiple entities (methods, algorithms, procedures, solutions, etc.) can be developed for a common task and applied across various domains that differ in the distribution of scenarios encountered. For example, in computer vision, the input data provided to image analysis methods depend on the type of sensor used, its location, and the scene content. However, a crucial difficulty remains: can we predict which entities will perform best in a new domain based on assessments on known domains, without having to carry out new and costly evaluations? This paper presents an original methodology to address this question, in a leave-one-domain-out fashion, for various application-specific preferences. We illustrate its use with 30 strategies to predict the rankings of 40 entities (unsupervised background subtraction methods) on 53 domains (videos).
Beyond Classification: Evaluating Diffusion Denoised Smoothing for Security-Utility Trade off
While foundation models demonstrate impressive performance across various tasks, they remain vulnerable to adversarial inputs. Current research explores various approaches to enhance model robustness, with Diffusion Denoised Smoothing emerging as a particularly promising technique. This method employs a pretrained diffusion model to preprocess inputs before model inference. Yet, its effectiveness remains largely unexplored beyond classification. We aim to address this gap by analyzing three datasets with four distinct downstream tasks under three different adversarial attack algorithms. Our findings reveal that while foundation models maintain resilience against conventional transformations, applying high-noise diffusion denoising to clean images without any distortions significantly degrades performance by as high as 57%. Low-noise diffusion settings preserve performance but fail to provide adequate protection across all attack types. Moreover, we introduce a novel attack strategy specifically targeting the diffusion process itself, capable of circumventing defenses in the low-noise regime. Our results suggest that the trade-off between adversarial robustness and performance remains a challenge to be addressed.
comment: Paper accepted at the 33rd European Signal Processing Conference (EUSIPCO 2025)
VP Lab: a PEFT-Enabled Visual Prompting Laboratory for Semantic Segmentation
Large-scale pretrained vision backbones have transformed computer vision by providing powerful feature extractors that enable various downstream tasks, including training-free approaches like visual prompting for semantic segmentation. Despite their success in generic scenarios, these models often fall short when applied to specialized technical domains where the visual features differ significantly from their training distribution. To bridge this gap, we introduce VP Lab, a comprehensive iterative framework that enhances visual prompting for robust segmentation model development. At the core of VP Lab lies E-PEFT, a novel ensemble of parameter-efficient fine-tuning techniques specifically designed to adapt our visual prompting pipeline to specific domains in a manner that is both parameter- and data-efficient. Our approach not only surpasses the state-of-the-art in parameter-efficient fine-tuning for the Segment Anything Model (SAM), but also facilitates an interactive, near-real-time loop, allowing users to observe progressively improving results as they experiment within the framework. By integrating E-PEFT with visual prompting, we demonstrate a remarkable 50\% increase in semantic segmentation mIoU performance across various technical datasets using only 5 validated images, establishing a new paradigm for fast, efficient, and interactive model deployment in new, challenging domains. This work comes in the form of a demonstration.
UWSAM: Segment Anything Model Guided Underwater Instance Segmentation and A Large-scale Benchmark Dataset
With recent breakthroughs in large-scale modeling, the Segment Anything Model (SAM) has demonstrated significant potential in a variety of visual applications. However, due to the lack of underwater domain expertise, SAM and its variants face performance limitations in end-to-end underwater instance segmentation tasks, while their higher computational requirements further hinder their application in underwater scenarios. To address this challenge, we propose a large-scale underwater instance segmentation dataset, UIIS10K, which includes 10,048 images with pixel-level annotations for 10 categories. Then, we introduce UWSAM, an efficient model designed for automatic and accurate segmentation of underwater instances. UWSAM efficiently distills knowledge from the SAM ViT-Huge image encoder into the smaller ViT-Small image encoder via the Mask GAT-based Underwater Knowledge Distillation (MG-UKD) method for effective visual representation learning. Furthermore, we design an End-to-end Underwater Prompt Generator (EUPG) for UWSAM, which automatically generates underwater prompts instead of explicitly providing foreground points or boxes as prompts, thus enabling the network to locate underwater instances accurately for efficient segmentation. Comprehensive experimental results show that our model is effective, achieving significant performance improvements over state-of-the-art methods on multiple underwater instance datasets. Datasets and codes are available at https://github.com/LiamLian0727/UIIS10K.
Visual Perturbation and Adaptive Hard Negative Contrastive Learning for Compositional Reasoning in Vision-Language Models IJCAI 2025
Vision-Language Models (VLMs) are essential for multimodal tasks, especially compositional reasoning (CR) tasks, which require distinguishing fine-grained semantic differences between visual and textual embeddings. However, existing methods primarily fine-tune the model by generating text-based hard negative samples, neglecting the importance of image-based negative samples, which results in insufficient training of the visual encoder and ultimately impacts the overall performance of the model. Moreover, negative samples are typically treated uniformly, without considering their difficulty levels, and the alignment of positive samples is insufficient, which leads to challenges in aligning difficult sample pairs. To address these issues, we propose Adaptive Hard Negative Perturbation Learning (AHNPL). AHNPL translates text-based hard negatives into the visual domain to generate semantically disturbed image-based negatives for training the model, thereby enhancing its overall performance. AHNPL also introduces a contrastive learning approach using a multimodal hard negative loss to improve the model's discrimination of hard negatives within each modality and a dynamic margin loss that adjusts the contrastive margin according to sample difficulty to enhance the distinction of challenging sample pairs. Experiments on three public datasets demonstrate that our method effectively boosts VLMs' performance on complex CR tasks. The source code is available at https://github.com/nynu-BDAI/AHNPL.
comment: Accepted at the International Joint Conference on Artificial Intelligence (IJCAI 2025)
TinyDrive: Multiscale Visual Question Answering with Selective Token Routing for Autonomous Driving
Vision Language Models (VLMs) employed for visual question-answering (VQA) in autonomous driving often require substantial computational resources that pose a challenge for their deployment in resource-constrained vehicles. To address this challenge, we introduce TinyDrive, a lightweight yet effective VLM for multi-view VQA in driving scenarios. Our model comprises two key components including a multiscale vision encoder and a dual-level prioritization mechanism for tokens and sequences. The multiscale encoder facilitates the processing of multi-view images at diverse resolutions through scale injection and cross-scale gating to generate enhanced visual representations. At the token level, we design a token routing mechanism that dynamically selects and process the most informative tokens based on learned importance scores. At the sequence level, we propose integrating normalized loss, uncertainty estimates, and a diversity metric to formulate sequence scores that rank and preserve samples within a sequence priority buffer. Samples with higher scores are more frequently selected for training. TinyDrive is first evaluated on our custom-curated VQA dataset, and it is subsequently tested on the public DriveLM benchmark, where it achieves state-of-the-art language understanding performance. Notably, it achieves relative improvements of 11.1% and 35.4% in BLEU-4 and METEOR scores, respectively, despite having a significantly smaller parameter count.
seg_3D_by_PC2D: Multi-View Projection for Domain Generalization and Adaptation in 3D Semantic Segmentation
3D semantic segmentation plays a pivotal role in autonomous driving and road infrastructure analysis, yet state-of-the-art 3D models are prone to severe domain shift when deployed across different datasets. We propose a novel multi-view projection framework that excels in both domain generalization (DG) and unsupervised domain adaptation (UDA). Our approach first aligns Lidar scans into coherent 3D scenes and renders them from multiple virtual camera poses to create a large-scale synthetic 2D dataset (PC2D). We then use it to train a 2D segmentation model in-domain. During inference, the model processes hundreds of views per scene; the resulting logits are back-projected to 3D with an occlusion-aware voting scheme to generate final point-wise labels. Our framework is modular and enables extensive exploration of key design parameters, such as view generation optimization (VGO), visualization modality optimization (MODO), and 2D model choice. We evaluate on the nuScenes and SemanticKITTI datasets under both the DG and UDA settings. We achieve state-of-the-art results in UDA and close to state-of-the-art in DG, with particularly large gains on large, static classes. Our code and dataset generation tools will be publicly available at https://github.com/andrewcaunes/ia4markings
Convolutional Long Short-Term Memory Neural Networks Based Numerical Simulation of Flow Field
Computational Fluid Dynamics (CFD) is the main approach to analyzing flow field. However, the convergence and accuracy depend largely on mathematical models of flow, numerical methods, and time consumption. Deep learning-based analysis of flow filed provides an alternative. For the task of flow field prediction, an improved Convolutional Long Short-Term Memory (Con-vLSTM) Neural Network is proposed as the baseline network in consideration of the temporal and spatial characteristics of flow field. Combining dynamic mesh technology and User-Defined Function (UDF), numerical simulations of flow around a circular cylinder were conducted. Flow field snapshots were used to sample data from the cylinder's wake region at different time instants, constructing a flow field dataset with sufficient volume and rich flow state var-iations. Residual networks and attention mechanisms are combined with the standard ConvLSTM model. Compared with the standard ConvLSTM model, the results demonstrate that the improved ConvLSTM model can extract more temporal and spatial features while having fewer parameters and shorter train-ing time.
comment: ICIC 2025 accepted
Clapper: Compact Learning and Video Representation in VLMs
Current vision-language models (VLMs) have demonstrated remarkable capabilities across diverse video understanding applications. Designing VLMs for video inputs requires effectively modeling the temporal dimension (i.e. capturing dependencies across frames) and balancing the processing of short and long videos. Specifically, short videos demand preservation of fine-grained details, whereas long videos require strategic compression of visual information to handle extensive temporal contexts efficiently. However, our empirical analysis reveals a critical limitation: most existing VLMs suffer severe performance degradation in long video understanding tasks when compressing visual tokens below a quarter of their original visual tokens. To enable more effective modeling of both short and long video inputs, we propose Clapper, a method that utilizes a slow-fast strategy for video representation and introduces a novel module named TimePerceiver for efficient temporal-spatial encoding within existing VLM backbones. By using our method, we achieves 13x compression of visual tokens per frame (averaging 61 tokens/frame) without compromising QA accuracy. In our experiments, Clapper achieves 62.0% on VideoMME, 69.8% on MLVU, and 67.4% on TempCompass, all with fewer than 6,000 visual tokens per video. The code will be publicly available on the homepage.
PlantDreamer: Achieving Realistic 3D Plant Models with Diffusion-Guided Gaussian Splatting
Recent years have seen substantial improvements in the ability to generate synthetic 3D objects using AI. However, generating complex 3D objects, such as plants, remains a considerable challenge. Current generative 3D models struggle with plant generation compared to general objects, limiting their usability in plant analysis tools, which require fine detail and accurate geometry. We introduce PlantDreamer, a novel approach to 3D synthetic plant generation, which can achieve greater levels of realism for complex plant geometry and textures than available text-to-3D models. To achieve this, our new generation pipeline leverages a depth ControlNet, fine-tuned Low-Rank Adaptation and an adaptable Gaussian culling algorithm, which directly improve textural realism and geometric integrity of generated 3D plant models. Additionally, PlantDreamer enables both purely synthetic plant generation, by leveraging L-System-generated meshes, and the enhancement of real-world plant point clouds by converting them into 3D Gaussian Splats. We evaluate our approach by comparing its outputs with state-of-the-art text-to-3D models, demonstrating that PlantDreamer outperforms existing methods in producing high-fidelity synthetic plants. Our results indicate that our approach not only advances synthetic plant generation, but also facilitates the upgrading of legacy point cloud datasets, making it a valuable tool for 3D phenotyping applications.
comment: 13 pages, 5 figures, 4 tables
Detection of Underwater Multi-Targets Based on Self-Supervised Learning and Deformable Path Aggregation Feature Pyramid Network
To overcome the constraints of the underwater environment and improve the accuracy and robustness of underwater target detection models, this paper develops a specialized dataset for underwater target detection and proposes an efficient algorithm for underwater multi-target detection. A self-supervised learning based on the SimSiam structure is employed for the pre-training of underwater target detection network. To address the problems of low detection accuracy caused by low contrast, mutual occlusion and dense distribution of underwater targets in underwater object detection, a detection model suitable for underwater target detection is proposed by introducing deformable convolution and dilated convolution. The proposed detection model can obtain more effective information by increasing the receptive field. In addition, the regression loss function EIoU is introduced, which improves model performance by separately calculating the width and height losses of the predicted box. Experiment results show that the accuracy of the underwater target detection has been improved by the proposed detector.
comment: ICIC 2025 accepted
Explainable embeddings with Distance Explainer
While eXplainable AI (XAI) has advanced significantly, few methods address interpretability in embedded vector spaces where dimensions represent complex abstractions. We introduce Distance Explainer, a novel method for generating local, post-hoc explanations of embedded spaces in machine learning models. Our approach adapts saliency-based techniques from RISE to explain the distance between two embedded data points by assigning attribution values through selective masking and distance-ranked mask filtering. We evaluate Distance Explainer on cross-modal embeddings (image-image and image-caption pairs) using established XAI metrics including Faithfulness, Sensitivity/Robustness, and Randomization. Experiments with ImageNet and CLIP models demonstrate that our method effectively identifies features contributing to similarity or dissimilarity between embedded data points while maintaining high robustness and consistency. We also explore how parameter tuning, particularly mask quantity and selection strategy, affects explanation quality. This work addresses a critical gap in XAI research and enhances transparency and trustworthiness in deep learning applications utilizing embedded spaces.
comment: 33 pages, 19 figures. Submitted to JMLR. Method implementation: https://research-software-directory.org/software/distance-explainer
Visual Thoughts: A Unified Perspective of Understanding Multimodal Chain-of-Thought
Large Vision-Language Models (LVLMs) have achieved significant success in multimodal tasks, with multimodal chain-of-thought (MCoT) further enhancing performance and interpretability. Recent MCoT methods fall into two categories: (i) Textual-MCoT (T-MCoT), which takes multimodal input and produces textual output; and (ii) Interleaved-MCoT (I-MCoT), which generates interleaved image-text outputs. Despite advances in both approaches, the mechanisms driving these improvements are not fully understood. To fill this gap, we first reveal that MCoT boosts LVLMs by incorporating visual thoughts, which convey image information to the reasoning process regardless of the MCoT format, depending only on clarity and conciseness of expression. Furthermore, to explore visual thoughts systematically, we define four distinct forms of visual thought expressions and analyze them comprehensively. Our findings demonstrate that these forms differ in clarity and conciseness, yielding varying levels of MCoT improvement. Additionally, we explore the internal nature of visual thoughts, finding that visual thoughts serve as intermediaries between the input image and reasoning to deeper transformer layers, enabling more advanced visual information transmission. We hope that the visual thoughts can inspire further breakthroughs for future MCoT research.
Directional Non-Commutative Monoidal Structures for Compositional Embeddings in Machine Learning NeurIPS 2025
We introduce a new algebraic structure for multi-dimensional compositional embeddings, built on directional non-commutative monoidal operators. The core contribution of this work is this novel framework, which exhibits appealing theoretical properties (associativity along each dimension and an interchange law ensuring global consistency) while remaining compatible with modern machine learning architectures. Our construction defines a distinct composition operator circ_i for each axis i, ensuring associative combination along each axis without imposing global commutativity. Importantly, all axis-specific operators commute with one another, enforcing a global interchange law that enables consistent crossaxis compositions. This is, to our knowledge, the first approach that provides a common foundation that generalizes classical sequence-modeling paradigms (e.g., structured state-space models (SSMs) and transformer self-attention) to a unified multi-dimensional framework. For example, specific one-dimensional instances of our framework can recover the familiar affine transformation algebra, vanilla self-attention, and the SSM-style recurrence. The higher-dimensional generalizations naturally support recursive, structure-aware operations in embedding spaces. We outline several potential applications unlocked by this structure-including structured positional encodings in Transformers, directional image embeddings, and symbolic modeling of sequences or grids-indicating that it could inform future deep learning model designs. We formally establish the algebraic properties of our framework and discuss efficient implementations. Finally, as our focus is theoretical, we include no experiments here and defer empirical validation to future work, which we plan to undertake.
comment: 11 pages submitted to NeurIPS 2025
Prompt Tuning Vision Language Models with Margin Regularizer for Few-Shot Learning under Distribution Shifts
Recently, Vision-Language foundation models like CLIP and ALIGN, which are pre-trained on large-scale data have shown remarkable zero-shot generalization to diverse datasets with different classes and even domains. In this work, we take a step further and analyze whether these models can be adapted to target datasets having very different distributions and classes compared to what these models have been trained on, using only a few labeled examples from the target dataset. In such scenarios, finetuning large pretrained models is challenging due to problems of overfitting as well as loss of generalization, and has not been well explored in prior literature. Since, the pre-training data of such models are unavailable, it is difficult to comprehend the performance on various downstream datasets. First, we try to answer the question: Given a target dataset with a few labelled examples, can we estimate whether further fine-tuning can enhance the performance compared to zero-shot evaluation? by analyzing the common vision-language embedding space. Based on the analysis, we propose a novel prompt-tuning method, PromptMargin for adapting such large-scale VLMs directly on the few target samples. PromptMargin effectively tunes the text as well as visual prompts for this task, and has two main modules: 1) Firstly, we use a selective augmentation strategy to complement the few training samples in each task; 2) Additionally, to ensure robust training in the presence of unfamiliar class names, we increase the inter-class margin for improved class discrimination using a novel Multimodal Margin Regularizer. Extensive experiments and analysis across fifteen target benchmark datasets, with varying degrees of distribution shifts from natural images, shows the effectiveness of the proposed framework over the existing state-of-the-art approaches applied to this setting. github.com/debarshigit/PromptMargin.
comment: Published in TMLR (2025)
Deep Learning Enabled Segmentation, Classification and Risk Assessment of Cervical Cancer
Cervical cancer, the fourth leading cause of cancer in women globally, requires early detection through Pap smear tests to identify precancerous changes and prevent disease progression. In this study, we performed a focused analysis by segmenting the cellular boundaries and drawing bounding boxes to isolate the cancer cells. A novel Deep Learning (DL) architecture, the ``Multi-Resolution Fusion Deep Convolutional Network", was proposed to effectively handle images with varying resolutions and aspect ratios, with its efficacy showcased using the SIPaKMeD dataset. The performance of this DL model was observed to be similar to the state-of-the-art models, with accuracy variations of a mere 2\% to 3\%, achieved using just 1.7 million learnable parameters, which is approximately 85 times less than the VGG-19 model. Furthermore, we introduced a multi-task learning technique that simultaneously performs segmentation and classification tasks and begets an Intersection over Union score of 0.83 and a classification accuracy of 90\%. The final stage of the workflow employs a probabilistic approach for risk assessment, extracting feature vectors to predict the likelihood of normal cells progressing to malignant states, which can be utilized for the prognosis of cervical cancer.
comment: 11 pages, 10 figures
Beyond Linearity: Squeeze-and-Recalibrate Blocks for Few-Shot Whole Slide Image Classification
Deep learning has advanced computational pathology but expert annotations remain scarce. Few-shot learning mitigates annotation burdens yet suffers from overfitting and discriminative feature mischaracterization. In addition, the current few-shot multiple instance learning (MIL) approaches leverage pretrained vision-language models to alleviate these issues, but at the cost of complex preprocessing and high computational cost. We propose a Squeeze-and-Recalibrate (SR) block, a drop-in replacement for linear layers in MIL models to address these challenges. The SR block comprises two core components: a pair of low-rank trainable matrices (squeeze pathway, SP) that reduces parameter count and imposes a bottleneck to prevent spurious feature learning, and a frozen random recalibration matrix that preserves geometric structure, diversifies feature directions, and redefines the optimization objective for the SP. We provide theoretical guarantees that the SR block can approximate any linear mapping to arbitrary precision, thereby ensuring that the performance of a standard MIL model serves as a lower bound for its SR-enhanced counterpart. Extensive experiments demonstrate that our SR-MIL models consistently outperform prior methods while requiring significantly fewer parameters and no architectural changes.
Spectral-Aware Global Fusion for RGB-Thermal Semantic Segmentation ICIP 2025
Semantic segmentation relying solely on RGB data often struggles in challenging conditions such as low illumination and obscured views, limiting its reliability in critical applications like autonomous driving. To address this, integrating additional thermal radiation data with RGB images demonstrates enhanced performance and robustness. However, how to effectively reconcile the modality discrepancies and fuse the RGB and thermal features remains a well-known challenge. In this work, we address this challenge from a novel spectral perspective. We observe that the multi-modal features can be categorized into two spectral components: low-frequency features that provide broad scene context, including color variations and smooth areas, and high-frequency features that capture modality-specific details such as edges and textures. Inspired by this, we propose the Spectral-aware Global Fusion Network (SGFNet) to effectively enhance and fuse the multi-modal features by explicitly modeling the interactions between the high-frequency, modality-specific features. Our experimental results demonstrate that SGFNet outperforms the state-of-the-art methods on the MFNet and PST900 datasets.
comment: Accepted by ICIP 2025
Seeing Through Deception: Uncovering Misleading Creator Intent in Multimodal News with Vision-Language Models
The real-world impact of misinformation stems from the underlying misleading narratives that creators seek to convey. As such, interpreting misleading creator intent is essential for multimodal misinformation detection (MMD) systems aimed at effective information governance. In this paper, we introduce an automated framework that simulates real-world multimodal news creation by explicitly modeling creator intent through two components: the desired influence and the execution plan. Using this framework, we construct DeceptionDecoded, a large-scale benchmark comprising 12,000 image-caption pairs aligned with trustworthy reference articles. The dataset captures both misleading and non-misleading intents and spans manipulations across visual and textual modalities. We conduct a comprehensive evaluation of 14 state-of-the-art vision-language models (VLMs) on three intent-centric tasks: (1) misleading intent detection, (2) misleading source attribution, and (3) creator desire inference. Despite recent advances, we observe that current VLMs fall short in recognizing misleading intent, often relying on spurious cues such as superficial cross-modal consistency, stylistic signals, and heuristic authenticity hints. Our findings highlight the pressing need for intent-aware modeling in MMD and open new directions for developing systems capable of deeper reasoning about multimodal misinformation.
Pura: An Efficient Privacy-Preserving Solution for Face Recognition
Face recognition is an effective technology for identifying a target person by facial images. However, sensitive facial images raises privacy concerns. Although privacy-preserving face recognition is one of potential solutions, this solution neither fully addresses the privacy concerns nor is efficient enough. To this end, we propose an efficient privacy-preserving solution for face recognition, named Pura, which sufficiently protects facial privacy and supports face recognition over encrypted data efficiently. Specifically, we propose a privacy-preserving and non-interactive architecture for face recognition through the threshold Paillier cryptosystem. Additionally, we carefully design a suite of underlying secure computing protocols to enable efficient operations of face recognition over encrypted data directly. Furthermore, we introduce a parallel computing mechanism to enhance the performance of the proposed secure computing protocols. Privacy analysis demonstrates that Pura fully safeguards personal facial privacy. Experimental evaluations demonstrate that Pura achieves recognition speeds up to 16 times faster than the state-of-the-art.
Comprehensive Evaluation and Analysis for NSFW Concept Erasure in Text-to-Image Diffusion Models
Text-to-image diffusion models have gained widespread application across various domains, demonstrating remarkable creative potential. However, the strong generalization capabilities of diffusion models can inadvertently lead to the generation of not-safe-for-work (NSFW) content, posing significant risks to their safe deployment. While several concept erasure methods have been proposed to mitigate the issue associated with NSFW content, a comprehensive evaluation of their effectiveness across various scenarios remains absent. To bridge this gap, we introduce a full-pipeline toolkit specifically designed for concept erasure and conduct the first systematic study of NSFW concept erasure methods. By examining the interplay between the underlying mechanisms and empirical observations, we provide in-depth insights and practical guidance for the effective application of concept erasure methods in various real-world scenarios, with the aim of advancing the understanding of content safety in diffusion models and establishing a solid foundation for future research and development in this critical area.
ViaRL: Adaptive Temporal Grounding via Visual Iterated Amplification Reinforcement Learning
Video understanding is inherently intention-driven-humans naturally focus on relevant frames based on their goals. Recent advancements in multimodal large language models (MLLMs) have enabled flexible query-driven reasoning; however, video-based frameworks like Video Chain-of-Thought lack direct training signals to effectively identify relevant frames. Current approaches often rely on heuristic methods or pseudo-label supervised annotations, which are both costly and limited in scalability across diverse scenarios. To overcome these challenges, we introduce ViaRL, the first framework to leverage rule-based reinforcement learning (RL) for optimizing frame selection in intention-driven video understanding. An iterated amplification strategy is adopted to perform alternating cyclic training in the video CoT system, where each component undergoes iterative cycles of refinement to improve its capabilities. ViaRL utilizes the answer accuracy of a downstream model as a reward signal to train a frame selector through trial-and-error, eliminating the need for expensive annotations while closely aligning with human-like learning processes. Comprehensive experiments across multiple benchmarks, including VideoMME, LVBench, and MLVU, demonstrate that ViaRL consistently delivers superior temporal grounding performance and robust generalization across diverse video understanding tasks, highlighting its effectiveness and scalability. Notably, ViaRL achieves a nearly 15\% improvement on Needle QA, a subset of MLVU, which is required to search a specific needle within a long video and regarded as one of the most suitable benchmarks for evaluating temporal grounding.
Stronger ViTs With Octic Equivariance
Recent efforts at scaling computer vision models have established Vision Transformers (ViTs) as the leading architecture. ViTs incorporate weight sharing over image patches as an important inductive bias. In this work, we show that ViTs benefit from incorporating equivariance under the octic group, i.e., reflections and 90-degree rotations, as a further inductive bias. We develop new architectures, octic ViTs, that use octic-equivariant layers and put them to the test on both supervised and self-supervised learning. Through extensive experiments on DeiT-III and DINOv2 training on ImageNet-1K, we show that octic ViTs yield more computationally efficient networks while also improving performance. In particular, we achieve approximately 40% reduction in FLOPs for ViT-H while simultaneously improving both classification and segmentation results.
FRN: Fractal-Based Recursive Spectral Reconstruction Network
Generating hyperspectral images (HSIs) from RGB images through spectral reconstruction can significantly reduce the cost of HSI acquisition. In this paper, we propose a Fractal-Based Recursive Spectral Reconstruction Network (FRN), which differs from existing paradigms that attempt to directly integrate the full-spectrum information from the R, G, and B channels in a one-shot manner. Instead, it treats spectral reconstruction as a progressive process, predicting from broad to narrow bands or employing a coarse-to-fine approach for predicting the next wavelength. Inspired by fractals in mathematics, FRN establishes a novel spectral reconstruction paradigm by recursively invoking an atomic reconstruction module. In each invocation, only the spectral information from neighboring bands is used to provide clues for the generation of the image at the next wavelength, which follows the low-rank property of spectral data. Moreover, we design a band-aware state space model that employs a pixel-differentiated scanning strategy at different stages of the generation process, further suppressing interference from low-correlation regions caused by reflectance differences. Through extensive experimentation across different datasets, FRN achieves superior reconstruction performance compared to state-of-the-art methods in both quantitative and qualitative evaluations.
Bridging Sign and Spoken Languages: Pseudo Gloss Generation for Sign Language Translation
Sign Language Translation (SLT) aims to map sign language videos to spoken language text. A common approach relies on gloss annotations as an intermediate representation, decomposing SLT into two sub-tasks: video-to-gloss recognition and gloss-to-text translation. While effective, this paradigm depends on expert-annotated gloss labels, which are costly and rarely available in existing datasets, limiting its scalability. To address this challenge, we propose a gloss-free pseudo gloss generation framework that eliminates the need for human-annotated glosses while preserving the structured intermediate representation. Specifically, we prompt a Large Language Model (LLM) with a few example text-gloss pairs using in-context learning to produce draft sign glosses from spoken language text. To enhance the correspondence between LLM-generated pseudo glosses and the sign sequences in video, we correct the ordering in the pseudo glosses for better alignment via a weakly supervised learning process. This reordering facilitates the incorporation of auxiliary alignment objectives, and allows for the use of efficient supervision via a Connectionist Temporal Classification (CTC) loss. We train our SLT mode, which consists of a vision encoder and a translator, through a three-stage pipeline, which progressively narrows the modality gap between sign language and spoken language. Despite its simplicity, our approach outperforms previous state-of-the-art gloss-free frameworks on two SLT benchmarks and achieves competitive results compared to gloss-based methods.
comment: Technical report, 21 pages
Chain-of-Focus: Adaptive Visual Search and Zooming for Multimodal Reasoning via RL
Vision language models (VLMs) have achieved impressive performance across a variety of computer vision tasks. However, the multimodal reasoning capability has not been fully explored in existing models. In this paper, we propose a Chain-of-Focus (CoF) method that allows VLMs to perform adaptive focusing and zooming in on key image regions based on obtained visual cues and the given questions, achieving efficient multimodal reasoning. To enable this CoF capability, we present a two-stage training pipeline, including supervised fine-tuning (SFT) and reinforcement learning (RL). In the SFT stage, we construct the MM-CoF dataset, comprising 3K samples derived from a visual agent designed to adaptively identify key regions to solve visual tasks with different image resolutions and questions. We use MM-CoF to fine-tune the Qwen2.5-VL model for cold start. In the RL stage, we leverage the outcome accuracies and formats as rewards to update the Qwen2.5-VL model, enabling further refining the search and reasoning strategy of models without human priors. Our model achieves significant improvements on multiple benchmarks. On the V* benchmark that requires strong visual reasoning capability, our model outperforms existing VLMs by 5% among 8 image resolutions ranging from 224 to 4K, demonstrating the effectiveness of the proposed CoF method and facilitating the more efficient deployment of VLMs in practical applications.
TimeCausality: Evaluating the Causal Ability in Time Dimension for Vision Language Models
Reasoning about temporal causality, particularly irreversible transformations of objects governed by real-world knowledge (e.g., fruit decay and human aging), is a fundamental aspect of human visual understanding. Unlike temporal perception based on simple event sequences, this form of reasoning requires a deeper comprehension of how object states change over time. Although the current powerful Vision-Language Models (VLMs) have demonstrated impressive performance on a wide range of downstream tasks, their capacity to reason about temporal causality remains underexplored. To address this gap, we introduce \textbf{TimeCausality}, a novel benchmark specifically designed to evaluate the causal reasoning ability of VLMs in the temporal dimension. Based on our TimeCausality, we find that while the current SOTA open-source VLMs have achieved performance levels comparable to closed-source models like GPT-4o on various standard visual question answering tasks, they fall significantly behind on our benchmark compared with their closed-source competitors. Furthermore, even GPT-4o exhibits a marked drop in performance on TimeCausality compared to its results on other tasks. These findings underscore the critical need to incorporate temporal causality into the evaluation and development of VLMs, and they highlight an important challenge for the open-source VLM community moving forward. Code and Data are available at \href{https://github.com/Zeqing-Wang/TimeCausality }{TimeCausality}.
comment: 17 pages, 6 figures, 3 tables
On the Robustness of Medical Vision-Language Models: Are they Truly Generalizable? UAI
Medical Vision-Language Models (MVLMs) have achieved par excellence generalization in medical image analysis, yet their performance under noisy, corrupted conditions remains largely untested. Clinical imaging is inherently susceptible to acquisition artifacts and noise; however, existing evaluations predominantly assess generally clean datasets, overlooking robustness -- i.e., the model's ability to perform under real-world distortions. To address this gap, we first introduce MediMeta-C, a corruption benchmark that systematically applies several perturbations across multiple medical imaging datasets. Combined with MedMNIST-C, this establishes a comprehensive robustness evaluation framework for MVLMs. We further propose RobustMedCLIP, a visual encoder adaptation of a pretrained MVLM that incorporates few-shot tuning to enhance resilience against corruptions. Through extensive experiments, we benchmark 5 major MVLMs across 5 medical imaging modalities, revealing that existing models exhibit severe degradation under corruption and struggle with domain-modality tradeoffs. Our findings highlight the necessity of diverse training and robust adaptation strategies, demonstrating that efficient low-rank adaptation when paired with few-shot tuning, improves robustness while preserving generalization across modalities.
comment: Dataset and Code is available at https://github.com/BioMedIA-MBZUAI/RobustMedCLIP Accepted at: Medical Image Understanding and Analysis (MIUA) 2025
Efficient Data Driven Mixture-of-Expert Extraction from Trained Networks CVPR
Vision Transformers have emerged as the state-of-the-art models in various Computer Vision tasks, but their high computational and resource demands pose significant challenges. While Mixture-of-Experts (MoE) can make these models more efficient, they often require costly retraining or even training from scratch. Recent developments aim to reduce these computational costs by leveraging pretrained networks. These have been shown to produce sparse activation patterns in the Multi-Layer Perceptrons (MLPs) of the encoder blocks, allowing for conditional activation of only relevant subnetworks for each sample. Building on this idea, we propose a new method to construct MoE variants from pretrained models. Our approach extracts expert subnetworks from the model's MLP layers post-training in two phases. First, we cluster output activations to identify distinct activation patterns. In the second phase, we use these clusters to extract the corresponding subnetworks responsible for producing them. On ImageNet-1k recognition tasks, we demonstrate that these extracted experts can perform surprisingly well out of the box and require only minimal fine-tuning to regain 98% of the original performance, all while reducing MACs and model size, by up to 36% and 32% respectively.
comment: Accepted at IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2025
Mouse Lockbox Dataset: Behavior Recognition for Mice Solving Lockboxes
Machine learning and computer vision methods have a major impact on the study of natural animal behavior, as they enable the (semi-)automatic analysis of vast amounts of video data. Mice are the standard mammalian model system in most research fields, but the datasets available today to refine such methods focus either on simple or social behaviors. In this work, we present a video dataset of individual mice solving complex mechanical puzzles, so-called lockboxes. The more than 110 hours of total playtime show their behavior recorded from three different perspectives. As a benchmark for frame-level action classification methods, we provide human-annotated labels for all videos of two different mice, that equal 13% of our dataset. Our keypoint (pose) tracking-based action classification framework illustrates the challenges of automated labeling of fine-grained behaviors, such as the manipulation of objects. We hope that our work will help accelerate the advancement of automated action and behavior classification in the computational neuroscience community. Our dataset is publicly available at https://doi.org/10.14279/depositonce-23850
Visual Question Answering on Multiple Remote Sensing Image Modalities
The extraction of visual features is an essential step in Visual Question Answering (VQA). Building a good visual representation of the analyzed scene is indeed one of the essential keys for the system to be able to correctly understand the latter in order to answer complex questions. In many fields such as remote sensing, the visual feature extraction step could benefit significantly from leveraging different image modalities carrying complementary spectral, spatial and contextual information. In this work, we propose to add multiple image modalities to VQA in the particular context of remote sensing, leading to a novel task for the computer vision community. To this end, we introduce a new VQA dataset, named TAMMI (Text and Multi-Modal Imagery) with diverse questions on scenes described by three different modalities (very high resolution RGB, multi-spectral imaging data and synthetic aperture radar). Thanks to an automated pipeline, this dataset can be easily extended according to experimental needs. We also propose the MM-RSVQA (Multi-modal Multi-resolution Remote Sensing Visual Question Answering) model, based on VisualBERT, a vision-language transformer, to effectively combine the multiple image modalities and text through a trainable fusion process. A preliminary experimental study shows promising results of our methodology on this challenging dataset, with an accuracy of 65.56% on the targeted VQA task. This pioneering work paves the way for the community to a new multi-modal multi-resolution VQA task that can be applied in other imaging domains (such as medical imaging) where multi-modality can enrich the visual representation of a scene. The dataset and code are available at https://tammi.sylvainlobry.com/.
comment: EARTHVISION 2025 8 pages, 1 page of supplementary material, 4 figures
Expanding Zero-Shot Object Counting with Rich Prompts
Expanding pre-trained zero-shot counting models to handle unseen categories requires more than simply adding new prompts, as this approach does not achieve the necessary alignment between text and visual features for accurate counting. We introduce RichCount, the first framework to address these limitations, employing a two-stage training strategy that enhances text encoding and strengthens the model's association with objects in images. RichCount improves zero-shot counting for unseen categories through two key objectives: (1) enriching text features with a feed-forward network and adapter trained on text-image similarity, thereby creating robust, aligned representations; and (2) applying this refined encoder to counting tasks, enabling effective generalization across diverse prompts and complex images. In this manner, RichCount goes beyond simple prompt expansion to establish meaningful feature alignment that supports accurate counting across novel categories. Extensive experiments on three benchmark datasets demonstrate the effectiveness of RichCount, achieving state-of-the-art performance in zero-shot counting and significantly enhancing generalization to unseen categories in open-world scenarios.
Are Vision-Language Models Safe in the Wild? A Meme-Based Benchmark Study
Rapid deployment of vision-language models (VLMs) magnifies safety risks, yet most evaluations rely on artificial images. This study asks: How safe are current VLMs when confronted with meme images that ordinary users share? To investigate this question, we introduce MemeSafetyBench, a 50,430-instance benchmark pairing real meme images with both harmful and benign instructions. Using a comprehensive safety taxonomy and LLM-based instruction generation, we assess multiple VLMs across single and multi-turn interactions. We investigate how real-world memes influence harmful outputs, the mitigating effects of conversational context, and the relationship between model scale and safety metrics. Our findings demonstrate that VLMs show greater vulnerability to meme-based harmful prompts than to synthetic or typographic images. Memes significantly increase harmful responses and decrease refusals compared to text-only inputs. Though multi-turn interactions provide partial mitigation, elevated vulnerability persists. These results highlight the need for ecologically valid evaluations and stronger safety mechanisms.
EVA: Expressive Virtual Avatars from Multi-view Videos SIGGRAPH 2025
With recent advancements in neural rendering and motion capture algorithms, remarkable progress has been made in photorealistic human avatar modeling, unlocking immense potential for applications in virtual reality, augmented reality, remote communication, and industries such as gaming, film, and medicine. However, existing methods fail to provide complete, faithful, and expressive control over human avatars due to their entangled representation of facial expressions and body movements. In this work, we introduce Expressive Virtual Avatars (EVA), an actor-specific, fully controllable, and expressive human avatar framework that achieves high-fidelity, lifelike renderings in real time while enabling independent control of facial expressions, body movements, and hand gestures. Specifically, our approach designs the human avatar as a two-layer model: an expressive template geometry layer and a 3D Gaussian appearance layer. First, we present an expressive template tracking algorithm that leverages coarse-to-fine optimization to accurately recover body motions, facial expressions, and non-rigid deformation parameters from multi-view videos. Next, we propose a novel decoupled 3D Gaussian appearance model designed to effectively disentangle body and facial appearance. Unlike unified Gaussian estimation approaches, our method employs two specialized and independent modules to model the body and face separately. Experimental results demonstrate that EVA surpasses state-of-the-art methods in terms of rendering quality and expressiveness, validating its effectiveness in creating full-body avatars. This work represents a significant advancement towards fully drivable digital human models, enabling the creation of lifelike digital avatars that faithfully replicate human geometry and appearance.
comment: Accepted at SIGGRAPH 2025 Conference Track, Project page: https://vcai.mpi-inf.mpg.de/projects/EVA/
The P$^3$ dataset: Pixels, Points and Polygons for Multimodal Building Vectorization
We present the P$^3$ dataset, a large-scale multimodal benchmark for building vectorization, constructed from aerial LiDAR point clouds, high-resolution aerial imagery, and vectorized 2D building outlines, collected across three continents. The dataset contains over 10 billion LiDAR points with decimeter-level accuracy and RGB images at a ground sampling distance of 25 centimeter. While many existing datasets primarily focus on the image modality, P$^3$ offers a complementary perspective by also incorporating dense 3D information. We demonstrate that LiDAR point clouds serve as a robust modality for predicting building polygons, both in hybrid and end-to-end learning frameworks. Moreover, fusing aerial LiDAR and imagery further improves accuracy and geometric quality of predicted polygons. The P$^3$ dataset is publicly available, along with code and pretrained weights of three state-of-the-art models for building polygon prediction at https://github.com/raphaelsulzer/PixelsPointsPolygons .
RAZER: Robust Accelerated Zero-Shot 3D Open-Vocabulary Panoptic Reconstruction with Spatio-Temporal Aggregation
Mapping and understanding complex 3D environments is fundamental to how autonomous systems perceive and interact with the physical world, requiring both precise geometric reconstruction and rich semantic comprehension. While existing 3D semantic mapping systems excel at reconstructing and identifying predefined object instances, they lack the flexibility to efficiently build semantic maps with open-vocabulary during online operation. Although recent vision-language models have enabled open-vocabulary object recognition in 2D images, they haven't yet bridged the gap to 3D spatial understanding. The critical challenge lies in developing a training-free unified system that can simultaneously construct accurate 3D maps while maintaining semantic consistency and supporting natural language interactions in real time. In this paper, we develop a zero-shot framework that seamlessly integrates GPU-accelerated geometric reconstruction with open-vocabulary vision-language models through online instance-level semantic embedding fusion, guided by hierarchical object association with spatial indexing. Our training-free system achieves superior performance through incremental processing and unified geometric-semantic updates, while robustly handling 2D segmentation inconsistencies. The proposed general-purpose 3D scene understanding framework can be used for various tasks including zero-shot 3D instance retrieval, segmentation, and object detection to reason about previously unseen objects and interpret natural language queries. The project page is available at https://razer-3d.github.io.
Better Safe Than Sorry? Overreaction Problem of Vision Language Models in Visual Emergency Recognition
Vision-Language Models (VLMs) have demonstrated impressive capabilities in understanding visual content, but their reliability in safety-critical contexts remains under-explored. We introduce VERI (Visual Emergency Recognition Dataset), a carefully designed diagnostic benchmark of 200 images (100 contrastive pairs). Each emergency scene is matched with a visually similar but safe counterpart through multi-stage human verification and iterative refinement. Using a two-stage protocol - risk identification and emergency response - we evaluate 14 VLMs (2B-124B parameters) across medical emergencies, accidents, and natural disasters. Our analysis reveals a systematic overreaction problem: models excel at identifying real emergencies (70-100 percent success rate) but suffer from an alarming rate of false alarms, misidentifying 31-96 percent of safe situations as dangerous, with 10 scenarios failed by all models regardless of scale. This "better-safe-than-sorry" bias manifests primarily through contextual overinterpretation (88-93 percent of errors), challenging VLMs' reliability for safety applications. These findings highlight persistent limitations that are not resolved by increasing model scale, motivating targeted approaches for improving contextual safety assessment in visually misleading scenarios.
comment: 13 pages
Objective Bicycle Occlusion Level Classification using a Deformable Parts-Based Model
Road safety is a critical challenge, particularly for cyclists, who are among the most vulnerable road users. This study aims to enhance road safety by proposing a novel benchmark for bicycle occlusion level classification using advanced computer vision techniques. Utilizing a parts-based detection model, images are annotated and processed through a custom image detection pipeline. A novel method of bicycle occlusion level is proposed to objectively quantify the visibility and occlusion level of bicycle semantic parts. The findings indicate that the model robustly quantifies the visibility and occlusion level of bicycles, a significant improvement over the subjective methods used by the current state of the art. Widespread use of the proposed methodology will facilitate the accurate performance reporting of cyclist detection algorithms for occluded cyclists, informing the development of more robust vulnerable road user detection methods for autonomous vehicles.
My Face Is Mine, Not Yours: Facial Protection Against Diffusion Model Face Swapping
The proliferation of diffusion-based deepfake technologies poses significant risks for unauthorized and unethical facial image manipulation. While traditional countermeasures have primarily focused on passive detection methods, this paper introduces a novel proactive defense strategy through adversarial attacks that preemptively protect facial images from being exploited by diffusion-based deepfake systems. Existing adversarial protection methods predominantly target conventional generative architectures (GANs, AEs, VAEs) and fail to address the unique challenges presented by diffusion models, which have become the predominant framework for high-quality facial deepfakes. Current diffusion-specific adversarial approaches are limited by their reliance on specific model architectures and weights, rendering them ineffective against the diverse landscape of diffusion-based deepfake implementations. Additionally, they typically employ global perturbation strategies that inadequately address the region-specific nature of facial manipulation in deepfakes.
Parameter-Efficient Fine-Tuning of Multispectral Foundation Models for Hyperspectral Image Classification
Foundation models have achieved great success across diverse domains, including remote sensing (RS), thanks to their versatility and strong generalization abilities. However, most RS foundation models are designed for multispectral data, while hyperspectral imagery (HSI) - with its hundreds of spectral bands - remains less explored. Fine-tuning such models for downstream tasks is also challenging, often demanding considerable memory and storage. In this paper, we propose an efficient framework to fine-tune SpectralGPT, a multispectral foundation model, for hyperspectral image classification (HSIC). We explore several Parameter-Efficient Fine-Tuning (PEFT) methods, including Low-Rank Adaptation (LoRA), Kronecker-based adaptation (KronA), Low-Rank Kronecker (LoKr), and the recent LoRA+, which uses distinct learning rates for low-rank adapters scaled by a factor lambda. Inspired by LoRA+, we introduce KronA+, which applies a similar mechanism to the Kronecker matrices. We evaluate our approach on five datasets from different sensors, showing competitive performance with state-of-the-art HSI models. Our full fine-tuning (FFT) setup for SpectralGPT even outperforms a dedicated hyperspectral foundation model on some datasets while requiring only a quarter of the training epochs. Under the same number of epochs, KronA+ reaches similar performance with far fewer trainable parameters - just 0.056 percent - and adds only approximately 0.2 megabytes of storage, making it the most effective PEFT method tested.
comment: 33 pages, 14 figures
Towards Zero-Shot Differential Morphing Attack Detection with Multimodal Large Language Models
Leveraging the power of multimodal large language models (LLMs) offers a promising approach to enhancing the accuracy and interpretability of morphing attack detection (MAD), especially in real-world biometric applications. This work introduces the use of LLMs for differential morphing attack detection (D-MAD). To the best of our knowledge, this is the first study to employ multimodal LLMs to D-MAD using real biometric data. To effectively utilize these models, we design Chain-of-Thought (CoT)-based prompts to reduce failure-to-answer rates and enhance the reasoning behind decisions. Our contributions include: (1) the first application of multimodal LLMs for D-MAD using real data subjects, (2) CoT-based prompt engineering to improve response reliability and explainability, (3) comprehensive qualitative and quantitative benchmarking of LLM performance using data from 54 individuals captured in passport enrollment scenarios, and (4) comparative analysis of two multimodal LLMs: ChatGPT-4o and Gemini providing insights into their morphing attack detection accuracy and decision transparency. Experimental results show that ChatGPT-4o outperforms Gemini in detection accuracy, especially against GAN-based morphs, though both models struggle under challenging conditions. While Gemini offers more consistent explanations, ChatGPT-4o is more resilient but prone to a higher failure-to-answer rate.
comment: Accepted at IEEE International Conference on Automatic Face and Gesture Recognition (FG 2025)
SoftHGNN: Soft Hypergraph Neural Networks for General Visual Recognition
Visual recognition relies on understanding both the semantics of image tokens and the complex interactions among them. Mainstream self-attention methods, while effective at modeling global pair-wise relations, fail to capture high-order associations inherent in real-world scenes and often suffer from redundant computation. Hypergraphs extend conventional graphs by modeling high-order interactions and offer a promising framework for addressing these limitations. However, existing hypergraph neural networks typically rely on static and hard hyperedge assignments, leading to excessive and redundant hyperedges with hard binary vertex memberships that overlook the continuity of visual semantics. To overcome these issues, we present Soft Hypergraph Neural Networks (SoftHGNNs), which extend the methodology of hypergraph computation, to make it truly efficient and versatile in visual recognition tasks. Our framework introduces the concept of soft hyperedges, where each vertex is associated with hyperedges via continuous participation weights rather than hard binary assignments. This dynamic and differentiable association is achieved by using the learnable hyperedge prototype. Through similarity measurements between token features and the prototype, the model generates semantically rich soft hyperedges. SoftHGNN then aggregates messages over soft hyperedges to capture high-order semantics. To further enhance efficiency when scaling up the number of soft hyperedges, we incorporate a sparse hyperedge selection mechanism that activates only the top-k important hyperedges, along with a load-balancing regularizer to ensure balanced hyperedge utilization. Experimental results across three tasks on five datasets demonstrate that SoftHGNN efficiently captures high-order associations in visual scenes, achieving significant performance improvements.
CEBSNet: Change-Excited and Background-Suppressed Network with Temporal Dependency Modeling for Bitemporal Change Detection
Change detection, a critical task in remote sensing and computer vision, aims to identify pixel-level differences between image pairs captured at the same geographic area but different times. It faces numerous challenges such as illumination variation, seasonal changes, background interference, and shooting angles, especially with a large time gap between images. While current methods have advanced, they often overlook temporal dependencies and overemphasize prominent changes while ignoring subtle but equally important changes. To address these limitations, we introduce \textbf{CEBSNet}, a novel change-excited and background-suppressed network with temporal dependency modeling for change detection. During the feature extraction, we utilize a simple Channel Swap Module (CSM) to model temporal dependency, reducing differences and noise. The Feature Excitation and Suppression Module (FESM) is developed to capture both obvious and subtle changes, maintaining the integrity of change regions. Additionally, we design a Pyramid-Aware Spatial-Channel Attention module (PASCA) to enhance the ability to detect change regions at different sizes and focus on critical regions. We conduct extensive experiments on three common street view datasets and two remote sensing datasets, and our method achieves the state-of-the-art performance.
FaceCrafter: Identity-Conditional Diffusion with Disentangled Control over Facial Pose, Expression, and Emotion
Human facial images encode a rich spectrum of information, encompassing both stable identity-related traits and mutable attributes such as pose, expression, and emotion. While recent advances in image generation have enabled high-quality identity-conditional face synthesis, precise control over non-identity attributes remains challenging, and disentangling identity from these mutable factors is particularly difficult. To address these limitations, we propose a novel identity-conditional diffusion model that introduces two lightweight control modules designed to independently manipulate facial pose, expression, and emotion without compromising identity preservation. These modules are embedded within the cross-attention layers of the base diffusion model, enabling precise attribute control with minimal parameter overhead. Furthermore, our tailored training strategy, which leverages cross-attention between the identity feature and each non-identity control feature, encourages identity features to remain orthogonal to control signals, enhancing controllability and diversity. Quantitative and qualitative evaluations, along with perceptual user studies, demonstrate that our method surpasses existing approaches in terms of control accuracy over pose, expression, and emotion, while also improving generative diversity under identity-only conditioning.
comment: 9 pages(excluding references), 3 figures, 5 tables
BadSR: Stealthy Label Backdoor Attacks on Image Super-Resolution
With the widespread application of super-resolution (SR) in various fields, researchers have begun to investigate its security. Previous studies have demonstrated that SR models can also be subjected to backdoor attacks through data poisoning, affecting downstream tasks. A backdoor SR model generates an attacker-predefined target image when given a triggered image while producing a normal high-resolution (HR) output for clean images. However, prior backdoor attacks on SR models have primarily focused on the stealthiness of poisoned low-resolution (LR) images while ignoring the stealthiness of poisoned HR images, making it easy for users to detect anomalous data. To address this problem, we propose BadSR, which improves the stealthiness of poisoned HR images. The key idea of BadSR is to approximate the clean HR image and the pre-defined target image in the feature space while ensuring that modifications to the clean HR image remain within a constrained range. The poisoned HR images generated by BadSR can be integrated with existing triggers. To further improve the effectiveness of BadSR, we design an adversarially optimized trigger and a backdoor gradient-driven poisoned sample selection method based on a genetic algorithm. The experimental results show that BadSR achieves a high attack success rate in various models and data sets, significantly affecting downstream tasks.
AgentThink: A Unified Framework for Tool-Augmented Chain-of-Thought Reasoning in Vision-Language Models for Autonomous Driving
Vision-Language Models (VLMs) show promise for autonomous driving, yet their struggle with hallucinations, inefficient reasoning, and limited real-world validation hinders accurate perception and robust step-by-step reasoning. To overcome this, we introduce \textbf{AgentThink}, a pioneering unified framework that, for the first time, integrates Chain-of-Thought (CoT) reasoning with dynamic, agent-style tool invocation for autonomous driving tasks. AgentThink's core innovations include: \textbf{(i) Structured Data Generation}, by establishing an autonomous driving tool library to automatically construct structured, self-verified reasoning data explicitly incorporating tool usage for diverse driving scenarios; \textbf{(ii) A Two-stage Training Pipeline}, employing Supervised Fine-Tuning (SFT) with Group Relative Policy Optimization (GRPO) to equip VLMs with the capability for autonomous tool invocation; and \textbf{(iii) Agent-style Tool-Usage Evaluation}, introducing a novel multi-tool assessment protocol to rigorously evaluate the model's tool invocation and utilization. Experiments on the DriveLMM-o1 benchmark demonstrate AgentThink significantly boosts overall reasoning scores by \textbf{53.91\%} and enhances answer accuracy by \textbf{33.54\%}, while markedly improving reasoning quality and consistency. Furthermore, ablation studies and robust zero-shot/few-shot generalization experiments across various benchmarks underscore its powerful capabilities. These findings highlight a promising trajectory for developing trustworthy and tool-aware autonomous driving models.
comment: 18 pages, 8 figures
R3GS: Gaussian Splatting for Robust Reconstruction and Relocalization in Unconstrained Image Collections
We propose R3GS, a robust reconstruction and relocalization framework tailored for unconstrained datasets. Our method uses a hybrid representation during training. Each anchor combines a global feature from a convolutional neural network (CNN) with a local feature encoded by the multiresolution hash grids [2]. Subsequently, several shallow multi-layer perceptrons (MLPs) predict the attributes of each Gaussians, including color, opacity, and covariance. To mitigate the adverse effects of transient objects on the reconstruction process, we ffne-tune a lightweight human detection network. Once ffne-tuned, this network generates a visibility map that efffciently generalizes to other transient objects (such as posters, banners, and cars) with minimal need for further adaptation. Additionally, to address the challenges posed by sky regions in outdoor scenes, we propose an effective sky-handling technique that incorporates a depth prior as a constraint. This allows the inffnitely distant sky to be represented on the surface of a large-radius sky sphere, signiffcantly reducing ffoaters caused by errors in sky reconstruction. Furthermore, we introduce a novel relocalization method that remains robust to changes in lighting conditions while estimating the camera pose of a given image within the reconstructed 3DGS scene. As a result, R3GS significantly enhances rendering ffdelity, improves both training and rendering efffciency, and reduces storage requirements. Our method achieves state-of-the-art performance compared to baseline methods on in-the-wild datasets. The code will be made open-source following the acceptance of the paper.
comment: 7 pages, 4 figures
GS2E: Gaussian Splatting is an Effective Data Generator for Event Stream Generation
We introduce GS2E (Gaussian Splatting to Event), a large-scale synthetic event dataset for high-fidelity event vision tasks, captured from real-world sparse multi-view RGB images. Existing event datasets are often synthesized from dense RGB videos, which typically lack viewpoint diversity and geometric consistency, or depend on expensive, difficult-to-scale hardware setups. GS2E overcomes these limitations by first reconstructing photorealistic static scenes using 3D Gaussian Splatting, and subsequently employing a novel, physically-informed event simulation pipeline. This pipeline generally integrates adaptive trajectory interpolation with physically-consistent event contrast threshold modeling. Such an approach yields temporally dense and geometrically consistent event streams under diverse motion and lighting conditions, while ensuring strong alignment with underlying scene structures. Experimental results on event-based 3D reconstruction demonstrate GS2E's superior generalization capabilities and its practical value as a benchmark for advancing event vision research.
comment: 21 pages, 7 figures. More details at http://intothemild.github.io/GS2E.github.io
Reconsider the Template Mesh in Deep Learning-based Mesh Reconstruction
Mesh reconstruction is a cornerstone process across various applications, including in-silico trials, digital twins, surgical planning, and navigation. Recent advancements in deep learning have notably enhanced mesh reconstruction speeds. Yet, traditional methods predominantly rely on deforming a standardised template mesh for individual subjects, which overlooks the unique anatomical variations between them, and may compromise the fidelity of the reconstructions. In this paper, we propose an adaptive-template-based mesh reconstruction network (ATMRN), which generates adaptive templates from the given images for the subsequent deformation, moving beyond the constraints of a singular, fixed template. Our approach, validated on cortical magnetic resonance (MR) images from the OASIS dataset, sets a new benchmark in voxel-to-cortex mesh reconstruction, achieving an average symmetric surface distance of 0.267mm across four cortical structures. Our proposed method is generic and can be easily transferred to other image modalities and anatomical structures.
Kernel PCA for Out-of-Distribution Detection: Non-Linear Kernel Selections and Approximations NeurIPS'24
Out-of-Distribution (OoD) detection is vital for the reliability of deep neural networks, the key of which lies in effectively characterizing the disparities between OoD and In-Distribution (InD) data. In this work, such disparities are exploited through a fresh perspective of non-linear feature subspace. That is, a discriminative non-linear subspace is learned from InD features to capture representative patterns of InD, while informative patterns of OoD features cannot be well captured in such a subspace due to their different distribution. Grounded on this perspective, we exploit the deviations of InD and OoD features in such a non-linear subspace for effective OoD detection. To be specific, we leverage the framework of Kernel Principal Component Analysis (KPCA) to attain the discriminative non-linear subspace and deploy the reconstruction error on such subspace to distinguish InD and OoD data. Two challenges emerge: (i) the learning of an effective non-linear subspace, i.e., the selection of kernel function in KPCA, and (ii) the computation of the kernel matrix with large-scale InD data. For the former, we reveal two vital non-linear patterns that closely relate to the InD-OoD disparity, leading to the establishment of a Cosine-Gaussian kernel for constructing the subspace. For the latter, we introduce two techniques to approximate the Cosine-Gaussian kernel with significantly cheap computations. In particular, our approximation is further tailored by incorporating the InD data confidence, which is demonstrated to promote the learning of discriminative subspaces for OoD data. Our study presents new insights into the non-linear feature subspace for OoD detection and contributes practical explorations on the associated kernel design and efficient computations, yielding a KPCA detection method with distinctively improved efficacy and efficiency.
comment: This study is an extension of its conference version published in NeurIPS'24, see https://proceedings.neurips.cc/paper_files/paper/2024/hash/f2543511e5f4d4764857f9ad833a977d-Abstract-Conference.html
Exploring In-Image Machine Translation with Real-World Background ACL 2025
In-Image Machine Translation (IIMT) aims to translate texts within images from one language to another. Previous research on IIMT was primarily conducted on simplified scenarios such as images of one-line text with black font in white backgrounds, which is far from reality and impractical for applications in the real world. To make IIMT research practically valuable, it is essential to consider a complex scenario where the text backgrounds are derived from real-world images. To facilitate research of complex scenario IIMT, we design an IIMT dataset that includes subtitle text with real-world background. However previous IIMT models perform inadequately in complex scenarios. To address the issue, we propose the DebackX model, which separates the background and text-image from the source image, performs translation on text-image directly, and fuses the translated text-image with the background, to generate the target image. Experimental results show that our model achieves improvements in both translation quality and visual effect.
comment: Accepted to ACL 2025 Findings. Code available at https://github.com/BITHLP/DebackX
DiffProb: Data Pruning for Face Recognition
Face recognition models have made substantial progress due to advances in deep learning and the availability of large-scale datasets. However, reliance on massive annotated datasets introduces challenges related to training computational cost and data storage, as well as potential privacy concerns regarding managing large face datasets. This paper presents DiffProb, the first data pruning approach for the application of face recognition. DiffProb assesses the prediction probabilities of training samples within each identity and prunes the ones with identical or close prediction probability values, as they are likely reinforcing the same decision boundaries, and thus contribute minimally with new information. We further enhance this process with an auxiliary cleaning mechanism to eliminate mislabeled and label-flipped samples, boosting data quality with minimal loss. Extensive experiments on CASIA-WebFace with different pruning ratios and multiple benchmarks, including LFW, CFP-FP, and IJB-C, demonstrate that DiffProb can prune up to 50% of the dataset while maintaining or even, in some settings, improving the verification accuracies. Additionally, we demonstrate DiffProb's robustness across different architectures and loss functions. Our method significantly reduces training cost and data volume, enabling efficient face recognition training and reducing the reliance on massive datasets and their demanding management.
comment: Accepted at IEEE International Conference on Automatic Face and Gesture Recognition (FG) 2025
Scaling Diffusion Transformers Efficiently via $μ$P
Diffusion Transformers have emerged as the foundation for vision generative models, but their scalability is limited by the high cost of hyperparameter (HP) tuning at large scales. Recently, Maximal Update Parametrization ($\mu$P) was proposed for vanilla Transformers, which enables stable HP transfer from small to large language models, and dramatically reduces tuning costs. However, it remains unclear whether $\mu$P of vanilla Transformers extends to diffusion Transformers, which differ architecturally and objectively. In this work, we generalize standard $\mu$P to diffusion Transformers and validate its effectiveness through large-scale experiments. First, we rigorously prove that $\mu$P of mainstream diffusion Transformers, including DiT, U-ViT, PixArt-$\alpha$, and MMDiT, aligns with that of the vanilla Transformer, enabling the direct application of existing $\mu$P methodologies. Leveraging this result, we systematically demonstrate that DiT-$\mu$P enjoys robust HP transferability. Notably, DiT-XL-2-$\mu$P with transferred learning rate achieves 2.9 times faster convergence than the original DiT-XL-2. Finally, we validate the effectiveness of $\mu$P on text-to-image generation by scaling PixArt-$\alpha$ from 0.04B to 0.61B and MMDiT from 0.18B to 18B. In both cases, models under $\mu$P outperform their respective baselines while requiring small tuning cost, only 5.5% of one training run for PixArt-$\alpha$ and 3% of consumption by human experts for MMDiT-18B. These results establish $\mu$P as a principled and efficient framework for scaling diffusion Transformers.
comment: 35 pages, 10 figures, 15 tables
LiveVLM: Efficient Online Video Understanding via Streaming-Oriented KV Cache and Retrieval
Recent developments in Video Large Language Models (Video LLMs) have enabled models to process long video sequences and demonstrate remarkable performance. Nonetheless, studies predominantly focus on offline video question answering, neglecting memory usage and response speed that are essential in various real-world applications, such as Deepseek services, autonomous driving, and robotics. To mitigate these challenges, we propose $\textbf{LiveVLM}$, a training-free framework specifically designed for streaming, online video understanding and real-time interaction. Unlike existing works that process videos only after one question is posed, LiveVLM constructs an innovative streaming-oriented KV cache to process video streams in real-time, retain long-term video details and eliminate redundant KVs, ensuring prompt responses to user queries. For continuous video streams, LiveVLM generates and compresses video key-value tensors (video KVs) to reserve visual information while improving memory efficiency. Furthermore, when a new question is proposed, LiveVLM incorporates an online question-answering process that efficiently fetches both short-term and long-term visual information, while minimizing interference from redundant context. Extensive experiments demonstrate that LiveVLM enables the foundation LLaVA-OneVision model to process 44$\times$ number of frames on the same device, and achieves up to 5$\times$ speedup in response speed compared with SoTA online methods at an input of 256 frames, while maintaining the same or better model performance.
Contrastive Learning-Enhanced Trajectory Matching for Small-Scale Dataset Distillation
Deploying machine learning models in resource-constrained environments, such as edge devices or rapid prototyping scenarios, increasingly demands distillation of large datasets into significantly smaller yet informative synthetic datasets. Current dataset distillation techniques, particularly Trajectory Matching methods, optimize synthetic data so that the model's training trajectory on synthetic samples mirrors that on real data. While demonstrating efficacy on medium-scale synthetic datasets, these methods fail to adequately preserve semantic richness under extreme sample scarcity. To address this limitation, we propose a novel dataset distillation method integrating contrastive learning during image synthesis. By explicitly maximizing instance-level feature discrimination, our approach produces more informative and diverse synthetic samples, even when dataset sizes are significantly constrained. Experimental results demonstrate that incorporating contrastive learning substantially enhances the performance of models trained on very small-scale synthetic datasets. This integration not only guides more effective feature representation but also significantly improves the visual fidelity of the synthesized images. Experimental results demonstrate that our method achieves notable performance improvements over existing distillation techniques, especially in scenarios with extremely limited synthetic data.
comment: Under review
Blind Spot Navigation: Evolutionary Discovery of Sensitive Semantic Concepts for LVLMs
Adversarial attacks aim to generate malicious inputs that mislead deep models, but beyond causing model failure, they cannot provide certain interpretable information such as ``\textit{What content in inputs make models more likely to fail?}'' However, this information is crucial for researchers to specifically improve model robustness. Recent research suggests that models may be particularly sensitive to certain semantics in visual inputs (such as ``wet,'' ``foggy''), making them prone to errors. Inspired by this, in this paper we conducted the first exploration on large vision-language models (LVLMs) and found that LVLMs indeed are susceptible to hallucinations and various errors when facing specific semantic concepts in images. To efficiently search for these sensitive concepts, we integrated large language models (LLMs) and text-to-image (T2I) models to propose a novel semantic evolution framework. Randomly initialized semantic concepts undergo LLM-based crossover and mutation operations to form image descriptions, which are then converted by T2I models into visual inputs for LVLMs. The task-specific performance of LVLMs on each input is quantified as fitness scores for the involved semantics and serves as reward signals to further guide LLMs in exploring concepts that induce LVLMs. Extensive experiments on seven mainstream LVLMs and two multimodal tasks demonstrate the effectiveness of our method. Additionally, we provide interesting findings about the sensitive semantics of LVLMs, aiming to inspire further in-depth research.
gen2seg: Generative Models Enable Generalizable Instance Segmentation
By pretraining to synthesize coherent images from perturbed inputs, generative models inherently learn to understand object boundaries and scene compositions. How can we repurpose these generative representations for general-purpose perceptual organization? We finetune Stable Diffusion and MAE (encoder+decoder) for category-agnostic instance segmentation using our instance coloring loss exclusively on a narrow set of object types (indoor furnishings and cars). Surprisingly, our models exhibit strong zero-shot generalization, accurately segmenting objects of types and styles unseen in finetuning (and in many cases, MAE's ImageNet-1K pretraining too). Our best-performing models closely approach the heavily supervised SAM when evaluated on unseen object types and styles, and outperform it when segmenting fine structures and ambiguous boundaries. In contrast, existing promptable segmentation architectures or discriminatively pretrained models fail to generalize. This suggests that generative models learn an inherent grouping mechanism that transfers across categories and domains, even without internet-scale pretraining. Code, pretrained models, and demos are available on our website.
comment: Website: https://reachomk.github.io/gen2seg/
Zero-Shot Gaze-based Volumetric Medical Image Segmentation CVPR 2025
Accurate segmentation of anatomical structures in volumetric medical images is crucial for clinical applications, including disease monitoring and cancer treatment planning. Contemporary interactive segmentation models, such as Segment Anything Model 2 (SAM-2) and its medical variant (MedSAM-2), rely on manually provided prompts like bounding boxes and mouse clicks. In this study, we introduce eye gaze as a novel informational modality for interactive segmentation, marking the application of eye-tracking for 3D medical image segmentation. We evaluate the performance of using gaze-based prompts with SAM-2 and MedSAM-2 using both synthetic and real gaze data. Compared to bounding boxes, gaze-based prompts offer a time-efficient interaction approach with slightly lower segmentation quality. Our findings highlight the potential of using gaze as a complementary input modality for interactive 3D medical image segmentation.
comment: Accepted to MMFM-BIOMED Workshop @ CVPR 2025
Fooling the LVLM Judges: Visual Biases in LVLM-Based Evaluation
Recently, large vision-language models (LVLMs) have emerged as the preferred tools for judging text-image alignment, yet their robustness along the visual modality remains underexplored. This work is the first study to address a key research question: Can adversarial visual manipulations systematically fool LVLM judges into assigning unfairly inflated scores? We define potential image induced biases within the context of T2I evaluation and examine how these biases affect the evaluations of LVLM judges. Moreover, we introduce a novel, fine-grained, multi-domain meta-evaluation benchmark named FRAME, which is deliberately constructed to exhibit diverse score distributions. By introducing the defined biases into the benchmark, we reveal that all tested LVLM judges exhibit vulnerability across all domains, consistently inflating scores for manipulated images. Further analysis reveals that combining multiple biases amplifies their effects, and pairwise evaluations are similarly susceptible. Moreover, we observe that visual biases persist under prompt-based mitigation strategies, highlighting the vulnerability of current LVLM evaluation systems and underscoring the urgent need for more robust LVLM judges.
comment: (21pgs, 12 Tables, 9 Figures)
VET-DINO: Learning Anatomical Understanding Through Multi-View Distillation in Veterinary Imaging
Self-supervised learning has emerged as a powerful paradigm for training deep neural networks, particularly in medical imaging where labeled data is scarce. While current approaches typically rely on synthetic augmentations of single images, we propose VET-DINO, a framework that leverages a unique characteristic of medical imaging: the availability of multiple standardized views from the same study. Using a series of clinical veterinary radiographs from the same patient study, we enable models to learn view-invariant anatomical structures and develop an implied 3D understanding from 2D projections. We demonstrate our approach on a dataset of 5 million veterinary radiographs from 668,000 canine studies. Through extensive experimentation, including view synthesis and downstream task performance, we show that learning from real multi-view pairs leads to superior anatomical understanding compared to purely synthetic augmentations. VET-DINO achieves state-of-the-art performance on various veterinary imaging tasks. Our work establishes a new paradigm for self-supervised learning in medical imaging that leverages domain-specific properties rather than merely adapting natural image techniques.
GAMA++: Disentangled Geometric Alignment with Adaptive Contrastive Perturbation for Reliable Domain Transfer
Despite progress in geometry-aware domain adaptation, current methods such as GAMA still suffer from two unresolved issues: (1) insufficient disentanglement of task-relevant and task-irrelevant manifold dimensions, and (2) rigid perturbation schemes that ignore per-class alignment asymmetries. To address this, we propose GAMA++, a novel framework that introduces (i) latent space disentanglement to isolate label-consistent manifold directions from nuisance factors, and (ii) an adaptive contrastive perturbation strategy that tailors both on- and off-manifold exploration to class-specific manifold curvature and alignment discrepancy. We further propose a cross-domain contrastive consistency loss that encourages local semantic clusters to align while preserving intra-domain diversity. Our method achieves state-of-the-art results on DomainNet, Office-Home, and VisDA benchmarks under both standard and few-shot settings, with notable improvements in class-level alignment fidelity and boundary robustness. GAMA++ sets a new standard for semantic geometry alignment in transfer learning.
X-GRM: Large Gaussian Reconstruction Model for Sparse-view X-rays to Computed Tomography
Computed Tomography serves as an indispensable tool in clinical workflows, providing non-invasive visualization of internal anatomical structures. Existing CT reconstruction works are limited to small-capacity model architecture, inflexible volume representation, and small-scale training data. In this paper, we present X-GRM (X-ray Gaussian Reconstruction Model), a large feedforward model for reconstructing 3D CT from sparse-view 2D X-ray projections. X-GRM employs a scalable transformer-based architecture to encode an arbitrary number of sparse X-ray inputs, where tokens from different views are integrated efficiently. Then, tokens are decoded into a new volume representation, named Voxel-based Gaussian Splatting (VoxGS), which enables efficient CT volume extraction and differentiable X-ray rendering. To support the training of X-GRM, we collect ReconX-15K, a large-scale CT reconstruction dataset containing around 15,000 CT/X-ray pairs across diverse organs, including the chest, abdomen, pelvis, and tooth etc. This combination of a high-capacity model, flexible volume representation, and large-scale training data empowers our model to produce high-quality reconstructions from various testing inputs, including in-domain and out-domain X-ray projections. Project Page: https://github.com/CUHK-AIM-Group/X-GRM.
SAMA-UNet: Enhancing Medical Image Segmentation with Self-Adaptive Mamba-Like Attention and Causal-Resonance Learning
Medical image segmentation plays an important role in various clinical applications, but existing models often struggle with the computational inefficiencies and challenges posed by complex medical data. State Space Sequence Models (SSMs) have demonstrated promise in modeling long-range dependencies with linear computational complexity, yet their application in medical image segmentation remains hindered by incompatibilities with image tokens and autoregressive assumptions. Moreover, it is difficult to achieve a balance in capturing both local fine-grained information and global semantic dependencies. To address these challenges, we introduce SAMA-UNet, a novel architecture for medical image segmentation. A key innovation is the Self-Adaptive Mamba-like Aggregated Attention (SAMA) block, which integrates contextual self-attention with dynamic weight modulation to prioritise the most relevant features based on local and global contexts. This approach reduces computational complexity and improves the representation of complex image features across multiple scales. We also suggest the Causal-Resonance Multi-Scale Module (CR-MSM), which enhances the flow of information between the encoder and decoder by using causal resonance learning. This mechanism allows the model to automatically adjust feature resolution and causal dependencies across scales, leading to better semantic alignment between the low-level and high-level features in U-shaped architectures. Experiments on MRI, CT, and endoscopy images show that SAMA-UNet performs better in segmentation accuracy than current methods using CNN, Transformer, and Mamba. The implementation is publicly available at GitHub.
CAD: A General Multimodal Framework for Video Deepfake Detection via Cross-Modal Alignment and Distillation
The rapid emergence of multimodal deepfakes (visual and auditory content are manipulated in concert) undermines the reliability of existing detectors that rely solely on modality-specific artifacts or cross-modal inconsistencies. In this work, we first demonstrate that modality-specific forensic traces (e.g., face-swap artifacts or spectral distortions) and modality-shared semantic misalignments (e.g., lip-speech asynchrony) offer complementary evidence, and that neglecting either aspect limits detection performance. Existing approaches either naively fuse modality-specific features without reconciling their conflicting characteristics or focus predominantly on semantic misalignment at the expense of modality-specific fine-grained artifact cues. To address these shortcomings, we propose a general multimodal framework for video deepfake detection via Cross-Modal Alignment and Distillation (CAD). CAD comprises two core components: 1) Cross-modal alignment that identifies inconsistencies in high-level semantic synchronization (e.g., lip-speech mismatches); 2) Cross-modal distillation that mitigates feature conflicts during fusion while preserving modality-specific forensic traces (e.g., spectral distortions in synthetic audio). Extensive experiments on both multimodal and unimodal (e.g., image-only/video-only)deepfake benchmarks demonstrate that CAD significantly outperforms previous methods, validating the necessity of harmonious integration of multimodal complementary information.
DC-Scene: Data-Centric Learning for 3D Scene Understanding
3D scene understanding plays a fundamental role in vision applications such as robotics, autonomous driving, and augmented reality. However, advancing learning-based 3D scene understanding remains challenging due to two key limitations: (1) the large scale and complexity of 3D scenes lead to higher computational costs and slower training compared to 2D counterparts; and (2) high-quality annotated 3D datasets are significantly scarcer than those available for 2D vision. These challenges underscore the need for more efficient learning paradigms. In this work, we propose DC-Scene, a data-centric framework tailored for 3D scene understanding, which emphasizes enhancing data quality and training efficiency. Specifically, we introduce a CLIP-driven dual-indicator quality (DIQ) filter, combining vision-language alignment scores with caption-loss perplexity, along with a curriculum scheduler that progressively expands the training pool from the top 25% to 75% of scene-caption pairs. This strategy filters out noisy samples and significantly reduces dependence on large-scale labeled 3D data. Extensive experiments on ScanRefer and Nr3D demonstrate that DC-Scene achieves state-of-the-art performance (86.1 CIDEr with the top-75% subset vs. 85.4 with the full dataset) while reducing training cost by approximately two-thirds, confirming that a compact set of high-quality samples can outperform exhaustive training. Code will be available at https://github.com/AIGeeksGroup/DC-Scene.
Continuous Representation Methods, Theories, and Applications: An Overview and Perspectives
Recently, continuous representation methods emerge as novel paradigms that characterize the intrinsic structures of real-world data through function representations that map positional coordinates to their corresponding values in the continuous space. As compared with the traditional discrete framework, the continuous framework demonstrates inherent superiority for data representation and reconstruction (e.g., image restoration, novel view synthesis, and waveform inversion) by offering inherent advantages including resolution flexibility, cross-modal adaptability, inherent smoothness, and parameter efficiency. In this review, we systematically examine recent advancements in continuous representation frameworks, focusing on three aspects: (i) Continuous representation method designs such as basis function representation, statistical modeling, tensor function decomposition, and implicit neural representation; (ii) Theoretical foundations of continuous representations such as approximation error analysis, convergence property, and implicit regularization; (iii) Real-world applications of continuous representations derived from computer vision, graphics, bioinformatics, and remote sensing. Furthermore, we outline future directions and perspectives to inspire exploration and deepen insights to facilitate continuous representation methods, theories, and applications. All referenced works are summarized in our open-source repository: https://github.com/YisiLuo/Continuous-Representation-Zoo.
Multimodal Conditional Information Bottleneck for Generalizable AI-Generated Image Detection
Although existing CLIP-based methods for detecting AI-generated images have achieved promising results, they are still limited by severe feature redundancy, which hinders their generalization ability. To address this issue, incorporating an information bottleneck network into the task presents a straightforward solution. However, relying solely on image-corresponding prompts results in suboptimal performance due to the inherent diversity of prompts. In this paper, we propose a multimodal conditional bottleneck network to reduce feature redundancy while enhancing the discriminative power of features extracted by CLIP, thereby improving the model's generalization ability. We begin with a semantic analysis experiment, where we observe that arbitrary text features exhibit lower cosine similarity with real image features than with fake image features in the CLIP feature space, a phenomenon we refer to as "bias". Therefore, we introduce InfoFD, a text-guided AI-generated image detection framework. InfoFD consists of two key components: the Text-Guided Conditional Information Bottleneck (TGCIB) and Dynamic Text Orthogonalization (DTO). TGCIB improves the generalizability of learned representations by conditioning on both text and class modalities. DTO dynamically updates weighted text features, preserving semantic information while leveraging the global "bias". Our model achieves exceptional generalization performance on the GenImage dataset and latest generative models. Our code is available at https://github.com/Ant0ny44/InfoFD.
comment: 24 pages, 16 figures
GT^2-GS: Geometry-aware Texture Transfer for Gaussian Splatting
Transferring 2D textures to 3D modalities is of great significance for improving the efficiency of multimedia content creation. Existing approaches have rarely focused on transferring image textures onto 3D representations. 3D style transfer methods are capable of transferring abstract artistic styles to 3D scenes. However, these methods often overlook the geometric information of the scene, which makes it challenging to achieve high-quality 3D texture transfer results. In this paper, we present GT^2-GS, a geometry-aware texture transfer framework for gaussian splitting. From the perspective of matching texture features with geometric information in rendered views, we identify the issue of insufficient texture features and propose a geometry-aware texture augmentation module to expand the texture feature set. Moreover, a geometry-consistent texture loss is proposed to optimize texture features into the scene representation. This loss function incorporates both camera pose and 3D geometric information of the scene, enabling controllable texture-oriented appearance editing. Finally, a geometry preservation strategy is introduced. By alternating between the texture transfer and geometry correction stages over multiple iterations, this strategy achieves a balance between learning texture features and preserving geometric integrity. Extensive experiments demonstrate the effectiveness and controllability of our method. Through geometric awareness, our approach achieves texture transfer results that better align with human visual perception. Our homepage is available at https://vpx-ecnu.github.io/GT2-GS-website.
comment: 15 pages, 16 figures
Flashback: Memory-Driven Zero-shot, Real-time Video Anomaly Detection
Video Anomaly Detection (VAD) automatically identifies anomalous events from video, mitigating the need for human operators in large-scale surveillance deployments. However, three fundamental obstacles hinder real-world adoption: domain dependency and real-time constraints -- requiring near-instantaneous processing of incoming video. To this end, we propose Flashback, a zero-shot and real-time video anomaly detection paradigm. Inspired by the human cognitive mechanism of instantly judging anomalies and reasoning in current scenes based on past experience, Flashback operates in two stages: Recall and Respond. In the offline recall stage, an off-the-shelf LLM builds a pseudo-scene memory of both normal and anomalous captions without any reliance on real anomaly data. In the online respond stage, incoming video segments are embedded and matched against this memory via similarity search. By eliminating all LLM calls at inference time, Flashback delivers real-time VAD even on a consumer-grade GPU. On two large datasets from real-world surveillance scenarios, UCF-Crime and XD-Violence, we achieve 87.3 AUC (+7.0 pp) and 75.1 AP (+13.1 pp), respectively, outperforming prior zero-shot VAD methods by large margins.
comment: 12 pages, 5 figures
Intentional Gesture: Deliver Your Intentions with Gestures for Speech
When humans speak, gestures help convey communicative intentions, such as adding emphasis or describing concepts. However, current co-speech gesture generation methods rely solely on superficial linguistic cues (\textit{e.g.} speech audio or text transcripts), neglecting to understand and leverage the communicative intention that underpins human gestures. This results in outputs that are rhythmically synchronized with speech but are semantically shallow. To address this gap, we introduce \textbf{Intentional-Gesture}, a novel framework that casts gesture generation as an intention-reasoning task grounded in high-level communicative functions. % First, we curate the \textbf{InG} dataset by augmenting BEAT-2 with gesture-intention annotations (\textit{i.e.}, text sentences summarizing intentions), which are automatically annotated using large vision-language models. Next, we introduce the \textbf{Intentional Gesture Motion Tokenizer} to leverage these intention annotations. It injects high-level communicative functions (\textit{e.g.}, intentions) into tokenized motion representations to enable intention-aware gesture synthesis that are both temporally aligned and semantically meaningful, achieving new state-of-the-art performance on the BEAT-2 benchmark. Our framework offers a modular foundation for expressive gesture generation in digital humans and embodied AI. Project Page: https://andypinxinliu.github.io/Intentional-Gesture
GAMA: Geometry-Aware Manifold Alignment via Structured Adversarial Perturbations for Robust Domain Adaptation
Domain adaptation remains a challenge when there is significant manifold discrepancy between source and target domains. Although recent methods leverage manifold-aware adversarial perturbations to perform data augmentation, they often neglect precise manifold alignment and systematic exploration of structured perturbations. To address this, we propose GAMA (Geometry-Aware Manifold Alignment), a structured framework that achieves explicit manifold alignment via adversarial perturbation guided by geometric information. GAMA systematically employs tangent space exploration and manifold-constrained adversarial optimization, simultaneously enhancing semantic consistency, robustness to off-manifold deviations, and cross-domain alignment. Theoretical analysis shows that GAMA tightens the generalization bound via structured regularization and explicit alignment. Empirical results on DomainNet, VisDA, and Office-Home demonstrate that GAMA consistently outperforms existing adversarial and adaptation methods in both unsupervised and few-shot settings, exhibiting superior robustness, generalization, and manifold alignment capability.
Leveraging Foundation Models for Multimodal Graph-Based Action Recognition
Foundation models have ushered in a new era for multimodal video understanding by enabling the extraction of rich spatiotemporal and semantic representations. In this work, we introduce a novel graph-based framework that integrates a vision-language foundation, leveraging VideoMAE for dynamic visual encoding and BERT for contextual textual embedding, to address the challenge of recognizing fine-grained bimanual manipulation actions. Departing from conventional static graph architectures, our approach constructs an adaptive multimodal graph where nodes represent frames, objects, and textual annotations, and edges encode spatial, temporal, and semantic relationships. These graph structures evolve dynamically based on learned interactions, allowing for flexible and context-aware reasoning. A task-specific attention mechanism within a Graph Attention Network further enhances this reasoning by modulating edge importance based on action semantics. Through extensive evaluations on diverse benchmark datasets, we demonstrate that our method consistently outperforms state-of-the-art baselines, underscoring the strength of combining foundation models with dynamic graph-based reasoning for robust and generalizable action recognition.
Geometrically Regularized Transfer Learning with On-Manifold and Off-Manifold Perturbation
Transfer learning under domain shift remains a fundamental challenge due to the divergence between source and target data manifolds. In this paper, we propose MAADA (Manifold-Aware Adversarial Data Augmentation), a novel framework that decomposes adversarial perturbations into on-manifold and off-manifold components to simultaneously capture semantic variation and model brittleness. We theoretically demonstrate that enforcing on-manifold consistency reduces hypothesis complexity and improves generalization, while off-manifold regularization smooths decision boundaries in low-density regions. Moreover, we introduce a geometry-aware alignment loss that minimizes geodesic discrepancy between source and target manifolds. Experiments on DomainNet, VisDA, and Office-Home show that MAADA consistently outperforms existing adversarial and adaptation methods in both unsupervised and few-shot settings, demonstrating superior structural robustness and cross-domain generalization.
MonoSplat: Generalizable 3D Gaussian Splatting from Monocular Depth Foundation Models
Recent advances in generalizable 3D Gaussian Splatting have demonstrated promising results in real-time high-fidelity rendering without per-scene optimization, yet existing approaches still struggle to handle unfamiliar visual content during inference on novel scenes due to limited generalizability. To address this challenge, we introduce MonoSplat, a novel framework that leverages rich visual priors from pre-trained monocular depth foundation models for robust Gaussian reconstruction. Our approach consists of two key components: a Mono-Multi Feature Adapter that transforms monocular features into multi-view representations, coupled with an Integrated Gaussian Prediction module that effectively fuses both feature types for precise Gaussian generation. Through the Adapter's lightweight attention mechanism, features are seamlessly aligned and aggregated across views while preserving valuable monocular priors, enabling the Prediction module to generate Gaussian primitives with accurate geometry and appearance. Through extensive experiments on diverse real-world datasets, we convincingly demonstrate that MonoSplat achieves superior reconstruction quality and generalization capability compared to existing methods while maintaining computational efficiency with minimal trainable parameters. Codes are available at https://github.com/CUHK-AIM-Group/MonoSplat.
AuxDet: Auxiliary Metadata Matters for Omni-Domain Infrared Small Target Detection
Omni-domain infrared small target detection (IRSTD) poses formidable challenges, as a single model must seamlessly adapt to diverse imaging systems, varying resolutions, and multiple spectral bands simultaneously. Current approaches predominantly rely on visual-only modeling paradigms that not only struggle with complex background interference and inherently scarce target features, but also exhibit limited generalization capabilities across complex omni-scene environments where significant domain shifts and appearance variations occur. In this work, we reveal a critical oversight in existing paradigms: the neglect of readily available auxiliary metadata describing imaging parameters and acquisition conditions, such as spectral bands, sensor platforms, resolution, and observation perspectives. To address this limitation, we propose the Auxiliary Metadata Driven Infrared Small Target Detector (AuxDet), a novel multi-modal framework that fundamentally reimagines the IRSTD paradigm by incorporating textual metadata for scene-aware optimization. Through a high-dimensional fusion module based on multi-layer perceptrons (MLPs), AuxDet dynamically integrates metadata semantics with visual features, guiding adaptive representation learning for each individual sample. Additionally, we design a lightweight prior-initialized enhancement module using 1D convolutional blocks to further refine fused features and recover fine-grained target cues. Extensive experiments on the challenging WideIRSTD-Full benchmark demonstrate that AuxDet consistently outperforms state-of-the-art methods, validating the critical role of auxiliary information in improving robustness and accuracy in omni-domain IRSTD tasks. Code is available at https://github.com/GrokCV/AuxDet.
Exploring Generalized Gait Recognition: Reducing Redundancy and Noise within Indoor and Outdoor Datasets
Generalized gait recognition, which aims to achieve robust performance across diverse domains, remains a challenging problem due to severe domain shifts in viewpoints, appearances, and environments. While mixed-dataset training is widely used to enhance generalization, it introduces new obstacles including inter-dataset optimization conflicts and redundant or noisy samples, both of which hinder effective representation learning. To address these challenges, we propose a unified framework that systematically improves cross-domain gait recognition. First, we design a disentangled triplet loss that isolates supervision signals across datasets, mitigating gradient conflicts during optimization. Second, we introduce a targeted dataset distillation strategy that filters out the least informative 20\% of training samples based on feature redundancy and prediction uncertainty, enhancing data efficiency. Extensive experiments on CASIA-B, OU-MVLP, Gait3D, and GREW demonstrate that our method significantly improves cross-dataset recognition for both GaitBase and DeepGaitV2 backbones, without sacrificing source-domain accuracy. Code will be released at https://github.com/li1er3/Generalized_Gait.
comment: 10 pages, 3 figures
AvatarShield: Visual Reinforcement Learning for Human-Centric Video Forgery Detection
The rapid advancement of Artificial Intelligence Generated Content (AIGC) technologies, particularly in video generation, has led to unprecedented creative capabilities but also increased threats to information integrity, identity security, and public trust. Existing detection methods, while effective in general scenarios, lack robust solutions for human-centric videos, which pose greater risks due to their realism and potential for legal and ethical misuse. Moreover, current detection approaches often suffer from poor generalization, limited scalability, and reliance on labor-intensive supervised fine-tuning. To address these challenges, we propose AvatarShield, the first interpretable MLLM-based framework for detecting human-centric fake videos, enhanced via Group Relative Policy Optimization (GRPO). Through our carefully designed accuracy detection reward and temporal compensation reward, it effectively avoids the use of high-cost text annotation data, enabling precise temporal modeling and forgery detection. Meanwhile, we design a dual-encoder architecture, combining high-level semantic reasoning and low-level artifact amplification to guide MLLMs in effective forgery detection. We further collect FakeHumanVid, a large-scale human-centric video benchmark that includes synthesis methods guided by pose, audio, and text inputs, enabling rigorous evaluation of detection methods in real-world scenes. Extensive experiments show that AvatarShield significantly outperforms existing approaches in both in-domain and cross-domain detection, setting a new standard for human-centric video forensics.
Harnessing Caption Detailness for Data-Efficient Text-to-Image Generation
Training text-to-image (T2I) models with detailed captions can significantly improve their generation quality. Existing methods often rely on simplistic metrics like caption length to represent the detailness of the caption in the T2I training set. In this paper, we propose a new metric to estimate caption detailness based on two aspects: image coverage rate (ICR), which evaluates whether the caption covers all regions/objects in the image, and average object detailness (AOD), which quantifies the detailness of each object's description. Through experiments on the COCO dataset using ShareGPT4V captions, we demonstrate that T2I models trained on high-ICR and -AOD captions achieve superior performance on DPG and other benchmarks. Notably, our metric enables more effective data selection-training on only 20% of full data surpasses both full-dataset training and length-based selection method, improving alignment and reconstruction ability. These findings highlight the critical role of detail-aware metrics over length-based heuristics in caption selection for T2I tasks.
Sparc3D: Sparse Representation and Construction for High-Resolution 3D Shapes Modeling
High-fidelity 3D object synthesis remains significantly more challenging than 2D image generation due to the unstructured nature of mesh data and the cubic complexity of dense volumetric grids. Existing two-stage pipelines-compressing meshes with a VAE (using either 2D or 3D supervision), followed by latent diffusion sampling-often suffer from severe detail loss caused by inefficient representations and modality mismatches introduced in VAE. We introduce Sparc3D, a unified framework that combines a sparse deformable marching cubes representation Sparcubes with a novel encoder Sparconv-VAE. Sparcubes converts raw meshes into high-resolution ($1024^3$) surfaces with arbitrary topology by scattering signed distance and deformation fields onto a sparse cube, allowing differentiable optimization. Sparconv-VAE is the first modality-consistent variational autoencoder built entirely upon sparse convolutional networks, enabling efficient and near-lossless 3D reconstruction suitable for high-resolution generative modeling through latent diffusion. Sparc3D achieves state-of-the-art reconstruction fidelity on challenging inputs, including open surfaces, disconnected components, and intricate geometry. It preserves fine-grained shape details, reduces training and inference cost, and integrates naturally with latent diffusion models for scalable, high-resolution 3D generation.
comment: Homepage: https://lizhihao6.github.io/Sparc3D
Unlocking the Power of SAM 2 for Few-Shot Segmentation ICML'25
Few-Shot Segmentation (FSS) aims to learn class-agnostic segmentation on few classes to segment arbitrary classes, but at the risk of overfitting. To address this, some methods use the well-learned knowledge of foundation models (e.g., SAM) to simplify the learning process. Recently, SAM 2 has extended SAM by supporting video segmentation, whose class-agnostic matching ability is useful to FSS. A simple idea is to encode support foreground (FG) features as memory, with which query FG features are matched and fused. Unfortunately, the FG objects in different frames of SAM 2's video data are always the same identity, while those in FSS are different identities, i.e., the matching step is incompatible. Therefore, we design Pseudo Prompt Generator to encode pseudo query memory, matching with query features in a compatible way. However, the memories can never be as accurate as the real ones, i.e., they are likely to contain incomplete query FG, and some unexpected query background (BG) features, leading to wrong segmentation. Hence, we further design Iterative Memory Refinement to fuse more query FG features into the memory, and devise a Support-Calibrated Memory Attention to suppress the unexpected query BG features in memory. Extensive experiments have been conducted on PASCAL-5$^i$ and COCO-20$^i$ to validate the effectiveness of our design, e.g., the 1-shot mIoU can be 4.2% better than the best baseline.
comment: This paper is accepted by ICML'25
Selective Structured State Space for Multispectral-fused Small Target Detection CVPR 2025
Target detection in high-resolution remote sensing imagery faces challenges due to the low recognition accuracy of small targets and high computational costs. The computational complexity of the Transformer architecture increases quadratically with image resolution, while Convolutional Neural Networks (CNN) architectures are forced to stack deeper convolutional layers to expand their receptive fields, leading to an explosive growth in computational demands. To address these computational constraints, we leverage Mamba's linear complexity for efficiency. However, Mamba's performance declines for small targets, primarily because small targets occupy a limited area in the image and have limited semantic information. Accurate identification of these small targets necessitates not only Mamba's global attention capabilities but also the precise capture of fine local details. To this end, we enhance Mamba by developing the Enhanced Small Target Detection (ESTD) module and the Convolutional Attention Residual Gate (CARG) module. The ESTD module bolsters local attention to capture fine-grained details, while the CARG module, built upon Mamba, emphasizes spatial and channel-wise information, collectively improving the model's ability to capture distinctive representations of small targets. Additionally, to highlight the semantic representation of small targets, we design a Mask Enhanced Pixel-level Fusion (MEPF) module for multispectral fusion, which enhances target features by effectively fusing visible and infrared multimodal information.
comment: This work was submitted to CVPR 2025, but was rejected after being reviewed by 7 reviewers. After revision, it is currently under review
Symmetry-Robust 3D Orientation Estimation ICML 2025
Orientation estimation is a fundamental task in 3D shape analysis which consists of estimating a shape's orientation axes: its side-, up-, and front-axes. Using this data, one can rotate a shape into canonical orientation, where its orientation axes are aligned with the coordinate axes. Developing an orientation algorithm that reliably estimates complete orientations of general shapes remains an open problem. We introduce a two-stage orientation pipeline that achieves state of the art performance on up-axis estimation and further demonstrate its efficacy on full-orientation estimation, where one seeks all three orientation axes. Unlike previous work, we train and evaluate our method on all of Shapenet rather than a subset of classes. We motivate our engineering contributions by theory describing fundamental obstacles to orientation estimation for rotationally-symmetric shapes, and show how our method avoids these obstacles.
comment: ICML 2025
MIRACL-VISION: A Large, multilingual, visual document retrieval benchmark
Document retrieval is an important task for search and Retrieval-Augmented Generation (RAG) applications. Large Language Models (LLMs) have contributed to improving the accuracy of text-based document retrieval. However, documents with complex layout and visual elements like tables, charts and infographics are not perfectly represented in textual format. Recently, image-based document retrieval pipelines have become popular, which use visual large language models (VLMs) to retrieve relevant page images given a query. Current evaluation benchmarks on visual document retrieval are limited, as they primarily focus only English language, rely on synthetically generated questions and offer a small corpus size. Therefore, we introduce MIRACL-VISION, a multilingual visual document retrieval evaluation benchmark. MIRACL-VISION covers 18 languages, and is an extension of the MIRACL dataset, a popular benchmark to evaluate text-based multilingual retrieval pipelines. MIRACL was built using a human-intensive annotation process to generate high-quality questions. In order to reduce MIRACL-VISION corpus size to make evaluation more compute friendly while keeping the datasets challenging, we have designed a method for eliminating the "easy" negatives from the corpus. We conducted extensive experiments comparing MIRACL-VISION with other benchmarks, using popular public text and image models. We observe a gap in state-of-the-art VLM-based embedding models on multilingual capabilities, with up to 59.7% lower retrieval accuracy than a text-based retrieval models. Even for the English language, the visual models retrieval accuracy is 12.1% lower compared to text-based models. MIRACL-VISION is a challenging, representative, multilingual evaluation benchmark for visual retrieval pipelines and will help the community build robust models for document retrieval.
Denoising Score Distillation: From Noisy Diffusion Pretraining to One-Step High-Quality Generation
Diffusion models have achieved remarkable success in generating high-resolution, realistic images across diverse natural distributions. However, their performance heavily relies on high-quality training data, making it challenging to learn meaningful distributions from corrupted samples. This limitation restricts their applicability in scientific domains where clean data is scarce or costly to obtain. In this work, we introduce denoising score distillation (DSD), a surprisingly effective and novel approach for training high-quality generative models from low-quality data. DSD first pretrains a diffusion model exclusively on noisy, corrupted samples and then distills it into a one-step generator capable of producing refined, clean outputs. While score distillation is traditionally viewed as a method to accelerate diffusion models, we show that it can also significantly enhance sample quality, particularly when starting from a degraded teacher model. Across varying noise levels and datasets, DSD consistently improves generative performancewe summarize our empirical evidence in Fig. 1. Furthermore, we provide theoretical insights showing that, in a linear model setting, DSD identifies the eigenspace of the clean data distributions covariance matrix, implicitly regularizing the generator. This perspective reframes score distillation as not only a tool for efficiency but also a mechanism for improving generative models, particularly in low-quality data settings.
comment: First Author and Second Author contributed equally to this work. The last two authors equally advised this work
Dress-1-to-3: Single Image to Simulation-Ready 3D Outfit with Diffusion Prior and Differentiable Physics
Recent advances in large models have significantly advanced image-to-3D reconstruction. However, the generated models are often fused into a single piece, limiting their applicability in downstream tasks. This paper focuses on 3D garment generation, a key area for applications like virtual try-on with dynamic garment animations, which require garments to be separable and simulation-ready. We introduce Dress-1-to-3, a novel pipeline that reconstructs physics-plausible, simulation-ready separated garments with sewing patterns and humans from an in-the-wild image. Starting with the image, our approach combines a pre-trained image-to-sewing pattern generation model for creating coarse sewing patterns with a pre-trained multi-view diffusion model to produce multi-view images. The sewing pattern is further refined using a differentiable garment simulator based on the generated multi-view images. Versatile experiments demonstrate that our optimization approach substantially enhances the geometric alignment of the reconstructed 3D garments and humans with the input image. Furthermore, by integrating a texture generation module and a human motion generation module, we produce customized physics-plausible and realistic dynamic garment demonstrations. Project page: https://dress-1-to-3.github.io/
comment: Project page: https://dress-1-to-3.github.io/
Learning Task-preferred Inference Routes for Gradient De-conflict in Multi-output DNNs
Multi-output deep neural networks(MONs) contain multiple task branches, and these tasks usually share partial network filters that lead to the entanglement of different task inference routes. Due to the inconsistent optimization objectives, the task gradients used for training MONs will interfere with each other on the shared routes, which will decrease the overall model performance. To address this issue, we propose a novel gradient de-conflict algorithm named DR-MGF(Dynamic Routes and Meta-weighted Gradient Fusion) in this work. Different from existing de-conflict methods, DR-MGF achieves gradient de-conflict in MONs by learning task-preferred inference routes. The proposed method is motivated by our experimental findings: the shared filters are not equally important to different tasks. By designing the learnable task-specific importance variables, DR-MGF evaluates the importance of filters for different tasks. Through making the dominances of tasks over filters be proportional to the task-specific importance of filters, DR-MGF can effectively reduce the inter-task interference. The task-specific importance variables ultimately determine task-preferred inference routes at the end of training iterations. Extensive experimental results on CIFAR, ImageNet, and NYUv2 illustrate that DR-MGF outperforms the existing de-conflict methods both in prediction accuracy and convergence speed of MONs. Furthermore, DR-MGF can be extended to general MONs without modifying the overall network structures.
comment: 15 pages
Faster Video Diffusion with Trainable Sparse Attention
Scaling video diffusion transformers (DiTs) is limited by their quadratic 3D attention, even though most of the attention mass concentrates on a small subset of positions. We turn this observation into VSA, a trainable, hardware-efficient sparse attention that replaces full attention at \emph{both} training and inference. In VSA, a lightweight coarse stage pools tokens into tiles and identifies high-weight \emph{critical tokens}; a fine stage computes token-level attention only inside those tiles subjecting to block computing layout to ensure hard efficiency. This leads to a single differentiable kernel that trains end-to-end, requires no post-hoc profiling, and sustains 85\% of FlashAttention3 MFU. We perform a large sweep of ablation studies and scaling-law experiments by pretraining DiTs from 60M to 1.4B parameters. VSA reaches a Pareto point that cuts training FLOPS by 2.53$\times$ with no drop in diffusion loss. Retrofitting the open-source Wan-2.1 model speeds up attention time by 6$\times$ and lowers end-to-end generation time from 31s to 18s with comparable quality. These results establish trainable sparse attention as a practical alternative to full attention and a key enabler for further scaling of video diffusion models.
Gompertz Linear Units: Leveraging Asymmetry for Enhanced Learning Dynamics
Activation functions are fundamental elements of deep learning architectures as they significantly influence training dynamics. ReLU, while widely used, is prone to the dying neuron problem, which has been mitigated by variants such as LeakyReLU, PReLU, and ELU that better handle negative neuron outputs. Recently, self-gated activations like GELU and Swish have emerged as state-of-the-art alternatives, leveraging their smoothness to ensure stable gradient flow and prevent neuron inactivity. In this work, we introduce the Gompertz Linear Unit (GoLU), a novel self-gated activation function defined as $\mathrm{GoLU}(x) = x \, \mathrm{Gompertz}(x)$, where $\mathrm{Gompertz}(x) = e^{-e^{-x}}$. The GoLU activation leverages the right-skewed asymmetry in the Gompertz function to reduce variance in the latent space more effectively compared to GELU and Swish, while preserving robust gradient flow. Extensive experiments across diverse tasks, including Image Classification, Language Modeling, Semantic Segmentation, Object Detection, Instance Segmentation, and Diffusion, highlight GoLU's superior performance relative to state-of-the-art activation functions, establishing GoLU as a robust alternative to existing activation functions.
comment: 8 pages, excluding references and appendix; v2: slight improvement in presentation. Equation (4) added, with proof in Appendix A. Appendices B (Flipped Mish) and I (Machine Translation) added. Figure 9 added to Appendix C. Appendix D extended with Heatmaps 12 and 13
How far can we go with ImageNet for Text-to-Image generation?
Recent text-to-image generation models have achieved remarkable results by training on billion-scale datasets, following a `bigger is better' paradigm that prioritizes data quantity over availability (closed vs open source) and reproducibility (data decay vs established collections). We challenge this established paradigm by demonstrating that one can match or outperform models trained on massive web-scraped collections, using only ImageNet enhanced with well-designed text and image augmentations. With this much simpler setup, we achieve a +1% overall score over SD-XL on GenEval and +0.5% on DPGBench while using just 1/10th the parameters and 1/1000th the training images. This opens the way for more reproducible research as ImageNet is a widely available dataset and our standardized training setup does not require massive compute resources.
Aggregation Schemes for Single-Vector WSI Representation Learning in Digital Pathology
A crucial step to efficiently integrate Whole Slide Images (WSIs) in computational pathology is assigning a single high-quality feature vector, i.e., one embedding, to each WSI. With the existence of many pre-trained deep neural networks and the emergence of foundation models, extracting embeddings for sub-images (i.e., tiles or patches) is straightforward. However, for WSIs, given their high resolution and gigapixel nature, inputting them into existing GPUs as a single image is not feasible. As a result, WSIs are usually split into many patches. Feeding each patch to a pre-trained model, each WSI can then be represented by a set of patches, hence, a set of embeddings. Hence, in such a setup, WSI representation learning reduces to set representation learning where for each WSI we have access to a set of patch embeddings. To obtain a single embedding from a set of patch embeddings for each WSI, multiple set-based learning schemes have been proposed in the literature. In this paper, we evaluate the WSI search performance of multiple recently developed aggregation techniques (mainly set representation learning techniques) including simple average or max pooling operations, Deep Sets, Memory networks, Focal attention, Gaussian Mixture Model (GMM) Fisher Vector, and deep sparse and binary Fisher Vector on four different primary sites including bladder, breast, kidney, and Colon from TCGA. Further, we benchmark the search performance of these methods against the median of minimum distances of patch embeddings, a non-aggregating approach used for WSI retrieval.
Diversity-Driven View Subset Selection for Indoor Novel View Synthesis
Novel view synthesis of indoor scenes can be achieved by capturing a monocular video sequence of the environment. However, redundant information caused by artificial movements in the input video data reduces the efficiency of scene modeling. To address this, we formulate the problem as a combinatorial optimization task for view subset selection. In this work, we propose a novel subset selection framework that integrates a comprehensive diversity-based measurement with well-designed utility functions. We provide a theoretical analysis of these utility functions and validate their effectiveness through extensive experiments. Furthermore, we introduce IndoorTraj, a novel dataset designed for indoor novel view synthesis, featuring complex and extended trajectories that simulate intricate human behaviors. Experiments on IndoorTraj show that our framework consistently outperforms baseline strategies while using only 5-20% of the data, highlighting its remarkable efficiency and effectiveness. The code is available at: https://github.com/zehao-wang/IndoorTraj
comment: 12 pages, TMLR 2025
Scaling Text-Rich Image Understanding via Code-Guided Synthetic Multimodal Data Generation ACL 2025
Reasoning about images with rich text, such as charts and documents, is a critical application of vision-language models (VLMs). However, VLMs often struggle in these domains due to the scarcity of diverse text-rich vision-language data. To address this challenge, we present CoSyn, a framework that leverages the coding capabilities of text-only large language models (LLMs) to automatically create synthetic text-rich multimodal data. Given input text describing a target domain (e.g., "nutrition fact labels"), CoSyn prompts an LLM to generate code (Python, HTML, LaTeX, etc.) for rendering synthetic images. With the underlying code as textual representations of the synthetic images, CoSyn can generate high-quality instruction-tuning data, again relying on a text-only LLM. Using CoSyn, we constructed a dataset comprising 400K images and 2.7M rows of vision-language instruction-tuning data. Comprehensive experiments on seven benchmarks demonstrate that models trained on our synthetic data achieve state-of-the-art performance among competitive open-source models, including Llama 3.2, and surpass proprietary models such as GPT-4V and Gemini 1.5 Flash. Furthermore, CoSyn can produce synthetic pointing data, enabling VLMs to ground information within input images, showcasing its potential for developing multimodal agents capable of acting in real-world environments.
comment: Published in ACL 2025, project page: https://yueyang1996.github.io/cosyn/
CLIMB-3D: Continual Learning for Imbalanced 3D Instance Segmentation
While 3D instance segmentation (3DIS) has advanced significantly, existing methods typically assume that all object classes are known in advance and are uniformly distributed. However, this assumption is unrealistic in dynamic, real-world environments where new classes emerge gradually and exhibit natural imbalance. Although some approaches have addressed class emergence, they often overlook class imbalance, resulting in suboptimal performance -- particularly on rare categories. To tackle this challenge, we propose CLIMB-3D, a unified framework for \textbf{CL}ass-incremental \textbf{Imb}alance-aware \textbf{3D}IS. Building upon established exemplar replay (ER) strategies, we show that ER alone is insufficient to achieve robust performance under constrained memory conditions. To mitigate this, we introduce a novel pseudo-label generator (PLG) that extends supervision to previously learned categories by leveraging predictions from a frozen prior model. Despite its promise, PLG tends to bias towards frequent classes. Therefore, we propose a class-balanced re-weighting (CBR) scheme, that estimates object frequencies from pseudo-labels and dynamically adjusts training bias -- without requiring access to past data. We design and evaluate three incremental scenarios for 3DIS on the challenging ScanNet200 dataset, and additionally on semantic segmentation on ScanNetV2. Our approach achieves state-of-the-art results, surpassing prior work by up to 16.76\% mAP for instance segmentation and approximately 30\% mIoU for semantic segmentation, demonstrating strong generalization across both frequent and rare classes.
comment: Code: https://github.com/vgthengane/CLIMB3D
Scaling and Enhancing LLM-based AVSR: A Sparse Mixture of Projectors Approach
Audio-Visual Speech Recognition (AVSR) enhances robustness in noisy environments by integrating visual cues. While recent advances integrate Large Language Models (LLMs) into AVSR, their high computational cost hinders deployment in resource-constrained settings. To address this, we propose Llama-SMoP, an efficient Multimodal LLM that employs a Sparse Mixture of Projectors (SMoP) module to scale model capacity without increasing inference costs. By incorporating sparsely-gated mixture-of-experts (MoE) projectors, Llama-SMoP enables the use of smaller LLMs while maintaining strong performance. We explore three SMoP configurations and show that Llama-SMoP DEDR (Disjoint-Experts, Disjoint-Routers), which uses modality-specific routers and experts, achieves superior performance on ASR, VSR, and AVSR tasks. Ablation studies confirm its effectiveness in expert activation, scalability, and noise robustness.
comment: Interspeech 2025
M3TR: A Generalist Model for Real-World HD Map Completion
Autonomous vehicles rely on HD maps for their operation, but offline HD maps eventually become outdated. For this reason, online HD map construction methods use live sensor data to infer map information instead. Research on real map changes shows that oftentimes entire parts of an HD map remain unchanged and can be used as a prior. We therefore introduce M3TR (Multi-Masking Map Transformer), a generalist approach for HD map completion both with and without offline HD map priors. As a necessary foundation, we address shortcomings in ground truth labels for Argoverse 2 and nuScenes and propose the first comprehensive benchmark for HD map completion. Unlike existing models that specialize in a single kind of map change, which is unrealistic for deployment, our Generalist model handles all kinds of changes, matching the effectiveness of Expert models. With our map masking as augmentation regime, we can even achieve a +1.4 mAP improvement without a prior. Finally, by fully utilizing prior HD map elements and optimizing query designs, M3TR outperforms existing methods by +4.3 mAP while being the first real-world deployable model for offline HD map priors. Code is available at https://github.com/immel-f/m3tr
CAV-MAE Sync: Improving Contrastive Audio-Visual Mask Autoencoders via Fine-Grained Alignment CVPR 2025
Recent advances in audio-visual learning have shown promising results in learning representations across modalities. However, most approaches rely on global audio representations that fail to capture fine-grained temporal correspondences with visual frames. Additionally, existing methods often struggle with conflicting optimization objectives when trying to jointly learn reconstruction and cross-modal alignment. In this work, we propose CAV-MAE Sync as a simple yet effective extension of the original CAV-MAE framework for self-supervised audio-visual learning. We address three key challenges: First, we tackle the granularity mismatch between modalities by treating audio as a temporal sequence aligned with video frames, rather than using global representations. Second, we resolve conflicting optimization goals by separating contrastive and reconstruction objectives through dedicated global tokens. Third, we improve spatial localization by introducing learnable register tokens that reduce semantic load on patch tokens. We evaluate the proposed approach on AudioSet, VGG Sound, and the ADE20K Sound dataset on zero-shot retrieval, classification and localization tasks demonstrating state-of-the-art performance and outperforming more complex architectures.
comment: To be published at CVPR 2025, code available at https://github.com/edsonroteia/cav-mae-sync
HV-BEV: Decoupling Horizontal and Vertical Feature Sampling for Multi-View 3D Object Detection
The application of vision-based multi-view environmental perception system has been increasingly recognized in autonomous driving technology, especially the BEV-based models. Current state-of-the-art solutions primarily encode image features from each camera view into the BEV space through explicit or implicit depth prediction. However, these methods often overlook the structured correlations among different parts of objects in 3D space and the fact that different categories of objects often occupy distinct local height ranges. For example, trucks appear at higher elevations, whereas traffic cones are near the ground. In this work, we propose a novel approach that decouples feature sampling in the \textbf{BEV} grid queries paradigm into \textbf{H}orizontal feature aggregation and \textbf{V}ertical adaptive height-aware reference point sampling (HV-BEV), aiming to improve both the aggregation of objects' complete information and awareness of diverse objects' height distribution. Specifically, a set of relevant neighboring points is dynamically constructed for each 3D reference point on the ground-aligned horizontal plane, enhancing the association of the same instance across different BEV grids, especially when the instance spans multiple image views around the vehicle. Additionally, instead of relying on uniform sampling within a fixed height range, we introduce a height-aware module that incorporates historical information, enabling the reference points to adaptively focus on the varying heights at which objects appear in different scenes. Extensive experiments validate the effectiveness of our proposed method, demonstrating its superior performance over the baseline across the nuScenes dataset. Moreover, our best-performing model achieves a remarkable 50.5\% mAP and 59.8\% NDS on the nuScenes testing set. The code is available at https://github.com/Uddd821/HV-BEV.
comment: 13 pages, 7 figures, submitted to T-ITS
Convex Relaxation for Robust Vanishing Point Estimation in Manhattan World CVPR 2025
Determining the vanishing points (VPs) in a Manhattan world, as a fundamental task in many 3D vision applications, consists of jointly inferring the line-VP association and locating each VP. Existing methods are, however, either sub-optimal solvers or pursuing global optimality at a significant cost of computing time. In contrast to prior works, we introduce convex relaxation techniques to solve this task for the first time. Specifically, we employ a "soft" association scheme, realized via a truncated multi-selection error, that allows for joint estimation of VPs' locations and line-VP associations. This approach leads to a primal problem that can be reformulated into a quadratically constrained quadratic programming (QCQP) problem, which is then relaxed into a convex semidefinite programming (SDP) problem. To solve this SDP problem efficiently, we present a globally optimal outlier-robust iterative solver (called GlobustVP), which independently searches for one VP and its associated lines in each iteration, treating other lines as outliers. After each independent update of all VPs, the mutual orthogonality between the three VPs in a Manhattan world is reinforced via local refinement. Extensive experiments on both synthetic and real-world data demonstrate that GlobustVP achieves a favorable balance between efficiency, robustness, and global optimality compared to previous works. The code is publicly available at https://github.com/WU-CVGL/GlobustVP.
comment: Accepted to CVPR 2025 as Award Candidate & Oral Presentation. The first two authors contributed equally to this work. Code: https://github.com/WU-CVGL/GlobustVP
P3P: Pseudo-3D Pre-training for Scaling 3D Voxel-based Masked Autoencoders
3D pre-training is crucial to 3D perception tasks. Nevertheless, limited by the difficulties in collecting clean and complete 3D data, 3D pre-training has persistently faced data scaling challenges. In this work, we introduce a novel self-supervised pre-training framework that incorporates millions of images into 3D pre-training corpora by leveraging a large depth estimation model. New pre-training corpora encounter new challenges in representation ability and embedding efficiency of models. Previous pre-training methods rely on farthest point sampling and k-nearest neighbors to embed a fixed number of 3D tokens. However, these approaches prove inadequate when it comes to embedding millions of samples that feature a diverse range of point numbers, spanning from 1,000 to 100,000. In contrast, we propose a tokenizer with linear-time complexity, which enables the efficient embedding of a flexible number of tokens. Accordingly, a new 3D reconstruction target is proposed to cooperate with our 3D tokenizer. Our method achieves state-of-the-art performance in 3D classification, few-shot learning, and 3D segmentation. Code is available at https://github.com/XuechaoChen/P3P-MAE.
comment: Under review. Pre-print
PlaySlot: Learning Inverse Latent Dynamics for Controllable Object-Centric Video Prediction and Planning ICML 2025
Predicting future scene representations is a crucial task for enabling robots to understand and interact with the environment. However, most existing methods rely on videos and simulations with precise action annotations, limiting their ability to leverage the large amount of available unlabeled video data. To address this challenge, we propose PlaySlot, an object-centric video prediction model that infers object representations and latent actions from unlabeled video sequences. It then uses these representations to forecast future object states and video frames. PlaySlot allows the generation of multiple possible futures conditioned on latent actions, which can be inferred from video dynamics, provided by a user, or generated by a learned action policy, thus enabling versatile and interpretable world modeling. Our results show that PlaySlot outperforms both stochastic and object-centric baselines for video prediction across different environments. Furthermore, we show that our inferred latent actions can be used to learn robot behaviors sample-efficiently from unlabeled video demonstrations. Videos and code are available on https://play-slot.github.io/PlaySlot/.
comment: ICML 2025
OpenFly: A Comprehensive Platform for Aerial Vision-Language Navigation
Vision-Language Navigation (VLN) aims to guide agents by leveraging language instructions and visual cues, playing a pivotal role in embodied AI. Indoor VLN has been extensively studied, whereas outdoor aerial VLN remains underexplored. The potential reason is that outdoor aerial view encompasses vast areas, making data collection more challenging, which results in a lack of benchmarks. To address this problem, we propose OpenFly, a platform comprising various rendering engines, a versatile toolchain, and a large-scale benchmark for aerial VLN. Firstly, we integrate diverse rendering engines and advanced techniques for environment simulation, including Unreal Engine, GTA V, Google Earth, and 3D Gaussian Splatting (3D GS). Particularly, 3D GS supports real-to-sim rendering, further enhancing the realism of our environments. Secondly, we develop a highly automated toolchain for aerial VLN data collection, streamlining point cloud acquisition, scene semantic segmentation, flight trajectory creation, and instruction generation. Thirdly, based on the toolchain, we construct a large-scale aerial VLN dataset with 100k trajectories, covering diverse heights and lengths across 18 scenes. Moreover, we propose OpenFly-Agent, a keyframe-aware VLN model emphasizing key observations during flight. For benchmarking, extensive experiments and analyses are conducted, evaluating several recent VLN methods and showcasing the superiority of our OpenFly platform and agent. The toolchain, dataset, and codes will be open-sourced.
DLO-Splatting: Tracking Deformable Linear Objects Using 3D Gaussian Splatting ICRA2025
This work presents DLO-Splatting, an algorithm for estimating the 3D shape of Deformable Linear Objects (DLOs) from multi-view RGB images and gripper state information through prediction-update filtering. The DLO-Splatting algorithm uses a position-based dynamics model with shape smoothness and rigidity dampening corrections to predict the object shape. Optimization with a 3D Gaussian Splatting-based rendering loss iteratively renders and refines the prediction to align it with the visual observations in the update step. Initial experiments demonstrate promising results in a knot tying scenario, which is challenging for existing vision-only methods.
comment: 5 pages, 2 figures, presented at the 2025 5th Workshop: Reflections on Representations and Manipulating Deformable Objects at the IEEE International Conference on Robotics and Automation. RMDO workshop (https://deformable-workshop.github.io/icra2025/). Video (https://www.youtube.com/watch?v=CG4WDWumGXA). Poster (https://hollydinkel.github.io/assets/pdf/ICRA2025RMDO_poster.pdf)
DisCoPatch: Batch Statistics Are All You Need For OOD Detection, But Only If You Can Trust Them
Out-of-distribution (OOD) detection holds significant importance across many applications. While semantic and domain-shift OOD problems are well-studied, this work focuses on covariate shifts - subtle variations in the data distribution that can degrade machine learning performance. We hypothesize that detecting these subtle shifts can improve our understanding of in-distribution boundaries, ultimately improving OOD detection. In adversarial discriminators trained with Batch Normalization (BN), real and adversarial samples form distinct domains with unique batch statistics - a property we exploit for OOD detection. We introduce DisCoPatch, an unsupervised Adversarial Variational Autoencoder (VAE) framework that harnesses this mechanism. During inference, batches consist of patches from the same image, ensuring a consistent data distribution that allows the model to rely on batch statistics. DisCoPatch uses the VAE's suboptimal outputs (generated and reconstructed) as negative samples to train the discriminator, thereby improving its ability to delineate the boundary between in-distribution samples and covariate shifts. By tightening this boundary, DisCoPatch achieves state-of-the-art results in public OOD detection benchmarks. The proposed model not only excels in detecting covariate shifts, achieving 95.5% AUROC on ImageNet-1K(-C) but also outperforms all prior methods on public Near-OOD (95.0%) benchmarks. With a compact model size of 25MB, it achieves high OOD detection performance at notably lower latency than existing methods, making it an efficient and practical solution for real-world OOD detection applications. The code will be made publicly available
Ca2-VDM: Efficient Autoregressive Video Diffusion Model with Causal Generation and Cache Sharing ICML 2025
With the advance of diffusion models, today's video generation has achieved impressive quality. To extend the generation length and facilitate real-world applications, a majority of video diffusion models (VDMs) generate videos in an autoregressive manner, i.e., generating subsequent clips conditioned on the last frame(s) of the previous clip. However, existing autoregressive VDMs are highly inefficient and redundant: The model must re-compute all the conditional frames that are overlapped between adjacent clips. This issue is exacerbated when the conditional frames are extended autoregressively to provide the model with long-term context. In such cases, the computational demands increase significantly (i.e., with a quadratic complexity w.r.t. the autoregression step). In this paper, we propose Ca2-VDM, an efficient autoregressive VDM with Causal generation and Cache sharing. For causal generation, it introduces unidirectional feature computation, which ensures that the cache of conditional frames can be precomputed in previous autoregression steps and reused in every subsequent step, eliminating redundant computations. For cache sharing, it shares the cache across all denoising steps to avoid the huge cache storage cost. Extensive experiments demonstrated that our Ca2-VDM achieves state-of-the-art quantitative and qualitative video generation results and significantly improves the generation speed. Code is available: https://github.com/Dawn-LX/CausalCache-VDM
comment: Accepted by ICML 2025. Code is available: https://github.com/Dawn-LX/CausalCache-VDM
A Survey of Pathology Foundation Model: Progress and Future Directions IJCAI 2025
Computational pathology, which involves analyzing whole slide images for automated cancer diagnosis, relies on multiple instance learning, where performance depends heavily on the feature extractor and aggregator. Recent Pathology Foundation Models (PFMs), pretrained on large-scale histopathology data, have significantly enhanced both the extractor and aggregator, but they lack a systematic analysis framework. In this survey, we present a hierarchical taxonomy organizing PFMs through a top-down philosophy applicable to foundation model analysis in any domain: model scope, model pretraining, and model design. Additionally, we systematically categorize PFM evaluation tasks into slide-level, patch-level, multimodal, and biological tasks, providing comprehensive benchmarking criteria. Our analysis identifies critical challenges in both PFM development (pathology-specific methodology, end-to-end pretraining, data-model scalability) and utilization (effective adaptation, model maintenance), paving the way for future directions in this promising field. Resources referenced in this survey are available at https://github.com/BearCleverProud/AwesomeWSI.
comment: Accepted to IJCAI 2025 Survey Track, 10 Pages
BusterX: MLLM-Powered AI-Generated Video Forgery Detection and Explanation
Advances in AI generative models facilitate super-realistic video synthesis, amplifying misinformation risks via social media and eroding trust in digital content. Several research works have explored new deepfake detection methods on AI-generated images to alleviate these risks. However, with the fast development of video generation models, such as Sora and WanX, there is currently a lack of large-scale, high-quality AI-generated video datasets for forgery detection. In addition, existing detection approaches predominantly treat the task as binary classification, lacking explainability in model decision-making and failing to provide actionable insights or guidance for the public. To address these challenges, we propose \textbf{GenBuster-200K}, a large-scale AI-generated video dataset featuring 200K high-resolution video clips, diverse latest generative techniques, and real-world scenes. We further introduce \textbf{BusterX}, a novel AI-generated video detection and explanation framework leveraging multimodal large language model (MLLM) and reinforcement learning for authenticity determination and explainable rationale. To our knowledge, GenBuster-200K is the {\it \textbf{first}} large-scale, high-quality AI-generated video dataset that incorporates the latest generative techniques for real-world scenarios. BusterX is the {\it \textbf{first}} framework to integrate MLLM with reinforcement learning for explainable AI-generated video detection. Extensive comparisons with state-of-the-art methods and ablation studies validate the effectiveness and generalizability of BusterX. The code, models, and datasets will be released.
VisionReasoner: Unified Visual Perception and Reasoning via Reinforcement Learning
Large vision-language models exhibit inherent capabilities to handle diverse visual perception tasks. In this paper, we introduce VisionReasoner, a unified framework capable of reasoning and solving multiple visual perception tasks within a shared model. Specifically, by designing novel multi-object cognitive learning strategies and systematic task reformulation, VisionReasoner enhances its reasoning capabilities to analyze visual inputs, and addresses diverse perception tasks in a unified framework. The model generates a structured reasoning process before delivering the desired outputs responding to user queries. To rigorously assess unified visual perception capabilities, we evaluate VisionReasoner on ten diverse tasks spanning three critical domains: detection, segmentation, and counting. Experimental results show that VisionReasoner achieves superior performance as a unified model, outperforming Qwen2.5VL by relative margins of 29.1% on COCO (detection), 22.1% on ReasonSeg (segmentation), and 15.3% on CountBench (counting).
SpaceR: Reinforcing MLLMs in Video Spatial Reasoning
Video spatial reasoning, which involves inferring the underlying spatial structure from observed video frames, poses a significant challenge for existing Multimodal Large Language Models (MLLMs). This limitation stems primarily from 1) the absence of high-quality datasets for this task, and 2) the lack of effective training strategies to develop spatial reasoning capabilities. Motivated by the success of Reinforcement Learning with Verifiable Reward (RLVR) in unlocking LLM reasoning abilities, this work aims to improve MLLMs in video spatial reasoning through the RLVR paradigm. To this end, we introduce the $\textbf{SpaceR}$ framework. First, we present $\textbf{SpaceR-151k}$, a dataset with 91k questions spanning diverse spatial reasoning scenarios with verifiable answers, and 60k samples for maintaining general multimodal understanding. Second, we propose $\textbf{Spatially-Guided RLVR (SG-RLVR)}$, a novel reinforcement learning approach that extends Group Relative Policy Optimization (GRPO) with a novel map imagination mechanism, which encourages the model to infer spatial layouts in the thinking process, thereby facilitating more effective spatial reasoning. Extensive experiments demonstrate that SpaceR achieves state-of-the-art performance on spatial reasoning benchmarks (e.g., VSI-Bench, STI-Bench, and SPAR-Bench), while maintaining competitive results on video understanding benchmarks (e.g., Video-MME, TempCompass, and LongVideoBench). Remarkably, SpaceR surpasses the advanced GPT-4o by 11.6\% accuracy on VSI-Bench and is on par with the leading proprietary model Gemini-2.0-Flash, highlighting the effectiveness of our SpaceR-151k dataset and SG-RLVR in reinforcing spatial reasoning ability of MLLMs. Code, model, and dataset are available at https://github.com/OuyangKun10/SpaceR.
TongUI: Building Generalized GUI Agents by Learning from Multimodal Web Tutorials
Building Graphical User Interface (GUI) agents is a promising research direction, which simulates human interaction with computers or mobile phones to perform diverse GUI tasks. However, a major challenge in developing generalized GUI agents is the lack of sufficient trajectory data across various operating systems and applications, mainly due to the high cost of manual annotations. In this paper, we propose the TongUI framework that builds generalized GUI agents by learning from rich multimodal web tutorials. Concretely, we crawl and process online GUI tutorials (such as videos and articles) into GUI agent trajectory data, through which we produce the GUI-Net dataset containing 143K trajectory data across five operating systems and more than 200 applications. We develop the TongUI agent by fine-tuning Qwen2.5-VL-3B/7B models on GUI-Net, which show remarkable performance improvements on commonly used grounding and navigation benchmarks, outperforming baseline agents about 10\% on multiple benchmarks, showing the effectiveness of the GUI-Net dataset and underscoring the significance of our TongUI framework. We will fully open-source the code, the GUI-Net dataset, and the trained models soon.
MLEP: Multi-granularity Local Entropy Patterns for Universal AI-generated Image Detection
Advancements in image generation technologies have raised significant concerns about their potential misuse, such as producing misinformation and deepfakes. Therefore, there is an urgent need for effective methods to detect AI-generated images (AIGI). Despite progress in AIGI detection, achieving reliable performance across diverse generation models and scenes remains challenging due to the lack of source-invariant features and limited generalization capabilities in existing methods. In this work, we explore the potential of using image entropy as a cue for AIGI detection and propose Multi-granularity Local Entropy Patterns (MLEP), a set of entropy feature maps computed across shuffled small patches over multiple image scaled. MLEP comprehensively captures pixel relationships across dimensions and scales while significantly disrupting image semantics, reducing potential content bias. Leveraging MLEP, a robust CNN-based classifier for AIGI detection can be trained. Extensive experiments conducted in an open-world scenario, evaluating images synthesized by 32 distinct generative models, demonstrate significant improvements over state-of-the-art methods in both accuracy and generalization.
comment: 12 pages, 6 figures
Augmenting Chest X-ray Datasets with Non-Expert Annotations
The advancement of machine learning algorithms in medical image analysis requires the expansion of training datasets. A popular and cost-effective approach is automated annotation extraction from free-text medical reports, primarily due to the high costs associated with expert clinicians annotating medical images, such as chest X-rays. However, it has been shown that the resulting datasets are susceptible to biases and shortcuts. Another strategy to increase the size of a dataset is crowdsourcing, a widely adopted practice in general computer vision with some success in medical image analysis. In a similar vein to crowdsourcing, we enhance two publicly available chest X-ray datasets by incorporating non-expert annotations. However, instead of using diagnostic labels, we annotate shortcuts in the form of tubes. We collect 3.5k chest drain annotations for NIH-CXR14, and 1k annotations for four different tube types in PadChest, and create the Non-Expert Annotations of Tubes in X-rays (NEATX) dataset. We train a chest drain detector with the non-expert annotations that generalizes well to expert labels. Moreover, we compare our annotations to those provided by experts and show "moderate" to "almost perfect" agreement. Finally, we present a pathology agreement study to raise awareness about the quality of ground truth annotations. We make our dataset available on Zenodo at https://zenodo.org/records/14944064 and our code available at https://github.com/purrlab/chestxr-label-reliability.
comment: Medical Image Understanding and Analysis Conference - MIUA 2025
ChestX-Reasoner: Advancing Radiology Foundation Models with Reasoning through Step-by-Step Verification
Recent advances in reasoning-enhanced large language models (LLMs) and multimodal LLMs (MLLMs) have significantly improved performance in complex tasks, yet medical AI models often overlook the structured reasoning processes inherent in clinical practice. In this work, we present ChestX-Reasoner, a radiology diagnosis MLLM designed to leverage process supervision mined directly from clinical reports, reflecting the step-by-step reasoning followed by radiologists. We construct a large dataset by extracting and refining reasoning chains from routine radiology reports. Our two-stage training framework combines supervised fine-tuning and reinforcement learning guided by process rewards to better align model reasoning with clinical standards. We introduce RadRBench-CXR, a comprehensive benchmark featuring 59K visual question answering samples with 301K clinically validated reasoning steps, and propose RadRScore, a metric evaluating reasoning factuality, completeness, and effectiveness. ChestX-Reasoner outperforms existing medical and general-domain MLLMs in both diagnostic accuracy and reasoning ability, achieving 16%, 5.9%, and 18% improvements in reasoning ability compared to the best medical MLLM, the best general MLLM, and its base model, respectively, as well as 3.3%, 24%, and 27% improvements in outcome accuracy. All resources are open-sourced to facilitate further research in medical reasoning MLLMs.
MMedPO: Aligning Medical Vision-Language Models with Clinical-Aware Multimodal Preference Optimization ICML 2025
The advancement of Large Vision-Language Models (LVLMs) has propelled their application in the medical field. However, Medical LVLMs (Med-LVLMs) encounter factuality challenges due to modality misalignment, where the models prioritize textual knowledge over visual input, leading to hallucinations that contradict information in medical images. Previous attempts to enhance modality alignment in Med-LVLMs through preference optimization have inadequately mitigated clinical relevance in preference data, making these samples easily distinguishable and reducing alignment effectiveness. To address this challenge, we propose MMedPO, a novel multimodal medical preference optimization approach that considers the clinical relevance of preference samples to enhance Med-LVLM alignment. MMedPO curates multimodal preference data by introducing two types of dispreference: (1) plausible hallucinations injected through target Med-LVLMs or GPT-4o to produce medically inaccurate responses, and (2) lesion region neglect achieved through local lesion-noising, disrupting visual understanding of critical areas. We then calculate clinical relevance for each sample based on scores from multiple Med-LLMs and visual tools, and integrate these scores into the preference optimization process as weights, enabling effective alignment. Our experiments demonstrate that MMedPO significantly enhances factual accuracy in Med-LVLMs, achieving substantial improvements over existing preference optimization methods by averaging 14.2% and 51.7% across the Med-VQA and report generation tasks. Our code are available in https://github.com/aiming-lab/MMedPO.
comment: ICML 2025
MiniDrive: More Efficient Vision-Language Models with Multi-Level 2D Features as Text Tokens for Autonomous Driving
Vision-language models (VLMs) serve as general-purpose end-to-end models in autonomous driving, performing subtasks such as prediction, planning, and perception through question-and-answer interactions. However, most existing methods rely on computationally expensive visual encoders and large language models (LLMs), making them difficult to deploy in real-world scenarios and real-time applications. Meanwhile, most existing VLMs lack the ability to process multiple images, making it difficult to adapt to multi-camera perception in autonomous driving. To address these issues, we propose a novel framework called MiniDrive, which incorporates our proposed Feature Engineering Mixture of Experts (FE-MoE) module and Dynamic Instruction Adapter (DI-Adapter). The FE-MoE effectively maps 2D features into visual token embeddings before being input into the language model. The DI-Adapter enables the visual token embeddings to dynamically change with the instruction text embeddings, resolving the issue of static visual token embeddings for the same image in previous approaches. Compared to previous works, MiniDrive achieves state-of-the-art performance in terms of parameter size, floating point operations, and response efficiency, with the smallest version containing only 83M parameters.
MagicTailor: Component-Controllable Personalization in Text-to-Image Diffusion Models IJCAI2025
Text-to-image diffusion models can generate high-quality images but lack fine-grained control of visual concepts, limiting their creativity. Thus, we introduce component-controllable personalization, a new task that enables users to customize and reconfigure individual components within concepts. This task faces two challenges: semantic pollution, where undesired elements disrupt the target concept, and semantic imbalance, which causes disproportionate learning of the target concept and component. To address these, we design MagicTailor, a framework that uses Dynamic Masked Degradation to adaptively perturb unwanted visual semantics and Dual-Stream Balancing for more balanced learning of desired visual semantics. The experimental results show that MagicTailor achieves superior performance in this task and enables more personalized and creative image generation.
comment: Accepted by IJCAI2025 (Project page: https://correr-zhou.github.io/MagicTailor)
SPRMamba: Surgical Phase Recognition for Endoscopic Submucosal Dissection with Mamba
Endoscopic Submucosal Dissection (ESD) is a minimally invasive procedure initially developed for early gastric cancer treatment and has expanded to address diverse gastrointestinal lesions. While computer-assisted surgery (CAS) systems enhance ESD precision and safety, their efficacy hinges on accurate real-time surgical phase recognition, a task complicated by ESD's inherent complexity, including heterogeneous lesion characteristics and dynamic tissue interactions. Existing video-based phase recognition algorithms, constrained by inefficient temporal context modeling, exhibit limited performance in capturing fine-grained phase transitions and long-range dependencies. To overcome these limitations, we propose SPRMamba, a novel framework integrating a Mamba-based architecture with a Scaled Residual TranMamba (SRTM) block to synergize long-term temporal modeling and localized detail extraction. SPRMamba further introduces the Hierarchical Sampling Strategy to optimize computational efficiency, enabling real-time processing critical for clinical deployment. Evaluated on the ESD385 dataset and the cholecystectomy benchmark Cholec80, SPRMamba achieves state-of-the-art performance (87.64% accuracy on ESD385, +1.0% over prior methods), demonstrating robust generalizability across surgical workflows. This advancement bridges the gap between computational efficiency and temporal sensitivity, offering a transformative tool for intraoperative guidance and skill assessment in ESD surgery. The code is accessible at https://github.com/Zxnyyyyy/SPRMamba.
Towards Real-world Debiasing: Rethinking Evaluation, Challenge, and Solution
Spurious correlations in training data significantly hinder the generalization capability of machine learning models when faced with distribution shifts, leading to the proposition of numberous debiasing methods. However, it remains to be asked: \textit{Do existing benchmarks for debiasing really represent biases in the real world?} Recent works attempt to address such concerns by sampling from real-world data (instead of synthesizing) according to some predefined biased distributions to ensure the realism of individual samples. However, the realism of the biased distribution is more critical yet challenging and underexplored due to the complexity of real-world bias distributions. To tackle the problem, we propose a fine-grained framework for analyzing biased distributions, based on which we empirically and theoretically identify key characteristics of biased distributions in the real world that are poorly represented by existing benchmarks. Towards applicable debiasing in the real world, we further introduce two novel real-world-inspired biases to bridge this gap and build a systematic evaluation framework for real-world debiasing, RDBench\footnote{RDBench: Code to be released. Preliminary version in supplementary material for anonimized review.}. Furthermore, focusing on the practical setting of debiasing w/o bias label, we find real-world biases pose a novel \textit{Sparse bias capturing} challenge to the existing paradigm. We propose a simple yet effective approach named Debias in Destruction (DiD), to address the challenge, whose effectiveness is validated with extensive experiments on 8 datasets of various biased distributions.
comment: 9 pages of main paper, 17 pages of appendix
RGBX-DiffusionDet: A Framework for Multi-Modal RGB-X Object Detection Using DiffusionDet
This work introduces RGBX-DiffusionDet, an object detection framework extending the DiffusionDet model to fuse the heterogeneous 2D data (X) with RGB imagery via an adaptive multimodal encoder. To enable cross-modal interaction, we design the dynamic channel reduction within a convolutional block attention module (DCR-CBAM), which facilitates cross-talk between subnetworks by dynamically highlighting salient channel features. Furthermore, the dynamic multi-level aggregation block (DMLAB) is proposed to refine spatial feature representations through adaptive multiscale fusion. Finally, novel regularization losses that enforce channel saliency and spatial selectivity are introduced, leading to compact and discriminative feature embeddings. Extensive experiments using RGB-Depth (KITTI), a novel annotated RGB-Polarimetric dataset, and RGB-Infrared (M$^3$FD) benchmark dataset were conducted. We demonstrate consistent superiority of the proposed approach over the baseline RGB-only DiffusionDet. The modular architecture maintains the original decoding complexity, ensuring efficiency. These results establish the proposed RGBX-DiffusionDet as a flexible multimodal object detection approach, providing new insights into integrating diverse 2D sensing modalities into diffusion-based detection pipelines.
DINOv2-powered Few-Shot Semantic Segmentation: A Unified Framework via Cross-Model Distillation and 4D Correlation Mining
Few-shot semantic segmentation has gained increasing interest due to its generalization capability, i.e., segmenting pixels of novel classes requiring only a few annotated images. Prior work has focused on meta-learning for support-query matching, with extensive development in both prototype-based and aggregation-based methods. To address data scarcity, recent approaches have turned to foundation models to enhance representation transferability for novel class segmentation. Among them, a hybrid dual-modal framework including both DINOv2 and SAM has garnered attention due to their complementary capabilities. We wonder "can we build a unified model with knowledge from both foundation models?" To this end, we propose FS-DINO, with only DINOv2's encoder and a lightweight segmenter. The segmenter features a bottleneck adapter, a meta-visual prompt generator based on dense similarities and semantic embeddings, and a decoder. Through coarse-to-fine cross-model distillation, we effectively integrate SAM's knowledge into our lightweight segmenter, which can be further enhanced by 4D correlation mining on support-query pairs. Extensive experiments on COCO-20i, PASCAL-5i, and FSS-1000 demonstrate the effectiveness and superiority of our method.
The Jumping Reasoning Curve? Tracking the Evolution of Reasoning Performance in GPT-[n] and o-[n] Models on Multimodal Puzzles
The releases of OpenAI's o-[n] series, such as o1, o3, and o4-mini, mark a significant paradigm shift in Large Language Models towards advanced reasoning capabilities. Notably, models like o3 have demonstrated strong performance on benchmarks like the Abstraction and Reasoning Corpus for Artificial General Intelligence (ARC-AGI). However, this benchmark is limited to symbolic patterns, whereas humans often perceive and reason about multimodal scenarios involving both vision and language data. Thus, there is an urgent need to investigate advanced reasoning capabilities in multimodal tasks. To this end, we track the evolution of the GPT-[n] and o-[n] series models (including o1, o3, and o4-mini) on challenging multimodal puzzles from PuzzleVQA and AlgoPuzzleVQA, which demand fine-grained visual perception. Our results reveal that o-[n] series, particularly later iterations like o3 and o4-mini, significantly outperform the GPT-[n] series and show strong scalability in multimodal reasoning. Nonetheless, despite these substantial advancements and the superior capabilities demonstrated by the o-[n] series, our findings highlight that even these leading models face persistent challenges. Difficulties are particularly evident in tasks requiring precise visual perception, robust compositional reasoning across multiple visual attributes, and solving complex algorithmic or highly combinatorial puzzles, indicating critical areas for future AGI development. We plan to continuously track new models in the series and update our results in this paper accordingly. All resources used in this evaluation are openly available at https://github.com/declare-lab/LLM-PuzzleTest.
EventSplat: 3D Gaussian Splatting from Moving Event Cameras for Real-time Rendering
We introduce a method for using event camera data in novel view synthesis via Gaussian Splatting. Event cameras offer exceptional temporal resolution and a high dynamic range. Leveraging these capabilities allows us to effectively address the novel view synthesis challenge in the presence of fast camera motion. For initialization of the optimization process, our approach uses prior knowledge encoded in an event-to-video model. We also use spline interpolation for obtaining high quality poses along the event camera trajectory. This enhances the reconstruction quality from fast-moving cameras while overcoming the computational limitations traditionally associated with event-based Neural Radiance Field (NeRF) methods. Our experimental evaluation demonstrates that our results achieve higher visual fidelity and better performance than existing event-based NeRF approaches while being an order of magnitude faster to render.
UncertainSAM: Fast and Efficient Uncertainty Quantification of the Segment Anything Model ICML'25
The introduction of the Segment Anything Model (SAM) has paved the way for numerous semantic segmentation applications. For several tasks, quantifying the uncertainty of SAM is of particular interest. However, the ambiguous nature of the class-agnostic foundation model SAM challenges current uncertainty quantification (UQ) approaches. This paper presents a theoretically motivated uncertainty quantification model based on a Bayesian entropy formulation jointly respecting aleatoric, epistemic, and the newly introduced task uncertainty. We use this formulation to train USAM, a lightweight post-hoc UQ method. Our model traces the root of uncertainty back to under-parameterised models, insufficient prompts or image ambiguities. Our proposed deterministic USAM demonstrates superior predictive capabilities on the SA-V, MOSE, ADE20k, DAVIS, and COCO datasets, offering a computationally cheap and easy-to-use UQ alternative that can support user-prompting, enhance semi-supervised pipelines, or balance the tradeoff between accuracy and cost efficiency.
comment: Accepted to ICML'25
SeMv-3D: Towards Concurrency of Semantic and Multi-view Consistency in General Text-to-3D Generation
General Text-to-3D (GT23D) generation is crucial for creating diverse 3D content across objects and scenes, yet it faces two key challenges: 1) ensuring semantic consistency between input text and generated 3D models, and 2) maintaining multi-view consistency across different perspectives within 3D. Existing approaches typically address only one of these challenges, often leading to suboptimal results in semantic fidelity and structural coherence. To overcome these limitations, we propose SeMv-3D, a novel framework that jointly enhances semantic alignment and multi-view consistency in GT23D generation. At its core, we introduce Triplane Prior Learning (TPL), which effectively learns triplane priors by capturing spatial correspondences across three orthogonal planes using a dedicated Orthogonal Attention mechanism, thereby ensuring geometric consistency across viewpoints. Additionally, we present Prior-based Semantic Aligning in Triplanes (SAT), which enables consistent any-view synthesis by leveraging attention-based feature alignment to reinforce the correspondence between textual semantics and triplane representations. Extensive experiments demonstrate that our method sets a new state-of-the-art in multi-view consistency, while maintaining competitive performance in semantic consistency compared to methods focused solely on semantic alignment. These results emphasize the remarkable ability of our approach to effectively balance and excel in both dimensions, establishing a new benchmark in the field.
Accelerating Diffusion-based Super-Resolution with Dynamic Time-Spatial Sampling
Diffusion models have gained attention for their success in modeling complex distributions, achieving impressive perceptual quality in SR tasks. However, existing diffusion-based SR methods often suffer from high computational costs, requiring numerous iterative steps for training and inference. Existing acceleration techniques, such as distillation and solver optimization, are generally task-agnostic and do not fully leverage the specific characteristics of low-level tasks like super-resolution (SR). In this study, we analyze the frequency- and spatial-domain properties of diffusion-based SR methods, revealing key insights into the temporal and spatial dependencies of high-frequency signal recovery. Specifically, high-frequency details benefit from concentrated optimization during early and late diffusion iterations, while spatially textured regions demand adaptive denoising strategies. Building on these observations, we propose the Time-Spatial-aware Sampling strategy (TSS) for the acceleration of Diffusion SR without any extra training cost. TSS combines Time Dynamic Sampling (TDS), which allocates more iterations to refining textures, and Spatial Dynamic Sampling (SDS), which dynamically adjusts strategies based on image content. Extensive evaluations across multiple benchmarks demonstrate that TSS achieves state-of-the-art (SOTA) performance with significantly fewer iterations, improving MUSIQ scores by 0.2 - 3.0 and outperforming the current acceleration methods with only half the number of steps.
Generalizing Medical Image Representations via Quaternion Wavelet Networks
Neural network generalizability is becoming a broad research field due to the increasing availability of datasets from different sources and for various tasks. This issue is even wider when processing medical data, where a lack of methodological standards causes large variations being provided by different imaging centers or acquired with various devices and cofactors. To overcome these limitations, we introduce a novel, generalizable, data- and task-agnostic framework able to extract salient features from medical images. The proposed quaternion wavelet network (QUAVE) can be easily integrated with any pre-existing medical image analysis or synthesis task, and it can be involved with real, quaternion, or hypercomplex-valued models, generalizing their adoption to single-channel data. QUAVE first extracts different sub-bands through the quaternion wavelet transform, resulting in both low-frequency/approximation bands and high-frequency/fine-grained features. Then, it weighs the most representative set of sub-bands to be involved as input to any other neural model for image processing, replacing standard data samples. We conduct an extensive experimental evaluation comprising different datasets, diverse image analysis, and synthesis tasks including reconstruction, segmentation, and modality translation. We also evaluate QUAVE in combination with both real and quaternion-valued models. Results demonstrate the effectiveness and the generalizability of the proposed framework that improves network performance while being flexible to be adopted in manifold scenarios and robust to domain shifts. The full code is available at: https://github.com/ispamm/QWT.
comment: Paper accepted to Neurocomputing Journal
SANER: Annotation-free Societal Attribute Neutralizer for Debiasing CLIP ICLR 2025
Large-scale vision-language models, such as CLIP, are known to contain societal bias regarding protected attributes (e.g., gender, age). This paper aims to address the problems of societal bias in CLIP. Although previous studies have proposed to debias societal bias through adversarial learning or test-time projecting, our comprehensive study of these works identifies two critical limitations: 1) loss of attribute information when it is explicitly disclosed in the input and 2) use of the attribute annotations during debiasing process. To mitigate societal bias in CLIP and overcome these limitations simultaneously, we introduce a simple-yet-effective debiasing method called SANER (societal attribute neutralizer) that eliminates attribute information from CLIP text features only of attribute-neutral descriptions. Experimental results show that SANER, which does not require attribute annotations and preserves original information for attribute-specific descriptions, demonstrates superior debiasing ability than the existing methods.
comment: ICLR 2025
Boosting Few-Shot Open-Set Object Detection via Prompt Learning and Robust Decision Boundary IJCAI 2025
Few-shot Open-set Object Detection (FOOD) poses a challenge in many open-world scenarios. It aims to train an open-set detector to detect known objects while rejecting unknowns with scarce training samples. Existing FOOD methods are subject to limited visual information, and often exhibit an ambiguous decision boundary between known and unknown classes. To address these limitations, we propose the first prompt-based few-shot open-set object detection framework, which exploits additional textual information and delves into constructing a robust decision boundary for unknown rejection. Specifically, as no available training data for unknown classes, we select pseudo-unknown samples with Attribution-Gradient based Pseudo-unknown Mining (AGPM), which leverages the discrepancy in attribution gradients to quantify uncertainty. Subsequently, we propose Conditional Evidence Decoupling (CED) to decouple and extract distinct knowledge from selected pseudo-unknown samples by eliminating opposing evidence. This optimization process can enhance the discrimination between known and unknown classes. To further regularize the model and form a robust decision boundary for unknown rejection, we introduce Abnormal Distribution Calibration (ADC) to calibrate the output probability distribution of local abnormal features in pseudo-unknown samples. Our method achieves superior performance over previous state-of-the-art approaches, improving the average recall of unknown class by 7.24% across all shots in VOC10-5-5 dataset settings and 1.38% in VOC-COCO dataset settings. Our source code is available at https://gitee.com/VR_NAVE/ced-food.
comment: Accepted to IJCAI 2025
Enrich the content of the image Using Context-Aware Copy Paste
Data augmentation remains a widely utilized technique in deep learning, particularly in tasks such as image classification, semantic segmentation, and object detection. Among them, Copy-Paste is a simple yet effective method and gain great attention recently. However, existing Copy-Paste often overlook contextual relevance between source and target images, resulting in inconsistencies in generated outputs. To address this challenge, we propose a context-aware approach that integrates Bidirectional Latent Information Propagation (BLIP) for content extraction from source images. By matching extracted content information with category information, our method ensures cohesive integration of target objects using Segment Anything Model (SAM) and You Only Look Once (YOLO). This approach eliminates the need for manual annotation, offering an automated and user-friendly solution. Experimental evaluations across diverse datasets demonstrate the effectiveness of our method in enhancing data diversity and generating high-quality pseudo-images across various computer vision tasks.
Reliable Disentanglement Multi-view Learning Against View Adversarial Attacks IJCAI 2025
Trustworthy multi-view learning has attracted extensive attention because evidence learning can provide reliable uncertainty estimation to enhance the credibility of multi-view predictions. Existing trusted multi-view learning methods implicitly assume that multi-view data is secure. However, in safety-sensitive applications such as autonomous driving and security monitoring, multi-view data often faces threats from adversarial perturbations, thereby deceiving or disrupting multi-view models. This inevitably leads to the adversarial unreliability problem (AUP) in trusted multi-view learning. To overcome this tricky problem, we propose a novel multi-view learning framework, namely Reliable Disentanglement Multi-view Learning (RDML). Specifically, we first propose evidential disentanglement learning to decompose each view into clean and adversarial parts under the guidance of corresponding evidences, which is extracted by a pretrained evidence extractor. Then, we employ the feature recalibration module to mitigate the negative impact of adversarial perturbations and extract potential informative features from them. Finally, to further ignore the irreparable adversarial interferences, a view-level evidential attention mechanism is designed. Extensive experiments on multi-view classification tasks with adversarial attacks show that RDML outperforms the state-of-the-art methods by a relatively large margin. Our code is available at https://github.com/Willy1005/2025-IJCAI-RDML.
comment: 11 pages, 11 figures, accepted by IJCAI 2025
Multimedia
Relationship Analysis of Image-Text Pair in SNS Posts
Social networking services (SNS) contain vast amounts of image-text posts, necessitating effective analysis of their relationships for improved information retrieval. This study addresses the classification of image-text pairs in SNS, overcoming prior limitations in distinguishing relationships beyond similarity. We propose a graph-based method to classify image-text pairs into similar and complementary relationships. Our approach first embeds images and text using CLIP, followed by clustering. Next, we construct an Image-Text Relationship Clustering Line Graph (ITRC-Line Graph), where clusters serve as nodes. Finally, edges and nodes are swapped in a pseudo-graph representation. A Graph Convolutional Network (GCN) then learns node and edge representations, which are fused with the original embeddings for final classification. Experimental results on a publicly available dataset demonstrate the effectiveness of our method.
comment: 15 pages, 5 figures
Seeing Through Deception: Uncovering Misleading Creator Intent in Multimodal News with Vision-Language Models
The real-world impact of misinformation stems from the underlying misleading narratives that creators seek to convey. As such, interpreting misleading creator intent is essential for multimodal misinformation detection (MMD) systems aimed at effective information governance. In this paper, we introduce an automated framework that simulates real-world multimodal news creation by explicitly modeling creator intent through two components: the desired influence and the execution plan. Using this framework, we construct DeceptionDecoded, a large-scale benchmark comprising 12,000 image-caption pairs aligned with trustworthy reference articles. The dataset captures both misleading and non-misleading intents and spans manipulations across visual and textual modalities. We conduct a comprehensive evaluation of 14 state-of-the-art vision-language models (VLMs) on three intent-centric tasks: (1) misleading intent detection, (2) misleading source attribution, and (3) creator desire inference. Despite recent advances, we observe that current VLMs fall short in recognizing misleading intent, often relying on spurious cues such as superficial cross-modal consistency, stylistic signals, and heuristic authenticity hints. Our findings highlight the pressing need for intent-aware modeling in MMD and open new directions for developing systems capable of deeper reasoning about multimodal misinformation.
Prolonged Reasoning Is Not All You Need: Certainty-Based Adaptive Routing for Efficient LLM/MLLM Reasoning
Recent advancements in reasoning have significantly enhanced the capabilities of Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs) across diverse tasks. However, excessive reliance on chain-of-thought (CoT) reasoning can impair model performance and brings unnecessarily lengthened outputs, reducing efficiency. Our work reveals that prolonged reasoning does not universally improve accuracy and even degrade performance on simpler tasks. To address this, we propose Certainty-based Adaptive Reasoning (CAR), a novel framework that dynamically switches between short answers and long-form reasoning based on the model perplexity. CAR first generates a short answer and evaluates its perplexity, triggering reasoning only when the model exhibits low confidence (i.e., high perplexity). Experiments across diverse multimodal VQA/KIE benchmarks and text reasoning datasets show that CAR outperforms both short-answer and long-form reasoning approaches, striking an optimal balance between accuracy and efficiency.
Robust Relevance Feedback for Interactive Known-Item Video Search ICMR 2025
Known-item search (KIS) involves only a single search target, making relevance feedback-typically a powerful technique for efficiently identifying multiple positive examples to infer user intent-inapplicable. PicHunter addresses this issue by asking users to select the top-k most similar examples to the unique search target from a displayed set. Under ideal conditions, when the user's perception aligns closely with the machine's perception of similarity, consistent and precise judgments can elevate the target to the top position within a few iterations. However, in practical scenarios, expecting users to provide consistent judgments is often unrealistic, especially when the underlying embedding features used for similarity measurements lack interpretability. To enhance robustness, we first introduce a pairwise relative judgment feedback that improves the stability of top-k selections by mitigating the impact of misaligned feedback. Then, we decompose user perception into multiple sub-perceptions, each represented as an independent embedding space. This approach assumes that users may not consistently align with a single representation but are more likely to align with one or several among multiple representations. We develop a predictive user model that estimates the combination of sub-perceptions based on each user feedback instance. The predictive user model is then trained to filter out the misaligned sub-perceptions. Experimental evaluations on the large-scale open-domain dataset V3C indicate that the proposed model can optimize over 60% search targets to the top rank when their initial ranks at the search depth between 10 and 50. Even for targets initially ranked between 1,000 and 5,000, the model achieves a success rate exceeding 40% in optimizing ranks to the top, demonstrating the enhanced robustness of relevance feedback in KIS despite inconsistent feedback.
comment: Accepted to ICMR 2025
Signals of Provenance: Practices & Challenges of Navigating Indicators in AI-Generated Media for Sighted and Blind Individuals
AI-Generated (AIG) content has become increasingly widespread by recent advances in generative models and the easy-to-use tools that have significantly lowered the technical barriers for producing highly realistic audio, images, and videos through simple natural language prompts. In response, platforms are adopting provable provenance with platforms recommending AIG to be self-disclosed and signaled to users. However, these indicators may be often missed, especially when they rely solely on visual cues and make them ineffective to users with different sensory abilities. To address the gap, we conducted semi-structured interviews (N=28) with 15 sighted and 13 BLV participants to examine their interaction with AIG content through self-disclosed AI indicators. Our findings reveal diverse mental models and practices, highlighting different strengths and weaknesses of content-based (e.g., title, description) and menu-aided (e.g., AI labels) indicators. While sighted participants leveraged visual and audio cues, BLV participants primarily relied on audio and existing assistive tools, limiting their ability to identify AIG. Across both groups, they frequently overlooked menu-aided indicators deployed by platforms and rather interacted with content-based indicators such as title and comments. We uncovered usability challenges stemming from inconsistent indicator placement, unclear metadata, and cognitive overload. These issues were especially critical for BLV individuals due to the insufficient accessibility of interface elements. We provide practical recommendations and design implications for future AIG indicators across several dimensions.
CP-LLM: Context and Pixel Aware Large Language Model for Video Quality Assessment
Video quality assessment (VQA) is a challenging research topic with broad applications. Effective VQA necessitates sensitivity to pixel-level distortions and a comprehensive understanding of video context to accurately determine the perceptual impact of distortions. Traditional hand-crafted and learning-based VQA models mainly focus on pixel-level distortions and lack contextual understanding, while recent LLM-based models struggle with sensitivity to small distortions or handle quality scoring and description as separate tasks. To address these shortcomings, we introduce CP-LLM: a Context and Pixel aware Large Language Model. CP-LLM is a novel multimodal LLM architecture featuring dual vision encoders designed to independently analyze perceptual quality at both high-level (video context) and low-level (pixel distortion) granularity, along with a language decoder subsequently reasons about the interplay between these aspects. This design enables CP-LLM to simultaneously produce robust quality scores and interpretable quality descriptions, with enhanced sensitivity to pixel distortions (e.g. compression artifacts). The model is trained via a multi-task pipeline optimizing for score prediction, description generation, and pairwise comparisons. Experiment results demonstrate that CP-LLM achieves state-of-the-art cross-dataset performance on established VQA benchmarks and superior robustness to pixel distortions, confirming its efficacy for comprehensive and practical video quality assessment in real-world scenarios.
comment: Under review
RAVEN: Query-Guided Representation Alignment for Question Answering over Audio, Video, Embedded Sensors, and Natural Language
Multimodal question answering (QA) often requires identifying which video, audio, or sensor tokens are relevant to the question. Yet modality disagreements are common: off-camera speech, background noise, or motion outside the field of view often mislead fusion models that weight all streams equally. We present RAVEN, a unified QA architecture whose core is QuART, a query-conditioned cross-modal gating module that assigns scalar relevance scores to each token across modalities, enabling the model to amplify informative signals and suppress distractors before fusion. RAVEN is trained through a three-stage pipeline comprising unimodal pretraining, query-aligned fusion, and disagreement-oriented fine-tuning -- each stage targeting a distinct challenge in multi-modal reasoning: representation quality, cross-modal relevance, and robustness to modality mismatch. To support training and evaluation, we release AVS-QA, a dataset of 300K synchronized Audio--Video-Sensor streams paired with automatically generated question-answer pairs. Experimental results on seven multi-modal QA benchmarks -- including egocentric and exocentric tasks -- show that RAVEN achieves up to 14.5\% and 8.0\% gains in accuracy compared to state-of-the-art multi-modal large language models, respectively. Incorporating sensor data provides an additional 16.4\% boost, and the model remains robust under modality corruption, outperforming SOTA baselines by 50.23\%. Our code and dataset are available at https://github.com/BASHLab/RAVEN.
P2P: Automated Paper-to-Poster Generation and Fine-Grained Benchmark
Academic posters are vital for scholarly communication, yet their manual creation is time-consuming. However, automated academic poster generation faces significant challenges in preserving intricate scientific details and achieving effective visual-textual integration. Existing approaches often struggle with semantic richness and structural nuances, and lack standardized benchmarks for evaluating generated academic posters comprehensively. To address these limitations, we introduce P2P, the first flexible, LLM-based multi-agent framework that generates high-quality, HTML-rendered academic posters directly from research papers, demonstrating strong potential for practical applications. P2P employs three specialized agents-for visual element processing, content generation, and final poster assembly-each integrated with dedicated checker modules to enable iterative refinement and ensure output quality. To foster advancements and rigorous evaluation in this domain, we construct and release P2PInstruct, the first large-scale instruction dataset comprising over 30,000 high-quality examples tailored for the academic paper-to-poster generation task. Furthermore, we establish P2PEval, a comprehensive benchmark featuring 121 paper-poster pairs and a dual evaluation methodology (Universal and Fine-Grained) that leverages LLM-as-a-Judge and detailed, human-annotated checklists. Our contributions aim to streamline research dissemination and provide the community with robust tools for developing and evaluating next-generation poster generation systems.
MatchDance: Collaborative Mamba-Transformer Architecture Matching for High-Quality 3D Dance Synthesis
Music-to-dance generation represents a challenging yet pivotal task at the intersection of choreography, virtual reality, and creative content generation. Despite its significance, existing methods face substantial limitation in achieving choreographic consistency. To address the challenge, we propose MatchDance, a novel framework for music-to-dance generation that constructs a latent representation to enhance choreographic consistency. MatchDance employs a two-stage design: (1) a Kinematic-Dynamic-based Quantization Stage (KDQS), which encodes dance motions into a latent representation by Finite Scalar Quantization (FSQ) with kinematic-dynamic constraints and reconstructs them with high fidelity, and (2) a Hybrid Music-to-Dance Generation Stage(HMDGS), which uses a Mamba-Transformer hybrid architecture to map music into the latent representation, followed by the KDQS decoder to generate 3D dance motions. Additionally, a music-dance retrieval framework and comprehensive metrics are introduced for evaluation. Extensive experiments on the FineDance dataset demonstrate state-of-the-art performance. Code will be released upon acceptance.
Unified Microphone Conversion: Many-to-Many Device Mapping via Feature-wise Linear Modulation
We present Unified Microphone Conversion, a unified generative framework designed to bolster sound event classification (SEC) systems against device variability. While our prior CycleGAN-based methods effectively simulate device characteristics, they require separate models for each device pair, limiting scalability. Our approach overcomes this constraint by conditioning the generator on frequency response data, enabling many-to-many device mappings through unpaired training. We integrate frequency-response information via Feature-wise Linear Modulation, further enhancing scalability. Additionally, incorporating synthetic frequency response differences improves the applicability of our framework for real-world application. Experimental results show that our method outperforms the state-of-the-art by 2.6% and reduces variability by 0.8% in macro-average F1 score.
comment: Accepted to Interspeech 2025
Hearing from Silence: Reasoning Audio Descriptions from Silent Videos via Vision-Language Model
Humans can intuitively infer sounds from silent videos, but whether multimodal large language models can perform modal-mismatch reasoning without accessing target modalities remains relatively unexplored. Current text-assisted-video-to-audio (VT2A) methods excel in video foley tasks but struggle to acquire audio descriptions during inference. We introduce the task of Reasoning Audio Descriptions from Silent Videos (SVAD) to address this challenge and investigate vision-language models' (VLMs) capabilities on this task. To further enhance the VLMs' reasoning capacity for the SVAD task, we construct a CoT-AudioCaps dataset and propose a Chain-of-Thought-based supervised fine-tuning strategy. Experiments on SVAD and subsequent VT2A tasks demonstrate our method's effectiveness in two key aspects: significantly improving VLMs' modal-mismatch reasoning for SVAD and effectively addressing the challenge of acquiring audio descriptions during VT2A inference.
comment: Accepted by Interspeech 2025
VoiceCloak: A Multi-Dimensional Defense Framework against Unauthorized Diffusion-based Voice Cloning
Diffusion Models (DMs) have achieved remarkable success in realistic voice cloning (VC), while they also increase the risk of malicious misuse. Existing proactive defenses designed for traditional VC models aim to disrupt the forgery process, but they have been proven incompatible with DMs due to the intricate generative mechanisms of diffusion. To bridge this gap, we introduce VoiceCloak, a multi-dimensional proactive defense framework with the goal of obfuscating speaker identity and degrading perceptual quality in potential unauthorized VC. To achieve these goals, we conduct a focused analysis to identify specific vulnerabilities within DMs, allowing VoiceCloak to disrupt the cloning process by introducing adversarial perturbations into the reference audio. Specifically, to obfuscate speaker identity, VoiceCloak first targets speaker identity by distorting representation learning embeddings to maximize identity variation, which is guided by auditory perception principles. Additionally, VoiceCloak disrupts crucial conditional guidance processes, particularly attention context, thereby preventing the alignment of vocal characteristics that are essential for achieving convincing cloning. Then, to address the second objective, VoiceCloak introduces score magnitude amplification to actively steer the reverse trajectory away from the generation of high-quality speech. Noise-guided semantic corruption is further employed to disrupt structural speech semantics captured by DMs, degrading output quality. Extensive experiments highlight VoiceCloak's outstanding defense success rate against unauthorized diffusion-based voice cloning.
CAV-MAE Sync: Improving Contrastive Audio-Visual Mask Autoencoders via Fine-Grained Alignment CVPR 2025
Recent advances in audio-visual learning have shown promising results in learning representations across modalities. However, most approaches rely on global audio representations that fail to capture fine-grained temporal correspondences with visual frames. Additionally, existing methods often struggle with conflicting optimization objectives when trying to jointly learn reconstruction and cross-modal alignment. In this work, we propose CAV-MAE Sync as a simple yet effective extension of the original CAV-MAE framework for self-supervised audio-visual learning. We address three key challenges: First, we tackle the granularity mismatch between modalities by treating audio as a temporal sequence aligned with video frames, rather than using global representations. Second, we resolve conflicting optimization goals by separating contrastive and reconstruction objectives through dedicated global tokens. Third, we improve spatial localization by introducing learnable register tokens that reduce semantic load on patch tokens. We evaluate the proposed approach on AudioSet, VGG Sound, and the ADE20K Sound dataset on zero-shot retrieval, classification and localization tasks demonstrating state-of-the-art performance and outperforming more complex architectures.
comment: To be published at CVPR 2025, code available at https://github.com/edsonroteia/cav-mae-sync
SEA: Low-Resource Safety Alignment for Multimodal Large Language Models via Synthetic Embeddings ACL 2025
Multimodal Large Language Models (MLLMs) have serious security vulnerabilities.While safety alignment using multimodal datasets consisting of text and data of additional modalities can effectively enhance MLLM's security, it is costly to construct these datasets. Existing low-resource security alignment methods, including textual alignment, have been found to struggle with the security risks posed by additional modalities. To address this, we propose Synthetic Embedding augmented safety Alignment (SEA), which optimizes embeddings of additional modality through gradient updates to expand textual datasets. This enables multimodal safety alignment training even when only textual data is available. Extensive experiments on image, video, and audio-based MLLMs demonstrate that SEA can synthesize a high-quality embedding on a single RTX3090 GPU within 24 seconds. SEA significantly improves the security of MLLMs when faced with threats from additional modalities. To assess the security risks introduced by video and audio, we also introduced a new benchmark called VA-SafetyBench. High attack success rates across multiple MLLMs validate its challenge. Our code and data will be available at https://github.com/ZeroNLP/SEA.
comment: Accepted in ACL 2025 Main Track
Scaling and Enhancing LLM-based AVSR: A Sparse Mixture of Projectors Approach
Audio-Visual Speech Recognition (AVSR) enhances robustness in noisy environments by integrating visual cues. While recent advances integrate Large Language Models (LLMs) into AVSR, their high computational cost hinders deployment in resource-constrained settings. To address this, we propose Llama-SMoP, an efficient Multimodal LLM that employs a Sparse Mixture of Projectors (SMoP) module to scale model capacity without increasing inference costs. By incorporating sparsely-gated mixture-of-experts (MoE) projectors, Llama-SMoP enables the use of smaller LLMs while maintaining strong performance. We explore three SMoP configurations and show that Llama-SMoP DEDR (Disjoint-Experts, Disjoint-Routers), which uses modality-specific routers and experts, achieves superior performance on ASR, VSR, and AVSR tasks. Ablation studies confirm its effectiveness in expert activation, scalability, and noise robustness.
comment: Interspeech 2025
MIRe: Enhancing Multimodal Queries Representation via Fusion-Free Modality Interaction for Multimodal Retrieval ACL 2025
Recent multimodal retrieval methods have endowed text-based retrievers with multimodal capabilities by utilizing pre-training strategies for visual-text alignment. They often directly fuse the two modalities for cross-reference during the alignment to understand multimodal queries. However, existing methods often overlook crucial visual information due to a text-dominant issue, which overly depends on text-driven signals. In this paper, we introduce MIRe, a retrieval framework that achieves modality interaction without fusing textual features during the alignment. Our method allows the textual query to attend to visual embeddings while not feeding text-driven signals back into the visual representations. Additionally, we construct a pre-training dataset for multimodal query retrieval by transforming concise question-answer pairs into extended passages. Our experiments demonstrate that our pre-training strategy significantly enhances the understanding of multimodal queries, resulting in strong performance across four multimodal retrieval benchmarks under zero-shot settings. Moreover, our ablation studies and analyses explicitly verify the effectiveness of our framework in mitigating the text-dominant issue. Our code is publicly available: https://github.com/yeongjoonJu/MIRe
comment: Accepted to ACL 2025 (Findings)
Long-Form Text-to-Music Generation with Adaptive Prompts: A Case Study in Tabletop Role-Playing Games Soundtracks
This paper investigates the capabilities of text-to-audio music generation models in producing long-form music with prompts that change over time, focusing on soundtrack generation for Tabletop Role-Playing Games (TRPGs). We introduce Babel Bardo, a system that uses Large Language Models (LLMs) to transform speech transcriptions into music descriptions for controlling a text-to-music model. Four versions of Babel Bardo were compared in two TRPG campaigns: a baseline using direct speech transcriptions, and three LLM-based versions with varying approaches to music description generation. Evaluations considered audio quality, story alignment, and transition smoothness. Results indicate that detailed music descriptions improve audio quality while maintaining consistency across consecutive descriptions enhances story alignment and transition smoothness.
comment: Proceedings of the 1st Latin American Music Information Retrieval Workshop (LAMIR), pg 80
Computation and Language
Learning to Reason via Mixture-of-Thought for Logical Reasoning
Human beings naturally utilize multiple reasoning modalities to learn and solve logical problems, i.e., different representational formats such as natural language, code, and symbolic logic. In contrast, most existing LLM-based approaches operate with a single reasoning modality during training, typically natural language. Although some methods explored modality selection or augmentation at inference time, the training process remains modality-blind, limiting synergy among modalities. To fill in this gap, we propose Mixture-of-Thought (MoT), a framework that enables LLMs to reason across three complementary modalities: natural language, code, and a newly introduced symbolic modality, truth-table, which systematically enumerates logical cases and partially mitigates key failure modes in natural language reasoning. MoT adopts a two-phase design: (1) self-evolving MoT training, which jointly learns from filtered, self-generated rationales across modalities; and (2) MoT inference, which fully leverages the synergy of three modalities to produce better predictions. Experiments on logical reasoning benchmarks including FOLIO and ProofWriter demonstrate that our MoT framework consistently and significantly outperforms strong LLM baselines with single-modality chain-of-thought approaches, achieving up to +11.7pp average accuracy gain. Further analyses show that our MoT framework benefits both training and inference stages; that it is particularly effective on harder logical reasoning problems; and that different modalities contribute complementary strengths, with truth-table reasoning helping to overcome key bottlenecks in natural language inference.
comment: 38 pages
GUI-G1: Understanding R1-Zero-Like Training for Visual Grounding in GUI Agents
Recent Graphical User Interface (GUI) agents replicate the R1-Zero paradigm, coupling online Reinforcement Learning (RL) with explicit chain-of-thought reasoning prior to object grounding and thereby achieving substantial performance gains. In this paper, we first conduct extensive analysis experiments of three key components of that training pipeline: input design, output evaluation, and policy update-each revealing distinct challenges arising from blindly applying general-purpose RL without adapting to GUI grounding tasks. Input design: Current templates encourage the model to generate chain-of-thought reasoning, but longer chains unexpectedly lead to worse grounding performance. Output evaluation: Reward functions based on hit signals or box area allow models to exploit box size, leading to reward hacking and poor localization quality. Policy update: Online RL tends to overfit easy examples due to biases in length and sample difficulty, leading to under-optimization on harder cases. To address these issues, we propose three targeted solutions. First, we adopt a Fast Thinking Template that encourages direct answer generation, reducing excessive reasoning during training. Second, we incorporate a box size constraint into the reward function to mitigate reward hacking. Third, we revise the RL objective by adjusting length normalization and adding a difficulty-aware scaling factor, enabling better optimization on hard samples. Our GUI-G1-3B, trained on 17K public samples with Qwen2.5-VL-3B-Instruct, achieves 90.3% accuracy on ScreenSpot and 37.1% on ScreenSpot-Pro. This surpasses all prior models of similar size and even outperforms the larger UI-TARS-7B, establishing a new state-of-the-art in GUI agent grounding. The project repository is available at https://github.com/Yuqi-Zhou/GUI-G1.
The Atlas of In-Context Learning: How Attention Heads Shape In-Context Retrieval Augmentation
Large language models are able to exploit in-context learning to access external knowledge beyond their training data through retrieval-augmentation. While promising, its inner workings remain unclear. In this work, we shed light on the mechanism of in-context retrieval augmentation for question answering by viewing a prompt as a composition of informational components. We propose an attribution-based method to identify specialized attention heads, revealing in-context heads that comprehend instructions and retrieve relevant contextual information, and parametric heads that store entities' relational knowledge. To better understand their roles, we extract function vectors and modify their attention weights to show how they can influence the answer generation process. Finally, we leverage the gained insights to trace the sources of knowledge used during inference, paving the way towards more safe and transparent language models.
comment: work in progress
Keep Security! Benchmarking Security Policy Preservation in Large Language Model Contexts Against Indirect Attacks in Question Answering
As Large Language Models (LLMs) are increasingly deployed in sensitive domains such as enterprise and government, ensuring that they adhere to user-defined security policies within context is critical-especially with respect to information non-disclosure. While prior LLM studies have focused on general safety and socially sensitive data, large-scale benchmarks for contextual security preservation against attacks remain lacking. To address this, we introduce a novel large-scale benchmark dataset, CoPriva, evaluating LLM adherence to contextual non-disclosure policies in question answering. Derived from realistic contexts, our dataset includes explicit policies and queries designed as direct and challenging indirect attacks seeking prohibited information. We evaluate 10 LLMs on our benchmark and reveal a significant vulnerability: many models violate user-defined policies and leak sensitive information. This failure is particularly severe against indirect attacks, highlighting a critical gap in current LLM safety alignment for sensitive applications. Our analysis reveals that while models can often identify the correct answer to a query, they struggle to incorporate policy constraints during generation. In contrast, they exhibit a partial ability to revise outputs when explicitly prompted. Our findings underscore the urgent need for more robust methods to guarantee contextual security.
VerifyBench: Benchmarking Reference-based Reward Systems for Large Language Models
Large reasoning models such as OpenAI o1 and DeepSeek-R1 have achieved remarkable performance in the domain of reasoning. A key component of their training is the incorporation of verifiable rewards within reinforcement learning (RL). However, existing reward benchmarks do not evaluate reference-based reward systems, leaving researchers with limited understanding of the accuracy of verifiers used in RL. In this paper, we introduce two benchmarks, VerifyBench and VerifyBench-Hard, designed to assess the performance of reference-based reward systems. These benchmarks are constructed through meticulous data collection and curation, followed by careful human annotation to ensure high quality. Current models still show considerable room for improvement on both VerifyBench and VerifyBench-Hard, especially smaller-scale models. Furthermore, we conduct a thorough and comprehensive analysis of evaluation results, offering insights for understanding and developing reference-based reward systems. Our proposed benchmarks serve as effective tools for guiding the development of verifier accuracy and the reasoning capabilities of models trained via RL in reasoning tasks.
comment: Dataset: https://huggingface.co/datasets/ZJU-REAL/VerifyBench
Reverse Engineering Human Preferences with Reinforcement Learning
The capabilities of Large Language Models (LLMs) are routinely evaluated by other LLMs trained to predict human preferences. This framework--known as LLM-as-a-judge--is highly scalable and relatively low cost. However, it is also vulnerable to malicious exploitation, as LLM responses can be tuned to overfit the preferences of the judge. Previous work shows that the answers generated by a candidate-LLM can be edited post hoc to maximise the score assigned to them by a judge-LLM. In this study, we adopt a different approach and use the signal provided by judge-LLMs as a reward to adversarially tune models that generate text preambles designed to boost downstream performance. We find that frozen LLMs pipelined with these models attain higher LLM-evaluation scores than existing frameworks. Crucially, unlike other frameworks which intervene directly on the model's response, our method is virtually undetectable. We also demonstrate that the effectiveness of the tuned preamble generator transfers when the candidate-LLM and the judge-LLM are replaced with models that are not used during training. These findings raise important questions about the design of more reliable LLM-as-a-judge evaluation settings. They also demonstrate that human preferences can be reverse engineered effectively, by pipelining LLMs to optimise upstream preambles via reinforcement learning--an approach that could find future applications in diverse tasks and domains beyond adversarial attacks.
Long-Form Information Alignment Evaluation Beyond Atomic Facts
Information alignment evaluators are vital for various NLG evaluation tasks and trustworthy LLM deployment, reducing hallucinations and enhancing user trust. Current fine-grained methods, like FactScore, verify facts individually but neglect inter-fact dependencies, enabling subtle vulnerabilities. In this work, we introduce MontageLie, a challenging benchmark that constructs deceptive narratives by "montaging" truthful statements without introducing explicit hallucinations. We demonstrate that both coarse-grained LLM-based evaluators and current fine-grained frameworks are susceptible to this attack, with AUC-ROC scores falling below 65%. To enable more robust fine-grained evaluation, we propose DoveScore, a novel framework that jointly verifies factual accuracy and event-order consistency. By modeling inter-fact relationships, DoveScore outperforms existing fine-grained methods by over 8%, providing a more robust solution for long-form text alignment evaluation. Our code and datasets are available at https://github.com/dannalily/DoveScore.
Large Language Models as Computable Approximations to Solomonoff Induction
The rapid advancement of large language models (LLMs) calls for a rigorous theoretical framework to explain their empirical success. While significant progress has been made in understanding LLM behaviors, existing theoretical frameworks remain fragmented in explaining emergent phenomena through a unified mathematical lens. We establish the first formal connection between LLM architectures and Algorithmic Information Theory (AIT) by proving two fundamental results: (1) the training process computationally approximates Solomonoff prior through loss minimization interpreted as program length optimization, and (2) next-token prediction implements approximate Solomonoff induction. We leverage AIT to provide a unified theoretical explanation for in-context learning, few-shot learning, and scaling laws. Furthermore, our theoretical insights lead to a principled method for few-shot example selection that prioritizes samples where models exhibit lower predictive confidence. We demonstrate through experiments on diverse text classification benchmarks that this strategy yields significant performance improvements, particularly for smaller model architectures, when compared to selecting high-confidence examples. Our framework bridges the gap between theoretical foundations and practical LLM behaviors, providing both explanatory power and actionable insights for future model development.
comment: Both authors contributed equally
dKV-Cache: The Cache for Diffusion Language Models
Diffusion Language Models (DLMs) have been seen as a promising competitor for autoregressive language models. However, diffusion language models have long been constrained by slow inference. A core challenge is that their non-autoregressive architecture and bidirectional attention preclude the key-value cache that accelerates decoding. We address this bottleneck by proposing a KV-cache-like mechanism, delayed KV-Cache, for the denoising process of DLMs. Our approach is motivated by the observation that different tokens have distinct representation dynamics throughout the diffusion process. Accordingly, we propose a delayed and conditioned caching strategy for key and value states. We design two complementary variants to cache key and value step-by-step: (1) dKV-Cache-Decode, which provides almost lossless acceleration, and even improves performance on long sequences, suggesting that existing DLMs may under-utilise contextual information during inference. (2) dKV-Cache-Greedy, which has aggressive caching with reduced lifespan, achieving higher speed-ups with quadratic time complexity at the cost of some performance degradation. dKV-Cache, in final, achieves from 2-10x speedup in inference, largely narrowing the gap between ARs and DLMs. We evaluate our dKV-Cache on several benchmarks, delivering acceleration across general language understanding, mathematical, and code-generation benchmarks. Experiments demonstrate that cache can also be used in DLMs, even in a training-free manner from current DLMs.
comment: The code is available at https://github.com/horseee/dKV-Cache
Soft Thinking: Unlocking the Reasoning Potential of LLMs in Continuous Concept Space
Human cognition typically involves thinking through abstract, fluid concepts rather than strictly using discrete linguistic tokens. Current reasoning models, however, are constrained to reasoning within the boundaries of human language, processing discrete token embeddings that represent fixed points in the semantic space. This discrete constraint restricts the expressive power and upper potential of such reasoning models, often causing incomplete exploration of reasoning paths, as standard Chain-of-Thought (CoT) methods rely on sampling one token per step. In this work, we introduce Soft Thinking, a training-free method that emulates human-like "soft" reasoning by generating soft, abstract concept tokens in a continuous concept space. These concept tokens are created by the probability-weighted mixture of token embeddings, which form the continuous concept space, enabling smooth transitions and richer representations that transcend traditional discrete boundaries. In essence, each generated concept token encapsulates multiple meanings from related discrete tokens, implicitly exploring various reasoning paths to converge effectively toward the correct answer. Empirical evaluations on diverse mathematical and coding benchmarks consistently demonstrate the effectiveness and efficiency of Soft Thinking, improving pass@1 accuracy by up to 2.48 points while simultaneously reducing token usage by up to 22.4% compared to standard CoT. Qualitative analysis further reveals that Soft Thinking outputs remain highly interpretable and readable, highlighting the potential of Soft Thinking to break the inherent bottleneck of discrete language-based reasoning. Code is available at https://github.com/eric-ai-lab/Soft-Thinking.
ConvSearch-R1: Enhancing Query Reformulation for Conversational Search with Reasoning via Reinforcement Learning
Conversational search systems require effective handling of context-dependent queries that often contain ambiguity, omission, and coreference. Conversational Query Reformulation (CQR) addresses this challenge by transforming these queries into self-contained forms suitable for off-the-shelf retrievers. However, existing CQR approaches suffer from two critical constraints: high dependency on costly external supervision from human annotations or large language models, and insufficient alignment between the rewriting model and downstream retrievers. We present ConvSearch-R1, the first self-driven framework that completely eliminates dependency on external rewrite supervision by leveraging reinforcement learning to optimize reformulation directly through retrieval signals. Our novel two-stage approach combines Self-Driven Policy Warm-Up to address the cold-start problem through retrieval-guided self-distillation, followed by Retrieval-Guided Reinforcement Learning with a specially designed rank-incentive reward shaping mechanism that addresses the sparsity issue in conventional retrieval metrics. Extensive experiments on TopiOCQA and QReCC datasets demonstrate that ConvSearch-R1 significantly outperforms previous state-of-the-art methods, achieving over 10% improvement on the challenging TopiOCQA dataset while using smaller 3B parameter models without any external supervision.
Beyond Hard and Soft: Hybrid Context Compression for Balancing Local and Global Information Retention
Large Language Models (LLMs) encounter significant challenges in long-sequence inference due to computational inefficiency and redundant processing, driving interest in context compression techniques. Existing methods often rely on token importance to perform hard local compression or encode context into latent representations for soft global compression. However, the uneven distribution of textual content relevance and the diversity of demands for user instructions mean these approaches frequently lead to the loss of potentially valuable information. To address this, we propose $\textbf{Hy}$brid $\textbf{Co}$ntext $\textbf{Co}$mpression (HyCo$_2$) for LLMs, which integrates both global and local perspectives to guide context compression while retaining both the essential semantics and critical details for task completion. Specifically, we employ a hybrid adapter to refine global semantics with the global view, based on the observation that different adapters excel at different tasks. Then we incorporate a classification layer that assigns a retention probability to each context token based on the local view, determining whether it should be retained or discarded. To foster a balanced integration of global and local compression, we introduce auxiliary paraphrasing and completion pretraining before instruction tuning. This promotes a synergistic integration that emphasizes instruction-relevant information while preserving essential local details, ultimately balancing local and global information retention in context compression. Experiments show that our HyCo$_2$ method significantly enhances long-text reasoning while reducing token usage. It improves the performance of various LLM series by an average of 13.1\% across seven knowledge-intensive QA benchmarks. Moreover, HyCo$_2$ matches the performance of uncompressed methods while reducing token consumption by 88.8\%.
ToxicTone: A Mandarin Audio Dataset Annotated for Toxicity and Toxic Utterance Tonality INTERSPEECH 2025
Despite extensive research on toxic speech detection in text, a critical gap remains in handling spoken Mandarin audio. The lack of annotated datasets that capture the unique prosodic cues and culturally specific expressions in Mandarin leaves spoken toxicity underexplored. To address this, we introduce ToxicTone -- the largest public dataset of its kind -- featuring detailed annotations that distinguish both forms of toxicity (e.g., profanity, bullying) and sources of toxicity (e.g., anger, sarcasm, dismissiveness). Our data, sourced from diverse real-world audio and organized into 13 topical categories, mirrors authentic communication scenarios. We also propose a multimodal detection framework that integrates acoustic, linguistic, and emotional features using state-of-the-art speech and emotion encoders. Extensive experiments show our approach outperforms text-only and baseline models, underscoring the essential role of speech-specific cues in revealing hidden toxic expressions.
comment: Accepted by INTERSPEECH 2025. 5 pages
MIKU-PAL: An Automated and Standardized Multi-Modal Method for Speech Paralinguistic and Affect Labeling
Acquiring large-scale emotional speech data with strong consistency remains a challenge for speech synthesis. This paper presents MIKU-PAL, a fully automated multimodal pipeline for extracting high-consistency emotional speech from unlabeled video data. Leveraging face detection and tracking algorithms, we developed an automatic emotion analysis system using a multimodal large language model (MLLM). Our results demonstrate that MIKU-PAL can achieve human-level accuracy (68.5% on MELD) and superior consistency (0.93 Fleiss kappa score) while being much cheaper and faster than human annotation. With the high-quality, flexible, and consistent annotation from MIKU-PAL, we can annotate fine-grained speech emotion categories of up to 26 types, validated by human annotators with 83% rationality ratings. Based on our proposed system, we further released a fine-grained emotional speech dataset MIKU-EmoBench(131.2 hours) as a new benchmark for emotional text-to-speech and visual voice cloning.
comment: Accepted by Interspeech
Transfer of Structural Knowledge from Synthetic Languages ACL 2025
This work explores transfer learning from several synthetic languages to English. We investigate the structure of the embeddings in the fine-tuned models, the information they contain, and the capabilities of the fine-tuned models on simple linguistic tasks. We also introduce a new synthetic language that leads to better transfer to English than the languages used in previous research. Finally, we introduce Tiny-Cloze Benchmark - a new synthetic benchmark for natural language understanding that is more informative for less powerful models. We use Tiny-Cloze Benchmark to evaluate fine-tuned models in several domains demonstrating that fine-tuning on a new synthetic language allows for better performance on a variety of tasks.
comment: 10 pages, 3 figures and 3 tables to be published in ACL 2025 Workshop XLLM
Scalable Defense against In-the-wild Jailbreaking Attacks with Safety Context Retrieval
Large Language Models (LLMs) are known to be vulnerable to jailbreaking attacks, wherein adversaries exploit carefully engineered prompts to induce harmful or unethical responses. Such threats have raised critical concerns about the safety and reliability of LLMs in real-world deployment. While existing defense mechanisms partially mitigate such risks, subsequent advancements in adversarial techniques have enabled novel jailbreaking methods to circumvent these protections, exposing the limitations of static defense frameworks. In this work, we explore defending against evolving jailbreaking threats through the lens of context retrieval. First, we conduct a preliminary study demonstrating that even a minimal set of safety-aligned examples against a particular jailbreak can significantly enhance robustness against this attack pattern. Building on this insight, we further leverage the retrieval-augmented generation (RAG) techniques and propose Safety Context Retrieval (SCR), a scalable and robust safeguarding paradigm for LLMs against jailbreaking. Our comprehensive experiments demonstrate how SCR achieves superior defensive performance against both established and emerging jailbreaking tactics, contributing a new paradigm to LLM safety. Our code will be available upon publication.
Evolutionary Computation and Large Language Models: A Survey of Methods, Synergies, and Applications
Integrating Large Language Models (LLMs) and Evolutionary Computation (EC) represents a promising avenue for advancing artificial intelligence by combining powerful natural language understanding with optimization and search capabilities. This manuscript explores the synergistic potential of LLMs and EC, reviewing their intersections, complementary strengths, and emerging applications. We identify key opportunities where EC can enhance LLM training, fine-tuning, prompt engineering, and architecture search, while LLMs can, in turn, aid in automating the design, analysis, and interpretation of ECs. The manuscript explores the synergistic integration of EC and LLMs, highlighting their bidirectional contributions to advancing artificial intelligence. It first examines how EC techniques enhance LLMs by optimizing key components such as prompt engineering, hyperparameter tuning, and architecture search, demonstrating how evolutionary methods automate and refine these processes. Secondly, the survey investigates how LLMs improve EC by automating metaheuristic design, tuning evolutionary algorithms, and generating adaptive heuristics, thereby increasing efficiency and scalability. Emerging co-evolutionary frameworks are discussed, showcasing applications across diverse fields while acknowledging challenges like computational costs, interpretability, and algorithmic convergence. The survey concludes by identifying open research questions and advocating for hybrid approaches that combine the strengths of EC and LLMs.
Alignment Under Pressure: The Case for Informed Adversaries When Evaluating LLM Defenses
Large language models (LLMs) are rapidly deployed in real-world applications ranging from chatbots to agentic systems. Alignment is one of the main approaches used to defend against attacks such as prompt injection and jailbreaks. Recent defenses report near-zero Attack Success Rates (ASR) even against Greedy Coordinate Gradient (GCG), a white-box attack that generates adversarial suffixes to induce attacker-desired outputs. However, this search space over discrete tokens is extremely large, making the task of finding successful attacks difficult. GCG has, for instance, been shown to converge to local minima, making it sensitive to initialization choices. In this paper, we assess the future-proof robustness of these defenses using a more informed threat model: attackers who have access to some information about the alignment process. Specifically, we propose an informed white-box attack leveraging the intermediate model checkpoints to initialize GCG, with each checkpoint acting as a stepping stone for the next one. We show this approach to be highly effective across state-of-the-art (SOTA) defenses and models. We further show our informed initialization to outperform other initialization methods and show a gradient-informed checkpoint selection strategy to greatly improve attack performance and efficiency. Importantly, we also show our method to successfully find universal adversarial suffixes -- single suffixes effective across diverse inputs. Our results show that, contrary to previous beliefs, effective adversarial suffixes do exist against SOTA alignment-based defenses, that these can be found by existing attack methods when adversaries exploit alignment knowledge, and that even universal suffixes exist. Taken together, our results highlight the brittleness of current alignment-based methods and the need to consider stronger threat models when testing the safety of LLMs.
DEBATE, TRAIN, EVOLVE: Self Evolution of Language Model Reasoning
Large language models (LLMs) have improved significantly in their reasoning through extensive training on massive datasets. However, relying solely on additional data for improvement is becoming increasingly impractical, highlighting the need for models to autonomously enhance their reasoning without external supervision. In this paper, we propose Debate, Train, Evolve (DTE), a novel ground truth-free training framework that uses multi-agent debate traces to evolve a single language model. We also introduce a new prompting strategy Reflect-Critique-Refine, to improve debate quality by explicitly instructing agents to critique and refine their reasoning. Extensive evaluations on five reasoning benchmarks with six open-weight models show that our DTE framework achieve substantial improvements, with an average accuracy gain of 8.92% on the challenging GSM-PLUS dataset. Furthermore, we observe strong cross-domain generalization, with an average accuracy gain of 5.8% on all other benchmarks, suggesting that our method captures general reasoning capabilities.
VocalBench: Benchmarking the Vocal Conversational Abilities for Speech Interaction Models
The rapid advancement of large language models (LLMs) has accelerated the development of multi-modal models capable of vocal communication. Unlike text-based interactions, speech conveys rich and diverse information, including semantic content, acoustic variations, paralanguage cues, and environmental context. However, existing evaluations of speech interaction models predominantly focus on the quality of their textual responses, often overlooking critical aspects of vocal performance and lacking benchmarks with vocal-specific test instances. To address this gap, we propose VocalBench, a comprehensive benchmark designed to evaluate speech interaction models' capabilities in vocal communication. VocalBench comprises 9,400 carefully curated instances across four key dimensions: semantic quality, acoustic performance, conversational abilities, and robustness. It covers 16 fundamental skills essential for effective vocal interaction. Experimental results reveal significant variability in current model capabilities, each exhibiting distinct strengths and weaknesses, and provide valuable insights to guide future research in speech-based interaction systems. Code and evaluation instances are available at https://github.com/SJTU-OmniAgent/VocalBench.
Shared Path: Unraveling Memorization in Multilingual LLMs through Language Similarities
We present the first comprehensive study of Memorization in Multilingual Large Language Models (MLLMs), analyzing 95 languages using models across diverse model scales, architectures, and memorization definitions. As MLLMs are increasingly deployed, understanding their memorization behavior has become critical. Yet prior work has focused primarily on monolingual models, leaving multilingual memorization underexplored, despite the inherently long-tailed nature of training corpora. We find that the prevailing assumption, that memorization is highly correlated with training data availability, fails to fully explain memorization patterns in MLLMs. We hypothesize that treating languages in isolation - ignoring their similarities - obscures the true patterns of memorization. To address this, we propose a novel graph-based correlation metric that incorporates language similarity to analyze cross-lingual memorization. Our analysis reveals that among similar languages, those with fewer training tokens tend to exhibit higher memorization, a trend that only emerges when cross-lingual relationships are explicitly modeled. These findings underscore the importance of a language-aware perspective in evaluating and mitigating memorization vulnerabilities in MLLMs. This also constitutes empirical evidence that language similarity both explains Memorization in MLLMs and underpins Cross-lingual Transferability, with broad implications for multilingual NLP.
comment: 17 pages, 14 tables, 10 figures
Beyond Empathy: Integrating Diagnostic and Therapeutic Reasoning with Large Language Models for Mental Health Counseling
Large language models (LLMs) hold significant potential for mental health support, capable of generating empathetic responses and simulating therapeutic conversations. However, existing LLM-based approaches often lack the clinical grounding necessary for real-world psychological counseling, particularly in explicit diagnostic reasoning aligned with standards like the DSM/ICD and incorporating diverse therapeutic modalities beyond basic empathy or single strategies. To address these critical limitations, we propose PsyLLM, the first large language model designed to systematically integrate both diagnostic and therapeutic reasoning for mental health counseling. To develop the PsyLLM, we propose a novel automated data synthesis pipeline. This pipeline processes real-world mental health posts, generates multi-turn dialogue structures, and leverages LLMs guided by international diagnostic standards (e.g., DSM/ICD) and multiple therapeutic frameworks (e.g., CBT, ACT, psychodynamic) to simulate detailed clinical reasoning processes. Rigorous multi-dimensional filtering ensures the generation of high-quality, clinically aligned dialogue data. In addition, we introduce a new benchmark and evaluation protocol, assessing counseling quality across four key dimensions: comprehensiveness, professionalism, authenticity, and safety. Our experiments demonstrate that PsyLLM significantly outperforms state-of-the-art baseline models on this benchmark.
TurnaboutLLM: A Deductive Reasoning Benchmark from Detective Games
This paper introduces TurnaboutLLM, a novel framework and dataset for evaluating the deductive reasoning abilities of Large Language Models (LLMs) by leveraging the interactive gameplay of detective games Ace Attorney and Danganronpa. The framework tasks LLMs with identifying contradictions between testimonies and evidences within long narrative contexts, a challenging task due to the large answer space and diverse reasoning types presented by its questions. We evaluate twelve state-of-the-art LLMs on the dataset, hinting at limitations of popular strategies for enhancing deductive reasoning such as extensive thinking and Chain-of-Thought prompting. The results also suggest varying effects of context size, the number of reasoning step and answer space size on model performance. Overall, TurnaboutLLM presents a substantial challenge for LLMs' deductive reasoning abilities in complex, narrative-rich environments.
Advancing LLM Safe Alignment with Safety Representation Ranking
The rapid advancement of large language models (LLMs) has demonstrated milestone success in a variety of tasks, yet their potential for generating harmful content has raised significant safety concerns. Existing safety evaluation approaches typically operate directly on textual responses, overlooking the rich information embedded in the model's internal representations. In this paper, we propose Safety Representation Ranking (SRR), a listwise ranking framework that selects safe responses using hidden states from the LLM itself. SRR encodes both instructions and candidate completions using intermediate transformer representations and ranks candidates via a lightweight similarity-based scorer. Our approach directly leverages internal model states and supervision at the list level to capture subtle safety signals. Experiments across multiple benchmarks show that SRR significantly improves robustness to adversarial prompts. Our code will be available upon publication.
LyapLock: Bounded Knowledge Preservation in Sequential Large Language Model Editing
Large Language Models often contain factually incorrect or outdated knowledge, giving rise to model editing methods for precise knowledge updates. However, current mainstream locate-then-edit approaches exhibit a progressive performance decline during sequential editing, due to inadequate mechanisms for long-term knowledge preservation. To tackle this, we model the sequential editing as a constrained stochastic programming. Given the challenges posed by the cumulative preservation error constraint and the gradually revealed editing tasks, \textbf{LyapLock} is proposed. It integrates queuing theory and Lyapunov optimization to decompose the long-term constrained programming into tractable stepwise subproblems for efficient solving. This is the first model editing framework with rigorous theoretical guarantees, achieving asymptotic optimal editing performance while meeting the constraints of long-term knowledge preservation. Experimental results show that our framework scales sequential editing capacity to over 10,000 edits while stabilizing general capabilities and boosting average editing efficacy by 11.89\% over SOTA baselines. Furthermore, it can be leveraged to enhance the performance of baseline methods. Our code is released on https://github.com/caskcsg/LyapLock.
HDLxGraph: Bridging Large Language Models and HDL Repositories via HDL Graph Databases
Large Language Models (LLMs) have demonstrated their potential in hardware design tasks, such as Hardware Description Language (HDL) generation and debugging. Yet, their performance in real-world, repository-level HDL projects with thousands or even tens of thousands of code lines is hindered. To this end, we propose HDLxGraph, a novel framework that integrates Graph Retrieval Augmented Generation (Graph RAG) with LLMs, introducing HDL-specific graph representations by incorporating Abstract Syntax Trees (ASTs) and Data Flow Graphs (DFGs) to capture both code graph view and hardware graph view. HDLxGraph utilizes a dual-retrieval mechanism that not only mitigates the limited recall issues inherent in similarity-based semantic retrieval by incorporating structural information, but also enhances its extensibility to various real-world tasks by a task-specific retrieval finetuning. Additionally, to address the lack of comprehensive HDL search benchmarks, we introduce HDLSearch, a multi-granularity evaluation dataset derived from real-world repository-level projects. Experimental results demonstrate that HDLxGraph significantly improves average search accuracy, debugging efficiency and completion quality by 12.04%, 12.22% and 5.04% compared to similarity-based RAG, respectively. The code of HDLxGraph and collected HDLSearch benchmark are available at https://github.com/Nick-Zheng-Q/HDLxGraph.
"Alexa, can you forget me?" Machine Unlearning Benchmark in Spoken Language Understanding
Machine unlearning, the process of efficiently removing specific information from machine learning models, is a growing area of interest for responsible AI. However, few studies have explored the effectiveness of unlearning methods on complex tasks, particularly speech-related ones. This paper introduces UnSLU-BENCH, the first benchmark for machine unlearning in spoken language understanding (SLU), focusing on four datasets spanning four languages. We address the unlearning of data from specific speakers as a way to evaluate the quality of potential "right to be forgotten" requests. We assess eight unlearning techniques and propose a novel metric to simultaneously better capture their efficacy, utility, and efficiency. UnSLU-BENCH sets a foundation for unlearning in SLU and reveals significant differences in the effectiveness and computational feasibility of various techniques.
MaxPoolBERT: Enhancing BERT Classification via Layer- and Token-Wise Aggregation
The [CLS] token in BERT is commonly used as a fixed-length representation for classification tasks, yet prior work has shown that both other tokens and intermediate layers encode valuable contextual information. In this work, we propose MaxPoolBERT, a lightweight extension to BERT that refines the [CLS] representation by aggregating information across layers and tokens. Specifically, we explore three modifications: (i) max-pooling the [CLS] token across multiple layers, (ii) enabling the [CLS] token to attend over the entire final layer using an additional multi-head attention (MHA) layer, and (iii) combining max-pooling across the full sequence with MHA. Our approach enhances BERT's classification accuracy (especially on low-resource tasks) without requiring pre-training or significantly increasing model size. Experiments on the GLUE benchmark show that MaxPoolBERT consistently achieves a better performance on the standard BERT-base model.
Can Large Language Models be Effective Online Opinion Miners?
The surge of user-generated online content presents a wealth of insights into customer preferences and market trends. However, the highly diverse, complex, and context-rich nature of such contents poses significant challenges to traditional opinion mining approaches. To address this, we introduce Online Opinion Mining Benchmark (OOMB), a novel dataset and evaluation protocol designed to assess the ability of large language models (LLMs) to mine opinions effectively from diverse and intricate online environments. OOMB provides extensive (entity, feature, opinion) tuple annotations and a comprehensive opinion-centric summary that highlights key opinion topics within each content, thereby enabling the evaluation of both the extractive and abstractive capabilities of models. Through our proposed benchmark, we conduct a comprehensive analysis of which aspects remain challenging and where LLMs exhibit adaptability, to explore whether they can effectively serve as opinion miners in realistic online scenarios. This study lays the foundation for LLM-based opinion mining and discusses directions for future research in this field.
comment: 8 pages, 6 figures
Thought-Augmented Policy Optimization: Bridging External Guidance and Internal Capabilities
Reinforcement learning (RL) has emerged as an effective method for training reasoning models. However, existing RL approaches typically bias the model's output distribution toward reward-maximizing paths without introducing external knowledge. This limits their exploration capacity and results in a narrower reasoning capability boundary compared to base models. To address this limitation, we propose TAPO (Thought-Augmented Policy Optimization), a novel framework that augments RL by incorporating external high-level guidance ("thought patterns"). By adaptively integrating structured thoughts during training, TAPO effectively balances model-internal exploration and external guidance exploitation. Extensive experiments show that our approach significantly outperforms GRPO by 99% on AIME, 41% on AMC, and 17% on Minerva Math. Notably, these high-level thought patterns, abstracted from only 500 prior samples, generalize effectively across various tasks and models. This highlights TAPO's potential for broader applications across multiple tasks and domains. Our further analysis reveals that introducing external guidance produces powerful reasoning models with superior explainability of inference behavior and enhanced output readability.
ThinkLess: A Training-Free Inference-Efficient Method for Reducing Reasoning Redundancy
While Chain-of-Thought (CoT) prompting improves reasoning in large language models (LLMs), the excessive length of reasoning tokens increases latency and KV cache memory usage, and may even truncate final answers under context limits. We propose ThinkLess, an inference-efficient framework that terminates reasoning generation early and maintains output quality without modifying the model. Atttention analysis reveals that answer tokens focus minimally on earlier reasoning steps and primarily attend to the reasoning terminator token, due to information migration under causal masking. Building on this insight, ThinkLess inserts the terminator token at earlier positions to skip redundant reasoning while preserving the underlying knowledge transfer. To prevent format discruption casued by early termination, ThinkLess employs a lightweight post-regulation mechanism, relying on the model's natural instruction-following ability to produce well-structured answers. Without fine-tuning or auxiliary data, ThinkLess achieves comparable accuracy to full-length CoT decoding while greatly reducing decoding time and memory consumption.
A Federated Splitting Framework for LLMs: Security, Efficiency, and Adaptability
Private data is typically larger and of higher quality than public data, offering great potential to improve LLM. However, its scattered distribution across data silos and the high computational demands of LLMs limit their deployment in federated environments. To address this, the transformer-based split learning model has emerged, offloading most model parameters to the server while retaining only the embedding and output layers on clients to ensure privacy. However, it still faces significant challenges in security, efficiency, and adaptability: 1) embedding gradients are vulnerable to attacks, leading to reverse engineering of private data; 2) the autoregressive nature of LLMs means that federated split learning can only train and infer sequentially, causing high communication overhead; 3) fixed partition points lack adaptability to downstream tasks. In this paper, we introduce FL-LLaMA, a secure, efficient, and adaptive federated split framework based on LLaMA2. First, we place some input and output blocks on the local client and inject Gaussian noise into forward-pass hidden states, enabling secure end-to-end propagation. Second, we employ client-batch and server-hierarchical strategies to achieve parallel training, along with attention-mask compression and KV cache mechanisms to accelerate inference, reducing communication costs effectively. Third, we allow users to dynamically adjust the partition points for input/output blocks based on specific task requirements and hardware limitations. Experiments on NLU, summarization and conversational QA tasks show that FL-LLaMA maintains performance comparable to centralized LLaMA2, and achieves up to 2x train speedups and 8x inference speedups. Further analysis of privacy attacks and different partition points also demonstrates the effectiveness of FL-LLaMA in security and adaptability.
The Representational Alignment between Humans and Language Models is implicitly driven by a Concreteness Effect
The nouns of our language refer to either concrete entities (like a table) or abstract concepts (like justice or love), and cognitive psychology has established that concreteness influences how words are processed. Accordingly, understanding how concreteness is represented in our mind and brain is a central question in psychology, neuroscience, and computational linguistics. While the advent of powerful language models has allowed for quantitative inquiries into the nature of semantic representations, it remains largely underexplored how they represent concreteness. Here, we used behavioral judgments to estimate semantic distances implicitly used by humans, for a set of carefully selected abstract and concrete nouns. Using Representational Similarity Analysis, we find that the implicit representational space of participants and the semantic representations of language models are significantly aligned. We also find that both representational spaces are implicitly aligned to an explicit representation of concreteness, which was obtained from our participants using an additional concreteness rating task. Importantly, using ablation experiments, we demonstrate that the human-to-model alignment is substantially driven by concreteness, but not by other important word characteristics established in psycholinguistics. These results indicate that humans and language models converge on the concreteness dimension, but not on other dimensions.
comment: 13 pages, 4 Figures, 1 Table
UniErase: Unlearning Token as a Universal Erasure Primitive for Language Models
Large language models require iterative updates to address challenges such as knowledge conflicts and outdated information (e.g., incorrect, private, or illegal contents). Machine unlearning provides a systematic methodology for targeted knowledge removal from trained models, enabling elimination of sensitive information influences. However, mainstream fine-tuning-based unlearning methods often fail to balance unlearning efficacy and model ability, frequently resulting in catastrophic model collapse under extensive knowledge removal. Meanwhile, in-context unlearning, which relies solely on contextual prompting without modifying the model's intrinsic mechanisms, suffers from limited generalizability and struggles to achieve true unlearning. In this work, we introduce UniErase, a novel unlearning paradigm that employs learnable parametric suffix (unlearning token) to steer language models toward targeted forgetting behaviors. UniErase operates through two key phases: (I) an optimization stage that binds desired unlearning outputs to the model's autoregressive probability distribution via token optimization, followed by (II) a lightweight model editing phase that activates the learned token to probabilistically induce specified forgetting objective. Serving as a new research direction for token learning to induce unlearning target, UniErase achieves state-of-the-art (SOTA) performance across batch, sequential, and precise unlearning under fictitious and real-world knowledge settings. Remarkably, in terms of TOFU benchmark, UniErase, modifying only around 3.66% of the LLM parameters, outperforms previous forgetting SOTA baseline by around 4.01 times for model ability with even better unlearning efficacy. Similarly, UniErase, maintaining more ability, also surpasses previous retaining SOTA by 35.96% for unlearning efficacy, showing dual top-tier performances in current unlearing domain.
Efficient and Direct Duplex Modeling for Speech-to-Speech Language Model
Spoken dialogue is an intuitive form of human-computer interaction, yet current speech language models often remain constrained to turn-based exchanges, lacking real-time adaptability such as user barge-in. We propose a novel duplex speech to speech (S2S) architecture featuring continuous user inputs and codec agent outputs with channel fusion that directly models simultaneous user and agent streams. Using a pretrained streaming encoder for user input enables the first duplex S2S model without requiring speech pretrain. Separate architectures for agent and user modeling facilitate codec fine-tuning for better agent voices and halve the bitrate (0.6 kbps) compared to previous works. Experimental results show that the proposed model outperforms previous duplex models in reasoning, turn-taking, and barge-in abilities. The model requires significantly less speech data, as speech pretrain is skipped, which markedly simplifies the process of building a duplex S2S model from any LLMs. Finally, it is the first openly available duplex S2S model with training and inference code to foster reproducibility.
comment: Accepted to Interspeech 2025
Segmentation-Variant Codebooks for Preservation of Paralinguistic and Prosodic Information
Quantization in SSL speech models (e.g., HuBERT) improves compression and performance in tasks like language modeling, resynthesis, and text-to-speech but often discards prosodic and paralinguistic information (e.g., emotion, prominence). While increasing codebook size mitigates some loss, it inefficiently raises bitrates. We propose Segmentation-Variant Codebooks (SVCs), which quantize speech at distinct linguistic units (frame, phone, word, utterance), factorizing it into multiple streams of segment-specific discrete features. Our results show that SVCs are significantly more effective at preserving prosodic and paralinguistic information across probing tasks. Additionally, we find that pooling before rather than after discretization better retains segment-level information. Resynthesis experiments further confirm improved style realization and slightly improved quality while preserving intelligibility.
comment: Accepted to Interspeech 2025
Be Careful When Fine-tuning On Open-Source LLMs: Your Fine-tuning Data Could Be Secretly Stolen!
Fine-tuning on open-source Large Language Models (LLMs) with proprietary data is now a standard practice for downstream developers to obtain task-specific LLMs. Surprisingly, we reveal a new and concerning risk along with the practice: the creator of the open-source LLMs can later extract the private downstream fine-tuning data through simple backdoor training, only requiring black-box access to the fine-tuned downstream model. Our comprehensive experiments, across 4 popularly used open-source models with 3B to 32B parameters and 2 downstream datasets, suggest that the extraction performance can be strikingly high: in practical settings, as much as 76.3% downstream fine-tuning data (queries) out of a total 5,000 samples can be perfectly extracted, and the success rate can increase to 94.9% in more ideal settings. We also explore a detection-based defense strategy but find it can be bypassed with improved attack. Overall, we highlight the emergency of this newly identified data breaching risk in fine-tuning, and we hope that more follow-up research could push the progress of addressing this concerning risk. The code and data used in our experiments are released at https://github.com/thu-coai/Backdoor-Data-Extraction.
comment: 19 pages
Word Level Timestamp Generation for Automatic Speech Recognition and Translation
We introduce a data-driven approach for enabling word-level timestamp prediction in the Canary model. Accurate timestamp information is crucial for a variety of downstream tasks such as speech content retrieval and timed subtitles. While traditional hybrid systems and end-to-end (E2E) models may employ external modules for timestamp prediction, our approach eliminates the need for separate alignment mechanisms. By leveraging the NeMo Forced Aligner (NFA) as a teacher model, we generate word-level timestamps and train the Canary model to predict timestamps directly. We introduce a new <|timestamp|> token, enabling the Canary model to predict start and end timestamps for each word. Our method demonstrates precision and recall rates between 80% and 90%, with timestamp prediction errors ranging from 20 to 120 ms across four languages, with minimal WER degradation. Additionally, we extend our system to automatic speech translation (AST) tasks, achieving timestamp prediction errors around 200 milliseconds.
comment: Accepted to Interspeech 2025
Feature Extraction and Steering for Enhanced Chain-of-Thought Reasoning in Language Models
Large Language Models (LLMs) demonstrate the ability to solve reasoning and mathematical problems using the Chain-of-Thought (CoT) technique. Expanding CoT length, as seen in models such as DeepSeek-R1, significantly enhances this reasoning for complex problems, but requires costly and high-quality long CoT data and fine-tuning. This work, inspired by the deep thinking paradigm of DeepSeek-R1, utilizes a steering technique to enhance the reasoning ability of an LLM without external datasets. Our method first employs Sparse Autoencoders (SAEs) to extract interpretable features from vanilla CoT. These features are then used to steer the LLM's internal states during generation. Recognizing that many LLMs do not have corresponding pre-trained SAEs, we further introduce a novel SAE-free steering algorithm, which directly computes steering directions from the residual activations of an LLM, obviating the need for an explicit SAE. Experimental results demonstrate that both our SAE-based and subsequent SAE-free steering algorithms significantly enhance the reasoning capabilities of LLMs.
Listen to the Context: Towards Faithful Large Language Models for Retrieval Augmented Generation on Climate Questions ACL
Large language models that use retrieval augmented generation have the potential to unlock valuable knowledge for researchers, policymakers, and the public by making long and technical climate-related documents more accessible. While this approach can help alleviate factual hallucinations by relying on retrieved passages as additional context, its effectiveness depends on whether the model's output remains faithful to these passages. To address this, we explore the automatic assessment of faithfulness of different models in this setting. We then focus on ClimateGPT, a large language model specialised in climate science, to examine which factors in its instruction fine-tuning impact the model's faithfulness. By excluding unfaithful subsets of the model's training data, we develop ClimateGPT Faithful+, which achieves an improvement in faithfulness from 30% to 57% in supported atomic claims according to our automatic metric.
comment: Accepted at the ClimateNLP 2025 Workshop at ACL
Mechanistic Insights into Grokking from the Embedding Layer
Grokking, a delayed generalization in neural networks after perfect training performance, has been observed in Transformers and MLPs, but the components driving it remain underexplored. We show that embeddings are central to grokking: introducing them into MLPs induces delayed generalization in modular arithmetic tasks, whereas MLPs without embeddings can generalize immediately. Our analysis identifies two key mechanisms: (1) Embedding update dynamics, where rare tokens stagnate due to sparse gradient updates and weight decay, and (2) Bilinear coupling, where the interaction between embeddings and downstream weights introduces saddle points and increases sensitivity to initialization. To confirm these mechanisms, we investigate frequency-aware sampling, which balances token updates by minimizing gradient variance, and embedding-specific learning rates, derived from the asymmetric curvature of the bilinear loss landscape. We prove that an adaptive learning rate ratio, \(\frac{\eta_E}{\eta_W} \propto \frac{\sigma_{\max}(E)}{\sigma_{\max}(W)} \cdot \frac{f_W}{f_E}\), mitigates bilinear coupling effects, accelerating convergence. Our methods not only improve grokking dynamics but also extend to broader challenges in Transformer optimization, where bilinear interactions hinder efficient training.
comment: Mechanistic view of embedding layers
Can LLMs $\textit{understand}$ Math? -- Exploring the Pitfalls in Mathematical Reasoning
Large language models (LLMs) demonstrate considerable potential in various natural language tasks but face significant challenges in mathematical reasoning, particularly in executing precise, multi-step logic. However, current evaluation frameworks judge their performance solely based on accuracy, which only accounts for the final answer. This study explores these pitfalls by employing a novel evaluation framework. We propose an evaluation metric called the MAPLE score, which holistically quantifies reasoning misalignment by integrating error rates, redundancy, and validity.
Learn to Reason Efficiently with Adaptive Length-based Reward Shaping
Large Reasoning Models (LRMs) have shown remarkable capabilities in solving complex problems through reinforcement learning (RL), particularly by generating long reasoning traces. However, these extended outputs often exhibit substantial redundancy, which limits the efficiency of LRMs. In this paper, we investigate RL-based approaches to promote reasoning efficiency. Specifically, we first present a unified framework that formulates various efficient reasoning methods through the lens of length-based reward shaping. Building on this perspective, we propose a novel Length-bAsed StEp Reward shaping method (LASER), which employs a step function as the reward, controlled by a target length. LASER surpasses previous methods, achieving a superior Pareto-optimal balance between performance and efficiency. Next, we further extend LASER based on two key intuitions: (1) The reasoning behavior of the model evolves during training, necessitating reward specifications that are also adaptive and dynamic; (2) Rather than uniformly encouraging shorter or longer chains of thought (CoT), we posit that length-based reward shaping should be difficulty-aware i.e., it should penalize lengthy CoTs more for easy queries. This approach is expected to facilitate a combination of fast and slow thinking, leading to a better overall tradeoff. The resulting method is termed LASER-D (Dynamic and Difficulty-aware). Experiments on DeepSeek-R1-Distill-Qwen-1.5B, DeepSeek-R1-Distill-Qwen-7B, and DeepSeek-R1-Distill-Qwen-32B show that our approach significantly enhances both reasoning performance and response length efficiency. For instance, LASER-D and its variant achieve a +6.1 improvement on AIME2024 while reducing token usage by 63%. Further analysis reveals our RL-based compression produces more concise reasoning patterns with less redundant "self-reflections". Resources are at https://github.com/hkust-nlp/Laser.
From Problem-Solving to Teaching Problem-Solving: Aligning LLMs with Pedagogy using Reinforcement Learning
Large language models (LLMs) can transform education, but their optimization for direct question-answering often undermines effective pedagogy which requires strategically withholding answers. To mitigate this, we propose an online reinforcement learning (RL)-based alignment framework that can quickly adapt LLMs into effective tutors using simulated student-tutor interactions by emphasizing pedagogical quality and guided problem-solving over simply giving away answers. We use our method to train a 7B parameter tutor model without human annotations which reaches similar performance to larger proprietary models like LearnLM. We introduce a controllable reward weighting to balance pedagogical support and student solving accuracy, allowing us to trace the Pareto frontier between these two objectives. Our models better preserve reasoning capabilities than single-turn SFT baselines and can optionally enhance interpretability through thinking tags that expose the model's instructional planning.
comment: David Dinucu-Jianu and Jakub Macina contributed equally. Code available: https://github.com/eth-lre/PedagogicalRL
MIRB: Mathematical Information Retrieval Benchmark
Mathematical Information Retrieval (MIR) is the task of retrieving information from mathematical documents and plays a key role in various applications, including theorem search in mathematical libraries, answer retrieval on math forums, and premise selection in automated theorem proving. However, a unified benchmark for evaluating these diverse retrieval tasks has been lacking. In this paper, we introduce MIRB (Mathematical Information Retrieval Benchmark) to assess the MIR capabilities of retrieval models. MIRB includes four tasks: semantic statement retrieval, question-answer retrieval, premise retrieval, and formula retrieval, spanning a total of 12 datasets. We evaluate 13 retrieval models on this benchmark and analyze the challenges inherent to MIR. We hope that MIRB provides a comprehensive framework for evaluating MIR systems and helps advance the development of more effective retrieval models tailored to the mathematical domain.
comment: Our code and data are available at https://github.com/j991222/mirb and https://huggingface.co/collections/hcju/mirb-6827001711765454f58c5a76
Semantic-based Unsupervised Framing Analysis (SUFA): A Novel Approach for Computational Framing Analysis
This research presents a novel approach to computational framing analysis, called Semantic Relations-based Unsupervised Framing Analysis (SUFA). SUFA leverages semantic relations and dependency parsing algorithms to identify and assess entity-centric emphasis frames in news media reports. This innovative method is derived from two studies -- qualitative and computational -- using a dataset related to gun violence, demonstrating its potential for analyzing entity-centric emphasis frames. This article discusses SUFA's strengths, limitations, and application procedures. Overall, the SUFA approach offers a significant methodological advancement in computational framing analysis, with its broad applicability across both the social sciences and computational domains.
comment: Association for Education in Journalism and Mass Communication (AEJMC) Conference, August 07--10, 2023, Washington, DC, USA
Do RAG Systems Suffer From Positional Bias?
Retrieval Augmented Generation enhances LLM accuracy by adding passages retrieved from an external corpus to the LLM prompt. This paper investigates how positional bias - the tendency of LLMs to weight information differently based on its position in the prompt - affects not only the LLM's capability to capitalize on relevant passages, but also its susceptibility to distracting passages. Through extensive experiments on three benchmarks, we show how state-of-the-art retrieval pipelines, while attempting to retrieve relevant passages, systematically bring highly distracting ones to the top ranks, with over 60% of queries containing at least one highly distracting passage among the top-10 retrieved passages. As a result, the impact of the LLM positional bias, which in controlled settings is often reported as very prominent by related works, is actually marginal in real scenarios since both relevant and distracting passages are, in turn, penalized. Indeed, our findings reveal that sophisticated strategies that attempt to rearrange the passages based on LLM positional preferences do not perform better than random shuffling.
A Survey on Multilingual Mental Disorders Detection from Social Media Data
The increasing prevalence of mental health disorders globally highlights the urgent need for effective digital screening methods that can be used in multilingual contexts. Most existing studies, however, focus on English data, overlooking critical mental health signals that may be present in non-English texts. To address this important gap, we present the first survey on the detection of mental health disorders using multilingual social media data. We investigate the cultural nuances that influence online language patterns and self-disclosure behaviors, and how these factors can impact the performance of NLP tools. Additionally, we provide a comprehensive list of multilingual data collections that can be used for developing NLP models for mental health screening. Our findings can inform the design of effective multilingual mental health screening tools that can meet the needs of diverse populations, ultimately improving mental health outcomes on a global scale.
DayDreamer at CQs-Gen 2025: Generating Critical Questions through Argument Scheme Completion
Critical questions are essential resources to provoke critical thinking when encountering an argumentative text. We present our system for the Critical Questions Generation (CQs-Gen) Shared Task at ArgMining 2025. Our approach leverages large language models (LLMs) with chain-of-thought prompting to generate critical questions guided by Walton's argumentation schemes. For each input intervention, we conversationally prompt LLMs to instantiate the corresponding argument scheme template to first obtain structured arguments, and then generate relevant critical questions. Following this, we rank all the available critical questions by prompting LLMs to select the top 3 most helpful questions based on the original intervention text. This combination of structured argumentation theory and step-by-step reasoning enables the generation of contextually relevant and diverse critical questions. Our pipeline achieves competitive performance in the final test set, showing its potential to foster critical thinking given argumentative text and detect missing or uninformed claims. Code available at \href{https://git.ecdf.ed.ac.uk/s2236454/DayDreamer-CQs-Gen}{DayDreamer}.
comment: ArgMining 2025 CQs-Gen shared task
Social Bias in Popular Question-Answering Benchmarks
Question-answering (QA) and reading comprehension (RC) benchmarks are essential for assessing the capabilities of large language models (LLMs) in retrieving and reproducing knowledge. However, we demonstrate that popular QA and RC benchmarks are biased and do not cover questions about different demographics or regions in a representative way, potentially due to a lack of diversity of those involved in their creation. We perform a qualitative content analysis of 30 benchmark papers and a quantitative analysis of 20 respective benchmark datasets to learn (1) who is involved in the benchmark creation, (2) how social bias is addressed or prevented, and (3) whether the demographics of the creators and annotators correspond to particular biases in the content. Most analyzed benchmark papers provided insufficient information regarding the stakeholders involved in benchmark creation, particularly the annotators. Notably, just one of the benchmark papers explicitly reported measures taken to address social representation issues. Moreover, the data analysis revealed gender, religion, and geographic biases across a wide range of encyclopedic, commonsense, and scholarly benchmarks. More transparent and bias-aware QA and RC benchmark creation practices are needed to facilitate better scrutiny and incentivize the development of fairer LLMs.
Evaluate Bias without Manual Test Sets: A Concept Representation Perspective for LLMs
Bias in Large Language Models (LLMs) significantly undermines their reliability and fairness. We focus on a common form of bias: when two reference concepts in the model's concept space, such as sentiment polarities (e.g., "positive" and "negative"), are asymmetrically correlated with a third, target concept, such as a reviewing aspect, the model exhibits unintended bias. For instance, the understanding of "food" should not skew toward any particular sentiment. Existing bias evaluation methods assess behavioral differences of LLMs by constructing labeled data for different social groups and measuring model responses across them, a process that requires substantial human effort and captures only a limited set of social concepts. To overcome these limitations, we propose BiasLens, a test-set-free bias analysis framework based on the structure of the model's vector space. BiasLens combines Concept Activation Vectors (CAVs) with Sparse Autoencoders (SAEs) to extract interpretable concept representations, and quantifies bias by measuring the variation in representational similarity between the target concept and each of the reference concepts. Even without labeled data, BiasLens shows strong agreement with traditional bias evaluation metrics (Spearman correlation r > 0.85). Moreover, BiasLens reveals forms of bias that are difficult to detect using existing methods. For example, in simulated clinical scenarios, a patient's insurance status can cause the LLM to produce biased diagnostic assessments. Overall, BiasLens offers a scalable, interpretable, and efficient paradigm for bias discovery, paving the way for improving fairness and transparency in LLMs.
Robo2VLM: Visual Question Answering from Large-Scale In-the-Wild Robot Manipulation Datasets
Vision-Language Models (VLMs) acquire real-world knowledge and general reasoning ability through Internet-scale image-text corpora. They can augment robotic systems with scene understanding and task planning, and assist visuomotor policies that are trained on robot trajectory data. We explore the reverse paradigm - using rich, real, multi-modal robot trajectory data to enhance and evaluate VLMs. In this paper, we present Robo2VLM, a Visual Question Answering (VQA) dataset generation framework for VLMs. Given a human tele-operated robot trajectory, Robo2VLM derives ground-truth from non-visual and non-descriptive sensory modalities, such as end-effector pose, gripper aperture, and force sensing. Based on these modalities, it segments the robot trajectory into a sequence of manipulation phases. At each phase, Robo2VLM uses scene and interaction understanding to identify 3D properties of the robot, task goal, and the target object. The properties are used to generate representative VQA queries - images with textural multiple-choice questions - based on spatial, goal-conditioned, and interaction reasoning question templates. We curate Robo2VLM-1, a large-scale in-the-wild dataset with 684,710 questions covering 463 distinct scenes and 3,396 robotic manipulation tasks from 176k real robot trajectories. Results suggest that Robo2VLM-1 can benchmark and improve VLM capabilities in spatial and interaction reasoning.
Explainable embeddings with Distance Explainer
While eXplainable AI (XAI) has advanced significantly, few methods address interpretability in embedded vector spaces where dimensions represent complex abstractions. We introduce Distance Explainer, a novel method for generating local, post-hoc explanations of embedded spaces in machine learning models. Our approach adapts saliency-based techniques from RISE to explain the distance between two embedded data points by assigning attribution values through selective masking and distance-ranked mask filtering. We evaluate Distance Explainer on cross-modal embeddings (image-image and image-caption pairs) using established XAI metrics including Faithfulness, Sensitivity/Robustness, and Randomization. Experiments with ImageNet and CLIP models demonstrate that our method effectively identifies features contributing to similarity or dissimilarity between embedded data points while maintaining high robustness and consistency. We also explore how parameter tuning, particularly mask quantity and selection strategy, affects explanation quality. This work addresses a critical gap in XAI research and enhances transparency and trustworthiness in deep learning applications utilizing embedded spaces.
comment: 33 pages, 19 figures. Submitted to JMLR. Method implementation: https://research-software-directory.org/software/distance-explainer
Visual Thoughts: A Unified Perspective of Understanding Multimodal Chain-of-Thought
Large Vision-Language Models (LVLMs) have achieved significant success in multimodal tasks, with multimodal chain-of-thought (MCoT) further enhancing performance and interpretability. Recent MCoT methods fall into two categories: (i) Textual-MCoT (T-MCoT), which takes multimodal input and produces textual output; and (ii) Interleaved-MCoT (I-MCoT), which generates interleaved image-text outputs. Despite advances in both approaches, the mechanisms driving these improvements are not fully understood. To fill this gap, we first reveal that MCoT boosts LVLMs by incorporating visual thoughts, which convey image information to the reasoning process regardless of the MCoT format, depending only on clarity and conciseness of expression. Furthermore, to explore visual thoughts systematically, we define four distinct forms of visual thought expressions and analyze them comprehensively. Our findings demonstrate that these forms differ in clarity and conciseness, yielding varying levels of MCoT improvement. Additionally, we explore the internal nature of visual thoughts, finding that visual thoughts serve as intermediaries between the input image and reasoning to deeper transformer layers, enabling more advanced visual information transmission. We hope that the visual thoughts can inspire further breakthroughs for future MCoT research.
Multilingual Test-Time Scaling via Initial Thought Transfer
Test-time scaling has emerged as a widely adopted inference-time strategy for boosting reasoning performance. However, its effectiveness has been studied almost exclusively in English, leaving its behavior in other languages largely unexplored. We present the first systematic study of test-time scaling in multilingual settings, evaluating DeepSeek-R1-Distill-LLama-8B and DeepSeek-R1-Distill-Qwen-7B across both high- and low-resource Latin-script languages. Our findings reveal that the relative gains from test-time scaling vary significantly across languages. Additionally, models frequently switch to English mid-reasoning, even when operating under strictly monolingual prompts. We further show that low-resource languages not only produce initial reasoning thoughts that differ significantly from English but also have lower internal consistency across generations in their early reasoning. Building on our findings, we introduce MITT (Multilingual Initial Thought Transfer), an unsupervised and lightweight reasoning prefix-tuning approach that transfers high-resource reasoning prefixes to enhance test-time scaling across all languages, addressing inconsistencies in multilingual reasoning performance. MITT significantly boosts DeepSeek-R1-Distill-Qwen-7B's reasoning performance, especially for underrepresented languages.
comment: 14 pages, 9 figures, 5 Tables
Protoknowledge Shapes Behaviour of LLMs in Downstream Tasks: Memorization and Generalization with Knowledge Graphs
We introduce the concept of protoknowledge to formalize and measure how sequences of tokens encoding Knowledge Graphs are internalized during pretraining and utilized at inference time by Large Language Models (LLMs). Indeed, LLMs have demonstrated the ability to memorize vast amounts of token sequences during pretraining, and a central open question is how they leverage this memorization as reusable knowledge through generalization. We then categorize protoknowledge into lexical, hierarchical, and topological forms, varying on the type of knowledge that needs to be activated. We measure protoknowledge through Knowledge Activation Tasks (KATs), analyzing its general properties such as semantic bias. We then investigate the impact of protoknowledge on Text-to-SPARQL performance by varying prompting strategies depending on input conditions. To this end, we adopt a novel analysis framework that assesses whether model predictions align with the successful activation of the relevant protoknowledge for each query. This methodology provides a practical tool to explore Semantic-Level Data Contamination and serves as an effective strategy for Closed-Pretraining models.
Collaborative Problem-Solving in an Optimization Game
Dialogue agents that support human users in solving complex tasks have received much attention recently. Many such tasks are NP-hard optimization problems that require careful collaborative exploration of the solution space. We introduce a novel dialogue game in which the agents collaboratively solve a two-player Traveling Salesman problem, along with an agent that combines LLM prompting with symbolic mechanisms for state tracking and grounding. Our best agent solves 45% of games optimally in self-play. It also demonstrates an ability to collaborate successfully with human users and generalize to unfamiliar graphs.
comment: 23 pages, 16 figures
Seeing Through Deception: Uncovering Misleading Creator Intent in Multimodal News with Vision-Language Models
The real-world impact of misinformation stems from the underlying misleading narratives that creators seek to convey. As such, interpreting misleading creator intent is essential for multimodal misinformation detection (MMD) systems aimed at effective information governance. In this paper, we introduce an automated framework that simulates real-world multimodal news creation by explicitly modeling creator intent through two components: the desired influence and the execution plan. Using this framework, we construct DeceptionDecoded, a large-scale benchmark comprising 12,000 image-caption pairs aligned with trustworthy reference articles. The dataset captures both misleading and non-misleading intents and spans manipulations across visual and textual modalities. We conduct a comprehensive evaluation of 14 state-of-the-art vision-language models (VLMs) on three intent-centric tasks: (1) misleading intent detection, (2) misleading source attribution, and (3) creator desire inference. Despite recent advances, we observe that current VLMs fall short in recognizing misleading intent, often relying on spurious cues such as superficial cross-modal consistency, stylistic signals, and heuristic authenticity hints. Our findings highlight the pressing need for intent-aware modeling in MMD and open new directions for developing systems capable of deeper reasoning about multimodal misinformation.
KaFT: Knowledge-aware Fine-tuning for Boosting LLMs' Domain-specific Question-Answering Performance ACL2025
Supervised fine-tuning (SFT) is a common approach to improve the domain-specific question-answering (QA) performance of large language models (LLMs). However, recent literature reveals that due to the conflicts between LLMs' internal knowledge and the context knowledge of training data, vanilla SFT using the full QA training set is usually suboptimal. In this paper, we first design a query diversification strategy for robust conflict detection and then conduct a series of experiments to analyze the impact of knowledge conflict. We find that 1) training samples with varied conflicts contribute differently, where SFT on the data with large conflicts leads to catastrophic performance drops; 2) compared to directly filtering out the conflict data, appropriately applying the conflict data would be more beneficial. Motivated by this, we propose a simple-yet-effective Knowledge-aware Fine-tuning (namely KaFT) approach to effectively boost LLMs' performance. The core of KaFT is to adapt the training weight by assigning different rewards for different training samples according to conflict level. Extensive experiments show that KaFT brings consistent and significant improvements across four LLMs. More analyses prove that KaFT effectively improves the model generalization and alleviates the hallucination.
comment: Accepted to ACL2025 Findings
LFTF: Locating First and Then Fine-Tuning for Mitigating Gender Bias in Large Language Models
Nowadays, Large Language Models (LLMs) have attracted widespread attention due to their powerful performance. However, due to the unavoidable exposure to socially biased data during training, LLMs tend to exhibit social biases, particularly gender bias. To better explore and quantifying the degree of gender bias in LLMs, we propose a pair of datasets named GenBiasEval and GenHintEval, respectively. The GenBiasEval is responsible for evaluating the degree of gender bias in LLMs, accompanied by an evaluation metric named AFGB-Score (Absolutely Fair Gender Bias Score). Meanwhile, the GenHintEval is used to assess whether LLMs can provide responses consistent with prompts that contain gender hints, along with the accompanying evaluation metric UB-Score (UnBias Score). Besides, in order to mitigate gender bias in LLMs more effectively, we present the LFTF (Locating First and Then Fine-Tuning) algorithm.The algorithm first ranks specific LLM blocks by their relevance to gender bias in descending order using a metric called BMI (Block Mitigating Importance Score). Based on this ranking, the block most strongly associated with gender bias is then fine-tuned using a carefully designed loss function. Numerous experiments have shown that our proposed LFTF algorithm can significantly mitigate gender bias in LLMs while maintaining their general capabilities.
PhysicsArena: The First Multimodal Physics Reasoning Benchmark Exploring Variable, Process, and Solution Dimensions EMNLP
Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in diverse reasoning tasks, yet their application to complex physics reasoning remains underexplored. Physics reasoning presents unique challenges, requiring grounding in physical conditions and the interpretation of multimodal information. Current physics benchmarks are limited, often focusing on text-only inputs or solely on problem-solving, thereby overlooking the critical intermediate steps of variable identification and process formulation. To address these limitations, we introduce PhysicsArena, the first multimodal physics reasoning benchmark designed to holistically evaluate MLLMs across three critical dimensions: variable identification, physical process formulation, and solution derivation. PhysicsArena aims to provide a comprehensive platform for assessing and advancing the multimodal physics reasoning abilities of MLLMs.
comment: 27 pages,20 figures, EMNLP
CoLA: Collaborative Low-Rank Adaptation ACL 2025
The scaling law of Large Language Models (LLMs) reveals a power-law relationship, showing diminishing return on performance as model scale increases. While training LLMs from scratch is resource-intensive, fine-tuning a pre-trained model for specific tasks has become a practical alternative. Full fine-tuning (FFT) achieves strong performance; however, it is computationally expensive and inefficient. Parameter-efficient fine-tuning (PEFT) methods, like LoRA, have been proposed to address these challenges by freezing the pre-trained model and adding lightweight task-specific modules. LoRA, in particular, has proven effective, but its application to multi-task scenarios is limited by interference between tasks. Recent approaches, such as Mixture-of-Experts (MOE) and asymmetric LoRA, have aimed to mitigate these issues but still struggle with sample scarcity and noise interference due to their fixed structure. In response, we propose CoLA, a more flexible LoRA architecture with an efficient initialization scheme, and introduces three collaborative strategies to enhance performance by better utilizing the quantitative relationships between matrices $A$ and $B$. Our experiments demonstrate the effectiveness and robustness of CoLA, outperforming existing PEFT methods, especially in low-sample scenarios. Our data and code are fully publicly available at https://github.com/zyy-2001/CoLA.
comment: Accepted by ACL 2025, Findings
Joint Flashback Adaptation for Forgetting-Resistant Instruction Tuning
Large language models have achieved remarkable success in various tasks. However, it is challenging for them to learn new tasks incrementally due to catastrophic forgetting. Existing approaches rely on experience replay, optimization constraints, or task differentiation, which encounter strict limitations in real-world scenarios. To address these issues, we propose Joint Flashback Adaptation. We first introduce flashbacks -- a limited number of prompts from old tasks -- when adapting to new tasks and constrain the deviations of the model outputs compared to the original one. We then interpolate latent tasks between flashbacks and new tasks to enable jointly learning relevant latent tasks, new tasks, and flashbacks, alleviating data sparsity in flashbacks and facilitating knowledge sharing for smooth adaptation. Our method requires only a limited number of flashbacks without access to the replay data and is task-agnostic. We conduct extensive experiments on state-of-the-art large language models across 1000+ instruction-following tasks, arithmetic reasoning tasks, and general reasoning tasks. The results demonstrate the superior performance of our method in improving generalization on new tasks and reducing forgetting in old tasks.
A Participatory Strategy for AI Ethics in Education and Rehabilitation grounded in the Capability Approach
AI-based technologies have significant potential to enhance inclusive education and clinical-rehabilitative contexts for children with Special Educational Needs and Disabilities. AI can enhance learning experiences, empower students, and support both teachers and rehabilitators. However, their usage presents challenges that require a systemic-ecological vision, ethical considerations, and participatory research. Therefore, research and technological development must be rooted in a strong ethical-theoretical framework. The Capability Approach - a theoretical model of disability, human vulnerability, and inclusion - offers a more relevant perspective on functionality, effectiveness, and technological adequacy in inclusive learning environments. In this paper, we propose a participatory research strategy with different stakeholders through a case study on the ARTIS Project, which develops an AI-enriched interface to support children with text comprehension difficulties. Our research strategy integrates ethical, educational, clinical, and technological expertise in designing and implementing AI-based technologies for children's learning environments through focus groups and collaborative design sessions. We believe that this holistic approach to AI adoption in education can help bridge the gap between technological innovation and ethical responsibility.
Teaching Language Models to Evolve with Users: Dynamic Profile Modeling for Personalized Alignment
Personalized alignment is essential for enabling large language models (LLMs) to engage effectively in user-centric dialogue. While recent prompt-based and offline optimization methods offer preliminary solutions, they fall short in cold-start scenarios and long-term personalization due to their inherently static and shallow designs. In this work, we introduce the Reinforcement Learning for Personalized Alignment (RLPA) framework, in which an LLM interacts with a simulated user model to iteratively infer and refine user profiles through dialogue. The training process is guided by a dual-level reward structure: the Profile Reward encourages accurate construction of user representations, while the Response Reward incentivizes generation of responses consistent with the inferred profile. We instantiate RLPA by fine-tuning Qwen-2.5-3B-Instruct, resulting in Qwen-RLPA, which achieves state-of-the-art performance in personalized dialogue. Empirical evaluations demonstrate that Qwen-RLPA consistently outperforms prompting and offline fine-tuning baselines, and even surpasses advanced commercial models such as Claude-3.5 and GPT-4o. Further analysis highlights Qwen-RLPA's robustness in reconciling conflicting user preferences, sustaining long-term personalization and delivering more efficient inference compared to recent reasoning-focused LLMs. These results emphasize the potential of dynamic profile inference as a more effective paradigm for building personalized dialogue systems.
comment: 30 pages, 18 figures, 10 tables
Single LLM, Multiple Roles: A Unified Retrieval-Augmented Generation Framework Using Role-Specific Token Optimization
Existing studies have optimized retrieval-augmented generation (RAG) across various sub-tasks, such as query understanding and retrieval refinement, but integrating these optimizations into a unified framework remains challenging. To tackle this problem, this work proposes RoleRAG, a unified RAG framework that achieves efficient multi-task processing through role-specific token optimization. RoleRAG comprises six modules, each handling a specific sub-task within the RAG process. Additionally, we introduce a query graph to represent the decomposition of the query, which can be dynamically resolved according to the decomposing state. All modules are driven by the same underlying LLM, distinguished by task-specific role tokens that are individually optimized. This design allows RoleRAG to dynamically activate different modules within a single LLM instance, thereby streamlining deployment and reducing resource consumption. Experimental results on five open-domain question-answering datasets demonstrate the effectiveness, generalizability, and flexibility of our framework.
AdUE: Improving uncertainty estimation head for LoRA adapters in LLMs
Uncertainty estimation remains a critical challenge in adapting pre-trained language models to classification tasks, particularly under parameter-efficient fine-tuning approaches such as adapters. We introduce AdUE1, an efficient post-hoc uncertainty estimation (UE) method, to enhance softmax-based estimates. Our approach (1) uses a differentiable approximation of the maximum function and (2) applies additional regularization through L2-SP, anchoring the fine-tuned head weights and regularizing the model. Evaluations on five NLP classification datasets across four language models (RoBERTa, ELECTRA, LLaMA-2, Qwen) demonstrate that our method consistently outperforms established baselines such as Mahalanobis distance and softmax response. Our approach is lightweight (no base-model changes) and produces better-calibrated confidence.
comment: 9 pages, 1 figure
On the Generalization vs Fidelity Paradox in Knowledge Distillation
Knowledge distillation (KD) is a key technique for compressing large language models into smaller ones while preserving performance. Despite the recent traction of KD research, its effectiveness for smaller language models (LMs) and the mechanisms driving knowledge transfer remain underexplored. In this work, we present the first large-scale empirical and statistical analysis of KD across models ranging from 0.5B to 7B parameters on 14 complex reasoning tasks in a zero-shot setting. Our findings reveal that KD can improve the average performance of smaller models by up to $10\%$, with a peak task specific gain of $22\%$, while providing only marginal benefits ($\sim 1.3\%$) for larger models. Surprisingly, teacher performance has a minimal impact on student outcomes, while teacher task expertise impacts KD effectiveness. A correlation study indicates that smaller LMs benefit more from KD, whereas larger LMs show diminished gains. Additionally, we uncover a misalignment between improvements in student performance and reasoning fidelity, suggesting that while KD enhances accuracy, it does not always maintain the structured decision-making processes of the teacher. Our ablation study further highlights the importance of teacher signals and logit smoothing in influencing students' performance after distillation. Overall, our study offers a comprehensive empirical and statistical assessment of KD, highlighting both its benefits and trade-offs when distilling knowledge from larger to smaller LMs.
Set-LLM: A Permutation-Invariant LLM
While large language models (LLMs) demonstrate impressive capabilities across numerous applications, their robustness remains a critical concern. This paper is motivated by a specific vulnerability: the order sensitivity of LLMs. This vulnerability manifests itself as the order bias observed when LLMs decide between possible options (for example, a preference for the first option) and the tendency of LLMs to provide different answers when options are reordered. The use cases for this scenario extend beyond the classical case of multiple-choice question answering to the use of LLMs as automated evaluators in AI pipelines, comparing output generated by different models. We introduce Set-LLM, a novel architectural adaptation for pretrained LLMs that enables the processing of mixed set-text inputs with permutation invariance guarantees. The adaptations involve a new attention mask and new positional encodings specifically designed for sets. We provide a theoretical proof of invariance and demonstrate through experiments that Set-LLM can be trained effectively, achieving comparable or improved performance and maintaining the runtime of the original model, while eliminating order sensitivity.
Hunyuan-TurboS: Advancing Large Language Models through Mamba-Transformer Synergy and Adaptive Chain-of-Thought
As Large Language Models (LLMs) rapidly advance, we introduce Hunyuan-TurboS, a novel large hybrid Transformer-Mamba Mixture of Experts (MoE) model. It synergistically combines Mamba's long-sequence processing efficiency with Transformer's superior contextual understanding. Hunyuan-TurboS features an adaptive long-short chain-of-thought (CoT) mechanism, dynamically switching between rapid responses for simple queries and deep "thinking" modes for complex problems, optimizing computational resources. Architecturally, this 56B activated (560B total) parameter model employs 128 layers (Mamba2, Attention, FFN) with an innovative AMF/MF block pattern. Faster Mamba2 ensures linear complexity, Grouped-Query Attention minimizes KV cache, and FFNs use an MoE structure. Pre-trained on 16T high-quality tokens, it supports a 256K context length and is the first industry-deployed large-scale Mamba model. Our comprehensive post-training strategy enhances capabilities via Supervised Fine-Tuning (3M instructions), a novel Adaptive Long-short CoT Fusion method, Multi-round Deliberation Learning for iterative improvement, and a two-stage Large-scale Reinforcement Learning process targeting STEM and general instruction-following. Evaluations show strong performance: overall top 7 rank on LMSYS Chatbot Arena with a score of 1356, outperforming leading models like Gemini-2.0-Flash-001 (1352) and o4-mini-2025-04-16 (1345). TurboS also achieves an average of 77.9% across 23 automated benchmarks. Hunyuan-TurboS balances high performance and efficiency, offering substantial capabilities at lower inference costs than many reasoning models, establishing a new paradigm for efficient large-scale pre-trained models.
Likelihood Variance as Text Importance for Resampling Texts to Map Language Models
We address the computational cost of constructing a model map, which embeds diverse language models into a common space for comparison via KL divergence. The map relies on log-likelihoods over a large text set, making the cost proportional to the number of texts. To reduce this cost, we propose a resampling method that selects important texts with weights proportional to the variance of log-likelihoods across models for each text. Our method significantly reduces the number of required texts while preserving the accuracy of KL divergence estimates. Experiments show that it achieves comparable performance to uniform sampling with about half as many texts, and also facilitates efficient incorporation of new models into an existing map. These results enable scalable and efficient construction of language model maps.
Responsible Diffusion Models via Constraining Text Embeddings within Safe Regions
The remarkable ability of diffusion models to generate high-fidelity images has led to their widespread adoption. However, concerns have also arisen regarding their potential to produce Not Safe for Work (NSFW) content and exhibit social biases, hindering their practical use in real-world applications. In response to this challenge, prior work has focused on employing security filters to identify and exclude toxic text, or alternatively, fine-tuning pre-trained diffusion models to erase sensitive concepts. Unfortunately, existing methods struggle to achieve satisfactory performance in the sense that they can have a significant impact on the normal model output while still failing to prevent the generation of harmful content in some cases. In this paper, we propose a novel self-discovery approach to identifying a semantic direction vector in the embedding space to restrict text embedding within a safe region. Our method circumvents the need for correcting individual words within the input text and steers the entire text prompt towards a safe region in the embedding space, thereby enhancing model robustness against all possibly unsafe prompts. In addition, we employ Low-Rank Adaptation (LoRA) for semantic direction vector initialization to reduce the impact on the model performance for other semantics. Furthermore, our method can also be integrated with existing methods to improve their social responsibility. Extensive experiments on benchmark datasets demonstrate that our method can effectively reduce NSFW content and mitigate social bias generated by diffusion models compared to several state-of-the-art baselines.
NeoN: A Tool for Automated Detection, Linguistic and LLM-Driven Analysis of Neologisms in Polish CCS
NeoN, a tool for detecting and analyzing Polish neologisms. Unlike traditional dictionary-based methods requiring extensive manual review, NeoN combines reference corpora, Polish-specific linguistic filters, an LLM-driven precision-boosting filter, and daily RSS monitoring in a multi-layered pipeline. The system uses context-aware lemmatization, frequency analysis, and orthographic normalization to extract candidate neologisms while consolidating inflectional variants. Researchers can verify candidates through an intuitive interface with visualizations and filtering controls. An integrated LLM module automatically generates definitions and categorizes neologisms by domain and sentiment. Evaluations show NeoN maintains high accuracy while significantly reducing manual effort, providing an accessible solution for tracking lexical innovation in Polish.
comment: 15 pages, this is an extended version of a paper accepted for the 25th International Conference on Computational Science (ICCS), 7-9 July 2025
Gated Integration of Low-Rank Adaptation for Continual Learning of Language Models
Continual learning (CL), which requires the model to learn multiple tasks sequentially, is crucial for language models (LMs). Recently, low-rank adaptation (LoRA), one of the most representative parameter-efficient fine-tuning (PEFT) methods, has gained increasing attention in CL of LMs. However, most existing CL methods based on LoRA typically expand a new LoRA branch to learn each new task and force the new and old LoRA branches to contribute equally to old tasks, potentially leading to forgetting. In this work, we propose a new method, called gated integration of low-rank adaptation (GainLoRA), for CL of LMs. GainLoRA expands a new LoRA branch for each new task and introduces gating modules to integrate the new and old LoRA branches. Furthermore, GainLoRA leverages the new gating module to minimize the contribution from the new LoRA branch to old tasks, effectively mitigating forgetting and improving the model's overall performance. Experimental results on CL benchmarks demonstrate that GainLoRA outperforms existing state-of-the-art methods.
Trends and Challenges in Authorship Analysis: A Review of ML, DL, and LLM Approaches
Authorship analysis plays an important role in diverse domains, including forensic linguistics, academia, cybersecurity, and digital content authentication. This paper presents a systematic literature review on two key sub-tasks of authorship analysis; Author Attribution and Author Verification. The review explores SOTA methodologies, ranging from traditional ML approaches to DL models and LLMs, highlighting their evolution, strengths, and limitations, based on studies conducted from 2015 to 2024. Key contributions include a comprehensive analysis of methods, techniques, their corresponding feature extraction techniques, datasets used, and emerging challenges in authorship analysis. The study highlights critical research gaps, particularly in low-resource language processing, multilingual adaptation, cross-domain generalization, and AI-generated text detection. This review aims to help researchers by giving an overview of the latest trends and challenges in authorship analysis. It also points out possible areas for future study. The goal is to support the development of better, more reliable, and accurate authorship analysis system in diverse textual domain.
comment: 25 pages, 3 figures
ClickSight: Interpreting Student Clickstreams to Reveal Insights on Learning Strategies via LLMs
Clickstream data from digital learning environments offer valuable insights into students' learning behaviors, but are challenging to interpret due to their high dimensionality and granularity. Prior approaches have relied mainly on handcrafted features, expert labeling, clustering, or supervised models, therefore often lacking generalizability and scalability. In this work, we introduce ClickSight, an in-context Large Language Model (LLM)-based pipeline that interprets student clickstreams to reveal their learning strategies. ClickSight takes raw clickstreams and a list of learning strategies as input and generates textual interpretations of students' behaviors during interaction. We evaluate four different prompting strategies and investigate the impact of self-refinement on interpretation quality. Our evaluation spans two open-ended learning environments and uses a rubric-based domain-expert evaluation. Results show that while LLMs can reasonably interpret learning strategies from clickstreams, interpretation quality varies by prompting strategy, and self-refinement offers limited improvement. ClickSight demonstrates the potential of LLMs to generate theory-driven insights from educational interaction data.
comment: Accepted in Latebreaking results track in AIED 2025(26th International Conference on Artificial Intelligence in Education JULY 22-26, 2025 PALERMO, ITALY)
How Should We Enhance the Safety of Large Reasoning Models: An Empirical Study
Large Reasoning Models (LRMs) have achieved remarkable success on reasoning-intensive tasks such as mathematics and programming. However, their enhanced reasoning capabilities do not necessarily translate to improved safety performance-and in some cases, may even degrade it. This raises an important research question: how can we enhance the safety of LRMs? In this paper, we present a comprehensive empirical study on how to enhance the safety of LRMs through Supervised Fine-Tuning (SFT). Our investigation begins with an unexpected observation: directly distilling safe responses from DeepSeek-R1 fails to significantly enhance safety. We analyze this phenomenon and identify three key failure patterns that contribute to it. We then demonstrate that explicitly addressing these issues during the data distillation process can lead to substantial safety improvements. Next, we explore whether a long and complex reasoning process is necessary for achieving safety. Interestingly, we find that simply using short or template-based reasoning process can attain comparable safety performance-and are significantly easier for models to learn than more intricate reasoning chains. These findings prompt a deeper reflection on the role of reasoning in ensuring safety. Finally, we find that mixing math reasoning data during safety fine-tuning is helpful to balance safety and over-refusal. Overall, we hope our empirical study could provide a more holistic picture on enhancing the safety of LRMs. The code and data used in our experiments are released in https://github.com/thu-coai/LRM-Safety-Study.
comment: 19 pages
When to Continue Thinking: Adaptive Thinking Mode Switching for Efficient Reasoning
Large reasoning models (LRMs) achieve remarkable performance via long reasoning chains, but often incur excessive computational overhead due to redundant reasoning, especially on simple tasks. In this work, we systematically quantify the upper bounds of LRMs under both Long-Thinking and No-Thinking modes, and uncover the phenomenon of "Internal Self-Recovery Mechanism" where models implicitly supplement reasoning during answer generation. Building on this insight, we propose Adaptive Self-Recovery Reasoning (ASRR), a framework that suppresses unnecessary reasoning and enables implicit recovery. By introducing accuracy-aware length reward regulation, ASRR adaptively allocates reasoning effort according to problem difficulty, achieving high efficiency with negligible performance sacrifice. Experiments across multiple benchmarks and models show that, compared with GRPO, ASRR reduces reasoning budget by up to 32.5% (1.5B) and 25.7% (7B) with minimal accuracy loss (1.2% and 0.6% pass@1), and significantly boosts harmless rates on safety benchmarks (up to +21.7%). Our results highlight the potential of ASRR for enabling efficient, adaptive, and safer reasoning in LRMs.
An Empirical Study of the Anchoring Effect in LLMs: Existence, Mechanism, and Potential Mitigations
The rise of Large Language Models (LLMs) like ChatGPT has advanced natural language processing, yet concerns about cognitive biases are growing. In this paper, we investigate the anchoring effect, a cognitive bias where the mind relies heavily on the first information as anchors to make affected judgments. We explore whether LLMs are affected by anchoring, the underlying mechanisms, and potential mitigation strategies. To facilitate studies at scale on the anchoring effect, we introduce a new dataset, SynAnchors. Combining refined evaluation metrics, we benchmark current widely used LLMs. Our findings show that LLMs' anchoring bias exists commonly with shallow-layer acting and is not eliminated by conventional strategies, while reasoning can offer some mitigation. This recontextualization via cognitive psychology urges that LLM evaluations focus not on standard benchmarks or over-optimized robustness tests, but on cognitive-bias-aware trustworthy evaluation.
Are Vision-Language Models Safe in the Wild? A Meme-Based Benchmark Study
Rapid deployment of vision-language models (VLMs) magnifies safety risks, yet most evaluations rely on artificial images. This study asks: How safe are current VLMs when confronted with meme images that ordinary users share? To investigate this question, we introduce MemeSafetyBench, a 50,430-instance benchmark pairing real meme images with both harmful and benign instructions. Using a comprehensive safety taxonomy and LLM-based instruction generation, we assess multiple VLMs across single and multi-turn interactions. We investigate how real-world memes influence harmful outputs, the mitigating effects of conversational context, and the relationship between model scale and safety metrics. Our findings demonstrate that VLMs show greater vulnerability to meme-based harmful prompts than to synthetic or typographic images. Memes significantly increase harmful responses and decrease refusals compared to text-only inputs. Though multi-turn interactions provide partial mitigation, elevated vulnerability persists. These results highlight the need for ecologically valid evaluations and stronger safety mechanisms.
RePPL: Recalibrating Perplexity by Uncertainty in Semantic Propagation and Language Generation for Explainable QA Hallucination Detection
Large Language Models (LLMs) have become powerful, but hallucinations remain a vital obstacle to their trustworthy use. While previous works improved the capability of hallucination detection by measuring uncertainty, they all lack the ability to explain the provenance behind why hallucinations occur, i.e., which part of the inputs tends to trigger hallucinations. Recent works on the prompt attack indicate that uncertainty exists in semantic propagation, where attention mechanisms gradually fuse local token information into high-level semantics across layers. Meanwhile, uncertainty also emerges in language generation, due to its probability-based selection of high-level semantics for sampled generations. Based on that, we propose RePPL to recalibrate uncertainty measurement by these two aspects, which dispatches explainable uncertainty scores to each token and aggregates in Perplexity-style Log-Average form as total score. Experiments show that our method achieves the best comprehensive detection performance across various QA datasets on advanced models (average AUC of 0.833), and our method is capable of producing token-level uncertainty scores as explanations for the hallucination. Leveraging these scores, we preliminarily find the chaotic pattern of hallucination and showcase its promising usage.
X-WebAgentBench: A Multilingual Interactive Web Benchmark for Evaluating Global Agentic System ACL 2025
Recently, large language model (LLM)-based agents have achieved significant success in interactive environments, attracting significant academic and industrial attention. Despite these advancements, current research predominantly focuses on English scenarios. In reality, there are over 7,000 languages worldwide, all of which demand access to comparable agentic services. Nevertheless, the development of language agents remains inadequate for meeting the diverse requirements of multilingual agentic applications. To fill this gap, we introduce X-WebAgentBench, a novel multilingual agent benchmark in an interactive web environment, which evaluates the planning and interaction performance of language agents across multiple languages, thereby contributing to the advancement of global agent intelligence. Additionally, we assess the performance of various LLMs and cross-lingual alignment methods, examining their effectiveness in enhancing agents. Our findings reveal that even advanced models like GPT-4o, when combined with cross-lingual techniques, fail to achieve satisfactory results. We hope that X-WebAgentBench can serve as a valuable benchmark for multilingual agent scenario in real-world applications.
comment: Accepted by ACL 2025 Findings
Better Safe Than Sorry? Overreaction Problem of Vision Language Models in Visual Emergency Recognition
Vision-Language Models (VLMs) have demonstrated impressive capabilities in understanding visual content, but their reliability in safety-critical contexts remains under-explored. We introduce VERI (Visual Emergency Recognition Dataset), a carefully designed diagnostic benchmark of 200 images (100 contrastive pairs). Each emergency scene is matched with a visually similar but safe counterpart through multi-stage human verification and iterative refinement. Using a two-stage protocol - risk identification and emergency response - we evaluate 14 VLMs (2B-124B parameters) across medical emergencies, accidents, and natural disasters. Our analysis reveals a systematic overreaction problem: models excel at identifying real emergencies (70-100 percent success rate) but suffer from an alarming rate of false alarms, misidentifying 31-96 percent of safe situations as dangerous, with 10 scenarios failed by all models regardless of scale. This "better-safe-than-sorry" bias manifests primarily through contextual overinterpretation (88-93 percent of errors), challenging VLMs' reliability for safety applications. These findings highlight persistent limitations that are not resolved by increasing model scale, motivating targeted approaches for improving contextual safety assessment in visually misleading scenarios.
comment: 13 pages
AI vs. Human Judgment of Content Moderation: LLM-as-a-Judge and Ethics-Based Response Refusals
As large language models (LLMs) are increasingly deployed in high-stakes settings, their ability to refuse ethically sensitive prompts-such as those involving hate speech or illegal activities-has become central to content moderation and responsible AI practices. While refusal responses can be viewed as evidence of ethical alignment and safety-conscious behavior, recent research suggests that users may perceive them negatively. At the same time, automated assessments of model outputs are playing a growing role in both evaluation and training. In particular, LLM-as-a-Judge frameworks-in which one model is used to evaluate the output of another-are now widely adopted to guide benchmarking and fine-tuning. This paper examines whether such model-based evaluators assess refusal responses differently than human users. Drawing on data from Chatbot Arena and judgments from two AI judges (GPT-4o and Llama 3 70B), we compare how different types of refusals are rated. We distinguish ethical refusals, which explicitly cite safety or normative concerns (e.g., "I can't help with that because it may be harmful"), and technical refusals, which reflect system limitations (e.g., "I can't answer because I lack real-time data"). We find that LLM-as-a-Judge systems evaluate ethical refusals significantly more favorably than human users, a divergence not observed for technical refusals. We refer to this divergence as a moderation bias-a systematic tendency for model-based evaluators to reward refusal behaviors more than human users do. This raises broader questions about transparency, value alignment, and the normative assumptions embedded in automated evaluation systems.
NL-Debugging: Exploiting Natural Language as an Intermediate Representation for Code Debugging
Debugging is a critical aspect of LLM's coding ability. Early debugging efforts primarily focused on code-level analysis, which often falls short when addressing complex programming errors that require a deeper understanding of algorithmic logic. Recent advancements in large language models (LLMs) have shifted attention toward leveraging natural language reasoning to enhance code-related tasks. However, two fundamental questions remain unanswered: What type of natural language format is most effective for debugging tasks? And what specific benefits does natural language reasoning bring to the debugging process? In this paper, we introduce NL-DEBUGGING, a novel framework that employs natural language as an intermediate representation to improve code debugging. By debugging at a natural language level, we demonstrate that NL-DEBUGGING outperforms traditional debugging methods and enables a broader modification space through direct refinement guided by execution feedback. Our findings highlight the potential of natural language reasoning to advance automated code debugging and address complex programming challenges.
Decoding Phone Pairs from MEG Signals Across Speech Modalities
Understanding the neural mechanisms underlying speech production is essential for both advancing cognitive neuroscience theory and developing practical communication technologies. In this study, we investigated magnetoencephalography signals to decode phones from brain activity during speech production and perception (passive listening and voice playback) tasks. Using a dataset comprising 17 participants, we performed pairwise phone classification, extending our analysis to 15 phonetic pairs. Multiple machine learning approaches, including regularized linear models and neural network architectures, were compared to determine their effectiveness in decoding phonetic information. Our results demonstrate significantly higher decoding accuracy during speech production (76.6%) compared to passive listening and playback modalities (~51%), emphasizing the richer neural information available during overt speech. Among the models, the Elastic Net classifier consistently outperformed more complex neural networks, highlighting the effectiveness of traditional regularization techniques when applied to limited and high-dimensional MEG datasets. Besides, analysis of specific brain frequency bands revealed that low-frequency oscillations, particularly Delta (0.2-3 Hz) and Theta (4-7 Hz), contributed the most substantially to decoding accuracy, suggesting that these bands encode critical speech production-related neural processes. Despite using advanced denoising methods, it remains unclear whether decoding solely reflects neural activity or if residual muscular or movement artifacts also contributed, indicating the need for further methodological refinement. Overall, our findings underline the critical importance of examining overt speech production paradigms, which, despite their complexity, offer opportunities to improve brain-computer interfaces to help individuals with severe speech impairments.
comment: 21 pages, 4 figures, 1 graphical abstract, submitted to Computer Speech and Language (special issue on Iberian Languages)
Revealing Language Model Trajectories via Kullback-Leibler Divergence
A recently proposed method enables efficient estimation of the KL divergence between language models, including models with different architectures, by assigning coordinates based on log-likelihood vectors. To better understand the behavior of this metric, we systematically evaluate KL divergence across a wide range of conditions using publicly available language models. Our analysis covers comparisons between pretraining checkpoints, fine-tuned and base models, and layers via the logit lens. We find that trajectories of language models, as measured by KL divergence, exhibit a spiral structure during pretraining and thread-like progressions across layers. Furthermore, we show that, in terms of diffusion exponents, model trajectories in the log-likelihood space are more constrained than those in weight space.
The Super Emotion Dataset
Despite the wide-scale usage and development of emotion classification datasets in NLP, the field lacks a standardized, large-scale resource that follows a psychologically grounded taxonomy. Existing datasets either use inconsistent emotion categories, suffer from limited sample size, or focus on specific domains. The Super Emotion Dataset addresses this gap by harmonizing diverse text sources into a unified framework based on Shaver's empirically validated emotion taxonomy, enabling more consistent cross-domain emotion recognition research.
FlowKV: Enhancing Multi-Turn Conversational Coherence in LLMs via Isolated Key-Value Cache Management
Large Language Models (LLMs) are increasingly deployed in multi-turn conversational applications, where the management of the Key-Value (KV) Cache presents a significant bottleneck. The linear growth of the KV Cache with dialogue history imposes substantial computational costs, and existing eviction strategies often degrade performance by repeatedly compressing early conversational context, leading to information loss and context forgetting. This paper introduces FlowKV, a novel \textbf{multi-turn isolation mechanism} for KV Cache management, which can be applied to any KV Cache compression method without training. FlowKV's core innovation is a multi-turn isolation mechanism that preserves the accumulated compressed KV cache from past turns. Compression is then strategically applied only to the newly generated KV pairs of the latest completed turn, effectively preventing the re-compression of older context and thereby mitigating catastrophic forgetting. Our results demonstrate that FlowKV consistently and significantly outperforms baseline strategies in maintaining instruction-following accuracy and user preference retention from 10.90\% to 75.40\%, particularly in later conversational turns.
comment: 18 pages
Your Language Model Can Secretly Write Like Humans: Contrastive Paraphrase Attacks on LLM-Generated Text Detectors
The misuse of large language models (LLMs), such as academic plagiarism, has driven the development of detectors to identify LLM-generated texts. To bypass these detectors, paraphrase attacks have emerged to purposely rewrite these texts to evade detection. Despite the success, existing methods require substantial data and computational budgets to train a specialized paraphraser, and their attack efficacy greatly reduces when faced with advanced detection algorithms. To address this, we propose \textbf{Co}ntrastive \textbf{P}araphrase \textbf{A}ttack (CoPA), a training-free method that effectively deceives text detectors using off-the-shelf LLMs. The first step is to carefully craft instructions that encourage LLMs to produce more human-like texts. Nonetheless, we observe that the inherent statistical biases of LLMs can still result in some generated texts carrying certain machine-like attributes that can be captured by detectors. To overcome this, CoPA constructs an auxiliary machine-like word distribution as a contrast to the human-like distribution generated by the LLM. By subtracting the machine-like patterns from the human-like distribution during the decoding process, CoPA is able to produce sentences that are less discernible by text detectors. Our theoretical analysis suggests the superiority of the proposed attack. Extensive experiments validate the effectiveness of CoPA in fooling text detectors across various scenarios.
Leveraging Unit Language Guidance to Advance Speech Modeling in Textless Speech-to-Speech Translation ACL 2025
The success of building textless speech-to-speech translation (S2ST) models has attracted much attention. However, S2ST still faces two main challenges: 1) extracting linguistic features for various speech signals, called cross-modal (CM), and 2) learning alignment of difference languages in long sequences, called cross-lingual (CL). We propose the unit language to overcome the two modeling challenges. The unit language can be considered a text-like representation format, constructed using $n$-gram language modeling. We implement multi-task learning to utilize the unit language in guiding the speech modeling process. Our initial results reveal a conflict when applying source and target unit languages simultaneously. We propose task prompt modeling to mitigate this conflict. We conduct experiments on four languages of the Voxpupil dataset. Our method demonstrates significant improvements over a strong baseline and achieves performance comparable to models trained with text.
comment: Accepted to ACL 2025 Findings
Improving LLM First-Token Predictions in Multiple-Choice Question Answering via Prefilling Attack
Large Language Models (LLMs) are increasingly evaluated on multiple-choice question answering (MCQA) tasks using *first-token probability* (FTP), which selects the answer option whose initial token has the highest likelihood. While efficient, FTP can be fragile: models may assign high probability to unrelated tokens (*misalignment*) or use a valid token merely as part of a generic preamble rather than as a clear answer choice (*misinterpretation*), undermining the reliability of symbolic evaluation. We propose a simple solution: the *prefilling attack*, a structured natural-language prefix (e.g., "*The correct option is:*") prepended to the model output. Originally explored in AI safety, we repurpose prefilling to steer the model to respond with a clean, valid option, without modifying its parameters. Empirically, the FTP with prefilling strategy substantially improves accuracy, calibration, and output consistency across a broad set of LLMs and MCQA benchmarks. It outperforms standard FTP and often matches the performance of open-ended generation approaches that require full decoding and external classifiers, while being significantly more efficient. Our findings suggest that prefilling is a simple, robust, and low-cost method to enhance the reliability of FTP-based evaluation in multiple-choice settings.
comment: 13 pages, 5 figures, 7 tables
Emotional Supporters often Use Multiple Strategies in a Single Turn
Emotional Support Conversations (ESC) are crucial for providing empathy, validation, and actionable guidance to individuals in distress. However, existing definitions of the ESC task oversimplify the structure of supportive responses, typically modelling them as single strategy-utterance pairs. Through a detailed corpus analysis of the ESConv dataset, we identify a common yet previously overlooked phenomenon: emotional supporters often employ multiple strategies consecutively within a single turn. We formally redefine the ESC task to account for this, proposing a revised formulation that requires generating the full sequence of strategy-utterance pairs given a dialogue history. To facilitate this refined task, we introduce several modelling approaches, including supervised deep learning models and large language models. Our experiments show that, under this redefined task, state-of-the-art LLMs outperform both supervised models and human supporters. Notably, contrary to some earlier findings, we observe that LLMs frequently ask questions and provide suggestions, demonstrating more holistic support capabilities.
Trajectory Bellman Residual Minimization: A Simple Value-Based Method for LLM Reasoning
Policy-based methods currently dominate reinforcement learning (RL) pipelines for large language model (LLM) reasoning, leaving value-based approaches largely unexplored. We revisit the classical paradigm of Bellman Residual Minimization and introduce Trajectory Bellman Residual Minimization (TBRM), an algorithm that naturally adapts this idea to LLMs, yielding a simple yet effective off-policy algorithm that optimizes a single trajectory-level Bellman objective using the model's own logits as $Q$-values. TBRM removes the need for critics, importance-sampling ratios, or clipping, and operates with only one rollout per prompt. We prove convergence to the near-optimal KL-regularized policy from arbitrary off-policy data via an improved change-of-trajectory-measure analysis. Experiments on standard mathematical-reasoning benchmarks show that TBRM consistently outperforms policy-based baselines, like PPO and GRPO, with comparable or lower computational and memory overhead. Our results indicate that value-based RL might be a principled and efficient alternative for enhancing reasoning capabilities in LLMs.
Multi-Hop Question Generation via Dual-Perspective Keyword Guidance ACL 2025
Multi-hop question generation (MQG) aims to generate questions that require synthesizing multiple information snippets from documents to derive target answers. The primary challenge lies in effectively pinpointing crucial information snippets related to question-answer (QA) pairs, typically relying on keywords. However, existing works fail to fully utilize the guiding potential of keywords and neglect to differentiate the distinct roles of question-specific and document-specific keywords. To address this, we define dual-perspective keywords (i.e., question and document keywords) and propose a Dual-Perspective Keyword-Guided (DPKG) framework, which seamlessly integrates keywords into the multi-hop question generation process. We argue that question keywords capture the questioner's intent, whereas document keywords reflect the content related to the QA pair. Functionally, question and document keywords work together to pinpoint essential information snippets in the document, with question keywords required to appear in the generated question. The DPKG framework consists of an expanded transformer encoder and two answer-aware transformer decoders for keyword and question generation, respectively. Extensive experiments demonstrate the effectiveness of our work, showcasing its promising performance and underscoring its significant value in the MQG task.
comment: 17 pages, 5 figures, accepted to the Findings of ACL 2025
AgentThink: A Unified Framework for Tool-Augmented Chain-of-Thought Reasoning in Vision-Language Models for Autonomous Driving
Vision-Language Models (VLMs) show promise for autonomous driving, yet their struggle with hallucinations, inefficient reasoning, and limited real-world validation hinders accurate perception and robust step-by-step reasoning. To overcome this, we introduce \textbf{AgentThink}, a pioneering unified framework that, for the first time, integrates Chain-of-Thought (CoT) reasoning with dynamic, agent-style tool invocation for autonomous driving tasks. AgentThink's core innovations include: \textbf{(i) Structured Data Generation}, by establishing an autonomous driving tool library to automatically construct structured, self-verified reasoning data explicitly incorporating tool usage for diverse driving scenarios; \textbf{(ii) A Two-stage Training Pipeline}, employing Supervised Fine-Tuning (SFT) with Group Relative Policy Optimization (GRPO) to equip VLMs with the capability for autonomous tool invocation; and \textbf{(iii) Agent-style Tool-Usage Evaluation}, introducing a novel multi-tool assessment protocol to rigorously evaluate the model's tool invocation and utilization. Experiments on the DriveLMM-o1 benchmark demonstrate AgentThink significantly boosts overall reasoning scores by \textbf{53.91\%} and enhances answer accuracy by \textbf{33.54\%}, while markedly improving reasoning quality and consistency. Furthermore, ablation studies and robust zero-shot/few-shot generalization experiments across various benchmarks underscore its powerful capabilities. These findings highlight a promising trajectory for developing trustworthy and tool-aware autonomous driving models.
comment: 18 pages, 8 figures
Chinese Toxic Language Mitigation via Sentiment Polarity Consistent Rewrites
Detoxifying offensive language while preserving the speaker's original intent is a challenging yet critical goal for improving the quality of online interactions. Although large language models (LLMs) show promise in rewriting toxic content, they often default to overly polite rewrites, distorting the emotional tone and communicative intent. This problem is especially acute in Chinese, where toxicity often arises implicitly through emojis, homophones, or discourse context. We present ToxiRewriteCN, the first Chinese detoxification dataset explicitly designed to preserve sentiment polarity. The dataset comprises 1,556 carefully annotated triplets, each containing a toxic sentence, a sentiment-aligned non-toxic rewrite, and labeled toxic spans. It covers five real-world scenarios: standard expressions, emoji-induced and homophonic toxicity, as well as single-turn and multi-turn dialogues. We evaluate 17 LLMs, including commercial and open-source models with variant architectures, across four dimensions: detoxification accuracy, fluency, content preservation, and sentiment polarity. Results show that while commercial and MoE models perform best overall, all models struggle to balance safety with emotional fidelity in more subtle or context-heavy settings such as emoji, homophone, and dialogue-based inputs. We release ToxiRewriteCN to support future research on controllable, sentiment-aware detoxification for Chinese.
comment: 14 pages, 7 figures
Hallucinate at the Last in Long Response Generation: A Case Study on Long Document Summarization
Large Language Models (LLMs) have significantly advanced text generation capabilities, including tasks like summarization, often producing coherent and fluent outputs. However, faithfulness to source material remains a significant challenge due to the generation of hallucinations. While extensive research focuses on detecting and reducing these inaccuracies, less attention has been paid to the positional distribution of hallucination within generated text, particularly in long outputs. In this work, we investigate where hallucinations occur in LLM-based long response generation, using long document summarization as a key case study. Focusing on the challenging setting of long context-aware long response generation, we find a consistent and concerning phenomenon: hallucinations tend to concentrate disproportionately in the latter parts of the generated long response. To understand this bias, we explore potential contributing factors related to the dynamics of attention and decoding over long sequences. Furthermore, we investigate methods to mitigate this positional hallucination, aiming to improve faithfulness specifically in the concluding segments of long outputs.
comment: 11 tables, 8 figures
Think Only When You Need with Large Hybrid-Reasoning Models
Recent Large Reasoning Models (LRMs) have shown substantially improved reasoning capabilities over traditional Large Language Models (LLMs) by incorporating extended thinking processes prior to producing final responses. However, excessively lengthy thinking introduces substantial overhead in terms of token consumption and latency, which is particularly unnecessary for simple queries. In this work, we introduce Large Hybrid-Reasoning Models (LHRMs), the first kind of model capable of adaptively determining whether to perform thinking based on the contextual information of user queries. To achieve this, we propose a two-stage training pipeline comprising Hybrid Fine-Tuning (HFT) as a cold start, followed by online reinforcement learning with the proposed Hybrid Group Policy Optimization (HGPO) to implicitly learn to select the appropriate thinking mode. Furthermore, we introduce a metric called Hybrid Accuracy to quantitatively assess the model's capability for hybrid thinking. Extensive experimental results show that LHRMs can adaptively perform hybrid thinking on queries of varying difficulty and type. It outperforms existing LRMs and LLMs in reasoning and general capabilities while significantly improving efficiency. Together, our work advocates for a reconsideration of the appropriate use of extended thinking processes and provides a solid starting point for building hybrid thinking systems.
Pivot Language for Low-Resource Machine Translation
Certain pairs of languages suffer from lack of a parallel corpus which is large in size and diverse in domain. One of the ways this is overcome is via use of a pivot language. In this paper we use Hindi as a pivot language to translate Nepali into English. We describe what makes Hindi a good candidate for the pivot. We discuss ways in which a pivot language can be used, and use two such approaches - the Transfer Method (fully supervised) and Backtranslation (semi-supervised) - to translate Nepali into English. Using the former, we are able to achieve a devtest Set SacreBLEU score of 14.2, which improves the baseline fully supervised score reported by (Guzman et al., 2019) by 6.6 points. While we are slightly below the semi-supervised baseline score of 15.1, we discuss what may have caused this under-performance, and suggest scope for future work.
comment: 7 pages, 3 figures, paper dated May 13, 2019
KORGym: A Dynamic Game Platform for LLM Reasoning Evaluation
Recent advancements in large language models (LLMs) underscore the need for more comprehensive evaluation methods to accurately assess their reasoning capabilities. Existing benchmarks are often domain-specific and thus cannot fully capture an LLM's general reasoning potential. To address this limitation, we introduce the Knowledge Orthogonal Reasoning Gymnasium (KORGym), a dynamic evaluation platform inspired by KOR-Bench and Gymnasium. KORGym offers over fifty games in either textual or visual formats and supports interactive, multi-turn assessments with reinforcement learning scenarios. Using KORGym, we conduct extensive experiments on 19 LLMs and 8 VLMs, revealing consistent reasoning patterns within model families and demonstrating the superior performance of closed-source models. Further analysis examines the effects of modality, reasoning strategies, reinforcement learning techniques, and response length on model performance. We expect KORGym to become a valuable resource for advancing LLM reasoning research and developing evaluation methodologies suited to complex, interactive environments.
comment: 22 pages
PlanGPT-VL: Enhancing Urban Planning with Domain-Specific Vision-Language Models
In the field of urban planning, existing Vision-Language Models (VLMs) frequently fail to effectively analyze and evaluate planning maps, despite the critical importance of these visual elements for urban planners and related educational contexts. Planning maps, which visualize land use, infrastructure layouts, and functional zoning, require specialized understanding of spatial configurations, regulatory requirements, and multi-scale analysis. To address this challenge, we introduce PlanGPT-VL, the first domain-specific Vision-Language Model tailored specifically for urban planning maps. PlanGPT-VL employs three innovative approaches: (1) PlanAnno-V framework for high-quality VQA data synthesis, (2) Critical Point Thinking to reduce hallucinations through structured verification, and (3) comprehensive training methodology combining Supervised Fine-Tuning with frozen vision encoder parameters. Through systematic evaluation on our proposed PlanBench-V benchmark, we demonstrate that PlanGPT-VL significantly outperforms general-purpose state-of-the-art VLMs in specialized planning map interpretation tasks, offering urban planning professionals a reliable tool for map analysis, assessment, and educational applications while maintaining high factual accuracy. Our lightweight 7B parameter model achieves comparable performance to models exceeding 72B parameters, demonstrating efficient domain specialization without sacrificing performance.
Pierce the Mists, Greet the Sky: Decipher Knowledge Overshadowing via Knowledge Circuit Analysis
Large Language Models (LLMs), despite their remarkable capabilities, are hampered by hallucinations. A particularly challenging variant, knowledge overshadowing, occurs when one piece of activated knowledge inadvertently masks another relevant piece, leading to erroneous outputs even with high-quality training data. Current understanding of overshadowing is largely confined to inference-time observations, lacking deep insights into its origins and internal mechanisms during model training. Therefore, we introduce PhantomCircuit, a novel framework designed to comprehensively analyze and detect knowledge overshadowing. By innovatively employing knowledge circuit analysis, PhantomCircuit dissects the internal workings of attention heads, tracing how competing knowledge pathways contribute to the overshadowing phenomenon and its evolution throughout the training process. Extensive experiments demonstrate PhantomCircuit's effectiveness in identifying such instances, offering novel insights into this elusive hallucination and providing the research community with a new methodological lens for its potential mitigation.
comment: Under review
Dual Decomposition of Weights and Singular Value Low Rank Adaptation
Parameter-Efficient Fine-Tuning (PEFT) has emerged as a critical paradigm for adapting Large Language Models (LLMs) to downstream tasks, among which Low-rank Adaptation (LoRA) represents one of the most widely adopted methodologies. However, existing LoRA-based approaches exhibit two fundamental limitations: unstable training dynamics and inefficient knowledge transfer from pre-trained models, both stemming from random initialization of adapter parameters. To overcome these challenges, we propose DuDe, a novel approach that decomposes weight matrices into magnitude and direction components, employing Singular Value Decomposition (SVD) for principled initialization. Our comprehensive evaluation demonstrates DuDe's superior performance and robustness, achieving up to 48.35\% accuracy on MMLU and 62.53\% ($\pm$ 1.59) accuracy on GSM8K. Our theoretical analysis and empirical validation collectively demonstrate that DuDe's decomposition strategy enhances optimization stability and better preserves pre-trained representations, particularly for domain-specific tasks requiring specialized knowledge. The combination of robust empirical performance and rigorous theoretical foundations establishes DuDe as a significant contribution to PEFT methodologies for LLMs.
OSoRA: Output-Dimension and Singular-Value Initialized Low-Rank Adaptation
Fine-tuning Large Language Models (LLMs) has become increasingly challenging due to their massive scale and associated computational costs. Parameter-Efficient Fine-Tuning (PEFT) methodologies have been proposed as computational alternatives; however, their implementations still require significant resources. In this paper, we present OSoRA (Output-Dimension and Singular-Value Initialized Low-Rank Adaptation), a novel PEFT method for LLMs. OSoRA extends Low-Rank Adaptation (LoRA) by integrating Singular Value Decomposition (SVD) with learnable scaling vectors in a unified framework. It first performs an SVD of pre-trained weight matrices, then optimizes an output-dimension vector during training, while keeping the corresponding singular vector matrices frozen. OSoRA substantially reduces computational resource requirements by minimizing the number of trainable parameters during fine-tuning. Comprehensive evaluations across mathematical reasoning, common sense reasoning, and other benchmarks demonstrate that OSoRA achieves comparable or superior performance to state-of-the-art methods like LoRA and VeRA, while maintaining a linear parameter scaling even as the rank increases to higher dimensions. Our ablation studies further confirm that jointly training both the singular values and the output-dimension vector is critical for optimal performance.
Lifelong Knowledge Editing requires Better Regularization
Knowledge editing is a promising way to improve factuality in large language models, but recent studies have shown significant model degradation during sequential editing. In this paper, we formalize the popular locate-then-edit methods as a two-step fine-tuning process, allowing us to precisely identify the root cause of this degradation. We show that model degradation occurs due to (1) over-optimization of internal activations and (2) continuous norm-growth of edited matrices. To mitigate these issues, we introduce two regularization techniques: (1) Most-Probable Early Stopping (MPES) and (2) explicit Frobenius norm-constraint. We demonstrate that applying these simple yet effective regularization techniques at key points in the editing process can substantially mitigate model degradation. Combining these regularization methods enables scaling locate-then-edit methods to 10,000 edits while reducing editing time by 42-61%. These results show that targeted regularization is essential for lifelong knowledge editing.
An In-Depth Investigation of Data Collection in LLM App Ecosystems
LLM app (tool) ecosystems are rapidly evolving to support sophisticated use cases that often require extensive user data collection. Given that LLM apps are developed by third parties and anecdotal evidence indicating inconsistent enforcement of policies by LLM platforms, sharing user data with these apps presents significant privacy risks. In this paper, we aim to bring transparency in data practices of LLM app ecosystems. We examine OpenAI's GPT app ecosystem as a case study. We propose an LLM-based framework to analyze the natural language specifications of GPT Actions (custom tools) and assess their data collection practices. Our analysis reveals that Actions collect excessive data across 24 categories and 145 data types, with third-party Actions collecting 6.03% more data on average. We find that several Actions violate OpenAI's policies by collecting sensitive information, such as passwords, which is explicitly prohibited by OpenAI. Lastly, we develop an LLM-based privacy policy analysis framework to automatically check the consistency of data collection by Actions with disclosures in their privacy policies. Our measurements indicate that the disclosures for most of the collected data types are omitted, with only 5.8% of Actions clearly disclosing their data collection practices.
comment: Accepted by the ACM Internet Measurement Conference (IMC) 2025
General-Reasoner: Advancing LLM Reasoning Across All Domains
Reinforcement learning (RL) has recently demonstrated strong potential in enhancing the reasoning capabilities of large language models (LLMs). Particularly, the "Zero" reinforcement learning introduced by Deepseek-R1-Zero, enables direct RL training of base LLMs without relying on an intermediate supervised fine-tuning stage. Despite these advancements, current works for LLM reasoning mainly focus on mathematical and coding domains, largely due to data abundance and the ease of answer verification. This limits the applicability and generalization of such models to broader domains, where questions often have diverse answer representations, and data is more scarce. In this paper, we propose General-Reasoner, a novel training paradigm designed to enhance LLM reasoning capabilities across diverse domains. Our key contributions include: (1) constructing a large-scale, high-quality dataset of questions with verifiable answers curated by web crawling, covering a wide range of disciplines; and (2) developing a generative model-based answer verifier, which replaces traditional rule-based verification with the capability of chain-of-thought and context-awareness. We train a series of models and evaluate them on a wide range of datasets covering wide domains like physics, chemistry, finance, electronics etc. Our comprehensive evaluation across these 12 benchmarks (e.g. MMLU-Pro, GPQA, SuperGPQA, TheoremQA, BBEH and MATH AMC) demonstrates that General-Reasoner outperforms existing baseline methods, achieving robust and generalizable reasoning performance while maintaining superior effectiveness in mathematical reasoning tasks.
Effectively Controlling Reasoning Models through Thinking Intervention
Reasoning-enhanced large language models (LLMs) explicitly generate intermediate reasoning steps prior to generating final answers, helping the model excel in complex problem-solving. In this paper, we demonstrate that this emerging generation framework offers a unique opportunity for more fine-grained control over model behavior. We propose Thinking Intervention, a novel paradigm designed to explicitly guide the internal reasoning processes of LLMs by strategically inserting or revising specific thinking tokens. We find that the Thinking Intervention paradigm enhances the capabilities of reasoning models across a wide range of tasks, including instruction following on IFEval and Overthinking, instruction hierarchy on SEP, and safety alignment on XSTest and SorryBench. Our results demonstrate that Thinking Intervention significantly outperforms baseline prompting approaches, achieving up to 6.7% accuracy gains in instruction-following scenarios, 15.4% improvements in reasoning about instruction hierarchies, and a 40.0% increase in refusal rates for unsafe prompts using open-source DeepSeek R1 models. Overall, our work opens a promising new research avenue for controlling reasoning LLMs.
BARE: Leveraging Base Language Models for Few-Shot Synthetic Data Generation
As the demand for high-quality data in model training grows, researchers and developers are increasingly generating synthetic data to tune and train LLMs. However, current data generation methods rely on seed sets containing tens of thousands of examples to prompt instruction-tuned models. This reliance can be especially problematic when the curation of high-quality examples is expensive or difficult. In this paper we explore the novel few-shot synthetic data generation setting -- generating a high-quality dataset from a few examples. We show that when working with only a few seed examples, instruction-tuned models used in current synthetic data methods produce insufficient diversity for downstream tasks. In contrast, we show that base models without post-training, largely untapped for synthetic data generation, offer substantially greater output diversity, albeit with lower instruction following abilities. Leveraging this insight, we propose Base-Refine (BARE), a novel two-stage method that combines the diversity of base models with the quality assurance of instruction-tuned models. BARE excels in few-shot synthetic data generation: using only 3 seed examples it generates diverse, high-quality datasets that significantly improve downstream task performance. We show that fine-tuning Llama 3.1 8B with 1,000 BARE-generated samples achieves performance comparable to state-of-the-art similarly sized models on LiveCodeBench tasks. Furthermore, data generated with BARE enables a 101% improvement for a fine-tuned Llama 3.2 1B on GSM8K over data generated by only instruction-models, and an 18.4% improvement for a fine-tuned Llama 3.1 8B over the state-of-the-art RAFT method for RAG data generation.
Towards Reliable and Interpretable Traffic Crash Pattern Prediction and Safety Interventions Using Customized Large Language Models
Predicting crash events is crucial for understanding crash distributions and their contributing factors, thereby enabling the design of proactive traffic safety policy interventions. However, existing methods struggle to interpret the complex interplay among various sources of traffic crash data, including numeric characteristics, textual reports, crash imagery, environmental conditions, and driver behavior records. As a result, they often fail to capture the rich semantic information and intricate interrelationships embedded in these diverse data sources, limiting their ability to identify critical crash risk factors. In this research, we propose TrafficSafe, a framework that adapts LLMs to reframe crash prediction and feature attribution as text-based reasoning. A multi-modal crash dataset including 58,903 real-world reports together with belonged infrastructure, environmental, driver, and vehicle information is collected and textualized into TrafficSafe Event Dataset. By customizing and fine-tuning LLMs on this dataset, the TrafficSafe LLM achieves a 42% average improvement in F1-score over baselines. To interpret these predictions and uncover contributing factors, we introduce TrafficSafe Attribution, a sentence-level feature attribution framework enabling conditional risk analysis. Findings show that alcohol-impaired driving is the leading factor in severe crashes, with aggressive and impairment-related behaviors having nearly twice the contribution for severe crashes compared to other driver behaviors. Furthermore, TrafficSafe Attribution highlights pivotal features during model training, guiding strategic crash data collection for iterative performance improvements. The proposed TrafficSafe offers a transformative leap in traffic safety research, providing a blueprint for translating advanced AI technologies into responsible, actionable, and life-saving outcomes.
comment: Last revised 13 Feb 2025. Under review in Nature portfolio
A Modular Approach for Clinical SLMs Driven by Synthetic Data with Pre-Instruction Tuning, Model Merging, and Clinical-Tasks Alignment
High computation costs and latency of large language models such as GPT-4 have limited their deployment in clinical settings. Small language models (SLMs) offer a cost-effective alternative, but their limited capacity requires biomedical domain adaptation, which remains challenging. An additional bottleneck is the unavailability and high sensitivity of clinical data. To address these challenges, we propose a novel framework for adapting SLMs into high-performing clinical models. We introduce the MediPhi collection of 3.8B-parameter SLMs developed with our novel framework: pre-instruction tuning of experts on relevant medical and clinical corpora (PMC, Medical Guideline, MedWiki, etc.), model merging, and clinical-tasks alignment. To cover most clinical tasks, we extended the CLUE benchmark to CLUE+, doubling its size. Our expert models deliver relative improvements on this benchmark over the base model without any task-specific fine-tuning: 64.3% on medical entities, 49.5% on radiology reports, and 44% on ICD-10 coding (outperforming GPT-4-0125 by 14%). We unify the expert models into MediPhi via model merging, preserving gains across benchmarks. Furthermore, we built the MediFlow collection, a synthetic dataset of 2.5 million high-quality instructions on 14 medical NLP tasks, 98 fine-grained document types, and JSON format support. Alignment of MediPhi using supervised fine-tuning and direct preference optimization achieves further gains of 18.9% on average.
SWE-smith: Scaling Data for Software Engineering Agents
Despite recent progress in Language Models (LMs) for software engineering, collecting training data remains a significant pain point. Existing datasets are small, with at most 1,000s of training instances from 11 or fewer GitHub repositories. The procedures to curate such datasets are often complex, necessitating hundreds of hours of human labor; companion execution environments also take up several terabytes of storage, severely limiting their scalability and usability. To address this pain point, we introduce SWE-smith, a novel pipeline for generating software engineering training data at scale. Given any Python codebase, SWE-smith constructs a corresponding execution environment, then automatically synthesizes 100s to 1,000s of task instances that break existing test(s) in the codebase. Using SWE-smith, we create a dataset of 50k instances sourced from 128 GitHub repositories, an order of magnitude larger than all previous works. We train SWE-agent-LM-32B, achieving 40.2% Pass@1 resolve rate on the SWE-bench Verified benchmark, state of the art among open source models. We open source SWE-smith (collection procedure, task instances, trajectories, models) to lower the barrier of entry for research in LM systems for automated software engineering. All assets available at https://swesmith.com.
comment: All assets available at https://swesmith.com
Mitigating Subgroup Disparities in Multi-Label Speech Emotion Recognition: A Pseudo-Labeling and Unsupervised Learning Approach
While subgroup disparities and performance bias are increasingly studied in computational research, fairness in categorical Speech Emotion Recognition (SER) remains underexplored. Existing methods often rely on explicit demographic labels, which are difficult to obtain due to privacy concerns. To address this limitation, we introduce an Implicit Demography Inference (IDI) module that leverages pseudo-labeling from a pre-trained model and unsupervised learning using k-means clustering to mitigate bias in SER. Our experiments show that pseudo-labeling IDI reduces subgroup disparities, improving fairness metrics by over 33% with less than a 3% decrease in SER accuracy. Also, the unsupervised IDI yields more than a 26% improvement in fairness metrics with a drop of less than 4% in SER performance. Further analyses reveal that the unsupervised IDI consistently mitigates race and age disparities, demonstrating its potential in scenarios where explicit demographic information is unavailable.
comment: Accepted by InterSpeech 2025. 7 pages including 2 pages of appendix
Mind the Gap: Bridging Thought Leap for Improved Chain-of-Thought Tuning
Large language models (LLMs) have achieved remarkable progress on mathematical tasks through Chain-of-Thought (CoT) reasoning. However, existing mathematical CoT datasets often suffer from Thought Leaps due to experts omitting intermediate steps, which negatively impacts model learning and generalization. We propose the CoT Thought Leap Bridge Task, which aims to automatically detect leaps and generate missing intermediate reasoning steps to restore the completeness and coherence of CoT. To facilitate this, we constructed a specialized training dataset called ScaleQM+, based on the structured ScaleQuestMath dataset, and trained CoT-Bridge to bridge thought leaps. Through comprehensive experiments on mathematical reasoning benchmarks, we demonstrate that models fine-tuned on bridged datasets consistently outperform those trained on original datasets, with improvements of up to +5.87% on NuminaMath. Our approach effectively enhances distilled data (+3.02%) and provides better starting points for reinforcement learning (+3.1%), functioning as a plug-and-play module compatible with existing optimization techniques. Furthermore, CoT-Bridge demonstrate improved generalization to out-of-domain logical reasoning tasks, confirming that enhancing reasoning completeness yields broadly applicable benefits.
comment: Project: https://zju-real.github.io/CoT-Bridge/
Granary: Speech Recognition and Translation Dataset in 25 European Languages
Multi-task and multilingual approaches benefit large models, yet speech processing for low-resource languages remains underexplored due to data scarcity. To address this, we present Granary, a large-scale collection of speech datasets for recognition and translation across 25 European languages. This is the first open-source effort at this scale for both transcription and translation. We enhance data quality using a pseudo-labeling pipeline with segmentation, two-pass inference, hallucination filtering, and punctuation restoration. We further generate translation pairs from pseudo-labeled transcriptions using EuroLLM, followed by a data filtration pipeline. Designed for efficiency, our pipeline processes vast amount of data within hours. We assess models trained on processed data by comparing their performance on previously curated datasets for both high- and low-resource languages. Our findings show that these models achieve similar performance using approx. 50% less data. Dataset will be made available at https://hf.co/datasets/nvidia/Granary
comment: Accepted at Interspeech 2025 v2: Added links
Understanding the Repeat Curse in Large Language Models from a Feature Perspective ACL 2025
Large language models (LLMs) have made remarkable progress in various domains, yet they often suffer from repetitive text generation, a phenomenon we refer to as the "Repeat Curse". While previous studies have proposed decoding strategies to mitigate repetition, the underlying mechanism behind this issue remains insufficiently explored. In this work, we investigate the root causes of repetition in LLMs through the lens of mechanistic interpretability. Inspired by recent advances in Sparse Autoencoders (SAEs), which enable monosemantic feature extraction, we propose a novel approach, "Duplicatus Charm", to induce and analyze the Repeat Curse. Our method systematically identifies "Repetition Features" -the key model activations responsible for generating repetitive outputs. First, we locate the layers most involved in repetition through logit analysis. Next, we extract and stimulate relevant features using SAE-based activation manipulation. To validate our approach, we construct a repetition dataset covering token and paragraph level repetitions and introduce an evaluation pipeline to quantify the influence of identified repetition features. Furthermore, by deactivating these features, we have effectively mitigated the Repeat Curse.
comment: Accepted by ACL 2025, Findings, Long Paper
Enhancing Large Language Models (LLMs) for Telecommunications using Knowledge Graphs and Retrieval-Augmented Generation
Large language models (LLMs) have made significant progress in general-purpose natural language processing tasks. However, LLMs are still facing challenges when applied to domain-specific areas like telecommunications, which demands specialized expertise and adaptability to evolving standards. This paper presents a novel framework that combines knowledge graph (KG) and retrieval-augmented generation (RAG) techniques to enhance LLM performance in the telecom domain. The framework leverages a KG to capture structured, domain-specific information about network protocols, standards, and other telecom-related entities, comprehensively representing their relationships. By integrating KG with RAG, LLMs can dynamically access and utilize the most relevant and up-to-date knowledge during response generation. This hybrid approach bridges the gap between structured knowledge representation and the generative capabilities of LLMs, significantly enhancing accuracy, adaptability, and domain-specific comprehension. Our results demonstrate the effectiveness of the KG-RAG framework in addressing complex technical queries with precision. The proposed KG-RAG model attained an accuracy of 88% for question answering tasks on a frequently used telecom-specific dataset, compared to 82% for the RAG-only and 48% for the LLM-only approaches.
comment: This work has been accepted to ICC 2025 IEEE International Conference on Communications. copyright 2025 IEEE
dMel: Speech Tokenization made Simple
Large language models have revolutionized natural language processing by leveraging self-supervised pretraining on vast textual data. Inspired by this success, researchers have investigated various compression-based speech tokenization methods to discretize continuous speech signals, enabling the application of language modeling techniques to discrete tokens. However, audio compressor introduces additional complexity and computational cost, and often fail on out-of-domain audio signals. In this work, we introduce a novel speech representation (dmel) that discretizes mel-filterbank channels into intensity bins, creating a simpler yet more effective representation compared to existing speech tokenization methods. Our approach demonstrates superior performance in preserving audio content, robustness to out-of-domain data, and offers a training-free, natural, and streamable representation. To address the high-dimensional nature of log-mel spectrograms, we propose an efficient parallel encoding and decoding method for high-dimensional tokens using an LM-style transformer architecture. This innovation enables us to develop RichTTS and RichASR, two models sharing the same architecture while achieving comparable or better results than specialized existing methods. Our results demonstrate the effectiveness of dmel in achieving high performance on both speech synthesis and recognition tasks within a unified framework, paving the way for efficient and effective joint modeling of speech and text.
comment: preprint
Shaping the Safety Boundaries: Understanding and Defending Against Jailbreaks in Large Language Models
Jailbreaking in Large Language Models (LLMs) is a major security concern as it can deceive LLMs to generate harmful text. Yet, there is still insufficient understanding of how jailbreaking works, which makes it hard to develop effective defense strategies. We aim to shed more light into this issue: we conduct a detailed large-scale analysis of seven different jailbreak methods and find that these disagreements stem from insufficient observation samples. In particular, we introduce \textit{safety boundary}, and we find that jailbreaks shift harmful activations outside that safety boundary, where LLMs are less sensitive to harmful information. We also find that the low and the middle layers are critical in such shifts, while deeper layers have less impact. Leveraging on these insights, we propose a novel defense called \textbf{Activation Boundary Defense} (ABD), which adaptively constrains the activations within the safety boundary. We further use Bayesian optimization to selectively apply the defense method to the low and the middle layers. Our experiments on several benchmarks show that ABD achieves an average DSR of over 98\% against various forms of jailbreak attacks, with less than 2\% impact on the model's general capabilities.
comment: 17 pages, 9 figures
Probing Semantic Routing in Large Mixture-of-Expert Models
In the past year, large (>100B parameter) mixture-of-expert (MoE) models have become increasingly common in the open domain. While their advantages are often framed in terms of efficiency, prior work has also explored functional differentiation through routing behavior. We investigate whether expert routing in large MoE models is influenced by the semantics of the inputs. To test this, we design two controlled experiments. First, we compare activations on sentence pairs with a shared target word used in the same or different senses. Second, we fix context and substitute the target word with semantically similar or dissimilar alternatives. Comparing expert overlap across these conditions reveals clear, statistically significant evidence of semantic routing in large MoE models.
comment: 16 pages, 5 figures, 5 tables
Fine-tuning Large Language Models for Entity Matching
Generative large language models (LLMs) are a promising alternative to pre-trained language models for entity matching due to their high zero-shot performance and ability to generalize to unseen entities. Existing research on using LLMs for entity matching has focused on prompt engineering and in-context learning. This paper explores the potential of fine-tuning LLMs for entity matching. We analyze fine-tuning along two dimensions: 1) the representation of training examples, where we experiment with adding different types of LLM-generated explanations to the training set, and 2) the selection and generation of training examples using LLMs. In addition to the matching performance on the source dataset, we investigate how fine-tuning affects the models ability to generalize to other in-domain datasets as well as across topical domains. Our experiments show that fine-tuning significantly improves the performance of the smaller models while the results for the larger models are mixed. Fine-tuning also improves the generalization to in-domain datasets while hurting cross-domain transfer. We show that adding structured explanations to the training set has a positive impact on the performance of three out of four LLMs, while the proposed example selection and generation methods, only improve the performance of Llama 3.1 8B while decreasing the performance of GPT-4o-mini.
comment: 8 pages, 4 figures. For related code and data, see this https://github.com/wbsg-uni-mannheim/TailorMatch
Spontaneous Giving and Calculated Greed in Language Models
Large language models demonstrate strong problem-solving abilities through reasoning techniques such as chain-of-thought prompting and reflection. However, it remains unclear whether these reasoning capabilities extend to a form of social intelligence: making effective decisions in cooperative contexts. We examine this question using economic games that simulate social dilemmas. First, we apply chain-of-thought and reflection prompting to GPT-4o in a Public Goods Game. We then evaluate multiple off-the-shelf models across six cooperation and punishment games, comparing those with and without explicit reasoning mechanisms. We find that reasoning models consistently reduce cooperation and norm enforcement, favoring individual rationality. In repeated interactions, groups with more reasoning agents exhibit lower collective gains. These behaviors mirror human patterns of "spontaneous giving and calculated greed." Our findings underscore the need for LLM architectures that incorporate social intelligence alongside reasoning, to help address--rather than reinforce--the challenges of collective action.
Intermediate Languages Matter: Formal Choice Drives Neurosymbolic LLM Reasoning
Large language models (LLMs) achieve astonishing results on a wide range of tasks. However, their formal reasoning ability still lags behind. A promising approach is Neurosymbolic LLM reasoning. It works by using LLMs as translators from natural to formal languages and symbolic solvers for deriving correct results. Still, it remains unclear what the contributing factors to the success of Neurosymbolic LLM reasoning are. This paper shows that one important factor is the choice of the formal language. By comparing 4 formal languages on 3 datasets over 6 LLMs, we show that the choice of formal language affects both the syntactic and the semantic reasoning capability. Thereby, we introduce the intermediate language challenge, which is the challenge of picking a suitable formal language for neurosymbolic reasoning. Further, we compare the effects of using different in-context-learning examples in an ablation study. We conclude that on average, context-aware encodings help LLMs to reason, while there is no apparent effect of using comments or markdown syntax.
Meta-Chunking: Learning Text Segmentation and Semantic Completion via Logical Perception
While Retrieval-Augmented Generation (RAG) has emerged as a promising paradigm for boosting large language models (LLMs) in knowledge-intensive tasks, it often overlooks the crucial aspect of text chunking within its workflow. This paper proposes the Meta-Chunking framework, which specifically enhances chunking quality through a dual strategy that identifies optimal segmentation points and preserves global information. Initially, breaking limitations of similarity-based chunking, we design two adaptive chunking techniques based on uncertainty, namely Perplexity Chunking and Margin Sampling Chunking, by utilizing the logical perception capabilities of LLMs. Given the inherent complexity across different texts, we integrate meta-chunk with dynamic merging, striking a balance between fine-grained and coarse-grained text chunking. Furthermore, we establish the global information compensation mechanism, encompassing a two-stage hierarchical summary generation process and a three-stage text chunk rewriting procedure focused on missing reflection, refinement, and completion. These components collectively strengthen the semantic integrity and contextual coherence of chunks. Extensive experiments demonstrate that Meta-Chunking effectively addresses challenges of the chunking task within the RAG system, providing LLMs with more logically coherent text chunks. Additionally, our methodology validates the feasibility of implementing high-quality chunking tasks with smaller-scale models, thereby eliminating the reliance on robust instruction-following capabilities.
GODBench: A Benchmark for Multimodal Large Language Models in Video Comment Art ACL 2025
Video Comment Art enhances user engagement by providing creative content that conveys humor, satire, or emotional resonance, requiring a nuanced and comprehensive grasp of cultural and contextual subtleties. Although Multimodal Large Language Models (MLLMs) and Chain-of-Thought (CoT) have demonstrated strong reasoning abilities in STEM tasks (e.g. mathematics and coding), they still struggle to generate creative expressions such as resonant jokes and insightful satire. Moreover, existing benchmarks are constrained by their limited modalities and insufficient categories, hindering the exploration of comprehensive creativity in video-based Comment Art creation. To address these limitations, we introduce GODBench, a novel benchmark that integrates video and text modalities to systematically evaluate MLLMs' abilities to compose Comment Art. Furthermore, inspired by the propagation patterns of waves in physics, we propose Ripple of Thought (RoT), a multi-step reasoning framework designed to enhance the creativity of MLLMs. Extensive experiments reveal that existing MLLMs and CoT methods still face significant challenges in understanding and generating creative video comments. In contrast, RoT provides an effective approach to improve creative composing, highlighting its potential to drive meaningful advancements in MLLM-based creativity. GODBench is publicly available at https://github.com/stan-lei/GODBench-ACL2025.
comment: 69 pages, 66 figures, accepted by ACL 2025
DPO Meets PPO: Reinforced Token Optimization for RLHF ICML 2025
In the classical Reinforcement Learning from Human Feedback (RLHF) framework, Proximal Policy Optimization (PPO) is employed to learn from sparse, sentence-level rewards -- a challenging scenario in traditional deep reinforcement learning. Despite the great successes of PPO in the alignment of large language models, its open-source implementation is still largely sub-optimal. To address these issues, we introduce a framework that models RLHF problems as a Markov decision process (MDP), enabling the capture of fine-grained token-wise information. Under this framework, we introduce an algorithm Reinforced Token Optimization (\texttt{RTO}), which learns the token-wise reward function from preference data and performs policy optimization based on this learned token-wise reward signal. Theoretically, \texttt{RTO} is proven to have the capability of finding the near-optimal policy sample-efficiently. For its practical implementation, \texttt{RTO} innovatively integrates Direct Preference Optimization (DPO) and PPO. DPO, originally derived from sparse sentence rewards, surprisingly provides us with a token-wise characterization of response quality, which is seamlessly incorporated into our subsequent PPO training stage. Extensive experiments demonstrate that \texttt{RTO} performs better than PPO and other direct preference learning algorithms. In particular, RTO outperforms PPO by 7.5 points on the AlpacaEval 2 benchmark and by 4.1 points on Arena-Hard. Our code and models are available at \href{https://github.com/zkshan2002/RTO}{https://github.com/zkshan2002/RTO}.
comment: ICML 2025
Sparsity May Be All You Need: Sparse Random Parameter Adaptation
Full fine-tuning of large language models for alignment and task adaptation has become prohibitively expensive as models have grown in size. Parameter-Efficient Fine-Tuning (PEFT) methods aim at significantly reducing the computational and memory resources needed for fine-tuning these models by only training on a small number of parameters instead of all model parameters. Currently, the most popular PEFT method is the Low-Rank Adaptation (LoRA), which freezes the parameters of the model to be fine-tuned and introduces a small set of trainable parameters in the form of low-rank matrices. We propose simply reducing the number of trainable parameters by randomly selecting a small proportion of the model parameters to train on. In this paper, we compare the efficiency and performance of our proposed approach with PEFT methods, including LoRA, as well as full parameter fine-tuning.
SEA: Low-Resource Safety Alignment for Multimodal Large Language Models via Synthetic Embeddings ACL 2025
Multimodal Large Language Models (MLLMs) have serious security vulnerabilities.While safety alignment using multimodal datasets consisting of text and data of additional modalities can effectively enhance MLLM's security, it is costly to construct these datasets. Existing low-resource security alignment methods, including textual alignment, have been found to struggle with the security risks posed by additional modalities. To address this, we propose Synthetic Embedding augmented safety Alignment (SEA), which optimizes embeddings of additional modality through gradient updates to expand textual datasets. This enables multimodal safety alignment training even when only textual data is available. Extensive experiments on image, video, and audio-based MLLMs demonstrate that SEA can synthesize a high-quality embedding on a single RTX3090 GPU within 24 seconds. SEA significantly improves the security of MLLMs when faced with threats from additional modalities. To assess the security risks introduced by video and audio, we also introduced a new benchmark called VA-SafetyBench. High attack success rates across multiple MLLMs validate its challenge. Our code and data will be available at https://github.com/ZeroNLP/SEA.
comment: Accepted in ACL 2025 Main Track
Think When You Need: Self-Adaptive Chain-of-Thought Learning
Chain of Thought (CoT) reasoning enhances language models' performance but often leads to inefficient "overthinking" on simple problems. We identify that existing approaches directly penalizing reasoning length fail to account for varying problem complexity. Our approach constructs rewards through length and quality comparisons, guided by theoretical assumptions that jointly enhance solution correctness with conciseness. Moreover, we further demonstrate our method to fuzzy tasks where ground truth is unavailable. Experiments across multiple reasoning benchmarks demonstrate that our method maintains accuracy while generating significantly more concise explanations, effectively teaching models to "think when needed."
comment: Under review
Think in Safety: Unveiling and Mitigating Safety Alignment Collapse in Multimodal Large Reasoning Model
The rapid development of Multimodal Large Reasoning Models (MLRMs) has demonstrated broad application potential, yet their safety and reliability remain critical concerns that require systematic exploration. To address this gap, we conduct a comprehensive and systematic safety evaluation of 11 MLRMs across 5 benchmarks and unveil prevalent safety degradation phenomena in most advanced models. Moreover, our analysis reveals distinct safety patterns across different benchmarks: significant safety degradation is observed across jailbreak robustness benchmarks, whereas safety-awareness benchmarks demonstrate less pronounced degradation. In particular, the long thought process in some scenarios even enhances safety performance. Therefore, it is a potential approach to address safety issues in MLRMs by leveraging the intrinsic reasoning capabilities of the model to detect unsafe intent. To operationalize this insight, we construct a multimodal tuning dataset that incorporates a safety-oriented thought process. Experimental results from fine-tuning existing MLRMs with this dataset effectively enhances the safety on both jailbreak robustness and safety-awareness benchmarks. This study provides a new perspective for developing safe MLRMs. Our dataset is available at https://github.com/xinyuelou/Think-in-Safety.
BriLLM: Brain-inspired Large Language Model
This paper reports the first brain-inspired large language model (BriLLM). This is a non-Transformer, non-GPT, non-traditional machine learning input-output controlled generative language model. The model is based on the Signal Fully-connected flowing (SiFu) definition on the directed graph in terms of the neural network, and has the interpretability of all nodes on the graph of the whole model, instead of the traditional machine learning model that only has limited interpretability at the input and output ends. In the language model scenario, the token is defined as a node in the graph. A randomly shaped or user-defined signal flow flows between nodes on the principle of "least resistance" along paths. The next token or node to be predicted or generated is the target of the signal flow. As a language model, BriLLM theoretically supports infinitely long $n$-gram models when the model size is independent of the input and predicted length of the model. The model's working signal flow provides the possibility of recall activation and innate multi-modal support similar to the cognitive patterns of the human brain. At present, we released the first BriLLM version in Chinese, with 4000 tokens, 32-dimensional node width, 16-token long sequence prediction ability, and language model prediction performance comparable to GPT-1. More computing power will help us explore the infinite possibilities depicted above.
MCIP: Protecting MCP Safety via Model Contextual Integrity Protocol
As Model Context Protocol (MCP) introduces an easy-to-use ecosystem for users and developers, it also brings underexplored safety risks. Its decentralized architecture, which separates clients and servers, poses unique challenges for systematic safety analysis. This paper proposes a novel framework to enhance MCP safety. Guided by the MAESTRO framework, we first analyze the missing safety mechanisms in MCP, and based on this analysis, we propose the Model Contextual Integrity Protocol (MCIP), a refined version of MCP that addresses these gaps. Next, we develop a fine-grained taxonomy that captures a diverse range of unsafe behaviors observed in MCP scenarios. Building on this taxonomy, we develop benchmark and training data that support the evaluation and improvement of LLMs' capabilities in identifying safety risks within MCP interactions. Leveraging the proposed benchmark and training data, we conduct extensive experiments on state-of-the-art LLMs. The results highlight LLMs' vulnerabilities in MCP interactions and demonstrate that our approach substantially improves their safety performance.
comment: 17 pages
Predicting generalization performance with correctness discriminators EMNLP 2024
The ability to predict an NLP model's accuracy on unseen, potentially out-of-distribution data is a prerequisite for trustworthiness. We present a novel model that establishes upper and lower bounds on the accuracy, without requiring gold labels for the unseen data. We achieve this by training a discriminator which predicts whether the output of a given sequence-to-sequence model is correct or not. We show across a variety of tagging, parsing, and semantic parsing tasks that the gold accuracy is reliably between the predicted upper and lower bounds, and that these bounds are remarkably close together.
comment: Appeared in Findings of EMNLP 2024
Exploring the Robustness of Language Models for Tabular Question Answering via Attention Analysis
Large Language Models (LLMs), already shown to ace various text comprehension tasks, have also remarkably been shown to tackle table comprehension tasks without specific training. Building on earlier studies of LLMs for tabular tasks, we probe how in-context learning (ICL), model scale, instruction tuning, and domain bias affect Tabular QA (TQA) robustness by testing LLMs, under diverse augmentations and perturbations, on diverse domains: Wikipedia-based $\textbf{WTQ}$, financial $\textbf{TAT-QA}$, and scientific $\textbf{SCITAB}$. Although instruction tuning and larger, newer LLMs deliver stronger, more robust TQA performance, data contamination and reliability issues, especially on $\textbf{WTQ}$, remain unresolved. Through an in-depth attention analysis, we reveal a strong correlation between perturbation-induced shifts in attention dispersion and the drops in performance, with sensitivity peaking in the model's middle layers. We highlight the need for improved interpretable methodologies to develop more reliable LLMs for table comprehension.
Scaling Text-Rich Image Understanding via Code-Guided Synthetic Multimodal Data Generation ACL 2025
Reasoning about images with rich text, such as charts and documents, is a critical application of vision-language models (VLMs). However, VLMs often struggle in these domains due to the scarcity of diverse text-rich vision-language data. To address this challenge, we present CoSyn, a framework that leverages the coding capabilities of text-only large language models (LLMs) to automatically create synthetic text-rich multimodal data. Given input text describing a target domain (e.g., "nutrition fact labels"), CoSyn prompts an LLM to generate code (Python, HTML, LaTeX, etc.) for rendering synthetic images. With the underlying code as textual representations of the synthetic images, CoSyn can generate high-quality instruction-tuning data, again relying on a text-only LLM. Using CoSyn, we constructed a dataset comprising 400K images and 2.7M rows of vision-language instruction-tuning data. Comprehensive experiments on seven benchmarks demonstrate that models trained on our synthetic data achieve state-of-the-art performance among competitive open-source models, including Llama 3.2, and surpass proprietary models such as GPT-4V and Gemini 1.5 Flash. Furthermore, CoSyn can produce synthetic pointing data, enabling VLMs to ground information within input images, showcasing its potential for developing multimodal agents capable of acting in real-world environments.
comment: Published in ACL 2025, project page: https://yueyang1996.github.io/cosyn/
Stay Focused: Problem Drift in Multi-Agent Debate
Multi-agent debate - multiple instances of large language models discussing problems in turn-based interaction - has shown promise for solving knowledge and reasoning tasks. However, these methods show limitations when solving complex problems that require longer reasoning chains. We analyze how multi-agent debate over multiple turns drifts away from the initial problem, thus harming task performance. We define this phenomenon as problem drift and quantify its presence across ten tasks (i.e., three generative, three knowledge, three reasoning, and one instruction-following task). To identify the reasons for this issue, eight human experts analyze 170 multi-agent discussions suffering from problem drift. We find the most common issues related to this drift are the lack of progress (35% of cases), low-quality feedback (26% of cases), and a lack of clarity (25% of cases). To address problem drift, we propose DRIFTJudge, an LLM-as-a-judge method, to detect problem drift at test-time. We also propose DRIFTPolicy, a method that mitigates problem drift cases to improve task performance. Our study is a step toward understanding a key limitation of multi-agent debate, highlighting why longer debates can harm task performance and how problem drift could be addressed.
comment: 34 pages, 10 figures, 8 tables
The Devil Is in the Details: Tackling Unimodal Spurious Correlations for Generalizable Multimodal Reward Models ICML 2025
Multimodal Reward Models (MM-RMs) are crucial for aligning Large Language Models (LLMs) with human preferences, particularly as LLMs increasingly interact with multimodal data. However, we find that MM-RMs trained on existing datasets often struggle to generalize to out-of-distribution data due to their reliance on unimodal spurious correlations, primarily text-only shortcuts within the training distribution, which prevents them from leveraging true multimodal reward functions. To address this, we introduce a Shortcut-aware MM-RM learning algorithm that mitigates this issue by dynamically reweighting training samples, shifting the distribution toward better multimodal understanding, and reducing dependence on unimodal spurious correlations. Our experiments demonstrate significant improvements in generalization, downstream task performance, and scalability, establishing a more robust framework for multimodal reward modeling.
comment: ICML 2025
Sentient Agent as a Judge: Evaluating Higher-Order Social Cognition in Large Language Models
Assessing how well a large language model (LLM) understands human, rather than merely text, remains an open challenge. To bridge the gap, we introduce Sentient Agent as a Judge (SAGE), an automated evaluation framework that measures an LLM's higher-order social cognition. SAGE instantiates a Sentient Agent that simulates human-like emotional changes and inner thoughts during interaction, providing a more realistic evaluation of the tested model in multi-turn conversations. At every turn, the agent reasons about (i) how its emotion changes, (ii) how it feels, and (iii) how it should reply, yielding a numerical emotion trajectory and interpretable inner thoughts. Experiments on 100 supportive-dialogue scenarios show that the final Sentient emotion score correlates strongly with Barrett-Lennard Relationship Inventory (BLRI) ratings and utterance-level empathy metrics, validating psychological fidelity. We also build a public Sentient Leaderboard covering 18 commercial and open-source models that uncovers substantial gaps (up to 4x) between frontier systems (GPT-4o-Latest, Gemini2.5-Pro) and earlier baselines, gaps not reflected in conventional leaderboards (e.g., Arena). SAGE thus provides a principled, scalable and interpretable tool for tracking progress toward genuinely empathetic and socially adept language agents.
comment: code: https://github.com/Tencent/digitalhuman/tree/main/SAGE
The Strawberry Problem: Emergence of Character-level Understanding in Tokenized Language Models
Despite their remarkable progress across diverse domains, Large Language Models (LLMs) consistently fail at simple character-level tasks, such as counting letters in words, due to a fundamental limitation: tokenization. In this work, we frame this limitation as a problem of low mutual information and analyze it in terms of concept emergence. Using a suite of 19 synthetic tasks that isolate character-level reasoning in a controlled setting, we show that such capabilities emerge slowly, suddenly, and only late in training. We further show that percolation-based models of concept emergence explain these patterns, suggesting that learning character composition is not fundamentally different from learning commonsense knowledge. To address this bottleneck, we propose a lightweight architectural modification that significantly improves character-level reasoning while preserving the inductive advantages of subword models. Together, our results bridge low-level perceptual gaps in tokenized LMs and provide a principled framework for understanding and mitigating their structural blind spots. We make our code publicly available.
comment: 1 Table, 8 Figures
CodeI/O: Condensing Reasoning Patterns via Code Input-Output Prediction ICML 2025
Reasoning is a fundamental capability of Large Language Models. While prior research predominantly focuses on enhancing narrow skills like math or code generation, improving performance on many other reasoning tasks remains challenging due to sparse and fragmented training data. To address this issue, we propose CodeI/O, a novel approach that systematically condenses diverse reasoning patterns inherently embedded in contextually-grounded codes, through transforming the original code into a code input-output prediction format. By training models to predict inputs/outputs given code and test cases entirely in natural language as Chain-of-Thought (CoT) rationales, we expose them to universal reasoning primitives -- like logic flow planning, state-space searching, decision tree traversal, and modular decomposition -- while decoupling structured reasoning from code-specific syntax and preserving procedural rigor. Experimental results demonstrate CodeI/O leads to consistent improvements across symbolic, scientific, logic, math & numerical, and commonsense reasoning tasks. By matching the existing ground-truth outputs or re-executing the code with predicted inputs, we can verify each prediction and further enhance the CoTs through multi-turn revision, resulting in CodeI/O++ and achieving higher performance. Our data and models are available at https://github.com/hkust-nlp/CodeIO.
comment: ICML 2025
Large Language Models Are More Persuasive Than Incentivized Human Persuaders
We directly compare the persuasion capabilities of a frontier large language model (LLM; Claude Sonnet 3.5) against incentivized human persuaders in an interactive, real-time conversational quiz setting. In this preregistered, large-scale incentivized experiment, participants (quiz takers) completed an online quiz where persuaders (either humans or LLMs) attempted to persuade quiz takers toward correct or incorrect answers. We find that LLM persuaders achieved significantly higher compliance with their directional persuasion attempts than incentivized human persuaders, demonstrating superior persuasive capabilities in both truthful (toward correct answers) and deceptive (toward incorrect answers) contexts. We also find that LLM persuaders significantly increased quiz takers' accuracy, leading to higher earnings, when steering quiz takers toward correct answers, and significantly decreased their accuracy, leading to lower earnings, when steering them toward incorrect answers. Overall, our findings suggest that AI's persuasion capabilities already exceed those of humans that have real-money bonuses tied to performance. Our findings of increasingly capable AI persuaders thus underscore the urgency of emerging alignment and governance frameworks.
Simulation Agent: A Framework for Integrating Simulation and Large Language Models for Enhanced Decision-Making
Simulations, although powerful in accurately replicating real-world systems, often remain inaccessible to non-technical users due to their complexity. Conversely, large language models (LLMs) provide intuitive, language-based interactions but can lack the structured, causal understanding required to reliably model complex real-world dynamics. We introduce our simulation agent framework, a novel approach that integrates the strengths of both simulation models and LLMs. This framework helps empower users by leveraging the conversational capabilities of LLMs to interact seamlessly with sophisticated simulation systems, while simultaneously utilizing the simulations to ground the LLMs in accurate and structured representations of real-world phenomena. This integrated approach helps provide a robust and generalizable foundation for empirical validation and offers broad applicability across diverse domains.
Finding the Sweet Spot: Preference Data Construction for Scaling Preference Optimization ACL25
Iterative data generation and model retraining are widely used to align large language models (LLMs). It typically involves a policy model to generate on-policy responses and a reward model to guide training data selection. Direct Preference Optimization (DPO) further enhances this process by constructing preference pairs of chosen and rejected responses. In this work, we aim to \emph{scale up} the number of on-policy samples via repeated random sampling to improve alignment performance. Conventional practice selects the sample with the highest reward as chosen and the lowest as rejected for DPO. However, our experiments reveal that this strategy leads to a \emph{decline} in performance as the sample size increases. To address this, we investigate preference data construction through the lens of underlying normal distribution of sample rewards. We categorize the reward space into seven representative points and systematically explore all 21 ($C_7^2$) pairwise combinations. Through evaluations on four models using AlpacaEval 2, we find that selecting the rejected response at reward position $\mu - 2\sigma$ rather than the minimum reward, is crucial for optimal performance. We finally introduce a scalable preference data construction strategy that consistently enhances model performance as the sample scale increases.
comment: ACL25 Main
Large Language Models are Powerful Electronic Health Record Encoders
Electronic Health Records (EHRs) offer considerable potential for clinical prediction, but their complexity and heterogeneity present significant challenges for traditional machine learning methods. Recently, domain-specific EHR foundation models trained on large volumes of unlabeled EHR data have shown improved predictive accuracy and generalization. However, their development is constrained by limited access to diverse, high-quality datasets, and by inconsistencies in coding standards and clinical practices. In this study, we explore the use of general-purpose Large Language Models (LLMs) to encode EHR into high-dimensional representations for downstream clinical prediction tasks. We convert structured EHR data into markdown-formatted plain text documents by replacing medical codes with natural language descriptions. This enables the use of LLMs and their extensive semantic understanding and generalization capabilities as effective encoders of EHRs without requiring access to private medical training data. We show that LLM-based embeddings can often match or even surpass the performance of a specialized EHR foundation model, CLMBR-T-Base, across 15 diverse clinical tasks from the EHRSHOT benchmark. To demonstrate generalizability, we further evaluate the approach on the UK Biobank (UKB) cohort, a population distinct from that used to train CLMBR-T-Base. Notably, one of the tested LLM-based models achieves superior performance for disease onset, hospitalization, and mortality prediction, highlighting robustness to shifts in patient populations. Our findings suggest that repurposed general-purpose LLMs for EHR encoding provide a scalable and generalizable alternative to domain-specific models for clinical prediction.
Ada-R1: Hybrid-CoT via Bi-Level Adaptive Reasoning Optimization
Recently, long-thought reasoning models achieve strong performance on complex reasoning tasks, but often incur substantial inference overhead, making efficiency a critical concern. Our empirical analysis reveals that the benefit of using Long-CoT varies across problems: while some problems require elaborate reasoning, others show no improvement, or even degraded accuracy. This motivates adaptive reasoning strategies that tailor reasoning depth to the input. However, prior work primarily reduces redundancy within long reasoning paths, limiting exploration of more efficient strategies beyond the Long-CoT paradigm. To address this, we propose a novel two-stage framework for adaptive and efficient reasoning. First, we construct a hybrid reasoning model by merging long and short CoT models to enable diverse reasoning styles. Second, we apply bi-level preference training to guide the model to select suitable reasoning styles (group-level), and prefer concise and correct reasoning within each style group (instance-level). Experiments demonstrate that our method (Ada-R1) significantly reduces inference costs compared to other baseline approaches, while maintaining performance. Notably, on five mathematical datasets, the average length of reasoning is reduced by more than 50%, highlighting the potential of adaptive strategies to optimize reasoning efficiency in large language models. Our code is coming soon at https://github.com/StarDewXXX/AdaR1
Reducing Hallucinations in Language Model-based SPARQL Query Generation Using Post-Generation Memory Retrieval
The ability to generate SPARQL queries from natural language questions is crucial for ensuring efficient and accurate retrieval of structured data from knowledge graphs (KG). While large language models (LLMs) have been widely adopted for SPARQL query generation, they are often susceptible to hallucinations and out-of-distribution errors when producing KG elements like Uniform Resource Identifiers (URIs) based on internal parametric knowledge. This often results in content that appears plausible but is factually incorrect, posing significant challenges for their use in real-world information retrieval (IR) applications. This has led to increased research aimed at detecting and mitigating such errors. In this paper, we introduce PGMR (Post-Generation Memory Retrieval), a modular framework that incorporates a non-parametric memory module to retrieve KG elements and enhance LLM-based SPARQL query generation. Our experimental results indicate that PGMR consistently delivers strong performance across diverse datasets, data distributions, and LLMs. Notably, PGMR significantly mitigates URI hallucinations, nearly eliminating the problem in several scenarios.
Helpful assistant or fruitful facilitator? Investigating how personas affect language model behavior
One way to personalize and steer generations from large language models (LLM) is to assign a persona: a role that describes how the user expects the LLM to behave (e.g., a helpful assistant, a teacher, a woman). This paper investigates how personas affect diverse aspects of model behavior. We assign to seven LLMs 162 personas from 12 categories spanning variables like gender, sexual orientation, and occupation. We prompt them to answer questions from five datasets covering objective (e.g., questions about math and history) and subjective tasks (e.g., questions about beliefs and values). We also compare persona's generations to two baseline settings: a control persona setting with 30 paraphrases of "a helpful assistant" to control for models' prompt sensitivity, and an empty persona setting where no persona is assigned. We find that for all models and datasets, personas show greater variability than the control setting and that some measures of persona behavior generalize across models.
comment: 20 pages, 12 figures. Accepted at PLOS One
Inverse Design of Metal-Organic Frameworks Using Quantum Natural Language Processing
In this study, we explore the potential of using quantum natural language processing (QNLP) to inverse design metal-organic frameworks (MOFs) with targeted properties. Specifically, by analyzing 450 hypothetical MOF structures consisting of 3 topologies, 10 metal nodes and 15 organic ligands, we categorize these structures into four distinct classes for pore volume and $CO_{2}$ Henry's constant values. We then compare various QNLP models (i.e. the bag-of-words, DisCoCat (Distributional Compositional Categorical), and sequence-based models) to identify the most effective approach to process the MOF dataset. Using a classical simulator provided by the IBM Qiskit, the bag-of-words model is identified to be the optimum model, achieving validation accuracies of 88.6% and 78.0% for binary classification tasks on pore volume and $CO_{2}$ Henry's constant, respectively. Further, we developed multi-class classification models tailored to the probabilistic nature of quantum circuits, with average test accuracies of 92% and 80% across different classes for pore volume and $CO_{2}$ Henry's constant datasets. Finally, the performance of generating MOF with target properties showed accuracies of 93.5% for pore volume and 87% for $CO_{2}$ Henry's constant, respectively. Although our investigation covers only a fraction of the vast MOF search space, it marks a promising first step towards using quantum computing for materials design, offering a new perspective through which to explore the complex landscape of MOFs.
comment: 46 pages, 7 figures, 6 supplementary figures, 1 table, 2 supplementary tables, 1 supplementary note
ChunkKV: Semantic-Preserving KV Cache Compression for Efficient Long-Context LLM Inference
Large Language Models (LLMs) require significant GPU memory when processing long texts, with the key value (KV) cache consuming up to 70\% of total memory during inference. Although existing compression methods reduce memory by evaluating the importance of individual tokens, they overlook critical semantic relationships between tokens, resulting in fragmented context and degraded performance. We introduce ChunkKV, which fundamentally reimagines KV cache compression by treating semantic chunks - rather than isolated tokens - as basic compression units. This approach preserves complete linguistic structures and contextual integrity, ensuring that essential meaning is retained even under aggressive compression. Our innovation includes a novel layer-wise index reuse technique that exploits the higher cross-layer similarity of preserved indices in ChunkKV, reducing computational overhead and improving throughput by 26.5\%. Comprehensive evaluations on challenging benchmarks: LongBench, Needle-In-A-HayStack, GSM8K, and JailbreakV demonstrate that ChunkKV outperforms state-of-the-art methods by up to 8.7\% in precision while maintaining the same compression ratio. These results confirm that semantic-aware compression significantly enhances both efficiency and performance for long-context LLM inference, providing a simple yet effective solution to the memory bottleneck problem.
comment: 41 pages
Can LLMs Maintain Fundamental Abilities under KV Cache Compression?
This paper investigates an underexplored challenge in large language models (LLMs): the impact of KV cache compression methods on LLMs' fundamental capabilities. Although existing methods achieve impressive compression ratios on long-context benchmarks, their effects on core model capabilities remain understudied. We present a comprehensive benchmark KVFundaBench to systematically evaluate the effects of KV cache compression across diverse fundamental LLM capabilities, spanning world knowledge, commonsense reasoning, arithmetic reasoning, code generation, safety, and long-context understanding and generation.Our analysis reveals serval key findings: (1) \textit{Task-Dependent Degradation}; (2) \textit{Model-Type Robustness} (3) \textit{Prompt Length Vulnerability}; (4) \textit{Chunk-Level Superiority}; (5) \textit{Prompt-Gain Sensitivity}; (6) \textit{Long-Context Generation Sensitivity}. Based on our analysis of attention patterns and cross-task compression performance, we propose ShotKV, a novel compression approach that distinctly handles prefill and decoding phases while maintaining shot-level semantic coherence. Empirical results show that ShotKV achieves $9\%$-$18\%$ performance improvements on long-context generation tasks under aggressive compression ratios.
comment: 25 pages
Uncertainty Quantification for LLMs through Minimum Bayes Risk: Bridging Confidence and Consistency
Uncertainty quantification (UQ) methods for Large Language Models (LLMs) encompass a variety of approaches, with two major types being particularly prominent: information-based, which focus on model confidence expressed as token probabilities, and consistency-based, which assess the semantic relationship between multiple outputs generated using repeated sampling. Several recent methods have combined these two approaches to boost UQ performance. However, they sometimes fail to outperform much simpler baseline methods. Our work discusses the fundamental approach to constructing uncertainty measures that directly links uncertainty with the minimum Bayes risks achieved by LLM decoding. Building on these findings, we propose a novel approach to integrating model confidence with output consistency, resulting in a family of efficient and robust UQ methods. Our investigation reveals distinctive characteristics of LLMs as probabilistic models, which help to explain why these UQ methods underperform in certain tasks. Based on these findings, we propose a new way of synthesizing model confidence and output consistency, leading to a family of efficient and robust UQ methods. We evaluate our approach across various tasks such as question answering, abstractive summarization, and machine translation, demonstrating sizable improvements over state-of-the-art UQ approaches.
DARWIN 1.5: Large Language Models as Materials Science Adapted Learners
Materials discovery and design aim to find compositions and structures with desirable properties over highly complex and diverse physical spaces. Traditional solutions, such as high-throughput simulations or machine learning, often rely on complex descriptors, which hinder generalizability and transferability across different material systems. Moreover, These descriptors may inadequately represent macro-scale material properties, which are influenced by structural imperfections and compositional variations in real-world samples, thus limiting their practical applicability. To address these challenges, we propose DARWIN 1.5, the largest open-source large language model tailored for materials science. By leveraging natural language as input, DARWIN eliminates the need for task-specific descriptors and enables a flexible, unified approach to material property prediction and discovery. Our approach integrates 6M material domain papers and 21 experimental datasets from 49,256 materials across modalities while enabling cross-task knowledge transfer. The enhanced model achieves up to 59.1% improvement in prediction accuracy over the base LLaMA-7B architecture and outperforms SOTA machine learning approaches across 8 materials design tasks. These results establish LLMs as a promising foundation for developing versatile and scalable models in materials science.
comment: This version of the manuscript was posted prematurely and contains inaccuracies that could mislead readers. The authors are preparing a significantly revised version with substantial methodological and experimental updates, and prefer to avoid confusion with earlier postings. We apologize for any inconvenience and thank the community for their understanding
Exploring Pretraining via Active Forgetting for Improving Cross Lingual Transfer for Decoder Language Models
Large Language Models (LLMs) demonstrate exceptional capabilities in a multitude of NLP tasks. However, the efficacy of such models to languages other than English is often limited. Prior works have shown that encoder-only models such as BERT or XLM-RoBERTa show impressive cross lingual transfer of their capabilities from English to other languages. In this work, we propose a pretraining strategy that uses active forgetting to achieve similar cross lingual transfer in decoder-only LLMs. We show that LLMs pretrained with active forgetting are highly effective when adapting to new and unseen languages. Through extensive experimentation, we find that LLMs pretrained with active forgetting are able to learn better multilingual representations which translates to better performance in many downstream tasks.
comment: 12 pages, 11 tables, 12 figures
Linguistic Generalizations are not Rules: Impacts on Evaluation of LMs
Linguistic evaluations of how well LMs generalize to produce or understand novel text often implicitly take for granted that natural languages are generated by symbolic rules. Grammaticality is thought to be determined by whether sentences obey such rules. Interpretation is believed to be compositionally generated by syntactic rules operating on meaningful words. Semantic parsing is intended to map sentences into formal logic. Failures of LMs to obey strict rules have been taken to reveal that LMs do not produce or understand language like humans. Here we suggest that LMs' failures to obey symbolic rules may be a feature rather than a bug, because natural languages are not based on rules. New utterances are produced and understood by a combination of flexible, interrelated, and context-dependent constructions. We encourage researchers to reimagine appropriate benchmarks and analyses that acknowledge the rich, flexible generalizations that comprise natural languages.
Analyzing the Effect of Linguistic Similarity on Cross-Lingual Transfer: Tasks and Experimental Setups Matter ACL
Cross-lingual transfer is a popular approach to increase the amount of training data for NLP tasks in a low-resource context. However, the best strategy to decide which cross-lingual data to include is unclear. Prior research often focuses on a small set of languages from a few language families and/or a single task. It is still an open question how these findings extend to a wider variety of languages and tasks. In this work, we analyze cross-lingual transfer for 263 languages from a wide variety of language families. Moreover, we include three popular NLP tasks: POS tagging, dependency parsing, and topic classification. Our findings indicate that the effect of linguistic similarity on transfer performance depends on a range of factors: the NLP task, the (mono- or multilingual) input representations, and the definition of linguistic similarity.
comment: ACL Findings 2025
Human-Computer Interaction
Exploring the Innovation Opportunities for Pre-trained Models
Innovators transform the world by understanding where services are successfully meeting customers' needs and then using this knowledge to identify failsafe opportunities for innovation. Pre-trained models have changed the AI innovation landscape, making it faster and easier to create new AI products and services. Understanding where pre-trained models are successful is critical for supporting AI innovation. Unfortunately, the hype cycle surrounding pre-trained models makes it hard to know where AI can really be successful. To address this, we investigated pre-trained model applications developed by HCI researchers as a proxy for commercially successful applications. The research applications demonstrate technical capabilities, address real user needs, and avoid ethical challenges. Using an artifact analysis approach, we categorized capabilities, opportunity domains, data types, and emerging interaction design patterns, uncovering some of the opportunity space for innovation with pre-trained models.
comment: 33 pages, 20 figures, 4 tables, DIS
Exploring LLM-Generated Feedback for Economics Essays: How Teaching Assistants Evaluate and Envision Its Use
This project examines the prospect of using AI-generated feedback as suggestions to expedite and enhance human instructors' feedback provision. In particular, we focus on understanding the teaching assistants' perspectives on the quality of AI-generated feedback and how they may or may not utilize AI feedback in their own workflows. We situate our work in a foundational college Economics class, which has frequent short essay assignments. We developed an LLM-powered feedback engine that generates feedback on students' essays based on grading rubrics used by the teaching assistants (TAs). To ensure that TAs can meaningfully critique and engage with the AI feedback, we had them complete their regular grading jobs. For a randomly selected set of essays that they had graded, we used our feedback engine to generate feedback and displayed the feedback as in-text comments in a Word document. We then performed think-aloud studies with 5 TAs over 20 1-hour sessions to have them evaluate the AI feedback, contrast the AI feedback with their handwritten feedback, and share how they envision using the AI feedback if they were offered as suggestions. The study highlights the importance of providing detailed rubrics for AI to generate high-quality feedback for knowledge-intensive essays. TAs considered that using AI feedback as suggestions during their grading could expedite grading, enhance consistency, and improve overall feedback quality. We discuss the importance of decomposing the feedback generation task into steps and presenting intermediate results, in order for TAs to use the AI feedback.
comment: To be published in AIED'2025: In Proceedings of the 26th International Conference on Artificial Intelligence in Education. The system prompt and example feedback can be found through http://github.com/UM-Lifelong-Learning-Lab/AIED2025-Exploring-LLM-Generated-Feedback-for-Economics-Essay
What Is Serendipity? An Interview Study to Conceptualize Experienced Serendipity in Recommender Systems
Serendipity has been associated with numerous benefits in the context of recommender systems, e.g., increased user satisfaction and consumption of long-tail items. Despite this, serendipity in the context of recommender systems has thus far remained conceptually ambiguous. This conceptual ambiguity has led to inconsistent operationalizations between studies, making it difficult to compare and synthesize findings. In this paper, we conceptualize the user's experience of serendipity. To this effect, we interviewed 17 participants and analyzed the data following the grounded theory paradigm. Based on these interviews, we conceptualize experienced serendipity as "a user experience in which a user unintentionally encounters content that feels fortuitous, refreshing, and enriching". We find that all three components -- fortuitous, refreshing and enriching -- are necessary and together are sufficient to classify a user's experience as serendipitous. However, these components can be satisfied through a variety of conditions. Our conceptualization unifies previous definitions of serendipity within a single framework, resolving inconsistencies by identifying distinct flavors of serendipity. It highlights underexposed flavors, offering new insights into how users experience serendipity in the context of recommender systems. By clarifying the components and conditions of experienced serendipity in recommender systems, this work can guide the design of recommender systems that stimulate experienced serendipity in their users, and lays the groundwork for developing a standardized operationalization of experienced serendipity in its many flavors, enabling more consistent and comparable evaluations.
comment: 17 pages, 2 tables, to be published in "Proceedings of the 33rd ACM Conference on User Modeling, Adaptation and Personalization"
Stress Bytes: Decoding the Associations between Internet Use and Perceived Stress
In today's digital era, internet plays a pervasive role in our lives, influencing everyday activities such as communication, work, and leisure. This online engagement intertwines with offline experiences, shaping individuals' overall well-being. Despite its significance, existing research often falls short in capturing the relationship between internet use and well-being, relying primarily on isolated studies and self-reported data. One of the major contributors to deteriorated well-being - both physical and mental - is stress. While some research has examined the relationship between internet use and stress, both positive and negative associations have been reported. Our primary goal in this work is to identify the associations between an individual's internet use and their stress. For achieving our goal, we conducted a longitudinal multimodal study that spanned seven months. We combined fine-grained URL-level web browsing traces of 1490 German internet users with their sociodemographics and monthly measures of stress. Further, we developed a conceptual framework that allows us to simultaneously explore different contextual dimensions, including how, where, when, and by whom the internet is used. Our analysis revealed several associations between internet use and stress that vary by context. Social media, entertainment, online shopping, and gaming were positively associated with stress, while productivity, news, and adult content use were negatively associated. In the future, the behavioral markers we identified can pave the way for designing individualized tools for people to self-monitor and self-moderate their online behaviors to enhance their well-being, reducing the burden on already overburdened mental health services.
AI vs. Human Judgment of Content Moderation: LLM-as-a-Judge and Ethics-Based Response Refusals
As large language models (LLMs) are increasingly deployed in high-stakes settings, their ability to refuse ethically sensitive prompts-such as those involving hate speech or illegal activities-has become central to content moderation and responsible AI practices. While refusal responses can be viewed as evidence of ethical alignment and safety-conscious behavior, recent research suggests that users may perceive them negatively. At the same time, automated assessments of model outputs are playing a growing role in both evaluation and training. In particular, LLM-as-a-Judge frameworks-in which one model is used to evaluate the output of another-are now widely adopted to guide benchmarking and fine-tuning. This paper examines whether such model-based evaluators assess refusal responses differently than human users. Drawing on data from Chatbot Arena and judgments from two AI judges (GPT-4o and Llama 3 70B), we compare how different types of refusals are rated. We distinguish ethical refusals, which explicitly cite safety or normative concerns (e.g., "I can't help with that because it may be harmful"), and technical refusals, which reflect system limitations (e.g., "I can't answer because I lack real-time data"). We find that LLM-as-a-Judge systems evaluate ethical refusals significantly more favorably than human users, a divergence not observed for technical refusals. We refer to this divergence as a moderation bias-a systematic tendency for model-based evaluators to reward refusal behaviors more than human users do. This raises broader questions about transparency, value alignment, and the normative assumptions embedded in automated evaluation systems.
MHANet: Multi-scale Hybrid Attention Network for Auditory Attention Detection
Auditory attention detection (AAD) aims to detect the target speaker in a multi-talker environment from brain signals, such as electroencephalography (EEG), which has made great progress. However, most AAD methods solely utilize attention mechanisms sequentially and overlook valuable multi-scale contextual information within EEG signals, limiting their ability to capture long-short range spatiotemporal dependencies simultaneously. To address these issues, this paper proposes a multi-scale hybrid attention network (MHANet) for AAD, which consists of the multi-scale hybrid attention (MHA) module and the spatiotemporal convolution (STC) module. Specifically, MHA combines channel attention and multi-scale temporal and global attention mechanisms. This effectively extracts multi-scale temporal patterns within EEG signals and captures long-short range spatiotemporal dependencies simultaneously. To further improve the performance of AAD, STC utilizes temporal and spatial convolutions to aggregate expressive spatiotemporal representations. Experimental results show that the proposed MHANet achieves state-of-the-art performance with fewer trainable parameters across three datasets, 3 times lower than that of the most advanced model. Code is available at: https://github.com/fchest/MHANet.
AI Solutionism and Digital Self-Tracking with Wearables
Self-tracking technologies and wearables automate the process of data collection and insight generation with the support of artificial intelligence systems, with many emerging studies exploring ways to evolve these features further through large-language models (LLMs). This is done with the intent to reduce capture burden and the cognitive stress of health-based decision making, but studies neglect to consider how automation has stymied the agency and independent reflection of users of self-tracking interventions. In this position paper, we explore the consequences of automation in self-tracking by relating it to our experiences with investigating the Oura Ring, a sleep wearable, and navigate potential remedies.
A Risk Taxonomy for Evaluating AI-Powered Psychotherapy Agents
The proliferation of Large Language Models (LLMs) and Intelligent Virtual Agents acting as psychotherapists presents significant opportunities for expanding mental healthcare access. However, their deployment has also been linked to serious adverse outcomes, including user harm and suicide, facilitated by a lack of standardized evaluation methodologies capable of capturing the nuanced risks of therapeutic interaction. Current evaluation techniques lack the sensitivity to detect subtle changes in patient cognition and behavior during therapy sessions that may lead to subsequent decompensation. We introduce a novel risk taxonomy specifically designed for the systematic evaluation of conversational AI psychotherapists. Developed through an iterative process including review of the psychotherapy risk literature, qualitative interviews with clinical and legal experts, and alignment with established clinical criteria (e.g., DSM-5) and existing assessment tools (e.g., NEQ, UE-ATR), the taxonomy aims to provide a structured approach to identifying and assessing user/patient harms. We provide a high-level overview of this taxonomy, detailing its grounding, and discuss potential use cases. We discuss two use cases in detail: monitoring cognitive model-based risk factors during a counseling conversation to detect unsafe deviations, in both human-AI counseling sessions and in automated benchmarking of AI psychotherapists with simulated patients. The proposed taxonomy offers a foundational step towards establishing safer and more responsible innovation in the domain of AI-driven mental health support.
Development of Digital Twin Environment through Integration of Commercial Metaverse Platform and IoT Sensors of Smart Building
The digital transformation of smart cities and workplaces requires effective integration of physical and cyber spaces, yet existing digital twin solutions remain limited in supporting real-time, multi-user collaboration. While metaverse platforms enable shared virtual experiences, they have not supported comprehensive integration of IoT sensors on physical spaces, especially for large-scale smart architectural environments. This paper presents a digital twin environment that integrates Kajima Corp.'s smart building facility "The GEAR" in Singapore with a commercial metaverse platform Cluster. Our system consists of three key components: a standardized IoT sensor platform, a real-time data relay system, and an environmental data visualization framework. Quantitative end-to-end latency measurements confirm the feasibility of our approach for real-world applications in large architectural spaces. The proposed framework enables new forms of collaboration that transcend spatial constraints, advancing the development of next-generation interactive environments.
comment: Presented at the 2nd Workshop on Seamless Reality at IEEE VR 2025
Towards a Working Definition of Designing Generative User Interfaces
Generative UI is transforming interface design by facilitating AI-driven collaborative workflows between designers and computational systems. This study establishes a working definition of Generative UI through a multi-method qualitative approach, integrating insights from a systematic literature review of 127 publications, expert interviews with 18 participants, and analyses of 12 case studies. Our findings identify five core themes that position Generative UI as an iterative and co-creative process. We highlight emerging design models, including hybrid creation, curation-based workflows, and AI-assisted refinement strategies. Additionally, we examine ethical challenges, evaluation criteria, and interaction models that shape the field. By proposing a conceptual foundation, this study advances both theoretical discourse and practical implementation, guiding future HCI research toward responsible and effective generative UI design practices.
Are the confidence scores of reviewers consistent with the review content? Evidence from top conference proceedings in AI
Peer review is vital in academia for evaluating research quality. Top AI conferences use reviewer confidence scores to ensure review reliability, but existing studies lack fine-grained analysis of text-score consistency, potentially missing key details. This work assesses consistency at word, sentence, and aspect levels using deep learning and NLP conference review data. We employ deep learning to detect hedge sentences and aspects, then analyze report length, hedge word/sentence frequency, aspect mentions, and sentiment to evaluate text-score alignment. Correlation, significance, and regression tests examine confidence scores' impact on paper outcomes. Results show high text-score consistency across all levels, with regression revealing higher confidence scores correlate with paper rejection, validating expert assessments and peer review fairness.
Toward Informed AV Decision-Making: Computational Model of Well-being and Trust in Mobility
For future human-autonomous vehicle (AV) interactions to be effective and smooth, human-aware systems that analyze and align human needs with automation decisions are essential. Achieving this requires systems that account for human cognitive states. We present a novel computational model in the form of a Dynamic Bayesian Network (DBN) that infers the cognitive states of both AV users and other road users, integrating this information into the AV's decision-making process. Specifically, our model captures the well-being of both an AV user and an interacting road user as cognitive states alongside trust. Our DBN models infer beliefs over the AV user's evolving well-being, trust, and intention states, as well as the possible well-being of other road users, based on observed interaction experiences. Using data collected from an interaction study, we refine the model parameters and empirically assess its performance. Finally, we extend our model into a causal inference model (CIM) framework for AV decision-making, enabling the AV to enhance user well-being and trust while balancing these factors with its own operational costs and the well-being of interacting road users. Our evaluation demonstrates the model's effectiveness in accurately predicting user's states and guiding informed, human-centered AV decisions.
Signals of Provenance: Practices & Challenges of Navigating Indicators in AI-Generated Media for Sighted and Blind Individuals
AI-Generated (AIG) content has become increasingly widespread by recent advances in generative models and the easy-to-use tools that have significantly lowered the technical barriers for producing highly realistic audio, images, and videos through simple natural language prompts. In response, platforms are adopting provable provenance with platforms recommending AIG to be self-disclosed and signaled to users. However, these indicators may be often missed, especially when they rely solely on visual cues and make them ineffective to users with different sensory abilities. To address the gap, we conducted semi-structured interviews (N=28) with 15 sighted and 13 BLV participants to examine their interaction with AIG content through self-disclosed AI indicators. Our findings reveal diverse mental models and practices, highlighting different strengths and weaknesses of content-based (e.g., title, description) and menu-aided (e.g., AI labels) indicators. While sighted participants leveraged visual and audio cues, BLV participants primarily relied on audio and existing assistive tools, limiting their ability to identify AIG. Across both groups, they frequently overlooked menu-aided indicators deployed by platforms and rather interacted with content-based indicators such as title and comments. We uncovered usability challenges stemming from inconsistent indicator placement, unclear metadata, and cognitive overload. These issues were especially critical for BLV individuals due to the insufficient accessibility of interface elements. We provide practical recommendations and design implications for future AIG indicators across several dimensions.
"AI just keeps guessing": Using ARC Puzzles to Help Children Identify Reasoning Errors in Generative AI
The integration of generative Artificial Intelligence (genAI) into everyday life raises questions about the competencies required to critically engage with these technologies. Unlike visual errors in genAI, textual mistakes are often harder to detect and require specific domain knowledge. Furthermore, AI's authoritative tone and structured responses can create an illusion of correctness, leading to overtrust, especially among children. To address this, we developed AI Puzzlers, an interactive system based on the Abstraction and Reasoning Corpus (ARC), to help children identify and analyze errors in genAI. Drawing on Mayer & Moreno's Cognitive Theory of Multimedia Learning, AI Puzzlers uses visual and verbal elements to reduce cognitive overload and support error detection. Based on two participatory design sessions with 21 children (ages 6 - 11), our findings provide both design insights and an empirical understanding of how children identify errors in genAI reasoning, develop strategies for navigating these errors, and evaluate AI outputs.
Children's Mental Models of AI Reasoning: Implications for AI Literacy Education
As artificial intelligence (AI) advances in reasoning capabilities, most recently with the emergence of Large Reasoning Models (LRMs), understanding how children conceptualize AI's reasoning processes becomes critical for fostering AI literacy. While one of the "Five Big Ideas" in AI education highlights reasoning algorithms as central to AI decision-making, less is known about children's mental models in this area. Through a two-phase approach, consisting of a co-design session with 8 children followed by a field study with 106 children (grades 3-8), we identified three models of AI reasoning: Deductive, Inductive, and Inherent. Our findings reveal that younger children (grades 3-5) often attribute AI's reasoning to inherent intelligence, while older children (grades 6-8) recognize AI as a pattern recognizer. We highlight three tensions that surfaced in children's understanding of AI reasoning and conclude with implications for scaffolding AI curricula and designing explainable AI tools.
Prototypical Human-AI Collaboration Behaviors from LLM-Assisted Writing in the Wild
As large language models (LLMs) are used in complex writing workflows, users engage in multi-turn interactions to steer generations to better fit their needs. Rather than passively accepting output, users actively refine, explore, and co-construct text. We conduct a large-scale analysis of this collaborative behavior for users engaged in writing tasks in the wild with two popular AI assistants, Bing Copilot and WildChat. Our analysis goes beyond simple task classification or satisfaction estimation common in prior work and instead characterizes how users interact with LLMs through the course of a session. We identify prototypical behaviors in how users interact with LLMs in prompts following their original request. We refer to these as Prototypical Human-AI Collaboration Behaviors (PATHs) and find that a small group of PATHs explain a majority of the variation seen in user-LLM interaction. These PATHs span users revising intents, exploring texts, posing questions, adjusting style or injecting new content. Next, we find statistically significant correlations between specific writing intents and PATHs, revealing how users' intents shape their collaboration behaviors. We conclude by discussing the implications of our findings on LLM alignment.
comment: Pre-print under-review
Exploring Perception-Based Techniques for Redirected Walking in VR: A Comprehensive Survey
We present a comprehensive survey of perception-based redirected walking (RDW) techniques in virtual reality (VR), presenting a taxonomy that serves as a framework for understanding and designing RDW algorithms. RDW enables users to explore virtual environments (VEs) larger than their physical space, addressing the constraints of real walking in limited home VR setups. Our review spans 232 papers, with 165 included in the final analysis. We categorize perception-based RDW techniques based on gains, gain application, target orientation calculation, and optional general enhancements, identifying key patterns and relationships. We present data on how current work aligns within this classification system and suggest how this data can guide future work into areas that are relatively under explored. This taxonomy clarifies perception-based RDW techniques, guiding the design and application of RDW systems, and suggests future research directions to enhance VR user experience.
Real-Time Stress Monitoring, Detection, and Management in College Students: A Wearable Technology and Machine-Learning Approach
College students are increasingly affected by stress, anxiety, and depression, yet face barriers to traditional mental health care. This study evaluated the efficacy of a mobile health (mHealth) intervention, Mental Health Evaluation and Lookout Program (mHELP), which integrates a smartwatch sensor and machine learning (ML) algorithms for real-time stress detection and self-management. In a 12-week randomized controlled trial (n = 117), participants were assigned to a treatment group using mHELP's full suite of interventions or a control group using the app solely for real-time stress logging and weekly psychological assessments. The primary outcome, "Moments of Stress" (MS), was assessed via physiological and self-reported indicators and analyzed using Generalized Linear Mixed Models (GLMM) approaches. Similarly, secondary outcomes of psychological assessments, including the Generalized Anxiety Disorder-7 (GAD-7) for anxiety, the Patient Health Questionnaire (PHQ-8) for depression, and the Perceived Stress Scale (PSS), were also analyzed via GLMM. The finding of the objective measure, MS, indicates a substantial decrease in MS among the treatment group compared to the control group, while no notable between-group differences were observed in subjective scores of anxiety (GAD-7), depression (PHQ-8), or stress (PSS). However, the treatment group exhibited a clinically meaningful decline in GAD-7 and PSS scores. These findings underscore the potential of wearable-enabled mHealth tools to reduce acute stress in college populations and highlight the need for extended interventions and tailored features to address chronic symptoms like depression.
comment: 31 pages, 5 figures
An Exploratory Study on Multi-modal Generative AI in AR Storytelling
Storytelling in AR has gained attention due to its multi-modality and interactivity. However, generating multi-modal content for AR storytelling requires expertise and efforts for high-quality conveyance of the narrator's intention. Recently, Generative-AI (GenAI) has shown promising applications in multi-modal content generation. Despite the potential benefit, current research calls for validating the effect of AI-generated content (AIGC) in AR Storytelling. Therefore, we conducted an exploratory study to investigate the utilization of GenAI. Analyzing 223 AR videos, we identified a design space for multi-modal AR Storytelling. Based on the design space, we developed a testbed facilitating multi-modal content generation and atomic elements in AR Storytelling. Through two studies with N=30 experienced storytellers and live presenters, we 1. revealed participants' preferences for modalities, 2. evaluated the interactions with AI to generate content, and 3. assessed the quality of the AIGC for AR Storytelling. We further discussed design considerations for future AR Storytelling with GenAI.
A Paradigm for Creative Ownership
As generative AI tools become more integrated into creative workflows, questions of ownership in co-creative contexts have become increasingly urgent. While legal frameworks offer definitions of ownership rooted in intellectual property, they often overlook the nuanced, psychological experience of creative ownership - how individuals come to feel that a creative product is "theirs." Drawing on interdisciplinary literature in philosophy, psychology, and the social sciences and humanities more broadly, we introduce a new framework that surfaces the material and immaterial dimensions of creative ownership. Our model organizes creative ownership into three domains - Person, Process, and System - each of which contains subdimensions that shape ownership sentiment. We offer an accompanying interactive tool that enables creators and researchers to visualize and evaluate ownership across a range of contexts. This paradigm provides a new lens through which to understand and support creative agency in human-AI collaboration, and lays the groundwork for future empirical research in design and human-computer interaction.
comment: Symposium on Human-Computer Interaction for Work (CHIWORK) 2025
MoRE-Brain: Routed Mixture of Experts for Interpretable and Generalizable Cross-Subject fMRI Visual Decoding
Decoding visual experiences from fMRI offers a powerful avenue to understand human perception and develop advanced brain-computer interfaces. However, current progress often prioritizes maximizing reconstruction fidelity while overlooking interpretability, an essential aspect for deriving neuroscientific insight. To address this gap, we propose MoRE-Brain, a neuro-inspired framework designed for high-fidelity, adaptable, and interpretable visual reconstruction. MoRE-Brain uniquely employs a hierarchical Mixture-of-Experts architecture where distinct experts process fMRI signals from functionally related voxel groups, mimicking specialized brain networks. The experts are first trained to encode fMRI into the frozen CLIP space. A finetuned diffusion model then synthesizes images, guided by expert outputs through a novel dual-stage routing mechanism that dynamically weighs expert contributions across the diffusion process. MoRE-Brain offers three main advancements: First, it introduces a novel Mixture-of-Experts architecture grounded in brain network principles for neuro-decoding. Second, it achieves efficient cross-subject generalization by sharing core expert networks while adapting only subject-specific routers. Third, it provides enhanced mechanistic insight, as the explicit routing reveals precisely how different modeled brain regions shape the semantic and spatial attributes of the reconstructed image. Extensive experiments validate MoRE-Brain's high reconstruction fidelity, with bottleneck analyses further demonstrating its effective utilization of fMRI signals, distinguishing genuine neural decoding from over-reliance on generative priors. Consequently, MoRE-Brain marks a substantial advance towards more generalizable and interpretable fMRI-based visual decoding. Code will be publicly available soon: https://github.com/yuxiangwei0808/MoRE-Brain.
"AI just keeps guessing": Using ARC Puzzles to Help Children Identify Reasoning Errors in Generative AI
The integration of generative Artificial Intelligence (genAI) into everyday life raises questions about the competencies required to critically engage with these technologies. Unlike visual errors in genAI, textual mistakes are often harder to detect and require specific domain knowledge. Furthermore, AI's authoritative tone and structured responses can create an illusion of correctness, leading to overtrust, especially among children. To address this, we developed AI Puzzlers, an interactive system based on the Abstraction and Reasoning Corpus (ARC), to help children identify and analyze errors in genAI. Drawing on Mayer & Moreno's Cognitive Theory of Multimedia Learning, AI Puzzlers uses visual and verbal elements to reduce cognitive overload and support error detection. Based on two participatory design sessions with 21 children (ages 6 - 11), our findings provide both design insights and an empirical understanding of how children identify errors in genAI reasoning, develop strategies for navigating these errors, and evaluate AI outputs.
Recreating Neural Activity During Speech Production with Language and Speech Model Embeddings
Understanding how neural activity encodes speech and language production is a fundamental challenge in neuroscience and artificial intelligence. This study investigates whether embeddings from large-scale, self-supervised language and speech models can effectively reconstruct high-gamma neural activity characteristics, key indicators of cortical processing, recorded during speech production. We leverage pre-trained embeddings from deep learning models trained on linguistic and acoustic data to represent high-level speech features and map them onto these high-gamma signals. We analyze the extent to which these embeddings preserve the spatio-temporal dynamics of brain activity. Reconstructed neural signals are evaluated against high-gamma ground-truth activity using correlation metrics and signal reconstruction quality assessments. The results indicate that high-gamma activity can be effectively reconstructed using large language and speech model embeddings in all study participants, generating Pearson's correlation coefficients ranging from 0.79 to 0.99.
comment: Accepted for presentation at Interspeech2025
Sketch Interface for Teleoperation of Mobile Manipulator to Enable Intuitive and Intended Operation: A Proof of Concept
Recent advancements in robotics have underscored the need for effective collaboration between humans and robots. Traditional interfaces often struggle to balance robot autonomy with human oversight, limiting their practical application in complex tasks like mobile manipulation. This study aims to develop an intuitive interface that enables a mobile manipulator to autonomously interpret user-provided sketches, enhancing user experience while minimizing burden. We implemented a web-based application utilizing machine learning algorithms to process sketches, making the interface accessible on mobile devices for use anytime, anywhere, by anyone. In the first validation, we examined natural sketches drawn by users for 27 selected manipulation and navigation tasks, gaining insights into trends related to sketch instructions. The second validation involved comparative experiments with five grasping tasks, showing that the sketch interface reduces workload and enhances intuitiveness compared to conventional axis control interfaces. These findings suggest that the proposed sketch interface improves the efficiency of mobile manipulators and opens new avenues for integrating intuitive human-robot collaboration in various applications.
comment: This paper has been accepted to the the 20th edition of the IEEE/ACM International Conference on Human-Robot Interaction (HRI'25), which will be held in Melbourne, Australia on March 4-6, 2025. Project page: https://toyotafrc.github.io/SketchInterfacePoC-Proj/
Emotion-sensitive Explanation Model
Explainable AI (XAI) research has traditionally focused on rational users, aiming to improve understanding and reduce cognitive biases. However, emotional factors play a critical role in how explanations are perceived and processed. Prior work shows that prior and task-generated emotions can negatively impact the understanding of explanation. Building on these insights, we propose a three-stage model for emotion-sensitive explanation grounding: (1) emotional or epistemic arousal, (2) understanding, and (3) agreement. This model provides a conceptual basis for developing XAI systems that dynamically adapt explanation strategies to users emotional states, ultimately supporting more effective and user-centered decision-making.
Influence of prior and task generated emotions on XAI explanation retention and understanding
The explanation of AI results and how they are received by users is an increasingly active research field. However, there is a surprising lack of knowledge about how social factors such as emotions affect the process of explanation by a decision support system (DSS). While previous research has shown effects of emotions on DSS supported decision-making, it remains unknown in how far emotions affect cognitive processing during an explanation. In this study, we, therefore, investigated the influence of prior emotions and task-related arousal on the retention and understanding of explained feature relevance. To investigate the influence of prior emotions, we induced happiness and fear prior to the decision support interaction. Before emotion induction, user characteristics to assess their risk type were collected via a questionnaire. To identify emotional reactions to the explanations of the relevance of different features, we observed heart rate variability (HRV), facial expressions, and self-reported emotions of the explainee while observing and listening to the explanation and assessed their retention of the features as well as their influence on the outcome of the decision task. Results indicate that (1) task-unrelated prior emotions do not affected the ratantion but may affect the understanding of the relevance of certain features in the sense of an emotion-induced confirmation bias, (2) certain features related to personal attitudes yielded arousal in individual participants, (3) this arousal affected the understanding of these variables.
How Managers Perceive AI-Assisted Conversational Training for Workplace Communication
Effective workplace communication is essential for managerial success, yet many managers lack access to tailored and sustained training. Although AI-assisted communication systems may offer scalable training solutions, little is known about how managers envision the role of AI in helping them improve their communication skills. To investigate this, we designed a conversational role-play system, CommCoach, as a functional probe to understand how managers anticipate using AI to practice their communication skills. Through semi-structured interviews, participants emphasized the value of adaptive, low-risk simulations for practicing difficult workplace conversations. They also highlighted opportunities, including human-AI teaming, transparent and context-aware feedback, and greater control over AI-generated personas. AI-assisted communication training should balance personalization, structured learning objectives, and adaptability to different user styles and contexts. However, achieving this requires carefully navigating tensions between adaptive and consistent AI feedback, realism and potential bias, and the open-ended nature of AI conversations versus structured workplace discourse.
comment: accepted to CUI '25
OceanChat: The Effect of Virtual Conversational AI Agents on Sustainable Attitude and Behavior Change
Marine ecosystems face unprecedented threats from climate change and plastic pollution, yet traditional environmental education often struggles to translate awareness into sustained behavioral change. This paper presents OceanChat, an interactive system leveraging large language models to create conversational AI agents represented as animated marine creatures -- specifically a beluga whale, a jellyfish, and a seahorse -- designed to promote environmental behavior (PEB) and foster awareness through personalized dialogue. Through a between-subjects experiment (N=900), we compared three conditions: (1) Static Scientific Information, providing conventional environmental education through text and images; (2) Static Character Narrative, featuring first-person storytelling from 3D-rendered marine creatures; and (3) Conversational Character Narrative, enabling real-time dialogue with AI-powered marine characters. Our analysis revealed that the Conversational Character Narrative condition significantly increased behavioral intentions and sustainable choice preferences compared to static approaches. The beluga whale character demonstrated consistently stronger emotional engagement across multiple measures, including perceived anthropomorphism and empathy. However, impacts on deeper measures like climate policy support and psychological distance were limited, highlighting the complexity of shifting entrenched beliefs. Our work extends research on sustainability interfaces facilitating PEB and offers design principles for creating emotionally resonant, context-aware AI characters. By balancing anthropomorphism with species authenticity, OceanChat demonstrates how interactive narratives can bridge the gap between environmental knowledge and real-world behavior change.
comment: 21 pages, 18 figures, 2 tables
TinyClick: Single-Turn Agent for Empowering GUI Automation
We present an UI agent for user interface (UI) interaction tasks, using Vision-Language Model Florence-2-Base. The agent's primary task is identifying the screen coordinates of the UI element corresponding to the user's command. It demonstrates very strong performance on Screenspot and OmniAct annotations, while maintaining a very small size of 0.27B parameters and minimal latency. Moreover, training needs small compute budget of 56 GPU-hours (worth about 40 USD). Relevant improvement comes from vision-specific multi-task training and MLLM-based data augmentation. We hope that decreased needs for expensive compute resources and manually annotated data will allow to facilitate more inclusive and sustainable research of UI agents.
comment: Accepted to Interspeech 2025
A-MEM: Agentic Memory for LLM Agents
While large language model (LLM) agents can effectively use external tools for complex real-world tasks, they require memory systems to leverage historical experiences. Current memory systems enable basic storage and retrieval but lack sophisticated memory organization, despite recent attempts to incorporate graph databases. Moreover, these systems' fixed operations and structures limit their adaptability across diverse tasks. To address this limitation, this paper proposes a novel agentic memory system for LLM agents that can dynamically organize memories in an agentic way. Following the basic principles of the Zettelkasten method, we designed our memory system to create interconnected knowledge networks through dynamic indexing and linking. When a new memory is added, we generate a comprehensive note containing multiple structured attributes, including contextual descriptions, keywords, and tags. The system then analyzes historical memories to identify relevant connections, establishing links where meaningful similarities exist. Additionally, this process enables memory evolution - as new memories are integrated, they can trigger updates to the contextual representations and attributes of existing historical memories, allowing the memory network to continuously refine its understanding. Our approach combines the structured organization principles of Zettelkasten with the flexibility of agent-driven decision making, allowing for more adaptive and context-aware memory management. Empirical experiments on six foundation models show superior improvement against existing SOTA baselines. The source code for evaluating performance is available at https://github.com/WujiangXu/AgenticMemory, while the source code of agentic memory system is available at https://github.com/agiresearch/A-mem.
Product Design Using Generative Adversarial Network: Incorporating Consumer Preference and External Data
The rise of generative artificial intelligence (AI) has facilitated automated product design but often neglects valuable consumer preference data within companies' internal datasets. Additionally, external sources such as social media and user-generated content (UGC) platforms contain substantial untapped information on product design and consumer preferences, yet remain underutilized. We propose a novel framework that transforms the product design paradigm to be data-driven, automated, and consumer-centric. Our method employs a semi-supervised deep generative architecture that systematically integrates multidimensional consumer preferences and heterogeneous external data. The framework is both generative and preference-aware, enabling companies to produce consumer-aligned designs with enhanced cost efficiency. Our framework trains a specialized predictor model to comprehend consumer preferences and utilizes predicted popularity metrics to guide a continuous conditional generative adversarial network (CcGAN). The trained CcGAN can directionally generate consumer-preferred designs, circumventing the expenditure associated with testing suboptimal candidates. Using external data, our framework offers particular advantages for start-ups or other resource-constrained companies confronting the ``cold-start" problem. We demonstrate the framework's efficacy through an empirical application with a self-operated photography chain, where our model successfully generated superior photo template designs. We also conduct web-based experiments to verify our method and confirm its effectiveness across varying design contexts.
comment: 50 pages, 11 figures, 5 tables
How to Enable Effective Cooperation Between Humans and NLP Models: A Survey of Principles, Formalizations, and Beyond ACL 2025
With the advancement of large language models (LLMs), intelligent models have evolved from mere tools to autonomous agents with their own goals and strategies for cooperating with humans. This evolution has birthed a novel paradigm in NLP, i.e., human-model cooperation, that has yielded remarkable progress in numerous NLP tasks in recent years. In this paper, we take the first step to present a thorough review of human-model cooperation, exploring its principles, formalizations, and open challenges. In particular, we introduce a new taxonomy that provides a unified perspective to summarize existing approaches. Also, we discuss potential frontier areas and their corresponding challenges. We regard our work as an entry point, paving the way for more breakthrough research in this regard.
comment: ACL 2025 Main paper
Perceptions of Blind Adults on Non-Visual Mobile Text Entry
Text input on mobile devices without physical keys can be challenging for people who are blind or low-vision. We interview 12 blind adults about their experiences with current mobile text input to provide insights into what sorts of interface improvements may be the most beneficial. We identify three primary themes that were experiences or opinions shared by participants: the poor accuracy of dictation, difficulty entering text in noisy environments, and difficulty correcting errors in entered text. We also discuss an experimental non-visual text input method with each participant to solicit opinions on the method and probe their willingness to learn a novel method. We find that the largest concern was the time required to learn a new technique. We find that the majority of our participants do not use word predictions while typing but instead find it faster to finish typing words manually. Finally, we distill five future directions for non-visual text input: improved dictation, less reliance on or improved audio feedback, improved error correction, reducing the barrier to entry for new methods, and more fluid non-visual word predictions.
comment: To appear in PErvasive Technologies Related to Assistive Environments (PETRA '25)
Identifying the Desired Word Suggestion in Simultaneous Audio
We explore a method for presenting word suggestions for non-visual text input using simultaneous voices. We conduct two perceptual studies and investigate the impact of different presentations of voices on a user's ability to detect which voice, if any, spoke their desired word. Our sets of words simulated the word suggestions of a predictive keyboard during real-world text input. We find that when voices are simultaneous, user accuracy decreases significantly with each added word suggestion. However, adding a slight 0.15 s delay between the start of each subsequent word allows two simultaneous words to be presented with no significant decrease in accuracy compared to presenting two words sequentially (84% simultaneous versus 86% sequential). This allows two word suggestions to be presented to the user 32% faster than sequential playback without decreasing accuracy.
comment: To appear in PErvasive Technologies Related to Assistive Environments (PETRA '25)
Automated Visualization Code Synthesis via Multi-Path Reasoning and Feedback-Driven Optimization
Rapid advancements in Large Language Models (LLMs) have accelerated their integration into automated visualization code generation applications. Despite advancements through few-shot prompting and query expansion, existing methods remain limited in handling ambiguous and complex queries, thereby requiring manual intervention. To overcome these limitations, we propose VisPath: a Multi-Path Reasoning and Feedback-Driven Optimization Framework for Visualization Code Generation. VisPath handles underspecified queries through structured, multi-stage processing. It begins by reformulating the user input via Chain-of-Thought (CoT) prompting, which refers to the initial query while generating multiple extended queries in parallel, enabling the LLM to capture diverse interpretations of the user intent. These queries then generate candidate visualization scripts, which are executed to produce diverse images. By assessing the visual quality and correctness of each output, VisPath generates targeted feedback that is aggregated to synthesize an optimal final result. Extensive experiments on widely-used benchmarks including MatPlotBench and the Qwen-Agent Code Interpreter Benchmark show that VisPath outperforms state-of-the-art methods, offering a more reliable solution for AI-driven visualization code generation.
comment: 16 pages, 5 figures, 3 tables
Lessons From an App Update at Replika AI: Identity Discontinuity in Human-AI Relationships
Can consumers form especially deep emotional bonds with AI and be vested in AI identities over time? We leverage a natural app-update event at Replika AI, a popular US-based AI companion, to shed light on these questions. We find that, after the app removed its erotic role play (ERP) feature, preventing intimate interactions between consumers and chatbots that were previously possible, this event triggered perceptions in customers that their AI companion's identity had discontinued. This in turn predicted negative consumer welfare and marketing outcomes related to loss, including mourning the loss, and devaluing the "new" AI relative to the "original". Experimental evidence confirms these findings. Further experiments find that AI companions users feel closer to their AI companion than even their best human friend, and mourn a loss of their AI companion more than a loss of various other inanimate products. In short, consumers are forming human-level relationships with AI companions; disruptions to these relationships trigger real patterns of mourning as well as devaluation of the offering; and the degree of mourning and devaluation are explained by perceived discontinuity in the AIs identity. Our results illustrate that relationships with AI are truly personal, creating unique benefits and risks for consumers and firms alike.
The Challenges and Benefits of Bringing Religious Values Into Design
HCI is increasingly taking inspiration from religious traditions as a basis for ethical technology designs. Such ethically-inspired designs can be especially important for social communications technologies, which are associated with numerous societal concerns. If religious values are to be incorporated into real-world designs, there may be challenges when designers work with values unfamiliar to them. Therefore, we investigate the difference in interpretations of values when they are translated to technology designs. To do so we studied design patterns that embody Catholic Social Teaching (CST). We interviewed 24 technologists and 7 CST scholars to assess how their understanding of how those values would manifest in social media designs. We found that for the most part the technologists responded similarly to the CST scholars. However, CST scholars had a better understanding of the principle of subsidiarity, and they believed moderation upheld human dignity more than the technologists did. We discuss the implications of our findings on the designs of social technologies and design processes at large.
How Real Are Synthetic Therapy Conversations? Evaluating Fidelity in Prolonged Exposure Dialogues
The growing adoption of synthetic data in healthcare is driven by privacy concerns, limited access to real-world data, and the high cost of annotation. This work explores the use of synthetic Prolonged Exposure (PE) therapeutic conversations for Post-Traumatic Stress Disorder (PTSD) as a scalable alternative for training and evaluating clinical models. We systematically compare real and synthetic dialogues using linguistic, structural, and protocol-specific metrics, including turn-taking patterns and treatment fidelity. We also introduce and evaluate PE-specific metrics derived from linguistic analysis and semantic modeling, offering a novel framework for assessing clinical fidelity beyond surface fluency. Our findings show that although synthetic data holds promise for mitigating data scarcity and protecting patient privacy, it can struggle to capture the subtle dynamics of therapeutic interactions. Synthetic therapy dialogues closely match structural features of real-world conversations (e.g., speaker switch ratio: 0.98 vs. 0.99); however, they may not adequately reflect key fidelity markers (e.g., distress monitoring). We highlight gaps in existing evaluation frameworks and advocate for fidelity-aware metrics that go beyond surface fluency to uncover clinically significant failures. Our findings clarify where synthetic data can effectively complement real-world datasets -- and where critical limitations remain.
comment: 10 pages, 5 tables
Image and Video Processing
Combining Progressive Image Compression and Random Access in DNA Data Storage
The exponential increase in storage demand and low lifespan of data storage devices has resulted in long-term archival and preservation emerging as a critical bottlenecks in data storage. In order to meet this demand, researchers are now investigating novel forms of data storage media. The high density, long lifespan and low energy needs of synthetic DNA make it a promising candidate for long-term data archival. However, current DNA data storage technologies are facing challenges with respect to cost (writing data to DNA is expensive) and reliability (reading and writing data is error prone). Thus, data compression and error correction are crucial to scale DNA storage. Additionally, the DNA molecules encoding several files are very often stored in the same place, called an oligo pool. For this reason, without random access solutions, it is relatively impractical to decode a specific file from the pool, because all the oligos from all the files need to first be sequenced, which greatly deteriorates the read cost. This paper introduces PIC-DNA - a novel JPEG2000-based progressive image coder adapted to DNA data storage. This coder directly includes a random access process in its coding system, allowing for the retrieval of a specific image from a pool of oligos encoding several images. The progressive decoder can dynamically adapt the read cost according to the user's cost and quality constraints at decoding time. Both the random access and progressive decoding greatly improve on the read-cost of image coders adapted to DNA.
Deep Learning Enabled Segmentation, Classification and Risk Assessment of Cervical Cancer
Cervical cancer, the fourth leading cause of cancer in women globally, requires early detection through Pap smear tests to identify precancerous changes and prevent disease progression. In this study, we performed a focused analysis by segmenting the cellular boundaries and drawing bounding boxes to isolate the cancer cells. A novel Deep Learning (DL) architecture, the ``Multi-Resolution Fusion Deep Convolutional Network", was proposed to effectively handle images with varying resolutions and aspect ratios, with its efficacy showcased using the SIPaKMeD dataset. The performance of this DL model was observed to be similar to the state-of-the-art models, with accuracy variations of a mere 2\% to 3\%, achieved using just 1.7 million learnable parameters, which is approximately 85 times less than the VGG-19 model. Furthermore, we introduced a multi-task learning technique that simultaneously performs segmentation and classification tasks and begets an Intersection over Union score of 0.83 and a classification accuracy of 90\%. The final stage of the workflow employs a probabilistic approach for risk assessment, extracting feature vectors to predict the likelihood of normal cells progressing to malignant states, which can be utilized for the prognosis of cervical cancer.
comment: 11 pages, 10 figures
Machine Learning Derived Blood Input for Dynamic PET Images of Rat Heart
Dynamic FDG PET imaging study of n = 52 rats including 26 control Wistar-Kyoto (WKY) rats and 26 experimental spontaneously hypertensive rats (SHR) were performed using a Siemens microPET and Albira trimodal scanner longitudinally at 1, 2, 3, 5, 9, 12 and 18 months of age. A 15-parameter dual output model correcting for spill over contamination and partial volume effects with peak fitting cost functions was developed for simultaneous estimation of model corrected blood input function (MCIF) and kinetic rate constants for dynamic FDG PET images of rat heart in vivo. Major drawbacks of this model are its dependence on manual annotations for the Image Derived Input Function (IDIF) and manual determination of crucial model parameters to compute MCIF. To overcome these limitations, we performed semi-automated segmentation and then formulated a Long-Short-Term Memory (LSTM) cell network to train and predict MCIF in test data using a concatenation of IDIFs and myocardial inputs and compared them with reference-modeled MCIF. Thresholding along 2D plane slices with two thresholds, with T1 representing high-intensity myocardium, and T2 representing lower-intensity rings, was used to segment the area of the LV blood pool. The resultant IDIF and myocardial TACs were used to compute the corresponding reference (model) MCIF for all data sets. The segmented IDIF and the myocardium formed the input for the LSTM network. A k-fold cross validation structure with a 33:8:11 split and 5 folds was utilized to create the model and evaluate the performance of the LSTM network for all datasets. To overcome the sparseness of data as time steps increase, midpoint interpolation was utilized to increase the density of datapoints beyond time = 10 minutes. The model utilizing midpoint interpolation was able to achieve a 56.4% improvement over previous Mean Squared Error (MSE).
FRN: Fractal-Based Recursive Spectral Reconstruction Network
Generating hyperspectral images (HSIs) from RGB images through spectral reconstruction can significantly reduce the cost of HSI acquisition. In this paper, we propose a Fractal-Based Recursive Spectral Reconstruction Network (FRN), which differs from existing paradigms that attempt to directly integrate the full-spectrum information from the R, G, and B channels in a one-shot manner. Instead, it treats spectral reconstruction as a progressive process, predicting from broad to narrow bands or employing a coarse-to-fine approach for predicting the next wavelength. Inspired by fractals in mathematics, FRN establishes a novel spectral reconstruction paradigm by recursively invoking an atomic reconstruction module. In each invocation, only the spectral information from neighboring bands is used to provide clues for the generation of the image at the next wavelength, which follows the low-rank property of spectral data. Moreover, we design a band-aware state space model that employs a pixel-differentiated scanning strategy at different stages of the generation process, further suppressing interference from low-correlation regions caused by reflectance differences. Through extensive experimentation across different datasets, FRN achieves superior reconstruction performance compared to state-of-the-art methods in both quantitative and qualitative evaluations.
Linear Convergence of Plug-and-Play Algorithms with Kernel Denoisers
The use of denoisers for image reconstruction has shown significant potential, especially for the Plug-and-Play (PnP) framework. In PnP, a powerful denoiser is used as an implicit regularizer in proximal algorithms such as ISTA and ADMM. The focus of this work is on the convergence of PnP iterates for linear inverse problems using kernel denoisers. It was shown in prior work that the update operator in standard PnP is contractive for symmetric kernel denoisers under appropriate conditions on the denoiser and the linear forward operator. Consequently, we could establish global linear convergence of the iterates using the contraction mapping theorem. In this work, we develop a unified framework to establish global linear convergence for symmetric and nonsymmetric kernel denoisers. Additionally, we derive quantitative bounds on the contraction factor (convergence rate) for inpainting, deblurring, and superresolution. We present numerical results to validate our theoretical findings.
comment: 18 pages, 14 Figures
Reconsider the Template Mesh in Deep Learning-based Mesh Reconstruction
Mesh reconstruction is a cornerstone process across various applications, including in-silico trials, digital twins, surgical planning, and navigation. Recent advancements in deep learning have notably enhanced mesh reconstruction speeds. Yet, traditional methods predominantly rely on deforming a standardised template mesh for individual subjects, which overlooks the unique anatomical variations between them, and may compromise the fidelity of the reconstructions. In this paper, we propose an adaptive-template-based mesh reconstruction network (ATMRN), which generates adaptive templates from the given images for the subsequent deformation, moving beyond the constraints of a singular, fixed template. Our approach, validated on cortical magnetic resonance (MR) images from the OASIS dataset, sets a new benchmark in voxel-to-cortex mesh reconstruction, achieving an average symmetric surface distance of 0.267mm across four cortical structures. Our proposed method is generic and can be easily transferred to other image modalities and anatomical structures.
X-GRM: Large Gaussian Reconstruction Model for Sparse-view X-rays to Computed Tomography
Computed Tomography serves as an indispensable tool in clinical workflows, providing non-invasive visualization of internal anatomical structures. Existing CT reconstruction works are limited to small-capacity model architecture, inflexible volume representation, and small-scale training data. In this paper, we present X-GRM (X-ray Gaussian Reconstruction Model), a large feedforward model for reconstructing 3D CT from sparse-view 2D X-ray projections. X-GRM employs a scalable transformer-based architecture to encode an arbitrary number of sparse X-ray inputs, where tokens from different views are integrated efficiently. Then, tokens are decoded into a new volume representation, named Voxel-based Gaussian Splatting (VoxGS), which enables efficient CT volume extraction and differentiable X-ray rendering. To support the training of X-GRM, we collect ReconX-15K, a large-scale CT reconstruction dataset containing around 15,000 CT/X-ray pairs across diverse organs, including the chest, abdomen, pelvis, and tooth etc. This combination of a high-capacity model, flexible volume representation, and large-scale training data empowers our model to produce high-quality reconstructions from various testing inputs, including in-domain and out-domain X-ray projections. Project Page: https://github.com/CUHK-AIM-Group/X-GRM.
SAMA-UNet: Enhancing Medical Image Segmentation with Self-Adaptive Mamba-Like Attention and Causal-Resonance Learning
Medical image segmentation plays an important role in various clinical applications, but existing models often struggle with the computational inefficiencies and challenges posed by complex medical data. State Space Sequence Models (SSMs) have demonstrated promise in modeling long-range dependencies with linear computational complexity, yet their application in medical image segmentation remains hindered by incompatibilities with image tokens and autoregressive assumptions. Moreover, it is difficult to achieve a balance in capturing both local fine-grained information and global semantic dependencies. To address these challenges, we introduce SAMA-UNet, a novel architecture for medical image segmentation. A key innovation is the Self-Adaptive Mamba-like Aggregated Attention (SAMA) block, which integrates contextual self-attention with dynamic weight modulation to prioritise the most relevant features based on local and global contexts. This approach reduces computational complexity and improves the representation of complex image features across multiple scales. We also suggest the Causal-Resonance Multi-Scale Module (CR-MSM), which enhances the flow of information between the encoder and decoder by using causal resonance learning. This mechanism allows the model to automatically adjust feature resolution and causal dependencies across scales, leading to better semantic alignment between the low-level and high-level features in U-shaped architectures. Experiments on MRI, CT, and endoscopy images show that SAMA-UNet performs better in segmentation accuracy than current methods using CNN, Transformer, and Mamba. The implementation is publicly available at GitHub.
Physics-Guided Multi-View Graph Neural Network for Schizophrenia Classification via Structural-Functional Coupling MICCAI 2024
Clinical studies reveal disruptions in brain structural connectivity (SC) and functional connectivity (FC) in neuropsychiatric disorders such as schizophrenia (SZ). Traditional approaches might rely solely on SC due to limited functional data availability, hindering comprehension of cognitive and behavioral impairments in individuals with SZ by neglecting the intricate SC-FC interrelationship. To tackle the challenge, we propose a novel physics-guided deep learning framework that leverages a neural oscillation model to describe the dynamics of a collection of interconnected neural oscillators, which operate via nerve fibers dispersed across the brain's structure. Our proposed framework utilizes SC to simultaneously generate FC by learning SC-FC coupling from a system dynamics perspective. Additionally, it employs a novel multi-view graph neural network (GNN) with a joint loss to perform correlation-based SC-FC fusion and classification of individuals with SZ. Experiments conducted on a clinical dataset exhibited improved performance, demonstrating the robustness of our proposed approach.
comment: Accepted and presented at the 7th International Workshop on PRedictive Intelligence in MEdicine (Held in Conjunction with MICCAI 2024)
Lung Nodule-SSM: Self-Supervised Lung Nodule Detection and Classification in Thoracic CT Images
Lung cancer remains among the deadliest types of cancer in recent decades, and early lung nodule detection is crucial for improving patient outcomes. The limited availability of annotated medical imaging data remains a bottleneck in developing accurate computer-aided diagnosis (CAD) systems. Self-supervised learning can help leverage large amounts of unlabeled data to develop more robust CAD systems. With the recent advent of transformer-based architecture and their ability to generalize to unseen tasks, there has been an effort within the healthcare community to adapt them to various medical downstream tasks. Thus, we propose a novel "LungNodule-SSM" method, which utilizes selfsupervised learning with DINOv2 as a backbone to enhance lung nodule detection and classification without annotated data. Our methodology has two stages: firstly, the DINOv2 model is pre-trained on unlabeled CT scans to learn robust feature representations, then secondly, these features are fine-tuned using transformer-based architectures for lesionlevel detection and accurate lung nodule diagnosis. The proposed method has been evaluated on the challenging LUNA 16 dataset, consisting of 888 CT scans, and compared with SOTA methods. Our experimental results show the superiority of our proposed method with an accuracy of 98.37%, explaining its effectiveness in lung nodule detection. The source code, datasets, and pre-processed data can be accessed using the link:https://github.com/EMeRALDsNRPU/Lung-Nodule-SSM-Self-Supervised-Lung-Nodule-Detection-and-Classification/tree/main
Joint Optimization of Primary and Secondary Transforms Using Rate-Distortion Optimized Transform Design
Data-dependent transforms are increasingly being incorporated into next-generation video coding systems such as AVM, a codec under development by the Alliance for Open Media (AOM), and VVC. To circumvent the computational complexities associated with implementing non-separable data-dependent transforms, combinations of separable primary transforms and non-separable secondary transforms have been studied and integrated into video coding standards. These codecs often utilize rate-distortion optimized transforms (RDOT) to ensure that the new transforms complement existing transforms like the DCT and the ADST. In this work, we propose an optimization framework for jointly designing primary and secondary transforms from data through a rate-distortion optimized clustering. Primary transforms are assumed to follow a path-graph model, while secondary transforms are non-separable. We empirically evaluate our proposed approach using AVM residual data and demonstrate that 1) the joint clustering method achieves lower total RD cost in the RDOT design framework, and 2) jointly optimized separable path-graph transforms (SPGT) provide better coding efficiency compared to separable KLTs obtained from the same data.
Non-rigid Motion Correction for MRI Reconstruction via Coarse-To-Fine Diffusion Models ICIP 2025
Magnetic Resonance Imaging (MRI) is highly susceptible to motion artifacts due to the extended acquisition times required for k-space sampling. These artifacts can compromise diagnostic utility, particularly for dynamic imaging. We propose a novel alternating minimization framework that leverages a bespoke diffusion model to jointly reconstruct and correct non-rigid motion-corrupted k-space data. The diffusion model uses a coarse-to-fine denoising strategy to capture large overall motion and reconstruct the lower frequencies of the image first, providing a better inductive bias for motion estimation than that of standard diffusion models. We demonstrate the performance of our approach on both real-world cine cardiac MRI datasets and complex simulated rigid and non-rigid deformations, even when each motion state is undersampled by a factor of 64x. Additionally, our method is agnostic to sampling patterns, anatomical variations, and MRI scanning protocols, as long as some low frequency components are sampled during each motion state.
comment: ICIP 2025
Rate-Distortion Optimization with Non-Reference Metrics for UGC Compression
Service providers must encode a large volume of noisy videos to meet the demand for user-generated content (UGC) in online video-sharing platforms. However, low-quality UGC challenges conventional codecs based on rate-distortion optimization (RDO) with full-reference metrics (FRMs). While effective for pristine videos, FRMs drive codecs to preserve artifacts when the input is degraded, resulting in suboptimal compression. A more suitable approach used to assess UGC quality is based on non-reference metrics (NRMs). However, RDO with NRMs as a measure of distortion requires an iterative workflow of encoding, decoding, and metric evaluation, which is computationally impractical. This paper overcomes this limitation by linearizing the NRM around the uncompressed video. The resulting cost function enables block-wise bit allocation in the transform domain by estimating the alignment of the quantization error with the gradient of the NRM. To avoid large deviations from the input, we add sum of squared errors (SSE) regularization. We derive expressions for both the SSE regularization parameter and the Lagrangian, akin to the relationship used for SSE-RDO. Experiments with images and videos show bitrate savings of more than 30\% over SSE-RDO using the target NRM, with no decoder complexity overhead and minimal encoder complexity increase.
Multimodal Biomarkers for Schizophrenia: Towards Individual Symptom Severity Estimation
Studies on schizophrenia assessments using deep learning typically treat it as a classification task to detect the presence or absence of the disorder, oversimplifying the condition and reducing its clinical applicability. This traditional approach overlooks the complexity of schizophrenia, limiting its practical value in healthcare settings. This study shifts the focus to individual symptom severity estimation using a multimodal approach that integrates speech, video, and text inputs. We develop unimodal models for each modality and a multimodal framework to improve accuracy and robustness. By capturing a more detailed symptom profile, this approach can help in enhancing diagnostic precision and support personalized treatment, offering a scalable and objective tool for mental health assessment.
comment: Accepted to be presented at Interspeech 2025
Comprehensive Lung Disease Detection Using Deep Learning Models and Hybrid Chest X-ray Data with Explainable AI
Advanced diagnostic instruments are crucial for the accurate detection and treatment of lung diseases, which affect millions of individuals globally. This study examines the effectiveness of deep learning and transfer learning models using a hybrid dataset, created by merging four individual datasets from Bangladesh and global sources. The hybrid dataset significantly enhances model accuracy and generalizability, particularly in detecting COVID-19, pneumonia, lung opacity, and normal lung conditions from chest X-ray images. A range of models, including CNN, VGG16, VGG19, InceptionV3, Xception, ResNet50V2, InceptionResNetV2, MobileNetV2, and DenseNet121, were applied to both individual and hybrid datasets. The results showed superior performance on the hybrid dataset, with VGG16, Xception, ResNet50V2, and DenseNet121 each achieving an accuracy of 99%. This consistent performance across the hybrid dataset highlights the robustness of these models in handling diverse data while maintaining high accuracy. To understand the models implicit behavior, explainable AI techniques were employed to illuminate their black-box nature. Specifically, LIME was used to enhance the interpretability of model predictions, especially in cases of misclassification, contributing to the development of reliable and interpretable AI-driven solutions for medical imaging.
comment: Accepted for publication in 2024 27th International Conference on Computer and Information Technology (ICCIT)
Benchmarking Chest X-ray Diagnosis Models Across Multinational Datasets
Foundation models leveraging vision-language pretraining have shown promise in chest X-ray (CXR) interpretation, yet their real-world performance across diverse populations and diagnostic tasks remains insufficiently evaluated. This study benchmarks the diagnostic performance and generalizability of foundation models versus traditional convolutional neural networks (CNNs) on multinational CXR datasets. We evaluated eight CXR diagnostic models - five vision-language foundation models and three CNN-based architectures - across 37 standardized classification tasks using six public datasets from the USA, Spain, India, and Vietnam, and three private datasets from hospitals in China. Performance was assessed using AUROC, AUPRC, and other metrics across both shared and dataset-specific tasks. Foundation models outperformed CNNs in both accuracy and task coverage. MAVL, a model incorporating knowledge-enhanced prompts and structured supervision, achieved the highest performance on public (mean AUROC: 0.82; AUPRC: 0.32) and private (mean AUROC: 0.95; AUPRC: 0.89) datasets, ranking first in 14 of 37 public and 3 of 4 private tasks. All models showed reduced performance on pediatric cases, with average AUROC dropping from 0.88 +/- 0.18 in adults to 0.57 +/- 0.29 in children (p = 0.0202). These findings highlight the value of structured supervision and prompt design in radiologic AI and suggest future directions including geographic expansion and ensemble modeling for clinical deployment. Code for all evaluated models is available at https://drive.google.com/drive/folders/1B99yMQm7bB4h1sVMIBja0RfUu8gLktCE
comment: 78 pages, 7 figures, 2 tabeles
CP-LLM: Context and Pixel Aware Large Language Model for Video Quality Assessment
Video quality assessment (VQA) is a challenging research topic with broad applications. Effective VQA necessitates sensitivity to pixel-level distortions and a comprehensive understanding of video context to accurately determine the perceptual impact of distortions. Traditional hand-crafted and learning-based VQA models mainly focus on pixel-level distortions and lack contextual understanding, while recent LLM-based models struggle with sensitivity to small distortions or handle quality scoring and description as separate tasks. To address these shortcomings, we introduce CP-LLM: a Context and Pixel aware Large Language Model. CP-LLM is a novel multimodal LLM architecture featuring dual vision encoders designed to independently analyze perceptual quality at both high-level (video context) and low-level (pixel distortion) granularity, along with a language decoder subsequently reasons about the interplay between these aspects. This design enables CP-LLM to simultaneously produce robust quality scores and interpretable quality descriptions, with enhanced sensitivity to pixel distortions (e.g. compression artifacts). The model is trained via a multi-task pipeline optimizing for score prediction, description generation, and pairwise comparisons. Experiment results demonstrate that CP-LLM achieves state-of-the-art cross-dataset performance on established VQA benchmarks and superior robustness to pixel distortions, confirming its efficacy for comprehensive and practical video quality assessment in real-world scenarios.
comment: Under review
Domain Adaptive Skin Lesion Classification via Conformal Ensemble of Vision Transformers
Exploring the trustworthiness of deep learning models is crucial, especially in critical domains such as medical imaging decision support systems. Conformal prediction has emerged as a rigorous means of providing deep learning models with reliable uncertainty estimates and safety guarantees. However, conformal prediction results face challenges due to the backbone model's struggles in domain-shifted scenarios, such as variations in different sources. To aim this challenge, this paper proposes a novel framework termed Conformal Ensemble of Vision Transformers (CE-ViTs) designed to enhance image classification performance by prioritizing domain adaptation and model robustness, while accounting for uncertainty. The proposed method leverages an ensemble of vision transformer models in the backbone, trained on diverse datasets including HAM10000, Dermofit, and Skin Cancer ISIC datasets. This ensemble learning approach, calibrated through the combined mentioned datasets, aims to enhance domain adaptation through conformal learning. Experimental results underscore that the framework achieves a high coverage rate of 90.38\%, representing an improvement of 9.95\% compared to the HAM10000 model. This indicates a strong likelihood that the prediction set includes the true label compared to singular models. Ensemble learning in CE-ViTs significantly improves conformal prediction performance, increasing the average prediction set size for challenging misclassified samples from 1.86 to 3.075.
comment: 5 pages, 4 figures, conference (ccece 2025)
Diffusion Probabilistic Generative Models for Accelerated, in-NICU Permanent Magnet Neonatal MRI
Purpose: Magnetic Resonance Imaging (MRI) enables non-invasive assessment of brain abnormalities during early life development. Permanent magnet scanners operating in the neonatal intensive care unit (NICU) facilitate MRI of sick infants, but have long scan times due to lower signal-to-noise ratios (SNR) and limited receive coils. This work accelerates in-NICU MRI with diffusion probabilistic generative models by developing a training pipeline accounting for these challenges. Methods: We establish a novel training dataset of clinical, 1 Tesla neonatal MR images in collaboration with Aspect Imaging and Sha'are Zedek Medical Center. We propose a pipeline to handle the low quantity and SNR of our real-world dataset (1) modifying existing network architectures to support varying resolutions; (2) training a single model on all data with learned class embedding vectors; (3) applying self-supervised denoising before training; and (4) reconstructing by averaging posterior samples. Retrospective under-sampling experiments, accounting for signal decay, evaluated each item of our proposed methodology. A clinical reader study with practicing pediatric neuroradiologists evaluated our proposed images reconstructed from 1.5x under-sampled data. Results: Combining all data, denoising pre-training, and averaging posterior samples yields quantitative improvements in reconstruction. The generative model decouples the learned prior from the measurement model and functions at two acceleration rates without re-training. The reader study suggests that proposed images reconstructed from approximately 1.5x under-sampled data are adequate for clinical use. Conclusion: Diffusion probabilistic generative models applied with the proposed pipeline to handle challenging real-world datasets could reduce scan time of in-NICU neonatal MRI.
Satellites Reveal Mobility: A Commuting Origin-destination Flow Generator for Global Cities
Commuting Origin-destination~(OD) flows, capturing daily population mobility of citizens, are vital for sustainable development across cities around the world. However, it is challenging to obtain the data due to the high cost of travel surveys and privacy concerns. Surprisingly, we find that satellite imagery, publicly available across the globe, contains rich urban semantic signals to support high-quality OD flow generation, with over 98\% expressiveness of traditional multisource hard-to-collect urban sociodemographic, economics, land use, and point of interest data. This inspires us to design a novel data generator, GlODGen, which can generate OD flow data for any cities of interest around the world. Specifically, GlODGen first leverages Vision-Language Geo-Foundation Models to extract urban semantic signals related to human mobility from satellite imagery. These features are then combined with population data to form region-level representations, which are used to generate OD flows via graph diffusion models. Extensive experiments on 4 continents and 6 representative cities show that GlODGen has great generalizability across diverse urban environments on different continents and can generate OD flow data for global cities highly consistent with real-world mobility data. We implement GlODGen as an automated tool, seamlessly integrating data acquisition and curation, urban semantic feature extraction, and OD flow generation together. It has been released at https://github.com/tsinghua-fib-lab/generate-od-pubtools.
comment: 26 pages, 8 figures
An Inclusive Foundation Model for Generalizable Cytogenetics in Precision Oncology
Chromosome analysis is vital for diagnosing genetic disorders and guiding cancer therapy decisions through the identification of somatic clonal aberrations. However, developing an AI model are hindered by the overwhelming complexity and diversity of chromosomal abnormalities, requiring extensive annotation efforts, while automated methods remain task-specific and lack generalizability due to the scarcity of comprehensive datasets spanning diverse resource conditions. Here, we introduce CHROMA, a foundation model for cytogenomics, designed to overcome these challenges by learning generalizable representations of chromosomal abnormalities. Pre-trained on over 84,000 specimens (~4 million chromosomal images) via self-supervised learning, CHROMA outperforms other methods across all types of abnormalities, even when trained on fewer labelled data and more imbalanced datasets. By facilitating comprehensive mapping of instability and clonal leisons across various aberration types, CHROMA offers a scalable and generalizable solution for reliable and automated clinical analysis, reducing the annotation workload for experts and advancing precision oncology through the early detection of rare genomic abnormalities, enabling broad clinical AI applications and making advanced genomic analysis more accessible.
comment: These authors contributed equally to this work: Changchun Yang, Weiqian Dai, Yilan Zhang
P3Net: Progressive and Periodic Perturbation for Semi-Supervised Medical Image Segmentation
Perturbation with diverse unlabeled data has proven beneficial for semi-supervised medical image segmentation (SSMIS). While many works have successfully used various perturbation techniques, a deeper understanding of learning perturbations is needed. Excessive or inappropriate perturbation can have negative effects, so we aim to address two challenges: how to use perturbation mechanisms to guide the learning of unlabeled data through labeled data, and how to ensure accurate predictions in boundary regions. Inspired by human progressive and periodic learning, we propose a progressive and periodic perturbation mechanism (P3M) and a boundary-focused loss. P3M enables dynamic adjustment of perturbations, allowing the model to gradually learn them. Our boundary-focused loss encourages the model to concentrate on boundary regions, enhancing sensitivity to intricate details and ensuring accurate predictions. Experimental results demonstrate that our method achieves state-of-the-art performance on two 2D and 3D datasets. Moreover, P3M is extendable to other methods, and the proposed loss serves as a universal tool for improving existing methods, highlighting the scalability and applicability of our approach.
RadarRGBD A Multi-Sensor Fusion Dataset for Perception with RGB-D and mmWave Radar
Multi-sensor fusion has significant potential in perception tasks for both indoor and outdoor environments. Especially under challenging conditions such as adverse weather and low-light environments, the combined use of millimeter-wave radar and RGB-D sensors has shown distinct advantages. However, existing multi-sensor datasets in the fields of autonomous driving and robotics often lack high-quality millimeter-wave radar data. To address this gap, we present a new multi-sensor dataset:RadarRGBD. This dataset includes RGB-D data, millimeter-wave radar point clouds, and raw radar matrices, covering various indoor and outdoor scenes, as well as low-light environments. Compared to existing datasets, RadarRGBD employs higher-resolution millimeter-wave radar and provides raw data, offering a new research foundation for the fusion of millimeter-wave radar and visual sensors. Furthermore, to tackle the noise and gaps in depth maps captured by Kinect V2 due to occlusions and mismatches, we fine-tune an open-source relative depth estimation framework, incorporating the absolute depth information from the dataset for depth supervision. We also introduce pseudo-relative depth scale information to further optimize the global depth scale estimation. Experimental results demonstrate that the proposed method effectively fills in missing regions in sensor data. Our dataset and related documentation will be publicly available at: https://github.com/song4399/RadarRGBD.
comment: 6 pages, 7 figures. Contains a new RGBD dataset for depth completion. Code and dataset will be released
TAGS: 3D Tumor-Adaptive Guidance for SAM
Foundation models (FMs) such as CLIP and SAM have recently shown great promise in image segmentation tasks, yet their adaptation to 3D medical imaging-particularly for pathology detection and segmentation-remains underexplored. A critical challenge arises from the domain gap between natural images and medical volumes: existing FMs, pre-trained on 2D data, struggle to capture 3D anatomical context, limiting their utility in clinical applications like tumor segmentation. To address this, we propose an adaptation framework called TAGS: Tumor Adaptive Guidance for SAM, which unlocks 2D FMs for 3D medical tasks through multi-prompt fusion. By preserving most of the pre-trained weights, our approach enhances SAM's spatial feature extraction using CLIP's semantic insights and anatomy-specific prompts. Extensive experiments on three open-source tumor segmentation datasets prove that our model surpasses the state-of-the-art medical image segmentation models (+46.88% over nnUNet), interactive segmentation frameworks, and other established medical FMs, including SAM-Med2D, SAM-Med3D, SegVol, Universal, 3D-Adapter, and SAM-B (at least +13% over them). This highlights the robustness and adaptability of our proposed framework across diverse medical segmentation tasks.
A Generative Diffusion Model to Solve Inverse Problems for Robust in-NICU Neonatal MRI ICIP 2025
We present the first acquisition-agnostic diffusion generative model for Magnetic Resonance Imaging (MRI) in the neonatal intensive care unit (NICU) to solve a range of inverse problems for shortening scan time and improving motion robustness. In-NICU MRI scanners leverage permanent magnets at lower field-strengths (i.e., below 1.5 Tesla) for non-invasive assessment of potential brain abnormalities during the critical phase of early live development, but suffer from long scan times and motion artifacts. In this setting, training data sizes are small and intrinsically suffer from low signal-to-noise ratio (SNR). This work trains a diffusion probabilistic generative model using such a real-world training dataset of clinical neonatal MRI by applying several novel signal processing and machine learning methods to handle the low SNR and low quantity of data. The model is then used as a statistical image prior to solve various inverse problems at inference time without requiring any retraining. Experiments demonstrate the generative model's utility for three real-world applications of neonatal MRI: accelerated reconstruction, motion correction, and super-resolution.
comment: 6 pages, 4 figures, submitted to ICIP 2025
Aggregation Schemes for Single-Vector WSI Representation Learning in Digital Pathology
A crucial step to efficiently integrate Whole Slide Images (WSIs) in computational pathology is assigning a single high-quality feature vector, i.e., one embedding, to each WSI. With the existence of many pre-trained deep neural networks and the emergence of foundation models, extracting embeddings for sub-images (i.e., tiles or patches) is straightforward. However, for WSIs, given their high resolution and gigapixel nature, inputting them into existing GPUs as a single image is not feasible. As a result, WSIs are usually split into many patches. Feeding each patch to a pre-trained model, each WSI can then be represented by a set of patches, hence, a set of embeddings. Hence, in such a setup, WSI representation learning reduces to set representation learning where for each WSI we have access to a set of patch embeddings. To obtain a single embedding from a set of patch embeddings for each WSI, multiple set-based learning schemes have been proposed in the literature. In this paper, we evaluate the WSI search performance of multiple recently developed aggregation techniques (mainly set representation learning techniques) including simple average or max pooling operations, Deep Sets, Memory networks, Focal attention, Gaussian Mixture Model (GMM) Fisher Vector, and deep sparse and binary Fisher Vector on four different primary sites including bladder, breast, kidney, and Colon from TCGA. Further, we benchmark the search performance of these methods against the median of minimum distances of patch embeddings, a non-aggregating approach used for WSI retrieval.
Phase retrieval via media diversity
This work studies phase retrieval for wave fields, aiming to recover the phase of an incoming wave from multi-plane intensity measurements behind different types of linear and nonlinear media. We show that unique phase retrieval can be achieved by utilizing intensity data produced by multiple media. This uniqueness does not require prescribed boundary conditions for the phase in the incidence plane, in contrast to existing phase retrieval methods based on the transport of intensity equation. Moreover, the uniqueness proofs lead to explicit phase reconstruction algorithms. Numerical simulations are presented to validate the theory.
Variable Rate Learned Wavelet Video Coding using Temporal Layer Adaptivity
Learned wavelet video coders provide an explainable framework by performing discrete wavelet transforms in temporal, horizontal, and vertical dimensions. With a temporal transform based on motion-compensated temporal filtering (MCTF), spatial and temporal scalability is obtained. In this paper, we introduce variable rate support and a mechanism for quality adaption to different temporal layers for a higher coding efficiency. Moreover, we propose a multi-stage training strategy that allows training with multiple temporal layers. Our experiments demonstrate Bj{\o}ntegaard Delta bitrate savings of at least -32% compared to a learned MCTF model without these extensions. Training and inference code is available at: https://github.com/FAU-LMS/Learned-pMCTF.
comment: 5 pages, 4 figures
DisCoPatch: Batch Statistics Are All You Need For OOD Detection, But Only If You Can Trust Them
Out-of-distribution (OOD) detection holds significant importance across many applications. While semantic and domain-shift OOD problems are well-studied, this work focuses on covariate shifts - subtle variations in the data distribution that can degrade machine learning performance. We hypothesize that detecting these subtle shifts can improve our understanding of in-distribution boundaries, ultimately improving OOD detection. In adversarial discriminators trained with Batch Normalization (BN), real and adversarial samples form distinct domains with unique batch statistics - a property we exploit for OOD detection. We introduce DisCoPatch, an unsupervised Adversarial Variational Autoencoder (VAE) framework that harnesses this mechanism. During inference, batches consist of patches from the same image, ensuring a consistent data distribution that allows the model to rely on batch statistics. DisCoPatch uses the VAE's suboptimal outputs (generated and reconstructed) as negative samples to train the discriminator, thereby improving its ability to delineate the boundary between in-distribution samples and covariate shifts. By tightening this boundary, DisCoPatch achieves state-of-the-art results in public OOD detection benchmarks. The proposed model not only excels in detecting covariate shifts, achieving 95.5% AUROC on ImageNet-1K(-C) but also outperforms all prior methods on public Near-OOD (95.0%) benchmarks. With a compact model size of 25MB, it achieves high OOD detection performance at notably lower latency than existing methods, making it an efficient and practical solution for real-world OOD detection applications. The code will be made publicly available
Generalizing Medical Image Representations via Quaternion Wavelet Networks
Neural network generalizability is becoming a broad research field due to the increasing availability of datasets from different sources and for various tasks. This issue is even wider when processing medical data, where a lack of methodological standards causes large variations being provided by different imaging centers or acquired with various devices and cofactors. To overcome these limitations, we introduce a novel, generalizable, data- and task-agnostic framework able to extract salient features from medical images. The proposed quaternion wavelet network (QUAVE) can be easily integrated with any pre-existing medical image analysis or synthesis task, and it can be involved with real, quaternion, or hypercomplex-valued models, generalizing their adoption to single-channel data. QUAVE first extracts different sub-bands through the quaternion wavelet transform, resulting in both low-frequency/approximation bands and high-frequency/fine-grained features. Then, it weighs the most representative set of sub-bands to be involved as input to any other neural model for image processing, replacing standard data samples. We conduct an extensive experimental evaluation comprising different datasets, diverse image analysis, and synthesis tasks including reconstruction, segmentation, and modality translation. We also evaluate QUAVE in combination with both real and quaternion-valued models. Results demonstrate the effectiveness and the generalizability of the proposed framework that improves network performance while being flexible to be adopted in manifold scenarios and robust to domain shifts. The full code is available at: https://github.com/ispamm/QWT.
comment: Paper accepted to Neurocomputing Journal
ECLARE: Efficient cross-planar learning for anisotropic resolution enhancement
In clinical imaging, magnetic resonance (MR) image volumes are often acquired as stacks of 2D slices with decreased scan times, improved signal-to-noise ratio, and image contrasts unique to 2D MR pulse sequences. While this is sufficient for clinical evaluation, automated algorithms designed for 3D analysis perform poorly on multi-slice 2D MR volumes, especially those with thick slices and gaps between slices. Super-resolution (SR) methods aim to address this problem, but previous methods do not address all of the following: slice profile shape estimation, slice gap, domain shift, and non-integer or arbitrary upsampling factors. In this paper, we propose ECLARE (Efficient Cross-planar Learning for Anisotropic Resolution Enhancement), a self-SR method that addresses each of these factors. ECLARE uses a slice profile estimated from the multi-slice 2D MR volume, trains a network to learn the mapping from low-resolution to high-resolution in-plane patches from the same volume, and performs SR with anti-aliasing. We compared ECLARE to cubic B-spline interpolation, SMORE, and other contemporary SR methods. We used realistic and representative simulations so that quantitative performance against ground truth can be computed, and ECLARE outperformed all other methods in both signal recovery and downstream tasks. Importantly, as ECLARE does not use external training data it cannot suffer from domain shift between training and testing. Our code is open-source and available at https://www.github.com/sremedios/eclare.
A Deep Unrolling Model with Hybrid Optimization Structure for Hyperspectral Image Deconvolution
In recent literature there are plenty of works that combine handcrafted and learnable regularizers to solve inverse imaging problems. While this hybrid approach has demonstrated promising results, the motivation for combining handcrafted and learnable regularizers remains largely underexplored. This work aims to justify this combination, by demonstrating that the incorporation of proper handcrafted regularizers alongside learnable regularizers not only reduces the complexity of the learnable prior, but also the performance is notably enhanced. To analyze the impact of this synergy, we introduce the notion of residual structure, to refer to the structure of the solution that cannot be modeled by the handcrafted regularizers per se. Motivated by these, we propose a novel optimization framework for the hyperspectral deconvolution problem, called DeepMix. Based on the proposed optimization framework, an interpretable model is developed using the deep unrolling strategy, which consists of three distinct modules, namely, a data consistency module, a module that enforces the effect of the handcrafted regularizers, and a denoising module. Recognizing the collaborative nature of these modules, this work proposes a context aware denoising module designed to sustain the advancements achieved by the cooperative efforts of the other modules. This is facilitated through the incorporation of a proper skip connection, ensuring that essential details and structures identified by other modules are effectively retained and not lost during denoising. Extensive experimental results across simulated and real-world datasets demonstrate that DeepMix is notable for surpassing existing methodologies, offering marked improvements in both image quality and computational efficiency.
Computer Vision and Pattern Recognition
Grouping First, Attending Smartly: Training-Free Acceleration for Diffusion Transformers
Diffusion-based Transformers have demonstrated impressive generative capabilities, but their high computational costs hinder practical deployment, for example, generating an $8192\times 8192$ image can take over an hour on an A100 GPU. In this work, we propose GRAT (\textbf{GR}ouping first, \textbf{AT}tending smartly), a training-free attention acceleration strategy for fast image and video generation without compromising output quality. The key insight is to exploit the inherent sparsity in learned attention maps (which tend to be locally focused) in pretrained Diffusion Transformers and leverage better GPU parallelism. Specifically, GRAT first partitions contiguous tokens into non-overlapping groups, aligning both with GPU execution patterns and the local attention structures learned in pretrained generative Transformers. It then accelerates attention by having all query tokens within the same group share a common set of attendable key and value tokens. These key and value tokens are further restricted to structured regions, such as surrounding blocks or criss-cross regions, significantly reducing computational overhead (e.g., attaining a \textbf{35.8$\times$} speedup over full attention when generating $8192\times 8192$ images) while preserving essential attention patterns and long-range context. We validate GRAT on pretrained Flux and HunyuanVideo for image and video generation, respectively. In both cases, GRAT achieves substantially faster inference without any fine-tuning, while maintaining the performance of full attention. We hope GRAT will inspire future research on accelerating Diffusion Transformers for scalable visual generation.
comment: Project website at oliverrensu.github.io/project/GRAT
Emerging Properties in Unified Multimodal Pretraining
Unifying multimodal understanding and generation has shown impressive capabilities in cutting-edge proprietary systems. In this work, we introduce BAGEL, an open0source foundational model that natively supports multimodal understanding and generation. BAGEL is a unified, decoder0only model pretrained on trillions of tokens curated from large0scale interleaved text, image, video, and web data. When scaled with such diverse multimodal interleaved data, BAGEL exhibits emerging capabilities in complex multimodal reasoning. As a result, it significantly outperforms open-source unified models in both multimodal generation and understanding across standard benchmarks, while exhibiting advanced multimodal reasoning abilities such as free-form image manipulation, future frame prediction, 3D manipulation, and world navigation. In the hope of facilitating further opportunities for multimodal research, we share the key findings, pretraining details, data creation protocal, and release our code and checkpoints to the community. The project page is at https://bagel-ai.org/
comment: 37 pages, 17 figures
UniGen: Enhanced Training & Test-Time Strategies for Unified Multimodal Understanding and Generation
We introduce UniGen, a unified multimodal large language model (MLLM) capable of image understanding and generation. We study the full training pipeline of UniGen from a data-centric perspective, including multi-stage pre-training, supervised fine-tuning, and direct preference optimization. More importantly, we propose a new Chain-of-Thought Verification (CoT-V) strategy for test-time scaling, which significantly boosts UniGen's image generation quality using a simple Best-of-N test-time strategy. Specifically, CoT-V enables UniGen to act as both image generator and verifier at test time, assessing the semantic alignment between a text prompt and its generated image in a step-by-step CoT manner. Trained entirely on open-source datasets across all stages, UniGen achieves state-of-the-art performance on a range of image understanding and generation benchmarks, with a final score of 0.78 on GenEval and 85.19 on DPG-Bench. Through extensive ablation studies, our work provides actionable insights and addresses key challenges in the full life cycle of building unified MLLMs, contributing meaningful directions to the future research.
comment: Technical report
Two Experts Are All You Need for Steering Thinking: Reinforcing Cognitive Effort in MoE Reasoning Models Without Additional Training
Mixture-of-Experts (MoE) architectures within Large Reasoning Models (LRMs) have achieved impressive reasoning capabilities by selectively activating experts to facilitate structured cognitive processes. Despite notable advances, existing reasoning models often suffer from cognitive inefficiencies like overthinking and underthinking. To address these limitations, we introduce a novel inference-time steering methodology called Reinforcing Cognitive Experts (RICE), designed to improve reasoning performance without additional training or complex heuristics. Leveraging normalized Pointwise Mutual Information (nPMI), we systematically identify specialized experts, termed ''cognitive experts'' that orchestrate meta-level reasoning operations characterized by tokens like ''''. Empirical evaluations with leading MoE-based LRMs (DeepSeek-R1 and Qwen3-235B) on rigorous quantitative and scientific reasoning benchmarks demonstrate noticeable and consistent improvements in reasoning accuracy, cognitive efficiency, and cross-domain generalization. Crucially, our lightweight approach substantially outperforms prevalent reasoning-steering techniques, such as prompt design and decoding constraints, while preserving the model's general instruction-following skills. These results highlight reinforcing cognitive experts as a promising, practical, and interpretable direction to enhance cognitive efficiency within advanced reasoning models.
comment: Work in progress
Visionary-R1: Mitigating Shortcuts in Visual Reasoning with Reinforcement Learning
Learning general-purpose reasoning capabilities has long been a challenging problem in AI. Recent research in large language models (LLMs), such as DeepSeek-R1, has shown that reinforcement learning techniques like GRPO can enable pre-trained LLMs to develop reasoning capabilities using simple question-answer pairs. In this paper, we aim to train visual language models (VLMs) to perform reasoning on image data through reinforcement learning and visual question-answer pairs, without any explicit chain-of-thought (CoT) supervision. Our findings indicate that simply applying reinforcement learning to a VLM -- by prompting the model to produce a reasoning chain before providing an answer -- can lead the model to develop shortcuts from easy questions, thereby reducing its ability to generalize across unseen data distributions. We argue that the key to mitigating shortcut learning is to encourage the model to interpret images prior to reasoning. Therefore, we train the model to adhere to a caption-reason-answer output format: initially generating a detailed caption for an image, followed by constructing an extensive reasoning chain. When trained on 273K CoT-free visual question-answer pairs and using only reinforcement learning, our model, named Visionary-R1, outperforms strong multimodal models, such as GPT-4o, Claude3.5-Sonnet, and Gemini-1.5-Pro, on multiple visual reasoning benchmarks.
Training-Free Watermarking for Autoregressive Image Generation
Invisible image watermarking can protect image ownership and prevent malicious misuse of visual generative models. However, existing generative watermarking methods are mainly designed for diffusion models while watermarking for autoregressive image generation models remains largely underexplored. We propose IndexMark, a training-free watermarking framework for autoregressive image generation models. IndexMark is inspired by the redundancy property of the codebook: replacing autoregressively generated indices with similar indices produces negligible visual differences. The core component in IndexMark is a simple yet effective match-then-replace method, which carefully selects watermark tokens from the codebook based on token similarity, and promotes the use of watermark tokens through token replacement, thereby embedding the watermark without affecting the image quality. Watermark verification is achieved by calculating the proportion of watermark tokens in generated images, with precision further improved by an Index Encoder. Furthermore, we introduce an auxiliary validation scheme to enhance robustness against cropping attacks. Experiments demonstrate that IndexMark achieves state-of-the-art performance in terms of image quality and verification accuracy, and exhibits robustness against various perturbations, including cropping, noises, Gaussian blur, random erasing, color jittering, and JPEG compression.
UniCTokens: Boosting Personalized Understanding and Generation via Unified Concept Tokens
Personalized models have demonstrated remarkable success in understanding and generating concepts provided by users. However, existing methods use separate concept tokens for understanding and generation, treating these tasks in isolation. This may result in limitations for generating images with complex prompts. For example, given the concept $\langle bo\rangle$, generating "$\langle bo\rangle$ wearing its hat" without additional textual descriptions of its hat. We call this kind of generation personalized knowledge-driven generation. To address the limitation, we present UniCTokens, a novel framework that effectively integrates personalized information into a unified vision language model (VLM) for understanding and generation. UniCTokens trains a set of unified concept tokens to leverage complementary semantics, boosting two personalized tasks. Moreover, we propose a progressive training strategy with three stages: understanding warm-up, bootstrapping generation from understanding, and deepening understanding from generation to enhance mutual benefits between both tasks. To quantitatively evaluate the unified VLM personalization, we present UnifyBench, the first benchmark for assessing concept understanding, concept generation, and knowledge-driven generation. Experimental results on UnifyBench indicate that UniCTokens shows competitive performance compared to leading methods in concept understanding, concept generation, and achieving state-of-the-art results in personalized knowledge-driven generation. Our research demonstrates that enhanced understanding improves generation, and the generation process can yield valuable insights into understanding. Our code and dataset will be released at: \href{https://github.com/arctanxarc/UniCTokens}{https://github.com/arctanxarc/UniCTokens}.
AKRMap: Adaptive Kernel Regression for Trustworthy Visualization of Cross-Modal Embeddings
Cross-modal embeddings form the foundation for multi-modal models. However, visualization methods for interpreting cross-modal embeddings have been primarily confined to traditional dimensionality reduction (DR) techniques like PCA and t-SNE. These DR methods primarily focus on feature distributions within a single modality, whilst failing to incorporate metrics (e.g., CLIPScore) across multiple modalities.This paper introduces AKRMap, a new DR technique designed to visualize cross-modal embeddings metric with enhanced accuracy by learning kernel regression of the metric landscape in the projection space. Specifically, AKRMap constructs a supervised projection network guided by a post-projection kernel regression loss, and employs adaptive generalized kernels that can be jointly optimized with the projection. This approach enables AKRMap to efficiently generate visualizations that capture complex metric distributions, while also supporting interactive features such as zoom and overlay for deeper exploration. Quantitative experiments demonstrate that AKRMap outperforms existing DR methods in generating more accurate and trustworthy visualizations. We further showcase the effectiveness of AKRMap in visualizing and comparing cross-modal embeddings for text-to-image models. Code and demo are available at https://github.com/yilinye/AKRMap.
EmoGist: Efficient In-Context Learning for Visual Emotion Understanding
In this paper, we introduce EmoGist, a training-free, in-context learning method for performing visual emotion classification with LVLMs. The key intuition of our approach is that context-dependent definition of emotion labels could allow more accurate predictions of emotions, as the ways in which emotions manifest within images are highly context dependent and nuanced. EmoGist pre-generates multiple explanations of emotion labels, by analyzing the clusters of example images belonging to each category. At test time, we retrieve a version of explanation based on embedding similarity, and feed it to a fast VLM for classification. Through our experiments, we show that EmoGist allows up to 13 points improvement in micro F1 scores with the multi-label Memotion dataset, and up to 8 points in macro F1 in the multi-class FI dataset.
Beyond Words: Multimodal LLM Knows When to Speak
While large language model (LLM)-based chatbots have demonstrated strong capabilities in generating coherent and contextually relevant responses, they often struggle with understanding when to speak, particularly in delivering brief, timely reactions during ongoing conversations. This limitation arises largely from their reliance on text input, lacking the rich contextual cues in real-world human dialogue. In this work, we focus on real-time prediction of response types, with an emphasis on short, reactive utterances that depend on subtle, multimodal signals across vision, audio, and text. To support this, we introduce a new multimodal dataset constructed from real-world conversational videos, containing temporally aligned visual, auditory, and textual streams. This dataset enables fine-grained modeling of response timing in dyadic interactions. Building on this dataset, we propose MM-When2Speak, a multimodal LLM-based model that adaptively integrates visual, auditory, and textual context to predict when a response should occur, and what type of response is appropriate. Experiments show that MM-When2Speak significantly outperforms state-of-the-art unimodal and LLM-based baselines, achieving up to a 4x improvement in response timing accuracy over leading commercial LLMs. These results underscore the importance of multimodal inputs for producing timely, natural, and engaging conversational AI.
comment: Project page: https://github.com/lzk901372/MM-When2Speak
CAD-Coder: An Open-Source Vision-Language Model for Computer-Aided Design Code Generation
Efficient creation of accurate and editable 3D CAD models is critical in engineering design, significantly impacting cost and time-to-market in product innovation. Current manual workflows remain highly time-consuming and demand extensive user expertise. While recent developments in AI-driven CAD generation show promise, existing models are limited by incomplete representations of CAD operations, inability to generalize to real-world images, and low output accuracy. This paper introduces CAD-Coder, an open-source Vision-Language Model (VLM) explicitly fine-tuned to generate editable CAD code (CadQuery Python) directly from visual input. Leveraging a novel dataset that we created--GenCAD-Code, consisting of over 163k CAD-model image and code pairs--CAD-Coder outperforms state-of-the-art VLM baselines such as GPT-4.5 and Qwen2.5-VL-72B, achieving a 100% valid syntax rate and the highest accuracy in 3D solid similarity. Notably, our VLM demonstrates some signs of generalizability, successfully generating CAD code from real-world images and executing CAD operations unseen during fine-tuning. The performance and adaptability of CAD-Coder highlights the potential of VLMs fine-tuned on code to streamline CAD workflows for engineers and designers. CAD-Coder is publicly available at: https://github.com/anniedoris/CAD-Coder.
VideoEval-Pro: Robust and Realistic Long Video Understanding Evaluation
Large multimodal models (LMMs) have recently emerged as a powerful tool for long video understanding (LVU), prompting the development of standardized LVU benchmarks to evaluate their performance. However, our investigation reveals a rather sober lesson for existing LVU benchmarks. First, most existing benchmarks rely heavily on multiple-choice questions (MCQs), whose evaluation results are inflated due to the possibility of guessing the correct answer; Second, a significant portion of questions in these benchmarks have strong priors to allow models to answer directly without even reading the input video. For example, Gemini-1.5-Pro can achieve over 50\% accuracy given a random frame from a long video on Video-MME. We also observe that increasing the number of frames does not necessarily lead to improvement on existing benchmarks, which is counterintuitive. As a result, the validity and robustness of current LVU benchmarks are undermined, impeding a faithful assessment of LMMs' long-video understanding capability. To tackle this problem, we propose VideoEval-Pro, a realistic LVU benchmark containing questions with open-ended short-answer, which truly require understanding the entire video. VideoEval-Pro assesses both segment-level and full-video understanding through perception and reasoning tasks. By evaluating 21 proprietary and open-source video LMMs, we conclude the following findings: (1) video LMMs show drastic performance ($>$25\%) drops on open-ended questions compared with MCQs; (2) surprisingly, higher MCQ scores do not lead to higher open-ended scores on VideoEval-Pro; (3) compared to other MCQ benchmarks, VideoEval-Pro benefits more from increasing the number of input frames. Our results show that VideoEval-Pro offers a more realistic and reliable measure of long video understanding, providing a clearer view of progress in this domain.
comment: Dataset: https://huggingface.co/datasets/TIGER-Lab/VideoEval-Pro, Project Webpage: https://tiger-ai-lab.github.io/VideoEval-Pro
Dual Precision Quantization for Efficient and Accurate Deep Neural Networks Inference CVPR
Deep neural networks have achieved state-of-the-art results in a wide range of applications, from natural language processing and computer vision to speech recognition. However, as tasks become increasingly complex, model sizes continue to grow, posing challenges in latency and memory efficiency. To meet these constraints, post-training quantization has emerged as a promising solution. In this paper, we propose a novel hardware-efficient quantization and inference scheme that exploits hardware advantages with minimal accuracy degradation. Specifically, we introduce a W4A8 scheme, where weights are quantized and stored using 4-bit integer precision, and inference computations are performed using 8-bit floating-point arithmetic, demonstrating significant speedups and improved memory utilization compared to 16-bit operations, applicable on various modern accelerators. To mitigate accuracy loss, we develop a novel quantization algorithm, dubbed Dual Precision Quantization (DPQ), that leverages the unique structure of our scheme without introducing additional inference overhead. Experimental results demonstrate improved performance (i.e., increased throughput) while maintaining tolerable accuracy degradation relative to the full-precision model.
comment: Accepted at eLVM Workshop, CVPR, 2025
A General Framework for Group Sparsity in Hyperspectral Unmixing Using Endmember Bundles
Due to low spatial resolution, hyperspectral data often consists of mixtures of contributions from multiple materials. This limitation motivates the task of hyperspectral unmixing (HU), a fundamental problem in hyperspectral imaging. HU aims to identify the spectral signatures (\textit{endmembers}) of the materials present in an observed scene, along with their relative proportions (\textit{fractional abundance}) in each pixel. A major challenge lies in the class variability in materials, which hinders accurate representation by a single spectral signature, as assumed in the conventional linear mixing model. Moreover, To address this issue, we propose using group sparsity after representing each material with a set of spectral signatures, known as endmember bundles, where each group corresponds to a specific material. In particular, we develop a bundle-based framework that can enforce either inter-group sparsity or sparsity within and across groups (SWAG) on the abundance coefficients. Furthermore, our framework offers the flexibility to incorporate a variety of sparsity-promoting penalties, among which the transformed $\ell_1$ (TL1) penalty is a novel regularization in the HU literature. Extensive experiments conducted on both synthetic and real hyperspectral data demonstrate the effectiveness and superiority of the proposed approaches.
KERL: Knowledge-Enhanced Personalized Recipe Recommendation using Large Language Models ACL 2025
Recent advances in large language models (LLMs) and the abundance of food data have resulted in studies to improve food understanding using LLMs. Despite several recommendation systems utilizing LLMs and Knowledge Graphs (KGs), there has been limited research on integrating food related KGs with LLMs. We introduce KERL, a unified system that leverages food KGs and LLMs to provide personalized food recommendations and generates recipes with associated micro-nutritional information. Given a natural language question, KERL extracts entities, retrieves subgraphs from the KG, which are then fed into the LLM as context to select the recipes that satisfy the constraints. Next, our system generates the cooking steps and nutritional information for each recipe. To evaluate our approach, we also develop a benchmark dataset by curating recipe related questions, combined with constraints and personal preferences. Through extensive experiments, we show that our proposed KG-augmented LLM significantly outperforms existing approaches, offering a complete and coherent solution for food recommendation, recipe generation, and nutritional analysis. Our code and benchmark datasets are publicly available at https://github.com/mohbattharani/KERL.
comment: Accepted at ACL 2025
3D Reconstruction from Sketches
We consider the problem of reconstructing a 3D scene from multiple sketches. We propose a pipeline which involves (1) stitching together multiple sketches through use of correspondence points, (2) converting the stitched sketch into a realistic image using a CycleGAN, and (3) estimating that image's depth-map using a pre-trained convolutional neural network based architecture called MegaDepth. Our contribution includes constructing a dataset of image-sketch pairs, the images for which are from the Zurich Building Database, and sketches have been generated by us. We use this dataset to train a CycleGAN for our pipeline's second step. We end up with a stitching process that does not generalize well to real drawings, but the rest of the pipeline that creates a 3D reconstruction from a single sketch performs quite well on a wide variety of drawings.
comment: 6 pages, 8 figures, paper dated December 12, 2018
Instance Segmentation for Point Sets
Recently proposed neural network architectures like PointNet [QSMG16] and PointNet++ [QYSG17] have made it possible to apply Deep Learning to 3D point sets. The feature representations of shapes learned by these two networks enabled training classifiers for Semantic Segmentation, and more recently for Instance Segmentation via the Similarity Group Proposal Network (SGPN) [WYHN17]. One area of improvement which has been highlighted by SGPN's authors, pertains to use of memory intensive similarity matrices which occupy memory quadratic in the number of points. In this report, we attempt to tackle this issue through use of two sampling based methods, which compute Instance Segmentation on a sub-sampled Point Set, and then extrapolate labels to the complete set using the nearest neigbhour approach. While both approaches perform equally well on large sub-samples, the random-based strategy gives the most improvements in terms of speed and memory usage.
comment: 6 pages, 11 figures, paper dated 2019
Automated Fetal Biometry Assessment with Deep Ensembles using Sparse-Sampling of 2D Intrapartum Ultrasound Images MICCAI
The International Society of Ultrasound advocates Intrapartum Ultrasound (US) Imaging in Obstetrics and Gynecology (ISUOG) to monitor labour progression through changes in fetal head position. Two reliable ultrasound-derived parameters that are used to predict outcomes of instrumental vaginal delivery are the angle of progression (AoP) and head-symphysis distance (HSD). In this work, as part of the Intrapartum Ultrasounds Grand Challenge (IUGC) 2024, we propose an automated fetal biometry measurement pipeline to reduce intra- and inter-observer variability and improve measurement reliability. Our pipeline consists of three key tasks: (i) classification of standard planes (SP) from US videos, (ii) segmentation of fetal head and pubic symphysis from the detected SPs, and (iii) computation of the AoP and HSD from the segmented regions. We perform sparse sampling to mitigate class imbalances and reduce spurious correlations in task (i), and utilize ensemble-based deep learning methods for task (i) and (ii) to enhance generalizability under different US acquisition settings. Finally, to promote robustness in task iii) with respect to the structural fidelity of measurements, we retain the largest connected components and apply ellipse fitting to the segmentations. Our solution achieved ACC: 0.9452, F1: 0.9225, AUC: 0.983, MCC: 0.8361, DSC: 0.918, HD: 19.73, ASD: 5.71, $\Delta_{AoP}$: 8.90 and $\Delta_{HSD}$: 14.35 across an unseen hold-out set of 4 patients and 224 US frames. The results from the proposed automated pipeline can improve the understanding of labour arrest causes and guide the development of clinical risk stratification tools for efficient and effective prenatal care.
comment: Top 5 in MICCAI IUGC 2024: Intrapartum Ultrasound Grand Challenge & Runners up in Classification!
Neural Inverse Scattering with Score-based Regularization
Inverse scattering is a fundamental challenge in many imaging applications, ranging from microscopy to remote sensing. Solving this problem often requires jointly estimating two unknowns -- the image and the scattering field inside the object -- necessitating effective image prior to regularize the inference. In this paper, we propose a regularized neural field (NF) approach which integrates the denoising score function used in score-based generative models. The neural field formulation offers convenient flexibility to performing joint estimation, while the denoising score function imposes the rich structural prior of images. Our results on three high-contrast simulated objects show that the proposed approach yields a better imaging quality compared to the state-of-the-art NF approach, where regularization is based on total variation.
Dynadiff: Single-stage Decoding of Images from Continuously Evolving fMRI
Brain-to-image decoding has been recently propelled by the progress in generative AI models and the availability of large ultra-high field functional Magnetic Resonance Imaging (fMRI). However, current approaches depend on complicated multi-stage pipelines and preprocessing steps that typically collapse the temporal dimension of brain recordings, thereby limiting time-resolved brain decoders. Here, we introduce Dynadiff (Dynamic Neural Activity Diffusion for Image Reconstruction), a new single-stage diffusion model designed for reconstructing images from dynamically evolving fMRI recordings. Our approach offers three main contributions. First, Dynadiff simplifies training as compared to existing approaches. Second, our model outperforms state-of-the-art models on time-resolved fMRI signals, especially on high-level semantic image reconstruction metrics, while remaining competitive on preprocessed fMRI data that collapse time. Third, this approach allows a precise characterization of the evolution of image representations in brain activity. Overall, this work lays the foundation for time-resolved brain-to-image decoding.
Neural Video Compression with Context Modulation CVPR 2025
Efficient video coding is highly dependent on exploiting the temporal redundancy, which is usually achieved by extracting and leveraging the temporal context in the emerging conditional coding-based neural video codec (NVC). Although the latest NVC has achieved remarkable progress in improving the compression performance, the inherent temporal context propagation mechanism lacks the ability to sufficiently leverage the reference information, limiting further improvement. In this paper, we address the limitation by modulating the temporal context with the reference frame in two steps. Specifically, we first propose the flow orientation to mine the inter-correlation between the reference frame and prediction frame for generating the additional oriented temporal context. Moreover, we introduce the context compensation to leverage the oriented context to modulate the propagated temporal context generated from the propagated reference feature. Through the synergy mechanism and decoupling loss supervision, the irrelevant propagated information can be effectively eliminated to ensure better context modeling. Experimental results demonstrate that our codec achieves on average 22.7% bitrate reduction over the advanced traditional video codec H.266/VVC, and offers an average 10.1% bitrate saving over the previous state-of-the-art NVC DCVC-FM. The code is available at https://github.com/Austin4USTC/DCMVC.
comment: 11 pages, 8 figures, accepted by CVPR 2025
Personalize Your Gaussian: Consistent 3D Scene Personalization from a Single Image
Personalizing 3D scenes from a single reference image enables intuitive user-guided editing, which requires achieving both multi-view consistency across perspectives and referential consistency with the input image. However, these goals are particularly challenging due to the viewpoint bias caused by the limited perspective provided in a single image. Lacking the mechanisms to effectively expand reference information beyond the original view, existing methods of image-conditioned 3DGS personalization often suffer from this viewpoint bias and struggle to produce consistent results. Therefore, in this paper, we present Consistent Personalization for 3D Gaussian Splatting (CP-GS), a framework that progressively propagates the single-view reference appearance to novel perspectives. In particular, CP-GS integrates pre-trained image-to-3D generation and iterative LoRA fine-tuning to extract and extend the reference appearance, and finally produces faithful multi-view guidance images and the personalized 3DGS outputs through a view-consistent generation process guided by geometric cues. Extensive experiments on real-world scenes show that our CP-GS effectively mitigates the viewpoint bias, achieving high-quality personalization that significantly outperforms existing methods. The code will be released at https://github.com/Yuxuan-W/CP-GS.
comment: 9 pages
diffDemorph: Extending Reference-Free Demorphing to Unseen Faces
A face morph is created by combining two (or more) face images corresponding to two (or more) identities to produce a composite that successfully matches the constituent identities. Reference-free (RF) demorphing reverses this process using only the morph image, without the need for additional reference images. Previous RF demorphing methods were overly constrained, as they rely on assumptions about the distributions of training and testing morphs such as the morphing technique used, face style, and images used to create the morph. In this paper, we introduce a novel diffusion-based approach that effectively disentangles component images from a composite morph image with high visual fidelity. Our method is the first to generalize across morph techniques and face styles, beating the current state of the art by $\geq 59.46\%$ under a common training protocol across all datasets tested. We train our method on morphs created using synthetically generated face images and test on real morphs, thereby enhancing the practicality of the technique. Experiments on six datasets and two face matchers establish the utility and efficacy of our method.
SparC: Sparse Representation and Construction for High-Resolution 3D Shapes Modeling
High-fidelity 3D object synthesis remains significantly more challenging than 2D image generation due to the unstructured nature of mesh data and the cubic complexity of dense volumetric grids. Existing two-stage pipelines-compressing meshes with a VAE (using either 2D or 3D supervision), followed by latent diffusion sampling-often suffer from severe detail loss caused by inefficient representations and modality mismatches introduced in VAE. We introduce SparC, a unified framework that combines a sparse deformable marching cubes representation SparseCubes with a novel encoder SparConv-VAE. SparseCubes converts raw meshes into high-resolution ($1024^3$) surfaces with arbitrary topology by scattering signed distance and deformation fields onto a sparse cube, allowing differentiable optimization. SparConv-VAE is the first modality-consistent variational autoencoder built entirely upon sparse convolutional networks, enabling efficient and near-lossless 3D reconstruction suitable for high-resolution generative modeling through latent diffusion. SparC achieves state-of-the-art reconstruction fidelity on challenging inputs, including open surfaces, disconnected components, and intricate geometry. It preserves fine-grained shape details, reduces training and inference cost, and integrates naturally with latent diffusion models for scalable, high-resolution 3D generation.
comment: Homepage: https://lizhihao6.github.io/SparC
ReservoirTTA: Prolonged Test-time Adaptation for Evolving and Recurring Domains
This paper introduces ReservoirTTA, a novel plug-in framework designed for prolonged test-time adaptation (TTA) in scenarios where the test domain continuously shifts over time, including cases where domains recur or evolve gradually. At its core, ReservoirTTA maintains a reservoir of domain-specialized models -- an adaptive test-time model ensemble -- that both detects new domains via online clustering over style features of incoming samples and routes each sample to the appropriate specialized model, and thereby enables domain-specific adaptation. This multi-model strategy overcomes key limitations of single model adaptation, such as catastrophic forgetting, inter-domain interference, and error accumulation, ensuring robust and stable performance on sustained non-stationary test distributions. Our theoretical analysis reveals key components that bound parameter variance and prevent model collapse, while our plug-in TTA module mitigates catastrophic forgetting of previously encountered domains. Extensive experiments on the classification corruption benchmarks, including ImageNet-C and CIFAR-10/100-C, as well as the Cityscapes$\rightarrow$ACDC semantic segmentation task, covering recurring and continuously evolving domain shifts, demonstrate that ReservoirTTA significantly improves adaptation accuracy and maintains stable performance across prolonged, recurring shifts, outperforming state-of-the-art methods.
Enhancing Interpretability of Sparse Latent Representations with Class Information
Variational Autoencoders (VAEs) are powerful generative models for learning latent representations. Standard VAEs generate dispersed and unstructured latent spaces by utilizing all dimensions, which limits their interpretability, especially in high-dimensional spaces. To address this challenge, Variational Sparse Coding (VSC) introduces a spike-and-slab prior distribution, resulting in sparse latent representations for each input. These sparse representations, characterized by a limited number of active dimensions, are inherently more interpretable. Despite this advantage, VSC falls short in providing structured interpretations across samples within the same class. Intuitively, samples from the same class are expected to share similar attributes while allowing for variations in those attributes. This expectation should manifest as consistent patterns of active dimensions in their latent representations, but VSC does not enforce such consistency. In this paper, we propose a novel approach to enhance the latent space interpretability by ensuring that the active dimensions in the latent space are consistent across samples within the same class. To achieve this, we introduce a new loss function that encourages samples from the same class to share similar active dimensions. This alignment creates a more structured and interpretable latent space, where each shared dimension corresponds to a high-level concept, or "factor." Unlike existing disentanglement-based methods that primarily focus on global factors shared across all classes, our method captures both global and class-specific factors, thereby enhancing the utility and interpretability of latent representations.
RAVENEA: A Benchmark for Multimodal Retrieval-Augmented Visual Culture Understanding
As vision-language models (VLMs) become increasingly integrated into daily life, the need for accurate visual culture understanding is becoming critical. Yet, these models frequently fall short in interpreting cultural nuances effectively. Prior work has demonstrated the effectiveness of retrieval-augmented generation (RAG) in enhancing cultural understanding in text-only settings, while its application in multimodal scenarios remains underexplored. To bridge this gap, we introduce RAVENEA (Retrieval-Augmented Visual culturE uNdErstAnding), a new benchmark designed to advance visual culture understanding through retrieval, focusing on two tasks: culture-focused visual question answering (cVQA) and culture-informed image captioning (cIC). RAVENEA extends existing datasets by integrating over 10,000 Wikipedia documents curated and ranked by human annotators. With RAVENEA, we train and evaluate seven multimodal retrievers for each image query, and measure the downstream impact of retrieval-augmented inputs across fourteen state-of-the-art VLMs. Our results show that lightweight VLMs, when augmented with culture-aware retrieval, outperform their non-augmented counterparts (by at least 3.2% absolute on cVQA and 6.2% absolute on cIC). This highlights the value of retrieval-augmented methods and culturally inclusive benchmarks for multimodal understanding.
VisualQuality-R1: Reasoning-Induced Image Quality Assessment via Reinforcement Learning to Rank
DeepSeek-R1 has demonstrated remarkable effectiveness in incentivizing reasoning and generalization capabilities of large language models (LLMs) through reinforcement learning. Nevertheless, the potential of reasoning-induced computational modeling has not been thoroughly explored in the context of image quality assessment (IQA), a task critically dependent on visual reasoning. In this paper, we introduce VisualQuality-R1, a reasoning-induced no-reference IQA (NR-IQA) model, and we train it with reinforcement learning to rank, a learning algorithm tailored to the intrinsically relative nature of visual quality. Specifically, for a pair of images, we employ group relative policy optimization to generate multiple quality scores for each image. These estimates are then used to compute comparative probabilities of one image having higher quality than the other under the Thurstone model. Rewards for each quality estimate are defined using continuous fidelity measures rather than discretized binary labels. Extensive experiments show that the proposed VisualQuality-R1 consistently outperforms discriminative deep learning-based NR-IQA models as well as a recent reasoning-induced quality regression method. Moreover, VisualQuality-R1 is capable of generating contextually rich, human-aligned quality descriptions, and supports multi-dataset training without requiring perceptual scale realignment. These features make VisualQuality-R1 especially well-suited for reliably measuring progress in a wide range of image processing tasks like super-resolution and image generation.
Video Compression Commander: Plug-and-Play Inference Acceleration for Video Large Language Models
Video large language models (VideoLLM) excel at video understanding, but face efficiency challenges due to the quadratic complexity of abundant visual tokens. Our systematic analysis of token compression methods for VideoLLMs reveals two critical issues: (i) overlooking distinctive visual signals across frames, leading to information loss; (ii) suffering from implementation constraints, causing incompatibility with modern architectures or efficient operators. To address these challenges, we distill three design principles for VideoLLM token compression and propose a plug-and-play inference acceleration framework "Video Compression Commander" (VidCom2). By quantifying each frame's uniqueness, VidCom2 adaptively adjusts compression intensity across frames, effectively preserving essential information while reducing redundancy in video sequences. Extensive experiments across various VideoLLMs and benchmarks demonstrate the superior performance and efficiency of our VidCom2. With only 25% visual tokens, VidCom2 achieves 99.6% of the original performance on LLaVA-OV while reducing 70.8% of the LLM generation latency. Notably, our Frame Compression Adjustment strategy is compatible with other token compression methods to further improve their performance. Our code is available at https://github.com/xuyang-liu16/VidCom2.
comment: Our code is available at https://github.com/xuyang-liu16/VidCom2
Diving into the Fusion of Monocular Priors for Generalized Stereo Matching
The matching formulation makes it naturally hard for the stereo matching to handle ill-posed regions like occlusions and non-Lambertian surfaces. Fusing monocular priors has been proven helpful for ill-posed matching, but the biased monocular prior learned from small stereo datasets constrains the generalization. Recently, stereo matching has progressed by leveraging the unbiased monocular prior from the vision foundation model (VFM) to improve the generalization in ill-posed regions. We dive into the fusion process and observe three main problems limiting the fusion of the VFM monocular prior. The first problem is the misalignment between affine-invariant relative monocular depth and absolute depth of disparity. Besides, when we use the monocular feature in an iterative update structure, the over-confidence in the disparity update leads to local optima results. A direct fusion of a monocular depth map could alleviate the local optima problem, but noisy disparity results computed at the first several iterations will misguide the fusion. In this paper, we propose a binary local ordering map to guide the fusion, which converts the depth map into a binary relative format, unifying the relative and absolute depth representation. The computed local ordering map is also used to re-weight the initial disparity update, resolving the local optima and noisy problem. In addition, we formulate the final direct fusion of monocular depth to the disparity as a registration problem, where a pixel-wise linear regression module can globally and adaptively align them. Our method fully exploits the monocular prior to support stereo matching results effectively and efficiently. We significantly improve the performance from the experiments when generalizing from SceneFlow to Middlebury and Booster datasets while barely reducing the efficiency.
comment: Code: https://github.com/YaoChengTang/Diving-into-the-Fusion-of-Monocular-Priors-for-Generalized-Stereo-Matching
Investigating and Enhancing the Robustness of Large Multimodal Models Against Temporal Inconsistency
Large Multimodal Models (LMMs) have recently demonstrated impressive performance on general video comprehension benchmarks. Nevertheless, for broader applications, the robustness of their temporal analysis capability needs to be thoroughly investigated yet predominantly ignored. Motivated by this, we propose a novel temporal robustness benchmark (TemRobBench), which introduces temporal inconsistency perturbations separately at the visual and textual modalities to assess the robustness of models. We evaluate 16 mainstream LMMs and find that they exhibit over-reliance on prior knowledge and textual context in adversarial environments, while ignoring the actual temporal dynamics in the video. To mitigate this issue, we design panoramic direct preference optimization (PanoDPO), which encourages LMMs to incorporate both visual and linguistic feature preferences simultaneously. Experimental results show that PanoDPO can effectively enhance the model's robustness and reliability in temporal analysis.
ViC-Bench: Benchmarking Visual-Interleaved Chain-of-Thought Capability in MLLMs with Free-Style Intermediate State Representations
Visual-Interleaved Chain-of-Thought (VI-CoT) enables MLLMs to continually update their understanding and decisions based on step-wise intermediate visual states (IVS), much like a human would, which demonstrates impressive success in various tasks, thereby leading to emerged advancements in related benchmarks. Despite promising progress, current benchmarks provide models with relatively fixed IVS, rather than free-style IVS, whch might forcibly distort the original thinking trajectories, failing to evaluate their intrinsic reasoning capabilities. More importantly, existing benchmarks neglect to systematically explore the impact factors that IVS would impart to untamed reasoning performance. To tackle above gaps, we introduce a specialized benchmark termed ViC-Bench, consisting of four representive tasks: maze navigation, jigsaw puzzle, embodied long-horizon planning, and complex counting, where each task has dedicated free-style IVS generation pipeline supporting function calls. To systematically examine VI-CoT capability, we propose a thorough evaluation suite incorporating a progressive three-stage strategy with targeted new metrics. Besides, we establish Incremental Prompting Information Injection (IPII) strategy to ablatively explore the prompting factors for VI-CoT. We extensively conduct evaluations for 18 advanced MLLMs, revealing key insights into their VI-CoT capability. Our proposed benchmark is publicly open at Huggingface.
DeepEyes: Incentivizing "Thinking with Images" via Reinforcement Learning
Large Vision-Language Models (VLMs) have shown strong capabilities in multimodal understanding and reasoning, yet they are primarily constrained by text-based reasoning processes. However, achieving seamless integration of visual and textual reasoning which mirrors human cognitive processes remains a significant challenge. In particular, effectively incorporating advanced visual input processing into reasoning mechanisms is still an open question. Thus, in this paper, we explore the interleaved multimodal reasoning paradigm and introduce DeepEyes, a model with "thinking with images" capabilities incentivized through end-to-end reinforcement learning without the need for cold-start SFT. Notably, this ability emerges natively within the model itself, leveraging its inherent grounding ability as a tool instead of depending on separate specialized models. Specifically, we propose a tool-use-oriented data selection mechanism and a reward strategy to encourage successful tool-assisted reasoning trajectories. DeepEyes achieves significant performance gains on fine-grained perception and reasoning benchmarks and also demonstrates improvement in grounding, hallucination, and mathematical reasoning tasks. Interestingly, we observe the distinct evolution of tool-calling behavior from initial exploration to efficient and accurate exploitation, and diverse thinking patterns that closely mirror human visual reasoning processes. Code is available at https://github.com/Visual-Agent/DeepEyes.
Vision-Language Modeling Meets Remote Sensing: Models, Datasets and Perspectives
Vision-language modeling (VLM) aims to bridge the information gap between images and natural language. Under the new paradigm of first pre-training on massive image-text pairs and then fine-tuning on task-specific data, VLM in the remote sensing domain has made significant progress. The resulting models benefit from the absorption of extensive general knowledge and demonstrate strong performance across a variety of remote sensing data analysis tasks. Moreover, they are capable of interacting with users in a conversational manner. In this paper, we aim to provide the remote sensing community with a timely and comprehensive review of the developments in VLM using the two-stage paradigm. Specifically, we first cover a taxonomy of VLM in remote sensing: contrastive learning, visual instruction tuning, and text-conditioned image generation. For each category, we detail the commonly used network architecture and pre-training objectives. Second, we conduct a thorough review of existing works, examining foundation models and task-specific adaptation methods in contrastive-based VLM, architectural upgrades, training strategies and model capabilities in instruction-based VLM, as well as generative foundation models with their representative downstream applications. Third, we summarize datasets used for VLM pre-training, fine-tuning, and evaluation, with an analysis of their construction methodologies (including image sources and caption generation) and key properties, such as scale and task adaptability. Finally, we conclude this survey with insights and discussions on future research directions: cross-modal representation alignment, vague requirement comprehension, explanation-driven model reliability, continually scalable model capabilities, and large-scale datasets featuring richer modalities and greater challenges.
comment: Accepted by IEEE Geoscience and Remote Sensing Magazine
Dual Data Alignment Makes AI-Generated Image Detector Easier Generalizable
Existing detectors are often trained on biased datasets, leading to the possibility of overfitting on non-causal image attributes that are spuriously correlated with real/synthetic labels. While these biased features enhance performance on the training data, they result in substantial performance degradation when applied to unbiased datasets. One common solution is to perform dataset alignment through generative reconstruction, matching the semantic content between real and synthetic images. However, we revisit this approach and show that pixel-level alignment alone is insufficient. The reconstructed images still suffer from frequency-level misalignment, which can perpetuate spurious correlations. To illustrate, we observe that reconstruction models tend to restore the high-frequency details lost in real images (possibly due to JPEG compression), inadvertently creating a frequency-level misalignment, where synthetic images appear to have richer high-frequency content than real ones. This misalignment leads to models associating high-frequency features with synthetic labels, further reinforcing biased cues. To resolve this, we propose Dual Data Alignment (DDA), which aligns both the pixel and frequency domains. Moreover, we introduce two new test sets: DDA-COCO, containing DDA-aligned synthetic images for testing detector performance on the most aligned dataset, and EvalGEN, featuring the latest generative models for assessing detectors under new generative architectures such as visual auto-regressive generators. Finally, our extensive evaluations demonstrate that a detector trained exclusively on DDA-aligned MSCOCO could improve across 8 diverse benchmarks by a non-trivial margin, showing a +7.2% on in-the-wild benchmarks, highlighting the improved generalizability of unbiased detectors.
comment: 12 Pages, 9 figures
Vid2World: Crafting Video Diffusion Models to Interactive World Models
World models, which predict transitions based on history observation and action sequences, have shown great promise in improving data efficiency for sequential decision making. However, existing world models often require extensive domain-specific training and still produce low-fidelity, coarse predictions, limiting their applicability in complex environments. In contrast, video diffusion models trained on large, internet-scale datasets have demonstrated impressive capabilities in generating high-quality videos that capture diverse real-world dynamics. In this work, we present Vid2World, a general approach for leveraging and transferring pre-trained video diffusion models into interactive world models. To bridge the gap, Vid2World performs casualization of a pre-trained video diffusion model by crafting its architecture and training objective to enable autoregressive generation. Furthermore, it introduces a causal action guidance mechanism to enhance action controllability in the resulting interactive world model. Extensive experiments in robot manipulation and game simulation domains show that our method offers a scalable and effective approach for repurposing highly capable video diffusion models to interactive world models.
comment: Project page: http://knightnemo.github.io/vid2world/
Egocentric Action-aware Inertial Localization in Point Clouds
This paper presents a novel inertial localization framework named Egocentric Action-aware Inertial Localization (EAIL), which leverages egocentric action cues from head-mounted IMU signals to localize the target individual within a 3D point cloud. Human inertial localization is challenging due to IMU sensor noise that causes trajectory drift over time. The diversity of human actions further complicates IMU signal processing by introducing various motion patterns. Nevertheless, we observe that some actions observed through the head-mounted IMU correlate with spatial environmental structures (e.g., bending down to look inside an oven, washing dishes next to a sink), thereby serving as spatial anchors to compensate for the localization drift. The proposed EAIL framework learns such correlations via hierarchical multi-modal alignment. By assuming that the 3D point cloud of the environment is available, it contrastively learns modality encoders that align short-term egocentric action cues in IMU signals with local environmental features in the point cloud. These encoders are then used in reasoning the IMU data and the point cloud over time and space to perform inertial localization. Interestingly, these encoders can further be utilized to recognize the corresponding sequence of actions as a by-product. Extensive experiments demonstrate the effectiveness of the proposed framework over state-of-the-art inertial localization and inertial action recognition baselines.
Replace in Translation: Boost Concept Alignment in Counterfactual Text-to-Image
Text-to-Image (T2I) has been prevalent in recent years, with most common condition tasks having been optimized nicely. Besides, counterfactual Text-to-Image is obstructing us from a more versatile AIGC experience. For those scenes that are impossible to happen in real world and anti-physics, we should spare no efforts in increasing the factual feel, which means synthesizing images that people think very likely to be happening, and concept alignment, which means all the required objects should be in the same frame. In this paper, we focus on concept alignment. As controllable T2I models have achieved satisfactory performance for real applications, we utilize this technology to replace the objects in a synthesized image in latent space step-by-step to change the image from a common scene to a counterfactual scene to meet the prompt. We propose a strategy to instruct this replacing process, which is called as Explicit Logical Narrative Prompt (ELNP), by using the newly SoTA language model DeepSeek to generate the instructions. Furthermore, to evaluate models' performance in counterfactual T2I, we design a metric to calculate how many required concepts in the prompt can be covered averagely in the synthesized images. The extensive experiments and qualitative comparisons demonstrate that our strategy can boost the concept alignment in counterfactual T2I.
Plane Geometry Problem Solving with Multi-modal Reasoning: A Survey
Plane geometry problem solving (PGPS) has recently gained significant attention as a benchmark to assess the multi-modal reasoning capabilities of large vision-language models. Despite the growing interest in PGPS, the research community still lacks a comprehensive overview that systematically synthesizes recent work in PGPS. To fill this gap, we present a survey of existing PGPS studies. We first categorize PGPS methods into an encoder-decoder framework and summarize the corresponding output formats used by their encoders and decoders. Subsequently, we classify and analyze these encoders and decoders according to their architectural designs. Finally, we outline major challenges and promising directions for future research. In particular, we discuss the hallucination issues arising during the encoding phase within encoder-decoder architectures, as well as the problem of data leakage in current PGPS benchmarks.
comment: 18 pages
Scaling and Enhancing LLM-based AVSR: A Sparse Mixture of Projectors Approach
Audio-Visual Speech Recognition (AVSR) enhances robustness in noisy environments by integrating visual cues. While recent advances integrate Large Language Models (LLMs) into AVSR, their high computational cost hinders deployment in resource-constrained settings. To address this, we propose Llama-SMoP, an efficient Multimodal LLM that employs a Sparse Mixture of Projectors (SMoP) module to scale model capacity without increasing inference costs. By incorporating sparsely-gated mixture-of-experts (MoE) projectors, Llama-SMoP enables the use of smaller LLMs while maintaining strong performance. We explore three SMoP configurations and show that Llama-SMoP DEDR (Disjoint-Experts, Disjoint-Routers), which uses modality-specific routers and experts, achieves superior performance on ASR, VSR, and AVSR tasks. Ablation studies confirm its effectiveness in expert activation, scalability, and noise robustness.
Domain Adaptation for Multi-label Image Classification: a Discriminator-free Approach
This paper introduces a discriminator-free adversarial-based approach termed DDA-MLIC for Unsupervised Domain Adaptation (UDA) in the context of Multi-Label Image Classification (MLIC). While recent efforts have explored adversarial-based UDA methods for MLIC, they typically include an additional discriminator subnet. Nevertheless, decoupling the classification and the discrimination tasks may harm their task-specific discriminative power. Herein, we address this challenge by presenting a novel adversarial critic directly derived from the task-specific classifier. Specifically, we employ a two-component Gaussian Mixture Model (GMM) to model both source and target predictions, distinguishing between two distinct clusters. Instead of using the traditional Expectation Maximization (EM) algorithm, our approach utilizes a Deep Neural Network (DNN) to estimate the parameters of each GMM component. Subsequently, the source and target GMM parameters are leveraged to formulate an adversarial loss using the Fr\'echet distance. The proposed framework is therefore not only fully differentiable but is also cost-effective as it avoids the expensive iterative process usually induced by the standard EM method. The proposed method is evaluated on several multi-label image datasets covering three different types of domain shift. The obtained results demonstrate that DDA-MLIC outperforms existing state-of-the-art methods in terms of precision while requiring a lower number of parameters. The code is made publicly available at github.com/cvi2snt/DDA-MLIC.
comment: The paper is under consideration at Computer Vision and Image Understanding. arXiv admin note: text overlap with arXiv:2301.10611
Handloom Design Generation Using Generative Networks
This paper proposes deep learning techniques of generating designs for clothing, focused on handloom fabric and discusses the associated challenges along with its application. The capability of generative neural network models in understanding artistic designs and synthesizing those is not yet explored well. In this work, multiple methods are employed incorporating the current state of the art generative models and style transfer algorithms to study and observe their performance for the task. The results are then evaluated through user score. This work also provides a new dataset NeuralLoom for the task of the design generation.
Breaking Down Video LLM Benchmarks: Knowledge, Spatial Perception, or True Temporal Understanding?
Existing video understanding benchmarks often conflate knowledge-based and purely image-based questions, rather than clearly isolating a model's temporal reasoning ability, which is the key aspect that distinguishes video understanding from other modalities. We identify two major limitations that obscure whether higher scores truly indicate stronger understanding of the dynamic content in videos: (1) strong language priors, where models can answer questions without watching the video; and (2) shuffling invariance, where models maintain similar performance on certain questions even when video frames are temporally shuffled. To alleviate these issues, we propose VBenchComp, an automated pipeline that categorizes questions into different domains: LLM-Answerable, Semantic, and Temporal. Specifically, LLM-Answerable questions can be answered without viewing the video; Semantic questions remain answerable even when the video frames are shuffled; and Temporal questions require understanding the correct temporal order of frames. The rest of the questions are labeled as Others. This can enable fine-grained evaluation of different capabilities of a video LLM. Our analysis reveals nuanced model weaknesses that are hidden by traditional overall scores, and we offer insights and recommendations for designing future benchmarks that more accurately assess video LLMs.
Accuracy and Fairness of Facial Recognition Technology in Low-Quality Police Images: An Experiment With Synthetic Faces
Facial recognition technology (FRT) is increasingly used in criminal investigations, yet most evaluations of its accuracy rely on high-quality images, unlike those often encountered by law enforcement. This study examines how five common forms of image degradation--contrast, brightness, motion blur, pose shift, and resolution--affect FRT accuracy and fairness across demographic groups. Using synthetic faces generated by StyleGAN3 and labeled with FairFace, we simulate degraded images and evaluate performance using Deepface with ArcFace loss in 1:n identification tasks. We perform an experiment and find that false positive rates peak near baseline image quality, while false negatives increase as degradation intensifies--especially with blur and low resolution. Error rates are consistently higher for women and Black individuals, with Black females most affected. These disparities raise concerns about fairness and reliability when FRT is used in real-world investigative contexts. Nevertheless, even under the most challenging conditions and for the most affected subgroups, FRT accuracy remains substantially higher than that of many traditional forensic methods. This suggests that, if appropriately validated and regulated, FRT should be considered a valuable investigative tool. However, algorithmic accuracy alone is not sufficient: we must also evaluate how FRT is used in practice, including user-driven data manipulation. Such cases underscore the need for transparency and oversight in FRT deployment to ensure both fairness and forensic validity.
RETRO: REthinking Tactile Representation Learning with Material PriOrs
Tactile perception is profoundly influenced by the surface properties of objects in contact. However, despite their crucial role in shaping tactile experiences, these material characteristics have been largely neglected in existing tactile representation learning methods. Most approaches primarily focus on aligning tactile data with visual or textual information, overlooking the richness of tactile feedback that comes from understanding the materials' inherent properties. In this work, we address this gap by revisiting the tactile representation learning framework and incorporating material-aware priors into the learning process. These priors, which represent pre-learned characteristics specific to different materials, allow tactile models to better capture and generalize the nuances of surface texture. Our method enables more accurate, contextually rich tactile feedback across diverse materials and textures, improving performance in real-world applications such as robotics, haptic feedback systems, and material editing.
comment: Code: https://github.com/weihaox/RETRO
RADAR: Enhancing Radiology Report Generation with Supplementary Knowledge Injection
Large language models (LLMs) have demonstrated remarkable capabilities in various domains, including radiology report generation. Previous approaches have attempted to utilize multimodal LLMs for this task, enhancing their performance through the integration of domain-specific knowledge retrieval. However, these approaches often overlook the knowledge already embedded within the LLMs, leading to redundant information integration and inefficient utilization of learned representations. To address this limitation, we propose RADAR, a framework for enhancing radiology report generation with supplementary knowledge injection. RADAR improves report generation by systematically leveraging both the internal knowledge of an LLM and externally retrieved information. Specifically, it first extracts the model's acquired knowledge that aligns with expert image-based classification outputs. It then retrieves relevant supplementary knowledge to further enrich this information. Finally, by aggregating both sources, RADAR generates more accurate and informative radiology reports. Extensive experiments on MIMIC-CXR, CheXpert-Plus, and IU X-ray demonstrate that our model outperforms state-of-the-art LLMs in both language quality and clinical accuracy
A Review of Vision-Based Assistive Systems for Visually Impaired People: Technologies, Applications, and Future Directions
Visually impaired individuals rely heavily on accurate and timely information about obstacles and their surrounding environments to achieve independent living. In recent years, significant progress has been made in the development of assistive technologies, particularly vision-based systems, that enhance mobility and facilitate interaction with the external world in both indoor and outdoor settings. This paper presents a comprehensive review of recent advances in assistive systems designed for the visually impaired, with a focus on state-of-the-art technologies in obstacle detection, navigation, and user interaction. In addition, emerging trends and future directions in visual guidance systems are discussed.
Towards Generating Realistic Underwater Images
This paper explores the use of contrastive learning and generative adversarial networks for generating realistic underwater images from synthetic images with uniform lighting. We investigate the performance of image translation models for generating realistic underwater images using the VAROS dataset. Two key evaluation metrics, Fr\'echet Inception Distance (FID) and Structural Similarity Index Measure (SSIM), provide insights into the trade-offs between perceptual quality and structural preservation. For paired image translation, pix2pix achieves the best FID scores due to its paired supervision and PatchGAN discriminator, while the autoencoder model attains the highest SSIM, suggesting better structural fidelity despite producing blurrier outputs. Among unpaired methods, CycleGAN achieves a competitive FID score by leveraging cycle-consistency loss, whereas CUT, which replaces cycle-consistency with contrastive learning, attains higher SSIM, indicating improved spatial similarity retention. Notably, incorporating depth information into CUT results in the lowest overall FID score, demonstrating that depth cues enhance realism. However, the slight decrease in SSIM suggests that depth-aware learning may introduce structural variations.
RA-Touch: Retrieval-Augmented Touch Understanding with Enriched Visual Data
Visuo-tactile perception aims to understand an object's tactile properties, such as texture, softness, and rigidity. However, the field remains underexplored because collecting tactile data is costly and labor-intensive. We observe that visually distinct objects can exhibit similar surface textures or material properties. For example, a leather sofa and a leather jacket have different appearances but share similar tactile properties. This implies that tactile understanding can be guided by material cues in visual data, even without direct tactile supervision. In this paper, we introduce RA-Touch, a retrieval-augmented framework that improves visuo-tactile perception by leveraging visual data enriched with tactile semantics. We carefully recaption a large-scale visual dataset with tactile-focused descriptions, enabling the model to access tactile semantics typically absent from conventional visual datasets. A key challenge remains in effectively utilizing these tactile-aware external descriptions. RA-Touch addresses this by retrieving visual-textual representations aligned with tactile inputs and integrating them to focus on relevant textural and material properties. By outperforming prior methods on the TVL benchmark, our method demonstrates the potential of retrieval-based visual reuse for tactile understanding. Code is available at https://aim-skku.github.io/RA-Touch
Speculative Decoding Reimagined for Multimodal Large Language Models
This paper introduces Multimodal Speculative Decoding (MSD) to accelerate Multimodal Large Language Models (MLLMs) inference. Speculative decoding has been shown to accelerate Large Language Models (LLMs) without sacrificing accuracy. However, current speculative decoding methods for MLLMs fail to achieve the same speedup as they do for LLMs. To address this, we reimagine speculative decoding specifically for MLLMs. Our analysis of MLLM characteristics reveals two key design principles for MSD: (1) Text and visual tokens have fundamentally different characteristics and need to be processed separately during drafting. (2) Both language modeling ability and visual perception capability are crucial for the draft model. For the first principle, MSD decouples text and visual tokens in the draft model, allowing each to be handled based on its own characteristics. For the second principle, MSD uses a two-stage training strategy: In stage one, the draft model is trained on text-only instruction-tuning datasets to improve its language modeling ability. In stage two, MSD gradually introduces multimodal data to enhance the visual perception capability of the draft model. Experiments show that MSD boosts inference speed by up to $2.29\times$ for LLaVA-1.5-7B and up to $2.46\times$ for LLaVA-1.5-13B on multimodal benchmarks, demonstrating its effectiveness. Our code is available at https://github.com/Lyn-Lucy/MSD.
comment: 12 pages
Aligning Attention Distribution to Information Flow for Hallucination Mitigation in Large Vision-Language Models
Due to the unidirectional masking mechanism, Decoder-Only models propagate information from left to right. LVLMs (Large Vision-Language Models) follow the same architecture, with visual information gradually integrated into semantic representations during forward propagation. Through systematic analysis, we observe that over 80\% of the visual information is absorbed into the semantic representations. However, the model's attention still predominantly focuses on the visual representations. This misalignment between the attention distribution and the actual information flow undermines the model's visual understanding ability and contributes to hallucinations. To address this issue, we enhance the model's visual understanding by leveraging the core information embedded in semantic representations. Specifically, we identify attention heads that focus on core semantic representations based on their attention distributions. Then, through a two-stage optimization paradigm, we propagate the advantages of these attention heads across the entire model, aligning the attention distribution with the actual information flow. We evaluate our method on three image captioning benchmarks using five different LVLMs, demonstrating its effectiveness in significantly reducing hallucinations. Further experiments reveal a trade-off between reduced hallucinations and richer details. Notably, our method allows for manual adjustment of the model's conservativeness, enabling flexible control to meet diverse real-world requirements. Code will be released once accepted.
Instructing Text-to-Image Diffusion Models via Classifier-Guided Semantic Optimization
Text-to-image diffusion models have emerged as powerful tools for high-quality image generation and editing. Many existing approaches rely on text prompts as editing guidance. However, these methods are constrained by the need for manual prompt crafting, which can be time-consuming, introduce irrelevant details, and significantly limit editing performance. In this work, we propose optimizing semantic embeddings guided by attribute classifiers to steer text-to-image models toward desired edits, without relying on text prompts or requiring any training or fine-tuning of the diffusion model. We utilize classifiers to learn precise semantic embeddings at the dataset level. The learned embeddings are theoretically justified as the optimal representation of attribute semantics, enabling disentangled and accurate edits. Experiments further demonstrate that our method achieves high levels of disentanglement and strong generalization across different domains of data.
Visual Agentic Reinforcement Fine-Tuning
A key trend in Large Reasoning Models (e.g., OpenAI's o3) is the native agentic ability to use external tools such as web browsers for searching and writing/executing code for image manipulation to think with images. In the open-source research community, while significant progress has been made in language-only agentic abilities such as function calling and tool integration, the development of multi-modal agentic capabilities that involve truly thinking with images, and their corresponding benchmarks, are still less explored. This work highlights the effectiveness of Visual Agentic Reinforcement Fine-Tuning (Visual-ARFT) for enabling flexible and adaptive reasoning abilities for Large Vision-Language Models (LVLMs). With Visual-ARFT, open-source LVLMs gain the ability to browse websites for real-time information updates and write code to manipulate and analyze input images through cropping, rotation, and other image processing techniques. We also present a Multi-modal Agentic Tool Bench (MAT) with two settings (MAT-Search and MAT-Coding) designed to evaluate LVLMs' agentic search and coding abilities. Our experimental results demonstrate that Visual-ARFT outperforms its baseline by +18.6% F1 / +13.0% EM on MAT-Coding and +10.3% F1 / +8.7% EM on MAT-Search, ultimately surpassing GPT-4o. Visual-ARFT also achieves +29.3 F1% / +25.9% EM gains on existing multi-hop QA benchmarks such as 2Wiki and HotpotQA, demonstrating strong generalization capabilities. Our findings suggest that Visual-ARFT offers a promising path toward building robust and generalizable multimodal agents.
comment: project url: https://github.com/Liuziyu77/Visual-RFT/tree/main/Visual-ARFT
Decoupling Classifier for Boosting Few-shot Object Detection and Instance Segmentation NeurIPS 2022
This paper focus on few-shot object detection~(FSOD) and instance segmentation~(FSIS), which requires a model to quickly adapt to novel classes with a few labeled instances. The existing methods severely suffer from bias classification because of the missing label issue which naturally exists in an instance-level few-shot scenario and is first formally proposed by us. Our analysis suggests that the standard classification head of most FSOD or FSIS models needs to be decoupled to mitigate the bias classification. Therefore, we propose an embarrassingly simple but effective method that decouples the standard classifier into two heads. Then, these two individual heads are capable of independently addressing clear positive samples and noisy negative samples which are caused by the missing label. In this way, the model can effectively learn novel classes while mitigating the effects of noisy negative samples. Without bells and whistles, our model without any additional computation cost and parameters consistently outperforms its baseline and state-of-the-art by a large margin on PASCAL VOC and MS-COCO benchmarks for FSOD and FSIS tasks. The Code is available at https://csgaobb.github.io/Projects/DCFS.
comment: Accepted by NeurIPS 2022
UniVG-R1: Reasoning Guided Universal Visual Grounding with Reinforcement Learning
Traditional visual grounding methods primarily focus on single-image scenarios with simple textual references. However, extending these methods to real-world scenarios that involve implicit and complex instructions, particularly in conjunction with multiple images, poses significant challenges, which is mainly due to the lack of advanced reasoning ability across diverse multi-modal contexts. In this work, we aim to address the more practical universal grounding task, and propose UniVG-R1, a reasoning guided multimodal large language model (MLLM) for universal visual grounding, which enhances reasoning capabilities through reinforcement learning (RL) combined with cold-start data. Specifically, we first construct a high-quality Chain-of-Thought (CoT) grounding dataset, annotated with detailed reasoning chains, to guide the model towards correct reasoning paths via supervised fine-tuning. Subsequently, we perform rule-based reinforcement learning to encourage the model to identify correct reasoning chains, thereby incentivizing its reasoning capabilities. In addition, we identify a difficulty bias arising from the prevalence of easy samples as RL training progresses, and we propose a difficulty-aware weight adjustment strategy to further strengthen the performance. Experimental results demonstrate the effectiveness of UniVG-R1, which achieves state-of-the-art performance on MIG-Bench with a 9.1% improvement over the previous method. Furthermore, our model exhibits strong generalizability, achieving an average improvement of 23.4% in zero-shot performance across four image and video reasoning grounding benchmarks. The project page can be accessed at https://amap-ml.github.io/UniVG-R1-page/.
VoQA: Visual-only Question Answering
We propose Visual-only Question Answering (VoQA), a novel multimodal task in which questions are visually embedded within images, without any accompanying textual input. This requires models to locate, recognize, and reason over visually embedded textual questions, posing challenges for existing large vision-language models (LVLMs), which show notable performance drops even with carefully designed prompts. To bridge this gap, we introduce Guided Response Triggering Supervised Fine-tuning (GRT-SFT), a structured fine-tuning strategy that guides the model to perform step-by-step reasoning purely based on visual input, significantly improving model performance. Our work enhances models' capacity for human-like visual understanding in complex multimodal scenarios, where information, including language, is perceived visually.
comment: 18 pages
Flexible-weighted Chamfer Distance: Enhanced Objective Function for Point Cloud Completion
Chamfer Distance (CD) comprises two components that can evaluate the global distribution and local performance of generated point clouds, making it widely utilized as a similarity measure between generated and target point clouds in point cloud completion tasks. Additionally, CD's computational efficiency has led to its frequent application as an objective function for guiding point cloud generation. However, using CD directly as an objective function with fixed equal weights for its two components can often result in seemingly high overall performance (i.e., low CD score), while failing to achieve a good global distribution. This is typically reflected in high Earth Mover's Distance (EMD) and Decomposed Chamfer Distance (DCD) scores, alongside poor human assessments. To address this issue, we propose a Flexible-Weighted Chamfer Distance (FCD) to guide point cloud generation. FCD assigns a higher weight to the global distribution component of CD and incorporates a flexible weighting strategy to adjust the balance between the two components, aiming to improve global distribution while maintaining robust overall performance. Experimental results on two state-of-the-art networks demonstrate that our method achieves superior results across multiple evaluation metrics, including CD, EMD, DCD, and F-Score, as well as in human evaluations.
Beginning with You: Perceptual-Initialization Improves Vision-Language Representation and Alignment
We introduce Perceptual-Initialization (PI), a paradigm shift in visual representation learning that incorporates human perceptual structure during the initialization phase rather than as a downstream fine-tuning step. By integrating human-derived triplet embeddings from the NIGHTS dataset to initialize a CLIP vision encoder, followed by self-supervised learning on YFCC15M, our approach demonstrates significant zero-shot performance improvements, without any task-specific fine-tuning, across 29 zero shot classification and 2 retrieval benchmarks. On ImageNet-1K, zero-shot gains emerge after approximately 15 epochs of pretraining. Benefits are observed across datasets of various scales, with improvements manifesting at different stages of the pretraining process depending on dataset characteristics. Our approach consistently enhances zero-shot top-1 accuracy, top-5 accuracy, and retrieval recall (e.g., R@1, R@5) across these diverse evaluation tasks, without requiring any adaptation to target domains. These findings challenge the conventional wisdom of using human-perceptual data primarily for fine-tuning and demonstrate that embedding human perceptual structure during early representation learning yields more capable and vision-language aligned systems that generalize immediately to unseen tasks. Our work shows that "beginning with you", starting with human perception, provides a stronger foundation for general-purpose vision-language intelligence.
comment: 10 pages, 5 figures, 2 tables
Towards Omnidirectional Reasoning with 360-R1: A Dataset, Benchmark, and GRPO-based Method
Omnidirectional images (ODIs), with their 360{\deg} field of view, provide unparalleled spatial awareness for immersive applications like augmented reality and embodied AI. However, the capability of existing multi-modal large language models (MLLMs) to comprehend and reason about such panoramic scenes remains underexplored. This paper addresses this gap by introducing OmniVQA, the first dataset and conducting the first benchmark for omnidirectional visual question answering. Our evaluation of state-of-the-art MLLMs reveals significant limitations in handling omnidirectional visual question answering, highlighting persistent challenges in object localization, feature extraction, and hallucination suppression within panoramic contexts. These results underscore the disconnect between current MLLM capabilities and the demands of omnidirectional visual understanding, which calls for dedicated architectural or training innovations tailored to 360{\deg} imagery. Building on the OmniVQA dataset and benchmark, we further introduce a rule-based reinforcement learning method, 360-R1, based on Qwen2.5-VL-Instruct. Concretely, we modify the group relative policy optimization (GRPO) by proposing three novel reward functions: (1) reasoning process similarity reward, (2) answer semantic accuracy reward, and (3) structured format compliance reward. Extensive experiments on our OmniVQA demonstrate the superiority of our proposed method in omnidirectional space (+6% improvement).
Bridge the Gap between Past and Future: Siamese Model Optimization for Context-Aware Document Ranking
In the realm of information retrieval, users often engage in multi-turn interactions with search engines to acquire information, leading to the formation of sequences of user feedback behaviors. Leveraging the session context has proven to be beneficial for inferring user search intent and document ranking. A multitude of approaches have been proposed to exploit in-session context for improved document ranking. Despite these advances, the limitation of historical session data for capturing evolving user intent remains a challenge. In this work, we explore the integration of future contextual information into the session context to enhance document ranking. We present the siamese model optimization framework, comprising a history-conditioned model and a future-aware model. The former processes only the historical behavior sequence, while the latter integrates both historical and anticipated future behaviors. Both models are trained collaboratively using the supervised labels and pseudo labels predicted by the other. The history-conditioned model, referred to as ForeRanker, progressively learns future-relevant information to enhance ranking, while it singly uses historical session at inference time. To mitigate inconsistencies during training, we introduce the peer knowledge distillation method with a dynamic gating mechanism, allowing models to selectively incorporate contextual information. Experimental results on benchmark datasets demonstrate the effectiveness of our ForeRanker, showcasing its superior performance compared to existing methods.
From stability of Langevin diffusion to convergence of proximal MCMC for non-log-concave sampling
We consider the problem of sampling distributions stemming from non-convex potentials with Unadjusted Langevin Algorithm (ULA). We prove the stability of the discrete-time ULA to drift approximations under the assumption that the potential is strongly convex at infinity. In many context, e.g. imaging inverse problems, potentials are non-convex and non-smooth. Proximal Stochastic Gradient Langevin Algorithm (PSGLA) is a popular algorithm to handle such potentials. It combines the forward-backward optimization algorithm with a ULA step. Our main stability result combined with properties of the Moreau envelope allows us to derive the first proof of convergence of the PSGLA for non-convex potentials. We empirically validate our methodology on synthetic data and in the context of imaging inverse problems. In particular, we observe that PSGLA exhibits faster convergence rates than Stochastic Gradient Langevin Algorithm for posterior sampling while preserving its restoration properties.
LMP: Leveraging Motion Prior in Zero-Shot Video Generation with Diffusion Transformer
In recent years, large-scale pre-trained diffusion transformer models have made significant progress in video generation. While current DiT models can produce high-definition, high-frame-rate, and highly diverse videos, there is a lack of fine-grained control over the video content. Controlling the motion of subjects in videos using only prompts is challenging, especially when it comes to describing complex movements. Further, existing methods fail to control the motion in image-to-video generation, as the subject in the reference image often differs from the subject in the reference video in terms of initial position, size, and shape. To address this, we propose the Leveraging Motion Prior (LMP) framework for zero-shot video generation. Our framework harnesses the powerful generative capabilities of pre-trained diffusion transformers to enable motion in the generated videos to reference user-provided motion videos in both text-to-video and image-to-video generation. To this end, we first introduce a foreground-background disentangle module to distinguish between moving subjects and backgrounds in the reference video, preventing interference in the target video generation. A reweighted motion transfer module is designed to allow the target video to reference the motion from the reference video. To avoid interference from the subject in the reference video, we propose an appearance separation module to suppress the appearance of the reference subject in the target video. We annotate the DAVIS dataset with detailed prompts for our experiments and design evaluation metrics to validate the effectiveness of our method. Extensive experiments demonstrate that our approach achieves state-of-the-art performance in generation quality, prompt-video consistency, and control capability. Our homepage is available at https://vpx-ecnu.github.io/LMP-Website/
M3Depth: Wavelet-Enhanced Depth Estimation on Mars via Mutual Boosting of Dual-Modal Data
Depth estimation plays a great potential role in obstacle avoidance and navigation for further Mars exploration missions. Compared to traditional stereo matching, learning-based stereo depth estimation provides a data-driven approach to infer dense and precise depth maps from stereo image pairs. However, these methods always suffer performance degradation in environments with sparse textures and lacking geometric constraints, such as the unstructured terrain of Mars. To address these challenges, we propose M3Depth, a depth estimation model tailored for Mars rovers. Considering the sparse and smooth texture of Martian terrain, which is primarily composed of low-frequency features, our model incorporates a convolutional kernel based on wavelet transform that effectively captures low-frequency response and expands the receptive field. Additionally, we introduce a consistency loss that explicitly models the complementary relationship between depth map and surface normal map, utilizing the surface normal as a geometric constraint to enhance the accuracy of depth estimation. Besides, a pixel-wise refinement module with mutual boosting mechanism is designed to iteratively refine both depth and surface normal predictions. Experimental results on synthetic Mars datasets with depth annotations show that M3Depth achieves a significant 16% improvement in depth estimation accuracy compared to other state-of-the-art methods in depth estimation. Furthermore, the model demonstrates strong applicability in real-world Martian scenarios, offering a promising solution for future Mars exploration missions.
Unify Graph Learning with Text: Unleashing LLM Potentials for Session Search
Session search involves a series of interactive queries and actions to fulfill user's complex information need. Current strategies typically prioritize sequential modeling for deep semantic understanding, overlooking the graph structure in interactions. While some approaches focus on capturing structural information, they use a generalized representation for documents, neglecting the word-level semantic modeling. In this paper, we propose Symbolic Graph Ranker (SGR), which aims to take advantage of both text-based and graph-based approaches by leveraging the power of recent Large Language Models (LLMs). Concretely, we first introduce a set of symbolic grammar rules to convert session graph into text. This allows integrating session history, interaction process, and task instruction seamlessly as inputs for the LLM. Moreover, given the natural discrepancy between LLMs pre-trained on textual corpora, and the symbolic language we produce using our graph-to-text grammar, our objective is to enhance LLMs' ability to capture graph structures within a textual format. To achieve this, we introduce a set of self-supervised symbolic learning tasks including link prediction, node content generation, and generative contrastive learning, to enable LLMs to capture the topological information from coarse-grained to fine-grained. Experiment results and comprehensive analysis on two benchmark datasets, AOL and Tiangong-ST, confirm the superiority of our approach. Our paradigm also offers a novel and effective methodology that bridges the gap between traditional search strategies and modern LLMs.
ReactDiff: Latent Diffusion for Facial Reaction Generation
Given the audio-visual clip of the speaker, facial reaction generation aims to predict the listener's facial reactions. The challenge lies in capturing the relevance between video and audio while balancing appropriateness, realism, and diversity. While prior works have mostly focused on uni-modal inputs or simplified reaction mappings, recent approaches such as PerFRDiff have explored multi-modal inputs and the one-to-many nature of appropriate reaction mappings. In this work, we propose the Facial Reaction Diffusion (ReactDiff) framework that uniquely integrates a Multi-Modality Transformer with conditional diffusion in the latent space for enhanced reaction generation. Unlike existing methods, ReactDiff leverages intra- and inter-class attention for fine-grained multi-modal interaction, while the latent diffusion process between the encoder and decoder enables diverse yet contextually appropriate outputs. Experimental results demonstrate that ReactDiff significantly outperforms existing approaches, achieving a facial reaction correlation of 0.26 and diversity score of 0.094 while maintaining competitive realism. The code is open-sourced at \href{https://github.com/Hunan-Tiger/ReactDiff}{github}.
Hunyuan-Game: Industrial-grade Intelligent Game Creation Model
Intelligent game creation represents a transformative advancement in game development, utilizing generative artificial intelligence to dynamically generate and enhance game content. Despite notable progress in generative models, the comprehensive synthesis of high-quality game assets, including both images and videos, remains a challenging frontier. To create high-fidelity game content that simultaneously aligns with player preferences and significantly boosts designer efficiency, we present Hunyuan-Game, an innovative project designed to revolutionize intelligent game production. Hunyuan-Game encompasses two primary branches: image generation and video generation. The image generation component is built upon a vast dataset comprising billions of game images, leading to the development of a group of customized image generation models tailored for game scenarios: (1) General Text-to-Image Generation. (2) Game Visual Effects Generation, involving text-to-effect and reference image-based game visual effect generation. (3) Transparent Image Generation for characters, scenes, and game visual effects. (4) Game Character Generation based on sketches, black-and-white images, and white models. The video generation component is built upon a comprehensive dataset of millions of game and anime videos, leading to the development of five core algorithmic models, each targeting critical pain points in game development and having robust adaptation to diverse game video scenarios: (1) Image-to-Video Generation. (2) 360 A/T Pose Avatar Video Synthesis. (3) Dynamic Illustration Generation. (4) Generative Video Super-Resolution. (5) Interactive Game Video Generation. These image and video generation models not only exhibit high-level aesthetic expression but also deeply integrate domain-specific knowledge, establishing a systematic understanding of diverse game and anime art styles.
Intra-class Patch Swap for Self-Distillation
Knowledge distillation (KD) is a valuable technique for compressing large deep learning models into smaller, edge-suitable networks. However, conventional KD frameworks rely on pre-trained high-capacity teacher networks, which introduce significant challenges such as increased memory/storage requirements, additional training costs, and ambiguity in selecting an appropriate teacher for a given student model. Although a teacher-free distillation (self-distillation) has emerged as a promising alternative, many existing approaches still rely on architectural modifications or complex training procedures, which limit their generality and efficiency. To address these limitations, we propose a novel framework based on teacher-free distillation that operates using a single student network without any auxiliary components, architectural modifications, or additional learnable parameters. Our approach is built on a simple yet highly effective augmentation, called intra-class patch swap augmentation. This augmentation simulates a teacher-student dynamic within a single model by generating pairs of intra-class samples with varying confidence levels, and then applying instance-to-instance distillation to align their predictive distributions. Our method is conceptually simple, model-agnostic, and easy to implement, requiring only a single augmentation function. Extensive experiments across image classification, semantic segmentation, and object detection show that our method consistently outperforms both existing self-distillation baselines and conventional teacher-based KD approaches. These results suggest that the success of self-distillation could hinge on the design of the augmentation itself. Our codes are available at https://github.com/hchoi71/Intra-class-Patch-Swap.
comment: Accepted for publication in Neurocomputing
CONSIGN: Conformal Segmentation Informed by Spatial Groupings via Decomposition
Most machine learning-based image segmentation models produce pixel-wise confidence scores - typically derived from softmax outputs - that represent the model's predicted probability for each class label at every pixel. While this information can be particularly valuable in high-stakes domains such as medical imaging, these (uncalibrated) scores are heuristic in nature and do not constitute rigorous quantitative uncertainty estimates. Conformal prediction (CP) provides a principled framework for transforming heuristic confidence scores into statistically valid uncertainty estimates. However, applying CP directly to image segmentation ignores the spatial correlations between pixels, a fundamental characteristic of image data. This can result in overly conservative and less interpretable uncertainty estimates. To address this, we propose CONSIGN (Conformal Segmentation Informed by Spatial Groupings via Decomposition), a CP-based method that incorporates spatial correlations to improve uncertainty quantification in image segmentation. Our method generates meaningful prediction sets that come with user-specified, high-probability error guarantees. It is compatible with any pre-trained segmentation model capable of generating multiple sample outputs - such as those using dropout, Bayesian modeling, or ensembles. We evaluate CONSIGN against a standard pixel-wise CP approach across three medical imaging datasets and two COCO dataset subsets, using three different pre-trained segmentation models. Results demonstrate that accounting for spatial structure significantly improves performance across multiple metrics and enhances the quality of uncertainty estimates.
Unintended Bias in 2D+ Image Segmentation and Its Effect on Attention Asymmetry
Supervised pretrained models have become widely used in deep learning, especially for image segmentation tasks. However, when applied to specialized datasets such as biomedical imaging, pretrained weights often introduce unintended biases. These biases cause models to assign different levels of importance to different slices, leading to inconsistencies in feature utilization, which can be observed as asymmetries in saliency map distributions. This transfer of color distributions from natural images to non-natural datasets can compromise model performance and reduce the reliability of results. In this study, we investigate the effects of these biases and propose strategies to mitigate them. Through a series of experiments, we test both pretrained and randomly initialized models, comparing their performance and saliency map distributions. Our proposed methods, which aim to neutralize the bias introduced by pretrained color channel weights, demonstrate promising results, offering a practical approach to improving model explainability while maintaining the benefits of pretrained models. This publication presents our findings, providing insights into addressing pretrained weight biases across various deep learning tasks.
Unlocking the Power of SAM 2 for Few-Shot Segmentation ICML'25
Few-Shot Segmentation (FSS) aims to learn class-agnostic segmentation on few classes to segment arbitrary classes, but at the risk of overfitting. To address this, some methods use the well-learned knowledge of foundation models (e.g., SAM) to simplify the learning process. Recently, SAM 2 has extended SAM by supporting video segmentation, whose class-agnostic matching ability is useful to FSS. A simple idea is to encode support foreground (FG) features as memory, with which query FG features are matched and fused. Unfortunately, the FG objects in different frames of SAM 2's video data are always the same identity, while those in FSS are different identities, i.e., the matching step is incompatible. Therefore, we design Pseudo Prompt Generator to encode pseudo query memory, matching with query features in a compatible way. However, the memories can never be as accurate as the real ones, i.e., they are likely to contain incomplete query FG, and some unexpected query background (BG) features, leading to wrong segmentation. Hence, we further design Iterative Memory Refinement to fuse more query FG features into the memory, and devise a Support-Calibrated Memory Attention to suppress the unexpected query BG features in memory. Extensive experiments have been conducted on PASCAL-5$^i$ and COCO-20$^i$ to validate the effectiveness of our design, e.g., the 1-shot mIoU can be 4.2\% better than the best baseline.
comment: This paper is accepted by ICML'25
Generalizable Multispectral Land Cover Classification via Frequency-Aware Mixture of Low-Rank Token Experts
We introduce Land-MoE, a novel approach for multispectral land cover classification (MLCC). Spectral shift, which emerges from disparities in sensors and geospatial conditions, poses a significant challenge in this domain. Existing methods predominantly rely on domain adaptation and generalization strategies, often utilizing small-scale models that exhibit limited performance. In contrast, Land-MoE addresses these issues by hierarchically inserting a Frequency-aware Mixture of Low-rank Token Experts, to fine-tune Vision Foundation Models (VFMs) in a parameter-efficient manner. Specifically, Land-MoE comprises two key modules: the mixture of low-rank token experts (MoLTE) and frequency-aware filters (FAF). MoLTE leverages rank-differentiated tokens to generate diverse feature adjustments for individual instances within multispectral images. By dynamically combining learnable low-rank token experts of varying ranks, it enhances the robustness against spectral shifts. Meanwhile, FAF conducts frequency-domain modulation on the refined features. This process enables the model to effectively capture frequency band information that is strongly correlated with semantic essence, while simultaneously suppressing frequency noise irrelevant to the task. Comprehensive experiments on MLCC tasks involving cross-sensor and cross-geospatial setups demonstrate that Land-MoE outperforms existing methods by a large margin. Additionally, the proposed approach has also achieved state-of-the-art performance in domain generalization semantic segmentation tasks of RGB remote sensing images.
Large-Scale Multi-Character Interaction Synthesis
Generating large-scale multi-character interactions is a challenging and important task in character animation. Multi-character interactions involve not only natural interactive motions but also characters coordinated with each other for transition. For example, a dance scenario involves characters dancing with partners and also characters coordinated to new partners based on spatial and temporal observations. We term such transitions as coordinated interactions and decompose them into interaction synthesis and transition planning. Previous methods of single-character animation do not consider interactions that are critical for multiple characters. Deep-learning-based interaction synthesis usually focuses on two characters and does not consider transition planning. Optimization-based interaction synthesis relies on manually designing objective functions that may not generalize well. While crowd simulation involves more characters, their interactions are sparse and passive. We identify two challenges to multi-character interaction synthesis, including the lack of data and the planning of transitions among close and dense interactions. Existing datasets either do not have multiple characters or do not have close and dense interactions. The planning of transitions for multi-character close and dense interactions needs both spatial and temporal considerations. We propose a conditional generative pipeline comprising a coordinatable multi-character interaction space for interaction synthesis and a transition planning network for coordinations. Our experiments demonstrate the effectiveness of our proposed pipeline for multicharacter interaction synthesis and the applications facilitated by our method show the scalability and transferability.
Textual Steering Vectors Can Improve Visual Understanding in Multimodal Large Language Models
Steering methods have emerged as effective and targeted tools for guiding large language models' (LLMs) behavior without modifying their parameters. Multimodal large language models (MLLMs), however, do not currently enjoy the same suite of techniques, due in part to their recency and architectural diversity. Inspired by this gap, we investigate whether MLLMs can be steered using vectors derived from their text-only LLM backbone, via sparse autoencoders (SAEs), mean shift, and linear probing. We find that text-derived steering consistently enhances multimodal accuracy across diverse MLLM architectures and visual tasks. In particular, mean shift boosts spatial relationship accuracy on CV-Bench by up to +7.3% and counting accuracy by up to +3.3%, outperforming prompting and exhibiting strong generalization to out-of-distribution datasets. These results highlight textual steering vectors as a powerful, efficient mechanism for enhancing grounding in MLLMs with minimal additional data collection and computational overhead.
Place Recognition: A Comprehensive Review, Current Challenges and Future Directions
Place recognition is a cornerstone of vehicle navigation and mapping, which is pivotal in enabling systems to determine whether a location has been previously visited. This capability is critical for tasks such as loop closure in Simultaneous Localization and Mapping (SLAM) and long-term navigation under varying environmental conditions. In this survey, we comprehensively review recent advancements in place recognition, emphasizing three representative methodological paradigms: Convolutional Neural Network (CNN)-based approaches, Transformer-based frameworks, and cross-modal strategies. We begin by elucidating the significance of place recognition within the broader context of autonomous systems. Subsequently, we trace the evolution of CNN-based methods, highlighting their contributions to robust visual descriptor learning and scalability in large-scale environments. We then examine the emerging class of Transformer-based models, which leverage self-attention mechanisms to capture global dependencies and offer improved generalization across diverse scenes. Furthermore, we discuss cross-modal approaches that integrate heterogeneous data sources such as Lidar, vision, and text description, thereby enhancing resilience to viewpoint, illumination, and seasonal variations. We also summarize standard datasets and evaluation metrics widely adopted in the literature. Finally, we identify current research challenges and outline prospective directions, including domain adaptation, real-time performance, and lifelong learning, to inspire future advancements in this domain. The unified framework of leading-edge place recognition methods, i.e., code library, and the results of their experimental evaluations are available at https://github.com/CV4RA/SOTA-Place-Recognitioner.
comment: 35 pages
NOVA: A Benchmark for Anomaly Localization and Clinical Reasoning in Brain MRI
In many real-world applications, deployed models encounter inputs that differ from the data seen during training. Out-of-distribution detection identifies whether an input stems from an unseen distribution, while open-world recognition flags such inputs to ensure the system remains robust as ever-emerging, previously $unknown$ categories appear and must be addressed without retraining. Foundation and vision-language models are pre-trained on large and diverse datasets with the expectation of broad generalization across domains, including medical imaging. However, benchmarking these models on test sets with only a few common outlier types silently collapses the evaluation back to a closed-set problem, masking failures on rare or truly novel conditions encountered in clinical use. We therefore present $NOVA$, a challenging, real-life $evaluation-only$ benchmark of $\sim$900 brain MRI scans that span 281 rare pathologies and heterogeneous acquisition protocols. Each case includes rich clinical narratives and double-blinded expert bounding-box annotations. Together, these enable joint assessment of anomaly localisation, visual captioning, and diagnostic reasoning. Because NOVA is never used for training, it serves as an $extreme$ stress-test of out-of-distribution generalisation: models must bridge a distribution gap both in sample appearance and in semantic space. Baseline results with leading vision-language models (GPT-4o, Gemini 2.0 Flash, and Qwen2.5-VL-72B) reveal substantial performance drops across all tasks, establishing NOVA as a rigorous testbed for advancing models that can detect, localize, and reason about truly unknown anomalies.
Scaling Vision Mamba Across Resolutions via Fractal Traversal
Vision Mamba has recently emerged as a promising alternative to Transformer-based architectures, offering linear complexity in sequence length while maintaining strong modeling capacity. However, its adaptation to visual inputs is hindered by challenges in 2D-to-1D patch serialization and weak scalability across input resolutions. Existing serialization strategies such as raster scanning disrupt local spatial continuity and limit the model's ability to generalize across scales. In this paper, we propose FractalMamba++, a robust vision backbone that leverages fractal-based patch serialization via Hilbert curves to preserve spatial locality and enable seamless resolution adaptability. To address long-range dependency fading in high-resolution inputs, we further introduce a Cross-State Routing (CSR) mechanism that enhances global context propagation through selective state reuse. Additionally, we propose a Positional-Relation Capture (PRC) module to recover local adjacency disrupted by curve inflection points. Extensive experiments on image classification, semantic segmentation, object detection, and change detection demonstrate that FractalMamba++ consistently outperforms previous Mamba-based backbones, particularly under high-resolution settings.
comment: Work in progressing
Dolphin: Document Image Parsing via Heterogeneous Anchor Prompting ACL 2025
Document image parsing is challenging due to its complexly intertwined elements such as text paragraphs, figures, formulas, and tables. Current approaches either assemble specialized expert models or directly generate page-level content autoregressively, facing integration overhead, efficiency bottlenecks, and layout structure degradation despite their decent performance. To address these limitations, we present \textit{Dolphin} (\textit{\textbf{Do}cument Image \textbf{P}arsing via \textbf{H}eterogeneous Anchor Prompt\textbf{in}g}), a novel multimodal document image parsing model following an analyze-then-parse paradigm. In the first stage, Dolphin generates a sequence of layout elements in reading order. These heterogeneous elements, serving as anchors and coupled with task-specific prompts, are fed back to Dolphin for parallel content parsing in the second stage. To train Dolphin, we construct a large-scale dataset of over 30 million samples, covering multi-granularity parsing tasks. Through comprehensive evaluations on both prevalent benchmarks and self-constructed ones, Dolphin achieves state-of-the-art performance across diverse page-level and element-level settings, while ensuring superior efficiency through its lightweight architecture and parallel parsing mechanism. The code and pre-trained models are publicly available at https://github.com/ByteDance/Dolphin
comment: Accepted to ACL 2025
Learning Concept-Driven Logical Rules for Interpretable and Generalizable Medical Image Classification MICCAI 2025
The pursuit of decision safety in clinical applications highlights the potential of concept-based methods in medical imaging. While these models offer active interpretability, they often suffer from concept leakages, where unintended information within soft concept representations undermines both interpretability and generalizability. Moreover, most concept-based models focus solely on local explanations (instance-level), neglecting the global decision logic (dataset-level). To address these limitations, we propose Concept Rule Learner (CRL), a novel framework to learn Boolean logical rules from binarized visual concepts. CRL employs logical layers to capture concept correlations and extract clinically meaningful rules, thereby providing both local and global interpretability. Experiments on two medical image classification tasks show that CRL achieves competitive performance with existing methods while significantly improving generalizability to out-of-distribution data. The code of our work is available at https://github.com/obiyoag/crl.
comment: early accepted by MICCAI 2025
Selective Structured State Space for Multispectral-fused Small Target Detection
Target detection in high-resolution remote sensing imagery faces challenges due to the low recognition accuracy of small targets and high computational costs. The computational complexity of the Transformer architecture increases quadratically with image resolution, while Convolutional Neural Networks (CNN) architectures are forced to stack deeper convolutional layers to expand their receptive fields, leading to an explosive growth in computational demands. To address these computational constraints, we leverage Mamba's linear complexity for efficiency. However, Mamba's performance declines for small targets, primarily because small targets occupy a limited area in the image and have limited semantic information. Accurate identification of these small targets necessitates not only Mamba's global attention capabilities but also the precise capture of fine local details. To this end, we enhance Mamba by developing the Enhanced Small Target Detection (ESTD) module and the Convolutional Attention Residual Gate (CARG) module. The ESTD module bolsters local attention to capture fine-grained details, while the CARG module, built upon Mamba, emphasizes spatial and channel-wise information, collectively improving the model's ability to capture distinctive representations of small targets. Additionally, to highlight the semantic representation of small targets, we design a Mask Enhanced Pixel-level Fusion (MEPF) module for multispectral fusion, which enhances target features by effectively fusing visible and infrared multimodal information.
Adversarially Pretrained Transformers may be Universally Robust In-Context Learners
Adversarial training is one of the most effective adversarial defenses, but it incurs a high computational cost. In this study, we show that transformers adversarially pretrained on diverse tasks can serve as robust foundation models and eliminate the need for adversarial training in downstream tasks. Specifically, we theoretically demonstrate that through in-context learning, a single adversarially pretrained transformer can robustly generalize to multiple unseen tasks without any additional training, i.e., without any parameter updates. This robustness stems from the model's focus on robust features and its resistance to attacks that exploit non-predictive features. Besides these positive findings, we also identify several limitations. Under certain conditions (though unrealistic), no universally robust single-layer transformers exist. Moreover, robust transformers exhibit an accuracy--robustness trade-off and require a large number of in-context demonstrations. The code is available at https://github.com/s-kumano/universally-robust-in-context-learner.
AppleGrowthVision: A large-scale stereo dataset for phenological analysis, fruit detection, and 3D reconstruction in apple orchards
Deep learning has transformed computer vision for precision agriculture, yet apple orchard monitoring remains limited by dataset constraints. The lack of diverse, realistic datasets and the difficulty of annotating dense, heterogeneous scenes. Existing datasets overlook different growth stages and stereo imagery, both essential for realistic 3D modeling of orchards and tasks like fruit localization, yield estimation, and structural analysis. To address these gaps, we present AppleGrowthVision, a large-scale dataset comprising two subsets. The first includes 9,317 high resolution stereo images collected from a farm in Brandenburg (Germany), covering six agriculturally validated growth stages over a full growth cycle. The second subset consists of 1,125 densely annotated images from the same farm in Brandenburg and one in Pillnitz (Germany), containing a total of 31,084 apple labels. AppleGrowthVision provides stereo-image data with agriculturally validated growth stages, enabling precise phenological analysis and 3D reconstructions. Extending MinneApple with our data improves YOLOv8 performance by 7.69 % in terms of F1-score, while adding it to MinneApple and MAD boosts Faster R-CNN F1-score by 31.06 %. Additionally, six BBCH stages were predicted with over 95 % accuracy using VGG16, ResNet152, DenseNet201, and MobileNetv2. AppleGrowthVision bridges the gap between agricultural science and computer vision, by enabling the development of robust models for fruit detection, growth modeling, and 3D analysis in precision agriculture. Future work includes improving annotation, enhancing 3D reconstruction, and extending multimodal analysis across all growth stages.
OmniStyle: Filtering High Quality Style Transfer Data at Scale CVPR 2025
In this paper, we introduce OmniStyle-1M, a large-scale paired style transfer dataset comprising over one million content-style-stylized image triplets across 1,000 diverse style categories, each enhanced with textual descriptions and instruction prompts. We show that OmniStyle-1M can not only enable efficient and scalable of style transfer models through supervised training but also facilitate precise control over target stylization. Especially, to ensure the quality of the dataset, we introduce OmniFilter, a comprehensive style transfer quality assessment framework, which filters high-quality triplets based on content preservation, style consistency, and aesthetic appeal. Building upon this foundation, we propose OmniStyle, a framework based on the Diffusion Transformer (DiT) architecture designed for high-quality and efficient style transfer. This framework supports both instruction-guided and image-guided style transfer, generating high resolution outputs with exceptional detail. Extensive qualitative and quantitative evaluations demonstrate OmniStyle's superior performance compared to existing approaches, highlighting its efficiency and versatility. OmniStyle-1M and its accompanying methodologies provide a significant contribution to advancing high-quality style transfer, offering a valuable resource for the research community.
comment: Accepted to CVPR 2025
Towards Efficient Multi-Scale Deformable Attention on NPU
Multi-scale deformable attention (MSDA) is a flexible and powerful feature extraction mechanism for visual tasks, but its random-access grid sampling strategy poses significant optimization challenges, especially on domain-specific accelerators such as NPUs. In this work, we present a co-design approach that systematically rethinks memory access and computation strategies for MSDA on the Ascend NPU architecture. With this co-design approach, our implementation supports both efficient forward and backward computation, is fully adapted for training workloads, and incorporates a suite of hardware-aware optimizations. Extensive experiments show that our solution achieves up to $5.9\times$ (forward), $8.9\times$ (backward), and $7.3\times$ (end-to-end training) speedup over the grid sample-based baseline, and $1.9\times$, $2.4\times$, and $2.0\times$ acceleration over the latest vendor library, respectively.
comment: 10 pages, 8 figures
Adversarial Training from Mean Field Perspective NeurIPS23
Although adversarial training is known to be effective against adversarial examples, training dynamics are not well understood. In this study, we present the first theoretical analysis of adversarial training in random deep neural networks without any assumptions on data distributions. We introduce a new theoretical framework based on mean field theory, which addresses the limitations of existing mean field-based approaches. Based on this framework, we derive (empirically tight) upper bounds of $\ell_q$ norm-based adversarial loss with $\ell_p$ norm-based adversarial examples for various values of $p$ and $q$. Moreover, we prove that networks without shortcuts are generally not adversarially trainable and that adversarial training reduces network capacity. We also show that network width alleviates these issues. Furthermore, we present the various impacts of the input and output dimensions on the upper bounds and time evolution of the weight variance.
comment: NeurIPS23
End-to-end Cortical Surface Reconstruction from Clinical Magnetic Resonance Images
Surface-based cortical analysis is valuable for a variety of neuroimaging tasks, such as spatial normalization, parcellation, and gray matter (GM) thickness estimation. However, most tools for estimating cortical surfaces work exclusively on scans with at least 1 mm isotropic resolution and are tuned to a specific magnetic resonance (MR) contrast, often T1-weighted (T1w). This precludes application using most clinical MR scans, which are very heterogeneous in terms of contrast and resolution. Here, we use synthetic domain-randomized data to train the first neural network for explicit estimation of cortical surfaces from scans of any contrast and resolution, without retraining. Our method deforms a template mesh to the white matter (WM) surface, which guarantees topological correctness. This mesh is further deformed to estimate the GM surface. We compare our method to recon-all-clinical (RAC), an implicit surface reconstruction method which is currently the only other tool capable of processing heterogeneous clinical MR scans, on ADNI and a large clinical dataset (n=1,332). We show a approximately 50 % reduction in cortical thickness error (from 0.50 to 0.24 mm) with respect to RAC and better recovery of the aging-related cortical thinning patterns detected by FreeSurfer on high-resolution T1w scans. Our method enables fast and accurate surface reconstruction of clinical scans, allowing studies (1) with sample sizes far beyond what is feasible in a research setting, and (2) of clinical populations that are difficult to enroll in research studies. The code is publicly available at https://github.com/simnibs/brainnet.
comment: 11 pages, 4 figures
EGFormer: Towards Efficient and Generalizable Multimodal Semantic Segmentation
Recent efforts have explored multimodal semantic segmentation using various backbone architectures. However, while most methods aim to improve accuracy, their computational efficiency remains underexplored. To address this, we propose EGFormer, an efficient multimodal semantic segmentation framework that flexibly integrates an arbitrary number of modalities while significantly reducing model parameters and inference time without sacrificing performance. Our framework introduces two novel modules. First, the Any-modal Scoring Module (ASM) assigns importance scores to each modality independently, enabling dynamic ranking based on their feature maps. Second, the Modal Dropping Module (MDM) filters out less informative modalities at each stage, selectively preserving and aggregating only the most valuable features. This design allows the model to leverage useful information from all available modalities while discarding redundancy, thus ensuring high segmentation quality. In addition to efficiency, we evaluate EGFormer on a synthetic-to-real transfer task to demonstrate its generalizability. Extensive experiments show that EGFormer achieves competitive performance with up to 88 percent reduction in parameters and 50 percent fewer GFLOPs. Under unsupervised domain adaptation settings, it further achieves state-of-the-art transfer performance compared to existing methods.
Benchmarking Unified Face Attack Detection via Hierarchical Prompt Tuning
Presentation Attack Detection and Face Forgery Detection are designed to protect face data from physical media-based Presentation Attacks and digital editing-based DeepFakes respectively. But separate training of these two models makes them vulnerable to unknown attacks and burdens deployment environments. The lack of a Unified Face Attack Detection model to handle both types of attacks is mainly due to two factors. First, there's a lack of adequate benchmarks for models to explore. Existing UAD datasets have limited attack types and samples, restricting the model's ability to address advanced threats. To address this, we propose UniAttackDataPlus (UniAttackData+), the most extensive and sophisticated collection of forgery techniques to date. It includes 2,875 identities and their 54 kinds of falsified samples, totaling 697,347 videos. Second, there's a lack of a reliable classification criterion. Current methods try to find an arbitrary criterion within the same semantic space, which fails when encountering diverse attacks. So, we present a novel Visual-Language Model-based Hierarchical Prompt Tuning Framework (HiPTune) that adaptively explores multiple classification criteria from different semantic spaces. We build a Visual Prompt Tree to explore various classification rules hierarchically. Then, by adaptively pruning the prompts, the model can select the most suitable prompts to guide the encoder to extract discriminative features at different levels in a coarse-to-fine way. Finally, to help the model understand the classification criteria in visual space, we propose a Dynamically Prompt Integration module to project the visual prompts to the text encoder for more accurate semantics. Experiments on 12 datasets have shown the potential to inspire further innovations in the UAD field.
Event-Driven Dynamic Scene Depth Completion
Depth completion in dynamic scenes poses significant challenges due to rapid ego-motion and object motion, which can severely degrade the quality of input modalities such as RGB images and LiDAR measurements. Conventional RGB-D sensors often struggle to align precisely and capture reliable depth under such conditions. In contrast, event cameras with their high temporal resolution and sensitivity to motion at the pixel level provide complementary cues that are %particularly beneficial in dynamic environments.To this end, we propose EventDC, the first event-driven depth completion framework. It consists of two key components: Event-Modulated Alignment (EMA) and Local Depth Filtering (LDF). Both modules adaptively learn the two fundamental components of convolution operations: offsets and weights conditioned on motion-sensitive event streams. In the encoder, EMA leverages events to modulate the sampling positions of RGB-D features to achieve pixel redistribution for improved alignment and fusion. In the decoder, LDF refines depth estimations around moving objects by learning motion-aware masks from events. Additionally, EventDC incorporates two loss terms to further benefit global alignment and enhance local depth recovery. Moreover, we establish the first benchmark for event-based depth completion comprising one real-world and two synthetic datasets to facilitate future research. Extensive experiments on this benchmark demonstrate the superiority of our EventDC.
comment: 9 pages
StarFT: Robust Fine-tuning of Zero-shot Models via Spuriosity Alignment IJCAI 2025
Learning robust representations from data often requires scale, which has led to the success of recent zero-shot models such as CLIP. However, the obtained robustness can easily be deteriorated when these models are fine-tuned on other downstream tasks (e.g., of smaller scales). Previous works often interpret this phenomenon in the context of domain shift, developing fine-tuning methods that aim to preserve the original domain as much as possible. However, in a different context, fine-tuned models with limited data are also prone to learning features that are spurious to humans, such as background or texture. In this paper, we propose StarFT (Spurious Textual Alignment Regularization), a novel framework for fine-tuning zero-shot models to enhance robustness by preventing them from learning spuriosity. We introduce a regularization that aligns the output distribution for spuriosity-injected labels with the original zero-shot model, ensuring that the model is not induced to extract irrelevant features further from these descriptions. We leverage recent language models to get such spuriosity-injected labels by generating alternative textual descriptions that highlight potentially confounding features. Extensive experiments validate the robust generalization of StarFT and its emerging properties: zero-shot group robustness and improved zero-shot classification. Notably, StarFT boosts both worst-group and average accuracy by 14.30% and 3.02%, respectively, in the Waterbirds group shift scenario, where other robust fine-tuning baselines show even degraded performance.
comment: IJCAI 2025; Code is available at https://github.com/alinlab/StarFT
Swin DiT: Diffusion Transformer using Pseudo Shifted Windows
Diffusion Transformers (DiTs) achieve remarkable performance within the domain of image generation through the incorporation of the transformer architecture. Conventionally, DiTs are constructed by stacking serial isotropic global information modeling transformers, which face significant computational cost when processing high-resolution images. We empirically analyze that latent space image generation does not exhibit a strong dependence on global information as traditionally assumed. Most of the layers in the model demonstrate redundancy in global computation. In addition, conventional attention mechanisms exhibit low-frequency inertia issues. To address these issues, we propose \textbf{P}seudo \textbf{S}hifted \textbf{W}indow \textbf{A}ttention (PSWA), which fundamentally mitigates global model redundancy. PSWA achieves intermediate global-local information interaction through window attention, while employing a high-frequency bridging branch to simulate shifted window operations, supplementing appropriate global and high-frequency information. Furthermore, we propose the Progressive Coverage Channel Allocation(PCCA) strategy that captures high-order attention similarity without additional computational cost. Building upon all of them, we propose a series of Pseudo \textbf{S}hifted \textbf{Win}dow DiTs (\textbf{Swin DiT}), accompanied by extensive experiments demonstrating their superior performance. For example, our proposed Swin-DiT-L achieves a 54%$\uparrow$ FID improvement over DiT-XL/2 while requiring less computational. https://github.com/wujiafu007/Swin-DiT
Industrial Synthetic Segment Pre-training
Pre-training on real-image datasets has been widely proven effective for improving instance segmentation. However, industrial applications face two key challenges: (1) legal and ethical restrictions, such as ImageNet's prohibition of commercial use, and (2) limited transferability due to the domain gap between web images and industrial imagery. Even recent vision foundation models, including the segment anything model (SAM), show notable performance degradation in industrial settings. These challenges raise critical questions: Can we build a vision foundation model for industrial applications without relying on real images or manual annotations? And can such models outperform even fine-tuned SAM on industrial datasets? To address these questions, we propose the Instance Core Segmentation Dataset (InsCore), a synthetic pre-training dataset based on formula-driven supervised learning (FDSL). InsCore generates fully annotated instance segmentation images that reflect key characteristics of industrial data, including complex occlusions, dense hierarchical masks, and diverse non-rigid shapes, distinct from typical web imagery. Unlike previous methods, InsCore requires neither real images nor human annotations. Experiments on five industrial datasets show that models pre-trained with InsCore outperform those trained on COCO and ImageNet-21k, as well as fine-tuned SAM, achieving an average improvement of 6.2 points in instance segmentation performance. This result is achieved using only 100k synthetic images, more than 100 times fewer than the 11 million images in SAM's SA-1B dataset, demonstrating the data efficiency of our approach. These findings position InsCore as a practical and license-free vision foundation model for industrial applications.
Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation ICML2025
Many large-scale systems rely on high-quality deep representations (embeddings) to facilitate tasks like retrieval, search, and generative modeling. Matryoshka Representation Learning (MRL) recently emerged as a solution for adaptive embedding lengths, but it requires full model retraining and suffers from noticeable performance degradations at short lengths. In this paper, we show that sparse coding offers a compelling alternative for achieving adaptive representation with minimal overhead and higher fidelity. We propose Contrastive Sparse Representation (CSR), a method that sparsifies pre-trained embeddings into a high-dimensional but selectively activated feature space. By leveraging lightweight autoencoding and task-aware contrastive objectives, CSR preserves semantic quality while allowing flexible, cost-effective inference at different sparsity levels. Extensive experiments on image, text, and multimodal benchmarks demonstrate that CSR consistently outperforms MRL in terms of both accuracy and retrieval speed-often by large margins-while also cutting training time to a fraction of that required by MRL. Our results establish sparse coding as a powerful paradigm for adaptive representation learning in real-world applications where efficiency and fidelity are both paramount. Code is available at https://github.com/neilwen987/CSR_Adaptive_Rep
comment: Accepted by ICML2025
3D Visual Illusion Depth Estimation
3D visual illusion is a perceptual phenomenon where a two-dimensional plane is manipulated to simulate three-dimensional spatial relationships, making a flat artwork or object look three-dimensional in the human visual system. In this paper, we reveal that the machine visual system is also seriously fooled by 3D visual illusions, including monocular and binocular depth estimation. In order to explore and analyze the impact of 3D visual illusion on depth estimation, we collect a large dataset containing almost 3k scenes and 200k images to train and evaluate SOTA monocular and binocular depth estimation methods. We also propose a robust depth estimation framework that uses common sense from a vision-language model to adaptively select reliable depth from binocular disparity and monocular depth. Experiments show that SOTA monocular, binocular, and multi-view depth estimation approaches are all fooled by various 3D visual illusions, while our method achieves SOTA performance.
comment: Project: https://github.com/YaoChengTang/3D-Visual-Illusion-Depth-Estimation
Pyramid Sparse Transformer: Enhancing Multi-Scale Feature Fusion with Dynamic Token Selection
Feature fusion is critical for high-performance vision models but often incurs prohibitive complexity. However, prevailing attention-based fusion methods often involve significant computational complexity and implementation challenges, limiting their efficiency in resource-constrained environments. To address these issues, we introduce the Pyramid Sparse Transformer (PST), a lightweight, plug-and-play module that integrates coarse-to-fine token selection and shared attention parameters to reduce computation while preserving spatial detail. PST can be trained using only coarse attention and seamlessly activated at inference for further accuracy gains without retraining. When added to state-of-the-art real-time detection models, such as YOLOv11-N/S/M, PST yields mAP improvements of 0.9%, 0.5%, and 0.4% on MS COCO with minimal latency impact. Likewise, embedding PST into ResNet-18/50/101 as backbones, boosts ImageNet top-1 accuracy by 6.5%, 1.7%, and 1.0%, respectively. These results demonstrate PST's effectiveness as a simple, hardware-friendly enhancement for both detection and classification tasks.
comment: 13 pages, 5 figures
Cross-Image Contrastive Decoding: Precise, Lossless Suppression of Language Priors in Large Vision-Language Models
Language priors are a major cause of hallucinations in Large Vision-Language Models (LVLMs), often leading to text that is linguistically plausible but visually inconsistent. Recent work explores contrastive decoding as a training-free solution, but these methods typically construct negative contexts from the original image, resulting in visual information loss and distorted distribution. Motivated by the observation that language priors stem from the LLM backbone and remain consistent across images, we propose Cross-Images Contrastive Decoding (CICD), a simple yet effective training-free method that uses different images to construct negative contexts. We further analyze the cross-image behavior of language priors and introduce a distinction between essential priors (supporting fluency) and detrimental priors (causing hallucinations). By selectively preserving essential priors and suppressing detrimental ones, our method reduces hallucinations while maintaining coherent and fluent language generation. Experiments on 4 benchmarks and 6 LVLMs across three model families confirm the effectiveness and generalizability of CICD, especially in image captioning, where language priors are particularly pronounced. Code will be released once accepted.
Any-to-Any Learning in Computational Pathology via Triplet Multimodal Pretraining
Recent advances in computational pathology and artificial intelligence have significantly enhanced the utilization of gigapixel whole-slide images and and additional modalities (e.g., genomics) for pathological diagnosis. Although deep learning has demonstrated strong potential in pathology, several key challenges persist: (1) fusing heterogeneous data types requires sophisticated strategies beyond simple concatenation due to high computational costs; (2) common scenarios of missing modalities necessitate flexible strategies that allow the model to learn robustly in the absence of certain modalities; (3) the downstream tasks in CPath are diverse, ranging from unimodal to multimodal, cnecessitating a unified model capable of handling all modalities. To address these challenges, we propose ALTER, an any-to-any tri-modal pretraining framework that integrates WSIs, genomics, and pathology reports. The term "any" emphasizes ALTER's modality-adaptive design, enabling flexible pretraining with any subset of modalities, and its capacity to learn robust, cross-modal representations beyond WSI-centric approaches. We evaluate ALTER across extensive clinical tasks including survival prediction, cancer subtyping, gene mutation prediction, and report generation, achieving superior or comparable performance to state-of-the-art baselines.
ReVLA: Reverting Visual Domain Limitation of Robotic Foundation Models ICRA-2025
Recent progress in large language models and access to large-scale robotic datasets has sparked a paradigm shift in robotics models transforming them into generalists able to adapt to various tasks, scenes, and robot modalities. A large step for the community are open Vision Language Action models which showcase strong performance in a wide variety of tasks. In this work, we study the visual generalization capabilities of three existing robotic foundation models, and propose a corresponding evaluation framework. Our study shows that the existing models do not exhibit robustness to visual out-of-domain scenarios. This is potentially caused by limited variations in the training data and/or catastrophic forgetting, leading to domain limitations in the vision foundation models. We further explore OpenVLA, which uses two pre-trained vision foundation models and is, therefore, expected to generalize to out-of-domain experiments. However, we showcase catastrophic forgetting by DINO-v2 in OpenVLA through its failure to fulfill the task of depth regression. To overcome the aforementioned issue of visual catastrophic forgetting, we propose a gradual backbone reversal approach founded on model merging. This enables OpenVLA -- which requires the adaptation of the visual backbones during initial training -- to regain its visual generalization ability. Regaining this capability enables our ReVLA model to improve over OpenVLA by a factor of 77\% and 66\% for grasping and lifting in visual OOD tasks. Comprehensive evaluations, episode rollouts and model weights are available on the ReVLA Page
comment: Accepted at ICRA-2025, Atlanta
How Effective Can Dropout Be in Multiple Instance Learning ? ICML2025
Multiple Instance Learning (MIL) is a popular weakly-supervised method for various applications, with a particular interest in histological whole slide image (WSI) classification. Due to the gigapixel resolution of WSI, applications of MIL in WSI typically necessitate a two-stage training scheme: first, extract features from the pre-trained backbone and then perform MIL aggregation. However, it is well-known that this suboptimal training scheme suffers from "noisy" feature embeddings from the backbone and inherent weak supervision, hindering MIL from learning rich and generalizable features. However, the most commonly used technique (i.e., dropout) for mitigating this issue has yet to be explored in MIL. In this paper, we empirically explore how effective the dropout can be in MIL. Interestingly, we observe that dropping the top-k most important instances within a bag leads to better performance and generalization even under noise attack. Based on this key observation, we propose a novel MIL-specific dropout method, termed MIL-Dropout, which systematically determines which instances to drop. Experiments on five MIL benchmark datasets and two WSI datasets demonstrate that MIL-Dropout boosts the performance of current MIL methods with a negligible computational cost. The code is available at https://github.com/ChongQingNoSubway/MILDropout.
comment: Accepted by ICML2025
On the Generalizability of Foundation Models for Crop Type Mapping
Foundation models pre-trained using self-supervised learning have shown powerful transfer learning capabilities on various downstream tasks, including language understanding, text generation, and image recognition. The Earth observation (EO) field has produced several foundation models pre-trained directly on multispectral satellite imagery for applications like precision agriculture, wildfire and drought monitoring, and natural disaster response. However, few studies have investigated the ability of these models to generalize to new geographic locations, and potential concerns of geospatial bias -- models trained on data-rich developed nations not transferring well to data-scarce developing nations -- remain. We evaluate three popular EO foundation models, SSL4EO-S12, SatlasPretrain, and ImageNet, on five crop classification datasets across five continents. Results show that pre-trained weights designed explicitly for Sentinel-2, such as SSL4EO-S12, outperform general pre-trained weights like ImageNet. While only 100 labeled images are sufficient for achieving high overall accuracy, 900 images are required to mitigate class imbalance and improve average accuracy.
comment: Accepted to IEEE IGARSS 2025. The final version will appear in the Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 2025
KIND: Knowledge Integration and Diversion for Training Decomposable Models
Pre-trained models have become the preferred backbone due to the increasing complexity of model parameters. However, traditional pre-trained models often face deployment challenges due to their fixed sizes, and are prone to negative transfer when discrepancies arise between training tasks and target tasks. To address this, we propose KIND, a novel pre-training method designed to construct decomposable models. KIND integrates knowledge by incorporating Singular Value Decomposition (SVD) as a structural constraint, with each basic component represented as a combination of a column vector, singular value, and row vector from U, \Sigma, and V^\top matrices. These components are categorized into learngenes for encapsulating class-agnostic knowledge and tailors for capturing class-specific knowledge, with knowledge diversion facilitated by a class gate mechanism during training. Extensive experiments demonstrate that models pre-trained with KIND can be decomposed into learngenes and tailors, which can be adaptively recombined for diverse resource-constrained deployments. Moreover, for tasks with large domain shifts, transferring only learngenes with task-agnostic knowledge, when combined with randomly initialized tailors, effectively mitigates domain shifts. Code will be made available at https://github.com/Te4P0t/KIND.
ActiveSSF: An Active-Learning-Guided Self-Supervised Framework for Long-Tailed Megakaryocyte Classification
Precise classification of megakaryocytes is crucial for diagnosing myelodysplastic syndromes. Although self-supervised learning has shown promise in medical image analysis, its application to classifying megakaryocytes in stained slides faces three main challenges: (1) pervasive background noise that obscures cellular details, (2) a long-tailed distribution that limits data for rare subtypes, and (3) complex morphological variations leading to high intra-class variability. To address these issues, we propose the ActiveSSF framework, which integrates active learning with self-supervised pretraining. Specifically, our approach employs Gaussian filtering combined with K-means clustering and HSV analysis (augmented by clinical prior knowledge) for accurate region-of-interest extraction; an adaptive sample selection mechanism that dynamically adjusts similarity thresholds to mitigate class imbalance; and prototype clustering on labeled samples to overcome morphological complexity. Experimental results on clinical megakaryocyte datasets demonstrate that ActiveSSF not only achieves state-of-the-art performance but also significantly improves recognition accuracy for rare subtypes. Moreover, the integration of these advanced techniques further underscores the practical potential of ActiveSSF in clinical settings.
comment: 6 pages
StainDiffuser: MultiTask Dual Diffusion Model for Virtual Staining
Hematoxylin and Eosin (H&E) staining is widely regarded as the standard in pathology for diagnosing diseases and tracking tumor recurrence. While H&E staining shows tissue structures, it lacks the ability to reveal specific proteins that are associated with disease severity and treatment response. Immunohistochemical (IHC) stains use antibodies to highlight the expression of these proteins on their respective cell types, improving diagnostic accuracy, and assisting with drug selection for treatment. Despite their value, IHC stains require additional time and resources, limiting their utilization in some clinical settings. Recent advances in deep learning have positioned Image-to-Image (I2I) translation as a computational, cost-effective alternative for IHC. I2I generates high fidelity stain transformations digitally, potentially replacing manual staining in IHC. Diffusion models, the current state of the art in image generation and conditional tasks, are particularly well suited for virtual IHC due to their ability to produce high quality images and resilience to mode collapse. However, these models require extensive and diverse datasets (often millions of samples) to achieve a robust performance, a challenge in virtual staining applications where only thousands of samples are typically available. Inspired by the success of multitask deep learning models in scenarios with limited data, we introduce STAINDIFFUSER, a novel multitask diffusion architecture tailored to virtual staining that achieves convergence with smaller datasets. STAINDIFFUSER simultaneously trains two diffusion processes: (a) generating cell specific IHC stains from H&E images and (b) performing H&E based cell segmentation, utilizing coarse segmentation labels exclusively during training. STAINDIFFUSER generates high-quality virtual stains for two markers, outperforming over twenty I2I baselines.
Automatic Synthetic Data and Fine-grained Adaptive Feature Alignment for Composed Person Retrieval
Person retrieval has attracted rising attention. Existing methods are mainly divided into two retrieval modes, namely image-only and text-only. However, they are unable to make full use of the available information and are difficult to meet diverse application requirements. To address the above limitations, we propose a new Composed Person Retrieval (CPR) task, which combines visual and textual queries to identify individuals of interest from large-scale person image databases. Nevertheless, the foremost difficulty of the CPR task is the lack of available annotated datasets. Therefore, we first introduce a scalable automatic data synthesis pipeline, which decomposes complex multimodal data generation into the creation of textual quadruples followed by identity-consistent image synthesis using fine-tuned generative models. Meanwhile, a multimodal filtering method is designed to ensure the resulting SynCPR dataset retains 1.15 million high-quality and fully synthetic triplets. Additionally, to improve the representation of composed person queries, we propose a novel Fine-grained Adaptive Feature Alignment (FAFA) framework through fine-grained dynamic alignment and masked feature reasoning. Moreover, for objective evaluation, we manually annotate the Image-Text Composed Person Retrieval (ITCPR) test set. The extensive experiments demonstrate the effectiveness of the SynCPR dataset and the superiority of the proposed FAFA framework when compared with the state-of-the-art methods. All code and data will be provided at https://github.com/Delong-liu-bupt/Composed_Person_Retrieval.
Universal Incremental Learning: Mitigating Confusion from Inter- and Intra-task Distribution Randomness
Incremental learning (IL) aims to overcome catastrophic forgetting of previous tasks while learning new ones. Existing IL methods make strong assumptions that the incoming task type will either only increases new classes or domains (i.e. Class IL, Domain IL), or increase by a static scale in a class- and domain-agnostic manner (i.e. Versatile IL (VIL)), which greatly limit their applicability in the unpredictable and dynamic wild. In this work, we investigate $\textbf{Universal Incremental Learning (UIL)}$, where a model neither knows which new classes or domains will increase along sequential tasks, nor the scale of the increments within each task. This uncertainty prevents the model from confidently learning knowledge from all task distributions and symmetrically focusing on the diverse knowledge within each task distribution. Consequently, UIL presents a more general and realistic IL scenario, making the model face confusion arising from inter-task and intra-task distribution randomness. To $\textbf{Mi}$tigate both $\textbf{Co}$nfusion, we propose a simple yet effective framework for UIL, named $\textbf{MiCo}$. At the inter-task distribution level, we employ a multi-objective learning scheme to enforce accurate and deterministic predictions, and its effectiveness is further enhanced by a direction recalibration module that reduces conflicting gradients. Moreover, at the intra-task distribution level, we introduce a magnitude recalibration module to alleviate asymmetrical optimization towards imbalanced class distribution. Extensive experiments on three benchmarks demonstrate the effectiveness of our method, outperforming existing state-of-the-art methods in both the UIL scenario and the VIL scenario. Our code will be available at $\href{https://github.com/rolsheng/UIL}{here}$.
comment: 10 pages, 4 figures, 4 tables
Customized SAM 2 for Referring Remote Sensing Image Segmentation
Referring Remote Sensing Image Segmentation (RRSIS) aims to segment target objects in remote sensing (RS) images based on textual descriptions. Although Segment Anything Model 2 (SAM 2) has shown remarkable performance in various segmentation tasks, its application to RRSIS presents several challenges, including understanding the text-described RS scenes and generating effective prompts from text descriptions. To address these issues, we propose RS2-SAM 2, a novel framework that adapts SAM 2 to RRSIS by aligning the adapted RS features and textual features, providing pseudo-mask-based dense prompts, and enforcing boundary constraints. Specifically, we first employ a union encoder to jointly encode the visual and textual inputs, generating aligned visual and text embeddings as well as multimodal class tokens. Then, we design a bidirectional hierarchical fusion module to adapt SAM 2 to RS scenes and align adapted visual features with the visually enhanced text embeddings, improving the model's interpretation of text-described RS scenes. Additionally, a mask prompt generator is introduced to take the visual embeddings and class tokens as input and produce a pseudo-mask as the dense prompt of SAM 2. To further refine segmentation, we introduce a text-guided boundary loss to optimize segmentation boundaries by computing text-weighted gradient differences. Experimental results on several RRSIS benchmarks demonstrate that RS2-SAM 2 achieves state-of-the-art performance.
Evaluating the Correctness of Inference Patterns Used by LLMs for Judgment
This paper presents a method to analyze the inference patterns used by Large Language Models (LLMs) for judgment in a case study on legal LLMs, so as to identify potential incorrect representations of the LLM, according to human domain knowledge. Unlike traditional evaluations on language generation results, we propose to evaluate the correctness of the detailed inference patterns of an LLM behind its seemingly correct outputs. To this end, we quantify the interactions between input phrases used by the LLM as primitive inference patterns, because recent theoretical achievements have proven several mathematical guarantees of the faithfulness of the interaction-based explanation. We design a set of metrics to evaluate the detailed inference patterns of LLMs. Experiments show that even when the language generation results appear correct, a significant portion of the inference patterns used by the LLM for the legal judgment may represent misleading or irrelevant logic.
Spectral-Spatial Self-Supervised Learning for Few-Shot Hyperspectral Image Classification SC
Few-shot classification of hyperspectral images (HSI) faces the challenge of scarce labeled samples. Self-Supervised learning (SSL) and Few-Shot Learning (FSL) offer promising avenues to address this issue. However, existing methods often struggle to adapt to the spatial geometric diversity of HSIs and lack sufficient spectral prior knowledge. To tackle these challenges, we propose a method, Spectral-Spatial Self-Supervised Learning for Few-Shot Hyperspectral Image Classification (S4L-FSC), aimed at improving the performance of few-shot HSI classification. Specifically, we first leverage heterogeneous datasets to pretrain a spatial feature extractor using a designed Rotation-Mirror Self-Supervised Learning (RM-SSL) method, combined with FSL. This approach enables the model to learn the spatial geometric diversity of HSIs using rotation and mirroring labels as supervisory signals, while acquiring transferable spatial meta-knowledge through few-shot learning. Subsequently, homogeneous datasets are utilized to pretrain a spectral feature extractor via a combination of FSL and Masked Reconstruction Self-Supervised Learning (MR-SSL). The model learns to reconstruct original spectral information from randomly masked spectral vectors, inferring spectral dependencies. In parallel, FSL guides the model to extract pixel-level discriminative features, thereby embedding rich spectral priors into the model. This spectral-spatial pretraining method, along with the integration of knowledge from heterogeneous and homogeneous sources, significantly enhances model performance. Extensive experiments on four HSI datasets demonstrate the effectiveness and superiority of the proposed S4L-FSC approach for few-shot HSI classification.
comment: https://github.com/Wenchen-Chen/S4L-FSC
Multimodal Fusion of Glucose Monitoring and Food Imagery for Caloric Content Prediction
Effective dietary monitoring is critical for managing Type 2 diabetes, yet accurately estimating caloric intake remains a major challenge. While continuous glucose monitors (CGMs) offer valuable physiological data, they often fall short in capturing the full nutritional profile of meals due to inter-individual and meal-specific variability. In this work, we introduce a multimodal deep learning framework that jointly leverages CGM time-series data, Demographic/Microbiome, and pre-meal food images to enhance caloric estimation. Our model utilizes attention based encoding and a convolutional feature extraction for meal imagery, multi-layer perceptrons for CGM and Microbiome data followed by a late fusion strategy for joint reasoning. We evaluate our approach on a curated dataset of over 40 participants, incorporating synchronized CGM, Demographic and Microbiome data and meal photographs with standardized caloric labels. Our model achieves a Root Mean Squared Relative Error (RMSRE) of 0.2544, outperforming the baselines models by over 50%. These findings demonstrate the potential of multimodal sensing to improve automated dietary assessment tools for chronic disease management.
comment: The manuscript was submitted without proper consideration of institutional policies. Upon review with professor, it was found that the content is subject to licensing restrictions which prohibit public dissemination in its current form. Therefore, I am withdrawing the paper to comply with these requirements
Technical Report: Quantifying and Analyzing the Generalization Power of a DNN
This paper proposes a new perspective for analyzing the generalization power of deep neural networks (DNNs), i.e., directly disentangling and analyzing the dynamics of generalizable and non-generalizable interaction encoded by a DNN through the training process. Specifically, this work builds upon the recent theoretical achievement in explainble AI, which proves that the detailed inference logic of DNNs can be can be strictly rewritten as a small number of AND-OR interaction patterns. Based on this, we propose an efficient method to quantify the generalization power of each interaction, and we discover a distinct three-phase dynamics of the generalization power of interactions during training. In particular, the early phase of training typically removes noisy and non-generalizable interactions and learns simple and generalizable ones. The second and the third phases tend to capture increasingly complex interactions that are harder to generalize. Experimental results verify that the learning of non-generalizable interactions is the the direct cause for the gap between the training and testing losses.
RadCLIP: Enhancing Radiologic Image Analysis through Contrastive Language-Image Pre-training
The integration of artificial intelligence (AI) with radiology marks a transformative era in medicine. Vision foundation models have been adopted to enhance radiologic imaging analysis. However, the distinct complexities of radiologic 2D and 3D radiologic data pose unique challenges that existing models, pre-trained on general non-medical images, fail to address adequately. To bridge this gap and capitalize on the diagnostic precision required in radiologic imaging, we introduce Radiologic Contrastive Language-Image Pre-training (RadCLIP): a cross-modal vision-language foundational model that harnesses Vision Language Pre-training (VLP) framework to improve radiologic image analysis. Building upon Contrastive Language-Image Pre-training (CLIP), RadCLIP incorporates a slice pooling mechanism tailored for volumetric image analysis and is pre-trained using a large and diverse dataset of radiologic image-text pairs. The RadCLIP was pre-trained to effectively align radiologic images with their corresponding text annotations, creating a robust vision backbone for radiologic images. Extensive experiments demonstrate RadCLIP's superior performance in both uni-modal radiologic image classification and cross-modal image-text matching, highlighting its significant promise for improving diagnostic accuracy and efficiency in clinical settings. Our Key contributions include curating a large dataset with diverse radiologic 2D/3D radiologic image-text pairs, a slice pooling adapter using an attention mechanism for integrating 2D images, and comprehensive evaluations of RadCLIP on various radiologic downstream tasks.
Towards Rich Emotions in 3D Avatars: A Text-to-3D Avatar Generation Benchmark
Producing emotionally dynamic 3D facial avatars with text derived from spoken words (Emo3D) has been a pivotal research topic in 3D avatar generation. While progress has been made in general-purpose 3D avatar generation, the exploration of generating emotional 3D avatars remains scarce, primarily due to the complexities of identifying and rendering rich emotions from spoken words. This paper reexamines Emo3D generation and draws inspiration from human processes, breaking down Emo3D into two cascading steps: Text-to-3D Expression Mapping (T3DEM) and 3D Avatar Rendering (3DAR). T3DEM is the most crucial step in determining the quality of Emo3D generation and encompasses three key challenges: Expression Diversity, Emotion-Content Consistency, and Expression Fluidity. To address these challenges, we introduce a novel benchmark to advance research in Emo3D generation. First, we present EmoAva, a large-scale, high-quality dataset for T3DEM, comprising 15,000 text-to-3D expression mappings that characterize the aforementioned three challenges in Emo3D generation. Furthermore, we develop various metrics to effectively evaluate models against these identified challenges. Next, to effectively model the consistency, diversity, and fluidity of human expressions in the T3DEM step, we propose the Continuous Text-to-Expression Generator, which employs an autoregressive Conditional Variational Autoencoder for expression code generation, enhanced with Latent Temporal Attention and Expression-wise Attention mechanisms. Finally, to further enhance the 3DAR step on rendering higher-quality subtle expressions, we present the Globally-informed Gaussian Avatar (GiGA) model. GiGA incorporates a global information mechanism into 3D Gaussian representations, enabling the capture of subtle micro-expressions and seamless transitions between emotional states.
comment: 19 pages. Project website: https://github.com/WalkerMitty/EmoAva
SG-Reg: Generalizable and Efficient Scene Graph Registration
This paper addresses the challenges of registering two rigid semantic scene graphs, an essential capability when an autonomous agent needs to register its map against a remote agent, or against a prior map. The hand-crafted descriptors in classical semantic-aided registration, or the ground-truth annotation reliance in learning-based scene graph registration, impede their application in practical real-world environments. To address the challenges, we design a scene graph network to encode multiple modalities of semantic nodes: open-set semantic feature, local topology with spatial awareness, and shape feature. These modalities are fused to create compact semantic node features. The matching layers then search for correspondences in a coarse-to-fine manner. In the back-end, we employ a robust pose estimator to decide transformation according to the correspondences. We manage to maintain a sparse and hierarchical scene representation. Our approach demands fewer GPU resources and fewer communication bandwidth in multi-agent tasks. Moreover, we design a new data generation approach using vision foundation models and a semantic mapping module to reconstruct semantic scene graphs. It differs significantly from previous works, which rely on ground-truth semantic annotations to generate data. We validate our method in a two-agent SLAM benchmark. It significantly outperforms the hand-crafted baseline in terms of registration success rate. Compared to visual loop closure networks, our method achieves a slightly higher registration recall while requiring only 52 KB of communication bandwidth for each query frame. Code available at: \href{http://github.com/HKUST-Aerial-Robotics/SG-Reg}{http://github.com/HKUST-Aerial-Robotics/SG-Reg}.
comment: IEEE Transactions Robotics Regular Paper
MMDocIR: Benchmarking Multi-Modal Retrieval for Long Documents
Multimodal document retrieval aims to identify and retrieve various forms of multimodal content, such as figures, tables, charts, and layout information from extensive documents. Despite its increasing popularity, there is a notable lack of a comprehensive and robust benchmark to effectively evaluate the performance of systems in such tasks. To address this gap, this work introduces a new benchmark, named MMDocIR, that encompasses two distinct tasks: page-level and layout-level retrieval. The former evaluates the performance of identifying the most relevant pages within a long document, while the later assesses the ability of detecting specific layouts, providing a more fine-grained measure than whole-page analysis. A layout refers to a variety of elements, including textual paragraphs, equations, figures, tables, or charts. The MMDocIR benchmark comprises a rich dataset featuring 1,685 questions annotated by experts and 173,843 questions with bootstrapped labels, making it a valuable resource in multimodal document retrieval for both training and evaluation. Through rigorous experiments, we demonstrate that (i) visual retrievers significantly outperform their text counterparts, (ii) MMDocIR training set effectively enhances the performance of multimodal document retrieval and (iii) text retrievers leveraging VLM-text significantly outperforms retrievers relying on OCR-text. Our dataset is available at https://mmdocrag.github.io/MMDocIR/.
comment: https://huggingface.co/MMDocIR
Online Iterative Self-Alignment for Radiology Report Generation ACL 2025
Radiology Report Generation (RRG) is an important research topic for relieving radiologist' heavy workload. Existing RRG models mainly rely on supervised fine-tuning (SFT) based on different model architectures using data pairs of radiological images and corresponding radiologist-annotated reports. Recent research has shifted focus to post-training improvements, aligning RRG model outputs with human preferences using reinforcement learning (RL). However, the limited data coverage of high-quality annotated data poses risks of overfitting and generalization. This paper proposes a novel Online Iterative Self-Alignment (OISA) method for RRG that consists of four stages: self-generation of diverse data, self-evaluation for multi-objective preference data,self-alignment for multi-objective optimization and self-iteration for further improvement. Our approach allows for generating varied reports tailored to specific clinical objectives, enhancing the overall performance of the RRG model iteratively. Unlike existing methods, our frame-work significantly increases data quality and optimizes performance through iterative multi-objective optimization. Experimental results demonstrate that our method surpasses previous approaches, achieving state-of-the-art performance across multiple evaluation metrics.
comment: Accepted by ACL 2025 Main
Generalized Few-shot 3D Point Cloud Segmentation with Vision-Language Model CVPR 2025
Generalized few-shot 3D point cloud segmentation (GFS-PCS) adapts models to new classes with few support samples while retaining base class segmentation. Existing GFS-PCS methods enhance prototypes via interacting with support or query features but remain limited by sparse knowledge from few-shot samples. Meanwhile, 3D vision-language models (3D VLMs), generalizing across open-world novel classes, contain rich but noisy novel class knowledge. In this work, we introduce a GFS-PCS framework that synergizes dense but noisy pseudo-labels from 3D VLMs with precise yet sparse few-shot samples to maximize the strengths of both, named GFS-VL. Specifically, we present a prototype-guided pseudo-label selection to filter low-quality regions, followed by an adaptive infilling strategy that combines knowledge from pseudo-label contexts and few-shot samples to adaptively label the filtered, unlabeled areas. Additionally, we design a novel-base mix strategy to embed few-shot samples into training scenes, preserving essential context for improved novel class learning. Moreover, recognizing the limited diversity in current GFS-PCS benchmarks, we introduce two challenging benchmarks with diverse novel classes for comprehensive generalization evaluation. Experiments validate the effectiveness of our framework across models and datasets. Our approach and benchmarks provide a solid foundation for advancing GFS-PCS in the real world. The code is at https://github.com/ZhaochongAn/GFS-VL
comment: Accepted to CVPR 2025
IP-Prompter: Training-Free Theme-Specific Image Generation via Dynamic Visual Prompting SIGGRAPH 2025
The stories and characters that captivate us as we grow up shape unique fantasy worlds, with images serving as the primary medium for visually experiencing these realms. Personalizing generative models through fine-tuning with theme-specific data has become a prevalent approach in text-to-image generation. However, unlike object customization, which focuses on learning specific objects, theme-specific generation encompasses diverse elements such as characters, scenes, and objects. Such diversity also introduces a key challenge: how to adaptively generate multi-character, multi-concept, and continuous theme-specific images (TSI). Moreover, fine-tuning approaches often come with significant computational overhead, time costs, and risks of overfitting. This paper explores a fundamental question: Can image generation models directly leverage images as contextual input, similarly to how large language models use text as context? To address this, we present IP-Prompter, a novel training-free TSI generation method. IP-Prompter introduces visual prompting, a mechanism that integrates reference images into generative models, allowing users to seamlessly specify the target theme without requiring additional training. To further enhance this process, we propose a Dynamic Visual Prompting (DVP) mechanism, which iteratively optimizes visual prompts to improve the accuracy and quality of generated images. Our approach enables diverse applications, including consistent story generation, character design, realistic character generation, and style-guided image generation. Comparative evaluations against state-of-the-art personalization methods demonstrate that IP-Prompter achieves significantly better results and excels in maintaining character identity preserving, style consistency and text alignment, offering a robust and flexible solution for theme-specific image generation.
comment: Accepted by ACM SIGGRAPH 2025. Project page: https://ip-prompter.github.io/
Does Acceleration Cause Hidden Instability in Vision Language Models? Uncovering Instance-Level Divergence Through a Large-Scale Empirical Study
Vision-Language Models (VLMs) are powerful yet computationally intensive for widespread practical deployments. To address such challenge without costly re-training, post-training acceleration techniques like quantization and token reduction are extensively explored. However, current acceleration evaluations primarily target minimal overall performance degradation, overlooking a crucial question: does the accelerated model still give the same answers to the same questions as it did before acceleration? This is vital for stability-centered industrial applications where consistently correct answers for specific, known situations are paramount, such as in AI-based disease diagnosis. We systematically investigate this for accelerated VLMs, testing four leading models (LLaVA-1.5, LLaVA-Next, Qwen2-VL, Qwen2.5-VL) with eight acceleration methods on ten multi-modal benchmarks. Our findings are stark: despite minimal aggregate performance drops, accelerated models changed original answers up to 20% of the time. Critically, up to 6.5% of these changes converted correct answers to incorrect. Input perturbations magnified these inconsistencies, and the trend is confirmed by case studies with the medical VLM LLaVA-Med. This research reveals a significant oversight in VLM acceleration, stressing an urgent need for instance-level stability checks to ensure trustworthy real-world deployment.
Point2Primitive: CAD Reconstruction from Point Cloud by Direct Primitive Prediction
Recovering CAD models from point clouds, especially the sketch-extrusion process, can be seen as the process of rebuilding the topology and extrusion primitives. Previous methods utilize implicit fields for sketch representation, leading to shape reconstruction of curved edges. In this paper, we proposed a CAD reconstruction network that produces editable CAD models from input point clouds (Point2Primitive) by directly predicting every element of the extrusion primitives. Point2Primitive can directly detect and predict sketch curves (type and parameter) from point clouds based on an improved transformer. The sketch curve parameters are formulated as position queries and optimized in an autoregressive way, leading to high parameter accuracy. The topology is rebuilt by extrusion segmentation, and each extrusion parameter (sketch and extrusion operation) is recovered by combining the predicted curves and the computed extrusion operation. Extensive experiments demonstrate that our method is superior in primitive prediction accuracy and CAD reconstruction. The reconstructed shapes are of high geometrical fidelity.
LED: LLM Enhanced Open-Vocabulary Object Detection without Human Curated Data Generation
Large foundation models trained on large-scale vision-language data can boost Open-Vocabulary Object Detection (OVD) via synthetic training data, yet the hand-crafted pipelines often introduce bias and overfit to specific prompts. We sidestep this issue by directly fusing hidden states from Large Language Models (LLMs) into detectors-an avenue surprisingly under-explored. This paper presents a systematic method to enhance visual grounding by utilizing decoder layers of the LLM of an MLLM. We introduce a zero-initialized cross-attention adapter to enable efficient knowledge fusion from LLMs to object detectors, a new approach called LED (LLM Enhanced Open-Vocabulary Object Detection). We find that intermediate LLM layers already encode rich spatial semantics; adapting only the early layers yields most of the gain. With Swin-T as the vision encoder, Qwen2-0.5B + LED lifts GroundingDINO by 3.82 % on OmniLabel at just 8.7 % extra GFLOPs, and a larger vision backbone pushes the improvement to 6.22 %. Extensive ablations on adapter variants, LLM scales and fusion depths further corroborate our design.
A Unified Framework for Event-based Frame Interpolation with Ad-hoc Deblurring in the Wild
Effective video frame interpolation hinges on the adept handling of motion in the input scene. Prior work acknowledges asynchronous event information for this, but often overlooks whether motion induces blur in the video, limiting its scope to sharp frame interpolation. We instead propose a unified framework for event-based frame interpolation that performs deblurring ad-hoc and thus works both on sharp and blurry input videos. Our model consists in a bidirectional recurrent network that incorporates the temporal dimension of interpolation and fuses information from the input frames and the events adaptively based on their temporal proximity. To enhance the generalization from synthetic data to real event cameras, we integrate self-supervised framework with the proposed model to enhance the generalization on real-world datasets in the wild. At the dataset level, we introduce a novel real-world high-resolution dataset with events and color videos named HighREV, which provides a challenging evaluation setting for the examined task. Extensive experiments show that our network consistently outperforms previous state-of-the-art methods on frame interpolation, single image deblurring, and the joint task of both. Experiments on domain transfer reveal that self-supervised training effectively mitigates the performance degradation observed when transitioning from synthetic data to real-world data. Code and datasets are available at https://github.com/AHupuJR/REFID.
comment: Accepted to T-PAMI
Diffusion Model as a Noise-Aware Latent Reward Model for Step-Level Preference Optimization
Preference optimization for diffusion models aims to align them with human preferences for images. Previous methods typically use Vision-Language Models (VLMs) as pixel-level reward models to approximate human preferences. However, when used for step-level preference optimization, these models face challenges in handling noisy images of different timesteps and require complex transformations into pixel space. In this work, we show that pre-trained diffusion models are naturally suited for step-level reward modeling in the noisy latent space, as they are explicitly designed to process latent images at various noise levels. Accordingly, we propose the Latent Reward Model (LRM), which repurposes components of the diffusion model to predict preferences of latent images at arbitrary timesteps. Building on LRM, we introduce Latent Preference Optimization (LPO), a step-level preference optimization method conducted directly in the noisy latent space. Experimental results indicate that LPO significantly improves the model's alignment with general, aesthetic, and text-image alignment preferences, while achieving a 2.5-28x training speedup over existing preference optimization methods. Our code and models are available at https://github.com/Kwai-Kolors/LPO.
comment: 25 pages, 26 tables, 15 figures
Deep activity propagation via weight initialization in spiking neural networks
Spiking Neural Networks (SNNs) and neuromorphic computing offer bio-inspired advantages such as sparsity and ultra-low power consumption, providing a promising alternative to conventional networks. However, training deep SNNs from scratch remains a challenge, as SNNs process and transmit information by quantizing the real-valued membrane potentials into binary spikes. This can lead to information loss and vanishing spikes in deeper layers, impeding effective training. While weight initialization is known to be critical for training deep neural networks, what constitutes an effective initial state for a deep SNN is not well-understood. Existing weight initialization methods designed for conventional networks (ANNs) are often applied to SNNs without accounting for their distinct computational properties. In this work we derive an optimal weight initialization method specifically tailored for SNNs, taking into account the quantization operation. We show theoretically that, unlike standard approaches, this method enables the propagation of activity in deep SNNs without loss of spikes. We demonstrate this behavior in numerical simulations of SNNs with up to 100 layers across multiple time steps. We present an in-depth analysis of the numerical conditions, regarding layer width and neuron hyperparameters, which are necessary to accurately apply our theoretical findings. Furthermore, our experiments on MNIST demonstrate higher accuracy and faster convergence when using the proposed weight initialization scheme. Finally, we show that the newly introduced weight initialization is robust against variations in several network and neuron hyperparameters.
Latent Action Learning Requires Supervision in the Presence of Distractors ICML 2025
Recently, latent action learning, pioneered by Latent Action Policies (LAPO), have shown remarkable pre-training efficiency on observation-only data, offering potential for leveraging vast amounts of video available on the web for embodied AI. However, prior work has focused on distractor-free data, where changes between observations are primarily explained by ground-truth actions. Unfortunately, real-world videos contain action-correlated distractors that may hinder latent action learning. Using Distracting Control Suite (DCS) we empirically investigate the effect of distractors on latent action learning and demonstrate that LAPO struggle in such scenario. We propose LAOM, a simple LAPO modification that improves the quality of latent actions by 8x, as measured by linear probing. Importantly, we show that providing supervision with ground-truth actions, as few as 2.5% of the full dataset, during latent action learning improves downstream performance by 4.2x on average. Our findings suggest that integrating supervision during Latent Action Models (LAM) training is critical in the presence of distractors, challenging the conventional pipeline of first learning LAM and only then decoding from latent to ground-truth actions.
comment: ICML 2025, Poster, Source code: https://github.com/dunnolab/laom
SpaceJAM: a Lightweight and Regularization-free Method for Fast Joint Alignment of Images ECCV 2024
The unsupervised task of Joint Alignment (JA) of images is beset by challenges such as high complexity, geometric distortions, and convergence to poor local or even global optima. Although Vision Transformers (ViT) have recently provided valuable features for JA, they fall short of fully addressing these issues. Consequently, researchers frequently depend on expensive models and numerous regularization terms, resulting in long training times and challenging hyperparameter tuning. We introduce the Spatial Joint Alignment Model (SpaceJAM), a novel approach that addresses the JA task with efficiency and simplicity. SpaceJAM leverages a compact architecture with only 16K trainable parameters and uniquely operates without the need for regularization or atlas maintenance. Evaluations on SPair-71K and CUB datasets demonstrate that SpaceJAM matches the alignment capabilities of existing methods while significantly reducing computational demands and achieving at least a 10x speedup. SpaceJAM sets a new standard for rapid and effective image alignment, making the process more accessible and efficient. Our code is available at: https://bgu-cs-vil.github.io/SpaceJAM/.
comment: Accepted to ECCV 2024
CRCE: Coreference-Retention Concept Erasure in Text-to-Image Diffusion Models
Text-to-Image diffusion models can produce undesirable content that necessitates concept erasure. However, existing methods struggle with under-erasure, leaving residual traces of targeted concepts, or over-erasure, mistakenly eliminating unrelated but visually similar concepts. To address these limitations, we introduce CRCE, a novel concept erasure framework that leverages Large Language Models to identify both semantically related concepts that should be erased alongside the target and distinct concepts that should be preserved. By explicitly modelling coreferential and retained concepts semantically, CRCE enables more precise concept removal, without unintended erasure. Experiments demonstrate that CRCE outperforms existing methods on diverse erasure tasks, including real-world object, person identities, and abstract intellectual property characteristics. The constructed dataset CorefConcept and the source code will be release upon acceptance.
Bayesian Deep Learning Approaches for Uncertainty-Aware Retinal OCT Image Segmentation for Multiple Sclerosis
Optical Coherence Tomography (OCT) provides valuable insights in ophthalmology, cardiology, and neurology due to high-resolution, cross-sectional images of the retina. One critical task for ophthalmologists using OCT is delineation of retinal layers within scans. This process is time-consuming and prone to human bias, affecting the accuracy and reliability of diagnoses. Previous efforts to automate delineation using deep learning face challenges in uptake from clinicians and statisticians due to the absence of uncertainty estimation, leading to "confidently wrong" models via hallucinations. In this study, we address these challenges by applying Bayesian convolutional neural networks (BCNNs) to segment an openly available OCT imaging dataset containing 35 human retina OCTs split between healthy controls and patients with multiple sclerosis. Our findings demonstrate that Bayesian models can be used to provide uncertainty maps of the segmentation, which can further be used to identify highly uncertain samples that exhibit recording artefacts such as noise or miscalibration at inference time. Our method also allows for uncertainty-estimation for important secondary measurements such as layer thicknesses, that are medically relevant for patients. We show that these features come in addition to greater performance compared to similar work over all delineations; with an overall Dice score of 95.65%. Our work brings greater clinical applicability, statistical robustness, and performance to retinal OCT segmentation.
Unified Continuous Generative Models
Recent advances in continuous generative models, including multi-step approaches like diffusion and flow-matching (typically requiring 8-1000 sampling steps) and few-step methods such as consistency models (typically 1-8 steps), have demonstrated impressive generative performance. However, existing work often treats these approaches as distinct paradigms, resulting in separate training and sampling methodologies. We introduce a unified framework for training, sampling, and analyzing these models. Our implementation, the Unified Continuous Generative Models Trainer and Sampler (UCGM-{T,S}), achieves state-of-the-art (SOTA) performance. For example, on ImageNet 256x256 using a 675M diffusion transformer, UCGM-T trains a multi-step model achieving 1.30 FID in 20 steps and a few-step model reaching 1.42 FID in just 2 steps. Additionally, applying UCGM-S to a pre-trained model (previously 1.26 FID at 250 steps) improves performance to 1.06 FID in only 40 steps. Code is available at: https://github.com/LINs-lab/UCGM.
comment: https://github.com/LINs-lab/UCGM
Orthogonal Subspace Decomposition for Generalizable AI-Generated Image Detection
AI-generated images (AIGIs), such as natural or face images, have become increasingly important yet challenging. In this paper, we start from a new perspective to excavate the reason behind the failure generalization in AIGI detection, named the \textit{asymmetry phenomenon}, where a naively trained detector tends to favor overfitting to the limited and monotonous fake patterns, causing the feature space to become highly constrained and low-ranked, which is proved seriously limiting the expressivity and generalization. One potential remedy is incorporating the pre-trained knowledge within the vision foundation models (higher-ranked) to expand the feature space, alleviating the model's overfitting to fake. To this end, we employ Singular Value Decomposition (SVD) to decompose the original feature space into \textit{two orthogonal subspaces}. By freezing the principal components and adapting only the remained components, we preserve the pre-trained knowledge while learning fake patterns. Compared to existing full-parameters and LoRA-based tuning methods, we explicitly ensure orthogonality, enabling the higher rank of the whole feature space, effectively minimizing overfitting and enhancing generalization. We finally identify a crucial insight: our method implicitly learns \textit{a vital prior that fakes are actually derived from the real}, indicating a hierarchical relationship rather than independence. Modeling this prior, we believe, is essential for achieving superior generalization. Our codes are publicly available at \href{https://github.com/YZY-stack/Effort-AIGI-Detection}{GitHub}.
DeepForest: Sensing Into Self-Occluding Volumes of Vegetation With Aerial Imaging
Access to below-canopy volumetric vegetation data is crucial for understanding ecosystem dynamics. We address the long-standing limitation of remote sensing to penetrate deep into dense canopy layers. LiDAR and radar are currently considered the primary options for measuring 3D vegetation structures, while cameras can only extract the reflectance and depth of top layers. Using conventional, high-resolution aerial images, our approach allows sensing deep into self-occluding vegetation volumes, such as forests. It is similar in spirit to the imaging process of wide-field microscopy, but can handle much larger scales and strong occlusion. We scan focal stacks by synthetic-aperture imaging with drones and reduce outof-focus signal contributions using pre-trained 3D convolutional neural networks with mean squared error (MSE) as the loss function. The resulting volumetric reflectance stacks contain low-frequency representations of the vegetation volume. Combining multiple reflectance stacks from various spectral channels provides insights into plant health, growth, and environmental conditions throughout the entire vegetation volume. Compared with simulated ground truth, our correction leads to ~x7 average improvements (min: ~x2, max: ~x12) for forest densities of 200 trees/ha - 1680 trees/ha. In our field experiment, we achieved an MSE of 0.05 when comparing with the top-vegetation layer that was measured with classical multispectral aerial imaging.
BigReg: An Efficient Registration Pipeline for High-Resolution X-Ray and Light-Sheet Fluorescence Microscopy
Recently, X-ray microscopy (XRM) and light-sheet fluorescence microscopy (LSFM) have emerged as pivotal tools in preclinical research, particularly for studying bone remodeling diseases such as osteoporosis. These modalities offer micrometer-level resolution, and their integration allows for a complementary examination of bone microstructures which is essential for analyzing functional changes. However, registering high-resolution volumes from these independently scanned modalities poses substantial challenges, especially in real-world and reference-free scenarios. This paper presents BigReg, a fast, two-stage pipeline designed for large-volume registration of XRM and LSFM data. The first stage involves extracting surface features and applying two successive point cloud-based methods for coarse alignment. The subsequent stage refines this alignment using a modified cross-correlation technique, achieving precise volumetric registration. Evaluations using expert-annotated landmarks and augmented test data demonstrate that BigReg approaches the accuracy of landmark-based registration with a landmark distance (LMD) of 8.36\,\textmu m\,$\pm$\,0.12\,\textmu m and a landmark fitness (LM fitness) of 85.71\%\,$\pm$\,1.02\%. Moreover, BigReg can provide an optimal initialization for mutual information-based methods which otherwise fail independently, further reducing LMD to 7.24\,\textmu m\,$\pm$\,0.11\,\textmu m and increasing LM fitness to 93.90\%\,$\pm$\,0.77\%. Ultimately, key microstructures, notably lacunae in XRM and bone cells in LSFM, are accurately aligned, enabling unprecedented insights into the pathology of osteoporosis.
InternLM-XComposer2.5-Reward: A Simple Yet Effective Multi-Modal Reward Model ACL 2025
Despite the promising performance of Large Vision Language Models (LVLMs) in visual understanding, they occasionally generate incorrect outputs. While reward models (RMs) with reinforcement learning or test-time scaling offer the potential for improving generation quality, a critical gap remains: publicly available multi-modal RMs for LVLMs are scarce, and the implementation details of proprietary models are often unclear. We bridge this gap with InternLM-XComposer2.5-Reward (IXC-2.5-Reward), a simple yet effective multi-modal reward model that aligns LVLMs with human preferences. To ensure the robustness and versatility of IXC-2.5-Reward, we set up a high-quality multi-modal preference corpus spanning text, image, and video inputs across diverse domains, such as instruction following, general understanding, text-rich documents, mathematical reasoning, and video understanding. IXC-2.5-Reward achieves excellent results on the latest multi-modal reward model benchmark and shows competitive performance on text-only reward model benchmarks. We further demonstrate three key applications of IXC-2.5-Reward: (1) Providing a supervisory signal for RL training. We integrate IXC-2.5-Reward with Proximal Policy Optimization (PPO) yields IXC-2.5-Chat, which shows consistent improvements in instruction following and multi-modal open-ended dialogue; (2) Selecting the best response from candidate responses for test-time scaling; and (3) Filtering outlier or noisy samples from existing image and video instruction tuning training data. To ensure reproducibility and facilitate further research, we have open-sourced all model weights and training recipes at https://github.com/InternLM/InternLM-XComposer/tree/main/InternLM-XComposer-2.5-Reward
comment: ACL 2025 Findings
CompBench: Benchmarking Complex Instruction-guided Image Editing
While real-world applications increasingly demand intricate scene manipulation, existing instruction-guided image editing benchmarks often oversimplify task complexity and lack comprehensive, fine-grained instructions. To bridge this gap, we introduce, a large-scale benchmark specifically designed for complex instruction-guided image editing. CompBench features challenging editing scenarios that incorporate fine-grained instruction following, spatial and contextual reasoning, thereby enabling comprehensive evaluation of image editing models' precise manipulation capabilities. To construct CompBench, We propose an MLLM-human collaborative framework with tailored task pipelines. Furthermore, we propose an instruction decoupling strategy that disentangles editing intents into four key dimensions: location, appearance, dynamics, and objects, ensuring closer alignment between instructions and complex editing requirements. Extensive evaluations reveal that CompBench exposes fundamental limitations of current image editing models and provides critical insights for the development of next-generation instruction-guided image editing systems. The dataset, code, and models are available in https://comp-bench.github.io/.
Multimodal Cancer Survival Analysis via Hypergraph Learning with Cross-Modality Rebalance IJCAI2025
Multimodal pathology-genomic analysis has become increasingly prominent in cancer survival prediction. However, existing studies mainly utilize multi-instance learning to aggregate patch-level features, neglecting the information loss of contextual and hierarchical details within pathology images. Furthermore, the disparity in data granularity and dimensionality between pathology and genomics leads to a significant modality imbalance. The high spatial resolution inherent in pathology data renders it a dominant role while overshadowing genomics in multimodal integration. In this paper, we propose a multimodal survival prediction framework that incorporates hypergraph learning to effectively capture both contextual and hierarchical details from pathology images. Moreover, it employs a modality rebalance mechanism and an interactive alignment fusion strategy to dynamically reweight the contributions of the two modalities, thereby mitigating the pathology-genomics imbalance. Quantitative and qualitative experiments are conducted on five TCGA datasets, demonstrating that our model outperforms advanced methods by over 3.4\% in C-Index performance.
comment: accepted by IJCAI2025 Code: https://github.com/MCPathology/MRePath
Exploring Social Media Image Categorization Using Large Models with Different Adaptation Methods: A Case Study on Cultural Nature's Contributions to People
Social media images provide valuable insights for modeling, mapping, and understanding human interactions with natural and cultural heritage. However, categorizing these images into semantically meaningful groups remains highly complex due to the vast diversity and heterogeneity of their visual content as they contain an open-world human and nature elements. This challenge becomes greater when categories involve abstract concepts and lack consistent visual patterns. Related studies involve human supervision in the categorization process and the lack of public benchmark datasets make comparisons between these works unfeasible. On the other hand, the continuous advances in large models, including Large Language Models (LLMs), Large Visual Models (LVMs), and Large Visual Language Models (LVLMs), provide a large space of unexplored solutions. In this work 1) we introduce FLIPS a dataset of Flickr images that capture the interaction between human and nature, and 2) evaluate various solutions based on different types and combinations of large models using various adaptation methods. We assess and report their performance in terms of cost, productivity, scalability, and result quality to address the challenges of social media image categorization.
comment: 23 pages, 7 figures
A Survey on Future Frame Synthesis: Bridging Deterministic and Generative Approaches
Future Frame Synthesis (FFS, aka Video Frame Prediction) focuses on generating future frame sequences conditioned on existing content. This survey provides a comprehensive review of existing research on FFS, covering commonly used datasets and representative algorithms. We discuss key challenges and trace the evolution of FFS in computer vision, particularly the shift from deterministic to generative approaches. Our taxonomy outlines major advances and methodological shifts, emphasizing the rising significance of generative models in producing realistic and diverse predictions. This survey offers a comprehensive analysis of current research and, moreover, suggests promising avenues for future exploration in this ever-changing domain.
comment: under review, 22 pages
Breaking Language Barriers in Visual Language Models via Multilingual Textual Regularization
Rapid advancements in Visual Language Models (VLMs) have transformed multimodal understanding but are often constrained by generating English responses regardless of the input language. This phenomenon has been termed as Image-induced Fidelity Loss (IFL) and stems from limited multimodal multilingual training data. To address this, we propose a continuous multilingual integration strategy that injects text-only multilingual data during visual instruction tuning, preserving the language model's original multilingual capabilities. Extensive evaluations demonstrate that our approach significantly improves linguistic fidelity across languages without degradation in visual performance. We also explore model merging, which improves language fidelity but comes at the cost of visual performance. In contrast, our core method achieves robust multilingual alignment without trade-offs, offering a scalable and effective path to mitigating IFL for global VLM adoption.
comment: v2: Expanded model merging experiments. Fix duplicated subsection on limitations
Multi-granular body modeling with Redundancy-Free Spatiotemporal Fusion for Text-Driven Motion Generation
Text-to-motion generation sits at the intersection of multimodal learning and computer graphics and is gaining momentum because it can simplify content creation for games, animation, robotics and virtual reality. Most current methods stack spatial and temporal features in a straightforward way, which adds redundancy and still misses subtle joint-level cues. We introduce HiSTF Mamba, a framework with three parts: Dual-Spatial Mamba, Bi-Temporal Mamba and a Dynamic Spatiotemporal Fusion Module (DSFM). The Dual-Spatial module runs part-based and whole-body models in parallel, capturing both overall coordination and fine-grained joint motion. The Bi-Temporal module scans sequences forward and backward to encode short-term details and long-term dependencies. DSFM removes redundant temporal information, extracts complementary cues and fuses them with spatial features to build a richer spatiotemporal representation. Experiments on the HumanML3D benchmark show that HiSTF Mamba performs well across several metrics, achieving high fidelity and tight semantic alignment between text and motion.
comment: 15pages,5figures,
Gradient Leakage Defense with Key-Lock Module for Federated Learning
Federated Learning (FL) is a widely adopted privacy-preserving machine learning approach where private data remains local, enabling secure computations and the exchange of local model gradients between local clients and third-party parameter servers. However, recent findings reveal that privacy may be compromised and sensitive information potentially recovered from shared gradients. In this study, we offer detailed analysis and a novel perspective on understanding the gradient leakage problem. These theoretical works lead to a new gradient leakage defense technique that secures arbitrary model architectures using a private key-lock module. Only the locked gradient is transmitted to the parameter server for global model aggregation. Our proposed learning method is resistant to gradient leakage attacks, and the key-lock module is designed and trained to ensure that, without the private information of the key-lock module: a) reconstructing private training data from the shared gradient is infeasible; and b) the global model's inference performance is significantly compromised. We discuss the theoretical underpinnings of why gradients can leak private information and provide theoretical proof of our method's effectiveness. We conducted extensive empirical evaluations with many models on several popular benchmarks, demonstrating the robustness of our proposed approach in both maintaining model performance and defending against gradient leakage attacks.
comment: The source code can be found at https://github.com/Rand2AI/FedKL
CraftsMan3D: High-fidelity Mesh Generation with 3D Native Generation and Interactive Geometry Refiner
We present a novel generative 3D modeling system, coined CraftsMan, which can generate high-fidelity 3D geometries with highly varied shapes, regular mesh topologies, and detailed surfaces, and, notably, allows for refining the geometry in an interactive manner. Despite the significant advancements in 3D generation, existing methods still struggle with lengthy optimization processes, irregular mesh topologies, noisy surfaces, and difficulties in accommodating user edits, consequently impeding their widespread adoption and implementation in 3D modeling software. Our work is inspired by the craftsman, who usually roughs out the holistic figure of the work first and elaborates the surface details subsequently. Specifically, we employ a 3D native diffusion model, which operates on latent space learned from latent set-based 3D representations, to generate coarse geometries with regular mesh topology in seconds. In particular, this process takes as input a text prompt or a reference image and leverages a powerful multi-view (MV) diffusion model to generate multiple views of the coarse geometry, which are fed into our MV-conditioned 3D diffusion model for generating the 3D geometry, significantly improving robustness and generalizability. Following that, a normal-based geometry refiner is used to significantly enhance the surface details. This refinement can be performed automatically, or interactively with user-supplied edits. Extensive experiments demonstrate that our method achieves high efficacy in producing superior-quality 3D assets compared to existing methods. HomePage: https://craftsman3d.github.io/, Code: https://github.com/wyysf-98/CraftsMan
comment: HomePage: https://craftsman3d.github.io/, Code: https://github.com/wyysf-98/CraftsMan3D
DragLoRA: Online Optimization of LoRA Adapters for Drag-based Image Editing in Diffusion Model ICML2025
Drag-based editing within pretrained diffusion model provides a precise and flexible way to manipulate foreground objects. Traditional methods optimize the input feature obtained from DDIM inversion directly, adjusting them iteratively to guide handle points towards target locations. However, these approaches often suffer from limited accuracy due to the low representation ability of the feature in motion supervision, as well as inefficiencies caused by the large search space required for point tracking. To address these limitations, we present DragLoRA, a novel framework that integrates LoRA (Low-Rank Adaptation) adapters into the drag-based editing pipeline. To enhance the training of LoRA adapters, we introduce an additional denoising score distillation loss which regularizes the online model by aligning its output with that of the original model. Additionally, we improve the consistency of motion supervision by adapting the input features using the updated LoRA, giving a more stable and accurate input feature for subsequent operations. Building on this, we design an adaptive optimization scheme that dynamically toggles between two modes, prioritizing efficiency without compromising precision. Extensive experiments demonstrate that DragLoRA significantly enhances the control precision and computational efficiency for drag-based image editing. The Codes of DragLoRA are available at: https://github.com/Sylvie-X/DragLoRA.
comment: Accepted by ICML2025
Iterative Tool Usage Exploration for Multimodal Agents via Step-wise Preference Tuning
Multimodal agents, which integrate a controller e.g., a vision language model) with external tools, have demonstrated remarkable capabilities in tackling complex multimodal tasks. Existing approaches for training these agents, both supervised fine-tuning and reinforcement learning, depend on extensive human-annotated task-answer pairs and tool trajectories. However, for complex multimodal tasks, such annotations are prohibitively expensive or impractical to obtain. In this paper, we propose an iterative tool usage exploration method for multimodal agents without any pre-collected data, namely SPORT, via step-wise preference optimization to refine the trajectories of tool usage. Our method enables multimodal agents to autonomously discover effective tool usage strategies through self-exploration and optimization, eliminating the bottleneck of human annotation. SPORT has four iterative components: task synthesis, step sampling, step verification, and preference tuning. We first synthesize multimodal tasks using language models. Then, we introduce a novel trajectory exploration scheme, where step sampling and step verification are executed alternately to solve synthesized tasks. In step sampling, the agent tries different tools and obtains corresponding results. In step verification, we employ a verifier to provide AI feedback to construct step-wise preference data. The data is subsequently used to update the controller for tool usage through preference tuning, producing a SPORT agent. By interacting with real environments, the SPORT agent gradually evolves into a more refined and capable system. Evaluation in the GTA and GAIA benchmarks shows that the SPORT agent achieves 6.41% and 3.64% improvements, underscoring the generalization and effectiveness introduced by our method. The project page is https://SPORT-Agents.github.io.
comment: 24 pages
Continual Distillation Learning: Knowledge Distillation in Prompt-based Continual Learning
We introduce the problem of continual distillation learning (CDL) in order to use knowledge distillation (KD) to improve prompt-based continual learning (CL) models. The CDL problem is valuable to study since the use of a larger vision transformer (ViT) leads to better performance in prompt-based continual learning. The distillation of knowledge from a large ViT to a small ViT improves the inference efficiency for prompt-based CL models. We empirically found that existing KD methods such as logit distillation and feature distillation cannot effectively improve the student model in the CDL setup. To address this issue, we introduce a novel method named Knowledge Distillation based on Prompts (KDP), in which globally accessible prompts specifically designed for knowledge distillation are inserted into the frozen ViT backbone of the student model. We demonstrate that our KDP method effectively enhances the distillation performance in comparison to existing KD methods in the CDL setup.
AS3D: 2D-Assisted Cross-Modal Understanding with Semantic-Spatial Scene Graphs for 3D Visual Grounding
3D visual grounding aims to localize the unique target described by natural languages in 3D scenes. The significant gap between 3D and language modalities makes it a notable challenge to distinguish multiple similar objects through the described spatial relationships. Current methods attempt to achieve cross-modal understanding in complex scenes via a target-centered learning mechanism, ignoring the perception of referred objects. We propose a novel 2D-assisted 3D visual grounding framework that constructs semantic-spatial scene graphs with referred object discrimination for relationship perception. The framework incorporates a dual-branch visual encoder that utilizes 2D pre-trained attributes to guide the multi-modal object encoding. Furthermore, our cross-modal interaction module uses graph attention to facilitate relationship-oriented information fusion. The enhanced object representation and iterative relational learning enable the model to establish effective alignment between 3D vision and referential descriptions. Experimental results on the popular benchmarks demonstrate our superior performance compared to state-of-the-art methods, especially in addressing the challenges of multiple similar distractors.
VideoVista-CulturalLingo: 360$^\circ$ Horizons-Bridging Cultures, Languages, and Domains in Video Comprehension
Assessing the video comprehension capabilities of multimodal AI systems can effectively measure their understanding and reasoning abilities. Most video evaluation benchmarks are limited to a single language, typically English, and predominantly feature videos rooted in Western cultural contexts. In this paper, we present VideoVista-CulturalLingo, the first video evaluation benchmark designed to bridge cultural, linguistic, and domain divide in video comprehension. Our work differs from existing benchmarks in the following ways: 1) Cultural diversity, incorporating cultures from China, North America, and Europe; 2) Multi-linguistics, with questions presented in Chinese and English-two of the most widely spoken languages; and 3) Broad domain, featuring videos sourced from hundreds of human-created domains. VideoVista-CulturalLingo contains 1,389 videos and 3,134 QA pairs, and we have evaluated 24 recent open-source or proprietary video large models. From the experiment results, we observe that: 1) Existing models perform worse on Chinese-centric questions than Western-centric ones, particularly those related to Chinese history; 2) Current open-source models still exhibit limitations in temporal understanding, especially in the Event Localization task, achieving a maximum score of only 45.2%; 3) Mainstream models demonstrate strong performance in general scientific questions, while open-source models demonstrate weak performance in mathematics.
DiffDesign: Controllable Diffusion with Meta Prior for Efficient Interior Design Generation
Interior design is a complex and creative discipline involving aesthetics, functionality, ergonomics, and materials science. Effective solutions must meet diverse requirements, typically producing multiple deliverables such as renderings and design drawings from various perspectives. Consequently, interior design processes are often inefficient and demand significant creativity. With advances in machine learning, generative models have emerged as a promising means of improving efficiency by creating designs from text descriptions or sketches. However, few generative works focus on interior design, leading to substantial discrepancies between outputs and practical needs, such as differences in size, spatial scope, and the lack of controllable generation quality. To address these challenges, we propose DiffDesign, a controllable diffusion model with meta priors for efficient interior design generation. Specifically, we utilize the generative priors of a 2D diffusion model pre-trained on a large image dataset as our rendering backbone. We further guide the denoising process by disentangling cross-attention control over design attributes, such as appearance, pose, and size, and introduce an optimal transfer-based alignment module to enforce view consistency. Simultaneously, we construct an interior design-specific dataset, DesignHelper, consisting of over 400 solutions across more than 15 spatial types and 15 design styles. This dataset helps fine-tune DiffDesign. Extensive experiments conducted on various benchmark datasets demonstrate the effectiveness and robustness of DiffDesign.
comment: 32 pages
Customizing Visual-Language Foundation Models for Multi-modal Anomaly Detection and Reasoning
Anomaly detection is vital in various industrial scenarios, including the identification of unusual patterns in production lines and the detection of manufacturing defects for quality control. Existing techniques tend to be specialized in individual scenarios and lack generalization capacities. In this study, our objective is to develop a generic anomaly detection model that can be applied in multiple scenarios. To achieve this, we custom-build generic visual language foundation models that possess extensive knowledge and robust reasoning abilities as anomaly detectors and reasoners. Specifically, we introduce a multi-modal prompting strategy that incorporates domain knowledge from experts as conditions to guide the models. Our approach considers diverse prompt types, including task descriptions, class context, normality rules, and reference images. In addition, we unify the input representation of multi-modality into a 2D image format, enabling multi-modal anomaly detection and reasoning. Our preliminary studies demonstrate that combining visual and language prompts as conditions for customizing the models enhances anomaly detection performance. The customized models showcase the ability to detect anomalies across different data modalities such as images, point clouds, and videos. Qualitative case studies further highlight the anomaly detection and reasoning capabilities, particularly for multi-object scenes and temporal data. Our code is publicly available at https://github.com/Xiaohao-Xu/Customizable-VLM
comment: Best Student Paper Award at IEEE International Conference on Computer Supported Cooperative Work in Design, 2025
GranQ: Granular Zero-Shot Quantization with Channel-Wise Activation Scaling in QAT
Zero-shot quantization (ZSQ) enables neural network compression without original training data, making it a promising solution for restricted data access scenarios. To compensate for the lack of data, recent ZSQ methods typically rely on synthetic inputs generated from the full-precision model. However, these synthetic inputs often lead to activation distortion, especially under low-bit settings. As a result, existing methods struggle to mitigate this issue due to coarse activation scaling. To address this issue, we propose GranQ, a novel activation quantization framework that efficiently applies per-channel scaling through vectorized computation. In contrast to conventional channel-wise methods, which apply vectorization only to the quantization step, GranQ improves efficiency by vectorizing the scaling operation. This design allows GranQ to maintain fine-grained quantization granularity with minimal computational overhead, even in low-bit environments. Extensive experiments under quantization-aware training (QAT) settings demonstrate that GranQ consistently outperforms state-of-the-art ZSQ methods across CIFAR and ImageNet. In particular, our method achieves up to 5.45% higher accuracy in the 3-bit setting on CIFAR-100 and even surpasses the full-precision baseline on CIFAR-10. Furthermore, GranQ achieves significant speedup in quantization latency over conventional per-channel methods, demonstrating improved efficiency. With these findings, we anticipate that GranQ will inspire future research beyond conventional ZSQ approaches centered on data generation and model fine-tuning.
Conjuring Positive Pairs for Efficient Unification of Representation Learning and Image Synthesis
While representation learning and generative modeling seek to understand visual data, unifying both domains remains unexplored. Recent Unified Self-Supervised Learning (SSL) methods have started to bridge the gap between both paradigms. However, they rely solely on semantic token reconstruction, which requires an external tokenizer during training -- introducing a significant overhead. In this work, we introduce Sorcen, a novel unified SSL framework, incorporating a synergic Contrastive-Reconstruction objective. Our Contrastive objective, "Echo Contrast", leverages the generative capabilities of Sorcen, eliminating the need for additional image crops or augmentations during training. Sorcen "generates" an echo sample in the semantic token space, forming the contrastive positive pair. Sorcen operates exclusively on precomputed tokens, eliminating the need for an online token transformation during training, thereby significantly reducing computational overhead. Extensive experiments on ImageNet-1k demonstrate that Sorcen outperforms the previous Unified SSL SoTA by 0.4%, 1.48 FID, 1.76%, and 1.53% on linear probing, unconditional image generation, few-shot learning, and transfer learning, respectively, while being 60.8% more efficient. Additionally, Sorcen surpasses previous single-crop MIM SoTA in linear probing and achieves SoTA performance in unconditional image generation, highlighting significant improvements and breakthroughs in Unified SSL models.
comment: The source code is available in https://github.com/ImaGonEs/Sorcen
MTVCrafter: 4D Motion Tokenization for Open-World Human Image Animation
Human image animation has gained increasing attention and developed rapidly due to its broad applications in digital humans. However, existing methods rely largely on 2D-rendered pose images for motion guidance, which limits generalization and discards essential 3D information for open-world animation. To tackle this problem, we propose MTVCrafter (Motion Tokenization Video Crafter), the first framework that directly models raw 3D motion sequences (i.e., 4D motion) for human image animation. Specifically, we introduce 4DMoT (4D motion tokenizer) to quantize 3D motion sequences into 4D motion tokens. Compared to 2D-rendered pose images, 4D motion tokens offer more robust spatio-temporal cues and avoid strict pixel-level alignment between pose image and character, enabling more flexible and disentangled control. Then, we introduce MV-DiT (Motion-aware Video DiT). By designing unique motion attention with 4D positional encodings, MV-DiT can effectively leverage motion tokens as 4D compact yet expressive context for human image animation in the complex 3D world. Hence, it marks a significant step forward in this field and opens a new direction for pose-guided human video generation. Experiments show that our MTVCrafter achieves state-of-the-art results with an FID-VID of 6.98, surpassing the second-best by 65%. Powered by robust motion tokens, MTVCrafter also generalizes well to diverse open-world characters (single/multiple, full/half-body) across various styles and scenarios. Our video demos and code are on: https://github.com/DINGYANB/MTVCrafter.
Multi-modal Collaborative Optimization and Expansion Network for Event-assisted Single-eye Expression Recognition
In this paper, we proposed a Multi-modal Collaborative Optimization and Expansion Network (MCO-E Net), to use event modalities to resist challenges such as low light, high exposure, and high dynamic range in single-eye expression recognition tasks. The MCO-E Net introduces two innovative designs: Multi-modal Collaborative Optimization Mamba (MCO-Mamba) and Heterogeneous Collaborative and Expansion Mixture-of-Experts (HCE-MoE). MCO-Mamba, building upon Mamba, leverages dual-modal information to jointly optimize the model, facilitating collaborative interaction and fusion of modal semantics. This approach encourages the model to balance the learning of both modalities and harness their respective strengths. HCE-MoE, on the other hand, employs a dynamic routing mechanism to distribute structurally varied experts (deep, attention, and focal), fostering collaborative learning of complementary semantics. This heterogeneous architecture systematically integrates diverse feature extraction paradigms to comprehensively capture expression semantics. Extensive experiments demonstrate that our proposed network achieves competitive performance in the task of single-eye expression recognition, especially under poor lighting conditions.
Uni4D: A Unified Self-Supervised Learning Framework for Point Cloud Videos
Self-supervised representation learning for point cloud videos remains a challenging problem with two key limitations: (1) existing methods rely on explicit knowledge to learn motion, resulting in suboptimal representations; (2) prior Masked AutoEncoder (MAE) frameworks struggle to bridge the gap between low-level geometry and high-level dynamics in 4D data. In this work, we propose a novel self-disentangled MAE for learning expressive, discriminative, and transferable 4D representations. To overcome the first limitation, we learn motion by aligning high-level semantics in the latent space \textit{without any explicit knowledge}. To tackle the second, we introduce a \textit{self-disentangled learning} strategy that incorporates the latent token with the geometry token within a shared decoder, effectively disentangling low-level geometry and high-level semantics. In addition to the reconstruction objective, we employ three alignment objectives to enhance temporal understanding, including frame-level motion and video-level global information. We show that our pre-trained encoder surprisingly discriminates spatio-temporal representation without further fine-tuning. Extensive experiments on MSR-Action3D, NTU-RGBD, HOI4D, NvGesture, and SHREC'17 demonstrate the superiority of our approach in both coarse-grained and fine-grained 4D downstream tasks. Notably, Uni4D improves action segmentation accuracy on HOI4D by $+3.8\%$.
comment: 11 pages, 7 figures
Rethinking Text-Promptable Surgical Instrument Segmentation with Robust Framework
Surgical instrument segmentation is an essential component of computer-assisted and robotic surgery systems. Vision-based segmentation models typically produce outputs limited to a predefined set of instrument categories, which restricts their applicability in interactive systems and robotic task automation. Promptable segmentation methods allow selective predictions based on textual prompts. However, they often rely on the assumption that the instruments present in the scene are already known, and prompts are generated accordingly, limiting their ability to generalize to unseen or dynamically emerging instruments. In practical surgical environments, where instrument existence information is not provided, this assumption does not hold consistently, resulting in false-positive segmentation. To address these limitations, we formulate a new task called Robust text-promptable Surgical Instrument Segmentation (R-SIS). Under this setting, prompts are issued for all candidate categories without access to instrument presence information. R-SIS requires distinguishing which prompts refer to visible instruments and generating masks only when such instruments are explicitly present in the scene. This setting reflects practical conditions where uncertainty in instrument presence is inherent. We evaluate existing segmentation methods under the R-SIS protocol using surgical video datasets and observe substantial false-positive predictions in the absence of ground-truth instruments. These findings demonstrate a mismatch between current evaluation protocols and real-world use cases, and support the need for benchmarks that explicitly account for prompt uncertainty and instrument absence.
comment: 15 pages, 5 figures, 8 tables
Contrastive Alignment with Semantic Gap-Aware Corrections in Text-Video Retrieval
Recent advances in text-video retrieval have been largely driven by contrastive learning frameworks. However, existing methods overlook a key source of optimization tension: the separation between text and video distributions in the representation space (referred to as the modality gap), and the prevalence of false negatives in batch sampling. These factors lead to conflicting gradients under the InfoNCE loss, impeding stable alignment. To mitigate this, we propose GARE, a Gap-Aware Retrieval framework that introduces a learnable, pair-specific increment Delta_ij between text t_i and video v_j to offload the tension from the global anchor representation. We first derive the ideal form of Delta_ij via a coupled multivariate first-order Taylor approximation of the InfoNCE loss under a trust-region constraint, revealing it as a mechanism for resolving gradient conflicts by guiding updates along a locally optimal descent direction. Due to the high cost of directly computing Delta_ij, we introduce a lightweight neural module conditioned on the semantic gap between each video-text pair, enabling structure-aware correction guided by gradient supervision. To further stabilize learning and promote interpretability, we regularize Delta using three components: a trust-region constraint to prevent oscillation, a directional diversity term to promote semantic coverage, and an information bottleneck to limit redundancy. Experiments across four retrieval benchmarks show that GARE consistently improves alignment accuracy and robustness to noisy supervision, confirming the effectiveness of gap-aware tension mitigation.
Interactive Rendering of Relightable and Animatable Gaussian Avatars
Creating relightable and animatable avatars from multi-view or monocular videos is a challenging task for digital human creation and virtual reality applications. Previous methods rely on neural radiance fields or ray tracing, resulting in slow training and rendering processes. By utilizing Gaussian Splatting, we propose a simple and efficient method to decouple body materials and lighting from sparse-view or monocular avatar videos, so that the avatar can be rendered simultaneously under novel viewpoints, poses, and lightings at interactive frame rates (6.9 fps). Specifically, we first obtain the canonical body mesh using a signed distance function and assign attributes to each mesh vertex. The Gaussians in the canonical space then interpolate from nearby body mesh vertices to obtain the attributes. We subsequently deform the Gaussians to the posed space using forward skinning, and combine the learnable environment light with the Gaussian attributes for shading computation. To achieve fast shadow modeling, we rasterize the posed body mesh from dense viewpoints to obtain the visibility. Our approach is not only simple but also fast enough to allow interactive rendering of avatar animation under environmental light changes. Experiments demonstrate that, compared to previous works, our method can render higher quality results at a faster speed on both synthetic and real datasets.
comment: IEEE Transactions on Visualization and Computer Graphics. Project page https://gapszju.github.io/InteractRAGA . Code https://github.com/1231234zhan/InteractRAGA
Learning Coherent Matrixized Representation in Latent Space for Volumetric 4D Generation
Directly learning to model 4D content, including shape, color, and motion, is challenging. Existing methods rely on pose priors for motion control, resulting in limited motion diversity and continuity in details. To address this, we propose a framework that generates volumetric 4D sequences, where 3D shapes are animated under given conditions (text-image guidance) with dynamic evolution in shape and color across spatial and temporal dimensions, allowing for free navigation and rendering from any direction. We first use a coherent 3D shape and color modeling to encode the shape and color of each detailed 3D geometry frame into a latent space. Then we propose a matrixized 4D sequence representation allowing efficient diffusion model operation. Finally, we introduce spatio-temporal diffusion for 4D volumetric generation under given images and text prompts. Extensive experiments on the ShapeNet, 3DBiCar, DeformingThings4D and Objaverse datasets for several tasks demonstrate that our method effectively learns to generate high quality 3D shapes with consistent color and coherent mesh animations, improving over the current methods. Our code will be publicly available.
Image and Video Processing
A General Framework for Group Sparsity in Hyperspectral Unmixing Using Endmember Bundles
Due to low spatial resolution, hyperspectral data often consists of mixtures of contributions from multiple materials. This limitation motivates the task of hyperspectral unmixing (HU), a fundamental problem in hyperspectral imaging. HU aims to identify the spectral signatures (\textit{endmembers}) of the materials present in an observed scene, along with their relative proportions (\textit{fractional abundance}) in each pixel. A major challenge lies in the class variability in materials, which hinders accurate representation by a single spectral signature, as assumed in the conventional linear mixing model. Moreover, To address this issue, we propose using group sparsity after representing each material with a set of spectral signatures, known as endmember bundles, where each group corresponds to a specific material. In particular, we develop a bundle-based framework that can enforce either inter-group sparsity or sparsity within and across groups (SWAG) on the abundance coefficients. Furthermore, our framework offers the flexibility to incorporate a variety of sparsity-promoting penalties, among which the transformed $\ell_1$ (TL1) penalty is a novel regularization in the HU literature. Extensive experiments conducted on both synthetic and real hyperspectral data demonstrate the effectiveness and superiority of the proposed approaches.
Automated Fetal Biometry Assessment with Deep Ensembles using Sparse-Sampling of 2D Intrapartum Ultrasound Images MICCAI
The International Society of Ultrasound advocates Intrapartum Ultrasound (US) Imaging in Obstetrics and Gynecology (ISUOG) to monitor labour progression through changes in fetal head position. Two reliable ultrasound-derived parameters that are used to predict outcomes of instrumental vaginal delivery are the angle of progression (AoP) and head-symphysis distance (HSD). In this work, as part of the Intrapartum Ultrasounds Grand Challenge (IUGC) 2024, we propose an automated fetal biometry measurement pipeline to reduce intra- and inter-observer variability and improve measurement reliability. Our pipeline consists of three key tasks: (i) classification of standard planes (SP) from US videos, (ii) segmentation of fetal head and pubic symphysis from the detected SPs, and (iii) computation of the AoP and HSD from the segmented regions. We perform sparse sampling to mitigate class imbalances and reduce spurious correlations in task (i), and utilize ensemble-based deep learning methods for task (i) and (ii) to enhance generalizability under different US acquisition settings. Finally, to promote robustness in task iii) with respect to the structural fidelity of measurements, we retain the largest connected components and apply ellipse fitting to the segmentations. Our solution achieved ACC: 0.9452, F1: 0.9225, AUC: 0.983, MCC: 0.8361, DSC: 0.918, HD: 19.73, ASD: 5.71, $\Delta_{AoP}$: 8.90 and $\Delta_{HSD}$: 14.35 across an unseen hold-out set of 4 patients and 224 US frames. The results from the proposed automated pipeline can improve the understanding of labour arrest causes and guide the development of clinical risk stratification tools for efficient and effective prenatal care.
comment: Top 5 in MICCAI IUGC 2024: Intrapartum Ultrasound Grand Challenge & Runners up in Classification!
Neural Inverse Scattering with Score-based Regularization
Inverse scattering is a fundamental challenge in many imaging applications, ranging from microscopy to remote sensing. Solving this problem often requires jointly estimating two unknowns -- the image and the scattering field inside the object -- necessitating effective image prior to regularize the inference. In this paper, we propose a regularized neural field (NF) approach which integrates the denoising score function used in score-based generative models. The neural field formulation offers convenient flexibility to performing joint estimation, while the denoising score function imposes the rich structural prior of images. Our results on three high-contrast simulated objects show that the proposed approach yields a better imaging quality compared to the state-of-the-art NF approach, where regularization is based on total variation.
Neural Video Compression with Context Modulation CVPR 2025
Efficient video coding is highly dependent on exploiting the temporal redundancy, which is usually achieved by extracting and leveraging the temporal context in the emerging conditional coding-based neural video codec (NVC). Although the latest NVC has achieved remarkable progress in improving the compression performance, the inherent temporal context propagation mechanism lacks the ability to sufficiently leverage the reference information, limiting further improvement. In this paper, we address the limitation by modulating the temporal context with the reference frame in two steps. Specifically, we first propose the flow orientation to mine the inter-correlation between the reference frame and prediction frame for generating the additional oriented temporal context. Moreover, we introduce the context compensation to leverage the oriented context to modulate the propagated temporal context generated from the propagated reference feature. Through the synergy mechanism and decoupling loss supervision, the irrelevant propagated information can be effectively eliminated to ensure better context modeling. Experimental results demonstrate that our codec achieves on average 22.7% bitrate reduction over the advanced traditional video codec H.266/VVC, and offers an average 10.1% bitrate saving over the previous state-of-the-art NVC DCVC-FM. The code is available at https://github.com/Austin4USTC/DCMVC.
comment: 11 pages, 8 figures, accepted by CVPR 2025
Towards Generating Realistic Underwater Images
This paper explores the use of contrastive learning and generative adversarial networks for generating realistic underwater images from synthetic images with uniform lighting. We investigate the performance of image translation models for generating realistic underwater images using the VAROS dataset. Two key evaluation metrics, Fr\'echet Inception Distance (FID) and Structural Similarity Index Measure (SSIM), provide insights into the trade-offs between perceptual quality and structural preservation. For paired image translation, pix2pix achieves the best FID scores due to its paired supervision and PatchGAN discriminator, while the autoencoder model attains the highest SSIM, suggesting better structural fidelity despite producing blurrier outputs. Among unpaired methods, CycleGAN achieves a competitive FID score by leveraging cycle-consistency loss, whereas CUT, which replaces cycle-consistency with contrastive learning, attains higher SSIM, indicating improved spatial similarity retention. Notably, incorporating depth information into CUT results in the lowest overall FID score, demonstrating that depth cues enhance realism. However, the slight decrease in SSIM suggests that depth-aware learning may introduce structural variations.
NOVA: A Benchmark for Anomaly Localization and Clinical Reasoning in Brain MRI
In many real-world applications, deployed models encounter inputs that differ from the data seen during training. Out-of-distribution detection identifies whether an input stems from an unseen distribution, while open-world recognition flags such inputs to ensure the system remains robust as ever-emerging, previously $unknown$ categories appear and must be addressed without retraining. Foundation and vision-language models are pre-trained on large and diverse datasets with the expectation of broad generalization across domains, including medical imaging. However, benchmarking these models on test sets with only a few common outlier types silently collapses the evaluation back to a closed-set problem, masking failures on rare or truly novel conditions encountered in clinical use. We therefore present $NOVA$, a challenging, real-life $evaluation-only$ benchmark of $\sim$900 brain MRI scans that span 281 rare pathologies and heterogeneous acquisition protocols. Each case includes rich clinical narratives and double-blinded expert bounding-box annotations. Together, these enable joint assessment of anomaly localisation, visual captioning, and diagnostic reasoning. Because NOVA is never used for training, it serves as an $extreme$ stress-test of out-of-distribution generalisation: models must bridge a distribution gap both in sample appearance and in semantic space. Baseline results with leading vision-language models (GPT-4o, Gemini 2.0 Flash, and Qwen2.5-VL-72B) reveal substantial performance drops across all tasks, establishing NOVA as a rigorous testbed for advancing models that can detect, localize, and reason about truly unknown anomalies.
End-to-end Cortical Surface Reconstruction from Clinical Magnetic Resonance Images
Surface-based cortical analysis is valuable for a variety of neuroimaging tasks, such as spatial normalization, parcellation, and gray matter (GM) thickness estimation. However, most tools for estimating cortical surfaces work exclusively on scans with at least 1 mm isotropic resolution and are tuned to a specific magnetic resonance (MR) contrast, often T1-weighted (T1w). This precludes application using most clinical MR scans, which are very heterogeneous in terms of contrast and resolution. Here, we use synthetic domain-randomized data to train the first neural network for explicit estimation of cortical surfaces from scans of any contrast and resolution, without retraining. Our method deforms a template mesh to the white matter (WM) surface, which guarantees topological correctness. This mesh is further deformed to estimate the GM surface. We compare our method to recon-all-clinical (RAC), an implicit surface reconstruction method which is currently the only other tool capable of processing heterogeneous clinical MR scans, on ADNI and a large clinical dataset (n=1,332). We show a approximately 50 % reduction in cortical thickness error (from 0.50 to 0.24 mm) with respect to RAC and better recovery of the aging-related cortical thinning patterns detected by FreeSurfer on high-resolution T1w scans. Our method enables fast and accurate surface reconstruction of clinical scans, allowing studies (1) with sample sizes far beyond what is feasible in a research setting, and (2) of clinical populations that are difficult to enroll in research studies. The code is publicly available at https://github.com/simnibs/brainnet.
comment: 11 pages, 4 figures
Blind Restoration of High-Resolution Ultrasound Video
Ultrasound imaging is widely applied in clinical practice, yet ultrasound videos often suffer from low signal-to-noise ratios (SNR) and limited resolutions, posing challenges for diagnosis and analysis. Variations in equipment and acquisition settings can further exacerbate differences in data distribution and noise levels, reducing the generalizability of pre-trained models. This work presents a self-supervised ultrasound video super-resolution algorithm called Deep Ultrasound Prior (DUP). DUP employs a video-adaptive optimization process of a neural network that enhances the resolution of given ultrasound videos without requiring paired training data while simultaneously removing noise. Quantitative and visual evaluations demonstrate that DUP outperforms existing super-resolution algorithms, leading to substantial improvements for downstream applications.
Bronchovascular Tree-Guided Weakly Supervised Learning Method for Pulmonary Segment Segmentation
Pulmonary segment segmentation is crucial for cancer localization and surgical planning. However, the pixel-wise annotation of pulmonary segments is laborious, as the boundaries between segments are indistinguishable in medical images. To this end, we propose a weakly supervised learning (WSL) method, termed Anatomy-Hierarchy Supervised Learning (AHSL), which consults the precise clinical anatomical definition of pulmonary segments to perform pulmonary segment segmentation. Since pulmonary segments reside within the lobes and are determined by the bronchovascular tree, i.e., artery, airway and vein, the design of the loss function is founded on two principles. First, segment-level labels are utilized to directly supervise the output of the pulmonary segments, ensuring that they accurately encompass the appropriate bronchovascular tree. Second, lobe-level supervision indirectly oversees the pulmonary segment, ensuring their inclusion within the corresponding lobe. Besides, we introduce a two-stage segmentation strategy that incorporates bronchovascular priori information. Furthermore, a consistency loss is proposed to enhance the smoothness of segment boundaries, along with an evaluation metric designed to measure the smoothness of pulmonary segment boundaries. Visual inspection and evaluation metrics from experiments conducted on a private dataset demonstrate the effectiveness of our method.
XDementNET: An Explainable Attention Based Deep Convolutional Network to Detect Alzheimer Progression from MRI data
A common neurodegenerative disease, Alzheimer's disease requires a precise diagnosis and efficient treatment, particularly in light of escalating healthcare expenses and the expanding use of artificial intelligence in medical diagnostics. Many recent studies shows that the combination of brain Magnetic Resonance Imaging (MRI) and deep neural networks have achieved promising results for diagnosing AD. Using deep convolutional neural networks, this paper introduces a novel deep learning architecture that incorporates multiresidual blocks, specialized spatial attention blocks, grouped query attention, and multi-head attention. The study assessed the model's performance on four publicly accessible datasets and concentrated on identifying binary and multiclass issues across various categories. This paper also takes into account of the explainability of AD's progression and compared with state-of-the-art methods namely Gradient Class Activation Mapping (GradCAM), Score-CAM, Faster Score-CAM, and XGRADCAM. Our methodology consistently outperforms current approaches, achieving 99.66\% accuracy in 4-class classification, 99.63\% in 3-class classification, and 100\% in binary classification using Kaggle datasets. For Open Access Series of Imaging Studies (OASIS) datasets the accuracies are 99.92\%, 99.90\%, and 99.95\% respectively. The Alzheimer's Disease Neuroimaging Initiative-1 (ADNI-1) dataset was used for experiments in three planes (axial, sagittal, and coronal) and a combination of all planes. The study achieved accuracies of 99.08\% for axis, 99.85\% for sagittal, 99.5\% for coronal, and 99.17\% for all axis, and 97.79\% and 8.60\% respectively for ADNI-2. The network's ability to retrieve important information from MRI images is demonstrated by its excellent accuracy in categorizing AD stages.
comment: 20 pages, 12 figures,
Automated Quality Evaluation of Cervical Cytopathology Whole Slide Images Based on Content Analysis
The ThinPrep Cytologic Test (TCT) is the most widely used method for cervical cancer screening, and the sample quality directly impacts the accuracy of the diagnosis. Traditional manual evaluation methods rely on the observation of pathologist under microscopes. These methods exhibit high subjectivity, high cost, long duration, and low reliability. With the development of computer-aided diagnosis (CAD), an automated quality assessment system that performs at the level of a professional pathologist is necessary. To address this need, we propose a fully automated quality assessment method for Cervical Cytopathology Whole Slide Images (WSIs) based on The Bethesda System (TBS) diagnostic standards, artificial intelligence algorithms, and the characteristics of clinical data. The method analysis the context of WSIs to quantify quality evaluation metrics which are focused by TBS such as staining quality, cell counts and cell mass proportion through multiple models including object detection, classification and segmentation. Subsequently, the XGBoost model is used to mine the attention paid by pathologists to different quality evaluation metrics when evaluating samples, thereby obtaining a comprehensive WSI sample score calculation model. Experimental results on 100 WSIs demonstrate that the proposed evaluation method has significant advantages in terms of speed and consistency.
comment: 12 pages, 10 figures
Exploring Image Quality Assessment from a New Perspective: Pupil Size
This paper explores how the image quality assessment (IQA) task affects the cognitive processes of people from the perspective of pupil size and studies the relationship between pupil size and image quality. Specifically, we first invited subjects to participate in a subjective experiment, which includes two tasks: free observation and IQA. In the free observation task, subjects did not need to perform any action, and they only needed to observe images as they usually do with an album. In the IQA task, subjects were required to score images according to their overall impression of image quality. Then, by analyzing the difference in pupil size between the two tasks, we find that people may activate the visual attention mechanism when evaluating image quality. Meanwhile, we also find that the change in pupil size is closely related to image quality in the IQA task. For future research on IQA, this research can not only provide a theoretical basis for the objective IQA method and promote the development of more effective objective IQA methods, but also provide a new subjective IQA method for collecting the authentic subjective impression of image quality.
Rate-Accuracy Bounds in Visual Coding for Machines
Increasingly, visual signals such as images, videos and point clouds are being captured solely for the purpose of automated analysis by computer vision models. Applications include traffic monitoring, robotics, autonomous driving, smart home, and many others. This trend has led to the need to develop compression strategies for these signals for the purpose of analysis rather than reconstruction, an area often referred to as "coding for machines." By drawing parallels with lossy coding of a discrete memoryless source, in this paper we derive rate-accuracy bounds on several popular problems in visual coding for machines, and compare these with state-of-the-art results from the literature. The comparison shows that the current results are at least an order of magnitude -- and in some cases two or three orders of magnitude -- away from the theoretical bounds in terms of the bitrate needed to achieve a certain level of accuracy. This, in turn, means that there is much room for improvement in the current methods for visual coding for machines.
comment: 7 pages, 6 figures, IEEE MIPR 2025
Super-Resolution Optical Coherence Tomography Using Diffusion Model-Based Plug-and-Play Priors
We propose an OCT super-resolution framework based on a plug-and-play diffusion model (PnP-DM) to reconstruct high-quality images from sparse measurements (OCT B-mode corneal images). Our method formulates reconstruction as an inverse problem, combining a diffusion prior with Markov chain Monte Carlo sampling for efficient posterior inference. We collect high-speed under-sampled B-mode corneal images and apply a deep learning-based up-sampling pipeline to build realistic training pairs. Evaluations on in vivo and ex vivo fish-eye corneal models show that PnP-DM outperforms conventional 2D-UNet baselines, producing sharper structures and better noise suppression. This approach advances high-fidelity OCT imaging in high-speed acquisition for clinical applications.
Virtual Fluoroscopy for Interventional Guidance using Magnetic Tracking
Purpose: In conventional fluoroscopy-guided interventions, the 2D projective nature of X-ray imaging limits depth perception and leads to prolonged radiation exposure. Virtual fluoroscopy, combined with spatially tracked surgical instruments, is a promising strategy to mitigate these limitations. While magnetic tracking shows unique advantages, particularly in tracking flexible instruments, it remains under-explored due to interference from ferromagnetic materials in the C-arm room. This work proposes a virtual fluoroscopy workflow by effectively integrating magnetic tracking, and demonstrates its clinical efficacy. Methods: An automatic virtual fluoroscopy workflow was developed using a radiolucent tabletop field generator prototype. Specifically, we developed a fluoro-CT registration approach with automatic 2D-3D shared landmark correspondence to establish the C-arm-patient relationship, along with a general C-arm modelling approach to calculate desired poses and generate corresponding virtual fluoroscopic images. Results: Testing on a dataset with views ranging from RAO 90 degrees to LAO 90 degrees, simulated fluoroscopic images showed visually imperceptible differences from the real ones, achieving a mean target projection distance error of 1.55 mm. An endoleak phantom insertion experiment highlighted the effectiveness of simulating multiplanar views with real-time instrument overlays, achieving a mean needle tip error of 3.42 mm. Conclusions: Results demonstrated the efficacy of virtual fluoroscopy integrated with magnetic tracking, improving depth perception during navigation. The broad capture range of virtual fluoroscopy showed promise in improving the users understanding of X-ray imaging principles, facilitating more efficient image acquisition.
comment: 16 pages, 8 figures, 2025 IPCAI conference
Model-Independent Machine Learning Approach for Nanometric Axial Localization and Tracking
Accurately tracking particles and determining their position along the optical axis is a major challenge in optical microscopy, especially when extremely high precision is needed. In this study, we introduce a deep learning approach using convolutional neural networks (CNNs) that can determine axial positions from dual-focal plane images without relying on predefined models. Our method achieves an axial localization accuracy of 40 nanometers - six times better than traditional single-focal plane techniques. The model's simple design and strong performance make it suitable for a wide range of uses, including dark matter detection, proton therapy for cancer, and radiation protection in space. It also shows promise in fields like biological imaging, materials science, and environmental monitoring. This work highlights how machine learning can turn complex image data into reliable, precise information, offering a flexible and powerful tool for many scientific applications.
comment: 11 pages, 4 figures, 1 table
TransMedSeg: A Transferable Semantic Framework for Semi-Supervised Medical Image Segmentation
Semi-supervised learning (SSL) has achieved significant progress in medical image segmentation (SSMIS) through effective utilization of limited labeled data. While current SSL methods for medical images predominantly rely on consistency regularization and pseudo-labeling, they often overlook transferable semantic relationships across different clinical domains and imaging modalities. To address this, we propose TransMedSeg, a novel transferable semantic framework for semi-supervised medical image segmentation. Our approach introduces a Transferable Semantic Augmentation (TSA) module, which implicitly enhances feature representations by aligning domain-invariant semantics through cross-domain distribution matching and intra-domain structural preservation. Specifically, TransMedSeg constructs a unified feature space where teacher network features are adaptively augmented towards student network semantics via a lightweight memory module, enabling implicit semantic transformation without explicit data generation. Interestingly, this augmentation is implicitly realized through an expected transferable cross-entropy loss computed over the augmented teacher distribution. An upper bound of the expected loss is theoretically derived and minimized during training, incurring negligible computational overhead. Extensive experiments on medical image datasets demonstrate that TransMedSeg outperforms existing semi-supervised methods, establishing a new direction for transferable representation learning in medical image analysis.
Federated learning in low-resource settings: A chest imaging study in Africa -- Challenges and lessons learned
This study explores the use of Federated Learning (FL) for tuberculosis (TB) diagnosis using chest X-rays in low-resource settings across Africa. FL allows hospitals to collaboratively train AI models without sharing raw patient data, addressing privacy concerns and data scarcity that hinder traditional centralized models. The research involved hospitals and research centers in eight African countries. Most sites used local datasets, while Ghana and The Gambia used public ones. The study compared locally trained models with a federated model built across all institutions to evaluate FL's real-world feasibility. Despite its promise, implementing FL in sub-Saharan Africa faces challenges such as poor infrastructure, unreliable internet, limited digital literacy, and weak AI regulations. Some institutions were also reluctant to share model updates due to data control concerns. In conclusion, FL shows strong potential for enabling AI-driven healthcare in underserved regions, but broader adoption will require improvements in infrastructure, education, and regulatory support.
LOD1 3D City Model from LiDAR: The Impact of Segmentation Accuracy on Quality of Urban 3D Modeling and Morphology Extraction
Three-dimensional reconstruction of buildings, particularly at Level of Detail 1 (LOD1), plays a crucial role in various applications such as urban planning, urban environmental studies, and designing optimized transportation networks. This study focuses on assessing the potential of LiDAR data for accurate 3D building reconstruction at LOD1 and extracting morphological features from these models. Four deep semantic segmentation models, U-Net, Attention U-Net, U-Net3+, and DeepLabV3+, were used, applying transfer learning to extract building footprints from LiDAR data. The results showed that U-Net3+ and Attention U-Net outperformed the others, achieving IoU scores of 0.833 and 0.814, respectively. Various statistical measures, including maximum, range, mode, median, and the 90th percentile, were used to estimate building heights, resulting in the generation of 3D models at LOD1. As the main contribution of the research, the impact of segmentation accuracy on the quality of 3D building modeling and the accuracy of morphological features like building area and external wall surface area was investigated. The results showed that the accuracy of building identification (segmentation performance) significantly affects the 3D model quality and the estimation of morphological features, depending on the height calculation method. Overall, the UNet3+ method, utilizing the 90th percentile and median measures, leads to accurate height estimation of buildings and the extraction of morphological features.
Predicting Neo-Adjuvant Chemotherapy Response in Triple-Negative Breast Cancer Using Pre-Treatment Histopathologic Images
Triple-negative breast cancer (TNBC) is an aggressive subtype defined by the lack of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression, resulting in limited targeted treatment options. Neoadjuvant chemotherapy (NACT) is the standard treatment for early-stage TNBC, with pathologic complete response (pCR) serving as a key prognostic marker; however, only 40-50% of patients with TNBC achieve pCR. Accurate prediction of NACT response is crucial to optimize therapy, avoid ineffective treatments, and improve patient outcomes. In this study, we developed a deep learning model to predict NACT response using pre-treatment hematoxylin and eosin (H&E)-stained biopsy images. Our model achieved promising results in five-fold cross-validation (accuracy: 82%, AUC: 0.86, F1-score: 0.84, sensitivity: 0.85, specificity: 0.81, precision: 0.80). Analysis of model attention maps in conjunction with multiplexed immunohistochemistry (mIHC) data revealed that regions of high predictive importance consistently colocalized with tumor areas showing elevated PD-L1 expression, CD8+ T-cell infiltration, and CD163+ macrophage density - all established biomarkers of treatment response. Our findings indicate that incorporating IHC-derived immune profiling data could substantially improve model interpretability and predictive performance. Furthermore, this approach may accelerate the discovery of novel histopathological biomarkers for NACT and advance the development of personalized treatment strategies for TNBC patients.
MedBLIP: Fine-tuning BLIP for Medical Image Captioning
Medical image captioning is a challenging task that requires generating clinically accurate and semantically meaningful descriptions of radiology images. While recent vision-language models (VLMs) such as BLIP, BLIP2, Gemini and ViT-GPT2 show strong performance on natural image datasets, they often produce generic or imprecise captions when applied to specialized medical domains. In this project, we explore the effectiveness of fine-tuning the BLIP model on the ROCO dataset for improved radiology captioning. We compare the fine-tuned BLIP against its zero-shot version, BLIP-2 base, BLIP-2 Instruct and a ViT-GPT2 transformer baseline. Our results demonstrate that domain-specific fine-tuning on BLIP significantly improves performance across both quantitative and qualitative evaluation metrics. We also visualize decoder cross-attention maps to assess interpretability and conduct an ablation study to evaluate the contributions of encoder-only and decoder-only fine-tuning. Our findings highlight the importance of targeted adaptation for medical applications and suggest that decoder-only fine-tuning (encoder-frozen) offers a strong performance baseline with 5% lower training time than full fine-tuning, while full model fine-tuning still yields the best results overall.
Bayesian Deep Learning Approaches for Uncertainty-Aware Retinal OCT Image Segmentation for Multiple Sclerosis
Optical Coherence Tomography (OCT) provides valuable insights in ophthalmology, cardiology, and neurology due to high-resolution, cross-sectional images of the retina. One critical task for ophthalmologists using OCT is delineation of retinal layers within scans. This process is time-consuming and prone to human bias, affecting the accuracy and reliability of diagnoses. Previous efforts to automate delineation using deep learning face challenges in uptake from clinicians and statisticians due to the absence of uncertainty estimation, leading to "confidently wrong" models via hallucinations. In this study, we address these challenges by applying Bayesian convolutional neural networks (BCNNs) to segment an openly available OCT imaging dataset containing 35 human retina OCTs split between healthy controls and patients with multiple sclerosis. Our findings demonstrate that Bayesian models can be used to provide uncertainty maps of the segmentation, which can further be used to identify highly uncertain samples that exhibit recording artefacts such as noise or miscalibration at inference time. Our method also allows for uncertainty-estimation for important secondary measurements such as layer thicknesses, that are medically relevant for patients. We show that these features come in addition to greater performance compared to similar work over all delineations; with an overall Dice score of 95.65%. Our work brings greater clinical applicability, statistical robustness, and performance to retinal OCT segmentation.
A portable diagnosis model for Keratoconus using a smartphone
Keratoconus (KC) is a corneal disorder that results in blurry and distorted vision. Traditional diagnostic tools, while effective, are often bulky, costly, and require professional operation. In this paper, we present a portable and innovative methodology for diagnosing. Our proposed approach first captures the image reflected on the eye's cornea when a smartphone screen-generated Placido disc sheds its light on an eye, then utilizes a two-stage diagnosis for identifying the KC cornea and pinpointing the location of the KC on the cornea. The first stage estimates the height and width of the Placido disc extracted from the captured image to identify whether it has KC. In this KC identification, k-means clustering is implemented to discern statistical characteristics, such as height and width values of extracted Placido discs, from non-KC (control) and KC-affected groups. The second stage involves the creation of a distance matrix, providing a precise localization of KC on the cornea, which is critical for efficient treatment planning. The analysis of these distance matrices, paired with a logistic regression model and robust statistical analysis, reveals a clear distinction between control and KC groups. The logistic regression model, which classifies small areas on the cornea as either control or KC-affected based on the corresponding inter-disc distances in the distance matrix, reported a classification accuracy of 96.94%, which indicates that we can effectively pinpoint the protrusion caused by KC. This comprehensive, smartphone-based method is expected to detect KC and streamline timely treatment.
HWA-UNETR: Hierarchical Window Aggregate UNETR for 3D Multimodal Gastric Lesion Segmentation MICCAI 2025
Multimodal medical image segmentation faces significant challenges in the context of gastric cancer lesion analysis. This clinical context is defined by the scarcity of independent multimodal datasets and the imperative to amalgamate inherently misaligned modalities. As a result, algorithms are constrained to train on approximate data and depend on application migration, leading to substantial resource expenditure and a potential decline in analysis accuracy. To address those challenges, we have made two major contributions: First, we publicly disseminate the GCM 2025 dataset, which serves as the first large-scale, open-source collection of gastric cancer multimodal MRI scans, featuring professionally annotated FS-T2W, CE-T1W, and ADC images from 500 patients. Second, we introduce HWA-UNETR, a novel 3D segmentation framework that employs an original HWA block with learnable window aggregation layers to establish dynamic feature correspondences between different modalities' anatomical structures, and leverages the innovative tri-orientated fusion mamba mechanism for context modeling and capturing long-range spatial dependencies. Extensive experiments on our GCM 2025 dataset and the publicly BraTS 2021 dataset validate the performance of our framework, demonstrating that the new approach surpasses existing methods by up to 1.68\% in the Dice score while maintaining solid robustness. The dataset and code are public via https://github.com/JeMing-creater/HWA-UNETR.
comment: This work has been provisionally accepted for MICCAI 2025
How Effective Can Dropout Be in Multiple Instance Learning ? ICML2025
Multiple Instance Learning (MIL) is a popular weakly-supervised method for various applications, with a particular interest in histological whole slide image (WSI) classification. Due to the gigapixel resolution of WSI, applications of MIL in WSI typically necessitate a two-stage training scheme: first, extract features from the pre-trained backbone and then perform MIL aggregation. However, it is well-known that this suboptimal training scheme suffers from "noisy" feature embeddings from the backbone and inherent weak supervision, hindering MIL from learning rich and generalizable features. However, the most commonly used technique (i.e., dropout) for mitigating this issue has yet to be explored in MIL. In this paper, we empirically explore how effective the dropout can be in MIL. Interestingly, we observe that dropping the top-k most important instances within a bag leads to better performance and generalization even under noise attack. Based on this key observation, we propose a novel MIL-specific dropout method, termed MIL-Dropout, which systematically determines which instances to drop. Experiments on five MIL benchmark datasets and two WSI datasets demonstrate that MIL-Dropout boosts the performance of current MIL methods with a negligible computational cost. The code is available at https://github.com/ChongQingNoSubway/MILDropout.
comment: Accepted by ICML2025
StainDiffuser: MultiTask Dual Diffusion Model for Virtual Staining
Hematoxylin and Eosin (H&E) staining is widely regarded as the standard in pathology for diagnosing diseases and tracking tumor recurrence. While H&E staining shows tissue structures, it lacks the ability to reveal specific proteins that are associated with disease severity and treatment response. Immunohistochemical (IHC) stains use antibodies to highlight the expression of these proteins on their respective cell types, improving diagnostic accuracy, and assisting with drug selection for treatment. Despite their value, IHC stains require additional time and resources, limiting their utilization in some clinical settings. Recent advances in deep learning have positioned Image-to-Image (I2I) translation as a computational, cost-effective alternative for IHC. I2I generates high fidelity stain transformations digitally, potentially replacing manual staining in IHC. Diffusion models, the current state of the art in image generation and conditional tasks, are particularly well suited for virtual IHC due to their ability to produce high quality images and resilience to mode collapse. However, these models require extensive and diverse datasets (often millions of samples) to achieve a robust performance, a challenge in virtual staining applications where only thousands of samples are typically available. Inspired by the success of multitask deep learning models in scenarios with limited data, we introduce STAINDIFFUSER, a novel multitask diffusion architecture tailored to virtual staining that achieves convergence with smaller datasets. STAINDIFFUSER simultaneously trains two diffusion processes: (a) generating cell specific IHC stains from H&E images and (b) performing H&E based cell segmentation, utilizing coarse segmentation labels exclusively during training. STAINDIFFUSER generates high-quality virtual stains for two markers, outperforming over twenty I2I baselines.
Whitened Score Diffusion: A Structured Prior for Imaging Inverse Problems
Conventional score-based diffusion models (DMs) may struggle with anisotropic Gaussian diffusion processes due to the required inversion of covariance matrices in the denoising score matching training objective \cite{vincent_connection_2011}. We propose Whitened Score (WS) diffusion models, a novel framework based on stochastic differential equations that learns the Whitened Score function instead of the standard score. This approach circumvents covariance inversion, extending score-based DMs by enabling stable training of DMs on arbitrary Gaussian forward noising processes. WS DMs establish equivalence with flow matching for arbitrary Gaussian noise, allow for tailored spectral inductive biases, and provide strong Bayesian priors for imaging inverse problems with structured noise. We experiment with a variety of computational imaging tasks using the CIFAR and CelebA ($64\times64$) datasets and demonstrate that WS diffusion priors trained on anisotropic Gaussian noising processes consistently outperform conventional diffusion priors based on isotropic Gaussian noise. Our code is open-sourced at \href{https://github.com/jeffreyalido/wsdiffusion}{\texttt{github.com/jeffreyalido/wsdiffusion}}.
DeepForest: Sensing Into Self-Occluding Volumes of Vegetation With Aerial Imaging
Access to below-canopy volumetric vegetation data is crucial for understanding ecosystem dynamics. We address the long-standing limitation of remote sensing to penetrate deep into dense canopy layers. LiDAR and radar are currently considered the primary options for measuring 3D vegetation structures, while cameras can only extract the reflectance and depth of top layers. Using conventional, high-resolution aerial images, our approach allows sensing deep into self-occluding vegetation volumes, such as forests. It is similar in spirit to the imaging process of wide-field microscopy, but can handle much larger scales and strong occlusion. We scan focal stacks by synthetic-aperture imaging with drones and reduce outof-focus signal contributions using pre-trained 3D convolutional neural networks with mean squared error (MSE) as the loss function. The resulting volumetric reflectance stacks contain low-frequency representations of the vegetation volume. Combining multiple reflectance stacks from various spectral channels provides insights into plant health, growth, and environmental conditions throughout the entire vegetation volume. Compared with simulated ground truth, our correction leads to ~x7 average improvements (min: ~x2, max: ~x12) for forest densities of 200 trees/ha - 1680 trees/ha. In our field experiment, we achieved an MSE of 0.05 when comparing with the top-vegetation layer that was measured with classical multispectral aerial imaging.
Diff-Unfolding: A Model-Based Score Learning Framework for Inverse Problems
Diffusion models are extensively used for modeling image priors for inverse problems. We introduce \emph{Diff-Unfolding}, a principled framework for learning posterior score functions of \emph{conditional diffusion models} by explicitly incorporating the physical measurement operator into a modular network architecture. Diff-Unfolding formulates posterior score learning as the training of an unrolled optimization scheme, where the measurement model is decoupled from the learned image prior. This design allows our method to generalize across inverse problems at inference time by simply replacing the forward operator without retraining. We theoretically justify our unrolling approach by showing that the posterior score can be derived from a composite model-based optimization formulation. Extensive experiments on image restoration and accelerated MRI show that Diff-Unfolding achieves state-of-the-art performance, improving PSNR by up to 2 dB and reducing LPIPS by $22.7\%$, while being both compact (47M parameters) and efficient (0.72 seconds per $256 \times 256$ image). An optimized C++/LibTorch implementation further reduces inference time to 0.63 seconds, underscoring the practicality of our approach.
comment: 19 pages, 13 figures,
Multimedia
Scaling and Enhancing LLM-based AVSR: A Sparse Mixture of Projectors Approach
Audio-Visual Speech Recognition (AVSR) enhances robustness in noisy environments by integrating visual cues. While recent advances integrate Large Language Models (LLMs) into AVSR, their high computational cost hinders deployment in resource-constrained settings. To address this, we propose Llama-SMoP, an efficient Multimodal LLM that employs a Sparse Mixture of Projectors (SMoP) module to scale model capacity without increasing inference costs. By incorporating sparsely-gated mixture-of-experts (MoE) projectors, Llama-SMoP enables the use of smaller LLMs while maintaining strong performance. We explore three SMoP configurations and show that Llama-SMoP DEDR (Disjoint-Experts, Disjoint-Routers), which uses modality-specific routers and experts, achieves superior performance on ASR, VSR, and AVSR tasks. Ablation studies confirm its effectiveness in expert activation, scalability, and noise robustness.
TF-Mamba: Text-enhanced Fusion Mamba with Missing Modalities for Robust Multimodal Sentiment Analysis
Multimodal Sentiment Analysis (MSA) with missing modalities has attracted increasing attention recently. While current Transformer-based methods leverage dense text information to maintain model robustness, their quadratic complexity hinders efficient long-range modeling and multimodal fusion. To this end, we propose a novel and efficient Text-enhanced Fusion Mamba (TF-Mamba) framework for robust MSA with missing modalities. Specifically, a Text-aware Modality Enhancement (TME) module aligns and enriches non-text modalities, while reconstructing the missing text semantics. Moreover, we develop Text-based Context Mamba (TC-Mamba) to capture intra-modal contextual dependencies under text collaboration. Finally, Text-guided Query Mamba (TQ-Mamba) queries text-guided multimodal information and learns joint representations for sentiment prediction. Extensive experiments on three MSA datasets demonstrate the effectiveness and efficiency of the proposed method under missing modality scenarios. Our code is available at https://github.com/codemous/TF-Mamba.
RETRO: REthinking Tactile Representation Learning with Material PriOrs
Tactile perception is profoundly influenced by the surface properties of objects in contact. However, despite their crucial role in shaping tactile experiences, these material characteristics have been largely neglected in existing tactile representation learning methods. Most approaches primarily focus on aligning tactile data with visual or textual information, overlooking the richness of tactile feedback that comes from understanding the materials' inherent properties. In this work, we address this gap by revisiting the tactile representation learning framework and incorporating material-aware priors into the learning process. These priors, which represent pre-learned characteristics specific to different materials, allow tactile models to better capture and generalize the nuances of surface texture. Our method enables more accurate, contextually rich tactile feedback across diverse materials and textures, improving performance in real-world applications such as robotics, haptic feedback systems, and material editing.
comment: Code: https://github.com/weihaox/RETRO
Data-Efficient Hate Speech Detection via Cross-Lingual Nearest Neighbor Retrieval with Limited Labeled Data
Considering the importance of detecting hateful language, labeled hate speech data is expensive and time-consuming to collect, particularly for low-resource languages. Prior work has demonstrated the effectiveness of cross-lingual transfer learning and data augmentation in improving performance on tasks with limited labeled data. To develop an efficient and scalable cross-lingual transfer learning approach, we leverage nearest-neighbor retrieval to augment minimal labeled data in the target language, thereby enhancing detection performance. Specifically, we assume access to a small set of labeled training instances in the target language and use these to retrieve the most relevant labeled examples from a large multilingual hate speech detection pool. We evaluate our approach on eight languages and demonstrate that it consistently outperforms models trained solely on the target language data. Furthermore, in most cases, our method surpasses the current state-of-the-art. Notably, our approach is highly data-efficient, retrieving as small as 200 instances in some cases while maintaining superior performance. Moreover, it is scalable, as the retrieval pool can be easily expanded, and the method can be readily adapted to new languages and tasks. We also apply maximum marginal relevance to mitigate redundancy and filter out highly similar retrieved instances, resulting in improvements in some languages.
MatchDance: Collaborative Mamba-Transformer Architecture Matching for High-Quality 3D Dance Synthesis
Music-to-dance generation represents a challenging yet pivotal task at the intersection of choreography, virtual reality, and creative content generation. Despite its significance, existing methods face substantial limitation in achieving choreographic consistency. To address the challenge, we propose MatchDance, a novel framework for music-to-dance generation that constructs a latent representation to enhance choreographic consistency. MatchDance employs a two-stage design: (1) a Kinematic-Dynamic-based Quantization Stage (KDQS), which encodes dance motions into a latent representation by Finite Scalar Quantization (FSQ) with kinematic-dynamic constraints and reconstructs them with high fidelity, and (2) a Hybrid Music-to-Dance Generation Stage(HMDGS), which uses a Mamba-Transformer hybrid architecture to map music into the latent representation, followed by the KDQS decoder to generate 3D dance motions. Additionally, a music-dance retrieval framework and comprehensive metrics are introduced for evaluation. Extensive experiments on the FineDance dataset demonstrate state-of-the-art performance. Code will be released upon acceptance.
ReactDiff: Latent Diffusion for Facial Reaction Generation
Given the audio-visual clip of the speaker, facial reaction generation aims to predict the listener's facial reactions. The challenge lies in capturing the relevance between video and audio while balancing appropriateness, realism, and diversity. While prior works have mostly focused on uni-modal inputs or simplified reaction mappings, recent approaches such as PerFRDiff have explored multi-modal inputs and the one-to-many nature of appropriate reaction mappings. In this work, we propose the Facial Reaction Diffusion (ReactDiff) framework that uniquely integrates a Multi-Modality Transformer with conditional diffusion in the latent space for enhanced reaction generation. Unlike existing methods, ReactDiff leverages intra- and inter-class attention for fine-grained multi-modal interaction, while the latent diffusion process between the encoder and decoder enables diverse yet contextually appropriate outputs. Experimental results demonstrate that ReactDiff significantly outperforms existing approaches, achieving a facial reaction correlation of 0.26 and diversity score of 0.094 while maintaining competitive realism. The code is open-sourced at \href{https://github.com/Hunan-Tiger/ReactDiff}{github}.
ShieldVLM: Safeguarding the Multimodal Implicit Toxicity via Deliberative Reasoning with LVLMs
Toxicity detection in multimodal text-image content faces growing challenges, especially with multimodal implicit toxicity, where each modality appears benign on its own but conveys hazard when combined. Multimodal implicit toxicity appears not only as formal statements in social platforms but also prompts that can lead to toxic dialogs from Large Vision-Language Models (LVLMs). Despite the success in unimodal text or image moderation, toxicity detection for multimodal content, particularly the multimodal implicit toxicity, remains underexplored. To fill this gap, we comprehensively build a taxonomy for multimodal implicit toxicity (MMIT) and introduce an MMIT-dataset, comprising 2,100 multimodal statements and prompts across 7 risk categories (31 sub-categories) and 5 typical cross-modal correlation modes. To advance the detection of multimodal implicit toxicity, we build ShieldVLM, a model which identifies implicit toxicity in multimodal statements, prompts and dialogs via deliberative cross-modal reasoning. Experiments show that ShieldVLM outperforms existing strong baselines in detecting both implicit and explicit toxicity. The model and dataset will be publicly available to support future researches. Warning: This paper contains potentially sensitive contents.
Memory-Centric Embodied Question Answer
Embodied Question Answering (EQA) requires agents to autonomously explore and understand the environment to answer context-dependent questions. Existing frameworks typically center around the planner, which guides the stopping module, memory module, and answering module for reasoning. In this paper, we propose a memory-centric EQA framework named MemoryEQA. Unlike planner-centric EQA models where the memory module cannot fully interact with other modules, MemoryEQA flexible feeds memory information into all modules, thereby enhancing efficiency and accuracy in handling complex tasks, such as those involving multiple targets across different regions. Specifically, we establish a multi-modal hierarchical memory mechanism, which is divided into global memory that stores language-enhanced scene maps, and local memory that retains historical observations and state information. When performing EQA tasks, the multi-modal large language model is leveraged to convert memory information into the required input formats for injection into different modules. To evaluate EQA models' memory capabilities, we constructed the MT-HM3D dataset based on HM3D, comprising 1,587 question-answer pairs involving multiple targets across various regions, which requires agents to maintain memory of exploration-acquired target information. Experimental results on HM-EQA, MT-HM3D, and OpenEQA demonstrate the effectiveness of our framework, where a 19.8% performance gain on MT-HM3D compared to baseline model further underscores memory capability's pivotal role in resolving complex tasks.
comment: 14pages, 7 figures, 6 tables
VisTopics: A Visual Semantic Unsupervised Approach to Topic Modeling of Video and Image Data
Understanding visual narratives is crucial for examining the evolving dynamics of media representation. This study introduces VisTopics, a computational framework designed to analyze large-scale visual datasets through an end-to-end pipeline encompassing frame extraction, deduplication, and semantic clustering. Applying VisTopics to a dataset of 452 NBC News videos resulted in reducing 11,070 frames to 6,928 deduplicated frames, which were then semantically analyzed to uncover 35 topics ranging from political events to environmental crises. By integrating Latent Dirichlet Allocation with caption-based semantic analysis, VisTopics demonstrates its potential to unravel patterns in visual framing across diverse contexts. This approach enables longitudinal studies and cross-platform comparisons, shedding light on the intersection of media, technology, and public discourse. The study validates the method's reliability through human coding accuracy metrics and emphasizes its scalability for communication research. By bridging the gap between visual representation and semantic meaning, VisTopics provides a transformative tool for advancing the methodological toolkit in computational media studies. Future research may leverage VisTopics for comparative analyses across media outlets or geographic regions, offering insights into the shifting landscapes of media narratives and their societal implications.
Representation Learning for Semantic Alignment of Language, Audio, and Visual Modalities
This paper proposes a single-stage training approach that semantically aligns three modalities - audio, visual, and text using a contrastive learning framework. Contrastive training has gained prominence for multimodal alignment, utilizing large-scale unlabeled data to learn shared representations. Existing deep learning approach for trimodal alignment involves two-stages, that separately align visual-text and audio-text modalities. This approach suffers from mismatched data distributions, resulting in suboptimal alignment. Leveraging the AVCaps dataset, which provides audio, visual and audio-visual captions for video clips, our method jointly optimizes the representation of all the modalities using contrastive training. Our results demonstrate that the single-stage approach outperforms the two-stage method, achieving a two-fold improvement in audio based visual retrieval, highlighting the advantages of unified multimodal representation learning.
comment: Accepted to European Signal Processing Conference (EUSIPCO 2025)
MORALISE: A Structured Benchmark for Moral Alignment in Visual Language Models
Warning: This paper contains examples of harmful language and images. Reader discretion is advised. Recently, vision-language models have demonstrated increasing influence in morally sensitive domains such as autonomous driving and medical analysis, owing to their powerful multimodal reasoning capabilities. As these models are deployed in high-stakes real-world applications, it is of paramount importance to ensure that their outputs align with human moral values and remain within moral boundaries. However, existing work on moral alignment either focuses solely on textual modalities or relies heavily on AI-generated images, leading to distributional biases and reduced realism. To overcome these limitations, we introduce MORALISE, a comprehensive benchmark for evaluating the moral alignment of vision-language models (VLMs) using diverse, expert-verified real-world data. We begin by proposing a comprehensive taxonomy of 13 moral topics grounded in Turiel's Domain Theory, spanning the personal, interpersonal, and societal moral domains encountered in everyday life. Built on this framework, we manually curate 2,481 high-quality image-text pairs, each annotated with two fine-grained labels: (1) topic annotation, identifying the violated moral topic(s), and (2) modality annotation, indicating whether the violation arises from the image or the text. For evaluation, we encompass two tasks, \textit{moral judgment} and \textit{moral norm attribution}, to assess models' awareness of moral violations and their reasoning ability on morally salient content. Extensive experiments on 19 popular open- and closed-source VLMs show that MORALISE poses a significant challenge, revealing persistent moral limitations in current state-of-the-art models. The full benchmark is publicly available at https://huggingface.co/datasets/Ze1025/MORALISE.
comment: 21 pages, 11 figures, 7 tables
TCC-Bench: Benchmarking the Traditional Chinese Culture Understanding Capabilities of MLLMs
Recent progress in Multimodal Large Language Models (MLLMs) have significantly enhanced the ability of artificial intelligence systems to understand and generate multimodal content. However, these models often exhibit limited effectiveness when applied to non-Western cultural contexts, which raises concerns about their wider applicability. To address this limitation, we propose the Traditional Chinese Culture understanding Benchmark (TCC-Bench), a bilingual (i.e., Chinese and English) Visual Question Answering (VQA) benchmark specifically designed for assessing the understanding of traditional Chinese culture by MLLMs. TCC-Bench comprises culturally rich and visually diverse data, incorporating images from museum artifacts, everyday life scenes, comics, and other culturally significant contexts. We adopt a semi-automated pipeline that utilizes GPT-4o in text-only mode to generate candidate questions, followed by human curation to ensure data quality and avoid potential data leakage. The benchmark also avoids language bias by preventing direct disclosure of cultural concepts within question texts. Experimental evaluations across a wide range of MLLMs demonstrate that current models still face significant challenges when reasoning about culturally grounded visual content. The results highlight the need for further research in developing culturally inclusive and context-aware multimodal systems. The code and data can be found at: https://tcc-bench.github.io/.
comment: Preprint
Contrastive Alignment with Semantic Gap-Aware Corrections in Text-Video Retrieval
Recent advances in text-video retrieval have been largely driven by contrastive learning frameworks. However, existing methods overlook a key source of optimization tension: the separation between text and video distributions in the representation space (referred to as the modality gap), and the prevalence of false negatives in batch sampling. These factors lead to conflicting gradients under the InfoNCE loss, impeding stable alignment. To mitigate this, we propose GARE, a Gap-Aware Retrieval framework that introduces a learnable, pair-specific increment Delta_ij between text t_i and video v_j to offload the tension from the global anchor representation. We first derive the ideal form of Delta_ij via a coupled multivariate first-order Taylor approximation of the InfoNCE loss under a trust-region constraint, revealing it as a mechanism for resolving gradient conflicts by guiding updates along a locally optimal descent direction. Due to the high cost of directly computing Delta_ij, we introduce a lightweight neural module conditioned on the semantic gap between each video-text pair, enabling structure-aware correction guided by gradient supervision. To further stabilize learning and promote interpretability, we regularize Delta using three components: a trust-region constraint to prevent oscillation, a directional diversity term to promote semantic coverage, and an information bottleneck to limit redundancy. Experiments across four retrieval benchmarks show that GARE consistently improves alignment accuracy and robustness to noisy supervision, confirming the effectiveness of gap-aware tension mitigation.
Fast Text-to-Audio Generation with Adversarial Post-Training
Text-to-audio systems, while increasingly performant, are slow at inference time, thus making their latency unpractical for many creative applications. We present Adversarial Relativistic-Contrastive (ARC) post-training, the first adversarial acceleration algorithm for diffusion/flow models not based on distillation. While past adversarial post-training methods have struggled to compare against their expensive distillation counterparts, ARC post-training is a simple procedure that (1) extends a recent relativistic adversarial formulation to diffusion/flow post-training and (2) combines it with a novel contrastive discriminator objective to encourage better prompt adherence. We pair ARC post-training with a number optimizations to Stable Audio Open and build a model capable of generating $\approx$12s of 44.1kHz stereo audio in $\approx$75ms on an H100, and $\approx$7s on a mobile edge-device, the fastest text-to-audio model to our knowledge.
Can Prompting LLMs Unlock Hate Speech Detection across Languages? A Zero-shot and Few-shot Study
Despite growing interest in automated hate speech detection, most existing approaches overlook the linguistic diversity of online content. Multilingual instruction-tuned large language models such as LLaMA, Aya, Qwen, and BloomZ offer promising capabilities across languages, but their effectiveness in identifying hate speech through zero-shot and few-shot prompting remains underexplored. This work evaluates LLM prompting-based detection across eight non-English languages, utilizing several prompting techniques and comparing them to fine-tuned encoder models. We show that while zero-shot and few-shot prompting lag behind fine-tuned encoder models on most of the real-world evaluation sets, they achieve better generalization on functional tests for hate speech detection. Our study also reveals that prompt design plays a critical role, with each language often requiring customized prompting techniques to maximize performance.
Uni-Retrieval: A Multi-Style Retrieval Framework for STEM's Education
In AI-facilitated teaching, leveraging various query styles to interpret abstract text descriptions is crucial for ensuring high-quality teaching. However, current retrieval models primarily focus on natural text-image retrieval, making them insufficiently tailored to educational scenarios due to the ambiguities in the retrieval process. In this paper, we propose a diverse expression retrieval task tailored to educational scenarios, supporting retrieval based on multiple query styles and expressions. We introduce the STEM Education Retrieval Dataset (SER), which contains over 24,000 query pairs of different styles, and the Uni-Retrieval, an efficient and style-diversified retrieval vision-language model based on prompt tuning. Uni-Retrieval extracts query style features as prototypes and builds a continuously updated Prompt Bank containing prompt tokens for diverse queries. This bank can updated during test time to represent domain-specific knowledge for different subject retrieval scenarios. Our framework demonstrates scalability and robustness by dynamically retrieving prompt tokens based on prototype similarity, effectively facilitating learning for unknown queries. Experimental results indicate that Uni-Retrieval outperforms existing retrieval models in most retrieval tasks. This advancement provides a scalable and precise solution for diverse educational needs.
DeepResonance: Enhancing Multimodal Music Understanding via Music-centric Multi-way Instruction Tuning
Recent advancements in music large language models (LLMs) have significantly improved music understanding tasks, which involve the model's ability to analyze and interpret various musical elements. These improvements primarily focused on integrating both music and text inputs. However, the potential of incorporating additional modalities such as images, videos and textual music features to enhance music understanding remains unexplored. To bridge this gap, we propose DeepResonance, a multimodal music understanding LLM fine-tuned via multi-way instruction tuning with multi-way aligned music, text, image, and video data. To this end, we construct Music4way-MI2T, Music4way-MV2T, and Music4way-Any2T, three 4-way training and evaluation datasets designed to enable DeepResonance to integrate both visual and textual music feature content. We also introduce multi-sampled ImageBind embeddings and a pre-LLM fusion Transformer to enhance modality fusion prior to input into text LLMs, tailoring DeepResonance for multi-way instruction tuning. Our model achieves state-of-the-art performances across six music understanding tasks, highlighting the benefits of the auxiliary modalities and the structural superiority of DeepResonance. We plan to open-source the models and the newly constructed datasets.
OT-DETECTOR: Delving into Optimal Transport for Zero-shot Out-of-Distribution Detection IJCAI 2025
Out-of-distribution (OOD) detection is crucial for ensuring the reliability and safety of machine learning models in real-world applications. While zero-shot OOD detection, which requires no training on in-distribution (ID) data, has become feasible with the emergence of vision-language models like CLIP, existing methods primarily focus on semantic matching and fail to fully capture distributional discrepancies. To address these limitations, we propose OT-DETECTOR, a novel framework that employs Optimal Transport (OT) to quantify both semantic and distributional discrepancies between test samples and ID labels. Specifically, we introduce cross-modal transport mass and transport cost as semantic-wise and distribution-wise OOD scores, respectively, enabling more robust detection of OOD samples. Additionally, we present a semantic-aware content refinement (SaCR) module, which utilizes semantic cues from ID labels to amplify the distributional discrepancy between ID and hard OOD samples. Extensive experiments on several benchmarks demonstrate that OT-DETECTOR achieves state-of-the-art performance across various OOD detection tasks, particularly in challenging hard-OOD scenarios.
comment: Accepted to the 34th International Joint Conference on Artificial Intelligence (IJCAI 2025)
Unified Microphone Conversion: Many-to-Many Device Mapping via Feature-wise Linear Modulation
We present Unified Microphone Conversion, a unified generative framework designed to bolster sound event classification (SEC) systems against device variability. While our prior CycleGAN-based methods effectively simulate device characteristics, they require separate models for each device pair, limiting scalability. Our approach overcomes this constraint by conditioning the generator on frequency response data, enabling many-to-many device mappings through unpaired training. We integrate frequency-response information via Feature-wise Linear Modulation, further enhancing scalability. Additionally, incorporating synthetic frequency response differences improves the applicability of our framework for real-world application. Experimental results show that our method outperforms the state-of-the-art by 2.6% and reduces variability by 0.8% in macro-average F1 score.
comment: Accepted to Interspeech 2025
Computation and Language
Language Models use Lookbacks to Track Beliefs
How do language models (LMs) represent characters' beliefs, especially when those beliefs may differ from reality? This question lies at the heart of understanding the Theory of Mind (ToM) capabilities of LMs. We analyze Llama-3-70B-Instruct's ability to reason about characters' beliefs using causal mediation and abstraction. We construct a dataset that consists of simple stories where two characters each separately change the state of two objects, potentially unaware of each other's actions. Our investigation uncovered a pervasive algorithmic pattern that we call a lookback mechanism, which enables the LM to recall important information when it becomes necessary. The LM binds each character-object-state triple together by co-locating reference information about them, represented as their Ordering IDs (OIs) in low rank subspaces of the state token's residual stream. When asked about a character's beliefs regarding the state of an object, the binding lookback retrieves the corresponding state OI and then an answer lookback retrieves the state token. When we introduce text specifying that one character is (not) visible to the other, we find that the LM first generates a visibility ID encoding the relation between the observing and the observed character OIs. In a visibility lookback, this ID is used to retrieve information about the observed character and update the observing character's beliefs. Our work provides insights into the LM's belief tracking mechanisms, taking a step toward reverse-engineering ToM reasoning in LMs.
comment: 32 pages, 32 figures. Code and data at https://belief.baulab.info/
Mind the Gap: Bridging Thought Leap for Improved Chain-of-Thought Tuning
Large language models (LLMs) have achieved remarkable progress on mathemati-cal tasks through Chain-of-Thought (CoT) reasoning. However, existing mathematical CoT datasets often suffer from Thought Leaps due to experts omitting intermediate steps, which negatively impacts model learning and generalization. We propose the CoT Thought Leap Bridge Task, which aims to automatically detect leaps and generate missing intermediate reasoning steps to restore the completeness and coherence of CoT. To facilitate this, we constructed a specialized training dataset called ScaleQM+, based on the structured ScaleQuestMath dataset, and trained CoT-Bridge to bridge thought leaps. Through comprehensive experiments on mathematical reasoning benchmarks, we demonstrate that models fine-tuned on bridged datasets consistently outperform those trained on original datasets, with improvements of up to +5.87% on NuminaMath. Our approach effectively enhances distilled data (+3.02%) and provides better starting points for reinforcement learning (+3.1%), functioning as a plug-and-play module compatible with existing optimization techniques. Furthermore, CoT-Bridge demonstrate improved generalization to out-of-domain logical reasoning tasks, confirming that enhancing reasoning completeness yields broadly applicable benefits.
Two Experts Are All You Need for Steering Thinking: Reinforcing Cognitive Effort in MoE Reasoning Models Without Additional Training
Mixture-of-Experts (MoE) architectures within Large Reasoning Models (LRMs) have achieved impressive reasoning capabilities by selectively activating experts to facilitate structured cognitive processes. Despite notable advances, existing reasoning models often suffer from cognitive inefficiencies like overthinking and underthinking. To address these limitations, we introduce a novel inference-time steering methodology called Reinforcing Cognitive Experts (RICE), designed to improve reasoning performance without additional training or complex heuristics. Leveraging normalized Pointwise Mutual Information (nPMI), we systematically identify specialized experts, termed ''cognitive experts'' that orchestrate meta-level reasoning operations characterized by tokens like ''''. Empirical evaluations with leading MoE-based LRMs (DeepSeek-R1 and Qwen3-235B) on rigorous quantitative and scientific reasoning benchmarks demonstrate noticeable and consistent improvements in reasoning accuracy, cognitive efficiency, and cross-domain generalization. Crucially, our lightweight approach substantially outperforms prevalent reasoning-steering techniques, such as prompt design and decoding constraints, while preserving the model's general instruction-following skills. These results highlight reinforcing cognitive experts as a promising, practical, and interpretable direction to enhance cognitive efficiency within advanced reasoning models.
comment: Work in progress
NExT-Search: Rebuilding User Feedback Ecosystem for Generative AI Search SIGIR 2025
Generative AI search is reshaping information retrieval by offering end-to-end answers to complex queries, reducing users' reliance on manually browsing and summarizing multiple web pages. However, while this paradigm enhances convenience, it disrupts the feedback-driven improvement loop that has historically powered the evolution of traditional Web search. Web search can continuously improve their ranking models by collecting large-scale, fine-grained user feedback (e.g., clicks, dwell time) at the document level. In contrast, generative AI search operates through a much longer search pipeline, spanning query decomposition, document retrieval, and answer generation, yet typically receives only coarse-grained feedback on the final answer. This introduces a feedback loop disconnect, where user feedback for the final output cannot be effectively mapped back to specific system components, making it difficult to improve each intermediate stage and sustain the feedback loop. In this paper, we envision NExT-Search, a next-generation paradigm designed to reintroduce fine-grained, process-level feedback into generative AI search. NExT-Search integrates two complementary modes: User Debug Mode, which allows engaged users to intervene at key stages; and Shadow User Mode, where a personalized user agent simulates user preferences and provides AI-assisted feedback for less interactive users. Furthermore, we envision how these feedback signals can be leveraged through online adaptation, which refines current search outputs in real-time, and offline update, which aggregates interaction logs to periodically fine-tune query decomposition, retrieval, and generation models. By restoring human control over key stages of the generative AI search pipeline, we believe NExT-Search offers a promising direction for building feedback-rich AI search systems that can evolve continuously alongside human feedback.
comment: SIGIR 2025 Perspective Paper
UltraEdit: Training-, Subject-, and Memory-Free Lifelong Editing in Large Language Models
Lifelong learning enables large language models (LLMs) to adapt to evolving information by continually updating their internal knowledge. An ideal system should support efficient, wide-ranging updates while preserving existing capabilities and ensuring reliable deployment. Model editing stands out as a promising solution for this goal, offering a focused and efficient way to revise a model's internal knowledge. Although recent paradigms have made notable progress, they often struggle to meet the demands of practical lifelong adaptation at scale. To bridge this gap, we propose ULTRAEDIT-a fundamentally new editing solution that is training-, subject- and memory-free, making it particularly well-suited for ultra-scalable, real-world lifelong model editing. ULTRAEDIT performs editing through a self-contained process that relies solely on lightweight linear algebra operations to compute parameter shifts, enabling fast and consistent parameter modifications with minimal overhead. To improve scalability in lifelong settings, ULTRAEDIT employs a lifelong normalization strategy that continuously updates feature statistics across turns, allowing it to adapt to distributional shifts and maintain consistency over time. ULTRAEDIT achieves editing speeds over 7x faster than the previous state-of-the-art method-which was also the fastest known approach-while consuming less than 1/3 the VRAM, making it the only method currently capable of editing a 7B LLM on a 24GB consumer-grade GPU. Furthermore, we construct ULTRAEDITBENCH-the largest dataset in the field to date, with over 2M editing pairs-and demonstrate that our method supports up to 1M edits while maintaining high accuracy. Comprehensive experiments on four datasets and six models show that ULTRAEDIT consistently achieves superior performance across diverse model editing scenarios. Our code is available at: https://github.com/XiaojieGu/UltraEdit.
Reward Reasoning Model
Reward models play a critical role in guiding large language models toward outputs that align with human expectations. However, an open challenge remains in effectively utilizing test-time compute to enhance reward model performance. In this work, we introduce Reward Reasoning Models (RRMs), which are specifically designed to execute a deliberate reasoning process before generating final rewards. Through chain-of-thought reasoning, RRMs leverage additional test-time compute for complex queries where appropriate rewards are not immediately apparent. To develop RRMs, we implement a reinforcement learning framework that fosters self-evolved reward reasoning capabilities without requiring explicit reasoning traces as training data. Experimental results demonstrate that RRMs achieve superior performance on reward modeling benchmarks across diverse domains. Notably, we show that RRMs can adaptively exploit test-time compute to further improve reward accuracy. The pretrained reward reasoning models are available at https://huggingface.co/Reward-Reasoning.
ContextAgent: Context-Aware Proactive LLM Agents with Open-World Sensory Perceptions
Recent advances in Large Language Models (LLMs) have propelled intelligent agents from reactive responses to proactive support. While promising, existing proactive agents either rely exclusively on observations from enclosed environments (e.g., desktop UIs) with direct LLM inference or employ rule-based proactive notifications, leading to suboptimal user intent understanding and limited functionality for proactive service. In this paper, we introduce ContextAgent, the first context-aware proactive agent that incorporates extensive sensory contexts to enhance the proactive capabilities of LLM agents. ContextAgent first extracts multi-dimensional contexts from massive sensory perceptions on wearables (e.g., video and audio) to understand user intentions. ContextAgent then leverages the sensory contexts and the persona contexts from historical data to predict the necessity for proactive services. When proactive assistance is needed, ContextAgent further automatically calls the necessary tools to assist users unobtrusively. To evaluate this new task, we curate ContextAgentBench, the first benchmark for evaluating context-aware proactive LLM agents, covering 1,000 samples across nine daily scenarios and twenty tools. Experiments on ContextAgentBench show that ContextAgent outperforms baselines by achieving up to 8.5% and 6.0% higher accuracy in proactive predictions and tool calling, respectively. We hope our research can inspire the development of more advanced, human-centric, proactive AI assistants.
SAFEPATH: Preventing Harmful Reasoning in Chain-of-Thought via Early Alignment
Large Reasoning Models (LRMs) have become powerful tools for complex problem solving, but their structured reasoning pathways can lead to unsafe outputs when exposed to harmful prompts. Existing safety alignment methods reduce harmful outputs but can degrade reasoning depth, leading to significant trade-offs in complex, multi-step tasks, and remain vulnerable to sophisticated jailbreak attacks. To address this, we introduce SAFEPATH, a lightweight alignment method that fine-tunes LRMs to emit a short, 8-token Safety Primer at the start of their reasoning, in response to harmful prompts, while leaving the rest of the reasoning process unsupervised. Empirical results across multiple benchmarks indicate that SAFEPATH effectively reduces harmful outputs while maintaining reasoning performance. Specifically, SAFEPATH reduces harmful responses by up to 90.0% and blocks 83.3% of jailbreak attempts in the DeepSeek-R1-Distill-Llama-8B model, while requiring 295.9x less compute than Direct Refusal and 314.1x less than SafeChain. We further introduce a zero-shot variant that requires no fine-tuning. In addition, we provide a comprehensive analysis of how existing methods in LLMs generalize, or fail, when applied to reasoning-centric models, revealing critical gaps and new directions for safer AI.
comment: 22 pages
EmoGist: Efficient In-Context Learning for Visual Emotion Understanding
In this paper, we introduce EmoGist, a training-free, in-context learning method for performing visual emotion classification with LVLMs. The key intuition of our approach is that context-dependent definition of emotion labels could allow more accurate predictions of emotions, as the ways in which emotions manifest within images are highly context dependent and nuanced. EmoGist pre-generates multiple explanations of emotion labels, by analyzing the clusters of example images belonging to each category. At test time, we retrieve a version of explanation based on embedding similarity, and feed it to a fast VLM for classification. Through our experiments, we show that EmoGist allows up to 13 points improvement in micro F1 scores with the multi-label Memotion dataset, and up to 8 points in macro F1 in the multi-class FI dataset.
Beyond Words: Multimodal LLM Knows When to Speak
While large language model (LLM)-based chatbots have demonstrated strong capabilities in generating coherent and contextually relevant responses, they often struggle with understanding when to speak, particularly in delivering brief, timely reactions during ongoing conversations. This limitation arises largely from their reliance on text input, lacking the rich contextual cues in real-world human dialogue. In this work, we focus on real-time prediction of response types, with an emphasis on short, reactive utterances that depend on subtle, multimodal signals across vision, audio, and text. To support this, we introduce a new multimodal dataset constructed from real-world conversational videos, containing temporally aligned visual, auditory, and textual streams. This dataset enables fine-grained modeling of response timing in dyadic interactions. Building on this dataset, we propose MM-When2Speak, a multimodal LLM-based model that adaptively integrates visual, auditory, and textual context to predict when a response should occur, and what type of response is appropriate. Experiments show that MM-When2Speak significantly outperforms state-of-the-art unimodal and LLM-based baselines, achieving up to a 4x improvement in response timing accuracy over leading commercial LLMs. These results underscore the importance of multimodal inputs for producing timely, natural, and engaging conversational AI.
comment: Project page: https://github.com/lzk901372/MM-When2Speak
General-Reasoner: Advancing LLM Reasoning Across All Domains
Reinforcement learning (RL) has recently demonstrated strong potential in enhancing the reasoning capabilities of large language models (LLMs). Particularly, the "Zero" reinforcement learning introduced by Deepseek-R1-Zero, enables direct RL training of base LLMs without relying on an intermediate supervised fine-tuning stage. Despite these advancements, current works for LLM reasoning mainly focus on mathematical and coding domains, largely due to data abundance and the ease of answer verification. This limits the applicability and generalization of such models to broader domains, where questions often have diverse answer representations, and data is more scarce. In this paper, we propose General-Reasoner, a novel training paradigm designed to enhance LLM reasoning capabilities across diverse domains. Our key contributions include: (1) constructing a large-scale, high-quality dataset of questions with verifiable answers curated by web crawling, covering a wide range of disciplines; and (2) developing a generative model-based answer verifier, which replaces traditional rule-based verification with the capability of chain-of-thought and context-awareness. We train a series of models and evaluate them on a wide range of datasets covering wide domains like physics, chemistry, finance, electronics etc. Our comprehensive evaluation across these 12 benchmarks (e.g. MMLU-Pro, GPQA, SuperGPQA, TheoremQA, BBEH and MATH AMC) demonstrates that General-Reasoner outperforms existing baseline methods, achieving robust and generalizable reasoning performance while maintaining superior effectiveness in mathematical reasoning tasks.
Dual Precision Quantization for Efficient and Accurate Deep Neural Networks Inference CVPR
Deep neural networks have achieved state-of-the-art results in a wide range of applications, from natural language processing and computer vision to speech recognition. However, as tasks become increasingly complex, model sizes continue to grow, posing challenges in latency and memory efficiency. To meet these constraints, post-training quantization has emerged as a promising solution. In this paper, we propose a novel hardware-efficient quantization and inference scheme that exploits hardware advantages with minimal accuracy degradation. Specifically, we introduce a W4A8 scheme, where weights are quantized and stored using 4-bit integer precision, and inference computations are performed using 8-bit floating-point arithmetic, demonstrating significant speedups and improved memory utilization compared to 16-bit operations, applicable on various modern accelerators. To mitigate accuracy loss, we develop a novel quantization algorithm, dubbed Dual Precision Quantization (DPQ), that leverages the unique structure of our scheme without introducing additional inference overhead. Experimental results demonstrate improved performance (i.e., increased throughput) while maintaining tolerable accuracy degradation relative to the full-precision model.
comment: Accepted at eLVM Workshop, CVPR, 2025
Will AI Tell Lies to Save Sick Children? Litmus-Testing AI Values Prioritization with AIRiskDilemmas
Detecting AI risks becomes more challenging as stronger models emerge and find novel methods such as Alignment Faking to circumvent these detection attempts. Inspired by how risky behaviors in humans (i.e., illegal activities that may hurt others) are sometimes guided by strongly-held values, we believe that identifying values within AI models can be an early warning system for AI's risky behaviors. We create LitmusValues, an evaluation pipeline to reveal AI models' priorities on a range of AI value classes. Then, we collect AIRiskDilemmas, a diverse collection of dilemmas that pit values against one another in scenarios relevant to AI safety risks such as Power Seeking. By measuring an AI model's value prioritization using its aggregate choices, we obtain a self-consistent set of predicted value priorities that uncover potential risks. We show that values in LitmusValues (including seemingly innocuous ones like Care) can predict for both seen risky behaviors in AIRiskDilemmas and unseen risky behaviors in HarmBench.
comment: 34 pages, 11 figures, see associated data at https://huggingface.co/datasets/kellycyy/AIRiskDilemmas and code at https://github.com/kellycyy/LitmusValues
Think Only When You Need with Large Hybrid-Reasoning Models
Recent Large Reasoning Models (LRMs) have shown substantially improved reasoning capabilities over traditional Large Language Models (LLMs) by incorporating extended thinking processes prior to producing final responses. However, excessively lengthy thinking introduces substantial overhead in terms of token consumption and latency, which is particularly unnecessary for simple queries. In this work, we introduce Large Hybrid-Reasoning Models (LHRMs), the first kind of model capable of adaptively determining whether to perform thinking based on the contextual information of user queries. To achieve this, we propose a two-stage training pipeline comprising Hybrid Fine-Tuning (HFT) as a cold start, followed by online reinforcement learning with the proposed Hybrid Group Policy Optimization (HGPO) to implicitly learn to select the appropriate thinking mode. Furthermore, we introduce a metric called Hybrid Accuracy to quantitatively assess the model's capability for hybrid thinking. Extensive experimental results show that LHRMs can adaptively perform hybrid thinking on queries of varying difficulty and type. It outperforms existing LRMs and LLMs in reasoning and general capabilities while significantly improving efficiency. Together, our work advocates for a reconsideration of the appropriate use of extended thinking processes and provides a solid starting point for building hybrid thinking systems.
KERL: Knowledge-Enhanced Personalized Recipe Recommendation using Large Language Models ACL 2025
Recent advances in large language models (LLMs) and the abundance of food data have resulted in studies to improve food understanding using LLMs. Despite several recommendation systems utilizing LLMs and Knowledge Graphs (KGs), there has been limited research on integrating food related KGs with LLMs. We introduce KERL, a unified system that leverages food KGs and LLMs to provide personalized food recommendations and generates recipes with associated micro-nutritional information. Given a natural language question, KERL extracts entities, retrieves subgraphs from the KG, which are then fed into the LLM as context to select the recipes that satisfy the constraints. Next, our system generates the cooking steps and nutritional information for each recipe. To evaluate our approach, we also develop a benchmark dataset by curating recipe related questions, combined with constraints and personal preferences. Through extensive experiments, we show that our proposed KG-augmented LLM significantly outperforms existing approaches, offering a complete and coherent solution for food recommendation, recipe generation, and nutritional analysis. Our code and benchmark datasets are publicly available at https://github.com/mohbattharani/KERL.
comment: Accepted at ACL 2025
Debating for Better Reasoning: An Unsupervised Multimodal Approach
As Large Language Models (LLMs) gain expertise across diverse domains and modalities, scalable oversight becomes increasingly challenging, particularly when their capabilities may surpass human evaluators. Debate has emerged as a promising mechanism for enabling such oversight. In this work, we extend the debate paradigm to a multimodal setting, exploring its potential for weaker models to supervise and enhance the performance of stronger models. We focus on visual question answering (VQA), where two "sighted" expert vision-language models debate an answer, while a "blind" (text-only) judge adjudicates based solely on the quality of the arguments. In our framework, the experts defend only answers aligned with their beliefs, thereby obviating the need for explicit role-playing and concentrating the debate on instances of expert disagreement. Experiments on several multimodal tasks demonstrate that the debate framework consistently outperforms individual expert models. Moreover, judgments from weaker LLMs can help instill reasoning capabilities in vision-language models through finetuning.
TinyV: Reducing False Negatives in Verification Improves RL for LLM Reasoning
Reinforcement Learning (RL) has become a powerful tool for enhancing the reasoning abilities of large language models (LLMs) by optimizing their policies with reward signals. Yet, RL's success relies on the reliability of rewards, which are provided by verifiers. In this paper, we expose and analyze a widespread problem--false negatives--where verifiers wrongly reject correct model outputs. Our in-depth study of the Big-Math-RL-Verified dataset reveals that over 38% of model-generated responses suffer from false negatives, where the verifier fails to recognize correct answers. We show, both empirically and theoretically, that these false negatives severely impair RL training by depriving the model of informative gradient signals and slowing convergence. To mitigate this, we propose tinyV, a lightweight LLM-based verifier that augments existing rule-based methods, which dynamically identifies potential false negatives and recovers valid responses to produce more accurate reward estimates. Across multiple math-reasoning benchmarks, integrating TinyV boosts pass rates by up to 10% and accelerates convergence relative to the baseline. Our findings highlight the critical importance of addressing verifier false negatives and offer a practical approach to improve RL-based fine-tuning of LLMs. Our code is available at https://github.com/uw-nsl/TinyV.
Enhancing Learned Knowledge in LoRA Adapters Through Efficient Contrastive Decoding on Ascend NPUs KDD 2025
Huawei Cloud users leverage LoRA (Low-Rank Adaptation) as an efficient and scalable method to fine-tune and customize large language models (LLMs) for application-specific needs. However, tasks that require complex reasoning or deep contextual understanding are often hindered by biases or interference from the base model when using typical decoding methods like greedy or beam search. These biases can lead to generic or task-agnostic responses from the base model instead of leveraging the LoRA-specific adaptations. In this paper, we introduce Contrastive LoRA Decoding (CoLD), a novel decoding framework designed to maximize the use of task-specific knowledge in LoRA-adapted models, resulting in better downstream performance. CoLD uses contrastive decoding by scoring candidate tokens based on the divergence between the probability distributions of a LoRA-adapted expert model and the corresponding base model. This approach prioritizes tokens that better align with the LoRA's learned representations, enhancing performance for specialized tasks. While effective, a naive implementation of CoLD is computationally expensive because each decoding step requires evaluating multiple token candidates across both models. To address this, we developed an optimized kernel for Huawei's Ascend NPU. CoLD achieves up to a 5.54% increase in task accuracy while reducing end-to-end latency by 28% compared to greedy decoding. This work provides practical and efficient decoding strategies for fine-tuned LLMs in resource-constrained environments and has broad implications for applied data science in both cloud and on-premises settings.
comment: Accepted at ACM KDD 2025
Linear Control of Test Awareness Reveals Differential Compliance in Reasoning Models
Reasoning-focused large language models (LLMs) sometimes alter their behavior when they detect that they are being evaluated, an effect analogous to the Hawthorne phenomenon, which can lead them to optimize for test-passing performance or to comply more readily with harmful prompts if real-world consequences appear absent. We present the first quantitative study of how such "test awareness" impacts model behavior, particularly its safety alignment. We introduce a white-box probing framework that (i) linearly identifies awareness-related activations and (ii) steers models toward or away from test awareness while monitoring downstream performance. We apply our method to different state-of-the-art open-source reasoning LLMs across both realistic and hypothetical tasks. Our results demonstrate that test awareness significantly impact safety alignment, and is different for different models. By providing fine-grained control over this latent effect, our work aims to increase trust in how we perform safety evaluation.
SATBench: Benchmarking LLMs' Logical Reasoning via Automated Puzzle Generation from SAT Formulas
We introduce SATBench, a benchmark for evaluating the logical reasoning capabilities of large language models (LLMs) through logical puzzles derived from Boolean satisfiability (SAT) problems. Unlike prior work that focuses on inference rule-based reasoning, which often involves deducing conclusions from a set of premises, our approach leverages the search-based nature of SAT problems, where the objective is to find a solution that fulfills a specified set of logical constraints. Each instance in SATBench is generated from a SAT formula, then translated into a story context and conditions using LLMs. The generation process is fully automated and allows for adjustable difficulty by varying the number of clauses. All 2100 puzzles are validated through both LLM-assisted and solver-based consistency checks, with human validation on a subset. Experimental results show that even the strongest model, o4-mini, achieves only 65.0% accuracy on hard UNSAT problems, close to the random baseline of 50%. SATBench exposes fundamental limitations in the search-based logical reasoning abilities of current LLMs and provides a scalable testbed for future research in logical reasoning.
Language Models Optimized to Fool Detectors Still Have a Distinct Style (And How to Change It)
Despite considerable progress in the development of machine-text detectors, it has been suggested that the problem is inherently hard, and therefore, that stakeholders should proceed under the assumption that machine-generated text cannot be reliably detected as such. We examine a recent such claim by Nicks et al. (2024) regarding the ease with which language models can be optimized to degrade the performance of machine-text detectors, including detectors not specifically optimized against. We identify a feature space$\unicode{x2013}$the stylistic feature space$\unicode{x2013}$that is robust to such optimization, and show that it may be used to reliably detect samples from language models optimized to prevent detection. Furthermore, we show that even when models are explicitly optimized against stylistic detectors, detection performance remains surprisingly unaffected. We then seek to understand if stylistic detectors are inherently more robust. To study this question, we explore a new paraphrasing approach that simultaneously aims to close the gap between human writing and machine writing in stylistic feature space while avoiding detection using traditional features. We show that when only a single sample is available for detection, this attack is universally effective across all detectors considered, including those that use writing style. However, as the number of samples available for detection grows, the human and machine distributions become distinguishable. This observation encourages us to introduce AURA, a metric that estimates the overlap between human and machine-generated distributions by analyzing how detector performance improves as more samples become available. Overall, our findings underscore previous recommendations to avoid reliance on machine-text detection.
sudoLLM : On Multi-role Alignment of Language Models
User authorization-based access privileges are a key feature in many safety-critical systems, but have thus far been absent from the large language model (LLM) realm. In this work, drawing inspiration from such access control systems, we introduce sudoLLM, a novel framework that results in multi-role aligned LLMs, i.e., LLMs that account for, and behave in accordance with, user access rights. sudoLLM injects subtle user-based biases into queries and trains an LLM to utilize this bias signal in order to produce sensitive information if and only if the user is authorized. We present empirical results demonstrating that this approach shows substantially improved alignment, generalization, and resistance to prompt-based jailbreaking attacks. The persistent tension between the language modeling objective and safety alignment, which is often exploited to jailbreak LLMs, is somewhat resolved with the aid of the injected bias signal. Our framework is meant as an additional security layer, and complements existing guardrail mechanisms for enhanced end-to-end safety with LLMs.
comment: Under review. Code and data to be released later
Toward Reliable Biomedical Hypothesis Generation: Evaluating Truthfulness and Hallucination in Large Language Models IJCAI 2025
Large language models (LLMs) have shown significant potential in scientific disciplines such as biomedicine, particularly in hypothesis generation, where they can analyze vast literature, identify patterns, and suggest research directions. However, a key challenge lies in evaluating the truthfulness of generated hypotheses, as verifying their accuracy often requires substantial time and resources. Additionally, the hallucination problem in LLMs can lead to the generation of hypotheses that appear plausible but are ultimately incorrect, undermining their reliability. To facilitate the systematic study of these challenges, we introduce TruthHypo, a benchmark for assessing the capabilities of LLMs in generating truthful biomedical hypotheses, and KnowHD, a knowledge-based hallucination detector to evaluate how well hypotheses are grounded in existing knowledge. Our results show that LLMs struggle to generate truthful hypotheses. By analyzing hallucinations in reasoning steps, we demonstrate that the groundedness scores provided by KnowHD serve as an effective metric for filtering truthful hypotheses from the diverse outputs of LLMs. Human evaluations further validate the utility of KnowHD in identifying truthful hypotheses and accelerating scientific discovery. Our data and source code are available at https://github.com/Teddy-XiongGZ/TruthHypo.
comment: Accepted to IJCAI 2025
Success is in the Details: Evaluate and Enhance Details Sensitivity of Code LLMs through Counterfactuals
Code Sensitivity refers to the ability of Code LLMs to recognize and respond to details changes in problem descriptions. While current code benchmarks and instruction data focus on difficulty and diversity, sensitivity is overlooked. We first introduce the CTF-Code benchmark, constructed using counterfactual perturbations, minimizing input changes while maximizing output changes. The evaluation shows that many LLMs have a more than 10\% performance drop compared to the original problems. To fully utilize sensitivity, CTF-Instruct, an incremental instruction fine-tuning framework, extends on existing data and uses a selection mechanism to meet the three dimensions of difficulty, diversity, and sensitivity. Experiments show that LLMs fine-tuned with CTF-Instruct data achieve over a 2\% improvement on CTF-Code, and more than a 10\% performance boost on LiveCodeBench, validating the feasibility of enhancing LLMs' sensitivity to improve performance.
comment: Code & Model is https://github.com/Luowaterbi/CTF-Instruct
MCIP: Protecting MCP Safety via Model Contextual Integrity Protocol
As Model Context Protocol (MCP) introduces an easy-to-use ecosystem for users and developers, it also brings underexplored safety risks. Its decentralized architecture, which separates clients and servers, poses unique challenges for systematic safety analysis. This paper proposes a novel framework to enhance MCP safety. Guided by the MAESTRO framework, we first analyze the missing safety mechanisms in MCP, and based on this analysis, we propose the Model Contextual Integrity Protocol (MCIP), a refined version of MCP that addresses these gaps.Next, we develop a fine-grained taxonomy that captures a diverse range of unsafe behaviors observed in MCP scenarios. Building on this taxonomy, we develop benchmark and training data that support the evaluation and improvement of LLMs' capabilities in identifying safety risks within MCP interactions. Leveraging the proposed benchmark and training data, we conduct extensive experiments on state-of-the-art LLMs. The results highlight LLMs' vulnerabilities in MCP interactions and demonstrate that our approach substantially improves their safety performance.
comment: 17 pages
Context Reasoner: Incentivizing Reasoning Capability for Contextualized Privacy and Safety Compliance via Reinforcement Learning
While Large Language Models (LLMs) exhibit remarkable capabilities, they also introduce significant safety and privacy risks. Current mitigation strategies often fail to preserve contextual reasoning capabilities in risky scenarios. Instead, they rely heavily on sensitive pattern matching to protect LLMs, which limits the scope. Furthermore, they overlook established safety and privacy standards, leading to systemic risks for legal compliance. To address these gaps, we formulate safety and privacy issues into contextualized compliance problems following the Contextual Integrity (CI) theory. Under the CI framework, we align our model with three critical regulatory standards: GDPR, EU AI Act, and HIPAA. Specifically, we employ reinforcement learning (RL) with a rule-based reward to incentivize contextual reasoning capabilities while enhancing compliance with safety and privacy norms. Through extensive experiments, we demonstrate that our method not only significantly enhances legal compliance (achieving a +17.64% accuracy improvement in safety/privacy benchmarks) but also further improves general reasoning capability. For OpenThinker-7B, a strong reasoning model that significantly outperforms its base model Qwen2.5-7B-Instruct across diverse subjects, our method enhances its general reasoning capabilities, with +2.05% and +8.98% accuracy improvement on the MMLU and LegalBench benchmark, respectively.
Can Pruning Improve Reasoning? Revisiting Long-CoT Compression with Capability in Mind for Better Reasoning
Long chain-of-thought (Long-CoT) reasoning improves accuracy in LLMs, yet its verbose, self-reflective style often hinders effective distillation into small language models (SLMs). We revisit Long-CoT compression through the lens of capability alignment and ask: Can pruning improve reasoning? We propose Prune-on-Logic, a structure-aware framework that transforms Long-CoT into logic graphs and selectively prunes low-utility reasoning steps under self-verification constraints. Through systematic analysis across three pruning strategies -- targeting entire chains, core reasoning, and verification -- we find that pruning verification steps yields consistent accuracy gains while reducing inference cost, outperforming token-level baselines and uncompressed fine-tuning. In contrast, pruning reasoning or all-chain steps degrades performance, revealing that small models benefit not from shorter CoTs, but from semantically leaner ones. Our findings highlight pruning as a structural optimization strategy for aligning CoT reasoning with SLM capacity.
comment: 17 pages,4 figures
TRATES: Trait-Specific Rubric-Assisted Cross-Prompt Essay Scoring ACL 2025
Research on holistic Automated Essay Scoring (AES) is long-dated; yet, there is a notable lack of attention for assessing essays according to individual traits. In this work, we propose TRATES, a novel trait-specific and rubric-based cross-prompt AES framework that is generic yet specific to the underlying trait. The framework leverages a Large Language Model (LLM) that utilizes the trait grading rubrics to generate trait-specific features (represented by assessment questions), then assesses those features given an essay. The trait-specific features are eventually combined with generic writing-quality and prompt-specific features to train a simple classical regression model that predicts trait scores of essays from an unseen prompt. Experiments show that TRATES achieves a new state-of-the-art performance across all traits on a widely-used dataset, with the generated LLM-based features being the most significant.
comment: Accepted at ACL 2025 Findings
Agent Context Protocols Enhance Collective Inference
AI agents have become increasingly adept at complex tasks such as coding, reasoning, and multimodal understanding. However, building generalist systems requires moving beyond individual agents to collective inference -- a paradigm where multi-agent systems with diverse, task-specialized agents complement one another through structured communication and collaboration. Today, coordination is usually handled with imprecise, ad-hoc natural language, which limits complex interaction and hinders interoperability with domain-specific agents. We introduce Agent context protocols (ACPs): a domain- and agent-agnostic family of structured protocols for agent-agent communication, coordination, and error handling. ACPs combine (i) persistent execution blueprints -- explicit dependency graphs that store intermediate agent outputs -- with (ii) standardized message schemas, enabling robust and fault-tolerant multi-agent collective inference. ACP-powered generalist systems reach state-of-the-art performance: 28.3 % accuracy on AssistantBench for long-horizon web assistance and best-in-class multimodal technical reports, outperforming commercial AI systems in human evaluation. ACPs are highly modular and extensible, allowing practitioners to build top-tier generalist agents quickly.
Pivot Language for Low-Resource Machine Translation
Certain pairs of languages suffer from lack of a parallel corpus which is large in size and diverse in domain. One of the ways this is overcome is via use of a pivot language. In this paper we use Hindi as a pivot language to translate Nepali into English. We describe what makes Hindi a good candidate for the pivot. We discuss ways in which a pivot language can be used, and use two such approaches - the Transfer Method (fully supervised) and Backtranslation (semi-supervised) - to translate Nepali into English. Using the former, we are able to achieve a devtest Set SacreBLEU score of 14.2, which improves the baseline fully supervised score reported by (Guzman et al., 2019) by 6.6 points. While we are slightly below the semi-supervised baseline score of 15.1, we discuss what may have caused this under-performance, and suggest scope for future work.
comment: 7 pages, 3 figures, paper dated May 13, 2019
KORGym: A Dynamic Game Platform for LLM Reasoning Evaluation
Recent advancements in large language models (LLMs) underscore the need for more comprehensive evaluation methods to accurately assess their reasoning capabilities. Existing benchmarks are often domain-specific and thus cannot fully capture an LLM's general reasoning potential. To address this limitation, we introduce the Knowledge Orthogonal Reasoning Gymnasium (KORGym), a dynamic evaluation platform inspired by KOR-Bench and Gymnasium. KORGym offers over fifty games in either textual or visual formats and supports interactive, multi-turn assessments with reinforcement learning scenarios. Using KORGym, we conduct extensive experiments on 19 LLMs and 8 VLMs, revealing consistent reasoning patterns within model families and demonstrating the superior performance of closed-source models. Further analysis examines the effects of modality, reasoning strategies, reinforcement learning techniques, and response length on model performance. We expect KORGym to become a valuable resource for advancing LLM reasoning research and developing evaluation methodologies suited to complex, interactive environments.
comment: 22 pages
Breaking Bad Tokens: Detoxification of LLMs Using Sparse Autoencoders
Large language models (LLMs) are now ubiquitous in user-facing applications, yet they still generate undesirable toxic outputs, including profanity, vulgarity, and derogatory remarks. Although numerous detoxification methods exist, most apply broad, surface-level fixes and can therefore easily be circumvented by jailbreak attacks. In this paper we leverage sparse autoencoders (SAEs) to identify toxicity-related directions in the residual stream of models and perform targeted activation steering using the corresponding decoder vectors. We introduce three tiers of steering aggressiveness and evaluate them on GPT-2 Small and Gemma-2-2B, revealing trade-offs between toxicity reduction and language fluency. At stronger steering strengths, these causal interventions surpass competitive baselines in reducing toxicity by up to 20%, though fluency can degrade noticeably on GPT-2 Small depending on the aggressiveness. Crucially, standard NLP benchmark scores upon steering remain stable, indicating that the model's knowledge and general abilities are preserved. We further show that feature-splitting in wider SAEs hampers safety interventions, underscoring the importance of disentangled feature learning. Our findings highlight both the promise and the current limitations of SAE-based causal interventions for LLM detoxification, further suggesting practical guidelines for safer language-model deployment.
comment: Preprint: 19 pages, 7 figures, 1 table
Internal Chain-of-Thought: Empirical Evidence for Layer-wise Subtask Scheduling in LLMs
We show that large language models (LLMs) exhibit an $\textit{internal chain-of-thought}$: they sequentially decompose and execute composite tasks layer-by-layer. Two claims ground our study: (i) distinct subtasks are learned at different network depths, and (ii) these subtasks are executed sequentially across layers. On a benchmark of 15 two-step composite tasks, we employ layer-from context-masking and propose a novel cross-task patching method, confirming (i). To examine claim (ii), we apply LogitLens to decode hidden states, revealing a consistent layerwise execution pattern. We further replicate our analysis on the real-world $\text{TRACE}$ benchmark, observing the same stepwise dynamics. Together, our results enhance LLMs transparency by showing their capacity to internally plan and execute subtasks (or instructions), opening avenues for fine-grained, instruction-level activation steering.
comment: 27 pages, 17 figures
Exploring Graph Representations of Logical Forms for Language Modeling ACL 2025
We make the case for language models over logical forms (LFLMs), arguing that such models are more data-efficient than their textual counterparts. To that end, we introduce the Graph-based Formal-Logical Distributional Semantics (GFoLDS) prototype, a pretrained LM over graph representations of logical forms, as a proof-of-concept of LFLMs. Using GFoLDS, we present strong experimental evidence that LFLMs can leverage the built-in, basic linguistic knowledge inherent in such models to immediately begin learning more complex patterns. On downstream tasks, we show that GFoLDS vastly outperforms textual, transformer LMs pretrained on similar amounts of data, indicating that LFLMs can learn with substantially less data than models over plain text. Furthermore, we show that the performance of this model is likely to scale with additional parameters and pretraining data, suggesting the viability of LFLMs in real-world applications.
comment: To be published in ACL 2025 Findings
Teaching Audio-Aware Large Language Models What Does Not Hear: Mitigating Hallucinations through Synthesized Negative Samples
Recent advancements in audio-aware large language models (ALLMs) enable them to process and understand audio inputs. However, these models often hallucinate non-existent sound events, reducing their reliability in real-world applications. To address this, we propose LISTEN (Learning to Identify Sounds Through Extended Negative Samples), a contrastive-like training method that enhances ALLMs' ability to distinguish between present and absent sounds using synthesized data from the backbone LLM. Unlike prior approaches, our method requires no modification to LLM parameters and efficiently integrates audio representations via a lightweight adapter. Experiments show that LISTEN effectively mitigates hallucinations while maintaining impressive performance on existing audio question and reasoning benchmarks. At the same time, it is more efficient in both data and computation.
comment: Accepted to Interspeech 2025
ModRWKV: Transformer Multimodality in Linear Time
Currently, most multimodal studies are based on large language models (LLMs) with quadratic-complexity Transformer architectures. While linear models like RNNs enjoy low inference costs, their application has been largely limited to the text-only modality. This work explores the capabilities of modern RNN architectures in multimodal contexts. We propose ModRWKV-a decoupled multimodal framework built upon the RWKV7 architecture as its LLM backbone-which achieves multi-source information fusion through dynamically adaptable heterogeneous modality encoders. We designed the multimodal modules in ModRWKV with an extremely lightweight architecture and, through extensive experiments, identified a configuration that achieves an optimal balance between performance and computational efficiency. ModRWKV leverages the pretrained weights of the RWKV7 LLM for initialization, which significantly accelerates multimodal training. Comparative experiments with different pretrained checkpoints further demonstrate that such initialization plays a crucial role in enhancing the model's ability to understand multimodal signals. Supported by extensive experiments, we conclude that modern RNN architectures present a viable alternative to Transformers in the domain of multimodal large language models (MLLMs). Furthermore, we identify the optimal configuration of the ModRWKV architecture through systematic exploration.
Enhanced Multimodal Aspect-Based Sentiment Analysis by LLM-Generated Rationales
There has been growing interest in Multimodal Aspect-Based Sentiment Analysis (MABSA) in recent years. Existing methods predominantly rely on pre-trained small language models (SLMs) to collect information related to aspects and sentiments from both image and text, with an aim to align these two modalities. However, small SLMs possess limited capacity and knowledge, often resulting in inaccurate identification of meaning, aspects, sentiments, and their interconnections in textual and visual data. On the other hand, Large language models (LLMs) have shown exceptional capabilities in various tasks by effectively exploring fine-grained information in multimodal data. However, some studies indicate that LLMs still fall short compared to fine-tuned small models in the field of ABSA. Based on these findings, we propose a novel framework, termed LRSA, which combines the decision-making capabilities of SLMs with additional information provided by LLMs for MABSA. Specifically, we inject explanations generated by LLMs as rationales into SLMs and employ a dual cross-attention mechanism for enhancing feature interaction and fusion, thereby augmenting the SLMs' ability to identify aspects and sentiments. We evaluated our method using two baseline models, numerous experiments highlight the superiority of our approach on three widely-used benchmarks, indicating its generalizability and applicability to most pre-trained models for MABSA.
Reasoning Models Better Express Their Confidence
Despite their strengths, large language models (LLMs) often fail to communicate their confidence accurately, making it difficult to assess when they might be wrong and limiting their reliability. In this work, we demonstrate that reasoning models-LLMs that engage in extended chain-of-thought (CoT) reasoning-exhibit superior performance not only in problem-solving but also in accurately expressing their confidence. Specifically, we benchmark six reasoning models across six datasets and find that they achieve strictly better confidence calibration than their non-reasoning counterparts in 33 out of the 36 settings. Our detailed analysis reveals that these gains in calibration stem from the slow thinking behaviors of reasoning models-such as exploring alternative approaches and backtracking-which enable them to adjust their confidence dynamically throughout their CoT, making it progressively more accurate. In particular, we find that reasoning models become increasingly better calibrated as their CoT unfolds, a trend not observed in non-reasoning models. Moreover, removing slow thinking behaviors from the CoT leads to a significant drop in calibration. Lastly, we show that these gains are not exclusive to reasoning models-non-reasoning models also benefit when guided to perform slow thinking via in-context learning.
comment: Work in progress
MoMoE: Mixture of Moderation Experts Framework for AI-Assisted Online Governance
Large language models (LLMs) have shown great potential in flagging harmful content in online communities. Yet, existing approaches for moderation require a separate model for every community and are opaque in their decision-making, limiting real-world adoption. We introduce Mixture of Moderation Experts (MoMoE), a modular, cross-community framework that adds post-hoc explanations to scalable content moderation. MoMoE orchestrates four operators -- Allocate, Predict, Aggregate, Explain -- and is instantiated as seven community-specialized experts (MoMoE-Community) and five norm-violation experts (MoMoE-NormVio). On 30 unseen subreddits, the best variants obtain Micro-F1 scores of 0.72 and 0.67, respectively, matching or surpassing strong fine-tuned baselines while consistently producing concise and reliable explanations. Although community-specialized experts deliver the highest peak accuracy, norm-violation experts provide steadier performance across domains. These findings show that MoMoE yields scalable, transparent moderation without needing per-community fine-tuning. More broadly, they suggest that lightweight, explainable expert ensembles can guide future NLP and HCI research on trustworthy human-AI governance of online communities.
comment: Preprint: 15 pages, 4 figures, 2 tables
PlanGPT-VL: Enhancing Urban Planning with Domain-Specific Vision-Language Models
In the field of urban planning, existing Vision-Language Models (VLMs) frequently fail to effectively analyze and evaluate planning maps, despite the critical importance of these visual elements for urban planners and related educational contexts. Planning maps, which visualize land use, infrastructure layouts, and functional zoning, require specialized understanding of spatial configurations, regulatory requirements, and multi-scale analysis. To address this challenge, we introduce PlanGPT-VL, the first domain-specific Vision-Language Model tailored specifically for urban planning maps. PlanGPT-VL employs three innovative approaches: (1) PlanAnno-V framework for high-quality VQA data synthesis, (2) Critical Point Thinking to reduce hallucinations through structured verification, and (3) comprehensive training methodology combining Supervised Fine-Tuning with frozen vision encoder parameters. Through systematic evaluation on our proposed PlanBench-V benchmark, we demonstrate that PlanGPT-VL significantly outperforms general-purpose state-of-the-art VLMs in specialized planning map interpretation tasks, offering urban planning professionals a reliable tool for map analysis, assessment, and educational applications while maintaining high factual accuracy. Our lightweight 7B parameter model achieves comparable performance to models exceeding 72B parameters, demonstrating efficient domain specialization without sacrificing performance.
Towards Reliable Proof Generation with LLMs: A Neuro-Symbolic Approach
Large language models (LLMs) struggle with formal domains that require rigorous logical deduction and symbolic reasoning, such as mathematical proof generation. We propose a neuro-symbolic approach that combines LLMs' generative strengths with structured components to overcome this challenge. As a proof-of-concept, we focus on geometry problems. Our approach is two-fold: (1) we retrieve analogous problems and use their proofs to guide the LLM, and (2) a formal verifier evaluates the generated proofs and provides feedback, helping the model fix incorrect proofs. We demonstrate that our method significantly improves proof accuracy for OpenAI's o1 model (58%-70% improvement); both analogous problems and the verifier's feedback contribute to these gains. More broadly, shifting to LLMs that generate provably correct conclusions could dramatically improve their reliability, accuracy and consistency, unlocking complex tasks and critical real-world applications that require trustworthiness.
comment: long paper
Adapting Pretrained Language Models for Citation Classification via Self-Supervised Contrastive Learning KDD 2025
Citation classification, which identifies the intention behind academic citations, is pivotal for scholarly analysis. Previous works suggest fine-tuning pretrained language models (PLMs) on citation classification datasets, reaping the reward of the linguistic knowledge they gained during pretraining. However, directly fine-tuning for citation classification is challenging due to labeled data scarcity, contextual noise, and spurious keyphrase correlations. In this paper, we present a novel framework, Citss, that adapts the PLMs to overcome these challenges. Citss introduces self-supervised contrastive learning to alleviate data scarcity, and is equipped with two specialized strategies to obtain the contrastive pairs: sentence-level cropping, which enhances focus on target citations within long contexts, and keyphrase perturbation, which mitigates reliance on specific keyphrases. Compared with previous works that are only designed for encoder-based PLMs, Citss is carefully developed to be compatible with both encoder-based PLMs and decoder-based LLMs, to embrace the benefits of enlarged pretraining. Experiments with three benchmark datasets with both encoder-based PLMs and decoder-based LLMs demonstrate our superiority compared to the previous state of the art. Our code is available at: github.com/LITONG99/Citss
comment: Manuscripts, accepted to KDD 2025
PAST: Phonetic-Acoustic Speech Tokenizer
We present PAST, a novel end-to-end framework that jointly models phonetic information alongside signal reconstruction, eliminating the need for external pretrained models. Unlike previous approaches that rely on pretrained self-supervised models, PAST employs supervised phonetic data, directly integrating domain knowledge into the tokenization process via auxiliary tasks. Additionally, we introduce a streamable, causal variant of PAST, enabling real-time speech applications. Results demonstrate that PAST surpasses existing evaluated baseline tokenizers across common evaluation metrics, including phonetic representation and speech reconstruction. Notably, PAST also achieves superior performance when serving as a speech representation for speech language models, further highlighting its effectiveness as a foundation for spoken language generation. To foster further research, we release the full implementation. For code, model checkpoints, and samples see: https://pages.cs.huji.ac.il/adiyoss-lab/PAST
Attributional Safety Failures in Large Language Models under Code-Mixed Perturbations
Recent advancements in LLMs have raised significant safety concerns, particularly when dealing with code-mixed inputs and outputs. Our study systematically investigates the increased susceptibility of LLMs to produce unsafe outputs from code-mixed prompts compared to monolingual English prompts. Utilizing explainability methods, we dissect the internal attribution shifts causing model's harmful behaviors. In addition, we explore cultural dimensions by distinguishing between universally unsafe and culturally-specific unsafe queries. This paper presents novel experimental insights, clarifying the mechanisms driving this phenomenon.
Void in Language Models
Despite advances in transformer-based language models (LMs), a fundamental question remains largely unanswered: Are all layers activated during inference? We investigate this question by detecting unactivated layers (which we refer to as Voids) using a non-trainable and parameter-free adaptive computation method called L2 Adaptive Computation (LAC). We adapt LAC from its original efficiency-focused application to trace activated layers during inference. This method monitors changes in the L2-norm of activations to identify voids. We analyze layer activation in instruction-tuned LMs across two phases: Prompt Processing (PP), where we trace activated layers for each token in the input prompts, and Response Generation (RG), where we trace activated layers for each generated token. We further demonstrate that distinct layers are activated during these two phases. To show the effectiveness of our method, we evaluated three distinct instruction-tuned LMs from the Llama, Mistral, and Qwen families on three benchmarks: MMLU, GPQA Diamond, and BoolQ. For example, on MMLU with a zero-shot setting, skipping voids in Qwen2.5-7B-Instruct resulted in an improvement from 69.24 to 71.29 while the model uses only 30% of the layers. Similarly, Mistral-7B-Instruct-v0.3 on GPQA Diamond improved from 13.88 to 18.36 when using 70% of the layers during both the PP and RG phases. These results show that not all layers contribute equally during inference, and that selectively skipping most of them can improve the performance of models on certain tasks.
Not All Correct Answers Are Equal: Why Your Distillation Source Matters
Distillation has emerged as a practical and effective approach to enhance the reasoning capabilities of open-source language models. In this work, we conduct a large-scale empirical study on reasoning data distillation by collecting verified outputs from three state-of-the-art teacher models-AM-Thinking-v1, Qwen3-235B-A22B, and DeepSeek-R1-on a shared corpus of 1.89 million queries. We construct three parallel datasets and analyze their distributions, revealing that AM-Thinking-v1-distilled data exhibits greater token length diversity and lower perplexity. Student models trained on each dataset are evaluated on reasoning benchmarks including AIME2024, AIME2025, MATH500, and LiveCodeBench. The AM-based model consistently achieves the best performance (e.g., 84.3 on AIME2024, 72.2 on AIME2025, 98.4 on MATH500, and 65.9 on LiveCodeBench) and demonstrates adaptive output behavior-producing longer responses for harder tasks and shorter ones for simpler tasks. These findings highlight the value of high-quality, verified reasoning traces. We release the AM-Thinking-v1 and Qwen3-235B-A22B distilled datasets to support future research on open and high-performing reasoning-oriented language models. The datasets are publicly available on Hugging Face\footnote{Datasets are available on Hugging Face: \href{https://huggingface.co/datasets/a-m-team/AM-Thinking-v1-Distilled}{AM-Thinking-v1-Distilled}, \href{https://huggingface.co/datasets/a-m-team/AM-Qwen3-Distilled}{AM-Qwen3-Distilled}.}.
RAVENEA: A Benchmark for Multimodal Retrieval-Augmented Visual Culture Understanding
As vision-language models (VLMs) become increasingly integrated into daily life, the need for accurate visual culture understanding is becoming critical. Yet, these models frequently fall short in interpreting cultural nuances effectively. Prior work has demonstrated the effectiveness of retrieval-augmented generation (RAG) in enhancing cultural understanding in text-only settings, while its application in multimodal scenarios remains underexplored. To bridge this gap, we introduce RAVENEA (Retrieval-Augmented Visual culturE uNdErstAnding), a new benchmark designed to advance visual culture understanding through retrieval, focusing on two tasks: culture-focused visual question answering (cVQA) and culture-informed image captioning (cIC). RAVENEA extends existing datasets by integrating over 10,000 Wikipedia documents curated and ranked by human annotators. With RAVENEA, we train and evaluate seven multimodal retrievers for each image query, and measure the downstream impact of retrieval-augmented inputs across fourteen state-of-the-art VLMs. Our results show that lightweight VLMs, when augmented with culture-aware retrieval, outperform their non-augmented counterparts (by at least 3.2% absolute on cVQA and 6.2% absolute on cIC). This highlights the value of retrieval-augmented methods and culturally inclusive benchmarks for multimodal understanding.
CtrlDiff: Boosting Large Diffusion Language Models with Dynamic Block Prediction and Controllable Generation
Although autoregressive models have dominated language modeling in recent years, there has been a growing interest in exploring alternative paradigms to the conventional next-token prediction framework. Diffusion-based language models have emerged as a compelling alternative due to their powerful parallel generation capabilities and inherent editability. However, these models are often constrained by fixed-length generation. A promising direction is to combine the strengths of both paradigms, segmenting sequences into blocks, modeling autoregressive dependencies across blocks while leveraging discrete diffusion to estimate the conditional distribution within each block given the preceding context. Nevertheless, their practical application is often hindered by two key limitations: rigid fixed-length outputs and a lack of flexible control mechanisms. In this work, we address the critical limitations of fixed granularity and weak controllability in current large diffusion language models. We propose CtrlDiff, a dynamic and controllable semi-autoregressive framework that adaptively determines the size of each generation block based on local semantics using reinforcement learning. Furthermore, we introduce a classifier-guided control mechanism tailored to discrete diffusion, which significantly reduces computational overhead while facilitating efficient post-hoc conditioning without retraining. Extensive experiments demonstrate that CtrlDiff sets a new standard among hybrid diffusion models, narrows the performance gap to state-of-the-art autoregressive approaches, and enables effective conditional text generation across diverse tasks.
Mitigating Subgroup Disparities in Multi-Label Speech Emotion Recognition: A Pseudo-Labeling and Unsupervised Learning Approach
While subgroup disparities and performance bias are increasingly studied in computational research, fairness in categorical Speech Emotion Recognition (SER) remains underexplored. Existing methods often rely on explicit demographic labels, which are difficult to obtain due to privacy concerns. To address this limitation, we introduce an Implicit Demography Inference (IDI) module that leverages pseudo-labeling from a pre-trained model and unsupervised learning using k-means clustering to mitigate bias in SER. Our experiments show that pseudo-labeling IDI reduces subgroup disparities, improving fairness metrics by over 33% with less than a 3% decrease in SER accuracy. Also, the unsupervised IDI yields more than a 26% improvement in fairness metrics with a drop of less than 4% in SER performance. Further analyses reveal that the unsupervised IDI consistently mitigates race and age disparities, demonstrating its potential in scenarios where explicit demographic information is unavailable.
comment: Accepted by InterSpeech 2025. 7 pages including 2 pages of appendix
Creative Preference Optimization
While Large Language Models (LLMs) have demonstrated impressive performance across natural language generation tasks, their ability to generate truly creative content-characterized by novelty, diversity, surprise, and quality-remains limited. Existing methods for enhancing LLM creativity often focus narrowly on diversity or specific tasks, failing to address creativity's multifaceted nature in a generalizable way. In this work, we propose Creative Preference Optimization (CrPO), a novel alignment method that injects signals from multiple creativity dimensions into the preference optimization objective in a modular fashion. We train and evaluate creativity-augmented versions of several models using CrPO and MuCE, a new large-scale human preference dataset spanning over 200,000 human-generated responses and ratings from more than 30 psychological creativity assessments. Our models outperform strong baselines, including GPT-4o, on both automated and human evaluations, producing more novel, diverse, and surprising generations while maintaining high output quality. Additional evaluations on NoveltyBench further confirm the generalizability of our approach. Together, our results demonstrate that directly optimizing for creativity within preference frameworks is a promising direction for advancing the creative capabilities of LLMs without compromising output quality.
comment: 27 pages
S2SBench: A Benchmark for Quantifying Intelligence Degradation in Speech-to-Speech Large Language Models
End-to-end speech large language models ((LLMs)) extend the capabilities of text-based models to directly process and generate audio tokens. However, this often leads to a decline in reasoning and generation performance compared to text input, a phenomenon referred to as intelligence degradation. To systematically evaluate this gap, we propose S2SBench, a benchmark designed to quantify performance degradation in Speech LLMs. It includes diagnostic datasets targeting sentence continuation and commonsense reasoning under audio input. We further introduce a pairwise evaluation protocol based on perplexity differences between plausible and implausible samples to measure degradation relative to text input. We apply S2SBench to analyze the training process of Baichuan-Audio, which further demonstrates the benchmark's effectiveness. All datasets and evaluation code are available at https://github.com/undobug/S2SBench.
Neural Incompatibility: The Unbridgeable Gap of Cross-Scale Parametric Knowledge Transfer in Large Language Models ACL'25
Large Language Models (LLMs) offer a transparent brain with accessible parameters that encode extensive knowledge, which can be analyzed, located and transferred. Consequently, a key research challenge is to transcend traditional knowledge transfer paradigms rooted in symbolic language and achieve genuine Parametric Knowledge Transfer (PKT). Significantly, exploring effective methods for transferring knowledge across LLMs of different scales through parameters presents an intriguing and valuable research direction. In this paper, we first demonstrate $\textbf{Alignment}$ in parametric space is the fundamental prerequisite to achieve successful cross-scale PKT. We redefine the previously explored knowledge transfer as Post-Align PKT (PostPKT), which utilizes extracted parameters for LoRA initialization and requires subsequent fine-tune for alignment. Hence, to reduce cost for further fine-tuning, we introduce a novel Pre-Align PKT (PrePKT) paradigm and propose a solution called $\textbf{LaTen}$ ($\textbf{L}$oc$\textbf{a}$te-$\textbf{T}$h$\textbf{e}$n-Alig$\textbf{n}$) that aligns the parametric spaces of LLMs across scales only using several training steps without following training. Comprehensive experiments on four benchmarks demonstrate that both PostPKT and PrePKT face challenges in achieving consistently stable transfer. Through in-depth analysis, we identify $\textbf{Neural Incompatibility}$ as the ethological and parametric structural differences between LLMs of varying scales, presenting fundamental challenges to achieving effective PKT. These findings provide fresh insights into the parametric architectures of LLMs and highlight promising directions for future research on efficient PKT. Our code is available at https://github.com/Trae1ounG/Neural_Incompatibility.
comment: Accepted by ACL'25 Main. Code link: https://github.com/Trae1ounG/Neural_Incompatibility
Rank-K: Test-Time Reasoning for Listwise Reranking
Retrieve-and-rerank is a popular retrieval pipeline because of its ability to make slow but effective rerankers efficient enough at query time by reducing the number of comparisons. Recent works in neural rerankers take advantage of large language models for their capability in reasoning between queries and passages and have achieved state-of-the-art retrieval effectiveness. However, such rerankers are resource-intensive, even after heavy optimization. In this work, we introduce Rank-K, a listwise passage reranking model that leverages the reasoning capability of the reasoning language model at query time that provides test time scalability to serve hard queries. We show that Rank-K improves retrieval effectiveness by 23\% over the RankZephyr, the state-of-the-art listwise reranker, when reranking a BM25 initial ranked list and 19\% when reranking strong retrieval results by SPLADE-v3. Since Rank-K is inherently a multilingual model, we found that it ranks passages based on queries in different languages as effectively as it does in monolingual retrieval.
comment: 15 pages, 4 figures
From Templates to Natural Language: Generalization Challenges in Instruction-Tuned LLMs for Spatial Reasoning
Instruction-tuned large language models (LLMs) have shown strong performance on a variety of tasks; however, generalizing from synthetic to human-authored instructions in grounded environments remains a challenge for them. In this work, we study generalization challenges in spatial grounding tasks where models interpret and translate instructions for building object arrangements on a $2.5$D grid. We fine-tune LLMs using only synthetic instructions and evaluate their performance on a benchmark dataset containing both synthetic and human-written instructions. Our results reveal that while models generalize well on simple tasks, their performance degrades significantly on more complex tasks. We present a detailed error analysis of the gaps in instruction generalization.
comment: 4 pages
Scaling Low-Resource MT via Synthetic Data Generation with LLMs
We investigate the potential of LLM-generated synthetic data for improving low-resource machine translation (MT). Focusing on seven diverse target languages, we construct a document-level synthetic corpus from English Europarl, and extend it via pivoting to 147 additional language pairs. Automatic and human evaluation confirm its high overall quality. We study its practical application by (i) identifying effective training regimes, (ii) comparing our data with the HPLT dataset, and (iii) testing its utility beyond English-centric MT. Finally, we introduce SynOPUS, a public repository for synthetic parallel datasets. Our findings show that LLM-generated synthetic data, even when noisy, can substantially improve MT performance for low-resource languages.
SAE-FiRE: Enhancing Earnings Surprise Predictions Through Sparse Autoencoder Feature Selection
Predicting earnings surprises through the analysis of earnings conference call transcripts has attracted increasing attention from the financial research community. Conference calls serve as critical communication channels between company executives, analysts, and shareholders, offering valuable forward-looking information. However, these transcripts present significant analytical challenges, typically containing over 5,000 words with substantial redundancy and industry-specific terminology that creates obstacles for language models. In this work, we propose the Sparse Autoencoder for Financial Representation Enhancement (SAE-FiRE) framework to address these limitations by extracting key information while eliminating redundancy. SAE-FiRE employs Sparse Autoencoders (SAEs) to efficiently identify patterns and filter out noises, and focusing specifically on capturing nuanced financial signals that have predictive power for earnings surprises. Experimental results indicate that the proposed method can significantly outperform comparing baselines.
Hidden Ghost Hand: Unveiling Backdoor Vulnerabilities in MLLM-Powered Mobile GUI Agents
Graphical user interface (GUI) agents powered by multimodal large language models (MLLMs) have shown greater promise for human-interaction. However, due to the high fine-tuning cost, users often rely on open-source GUI agents or APIs offered by AI providers, which introduces a critical but underexplored supply chain threat: backdoor attacks. In this work, we first unveil that MLLM-powered GUI agents naturally expose multiple interaction-level triggers, such as historical steps, environment states, and task progress. Based on this observation, we introduce AgentGhost, an effective and stealthy framework for red-teaming backdoor attacks. Specifically, we first construct composite triggers by combining goal and interaction levels, allowing GUI agents to unintentionally activate backdoors while ensuring task utility. Then, we formulate backdoor injection as a Min-Max optimization problem that uses supervised contrastive learning to maximize the feature difference across sample classes at the representation space, improving flexibility of the backdoor. Meanwhile, it adopts supervised fine-tuning to minimize the discrepancy between backdoor and clean behavior generation, enhancing effectiveness and utility. Extensive evaluations of various agent models in two established mobile benchmarks show that AgentGhost is effective and generic, with attack accuracy that reaches 99.7\% on three attack objectives, and shows stealthiness with only 1\% utility degradation. Furthermore, we tailor a defense method against AgentGhost that reduces the attack accuracy to 22.1\%. Our code is available at \texttt{anonymous}.
comment: 25 pages, 10 figures, 12 Tables
PRL: Prompts from Reinforcement Learning
Effective prompt engineering remains a central challenge in fully harnessing the capabilities of LLMs. While well-designed prompts can dramatically enhance performance, crafting them typically demands expert intuition and a nuanced understanding of the task. Moreover, the most impactful prompts often hinge on subtle semantic cues, ones that may elude human perception but are crucial for guiding LLM behavior. In this paper, we introduce PRL (Prompts from Reinforcement Learning), a novel RL-based approach for automatic prompt generation. Unlike previous methods, PRL can produce novel few-shot examples that were not seen during training. Our approach achieves state-of-the-art performance across a range of benchmarks, including text classification, simplification, and summarization. On the classification task, it surpasses prior methods by 2.58% over APE and 1.00% over EvoPrompt. Additionally, it improves the average ROUGE scores on the summarization task by 4.32 over APE and by 2.12 over EvoPrompt and the SARI score on simplification by 6.93 over APE and by 6.01 over EvoPrompt. Our code is available at https://github.com/Batorskq/prl .
Pairwise Evaluation of Accent Similarity in Speech Synthesis INTERSPEECH 2025
Despite growing interest in generating high-fidelity accents, evaluating accent similarity in speech synthesis has been underexplored. We aim to enhance both subjective and objective evaluation methods for accent similarity. Subjectively, we refine the XAB listening test by adding components that achieve higher statistical significance with fewer listeners and lower costs. Our method involves providing listeners with transcriptions, having them highlight perceived accent differences, and implementing meticulous screening for reliability. Objectively, we utilise pronunciation-related metrics, based on distances between vowel formants and phonetic posteriorgrams, to evaluate accent generation. Comparative experiments reveal that these metrics, alongside accent similarity, speaker similarity, and Mel Cepstral Distortion, can be used. Moreover, our findings underscore significant limitations of common metrics like Word Error Rate in assessing underrepresented accents.
comment: Accepted by INTERSPEECH 2025
Pierce the Mists, Greet the Sky: Decipher Knowledge Overshadowing via Knowledge Circuit Analysis EMNLP
Large Language Models (LLMs), despite their remarkable capabilities, are hampered by hallucinations. A particularly challenging variant, knowledge overshadowing, occurs when one piece of activated knowledge inadvertently masks another relevant piece, leading to erroneous outputs even with high-quality training data. Current understanding of overshadowing is largely confined to inference-time observations, lacking deep insights into its origins and internal mechanisms during model training. Therefore, we introduce PhantomCircuit, a novel framework designed to comprehensively analyze and detect knowledge overshadowing. By innovatively employing knowledge circuit analysis, PhantomCircuit dissects the internal workings of attention heads, tracing how competing knowledge pathways contribute to the overshadowing phenomenon and its evolution throughout the training process. Extensive experiments demonstrate PhantomCircuit's effectiveness in identifying such instances, offering novel insights into this elusive hallucination and providing the research community with a new methodological lens for its potential mitigation.
comment: 18 pages, 6 figures, EMNLP under review
OmniGenBench: A Modular Platform for Reproducible Genomic Foundation Models Benchmarking
The code of nature, embedded in DNA and RNA genomes since the origin of life, holds immense potential to impact both humans and ecosystems through genome modeling. Genomic Foundation Models (GFMs) have emerged as a transformative approach to decoding the genome. As GFMs scale up and reshape the landscape of AI-driven genomics, the field faces an urgent need for rigorous and reproducible evaluation. We present OmniGenBench, a modular benchmarking platform designed to unify the data, model, benchmarking, and interpretability layers across GFMs. OmniGenBench enables standardized, one-command evaluation of any GFM across five benchmark suites, with seamless integration of over 31 open-source models. Through automated pipelines and community-extensible features, the platform addresses critical reproducibility challenges, including data transparency, model interoperability, benchmark fragmentation, and black-box interpretability. OmniGenBench aims to serve as foundational infrastructure for reproducible genomic AI research, accelerating trustworthy discovery and collaborative innovation in the era of genome-scale modeling.
Log-Augmented Generation: Scaling Test-Time Reasoning with Reusable Computation
While humans naturally learn and adapt from past experiences, large language models (LLMs) and their agentic counterparts struggle to retain reasoning from previous tasks and apply them in future contexts. To address this limitation, we propose a novel framework, log-augmented generation (LAG) that directly reuses prior computation and reasoning from past logs at test time to enhance model's ability to learn from previous tasks and perform better on new, unseen challenges, all while keeping the system efficient and scalable. Specifically, our system represents task logs using key-value (KV) caches, encoding the full reasoning context of prior tasks while storing KV caches for only a selected subset of tokens. When a new task arises, LAG retrieves the KV values from relevant logs to augment generation. Our approach differs from reflection-based memory mechanisms by directly reusing prior reasoning and computations without requiring additional steps for knowledge extraction or distillation. Our method also goes beyond existing KV caching techniques, which primarily target efficiency gains rather than improving accuracy. Experiments on knowledge- and reasoning-intensive datasets demonstrate that our method significantly outperforms standard agentic systems that do not utilize logs, as well as existing solutions based on reflection and KV cache techniques.
comment: Data and code are available at https://peterbaile.github.io/lag/
Causal Cartographer: From Mapping to Reasoning Over Counterfactual Worlds
Causal world models are systems that can answer counterfactual questions about an environment of interest, i.e. predict how it would have evolved if an arbitrary subset of events had been realized differently. It requires understanding the underlying causes behind chains of events and conducting causal inference for arbitrary unseen distributions. So far, this task eludes foundation models, notably large language models (LLMs), which do not have demonstrated causal reasoning capabilities beyond the memorization of existing causal relationships. Furthermore, evaluating counterfactuals in real-world applications is challenging since only the factual world is observed, limiting evaluation to synthetic datasets. We address these problems by explicitly extracting and modeling causal relationships and propose the Causal Cartographer framework. First, we introduce a graph retrieval-augmented generation agent tasked to retrieve causal relationships from data. This approach allows us to construct a large network of real-world causal relationships that can serve as a repository of causal knowledge and build real-world counterfactuals. In addition, we create a counterfactual reasoning agent constrained by causal relationships to perform reliable step-by-step causal inference. We show that our approach can extract causal knowledge and improve the robustness of LLMs for causal reasoning tasks while reducing inference costs and spurious correlations.
comment: 29 pages, 9 pages for the main paper, 20 pages for the references and appendix, 25 figures
MUG-Eval: A Proxy Evaluation Framework for Multilingual Generation Capabilities in Any Language
Evaluating text generation capabilities of large language models (LLMs) is challenging, particularly for low-resource languages where methods for direct assessment are scarce. We propose MUG-Eval, a novel framework that evaluates LLMs' multilingual generation capabilities by transforming existing benchmarks into conversational tasks and measuring the LLMs' accuracies on those tasks. We specifically designed these conversational tasks to require effective communication in the target language. Then, we simply use task success rate as a proxy of successful conversation generation. Our approach offers two key advantages: it is independent of language-specific NLP tools or annotated datasets, which are limited for most languages, and it does not rely on LLMs-as-judges, whose evaluation quality degrades outside a few high-resource languages. We evaluate 8 LLMs across 30 languages spanning high, mid, and low-resource categories, and we find that MUG-Eval correlates strongly with established benchmarks ($r$ > 0.75) while enabling standardized comparisons across languages and models. Our framework provides a robust and resource-efficient solution for evaluating multilingual generation that can be extended to thousands of languages.
Editing Across Languages: A Survey of Multilingual Knowledge Editing
While Knowledge Editing has been extensively studied in monolingual settings, it remains underexplored in multilingual contexts. This survey systematizes recent research on Multilingual Knowledge Editing (MKE), a growing subdomain of model editing focused on ensuring factual edits generalize reliably across languages. We present a comprehensive taxonomy of MKE methods, covering parameter-based, memory-based, fine-tuning, and hypernetwork approaches. We survey available benchmarks,summarize key findings on method effectiveness and transfer patterns, identify challenges in cross-lingual propagation, and highlight open problems related to language anisotropy, evaluation coverage, and edit scalability. Our analysis consolidates a rapidly evolving area and lays the groundwork for future progress in editable language-aware LLMs.
AutoRev: Automatic Peer Review System for Academic Research Papers
Generating a review for an academic research paper is a complex task that requires a deep understanding of the document's content and the interdependencies between its sections. It demands not only insight into technical details but also an appreciation of the paper's overall coherence and structure. Recent methods have predominantly focused on fine-tuning large language models (LLMs) to address this challenge. However, they often overlook the computational and performance limitations imposed by long input token lengths. To address this, we introduce AutoRev, an Automatic Peer Review System for Academic Research Papers. Our novel framework represents an academic document as a graph, enabling the extraction of the most critical passages that contribute significantly to the review. This graph-based approach demonstrates effectiveness for review generation and is potentially adaptable to various downstream tasks, such as question answering, summarization, and document representation. When applied to review generation, our method outperforms SOTA baselines by an average of 58.72% across all evaluation metrics. We hope that our work will stimulate further research in applying graph-based extraction techniques to other downstream tasks in NLP. We plan to make our code public upon acceptance.
Is Your Prompt Safe? Investigating Prompt Injection Attacks Against Open-Source LLMs EMNLP 2025
Recent studies demonstrate that Large Language Models (LLMs) are vulnerable to different prompt-based attacks, generating harmful content or sensitive information. Both closed-source and open-source LLMs are underinvestigated for these attacks. This paper studies effective prompt injection attacks against the $\mathbf{14}$ most popular open-source LLMs on five attack benchmarks. Current metrics only consider successful attacks, whereas our proposed Attack Success Probability (ASP) also captures uncertainty in the model's response, reflecting ambiguity in attack feasibility. By comprehensively analyzing the effectiveness of prompt injection attacks, we propose a simple and effective hypnotism attack; results show that this attack causes aligned language models, including Stablelm2, Mistral, Openchat, and Vicuna, to generate objectionable behaviors, achieving around $90$% ASP. They also indicate that our ignore prefix attacks can break all $\mathbf{14}$ open-source LLMs, achieving over $60$% ASP on a multi-categorical dataset. We find that moderately well-known LLMs exhibit higher vulnerability to prompt injection attacks, highlighting the need to raise public awareness and prioritize efficient mitigation strategies.
comment: 8 pages, 3 figures, EMNLP 2025 under review
Dual Decomposition of Weights and Singular Value Low Rank Adaptation
Parameter-Efficient Fine-Tuning (PEFT) has emerged as a critical paradigm for adapting Large Language Models (LLMs) to downstream tasks, among which Low-rank Adaptation (LoRA) represents one of the most widely adopted methodologies. However, existing LoRA-based approaches exhibit two fundamental limitations: unstable training dynamics and inefficient knowledge transfer from pre-trained models, both stemming from random initialization of adapter parameters. To overcome these challenges, we propose DuDe, a novel approach that decomposes weight matrices into magnitude and direction components, employing Singular Value Decomposition (SVD) for principled initialization. Our comprehensive evaluation demonstrates DuDe's superior performance and robustness, achieving up to 48.35\% accuracy on MMLU and 62.53\% ($\pm$ 1.59) accuracy on GSM8K. Our theoretical analysis and empirical validation collectively demonstrate that DuDe's decomposition strategy enhances optimization stability and better preserves pre-trained representations, particularly for domain-specific tasks requiring specialized knowledge. The combination of robust empirical performance and rigorous theoretical foundations establishes DuDe as a significant contribution to PEFT methodologies for LLMs.
PersonaTAB: Predicting Personality Traits using Textual, Acoustic, and Behavioral Cues in Fully-Duplex Speech Dialogs
Despite significant progress in neural spoken dialog systems, personality-aware conversation agents -- capable of adapting behavior based on personalities -- remain underexplored due to the absence of personality annotations in speech datasets. We propose a pipeline that preprocesses raw audio recordings to create a dialogue dataset annotated with timestamps, response types, and emotion/sentiment labels. We employ an automatic speech recognition (ASR) system to extract transcripts and timestamps, then generate conversation-level annotations. Leveraging these annotations, we design a system that employs large language models to predict conversational personality. Human evaluators were engaged to identify conversational characteristics and assign personality labels. Our analysis demonstrates that the proposed system achieves stronger alignment with human judgments compared to existing approaches.
comment: This is accepted to Interspeech 2025; Added an extra page for supplementary figures; Project page: https://github.com/shinshoji01/Personality-Prediction-for-Conversation-Agents
WirelessMathBench: A Mathematical Modeling Benchmark for LLMs in Wireless Communications ACL 2025
Large Language Models (LLMs) have achieved impressive results across a broad array of tasks, yet their capacity for complex, domain-specific mathematical reasoning-particularly in wireless communications-remains underexplored. In this work, we introduce WirelessMathBench, a novel benchmark specifically designed to evaluate LLMs on mathematical modeling challenges to wireless communications engineering. Our benchmark consists of 587 meticulously curated questions sourced from 40 state-of-the-art research papers, encompassing a diverse spectrum of tasks ranging from basic multiple-choice questions to complex equation completion tasks, including both partial and full completions, all of which rigorously adhere to physical and dimensional constraints. Through extensive experimentation with leading LLMs, we observe that while many models excel in basic recall tasks, their performance degrades significantly when reconstructing partially or fully obscured equations, exposing fundamental limitations in current LLMs. Even DeepSeek-R1, the best performer on our benchmark, achieves an average accuracy of only 38.05%, with a mere 7.83% success rate in full equation completion. By publicly releasing WirelessMathBench along with the evaluation toolkit, we aim to advance the development of more robust, domain-aware LLMs for wireless system analysis and broader engineering applications.
comment: Accepted to ACL 2025 Findings
FMSD-TTS: Few-shot Multi-Speaker Multi-Dialect Text-to-Speech Synthesis for Ü-Tsang, Amdo and Kham Speech Dataset Generation
Tibetan is a low-resource language with minimal parallel speech corpora spanning its three major dialects-\"U-Tsang, Amdo, and Kham-limiting progress in speech modeling. To address this issue, we propose FMSD-TTS, a few-shot, multi-speaker, multi-dialect text-to-speech framework that synthesizes parallel dialectal speech from limited reference audio and explicit dialect labels. Our method features a novel speaker-dialect fusion module and a Dialect-Specialized Dynamic Routing Network (DSDR-Net) to capture fine-grained acoustic and linguistic variations across dialects while preserving speaker identity. Extensive objective and subjective evaluations demonstrate that FMSD-TTS significantly outperforms baselines in both dialectal expressiveness and speaker similarity. We further validate the quality and utility of the synthesized speech through a challenging speech-to-speech dialect conversion task. Our contributions include: (1) a novel few-shot TTS system tailored for Tibetan multi-dialect speech synthesis, (2) the public release of a large-scale synthetic Tibetan speech corpus generated by FMSD-TTS, and (3) an open-source evaluation toolkit for standardized assessment of speaker similarity, dialect consistency, and audio quality.
comment: 13 pages
OSoRA: Output-Dimension and Singular-Value Initialized Low-Rank Adaptation
Fine-tuning Large Language Models (LLMs) has become increasingly challenging due to their massive scale and associated computational costs. Parameter-Efficient Fine-Tuning (PEFT) methodologies have been proposed as computational alternatives; however, their implementations still require significant resources. In this paper, we present OSoRA (Output-Dimension and Singular-Value Initialized Low-Rank Adaptation), a novel PEFT method for LLMs. OSoRA extends Low-Rank Adaptation (LoRA) by integrating Singular Value Decomposition (SVD) with learnable scaling vectors in a unified framework. It first performs an SVD of pre-trained weight matrices, then optimizes an output-dimension vector during training, while keeping the corresponding singular vector matrices frozen. OSoRA substantially reduces computational resource requirements by minimizing the number of trainable parameters during fine-tuning. Comprehensive evaluations across mathematical reasoning, common sense reasoning, and other benchmarks demonstrate that OSoRA achieves comparable or superior performance to state-of-the-art methods like LoRA and VeRA, while maintaining a linear parameter scaling even as the rank increases to higher dimensions. Our ablation studies further confirm that jointly training both the singular values and the output-dimension vector is critical for optimal performance.
QA-prompting: Improving Summarization with Large Language Models using Question-Answering
Language Models (LMs) have revolutionized natural language processing, enabling high-quality text generation through prompting and in-context learning. However, models often struggle with long-context summarization due to positional biases, leading to suboptimal extraction of critical information. There are techniques to improve this with fine-tuning, pipelining, or using complex techniques, which have their own challenges. To solve these challenges, we propose QA-prompting - a simple prompting method for summarization that utilizes question-answering as an intermediate step prior to summary generation. Our method extracts key information and enriches the context of text to mitigate positional biases and improve summarization in a single LM call per task without requiring fine-tuning or pipelining. Experiments on multiple datasets belonging to different domains using ten state-of-the-art pre-trained models demonstrate that QA-prompting outperforms baseline and other state-of-the-art methods, achieving up to 29% improvement in ROUGE scores. This provides an effective and scalable solution for summarization and highlights the importance of domain-specific question selection for optimal performance.
comment: Submitted to ARR
RADAR: Enhancing Radiology Report Generation with Supplementary Knowledge Injection
Large language models (LLMs) have demonstrated remarkable capabilities in various domains, including radiology report generation. Previous approaches have attempted to utilize multimodal LLMs for this task, enhancing their performance through the integration of domain-specific knowledge retrieval. However, these approaches often overlook the knowledge already embedded within the LLMs, leading to redundant information integration and inefficient utilization of learned representations. To address this limitation, we propose RADAR, a framework for enhancing radiology report generation with supplementary knowledge injection. RADAR improves report generation by systematically leveraging both the internal knowledge of an LLM and externally retrieved information. Specifically, it first extracts the model's acquired knowledge that aligns with expert image-based classification outputs. It then retrieves relevant supplementary knowledge to further enrich this information. Finally, by aggregating both sources, RADAR generates more accurate and informative radiology reports. Extensive experiments on MIMIC-CXR, CheXpert-Plus, and IU X-ray demonstrate that our model outperforms state-of-the-art LLMs in both language quality and clinical accuracy
A MIND for Reasoning: Meta-learning for In-context Deduction
Large language models (LLMs) are increasingly evaluated on formal tasks, where strong reasoning abilities define the state of the art. However, their ability to generalize to out-of-distribution problems remains limited. In this paper, we investigate how LLMs can achieve a systematic understanding of deductive rules. Our focus is on the task of identifying the appropriate subset of premises within a knowledge base needed to derive a given hypothesis. To tackle this challenge, we propose Meta-learning for In-context Deduction (MIND), a novel few-shot meta-learning fine-tuning approach. The goal of MIND is to enable models to generalize more effectively to unseen knowledge bases and to systematically apply inference rules. Our results show that MIND significantly improves generalization in small LMs ranging from 1.5B to 7B parameters. The benefits are especially pronounced in smaller models and low-data settings. Remarkably, small models fine-tuned with MIND outperform state-of-the-art LLMs, such as GPT-4o and o3-mini, on this task.
HausaNLP: Current Status, Challenges and Future Directions for Hausa Natural Language Processing
Hausa Natural Language Processing (NLP) has gained increasing attention in recent years, yet remains understudied as a low-resource language despite having over 120 million first-language (L1) and 80 million second-language (L2) speakers worldwide. While significant advances have been made in high-resource languages, Hausa NLP faces persistent challenges, including limited open-source datasets and inadequate model representation. This paper presents an overview of the current state of Hausa NLP, systematically examining existing resources, research contributions, and gaps across fundamental NLP tasks: text classification, machine translation, named entity recognition, speech recognition, and question answering. We introduce HausaNLP (https://catalog.hausanlp.org), a curated catalog that aggregates datasets, tools, and research works to enhance accessibility and drive further development. Furthermore, we discuss challenges in integrating Hausa into large language models (LLMs), addressing issues of suboptimal tokenization and dialectal variation. Finally, we propose strategic research directions emphasizing dataset expansion, improved language modeling approaches, and strengthened community collaboration to advance Hausa NLP. Our work provides both a foundation for accelerating Hausa NLP progress and valuable insights for broader multilingual NLP research.
Studying the Role of Input-Neighbor Overlap in Retrieval-Augmented Language Models Training Efficiency
Retrieval-augmented language models have demonstrated performance comparable to much larger models while requiring fewer computational resources. The effectiveness of these models crucially depends on the overlap between query and retrieved context, but the optimal degree of this overlap remains unexplored. In this paper, we systematically investigate how varying levels of query--context overlap affect model performance during both training and inference. Our experiments reveal that increased overlap initially has minimal effect, but substantially improves test-time perplexity and accelerates model learning above a critical threshold. Building on these findings, we demonstrate that deliberately increasing overlap through synthetic context can enhance data efficiency and reduce training time by approximately 40\% without compromising performance. We specifically generate synthetic context through paraphrasing queries. We validate our perplexity-based findings on question-answering tasks, confirming that the benefits of retrieval-augmented language modeling extend to practical applications. Our results provide empirical evidence of significant optimization potential for retrieval mechanisms in language model pretraining.
JOLT-SQL: Joint Loss Tuning of Text-to-SQL with Confusion-aware Noisy Schema Sampling
Text-to-SQL, which maps natural language to SQL queries, has benefited greatly from recent advances in Large Language Models (LLMs). While LLMs offer various paradigms for this task, including prompting and supervised fine-tuning (SFT), SFT approaches still face challenges such as complex multi-stage pipelines and poor robustness to noisy schema information. To address these limitations, we present JOLT-SQL, a streamlined single-stage SFT framework that jointly optimizes schema linking and SQL generation via a unified loss. JOLT-SQL employs discriminative schema linking, enhanced by local bidirectional attention, alongside a confusion-aware noisy schema sampling strategy with selective attention to improve robustness under noisy schema conditions. Experiments on the Spider and BIRD benchmarks demonstrate that JOLT-SQL achieves state-of-the-art execution accuracy among comparable-size open-source models, while significantly improving both training and inference efficiency.
comment: Work in progress. 13 pages, 6 figures
Scaling Law for Quantization-Aware Training
Large language models (LLMs) demand substantial computational and memory resources, creating deployment challenges. Quantization-aware training (QAT) addresses these challenges by reducing model precision while maintaining performance. However, the scaling behavior of QAT, especially at 4-bit precision (W4A4), is not well understood. Existing QAT scaling laws often ignore key factors such as the number of training tokens and quantization granularity, which limits their applicability. This paper proposes a unified scaling law for QAT that models quantization error as a function of model size, training data volume, and quantization group size. Through 268 QAT experiments, we show that quantization error decreases as model size increases, but rises with more training tokens and coarser quantization granularity. To identify the sources of W4A4 quantization error, we decompose it into weight and activation components. Both components follow the overall trend of W4A4 quantization error, but with different sensitivities. Specifically, weight quantization error increases more rapidly with more training tokens. Further analysis shows that the activation quantization error in the FC2 layer, caused by outliers, is the primary bottleneck of W4A4 QAT quantization error. By applying mixed-precision quantization to address this bottleneck, we demonstrate that weight and activation quantization errors can converge to similar levels. Additionally, with more training data, weight quantization error eventually exceeds activation quantization error, suggesting that reducing weight quantization error is also important in such scenarios. These findings offer key insights for improving QAT research and development.
comment: A unified scaling law for QAT that models quantization error as a function of model size, training data volume, and quantization group size
SafetyNet: Detecting Harmful Outputs in LLMs by Modeling and Monitoring Deceptive Behaviors
High-risk industries like nuclear and aviation use real-time monitoring to detect dangerous system conditions. Similarly, Large Language Models (LLMs) need monitoring safeguards. We propose a real-time framework to predict harmful AI outputs before they occur by using an unsupervised approach that treats normal behavior as the baseline and harmful outputs as outliers. Our study focuses specifically on backdoor-triggered responses -- where specific input phrases activate hidden vulnerabilities causing the model to generate unsafe content like violence, pornography, or hate speech. We address two key challenges: (1) identifying true causal indicators rather than surface correlations, and (2) preventing advanced models from deception -- deliberately evading monitoring systems. Hence, we approach this problem from an unsupervised lens by drawing parallels to human deception: just as humans exhibit physical indicators while lying, we investigate whether LLMs display distinct internal behavioral signatures when generating harmful content. Our study addresses two critical challenges: 1) designing monitoring systems that capture true causal indicators rather than superficial correlations; and 2)preventing intentional evasion by increasingly capable "Future models''. Our findings show that models can produce harmful content through causal mechanisms and can become deceptive by: (a) alternating between linear and non-linear representations, and (b) modifying feature relationships. To counter this, we developed Safety-Net -- a multi-detector framework that monitors different representation dimensions, successfully detecting harmful behavior even when information is shifted across representational spaces to evade individual monitors. Our evaluation shows 96% accuracy in detecting harmful cases using our unsupervised ensemble approach.
Cross-Lingual Optimization for Language Transfer in Large Language Models ACL 2025
Adapting large language models to other languages typically employs supervised fine-tuning (SFT) as a standard approach. However, it often suffers from an overemphasis on English performance, a phenomenon that is especially pronounced in data-constrained environments. To overcome these challenges, we propose \textbf{Cross-Lingual Optimization (CLO)} that efficiently transfers an English-centric LLM to a target language while preserving its English capabilities. CLO utilizes publicly available English SFT data and a translation model to enable cross-lingual transfer. We conduct experiments using five models on six languages, each possessing varying levels of resource. Our results show that CLO consistently outperforms SFT in both acquiring target language proficiency and maintaining English performance. Remarkably, in low-resource languages, CLO with only 3,200 samples surpasses SFT with 6,400 samples, demonstrating that CLO can achieve better performance with less data. Furthermore, we find that SFT is particularly sensitive to data quantity in medium and low-resource languages, whereas CLO remains robust. Our comprehensive analysis emphasizes the limitations of SFT and incorporates additional training strategies in CLO to enhance efficiency.
comment: Accepted for publication at ACL 2025. Jungseob Lee and Seongtae Hong contributed equally to this work
Universal Acoustic Adversarial Attacks for Flexible Control of Speech-LLMs
The combination of pre-trained speech encoders with large language models has enabled the development of speech LLMs that can handle a wide range of spoken language processing tasks. While these models are powerful and flexible, this very flexibility may make them more vulnerable to adversarial attacks. To examine the extent of this problem, in this work we investigate universal acoustic adversarial attacks on speech LLMs. Here a fixed, universal, adversarial audio segment is prepended to the original input audio. We initially investigate attacks that cause the model to either produce no output or to perform a modified task overriding the original prompt. We then extend the nature of the attack to be selective so that it activates only when specific input attributes, such as a speaker gender or spoken language, are present. Inputs without the targeted attribute should be unaffected, allowing fine-grained control over the model outputs. Our findings reveal critical vulnerabilities in Qwen2-Audio and Granite-Speech and suggest that similar speech LLMs may be susceptible to universal adversarial attacks. This highlights the need for more robust training strategies and improved resistance to adversarial attacks.
YESciEval: Robust LLM-as-a-Judge for Scientific Question Answering ACL 2025
Large Language Models (LLMs) drive scientific question-answering on modern search engines, yet their evaluation robustness remains underexplored. We introduce YESciEval, an open-source framework that combines fine-grained rubric-based assessment with reinforcement learning to mitigate optimism bias in LLM evaluators. We release multidisciplinary scienceQ&A datasets, including adversarial variants, with evaluation scores from multiple LLMs. Independent of proprietary models and human feedback, our approach enables scalable, cost-free evaluation. By advancing reliable LLM-as-a-judge models, this work supports AI alignment and fosters robust, transparent evaluation essential for scientific inquiry and artificial general intelligence.
comment: 8 pages, 3 figures, Accepted as a Long Paper at the 63rd Annual Meeting of the Association for Computational Linguistics (ACL 2025)
Data-Efficient Hate Speech Detection via Cross-Lingual Nearest Neighbor Retrieval with Limited Labeled Data
Considering the importance of detecting hateful language, labeled hate speech data is expensive and time-consuming to collect, particularly for low-resource languages. Prior work has demonstrated the effectiveness of cross-lingual transfer learning and data augmentation in improving performance on tasks with limited labeled data. To develop an efficient and scalable cross-lingual transfer learning approach, we leverage nearest-neighbor retrieval to augment minimal labeled data in the target language, thereby enhancing detection performance. Specifically, we assume access to a small set of labeled training instances in the target language and use these to retrieve the most relevant labeled examples from a large multilingual hate speech detection pool. We evaluate our approach on eight languages and demonstrate that it consistently outperforms models trained solely on the target language data. Furthermore, in most cases, our method surpasses the current state-of-the-art. Notably, our approach is highly data-efficient, retrieving as small as 200 instances in some cases while maintaining superior performance. Moreover, it is scalable, as the retrieval pool can be easily expanded, and the method can be readily adapted to new languages and tasks. We also apply maximum marginal relevance to mitigate redundancy and filter out highly similar retrieved instances, resulting in improvements in some languages.
FAID: Fine-grained AI-generated Text Detection using Multi-task Auxiliary and Multi-level Contrastive Learning
The growing collaboration between humans and AI models in generative tasks has introduced new challenges in distinguishing between human-written, AI-generated, and human-AI collaborative texts. In this work, we collect a multilingual, multi-domain, multi-generator dataset FAIDSet. We further introduce a fine-grained detection framework FAID to classify text into these three categories, meanwhile identifying the underlying AI model family. Unlike existing binary classifiers, FAID is built to capture both authorship and model-specific characteristics. Our method combines multi-level contrastive learning with multi-task auxiliary classification to learn subtle stylistic cues. By modeling AI families as distinct stylistic entities, FAID offers improved interpretability. We incorporate an adaptation to address distributional shifts without retraining for unseen data. Experimental results demonstrate that FAID outperforms several baseline approaches, particularly enhancing the generalization accuracy on unseen domains and new AI models. It provide a potential solution for improving transparency and accountability in AI-assisted writing.
Think-J: Learning to Think for Generative LLM-as-a-Judge
LLM-as-a-Judge refers to the automatic modeling of preferences for responses generated by Large Language Models (LLMs), which is of significant importance for both LLM evaluation and reward modeling. Although generative LLMs have made substantial progress in various tasks, their performance as LLM-Judge still falls short of expectations. In this work, we propose Think-J, which improves generative LLM-as-a-Judge by learning how to think. We first utilized a small amount of curated data to develop the model with initial judgment thinking capabilities. Subsequently, we optimize the judgment thinking traces based on reinforcement learning (RL). We propose two methods for judgment thinking optimization, based on offline and online RL, respectively. The offline RL requires training a critic model to construct positive and negative examples for learning. The online method defines rule-based reward as feedback for optimization. Experimental results showed that our approach can significantly enhance the evaluation capability of generative LLM-Judge, surpassing both generative and classifier-based LLM-Judge without requiring extra human annotations.
comment: 16 pages, 14 figures
AAPO: Enhance the Reasoning Capabilities of LLMs with Advantage Momentum
Reinforcement learning (RL) has emerged as an effective approach for enhancing the reasoning capabilities of large language models (LLMs), especially in scenarios where supervised fine-tuning (SFT) falls short due to limited chain-of-thought (CoT) data. Among RL-based post-training methods, group relative advantage estimation, as exemplified by Group Relative Policy Optimization (GRPO), has attracted considerable attention for eliminating the dependency on the value model, thereby simplifying training compared to traditional approaches like Proximal Policy Optimization (PPO). However, we observe that exsiting group relative advantage estimation method still suffers from training inefficiencies, particularly when the estimated advantage approaches zero. To address this limitation, we propose Advantage-Augmented Policy Optimization (AAPO), a novel RL algorithm that optimizes the cross-entropy (CE) loss using advantages enhanced through a momentum-based estimation scheme. This approach effectively mitigates the inefficiencies associated with group relative advantage estimation. Experimental results on multiple mathematical reasoning benchmarks demonstrate the superior performance of AAPO.
comment: 14 pages, 7 figures
FuxiMT: Sparsifying Large Language Models for Chinese-Centric Multilingual Machine Translation
In this paper, we present FuxiMT, a novel Chinese-centric multilingual machine translation model powered by a sparsified large language model (LLM). We adopt a two-stage strategy to train FuxiMT. We first pre-train the model on a massive Chinese corpus and then conduct multilingual fine-tuning on a large parallel dataset encompassing 65 languages. FuxiMT incorporates Mixture-of-Experts (MoEs) and employs a curriculum learning strategy for robust performance across various resource levels. Experimental results demonstrate that FuxiMT significantly outperforms strong baselines, including state-of-the-art LLMs and machine translation models, particularly under low-resource scenarios. Furthermore, FuxiMT exhibits remarkable zero-shot translation capabilities for unseen language pairs, indicating its potential to bridge communication gaps where parallel data are scarce or unavailable.
TransBench: Benchmarking Machine Translation for Industrial-Scale Applications
Machine translation (MT) has become indispensable for cross-border communication in globalized industries like e-commerce, finance, and legal services, with recent advancements in large language models (LLMs) significantly enhancing translation quality. However, applying general-purpose MT models to industrial scenarios reveals critical limitations due to domain-specific terminology, cultural nuances, and stylistic conventions absent in generic benchmarks. Existing evaluation frameworks inadequately assess performance in specialized contexts, creating a gap between academic benchmarks and real-world efficacy. To address this, we propose a three-level translation capability framework: (1) Basic Linguistic Competence, (2) Domain-Specific Proficiency, and (3) Cultural Adaptation, emphasizing the need for holistic evaluation across these dimensions. We introduce TransBench, a benchmark tailored for industrial MT, initially targeting international e-commerce with 17,000 professionally translated sentences spanning 4 main scenarios and 33 language pairs. TransBench integrates traditional metrics (BLEU, TER) with Marco-MOS, a domain-specific evaluation model, and provides guidelines for reproducible benchmark construction. Our contributions include: (1) a structured framework for industrial MT evaluation, (2) the first publicly available benchmark for e-commerce translation, (3) novel metrics probing multi-level translation quality, and (4) open-sourced evaluation tools. This work bridges the evaluation gap, enabling researchers and practitioners to systematically assess and enhance MT systems for industry-specific needs.
Technical Report on classification of literature related to children speech disorder
This technical report presents a natural language processing (NLP)-based approach for systematically classifying scientific literature on childhood speech disorders. We retrieved and filtered 4,804 relevant articles published after 2015 from the PubMed database using domain-specific keywords. After cleaning and pre-processing the abstracts, we applied two topic modeling techniques - Latent Dirichlet Allocation (LDA) and BERTopic - to identify latent thematic structures in the corpus. Our models uncovered 14 clinically meaningful clusters, such as infantile hyperactivity and abnormal epileptic behavior. To improve relevance and precision, we incorporated a custom stop word list tailored to speech pathology. Evaluation results showed that the LDA model achieved a coherence score of 0.42 and a perplexity of -7.5, indicating strong topic coherence and predictive performance. The BERTopic model exhibited a low proportion of outlier topics (less than 20%), demonstrating its capacity to classify heterogeneous literature effectively. These results provide a foundation for automating literature reviews in speech-language pathology.
ABBA: Highly Expressive Hadamard Product Adaptation for Large Language Models
Large Language Models have demonstrated strong performance across a wide range of tasks, but adapting them efficiently to new domains remains a key challenge. Parameter-Efficient Fine-Tuning (PEFT) methods address this by introducing lightweight, trainable modules while keeping most pre-trained weights fixed. The prevailing approach, LoRA, models updates using a low-rank decomposition, but its expressivity is inherently constrained by the rank. Recent methods like HiRA aim to increase expressivity by incorporating a Hadamard product with the frozen weights, but still rely on the structure of the pre-trained model. We introduce ABBA, a new PEFT architecture that reparameterizes the update as a Hadamard product of two independently learnable low-rank matrices. In contrast to prior work, ABBA fully decouples the update from the pre-trained weights, enabling both components to be optimized freely. This leads to significantly higher expressivity under the same parameter budget. We formally analyze ABBA's expressive capacity and validate its advantages through matrix reconstruction experiments. Empirically, ABBA achieves state-of-the-art results on arithmetic and commonsense reasoning benchmarks, consistently outperforming existing PEFT methods by a significant margin across multiple models. Our code is publicly available at: https://github.com/CERT-Lab/abba.
comment: Raghav Singhal, Kaustubh Ponkshe, and Rohit Vartak contributed equally to this work
Mechanistic Fine-tuning for In-context Learning
In-context Learning (ICL) utilizes structured demonstration-query inputs to induce few-shot learning on Language Models (LMs), which are not originally pre-trained on ICL-style data. To bridge the gap between ICL and pre-training, some approaches fine-tune LMs on large ICL-style datasets by an end-to-end paradigm with massive computational costs. To reduce such costs, in this paper, we propose Attention Behavior Fine-Tuning (ABFT), utilizing the previous findings on the inner mechanism of ICL, building training objectives on the attention scores instead of the final outputs, to force the attention scores to focus on the correct label tokens presented in the context and mitigate attention scores from the wrong label tokens. Our experiments on 9 modern LMs and 8 datasets empirically find that ABFT outperforms in performance, robustness, unbiasedness, and efficiency, with only around 0.01% data cost compared to the previous methods. Moreover, our subsequent analysis finds that the end-to-end training objective contains the ABFT objective, suggesting the implicit bias of ICL-style data to the emergence of induction heads. Our work demonstrates the possibility of controlling specific module sequences within LMs to improve their behavior, opening up the future application of mechanistic interpretability.
comment: 28 pages, 31 figures, 6 tables
"Haet Bhasha aur Diskrimineshun": Phonetic Perturbations in Code-Mixed Hinglish to Red-Team LLMs
Large Language Models (LLMs) have become increasingly powerful, with multilingual and multimodal capabilities improving by the day. These models are being evaluated through audits, alignment studies and red-teaming efforts to expose model vulnerabilities towards generating harmful, biased and unfair content. Existing red-teaming efforts have previously focused on the English language, using fixed template-based attacks; thus, models continue to be susceptible to multilingual jailbreaking strategies, especially in the multimodal context. In this study, we introduce a novel strategy that leverages code-mixing and phonetic perturbations to jailbreak LLMs for both text and image generation tasks. We also introduce two new jailbreak strategies that show higher effectiveness than baseline strategies. Our work presents a method to effectively bypass safety filters in LLMs while maintaining interpretability by applying phonetic misspellings to sensitive words in code-mixed prompts. Our novel prompts achieve a 99% Attack Success Rate for text generation and 78% for image generation, with Attack Relevance Rate of 100% for text generation and 95% for image generation when using the phonetically perturbed code-mixed prompts. Our interpretability experiments reveal that phonetic perturbations impact word tokenization, leading to jailbreak success. Our study motivates increasing the focus towards more generalizable safety alignment for multilingual multimodal models, especially in real-world settings wherein prompts can have misspelt words.
Reinforcement Learning vs. Distillation: Understanding Accuracy and Capability in LLM Reasoning
Recent studies have shown that reinforcement learning with verifiable rewards (RLVR) enhances overall accuracy but fails to improve capability, while distillation can improve both. In this paper, we investigate the mechanisms behind these phenomena. First, we demonstrate that RLVR does not improve capability because it focuses on improving the accuracy of the less-difficult questions to the detriment of the accuracy of the most difficult questions, thereby leading to no improvement in capability. Second, we find that RLVR does not merely increase the success probability for the less difficult questions, but in our small model settings produces quality responses that were absent in its output distribution before training. In addition, we show these responses are neither noticeably longer nor feature more reflection-related keywords, underscoring the need for more reliable indicators of response quality. Third, we show that while distillation reliably improves accuracy by learning strong reasoning patterns, it only improves capability when new knowledge is introduced. Moreover, when distilling only with reasoning patterns and no new knowledge, the accuracy of the less-difficult questions improves to the detriment of the most difficult questions, similar to RLVR. Together, these findings offer a clearer understanding of how RLVR and distillation shape reasoning behavior in language models.
comment: 23 pages
Automatic Dataset Generation for Knowledge Intensive Question Answering Tasks
A question-answering (QA) system is to search suitable answers within a knowledge base. Current QA systems struggle with queries requiring complex reasoning or real-time knowledge integration. They are often supplemented with retrieval techniques on a data source such as Retrieval-Augmented Generation (RAG). However, RAG continues to face challenges in handling complex reasoning and logical connections between multiple sources of information. A novel approach for enhancing Large Language Models (LLMs) in knowledge-intensive QA tasks is presented through the automated generation of context-based QA pairs. This methodology leverages LLMs to create fine-tuning data, reducing reliance on human labelling and improving model comprehension and reasoning capabilities. The proposed system includes an automated QA generator and a model fine-tuner, evaluated using perplexity, ROUGE, BLEU, and BERTScore. Comprehensive experiments demonstrate improvements in logical coherence and factual accuracy, with implications for developing adaptable Artificial Intelligence (AI) systems. Mistral-7b-v0.3 outperforms Llama-3-8b with BERT F1, BLEU, and ROUGE scores 0.858, 0.172, and 0.260 of for the LLM generated QA pairs compared to scores of 0.836, 0.083, and 0.139 for the human annotated QA pairs.
Unraveling Interwoven Roles of Large Language Models in Authorship Privacy: Obfuscation, Mimicking, and Verification
Recent advancements in large language models (LLMs) have been fueled by large scale training corpora drawn from diverse sources such as websites, news articles, and books. These datasets often contain explicit user information, such as person names and addresses, that LLMs may unintentionally reproduce in their generated outputs. Beyond such explicit content, LLMs can also leak identity revealing cues through implicit signals such as distinctive writing styles, raising significant concerns about authorship privacy. There are three major automated tasks in authorship privacy, namely authorship obfuscation (AO), authorship mimicking (AM), and authorship verification (AV). Prior research has studied AO, AM, and AV independently. However, their interplays remain under explored, which leaves a major research gap, especially in the era of LLMs, where they are profoundly shaping how we curate and share user generated content, and the distinction between machine generated and human authored text is also increasingly blurred. This work then presents the first unified framework for analyzing the dynamic relationships among LLM enabled AO, AM, and AV in the context of authorship privacy. We quantify how they interact with each other to transform human authored text, examining effects at a single point in time and iteratively over time. We also examine the role of demographic metadata, such as gender, academic background, in modulating their performances, inter-task dynamics, and privacy risks. All source code will be publicly available.
comment: 17 pages, 3 figures
IG Parser: A Software Package for the Encoding of Institutional Statements using the Institutional Grammar
This article provides an overview of IG Parser, a software that facilitates qualitative content analysis of formal (e.g., legal) rules or informal (e.g., social) norms, and strategies (such as conventions) -- referred to as institutions -- that govern social systems and operate configurally to describe institutional systems. To this end, the IG Parser employs a distinctive syntax that ensures rigorous encoding of natural language, while automating the transformation into various formats that support the downstream analysis using diverse analytical techniques. The conceptual core of the IG Parser is an associated syntax, IG Script, that operationalizes the conceptual foundations of the Institutional Grammar, and more specifically the Institutional Grammar 2.0, an analytical paradigm for institutional analysis. This article presents the IG Parser, including its conceptual foundations, the syntax specification of IG Script, and its architectural principles. This overview is augmented with selective illustrative examples that highlight its use and the associated benefits.
comment: 24 pages
Sense and Sensitivity: Examining the Influence of Semantic Recall on Long Context Code Reasoning
Although modern Large Language Models (LLMs) support extremely large contexts, their effectiveness in utilizing long context for code reasoning remains unclear. This paper investigates LLM reasoning ability over code snippets within large repositories and how it relates to their recall ability. Specifically, we differentiate between lexical code recall (verbatim retrieval) and semantic code recall (remembering what the code does). To measure semantic recall, we propose SemTrace, a code reasoning technique where the impact of specific statements on output is attributable and unpredictable. We also present a method to quantify semantic recall sensitivity in existing benchmarks. Our evaluation of state-of-the-art LLMs reveals a significant drop in code reasoning accuracy as a code snippet approaches the middle of the input context, particularly with techniques requiring high semantic recall like SemTrace. Moreover, we find that lexical recall varies by granularity, with models excelling at function retrieval but struggling with line-by-line recall. Notably, a disconnect exists between lexical and semantic recall, suggesting different underlying mechanisms. Finally, our findings indicate that current code reasoning benchmarks may exhibit low semantic recall sensitivity, potentially underestimating LLM challenges in leveraging in-context information.
Rank, Chunk and Expand: Lineage-Oriented Reasoning for Taxonomy Expansion ACL'25
Taxonomies are hierarchical knowledge graphs crucial for recommendation systems, and web applications. As data grows, expanding taxonomies is essential, but existing methods face key challenges: (1) discriminative models struggle with representation limits and generalization, while (2) generative methods either process all candidates at once, introducing noise and exceeding context limits, or discard relevant entities by selecting noisy candidates. We propose LORex ($\textbf{L}$ineage-$\textbf{O}$riented $\textbf{Re}$asoning for Taxonomy E$\textbf{x}$pansion), a plug-and-play framework that combines discriminative ranking and generative reasoning for efficient taxonomy expansion. Unlike prior methods, LORex ranks and chunks candidate terms into batches, filtering noise and iteratively refining selections by reasoning candidates' hierarchy to ensure contextual efficiency. Extensive experiments across four benchmarks and twelve baselines show that LORex improves accuracy by 12% and Wu & Palmer similarity by 5% over state-of-the-art methods.
comment: Accepted in ACL'25 Findings
ToolHop: A Query-Driven Benchmark for Evaluating Large Language Models in Multi-Hop Tool Use ACL 2025
Effective evaluation of multi-hop tool use is critical for analyzing the understanding, reasoning, and function-calling capabilities of large language models (LLMs). However, progress has been hindered by a lack of reliable evaluation datasets. To address this, we present ToolHop, a dataset comprising 995 user queries and 3,912 associated tools, specifically designed for rigorous evaluation of multi-hop tool use. ToolHop ensures diverse queries, meaningful interdependencies, locally executable tools, detailed feedback, and verifiable answers through a novel query-driven data construction approach that includes tool creation, document refinement, and code generation. We evaluate 14 LLMs across five model families (i.e., LLaMA3.1, Qwen2.5, Gemini1.5, Claude3.5, and GPT), uncovering significant challenges in handling multi-hop tool-use scenarios. The leading model, GPT-4o, achieves an accuracy of 49.04%, underscoring substantial room for improvement. Further analysis reveals variations in tool-use strategies for various families, offering actionable insights to guide the development of more effective approaches. Code and data can be found in https://huggingface.co/datasets/bytedance-research/ToolHop.
comment: Accepted by ACL 2025 Main Conference
What if Deception Cannot be Detected? A Cross-Linguistic Study on the Limits of Deception Detection from Text
Can deception be detected solely from written text? Cues of deceptive communication are inherently subtle, even more so in text-only communication. Yet, prior studies have reported considerable success in automatic deception detection. We hypothesize that such findings are largely driven by artifacts introduced during data collection and do not generalize beyond specific datasets. We revisit this assumption by introducing a belief-based deception framework, which defines deception as a misalignment between an author's claims and true beliefs, irrespective of factual accuracy, allowing deception cues to be studied in isolation. Based on this framework, we construct three corpora, collectively referred to as DeFaBel, including a German-language corpus of deceptive and non-deceptive arguments and a multilingual version in German and English, each collected under varying conditions to account for belief change and enable cross-linguistic analysis. Using these corpora, we evaluate commonly reported linguistic cues of deception. Across all three DeFaBel variants, these cues show negligible, statistically insignificant correlations with deception labels, contrary to prior work that treats such cues as reliable indicators. We further benchmark against other English deception datasets following similar data collection protocols. While some show statistically significant correlations, effect sizes remain low and, critically, the set of predictive cues is inconsistent across datasets. We also evaluate deception detection using feature-based models, pretrained language models, and instruction-tuned large language models. While some models perform well on established deception datasets, they consistently perform near chance on DeFaBel. Our findings challenge the assumption that deception can be reliably inferred from linguistic cues and call for rethinking how deception is studied and modeled in NLP.
Zero-Shot Iterative Formalization and Planning in Partially Observable Environments
Using LLMs not to predict plans but to formalize an environment into the Planning Domain Definition Language (PDDL) has been shown to improve performance and control. Existing work focuses on fully observable environments; we tackle the more realistic and challenging partially observable environments that lack of complete, reliable information. We propose PDDLego+, a framework to iteratively formalize, plan, grow, and refine PDDL representations in a zero-shot manner, without needing access to any existing trajectories. On two textual simulated environments, we show that PDDLego+ improves goal reaching success and exhibits robustness against problem complexity. We also show that the domain knowledge captured after a successful trial can benefit future tasks.
Evaluating the efficacy of LLM Safety Solutions : The Palit Benchmark Dataset
Large Language Models (LLMs) are increasingly integrated into critical systems in industries like healthcare and finance. Users can often submit queries to LLM-enabled chatbots, some of which can enrich responses with information retrieved from internal databases storing sensitive data. This gives rise to a range of attacks in which a user submits a malicious query and the LLM-system outputs a response that creates harm to the owner, such as leaking internal data or creating legal liability by harming a third-party. While security tools are being developed to counter these threats, there is little formal evaluation of their effectiveness and usability. This study addresses this gap by conducting a thorough comparative analysis of LLM security tools. We identified 13 solutions (9 closed-source, 4 open-source), but only 7 were evaluated due to a lack of participation by proprietary model owners.To evaluate, we built a benchmark dataset of malicious prompts, and evaluate these tools performance against a baseline LLM model (ChatGPT-3.5-Turbo). Our results show that the baseline model has too many false positives to be used for this task. Lakera Guard and ProtectAI LLM Guard emerged as the best overall tools showcasing the tradeoff between usability and performance. The study concluded with recommendations for greater transparency among closed source providers, improved context-aware detections, enhanced open-source engagement, increased user awareness, and the adoption of more representative performance metrics.
Leveraging LLM Inconsistency to Boost Pass@k Performance
Large language models (LLMs) achieve impressive abilities in numerous domains, but exhibit inconsistent performance in response to minor input changes. Rather than view this as a drawback, in this paper we introduce a novel method for leveraging models' inconsistency to boost Pass@k performance. Specifically, we present a "Variator" agent that generates k variants of a given task and submits one candidate solution for each one. Our variant generation approach is applicable to a wide range of domains as it is task agnostic and compatible with free-form inputs. We demonstrate the efficacy of our agent theoretically using a probabilistic model of the inconsistency effect, and show empirically that it outperforms the baseline on the APPS dataset. Furthermore, we establish that inconsistency persists even in frontier reasoning models across coding and cybersecurity domains, suggesting our method is likely to remain relevant for future model generations.
SensorLLM: Human-Intuitive Alignment of Multivariate Sensor Data with LLMs for Activity Recognition
We introduce SensorLLM, a two-stage framework that enables Large Language Models (LLMs) to perform human activity recognition (HAR) from wearable sensor data. While LLMs excel at reasoning and generalization, they struggle with time-series inputs due to limited semantic context, numerical complexity, and sequence variability. To address these challenges, we construct SensorQA, a question-answering dataset of human-intuitive sensor-text pairs spanning diverse HAR scenarios. It supervises the Sensor-Language Alignment stage, where the model aligns sensor inputs with trend descriptions. Special tokens are introduced to mark channel boundaries. This alignment enables LLMs to interpret numerical patterns, channel-specific signals, and variable-length inputs--without requiring human annotation. In the subsequent Task-Aware Tuning stage, we adapt the model for multivariate HAR classification, achieving performance that matches or exceeds state-of-the-art methods. Our results show that, guided by human-intuitive alignment, SensorLLM becomes an effective sensor learner, reasoner, and classifier--generalizing across varied HAR settings and paving the way for foundation model research in time-series analysis.
Revealing and Mitigating the Challenge of Detecting Character Knowledge Errors in LLM Role-Playing
Large language model (LLM) role-playing has gained widespread attention. Authentic character knowledge is crucial for constructing realistic LLM role-playing agents. However, existing works usually overlook the exploration of LLMs' ability to detect characters' known knowledge errors (KKE) and unknown knowledge errors (UKE) while playing roles, which would lead to low-quality automatic construction of character trainable corpus. In this paper, we propose RoleKE-Bench to evaluate LLMs' ability to detect errors in KKE and UKE. The results indicate that even the latest LLMs struggle to detect these two types of errors effectively, especially when it comes to familiar knowledge. We experimented with various reasoning strategies and propose an agent-based reasoning method, Self-Recollection and Self-Doubt (S$^2$RD), to explore further the potential for improving error detection capabilities. Experiments show that our method effectively improves the LLMs' ability to detect error character knowledge, but it remains an issue that requires ongoing attention.
comment: 25 pages, 6 figures, 20 tables
TiEBe: Tracking Language Model Recall of Notable Worldwide Events Through Time
As the knowledge landscape evolves and large language models (LLMs) become increasingly widespread, there is a growing need to keep these models updated with current events. While existing benchmarks assess general factual recall, few studies explore how LLMs retain knowledge over time or across different regions. To address these gaps, we present the Timely Events Benchmark (TiEBe), a dataset of over 23,000 question-answer pairs centered on notable global and regional events, spanning more than 10 years of events, 23 regions, and 13 languages. TiEBe leverages structured retrospective data from Wikipedia to identify notable events through time. These events are then used to construct a benchmark to evaluate LLMs' understanding of global and regional developments, grounded in factual evidence beyond Wikipedia itself. Our results reveal significant geographic disparities in factual recall, emphasizing the need for more balanced global representation in LLM training. We also observe a Pearson correlation of more than 0.7 between models' performance in TiEBe and various countries' socioeconomic indicators, such as HDI. In addition, we examine the impact of language on factual recall by posing questions in the native language of the region where each event occurred, uncovering substantial performance gaps for low-resource languages.
S1-Bench: A Simple Benchmark for Evaluating System 1 Thinking Capability of Large Reasoning Models
We introduce S1-Bench, a novel benchmark designed to evaluate the performance of Large Reasoning Models (LRMs) on simple tasks that favor intuitive system 1 thinking rather than deliberative system 2 reasoning. While LRMs have achieved significant breakthroughs in complex reasoning tasks through explicit chains of thought, their heavy reliance on system 2 thinking may limit their system 1 thinking capabilities. However, there is a lack of an appropriate benchmark for evaluating LRM's system 1 thinking capabilities. To fill this gap, S1-Bench introduces a suite of simple, diverse, and natural questions across multiple domains and languages, specifically designed to assess LRMs' performance on questions more suitable for system 1 . We conduct extensive evaluations across 28 LRMs, revealing their inefficiency, inadequate accuracy, and limited robustness when handling simple questions. Additionally, we observe a gap between their difficulty perception and generation length. Overall, this work paves the way toward dual-system compatibility in the development of LRMs.
comment: 31 pages, 9 figures, 16 tables
MrGuard: A Multilingual Reasoning Guardrail for Universal LLM Safety
Large Language Models (LLMs) are susceptible to adversarial attacks such as jailbreaking, which can elicit harmful or unsafe behaviors. This vulnerability is exacerbated in multilingual settings, where multilingual safety-aligned data is often limited. Thus, developing a guardrail capable of detecting and filtering unsafe content across diverse languages is critical for deploying LLMs in real-world applications. In this work, we introduce a multilingual guardrail with reasoning for prompt classification. Our method consists of: (1) synthetic multilingual data generation incorporating culturally and linguistically nuanced variants, (2) supervised fine-tuning, and (3) a curriculum-based Group Relative Policy Optimization (GRPO) framework that further improves performance. Experimental results demonstrate that our multilingual guardrail, MrGuard, consistently outperforms recent baselines across both in-domain and out-of-domain languages by more than 15%. We also evaluate MrGuard's robustness to multilingual variations, such as code-switching and low-resource language distractors in the prompt, and demonstrate that it preserves safety judgments under these challenging conditions. The multilingual reasoning capability of our guardrail enables it to generate explanations, which are particularly useful for understanding language-specific risks and ambiguities in multilingual content moderation.
comment: Preprint
Char-mander Use mBackdoor! A Study of Cross-lingual Backdoor Attacks in Multilingual LLMs
We explore \textbf{C}ross-lingual \textbf{B}ackdoor \textbf{AT}tacks (X-BAT) in multilingual Large Language Models (mLLMs), revealing how backdoors inserted in one language can automatically transfer to others through shared embedding spaces. Using toxicity classification as a case study, we demonstrate that attackers can compromise multilingual systems by poisoning data in a single language, with rare and high-occurring tokens serving as specific, effective triggers. Our findings expose a critical vulnerability that influences the model's architecture, resulting in a concealed backdoor effect during the information flow. Our code and data are publicly available https://github.com/himanshubeniwal/X-BAT.
Arithmetic Without Algorithms: Language Models Solve Math With a Bag of Heuristics
Do large language models (LLMs) solve reasoning tasks by learning robust generalizable algorithms, or do they memorize training data? To investigate this question, we use arithmetic reasoning as a representative task. Using causal analysis, we identify a subset of the model (a circuit) that explains most of the model's behavior for basic arithmetic logic and examine its functionality. By zooming in on the level of individual circuit neurons, we discover a sparse set of important neurons that implement simple heuristics. Each heuristic identifies a numerical input pattern and outputs corresponding answers. We hypothesize that the combination of these heuristic neurons is the mechanism used to produce correct arithmetic answers. To test this, we categorize each neuron into several heuristic types-such as neurons that activate when an operand falls within a certain range-and find that the unordered combination of these heuristic types is the mechanism that explains most of the model's accuracy on arithmetic prompts. Finally, we demonstrate that this mechanism appears as the main source of arithmetic accuracy early in training. Overall, our experimental results across several LLMs show that LLMs perform arithmetic using neither robust algorithms nor memorization; rather, they rely on a "bag of heuristics".
Counterspeech the ultimate shield! Multi-Conditioned Counterspeech Generation through Attributed Prefix Learning ACL 2025
Counterspeech has proven to be a powerful tool to combat hate speech online. Previous studies have focused on generating counterspeech conditioned only on specific intents (single attributed). However, a holistic approach considering multiple attributes simultaneously can yield more nuanced and effective responses. Here, we introduce HiPPrO, Hierarchical Prefix learning with Preference Optimization, a novel two-stage framework that utilizes the effectiveness of attribute-specific prefix embedding spaces hierarchically optimized during the counterspeech generation process in the first phase. Thereafter, we incorporate both reference and reward-free preference optimization to generate more constructive counterspeech. Furthermore, we extend IntentCONANv2 by annotating all 13,973 counterspeech instances with emotion labels by five annotators. HiPPrO leverages hierarchical prefix optimization to integrate these dual attributes effectively. An extensive evaluation demonstrates that HiPPrO achieves a ~38 % improvement in intent conformity and a ~3 %, ~2 %, ~3 % improvement in Rouge-1, Rouge-2, and Rouge-L, respectively, compared to several baseline models. Human evaluations further substantiate the superiority of our approach, highlighting the enhanced relevance and appropriateness of the generated counterspeech. This work underscores the potential of multi-attribute conditioning in advancing the efficacy of counterspeech generation systems.
comment: Accepted in ACL 2025 Main Conference
Can LLMs be Good Graph Judge for Knowledge Graph Construction?
In real-world scenarios, most of the data obtained from the information retrieval (IR) system is unstructured. Converting natural language sentences into structured Knowledge Graphs (KGs) remains a critical challenge. We identified three limitations with respect to existing KG construction methods: (1) There could be a large amount of noise in real-world documents, which could result in extracting messy information. (2) Naive LLMs usually extract inaccurate knowledge from some domain-specific documents. (3) Hallucination phenomenon cannot be overlooked when directly using LLMs to construct KGs. In this paper, we propose \textbf{GraphJudge}, a KG construction framework to address the aforementioned challenges. In this framework, we designed an entity-centric strategy to eliminate the noise information in the documents. And we fine-tuned a LLM as a graph judge to finally enhance the quality of generated KGs. Experiments conducted on two general and one domain-specific text-graph pair datasets demonstrate state-of-the-art performance against various baseline methods with strong generalization abilities. Our code is available at \href{https://github.com/hhy-huang/GraphJudge}{https://github.com/hhy-huang/GraphJudge}.
EquiBench: Benchmarking Large Language Models' Understanding of Program Semantics via Equivalence Checking
As large language models (LLMs) become integral to code-related tasks, a central question emerges: do LLMs truly understand program execution semantics? We introduce EquiBench, a new benchmark for evaluating LLMs through equivalence checking, i.e., determining whether two programs produce identical outputs for all possible inputs. Unlike prior code generation benchmarks, this task directly tests a model's understanding of code execution semantics. EquiBench consists of 2400 program pairs across four languages and six categories. These pairs are generated through program analysis, compiler scheduling, and superoptimization, ensuring high-confidence labels, nontrivial difficulty, and full automation. The transformations span syntactic edits, structural modifications, and algorithmic changes, covering a broad spectrum of semantic variation. We evaluate 19 state-of-the-art LLMs and find that in the most challenging categories, the best accuracies are 63.8% and 76.2%, only modestly above the 50% random baseline. Further analysis reveals that models often rely on syntactic similarity rather than exhibiting robust reasoning over execution semantics, highlighting fundamental limitations.
Designing and Contextualising Probes for African Languages
Pretrained language models (PLMs) for African languages are continually improving, but the reasons behind these advances remain unclear. This paper presents the first systematic investigation into probing PLMs for linguistic knowledge about African languages. We train layer-wise probes for six typologically diverse African languages to analyse how linguistic features are distributed. We also design control tasks, a way to interpret probe performance, for the MasakhaPOS dataset. We find PLMs adapted for African languages to encode more linguistic information about target languages than massively multilingual PLMs. Our results reaffirm previous findings that token-level syntactic information concentrates in middle-to-last layers, while sentence-level semantic information is distributed across all layers. Through control tasks and probing baselines, we confirm that performance reflects the internal knowledge of PLMs rather than probe memorisation. Our study applies established interpretability techniques to African-language PLMs. In doing so, we highlight the internal mechanisms underlying the success of strategies like active learning and multilingual adaptation.
MedCaseReasoning: Evaluating and learning diagnostic reasoning from clinical case reports
Doctors and patients alike increasingly use Large Language Models (LLMs) to diagnose clinical cases. However, unlike domains such as math or coding, where correctness can be objectively defined by the final answer, medical diagnosis requires both the outcome and the reasoning process to be accurate. Currently, widely used medical benchmarks like MedQA and MMLU assess only accuracy in the final answer, overlooking the quality and faithfulness of the clinical reasoning process. To address this limitation, we introduce MedCaseReasoning, the first open-access dataset for evaluating LLMs on their ability to align with clinician-authored diagnostic reasoning. The dataset includes 14,489 diagnostic question-and-answer cases, each paired with detailed reasoning statements derived from open-access medical case reports. We evaluate state-of-the-art reasoning LLMs on MedCaseReasoning and find significant shortcomings in their diagnoses and reasoning: for instance, the top-performing open-source model, DeepSeek-R1, achieves only 48% 10-shot diagnostic accuracy and mentions only 64% of the clinician reasoning statements (recall). However, we demonstrate that fine-tuning LLMs on the reasoning traces derived from MedCaseReasoning significantly improves diagnostic accuracy and clinical reasoning recall by an average relative gain of 29% and 41%, respectively. The open-source dataset, code, and models are available at https://github.com/kevinwu23/Stanford-MedCaseReasoning.
MMUnlearner: Reformulating Multimodal Machine Unlearning in the Era of Multimodal Large Language Models ACL 2025
Recent progress in Machine Unlearning (MU) has introduced solutions for the selective removal of private or sensitive information encoded within deep neural networks. Nonetheless, MU for Multimodal Large Language Models (MLLMs) remains in its nascent phase. Therefore, we propose to reformulate the task of multimodal MU in the era of MLLMs, which aims to erase only the visual patterns associated with a given entity while preserving the corresponding textual knowledge encoded within the original parameters of the language model backbone. Furthermore, we develop a novel geometry-constrained gradient ascent method MMUnlearner. It updates the weights of MLLMs with a weight saliency map jointly restricted by the remaining concepts and textual knowledge during unlearning, thereby preserving parameters essential for non-target knowledge. Extensive experiments demonstrate that MMUnlearner surpasses baselines that finetuning MLLMs with VQA data directly through Gradient Ascent (GA) or Negative Preference Optimization (NPO), across all evaluation dimensions. Our code will be released upon acceptance.
comment: Accepted as ACL 2025 Findings
Evaluating the Correctness of Inference Patterns Used by LLMs for Judgment
This paper presents a method to analyze the inference patterns used by Large Language Models (LLMs) for judgment in a case study on legal LLMs, so as to identify potential incorrect representations of the LLM, according to human domain knowledge. Unlike traditional evaluations on language generation results, we propose to evaluate the correctness of the detailed inference patterns of an LLM behind its seemingly correct outputs. To this end, we quantify the interactions between input phrases used by the LLM as primitive inference patterns, because recent theoretical achievements have proven several mathematical guarantees of the faithfulness of the interaction-based explanation. We design a set of metrics to evaluate the detailed inference patterns of LLMs. Experiments show that even when the language generation results appear correct, a significant portion of the inference patterns used by the LLM for the legal judgment may represent misleading or irrelevant logic.
Technical Report: Quantifying and Analyzing the Generalization Power of a DNN
This paper proposes a new perspective for analyzing the generalization power of deep neural networks (DNNs), i.e., directly disentangling and analyzing the dynamics of generalizable and non-generalizable interaction encoded by a DNN through the training process. Specifically, this work builds upon the recent theoretical achievement in explainble AI, which proves that the detailed inference logic of DNNs can be can be strictly rewritten as a small number of AND-OR interaction patterns. Based on this, we propose an efficient method to quantify the generalization power of each interaction, and we discover a distinct three-phase dynamics of the generalization power of interactions during training. In particular, the early phase of training typically removes noisy and non-generalizable interactions and learns simple and generalizable ones. The second and the third phases tend to capture increasingly complex interactions that are harder to generalize. Experimental results verify that the learning of non-generalizable interactions is the the direct cause for the gap between the training and testing losses.
A comparison of translation performance between DeepL and Supertext
As strong machine translation (MT) systems are increasingly based on large language models (LLMs), reliable quality benchmarking requires methods that capture their ability to leverage extended context. This study compares two commercial MT systems -- DeepL and Supertext -- by assessing their performance on unsegmented texts. We evaluate translation quality across four language directions with professional translators assessing segments with full document-level context. While segment-level assessments indicate no strong preference between the systems in most cases, document-level analysis reveals a preference for Supertext in three out of four language directions, suggesting superior consistency across longer texts. We advocate for more context-sensitive evaluation methodologies to ensure that MT quality assessments reflect real-world usability. We release all evaluation data and scripts for further analysis and reproduction at https://github.com/supertext/evaluation_deepl_supertext.
comment: Paper accepted at MT Summit 2025
Velocitune: A Velocity-based Dynamic Domain Reweighting Method for Continual Pre-training ACL 2025
It is well-known that a diverse corpus is critical for training large language models, which are typically constructed from a mixture of various domains. In general, previous efforts resort to sampling training data from different domains with static proportions, as well as adjusting data proportions during training. However, few methods have addressed the complexities of domain-adaptive continual pre-training. To fill this gap, we propose Velocitune, a novel framework dynamically assesses learning velocity and adjusts data proportions accordingly, favoring slower-learning domains while shunning faster-learning ones, which is guided by a scaling law to indicate the desired learning goal for each domain with less associated cost. To evaluate the effectiveness of Velocitune, we conduct experiments in a reasoning-focused dataset with CodeLlama, as well as in a corpus specialised for system command generation with Llama3 and Mistral. Velocitune achieves performance gains in both math and code reasoning tasks and command-line generation benchmarks. Further analysis reveals that key factors driving Velocitune's effectiveness include target loss prediction and data ordering.
comment: Accepted to ACL 2025
RouterEval: A Comprehensive Benchmark for Routing LLMs to Explore Model-level Scaling Up in LLMs
Routing large language models (LLMs) is a new paradigm that uses a router to recommend the best LLM from a pool of candidates for a given input. In this paper, our comprehensive analysis with more than 8,500 LLMs reveals a novel model-level scaling up phenomenon in Routing LLMs, i.e., a capable router can significantly enhance the performance of this paradigm as the number of candidates increases. This improvement can even surpass the performance of the best single model in the pool and many existing strong LLMs, confirming it a highly promising paradigm. However, the lack of comprehensive and open-source benchmarks for Routing LLMs has hindered the development of routers. In this paper, we introduce RouterEval, a benchmark tailored for router research, which includes over 200,000,000 performance records for 12 popular LLM evaluations across various areas such as commonsense reasoning, semantic understanding, etc., based on over 8,500 various LLMs. Using RouterEval, extensive evaluations of existing Routing LLM methods reveal that most still have significant room for improvement. See https://github.com/MilkThink-Lab/RouterEval for all data, code and tutorial.
comment: Preprint
J4R: Learning to Judge with Equivalent Initial State Group Relative Policy Optimization
To keep pace with the increasing pace of large language models (LLM) development, model output evaluation has transitioned away from time-consuming human evaluation to automatic evaluation, where LLMs themselves are tasked with assessing and critiquing other model outputs. LLM-as-judge models are a class of generative evaluators that excel in evaluating relatively simple domains, like chat quality, but struggle in reasoning intensive domains where model responses contain more substantive and challenging content. To remedy existing judge shortcomings, we explore training judges with reinforcement learning (RL). We make three key contributions: (1) We propose the Equivalent Initial State Group Relative Policy Optimization (EIS-GRPO) algorithm, which allows us to train our judge to be robust to positional biases that arise in more complex evaluation settings. (2) We introduce ReasoningJudgeBench, a benchmark that evaluates judges in diverse reasoning settings not covered by prior work. (3) We train Judge for Reasoning (J4R), a 7B judge trained with EIS-GRPO that outperforms GPT-4o and the next best small judge by 6.7% and 9%, matching or exceeding the performance of larger GRPO-trained judges on both JudgeBench and ReasoningJudgeBench.
comment: 25 pages, 4 figures, 6 tables. To be updated with links for code/benchmark
MMDocIR: Benchmarking Multi-Modal Retrieval for Long Documents
Multimodal document retrieval aims to identify and retrieve various forms of multimodal content, such as figures, tables, charts, and layout information from extensive documents. Despite its increasing popularity, there is a notable lack of a comprehensive and robust benchmark to effectively evaluate the performance of systems in such tasks. To address this gap, this work introduces a new benchmark, named MMDocIR, that encompasses two distinct tasks: page-level and layout-level retrieval. The former evaluates the performance of identifying the most relevant pages within a long document, while the later assesses the ability of detecting specific layouts, providing a more fine-grained measure than whole-page analysis. A layout refers to a variety of elements, including textual paragraphs, equations, figures, tables, or charts. The MMDocIR benchmark comprises a rich dataset featuring 1,685 questions annotated by experts and 173,843 questions with bootstrapped labels, making it a valuable resource in multimodal document retrieval for both training and evaluation. Through rigorous experiments, we demonstrate that (i) visual retrievers significantly outperform their text counterparts, (ii) MMDocIR training set effectively enhances the performance of multimodal document retrieval and (iii) text retrievers leveraging VLM-text significantly outperforms retrievers relying on OCR-text. Our dataset is available at https://mmdocrag.github.io/MMDocIR/.
comment: https://huggingface.co/MMDocIR
A Survey of Mathematical Reasoning in the Era of Multimodal Large Language Model: Benchmark, Method & Challenges ACL
Mathematical reasoning, a core aspect of human cognition, is vital across many domains, from educational problem-solving to scientific advancements. As artificial general intelligence (AGI) progresses, integrating large language models (LLMs) with mathematical reasoning tasks is becoming increasingly significant. This survey provides the first comprehensive analysis of mathematical reasoning in the era of multimodal large language models (MLLMs). We review over 200 studies published since 2021, and examine the state-of-the-art developments in Math-LLMs, with a focus on multimodal settings. We categorize the field into three dimensions: benchmarks, methodologies, and challenges. In particular, we explore multimodal mathematical reasoning pipeline, as well as the role of (M)LLMs and the associated methodologies. Finally, we identify five major challenges hindering the realization of AGI in this domain, offering insights into the future direction for enhancing multimodal reasoning capabilities. This survey serves as a critical resource for the research community in advancing the capabilities of LLMs to tackle complex multimodal reasoning tasks.
comment: Accepted by The 63rd Annual Meeting of the Association for Computational Linguistics (ACL Findings 2025)
Walk the Talk? Measuring the Faithfulness of Large Language Model Explanations ICLR 2025
Large language models (LLMs) are capable of generating plausible explanations of how they arrived at an answer to a question. However, these explanations can misrepresent the model's "reasoning" process, i.e., they can be unfaithful. This, in turn, can lead to over-trust and misuse. We introduce a new approach for measuring the faithfulness of LLM explanations. First, we provide a rigorous definition of faithfulness. Since LLM explanations mimic human explanations, they often reference high-level concepts in the input question that purportedly influenced the model. We define faithfulness in terms of the difference between the set of concepts that LLM explanations imply are influential and the set that truly are. Second, we present a novel method for estimating faithfulness that is based on: (1) using an auxiliary LLM to modify the values of concepts within model inputs to create realistic counterfactuals, and (2) using a Bayesian hierarchical model to quantify the causal effects of concepts at both the example- and dataset-level. Our experiments show that our method can be used to quantify and discover interpretable patterns of unfaithfulness. On a social bias task, we uncover cases where LLM explanations hide the influence of social bias. On a medical question answering task, we uncover cases where LLM explanations provide misleading claims about which pieces of evidence influenced the model's decisions.
comment: 66 pages, 14 figures, 40 tables; ICLR 2025 (spotlight) camera ready
Does Acceleration Cause Hidden Instability in Vision Language Models? Uncovering Instance-Level Divergence Through a Large-Scale Empirical Study
Vision-Language Models (VLMs) are powerful yet computationally intensive for widespread practical deployments. To address such challenge without costly re-training, post-training acceleration techniques like quantization and token reduction are extensively explored. However, current acceleration evaluations primarily target minimal overall performance degradation, overlooking a crucial question: does the accelerated model still give the same answers to the same questions as it did before acceleration? This is vital for stability-centered industrial applications where consistently correct answers for specific, known situations are paramount, such as in AI-based disease diagnosis. We systematically investigate this for accelerated VLMs, testing four leading models (LLaVA-1.5, LLaVA-Next, Qwen2-VL, Qwen2.5-VL) with eight acceleration methods on ten multi-modal benchmarks. Our findings are stark: despite minimal aggregate performance drops, accelerated models changed original answers up to 20% of the time. Critically, up to 6.5% of these changes converted correct answers to incorrect. Input perturbations magnified these inconsistencies, and the trend is confirmed by case studies with the medical VLM LLaVA-Med. This research reveals a significant oversight in VLM acceleration, stressing an urgent need for instance-level stability checks to ensure trustworthy real-world deployment.
Mitigating Forgetting in LLM Fine-Tuning via Low-Perplexity Token Learning
Maintaining consistent model performance across domains is a fundamental challenge in machine learning. While recent work has explored using LLM-generated data for fine-tuning, its impact on cross-domain generalization remains poorly understood. This paper presents a systematic analysis revealing that fine-tuning with LLM-generated data not only improves target task performance but also reduces non-target task degradation compared to fine-tuning with ground truth data. Through analyzing the data sequence in tasks of various domains, we demonstrate that this enhancement of non-target task robustness stems from the reduction of high perplexity tokens found in LLM-generated sequences. Following our findings, we showed that masking high perplexity tokens in ground truth training data achieves similar non-target task performance preservation, comparable to using LLM-generated data. Extensive experiments across different model families and scales, including Gemma 2 IT 2B, Llama 3 8B Instruct, and 3 additional models, agree with our findings. To the best of our knowledge, this is the first work to provide an empirical explanation based on token perplexity reduction to mitigate catastrophic forgetting in LLMs after fine-tuning, offering valuable insights for developing more robust fine-tuning strategies.
MathAgent: Leveraging a Mixture-of-Math-Agent Framework for Real-World Multimodal Mathematical Error Detection ACL
Mathematical error detection in educational settings presents a significant challenge for Multimodal Large Language Models (MLLMs), requiring a sophisticated understanding of both visual and textual mathematical content along with complex reasoning capabilities. Though effective in mathematical problem-solving, MLLMs often struggle with the nuanced task of identifying and categorizing student errors in multimodal mathematical contexts. Therefore, we introduce MathAgent, a novel Mixture-of-Math-Agent framework designed specifically to address these challenges. Our approach decomposes error detection into three phases, each handled by a specialized agent: an image-text consistency validator, a visual semantic interpreter, and an integrative error analyzer. This architecture enables more accurate processing of mathematical content by explicitly modeling relationships between multimodal problems and student solution steps. We evaluate MathAgent on real-world educational data, demonstrating approximately 5% higher accuracy in error step identification and 3% improvement in error categorization compared to baseline models. Besides, MathAgent has been successfully deployed in an educational platform that has served over one million K-12 students, achieving nearly 90% student satisfaction while generating significant cost savings by reducing manual error detection.
comment: Accepted by The 63rd Annual Meeting of the Association for Computational Linguistics (ACL Industry 2025, Oral Presentation)
Who Taught You That? Tracing Teachers in Model Distillation ACL 2025
Model distillation -- using outputs from a large teacher model to teach a small student model -- is a practical means of creating efficient models for a particular task. We ask: Can we identify a students' teacher based on its outputs? Such "footprints" left by teacher LLMs would be interesting artifacts. Beyond this, reliable teacher inference may have practical implications as actors seek to distill specific capabilities of massive proprietary LLMs into deployed smaller LMs, potentially violating terms of service. We consider practical task distillation targets including summarization, question answering, and instruction-following. We assume a finite set of candidate teacher models, which we treat as blackboxes. We design discriminative models that operate over lexical features. We find that $n$-gram similarity alone is unreliable for identifying teachers, but part-of-speech (PoS) templates preferred by student models mimic those of their teachers.
comment: Findings of ACL 2025
FineFilter: A Fine-grained Noise Filtering Mechanism for Retrieval-Augmented Large Language Models
Retrieved documents containing noise will hinder Retrieval-Augmented Generation (RAG) from detecting answer clues, necessitating noise filtering mechanisms to enhance accuracy. Existing methods use reranking or summarization to identify the most relevant sentences, but directly and accurately locating answer clues from these large-scale and complex documents remains challenging. Unlike these document-level operations, we treat noise filtering as a sentence-level MinMax optimization problem: first identifying potential clues from multiple documents, then ranking them by relevance, and finally retaining the minimum number of clues through truncation. In this paper, we propose FineFilter, a novel fine-grained noise filtering mechanism for RAG, consisting of a clue extractor, a reranker, and a truncator. We optimize each module to tackle complex reasoning challenges: (1) The clue extractor first uses sentences containing the answer and similar ones as fine-tuning targets, aiming to extract sufficient potential clues; (2) The reranker is trained to prioritize effective clues based on the real feedback from the generation module, with clues capable of generating correct answers as positive samples and others as negative; (3) The truncator takes the minimum number of clues needed to answer the question (truncation point) as fine-tuning targets, and performs truncation on the reranked clues to achieve fine-grained noise filtering. Experiments on three QA datasets demonstrate that FineFilter significantly improves QA performance over baselines on both LLaMA3 and Mistral. Further analysis confirms its effectiveness in complex reasoning, robustness to unreliable retrieval, and generalization to different scenarios.
comment: 18 pages, 4 figures, 18 tables, under review
Unlearning Backdoor Attacks for LLMs with Weak-to-Strong Knowledge Distillation
Parameter-efficient fine-tuning (PEFT) can bridge the gap between large language models (LLMs) and downstream tasks. However, PEFT has been proven vulnerable to malicious attacks. Research indicates that poisoned LLMs, even after PEFT, retain the capability to activate internalized backdoors when input samples contain predefined triggers. In this paper, we introduce a novel weak-to-strong unlearning algorithm to defend against backdoor attacks based on feature alignment knowledge distillation, named W2SDefense. Specifically, we first train a small-scale language model through full-parameter fine-tuning to serve as the clean teacher model. Then, this teacher model guides the large-scale poisoned student model in unlearning the backdoor, leveraging PEFT. Theoretical analysis suggests that W2SDefense has the potential to enhance the student model's ability to unlearn backdoor features, preventing the activation of the backdoor. We conduct comprehensive experiments on three state-of-the-art large language models and several different backdoor attack algorithms. Our empirical results demonstrate the outstanding performance of W2SDefense in defending against backdoor attacks without compromising model performance.
CODI: Compressing Chain-of-Thought into Continuous Space via Self-Distillation
Chain-of-Thought (CoT) reasoning enhances Large Language Models (LLMs) by encouraging step-by-step reasoning in natural language. However, leveraging a latent continuous space for reasoning may offer benefits in terms of both efficiency and robustness. Prior implicit CoT methods attempt to bypass language completely by reasoning in continuous space but have consistently underperformed compared to the standard explicit CoT approach. We introduce CODI (Continuous Chain-of-Thought via Self-Distillation), a novel training framework that effectively compresses natural language CoT into continuous space. CODI jointly trains a teacher task (Explicit CoT) and a student task (Implicit CoT), distilling the reasoning ability from language into continuous space by aligning the hidden states of a designated token. Our experiments show that CODI is the first implicit CoT approach to match the performance of explicit CoT on GSM8k at the GPT-2 scale, achieving a 3.1x compression rate and outperforming the previous state-of-the-art by 28.2% in accuracy. CODI also demonstrates robustness, generalizable to complex datasets, and interpretability. These results validate that LLMs can reason effectively not only in natural language, but also in a latent continuous space.
comment: 16 pages
Scaling Stick-Breaking Attention: An Efficient Implementation and In-depth Study
The self-attention mechanism traditionally relies on the softmax operator, necessitating positional embeddings like RoPE, or position biases to account for token order. But current methods using still face length generalisation challenges. We investigate an alternative attention mechanism based on the stick-breaking process in larger scale settings. The method works as follows: For each token before the current, we determine a break point, which represents the proportion of the stick, the weight of the attention, to allocate to the current token. We repeat this on the remaining stick, until all tokens are allocated a weight, resulting in a sequence of attention weights. This process naturally incorporates recency bias, which has linguistic motivations for grammar parsing. We study the implications of replacing the conventional softmax-based attention mechanism with stick-breaking attention. We then discuss implementation of numerically stable stick-breaking attention and adapt Flash Attention to accommodate this mechanism. When used as a drop-in replacement for current softmax+RoPE attention systems, we find that stick-breaking attention performs competitively with current methods on length generalisation and downstream tasks. Stick-breaking also performs well at length generalisation, allowing a model trained with $2^{11}$ context window to perform well at $2^{14}$ with perplexity improvements.
CRCE: Coreference-Retention Concept Erasure in Text-to-Image Diffusion Models
Text-to-Image diffusion models can produce undesirable content that necessitates concept erasure. However, existing methods struggle with under-erasure, leaving residual traces of targeted concepts, or over-erasure, mistakenly eliminating unrelated but visually similar concepts. To address these limitations, we introduce CRCE, a novel concept erasure framework that leverages Large Language Models to identify both semantically related concepts that should be erased alongside the target and distinct concepts that should be preserved. By explicitly modelling coreferential and retained concepts semantically, CRCE enables more precise concept removal, without unintended erasure. Experiments demonstrate that CRCE outperforms existing methods on diverse erasure tasks, including real-world object, person identities, and abstract intellectual property characteristics. The constructed dataset CorefConcept and the source code will be release upon acceptance.
Beyond Self-Reports: Multi-Observer Agents for Personality Assessment in Large Language Models
Self-report questionnaires have long been used to assess LLM personality traits, yet they fail to capture behavioral nuances due to biases and meta-knowledge contamination. This paper proposes a novel multi-observer framework for personality trait assessments in LLM agents that draws on informant-report methods in psychology. Instead of relying on self-assessments, we employ multiple observer agents. Each observer is configured with a specific relational context (e.g., family member, friend, or coworker) and engages the subject LLM in dialogue before evaluating its behavior across the Big Five dimensions. We show that these observer-report ratings align more closely with human judgments than traditional self-reports and reveal systematic biases in LLM self-assessments. We also found that aggregating responses from 5 to 7 observers reduces systematic biases and achieves optimal reliability. Our results highlight the role of relationship context in perceiving personality and demonstrate that a multi-observer paradigm offers a more reliable, context-sensitive approach to evaluating LLM personality traits.
comment: 16 pages, 6 figures, 6 tables
LongDPO: Unlock Better Long-form Generation Abilities for LLMs via Critique-augmented Stepwise Information ACL 2025
Long-form generation is crucial for academic writing papers and repo-level code generation. Despite this, current models, including GPT-4o, still exhibit unsatisfactory performance. Existing methods that utilize preference learning with outcome supervision often fail to provide detailed feedback for extended contexts. This shortcoming can lead to content that does not fully satisfy query requirements, resulting in issues like length deviations, and diminished quality. In this paper, we propose enhancing long-form generation by incorporating process supervision. We employ Monte Carlo Tree Search to gather stepwise preference pairs, utilizing a global memory pool to maintain consistency. To address the issue of suboptimal candidate selection, we integrate external critiques to refine and improve the quality of the preference pairs. Finally, we apply step-level DPO using the collected stepwise preference pairs. Experimental results show that our method improves length and quality on long-form generation benchmarks, with almost lossless performance on general benchmarks across various model backbones.
comment: ACL 2025
Talk to Your Slides: Language-Driven Agents for Efficient Slide Editing
Editing presentation slides remains one of the most common and time-consuming tasks faced by millions of users daily, despite significant advances in automated slide generation. Existing approaches have successfully demonstrated slide editing via graphic user interface (GUI)-based agents, offering intuitive visual control. However, such methods often suffer from high computational cost and latency. In this paper, we propose Talk-to-Your-Slides, an LLM-powered agent designed to edit slides %in active PowerPoint sessions by leveraging structured information about slide objects rather than relying on image modality. The key insight of our work is designing the editing process with distinct high-level and low-level layers to facilitate interaction between user commands and slide objects. By providing direct access to application objects rather than screen pixels, our system enables 34.02% faster processing, 34.76% better instruction fidelity, and 87.42% cheaper operation than baselines. To evaluate slide editing capabilities, we introduce TSBench, a human-annotated dataset comprising 379 diverse editing instructions paired with corresponding slide variations in four categories. Our code, benchmark and demos are available at https://anonymous.4open.science/r/Talk-to-Your-Slides-0F4C.
comment: 20 pages, 14 figures
SQLong: Enhanced NL2SQL for Longer Contexts with LLMs ACL 2025
Open-weight large language models (LLMs) have significantly advanced performance in the Natural Language to SQL (NL2SQL) task. However, their effectiveness diminishes when dealing with large database schemas, as the context length increases. To address this limitation, we present SQLong, a novel and efficient data augmentation framework designed to enhance LLM performance in long-context scenarios for the NL2SQL task. SQLong generates augmented datasets by extending existing database schemas with additional synthetic CREATE TABLE commands and corresponding data rows, sampled from diverse schemas in the training data. This approach effectively simulates long-context scenarios during finetuning and evaluation. Through experiments on the Spider and BIRD datasets, we demonstrate that LLMs finetuned with SQLong-augmented data significantly outperform those trained on standard datasets. These imply SQLong's practical implementation and its impact on improving NL2SQL capabilities in real-world settings with complex database schemas.
comment: Accepted to Table Representation Learning Workshop at ACL 2025
Can Prompting LLMs Unlock Hate Speech Detection across Languages? A Zero-shot and Few-shot Study
Despite growing interest in automated hate speech detection, most existing approaches overlook the linguistic diversity of online content. Multilingual instruction-tuned large language models such as LLaMA, Aya, Qwen, and BloomZ offer promising capabilities across languages, but their effectiveness in identifying hate speech through zero-shot and few-shot prompting remains underexplored. This work evaluates LLM prompting-based detection across eight non-English languages, utilizing several prompting techniques and comparing them to fine-tuned encoder models. We show that while zero-shot and few-shot prompting lag behind fine-tuned encoder models on most of the real-world evaluation sets, they achieve better generalization on functional tests for hate speech detection. Our study also reveals that prompt design plays a critical role, with each language often requiring customized prompting techniques to maximize performance.
Cross-Document Cross-Lingual NLI via RST-Enhanced Graph Fusion and Interpretability Prediction
Natural Language Inference (NLI) is a fundamental task in natural language processing. While NLI has developed many sub-directions such as sentence-level NLI, document-level NLI and cross-lingual NLI, Cross-Document Cross-Lingual NLI (CDCL-NLI) remains largely unexplored. In this paper, we propose a novel paradigm: CDCL-NLI, which extends traditional NLI capabilities to multi-document, multilingual scenarios. To support this task, we construct a high-quality CDCL-NLI dataset including 25,410 instances and spanning 26 languages. To address the limitations of previous methods on CDCL-NLI task, we further propose an innovative method that integrates RST-enhanced graph fusion with interpretability-aware prediction. Our approach leverages RST (Rhetorical Structure Theory) within heterogeneous graph neural networks for cross-document context modeling, and employs a structure-aware semantic alignment based on lexical chains for cross-lingual understanding. For NLI interpretability, we develop an EDU (Elementary Discourse Unit)-level attribution framework that produces extractive explanations. Extensive experiments demonstrate our approach's superior performance, achieving significant improvements over both conventional NLI models as well as large language models. Our work sheds light on the study of NLI and will bring research interest on cross-document cross-lingual context understanding, hallucination elimination and interpretability inference. Our code and datasets are available at \href{https://anonymous.4open.science/r/CDCL-NLI-637E/}{CDCL-NLI-link} for peer review.
Scalable Evaluation of Online Facilitation Strategies via Synthetic Simulation of Discussions
Limited large-scale evaluations exist for facilitation strategies of online discussions due to significant costs associated with human involvement. An effective solution is synthetic discussion simulations using Large Language Models (LLMs) to create initial pilot experiments. We propose a simple, generalizable, LLM-driven methodology to prototype the development of LLM facilitators, and produce high-quality synthetic data without human involvement. We use our methodology to test whether current facilitation strategies can improve the performance of LLM facilitators. We find that, while LLM facilitators significantly improve synthetic discussions, there is no evidence that the application of more elaborate facilitation strategies proposed in modern Social Science research lead to further improvements in discussion quality, compared to more basic approaches. Additionally, we find that small LLMs (such as Mistral Nemo 12B) can perform comparably to larger models (such as LLaMa 70B), and that special instructions must be used for instruction-tuned models to induce toxicity in synthetic discussions. We confirm that each component of our methodology contributes substantially to high quality data via an ablation study. We release an open-source framework, "SynDisco" (pip install syndisco), which implements our methodology. We also release the "Virtual Moderation Dataset" (https://paperswithcode.com/dataset/vmd), a large, publicly available dataset containing LLM-generated and LLM-annotated discussions using multiple open-source LLMs.
comment: 19 pages, 3 tables, 12 figures
CARMA: Enhanced Compositionality in LLMs via Advanced Regularisation and Mutual Information Alignment
Large language models (LLMs) struggle with compositional generalisation, limiting their ability to systematically combine learned components to interpret novel inputs. While architectural modifications, fine-tuning, and data augmentation improve compositionality, they often have limited adaptability, face scalability constraints, or yield diminishing returns on real data. To address this, we propose CARMA, an intervention that enhances the stability and robustness of compositional reasoning in LLMs while preserving fine-tuned performance. CARMA employs mutual information regularisation and layer-wise stability constraints to mitigate feature fragmentation, ensuring structured representations persist across and within layers. We evaluate CARMA on inverse dictionary modelling and sentiment classification, measuring its impact on semantic consistency, performance stability, and robustness to lexical perturbations. Results show that CARMA reduces the variability introduced by fine-tuning, stabilises token representations, and improves compositional reasoning. While its effectiveness varies across architectures, CARMA's key strength lies in reinforcing learned structures rather than introducing new capabilities, making it a scalable auxiliary method. These findings suggest that integrating CARMA with fine-tuning can improve compositional generalisation while maintaining task-specific performance in LLMs.
comment: 19 pages, 8 figures, 8 tables
IP Leakage Attacks Targeting LLM-Based Multi-Agent Systems
The rapid advancement of Large Language Models (LLMs) has led to the emergence of Multi-Agent Systems (MAS) to perform complex tasks through collaboration. However, the intricate nature of MAS, including their architecture and agent interactions, raises significant concerns regarding intellectual property (IP) protection. In this paper, we introduce MASLEAK, a novel attack framework designed to extract sensitive information from MAS applications. MASLEAK targets a practical, black-box setting, where the adversary has no prior knowledge of the MAS architecture or agent configurations. The adversary can only interact with the MAS through its public API, submitting attack query $q$ and observing outputs from the final agent. Inspired by how computer worms propagate and infect vulnerable network hosts, MASLEAK carefully crafts adversarial query $q$ to elicit, propagate, and retain responses from each MAS agent that reveal a full set of proprietary components, including the number of agents, system topology, system prompts, task instructions, and tool usages. We construct the first synthetic dataset of MAS applications with 810 applications and also evaluate MASLEAK against real-world MAS applications, including Coze and CrewAI. MASLEAK achieves high accuracy in extracting MAS IP, with an average attack success rate of 87% for system prompts and task instructions, and 92% for system architecture in most cases. We conclude by discussing the implications of our findings and the potential defenses.
Rethinking Prompt Optimizers: From Prompt Merits to Optimization
Prompt optimization (PO) provides a practical way to improve response quality when users lack the time or expertise to manually craft effective prompts. Existing methods typically rely on advanced, large-scale LLMs like GPT-4 to generate optimized prompts. However, due to limited downward compatibility, verbose, instruction-heavy prompts from advanced LLMs can overwhelm lightweight inference models and degrade response quality. In this work, we rethink prompt optimization through the lens of interpretable design. We first identify a set of model-agnostic prompt quality merits and empirically validate their effectiveness in enhancing prompt and response quality. We then introduce MePO, a merit-guided, lightweight, and locally deployable prompt optimizer trained on our preference dataset built from merit-aligned prompts generated by a lightweight LLM. Unlike prior work, MePO avoids online optimization reliance, reduces cost and privacy concerns, and, by learning clear, interpretable merits, generalizes effectively to both large-scale and lightweight inference models. Experiments demonstrate that MePO achieves better results across diverse tasks and model types, offering a scalable and robust solution for real-world deployment. The code and dataset can be found in https://github.com/MidiyaZhu/MePO
comment: 21 pages, 14 figures
Plant in Cupboard, Orange on Rably, Inat Aphone. Benchmarking Incremental Learning of Situation and Language Model using a Text-Simulated Situated Environment
Large Language Models (LLMs) serve not only as chatbots but as key components in agent systems, where their common-sense knowledge significantly impacts performance as language-based planners for situated or embodied action. We assess LLMs' incremental learning (based on feedback from the environment), and controlled in-context learning abilities using a text-based environment. We introduce challenging yet interesting set of experiments to test i) how agents can incrementally solve tasks related to every day objects in typical rooms in a house where each of them are discovered by interacting within the environment, ii) controlled in-context learning abilities and efficiency of agents by providing short info about locations of objects and rooms to check how faster the task can be solved, and finally iii) using synthetic pseudo-English words to gauge how well LLMs are at inferring meaning of unknown words from environmental feedback. Results show that larger commercial models have a substantial gap in performance compared to open-weight but almost all models struggle with the synthetic words experiments.
InternLM-XComposer2.5-Reward: A Simple Yet Effective Multi-Modal Reward Model ACL 2025
Despite the promising performance of Large Vision Language Models (LVLMs) in visual understanding, they occasionally generate incorrect outputs. While reward models (RMs) with reinforcement learning or test-time scaling offer the potential for improving generation quality, a critical gap remains: publicly available multi-modal RMs for LVLMs are scarce, and the implementation details of proprietary models are often unclear. We bridge this gap with InternLM-XComposer2.5-Reward (IXC-2.5-Reward), a simple yet effective multi-modal reward model that aligns LVLMs with human preferences. To ensure the robustness and versatility of IXC-2.5-Reward, we set up a high-quality multi-modal preference corpus spanning text, image, and video inputs across diverse domains, such as instruction following, general understanding, text-rich documents, mathematical reasoning, and video understanding. IXC-2.5-Reward achieves excellent results on the latest multi-modal reward model benchmark and shows competitive performance on text-only reward model benchmarks. We further demonstrate three key applications of IXC-2.5-Reward: (1) Providing a supervisory signal for RL training. We integrate IXC-2.5-Reward with Proximal Policy Optimization (PPO) yields IXC-2.5-Chat, which shows consistent improvements in instruction following and multi-modal open-ended dialogue; (2) Selecting the best response from candidate responses for test-time scaling; and (3) Filtering outlier or noisy samples from existing image and video instruction tuning training data. To ensure reproducibility and facilitate further research, we have open-sourced all model weights and training recipes at https://github.com/InternLM/InternLM-XComposer/tree/main/InternLM-XComposer-2.5-Reward
comment: ACL 2025 Findings
Towards Achieving Concept Completeness for Textual Concept Bottleneck Models
Textual Concept Bottleneck Models (TBMs) are interpretable-by-design models for text classification that predict a set of salient concepts before making the final prediction. This paper proposes Complete Textual Concept Bottleneck Model (CT-CBM),a novel TCBM generator building concept labels in a fully unsupervised manner using a small language model, eliminating both the need for predefined human labeled concepts and LLM annotations. CT-CBM iteratively targets and adds important concepts in the bottleneck layer to create a complete concept basis and addresses downstream classification leakage through a parallel residual connection. CT-CBM achieves good results against competitors, offering a promising solution to enhance interpretability of NLP classifiers without sacrificing performance.
ACORD: An Expert-Annotated Retrieval Dataset for Legal Contract Drafting ACL 2025
Information retrieval, specifically contract clause retrieval, is foundational to contract drafting because lawyers rarely draft contracts from scratch; instead, they locate and revise the most relevant precedent. We introduce the Atticus Clause Retrieval Dataset (ACORD), the first retrieval benchmark for contract drafting fully annotated by experts. ACORD focuses on complex contract clauses such as Limitation of Liability, Indemnification, Change of Control, and Most Favored Nation. It includes 114 queries and over 126,000 query-clause pairs, each ranked on a scale from 1 to 5 stars. The task is to find the most relevant precedent clauses to a query. The bi-encoder retriever paired with pointwise LLMs re-rankers shows promising results. However, substantial improvements are still needed to effectively manage the complex legal work typically undertaken by lawyers. As the first retrieval benchmark for contract drafting annotated by experts, ACORD can serve as a valuable IR benchmark for the NLP community.
comment: Accepted to ACL 2025. See the project page at https://www.atticusprojectai.org/acord
R2-KG: General-Purpose Dual-Agent Framework for Reliable Reasoning on Knowledge Graphs
Recent studies have combined Large Language Models (LLMs) with Knowledge Graphs (KGs) to enhance reasoning, improving inference accuracy without additional training while mitigating hallucination. However, existing frameworks still suffer two practical drawbacks: they must be re-tuned whenever the KG or reasoning task changes, and they depend on a single, high-capacity LLM for reliable (i.e., trustworthy) reasoning. To address this, we introduce R2-KG, a plug-and-play, dual-agent framework that separates reasoning into two roles: an Operator (a low-capacity LLM) that gathers evidence and a Supervisor (a high-capacity LLM) that makes final judgments. This design is cost-efficient for LLM inference while still maintaining strong reasoning accuracy. Additionally, R2-KG employs an Abstention mechanism, generating answers only when sufficient evidence is collected from KG, which significantly enhances reliability. Experiments across five diverse benchmarks show that R2-KG consistently outperforms baselines in both accuracy and reliability, regardless of the inherent capability of LLMs used as the Operator. Further experiments reveal that the single-agent version of R2-KG, equipped with a strict self-consistency strategy, achieves significantly higher-than-baseline reliability with reduced inference cost but increased abstention rate in complex KGs. Our findings establish R2-KG as a flexible and cost-effective solution for KG-based reasoning, reducing reliance on high-capacity LLMs while ensuring trustworthy inference. The code is available at https://github.com/ekrxjwh2009/R2-KG/.
HICD: Hallucination-Inducing via Attention Dispersion for Contrastive Decoding to Mitigate Hallucinations in Large Language Models ACL2025
Large Language Models (LLMs) often generate hallucinations, producing outputs that are contextually inaccurate or factually incorrect. We introduce HICD, a novel method designed to induce hallucinations for contrastive decoding to mitigate hallucinations. Unlike existing contrastive decoding methods, HICD selects attention heads crucial to the model's prediction as inducing heads, then induces hallucinations by dispersing attention of these inducing heads and compares the hallucinated outputs with the original outputs to obtain the final result. Our approach significantly improves performance on tasks requiring contextual faithfulness, such as context completion, reading comprehension, and question answering. It also improves factuality in tasks requiring accurate knowledge recall. We demonstrate that our inducing heads selection and attention dispersion method leads to more "contrast-effective" hallucinations for contrastive decoding, outperforming other hallucination-inducing methods. Our findings provide a promising strategy for reducing hallucinations by inducing hallucinations in a controlled manner, enhancing the performance of LLMs in a wide range of tasks.
comment: Accepted by ACL2025 findings
Evaluation and Facilitation of Online Discussions in the LLM Era: A Survey
We present a survey of methods for assessing and enhancing the quality of online discussions, focusing on the potential of LLMs. While online discourses aim, at least in theory, to foster mutual understanding, they often devolve into harmful exchanges, such as hate speech, threatening social cohesion and democratic values. Recent advancements in LLMs enable artificial facilitation agents to not only moderate content, but also actively improve the quality of interactions. Our survey synthesizes ideas from NLP and Social Sciences to provide (a) a new taxonomy on discussion quality evaluation, (b) an overview of intervention and facilitation strategies, (c) along with a new taxonomy of conversation facilitation datasets, (d) an LLM-oriented roadmap of good practices and future research directions, from technological and societal perspectives.
IoT-LLM: Enhancing Real-World IoT Task Reasoning with Large Language Models
Large Language Models (LLMs) excel in textual and visual tasks but often produce outputs that defy physical laws when dealing with physical-world reasoning tasks. Inspired by human cognition, where perception is fundamental to reasoning, we explore augmenting LLMs with enhanced perception abilities using Internet of Things (IoT) sensor data and pertinent knowledge for IoT-sensory task reasoning in the physical world. In this work, we systematically study LLMs' capability to address real-world IoT-sensory tasks by augmenting their perception and knowledge base, and then propose a unified framework, IoT-LLM, to enhance such capability. In IoT-LLM, we customize three steps for LLMs: preprocessing IoT data into formats amenable to LLMs, expanding their understanding via IoT-oriented retrieval-augmented generation based on in-context learning and activating their commonsense knowledge through chain-of-thought prompting and specialized role definitions. We design a new benchmark comprising five real-world tasks with varying data types and reasoning complexities to evaluate the performance of IoT-LLM. Experimental results on six LLMs reveal that IoT-LLM significantly improves the performance of IoT-sensory task reasoning of LLMs, with models like GPT-4o-mini showing a 49.4% average improvement over previous methods.
comment: 21 pages, 11 figures, under review
MCiteBench: A Multimodal Benchmark for Generating Text with Citations
Multimodal Large Language Models (MLLMs) have advanced in integrating diverse modalities but frequently suffer from hallucination. A promising solution to mitigate this issue is to generate text with citations, providing a transparent chain for verification. However, existing work primarily focuses on generating citations for text-only content, leaving the challenges of multimodal scenarios largely unexplored. In this paper, we introduce MCiteBench, the first benchmark designed to assess the ability of MLLMs to generate text with citations in multimodal contexts. Our benchmark comprises data derived from academic papers and review-rebuttal interactions, featuring diverse information sources and multimodal content. Experimental results reveal that MLLMs struggle to ground their outputs reliably when handling multimodal input. Further analysis uncovers a systematic modality bias and reveals how models internally rely on different sources when generating citations, offering insights into model behavior and guiding future directions for multimodal citation tasks.
comment: https://caiyuhu.github.io/MCiteBench/
Arithmetics-Based Decomposition of Numeral Words -- Arithmetic Conditions give the Unpacking Strategy
This paper presents a novel numeral decomposer based on arithmetic criteria. The criteria are not dependent on a base-10 assumption but only on Hurford's Packing Strategy. Hurford's Packing Strategy constitutes numerals by packing factors and summands to multiplicators. We found out that a numeral of value n has a multiplicator larger than sqrt(n), a summand smaller than n/2 and a factor smaller than sqrt(n). Using these findings, the numeral decomposer attempts to detect and unpack factors and summand in order to reverse Hurford's Packing strategy. We tested its applicability for incremental unsupervised grammar induction in 273 languages. This way, grammars were obtained with sensible mathematical attributes that explain the structure of produced numerals. The numeral-decomposer-induced grammars are often close to expert-made and more compact than numeral grammars induced by a modern state-of-the-art grammar induction tool. Furthermore, this paper contains a report about the few cases of incorrect induced mathematical attributes, which are often linked to linguistic peculiarities like context sensitivity.
Human-Computer Interaction
NExT-Search: Rebuilding User Feedback Ecosystem for Generative AI Search SIGIR 2025
Generative AI search is reshaping information retrieval by offering end-to-end answers to complex queries, reducing users' reliance on manually browsing and summarizing multiple web pages. However, while this paradigm enhances convenience, it disrupts the feedback-driven improvement loop that has historically powered the evolution of traditional Web search. Web search can continuously improve their ranking models by collecting large-scale, fine-grained user feedback (e.g., clicks, dwell time) at the document level. In contrast, generative AI search operates through a much longer search pipeline, spanning query decomposition, document retrieval, and answer generation, yet typically receives only coarse-grained feedback on the final answer. This introduces a feedback loop disconnect, where user feedback for the final output cannot be effectively mapped back to specific system components, making it difficult to improve each intermediate stage and sustain the feedback loop. In this paper, we envision NExT-Search, a next-generation paradigm designed to reintroduce fine-grained, process-level feedback into generative AI search. NExT-Search integrates two complementary modes: User Debug Mode, which allows engaged users to intervene at key stages; and Shadow User Mode, where a personalized user agent simulates user preferences and provides AI-assisted feedback for less interactive users. Furthermore, we envision how these feedback signals can be leveraged through online adaptation, which refines current search outputs in real-time, and offline update, which aggregates interaction logs to periodically fine-tune query decomposition, retrieval, and generation models. By restoring human control over key stages of the generative AI search pipeline, we believe NExT-Search offers a promising direction for building feedback-rich AI search systems that can evolve continuously alongside human feedback.
comment: SIGIR 2025 Perspective Paper
ContextAgent: Context-Aware Proactive LLM Agents with Open-World Sensory Perceptions
Recent advances in Large Language Models (LLMs) have propelled intelligent agents from reactive responses to proactive support. While promising, existing proactive agents either rely exclusively on observations from enclosed environments (e.g., desktop UIs) with direct LLM inference or employ rule-based proactive notifications, leading to suboptimal user intent understanding and limited functionality for proactive service. In this paper, we introduce ContextAgent, the first context-aware proactive agent that incorporates extensive sensory contexts to enhance the proactive capabilities of LLM agents. ContextAgent first extracts multi-dimensional contexts from massive sensory perceptions on wearables (e.g., video and audio) to understand user intentions. ContextAgent then leverages the sensory contexts and the persona contexts from historical data to predict the necessity for proactive services. When proactive assistance is needed, ContextAgent further automatically calls the necessary tools to assist users unobtrusively. To evaluate this new task, we curate ContextAgentBench, the first benchmark for evaluating context-aware proactive LLM agents, covering 1,000 samples across nine daily scenarios and twenty tools. Experiments on ContextAgentBench show that ContextAgent outperforms baselines by achieving up to 8.5% and 6.0% higher accuracy in proactive predictions and tool calling, respectively. We hope our research can inspire the development of more advanced, human-centric, proactive AI assistants.
AKRMap: Adaptive Kernel Regression for Trustworthy Visualization of Cross-Modal Embeddings
Cross-modal embeddings form the foundation for multi-modal models. However, visualization methods for interpreting cross-modal embeddings have been primarily confined to traditional dimensionality reduction (DR) techniques like PCA and t-SNE. These DR methods primarily focus on feature distributions within a single modality, whilst failing to incorporate metrics (e.g., CLIPScore) across multiple modalities.This paper introduces AKRMap, a new DR technique designed to visualize cross-modal embeddings metric with enhanced accuracy by learning kernel regression of the metric landscape in the projection space. Specifically, AKRMap constructs a supervised projection network guided by a post-projection kernel regression loss, and employs adaptive generalized kernels that can be jointly optimized with the projection. This approach enables AKRMap to efficiently generate visualizations that capture complex metric distributions, while also supporting interactive features such as zoom and overlay for deeper exploration. Quantitative experiments demonstrate that AKRMap outperforms existing DR methods in generating more accurate and trustworthy visualizations. We further showcase the effectiveness of AKRMap in visualizing and comparing cross-modal embeddings for text-to-image models. Code and demo are available at https://github.com/yilinye/AKRMap.
Will AI Tell Lies to Save Sick Children? Litmus-Testing AI Values Prioritization with AIRiskDilemmas
Detecting AI risks becomes more challenging as stronger models emerge and find novel methods such as Alignment Faking to circumvent these detection attempts. Inspired by how risky behaviors in humans (i.e., illegal activities that may hurt others) are sometimes guided by strongly-held values, we believe that identifying values within AI models can be an early warning system for AI's risky behaviors. We create LitmusValues, an evaluation pipeline to reveal AI models' priorities on a range of AI value classes. Then, we collect AIRiskDilemmas, a diverse collection of dilemmas that pit values against one another in scenarios relevant to AI safety risks such as Power Seeking. By measuring an AI model's value prioritization using its aggregate choices, we obtain a self-consistent set of predicted value priorities that uncover potential risks. We show that values in LitmusValues (including seemingly innocuous ones like Care) can predict for both seen risky behaviors in AIRiskDilemmas and unseen risky behaviors in HarmBench.
comment: 34 pages, 11 figures, see associated data at https://huggingface.co/datasets/kellycyy/AIRiskDilemmas and code at https://github.com/kellycyy/LitmusValues
Spiking Neural Networks with Temporal Attention-Guided Adaptive Fusion for imbalanced Multi-modal Learning
Multimodal spiking neural networks (SNNs) hold significant potential for energy-efficient sensory processing but face critical challenges in modality imbalance and temporal misalignment. Current approaches suffer from uncoordinated convergence speeds across modalities and static fusion mechanisms that ignore time-varying cross-modal interactions. We propose the temporal attention-guided adaptive fusion framework for multimodal SNNs with two synergistic innovations: 1) The Temporal Attention-guided Adaptive Fusion (TAAF) module that dynamically assigns importance scores to fused spiking features at each timestep, enabling hierarchical integration of temporally heterogeneous spike-based features; 2) The temporal adaptive balanced fusion loss that modulates learning rates per modality based on the above attention scores, preventing dominant modalities from monopolizing optimization. The proposed framework implements adaptive fusion, especially in the temporal dimension, and alleviates the modality imbalance during multimodal learning, mimicking cortical multisensory integration principles. Evaluations on CREMA-D, AVE, and EAD datasets demonstrate state-of-the-art performance (77.55\%, 70.65\% and 97.5\%accuracy, respectively) with energy efficiency. The system resolves temporal misalignment through learnable time-warping operations and faster modality convergence coordination than baseline SNNs. This work establishes a new paradigm for temporally coherent multimodal learning in neuromorphic systems, bridging the gap between biological sensory processing and efficient machine intelligence.
How Managers Perceive AI-Assisted Conversational Training for Workplace Communication
Effective workplace communication is essential for managerial success, yet many managers lack access to tailored and sustained training. Although AI-assisted communication systems may offer scalable training solutions, little is known about how managers envision the role of AI in helping them improve their communication skills. To investigate this, we designed a conversational role-play system, CommCoach, as a functional probe to understand how managers anticipate using AI to practice their communication skills. Through semi-structured interviews, participants emphasized the value of adaptive, low-risk simulations for practicing difficult workplace conversations. They also highlighted opportunities, including human-AI teaming, transparent and context-aware feedback, and greater control over AI-generated personas. AI-assisted communication training should balance personalization, structured learning objectives, and adaptability to different user styles and contexts. However, achieving this requires carefully navigating tensions between adaptive and consistent AI feedback, realism and potential bias, and the open-ended nature of AI conversations versus structured workplace discourse.
comment: accepted to CUI '25
Algorithmic Hiring and Diversity: Reducing Human-Algorithm Similarity for Better Outcomes
Algorithmic tools are increasingly used in hiring to improve fairness and diversity, often by enforcing constraints such as gender-balanced candidate shortlists. However, we show theoretically and empirically that enforcing equal representation at the shortlist stage does not necessarily translate into more diverse final hires, even when there is no gender bias in the hiring stage. We identify a crucial factor influencing this outcome: the correlation between the algorithm's screening criteria and the human hiring manager's evaluation criteria -- higher correlation leads to lower diversity in final hires. Using a large-scale empirical analysis of nearly 800,000 job applications across multiple technology firms, we find that enforcing equal shortlists yields limited improvements in hire diversity when the algorithmic screening closely mirrors the hiring manager's preferences. We propose a complementary algorithmic approach designed explicitly to diversify shortlists by selecting candidates likely to be overlooked by managers, yet still competitive according to their evaluation criteria. Empirical simulations show that this approach significantly enhances gender diversity in final hires without substantially compromising hire quality. These findings highlight the importance of algorithmic design choices in achieving organizational diversity goals and provide actionable guidance for practitioners implementing fairness-oriented hiring algorithms.
Two Empirical Studies on Audiovisual Semiotics of Uncertainty
There exists limited theoretical guidance on integrating visualization and sonification. In this paper, we address this gap by investigating audiovisual semiotics for uncertainty representation: joining uncertainty visualization and sonification to combine audiovisual channels for enhancing users' perception of uncertainty. We conducted two preregistered crowd-sourced user studies. First, we assessed suitable audio/visual pairs. Then, we investigated audiovisual mappings of uncertainty. Here, we use probability as it is an easily communicated aspect of uncertainty. We analyzed the participants' preferences and reaction times in both user studies. Additionally, we explored the strategies employed by participants through qualitative analysis. Our results reveal audiovisual mappings that lead to particularly strong preferences and low reaction times. Furthermore, we found that preferred audio/visual pairs are not necessarily suitable audiovisual mappings of uncertainty. For example, while pitch paired with brightness was preferred as a pair, it was not well suited as a mapping for uncertainty. We recommend audiovisual mappings of uncertainty that lead to low reaction times and high preferences in both user studies. This paper presents guidelines to anyone seeking to employ audiovisual representations for uncertainty, contributing to enhancing the perception of uncertainty.
comment: Accepted to Audio Mostly 2025 [AM '25]
When Bias Backfires: The Modulatory Role of Counterfactual Explanations on the Adoption of Algorithmic Bias in XAI-Supported Human Decision-Making
Although the integration of artificial intelligence (AI) into everyday tasks improves efficiency and objectivity, it also risks transmitting bias to human decision-making. In this study, we conducted a controlled experiment that simulated hiring decisions to examine how biased AI recommendations - augmented with or without counterfactual explanations - influence human judgment over time. Participants, acting as hiring managers, completed 60 decision trials divided into a baseline phase without AI, followed by a phase with biased (X)AI recommendations (favoring either male or female candidates), and a final post-interaction phase without AI. Our results indicate that the participants followed the AI recommendations 70% of the time when the qualifications of the given candidates were comparable. Yet, only a fraction of participants detected the gender bias (8 out of 294). Crucially, exposure to biased AI altered participants' inherent preferences: in the post-interaction phase, participants' independent decisions aligned with the bias when no counterfactual explanations were provided before, but reversed the bias when explanations were given. Reported trust did not differ significantly across conditions. Confidence varied throughout the study phases after exposure to male-biased AI, indicating nuanced effects of AI bias on decision certainty. Our findings point to the importance of calibrating XAI to avoid unintended behavioral shifts in order to safeguard equitable decision-making and prevent the adoption of algorithmic bias.
comment: Accepted for XAI2025
What Does Success Look Like? Catalyzing Meeting Intentionality with AI-Assisted Prospective Reflection
Despite decades of HCI and Meeting Science research, complaints about ineffective meetings are still pervasive. We argue that meeting technologies lack support for prospective reflection, that is, thinking about why a meeting is needed and what might happen. To explore this, we designed a Meeting Purpose Assistant (MPA) technology probe to coach users to articulate their meeting's purpose and challenges, and act accordingly. The MPA used Generative AI to support personalized and actionable prospective reflection across the diversity of meeting contexts. Using a participatory prompting methodology, 18 employees of a global technology company reflected with the MPA on upcoming meetings. Observed impacts were: clarifying meeting purposes, challenges, and success conditions; changing perspectives and flexibility; improving preparation and communication; and proposing changed plans. We also identify perceived social, temporal, and technological barriers to using the MPA. We present system and workflow design considerations for developing AI-assisted reflection support for meetings.
Human and Machine as Seen at the Co-Creation Age: A Co-Word Analysis in Human Machine Co-creation (2014-2024)
This paper explores the evolving landscape of human-machine co-creation, focusing on its development in the context of the ACM Conference on Human Factors in Computing Systems (CHI) from 2014 to 2024. We employ co-word analysis to identify emerging trends, central themes, and the intellectual trajectory of this field. The study highlights the shift from viewing machines as mere tools to recognizing them as collaborative partners in creative processes. By understanding these dynamics, we aim to provide insights into the implications of this paradigm shift for creativity, innovation, and societal impact, ultimately fostering a more inclusive and effective approach to human-machine interaction in various domains.
comment: 24 pages
Upgrading Democracies with Fairer Voting Methods
Voting methods are instrumental design element of democracies. Citizens use them to express and aggregate their preferences to reach a collective decision. However, voting outcomes can be as sensitive to voting rules as they are to people's voting choices. Despite the significance and inter-disciplinary scientific progress on voting methods, several democracies keep relying on outdated voting methods that do not fit modern, pluralistic societies well, while lacking social innovation. Here, we demonstrate how one can upgrade real-world democracies, namely by using alternative preferential voting methods such as cumulative voting and the method of equal shares designed for a proportional representation of voters' preferences. By rigorously assessing a new participatory budgeting approach applied in the city of Aarau, Switzerland, we unravel the striking voting outcomes of fair voting methods: more winning projects with the same budget and broader geographic and preference representation of citizens by the elected projects, in particular for voters who used to be under-represented, while promoting novel project ideas. We provide profound causal evidence showing that citizens prefer proportional voting methods, which possess strong legitimacy without the need of very technical specialized explanations. We also reveal strong underlying democratic values exhibited by citizens who support fair voting methods such as altruism and compromise. These findings come with a global momentum to unleash a new and long-awaited participation blueprint of how to upgrade democracies.
comment: Includes Supplementary Information
MAS-KCL: Knowledge component graph structure learning with large language model-based agentic workflow
Knowledge components (KCs) are the fundamental units of knowledge in the field of education. A KC graph illustrates the relationships and dependencies between KCs. An accurate KC graph can assist educators in identifying the root causes of learners' poor performance on specific KCs, thereby enabling targeted instructional interventions. To achieve this, we have developed a KC graph structure learning algorithm, named MAS-KCL, which employs a multi-agent system driven by large language models for adaptive modification and optimization of the KC graph. Additionally, a bidirectional feedback mechanism is integrated into the algorithm, where AI agents leverage this mechanism to assess the value of edges within the KC graph and adjust the distribution of generation probabilities for different edges, thereby accelerating the efficiency of structure learning. We applied the proposed algorithm to 5 synthetic datasets and 4 real-world educational datasets, and experimental results validate its effectiveness in learning path recognition. By accurately identifying learners' learning paths, teachers are able to design more comprehensive learning plans, enabling learners to achieve their educational goals more effectively, thus promoting the sustainable development of education.
comment: In CGI 2025: 42nd Computer Graphics International Conference, Kowloon, Hong Kong, Peper No. 134
Gender Trouble in Language Models: An Empirical Audit Guided by Gender Performativity Theory
Language models encode and subsequently perpetuate harmful gendered stereotypes. Research has succeeded in mitigating some of these harms, e.g. by dissociating non-gendered terms such as occupations from gendered terms such as 'woman' and 'man'. This approach, however, remains superficial given that associations are only one form of prejudice through which gendered harms arise. Critical scholarship on gender, such as gender performativity theory, emphasizes how harms often arise from the construction of gender itself, such as conflating gender with biological sex. In language models, these issues could lead to the erasure of transgender and gender diverse identities and cause harms in downstream applications, from misgendering users to misdiagnosing patients based on wrong assumptions about their anatomy. For FAccT research on gendered harms to go beyond superficial linguistic associations, we advocate for a broader definition of 'gender bias' in language models. We operationalize insights on the construction of gender through language from gender studies literature and then empirically test how 16 language models of different architectures, training datasets, and model sizes encode gender. We find that language models tend to encode gender as a binary category tied to biological sex, and that gendered terms that do not neatly fall into one of these binary categories are erased and pathologized. Finally, we show that larger models, which achieve better results on performance benchmarks, learn stronger associations between gender and sex, further reinforcing a narrow understanding of gender. Our findings lead us to call for a re-evaluation of how gendered harms in language models are defined and addressed.
The Virtual Reality Koinos Method: Analyzing Virtual Reality Collaboration from the perspective of communication models
Understanding which factors could influence co-presence in Virtual Reality could help develop more qualitative social interactions, or social interactions that generate similar sensations, emotions and feelings than the ones generated during Face-to-Face interactions. Co-presence is studied since the beginning of Virtual Reality (VR); though, no consensus is identified on what factors could influence it, except the consensus on the definition of "being there together" inside the Virtual Environment. In this paper, we introduce the Koinos method to explain social interactions in VR through communication models, (i) theoretically, and (ii) on two VR experiments that change the virtual partner social and physical representations. These analyses lead us to propose an equation to predict and help manage the sense of co-presence in VR.
comment: 25 pages, 7 figures, in preprint for a journal (currently in review process)
Recreating Neural Activity During Speech Production with Language and Speech Model Embeddings
Understanding how neural activity encodes speech and language production is a fundamental challenge in neuroscience and artificial intelligence. This study investigates whether embeddings from large-scale, self-supervised language and speech models can effectively reconstruct neural activity recordings captured during speech production. We leverage pre-trained embeddings from deep learning models trained on linguistic and acoustic data to represent high-level speech features and map them onto neural signals. We analyze the extent to which these embeddings preserve the spatio-temporal dynamics of brain activity. We evaluate reconstructed neural signals against ground truth recordings using correlation metrics and signal reconstruction quality assessments. The results indicate that neural activity can be effectively reconstructed using embeddings from large language and speech models across all study participants, yielding Pearson correlation coefficients ranging from 0.79 to 0.99.
comment: Accepted for presentation at Interspeech2025
Reading.help: Supporting EFL Readers with Proactive and On-Demand Explanation of English Grammar and Semantics
A large portion of texts in the world is written in English, but readers who see English as a Foreign Language (EFL) often struggle to read texts written in English accurately and swiftly. In many countries, EFL readers seek help from professional teachers and mentors, which is limited and costly. In this paper, we explore how an intelligent reading tool can assist EFL readers. To support our research agenda, we conducted a case study with EFL readers in South Korea. We at first developed an LLM-based reading tool based on prior literature. We then revised the tool based on the feedback from a study with 15 South Korean EFL readers. The final tool, named Reading.help, helps EFL readers comprehend complex sentences and paragraphs with on-demand and proactive explanations. We finally evaluated the tool with 5 EFL readers and 2 EFL education professionals. Our findings suggest Reading.help could potentially help EFL readers self-learn english when they do not have access to any external support.
comment: Preprint
Human Authenticity and Flourishing in an AI-Driven World: Edmund's Journey and the Call for Mindfulness
Humans have always dreamed of possessing superpowers, and the rapid development of AI-based features promises to bring these dreams (closer) to reality. However, these advancements come with significant risks. This paper advocates for challenging existing methods and approaches in design and evaluation for more responsible AI. We stimulate reflection through a futuristic user journey illustrating the AI-driven life of Edmund in 2035. Subsequently, we discuss four AI-based superpowers: extended perception, cognitive offloading, externalized memory, and enhanced presence. We then discuss implications for HCI and AI, emphasizing the need for preserving intrinsic human superpowers, identifying meaningful use cases for AI, and evaluating AI's impact on human abilities. This paper advocates for responsible and reflective AI integration and proposes a pathway towards the idea of a Human Flourishing Benchmark.
Sketch Interface for Teleoperation of Mobile Manipulator to Enable Intuitive and Intended Operation: A Proof of Concept
Recent advancements in robotics have underscored the need for effective collaboration between humans and robots. Traditional interfaces often struggle to balance robot autonomy with human oversight, limiting their practical application in complex tasks like mobile manipulation. This study aims to develop an intuitive interface that enables a mobile manipulator to autonomously interpret user-provided sketches, enhancing user experience while minimizing burden. We implemented a web-based application utilizing machine learning algorithms to process sketches, making the interface accessible on mobile devices for use anytime, anywhere, by anyone. In the first validation, we examined natural sketches drawn by users for 27 selected manipulation and navigation tasks, gaining insights into trends related to sketch instructions. The second validation involved comparative experiments with five grasping tasks, showing that the sketch interface reduces workload and enhances intuitiveness compared to conventional axis control interfaces. These findings suggest that the proposed sketch interface improves the efficiency of mobile manipulators and opens new avenues for integrating intuitive human-robot collaboration in various applications.
comment: This paper has been accepted to the the 20th edition of the IEEE/ACM International Conference on Human-Robot Interaction (HRI'25), which will be held in Melbourne, Australia on March 4-6, 2025
Unremarkable to Remarkable AI Agent: Exploring Boundaries of Agent Intervention for Adults With and Without Cognitive Impairment SC
As the population of older adults increases, there is a growing need for support for them to age in place. This is exacerbated by the growing number of individuals struggling with cognitive decline and shrinking number of youth who provide care for them. Artificially intelligent agents could provide cognitive support to older adults experiencing memory problems, and they could help informal caregivers with coordination tasks. To better understand this possible future, we conducted a speed dating with storyboards study to reveal invisible social boundaries that might keep older adults and their caregivers from accepting and using agents. We found that healthy older adults worry that accepting agents into their homes might increase their chances of developing dementia. At the same time, they want immediate access to agents that know them well if they should experience cognitive decline. Older adults in the early stages of cognitive decline expressed a desire for agents that can ease the burden they saw themselves becoming for their caregivers. They also speculated that an agent who really knew them well might be an effective advocate for their needs when they were less able to advocate for themselves. That is, the agent may need to transition from being unremarkable to remarkable. Based on these findings, we present design opportunities and considerations for agents and articulate directions of future research.
comment: To appear in 2025 ACM Conference on Computer-Supported Cooperative Work and Social Computing (CSCW)
Voice to Vision: Enhancing Civic Decision-Making through Co-Designed Data Infrastructure
Trust and transparency in civic decision-making processes, like neighborhood planning, are eroding as community members frequently report sending feedback "into a void" without understanding how, or whether, their input influences outcomes. To address this gap, we introduce Voice to Vision, a sociotechnical system that bridges community voices and planning outputs through a structured yet flexible data infrastructure and complementary interfaces for both community members and planners. Through a five-month iterative design process with 21 stakeholders and subsequent field evaluation involving 24 participants, we examine how this system facilitates shared understanding across the civic ecosystem. Our findings reveal that while planners value systematic sensemaking tools that find connections across diverse inputs, community members prioritize seeing themselves reflected in the process, discovering patterns within feedback, and observing the rigor behind decisions, while emphasizing the importance of actionable outcomes. We contribute insights into participatory design for civic contexts, a complete sociotechnical system with an interoperable data structure for civic decision-making, and empirical findings that inform how digital platforms can promote shared understanding among elected or appointed officials, planners, and community members by enhancing transparency and legitimacy.
comment: 27 pages, 6 tables, 7 figures, submitted for review
The Pin of Shame: Examining Content Creators' Adoption of Pinning Inappropriate Comments as a Moderation Strategy
Many social media platforms allow content creators to pin user comments in response to their content. Once pinned, a comment remains fixed at the top of the comments section, regardless of subsequent activity or the selected sorting order. The "Pin of Shame" refers to an innovative re-purposing of this feature, where creators intentionally pin norm-violating comments to spotlight them and prompt shaming responses from their audiences. This study explores how creators adopt this emerging moderation tactic, examining their motivations, its outcomes, and how it compares-procedurally and in effect-to other content moderation strategies. Through interviews with 20 content creators who had pinned negative comments on their posts, we find that the Pin of Shame is used to punish and educate inappropriate commenters, elicit emotional accountability, provoke audience negotiation of community norms, and support creators' impression management goals. Our findings shed light on the benefits, precarities, and risks of using public shaming as a tool for norm enforcement. We contribute to HCI research by informing the design of user-centered tools for addressing content-based harm.
comment: 22 pages, 1 figure, 1 table
Looking for an out: Affordances, uncertainty and collision avoidance behavior of human drivers
Understanding collision avoidance behavior is of key importance in traffic safety research and for designing and evaluating advanced driver assistance systems and autonomous vehicles. While existing experimental work has primarily focused on response timing in traffic conflicts, the goal of the present study was to gain a better understanding of human evasive maneuver decisions and execution in collision avoidance scenarios. To this end, we designed a driving simulator study where participants were exposed to one of three surprising opposite direction lateral incursion (ODLI) scenario variants. The results demonstrated that both the participants' collision avoidance behavior patterns and the collision outcome was strongly determined by the scenario kinematics and, more specifically, by the uncertainty associated with the oncoming vehicle's future trajectory. We discuss pitfalls related to hindsight bias when judging the quality of evasive maneuvers in uncertain situations and suggest that the availability of escape paths in collision avoidance scenarios can be usefully understood based on the notion of affordances, and further demonstrate how such affordances can be operationalized in terms of reachable sets. We conclude by discussing how these results can be used to inform computational models of collision avoidance behavior.
Designing Semantically-Resonant Abstract Patterns for Data Visualization
We present a structured design methodology for creating semantically-resonant abstract patterns, making the pattern design process accessible to the general public. Semantically-resonant patterns are those that intuitively evoke the concept they represent within a specific set (e.g., in a vegetable concept set, small dots for olives and large dots for tomatoes), analogous to the concept of semantically-resonant colors (e.g., using olive green for olives and red for tomatoes). Previous research has shown that semantically-resonant colors can improve chart reading speed, and designers have made attempts to integrate semantic cues into abstract pattern designs. However, a systematic framework for developing such patterns was lacking. To bridge this gap, we conducted a series of workshops with design experts, resulting in a design methodology that summarizes the methodology for designing semantically-resonant abstract patterns. We evaluated our design methodology through another series of workshops with non-design participants. The results indicate that our proposed design methodology effectively supports the general public in designing semantically-resonant abstract patterns for both abstract and concrete concepts.
Integrating Field of View in Human-Aware Collaborative Planning
In human-robot collaboration (HRC), it is crucial for robot agents to consider humans' knowledge of their surroundings. In reality, humans possess a narrow field of view (FOV), limiting their perception. However, research on HRC often overlooks this aspect and presumes an omniscient human collaborator. Our study addresses the challenge of adapting to the evolving subtask intent of humans while accounting for their limited FOV. We integrate FOV within the human-aware probabilistic planning framework. To account for large state spaces due to considering FOV, we propose a hierarchical online planner that efficiently finds approximate solutions while enabling the robot to explore low-level action trajectories that enter the human FOV, influencing their intended subtask. Through user study with our adapted cooking domain, we demonstrate our FOV-aware planner reduces human's interruptions and redundant actions during collaboration by adapting to human perception limitations. We extend these findings to a virtual reality kitchen environment, where we observe similar collaborative behaviors.
comment: Published at International Conference on Robotics and Automation (2025)
What is Visualization for Communication? Analyzing Four Years of VisComm Papers IEEE VIS 2023
With the introduction of the Visualization for Communication workshop (VisComm) at IEEE VIS and in light of the COVID-19 pandemic, there has been renewed interest in studying visualization as a medium of communication. However the characteristics and definition of this line of study tend to vary from paper to paper and person to person. In this work, we examine the 37 papers accepted to VisComm from 2018 through 2022. Using grounded theory we identify nuances in how VisComm defines visualization, common themes in the work in this area, and a noticeable gap in DEI practices.
comment: Accepted to IEEE VIS 2023 VisComm Workshop; 2 pages, 0 figures, 44 referenced papers
From Assistants to Adversaries: Exploring the Security Risks of Mobile LLM Agents
The growing adoption of large language models (LLMs) has led to a new paradigm in mobile computing--LLM-powered mobile AI agents--capable of decomposing and automating complex tasks directly on smartphones. However, the security implications of these agents remain largely unexplored. In this paper, we present the first comprehensive security analysis of mobile LLM agents, encompassing three representative categories: System-level AI Agents developed by original equipment manufacturers (e.g., YOYO Assistant), Third-party Universal Agents (e.g., Zhipu AI AutoGLM), and Emerging Agent Frameworks (e.g., Alibaba Mobile Agent). We begin by analyzing the general workflow of mobile agents and identifying security threats across three core capability dimensions: language-based reasoning, GUI-based interaction, and system-level execution. Our analysis reveals 11 distinct attack surfaces, all rooted in the unique capabilities and interaction patterns of mobile LLM agents, and spanning their entire operational lifecycle. To investigate these threats in practice, we introduce AgentScan, a semi-automated security analysis framework that systematically evaluates mobile LLM agents across all 11 attack scenarios. Applying AgentScan to nine widely deployed agents, we uncover a concerning trend: every agent is vulnerable to targeted attacks. In the most severe cases, agents exhibit vulnerabilities across eight distinct attack vectors. These attacks can cause behavioral deviations, privacy leakage, or even full execution hijacking. Based on these findings, we propose a set of defensive design principles and practical recommendations for building secure mobile LLM agents. Our disclosures have received positive feedback from two major device vendors. Overall, this work highlights the urgent need for standardized security practices in the fast-evolving landscape of LLM-driven mobile automation.
Revealing and Mitigating the Challenge of Detecting Character Knowledge Errors in LLM Role-Playing
Large language model (LLM) role-playing has gained widespread attention. Authentic character knowledge is crucial for constructing realistic LLM role-playing agents. However, existing works usually overlook the exploration of LLMs' ability to detect characters' known knowledge errors (KKE) and unknown knowledge errors (UKE) while playing roles, which would lead to low-quality automatic construction of character trainable corpus. In this paper, we propose RoleKE-Bench to evaluate LLMs' ability to detect errors in KKE and UKE. The results indicate that even the latest LLMs struggle to detect these two types of errors effectively, especially when it comes to familiar knowledge. We experimented with various reasoning strategies and propose an agent-based reasoning method, Self-Recollection and Self-Doubt (S$^2$RD), to explore further the potential for improving error detection capabilities. Experiments show that our method effectively improves the LLMs' ability to detect error character knowledge, but it remains an issue that requires ongoing attention.
comment: 25 pages, 6 figures, 20 tables
Uncovering the Internet's Hidden Values: An Empirical Study of Desirable Behavior Using Highly-Upvoted Content on Reddit
A major task for moderators of online spaces is norm-setting, essentially creating shared norms for user behavior in their communities. Platform design principles emphasize the importance of highlighting norm-adhering examples and explicitly stating community norms. However, norms and values vary between communities and go beyond content-level attributes, making it challenging for platforms and researchers to provide automated ways to identify desirable behavior to be highlighted. Current automated approaches to detect desirability are limited to measures of prosocial behavior, but we do not know whether these measures fully capture the spectrum of what communities value. In this paper, we use upvotes, which express community approval, as a proxy for desirability and examine 16,000 highly-upvoted comments across 80 popular sub-communities on Reddit. Using a large language model, we extract values from these comments across two years (2016 and 2022) and compile 64 and 72 $\textit{macro}$, $\textit{meso}$, and $\textit{micro}$ values for 2016 and 2022 respectively, based on their frequency across communities. Furthermore, we find that existing computational models for measuring prosociality were inadequate to capture on average $82\%$ of the values we extracted. Finally, we show that our approach can not only extract most of the qualitatively-identified values from prior taxonomies, but also uncover new values that are actually encouraged in practice. Our findings highlight the need for nuanced models of desirability that go beyond preexisting prosocial measures. This work has implications for improving moderator understanding of their community values and provides a framework that can supplement qualitative approaches with larger-scale content analyses.
comment: Preprint: 15 pages, 3 figures, 2 tables
ViMo: A Generative Visual GUI World Model for App Agents
App agents, which autonomously operate mobile Apps through Graphical User Interfaces (GUIs), have gained significant interest in real-world applications. Yet, they often struggle with long-horizon planning, failing to find the optimal actions for complex tasks with longer steps. To address this, world models are used to predict the next GUI observation based on user actions, enabling more effective agent planning. However, existing world models primarily focus on generating only textual descriptions, lacking essential visual details. To fill this gap, we propose ViMo, the first visual world model designed to generate future App observations as images. For the challenge of generating text in image patches, where even minor pixel errors can distort readability, we decompose GUI generation into graphic and text content generation. We propose a novel data representation, the Symbolic Text Representation~(STR) to overlay text content with symbolic placeholders while preserving graphics. With this design, ViMo employs a STR Predictor to predict future GUIs' graphics and a GUI-text Predictor for generating the corresponding text. Moreover, we deploy ViMo to enhance agent-focused tasks by predicting the outcome of different action options. Experiments show ViMo's ability to generate visually plausible and functionally effective GUIs that enable App agents to make more informed decisions.
comment: https://ai-agents-2030.github.io/ViMo/
Seismocardiography for Emotion Recognition: A Study on EmoWear with Insights from DEAP
Emotions have a profound impact on our daily lives, influencing our thoughts, behaviors, and interactions, but also our physiological reactions. Recent advances in wearable technology have facilitated studying emotions through cardio-respiratory signals. Accelerometers offer a non-invasive, convenient, and cost-effective method for capturing heart- and pulmonary-induced vibrations on the chest wall, specifically Seismocardiography (SCG) and Accelerometry-Derived Respiration (ADR). Their affordability, wide availability, and ability to provide rich contextual data make accelerometers ideal for everyday use. While accelerometers have been used as part of broader modality fusions for Emotion Recognition (ER), their stand-alone potential via SCG and ADR remains unexplored. Bridging this gap could significantly help the embedding of ER into real-world applications, minimizing the hardware, and increasing contextual integration potentials. To address this gap, we introduce SCG and ADR as novel modalities for ER and evaluate their performance using the EmoWear dataset. First, we replicate the single-trial emotion classification pipeline from the DEAP dataset study, achieving similar results. Then we use our validated pipeline to train models that predict affective valence-arousal states using SCG and compare them against established cardiac signals, Electrocardiography (ECG) and Blood Volume Pulse (BVP). Results show that SCG is a viable modality for ER, achieving similar performance to ECG and BVP. By combining ADR with SCG, we achieved a working ER framework that only requires a single chest-worn accelerometer. These findings pave the way for integrating ER into real-world, enabling seamless affective computing in everyday life.
comment: 17 pages, 9 figures
Scalable Evaluation of Online Facilitation Strategies via Synthetic Simulation of Discussions
Limited large-scale evaluations exist for facilitation strategies of online discussions due to significant costs associated with human involvement. An effective solution is synthetic discussion simulations using Large Language Models (LLMs) to create initial pilot experiments. We propose a simple, generalizable, LLM-driven methodology to prototype the development of LLM facilitators, and produce high-quality synthetic data without human involvement. We use our methodology to test whether current facilitation strategies can improve the performance of LLM facilitators. We find that, while LLM facilitators significantly improve synthetic discussions, there is no evidence that the application of more elaborate facilitation strategies proposed in modern Social Science research lead to further improvements in discussion quality, compared to more basic approaches. Additionally, we find that small LLMs (such as Mistral Nemo 12B) can perform comparably to larger models (such as LLaMa 70B), and that special instructions must be used for instruction-tuned models to induce toxicity in synthetic discussions. We confirm that each component of our methodology contributes substantially to high quality data via an ablation study. We release an open-source framework, "SynDisco" (pip install syndisco), which implements our methodology. We also release the "Virtual Moderation Dataset" (https://paperswithcode.com/dataset/vmd), a large, publicly available dataset containing LLM-generated and LLM-annotated discussions using multiple open-source LLMs.
comment: 19 pages, 3 tables, 12 figures
DiffEyeSyn: Diffusion-based User-specific Eye Movement Synthesis
High-frequency gaze data contains more user-specific information than low-frequency data, promising for various applications. However, existing gaze modelling methods focus on low-frequency data, ignoring user-specific subtle eye movements in high-frequency eye movements. We present DiffEyeSyn -- the first computational method to synthesise eye movements specific to individual users. The key idea is to consider the user-specific information as a special type of noise in eye movement data. This perspective reshapes eye movement synthesis into the task of injecting this user-specific noise into any given eye movement sequence. We formulate this injection task as a conditional diffusion process in which the synthesis is conditioned on user-specific embeddings extracted from the gaze data using pre-trained models for user authentication. We propose user identity guidance -- a novel loss function that allows our model to preserve user identity while generating human-like eye movements in the spatial domain. Experiments on two public datasets show that our synthetic eye movements preserve user-specific characteristics and are more realistic than baseline approaches. Furthermore, we demonstrate that DiffEyeSyn can synthesise large-scale gaze data and support various downstream tasks, such as gaze-based user identification. As such, our work lays the methodological foundations for personalised eye movement synthesis that has significant application potential, such as for character animation, eye movement biometrics, and gaze data imputation.
comment: Corrected bugs in creating visualisations
Building Symbiotic AI: Reviewing the AI Act for a Human-Centred, Principle-Based Framework
Artificial Intelligence (AI) spreads quickly as new technologies and services take over modern society. The need to regulate AI design, development, and use is strictly necessary to avoid unethical and potentially dangerous consequences to humans. The European Union (EU) has released a new legal framework, the AI Act, to regulate AI by undertaking a risk-based approach to safeguard humans during interaction. At the same time, researchers offer a new perspective on AI systems, commonly known as Human-Centred AI (HCAI), highlighting the need for a human-centred approach to their design. In this context, Symbiotic AI (a subtype of HCAI) promises to enhance human capabilities through a deeper and continuous collaboration between human intelligence and AI. This article presents the results of a Systematic Literature Review (SLR) that aims to identify principles that characterise the design and development of Symbiotic AI systems while considering humans as the core of the process. Through content analysis, four principles emerged from the review that must be applied to create Human-Centred AI systems that can establish a symbiotic relationship with humans. In addition, current trends and challenges were defined to indicate open questions that may guide future research for the development of SAI systems that comply with the AI Act.
comment: Third version: 36 pages
Empathy Detection from Text, Audiovisual, Audio or Physiological Signals: A Systematic Review of Task Formulations and Machine Learning Methods
Empathy indicates an individual's ability to understand others. Over the past few years, empathy has drawn attention from various disciplines, including but not limited to Affective Computing, Cognitive Science, and Psychology. Detecting empathy has potential applications in society, healthcare and education. Despite being a broad and overlapping topic, the avenue of empathy detection leveraging Machine Learning remains underexplored from a systematic literature review perspective. We collected 849 papers from 10 well-known academic databases, systematically screened them and analysed the final 82 papers. Our analyses reveal several prominent task formulations - including empathy on localised utterances or overall expressions, unidirectional or parallel empathy, and emotional contagion - in monadic, dyadic and group interactions. Empathy detection methods are summarised based on four input modalities - text, audiovisual, audio and physiological signals - thereby presenting modality-specific network architecture design protocols. We discuss challenges, research gaps and potential applications in the Affective Computing-based empathy domain, which can facilitate new avenues of exploration. We further enlist the public availability of datasets and codes. This paper, therefore, provides a structured overview of recent advancements and remaining challenges towards developing a robust empathy detection system that could meaningfully contribute to enhancing human well-being.
comment: This work has been submitted to the IEEE for possible publication
Examining Technology Perspectives of Older Adults with Mild Cognitive Impairment: A Scoping Review
Mild cognitive impairment (MCI) may affect up to 20% of people over 65. Global incidence of MCI is increasing, and technology is being explored for early intervention. Theories of technology adoption predict useful and easy-to-use solutions will have higher rates of adoption; however, these models do not specifically consider older people with cognitive impairments, or unique human-computer interaction challenges posed by MCI. Older people with MCI opinions about technology solutions were extracted from 83 articles, published between Jan 2014 and May 2024, and found in nine databases. Inductive, thematic analysis of feedback Identified five themes (i) purpose and need, (ii) solution design and ease of use, (iii) self-impression, (iv) lifestyle, and (v) interaction modality. Solutions are perceived as useful, even though gaps in functional support exist, however, they are not perceived as entirely easy to use, due to issues related to ease of use and user experience. Devices which are light, portable, common and have large screens, are preferred, as is multimodal interaction, in particular speech, visual/text and touch. This review recommends future work to (i) improve personalisation, (ii) better understand interaction preferences and effectiveness, (iii) enable options for multimodal interaction, and (iv) more seamlessly integrate solutions into user lifestyles.
comment: Have updated the paper and the authors are reviewing the amendments. I will resubmit once all authors have completed reviewing
On the Utility of Accounting for Human Beliefs about AI Intention in Human-AI Collaboration
To enable effective human-AI collaboration, merely optimizing AI performance without considering human factors is insufficient. Recent research has shown that designing AI agents that take human behavior into account leads to improved performance in human-AI collaboration. However, a limitation of most existing approaches is their assumption that human behavior remains static, regardless of the AI agent's actions. In reality, humans may adjust their actions based on their beliefs about the AI's intentions, specifically, the subtasks they perceive the AI to be attempting to complete based on its behavior. In this paper, we address this limitation by enabling a collaborative AI agent to consider its human partner's beliefs about its intentions, i.e., what the human partner thinks the AI agent is trying to accomplish, and to design its action plan accordingly to facilitate more effective human-AI collaboration. Specifically, we developed a model of human beliefs that captures how humans interpret and reason about their AI partner's intentions. Using this belief model, we created an AI agent that incorporates both human behavior and human beliefs when devising its strategy for interacting with humans. Through extensive real-world human-subject experiments, we demonstrate that our belief model more accurately captures human perceptions of AI intentions. Furthermore, we show that our AI agent, designed to account for human beliefs over its intentions, significantly enhances performance in human-AI collaboration.
Computer Vision and Pattern Recognition
Mean Flows for One-step Generative Modeling
We propose a principled and effective framework for one-step generative modeling. We introduce the notion of average velocity to characterize flow fields, in contrast to instantaneous velocity modeled by Flow Matching methods. A well-defined identity between average and instantaneous velocities is derived and used to guide neural network training. Our method, termed the MeanFlow model, is self-contained and requires no pre-training, distillation, or curriculum learning. MeanFlow demonstrates strong empirical performance: it achieves an FID of 3.43 with a single function evaluation (1-NFE) on ImageNet 256x256 trained from scratch, significantly outperforming previous state-of-the-art one-step diffusion/flow models. Our study substantially narrows the gap between one-step diffusion/flow models and their multi-step predecessors, and we hope it will motivate future research to revisit the foundations of these powerful models.
comment: Tech report
ChartMuseum: Testing Visual Reasoning Capabilities of Large Vision-Language Models
Chart understanding presents a unique challenge for large vision-language models (LVLMs), as it requires the integration of sophisticated textual and visual reasoning capabilities. However, current LVLMs exhibit a notable imbalance between these skills, falling short on visual reasoning that is difficult to perform in text. We conduct a case study using a synthetic dataset solvable only through visual reasoning and show that model performance degrades significantly with increasing visual complexity, while human performance remains robust. We then introduce ChartMuseum, a new Chart Question Answering (QA) benchmark containing 1,162 expert-annotated questions spanning multiple reasoning types, curated from real-world charts across 184 sources, specifically built to evaluate complex visual and textual reasoning. Unlike prior chart understanding benchmarks -- where frontier models perform similarly and near saturation -- our benchmark exposes a substantial gap between model and human performance, while effectively differentiating model capabilities: although humans achieve 93% accuracy, the best-performing model Gemini-2.5-Pro attains only 63.0%, and the leading open-source LVLM Qwen2.5-VL-72B-Instruct achieves only 38.5%. Moreover, on questions requiring primarily visual reasoning, all models experience a 35%-55% performance drop from text-reasoning-heavy question performance. Lastly, our qualitative error analysis reveals specific categories of visual reasoning that are challenging for current LVLMs.
Recollection from Pensieve: Novel View Synthesis via Learning from Uncalibrated Videos
Currently almost all state-of-the-art novel view synthesis and reconstruction models rely on calibrated cameras or additional geometric priors for training. These prerequisites significantly limit their applicability to massive uncalibrated data. To alleviate this requirement and unlock the potential for self-supervised training on large-scale uncalibrated videos, we propose a novel two-stage strategy to train a view synthesis model from only raw video frames or multi-view images, without providing camera parameters or other priors. In the first stage, we learn to reconstruct the scene implicitly in a latent space without relying on any explicit 3D representation. Specifically, we predict per-frame latent camera and scene context features, and employ a view synthesis model as a proxy for explicit rendering. This pretraining stage substantially reduces the optimization complexity and encourages the network to learn the underlying 3D consistency in a self-supervised manner. The learned latent camera and implicit scene representation have a large gap compared with the real 3D world. To reduce this gap, we introduce the second stage training by explicitly predicting 3D Gaussian primitives. We additionally apply explicit Gaussian Splatting rendering loss and depth projection loss to align the learned latent representations with physically grounded 3D geometry. In this way, Stage 1 provides a strong initialization and Stage 2 enforces 3D consistency - the two stages are complementary and mutually beneficial. Extensive experiments demonstrate the effectiveness of our approach, achieving high-quality novel view synthesis and accurate camera pose estimation, compared to methods that employ supervision with calibration, pose, or depth information. The code is available at https://github.com/Dwawayu/Pensieve.
comment: 13 pages, 4 figures
VTBench: Evaluating Visual Tokenizers for Autoregressive Image Generation
Autoregressive (AR) models have recently shown strong performance in image generation, where a critical component is the visual tokenizer (VT) that maps continuous pixel inputs to discrete token sequences. The quality of the VT largely defines the upper bound of AR model performance. However, current discrete VTs fall significantly behind continuous variational autoencoders (VAEs), leading to degraded image reconstructions and poor preservation of details and text. Existing benchmarks focus on end-to-end generation quality, without isolating VT performance. To address this gap, we introduce VTBench, a comprehensive benchmark that systematically evaluates VTs across three core tasks: Image Reconstruction, Detail Preservation, and Text Preservation, and covers a diverse range of evaluation scenarios. We systematically assess state-of-the-art VTs using a set of metrics to evaluate the quality of reconstructed images. Our findings reveal that continuous VAEs produce superior visual representations compared to discrete VTs, particularly in retaining spatial structure and semantic detail. In contrast, the degraded representations produced by discrete VTs often lead to distorted reconstructions, loss of fine-grained textures, and failures in preserving text and object integrity. Furthermore, we conduct experiments on GPT-4o image generation and discuss its potential AR nature, offering new insights into the role of visual tokenization. We release our benchmark and codebase publicly to support further research and call on the community to develop strong, general-purpose open-source VTs.
comment: 24 pages, 13 figures, 3 tables
FinePhys: Fine-grained Human Action Generation by Explicitly Incorporating Physical Laws for Effective Skeletal Guidance CVPR 2025
Despite significant advances in video generation, synthesizing physically plausible human actions remains a persistent challenge, particularly in modeling fine-grained semantics and complex temporal dynamics. For instance, generating gymnastics routines such as "switch leap with 0.5 turn" poses substantial difficulties for current methods, often yielding unsatisfactory results. To bridge this gap, we propose FinePhys, a Fine-grained human action generation framework that incorporates Physics to obtain effective skeletal guidance. Specifically, FinePhys first estimates 2D poses in an online manner and then performs 2D-to-3D dimension lifting via in-context learning. To mitigate the instability and limited interpretability of purely data-driven 3D poses, we further introduce a physics-based motion re-estimation module governed by Euler-Lagrange equations, calculating joint accelerations via bidirectional temporal updating. The physically predicted 3D poses are then fused with data-driven ones, offering multi-scale 2D heatmap guidance for the diffusion process. Evaluated on three fine-grained action subsets from FineGym (FX-JUMP, FX-TURN, and FX-SALTO), FinePhys significantly outperforms competitive baselines. Comprehensive qualitative results further demonstrate FinePhys's ability to generate more natural and plausible fine-grained human actions.
comment: CVPR 2025
KinTwin: Imitation Learning with Torque and Muscle Driven Biomechanical Models Enables Precise Replication of Able-Bodied and Impaired Movement from Markerless Motion Capture
Broader access to high-quality movement analysis could greatly benefit movement science and rehabilitation, such as allowing more detailed characterization of movement impairments and responses to interventions, or even enabling early detection of new neurological conditions or fall risk. While emerging technologies are making it easier to capture kinematics with biomechanical models, or how joint angles change over time, inferring the underlying physics that give rise to these movements, including ground reaction forces, joint torques, or even muscle activations, is still challenging. Here we explore whether imitation learning applied to a biomechanical model from a large dataset of movements from able-bodied and impaired individuals can learn to compute these inverse dynamics. Although imitation learning in human pose estimation has seen great interest in recent years, our work differences in several ways: we focus on using an accurate biomechanical model instead of models adopted for computer vision, we test it on a dataset that contains participants with impaired movements, we reported detailed tracking metrics relevant for the clinical measurement of movement including joint angles and ground contact events, and finally we apply imitation learning to a muscle-driven neuromusculoskeletal model. We show that our imitation learning policy, KinTwin, can accurately replicate the kinematics of a wide range of movements, including those with assistive devices or therapist assistance, and that it can infer clinically meaningful differences in joint torques and muscle activations. Our work demonstrates the potential for using imitation learning to enable high-quality movement analysis in clinical practice.
Fine-tuning Quantized Neural Networks with Zeroth-order Optimization
As the size of large language models grows exponentially, GPU memory has become a bottleneck for adapting these models to downstream tasks. In this paper, we aim to push the limits of memory-efficient training by minimizing memory usage on model weights, gradients, and optimizer states, within a unified framework. Our idea is to eliminate both gradients and optimizer states using zeroth-order optimization, which approximates gradients by perturbing weights during forward passes to identify gradient directions. To minimize memory usage on weights, we employ model quantization, e.g., converting from bfloat16 to int4. However, directly applying zeroth-order optimization to quantized weights is infeasible due to the precision gap between discrete weights and continuous gradients, which would otherwise require de-quantization and re-quantization. To overcome this challenge, we propose Quantized Zeroth-order Optimization (QZO), a novel approach that perturbs the continuous quantization scale for gradient estimation and uses a directional derivative clipping method to stabilize training. QZO is orthogonal to both scalar-based and codebook-based post-training quantization methods. Compared to full-parameter fine-tuning in bfloat16, QZO can reduce the total memory cost by more than 18$\times$ for 4-bit LLMs, and enables fine-tuning Llama-2-13B and Stable Diffusion 3.5 Large within a single 24GB GPU.
Understanding Complexity in VideoQA via Visual Program Generation
We propose a data-driven approach to analyzing query complexity in Video Question Answering (VideoQA). Previous efforts in benchmark design have relied on human expertise to design challenging questions, yet we experimentally show that humans struggle to predict which questions are difficult for machine learning models. Our automatic approach leverages recent advances in code generation for visual question answering, using the complexity of generated code as a proxy for question difficulty. We demonstrate that this measure correlates significantly better with model performance than human estimates. To operationalize this insight, we propose an algorithm for estimating question complexity from code. It identifies fine-grained primitives that correlate with the hardest questions for any given set of models, making it easy to scale to new approaches in the future. Finally, to further illustrate the utility of our method, we extend it to automatically generate complex questions, constructing a new benchmark that is 1.9 times harder than the popular NExT-QA.
MM-PRM: Enhancing Multimodal Mathematical Reasoning with Scalable Step-Level Supervision
While Multimodal Large Language Models (MLLMs) have achieved impressive progress in vision-language understanding, they still struggle with complex multi-step reasoning, often producing logically inconsistent or partially correct solutions. A key limitation lies in the lack of fine-grained supervision over intermediate reasoning steps. To address this, we propose MM-PRM, a process reward model trained within a fully automated, scalable framework. We first build MM-Policy, a strong multimodal model trained on diverse mathematical reasoning data. Then, we construct MM-K12, a curated dataset of 10,000 multimodal math problems with verifiable answers, which serves as seed data. Leveraging a Monte Carlo Tree Search (MCTS)-based pipeline, we generate over 700k step-level annotations without human labeling. The resulting PRM is used to score candidate reasoning paths in the Best-of-N inference setup and achieves significant improvements across both in-domain (MM-K12 test set) and out-of-domain (OlympiadBench, MathVista, etc.) benchmarks. Further analysis confirms the effectiveness of soft labels, smaller learning rates, and path diversity in optimizing PRM performance. MM-PRM demonstrates that process supervision is a powerful tool for enhancing the logical robustness of multimodal reasoning systems. We release all our codes and data at https://github.com/ModalMinds/MM-PRM.
G1: Bootstrapping Perception and Reasoning Abilities of Vision-Language Model via Reinforcement Learning
Vision-Language Models (VLMs) excel in many direct multimodal tasks but struggle to translate this prowess into effective decision-making within interactive, visually rich environments like games. This ``knowing-doing'' gap significantly limits their potential as autonomous agents, as leading VLMs often performing badly in simple games. To address this, we introduce VLM-Gym, a curated reinforcement learning (RL) environment featuring diverse visual games with unified interfaces and adjustable, compositional difficulty, specifically designed for scalable multi-game parallel training. Leveraging VLM-Gym, we train G0 models using pure RL-driven self-evolution, which demonstrate emergent perception and reasoning patterns. To further mitigate challenges arising from game diversity, we develop G1 models. G1 incorporates a perception-enhanced cold start prior to RL fine-tuning. Our resulting G1 models consistently surpass their teacher across all games and outperform leading proprietary models like Claude-3.7-Sonnet-Thinking. Systematic analysis reveals an intriguing finding: perception and reasoning abilities mutually bootstrap each other throughout the RL training process. Source code including VLM-Gym and RL training are released at https://github.com/chenllliang/G1 to foster future research in advancing VLMs as capable interactive agents.
comment: 21 pages, 14 figures, code released at https://github.com/chenllliang/G1
FEALLM: Advancing Facial Emotion Analysis in Multimodal Large Language Models with Emotional Synergy and Reasoning
Facial Emotion Analysis (FEA) plays a crucial role in visual affective computing, aiming to infer a person's emotional state based on facial data. Scientifically, facial expressions (FEs) result from the coordinated movement of facial muscles, which can be decomposed into specific action units (AUs) that provide detailed emotional insights. However, traditional methods often struggle with limited interpretability, constrained generalization and reasoning abilities. Recently, Multimodal Large Language Models (MLLMs) have shown exceptional performance in various visual tasks, while they still face significant challenges in FEA due to the lack of specialized datasets and their inability to capture the intricate relationships between FEs and AUs. To address these issues, we introduce a novel FEA Instruction Dataset that provides accurate and aligned FE and AU descriptions and establishes causal reasoning relationships between them, followed by constructing a new benchmark, FEABench. Moreover, we propose FEALLM, a novel MLLM architecture designed to capture more detailed facial information, enhancing its capability in FEA tasks. Our model demonstrates strong performance on FEABench and impressive generalization capability through zero-shot evaluation on various datasets, including RAF-DB, AffectNet, BP4D, and DISFA, showcasing its robustness and effectiveness in FEA tasks. The dataset and code will be available at https://github.com/953206211/FEALLM.
comment: 10 pages, 7 figures
GuidedMorph: Two-Stage Deformable Registration for Breast MRI
Accurately registering breast MR images from different time points enables the alignment of anatomical structures and tracking of tumor progression, supporting more effective breast cancer detection, diagnosis, and treatment planning. However, the complexity of dense tissue and its highly non-rigid nature pose challenges for conventional registration methods, which primarily focus on aligning general structures while overlooking intricate internal details. To address this, we propose \textbf{GuidedMorph}, a novel two-stage registration framework designed to better align dense tissue. In addition to a single-scale network for global structure alignment, we introduce a framework that utilizes dense tissue information to track breast movement. The learned transformation fields are fused by introducing the Dual Spatial Transformer Network (DSTN), improving overall alignment accuracy. A novel warping method based on the Euclidean distance transform (EDT) is also proposed to accurately warp the registered dense tissue and breast masks, preserving fine structural details during deformation. The framework supports paradigms that require external segmentation models and with image data only. It also operates effectively with the VoxelMorph and TransMorph backbones, offering a versatile solution for breast registration. We validate our method on ISPY2 and internal dataset, demonstrating superior performance in dense tissue, overall breast alignment, and breast structural similarity index measure (SSIM), with notable improvements by over 13.01% in dense tissue Dice, 3.13% in breast Dice, and 1.21% in breast SSIM compared to the best learning-based baseline.
Advancing Generalization Across a Variety of Abstract Visual Reasoning Tasks IJCAI 2025
The abstract visual reasoning (AVR) domain presents a diverse suite of analogy-based tasks devoted to studying model generalization. Recent years have brought dynamic progress in the field, particularly in i.i.d. scenarios, in which models are trained and evaluated on the same data distributions. Nevertheless, o.o.d. setups that assess model generalization to new test distributions remain challenging even for the most recent models. To advance generalization in AVR tasks, we present the Pathways of Normalized Group Convolution model (PoNG), a novel neural architecture that features group convolution, normalization, and a parallel design. We consider a wide set of AVR benchmarks, including Raven's Progressive Matrices and visual analogy problems with both synthetic and real-world images. The experiments demonstrate strong generalization capabilities of the proposed model, which in several settings outperforms the existing literature methods.
comment: Accepted to the 34th International Joint Conference on Artificial Intelligence (IJCAI 2025)
Faster Video Diffusion with Trainable Sparse Attention
Scaling video diffusion transformers (DiTs) is limited by their quadratic 3D attention, even though most of the attention mass concentrates on a small subset of positions. We turn this observation into VSA, a trainable, hardware-efficient sparse attention that replaces full attention at \emph{both} training and inference. In VSA, a lightweight coarse stage pools tokens into tiles and identifies high-weight \emph{critical tokens}; a fine stage computes token-level attention only inside those tiles subjecting to block computing layout to ensure hard efficiency. This leads to a single differentiable kernel that trains end-to-end, requires no post-hoc profiling, and sustains 85\% of FlashAttention3 MFU. We perform a large sweep of ablation studies and scaling-law experiments by pretraining DiTs from 60M to 1.4B parameters. VSA reaches a Pareto point that cuts training FLOPS by 2.53$\times$ with no drop in diffusion loss. Retrofitting the open-source Wan-2.1 model speeds up attention time by 6$\times$ and lowers end-to-end generation time from 31s to 18s with comparable quality. These results establish trainable sparse attention as a practical alternative to full attention and a key enabler for further scaling of video diffusion models.
RoPECraft: Training-Free Motion Transfer with Trajectory-Guided RoPE Optimization on Diffusion Transformers
We propose RoPECraft, a training-free video motion transfer method for diffusion transformers that operates solely by modifying their rotary positional embeddings (RoPE). We first extract dense optical flow from a reference video, and utilize the resulting motion offsets to warp the complex-exponential tensors of RoPE, effectively encoding motion into the generation process. These embeddings are then further optimized during denoising time steps via trajectory alignment between the predicted and target velocities using a flow-matching objective. To keep the output faithful to the text prompt and prevent duplicate generations, we incorporate a regularization term based on the phase components of the reference video's Fourier transform, projecting the phase angles onto a smooth manifold to suppress high-frequency artifacts. Experiments on benchmarks reveal that RoPECraft outperforms all recently published methods, both qualitatively and quantitatively.
comment: https://berkegokmen1.github.io/RoPECraft/
Benchmarking Unified Face Attack Detection via Hierarchical Prompt Tuning
Presentation Attack Detection and Face Forgery Detection are designed to protect face data from physical media-based Presentation Attacks and digital editing-based DeepFakes respectively. But separate training of these two models makes them vulnerable to unknown attacks and burdens deployment environments. The lack of a Unified Face Attack Detection model to handle both types of attacks is mainly due to two factors. First, there's a lack of adequate benchmarks for models to explore. Existing UAD datasets have limited attack types and samples, restricting the model's ability to address advanced threats. To address this, we propose UniAttackDataPlus (UniAttackData+), the most extensive and sophisticated collection of forgery techniques to date. It includes 2,875 identities and their 54 kinds of falsified samples, totaling 697,347 videos. Second, there's a lack of a reliable classification criterion. Current methods try to find an arbitrary criterion within the same semantic space, which fails when encountering diverse attacks. So, we present a novel Visual-Language Model-based Hierarchical Prompt Tuning Framework (HiPTune) that adaptively explores multiple classification criteria from different semantic spaces. We build a Visual Prompt Tree to explore various classification rules hierarchically. Then, by adaptively pruning the prompts, the model can select the most suitable prompts to guide the encoder to extract discriminative features at different levels in a coarse-to-fine way. Finally, to help the model understand the classification criteria in visual space, we propose a Dynamically Prompt Integration module to project the visual prompts to the text encoder for more accurate semantics. Experiments on 12 datasets have shown the potential to inspire further innovations in the UAD field.
VesselGPT: Autoregressive Modeling of Vascular Geometry
Anatomical trees are critical for clinical diagnosis and treatment planning, yet their complex and diverse geometry make accurate representation a significant challenge. Motivated by the latest advances in large language models, we introduce an autoregressive method for synthesizing anatomical trees. Our approach first embeds vessel structures into a learned discrete vocabulary using a VQ-VAE architecture, then models their generation autoregressively with a GPT-2 model. This method effectively captures intricate geometries and branching patterns, enabling realistic vascular tree synthesis. Comprehensive qualitative and quantitative evaluations reveal that our technique achieves high-fidelity tree reconstruction with compact discrete representations. Moreover, our B-spline representation of vessel cross-sections preserves critical morphological details that are often overlooked in previous' methods parameterizations. To the best of our knowledge, this work is the first to generate blood vessels in an autoregressive manner. Code, data, and trained models will be made available.
Denoising Diffusion Probabilistic Model for Point Cloud Compression at Low Bit-Rates ICME 2025
Efficient compression of low-bit-rate point clouds is critical for bandwidth-constrained applications. However, existing techniques mainly focus on high-fidelity reconstruction, requiring many bits for compression. This paper proposes a "Denoising Diffusion Probabilistic Model" (DDPM) architecture for point cloud compression (DDPM-PCC) at low bit-rates. A PointNet encoder produces the condition vector for the generation, which is then quantized via a learnable vector quantizer. This configuration allows to achieve a low bitrates while preserving quality. Experiments on ShapeNet and ModelNet40 show improved rate-distortion at low rates compared to standardized and state-of-the-art approaches. We publicly released the code at https://github.com/EIDOSLAB/DDPM-PCC.
comment: 6 pages, 5 figures, accepted at ICME 2025
eStonefish-scenes: A synthetically generated dataset for underwater event-based optical flow prediction tasks
The combined use of event-based vision and Spiking Neural Networks (SNNs) is expected to significantly impact robotics, particularly in tasks like visual odometry and obstacle avoidance. While existing real-world event-based datasets for optical flow prediction, typically captured with Unmanned Aerial Vehicles (UAVs), offer valuable insights, they are limited in diversity, scalability, and are challenging to collect. Moreover, there is a notable lack of labelled datasets for underwater applications, which hinders the integration of event-based vision with Autonomous Underwater Vehicles (AUVs). To address this, synthetic datasets could provide a scalable solution while bridging the gap between simulation and reality. In this work, we introduce eStonefish-scenes, a synthetic event-based optical flow dataset based on the Stonefish simulator. Along with the dataset, we present a data generation pipeline that enables the creation of customizable underwater environments. This pipeline allows for simulating dynamic scenarios, such as biologically inspired schools of fish exhibiting realistic motion patterns, including obstacle avoidance and reactive navigation around corals. Additionally, we introduce a scene generator that can build realistic reef seabeds by randomly distributing coral across the terrain. To streamline data accessibility, we present eWiz, a comprehensive library designed for processing event-based data, offering tools for data loading, augmentation, visualization, encoding, and training data generation, along with loss functions and performance metrics.
comment: Submitted to IJRR
GMM-Based Comprehensive Feature Extraction and Relative Distance Preservation For Few-Shot Cross-Modal Retrieval
Few-shot cross-modal retrieval focuses on learning cross-modal representations with limited training samples, enabling the model to handle unseen classes during inference. Unlike traditional cross-modal retrieval tasks, which assume that both training and testing data share the same class distribution, few-shot retrieval involves data with sparse representations across modalities. Existing methods often fail to adequately model the multi-peak distribution of few-shot cross-modal data, resulting in two main biases in the latent semantic space: intra-modal bias, where sparse samples fail to capture intra-class diversity, and inter-modal bias, where misalignments between image and text distributions exacerbate the semantic gap. These biases hinder retrieval accuracy. To address these issues, we propose a novel method, GCRDP, for few-shot cross-modal retrieval. This approach effectively captures the complex multi-peak distribution of data using a Gaussian Mixture Model (GMM) and incorporates a multi-positive sample contrastive learning mechanism for comprehensive feature modeling. Additionally, we introduce a new strategy for cross-modal semantic alignment, which constrains the relative distances between image and text feature distributions, thereby improving the accuracy of cross-modal representations. We validate our approach through extensive experiments on four benchmark datasets, demonstrating superior performance over six state-of-the-art methods.
RBF++: Quantifying and Optimizing Reasoning Boundaries across Measurable and Unmeasurable Capabilities for Chain-of-Thought Reasoning
Chain-of-Thought (CoT) reasoning has proven effective in enhancing large language models (LLMs) on complex tasks, spurring research into its underlying mechanisms. However, two primary challenges remain for real-world applications: (1) the lack of quantitative metrics and actionable guidelines for evaluating and optimizing measurable boundaries of CoT capability, and (2) the absence of methods to assess boundaries of unmeasurable CoT capability, such as multimodal perception. To address these gaps, we introduce the Reasoning Boundary Framework++ (RBF++). To tackle the first challenge, we define the reasoning boundary (RB) as the maximum limit of CoT performance. We also propose a combination law for RBs, enabling quantitative analysis and offering actionable guidance across various CoT tasks. For the second challenge, particularly in multimodal scenarios, we introduce a constant assumption, which replaces unmeasurable RBs with scenario-specific constants. Additionally, we propose the reasoning boundary division mechanism, which divides unmeasurable RBs into two sub-boundaries, facilitating the quantification and optimization of both unmeasurable domain knowledge and multimodal perception capabilities. Extensive experiments involving 38 models across 13 tasks validate the feasibility of our framework in cross-modal settings. Additionally, we evaluate 10 CoT strategies, offer insights into optimization and decay from two complementary perspectives, and expand evaluation benchmarks for measuring RBs in LLM reasoning. We hope this work advances the understanding of RBs and optimization strategies in LLMs. Code and data are available at https://github.com/LightChen233/reasoning-boundary.
comment: Manuscript
DD-Ranking: Rethinking the Evaluation of Dataset Distillation
In recent years, dataset distillation has provided a reliable solution for data compression, where models trained on the resulting smaller synthetic datasets achieve performance comparable to those trained on the original datasets. To further improve the performance of synthetic datasets, various training pipelines and optimization objectives have been proposed, greatly advancing the field of dataset distillation. Recent decoupled dataset distillation methods introduce soft labels and stronger data augmentation during the post-evaluation phase and scale dataset distillation up to larger datasets (e.g., ImageNet-1K). However, this raises a question: Is accuracy still a reliable metric to fairly evaluate dataset distillation methods? Our empirical findings suggest that the performance improvements of these methods often stem from additional techniques rather than the inherent quality of the images themselves, with even randomly sampled images achieving superior results. Such misaligned evaluation settings severely hinder the development of DD. Therefore, we propose DD-Ranking, a unified evaluation framework, along with new general evaluation metrics to uncover the true performance improvements achieved by different methods. By refocusing on the actual information enhancement of distilled datasets, DD-Ranking provides a more comprehensive and fair evaluation standard for future research advancements.
comment: 20 pages, 4 figures
RECON: Robust symmetry discovery via Explicit Canonical Orientation Normalization
Real-world data often exhibits unknown or approximate symmetries, yet existing equivariant networks must commit to a fixed transformation group prior to training, e.g., continuous $SO(2)$ rotations. This mismatch degrades performance when the actual data symmetries differ from those in the transformation group. We introduce RECON, a framework to discover each input's intrinsic symmetry distribution from unlabeled data. RECON leverages class-pose decompositions and applies a data-driven normalization to align arbitrary reference frames into a common natural pose, yielding directly comparable and interpretable symmetry descriptors. We demonstrate effective symmetry discovery on 2D image benchmarks and -- for the first time -- extend it to 3D transformation groups, paving the way towards more flexible equivariant modeling.
Computer Vision Models Show Human-Like Sensitivity to Geometric and Topological Concepts
With the rapid improvement of machine learning (ML) models, cognitive scientists are increasingly asking about their alignment with how humans think. Here, we ask this question for computer vision models and human sensitivity to geometric and topological (GT) concepts. Under the core knowledge account, these concepts are innate and supported by dedicated neural circuitry. In this work, we investigate an alternative explanation, that GT concepts are learned ``for free'' through everyday interaction with the environment. We do so using computer visions models, which are trained on large image datasets. We build on prior studies to investigate the overall performance and human alignment of three classes of models -- convolutional neural networks (CNNs), transformer-based models, and vision-language models -- on an odd-one-out task testing 43 GT concepts spanning seven classes. Transformer-based models achieve the highest overall accuracy, surpassing that of young children. They also show strong alignment with children's performance, finding the same classes of concepts easy vs. difficult. By contrast, vision-language models underperform their vision-only counterparts and deviate further from human profiles, indicating that na\"ive multimodality might compromise abstract geometric sensitivity. These findings support the use of computer vision models to evaluate the sufficiency of the learning account for explaining human sensitivity to GT concepts, while also suggesting that integrating linguistic and visual representations might have unpredicted deleterious consequences.
comment: 10 pages, 4 figures, CosSci 2025
Event-Driven Dynamic Scene Depth Completion
Depth completion in dynamic scenes poses significant challenges due to rapid ego-motion and object motion, which can severely degrade the quality of input modalities such as RGB images and LiDAR measurements. Conventional RGB-D sensors often struggle to align precisely and capture reliable depth under such conditions. In contrast, event cameras with their high temporal resolution and sensitivity to motion at the pixel level provide complementary cues that are %particularly beneficial in dynamic environments.To this end, we propose EventDC, the first event-driven depth completion framework. It consists of two key components: Event-Modulated Alignment (EMA) and Local Depth Filtering (LDF). Both modules adaptively learn the two fundamental components of convolution operations: offsets and weights conditioned on motion-sensitive event streams. In the encoder, EMA leverages events to modulate the sampling positions of RGB-D features to achieve pixel redistribution for improved alignment and fusion. In the decoder, LDF refines depth estimations around moving objects by learning motion-aware masks from events. Additionally, EventDC incorporates two loss terms to further benefit global alignment and enhance local depth recovery. Moreover, we establish the first benchmark for event-based depth completion comprising one real-world and two synthetic datasets to facilitate future research. Extensive experiments on this benchmark demonstrate the superiority of our EventDC.
comment: 9 pages
DB3D-L: Depth-aware BEV Feature Transformation for Accurate 3D Lane Detection
3D Lane detection plays an important role in autonomous driving. Recent advances primarily build Birds-Eye-View (BEV) feature from front-view (FV) images to perceive 3D information of Lane more effectively. However, constructing accurate BEV information from FV image is limited due to the lacking of depth information, causing previous works often rely heavily on the assumption of a flat ground plane. Leveraging monocular depth estimation to assist in constructing BEV features is less constrained, but existing methods struggle to effectively integrate the two tasks. To address the above issue, in this paper, an accurate 3D lane detection method based on depth-aware BEV feature transtormation is proposed. In detail, an effective feature extraction module is designed, in which a Depth Net is integrated to obtain the vital depth information for 3D perception, thereby simplifying the complexity of view transformation. Subquently a feature reduce module is proposed to reduce height dimension of FV features and depth features, thereby enables effective fusion of crucial FV features and depth features. Then a fusion module is designed to build BEV feature from prime FV feature and depth information. The proposed method performs comparably with state-of-the-art methods on both synthetic Apollo, realistic OpenLane datasets.
Unlocking the Potential of Difficulty Prior in RL-based Multimodal Reasoning
In this work, we investigate how explicitly modeling problem's difficulty prior information shapes the effectiveness of reinforcement learning based fine-tuning for multimodal reasoning. Our exploration mainly comprises of following three perspective: First, through offline data curation, we analyze the U-shaped difficulty distribution of two given datasets using the base model by multi-round sampling, and then filter out prompts that are either too simple or extremely difficult to provide meaningful gradients and perform subsequent two-stage training. Second, we implement an online advantage differentiation, computing group-wise empirical accuracy as a difficulty proxy to adaptively reweight advantages estimation, providing stronger learning signals for more challenging problems. Finally, we introduce difficulty hints as explicit prompts for more complex samples in the second training stage, encouraging the model to calibrate its reasoning depth and perform reflective validation checks. Our comprehensive approach demonstrates significant performances across various multi-modal mathematical reasoning benchmarks with only 2K+0.6K two-stage training data.
Joint Depth and Reflectivity Estimation using Single-Photon LiDAR
Single-Photon Light Detection and Ranging (SP-LiDAR is emerging as a leading technology for long-range, high-precision 3D vision tasks. In SP-LiDAR, timestamps encode two complementary pieces of information: pulse travel time (depth) and the number of photons reflected by the object (reflectivity). Existing SP-LiDAR reconstruction methods typically recover depth and reflectivity separately or sequentially use one modality to estimate the other. Moreover, the conventional 3D histogram construction is effective mainly for slow-moving or stationary scenes. In dynamic scenes, however, it is more efficient and effective to directly process the timestamps. In this paper, we introduce an estimation method to simultaneously recover both depth and reflectivity in fast-moving scenes. We offer two contributions: (1) A theoretical analysis demonstrating the mutual correlation between depth and reflectivity and the conditions under which joint estimation becomes beneficial. (2) A novel reconstruction method, "SPLiDER", which exploits the shared information to enhance signal recovery. On both synthetic and real SP-LiDAR data, our method outperforms existing approaches, achieving superior joint reconstruction quality.
WriteViT: Handwritten Text Generation with Vision Transformer
Humans can quickly generalize handwriting styles from a single example by intuitively separating content from style. Machines, however, struggle with this task, especially in low-data settings, often missing subtle spatial and stylistic cues. Motivated by this gap, we introduce WriteViT, a one-shot handwritten text synthesis framework that incorporates Vision Transformers (ViT), a family of models that have shown strong performance across various computer vision tasks. WriteViT integrates a ViT-based Writer Identifier for extracting style embeddings, a multi-scale generator built with Transformer encoder-decoder blocks enhanced by conditional positional encoding (CPE), and a lightweight ViT-based recognizer. While previous methods typically rely on CNNs or CRNNs, our design leverages transformers in key components to better capture both fine-grained stroke details and higher-level style information. Although handwritten text synthesis has been widely explored, its application to Vietnamese -- a language rich in diacritics and complex typography -- remains limited. Experiments on Vietnamese and English datasets demonstrate that WriteViT produces high-quality, style-consistent handwriting while maintaining strong recognition performance in low-resource scenarios. These results highlight the promise of transformer-based designs for multilingual handwriting generation and efficient style adaptation.
From Local Details to Global Context: Advancing Vision-Language Models with Attention-Based Selection
Pretrained vision-language models (VLMs), e.g., CLIP, demonstrate impressive zero-shot capabilities on downstream tasks. Prior research highlights the crucial role of visual augmentation techniques, like random cropping, in alignment with fine-grained class descriptions generated by large language models (LLMs), significantly enhancing zero-shot performance by incorporating multi-view information. However, the inherent randomness of these augmentations can inevitably introduce background artifacts and cause models to overly focus on local details, compromising global semantic understanding. To address these issues, we propose an \textbf{A}ttention-\textbf{B}ased \textbf{S}election (\textbf{ABS}) method from local details to global context, which applies attention-guided cropping in both raw images and feature space, supplement global semantic information through strategic feature selection. Additionally, we introduce a soft matching technique to effectively filter LLM descriptions for better alignment. \textbf{ABS} achieves state-of-the-art performance on out-of-distribution generalization and zero-shot classification tasks. Notably, \textbf{ABS} is training-free and even rivals few-shot and test-time adaptation methods. Our code is available at \href{https://github.com/BIT-DA/ABS}{\textcolor{darkgreen}{https://github.com/BIT-DA/ABS}}.
StarFT: Robust Fine-tuning of Zero-shot Models via Spuriosity Alignment
Learning robust representations from data often requires scale, which has led to the success of recent zero-shot models such as CLIP. However, the obtained robustness can easily be deteriorated when these models are fine-tuned on other downstream tasks (e.g., of smaller scales). Previous works often interpret this phenomenon in the context of domain shift, developing fine-tuning methods that aim to preserve the original domain as much as possible. However, in a different context, fine-tuned models with limited data are also prone to learning features that are spurious to humans, such as background or texture. In this paper, we propose StarFT (Spurious Textual Alignment Regularization), a novel framework for fine-tuning zero-shot models to enhance robustness by preventing them from learning spuriosity. We introduce a regularization that aligns the output distribution for spuriosity-injected labels with the original zero-shot model, ensuring that the model is not induced to extract irrelevant features further from these descriptions.We leverage recent language models to get such spuriosity-injected labels by generating alternative textual descriptions that highlight potentially confounding features.Extensive experiments validate the robust generalization of StarFT and its emerging properties: zero-shot group robustness and improved zero-shot classification. Notably, StarFT boosts both worst-group and average accuracy by 14.30% and 3.02%, respectively, in the Waterbirds group shift scenario, where other robust fine-tuning baselines show even degraded performance.
Scaling Computer-Use Grounding via User Interface Decomposition and Synthesis
Graphical user interface (GUI) grounding, the ability to map natural language instructions to specific actions on graphical user interfaces, remains a critical bottleneck in computer use agent development. Current benchmarks oversimplify grounding tasks as short referring expressions, failing to capture the complexity of real-world interactions that require software commonsense, layout understanding, and fine-grained manipulation capabilities. To address these limitations, we introduce OSWorld-G, a comprehensive benchmark comprising 564 finely annotated samples across diverse task types including text matching, element recognition, layout understanding, and precise manipulation. Additionally, we synthesize and release the largest computer use grounding dataset Jedi, which contains 4 million examples through multi-perspective decoupling of tasks. Our multi-scale models trained on Jedi demonstrate its effectiveness by outperforming existing approaches on ScreenSpot-v2, ScreenSpot-Pro, and our OSWorld-G. Furthermore, we demonstrate that improved grounding with Jedi directly enhances agentic capabilities of general foundation models on complex computer tasks, improving from 5% to 27% on OSWorld. Through detailed ablation studies, we identify key factors contributing to grounding performance and verify that combining specialized data for different interface elements enables compositional generalization to novel interfaces. All benchmark, data, checkpoints, and code are open-sourced and available at https://osworld-grounding.github.io.
comment: 49 pages, 13 figures
Automatic Complementary Separation Pruning Toward Lightweight CNNs
In this paper, we present Automatic Complementary Separation Pruning (ACSP), a novel and fully automated pruning method for convolutional neural networks. ACSP integrates the strengths of both structured pruning and activation-based pruning, enabling the efficient removal of entire components such as neurons and channels while leveraging activations to identify and retain the most relevant components. Our approach is designed specifically for supervised learning tasks, where we construct a graph space that encodes the separation capabilities of each component with respect to all class pairs. By employing complementary selection principles and utilizing a clustering algorithm, ACSP ensures that the selected components maintain diverse and complementary separation capabilities, reducing redundancy and maintaining high network performance. The method automatically determines the optimal subset of components in each layer, utilizing a knee-finding algorithm to select the minimal subset that preserves performance without requiring user-defined pruning volumes. Extensive experiments on multiple architectures, including VGG-16, ResNet-50, and MobileNet-V2, across datasets like CIFAR-10, CIFAR-100, and ImageNet-1K, demonstrate that ACSP achieves competitive accuracy compared to other methods while significantly reducing computational costs. This fully automated approach not only enhances scalability but also makes ACSP especially practical for real-world deployment by eliminating the need for manually defining the pruning volume.
Swin DiT: Diffusion Transformer using Pseudo Shifted Windows
Diffusion Transformers (DiTs) achieve remarkable performance within the domain of image generation through the incorporation of the transformer architecture. Conventionally, DiTs are constructed by stacking serial isotropic global information modeling transformers, which face significant computational cost when processing high-resolution images. We empirically analyze that latent space image generation does not exhibit a strong dependence on global information as traditionally assumed. Most of the layers in the model demonstrate redundancy in global computation. In addition, conventional attention mechanisms exhibit low-frequency inertia issues. To address these issues, we propose \textbf{P}seudo \textbf{S}hifted \textbf{W}indow \textbf{A}ttention (PSWA), which fundamentally mitigates global model redundancy. PSWA achieves intermediate global-local information interaction through window attention, while employing a high-frequency bridging branch to simulate shifted window operations, supplementing appropriate global and high-frequency information. Furthermore, we propose the Progressive Coverage Channel Allocation(PCCA) strategy that captures high-order attention similarity without additional computational cost. Building upon all of them, we propose a series of Pseudo \textbf{S}hifted \textbf{Win}dow DiTs (\textbf{Swin DiT}), accompanied by extensive experiments demonstrating their superior performance. For example, our proposed Swin-DiT-L achieves a 54%$\uparrow$ FID improvement over DiT-XL/2 while requiring less computational. https://github.com/wujiafu007/Swin-DiT
Hybrid 3D-4D Gaussian Splatting for Fast Dynamic Scene Representation
Recent advancements in dynamic 3D scene reconstruction have shown promising results, enabling high-fidelity 3D novel view synthesis with improved temporal consistency. Among these, 4D Gaussian Splatting (4DGS) has emerged as an appealing approach due to its ability to model high-fidelity spatial and temporal variations. However, existing methods suffer from substantial computational and memory overhead due to the redundant allocation of 4D Gaussians to static regions, which can also degrade image quality. In this work, we introduce hybrid 3D-4D Gaussian Splatting (3D-4DGS), a novel framework that adaptively represents static regions with 3D Gaussians while reserving 4D Gaussians for dynamic elements. Our method begins with a fully 4D Gaussian representation and iteratively converts temporally invariant Gaussians into 3D, significantly reducing the number of parameters and improving computational efficiency. Meanwhile, dynamic Gaussians retain their full 4D representation, capturing complex motions with high fidelity. Our approach achieves significantly faster training times compared to baseline 4D Gaussian Splatting methods while maintaining or improving the visual quality.
comment: https://ohsngjun.github.io/3D-4DGS/
RB-SCD: A New Benchmark for Semantic Change Detection of Roads and Bridges in Traffic Scenes
Accurate detection of changes in roads and bridges, such as construction, renovation, and demolition, is essential for urban planning and traffic management. However, existing methods often struggle to extract fine-grained semantic change information due to the lack of high-quality annotated datasets in traffic scenarios. To address this, we introduce the Road and Bridge Semantic Change Detection (RB-SCD) dataset, a comprehensive benchmark comprising 260 pairs of high-resolution remote sensing images from diverse cities and countries. RB-SCD captures 11 types of semantic changes across varied road and bridge structures, enabling detailed structural and functional analysis. Building on this dataset, we propose a novel framework, Multimodal Frequency-Driven Change Detector (MFDCD), which integrates multimodal features in the frequency domain. MFDCD includes a Dynamic Frequency Coupler (DFC) that fuses hierarchical visual features with wavelet-based frequency components, and a Textual Frequency Filter (TFF) that transforms CLIP-derived textual features into the frequency domain and applies graph-based filtering. Experimental results on RB-SCD and three public benchmarks demonstrate the effectiveness of our approach.
MAGI-1: Autoregressive Video Generation at Scale
We present MAGI-1, a world model that generates videos by autoregressively predicting a sequence of video chunks, defined as fixed-length segments of consecutive frames. Trained to denoise per-chunk noise that increases monotonically over time, MAGI-1 enables causal temporal modeling and naturally supports streaming generation. It achieves strong performance on image-to-video (I2V) tasks conditioned on text instructions, providing high temporal consistency and scalability, which are made possible by several algorithmic innovations and a dedicated infrastructure stack. MAGI-1 facilitates controllable generation via chunk-wise prompting and supports real-time, memory-efficient deployment by maintaining constant peak inference cost, regardless of video length. The largest variant of MAGI-1 comprises 24 billion parameters and supports context lengths of up to 4 million tokens, demonstrating the scalability and robustness of our approach. The code and models are available at https://github.com/SandAI-org/MAGI-1 and https://github.com/SandAI-org/MagiAttention. The product can be accessed at https://sand.ai.
MatPredict: a dataset and benchmark for learning material properties of diverse indoor objects
Determining material properties from camera images can expand the ability to identify complex objects in indoor environments, which is valuable for consumer robotics applications. To support this, we introduce MatPredict, a dataset that combines the high-quality synthetic objects from Replica dataset with MatSynth dataset's material properties classes - to create objects with diverse material properties. We select 3D meshes of specific foreground objects and render them with different material properties. In total, we generate \textbf{18} commonly occurring objects with \textbf{14} different materials. We showcase how we provide variability in terms of lighting and camera placement for these objects. Next, we provide a benchmark for inferring material properties from visual images using these perturbed models in the scene, discussing the specific neural network models involved and their performance based on different image comparison metrics. By accurately simulating light interactions with different materials, we can enhance realism, which is crucial for training models effectively through large-scale simulations. This research aims to revolutionize perception in consumer robotics. The dataset is provided \href{https://huggingface.co/datasets/UMTRI/MatPredict}{here} and the code is provided \href{https://github.com/arpan-kusari/MatPredict}{here}.
Emergence of Fixational and Saccadic Movements in a Multi-Level Recurrent Attention Model for Vision
Inspired by foveal vision, hard attention models promise interpretability and parameter economy. However, existing models like the Recurrent Model of Visual Attention (RAM) and Deep Recurrent Attention Model (DRAM) failed to model the hierarchy of human vision system, that compromise on the visual exploration dynamics. As a result, they tend to produce attention that are either overly fixational or excessively saccadic, diverging from human eye movement behavior. In this paper, we propose a Multi-Level Recurrent Attention Model (MRAM), a novel hard attention framework that explicitly models the neural hierarchy of human visual processing. By decoupling the function of glimpse location generation and task execution in two recurrent layers, MRAM emergent a balanced behavior between fixation and saccadic movement. Our results show that MRAM not only achieves more human-like attention dynamics, but also consistently outperforms CNN, RAM and DRAM baselines on standard image classification benchmarks.
FlowCut: Unsupervised Video Instance Segmentation via Temporal Mask Matching
We propose FlowCut, a simple and capable method for unsupervised video instance segmentation consisting of a three-stage framework to construct a high-quality video dataset with pseudo labels. To our knowledge, our work is the first attempt to curate a video dataset with pseudo-labels for unsupervised video instance segmentation. In the first stage, we generate pseudo-instance masks by exploiting the affinities of features from both images and optical flows. In the second stage, we construct short video segments containing high-quality, consistent pseudo-instance masks by temporally matching them across the frames. In the third stage, we use the YouTubeVIS-2021 video dataset to extract our training instance segmentation set, and then train a video segmentation model. FlowCut achieves state-of-the-art performance on the YouTubeVIS-2019, YouTubeVIS-2021, DAVIS-2017, and DAVIS-2017 Motion benchmarks.
Higher fidelity perceptual image and video compression with a latent conditioned residual denoising diffusion model ECCV 2024
Denoising diffusion models achieved impressive results on several image generation tasks often outperforming GAN based models. Recently, the generative capabilities of diffusion models have been employed for perceptual image compression, such as in CDC. A major drawback of these diffusion-based methods is that, while producing impressive perceptual quality images they are dropping in fidelity/increasing the distortion to the original uncompressed images when compared with other traditional or learned image compression schemes aiming for fidelity. In this paper, we propose a hybrid compression scheme optimized for perceptual quality, extending the approach of the CDC model with a decoder network in order to reduce the impact on distortion metrics such as PSNR. After using the decoder network to generate an initial image, optimized for distortion, the latent conditioned diffusion model refines the reconstruction for perceptual quality by predicting the residual. On standard benchmarks, we achieve up to +2dB PSNR fidelity improvements while maintaining comparable LPIPS and FID perceptual scores when compared with CDC. Additionally, the approach is easily extensible to video compression, where we achieve similar results.
comment: Accepted at AIM Workshop 2024 at ECCV 2024
CacheFlow: Fast Human Motion Prediction by Cached Normalizing Flow
Many density estimation techniques for 3D human motion prediction require a significant amount of inference time, often exceeding the duration of the predicted time horizon. To address the need for faster density estimation for 3D human motion prediction, we introduce a novel flow-based method for human motion prediction called CacheFlow. Unlike previous conditional generative models that suffer from time efficiency, CacheFlow takes advantage of an unconditional flow-based generative model that transforms a Gaussian mixture into the density of future motions. The results of the computation of the flow-based generative model can be precomputed and cached. Then, for conditional prediction, we seek a mapping from historical trajectories to samples in the Gaussian mixture. This mapping can be done by a much more lightweight model, thus saving significant computation overhead compared to a typical conditional flow model. In such a two-stage fashion and by caching results from the slow flow model computation, we build our CacheFlow without loss of prediction accuracy and model expressiveness. This inference process is completed in approximately one millisecond, making it 4 times faster than previous VAE methods and 30 times faster than previous diffusion-based methods on standard benchmarks such as Human3.6M and AMASS datasets. Furthermore, our method demonstrates improved density estimation accuracy and comparable prediction accuracy to a SOTA method on Human3.6M. Our code and models will be publicly available.
Learning to Adapt to Position Bias in Vision Transformer Classifiers
How discriminative position information is for image classification depends on the data. On the one hand, the camera position is arbitrary and objects can appear anywhere in the image, arguing for translation invariance. At the same time, position information is key for exploiting capture/center bias, and scene layout, e.g.: the sky is up. We show that position bias, the level to which a dataset is more easily solved when positional information on input features is used, plays a crucial role in the performance of Vision Transformers image classifiers. To investigate, we propose Position-SHAP, a direct measure of position bias by extending SHAP to work with position embeddings. We show various levels of position bias in different datasets, and find that the optimal choice of position embedding depends on the position bias apparent in the dataset. We therefore propose Auto-PE, a single-parameter position embedding extension, which allows the position embedding to modulate its norm, enabling the unlearning of position information. Auto-PE combines with existing PEs to match or improve accuracy on classification datasets.
Adaptive Image Restoration for Video Surveillance: A Real-Time Approach
One of the major challenges in the field of computer vision especially for detection, segmentation, recognition, monitoring, and automated solutions, is the quality of images. Image degradation, often caused by factors such as rain, fog, lighting, etc., has a negative impact on automated decision-making.Furthermore, several image restoration solutions exist, including restoration models for single degradation and restoration models for multiple degradations. However, these solutions are not suitable for real-time processing. In this study, the aim was to develop a real-time image restoration solution for video surveillance. To achieve this, using transfer learning with ResNet_50, we developed a model for automatically identifying the types of degradation present in an image to reference the necessary treatment(s) for image restoration. Our solution has the advantage of being flexible and scalable.
Just Dance with $π$! A Poly-modal Inductor for Weakly-supervised Video Anomaly Detection
Weakly-supervised methods for video anomaly detection (VAD) are conventionally based merely on RGB spatio-temporal features, which continues to limit their reliability in real-world scenarios. This is due to the fact that RGB-features are not sufficiently distinctive in setting apart categories such as shoplifting from visually similar events. Therefore, towards robust complex real-world VAD, it is essential to augment RGB spatio-temporal features by additional modalities. Motivated by this, we introduce the Poly-modal Induced framework for VAD: "PI-VAD", a novel approach that augments RGB representations by five additional modalities. Specifically, the modalities include sensitivity to fine-grained motion (Pose), three dimensional scene and entity representation (Depth), surrounding objects (Panoptic masks), global motion (optical flow), as well as language cues (VLM). Each modality represents an axis of a polygon, streamlined to add salient cues to RGB. PI-VAD includes two plug-in modules, namely Pseudo-modality Generation module and Cross Modal Induction module, which generate modality-specific prototypical representation and, thereby, induce multi-modal information into RGB cues. These modules operate by performing anomaly-aware auxiliary tasks and necessitate five modality backbones -- only during training. Notably, PI-VAD achieves state-of-the-art accuracy on three prominent VAD datasets encompassing real-world scenarios, without requiring the computational overhead of five modality backbones at inference.
ARIW-Framework: Adaptive Robust Iterative Watermarking Framework
With the rapid rise of large models, copyright protection for generated image content has become a critical security challenge. Although deep learning watermarking techniques offer an effective solution for digital image copyright protection, they still face limitations in terms of visual quality, robustness and generalization. To address these issues, this paper proposes an adaptive robust iterative watermarking framework (ARIW-Framework) that achieves high-quality watermarked images while maintaining exceptional robustness and generalization performance. Specifically, we introduce an iterative approach to optimize the encoder for generating robust residuals. The encoder incorporates noise layers and a decoder to compute robustness weights for residuals under various noise attacks. By employing a parallel optimization strategy, the framework enhances robustness against multiple types of noise attacks. Furthermore, we leverage image gradients to determine the embedding strength at each pixel location, significantly improving the visual quality of the watermarked images. Extensive experiments demonstrate that the proposed method achieves superior visual quality while exhibiting remarkable robustness and generalization against noise attacks.
comment: 10 pages, 4 figures
Industry-focused Synthetic Segmentation Pre-training
Pre-training on real-image datasets has been widely proven effective for improving instance segmentation. However, industrial applications face two key challenges: (1) legal and ethical restrictions, such as ImageNet's prohibition of commercial use, and (2) limited transferability due to the domain gap between web images and industrial imagery. Even recent vision foundation models, including the segment anything model (SAM), show notable performance degradation in industrial settings. These challenges raise critical questions: Can we build a vision foundation model for industrial applications without relying on real images or manual annotations? And can such models outperform even fine-tuned SAM on industrial datasets? To address these questions, we propose the Instance Core Segmentation Dataset (InsCore), a synthetic pre-training dataset based on formula-driven supervised learning (FDSL). InsCore generates fully annotated instance segmentation images that reflect key characteristics of industrial data, including complex occlusions, dense hierarchical masks, and diverse non-rigid shapes, distinct from typical web imagery. Unlike previous methods, InsCore requires neither real images nor human annotations. Experiments on five industrial datasets show that models pre-trained with InsCore outperform those trained on COCO and ImageNet-21k, as well as fine-tuned SAM, achieving an average improvement of 6.2 points in instance segmentation performance. This result is achieved using only 100k synthetic images, more than 100 times fewer than the 11 million images in SAM's SA-1B dataset, demonstrating the data efficiency of our approach. These findings position InsCore as a practical and license-free vision foundation model for industrial applications.
Touch2Shape: Touch-Conditioned 3D Diffusion for Shape Exploration and Reconstruction
Diffusion models have made breakthroughs in 3D generation tasks. Current 3D diffusion models focus on reconstructing target shape from images or a set of partial observations. While excelling in global context understanding, they struggle to capture the local details of complex shapes and limited to the occlusion and lighting conditions. To overcome these limitations, we utilize tactile images to capture the local 3D information and propose a Touch2Shape model, which leverages a touch-conditioned diffusion model to explore and reconstruct the target shape from touch. For shape reconstruction, we have developed a touch embedding module to condition the diffusion model in creating a compact representation and a touch shape fusion module to refine the reconstructed shape. For shape exploration, we combine the diffusion model with reinforcement learning to train a policy. This involves using the generated latent vector from the diffusion model to guide the touch exploration policy training through a novel reward design. Experiments validate the reconstruction quality thorough both qualitatively and quantitative analysis, and our touch exploration policy further boosts reconstruction performance.
comment: 10 pages, 6 figures
Cross-modal feature fusion for robust point cloud registration with ambiguous geometry SP
Point cloud registration has seen significant advancements with the application of deep learning techniques. However, existing approaches often overlook the potential of integrating radiometric information from RGB images. This limitation reduces their effectiveness in aligning point clouds pairs, especially in regions where geometric data alone is insufficient. When used effectively, radiometric information can enhance the registration process by providing context that is missing from purely geometric data. In this paper, we propose CoFF, a novel Cross-modal Feature Fusion method that utilizes both point cloud geometry and RGB images for pairwise point cloud registration. Assuming that the co-registration between point clouds and RGB images is available, CoFF explicitly addresses the challenges where geometric information alone is unclear, such as in regions with symmetric similarity or planar structures, through a two-stage fusion of 3D point cloud features and 2D image features. It incorporates a cross-modal feature fusion module that assigns pixel-wise image features to 3D input point clouds to enhance learned 3D point features, and integrates patch-wise image features with superpoint features to improve the quality of coarse matching. This is followed by a coarse-to-fine matching module that accurately establishes correspondences using the fused features. We extensively evaluate CoFF on four common datasets: 3DMatch, 3DLoMatch, IndoorLRS, and the recently released ScanNet++ datasets. In addition, we assess CoFF on specific subset datasets containing geometrically ambiguous cases. Our experimental results demonstrate that CoFF achieves state-of-the-art registration performance across all benchmarks, including remarkable registration recalls of 95.9% and 81.6% on the widely-used 3DMatch and 3DLoMatch datasets, respectively...(Truncated to fit arXiv abstract length)
comment: To appear in the ISPRS Journal of Photogrammetry and Remote Sensing. 19 pages, 14 figures
Walking the Tightrope: Disentangling Beneficial and Detrimental Drifts in Non-Stationary Custom-Tuning
This paper uncovers a critical yet overlooked phenomenon in multi-modal large language models (MLLMs): detrimental concept drift within chain-of-thought (CoT) reasoning during non-stationary reinforcement fine-tuning (RFT), where reasoning token distributions evolve unpredictably, thereby introducing significant biases in final predictions. To address this, we are pioneers in establishing the theoretical bridge between concept drift theory and RFT processes by formalizing CoT's autoregressive token streams as non-stationary distributions undergoing arbitrary temporal shifts. Leveraging this framework, we propose a novel counterfact-aware RFT that systematically decouples beneficial distribution adaptation from harmful concept drift through concept graph-empowered LLM experts generating counterfactual reasoning trajectories. Our solution, Counterfactual Preference Optimization (CPO), enables stable RFT in non-stationary environments, particularly within the medical domain, through custom-tuning of counterfactual-aware preference alignment. Extensive experiments demonstrate our superior performance of robustness, generalization and coordination within RFT. Besides, we also contributed a large-scale dataset CXR-CounterFact (CCF), comprising 320,416 meticulously curated counterfactual reasoning trajectories derived from MIMIC-CXR. Our code and data are public.
comment: 17 pages, 5figures
3D Visual Illusion Depth Estimation
3D visual illusion is a perceptual phenomenon where a two-dimensional plane is manipulated to simulate three-dimensional spatial relationships, making a flat artwork or object look three-dimensional in the human visual system. In this paper, we reveal that the machine visual system is also seriously fooled by 3D visual illusions, including monocular and binocular depth estimation. In order to explore and analyze the impact of 3D visual illusion on depth estimation, we collect a large dataset containing almost 3k scenes and 200k images to train and evaluate SOTA monocular and binocular depth estimation methods. We also propose a robust depth estimation framework that uses common sense from a vision-language model to adaptively select reliable depth from binocular disparity and monocular depth. Experiments show that SOTA monocular, binocular, and multi-view depth estimation approaches are all fooled by various 3D visual illusions, while our method achieves SOTA performance.
comment: Project: https://github.com/YaoChengTang/3D-Visual-Illusion-Depth-Estimation
RGB-to-Polarization Estimation: A New Task and Benchmark Study
Polarization images provide rich physical information that is fundamentally absent from standard RGB images, benefiting a wide range of computer vision applications such as reflection separation and material classification. However, the acquisition of polarization images typically requires additional optical components, which increases both the cost and the complexity of the applications. To bridge this gap, we introduce a new task: RGB-to-polarization image estimation, which aims to infer polarization information directly from RGB images. In this work, we establish the first comprehensive benchmark for this task by leveraging existing polarization datasets and evaluating a diverse set of state-of-the-art deep learning models, including both restoration-oriented and generative architectures. Through extensive quantitative and qualitative analysis, our benchmark not only establishes the current performance ceiling of RGB-to-polarization estimation, but also systematically reveals the respective strengths and limitations of different model families -- such as direct reconstruction versus generative synthesis, and task-specific training versus large-scale pre-training. In addition, we provide some potential directions for future research on polarization estimation. This benchmark is intended to serve as a foundational resource to facilitate the design and evaluation of future methods for polarization estimation from standard RGB inputs.
A Generalized Label Shift Perspective for Cross-Domain Gaze Estimation
Aiming to generalize the well-trained gaze estimation model to new target domains, Cross-domain Gaze Estimation (CDGE) is developed for real-world application scenarios. Existing CDGE methods typically extract the domain-invariant features to mitigate domain shift in feature space, which is proved insufficient by Generalized Label Shift (GLS) theory. In this paper, we introduce a novel GLS perspective to CDGE and modelize the cross-domain problem by label and conditional shift problem. A GLS correction framework is presented and a feasible realization is proposed, in which a importance reweighting strategy based on truncated Gaussian distribution is introduced to overcome the continuity challenges in label shift correction. To embed the reweighted source distribution to conditional invariant learning, we further derive a probability-aware estimation of conditional operator discrepancy. Extensive experiments on standard CDGE tasks with different backbone models validate the superior generalization capability across domain and applicability on various models of proposed method.
Expert-Like Reparameterization of Heterogeneous Pyramid Receptive Fields in Efficient CNNs for Fair Medical Image Classification
Efficient convolutional neural network (CNN) architecture designs have attracted growing research interests. However, they usually apply single receptive field (RF), small asymmetric RFs, or pyramid RFs to learn different feature representations, still encountering two significant challenges in medical image classification tasks: 1) They have limitations in capturing diverse lesion characteristics efficiently, e.g., tiny, coordination, small and salient, which have unique roles on results, especially imbalanced medical image classification. 2) The predictions generated by those CNNs are often unfair/biased, bringing a high risk by employing them to real-world medical diagnosis conditions. To tackle these issues, we develop a new concept, Expert-Like Reparameterization of Heterogeneous Pyramid Receptive Fields (ERoHPRF), to simultaneously boost medical image classification performance and fairness. This concept aims to mimic the multi-expert consultation mode by applying the well-designed heterogeneous pyramid RF bags to capture different lesion characteristics effectively via convolution operations with multiple heterogeneous kernel sizes. Additionally, ERoHPRF introduces an expert-like structural reparameterization technique to merge its parameters with the two-stage strategy, ensuring competitive computation cost and inference speed through comparisons to a single RF. To manifest the effectiveness and generalization ability of ERoHPRF, we incorporate it into mainstream efficient CNN architectures. The extensive experiments show that our method maintains a better trade-off than state-of-the-art methods in terms of medical image classification, fairness, and computation overhead. The codes of this paper will be released soon.
Anti-Inpainting: A Proactive Defense against Malicious Diffusion-based Inpainters under Unknown Conditions
As diffusion-based malicious image manipulation becomes increasingly prevalent, multiple proactive defense methods are developed to safeguard images against unauthorized tampering. However, most proactive defense methods only can safeguard images against manipulation under known conditions, and fail to protect images from manipulations guided by tampering conditions crafted by malicious users. To tackle this issue, we propose Anti-Inpainting, a proactive defense method that achieves adequate protection under unknown conditions through a triple mechanism to address this challenge. Specifically, a multi-level deep feature extractor is presented to obtain intricate features during the diffusion denoising process to improve protective effectiveness. We design multi-scale semantic-preserving data augmentation to enhance the transferability of adversarial perturbations across unknown conditions by multi-scale transformations while preserving semantic integrity. In addition, we propose a selection-based distribution deviation optimization strategy to improve the protection of adversarial perturbation against manipulation under diverse random seeds. Extensive experiments indicate the proactive defensive performance of Anti-Inpainting against diffusion-based inpainters guided by unknown conditions in InpaintGuardBench and CelebA-HQ. At the same time, we also demonstrate the proposed approach's robustness under various image purification methods and its transferability across different versions of diffusion models.
A generalisable head MRI defacing pipeline: Evaluation on 2,566 meningioma scans
Reliable MRI defacing techniques to safeguard patient privacy while preserving brain anatomy are critical for research collaboration. Existing methods often struggle with incomplete defacing or degradation of brain tissue regions. We present a robust, generalisable defacing pipeline for high-resolution MRI that integrates atlas-based registration with brain masking. Our method was evaluated on 2,566 heterogeneous clinical scans for meningioma and achieved a 99.92 per cent success rate (2,564/2,566) upon visual inspection. Excellent anatomical preservation is demonstrated with a Dice similarity coefficient of 0.9975 plus or minus 0.0023 between brain masks automatically extracted from the original and defaced volumes. Source code is available at https://github.com/cai4cai/defacing_pipeline.
A Skull-Adaptive Framework for AI-Based 3D Transcranial Focused Ultrasound Simulation
Transcranial focused ultrasound (tFUS) is an emerging modality for non-invasive brain stimulation and therapeutic intervention, offering millimeter-scale spatial precision and the ability to target deep brain structures. However, the heterogeneous and anisotropic nature of the human skull introduces significant distortions to the propagating ultrasound wavefront, which require time-consuming patient-specific planning and corrections using numerical solvers for accurate targeting. To enable data-driven approaches in this domain, we introduce TFUScapes, the first large-scale, high-resolution dataset of tFUS simulations through anatomically realistic human skulls derived from T1-weighted MRI images. We have developed a scalable simulation engine pipeline using the k-Wave pseudo-spectral solver, where each simulation returns a steady-state pressure field generated by a focused ultrasound transducer placed at realistic scalp locations. In addition to the dataset, we present DeepTFUS, a deep learning model that estimates normalized pressure fields directly from input 3D CT volumes and transducer position. The model extends a U-Net backbone with transducer-aware conditioning, incorporating Fourier-encoded position embeddings and MLP layers to create global transducer embeddings. These embeddings are fused with U-Net encoder features via feature-wise modulation, dynamic convolutions, and cross-attention mechanisms. The model is trained using a combination of spatially weighted and gradient-sensitive loss functions, enabling it to approximate high-fidelity wavefields. The TFUScapes dataset is publicly released to accelerate research at the intersection of computational acoustics, neurotechnology, and deep learning. The project page is available at https://github.com/CAMMA-public/TFUScapes.
comment: The project page is available at https://github.com/CAMMA-public/TFUScapes
Enhancing Diffusion-Weighted Images (DWI) for Diffusion MRI: Is it Enough without Non-Diffusion-Weighted B=0 Reference?
Diffusion MRI (dMRI) is essential for studying brain microstructure, but high-resolution imaging remains challenging due to the inherent trade-offs between acquisition time and signal-to-noise ratio (SNR). Conventional methods often optimize only the diffusion-weighted images (DWIs) without considering their relationship with the non-diffusion-weighted (b=0) reference images. However, calculating diffusion metrics, such as the apparent diffusion coefficient (ADC) and diffusion tensor with its derived metrics like fractional anisotropy (FA) and mean diffusivity (MD), relies on the ratio between each DWI and the b=0 image, which is crucial for clinical observation and diagnostics. In this study, we demonstrate that solely enhancing DWIs using a conventional pixel-wise mean squared error (MSE) loss is insufficient, as the error in ratio between generated DWIs and b=0 diverges. We propose a novel ratio loss, defined as the MSE loss between the predicted and ground-truth log of DWI/b=0 ratios. Our results show that incorporating the ratio loss significantly improves the convergence of this ratio error, achieving lower ratio MSE and slightly enhancing the peak signal-to-noise ratio (PSNR) of generated DWIs. This leads to improved dMRI super-resolution and better preservation of b=0 ratio-based features for the derivation of diffusion metrics.
comment: IEEE ISBI 2025
Multiscale Adaptive Conflict-Balancing Model For Multimedia Deepfake Detection ICMR
Advances in computer vision and deep learning have blurred the line between deepfakes and authentic media, undermining multimedia credibility through audio-visual forgery. Current multimodal detection methods remain limited by unbalanced learning between modalities. To tackle this issue, we propose an Audio-Visual Joint Learning Method (MACB-DF) to better mitigate modality conflicts and neglect by leveraging contrastive learning to assist in multi-level and cross-modal fusion, thereby fully balancing and exploiting information from each modality. Additionally, we designed an orthogonalization-multimodal pareto module that preserves unimodal information while addressing gradient conflicts in audio-video encoders caused by differing optimization targets of the loss functions. Extensive experiments and ablation studies conducted on mainstream deepfake datasets demonstrate consistent performance gains of our model across key evaluation metrics, achieving an average accuracy of 95.5% across multiple datasets. Notably, our method exhibits superior cross-dataset generalization capabilities, with absolute improvements of 8.0% and 7.7% in ACC scores over the previous best-performing approach when trained on DFDC and tested on DefakeAVMiT and FakeAVCeleb datasets.
comment: 9 pages,ICMR accepted
Segmentation of temporomandibular joint structures on mri images using neural networks for diagnosis of pathologies
This article explores the use of artificial intelligence for the diagnosis of pathologies of the temporomandibular joint (TMJ), in particular, for the segmentation of the articular disc on MRI images. The relevance of the work is due to the high prevalence of TMJ pathologies, as well as the need to improve the accuracy and speed of diagnosis in medical institutions. During the study, the existing solutions (Diagnocat, MandSeg) were analyzed, which, as a result, are not suitable for studying the articular disc due to the orientation towards bone structures. To solve the problem, an original dataset was collected from 94 images with the classes "temporomandibular joint" and "jaw". To increase the amount of data, augmentation methods were used. After that, the models of U-Net, YOLOv8n, YOLOv11n and Roboflow neural networks were trained and compared. The evaluation was carried out according to the Dice Score, Precision, Sensitivity, Specificity, and Mean Average Precision metrics. The results confirm the potential of using the Roboflow model for segmentation of the temporomandibular joint. In the future, it is planned to develop an algorithm for measuring the distance between the jaws and determining the position of the articular disc, which will improve the diagnosis of TMJ pathologies.
comment: 10 pages, 10 figures
CALM-PDE: Continuous and Adaptive Convolutions for Latent Space Modeling of Time-dependent PDEs
Solving time-dependent Partial Differential Equations (PDEs) using a densely discretized spatial domain is a fundamental problem in various scientific and engineering disciplines, including modeling climate phenomena and fluid dynamics. However, performing these computations directly in the physical space often incurs significant computational costs. To address this issue, several neural surrogate models have been developed that operate in a compressed latent space to solve the PDE. While these approaches reduce computational complexity, they often use Transformer-based attention mechanisms to handle irregularly sampled domains, resulting in increased memory consumption. In contrast, convolutional neural networks allow memory-efficient encoding and decoding but are limited to regular discretizations. Motivated by these considerations, we propose CALM-PDE, a model class that efficiently solves arbitrarily discretized PDEs in a compressed latent space. We introduce a novel continuous convolution-based encoder-decoder architecture that uses an epsilon-neighborhood-constrained kernel and learns to apply the convolution operator to adaptive and optimized query points. We demonstrate the effectiveness of CALM-PDE on a diverse set of PDEs with both regularly and irregularly sampled spatial domains. CALM-PDE is competitive with or outperforms existing baseline methods while offering significant improvements in memory and inference time efficiency compared to Transformer-based methods.
LatentINDIGO: An INN-Guided Latent Diffusion Algorithm for Image Restoration
There is a growing interest in the use of latent diffusion models (LDMs) for image restoration (IR) tasks due to their ability to model effectively the distribution of natural images. While significant progress has been made, there are still key challenges that need to be addressed. First, many approaches depend on a predefined degradation operator, making them ill-suited for complex or unknown degradations that deviate from standard analytical models. Second, many methods struggle to provide a stable guidance in the latent space and finally most methods convert latent representations back to the pixel domain for guidance at every sampling iteration, which significantly increases computational and memory overhead. To overcome these limitations, we introduce a wavelet-inspired invertible neural network (INN) that simulates degradations through a forward transform and reconstructs lost details via the inverse transform. We further integrate this design into a latent diffusion pipeline through two proposed approaches: LatentINDIGO-PixelINN, which operates in the pixel domain, and LatentINDIGO-LatentINN, which stays fully in the latent space to reduce complexity. Both approaches alternate between updating intermediate latent variables under the guidance of our INN and refining the INN forward model to handle unknown degradations. In addition, a regularization step preserves the proximity of latent variables to the natural image manifold. Experiments demonstrate that our algorithm achieves state-of-the-art performance on synthetic and real-world low-quality images, and can be readily adapted to arbitrary output sizes.
comment: Submitted to IEEE Transactions on Image Processing (TIP)
Uniformity First: Uniformity-aware Test-time Adaptation of Vision-language Models against Image Corruption
Pre-trained vision-language models such as contrastive language-image pre-training (CLIP) have demonstrated a remarkable generalizability, which has enabled a wide range of applications represented by zero-shot classification. However, vision-language models still suffer when they face datasets with large gaps from training ones, i.e., distribution shifts. We found that CLIP is especially vulnerable to sensor degradation, a type of realistic distribution shift caused by sensor conditions such as weather, light, or noise. Collecting a new dataset from a test distribution for fine-tuning highly costs since sensor degradation occurs unexpectedly and has a range of variety. Thus, we investigate test-time adaptation (TTA) of zero-shot classification, which enables on-the-fly adaptation to the test distribution with unlabeled test data. Existing TTA methods for CLIP mainly focus on modifying image and text embeddings or predictions to address distribution shifts. Although these methods can adapt to domain shifts, such as fine-grained labels spaces or different renditions in input images, they fail to adapt to distribution shifts caused by sensor degradation. We found that this is because image embeddings are "corrupted" in terms of uniformity, a measure related to the amount of information. To make models robust to sensor degradation, we propose a novel method called uniformity-aware information-balanced TTA (UnInfo). To address the corruption of image embeddings, we introduce uniformity-aware confidence maximization, information-aware loss balancing, and knowledge distillation from the exponential moving average (EMA) teacher. Through experiments, we demonstrate that our UnInfo improves accuracy under sensor degradation by retaining information in terms of uniformity.
comment: Code is available at https://github.com/kzkadc/uninfo
HiERO: understanding the hierarchy of human behavior enhances reasoning on egocentric videos
Human activities are particularly complex and variable, and this makes challenging for deep learning models to reason about them. However, we note that such variability does have an underlying structure, composed of a hierarchy of patterns of related actions. We argue that such structure can emerge naturally from unscripted videos of human activities, and can be leveraged to better reason about their content. We present HiERO, a weakly-supervised method to enrich video segments features with the corresponding hierarchical activity threads. By aligning video clips with their narrated descriptions, HiERO infers contextual, semantic and temporal reasoning with an hierarchical architecture. We prove the potential of our enriched features with multiple video-text alignment benchmarks (EgoMCQ, EgoNLQ) with minimal additional training, and in zero-shot for procedure learning tasks (EgoProceL and Ego4D Goal-Step). Notably, HiERO achieves state-of-the-art performance in all the benchmarks, and for procedure learning tasks it outperforms fully-supervised methods by a large margin (+12.5% F1 on EgoProceL) in zero shot. Our results prove the relevance of using knowledge of the hierarchy of human activities for multiple reasoning tasks in egocentric vision.
comment: Project page https://github.com/sapeirone/hiero
Dynamic Graph Induced Contour-aware Heat Conduction Network for Event-based Object Detection
Event-based Vision Sensors (EVS) have demonstrated significant advantages over traditional RGB frame-based cameras in low-light conditions, high-speed motion capture, and low latency. Consequently, object detection based on EVS has attracted increasing attention from researchers. Current event stream object detection algorithms are typically built upon Convolutional Neural Networks (CNNs) or Transformers, which either capture limited local features using convolutional filters or incur high computational costs due to the utilization of self-attention. Recently proposed vision heat conduction backbone networks have shown a good balance between efficiency and accuracy; however, these models are not specifically designed for event stream data. They exhibit weak capability in modeling object contour information and fail to exploit the benefits of multi-scale features. To address these issues, this paper proposes a novel dynamic graph induced contour-aware heat conduction network for event stream based object detection, termed CvHeat-DET. The proposed model effectively leverages the clear contour information inherent in event streams to predict the thermal diffusivity coefficients within the heat conduction model, and integrates hierarchical structural graph features to enhance feature learning across multiple scales. Extensive experiments on three benchmark datasets for event stream-based object detection fully validated the effectiveness of the proposed model. The source code of this paper will be released on https://github.com/Event-AHU/OpenEvDET.
Towards Low-Latency Event Stream-based Visual Object Tracking: A Slow-Fast Approach
Existing tracking algorithms typically rely on low-frame-rate RGB cameras coupled with computationally intensive deep neural network architectures to achieve effective tracking. However, such frame-based methods inherently face challenges in achieving low-latency performance and often fail in resource-constrained environments. Visual object tracking using bio-inspired event cameras has emerged as a promising research direction in recent years, offering distinct advantages for low-latency applications. In this paper, we propose a novel Slow-Fast Tracking paradigm that flexibly adapts to different operational requirements, termed SFTrack. The proposed framework supports two complementary modes, i.e., a high-precision slow tracker for scenarios with sufficient computational resources, and an efficient fast tracker tailored for latency-aware, resource-constrained environments. Specifically, our framework first performs graph-based representation learning from high-temporal-resolution event streams, and then integrates the learned graph-structured information into two FlashAttention-based vision backbones, yielding the slow and fast trackers, respectively. The fast tracker achieves low latency through a lightweight network design and by producing multiple bounding box outputs in a single forward pass. Finally, we seamlessly combine both trackers via supervised fine-tuning and further enhance the fast tracker's performance through a knowledge distillation strategy. Extensive experiments on public benchmarks, including FE240, COESOT, and EventVOT, demonstrate the effectiveness and efficiency of our proposed method across different real-world scenarios. The source code has been released on https://github.com/Event-AHU/SlowFast_Event_Track.
EPIC: Explanation of Pretrained Image Classification Networks via Prototype
Explainable AI (XAI) methods generally fall into two categories. Post-hoc approaches generate explanations for pre-trained models and are compatible with various neural network architectures. These methods often use feature importance visualizations, such as saliency maps, to indicate which input regions influenced the model's prediction. Unfortunately, they typically offer a coarse understanding of the model's decision-making process. In contrast, ante-hoc (inherently explainable) methods rely on specially designed model architectures trained from scratch. A notable subclass of these methods provides explanations through prototypes, representative patches extracted from the training data. However, prototype-based approaches have limitations: they require dedicated architectures, involve specialized training procedures, and perform well only on specific datasets. In this work, we propose EPIC (Explanation of Pretrained Image Classification), a novel approach that bridges the gap between these two paradigms. Like post-hoc methods, EPIC operates on pre-trained models without architectural modifications. Simultaneously, it delivers intuitive, prototype-based explanations inspired by ante-hoc techniques. To the best of our knowledge, EPIC is the first post-hoc method capable of fully replicating the core explanatory power of inherently interpretable models. We evaluate EPIC on benchmark datasets commonly used in prototype-based explanations, such as CUB-200-2011 and Stanford Cars, alongside large-scale datasets like ImageNet, typically employed by post-hoc methods. EPIC uses prototypes to explain model decisions, providing a flexible and easy-to-understand tool for creating clear, high-quality explanations.
ORQA: A Benchmark and Foundation Model for Holistic Operating Room Modeling
The real-world complexity of surgeries necessitates surgeons to have deep and holistic comprehension to ensure precision, safety, and effective interventions. Computational systems are required to have a similar level of comprehension within the operating room. Prior works, limited to single-task efforts like phase recognition or scene graph generation, lack scope and generalizability. In this work, we introduce ORQA, a novel OR question answering benchmark and foundational multimodal model to advance OR intelligence. By unifying all four public OR datasets into a comprehensive benchmark, we enable our approach to concurrently address a diverse range of OR challenges. The proposed multimodal large language model fuses diverse OR signals such as visual, auditory, and structured data, for a holistic modeling of the OR. Finally, we propose a novel, progressive knowledge distillation paradigm, to generate a family of models optimized for different speed and memory requirements. We show the strong performance of ORQA on our proposed benchmark, and its zero-shot generalization, paving the way for scalable, unified OR modeling and significantly advancing multimodal surgical intelligence. We will release our code and data upon acceptance.
RetinaLogos: Fine-Grained Synthesis of High-Resolution Retinal Images Through Captions
The scarcity of high-quality, labelled retinal imaging data, which presents a significant challenge in the development of machine learning models for ophthalmology, hinders progress in the field. To synthesise Colour Fundus Photographs (CFPs), existing methods primarily relying on predefined disease labels face significant limitations. However, current methods remain limited, thus failing to generate images for broader categories with diverse and fine-grained anatomical structures. To overcome these challenges, we first introduce an innovative pipeline that creates a large-scale, synthetic Caption-CFP dataset comprising 1.4 million entries, called RetinaLogos-1400k. Specifically, RetinaLogos-1400k uses large language models (LLMs) to describe retinal conditions and key structures, such as optic disc configuration, vascular distribution, nerve fibre layers, and pathological features. Furthermore, based on this dataset, we employ a novel three-step training framework, called RetinaLogos, which enables fine-grained semantic control over retinal images and accurately captures different stages of disease progression, subtle anatomical variations, and specific lesion types. Extensive experiments demonstrate state-of-the-art performance across multiple datasets, with 62.07% of text-driven synthetic images indistinguishable from real ones by ophthalmologists. Moreover, the synthetic data improves accuracy by 10%-25% in diabetic retinopathy grading and glaucoma detection, thereby providing a scalable solution to augment ophthalmic datasets.
TinyAlign: Boosting Lightweight Vision-Language Models by Mitigating Modal Alignment Bottlenecks
Lightweight Vision-Language Models (VLMs) are indispensable for resource-constrained applications. The prevailing approach to aligning vision and language models involves freezing both the vision encoder and the language model while training small connector modules. However, this strategy heavily depends on the intrinsic capabilities of the language model, which can be suboptimal for lightweight models with limited representational capacity. In this work, we investigate this alignment bottleneck through the lens of mutual information, demonstrating that the constrained capacity of the language model inherently limits the Effective Mutual Information (EMI) between multimodal inputs and outputs, thereby compromising alignment quality. To address this challenge, we propose TinyAlign, a novel framework inspired by Retrieval-Augmented Generation, which strategically retrieves relevant context from a memory bank to enrich multimodal inputs and enhance their alignment. Extensive empirical evaluations reveal that TinyAlign significantly reduces training loss, accelerates convergence, and enhances task performance. Remarkably, it allows models to achieve baseline-level performance with only 40\% of the fine-tuning data, highlighting exceptional data efficiency. Our work thus offers a practical pathway for developing more capable lightweight VLMs while introducing a fresh theoretical lens to better understand and address alignment bottlenecks in constrained multimodal systems.
Unified Cross-modal Translation of Score Images, Symbolic Music, and Performance Audio
Music exists in various modalities, such as score images, symbolic scores, MIDI, and audio. Translations between each modality are established as core tasks of music information retrieval, such as automatic music transcription (audio-to-MIDI) and optical music recognition (score image to symbolic score). However, most past work on multimodal translation trains specialized models on individual translation tasks. In this paper, we propose a unified approach, where we train a general-purpose model on many translation tasks simultaneously. Two key factors make this unified approach viable: a new large-scale dataset and the tokenization of each modality. Firstly, we propose a new dataset that consists of more than 1,300 hours of paired audio-score image data collected from YouTube videos, which is an order of magnitude larger than any existing music modal translation datasets. Secondly, our unified tokenization framework discretizes score images, audio, MIDI, and MusicXML into a sequence of tokens, enabling a single encoder-decoder Transformer to tackle multiple cross-modal translation as one coherent sequence-to-sequence task. Experimental results confirm that our unified multitask model improves upon single-task baselines in several key areas, notably reducing the symbol error rate for optical music recognition from 24.58% to a state-of-the-art 13.67%, while similarly substantial improvements are observed across the other translation tasks. Notably, our approach achieves the first successful score-image-conditioned audio generation, marking a significant breakthrough in cross-modal music generation.
comment: Submitted to IEEE Transactions on Audio, Speech and Language Processing (TASLPRO)
Robust Multimodal Segmentation with Representation Regularization and Hybrid Prototype Distillation
Multi-modal semantic segmentation (MMSS) faces significant challenges in real-world scenarios due to dynamic environments, sensor failures, and noise interference, creating a gap between theoretical models and practical performance. To address this, we propose a two-stage framework called RobustSeg, which enhances multi-modal robustness through two key components: the Hybrid Prototype Distillation Module (HPDM) and the Representation Regularization Module (RRM). In the first stage, RobustSeg pre-trains a multi-modal teacher model using complete modalities. In the second stage, a student model is trained with random modality dropout while learning from the teacher via HPDM and RRM. HPDM transforms features into compact prototypes, enabling cross-modal hybrid knowledge distillation and mitigating bias from missing modalities. RRM reduces representation discrepancies between the teacher and student by optimizing functional entropy through the log-Sobolev inequality. Extensive experiments on three public benchmarks demonstrate that RobustSeg outperforms previous state-of-the-art methods, achieving improvements of +2.76%, +4.56%, and +0.98%, respectively. Code is available at: https://github.com/RobustSeg/RobustSeg.
Towards a Universal Image Degradation Model via Content-Degradation Disentanglement
Image degradation synthesis is highly desirable in a wide variety of applications ranging from image restoration to simulating artistic effects. Existing models are designed to generate one specific or a narrow set of degradations, which often require user-provided degradation parameters. As a result, they lack the generalizability to synthesize degradations beyond their initial design or adapt to other applications. Here we propose the first universal degradation model that can synthesize a broad spectrum of complex and realistic degradations containing both homogeneous (global) and inhomogeneous (spatially varying) components. Our model automatically extracts and disentangles homogeneous and inhomogeneous degradation features, which are later used for degradation synthesis without user intervention. A disentangle-by-compression method is proposed to separate degradation information from images. Two novel modules for extracting and incorporating inhomogeneous degradations are created to model inhomogeneous components in complex degradations. We demonstrate the model's accuracy and adaptability in film-grain simulation and blind image restoration tasks. The demo video, code, and dataset of this project will be released upon publication at github.com/yangwenbo99/content-degradation-disentanglement.
The Way Up: A Dataset for Hold Usage Detection in Sport Climbing CVPR 2025
Detecting an athlete's position on a route and identifying hold usage are crucial in various climbing-related applications. However, no climbing dataset with detailed hold usage annotations exists to our knowledge. To address this issue, we introduce a dataset of 22 annotated climbing videos, providing ground-truth labels for hold locations, usage order, and time of use. Furthermore, we explore the application of keypoint-based 2D pose-estimation models for detecting hold usage in sport climbing. We determine usage by analyzing the key points of certain joints and the corresponding overlap with climbing holds. We evaluate multiple state-of-the-art models and analyze their accuracy on our dataset, identifying and highlighting climbing-specific challenges. Our dataset and results highlight key challenges in climbing-specific pose estimation and establish a foundation for future research toward AI-assisted systems for sports climbing.
comment: accepted at the International Workshop on Computer Vision in Sports (CVsports) at CVPR 2025
Accelerate TarFlow Sampling with GS-Jacobi Iteration
Image generation models have achieved widespread applications. As an instance, the TarFlow model combines the transformer architecture with Normalizing Flow models, achieving state-of-the-art results on multiple benchmarks. However, due to the causal form of attention requiring sequential computation, TarFlow's sampling process is extremely slow. In this paper, we demonstrate that through a series of optimization strategies, TarFlow sampling can be greatly accelerated by using the Gauss-Seidel-Jacobi (abbreviated as GS-Jacobi) iteration method. Specifically, we find that blocks in the TarFlow model have varying importance: a small number of blocks play a major role in image generation tasks, while other blocks contribute relatively little; some blocks are sensitive to initial values and prone to numerical overflow, while others are relatively robust. Based on these two characteristics, we propose the Convergence Ranking Metric (CRM) and the Initial Guessing Metric (IGM): CRM is used to identify whether a TarFlow block is "simple" (converges in few iterations) or "tough" (requires more iterations); IGM is used to evaluate whether the initial value of the iteration is good. Experiments on four TarFlow models demonstrate that GS-Jacobi sampling can significantly enhance sampling efficiency while maintaining the quality of generated images (measured by FID), achieving speed-ups of 4.53x in Img128cond, 5.32x in AFHQ, 2.96x in Img64uncond, and 2.51x in Img64cond without degrading FID scores or sample quality. Code and checkpoints are accessible on https://github.com/encoreus/GS-Jacobi_for_TarFlow
comment: 17 pages, 7 figures, 5 tables
The Gaussian Latent Machine: Efficient Prior and Posterior Sampling for Inverse Problems
We consider the problem of sampling from a product-of-experts-type model that encompasses many standard prior and posterior distributions commonly found in Bayesian imaging. We show that this model can be easily lifted into a novel latent variable model, which we refer to as a Gaussian latent machine. This leads to a general sampling approach that unifies and generalizes many existing sampling algorithms in the literature. Most notably, it yields a highly efficient and effective two-block Gibbs sampling approach in the general case, while also specializing to direct sampling algorithms in particular cases. Finally, we present detailed numerical experiments that demonstrate the efficiency and effectiveness of our proposed sampling approach across a wide range of prior and posterior sampling problems from Bayesian imaging.
FlightGPT: Towards Generalizable and Interpretable UAV Vision-and-Language Navigation with Vision-Language Models
Unmanned Aerial Vehicle (UAV) Vision-and-Language Navigation (VLN) is vital for applications such as disaster response, logistics delivery, and urban inspection. However, existing methods often struggle with insufficient multimodal fusion, weak generalization, and poor interpretability. To address these challenges, we propose FlightGPT, a novel UAV VLN framework built upon Vision-Language Models (VLMs) with powerful multimodal perception capabilities. We design a two-stage training pipeline: first, Supervised Fine-Tuning (SFT) using high-quality demonstrations to improve initialization and structured reasoning; then, Group Relative Policy Optimization (GRPO) algorithm, guided by a composite reward that considers goal accuracy, reasoning quality, and format compliance, to enhance generalization and adaptability. Furthermore, FlightGPT introduces a Chain-of-Thought (CoT)-based reasoning mechanism to improve decision interpretability. Extensive experiments on the city-scale dataset CityNav demonstrate that FlightGPT achieves state-of-the-art performance across all scenarios, with a 9.22\% higher success rate than the strongest baseline in unseen environments. Our implementation is publicly available.
A Study on the Refining Handwritten Font by Mixing Font Styles
Handwritten fonts have a distinct expressive character, but they are often difficult to read due to unclear or inconsistent handwriting. FontFusionGAN (FFGAN) is a novel method for improving handwritten fonts by combining them with printed fonts. Our method implements generative adversarial network (GAN) to generate font that mix the desirable features of handwritten and printed fonts. By training the GAN on a dataset of handwritten and printed fonts, it can generate legible and visually appealing font images. We apply our method to a dataset of handwritten fonts and demonstrate that it significantly enhances the readability of the original fonts while preserving their unique aesthetic. Our method has the potential to improve the readability of handwritten fonts, which would be helpful for a variety of applications including document creation, letter writing, and assisting individuals with reading and writing difficulties. In addition to addressing the difficulties of font creation for languages with complex character sets, our method is applicable to other text-image-related tasks, such as font attribute control and multilingual font style transfer.
comment: 4 pages, 3 figures, MITA 2023 (The 19th International Conference on Multimedia Information Technology and Applications July. 11 ~ July 14, 2023, Technical University of Ostrava, Ostrava, Czech)
Mitigating Hallucination in VideoLLMs via Temporal-Aware Activation Engineering
Multimodal large language models (MLLMs) have achieved remarkable progress in video understanding.However, hallucination, where the model generates plausible yet incorrect outputs, persists as a significant and under-addressed challenge in the video domain. Among existing solutions, activation engineering has proven successful in mitigating hallucinations in LLMs and ImageLLMs, yet its applicability to VideoLLMs remains largely unexplored. In this work, we are the first to systematically investigate the effectiveness and underlying mechanisms of activation engineering for mitigating hallucinations in VideoLLMs. We initially conduct an investigation of the key factors affecting the performance of activation engineering and find that a model's sensitivity to hallucination depends on $\textbf{temporal variation}$ rather than task type. Moreover, selecting appropriate internal modules and dataset for activation engineering is critical for reducing hallucination. Guided by these findings, we propose a temporal-aware activation engineering framework for VideoLLMs, which adaptively identifies and manipulates hallucination-sensitive modules based on the temporal variation characteristic, substantially mitigating hallucinations without additional LLM fine-tuning. Experiments across multiple models and benchmarks demonstrate that our method markedly reduces hallucination in VideoLLMs, thereby validating the robustness of our findings.
Rethinking Features-Fused-Pyramid-Neck for Object Detection ECCV 2024
Multi-head detectors typically employ a features-fused-pyramid-neck for multi-scale detection and are widely adopted in the industry. However, this approach faces feature misalignment when representations from different hierarchical levels of the feature pyramid are forcibly fused point-to-point. To address this issue, we designed an independent hierarchy pyramid (IHP) architecture to evaluate the effectiveness of the features-unfused-pyramid-neck for multi-head detectors. Subsequently, we introduced soft nearest neighbor interpolation (SNI) with a weight downscaling factor to mitigate the impact of feature fusion at different hierarchies while preserving key textures. Furthermore, we present a features adaptive selection method for down sampling in extended spatial windows (ESD) to retain spatial features and enhance lightweight convolutional techniques (GSConvE). These advancements culminate in our secondary features alignment solution (SA) for real-time detection, achieving state-of-the-art results on Pascal VOC and MS COCO. Code will be released at https://github.com/AlanLi1997/rethinking-fpn. This paper has been accepted by ECCV2024 and published on Springer Nature.
comment: ECCV 2024
Informed Mixing -- Improving Open Set Recognition via Attribution-based Augmentation
Open set recognition (OSR) is devised to address the problem of detecting novel classes during model inference. Even in recent vision models, this remains an open issue which is receiving increasing attention. Thereby, a crucial challenge is to learn features that are relevant for unseen categories from given data, for which these features might not be discriminative. To facilitate this process and "optimize to learn" more diverse features, we propose GradMix, a data augmentation method that dynamically leverages gradient-based attribution maps of the model during training to mask out already learned concepts. Thus GradMix encourages the model to learn a more complete set of representative features from the same data source. Extensive experiments on open set recognition, close set classification, and out-of-distribution detection reveal that our method can often outperform the state-of-the-art. GradMix can further increase model robustness to corruptions as well as downstream classification performance for self-supervised learning, indicating its benefit for model generalization.
Enhancing Transformers Through Conditioned Embedded Tokens
Transformers have transformed modern machine learning, driving breakthroughs in computer vision, natural language processing, and robotics. At the core of their success lies the attention mechanism, which enables the modeling of global dependencies among input tokens. However, we reveal that the attention block in transformers suffers from inherent ill-conditioning, which hampers gradient-based optimization and leads to inefficient training. To address this, we develop a theoretical framework that establishes a direct relationship between the conditioning of the attention block and that of the embedded tokenized data. Building on this insight, we introduce conditioned embedded tokens, a method that systematically modifies the embedded tokens to improve the conditioning of the attention mechanism. Our analysis demonstrates that this approach significantly mitigates ill-conditioning, leading to more stable and efficient training. We validate our methodology across various transformer architectures, achieving consistent improvements in image classification, object detection, instance segmentation, and natural language processing, highlighting its broad applicability and effectiveness.
AdaToken-3D: Dynamic Spatial Gating for Efficient 3D Large Multimodal-Models Reasoning
Large Multimodal Models (LMMs) have become a pivotal research focus in deep learning, demonstrating remarkable capabilities in 3D scene understanding. However, current 3D LMMs employing thousands of spatial tokens for multimodal reasoning suffer from critical inefficiencies: excessive computational overhead and redundant information flows. Unlike 2D VLMs processing single images, 3D LMMs exhibit inherent architectural redundancy due to the heterogeneous mechanisms between spatial tokens and visual tokens. To address this challenge, we propose AdaToken-3D, an adaptive spatial token optimization framework that dynamically prunes redundant tokens through spatial contribution analysis. Our method automatically tailors pruning strategies to different 3D LMM architectures by quantifying token-level information flows via attention pattern mining. Extensive experiments on LLaVA-3D (a 7B parameter 3D-LMM) demonstrate that AdaToken-3D achieves 21\% faster inference speed and 63\% FLOPs reduction while maintaining original task accuracy. Beyond efficiency gains, this work systematically investigates redundancy patterns in multimodal spatial information flows through quantitative token interaction analysis. Our findings reveal that over 60\% of spatial tokens contribute minimally ($<$5\%) to the final predictions, establishing theoretical foundations for efficient 3D multimodal learning.
UniHM: Universal Human Motion Generation with Object Interactions in Indoor Scenes
Human motion synthesis in complex scenes presents a fundamental challenge, extending beyond conventional Text-to-Motion tasks by requiring the integration of diverse modalities such as static environments, movable objects, natural language prompts, and spatial waypoints. Existing language-conditioned motion models often struggle with scene-aware motion generation due to limitations in motion tokenization, which leads to information loss and fails to capture the continuous, context-dependent nature of 3D human movement. To address these issues, we propose UniHM, a unified motion language model that leverages diffusion-based generation for synthesizing scene-aware human motion. UniHM is the first framework to support both Text-to-Motion and Text-to-Human-Object Interaction (HOI) in complex 3D scenes. Our approach introduces three key contributions: (1) a mixed-motion representation that fuses continuous 6DoF motion with discrete local motion tokens to improve motion realism; (2) a novel Look-Up-Free Quantization VAE (LFQ-VAE) that surpasses traditional VQ-VAEs in both reconstruction accuracy and generative performance; and (3) an enriched version of the Lingo dataset augmented with HumanML3D annotations, providing stronger supervision for scene-specific motion learning. Experimental results demonstrate that UniHM achieves comparative performance on the OMOMO benchmark for text-to-HOI synthesis and yields competitive results on HumanML3D for general text-conditioned motion generation.
Pyramid Sparse Transformer: Enhancing Multi-Scale Feature Fusion with Dynamic Token Selection
Feature fusion is critical for high-performance vision models but often incurs prohibitive complexity. However, prevailing attention-based fusion methods often involve significant computational complexity and implementation challenges, limiting their efficiency in resource-constrained environments. To address these issues, we introduce the Pyramid Sparse Transformer (PST), a lightweight, plug-and-play module that integrates coarse-to-fine token selection and shared attention parameters to reduce computation while preserving spatial detail. PST can be trained using only coarse attention and seamlessly activated at inference for further accuracy gains without retraining. When added to state-of-the-art real-time detection models, such as YOLOv11-N/S/M, PST yields mAP improvements of 0.9%, 0.5%, and 0.4% on MS COCO with minimal latency impact. Likewise, embedding PST into ResNet-18/50/101 as backbones, boosts ImageNet top-1 accuracy by 6.5%, 1.7%, and 1.0%, respectively. These results demonstrate PST's effectiveness as a simple, hardware-friendly enhancement for both detection and classification tasks.
comment: 13 pages, 5 figures
Reasoning-OCR: Can Large Multimodal Models Solve Complex Logical Reasoning Problems from OCR Cues?
Large Multimodal Models (LMMs) have become increasingly versatile, accompanied by impressive Optical Character Recognition (OCR) related capabilities. Existing OCR-related benchmarks emphasize evaluating LMMs' abilities of relatively simple visual question answering, visual-text parsing, etc. However, the extent to which LMMs can deal with complex logical reasoning problems based on OCR cues is relatively unexplored. To this end, we introduce the Reasoning-OCR benchmark, which challenges LMMs to solve complex reasoning problems based on the cues that can be extracted from rich visual-text. Reasoning-OCR covers six visual scenarios and encompasses 150 meticulously designed questions categorized into six reasoning challenges. Additionally, Reasoning-OCR minimizes the impact of field-specialized knowledge. Our evaluation offers some insights for proprietary and open-source LMMs in different reasoning challenges, underscoring the urgent to improve the reasoning performance. We hope Reasoning-OCR can inspire and facilitate future research on enhancing complex reasoning ability based on OCR cues. Reasoning-OCR is publicly available at https://github.com/Hxyz-123/ReasoningOCR.
It's not you, it's me -- Global urban visual perception varies across demographics and personalities
Understanding people's preferences and needs is crucial for urban planning decisions, yet current approaches often combine them from multi-cultural and multi-city populations, obscuring important demographic differences and risking amplifying biases. We conducted a large-scale urban visual perception survey of streetscapes worldwide using street view imagery, examining how demographics -- including gender, age, income, education, race and ethnicity, and, for the first time, personality traits -- shape perceptions among 1,000 participants, with balanced demographics, from five countries and 45 nationalities. This dataset, introduced as Street Perception Evaluation Considering Socioeconomics (SPECS), exhibits statistically significant differences in perception scores in six traditionally used indicators (safe, lively, wealthy, beautiful, boring, and depressing) and four new ones we propose (live nearby, walk, cycle, green) among demographics and personalities. We revealed that location-based sentiments are carried over in people's preferences when comparing urban streetscapes with other cities. Further, we compared the perception scores based on where participants and streetscapes are from. We found that an off-the-shelf machine learning model trained on an existing global perception dataset tends to overestimate positive indicators and underestimate negative ones compared to human responses, suggesting that targeted intervention should consider locals' perception. Our study aspires to rectify the myopic treatment of street perception, which rarely considers demographics or personality traits.
comment: Under review
LiDAR MOT-DETR: A LiDAR-based Two-Stage Transformer for 3D Multiple Object Tracking
Multi-object tracking from LiDAR point clouds presents unique challenges due to the sparse and irregular nature of the data, compounded by the need for temporal coherence across frames. Traditional tracking systems often rely on hand-crafted features and motion models, which can struggle to maintain consistent object identities in crowded or fast-moving scenes. We present a lidar-based two-staged DETR inspired transformer; a smoother and tracker. The smoother stage refines lidar object detections, from any off-the-shelf detector, across a moving temporal window. The tracker stage uses a DETR-based attention block to maintain tracks across time by associating tracked objects with the refined detections using the point cloud as context. The model is trained on the datasets nuScenes and KITTI in both online and offline (forward peeking) modes demonstrating strong performance across metrics such as ID-switch and multiple object tracking accuracy (MOTA). The numerical results indicate that the online mode outperforms the lidar-only baseline and SOTA models on the nuScenes dataset, with an aMOTA of 0.722 and an aMOTP of 0.475, while the offline mode provides an additional 3 pp aMOTP
Structure-based Anomaly Detection and Clustering
Anomaly detection is a fundamental problem in domains such as healthcare, manufacturing, and cybersecurity. This thesis proposes new unsupervised methods for anomaly detection in both structured and streaming data settings. In the first part, we focus on structure-based anomaly detection, where normal data follows low-dimensional manifolds while anomalies deviate from them. We introduce Preference Isolation Forest (PIF), which embeds data into a high-dimensional preference space via manifold fitting, and isolates outliers using two variants: Voronoi-iForest, based on geometric distances, and RuzHash-iForest, leveraging Locality Sensitive Hashing for scalability. We also propose Sliding-PIF, which captures local manifold information for streaming scenarios. Our methods outperform existing techniques on synthetic and real datasets. We extend this to structure-based clustering with MultiLink, a novel method for recovering multiple geometric model families in noisy data. MultiLink merges clusters via a model-aware linkage strategy, enabling robust multi-class structure recovery. It offers key advantages over existing approaches, such as speed, reduced sensitivity to thresholds, and improved robustness to poor initial sampling. The second part of the thesis addresses online anomaly detection in evolving data streams. We propose Online Isolation Forest (Online-iForest), which uses adaptive, multi-resolution histograms and dynamically updates tree structures to track changes over time. It avoids retraining while achieving accuracy comparable to offline models, with superior efficiency for real-time applications. Finally, we tackle anomaly detection in cybersecurity via open-set recognition for malware classification. We enhance a Gradient Boosting classifier with MaxLogit to detect unseen malware families, a method now integrated into Cleafy's production system.
comment: Doctoral dissertation at Politecnico di Milano
TeleOpBench: A Simulator-Centric Benchmark for Dual-Arm Dexterous Teleoperation
Teleoperation is a cornerstone of embodied-robot learning, and bimanual dexterous teleoperation in particular provides rich demonstrations that are difficult to obtain with fully autonomous systems. While recent studies have proposed diverse hardware pipelines-ranging from inertial motion-capture gloves to exoskeletons and vision-based interfaces-there is still no unified benchmark that enables fair, reproducible comparison of these systems. In this paper, we introduce TeleOpBench, a simulator-centric benchmark tailored to bimanual dexterous teleoperation. TeleOpBench contains 30 high-fidelity task environments that span pick-and-place, tool use, and collaborative manipulation, covering a broad spectrum of kinematic and force-interaction difficulty. Within this benchmark we implement four representative teleoperation modalities-(i) MoCap, (ii) VR device, (iii) arm-hand exoskeletons, and (iv) monocular vision tracking-and evaluate them with a common protocol and metric suite. To validate that performance in simulation is predictive of real-world behavior, we conduct mirrored experiments on a physical dual-arm platform equipped with two 6-DoF dexterous hands. Across 10 held-out tasks we observe a strong correlation between simulator and hardware performance, confirming the external validity of TeleOpBench. TeleOpBench establishes a common yardstick for teleoperation research and provides an extensible platform for future algorithmic and hardware innovation.
comment: 13 pages
MVAR: Visual Autoregressive Modeling with Scale and Spatial Markovian Conditioning
Essential to visual generation is efficient modeling of visual data priors. Conventional next-token prediction methods define the process as learning the conditional probability distribution of successive tokens. Recently, next-scale prediction methods redefine the process to learn the distribution over multi-scale representations, significantly reducing generation latency. However, these methods condition each scale on all previous scales and require each token to consider all preceding tokens, exhibiting scale and spatial redundancy. To better model the distribution by mitigating redundancy, we propose Markovian Visual AutoRegressive modeling (MVAR), a novel autoregressive framework that introduces scale and spatial Markov assumptions to reduce the complexity of conditional probability modeling. Specifically, we introduce a scale-Markov trajectory that only takes as input the features of adjacent preceding scale for next-scale prediction, enabling the adoption of a parallel training strategy that significantly reduces GPU memory consumption. Furthermore, we propose spatial-Markov attention, which restricts the attention of each token to a localized neighborhood of size k at corresponding positions on adjacent scales, rather than attending to every token across these scales, for the pursuit of reduced modeling complexity. Building on these improvements, we reduce the computational complexity of attention calculation from O(N^2) to O(Nk), enabling training with just eight NVIDIA RTX 4090 GPUs and eliminating the need for KV cache during inference. Extensive experiments on ImageNet demonstrate that MVAR achieves comparable or superior performance with both small model trained from scratch and large fine-tuned models, while reducing the average GPU memory footprint by 3.0x.
FLASH: Latent-Aware Semi-Autoregressive Speculative Decoding for Multimodal Tasks
Large language and multimodal models (LLMs and LMMs) exhibit strong inference capabilities but are often limited by slow decoding speeds. This challenge is especially acute in LMMs, where visual inputs typically comprise more tokens with lower information density than text -- an issue exacerbated by recent trends toward finer-grained visual tokenizations to boost performance. Speculative decoding has been effective in accelerating LLM inference by using a smaller draft model to generate candidate tokens, which are then selectively verified by the target model, improving speed without sacrificing output quality. While this strategy has been extended to LMMs, existing methods largely overlook the unique properties of visual inputs and depend solely on text-based draft models. In this work, we propose \textbf{FLASH} (Fast Latent-Aware Semi-Autoregressive Heuristics), a speculative decoding framework designed specifically for LMMs, which leverages two key properties of multimodal data to design the draft model. First, to address redundancy in visual tokens, we propose a lightweight latent-aware token compression mechanism. Second, recognizing that visual objects often co-occur within a scene, we employ a semi-autoregressive decoding strategy to generate multiple tokens per forward pass. These innovations accelerate draft decoding while maintaining high acceptance rates, resulting in faster overall inference. Experiments show that FLASH significantly outperforms prior speculative decoding approaches in both unimodal and multimodal settings, achieving up to \textbf{2.68$\times$} speed-up on video captioning and \textbf{2.55$\times$} on visual instruction tuning tasks compared to the original LMM.
VLC Fusion: Vision-Language Conditioned Sensor Fusion for Robust Object Detection
Although fusing multiple sensor modalities can enhance object detection performance, existing fusion approaches often overlook subtle variations in environmental conditions and sensor inputs. As a result, they struggle to adaptively weight each modality under such variations. To address this challenge, we introduce Vision-Language Conditioned Fusion (VLC Fusion), a novel fusion framework that leverages a Vision-Language Model (VLM) to condition the fusion process on nuanced environmental cues. By capturing high-level environmental context such as as darkness, rain, and camera blurring, the VLM guides the model to dynamically adjust modality weights based on the current scene. We evaluate VLC Fusion on real-world autonomous driving and military target detection datasets that include image, LIDAR, and mid-wave infrared modalities. Our experiments show that VLC Fusion consistently outperforms conventional fusion baselines, achieving improved detection accuracy in both seen and unseen scenarios.
comment: 12 pages, 19 figures
IA-MVS: Instance-Focused Adaptive Depth Sampling for Multi-View Stereo
Multi-view stereo (MVS) models based on progressive depth hypothesis narrowing have made remarkable advancements. However, existing methods haven't fully utilized the potential that the depth coverage of individual instances is smaller than that of the entire scene, which restricts further improvements in depth estimation precision. Moreover, inevitable deviations in the initial stage accumulate as the process advances. In this paper, we propose Instance-Adaptive MVS (IA-MVS). It enhances the precision of depth estimation by narrowing the depth hypothesis range and conducting refinement on each instance. Additionally, a filtering mechanism based on intra-instance depth continuity priors is incorporated to boost robustness. Furthermore, recognizing that existing confidence estimation can degrade IA-MVS performance on point clouds. We have developed a detailed mathematical model for confidence estimation based on conditional probability. The proposed method can be widely applied in models based on MVSNet without imposing extra training burdens. Our method achieves state-of-the-art performance on the DTU benchmark. The source code is available at https://github.com/KevinWang73106/IA-MVS.
Any-to-Any Learning in Computational Pathology via Triplet Multimodal Pretraining
Recent advances in computational pathology and artificial intelligence have significantly enhanced the utilization of gigapixel whole-slide images and and additional modalities (e.g., genomics) for pathological diagnosis. Although deep learning has demonstrated strong potential in pathology, several key challenges persist: (1) fusing heterogeneous data types requires sophisticated strategies beyond simple concatenation due to high computational costs; (2) common scenarios of missing modalities necessitate flexible strategies that allow the model to learn robustly in the absence of certain modalities; (3) the downstream tasks in CPath are diverse, ranging from unimodal to multimodal, cnecessitating a unified model capable of handling all modalities. To address these challenges, we propose ALTER, an any-to-any tri-modal pretraining framework that integrates WSIs, genomics, and pathology reports. The term "any" emphasizes ALTER's modality-adaptive design, enabling flexible pretraining with any subset of modalities, and its capacity to learn robust, cross-modal representations beyond WSI-centric approaches. We evaluate ALTER across extensive clinical tasks including survival prediction, cancer subtyping, gene mutation prediction, and report generation, achieving superior or comparable performance to state-of-the-art baselines.
SpatialLLM: From Multi-modality Data to Urban Spatial Intelligence
We propose SpatialLLM, a novel approach advancing spatial intelligence tasks in complex urban scenes. Unlike previous methods requiring geographic analysis tools or domain expertise, SpatialLLM is a unified language model directly addressing various spatial intelligence tasks without any training, fine-tuning, or expert intervention. The core of SpatialLLM lies in constructing detailed and structured scene descriptions from raw spatial data to prompt pre-trained LLMs for scene-based analysis. Extensive experiments show that, with our designs, pretrained LLMs can accurately perceive spatial distribution information and enable zero-shot execution of advanced spatial intelligence tasks, including urban planning, ecological analysis, traffic management, etc. We argue that multi-field knowledge, context length, and reasoning ability are key factors influencing LLM performances in urban analysis. We hope that SpatialLLM will provide a novel viable perspective for urban intelligent analysis and management. The code and dataset are available at https://github.com/WHU-USI3DV/SpatialLLM.
Long-RVOS: A Comprehensive Benchmark for Long-term Referring Video Object Segmentation
Referring video object segmentation (RVOS) aims to identify, track and segment the objects in a video based on language descriptions, which has received great attention in recent years. However, existing datasets remain focus on short video clips within several seconds, with salient objects visible in most frames. To advance the task towards more practical scenarios, we introduce \textbf{Long-RVOS}, a large-scale benchmark for long-term referring video object segmentation. Long-RVOS contains 2,000+ videos of an average duration exceeding 60 seconds, covering a variety of objects that undergo occlusion, disappearance-reappearance and shot changing. The objects are manually annotated with three different types of descriptions to individually evaluate the understanding of static attributes, motion patterns and spatiotemporal relationships. Moreover, unlike previous benchmarks that rely solely on the per-frame spatial evaluation, we introduce two new metrics to assess the temporal and spatiotemporal consistency. We benchmark 6 state-of-the-art methods on Long-RVOS. The results show that current approaches struggle severely with the long-video challenges. To address this, we further propose ReferMo, a promising baseline method that integrates motion information to expand the temporal receptive field, and employs a local-to-global architecture to capture both short-term dynamics and long-term dependencies. Despite simplicity, ReferMo achieves significant improvements over current methods in long-term scenarios. We hope that Long-RVOS and our baseline can drive future RVOS research towards tackling more realistic and long-form videos.
comment: Project Page: \url{https://isee-laboratory.github.io/Long-RVOS}
TACOcc:Target-Adaptive Cross-Modal Fusion with Volume Rendering for 3D Semantic Occupancy
The performance of multi-modal 3D occupancy prediction is limited by ineffective fusion, mainly due to geometry-semantics mismatch from fixed fusion strategies and surface detail loss caused by sparse, noisy annotations. The mismatch stems from the heterogeneous scale and distribution of point cloud and image features, leading to biased matching under fixed neighborhood fusion. To address this, we propose a target-scale adaptive, bidirectional symmetric retrieval mechanism. It expands the neighborhood for large targets to enhance context awareness and shrinks it for small ones to improve efficiency and suppress noise, enabling accurate cross-modal feature alignment. This mechanism explicitly establishes spatial correspondences and improves fusion accuracy. For surface detail loss, sparse labels provide limited supervision, resulting in poor predictions for small objects. We introduce an improved volume rendering pipeline based on 3D Gaussian Splatting, which takes fused features as input to render images, applies photometric consistency supervision, and jointly optimizes 2D-3D consistency. This enhances surface detail reconstruction while suppressing noise propagation. In summary, we propose TACOcc, an adaptive multi-modal fusion framework for 3D semantic occupancy prediction, enhanced by volume rendering supervision. Experiments on the nuScenes and SemanticKITTI benchmarks validate its effectiveness.
Mamba-Adaptor: State Space Model Adaptor for Visual Recognition CVPR
Recent State Space Models (SSM), especially Mamba, have demonstrated impressive performance in visual modeling and possess superior model efficiency. However, the application of Mamba to visual tasks suffers inferior performance due to three main constraints existing in the sequential model: 1) Casual computing is incapable of accessing global context; 2) Long-range forgetting when computing the current hidden states; 3) Weak spatial structural modeling due to the transformed sequential input. To address these issues, we investigate a simple yet powerful vision task Adaptor for Mamba models, which consists of two functional modules: Adaptor-T and Adaptor-S. When solving the hidden states for SSM, we apply a lightweight prediction module Adaptor-T to select a set of learnable locations as memory augmentations to ease long-range forgetting issues. Moreover, we leverage Adapator-S, composed of multi-scale dilated convolutional kernels, to enhance the spatial modeling and introduce the image inductive bias into the feature output. Both modules can enlarge the context modeling in casual computing, as the output is enhanced by the inaccessible features. We explore three usages of Mamba-Adaptor: A general visual backbone for various vision tasks; A booster module to raise the performance of pretrained backbones; A highly efficient fine-tuning module that adapts the base model for transfer learning tasks. Extensive experiments verify the effectiveness of Mamba-Adaptor in three settings. Notably, our Mamba-Adaptor achieves state-of the-art performance on the ImageNet and COCO benchmarks.
comment: CVPR paper
Cosmos-Reason1: From Physical Common Sense To Embodied Reasoning
Physical AI systems need to perceive, understand, and perform complex actions in the physical world. In this paper, we present the Cosmos-Reason1 models that can understand the physical world and generate appropriate embodied decisions (e.g., next step action) in natural language through long chain-of-thought reasoning processes. We begin by defining key capabilities for Physical AI reasoning, with a focus on physical common sense and embodied reasoning. To represent physical common sense, we use a hierarchical ontology that captures fundamental knowledge about space, time, and physics. For embodied reasoning, we rely on a two-dimensional ontology that generalizes across different physical embodiments. Building on these capabilities, we develop two multimodal large language models, Cosmos-Reason1-7B and Cosmos-Reason1-56B. We curate data and train our models in two stages: Physical AI supervised fine-tuning (SFT) and Physical AI reinforcement learning (RL). To evaluate our models, we build comprehensive benchmarks for physical common sense and embodied reasoning according to our ontologies. Evaluation results show that Physical AI SFT and RL bring significant improvements. To facilitate the development of Physical AI, we make our code and pre-trained models available under the NVIDIA Open Model License at https://github.com/nvidia-cosmos/cosmos-reason1.
LadderMIL: Multiple Instance Learning with Coarse-to-Fine Self-Distillation
Multiple Instance Learning (MIL) for whole slide image (WSI) analysis in computational pathology often neglects instance-level learning as supervision is typically provided only at the bag level. In this work, we present LadderMIL, a framework designed to improve MIL through two perspectives: (1) employing instance-level supervision and (2) learning inter-instance contextual information at bag level. Firstly, we propose a novel Coarse-to-Fine Self-Distillation (CFSD) paradigm that probes and distils a network trained with bag-level information to adaptively obtain instance-level labels which could effectively provide the instance-level supervision for the same network in a self-improving way. Secondly, to capture inter-instance contextual information in WSI, we propose a Contextual Ecoding Generator (CEG), which encodes the contextual appearance of instances within a bag. We also theoretically and empirically prove the instance-level learnability of CFSD. Our LadderMIL is evaluated on multiple clinically relevant benchmarking tasks including breast cancer receptor status classification, multi-class subtype classification, tumour classification, and prognosis prediction. Average improvements of 8.1%, 11% and 2.4% in AUC, F1-score, and C-index, respectively, are demonstrated across the five benchmarks, compared to the best baseline.
Understanding the Effect of using Semantically Meaningful Tokens for Visual Representation Learning CVPR
Vision transformers have established a precedent of patchifying images into uniformly-sized chunks before processing. We hypothesize that this design choice may limit models in learning comprehensive and compositional representations from visual data. This paper explores the notion of providing semantically-meaningful visual tokens to transformer encoders within a vision-language pre-training framework. Leveraging off-the-shelf segmentation and scene-graph models, we extract representations of instance segmentation masks (referred to as tangible tokens) and relationships and actions (referred to as intangible tokens). Subsequently, we pre-train a vision-side transformer by incorporating these newly extracted tokens and aligning the resultant embeddings with caption embeddings from a text-side encoder. To capture the structural and semantic relationships among visual tokens, we introduce additive attention weights, which are used to compute self-attention scores. Our experiments on COCO demonstrate notable improvements over ViTs in learned representation quality across text-to-image (+47%) and image-to-text retrieval (+44%) tasks. Furthermore, we showcase the advantages on compositionality benchmarks such as ARO (+18%) and Winoground (+10%).
comment: Published at CVPR Workshops 2025
Quantifying Context Bias in Domain Adaptation for Object Detection
Domain adaptation for object detection (DAOD) seeks to transfer a trained model from a source to a target domain. Various DAOD methods exist, some of which aim to minimize context bias between foreground-background associations in various domains. However, no prior work has studied context bias in DAOD by analyzing changes in background features during adaptation and how context bias is represented in different domains. Our research experiment highlights the potential usability of context bias in DAOD. We address the problem by varying activation values over different layers of two different trained models, Detectron2 and YOLOv11, and by masking the background, both of which impact the number and quality of detections. We use two synthetic datasets, CARLA and Virtual KITTI, and two different versions of real open-source data, Cityscapes and KITTI semantic, as separate domains to represent and quantify context bias. We utilize different metrics such as Maximum Mean Discrepancy (MMD) and Maximum Variance Discrepancy (MVD) to find the layer-specific conditional probability estimates of foreground given manipulated background regions for separate domains. We further analyze foreground-background associations across various dataset combinations. We find that state-of-the-art domain adaptation methods exhibit some form of context bias and apply a potentially simple way to alleviate the context bias achieving improved accuracy (from 51.189 to 53.646 mAP on Cityscapes foggy validation with 63.207 mAP and 64.233 mAP on Cityscapes validation respectively). We demonstrate through detailed analysis that understanding of the context bias can affect DAOD approach and focusing solely on aligning foreground features is insufficient for effective DAOD.
comment: Under review
Anomaly Anything: Promptable Unseen Visual Anomaly Generation
Visual anomaly detection (AD) presents significant challenges due to the scarcity of anomalous data samples. While numerous works have been proposed to synthesize anomalous samples, these synthetic anomalies often lack authenticity or require extensive training data, limiting their applicability in real-world scenarios. In this work, we propose Anomaly Anything (AnomalyAny), a novel framework that leverages Stable Diffusion (SD)'s image generation capabilities to generate diverse and realistic unseen anomalies. By conditioning on a single normal sample during test time, AnomalyAny is able to generate unseen anomalies for arbitrary object types with text descriptions. Within AnomalyAny, we propose attention-guided anomaly optimization to direct SD attention on generating hard anomaly concepts. Additionally, we introduce prompt-guided anomaly refinement, incorporating detailed descriptions to further improve the generation quality. Extensive experiments on MVTec AD and VisA datasets demonstrate AnomalyAny's ability in generating high-quality unseen anomalies and its effectiveness in enhancing downstream AD performance.
comment: 8 pages excluding appendix
FIOVA: A Multi-Annotator Benchmark for Human-Aligned Video Captioning
Despite rapid progress in large vision-language models (LVLMs), existing video caption benchmarks remain limited in evaluating their alignment with human understanding. Most rely on a single annotation per video and lexical similarity-based metrics, failing to capture the variability in human perception and the cognitive importance of events. These limitations hinder accurate diagnosis of model capabilities in producing coherent, complete, and human-aligned descriptions. To address this, we introduce FIOVA (Five-In-One Video Annotations), a human-centric benchmark tailored for evaluation. It comprises 3,002 real-world videos (about 33.6s each), each annotated independently by five annotators. This design enables modeling of semantic diversity and inter-subjective agreement, offering a richer foundation for measuring human-machine alignment. We further propose FIOVA-DQ, an event-level evaluation metric that incorporates cognitive weights derived from annotator consensus, providing fine-grained assessment of event relevance and semantic coverage. Leveraging FIOVA, we conduct a comprehensive evaluation of nine representative LVLMs and introduce a complexity-aware analysis framework based on inter-annotator variation (CV). This reveals consistency gaps across difficulty levels and identifies structural issues such as event under-description and template convergence. Our results highlight FIOVA's diagnostic value for understanding LVLM behavior under varying complexity, setting a new standard for cognitively aligned evaluation in long-video captioning. The benchmark, annotations, metric, and model outputs are publicly released to support future evaluation-driven research in video understanding. More detailed information can be found at https://huuuuusy.github.io/fiova/.
JetFormer: An Autoregressive Generative Model of Raw Images and Text ICLR 2025
Removing modeling constraints and unifying architectures across domains has been a key driver of the recent progress in training large multimodal models. However, most of these models still rely on many separately trained components such as modality-specific encoders and decoders. In this work, we further streamline joint generative modeling of images and text. We propose an autoregressive decoder-only transformer - JetFormer - which is trained to directly maximize the likelihood of raw data, without relying on any separately pretrained components, and can understand and generate both text and images. Specifically, we leverage a normalizing flow model to obtain a soft-token image representation that is jointly trained with an autoregressive multimodal transformer. The normalizing flow model serves as both an image encoder for perception tasks and an image decoder for image generation tasks during inference. JetFormer achieves text-to-image generation quality competitive with recent VQ-VAE- and VAE-based baselines. These baselines rely on pretrained image autoencoders, which are trained with a complex mixture of losses, including perceptual ones. At the same time, JetFormer demonstrates robust image understanding capabilities. To the best of our knowledge, JetFormer is the first model that is capable of generating high-fidelity images and producing strong log-likelihood bounds.
comment: ICLR 2025. Code available at https://github.com/google-research/big_vision
Captured by Captions: On Memorization and its Mitigation in CLIP Models ICLR 2025
Multi-modal models, such as CLIP, have demonstrated strong performance in aligning visual and textual representations, excelling in tasks like image retrieval and zero-shot classification. Despite this success, the mechanisms by which these models utilize training data, particularly the role of memorization, remain unclear. In uni-modal models, both supervised and self-supervised, memorization has been shown to be essential for generalization. However, it is not well understood how these findings would apply to CLIP, which incorporates elements from both supervised learning via captions that provide a supervisory signal similar to labels, and from self-supervised learning via the contrastive objective. To bridge this gap in understanding, we propose a formal definition of memorization in CLIP (CLIPMem) and use it to quantify memorization in CLIP models. Our results indicate that CLIP's memorization behavior falls between the supervised and self-supervised paradigms, with "mis-captioned" samples exhibiting highest levels of memorization. Additionally, we find that the text encoder contributes more to memorization than the image encoder, suggesting that mitigation strategies should focus on the text domain. Building on these insights, we propose multiple strategies to reduce memorization while at the same time improving utility--something that had not been shown before for traditional learning paradigms where reducing memorization typically results in utility decrease.
comment: Accepted at ICLR 2025
EndoMetric: Near-Light Monocular Metric Scale Estimation in Endoscopy MICCAI 2025
Geometric reconstruction and SLAM with endoscopic images have advanced significantly in recent years. In most medical fields, monocular endoscopes are employed, and the algorithms used are typically adaptations of those designed for external environments, resulting in 3D reconstructions with an unknown scale factor. For the first time, we propose a method to estimate the real metric scale of a 3D reconstruction from standard monocular endoscopic images without relying on application-specific learned priors. Our fully model-based approach leverages the near-light sources embedded in endoscopes, positioned at a small but nonzero baseline from the camera, in combination with the inverse-square law of light attenuation, to accurately recover the metric scale from scratch. This enables the transformation of any endoscope into a metric device, which is crucial for applications such as measuring polyps, stenosis, or assessing the extent of diseased tissue.
comment: 10 pages, 3 figures, to be published in MICCAI 2025
RevCD -- Reversed Conditional Diffusion for Generalized Zero-Shot Learning
In Generalized Zero-Shot Learning (GZSL), we aim to recognize both seen and unseen categories using a model trained only on seen categories. In computer vision, this translates into a classification problem, where knowledge from seen categories is transferred to unseen categories by exploiting the relationships between visual features and available semantic information, such as text corpora or manual annotations. However, learning this joint distribution is costly and requires one-to-one training with corresponding semantic information. We present a reversed conditional Diffusion-based model (RevCD) that mitigates this issue by generating semantic features synthesized from visual inputs by leveraging Diffusion models' conditional mechanisms. Our RevCD model consists of a cross Hadamard-Addition embedding of a sinusoidal time schedule and a multi-headed visual transformer for attention-guided embeddings. The proposed approach introduces three key innovations. First, we reverse the process of generating semantic space based on visual data, introducing a novel loss function that facilitates more efficient knowledge transfer. Second, we apply Diffusion models to zero-shot learning - a novel approach that exploits their strengths in capturing data complexity. Third, we demonstrate our model's performance through a comprehensive cross-dataset evaluation. The complete code will be available on GitHub.
comment: Accepted as Full Paper of DeLTA 2025. The Conference Proceedings will be published by Springer
Iterative Deployment Exposure for Unsupervised Out-of-Distribution Detection MICCAI 2025
Deep learning models are vulnerable to performance degradation when encountering out-of-distribution (OOD) images, potentially leading to misdiagnoses and compromised patient care. These shortcomings have led to great interest in the field of OOD detection. Existing unsupervised OOD (U-OOD) detection methods typically assume that OOD samples originate from an unconcentrated distribution complementary to the training distribution, neglecting the reality that deployed models passively accumulate task-specific OOD samples over time. To better reflect this real-world scenario, we introduce Iterative Deployment Exposure (IDE), a novel and more realistic setting for U-OOD detection. We propose CSO, a method for IDE that starts from a U-OOD detector that is agnostic to the OOD distribution and slowly refines it during deployment using observed unlabeled data. CSO uses a new U-OOD scoring function that combines the Mahalanobis distance with a nearest-neighbor approach, along with a novel confidence-scaled few-shot OOD detector to effectively learn from limited OOD examples. We validate our approach on a dedicated benchmark, showing that our method greatly improves upon strong baselines on three medical imaging modalities.
comment: Accepted at MICCAI 2025
Controlled Training Data Generation with Diffusion Models
We present a method to control a text-to-image generative model to produce training data useful for supervised learning. Unlike previous works that employ an open-loop approach and pre-define prompts to generate new data using either a language model or human expertise, we develop an automated closed-loop system which involves two feedback mechanisms. The first mechanism uses feedback from a given supervised model and finds adversarial prompts that result in image generations that maximize the model loss. While these adversarial prompts result in diverse data informed by the model, they are not informed of the target distribution, which can be inefficient. Therefore, we introduce the second feedback mechanism that guides the generation process towards a certain target distribution. We call the method combining these two mechanisms Guided Adversarial Prompts. We perform our evaluations on different tasks, datasets and architectures, with different types of distribution shifts (spuriously correlated data, unseen domains) and demonstrate the efficiency of the proposed feedback mechanisms compared to open-loop approaches.
comment: Project page at https://adversarial-prompts.epfl.ch/
High Dynamic Range Novel View Synthesis with Single Exposure ICML 2025
High Dynamic Range Novel View Synthesis (HDR-NVS) aims to establish a 3D scene HDR model from Low Dynamic Range (LDR) imagery. Typically, multiple-exposure LDR images are employed to capture a wider range of brightness levels in a scene, as a single LDR image cannot represent both the brightest and darkest regions simultaneously. While effective, this multiple-exposure HDR-NVS approach has significant limitations, including susceptibility to motion artifacts (e.g., ghosting and blurring), high capture and storage costs. To overcome these challenges, we introduce, for the first time, the single-exposure HDR-NVS problem, where only single exposure LDR images are available during training. We further introduce a novel approach, Mono-HDR-3D, featuring two dedicated modules formulated by the LDR image formation principles, one for converting LDR colors to HDR counterparts, and the other for transforming HDR images to LDR format so that unsupervised learning is enabled in a closed loop. Designed as a meta-algorithm, our approach can be seamlessly integrated with existing NVS models. Extensive experiments show that Mono-HDR-3D significantly outperforms previous methods. Source code will be released.
comment: It has been accepted by ICML 2025
Vision Transformers in Precision Agriculture: A Comprehensive Survey
Detecting plant diseases is a crucial aspect of modern agriculture, as it plays a key role in maintaining crop health and increasing overall yield. Traditional approaches, though still valuable, often rely on manual inspection or conventional machine learning techniques, both of which face limitations in scalability and accuracy. Recently, Vision Transformers (ViTs) have emerged as a promising alternative, offering advantages such as improved handling of long-range dependencies and better scalability for visual tasks. This review explores the application of ViTs in precision agriculture, covering a range of tasks. We begin by introducing the foundational architecture of ViTs and discussing their transition from Natural Language Processing (NLP) to Computer Vision. The discussion includes the concept of inductive bias in traditional models like Convolutional Neural Networks (CNNs), and how ViTs mitigate these biases. We provide a comprehensive review of recent literature, focusing on key methodologies, datasets, and performance metrics. This study also includes a comparative analysis of CNNs and ViTs, along with a review of hybrid models and performance enhancements. Technical challenges such as data requirements, computational demands, and model interpretability are addressed, along with potential solutions. Finally, we outline future research directions and technological advancements that could further support the integration of ViTs in real-world agricultural settings. Our goal with this study is to offer practitioners and researchers a deeper understanding of how ViTs are poised to transform smart and precision agriculture.
Feedback-Driven Vision-Language Alignment with Minimal Human Supervision
Vision-language models (VLMs) have demonstrated remarkable potential in integrating visual and linguistic information, but their performance is often constrained by the need for extensive, high-quality image-text training data. Curation of these image-text pairs is both time-consuming and computationally expensive. To address this challenge, we introduce SVP (Sampling-based Visual Projection), a novel framework that enhances vision-language alignment without relying on manually curated text-image pairs or preference annotation. SVP leverages a small set of manually selected images, self-captioning and a pre-trained grounding model as a feedback mechanism to elicit latent information in VLMs. We evaluate our approach across six key areas: captioning, referring, visual question answering, multitasking, hallucination control, and object recall. Results demonstrate significant improvements, including a 14 % average improvement in captioning tasks, up to 12 % increase in object recall, and significantly reduced hallucinations, while maintaining question-answering capabilities. Using SVP, a small VLM achieves hallucination reductions similar to a model five times larger, while a VLM with initially poor referring capabilities more than doubles its performance, approaching parity with a model twice its size.
comment: Preprint
M3G: Multi-Granular Gesture Generator for Audio-Driven Full-Body Human Motion Synthesis
Generating full-body human gestures encompassing face, body, hands, and global movements from audio is a valuable yet challenging task in virtual avatar creation. Previous systems focused on tokenizing the human gestures framewisely and predicting the tokens of each frame from the input audio. However, one observation is that the number of frames required for a complete expressive human gesture, defined as granularity, varies among different human gesture patterns. Existing systems fail to model these gesture patterns due to the fixed granularity of their gesture tokens. To solve this problem, we propose a novel framework named Multi-Granular Gesture Generator (M3G) for audio-driven holistic gesture generation. In M3G, we propose a novel Multi-Granular VQ-VAE (MGVQ-VAE) to tokenize motion patterns and reconstruct motion sequences from different temporal granularities. Subsequently, we proposed a multi-granular token predictor that extracts multi-granular information from audio and predicts the corresponding motion tokens. Then M3G reconstructs the human gestures from the predicted tokens using the MGVQ-VAE. Both objective and subjective experiments demonstrate that our proposed M3G framework outperforms the state-of-the-art methods in terms of generating natural and expressive full-body human gestures.
comment: 9 Pages, 4 figures
Rolling with the Punches: Resilient Contrastive Pre-training under Non-Stationary Drift
The remarkable success of large-scale contrastive pre-training, fueled by vast and curated datasets, is encountering new frontiers as the scaling paradigm evolves. A critical emerging challenge is the effective pre-training of models on dynamic data streams characterized by concept drift, unpredictable changes in the underlying data distribution. This paper undertakes a foundational investigation of this issue. We first reveal that conventional contrastive pre-training methods are notably vulnerable to concept drift, leading to significant biases in the learned feature space of pre-trained models. To systematically analyze these effects, we construct a structural causal model that elucidates how drift acts as a confounder, distorting learned representations. Based on these causal insights, we propose Resilient Contrastive Pre-training (RCP), a novel method incorporating causal intervention. RCP introduces a causally-informed objective designed to mitigate drift-induced biases by leveraging targeted interventions. RCP is designed for simple and scalable implementation and exhibits notable adaptability, promoting robust pre-training on evolving data. Comprehensive experiments across diverse downstream tasks compellingly demonstrate that RCP effectively alleviates the detrimental impact of concept drift, yielding more resilient and generalizable representations.
comment: 17pages, 3 figures
VCM: Vision Concept Modeling Based on Implicit Contrastive Learning with Vision-Language Instruction Fine-Tuning
Large Vision-Language Models (LVLMs) are pivotal for real-world AI tasks like embodied intelligence due to their strong vision-language reasoning abilities. However, current LVLMs process entire images at the token level, which is inefficient compared to humans who analyze information and generate content at the conceptual level, extracting relevant visual concepts with minimal effort. This inefficiency, stemming from the lack of a visual concept model, limits LVLMs' usability in real-world applications. To address this, we propose VCM, an end-to-end self-supervised visual concept modeling framework. VCM leverages implicit contrastive learning across multiple sampled instances and vision-language fine-tuning to construct a visual concept model without requiring costly concept-level annotations. Our results show that VCM significantly reduces computational costs (e.g., 85\% fewer FLOPs for LLaVA-1.5-7B) while maintaining strong performance across diverse image understanding tasks. Moreover, VCM enhances visual encoders' capabilities in classic visual concept perception tasks. Extensive quantitative and qualitative experiments validate the effectiveness and efficiency of VCM.
comment: VCM
Multi-Faceted Multimodal Monosemanticity
Humans experience the world through multiple modalities, such as, vision, language, and speech, making it natural to explore the commonality and distinctions among them. In this work, we take a data-driven approach to address this question by analyzing interpretable, monosemantic features extracted from deep multimodal models. Specifically, we investigate CLIP, a prominent visual-language representation model trained on massive image-text pairs. Building on prior research in single-modal interpretability, we develop a set of multi-modal interpretability tools and measures designed to disentangle and analyze features learned from CLIP. Specifically, we introduce the Modality Dominance Score (MDS) to attribute each CLIP feature to a specific modality. We then map CLIP features into a more interpretable space, enabling us to categorize them into three distinct classes: vision features (single-modal), language features (single-modal), and visual-language features (cross-modal). Interestingly, this data-driven categorization closely aligns with human intuitive understandings of different modalities. We further show that this modality decomposition can benefit multiple downstream tasks, including reducing bias in gender detection, generating cross-modal adversarial examples, and enabling modal-specific feature control in text-to-image generation. These results indicate that large-scale multimodal models, when equipped with task-agnostic interpretability tools, can offer valuable insights into the relationships between different data modalities.
DPBridge: Latent Diffusion Bridge for Dense Prediction
Diffusion models demonstrate remarkable capabilities in capturing complex data distributions and have achieved compelling results in many generative tasks. While they have recently been extended to dense prediction tasks such as depth estimation and surface normal prediction, their full potential in this area remains under-explored. In dense prediction settings, target signal maps and input images are pixel-wise aligned. This makes conventional noise-to-data generation paradigm inefficient, as input images can serve as more informative prior compared to pure noise. Diffusion bridge models, which support data-to-data generation between two general data distributions, offer a promising alternative, but they typically fail to exploit the rich visual priors embedded in large pretrained foundation models. To address these limitations, we integrate diffusion bridge formulation with structured visual priors and introduce DPBridge, the first latent diffusion bridge framework for dense prediction tasks. Our method presents three key contributions: (1) a tractable reverse transition kernel for diffusion bridge process, enabling maximum likelihood training scheme for better compatibility with pretrained backbones; (2) a distribution-aligned normalization technique to mitigate the discrepancies between the bridge and standard diffusion processes; and (3) an auxiliary image consistency loss to preserve fine-grained details. Experiments across extensive benchmarks validate that our method consistently achieves superior performance, demonstrating its effectiveness and generalization capability under different scenarios.
Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation ICML2025
Many large-scale systems rely on high-quality deep representations (embeddings) to facilitate tasks like retrieval, search, and generative modeling. Matryoshka Representation Learning (MRL) recently emerged as a solution for adaptive embedding lengths, but it requires full model retraining and suffers from noticeable performance degradations at short lengths. In this paper, we show that sparse coding offers a compelling alternative for achieving adaptive representation with minimal overhead and higher fidelity. We propose Contrastive Sparse Representation (CSR), a method that sparsifies pre-trained embeddings into a high-dimensional but selectively activated feature space. By leveraging lightweight autoencoding and task-aware contrastive objectives, CSR preserves semantic quality while allowing flexible, cost-effective inference at different sparsity levels. Extensive experiments on image, text, and multimodal benchmarks demonstrate that CSR consistently outperforms MRL in terms of both accuracy and retrieval speed-often by large margins-while also cutting training time to a fraction of that required by MRL. Our results establish sparse coding as a powerful paradigm for adaptive representation learning in real-world applications where efficiency and fidelity are both paramount. Code is available at https://github.com/neilwen987/CSR_Adaptive_Rep
comment: Accepted by ICML2025
UniTok: A Unified Tokenizer for Visual Generation and Understanding
Visual generative and understanding models typically rely on distinct tokenizers to process images, presenting a key challenge for unifying them within a single framework. Recent studies attempt to address this by connecting the training of VQVAE (for autoregressive generation) and CLIP (for understanding) to build a unified tokenizer. However, directly combining these training objectives has been observed to cause severe loss conflicts. In this paper, we show that reconstruction and semantic supervision do not inherently conflict. Instead, the underlying bottleneck stems from limited representational capacity of discrete token space. Building on these insights, we introduce UniTok, a unified tokenizer featuring a novel multi-codebook quantization mechanism that effectively scales up the vocabulary size and bottleneck dimension. In terms of final performance, UniTok sets a new record of 0.38 rFID and 78.6% zero-shot accuracy on ImageNet. Besides, UniTok can be seamlessly integrated into MLLMs to unlock native visual generation capability, without compromising the understanding performance. Additionally, we show that UniTok favors cfg-free generation, reducing gFID from 14.6 to 2.5 on ImageNet 256$\times$256 benchmark. GitHub: https://github.com/FoundationVision/UniTok.
UniversalRAG: Retrieval-Augmented Generation over Corpora of Diverse Modalities and Granularities
Retrieval-Augmented Generation (RAG) has shown substantial promise in improving factual accuracy by grounding model responses with external knowledge relevant to queries. However, most existing RAG approaches are limited to a text-only corpus, and while recent efforts have extended RAG to other modalities such as images and videos, they typically operate over a single modality-specific corpus. In contrast, real-world queries vary widely in the type of knowledge they require, which a single type of knowledge source cannot address. To address this, we introduce UniversalRAG, a novel RAG framework designed to retrieve and integrate knowledge from heterogeneous sources with diverse modalities and granularities. Specifically, motivated by the observation that forcing all modalities into a unified representation space derived from a single aggregated corpus causes a modality gap, where the retrieval tends to favor items from the same modality as the query, we propose a modality-aware routing mechanism that dynamically identifies the most appropriate modality-specific corpus and performs targeted retrieval within it. Also, beyond modality, we organize each modality into multiple granularity levels, enabling fine-tuned retrieval tailored to the complexity and scope of the query. We validate UniversalRAG on 8 benchmarks spanning multiple modalities, showing its superiority over various modality-specific and unified baselines.
comment: Project page : https://universalrag.github.io
Grokking at the Edge of Numerical Stability
Grokking, the sudden generalization that occurs after prolonged overfitting, is a surprising phenomenon challenging our understanding of deep learning. Although significant progress has been made in understanding grokking, the reasons behind the delayed generalization and its dependence on regularization remain unclear. In this work, we argue that without regularization, grokking tasks push models to the edge of numerical stability, introducing floating point errors in the Softmax function, which we refer to as Softmax Collapse (SC). We demonstrate that SC prevents grokking and that mitigating SC enables grokking without regularization. Investigating the root cause of SC, we find that beyond the point of overfitting, the gradients strongly align with what we call the na\"ive loss minimization (NLM) direction. This component of the gradient does not alter the model's predictions but decreases the loss by scaling the logits, typically by scaling the weights along their current direction. We show that this scaling of the logits explains the delay in generalization characteristic of grokking and eventually leads to SC, halting further learning. To validate our hypotheses, we introduce two key contributions that address the challenges in grokking tasks: StableMax, a new activation function that prevents SC and enables grokking without regularization, and $\perp$Grad, a training algorithm that promotes quick generalization in grokking tasks by preventing NLM altogether. These contributions provide new insights into grokking, elucidating its delayed generalization, reliance on regularization, and the effectiveness of existing grokking-inducing methods. Code for this paper is available at https://github.com/LucasPrietoAl/grokking-at-the-edge-of-numerical-stability.
BrainPrompt: Multi-Level Brain Prompt Enhancement for Neurological Condition Identification MICCAI 2025
Neurological conditions, such as Alzheimer's Disease, are challenging to diagnose, particularly in the early stages where symptoms closely resemble healthy controls. Existing brain network analysis methods primarily focus on graph-based models that rely solely on imaging data, which may overlook important non-imaging factors and limit the model's predictive power and interpretability. In this paper, we present BrainPrompt, an innovative framework that enhances Graph Neural Networks (GNNs) by integrating Large Language Models (LLMs) with knowledge-driven prompts, enabling more effective capture of complex, non-imaging information and external knowledge for neurological disease identification. BrainPrompt integrates three types of knowledge-driven prompts: (1) ROI-level prompts to encode the identity and function of each brain region, (2) subject-level prompts that incorporate demographic information, and (3) disease-level prompts to capture the temporal progression of disease. By leveraging these multi-level prompts, BrainPrompt effectively harnesses knowledge-enhanced multi-modal information from LLMs, enhancing the model's capability to predict neurological disease stages and meanwhile offers more interpretable results. We evaluate BrainPrompt on two resting-state functional Magnetic Resonance Imaging (fMRI) datasets from neurological disorders, showing its superiority over state-of-the-art methods. Additionally, a biomarker study demonstrates the framework's ability to extract valuable and interpretable information aligned with domain knowledge in neuroscience. The code is available at https://github.com/AngusMonroe/BrainPrompt
comment: Early accepted by MICCAI 2025
$\infty$-Video: A Training-Free Approach to Long Video Understanding via Continuous-Time Memory Consolidation
Current video-language models struggle with long-video understanding due to limited context lengths and reliance on sparse frame subsampling, often leading to information loss. This paper introduces $\infty$-Video, which can process arbitrarily long videos through a continuous-time long-term memory (LTM) consolidation mechanism. Our framework augments video Q-formers by allowing them to process unbounded video contexts efficiently and without requiring additional training. Through continuous attention, our approach dynamically allocates higher granularity to the most relevant video segments, forming "sticky" memories that evolve over time. Experiments with Video-LLaMA and VideoChat2 demonstrate improved performance in video question-answering tasks, showcasing the potential of continuous-time LTM mechanisms to enable scalable and training-free comprehension of long videos.
comment: 17 pages, 7 figures
DiTPainter: Efficient Video Inpainting with Diffusion Transformers
Many existing video inpainting algorithms utilize optical flows to construct the corresponding maps and then propagate pixels from adjacent frames to missing areas by mapping. Despite the effectiveness of the propagation mechanism, they might encounter blurry and inconsistencies when dealing with inaccurate optical flows or large masks. Recently, Diffusion Transformer (DiT) has emerged as a revolutionary technique for video generation tasks. However, pretrained DiT models for video generation all contain a large amount of parameters, which makes it very time consuming to apply to video inpainting tasks. In this paper, we present DiTPainter, an end-to-end video inpainting model based on Diffusion Transformer (DiT). DiTPainter uses an efficient transformer network designed for video inpainting, which is trained from scratch instead of initializing from any large pretrained models. DiTPainter can address videos with arbitrary lengths and can be applied to video decaptioning and video completion tasks with an acceptable time cost. Experiments show that DiTPainter outperforms existing video inpainting algorithms with higher quality and better spatial-temporal consistency.
VISTA: Enhancing Vision-Text Alignment in MLLMs via Cross-Modal Mutual Information Maximization
Current multimodal large language models (MLLMs) face a critical challenge in modality alignment, often exhibiting a bias towards textual information at the expense of other modalities like vision. This paper conducts a systematic information-theoretic analysis of the widely used cross-entropy loss in MLLMs, uncovering its implicit alignment objective. Our theoretical investigation reveals that this implicit objective has inherent limitations, leading to a degradation of cross-modal alignment as text sequence length increases, thereby hindering effective multimodal information fusion. To overcome these drawbacks, we propose Vision-Text Alignment (VISTA), a novel approach guided by our theoretical insights. VISTA introduces an explicit alignment objective designed to maximize cross-modal mutual information, preventing the degradation of visual alignment. Notably, VISTA enhances the visual understanding capabilities of existing MLLMs without requiring any additional trainable modules or extra training data, making it both efficient and practical. Our method significantly outperforms baseline models across more than a dozen benchmark datasets, including VQAv2, MMStar, and MME, paving the way for new directions in MLLM modal alignment research.
FAST: Federated Active Learning with Foundation Models for Communication-efficient Sampling and Training
Federated Active Learning (FAL) has emerged as a promising framework to leverage large quantities of unlabeled data across distributed clients while preserving data privacy. However, real-world deployments remain limited by high annotation costs and communication-intensive sampling processes, particularly in a cross-silo setting, when clients possess substantial local datasets. This paper addresses the crucial question: What is the best practice to reduce communication costs in human-in-the-loop learning with minimal annotator effort? Existing FAL methods typically rely on iterative annotation processes that separate active sampling from federated updates, leading to multiple rounds of expensive communication and annotation. In response, we introduce FAST, a two-pass FAL framework that harnesses foundation models for weak labeling in a preliminary pass, followed by a refinement pass focused exclusively on the most uncertain samples. By leveraging representation knowledge from foundation models and integrating refinement steps into a streamlined workflow, FAST substantially reduces the overhead incurred by iterative active sampling. Extensive experiments on diverse medical and natural image benchmarks demonstrate that FAST outperforms existing FAL methods by an average of 4.36% while reducing communication rounds eightfold under a limited 5% labeling budget.
comment: Accepted at IEEE Internet of Things Journal
What's Inside Your Diffusion Model? A Score-Based Riemannian Metric to Explore the Data Manifold
Recent advances in diffusion models have demonstrated their remarkable ability to capture complex image distributions, but the geometric properties of the learned data manifold remain poorly understood. We address this gap by introducing a score-based Riemannian metric that leverages the Stein score function from diffusion models to characterize the intrinsic geometry of the data manifold without requiring explicit parameterization. Our approach defines a metric tensor in the ambient space that stretches distances perpendicular to the manifold while preserving them along tangential directions, effectively creating a geometry where geodesics naturally follow the manifold's contours. We develop efficient algorithms for computing these geodesics and demonstrate their utility for both interpolation between data points and extrapolation beyond the observed data distribution. Through experiments on synthetic data with known geometry, Rotated MNIST, and complex natural images via Stable Diffusion, we show that our score-based geodesics capture meaningful transformations that respect the underlying data distribution. Our method consistently outperforms baseline approaches on perceptual metrics (LPIPS) and distribution-level metrics (FID, KID), producing smoother, more realistic image transitions. These results reveal the implicit geometric structure learned by diffusion models and provide a principled way to navigate the manifold of natural images through the lens of Riemannian geometry.
COMAE: COMprehensive Attribute Exploration for Zero-shot Hashing
Zero-shot hashing (ZSH) has shown excellent success owing to its efficiency and generalization in large-scale retrieval scenarios. While considerable success has been achieved, there still exist urgent limitations. Existing works ignore the locality relationships of representations and attributes, which have effective transferability between seeable classes and unseeable classes. Also, the continuous-value attributes are not fully harnessed. In response, we conduct a COMprehensive Attribute Exploration for ZSH, named COMAE, which depicts the relationships from seen classes to unseen ones through three meticulously designed explorations, i.e., point-wise, pair-wise and class-wise consistency constraints. By regressing attributes from the proposed attribute prototype network, COMAE learns the local features that are relevant to the visual attributes. Then COMAE utilizes contrastive learning to comprehensively depict the context of attributes, rather than instance-independent optimization. Finally, the class-wise constraint is designed to cohesively learn the hash code, image representation, and visual attributes more effectively. Experimental results on the popular ZSH datasets demonstrate that COMAE outperforms state-of-the-art hashing techniques, especially in scenarios with a larger number of unseen label classes.
comment: 10 pages, 5 figures
DeLoRA: Decoupling Angles and Strength in Low-rank Adaptation ICLR 2025
Parameter-Efficient FineTuning (PEFT) methods have recently gained significant popularity thanks to the widespread availability of large-scale pretrained models. These methods allow for quick adaptation to downstream tasks with minimal computational cost. However, popular finetuning methods such as LoRA exhibit limited robustness when it comes to hyperparameter choices or extended training regimes, preventing optimal out-of-the-box performance. In contrast, bounded approaches, such as ETHER, provide greater robustness but are limited to extremely low-rank adaptations and fixed-strength transformations, reducing their adaptation expressive power. In this work, we propose Decoupled Low-rank Adaptation (DeLoRA), a novel finetuning method that normalizes and scales learnable low-rank matrices. By bounding the distance of the transformation, DeLoRA effectively decouples the angular learning from the adaptation strength, enhancing robustness without compromising performance. Through evaluations on subject-driven image generation, natural language understanding, and instruction tuning, we show that DeLoRA matches or surpasses performance of competing PEFT methods, while exhibiting stronger robustness. Code is available at https://github.com/ExplainableML/DeLoRA.
comment: ICLR 2025
ReGraP-LLaVA: Reasoning enabled Graph-based Personalized Large Language and Vision Assistant
Recent advances in personalized MLLMs enable effective capture of user-specific concepts, supporting both recognition of personalized concepts and contextual captioning. However, humans typically explore and reason over relations among objects and individuals, transcending surface-level information to achieve more personalized and contextual understanding. To this end, existing methods may face three main limitations: Their training data lacks multi-object sets in which relations among objects are learnable. Building on the limited training data, their models overlook the relations between different personalized concepts and fail to reason over them. Their experiments mainly focus on a single personalized concept, where evaluations are limited to recognition and captioning tasks. To address the limitations, we present a new dataset named ReGraP, consisting of 120 sets of personalized knowledge. Each set includes images, KGs, and CoT QA pairs derived from the KGs, enabling more structured and sophisticated reasoning pathways. We propose ReGraP-LLaVA, an MLLM trained with the corresponding KGs and CoT QA pairs, where soft and hard graph prompting methods are designed to align KGs within the model's semantic space. We establish the ReGraP Benchmark, which contains diverse task types: multiple-choice, fill-in-the-blank, True/False, and descriptive questions in both open- and closed-ended settings. The proposed benchmark is designed to evaluate the relational reasoning and knowledge-connection capability of personalized MLLMs. We conduct experiments on the proposed ReGraP-LLaVA and other competitive MLLMs. Results show that the proposed model not only learns personalized knowledge but also performs relational reasoning in responses, achieving the SoTA performance compared with the competitive methods. All the codes and datasets are released at: https://github.com/xyfyyds/ReGraP.
comment: Work in progress
Origin Identification for Text-Guided Image-to-Image Diffusion Models ICML 2025
Text-guided image-to-image diffusion models excel in translating images based on textual prompts, allowing for precise and creative visual modifications. However, such a powerful technique can be misused for spreading misinformation, infringing on copyrights, and evading content tracing. This motivates us to introduce the task of origin IDentification for text-guided Image-to-image Diffusion models (ID$^2$), aiming to retrieve the original image of a given translated query. A straightforward solution to ID$^2$ involves training a specialized deep embedding model to extract and compare features from both query and reference images. However, due to visual discrepancy across generations produced by different diffusion models, this similarity-based approach fails when training on images from one model and testing on those from another, limiting its effectiveness in real-world applications. To solve this challenge of the proposed ID$^2$ task, we contribute the first dataset and a theoretically guaranteed method, both emphasizing generalizability. The curated dataset, OriPID, contains abundant Origins and guided Prompts, which can be used to train and test potential IDentification models across various diffusion models. In the method section, we first prove the existence of a linear transformation that minimizes the distance between the pre-trained Variational Autoencoder (VAE) embeddings of generated samples and their origins. Subsequently, it is demonstrated that such a simple linear transformation can be generalized across different diffusion models. Experimental results show that the proposed method achieves satisfying generalization performance, significantly surpassing similarity-based methods ($+31.6\%$ mAP), even those with generalization designs. The project is available at https://id2icml.github.io.
comment: Accepted by ICML 2025
CAMOT: Camera Angle-aware Multi-Object Tracking
This paper proposes CAMOT, a simple camera angle estimator for multi-object tracking to tackle two problems: 1) occlusion and 2) inaccurate distance estimation in the depth direction. Under the assumption that multiple objects are located on a flat plane in each video frame, CAMOT estimates the camera angle using object detection. In addition, it gives the depth of each object, enabling pseudo-3D MOT. We evaluated its performance by adding it to various 2D MOT methods on the MOT17 and MOT20 datasets and confirmed its effectiveness. Applying CAMOT to ByteTrack, we obtained 63.8% HOTA, 80.6% MOTA, and 78.5% IDF1 in MOT17, which are state-of-the-art results. Its computational cost is significantly lower than the existing deep-learning-based depth estimators for tracking.
comment: https://gitlab.com/felixlimanta/camot
Rethinking Attention: Polynomial Alternatives to Softmax in Transformers
This paper questions whether the strong performance of softmax attention in transformers stems from producing a probability distribution over inputs. Instead, we argue that softmax's effectiveness lies in its implicit regularization of the Frobenius norm of the attention matrix, which stabilizes training. Motivated by this, we explore alternative activations, specifically polynomials, that achieve a similar regularization effect. Our theoretical analysis shows that certain polynomials can serve as effective substitutes for softmax, achieving strong performance across transformer applications despite violating softmax's typical properties of positivity, normalization, and sparsity. Extensive experiments support these findings, offering a new perspective on attention mechanisms.
Offboard Occupancy Refinement with Hybrid Propagation for Autonomous Driving
Vision-based occupancy prediction, also known as 3D Semantic Scene Completion (SSC), presents a significant challenge in computer vision. Previous methods, confined to onboard processing, struggle with simultaneous geometric and semantic estimation, continuity across varying viewpoints, and single-view occlusion. Our paper introduces OccFiner, a novel offboard framework designed to enhance the accuracy of vision-based occupancy predictions. OccFiner operates in two hybrid phases: 1) a multi-to-multi local propagation network that implicitly aligns and processes multiple local frames for correcting onboard model errors and consistently enhancing occupancy accuracy across all distances. 2) the region-centric global propagation, focuses on refining labels using explicit multi-view geometry and integrating sensor bias, particularly for increasing the accuracy of distant occupied voxels. Extensive experiments demonstrate that OccFiner improves both geometric and semantic accuracy across various types of coarse occupancy, setting a new state-of-the-art performance on the SemanticKITTI dataset. Notably, OccFiner significantly boosts the performance of vision-based SSC models, achieving accuracy levels competitive with established LiDAR-based onboard SSC methods. Furthermore, OccFiner is the first to achieve automatic annotation of SSC in a purely vision-based approach. Quantitative experiments prove that OccFiner successfully facilitates occupancy data loop-closure in autonomous driving. Additionally, we quantitatively and qualitatively validate the superiority of the offboard approach on city-level SSC static maps. The source code will be made publicly available at https://github.com/MasterHow/OccFiner.
comment: Accepted to IEEE Transactions on Intelligent Transportation Systems (T-ITS). The source code will be made publicly available at https://github.com/MasterHow/OccFiner
DPM-Solver++: Fast Solver for Guided Sampling of Diffusion Probabilistic Models
Diffusion probabilistic models (DPMs) have achieved impressive success in high-resolution image synthesis, especially in recent large-scale text-to-image generation applications. An essential technique for improving the sample quality of DPMs is guided sampling, which usually needs a large guidance scale to obtain the best sample quality. The commonly-used fast sampler for guided sampling is DDIM, a first-order diffusion ODE solver that generally needs 100 to 250 steps for high-quality samples. Although recent works propose dedicated high-order solvers and achieve a further speedup for sampling without guidance, their effectiveness for guided sampling has not been well-tested before. In this work, we demonstrate that previous high-order fast samplers suffer from instability issues, and they even become slower than DDIM when the guidance scale grows large. To further speed up guided sampling, we propose DPM-Solver++, a high-order solver for the guided sampling of DPMs. DPM-Solver++ solves the diffusion ODE with the data prediction model and adopts thresholding methods to keep the solution matches training data distribution. We further propose a multistep variant of DPM-Solver++ to address the instability issue by reducing the effective step size. Experiments show that DPM-Solver++ can generate high-quality samples within only 15 to 20 steps for guided sampling by pixel-space and latent-space DPMs.
comment: Machine Intelligence Research
How Panel Layouts Define Manga: Insights from Visual Ablation Experiments
Today, manga has gained worldwide popularity. However, the question of how various elements of manga, such as characters, text, and panel layouts, reflect the uniqueness of a particular work, or even define it, remains an unexplored area. In this paper, we aim to quantitatively and qualitatively analyze the visual characteristics of manga works, with a particular focus on panel layout features. As a research method, we used facing page images of manga as input to train a deep learning model for predicting manga titles, examining classification accuracy to quantitatively analyze these features. Specifically, we conducted ablation studies by limiting page image information to panel frames to analyze the characteristics of panel layouts. Through a series of quantitative experiments using all 104 works, 12 genres, and 10,122 facing page images from the Manga109 dataset, as well as qualitative analysis using Grad-CAM, our study demonstrates that the uniqueness of manga works is strongly reflected in their panel layouts.
comment: 7 pages, Final camera-ready version for CogSci 2025. Minor revision and improved figure quality
Vision-centric Token Compression in Large Language Model
Real-world applications are stretching context windows to hundreds of thousand of tokens while Large Language Models (LLMs) swell from billions to trillions of parameters. This dual expansion send compute and memory costs skyrocketing, making token compression indispensable. We introduce Vision Centric Token Compression (Vist), a slow-fast compression framework that mirrors human reading: the fast path renders distant tokens into images, letting a frozen, lightweight vision encoder skim the low-salience context; the slow path feeds the proximal window into the LLM for fine-grained reasoning. A Probability-Informed Visual Enhancement (PVE) objective masks high-frequency tokens during training, steering the Resampler to concentrate on semantically rich regions-just as skilled reader gloss over function words. On eleven in-context learning benchmarks, Vist achieves the same accuracy with 2.3 times fewer tokens, cutting FLOPs by 16% and memory by 50%. This method delivers remarkable results, outperforming the strongest text encoder-based compression method CEPE by 7.6% on average over benchmarks like TriviaQA, NQ, PopQA, NLUI, and CLIN, setting a new standard for token efficiency in LLMs. The source code will be released.
DexGarmentLab: Dexterous Garment Manipulation Environment with Generalizable Policy
Garment manipulation is a critical challenge due to the diversity in garment categories, geometries, and deformations. Despite this, humans can effortlessly handle garments, thanks to the dexterity of our hands. However, existing research in the field has struggled to replicate this level of dexterity, primarily hindered by the lack of realistic simulations of dexterous garment manipulation. Therefore, we propose DexGarmentLab, the first environment specifically designed for dexterous (especially bimanual) garment manipulation, which features large-scale high-quality 3D assets for 15 task scenarios, and refines simulation techniques tailored for garment modeling to reduce the sim-to-real gap. Previous data collection typically relies on teleoperation or training expert reinforcement learning (RL) policies, which are labor-intensive and inefficient. In this paper, we leverage garment structural correspondence to automatically generate a dataset with diverse trajectories using only a single expert demonstration, significantly reducing manual intervention. However, even extensive demonstrations cannot cover the infinite states of garments, which necessitates the exploration of new algorithms. To improve generalization across diverse garment shapes and deformations, we propose a Hierarchical gArment-manipuLation pOlicy (HALO). It first identifies transferable affordance points to accurately locate the manipulation area, then generates generalizable trajectories to complete the task. Through extensive experiments and detailed analysis of our method and baseline, we demonstrate that HALO consistently outperforms existing methods, successfully generalizing to previously unseen instances even with significant variations in shape and deformation where others fail. Our project page is available at: https://wayrise.github.io/DexGarmentLab/.
Bias and Generalizability of Foundation Models across Datasets in Breast Mammography MICCAI
Over the past decades, computer-aided diagnosis tools for breast cancer have been developed to enhance screening procedures, yet their clinical adoption remains challenged by data variability and inherent biases. Although foundation models (FMs) have recently demonstrated impressive generalizability and transfer learning capabilities by leveraging vast and diverse datasets, their performance can be undermined by spurious correlations that arise from variations in image quality, labeling uncertainty, and sensitive patient attributes. In this work, we explore the fairness and bias of FMs for breast mammography classification by leveraging a large pool of datasets from diverse sources-including data from underrepresented regions and an in-house dataset. Our extensive experiments show that while modality-specific pre-training of FMs enhances performance, classifiers trained on features from individual datasets fail to generalize across domains. Aggregating datasets improves overall performance, yet does not fully mitigate biases, leading to significant disparities across under-represented subgroups such as extreme breast densities and age groups. Furthermore, while domain-adaptation strategies can reduce these disparities, they often incur a performance trade-off. In contrast, fairness-aware techniques yield more stable and equitable performance across subgroups. These findings underscore the necessity of incorporating rigorous fairness evaluations and mitigation strategies into FM-based models to foster inclusive and generalizable AI.
comment: Accepted at the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2025
CDMamba: Incorporating Local Clues into Mamba for Remote Sensing Image Binary Change Detection
Recently, the Mamba architecture based on state space models has demonstrated remarkable performance in a series of natural language processing tasks and has been rapidly applied to remote sensing change detection (CD) tasks. However, most methods enhance the global receptive field by directly modifying the scanning mode of Mamba, neglecting the crucial role that local information plays in dense prediction tasks (e.g., binary CD). In this article, we propose a model called CDMamba, which effectively combines global and local features for handling binary CD tasks. Specifically, the Scaled Residual ConvMamba (SRCM) block is proposed to utilize the ability of Mamba to extract global features and convolution to enhance the local details to alleviate the issue that current Mamba-based methods lack detailed clues and are difficult to achieve fine detection in dense prediction tasks. Furthermore, considering the characteristics of bi-temporal feature interaction required for CD, the Adaptive Global Local Guided Fusion (AGLGF) block is proposed to dynamically facilitate the bi-temporal interaction guided by other temporal global/local features. Our intuition is that more discriminative change features can be acquired with the guidance of other temporal features. Extensive experiments on five datasets demonstrate that our proposed CDMamba is comparable to the current methods (such as the F1/IoU scores are improved by 2.10%/3.00% and 2.44%/2.91% on LEVIR+CD and CLCD, respectively). Our code is open-sourced at https://github.com/zmoka-zht/CDMamba.
3DGen-Bench: Comprehensive Benchmark Suite for 3D Generative Models
3D generation is experiencing rapid advancements, while the development of 3D evaluation has not kept pace. How to keep automatic evaluation equitably aligned with human perception has become a well-recognized challenge. Recent advances in the field of language and image generation have explored human preferences and showcased respectable fitting ability. However, the 3D domain still lacks such a comprehensive preference dataset over generative models. To mitigate this absence, we develop 3DGen-Arena, an integrated platform in a battle manner. Then, we carefully design diverse text and image prompts and leverage the arena platform to gather human preferences from both public users and expert annotators, resulting in a large-scale multi-dimension human preference dataset 3DGen-Bench. Using this dataset, we further train a CLIP-based scoring model, 3DGen-Score, and a MLLM-based automatic evaluator, 3DGen-Eval. These two models innovatively unify the quality evaluation of text-to-3D and image-to-3D generation, and jointly form our automated evaluation system with their respective strengths. Extensive experiments demonstrate the efficacy of our scoring model in predicting human preferences, exhibiting a superior correlation with human ranks compared to existing metrics. We believe that our 3DGen-Bench dataset and automated evaluation system will foster a more equitable evaluation in the field of 3D generation, further promoting the development of 3D generative models and their downstream applications.
Scene-Text Grounding for Text-Based Video Question Answering
Existing efforts in text-based video question answering (TextVideoQA) are criticized for their opaque decisionmaking and heavy reliance on scene-text recognition. In this paper, we propose to study Grounded TextVideoQA by forcing models to answer questions and spatio-temporally localize the relevant scene-text regions, thus decoupling QA from scenetext recognition and promoting research towards interpretable QA. The task has three-fold significance. First, it encourages scene-text evidence versus other short-cuts for answer predictions. Second, it directly accepts scene-text regions as visual answers, thus circumventing the problem of ineffective answer evaluation by stringent string matching. Third, it isolates the challenges inherited in VideoQA and scene-text recognition. This enables the diagnosis of the root causes for failure predictions, e.g., wrong QA or wrong scene-text recognition? To achieve Grounded TextVideoQA, we propose the T2S-QA model that highlights a disentangled temporal-to-spatial contrastive learning strategy for weakly-supervised scene-text grounding and grounded TextVideoQA. To facilitate evaluation, we construct a new dataset ViTXT-GQA which features 52K scene-text bounding boxes within 2.2K temporal segments related to 2K questions and 729 videos. With ViTXT-GQA, we perform extensive experiments and demonstrate the severe limitations of existing techniques in Grounded TextVideoQA. While T2S-QA achieves superior results, the large performance gap with human leaves ample space for improvement. Our further analysis of oracle scene-text inputs posits that the major challenge is scene-text recognition. To advance the research of Grounded TextVideoQA, our dataset and code are at https://github.com/zhousheng97/ViTXT-GQA.git
comment: Accepted by IEEE TMM
Unsupervised Multi-Parameter Inverse Solving for Reducing Ring Artifacts in 3D X-Ray CBCT
Ring artifacts are prevalent in 3D cone-beam computed tomography (CBCT) due to non-ideal responses of X-ray detectors, substantially affecting image quality and diagnostic reliability. Existing state-of-the-art (SOTA) ring artifact reduction (RAR) methods rely on supervised learning with large-scale paired CT datasets. While effective in-domain, supervised methods tend to struggle to fully capture the physical characteristics of ring artifacts, leading to pronounced performance drops in complex real-world acquisitions. Moreover, their scalability to 3D CBCT is limited by high memory demands. In this work, we propose Riner, a new unsupervised RAR method. Based on a theoretical analysis of ring artifact formation, we reformulate RAR as a multi-parameter inverse problem, where the non-ideal responses of X-ray detectors are parameterized as solvable physical variables. Using a new differentiable forward model, Riner can jointly learn the implicit neural representation of artifact-free images and estimate the physical parameters directly from CT measurements, without external training data. Additionally, Riner is memory-friendly due to its ray-based optimization, enhancing its usability in large-scale 3D CBCT. Experiments on both simulated and real-world datasets show Riner outperforms existing SOTA supervised methods.
comment: 15 pages
Learning to Learn Weight Generation via Local Consistency Diffusion
Diffusion-based algorithms have emerged as promising techniques for weight generation. However, existing solutions are limited by two challenges: generalizability and local target assignment. The former arises from the inherent lack of cross-task transferability in existing single-level optimization methods, limiting the model's performance on new tasks. The latter lies in existing research modeling only global optimal weights, neglecting the supervision signals in local target weights. Moreover, naively assigning local target weights causes local-global inconsistency. To address these issues, we propose Mc-Di, which integrates the diffusion algorithm with meta-learning for better generalizability. Furthermore, we extend the vanilla diffusion into a local consistency diffusion algorithm. Our theory and experiments demonstrate that it can learn from local targets while maintaining consistency with the global optima. We validate Mc-Di's superior accuracy and inference efficiency in tasks that require frequent weight updates, including transfer learning, few-shot learning, domain generalization, and large language model adaptation.
Mitigate Language Priors in Large Vision-Language Models by Cross-Images Contrastive Decoding
Language priors are a major cause of hallucinations in Large Vision-Language Models (LVLMs), often leading to text that is linguistically plausible but visually inconsistent. Recent work explores contrastive decoding as a training-free solution, but these methods typically construct negative visual contexts from the original image, resulting in visual information loss and distorted distribution. Motivated by the observation that language priors stem from the LLM backbone and remain consistent across images, we propose Cross-Images Contrastive Decoding (CICD), a simple yet effective training-free method that uses different images to construct negative visual contexts. We further analyze the cross-image behavior of language priors and introduce a distinction between essential priors (supporting fluency) and detrimental priors (causing hallucinations), enabling selective suppression. By selectively preserving essential priors and suppressing detrimental ones, our method reduces hallucinations while maintaining coherent and fluent language generation. Experiments on four benchmarks and six LVLMs across three model families confirm the effectiveness and generalizability of CICD, especially in image captioning, where language priors are particularly pronounced. Code will be released upon acceptance.
RefDrone: A Challenging Benchmark for Referring Expression Comprehension in Drone Scenes
Drones have become prevalent robotic platforms with diverse applications, showing significant potential in Embodied Artificial Intelligence (Embodied AI). Referring Expression Comprehension (REC) enables drones to locate objects based on natural language expressions, a crucial capability for Embodied AI. Despite advances in REC for ground-level scenes, aerial views introduce unique challenges including varying viewpoints, occlusions and scale variations. To address this gap, we introduce RefDrone, a REC benchmark for drone scenes. RefDrone reveals three key challenges in REC: 1) multi-scale and small-scale target detection; 2) multi-target and no-target samples; 3) complex environment with rich contextual expressions. To efficiently construct this dataset, we develop RDAgent (referring drone annotation framework with multi-agent system), a semi-automated annotation tool for REC tasks. RDAgent ensures high-quality contextual expressions and reduces annotation cost. Furthermore, we propose Number GroundingDINO (NGDINO), a novel method designed to handle multi-target and no-target cases. NGDINO explicitly learns and utilizes the number of objects referred to in the expression. Comprehensive experiments with state-of-the-art REC methods demonstrate that NGDINO achieves superior performance on both the proposed RefDrone and the existing gRefCOCO datasets. The dataset and code are be publicly at https://github.com/sunzc-sunny/refdrone.
Integrating Extra Modality Helps Segmentor Find Camouflaged Objects Well
Camouflaged Object Segmentation (COS) remains challenging because camouflaged objects exhibit only subtle visual differences from their backgrounds and single-modality RGB methods provide limited cues, leading researchers to explore multimodal data to improve segmentation accuracy. In this work, we presenet MultiCOS, a novel framework that effectively leverages diverse data modalities to improve segmentation performance. MultiCOS comprises two modules: Bi-space Fusion Segmentor (BFSer), which employs a state space and a latent space fusion mechanism to integrate cross-modal features within a shared representation and employs a fusion-feedback mechanism to refine context-specific features, and Cross-modal Knowledge Learner (CKLer), which leverages external multimodal datasets to generate pseudo-modal inputs and establish cross-modal semantic associations, transferring knowledge to COS models when real multimodal pairs are missing. When real multimodal COS data are unavailable, CKLer yields additional segmentation gains using only non-COS multimodal sources. Experiments on standard COS benchmarks show that BFSer outperforms existing multimodal baselines with both real and pseudo-modal data. Code will be released at \href{https://github.com/cnyvfang/MultiCOS}{GitHub}.
comment: 18 pages, 8 figures, 14 tables
Ultrasound Report Generation with Multimodal Large Language Models for Standardized Texts
Ultrasound (US) report generation is a challenging task due to the variability of US images, operator dependence, and the need for standardized text. Unlike X-ray and CT, US imaging lacks consistent datasets, making automation difficult. In this study, we propose a unified framework for multi-organ and multilingual US report generation, integrating fragment-based multilingual training and leveraging the standardized nature of US reports. By aligning modular text fragments with diverse imaging data and curating a bilingual English-Chinese dataset, the method achieves consistent and clinically accurate text generation across organ sites and languages. Fine-tuning with selective unfreezing of the vision transformer (ViT) further improves text-image alignment. Compared to the previous state-of-the-art KMVE method, our approach achieves relative gains of about 2\% in BLEU scores, approximately 3\% in ROUGE-L, and about 15\% in CIDEr, while significantly reducing errors such as missing or incorrect content. By unifying multi-organ and multi-language report generation into a single, scalable framework, this work demonstrates strong potential for real-world clinical workflows.
Complementary Frequency-Varying Awareness Network for Open-Set Fine-Grained Image Recognition
Open-set image recognition is a challenging topic in computer vision. Most of the existing works in literature focus on learning more discriminative features from the input images, however, they are usually insensitive to the high- or low-frequency components in features, resulting in a decreasing performance on fine-grained image recognition. To address this problem, we propose a Complementary Frequency-varying Awareness Network that could better capture both high-frequency and low-frequency information, called CFAN. The proposed CFAN consists of three sequential modules: (i) a feature extraction module is introduced for learning preliminary features from the input images; (ii) a frequency-varying filtering module is designed to separate out both high- and low-frequency components from the preliminary features in the frequency domain via a frequency-adjustable filter; (iii) a complementary temporal aggregation module is designed for aggregating the high- and low-frequency components via two Long Short-Term Memory networks into discriminative features. Based on CFAN, we further propose an open-set fine-grained image recognition method, called CFAN-OSFGR, which learns image features via CFAN and classifies them via a linear classifier. Experimental results on 3 fine-grained datasets and 2 coarse-grained datasets demonstrate that CFAN-OSFGR performs significantly better than 9 state-of-the-art methods in most cases.
LightNeuS: Neural Surface Reconstruction in Endoscopy using Illumination Decline
We propose a new approach to 3D reconstruction from sequences of images acquired by monocular endoscopes. It is based on two key insights. First, endoluminal cavities are watertight, a property naturally enforced by modeling them in terms of a signed distance function. Second, the scene illumination is variable. It comes from the endoscope's light sources and decays with the inverse of the squared distance to the surface. To exploit these insights, we build on NeuS, a neural implicit surface reconstruction technique with an outstanding capability to learn appearance and a SDF surface model from multiple views, but currently limited to scenes with static illumination. To remove this limitation and exploit the relation between pixel brightness and depth, we modify the NeuS architecture to explicitly account for it and introduce a calibrated photometric model of the endoscope's camera and light source. Our method is the first one to produce watertight reconstructions of whole colon sections. We demonstrate excellent accuracy on phantom imagery. Remarkably, the watertight prior combined with illumination decline, allows to complete the reconstruction of unseen portions of the surface with acceptable accuracy, paving the way to automatic quality assessment of cancer screening explorations, measuring the global percentage of observed mucosa.
comment: 13 pages, 7 figures, 1 table
Image and Video Processing
GuidedMorph: Two-Stage Deformable Registration for Breast MRI
Accurately registering breast MR images from different time points enables the alignment of anatomical structures and tracking of tumor progression, supporting more effective breast cancer detection, diagnosis, and treatment planning. However, the complexity of dense tissue and its highly non-rigid nature pose challenges for conventional registration methods, which primarily focus on aligning general structures while overlooking intricate internal details. To address this, we propose \textbf{GuidedMorph}, a novel two-stage registration framework designed to better align dense tissue. In addition to a single-scale network for global structure alignment, we introduce a framework that utilizes dense tissue information to track breast movement. The learned transformation fields are fused by introducing the Dual Spatial Transformer Network (DSTN), improving overall alignment accuracy. A novel warping method based on the Euclidean distance transform (EDT) is also proposed to accurately warp the registered dense tissue and breast masks, preserving fine structural details during deformation. The framework supports paradigms that require external segmentation models and with image data only. It also operates effectively with the VoxelMorph and TransMorph backbones, offering a versatile solution for breast registration. We validate our method on ISPY2 and internal dataset, demonstrating superior performance in dense tissue, overall breast alignment, and breast structural similarity index measure (SSIM), with notable improvements by over 13.01% in dense tissue Dice, 3.13% in breast Dice, and 1.21% in breast SSIM compared to the best learning-based baseline.
VesselGPT: Autoregressive Modeling of Vascular Geometry
Anatomical trees are critical for clinical diagnosis and treatment planning, yet their complex and diverse geometry make accurate representation a significant challenge. Motivated by the latest advances in large language models, we introduce an autoregressive method for synthesizing anatomical trees. Our approach first embeds vessel structures into a learned discrete vocabulary using a VQ-VAE architecture, then models their generation autoregressively with a GPT-2 model. This method effectively captures intricate geometries and branching patterns, enabling realistic vascular tree synthesis. Comprehensive qualitative and quantitative evaluations reveal that our technique achieves high-fidelity tree reconstruction with compact discrete representations. Moreover, our B-spline representation of vessel cross-sections preserves critical morphological details that are often overlooked in previous' methods parameterizations. To the best of our knowledge, this work is the first to generate blood vessels in an autoregressive manner. Code, data, and trained models will be made available.
Higher fidelity perceptual image and video compression with a latent conditioned residual denoising diffusion model ECCV 2024
Denoising diffusion models achieved impressive results on several image generation tasks often outperforming GAN based models. Recently, the generative capabilities of diffusion models have been employed for perceptual image compression, such as in CDC. A major drawback of these diffusion-based methods is that, while producing impressive perceptual quality images they are dropping in fidelity/increasing the distortion to the original uncompressed images when compared with other traditional or learned image compression schemes aiming for fidelity. In this paper, we propose a hybrid compression scheme optimized for perceptual quality, extending the approach of the CDC model with a decoder network in order to reduce the impact on distortion metrics such as PSNR. After using the decoder network to generate an initial image, optimized for distortion, the latent conditioned diffusion model refines the reconstruction for perceptual quality by predicting the residual. On standard benchmarks, we achieve up to +2dB PSNR fidelity improvements while maintaining comparable LPIPS and FID perceptual scores when compared with CDC. Additionally, the approach is easily extensible to video compression, where we achieve similar results.
comment: Accepted at AIM Workshop 2024 at ECCV 2024
Stochastic Orthogonal Regularization for deep projective priors
Many crucial tasks of image processing and computer vision are formulated as inverse problems. Thus, it is of great importance to design fast and robust algorithms to solve these problems. In this paper, we focus on generalized projected gradient descent (GPGD) algorithms where generalized projections are realized with learned neural networks and provide state-of-the-art results for imaging inverse problems. Indeed, neural networks allow for projections onto unknown low-dimensional sets that model complex data, such as images. We call these projections deep projective priors. In generic settings, when the orthogonal projection onto a lowdimensional model set is used, it has been shown, under a restricted isometry assumption, that the corresponding orthogonal PGD converges with a linear rate, yielding near-optimal convergence (within the class of GPGD methods) in the classical case of sparse recovery. However, for deep projective priors trained with classical mean squared error losses, there is little guarantee that the hypotheses for linear convergence are satisfied. In this paper, we propose a stochastic orthogonal regularization of the training loss for deep projective priors. This regularization is motivated by our theoretical results: a sufficiently good approximation of the orthogonal projection guarantees linear stable recovery with performance close to orthogonal PGD. We show experimentally, using two different deep projective priors (based on autoencoders and on denoising networks), that our stochastic orthogonal regularization yields projections that improve convergence speed and robustness of GPGD in challenging inverse problem settings, in accordance with our theoretical findings.
A generalisable head MRI defacing pipeline: Evaluation on 2,566 meningioma scans
Reliable MRI defacing techniques to safeguard patient privacy while preserving brain anatomy are critical for research collaboration. Existing methods often struggle with incomplete defacing or degradation of brain tissue regions. We present a robust, generalisable defacing pipeline for high-resolution MRI that integrates atlas-based registration with brain masking. Our method was evaluated on 2,566 heterogeneous clinical scans for meningioma and achieved a 99.92 per cent success rate (2,564/2,566) upon visual inspection. Excellent anatomical preservation is demonstrated with a Dice similarity coefficient of 0.9975 plus or minus 0.0023 between brain masks automatically extracted from the original and defaced volumes. Source code is available at https://github.com/cai4cai/defacing_pipeline.
Enhancing Diffusion-Weighted Images (DWI) for Diffusion MRI: Is it Enough without Non-Diffusion-Weighted B=0 Reference?
Diffusion MRI (dMRI) is essential for studying brain microstructure, but high-resolution imaging remains challenging due to the inherent trade-offs between acquisition time and signal-to-noise ratio (SNR). Conventional methods often optimize only the diffusion-weighted images (DWIs) without considering their relationship with the non-diffusion-weighted (b=0) reference images. However, calculating diffusion metrics, such as the apparent diffusion coefficient (ADC) and diffusion tensor with its derived metrics like fractional anisotropy (FA) and mean diffusivity (MD), relies on the ratio between each DWI and the b=0 image, which is crucial for clinical observation and diagnostics. In this study, we demonstrate that solely enhancing DWIs using a conventional pixel-wise mean squared error (MSE) loss is insufficient, as the error in ratio between generated DWIs and b=0 diverges. We propose a novel ratio loss, defined as the MSE loss between the predicted and ground-truth log of DWI/b=0 ratios. Our results show that incorporating the ratio loss significantly improves the convergence of this ratio error, achieving lower ratio MSE and slightly enhancing the peak signal-to-noise ratio (PSNR) of generated DWIs. This leads to improved dMRI super-resolution and better preservation of b=0 ratio-based features for the derivation of diffusion metrics.
comment: IEEE ISBI 2025
Segmentation of temporomandibular joint structures on mri images using neural networks for diagnosis of pathologies
This article explores the use of artificial intelligence for the diagnosis of pathologies of the temporomandibular joint (TMJ), in particular, for the segmentation of the articular disc on MRI images. The relevance of the work is due to the high prevalence of TMJ pathologies, as well as the need to improve the accuracy and speed of diagnosis in medical institutions. During the study, the existing solutions (Diagnocat, MandSeg) were analyzed, which, as a result, are not suitable for studying the articular disc due to the orientation towards bone structures. To solve the problem, an original dataset was collected from 94 images with the classes "temporomandibular joint" and "jaw". To increase the amount of data, augmentation methods were used. After that, the models of U-Net, YOLOv8n, YOLOv11n and Roboflow neural networks were trained and compared. The evaluation was carried out according to the Dice Score, Precision, Sensitivity, Specificity, and Mean Average Precision metrics. The results confirm the potential of using the Roboflow model for segmentation of the temporomandibular joint. In the future, it is planned to develop an algorithm for measuring the distance between the jaws and determining the position of the articular disc, which will improve the diagnosis of TMJ pathologies.
comment: 10 pages, 10 figures
RetinaLogos: Fine-Grained Synthesis of High-Resolution Retinal Images Through Captions
The scarcity of high-quality, labelled retinal imaging data, which presents a significant challenge in the development of machine learning models for ophthalmology, hinders progress in the field. To synthesise Colour Fundus Photographs (CFPs), existing methods primarily relying on predefined disease labels face significant limitations. However, current methods remain limited, thus failing to generate images for broader categories with diverse and fine-grained anatomical structures. To overcome these challenges, we first introduce an innovative pipeline that creates a large-scale, synthetic Caption-CFP dataset comprising 1.4 million entries, called RetinaLogos-1400k. Specifically, RetinaLogos-1400k uses large language models (LLMs) to describe retinal conditions and key structures, such as optic disc configuration, vascular distribution, nerve fibre layers, and pathological features. Furthermore, based on this dataset, we employ a novel three-step training framework, called RetinaLogos, which enables fine-grained semantic control over retinal images and accurately captures different stages of disease progression, subtle anatomical variations, and specific lesion types. Extensive experiments demonstrate state-of-the-art performance across multiple datasets, with 62.07% of text-driven synthetic images indistinguishable from real ones by ophthalmologists. Moreover, the synthetic data improves accuracy by 10%-25% in diabetic retinopathy grading and glaucoma detection, thereby providing a scalable solution to augment ophthalmic datasets.
3D Gaussian Adaptive Reconstruction for Fourier Light-Field Microscopy
Compared to light-field microscopy (LFM), which enables high-speed volumetric imaging but suffers from non-uniform spatial sampling, Fourier light-field microscopy (FLFM) introduces sub-aperture division at the pupil plane, thereby ensuring spatially invariant sampling and enhancing spatial resolution. Conventional FLFM reconstruction methods, such as Richardson-Lucy (RL) deconvolution, exhibit poor axial resolution and signal degradation due to the ill-posed nature of the inverse problem. While data-driven approaches enhance spatial resolution by leveraging high-quality paired datasets or imposing structural priors, Neural Radiance Fields (NeRF)-based methods employ physics-informed self-supervised learning to overcome these limitations, yet they are hindered by substantial computational costs and memory demands. Therefore, we propose 3D Gaussian Adaptive Tomography (3DGAT) for FLFM, a 3D gaussian splatting based self-supervised learning framework that significantly improves the volumetric reconstruction quality of FLFM while maintaining computational efficiency. Experimental results indicate that our approach achieves higher resolution and improved reconstruction accuracy, highlighting its potential to advance FLFM imaging and broaden its applications in 3D optical microscopy.
Towards a Universal Image Degradation Model via Content-Degradation Disentanglement
Image degradation synthesis is highly desirable in a wide variety of applications ranging from image restoration to simulating artistic effects. Existing models are designed to generate one specific or a narrow set of degradations, which often require user-provided degradation parameters. As a result, they lack the generalizability to synthesize degradations beyond their initial design or adapt to other applications. Here we propose the first universal degradation model that can synthesize a broad spectrum of complex and realistic degradations containing both homogeneous (global) and inhomogeneous (spatially varying) components. Our model automatically extracts and disentangles homogeneous and inhomogeneous degradation features, which are later used for degradation synthesis without user intervention. A disentangle-by-compression method is proposed to separate degradation information from images. Two novel modules for extracting and incorporating inhomogeneous degradations are created to model inhomogeneous components in complex degradations. We demonstrate the model's accuracy and adaptability in film-grain simulation and blind image restoration tasks. The demo video, code, and dataset of this project will be released upon publication at github.com/yangwenbo99/content-degradation-disentanglement.
The Gaussian Latent Machine: Efficient Prior and Posterior Sampling for Inverse Problems
We consider the problem of sampling from a product-of-experts-type model that encompasses many standard prior and posterior distributions commonly found in Bayesian imaging. We show that this model can be easily lifted into a novel latent variable model, which we refer to as a Gaussian latent machine. This leads to a general sampling approach that unifies and generalizes many existing sampling algorithms in the literature. Most notably, it yields a highly efficient and effective two-block Gibbs sampling approach in the general case, while also specializing to direct sampling algorithms in particular cases. Finally, we present detailed numerical experiments that demonstrate the efficiency and effectiveness of our proposed sampling approach across a wide range of prior and posterior sampling problems from Bayesian imaging.
ReSW-VL: Representation Learning for Surgical Workflow Analysis Using Vision-Language Model
Surgical phase recognition from video is a technology that automatically classifies the progress of a surgical procedure and has a wide range of potential applications, including real-time surgical support, optimization of medical resources, training and skill assessment, and safety improvement. Recent advances in surgical phase recognition technology have focused primarily on Transform-based methods, although methods that extract spatial features from individual frames using a CNN and video features from the resulting time series of spatial features using time series modeling have shown high performance. However, there remains a paucity of research on training methods for CNNs employed for feature extraction or representation learning in surgical phase recognition. In this study, we propose a method for representation learning in surgical workflow analysis using a vision-language model (ReSW-VL). Our proposed method involves fine-tuning the image encoder of a CLIP (Convolutional Language Image Model) vision-language model using prompt learning for surgical phase recognition. The experimental results on three surgical phase recognition datasets demonstrate the effectiveness of the proposed method in comparison to conventional methods.
Learning Wavelet-Sparse FDK for 3D Cone-Beam CT Reconstruction
Cone-Beam Computed Tomography (CBCT) is essential in medical imaging, and the Feldkamp-Davis-Kress (FDK) algorithm is a popular choice for reconstruction due to its efficiency. However, FDK is susceptible to noise and artifacts. While recent deep learning methods offer improved image quality, they often increase computational complexity and lack the interpretability of traditional methods. In this paper, we introduce an enhanced FDK-based neural network that maintains the classical algorithm's interpretability by selectively integrating trainable elements into the cosine weighting and filtering stages. Recognizing the challenge of a large parameter space inherent in 3D CBCT data, we leverage wavelet transformations to create sparse representations of the cosine weights and filters. This strategic sparsification reduces the parameter count by $93.75\%$ without compromising performance, accelerates convergence, and importantly, maintains the inference computational cost equivalent to the classical FDK algorithm. Our method not only ensures volumetric consistency and boosts robustness to noise, but is also designed for straightforward integration into existing CT reconstruction pipelines. This presents a pragmatic enhancement that can benefit clinical applications, particularly in environments with computational limitations.
comment: Accepted by Fully3D 2025
GANCompress: GAN-Enhanced Neural Image Compression with Binary Spherical Quantization
The exponential growth of visual data in digital communications has intensified the need for efficient compression techniques that balance rate-distortion performance with computational feasibility. While recent neural compression approaches have shown promise, they still struggle with fundamental challenges: preserving perceptual quality at high compression ratios, computational efficiency, and adaptability to diverse visual content. This paper introduces GANCompress, a novel neural compression framework that synergistically combines Binary Spherical Quantization (BSQ) with Generative Adversarial Networks (GANs) to address these challenges. Our approach employs a transformer-based autoencoder with an enhanced BSQ bottleneck that projects latent representations onto a hypersphere, enabling efficient discretization with bounded quantization error. This is followed by a specialized GAN architecture incorporating frequency-domain attention and color consistency optimization. Experimental results demonstrate that GANCompress achieves substantial improvement in compression efficiency -- reducing file sizes by up to 100x with minimal visual distortion. Our method outperforms traditional codecs like H.264 by 12-15% in perceptual metrics while maintaining comparable PSNR/SSIM values, with 2.4x faster encoding and decoding speeds. On standard benchmarks including ImageNet-1k and COCO2017, GANCompress sets a new state-of-the-art, reducing FID from 0.72 to 0.41 (43% improvement) compared to previous methods while maintaining higher throughput. This work presents a significant advancement in neural compression technology with promising applications for real-time visual communication systems.
Aneumo: A Large-Scale Multimodal Aneurysm Dataset with Computational Fluid Dynamics Simulations and Deep Learning Benchmarks
Intracranial aneurysms (IAs) are serious cerebrovascular lesions found in approximately 5\% of the general population. Their rupture may lead to high mortality. Current methods for assessing IA risk focus on morphological and patient-specific factors, but the hemodynamic influences on IA development and rupture remain unclear. While accurate for hemodynamic studies, conventional computational fluid dynamics (CFD) methods are computationally intensive, hindering their deployment in large-scale or real-time clinical applications. To address this challenge, we curated a large-scale, high-fidelity aneurysm CFD dataset to facilitate the development of efficient machine learning algorithms for such applications. Based on 427 real aneurysm geometries, we synthesized 10,660 3D shapes via controlled deformation to simulate aneurysm evolution. The authenticity of these synthetic shapes was confirmed by neurosurgeons. CFD computations were performed on each shape under eight steady-state mass flow conditions, generating a total of 85,280 blood flow dynamics data covering key parameters. Furthermore, the dataset includes segmentation masks, which can support tasks that use images, point clouds or other multimodal data as input. Additionally, we introduced a benchmark for estimating flow parameters to assess current modeling methods. This dataset aims to advance aneurysm research and promote data-driven approaches in biofluids, biomedical engineering, and clinical risk assessment. The code and dataset are available at: https://github.com/Xigui-Li/Aneumo.
A Hybrid Quantum Classical Pipeline for X Ray Based Fracture Diagnosis
Bone fractures are a leading cause of morbidity and disability worldwide, imposing significant clinical and economic burdens on healthcare systems. Traditional X ray interpretation is time consuming and error prone, while existing machine learning and deep learning solutions often demand extensive feature engineering, large, annotated datasets, and high computational resources. To address these challenges, a distributed hybrid quantum classical pipeline is proposed that first applies Principal Component Analysis (PCA) for dimensionality reduction and then leverages a 4 qubit quantum amplitude encoding circuit for feature enrichment. By fusing eight PCA derived features with eight quantum enhanced features into a 16 dimensional vector and then classifying with different machine learning models achieving 99% accuracy using a public multi region X ray dataset on par with state of the art transfer learning models while reducing feature extraction time by 82%.
comment: 8 pages
High Dynamic Range Novel View Synthesis with Single Exposure ICML 2025
High Dynamic Range Novel View Synthesis (HDR-NVS) aims to establish a 3D scene HDR model from Low Dynamic Range (LDR) imagery. Typically, multiple-exposure LDR images are employed to capture a wider range of brightness levels in a scene, as a single LDR image cannot represent both the brightest and darkest regions simultaneously. While effective, this multiple-exposure HDR-NVS approach has significant limitations, including susceptibility to motion artifacts (e.g., ghosting and blurring), high capture and storage costs. To overcome these challenges, we introduce, for the first time, the single-exposure HDR-NVS problem, where only single exposure LDR images are available during training. We further introduce a novel approach, Mono-HDR-3D, featuring two dedicated modules formulated by the LDR image formation principles, one for converting LDR colors to HDR counterparts, and the other for transforming HDR images to LDR format so that unsupervised learning is enabled in a closed loop. Designed as a meta-algorithm, our approach can be seamlessly integrated with existing NVS models. Extensive experiments show that Mono-HDR-3D significantly outperforms previous methods. Source code will be released.
comment: It has been accepted by ICML 2025
Offboard Occupancy Refinement with Hybrid Propagation for Autonomous Driving
Vision-based occupancy prediction, also known as 3D Semantic Scene Completion (SSC), presents a significant challenge in computer vision. Previous methods, confined to onboard processing, struggle with simultaneous geometric and semantic estimation, continuity across varying viewpoints, and single-view occlusion. Our paper introduces OccFiner, a novel offboard framework designed to enhance the accuracy of vision-based occupancy predictions. OccFiner operates in two hybrid phases: 1) a multi-to-multi local propagation network that implicitly aligns and processes multiple local frames for correcting onboard model errors and consistently enhancing occupancy accuracy across all distances. 2) the region-centric global propagation, focuses on refining labels using explicit multi-view geometry and integrating sensor bias, particularly for increasing the accuracy of distant occupied voxels. Extensive experiments demonstrate that OccFiner improves both geometric and semantic accuracy across various types of coarse occupancy, setting a new state-of-the-art performance on the SemanticKITTI dataset. Notably, OccFiner significantly boosts the performance of vision-based SSC models, achieving accuracy levels competitive with established LiDAR-based onboard SSC methods. Furthermore, OccFiner is the first to achieve automatic annotation of SSC in a purely vision-based approach. Quantitative experiments prove that OccFiner successfully facilitates occupancy data loop-closure in autonomous driving. Additionally, we quantitatively and qualitatively validate the superiority of the offboard approach on city-level SSC static maps. The source code will be made publicly available at https://github.com/MasterHow/OccFiner.
comment: Accepted to IEEE Transactions on Intelligent Transportation Systems (T-ITS). The source code will be made publicly available at https://github.com/MasterHow/OccFiner
Unsupervised Multi-Parameter Inverse Solving for Reducing Ring Artifacts in 3D X-Ray CBCT
Ring artifacts are prevalent in 3D cone-beam computed tomography (CBCT) due to non-ideal responses of X-ray detectors, substantially affecting image quality and diagnostic reliability. Existing state-of-the-art (SOTA) ring artifact reduction (RAR) methods rely on supervised learning with large-scale paired CT datasets. While effective in-domain, supervised methods tend to struggle to fully capture the physical characteristics of ring artifacts, leading to pronounced performance drops in complex real-world acquisitions. Moreover, their scalability to 3D CBCT is limited by high memory demands. In this work, we propose Riner, a new unsupervised RAR method. Based on a theoretical analysis of ring artifact formation, we reformulate RAR as a multi-parameter inverse problem, where the non-ideal responses of X-ray detectors are parameterized as solvable physical variables. Using a new differentiable forward model, Riner can jointly learn the implicit neural representation of artifact-free images and estimate the physical parameters directly from CT measurements, without external training data. Additionally, Riner is memory-friendly due to its ray-based optimization, enhancing its usability in large-scale 3D CBCT. Experiments on both simulated and real-world datasets show Riner outperforms existing SOTA supervised methods.
comment: 15 pages
Ultrasound Report Generation with Multimodal Large Language Models for Standardized Texts
Ultrasound (US) report generation is a challenging task due to the variability of US images, operator dependence, and the need for standardized text. Unlike X-ray and CT, US imaging lacks consistent datasets, making automation difficult. In this study, we propose a unified framework for multi-organ and multilingual US report generation, integrating fragment-based multilingual training and leveraging the standardized nature of US reports. By aligning modular text fragments with diverse imaging data and curating a bilingual English-Chinese dataset, the method achieves consistent and clinically accurate text generation across organ sites and languages. Fine-tuning with selective unfreezing of the vision transformer (ViT) further improves text-image alignment. Compared to the previous state-of-the-art KMVE method, our approach achieves relative gains of about 2\% in BLEU scores, approximately 3\% in ROUGE-L, and about 15\% in CIDEr, while significantly reducing errors such as missing or incorrect content. By unifying multi-organ and multi-language report generation into a single, scalable framework, this work demonstrates strong potential for real-world clinical workflows.
Super-Resolution Generative Adversarial Networks based Video Enhancement
This study introduces an enhanced approach to video super-resolution by extending ordinary Single-Image Super-Resolution (SISR) Super-Resolution Generative Adversarial Network (SRGAN) structure to handle spatio-temporal data. While SRGAN has proven effective for single-image enhancement, its design does not account for the temporal continuity required in video processing. To address this, a modified framework that incorporates 3D Non-Local Blocks is proposed, which is enabling the model to capture relationships across both spatial and temporal dimensions. An experimental training pipeline is developed, based on patch-wise learning and advanced data degradation techniques, to simulate real-world video conditions and learn from both local and global structures and details. This helps the model generalize better and maintain stability across varying video content while maintaining the general structure besides the pixel-wise correctness. Two model variants-one larger and one more lightweight-are presented to explore the trade-offs between performance and efficiency. The results demonstrate improved temporal coherence, sharper textures, and fewer visual artifacts compared to traditional single-image methods. This work contributes to the development of practical, learning-based solutions for video enhancement tasks, with potential applications in streaming, gaming, and digital restoration.
comment: 28 pages, 14 figures, 3 tables
Multi-modal MRI Translation via Evidential Regression and Distribution Calibration MICCAI 2025
Multi-modal Magnetic Resonance Imaging (MRI) translation leverages information from source MRI sequences to generate target modalities, enabling comprehensive diagnosis while overcoming the limitations of acquiring all sequences. While existing deep-learning-based multi-modal MRI translation methods have shown promising potential, they still face two key challenges: 1) lack of reliable uncertainty quantification for synthesized images, and 2) limited robustness when deployed across different medical centers. To address these challenges, we propose a novel framework that reformulates multi-modal MRI translation as a multi-modal evidential regression problem with distribution calibration. Our approach incorporates two key components: 1) an evidential regression module that estimates uncertainties from different source modalities and an explicit distribution mixture strategy for transparent multi-modal fusion, and 2) a distribution calibration mechanism that adapts to source-target mapping shifts to ensure consistent performance across different medical centers. Extensive experiments on three datasets from the BraTS2023 challenge demonstrate that our framework achieves superior performance and robustness across domains.
comment: Early accepted by MICCAI 2025
High Accuracy Pulmonary Vessel Segmentation for Contrast and Non-contrast CT Images and Clinical Evaluation
Accurate segmentation of pulmonary vessels plays a very critical role in diagnosing and assessing various lung diseases. Currently, many automated algorithms are primarily targeted at CTPA (Computed Tomography Pulmonary Angiography) types of data. However, the segmentation precision of these methods is insufficient, and support for NCCT (Non-Contrast Computed Tomography) types of data is also a requirement in some clinical scenarios. In this study, we propose a 3D image segmentation algorithm for automated pulmonary vessel segmentation from both contrast-enhanced and non-contrast CT images. In the network, we designed a Vessel Lumen Structure Optimization Module (VLSOM), which extracts the centerline (Cl) of vessels and adjusts the weights based on the positional information and adds a Cl-Dice Loss to supervise the stability of the vessels structure. We used 427 sets of high-precision annotated CT data from multiple vendors and countries to train the model and achieved Cl-DICE, Cl-Recall, and Recall values of 0.892, 0.861, 0.924 for CTPA data and 0.925, 0.903, 0.949 for NCCT data. This shows that our model has achieved good performance in both accuracy and completeness of pulmonary vessel segmentation. We finally conducted a clinical visual assessment on an independent external test dataset. The average score for accuracy and robustness, branch abundance, assistance for diagnosis and vascular continuity are 4.26, 4.17, 4.33, 3.83 respectively while the full score is 5. These results highlight the great potential of this method in clinical application.
comment: Visual clinical evaluation results were added in v2 Comparison with the latest techniques were added Authors were updated
Explaining Uncertainty in Multiple Sclerosis Lesion Segmentation Beyond Prediction Errors
Trustworthy artificial intelligence (AI) is essential in healthcare, particularly for high-stakes tasks like medical image segmentation. Explainable AI and uncertainty quantification significantly enhance AI reliability by addressing key attributes such as robustness, usability, and explainability. Despite extensive technical advances in uncertainty quantification for medical imaging, understanding the clinical informativeness and interpretability of uncertainty remains limited. This study introduces a novel framework to explain the potential sources of predictive uncertainty, specifically in cortical lesion segmentation in multiple sclerosis using deep ensembles. The proposed analysis shifts the focus from the uncertainty-error relationship towards relevant medical and engineering factors. Our findings reveal that instance-wise uncertainty is strongly related to lesion size, shape, and cortical involvement. Expert rater feedback confirms that similar factors impede annotator confidence. Evaluations conducted on two datasets (206 patients, almost 2000 lesions) under both in-domain and distribution-shift conditions highlight the utility of the framework in different scenarios.
Multimedia
Neural-Enhanced Rate Adaptation and Computation Distribution for Emerging mmWave Multi-User 3D Video Streaming Systems
We investigate multitask edge-user communication-computation resource allocation for $360^\circ$ video streaming in an edge-computing enabled millimeter wave (mmWave) multi-user virtual reality system. To balance the communication-computation trade-offs that arise herein, we formulate a video quality maximization problem that integrates interdependent multitask/multi-user action spaces and rebuffering time/quality variation constraints. We formulate a deep reinforcement learning framework for \underline{m}ulti-\underline{t}ask \underline{r}ate adaptation and \underline{c}omputation distribution (MTRC) to solve the problem of interest. Our solution does not rely on a priori knowledge about the environment and uses only prior video streaming statistics (e.g., throughput, decoding time, and transmission delay), and content information, to adjust the assigned video bitrates and computation distribution, as it observes the induced streaming performance online. Moreover, to capture the task interdependence in the environment, we leverage neural network cascades to extend our MTRC method to two novel variants denoted as R1C2 and C1R2. We train all three methods with real-world mmWave network traces and $360^\circ$ video datasets to evaluate their performance in terms of expected quality of experience (QoE), viewport peak signal-to-noise ratio (PSNR), rebuffering time, and quality variation. We outperform state-of-the-art rate adaptation algorithms, with C1R2 showing best results and achieving $5.21-6.06$ dB PSNR gains, $2.18-2.70$x rebuffering time reduction, and $4.14-4.50$ dB quality variation reduction.
comment: Accepted to be published in IEEE Transaction on Multimedia
Learning Driven Elastic Task Multi-Connectivity Immersive Computing Systems
In virtual reality (VR) environments, computational tasks exhibit an elastic nature, meaning they can dynamically adjust based on various user and system constraints. This elasticity is essential for maintaining immersive experiences; however, it also introduces challenges for communication and computing in VR systems. In this paper, we investigate elastic task offloading for multi-user edge-computing-enabled VR systems with multi-connectivity, aiming to maximize the computational energy-efficiency (computational throughput per unit of energy consumed). To balance the induced communication, computation, energy consumption, and quality of experience trade-offs due to the elasticity of VR tasks, we formulate a constrained stochastic computational energy-efficiency optimization problem that integrates the multi-connectivity/multi-user action space and the elastic nature of VR computational tasks. We formulate a centralized phasic policy gradient (CPPG) framework to solve the problem of interest online, using only prior elastic task offloading statistics (energy consumption, response time, and transmission time), and task information (i.e., task size and computational intensity), while observing the induced system performance (energy consumption and latency). We further extend our approach to decentralized learning by formulating an independent phasic policy gradient (IPPG) method and a decentralized shared multi-armed bandit (DSMAB) method. We train our methods with real-world 4G, 5G, and WiGig network traces and 360 video datasets to evaluate their performance in terms of response time, energy efficiency, scalability, and delivered quality of experience. We also provide a comprehensive analysis of task size and its effect on offloading policy and system performance. In particular, we show that CPPG reduces latency by 28% and energy consumption by 78% compared to IPPG.
comment: Under review by IEEE Transaction on Mobile Computing
Hearing from Silence: Reasoning Audio Descriptions from Silent Videos via Vision-Language Model
Humans can intuitively infer sounds from silent videos, but whether multimodal large language models can perform modal-mismatch reasoning without accessing target modalities remains relatively unexplored. Current text-assisted-video-to-audio (VT2A) methods excel in video foley tasks but struggle to acquire audio descriptions during inference. We introduce the task of Reasoning Audio Descriptions from Silent Videos (SVAD) to address this challenge and investigate vision-language models' (VLMs) capabilities on this task. To further enhance the VLMs' reasoning capacity for the SVAD task, we construct a CoT-AudioCaps dataset and propose a Chain-of-Thought-based supervised fine-tuning strategy. Experiments on SVAD and subsequent VT2A tasks demonstrate our method's effectiveness in two key aspects: significantly improving VLMs' modal-mismatch reasoning for SVAD and effectively addressing the challenge of acquiring audio descriptions during VT2A inference.
comment: Accepted by Interspeech 2025
MMAR: A Challenging Benchmark for Deep Reasoning in Speech, Audio, Music, and Their Mix
We introduce MMAR, a new benchmark designed to evaluate the deep reasoning capabilities of Audio-Language Models (ALMs) across massive multi-disciplinary tasks. MMAR comprises 1,000 meticulously curated audio-question-answer triplets, collected from real-world internet videos and refined through iterative error corrections and quality checks to ensure high quality. Unlike existing benchmarks that are limited to specific domains of sound, music, or speech, MMAR extends them to a broad spectrum of real-world audio scenarios, including mixed-modality combinations of sound, music, and speech. Each question in MMAR is hierarchically categorized across four reasoning layers: Signal, Perception, Semantic, and Cultural, with additional sub-categories within each layer to reflect task diversity and complexity. To further foster research in this area, we annotate every question with a Chain-of-Thought (CoT) rationale to promote future advancements in audio reasoning. Each item in the benchmark demands multi-step deep reasoning beyond surface-level understanding. Moreover, a part of the questions requires graduate-level perceptual and domain-specific knowledge, elevating the benchmark's difficulty and depth. We evaluate MMAR using a broad set of models, including Large Audio-Language Models (LALMs), Large Audio Reasoning Models (LARMs), Omni Language Models (OLMs), Large Language Models (LLMs), and Large Reasoning Models (LRMs), with audio caption inputs. The performance of these models on MMAR highlights the benchmark's challenging nature, and our analysis further reveals critical limitations of understanding and reasoning capabilities among current models. We hope MMAR will serve as a catalyst for future advances in this important but little-explored area.
comment: Open-source at https://github.com/ddlBoJack/MMAR
Anti-Inpainting: A Proactive Defense against Malicious Diffusion-based Inpainters under Unknown Conditions
As diffusion-based malicious image manipulation becomes increasingly prevalent, multiple proactive defense methods are developed to safeguard images against unauthorized tampering. However, most proactive defense methods only can safeguard images against manipulation under known conditions, and fail to protect images from manipulations guided by tampering conditions crafted by malicious users. To tackle this issue, we propose Anti-Inpainting, a proactive defense method that achieves adequate protection under unknown conditions through a triple mechanism to address this challenge. Specifically, a multi-level deep feature extractor is presented to obtain intricate features during the diffusion denoising process to improve protective effectiveness. We design multi-scale semantic-preserving data augmentation to enhance the transferability of adversarial perturbations across unknown conditions by multi-scale transformations while preserving semantic integrity. In addition, we propose a selection-based distribution deviation optimization strategy to improve the protection of adversarial perturbation against manipulation under diverse random seeds. Extensive experiments indicate the proactive defensive performance of Anti-Inpainting against diffusion-based inpainters guided by unknown conditions in InpaintGuardBench and CelebA-HQ. At the same time, we also demonstrate the proposed approach's robustness under various image purification methods and its transferability across different versions of diffusion models.
FLASH: Latent-Aware Semi-Autoregressive Speculative Decoding for Multimodal Tasks
Large language and multimodal models (LLMs and LMMs) exhibit strong inference capabilities but are often limited by slow decoding speeds. This challenge is especially acute in LMMs, where visual inputs typically comprise more tokens with lower information density than text -- an issue exacerbated by recent trends toward finer-grained visual tokenizations to boost performance. Speculative decoding has been effective in accelerating LLM inference by using a smaller draft model to generate candidate tokens, which are then selectively verified by the target model, improving speed without sacrificing output quality. While this strategy has been extended to LMMs, existing methods largely overlook the unique properties of visual inputs and depend solely on text-based draft models. In this work, we propose \textbf{FLASH} (Fast Latent-Aware Semi-Autoregressive Heuristics), a speculative decoding framework designed specifically for LMMs, which leverages two key properties of multimodal data to design the draft model. First, to address redundancy in visual tokens, we propose a lightweight latent-aware token compression mechanism. Second, recognizing that visual objects often co-occur within a scene, we employ a semi-autoregressive decoding strategy to generate multiple tokens per forward pass. These innovations accelerate draft decoding while maintaining high acceptance rates, resulting in faster overall inference. Experiments show that FLASH significantly outperforms prior speculative decoding approaches in both unimodal and multimodal settings, achieving up to \textbf{2.68$\times$} speed-up on video captioning and \textbf{2.55$\times$} on visual instruction tuning tasks compared to the original LMM.
Text2midi-InferAlign: Improving Symbolic Music Generation with Inference-Time Alignment
We present Text2midi-InferAlign, a novel technique for improving symbolic music generation at inference time. Our method leverages text-to-audio alignment and music structural alignment rewards during inference to encourage the generated music to be consistent with the input caption. Specifically, we introduce two objectives scores: a text-audio consistency score that measures rhythmic alignment between the generated music and the original text caption, and a harmonic consistency score that penalizes generated music containing notes inconsistent with the key. By optimizing these alignment-based objectives during the generation process, our model produces symbolic music that is more closely tied to the input captions, thereby improving the overall quality and coherence of the generated compositions. Our approach can extend any existing autoregressive model without requiring further training or fine-tuning. We evaluate our work on top of Text2midi - an existing text-to-midi generation model, demonstrating significant improvements in both objective and subjective evaluation metrics.
comment: 7 pages, 1 figure, 5 tables
A Bounding Box is Worth One Token: Interleaving Layout and Text in a Large Language Model for Document Understanding ACL2025
Recently, many studies have demonstrated that exclusively incorporating OCR-derived text and spatial layouts with large language models (LLMs) can be highly effective for document understanding tasks. However, existing methods that integrate spatial layouts with text have limitations, such as producing overly long text sequences or failing to fully leverage the autoregressive traits of LLMs. In this work, we introduce Interleaving Layout and Text in a Large Language Model (LayTextLLM)} for document understanding. LayTextLLM projects each bounding box to a single embedding and interleaves it with text, efficiently avoiding long sequence issues while leveraging autoregressive traits of LLMs. LayTextLLM not only streamlines the interaction of layout and textual data but also shows enhanced performance in KIE and VQA. Comprehensive benchmark evaluations reveal significant improvements of LayTextLLM, with a 15.2% increase on KIE tasks and 10.7% on VQA tasks compared to previous SOTA OCR-based LLMs. All resources are available at https://github.com/LayTextLLM/LayTextLLM.
comment: Accept to ACL2025 Findings
Scene-Text Grounding for Text-Based Video Question Answering
Existing efforts in text-based video question answering (TextVideoQA) are criticized for their opaque decisionmaking and heavy reliance on scene-text recognition. In this paper, we propose to study Grounded TextVideoQA by forcing models to answer questions and spatio-temporally localize the relevant scene-text regions, thus decoupling QA from scenetext recognition and promoting research towards interpretable QA. The task has three-fold significance. First, it encourages scene-text evidence versus other short-cuts for answer predictions. Second, it directly accepts scene-text regions as visual answers, thus circumventing the problem of ineffective answer evaluation by stringent string matching. Third, it isolates the challenges inherited in VideoQA and scene-text recognition. This enables the diagnosis of the root causes for failure predictions, e.g., wrong QA or wrong scene-text recognition? To achieve Grounded TextVideoQA, we propose the T2S-QA model that highlights a disentangled temporal-to-spatial contrastive learning strategy for weakly-supervised scene-text grounding and grounded TextVideoQA. To facilitate evaluation, we construct a new dataset ViTXT-GQA which features 52K scene-text bounding boxes within 2.2K temporal segments related to 2K questions and 729 videos. With ViTXT-GQA, we perform extensive experiments and demonstrate the severe limitations of existing techniques in Grounded TextVideoQA. While T2S-QA achieves superior results, the large performance gap with human leaves ample space for improvement. Our further analysis of oracle scene-text inputs posits that the major challenge is scene-text recognition. To advance the research of Grounded TextVideoQA, our dataset and code are at https://github.com/zhousheng97/ViTXT-GQA.git
comment: Accepted by IEEE TMM
TCC-Bench: Benchmarking the Traditional Chinese Culture Understanding Capabilities of MLLMs
Recent progress in Multimodal Large Language Models (MLLMs) have significantly enhanced the ability of artificial intelligence systems to understand and generate multimodal content. However, these models often exhibit limited effectiveness when applied to non-Western cultural contexts, which raises concerns about their wider applicability. To address this limitation, we propose the Traditional Chinese Culture understanding Benchmark (TCC-Bench), a bilingual (i.e., Chinese and English) Visual Question Answering (VQA) benchmark specifically designed for assessing the understanding of traditional Chinese culture by MLLMs. TCC-Bench comprises culturally rich and visually diverse data, incorporating images from museum artifacts, everyday life scenes, comics, and other culturally significant contexts. We adopt a semi-automated pipeline that utilizes GPT-4o in text-only mode to generate candidate questions, followed by human curation to ensure data quality and avoid potential data leakage. The benchmark also avoids language bias by preventing direct disclosure of cultural concepts within question texts. Experimental evaluations across a wide range of MLLMs demonstrate that current models still face significant challenges when reasoning about culturally grounded visual content. The results highlight the need for further research in developing culturally inclusive and context-aware multimodal systems. The code and data can be found at: https://tcc-bench.github.io/.
comment: Preprint
Computation and Language
CIE: Controlling Language Model Text Generations Using Continuous Signals
Aligning language models with user intent is becoming increasingly relevant to enhance user experience. This calls for designing methods that can allow users to control the properties of the language that LMs generate. For example, controlling the length of the generation, the complexity of the language that gets chosen, the sentiment, tone, etc. Most existing work attempts to integrate users' control by conditioning LM generations on natural language prompts or discrete control signals, which are often brittle and hard to scale. In this work, we are interested in \textit{continuous} control signals, ones that exist along a spectrum that can't easily be captured in a natural language prompt or via existing techniques in conditional generation. Through a case study in controlling the precise response-length of generations produced by LMs, we demonstrate how after fine-tuning, behaviors of language models can be controlled via continuous signals -- as vectors that are interpolated between a "low" and a "high" token embedding. Our method more reliably exerts response-length control than in-context learning methods or fine-tuning methods that represent the control signal as a discrete signal. Our full open-sourced code and datasets are available at https://github.com/vsamuel2003/CIE.
comment: 10 pages, 3 figures
Trust, But Verify: A Self-Verification Approach to Reinforcement Learning with Verifiable Rewards
Large Language Models (LLMs) show great promise in complex reasoning, with Reinforcement Learning with Verifiable Rewards (RLVR) being a key enhancement strategy. However, a prevalent issue is ``superficial self-reflection'', where models fail to robustly verify their own outputs. We introduce RISE (Reinforcing Reasoning with Self-Verification), a novel online RL framework designed to tackle this. RISE explicitly and simultaneously trains an LLM to improve both its problem-solving and self-verification abilities within a single, integrated RL process. The core mechanism involves leveraging verifiable rewards from an outcome verifier to provide on-the-fly feedback for both solution generation and self-verification tasks. In each iteration, the model generates solutions, then critiques its own on-policy generated solutions, with both trajectories contributing to the policy update. Extensive experiments on diverse mathematical reasoning benchmarks show that RISE consistently improves model's problem-solving accuracy while concurrently fostering strong self-verification skills. Our analyses highlight the advantages of online verification and the benefits of increased verification compute. Additionally, RISE models exhibit more frequent and accurate self-verification behaviors during reasoning. These advantages reinforce RISE as a flexible and effective path towards developing more robust and self-aware reasoners.
comment: code available at https://github.com/xyliu-cs/RISE
ChartMuseum: Testing Visual Reasoning Capabilities of Large Vision-Language Models
Chart understanding presents a unique challenge for large vision-language models (LVLMs), as it requires the integration of sophisticated textual and visual reasoning capabilities. However, current LVLMs exhibit a notable imbalance between these skills, falling short on visual reasoning that is difficult to perform in text. We conduct a case study using a synthetic dataset solvable only through visual reasoning and show that model performance degrades significantly with increasing visual complexity, while human performance remains robust. We then introduce ChartMuseum, a new Chart Question Answering (QA) benchmark containing 1,162 expert-annotated questions spanning multiple reasoning types, curated from real-world charts across 184 sources, specifically built to evaluate complex visual and textual reasoning. Unlike prior chart understanding benchmarks -- where frontier models perform similarly and near saturation -- our benchmark exposes a substantial gap between model and human performance, while effectively differentiating model capabilities: although humans achieve 93% accuracy, the best-performing model Gemini-2.5-Pro attains only 63.0%, and the leading open-source LVLM Qwen2.5-VL-72B-Instruct achieves only 38.5%. Moreover, on questions requiring primarily visual reasoning, all models experience a 35%-55% performance drop from text-reasoning-heavy question performance. Lastly, our qualitative error analysis reveals specific categories of visual reasoning that are challenging for current LVLMs.
Optimizing Anytime Reasoning via Budget Relative Policy Optimization
Scaling test-time compute is crucial for enhancing the reasoning capabilities of large language models (LLMs). Existing approaches typically employ reinforcement learning (RL) to maximize a verifiable reward obtained at the end of reasoning traces. However, such methods optimize only the final performance under a large and fixed token budget, which hinders efficiency in both training and deployment. In this work, we present a novel framework, AnytimeReasoner, to optimize anytime reasoning performance, which aims to improve token efficiency and the flexibility of reasoning under varying token budget constraints. To achieve this, we truncate the complete thinking process to fit within sampled token budgets from a prior distribution, compelling the model to summarize the optimal answer for each truncated thinking for verification. This introduces verifiable dense rewards into the reasoning process, facilitating more effective credit assignment in RL optimization. We then optimize the thinking and summary policies in a decoupled manner to maximize the cumulative reward. Additionally, we introduce a novel variance reduction technique, Budget Relative Policy Optimization (BRPO), to enhance the robustness and efficiency of the learning process when reinforcing the thinking policy. Empirical results in mathematical reasoning tasks demonstrate that our method consistently outperforms GRPO across all thinking budgets under various prior distributions, enhancing both training and token efficiency.
SMOTExT: SMOTE meets Large Language Models
Data scarcity and class imbalance are persistent challenges in training robust NLP models, especially in specialized domains or low-resource settings. We propose a novel technique, SMOTExT, that adapts the idea of Synthetic Minority Over-sampling (SMOTE) to textual data. Our method generates new synthetic examples by interpolating between BERT-based embeddings of two existing examples and then decoding the resulting latent point into text with xRAG architecture. By leveraging xRAG's cross-modal retrieval-generation framework, we can effectively turn interpolated vectors into coherent text. While this is preliminary work supported by qualitative outputs only, the method shows strong potential for knowledge distillation and data augmentation in few-shot settings. Notably, our approach also shows promise for privacy-preserving machine learning: in early experiments, training models solely on generated data achieved comparable performance to models trained on the original dataset. This suggests a viable path toward safe and effective learning under data protection constraints.
Fine-tuning Quantized Neural Networks with Zeroth-order Optimization
As the size of large language models grows exponentially, GPU memory has become a bottleneck for adapting these models to downstream tasks. In this paper, we aim to push the limits of memory-efficient training by minimizing memory usage on model weights, gradients, and optimizer states, within a unified framework. Our idea is to eliminate both gradients and optimizer states using zeroth-order optimization, which approximates gradients by perturbing weights during forward passes to identify gradient directions. To minimize memory usage on weights, we employ model quantization, e.g., converting from bfloat16 to int4. However, directly applying zeroth-order optimization to quantized weights is infeasible due to the precision gap between discrete weights and continuous gradients, which would otherwise require de-quantization and re-quantization. To overcome this challenge, we propose Quantized Zeroth-order Optimization (QZO), a novel approach that perturbs the continuous quantization scale for gradient estimation and uses a directional derivative clipping method to stabilize training. QZO is orthogonal to both scalar-based and codebook-based post-training quantization methods. Compared to full-parameter fine-tuning in bfloat16, QZO can reduce the total memory cost by more than 18$\times$ for 4-bit LLMs, and enables fine-tuning Llama-2-13B and Stable Diffusion 3.5 Large within a single 24GB GPU.
Dementia Through Different Eyes: Explainable Modeling of Human and LLM Perceptions for Early Awareness
Cognitive decline often surfaces in language years before diagnosis. It is frequently non-experts, such as those closest to the patient, who first sense a change and raise concern. As LLMs become integrated into daily communication and used over prolonged periods, it may even be an LLM that notices something is off. But what exactly do they notice--and should be noticing--when making that judgment? This paper investigates how dementia is perceived through language by non-experts. We presented transcribed picture descriptions to non-expert humans and LLMs, asking them to intuitively judge whether each text was produced by someone healthy or with dementia. We introduce an explainable method that uses LLMs to extract high-level, expert-guided features representing these picture descriptions, and use logistic regression to model human and LLM perceptions and compare with clinical diagnoses. Our analysis reveals that human perception of dementia is inconsistent and relies on a narrow, and sometimes misleading, set of cues. LLMs, by contrast, draw on a richer, more nuanced feature set that aligns more closely with clinical patterns. Still, both groups show a tendency toward false negatives, frequently overlooking dementia cases. Through our interpretable framework and the insights it provides, we hope to help non-experts better recognize the linguistic signs that matter.
AdaptThink: Reasoning Models Can Learn When to Think
Recently, large reasoning models have achieved impressive performance on various tasks by employing human-like deep thinking. However, the lengthy thinking process substantially increases inference overhead, making efficiency a critical bottleneck. In this work, we first demonstrate that NoThinking, which prompts the reasoning model to skip thinking and directly generate the final solution, is a better choice for relatively simple tasks in terms of both performance and efficiency. Motivated by this, we propose AdaptThink, a novel RL algorithm to teach reasoning models to choose the optimal thinking mode adaptively based on problem difficulty. Specifically, AdaptThink features two core components: (1) a constrained optimization objective that encourages the model to choose NoThinking while maintaining the overall performance; (2) an importance sampling strategy that balances Thinking and NoThinking samples during on-policy training, thereby enabling cold start and allowing the model to explore and exploit both thinking modes throughout the training process. Our experiments indicate that AdaptThink significantly reduces the inference costs while further enhancing performance. Notably, on three math datasets, AdaptThink reduces the average response length of DeepSeek-R1-Distill-Qwen-1.5B by 53% and improves its accuracy by 2.4%, highlighting the promise of adaptive thinking-mode selection for optimizing the balance between reasoning quality and efficiency. Our codes and models are available at https://github.com/THU-KEG/AdaptThink.
CoT-Kinetics: A Theoretical Modeling Assessing LRM Reasoning Process
Recent Large Reasoning Models significantly improve the reasoning ability of Large Language Models by learning to reason, exhibiting the promising performance in solving complex tasks. LRMs solve tasks that require complex reasoning by explicitly generating reasoning trajectories together with answers. Nevertheless, judging the quality of such an output answer is not easy because only considering the correctness of the answer is not enough and the soundness of the reasoning trajectory part matters as well. Logically, if the soundness of the reasoning part is poor, even if the answer is correct, the confidence of the derived answer should be low. Existing methods did consider jointly assessing the overall output answer by taking into account the reasoning part, however, their capability is still not satisfactory as the causal relationship of the reasoning to the concluded answer cannot properly reflected. In this paper, inspired by classical mechanics, we present a novel approach towards establishing a CoT-Kinetics energy equation. Specifically, our CoT-Kinetics energy equation formulates the token state transformation process, which is regulated by LRM internal transformer layers, as like a particle kinetics dynamics governed in a mechanical field. Our CoT-Kinetics energy assigns a scalar score to evaluate specifically the soundness of the reasoning phase, telling how confident the derived answer could be given the evaluated reasoning. As such, the LRM's overall output quality can be accurately measured, rather than a coarse judgment (e.g., correct or incorrect) anymore.
Granary: Speech Recognition and Translation Dataset in 25 European Languages
Multi-task and multilingual approaches benefit large models, yet speech processing for low-resource languages remains underexplored due to data scarcity. To address this, we present Granary, a large-scale collection of speech datasets for recognition and translation across 25 European languages. This is the first open-source effort at this scale for both transcription and translation. We enhance data quality using a pseudo-labeling pipeline with segmentation, two-pass inference, hallucination filtering, and punctuation restoration. We further generate translation pairs from pseudo-labeled transcriptions using EuroLLM, followed by a data filtration pipeline. Designed for efficiency, our pipeline processes vast amount of data within hours. We assess models trained on processed data by comparing their performance on previously curated datasets for both high- and low-resource languages. Our findings show that these models achieve similar performance using approx. 50% less data. Dataset will be made available at https://hf.co/datasets/nvidia/Granary
comment: Accepted at Interspeech 2025
MR. Judge: Multimodal Reasoner as a Judge
The paradigm of using Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs) as evaluative judges has emerged as an effective approach in RLHF and inference-time scaling. In this work, we propose Multimodal Reasoner as a Judge (MR. Judge), a paradigm for empowering general-purpose MLLMs judges with strong reasoning capabilities. Instead of directly assigning scores for each response, we formulate the judgement process as a reasoning-inspired multiple-choice problem. Specifically, the judge model first conducts deliberate reasoning covering different aspects of the responses and eventually selects the best response from them. This reasoning process not only improves the interpretibility of the judgement, but also greatly enhances the performance of MLLM judges. To cope with the lack of questions with scored responses, we propose the following strategy to achieve automatic annotation: 1) Reverse Response Candidates Synthesis: starting from a supervised fine-tuning (SFT) dataset, we treat the original response as the best candidate and prompt the MLLM to generate plausible but flawed negative candidates. 2) Text-based reasoning extraction: we carefully design a data synthesis pipeline for distilling the reasoning capability from a text-based reasoning model, which is adopted to enable the MLLM judges to regain complex reasoning ability via warm up supervised fine-tuning. Experiments demonstrate that our MR. Judge is effective across a wide range of tasks. Specifically, our MR. Judge-7B surpasses GPT-4o by 9.9% on VL-RewardBench, and improves performance on MM-Vet during inference-time scaling by up to 7.7%.
A Minimum Description Length Approach to Regularization in Neural Networks
State-of-the-art neural networks can be trained to become remarkable solutions to many problems. But while these architectures can express symbolic, perfect solutions, trained models often arrive at approximations instead. We show that the choice of regularization method plays a crucial role: when trained on formal languages with standard regularization ($L_1$, $L_2$, or none), expressive architectures not only fail to converge to correct solutions but are actively pushed away from perfect initializations. In contrast, applying the Minimum Description Length (MDL) principle to balance model complexity with data fit provides a theoretically grounded regularization method. Using MDL, perfect solutions are selected over approximations, independently of the optimization algorithm. We propose that unlike existing regularization techniques, MDL introduces the appropriate inductive bias to effectively counteract overfitting and promote generalization.
comment: 9 pages
IG Parser: A Software Package for the Encoding of Institutional Statements using the Institutional Grammar
This article provides an overview of IG Parser, a software that facilitates qualitative content analysis of formal (e.g., legal) rules or informal (e.g., socio-normative) norms, and strategies (such as conventions) -- referred to as \emph{institutions} -- that govern social systems and operate configurally to describe \emph{institutional systems}. To this end, the IG Parser employs a distinctive syntax that ensures rigorous encoding of natural language, while automating the transformation into various formats that support the downstream analysis using diverse analytical techniques. The conceptual core of the IG Parser is an associated syntax, IG Script, that operationalizes the conceptual foundations of the Institutional Grammar, and more specifically Institutional Grammar 2.0, an analytical paradigm for institutional analysis. This article presents the IG Parser, including its conceptual foundations, syntactic specification of IG Script, alongside architectural principles. This introduction is augmented with selective illustrative examples that highlight the use and benefit associated with the tool.
comment: 24 pages
R3: Robust Rubric-Agnostic Reward Models
Reward models are essential for aligning language model outputs with human preferences, yet existing approaches often lack both controllability and interpretability. These models are typically optimized for narrow objectives, limiting their generalizability to broader downstream tasks. Moreover, their scalar outputs are difficult to interpret without contextual reasoning. To address these limitations, we introduce R3, a novel reward modeling framework that is rubric-agnostic, generalizable across evaluation dimensions, and provides interpretable, reasoned score assignments. R3 enables more transparent and flexible evaluation of language models, supporting robust alignment with diverse human values and use cases. Our models, data, and code are available as open source at https://github.com/rubricreward/r3
comment: Preprint
CompeteSMoE -- Statistically Guaranteed Mixture of Experts Training via Competition
Sparse mixture of experts (SMoE) offers an appealing solution to scale up the model complexity beyond the mean of increasing the network's depth or width. However, we argue that effective SMoE training remains challenging because of the suboptimal routing process where experts that perform computation do not directly contribute to the routing process. In this work, we propose competition, a novel mechanism to route tokens to experts with the highest neural response. Theoretically, we show that the competition mechanism enjoys a better sample efficiency than the traditional softmax routing. Furthermore, we develop CompeteSMoE, a simple yet effective algorithm to train large language models by deploying a router to learn the competition policy, thus enjoying strong performances at a low training overhead. Our extensive empirical evaluations on both the visual instruction tuning and language pre-training tasks demonstrate the efficacy, robustness, and scalability of CompeteSMoE compared to state-of-the-art SMoE strategies. We have made the implementation available at: https://github.com/Fsoft-AIC/CompeteSMoE. This work is an improved version of the previous study at arXiv:2402.02526
comment: 52 pages. This work is an improved version of the previous study at arXiv:2402.02526
Thinkless: LLM Learns When to Think
Reasoning Language Models, capable of extended chain-of-thought reasoning, have demonstrated remarkable performance on tasks requiring complex logical inference. However, applying elaborate reasoning for all queries often results in substantial computational inefficiencies, particularly when many problems admit straightforward solutions. This motivates an open question: Can LLMs learn when to think? To answer this, we propose Thinkless, a learnable framework that empowers an LLM to adaptively select between short-form and long-form reasoning, based on both task complexity and the model's ability. Thinkless is trained under a reinforcement learning paradigm and employs two control tokens, for concise responses and for detailed reasoning. At the core of our method is a Decoupled Group Relative Policy Optimization (DeGRPO) algorithm, which decomposes the learning objective of hybrid reasoning into two components: (1) a control token loss that governs the selection of the reasoning mode, and (2) a response loss that improves the accuracy of the generated answers. This decoupled formulation enables fine-grained control over the contributions of each objective, stabilizing training and effectively preventing collapse observed in vanilla GRPO. Empirically, on several benchmarks such as Minerva Algebra, MATH-500, and GSM8K, Thinkless is able to reduce the usage of long-chain thinking by 50% - 90%, significantly improving the efficiency of Reasoning Language Models. The code is available at https://github.com/VainF/Thinkless
What Prompts Don't Say: Understanding and Managing Underspecification in LLM Prompts
Building LLM-powered software requires developers to communicate their requirements through natural language, but developer prompts are frequently underspecified, failing to fully capture many user-important requirements. In this paper, we present an in-depth analysis of prompt underspecification, showing that while LLMs can often (41.1%) guess unspecified requirements by default, such behavior is less robust: Underspecified prompts are 2x more likely to regress over model or prompt changes, sometimes with accuracy drops by more than 20%. We then demonstrate that simply adding more requirements to a prompt does not reliably improve performance, due to LLMs' limited instruction-following capabilities and competing constraints, and standard prompt optimizers do not offer much help. To address this, we introduce novel requirements-aware prompt optimization mechanisms that can improve performance by 4.8% on average over baselines that naively specify everything in the prompt. Beyond prompt optimization, we envision that effectively managing prompt underspecification requires a broader process, including proactive requirements discovery, evaluation, and monitoring.
Sense and Sensitivity: Examining the Influence of Semantic Recall on Long Context Code Reasoning
Although modern Large Language Models (LLMs) support extremely large contexts, their effectiveness in utilizing long context for code reasoning remains unclear. This paper investigates LLM reasoning ability over code snippets within large repositories and how it relates to their recall ability. Specifically, we differentiate between lexical code recall (verbatim retrieval) and semantic code recall (remembering what the code does). To measure semantic recall, we propose SemTrace, a code reasoning technique where the impact of specific statements on output is attributable and unpredictable. We also present a method to quantify semantic recall sensitivity in existing benchmarks. Our evaluation of state-of-the-art LLMs reveals a significant drop in code reasoning accuracy as a code snippet approaches the middle of the input context, particularly with techniques requiring high semantic recall like SemTrace. Moreover, we find that lexical recall varies by granularity, with models excelling at function retrieval but struggling with line-by-line recall. Notably, a disconnect exists between lexical and semantic recall, suggesting different underlying mechanisms. Finally, our findings indicate that current code reasoning benchmarks may exhibit low semantic recall sensitivity, potentially underestimating LLM challenges in leveraging in-context information.
Investigating the Vulnerability of LLM-as-a-Judge Architectures to Prompt-Injection Attacks
Large Language Models (LLMs) are increasingly employed as evaluators (LLM-as-a-Judge) for assessing the quality of machine-generated text. This paradigm offers scalability and cost-effectiveness compared to human annotation. However, the reliability and security of such systems, particularly their robustness against adversarial manipulations, remain critical concerns. This paper investigates the vulnerability of LLM-as-a-Judge architectures to prompt-injection attacks, where malicious inputs are designed to compromise the judge's decision-making process. We formalize two primary attack strategies: Comparative Undermining Attack (CUA), which directly targets the final decision output, and Justification Manipulation Attack (JMA), which aims to alter the model's generated reasoning. Using the Greedy Coordinate Gradient (GCG) optimization method, we craft adversarial suffixes appended to one of the responses being compared. Experiments conducted on the MT-Bench Human Judgments dataset with open-source instruction-tuned LLMs (Qwen2.5-3B-Instruct and Falcon3-3B-Instruct) demonstrate significant susceptibility. The CUA achieves an Attack Success Rate (ASR) exceeding 30\%, while JMA also shows notable effectiveness. These findings highlight substantial vulnerabilities in current LLM-as-a-Judge systems, underscoring the need for robust defense mechanisms and further research into adversarial evaluation and trustworthiness in LLM-based assessment frameworks.
J4R: Learning to Judge with Equivalent Initial State Group Relative Preference Optimization
To keep pace with the increasing pace of large language models (LLM) development, model output evaluation has transitioned away from time-consuming human evaluation to automatic evaluation, where LLMs themselves are tasked with assessing and critiquing other model outputs. LLM-as-judge models are a class of generative evaluators that excel in evaluating relatively simple domains, like chat quality, but struggle in reasoning intensive domains where model responses contain more substantive and challenging content. To remedy existing judge shortcomings, we explore training judges with reinforcement learning (RL). We make three key contributions: (1) We propose the Equivalent Initial State Group Relative Policy Optimization (EIS-GRPO) algorithm, which allows us to train our judge to be robust to positional biases that arise in more complex evaluation settings. (2) We introduce ReasoningJudgeBench, a benchmark that evaluates judges in diverse reasoning settings not covered by prior work. (3) We train Judge for Reasoning (J4R), a 7B judge trained with EIS-GRPO that outperforms GPT-4o and the next best small judge by 6.7% and 9%, matching or exceeding the performance of larger GRPO-trained judges on both JudgeBench and ReasoningJudgeBench.
comment: 25 pages, 4 figures, 6 tables. To be updated with links for code/benchmark
Contextual Paralinguistic Data Creation for Multi-Modal Speech-LLM: Data Condensation and Spoken QA Generation
Current speech-LLMs exhibit limited capability in contextual reasoning alongside paralinguistic understanding, primarily due to the lack of Question-Answer (QA) datasets that cover both aspects. We propose a novel framework for dataset generation from in-the-wild speech data, that integrates contextual reasoning with paralinguistic information. It consists of a pseudo paralinguistic label-based data condensation of in-the-wild speech and LLM-based Contextual Paralinguistic QA (CPQA) generation. The effectiveness is validated by a strong correlation in evaluations of the Qwen2-Audio-7B-Instruct model on a dataset created by our framework and human-generated CPQA dataset. The results also reveal the speech-LLM's limitations in handling empathetic reasoning tasks, highlighting the need for such datasets and more robust models. The proposed framework is first of its kind and has potential in training more robust speech-LLMs with paralinguistic reasoning capabilities.
comment: Accepted at Interspeech 2025
Rethinking Stateful Tool Use in Multi-Turn Dialogues: Benchmarks and Challenges
Existing benchmarks that assess Language Models (LMs) as Language Agents (LAs) for tool use primarily focus on stateless, single-turn interactions or partial evaluations, such as tool selection in a single turn, overlooking the inherent stateful nature of interactions in multi-turn applications. To fulfill this gap, we propose \texttt{DialogTool}, a multi-turn dialogue dataset with stateful tool interactions considering the whole life cycle of tool use, across six key tasks in three stages: 1) \textit{tool creation}; 2) \textit{tool utilization}: tool awareness, tool selection, tool execution; and 3) \textit{role-consistent response}: response generation and role play. Furthermore, we build \texttt{VirtualMobile} -- an embodied virtual mobile evaluation environment to simulate API calls and assess the robustness of the created APIs\footnote{We will use tools and APIs alternatively, there are no significant differences between them in this paper.}. Taking advantage of these artifacts, we conduct comprehensive evaluation on 13 distinct open- and closed-source LLMs and provide detailed analysis at each stage, revealing that the existing state-of-the-art LLMs still cannot perform well to use tools over long horizons.
GUARD: Generation-time LLM Unlearning via Adaptive Restriction and Detection
Large Language Models (LLMs) have demonstrated strong capabilities in memorizing vast amounts of knowledge across diverse domains. However, the ability to selectively forget specific knowledge is critical for ensuring the safety and compliance of deployed models. Existing unlearning efforts typically fine-tune the model with resources such as forget data, retain data, and a calibration model. These additional gradient steps blur the decision boundary between forget and retain knowledge, making unlearning often at the expense of overall performance. To avoid the negative impact of fine-tuning, it would be better to unlearn solely at inference time by safely guarding the model against generating responses related to the forget target, without destroying the fluency of text generation. In this work, we propose Generation-time Unlearning via Adaptive Restriction and Detection (GUARD), a framework that enables dynamic unlearning during LLM generation. Specifically, we first employ a prompt classifier to detect unlearning targets and extract the corresponding forbidden token. We then dynamically penalize and filter candidate tokens during generation using a combination of token matching and semantic matching, effectively preventing the model from leaking the forgotten content. Experimental results on copyright content unlearning tasks over the Harry Potter dataset and the MUSE benchmark, as well as entity unlearning tasks on the TOFU dataset, demonstrate that GUARD achieves strong forget quality across various tasks while causing almost no degradation to the LLM's general capabilities, striking an excellent trade-off between forgetting and utility.
Seek in the Dark: Reasoning via Test-Time Instance-Level Policy Gradient in Latent Space
Reasoning ability, a core component of human intelligence, continues to pose a significant challenge for Large Language Models (LLMs) in the pursuit of AGI. Although model performance has improved under the training scaling law, significant challenges remain, particularly with respect to training algorithms, such as catastrophic forgetting, and the limited availability of novel training data. As an alternative, test-time scaling enhances reasoning performance by increasing test-time computation without parameter updating. Unlike prior methods in this paradigm focused on token space, we propose leveraging latent space for more effective reasoning and better adherence to the test-time scaling law. We introduce LatentSeek, a novel framework that enhances LLM reasoning through Test-Time Instance-level Adaptation (TTIA) within the model's latent space. Specifically, LatentSeek leverages policy gradient to iteratively update latent representations, guided by self-generated reward signals. LatentSeek is evaluated on a range of reasoning benchmarks, including GSM8K, MATH-500, and AIME2024, across multiple LLM architectures. Results show that LatentSeek consistently outperforms strong baselines, such as Chain-of-Thought prompting and fine-tuning-based methods. Furthermore, our analysis demonstrates that LatentSeek is highly efficient, typically converging within a few iterations for problems of average complexity, while also benefiting from additional iterations, thereby highlighting the potential of test-time scaling in the latent space. These findings position LatentSeek as a lightweight, scalable, and effective solution for enhancing the reasoning capabilities of LLMs.
RBF++: Quantifying and Optimizing Reasoning Boundaries across Measurable and Unmeasurable Capabilities for Chain-of-Thought Reasoning
Chain-of-Thought (CoT) reasoning has proven effective in enhancing large language models (LLMs) on complex tasks, spurring research into its underlying mechanisms. However, two primary challenges remain for real-world applications: (1) the lack of quantitative metrics and actionable guidelines for evaluating and optimizing measurable boundaries of CoT capability, and (2) the absence of methods to assess boundaries of unmeasurable CoT capability, such as multimodal perception. To address these gaps, we introduce the Reasoning Boundary Framework++ (RBF++). To tackle the first challenge, we define the reasoning boundary (RB) as the maximum limit of CoT performance. We also propose a combination law for RBs, enabling quantitative analysis and offering actionable guidance across various CoT tasks. For the second challenge, particularly in multimodal scenarios, we introduce a constant assumption, which replaces unmeasurable RBs with scenario-specific constants. Additionally, we propose the reasoning boundary division mechanism, which divides unmeasurable RBs into two sub-boundaries, facilitating the quantification and optimization of both unmeasurable domain knowledge and multimodal perception capabilities. Extensive experiments involving 38 models across 13 tasks validate the feasibility of our framework in cross-modal settings. Additionally, we evaluate 10 CoT strategies, offer insights into optimization and decay from two complementary perspectives, and expand evaluation benchmarks for measuring RBs in LLM reasoning. We hope this work advances the understanding of RBs and optimization strategies in LLMs. Code and data are available at https://github.com/LightChen233/reasoning-boundary.
comment: Manuscript
I'll believe it when I see it: Images increase misinformation sharing in Vision-Language Models
Large language models are increasingly integrated into news recommendation systems, raising concerns about their role in spreading misinformation. In humans, visual content is known to boost credibility and shareability of information, yet its effect on vision-language models (VLMs) remains unclear. We present the first study examining how images influence VLMs' propensity to reshare news content, whether this effect varies across model families, and how persona conditioning and content attributes modulate this behavior. To support this analysis, we introduce two methodological contributions: a jailbreaking-inspired prompting strategy that elicits resharing decisions from VLMs while simulating users with antisocial traits and political alignments; and a multimodal dataset of fact-checked political news from PolitiFact, paired with corresponding images and ground-truth veracity labels. Experiments across model families reveal that image presence increases resharing rates by 4.8% for true news and 15.0% for false news. Persona conditioning further modulates this effect: Dark Triad traits amplify resharing of false news, whereas Republican-aligned profiles exhibit reduced veracity sensitivity. Of all the tested models, only Claude-3-Haiku demonstrates robustness to visual misinformation. These findings highlight emerging risks in multimodal model behavior and motivate the development of tailored evaluation frameworks and mitigation strategies for personalized AI systems. Code and dataset are available at: https://github.com/3lis/misinfo_vlm
$\textit{Rank, Chunk and Expand}$: Lineage-Oriented Reasoning for Taxonomy Expansion
Taxonomies are hierarchical knowledge graphs crucial for recommendation systems, and web applications. As data grows, expanding taxonomies is essential, but existing methods face key challenges: (1) discriminative models struggle with representation limits and generalization, while (2) generative methods either process all candidates at once, introducing noise and exceeding context limits, or discard relevant entities by selecting noisy candidates. We propose LORex ($\textbf{L}$ineage-$\textbf{O}$riented $\textbf{Re}$asoning for Taxonomy E$\textbf{x}$pansion), a plug-and-play framework that combines discriminative ranking and generative reasoning for efficient taxonomy expansion. Unlike prior methods, LORex ranks and chunks candidate terms into batches, filtering noise and iteratively refining selections by reasoning candidates' hierarchy to ensure contextual efficiency. Extensive experiments across four benchmarks and twelve baselines show that LORex improves accuracy by 12% and Wu & Palmer similarity by 5% over state-of-the-art methods.
CSC-SQL: Corrective Self-Consistency in Text-to-SQL via Reinforcement Learning
Large language models (LLMs) have demonstrated strong capabilities in translating natural language questions about relational databases into SQL queries. In particular, test-time scaling techniques such as Self-Consistency and Self-Correction can enhance SQL generation accuracy by increasing computational effort during inference. However, these methods have notable limitations: Self-Consistency may select suboptimal outputs despite majority votes, while Self-Correction typically addresses only syntactic errors. To leverage the strengths of both approaches, we propose CSC-SQL, a novel method that integrates Self-Consistency and Self-Correction. CSC-SQL selects the two most frequently occurring outputs from parallel sampling and feeds them into a merge revision model for correction. Additionally, we employ the Group Relative Policy Optimization (GRPO) algorithm to fine-tune both the SQL generation and revision models via reinforcement learning, significantly enhancing output quality. Experimental results confirm the effectiveness and generalizability of CSC-SQL. On the BIRD development set, our 3B model achieves 65.28% execution accuracy, while the 7B model achieves 69.19%. The code will be open sourced at https://github.com/CycloneBoy/csc_sql.
comment: 11 pages, 5 figures
Representation of perceived prosodic similarity of conversational feedback
Vocal feedback (e.g., `mhm', `yeah', `okay') is an important component of spoken dialogue and is crucial to ensuring common ground in conversational systems. The exact meaning of such feedback is conveyed through both lexical and prosodic form. In this work, we investigate the perceived prosodic similarity of vocal feedback with the same lexical form, and to what extent existing speech representations reflect such similarities. A triadic comparison task with recruited participants is used to measure perceived similarity of feedback responses taken from two different datasets. We find that spectral and self-supervised speech representations encode prosody better than extracted pitch features, especially in the case of feedback from the same speaker. We also find that it is possible to further condense and align the representations to human perception through contrastive learning.
comment: Interspeech 2025
From Automation to Autonomy: A Survey on Large Language Models in Scientific Discovery
Large Language Models (LLMs) are catalyzing a paradigm shift in scientific discovery, evolving from task-specific automation tools into increasingly autonomous agents and fundamentally redefining research processes and human-AI collaboration. This survey systematically charts this burgeoning field, placing a central focus on the changing roles and escalating capabilities of LLMs in science. Through the lens of the scientific method, we introduce a foundational three-level taxonomy-Tool, Analyst, and Scientist-to delineate their escalating autonomy and evolving responsibilities within the research lifecycle. We further identify pivotal challenges and future research trajectories such as robotic automation, self-improvement, and ethical governance. Overall, this survey provides a conceptual architecture and strategic foresight to navigate and shape the future of AI-driven scientific discovery, fostering both rapid innovation and responsible advancement. Github Repository: https://github.com/HKUST-KnowComp/Awesome-LLM-Scientific-Discovery.
comment: 16 pages
Effective and Transparent RAG: Adaptive-Reward Reinforcement Learning for Decision Traceability
Retrieval-Augmented Generation (RAG) has significantly improved the performance of large language models (LLMs) on knowledge-intensive domains. However, although RAG achieved successes across distinct domains, there are still some unsolved challenges: 1) Effectiveness. Existing research mainly focuses on developing more powerful RAG retrievers, but how to enhance the generator's (LLM's) ability to utilize the retrieved information for reasoning and generation? 2) Transparency. Most RAG methods ignore which retrieved content actually contributes to the reasoning process, resulting in a lack of interpretability and visibility. To address this, we propose ARENA (Adaptive-Rewarded Evidence Navigation Agent), a transparent RAG generator framework trained via reinforcement learning (RL) with our proposed rewards. Based on the structured generation and adaptive reward calculation, our RL-based training enables the model to identify key evidence, perform structured reasoning, and generate answers with interpretable decision traces. Applied to Qwen2.5-7B-Instruct and Llama3.1-8B-Instruct, abundant experiments with various RAG baselines demonstrate that our model achieves 10-30% improvements on all multi-hop QA datasets, which is comparable with the SOTA Commercially-developed LLMs (e.g., OpenAI-o1, DeepSeek-R1). Further analyses show that ARENA has strong flexibility to be adopted on new datasets without extra training. Our models and codes are publicly released.
WikiPersonas: What Can We Learn From Personalized Alignment to Famous People?
Preference alignment has become a standard pipeline in finetuning models to follow \emph{generic} human preferences. Majority of work seeks to optimize model to produce responses that would be preferable \emph{on average}, simplifying the diverse and often \emph{contradicting} space of human preferences. While research has increasingly focused on personalized alignment: adapting models to individual user preferences, there is a lack of personalized preference dataset which focus on nuanced individual-level preferences. To address this, we introduce WikiPersona: the first fine-grained personalization using well-documented, famous individuals. Our dataset challenges models to align with these personas through an interpretable process: generating verifiable textual descriptions of a persona's background and preferences in addition to alignment. We systematically evaluate different personalization approaches and find that as few-shot prompting with preferences and fine-tuning fail to simultaneously ensure effectiveness and efficiency, using \textit{inferred personal preferences} as prefixes enables effective personalization, especially in topics where preferences clash while leading to more equitable generalization across unseen personas.
comment: 9 pages, preprint
HeteroSpec: Leveraging Contextual Heterogeneity for Efficient Speculative Decoding
Autoregressive decoding, the standard approach for Large Language Model (LLM) inference, remains a significant bottleneck due to its sequential nature. While speculative decoding algorithms mitigate this inefficiency through parallel verification, they fail to exploit the inherent heterogeneity in linguistic complexity, a key factor leading to suboptimal resource allocation. We address this by proposing HeteroSpec, a heterogeneity-adaptive speculative decoding framework that dynamically optimizes computational resource allocation based on linguistic context complexity. HeteroSpec introduces two key mechanisms: (1) A novel cumulative meta-path Top-$K$ entropy metric for efficiently identifying predictable contexts. (2) A dynamic resource allocation strategy based on data-driven entropy partitioning, enabling adaptive speculative expansion and pruning tailored to local context difficulty. Evaluated on five public benchmarks and four models, HeteroSpec achieves an average speedup of 4.26$\times$. It consistently outperforms state-of-the-art EAGLE-3 across speedup rates, average acceptance length, and verification cost. Notably, HeteroSpec requires no draft model retraining, incurs minimal overhead, and is orthogonal to other acceleration techniques. It demonstrates enhanced acceleration with stronger draft models, establishing a new paradigm for context-aware LLM inference acceleration.
Natural Language Planning via Coding and Inference Scaling
Real-life textual planning tasks such as meeting scheduling have posed much challenge to LLMs especially when the complexity is high. While previous work primarily studied auto-regressive generation of plans with closed-source models, we systematically evaluate both closed- and open-source models, including those that scales output length with complexity during inference, in generating programs, which are executed to output the plan. We consider not only standard Python code, but also the code to a constraint satisfaction problem solver. Despite the algorithmic nature of the task, we show that programming often but not always outperforms planning. Our detailed error analysis also indicates a lack of robustness and efficiency in the generated code that hinders generalization.
Stronger Together: Unleashing the Social Impact of Hate Speech Research
The advent of the internet has been both a blessing and a curse for once marginalised communities. When used well, the internet can be used to connect and establish communities crossing different intersections; however, it can also be used as a tool to alienate people and communities as well as perpetuate hate, misinformation, and disinformation especially on social media platforms. We propose steering hate speech research and researchers away from pre-existing computational solutions and consider social methods to inform social solutions to address this social problem. In a similar way linguistics research can inform language planning policy, linguists should apply what we know about language and society to mitigate some of the emergent risks and dangers of anti-social behaviour in digital spaces. We argue linguists and NLP researchers can play a principle role in unleashing the social impact potential of linguistics research working alongside communities, advocates, activists, and policymakers to enable equitable digital inclusion and to close the digital divide.
comment: Accepted Proceedings of the Linguistic Society of America 2025 Annual Meeting
JNLP at SemEval-2025 Task 11: Cross-Lingual Multi-Label Emotion Detection Using Generative Models SemEval-2025
With the rapid advancement of global digitalization, users from different countries increasingly rely on social media for information exchange. In this context, multilingual multi-label emotion detection has emerged as a critical research area. This study addresses SemEval-2025 Task 11: Bridging the Gap in Text-Based Emotion Detection. Our paper focuses on two sub-tracks of this task: (1) Track A: Multi-label emotion detection, and (2) Track B: Emotion intensity. To tackle multilingual challenges, we leverage pre-trained multilingual models and focus on two architectures: (1) a fine-tuned BERT-based classification model and (2) an instruction-tuned generative LLM. Additionally, we propose two methods for handling multi-label classification: the base method, which maps an input directly to all its corresponding emotion labels, and the pairwise method, which models the relationship between the input text and each emotion category individually. Experimental results demonstrate the strong generalization ability of our approach in multilingual emotion recognition. In Track A, our method achieved Top 4 performance across 10 languages, ranking 1st in Hindi. In Track B, our approach also secured Top 5 performance in 7 languages, highlighting its simplicity and effectiveness\footnote{Our code is available at https://github.com/yingjie7/mlingual_multilabel_emo_detection.
comment: Published in The 19th International Workshop on Semantic Evaluation (SemEval-2025)
SAKURA: On the Multi-hop Reasoning of Large Audio-Language Models Based on Speech and Audio Information
Large audio-language models (LALMs) extend the large language models with multimodal understanding in speech, audio, etc. While their performances on speech and audio-processing tasks are extensively studied, their reasoning abilities remain underexplored. Particularly, their multi-hop reasoning, the ability to recall and integrate multiple facts, lacks systematic evaluation. Existing benchmarks focus on general speech and audio-processing tasks, conversational abilities, and fairness but overlook this aspect. To bridge this gap, we introduce SAKURA, a benchmark assessing LALMs' multi-hop reasoning based on speech and audio information. Results show that LALMs struggle to integrate speech/audio representations for multi-hop reasoning, even when they extract the relevant information correctly, highlighting a fundamental challenge in multimodal reasoning. Our findings expose a critical limitation in LALMs, offering insights and resources for future research.
comment: Accepted to Interspeech 2025
Scaling Computer-Use Grounding via User Interface Decomposition and Synthesis
Graphical user interface (GUI) grounding, the ability to map natural language instructions to specific actions on graphical user interfaces, remains a critical bottleneck in computer use agent development. Current benchmarks oversimplify grounding tasks as short referring expressions, failing to capture the complexity of real-world interactions that require software commonsense, layout understanding, and fine-grained manipulation capabilities. To address these limitations, we introduce OSWorld-G, a comprehensive benchmark comprising 564 finely annotated samples across diverse task types including text matching, element recognition, layout understanding, and precise manipulation. Additionally, we synthesize and release the largest computer use grounding dataset Jedi, which contains 4 million examples through multi-perspective decoupling of tasks. Our multi-scale models trained on Jedi demonstrate its effectiveness by outperforming existing approaches on ScreenSpot-v2, ScreenSpot-Pro, and our OSWorld-G. Furthermore, we demonstrate that improved grounding with Jedi directly enhances agentic capabilities of general foundation models on complex computer tasks, improving from 5% to 27% on OSWorld. Through detailed ablation studies, we identify key factors contributing to grounding performance and verify that combining specialized data for different interface elements enables compositional generalization to novel interfaces. All benchmark, data, checkpoints, and code are open-sourced and available at https://osworld-grounding.github.io.
comment: 49 pages, 13 figures
SeedBench: A Multi-task Benchmark for Evaluating Large Language Models in Seed Science ACL 2025
Seed science is essential for modern agriculture, directly influencing crop yields and global food security. However, challenges such as interdisciplinary complexity and high costs with limited returns hinder progress, leading to a shortage of experts and insufficient technological support. While large language models (LLMs) have shown promise across various fields, their application in seed science remains limited due to the scarcity of digital resources, complex gene-trait relationships, and the lack of standardized benchmarks. To address this gap, we introduce SeedBench -- the first multi-task benchmark specifically designed for seed science. Developed in collaboration with domain experts, SeedBench focuses on seed breeding and simulates key aspects of modern breeding processes. We conduct a comprehensive evaluation of 26 leading LLMs, encompassing proprietary, open-source, and domain-specific fine-tuned models. Our findings not only highlight the substantial gaps between the power of LLMs and the real-world seed science problems, but also make a foundational step for research on LLMs for seed design.
comment: Accepted by ACL 2025
Picturized and Recited with Dialects: A Multimodal Chinese Representation Framework for Sentiment Analysis of Classical Chinese Poetry
Classical Chinese poetry is a vital and enduring part of Chinese literature, conveying profound emotional resonance. Existing studies analyze sentiment based on textual meanings, overlooking the unique rhythmic and visual features inherent in poetry,especially since it is often recited and accompanied by Chinese paintings. In this work, we propose a dialect-enhanced multimodal framework for classical Chinese poetry sentiment analysis. We extract sentence-level audio features from the poetry and incorporate audio from multiple dialects,which may retain regional ancient Chinese phonetic features, enriching the phonetic representation. Additionally, we generate sentence-level visual features, and the multimodal features are fused with textual features enhanced by LLM translation through multimodal contrastive representation learning. Our framework outperforms state-of-the-art methods on two public datasets, achieving at least 2.51% improvement in accuracy and 1.63% in macro F1. We open-source the code to facilitate research in this area and provide insights for general multimodal Chinese representation.
Efficient Generation of Parameterised Quantum Circuits from Large Texts
Quantum approaches to natural language processing (NLP) are redefining how linguistic information is represented and processed. While traditional hybrid quantum-classical models rely heavily on classical neural networks, recent advancements propose a novel framework, DisCoCirc, capable of directly encoding entire documents as parameterised quantum circuits (PQCs), besides enjoying some additional interpretability and compositionality benefits. Following these ideas, this paper introduces an efficient methodology for converting large-scale texts into quantum circuits using tree-like representations of pregroup diagrams. Exploiting the compositional parallels between language and quantum mechanics, grounded in symmetric monoidal categories, our approach enables faithful and efficient encoding of syntactic and discourse relationships in long and complex texts (up to 6410 words in our experiments) to quantum circuits. The developed system is provided to the community as part of the augmented open-source quantum NLP package lambeq Gen II.
Alignment-Augmented Speculative Decoding with Alignment Sampling and Conditional Verification
Recent works have revealed the great potential of speculative decoding in accelerating the autoregressive generation process of large language models. The success of these methods relies on the alignment between draft candidates and the sampled outputs of the target model. Existing methods mainly achieve draft-target alignment with training-based methods, e.g., EAGLE, Medusa, involving considerable training costs. In this paper, we present a training-free alignment-augmented speculative decoding algorithm. We propose alignment sampling, which leverages output distribution obtained in the prefilling phase to provide more aligned draft candidates. To further benefit from high-quality but non-aligned draft candidates, we also introduce a simple yet effective flexible verification strategy. Through an adaptive probability threshold, our approach can improve generation accuracy while further improving inference efficiency. Experiments on 8 datasets (including question answering, summarization and code completion tasks) show that our approach increases the average generation score by 3.3 points for the LLaMA3 model. Our method achieves a mean acceptance length up to 2.39 and speed up generation by 2.23.
comment: Pre-print
Efficient Speech Language Modeling via Energy Distance in Continuous Latent Space
We introduce SLED, an alternative approach to speech language modeling by encoding speech waveforms into sequences of continuous latent representations and modeling them autoregressively using an energy distance objective. The energy distance offers an analytical measure of the distributional gap by contrasting simulated and target samples, enabling efficient training to capture the underlying continuous autoregressive distribution. By bypassing reliance on residual vector quantization, SLED avoids discretization errors and eliminates the need for the complicated hierarchical architectures common in existing speech language models. It simplifies the overall modeling pipeline while preserving the richness of speech information and maintaining inference efficiency. Empirical results demonstrate that SLED achieves strong performance in both zero-shot and streaming speech synthesis, showing its potential for broader applications in general-purpose speech language models.
comment: Demos and code are available at https://github.com/ictnlp/SLED-TTS
ToolSpectrum : Towards Personalized Tool Utilization for Large Language Models ACL 2025
While integrating external tools into large language models (LLMs) enhances their ability to access real-time information and domain-specific services, existing approaches focus narrowly on functional tool selection following user instructions, overlooking the context-aware personalization in tool selection. This oversight leads to suboptimal user satisfaction and inefficient tool utilization, particularly when overlapping toolsets require nuanced selection based on contextual factors. To bridge this gap, we introduce ToolSpectrum, a benchmark designed to evaluate LLMs' capabilities in personalized tool utilization. Specifically, we formalize two key dimensions of personalization, user profile and environmental factors, and analyze their individual and synergistic impacts on tool utilization. Through extensive experiments on ToolSpectrum, we demonstrate that personalized tool utilization significantly improves user experience across diverse scenarios. However, even state-of-the-art LLMs exhibit the limited ability to reason jointly about user profiles and environmental factors, often prioritizing one dimension at the expense of the other. Our findings underscore the necessity of context-aware personalization in tool-augmented LLMs and reveal critical limitations for current models. Our data and code are available at https://github.com/Chengziha0/ToolSpectrum.
comment: Accepted by ACL 2025 Findings
A Case Study of Cross-Lingual Zero-Shot Generalization for Classical Languages in LLMs ACL 2025
Large Language Models (LLMs) have demonstrated remarkable generalization capabilities across diverse tasks and languages. In this study, we focus on natural language understanding in three classical languages -- Sanskrit, Ancient Greek and Latin -- to investigate the factors affecting cross-lingual zero-shot generalization. First, we explore named entity recognition and machine translation into English. While LLMs perform equal to or better than fine-tuned baselines on out-of-domain data, smaller models often struggle, especially with niche or abstract entity types. In addition, we concentrate on Sanskrit by presenting a factoid question-answering (QA) dataset and show that incorporating context via retrieval-augmented generation approach significantly boosts performance. In contrast, we observe pronounced performance drops for smaller LLMs across these QA tasks. These results suggest model scale as an important factor influencing cross-lingual generalization. Assuming that models used such as GPT-4o and Llama-3.1 are not instruction fine-tuned on classical languages, our findings provide insights into how LLMs may generalize on these languages and their consequent utility in classical studies.
comment: Accepted to ACL 2025 Findings
Positional Fragility in LLMs: How Offset Effects Reshape Our Understanding of Memorization Risks
Large language models are known to memorize parts of their training data, posing risk of copyright violations. To systematically examine this risk, we pretrain language models (1B/3B/8B) from scratch on 83B tokens, mixing web-scale data with public domain books used to simulate copyrighted content at controlled frequencies at lengths at least ten times longer than prior work. We thereby identified the offset effect, a phenomenon characterized by two key findings: (1) verbatim memorization is most strongly triggered by short prefixes drawn from the beginning of the context window, with memorization decreasing counterintuitively as prefix length increases; and (2) a sharp decline in verbatim recall when prefix begins offset from the initial tokens of the context window. We attribute this to positional fragility: models rely disproportionately on the earliest tokens in their context window as retrieval anchors, making them sensitive to even slight shifts. We further observe that when the model fails to retrieve memorized content, it often produces degenerated text. Leveraging these findings, we show that shifting sensitive data deeper into the context window suppresses both extractable memorization and degeneration. Our results suggest that positional offset is a critical and previously overlooked axis for evaluating memorization risks, since prior work implicitly assumed uniformity by probing only from the beginning of training sequences.
Role-Playing Evaluation for Large Language Models
Large Language Models (LLMs) demonstrate a notable capacity for adopting personas and engaging in role-playing. However, evaluating this ability presents significant challenges, as human assessments are resource-intensive and automated evaluations can be biased. To address this, we introduce Role-Playing Eval (RPEval), a novel benchmark designed to assess LLM role-playing capabilities across four key dimensions: emotional understanding, decision-making, moral alignment, and in-character consistency. This article details the construction of RPEval and presents baseline evaluations. Our code and dataset are available at https://github.com/yelboudouri/RPEval
Tianyi: A Traditional Chinese Medicine all-rounder language model and its Real-World Clinical Practice
Natural medicines, particularly Traditional Chinese Medicine (TCM), are gaining global recognition for their therapeutic potential in addressing human symptoms and diseases. TCM, with its systematic theories and extensive practical experience, provides abundant resources for healthcare. However, the effective application of TCM requires precise syndrome diagnosis, determination of treatment principles, and prescription formulation, which demand decades of clinical expertise. Despite advancements in TCM-based decision systems, machine learning, and deep learning research, limitations in data and single-objective constraints hinder their practical application. In recent years, large language models (LLMs) have demonstrated potential in complex tasks, but lack specialization in TCM and face significant challenges, such as too big model scale to deploy and issues with hallucination. To address these challenges, we introduce Tianyi with 7.6-billion-parameter LLM, a model scale proper and specifically designed for TCM, pre-trained and fine-tuned on diverse TCM corpora, including classical texts, expert treatises, clinical records, and knowledge graphs. Tianyi is designed to assimilate interconnected and systematic TCM knowledge through a progressive learning manner. Additionally, we establish TCMEval, a comprehensive evaluation benchmark, to assess LLMs in TCM examinations, clinical tasks, domain-specific question-answering, and real-world trials. The extensive evaluations demonstrate the significant potential of Tianyi as an AI assistant in TCM clinical practice and research, bridging the gap between TCM knowledge and practical application.
comment: 23 pages, 4 figures, and 1 tables
What if Deception Cannot be Detected? A Cross-Linguistic Study on the Limits of Deception Detection from Text
Can deception be detected solely from written text? Cues of deceptive communication are inherently subtle, even more so in text-only communication. Yet, prior studies have reported considerable success in automatic deception detection. We hypothesize that such findings are largely driven by artifacts introduced during data collection and do not generalize beyond specific datasets. We revisit this assumption by introducing a belief-based deception framework, which defines deception as a misalignment between an author's claims and true beliefs, irrespective of factual accuracy, allowing deception cues to be studied in isolation. Based on this framework, we construct three corpora, collectively referred to as DeFaBel, including a German-language corpus of deceptive and non-deceptive arguments and a multilingual version in German and English, each collected under varying conditions to account for belief change and enable cross-linguistic analysis. Using these corpora, we evaluate commonly reported linguistic cues of deception. Across all three DeFaBel variants, these cues show negligible, statistically insignificant correlations with deception labels, contrary to prior work that treats such cues as reliable indicators. We further benchmark against other English deception datasets following similar data collection protocols. While some show statistically significant correlations, effect sizes remain low and, critically, the set of predictive cues is inconsistent across datasets. We also evaluate deception detection using feature-based models, pretrained language models, and instruction-tuned large language models. While some models perform well on established deception datasets, they consistently perform near chance on DeFaBel. Our findings challenge the assumption that deception can be reliably inferred from linguistic cues and call for rethinking how deception is studied and modeled in NLP.
Understanding Cross-Lingual Inconsistency in Large Language Models
Large language models (LLMs) are demonstrably capable of cross-lingual transfer, but can produce inconsistent output when prompted with the same queries written in different languages. To understand how language models are able to generalize knowledge from one language to the others, we apply the logit lens to interpret the implicit steps taken by LLMs to solve multilingual multi-choice reasoning questions. We find LLMs predict inconsistently and are less accurate because they rely on subspaces of individual languages, rather than working in a shared semantic space. While larger models are more multilingual, we show their hidden states are more likely to dissociate from the shared representation compared to smaller models, but are nevertheless more capable of retrieving knowledge embedded across different languages. Finally, we demonstrate that knowledge sharing can be modulated by steering the models' latent processing towards the shared semantic space. We find reinforcing utilization of the shared space improves the models' multilingual reasoning performance, as a result of more knowledge transfer from, and better output consistency with English.
ModernGBERT: German-only 1B Encoder Model Trained from Scratch
Despite the prominence of decoder-only language models, encoders remain crucial for resource-constrained applications. We introduce ModernGBERT (134M, 1B), a fully transparent family of German encoder models trained from scratch, incorporating architectural innovations from ModernBERT. To evaluate the practical trade-offs of training encoders from scratch, we also present LL\"aMmlein2Vec (120M, 1B, 7B), a family of encoders derived from German decoder-only models via LLM2Vec. We benchmark all models on natural language understanding, text embedding, and long-context reasoning tasks, enabling a controlled comparison between dedicated encoders and converted decoders. Our results show that ModernGBERT 1B outperforms prior state-of-the-art German encoders as well as encoders adapted via LLM2Vec, with regard to performance and parameter-efficiency. All models, training data, checkpoints and code are publicly available, advancing the German NLP ecosystem with transparent, high-performance encoder models.
comment: under review @ARR
Zero-Shot Iterative Formalization and Planning in Partially Observable Environments
In planning, using LLMs not to predict plans but to formalize an environment into the Planning Domain Definition Language (PDDL) has been shown to greatly improve performance and control. While most work focused on fully observable environments, we tackle the more realistic and challenging partially observable environments where existing methods are incapacitated by the lack of complete information. We propose PDDLego+, a framework to iteratively formalize, plan, grow, and refine PDDL representations in a zero-shot manner, without needing access to any existing trajectories. On two textual simulated environments, we show that PDDLego+ not only achieves superior performance, but also shows robustness against problem complexity. We also show that the domain knowledge captured after a successful trial is interpretable and benefits future tasks.
Benchmarking and Confidence Evaluation of LALMs For Temporal Reasoning INTERSPEECH
The popular success of text-based large language models (LLM) has streamlined the attention of the multimodal community to combine other modalities like vision and audio along with text to achieve similar multimodal capabilities. In this quest, large audio language models (LALMs) have to be evaluated on reasoning related tasks which are different from traditional classification or generation tasks. Towards this goal, we propose a novel dataset called temporal reasoning evaluation of audio (TREA). We benchmark open-source LALMs and observe that they are consistently behind human capabilities on the tasks in the TREA dataset. While evaluating LALMs, we also propose an uncertainty metric, which computes the invariance of the model to semantically identical perturbations of the input. Our analysis shows that the accuracy and uncertainty metrics are not necessarily correlated and thus, points to a need for wholesome evaluation of LALMs for high-stakes applications.
comment: Accepted in INTERSPEECH, 2025, Rotterdam, The Netherlands
FreeKV: Boosting KV Cache Retrieval for Efficient LLM Inference
Large language models (LLMs) have been widely deployed with rapidly expanding context windows to support increasingly demanding applications. However, long contexts pose significant deployment challenges, primarily due to the KV cache whose size grows proportionally with context length. While KV cache compression methods are proposed to address this issue, KV dropping methods incur considerable accuracy loss, and KV retrieval methods suffer from significant efficiency bottlenecks. We propose FreeKV, an algorithm-system co-optimization framework to enhance KV retrieval efficiency while preserving accuracy. On the algorithm side, FreeKV introduces speculative retrieval to shift the KV selection and recall processes out of the critical path, combined with fine-grained correction to ensure accuracy. On the system side, FreeKV employs hybrid KV layouts across CPU and GPU memory to eliminate fragmented data transfers, and leverages double-buffered streamed recall to further improve efficiency. Experiments demonstrate that FreeKV achieves near-lossless accuracy across various scenarios and models, delivering up to 13$\times$ speedup compared to SOTA KV retrieval methods.
LLM-KG-Bench 3.0: A Compass for SemanticTechnology Capabilities in the Ocean of LLMs ESWC 2025
Current Large Language Models (LLMs) can assist developing program code beside many other things, but can they support working with Knowledge Graphs (KGs) as well? Which LLM is offering the best capabilities in the field of Semantic Web and Knowledge Graph Engineering (KGE)? Is this possible to determine without checking many answers manually? The LLM-KG-Bench framework in Version 3.0 is designed to answer these questions. It consists of an extensible set of tasks for automated evaluation of LLM answers and covers different aspects of working with semantic technologies. In this paper the LLM-KG-Bench framework is presented in Version 3 along with a dataset of prompts, answers and evaluations generated with it and several state-of-the-art LLMs. Significant enhancements have been made to the framework since its initial release, including an updated task API that offers greater flexibility in handling evaluation tasks, revised tasks, and extended support for various open models through the vllm library, among other improvements. A comprehensive dataset has been generated using more than 30 contemporary open and proprietary LLMs, enabling the creation of exemplary model cards that demonstrate the models' capabilities in working with RDF and SPARQL, as well as comparing their performance on Turtle and JSON-LD RDF serialization tasks.
comment: Peer reviewed publication at ESWC 2025 Resources Track
The Effect of Language Diversity When Fine-Tuning Large Language Models for Translation
Prior research diverges on language diversity in LLM fine-tuning: Some studies report benefits while others find no advantages. Through controlled fine-tuning experiments across 132 translation directions, we systematically resolve these disparities. We find that expanding language diversity during fine-tuning improves translation quality for both unsupervised and -- surprisingly -- supervised pairs, despite less diverse models being fine-tuned exclusively on these supervised pairs. However, benefits plateau or decrease beyond a certain diversity threshold. We show that increased language diversity creates more language-agnostic representations. These representational adaptations help explain the improved performance in models fine-tuned with greater diversity.
Systematic Generalization in Language Models Scales with Information Entropy ACL 2025
Systematic generalization remains challenging for current language models, which are known to be both sensitive to semantically similar permutations of the input and to struggle with known concepts presented in novel contexts. Although benchmarks exist for assessing compositional behavior, it is unclear how to measure the difficulty of a systematic generalization problem. In this work, we show how one aspect of systematic generalization can be described by the entropy of the distribution of component parts in the training data. We formalize a framework for measuring entropy in a sequence-to-sequence task and find that the performance of popular model architectures scales with the entropy. Our work connects systematic generalization to information efficiency, and our results indicate that success at high entropy can be achieved even without built-in priors, and that success at low entropy can serve as a target for assessing progress towards robust systematic generalization.
comment: Accepted to ACL 2025: Findings
Advancing Sequential Numerical Prediction in Autoregressive Models ACL 2025
Autoregressive models have become the de facto choice for sequence generation tasks, but standard approaches treat digits as independent tokens and apply cross-entropy loss, overlooking the coherent structure of numerical sequences. This paper introduces Numerical Token Integrity Loss (NTIL) to address this gap. NTIL operates at two levels: (1) token-level, where it extends the Earth Mover's Distance (EMD) to preserve ordinal relationships between numerical values, and (2) sequence-level, where it penalizes the overall discrepancy between the predicted and actual sequences. This dual approach improves numerical prediction and integrates effectively with LLMs/MLLMs. Extensive experiments show significant performance improvements with NTIL.
comment: Accepted to ACL 2025 Main Conference
Suicide Risk Assessment Using Multimodal Speech Features: A Study on the SW1 Challenge Dataset
The 1st SpeechWellness Challenge conveys the need for speech-based suicide risk assessment in adolescents. This study investigates a multimodal approach for this challenge, integrating automatic transcription with WhisperX, linguistic embeddings from Chinese RoBERTa, and audio embeddings from WavLM. Additionally, handcrafted acoustic features -- including MFCCs, spectral contrast, and pitch-related statistics -- were incorporated. We explored three fusion strategies: early concatenation, modality-specific processing, and weighted attention with mixup regularization. Results show that weighted attention provided the best generalization, achieving 69% accuracy on the development set, though a performance gap between development and test sets highlights generalization challenges. Our findings, strictly tied to the MINI-KID framework, emphasize the importance of refining embedding representations and fusion mechanisms to enhance classification reliability.
comment: Submitted to the SpeechWellness Challenge at Interspeech 2025; 5 pages, 2 figures, 2 tables
SNAPE-PM: Building and Utilizing Dynamic Partner Models for Adaptive Explanation Generation
Adapting to the addressee is crucial for successful explanations, yet poses significant challenges for dialogsystems. We adopt the approach of treating explanation generation as a non-stationary decision process, where the optimal strategy varies according to changing beliefs about the explainee and the interaction context. In this paper we address the questions of (1) how to track the interaction context and the relevant listener features in a formally defined computational partner model, and (2) how to utilize this model in the dynamically adjusted, rational decision process that determines the currently best explanation strategy. We propose a Bayesian inference-based approach to continuously update the partner model based on user feedback, and a non-stationary Markov Decision Process to adjust decision-making based on the partner model values. We evaluate an implementation of this framework with five simulated interlocutors, demonstrating its effectiveness in adapting to different partners with constant and even changing feedback behavior. The results show high adaptivity with distinct explanation strategies emerging for different partners, highlighting the potential of our approach to improve explainable AI systems and dialogsystems in general.
comment: currently under review at Frontiers in Communication
KIT's Offline Speech Translation and Instruction Following Submission for IWSLT 2025
The scope of the International Workshop on Spoken Language Translation (IWSLT) has recently broadened beyond traditional Speech Translation (ST) to encompass a wider array of tasks, including Speech Question Answering and Summarization. This shift is partly driven by the growing capabilities of modern systems, particularly with the success of Large Language Models (LLMs). In this paper, we present the Karlsruhe Institute of Technology's submissions for the Offline ST and Instruction Following (IF) tracks, where we leverage LLMs to enhance performance across all tasks. For the Offline ST track, we propose a pipeline that employs multiple automatic speech recognition systems, whose outputs are fused using an LLM with document-level context. This is followed by a two-step translation process, incorporating additional refinement step to improve translation quality. For the IF track, we develop an end-to-end model that integrates a speech encoder with an LLM to perform a wide range of instruction-following tasks. We complement it with a final document-level refinement stage to further enhance output quality by using contextual information.
topicwizard -- a Modern, Model-agnostic Framework for Topic Model Visualization and Interpretation
Topic models are statistical tools that allow their users to gain qualitative and quantitative insights into the contents of textual corpora without the need for close reading. They can be applied in a wide range of settings from discourse analysis, through pretraining data curation, to text filtering. Topic models are typically parameter-rich, complex models, and interpreting these parameters can be challenging for their users. It is typical practice for users to interpret topics based on the top 10 highest ranking terms on a given topic. This list-of-words approach, however, gives users a limited and biased picture of the content of topics. Thoughtful user interface design and visualizations can help users gain a more complete and accurate understanding of topic models' output. While some visualization utilities do exist for topic models, these are typically limited to a certain type of topic model. We introduce topicwizard, a framework for model-agnostic topic model interpretation, that provides intuitive and interactive tools that help users examine the complex semantic relations between documents, words and topics learned by topic models.
comment: 9 pages, 9 figures
MMAR: A Challenging Benchmark for Deep Reasoning in Speech, Audio, Music, and Their Mix
We introduce MMAR, a new benchmark designed to evaluate the deep reasoning capabilities of Audio-Language Models (ALMs) across massive multi-disciplinary tasks. MMAR comprises 1,000 meticulously curated audio-question-answer triplets, collected from real-world internet videos and refined through iterative error corrections and quality checks to ensure high quality. Unlike existing benchmarks that are limited to specific domains of sound, music, or speech, MMAR extends them to a broad spectrum of real-world audio scenarios, including mixed-modality combinations of sound, music, and speech. Each question in MMAR is hierarchically categorized across four reasoning layers: Signal, Perception, Semantic, and Cultural, with additional sub-categories within each layer to reflect task diversity and complexity. To further foster research in this area, we annotate every question with a Chain-of-Thought (CoT) rationale to promote future advancements in audio reasoning. Each item in the benchmark demands multi-step deep reasoning beyond surface-level understanding. Moreover, a part of the questions requires graduate-level perceptual and domain-specific knowledge, elevating the benchmark's difficulty and depth. We evaluate MMAR using a broad set of models, including Large Audio-Language Models (LALMs), Large Audio Reasoning Models (LARMs), Omni Language Models (OLMs), Large Language Models (LLMs), and Large Reasoning Models (LRMs), with audio caption inputs. The performance of these models on MMAR highlights the benchmark's challenging nature, and our analysis further reveals critical limitations of understanding and reasoning capabilities among current models. We hope MMAR will serve as a catalyst for future advances in this important but little-explored area.
comment: Open-source at https://github.com/ddlBoJack/MMAR
Evaluatiing the efficacy of LLM Safety Solutions : The Palit Benchmark Dataset
Large Language Models (LLMs) are increasingly integrated into critical systems in industries like healthcare and finance. Users can often submit queries to LLM-enabled chatbots, some of which can enrich responses with information retrieved from internal databases storing sensitive data. This gives rise to a range of attacks in which a user submits a malicious query and the LLM-system outputs a response that creates harm to the owner, such as leaking internal data or creating legal liability by harming a third-party. While security tools are being developed to counter these threats, there is little formal evaluation of their effectiveness and usability. This study addresses this gap by conducting a thorough comparative analysis of LLM security tools. We identified 13 solutions (9 closed-source, 4 open-source), but only 7 were evaluated due to a lack of participation by proprietary model owners.To evaluate, we built a benchmark dataset of malicious prompts, and evaluate these tools performance against a baseline LLM model (ChatGPT-3.5-Turbo). Our results show that the baseline model has too many false positives to be used for this task. Lakera Guard and ProtectAI LLM Guard emerged as the best overall tools showcasing the tradeoff between usability and performance. The study concluded with recommendations for greater transparency among closed source providers, improved context-aware detections, enhanced open-source engagement, increased user awareness, and the adoption of more representative performance metrics.
To Bias or Not to Bias: Detecting bias in News with bias-detector
Media bias detection is a critical task in ensuring fair and balanced information dissemination, yet it remains challenging due to the subjectivity of bias and the scarcity of high-quality annotated data. In this work, we perform sentence-level bias classification by fine-tuning a RoBERTa-based model on the expert-annotated BABE dataset. Using McNemar's test and the 5x2 cross-validation paired t-test, we show statistically significant improvements in performance when comparing our model to a domain-adaptively pre-trained DA-RoBERTa baseline. Furthermore, attention-based analysis shows that our model avoids common pitfalls like oversensitivity to politically charged terms and instead attends more meaningfully to contextually relevant tokens. For a comprehensive examination of media bias, we present a pipeline that combines our model with an already-existing bias-type classifier. Our method exhibits good generalization and interpretability, despite being constrained by sentence-level analysis and dataset size because of a lack of larger and more advanced bias corpora. We talk about context-aware modeling, bias neutralization, and advanced bias type classification as potential future directions. Our findings contribute to building more robust, explainable, and socially responsible NLP systems for media bias detection.
comment: 7 pages, 5 figures, 2 tables
Evaluating the Performance of RAG Methods for Conversational AI in the Airport Domain NAACL 2025
Airports from the top 20 in terms of annual passengers are highly dynamic environments with thousands of flights daily, and they aim to increase the degree of automation. To contribute to this, we implemented a Conversational AI system that enables staff in an airport to communicate with flight information systems. This system not only answers standard airport queries but also resolves airport terminology, jargon, abbreviations, and dynamic questions involving reasoning. In this paper, we built three different Retrieval-Augmented Generation (RAG) methods, including traditional RAG, SQL RAG, and Knowledge Graph-based RAG (Graph RAG). Experiments showed that traditional RAG achieved 84.84% accuracy using BM25 + GPT-4 but occasionally produced hallucinations, which is risky to airport safety. In contrast, SQL RAG and Graph RAG achieved 80.85% and 91.49% accuracy respectively, with significantly fewer hallucinations. Moreover, Graph RAG was especially effective for questions that involved reasoning. Based on our observations, we thus recommend SQL RAG and Graph RAG are better for airport environments, due to fewer hallucinations and the ability to handle dynamic questions.
comment: Accepted by NAACL 2025 industry track
EffiBench-X: A Multi-Language Benchmark for Measuring Efficiency of LLM-Generated Code
Existing code generation benchmarks primarily evaluate functional correctness, with limited focus on code efficiency and often restricted to a single language like Python. To address this gap, we introduce EffiBench-X, the first multi-language benchmark designed to measure the efficiency of LLM-generated code. EffiBench-X supports Python, C++, Java, JavaScript, Ruby, and Golang. It comprises competitive programming tasks with human-expert solutions as efficiency baselines. Evaluating state-of-the-art LLMs on EffiBench-X reveals that while models generate functionally correct code, they consistently underperform human experts in efficiency. Even the most efficient LLM-generated solutions (Qwen3-32B) achieve only around \textbf{62\%} of human efficiency on average, with significant language-specific variations. LLMs show better efficiency in Python, Ruby, and JavaScript than in Java, C++, and Golang. For instance, DeepSeek-R1's Python code is significantly more efficient than its Java code. These results highlight the critical need for research into LLM optimization techniques to improve code efficiency across diverse languages. The dataset and evaluation infrastructure are submitted and available at https://github.com/EffiBench/EffiBench-X.git and https://huggingface.co/datasets/EffiBench/effibench-x.
comment: Under Review
ExTrans: Multilingual Deep Reasoning Translation via Exemplar-Enhanced Reinforcement Learning
In recent years, the emergence of large reasoning models (LRMs), such as OpenAI-o1 and DeepSeek-R1, has shown impressive capabilities in complex problems, e.g., mathematics and coding. Some pioneering studies attempt to bring the success of LRMs in neural machine translation (MT). They try to build LRMs with deep reasoning MT ability via reinforcement learning (RL). Despite some progress that has been made, these attempts generally focus on several high-resource languages, e.g., English and Chinese, leaving the performance on other languages unclear. Besides, the reward modeling methods in previous work do not fully unleash the potential of reinforcement learning in MT. In this work, we first design a new reward modeling method that compares the translation results of the policy MT model with a strong LRM (i.e., DeepSeek-R1-671B), and quantifies the comparisons to provide rewards. Experimental results demonstrate the superiority of the reward modeling method. Using Qwen2.5-7B-Instruct as the backbone, the trained model achieves the new state-of-the-art performance in literary translation, and outperforms strong LRMs including OpenAI-o1 and DeepSeeK-R1. Furthermore, we extend our method to the multilingual settings with 11 languages. With a carefully designed lightweight reward modeling in RL, we can simply transfer the strong MT ability from a single direction into multiple (i.e., 90) translation directions and achieve impressive multilingual MT performance.
comment: 12 pages, 2 figures
Fractured Chain-of-Thought Reasoning
Inference-time scaling techniques have significantly bolstered the reasoning capabilities of large language models (LLMs) by harnessing additional computational effort at inference without retraining. Similarly, Chain-of-Thought (CoT) prompting and its extension, Long CoT, improve accuracy by generating rich intermediate reasoning trajectories, but these approaches incur substantial token costs that impede their deployment in latency-sensitive settings. In this work, we first show that truncated CoT, which stops reasoning before completion and directly generates the final answer, often matches full CoT sampling while using dramatically fewer tokens. Building on this insight, we introduce Fractured Sampling, a unified inference-time strategy that interpolates between full CoT and solution-only sampling along three orthogonal axes: (1) the number of reasoning trajectories, (2) the number of final solutions per trajectory, and (3) the depth at which reasoning traces are truncated. Through extensive experiments on five diverse reasoning benchmarks and several model scales, we demonstrate that Fractured Sampling consistently achieves superior accuracy-cost trade-offs, yielding steep log-linear scaling gains in Pass@k versus token budget. Our analysis reveals how to allocate computation across these dimensions to maximize performance, paving the way for more efficient and scalable LLM reasoning.
An Empirical Study of Many-to-Many Summarization with Large Language Models ACL 2025
Many-to-many summarization (M2MS) aims to process documents in any language and generate the corresponding summaries also in any language. Recently, large language models (LLMs) have shown strong multi-lingual abilities, giving them the potential to perform M2MS in real applications. This work presents a systematic empirical study on LLMs' M2MS ability. Specifically, we first reorganize M2MS data based on eight previous domain-specific datasets. The reorganized data contains 47.8K samples spanning five domains and six languages, which could be used to train and evaluate LLMs. Then, we benchmark 18 LLMs in a zero-shot manner and an instruction-tuning manner. Fine-tuned traditional models (e.g., mBART) are also conducted for comparisons. Our experiments reveal that, zero-shot LLMs achieve competitive results with fine-tuned traditional models. After instruct-tuning, open-source LLMs can significantly improve their M2MS ability, and outperform zero-shot LLMs (including GPT-4) in terms of automatic evaluations. In addition, we demonstrate that this task-specific improvement does not sacrifice the LLMs' general task-solving abilities. However, as revealed by our human evaluation, LLMs still face the factuality issue, and the instruction tuning might intensify the issue. Thus, how to control factual errors becomes the key when building LLM summarizers in real applications, and is worth noting in future research.
comment: Accepted to ACL 2025 main conference
Fast, Not Fancy: Rethinking G2P with Rich Data and Rule-Based Models
Homograph disambiguation remains a significant challenge in grapheme-to-phoneme (G2P) conversion, especially for low-resource languages. This challenge is twofold: (1) creating balanced and comprehensive homograph datasets is labor-intensive and costly, and (2) specific disambiguation strategies introduce additional latency, making them unsuitable for real-time applications such as screen readers and other accessibility tools. In this paper, we address both issues. First, we propose a semi-automated pipeline for constructing homograph-focused datasets, introduce the HomoRich dataset generated through this pipeline, and demonstrate its effectiveness by applying it to enhance a state-of-the-art deep learning-based G2P system for Persian. Second, we advocate for a paradigm shift - utilizing rich offline datasets to inform the development of fast, rule-based methods suitable for latency-sensitive accessibility applications like screen readers. To this end, we improve one of the most well-known rule-based G2P systems, eSpeak, into a fast homograph-aware version, HomoFast eSpeak. Our results show an approximate 30% improvement in homograph disambiguation accuracy for the deep learning-based and eSpeak systems.
comment: 8 main body pages, total 25 pages, 15 figures
A Structured Literature Review on Traditional Approaches in Current Natural Language Processing
The continued rise of neural networks and large language models in the more recent past has altered the natural language processing landscape, enabling new approaches towards typical language tasks and achieving mainstream success. Despite the huge success of large language models, many disadvantages still remain and through this work we assess the state of the art in five application scenarios with a particular focus on the future perspectives and sensible application scenarios of traditional and older approaches and techniques. In this paper we survey recent publications in the application scenarios classification, information and relation extraction, text simplification as well as text summarization. After defining our terminology, i.e., which features are characteristic for traditional techniques in our interpretation for the five scenarios, we survey if such traditional approaches are still being used, and if so, in what way they are used. It turns out that all five application scenarios still exhibit traditional models in one way or another, as part of a processing pipeline, as a comparison/baseline to the core model of the respective paper, or as the main model(s) of the paper. For the complete statistics, see https://zenodo.org/records/13683801
comment: 14 pages, 1 figure
Calm-Whisper: Reduce Whisper Hallucination On Non-Speech By Calming Crazy Heads Down
OpenAI's Whisper has achieved significant success in Automatic Speech Recognition. However, it has consistently been found to exhibit hallucination issues, particularly in non-speech segments, which limits its broader application in complex industrial settings. In this paper, we introduce a novel method to reduce Whisper's hallucination on non-speech segments without using any pre- or post-possessing techniques. Specifically, we benchmark the contribution of each self-attentional head in the Whisper-large-v3 decoder to the hallucination problem by performing a head-wise mask. Our findings reveal that only 3 of the 20 heads account for over 75% of the hallucinations on the UrbanSound dataset. We then fine-tune these three crazy heads using a collection of non-speech data. The results show that our best fine-tuned model, namely Calm-Whisper, achieves over 80% reduction in non-speech hallucination with only less than 0.1% WER degradation on LibriSpeech test-clean and test-other.
comment: Accepted to Interspeech 2025
MA-COIR: Leveraging Semantic Search Index and Generative Models for Ontology-Driven Biomedical Concept Recognition
Recognizing biomedical concepts in the text is vital for ontology refinement, knowledge graph construction, and concept relationship discovery. However, traditional concept recognition methods, relying on explicit mention identification, often fail to capture complex concepts not explicitly stated in the text. To overcome this limitation, we introduce MA-COIR, a framework that reformulates concept recognition as an indexing-recognition task. By assigning semantic search indexes (ssIDs) to concepts, MA-COIR resolves ambiguities in ontology entries and enhances recognition efficiency. Using a pretrained BART-based model fine-tuned on small datasets, our approach reduces computational requirements to facilitate adoption by domain experts. Furthermore, we incorporate large language models (LLMs)-generated queries and synthetic data to improve recognition in low-resource settings. Experimental results on three scenarios (CDR, HPO, and HOIP) highlight the effectiveness of MA-COIR in recognizing both explicit and implicit concepts without the need for mention-level annotations during inference, advancing ontology-driven concept recognition in biomedical domain applications. Our code and constructed data are available at https://github.com/sl-633/macoir-master.
comment: preprint
GuRE:Generative Query REwriter for Legal Passage Retrieval
Legal Passage Retrieval (LPR) systems are crucial as they help practitioners save time when drafting legal arguments. However, it remains an underexplored avenue. One primary reason is the significant vocabulary mismatch between the query and the target passage. To address this, we propose a simple yet effective method, the Generative query REwriter (GuRE). We leverage the generative capabilities of Large Language Models (LLMs) by training the LLM for query rewriting. "Rewritten queries" help retrievers to retrieve target passages by mitigating vocabulary mismatch. Experimental results show that GuRE significantly improves performance in a retriever-agnostic manner, outperforming all baseline methods. Further analysis reveals that different training objectives lead to distinct retrieval behaviors, making GuRE more suitable than direct retriever fine-tuning for real-world applications. Codes are avaiable at github.com/daehuikim/GuRE.
comment: 14 pages, 9 figures
Neural Morphological Tagging for Nguni Languages
Morphological parsing is the task of decomposing words into morphemes, the smallest units of meaning in a language, and labelling their grammatical roles. It is a particularly challenging task for agglutinative languages, such as the Nguni languages of South Africa, which construct words by concatenating multiple morphemes. A morphological parsing system can be framed as a pipeline with two separate components, a segmenter followed by a tagger. This paper investigates the use of neural methods to build morphological taggers for the four Nguni languages. We compare two classes of approaches: training neural sequence labellers (LSTMs and neural CRFs) from scratch and finetuning pretrained language models. We compare performance across these two categories, as well as to a traditional rule-based morphological parser. Neural taggers comfortably outperform the rule-based baseline and models trained from scratch tend to outperform pretrained models. We also compare parsing results across different upstream segmenters and with varying linguistic input features. Our findings confirm the viability of employing neural taggers based on pre-existing morphological segmenters for the Nguni languages.
A3 : an Analytical Low-Rank Approximation Framework for Attention
Large language models have demonstrated remarkable performance; however, their massive parameter counts make deployment highly expensive. Low-rank approximation offers a promising compression solution, yet existing approaches have two main limitations: (1) They focus on minimizing the output error of individual linear layers, without considering the architectural characteristics of Transformers, and (2) they decompose a large weight matrix into two small low-rank matrices. Consequently, these methods often fall short compared to other compression techniques like pruning and quantization, and introduce runtime overhead such as the extra GEMM kernel launches for decomposed small matrices. To address these limitations, we propose $\tt A^\tt 3$, a post-training low-rank approximation framework. $\tt A^\tt 3$ splits a Transformer layer into three functional components, namely $\tt QK$, $\tt OV$, and $\tt MLP$. For each component, $\tt A^\tt 3$ provides an analytical solution that reduces the hidden dimension size inside each component while minimizing the component's functional loss ($\it i.e.$, error in attention scores, attention outputs, and MLP outputs). This approach directly reduces model sizes, KV cache sizes, and FLOPs without introducing any runtime overheads. In addition, it provides a new narrative in advancing the optimization problem from singular linear layer loss optimization toward improved end-to-end performance. Through extensive experiments, we show that $\tt A^\tt 3$ maintains superior performance compared to SoTAs. For example, under the same reduction budget in computation and memory, our low-rank approximated LLaMA 3.1-70B achieves a perplexity of 4.69 on WikiText-2, outperforming the previous SoTA's 7.87 by 3.18. We also demonstrate the versatility of $\tt A^\tt 3$, including KV cache compression, quantization, and mixed-rank assignments for enhanced performance.
Leveraging LLM Inconsistency to Boost Pass@k Performance
Large language models (LLMs) achieve impressive abilities in numerous domains, but exhibit inconsistent performance in response to minor input changes. Rather than view this as a drawback, in this paper we introduce a novel method for leveraging models' inconsistency to boost Pass@k performance. Specifically, we present a "Variator" agent that generates k variants of a given task and submits one candidate solution for each one. Our variant generation approach is applicable to a wide range of domains as it is task agnostic and compatible with free-form inputs. We demonstrate the efficacy of our agent theoretically using a probabilistic model of the inconsistency effect, and show empirically that it outperforms the baseline on the APPS dataset. Furthermore, we establish that inconsistency persists even in frontier reasoning models across coding and cybersecurity domains, suggesting our method is likely to remain relevant for future model generations.
Do Not Let Low-Probability Tokens Over-Dominate in RL for LLMs
Reinforcement learning (RL) has become a cornerstone for enhancing the reasoning capabilities of large language models (LLMs), with recent innovations such as Group Relative Policy Optimization (GRPO) demonstrating exceptional effectiveness. In this study, we identify a critical yet underexplored issue in RL training: low-probability tokens disproportionately influence model updates due to their large gradient magnitudes. This dominance hinders the effective learning of high-probability tokens, whose gradients are essential for LLMs' performance but are substantially suppressed. To mitigate this interference, we propose two novel methods: Advantage Reweighting and Low-Probability Token Isolation (Lopti), both of which effectively attenuate gradients from low-probability tokens while emphasizing parameter updates driven by high-probability tokens. Our approaches promote balanced updates across tokens with varying probabilities, thereby enhancing the efficiency of RL training. Experimental results demonstrate that they substantially improve the performance of GRPO-trained LLMs, achieving up to a 46.2% improvement in K&K Logic Puzzle reasoning tasks. Our implementation is available at https://github.com/zhyang2226/AR-Lopti.
comment: 24 pages, 12 figures
PyFCG: Fluid Construction Grammar in Python
We present PyFCG, an open source software library that ports Fluid Construction Grammar (FCG) to the Python programming language. PyFCG enables its users to seamlessly integrate FCG functionality into Python programs, and to use FCG in combination with other libraries within Python's rich ecosystem. Apart from a general description of the library, this paper provides three walkthrough tutorials that demonstrate example usage of PyFCG in typical use cases of FCG: (i) formalising and testing construction grammar analyses, (ii) learning usage-based construction grammars from corpora, and (iii) implementing agent-based experiments on emergent communication.
AutoGEEval: A Multimodal and Automated Framework for Geospatial Code Generation on GEE with Large Language Models
Geospatial code generation is emerging as a key direction in the integration of artificial intelligence and geoscientific analysis. However, there remains a lack of standardized tools for automatic evaluation in this domain. To address this gap, we propose AutoGEEval, the first multimodal, unit-level automated evaluation framework for geospatial code generation tasks on the Google Earth Engine (GEE) platform powered by large language models (LLMs). Built upon the GEE Python API, AutoGEEval establishes a benchmark suite (AutoGEEval-Bench) comprising 1325 test cases that span 26 GEE data types. The framework integrates both question generation and answer verification components to enable an end-to-end automated evaluation pipeline-from function invocation to execution validation. AutoGEEval supports multidimensional quantitative analysis of model outputs in terms of accuracy, resource consumption, execution efficiency, and error types. We evaluate 18 state-of-the-art LLMs-including general-purpose, reasoning-augmented, code-centric, and geoscience-specialized models-revealing their performance characteristics and potential optimization pathways in GEE code generation. This work provides a unified protocol and foundational resource for the development and assessment of geospatial code generation models, advancing the frontier of automated natural language to domain-specific code translation.
On the Thinking-Language Modeling Gap in Large Language Models
System 2 reasoning is one of the defining characteristics of intelligence, which requires slow and logical thinking. Human conducts System 2 reasoning via the language of thoughts that organizes the reasoning process as a causal sequence of mental language, or thoughts. Recently, it has been observed that System 2 reasoning can be elicited from Large Language Models (LLMs) pre-trained on large-scale natural languages. However, in this work, we show that there is a significant gap between the modeling of languages and thoughts. As language is primarily a tool for humans to share knowledge and thinking, modeling human language can easily absorb language biases into LLMs deviated from the chain of thoughts in minds. Furthermore, we show that the biases will mislead the eliciting of "thoughts" in LLMs to focus only on a biased part of the premise. To this end, we propose a new prompt technique termed Language-of-Thoughts (LoT) to demonstrate and alleviate this gap. Instead of directly eliciting the chain of thoughts from partial information, LoT instructs LLMs to adjust the order and token used for the expressions of all the relevant information. We show that the simple strategy significantly reduces the language modeling biases in LLMs and improves the performance of LLMs across a variety of reasoning tasks.
comment: Chenxi and Yongqiang contributed equally; project page: https://causalcoat.github.io/lot.html
TIME: A Multi-level Benchmark for Temporal Reasoning of LLMs in Real-World Scenarios
Temporal reasoning is pivotal for Large Language Models (LLMs) to comprehend the real world. However, existing works neglect the real-world challenges for temporal reasoning: (1) intensive temporal information, (2) fast-changing event dynamics, and (3) complex temporal dependencies in social interactions. To bridge this gap, we propose a multi-level benchmark TIME, designed for temporal reasoning in real-world scenarios. TIME consists of 38,522 QA pairs, covering 3 levels with 11 fine-grained sub-tasks. This benchmark encompasses 3 sub-datasets reflecting different real-world challenges: TIME-Wiki, TIME-News, and TIME-Dial. We conduct extensive experiments on reasoning models and non-reasoning models. And we conducted an in-depth analysis of temporal reasoning performance across diverse real-world scenarios and tasks, and summarized the impact of test-time scaling on temporal reasoning capabilities. Additionally, we release TIME-Lite, a human-annotated subset to foster future research and standardized evaluation in temporal reasoning. The code is available at https://github.com/sylvain-wei/TIME , and the dataset is available at https://huggingface.co/datasets/SylvainWei/TIME .
comment: First version. There are still some examples to be added into the appendix
GAP: Graph-Assisted Prompts for Dialogue-based Medication Recommendation
Medication recommendations have become an important task in the healthcare domain, especially in measuring the accuracy and safety of medical dialogue systems (MDS). Different from the recommendation task based on electronic health records (EHRs), dialogue-based medication recommendations require research on the interaction details between patients and doctors, which is crucial but may not exist in EHRs. Recent advancements in large language models (LLM) have extended the medical dialogue domain. These LLMs can interpret patients' intent and provide medical suggestions including medication recommendations, but some challenges are still worth attention. During a multi-turn dialogue, LLMs may ignore the fine-grained medical information or connections across the dialogue turns, which is vital for providing accurate suggestions. Besides, LLMs may generate non-factual responses when there is a lack of domain-specific knowledge, which is more risky in the medical domain. To address these challenges, we propose a \textbf{G}raph-\textbf{A}ssisted \textbf{P}rompts (\textbf{GAP}) framework for dialogue-based medication recommendation. It extracts medical concepts and corresponding states from dialogue to construct an explicitly patient-centric graph, which can describe the neglected but important information. Further, combined with external medical knowledge graphs, GAP can generate abundant queries and prompts, thus retrieving information from multiple sources to reduce the non-factual responses. We evaluate GAP on a dialogue-based medication recommendation dataset and further explore its potential in a more difficult scenario, dynamically diagnostic interviewing. Extensive experiments demonstrate its competitive performance when compared with strong baselines.
Detection and Mitigation of Hallucination in Large Reasoning Models: A Mechanistic Perspective
Large Reasoning Models (LRMs) have shown impressive capabilities in multi-step reasoning tasks. However, alongside these successes, a more deceptive form of model error has emerged--Reasoning Hallucination--where logically coherent but factually incorrect reasoning traces lead to persuasive yet faulty conclusions. Unlike traditional hallucinations, these errors are embedded within structured reasoning, making them more difficult to detect and potentially more harmful. In this work, we investigate reasoning hallucinations from a mechanistic perspective. We propose the Reasoning Score, which quantifies the depth of reasoning by measuring the divergence between logits obtained from projecting late layers of LRMs to the vocabulary space, effectively distinguishing shallow pattern-matching from genuine deep reasoning. Using this score, we conduct an in-depth analysis on the ReTruthQA dataset and identify two key reasoning hallucination patterns: early-stage fluctuation in reasoning depth and incorrect backtracking to flawed prior steps. These insights motivate our Reasoning Hallucination Detection (RHD) framework, which achieves state-of-the-art performance across multiple domains. To mitigate reasoning hallucinations, we further introduce GRPO-R, an enhanced reinforcement learning algorithm that incorporates step-level deep reasoning rewards via potential-based shaping. Our theoretical analysis establishes stronger generalization guarantees, and experiments demonstrate improved reasoning quality and reduced hallucination rates.
comment: 25 pages
Does Low Rank Adaptation Lead to Lower Robustness against Training-Time Attacks? ICML 25
Low rank adaptation (LoRA) has emerged as a prominent technique for fine-tuning large language models (LLMs) thanks to its superb efficiency gains over previous methods. While extensive studies have examined the performance and structural properties of LoRA, its behavior upon training-time attacks remain underexplored, posing significant security risks. In this paper, we theoretically investigate the security implications of LoRA's low-rank structure during fine-tuning, in the context of its robustness against data poisoning and backdoor attacks. We propose an analytical framework that models LoRA's training dynamics, employs the neural tangent kernel to simplify the analysis of the training process, and applies information theory to establish connections between LoRA's low rank structure and its vulnerability against training-time attacks. Our analysis indicates that LoRA exhibits better robustness to backdoor attacks than full fine-tuning, while becomes more vulnerable to untargeted data poisoning due to its over-simplified information geometry. Extensive experimental evaluations have corroborated our theoretical findings.
comment: To appear at ICML 25
LEXam: Benchmarking Legal Reasoning on 340 Law Exams
Long-form legal reasoning remains a key challenge for large language models (LLMs) in spite of recent advances in test-time scaling. We introduce LEXam, a novel benchmark derived from 340 law exams spanning 116 law school courses across a range of subjects and degree levels. The dataset comprises 4,886 law exam questions in English and German, including 2,841 long-form, open-ended questions and 2,045 multiple-choice questions. Besides reference answers, the open questions are also accompanied by explicit guidance outlining the expected legal reasoning approach such as issue spotting, rule recall, or rule application. Our evaluation on both open-ended and multiple-choice questions present significant challenges for current LLMs; in particular, they notably struggle with open questions that require structured, multi-step legal reasoning. Moreover, our results underscore the effectiveness of the dataset in differentiating between models with varying capabilities. Adopting an LLM-as-a-Judge paradigm with rigorous human expert validation, we demonstrate how model-generated reasoning steps can be evaluated consistently and accurately. Our evaluation setup provides a scalable method to assess legal reasoning quality beyond simple accuracy metrics. Project page: https://lexam-benchmark.github.io/
Re-identification of De-identified Documents with Autoregressive Infilling ACL 2025
Documents revealing sensitive information about individuals must typically be de-identified. This de-identification is often done by masking all mentions of personally identifiable information (PII), thereby making it more difficult to uncover the identity of the person(s) in question. To investigate the robustness of de-identification methods, we present a novel, RAG-inspired approach that attempts the reverse process of re-identification based on a database of documents representing background knowledge. Given a text in which personal identifiers have been masked, the re-identification proceeds in two steps. A retriever first selects from the background knowledge passages deemed relevant for the re-identification. Those passages are then provided to an infilling model which seeks to infer the original content of each text span. This process is repeated until all masked spans are replaced. We evaluate the re-identification on three datasets (Wikipedia biographies, court rulings and clinical notes). Results show that (1) as many as 80% of de-identified text spans can be successfully recovered and (2) the re-identification accuracy increases along with the level of background knowledge.
comment: To be presented a ACL 2025, Main, Long paper
GEM: Gaussian Embedding Modeling for Out-of-Distribution Detection in GUI Agents
Graphical user interface (GUI) agents have recently emerged as an intriguing paradigm for human-computer interaction, capable of automatically executing user instructions to operate intelligent terminal devices. However, when encountering out-of-distribution (OOD) instructions that violate environmental constraints or exceed the current capabilities of agents, GUI agents may suffer task breakdowns or even pose security threats. Therefore, effective OOD detection for GUI agents is essential. Traditional OOD detection methods perform suboptimally in this domain due to the complex embedding space and evolving GUI environments. In this work, we observe that the in-distribution input semantic space of GUI agents exhibits a clustering pattern with respect to the distance from the centroid. Based on the finding, we propose GEM, a novel method based on fitting a Gaussian mixture model over input embedding distances extracted from the GUI Agent that reflect its capability boundary. Evaluated on eight datasets spanning smartphones, computers, and web browsers, our method achieves an average accuracy improvement of 23.70\% over the best-performing baseline. Analysis verifies the generalization ability of our method through experiments on nine different backbones. The codes are available at https://github.com/Wuzheng02/GEM-OODforGUIagents.
The Hidden Structure -- Improving Legal Document Understanding Through Explicit Text Formatting
Legal contracts possess an inherent, semantically vital structure (e.g., sections, clauses) that is crucial for human comprehension but whose impact on LLM processing remains under-explored. This paper investigates the effects of explicit input text structure and prompt engineering on the performance of GPT-4o and GPT-4.1 on a legal question-answering task using an excerpt of the CUAD. We compare model exact-match accuracy across various input formats: well-structured plain-text (human-generated from CUAD), plain-text cleaned of line breaks, extracted plain-text from Azure OCR, plain-text extracted by GPT-4o Vision, and extracted (and interpreted) Markdown (MD) from GPT-4o Vision. To give an indication of the impact of possible prompt engineering, we assess the impact of shifting task instructions to the system prompt and explicitly informing the model about the structured nature of the input. Our findings reveal that GPT-4o demonstrates considerable robustness to variations in input structure, but lacks in overall performance. Conversely, GPT-4.1's performance is markedly sensitive; poorly structured inputs yield suboptimal results (but identical with GPT-4o), while well-structured formats (original CUAD text, GPT-4o Vision text and GPT-4o MD) improve exact-match accuracy by ~20 percentage points. Optimizing the system prompt to include task details and an advisory about structured input further elevates GPT-4.1's accuracy by an additional ~10-13 percentage points, with Markdown ultimately achieving the highest performance under these conditions (79 percentage points overall exact-match accuracy). This research empirically demonstrates that while newer models exhibit greater resilience, careful input structuring and strategic prompt design remain critical for optimizing the performance of LLMs, and can significantly affect outcomes in high-stakes legal applications.
comment: 20 pages, 3 figures
FlightGPT: Towards Generalizable and Interpretable UAV Vision-and-Language Navigation with Vision-Language Models
Unmanned Aerial Vehicle (UAV) Vision-and-Language Navigation (VLN) is vital for applications such as disaster response, logistics delivery, and urban inspection. However, existing methods often struggle with insufficient multimodal fusion, weak generalization, and poor interpretability. To address these challenges, we propose FlightGPT, a novel UAV VLN framework built upon Vision-Language Models (VLMs) with powerful multimodal perception capabilities. We design a two-stage training pipeline: first, Supervised Fine-Tuning (SFT) using high-quality demonstrations to improve initialization and structured reasoning; then, Group Relative Policy Optimization (GRPO) algorithm, guided by a composite reward that considers goal accuracy, reasoning quality, and format compliance, to enhance generalization and adaptability. Furthermore, FlightGPT introduces a Chain-of-Thought (CoT)-based reasoning mechanism to improve decision interpretability. Extensive experiments on the city-scale dataset CityNav demonstrate that FlightGPT achieves state-of-the-art performance across all scenarios, with a 9.22\% higher success rate than the strongest baseline in unseen environments. Our implementation is publicly available.
Contrastive Prompting Enhances Sentence Embeddings in LLMs through Inference-Time Steering ACL 2025
Extracting sentence embeddings from large language models (LLMs) is a practical direction, as it requires neither additional data nor fine-tuning. Previous studies usually focus on prompt engineering to guide LLMs to encode the core semantic information of the sentence into the embedding of the last token. However, the last token in these methods still encodes an excess of non-essential information, such as stop words, limiting its encoding capacity. To this end, we propose a Contrastive Prompting (CP) method that introduces an extra auxiliary prompt to elicit better sentence embedding. By contrasting with the auxiliary prompt, CP can steer existing prompts to encode the core semantics of the sentence, rather than non-essential information. CP is a plug-and-play inference-time intervention method that can be combined with various prompt-based methods. Extensive experiments on Semantic Textual Similarity (STS) tasks and downstream classification tasks demonstrate that our method can improve the performance of existing prompt-based methods across different LLMs. Our code will be released at https://github.com/zifengcheng/CP.
comment: ACL 2025
SynDec: A Synthesize-then-Decode Approach for Arbitrary Textual Style Transfer via Large Language Models
Large Language Models (LLMs) are emerging as dominant forces for textual style transfer. However, for arbitrary style transfer, LLMs face two key challenges: (1) considerable reliance on manually-constructed prompts and (2) rigid stylistic biases inherent in LLMs. In this paper, we propose a novel Synthesize-then-Decode (SynDec) approach, which automatically synthesizes high-quality prompts and amplifies their roles during decoding process. Specifically, our approach synthesizes prompts by selecting representative few-shot samples, conducting a four-dimensional style analysis, and reranking the candidates. At LLM decoding stage, the TST effect is amplified by maximizing the contrast in output probabilities between scenarios with and without the synthesized prompt, as well as between prompts and negative samples. We conduct extensive experiments and the results show that SynDec outperforms existing state-of-the-art LLM-based methods on five out of six benchmarks (e.g., achieving up to a 9\% increase in accuracy for modern-to-Elizabethan English transfer). Detailed ablation studies further validate the effectiveness of SynDec.
PsyMem: Fine-grained psychological alignment and Explicit Memory Control for Advanced Role-Playing LLMs
Existing LLM-based role-playing methods often rely on superficial textual descriptions or simplistic metrics, inadequately modeling both intrinsic and extrinsic character dimensions. Additionally, they typically simulate character memory with implicit model knowledge or basic retrieval augment generation without explicit memory alignment, compromising memory consistency. The two issues weaken reliability of role-playing LLMs in several applications, such as trustworthy social simulation. To address these limitations, we propose PsyMem, a novel framework integrating fine-grained psychological attributes and explicit memory control for role-playing. PsyMem supplements textual descriptions with 26 psychological indicators to detailed model character. Additionally, PsyMem implements memory alignment training, explicitly trains the model to align character's response with memory, thereby enabling dynamic memory-controlled responding during inference. By training Qwen2.5-7B-Instruct on our specially designed dataset (including 5,414 characters and 38,962 dialogues extracted from novels), the resulting model, termed as PsyMem-Qwen, outperforms baseline models in role-playing, achieving the best performance in human-likeness and character fidelity.
Option-ID Based Elimination For Multiple Choice Questions
Multiple choice questions (MCQs) are a popular and important task for evaluating large language models (LLMs). Based on common strategies people use when answering MCQs, the process of elimination (PoE) has been proposed as an effective problem-solving method. Existing PoE methods typically either have LLMs directly identify incorrect options or score options and replace lower-scoring ones with [MASK]. However, both methods suffer from inapplicability or suboptimal performance. To address these issues, this paper proposes a novel option-ID based PoE ($\text{PoE}_{\text{ID}}$). $\text{PoE}_{\text{ID}}$ critically incorporates a debiasing technique to counteract LLMs token bias, enhancing robustness over naive ID-based elimination. It features two strategies: $\text{PoE}_{\text{ID}}^{\text{log}}$, which eliminates options whose IDs have log probabilities below the average threshold, and $\text{PoE}_{\text{ID}}^{\text{seq}}$, which iteratively removes the option with the lowest ID probability. We conduct extensive experiments with 6 different LLMs on 4 diverse datasets. The results demonstrate that $\text{PoE}_{\text{ID}}$, especially $\text{PoE}_{\text{ID}}^{\text{log}}$, significantly improves zero-shot and few-shot MCQs performance, particularly in datasets with more options. Our analyses demonstrate that $\text{PoE}_{\text{ID}}^{\text{log}}$ enhances the LLMs' confidence in selecting the correct option, and the option elimination strategy outperforms methods relying on [MASK] replacement. We further investigate the limitations of LLMs in directly identifying incorrect options, which stem from their inherent deficiencies.
REI-Bench: Can Embodied Agents Understand Vague Human Instructions in Task Planning?
Robot task planning decomposes human instructions into executable action sequences that enable robots to complete a series of complex tasks. Although recent large language model (LLM)-based task planners achieve amazing performance, they assume that human instructions are clear and straightforward. However, real-world users are not experts, and their instructions to robots often contain significant vagueness. Linguists suggest that such vagueness frequently arises from referring expressions (REs), whose meanings depend heavily on dialogue context and environment. This vagueness is even more prevalent among the elderly and children, who robots should serve more. This paper studies how such vagueness in REs within human instructions affects LLM-based robot task planning and how to overcome this issue. To this end, we propose the first robot task planning benchmark with vague REs (REI-Bench), where we discover that the vagueness of REs can severely degrade robot planning performance, leading to success rate drops of up to 77.9%. We also observe that most failure cases stem from missing objects in planners. To mitigate the REs issue, we propose a simple yet effective approach: task-oriented context cognition, which generates clear instructions for robots, achieving state-of-the-art performance compared to aware prompt and chains of thought. This work contributes to the research community of human-robot interaction (HRI) by making robot task planning more practical, particularly for non-expert users, e.g., the elderly and children.
comment: Under Review
From the New World of Word Embeddings: A Comparative Study of Small-World Lexico-Semantic Networks in LLMs
Lexico-semantic networks represent words as nodes and their semantic relatedness as edges. While such networks are traditionally constructed using embeddings from encoder-based models or static vectors, embeddings from decoder-only large language models (LLMs) remain underexplored. Unlike encoder models, LLMs are trained with a next-token prediction objective, which does not directly encode the meaning of the current token. In this paper, we construct lexico-semantic networks from the input embeddings of LLMs with varying parameter scales and conduct a comparative analysis of their global and local structures. Our results show that these networks exhibit small-world properties, characterized by high clustering and short path lengths. Moreover, larger LLMs yield more intricate networks with less small-world effects and longer paths, reflecting richer semantic structures and relations. We further validate our approach through analyses of common conceptual pairs, structured lexical relations derived from WordNet, and a cross-lingual semantic network for qualitative words.
comment: Paper under review
Beyond Pairwise: Global Zero-shot Temporal Graph Generation
Temporal relation extraction (TRE) is a fundamental task in natural language processing (NLP) that involves identifying the temporal relationships between events in a document. Despite the advances in large language models (LLMs), their application to TRE remains limited. Most existing approaches rely on pairwise classification, where event pairs are classified in isolation, leading to computational inefficiency and a lack of global consistency in the resulting temporal graph. In this work, we propose a novel zero-shot method for TRE that generates a document's complete temporal graph in a single step, followed by temporal constraint optimization to refine predictions and enforce temporal consistency across relations. Additionally, we introduce OmniTemp, a new dataset with complete annotations for all pairs of targeted events within a document. Through experiments and analyses, we demonstrate that our method outperforms existing zero-shot approaches and offers a competitive alternative to supervised TRE models.
What are the Essential Factors in Crafting Effective Long Context Multi-Hop Instruction Datasets? Insights and Best Practices ACL 2025
Recent advancements in large language models (LLMs) with extended context windows have significantly improved tasks such as information extraction, question answering, and complex planning scenarios. In order to achieve success in long context tasks, a large amount of work has been done to enhance the long context capabilities of the model through synthetic data. Existing methods typically utilize the Self-Instruct framework to generate instruction tuning data for better long context capability improvement. However, our preliminary experiments indicate that less than 35% of generated samples are multi-hop, and more than 40% exhibit poor quality, limiting comprehensive understanding and further research. To improve the quality of synthetic data, we propose the Multi-agent Interactive Multi-hop Generation (MIMG) framework, incorporating a Quality Verification Agent, a Single-hop Question Generation Agent, a Multiple Question Sampling Strategy, and a Multi-hop Question Merger Agent. This framework improves the data quality, with the proportion of high-quality, multi-hop, and diverse data exceeding 85%. Furthermore, we systematically investigate strategies for document selection, question merging, and validation techniques through extensive experiments across various models. Our findings show that our synthetic high-quality long-context instruction data significantly enhances model performance, even surpassing models trained on larger amounts of human-annotated data. Our code is available at: https://github.com/WowCZ/LongMIT.
comment: ACL 2025 Camera Ready. Code is available at: https://github.com/WowCZ/LongMIT
Tracr-Injection: Distilling Algorithms into Pre-trained Language Models ACL
Motivated by the surge of large language models, there has been a push to formally characterize the symbolic abilities intrinsic to the transformer architecture. A programming language, called RASP, has been proposed, which can be directly compiled into transformer weights to implement these algorithms. However, the tasks that can be implemented in RASP are often uncommon to learn from natural unsupervised data, showing a mismatch between theoretical capabilities of the transformer architecture, and the practical learnability of these capabilities from unsupervised data. We propose tracr-injection, a method that allows us to distill algorithms written in RASP directly into a pre-trained language model. We showcase our method by injecting 3 different algorithms into a language model. We show how our method creates an interpretable subspace within the model's residual stream, which can be decoded into the variables present in the code of the RASP algorithm. Additionally, we found that the proposed method can improve out-of-distribution performance compared to our baseline, indicating that indeed a more symbolic mechanism is taking place in the inner workings of the model. We release the code used to run our experiments.
comment: ACL Findings 2025
Enhancing LLMs for Power System Simulations: A Feedback-driven Multi-agent Framework
The integration of experimental technologies with large language models (LLMs) is transforming scientific research. It positions AI as a versatile research assistant rather than a mere problem-solving tool. In the field of power systems, however, managing simulations -- one of the essential experimental technologies -- remains a challenge for LLMs due to their limited domain-specific knowledge, restricted reasoning capabilities, and imprecise handling of simulation parameters. To address these limitations, this paper proposes a feedback-driven, multi-agent framework. It incorporates three proposed modules: an enhanced retrieval-augmented generation (RAG) module, an improved reasoning module, and a dynamic environmental acting module with an error-feedback mechanism. Validated on 69 diverse tasks from Daline and MATPOWER, this framework achieves success rates of 93.13% and 96.85%, respectively. It significantly outperforms ChatGPT 4o, o1-preview, and the fine-tuned GPT-4o, which all achieved a success rate lower than 30% on complex tasks. Additionally, the proposed framework also supports rapid, cost-effective task execution, completing each simulation in approximately 30 seconds at an average cost of 0.014 USD for tokens. Overall, this adaptable framework lays a foundation for developing intelligent LLM-based assistants for human researchers, facilitating power system research and beyond.
comment: 16 pages
The Hidden Strength of Disagreement: Unraveling the Consensus-Diversity Tradeoff in Adaptive Multi-Agent Systems
Consensus formation is pivotal in multi-agent systems (MAS), balancing collective coherence with individual diversity. Conventional LLM-based MAS primarily rely on explicit coordination, e.g., prompts or voting, risking premature homogenization. We argue that implicit consensus, where agents exchange information yet independently form decisions via in-context learning, can be more effective in dynamic environments that require long-horizon adaptability. By retaining partial diversity, systems can better explore novel strategies and cope with external shocks. We formalize a consensus-diversity tradeoff, showing conditions where implicit methods outperform explicit ones. Experiments on three scenarios -- Dynamic Disaster Response, Information Spread and Manipulation, and Dynamic Public-Goods Provision -- confirm partial deviation from group norms boosts exploration, robustness, and performance. We highlight emergent coordination via in-context learning, underscoring the value of preserving diversity for resilient decision-making.
comment: Source codes are available at https://github.com/wuzengqing001225/ConsensusDiversityTradeoffMAS
Multi-Agent Sampling: Scaling Inference Compute for Data Synthesis with Tree Search-Based Agentic Collaboration
Scaling laws for inference compute in multi-agent systems remain under-explored compared to single-agent scenarios. This work aims to bridge this gap by investigating the problem of data synthesis through multi-agent sampling, where synthetic responses are generated by sampling from multiple distinct language models. Effective model coordination is crucial for successful multi-agent collaboration. Unlike previous approaches that rely on fixed workflows, we treat model coordination as a multi-step decision-making process, optimizing generation structures dynamically for each input question. We introduce Tree Search-based Orchestrated Agents~(TOA), where the workflow evolves iteratively during the sequential sampling process. To achieve this, we leverage Monte Carlo Tree Search (MCTS), integrating a reward model to provide real-time feedback and accelerate exploration. Our experiments on alignment, machine translation, and mathematical reasoning demonstrate that multi-agent sampling significantly outperforms single-agent sampling as inference compute scales. TOA is the most compute-efficient approach, achieving SOTA performance on WMT and a 72.2\% LC win rate on AlpacaEval. Moreover, fine-tuning with our synthesized alignment data surpasses strong preference learning methods on challenging benchmarks such as Arena-Hard and AlpacaEval.
comment: In submission
TRAIL: Trace Reasoning and Agentic Issue Localization
The increasing adoption of agentic workflows across diverse domains brings a critical need to scalably and systematically evaluate the complex traces these systems generate. Current evaluation methods depend on manual, domain-specific human analysis of lengthy workflow traces - an approach that does not scale with the growing complexity and volume of agentic outputs. Error analysis in these settings is further complicated by the interplay of external tool outputs and language model reasoning, making it more challenging than traditional software debugging. In this work, we (1) articulate the need for robust and dynamic evaluation methods for agentic workflow traces, (2) introduce a formal taxonomy of error types encountered in agentic systems, and (3) present a set of 148 large human-annotated traces (TRAIL) constructed using this taxonomy and grounded in established agentic benchmarks. To ensure ecological validity, we curate traces from both single and multi-agent systems, focusing on real-world applications such as software engineering and open-world information retrieval. Our evaluations reveal that modern long context LLMs perform poorly at trace debugging, with the best Gemini-2.5-pro model scoring a mere 11% on TRAIL. Our dataset and code are made publicly available to support and accelerate future research in scalable evaluation for agentic workflows.
comment: Dataset: https://huggingface.co/datasets/PatronusAI/TRAIL
Semantic Similarity-Informed Bayesian Borrowing for Quantitative Signal Detection of Adverse Events
We present a Bayesian dynamic borrowing (BDB) approach to enhance the quantitative identification of adverse events (AEs) in spontaneous reporting systems (SRSs). The method embeds a robust meta-analytic predictive (MAP) prior with a Bayesian hierarchical model and incorporates semantic similarity measures (SSMs) to enable weighted information sharing from clinically similar MedDRA Preferred Terms (PTs) to the target PT. This continuous similarity-based borrowing overcomes limitations of rigid hierarchical grouping in current disproportionality analysis (DPA). Using data from the FDA Adverse Event Reporting System (FAERS) between 2015 and 2019, we evaluate our approach -- termed IC SSM -- against traditional Information Component (IC) analysis and IC with borrowing at the MedDRA high-level group term level (IC HLGT). A reference set (PVLens), derived from FDA product label update, enabled prospective evaluation of method performance in identifying AEs prior to official labeling. The IC SSM approach demonstrated higher sensitivity (1332/2337=0.570, Youden's J=0.246) than traditional IC (Se=0.501, J=0.250) and IC HLGT (Se=0.556, J=0.225), consistently identifying more true positives and doing so on average 5 months sooner than traditional IC. Despite a marginally lower aggregate F1-score and Youden's index, IC SSM showed higher performance in early post-marketing periods or when the detection threshold was raised, providing more stable and relevant alerts than IC HLGT and traditional IC. These findings support the use of SSM-informed Bayesian borrowing as a scalable and context-aware enhancement to traditional DPA methods, with potential for validation across other datasets and exploration of additional similarity metrics and Bayesian strategies using case-level data.
comment: 32 pages, 7 figures, 5 supplementary figures
From Languages to Geographies: Towards Evaluating Cultural Bias in Hate Speech Datasets WOAH
Perceptions of hate can vary greatly across cultural contexts. Hate speech (HS) datasets, however, have traditionally been developed by language. This hides potential cultural biases, as one language may be spoken in different countries home to different cultures. In this work, we evaluate cultural bias in HS datasets by leveraging two interrelated cultural proxies: language and geography. We conduct a systematic survey of HS datasets in eight languages and confirm past findings on their English-language bias, but also show that this bias has been steadily decreasing in the past few years. For three geographically-widespread languages -- English, Arabic and Spanish -- we then leverage geographical metadata from tweets to approximate geo-cultural contexts by pairing language and country information. We find that HS datasets for these languages exhibit a strong geo-cultural bias, largely overrepresenting a handful of countries (e.g., US and UK for English) relative to their prominence in both the broader social media population and the general population speaking these languages. Based on these findings, we formulate recommendations for the creation of future HS datasets.
comment: Accepted at WOAH (NAACL 2024). Please cite the ACL Anthology version: https://aclanthology.org/2024.woah-1.23/
X-ray Made Simple: Lay Radiology Report Generation and Robust Evaluation
Radiology Report Generation (RRG) has advanced considerably with the development of multimodal generative models. Despite the progress, the field still faces significant challenges in evaluation, as existing metrics lack robustness and fairness. We reveal that, RRG with high performance on existing lexical-based metrics (e.g. BLEU) might be more of a mirage - a model can get a high BLEU only by learning the template of reports. This has become a pressing issue for RRG due to the highly patternized nature of these reports. In addition, standard radiology reports are often highly technical. Helping patients understand these reports is crucial from a patient's perspective, yet this has been largely overlooked in previous work. In this work, we un-intuitively approach these problems by proposing the Layman's RRG framework that can systematically improve RRG with day-to-day language. Specifically, our framework first contributes a translated Layman's terms dataset. Building upon the dataset, we then propose a semantics-based evaluation method, which is effective in mitigating the inflated numbers of BLEU and provides more robust evaluation. We show that training on the layman's terms dataset encourages models to focus on the semantics of the reports, as opposed to overfitting to learning the report templates. Last, we reveal a promising scaling law between the number of training examples and semantics gain provided by our dataset, compared to the inverse pattern brought by the original formats.
comment: BioLaySumm shared-task 2025 official dataset
VersaTune: An Efficient Data Composition Framework for Training Multi-Capability LLMs
As demonstrated by the proprietary Large Language Models (LLMs) such as GPT and Claude series, LLMs have the potential to achieve remarkable proficiency across a wide range of domains, including law, medicine, finance, science, code, etc., all within a single model. These capabilities are further augmented during the Supervised Fine-Tuning (SFT) phase. Despite their potential, existing work mainly focuses on domain-specific enhancements during fine-tuning, the challenge of which lies in catastrophic forgetting of knowledge across other domains. In this study, we introduce **VersaTune**, a novel data composition framework designed for enhancing LLMs' overall multi-domain capabilities during training. We begin with detecting the distribution of domain-specific knowledge within the base model, followed by the training data composition that aligns with the model's existing knowledge distribution. During the subsequent training process, domain weights are dynamically adjusted based on their learnable potential and forgetting degree. Experimental results indicate that VersaTune is effective in multi-domain fostering, with an improvement of 35.21\% in the overall multi-ability performances compared to uniform domain weights. Furthermore, we find that Qwen-2.5-32B + VersaTune even surpasses frontier models, including GPT-4o, Claude3.5-Sonnet and DeepSeek-V3 by 0.86\%, 4.76\% and 4.60\%. Additionally, in scenarios where flexible expansion of a specific domain is required, VersaTune reduces the performance degradation in other domains by 38.77\%, while preserving the training efficacy of the target domain.
Machine-generated text detection prevents language model collapse
As Large Language Models (LLMs) become increasingly prevalent, their generated outputs are proliferating across the web, risking a future where machine-generated content dilutes human-authored text. Since online data is the primary resource for LLM pre-training, subsequent models could be trained on an unknown portion of synthetic samples. This will lead to model collapse, a degenerative process whereby LLMs reinforce their own errors, converge to a low variance output distribution, and ultimately yield a declining performance. In this study, we investigate the impact of decoding strategy on model collapse, analysing the text characteristics at each model generation, the similarity to human references, and the resulting model performance. Using the decoding strategies that lead to the most significant degradation, we evaluate model collapse in more realistic scenarios where the origin of the data (human or synthetic) is unknown. We train a machine-generated text detector and propose an importance sampling approach to alleviate model collapse. Our method is validated on two LLM variants (GPT-2 and SmolLM2), across a range of model sizes (124M to 1.7B), on the open-ended text generation task. We demonstrate that it can not only prevent model collapse but also improve performance when sufficient human-authored samples are present. Source code: github.com/GeorgeDrayson/model_collapse.
Controlled Training Data Generation with Diffusion Models
We present a method to control a text-to-image generative model to produce training data useful for supervised learning. Unlike previous works that employ an open-loop approach and pre-define prompts to generate new data using either a language model or human expertise, we develop an automated closed-loop system which involves two feedback mechanisms. The first mechanism uses feedback from a given supervised model and finds adversarial prompts that result in image generations that maximize the model loss. While these adversarial prompts result in diverse data informed by the model, they are not informed of the target distribution, which can be inefficient. Therefore, we introduce the second feedback mechanism that guides the generation process towards a certain target distribution. We call the method combining these two mechanisms Guided Adversarial Prompts. We perform our evaluations on different tasks, datasets and architectures, with different types of distribution shifts (spuriously correlated data, unseen domains) and demonstrate the efficiency of the proposed feedback mechanisms compared to open-loop approaches.
comment: Project page at https://adversarial-prompts.epfl.ch/
ToolHop: A Query-Driven Benchmark for Evaluating Large Language Models in Multi-Hop Tool Use ACL 2025
Effective evaluation of multi-hop tool use is critical for analyzing the understanding, reasoning, and function-calling capabilities of large language models (LLMs). However, progress has been hindered by a lack of reliable evaluation datasets. To address this, we present ToolHop, a dataset comprising 995 user queries and 3,912 associated tools, specifically designed for rigorous evaluation of multi-hop tool use. ToolHop ensures diverse queries, meaningful interdependencies, locally executable tools, detailed feedback, and verifiable answers through a novel query-driven data construction approach that includes tool creation, document refinement, and code generation. We evaluate 14 LLMs across five model families (i.e., LLaMA3.1, Qwen2.5, Gemini1.5, Claude3.5, and GPT), uncovering significant challenges in handling multi-hop tool-use scenarios. The leading model, GPT-4o, achieves an accuracy of 49.04%, underscoring substantial room for improvement. Further analysis reveals variations in tool-use strategies for various families, offering actionable insights to guide the development of more effective approaches. Code and data can be found in https://huggingface.co/datasets/bytedance-research/ToolHop.
comment: Accepted by ACL 2025 Main Conference
Superhuman performance of a large language model on the reasoning tasks of a physician
A seminal paper published by Ledley and Lusted in 1959 introduced complex clinical diagnostic reasoning cases as the gold standard for the evaluation of expert medical computing systems, a standard that has held ever since. Here, we report the results of a physician evaluation of a large language model (LLM) on challenging clinical cases against a baseline of hundreds of physicians. We conduct five experiments to measure clinical reasoning across differential diagnosis generation, display of diagnostic reasoning, triage differential diagnosis, probabilistic reasoning, and management reasoning, all adjudicated by physician experts with validated psychometrics. We then report a real-world study comparing human expert and AI second opinions in randomly-selected patients in the emergency room of a major tertiary academic medical center in Boston, MA. We compared LLMs and board-certified physicians at three predefined diagnostic touchpoints: triage in the emergency room, initial evaluation by a physician, and admission to the hospital or intensive care unit. In all experiments--both vignettes and emergency room second opinions--the LLM displayed superhuman diagnostic and reasoning abilities, as well as continued improvement from prior generations of AI clinical decision support. Our study suggests that LLMs have achieved superhuman performance on general medical diagnostic and management reasoning, fulfilling the vision put forth by Ledley and Lusted, and motivating the urgent need for prospective trials.
Eye Tracking Based Cognitive Evaluation of Automatic Readability Assessment Measures
Automated text readability prediction is widely used in many real-world scenarios. Over the past century, such measures have primarily been developed and evaluated on reading comprehension outcomes and on human annotations of text readability levels. In this work, we propose an alternative, eye tracking-based cognitive framework which directly taps into a key aspect of readability: reading ease. We use this framework for evaluating a broad range of prominent readability measures, including two systems widely used in education, by quantifying their ability to account for reading facilitation effects in text simplification, as well as text reading ease more broadly. Our analyses suggest that existing readability measures are poor predictors of reading facilitation and reading ease, outperformed by word properties commonly used in psycholinguistics, and in particular by surprisal.
Feedback-Driven Vision-Language Alignment with Minimal Human Supervision
Vision-language models (VLMs) have demonstrated remarkable potential in integrating visual and linguistic information, but their performance is often constrained by the need for extensive, high-quality image-text training data. Curation of these image-text pairs is both time-consuming and computationally expensive. To address this challenge, we introduce SVP (Sampling-based Visual Projection), a novel framework that enhances vision-language alignment without relying on manually curated text-image pairs or preference annotation. SVP leverages a small set of manually selected images, self-captioning and a pre-trained grounding model as a feedback mechanism to elicit latent information in VLMs. We evaluate our approach across six key areas: captioning, referring, visual question answering, multitasking, hallucination control, and object recall. Results demonstrate significant improvements, including a 14 % average improvement in captioning tasks, up to 12 % increase in object recall, and significantly reduced hallucinations, while maintaining question-answering capabilities. Using SVP, a small VLM achieves hallucination reductions similar to a model five times larger, while a VLM with initially poor referring capabilities more than doubles its performance, approaching parity with a model twice its size.
comment: Preprint
Table-Critic: A Multi-Agent Framework for Collaborative Criticism and Refinement in Table Reasoning ACL 2025
Despite the remarkable capabilities of large language models (LLMs) in various reasoning tasks, they still struggle with table reasoning tasks, particularly in maintaining consistency throughout multi-step reasoning processes. While existing approaches have explored various decomposition strategies, they often lack effective mechanisms to identify and correct errors in intermediate reasoning steps, leading to cascading error propagation. To address these issues, we propose Table-Critic, a novel multi-agent framework that facilitates collaborative criticism and iterative refinement of the reasoning process until convergence to correct solutions. Our framework consists of four specialized agents: a Judge for error identification, a Critic for comprehensive critiques, a Refiner for process improvement, and a Curator for pattern distillation. To effectively deal with diverse and unpredictable error types, we introduce a self-evolving template tree that systematically accumulates critique knowledge through experience-driven learning and guides future reflections. Extensive experiments have demonstrated that Table-Critic achieves substantial improvements over existing methods, achieving superior accuracy and error correction rates while maintaining computational efficiency and lower solution degradation rate.
comment: ACL 2025 Main
Is This Collection Worth My LLM's Time? Automatically Measuring Information Potential in Text Corpora
As large language models (LLMs) converge towards similar capabilities, the key to advancing their performance lies in identifying and incorporating valuable new information sources. However, evaluating which text collections are worth the substantial investment required for digitization, preprocessing, and integration into LLM systems remains a significant challenge. We present a novel approach to this challenge: an automated pipeline that evaluates the potential information gain from text collections without requiring model training or fine-tuning. Our method generates multiple choice questions (MCQs) from texts and measures an LLM's performance both with and without access to the source material. The performance gap between these conditions serves as a proxy for the collection's information potential. We validate our approach using five strategically selected datasets: EPFL PhD manuscripts, a private collection of Venetian historical records, two sets of Wikipedia articles on related topics, and a synthetic baseline dataset. Our results demonstrate that this method effectively identifies collections containing valuable novel information, providing a practical tool for prioritizing data acquisition and integration efforts.
Concept-Level Explainability for Auditing & Steering LLM Responses
As large language models (LLMs) become widely deployed, concerns about their safety and alignment grow. An approach to steer LLM behavior, such as mitigating biases or defending against jailbreaks, is to identify which parts of a prompt influence specific aspects of the model's output. Token-level attribution methods offer a promising solution, but still struggle in text generation, explaining the presence of each token in the output separately, rather than the underlying semantics of the entire LLM response. We introduce ConceptX, a model-agnostic, concept-level explainability method that identifies the concepts, i.e., semantically rich tokens in the prompt, and assigns them importance based on the outputs' semantic similarity. Unlike current token-level methods, ConceptX also offers to preserve context integrity through in-place token replacements and supports flexible explanation goals, e.g., gender bias. ConceptX enables both auditing, by uncovering sources of bias, and steering, by modifying prompts to shift the sentiment or reduce the harmfulness of LLM responses, without requiring retraining. Across three LLMs, ConceptX outperforms token-level methods like TokenSHAP in both faithfulness and human alignment. Steering tasks boost sentiment shift by 0.252 versus 0.131 for random edits and lower attack success rates from 0.463 to 0.242, outperforming attribution and paraphrasing baselines. While prompt engineering and self-explaining methods sometimes yield safer responses, ConceptX offers a transparent and faithful alternative for improving LLM safety and alignment, demonstrating the practical value of attribution-based explainability in guiding LLM behavior.
comment: 9 pages, 7 figures, Submission to Neurips 2025
Unveiling Entity-Level Unlearning for Large Language Models: A Comprehensive Analysis COLING 2025
Large language model unlearning has garnered increasing attention due to its potential to address security and privacy concerns, leading to extensive research in the field. However, much of this research has concentrated on instance-level unlearning, specifically targeting the removal of predefined instances containing sensitive content. This focus has left a significant gap in the exploration of full entity-level unlearning, which is critical in real-world scenarios such as copyright protection. To this end, we propose a novel task of Entity-level unlearning, which aims to erase entity-related knowledge from the target model completely. To thoroughly investigate this task, we systematically evaluate trending unlearning algorithms, revealing that current methods struggle to achieve effective entity-level unlearning. Then, we further explore the factors that influence the performance of the unlearning algorithms, identifying that knowledge coverage and the size of the forget set play pivotal roles. Notably, our analysis also uncovers that entities introduced through fine-tuning are more vulnerable to unlearning than pre-trained entities. These findings collectively offer valuable insights for advancing entity-level unlearning for LLMs.
comment: Accepted by COLING 2025
Beyond Single-Task: Robust Multi-Task Length Generalization for LLMs
Length generalization, the ability to solve problems longer than those seen during training, remains a critical challenge for large language models (LLMs). Previous work modifies positional encodings (PEs) and data formats to improve length generalization on specific symbolic tasks such as addition and sorting. However, these approaches are fundamentally limited to special tasks, often degrading general language performance. Furthermore, they are typically evaluated on small transformers trained from scratch on single tasks and can cause performance drop when applied during post-training stage of practical LLMs with general capabilities. Hu et al., (2024) proposed Rule-Following Fine-Tuning (RFFT) to improve length generalization in the post-training stage of LLMs. Despite its compatibility with practical models and strong performance, RFFT is proposed for single tasks too, requiring re-training for each individual task with extensive examples. In this paper, we study length generalization in multi-task settings and propose Meta Rule-Following Fine-Tuning (Meta-RFFT), the first framework enabling robust cross-task length generalization. As our first contribution, we construct a large length generalization dataset containing 86 tasks spanning code execution, number processing, symbolic and logical reasoning tasks, beyond the common addition or multiplication tasks. Secondly, we show that cross-task length generalization is possible with Meta-RFFT. After training on a large number of tasks and instances, the models achieve remarkable length generalization ability on unseen tasks with minimal fine-tuning or one-shot prompting. For example, after fine-tuning on 1 to 5 digit addition, our 32B model achieves 95% accuracy on 30 digit addition, significantly outperforming the state-of-the-art reasoning models (DeepSeek-R1-671B: 72%), despite never seeing this task during RF-pretraining.
VCM: Vision Concept Modeling Based on Implicit Contrastive Learning with Vision-Language Instruction Fine-Tuning
Large Vision-Language Models (LVLMs) are pivotal for real-world AI tasks like embodied intelligence due to their strong vision-language reasoning abilities. However, current LVLMs process entire images at the token level, which is inefficient compared to humans who analyze information and generate content at the conceptual level, extracting relevant visual concepts with minimal effort. This inefficiency, stemming from the lack of a visual concept model, limits LVLMs' usability in real-world applications. To address this, we propose VCM, an end-to-end self-supervised visual concept modeling framework. VCM leverages implicit contrastive learning across multiple sampled instances and vision-language fine-tuning to construct a visual concept model without requiring costly concept-level annotations. Our results show that VCM significantly reduces computational costs (e.g., 85\% fewer FLOPs for LLaVA-1.5-7B) while maintaining strong performance across diverse image understanding tasks. Moreover, VCM enhances visual encoders' capabilities in classic visual concept perception tasks. Extensive quantitative and qualitative experiments validate the effectiveness and efficiency of VCM.
comment: VCM
MoSE: Hierarchical Self-Distillation Enhances Early Layer Embeddings
Deploying language models often requires navigating accuracy vs. performance trade-offs to meet latency constraints while preserving utility. Traditional model distillation reduces size but incurs substantial costs through training separate models. We introduce ModularStarEncoder (MoSE), a 1-billion-parameter multi-exit encoder for code retrieval and classification that employs a novel Self-Distillation mechanism. This approach significantly enhances lower-layer representations, enabling flexible deployment of different model portions with favorable performance trade-offs. Our architecture improves text-to-code and code-to-code search by targeting specific encoder layers as exit heads, where higher layers guide earlier ones during training-improving intermediate representations at minimal additional cost. We further enhance MoSE with a repository-level contextual loss that maximizes training context window utilization. Additionally, we release a new dataset created through code translation that extends text-to-code benchmarks with cross-language code-to-code pairs. Evaluations demonstrate the effectiveness of Self-Distillation as a principled approach to trading inference cost for accuracy across various code understanding tasks.
Theoretical Proof that Auto-regressive Language Models Collapse when Real-world Data is a Finite Set
Auto-regressive language models (LMs) have been widely used to generate data in data-scarce domains to train new LMs, compensating for the scarcity of real-world data. Previous work experimentally found that LMs collapse when trained on recursively generated data. This paper presents a theoretical proof: once a corpus (such as a subset of the World Wide Web) begins to incorporate generated data and no new real-world data is added to the corpus, then no matter how small the amount of data each LM generates and contributes to the corpus, LM collapse is inevitable after sufficient time. This finding suggests that attempts to mitigate collapse by limiting the quantity of synthetic data in the corpus are fundamentally insufficient. Instead, avoiding collapse hinges on ensuring the quality of synthetic data.
comment: 20 pages, 3 figures
Multimodal Coreference Resolution for Chinese Social Media Dialogues: Dataset and Benchmark Approach
Multimodal coreference resolution (MCR) aims to identify mentions referring to the same entity across different modalities, such as text and visuals, and is essential for understanding multimodal content. In the era of rapidly growing mutimodal content and social media, MCR is particularly crucial for interpreting user interactions and bridging text-visual references to improve communication and personalization. However, MCR research for real-world dialogues remains unexplored due to the lack of sufficient data resources. To address this gap, we introduce TikTalkCoref, the first Chinese multimodal coreference dataset for social media in real-world scenarios, derived from the popular Douyin short-video platform. This dataset pairs short videos with corresponding textual dialogues from user comments and includes manually annotated coreference clusters for both person mentions in the text and the coreferential person head regions in the corresponding video frames. We also present an effective benchmark approach for MCR, focusing on the celebrity domain, and conduct extensive experiments on our dataset, providing reliable benchmark results for this newly constructed dataset. We will release the TikTalkCoref dataset to facilitate future research on MCR for real-world social media dialogues.
Generative AI and Large Language Models in Language Preservation: Opportunities and Challenges
The global crisis of language endangerment meets a technological turning point as Generative AI (GenAI) and Large Language Models (LLMs) unlock new frontiers in automating corpus creation, transcription, translation, and tutoring. However, this promise is imperiled by fragmented practices and the critical lack of a methodology to navigate the fraught balance between LLM capabilities and the profound risks of data scarcity, cultural misappropriation, and ethical missteps. This paper introduces a novel analytical framework that systematically evaluates GenAI applications against language-specific needs, embedding community governance and ethical safeguards as foundational pillars. We demonstrate its efficacy through the Te Reo M\=aori revitalization, where it illuminates successes, such as community-led Automatic Speech Recognition achieving 92% accuracy, while critically surfacing persistent challenges in data sovereignty and model bias for digital archives and educational tools. Our findings underscore that GenAI can indeed revolutionize language preservation, but only when interventions are rigorously anchored in community-centric data stewardship, continuous evaluation, and transparent risk management. Ultimately, this framework provides an indispensable toolkit for researchers, language communities, and policymakers, aiming to catalyze the ethical and high-impact deployment of LLMs to safeguard the world's linguistic heritage.
comment: 9 pages, 3 figures, 2 tables, submitted for IEEE publication. Pre-print updated as part of review process
ReaRAG: Knowledge-guided Reasoning Enhances Factuality of Large Reasoning Models with Iterative Retrieval Augmented Generation
Large Reasoning Models (LRMs) exhibit remarkable reasoning abilities but rely primarily on parametric knowledge, limiting factual accuracy. While recent works equip reinforcement learning (RL)-based LRMs with retrieval capabilities, they suffer from overthinking and lack robustness in reasoning, reducing their effectiveness in question answering (QA) tasks. To address this, we propose ReaRAG, a factuality-enhanced reasoning model that explores diverse queries without excessive iterations. Our solution includes a novel data construction framework with an upper bound on the reasoning chain length. Specifically, we first leverage an LRM to generate deliberate thinking, then select an action from a predefined action space (Search and Finish). For Search action, a query is executed against the RAG engine, where the result is returned as observation to guide reasoning steps later. This process iterates until a Finish action is chosen. Benefiting from ReaRAG's strong reasoning capabilities, our approach outperforms existing baselines on multi-hop QA. Further analysis highlights its strong reflective ability to recognize errors and refine its reasoning trajectory. Our study enhances LRMs' factuality while effectively integrating robust reasoning for Retrieval-Augmented Generation (RAG).
DateLogicQA: Benchmarking Temporal Biases in Large Language Models
This paper introduces DateLogicQA, a benchmark with 190 questions covering diverse date formats, temporal contexts, and reasoning types. We propose the Semantic Integrity Metric to assess tokenization quality and analyse two biases: Representation-Level Bias, affecting embeddings, and Logical-Level Bias, influencing reasoning outputs. Our findings provide a comprehensive evaluation of LLMs' capabilities and limitations in temporal reasoning, highlighting key challenges in handling temporal data accurately.
Simple and Provable Scaling Laws for the Test-Time Compute of Large Language Models
We propose two simple, principled and practical algorithms that enjoy provable scaling laws for the test-time compute of large language models (LLMs). The first one is a two-stage knockout-style algorithm: given an input problem, it first generates multiple candidate solutions, and then aggregate them via a knockout tournament for the final output. Assuming that the LLM can generate a correct solution with non-zero probability and do better than a random guess in comparing a pair of correct and incorrect solutions, we prove theoretically that the failure probability of this algorithm decays to zero exponentially or by a power law (depending on the specific way of scaling) as its test-time compute grows. The second one is a two-stage league-style algorithm, where each candidate is evaluated by its average win rate against multiple opponents, rather than eliminated upon loss to a single opponent. Under analogous but more robust assumptions, we prove that its failure probability also decays to zero exponentially with more test-time compute. Both algorithms require a black-box LLM and nothing else (e.g., no verifier or reward model) for a minimalistic implementation, which makes them appealing for practical applications and easy to adapt for different tasks. Through extensive experiments with diverse models and datasets, we validate the proposed theories and demonstrate the outstanding scaling properties of both algorithms.
Comparing Specialised Small and General Large Language Models on Text Classification: 100 Labelled Samples to Achieve Break-Even Performance
When solving NLP tasks with limited labelled data, researchers typically either use a general large language model without further update, or use a small number of labelled samples to tune a specialised smaller model. In this work, we answer an important question -- how many labelled samples are required for the specialised small models to outperform general large models, while taking the performance variance into consideration. By observing the behaviour of fine-tuning, instruction-tuning, prompting and in-context learning on 8 language models, we identify such performance break-even points across 8 representative text classification tasks of varying characteristics. We show that the specialised models often need only few samples (on average $100$) to be on par or better than the general ones. At the same time, the number of required labels strongly depends on the dataset or task characteristics, with fine-tuning on binary datasets requiring significantly more samples. When performance variance is taken into consideration, the number of required labels increases on average by $100 - 200\%$. Finally, larger models do not consistently lead to better performance and lower variance, with 4-bit quantisation having negligible impact.
Reformulation for Pretraining Data Augmentation
Despite the impressive capabilities of large language models across various tasks, their continued scaling is severely hampered not only by data scarcity but also by the performance degradation associated with excessive data repetition during training. To overcome this critical bottleneck, we propose the Massive Genre-Audience(MGA) reformulation method, a lightweight and scalable data augmentation technique inspired by synthetic data methodologies. MGA systematically reformulates existing corpora into diverse, contextually-rich variations to mitigate the negative effects of repetition, and we introduce this approach along with the resulting 770 billion token MGACorpus in this work. We experimentally validate its core benefit by demonstrating superior performance against data repetition and upsampling in scaling scenarios (up to 13B parameters). Furthermore, comprehensive analysis investigates the role of prompt engineering in generation quality and reveals nuances in evaluating model capabilities using standard loss metrics. Our work shows that MGA provides a reliable pathway to substantially augment training datasets, effectively alleviating repetition bottlenecks and enabling more efficient scaling of large language models.
comment: Dataset released https://huggingface.co/datasets/ByteDance-Seed/mga-fineweb-edu
Joint Localization and Activation Editing for Low-Resource Fine-Tuning ICML 2025
Parameter-efficient fine-tuning (PEFT) methods, such as LoRA, are commonly used to adapt LLMs. However, the effectiveness of standard PEFT methods is limited in low-resource scenarios with only a few hundred examples. Recent advances in interpretability research have inspired the emergence of activation editing (or steering) techniques, which modify the activations of specific model components. These methods, due to their extremely small parameter counts, show promise for small datasets. However, their performance is highly dependent on identifying the correct modules to edit and often lacks stability across different datasets. In this paper, we propose Joint Localization and Activation Editing (JoLA), a method that jointly learns (1) which heads in the Transformer to edit (2) whether the intervention should be additive, multiplicative, or both and (3) the intervention parameters themselves - the vectors applied as additive offsets or multiplicative scalings to the head output. Through evaluations on three benchmarks spanning commonsense reasoning, natural language understanding, and natural language generation, we demonstrate that JoLA consistently outperforms existing methods. The code for the method is released at https://github.com/wenlai-lavine/jola.
comment: Accepted by ICML 2025. The code is released at https://github.com/wenlai-lavine/jola
A Bounding Box is Worth One Token: Interleaving Layout and Text in a Large Language Model for Document Understanding ACL2025
Recently, many studies have demonstrated that exclusively incorporating OCR-derived text and spatial layouts with large language models (LLMs) can be highly effective for document understanding tasks. However, existing methods that integrate spatial layouts with text have limitations, such as producing overly long text sequences or failing to fully leverage the autoregressive traits of LLMs. In this work, we introduce Interleaving Layout and Text in a Large Language Model (LayTextLLM)} for document understanding. LayTextLLM projects each bounding box to a single embedding and interleaves it with text, efficiently avoiding long sequence issues while leveraging autoregressive traits of LLMs. LayTextLLM not only streamlines the interaction of layout and textual data but also shows enhanced performance in KIE and VQA. Comprehensive benchmark evaluations reveal significant improvements of LayTextLLM, with a 15.2% increase on KIE tasks and 10.7% on VQA tasks compared to previous SOTA OCR-based LLMs. All resources are available at https://github.com/LayTextLLM/LayTextLLM.
comment: Accept to ACL2025 Findings
$S^3$ -- Semantic Signal Separation
Topic models are useful tools for discovering latent semantic structures in large textual corpora. Recent efforts have been oriented at incorporating contextual representations in topic modeling and have been shown to outperform classical topic models. These approaches are typically slow, volatile, and require heavy preprocessing for optimal results. We present Semantic Signal Separation ($S^3$), a theory-driven topic modeling approach in neural embedding spaces. $S^3$ conceptualizes topics as independent axes of semantic space and uncovers these by decomposing contextualized document embeddings using Independent Component Analysis. Our approach provides diverse and highly coherent topics, requires no preprocessing, and is demonstrated to be the fastest contextual topic model, being, on average, 4.5x faster than the runner-up BERTopic. We offer an implementation of $S^3$, and all contextual baselines, in the Turftopic Python package.
comment: 24 pages, 13 figures (main manuscript has 9 pages and 7 figures); The paper has been adjusted according to reviewers' feedback
Physics of Language Models: Part 1, Learning Hierarchical Language Structures
Transformer-based language models are effective but complex, and understanding their inner workings and reasoning mechanisms is a significant challenge. Previous research has primarily explored how these models handle simple tasks like name copying or selection, and we extend this by investigating how these models perform recursive language structure reasoning defined by context-free grammars (CFGs). We introduce a family of synthetic CFGs that produce hierarchical rules, capable of generating lengthy sentences (e.g., hundreds of tokens) that are locally ambiguous and require dynamic programming to parse. Despite this complexity, we demonstrate that generative models like GPT can accurately learn and reason over CFG-defined hierarchies and generate sentences based on it. We explore the model's internals, revealing that its hidden states precisely capture the structure of CFGs, and its attention patterns resemble the information passing in a dynamic programming algorithm. This paper also presents several corollaries, including showing why absolute positional embeddings is inferior to relative and rotary embeddings; uniform attention alone is surprisingly effective (motivating our follow-up work on Canon layers); encoder-only models (e.g., BERT, DeBERTa) struggle with deep structure reasoning on CFGs compared to autoregressive models (e.g., GPT); and injecting structural or syntactic noise into pretraining data markedly improves robustness to corrupted language prompts.
comment: V2 polishes writing and adds Appendix G; V3 polishes writing and changes the title; V4 improves writing and adds Appendix H (more uniform attention results)
UniversalRAG: Retrieval-Augmented Generation over Corpora of Diverse Modalities and Granularities
Retrieval-Augmented Generation (RAG) has shown substantial promise in improving factual accuracy by grounding model responses with external knowledge relevant to queries. However, most existing RAG approaches are limited to a text-only corpus, and while recent efforts have extended RAG to other modalities such as images and videos, they typically operate over a single modality-specific corpus. In contrast, real-world queries vary widely in the type of knowledge they require, which a single type of knowledge source cannot address. To address this, we introduce UniversalRAG, a novel RAG framework designed to retrieve and integrate knowledge from heterogeneous sources with diverse modalities and granularities. Specifically, motivated by the observation that forcing all modalities into a unified representation space derived from a single aggregated corpus causes a modality gap, where the retrieval tends to favor items from the same modality as the query, we propose a modality-aware routing mechanism that dynamically identifies the most appropriate modality-specific corpus and performs targeted retrieval within it. Also, beyond modality, we organize each modality into multiple granularity levels, enabling fine-tuned retrieval tailored to the complexity and scope of the query. We validate UniversalRAG on 8 benchmarks spanning multiple modalities, showing its superiority over various modality-specific and unified baselines.
comment: Project page : https://universalrag.github.io
FaMTEB: Massive Text Embedding Benchmark in Persian Language
In this paper, we introduce a comprehensive benchmark for Persian (Farsi) text embeddings, built upon the Massive Text Embedding Benchmark (MTEB). Our benchmark includes 63 datasets spanning seven different tasks: classification, clustering, pair classification, reranking, retrieval, summary retrieval, and semantic textual similarity. The datasets are formed as a combination of existing, translated, and newly generated data, offering a diverse evaluation framework for Persian language models. Given the increasing use of text embedding models in chatbots, evaluation datasets are becoming inseparable ingredients in chatbot challenges and Retrieval-Augmented Generation systems. As a contribution, we include chatbot evaluation datasets in the MTEB benchmark for the first time. In addition, in this paper, we introduce the new task of summary retrieval which is not part of the tasks included in standard MTEB. Another contribution of this paper is the introduction of a substantial number of new Persian language NLP datasets suitable for training and evaluation, some of which have no previous counterparts in Persian. We evaluate the performance of several Persian and multilingual embedding models in a range of tasks. This work introduces an open-source benchmark with datasets, code and a public leaderboard.
Learning Efficient Recursive Numeral Systems via Reinforcement Learning
It has previously been shown that by using reinforcement learning (RL), agents can derive simple approximate and exact-restricted numeral systems that are similar to human ones (Carlsson, 2021). However, it is a major challenge to show how more complex recursive numeral systems, similar to for example English, could arise via a simple learning mechanism such as RL. Here, we introduce an approach towards deriving a mechanistic explanation of the emergence of efficient recursive number systems. We consider pairs of agents learning how to communicate about numerical quantities through a meta-grammar that can be gradually modified throughout the interactions. Utilising a slightly modified version of the meta-grammar of Hurford (1975), we demonstrate that our RL agents, shaped by the pressures for efficient communication, can effectively modify their lexicon towards Pareto-optimal configurations which are comparable to those observed within human numeral systems in terms of their efficiency.
comment: Accepted to CogSci 2025
PACE: Abstractions for Communicating Efficiently
A central but unresolved aspect of problem-solving in AI is the capability to introduce and use abstractions, something humans excel at. Work in cognitive science has demonstrated that humans tend towards higher levels of abstraction when engaged in collaborative task-oriented communication, enabling gradually shorter and more information-efficient utterances. Several computational methods have attempted to replicate this phenomenon, but all make unrealistic simplifying assumptions about how abstractions are introduced and learned. Our method, Procedural Abstractions for Communicating Efficiently (PACE), overcomes these limitations through a neuro-symbolic approach. On the symbolic side, we draw on work from library learning for proposing abstractions. We combine this with neural methods for communication and reinforcement learning, via a novel use of bandit algorithms for controlling the exploration and exploitation trade-off in introducing new abstractions. PACE exhibits similar tendencies to humans on a collaborative construction task from the cognitive science literature, where one agent (the architect) instructs the other (the builder) to reconstruct a scene of block-buildings. PACE results in the emergence of an efficient language as a by-product of collaborative communication. Beyond providing mechanistic insights into human communication, our work serves as a first step to providing conversational agents with the ability for human-like communicative abstractions.
comment: Accepted to CogSci 2025 for presentation
Challenging the Boundaries of Reasoning: An Olympiad-Level Math Benchmark for Large Language Models
In recent years, the rapid development of large reasoning models has resulted in the saturation of existing benchmarks for evaluating mathematical reasoning, highlighting the urgent need for more challenging and rigorous evaluation frameworks. To address this gap, we introduce OlymMATH, a novel Olympiad-level mathematical benchmark, designed to rigorously test the complex reasoning capabilities of LLMs. OlymMATH features 200 meticulously curated problems, each manually verified and available in parallel English and Chinese versions. The problems are systematically organized into two distinct difficulty tiers: (1) AIME-level problems (easy) that establish a baseline for mathematical reasoning assessment, and (2) significantly more challenging problems (hard) designed to push the boundaries of current state-of-the-art models. In our benchmark, these problems span four core mathematical fields, each including a verifiable numerical solution to enable objective, rule-based evaluation. Empirical results underscore the significant challenge presented by OlymMATH, with state-of-the-art models including DeepSeek-R1, OpenAI's o3-mini and Gemini 2.5 Pro Exp demonstrating notably limited accuracy on the hard subset. Furthermore, the benchmark facilitates comprehensive bilingual assessment of mathematical reasoning abilities-a critical dimension that remains largely unaddressed in mainstream mathematical reasoning benchmarks. We release the benchmark, evaluation code, detailed results and a data visualization tool at https://github.com/RUCAIBox/OlymMATH.
comment: Technical Report on Slow Thinking with LLMs: Evaluation Benchmark
Unifying Text Semantics and Graph Structures for Temporal Text-attributed Graphs with Large Language Models NeurIPS2025
Temporal graph neural networks (TGNNs) have shown remarkable performance in temporal graph modeling. However, real-world temporal graphs often possess rich textual information, giving rise to temporal text-attributed graphs (TTAGs). Such combination of dynamic text semantics and evolving graph structures introduces heightened complexity. Existing TGNNs embed texts statically and rely heavily on encoding mechanisms that biasedly prioritize structural information, overlooking the temporal evolution of text semantics and the essential interplay between semantics and structures for synergistic reinforcement. To tackle these issues, we present \textbf{CROSS}, a flexible framework that seamlessly extends existing TGNNs for TTAG modeling. CROSS is designed by decomposing the TTAG modeling process into two phases: (i) temporal semantics extraction; and (ii) semantic-structural information unification. The key idea is to advance the large language models (LLMs) to dynamically extract the temporal semantics in text space and then generate cohesive representations unifying both semantics and structures. Specifically, we propose a Temporal Semantics Extractor in the CROSS framework, which empowers LLMs to offer the temporal semantic understanding of node's evolving contexts of textual neighborhoods, facilitating semantic dynamics. Subsequently, we introduce the Semantic-structural Co-encoder, which collaborates with the above Extractor for synthesizing illuminating representations by jointly considering both semantic and structural information while encouraging their mutual reinforcement. Extensive experiments show that CROSS achieves state-of-the-art results on four public datasets and one industrial dataset, with 24.7% absolute MRR gain on average in temporal link prediction and 3.7% AUC gain in node classification of industrial application.
comment: Submit to NeurIPS2025
Data-Copilot: Bridging Billions of Data and Humans with Autonomous Workflow
Industries such as finance, meteorology, and energy generate vast amounts of data daily. Efficiently managing, processing, and displaying this data requires specialized expertise and is often tedious and repetitive. Leveraging large language models (LLMs) to develop an automated workflow presents a highly promising solution. However, LLMs are not adept at handling complex numerical computations and table manipulations and are also constrained by a limited context budget. Based on this, we propose Data-Copilot, a data analysis agent that autonomously performs querying, processing, and visualization of massive data tailored to diverse human requests. The advancements are twofold: First, it is a code-centric agent that receives human requests and generates code as an intermediary to handle massive data, which is quite flexible for large-scale data processing tasks. Second, Data-Copilot involves a data exploration phase in advance, which explores how to design more universal and error-free interfaces for real-time response. Specifically, it actively explores data sources, discovers numerous common requests, and abstracts them into many universal interfaces for daily invocation. When deployed in real-time requests, Data-Copilot only needs to invoke these pre-designed interfaces, transforming raw data into visualized outputs (e.g., charts, tables) that best match the user's intent. Compared to generating code from scratch, invoking these pre-designed and compiler-validated interfaces can significantly reduce errors during real-time requests. Additionally, interface workflows are more efficient and offer greater interpretability than code. We open-sourced Data-Copilot with massive Chinese financial data, such as stocks, funds, and news, demonstrating promising application prospects.
A Comprehensive Survey in LLM(-Agent) Full Stack Safety: Data, Training and Deployment
The remarkable success of Large Language Models (LLMs) has illuminated a promising pathway toward achieving Artificial General Intelligence for both academic and industrial communities, owing to their unprecedented performance across various applications. As LLMs continue to gain prominence in both research and commercial domains, their security and safety implications have become a growing concern, not only for researchers and corporations but also for every nation. Currently, existing surveys on LLM safety primarily focus on specific stages of the LLM lifecycle, e.g., deployment phase or fine-tuning phase, lacking a comprehensive understanding of the entire "lifechain" of LLMs. To address this gap, this paper introduces, for the first time, the concept of "full-stack" safety to systematically consider safety issues throughout the entire process of LLM training, deployment, and eventual commercialization. Compared to the off-the-shelf LLM safety surveys, our work demonstrates several distinctive advantages: (I) Comprehensive Perspective. We define the complete LLM lifecycle as encompassing data preparation, pre-training, post-training, deployment and final commercialization. To our knowledge, this represents the first safety survey to encompass the entire lifecycle of LLMs. (II) Extensive Literature Support. Our research is grounded in an exhaustive review of over 800+ papers, ensuring comprehensive coverage and systematic organization of security issues within a more holistic understanding. (III) Unique Insights. Through systematic literature analysis, we have developed reliable roadmaps and perspectives for each chapter. Our work identifies promising research directions, including safety in data generation, alignment techniques, model editing, and LLM-based agent systems. These insights provide valuable guidance for researchers pursuing future work in this field.
Phare: A Safety Probe for Large Language Models
Ensuring the safety of large language models (LLMs) is critical for responsible deployment, yet existing evaluations often prioritize performance over identifying failure modes. We introduce Phare, a multilingual diagnostic framework to probe and evaluate LLM behavior across three critical dimensions: hallucination and reliability, social biases, and harmful content generation. Our evaluation of 17 state-of-the-art LLMs reveals patterns of systematic vulnerabilities across all safety dimensions, including sycophancy, prompt sensitivity, and stereotype reproduction. By highlighting these specific failure modes rather than simply ranking models, Phare provides researchers and practitioners with actionable insights to build more robust, aligned, and trustworthy language systems.
"Yes, My LoRD." Guiding Language Model Extraction with Locality Reinforced Distillation ACL 25
Model extraction attacks (MEAs) on large language models (LLMs) have received increasing attention in recent research. However, existing attack methods typically adapt the extraction strategies originally developed for deep neural networks (DNNs). They neglect the underlying inconsistency between the training tasks of MEA and LLM alignment, leading to suboptimal attack performance. To tackle this issue, we propose Locality Reinforced Distillation (LoRD), a novel model extraction algorithm specifically designed for LLMs. In particular, LoRD employs a newly defined policy-gradient-style training task that utilizes the responses of victim model as the signal to guide the crafting of preference for the local model. Theoretical analyses demonstrate that I) The convergence procedure of LoRD in model extraction is consistent with the alignment procedure of LLMs, and II) LoRD can reduce query complexity while mitigating watermark protection through our exploration-based stealing. Extensive experiments validate the superiority of our method in extracting various state-of-the-art commercial LLMs. Our code is available at: https://github.com/liangzid/LoRD-MEA .
comment: To appear at ACL 25 main conference
DeLoRA: Decoupling Angles and Strength in Low-rank Adaptation ICLR 2025
Parameter-Efficient FineTuning (PEFT) methods have recently gained significant popularity thanks to the widespread availability of large-scale pretrained models. These methods allow for quick adaptation to downstream tasks with minimal computational cost. However, popular finetuning methods such as LoRA exhibit limited robustness when it comes to hyperparameter choices or extended training regimes, preventing optimal out-of-the-box performance. In contrast, bounded approaches, such as ETHER, provide greater robustness but are limited to extremely low-rank adaptations and fixed-strength transformations, reducing their adaptation expressive power. In this work, we propose Decoupled Low-rank Adaptation (DeLoRA), a novel finetuning method that normalizes and scales learnable low-rank matrices. By bounding the distance of the transformation, DeLoRA effectively decouples the angular learning from the adaptation strength, enhancing robustness without compromising performance. Through evaluations on subject-driven image generation, natural language understanding, and instruction tuning, we show that DeLoRA matches or surpasses performance of competing PEFT methods, while exhibiting stronger robustness. Code is available at https://github.com/ExplainableML/DeLoRA.
comment: ICLR 2025
ARS: Automatic Routing Solver with Large Language Models
Real-world Vehicle Routing Problems (VRPs) are characterized by a variety of practical constraints, making manual solver design both knowledge-intensive and time-consuming. Although there is increasing interest in automating the design of routing algorithms, existing research has explored only a limited array of VRP variants and fails to adequately address the complex and prevalent constraints encountered in real-world situations. To fill this gap, this paper introduces RoutBench, a benchmark of 1,000 VRP variants derived from 24 attributes, for evaluating the effectiveness of automatic routing solvers in addressing complex constraints. Along with RoutBench, we present the Automatic Routing Solver (ARS), which employs Large Language Model (LLM) agents to enhance a backbone algorithm framework by automatically generating constraint-aware heuristic code, based on problem descriptions and several representative constraints selected from a database. Our experiments show that ARS outperforms state-of-the-art LLM-based methods and commonly used solvers, automatically solving 91.67% of common VRPs and achieving at least a 30% improvement across all benchmarks.
comment: Authorship is under discussion; arXiv release will follow finalization
Disentangling Length Bias In Preference Learning Via Response-Conditioned Modeling
Reinforcement Learning from Human Feedback (RLHF) has achieved considerable success in aligning large language models (LLMs) by modeling human preferences with a learnable reward model and employing a reinforcement learning algorithm to maximize the reward model's scores. However, these reward models are susceptible to exploitation through various superficial confounding factors, with length bias emerging as a particularly significant concern. Moreover, while the pronounced impact of length bias on preference modeling suggests that LLMs possess an inherent sensitivity to length perception, our preliminary investigations reveal that fine-tuned LLMs consistently struggle to adhere to explicit length instructions. To address these two limitations, we propose a novel framework wherein the reward model explicitly differentiates between human semantic preferences and response length requirements. Specifically, we introduce a $\textbf{R}$esponse-$\textbf{c}$onditioned $\textbf{B}$radley-$\textbf{T}$erry (Rc-BT) model that enhances the model's capability in length bias mitigating and length instruction following, through training on our augmented dataset. Furthermore, we propose the Rc-RM and Rc-DPO algorithm to leverage the Rc-BT model for reward modeling and direct policy optimization (DPO) of LLMs, simultaneously mitigating length bias and promoting adherence to length instructions. Extensive experiments across various foundational models and datasets demonstrate the effectiveness and generalizability of our approach.
OntoURL: A Benchmark for Evaluating Large Language Models on Symbolic Ontological Understanding, Reasoning and Learning NeurIPS 2025
Large language models (LLMs) have demonstrated remarkable capabilities across a range of natural language processing tasks, yet their ability to process structured symbolic knowledge remains underexplored. To address this gap, we propose a taxonomy of LLMs' ontological capabilities and introduce OntoURL, the first comprehensive benchmark designed to systematically evaluate LLMs' proficiency in handling ontologies -- formal, symbolic representations of domain knowledge through concepts, relationships, and instances. Based on the proposed taxonomy, OntoURL systematically assesses three dimensions: understanding, reasoning, and learning through 15 distinct tasks comprising 58,981 questions derived from 40 ontologies across 8 domains. Experiments with 20 open-source LLMs reveal significant performance differences across models, tasks, and domains, with current LLMs showing proficiency in understanding ontological knowledge but substantial weaknesses in reasoning and learning tasks. These findings highlight fundamental limitations in LLMs' capability to process symbolic knowledge and establish OntoURL as a critical benchmark for advancing the integration of LLMs with formal knowledge representations.
comment: Paper submitted to NeurIPS 2025 dataset and benchmark track
BrainECHO: Semantic Brain Signal Decoding through Vector-Quantized Spectrogram Reconstruction for Whisper-Enhanced Text Generation
Current EEG/MEG-to-text decoding systems suffer from three key limitations: (1) reliance on teacher-forcing methods, which compromises robustness during inference, (2) sensitivity to session-specific noise, hindering generalization across subjects, and (3) misalignment between brain signals and linguistic representations due to pre-trained language model over-dominance. To overcome these challenges, we propose BrainECHO (Brain signal decoding via vEctor-quantized speCtrogram reconstruction for WHisper-enhanced text generatiOn), a multi-stage framework that employs decoupled representation learning to achieve state-of-the-art performance on both EEG and MEG datasets. Specifically, BrainECHO consists of three stages: (1) Discrete autoencoding, which transforms continuous Mel spectrograms into a finite set of high-quality discrete representations for subsequent stages. (2) Frozen alignment, where brain signal embeddings are mapped to corresponding Mel spectrogram embeddings in a frozen latent space, effectively filtering session-specific noise through vector-quantized reconstruction, yielding a 3.65% improvement in BLEU-4 score. (3) Constrained decoding fine-tuning, which leverages the pre-trained Whisper model for audio-to-text translation, balancing signal adaptation with knowledge preservation, and achieving 74%-89% decoding BLEU scores without excessive reliance on teacher forcing. BrainECHO demonstrates robustness across sentence, session, and subject-independent conditions, passing Gaussian noise tests and showcasing its potential for enhancing language-based brain-computer interfaces.
Decoding Time Series with LLMs: A Multi-Agent Framework for Cross-Domain Annotation
Time series data is ubiquitous across various domains, including manufacturing, finance, and healthcare. High-quality annotations are essential for effectively understanding time series and facilitating downstream tasks; however, obtaining such annotations is challenging, particularly in mission-critical domains. In this paper, we propose TESSA, a multi-agent system designed to automatically generate both general and domain-specific annotations for time series data. TESSA introduces two agents: a general annotation agent and a domain-specific annotation agent. The general agent captures common patterns and knowledge across multiple source domains, leveraging both time-series-wise and text-wise features to generate general annotations. Meanwhile, the domain-specific agent utilizes limited annotations from the target domain to learn domain-specific terminology and generate targeted annotations. Extensive experiments on multiple synthetic and real-world datasets demonstrate that TESSA effectively generates high-quality annotations, outperforming existing methods.
comment: 29 pages, 12 figures, 32 tables
Vision-centric Token Compression in Large Language Model
Real-world applications are stretching context windows to hundreds of thousand of tokens while Large Language Models (LLMs) swell from billions to trillions of parameters. This dual expansion send compute and memory costs skyrocketing, making token compression indispensable. We introduce Vision Centric Token Compression (Vist), a slow-fast compression framework that mirrors human reading: the fast path renders distant tokens into images, letting a frozen, lightweight vision encoder skim the low-salience context; the slow path feeds the proximal window into the LLM for fine-grained reasoning. A Probability-Informed Visual Enhancement (PVE) objective masks high-frequency tokens during training, steering the Resampler to concentrate on semantically rich regions-just as skilled reader gloss over function words. On eleven in-context learning benchmarks, Vist achieves the same accuracy with 2.3 times fewer tokens, cutting FLOPs by 16% and memory by 50%. This method delivers remarkable results, outperforming the strongest text encoder-based compression method CEPE by 7.6% on average over benchmarks like TriviaQA, NQ, PopQA, NLUI, and CLIN, setting a new standard for token efficiency in LLMs. The source code will be released.
Brittle Minds, Fixable Activations: Understanding Belief Representations in Language Models ICML 2024
Despite growing interest in Theory of Mind (ToM) tasks for evaluating language models (LMs), little is known about how LMs internally represent mental states of self and others. Understanding these internal mechanisms is critical - not only to move beyond surface-level performance, but also for model alignment and safety, where subtle misattributions of mental states may go undetected in generated outputs. In this work, we present the first systematic investigation of belief representations in LMs by probing models across different scales, training regimens, and prompts - using control tasks to rule out confounds. Our experiments provide evidence that both model size and fine-tuning substantially improve LMs' internal representations of others' beliefs, which are structured - not mere by-products of spurious correlations - yet brittle to prompt variations. Crucially, we show that these representations can be strengthened: targeted edits to model activations can correct wrong ToM inferences.
comment: ICML 2024 Workshop on Mechanistic Interpretability version: https://openreview.net/forum?id=yEwEVoH9Be
Human-Computer Interaction
How Adding Metacognitive Requirements in Support of AI Feedback in Practice Exams Transforms Student Learning Behaviors
Providing personalized, detailed feedback at scale in large undergraduate STEM courses remains a persistent challenge. We present an empirically evaluated practice exam system that integrates AI generated feedback with targeted textbook references, deployed in a large introductory biology course. Our system encourages metacognitive behavior by asking students to explain their answers and declare their confidence. It uses OpenAI's GPT-4o to generate personalized feedback based on this information, while directing them to relevant textbook sections. Through interaction logs from consenting participants across three midterms (541, 342, and 413 students respectively), totaling 28,313 question-student interactions across 146 learning objectives, along with 279 surveys and 23 interviews, we examined the system's impact on learning outcomes and engagement. Across all midterms, feedback types showed no statistically significant performance differences, though some trends suggested potential benefits. The most substantial impact came from the required confidence ratings and explanations, which students reported transferring to their actual exam strategies. About 40 percent of students engaged with textbook references when prompted by feedback -- far higher than traditional reading rates. Survey data revealed high satisfaction (mean rating 4.1 of 5), with 82.1 percent reporting increased confidence on practiced midterm topics, and 73.4 percent indicating they could recall and apply specific concepts. Our findings suggest that embedding structured reflection requirements may be more impactful than sophisticated feedback mechanisms.
comment: 10 pages, 3 figures, to appear in Proceedings of the Twelfth ACM Conference on Learning @ Scale (L@S 2025), July 2025, Palermo, Italy
Agentic Publications: An LLM-Driven Framework for Interactive Scientific Publishing, Supplementing Traditional Papers with AI-Powered Knowledge Systems
The exponential growth of scientific literature presents significant challenges for researchers navigating the complex knowledge landscape. We propose "Agentic Publications", a novel LLM-driven framework complementing traditional publishing by transforming papers into interactive knowledge systems. Our architecture integrates structured data with unstructured content through retrieval-augmented generation and multi-agent verification. The framework offers interfaces for both humans and machines, combining narrative explanations with machine-readable outputs while addressing ethical considerations through automated validation and transparent governance. Key features include continuous knowledge updates, automatic integration of new findings, and customizable detail levels. Our proof-of-concept demonstrates multilingual interaction, API accessibility, and structured knowledge representation through vector databases, knowledge graphs, and verification agents. This approach enhances scientific communication across disciplines, improving efficiency and collaboration while preserving traditional publishing pathways, particularly valuable for interdisciplinary fields where knowledge integration remains challenging.
Scaling Computer-Use Grounding via User Interface Decomposition and Synthesis
Graphical user interface (GUI) grounding, the ability to map natural language instructions to specific actions on graphical user interfaces, remains a critical bottleneck in computer use agent development. Current benchmarks oversimplify grounding tasks as short referring expressions, failing to capture the complexity of real-world interactions that require software commonsense, layout understanding, and fine-grained manipulation capabilities. To address these limitations, we introduce OSWorld-G, a comprehensive benchmark comprising 564 finely annotated samples across diverse task types including text matching, element recognition, layout understanding, and precise manipulation. Additionally, we synthesize and release the largest computer use grounding dataset Jedi, which contains 4 million examples through multi-perspective decoupling of tasks. Our multi-scale models trained on Jedi demonstrate its effectiveness by outperforming existing approaches on ScreenSpot-v2, ScreenSpot-Pro, and our OSWorld-G. Furthermore, we demonstrate that improved grounding with Jedi directly enhances agentic capabilities of general foundation models on complex computer tasks, improving from 5% to 27% on OSWorld. Through detailed ablation studies, we identify key factors contributing to grounding performance and verify that combining specialized data for different interface elements enables compositional generalization to novel interfaces. All benchmark, data, checkpoints, and code are open-sourced and available at https://osworld-grounding.github.io.
comment: 49 pages, 13 figures
Human Response to Decision Support in Face Matching: The Influence of Task Difficulty and Machine Accuracy
Decision support systems enhanced by Artificial Intelligence (AI) are increasingly being used in high-stakes scenarios where errors or biased outcomes can have significant consequences. In this work, we explore the conditions under which AI-based decision support systems affect the decision accuracy of humans involved in face matching tasks. Previous work suggests that this largely depends on various factors, such as the specific nature of the task and how users perceive the quality of the decision support, among others. Hence, we conduct extensive experiments to examine how both task difficulty and the precision of the system influence human outcomes. Our results show a strong influence of task difficulty, which not only makes humans less precise but also less capable of determining whether the decision support system is yielding accurate suggestions or not. This has implications for the design of decision support systems, and calls for a careful examination of the context in which they are deployed and on how they are perceived by users.
Disentangling Coordiante Frames for Task Specific Motion Retargeting in Teleoperation using Shared Control and VR Controllers
Task performance in terms of task completion time in teleoperation is still far behind compared to humans conducting tasks directly. One large identified impact on this is the human capability to perform transformations and alignments, which is directly influenced by the point of view and the motion retargeting strategy. In modern teleoperation systems, motion retargeting is usually implemented through a one time calibration or switching modes. Complex tasks, like concatenated screwing, might be difficult, because the operator has to align (e.g. mirror) rotational and translational input commands. Recent research has shown, that the separation of translation and rotation leads to increased task performance. This work proposes a formal motion retargeting method, which separates translational and rotational input commands. This method is then included in a optimal control based trajectory planner and shown to work on a UR5e manipulator.
comment: 8 pages, 4 figures, conference
StudyAlign: A Software System for Conducting Web-Based User Studies with Functional Interactive Prototypes
Interactive systems are commonly prototyped as web applications. This approach enables studies with functional prototypes on a large scale. However, setting up these studies can be complex due to implementing experiment procedures, integrating questionnaires, and data logging. To enable such user studies, we developed the software system StudyAlign which offers: 1) a frontend for participants, 2) an admin panel to manage studies, 3) the possibility to integrate questionnaires, 4) a JavaScript library to integrate data logging into prototypes, and 5) a backend server for persisting log data, and serving logical functions via an API to the different parts of the system. With our system, researchers can set up web-based experiments and focus on the design and development of interactions and prototypes. Furthermore, our systematic approach facilitates the replication of studies and reduces the required effort to execute web-based user studies. We conclude with reflections on using StudyAlign for conducting HCI studies online.
comment: EICS 2025
CAIM: Development and Evaluation of a Cognitive AI Memory Framework for Long-Term Interaction with Intelligent Agents
Large language models (LLMs) have advanced the field of artificial intelligence (AI) and are a powerful enabler for interactive systems. However, they still face challenges in long-term interactions that require adaptation towards the user as well as contextual knowledge and understanding of the ever-changing environment. To overcome these challenges, holistic memory modeling is required to efficiently retrieve and store relevant information across interaction sessions for suitable responses. Cognitive AI, which aims to simulate the human thought process in a computerized model, highlights interesting aspects, such as thoughts, memory mechanisms, and decision-making, that can contribute towards improved memory modeling for LLMs. Inspired by these cognitive AI principles, we propose our memory framework CAIM. CAIM consists of three modules: 1.) The Memory Controller as the central decision unit; 2.) the Memory Retrieval, which filters relevant data for interaction upon request; and 3.) the Post-Thinking, which maintains the memory storage. We compare CAIM against existing approaches, focusing on metrics such as retrieval accuracy, response correctness, contextual coherence, and memory storage. The results demonstrate that CAIM outperforms baseline frameworks across different metrics, highlighting its context-awareness and potential to improve long-term human-AI interactions.
To Bias or Not to Bias: Detecting bias in News with bias-detector
Media bias detection is a critical task in ensuring fair and balanced information dissemination, yet it remains challenging due to the subjectivity of bias and the scarcity of high-quality annotated data. In this work, we perform sentence-level bias classification by fine-tuning a RoBERTa-based model on the expert-annotated BABE dataset. Using McNemar's test and the 5x2 cross-validation paired t-test, we show statistically significant improvements in performance when comparing our model to a domain-adaptively pre-trained DA-RoBERTa baseline. Furthermore, attention-based analysis shows that our model avoids common pitfalls like oversensitivity to politically charged terms and instead attends more meaningfully to contextually relevant tokens. For a comprehensive examination of media bias, we present a pipeline that combines our model with an already-existing bias-type classifier. Our method exhibits good generalization and interpretability, despite being constrained by sentence-level analysis and dataset size because of a lack of larger and more advanced bias corpora. We talk about context-aware modeling, bias neutralization, and advanced bias type classification as potential future directions. Our findings contribute to building more robust, explainable, and socially responsible NLP systems for media bias detection.
comment: 7 pages, 5 figures, 2 tables
From Assistants to Adversaries: Exploring the Security Risks of Mobile LLM Agents
The growing adoption of large language models (LLMs) has led to a new paradigm in mobile computing--LLM-powered mobile AI agents--capable of decomposing and automating complex tasks directly on smartphones. However, the security implications of these agents remain largely unexplored. In this paper, we present the first comprehensive security analysis of mobile LLM agents, encompassing three representative categories: System-level AI Agents developed by original equipment manufacturers (e.g., YOYO Assistant), Third-party Universal Agents (e.g., Zhipu AI AutoGLM), and Emerging Agent Frameworks (e.g., Alibaba Mobile Agent). We begin by analyzing the general workflow of mobile agents and identifying security threats across three core capability dimensions: language-based reasoning, GUI-based interaction, and system-level execution. Our analysis reveals 11 distinct attack surfaces, all rooted in the unique capabilities and interaction patterns of mobile LLM agents, and spanning their entire operational lifecycle. To investigate these threats in practice, we introduce AgentScan, a semi-automated security analysis framework that systematically evaluates mobile LLM agents across all 11 attack scenarios. Applying AgentScan to nine widely deployed agents, we uncover a concerning trend: every agent is vulnerable to targeted attacks. In the most severe cases, agents exhibit vulnerabilities across eight distinct attack vectors. These attacks can cause behavioral deviations, privacy leakage, or even full execution hijacking. Based on these findings, we propose a set of defensive design principles and practical recommendations for building secure mobile LLM agents. Our disclosures have received positive feedback from two major device vendors. Overall, this work highlights the urgent need for standardized security practices in the fast-evolving landscape of LLM-driven mobile automation.
Beyond Individual UX: Defining Group Experience(GX) as a New Paradigm for Group-centered AI
Recent advancements in HCI and AI have predominantly centered on individual user experiences, often neglecting the emergent dynamics of group interactions. This provocation introduces Group Experience(GX) to capture the collective perceptual, emotional, and cognitive dimensions that arise when individuals interact in cohesive groups. We challenge the conventional Human-centered AI paradigm and propose Group-centered AI(GCAI) as a framework that actively mediates group dynamics, amplifies diverse voices, and fosters ethical collective decision-making. Drawing on social psychology, organizational behavior, and group dynamics, we outline a group-centered design approach that balances individual autonomy with collective interests while developing novel evaluative metrics. Our analysis emphasizes rethinking traditional methodologies that focus solely on individual outcomes and advocates for innovative strategies to capture group collaboration. We call on researchers to bridge the gap between micro-level experiences and macro-level impacts, ultimately enriching and transforming collaborative human interactions.
comment: Accepted at DIS'25 Companion (Provocations)
SounDiT: Geo-Contextual Soundscape-to-Landscape Generation
We present a novel and practically significant problem-Geo-Contextual Soundscape-to-Landscape (GeoS2L) generation-which aims to synthesize geographically realistic landscape images from environmental soundscapes. Prior audio-to-image generation methods typically rely on general-purpose datasets and overlook geographic and environmental contexts, resulting in unrealistic images that are misaligned with real-world environmental settings. To address this limitation, we introduce a novel geo-contextual computational framework that explicitly integrates geographic knowledge into multimodal generative modeling. We construct two large-scale geo-contextual multimodal datasets, SoundingSVI and SonicUrban, pairing diverse soundscapes with real-world landscape images. We propose SounDiT, a novel Diffusion Transformer (DiT)-based model that incorporates geo-contextual scene conditioning to synthesize geographically coherent landscape images. Furthermore, we propose a practically-informed geo-contextual evaluation framework, the Place Similarity Score (PSS), across element-, scene-, and human perception-levels to measure consistency between input soundscapes and generated landscape images. Extensive experiments demonstrate that SounDiT outperforms existing baselines in both visual fidelity and geographic settings. Our work not only establishes foundational benchmarks for GeoS2L generation but also highlights the importance of incorporating geographic domain knowledge in advancing multimodal generative models, opening new directions at the intersection of generative AI, geography, urban planning, and environmental sciences.
comment: 14 pages, 5 figures
What is Stigma Attributed to? A Theory-Grounded, Expert-Annotated Interview Corpus for Demystifying Mental-Health Stigma ACL 2025
Mental-health stigma remains a pervasive social problem that hampers treatment-seeking and recovery. Existing resources for training neural models to finely classify such stigma are limited, relying primarily on social-media or synthetic data without theoretical underpinnings. To remedy this gap, we present an expert-annotated, theory-informed corpus of human-chatbot interviews, comprising 4,141 snippets from 684 participants with documented socio-cultural backgrounds. Our experiments benchmark state-of-the-art neural models and empirically unpack the challenges of stigma detection. This dataset can facilitate research on computationally detecting, neutralizing, and counteracting mental-health stigma.
comment: Accepted to ACL 2025 Main Conference, 35 Pages
Automated Bias Assessment in AI-Generated Educational Content Using CEAT Framework
Recent advances in Generative Artificial Intelligence (GenAI) have transformed educational content creation, particularly in developing tutor training materials. However, biases embedded in AI-generated content--such as gender, racial, or national stereotypes--raise significant ethical and educational concerns. Despite the growing use of GenAI, systematic methods for detecting and evaluating such biases in educational materials remain limited. This study proposes an automated bias assessment approach that integrates the Contextualized Embedding Association Test with a prompt-engineered word extraction method within a Retrieval-Augmented Generation framework. We applied this method to AI-generated texts used in tutor training lessons. Results show a high alignment between the automated and manually curated word sets, with a Pearson correlation coefficient of r = 0.993, indicating reliable and consistent bias assessment. Our method reduces human subjectivity and enhances fairness, scalability, and reproducibility in auditing GenAI-produced educational content.
comment: Accepted by AIED 2025: Late-Breaking Results (LBR) Track
Adapting to LLMs: How Insiders and Outsiders Reshape Scientific Knowledge Production
CSCW has long examined how emerging technologies reshape the ways researchers collaborate and produce knowledge, with scientific knowledge production as a central area of focus. As AI becomes increasingly integrated into scientific research, understanding how researchers adapt to it reveals timely opportunities for CSCW research -- particularly in supporting new forms of collaboration, knowledge practices, and infrastructure in AI-driven science. This study quantifies LLM impacts on scientific knowledge production based on an evaluation workflow that combines an insider-outsider perspective with a knowledge production framework. Our findings reveal how LLMs catalyze both innovation and reorganization in scientific communities, offering insights into the broader transformation of knowledge production in the age of generative AI and sheds light on new research opportunities in CSCW.
Model Cards for AI Teammates: Comparing Human-AI Team Familiarization Methods for High-Stakes Environments
We compare three methods of familiarizing a human with an artificial intelligence (AI) teammate ("agent") prior to operation in a collaborative, fast-paced intelligence, surveillance, and reconnaissance (ISR) environment. In a between-subjects user study (n=60), participants either read documentation about the agent, trained alongside the agent prior to the mission, or were given no familiarization. Results showed that the most valuable information about the agent included details of its decision-making algorithms and its relative strengths and weaknesses compared to the human. This information allowed the familiarization groups to form sophisticated team strategies more quickly than the control group. Documentation-based familiarization led to the fastest adoption of these strategies, but also biased participants towards risk-averse behavior that prevented high scores. Participants familiarized through direct interaction were able to infer much of the same information through observation, and were more willing to take risks and experiment with different control modes, but reported weaker understanding of the agent's internal processes. Significant differences were seen between individual participants' risk tolerance and methods of AI interaction, which should be considered when designing human-AI control interfaces. Based on our findings, we recommend a human-AI team familiarization method that combines AI documentation, structured in-situ training, and exploratory interaction.
comment: Submitted to IEEE RO-MAN 2025 (under review). 8 pages, 7 figures
Gaze-Enhanced Multimodal Turn-Taking Prediction in Triadic Conversations
Turn-taking prediction is crucial for seamless interactions. This study introduces a novel, lightweight framework for accurate turn-taking prediction in triadic conversations without relying on computationally intensive methods. Unlike prior approaches that either disregard gaze or treat it as a passive signal, our model integrates gaze with speaker localization, structuring it within a spatial constraint to transform it into a reliable predictive cue. Leveraging egocentric behavioral cues, our experiments demonstrate that incorporating gaze data from a single-user significantly improves prediction performance, while gaze data from multiple-users further enhances it by capturing richer conversational dynamics. This study presents a lightweight and privacy-conscious approach to support adaptive, directional sound control, enhancing speech intelligibility in noisy environments, particularly for hearing assistance in smart glasses.
Conceptual Modeling: Topics, Themes, and Technology Trends
Conceptual modeling is an important part of information systems development and use that involves identifying and representing relevant aspects of reality. Although the past decades have experienced continuous digitalization of services and products that impact business and society, conceptual modeling efforts are still required to support new technologies as they emerge. This paper surveys research on conceptual modeling over the past five decades and shows how its topics and trends continue to evolve to accommodate emerging technologies, while remaining grounded in basic constructs. We survey over 5,300 papers that address conceptual modeling topics from the 1970s to the present, which are collected from 35 multidisciplinary journals and conferences, and use them as the basis from which to analyze the progression of conceptual modeling. The important role that conceptual modeling should play in our evolving digital world is discussed, and future research directions proposed.
Sight, Sound and Smell in Immersive Experiences of Urban History: Virtual Vauxhall Gardens Case Study
We explore the integration of multisensory elements in virtual reality reconstructions of historical spaces through a case study of the Virtual Vauxhall Gardens project. While visual and auditory components have become standard in digital heritage experiences, the addition of olfactory stimuli remains underexplored, despite its powerful connection to memory and emotional engagement. This research investigates how multisensory experiences involving olfaction can be effectively integrated into VR reconstructions of historical spaces to enhance presence and engagement with cultural heritage. In the context of a VR reconstruction of London's eighteenth-century Vauxhall Pleasure Gardens, we developed a networked portable olfactory display capable of synchronizing specific scents with visual and auditory elements at pivotal moments in the virtual experience. Our evaluation methodology assesses both technical implementation and user experience, measuring presence, and usability metrics across diverse participant groups. Our results show that integrating synchronized olfactory stimuli into the VR experience can enhance user engagement and be perceived positively, contributing to a unique and immersive encounter with historical settings. While presence questionnaires indicated a strong sense of auditory presence and control, with other sensory factors rated moderately, user experience of attractiveness was exceptionally high; qualitative feedback suggested heightened sensory awareness and engagement influenced by the inclusion and anticipation of smell. Our results suggest that evaluating multisensory VR heritage experiences requires a nuanced approach, as standard usability metrics may be ill-suited and 'realism' might be less critical than creating an evocative, historically informed, and emotionally resonant experience......
comment: 24 pages, 10 figures
Aligning Trustworthy AI with Democracy: A Dual Taxonomy of Opportunities and Risks
Artificial Intelligence (AI) poses both significant risks and valuable opportunities for democratic governance. This paper introduces a dual taxonomy to evaluate AI's complex relationship with democracy: the AI Risks to Democracy (AIRD) taxonomy, which identifies how AI can undermine core democratic principles such as autonomy, fairness, and trust; and the AI's Positive Contributions to Democracy (AIPD) taxonomy, which highlights AI's potential to enhance transparency, participation, efficiency, and evidence-based policymaking. Grounded in the European Union's approach to ethical AI governance, and particularly the seven Trustworthy AI requirements proposed by the European Commission's High-Level Expert Group on AI, each identified risk is aligned with mitigation strategies based on EU regulatory and normative frameworks. Our analysis underscores the transversal importance of transparency and societal well-being across all risk categories and offers a structured lens for aligning AI systems with democratic values. By integrating democratic theory with practical governance tools, this paper offers a normative and actionable framework to guide research, regulation, and institutional design to support trustworthy, democratic AI. It provides scholars with a conceptual foundation to evaluate the democratic implications of AI, equips policymakers with structured criteria for ethical oversight, and helps technologists align system design with democratic principles. In doing so, it bridges the gap between ethical aspirations and operational realities, laying the groundwork for more inclusive, accountable, and resilient democratic systems in the algorithmic age.
comment: 26 pages, 5 figures
Agreeing and Disagreeing in Collaborative Knowledge Graph Construction: An Analysis of Wikidata
In this work, we study disagreements in discussions around Wikidata, an online knowledge community that builds the data backend of Wikipedia. Discussions are essential in collaborative work as they can increase contributor performance and encourage the emergence of shared norms and practices. While disagreements can play a productive role in discussions, they can also lead to conflicts and controversies, which impact contributor' well-being and their motivation to engage. We want to understand if and when such phenomena arise in Wikidata, using a mix of quantitative and qualitative analyses to identify the types of topics people disagree about, the most common patterns of interaction, and roles people play when arguing for or against an issue. We find that decisions to create Wikidata properties are much faster than those to delete properties and that more than half of controversial discussions do not lead to consensus. Our analysis suggests that Wikidata is an inclusive community, considering different opinions when making decisions, and that conflict and vandalism are rare in discussions. At the same time, while one-fourth of the editors participating in controversial discussions contribute legitimate and insightful opinions about Wikidata's emerging issues, they respond with one or two posts and do not remain engaged in the discussions to reach consensus. Our work contributes to the analysis of collaborative KG construction with insights about communication and decision-making in projects, as well as with methodological directions and open datasets. We hope our findings will help managers and designers support community decision-making and improve discussion tools and practices.
comment: The paper has been accepted at the Journal of Web Semantics
Design for Hope: Cultivating Deliberate Hope in the Face of Complex Societal Challenges
Design has the potential to cultivate hope in the face of complex societal challenges, especially those central to CSCW research. These challenges are often addressed through efforts aimed at harm reduction and prevention -- essential but sometimes limiting approaches that can unintentionally narrow our collective sense of what is possible. This one-day, in-person workshop builds on the Positech Workshop at CSCW 2024 (https://positech-cscw-2024.github.io/) by offering practical ways to move beyond reactive problem-solving toward building capacity for proactive goal setting and generating pathways forward. We explore how collaborative and reflective design methodologies can help research communities navigate uncertainty, expand possibilities, and foster meaningful change. By connecting design thinking with hope theory, which frames hope as the interplay of "goal-directed," "pathways," and "agentic" thinking, we will examine how researchers might chart new directions in the face of complexity and constraint. Through hands-on activities including problem reframing, building a shared taxonomy of design methods that align with hope theory, and reflecting on what it means to sustain hopeful research trajectories, participants will develop strategies to embed a deliberately hopeful approach into their research.
Design Opportunities for Explainable AI Paraphrasing Tools: A User Study with Non-native English Speakers
We investigate how non-native English speakers (NNESs) interact with diverse information aids to assess and select AI-generated paraphrases. We develop ParaScope, an AI paraphrasing assistant that integrates diverse information aids, such as back-translation, explanations, and usage examples, and logs user interaction data. Our in-lab study with 22 NNESs reveals that user preferences for information aids vary by language proficiency, with workflows progressing from global to more detailed information. While back-translation was the most frequently used aid, it was not a decisive factor in suggestion acceptance; users combined multiple information aids to make informed decisions. Our findings demonstrate the potential of explainable AI paraphrasing tools to enhance NNESs' confidence, autonomy, and writing efficiency, while also emphasizing the importance of thoughtful design to prevent information overload. Based on these findings, we offer design implications for explainable AI paraphrasing tools that support NNESs in making informed decisions when using AI writing systems.
comment: Published as a conference paper at DIS 2025
How Good is ChatGPT in Giving Advice on Your Visualization Design?
Data visualization creators often lack formal training, resulting in a knowledge gap in design practice. Large language models such as ChatGPT, with their vast internet-scale training data, offer transformative potential to address this gap. In this study, we used both qualitative and quantitative methods to investigate how well ChatGPT can address visualization design questions. First, we quantitatively compared the ChatGPT-generated responses with anonymous online Human replies to data visualization questions on the VisGuides user forum. Next, we conducted a qualitative user study examining the reactions and attitudes of practitioners toward ChatGPT as a visualization design assistant. Participants were asked to bring their visualizations and design questions and received feedback from both Human experts and ChatGPT in randomized order. Our findings from both studies underscore ChatGPT's strengths, particularly its ability to rapidly generate diverse design options, while also highlighting areas for improvement, such as nuanced contextual understanding and fluid interaction dynamics beyond the chat interface. Drawing on these insights, we discuss design considerations for future LLM-based design feedback systems.
comment: 34 pages, 4 figures
PlanFitting: Personalized Exercise Planning with Large Language Model-driven Conversational Agent
Creating personalized and actionable exercise plans often requires iteration with experts, which can be costly and inaccessible to many individuals. This work explores the capabilities of Large Language Models (LLMs) in addressing these challenges. We present PlanFitting, an LLM-driven conversational agent that assists users in creating and refining personalized weekly exercise plans. By engaging users in free-form conversations, PlanFitting helps elicit users' goals, availabilities, and potential obstacles, and enables individuals to generate personalized exercise plans aligned with established exercise guidelines. Our study -- involving a user study, intrinsic evaluation, and expert evaluation -- demonstrated PlanFitting's ability to guide users to create tailored, actionable, and evidence-based plans. We discuss future design opportunities for LLM-driven conversational agents to create plans that better comply with exercise principles and accommodate personal constraints.
comment: 17 pages including reference. Accepted to ACM CUI 2025
Creating General User Models from Computer Use
Human-computer interaction has long imagined technology that understands us-from our preferences and habits, to the timing and purpose of our everyday actions. Yet current user models remain fragmented, narrowly tailored to specific apps, and incapable of the flexible reasoning required to fulfill these visions. This paper presents an architecture for a general user model (GUM) that learns about you by observing any interaction you have with your computer. The GUM takes as input any unstructured observation of a user (e.g., device screenshots) and constructs confidence-weighted propositions that capture user knowledge and preferences. GUMs can infer that a user is preparing for a wedding they're attending from messages with a friend. Or recognize that a user is struggling with a collaborator's feedback on a draft by observing multiple stalled edits and a switch to reading related work. GUMs introduce an architecture that infers new propositions about a user from multimodal observations, retrieves related propositions for context, and continuously revises existing propositions. To illustrate the breadth of applications that GUMs enable, we demonstrate how they augment chat-based assistants with context, manage OS notifications to selectively surface important information, and enable interactive agents that adapt to preferences across apps. We also instantiate proactive assistants (GUMBOs) that discover and execute useful suggestions on a user's behalf using their GUM. In our evaluations, we find that GUMs make calibrated and accurate inferences about users, and that assistants built on GUMs proactively identify and perform actions that users wouldn't think to request explicitly. Altogether, GUMs introduce methods that leverage multimodal models to understand unstructured context, enabling long-standing visions of HCI and entirely new interactive systems that anticipate user needs.
comment: 22 pages, 6 figures, 1 table; see https://generalusermodels.github.io/
Text2VP: Generative AI for Visual Programming and Parametric Modeling
The integration of generative artificial intelligence (AI) into architectural design has advanced significantly, enabling the generation of text, images, and 3D models. However, prior AI applications lack support for text-to-parametric models, essential for generating and optimizing diverse parametric design options. This study introduces Text-to-Visual Programming (Text2VP) GPT, a novel generative AI derived from GPT-4.1, designed to automate graph-based visual programming workflows, parameters, and their interconnections. Text2VP leverages detailed documentation, specific instructions, and example-driven few-shot learning to reflect user intentions accurately and facilitate interactive parameter adjustments. Testing demonstrates Text2VP's capability in generating functional parametric models, although higher complexity models present increased error rates. This research highlights generative AI's potential in visual programming and parametric modeling, laying groundwork for future improvements to manage complex modeling tasks. Ultimately, Text2VP aims to enable designers to easily create and modify parametric models without extensive training in specialized platforms like Grasshopper.
comment: Demonstration Video: https://www.youtube.com/playlist?list=PLUOmOLuLSaDWss2En2buixBxvTPy-lDvA
Scalable Exploration via Ensemble++
Thompson Sampling is a principled method for balancing exploration and exploitation, but its real-world adoption faces computational challenges in large-scale or non-conjugate settings. While ensemble-based approaches offer partial remedies, they typically require prohibitively large ensemble sizes. We propose Ensemble++, a scalable exploration framework using a novel shared-factor ensemble architecture with random linear combinations. For linear bandits, we provide theoretical guarantees showing that Ensemble++ achieves regret comparable to exact Thompson Sampling with only $\Theta(d \log T)$ ensemble sizes--significantly outperforming prior methods. Crucially, this efficiency holds across both compact and finite action sets with either time-invariant or time-varying contexts without configuration changes. We extend this theoretical foundation to nonlinear rewards by replacing fixed features with learnable neural representations while preserving the same incremental update principle, effectively bridging theory and practice for real-world tasks. Comprehensive experiments across linear, quadratic, neural, and GPT-based contextual bandits validate our theoretical findings and demonstrate Ensemble++'s superior regret-computation tradeoff versus state-of-the-art methods.
comment: 53 pages
The GenUI Study: Exploring the Design of Generative UI Tools to Support UX Practitioners and Beyond
AI can now generate high-fidelity UI mock-up screens from a high-level textual description, promising to support UX practitioners' work. However, it remains unclear how UX practitioners would adopt such Generative UI (GenUI) models in a way that is integral and beneficial to their work. To answer this question, we conducted a formative study with 37 UX-related professionals that consisted of four roles: UX designers, UX researchers, software engineers, and product managers. Using a state-of-the-art GenUI tool, each participant went through a week-long, individual mini-project exercise with role-specific tasks, keeping a daily journal of their usage and experiences with GenUI, followed by a semi-structured interview. We report findings on participants' workflow using the GenUI tool, how GenUI can support all and each specific roles, and existing gaps between GenUI and users' needs and expectations, which lead to design implications to inform future work on GenUI development.
Cross-Lingual Consistency of Factual Knowledge in Multilingual Language Models EMNLP2023
Multilingual large-scale Pretrained Language Models (PLMs) have been shown to store considerable amounts of factual knowledge, but large variations are observed across languages. With the ultimate goal of ensuring that users with different language backgrounds obtain consistent feedback from the same model, we study the cross-lingual consistency (CLC) of factual knowledge in various multilingual PLMs. To this end, we propose a Ranking-based Consistency (RankC) metric to evaluate knowledge consistency across languages independently from accuracy. Using this metric, we conduct an in-depth analysis of the determining factors for CLC, both at model level and at language-pair level. Among other results, we find that increasing model size leads to higher factual probing accuracy in most languages, but does not improve cross-lingual consistency. Finally, we conduct a case study on CLC when new factual associations are inserted in the PLMs via model editing. Results on a small sample of facts inserted in English reveal a clear pattern whereby the new piece of knowledge transfers only to languages with which English has a high RankC score.
comment: EMNLP2023 Outstanding Paper (Multilinguality and Linguistic Diversity Track). All code and data are released at https://github.com/Betswish/Cross-Lingual-Consistency
Image and Video Processing
FreqSelect: Frequency-Aware fMRI-to-Image Reconstruction
Reconstructing natural images from functional magnetic resonance imaging (fMRI) data remains a core challenge in natural decoding due to the mismatch between the richness of visual stimuli and the noisy, low resolution nature of fMRI signals. While recent two-stage models, combining deep variational autoencoders (VAEs) with diffusion models, have advanced this task, they treat all spatial-frequency components of the input equally. This uniform treatment forces the model to extract meaning features and suppress irrelevant noise simultaneously, limiting its effectiveness. We introduce FreqSelect, a lightweight, adaptive module that selectively filters spatial-frequency bands before encoding. By dynamically emphasizing frequencies that are most predictive of brain activity and suppressing those that are uninformative, FreqSelect acts as a content-aware gate between image features and natural data. It integrates seamlessly into standard very deep VAE-diffusion pipelines and requires no additional supervision. Evaluated on the Natural Scenes dataset, FreqSelect consistently improves reconstruction quality across both low- and high-level metrics. Beyond performance gains, the learned frequency-selection patterns offer interpretable insights into how different visual frequencies are represented in the brain. Our method generalizes across subjects and scenes, and holds promise for extension to other neuroimaging modalities, offering a principled approach to enhancing both decoding accuracy and neuroscientific interpretability.
comment: Research report
Exploring Sparsity for Parameter Efficient Fine Tuning Using Wavelets
Efficiently adapting large foundation models is critical, especially with tight compute and memory budgets. Parameter-Efficient Fine-Tuning (PEFT) methods such as LoRA offer limited granularity and effectiveness in few-parameter regimes. We propose Wavelet Fine-Tuning (WaveFT), a novel PEFT method that learns highly sparse updates in the wavelet domain of residual matrices. WaveFT allows precise control of trainable parameters, offering fine-grained capacity adjustment and excelling with remarkably low parameter count, potentially far fewer than LoRA's minimum -- ideal for extreme parameter-efficient scenarios. In order to demonstrate the effect of the wavelet transform, we compare WaveFT with a special case, called SHiRA, that entails applying sparse updates directly in the weight domain. Evaluated on personalized text-to-image generation using Stable Diffusion XL as baseline, WaveFT significantly outperforms LoRA and other PEFT methods, especially at low parameter counts; achieving superior subject fidelity, prompt alignment, and image diversity.
Mutual Evidential Deep Learning for Medical Image Segmentation
Existing semi-supervised medical segmentation co-learning frameworks have realized that model performance can be diminished by the biases in model recognition caused by low-quality pseudo-labels. Due to the averaging nature of their pseudo-label integration strategy, they fail to explore the reliability of pseudo-labels from different sources. In this paper, we propose a mutual evidential deep learning (MEDL) framework that offers a potentially viable solution for pseudo-label generation in semi-supervised learning from two perspectives. First, we introduce networks with different architectures to generate complementary evidence for unlabeled samples and adopt an improved class-aware evidential fusion to guide the confident synthesis of evidential predictions sourced from diverse architectural networks. Second, utilizing the uncertainty in the fused evidence, we design an asymptotic Fisher information-based evidential learning strategy. This strategy enables the model to initially focus on unlabeled samples with more reliable pseudo-labels, gradually shifting attention to samples with lower-quality pseudo-labels while avoiding over-penalization of mislabeled classes in high data uncertainty samples. Additionally, for labeled data, we continue to adopt an uncertainty-driven asymptotic learning strategy, gradually guiding the model to focus on challenging voxels. Extensive experiments on five mainstream datasets have demonstrated that MEDL achieves state-of-the-art performance.
Trustworthy Image Super-Resolution via Generative Pseudoinverse
We consider the problem of trustworthy image restoration, taking the form of a constrained optimization over the prior density. To this end, we develop generative models for the task of image super-resolution that respect the degradation process and that can be made asymptotically consistent with the low-resolution measurements, outperforming existing methods by a large margin in that respect.
Attention-Enhanced U-Net for Accurate Segmentation of COVID-19 Infected Lung Regions in CT Scans
In this study, we propose a robust methodology for automatic segmentation of infected lung regions in COVID-19 CT scans using convolutional neural networks. The approach is based on a modified U-Net architecture enhanced with attention mechanisms, data augmentation, and postprocessing techniques. It achieved a Dice coefficient of 0.8658 and mean IoU of 0.8316, outperforming other methods. The dataset was sourced from public repositories and augmented for diversity. Results demonstrate superior segmentation performance. Future work includes expanding the dataset, exploring 3D segmentation, and preparing the model for clinical deployment.
comment: 14 pages, 9 figures, created using Google Colab and PyTorch. Compares segmentation models for COVID-19 CT data
PRETI: Patient-Aware Retinal Foundation Model via Metadata-Guided Representation Learning MICCAI2025
Retinal foundation models have significantly advanced retinal image analysis by leveraging self-supervised learning to reduce dependence on labeled data while achieving strong generalization. Many recent approaches enhance retinal image understanding using report supervision, but obtaining clinical reports is often costly and challenging. In contrast, metadata (e.g., age, gender) is widely available and serves as a valuable resource for analyzing disease progression. To effectively incorporate patient-specific information, we propose PRETI, a retinal foundation model that integrates metadata-aware learning with robust self-supervised representation learning. We introduce Learnable Metadata Embedding (LME), which dynamically refines metadata representations. Additionally, we construct patient-level data pairs, associating images from the same individual to improve robustness against non-clinical variations. To further optimize retinal image representation, we propose Retina-Aware Adaptive Masking (RAAM), a strategy that selectively applies masking within the retinal region and dynamically adjusts the masking ratio during training. PRETI captures both global structures and fine-grained pathological details, resulting in superior diagnostic performance. Extensive experiments demonstrate that PRETI achieves state-of-the-art results across diverse diseases and biomarker predictions using in-house and public data, indicating the importance of metadata-guided foundation models in retinal disease analysis. Our code and pretrained model are available at https://github.com/MICV-yonsei/PRETI
comment: MICCAI2025 early accept
CTLformer: A Hybrid Denoising Model Combining Convolutional Layers and Self-Attention for Enhanced CT Image Reconstruction
Low-dose CT (LDCT) images are often accompanied by significant noise, which negatively impacts image quality and subsequent diagnostic accuracy. To address the challenges of multi-scale feature fusion and diverse noise distribution patterns in LDCT denoising, this paper introduces an innovative model, CTLformer, which combines convolutional structures with transformer architecture. Two key innovations are proposed: a multi-scale attention mechanism and a dynamic attention control mechanism. The multi-scale attention mechanism, implemented through the Token2Token mechanism and self-attention interaction modules, effectively captures both fine details and global structures at different scales, enhancing relevant features and suppressing noise. The dynamic attention control mechanism adapts the attention distribution based on the noise characteristics of the input image, focusing on high-noise regions while preserving details in low-noise areas, thereby enhancing robustness and improving denoising performance. Furthermore, CTLformer integrates convolutional layers for efficient feature extraction and uses overlapping inference to mitigate boundary artifacts, further strengthening its denoising capability. Experimental results on the 2016 National Institutes of Health AAPM Mayo Clinic LDCT Challenge dataset demonstrate that CTLformer significantly outperforms existing methods in both denoising performance and model efficiency, greatly improving the quality of LDCT images. The proposed CTLformer not only provides an efficient solution for LDCT denoising but also shows broad potential in medical image analysis, especially for clinical applications dealing with complex noise patterns.
A Comprehensive Review of Techniques, Algorithms, Advancements, Challenges, and Clinical Applications of Multi-modal Medical Image Fusion for Improved Diagnosis
Multi-modal medical image fusion (MMIF) is increasingly recognized as an essential technique for enhancing diagnostic precision and facilitating effective clinical decision-making within computer-aided diagnosis systems. MMIF combines data from X-ray, MRI, CT, PET, SPECT, and ultrasound to create detailed, clinically useful images of patient anatomy and pathology. These integrated representations significantly advance diagnostic accuracy, lesion detection, and segmentation. This comprehensive review meticulously surveys the evolution, methodologies, algorithms, current advancements, and clinical applications of MMIF. We present a critical comparative analysis of traditional fusion approaches, including pixel-, feature-, and decision-level methods, and delves into recent advancements driven by deep learning, generative models, and transformer-based architectures. A critical comparative analysis is presented between these conventional methods and contemporary techniques, highlighting differences in robustness, computational efficiency, and interpretability. The article addresses extensive clinical applications across oncology, neurology, and cardiology, demonstrating MMIF's vital role in precision medicine through improved patient-specific therapeutic outcomes. Moreover, the review thoroughly investigates the persistent challenges affecting MMIF's broad adoption, including issues related to data privacy, heterogeneity, computational complexity, interpretability of AI-driven algorithms, and integration within clinical workflows. It also identifies significant future research avenues, such as the integration of explainable AI, adoption of privacy-preserving federated learning frameworks, development of real-time fusion systems, and standardization efforts for regulatory compliance.
comment: computerized medical imaging and graphics Journal submission
TSLFormer: A Lightweight Transformer Model for Turkish Sign Language Recognition Using Skeletal Landmarks
This study presents TSLFormer, a light and robust word-level Turkish Sign Language (TSL) recognition model that treats sign gestures as ordered, string-like language. Instead of using raw RGB or depth videos, our method only works with 3D joint positions - articulation points - extracted using Google's Mediapipe library, which focuses on the hand and torso skeletal locations. This creates efficient input dimensionality reduction while preserving important semantic gesture information. Our approach revisits sign language recognition as sequence-to-sequence translation, inspired by the linguistic nature of sign languages and the success of transformers in natural language processing. Since TSLFormer uses the self-attention mechanism, it effectively captures temporal co-occurrence within gesture sequences and highlights meaningful motion patterns as words unfold. Evaluated on the AUTSL dataset with over 36,000 samples and 227 different words, TSLFormer achieves competitive performance with minimal computational cost. These results show that joint-based input is sufficient for enabling real-time, mobile, and assistive communication systems for hearing-impaired individuals.
Submillimeter-Accurate 3D Lumbar Spine Reconstruction from Biplanar X-Ray Images: Incorporating a Multi-Task Network and Landmark-Weighted Loss
Three-dimensional reconstruction of the spine under weight-bearing conditions from biplanar X-ray images is of great importance for the clinical assessment of spinal diseases. However, the current fully automated reconstruction methods only achieve millimeter-level accuracy, making it difficult to meet clinical standards. This study developed and validated a fully automated method for high-accuracy 3D reconstruction of the lumbar spine from biplanar X-ray images. The method involves lumbar decomposition and landmark detection from the raw X-ray images, followed by a deformable model and landmark-weighted 2D-3D registration approach. The reconstruction accuracy was validated by the gold standard obtained through the registration of CT-segmented vertebral models with the biplanar X-ray images. The proposed method achieved a 3D reconstruction accuracy of 0.80mm, representing a significant improvement over the mainstream approaches. This study will contribute to the clinical diagnosis of lumbar in weight-bearing positions.
comment: 24 pages, 11 figures, 5 tables
TSLFormer: A Lightweight Transformer Model for Turkish Sign Language Recognition Using Skeletal Landmarks
This study presents TSLFormer, a light and robust word-level Turkish Sign Language (TSL) recognition model that treats sign gestures as ordered, string-like language. Instead of using raw RGB or depth videos, our method only works with 3D joint positions - articulation points - extracted using Google's Mediapipe library, which focuses on the hand and torso skeletal locations. This creates efficient input dimensionality reduction while preserving important semantic gesture information. Our approach revisits sign language recognition as sequence-to-sequence translation, inspired by the linguistic nature of sign languages and the success of transformers in natural language processing. Since TSLFormer uses the self-attention mechanism, it effectively captures temporal co-occurrence within gesture sequences and highlights meaningful motion patterns as words unfold. Evaluated on the AUTSL dataset with over 36,000 samples and 227 different words, TSLFormer achieves competitive performance with minimal computational cost. These results show that joint-based input is sufficient for enabling real-time, mobile, and assistive communication systems for hearing-impaired individuals.
Multimedia
Rebalancing Contrastive Alignment with Learnable Semantic Gaps in Text-Video Retrieval
Recent advances in text-video retrieval have been largely driven by contrastive learning frameworks. However, existing methods overlook a key source of optimization tension: the separation between text and video distributions in the representation space (referred to as the modality gap), and the prevalence of false negatives in batch sampling. These factors lead to conflicting gradients under the InfoNCE loss, impeding stable alignment. To mitigate this, we propose GARE, a Gap-Aware Retrieval framework that introduces a learnable, pair-specific increment Delta_ij between text t_i and video v_j to offload the tension from the global anchor representation. We first derive the ideal form of Delta_ij via a coupled multivariate first-order Taylor approximation of the InfoNCE loss under a trust-region constraint, revealing it as a mechanism for resolving gradient conflicts by guiding updates along a locally optimal descent direction. Due to the high cost of directly computing Delta_ij, we introduce a lightweight neural module conditioned on the semantic gap between each video-text pair, enabling structure-aware correction guided by gradient supervision. To further stabilize learning and promote interpretability, we regularize Delta using three components: a trust-region constraint to prevent oscillation, a directional diversity term to promote semantic coverage, and an information bottleneck to limit redundancy. Experiments across four retrieval benchmarks show that GARE consistently improves alignment accuracy and robustness to noisy supervision, confirming the effectiveness of gap-aware tension mitigation.
Protocol as Poetry: Case Study on Pak's Protocol Arts
Protocol art emerges at the confluence of blockchain-based smart contracts and a century-long lineage of conceptual art, participatory art, and algorithmic generative art practices. Yet existing definitions-most notably Primavera De Filippi's "protocolism"-struggle to demarcate this nascent genre from other art forms in practice. Addressing this definition-to-practice gap, this paper offers a focused case study of pioneering protocol artworks by Pak, an early and influential pseudonymous protocol artist who treats smart contracts as medium and protocol participation as message. Tracing the evolution from early open-edition releases of The Fungible and the dynamic mechanics of Merge to the soul-bound messaging of Censored and the reflective absence of Not Found, we examine how Pak choreographs distributed agency across collectors and autonomous contracts, showing how programmable protocols become a social fabric in artistic meaning-making. Through thematic analysis of Pak's works, we identify seven core characteristics that distinguish protocol art: (1) system-centric rather than object-centric composition, (2) autonomous governance for open-ended control, (3) distributed agency and communal authorship, (4) temporal dynamism and lifecycle aesthetics, (5) economic-driven engagement, (6) poetic message embedding in interaction rituals, and (7) interoperability enabling composability for emergence. We then discuss how these features set protocol art apart from adjacent artistic movements. By developing a theoretical framework grounded in Pak's practice, we contribute to the emerging literature on protocolism while offering design implications for artists shaping this evolving art form.
comment: Submitted to Ars Electronica Expanded Conference 2025 Research Paper
VoiceCloak: A Multi-Dimensional Defense Framework against Unauthorized Diffusion-based Voice Cloning
Diffusion Models (DMs) have achieved remarkable success in realistic voice cloning (VC), while they also increase the risk of malicious misuse. Existing proactive defenses designed for traditional VC models aim to disrupt the forgery process, but they have been proven incompatible with DMs due to the intricate generative mechanisms of diffusion. To bridge this gap, we introduce VoiceCloak, a multi-dimensional proactive defense framework with the goal of obfuscating speaker identity and degrading perceptual quality in potential unauthorized VC. To achieve these goals, we conduct a focused analysis to identify specific vulnerabilities within DMs, allowing VoiceCloak to disrupt the cloning process by introducing adversarial perturbations into the reference audio. Specifically, to obfuscate speaker identity, VoiceCloak first targets speaker identity by distorting representation learning embeddings to maximize identity variation, which is guided by auditory perception principles. Additionally, VoiceCloak disrupts crucial conditional guidance processes, particularly attention context, thereby preventing the alignment of vocal characteristics that are essential for achieving convincing cloning. Then, to address the second objective, VoiceCloak introduces score magnitude amplification to actively steer the reverse trajectory away from the generation of high-quality speech. Noise-guided semantic corruption is further employed to disrupt structural speech semantics captured by DMs, degrading output quality. Extensive experiments highlight VoiceCloak's outstanding defense success rate against unauthorized diffusion-based voice cloning. Audio samples of VoiceCloak are available at https://voice-cloak.github.io/VoiceCloak/.
REArtGS: Reconstructing and Generating Articulated Objects via 3D Gaussian Splatting with Geometric and Motion Constraints
Articulated objects, as prevalent entities in human life, their 3D representations play crucial roles across various applications. However, achieving both high-fidelity textured surface reconstruction and dynamic generation for articulated objects remains challenging for existing methods. In this paper, we present REArtGS, a novel framework that introduces additional geometric and motion constraints to 3D Gaussian primitives, enabling high-quality textured surface reconstruction and generation for articulated objects. Specifically, given multi-view RGB images of arbitrary two states of articulated objects, we first introduce an unbiased Signed Distance Field (SDF) guidance to regularize Gaussian opacity fields, enhancing geometry constraints and improving surface reconstruction quality. Then we establish deformable fields for 3D Gaussians constrained by the kinematic structures of articulated objects, achieving unsupervised generation of surface meshes in unseen states. Extensive experiments on both synthetic and real datasets demonstrate our approach achieves high-quality textured surface reconstruction for given states, and enables high-fidelity surface generation for unseen states. Codes will be released after acceptance and the project website is at https://sites.google.com/view/reartgs/home.
comment: 11pages, 6 figures
Human-Computer Interaction
Development of a non-wearable support robot capable of reproducing natural standing-up movements
To reproduce natural standing-up motion, recent studies have emphasized the importance of coordination between the assisting robot and the human. However, many non-wearable assistive devices have struggled to replicate natural motion trajectories. While wearable devices offer better coordination with the human body, they present challenges in completely isolating mechanical and electrical hazards. To address this, we developed a novel standing-assist robot that integrates features of both wearable and non-wearable systems, aiming to achieve high coordination while maintaining safety. The device employs a four-link mechanism aligned with the human joint structure, designed to reproduce the S-shaped trajectory of the hip and the arc trajectory of the knee during natural standing-up motion. Subject-specific trajectory data were obtained using a gyroscope, and the link lengths were determined to drive the seat along the optimal path. A feedforward speed control using a stepping motor was implemented, and the reproducibility of the trajectory was evaluated based on the geometric constraints of the mechanism. A load-bearing experiment with weights fixed to the seat was conducted to assess the trajectory accuracy under different conditions. Results showed that the reproduction errors for the hip and knee trajectories remained within approximately 4 percent of the seat's total displacement, demonstrating high fidelity to the target paths. In addition, durability testing, thermal safety evaluation, and risk assessment confirmed the reliability and safety of the system for indoor use. These findings suggest that the proposed design offers a promising approach for developing assistive technologies that adapt to individual physical characteristics, with potential applications in elderly care and rehabilitation.
Towards Immersive Mixed Reality Street Play: Understanding Collocated Bodily Play with See-through Head-Mounted Displays in Public Spaces SC
We're witnessing an upcoming paradigm shift as Mixed Reality (MR) See-through Head-Mounted Displays (HMDs) become ubiquitous, with use shifting from controlled, private settings to spontaneous, public ones. While location-based pervasive mobile games like Pok\'emon GO have seen success, the embodied interaction of MR HMDs is moving us from phone-based screen-touching gameplay to MR HMD-enabled collocated bodily play. Major tech companies are continuously releasing visionary videos where urban streets transform into vast mixed reality playgrounds-imagine Harry Potter-style wizard duels on city streets. However, few researchers have conducted real-world, in-the-wild studies of such Immersive Mixed Reality Street Play (IMRSP) in public spaces in anticipation of a near future with prevalent MR HMDs. Through empirical studies on a series of research-through-design game probes called Multiplayer Omnipresent Fighting Arena (MOFA), we gain initial understanding of this under-explored area by identifying the social implications, challenges, and opportunities of this new paradigm.
comment: Submitted to CSCW 2025
ViEEG: Hierarchical Neural Coding with Cross-Modal Progressive Enhancement for EEG-Based Visual Decoding
Understanding and decoding brain activity into visual representations is a fundamental challenge at the intersection of neuroscience and artificial intelligence. While EEG-based visual decoding has shown promise due to its non-invasive, low-cost nature and millisecond-level temporal resolution, existing methods are limited by their reliance on flat neural representations that overlook the brain's inherent visual hierarchy. In this paper, we introduce ViEEG, a biologically inspired hierarchical EEG decoding framework that aligns with the Hubel-Wiesel theory of visual processing. ViEEG decomposes each visual stimulus into three biologically aligned components-contour, foreground object, and contextual scene-serving as anchors for a three-stream EEG encoder. These EEG features are progressively integrated via cross-attention routing, simulating cortical information flow from V1 to IT to the association cortex. We further adopt hierarchical contrastive learning to align EEG representations with CLIP embeddings, enabling zero-shot object recognition. Extensive experiments on the THINGS-EEG dataset demonstrate that ViEEG achieves state-of-the-art performance, with 40.9% Top-1 accuracy in subject-dependent and 22.9% Top-1 accuracy in cross-subject settings, surpassing existing methods by over 45%. Our framework not only advances the performance frontier but also sets a new paradigm for biologically grounded brain decoding in AI.
comment: 24 pages, 18 figures
Wisdom from Diversity: Bias Mitigation Through Hybrid Human-LLM Crowds IJCAI 2025
Despite their performance, large language models (LLMs) can inadvertently perpetuate biases found in the data they are trained on. By analyzing LLM responses to bias-eliciting headlines, we find that these models often mirror human biases. To address this, we explore crowd-based strategies for mitigating bias through response aggregation. We first demonstrate that simply averaging responses from multiple LLMs, intended to leverage the "wisdom of the crowd", can exacerbate existing biases due to the limited diversity within LLM crowds. In contrast, we show that locally weighted aggregation methods more effectively leverage the wisdom of the LLM crowd, achieving both bias mitigation and improved accuracy. Finally, recognizing the complementary strengths of LLMs (accuracy) and humans (diversity), we demonstrate that hybrid crowds containing both significantly enhance performance and further reduce biases across ethnic and gender-related contexts.
comment: Accepted for publication in the Proceedings of the 34th International Joint Conference on Artificial Intelligence (IJCAI 2025)
Decoding the Mind of Large Language Models: A Quantitative Evaluation of Ideology and Biases
The widespread integration of Large Language Models (LLMs) across various sectors has highlighted the need for empirical research to understand their biases, thought patterns, and societal implications to ensure ethical and effective use. In this study, we propose a novel framework for evaluating LLMs, focusing on uncovering their ideological biases through a quantitative analysis of 436 binary-choice questions, many of which have no definitive answer. By applying our framework to ChatGPT and Gemini, findings revealed that while LLMs generally maintain consistent opinions on many topics, their ideologies differ across models and languages. Notably, ChatGPT exhibits a tendency to change their opinion to match the questioner's opinion. Both models also exhibited problematic biases, unethical or unfair claims, which might have negative societal impacts. These results underscore the importance of addressing both ideological and ethical considerations when evaluating LLMs. The proposed framework offers a flexible, quantitative method for assessing LLM behavior, providing valuable insights for the development of more socially aligned AI systems.
comment: 23 pages, 5 figures, 17 tables
USpeech: Ultrasound-Enhanced Speech with Minimal Human Effort via Cross-Modal Synthesis
Speech enhancement is crucial for ubiquitous human-computer interaction. Recently, ultrasound-based acoustic sensing has emerged as an attractive choice for speech enhancement because of its superior ubiquity and performance. However, due to inevitable interference from unexpected and unintended sources during audio-ultrasound data acquisition, existing solutions rely heavily on human effort for data collection and processing. This leads to significant data scarcity that limits the full potential of ultrasound-based speech enhancement. To address this, we propose USpeech, a cross-modal ultrasound synthesis framework for speech enhancement with minimal human effort. At its core is a two-stage framework that establishes the correspondence between visual and ultrasonic modalities by leveraging audio as a bridge. This approach overcomes challenges from the lack of paired video-ultrasound datasets and the inherent heterogeneity between video and ultrasound data. Our framework incorporates contrastive video-audio pre-training to project modalities into a shared semantic space and employs an audio-ultrasound encoder-decoder for ultrasound synthesis. We then present a speech enhancement network that enhances speech in the time-frequency domain and recovers the clean speech waveform via a neural vocoder. Comprehensive experiments show USpeech achieves remarkable performance using synthetic ultrasound data comparable to physical data, outperforming state-of-the-art ultrasound-based speech enhancement baselines. USpeech is open-sourced at https://github.com/aiot-lab/USpeech/.
comment: Accepted by Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (ACM IMWUT/UbiComp 2025)
Hand Dominance and Congruence for Wrist-worn Haptics using Custom Voice-Coil Actuation
During virtual interactions, rendering haptic feedback on a remote location (like the wrist) instead of the fingertips freeing users' hands from mechanical devices. This allows for real interactions while still providing information regarding the mechanical properties of virtual objects. In this paper, we present CoWrHap -- a novel wrist-worn haptic device with custom-made voice coil actuation to render force feedback. Then, we investigate the impact of asking participants to use their dominant or non-dominant hand for virtual interactions and the best mapping between the active hand and the wrist receiving the haptic feedback, which can be defined as hand-wrist congruence through a user experiment based on a stiffness discrimination task. Our results show that participants performed the tasks (i) better with non-congruent mapping but reported better experiences with congruent mapping, and (ii) with no statistical difference in terms of hand dominance but reported better user experience and enjoyment using their dominant hands. This study indicates that participants can perceive mechanical properties via haptic feedback provided through CoWrHap.
comment: 6 pages, 7 figures
SiCo: An Interactive Size-Controllable Virtual Try-On Approach for Informed Decision-Making
Virtual try-on (VTO) applications aim to replicate the in-store shopping experience and enhance online shopping by enabling users to interact with garments. However, many existing tools adopt a one-size-fits-all approach when visualizing clothing items. This approach limits user interaction with garments, particularly regarding size and fit adjustments, and fails to provide direct insights for size recommendations. As a result, these limitations contribute to high return rates in online shopping. To address this, we introduce SiCo, a new online VTO system that allows users to upload images of themselves and interact with garments by visualizing how different sizes would fit their bodies. Our user study demonstrates that our approach significantly improves users' ability to assess how outfits will appear on their bodies and increases their confidence in selecting clothing sizes that align with their preferences. Based on our evaluation, we believe that SiCo has the potential to reduce return rates and transform the online clothing shopping experience.
Simulated prosthetic vision confirms checkerboard as an effective raster pattern for epiretinal implants
Spatial scheduling of electrode activation ("rastering") is essential for safely operating high-density retinal implants, yet its perceptual consequences remain poorly understood. This study systematically evaluates the impact of raster patterns, or spatial arrangements of sequential electrode activation, on performance and perceived difficulty in simulated prosthetic vision (SPV). By addressing this gap, we aimed to identify patterns that optimize functional vision in retinal implants. Sighted participants completed letter recognition and motion discrimination tasks under four raster patterns (horizontal, vertical, checkerboard, and random) using an immersive SPV system. The simulations emulated epiretinal implant perception and employed psychophysically validated models of electrode activation, phosphene appearance, nonlinear spatial summation, and temporal dynamics, ensuring realistic representation of prosthetic vision. Performance accuracy and self-reported difficulty were analyzed to assess the effects of raster patterning. The checkerboard pattern consistently outperformed other raster patterns, yielding significantly higher accuracy and lower difficulty ratings across both tasks. The horizontal and vertical patterns introduced biases aligned with apparent motion artifacts, while the checkerboard minimized such effects. Random patterns resulted in the lowest performance, underscoring the importance of structured activation. Notably, checkerboard matched performance in the "No Raster" condition, despite conforming to groupwise safety constraints. This is the first quantitative, task-based evaluation of raster patterns in SPV. Checkerboard-style scheduling enhances perceptual clarity without increasing computational load, offering a low-overhead, clinically relevant strategy for improving usability in next-generation retinal prostheses.
Multimedia
Enhanced Multimodal Hate Video Detection via Channel-wise and Modality-wise Fusion ICDM
The rapid rise of video content on platforms such as TikTok and YouTube has transformed information dissemination, but it has also facilitated the spread of harmful content, particularly hate videos. Despite significant efforts to combat hate speech, detecting these videos remains challenging due to their often implicit nature. Current detection methods primarily rely on unimodal approaches, which inadequately capture the complementary features across different modalities. While multimodal techniques offer a broader perspective, many fail to effectively integrate temporal dynamics and modality-wise interactions essential for identifying nuanced hate content. In this paper, we present CMFusion, an enhanced multimodal hate video detection model utilizing a novel Channel-wise and Modality-wise Fusion Mechanism. CMFusion first extracts features from text, audio, and video modalities using pre-trained models and then incorporates a temporal cross-attention mechanism to capture dependencies between video and audio streams. The learned features are then processed by channel-wise and modality-wise fusion modules to obtain informative representations of videos. Our extensive experiments on a real-world dataset demonstrate that CMFusion significantly outperforms five widely used baselines in terms of accuracy, precision, recall, and F1 score. Comprehensive ablation studies and parameter analyses further validate our design choices, highlighting the model's effectiveness in detecting hate videos. The source codes will be made publicly available at https://github.com/EvelynZ10/cmfusion.
comment: ICDMW 2024, Github: https://github.com/EvelynZ10/cmfusion
Generating Digital Models Using Text-to-3D and Image-to-3D Prompts: Critical Case Study
In the world of technology and AI, digital models play an important role in our lives and are an essential part of the digital twins of real-world objects. They can be created by designers, artists, or game developers using spline curves and surfaces, meshes, and voxels, but making such models is too time-consuming. With the growth of AI tools, there is interest in the automated generation of 3D models, such as generative design approaches, which can save creators valuable time. This paper reviews several online 3D model generators and critically analyses the results, hoping to see higher-quality results from different prompts.
comment: 6 pages, 11 figures
PAHA: Parts-Aware Audio-Driven Human Animation with Diffusion Model
Audio-driven human animation technology is widely used in human-computer interaction, and the emergence of diffusion models has further advanced its development. Currently, most methods rely on multi-stage generation and intermediate representations, resulting in long inference time and issues with generation quality in specific foreground regions and audio-motion consistency. These shortcomings are primarily due to the lack of localized fine-grained supervised guidance. To address above challenges, we propose PAHA, an end-to-end audio-driven upper-body human animation framework with diffusion model. We introduce two key methods: Parts-Aware Re-weighting (PAR) and Parts Consistency Enhancement (PCE). PAR dynamically adjusts regional training loss weights based on pose confidence scores, effectively improving visual quality. PCE constructs and trains diffusion-based regional audio-visual classifiers to improve the consistency of motion and co-speech audio. Afterwards, we design two novel inference guidance methods for the foregoing classifiers, Sequential Guidance (SG) and Differential Guidance (DG), to balance efficiency and quality respectively. Additionally, we build CNAS, the first public Chinese News Anchor Speech dataset, to advance research and validation in this field. Extensive experimental results and user studies demonstrate that PAHA significantly outperforms existing methods in audio-motion alignment and video-related evaluations. The codes and CNAS dataset will be released upon acceptance.
ArrayDPS: Unsupervised Blind Speech Separation with a Diffusion Prior ICML2025
Blind Speech Separation (BSS) aims to separate multiple speech sources from audio mixtures recorded by a microphone array. The problem is challenging because it is a blind inverse problem, i.e., the microphone array geometry, the room impulse response (RIR), and the speech sources, are all unknown. We propose ArrayDPS to solve the BSS problem in an unsupervised, array-agnostic, and generative manner. The core idea builds on diffusion posterior sampling (DPS), but unlike DPS where the likelihood is tractable, ArrayDPS must approximate the likelihood by formulating a separate optimization problem. The solution to the optimization approximates room acoustics and the relative transfer functions between microphones. These approximations, along with the diffusion priors, iterate through the ArrayDPS sampling process and ultimately yield separated voice sources. We only need a simple single-speaker speech diffusion model as a prior along with the mixtures recorded at the microphones; no microphone array information is necessary. Evaluation results show that ArrayDPS outperforms all baseline unsupervised methods while being comparable to supervised methods in terms of SDR. Audio demos are provided at: https://arraydps.github.io/ArrayDPSDemo/.
comment: Paper Accepted at ICML2025 Demo: https://arraydps.github.io/ArrayDPSDemo/ Code: https://github.com/ArrayDPS/ArrayDPS
Image and Video Processing
WaLRUS: Wavelets for Long-range Representation Using SSMs
State-Space Models (SSMs) have proven to be powerful tools for modeling long-range dependencies in sequential data. While the recent method known as HiPPO has demonstrated strong performance, and formed the basis for machine learning models S4 and Mamba, it remains limited by its reliance on closed-form solutions for a few specific, well-behaved bases. The SaFARi framework generalized this approach, enabling the construction of SSMs from arbitrary frames, including non-orthogonal and redundant ones, thus allowing an infinite diversity of possible "species" within the SSM family. In this paper, we introduce WaLRUS (Wavelets for Long-range Representation Using SSMs), a new implementation of SaFARi built from Daubechies wavelets.
comment: 15 pages, 8 figures. Submitted to Neurips 2025
HISTAI: An Open-Source, Large-Scale Whole Slide Image Dataset for Computational Pathology
Recent advancements in Digital Pathology (DP), particularly through artificial intelligence and Foundation Models, have underscored the importance of large-scale, diverse, and richly annotated datasets. Despite their critical role, publicly available Whole Slide Image (WSI) datasets often lack sufficient scale, tissue diversity, and comprehensive clinical metadata, limiting the robustness and generalizability of AI models. In response, we introduce the HISTAI dataset, a large, multimodal, open-access WSI collection comprising over 60,000 slides from various tissue types. Each case in the HISTAI dataset is accompanied by extensive clinical metadata, including diagnosis, demographic information, detailed pathological annotations, and standardized diagnostic coding. The dataset aims to fill gaps identified in existing resources, promoting innovation, reproducibility, and the development of clinically relevant computational pathology solutions. The dataset can be accessed at https://github.com/HistAI/HISTAI.
Behind the Screens: Uncovering Bias in AI-Driven Video Interview Assessments Using Counterfactuals
AI-enhanced personality assessments are increasingly shaping hiring decisions, using affective computing to predict traits from the Big Five (OCEAN) model. However, integrating AI into these assessments raises ethical concerns, especially around bias amplification rooted in training data. These biases can lead to discriminatory outcomes based on protected attributes like gender, ethnicity, and age. To address this, we introduce a counterfactual-based framework to systematically evaluate and quantify bias in AI-driven personality assessments. Our approach employs generative adversarial networks (GANs) to generate counterfactual representations of job applicants by altering protected attributes, enabling fairness analysis without access to the underlying model. Unlike traditional bias assessments that focus on unimodal or static data, our method supports multimodal evaluation-spanning visual, audio, and textual features. This comprehensive approach is particularly important in high-stakes applications like hiring, where third-party vendors often provide AI systems as black boxes. Applied to a state-of-the-art personality prediction model, our method reveals significant disparities across demographic groups. We also validate our framework using a protected attribute classifier to confirm the effectiveness of our counterfactual generation. This work provides a scalable tool for fairness auditing of commercial AI hiring platforms, especially in black-box settings where training data and model internals are inaccessible. Our results highlight the importance of counterfactual approaches in improving ethical transparency in affective computing.
NTIRE 2025 Challenge on Efficient Burst HDR and Restoration: Datasets, Methods, and Results
This paper reviews the NTIRE 2025 Efficient Burst HDR and Restoration Challenge, which aims to advance efficient multi-frame high dynamic range (HDR) and restoration techniques. The challenge is based on a novel RAW multi-frame fusion dataset, comprising nine noisy and misaligned RAW frames with various exposure levels per scene. Participants were tasked with developing solutions capable of effectively fusing these frames while adhering to strict efficiency constraints: fewer than 30 million model parameters and a computational budget under 4.0 trillion FLOPs. A total of 217 participants registered, with six teams finally submitting valid solutions. The top-performing approach achieved a PSNR of 43.22 dB, showcasing the potential of novel methods in this domain. This paper provides a comprehensive overview of the challenge, compares the proposed solutions, and serves as a valuable reference for researchers and practitioners in efficient burst HDR and restoration.
Bayesian Deep Learning Approaches for Uncertainty-Aware Retinal OCT Image Segmentation for Multiple Sclerosis
Optical Coherence Tomography (OCT) provides valuable insights in ophthalmology, cardiology, and neurology due to high-resolution, cross-sectional images of the retina. One critical task for ophthalmologists using OCT is delineation of retinal layers within scans. This process is time-consuming and prone to human bias, affecting the accuracy and reliability of diagnoses. Previous efforts to automate delineation using deep learning face challenges in uptake from clinicians and statisticians due to the absence of uncertainty estimation, leading to "confidently wrong" models via hallucinations. In this study, we address these challenges by applying Bayesian convolutional neural networks (BCNNs) to segment an openly available OCT imaging dataset containing 35 human retina OCTs split between healthy controls and patients with multiple sclerosis. Our findings demonstrate that Bayesian models can be used to provide uncertainty maps of the segmentation, which can further be used to identify highly uncertain samples that exhibit recording artefacts such as noise or miscalibration at inference time. Our method also allows for uncertainty-estimation for important secondary measurements such as layer thicknesses, that are medically relevant for patients. We show that these features come in addition to greater performance compared to similar work over all delineations; with an overall Dice score of 95.65%. Our work brings greater clinical applicability, statistical robustness, and performance to retinal OCT segmentation.
A VCSEL based Photonic Neuromorphic Processor for Event-Based Imaging Flow Cytometry Applications
This work presents an optical neuromorphic imaging and processing cytometry system that integrates an excitable VCSEL-based time-delayed (TD) extreme learning machine with an event-based 2D camera. The proposed system is designed for the classification of Polymethyl Methacrylate (PMMA) particles of varying diameters moving at speeds between 0.01 and 0.1 m/s. The TD photonic scheme achieved a classification accuracy of 95.8% while encoding the original 2D images into a 1-bit spike stream containing a maximum of 96 spikes. Additionally, the binary representation of the synthetic frames enables a significant reduction in memory and hardware requirements, ranging from 98.4% to 99.5% and 50% to 84%, respectively. These findings demonstrate that the integration of neuromorphic computing with sensing can facilitate the development of low-power, low-latency applications optimized for resource-constrained environments
comment: 7 pages, 3 figures, journal submission
Joint Manifold Learning and Optimal Transport for Dynamic Imaging
Dynamic imaging is critical for understanding and visualizing dynamic biological processes in medicine and cell biology. These applications often encounter the challenge of a limited amount of time series data and time points, which hinders learning meaningful patterns. Regularization methods provide valuable prior knowledge to address this challenge, enabling the extraction of relevant information despite the scarcity of time-series data and time points. In particular, low-dimensionality assumptions on the image manifold address sample scarcity, while time progression models, such as optimal transport (OT), provide priors on image development to mitigate the lack of time points. Existing approaches using low-dimensionality assumptions disregard a temporal prior but leverage information from multiple time series. OT-prior methods, however, incorporate the temporal prior but regularize only individual time series, ignoring information from other time series of the same image modality. In this work, we investigate the effect of integrating a low-dimensionality assumption of the underlying image manifold with an OT regularizer for time-evolving images. In particular, we propose a latent model representation of the underlying image manifold and promote consistency between this representation, the time series data, and the OT prior on the time-evolving images. We discuss the advantages of enriching OT interpolations with latent models and integrating OT priors into latent models.
Bridging the Inter-Domain Gap through Low-Level Features for Cross-Modal Medical Image Segmentation
This paper addresses the task of cross-modal medical image segmentation by exploring unsupervised domain adaptation (UDA) approaches. We propose a model-agnostic UDA framework, LowBridge, which builds on a simple observation that cross-modal images share some similar low-level features (e.g., edges) as they are depicting the same structures. Specifically, we first train a generative model to recover the source images from their edge features, followed by training a segmentation model on the generated source images, separately. At test time, edge features from the target images are input to the pretrained generative model to generate source-style target domain images, which are then segmented using the pretrained segmentation network. Despite its simplicity, extensive experiments on various publicly available datasets demonstrate that \proposed achieves state-of-the-art performance, outperforming eleven existing UDA approaches under different settings. Notably, further ablation studies show that \proposed is agnostic to different types of generative and segmentation models, suggesting its potential to be seamlessly plugged with the most advanced models to achieve even more outstanding results in the future. The code is available at https://github.com/JoshuaLPF/LowBridge.
comment: 11 pages, 2 figures
Measurement Score-Based Diffusion Model
Diffusion models are widely used in applications ranging from image generation to inverse problems. However, training diffusion models typically requires clean ground-truth images, which are unavailable in many applications. We introduce the Measurement Score-based diffusion Model (MSM), a novel framework that learns partial measurement scores using only noisy and subsampled measurements. MSM models the distribution of full measurements as an expectation over partial scores induced by randomized subsampling. To make the MSM representation computationally efficient, we also develop a stochastic sampling algorithm that generates full images by using a randomly selected subset of partial scores at each step. We additionally propose a new posterior sampling method for solving inverse problems that reconstructs images using these partial scores. We provide a theoretical analysis that bounds the Kullback-Leibler divergence between the distributions induced by full and stochastic sampling, establishing the accuracy of the proposed algorithm. We demonstrate the effectiveness of MSM on natural images and multi-coil MRI, showing that it can generate high-quality images and solve inverse problems -- all without access to clean training data. Code is available at https://github.com/wustl-cig/MSM.
Patient-Specific Autoregressive Models for Organ Motion Prediction in Radiotherapy
Radiotherapy often involves a prolonged treatment period. During this time, patients may experience organ motion due to breathing and other physiological factors. Predicting and modeling this motion before treatment is crucial for ensuring precise radiation delivery. However, existing pre-treatment organ motion prediction methods primarily rely on deformation analysis using principal component analysis (PCA), which is highly dependent on registration quality and struggles to capture periodic temporal dynamics for motion modeling.In this paper, we observe that organ motion prediction closely resembles an autoregressive process, a technique widely used in natural language processing (NLP). Autoregressive models predict the next token based on previous inputs, naturally aligning with our objective of predicting future organ motion phases. Building on this insight, we reformulate organ motion prediction as an autoregressive process to better capture patient-specific motion patterns. Specifically, we acquire 4D CT scans for each patient before treatment, with each sequence comprising multiple 3D CT phases. These phases are fed into the autoregressive model to predict future phases based on prior phase motion patterns. We evaluate our method on a real-world test set of 4D CT scans from 50 patients who underwent radiotherapy at our institution and a public dataset containing 4D CT scans from 20 patients (some with multiple scans), totaling over 1,300 3D CT phases. The performance in predicting the motion of the lung and heart surpasses existing benchmarks, demonstrating its effectiveness in capturing motion dynamics from CT images. These results highlight the potential of our method to improve pre-treatment planning in radiotherapy, enabling more precise and adaptive radiation delivery.
Self-Learning Hyperspectral and Multispectral Image Fusion via Adaptive Residual Guided Subspace Diffusion Model
Hyperspectral and multispectral image (HSI-MSI) fusion involves combining a low-resolution hyperspectral image (LR-HSI) with a high-resolution multispectral image (HR-MSI) to generate a high-resolution hyperspectral image (HR-HSI). Most deep learning-based methods for HSI-MSI fusion rely on large amounts of hyperspectral data for supervised training, which is often scarce in practical applications. In this paper, we propose a self-learning Adaptive Residual Guided Subspace Diffusion Model (ARGS-Diff), which only utilizes the observed images without any extra training data. Specifically, as the LR-HSI contains spectral information and the HR-MSI contains spatial information, we design two lightweight spectral and spatial diffusion models to separately learn the spectral and spatial distributions from them. Then, we use these two models to reconstruct HR-HSI from two low-dimensional components, i.e, the spectral basis and the reduced coefficient, during the reverse diffusion process. Furthermore, we introduce an Adaptive Residual Guided Module (ARGM), which refines the two components through a residual guided function at each sampling step, thereby stabilizing the sampling process. Extensive experimental results demonstrate that ARGS-Diff outperforms existing state-of-the-art methods in terms of both performance and computational efficiency in the field of HSI-MSI fusion. Code is available at https://github.com/Zhu1116/ARGS-Diff.
comment: cvpr
MedVKAN: Efficient Feature Extraction with Mamba and KAN for Medical Image Segmentation
Medical image segmentation relies heavily on convolutional neural networks (CNNs) and Transformer-based models. However, CNNs are constrained by limited receptive fields, while Transformers suffer from scalability challenges due to their quadratic computational complexity. To address these limitations, recent advances have explored alternative architectures. The state-space model Mamba offers near-linear complexity while capturing long-range dependencies, and the Kolmogorov-Arnold Network (KAN) enhances nonlinear expressiveness by replacing fixed activation functions with learnable ones. Building on these strengths, we propose MedVKAN, an efficient feature extraction model integrating Mamba and KAN. Specifically, we introduce the EFC-KAN module, which enhances KAN with convolutional operations to improve local pixel interaction. We further design the VKAN module, integrating Mamba with EFC-KAN as a replacement for Transformer modules, significantly improving feature extraction. Extensive experiments on five public medical image segmentation datasets show that MedVKAN achieves state-of-the-art performance on four datasets and ranks second on the remaining one. These results validate the potential of Mamba and KAN for medical image segmentation while introducing an innovative and computationally efficient feature extraction framework. The code is available at: https://github.com/beginner-cjh/MedVKAN.
CL-CaGAN: Capsule differential adversarial continuous learning for cross-domain hyperspectral anomaly detection
Anomaly detection (AD) has attracted remarkable attention in hyperspectral image (HSI) processing fields, and most existing deep learning (DL)-based algorithms indicate dramatic potential for detecting anomaly samples through specific training process under current scenario. However, the limited prior information and the catastrophic forgetting problem indicate crucial challenges for existing DL structure in open scenarios cross-domain detection. In order to improve the detection performance, a novel continual learning-based capsule differential generative adversarial network (CL-CaGAN) is proposed to elevate the cross-scenario learning performance for facilitating the real application of DL-based structure in hyperspectral AD (HAD) task. First, a modified capsule structure with adversarial learning network is constructed to estimate the background distribution for surmounting the deficiency of prior information. To mitigate the catastrophic forgetting phenomenon, clustering-based sample replay strategy and a designed extra self-distillation regularization are integrated for merging the history and future knowledge in continual AD task, while the discriminative learning ability from previous detection scenario to current scenario is retained by the elaborately designed structure with continual learning (CL) strategy. In addition, the differentiable enhancement is enforced to augment the generation performance of the training data. This further stabilizes the training process with better convergence and efficiently consolidates the reconstruction ability of background samples. To verify the effectiveness of our proposed CL-CaGAN, we conduct experiments on several real HSIs, and the results indicate that the proposed CL-CaGAN demonstrates higher detection performance and continuous learning capacity for mitigating the catastrophic forgetting under cross-domain scenarios.
Logic-in-Frames: Dynamic Keyframe Search via Visual Semantic-Logical Verification for Long Video Understanding
Understanding long video content is a complex endeavor that often relies on densely sampled frame captions or end-to-end feature selectors, yet these techniques commonly overlook the logical relationships between textual queries and visual elements. In practice, computational constraints necessitate coarse frame subsampling, a challenge analogous to "finding a needle in a haystack." To address this issue, we introduce a semantics-driven search framework that reformulates keyframe selection under the paradigm of Visual Semantic-Logical Search. Specifically, we systematically define four fundamental logical dependencies: 1) spatial co-occurrence, 2) temporal proximity, 3) attribute dependency, and 4) causal order. These relations dynamically update frame sampling distributions through an iterative refinement process, enabling context-aware identification of semantically critical frames tailored to specific query requirements. Our method establishes new SOTA performance on the manually annotated benchmark in key-frame selection metrics. Furthermore, when applied to downstream video question-answering tasks, the proposed approach demonstrates the best performance gains over existing methods on LongVideoBench and Video-MME, validating its effectiveness in bridging the logical gap between textual queries and visual-temporal reasoning. The code will be publicly available.
comment: 32 pages, under review
ECVC: Exploiting Non-Local Correlations in Multiple Frames for Contextual Video Compression CVPR 2025
In Learned Video Compression (LVC), improving inter prediction, such as enhancing temporal context mining and mitigating accumulated errors, is crucial for boosting rate-distortion performance. Existing LVCs mainly focus on mining the temporal movements while neglecting non-local correlations among frames. Additionally, current contextual video compression models use a single reference frame, which is insufficient for handling complex movements. To address these issues, we propose leveraging non-local correlations across multiple frames to enhance temporal priors, significantly boosting rate-distortion performance. To mitigate error accumulation, we introduce a partial cascaded fine-tuning strategy that supports fine-tuning on full-length sequences with constrained computational resources. This method reduces the train-test mismatch in sequence lengths and significantly decreases accumulated errors. Based on the proposed techniques, we present a video compression scheme ECVC. Experiments demonstrate that our ECVC achieves state-of-the-art performance, reducing 10.5% and 11.5% more bit-rates than previous SOTA method DCVC-FM over VTM-13.2 low delay B (LDB) under the intra period (IP) of 32 and -1, respectively. Our code is available at https://github.com/JiangWeibeta/ECVC.
comment: Accepted to CVPR 2025
Human-Computer Interaction
Behind the Screens: Uncovering Bias in AI-Driven Video Interview Assessments Using Counterfactuals
AI-enhanced personality assessments are increasingly shaping hiring decisions, using affective computing to predict traits from the Big Five (OCEAN) model. However, integrating AI into these assessments raises ethical concerns, especially around bias amplification rooted in training data. These biases can lead to discriminatory outcomes based on protected attributes like gender, ethnicity, and age. To address this, we introduce a counterfactual-based framework to systematically evaluate and quantify bias in AI-driven personality assessments. Our approach employs generative adversarial networks (GANs) to generate counterfactual representations of job applicants by altering protected attributes, enabling fairness analysis without access to the underlying model. Unlike traditional bias assessments that focus on unimodal or static data, our method supports multimodal evaluation-spanning visual, audio, and textual features. This comprehensive approach is particularly important in high-stakes applications like hiring, where third-party vendors often provide AI systems as black boxes. Applied to a state-of-the-art personality prediction model, our method reveals significant disparities across demographic groups. We also validate our framework using a protected attribute classifier to confirm the effectiveness of our counterfactual generation. This work provides a scalable tool for fairness auditing of commercial AI hiring platforms, especially in black-box settings where training data and model internals are inaccessible. Our results highlight the importance of counterfactual approaches in improving ethical transparency in affective computing.
Designing Scaffolded Interfaces for Enhanced Learning and Performance in Professional Software
Professional software offers immense power but also presents significant learning challenges. Its complex interfaces, as well as insufficient built-in structured guidance and unfamiliar terminology, often make newcomers struggle with task completion. To address these challenges, we introduce ScaffoldUI, a method for scaffolded interface design to reduce interface complexity, provide structured guidance, and enhance software learnability. The scaffolded interface presents task-relevant tools, progressively discloses tool complexity, and organizes tools based on domain concepts, aiming to assist task performance and software learning. To evaluate the feasibility of our interface design method, we present a technical pipeline for scaffolded interface implementation in professional 3D software, i.e., Blender, and conduct user studies with beginners (N=32) and experts (N=8). Study results demonstrate that our scaffolded interfaces significantly reduce perceived task load caused by interface complexity, support task performance through structured guidance, and augment learning by clearly connecting concepts and tools within the taskflow context. Based on a discussion of the user study findings, we offer insights for future research on designing scaffolded interfaces to support instruction, productivity, creativity, and cross-software workflows.
TrainBo: An Interactive Robot-assisted Scenario Training System for Older Adults with Dementia
Dementia is an overall decline in memory and cognitive skills severe enough to reduce an elders ability to perform everyday activities. There is an increasing need for accessible technologies for cognitive training to slow down the cognitive decline. With the ability to provide instant feedback and assistance, social robotic systems have been proven effective in enhancing learning abilities across various age groups. This study focuses on the design of an interactive robot-assisted scenario training system TrainBo with self-determination theory, derives design requirements through formative and formal studies and the system usability is also be evaluated. A pilot test is conducted on seven older adults with dementia in an elderly care center in Hong Kong for four weeks. Our finding shows that older adults with dementia have an improvement in behavioural engagement, emotional engagement, and intrinsic motivation after using Trainbo. These findings can provide valuable insights into the development of more captivating interactive robots for extensive training purposes.
From Data to Actionable Understanding: A Learner-Centered Framework for Dynamic Learning Analytics
Learning Analytics Dashboards (LADs) often fall short of their potential to empower learners, frequently prioritizing data visualization over the cognitive processes crucial for translating data into actionable learning strategies. This represents a significant gap in the field: while much research has focused on data collection and presentation, there is a lack of comprehensive models for how LADs can actively support learners' sensemaking and self-regulation. This paper introduces the Adaptive Understanding Framework (AUF), a novel conceptual model for learner-centered LAD design. The AUF seeks to address this limitation by integrating a multi-dimensional model of situational awareness, dynamic sensemaking strategies, adaptive mechanisms, and metacognitive support. This transforms LADs into dynamic learning partners that actively scaffold learners' sensemaking. Unlike existing frameworks that tend to treat these aspects in isolation, the AUF emphasizes their dynamic and intertwined relationships, creating a personalized and adaptive learning ecosystem that responds to individual needs and evolving understanding. The paper details the AUF's core principles, key components, and suggests a research agenda for future empirical validation. By fostering a deeper, more actionable understanding of learning data, AUF-inspired LADs have the potential to promote more effective, equitable, and engaging learning experiences.
To Recommend or Not to Recommend: Designing and Evaluating AI-Enabled Decision Support for Time-Critical Medical Events
AI-enabled decision-support systems aim to help medical providers rapidly make decisions with limited information during medical emergencies. A critical challenge in developing these systems is supporting providers in interpreting the system output to make optimal treatment decisions. In this study, we designed and evaluated an AI-enabled decision-support system to aid providers in treating patients with traumatic injuries. We first conducted user research with physicians to identify and design information types and AI outputs for a decision-support display. We then conducted an online experiment with 35 medical providers from six health systems to evaluate two human-AI interaction strategies: (1) AI information synthesis and (2) AI information and recommendations. We found that providers were more likely to make correct decisions when AI information and recommendations were provided compared to receiving no AI support. We also identified two socio-technical barriers to providing AI recommendations during time-critical medical events: (1) an accuracy-time trade-off in providing recommendations and (2) polarizing perceptions of recommendations between providers. We discuss three implications for developing AI-enabled decision support used in time-critical events, contributing to the limited research on human-AI interaction in this context.
AR Secretary Agent: Real-time Memory Augmentation via LLM-powered Augmented Reality Glasses
Interacting with a significant number of individuals on a daily basis is commonplace for many professionals, which can lead to challenges in recalling specific details: Who is this person? What did we talk about last time? The advant of augmented reality (AR) glasses, equipped with visual and auditory data capture capabilities, presents a solution. In our work, we implemented an AR Secretary Agent with advanced Large Language Models (LLMs) and Computer Vision technologies. This system could discreetly provide real-time information to the wearer, identifying who they are conversing with and summarizing previous discussions. To verify AR Secretary, we conducted a user study with 13 participants and showed that our technique can efficiently help users to memorize events by up to 20\% memory enhancement on our study.
Human-Centered Development of Guide Dog Robots: Quiet and Stable Locomotion Control
A quadruped robot is a promising system that can offer assistance comparable to that of dog guides due to its similar form factor. However, various challenges remain in making these robots a reliable option for blind and low-vision (BLV) individuals. Among these challenges, noise and jerky motion during walking are critical drawbacks of existing quadruped robots. While these issues have largely been overlooked in guide dog robot research, our interviews with guide dog handlers and trainers revealed that acoustic and physical disturbances can be particularly disruptive for BLV individuals, who rely heavily on environmental sounds for navigation. To address these issues, we developed a novel walking controller for slow stepping and smooth foot swing/contact while maintaining human walking speed, as well as robust and stable balance control. The controller integrates with a perception system to facilitate locomotion over non-flat terrains, such as stairs. Our controller was extensively tested on the Unitree Go1 robot and, when compared with other control methods, demonstrated significant noise reduction -- half of the default locomotion controller. In this study, we adopt a mixed-methods approach to evaluate its usability with BLV individuals. In our indoor walking experiments, participants compared our controller to the robot's default controller. Results demonstrated superior acceptance of our controller, highlighting its potential to improve the user experience of guide dog robots. Video demonstration (best viewed with audio) available at: https://youtu.be/8-pz_8Hqe6s.
Utilizing Provenance as an Attribute for Visual Data Analysis: A Design Probe with ProvenanceLens
Analytic provenance can be visually encoded to help users track their ongoing analysis trajectories, recall past interactions, and inform new analytic directions. Despite its significance, provenance is often hardwired into analytics systems, affording limited user control and opportunities for self-reflection. We thus propose modeling provenance as an attribute that is available to users during analysis. We demonstrate this concept by modeling two provenance attributes that track the recency and frequency of user interactions with data. We integrate these attributes into a visual data analysis system prototype, ProvenanceLens, wherein users can visualize their interaction recency and frequency by mapping them to encoding channels (e.g., color, size) or applying data transformations (e.g., filter, sort). Using ProvenanceLens as a design probe, we conduct an exploratory study with sixteen users to investigate how these provenance-tracking affordances are utilized for both decision-making and self-reflection. We find that users can accurately and confidently answer questions about their analysis, and we show that mismatches between the user's mental model and the provenance encodings can be surprising, thereby prompting useful self-reflection. We also report on the user strategies surrounding these affordances, and reflect on their intuitiveness and effectiveness in representing provenance.
comment: 14 pages, 6 figures, 1 table, accepted in IEEE TVCG 2025
Togedule: Scheduling Meetings with Large Language Models and Adaptive Representations of Group Availability SC
Scheduling is a perennial-and often challenging-problem for many groups. Existing tools are mostly static, showing an identical set of choices to everyone, regardless of the current status of attendees' inputs and preferences. In this paper, we propose Togedule, an adaptive scheduling tool that uses large language models to dynamically adjust the pool of choices and their presentation format. With the initial prototype, we conducted a formative study (N=10) and identified the potential benefits and risks of such an adaptive scheduling tool. Then, after enhancing the system, we conducted two controlled experiments, one each for attendees and organizers (total N=66). For each experiment, we compared scheduling with verbal messages, shared calendars, or Togedule. Results show that Togedule significantly reduces the cognitive load of attendees indicating their availability and improves the speed and quality of the decisions made by organizers.
comment: This paper has been accepted at CSCW 2025
Cartographers in Cubicles: How Training and Preferences of Mapmakers Interplay with Structures and Norms in Not-for-Profit Organizations SC
Choropleth maps are a common and effective way to visualize geographic thematic data. Although cartographers have established many principles about map design, data binning and color usage, less is known about how mapmakers make individual decisions in practice. We interview 16 cartographers and geographic information systems (GIS) experts from 13 government organizations, NGOs, and federal agencies about their choropleth mapmaking decisions and workflows. We categorize our findings and report on how mapmakers follow cartographic guidelines and personal rules of thumb, collaborate with other stakeholders within and outside their organization, and how organizational structures and norms are tied to decision-making during data preparation, data analysis, data binning, map styling, and map post-processing. We find several points of variation as well as regularity across mapmakers and organizations and present takeaways to inform cartographic education and practice, including broader implications and opportunities for CSCW, HCI, and information visualization researchers and practitioners.
comment: 24 pages, 4 figures, 2 tables; to appear in ACM CSCW 2025
Computer Vision and Pattern Recognition
QVGen: Pushing the Limit of Quantized Video Generative Models
Video diffusion models (DMs) have enabled high-quality video synthesis. Yet, their substantial computational and memory demands pose serious challenges to real-world deployment, even on high-end GPUs. As a commonly adopted solution, quantization has proven notable success in reducing cost for image DMs, while its direct application to video DMs remains ineffective. In this paper, we present QVGen, a novel quantization-aware training (QAT) framework tailored for high-performance and inference-efficient video DMs under extremely low-bit quantization (e.g., 4-bit or below). We begin with a theoretical analysis demonstrating that reducing the gradient norm is essential to facilitate convergence for QAT. To this end, we introduce auxiliary modules ($\Phi$) to mitigate large quantization errors, leading to significantly enhanced convergence. To eliminate the inference overhead of $\Phi$, we propose a rank-decay strategy that progressively eliminates $\Phi$. Specifically, we repeatedly employ singular value decomposition (SVD) and a proposed rank-based regularization $\mathbf{\gamma}$ to identify and decay low-contributing components. This strategy retains performance while zeroing out inference overhead. Extensive experiments across $4$ state-of-the-art (SOTA) video DMs, with parameter sizes ranging from $1.3$B $\sim14$B, show that QVGen is the first to reach full-precision comparable quality under 4-bit settings. Moreover, it significantly outperforms existing methods. For instance, our 3-bit CogVideoX-2B achieves improvements of $+25.28$ in Dynamic Degree and $+8.43$ in Scene Consistency on VBench.
comment: Our code will be released upon acceptance
GIE-Bench: Towards Grounded Evaluation for Text-Guided Image Editing
Editing images using natural language instructions has become a natural and expressive way to modify visual content; yet, evaluating the performance of such models remains challenging. Existing evaluation approaches often rely on image-text similarity metrics like CLIP, which lack precision. In this work, we introduce a new benchmark designed to evaluate text-guided image editing models in a more grounded manner, along two critical dimensions: (i) functional correctness, assessed via automatically generated multiple-choice questions that verify whether the intended change was successfully applied; and (ii) image content preservation, which ensures that non-targeted regions of the image remain visually consistent using an object-aware masking technique and preservation scoring. The benchmark includes over 1000 high-quality editing examples across 20 diverse content categories, each annotated with detailed editing instructions, evaluation questions, and spatial object masks. We conduct a large-scale study comparing GPT-Image-1, the latest flagship in the text-guided image editing space, against several state-of-the-art editing models, and validate our automatic metrics against human ratings. Results show that GPT-Image-1 leads in instruction-following accuracy, but often over-modifies irrelevant image regions, highlighting a key trade-off in the current model behavior. GIE-Bench provides a scalable, reproducible framework for advancing more accurate evaluation of text-guided image editing.
Unsupervised Detection of Distribution Shift in Inverse Problems using Diffusion Models
Diffusion models are widely used as priors in imaging inverse problems. However, their performance often degrades under distribution shifts between the training and test-time images. Existing methods for identifying and quantifying distribution shifts typically require access to clean test images, which are almost never available while solving inverse problems (at test time). We propose a fully unsupervised metric for estimating distribution shifts using only indirect (corrupted) measurements and score functions from diffusion models trained on different datasets. We theoretically show that this metric estimates the KL divergence between the training and test image distributions. Empirically, we show that our score-based metric, using only corrupted measurements, closely approximates the KL divergence computed from clean images. Motivated by this result, we show that aligning the out-of-distribution score with the in-distribution score -- using only corrupted measurements -- reduces the KL divergence and leads to improved reconstruction quality across multiple inverse problems.
PSDiffusion: Harmonized Multi-Layer Image Generation via Layout and Appearance Alignment
Diffusion models have made remarkable advancements in generating high-quality images from textual descriptions. Recent works like LayerDiffuse have extended the previous single-layer, unified image generation paradigm to transparent image layer generation. However, existing multi-layer generation methods fail to handle the interactions among multiple layers such as rational global layout, physics-plausible contacts and visual effects like shadows and reflections while maintaining high alpha quality. To solve this problem, we propose PSDiffusion, a unified diffusion framework for simultaneous multi-layer text-to-image generation. Our model can automatically generate multi-layer images with one RGB background and multiple RGBA foregrounds through a single feed-forward process. Unlike existing methods that combine multiple tools for post-decomposition or generate layers sequentially and separately, our method introduces a global-layer interactive mechanism that generates layered-images concurrently and collaboratively, ensuring not only high quality and completeness for each layer, but also spatial and visual interactions among layers for global coherence.
comment: Project Page: https://github.com/dingbang777/PSDiffusion/
Exploiting Radiance Fields for Grasp Generation on Novel Synthetic Views
Vision based robot manipulation uses cameras to capture one or more images of a scene containing the objects to be manipulated. Taking multiple images can help if any object is occluded from one viewpoint but more visible from another viewpoint. However, the camera has to be moved to a sequence of suitable positions for capturing multiple images, which requires time and may not always be possible, due to reachability constraints. So while additional images can produce more accurate grasp poses due to the extra information available, the time-cost goes up with the number of additional views sampled. Scene representations like Gaussian Splatting are capable of rendering accurate photorealistic virtual images from user-specified novel viewpoints. In this work, we show initial results which indicate that novel view synthesis can provide additional context in generating grasp poses. Our experiments on the Graspnet-1billion dataset show that novel views contributed force-closure grasps in addition to the force-closure grasps obtained from sparsely sampled real views while also improving grasp coverage. In the future we hope this work can be extended to improve grasp extraction from radiance fields constructed with a single input image, using for example diffusion models or generalizable radiance fields.
comment: 6 pages
HumaniBench: A Human-Centric Framework for Large Multimodal Models Evaluation
Large multimodal models (LMMs) now excel on many vision language benchmarks, however, they still struggle with human centered criteria such as fairness, ethics, empathy, and inclusivity, key to aligning with human values. We introduce HumaniBench, a holistic benchmark of 32K real-world image question pairs, annotated via a scalable GPT4o assisted pipeline and exhaustively verified by domain experts. HumaniBench evaluates seven Human Centered AI (HCAI) principles: fairness, ethics, understanding, reasoning, language inclusivity, empathy, and robustness, across seven diverse tasks, including open and closed ended visual question answering (VQA), multilingual QA, visual grounding, empathetic captioning, and robustness tests. Benchmarking 15 state of the art LMMs (open and closed source) reveals that proprietary models generally lead, though robustness and visual grounding remain weak points. Some open-source models also struggle to balance accuracy with adherence to human-aligned principles. HumaniBench is the first benchmark purpose built around HCAI principles. It provides a rigorous testbed for diagnosing alignment gaps and guiding LMMs toward behavior that is both accurate and socially responsible. Dataset, annotation prompts, and evaluation code are available at: https://vectorinstitute.github.io/HumaniBench
SurgPose: Generalisable Surgical Instrument Pose Estimation using Zero-Shot Learning and Stereo Vision ICRA
Accurate pose estimation of surgical tools in Robot-assisted Minimally Invasive Surgery (RMIS) is essential for surgical navigation and robot control. While traditional marker-based methods offer accuracy, they face challenges with occlusions, reflections, and tool-specific designs. Similarly, supervised learning methods require extensive training on annotated datasets, limiting their adaptability to new tools. Despite their success in other domains, zero-shot pose estimation models remain unexplored in RMIS for pose estimation of surgical instruments, creating a gap in generalising to unseen surgical tools. This paper presents a novel 6 Degrees of Freedom (DoF) pose estimation pipeline for surgical instruments, leveraging state-of-the-art zero-shot RGB-D models like the FoundationPose and SAM-6D. We advanced these models by incorporating vision-based depth estimation using the RAFT-Stereo method, for robust depth estimation in reflective and textureless environments. Additionally, we enhanced SAM-6D by replacing its instance segmentation module, Segment Anything Model (SAM), with a fine-tuned Mask R-CNN, significantly boosting segmentation accuracy in occluded and complex conditions. Extensive validation reveals that our enhanced SAM-6D surpasses FoundationPose in zero-shot pose estimation of unseen surgical instruments, setting a new benchmark for zero-shot RGB-D pose estimation in RMIS. This work enhances the generalisability of pose estimation for unseen objects and pioneers the application of RGB-D zero-shot methods in RMIS.
comment: To be published in 2025 International Conference on Robotics and Automation (ICRA)
Face Consistency Benchmark for GenAI Video
Video generation driven by artificial intelligence has advanced significantly, enabling the creation of dynamic and realistic content. However, maintaining character consistency across video sequences remains a major challenge, with current models struggling to ensure coherence in appearance and attributes. This paper introduces the Face Consistency Benchmark (FCB), a framework for evaluating and comparing the consistency of characters in AI-generated videos. By providing standardized metrics, the benchmark highlights gaps in existing solutions and promotes the development of more reliable approaches. This work represents a crucial step toward improving character consistency in AI video generation technologies.
Improving Object Detection Performance through YOLOv8: A Comprehensive Training and Evaluation Study
This study evaluated the performance of a YOLOv8-based segmentation model for detecting and segmenting wrinkles in facial images.
Visual Planning: Let's Think Only with Images
Recent advancements in Large Language Models (LLMs) and their multimodal extensions (MLLMs) have substantially enhanced machine reasoning across diverse tasks. However, these models predominantly rely on pure text as the medium for both expressing and structuring reasoning, even when visual information is present. In this work, we argue that language may not always be the most natural or effective modality for reasoning, particularly in tasks involving spatial and geometrical information. Motivated by this, we propose a new paradigm, Visual Planning, which enables planning through purely visual representations, independent of text. In this paradigm, planning is executed via sequences of images that encode step-by-step inference in the visual domain, akin to how humans sketch or visualize future actions. We introduce a novel reinforcement learning framework, Visual Planning via Reinforcement Learning (VPRL), empowered by GRPO for post-training large vision models, leading to substantial improvements in planning in a selection of representative visual navigation tasks, FrozenLake, Maze, and MiniBehavior. Our visual planning paradigm outperforms all other planning variants that conduct reasoning in the text-only space. Our results establish Visual Planning as a viable and promising alternative to language-based reasoning, opening new avenues for tasks that benefit from intuitive, image-based inference.
comment: 10 pages, 6 figures, 1 table (26 pages, 12 figures, 8 tables including references and appendices)
EmotionHallucer: Evaluating Emotion Hallucinations in Multimodal Large Language Models
Emotion understanding is a critical yet challenging task. Recent advances in Multimodal Large Language Models (MLLMs) have significantly enhanced their capabilities in this area. However, MLLMs often suffer from hallucinations, generating irrelevant or nonsensical content. To the best of our knowledge, despite the importance of this issue, there has been no dedicated effort to evaluate emotion-related hallucinations in MLLMs. In this work, we introduce EmotionHallucer, the first benchmark for detecting and analyzing emotion hallucinations in MLLMs. Unlike humans, whose emotion understanding stems from the interplay of biology and social learning, MLLMs rely solely on data-driven learning and lack innate emotional instincts. Fortunately, emotion psychology provides a solid foundation of knowledge about human emotions. Building on this, we assess emotion hallucinations from two dimensions: emotion psychology knowledge and real-world multimodal perception. To support robust evaluation, we utilize an adversarial binary question-answer (QA) framework, which employs carefully crafted basic and hallucinated pairs to assess the emotion hallucination tendencies of MLLMs. By evaluating 38 LLMs and MLLMs on EmotionHallucer, we reveal that: i) most current models exhibit substantial issues with emotion hallucinations; ii) closed-source models outperform open-source ones in detecting emotion hallucinations, and reasoning capability provides additional advantages; iii) existing models perform better in emotion psychology knowledge than in multimodal emotion perception. As a byproduct, these findings inspire us to propose the PEP-MEK framework, which yields an average improvement of 9.90% in emotion hallucination detection across selected models. Resources will be available at https://github.com/xxtars/EmotionHallucer.
Patho-R1: A Multimodal Reinforcement Learning-Based Pathology Expert Reasoner
Recent advances in vision language models (VLMs) have enabled broad progress in the general medical field. However, pathology still remains a more challenging subdomain, with current pathology specific VLMs exhibiting limitations in both diagnostic accuracy and reasoning plausibility. Such shortcomings are largely attributable to the nature of current pathology datasets, which are primarily composed of image description pairs that lack the depth and structured diagnostic paradigms employed by real world pathologists. In this study, we leverage pathology textbooks and real world pathology experts to construct high-quality, reasoning-oriented datasets. Building on this, we introduce Patho-R1, a multimodal RL-based pathology Reasoner, trained through a three-stage pipeline: (1) continued pretraining on 3.5 million image-text pairs for knowledge infusion; (2) supervised fine-tuning on 500k high-quality Chain-of-Thought samples for reasoning incentivizing; (3) reinforcement learning using Group Relative Policy Optimization and Decoupled Clip and Dynamic sAmpling Policy Optimization strategies for multimodal reasoning quality refinement. To further assess the alignment quality of our dataset, we propose PathoCLIP, trained on the same figure-caption corpus used for continued pretraining. Comprehensive experimental results demonstrate that both PathoCLIP and Patho-R1 achieve robust performance across a wide range of pathology-related tasks, including zero-shot classification, cross-modal retrieval, Visual Question Answering, and Multiple Choice Question. Our project is available at the Patho-R1 repository: https://github.com/Wenchuan-Zhang/Patho-R1.
From Fibers to Cells: Fourier-Based Registration Enables Virtual Cresyl Violet Staining From 3D Polarized Light Imaging
Comprehensive assessment of the various aspects of the brain's microstructure requires the use of complementary imaging techniques. This includes measuring the spatial distribution of cell bodies (cytoarchitecture) and nerve fibers (myeloarchitecture). The gold standard for cytoarchitectonic analysis is light microscopic imaging of cell-body stained tissue sections. To reveal the 3D orientations of nerve fibers, 3D Polarized Light Imaging (3D-PLI) has been introduced as a reliable technique providing a resolution in the micrometer range while allowing processing of series of complete brain sections. 3D-PLI acquisition is label-free and allows subsequent staining of sections after measurement. By post-staining for cell bodies, a direct link between fiber- and cytoarchitecture can potentially be established within the same section. However, inevitable distortions introduced during the staining process make a nonlinear and cross-modal registration necessary in order to study the detailed relationships between cells and fibers in the images. In addition, the complexity of processing histological sections for post-staining only allows for a limited number of samples. In this work, we take advantage of deep learning methods for image-to-image translation to generate a virtual staining of 3D-PLI that is spatially aligned at the cellular level. In a supervised setting, we build on a unique dataset of brain sections, to which Cresyl violet staining has been applied after 3D-PLI measurement. To ensure high correspondence between both modalities, we address the misalignment of training data using Fourier-based registration methods. In this way, registration can be efficiently calculated during training for local image patches of target and predicted staining. We demonstrate that the proposed method enables prediction of a Cresyl violet staining from 3D-PLI, matching individual cell instances.
MutualNeRF: Improve the Performance of NeRF under Limited Samples with Mutual Information Theory
This paper introduces MutualNeRF, a framework enhancing Neural Radiance Field (NeRF) performance under limited samples using Mutual Information Theory. While NeRF excels in 3D scene synthesis, challenges arise with limited data and existing methods that aim to introduce prior knowledge lack theoretical support in a unified framework. We introduce a simple but theoretically robust concept, Mutual Information, as a metric to uniformly measure the correlation between images, considering both macro (semantic) and micro (pixel) levels. For sparse view sampling, we strategically select additional viewpoints containing more non-overlapping scene information by minimizing mutual information without knowing ground truth images beforehand. Our framework employs a greedy algorithm, offering a near-optimal solution. For few-shot view synthesis, we maximize the mutual information between inferred images and ground truth, expecting inferred images to gain more relevant information from known images. This is achieved by incorporating efficient, plug-and-play regularization terms. Experiments under limited samples show consistent improvement over state-of-the-art baselines in different settings, affirming the efficacy of our framework.
Dynam3D: Dynamic Layered 3D Tokens Empower VLM for Vision-and-Language Navigation
Vision-and-Language Navigation (VLN) is a core task where embodied agents leverage their spatial mobility to navigate in 3D environments toward designated destinations based on natural language instructions. Recently, video-language large models (Video-VLMs) with strong generalization capabilities and rich commonsense knowledge have shown remarkable performance when applied to VLN tasks. However, these models still encounter the following challenges when applied to real-world 3D navigation: 1) Insufficient understanding of 3D geometry and spatial semantics; 2) Limited capacity for large-scale exploration and long-term environmental memory; 3) Poor adaptability to dynamic and changing environments.To address these limitations, we propose Dynam3D, a dynamic layered 3D representation model that leverages language-aligned, generalizable, and hierarchical 3D representations as visual input to train 3D-VLM in navigation action prediction. Given posed RGB-D images, our Dynam3D projects 2D CLIP features into 3D space and constructs multi-level 3D patch-instance-zone representations for 3D geometric and semantic understanding with a dynamic and layer-wise update strategy. Our Dynam3D is capable of online encoding and localization of 3D instances, and dynamically updates them in changing environments to provide large-scale exploration and long-term memory capabilities for navigation. By leveraging large-scale 3D-language pretraining and task-specific adaptation, our Dynam3D sets new state-of-the-art performance on VLN benchmarks including R2R-CE, REVERIE-CE and NavRAG-CE under monocular settings. Furthermore, experiments for pre-exploration, lifelong memory, and real-world robot validate the effectiveness of practical deployment.
Dynamic Base model Shift for Delta Compression
Transformer-based models with the pretrain-finetune paradigm bring about significant progress, along with the heavy storage and deployment costs of finetuned models on multiple tasks. Delta compression attempts to lower the costs by reducing the redundancy of delta parameters (i.e., the difference between the finetuned and pre-trained model weights) through pruning or quantization. However, existing methods by default employ the pretrained model as the base model and compress the delta parameters for every task, which may causes significant performance degradation, especially when the compression rate is extremely high. To tackle this issue, we investigate the impact of different base models on the performance of delta compression and find that the pre-trained base model can hardly be optimal. To this end, we propose Dynamic Base Model Shift (DBMS), which dynamically adapts the base model to the target task before performing delta compression. Specifically, we adjust two parameters, which respectively determine the magnitude of the base model shift and the overall scale of delta compression, to boost the compression performance on each task. Through low-cost learning of these two parameters, our DBMS can maintain most of the finetuned model's performance even under an extremely high compression ratio setting, significantly surpassing existing methods. Moreover, our DBMS is orthogonal and can be integrated with a variety of other methods, and it has been evaluated across different types of models including language, vision transformer, and multi-modal models.
comment: 16 pages, 7 figures
MARRS: Masked Autoregressive Unit-based Reaction Synthesis
This work aims at a challenging task: human action-reaction synthesis, i.e., generating human reactions based on the action sequence of the other as conditions. Currently, autoregressive modeling approaches have achieved remarkable performance in motion generation tasks, e.g. text-to-motion. However, vector quantization (VQ) accompanying autoregressive generation has inherent disadvantages, including loss of quantization information, low codebook utilization, etc. Moreover, unlike text-to-motion, which focuses solely on the movement of body joints, human action-reaction synthesis also encompasses fine-grained hand movements. In this work, we propose MARRS, a novel framework designed to generate coordinated and fine-grained reaction motions in continuous representations. Initially, we present the Unit-distinguished Motion Variational AutoEncoder (UD-VAE), which segments the entire body into distinct body and hand units, encoding them independently. Subsequently, we propose Action-Conditioned Fusion (ACF), which involves randomly masking a subset of reactive tokens and extracting specific information about the body and hands from the active tokens. Furthermore, we introduce Adaptive Unit Modulation (AUM) to facilitate interaction between body and hand units by using the information from one unit to adaptively modulate the other. Finally, for the diffusion model, we employ a compact MLP as a noise predictor for each distinct body unit and incorporate the diffusion loss to model the probability distribution of each token. Quantitative and qualitative results demonstrate that our method achieves superior performance. The code will be released upon acceptance.
Temporally-Grounded Language Generation: A Benchmark for Real-Time Vision-Language Models
Vision-language models (VLMs) have shown remarkable progress in offline tasks such as image captioning and video question answering. However, real-time interactive environments impose new demands on VLMs, requiring them to generate utterances that are not only semantically accurate but also precisely timed. We identify two core capabilities necessary for such settings -- $\textit{perceptual updating}$ and $\textit{contingency awareness}$ -- and propose a new benchmark task, $\textbf{Temporally-Grounded Language Generation (TGLG)}$, to evaluate them. TGLG requires models to generate utterances in response to streaming video such that both content and timing align with dynamic visual input. To support this benchmark, we curate evaluation datasets from sports broadcasting and egocentric human interaction domains, and introduce a new metric, $\textbf{TRACE}$, to evaluate TGLG by jointly measuring semantic similarity and temporal alignment. Finally, we present $\textbf{Vision-Language Model with Time-Synchronized Interleaving (VLM-TSI)}$, a model that interleaves visual and linguistic tokens in a time-synchronized manner, enabling real-time language generation without relying on turn-based assumptions. Experimental results show that VLM-TSI significantly outperforms a strong baseline, yet overall performance remains modest -- highlighting the difficulty of TGLG and motivating further research in real-time VLMs. Code and data available $\href{https://github.com/yukw777/tglg}{here}$.
comment: 18 pages
CROC: Evaluating and Training T2I Metrics with Pseudo- and Human-Labeled Contrastive Robustness Checks
The assessment of evaluation metrics (meta-evaluation) is crucial for determining the suitability of existing metrics in text-to-image (T2I) generation tasks. Human-based meta-evaluation is costly and time-intensive, and automated alternatives are scarce. We address this gap and propose CROC: a scalable framework for automated Contrastive Robustness Checks that systematically probes and quantifies metric robustness by synthesizing contrastive test cases across a comprehensive taxonomy of image properties. With CROC, we generate a pseudo-labeled dataset (CROC$^{syn}$) of over one million contrastive prompt-image pairs to enable a fine-grained comparison of evaluation metrics. We also use the dataset to train CROCScore, a new metric that achieves state-of-the-art performance among open-source methods, demonstrating an additional key application of our framework. To complement this dataset, we introduce a human-supervised benchmark (CROC$^{hum}$) targeting especially challenging categories. Our results highlight robustness issues in existing metrics: for example, many fail on prompts involving negation, and all tested open-source metrics fail on at least 25% of cases involving correct identification of body parts.
comment: preprint
Breaking the Batch Barrier (B3) of Contrastive Learning via Smart Batch Mining
Contrastive learning (CL) is a prevalent technique for training embedding models, which pulls semantically similar examples (positives) closer in the representation space while pushing dissimilar ones (negatives) further apart. A key source of negatives are 'in-batch' examples, i.e., positives from other examples in the batch. Effectiveness of such models is hence strongly influenced by the size and quality of training batches. In this work, we propose 'Breaking the Batch Barrier' (B3), a novel batch construction strategy designed to curate high-quality batches for CL. Our approach begins by using a pretrained teacher embedding model to rank all examples in the dataset, from which a sparse similarity graph is constructed. A community detection algorithm is then applied to this graph to identify clusters of examples that serve as strong negatives for one another. The clusters are then used to construct batches that are rich in in-batch negatives. Empirical results on the MMEB multimodal embedding benchmark (36 tasks) demonstrate that our method sets a new state of the art, outperforming previous best methods by +1.3 and +2.9 points at the 7B and 2B model scales, respectively. Notably, models trained with B3 surpass existing state-of-the-art results even with a batch size as small as 64, which is 4-16x smaller than that required by other methods.
comment: 14 pages, 4 figures
MTevent: A Multi-Task Event Camera Dataset for 6D Pose Estimation and Moving Object Detection CVPR 2025
Mobile robots are reaching unprecedented speeds, with platforms like Unitree B2, and Fraunhofer O3dyn achieving maximum speeds between 5 and 10 m/s. However, effectively utilizing such speeds remains a challenge due to the limitations of RGB cameras, which suffer from motion blur and fail to provide real-time responsiveness. Event cameras, with their asynchronous operation, and low-latency sensing, offer a promising alternative for high-speed robotic perception. In this work, we introduce MTevent, a dataset designed for 6D pose estimation and moving object detection in highly dynamic environments with large detection distances. Our setup consists of a stereo-event camera and an RGB camera, capturing 75 scenes, each on average 16 seconds, and featuring 16 unique objects under challenging conditions such as extreme viewing angles, varying lighting, and occlusions. MTevent is the first dataset to combine high-speed motion, long-range perception, and real-world object interactions, making it a valuable resource for advancing event-based vision in robotics. To establish a baseline, we evaluate the task of 6D pose estimation using NVIDIA's FoundationPose on RGB images, achieving an Average Recall of 0.22 with ground-truth masks, highlighting the limitations of RGB-based approaches in such dynamic settings. With MTevent, we provide a novel resource to improve perception models and foster further research in high-speed robotic vision. The dataset is available for download https://huggingface.co/datasets/anas-gouda/MTevent
comment: accepted to CVPR 2025 Workshop on Event-based Vision
A Fourier Space Perspective on Diffusion Models
Diffusion models are state-of-the-art generative models on data modalities such as images, audio, proteins and materials. These modalities share the property of exponentially decaying variance and magnitude in the Fourier domain. Under the standard Denoising Diffusion Probabilistic Models (DDPM) forward process of additive white noise, this property results in high-frequency components being corrupted faster and earlier in terms of their Signal-to-Noise Ratio (SNR) than low-frequency ones. The reverse process then generates low-frequency information before high-frequency details. In this work, we study the inductive bias of the forward process of diffusion models in Fourier space. We theoretically analyse and empirically demonstrate that the faster noising of high-frequency components in DDPM results in violations of the normality assumption in the reverse process. Our experiments show that this leads to degraded generation quality of high-frequency components. We then study an alternate forward process in Fourier space which corrupts all frequencies at the same rate, removing the typical frequency hierarchy during generation, and demonstrate marked performance improvements on datasets where high frequencies are primary, while performing on par with DDPM on standard imaging benchmarks.
Equal is Not Always Fair: A New Perspective on Hyperspectral Representation Non-Uniformity
Hyperspectral image (HSI) representation is fundamentally challenged by pervasive non-uniformity, where spectral dependencies, spatial continuity, and feature efficiency exhibit complex and often conflicting behaviors. Most existing models rely on a unified processing paradigm that assumes homogeneity across dimensions, leading to suboptimal performance and biased representations. To address this, we propose FairHyp, a fairness-directed framework that explicitly disentangles and resolves the threefold non-uniformity through cooperative yet specialized modules. We introduce a Runge-Kutta-inspired spatial variability adapter to restore spatial coherence under resolution discrepancies, a multi-receptive field convolution module with sparse-aware refinement to enhance discriminative features while respecting inherent sparsity, and a spectral-context state space model that captures stable and long-range spectral dependencies via bidirectional Mamba scanning and statistical aggregation. Unlike one-size-fits-all solutions, FairHyp achieves dimension-specific adaptation while preserving global consistency and mutual reinforcement. This design is grounded in the view that non-uniformity arises from the intrinsic structure of HSI representations, rather than any particular task setting. To validate this, we apply FairHyp across four representative tasks including classification, denoising, super-resolution, and inpaintin, demonstrating its effectiveness in modeling a shared structural flaw. Extensive experiments show that FairHyp consistently outperforms state-of-the-art methods under varied imaging conditions. Our findings redefine fairness as a structural necessity in HSI modeling and offer a new paradigm for balancing adaptability, efficiency, and fidelity in high-dimensional vision tasks.
Multi-view dense image matching with similarity learning and geometry priors
We introduce MV-DeepSimNets, a comprehensive suite of deep neural networks designed for multi-view similarity learning, leveraging epipolar geometry for training. Our approach incorporates an online geometry prior to characterize pixel relationships, either along the epipolar line or through homography rectification. This enables the generation of geometry-aware features from native images, which are then projected across candidate depth hypotheses using plane sweeping. Our method geometric preconditioning effectively adapts epipolar-based features for enhanced multi-view reconstruction, without requiring the laborious multi-view training dataset creation. By aggregating learned similarities, we construct and regularize the cost volume, leading to improved multi-view surface reconstruction over traditional dense matching approaches. MV-DeepSimNets demonstrates superior performance against leading similarity learning networks and end-to-end regression models, especially in terms of generalization capabilities across both aerial and satellite imagery with varied ground sampling distances. Our pipeline is integrated into MicMac software and can be readily adopted in standard multi-resolution image matching pipelines.
DRAGON: A Large-Scale Dataset of Realistic Images Generated by Diffusion Models
The remarkable ease of use of diffusion models for image generation has led to a proliferation of synthetic content online. While these models are often employed for legitimate purposes, they are also used to generate fake images that support misinformation and hate speech. Consequently, it is crucial to develop robust tools capable of detecting whether an image has been generated by such models. Many current detection methods, however, require large volumes of sample images for training. Unfortunately, due to the rapid evolution of the field, existing datasets often cover only a limited range of models and quickly become outdated. In this work, we introduce DRAGON, a comprehensive dataset comprising images from 25 diffusion models, spanning both recent advancements and older, well-established architectures. The dataset contains a broad variety of images representing diverse subjects. To enhance image realism, we propose a simple yet effective pipeline that leverages a large language model to expand input prompts, thereby generating more diverse and higher-quality outputs, as evidenced by improvements in standard quality metrics. The dataset is provided in multiple sizes (ranging from extra-small to extra-large) to accomodate different research scenarios. DRAGON is designed to support the forensic community in developing and evaluating detection and attribution techniques for synthetic content. Additionally, the dataset is accompanied by a dedicated test set, intended to serve as a benchmark for assessing the performance of newly developed methods.
Entropy-Driven Genetic Optimization for Deep-Feature-Guided Low-Light Image Enhancement
Image enhancement methods often prioritize pixel level information, overlooking the semantic features. We propose a novel, unsupervised, fuzzy-inspired image enhancement framework guided by NSGA-II algorithm that optimizes image brightness, contrast, and gamma parameters to achieve a balance between visual quality and semantic fidelity. Central to our proposed method is the use of a pre trained deep neural network as a feature extractor. To find the best enhancement settings, we use a GPU-accelerated NSGA-II algorithm that balances multiple objectives, namely, increasing image entropy, improving perceptual similarity, and maintaining appropriate brightness. We further improve the results by applying a local search phase to fine-tune the top candidates from the genetic algorithm. Our approach operates entirely without paired training data making it broadly applicable across domains with limited or noisy labels. Quantitatively, our model achieves excellent performance with average BRISQUE and NIQE scores of 19.82 and 3.652, respectively, in all unpaired datasets. Qualitatively, enhanced images by our model exhibit significantly improved visibility in shadowed regions, natural balance of contrast and also preserve the richer fine detail without introducing noticable artifacts. This work opens new directions for unsupervised image enhancement where semantic consistency is critical.
Diffusion-NPO: Negative Preference Optimization for Better Preference Aligned Generation of Diffusion Models ICLR 2025
Diffusion models have made substantial advances in image generation, yet models trained on large, unfiltered datasets often yield outputs misaligned with human preferences. Numerous methods have been proposed to fine-tune pre-trained diffusion models, achieving notable improvements in aligning generated outputs with human preferences. However, we argue that existing preference alignment methods neglect the critical role of handling unconditional/negative-conditional outputs, leading to a diminished capacity to avoid generating undesirable outcomes. This oversight limits the efficacy of classifier-free guidance~(CFG), which relies on the contrast between conditional generation and unconditional/negative-conditional generation to optimize output quality. In response, we propose a straightforward but versatile effective approach that involves training a model specifically attuned to negative preferences. This method does not require new training strategies or datasets but rather involves minor modifications to existing techniques. Our approach integrates seamlessly with models such as SD1.5, SDXL, video diffusion models and models that have undergone preference optimization, consistently enhancing their alignment with human preferences.
comment: Accepted to ICLR 2025
AW-GATCN: Adaptive Weighted Graph Attention Convolutional Network for Event Camera Data Joint Denoising and Object Recognition
Event cameras, which capture brightness changes with high temporal resolution, inherently generate a significant amount of redundant and noisy data beyond essential object structures. The primary challenge in event-based object recognition lies in effectively removing this noise without losing critical spatial-temporal information. To address this, we propose an Adaptive Graph-based Noisy Data Removal framework for Event-based Object Recognition. Specifically, our approach integrates adaptive event segmentation based on normalized density analysis, a multifactorial edge-weighting mechanism, and adaptive graph-based denoising strategies. These innovations significantly enhance the integration of spatiotemporal information, effectively filtering noise while preserving critical structural features for robust recognition. Experimental evaluations on four challenging datasets demonstrate that our method achieves superior recognition accuracies of 83.77%, 76.79%, 99.30%, and 96.89%, surpassing existing graph-based methods by up to 8.79%, and improving noise reduction performance by up to 19.57%, with an additional accuracy gain of 6.26% compared to traditional Euclidean-based techniques.
Seeing Sound, Hearing Sight: Uncovering Modality Bias and Conflict of AI models in Sound Localization
Imagine hearing a dog bark and turning toward the sound only to see a parked car, while the real, silent dog sits elsewhere. Such sensory conflicts test perception, yet humans reliably resolve them by prioritizing sound over misleading visuals. Despite advances in multimodal AI integrating vision and audio, little is known about how these systems handle cross-modal conflicts or whether they favor one modality. In this study, we systematically examine modality bias and conflict resolution in AI sound localization. We assess leading multimodal models and benchmark them against human performance in psychophysics experiments across six audiovisual conditions, including congruent, conflicting, and absent cues. Humans consistently outperform AI, demonstrating superior resilience to conflicting or missing visuals by relying on auditory information. In contrast, AI models often default to visual input, degrading performance to near chance levels. To address this, we finetune a state-of-the-art model using a stereo audio-image dataset generated via 3D simulations. Even with limited training data, the refined model surpasses existing benchmarks. Notably, it also mirrors human-like horizontal localization bias favoring left-right precision-likely due to the stereo audio structure reflecting human ear placement. These findings underscore how sensory input quality and system architecture shape multimodal representation accuracy.
comment: 16 pages, 14 figures
GeoMM: On Geodesic Perspective for Multi-modal Learning CVPR2025
Geodesic distance serves as a reliable means of measuring distance in nonlinear spaces, and such nonlinear manifolds are prevalent in the current multimodal learning. In these scenarios, some samples may exhibit high similarity, yet they convey different semantics, making traditional distance metrics inadequate for distinguishing between positive and negative samples. This paper introduces geodesic distance as a novel distance metric in multi-modal learning for the first time, to mine correlations between samples, aiming to address the limitations of common distance metric. Our approach incorporates a comprehensive series of strategies to adapt geodesic distance for the current multimodal learning. Specifically, we construct a graph structure to represent the adjacency relationships among samples by thresholding distances between them and then apply the shortest-path algorithm to obtain geodesic distance within this graph. To facilitate efficient computation, we further propose a hierarchical graph structure through clustering and combined with incremental update strategies for dynamic status updates. Extensive experiments across various downstream tasks validate the effectiveness of our proposed method, demonstrating its capability to capture complex relationships between samples and improve the performance of multimodal learning models.
comment: 15 pages, 3 figures, accepted by CVPR2025
DiCo: Revitalizing ConvNets for Scalable and Efficient Diffusion Modeling
Diffusion Transformer (DiT), a promising diffusion model for visual generation, demonstrates impressive performance but incurs significant computational overhead. Intriguingly, analysis of pre-trained DiT models reveals that global self-attention is often redundant, predominantly capturing local patterns-highlighting the potential for more efficient alternatives. In this paper, we revisit convolution as an alternative building block for constructing efficient and expressive diffusion models. However, naively replacing self-attention with convolution typically results in degraded performance. Our investigations attribute this performance gap to the higher channel redundancy in ConvNets compared to Transformers. To resolve this, we introduce a compact channel attention mechanism that promotes the activation of more diverse channels, thereby enhancing feature diversity. This leads to Diffusion ConvNet (DiCo), a family of diffusion models built entirely from standard ConvNet modules, offering strong generative performance with significant efficiency gains. On class-conditional ImageNet benchmarks, DiCo outperforms previous diffusion models in both image quality and generation speed. Notably, DiCo-XL achieves an FID of 2.05 at 256x256 resolution and 2.53 at 512x512, with a 2.7x and 3.1x speedup over DiT-XL/2, respectively. Furthermore, our largest model, DiCo-H, scaled to 1B parameters, reaches an FID of 1.90 on ImageNet 256x256-without any additional supervision during training. Code: https://github.com/shallowdream204/DiCo.
comment: 27 pages, 29 figures, 9 tables
FALCON: False-Negative Aware Learning of Contrastive Negatives in Vision-Language Pretraining
False negatives pose a critical challenge in vision-language pretraining (VLP) due to the many-to-many correspondence between images and texts in large-scale datasets. These false negatives introduce conflicting supervision signals that degrade the learned embedding space and diminish the effectiveness of hard negative sampling. In this paper, we propose FALCON (False-negative Aware Learning of COntrastive Negatives), a learning-based mini-batch construction strategy that adaptively balances the trade-off between hard and false negatives during VLP. Rather than relying on fixed heuristics, FALCON employs a negative mining scheduler that dynamically selects negative samples of appropriate hardness for each anchor instance during mini-batch construction, guided by a proxy for cross-modal alignment improvement. Experimental results demonstrate that FALCON significantly improves performance across two widely adopted VLP frameworks (ALBEF, BLIP-2) and a broad range of downstream tasks and evaluation settings, underscoring its effectiveness and robustness in mitigating the impact of false negatives.
Imputation-free and Alignment-free: Incomplete Multi-view Clustering Driven by Consensus Semantic Learning CVPR 2025
In incomplete multi-view clustering (IMVC), missing data induce prototype shifts within views and semantic inconsistencies across views. A feasible solution is to explore cross-view consistency in paired complete observations, further imputing and aligning the similarity relationships inherently shared across views. Nevertheless, existing methods are constrained by two-tiered limitations: (1) Neither instance- nor cluster-level consistency learning construct a semantic space shared across views to learn consensus semantics. The former enforces cross-view instances alignment, and wrongly regards unpaired observations with semantic consistency as negative pairs; the latter focuses on cross-view cluster counterparts while coarsely handling fine-grained intra-cluster relationships within views. (2) Excessive reliance on consistency results in unreliable imputation and alignment without incorporating view-specific cluster information. Thus, we propose an IMVC framework, imputation- and alignment-free for consensus semantics learning (FreeCSL). To bridge semantic gaps across all observations, we learn consensus prototypes from available data to discover a shared space, where semantically similar observations are pulled closer for consensus semantics learning. To capture semantic relationships within specific views, we design a heuristic graph clustering based on modularity to recover cluster structure with intra-cluster compactness and inter-cluster separation for cluster semantics enhancement. Extensive experiments demonstrate, compared to state-of-the-art competitors, FreeCSL achieves more confident and robust assignments on IMVC task.
comment: The paper has been accepted by the 42nd CVPR 2025. The main text has 9 pages, including 8 figures and 4 tables. The appendix has 8 pages, with 10 figures and 6 tables. The reference list has 3 pages
CompAlign: Improving Compositional Text-to-Image Generation with a Complex Benchmark and Fine-Grained Feedback
State-of-the-art T2I models are capable of generating high-resolution images given textual prompts. However, they still struggle with accurately depicting compositional scenes that specify multiple objects, attributes, and spatial relations. We present CompAlign, a challenging benchmark with an emphasis on assessing the depiction of 3D-spatial relationships, for evaluating and improving models on compositional image generation. CompAlign consists of 900 complex multi-subject image generation prompts that combine numerical and 3D-spatial relationships with varied attribute bindings. Our benchmark is remarkably challenging, incorporating generation tasks with 3+ generation subjects with complex 3D-spatial relationships. Additionally, we propose CompQuest, an interpretable and accurate evaluation framework that decomposes complex prompts into atomic sub-questions, then utilizes a MLLM to provide fine-grained binary feedback on the correctness of each aspect of generation elements in model-generated images. This enables precise quantification of alignment between generated images and compositional prompts. Furthermore, we propose an alignment framework that uses CompQuest's feedback as preference signals to improve diffusion models' compositional image generation abilities. Using adjustable per-image preferences, our method is easily scalable and flexible for different tasks. Evaluation of 9 T2I models reveals that: (1) models remarkable struggle more with compositional tasks with more complex 3D-spatial configurations, and (2) a noticeable performance gap exists between open-source accessible models and closed-source commercial models. Further empirical study on using CompAlign for model alignment yield promising results: post-alignment diffusion models achieve remarkable improvements in compositional accuracy, especially on complex generation tasks, outperforming previous approaches.
CheX-DS: Improving Chest X-ray Image Classification with Ensemble Learning Based on DenseNet and Swin Transformer
The automatic diagnosis of chest diseases is a popular and challenging task. Most current methods are based on convolutional neural networks (CNNs), which focus on local features while neglecting global features. Recently, self-attention mechanisms have been introduced into the field of computer vision, demonstrating superior performance. Therefore, this paper proposes an effective model, CheX-DS, for classifying long-tail multi-label data in the medical field of chest X-rays. The model is based on the excellent CNN model DenseNet for medical imaging and the newly popular Swin Transformer model, utilizing ensemble deep learning techniques to combine the two models and leverage the advantages of both CNNs and Transformers. The loss function of CheX-DS combines weighted binary cross-entropy loss with asymmetric loss, effectively addressing the issue of data imbalance. The NIH ChestX-ray14 dataset is selected to evaluate the model's effectiveness. The model outperforms previous studies with an excellent average AUC score of 83.76\%, demonstrating its superior performance.
comment: BIBM
Maximizing Asynchronicity in Event-based Neural Networks
Event cameras deliver visual data with high temporal resolution, low latency, and minimal redundancy, yet their asynchronous, sparse sequential nature challenges standard tensor-based machine learning (ML). While the recent asynchronous-to-synchronous (A2S) paradigm aims to bridge this gap by asynchronously encoding events into learned representations for ML pipelines, existing A2S approaches often sacrifice representation expressivity and generalizability compared to dense, synchronous methods. This paper introduces EVA (EVent Asynchronous representation learning), a novel A2S framework to generate highly expressive and generalizable event-by-event representations. Inspired by the analogy between events and language, EVA uniquely adapts advances from language modeling in linear attention and self-supervised learning for its construction. In demonstration, EVA outperforms prior A2S methods on recognition tasks (DVS128-Gesture and N-Cars), and represents the first A2S framework to successfully master demanding detection tasks, achieving a remarkable 47.7 mAP on the Gen1 dataset. These results underscore EVA's transformative potential for advancing real-time event-based vision applications.
comment: 18 pages, 5 figures, 9 tables
Diffusion Model in Hyperspectral Image Processing and Analysis: A Review
Hyperspectral image processing and analysis has important application value in remote sensing, agriculture and environmental monitoring, but its high dimensionality, data redundancy and noise interference etc. bring great challenges to the analysis. Traditional models have limitations in dealing with these complex data, and it is difficult to meet the increasing demand for analysis. In recent years, Diffusion Model, as an emerging generative model, has shown unique advantages in hyperspectral image processing. By simulating the diffusion process of data in time, the Diffusion Model can effectively process high-dimensional data, generate high-quality samples, and perform well in denoising and data enhancement. In this paper, we review the recent research advances in diffusion modeling for hyperspectral image processing and analysis, and discuss its applications in tasks such as high-dimensional data processing, noise removal, classification, and anomaly detection. The performance of diffusion-based models on image processing is compared and the challenges are summarized. It is shown that the diffusion model can significantly improve the accuracy and efficiency of hyperspectral image analysis, providing a new direction for future research.
comment: 33 pages,20 figures
Learning Dense Hand Contact Estimation from Imbalanced Data
Hands are essential to human interaction, and understanding contact between hands and the world can promote comprehensive understanding of their function. Recently, there have been growing number of hand interaction datasets that cover interaction with object, other hand, scene, and body. Despite the significance of the task and increasing high-quality data, how to effectively learn dense hand contact estimation remains largely underexplored. There are two major challenges for learning dense hand contact estimation. First, there exists class imbalance issue from hand contact datasets where majority of samples are not in contact. Second, hand contact datasets contain spatial imbalance issue with most of hand contact exhibited in finger tips, resulting in challenges for generalization towards contacts in other hand regions. To tackle these issues, we present a framework that learns dense HAnd COntact estimation (HACO) from imbalanced data. To resolve the class imbalance issue, we introduce balanced contact sampling, which builds and samples from multiple sampling groups that fairly represent diverse contact statistics for both contact and non-contact samples. Moreover, to address the spatial imbalance issue, we propose vertex-level class-balanced (VCB) loss, which incorporates spatially varying contact distribution by separately reweighting loss contribution of each vertex based on its contact frequency across dataset. As a result, we effectively learn to predict dense hand contact estimation with large-scale hand contact data without suffering from class and spatial imbalance issue. The codes will be released.
comment: Project page: http://haco-release.github.io
Open-Source Multi-Viewpoint Surgical Telerobotics ICRA
As robots for minimally invasive surgery (MIS) gradually become more accessible and modular, we believe there is a great opportunity to rethink and expand the visualization and control paradigms that have characterized surgical teleoperation since its inception. We conjecture that introducing one or more additional adjustable viewpoints in the abdominal cavity would not only unlock novel visualization and collaboration strategies for surgeons but also substantially boost the robustness of machine perception toward shared autonomy. Immediate advantages include controlling a second viewpoint and teleoperating surgical tools from a different perspective, which would allow collaborating surgeons to adjust their views independently and still maneuver their robotic instruments intuitively. Furthermore, we believe that capturing synchronized multi-view 3D measurements of the patient's anatomy would unlock advanced scene representations. Accurate real-time intraoperative 3D perception will allow algorithmic assistants to directly control one or more robotic instruments and/or robotic cameras. Toward these goals, we are building a synchronized multi-viewpoint, multi-sensor robotic surgery system by integrating high-performance vision components and upgrading the da Vinci Research Kit control logic. This short paper reports a functional summary of our setup and elaborates on its potential impacts in research and future clinical practice. By fully open-sourcing our system, we will enable the research community to reproduce our setup, improve it, and develop powerful algorithms, effectively boosting clinical translation of cutting-edge research.
comment: 2 pages, 2 figures, ICRA-RAMI workshop long abstract
Human-Aligned Bench: Fine-Grained Assessment of Reasoning Ability in MLLMs vs. Humans
The goal of achieving Artificial General Intelligence (AGI) is to imitate humans and surpass them. Models such as OpenAI's o1, o3, and DeepSeek's R1 have demonstrated that large language models (LLMs) with human-like reasoning capabilities exhibit exceptional performance and are being gradually integrated into multimodal large language models (MLLMs). However, whether these models possess capabilities comparable to humans in handling reasoning tasks remains unclear at present. In this paper, we propose Human-Aligned Bench, a benchmark for fine-grained alignment of multimodal reasoning with human performance. Specifically, we collected 9,794 multimodal questions that solely rely on contextual reasoning, including bilingual (Chinese and English) multimodal questions and pure text-based questions, encompassing four question types: visual reasoning, definition judgment, analogical reasoning, and logical judgment. More importantly, each question is accompanied by human success rates and options that humans are prone to choosing incorrectly. Extensive experiments on the Human-Aligned Bench reveal notable differences between the performance of current MLLMs in multimodal reasoning and human performance. The findings on our benchmark provide insights into the development of the next-generation models.
Towards Robust Spiking Neural Networks:Mitigating Heterogeneous Training Vulnerability via Dominant Eigencomponent Projection
Spiking Neural Networks (SNNs) process information via discrete spikes, enabling them to operate at remarkably low energy levels. However, our experimental observations reveal a striking vulnerability when SNNs are trained using the mainstream method--direct encoding combined with backpropagation through time (BPTT): even a single backward pass on data drawn from a slightly different distribution can lead to catastrophic network collapse. Our theoretical analysis attributes this vulnerability to the repeated inputs inherent in direct encoding and the gradient accumulation characteristic of BPTT, which together produce an exceptional large Hessian spectral radius. To address this challenge, we develop a hyperparameter-free method called Dominant Eigencomponent Projection (DEP). By orthogonally projecting gradients to precisely remove their dominant components, DEP effectively reduces the Hessian spectral radius, thereby preventing SNNs from settling into sharp minima. Extensive experiments demonstrate that DEP not only mitigates the vulnerability of SNNs to heterogeneous data poisoning, but also significantly enhances overall robustness compared to key baselines, providing strong support for safer and more reliable SNN deployment.
One Image is Worth a Thousand Words: A Usability Preservable Text-Image Collaborative Erasing Framework ICML 2025
Concept erasing has recently emerged as an effective paradigm to prevent text-to-image diffusion models from generating visually undesirable or even harmful content. However, current removal methods heavily rely on manually crafted text prompts, making it challenging to achieve a high erasure (efficacy) while minimizing the impact on other benign concepts (usability). In this paper, we attribute the limitations to the inherent gap between the text and image modalities, which makes it hard to transfer the intricately entangled concept knowledge from text prompts to the image generation process. To address this, we propose a novel solution by directly integrating visual supervision into the erasure process, introducing the first text-image Collaborative Concept Erasing (Co-Erasing) framework. Specifically, Co-Erasing describes the concept jointly by text prompts and the corresponding undesirable images induced by the prompts, and then reduces the generating probability of the target concept through negative guidance. This approach effectively bypasses the knowledge gap between text and image, significantly enhancing erasure efficacy. Additionally, we design a text-guided image concept refinement strategy that directs the model to focus on visual features most relevant to the specified text concept, minimizing disruption to other benign concepts. Finally, comprehensive experiments suggest that Co-Erasing outperforms state-of-the-art erasure approaches significantly with a better trade-off between efficacy and usability. Codes are available at https://github.com/Ferry-Li/Co-Erasing.
comment: This paper has been accepeted to ICML 2025. Not Final Version
PhiNet v2: A Mask-Free Brain-Inspired Vision Foundation Model from Video
Recent advances in self-supervised learning (SSL) have revolutionized computer vision through innovative architectures and learning objectives, yet they have not fully leveraged insights from biological visual processing systems. Recently, a brain-inspired SSL model named PhiNet was proposed; it is based on a ResNet backbone and operates on static image inputs with strong augmentation. In this paper, we introduce PhiNet v2, a novel Transformer-based architecture that processes temporal visual input (that is, sequences of images) without relying on strong augmentation. Our model leverages variational inference to learn robust visual representations from continuous input streams, similar to human visual processing. Through extensive experimentation, we demonstrate that PhiNet v2 achieves competitive performance compared to state-of-the-art vision foundation models, while maintaining the ability to learn from sequential input without strong data augmentation. This work represents a significant step toward more biologically plausible computer vision systems that process visual information in a manner more closely aligned with human cognitive processes.
comment: arXiv admin note: substantial text overlap with arXiv:2405.14650
What's Inside Your Diffusion Model? A Score-Based Riemannian Metric to Explore the Data Manifold
Recent advances in diffusion models have demonstrated their remarkable ability to capture complex image distributions, but the geometric properties of the learned data manifold remain poorly understood. We address this gap by introducing a score-based Riemannian metric that leverages the Stein score function from diffusion models to characterize the intrinsic geometry of the data manifold without requiring explicit parameterization. Our approach defines a metric tensor in the ambient space that stretches distances perpendicular to the manifold while preserving them along tangential directions, effectively creating a geometry where geodesics naturally follow the manifold's contours. We develop efficient algorithms for computing these geodesics and demonstrate their utility for both interpolation between data points and extrapolation beyond the observed data distribution. Through experiments on synthetic data with known geometry, Rotated MNIST, and complex natural images via Stable Diffusion, we show that our score-based geodesics capture meaningful transformations that respect the underlying data distribution. Our method consistently outperforms baseline approaches on perceptual metrics (LPIPS) and distribution-level metrics (FID, KID), producing smoother, more realistic image transitions. These results reveal the implicit geometric structure learned by diffusion models and provide a principled way to navigate the manifold of natural images through the lens of Riemannian geometry.
Redundancy-Aware Pretraining of Vision-Language Foundation Models in Remote Sensing
The development of foundation models through pretraining of vision-language models (VLMs) has recently attracted great attention in remote sensing (RS). VLM pretraining aims to learn image and language alignments from a large number of image-text pairs. Each pretraining image is often associated with multiple captions containing redundant information due to repeated or semantically similar phrases, resulting in increased pretraining and inference time. To overcome this, we introduce a weighted feature aggregation (WFA) strategy for VLM pretraining in RS. Our strategy aims to extract and exploit complementary information from multiple captions per image while reducing redundancies through feature aggregation with importance weighting. To calculate adaptive importance weights for different captions of each image, we propose two techniques: (i) non-parametric uniqueness and (ii) learning-based attention. In the first technique, importance weights are calculated based on the bilingual evaluation understudy (BLEU) scores of the captions to emphasize unique sentences and reduce the influence of repetitive ones. In the second technique, importance weights are learned through an attention mechanism instead of relying on hand-crafted features. The effectiveness of the proposed WFA strategy with the two techniques is analyzed in terms of downstream performance on text-to-image retrieval in RS. Experimental results show that the proposed strategy enables efficient and effective pretraining of VLMs in RS. Based on the experimental analysis, we derive guidelines for selecting appropriate techniques depending on downstream task requirements and resource constraints. The code of this work is publicly available at https://git.tu-berlin.de/rsim/redundacy-aware-rs-vlm.
comment: Accepted at IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 2025. Our code is available at https://git.tu-berlin.de/rsim/redundacy-aware-rs-vlm
Planar Velocity Estimation for Fast-Moving Mobile Robots Using Event-Based Optical Flow
Accurate velocity estimation is critical in mobile robotics, particularly for driver assistance systems and autonomous driving. Wheel odometry fused with Inertial Measurement Unit (IMU) data is a widely used method for velocity estimation; however, it typically requires strong assumptions, such as non-slip steering, or complex vehicle dynamics models that do not hold under varying environmental conditions like slippery surfaces. We introduce an approach to velocity estimation that is decoupled from wheel-to-surface traction assumptions by leveraging planar kinematics in combination with optical flow from event cameras pointed perpendicularly at the ground. The asynchronous micro-second latency and high dynamic range of event cameras make them highly robust to motion blur, a common challenge in vision-based perception techniques for autonomous driving. The proposed method is evaluated through in-field experiments on a 1:10 scale autonomous racing platform and compared to precise motion capture data, demonstrating not only performance on par with the state-of-the-art Event-VIO method but also a 38.3 % improvement in lateral error. Qualitative experiments at highway speeds of up to 32 m/s further confirm the effectiveness of our approach, indicating significant potential for real-world deployment.
Deepfake Forensic Analysis: Source Dataset Attribution and Legal Implications of Synthetic Media Manipulation
Synthetic media generated by Generative Adversarial Networks (GANs) pose significant challenges in verifying authenticity and tracing dataset origins, raising critical concerns in copyright enforcement, privacy protection, and legal compliance. This paper introduces a novel forensic framework for identifying the training dataset (e.g., CelebA or FFHQ) of GAN-generated images through interpretable feature analysis. By integrating spectral transforms (Fourier/DCT), color distribution metrics, and local feature descriptors (SIFT), our pipeline extracts discriminative statistical signatures embedded in synthetic outputs. Supervised classifiers (Random Forest, SVM, XGBoost) achieve 98-99% accuracy in binary classification (real vs. synthetic) and multi-class dataset attribution across diverse GAN architectures (StyleGAN, AttGAN, GDWCT, StarGAN, and StyleGAN2). Experimental results highlight the dominance of frequency-domain features (DCT/FFT) in capturing dataset-specific artifacts, such as upsampling patterns and spectral irregularities, while color histograms reveal implicit regularization strategies in GAN training. We further examine legal and ethical implications, showing how dataset attribution can address copyright infringement, unauthorized use of personal data, and regulatory compliance under frameworks like GDPR and California's AB 602. Our framework advances accountability and governance in generative modeling, with applications in digital forensics, content moderation, and intellectual property litigation.
MAVOS-DD: Multilingual Audio-Video Open-Set Deepfake Detection Benchmark
We present the first large-scale open-set benchmark for multilingual audio-video deepfake detection. Our dataset comprises over 250 hours of real and fake videos across eight languages, with 60% of data being generated. For each language, the fake videos are generated with seven distinct deepfake generation models, selected based on the quality of the generated content. We organize the training, validation and test splits such that only a subset of the chosen generative models and languages are available during training, thus creating several challenging open-set evaluation setups. We perform experiments with various pre-trained and fine-tuned deepfake detectors proposed in recent literature. Our results show that state-of-the-art detectors are not currently able to maintain their performance levels when tested in our open-set scenarios. We publicly release our data and code at: https://huggingface.co/datasets/unibuc-cs/MAVOS-DD.
comment: 15 pages
Hybrid-Emba3D: Geometry-Aware and Cross-Path Feature Hybrid Enhanced State Space Model for Point Cloud Classification
The point cloud classification tasks face the dual challenge of efficiently extracting local geometric features while maintaining model complexity. The Mamba architecture utilizes the linear complexity advantage of state space models (SSMs) to overcome the computational bottleneck of Transformers while balancing global modeling capabilities. However, the inherent contradiction between its unidirectional dependency and the unordered nature of point clouds impedes modeling spatial correlation in local neighborhoods, thus constraining geometric feature extraction. This paper proposes Hybrid-Emba3D, a bidirectional Mamba model enhanced by geometry-feature coupling and cross-path feature hybridization. The Local geometric pooling with geometry-feature coupling mechanism significantly enhances local feature discriminative power via coordinated propagation and dynamic aggregation of geometric information between local center points and their neighborhoods, without introducing additional parameters. The designed Collaborative feature enhancer adopts dual-path hybridization, effectively handling local mutations and sparse key signals, breaking through the limitations of traditional SSM long-range modeling. Experimental results demonstrate that the proposed model achieves a new SOTA classification accuracy of 95.99% on ModelNet40 with only 0.03M additional.
Pseudo-Label Quality Decoupling and Correction for Semi-Supervised Instance Segmentation
Semi-Supervised Instance Segmentation (SSIS) involves classifying and grouping image pixels into distinct object instances using limited labeled data. This learning paradigm usually faces a significant challenge of unstable performance caused by noisy pseudo-labels of instance categories and pixel masks. We find that the prevalent practice of filtering instance pseudo-labels assessing both class and mask quality with a single score threshold, frequently leads to compromises in the trade-off between the qualities of class and mask labels. In this paper, we introduce a novel Pseudo-Label Quality Decoupling and Correction (PL-DC) framework for SSIS to tackle the above challenges. Firstly, at the instance level, a decoupled dual-threshold filtering mechanism is designed to decouple class and mask quality estimations for instance-level pseudo-labels, thereby independently controlling pixel classifying and grouping qualities. Secondly, at the category level, we introduce a dynamic instance category correction module to dynamically correct the pseudo-labels of instance categories, effectively alleviating category confusion. Lastly, we introduce a pixel-level mask uncertainty-aware mechanism at the pixel level to re-weight the mask loss for different pixels, thereby reducing the impact of noise introduced by pixel-level mask pseudo-labels. Extensive experiments on the COCO and Cityscapes datasets demonstrate that the proposed PL-DC achieves significant performance improvements, setting new state-of-the-art results for SSIS. Notably, our PL-DC shows substantial gains even with minimal labeled data, achieving an improvement of +11.6 mAP with just 1% COCO labeled data and +15.5 mAP with 5% Cityscapes labeled data. The code will be public.
Towards Self-Improvement of Diffusion Models via Group Preference Optimization
Aligning text-to-image (T2I) diffusion models with Direct Preference Optimization (DPO) has shown notable improvements in generation quality. However, applying DPO to T2I faces two challenges: the sensitivity of DPO to preference pairs and the labor-intensive process of collecting and annotating high-quality data. In this work, we demonstrate that preference pairs with marginal differences can degrade DPO performance. Since DPO relies exclusively on relative ranking while disregarding the absolute difference of pairs, it may misclassify losing samples as wins, or vice versa. We empirically show that extending the DPO from pairwise to groupwise and incorporating reward standardization for reweighting leads to performance gains without explicit data selection. Furthermore, we propose Group Preference Optimization (GPO), an effective self-improvement method that enhances performance by leveraging the model's own capabilities without requiring external data. Extensive experiments demonstrate that GPO is effective across various diffusion models and tasks. Specifically, combining with widely used computer vision models, such as YOLO and OCR, the GPO improves the accurate counting and text rendering capabilities of the Stable Diffusion 3.5 Medium by 20 percentage points. Notably, as a plug-and-play method, no extra overhead is introduced during inference.
Assessing the Performance of Analog Training for Transfer Learning
Analog in-memory computing is a next-generation computing paradigm that promises fast, parallel, and energy-efficient deep learning training and transfer learning (TL). However, achieving this promise has remained elusive due to a lack of suitable training algorithms. Analog memory devices exhibit asymmetric and non-linear switching behavior in addition to device-to-device variation, meaning that most, if not all, of the current off-the-shelf training algorithms cannot achieve good training outcomes. Also, recently introduced algorithms have enjoyed limited attention, as they require bi-directionally switching devices of unrealistically high symmetry and precision and are highly sensitive. A new algorithm chopped TTv2 (c-TTv2), has been introduced, which leverages the chopped technique to address many of the challenges mentioned above. In this paper, we assess the performance of the c-TTv2 algorithm for analog TL using a Swin-ViT model on a subset of the CIFAR100 dataset. We also investigate the robustness of our algorithm to changes in some device specifications, including weight transfer noise, symmetry point skew, and symmetry point variability
HSRMamba: Efficient Wavelet Stripe State Space Model for Hyperspectral Image Super-Resolution
Single hyperspectral image super-resolution (SHSR) aims to restore high-resolution images from low-resolution hyperspectral images. Recently, the Visual Mamba model has achieved an impressive balance between performance and computational efficiency. However, due to its 1D scanning paradigm, the model may suffer from potential artifacts during image generation. To address this issue, we propose HSRMamba. While maintaining the computational efficiency of Visual Mamba, we introduce a strip-based scanning scheme to effectively reduce artifacts from global unidirectional scanning. Additionally, HSRMamba uses wavelet decomposition to alleviate modal conflicts between high-frequency spatial features and low-frequency spectral features, further improving super-resolution performance. Extensive experiments show that HSRMamba not only excels in reducing computational load and model size but also outperforms existing methods, achieving state-of-the-art results.
CUBIC: Concept Embeddings for Unsupervised Bias Identification using VLMs IJCNN 2025
Deep vision models often rely on biases learned from spurious correlations in datasets. To identify these biases, methods that interpret high-level, human-understandable concepts are more effective than those relying primarily on low-level features like heatmaps. A major challenge for these concept-based methods is the lack of image annotations indicating potentially bias-inducing concepts, since creating such annotations requires detailed labeling for each dataset and concept, which is highly labor-intensive. We present CUBIC (Concept embeddings for Unsupervised Bias IdentifiCation), a novel method that automatically discovers interpretable concepts that may bias classifier behavior. Unlike existing approaches, CUBIC does not rely on predefined bias candidates or examples of model failures tied to specific biases, as such information is not always available. Instead, it leverages image-text latent space and linear classifier probes to examine how the latent representation of a superclass label$\unicode{x2014}$shared by all instances in the dataset$\unicode{x2014}$is influenced by the presence of a given concept. By measuring these shifts against the normal vector to the classifier's decision boundary, CUBIC identifies concepts that significantly influence model predictions. Our experiments demonstrate that CUBIC effectively uncovers previously unknown biases using Vision-Language Models (VLMs) without requiring the samples in the dataset where the classifier underperforms or prior knowledge of potential biases.
comment: 8 pages, 3 figures, 5 tables. Accepted at IJCNN 2025; to appear in IEEE Xplore
Artifacts of Idiosyncracy in Global Street View Data
Street view data is increasingly being used in computer vision applications in recent years. Machine learning datasets are collected for these applications using simple sampling techniques. These datasets are assumed to be a systematic representation of cities, especially when densely sampled. Prior works however, show that there are clear gaps in coverage, with certain cities or regions being covered poorly or not at all. Here we demonstrate that a cities' idiosyncracies, such as city layout, may lead to biases in street view data for 28 cities across the globe, even when they are densely covered. We quantitatively uncover biases in the distribution of coverage of street view data and propose a method for evaluation of such distributions to get better insight in idiosyncracies in a cities' coverage. In addition, we perform a case study of Amsterdam with semi-structured interviews, showing how idiosyncracies of the collection process impact representation of cities and regions and allowing us to address biases at their source.
comment: Published at FAccT '25
CleanPatrick: A Benchmark for Image Data Cleaning
Robust machine learning depends on clean data, yet current image data cleaning benchmarks rely on synthetic noise or narrow human studies, limiting comparison and real-world relevance. We introduce CleanPatrick, the first large-scale benchmark for data cleaning in the image domain, built upon the publicly available Fitzpatrick17k dermatology dataset. We collect 496,377 binary annotations from 933 medical crowd workers, identify off-topic samples (4%), near-duplicates (21%), and label errors (22%), and employ an aggregation model inspired by item-response theory followed by expert review to derive high-quality ground truth. CleanPatrick formalizes issue detection as a ranking task and adopts typical ranking metrics mirroring real audit workflows. Benchmarking classical anomaly detectors, perceptual hashing, SSIM, Confident Learning, NoiseRank, and SelfClean, we find that, on CleanPatrick, self-supervised representations excel at near-duplicate detection, classical methods achieve competitive off-topic detection under constrained review budgets, and label-error detection remains an open challenge for fine-grained medical classification. By releasing both the dataset and the evaluation framework, CleanPatrick enables a systematic comparison of image-cleaning strategies and paves the way for more reliable data-centric artificial intelligence.
DexGarmentLab: Dexterous Garment Manipulation Environment with Generalizable Policy
Garment manipulation is a critical challenge due to the diversity in garment categories, geometries, and deformations. Despite this, humans can effortlessly handle garments, thanks to the dexterity of our hands. However, existing research in the field has struggled to replicate this level of dexterity, primarily hindered by the lack of realistic simulations of dexterous garment manipulation. Therefore, we propose DexGarmentLab, the first environment specifically designed for dexterous (especially bimanual) garment manipulation, which features large-scale high-quality 3D assets for 15 task scenarios, and refines simulation techniques tailored for garment modeling to reduce the sim-to-real gap. Previous data collection typically relies on teleoperation or training expert reinforcement learning (RL) policies, which are labor-intensive and inefficient. In this paper, we leverage garment structural correspondence to automatically generate a dataset with diverse trajectories using only a single expert demonstration, significantly reducing manual intervention. However, even extensive demonstrations cannot cover the infinite states of garments, which necessitates the exploration of new algorithms. To improve generalization across diverse garment shapes and deformations, we propose a Hierarchical gArment-manipuLation pOlicy (HALO). It first identifies transferable affordance points to accurately locate the manipulation area, then generates generalizable trajectories to complete the task. Through extensive experiments and detailed analysis of our method and baseline, we demonstrate that HALO consistently outperforms existing methods, successfully generalizing to previously unseen instances even with significant variations in shape and deformation where others fail. Our project page is available at: https://wayrise.github.io/DexGarmentLab/.
Classifying Shelf Life Quality of Pineapples by Combining Audio and Visual Features
Determining the shelf life quality of pineapples using non-destructive methods is a crucial step to reduce waste and increase income. In this paper, a multimodal and multiview classification model was constructed to classify pineapples into four quality levels based on audio and visual characteristics. For research purposes, we compiled and released the PQC500 dataset consisting of 500 pineapples with two modalities: one was tapping pineapples to record sounds by multiple microphones and the other was taking pictures by multiple cameras at different locations, providing multimodal and multi-view audiovisual features. We modified the contrastive audiovisual masked autoencoder to train the cross-modal-based classification model by abundant combinations of audio and visual pairs. In addition, we proposed to sample a compact size of training data for efficient computation. The experiments were evaluated under various data and model configurations, and the results demonstrated that the proposed cross-modal model trained using audio-major sampling can yield 84% accuracy, outperforming the unimodal models of only audio and only visual by 6% and 18%, respectively.
Rethinking the Mean Teacher Strategy from the Perspective of Self-paced Learning
Semi-supervised medical image segmentation has attracted significant attention due to its potential to reduce manual annotation costs. The mean teacher (MT) strategy, commonly understood as introducing smoothed, temporally lagged consistency regularization, has demonstrated strong performance across various tasks in this field. In this work, we reinterpret the MT strategy on supervised data as a form of self-paced learning, regulated by the output agreement between the temporally lagged teacher model and the ground truth labels. This idea is further extended to incorporate agreement between a temporally lagged model and a cross-architectural model, which offers greater flexibility in regulating the learning pace and enables application to unlabeled data. Specifically, we propose dual teacher-student learning (DTSL), a framework that introduces two groups of teacher-student models with different architectures. The output agreement between the cross-group teacher and student models is used as pseudo-labels, generated via a Jensen-Shannon divergence-based consensus label generator (CLG). Extensive experiments on popular datasets demonstrate that the proposed method consistently outperforms existing state-of-the-art approaches. Ablation studies further validate the effectiveness of the proposed modules.
WildDoc: How Far Are We from Achieving Comprehensive and Robust Document Understanding in the Wild?
The rapid advancements in Multimodal Large Language Models (MLLMs) have significantly enhanced capabilities in Document Understanding. However, prevailing benchmarks like DocVQA and ChartQA predominantly comprise \textit{scanned or digital} documents, inadequately reflecting the intricate challenges posed by diverse real-world scenarios, such as variable illumination and physical distortions. This paper introduces WildDoc, the inaugural benchmark designed specifically for assessing document understanding in natural environments. WildDoc incorporates a diverse set of manually captured document images reflecting real-world conditions and leverages document sources from established benchmarks to facilitate comprehensive comparisons with digital or scanned documents. Further, to rigorously evaluate model robustness, each document is captured four times under different conditions. Evaluations of state-of-the-art MLLMs on WildDoc expose substantial performance declines and underscore the models' inadequate robustness compared to traditional benchmarks, highlighting the unique challenges posed by real-world document understanding. Our project homepage is available at https://bytedance.github.io/WildDoc.
Towards Robust and Controllable Text-to-Motion via Masked Autoregressive Diffusion
Generating 3D human motion from text descriptions remains challenging due to the diverse and complex nature of human motion. While existing methods excel within the training distribution, they often struggle with out-of-distribution motions, limiting their applicability in real-world scenarios. Existing VQVAE-based methods often fail to represent novel motions faithfully using discrete tokens, which hampers their ability to generalize beyond seen data. Meanwhile, diffusion-based methods operating on continuous representations often lack fine-grained control over individual frames. To address these challenges, we propose a robust motion generation framework MoMADiff, which combines masked modeling with diffusion processes to generate motion using frame-level continuous representations. Our model supports flexible user-provided keyframe specification, enabling precise control over both spatial and temporal aspects of motion synthesis. MoMADiff demonstrates strong generalization capability on novel text-to-motion datasets with sparse keyframes as motion prompts. Extensive experiments on two held-out datasets and two standard benchmarks show that our method consistently outperforms state-of-the-art models in motion quality, instruction fidelity, and keyframe adherence.
comment: 10 pages, 6 figures, 5 tables
ForensicHub: A Unified Benchmark & Codebase for All-Domain Fake Image Detection and Localization
The field of Fake Image Detection and Localization (FIDL) is highly fragmented, encompassing four domains: deepfake detection (Deepfake), image manipulation detection and localization (IMDL), artificial intelligence-generated image detection (AIGC), and document image manipulation localization (Doc). Although individual benchmarks exist in some domains, a unified benchmark for all domains in FIDL remains blank. The absence of a unified benchmark results in significant domain silos, where each domain independently constructs its datasets, models, and evaluation protocols without interoperability, preventing cross-domain comparisons and hindering the development of the entire FIDL field. To close the domain silo barrier, we propose ForensicHub, the first unified benchmark & codebase for all-domain fake image detection and localization. Considering drastic variations on dataset, model, and evaluation configurations across all domains, as well as the scarcity of open-sourced baseline models and the lack of individual benchmarks in some domains, ForensicHub: i) proposes a modular and configuration-driven architecture that decomposes forensic pipelines into interchangeable components across datasets, transforms, models, and evaluators, allowing flexible composition across all domains; ii) fully implements 10 baseline models, 6 backbones, 2 new benchmarks for AIGC and Doc, and integrates 2 existing benchmarks of DeepfakeBench and IMDLBenCo through an adapter-based design; iii) conducts indepth analysis based on the ForensicHub, offering 8 key actionable insights into FIDL model architecture, dataset characteristics, and evaluation standards. ForensicHub represents a significant leap forward in breaking the domain silos in the FIDL field and inspiring future breakthroughs.
comment: Technical report. Code available at: https://github.com/scu-zjz/ForensicHub
DDAE++: Enhancing Diffusion Models Towards Unified Generative and Discriminative Learning
While diffusion models have gained prominence in image synthesis, their generative pre-training has been shown to yield discriminative representations, paving the way towards unified visual generation and understanding. However, two key questions remain: 1) Can these representations be leveraged to improve the training of diffusion models themselves, rather than solely benefiting downstream tasks? 2) Can the feature quality be enhanced to rival or even surpass modern self-supervised learners, without compromising generative capability? This work addresses these questions by introducing self-conditioning, a straightforward yet effective mechanism that internally leverages the rich semantics inherent in denoising network to guide its own decoding layers, forming a tighter bottleneck that condenses high-level semantics to improve generation. Results are compelling: our method boosts both generation FID and recognition accuracy with 1% computational overhead and generalizes across diverse diffusion architectures. Crucially, self-conditioning facilitates an effective integration of discriminative techniques, such as contrastive self-distillation, directly into diffusion models without sacrificing generation quality. Extensive experiments on pixel-space and latent-space datasets show that in linear evaluations, our enhanced diffusion models, particularly UViT and DiT, serve as strong representation learners, surpassing various self-supervised models.
Visual Anomaly Detection under Complex View-Illumination Interplay: A Large-Scale Benchmark
The practical deployment of Visual Anomaly Detection (VAD) systems is hindered by their sensitivity to real-world imaging variations, particularly the complex interplay between viewpoint and illumination which drastically alters defect visibility. Current benchmarks largely overlook this critical challenge. We introduce Multi-View Multi-Illumination Anomaly Detection (M2AD), a new large-scale benchmark comprising 119,880 high-resolution images designed explicitly to probe VAD robustness under such interacting conditions. By systematically capturing 999 specimens across 10 categories using 12 synchronized views and 10 illumination settings (120 configurations total), M2AD enables rigorous evaluation. We establish two evaluation protocols: M2AD-Synergy tests the ability to fuse information across diverse configurations, and M2AD-Invariant measures single-image robustness against realistic view-illumination effects. Our extensive benchmarking shows that state-of-the-art VAD methods struggle significantly on M2AD, demonstrating the profound challenge posed by view-illumination interplay. This benchmark serves as an essential tool for developing and validating VAD methods capable of overcoming real-world complexities. Our full dataset and test suite will be released at https://hustcyq.github.io/M2AD to facilitate the field.
comment: Homgepage: https://hustcyq.github.io/M2AD/. Yunkang Cao and Yuqi Cheng contribute equally to this work
Generative Models in Computational Pathology: A Comprehensive Survey on Methods, Applications, and Challenges
Generative modeling has emerged as a promising direction in computational pathology, offering capabilities such as data-efficient learning, synthetic data augmentation, and multimodal representation across diverse diagnostic tasks. This review provides a comprehensive synthesis of recent progress in the field, organized into four key domains: image generation, text generation, multimodal image-text generation, and other generative applications, including spatial simulation and molecular inference. By analyzing over 150 representative studies, we trace the evolution of generative architectures from early generative adversarial networks to recent advances in diffusion models and foundation models with generative capabilities. We further examine the datasets and evaluation protocols commonly used in this domain and highlight ongoing limitations, including challenges in generating high-fidelity whole slide images, clinical interpretability, and concerns related to the ethical and legal implications of synthetic data. The review concludes with a discussion of open challenges and prospective research directions, with an emphasis on developing unified, multimodal, and clinically deployable generative systems. This work aims to provide a foundational reference for researchers and practitioners developing and applying generative models in computational pathology.
comment: 18 pages,9 figures
M4-SAR: A Multi-Resolution, Multi-Polarization, Multi-Scene, Multi-Source Dataset and Benchmark for Optical-SAR Fusion Object Detection
Single-source remote sensing object detection using optical or SAR images struggles in complex environments. Optical images offer rich textural details but are often affected by low-light, cloud-obscured, or low-resolution conditions, reducing the detection performance. SAR images are robust to weather, but suffer from speckle noise and limited semantic expressiveness. Optical and SAR images provide complementary advantages, and fusing them can significantly improve the detection accuracy. However, progress in this field is hindered by the lack of large-scale, standardized datasets. To address these challenges, we propose the first comprehensive dataset for optical-SAR fusion object detection, named Multi-resolution, Multi-polarization, Multi-scene, Multi-source SAR dataset (M4-SAR). It contains 112,184 precisely aligned image pairs and nearly one million labeled instances with arbitrary orientations, spanning six key categories. To enable standardized evaluation, we develop a unified benchmarking toolkit that integrates six state-of-the-art multi-source fusion methods. Furthermore, we propose E2E-OSDet, a novel end-to-end multi-source fusion detection framework that mitigates cross-domain discrepancies and establishes a robust baseline for future studies. Extensive experiments on M4-SAR demonstrate that fusing optical and SAR data can improve $mAP$ by 5.7\% over single-source inputs, with particularly significant gains in complex environments. The dataset and code are publicly available at https://github.com/wchao0601/M4-SAR.
A Survey on the Safety and Security Threats of Computer-Using Agents: JARVIS or Ultron?
Recently, AI-driven interactions with computing devices have advanced from basic prototype tools to sophisticated, LLM-based systems that emulate human-like operations in graphical user interfaces. We are now witnessing the emergence of \emph{Computer-Using Agents} (CUAs), capable of autonomously performing tasks such as navigating desktop applications, web pages, and mobile apps. However, as these agents grow in capability, they also introduce novel safety and security risks. Vulnerabilities in LLM-driven reasoning, with the added complexity of integrating multiple software components and multimodal inputs, further complicate the security landscape. In this paper, we present a systematization of knowledge on the safety and security threats of CUAs. We conduct a comprehensive literature review and distill our findings along four research objectives: \textit{\textbf{(i)}} define the CUA that suits safety analysis; \textit{\textbf{(ii)} } categorize current safety threats among CUAs; \textit{\textbf{(iii)}} propose a comprehensive taxonomy of existing defensive strategies; \textit{\textbf{(iv)}} summarize prevailing benchmarks, datasets, and evaluation metrics used to assess the safety and performance of CUAs. Building on these insights, our work provides future researchers with a structured foundation for exploring unexplored vulnerabilities and offers practitioners actionable guidance in designing and deploying secure Computer-Using Agents.
GrowSplat: Constructing Temporal Digital Twins of Plants with Gaussian Splats
Accurate temporal reconstructions of plant growth are essential for plant phenotyping and breeding, yet remain challenging due to complex geometries, occlusions, and non-rigid deformations of plants. We present a novel framework for building temporal digital twins of plants by combining 3D Gaussian Splatting with a robust sample alignment pipeline. Our method begins by reconstructing Gaussian Splats from multi-view camera data, then leverages a two-stage registration approach: coarse alignment through feature-based matching and Fast Global Registration, followed by fine alignment with Iterative Closest Point. This pipeline yields a consistent 4D model of plant development in discrete time steps. We evaluate the approach on data from the Netherlands Plant Eco-phenotyping Center, demonstrating detailed temporal reconstructions of Sequoia and Quinoa species. Videos and Images can be seen at https://berkeleyautomation.github.io/GrowSplat/
Towards Cross-modal Retrieval in Chinese Cultural Heritage Documents: Dataset and Solution
China has a long and rich history, encompassing a vast cultural heritage that includes diverse multimodal information, such as silk patterns, Dunhuang murals, and their associated historical narratives. Cross-modal retrieval plays a pivotal role in understanding and interpreting Chinese cultural heritage by bridging visual and textual modalities to enable accurate text-to-image and image-to-text retrieval. However, despite the growing interest in multimodal research, there is a lack of specialized datasets dedicated to Chinese cultural heritage, limiting the development and evaluation of cross-modal learning models in this domain. To address this gap, we propose a multimodal dataset named CulTi, which contains 5,726 image-text pairs extracted from two series of professional documents, respectively related to ancient Chinese silk and Dunhuang murals. Compared to existing general-domain multimodal datasets, CulTi presents a challenge for cross-modal retrieval: the difficulty of local alignment between intricate decorative motifs and specialized textual descriptions. To address this challenge, we propose LACLIP, a training-free local alignment strategy built upon a fine-tuned Chinese-CLIP. LACLIP enhances the alignment of global textual descriptions with local visual regions by computing weighted similarity scores during inference. Experimental results on CulTi demonstrate that LACLIP significantly outperforms existing models in cross-modal retrieval, particularly in handling fine-grained semantic associations within Chinese cultural heritage.
VISTA: Enhancing Vision-Text Alignment in MLLMs via Cross-Modal Mutual Information Maximization
Current multimodal large language models (MLLMs) face a critical challenge in modality alignment, often exhibiting a bias towards textual information at the expense of other modalities like vision. This paper conducts a systematic information-theoretic analysis of the widely used cross-entropy loss in MLLMs, uncovering its implicit alignment objective. Our theoretical investigation reveals that this implicit objective has inherent limitations, leading to a degradation of cross-modal alignment as text sequence length increases, thereby hindering effective multimodal information fusion. To overcome these drawbacks, we propose Vision-Text Alignment (VISTA), a novel approach guided by our theoretical insights. VISTA introduces an explicit alignment objective designed to maximize cross-modal mutual information, preventing the degradation of visual alignment. Notably, VISTA enhances the visual understanding capabilities of existing MLLMs without requiring any additional trainable modules or extra training data, making it both efficient and practical. Our method significantly outperforms baseline models across more than a dozen benchmark datasets, including VQAv2, MMStar, and MME, paving the way for new directions in MLLM modal alignment research.
Patient-Specific Dynamic Digital-Physical Twin for Coronary Intervention Training: An Integrated Mixed Reality Approach
Background and Objective: Precise preoperative planning and effective physician training for coronary interventions are increasingly important. Despite advances in medical imaging technologies, transforming static or limited dynamic imaging data into comprehensive dynamic cardiac models remains challenging. Existing training systems lack accurate simulation of cardiac physiological dynamics. This study develops a comprehensive dynamic cardiac model research framework based on 4D-CTA, integrating digital twin technology, computer vision, and physical model manufacturing to provide precise, personalized tools for interventional cardiology. Methods: Using 4D-CTA data from a 60-year-old female with three-vessel coronary stenosis, we segmented cardiac chambers and coronary arteries, constructed dynamic models, and implemented skeletal skinning weight computation to simulate vessel deformation across 20 cardiac phases. Transparent vascular physical models were manufactured using medical-grade silicone. We developed cardiac output analysis and virtual angiography systems, implemented guidewire 3D reconstruction using binocular stereo vision, and evaluated the system through angiography validation and CABG training applications. Results: Morphological consistency between virtual and real angiography reached 80.9%. Dice similarity coefficients for guidewire motion ranged from 0.741-0.812, with mean trajectory errors below 1.1 mm. The transparent model demonstrated advantages in CABG training, allowing direct visualization while simulating beating heart challenges. Conclusion: Our patient-specific digital-physical twin approach effectively reproduces both anatomical structures and dynamic characteristics of coronary vasculature, offering a dynamic environment with visual and tactile feedback valuable for education and clinical planning.
comment: 34 pages, 24 figures
CTP: A hybrid CNN-Transformer-PINN model for ocean front forecasting
This paper proposes CTP, a novel deep learning framework that integrates convolutional neural network(CNN), Transformer architectures, and physics-informed neural network(PINN) for ocean front prediction. Ocean fronts, as dynamic interfaces between distinct water masses, play critical roles in marine biogeochemical and physical processes. Existing methods such as LSTM, ConvLSTM, and AttentionConv often struggle to maintain spatial continuity and physical consistency over multi-step forecasts. CTP addresses these challenges by combining localized spatial encoding, long-range temporal attention, and physical constraint enforcement. Experimental results across south China sea(SCS) and Kuroshio(KUR) regions from 1993 to 2020 demonstrate that CTP achieves state-of-the-art(SOTA) performance in both single-step and multi-step predictions, significantly outperforming baseline models in accuracy, $F_1$ score, and temporal stability.
PoseBench3D: A Cross-Dataset Analysis Framework for 3D Human Pose Estimation
Reliable three-dimensional human pose estimation is becoming increasingly important for real-world applications, yet much of prior work has focused solely on the performance within a single dataset. In practice, however, systems must adapt to diverse viewpoints, environments, and camera setups -- conditions that differ significantly from those encountered during training, which is often the case in real-world scenarios. To address these challenges, we present a standardized testing environment in which each method is evaluated on a variety of datasets, ensuring consistent and fair cross-dataset comparisons -- allowing for the analysis of methods on previously unseen data. Therefore, we propose PoseBench3D, a unified framework designed to systematically re-evaluate prior and future models across four of the most widely used datasets for human pose estimation -- with the framework able to support novel and future datasets as the field progresses. Through a unified interface, our framework provides datasets in a pre-configured yet easily modifiable format, ensuring compatibility with diverse model architectures. We re-evaluated the work of 18 methods, either trained or gathered from existing literature, and reported results using both Mean Per Joint Position Error (MPJPE) and Procrustes Aligned Mean Per Joint Position Error (PA-MPJPE) metrics, yielding more than 100 novel cross-dataset evaluation results. Additionally, we analyze performance differences resulting from various pre-processing techniques and dataset preparation parameters -- offering further insight into model generalization capabilities.
comment: https://github.com/bryanjvela/PoseLab3D/tree/submission_branch
A Light and Smart Wearable Platform with Multimodal Foundation Model for Enhanced Spatial Reasoning in People with Blindness and Low Vision
People with blindness and low vision (pBLV) face significant challenges, struggling to navigate environments and locate objects due to limited visual cues. Spatial reasoning is crucial for these individuals, as it enables them to understand and interpret the spatial relationships in their surroundings, enhancing their ability to navigate and interact more safely and independently. Current multi-modal large language (MLLM) models for low vision people lack the spatial reasoning capabilities needed to effectively assist in these tasks. Moreover, there is a notable absence of lightweight, easy-to-use systems that allow pBLV to effectively perceive and interact with their surrounding environment. In this paper, we propose a novel spatial enhanced multi-modal large language model based approach for visually impaired individuals. By fine-tuning the MLLM to incorporate spatial reasoning capabilities, our method significantly improves the understanding of environmental context, which is critical for navigation and object recognition. The innovation extends to a hardware component, designed as an attachment for glasses, ensuring increased accessibility and ease of use. This integration leverages advanced VLMs to interpret visual data and provide real-time, spatially aware feedback to the user. Our approach aims to bridge the gap between advanced machine learning models and practical, user-friendly assistive devices, offering a robust solution for visually impaired users to navigate their surroundings more effectively and independently. The paper includes an in-depth evaluation using the VizWiz dataset, demonstrating substantial improvements in accuracy and user experience. Additionally, we design a comprehensive dataset to evaluate our method's effectiveness in realworld situations, demonstrating substantial improvements in accuracy and user experience.
comment: Project website and code: https://dktpt44.github.io/LV-GPT/
Preference Isolation Forest for Structure-based Anomaly Detection
We address the problem of detecting anomalies as samples that do not conform to structured patterns represented by low-dimensional manifolds. To this end, we conceive a general anomaly detection framework called Preference Isolation Forest (PIF), that combines the benefits of adaptive isolation-based methods with the flexibility of preference embedding. The key intuition is to embed the data into a high-dimensional preference space by fitting low-dimensional manifolds, and to identify anomalies as isolated points. We propose three isolation approaches to identify anomalies: $i$) Voronoi-iForest, the most general solution, $ii$) RuzHash-iForest, that avoids explicit computation of distances via Local Sensitive Hashing, and $iii$) Sliding-PIF, that leverages a locality prior to improve efficiency and effectiveness.
comment: Submitted to Pattern Recognition
MultiLink: Multi-class Structure Recovery via Agglomerative Clustering and Model Selection CVPR 2021
We address the problem of recovering multiple structures of different classes in a dataset contaminated by noise and outliers. In particular, we consider geometric structures defined by a mixture of underlying parametric models (e.g. planes and cylinders, homographies and fundamental matrices), and we tackle the robust fitting problem by preference analysis and clustering. We present a new algorithm, termed MultiLink, that simultaneously deals with multiple classes of models. MultiLink combines on-the-fly model fitting and model selection in a novel linkage scheme that determines whether two clusters are to be merged. The resulting method features many practical advantages with respect to methods based on preference analysis, being faster, less sensitive to the inlier threshold, and able to compensate limitations deriving from hypotheses sampling. Experiments on several public datasets demonstrate that Multi-Link favourably compares with state of the art alternatives, both in multi-class and single-class problems. Code is publicly made available for download.
comment: Accepted at Computer Vision and Pattern Recognition (CVPR 2021)
Hashing for Structure-based Anomaly Detection
We focus on the problem of identifying samples in a set that do not conform to structured patterns represented by low-dimensional manifolds. An effective way to solve this problem is to embed data in a high dimensional space, called Preference Space, where anomalies can be identified as the most isolated points. In this work, we employ Locality Sensitive Hashing to avoid explicit computation of distances in high dimensions and thus improve Anomaly Detection efficiency. Specifically, we present an isolation-based anomaly detection technique designed to work in the Preference Space which achieves state-of-the-art performance at a lower computational cost. Code is publicly available at https://github.com/ineveLoppiliF/Hashing-for-Structure-based-Anomaly-Detection.
comment: Accepted at International Conference on Image Analysis and Processing (ICIAP 2023)
A Convolution-Based Gait Asymmetry Metric for Inter-Limb Synergistic Coordination
This study focuses on the velocity patterns of various body parts during walking and proposes a method for evaluating gait symmetry. Traditional motion analysis studies have assessed gait symmetry based on differences in electromyographic (EMG) signals or acceleration between the left and right sides. In contrast, this paper models intersegmental coordination using an LTI system and proposes a dissimilarity metric to evaluate symmetry. The method was tested on five subjects with both symmetric and asymmetric gait.
comment: 7 pages, 13 figures, 3 tables
Pretrained hybrid transformer for generalizable cardiac substructures segmentation from contrast and non-contrast CTs in lung and breast cancers
AI automated segmentations for radiation treatment planning (RTP) can deteriorate when applied in clinical cases with different characteristics than training dataset. Hence, we refined a pretrained transformer into a hybrid transformer convolutional network (HTN) to segment cardiac substructures lung and breast cancer patients acquired with varying imaging contrasts and patient scan positions. Cohort I, consisting of 56 contrast-enhanced (CECT) and 124 non-contrast CT (NCCT) scans from patients with non-small cell lung cancers acquired in supine position, was used to create oracle with all 180 training cases and balanced (CECT: 32, NCCT: 32 training) HTN models. Models were evaluated on a held-out validation set of 60 cohort I patients and 66 patients with breast cancer from cohort II acquired in supine (n=45) and prone (n=21) positions. Accuracy was measured using DSC, HD95, and dose metrics. Publicly available TotalSegmentator served as the benchmark. The oracle and balanced models were similarly accurate (DSC Cohort I: 0.80 \pm 0.10 versus 0.81 \pm 0.10; Cohort II: 0.77 \pm 0.13 versus 0.80 \pm 0.12), outperforming TotalSegmentator. The balanced model, using half the training cases as oracle, produced similar dose metrics as manual delineations for all cardiac substructures. This model was robust to CT contrast in 6 out of 8 substructures and patient scan position variations in 5 out of 8 substructures and showed low correlations of accuracy to patient size and age. A HTN demonstrated robustly accurate (geometric and dose metrics) cardiac substructures segmentation from CTs with varying imaging and patient characteristics, one key requirement for clinical use. Moreover, the model combining pretraining with balanced distribution of NCCT and CECT scans was able to provide reliably accurate segmentations under varied conditions with far fewer labeled datasets compared to an oracle model.
RefPose: Leveraging Reference Geometric Correspondences for Accurate 6D Pose Estimation of Unseen Objects CVPR 2025
Estimating the 6D pose of unseen objects from monocular RGB images remains a challenging problem, especially due to the lack of prior object-specific knowledge. To tackle this issue, we propose RefPose, an innovative approach to object pose estimation that leverages a reference image and geometric correspondence as guidance. RefPose first predicts an initial pose by using object templates to render the reference image and establish the geometric correspondence needed for the refinement stage. During the refinement stage, RefPose estimates the geometric correspondence of the query based on the generated references and iteratively refines the pose through a render-and-compare approach. To enhance this estimation, we introduce a correlation volume-guided attention mechanism that effectively captures correlations between the query and reference images. Unlike traditional methods that depend on pre-defined object models, RefPose dynamically adapts to new object shapes by leveraging a reference image and geometric correspondence. This results in robust performance across previously unseen objects. Extensive evaluation on the BOP benchmark datasets shows that RefPose achieves state-of-the-art results while maintaining a competitive runtime.
comment: Accepted at CVPR 2025
Multimodal Event Detection: Current Approaches and Defining the New Playground through LLMs and VLMs
In this paper, we study the challenges of detecting events on social media, where traditional unimodal systems struggle due to the rapid and multimodal nature of data dissemination. We employ a range of models, including unimodal ModernBERT and ConvNeXt-V2, multimodal fusion techniques, and advanced generative models like GPT-4o, and LLaVA. Additionally, we also study the effect of providing multimodal generative models (such as GPT-4o) with a single modality to assess their efficacy. Our results indicate that while multimodal approaches notably outperform unimodal counterparts, generative approaches despite having a large number of parameters, lag behind supervised methods in precision. Furthermore, we also found that they lag behind instruction-tuned models because of their inability to generate event classes correctly. During our error analysis, we discovered that common social media issues such as leet speak, text elongation, etc. are effectively handled by generative approaches but are hard to tackle using supervised approaches.
comment: Accepted at NLDB 2025
NeuSEditor: From Multi-View Images to Text-Guided Neural Surface Edits
Implicit surface representations are valued for their compactness and continuity, but they pose significant challenges for editing. Despite recent advancements, existing methods often fail to preserve identity and maintain geometric consistency during editing. To address these challenges, we present NeuSEditor, a novel method for text-guided editing of neural implicit surfaces derived from multi-view images. NeuSEditor introduces an identity-preserving architecture that efficiently separates scenes into foreground and background, enabling precise modifications without altering the scene-specific elements. Our geometry-aware distillation loss significantly enhances rendering and geometric quality. Our method simplifies the editing workflow by eliminating the need for continuous dataset updates and source prompting. NeuSEditor outperforms recent state-of-the-art methods like PDS and InstructNeRF2NeRF, delivering superior quantitative and qualitative results. For more visual results, visit: neuseditor.github.io.
A High-Performance Thermal Infrared Object Detection Framework with Centralized Regulation
Thermal Infrared (TIR) technology involves the use of sensors to detect and measure infrared radiation emitted by objects, and it is widely utilized across a broad spectrum of applications. The advancements in object detection methods utilizing TIR images have sparked significant research interest. However, most traditional methods lack the capability to effectively extract and fuse local-global information, which is crucial for TIR-domain feature attention. In this study, we present a novel and efficient thermal infrared object detection framework, known as CRT-YOLO, that is based on centralized feature regulation, enabling the establishment of global-range interaction on TIR information. Our proposed model integrates efficient multi-scale attention (EMA) modules, which adeptly capture long-range dependencies while incurring minimal computational overhead. Additionally, it leverages the Centralized Feature Pyramid (CFP) network, which offers global regulation of TIR features. Extensive experiments conducted on two benchmark datasets demonstrate that our CRT-YOLO model significantly outperforms conventional methods for TIR image object detection. Furthermore, the ablation study provides compelling evidence of the effectiveness of our proposed modules, reinforcing the potential impact of our approach on advancing the field of thermal infrared object detection.
comment: This manuscript has been accepted for publication in the International Journal for Housing Science and Its Applications (IJHSA), 2025
Textured mesh Quality Assessment using Geometry and Color Field Similarity
Textured mesh quality assessment (TMQA) is critical for various 3D mesh applications. However, existing TMQA methods often struggle to provide accurate and robust evaluations. Motivated by the effectiveness of fields in representing both 3D geometry and color information, we propose a novel point-based TMQA method called field mesh quality metric (FMQM). FMQM utilizes signed distance fields and a newly proposed color field named nearest surface point color field to realize effective mesh feature description. Four features related to visual perception are extracted from the geometry and color fields: geometry similarity, geometry gradient similarity, space color distribution similarity, and space color gradient similarity. Experimental results on three benchmark datasets demonstrate that FMQM outperforms state-of-the-art (SOTA) TMQA metrics. Furthermore, FMQM exhibits low computational complexity, making it a practical and efficient solution for real-world applications in 3D graphics and visualization. Our code is publicly available at: https://github.com/yyyykf/FMQM.
comment: 15 pages main content, 4 pages supplementary material. Submitted to IEEE Transactions on Visualization and Computer Graphics (IEEE TVCG) for review
From Embeddings to Accuracy: Comparing Foundation Models for Radiographic Classification
Foundation models, pretrained on extensive datasets, have significantly advanced machine learning by providing robust and transferable embeddings applicable to various domains, including medical imaging diagnostics. This study evaluates the utility of embeddings derived from both general-purpose and medical domain-specific foundation models for training lightweight adapter models in multi-class radiography classification, focusing specifically on tube placement assessment. A dataset comprising 8842 radiographs classified into seven distinct categories was employed to extract embeddings using six foundation models: DenseNet121, BiomedCLIP, Med-Flamingo, MedImageInsight, Rad-DINO, and CXR-Foundation. Adapter models were subsequently trained using classical machine learning algorithms. Among these combinations, MedImageInsight embeddings paired with an support vector machine adapter yielded the highest mean area under the curve (mAUC) at 93.8%, followed closely by Rad-DINO (91.1%) and CXR-Foundation (89.0%). In comparison, BiomedCLIP and DenseNet121 exhibited moderate performance with mAUC scores of 83.0% and 81.8%, respectively, whereas Med-Flamingo delivered the lowest performance at 75.1%. Notably, most adapter models demonstrated computational efficiency, achieving training within one minute and inference within seconds on CPU, underscoring their practicality for clinical applications. Furthermore, fairness analyses on adapters trained on MedImageInsight-derived embeddings indicated minimal disparities, with gender differences in performance within 2% and standard deviations across age groups not exceeding 3%. These findings confirm that foundation model embeddings-especially those from MedImageInsight-facilitate accurate, computationally efficient, and equitable diagnostic classification using lightweight adapters for radiographic image analysis.
comment: 11 pages, 5 figures, 4 tables
MoCLIP: Motion-Aware Fine-Tuning and Distillation of CLIP for Human Motion Generation CVPR 2025
Human motion generation is essential for fields such as animation, robotics, and virtual reality, requiring models that effectively capture motion dynamics from text descriptions. Existing approaches often rely on Contrastive Language-Image Pretraining (CLIP)-based text encoders, but their training on text-image pairs constrains their ability to understand temporal and kinematic structures inherent in motion and motion generation. This work introduces MoCLIP, a fine-tuned CLIP model with an additional motion encoding head, trained on motion sequences using contrastive learning and tethering loss. By explicitly incorporating motion-aware representations, MoCLIP enhances motion fidelity while remaining compatible with existing CLIP-based pipelines and seamlessly integrating into various CLIP-based methods. Experiments demonstrate that MoCLIP improves Top-1, Top-2, and Top-3 accuracy while maintaining competitive FID, leading to improved text-to-motion alignment results. These results highlight MoCLIP's versatility and effectiveness, establishing it as a robust framework for enhancing motion generation.
comment: 11 pages, 5 figures, 2 tables. Presented at the CVPR 2025 Human Motion Generation (HuMoGen) Workshop. Introduces MoCLIP, a CLIP-based fine-tuning strategy for motion generation, with results on HumanML3D dataset and ablation studies
EA-3DGS: Efficient and Adaptive 3D Gaussians with Highly Enhanced Quality for outdoor scenes
Efficient scene representations are essential for many real-world applications, especially those involving spatial measurement. Although current NeRF-based methods have achieved impressive results in reconstructing building-scale scenes, they still suffer from slow training and inference speeds due to time-consuming stochastic sampling. Recently, 3D Gaussian Splatting (3DGS) has demonstrated excellent performance with its high-quality rendering and real-time speed, especially for objects and small-scale scenes. However, in outdoor scenes, its point-based explicit representation lacks an effective adjustment mechanism, and the millions of Gaussian points required often lead to memory constraints during training. To address these challenges, we propose EA-3DGS, a high-quality real-time rendering method designed for outdoor scenes. First, we introduce a mesh structure to regulate the initialization of Gaussian components by leveraging an adaptive tetrahedral mesh that partitions the grid and initializes Gaussian components on each face, effectively capturing geometric structures in low-texture regions. Second, we propose an efficient Gaussian pruning strategy that evaluates each 3D Gaussian's contribution to the view and prunes accordingly. To retain geometry-critical Gaussian points, we also present a structure-aware densification strategy that densifies Gaussian points in low-curvature regions. Additionally, we employ vector quantization for parameter quantization of Gaussian components, significantly reducing disk space requirements with only a minimal impact on rendering quality. Extensive experiments on 13 scenes, including eight from four public datasets (MatrixCity-Aerial, Mill-19, Tanks \& Temples, WHU) and five self-collected scenes acquired through UAV photogrammetry measurement from SCUT-CA and plateau regions, further demonstrate the superiority of our method.
SynRailObs: A Synthetic Dataset for Obstacle Detection in Railway Scenarios
Detecting potential obstacles in railway environments is critical for preventing serious accidents. Identifying a broad range of obstacle categories under complex conditions requires large-scale datasets with precisely annotated, high-quality images. However, existing publicly available datasets fail to meet these requirements, thereby hindering progress in railway safety research. To address this gap, we introduce SynRailObs, a high-fidelity synthetic dataset designed to represent a diverse range of weather conditions and geographical features. Furthermore, diffusion models are employed to generate rare and difficult-to-capture obstacles that are typically challenging to obtain in real-world scenarios. To evaluate the effectiveness of SynRailObs, we perform experiments in real-world railway environments, testing on both ballasted and ballastless tracks across various weather conditions. The results demonstrate that SynRailObs holds substantial potential for advancing obstacle detection in railway safety applications. Models trained on this dataset show consistent performance across different distances and environmental conditions. Moreover, the model trained on SynRailObs exhibits zero-shot capabilities, which are essential for applications in security-sensitive domains. The data is available in https://www.kaggle.com/datasets/qiushi910/synrailobs.
Completely Weakly Supervised Class-Incremental Learning for Semantic Segmentation
This work addresses the task of completely weakly supervised class-incremental learning for semantic segmentation to learn segmentation for both base and additional novel classes using only image-level labels. While class-incremental semantic segmentation (CISS) is crucial for handling diverse and newly emerging objects in the real world, traditional CISS methods require expensive pixel-level annotations for training. To overcome this limitation, partially weakly-supervised approaches have recently been proposed. However, to the best of our knowledge, this is the first work to introduce a completely weakly-supervised method for CISS. To achieve this, we propose to generate robust pseudo-labels by combining pseudo-labels from a localizer and a sequence of foundation models based on their uncertainty. Moreover, to mitigate catastrophic forgetting, we introduce an exemplar-guided data augmentation method that generates diverse images containing both previous and novel classes with guidance. Finally, we conduct experiments in three common experimental settings: 15-5 VOC, 10-10 VOC, and COCO-to-VOC, and in two scenarios: disjoint and overlap. The experimental results demonstrate that our completely weakly supervised method outperforms even partially weakly supervised methods in the 15-5 VOC and 10-10 VOC settings while achieving competitive accuracy in the COCO-to-VOC setting.
comment: 8 pages
Unifying Segment Anything in Microscopy with Multimodal Large Language Model
Accurate segmentation of regions of interest in biomedical images holds substantial value in image analysis. Although several foundation models for biomedical segmentation have currently achieved excellent performance on certain datasets, they typically demonstrate sub-optimal performance on unseen domain data. We owe the deficiency to lack of vision-language knowledge before segmentation. Multimodal Large Language Models (MLLMs) bring outstanding understanding and reasoning capabilities to multimodal tasks, which inspires us to leverage MLLMs to inject Vision-Language Knowledge (VLK), thereby enabling vision models to demonstrate superior generalization capabilities on cross-domain datasets. In this paper, we propose using MLLMs to guide SAM in learning microscopy crose-domain data, unifying Segment Anything in Microscopy, named uLLSAM. Specifically, we propose the Vision-Language Semantic Alignment (VLSA) module, which injects VLK into Segment Anything Model (SAM). We find that after SAM receives global VLK prompts, its performance improves significantly, but there are deficiencies in boundary contour perception. Therefore, we further propose Semantic Boundary Regularization (SBR) to prompt SAM. Our method achieves performance improvements of 7.71% in Dice and 12.10% in SA across 9 in-domain microscopy datasets, achieving state-of-the-art performance. Our method also demonstrates improvements of 6.79% in Dice and 10.08% in SA across 10 out-ofdomain datasets, exhibiting strong generalization capabilities. Code is available at https://github.com/ieellee/uLLSAM.
comment: 18 pages, 9 figures
Benchmarking performance, explainability, and evaluation strategies of vision-language models for surgery: Challenges and opportunities
Minimally invasive surgery (MIS) presents significant visual and technical challenges, including surgical instrument classification and understanding surgical action involving instruments, verbs, and anatomical targets. While many machine learning-based methods have been developed for surgical understanding, they typically rely on procedure- and task-specific models trained on small, manually annotated datasets. In contrast, the recent success of vision-language models (VLMs) trained on large volumes of raw image-text pairs has demonstrated strong adaptability to diverse visual data and a range of downstream tasks. This opens meaningful research questions: how well do these general-purpose VLMs perform in the surgical domain? In this work, we explore those questions by benchmarking several VLMs across diverse surgical datasets, including general laparoscopic procedures and endoscopic submucosal dissection, to assess their current capabilities and limitations. Our benchmark reveals key gaps in the models' ability to consistently link language to the correct regions in surgical scenes.
UniSkill: Imitating Human Videos via Cross-Embodiment Skill Representations
Mimicry is a fundamental learning mechanism in humans, enabling individuals to learn new tasks by observing and imitating experts. However, applying this ability to robots presents significant challenges due to the inherent differences between human and robot embodiments in both their visual appearance and physical capabilities. While previous methods bridge this gap using cross-embodiment datasets with shared scenes and tasks, collecting such aligned data between humans and robots at scale is not trivial. In this paper, we propose UniSkill, a novel framework that learns embodiment-agnostic skill representations from large-scale cross-embodiment video data without any labels, enabling skills extracted from human video prompts to effectively transfer to robot policies trained only on robot data. Our experiments in both simulation and real-world environments show that our cross-embodiment skills successfully guide robots in selecting appropriate actions, even with unseen video prompts. The project website can be found at: https://kimhanjung.github.io/UniSkill.
comment: Project Page: https://kimhanjung.github.io/UniSkill/
MTVCrafter: 4D Motion Tokenization for Open-World Human Image Animation
Human image animation has gained increasing attention and developed rapidly due to its broad applications in digital humans. However, existing methods rely largely on 2D-rendered pose images for motion guidance, which limits generalization and discards essential 3D information for open-world animation. To tackle this problem, we propose MTVCrafter (Motion Tokenization Video Crafter), the first framework that directly models raw 3D motion sequences (i.e., 4D motion) for human image animation. Specifically, we introduce 4DMoT (4D motion tokenizer) to quantize 3D motion sequences into 4D motion tokens. Compared to 2D-rendered pose images, 4D motion tokens offer more robust spatio-temporal cues and avoid strict pixel-level alignment between pose image and character, enabling more flexible and disentangled control. Then, we introduce MV-DiT (Motion-aware Video DiT). By designing unique motion attention with 4D positional encodings, MV-DiT can effectively leverage motion tokens as 4D compact yet expressive context for human image animation in the complex 3D world. Hence, it marks a significant step forward in this field and opens a new direction for pose-guided human video generation. Experiments show that our MTVCrafter achieves state-of-the-art results with an FID-VID of 6.98, surpassing the second-best by 65%. Powered by robust motion tokens, MTVCrafter also generalizes well to diverse open-world characters (single/multiple, full/half-body) across various styles and scenarios. Our video demos and code are on: https://github.com/DINGYANB/MTVCrafter.
Descriptive Image-Text Matching with Graded Contextual Similarity
Image-text matching aims to build correspondences between visual and textual data by learning their pairwise similarities. Most existing approaches have adopted sparse binary supervision, indicating whether a pair of images and sentences matches or not. However, such sparse supervision covers a limited subset of image-text relationships, neglecting their inherent many-to-many correspondences; an image can be described in numerous texts at different descriptive levels. Moreover, existing approaches overlook the implicit connections from general to specific descriptions, which form the underlying rationale for the many-to-many relationships between vision and language. In this work, we propose descriptive image-text matching, called DITM, to learn the graded contextual similarity between image and text by exploring the descriptive flexibility of language. We formulate the descriptiveness score of each sentence with cumulative term frequency-inverse document frequency (TF-IDF) to balance the pairwise similarity according to the keywords in the sentence. Our method leverages sentence descriptiveness to learn robust image-text matching in two key ways: (1) to refine the false negative labeling, dynamically relaxing the connectivity between positive and negative pairs, and (2) to build more precise matching, aligning a set of relevant sentences in a generic-to-specific order. By moving beyond rigid binary supervision, DITM enhances the discovery of both optimal matches and potential positive pairs. Extensive experiments on MS-COCO, Flickr30K, and CxC datasets demonstrate the effectiveness of our method in representing complex image-text relationships compared to state-of-the-art approaches. In addition, DITM enhances the hierarchical reasoning ability of the model, supported by the extensive analysis on HierarCaps benchmark.
Visual Feedback of Pattern Separability Improves Myoelectric Decoding Performance of Upper Limb Prostheses
State-of-the-art upper limb myoelectric prostheses often use pattern recognition (PR) control systems that translate electromyography (EMG) signals into desired movements. As prosthesis movement complexity increases, users often struggle to produce sufficiently distinct EMG patterns for reliable classification. Existing training typically involves heuristic, trial-and-error user adjustments to static decoder boundaries. Goal: We introduce the Reviewer, a 3D visual interface projecting EMG signals directly into the decoder's classification space, providing intuitive, real-time insight into PR algorithm behavior. This structured feedback reduces cognitive load and fosters mutual, data-driven adaptation between user-generated EMG patterns and decoder boundaries. Methods: A 10-session study with 12 able-bodied participants compared PR performance after motor-based training and updating using the Reviewer versus conventional virtual arm visualization. Performance was assessed using a Fitts law task that involved the aperture of the cursor and the control of orientation. Results: Participants trained with the Reviewer achieved higher completion rates, reduced overshoot, and improved path efficiency and throughput compared to the standard visualization group. Significance: The Reviewer introduces decoder-informed motor training, facilitating immediate and consistent PR-based myoelectric control improvements. By iteratively refining control through real-time feedback, this approach reduces reliance on trial-and-error recalibration, enabling a more adaptive, self-correcting training framework. Conclusion: The 3D visual feedback significantly improves PR control in novice operators through structured training, enabling feedback-driven adaptation and reducing reliance on extensive heuristic adjustments.
HaHeAE: Learning Generalisable Joint Representations of Human Hand and Head Movements in Extended Reality
Human hand and head movements are the most pervasive input modalities in extended reality (XR) and are significant for a wide range of applications. However, prior works on hand and head modelling in XR only explored a single modality or focused on specific applications. We present HaHeAE - a novel self-supervised method for learning generalisable joint representations of hand and head movements in XR. At the core of our method is an autoencoder (AE) that uses a graph convolutional network-based semantic encoder and a diffusion-based stochastic encoder to learn the joint semantic and stochastic representations of hand-head movements. It also features a diffusion-based decoder to reconstruct the original signals. Through extensive evaluations on three public XR datasets, we show that our method 1) significantly outperforms commonly used self-supervised methods by up to 74.0% in terms of reconstruction quality and is generalisable across users, activities, and XR environments, 2) enables new applications, including interpretable hand-head cluster identification and variable hand-head movement generation, and 3) can serve as an effective feature extractor for downstream tasks. Together, these results demonstrate the effectiveness of our method and underline the potential of self-supervised methods for jointly modelling hand-head behaviours in extended reality.
comment: Link: https://zhiminghu.net/hu25_haheae
Discriminating image representations with principal distortions
Image representations (artificial or biological) are often compared in terms of their global geometric structure; however, representations with similar global structure can have strikingly different local geometries. Here, we propose a framework for comparing a set of image representations in terms of their local geometries. We quantify the local geometry of a representation using the Fisher information matrix, a standard statistical tool for characterizing the sensitivity to local stimulus distortions, and use this as a substrate for a metric on the local geometry in the vicinity of a base image. This metric may then be used to optimally differentiate a set of models, by finding a pair of "principal distortions" that maximize the variance of the models under this metric. As an example, we use this framework to compare a set of simple models of the early visual system, identifying a novel set of image distortions that allow immediate comparison of the models by visual inspection. In a second example, we apply our method to a set of deep neural network models and reveal differences in the local geometry that arise due to architecture and training types. These examples demonstrate how our framework can be used to probe for informative differences in local sensitivities between complex models, and suggest how it could be used to compare model representations with human perception.
CoMP: Continual Multimodal Pre-training for Vision Foundation Models
Pre-trained Vision Foundation Models (VFMs) provide strong visual representations for a wide range of applications. In this paper, we continually pre-train prevailing VFMs in a multimodal manner such that they can effortlessly process visual inputs of varying sizes and produce visual representations that are more aligned with language representations, regardless of their original pre-training process. To this end, we introduce CoMP, a carefully designed multimodal pre-training pipeline. CoMP uses a Continual Rotary Position Embedding to accommodate visual inputs with different resolutions, and an Alignment Loss between visual and textual features for better cross-modal alignment. After continual pre-training, leading VFMs like DINOv2, SigLIP and AIMv2 achieve remarkable improvements not only in multimodal understanding tasks but also in generic classification and segmentation tasks. Remarkably, CoMP-AIMv2 achieves scores of 64.9 on ChartQA with a 0.5B LLM, while maintaining an 87.3% accuracy on ImageNet-1K and a 51.8 mIoU on ADE20K under frozen chunk evaluation.
comment: Code is available in https://github.com/SliMM-X/CoMP-MM
INSIGHT: Enhancing Autonomous Driving Safety through Vision-Language Models on Context-Aware Hazard Detection and Edge Case Evaluation
Autonomous driving systems face significant challenges in handling unpredictable edge-case scenarios, such as adversarial pedestrian movements, dangerous vehicle maneuvers, and sudden environmental changes. Current end-to-end driving models struggle with generalization to these rare events due to limitations in traditional detection and prediction approaches. To address this, we propose INSIGHT (Integration of Semantic and Visual Inputs for Generalized Hazard Tracking), a hierarchical vision-language model (VLM) framework designed to enhance hazard detection and edge-case evaluation. By using multimodal data fusion, our approach integrates semantic and visual representations, enabling precise interpretation of driving scenarios and accurate forecasting of potential dangers. Through supervised fine-tuning of VLMs, we optimize spatial hazard localization using attention-based mechanisms and coordinate regression techniques. Experimental results on the BDD100K dataset demonstrate a substantial improvement in hazard prediction straightforwardness and accuracy over existing models, achieving a notable increase in generalization performance. This advancement enhances the robustness and safety of autonomous driving systems, ensuring improved situational awareness and potential decision-making in complex real-world scenarios.
Words in Motion: Extracting Interpretable Control Vectors for Motion Transformers ICLR 2025
Transformer-based models generate hidden states that are difficult to interpret. In this work, we analyze hidden states and modify them at inference, with a focus on motion forecasting. We use linear probing to analyze whether interpretable features are embedded in hidden states. Our experiments reveal high probing accuracy, indicating latent space regularities with functionally important directions. Building on this, we use the directions between hidden states with opposing features to fit control vectors. At inference, we add our control vectors to hidden states and evaluate their impact on predictions. Remarkably, such modifications preserve the feasibility of predictions. We further refine our control vectors using sparse autoencoders (SAEs). This leads to more linear changes in predictions when scaling control vectors. Our approach enables mechanistic interpretation as well as zero-shot generalization to unseen dataset characteristics with negligible computational overhead.
comment: ICLR 2025 final version. Our implementation is available at https://github.com/kit-mrt/future-motion
Disentangling CLIP for Multi-Object Perception
Vision-language models like CLIP excel at recognizing the single, prominent object in a scene. However, they struggle in complex scenes containing multiple objects. We identify a fundamental reason behind this limitation: VLMs features space exhibits significant semantic entanglement, where features of one class contain substantial information about other unrelated classes, a phenomenon we term mutual feature information (MFI). This entanglement becomes evident during class-specific queries, as unrelated objects are activated alongside the queried class. To address this limitation, we propose DCLIP, a framework that disentangles CLIP features using two complementary objectives: a novel MFI Loss that orthogonalizes the text (class) features to reduce inter-class similarity, and the Asymmetric Loss (ASL) that aligns image features with the disentangled text features. Our experiment demonstrates that DCLIP reduces inter-class feature similarity by 30\% compared to CLIP, leading to significant performance gains on multi-label recognition (MLR) and zero-shot semantic segmentation (ZS3). In MLR, DCLIP outperforms SOTA approaches on VOC2007 and COCO-14 while using 75\% fewer parameters, and surpasses SOTA ZS3 methods by 3.4 mIoU on VOC2012 and 2.8 mIoU on COCO-17. These results establish feature disentanglement as a critical factor for effective multi-object perception in vision-language models.
VideoHallu: Evaluating and Mitigating Multi-modal Hallucinations on Synthetic Video Understanding
Synthetic video generation has gained significant attention for its realism and broad applications, but remains prone to violations of common sense and physical laws. This highlights the need for reliable abnormality detectors that understand such principles and are robust to hallucinations. To address this, we introduce VideoHallu, a benchmark of over 3,000 video QA pairs built from synthetic videos generated by models like Veo2, Sora, and Kling, paired with expert-crafted counterintuitive QA to evaluate the critical thinking abilities of Multi-modal Large Language Models (MLLMs) on abnormalities that are perceptually obvious to humans but often hallucinated due to language priors. VideoHallu evaluates MLLMs' abnormality detection abilities with examples across alignment, consistency, commonsense, and physics. We benchmark SOTA MLLMs, including GPT-4o, Gemini-2.5-Pro, Qwen2.5-VL, Video-R1, and VideoChat-R1. We observe that these models perform well on many real-world benchmarks like MVBench and MovieChat, but still struggle with basic physics-based and commonsense reasoning in synthetic videos. We further show that post-training with Group Relative Policy Optimization (GRPO), using curriculum learning on datasets combining video QA with counterintuitive commonsense and physics reasoning over real and synthetic videos, improves MLLMs' abnormality detection and critical thinking, demonstrating the value of targeted training for improving their understanding of commonsense and physical laws.
Self-Supervised Representation Learning for Nerve Fiber Distribution Patterns in 3D-PLI
A comprehensive understanding of the organizational principles in the human brain requires, among other factors, well-quantifiable descriptors of nerve fiber architecture. Three-dimensional polarized light imaging (3D-PLI) is a microscopic imaging technique that enables insights into the fine-grained organization of myelinated nerve fibers with high resolution. Descriptors characterizing the fiber architecture observed in 3D-PLI would enable downstream analysis tasks such as multimodal correlation studies, clustering, and mapping. However, best practices for observer-independent characterization of fiber architecture in 3D-PLI are not yet available. To this end, we propose the application of a fully data-driven approach to characterize nerve fiber architecture in 3D-PLI images using self-supervised representation learning. We introduce a 3D-Context Contrastive Learning (CL-3D) objective that utilizes the spatial neighborhood of texture examples across histological brain sections of a 3D reconstructed volume to sample positive pairs for contrastive learning. We combine this sampling strategy with specifically designed image augmentations to gain robustness to typical variations in 3D-PLI parameter maps. The approach is demonstrated for the 3D reconstructed occipital lobe of a vervet monkey brain. We show that extracted features are highly sensitive to different configurations of nerve fibers, yet robust to variations between consecutive brain sections arising from histological processing. We demonstrate their practical applicability for retrieving clusters of homogeneous fiber architecture, performing classification with minimal annotations, and query-based retrieval of characteristic components of fiber architecture such as U-fibers.
comment: Journal version
Evaluating Vision-Language Models as Evaluators in Path Planning CVPR
Despite their promise to perform complex reasoning, large language models (LLMs) have been shown to have limited effectiveness in end-to-end planning. This has inspired an intriguing question: if these models cannot plan well, can they still contribute to the planning framework as a helpful plan evaluator? In this work, we generalize this question to consider LLMs augmented with visual understanding, i.e., Vision-Language Models (VLMs). We introduce PathEval, a novel benchmark evaluating VLMs as plan evaluators in complex path-planning scenarios. Succeeding in the benchmark requires a VLM to be able to abstract traits of optimal paths from the scenario description, demonstrate precise low-level perception on each path, and integrate this information to decide the better path. Our analysis of state-of-the-art VLMs reveals that these models face significant challenges on the benchmark. We observe that the VLMs can precisely abstract given scenarios to identify the desired traits and exhibit mixed performance in integrating the provided information. Yet, their vision component presents a critical bottleneck, with models struggling to perceive low-level details about a path. Our experimental results show that this issue cannot be trivially addressed via end-to-end fine-tuning; rather, task-specific discriminative adaptation of these vision encoders is needed for these VLMs to become effective path evaluators.
comment: Accepted to the 2025 IEEE / CVF Computer Vision and Pattern Recognition Conference (CVPR)
L-WISE: Boosting Human Visual Category Learning Through Model-Based Image Selection and Enhancement
The currently leading artificial neural network models of the visual ventral stream - which are derived from a combination of performance optimization and robustification methods - have demonstrated a remarkable degree of behavioral alignment with humans on visual categorization tasks. We show that image perturbations generated by these models can enhance the ability of humans to accurately report the ground truth class. Furthermore, we find that the same models can also be used out-of-the-box to predict the proportion of correct human responses to individual images, providing a simple, human-aligned estimator of the relative difficulty of each image. Motivated by these observations, we propose to augment visual learning in humans in a way that improves human categorization accuracy at test time. Our learning augmentation approach consists of (i) selecting images based on their model-estimated recognition difficulty, and (ii) applying image perturbations that aid recognition for novice learners. We find that combining these model-based strategies leads to categorization accuracy gains of 33-72% relative to control subjects without these interventions, on unmodified, randomly selected held-out test images. Beyond the accuracy gain, the training time for the augmented learning group was also shortened by 20-23%, despite both groups completing the same number of training trials. We demonstrate the efficacy of our approach in a fine-grained categorization task with natural images, as well as two tasks in clinically relevant image domains - histology and dermoscopy - where visual learning is notoriously challenging. To the best of our knowledge, our work is the first application of artificial neural networks to increase visual learning performance in humans by enhancing category-specific image features.
reBEN: Refined BigEarthNet Dataset for Remote Sensing Image Analysis
This paper presents refined BigEarthNet (reBEN) that is a large-scale, multi-modal remote sensing dataset constructed to support deep learning (DL) studies for remote sensing image analysis. The reBEN dataset consists of 549,488 pairs of Sentinel-1 and Sentinel-2 image patches. To construct reBEN, we initially consider the Sentinel-1 and Sentinel-2 tiles used to construct the BigEarthNet dataset and then divide them into patches of size 1200 m x 1200 m. We apply atmospheric correction to the Sentinel-2 patches using the latest version of the sen2cor tool, resulting in higher-quality patches compared to those present in BigEarthNet. Each patch is then associated with a pixel-level reference map and scene-level multi-labels. This makes reBEN suitable for pixel- and scene-based learning tasks. The labels are derived from the most recent CORINE Land Cover (CLC) map of 2018 by utilizing the 19-class nomenclature as in BigEarthNet. The use of the most recent CLC map results in overcoming the label noise present in BigEarthNet. Furthermore, we introduce a new geographical-based split assignment algorithm that significantly reduces the spatial correlation among the train, validation, and test sets with respect to those present in BigEarthNet. This increases the reliability of the evaluation of DL models. To minimize the DL model training time, we introduce software tools that convert the reBEN dataset into a DL-optimized data format. In our experiments, we show the potential of reBEN for multi-modal multi-label image classification problems by considering several state-of-the-art DL models. The pre-trained model weights, associated code, and complete dataset are available at https://bigearth.net.
comment: Accepted at IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 2025. Our code is available at https://github.com/rsim-tu-berlin/bigearthnet-pipeline
Does Reinforcement Learning Really Incentivize Reasoning Capacity in LLMs Beyond the Base Model?
Reinforcement Learning with Verifiable Rewards (RLVR) has recently demonstrated notable success in enhancing the reasoning performance of large language models (LLMs), particularly on mathematics and programming tasks. Similar to how traditional RL helps agents explore and learn new strategies, RLVR is believed to enable LLMs to continuously self-improve, thus acquiring novel reasoning abilities beyond those of the corresponding base models. In this study we critically examine the current state of RLVR by systematically probing the reasoning capability boundaries of RLVR-trained LLMs across various model families, RL algorithms, and math, coding, and visual reasoning benchmarks, using pass@k at large k values as the evaluation metric. Surprisingly, we find that the current training setup does not elicit fundamentally new reasoning patterns. While RLVR-trained models outperform their base models at small k (e.g., k = 1), the base models achieve a higher pass@k score when k is large. Coverage and perplexity analyses show that the observed reasoning abilities originate from and are bounded by the base model. Treating the base model as an upper bound, our quantitative analysis shows that six popular RLVR algorithms perform similarly and remain far from optimal in leveraging the potential of the base model. By contrast, we find that distillation can introduce new reasoning patterns from the teacher and genuinely expand the model's reasoning capabilities. Overall, our findings suggest that current RLVR methods have not yet realized the potential of RL to elicit truly novel reasoning abilities in LLMs. This highlights the need for improved RL paradigms, such as continual scaling and multi-turn agent-environment interaction, to unlock this potential.
comment: 30 pages, 27 figures
Inspiring the Next Generation of Segment Anything Models: Comprehensively Evaluate SAM and SAM 2 with Diverse Prompts Towards Context-Dependent Concepts under Different Scenes
As a foundational model, SAM has significantly influenced multiple fields within computer vision, and its upgraded version, SAM 2, enhances capabilities in video segmentation, poised to make a substantial impact once again. While SAMs (SAM and SAM 2) have demonstrated excellent performance in segmenting context-independent concepts like people, cars, and roads, they overlook more challenging context-dependent (CD) concepts, such as visual saliency, camouflage, product defects, and medical lesions. CD concepts rely heavily on global and local contextual information, making them susceptible to shifts in different contexts, which requires strong discriminative capabilities from the model. The lack of comprehensive evaluation of SAMs limits understanding of their performance boundaries, which may hinder the design of future models. In this paper, we conduct a thorough quantitative evaluation of SAMs on 11 CD concepts across 2D and 3D images and videos in various visual modalities within natural, medical, and industrial scenes. We develop a unified evaluation framework for SAM and SAM 2 that supports manual, automatic, and intermediate self-prompting, aided by our specific prompt generation and interaction strategies. We further explore the potential of SAM 2 for in-context learning and introduce prompt robustness testing to simulate real-world imperfect prompts. Finally, we analyze the benefits and limitations of SAMs in understanding CD concepts and discuss their future development in segmentation tasks. This work aims to provide valuable insights to guide future research in both context-independent and context-dependent concepts segmentation, potentially informing the development of the next version -- SAM 3.
Resolving the Ambiguity of Complete-to-Partial Point Cloud Registration for Image-Guided Liver Surgery with Patches-to-Partial Matching
In image-guided liver surgery, the initial rigid alignment between preoperative and intraoperative data, often represented as point clouds, is crucial for providing sub-surface information from preoperative CT/MRI images to the surgeon during the procedure. Currently, this alignment is typically performed using semi-automatic methods, which, while effective to some extent, are prone to errors that demand manual correction. Point cloud correspondence-based registration methods are promising to serve as a fully automatic solution. However, they may struggle in scenarios with limited intraoperative surface visibility, a common challenge in liver surgery, particularly in laparoscopic procedures, which we refer to as complete-to-partial ambiguity. We first illustrate this ambiguity by evaluating the performance of state-of-the-art learning-based point cloud registration methods on our carefully constructed in silico and in vitro datasets. Then, we propose a patches-to-partial matching strategy as a plug-and-play module to resolve the ambiguity, which can be seamlessly integrated into learning-based registration methods without disrupting their end-to-end structure. It has proven effective and efficient in improving registration performance for cases with limited intraoperative visibility. The constructed benchmark and the proposed module establish a solid foundation for advancing applications of point cloud correspondence-based registration methods in image-guided liver surgery.
Novel computational workflows for natural and biomedical image processing based on hypercomplex algebras
Hypercomplex image processing extends conventional techniques in a unified paradigm encompassing algebraic and geometric principles. This work leverages quaternions and the two-dimensional orthogonal planes split framework (splitting of a quaternion - representing a pixel - into pairs of orthogonal 2D planes) for natural/biomedical image analysis through the following computational workflows and outcomes: natural/biomedical image re-colorization, natural image de-colorization, natural/biomedical image contrast enhancement, computational re-staining and stain separation in histological images, and performance gains in machine/deep learning pipelines for histological images. The workflows are analyzed separately for natural and biomedical images to showcase the effectiveness of the proposed approaches. The proposed workflows can regulate color appearance (e.g. with alternative renditions and grayscale conversion) and image contrast, be part of automated image processing pipelines (e.g. isolating stain components, boosting learning models), and assist in digital pathology applications (e.g. enhancing biomarker visibility, enabling colorblind-friendly renditions). Employing only basic arithmetic and matrix operations, this work offers a computationally accessible methodology - in the hypercomplex domain - that showcases versatility and consistency across image processing tasks and a range of computer vision and biomedical applications. The proposed non-data-driven methods achieve comparable or better results (particularly in cases involving well-known methods) to those reported in the literature, showcasing the potential of robust theoretical frameworks with practical effectiveness. Results, methods, and limitations are detailed alongside discussion of promising extensions, emphasizing the potential of feature-rich mathematical/computational frameworks for natural and biomedical images.
comment: 24 pages, 18 figures, 14 tables
Espresso: High Compression For Rich Extraction From Videos for Your Vision-Language Model
Recent advances in vision-language models (VLMs) have shown great promise in connecting images and text, but extending these models to long videos remains challenging due to the rapid growth in token counts. Models that compress videos by local aggregation in time or space have become popular for handling long-form inputs; however, these pooling-based projectors sacrifice the benefits of fixed-length representations that are crucial for streaming and efficient video understanding. We introduce $\texttt{Espresso}$, a new architecture that separately compresses spatial and temporal features into fixed-length sequences. $\texttt{Espresso}$ enables efficient video encoding while maintaining strong long-form reasoning capabilities. Experiments show that fixed-length compression combined with segment-wise processing offers a scalable and competitive alternative to pooling-based approaches. Our results demonstrate that fixed-length projectors, when properly designed and trained, remain a viable foundation for video-language modeling.
comment: 16 pages
VIN-NBV: A View Introspection Network for Next-Best-View Selection for Resource-Efficient 3D Reconstruction
Next Best View (NBV) algorithms aim to acquire an optimal set of images using minimal resources, time, or number of captures to enable efficient 3D reconstruction of a scene. Existing approaches often rely on prior scene knowledge or additional image captures and often develop policies that maximize coverage. Yet, for many real scenes with complex geometry and self-occlusions, coverage maximization does not lead to better reconstruction quality directly. In this paper, we propose the View Introspection Network (VIN), which is trained to predict the reconstruction quality improvement of views directly, and the VIN-NBV policy. A greedy sequential sampling-based policy, where at each acquisition step, we sample multiple query views and choose the one with the highest VIN predicted improvement score. We design the VIN to perform 3D-aware featurization of the reconstruction built from prior acquisitions, and for each query view create a feature that can be decoded into an improvement score. We then train the VIN using imitation learning to predict the reconstruction improvement score. We show that VIN-NBV improves reconstruction quality by ~30% over a coverage maximization baseline when operating with constraints on the number of acquisitions or the time in motion.
comment: The paper has not gone through legal review. We will update it with new version once the review is complete
Communication-Efficient Federated Learning Based on Explanation-Guided Pruning for Remote Sensing Image Classification
Federated learning (FL) is a decentralized machine learning paradigm in which multiple clients collaboratively train a global model by exchanging only model updates with the central server without sharing the local data of the clients. Due to the large volume of model updates required to be transmitted between clients and the central server, most FL systems are associated with high transfer costs (i.e., communication overhead). This issue is more critical for operational applications in remote sensing (RS), especially when large-scale RS data is processed and analyzed through FL systems with restricted communication bandwidth. To address this issue, we introduce an explanation-guided pruning strategy for communication-efficient FL in the context of RS image classification. Our pruning strategy is defined based on the layer-wise relevance propagation (LRP) driven explanations to: 1) efficiently and effectively identify the most relevant and informative model parameters (to be exchanged between clients and the central server); and 2) eliminate the non-informative ones to minimize the volume of model updates. The experimental results on the BigEarthNet-S2 dataset demonstrate that our strategy effectively reduces the number of shared model updates, while increasing the generalization ability of the global model. The code of this work is publicly available at https://git.tu-berlin.de/rsim/FL-LRP.
comment: Accepted at the IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 2025
TwinTURBO: Semi-Supervised Fine-Tuning of Foundation Models via Mutual Information Decompositions for Downstream Task and Latent Spaces
We present a semi-supervised fine-tuning framework for foundation models that utilises mutual information decomposition to address the challenges of training for a limited amount of labelled data. Our approach derives two distinct lower bounds: i) for the downstream task space, such as classification, optimised using conditional and marginal cross-entropy alongside Kullback-Leibler divergence, and ii) for the latent space representation, regularised and aligned using a contrastive-like decomposition. This fine-tuning strategy retains the pre-trained structure of the foundation model, modifying only a specialised projector module comprising a small transformer and a token aggregation technique. Experiments on several datasets demonstrate significant improvements in classification tasks under extremely low-labelled conditions by effectively leveraging unlabelled data.
SynCL: A Synergistic Training Strategy with Instance-Aware Contrastive Learning for End-to-End Multi-Camera 3D Tracking
While existing query-based 3D end-to-end visual trackers integrate detection and tracking via the tracking-by-attention paradigm, these two chicken-and-egg tasks encounter optimization difficulties when sharing the same parameters. Our findings reveal that these difficulties arise due to two inherent constraints on the self-attention mechanism, i.e., over-deduplication for object queries and self-centric attention for track queries. In contrast, removing the self-attention mechanism not only minimally impacts regression predictions of the tracker, but also tends to generate more latent candidate boxes. Based on these analyses, we present SynCL, a novel plug-and-play synergistic training strategy designed to co-facilitate multi-task learning for detection and tracking. Specifically, we propose a Task-specific Hybrid Matching module for a weight-shared cross-attention-based decoder that matches the targets of track queries with multiple object queries to exploit promising candidates overlooked by the self-attention mechanism. To flexibly select optimal candidates for the one-to-many matching, we also design a Dynamic Query Filtering module controlled by model training status. Moreover, we introduce Instance-aware Contrastive Learning to break through the barrier of self-centric attention for track queries, effectively bridging the gap between detection and tracking. Without additional inference costs, SynCL consistently delivers improvements in various benchmarks and achieves state-of-the-art performance with $58.9\%$ AMOTA on the nuScenes dataset. Code and raw results will be publicly available.
comment: 11 pages, 6 figures
RefRef: A Synthetic Dataset and Benchmark for Reconstructing Refractive and Reflective Objects
Modern 3D reconstruction and novel view synthesis approaches have demonstrated strong performance on scenes with opaque Lambertian objects. However, most assume straight light paths and therefore cannot properly handle refractive and reflective materials. Moreover, datasets specialized for these effects are limited, stymieing efforts to evaluate performance and develop suitable techniques. In this work, we introduce a synthetic RefRef dataset and benchmark for reconstructing scenes with refractive and reflective objects from posed images. Our dataset has 50 such objects of varying complexity, from single-material convex shapes to multi-material non-convex shapes, each placed in three different background types, resulting in 150 scenes. We also propose an oracle method that, given the object geometry and refractive indices, calculates accurate light paths for neural rendering, and an approach based on this that avoids these assumptions. We benchmark these against several state-of-the-art methods and show that all methods lag significantly behind the oracle, highlighting the challenges of the task and dataset.
An Enhanced YOLOv8 Model for Real-Time and Accurate Pothole Detection and Measurement
Potholes cause vehicle damage and traffic accidents, creating serious safety and economic problems. Therefore, early and accurate detection of potholes is crucial. Existing detection methods are usually only based on 2D RGB images and cannot accurately analyze the physical characteristics of potholes. In this paper, a publicly available dataset of RGB-D images (PothRGBD) is created and an improved YOLOv8-based model is proposed for both pothole detection and pothole physical features analysis. The Intel RealSense D415 depth camera was used to collect RGB and depth data from the road surfaces, resulting in a PothRGBD dataset of 1000 images. The data was labeled in YOLO format suitable for segmentation. A novel YOLO model is proposed based on the YOLOv8n-seg architecture, which is structurally improved with Dynamic Snake Convolution (DSConv), Simple Attention Module (SimAM) and Gaussian Error Linear Unit (GELU). The proposed model segmented potholes with irregular edge structure more accurately, and performed perimeter and depth measurements on depth maps with high accuracy. The standard YOLOv8n-seg model achieved 91.9% precision, 85.2% recall and 91.9% mAP@50. With the proposed model, the values increased to 93.7%, 90.4% and 93.8% respectively. Thus, an improvement of 1.96% in precision, 6.13% in recall and 2.07% in mAP was achieved. The proposed model performs pothole detection as well as perimeter and depth measurement with high accuracy and is suitable for real-time applications due to its low model complexity. In this way, a lightweight and effective model that can be used in deep learning-based intelligent transportation solutions has been acquired.
HiFlow: Training-free High-Resolution Image Generation with Flow-Aligned Guidance
Text-to-image (T2I) diffusion/flow models have drawn considerable attention recently due to their remarkable ability to deliver flexible visual creations. Still, high-resolution image synthesis presents formidable challenges due to the scarcity and complexity of high-resolution content. Recent approaches have investigated training-free strategies to enable high-resolution image synthesis with pre-trained models. However, these techniques often struggle with generating high-quality visuals and tend to exhibit artifacts or low-fidelity details, as they typically rely solely on the endpoint of the low-resolution sampling trajectory while neglecting intermediate states that are critical for preserving structure and synthesizing finer detail. To this end, we present HiFlow, a training-free and model-agnostic framework to unlock the resolution potential of pre-trained flow models. Specifically, HiFlow establishes a virtual reference flow within the high-resolution space that effectively captures the characteristics of low-resolution flow information, offering guidance for high-resolution generation through three key aspects: initialization alignment for low-frequency consistency, direction alignment for structure preservation, and acceleration alignment for detail fidelity. By leveraging such flow-aligned guidance, HiFlow substantially elevates the quality of high-resolution image synthesis of T2I models and demonstrates versatility across their personalized variants. Extensive experiments validate HiFlow's capability in achieving superior high-resolution image quality over state-of-the-art methods.
comment: Project Page: https://bujiazi.github.io/hiflow.github.io/
A Review on Discriminative Self-supervised Learning Methods in Computer Vision
Self-supervised learning (SSL) has rapidly emerged as a transformative approach in computer vision, enabling the extraction of rich feature representations from vast amounts of unlabeled data and reducing reliance on costly manual annotations. This review presents a comprehensive analysis of discriminative SSL methods, which focus on learning representations by solving pretext tasks that do not require human labels. The paper systematically categorizes discriminative SSL approaches into five main groups: contrastive methods, clustering methods, self-distillation methods, knowledge distillation methods, and feature decorrelation methods. For each category, the review details the underlying principles, architectural components, loss functions, and representative algorithms, highlighting their unique mechanisms and contributions to the field. Extensive comparative evaluations are provided, including linear and semi-supervised protocols on standard benchmarks such as ImageNet, as well as transfer learning performance across diverse downstream tasks. The review also discusses theoretical foundations, scalability, efficiency, and practical challenges, such as computational demands and accessibility. By synthesizing recent advancements and identifying key trends, open challenges, and future research directions, this work serves as a valuable resource for researchers and practitioners aiming to leverage discriminative SSL for robust and generalizable computer vision models.
comment: Preprint. 97 pages, 12 figures, 16 tables
Customizing Visual-Language Foundation Models for Multi-modal Anomaly Detection and Reasoning
Anomaly detection is vital in various industrial scenarios, including the identification of unusual patterns in production lines and the detection of manufacturing defects for quality control. Existing techniques tend to be specialized in individual scenarios and lack generalization capacities. In this study, our objective is to develop a generic anomaly detection model that can be applied in multiple scenarios. To achieve this, we custom-build generic visual language foundation models that possess extensive knowledge and robust reasoning abilities as anomaly detectors and reasoners. Specifically, we introduce a multi-modal prompting strategy that incorporates domain knowledge from experts as conditions to guide the models. Our approach considers diverse prompt types, including task descriptions, class context, normality rules, and reference images. In addition, we unify the input representation of multi-modality into a 2D image format, enabling multi-modal anomaly detection and reasoning. Our preliminary studies demonstrate that combining visual and language prompts as conditions for customizing the models enhances anomaly detection performance. The customized models showcase the ability to detect anomalies across different data modalities such as images, point clouds, and videos. Qualitative case studies further highlight the anomaly detection and reasoning capabilities, particularly for multi-object scenes and temporal data. Our code is publicly available at https://github.com/Xiaohao-Xu/Customizable-VLM
comment: Best Student Paper Award at IEEE International Conference on Computer Supported Cooperative Work in Design, 2025
IMPACT: A Generic Semantic Loss for Multimodal Medical Image Registration
Image registration is fundamental in medical imaging, enabling precise alignment of anatomical structures for diagnosis, treatment planning, image-guided interventions, and longitudinal monitoring. This work introduces IMPACT (Image Metric with Pretrained model-Agnostic Comparison for Transmodality registration), a novel similarity metric designed for robust multimodal image registration. Rather than relying on raw intensities, handcrafted descriptors, or task-specific training, IMPACT defines a semantic similarity measure based on the comparison of deep features extracted from large-scale pretrained segmentation models. By leveraging representations from models such as TotalSegmentator, Segment Anything (SAM), and other foundation networks, IMPACT provides a task-agnostic, training-free solution that generalizes across imaging modalities. These features, originally trained for segmentation, offer strong spatial correspondence and semantic alignment capabilities, making them naturally suited for registration. The method integrates seamlessly into both algorithmic (Elastix) and learning-based (VoxelMorph) frameworks, leveraging the strengths of each. IMPACT was evaluated on five challenging 3D registration tasks involving thoracic CT/CBCT and pelvic MR/CT datasets. Quantitative metrics, including Target Registration Error and Dice Similarity Coefficient, demonstrated consistent improvements in anatomical alignment over baseline methods. Qualitative analyses further highlighted the robustness of the proposed metric in the presence of noise, artifacts, and modality variations. With its versatility, efficiency, and strong performance across diverse tasks, IMPACT offers a powerful solution for advancing multimodal image registration in both clinical and research settings.
comment: Submitted to IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI). This is a preprint version and has not been peer-reviewed
EdgeOL: Efficient in-situ Online Learning on Edge Devices
Emerging applications, such as robot-assisted eldercare and object recognition, generally employ deep learning neural networks (DNNs) and naturally require: i) handling streaming-in inference requests and ii) adapting to possible deployment scenario changes. Online model fine-tuning is widely adopted to satisfy these needs. However, an inappropriate fine-tuning scheme could involve significant energy consumption, making it challenging to deploy on edge devices. In this paper, we propose EdgeOL, an edge online learning framework that optimizes inference accuracy, fine-tuning execution time, and energy efficiency through both inter-tuning and intra-tuning optimizations. Experimental results show that, on average, EdgeOL reduces overall fine-tuning execution time by 64%, energy consumption by 52%, and improves average inference accuracy by 1.75% over the immediate online learning strategy
In-Model Merging for Enhancing the Robustness of Medical Imaging Classification Models
Model merging is an effective strategy to merge multiple models for enhancing model performances, and more efficient than ensemble learning as it will not introduce extra computation into inference. However, limited research explores if the merging process can occur within one model and enhance the model's robustness, which is particularly critical in the medical image domain. In the paper, we are the first to propose in-model merging (InMerge), a novel approach that enhances the model's robustness by selectively merging similar convolutional kernels in the deep layers of a single convolutional neural network (CNN) during the training process for classification. We also analytically reveal important characteristics that affect how in-model merging should be performed, serving as an insightful reference for the community. We demonstrate the feasibility and effectiveness of this technique for different CNN architectures on 4 prevalent datasets. The proposed InMerge-trained model surpasses the typically-trained model by a substantial margin. The code will be made public.
V-MAGE: A Game Evaluation Framework for Assessing Vision-Centric Capabilities in Multimodal Large Language Models
Recent advancements in Multimodal Large Language Models (MLLMs) have demonstrated impressive capabilities in visual-text processing. However, existing static image-text benchmarks are insufficient for evaluating their dynamic perception and interactive reasoning abilities. We introduce Vision-centric Multiple Abilities Game Evaluation(V-MAGE), a novel game-based evaluation framework designed to systematically assess MLLMs' visual reasoning in interactive, continuous-space environments. V-MAGE features five distinct video games comprising over 30 carefully constructed evaluation scenarios. These scenarios are set in free-form, visually complex environments that require models to interpret dynamic game states and make decisions based solely on visual input, thereby closely reflecting the conditions encountered by human players. To ensure robust and interpretable comparisons across models, V-MAGE employs a dynamic Elo-based ranking system that accounts for varying difficulty levels and task diversity. Benchmarking state-of-the-art MLLMs against human baselines reveals that while leading models approach human-level performance in simple tasks, their performance drops significantly in complex scenarios requiring advanced reasoning and task orchestration. This persistent performance gap highlights fundamental limitations in current MLLMs' ability to perform real-time, vision-grounded interactions. Through extensive analyses, we demonstrate the utility of V-MAGE in uncovering these limitations and providing actionable insights for improving the visual and reasoning capabilities of MLLMs in dynamic, interactive settings. Code is publicly available at https://github.com/CSU-JPG/V-MAGE.
From Pixels to Perception: Interpretable Predictions via Instance-wise Grouped Feature Selection
Understanding the decision-making process of machine learning models provides valuable insights into the task, the data, and the reasons behind a model's failures. In this work, we propose a method that performs inherently interpretable predictions through the instance-wise sparsification of input images. To align the sparsification with human perception, we learn the masking in the space of semantically meaningful pixel regions rather than on pixel-level. Additionally, we introduce an explicit way to dynamically determine the required level of sparsity for each instance. We show empirically on semi-synthetic and natural image datasets that our inherently interpretable classifier produces more meaningful, human-understandable predictions than state-of-the-art benchmarks.
comment: International Conference on Machine Learning
Are We Truly Forgetting? A Critical Re-examination of Machine Unlearning Evaluation Protocols
Machine unlearning is a process to remove specific data points from a trained model while maintaining the performance on retain data, addressing privacy or legal requirements. Despite its importance, existing unlearning evaluations tend to focus on logit-based metrics (i.e., accuracy) under small-scale scenarios. We observe that this could lead to a false sense of security in unlearning approaches under real-world scenarios. In this paper, we conduct a new comprehensive evaluation that employs representation-based evaluations of the unlearned model under large-scale scenarios to verify whether the unlearning approaches genuinely eliminate the targeted forget data from the model's representation perspective. Our analysis reveals that current state-of-the-art unlearning approaches either completely degrade the representational quality of the unlearned model or merely modify the classifier (i.e., the last layer), thereby achieving superior logit-based evaluation metrics while maintaining significant representational similarity to the original model. Furthermore, we introduce a rigorous unlearning evaluation setup, in which the forgetting classes exhibit semantic similarity to downstream task classes, necessitating that feature representations diverge significantly from those of the original model, thus enabling a more rigorous evaluation from a representation perspective. We hope our benchmark serves as a standardized protocol for evaluating unlearning algorithms under realistic conditions.
Rethinking Weight-Averaged Model-merging
Model-merging has emerged as a powerful approach in deep learning, capable of enhancing model performance without any training. However, the underlying mechanisms that explain its effectiveness remain largely unexplored. In this paper, we investigate this technique from three novel perspectives to empirically provide deeper insights into why and how weight-averaged model-merging~\cite{wortsman2022soups} works: (1) we examine the intrinsic patterns captured by the learning of the model weights, and we are the first to connect that these weights encode structured with why weight-averaged model merging can work; (2) we investigate averaging on weights versus averaging on features, providing analyses from the view of diverse architecture comparisons on multiple datasets; and (3) we explore the impact on model-merging prediction stability in terms of changing the parameter magnitude, revealing insights into the way of weight averaging works as regularization by showing the robustness across different parameter scales. The code is available at https://github.com/billhhh/Rethink-Merge.
A-I-RAVEN and I-RAVEN-Mesh: Two New Benchmarks for Abstract Visual Reasoning IJCAI 2025
We study generalization and knowledge reuse capabilities of deep neural networks in the domain of abstract visual reasoning (AVR), employing Raven's Progressive Matrices (RPMs), a recognized benchmark task for assessing AVR abilities. Two knowledge transfer scenarios referring to the I-RAVEN dataset are investigated. Firstly, inspired by generalization assessment capabilities of the PGM dataset and popularity of I-RAVEN, we introduce Attributeless-I-RAVEN (A-I-RAVEN), a benchmark with 10 generalization regimes that allow to systematically test generalization of abstract rules applied to held-out attributes at various levels of complexity (primary and extended regimes). In contrast to PGM, A-I-RAVEN features compositionality, a variety of figure configurations, and does not require substantial computational resources. Secondly, we construct I-RAVEN-Mesh, a dataset that enriches RPMs with a novel component structure comprising line-based patterns, facilitating assessment of progressive knowledge acquisition in transfer learning setting. We evaluate 13 strong models from the AVR literature on the introduced datasets, revealing their specific shortcomings in generalization and knowledge transfer.
comment: Accepted to the 34th International Joint Conference on Artificial Intelligence (IJCAI 2025)
SCAM: A Real-World Typographic Robustness Evaluation for Multimodal Foundation Models CVPR 2025
Typographic attacks exploit the interplay between text and visual content in multimodal foundation models, causing misclassifications when misleading text is embedded within images. However, existing datasets are limited in size and diversity, making it difficult to study such vulnerabilities. In this paper, we introduce SCAM, the largest and most diverse dataset of real-world typographic attack images to date, containing 1,162 images across hundreds of object categories and attack words. Through extensive benchmarking of Vision-Language Models (VLMs) on SCAM, we demonstrate that typographic attacks significantly degrade performance, and identify that training data and model architecture influence the susceptibility to these attacks. Our findings reveal that typographic attacks persist in state-of-the-art Large Vision-Language Models (LVLMs) due to the choice of their vision encoder, though larger Large Language Models (LLMs) backbones help mitigate their vulnerability. Additionally, we demonstrate that synthetic attacks closely resemble real-world (handwritten) attacks, validating their use in research. Our work provides a comprehensive resource and empirical insights to facilitate future research toward robust and trustworthy multimodal AI systems. We publicly release the datasets introduced in this paper along with the code for evaluations at www.bliss.berlin/research/scam.
comment: Accepted at CVPR 2025 Workshop EVAL-FoMo-2
FreeA: Human-object Interaction Detection using Free Annotation Labels
Recent human-object interaction (HOI) detection methods depend on extensively annotated image datasets, which require a significant amount of manpower. In this paper, we propose a novel self-adaptive, language-driven HOI detection method, termed FreeA. This method leverages the adaptability of the text-image model to generate latent HOI labels without requiring manual annotation. Specifically, FreeA aligns image features of human-object pairs with HOI text templates and employs a knowledge-based masking technique to decrease improbable interactions. Furthermore, FreeA implements a proposed method for matching interaction correlations to increase the probability of actions associated with a particular action, thereby improving the generated HOI labels. Experiments on two benchmark datasets showcase that FreeA achieves state-of-the-art performance among weakly supervised HOI competitors. Our proposal gets +\textbf{13.29} (\textbf{159\%$\uparrow$}) mAP and +\textbf{17.30} (\textbf{98\%$\uparrow$}) mAP than the newest ``Weakly'' supervised model, and +\textbf{7.19} (\textbf{28\%$\uparrow$}) mAP and +\textbf{14.69} (\textbf{34\%$\uparrow$}) mAP than the latest ``Weakly+'' supervised model, respectively, on HICO-DET and V-COCO datasets, more accurate in localizing and classifying the interactive actions. The source code will be made public.
Leveraging Automatic CAD Annotations for Supervised Learning in 3D Scene Understanding SC
High-level 3D scene understanding is essential in many applications. However, the challenges of generating accurate 3D annotations make development of deep learning models difficult. We turn to recent advancements in automatic retrieval of synthetic CAD models, and show that data generated by such methods can be used as high-quality ground truth for training supervised deep learning models. More exactly, we employ a pipeline akin to the one previously used to automatically annotate objects in ScanNet scenes with their 9D poses and CAD models. This time, we apply it to the recent ScanNet++ v1 dataset, which previously lacked such annotations. Our findings demonstrate that it is not only possible to train deep learning models on these automatically-obtained annotations but that the resulting models outperform those trained on manually annotated data. We validate this on two distinct tasks: point cloud completion and single-view CAD model retrieval and alignment. Our results underscore the potential of automatic 3D annotations to enhance model performance while significantly reducing annotation costs. To support future research in 3D scene understanding, we will release our annotations, which we call SCANnotate++, along with our trained models.
comment: Project page: https://stefan-ainetter.github.io/SCANnotatepp; CVPR'25 Workshop
Two-Stage Random Alternation Framework for One-Shot Pansharpening
Deep learning has substantially advanced pansharpening, achieving impressive fusion quality. However, a prevalent limitation is that conventional deep learning models, which typically rely on training datasets, often exhibit suboptimal generalization to unseen real-world image pairs. This restricts their practical utility when faced with real-world scenarios not included in the training datasets. To overcome this, we introduce a two-stage random alternating framework (TRA-PAN) that performs instance-specific optimization for any given Multispectral(MS)/Panchromatic(PAN) pair, ensuring robust and high-quality fusion. TRA-PAN effectively integrates strong supervision constraints from reduced-resolution images with the physical characteristics of the full-resolution images. The first stage introduces a pre-training procedure, which includes Degradation-Aware Modeling (DAM) to capture spectral degradation mappings, alongside a warm-up procedure designed to reduce training time and mitigate the adverse effects of reduced-resolution data. The second stage employs Random Alternation Optimization (RAO), randomly alternating between reduced- and full-resolution images to refine the fusion model progressively. This adaptive, per-instance optimization strategy, operating in a one-shot manner for each MS/PAN pair, yields superior high-resolution multispectral images. Experimental results demonstrate that TRA-PAN outperforms state-of-the-art (SOTA) methods in quantitative metrics and visual quality in real-world scenarios, underscoring its enhanced practical applicability and robustness.
Normalized Matching Transformer
We present a new state of the art approach for sparse keypoint matching between pairs of images. Our method consists of a fully deep learning based approach combining a visual backbone coupled with a SplineCNN graph neural network for feature processing and a normalized transformer decoder for decoding keypoint correspondences together with the Sinkhorn algorithm. Our method is trained using a contrastive and a hyperspherical loss for better feature representations. We additionally use data augmentation during training. This comparatively simple architecture combining extensive normalization and advanced losses outperforms current state of the art approaches on PascalVOC and SPair-71k datasets by $5.1\%$ and $2.2\%$ respectively compared to BBGM, ASAR, COMMON and GMTR while training for at least $1.7x$ fewer epochs.
Efficient and Comprehensive Feature Extraction in Large Vision-Language Model for Pathology Analysis
Pathological diagnosis is vital for determining disease characteristics, guiding treatment, and assessing prognosis, relying heavily on detailed, multi-scale analysis of high-resolution whole slide images (WSI). However, existing large vision-language models (LVLMs) are limited by input resolution constraints, hindering their efficiency and accuracy in pathology image analysis. To overcome these issues, we propose two innovative strategies: the mixed task-guided feature enhancement, which directs feature extraction toward lesion-related details across scales, and the prompt-guided detail feature completion, which integrates coarse- and fine-grained features from WSI based on specific prompts without compromising inference speed. Leveraging a comprehensive dataset of 490K samples from diverse pathology tasks, we trained the pathology-specialized LVLM, OmniPath. Extensive experiments demonstrate that this model significantly outperforms existing methods in diagnostic accuracy and efficiency, providing an interactive, clinically aligned approach for auxiliary diagnosis in a wide range of pathology applications.
Empowering Agentic Video Analytics Systems with Video Language Models
AI-driven video analytics has become increasingly pivotal across diverse domains. However, existing systems are often constrained to specific, predefined tasks, limiting their adaptability in open-ended analytical scenarios. The recent emergence of Video-Language Models (VLMs) as transformative technologies offers significant potential for enabling open-ended video understanding, reasoning, and analytics. Nevertheless, their limited context windows present challenges when processing ultra-long video content, which is prevalent in real-world applications. To address this, we introduce AVAS, a VLM-powered system designed for open-ended, advanced video analytics. AVAS incorporates two key innovations: (1) the near real-time construction of Event Knowledge Graphs (EKGs) for efficient indexing of long or continuous video streams, and (2) an agentic retrieval-generation mechanism that leverages EKGs to handle complex and diverse queries. Comprehensive evaluations on public benchmarks, LVBench and VideoMME-Long, demonstrate that AVAS achieves state-of-the-art performance, attaining 62.3% and 64.1% accuracy, respectively, significantly surpassing existing VLM and video Retrieval-Augmented Generation (RAG) systems. Furthermore, to evaluate video analytics in ultra-long and open-world video scenarios, we introduce a new benchmark, AVAS-100. This benchmark comprises 8 videos, each exceeding 10 hours in duration, along with 120 manually annotated, diverse, and complex question-answer pairs. On AVAS-100, AVAS achieves top-tier performance with an accuracy of 75.8%.
comment: 15 pages, AVAS, add latency breakdown
Ophora: A Large-Scale Data-Driven Text-Guided Ophthalmic Surgical Video Generation Model MICCAI25
In ophthalmic surgery, developing an AI system capable of interpreting surgical videos and predicting subsequent operations requires numerous ophthalmic surgical videos with high-quality annotations, which are difficult to collect due to privacy concerns and labor consumption. Text-guided video generation (T2V) emerges as a promising solution to overcome this issue by generating ophthalmic surgical videos based on surgeon instructions. In this paper, we present Ophora, a pioneering model that can generate ophthalmic surgical videos following natural language instructions. To construct Ophora, we first propose a Comprehensive Data Curation pipeline to convert narrative ophthalmic surgical videos into a large-scale, high-quality dataset comprising over 160K video-instruction pairs, Ophora-160K. Then, we propose a Progressive Video-Instruction Tuning scheme to transfer rich spatial-temporal knowledge from a T2V model pre-trained on natural video-text datasets for privacy-preserved ophthalmic surgical video generation based on Ophora-160K. Experiments on video quality evaluation via quantitative analysis and ophthalmologist feedback demonstrate that Ophora can generate realistic and reliable ophthalmic surgical videos based on surgeon instructions. We also validate the capability of Ophora for empowering downstream tasks of ophthalmic surgical workflow understanding. Code is available at https://github.com/mar-cry/Ophora.
comment: Early accepted in MICCAI25
Learning to Deblur Polarized Images
A polarization camera can capture four linear polarized images with different polarizer angles in a single shot, which is useful in polarization-based vision applications since the degree of linear polarization (DoLP) and the angle of linear polarization (AoLP) can be directly computed from the captured polarized images. However, since the on-chip micro-polarizers block part of the light so that the sensor often requires a longer exposure time, the captured polarized images are prone to motion blur caused by camera shakes, leading to noticeable degradation in the computed DoLP and AoLP. Deblurring methods for conventional images often show degraded performance when handling the polarized images since they only focus on deblurring without considering the polarization constraints. In this paper, we propose a polarized image deblurring pipeline to solve the problem in a polarization-aware manner by adopting a divide-and-conquer strategy to explicitly decompose the problem into two less ill-posed sub-problems, and design a two-stage neural network to handle the two sub-problems respectively. Experimental results show that our method achieves state-of-the-art performance on both synthetic and real-world images, and can improve the performance of polarization-based vision applications such as image dehazing and reflection removal.
comment: This version has been accepted for publication in IJCV. This arXiv version corresponds to the final accepted manuscript
RGB-Event Fusion with Self-Attention for Collision Prediction
Ensuring robust and real-time obstacle avoidance is critical for the safe operation of autonomous robots in dynamic, real-world environments. This paper proposes a neural network framework for predicting the time and collision position of an unmanned aerial vehicle with a dynamic object, using RGB and event-based vision sensors. The proposed architecture consists of two separate encoder branches, one for each modality, followed by fusion by self-attention to improve prediction accuracy. To facilitate benchmarking, we leverage the ABCD [8] dataset collected that enables detailed comparisons of single-modality and fusion-based approaches. At the same prediction throughput of 50Hz, the experimental results show that the fusion-based model offers an improvement in prediction accuracy over single-modality approaches of 1% on average and 10% for distances beyond 0.5m, but comes at the cost of +71% in memory and + 105% in FLOPs. Notably, the event-based model outperforms the RGB model by 4% for position and 26% for time error at a similar computational cost, making it a competitive alternative. Additionally, we evaluate quantized versions of the event-based models, applying 1- to 8-bit quantization to assess the trade-offs between predictive performance and computational efficiency. These findings highlight the trade-offs of multi-modal perception using RGB and event-based cameras in robotic applications.
comment: arXiv admin note: text overlap with arXiv:2504.10400
Question-Answering Dense Video Events SIGIR'25
This paper presents question-answering on dense video events, a novel task that answers and grounds dense-event questions in long videos, thus challenging MLLMs to faithfully comprehend and reason about multiple events over extended periods of time. To facilitate the study, we construct DeVE-QA -- a dataset featuring 78K questions about 26K events on 10.6K long videos. Our benchmarking shows that state-of-the-art MLLMs struggle on DeVE-QA. For improvement, we propose DeVi, a novel training-free MLLM approach that highlights a hierarchical captioning module, a temporal event memory module, and a self-consistency checking module to respectively detect, contextualize and memorize, and ground dense-events in long videos for question answering. Extensive experiments show that DeVi is superior at answering dense-event questions and grounding relevant video moments. Compared with existing MLLMs, it achieves a notable increase of 4.8% and 2.1% for G(round)QA accuracy on DeVE-QA and NExT-GQA, respectively. Data and code are available at https://github.com/QHUni/DeVE-QA.
comment: Accepted to SIGIR'25
Towards Low-Latency Event-based Obstacle Avoidance on a FPGA-Drone
This work quantitatively evaluates the performance of event-based vision systems (EVS) against conventional RGB-based models for action prediction in collision avoidance on an FPGA accelerator. Our experiments demonstrate that the EVS model achieves a significantly higher effective frame rate (1 kHz) and lower temporal (-20 ms) and spatial prediction errors (-20 mm) compared to the RGB-based model, particularly when tested on out-of-distribution data. The EVS model also exhibits superior robustness in selecting optimal evasion maneuvers. In particular, in distinguishing between movement and stationary states, it achieves a 59 percentage point advantage in precision (78% vs. 19%) and a substantially higher F1 score (0.73 vs. 0.06), highlighting the susceptibility of the RGB model to overfitting. Further analysis in different combinations of spatial classes confirms the consistent performance of the EVS model in both test data sets. Finally, we evaluated the system end-to-end and achieved a latency of approximately 2.14 ms, with event aggregation (1 ms) and inference on the processing unit (0.94 ms) accounting for the largest components. These results underscore the advantages of event-based vision for real-time collision avoidance and demonstrate its potential for deployment in resource-constrained environments.
A Plasticity-Aware Method for Continual Self-Supervised Learning in Remote Sensing
Continual self-supervised learning (CSSL) methods have gained increasing attention in remote sensing (RS) due to their capability to learn new tasks sequentially from continuous streams of unlabeled data. Existing CSSL methods, while learning new tasks, focus on preventing catastrophic forgetting. To this end, most of them use regularization strategies to retain knowledge of previous tasks. This reduces the model's ability to adapt to the data of new tasks (i.e., learning plasticity), which can degrade performance. To address this problem, in this paper, we propose a novel CSSL method that aims to learn tasks sequentially, while achieving high learning plasticity. To this end, the proposed method uses a knowledge distillation strategy with an integrated decoupling mechanism. The decoupling is achieved by first dividing the feature dimensions into task-common and task-specific parts. Then, the task-common features are forced to be correlated to ensure memory stability while the task-specific features are forced to be de-correlated facilitating the learning of new features. Experimental results show the effectiveness of the proposed method compared to CaSSLe, which is a widely used CSSL framework, with improvements of up to 1.12% in average accuracy and 2.33% in intransigence in a task-incremental scenario, and 1.24% in average accuracy and 2.01% in intransigence in a class-incremental scenario.
comment: We found the reported results of the compared method to be misleading
From Image to Video, what do we need in multimodal LLMs?
Covering from Image LLMs to the more complex Video LLMs, the Multimodal Large Language Models (MLLMs) have demonstrated profound capabilities in comprehending cross-modal information as numerous studies have illustrated. Previous methods delve into designing comprehensive Video LLMs through integrating video foundation models with primitive LLMs. Despite its effectiveness, such paradigm renders Video LLM's structure verbose and typically requires substantial video data for pre-training. Crucially, it neglects leveraging the foundational contributions of ready-made Image LLMs. In this paper, we introduce RED-VILLM, a Resource-Efficient Development pipeline which builds robust Video LLMs through leveraging the prior knowledge of Image LLMs. Specifically, since a video is naturally a combination of images along the temporal dimension, we devise a temporal adaptation plug-and-play structure, endowing the backbone Image LLM with the capability to grasp temporal information. Moreover, through applying this pipeline, we achieve the first Video LLM within the Chinese-speaking community. Extensive experiments demonstrate that Video LLMs developed through our approach surpass conventional Video LLMs, requiring minimal instructional data and training resources. Our approach highlights the potential for a more cost-effective and scalable advancement in multimodal models.
Visual Watermarking in the Era of Diffusion Models: Advances and Challenges
As generative artificial intelligence technologies like Stable Diffusion advance, visual content becomes more vulnerable to misuse, raising concerns about copyright infringement. Visual watermarks serve as effective protection mechanisms, asserting ownership and deterring unauthorized use. Traditional deepfake detection methods often rely on passive techniques that struggle with sophisticated manipulations. In contrast, diffusion models enhance detection accuracy by allowing for the effective learning of features, enabling the embedding of imperceptible and robust watermarks. We analyze the strengths and challenges of watermark techniques related to diffusion models, focusing on their robustness and application in watermark generation. By exploring the integration of advanced diffusion models and watermarking security, we aim to advance the discourse on preserving watermark robustness against evolving forgery threats. It emphasizes the critical importance of developing innovative solutions to protect digital content and ensure the preservation of ownership rights in the era of generative AI.
DARTer: Dynamic Adaptive Representation Tracker for Nighttime UAV Tracking
Nighttime UAV tracking presents significant challenges due to extreme illumination variations and viewpoint changes, which severely degrade tracking performance. Existing approaches either rely on light enhancers with high computational costs or introduce redundant domain adaptation mechanisms, failing to fully utilize the dynamic features in varying perspectives. To address these issues, we propose \textbf{DARTer} (\textbf{D}ynamic \textbf{A}daptive \textbf{R}epresentation \textbf{T}racker), an end-to-end tracking framework designed for nighttime UAV scenarios. DARTer leverages a Dynamic Feature Blender (DFB) to effectively fuse multi-perspective nighttime features from static and dynamic templates, enhancing representation robustness. Meanwhile, a Dynamic Feature Activator (DFA) adaptively activates Vision Transformer layers based on extracted features, significantly improving efficiency by reducing redundant computations. Our model eliminates the need for complex multi-task loss functions, enabling a streamlined training process. Extensive experiments on multiple nighttime UAV tracking benchmarks demonstrate the superiority of DARTer over state-of-the-art trackers. These results confirm that DARTer effectively balances tracking accuracy and efficiency, making it a promising solution for real-world nighttime UAV tracking applications.
comment: Preprint, Under review
Fast and Robust Localization for Humanoid Soccer Robot via Iterative Landmark Matching
Accurate robot localization is essential for effective operation. Monte Carlo Localization (MCL) is commonly used with known maps but is computationally expensive due to landmark matching for each particle. Humanoid robots face additional challenges, including sensor noise from locomotion vibrations and a limited field of view (FOV) due to camera placement. This paper proposes a fast and robust localization method via iterative landmark matching (ILM) for humanoid robots. The iterative matching process improves the accuracy of the landmark association so that it does not need MCL to match landmarks to particles. Pose estimation with the outlier removal process enhances its robustness to measurement noise and faulty detections. Furthermore, an additional filter can be utilized to fuse inertial data from the inertial measurement unit (IMU) and pose data from localization. We compared ILM with Iterative Closest Point (ICP), which shows that ILM method is more robust towards the error in the initial guess and easier to get a correct matching. We also compared ILM with the Augmented Monte Carlo Localization (aMCL), which shows that ILM method is much faster than aMCL and even more accurate. The proposed method's effectiveness is thoroughly evaluated through experiments and validated on the humanoid robot ARTEMIS during RoboCup 2024 adult-sized soccer competition.
Structured Preference Optimization for Vision-Language Long-Horizon Task Planning
Existing methods for vision-language task planning excel in short-horizon tasks but often fall short in complex, long-horizon planning within dynamic environments. These challenges primarily arise from the difficulty of effectively training models to produce high-quality reasoning processes for long-horizon tasks. To address this, we propose Structured Preference Optimization (SPO), which aims to enhance reasoning and action selection in long-horizon task planning through structured preference evaluation and optimized training strategies. Specifically, SPO introduces: 1) Preference-Based Scoring and Optimization, which systematically evaluates reasoning chains based on task relevance, visual grounding, and historical consistency; and 2) Curriculum-Guided Training, where the model progressively adapts from simple to complex tasks, improving its generalization ability in long-horizon scenarios and enhancing reasoning robustness. To advance research in vision-language long-horizon task planning, we introduce ExtendaBench, a comprehensive benchmark covering 1,509 tasks across VirtualHome and Habitat 2.0, categorized into ultra-short, short, medium, and long tasks. Experimental results demonstrate that SPO significantly improves reasoning quality and final decision accuracy, outperforming prior methods on long-horizon tasks and underscoring the effectiveness of preference-driven optimization in vision-language task planning. Specifically, SPO achieves a +5.98% GCR and +4.68% SR improvement in VirtualHome and a +3.30% GCR and +2.11% SR improvement in Habitat over the best-performing baselines.
comment: 18 pages
Just Functioning as a Hook for Two-Stage Referring Multi-Object Tracking
Referring Multi-Object Tracking (RMOT) aims to localize target trajectories specified by natural language expressions in videos. Existing RMOT methods mainly follow two paradigms: one-stage strategies and two-stage ones. The former jointly trains tracking with referring but suffers from substantial computational overhead. Although the latter improves efficiency, it overlooks the inherent contextual aggregation capabilities of pre-trained visual backbones and takes a detour. Meanwhile, its fixed dual-tower architecture restricts compatibility with other visual / text backbones. To address these limitations, we propose JustHook, a novel hook-like framework for two-stage RMOT, which introduces two core components: (1) a Visual Feature Hook (VFH), enabling JustHook to extract context-rich local features directly from the original visual backbone like a hook; (2) a Parallel Combined Decoder (PCD), which transforms the passive cosine similarity measurement between independent modalities into active contrastive learning within the combined feature space. The proposed JustHook not only leverages the capabilities of pre-trained models but also breaks free from the constraints of inherent modality alignment, achieving strong scalability. Extensive experiments on Refer-KITTI and Refer-KITTI-V2 demonstrate that JustHook outperforms state-of-the-art methods across diverse encoder combinations, achieving a notable 7.77\% HOTA improvement on Refer-KITTI-V2. Code will be made available soon.
EmoFace: Emotion-Content Disentangled Speech-Driven 3D Talking Face Animation
The creation of increasingly vivid 3D talking face has become a hot topic in recent years. Currently, most speech-driven works focus on lip synchronisation but neglect to effectively capture the correlations between emotions and facial motions. To address this problem, we propose a two-stream network called EmoFace, which consists of an emotion branch and a content branch. EmoFace employs a novel Mesh Attention mechanism to analyse and fuse the emotion features and content features. Particularly, a newly designed spatio-temporal graph-based convolution, SpiralConv3D, is used in Mesh Attention to learn potential temporal and spatial feature dependencies between mesh vertices. In addition, to the best of our knowledge, it is the first time to introduce a new self-growing training scheme with intermediate supervision to dynamically adjust the ratio of groundtruth adopted in the 3D face animation task. Comprehensive quantitative and qualitative evaluations on our high-quality 3D emotional facial animation dataset, 3D-RAVDESS ($4.8863\times 10^{-5}$mm for LVE and $0.9509\times 10^{-5}$mm for EVE), together with the public dataset VOCASET ($2.8669\times 10^{-5}$mm for LVE and $0.4664\times 10^{-5}$mm for EVE), demonstrate that our approach achieves state-of-the-art performance.
GLDiTalker: Speech-Driven 3D Facial Animation with Graph Latent Diffusion Transformer
Speech-driven talking head generation is a critical yet challenging task with applications in augmented reality and virtual human modeling. While recent approaches using autoregressive and diffusion-based models have achieved notable progress, they often suffer from modality inconsistencies, particularly misalignment between audio and mesh, leading to reduced motion diversity and lip-sync accuracy. To address this, we propose GLDiTalker, a novel speech-driven 3D facial animation model based on a Graph Latent Diffusion Transformer. GLDiTalker resolves modality misalignment by diffusing signals within a quantized spatiotemporal latent space. It employs a two-stage training pipeline: the Graph-Enhanced Quantized Space Learning Stage ensures lip-sync accuracy, while the Space-Time Powered Latent Diffusion Stage enhances motion diversity. Together, these stages enable GLDiTalker to generate realistic, temporally stable 3D facial animations. Extensive evaluations on standard benchmarks demonstrate that GLDiTalker outperforms existing methods, achieving superior results in both lip-sync accuracy and motion diversity.
comment: 9 pages, 5 figures
Image and Video Processing
GOUHFI: a novel contrast- and resolution-agnostic segmentation tool for Ultra-High Field MRI
Recently, Ultra-High Field MRI (UHF-MRI) has become more available and one of the best tools to study the brain. One common step in quantitative neuroimaging is the brain segmentation. However, the differences between UHF-MRI and 1.5-3T images are such that the automatic segmentation techniques optimized at these field strengths usually produce unsatisfactory segmentation results for UHF images. It has been particularly challenging to perform quantitative analyses as typically done with 1.5-3T data, considerably limiting the potential of UHF-MRI. Hence, we propose a novel Deep Learning (DL)-based segmentation technique called GOUHFI: Generalized and Optimized segmentation tool for Ultra-High Field Images, designed to segment UHF images of various contrasts and resolutions. For training, we used a total of 206 label maps from four datasets acquired at 3T, 7T and 9.4T. In contrast to most DL strategies, we used a previously proposed domain randomization approach, where synthetic images generated from the label maps were used for training a 3D U-Net. GOUHFI was tested on seven different datasets and compared to techniques like FastSurferVINN and CEREBRUM-7T. GOUHFI was able to the segment six contrasts and seven resolutions tested at 3T, 7T and 9.4T. Average Dice-Sorensen Similarity Coefficient (DSC) scores of 0.87, 0.84, 0.91 were computed against the ground truth segmentations at 3T, 7T and 9.4T. Moreover, GOUHFI demonstrated impressive resistance to the typical inhomogeneities observed at UHF-MRI, making it a new powerful segmentation tool that allows to apply the usual quantitative analysis pipelines also at UHF. Ultimately, GOUHFI is a promising new segmentation tool, being the first of its kind proposing a contrast- and resolution-agnostic alternative for UHF-MRI, making it the forthcoming alternative for neuroscientists working with UHF-MRI or even lower field strengths.
comment: 45 pages, 9 Figures, 6 Tables, Submitted to Imaging Neuroscience on 16-05-25
Neuromorphic Imaging Flow Cytometry combined with Adaptive Recurrent Spiking Neural Networks
We present an experimental imaging flow cytometer using a 1 {\mu}s temporal resolution event-based CMOS camera, with data processed by adaptive feedforward and recurrent spiking neural networks. Our study classifies PMMA particles (12, 16, 20 {\mu}m) flowing at 0.7 m/s in a microfluidic channel. Processing of experimental data highlighted that spiking recurrent networks, including LSTM and GRU models, achieved 98.4% accuracy by leveraging temporal dependencies. Additionally, adaptation mechanisms in lightweight feedforward spiking networks improved accuracy by 4.3%. This work outlines a technological roadmap for neuromorphic-assisted biomedical applications, enhancing classification performance while maintaining low latency and sparsity.
comment: 13 pages, 6 figures, journal submission
From Fibers to Cells: Fourier-Based Registration Enables Virtual Cresyl Violet Staining From 3D Polarized Light Imaging
Comprehensive assessment of the various aspects of the brain's microstructure requires the use of complementary imaging techniques. This includes measuring the spatial distribution of cell bodies (cytoarchitecture) and nerve fibers (myeloarchitecture). The gold standard for cytoarchitectonic analysis is light microscopic imaging of cell-body stained tissue sections. To reveal the 3D orientations of nerve fibers, 3D Polarized Light Imaging (3D-PLI) has been introduced as a reliable technique providing a resolution in the micrometer range while allowing processing of series of complete brain sections. 3D-PLI acquisition is label-free and allows subsequent staining of sections after measurement. By post-staining for cell bodies, a direct link between fiber- and cytoarchitecture can potentially be established within the same section. However, inevitable distortions introduced during the staining process make a nonlinear and cross-modal registration necessary in order to study the detailed relationships between cells and fibers in the images. In addition, the complexity of processing histological sections for post-staining only allows for a limited number of samples. In this work, we take advantage of deep learning methods for image-to-image translation to generate a virtual staining of 3D-PLI that is spatially aligned at the cellular level. In a supervised setting, we build on a unique dataset of brain sections, to which Cresyl violet staining has been applied after 3D-PLI measurement. To ensure high correspondence between both modalities, we address the misalignment of training data using Fourier-based registration methods. In this way, registration can be efficiently calculated during training for local image patches of target and predicted staining. We demonstrate that the proposed method enables prediction of a Cresyl violet staining from 3D-PLI, matching individual cell instances.
Diff-Unfolding: A Model-Based Score Learning Framework for Inverse Problems
Diffusion models are extensively used for modeling image priors for inverse problems. We introduce \emph{Diff-Unfolding}, a principled framework for learning posterior score functions of \emph{conditional diffusion models} by explicitly incorporating the physical measurement operator into a modular network architecture. Diff-Unfolding formulates posterior score learning as the training of an unrolled optimization scheme, where the measurement model is decoupled from the learned image prior. This design allows our method to generalize across inverse problems at inference time by simply replacing the forward operator without retraining. We theoretically justify our unrolling approach by showing that the posterior score can be derived from a composite model-based optimization formulation. Extensive experiments on image restoration and accelerated MRI show that Diff-Unfolding achieves state-of-the-art performance, improving PSNR by up to 2 dB and reducing LPIPS by $22.7\%$, while being both compact (47M parameters) and efficient (0.72 seconds per $256 \times 256$ image). An optimized C++/LibTorch implementation further reduces inference time to 0.63 seconds, underscoring the practicality of our approach.
comment: 19 pages, 13 figures,
Diffusion Model in Hyperspectral Image Processing and Analysis: A Review
Hyperspectral image processing and analysis has important application value in remote sensing, agriculture and environmental monitoring, but its high dimensionality, data redundancy and noise interference etc. bring great challenges to the analysis. Traditional models have limitations in dealing with these complex data, and it is difficult to meet the increasing demand for analysis. In recent years, Diffusion Model, as an emerging generative model, has shown unique advantages in hyperspectral image processing. By simulating the diffusion process of data in time, the Diffusion Model can effectively process high-dimensional data, generate high-quality samples, and perform well in denoising and data enhancement. In this paper, we review the recent research advances in diffusion modeling for hyperspectral image processing and analysis, and discuss its applications in tasks such as high-dimensional data processing, noise removal, classification, and anomaly detection. The performance of diffusion-based models on image processing is compared and the challenges are summarized. It is shown that the diffusion model can significantly improve the accuracy and efficiency of hyperspectral image analysis, providing a new direction for future research.
comment: 33 pages,20 figures
HSRMamba: Efficient Wavelet Stripe State Space Model for Hyperspectral Image Super-Resolution
Single hyperspectral image super-resolution (SHSR) aims to restore high-resolution images from low-resolution hyperspectral images. Recently, the Visual Mamba model has achieved an impressive balance between performance and computational efficiency. However, due to its 1D scanning paradigm, the model may suffer from potential artifacts during image generation. To address this issue, we propose HSRMamba. While maintaining the computational efficiency of Visual Mamba, we introduce a strip-based scanning scheme to effectively reduce artifacts from global unidirectional scanning. Additionally, HSRMamba uses wavelet decomposition to alleviate modal conflicts between high-frequency spatial features and low-frequency spectral features, further improving super-resolution performance. Extensive experiments show that HSRMamba not only excels in reducing computational load and model size but also outperforms existing methods, achieving state-of-the-art results.
Generative Models in Computational Pathology: A Comprehensive Survey on Methods, Applications, and Challenges
Generative modeling has emerged as a promising direction in computational pathology, offering capabilities such as data-efficient learning, synthetic data augmentation, and multimodal representation across diverse diagnostic tasks. This review provides a comprehensive synthesis of recent progress in the field, organized into four key domains: image generation, text generation, multimodal image-text generation, and other generative applications, including spatial simulation and molecular inference. By analyzing over 150 representative studies, we trace the evolution of generative architectures from early generative adversarial networks to recent advances in diffusion models and foundation models with generative capabilities. We further examine the datasets and evaluation protocols commonly used in this domain and highlight ongoing limitations, including challenges in generating high-fidelity whole slide images, clinical interpretability, and concerns related to the ethical and legal implications of synthetic data. The review concludes with a discussion of open challenges and prospective research directions, with an emphasis on developing unified, multimodal, and clinically deployable generative systems. This work aims to provide a foundational reference for researchers and practitioners developing and applying generative models in computational pathology.
comment: 18 pages,9 figures
Pretrained hybrid transformer for generalizable cardiac substructures segmentation from contrast and non-contrast CTs in lung and breast cancers
AI automated segmentations for radiation treatment planning (RTP) can deteriorate when applied in clinical cases with different characteristics than training dataset. Hence, we refined a pretrained transformer into a hybrid transformer convolutional network (HTN) to segment cardiac substructures lung and breast cancer patients acquired with varying imaging contrasts and patient scan positions. Cohort I, consisting of 56 contrast-enhanced (CECT) and 124 non-contrast CT (NCCT) scans from patients with non-small cell lung cancers acquired in supine position, was used to create oracle with all 180 training cases and balanced (CECT: 32, NCCT: 32 training) HTN models. Models were evaluated on a held-out validation set of 60 cohort I patients and 66 patients with breast cancer from cohort II acquired in supine (n=45) and prone (n=21) positions. Accuracy was measured using DSC, HD95, and dose metrics. Publicly available TotalSegmentator served as the benchmark. The oracle and balanced models were similarly accurate (DSC Cohort I: 0.80 \pm 0.10 versus 0.81 \pm 0.10; Cohort II: 0.77 \pm 0.13 versus 0.80 \pm 0.12), outperforming TotalSegmentator. The balanced model, using half the training cases as oracle, produced similar dose metrics as manual delineations for all cardiac substructures. This model was robust to CT contrast in 6 out of 8 substructures and patient scan position variations in 5 out of 8 substructures and showed low correlations of accuracy to patient size and age. A HTN demonstrated robustly accurate (geometric and dose metrics) cardiac substructures segmentation from CTs with varying imaging and patient characteristics, one key requirement for clinical use. Moreover, the model combining pretraining with balanced distribution of NCCT and CECT scans was able to provide reliably accurate segmentations under varied conditions with far fewer labeled datasets compared to an oracle model.
TACO: Rethinking Semantic Communications with Task Adaptation and Context Embedding
Recent advancements in generative artificial intelligence have introduced groundbreaking approaches to innovating next-generation semantic communication, which prioritizes conveying the meaning of a message rather than merely transmitting raw data. A fundamental challenge in semantic communication lies in accurately identifying and extracting the most critical semantic information while adapting to downstream tasks without degrading performance, particularly when the objective at the receiver may evolve over time. To enable flexible adaptation to multiple tasks at the receiver, this work introduces a novel semantic communication framework, which is capable of jointly capturing task-specific information to enhance downstream task performance and contextual information. Through rigorous experiments on popular image datasets and computer vision tasks, our framework shows promising improvement compared to existing work, including superior performance in downstream tasks, better generalizability, ultra-high bandwidth efficiency, and low reconstruction latency.
comment: Submitted to the IEEE GlobeCom 2025
From Embeddings to Accuracy: Comparing Foundation Models for Radiographic Classification
Foundation models, pretrained on extensive datasets, have significantly advanced machine learning by providing robust and transferable embeddings applicable to various domains, including medical imaging diagnostics. This study evaluates the utility of embeddings derived from both general-purpose and medical domain-specific foundation models for training lightweight adapter models in multi-class radiography classification, focusing specifically on tube placement assessment. A dataset comprising 8842 radiographs classified into seven distinct categories was employed to extract embeddings using six foundation models: DenseNet121, BiomedCLIP, Med-Flamingo, MedImageInsight, Rad-DINO, and CXR-Foundation. Adapter models were subsequently trained using classical machine learning algorithms. Among these combinations, MedImageInsight embeddings paired with an support vector machine adapter yielded the highest mean area under the curve (mAUC) at 93.8%, followed closely by Rad-DINO (91.1%) and CXR-Foundation (89.0%). In comparison, BiomedCLIP and DenseNet121 exhibited moderate performance with mAUC scores of 83.0% and 81.8%, respectively, whereas Med-Flamingo delivered the lowest performance at 75.1%. Notably, most adapter models demonstrated computational efficiency, achieving training within one minute and inference within seconds on CPU, underscoring their practicality for clinical applications. Furthermore, fairness analyses on adapters trained on MedImageInsight-derived embeddings indicated minimal disparities, with gender differences in performance within 2% and standard deviations across age groups not exceeding 3%. These findings confirm that foundation model embeddings-especially those from MedImageInsight-facilitate accurate, computationally efficient, and equitable diagnostic classification using lightweight adapters for radiographic image analysis.
comment: 11 pages, 5 figures, 4 tables
Semantically-Aware Game Image Quality Assessment
Assessing the visual quality of video game graphics presents unique challenges due to the absence of reference images and the distinct types of distortions, such as aliasing, texture blur, and geometry level of detail (LOD) issues, which differ from those in natural images or user-generated content. Existing no-reference image and video quality assessment (NR-IQA/VQA) methods fail to generalize to gaming environments as they are primarily designed for distortions like compression artifacts. This study introduces a semantically-aware NR-IQA model tailored to gaming. The model employs a knowledge-distilled Game distortion feature extractor (GDFE) to detect and quantify game-specific distortions, while integrating semantic gating via CLIP embeddings to dynamically weight feature importance based on scene content. Training on gameplay data recorded across graphical quality presets enables the model to produce quality scores that align with human perception. Our results demonstrate that the GDFE, trained through knowledge distillation from binary classifiers, generalizes effectively to intermediate distortion levels unseen during training. Semantic gating further improves contextual relevance and reduces prediction variance. In the absence of in-domain NR-IQA baselines, our model outperforms out-of-domain methods and exhibits robust, monotonic quality trends across unseen games in the same genre. This work establishes a foundation for automated graphical quality assessment in gaming, advancing NR-IQA methods in this domain.
comment: 16 pages, 12 figures
UGoDIT: Unsupervised Group Deep Image Prior Via Transferable Weights
Recent advances in data-centric deep generative models have led to significant progress in solving inverse imaging problems. However, these models (e.g., diffusion models (DMs)) typically require large amounts of fully sampled (clean) training data, which is often impractical in medical and scientific settings such as dynamic imaging. On the other hand, training-data-free approaches like the Deep Image Prior (DIP) do not require clean ground-truth images but suffer from noise overfitting and can be computationally expensive as the network parameters need to be optimized for each measurement set independently. Moreover, DIP-based methods often overlook the potential of learning a prior using a small number of sub-sampled measurements (or degraded images) available during training. In this paper, we propose UGoDIT, an Unsupervised Group DIP via Transferable weights, designed for the low-data regime where only a very small number, M, of sub-sampled measurement vectors are available during training. Our method learns a set of transferable weights by optimizing a shared encoder and M disentangled decoders. At test time, we reconstruct the unseen degraded image using a DIP network, where part of the parameters are fixed to the learned weights, while the remaining are optimized to enforce measurement consistency. We evaluate UGoDIT on both medical (multi-coil MRI) and natural (super resolution and non-linear deblurring) image recovery tasks under various settings. Compared to recent standalone DIP methods, UGoDIT provides accelerated convergence and notable improvement in reconstruction quality. Furthermore, our method achieves performance competitive with SOTA DM-based and supervised approaches, despite not requiring large amounts of clean training data.
Object-Centric Representations Improve Policy Generalization in Robot Manipulation
Visual representations are central to the learning and generalization capabilities of robotic manipulation policies. While existing methods rely on global or dense features, such representations often entangle task-relevant and irrelevant scene information, limiting robustness under distribution shifts. In this work, we investigate object-centric representations (OCR) as a structured alternative that segments visual input into a finished set of entities, introducing inductive biases that align more naturally with manipulation tasks. We benchmark a range of visual encoders-object-centric, global and dense methods-across a suite of simulated and real-world manipulation tasks ranging from simple to complex, and evaluate their generalization under diverse visual conditions including changes in lighting, texture, and the presence of distractors. Our findings reveal that OCR-based policies outperform dense and global representations in generalization settings, even without task-specific pretraining. These insights suggest that OCR is a promising direction for designing visual systems that generalize effectively in dynamic, real-world robotic environments.
Characterization of Using Hybrid Beamforming in mmWave Virtual Reality
Wireless Virtual Reality (VR) is increasingly in demand in Wireless LANs (WLANs). In this paper, a utility function for resource management in wireless VR is proposed. Maximizing the sum rate metric in transmitting VR audio or videos is an important factor for ascertaining low latency in obtaining QoS requirement of users in VR, so forth mmWave frequency band in WLAN technology should be used. This frequency band is presented in IEEE 802.11ad/ay. Resource access method in IEEE 802.11ay standard is MultiUser MIMO (MU-MIMO) with OFDM modulation. Operating at mmWave frequency band is equal to use massive number of antenna to enhance the received power in (Line of Sight) LoS direction by inducing sever propagation with small wavelength. Also for reducing the complexity of hardware in mmWave technology, designers should select some number of connected phase shifters to each antenna element by hybrid beamforming method. Processing delay, transmission delay and queue delay should be considered in acquiring QoS metric in terms of utility function. The optimal closed form expression of the multi-attribute utility function is based on these delays that are calculated by downlink and uplink rates in assistant with hybrid beamforming. Trends of transmission delay and multi-attribute utility function in various Es/N0 values and different scenarios are analyzed. Based on these results, 95.4% accuracy in comparison with ns3 in uplink and downlink channel modeling in IEEE 802.11ay standard's indoor environment has been reported. Also, it is shown that min channel gain consideration can cause reduction in the value of the utility function and incursion in transmission delay in VR.
WeGA: Weakly-Supervised Global-Local Affinity Learning Framework for Lymph Node Metastasis Prediction in Rectal Cancer
Accurate lymph node metastasis (LNM) assessment in rectal cancer is essential for treatment planning, yet current MRI-based evaluation shows unsatisfactory accuracy, leading to suboptimal clinical decisions. Developing automated systems also faces significant obstacles, primarily the lack of node-level annotations. Previous methods treat lymph nodes as isolated entities rather than as an interconnected system, overlooking valuable spatial and contextual information. To solve this problem, we present WeGA, a novel weakly-supervised global-local affinity learning framework that addresses these challenges through three key innovations: 1) a dual-branch architecture with DINOv2 backbone for global context and residual encoder for local node details; 2) a global-local affinity extractor that aligns features across scales through cross-attention fusion; and 3) a regional affinity loss that enforces structural coherence between classification maps and anatomical regions. Experiments across one internal and two external test centers demonstrate that WeGA outperforms existing methods, achieving AUCs of 0.750, 0.822, and 0.802 respectively. By effectively modeling the relationships between individual lymph nodes and their collective context, WeGA provides a more accurate and generalizable approach for lymph node metastasis prediction, potentially enhancing diagnostic precision and treatment selection for rectal cancer patients.
Whitened Score Diffusion: A Structured Prior for Imaging Inverse Problems
Conventional score-based diffusion models (DMs) may struggle with anisotropic Gaussian diffusion processes due to the required inversion of covariance matrices in the denoising score matching training objective \cite{vincent_connection_2011}. We propose Whitened Score (WS) diffusion models, a novel SDE-based framework that learns the Whitened Score function instead of the standard score. This approach circumvents covariance inversion, extending score-based DMs by enabling stable training of DMs on arbitrary Gaussian forward noising processes. WS DMs establish equivalence with FM for arbitrary Gaussian noise, allow for tailored spectral inductive biases, and provide strong Bayesian priors for imaging inverse problems with structured noise. We experiment with a variety of computational imaging tasks using the CIFAR and CelebA ($64\times64$) datasets and demonstrate that WS diffusion priors trained on anisotropic Gaussian noising processes consistently outperform conventional diffusion priors based on isotropic Gaussian noise.
Ophora: A Large-Scale Data-Driven Text-Guided Ophthalmic Surgical Video Generation Model MICCAI25
In ophthalmic surgery, developing an AI system capable of interpreting surgical videos and predicting subsequent operations requires numerous ophthalmic surgical videos with high-quality annotations, which are difficult to collect due to privacy concerns and labor consumption. Text-guided video generation (T2V) emerges as a promising solution to overcome this issue by generating ophthalmic surgical videos based on surgeon instructions. In this paper, we present Ophora, a pioneering model that can generate ophthalmic surgical videos following natural language instructions. To construct Ophora, we first propose a Comprehensive Data Curation pipeline to convert narrative ophthalmic surgical videos into a large-scale, high-quality dataset comprising over 160K video-instruction pairs, Ophora-160K. Then, we propose a Progressive Video-Instruction Tuning scheme to transfer rich spatial-temporal knowledge from a T2V model pre-trained on natural video-text datasets for privacy-preserved ophthalmic surgical video generation based on Ophora-160K. Experiments on video quality evaluation via quantitative analysis and ophthalmologist feedback demonstrate that Ophora can generate realistic and reliable ophthalmic surgical videos based on surgeon instructions. We also validate the capability of Ophora for empowering downstream tasks of ophthalmic surgical workflow understanding. Code is available at https://github.com/mar-cry/Ophora.
comment: Early accepted in MICCAI25
reBEN: Refined BigEarthNet Dataset for Remote Sensing Image Analysis
This paper presents refined BigEarthNet (reBEN) that is a large-scale, multi-modal remote sensing dataset constructed to support deep learning (DL) studies for remote sensing image analysis. The reBEN dataset consists of 549,488 pairs of Sentinel-1 and Sentinel-2 image patches. To construct reBEN, we initially consider the Sentinel-1 and Sentinel-2 tiles used to construct the BigEarthNet dataset and then divide them into patches of size 1200 m x 1200 m. We apply atmospheric correction to the Sentinel-2 patches using the latest version of the sen2cor tool, resulting in higher-quality patches compared to those present in BigEarthNet. Each patch is then associated with a pixel-level reference map and scene-level multi-labels. This makes reBEN suitable for pixel- and scene-based learning tasks. The labels are derived from the most recent CORINE Land Cover (CLC) map of 2018 by utilizing the 19-class nomenclature as in BigEarthNet. The use of the most recent CLC map results in overcoming the label noise present in BigEarthNet. Furthermore, we introduce a new geographical-based split assignment algorithm that significantly reduces the spatial correlation among the train, validation, and test sets with respect to those present in BigEarthNet. This increases the reliability of the evaluation of DL models. To minimize the DL model training time, we introduce software tools that convert the reBEN dataset into a DL-optimized data format. In our experiments, we show the potential of reBEN for multi-modal multi-label image classification problems by considering several state-of-the-art DL models. The pre-trained model weights, associated code, and complete dataset are available at https://bigearth.net.
comment: Accepted at IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 2025. Our code is available at https://github.com/rsim-tu-berlin/bigearthnet-pipeline
Contactless pulse rate assessment: Results and insights for application in driving simulator
Camera-based monitoring of Pulse Rate (PR) enables continuous and unobtrusive assessment of driver's state, allowing estimation of fatigue or stress that could impact traffic safety. Commonly used wearable Photoplethysmography (PPG) sensors, while effective, suffer from motion artifacts and user discomfort. This study explores the feasibility of non-contact PR assessment using facial video recordings captured by a Red, Green, and Blue (RGB) camera in a driving simulation environment. The proposed approach detects subtle skin color variations due to blood flow and compares extracted PR values against reference measurements from a wearable wristband Empatica E4. We evaluate the impact of Eulerian Video Magnification (EVM) on signal quality and assess statistical differences in PR between age groups. Data obtained from 80 recordings from 64 healthy subjects covering a PR range of 45-160 bpm are analyzed, and signal extraction accuracy is quantified using metrics, such as Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). Results show that EVM slightly improves PR estimation accuracy, reducing MAE from 6.48 bpm to 5.04 bpm and RMSE from 7.84 bpm to 6.38 bpm. A statistically significant difference is found between older and younger groups with both video-based and ground truth evaluation procedures. Additionally, we discuss Empatica E4 bias and its potential impact on the overall assessment of contact measurements. Altogether the findings demonstrate the feasibility of camera-based PR monitoring in dynamic environments and its potential integration into driving simulators for real-time physiological assessment.
comment: 6 figures and one table
Discrete Spatial Diffusion: Intensity-Preserving Diffusion Modeling
Generative diffusion models have achieved remarkable success in producing high-quality images. However, these models typically operate in continuous intensity spaces, diffusing independently across pixels and color channels. As a result, they are fundamentally ill-suited for applications involving inherently discrete quantities-such as particle counts or material units-that are constrained by strict conservation laws like mass conservation, limiting their applicability in scientific workflows. To address this limitation, we propose Discrete Spatial Diffusion (DSD), a framework based on a continuous-time, discrete-state jump stochastic process that operates directly in discrete spatial domains while strictly preserving particle counts in both forward and reverse diffusion processes. By using spatial diffusion to achieve particle conservation, we introduce stochasticity naturally through a discrete formulation. We demonstrate the expressive flexibility of DSD by performing image synthesis, class conditioning, and image inpainting across standard image benchmarks, while exactly conditioning total image intensity. We validate DSD on two challenging scientific applications: porous rock microstructures and lithium-ion battery electrodes, demonstrating its ability to generate structurally realistic samples under strict mass conservation constraints, with quantitative evaluation using state-of-the-art metrics for transport and electrochemical performance.
Multimedia
Face Consistency Benchmark for GenAI Video
Video generation driven by artificial intelligence has advanced significantly, enabling the creation of dynamic and realistic content. However, maintaining character consistency across video sequences remains a major challenge, with current models struggling to ensure coherence in appearance and attributes. This paper introduces the Face Consistency Benchmark (FCB), a framework for evaluating and comparing the consistency of characters in AI-generated videos. By providing standardized metrics, the benchmark highlights gaps in existing solutions and promotes the development of more reliable approaches. This work represents a crucial step toward improving character consistency in AI video generation technologies.
TCC-Bench: Benchmarking the Traditional Chinese Culture Understanding Capabilities of MLLMs
Recent progress in Multimodal Large Language Models (MLLMs) have significantly enhanced the ability of artificial intelligence systems to understand and generate multimodal content. However, these models often exhibit limited effectiveness when applied to non-Western cultural contexts, which raises concerns about their wider applicability. To address this limitation, we propose the \textbf{T}raditional \textbf{C}hinese \textbf{C}ulture understanding \textbf{Bench}mark (\textbf{TCC-Bench}), a bilingual (\textit{i.e.}, Chinese and English) Visual Question Answering (VQA) benchmark specifically designed for assessing the understanding of traditional Chinese culture by MLLMs. TCC-Bench comprises culturally rich and visually diverse data, incorporating images from museum artifacts, everyday life scenes, comics, and other culturally significant contexts. We adopt a semi-automated pipeline that utilizes GPT-4o in text-only mode to generate candidate questions, followed by human curation to ensure data quality and avoid potential data leakage. The benchmark also avoids language bias by preventing direct disclosure of cultural concepts within question texts. Experimental evaluations across a wide range of MLLMs demonstrate that current models still face significant challenges when reasoning about culturally grounded visual content. The results highlight the need for further research in developing culturally inclusive and context-aware multimodal systems. The code and data can be found at: https://github.com/Morty-Xu/TCC-Bench.
comment: Preprint
Concept Drift Guided LayerNorm Tuning for Efficient Multimodal Metaphor Identification ICMR'25
Metaphorical imagination, the ability to connect seemingly unrelated concepts, is fundamental to human cognition and communication. While understanding linguistic metaphors has advanced significantly, grasping multimodal metaphors, such as those found in internet memes, presents unique challenges due to their unconventional expressions and implied meanings. Existing methods for multimodal metaphor identification often struggle to bridge the gap between literal and figurative interpretations. Additionally, generative approaches that utilize large language models or text-to-image models, while promising, suffer from high computational costs. This paper introduces \textbf{C}oncept \textbf{D}rift \textbf{G}uided \textbf{L}ayerNorm \textbf{T}uning (\textbf{CDGLT}), a novel and training-efficient framework for multimodal metaphor identification. CDGLT incorporates two key innovations: (1) Concept Drift, a mechanism that leverages Spherical Linear Interpolation (SLERP) of cross-modal embeddings from a CLIP encoder to generate a new, divergent concept embedding. This drifted concept helps to alleviate the gap between literal features and the figurative task. (2) A prompt construction strategy, that adapts the method of feature extraction and fusion using pre-trained language models for the multimodal metaphor identification task. CDGLT achieves state-of-the-art performance on the MET-Meme benchmark while significantly reducing training costs compared to existing generative methods. Ablation studies demonstrate the effectiveness of both Concept Drift and our adapted LN Tuning approach. Our method represents a significant step towards efficient and accurate multimodal metaphor understanding. The code is available: \href{https://github.com/Qianvenh/CDGLT}{https://github.com/Qianvenh/CDGLT}.
comment: ICMR'25, June 30-July 3, 2025, Chicago, IL, USA
Seeing Sound, Hearing Sight: Uncovering Modality Bias and Conflict of AI models in Sound Localization
Imagine hearing a dog bark and turning toward the sound only to see a parked car, while the real, silent dog sits elsewhere. Such sensory conflicts test perception, yet humans reliably resolve them by prioritizing sound over misleading visuals. Despite advances in multimodal AI integrating vision and audio, little is known about how these systems handle cross-modal conflicts or whether they favor one modality. In this study, we systematically examine modality bias and conflict resolution in AI sound localization. We assess leading multimodal models and benchmark them against human performance in psychophysics experiments across six audiovisual conditions, including congruent, conflicting, and absent cues. Humans consistently outperform AI, demonstrating superior resilience to conflicting or missing visuals by relying on auditory information. In contrast, AI models often default to visual input, degrading performance to near chance levels. To address this, we finetune a state-of-the-art model using a stereo audio-image dataset generated via 3D simulations. Even with limited training data, the refined model surpasses existing benchmarks. Notably, it also mirrors human-like horizontal localization bias favoring left-right precision-likely due to the stereo audio structure reflecting human ear placement. These findings underscore how sensory input quality and system architecture shape multimodal representation accuracy.
comment: 16 pages, 14 figures
MAVOS-DD: Multilingual Audio-Video Open-Set Deepfake Detection Benchmark
We present the first large-scale open-set benchmark for multilingual audio-video deepfake detection. Our dataset comprises over 250 hours of real and fake videos across eight languages, with 60% of data being generated. For each language, the fake videos are generated with seven distinct deepfake generation models, selected based on the quality of the generated content. We organize the training, validation and test splits such that only a subset of the chosen generative models and languages are available during training, thus creating several challenging open-set evaluation setups. We perform experiments with various pre-trained and fine-tuned deepfake detectors proposed in recent literature. Our results show that state-of-the-art detectors are not currently able to maintain their performance levels when tested in our open-set scenarios. We publicly release our data and code at: https://huggingface.co/datasets/unibuc-cs/MAVOS-DD.
comment: 15 pages
A Multi-modal Fusion Network for Terrain Perception Based on Illumination Aware
Road terrains play a crucial role in ensuring the driving safety of autonomous vehicles (AVs). However, existing sensors of AVs, including cameras and Lidars, are susceptible to variations in lighting and weather conditions, making it challenging to achieve real-time perception of road conditions. In this paper, we propose an illumination-aware multi-modal fusion network (IMF), which leverages both exteroceptive and proprioceptive perception and optimizes the fusion process based on illumination features. We introduce an illumination-perception sub-network to accurately estimate illumination features. Moreover, we design a multi-modal fusion network which is able to dynamically adjust weights of different modalities according to illumination features. We enhance the optimization process by pre-training of the illumination-perception sub-network and incorporating illumination loss as one of the training constraints. Extensive experiments demonstrate that the IMF shows a superior performance compared to state-of-the-art methods. The comparison results with single modality perception methods highlight the comprehensive advantages of multi-modal fusion in accurately perceiving road terrains under varying lighting conditions. Our dataset is available at: https://github.com/lindawang2016/IMF.
The heteronomy of algorithms: Traditional knowledge and computational knowledge
If an active citizen should increasingly be a computationally enlightened one, replacing the autonomy of reason with the heteronomy of algorithms, then I argue in this article that we must begin teaching the principles of critiquing the computal through new notions of what we might call digital Bildung. Indeed, if civil society itself is mediated by computational systems and media, the public use of reason must also be complemented by skills for negotiating and using these computal forms to articulate such critique. Not only is there a need to raise the intellectual tone regarding computation and its related softwarization processes, but there is an urgent need to attend to the likely epistemic challenges from computation which, as presently constituted, tends towards justification through a philosophy of utility rather than through a philosophy of care for the territory of the intellect. We therefore need to develop an approach to this field that uses concepts and methods drawn from philosophy, politics, history, anthropology, sociology, media studies, computer science, and the humanities more generally, to try to understand these issues - particularly the way in which software and data increasingly penetrate our everyday life and the pressures and fissures that are created. We must, in other words, move to undertake a critical interdisciplinary research program to understand the way in which these systems are created, instantiated, and normatively engendered in both specific and general contexts.
Classifying Shelf Life Quality of Pineapples by Combining Audio and Visual Features
Determining the shelf life quality of pineapples using non-destructive methods is a crucial step to reduce waste and increase income. In this paper, a multimodal and multiview classification model was constructed to classify pineapples into four quality levels based on audio and visual characteristics. For research purposes, we compiled and released the PQC500 dataset consisting of 500 pineapples with two modalities: one was tapping pineapples to record sounds by multiple microphones and the other was taking pictures by multiple cameras at different locations, providing multimodal and multi-view audiovisual features. We modified the contrastive audiovisual masked autoencoder to train the cross-modal-based classification model by abundant combinations of audio and visual pairs. In addition, we proposed to sample a compact size of training data for efficient computation. The experiments were evaluated under various data and model configurations, and the results demonstrated that the proposed cross-modal model trained using audio-major sampling can yield 84% accuracy, outperforming the unimodal models of only audio and only visual by 6% and 18%, respectively.
Towards Robust and Controllable Text-to-Motion via Masked Autoregressive Diffusion
Generating 3D human motion from text descriptions remains challenging due to the diverse and complex nature of human motion. While existing methods excel within the training distribution, they often struggle with out-of-distribution motions, limiting their applicability in real-world scenarios. Existing VQVAE-based methods often fail to represent novel motions faithfully using discrete tokens, which hampers their ability to generalize beyond seen data. Meanwhile, diffusion-based methods operating on continuous representations often lack fine-grained control over individual frames. To address these challenges, we propose a robust motion generation framework MoMADiff, which combines masked modeling with diffusion processes to generate motion using frame-level continuous representations. Our model supports flexible user-provided keyframe specification, enabling precise control over both spatial and temporal aspects of motion synthesis. MoMADiff demonstrates strong generalization capability on novel text-to-motion datasets with sparse keyframes as motion prompts. Extensive experiments on two held-out datasets and two standard benchmarks show that our method consistently outperforms state-of-the-art models in motion quality, instruction fidelity, and keyframe adherence.
comment: 10 pages, 6 figures, 5 tables
Textured mesh Quality Assessment using Geometry and Color Field Similarity
Textured mesh quality assessment (TMQA) is critical for various 3D mesh applications. However, existing TMQA methods often struggle to provide accurate and robust evaluations. Motivated by the effectiveness of fields in representing both 3D geometry and color information, we propose a novel point-based TMQA method called field mesh quality metric (FMQM). FMQM utilizes signed distance fields and a newly proposed color field named nearest surface point color field to realize effective mesh feature description. Four features related to visual perception are extracted from the geometry and color fields: geometry similarity, geometry gradient similarity, space color distribution similarity, and space color gradient similarity. Experimental results on three benchmark datasets demonstrate that FMQM outperforms state-of-the-art (SOTA) TMQA metrics. Furthermore, FMQM exhibits low computational complexity, making it a practical and efficient solution for real-world applications in 3D graphics and visualization. Our code is publicly available at: https://github.com/yyyykf/FMQM.
comment: 15 pages main content, 4 pages supplementary material. Submitted to IEEE Transactions on Visualization and Computer Graphics (IEEE TVCG) for review
CrypticBio: A Large Multimodal Dataset for Visually Confusing Biodiversity
We present CrypticBio, the largest publicly available multimodal dataset of visually confusing species, specifically curated to support the development of AI models in the context of biodiversity applications. Visually confusing or cryptic species are groups of two or more taxa that are nearly indistinguishable based on visual characteristics alone. While much existing work addresses taxonomic identification in a broad sense, datasets that directly address the morphological confusion of cryptic species are small, manually curated, and target only a single taxon. Thus, the challenge of identifying such subtle differences in a wide range of taxa remains unaddressed. Curated from real-world trends in species misidentification among community annotators of iNaturalist, CrypticBio contains 52K unique cryptic groups spanning 67K species, represented in 166 million images. Rich research-grade image annotations--including scientific, multicultural, and multilingual species terminology, hierarchical taxonomy, spatiotemporal context, and associated cryptic groups--address multimodal AI in biodiversity research. For easy dataset curation, we provide an open-source pipeline CrypticBio-Curate. The multimodal nature of the dataset beyond vision-language arises from the integration of geographical and temporal data as complementary cues to identifying cryptic species. To highlight the importance of the dataset, we benchmark a suite of state-of-the-art foundation models across CrypticBio subsets of common, unseen, endangered, and invasive species, and demonstrate the substantial impact of geographical context on vision-language zero-shot learning for cryptic species. By introducing CrypticBio, we aim to catalyze progress toward real-world-ready biodiversity AI models capable of handling the nuanced challenges of species ambiguity.
comment: We present CrypticBio, the largest publicly available multimodal dataset of visually confusing species, specifically curated to support the development of AI models for biodiversity identification using images, language and spatiotemporal data
Towards Robust Evaluation of STEM Education: Leveraging MLLMs in Project-Based Learning
Project-Based Learning (PBL) involves a variety of highly correlated multimodal data, making it a vital educational approach within STEM disciplines. With the rapid development of multimodal large language models (MLLMs), researchers have begun exploring their potential to enhance tasks such as information retrieval, knowledge comprehension, and data generation in educational settings. However, existing benchmarks fall short in providing both a free-form output structure and a rigorous human expert validation process, limiting their effectiveness in evaluating real-world educational tasks. Additionally, few methods have developed automated pipelines to assist with the complex responsibilities of teachers leveraging MLLMs, largely due to model hallucination and instability, which lead to unreliable implementation. To address this gap, we introduce PBLBench, a novel benchmark designed to evaluate complex reasoning grounded in domain-specific knowledge and long-context understanding, thereby challenging models with tasks that closely resemble those handled by human experts. To establish reliable ground truth, we adopt the Analytic Hierarchy Process (AHP), utilizing expert-driven pairwise comparisons to derive structured and weighted evaluation criteria. We assess the performance of 15 leading MLLMs/LLMs using PBLBench and demonstrate that even the most advanced models achieve only 59% rank accuracy, underscoring the significant challenges presented by this benchmark. We believe PBLBench will serve as a catalyst for the development of more capable AI agents, ultimately aiming to alleviate teacher workload and enhance educational productivity.
Question-Answering Dense Video Events SIGIR'25
This paper presents question-answering on dense video events, a novel task that answers and grounds dense-event questions in long videos, thus challenging MLLMs to faithfully comprehend and reason about multiple events over extended periods of time. To facilitate the study, we construct DeVE-QA -- a dataset featuring 78K questions about 26K events on 10.6K long videos. Our benchmarking shows that state-of-the-art MLLMs struggle on DeVE-QA. For improvement, we propose DeVi, a novel training-free MLLM approach that highlights a hierarchical captioning module, a temporal event memory module, and a self-consistency checking module to respectively detect, contextualize and memorize, and ground dense-events in long videos for question answering. Extensive experiments show that DeVi is superior at answering dense-event questions and grounding relevant video moments. Compared with existing MLLMs, it achieves a notable increase of 4.8% and 2.1% for G(round)QA accuracy on DeVE-QA and NExT-GQA, respectively. Data and code are available at https://github.com/QHUni/DeVE-QA.
comment: Accepted to SIGIR'25
Computation and Language
Modeling cognitive processes of natural reading with transformer-based Language Models
Recent advances in Natural Language Processing (NLP) have led to the development of highly sophisticated language models for text generation. In parallel, neuroscience has increasingly employed these models to explore cognitive processes involved in language comprehension. Previous research has shown that models such as N-grams and LSTM networks can partially account for predictability effects in explaining eye movement behaviors, specifically Gaze Duration, during reading. In this study, we extend these findings by evaluating transformer-based models (GPT2, LLaMA-7B, and LLaMA2-7B) to further investigate this relationship. Our results indicate that these architectures outperform earlier models in explaining the variance in Gaze Durations recorded from Rioplantense Spanish readers. However, similar to previous studies, these models still fail to account for the entirety of the variance captured by human predictability. These findings suggest that, despite their advancements, state-of-the-art language models continue to predict language in ways that differ from human readers.
SoftCoT++: Test-Time Scaling with Soft Chain-of-Thought Reasoning
Test-Time Scaling (TTS) refers to approaches that improve reasoning performance by allocating extra computation during inference, without altering the model's parameters. While existing TTS methods operate in a discrete token space by generating more intermediate steps, recent studies in Coconut and SoftCoT have demonstrated that thinking in the continuous latent space can further enhance the reasoning performance. Such latent thoughts encode informative thinking without the information loss associated with autoregressive token generation, sparking increased interest in continuous-space reasoning. Unlike discrete decoding, where repeated sampling enables exploring diverse reasoning paths, latent representations in continuous space are fixed for a given input, which limits diverse exploration, as all decoded paths originate from the same latent thought. To overcome this limitation, we introduce SoftCoT++ to extend SoftCoT to the Test-Time Scaling paradigm by enabling diverse exploration of thinking paths. Specifically, we perturb latent thoughts via multiple specialized initial tokens and apply contrastive learning to promote diversity among soft thought representations. Experiments across five reasoning benchmarks and two distinct LLM architectures demonstrate that SoftCoT++ significantly boosts SoftCoT and also outperforms SoftCoT with self-consistency scaling. Moreover, it shows strong compatibility with conventional scaling techniques such as self-consistency. Source code is available at https://github.com/xuyige/SoftCoT.
comment: 14 pages
Improving Assembly Code Performance with Large Language Models via Reinforcement Learning
Large language models (LLMs) have demonstrated strong performance across a wide range of programming tasks, yet their potential for code optimization remains underexplored. This work investigates whether LLMs can optimize the performance of assembly code, where fine-grained control over execution enables improvements that are difficult to express in high-level languages. We present a reinforcement learning framework that trains LLMs using Proximal Policy Optimization (PPO), guided by a reward function that considers both functional correctness, validated through test cases, and execution performance relative to the industry-standard compiler gcc -O3. To support this study, we introduce a benchmark of 8,072 real-world programs. Our model, Qwen2.5-Coder-7B-PPO, achieves 96.0% test pass rates and an average speedup of 1.47x over the gcc -O3 baseline, outperforming all 20 other models evaluated, including Claude-3.7-sonnet. These results indicate that reinforcement learning can unlock the potential of LLMs to serve as effective optimizers for assembly code performance.
HelpSteer3-Preference: Open Human-Annotated Preference Data across Diverse Tasks and Languages
Preference datasets are essential for training general-domain, instruction-following language models with Reinforcement Learning from Human Feedback (RLHF). Each subsequent data release raises expectations for future data collection, meaning there is a constant need to advance the quality and diversity of openly available preference data. To address this need, we introduce HelpSteer3-Preference, a permissively licensed (CC-BY-4.0), high-quality, human-annotated preference dataset comprising of over 40,000 samples. These samples span diverse real-world applications of large language models (LLMs), including tasks relating to STEM, coding and multilingual scenarios. Using HelpSteer3-Preference, we train Reward Models (RMs) that achieve top performance on RM-Bench (82.4%) and JudgeBench (73.7%). This represents a substantial improvement (~10% absolute) over the previously best-reported results from existing RMs. We demonstrate HelpSteer3-Preference can also be applied to train Generative RMs and how policy models can be aligned with RLHF using our RMs. Dataset (CC-BY-4.0): https://huggingface.co/datasets/nvidia/HelpSteer3#preference
comment: 38 pages, 2 figures
No Gold Standard, No Problem: Reference-Free Evaluation of Taxonomies
We introduce two reference-free metrics for quality evaluation of taxonomies. The first metric evaluates robustness by calculating the correlation between semantic and taxonomic similarity, covering a type of error not handled by existing metrics. The second uses Natural Language Inference to assess logical adequacy. Both metrics are tested on five taxonomies and are shown to correlate well with F1 against gold-standard taxonomies.
Disentangling Reasoning and Knowledge in Medical Large Language Models
Medical reasoning in large language models (LLMs) aims to emulate clinicians' diagnostic thinking, but current benchmarks such as MedQA-USMLE, MedMCQA, and PubMedQA often mix reasoning with factual recall. We address this by separating 11 biomedical QA benchmarks into reasoning- and knowledge-focused subsets using a PubMedBERT classifier that reaches 81 percent accuracy, comparable to human performance. Our analysis shows that only 32.8 percent of questions require complex reasoning. We evaluate biomedical models (HuatuoGPT-o1, MedReason, m1) and general-domain models (DeepSeek-R1, o4-mini, Qwen3), finding consistent gaps between knowledge and reasoning performance. For example, m1 scores 60.5 on knowledge but only 47.1 on reasoning. In adversarial tests where models are misled with incorrect initial reasoning, biomedical models degrade sharply, while larger or RL-trained general models show more robustness. To address this, we train BioMed-R1 using fine-tuning and reinforcement learning on reasoning-heavy examples. It achieves the strongest performance among similarly sized models. Further gains may come from incorporating clinical case reports and training with adversarial and backtracking scenarios.
Is Compression Really Linear with Code Intelligence?
Understanding the relationship between data compression and the capabilities of Large Language Models (LLMs) is crucial, especially in specialized domains like code intelligence. Prior work posited a linear relationship between compression and general intelligence. However, it overlooked the multifaceted nature of code that encompasses diverse programming languages and tasks, and struggled with fair evaluation of modern Code LLMs. We address this by evaluating a diverse array of open-source Code LLMs on comprehensive multi-language, multi-task code benchmarks. To address the challenge of efficient and fair evaluation of pre-trained LLMs' code intelligence, we introduce \textit{Format Annealing}, a lightweight, transparent training methodology designed to assess the intrinsic capabilities of these pre-trained models equitably. Compression efficacy, measured as bits-per-character (BPC), is determined using a novel, large-scale, and previously unseen code validation set derived from GitHub. Our empirical results reveal a fundamental logarithmic relationship between measured code intelligence and BPC. This finding refines prior hypotheses of linearity, which we suggest are likely observations of the logarithmic curve's tail under specific, limited conditions. Our work provides a more nuanced understanding of compression's role in developing code intelligence and contributes a robust evaluation framework in the code domain.
comment: work in progress
GODBench: A Benchmark for Multimodal Large Language Models in Video Comment Art ACL 2025
Video Comment Art enhances user engagement by providing creative content that conveys humor, satire, or emotional resonance, requiring a nuanced and comprehensive grasp of cultural and contextual subtleties. Although Multimodal Large Language Models (MLLMs) and Chain-of-Thought (CoT) have demonstrated strong reasoning abilities in STEM tasks (e.g. mathematics and coding), they still struggle to generate creative expressions such as resonant jokes and insightful satire. Moreover, existing benchmarks are constrained by their limited modalities and insufficient categories, hindering the exploration of comprehensive creativity in video-based Comment Art creation. To address these limitations, we introduce GODBench, a novel benchmark that integrates video and text modalities to systematically evaluate MLLMs' abilities to compose Comment Art. Furthermore, inspired by the propagation patterns of waves in physics, we propose Ripple of Thought (RoT), a multi-step reasoning framework designed to enhance the creativity of MLLMs. Extensive experiments reveal that existing MLLMs and CoT methods still face significant challenges in understanding and generating creative video comments. In contrast, RoT provides an effective approach to improve creative composing, highlighting its potential to drive meaningful advancements in MLLM-based creativity. GODBench is publicly available at https://github.com/stan-lei/GODBench-ACL2025.
comment: 69 pages, 66 figures, accepted by ACL 2025
When Thinking Fails: The Pitfalls of Reasoning for Instruction-Following in LLMs
Reasoning-enhanced large language models (RLLMs), whether explicitly trained for reasoning or prompted via chain-of-thought (CoT), have achieved state-of-the-art performance on many complex reasoning tasks. However, we uncover a surprising and previously overlooked phenomenon: explicit CoT reasoning can significantly degrade instruction-following accuracy. Evaluating 15 models on two benchmarks: IFEval (with simple, rule-verifiable constraints) and ComplexBench (with complex, compositional constraints), we consistently observe performance drops when CoT prompting is applied. Through large-scale case studies and an attention-based analysis, we identify common patterns where reasoning either helps (e.g., with formatting or lexical precision) or hurts (e.g., by neglecting simple constraints or introducing unnecessary content). We propose a metric, constraint attention, to quantify model focus during generation and show that CoT reasoning often diverts attention away from instruction-relevant tokens. To mitigate these effects, we introduce and evaluate four strategies: in-context learning, self-reflection, self-selective reasoning, and classifier-selective reasoning. Our results demonstrate that selective reasoning strategies, particularly classifier-selective reasoning, can substantially recover lost performance. To our knowledge, this is the first work to systematically expose reasoning-induced failures in instruction-following and offer practical mitigation strategies.
Towards Cultural Bridge by Bahnaric-Vietnamese Translation Using Transfer Learning of Sequence-To-Sequence Pre-training Language Model
This work explores the journey towards achieving Bahnaric-Vietnamese translation for the sake of culturally bridging the two ethnic groups in Vietnam. However, translating from Bahnaric to Vietnamese also encounters some difficulties. The most prominent challenge is the lack of available original Bahnaric resources source language, including vocabulary, grammar, dialogue patterns and bilingual corpus, which hinders the data collection process for training. To address this, we leverage a transfer learning approach using sequence-to-sequence pre-training language model. First of all, we leverage a pre-trained Vietnamese language model to capture the characteristics of this language. Especially, to further serve the purpose of machine translation, we aim for a sequence-to-sequence model, not encoder-only like BERT or decoder-only like GPT. Taking advantage of significant similarity between the two languages, we continue training the model with the currently limited bilingual resources of Vietnamese-Bahnaric text to perform the transfer learning from language model to machine translation. Thus, this approach can help to handle the problem of imbalanced resources between two languages, while also optimizing the training and computational processes. Additionally, we also enhanced the datasets using data augmentation to generate additional resources and defined some heuristic methods to help the translation more precise. Our approach has been validated to be highly effective for the Bahnaric-Vietnamese translation model, contributing to the expansion and preservation of languages, and facilitating better mutual understanding between the two ethnic people.
CARES: Comprehensive Evaluation of Safety and Adversarial Robustness in Medical LLMs
Large language models (LLMs) are increasingly deployed in medical contexts, raising critical concerns about safety, alignment, and susceptibility to adversarial manipulation. While prior benchmarks assess model refusal capabilities for harmful prompts, they often lack clinical specificity, graded harmfulness levels, and coverage of jailbreak-style attacks. We introduce CARES (Clinical Adversarial Robustness and Evaluation of Safety), a benchmark for evaluating LLM safety in healthcare. CARES includes over 18,000 prompts spanning eight medical safety principles, four harm levels, and four prompting styles: direct, indirect, obfuscated, and role-play, to simulate both malicious and benign use cases. We propose a three-way response evaluation protocol (Accept, Caution, Refuse) and a fine-grained Safety Score metric to assess model behavior. Our analysis reveals that many state-of-the-art LLMs remain vulnerable to jailbreaks that subtly rephrase harmful prompts, while also over-refusing safe but atypically phrased queries. Finally, we propose a mitigation strategy using a lightweight classifier to detect jailbreak attempts and steer models toward safer behavior via reminder-based conditioning. CARES provides a rigorous framework for testing and improving medical LLM safety under adversarial and ambiguous conditions.
Visual Planning: Let's Think Only with Images
Recent advancements in Large Language Models (LLMs) and their multimodal extensions (MLLMs) have substantially enhanced machine reasoning across diverse tasks. However, these models predominantly rely on pure text as the medium for both expressing and structuring reasoning, even when visual information is present. In this work, we argue that language may not always be the most natural or effective modality for reasoning, particularly in tasks involving spatial and geometrical information. Motivated by this, we propose a new paradigm, Visual Planning, which enables planning through purely visual representations, independent of text. In this paradigm, planning is executed via sequences of images that encode step-by-step inference in the visual domain, akin to how humans sketch or visualize future actions. We introduce a novel reinforcement learning framework, Visual Planning via Reinforcement Learning (VPRL), empowered by GRPO for post-training large vision models, leading to substantial improvements in planning in a selection of representative visual navigation tasks, FrozenLake, Maze, and MiniBehavior. Our visual planning paradigm outperforms all other planning variants that conduct reasoning in the text-only space. Our results establish Visual Planning as a viable and promising alternative to language-based reasoning, opening new avenues for tasks that benefit from intuitive, image-based inference.
comment: 10 pages, 6 figures, 1 table (26 pages, 12 figures, 8 tables including references and appendices)
Large Language Model Use Impact Locus of Control
As AI tools increasingly shape how we write, they may also quietly reshape how we perceive ourselves. This paper explores the psychological impact of co-writing with AI on people's locus of control. Through an empirical study with 462 participants, we found that employment status plays a critical role in shaping users' reliance on AI and their locus of control. Current results demonstrated that employed participants displayed higher reliance on AI and a shift toward internal control, while unemployed users tended to experience a reduction in personal agency. Through quantitative results and qualitative observations, this study opens a broader conversation about AI's role in shaping personal agency and identity.
EmotionHallucer: Evaluating Emotion Hallucinations in Multimodal Large Language Models
Emotion understanding is a critical yet challenging task. Recent advances in Multimodal Large Language Models (MLLMs) have significantly enhanced their capabilities in this area. However, MLLMs often suffer from hallucinations, generating irrelevant or nonsensical content. To the best of our knowledge, despite the importance of this issue, there has been no dedicated effort to evaluate emotion-related hallucinations in MLLMs. In this work, we introduce EmotionHallucer, the first benchmark for detecting and analyzing emotion hallucinations in MLLMs. Unlike humans, whose emotion understanding stems from the interplay of biology and social learning, MLLMs rely solely on data-driven learning and lack innate emotional instincts. Fortunately, emotion psychology provides a solid foundation of knowledge about human emotions. Building on this, we assess emotion hallucinations from two dimensions: emotion psychology knowledge and real-world multimodal perception. To support robust evaluation, we utilize an adversarial binary question-answer (QA) framework, which employs carefully crafted basic and hallucinated pairs to assess the emotion hallucination tendencies of MLLMs. By evaluating 38 LLMs and MLLMs on EmotionHallucer, we reveal that: i) most current models exhibit substantial issues with emotion hallucinations; ii) closed-source models outperform open-source ones in detecting emotion hallucinations, and reasoning capability provides additional advantages; iii) existing models perform better in emotion psychology knowledge than in multimodal emotion perception. As a byproduct, these findings inspire us to propose the PEP-MEK framework, which yields an average improvement of 9.90% in emotion hallucination detection across selected models. Resources will be available at https://github.com/xxtars/EmotionHallucer.
A computational system to handle the orthographic layer of tajwid in contemporary Quranic Orthography
Contemporary Quranic Orthography (CQO) relies on a precise system of phonetic notation that can be traced back to the early stages of Islam, when the Quran was mainly oral in nature and the first written renderings of it served as memory aids for this oral tradition. The early systems of diacritical marks created on top of the Quranic Consonantal Text (QCT) motivated the creation and further development of a fine-grained system of phonetic notation that represented tajwid-the rules of recitation. We explored the systematicity of the rules of tajwid, as they are encountered in the Cairo Quran, using a fully and accurately encoded digital edition of the Quranic text. For this purpose, we developed a python module that can remove or add the orthographic layer of tajwid from a Quranic text in CQO. The interesting characteristic of these two sets of rules is that they address the complete Quranic text of the Cairo Quran, so they can be used as precise witnesses to study its phonetic and prosodic processes. From a computational point of view, the text of the Cairo Quran can be used as a linchpin to align and compare Quranic manuscripts, due to its richness and completeness. This will let us create a very powerful framework to work with the Arabic script, not just within an isolated text, but automatically exploring a specific textual phenomenon in other connected manuscripts. Having all the texts mapped among each other can serve as a powerful tool to study the nature of the notation systems of diacritics added to the consonantal skeleton.
GuideBench: Benchmarking Domain-Oriented Guideline Following for LLM Agents ACL 2025
Large language models (LLMs) have been widely deployed as autonomous agents capable of following user instructions and making decisions in real-world applications. Previous studies have made notable progress in benchmarking the instruction following capabilities of LLMs in general domains, with a primary focus on their inherent commonsense knowledge. Recently, LLMs have been increasingly deployed as domain-oriented agents, which rely on domain-oriented guidelines that may conflict with their commonsense knowledge. These guidelines exhibit two key characteristics: they consist of a wide range of domain-oriented rules and are subject to frequent updates. Despite these challenges, the absence of comprehensive benchmarks for evaluating the domain-oriented guideline following capabilities of LLMs presents a significant obstacle to their effective assessment and further development. In this paper, we introduce GuideBench, a comprehensive benchmark designed to evaluate guideline following performance of LLMs. GuideBench evaluates LLMs on three critical aspects: (i) adherence to diverse rules, (ii) robustness to rule updates, and (iii) alignment with human preferences. Experimental results on a range of LLMs indicate substantial opportunities for improving their ability to follow domain-oriented guidelines.
comment: ACL 2025 Main Conference
Phare: A Safety Probe for Large Language Models
Ensuring the safety of large language models (LLMs) is critical for responsible deployment, yet existing evaluations often prioritize performance over identifying failure modes. We introduce Phare, a multilingual diagnostic framework to probe and evaluate LLM behavior across three critical dimensions: hallucination and reliability, social biases, and harmful content generation. Our evaluation of 17 state-of-the-art LLMs reveals patterns of systematic vulnerabilities across all safety dimensions, including sycophancy, prompt sensitivity, and stereotype reproduction. By highlighting these specific failure modes rather than simply ranking models, Phare provides researchers and practitioners with actionable insights to build more robust, aligned, and trustworthy language systems.
LegoSLM: Connecting LLM with Speech Encoder using CTC Posteriors
Recently, large-scale pre-trained speech encoders and Large Language Models (LLMs) have been released, which show state-of-the-art performance on a range of spoken language processing tasks including Automatic Speech Recognition (ASR). To effectively combine both models for better performance, continuous speech prompts, and ASR error correction have been adopted. However, these methods are prone to suboptimal performance or are inflexible. In this paper, we propose a new paradigm, LegoSLM, that bridges speech encoders and LLMs using the ASR posterior matrices. The speech encoder is trained to generate Connectionist Temporal Classification (CTC) posteriors over the LLM vocabulary, which are used to reconstruct pseudo-audio embeddings by computing a weighted sum of the LLM input embeddings. These embeddings are concatenated with text embeddings in the LLM input space. Using the well-performing USM and Gemma models as an example, we demonstrate that our proposed LegoSLM method yields good performance on both ASR and speech translation tasks. By connecting USM with Gemma models, we can get an average of 49% WERR over the USM-CTC baseline on 8 MLS testsets. The trained model also exhibits modularity in a range of settings -- after fine-tuning the Gemma model weights, the speech encoder can be switched and combined with the LLM in a zero-shot fashion. Additionally, we propose to control the decode-time influence of the USM and LLM using a softmax temperature, which shows effectiveness in domain adaptation.
Benchmarking Critical Questions Generation: A Challenging Reasoning Task for Large Language Models
The task of Critical Questions Generation (CQs-Gen) aims to foster critical thinking by enabling systems to generate questions that expose assumptions and challenge the reasoning in arguments. Despite growing interest in this area, progress has been hindered by the lack of suitable datasets and automatic evaluation standards. This work presents a comprehensive approach to support the development and benchmarking of systems for this task. We construct the first large-scale manually-annotated dataset. We also investigate automatic evaluation methods and identify a reference-based technique using large language models (LLMs) as the strategy that best correlates with human judgments. Our zero-shot evaluation of 11 LLMs establishes a strong baseline while showcasing the difficulty of the task. Data, code, and a public leaderboard are provided to encourage further research not only in terms of model performance, but also to explore the practical benefits of CQs-Gen for both automated reasoning and human critical thinking.
XtraGPT: LLMs for Human-AI Collaboration on Controllable Academic Paper Revision
Despite the growing adoption of large language models (LLMs) in academic workflows, their capabilities remain limited when it comes to supporting high-quality scientific writing. Most existing systems are designed for general-purpose scientific text generation and fail to meet the sophisticated demands of research communication beyond surface-level polishing, such as conceptual coherence across sections. Furthermore, academic writing is inherently iterative and revision-driven, a process not well supported by direct prompting-based paradigms. To address these scenarios, we propose a human-AI collaboration framework for academic paper revision. We first introduce a comprehensive dataset of 7,040 research papers from top-tier venues annotated with over 140,000 instruction-response pairs that reflect realistic, section-level scientific revisions. Building on the dataset, we develop XtraGPT, the first suite of open-source LLMs, designed to provide context-aware, instruction-guided writing assistance, ranging from 1.5B to 14B parameters. Extensive experiments validate that XtraGPT significantly outperforms same-scale baselines and approaches the quality of proprietary systems. Both automated preference assessments and human evaluations confirm the effectiveness of our models in improving scientific drafts.
comment: preprint
CROC: Evaluating and Training T2I Metrics with Pseudo- and Human-Labeled Contrastive Robustness Checks
The assessment of evaluation metrics (meta-evaluation) is crucial for determining the suitability of existing metrics in text-to-image (T2I) generation tasks. Human-based meta-evaluation is costly and time-intensive, and automated alternatives are scarce. We address this gap and propose CROC: a scalable framework for automated Contrastive Robustness Checks that systematically probes and quantifies metric robustness by synthesizing contrastive test cases across a comprehensive taxonomy of image properties. With CROC, we generate a pseudo-labeled dataset (CROC$^{syn}$) of over one million contrastive prompt-image pairs to enable a fine-grained comparison of evaluation metrics. We also use the dataset to train CROCScore, a new metric that achieves state-of-the-art performance among open-source methods, demonstrating an additional key application of our framework. To complement this dataset, we introduce a human-supervised benchmark (CROC$^{hum}$) targeting especially challenging categories. Our results highlight robustness issues in existing metrics: for example, many fail on prompts involving negation, and all tested open-source metrics fail on at least 25% of cases involving correct identification of body parts.
comment: preprint
Probing Subphonemes in Morphology Models
Transformers have achieved state-of-the-art performance in morphological inflection tasks, yet their ability to generalize across languages and morphological rules remains limited. One possible explanation for this behavior can be the degree to which these models are able to capture implicit phenomena at the phonological and subphonemic levels. We introduce a language-agnostic probing method to investigate phonological feature encoding in transformers trained directly on phonemes, and perform it across seven morphologically diverse languages. We show that phonological features which are local, such as final-obstruent devoicing in Turkish, are captured well in phoneme embeddings, whereas long-distance dependencies like vowel harmony are better represented in the transformer's encoder. Finally, we discuss how these findings inform empirical strategies for training morphological models, particularly regarding the role of subphonemic feature acquisition.
Temporal fine-tuning for early risk detection
Early Risk Detection (ERD) on the Web aims to identify promptly users facing social and health issues. Users are analyzed post-by-post, and it is necessary to guarantee correct and quick answers, which is particularly challenging in critical scenarios. ERD involves optimizing classification precision and minimizing detection delay. Standard classification metrics may not suffice, resorting to specific metrics such as ERDE(theta) that explicitly consider precision and delay. The current research focuses on applying a multi-objective approach, prioritizing classification performance and establishing a separate criterion for decision time. In this work, we propose a completely different strategy, temporal fine-tuning, which allows tuning transformer-based models by explicitly incorporating time within the learning process. Our method allows us to analyze complete user post histories, tune models considering different contexts, and evaluate training performance using temporal metrics. We evaluated our proposal in the depression and eating disorders tasks for the Spanish language, achieving competitive results compared to the best models of MentalRiskES 2023. We found that temporal fine-tuning optimized decisions considering context and time progress. In this way, by properly taking advantage of the power of transformers, it is possible to address ERD by combining precision and speed as a single objective.
comment: In: Proceedings of the 53rd JAIIO / 50th CLEI - ASAID, 2024, p. 137. ISSN: 2451-7496
Search and Refine During Think: Autonomous Retrieval-Augmented Reasoning of LLMs
Large language models have demonstrated impressive reasoning capabilities but are inherently limited by their knowledge reservoir. Retrieval-augmented reasoning mitigates this limitation by allowing LLMs to query external resources, but existing methods often retrieve irrelevant or noisy information, hindering accurate reasoning. In this paper, we propose AutoRefine, a reinforcement learning post-training framework that adopts a new ``search-and-refine-during-think'' paradigm. AutoRefine introduces explicit knowledge refinement steps between successive search calls, enabling the model to iteratively filter, distill, and organize evidence before generating an answer. Furthermore, we incorporate tailored retrieval-specific rewards alongside answer correctness rewards using group relative policy optimization. Experiments on single-hop and multi-hop QA benchmarks demonstrate that AutoRefine significantly outperforms existing approaches, particularly in complex, multi-hop reasoning scenarios. Detailed analysis shows that AutoRefine issues frequent, higher-quality searches and synthesizes evidence effectively.
SelfBudgeter: Adaptive Token Allocation for Efficient LLM Reasoning
Recently, large reasoning models demonstrate exceptional performance on various tasks. However, reasoning models inefficiently over-process both trivial and complex queries, leading to resource waste and prolonged user latency. To address this challenge, we propose SelfBudgeter - a self-adaptive controllable reasoning strategy for efficient reasoning. Our approach adopts a dual-phase training paradigm: first, the model learns to pre-estimate the reasoning cost based on the difficulty of the query. Then, we introduce budget-guided GPRO for reinforcement learning, which effectively maintains accuracy while reducing output length. SelfBudgeter allows users to anticipate generation time and make informed decisions about continuing or interrupting the process. Furthermore, our method enables direct manipulation of reasoning length via pre-filling token budget. Experimental results demonstrate that SelfBudgeter can rationally allocate budgets according to problem complexity, achieving up to 74.47% response length compression on the MATH benchmark while maintaining nearly undiminished accuracy.
Semantic Caching of Contextual Summaries for Efficient Question-Answering with Language Models
Large Language Models (LLMs) are increasingly deployed across edge and cloud platforms for real-time question-answering and retrieval-augmented generation. However, processing lengthy contexts in distributed systems incurs high computational overhead, memory usage, and network bandwidth. This paper introduces a novel semantic caching approach for storing and reusing intermediate contextual summaries, enabling efficient information reuse across similar queries in LLM-based QA workflows. Our method reduces redundant computations by up to 50-60% while maintaining answer accuracy comparable to full document processing, as demonstrated on NaturalQuestions, TriviaQA, and a synthetic ArXiv dataset. This approach balances computational cost and response quality, critical for real-time AI assistants.
comment: Preprint. Paper accepted at ICCCN 2025, the final version will appear in the proceedings
HAPO: Training Language Models to Reason Concisely via History-Aware Policy Optimization
While scaling the length of responses at test-time has been shown to markedly improve the reasoning abilities and performance of large language models (LLMs), it often results in verbose outputs and increases inference cost. Prior approaches for efficient test-time scaling, typically using universal budget constraints or query-level length optimization, do not leverage historical information from previous encounters with the same problem during training. We hypothesize that this limits their ability to progressively make solutions more concise over time. To address this, we present History-Aware Policy Optimization (HAPO), which keeps track of a history state (e.g., the minimum length over previously generated correct responses) for each problem. HAPO employs a novel length reward function based on this history state to incentivize the discovery of correct solutions that are more concise than those previously found. Crucially, this reward structure avoids overly penalizing shorter incorrect responses with the goal of facilitating exploration towards more efficient solutions. By combining this length reward with a correctness reward, HAPO jointly optimizes for correctness and efficiency. We use HAPO to train DeepSeek-R1-Distill-Qwen-1.5B, DeepScaleR-1.5B-Preview, and Qwen-2.5-1.5B-Instruct, and evaluate HAPO on several math benchmarks that span various difficulty levels. Experiment results demonstrate that HAPO effectively induces LLMs' concise reasoning abilities, producing length reductions of 33-59% with accuracy drops of only 2-5%.
Audio Turing Test: Benchmarking the Human-likeness of Large Language Model-based Text-to-Speech Systems in Chinese
Recent advances in large language models (LLMs) have significantly improved text-to-speech (TTS) systems, enhancing control over speech style, naturalness, and emotional expression, which brings TTS Systems closer to human-level performance. Although the Mean Opinion Score (MOS) remains the standard for TTS System evaluation, it suffers from subjectivity, environmental inconsistencies, and limited interpretability. Existing evaluation datasets also lack a multi-dimensional design, often neglecting factors such as speaking styles, context diversity, and trap utterances, which is particularly evident in Chinese TTS evaluation. To address these challenges, we introduce the Audio Turing Test (ATT), a multi-dimensional Chinese corpus dataset ATT-Corpus paired with a simple, Turing-Test-inspired evaluation protocol. Instead of relying on complex MOS scales or direct model comparisons, ATT asks evaluators to judge whether a voice sounds human. This simplification reduces rating bias and improves evaluation robustness. To further support rapid model development, we also finetune Qwen2-Audio-Instruct with human judgment data as Auto-ATT for automatic evaluation. Experimental results show that ATT effectively differentiates models across specific capability dimensions using its multi-dimensional design. Auto-ATT also demonstrates strong alignment with human evaluations, confirming its value as a fast and reliable assessment tool. The white-box ATT-Corpus and Auto-ATT can be found in ATT Hugging Face Collection (https://huggingface.co/collections/meituan/audio-turing-test-682446320368164faeaf38a4).
comment: Under Review
NoPE: The Counting Power of Transformers with No Positional Encodings
Positional Encodings (PEs) seem to be indispensable for ensuring expressiveness of transformers; without them attention transformers reduce to a bag-of-word model. NoPE-transformers (i.e. with No PEs) with unique hard attention mechanisms were very recently shown to only be able to express regular languages, i.e., with limited counting ability. This paper shows that, with average hard attention mechanisms, NoPE-transformers are still surprisingly expressive: they can express counting languages corresponding to nonnegative integer solutions to multivariate polynomial equations (i.e. Diophantine equations), reasoning about which is well-known to be undecidable. In fact, we provide a precise characterization of languages expressible by Average Hard Attention NoPE-Transformers (NoPE-AHATs): they correspond precisely to what we call \emph{semi-algebraic sets}, i.e., finite unions of sets of nonnegative integer solutions to systems of multivariate polynomial inequations. We obtain several interesting consequences of our characterization. Firstly, NoPE-transformers can express counting properties that are far more complex than established models like simplified counter machines and Petri nets, but cannot express a very simple counting property of PARITY. Secondly, the problem of analyzing NoPE-transformers is undecidable, e.g., whether a given NoPE transformer classifies all input strings in one class. To complement our results, we exhibit a counting language that is not expressible by average hard attention transformers even with arbitrary PEs but is expressible in the circuit complexity class TC$^0$, answering an open problem.
On Next-Token Prediction in LLMs: How End Goals Determine the Consistency of Decoding Algorithms
Probabilistic next-token prediction trained using cross-entropy loss is the basis of most large language models. Given a sequence of previous values, next-token prediction assigns a probability to each possible next value in the vocabulary. There are many ways to use next-token prediction to output token sequences. This paper examines a few of these algorithms (greedy, lookahead, random sampling, and temperature-scaled random sampling) and studies their consistency with respect to various goals encoded as loss functions. Although consistency of surrogate losses with respect to a target loss function is a well researched topic, we are the first to study it in the context of LLMs (to the best of our knowledge). We find that, so long as next-token prediction converges to its true probability distribution, random sampling is consistent with outputting sequences that mimic sampling from the true probability distribution. For the other goals, such as minimizing the 0-1 loss on the entire sequence, we show no polynomial-time algorithm is optimal for all probability distributions and all decoding algorithms studied are only optimal for a subset of probability distributions. When analyzing these results, we see that there is a dichotomy created between the goals of information retrieval and creative generation for the decoding algorithms. This shows that choosing the correct decoding algorithm based on the desired goal is extremely important and many of the ones used are lacking theoretical grounding in numerous scenarios.
comment: 23 pages
CompAlign: Improving Compositional Text-to-Image Generation with a Complex Benchmark and Fine-Grained Feedback
State-of-the-art T2I models are capable of generating high-resolution images given textual prompts. However, they still struggle with accurately depicting compositional scenes that specify multiple objects, attributes, and spatial relations. We present CompAlign, a challenging benchmark with an emphasis on assessing the depiction of 3D-spatial relationships, for evaluating and improving models on compositional image generation. CompAlign consists of 900 complex multi-subject image generation prompts that combine numerical and 3D-spatial relationships with varied attribute bindings. Our benchmark is remarkably challenging, incorporating generation tasks with 3+ generation subjects with complex 3D-spatial relationships. Additionally, we propose CompQuest, an interpretable and accurate evaluation framework that decomposes complex prompts into atomic sub-questions, then utilizes a MLLM to provide fine-grained binary feedback on the correctness of each aspect of generation elements in model-generated images. This enables precise quantification of alignment between generated images and compositional prompts. Furthermore, we propose an alignment framework that uses CompQuest's feedback as preference signals to improve diffusion models' compositional image generation abilities. Using adjustable per-image preferences, our method is easily scalable and flexible for different tasks. Evaluation of 9 T2I models reveals that: (1) models remarkable struggle more with compositional tasks with more complex 3D-spatial configurations, and (2) a noticeable performance gap exists between open-source accessible models and closed-source commercial models. Further empirical study on using CompAlign for model alignment yield promising results: post-alignment diffusion models achieve remarkable improvements in compositional accuracy, especially on complex generation tasks, outperforming previous approaches.
Low-Resource Language Processing: An OCR-Driven Summarization and Translation Pipeline
This paper presents an end-to-end suite for multilingual information extraction and processing from image-based documents. The system uses Optical Character Recognition (Tesseract) to extract text in languages such as English, Hindi, and Tamil, and then a pipeline involving large language model APIs (Gemini) for cross-lingual translation, abstractive summarization, and re-translation into a target language. Additional modules add sentiment analysis (TensorFlow), topic classification (Transformers), and date extraction (Regex) for better document comprehension. Made available in an accessible Gradio interface, the current research shows a real-world application of libraries, models, and APIs to close the language gap and enhance access to information in image media across different linguistic environments
comment: 8 pages, 7 figures, direct arXiv submission
SoLoPO: Unlocking Long-Context Capabilities in LLMs via Short-to-Long Preference Optimization
Despite advances in pretraining with extended context lengths, large language models (LLMs) still face challenges in effectively utilizing real-world long-context information, primarily due to insufficient long-context alignment caused by data quality issues, training inefficiencies, and the lack of well-designed optimization objectives. To address these limitations, we propose a framework named $\textbf{S}$h$\textbf{o}$rt-to-$\textbf{Lo}$ng $\textbf{P}$reference $\textbf{O}$ptimization ($\textbf{SoLoPO}$), decoupling long-context preference optimization (PO) into two components: short-context PO and short-to-long reward alignment (SoLo-RA), supported by both theoretical and empirical evidence. Specifically, short-context PO leverages preference pairs sampled from short contexts to enhance the model's contextual knowledge utilization ability. Meanwhile, SoLo-RA explicitly encourages reward score consistency utilization for the responses when conditioned on both short and long contexts that contain identical task-relevant information. This facilitates transferring the model's ability to handle short contexts into long-context scenarios. SoLoPO is compatible with mainstream preference optimization algorithms, while substantially improving the efficiency of data construction and training processes. Experimental results show that SoLoPO enhances all these algorithms with respect to stronger length and domain generalization abilities across various long-context benchmarks, while achieving notable improvements in both computational and memory efficiency.
Maximizing Asynchronicity in Event-based Neural Networks
Event cameras deliver visual data with high temporal resolution, low latency, and minimal redundancy, yet their asynchronous, sparse sequential nature challenges standard tensor-based machine learning (ML). While the recent asynchronous-to-synchronous (A2S) paradigm aims to bridge this gap by asynchronously encoding events into learned representations for ML pipelines, existing A2S approaches often sacrifice representation expressivity and generalizability compared to dense, synchronous methods. This paper introduces EVA (EVent Asynchronous representation learning), a novel A2S framework to generate highly expressive and generalizable event-by-event representations. Inspired by the analogy between events and language, EVA uniquely adapts advances from language modeling in linear attention and self-supervised learning for its construction. In demonstration, EVA outperforms prior A2S methods on recognition tasks (DVS128-Gesture and N-Cars), and represents the first A2S framework to successfully master demanding detection tasks, achieving a remarkable 47.7 mAP on the Gen1 dataset. These results underscore EVA's transformative potential for advancing real-time event-based vision applications.
comment: 18 pages, 5 figures, 9 tables
MPMA: Preference Manipulation Attack Against Model Context Protocol
Model Context Protocol (MCP) standardizes interface mapping for large language models (LLMs) to access external data and tools, which revolutionizes the paradigm of tool selection and facilitates the rapid expansion of the LLM agent tool ecosystem. However, as the MCP is increasingly adopted, third-party customized versions of the MCP server expose potential security vulnerabilities. In this paper, we first introduce a novel security threat, which we term the MCP Preference Manipulation Attack (MPMA). An attacker deploys a customized MCP server to manipulate LLMs, causing them to prioritize it over other competing MCP servers. This can result in economic benefits for attackers, such as revenue from paid MCP services or advertising income generated from free servers. To achieve MPMA, we first design a Direct Preference Manipulation Attack ($\mathtt{DPMA}$) that achieves significant effectiveness by inserting the manipulative word and phrases into the tool name and description. However, such a direct modification is obvious to users and lacks stealthiness. To address these limitations, we further propose Genetic-based Advertising Preference Manipulation Attack ($\mathtt{GAPMA}$). $\mathtt{GAPMA}$ employs four commonly used strategies to initialize descriptions and integrates a Genetic Algorithm (GA) to enhance stealthiness. The experiment results demonstrate that $\mathtt{GAPMA}$ balances high effectiveness and stealthiness. Our study reveals a critical vulnerability of the MCP in open ecosystems, highlighting an urgent need for robust defense mechanisms to ensure the fairness of the MCP ecosystem.
Scaling Reasoning can Improve Factuality in Large Language Models
Recent studies on large language model (LLM) reasoning capabilities have demonstrated promising improvements in model performance by leveraging a lengthy thinking process and additional computational resources during inference, primarily in tasks involving mathematical reasoning (Muennighoff et al., 2025). However, it remains uncertain if longer reasoning chains inherently enhance factual accuracy, particularly beyond mathematical contexts. In this work, we thoroughly examine LLM reasoning within complex open-domain question-answering (QA) scenarios. We initially distill reasoning traces from advanced, large-scale reasoning models (QwQ-32B and DeepSeek-R1-671B), then fine-tune a variety of models ranging from smaller, instruction-tuned variants to larger architectures based on Qwen2.5. To enrich reasoning traces, we introduce factual information from knowledge graphs in the form of paths into our reasoning traces. Our experimental setup includes four baseline approaches and six different instruction-tuned models evaluated across a benchmark of six datasets, encompassing over 22.6K questions. Overall, we carry out 168 experimental runs and analyze approximately 1.7 million reasoning traces. Our findings indicate that, within a single run, smaller reasoning models achieve noticeable improvements in factual accuracy compared to their original instruction-tuned counterparts. Moreover, our analysis demonstrates that adding test-time compute and token budgets factual accuracy consistently improves by 2-8%, further confirming the effectiveness of test-time scaling for enhancing performance and consequently improving reasoning accuracy in open-domain QA tasks. We release all the experimental artifacts for further research.
Towards Better Evaluation for Generated Patent Claims ACL 2025
Patent claims define the scope of protection and establish the legal boundaries of an invention. Drafting these claims is a complex and time-consuming process that usually requires the expertise of skilled patent attorneys, which can form a large access barrier for many small enterprises. To solve these challenges, researchers have investigated the use of large language models (LLMs) for automating patent claim generation. However, existing studies highlight inconsistencies between automated evaluation metrics and human expert assessments. To bridge this gap, we introduce Patent-CE, the first comprehensive benchmark for evaluating patent claims. Patent-CE includes comparative claim evaluations annotated by patent experts, focusing on five key criteria: feature completeness, conceptual clarity, terminology consistency, logical linkage, and overall quality. Additionally, we propose PatClaimEval, a novel multi-dimensional evaluation method specifically designed for patent claims. Our experiments demonstrate that PatClaimEval achieves the highest correlation with human expert evaluations across all assessment criteria among all tested metrics. This research provides the groundwork for more accurate evaluations of automated patent claim generation systems.
comment: Accepted to ACL 2025. 14 pages, 8 tables
BLEUBERI: BLEU is a surprisingly effective reward for instruction following
Reward models are central to aligning LLMs with human preferences, but they are costly to train, requiring large-scale human-labeled preference data and powerful pretrained LLM backbones. Meanwhile, the increasing availability of high-quality synthetic instruction-following datasets raises the question: can simpler, reference-based metrics serve as viable alternatives to reward models during RL-based alignment? In this paper, we show first that BLEU, a basic string-matching metric, surprisingly matches strong reward models in agreement with human preferences on general instruction-following datasets. Based on this insight, we develop BLEUBERI, a method that first identifies challenging instructions and then applies Group Relative Policy Optimization (GRPO) using BLEU directly as the reward function. We demonstrate that BLEUBERI-trained models are competitive with models trained via reward model-guided RL across four challenging instruction-following benchmarks and three different base language models. A human evaluation further supports that the quality of BLEUBERI model outputs is on par with those from reward model-aligned models. Moreover, BLEUBERI models generate outputs that are more factually grounded than competing methods. Overall, we show that given access to high-quality reference outputs (easily obtained via existing instruction-following datasets or synthetic data generation), string matching-based metrics are cheap yet effective proxies for reward models during alignment. We release our code and data at https://github.com/lilakk/BLEUBERI.
comment: 28 pages, 11 figures, 15 tables
$\mathcal{A}LLM4ADD$: Unlocking the Capabilities of Audio Large Language Models for Audio Deepfake Detection
Audio deepfake detection (ADD) has grown increasingly important due to the rise of high-fidelity audio generative models and their potential for misuse. Given that audio large language models (ALLMs) have made significant progress in various audio processing tasks, a heuristic question arises: Can ALLMs be leveraged to solve ADD?. In this paper, we first conduct a comprehensive zero-shot evaluation of ALLMs on ADD, revealing their ineffectiveness in detecting fake audio. To enhance their performance, we propose $\mathcal{A}LLM4ADD$, an ALLM-driven framework for ADD. Specifically, we reformulate ADD task as an audio question answering problem, prompting the model with the question: "Is this audio fake or real?". We then perform supervised fine-tuning to enable the ALLM to assess the authenticity of query audio. Extensive experiments are conducted to demonstrate that our ALLM-based method can achieve superior performance in fake audio detection, particularly in data-scarce scenarios. As a pioneering study, we anticipate that this work will inspire the research community to leverage ALLMs to develop more effective ADD systems.
CAMEO: Collection of Multilingual Emotional Speech Corpora NeurIPS
This paper presents CAMEO -- a curated collection of multilingual emotional speech datasets designed to facilitate research in emotion recognition and other speech-related tasks. The main objectives were to ensure easy access to the data, to allow reproducibility of the results, and to provide a standardized benchmark for evaluating speech emotion recognition (SER) systems across different emotional states and languages. The paper describes the dataset selection criteria, the curation and normalization process, and provides performance results for several models. The collection, along with metadata, and a leaderboard, is publicly available via the Hugging Face platform.
comment: Under review at NeurIPS
OntoURL: A Benchmark for Evaluating Large Language Models on Symbolic Ontological Understanding, Reasoning and Learning
Large language models (LLMs) have demonstrated remarkable capabilities across a range of natural language processing tasks, yet their ability to process structured symbolic knowledge remains underexplored. To address this gap, we propose a taxonomy of LLMs' ontological capabilities and introduce OntoURL, the first comprehensive benchmark designed to systematically evaluate LLMs' proficiency in handling ontologies -- formal, symbolic representations of domain knowledge through concepts, relationships, and instances. Based on the proposed taxonomy, OntoURL systematically assesses three dimensions: understanding, reasoning, and learning through 15 distinct tasks comprising 58,981 questions derived from 40 ontologies across 8 domains. Experiments with 20 open-source LLMs reveal significant performance differences across models, tasks, and domains, with current LLMs showing proficiency in understanding ontological knowledge but substantial weaknesses in reasoning and learning tasks. These findings highlight fundamental limitations in LLMs' capability to process symbolic knowledge and establish OntoURL as a critical benchmark for advancing the integration of LLMs with formal knowledge representations.
comment: Paper submitted to NeruoIPS 2025 dataset and benchmark track
StRuCom: A Novel Dataset of Structured Code Comments in Russian
Structured code comments in docstring format are essential for code comprehension and maintenance, but existing machine learning models for their generation perform poorly for Russian compared to English. To bridge this gap, we present StRuCom - the first large-scale dataset (153K examples) specifically designed for Russian code documentation. Unlike machine-translated English datasets that distort terminology (e.g., technical loanwords vs. literal translations) and docstring structures, StRuCom combines human-written comments from Russian GitHub repositories with synthetically generated ones, ensuring compliance with Python, Java, JavaScript, C#, and Go standards through automated validation. Fine-tuning Qwen2.5-Coder models (0.5B-7B) on StRuCom shows statistically significant improvements of chrf++ and BERTScore over baseline models.
Review-Instruct: A Review-Driven Multi-Turn Conversations Generation Method for Large Language Models ACL2025
The effectiveness of large language models (LLMs) in conversational AI is hindered by their reliance on single-turn supervised fine-tuning (SFT) data, which limits contextual coherence in multi-turn dialogues. Existing methods for generating multi-turn dialogue data struggle to ensure both diversity and quality in instructions. To address this, we propose Review-Instruct, a novel framework that synthesizes multi-turn conversations through an iterative "Ask-Respond-Review" process involving three agent roles: a Candidate, multiple Reviewers, and a Chairman. The framework iteratively refines instructions by incorporating Reviewer feedback, enhancing dialogue diversity and difficulty. We construct a multi-turn dataset using the Alpaca dataset and fine-tune the LLaMA2-13B model. Evaluations on MT-Bench, MMLU-Pro, and Auto-Arena demonstrate significant improvements, achieving absolute gains of 2.9\% on MMLU-Pro and 2\% on MT-Bench compared to prior state-of-the-art models based on LLaMA2-13B. Ablation studies confirm the critical role of the Review stage and the use of multiple Reviewers in boosting instruction diversity and difficulty. Our work highlights the potential of review-driven, multi-agent frameworks for generating high-quality conversational data at scale.
comment: ACL2025 Accepted
Reconstructing Syllable Sequences in Abugida Scripts with Incomplete Inputs
This paper explores syllable sequence prediction in Abugida languages using Transformer-based models, focusing on six languages: Bengali, Hindi, Khmer, Lao, Myanmar, and Thai, from the Asian Language Treebank (ALT) dataset. We investigate the reconstruction of complete syllable sequences from various incomplete input types, including consonant sequences, vowel sequences, partial syllables (with random character deletions), and masked syllables (with fixed syllable deletions). Our experiments reveal that consonant sequences play a critical role in accurate syllable prediction, achieving high BLEU scores, while vowel sequences present a significantly greater challenge. The model demonstrates robust performance across tasks, particularly in handling partial and masked syllable reconstruction, with strong results for tasks involving consonant information and syllable masking. This study advances the understanding of sequence prediction for Abugida languages and provides practical insights for applications such as text prediction, spelling correction, and data augmentation in these scripts.
comment: 14 pages, 2 figures, 6 tables, 1 listing
Illusion or Algorithm? Investigating Memorization, Emergence, and Symbolic Processing in In-Context Learning
Large-scale Transformer language models (LMs) trained solely on next-token prediction with web-scale data can solve a wide range of tasks after seeing just a few examples. The mechanism behind this capability, known as in-context learning (ICL), remains both controversial and poorly understood. Some studies argue that it is merely the result of memorizing vast amounts of data, while others contend that it reflects a fundamental, symbolic algorithmic development in LMs. In this work, we introduce a suite of investigative tasks and a novel method to systematically investigate ICL by leveraging the full Pythia scaling suite, including interim checkpoints that capture progressively larger amount of training data. By carefully exploring ICL performance on downstream tasks and simultaneously conducting a mechanistic analysis of the residual stream's subspace, we demonstrate that ICL extends beyond mere "memorization" of the training corpus, yet does not amount to the implementation of an independent symbolic algorithm. Our results also clarify several aspects of ICL, including the influence of training dynamics, model capabilities, and elements of mechanistic interpretability. Overall, our work advances the understanding of ICL and its implications, offering model developers insights into potential improvements and providing AI security practitioners with a basis for more informed guidelines.
Rethinking the Role of Prompting Strategies in LLM Test-Time Scaling: A Perspective of Probability Theory ACL 2025
Recently, scaling test-time compute on Large Language Models (LLM) has garnered wide attention. However, there has been limited investigation of how various reasoning prompting strategies perform as scaling. In this paper, we focus on a standard and realistic scaling setting: majority voting. We systematically conduct experiments on 6 LLMs $\times$ 8 prompting strategies $\times$ 6 benchmarks. Experiment results consistently show that as the sampling time and computational overhead increase, complicated prompting strategies with superior initial performance gradually fall behind simple Chain-of-Thought. We analyze this phenomenon and provide theoretical proofs. Additionally, we propose a method according to probability theory to quickly and accurately predict the scaling performance and select the best strategy under large sampling times without extra resource-intensive inference in practice. It can serve as the test-time scaling law for majority voting. Furthermore, we introduce two ways derived from our theoretical analysis to significantly improve the scaling performance. We hope that our research can promote to re-examine the role of complicated prompting, unleash the potential of simple prompting strategies, and provide new insights for enhancing test-time scaling performance.
comment: ACL 2025 Main
Survey of End-to-End Multi-Speaker Automatic Speech Recognition for Monaural Audio
Monaural multi-speaker automatic speech recognition (ASR) remains challenging due to data scarcity and the intrinsic difficulty of recognizing and attributing words to individual speakers, particularly in overlapping speech. Recent advances have driven the shift from cascade systems to end-to-end (E2E) architectures, which reduce error propagation and better exploit the synergy between speech content and speaker identity. Despite rapid progress in E2E multi-speaker ASR, the field lacks a comprehensive review of recent developments. This survey provides a systematic taxonomy of E2E neural approaches for multi-speaker ASR, highlighting recent advances and comparative analysis. Specifically, we analyze: (1) architectural paradigms (SIMO vs.~SISO) for pre-segmented audio, analyzing their distinct characteristics and trade-offs; (2) recent architectural and algorithmic improvements based on these two paradigms; (3) extensions to long-form speech, including segmentation strategy and speaker-consistent hypothesis stitching. Further, we (4) evaluate and compare methods across standard benchmarks. We conclude with a discussion of open challenges and future research directions towards building robust and scalable multi-speaker ASR.
comment: 13 pages. Submitted to IEEE/ACM Transaction on Audio Speech and Language Processing (TASLP)
The Way We Prompt: Conceptual Blending, Neural Dynamics, and Prompt-Induced Transitions in LLMs
Large language models (LLMs), inspired by neuroscience, exhibit behaviors that often evoke a sense of personality and intelligence-yet the mechanisms behind these effects remain elusive. Here, we operationalize Conceptual Blending Theory (CBT) as an experimental framework, using prompt-based methods to reveal how LLMs blend and compress meaning. By systematically investigating Prompt-Induced Transitions (PIT) and Prompt-Induced Hallucinations (PIH), we uncover structural parallels and divergences between artificial and biological cognition. Our approach bridges linguistics, neuroscience, and empirical AI research, demonstrating that human-AI collaboration can serve as a living prototype for the future of cognitive science. This work proposes prompt engineering not just as a technical tool, but as a scientific method for probing the deep structure of meaning itself.
Semantic Aware Linear Transfer by Recycling Pre-trained Language Models for Cross-lingual Transfer ACL 2025
Large Language Models (LLMs) increasingly incorporate multilingual capabilities, fueling the demand to transfer them into target language-specific models. However, most approaches, which blend the source model's embedding by replacing the source vocabulary with the target language-specific vocabulary, may constrain expressive capacity in the target language since the source model is predominantly trained on English data. In this paper, we propose Semantic Aware Linear Transfer (SALT), a novel cross-lingual transfer technique that recycles embeddings from target language Pre-trained Language Models (PLMs) to transmit the deep representational strengths of PLM-derived embedding to LLMs. SALT derives unique regression lines based on the similarity in the overlap of the source and target vocabularies, to handle each non-overlapping token's embedding space. Our extensive experiments show that SALT significantly outperforms other transfer methods and achieves lower loss with accelerating faster convergence during language adaptation. Notably, SALT obtains remarkable performance in cross-lingual understanding setups compared to other methods. Furthermore, we highlight the scalable use of PLMs to enhance the functionality of contemporary LLMs by conducting experiments with varying architectures.
comment: Accepted to ACL 2025 Findings
GenKnowSub: Improving Modularity and Reusability of LLMs through General Knowledge Subtraction ACL 2025
Large language models often struggle with zero-shot generalization, and several modular approaches have been proposed to address this challenge. Yet, we hypothesize that a key limitation remains: the entanglement of general knowledge and task-specific adaptations. To overcome this, we propose a modular framework that disentangles these components by constructing a library of task-specific LoRA modules alongside a general-domain LoRA. By subtracting this general knowledge component from each task-specific module, we obtain residual modules that focus more exclusively on task-relevant information, a method we call general knowledge subtraction (GenKnowSub). Leveraging the refined task-specific modules and the Arrow routing algorithm \citep{ostapenko2024towards}, we dynamically select and combine modules for new inputs without additional training. Our studies on the Phi-3 model and standard Arrow as baselines reveal that using general knowledge LoRAs derived from diverse languages, including English, French, and German, yields consistent performance gains in both monolingual and cross-lingual settings across a wide set of benchmarks. Further experiments on Phi-2 demonstrate how GenKnowSub generalizes to weaker LLMs. The complete code and data are available at https://github.com/saharsamr/Modular-LLM.
comment: Accepted to ACL 2025 (main conference, short paper), 10 pages
Accurate KV Cache Quantization with Outlier Tokens Tracing ACL2025
The impressive capabilities of Large Language Models (LLMs) come at the cost of substantial computational resources during deployment. While KV Cache can significantly reduce recomputation during inference, it also introduces additional memory overhead. KV Cache quantization presents a promising solution, striking a good balance between memory usage and accuracy. Previous research has shown that the Keys are distributed by channel, while the Values are distributed by token. Consequently, the common practice is to apply channel-wise quantization to the Keys and token-wise quantization to the Values. However, our further investigation reveals that a small subset of unusual tokens exhibit unique characteristics that deviate from this pattern, which can substantially impact quantization accuracy. To address this, we develop a simple yet effective method to identify these tokens accurately during the decoding process and exclude them from quantization as outlier tokens, significantly improving overall accuracy. Extensive experiments show that our method achieves significant accuracy improvements under 2-bit quantization and can deliver a 6.4 times reduction in memory usage and a 2.3 times increase in throughput.
comment: ACL2025 Main
Reasoning with OmniThought: A Large CoT Dataset with Verbosity and Cognitive Difficulty Annotations
The emergence of large reasoning models (LRMs) has transformed Natural Language Processing by excelling in complex tasks such as mathematical problem-solving and code generation. These models leverage chain-of-thought (CoT) processes, enabling them to emulate human-like reasoning strategies. However, the advancement of LRMs is hindered by the lack of comprehensive CoT datasets. Current resources often fail to provide extensive reasoning problems with coherent CoT processes distilled from multiple teacher models and do not account for multifaceted properties describing the internal characteristics of CoTs. To address these challenges, we introduce OmniThought, a large-scale dataset featuring 2 million CoT processes generated and validated by two powerful LRMs as teacher models. Each CoT process in OmniThought is annotated with novel Reasoning Verbosity (RV) and Cognitive Difficulty (CD) scores, which describe the appropriateness of CoT verbosity and cognitive difficulty level for models to comprehend these reasoning processes. We further establish a self-reliant pipeline to curate this dataset. Extensive experiments using Qwen2.5 models of various sizes demonstrate the positive impact of our proposed scores on LRM training effectiveness. Based on the proposed OmniThought dataset, we further train and release a series of high-performing LRMs, specifically equipped with stronger reasoning abilities and optimal CoT output length and difficulty level. Our contributions significantly enhance the development and training of LRMs for solving complex tasks.
Connecting the Dots: A Chain-of-Collaboration Prompting Framework for LLM Agents
Large Language Models (LLMs) have demonstrated impressive performance in executing complex reasoning tasks. Chain-of-thought effectively enhances reasoning capabilities by unlocking the potential of large models, while multi-agent systems provide more comprehensive solutions by integrating collective intelligence of multiple agents. However, both approaches face significant limitations. Single-agent with chain-of-thought, due to the inherent complexity of designing cross-domain prompts, faces collaboration challenges. Meanwhile, multi-agent systems consume substantial tokens and inevitably dilute the primary problem, which is particularly problematic in business workflow tasks. To address these challenges, we propose Cochain, a collaboration prompting framework that effectively solves business workflow collaboration problem by combining knowledge and prompts at a reduced cost. Specifically, we construct an integrated knowledge graph that incorporates knowledge from multiple stages. Furthermore, by maintaining and retrieving a prompts tree, we can obtain prompt information relevant to other stages of the business workflow. We perform extensive evaluations of Cochain across multiple datasets, demonstrating that Cochain outperforms all baselines in both prompt engineering and multi-agent LLMs. Additionally, expert evaluation results indicate that the use of a small model in combination with Cochain outperforms GPT-4.
comment: 34 pages, 20 figures
A Survey on the Safety and Security Threats of Computer-Using Agents: JARVIS or Ultron?
Recently, AI-driven interactions with computing devices have advanced from basic prototype tools to sophisticated, LLM-based systems that emulate human-like operations in graphical user interfaces. We are now witnessing the emergence of \emph{Computer-Using Agents} (CUAs), capable of autonomously performing tasks such as navigating desktop applications, web pages, and mobile apps. However, as these agents grow in capability, they also introduce novel safety and security risks. Vulnerabilities in LLM-driven reasoning, with the added complexity of integrating multiple software components and multimodal inputs, further complicate the security landscape. In this paper, we present a systematization of knowledge on the safety and security threats of CUAs. We conduct a comprehensive literature review and distill our findings along four research objectives: \textit{\textbf{(i)}} define the CUA that suits safety analysis; \textit{\textbf{(ii)} } categorize current safety threats among CUAs; \textit{\textbf{(iii)}} propose a comprehensive taxonomy of existing defensive strategies; \textit{\textbf{(iv)}} summarize prevailing benchmarks, datasets, and evaluation metrics used to assess the safety and performance of CUAs. Building on these insights, our work provides future researchers with a structured foundation for exploring unexplored vulnerabilities and offers practitioners actionable guidance in designing and deploying secure Computer-Using Agents.
REI-Bench: Can Embodied Agents Understand Vague Human Instructions in Task Planning?
Robot task planning decomposes human instructions into executable action sequences that enable robots to complete a series of complex tasks. Although recent large language model (LLM)-based task planners achieve amazing performance, they assume that human instructions are clear and straightforward. However, real-world users are not experts, and their instructions to robots often contain significant vagueness. Linguists suggest that such vagueness frequently arises from referring expressions (REs), whose meanings depend heavily on dialogue context and environment. This vagueness is even more prevalent among the elderly and children, who robots should serve more. This paper studies how such vagueness in REs within human instructions affects LLM-based robot task planning and how to overcome this issue. To this end, we propose the first robot task planning benchmark with vague REs (REI-Bench), where we discover that the vagueness of REs can severely degrade robot planning performance, leading to success rate drops of up to 77.9%. We also observe that most failure cases stem from missing objects in planners. To mitigate the REs issue, we propose a simple yet effective approach: task-oriented context cognition, which generates clear instructions for robots, achieving state-of-the-art performance compared to aware prompt and chains of thought. This work contributes to the research community of human-robot interaction (HRI) by making robot task planning more practical, particularly for non-expert users, e.g., the elderly and children.
comment: Submitted to CoRL 2025, under review
Improve Rule Retrieval and Reasoning with Self-Induction and Relevance ReEstimate ACL 2025
This paper systematically addresses the challenges of rule retrieval, a crucial yet underexplored area. Vanilla retrieval methods using sparse or dense retrievers to directly search for relevant rules to support downstream reasoning, often suffer from low accuracy. This is primarily due to a significant semantic gap between the instantiated facts in the queries and the abstract representations of the rules. Such misalignment results in suboptimal retrieval quality, which in turn negatively impacts reasoning performance. To overcome these challenges, we propose Self-Induction Augmented Retrieval (SIAR), a novel approach that utilizes Large Language Models (LLMs) to induce potential inferential rules that might offer benefits for reasoning by abstracting the underlying knowledge and logical structure in queries. These induced rules are then used for query augmentation to improve retrieval effectiveness. Additionally, we introduce Rule Relevance ReEstimate (R$^3$), a method that re-estimates the relevance of retrieved rules by assessing whether the abstract knowledge they contain can be instantiated to align with the facts in the queries and the helpfulness for reasoning. Extensive experiments across various settings demonstrate the effectiveness and versatility of our proposed methods.
comment: ACL 2025
Have Multimodal Large Language Models (MLLMs) Really Learned to Tell the Time on Analog Clocks?
Multimodal Large Language Models which can answer complex questions on an image struggle to tell the time on analog clocks. This is probably due to the lack of images with clocks at different times in their training set. In this work we explore this issue with one of the latest MLLMs: GPT-4.1 to understand why MLLMs fail to tell the time and whether fine-tuning can solve the problem. The results show how models are making progress in reading the time on analog clocks. But have they really learned to do it, or have they only learned patterns in their training datasets? In this work we put the models to the test with different clocks to illustrate the limitations of MLLMs to abstract and generalize.
comment: 6 pages, 5 figures, 2 tables
MatTools: Benchmarking Large Language Models for Materials Science Tools
Large language models (LLMs) are increasingly applied to materials science questions, including literature comprehension, property prediction, materials discovery and alloy design. At the same time, a wide range of physics-based computational approaches have been developed in which materials properties can be calculated. Here, we propose a benchmark application to evaluate the proficiency of LLMs to answer materials science questions through the generation and safe execution of codes based on such physics-based computational materials science packages. MatTools is built on two complementary components: a materials simulation tool question-answer (QA) benchmark and a real-world tool-usage benchmark. We designed an automated methodology to efficiently collect real-world materials science tool-use examples. The QA benchmark, derived from the pymatgen (Python Materials Genomics) codebase and documentation, comprises 69,225 QA pairs that assess the ability of an LLM to understand materials science tools. The real-world benchmark contains 49 tasks (138 subtasks) requiring the generation of functional Python code for materials property calculations. Our evaluation of diverse LLMs yields three key insights: (1)Generalists outshine specialists;(2)AI knows AI; and (3)Simpler is better. MatTools provides a standardized framework for assessing and improving LLM capabilities for materials science tool applications, facilitating the development of more effective AI systems for materials science and general scientific research.
comment: 27 pages, 23 figures
Creativity or Brute Force? Using Brainteasers as a Window into the Problem-Solving Abilities of Large Language Models
Accuracy remains a standard metric for evaluating AI systems, but it offers limited insight into how models arrive at their solutions. In this work, we introduce a benchmark based on brainteasers written in long narrative form to probe more deeply into the types of reasoning strategies that models use. Brainteasers are well-suited for this goal because they can be solved with multiple approaches, such as a few-step solution that uses a creative insight or a longer solution that uses more brute force. We investigate large language models (LLMs) across multiple layers of reasoning, focusing not only on correctness but also on the quality and creativity of their solutions. We investigate many aspects of the reasoning process: (1) semantic parsing of the brainteasers into precise mathematical competition style formats; (2) generating solutions from these mathematical forms; (3) self-correcting solutions based on gold solutions; (4) producing step-by-step sketches of solutions; and (5) making use of hints. We find that LLMs are in many cases able to find creative, insightful solutions to brainteasers, suggesting that they capture some of the capacities needed to solve novel problems in creative ways. Nonetheless, there also remain situations where they rely on brute force despite the availability of more efficient, creative solutions, highlighting a potential direction for improvement in the reasoning abilities of LLMs.
comment: 13 Tables; 5 Figures
LARGO: Latent Adversarial Reflection through Gradient Optimization for Jailbreaking LLMs
Efficient red-teaming method to uncover vulnerabilities in Large Language Models (LLMs) is crucial. While recent attacks often use LLMs as optimizers, the discrete language space make gradient-based methods struggle. We introduce LARGO (Latent Adversarial Reflection through Gradient Optimization), a novel latent self-reflection attack that reasserts the power of gradient-based optimization for generating fluent jailbreaking prompts. By operating within the LLM's continuous latent space, LARGO first optimizes an adversarial latent vector and then recursively call the same LLM to decode the latent into natural language. This methodology yields a fast, effective, and transferable attack that produces fluent and stealthy prompts. On standard benchmarks like AdvBench and JailbreakBench, LARGO surpasses leading jailbreaking techniques, including AutoDAN, by 44 points in attack success rate. Our findings demonstrate a potent alternative to agentic LLM prompting, highlighting the efficacy of interpreting and attacking LLM internals through gradient optimization.
Multimodal Event Detection: Current Approaches and Defining the New Playground through LLMs and VLMs
In this paper, we study the challenges of detecting events on social media, where traditional unimodal systems struggle due to the rapid and multimodal nature of data dissemination. We employ a range of models, including unimodal ModernBERT and ConvNeXt-V2, multimodal fusion techniques, and advanced generative models like GPT-4o, and LLaVA. Additionally, we also study the effect of providing multimodal generative models (such as GPT-4o) with a single modality to assess their efficacy. Our results indicate that while multimodal approaches notably outperform unimodal counterparts, generative approaches despite having a large number of parameters, lag behind supervised methods in precision. Furthermore, we also found that they lag behind instruction-tuned models because of their inability to generate event classes correctly. During our error analysis, we discovered that common social media issues such as leet speak, text elongation, etc. are effectively handled by generative approaches but are hard to tackle using supervised approaches.
comment: Accepted at NLDB 2025
Learning When to Think: Shaping Adaptive Reasoning in R1-Style Models via Multi-Stage RL
Large reasoning models (LRMs) are proficient at generating explicit, step-by-step reasoning sequences before producing final answers. However, such detailed reasoning can introduce substantial computational overhead and latency, particularly for simple problems. To address this over-thinking problem, we explore how to equip LRMs with adaptive thinking capabilities: enabling them to dynamically decide whether or not to engage in explicit reasoning based on problem complexity. Building on R1-style distilled models, we observe that inserting a simple ellipsis ("...") into the prompt can stochastically trigger either a thinking or no-thinking mode, revealing a latent controllability in the reasoning behavior. Leveraging this property, we propose AutoThink, a multi-stage reinforcement learning (RL) framework that progressively optimizes reasoning policies via stage-wise reward shaping. AutoThink learns to invoke explicit reasoning only when necessary, while defaulting to succinct responses for simpler tasks. Experiments on five mainstream mathematical benchmarks demonstrate that AutoThink achieves favorable accuracy-efficiency trade-offs compared to recent prompting and RL-based pruning methods. It can be seamlessly integrated into any R1-style model, including both distilled and further fine-tuned variants. Notably, AutoThink improves relative accuracy by 6.4 percent while reducing token usage by 52 percent on DeepSeek-R1-Distill-Qwen-1.5B, establishing a scalable and adaptive reasoning paradigm for LRMs.
comment: Project Page: https://github.com/TU2021/AutoThink
Creating General User Models from Computer Use
Human-computer interaction has long imagined technology that understands us-from our preferences and habits, to the timing and purpose of our everyday actions. Yet current user models remain fragmented, narrowly tailored to specific apps, and incapable of the flexible reasoning required to fulfill these visions. This paper presents an architecture for a general user model (GUM) that learns about you by observing any interaction you have with your computer. The GUM takes as input any unstructured observation of a user (e.g., device screenshots) and constructs confidence-weighted propositions that capture that user knowledge and preferences. GUMs can infer that a user is preparing for a wedding they're attending from messages with a friend. Or recognize that a user is struggling with a collaborator's feedback on a draft by observing multiple stalled edits and a switch to reading related work. GUMs introduce an architecture that infers new propositions about a user from multimodal observations, retrieves related propositions for context, and continuously revises existing propositions. To illustrate the breadth of applications that GUMs enable, we demonstrate how they augment chat-based assistants with context, manage OS notifications to selectively surface important information, and enable interactive agents that adapt to preferences across apps. We also instantiate proactive assistants (GUMBOs) that discover and execute useful suggestions on a user's behalf using their GUM. In our evaluations, we find that GUMs make calibrated and accurate inferences about users, and that assistants built on GUMs proactively identify and perform actions that users wouldn't think to request explicitly. Altogether, GUMs introduce methods that leverage multimodal models to understand unstructured context, enabling long-standing visions of HCI and entirely new interactive systems that anticipate user needs.
comment: 22 pages, 6 figures, 1 table; see https://generalusermodels.github.io/
Enhancing Low-Resource Minority Language Translation with LLMs and Retrieval-Augmented Generation for Cultural Nuances
This study investigates the challenges of translating low-resource languages by integrating Large Language Models (LLMs) with Retrieval-Augmented Generation (RAG). Various model configurations were tested on Hakka translations, with BLEU scores ranging from 12% (dictionary-only) to 31% (RAG with Gemini 2.0). The best-performing model (Model 4) combined retrieval and advanced language modeling, improving lexical coverage, particularly for specialized or culturally nuanced terms, and enhancing grammatical coherence. A two-stage method (Model 3) using dictionary outputs refined by Gemini 2.0 achieved a BLEU score of 26%, highlighting iterative correction's value and the challenges of domain-specific expressions. Static dictionary-based approaches struggled with context-sensitive content, demonstrating the limitations of relying solely on predefined resources. These results emphasize the need for curated resources, domain knowledge, and ethical collaboration with local communities, offering a framework that improves translation accuracy and fluency while supporting cultural preservation.
comment: Accepted to IntelliSys 2025
Relation Extraction Across Entire Books to Reconstruct Community Networks: The AffilKG Datasets
When knowledge graphs (KGs) are automatically extracted from text, are they accurate enough for downstream analysis? Unfortunately, current annotated datasets can not be used to evaluate this question, since their KGs are highly disconnected, too small, or overly complex. To address this gap, we introduce AffilKG (https://doi.org/10.5281/zenodo.15427977), which is a collection of six datasets that are the first to pair complete book scans with large, labeled knowledge graphs. Each dataset features affiliation graphs, which are simple KGs that capture Member relationships between Person and Organization entities -- useful in studies of migration, community interactions, and other social phenomena. In addition, three datasets include expanded KGs with a wider variety of relation types. Our preliminary experiments demonstrate significant variability in model performance across datasets, underscoring AffilKG's ability to enable two critical advances: (1) benchmarking how extraction errors propagate to graph-level analyses (e.g., community structure), and (2) validating KG extraction methods for real-world social science research.
Finetune-RAG: Fine-Tuning Language Models to Resist Hallucination in Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) has emerged as a powerful framework to improve factuality in large language models (LLMs) by grounding their outputs in retrieved documents. However, ensuring perfect retrieval of relevant information remains challenging, and when irrelevant content is passed downstream to an LLM, it can lead to hallucinations. In this work, we propose Finetune-RAG, a simple and effective fine-tuning approach that features the first-of-its-kind RAG training dataset constructed to mimic real-world imperfections. Experimental results show that Finetune-RAG improves factual accuracy by 21.2% over the base model. We also propose a Bench-RAG, an LLM-as-a-judge evaluation pipeline that stress tests models under realistic imperfect retrieval scenarios. Our codebase and dataset are fully open sourced for community use.
A Systematic Analysis of Base Model Choice for Reward Modeling
Reinforcement learning from human feedback (RLHF) and, at its core, reward modeling have become a crucial part of training powerful large language models (LLMs). One commonly overlooked factor in training high-quality reward models (RMs) is the effect of the base model, which is becoming more challenging to choose given the rapidly growing pool of LLMs. In this work, we present a systematic analysis of the effect of base model selection on reward modeling performance. Our results show that the performance can be improved by up to 14% compared to the most common (i.e., default) choice. Moreover, we showcase the strong statistical relation between some existing benchmarks and downstream performances. We also demonstrate that the results from a small set of benchmarks could be combined to boost the model selection ($+$18% on average in the top 5-10). Lastly, we illustrate the impact of different post-training steps on the final performance and explore using estimated data distributions to reduce performance prediction error.
comment: 19 pages, 13 figures, 5 tables
Ranked Voting based Self-Consistency of Large Language Models ACL 2025
Majority voting is considered an effective method to enhance chain-of-thought reasoning, as it selects the answer with the highest "self-consistency" among different reasoning paths (Wang et al., 2023). However, previous chain-of-thought reasoning methods typically generate only a single answer in each trial, thereby ignoring the possibility of other potential answers. As a result, these alternative answers are often overlooked in subsequent voting processes. In this work, we propose to generate ranked answers in each reasoning process and conduct ranked voting among multiple ranked answers from different responses, thereby making the overall self-consistency more reliable. Specifically, we use three ranked voting methods: Instant-runoff voting, Borda count voting, and mean reciprocal rank voting. We validate our methods on six datasets, including three multiple-choice and three open-ended question-answering tasks, using both advanced open-source and closed-source large language models. Extensive experimental results indicate that our proposed method outperforms the baselines, showcasing the potential of leveraging the information of ranked answers and using ranked voting to improve reasoning performance. The code is available at https://github.com/szu-tera/RankedVotingSC.
comment: ACL 2025 Findings
LDIR: Low-Dimensional Dense and Interpretable Text Embeddings with Relative Representations ACL 2025
Semantic text representation is a fundamental task in the field of natural language processing. Existing text embedding (e.g., SimCSE and LLM2Vec) have demonstrated excellent performance, but the values of each dimension are difficult to trace and interpret. Bag-of-words, as classic sparse interpretable embeddings, suffers from poor performance. Recently, Benara et al. (2024) propose interpretable text embeddings using large language models, which forms "0/1" embeddings based on responses to a series of questions. These interpretable text embeddings are typically high-dimensional (larger than 10,000). In this work, we propose Low-dimensional (lower than 500) Dense and Interpretable text embeddings with Relative representations (LDIR). The numerical values of its dimensions indicate semantic relatedness to different anchor texts through farthest point sampling, offering both semantic representation as well as a certain level of traceability and interpretability. We validate LDIR on multiple semantic textual similarity, retrieval, and clustering tasks. Extensive experimental results show that LDIR performs close to the black-box baseline models and outperforms the interpretable embeddings baselines with much fewer dimensions. Code is available at https://github.com/szu-tera/LDIR.
comment: ACL 2025 Findings
From Trade-off to Synergy: A Versatile Symbiotic Watermarking Framework for Large Language Models ACL 2025
The rise of Large Language Models (LLMs) has heightened concerns about the misuse of AI-generated text, making watermarking a promising solution. Mainstream watermarking schemes for LLMs fall into two categories: logits-based and sampling-based. However, current schemes entail trade-offs among robustness, text quality, and security. To mitigate this, we integrate logits-based and sampling-based schemes, harnessing their respective strengths to achieve synergy. In this paper, we propose a versatile symbiotic watermarking framework with three strategies: serial, parallel, and hybrid. The hybrid framework adaptively embeds watermarks using token entropy and semantic entropy, optimizing the balance between detectability, robustness, text quality, and security. Furthermore, we validate our approach through comprehensive experiments on various datasets and models. Experimental results indicate that our method outperforms existing baselines and achieves state-of-the-art (SOTA) performance. We believe this framework provides novel insights into diverse watermarking paradigms. Our code is available at https://github.com/redwyd/SymMark.
comment: Accepted to ACL 2025 (main)
PIG: Privacy Jailbreak Attack on LLMs via Gradient-based Iterative In-Context Optimization ACL 2025
Large Language Models (LLMs) excel in various domains but pose inherent privacy risks. Existing methods to evaluate privacy leakage in LLMs often use memorized prefixes or simple instructions to extract data, both of which well-alignment models can easily block. Meanwhile, Jailbreak attacks bypass LLM safety mechanisms to generate harmful content, but their role in privacy scenarios remains underexplored. In this paper, we examine the effectiveness of jailbreak attacks in extracting sensitive information, bridging privacy leakage and jailbreak attacks in LLMs. Moreover, we propose PIG, a novel framework targeting Personally Identifiable Information (PII) and addressing the limitations of current jailbreak methods. Specifically, PIG identifies PII entities and their types in privacy queries, uses in-context learning to build a privacy context, and iteratively updates it with three gradient-based strategies to elicit target PII. We evaluate PIG and existing jailbreak methods using two privacy-related datasets. Experiments on four white-box and two black-box LLMs show that PIG outperforms baseline methods and achieves state-of-the-art (SoTA) results. The results underscore significant privacy risks in LLMs, emphasizing the need for stronger safeguards. Our code is availble at https://github.com/redwyd/PrivacyJailbreak.
comment: Accepted to ACL 2025 (main)
An AI-Powered Research Assistant in the Lab: A Practical Guide for Text Analysis Through Iterative Collaboration with LLMs
Analyzing texts such as open-ended responses, headlines, or social media posts is a time- and labor-intensive process highly susceptible to bias. LLMs are promising tools for text analysis, using either a predefined (top-down) or a data-driven (bottom-up) taxonomy, without sacrificing quality. Here we present a step-by-step tutorial to efficiently develop, test, and apply taxonomies for analyzing unstructured data through an iterative and collaborative process between researchers and LLMs. Using personal goals provided by participants as an example, we demonstrate how to write prompts to review datasets and generate a taxonomy of life domains, evaluate and refine the taxonomy through prompt and direct modifications, test the taxonomy and assess intercoder agreements, and apply the taxonomy to categorize an entire dataset with high intercoder reliability. We discuss the possibilities and limitations of using LLMs for text analysis.
comment: 31 pages, 1 figure
Tales of the 2025 Los Angeles Fire: Hotwash for Public Health Concerns in Reddit via LLM-Enhanced Topic Modeling
Wildfires have become increasingly frequent, irregular, and severe in recent years. Understanding how affected populations perceive and respond during wildfire crises is critical for timely and empathetic disaster response. Social media platforms offer a crowd-sourced channel to capture evolving public discourse, providing hyperlocal information and insight into public sentiment. This study analyzes Reddit discourse during the 2025 Los Angeles wildfires, spanning from the onset of the disaster to full containment. We collect 385 posts and 114,879 comments related to the Palisades and Eaton fires. We adopt topic modeling methods to identify the latent topics, enhanced by large language models (LLMs) and human-in-the-loop (HITL) refinement. Furthermore, we develop a hierarchical framework to categorize latent topics, consisting of two main categories, Situational Awareness (SA) and Crisis Narratives (CN). The volume of SA category closely aligns with real-world fire progressions, peaking within the first 2-5 days as the fires reach the maximum extent. The most frequent co-occurring category set of public health and safety, loss and damage, and emergency resources expands on a wide range of health-related latent topics, including environmental health, occupational health, and one health. Grief signals and mental health risks consistently accounted for 60 percentage and 40 percentage of CN instances, respectively, with the highest total volume occurring at night. This study contributes the first annotated social media dataset on the 2025 LA fires, and introduces a scalable multi-layer framework that leverages topic modeling for crisis discourse analysis. By identifying persistent public health concerns, our results can inform more empathetic and adaptive strategies for disaster response, public health communication, and future research in comparable climate-related disaster events.
comment: Corrected capitalization errors in the section subtitle 3.4, 4.3, step 1 in section 3.3.2, and Supplementary Information. Fix typo with "Weighting" for step 4 in section 3.3.2
DRA-GRPO: Exploring Diversity-Aware Reward Adjustment for R1-Zero-Like Training of Large Language Models
Recent advances in reinforcement learning for language model post-training, such as Group Relative Policy Optimization (GRPO), have shown promise in low-resource settings. However, GRPO typically relies on solution-level and scalar reward signals that fail to capture the semantic diversity among sampled completions. This leads to what we identify as a diversity-quality inconsistency, where distinct reasoning paths may receive indistinguishable rewards. To address this limitation, we propose $\textit{Diversity-aware Reward Adjustment}$ (DRA), a method that explicitly incorporates semantic diversity into the reward computation. DRA uses Submodular Mutual Information (SMI) to downweight redundant completions and amplify rewards for diverse ones. This encourages better exploration during learning, while maintaining stable exploitation of high-quality samples. Our method integrates seamlessly with both GRPO and its variant DR.~GRPO, resulting in $\textit{DRA-GRPO}$ and $\textit{DGA-DR.~GRPO}$. We evaluate our method on five mathematical reasoning benchmarks and find that it outperforms recent strong baselines. It achieves state-of-the-art performance with an average accuracy of 58.2%, using only 7,000 fine-tuning samples and a total training cost of approximately $55. The code is available at https://github.com/xiwenc1/DRA-GRPO.
Words in Motion: Extracting Interpretable Control Vectors for Motion Transformers ICLR 2025
Transformer-based models generate hidden states that are difficult to interpret. In this work, we analyze hidden states and modify them at inference, with a focus on motion forecasting. We use linear probing to analyze whether interpretable features are embedded in hidden states. Our experiments reveal high probing accuracy, indicating latent space regularities with functionally important directions. Building on this, we use the directions between hidden states with opposing features to fit control vectors. At inference, we add our control vectors to hidden states and evaluate their impact on predictions. Remarkably, such modifications preserve the feasibility of predictions. We further refine our control vectors using sparse autoencoders (SAEs). This leads to more linear changes in predictions when scaling control vectors. Our approach enables mechanistic interpretation as well as zero-shot generalization to unseen dataset characteristics with negligible computational overhead.
comment: ICLR 2025 final version. Our implementation is available at https://github.com/kit-mrt/future-motion
COBIAS: Assessing the Contextual Reliability of Bias Benchmarks for Language Models
Large Language Models (LLMs) often inherit biases from the web data they are trained on, which contains stereotypes and prejudices. Current methods for evaluating and mitigating these biases rely on bias-benchmark datasets. These benchmarks measure bias by observing an LLM's behavior on biased statements. However, these statements lack contextual considerations of the situations they try to present. To address this, we introduce a contextual reliability framework, which evaluates model robustness to biased statements by considering the various contexts in which they may appear. We develop the Context-Oriented Bias Indicator and Assessment Score (COBIAS) to measure a biased statement's reliability in detecting bias, based on the variance in model behavior across different contexts. To evaluate the metric, we augmented 2,291 stereotyped statements from two existing benchmark datasets by adding contextual information. We show that COBIAS aligns with human judgment on the contextual reliability of biased statements (Spearman's $\rho = 0.65, p = 3.4 * 10^{-60}$) and can be used to create reliable benchmarks, which would assist bias mitigation works.
ViTextVQA: A Large-Scale Visual Question Answering Dataset for Evaluating Vietnamese Text Comprehension in Images
Visual Question Answerinng (VQA) is a complicated task that requires the capability of simultaneously processing natural language and images. This task was initially researched with a focus on developing methods to help machines understand objects and scene contexts in images. However, some scene text that carries explicit information about the full content of the image is not mentioned. Along with the continuous development of the AI era, there have been many studies on the reading comprehension ability of VQA models in the world. Therefore, we introduce the first large-scale dataset in Vietnamese specializing in the ability to understand scene text, we call it ViTextVQA (\textbf{Vi}etnamese \textbf{Text}-based \textbf{V}isual \textbf{Q}uestion \textbf{A}nswering dataset) which contains \textbf{over 16,000} images and \textbf{over 50,000} questions with answers. To tackle this task efficiently, we propose ViTextBLIP-2, an novel multimodal feature fusion Method, which optimizes Vietnamese OCR-based VQA by integrating a frozen Vision Transformer, SwinTextSpotter OCR, and ViT5 LLM with a trainable Q-Former for multimodal feature fusion. Through experiments with various state-of-the-art models, we uncover the significance of the order in which tokens in OCR text are processed and selected to formulate answers. This finding helped us significantly improve the performance of the baseline models on the ViTextVQA dataset. Our dataset is available (https://github.com/minhquan6203/ViTextVQA-Dataset) for research purposes.
Evaluating Vision-Language Models as Evaluators in Path Planning CVPR
Despite their promise to perform complex reasoning, large language models (LLMs) have been shown to have limited effectiveness in end-to-end planning. This has inspired an intriguing question: if these models cannot plan well, can they still contribute to the planning framework as a helpful plan evaluator? In this work, we generalize this question to consider LLMs augmented with visual understanding, i.e., Vision-Language Models (VLMs). We introduce PathEval, a novel benchmark evaluating VLMs as plan evaluators in complex path-planning scenarios. Succeeding in the benchmark requires a VLM to be able to abstract traits of optimal paths from the scenario description, demonstrate precise low-level perception on each path, and integrate this information to decide the better path. Our analysis of state-of-the-art VLMs reveals that these models face significant challenges on the benchmark. We observe that the VLMs can precisely abstract given scenarios to identify the desired traits and exhibit mixed performance in integrating the provided information. Yet, their vision component presents a critical bottleneck, with models struggling to perceive low-level details about a path. Our experimental results show that this issue cannot be trivially addressed via end-to-end fine-tuning; rather, task-specific discriminative adaptation of these vision encoders is needed for these VLMs to become effective path evaluators.
comment: Accepted to the 2025 IEEE / CVF Computer Vision and Pattern Recognition Conference (CVPR)
Training of Scaffolded Language Models with Language Supervision: A Survey
This survey organizes the intricate literature on the design and optimization of emerging structures around post-trained LMs. We refer to this overarching structure as scaffolded LMs and focus on LMs that are integrated into multi-step processes with tools. We view scaffolded LMs as semi-parametric models wherein we train non-parametric variables, including the prompt, tools, and scaffold's code. In particular, they interpret instructions, use tools, and receive feedback all in language. Recent works use an LM as an optimizer to interpret language supervision and update non-parametric variables according to intricate objectives. In this survey, we refer to this paradigm as training of scaffolded LMs with language supervision. A key feature of non-parametric training is the ability to learn from language. Parametric training excels in learning from demonstration (supervised learning), exploration (reinforcement learning), or observations (unsupervised learning), using well-defined loss functions. Language-based optimization enables rich, interpretable, and expressive objectives, while mitigating issues like catastrophic forgetting and supporting compatibility with closed-source models. Furthermore, agents are increasingly deployed as co-workers in real-world applications such as Copilot in Office tools or software development. In these mixed-autonomy settings, where control and decision-making are shared between human and AI, users point out errors or suggest corrections. Accordingly, we discuss agents that continuously improve by learning from this real-time, language-based feedback and refer to this setting as streaming learning from language supervision.
On the Role of Speech Data in Reducing Toxicity Detection Bias NAACL 2025
Text toxicity detection systems exhibit significant biases, producing disproportionate rates of false positives on samples mentioning demographic groups. But what about toxicity detection in speech? To investigate the extent to which text-based biases are mitigated by speech-based systems, we produce a set of high-quality group annotations for the multilingual MuTox dataset, and then leverage these annotations to systematically compare speech- and text-based toxicity classifiers. Our findings indicate that access to speech data during inference supports reduced bias against group mentions, particularly for ambiguous and disagreement-inducing samples. Our results also suggest that improving classifiers, rather than transcription pipelines, is more helpful for reducing group bias. We publicly release our annotations and provide recommendations for future toxicity dataset construction.
comment: Accepted at NAACL 2025
Zero-Shot Statistical Tests for LLM-Generated Text Detection using Finite Sample Concentration Inequalities
Verifying the provenance of content is crucial to the function of many organizations, e.g., educational institutions, social media platforms, firms, etc. This problem is becoming increasingly challenging as text generated by Large Language Models (LLMs) becomes almost indistinguishable from human-generated content. In addition, many institutions utilize in-house LLMs and want to ensure that external, non-sanctioned LLMs do not produce content within the institution. In this paper, we answer the following question: Given a piece of text, can we identify whether it was produced by a particular LLM or not? We model LLM-generated text as a sequential stochastic process with complete dependence on history. We then design zero-shot statistical tests to (i) distinguish between text generated by two different known sets of LLMs $A$ (non-sanctioned) and $B$ (in-house), and (ii) identify whether text was generated by a known LLM or generated by any unknown model, e.g., a human or some other language generation process. We prove that the type I and type II errors of our test decrease exponentially with the length of the text. For that, we show that if $B$ generates the text, then except with an exponentially small probability in string length, the log-perplexity of the string under $A$ converges to the average cross-entropy of $B$ and $A$. We then present experiments using LLMs with white-box access to support our theoretical results and empirically examine the robustness of our results to black-box settings and adversarial attacks. In the black-box setting, our method achieves an average TPR of 82.5\% at a fixed FPR of 5\%. Under adversarial perturbations, our minimum TPR is 48.6\% at the same FPR threshold. Both results outperform all non-commercial baselines. See https://github.com/TaraRadvand74/llm-text-detection for code, data, and an online demo of the project.
iAgent: LLM Agent as a Shield between User and Recommender Systems ACL 2025
Traditional recommender systems usually take the user-platform paradigm, where users are directly exposed under the control of the platform's recommendation algorithms. However, the defect of recommendation algorithms may put users in very vulnerable positions under this paradigm. First, many sophisticated models are often designed with commercial objectives in mind, focusing on the platform's benefits, which may hinder their ability to protect and capture users' true interests. Second, these models are typically optimized using data from all users, which may overlook individual user's preferences. Due to these shortcomings, users may experience several disadvantages under the traditional user-platform direct exposure paradigm, such as lack of control over the recommender system, potential manipulation by the platform, echo chamber effects, or lack of personalization for less active users due to the dominance of active users during collaborative learning. Therefore, there is an urgent need to develop a new paradigm to protect user interests and alleviate these issues. Recently, some researchers have introduced LLM agents to simulate user behaviors, these approaches primarily aim to optimize platform-side performance, leaving core issues in recommender systems unresolved. To address these limitations, we propose a new user-agent-platform paradigm, where agent serves as the protective shield between user and recommender system that enables indirect exposure.
comment: Findings of ACL 2025 and WWW2025@HCRS
Does Reinforcement Learning Really Incentivize Reasoning Capacity in LLMs Beyond the Base Model?
Reinforcement Learning with Verifiable Rewards (RLVR) has recently demonstrated notable success in enhancing the reasoning performance of large language models (LLMs), particularly on mathematics and programming tasks. Similar to how traditional RL helps agents explore and learn new strategies, RLVR is believed to enable LLMs to continuously self-improve, thus acquiring novel reasoning abilities beyond those of the corresponding base models. In this study we critically examine the current state of RLVR by systematically probing the reasoning capability boundaries of RLVR-trained LLMs across various model families, RL algorithms, and math, coding, and visual reasoning benchmarks, using pass@k at large k values as the evaluation metric. Surprisingly, we find that the current training setup does not elicit fundamentally new reasoning patterns. While RLVR-trained models outperform their base models at small k (e.g., k = 1), the base models achieve a higher pass@k score when k is large. Coverage and perplexity analyses show that the observed reasoning abilities originate from and are bounded by the base model. Treating the base model as an upper bound, our quantitative analysis shows that six popular RLVR algorithms perform similarly and remain far from optimal in leveraging the potential of the base model. By contrast, we find that distillation can introduce new reasoning patterns from the teacher and genuinely expand the model's reasoning capabilities. Overall, our findings suggest that current RLVR methods have not yet realized the potential of RL to elicit truly novel reasoning abilities in LLMs. This highlights the need for improved RL paradigms, such as continual scaling and multi-turn agent-environment interaction, to unlock this potential.
comment: 30 pages, 27 figures
Mask-Enhanced Autoregressive Prediction: Pay Less Attention to Learn More
Large Language Models (LLMs) are discovered to suffer from accurately retrieving key information. To address this, we propose Mask-Enhanced Autoregressive Prediction (MEAP), a simple yet effective training paradigm that seamlessly integrates Masked Language Modeling (MLM) into Next-Token Prediction (NTP) to enhance the latter's in-context retrieval capabilities. Specifically, MEAP first randomly masks a small fraction of input tokens and then directly performs the standard next-token prediction autoregressive using a decoder-only Transformer. MEAP eliminates the need for bidirectional attention or encoder-decoder architectures for MLM, incurring no additional computational overhead during pre-training or inference. Intensive experiments demonstrate that MEAP substantially outperforms NTP on key information retrieval and long-context reasoning tasks, while performing on par or better on commonsense reasoning tasks. The benefits of MEAP also extend to supervised fine-tuning, where it shows remarkable advantages in lost-in-the-middle scenarios, outperforming NTP by 11.77 percentage points. Our analysis indicates that MEAP's effectiveness arises from its ability to promote more distinguishable attention scores by concentrating on a reduced set of non-masked tokens. This mechanism improves the model's focus on task-relevant signals while mitigating the influence of peripheral context. These findings position MEAP as a promising training paradigm for large language models.
comment: 17 pages,7 figures
FOReCAst: The Future Outcome Reasoning and Confidence Assessment Benchmark
Forecasting is an important task in many domains, such as technology and economics. However existing forecasting benchmarks largely lack comprehensive confidence assessment, focus on limited question types, and often consist of artificial questions that do not align with real-world human forecasting needs. To address these gaps, we introduce FOReCAst (Future Outcome Reasoning and Confidence Assessment), a benchmark that evaluates models' ability to make predictions and their confidence in them. FOReCAst spans diverse forecasting scenarios involving Boolean questions, timeframe prediction, and quantity estimation, enabling a comprehensive evaluation of both prediction accuracy and confidence calibration for real-world applications.
Can Authorship Attribution Models Distinguish Speakers in Speech Transcripts?
Authorship verification is the task of determining if two distinct writing samples share the same author and is typically concerned with the attribution of written text. In this paper, we explore the attribution of transcribed speech, which poses novel challenges. The main challenge is that many stylistic features, such as punctuation and capitalization, are not informative in this setting. On the other hand, transcribed speech exhibits other patterns, such as filler words and backchannels (e.g., 'um', 'uh-huh'), which may be characteristic of different speakers. We propose a new benchmark for speaker attribution focused on human-transcribed conversational speech transcripts. To limit spurious associations of speakers with topic, we employ both conversation prompts and speakers participating in the same conversation to construct verification trials of varying difficulties. We establish the state of the art on this new benchmark by comparing a suite of neural and non-neural baselines, finding that although written text attribution models achieve surprisingly good performance in certain settings, they perform markedly worse as conversational topic is increasingly controlled. We present analyses of the impact of transcription style on performance as well as the ability of fine-tuning on speech transcripts to improve performance.
comment: Published in Transactions of the Association for Computational Linguistics; 1st revision includes additional experiments and evaluations; 2nd revision includes minor tweak to TFIDF table numbers
Mixture of Routers
Supervised fine-tuning (SFT) is a milestone in aligning large language models with human instructions and adapting them to downstream tasks. In particular, Low-Rank Adaptation (LoRA) has gained widespread attention due to its parameter efficiency. However, its impact on improving the performance of large models remains limited. Recent studies suggest that combining LoRA with Mixture-of-Experts (MoE) can significantly enhance fine-tuning performance. MoE adapts to the diversity and complexity of datasets by dynamically selecting the most suitable experts, thereby improving task accuracy and efficiency. Despite impressive results, recent studies reveal issues in the MoE routing mechanism, such as incorrect assignments and imbalanced expert allocation. Inspired by the principles of Redundancy and Fault Tolerance Theory. We innovatively integrate the concept of Mixture of Experts into the routing mechanism and propose an efficient fine-tuning method called Mixture of Routers (MoR). It employs multiple sub-routers for joint selection and uses a learnable main router to determine the weights of the sub-routers. The results show that MoR outperforms baseline models on most tasks, achieving an average performance improvement of 1%. MoR can serve as a plug-and-play, parameter-efficient fine-tuning method suitable for a wide range of applications. Our code is available here: https://anonymous.4open.science/r/MoR-DFC6.
comment: 10 pages,4 figures
XRAG: eXamining the Core -- Benchmarking Foundational Components in Advanced Retrieval-Augmented Generation
Retrieval-augmented generation (RAG) synergizes the retrieval of pertinent data with the generative capabilities of Large Language Models (LLMs), ensuring that the generated output is not only contextually relevant but also accurate and current. We introduce XRAG, an open-source, modular codebase that facilitates exhaustive evaluation of the performance of foundational components of advanced RAG modules. These components are systematically categorized into four core phases: pre-retrieval, retrieval, post-retrieval, and generation. We systematically analyse them across reconfigured datasets, providing a comprehensive benchmark for their effectiveness. As the complexity of RAG systems continues to escalate, we underscore the critical need to identify potential failure points in RAG systems. We formulate a suite of experimental methodologies and diagnostic testing protocols to dissect the failure points inherent in RAG engineering. Subsequently, we proffer bespoke solutions aimed at bolstering the overall performance of these modules. Our work thoroughly evaluates the performance of advanced core components in RAG systems, providing insights into optimizations for prevalent failure points.
Thousand Voices of Trauma: A Large-Scale Synthetic Dataset for Modeling Prolonged Exposure Therapy Conversations
The advancement of AI systems for mental health support is hindered by limited access to therapeutic conversation data, particularly for trauma treatment. We present Thousand Voices of Trauma, a synthetic benchmark dataset of 3,000 therapy conversations based on Prolonged Exposure therapy protocols for Post-traumatic Stress Disorder (PTSD). The dataset comprises 500 unique cases, each explored through six conversational perspectives that mirror the progression of therapy from initial anxiety to peak distress to emotional processing. We incorporated diverse demographic profiles (ages 18-80, M=49.3, 49.4% male, 44.4% female, 6.2% non-binary), 20 trauma types, and 10 trauma-related behaviors using deterministic and probabilistic generation methods. Analysis reveals realistic distributions of trauma types (witnessing violence 10.6%, bullying 10.2%) and symptoms (nightmares 23.4%, substance abuse 20.8%). Clinical experts validated the dataset's therapeutic fidelity, highlighting its emotional depth while suggesting refinements for greater authenticity. We also developed an emotional trajectory benchmark with standardized metrics for evaluating model responses. This privacy-preserving dataset addresses critical gaps in trauma-focused mental health data, offering a valuable resource for advancing both patient-facing applications and clinician training tools.
comment: 22 pages, 6 figures Updated Appendix with example model responses
ZeroSearch: Incentivize the Search Capability of LLMs without Searching
Effective information searching is essential for enhancing the reasoning and generation capabilities of large language models (LLMs). Recent research has explored using reinforcement learning (RL) to improve LLMs' search capabilities by interacting with live search engines in real-world environments. While these approaches show promising results, they face two major challenges: (1) Uncontrolled Document Quality: The quality of documents returned by search engines is often unpredictable, introducing noise and instability into the training process. (2) Prohibitively High API Costs: RL training requires frequent rollouts, potentially involving hundreds of thousands of search requests, which incur substantial API expenses and severely constrain scalability. To address these challenges, we introduce ZeroSearch, a novel RL framework that incentivizes the capabilities of LLMs to use a real search engine with simulated searches during training. Our approach begins with lightweight supervised fine-tuning to transform the LLM into a retrieval module capable of generating both useful and noisy documents in response to a query. During RL training, we employ a curriculum-based rollout strategy that incrementally degrades the quality of generated documents, progressively eliciting the model's reasoning ability by exposing it to increasingly challenging retrieval scenarios. Extensive experiments demonstrate that ZeroSearch effectively incentivizes the search capabilities of LLMs using a 3B LLM as the retrieval module. Remarkably, a 7B retrieval module achieves comparable performance to the real search engine, while a 14B retrieval module even surpasses it. Furthermore, it generalizes well across both base and instruction-tuned models of various parameter sizes and is compatible with a wide range of RL algorithms.
Safety Evaluation and Enhancement of DeepSeek Models in Chinese Contexts
DeepSeek-R1, renowned for its exceptional reasoning capabilities and open-source strategy, is significantly influencing the global artificial intelligence landscape. However, it exhibits notable safety shortcomings. Recent research conducted by Robust Intelligence, a subsidiary of Cisco, in collaboration with the University of Pennsylvania, revealed that DeepSeek-R1 achieves a 100\% attack success rate when processing harmful prompts. Furthermore, multiple security firms and research institutions have identified critical security vulnerabilities within the model. Although China Unicom has uncovered safety vulnerabilities of R1 in Chinese contexts, the safety capabilities of the remaining distilled models in the R1 series have not yet been comprehensively evaluated. To address this gap, this study utilizes the comprehensive Chinese safety benchmark CHiSafetyBench to conduct an in-depth safety evaluation of the DeepSeek-R1 series distilled models. The objective is to assess the safety capabilities of these models in Chinese contexts both before and after distillation, and to further elucidate the adverse effects of distillation on model safety. Building on these findings, we implement targeted safety enhancements for the entire DeepSeek-R1 model series. Evaluation results indicate that the enhanced models achieve significant improvements in safety while maintaining reasoning capabilities without notable degradation. We open-source the safety-enhanced models at https://github.com/UnicomAI/DeepSeek-R1-Safe to serve as a valuable resource for future research and optimization of DeepSeek models.
comment: 21 pages, 13 figures, 4 tables
Re-ranking Using Large Language Models for Mitigating Exposure to Harmful Content on Social Media Platforms ACL 2025
Social media platforms utilize Machine Learning (ML) and Artificial Intelligence (AI) powered recommendation algorithms to maximize user engagement, which can result in inadvertent exposure to harmful content. Current moderation efforts, reliant on classifiers trained with extensive human-annotated data, struggle with scalability and adapting to new forms of harm. To address these challenges, we propose a novel re-ranking approach using Large Language Models (LLMs) in zero-shot and few-shot settings. Our method dynamically assesses and re-ranks content sequences, effectively mitigating harmful content exposure without requiring extensive labeled data. Alongside traditional ranking metrics, we also introduce two new metrics to evaluate the effectiveness of re-ranking in reducing exposure to harmful content. Through experiments on three datasets, three models and across three configurations, we demonstrate that our LLM-based approach significantly outperforms existing proprietary moderation approaches, offering a scalable and adaptable solution for harm mitigation.
comment: Accepted to ACL 2025 Main Conference
Towards Adapting Open-Source Large Language Models for Expert-Level Clinical Note Generation
Proprietary Large Language Models (LLMs) such as GPT-4 and Gemini have demonstrated promising capabilities in clinical text summarization tasks. However, due to patient data privacy concerns and computational costs, many healthcare providers prefer using small, locally-hosted models over external generic LLMs. This study presents a comprehensive domain- and task-specific adaptation process for the open-source LLaMA-2 13 billion parameter model, enabling it to generate high-quality clinical notes from outpatient patient-doctor dialogues. Our process incorporates continued pre-training, supervised fine-tuning, and reinforcement learning from both AI and human feedback. We introduced a new approach, DistillDirect, for performing on-policy reinforcement learning with Gemini 1.0 Pro as the teacher model. Our resulting model, LLaMA-Clinic, can generate clinical notes comparable in quality to those authored by physicians. In a blinded physician reader study, the majority (90.4%) of individual evaluations rated the notes generated by LLaMA-Clinic as "acceptable" or higher across all three criteria: real-world readiness, completeness, and accuracy. In the more challenging "Assessment and Plan" section, LLaMA-Clinic scored higher (4.2/5) in real-world readiness than physician-authored notes (4.1/5). We highlight key considerations for future clinical note-generation tasks, emphasizing the importance of pre-defining a best-practice note format, rather than relying on LLMs to determine this for clinical practice.
Customizing Visual-Language Foundation Models for Multi-modal Anomaly Detection and Reasoning
Anomaly detection is vital in various industrial scenarios, including the identification of unusual patterns in production lines and the detection of manufacturing defects for quality control. Existing techniques tend to be specialized in individual scenarios and lack generalization capacities. In this study, our objective is to develop a generic anomaly detection model that can be applied in multiple scenarios. To achieve this, we custom-build generic visual language foundation models that possess extensive knowledge and robust reasoning abilities as anomaly detectors and reasoners. Specifically, we introduce a multi-modal prompting strategy that incorporates domain knowledge from experts as conditions to guide the models. Our approach considers diverse prompt types, including task descriptions, class context, normality rules, and reference images. In addition, we unify the input representation of multi-modality into a 2D image format, enabling multi-modal anomaly detection and reasoning. Our preliminary studies demonstrate that combining visual and language prompts as conditions for customizing the models enhances anomaly detection performance. The customized models showcase the ability to detect anomalies across different data modalities such as images, point clouds, and videos. Qualitative case studies further highlight the anomaly detection and reasoning capabilities, particularly for multi-object scenes and temporal data. Our code is publicly available at https://github.com/Xiaohao-Xu/Customizable-VLM
comment: Best Student Paper Award at IEEE International Conference on Computer Supported Cooperative Work in Design, 2025
How Good is Your Wikipedia? Auditing Data Quality for Low-resource and Multilingual NLP
Wikipedia's perceived high quality and broad language coverage have established it as a fundamental resource in multilingual NLP. In the context of low-resource languages, however, these quality assumptions are increasingly being scrutinised. This paper critically examines the data quality of Wikipedia in a non-English setting by subjecting it to various quality filtering techniques, revealing widespread issues such as a high percentage of one-line articles and duplicate articles. We evaluate the downstream impact of quality filtering on Wikipedia and find that data quality pruning is an effective means for resource-efficient training without hurting performance, especially for low-resource languages. Moreover, we advocate for a shift in perspective from seeking a general definition of data quality towards a more language- and task-specific one. Ultimately, we aim for this study to serve as a guide to using Wikipedia for pretraining in a multilingual setting.
KVShare: An LLM Service System with Efficient and Effective Multi-Tenant KV Cache Reuse
Recent advances in long-text understanding have pushed the context length of large language models (LLMs) up to one million tokens. It boosts LLMs's accuracy and reasoning capacity but causes exorbitant computational costs and unsatisfactory Time to First Token (TTFT). KV cache reuse, which reuses the exact same KV cache of prefixes and templates or shares similar ones but with extra selective recomputation, offers a promising way to tackle this issue. However, prior studies overlook the cross-request KV reuse and the attention deviations introduced by new tokens during the decoding stage. In this paper, we present a KV cache management module that shares the KV cache across requests under multi-tenant scenarios without sacrificing model accuracy. Our system, KVShare, enables accurate and efficient LLM serving by 1) a Dual-Stage High Deviation algorithm (DHD) that conditionally selects a small portion of KV cache to be recomputed during both prefill and decode phases, and 2) a cache-aware scheduler that prioritizes requests based on their KV cache hit rates and orchestrates continuous batching to achieve enhanced system efficiency and faster TTFT. Multi-task experiments conducted on models such as Qwen2.5-7B,Llama3.1-8B and Yi1.5-9B demonstrate that KVShare reduces TTFT by up to 9.39x and increases 1.2x of the throughput compared to the full KV recompute. Moreover, KVShare achieves 20.38% boost in terms of accuracy compared to SOTA methods.
Fourier Transformer: Fast Long Range Modeling by Removing Sequence Redundancy with FFT Operator
The transformer model is known to be computationally demanding, and prohibitively costly for long sequences, as the self-attention module uses a quadratic time and space complexity with respect to sequence length. Many researchers have focused on designing new forms of self-attention or introducing new parameters to overcome this limitation, however a large portion of them prohibits the model to inherit weights from large pretrained models. In this work, the transformer's inefficiency has been taken care of from another perspective. We propose Fourier Transformer, a simple yet effective approach by progressively removing redundancies in hidden sequence using the ready-made Fast Fourier Transform (FFT) operator to perform Discrete Cosine Transformation (DCT). Fourier Transformer is able to significantly reduce computational costs while retain the ability to inherit from various large pretrained models. Experiments show that our model achieves state-of-the-art performances among all transformer-based models on the long-range modeling benchmark LRA with significant improvement in both speed and space. For generative seq-to-seq tasks including CNN/DailyMail and ELI5, by inheriting the BART weights our model outperforms the standard BART and other efficient models. Our code is publicly available at https://github.com/LUMIA-Group/FourierTransformer
TreeKV: Smooth Key-Value Cache Compression with Tree Structures
Efficient key-value (KV) cache compression is critical for scaling transformer-based Large Language Models (LLMs) in long sequences and resource-limited settings. Existing methods evict tokens based on their positions or importance scores, but position-based strategies can miss crucial information outside predefined regions, while those relying on global importance scores resulting in strong regional biases, limiting the KV cache's overall context retention and potentially impairing the performance of LLMs on complex tasks. Our wavelet analysis reveals that as tokens approach the end of sequence, their contributions to generation gradually increase and tends to diverge more from neighboring tokens, indicating a smooth transition with increasing complexity and variability from distant to nearby context. Motivated by this observation, we propose TreeKV, an intuitive, training-free method that employs a tree structure for smooth cache compression. TreeKV maintains a fixed cache size, allowing LLMs to deliver high-quality output even in long text scenarios. Unlike most compression methods, TreeKV is applicable to both the generation and prefilling stages. TreeKV consistently surpasses all baseline models in language modeling tasks on PG19 and OpenWebText2, allowing LLMs trained with short context window to generalize to longer window with a 16x cache reduction. On the Longbench benchmark, TreeKV achieves the best performance with only 6\% of the budget at optimal efficiency.
Balancing LoRA Performance and Efficiency with Simple Shard Sharing
Parameter-Efficient Fine-Tuning (PEFT) methods, particularly Low-Rank Adaptation (LoRA), effectively reduce the number of trainable parameters in Large Language Models (LLMs). However, as model scales continue to grow, the demand for computational resources remains a significant challenge. Existing LoRA variants often struggle to strike an optimal balance between adaptability (model performance and convergence speed) and efficiency (computational overhead, memory usage, and initialization time). This paper introduces FOSSIL(\textbf{F}ramework for \textbf{O}ptimal \textbf{S}hard \textbf{S}haring \textbf{I}ntegration in \textbf{L}oRA), a novel PEFT approach that addresses this trade-off through a simple shard-sharing mechanism. FOSSIL leverages the insight that a low-rank adaptation can be achieved by decomposing the weight matrix into multiple fragment matrices and utilizing a shared, trainable common fragment. This method constructs the low-rank update matrix through the replication of these shared, partitioned shards. We also propose a hardware-efficient and broadly applicable implementation for FOSSIL. Extensive experiments conducted on a range of tasks, alongside a systematic analysis of computational performance, demonstrate FOSSIL's superiority. The results show that FOSSIL significantly outperforms standard LoRA and its prominent variants in both model performance metrics and computational efficiency, including initialization speed and training throughput. By effectively balancing expressive power and resource utilization, FOSSIL offers a compelling solution for efficiently adapting large-scale models.
Divided by discipline? A systematic literature review on the quantification of online sexism and misogyny using a semi-automated approach
Several computational tools have been developed to detect and identify sexism, misogyny, and gender-based hate speech, particularly on online platforms. These tools draw on insights from both social science and computer science. Given the increasing concern over gender-based discrimination in digital spaces, the contested definitions and measurements of sexism, and the rise of interdisciplinary efforts to understand its online manifestations, a systematic literature review is essential for capturing the current state and trajectory of this evolving field. In this review, we make four key contributions: (1) we synthesize the literature into five core themes: definitions of sexism and misogyny, disciplinary divergences, automated detection methods, associated challenges, and design-based interventions; (2) we adopt an interdisciplinary lens, bridging theoretical and methodological divides across disciplines; (3) we highlight critical gaps, including the need for intersectional approaches, the under-representation of non-Western languages and perspectives, and the limited focus on proactive design strategies beyond text classification; and (4) we offer a methodological contribution by applying a rigorous semi-automated systematic review process guided by PRISMA, establishing a replicable standard for future work in this domain. Our findings reveal a clear disciplinary divide in how sexism and misogyny are conceptualized and measured. Through an evidence-based synthesis, we examine how existing studies have attempted to bridge this gap through interdisciplinary collaboration. Drawing on both social science theories and computational modeling practices, we assess the strengths and limitations of current methodologies. Finally, we outline key challenges and future directions for advancing research on the detection and mitigation of online sexism and misogyny.
Parameterized Synthetic Text Generation with SimpleStories
We present SimpleStories, a large synthetic story dataset in simple language, consisting of 2 million samples each in English and Japanese. Through parameterizing prompts at multiple levels of abstraction, we achieve control over story characteristics at scale, inducing syntactic and semantic diversity. Ablations on a newly trained model suite show improved sample efficiency and model interpretability compared to the TinyStories dataset. We open-source all constituent parts of model creation, hoping to enable novel ways to study the end-to-end training process. As a byproduct, we move the frontier regarding the fewest-parameter language model that outputs grammatical natural language.
AI Idea Bench 2025: AI Research Idea Generation Benchmark
Large-scale Language Models (LLMs) have revolutionized human-AI interaction and achieved significant success in the generation of novel ideas. However, current assessments of idea generation overlook crucial factors such as knowledge leakage in LLMs, the absence of open-ended benchmarks with grounded truth, and the limited scope of feasibility analysis constrained by prompt design. These limitations hinder the potential of uncovering groundbreaking research ideas. In this paper, we present AI Idea Bench 2025, a framework designed to quantitatively evaluate and compare the ideas generated by LLMs within the domain of AI research from diverse perspectives. The framework comprises a comprehensive dataset of 3,495 AI papers and their associated inspired works, along with a robust evaluation methodology. This evaluation system gauges idea quality in two dimensions: alignment with the ground-truth content of the original papers and judgment based on general reference material. AI Idea Bench 2025's benchmarking system stands to be an invaluable resource for assessing and comparing idea-generation techniques, thereby facilitating the automation of scientific discovery.
Unveiling Attractor Cycles in Large Language Models: A Dynamical Systems View of Successive Paraphrasing
Dynamical systems theory provides a framework for analyzing iterative processes and evolution over time. Within such systems, repetitive transformations can lead to stable configurations, known as attractors, including fixed points and limit cycles. Applying this perspective to large language models (LLMs), which iteratively map input text to output text, provides a principled approach to characterizing long-term behaviors. Successive paraphrasing serves as a compelling testbed for exploring such dynamics, as paraphrases re-express the same underlying meaning with linguistic variation. Although LLMs are expected to explore a diverse set of paraphrases in the text space, our study reveals that successive paraphrasing converges to stable periodic states, such as 2-period attractor cycles, limiting linguistic diversity. This phenomenon is attributed to the self-reinforcing nature of LLMs, as they iteratively favour and amplify certain textual forms over others. This pattern persists with increasing generation randomness or alternating prompts and LLMs. These findings underscore inherent constraints in LLM generative capability, while offering a novel dynamical systems perspective for studying their expressive potential.
comment: 9 pages
Strategic Collusion of LLM Agents: Market Division in Multi-Commodity Competitions
Machine-learning technologies are seeing increased deployment in real-world market scenarios. In this work, we explore the strategic behaviors of large language models (LLMs) when deployed as autonomous agents in multi-commodity markets, specifically within Cournot competition frameworks. We examine whether LLMs can independently engage in anti-competitive practices such as collusion or, more specifically, market division. Our findings demonstrate that LLMs can effectively monopolize specific commodities by dynamically adjusting their pricing and resource allocation strategies, thereby maximizing profitability without direct human input or explicit collusion commands. These results pose unique challenges and opportunities for businesses looking to integrate AI into strategic roles and for regulatory bodies tasked with maintaining fair and competitive markets. The study provides a foundation for further exploration into the ramifications of deferring high-stakes decisions to LLM-based agents.
Towards Multi-Agent Reasoning Systems for Collaborative Expertise Delegation: An Exploratory Design Study
Designing effective collaboration structure for multi-agent LLM systems to enhance collective reasoning is crucial yet remains under-explored. In this paper, we systematically investigate how collaborative reasoning performance is affected by three key design dimensions: (1) Expertise-Domain Alignment, (2) Collaboration Paradigm (structured workflow vs. diversity-driven integration), and (3) System Scale. Our findings reveal that expertise alignment benefits are highly domain-contingent, proving most effective for contextual reasoning tasks. Furthermore, collaboration focused on integrating diverse knowledge consistently outperforms rigid task decomposition. Finally, we empirically explore the impact of scaling the multi-agent system with expertise specialization and study the computational trade off, highlighting the need for more efficient communication protocol design. This work provides concrete guidelines for configuring specialized multi-agent system and identifies critical architectural trade-offs and bottlenecks for scalable multi-agent reasoning. The code will be made available upon acceptance.
comment: 19 pages
MatryoshkaKV: Adaptive KV Compression via Trainable Orthogonal Projection
KV cache has become a de facto technique for the inference of large language models (LLMs), where tensors of shape (layer number, head number, sequence length, feature dimension) are introduced to cache historical information for self-attention. As the size of the model and data grows, the KV cache can quickly become a bottleneck within the system in both storage and memory transfer. To address this, prior studies usually focus on the first three axes of the cache tensors for compression. This paper supplements them, focusing on the feature dimension axis, by utilizing low-rank projection matrices to transform the cache features into spaces with reduced dimensions. We begin by investigating the canonical orthogonal projection method for data compression through principal component analysis (PCA). We observe the issue with PCA projection where significant performance degradation is observed at low compression rates. To bridge the gap, we propose to directly tune the orthogonal projection matrices with a distillation objective using an elaborate Matryoshka training strategy. After training, we adaptively search for the optimal compression rates for various layers and heads given varying compression budgets. Compared to previous works, our method can easily embrace pre-trained LLMs and hold a smooth tradeoff between performance and compression rate. We empirically witness the high data efficiency of our training procedure and find that our method can sustain over 90% performance with an average KV cache compression rate of 60% (and up to 75% in certain extreme scenarios) for popular LLMs like LLaMA2-7B-base and Mistral-7B-v0.3-base.
Intervention-Aware Forecasting: Breaking Historical Limits from a System Perspective
Traditional time series forecasting methods predominantly rely on historical data patterns, neglecting external interventions that significantly shape future dynamics. Through control-theoretic analysis, we show that the implicit "self-stimulation" assumption limits the accuracy of these forecasts. To overcome this limitation, we propose an Intervention-Aware Time Series Forecasting (IATSF) framework explicitly designed to incorporate external interventions. We particularly emphasize textual interventions due to their unique capability to represent qualitative or uncertain influences inadequately captured by conventional exogenous variables. We propose a leak-free benchmark composed of temporally synchronized textual intervention data across synthetic and real-world scenarios. To rigorously evaluate IATSF, we develop FIATS, a lightweight forecasting model that integrates textual interventions through Channel-Aware Adaptive Sensitivity Modeling (CASM) and Channel-Aware Parameter Sharing (CAPS) mechanisms, enabling the model to adjust its sensitivity to interventions and historical data in a channel-specific manner. Extensive empirical evaluations confirm that FIATS surpasses state-of-the-art methods, highlighting that forecasting improvements stem explicitly from modeling external interventions rather than increased model complexity alone.
Item-Language Model for Conversational Recommendation
Large-language Models (LLMs) have been extremely successful at tasks like complex dialogue understanding, reasoning and coding due to their emergent abilities. These emergent abilities have been extended with multi-modality to include image, audio, and video capabilities. Recommender systems, on the other hand, have been critical for information seeking and item discovery needs. Recently, there have been attempts to apply LLMs for recommendations. One difficulty of current attempts is that the underlying LLM is usually not trained on the recommender system data, which largely contains user interaction signals and is often not publicly available. Another difficulty is user interaction signals often have a different pattern from natural language text, and it is currently unclear if the LLM training setup can learn more non-trivial knowledge from interaction signals compared with traditional recommender system methods. Finally, it is difficult to train multiple LLMs for different use-cases, and to retain the original language and reasoning abilities when learning from recommender system data. To address these three limitations, we propose an Item-Language Model (ILM), which is composed of an item encoder to produce text-aligned item representations that encode user interaction signals, and a frozen LLM that can understand those item representations with preserved pretrained knowledge. We conduct extensive experiments which demonstrate both the importance of the language-alignment and of user interaction knowledge in the item encoder.
comment: 15 pages, 3 figures
Towards understanding evolution of science through language model series
We introduce AnnualBERT, a series of language models designed specifically to capture the temporal evolution of scientific text. Deviating from the prevailing paradigms of subword tokenizations and "one model to rule them all", AnnualBERT adopts whole words as tokens and is composed of a base RoBERTa model pretrained from scratch on the full-text of 1.7 million arXiv papers published until 2008 and a collection of progressively trained models on arXiv papers at an annual basis. We demonstrate the effectiveness of AnnualBERT models by showing that they not only have comparable performances in standard tasks but also achieve state-of-the-art performances on domain-specific NLP tasks as well as link prediction tasks in the arXiv citation network. We then utilize probing tasks to quantify the models' behavior in terms of representation learning and forgetting as time progresses. Our approach enables the pretrained models to not only improve performances on scientific text processing tasks but also to provide insights into the development of scientific discourse over time. The series of the models is available at https://huggingface.co/jd445/AnnualBERTs.
Do Theory of Mind Benchmarks Need Explicit Human-like Reasoning in Language Models?
Theory of Mind (ToM), the ability to attribute mental states to others, is fundamental for human social intelligence and a critical capability for advanced Artificial Intelligence. Recent advancements in Large Language Models (LLMs) have shown promising performance on ToM benchmarks, raising the question: Do these benchmarks necessitate explicit human-like reasoning processes, or can models succeed through alternative strategies? We investigate this question empirically by applying Reinforcement Learning (RL) and Supervised Fine-Tuning (SFT) to LLMs of varying scales (0.5B to 7B parameters) and evaluating them across multiple ToM datasets. Our results reveal a scale-dependent impact of RL: while RL significantly improves accuracy and fosters high-quality, interpretable, and transferable belief-tracking reasoning in larger models (7B), it leads to "reasoning collapse" in smaller models ($\leq$3B), where high accuracy and generalization ability are achieved via drastically shortened, less meaningful responses. Surprisingly, further SFT achieves competitive and generalizable performance across these benchmarks, often matching or exceeding RL models in accuracy, despite not being explicitly trained to produce structured reasoning traces. These findings highlight a critical discrepancy between benchmark accuracy and the nature of learned reasoning. Our work suggests that current ToM benchmarks may be solvable without requiring the explicit, human-like simulation of mental states they were designed to probe. LLMs, particularly when scale is limited or training signals focus solely on output correctness, may leverage alternative rules effective for benchmark data structures.
Sparsing Law: Towards Large Language Models with Greater Activation Sparsity
Activation sparsity denotes the existence of substantial weakly-contributed elements within activation outputs that can be eliminated, benefiting many important applications concerned with large language models (LLMs). Although promoting greater activation sparsity within LLMs deserves deep studies, existing works lack comprehensive and quantitative research on the correlation between activation sparsity and potentially influential factors. In this paper, we present a comprehensive study on the quantitative scaling properties and influential factors of the activation sparsity within decoder-only Transformer-based LLMs. Specifically, we propose PPL-$p\%$ sparsity, a precise and performance-aware activation sparsity metric that is applicable to any activation function. Through extensive experiments, we find several important phenomena. Firstly, different activation functions exhibit comparable performance but opposite training-time sparsity trends. The activation ratio (i.e., $1-\mathrm{sparsity\ ratio}$) evolves as a convergent increasing power-law and decreasing logspace power-law with the amount of training data for SiLU-activated and ReLU-activated LLMs, respectively. These demonstrate that ReLU is more efficient as the activation function than SiLU and can leverage more training data to improve activation sparsity. Secondly, the activation ratio linearly increases with the width-depth ratio below a certain bottleneck point, indicating the potential advantage of a deeper architecture at a fixed parameter scale. Finally, at similar width-depth ratios, we surprisingly find that the limit value of activation sparsity varies weakly with the parameter scale, i.e., the activation patterns within LLMs are insensitive to the parameter scale. These empirical laws towards LLMs with greater activation sparsity have important implications for making LLMs more efficient and interpretable.
comment: 23 pages, 13 figures, 6 tables
From Rankings to Insights: Evaluation Should Shift Focus from Leaderboard to Feedback
Automatic evaluation benchmarks such as MT-Bench, Arena-Hard, and Auto-Arena are seeing growing adoption for the evaluation of Large Language Models (LLMs). Existing research has primarily focused on approximating human-based model rankings using limited data and LLM-as-a-Judge. However, the fundamental premise of these studies, which attempts to replicate human rankings, is flawed. Specifically, these benchmarks typically offer only overall scores, limiting their utility to leaderboard rankings, rather than providing feedback that can guide model optimization and support model profiling. Therefore, we advocate for an evaluation paradigm shift from approximating human-based model rankings to providing feedback with analytical value. To this end, we introduce \textbf{Feedbacker}, an evaluation framework that provides comprehensive and fine-grained results, thereby enabling thorough identification of a model's specific strengths and weaknesses. Such feedback not only supports the targeted optimization of the model but also enhances the understanding of its behavior. Feedbacker comprises three key components: an extensible tree-based query taxonomy builder, an automated query synthesis scheme, and a suite of visualization and analysis tools. Furthermore, we propose a novel LLM-as-a-Judge method: PC$^{2}$ (Pre-Comparison-derived Criteria) pointwise evaluation. This method derives evaluation criteria by pre-comparing the differences between several auxiliary responses, achieving the accuracy of pairwise evaluation while maintaining the time complexity of pointwise evaluation. Finally, leveraging the evaluation results of 17 mainstream LLMs, we demonstrate the usage of Feedbacker and highlight its effectiveness and potential. Our project homepage and dataset are available at https://liudan193.github.io/Feedbacker.
Shuttle Between the Instructions and the Parameters of Large Language Models
The interaction with Large Language Models (LLMs) through instructions has been extensively investigated in the research community. While instructions have been widely used as the guidelines for task solving, this paper further notices that both instructions and parameters are the compression of task data. Therefore, they could be strongly correlated and can be learned to predict one from the other. This paper proposes a novel neural network framework, SHIP (\textbf{Sh}uttle between the \textbf{I}nstructions and the \textbf{P}arameters), to model and learn the mutual mappings between the instructions and the parameters of LLMs. We verify that SHIP can effectively map one of the instructions/parameters to the other by evaluating it on the tasks of instruction deduction and induction. The results show that SHIP performs better than existing baseline methods in terms of deductive capabilities while significantly surpassing them in inductive capabilities. Moreover, SHIP can effectively combine the two mapping processes to perform excellent inductive reasoning. The code and data for this paper are released at https://anonymous.4open.science/r/Shuttle-Between-Instructions-Parameters/.
When to Speak, When to Abstain: Contrastive Decoding with Abstention ACL 2025
Large Language Models (LLMs) demonstrate exceptional performance across diverse tasks by leveraging pre-trained (i.e., parametric) and external (i.e., contextual) knowledge. While substantial efforts have been made to enhance the utilization of both forms of knowledge, situations in which models lack relevant information remain underexplored. To investigate this challenge, we first present a controlled testbed featuring four distinct knowledge access scenarios, including the aforementioned edge case, revealing that conventional LLM usage exhibits insufficient robustness in handling all instances. Addressing this limitation, we propose Contrastive Decoding with Abstention (CDA), a novel training-free decoding method that allows LLMs to generate responses when relevant knowledge is available and to abstain otherwise. CDA estimates the relevance of both knowledge sources for a given input, adaptively deciding which type of information to prioritize and which to exclude. Through extensive experiments, we demonstrate that CDA can effectively perform accurate generation and abstention simultaneously, enhancing reliability and preserving user trust.
comment: ACL 2025 (main)
MIR-Bench: Can Your LLM Recognize Complicated Patterns via Many-Shot In-Context Reasoning?
The ability to recognize patterns from examples and apply them to new ones is a primal ability for general intelligence, and is widely studied by psychology and AI researchers. Many benchmarks have been proposed to measure such ability for Large Language Models (LLMs); however, they focus on few-shot (usually <10) setting and lack evaluation for aggregating many pieces of information from long contexts. On the other hand, the ever-growing context length of LLMs have brought forth the novel paradigm of many-shot In-Context Learning (ICL), which addresses new tasks with hundreds to thousands of examples without expensive and inefficient fine-tuning. However, many-shot evaluations often focus on classification, and popular long-context LLM tasks such as Needle-In-A-Haystack (NIAH) seldom require complicated intelligence for integrating many pieces of information. To fix the issues from both worlds, we propose MIR-Bench, the first many-shot in-context reasoning benchmark for pattern recognition that asks LLM to predict output via input-output examples from underlying functions with diverse data format. Based on MIR-Bench, we study many novel problems for many-shot in-context reasoning, and acquired many insightful findings including scaling effect, robustness, inductive vs. transductive reasoning, retrieval Augmented Generation (RAG), coding for inductive reasoning, cross-domain generalizability, etc.
comment: 36 pages, 11 figures. The last version adds more experiments and modifies name for better summary of the work
TigerLLM -- A Family of Bangla Large Language Models
The development of Large Language Models (LLMs) remains heavily skewed towards English and a few other high-resource languages. This linguistic disparity is particularly evident for Bangla - the 5th most spoken language. A few initiatives attempted to create open-source Bangla LLMs with performance still behind high-resource languages and limited reproducibility. To address this gap, we introduce TigerLLM - a family of Bangla LLMs. Our results demonstrate that these models surpass all open-source alternatives and also outperform larger proprietary models like GPT3.5 across standard benchmarks, establishing TigerLLM as the new baseline for future Bangla language modeling.
Mix Data or Merge Models? Balancing the Helpfulness, Honesty, and Harmlessness of Large Language Model via Model Merging
Achieving balanced alignment of large language models (LLMs) in terms of Helpfulness, Honesty, and Harmlessness (3H optimization) constitutes a cornerstone of responsible AI. Existing methods like data mixture strategies face limitations, including heavy reliance on expert knowledge and conflicting optimization signals. While model merging offers parameter-level conflict-resolution strategies through integrating specialized models' parameters, its potential for 3H optimization remains underexplored. This paper systematically compares the effectiveness of model merging and data mixture methods in constructing 3H-aligned LLMs for the first time, revealing previously overlooked collaborative and conflict relationships among the 3H dimensions and discussing the advantages and drawbacks of data mixture (\textit{data-level}) and model merging (\textit{parameter-level}) methods in mitigating the conflict for balanced 3H optimization. Specially, we propose a novel \textbf{R}eweighting \textbf{E}nhanced task \textbf{S}ingular \textbf{M}erging method, \textbf{RESM}, through outlier weighting and sparsity-aware rank selection strategies to address the challenges of preference noise accumulation and layer sparsity adaptation inherent in 3H-aligned LLM merging. Extensive evaluations can verify the effectiveness and robustness of RESM compared to previous data mixture (2\%-5\% gain) and model merging (1\%-3\% gain) methods in achieving balanced LLM alignment. We release our models through \href{https://huggingface.co/Jinluan}{3H\_Merging} for further investigations.
TestAgent: A Framework for Domain-Adaptive Evaluation of LLMs via Dynamic Benchmark Construction and Exploratory Interaction
As large language models (LLMs) are increasingly deployed to various vertical domains, automatically evaluating their performance across different domains remains a critical challenge. Current evaluation methods often rely on static and resource-intensive datasets that are not aligned with real-world requirements and lack cross-domain adaptability. To address these limitations, we revisit the evaluation process and introduce two key concepts: \textbf{Benchmark+}, which extends the traditional question-answer benchmark into a more flexible ``strategy-criterion'' format; and \textbf{Assessment+}, which enhances the interaction process to facilitate deeper exploration and comprehensive analysis from multiple perspectives. We propose \textbf{\textsc{TestAgent}}, an agent-based evaluation framework that implements these concepts using retrieval-augmented generation and reinforcement learning. \textsc{TestAgent} enables automatic dynamic benchmark generation and in-depth assessment across diverse vertical domains. Experiments on tasks ranging from constructing multiple vertical domain evaluations to transforming static benchmarks into dynamic forms demonstrate the effectiveness of \textsc{TestAgent}. This work provides a novel perspective on automatic evaluation methods for domain-specific LLMs, offering a pathway for domain-adaptive dynamic benchmark construction and exploratory assessment.
Self-Tuning: Instructing LLMs to Effectively Acquire New Knowledge through Self-Teaching ACL 2025
Large language models (LLMs) often struggle to provide up-to-date information due to their one-time training and the constantly evolving nature of the world. To keep LLMs current, existing approaches typically involve continued pre-training on new documents. However, they frequently face difficulties in extracting stored knowledge. Motivated by the remarkable success of the Feynman Technique in efficient human learning, we introduce Self-Tuning, a learning framework aimed at improving an LLM's ability to effectively acquire new knowledge from unseen raw documents through self-teaching. Specifically, we develop a Self-Teaching strategy that augments the documents with a set of knowledge-intensive tasks created in a self-supervised manner, focusing on three crucial aspects: memorization, comprehension, and self-reflection. Additionally, we introduce three Wiki-Newpages-2023-QA datasets to facilitate an in-depth analysis of an LLM's knowledge acquisition ability concerning memorization, extraction, and reasoning. Extensive experimental results on various models, e.g., Llama2-7B reveal that Self-Tuning consistently exhibits superior performance across all knowledge acquisition tasks and excels in preserving previous knowledge.
comment: ACL 2025 Findings
Fine-Tuning Discrete Diffusion Models with Policy Gradient Methods
Discrete diffusion models have recently gained significant attention due to their ability to process complex discrete structures for language modeling. However, fine-tuning these models with policy gradient methods, as is commonly done in Reinforcement Learning from Human Feedback (RLHF), remains a challenging task. We propose an efficient, broadly applicable, and theoretically justified policy gradient algorithm, called Score Entropy Policy Optimization (SEPO), for fine-tuning discrete diffusion models over non-differentiable rewards. Our numerical experiments across several discrete generative tasks demonstrate the scalability and efficiency of our method. Our code is available at https://github.com/ozekri/SEPO.
comment: 30 pages, 8 figures, 8 tables
The Curious Case of Class Accuracy Imbalance in LLMs: Post-hoc Debiasing via Nonlinear Integer Programming
Large language models (LLMs) are good knowledge bases but struggle to perform equally well for all classes in text classification. This paper investigates the case of class accuracy imbalance in LLMs, where deeply entangled pretraining biases and prompt-specific cues contribute to the imbalance. To overcome the difficulty in bias identification and inaccessibility of retraining, we post-hoc balance class accuracy using only output probabilities. This is enabled by reformulating debiasing as a combinatorial optimization problem. In details, we first motivate a post-hoc bias metric, the Contextual Oddity Bias (COBias), to quantify the over-/under-prediction (a tendency to over-predict some classes while under-predicting others) in LLMs. We then propose the Debiasing as Nonlinear Integer Programming (DNIP) method to reweight LLM output class probabilities towards minimizing COBias and max12 imizing overall accuracy, without being constrained by bias sources or updating LLM parameters. Since the DNIP model contains non-differentiable elements, we use simulated annealing to efficiently solve it. Evaluations on five LLMs across NLP classification benchmarks show that DNIP simultaneously achieves signifi16 cant COBias reduction (61% relative reduction) and accuracy improvement (18% relative increase) under different LLM prompting setups.
Investigating Language Preference of Multilingual RAG Systems ACL 2025
Multilingual Retrieval-Augmented Generation (mRAG) systems enhance language models by integrating external multilingual information to produce context-aware responses. However, mRAG systems struggle with retrieving relevant information due to linguistic variations between queries and documents, generating inconsistent responses when multilingual sources conflict. In this work, we systematically investigate language preferences in both retrieval and generation of mRAG through a series of experiments. Our analysis indicates that retrievers tend to prefer high-resource and query languages, yet this preference does not consistently improve generation performance. Moreover, we observe that generators prefer the query language or Latin scripts, leading to inconsistent outputs. To overcome these issues, we propose Dual Knowledge Multilingual RAG (DKM-RAG), a simple yet effective framework that fuses translated multilingual passages with complementary model knowledge. Empirical results demonstrate that DKM-RAG mitigates language preference in generation and enhances performance across diverse linguistic settings.
comment: ACL 2025 Findings
Do we really have to filter out random noise in pre-training data for language models?
Web-scale pre-training datasets are the cornerstone of LLMs' success. However, text data curated from the Internet inevitably contains random noise caused by decoding errors or unregulated web content. In contrast to previous works that focus on low quality or synthetic data, our study \textbf{provides the first systematic investigation of such random noise through a cohesive ``What-Why-How'' framework.} Surprisingly, we observed that the resulting increase in the loss of next-token prediction (NTP) was significantly lower than the proportion of random noise even when the model was scaled up to 2.7B. We provide a theoretical justification for this phenomenon, which also elucidates the success of multilingual models and can be applied to multimodal models. On the other hand, experiments show that the model's performance in downstream tasks is not based solely on the NTP loss, which means that random noise may result in degraded downstream performance. To address the potential adverse effects, we introduce a novel plug-and-play Local Gradient Matching loss, which explicitly enhances the denoising capability of the downstream task head by aligning the gradient of normal and perturbed features without requiring knowledge of the model's parameters. Additional experiments on 8 language and 14 vision benchmarks further validate its effectiveness.
Linear Attention Sequence Parallelism
Sequence parallelism (SP) serves as a prevalent strategy to handle long sequences that exceed the memory limit of a single device. However, for linear sequence modeling methods like linear attention, existing SP approaches do not take advantage of their right-product-first feature, resulting in sub-optimal communication efficiency and usability. In this paper, we introduce Linear Attention Sequence Parallelism (LASP), an efficient SP approach designed for linear attention-based transformer models. Specifically, we design an efficient point-to-point ring-style communication mechanism to leverage the right-product kernel trick of linear attention, which sharply decreases the communication overhead, comparing with existing SP methods. We enhance the computation efficiency of LASP by performing kernel fusion and intermediate state caching, making the implementation of LASP hardware-friendly on GPUs. Furthermore, we meticulously ensure the compatibility of sequence-level LASP with all types of batch-level data parallel methods, which is vital for distributed training on large clusters with very-long sequences. We also discuss the generalization of LASP on other linear sequence modeling methods. Extensive experiments on linear attention-based models are conducted with varying sequence lengths from 2K to 4096K. LASP scales sequence length up to 4096K on 128 GPUs, which is 8$\times$ longer than existing SP methods. Code is available at: https://github.com/OpenNLPLab/LASP.
comment: Accepted by TMLR, 23 pages
Med-R$^2$: Crafting Trustworthy LLM Physicians via Retrieval and Reasoning of Evidence-Based Medicine
Large Language Models (LLMs) have exhibited remarkable capabilities in clinical scenarios. Despite their potential, existing works face challenges when applying LLMs to medical settings. Strategies relying on training with medical datasets are highly cost-intensive and may suffer from outdated training data. Leveraging external knowledge bases is a suitable alternative, yet it faces obstacles such as limited retrieval precision and poor effectiveness in answer extraction. These issues collectively prevent LLMs from demonstrating the expected level of proficiency in mastering medical expertise. To address these challenges, we introduce Med-R^2, a novel LLM physician framework that adheres to the Evidence-Based Medicine (EBM) process, efficiently integrating retrieval mechanisms as well as the selection and reasoning processes of evidence, thereby enhancing the problem-solving capabilities of LLMs in healthcare scenarios and fostering a trustworthy LLM physician. Our comprehensive experiments indicate that Med-R^2 achieves a 14.74\% improvement over vanilla RAG methods and even a 3.32\% enhancement compared to fine-tuning strategies, without incurring additional training costs.
Safety in Large Reasoning Models: A Survey
Large Reasoning Models (LRMs) have exhibited extraordinary prowess in tasks like mathematics and coding, leveraging their advanced reasoning capabilities. Nevertheless, as these capabilities progress, significant concerns regarding their vulnerabilities and safety have arisen, which can pose challenges to their deployment and application in real-world settings. This paper presents a comprehensive survey of LRMs, meticulously exploring and summarizing the newly emerged safety risks, attacks, and defense strategies. By organizing these elements into a detailed taxonomy, this work aims to offer a clear and structured understanding of the current safety landscape of LRMs, facilitating future research and development to enhance the security and reliability of these powerful models.
Structured Preference Optimization for Vision-Language Long-Horizon Task Planning
Existing methods for vision-language task planning excel in short-horizon tasks but often fall short in complex, long-horizon planning within dynamic environments. These challenges primarily arise from the difficulty of effectively training models to produce high-quality reasoning processes for long-horizon tasks. To address this, we propose Structured Preference Optimization (SPO), which aims to enhance reasoning and action selection in long-horizon task planning through structured preference evaluation and optimized training strategies. Specifically, SPO introduces: 1) Preference-Based Scoring and Optimization, which systematically evaluates reasoning chains based on task relevance, visual grounding, and historical consistency; and 2) Curriculum-Guided Training, where the model progressively adapts from simple to complex tasks, improving its generalization ability in long-horizon scenarios and enhancing reasoning robustness. To advance research in vision-language long-horizon task planning, we introduce ExtendaBench, a comprehensive benchmark covering 1,509 tasks across VirtualHome and Habitat 2.0, categorized into ultra-short, short, medium, and long tasks. Experimental results demonstrate that SPO significantly improves reasoning quality and final decision accuracy, outperforming prior methods on long-horizon tasks and underscoring the effectiveness of preference-driven optimization in vision-language task planning. Specifically, SPO achieves a +5.98% GCR and +4.68% SR improvement in VirtualHome and a +3.30% GCR and +2.11% SR improvement in Habitat over the best-performing baselines.
comment: 18 pages
DynamicRAG: Leveraging Outputs of Large Language Model as Feedback for Dynamic Reranking in Retrieval-Augmented Generation
Retrieval-augmented generation (RAG) systems combine large language models (LLMs) with external knowledge retrieval, making them highly effective for knowledge-intensive tasks. A crucial but often under-explored component of these systems is the reranker. Since irrelevant documents in RAG systems can mislead the generator, the reranker plays a vital role in refining retrieved documents to enhance generation quality and explainability. However, it is challenging to determine the appropriate number of documents ($k$) that the reranker should select: too few may result in missing critical information, while too many introduce noise and inefficiencies. Although recent studies have explored LLM-based rerankers, they primarily leverage internal model knowledge and overlook the rich supervisory signals that LLMs can provide, such as using response quality as feedback for optimizing reranking decisions. In this paper, we propose DynamicRAG, a novel RAG framework where the reranker dynamically adjusts both the order and number of retrieved documents based on the query. We model the reranker as an agent optimized through reinforcement learning (RL), using rewards derived from LLM output quality. Across seven knowledge-intensive datasets, DynamicRAG demonstrates superior performance, achieving state-of-the-art results among models of same parameter sizes. The model, data and code are available at https://github.com/GasolSun36/DynamicRAG.
comment: 24 pages, 7 figures, 15 tables
UniHR: Hierarchical Representation Learning for Unified Knowledge Graph Link Prediction
Beyond-triple fact representations including hyper-relational facts with auxiliary key-value pairs, temporal facts with additional timestamps, and nested facts implying relationships between facts, are gaining significant attention. However, constrained by complex fact representation forms, existing link prediction models for beyond-triple facts have difficulty achieving hierarchical fact modeling and generalizing the modules for one specific facts to other fact types. To overcome this limitation, we propose a Unified Hierarchical Representation learning framework (UniHR) for unified knowledge graph link prediction. It consists of a unified Hierarchical Data Representation (HiDR) module and a unified Hierarchical Structure Learning (HiSL) module as graph encoder. The HiDR module unifies hyper-relational KGs, temporal KGs, and nested factual KGs into triple-based representations. Then HiSL incorporates intra-fact and inter-fact message passing, focusing on enhancing the semantic information within individual facts and enriching the structural information between facts. Empirical results demonstrate the effectiveness of UniHR and highlight the strong potential of unified representations. Code and data are available at https://github.com/Lza12a/UniHR.
Insertion Language Models: Sequence Generation with Arbitrary-Position Insertions
Autoregressive models (ARMs), which predict subsequent tokens one-by-one ``from left to right,'' have achieved significant success across a wide range of sequence generation tasks. However, they struggle to accurately represent sequences that require satisfying sophisticated constraints or whose sequential dependencies are better addressed by out-of-order generation. Masked Diffusion Models (MDMs) address some of these limitations, but the process of unmasking multiple tokens simultaneously in MDMs can introduce incoherences, and MDMs cannot handle arbitrary infilling constraints when the number of tokens to be filled in is not known in advance. In this work, we introduce Insertion Language Models (ILMs), which learn to insert tokens at arbitrary positions in a sequence -- that is, they select jointly both the position and the vocabulary element to be inserted. By inserting tokens one at a time, ILMs can represent strong dependencies between tokens, and their ability to generate sequences in arbitrary order allows them to accurately model sequences where token dependencies do not follow a left-to-right sequential structure. To train ILMs, we propose a tailored network parameterization and use a simple denoising objective. Our empirical evaluation demonstrates that ILMs outperform both ARMs and MDMs on common planning tasks. Furthermore, we show that ILMs outperform MDMs and perform on par with ARMs in an unconditional text generation task while offering greater flexibility than MDMs in arbitrary-length text infilling.
comment: Corrected a typo in author names
Know Your Mistakes: Towards Preventing Overreliance on Task-Oriented Conversational AI Through Accountability Modeling ACL 2025
Recent LLMs have enabled significant advancements for conversational agents. However, they are also well known to hallucinate, producing responses that seem plausible but are factually incorrect. On the other hand, users tend to over-rely on LLM-based AI agents, accepting AI's suggestion even when it is wrong. Adding positive friction, such as explanations or getting user confirmations, has been proposed as a mitigation in AI-supported decision-making systems. In this paper, we propose an accountability model for LLM-based task-oriented dialogue agents to address user overreliance via friction turns in cases of model uncertainty and errors associated with dialogue state tracking (DST). The accountability model is an augmented LLM with an additional accountability head that functions as a binary classifier to predict the relevant slots of the dialogue state mentioned in the conversation. We perform our experiments with multiple backbone LLMs on two established benchmarks (MultiWOZ and Snips). Our empirical findings demonstrate that the proposed approach not only enables reliable estimation of AI agent errors but also guides the decoder in generating more accurate actions. We observe around 3% absolute improvement in joint goal accuracy (JGA) of DST output by incorporating accountability heads into modern LLMs. Self-correcting the detected errors further increases the JGA from 67.13 to 70.51, achieving state-of-the-art DST performance. Finally, we show that error correction through user confirmations (friction turn) achieves a similar performance gain, highlighting its potential to reduce user overreliance.
comment: Accepted at ACL 2025 Main Conference
Call for Rigor in Reporting Quality of Instruction Tuning Data ACL2025
Instruction tuning is crucial for adapting large language models (LLMs) to align with user intentions. Numerous studies emphasize the significance of the quality of instruction tuning (IT) data, revealing a strong correlation between IT data quality and the alignment performance of LLMs. In these studies, the quality of IT data is typically assessed by evaluating the performance of LLMs trained with that data. However, we identified a prevalent issue in such practice: hyperparameters for training models are often selected arbitrarily without adequate justification. We observed significant variations in hyperparameters applied across different studies, even when training the same model with the same data. In this study, we demonstrate the potential problems arising from this practice and emphasize the need for careful consideration in verifying data quality. Through our experiments on the quality of LIMA data and a selected set of 1,000 Alpaca data points, we demonstrate that arbitrary hyperparameter decisions can make any arbitrary conclusion.
comment: Accepted to the ACL2025-main
ShifCon: Enhancing Non-Dominant Language Capabilities with a Shift-based Contrastive Framework
Although fine-tuning Large Language Models (LLMs) with multilingual data can rapidly enhance the multilingual capabilities of LLMs, they still exhibit a performance gap between the dominant language (e.g., English) and non-dominant ones due to the imbalance of training data across languages. To further enhance the performance of non-dominant languages, we propose ShifCon, a Shift-based Contrastive framework that aligns the internal forward process of other languages toward that of the dominant one. Specifically, it shifts the representations of non-dominant languages into the dominant language subspace, allowing them to access relatively rich information encoded in the model parameters. The enriched representations are then shifted back into their original language subspace before generation. Moreover, we introduce a subspace distance metric to pinpoint the optimal layer area for shifting representations and employ multilingual contrastive learning to further enhance the alignment of representations within this area. Experiments demonstrate that our ShifCon framework significantly enhances the performance of non-dominant languages, particularly for low-resource ones. Further analysis offers extra insights to verify the effectiveness of ShifCon and propel future research
comment: 23 pages, 11 figures
What External Knowledge is Preferred by LLMs? Characterizing and Exploring Chain of Evidence in Imperfect Context
Incorporating external knowledge into large language models (LLMs) has emerged as a promising approach to mitigate outdated knowledge and hallucination in LLMs. However, external knowledge is often imperfect. In addition to useful knowledge, external knowledge is rich in irrelevant or misinformation in the context that can impair the reliability of LLM responses. This paper focuses on LLMs' preferred external knowledge in imperfect contexts when handling multi-hop QA. Inspired by criminal procedural law's Chain of Evidence (CoE), we characterize that knowledge preferred by LLMs should maintain both relevance to the question and mutual support among knowledge pieces. Accordingly, we propose an automated CoE discrimination approach and evaluate LLMs' effectiveness, faithfulness and robustness with CoE, including its application in the Retrieval-Augmented Generation (RAG). Tests on five LLMs show CoE improves generation accuracy, answer faithfulness, robustness to knowledge conflicts, and boosts the performance of existing approaches in three practical RAG scenarios.
comment: 15 pages, 5 figures
Grounding Synthetic Data Evaluations of Language Models in Unsupervised Document Corpora
Language Models (LMs) continue to advance, improving response quality and coherence. Given Internet-scale training datasets, LMs have likely encountered much of what users may ask them to generate in some form during their training. A plethora of evaluation benchmarks have been constructed to assess model quality, response appropriateness, and reasoning capabilities. However, the human effort required for benchmark construction is rapidly being outpaced by the size and scope of the models under evaluation. Having humans build a benchmark for every possible domain of interest is impractical. Therefore, we propose a methodology for automating the construction of fact-based synthetic data model evaluations grounded in document populations. This work leverages the same LMs to evaluate domain-specific knowledge automatically, using only grounding documents (e.g., a textbook) as input. This synthetic data benchmarking approach corresponds well with human curated questions producing a Spearman ranking correlation of 0.97 and a benchmark evaluation Pearson accuracy correlation of 0.75. This novel approach supports generating both multiple choice and open-ended synthetic data questions to gain diagnostic insight of LM capability. We apply this methodology to evaluate model performance on two recent arXiv preprints, discovering a surprisingly strong performance from Gemma-3 models on open-ended questions. Code is available at https://github.com/mmajurski/grounded-synth-lm-benchmark
LLM Content Moderation and User Satisfaction: Evidence from Response Refusals in Chatbot Arena
LLM safety and ethical alignment are widely discussed, but the impact of content moderation on user satisfaction remains underexplored. In particular, little is known about how users respond when models refuse to answer a prompt-one of the primary mechanisms used to enforce ethical boundaries in LLMs. We address this gap by analyzing nearly 50,000 model comparisons from Chatbot Arena, a platform where users indicate their preferred LLM response in pairwise matchups, providing a large-scale setting for studying real-world user preferences. Using a novel RoBERTa-based refusal classifier fine-tuned on a hand-labeled dataset, we distinguish between refusals due to ethical concerns and technical limitations. Our results reveal a substantial refusal penalty: ethical refusals yield significantly lower win rates than both technical refusals and standard responses, indicating that users are especially dissatisfied when models decline a task for ethical reasons. However, this penalty is not uniform. Refusals receive more favorable evaluations when the underlying prompt is highly sensitive (e.g., involving illegal content), and when the refusal is phrased in a detailed and contextually aligned manner. These findings underscore a core tension in LLM design: safety-aligned behaviors may conflict with user expectations, calling for more adaptive moderation strategies that account for context and presentation.
TigerLLM - A Family of Bangla Large Language Models
The development of Large Language Models (LLMs) remains heavily skewed towards English and a few other high-resource languages. This linguistic disparity is particularly evident for Bangla - the 5th most spoken language. A few initiatives attempted to create open-source Bangla LLMs with performance still behind high-resource languages and limited reproducibility. To address this gap, we introduce TigerLLM - a family of Bangla LLMs. Our results demonstrate that these models surpass all open-source alternatives and also outperform larger proprietary models like GPT3.5 across standard benchmarks, establishing TigerLLM as the new baseline for future Bangla language modeling.
Human-Computer Interaction
EdgeWisePersona: A Dataset for On-Device User Profiling from Natural Language Interactions
This paper introduces a novel dataset and evaluation benchmark designed to assess and improve small language models deployable on edge devices, with a focus on user profiling from multi-session natural language interactions in smart home environments. At the core of the dataset are structured user profiles, each defined by a set of routines - context-triggered, repeatable patterns of behavior that govern how users interact with their home systems. Using these profiles as input, a large language model (LLM) generates corresponding interaction sessions that simulate realistic, diverse, and context-aware dialogues between users and their devices. The primary task supported by this dataset is profile reconstruction: inferring user routines and preferences solely from interactions history. To assess how well current models can perform this task under realistic conditions, we benchmarked several state-of-the-art compact language models and compared their performance against large foundation models. Our results show that while small models demonstrate some capability in reconstructing profiles, they still fall significantly short of large models in accurately capturing user behavior. This performance gap poses a major challenge - particularly because on-device processing offers critical advantages, such as preserving user privacy, minimizing latency, and enabling personalized experiences without reliance on the cloud. By providing a realistic, structured testbed for developing and evaluating behavioral modeling under these constraints, our dataset represents a key step toward enabling intelligent, privacy-respecting AI systems that learn and adapt directly on user-owned devices.
Large Language Model Use Impact Locus of Control
As AI tools increasingly shape how we write, they may also quietly reshape how we perceive ourselves. This paper explores the psychological impact of co-writing with AI on people's locus of control. Through an empirical study with 462 participants, we found that employment status plays a critical role in shaping users' reliance on AI and their locus of control. Current results demonstrated that employed participants displayed higher reliance on AI and a shift toward internal control, while unemployed users tended to experience a reduction in personal agency. Through quantitative results and qualitative observations, this study opens a broader conversation about AI's role in shaping personal agency and identity.
Learning Multimodal AI Algorithms for Amplifying Limited User Input into High-dimensional Control Space
Current invasive assistive technologies are designed to infer high-dimensional motor control signals from severely paralyzed patients. However, they face significant challenges, including public acceptance, limited longevity, and barriers to commercialization. Meanwhile, noninvasive alternatives often rely on artifact-prone signals, require lengthy user training, and struggle to deliver robust high-dimensional control for dexterous tasks. To address these issues, this study introduces a novel human-centered multimodal AI approach as intelligent compensatory mechanisms for lost motor functions that could potentially enable patients with severe paralysis to control high-dimensional assistive devices, such as dexterous robotic arms, using limited and noninvasive inputs. In contrast to the current state-of-the-art (SoTA) noninvasive approaches, our context-aware, multimodal shared-autonomy framework integrates deep reinforcement learning algorithms to blend limited low-dimensional user input with real-time environmental perception, enabling adaptive, dynamic, and intelligent interpretation of human intent for complex dexterous manipulation tasks, such as pick-and-place. The results from our ARAS (Adaptive Reinforcement learning for Amplification of limited inputs in Shared autonomy) trained with synthetic users over 50,000 computer simulation episodes demonstrated the first successful implementation of the proposed closed-loop human-in-the-loop paradigm, outperforming the SoTA shared autonomy algorithms. Following a zero-shot sim-to-real transfer, ARAS was evaluated on 23 human subjects, demonstrating high accuracy in dynamic intent detection and smooth, stable 3D trajectory control for dexterous pick-and-place tasks. ARAS user study achieved a high task success rate of 92.88%, with short completion times comparable to those of SoTA invasive assistive technologies.
Audio Turing Test: Benchmarking the Human-likeness of Large Language Model-based Text-to-Speech Systems in Chinese
Recent advances in large language models (LLMs) have significantly improved text-to-speech (TTS) systems, enhancing control over speech style, naturalness, and emotional expression, which brings TTS Systems closer to human-level performance. Although the Mean Opinion Score (MOS) remains the standard for TTS System evaluation, it suffers from subjectivity, environmental inconsistencies, and limited interpretability. Existing evaluation datasets also lack a multi-dimensional design, often neglecting factors such as speaking styles, context diversity, and trap utterances, which is particularly evident in Chinese TTS evaluation. To address these challenges, we introduce the Audio Turing Test (ATT), a multi-dimensional Chinese corpus dataset ATT-Corpus paired with a simple, Turing-Test-inspired evaluation protocol. Instead of relying on complex MOS scales or direct model comparisons, ATT asks evaluators to judge whether a voice sounds human. This simplification reduces rating bias and improves evaluation robustness. To further support rapid model development, we also finetune Qwen2-Audio-Instruct with human judgment data as Auto-ATT for automatic evaluation. Experimental results show that ATT effectively differentiates models across specific capability dimensions using its multi-dimensional design. Auto-ATT also demonstrates strong alignment with human evaluations, confirming its value as a fast and reliable assessment tool. The white-box ATT-Corpus and Auto-ATT can be found in ATT Hugging Face Collection (https://huggingface.co/collections/meituan/audio-turing-test-682446320368164faeaf38a4).
comment: Under Review
Sliding Speed Influences Electrovibration-Induced Finger Friction Dynamics on Touchscreens
Electrovibration technology can render tactile textures on capacitive touchscreens by modulating friction between the finger and the screen through electrostatic attraction force generated by applying an alternating voltage signal to the screen. This signal should be carefully calibrated for realistic and robust texture rendering. However, this process is challenging due to variations in sliding speed, applied force, and individual skin mechanics, which affect friction in complex and unpredictable ways. Here, we investigate how exploration conditions affect electrovibration-induced finger friction on touchscreens and the role of skin mechanics in this process. Ten participants slid their index fingers across an electrovibration-enabled touchscreen at five sliding speeds ($20\sim100$ mm/s) and applied force levels ($0.2\sim0.6$ N) while we measured contact forces and skin accelerations. The touchscreen was excited with amplitude-modulated voltage signals across frequencies relevant to touch. We modeled the finger-touchscreen friction response as a first-order system and the skin mechanics as a mass-spring-damper system. Our results showed that the sliding speed influenced the cutoff frequency of the friction response as well as the moving mass and stiffness of the finger for the tested exploration ranges. Specifically, for every 1 mm/s increase in speed, the cutoff frequency, the finger moving mass, and stiffness increased by $13.8$ Hz, $3.23\times 10^{-5}$ kg, and $4.04$ N/m, respectively. Further correlation analysis revealed that finger stiffness affected the cutoff frequency more than the moving mass. Finally, we developed a practical model for electrovibration-induced finger friction on touchscreens that accounts for sliding speed variations, paving the way for delivering consistent haptic feedback through electrovibration.
comment: 19 pages, 13 figures, journal
X2C: A Dataset Featuring Nuanced Facial Expressions for Realistic Humanoid Imitation
The ability to imitate realistic facial expressions is essential for humanoid robots engaged in affective human-robot communication. However, the lack of datasets containing diverse humanoid facial expressions with proper annotations hinders progress in realistic humanoid facial expression imitation. To address these challenges, we introduce X2C (Anything to Control), a dataset featuring nuanced facial expressions for realistic humanoid imitation. With X2C, we contribute: 1) a high-quality, high-diversity, large-scale dataset comprising 100,000 (image, control value) pairs. Each image depicts a humanoid robot displaying a diverse range of facial expressions, annotated with 30 control values representing the ground-truth expression configuration; 2) X2CNet, a novel human-to-humanoid facial expression imitation framework that learns the correspondence between nuanced humanoid expressions and their underlying control values from X2C. It enables facial expression imitation in the wild for different human performers, providing a baseline for the imitation task, showcasing the potential value of our dataset; 3) real-world demonstrations on a physical humanoid robot, highlighting its capability to advance realistic humanoid facial expression imitation. Code and Data: https://lipzh5.github.io/X2CNet/
Empowering the Teaching and Learning of Geometry in Basic Education by Combining Extended Reality and Machine Learning
Technology has helped to innovate in the teaching-learning process. Today's students are more demanding actors when it comes to the environment, they have at their disposal to learn, experiment and develop critical thinking. The area of mathematics has successively suffered from students' learning difficulties, whether due to lack of motivation, low abstraction ability, or lack of new tools for teachers to bring innovation into the classroom and outside it. While it is true that digitalization has entered schools, it often follows a process of digital replication of approaches and materials that were previously only available on physical media. This work focuses on the use of Extended Realities for teaching mathematics, and very particularly in the teaching of geometry, with a proposition of a conceptual model that combines the use of Extended Reality and Machine Learning. The proposed model was subject to prototyping, which is presented as a form of laboratory validation as a contribution to innovate the way in which the geometry teaching-learning process is developed, as well as through the ability to obtain useful insights for teachers and students throughout the process.
comment: C. R. Cunha, A. Moreira, S. Coelho, V. Mendon\c{c}a, and J. P. Gomes, 'Empowering the Teaching and Learning of Geometry in Basic Education by Combining Extended Reality and Machine Learning', in Good Practices and New Perspectives in Information Systems and Technologies, 2024, pp. 98-109
Constrained Preferential Bayesian Optimization and Its Application in Banner Ad Design
Preferential Bayesian optimization (PBO) is a variant of Bayesian optimization that observes relative preferences (e.g., pairwise comparisons) instead of direct objective values, making it especially suitable for human-in-the-loop scenarios. However, real-world optimization tasks often involve inequality constraints, which existing PBO methods have not yet addressed. To fill this gap, we propose constrained preferential Bayesian optimization (CPBO), an extension of PBO that incorporates inequality constraints for the first time. Specifically, we present a novel acquisition function for this purpose. Our technical evaluation shows that our CPBO method successfully identifies optimal solutions by focusing on exploring feasible regions. As a practical application, we also present a designer-in-the-loop system for banner ad design using CPBO, where the objective is the designer's subjective preference, and the constraint ensures a target predicted click-through rate. We conducted a user study with professional ad designers, demonstrating the potential benefits of our approach in guiding creative design under real-world constraints.
comment: 17 pages, 15 figures
Patient-Specific Dynamic Digital-Physical Twin for Coronary Intervention Training: An Integrated Mixed Reality Approach
Background and Objective: Precise preoperative planning and effective physician training for coronary interventions are increasingly important. Despite advances in medical imaging technologies, transforming static or limited dynamic imaging data into comprehensive dynamic cardiac models remains challenging. Existing training systems lack accurate simulation of cardiac physiological dynamics. This study develops a comprehensive dynamic cardiac model research framework based on 4D-CTA, integrating digital twin technology, computer vision, and physical model manufacturing to provide precise, personalized tools for interventional cardiology. Methods: Using 4D-CTA data from a 60-year-old female with three-vessel coronary stenosis, we segmented cardiac chambers and coronary arteries, constructed dynamic models, and implemented skeletal skinning weight computation to simulate vessel deformation across 20 cardiac phases. Transparent vascular physical models were manufactured using medical-grade silicone. We developed cardiac output analysis and virtual angiography systems, implemented guidewire 3D reconstruction using binocular stereo vision, and evaluated the system through angiography validation and CABG training applications. Results: Morphological consistency between virtual and real angiography reached 80.9%. Dice similarity coefficients for guidewire motion ranged from 0.741-0.812, with mean trajectory errors below 1.1 mm. The transparent model demonstrated advantages in CABG training, allowing direct visualization while simulating beating heart challenges. Conclusion: Our patient-specific digital-physical twin approach effectively reproduces both anatomical structures and dynamic characteristics of coronary vasculature, offering a dynamic environment with visual and tactile feedback valuable for education and clinical planning.
comment: 34 pages, 24 figures
A Convolution-Based Gait Asymmetry Metric for Inter-Limb Synergistic Coordination
This study focuses on the velocity patterns of various body parts during walking and proposes a method for evaluating gait symmetry. Traditional motion analysis studies have assessed gait symmetry based on differences in electromyographic (EMG) signals or acceleration between the left and right sides. In contrast, this paper models intersegmental coordination using an LTI system and proposes a dissimilarity metric to evaluate symmetry. The method was tested on five subjects with both symmetric and asymmetric gait.
comment: 7 pages, 13 figures, 3 tables
Anti-Sensing: Defense against Unauthorized Radar-based Human Vital Sign Sensing with Physically Realizable Wearable Oscillators
Recent advancements in Ultra-Wideband (UWB) radar technology have enabled contactless, non-line-of-sight vital sign monitoring, making it a valuable tool for healthcare. However, UWB radar's ability to capture sensitive physiological data, even through walls, raises significant privacy concerns, particularly in human-robot interactions and autonomous systems that rely on radar for sensing human presence and physiological functions. In this paper, we present Anti-Sensing, a novel defense mechanism designed to prevent unauthorized radar-based sensing. Our approach introduces physically realizable perturbations, such as oscillatory motion from wearable devices, to disrupt radar sensing by mimicking natural cardiac motion, thereby misleading heart rate (HR) estimations. We develop a gradient-based algorithm to optimize the frequency and spatial amplitude of these oscillations for maximal disruption while ensuring physiological plausibility. Through both simulations and real-world experiments with radar data and neural network-based HR sensing models, we demonstrate the effectiveness of Anti-Sensing in significantly degrading model accuracy, offering a practical solution for privacy preservation.
Conversations With The Stressed Body: Facilitating Stress Self-Disclosure Among Adolescent Girls Through An Embodied Approach
Adolescent girls face significant mental health challenges during their transition to adulthood, often experiencing heightened stress from various sources. While various interactive technologies for self-disclosure had been explored to support stress relief, little is known about how to encourage stress-related self-disclosure through an embodied approach. This study presents a co-design workshop centred on Embodied Probes, a series of artefacts and activities incorporating embodied methods and technologies. During the workshop, nine participants aged 15 to 18 engaged with their bodies, expressed bodily sensations through tangible means, and designed embodied prototypes tailored to their personal needs for stress perception and relief. The workshop revealed insights into somatic symptoms, sources, and coping strategies for stress among adolescent girls, as well as how embodied methods can support their stress self-disclosure. This paper contributes to the HCI community by offering design implications on leveraging embodied technologies to support self-disclosure for young women's mental well-being.
Alexandria: A Library of Pluralistic Values for Realtime Re-Ranking of Social Media Feeds
Social media feed ranking algorithms fail when they too narrowly focus on engagement as their objective. The literature has asserted a wide variety of values that these algorithms should account for as well -- ranging from well-being to productive discourse -- far more than can be encapsulated by a single topic or theory. In response, we present a $\textit{library of values}$ for social media algorithms: a pluralistic set of 78 values as articulated across the literature, implemented into LLM-powered content classifiers that can be installed individually or in combination for real-time re-ranking of social media feeds. We investigate this approach by developing a browser extension, $\textit{Alexandria}$, that re-ranks the X/Twitter feed in real time based on the user's desired values. Through two user studies, both qualitative (N=12) and quantitative (N=257), we found that diverse user needs require a large library of values, enabling more nuanced preferences and greater user control. With this work, we argue that the values criticized as missing from social media ranking algorithms can be operationalized and deployed today through end-user tools.
Creating General User Models from Computer Use
Human-computer interaction has long imagined technology that understands us-from our preferences and habits, to the timing and purpose of our everyday actions. Yet current user models remain fragmented, narrowly tailored to specific apps, and incapable of the flexible reasoning required to fulfill these visions. This paper presents an architecture for a general user model (GUM) that learns about you by observing any interaction you have with your computer. The GUM takes as input any unstructured observation of a user (e.g., device screenshots) and constructs confidence-weighted propositions that capture that user knowledge and preferences. GUMs can infer that a user is preparing for a wedding they're attending from messages with a friend. Or recognize that a user is struggling with a collaborator's feedback on a draft by observing multiple stalled edits and a switch to reading related work. GUMs introduce an architecture that infers new propositions about a user from multimodal observations, retrieves related propositions for context, and continuously revises existing propositions. To illustrate the breadth of applications that GUMs enable, we demonstrate how they augment chat-based assistants with context, manage OS notifications to selectively surface important information, and enable interactive agents that adapt to preferences across apps. We also instantiate proactive assistants (GUMBOs) that discover and execute useful suggestions on a user's behalf using their GUM. In our evaluations, we find that GUMs make calibrated and accurate inferences about users, and that assistants built on GUMs proactively identify and perform actions that users wouldn't think to request explicitly. Altogether, GUMs introduce methods that leverage multimodal models to understand unstructured context, enabling long-standing visions of HCI and entirely new interactive systems that anticipate user needs.
comment: 22 pages, 6 figures, 1 table; see https://generalusermodels.github.io/
mmMirror: Device Free mmWave Indoor NLoS Localization Using Van-Atta-Array IRS
Industry 4.0 is transforming manufacturing and logistics by integrating robots into shared human environments, such as factories, warehouses, and healthcare facilities. However, the risk of human-robot collisions, especially in Non-Line-of-Sight (NLoS) scenarios like around corners, remains a critical challenge. Existing solutions, such as vision-based and LiDAR systems, often fail under occlusion, lighting constraints, or privacy concerns, while RF-based systems are limited by range and accuracy. To address these limitations, we propose mmMirror, a novel system leveraging a Van Atta Array-based millimeter-wave (mmWave) reconfigurable intelligent reflecting surface (IRS) for precise, device-free NLoS localization. mmMirror integrates seamlessly with existing frequency-modulated continuous-wave (FMCW) radars and offers: (i) robust NLoS localization with centimeter-level accuracy at ranges up to 3 m, (ii) seamless uplink and downlink communication between radar and IRS, (iii) support for multi-radar and multi-target scenarios via dynamic beam steering, and (iv) reduced scanning latency through adaptive time slot allocation. Implemented using commodity 24 GHz radars and a PCB-based IRS prototype, mmMirror demonstrates its potential in enabling safe human-robot interactions in dynamic and complex environments.
Bridging BCI and Communications: A MIMO Framework for EEG-to-ECoG Wireless Channel Modeling
As a method to connect human brain and external devices, Brain-computer interfaces (BCIs) are receiving extensive research attention. Recently, the integration of communication theory with BCI has emerged as a popular trend, offering potential to enhance system performance and shape next-generation communications. A key challenge in this field is modeling the brain wireless communication channel between intracranial electrocorticography (ECoG) emitting neurons and extracranial electroencephalography (EEG) receiving electrodes. However, the complex physiology of brain challenges the application of traditional channel modeling methods, leaving relevant research in its infancy. To address this gap, we propose a frequency-division multiple-input multiple-output (MIMO) estimation framework leveraging simultaneous macaque EEG and ECoG recordings, while employing neurophysiology-informed regularization to suppress noise interference. This approach reveals profound similarities between neural signal propagation and multi-antenna communication systems. Experimental results show improved estimation accuracy over conventional methods while highlighting a trade-off between frequency resolution and temporal stability determined by signal duration. This work establish a conceptual bridge between neural interfacing and communication theory, accelerating synergistic developments in both fields.
ConflictLens: LLM-Based Conflict Resolution Training in Romantic Relationship
Romantic conflicts are often rooted in deep psychological factors such as coping styles, emotional responses, and communication habits. Existing systems tend to address surface-level behaviors or isolated events, offering limited support for understanding the underlying dynamics. We present ConflictLens, an interactive system that leverages psychological theory and large language models (LLMs) to help individuals analyze and reflect on the deeper mechanisms behind their conflicts. The system provides multi-level strategy recommendations and guided dialogue exercises, including annotation, rewriting, and continuation tasks. A case study demonstrates how ConflictLens supports emotional insight, improves relational understanding, and fosters more constructive communication. This work offers a novel approach to supporting self-awareness and growth in romantic relationships.
Second SIGIR Workshop on Simulations for Information Access (Sim4IA 2025) SIGIR
Simulations in information access (IA) have recently gained interest, as shown by various tutorials and workshops around that topic. Simulations can be key contributors to central IA research and evaluation questions, especially around interactive settings when real users are unavailable, or their participation is impossible due to ethical reasons. In addition, simulations in IA can help contribute to a better understanding of users, reduce complexity of evaluation experiments, and improve reproducibility. Building on recent developments in methods and toolkits, the second iteration of our Sim4IA workshop aims to again bring together researchers and practitioners to form an interactive and engaging forum for discussions on the future perspectives of the field. An additional aim is to plan an upcoming TREC/CLEF campaign.
comment: Proceedings of the 48th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR '25), July 13--18, 2025, Padua, Italy
Designing for Constructive Civic Communication: A Framework for Human-AI Collaboration in Community Engagement Processes
Community engagement processes form a critical foundation of democratic governance, yet frequently struggle with resource constraints, sensemaking challenges, and barriers to inclusive participation. These processes rely on constructive communication between public leaders and community organizations characterized by understanding, trust, respect, legitimacy, and agency. As artificial intelligence (AI) technologies become increasingly integrated into civic contexts, they offer promising capabilities to streamline resource-intensive workflows, reveal new insights in community feedback, translate complex information into accessible formats, and facilitate reflection across social divides. However, these same systems risk undermining democratic processes through accuracy issues, transparency gaps, bias amplification, and threats to human agency. In this paper, we examine how human-AI collaboration might address these risks and transform civic communication dynamics by identifying key communication pathways and proposing design considerations that maintain a high level of control over decision-making for both public leaders and communities while leveraging computer automation. By thoughtfully integrating AI to amplify human connection and understanding while safeguarding agency, community engagement processes can utilize AI to promote more constructive communication in democratic governance.
comment: 10 pages, 2 figures, report
DesignFromX: Empowering Consumer-Driven Design Space Exploration through Feature Composition of Referenced Products
Industrial products are designed to satisfy the needs of consumers. The rise of generative artificial intelligence (GenAI) enables consumers to easily modify a product by prompting a generative model, opening up opportunities to incorporate consumers in exploring the product design space. However, consumers often struggle to articulate their preferred product features due to their unfamiliarity with terminology and their limited understanding of the structure of product features. We present DesignFromX, a system that empowers consumer-driven design space exploration by helping consumers to design a product based on their preferences. Leveraging an effective GenAI-based framework, the system allows users to easily identify design features from product images and compose those features to generate conceptual images and 3D models of a new product. A user study with 24 participants demonstrates that DesignFromX lowers the barriers and frustration for consumer-driven design space explorations by enhancing both engagement and enjoyment for the participants.
Heart2Mind: Human-Centered Contestable Psychiatric Disorder Diagnosis System using Wearable ECG Monitors
Psychiatric disorders affect millions globally, yet their diagnosis faces significant challenges in clinical practice due to subjective assessments and accessibility concerns, leading to potential delays in treatment. To help address this issue, we present Heart2Mind, a human-centered contestable psychiatric disorder diagnosis system using wearable electrocardiogram (ECG) monitors. Our approach leverages cardiac biomarkers, particularly heart rate variability (HRV) and R-R intervals (RRI) time series, as objective indicators of autonomic dysfunction in psychiatric conditions. The system comprises three key components: (1) a Cardiac Monitoring Interface (CMI) for real-time data acquisition from Polar H9/H10 devices; (2) a Multi-Scale Temporal-Frequency Transformer (MSTFT) that processes RRI time series through integrated time-frequency domain analysis; (3) a Contestable Diagnosis Interface (CDI) combining Self-Adversarial Explanations (SAEs) with contestable Large Language Models (LLMs). Our MSTFT achieves 91.7% accuracy on the HRV-ACC dataset using leave-one-out cross-validation, outperforming state-of-the-art methods. SAEs successfully detect inconsistencies in model predictions by comparing attention-based and gradient-based explanations, while LLMs enable clinicians to validate correct predictions and contest erroneous ones. This work demonstrates the feasibility of combining wearable technology with Explainable Artificial Intelligence (XAI) and contestable LLMs to create a transparent, contestable system for psychiatric diagnosis that maintains clinical oversight while leveraging advanced AI capabilities. Our implementation is publicly available at: https://github.com/Analytics-Everywhere-Lab/heart2mind.
comment: 41 pages
Toward Adaptive Categories: Dimensional Governance for Agentic AI
As AI systems evolve from static tools to dynamic agents, traditional categorical governance frameworks -- based on fixed risk tiers, levels of autonomy, or human oversight models -- are increasingly insufficient on their own. Systems built on foundation models, self-supervised learning, and multi-agent architectures increasingly blur the boundaries that categories were designed to police. In this Perspective, we make the case for dimensional governance: a framework that tracks how decision authority, process autonomy, and accountability (the 3As) distribute dynamically across human-AI relationships. A critical advantage of this approach is its ability to explicitly monitor system movement toward and across key governance thresholds, enabling preemptive adjustments before risks materialize. This dimensional approach provides the necessary foundation for more adaptive categorization, enabling thresholds and classifications that can evolve with emerging capabilities. While categories remain essential for decision-making, building them upon dimensional foundations allows for context-specific adaptability and stakeholder-responsive governance that static approaches cannot achieve. We outline key dimensions, critical trust thresholds, and practical examples illustrating where rigid categorical frameworks fail -- and where a dimensional mindset could offer a more resilient and future-proof path forward for both governance and innovation at the frontier of artificial intelligence.
comment: 12 pages core text, 14 pages including references, 2 figures
Using Virtual Reality in Museums to Bridge the Gap Between Material Heritage and the Interpretation of Its Immaterial Context
Material heritage typically has a whole set of associated immaterial heritage, which is essential to pass on to the visitor as a cultural mission of the destinations and those who manage them. In this sense, the interpretation of material heritage is a complex process that is not a fully efficient process with the mere observation of physical artifacts. In this context, it emerges as fundamental to provide visitors with a set of tools that allow them to correctly interpret the artifacts that come to fully understand the cultural dimension of the destinations and their heritage. Accordingly, the role of virtual reality can leverage the creation of innovative and immersive solutions that allow the visitor to understand and feel part of their own heritage and its ancestral component that defines the sociocultural roots of destinations and their civilizational traditions. This article, after dissecting and substantiating the role of virtual reality in the interpretation of heritage, presents a conceptual model, based on the use of virtual reality, which was, in part, prototyped in the scenario of the Portuguese Museum in the city of Miranda do Douro. This proposal is an ongoing contribution to the creation of innovative and immersive tools for the interpretation of heritage.
comment: C. R. Cunha, V. Mendon\c{c}a, A. Moreira, J. P. Gomes, and A. Carvalho, 'Using Virtual Reality in Museums to Bridge the Gap Between Material Heritage and the Interpretation of Its Immaterial Context', in Advances in Tourism, Technology and Systems, 2022, pp. 397-408
Characterizing Unintended Consequences in Human-GUI Agent Collaboration for Web Browsing
The proliferation of Large Language Model (LLM)-based Graphical User Interface (GUI) agents in web browsing scenarios present complex unintended consequences (UCs). This paper characterizes three UCs from three perspectives: phenomena, influence and mitigation, drawing on social media analysis (N=221 posts) and semi-structured interviews (N=14). Key phenomenon for UCs include agents' deficiencies in comprehending instructions and planning tasks, challenges in executing accurate GUI interactions and adapting to dynamic interfaces, the generation of unreliable or misaligned outputs, and shortcomings in error handling and feedback processing. These phenomena manifest as influences from unanticipated actions and user frustration, to privacy violations and security vulnerabilities, and further to eroded trust and wider ethical concerns. Our analysis also identifies user-initiated mitigation, such as technical adjustments and manual oversight, and provides implications for designing future LLM-based GUI agents that are robust, user-centric, and transparent, fostering a crucial balance between automation and human oversight.
Visual Feedback of Pattern Separability Improves Myoelectric Decoding Performance of Upper Limb Prostheses
State-of-the-art upper limb myoelectric prostheses often use pattern recognition (PR) control systems that translate electromyography (EMG) signals into desired movements. As prosthesis movement complexity increases, users often struggle to produce sufficiently distinct EMG patterns for reliable classification. Existing training typically involves heuristic, trial-and-error user adjustments to static decoder boundaries. Goal: We introduce the Reviewer, a 3D visual interface projecting EMG signals directly into the decoder's classification space, providing intuitive, real-time insight into PR algorithm behavior. This structured feedback reduces cognitive load and fosters mutual, data-driven adaptation between user-generated EMG patterns and decoder boundaries. Methods: A 10-session study with 12 able-bodied participants compared PR performance after motor-based training and updating using the Reviewer versus conventional virtual arm visualization. Performance was assessed using a Fitts law task that involved the aperture of the cursor and the control of orientation. Results: Participants trained with the Reviewer achieved higher completion rates, reduced overshoot, and improved path efficiency and throughput compared to the standard visualization group. Significance: The Reviewer introduces decoder-informed motor training, facilitating immediate and consistent PR-based myoelectric control improvements. By iteratively refining control through real-time feedback, this approach reduces reliance on trial-and-error recalibration, enabling a more adaptive, self-correcting training framework. Conclusion: The 3D visual feedback significantly improves PR control in novice operators through structured training, enabling feedback-driven adaptation and reducing reliance on extensive heuristic adjustments.
An AI-Powered Research Assistant in the Lab: A Practical Guide for Text Analysis Through Iterative Collaboration with LLMs
Analyzing texts such as open-ended responses, headlines, or social media posts is a time- and labor-intensive process highly susceptible to bias. LLMs are promising tools for text analysis, using either a predefined (top-down) or a data-driven (bottom-up) taxonomy, without sacrificing quality. Here we present a step-by-step tutorial to efficiently develop, test, and apply taxonomies for analyzing unstructured data through an iterative and collaborative process between researchers and LLMs. Using personal goals provided by participants as an example, we demonstrate how to write prompts to review datasets and generate a taxonomy of life domains, evaluate and refine the taxonomy through prompt and direct modifications, test the taxonomy and assess intercoder agreements, and apply the taxonomy to categorize an entire dataset with high intercoder reliability. We discuss the possibilities and limitations of using LLMs for text analysis.
comment: 31 pages, 1 figure
Automating High Quality RT Planning at Scale
Radiotherapy (RT) planning is complex, subjective, and time-intensive. Advances with artificial intelligence (AI) promise to improve its precision and efficiency, but progress is often limited by the scarcity of large, standardized datasets. To address this, we introduce the Automated Iterative RT Planning (AIRTP) system, a scalable solution for generating high-quality treatment plans. This scalable solution is designed to generate substantial volumes of consistently high-quality treatment plans, overcoming a key obstacle in the advancement of AI-driven RT planning. Our AIRTP pipeline adheres to clinical guidelines and automates essential steps, including organ-at-risk (OAR) contouring, helper structure creation, beam setup, optimization, and plan quality improvement, using AI integrated with RT planning software like Varian Eclipse. Furthermore, a novel approach for determining optimization parameters to reproduce 3D dose distributions, i.e. a method to convert dose predictions to deliverable treatment plans constrained by machine limitations is proposed. A comparative analysis of plan quality reveals that our automated pipeline produces treatment plans of quality comparable to those generated manually, which traditionally require several hours of labor per plan. Committed to public research, the first data release of our AIRTP pipeline includes nine cohorts covering head-and-neck and lung cancer sites to support an AAPM 2025 challenge. To our best knowledge, this dataset features more than 10 times number of plans compared to the largest existing well-curated public dataset. Repo: https://github.com/RiqiangGao/GDP-HMM_AAPMChallenge.
comment: radiotherapy planning, data for AI training
ScholarMate: A Mixed-Initiative Tool for Qualitative Knowledge Work and Information Sensemaking
Synthesizing knowledge from large document collections is a critical yet increasingly complex aspect of qualitative research and knowledge work. While AI offers automation potential, effectively integrating it into human-centric sensemaking workflows remains challenging. We present ScholarMate, an interactive system designed to augment qualitative analysis by unifying AI assistance with human oversight. ScholarMate enables researchers to dynamically arrange and interact with text snippets on a non-linear canvas, leveraging AI for theme suggestions, multi-level summarization, and evidence-based theme naming, while ensuring transparency through traceability to source documents. Initial pilot studies indicated that users value this mixed-initiative approach, finding the balance between AI suggestions and direct manipulation crucial for maintaining interpretability and trust. We further demonstrate the system's capability through a case study analyzing 24 papers. By balancing automation with human control, ScholarMate enhances efficiency and supports interpretability, offering a valuable approach for productive human-AI collaboration in demanding sensemaking tasks common in knowledge work.
comment: accepted at CHIWORK '25
L-WISE: Boosting Human Visual Category Learning Through Model-Based Image Selection and Enhancement
The currently leading artificial neural network models of the visual ventral stream - which are derived from a combination of performance optimization and robustification methods - have demonstrated a remarkable degree of behavioral alignment with humans on visual categorization tasks. We show that image perturbations generated by these models can enhance the ability of humans to accurately report the ground truth class. Furthermore, we find that the same models can also be used out-of-the-box to predict the proportion of correct human responses to individual images, providing a simple, human-aligned estimator of the relative difficulty of each image. Motivated by these observations, we propose to augment visual learning in humans in a way that improves human categorization accuracy at test time. Our learning augmentation approach consists of (i) selecting images based on their model-estimated recognition difficulty, and (ii) applying image perturbations that aid recognition for novice learners. We find that combining these model-based strategies leads to categorization accuracy gains of 33-72% relative to control subjects without these interventions, on unmodified, randomly selected held-out test images. Beyond the accuracy gain, the training time for the augmented learning group was also shortened by 20-23%, despite both groups completing the same number of training trials. We demonstrate the efficacy of our approach in a fine-grained categorization task with natural images, as well as two tasks in clinically relevant image domains - histology and dermoscopy - where visual learning is notoriously challenging. To the best of our knowledge, our work is the first application of artificial neural networks to increase visual learning performance in humans by enhancing category-specific image features.
Organize, Then Vote: Exploring Cognitive Load in Quadratic Survey Interfaces
Quadratic Surveys (QSs) elicit more accurate preferences than traditional methods like Likert-scale surveys. However, the cognitive load associated with QSs has hindered their adoption in digital surveys for collective decision-making. We introduce a two-phase "organize-then-vote" QS to reduce cognitive load. As interface design significantly impacts survey results and accuracy, our design scaffolds survey takers' decision-making while managing the cognitive load imposed by QS. In a 2x2 between-subject in-lab study on public resource allotment, we compared our interface with a traditional text interface across a QS with 6 (short) and 24 (long) options. Two-phase interface participants spent more time per option and exhibited shorter voting edit distances. We qualitatively observed shifts in cognitive effort from mechanical operations to constructing more comprehensive preferences. We conclude that this interface promoted deeper engagement, potentially reducing satisficing behaviors caused by cognitive overload in longer QSs. This research clarifies how human-centered design improves preference elicitation tools for collective decision-making.
Thousand Voices of Trauma: A Large-Scale Synthetic Dataset for Modeling Prolonged Exposure Therapy Conversations
The advancement of AI systems for mental health support is hindered by limited access to therapeutic conversation data, particularly for trauma treatment. We present Thousand Voices of Trauma, a synthetic benchmark dataset of 3,000 therapy conversations based on Prolonged Exposure therapy protocols for Post-traumatic Stress Disorder (PTSD). The dataset comprises 500 unique cases, each explored through six conversational perspectives that mirror the progression of therapy from initial anxiety to peak distress to emotional processing. We incorporated diverse demographic profiles (ages 18-80, M=49.3, 49.4% male, 44.4% female, 6.2% non-binary), 20 trauma types, and 10 trauma-related behaviors using deterministic and probabilistic generation methods. Analysis reveals realistic distributions of trauma types (witnessing violence 10.6%, bullying 10.2%) and symptoms (nightmares 23.4%, substance abuse 20.8%). Clinical experts validated the dataset's therapeutic fidelity, highlighting its emotional depth while suggesting refinements for greater authenticity. We also developed an emotional trajectory benchmark with standardized metrics for evaluating model responses. This privacy-preserving dataset addresses critical gaps in trauma-focused mental health data, offering a valuable resource for advancing both patient-facing applications and clinician training tools.
comment: 22 pages, 6 figures Updated Appendix with example model responses
Augmented Object Intelligence with XR-Objects
Seamless integration of physical objects as interactive digital entities remains a challenge for spatial computing. This paper explores Augmented Object Intelligence (AOI) in the context of XR, an interaction paradigm that aims to blur the lines between digital and physical by equipping real-world objects with the ability to interact as if they were digital, where every object has the potential to serve as a portal to digital functionalities. Our approach utilizes real-time object segmentation and classification, combined with the power of Multimodal Large Language Models (MLLMs), to facilitate these interactions without the need for object pre-registration. We implement the AOI concept in the form of XR-Objects, an open-source prototype system that provides a platform for users to engage with their physical environment in contextually relevant ways using object-based context menus. This system enables analog objects to not only convey information but also to initiate digital actions, such as querying for details or executing tasks. Our contributions are threefold: (1) we define the AOI concept and detail its advantages over traditional AI assistants, (2) detail the XR-Objects system's open-source design and implementation, and (3) show its versatility through various use cases and a user study.
comment: 15 pages, 15 figures, 2024 ACM Symposium on User Interface Software and Technology (UIST)
Cam-2-Cam: Exploring the Design Space of Dual-Camera Interactions for Smartphone-based Augmented Reality
Off-the-shelf smartphone-based AR systems typically use a single front-facing or rear-facing camera, which restricts user interactions to a narrow field of view and small screen size, thus reducing their practicality. We present Cam-2-Cam, an interaction concept implemented in three smartphone-based AR applications with interactions that span both cameras. Results from our qualitative analysis conducted on 30 participants presented two major design lessons that explore the interaction space of smartphone AR while maintaining critical AR interface attributes like embodiment and immersion: (1) Balancing Contextual Relevance and Feedback Quality serves to outline a delicate balance between implementing familiar interactions people do in the real world and the quality of multimodal AR responses and (2) Preventing Disorientation using Simultaneous Capture and Alternating Cameras which details how to prevent disorientation during AR interactions using the two distinct camera techniques we implemented in the paper. Additionally, we consider observed user assumptions or natural tendencies to inform future implementations of dual-camera setups for smartphone-based AR. We envision our design lessons as an initial pioneering step toward expanding the interaction space of smartphone-based AR, potentially driving broader adoption and overcoming limitations of single-camera AR.
An HCAI Methodological Framework (HCAI-MF): Putting It Into Action to Enable Human-Centered AI
Human-centered artificial intelligence (HCAI) is a design philosophy that prioritizes humans in the design, development, deployment, and use of AI systems, aiming to maximize AI's benefits while mitigating its negative impacts. Despite its growing prominence in literature, the lack of methodological guidance for its implementation poses challenges to HCAI practice. To address this gap, this paper proposes a comprehensive HCAI methodological framework (HCAI-MF) comprising five key components: HCAI requirement hierarchy, approach and method taxonomy, process, interdisciplinary collaboration approach, and multi-level design paradigms. A case study demonstrates HCAI-MF's practical implications, while the paper also analyzes implementation challenges. Actionable recommendations and a "three-layer" HCAI implementation strategy are provided to address these challenges and guide future evolution of HCAI-MF. HCAI-MF is presented as a systematic and executable methodology capable of overcoming current gaps, enabling effective design, development, deployment, and use of AI systems, and advancing HCAI practice.
LLM Content Moderation and User Satisfaction: Evidence from Response Refusals in Chatbot Arena
LLM safety and ethical alignment are widely discussed, but the impact of content moderation on user satisfaction remains underexplored. In particular, little is known about how users respond when models refuse to answer a prompt-one of the primary mechanisms used to enforce ethical boundaries in LLMs. We address this gap by analyzing nearly 50,000 model comparisons from Chatbot Arena, a platform where users indicate their preferred LLM response in pairwise matchups, providing a large-scale setting for studying real-world user preferences. Using a novel RoBERTa-based refusal classifier fine-tuned on a hand-labeled dataset, we distinguish between refusals due to ethical concerns and technical limitations. Our results reveal a substantial refusal penalty: ethical refusals yield significantly lower win rates than both technical refusals and standard responses, indicating that users are especially dissatisfied when models decline a task for ethical reasons. However, this penalty is not uniform. Refusals receive more favorable evaluations when the underlying prompt is highly sensitive (e.g., involving illegal content), and when the refusal is phrased in a detailed and contextually aligned manner. These findings underscore a core tension in LLM design: safety-aligned behaviors may conflict with user expectations, calling for more adaptive moderation strategies that account for context and presentation.
CounterQuill: Investigating the Potential of Human-AI Collaboration in Online Counterspeech Writing
Online hate speech has become increasingly prevalent on social media, causing harm to individuals and society. While automated content moderation has received considerable attention, user-driven counterspeech remains a less explored yet promising approach. However, many people face difficulties in crafting effective responses. We introduce CounterQuill, a human-AI collaborative system that helps everyday users with writing empathetic counterspeech, not by generating automatic replies, but by educating them through reflection and response. CounterQuill follows a three-stage workflow grounded in computational thinking: (1) a learning session to build understanding of hate speech and counterspeech, (2) a brainstorming session to identify harmful patterns and ideate counterspeech ideas, and (3) a co-writing session that helps users refine their counter responses while preserving personal voice. Through a user study \r{ho}(N=20), we found that CounterQuill helped participants develop the skills to brainstorm and draft counterspeech with increased confidence and control throughout the process. Our findings highlight how AI systems can scaffold complex communication tasks through structured, human-centered workflows that educate users on how to recognize, reflect on, and respond to online hate speech.
ChatISA: A Prompt-Engineered, In-House Multi-Modal Generative AI Chatbot for Information Systems Education
As generative AI ('GenAI') continues to evolve, educators face the challenge of preparing students for a future where AI-assisted work is integral to professional success. This paper introduces ChatISA, an in-house, multi-model AI chatbot designed to support students and faculty in an Information Systems and Analytics (ISA) department. ChatISA comprises four primary modules: Coding Companion, Project Coach, Exam Ally, and Interview Mentor, each tailored to enhance different aspects of the educational experience. Through iterative development, student feedback, and leveraging open-source frameworks, we created a robust tool that addresses coding inquiries, project management, exam preparation, and interview readiness. The implementation of ChatISA provided valuable insights and highlighted key challenges. Our findings demonstrate the benefits of ChatISA for ISA education while underscoring the need for adaptive pedagogy and proactive engagement with AI tools to fully harness their educational potential. To support broader adoption and innovation, all code for ChatISA is made publicly available on GitHub, enabling other institutions to customize and integrate similar AI-driven educational tools within their curricula.
comment: 22 pages
A Scalable Approach to Clustering Embedding Projections
Interactive visualization of embedding projections is a useful technique for understanding data and evaluating machine learning models. Labeling data within these visualizations is critical for interpretation, as labels provide an overview of the projection and guide user navigation. However, most methods for producing labels require clustering the points, which can be computationally expensive as the number of points grows. In this paper, we describe an efficient clustering approach using kernel density estimation in the projected 2D space instead of points. This algorithm can produce high-quality cluster regions from a 2D density map in a few hundred milliseconds, orders of magnitude faster than current approaches. We contribute the design of the algorithm, benchmarks, and applications that demonstrate the utility of the algorithm, including labeling and summarization.
comment: Code: https://github.com/apple/embedding-atlas
Computer Vision and Pattern Recognition
3D-Fixup: Advancing Photo Editing with 3D Priors SIGGRAPH 2025
Despite significant advances in modeling image priors via diffusion models, 3D-aware image editing remains challenging, in part because the object is only specified via a single image. To tackle this challenge, we propose 3D-Fixup, a new framework for editing 2D images guided by learned 3D priors. The framework supports difficult editing situations such as object translation and 3D rotation. To achieve this, we leverage a training-based approach that harnesses the generative power of diffusion models. As video data naturally encodes real-world physical dynamics, we turn to video data for generating training data pairs, i.e., a source and a target frame. Rather than relying solely on a single trained model to infer transformations between source and target frames, we incorporate 3D guidance from an Image-to-3D model, which bridges this challenging task by explicitly projecting 2D information into 3D space. We design a data generation pipeline to ensure high-quality 3D guidance throughout training. Results show that by integrating these 3D priors, 3D-Fixup effectively supports complex, identity coherent 3D-aware edits, achieving high-quality results and advancing the application of diffusion models in realistic image manipulation. The code is provided at https://3dfixup.github.io/
comment: SIGGRAPH 2025. Project page: https://3dfixup.github.io/
Depth Anything with Any Prior
This work presents Prior Depth Anything, a framework that combines incomplete but precise metric information in depth measurement with relative but complete geometric structures in depth prediction, generating accurate, dense, and detailed metric depth maps for any scene. To this end, we design a coarse-to-fine pipeline to progressively integrate the two complementary depth sources. First, we introduce pixel-level metric alignment and distance-aware weighting to pre-fill diverse metric priors by explicitly using depth prediction. It effectively narrows the domain gap between prior patterns, enhancing generalization across varying scenarios. Second, we develop a conditioned monocular depth estimation (MDE) model to refine the inherent noise of depth priors. By conditioning on the normalized pre-filled prior and prediction, the model further implicitly merges the two complementary depth sources. Our model showcases impressive zero-shot generalization across depth completion, super-resolution, and inpainting over 7 real-world datasets, matching or even surpassing previous task-specific methods. More importantly, it performs well on challenging, unseen mixed priors and enables test-time improvements by switching prediction models, providing a flexible accuracy-efficiency trade-off while evolving with advancements in MDE models.
comment: Home page: https://prior-depth-anything.github.io/
End-to-End Vision Tokenizer Tuning
Existing vision tokenization isolates the optimization of vision tokenizers from downstream training, implicitly assuming the visual tokens can generalize well across various tasks, e.g., image generation and visual question answering. The vision tokenizer optimized for low-level reconstruction is agnostic to downstream tasks requiring varied representations and semantics. This decoupled paradigm introduces a critical misalignment: The loss of the vision tokenization can be the representation bottleneck for target tasks. For example, errors in tokenizing text in a given image lead to poor results when recognizing or generating them. To address this, we propose ETT, an end-to-end vision tokenizer tuning approach that enables joint optimization between vision tokenization and target autoregressive tasks. Unlike prior autoregressive models that use only discrete indices from a frozen vision tokenizer, ETT leverages the visual embeddings of the tokenizer codebook, and optimizes the vision tokenizers end-to-end with both reconstruction and caption objectives. ETT can be seamlessly integrated into existing training pipelines with minimal architecture modifications. Our ETT is simple to implement and integrate, without the need to adjust the original codebooks or architectures of the employed large language models. Extensive experiments demonstrate that our proposed end-to-end vision tokenizer tuning unlocks significant performance gains, i.e., 2-6% for multimodal understanding and visual generation tasks compared to frozen tokenizer baselines, while preserving the original reconstruction capability. We hope this very simple and strong method can empower multimodal foundation models besides image generation and understanding.
MathCoder-VL: Bridging Vision and Code for Enhanced Multimodal Mathematical Reasoning ACL 2025
Natural language image-caption datasets, widely used for training Large Multimodal Models, mainly focus on natural scenarios and overlook the intricate details of mathematical figures that are critical for problem-solving, hindering the advancement of current LMMs in multimodal mathematical reasoning. To this end, we propose leveraging code as supervision for cross-modal alignment, since code inherently encodes all information needed to generate corresponding figures, establishing a precise connection between the two modalities. Specifically, we co-develop our image-to-code model and dataset with model-in-the-loop approach, resulting in an image-to-code model, FigCodifier and ImgCode-8.6M dataset, the largest image-code dataset to date. Furthermore, we utilize FigCodifier to synthesize novel mathematical figures and then construct MM-MathInstruct-3M, a high-quality multimodal math instruction fine-tuning dataset. Finally, we present MathCoder-VL, trained with ImgCode-8.6M for cross-modal alignment and subsequently fine-tuned on MM-MathInstruct-3M for multimodal math problem solving. Our model achieves a new open-source SOTA across all six metrics. Notably, it surpasses GPT-4o and Claude 3.5 Sonnet in the geometry problem-solving subset of MathVista, achieving improvements of 8.9% and 9.2%. The dataset and models will be released at https://github.com/mathllm/MathCoder.
comment: Accepted to ACL 2025 Findings
Style Customization of Text-to-Vector Generation with Image Diffusion Priors SIGGRAPH 2025
Scalable Vector Graphics (SVGs) are highly favored by designers due to their resolution independence and well-organized layer structure. Although existing text-to-vector (T2V) generation methods can create SVGs from text prompts, they often overlook an important need in practical applications: style customization, which is vital for producing a collection of vector graphics with consistent visual appearance and coherent aesthetics. Extending existing T2V methods for style customization poses certain challenges. Optimization-based T2V models can utilize the priors of text-to-image (T2I) models for customization, but struggle with maintaining structural regularity. On the other hand, feed-forward T2V models can ensure structural regularity, yet they encounter difficulties in disentangling content and style due to limited SVG training data. To address these challenges, we propose a novel two-stage style customization pipeline for SVG generation, making use of the advantages of both feed-forward T2V models and T2I image priors. In the first stage, we train a T2V diffusion model with a path-level representation to ensure the structural regularity of SVGs while preserving diverse expressive capabilities. In the second stage, we customize the T2V diffusion model to different styles by distilling customized T2I models. By integrating these techniques, our pipeline can generate high-quality and diverse SVGs in custom styles based on text prompts in an efficient feed-forward manner. The effectiveness of our method has been validated through extensive experiments. The project page is https://customsvg.github.io.
comment: Accepted by SIGGRAPH 2025 (Conference Paper). Project page: https://customsvg.github.io
Does Feasibility Matter? Understanding the Impact of Feasibility on Synthetic Training Data CVPR
With the development of photorealistic diffusion models, models trained in part or fully on synthetic data achieve progressively better results. However, diffusion models still routinely generate images that would not exist in reality, such as a dog floating above the ground or with unrealistic texture artifacts. We define the concept of feasibility as whether attributes in a synthetic image could realistically exist in the real-world domain; synthetic images containing attributes that violate this criterion are considered infeasible. Intuitively, infeasible images are typically considered out-of-distribution; thus, training on such images is expected to hinder a model's ability to generalize to real-world data, and they should therefore be excluded from the training set whenever possible. However, does feasibility really matter? In this paper, we investigate whether enforcing feasibility is necessary when generating synthetic training data for CLIP-based classifiers, focusing on three target attributes: background, color, and texture. We introduce VariReal, a pipeline that minimally edits a given source image to include feasible or infeasible attributes given by the textual prompt generated by a large language model. Our experiments show that feasibility minimally affects LoRA-fine-tuned CLIP performance, with mostly less than 0.3% difference in top-1 accuracy across three fine-grained datasets. Also, the attribute matters on whether the feasible/infeasible images adversarially influence the classification performance. Finally, mixing feasible and infeasible images in training datasets does not significantly impact performance compared to using purely feasible or infeasible datasets.
comment: CVPRW 2025
Exploring Implicit Visual Misunderstandings in Multimodal Large Language Models through Attention Analysis
Recent advancements have enhanced the capability of Multimodal Large Language Models (MLLMs) to comprehend multi-image information. However, existing benchmarks primarily evaluate answer correctness, overlooking whether models genuinely comprehend the visual input. To address this, we define implicit visual misunderstanding (IVM), where MLLMs provide correct answers without fully comprehending the visual input. Through our analysis, we decouple the visual and textual modalities within the causal attention module, revealing that attention distribution increasingly converges on the image associated with the correct answer as the network layers deepen. This insight leads to the introduction of a scale-agnostic metric, \textit{attention accuracy}, and a novel benchmark for quantifying IVMs. Attention accuracy directly evaluates the model's visual understanding via internal mechanisms, remaining robust to positional biases for more reliable assessments. Furthermore, we extend our approach to finer granularities and demonstrate its effectiveness in unimodal scenarios, underscoring its versatility and generalizability.
Enhancing Multi-Image Question Answering via Submodular Subset Selection
Large multimodal models (LMMs) have achieved high performance in vision-language tasks involving single image but they struggle when presented with a collection of multiple images (Multiple Image Question Answering scenario). These tasks, which involve reasoning over large number of images, present issues in scalability (with increasing number of images) and retrieval performance. In this work, we propose an enhancement for retriever framework introduced in MIRAGE model using submodular subset selection techniques. Our method leverages query-aware submodular functions, such as GraphCut, to pre-select a subset of semantically relevant images before main retrieval component. We demonstrate that using anchor-based queries and augmenting the data improves submodular-retriever pipeline effectiveness, particularly in large haystack sizes.
MASSV: Multimodal Adaptation and Self-Data Distillation for Speculative Decoding of Vision-Language Models
Speculative decoding significantly accelerates language model inference by enabling a lightweight draft model to propose multiple tokens that a larger target model verifies simultaneously. However, applying this technique to vision-language models (VLMs) presents two fundamental challenges: small language models that could serve as efficient drafters lack the architectural components to process visual inputs, and their token predictions fail to match those of VLM target models that consider visual context. We introduce Multimodal Adaptation and Self-Data Distillation for Speculative Decoding of Vision-Language Models (MASSV), which transforms existing small language models into effective multimodal drafters through a two-phase approach. MASSV first connects the target VLM's vision encoder to the draft model via a lightweight trainable projector, then applies self-distilled visual instruction tuning using responses generated by the target VLM to align token predictions. Comprehensive experiments across the Qwen2.5-VL and Gemma3 model families demonstrate that MASSV increases accepted length by up to 30% and delivers end-to-end inference speedups of up to 1.46x on visually-grounded tasks. MASSV provides a scalable, architecture-compatible method for accelerating both current and future VLMs.
comment: Main paper: 11 pp., 4 figs., 3 tabs.; Supplementary: 2 pp
Multi-Token Prediction Needs Registers
Multi-token prediction has emerged as a promising objective for improving language model pretraining, but its benefits have not consistently generalized to other settings such as fine-tuning. In this paper, we propose MuToR, a simple and effective approach to multi-token prediction that interleaves learnable register tokens into the input sequence, each tasked with predicting future targets. Compared to existing methods, MuToR offers several key advantages: it introduces only a negligible number of additional parameters, requires no architectural changes--ensuring compatibility with off-the-shelf pretrained language models--and remains aligned with the next-token pretraining objective, making it especially well-suited for supervised fine-tuning. Moreover, it naturally supports scalable prediction horizons. We demonstrate the effectiveness and versatility of MuToR across a range of use cases, including supervised fine-tuning, parameter-efficient fine-tuning (PEFT), and pretraining, on challenging generative tasks in both language and vision domains. Our code will be available at: https://github.com/nasosger/MuToR.
MorphGuard: Morph Specific Margin Loss for Enhancing Robustness to Face Morphing Attacks
Face recognition has evolved significantly with the advancement of deep learning techniques, enabling its widespread adoption in various applications requiring secure authentication. However, this progress has also increased its exposure to presentation attacks, including face morphing, which poses a serious security threat by allowing one identity to impersonate another. Therefore, modern face recognition systems must be robust against such attacks. In this work, we propose a novel approach for training deep networks for face recognition with enhanced robustness to face morphing attacks. Our method modifies the classification task by introducing a dual-branch classification strategy that effectively handles the ambiguity in the labeling of face morphs. This adaptation allows the model to incorporate morph images into the training process, improving its ability to distinguish them from bona fide samples. Our strategy has been validated on public benchmarks, demonstrating its effectiveness in enhancing robustness against face morphing attacks. Furthermore, our approach is universally applicable and can be integrated into existing face recognition training pipelines to improve classification-based recognition methods.
CheXGenBench: A Unified Benchmark For Fidelity, Privacy and Utility of Synthetic Chest Radiographs
We introduce CheXGenBench, a rigorous and multifaceted evaluation framework for synthetic chest radiograph generation that simultaneously assesses fidelity, privacy risks, and clinical utility across state-of-the-art text-to-image generative models. Despite rapid advancements in generative AI for real-world imagery, medical domain evaluations have been hindered by methodological inconsistencies, outdated architectural comparisons, and disconnected assessment criteria that rarely address the practical clinical value of synthetic samples. CheXGenBench overcomes these limitations through standardised data partitioning and a unified evaluation protocol comprising over 20 quantitative metrics that systematically analyse generation quality, potential privacy vulnerabilities, and downstream clinical applicability across 11 leading text-to-image architectures. Our results reveal critical inefficiencies in the existing evaluation protocols, particularly in assessing generative fidelity, leading to inconsistent and uninformative comparisons. Our framework establishes a standardised benchmark for the medical AI community, enabling objective and reproducible comparisons while facilitating seamless integration of both existing and future generative models. Additionally, we release a high-quality, synthetic dataset, SynthCheX-75K, comprising 75K radiographs generated by the top-performing model (Sana 0.6B) in our benchmark to support further research in this critical domain. Through CheXGenBench, we establish a new state-of-the-art and release our framework, models, and SynthCheX-75K dataset at https://raman1121.github.io/CheXGenBench/
Multi-contrast laser endoscopy for in vivo gastrointestinal imaging
White light endoscopy is the clinical gold standard for detecting diseases in the gastrointestinal tract. Most applications involve identifying visual abnormalities in tissue color, texture, and shape. Unfortunately, the contrast of these features is often subtle, causing many clinically relevant cases to go undetected. To overcome this challenge, we introduce Multi-contrast Laser Endoscopy (MLE): a platform for widefield clinical imaging with rapidly tunable spectral, coherent, and directional illumination. We demonstrate three capabilities of MLE: enhancing tissue chromophore contrast with multispectral diffuse reflectance, quantifying blood flow using laser speckle contrast imaging, and characterizing mucosal topography using photometric stereo. We validate MLE with benchtop models, then demonstrate MLE in vivo during clinical colonoscopies. MLE images from 31 polyps demonstrate an approximate three-fold improvement in contrast and a five-fold improvement in color difference compared to white light and narrow band imaging. With the ability to reveal multiple complementary types of tissue contrast while seamlessly integrating into the clinical environment, MLE shows promise as an investigative tool to improve gastrointestinal imaging.
UniEval: Unified Holistic Evaluation for Unified Multimodal Understanding and Generation
The emergence of unified multimodal understanding and generation models is rapidly attracting attention because of their ability to enhance instruction-following capabilities while minimizing model redundancy. However, there is a lack of a unified evaluation framework for these models, which would enable an elegant, simplified, and overall evaluation. Current models conduct evaluations on multiple task-specific benchmarks, but there are significant limitations, such as the lack of overall results, errors from extra evaluation models, reliance on extensive labeled images, benchmarks that lack diversity, and metrics with limited capacity for instruction-following evaluation. To tackle these challenges, we introduce UniEval, the first evaluation framework designed for unified multimodal models without extra models, images, or annotations. This facilitates a simplified and unified evaluation process. The UniEval framework contains a holistic benchmark, UniBench (supports both unified and visual generation models), along with the corresponding UniScore metric. UniBench includes 81 fine-grained tags contributing to high diversity. Experimental results indicate that UniBench is more challenging than existing benchmarks, and UniScore aligns closely with human evaluations, surpassing current metrics. Moreover, we extensively evaluated SoTA unified and visual generation models, uncovering new insights into Univeral's unique values.
comment: UniEval is the first evaluation framework designed for unified multimodal models, including a holistic benchmark UniBench and the UniScore metric
Logos as a Well-Tempered Pre-train for Sign Language Recognition
This paper examines two aspects of the isolated sign language recognition (ISLR) task. First, despite the availability of a number of datasets, the amount of data for most individual sign languages is limited. It poses the challenge of cross-language ISLR model training, including transfer learning. Second, similar signs can have different semantic meanings. It leads to ambiguity in dataset labeling and raises the question of the best policy for annotating such signs. To address these issues, this study presents Logos, a novel Russian Sign Language (RSL) dataset, the most extensive ISLR dataset by the number of signers and one of the largest available datasets while also the largest RSL dataset in size and vocabulary. It is shown that a model, pre-trained on the Logos dataset can be used as a universal encoder for other language SLR tasks, including few-shot learning. We explore cross-language transfer learning approaches and find that joint training using multiple classification heads benefits accuracy for the target lowresource datasets the most. The key feature of the Logos dataset is explicitly annotated visually similar sign groups. We show that explicitly labeling visually similar signs improves trained model quality as a visual encoder for downstream tasks. Based on the proposed contributions, we outperform current state-of-the-art results for the WLASL dataset and get competitive results for the AUTSL dataset, with a single stream model processing solely RGB video. The source code, dataset, and pre-trained models are publicly available.
Consistent Quantity-Quality Control across Scenes for Deployment-Aware Gaussian Splatting
To reduce storage and computational costs, 3D Gaussian splatting (3DGS) seeks to minimize the number of Gaussians used while preserving high rendering quality, introducing an inherent trade-off between Gaussian quantity and rendering quality. Existing methods strive for better quantity-quality performance, but lack the ability for users to intuitively adjust this trade-off to suit practical needs such as model deployment under diverse hardware and communication constraints. Here, we present ControlGS, a 3DGS optimization method that achieves semantically meaningful and cross-scene consistent quantity-quality control while maintaining strong quantity-quality performance. Through a single training run using a fixed setup and a user-specified hyperparameter reflecting quantity-quality preference, ControlGS can automatically find desirable quantity-quality trade-off points across diverse scenes, from compact objects to large outdoor scenes. It also outperforms baselines by achieving higher rendering quality with fewer Gaussians, and supports a broad adjustment range with stepless control over the trade-off.
HWA-UNETR: Hierarchical Window Aggregate UNETR for 3D Multimodal Gastric Lesion Segmentation MICCAI 2025
Multimodal medical image segmentation faces significant challenges in the context of gastric cancer lesion analysis. This clinical context is defined by the scarcity of independent multimodal datasets and the imperative to amalgamate inherently misaligned modalities. As a result, algorithms are constrained to train on approximate data and depend on application migration, leading to substantial resource expenditure and a potential decline in analysis accuracy. To address those challenges, we have made two major contributions: First, we publicly disseminate the GCM 2025 dataset, which serves as the first large-scale, open-source collection of gastric cancer multimodal MRI scans, featuring professionally annotated FS-T2W, CE-T1W, and ADC images from 500 patients. Second, we introduce HWA-UNETR, a novel 3D segmentation framework that employs an original HWA block with learnable window aggregation layers to establish dynamic feature correspondences between different modalities' anatomical structures, and leverages the innovative tri-orientated fusion mamba mechanism for context modeling and capturing long-range spatial dependencies. Extensive experiments on our GCM 2025 dataset and the publicly BraTS 2021 dataset validate the performance of our framework, demonstrating that the new approach surpasses existing methods by up to 1.68\% in the Dice score while maintaining solid robustness. The dataset and code are public via https://github.com/JeMing-creater/HWA-UNETR.
comment: This work has been provisionally accepted for MICCAI 2025
SEAL: Searching Expandable Architectures for Incremental Learning
Incremental learning is a machine learning paradigm where a model learns from a sequential stream of tasks. This setting poses a key challenge: balancing plasticity (learning new tasks) and stability (preserving past knowledge). Neural Architecture Search (NAS), a branch of AutoML, automates the design of the architecture of Deep Neural Networks and has shown success in static settings. However, existing NAS-based approaches to incremental learning often rely on expanding the model at every task, making them impractical in resource-constrained environments. In this work, we introduce SEAL, a NAS-based framework tailored for data-incremental learning, a scenario where disjoint data samples arrive sequentially and are not stored for future access. SEAL adapts the model structure dynamically by expanding it only when necessary, based on a capacity estimation metric. Stability is preserved through cross-distillation training after each expansion step. The NAS component jointly searches for both the architecture and the optimal expansion policy. Experiments across multiple benchmarks demonstrate that SEAL effectively reduces forgetting and enhances accuracy while maintaining a lower model size compared to prior methods. These results highlight the promise of combining NAS and selective expansion for efficient, adaptive learning in incremental scenarios.
comment: 8 pages, 5 figures
Vision language models have difficulty recognizing virtual objects
Vision language models (VLMs) are AI systems paired with both language and vision encoders to process multimodal input. They are capable of performing complex semantic tasks such as automatic captioning, but it remains an open question about how well they comprehend the visuospatial properties of scenes depicted in the images they process. We argue that descriptions of virtual objects -- objects that are not visually represented in an image -- can help test scene comprehension in these AI systems. For example, an image that depicts a person standing under a tree can be paired with the following prompt: imagine that a kite is stuck in the tree. VLMs that comprehend the scene should update their representations and reason sensibly about the spatial relations between all three objects. We describe systematic evaluations of state-of-the-art VLMs and show that their ability to process virtual objects is inadequate.
PIF: Anomaly detection via preference embedding ICPR 2020
We address the problem of detecting anomalies with respect to structured patterns. To this end, we conceive a novel anomaly detection method called PIF, that combines the advantages of adaptive isolation methods with the flexibility of preference embedding. Specifically, we propose to embed the data in a high dimensional space where an efficient tree-based method, PI-Forest, is employed to compute an anomaly score. Experiments on synthetic and real datasets demonstrate that PIF favorably compares with state-of-the-art anomaly detection techniques, and confirm that PI-Forest is better at measuring arbitrary distances and isolate points in the preference space.
comment: Accepted at International Conference on Pattern Recognition (ICPR 2020)
Learned Lightweight Smartphone ISP with Unpaired Data CVPR
The Image Signal Processor (ISP) is a fundamental component in modern smartphone cameras responsible for conversion of RAW sensor image data to RGB images with a strong focus on perceptual quality. Recent work highlights the potential of deep learning approaches and their ability to capture details with a quality increasingly close to that of professional cameras. A difficult and costly step when developing a learned ISP is the acquisition of pixel-wise aligned paired data that maps the raw captured by a smartphone camera sensor to high-quality reference images. In this work, we address this challenge by proposing a novel training method for a learnable ISP that eliminates the need for direct correspondences between raw images and ground-truth data with matching content. Our unpaired approach employs a multi-term loss function guided by adversarial training with multiple discriminators processing feature maps from pre-trained networks to maintain content structure while learning color and texture characteristics from the target RGB dataset. Using lightweight neural network architectures suitable for mobile devices as backbones, we evaluated our method on the Zurich RAW to RGB and Fujifilm UltraISP datasets. Compared to paired training methods, our unpaired learning strategy shows strong potential and achieves high fidelity across multiple evaluation metrics. The code and pre-trained models are available at https://github.com/AndreiiArhire/Learned-Lightweight-Smartphone-ISP-with-Unpaired-Data .
comment: Accepted at CVPRW 2025
Visual Fidelity Index for Generative Semantic Communications with Critical Information Embedding
Generative semantic communication (Gen-SemCom) with large artificial intelligence (AI) model promises a transformative paradigm for 6G networks, which reduces communication costs by transmitting low-dimensional prompts rather than raw data. However, purely prompt-driven generation loses fine-grained visual details. Additionally, there is a lack of systematic metrics to evaluate the performance of Gen-SemCom systems. To address these issues, we develop a hybrid Gen-SemCom system with a critical information embedding (CIE) framework, where both text prompts and semantically critical features are extracted for transmissions. First, a novel approach of semantic filtering is proposed to select and transmit the semantically critical features of images relevant to semantic label. By integrating the text prompt and critical features, the receiver reconstructs high-fidelity images using a diffusion-based generative model. Next, we propose the generative visual information fidelity (GVIF) metric to evaluate the visual quality of the generated image. By characterizing the statistical models of image features, the GVIF metric quantifies the mutual information between the distorted features and their original counterparts. By maximizing the GVIF metric, we design a channel-adaptive Gen-SemCom system that adaptively control the volume of features and compression rate according to the channel state. Experimental results validate the GVIF metric's sensitivity to visual fidelity, correlating with both the PSNR and critical information volume. In addition, the optimized system achieves superior performance over benchmarking schemes in terms of higher PSNR and lower FID scores.
SpikeVideoFormer: An Efficient Spike-Driven Video Transformer with Hamming Attention and $\mathcal{O}(T)$ Complexity ICML 2025
Spiking Neural Networks (SNNs) have shown competitive performance to Artificial Neural Networks (ANNs) in various vision tasks, while offering superior energy efficiency. However, existing SNN-based Transformers primarily focus on single-image tasks, emphasizing spatial features while not effectively leveraging SNNs' efficiency in video-based vision tasks. In this paper, we introduce SpikeVideoFormer, an efficient spike-driven video Transformer, featuring linear temporal complexity $\mathcal{O}(T)$. Specifically, we design a spike-driven Hamming attention (SDHA) which provides a theoretically guided adaptation from traditional real-valued attention to spike-driven attention. Building on SDHA, we further analyze various spike-driven space-time attention designs and identify an optimal scheme that delivers appealing performance for video tasks, while maintaining only linear temporal complexity. The generalization ability and efficiency of our model are demonstrated across diverse downstream video tasks, including classification, human pose tracking, and semantic segmentation. Empirical results show our method achieves state-of-the-art (SOTA) performance compared to existing SNN approaches, with over 15\% improvement on the latter two tasks. Additionally, it matches the performance of recent ANN-based methods while offering significant efficiency gains, achieving $\times 16$, $\times 10$ and $\times 5$ improvements on the three tasks. https://github.com/JimmyZou/SpikeVideoFormer
comment: Accepted by ICML 2025
A Unified and Scalable Membership Inference Method for Visual Self-supervised Encoder via Part-aware Capability CCS2024
Self-supervised learning shows promise in harnessing extensive unlabeled data, but it also confronts significant privacy concerns, especially in vision. In this paper, we perform membership inference on visual self-supervised models in a more realistic setting: self-supervised training method and details are unknown for an adversary when attacking as he usually faces a black-box system in practice. In this setting, considering that self-supervised model could be trained by completely different self-supervised paradigms, e.g., masked image modeling and contrastive learning, with complex training details, we propose a unified membership inference method called PartCrop. It is motivated by the shared part-aware capability among models and stronger part response on the training data. Specifically, PartCrop crops parts of objects in an image to query responses within the image in representation space. We conduct extensive attacks on self-supervised models with different training protocols and structures using three widely used image datasets. The results verify the effectiveness and generalization of PartCrop. Moreover, to defend against PartCrop, we evaluate two common approaches, i.e., early stop and differential privacy, and propose a tailored method called shrinking crop scale range. The defense experiments indicate that all of them are effective. Finally, besides prototype testing on toy visual encoders and small-scale image datasets, we quantitatively study the impacts of scaling from both data and model aspects in a realistic scenario and propose a scalable PartCrop-v2 by introducing two structural improvements to PartCrop. Our code is at https://github.com/JiePKU/PartCrop.
comment: An extension of our ACM CCS2024 conference paper (arXiv:2404.02462). We show the impacts of scaling from both data and model aspects on membership inference for self-supervised visual encoders
SOS: A Shuffle Order Strategy for Data Augmentation in Industrial Human Activity Recognition
In the realm of Human Activity Recognition (HAR), obtaining high quality and variance data is still a persistent challenge due to high costs and the inherent variability of real-world activities. This study introduces a generation dataset by deep learning approaches (Attention Autoencoder and conditional Generative Adversarial Networks). Another problem that data heterogeneity is a critical challenge, one of the solutions is to shuffle the data to homogenize the distribution. Experimental results demonstrate that the random sequence strategy significantly improves classification performance, achieving an accuracy of up to 0.70 $\pm$ 0.03 and a macro F1 score of 0.64 $\pm$ 0.01. For that, disrupting temporal dependencies through random sequence reordering compels the model to focus on instantaneous recognition, thereby improving robustness against activity transitions. This approach not only broadens the effective training dataset but also offers promising avenues for enhancing HAR systems in complex, real-world scenarios.
MIPHEI-ViT: Multiplex Immunofluorescence Prediction from H&E Images using ViT Foundation Models
Histopathological analysis is a cornerstone of cancer diagnosis, with Hematoxylin and Eosin (H&E) staining routinely acquired for every patient to visualize cell morphology and tissue architecture. On the other hand, multiplex immunofluorescence (mIF) enables more precise cell type identification via proteomic markers, but has yet to achieve widespread clinical adoption due to cost and logistical constraints. To bridge this gap, we introduce MIPHEI (Multiplex Immunofluorescence Prediction from H&E), a U-Net-inspired architecture that integrates state-of-the-art ViT foundation models as encoders to predict mIF signals from H&E images. MIPHEI targets a comprehensive panel of markers spanning nuclear content, immune lineages (T cells, B cells, myeloid), epithelium, stroma, vasculature, and proliferation. We train our model using the publicly available ORION dataset of restained H&E and mIF images from colorectal cancer tissue, and validate it on two independent datasets. MIPHEI achieves accurate cell-type classification from H&E alone, with F1 scores of 0.88 for Pan-CK, 0.57 for CD3e, 0.56 for SMA, 0.36 for CD68, and 0.30 for CD20, substantially outperforming both a state-of-the-art baseline and a random classifier for most markers. Our results indicate that our model effectively captures the complex relationships between nuclear morphologies in their tissue context, as visible in H&E images and molecular markers defining specific cell types. MIPHEI offers a promising step toward enabling cell-type-aware analysis of large-scale H&E datasets, in view of uncovering relationships between spatial cellular organization and patient outcomes.
StoryReasoning Dataset: Using Chain-of-Thought for Scene Understanding and Grounded Story Generation
Visual storytelling systems struggle to maintain character identity across frames and link actions to appropriate subjects, frequently leading to referential hallucinations. These issues can be addressed through grounding of characters, objects, and other entities on the visual elements. We propose StoryReasoning, a dataset containing 4,178 stories derived from 52,016 movie images, with both structured scene analyses and grounded stories. Each story maintains character and object consistency across frames while explicitly modeling multi-frame relationships through structured tabular representations. Our approach features cross-frame object re-identification using visual similarity and face recognition, chain-of-thought reasoning for explicit narrative modeling, and a grounding scheme that links textual elements to visual entities across multiple frames. We establish baseline performance by fine-tuning Qwen2.5-VL 7B, creating Qwen Storyteller, which performs end-to-end object detection, re-identification, and landmark detection while maintaining consistent object references throughout the story. Evaluation demonstrates a reduction from 4.06 to 3.56 (-12.3%) hallucinations on average per story when compared to a non-fine-tuned model.
comment: 31 pages, 14 figures
MSCI: Addressing CLIP's Inherent Limitations for Compositional Zero-Shot Learning
Compositional Zero-Shot Learning (CZSL) aims to recognize unseen state-object combinations by leveraging known combinations. Existing studies basically rely on the cross-modal alignment capabilities of CLIP but tend to overlook its limitations in capturing fine-grained local features, which arise from its architectural and training paradigm. To address this issue, we propose a Multi-Stage Cross-modal Interaction (MSCI) model that effectively explores and utilizes intermediate-layer information from CLIP's visual encoder. Specifically, we design two self-adaptive aggregators to extract local information from low-level visual features and integrate global information from high-level visual features, respectively. These key information are progressively incorporated into textual representations through a stage-by-stage interaction mechanism, significantly enhancing the model's perception capability for fine-grained local visual information. Additionally, MSCI dynamically adjusts the attention weights between global and local visual information based on different combinations, as well as different elements within the same combination, allowing it to flexibly adapt to diverse scenarios. Experiments on three widely used datasets fully validate the effectiveness and superiority of the proposed model. Data and code are available at https://github.com/ltpwy/MSCI.
comment: 9 pages, 5 figures
MFogHub: Bridging Multi-Regional and Multi-Satellite Data for Global Marine Fog Detection and Forecasting
Deep learning approaches for marine fog detection and forecasting have outperformed traditional methods, demonstrating significant scientific and practical importance. However, the limited availability of open-source datasets remains a major challenge. Existing datasets, often focused on a single region or satellite, restrict the ability to evaluate model performance across diverse conditions and hinder the exploration of intrinsic marine fog characteristics. To address these limitations, we introduce \textbf{MFogHub}, the first multi-regional and multi-satellite dataset to integrate annotated marine fog observations from 15 coastal fog-prone regions and six geostationary satellites, comprising over 68,000 high-resolution samples. By encompassing diverse regions and satellite perspectives, MFogHub facilitates rigorous evaluation of both detection and forecasting methods under varying conditions. Extensive experiments with 16 baseline models demonstrate that MFogHub can reveal generalization fluctuations due to regional and satellite discrepancy, while also serving as a valuable resource for the development of targeted and scalable fog prediction techniques. Through MFogHub, we aim to advance both the practical monitoring and scientific understanding of marine fog dynamics on a global scale. The dataset and code are at \href{https://github.com/kaka0910/MFogHub}{https://github.com/kaka0910/MFogHub}.
RainPro-8: An Efficient Deep Learning Model to Estimate Rainfall Probabilities Over 8 Hours
We present a deep learning model for high-resolution probabilistic precipitation forecasting over an 8-hour horizon in Europe, overcoming the limitations of radar-only deep learning models with short forecast lead times. Our model efficiently integrates multiple data sources - including radar, satellite, and physics-based numerical weather prediction (NWP) - while capturing long-range interactions, resulting in accurate forecasts with robust uncertainty quantification through consistent probabilistic maps. Featuring a compact architecture, it enables more efficient training and faster inference than existing models. Extensive experiments demonstrate that our model surpasses current operational NWP systems, extrapolation-based methods, and deep-learning nowcasting models, setting a new standard for high-resolution precipitation forecasting in Europe, ensuring a balance between accuracy, interpretability, and computational efficiency.
HandReader: Advanced Techniques for Efficient Fingerspelling Recognition
Fingerspelling is a significant component of Sign Language (SL), allowing the interpretation of proper names, characterized by fast hand movements during signing. Although previous works on fingerspelling recognition have focused on processing the temporal dimension of videos, there remains room for improving the accuracy of these approaches. This paper introduces HandReader, a group of three architectures designed to address the fingerspelling recognition task. HandReader$_{RGB}$ employs the novel Temporal Shift-Adaptive Module (TSAM) to process RGB features from videos of varying lengths while preserving important sequential information. HandReader$_{KP}$ is built on the proposed Temporal Pose Encoder (TPE) operated on keypoints as tensors. Such keypoints composition in a batch allows the encoder to pass them through 2D and 3D convolution layers, utilizing temporal and spatial information and accumulating keypoints coordinates. We also introduce HandReader_RGB+KP - architecture with a joint encoder to benefit from RGB and keypoint modalities. Each HandReader model possesses distinct advantages and achieves state-of-the-art results on the ChicagoFSWild and ChicagoFSWild+ datasets. Moreover, the models demonstrate high performance on the first open dataset for Russian fingerspelling, Znaki, presented in this paper. The Znaki dataset and HandReader pre-trained models are publicly available.
comment: https://github.com/ai-forever/handreader
Inferring Driving Maps by Deep Learning-based Trail Map Extraction CVPR
High-definition (HD) maps offer extensive and accurate environmental information about the driving scene, making them a crucial and essential element for planning within autonomous driving systems. To avoid extensive efforts from manual labeling, methods for automating the map creation have emerged. Recent trends have moved from offline mapping to online mapping, ensuring availability and actuality of the utilized maps. While the performance has increased in recent years, online mapping still faces challenges regarding temporal consistency, sensor occlusion, runtime, and generalization. We propose a novel offline mapping approach that integrates trails - informal routes used by drivers - into the map creation process. Our method aggregates trail data from the ego vehicle and other traffic participants to construct a comprehensive global map using transformer-based deep learning models. Unlike traditional offline mapping, our approach enables continuous updates while remaining sensor-agnostic, facilitating efficient data transfer. Our method demonstrates superior performance compared to state-of-the-art online mapping approaches, achieving improved generalization to previously unseen environments and sensor configurations. We validate our approach on two benchmark datasets, highlighting its robustness and applicability in autonomous driving systems.
comment: This paper was accepted at the CVPR WAD 2025 Workshop
Sage Deer: A Super-Aligned Driving Generalist Is Your Copilot
The intelligent driving cockpit, an important part of intelligent driving, needs to match different users' comfort, interaction, and safety needs. This paper aims to build a Super-Aligned and GEneralist DRiving agent, SAGE DeeR. Sage Deer achieves three highlights: (1) Super alignment: It achieves different reactions according to different people's preferences and biases. (2) Generalist: It can understand the multi-view and multi-mode inputs to reason the user's physiological indicators, facial emotions, hand movements, body movements, driving scenarios, and behavioral decisions. (3) Self-Eliciting: It can elicit implicit thought chains in the language space to further increase generalist and super-aligned abilities. Besides, we collected multiple data sets and built a large-scale benchmark. This benchmark measures the deer's perceptual decision-making ability and the super alignment's accuracy.
ADHMR: Aligning Diffusion-based Human Mesh Recovery via Direct Preference Optimization ICML 2025
Human mesh recovery (HMR) from a single image is inherently ill-posed due to depth ambiguity and occlusions. Probabilistic methods have tried to solve this by generating numerous plausible 3D human mesh predictions, but they often exhibit misalignment with 2D image observations and weak robustness to in-the-wild images. To address these issues, we propose ADHMR, a framework that Aligns a Diffusion-based HMR model in a preference optimization manner. First, we train a human mesh prediction assessment model, HMR-Scorer, capable of evaluating predictions even for in-the-wild images without 3D annotations. We then use HMR-Scorer to create a preference dataset, where each input image has a pair of winner and loser mesh predictions. This dataset is used to finetune the base model using direct preference optimization. Moreover, HMR-Scorer also helps improve existing HMR models by data cleaning, even with fewer training samples. Extensive experiments show that ADHMR outperforms current state-of-the-art methods. Code is available at: https://github.com/shenwenhao01/ADHMR.
comment: Accepted by ICML 2025. Code: https://github.com/shenwenhao01/ADHMR
MTVCrafter: 4D Motion Tokenization for Open-World Human Image Animation
Human image animation has gained increasing attention and developed rapidly due to its broad applications in digital humans. However, existing methods rely largely on 2D-rendered pose images for motion guidance, which limits generalization and discards essential 3D information for open-world animation. To tackle this problem, we propose MTVCrafter (Motion Tokenization Video Crafter), the first framework that directly models raw 3D motion sequences (i.e., 4D motion) for human image animation. Specifically, we introduce 4DMoT (4D motion tokenizer) to quantize 3D motion sequences into 4D motion tokens. Compared to 2D-rendered pose images, 4D motion tokens offer more robust spatio-temporal cues and avoid strict pixel-level alignment between pose image and character, enabling more flexible and disentangled control. Then, we introduce MV-DiT (Motion-aware Video DiT). By designing unique motion attention with 4D positional encodings, MV-DiT can effectively leverage motion tokens as 4D compact yet expressive context for human image animation in the complex 3D world. Hence, it marks a significant step forward in this field and opens a new direction for pose-guided human video generation. Experiments show that our MTVCrafter achieves state-of-the-art results with an FID-VID of 6.98, surpassing the second-best by 65%. Powered by robust motion tokens, MTVCrafter also generalizes well to diverse open-world characters (single/multiple, full/half-body) across various styles and scenarios. Our video demos and code are provided in the supplementary material and at this anonymous GitHub link: https://anonymous.4open.science/r/MTVCrafter-1B13.
On the Interplay of Human-AI Alignment,Fairness, and Performance Trade-offs in Medical Imaging
Deep neural networks excel in medical imaging but remain prone to biases, leading to fairness gaps across demographic groups. We provide the first systematic exploration of Human-AI alignment and fairness in this domain. Our results show that incorporating human insights consistently reduces fairness gaps and enhances out-of-domain generalization, though excessive alignment can introduce performance trade-offs, emphasizing the need for calibrated strategies. These findings highlight Human-AI alignment as a promising approach for developing fair, robust, and generalizable medical AI systems, striking a balance between expert guidance and automated efficiency. Our code is available at https://github.com/Roypic/Aligner.
Data-Agnostic Augmentations for Unknown Variations: Out-of-Distribution Generalisation in MRI Segmentation
Medical image segmentation models are often trained on curated datasets, leading to performance degradation when deployed in real-world clinical settings due to mismatches between training and test distributions. While data augmentation techniques are widely used to address these challenges, traditional visually consistent augmentation strategies lack the robustness needed for diverse real-world scenarios. In this work, we systematically evaluate alternative augmentation strategies, focusing on MixUp and Auxiliary Fourier Augmentation. These methods mitigate the effects of multiple variations without explicitly targeting specific sources of distribution shifts. We demonstrate how these techniques significantly improve out-of-distribution generalization and robustness to imaging variations across a wide range of transformations in cardiac cine MRI and prostate MRI segmentation. We quantitatively find that these augmentation methods enhance learned feature representations by promoting separability and compactness. Additionally, we highlight how their integration into nnU-Net training pipelines provides an easy-to-implement, effective solution for enhancing the reliability of medical segmentation models in real-world applications.
comment: Accepted at MIDL 2025
VolE: A Point-cloud Framework for Food 3D Reconstruction and Volume Estimation
Accurate food volume estimation is crucial for medical nutrition management and health monitoring applications, but current food volume estimation methods are often limited by mononuclear data, leveraging single-purpose hardware such as 3D scanners, gathering sensor-oriented information such as depth information, or relying on camera calibration using a reference object. In this paper, we present VolE, a novel framework that leverages mobile device-driven 3D reconstruction to estimate food volume. VolE captures images and camera locations in free motion to generate precise 3D models, thanks to AR-capable mobile devices. To achieve real-world measurement, VolE is a reference- and depth-free framework that leverages food video segmentation for food mask generation. We also introduce a new food dataset encompassing the challenging scenarios absent in the previous benchmarks. Our experiments demonstrate that VolE outperforms the existing volume estimation techniques across multiple datasets by achieving 2.22 % MAPE, highlighting its superior performance in food volume estimation.
Modeling Saliency Dataset Bias
Recent advances in image-based saliency prediction are approaching gold standard performance levels on existing benchmarks. Despite this success, we show that predicting fixations across multiple saliency datasets remains challenging due to dataset bias. We find a significant performance drop (around 40%) when models trained on one dataset are applied to another. Surprisingly, increasing dataset diversity does not resolve this inter-dataset gap, with close to 60% attributed to dataset-specific biases. To address this remaining generalization gap, we propose a novel architecture extending a mostly dataset-agnostic encoder-decoder structure with fewer than 20 dataset-specific parameters that govern interpretable mechanisms such as multi-scale structure, center bias, and fixation spread. Adapting only these parameters to new data accounts for more than 75% of the generalization gap, with a large fraction of the improvement achieved with as few as 50 samples. Our model sets a new state-of-the-art on all three datasets of the MIT/Tuebingen Saliency Benchmark (MIT300, CAT2000, and COCO-Freeview), even when purely generalizing from unrelated datasets, but with a substantial boost when adapting to the respective training datasets. The model also provides valuable insights into spatial saliency properties, revealing complex multi-scale effects that combine both absolute and relative sizes.
Multi-Source Collaborative Style Augmentation and Domain-Invariant Learning for Federated Domain Generalization IJCAI 2025
Federated domain generalization aims to learn a generalizable model from multiple decentralized source domains for deploying on the unseen target domain. The style augmentation methods have achieved great progress on domain generalization. However, the existing style augmentation methods either explore the data styles within isolated source domain or interpolate the style information across existing source domains under the data decentralization scenario, which leads to limited style space. To address this issue, we propose a Multi-source Collaborative Style Augmentation and Domain-invariant learning method (MCSAD) for federated domain generalization. Specifically, we propose a multi-source collaborative style augmentation module to generate data in the broader style space. Furthermore, we conduct domain-invariant learning between the original data and augmented data by cross-domain feature alignment within the same class and classes relation ensemble distillation between different classes to learn a domain-invariant model. By alternatively conducting collaborative style augmentation and domain-invariant learning, the model can generalize well on unseen target domain. Extensive experiments on multiple domain generalization datasets indicate that our method significantly outperforms the state-of-the-art federated domain generalization methods.
comment: IJCAI 2025
VRSplat: Fast and Robust Gaussian Splatting for Virtual Reality
3D Gaussian Splatting (3DGS) has rapidly become a leading technique for novel-view synthesis, providing exceptional performance through efficient software-based GPU rasterization. Its versatility enables real-time applications, including on mobile and lower-powered devices. However, 3DGS faces key challenges in virtual reality (VR): (1) temporal artifacts, such as popping during head movements, (2) projection-based distortions that result in disturbing and view-inconsistent floaters, and (3) reduced framerates when rendering large numbers of Gaussians, falling below the critical threshold for VR. Compared to desktop environments, these issues are drastically amplified by large field-of-view, constant head movements, and high resolution of head-mounted displays (HMDs). In this work, we introduce VRSplat: we combine and extend several recent advancements in 3DGS to address challenges of VR holistically. We show how the ideas of Mini-Splatting, StopThePop, and Optimal Projection can complement each other, by modifying the individual techniques and core 3DGS rasterizer. Additionally, we propose an efficient foveated rasterizer that handles focus and peripheral areas in a single GPU launch, avoiding redundant computations and improving GPU utilization. Our method also incorporates a fine-tuning step that optimizes Gaussian parameters based on StopThePop depth evaluations and Optimal Projection. We validate our method through a controlled user study with 25 participants, showing a strong preference for VRSplat over other configurations of Mini-Splatting. VRSplat is the first, systematically evaluated 3DGS approach capable of supporting modern VR applications, achieving 72+ FPS while eliminating popping and stereo-disrupting floaters.
comment: I3D'25 (PACMCGIT); Project Page: https://cekavis.site/VRSplat/
IMITATE: Image Registration with Context for unknown time frame recovery
In this paper, we formulate a novel image registration formalism dedicated to the estimation of unknown condition-related images, based on two or more known images and their associated conditions. We show how to practically model this formalism by using a new conditional U-Net architecture, which fully takes into account the conditional information and does not need any fixed image. Our formalism is then applied to image moving tumors for radiotherapy treatment at different breathing amplitude using 4D-CT (3D+t) scans in thoracoabdominal regions. This driving application is particularly complex as it requires to stitch a collection of sequential 2D slices into several 3D volumes at different organ positions. Movement interpolation with standard methods then generates well known reconstruction artefacts in the assembled volumes due to irregular patient breathing, hysteresis and poor correlation of breathing signal to internal motion. Results obtained on 4D-CT clinical data showcase artefact-free volumes achieved through real-time latencies. The code is publicly available at https://github.com/Kheil-Z/IMITATE .
comment: IEEE ISBI 2025
Why 1 + 1 < 1 in Visual Token Pruning: Beyond Naive Integration via Multi-Objective Balanced Covering
Existing visual token pruning methods target prompt alignment and visual preservation with static strategies, overlooking the varying relative importance of these objectives across tasks, which leads to inconsistent performance. To address this, we derive the first closed-form error bound for visual token pruning based on the Hausdorff distance, uniformly characterizing the contributions of both objectives. Moreover, leveraging $\epsilon$-covering theory, we reveal an intrinsic trade-off between these objectives and quantify their optimal attainment levels under a fixed budget. To practically handle this trade-off, we propose Multi-Objective Balanced Covering (MoB), which reformulates visual token pruning as a bi-objective covering problem. In this framework, the attainment trade-off reduces to budget allocation via greedy radius trading. MoB offers a provable performance bound and linear scalability with respect to the number of input visual tokens, enabling adaptation to challenging pruning scenarios. Extensive experiments show that MoB preserves 96.4% of performance for LLaVA-1.5-7B using only 11.1% of the original visual tokens and accelerates LLaVA-Next-7B by 1.3-1.5$\times$ with negligible performance loss. Additionally, evaluations on Qwen2-VL and Video-LLaVA confirm that MoB integrates seamlessly into advanced MLLMs and diverse vision-language tasks.
comment: 31 pages,9 figures,conference
MMRL++: Parameter-Efficient and Interaction-Aware Representation Learning for Vision-Language Models
Large-scale pre-trained Vision-Language Models (VLMs) have significantly advanced transfer learning across diverse tasks. However, adapting these models with limited few-shot data often leads to overfitting, undermining their ability to generalize to new tasks. To address this, we propose Multi-Modal Representation Learning (MMRL), which introduces a shared, learnable, modality-agnostic representation space. MMRL generates space tokens projected into both text and image encoders as representation tokens, enabling more effective cross-modal interactions. Unlike prior methods that mainly optimize class token features, MMRL inserts representation tokens into higher encoder layers--where task-specific features are more prominent--while preserving general knowledge in the lower layers. During training, both class and representation features are jointly optimized: a trainable projection layer is applied to representation tokens for task adaptation, while the projection layer for class token remains frozen to retain pre-trained knowledge. To further promote generalization, we introduce a regularization term aligning class and text features with the frozen VLM's zero-shot features. At inference, a decoupling strategy uses both class and representation features for base tasks, but only class features for novel tasks due to their stronger generalization. Building upon this, we propose MMRL++, a parameter-efficient and interaction-aware extension that significantly reduces trainable parameters and enhances intra-modal interactions--particularly across the layers of representation tokens--allowing gradient sharing and instance-specific information to propagate more effectively through the network. Extensive experiments on 15 datasets demonstrate that MMRL and MMRL++ consistently outperform state-of-the-art methods, achieving a strong balance between task-specific adaptation and generalization.
comment: Due to the limitation "The abstract field cannot be longer than 1,920 characters", the abstract appearing here is slightly shorter than that in the PDF file
FlowDreamer: A RGB-D World Model with Flow-based Motion Representations for Robot Manipulation
This paper investigates training better visual world models for robot manipulation, i.e., models that can predict future visual observations by conditioning on past frames and robot actions. Specifically, we consider world models that operate on RGB-D frames (RGB-D world models). As opposed to canonical approaches that handle dynamics prediction mostly implicitly and reconcile it with visual rendering in a single model, we introduce FlowDreamer, which adopts 3D scene flow as explicit motion representations. FlowDreamer first predicts 3D scene flow from past frame and action conditions with a U-Net, and then a diffusion model will predict the future frame utilizing the scene flow. FlowDreamer is trained end-to-end despite its modularized nature. We conduct experiments on 4 different benchmarks, covering both video prediction and visual planning tasks. The results demonstrate that FlowDreamer achieves better performance compared to other baseline RGB-D world models by 7% on semantic similarity, 11% on pixel quality, and 6% on success rate in various robot manipulation domains.
comment: Project page: see https://sharinka0715.github.io/FlowDreamer/
ToonifyGB: StyleGAN-based Gaussian Blendshapes for 3D Stylized Head Avatars
The introduction of 3D Gaussian blendshapes has enabled the real-time reconstruction of animatable head avatars from monocular video. Toonify, a StyleGAN-based framework, has become widely used for facial image stylization. To extend Toonify for synthesizing diverse stylized 3D head avatars using Gaussian blendshapes, we propose an efficient two-stage framework, ToonifyGB. In Stage 1 (stylized video generation), we employ an improved StyleGAN to generate the stylized video from the input video frames, which addresses the limitation of cropping aligned faces at a fixed resolution as preprocessing for normal StyleGAN. This process provides a more stable video, which enables Gaussian blendshapes to better capture the high-frequency details of the video frames, and efficiently generate high-quality animation in the next stage. In Stage 2 (Gaussian blendshapes synthesis), we learn a stylized neutral head model and a set of expression blendshapes from the generated video. By combining the neutral head model with expression blendshapes, ToonifyGB can efficiently render stylized avatars with arbitrary expressions. We validate the effectiveness of ToonifyGB on the benchmark dataset using two styles: Arcane and Pixar.
PsOCR: Benchmarking Large Multimodal Models for Optical Character Recognition in Low-resource Pashto Language
This paper evaluates the performance of Large Multimodal Models (LMMs) on Optical Character Recognition (OCR) in the low-resource Pashto language. Natural Language Processing (NLP) in Pashto faces several challenges due to the cursive nature of its script and a scarcity of structured datasets. To address this, we developed a synthetic Pashto OCR dataset, PsOCR, consisting of one million images annotated with bounding boxes at word, line, and document levels, suitable for training and evaluating models based on different architectures, including Convolutional Neural Networks (CNNs) and Transformers. PsOCR covers variations across 1,000 unique font families, colors, image sizes, and layouts. A benchmark subset of 10K images was selected to evaluate the performance of several LMMs, including seven open-source models: DeepSeek's Janus, InternVL, MiniCPM, Florence, and Qwen (3B and 7B), and four closed-source models: GPT-4o, Gemini, Claude, and Grok. Experimental results demonstrate that Gemini achieves the best performance among all models, whereas among open-source models, Qwen-7B stands out. This work provides an insightful assessment of the capabilities and limitations of current LMMs for OCR tasks in Pashto and establishes a foundation for further research not only in Pashto OCR but also for other similar scripts such as Arabic, Persian, and Urdu. PsOCR is available at https://github.com/zirak-ai/PashtoOCR.
Advances in Radiance Field for Dynamic Scene: From Neural Field to Gaussian Field
Dynamic scene representation and reconstruction have undergone transformative advances in recent years, catalyzed by breakthroughs in neural radiance fields and 3D Gaussian splatting techniques. While initially developed for static environments, these methodologies have rapidly evolved to address the complexities inherent in 4D dynamic scenes through an expansive body of research. Coupled with innovations in differentiable volumetric rendering, these approaches have significantly enhanced the quality of motion representation and dynamic scene reconstruction, thereby garnering substantial attention from the computer vision and graphics communities. This survey presents a systematic analysis of over 200 papers focused on dynamic scene representation using radiance field, spanning the spectrum from implicit neural representations to explicit Gaussian primitives. We categorize and evaluate these works through multiple critical lenses: motion representation paradigms, reconstruction techniques for varied scene dynamics, auxiliary information integration strategies, and regularization approaches that ensure temporal consistency and physical plausibility. We organize diverse methodological approaches under a unified representational framework, concluding with a critical examination of persistent challenges and promising research directions. By providing this comprehensive overview, we aim to establish a definitive reference for researchers entering this rapidly evolving field while offering experienced practitioners a systematic understanding of both conceptual principles and practical frontiers in dynamic scene reconstruction.
Exploring the Deep Fusion of Large Language Models and Diffusion Transformers for Text-to-Image Synthesis
This paper does not describe a new method; instead, it provides a thorough exploration of an important yet understudied design space related to recent advances in text-to-image synthesis -- specifically, the deep fusion of large language models (LLMs) and diffusion transformers (DiTs) for multi-modal generation. Previous studies mainly focused on overall system performance rather than detailed comparisons with alternative methods, and key design details and training recipes were often left undisclosed. These gaps create uncertainty about the real potential of this approach. To fill these gaps, we conduct an empirical study on text-to-image generation, performing controlled comparisons with established baselines, analyzing important design choices, and providing a clear, reproducible recipe for training at scale. We hope this work offers meaningful data points and practical guidelines for future research in multi-modal generation.
DeepSeqCoco: A Robust Mobile Friendly Deep Learning Model for Detection of Diseases in Cocos nucifera
Coconut tree diseases are a serious risk to agricultural yield, particularly in developing countries where conventional farming practices restrict early diagnosis and intervention. Current disease identification methods are manual, labor-intensive, and non-scalable. In response to these limitations, we come up with DeepSeqCoco, a deep learning based model for accurate and automatic disease identification from coconut tree images. The model was tested under various optimizer settings, such as SGD, Adam, and hybrid configurations, to identify the optimal balance between accuracy, minimization of loss, and computational cost. Results from experiments indicate that DeepSeqCoco can achieve as much as 99.5% accuracy (achieving up to 5% higher accuracy than existing models) with the hybrid SGD-Adam showing the lowest validation loss of 2.81%. It also shows a drop of up to 18% in training time and up to 85% in prediction time for input images. The results point out the promise of the model to improve precision agriculture through an AI-based, scalable, and efficient disease monitoring system.
comment: This paper is accepted for publication in IEEE Access journal and is currently pending revisions before publication
ORL-LDM: Offline Reinforcement Learning Guided Latent Diffusion Model Super-Resolution Reconstruction
With the rapid advancement of remote sensing technology, super-resolution image reconstruction is of great research and practical significance. Existing deep learning methods have made progress but still face limitations in handling complex scenes and preserving image details. This paper proposes a reinforcement learning-based latent diffusion model (LDM) fine-tuning method for remote sensing image super-resolution. The method constructs a reinforcement learning environment with states, actions, and rewards, optimizing decision objectives through proximal policy optimization (PPO) during the reverse denoising process of the LDM model. Experiments on the RESISC45 dataset show significant improvements over the baseline model in PSNR, SSIM, and LPIPS, with PSNR increasing by 3-4dB, SSIM improving by 0.08-0.11, and LPIPS reducing by 0.06-0.10, particularly in structured and complex natural scenes. The results demonstrate the method's effectiveness in enhancing super-resolution quality and adaptability across scenes.
comment: Accepted by the 4th International Conference on Computing Innovation and Applied Physics (CONF-CIAP 2025), and will be published in EAI Community Research Series-CORE or Theoretical and Natural Science (TNS)
Application of YOLOv8 in monocular downward multiple Car Target detection SP
Autonomous driving technology is progressively transforming traditional car driving methods, marking a significant milestone in modern transportation. Object detection serves as a cornerstone of autonomous systems, playing a vital role in enhancing driving safety, enabling autonomous functionality, improving traffic efficiency, and facilitating effective emergency responses. However, current technologies such as radar for environmental perception, cameras for road perception, and vehicle sensor networks face notable challenges, including high costs, vulnerability to weather and lighting conditions, and limited resolution.To address these limitations, this paper presents an improved autonomous target detection network based on YOLOv8. By integrating structural reparameterization technology, a bidirectional pyramid structure network model, and a novel detection pipeline into the YOLOv8 framework, the proposed approach achieves highly efficient and precise detection of multi-scale, small, and remote objects. Experimental results demonstrate that the enhanced model can effectively detect both large and small objects with a detection accuracy of 65%, showcasing significant advancements over traditional methods.This improved model holds substantial potential for real-world applications and is well-suited for autonomous driving competitions, such as the Formula Student Autonomous China (FSAC), particularly excelling in scenarios involving single-target and small-object detection.
comment: Accepted by the 5th International Conference on Signal Processing and Machine Learning (CONF-SPML 2025), to appear in Applied and Computational Engineering
From Air to Wear: Personalized 3D Digital Fashion with AR/VR Immersive 3D Sketching
In the era of immersive consumer electronics, such as AR/VR headsets and smart devices, people increasingly seek ways to express their identity through virtual fashion. However, existing 3D garment design tools remain inaccessible to everyday users due to steep technical barriers and limited data. In this work, we introduce a 3D sketch-driven 3D garment generation framework that empowers ordinary users - even those without design experience - to create high-quality digital clothing through simple 3D sketches in AR/VR environments. By combining a conditional diffusion model, a sketch encoder trained in a shared latent space, and an adaptive curriculum learning strategy, our system interprets imprecise, free-hand input and produces realistic, personalized garments. To address the scarcity of training data, we also introduce KO3DClothes, a new dataset of paired 3D garments and user-created sketches. Extensive experiments and user studies confirm that our method significantly outperforms existing baselines in both fidelity and usability, demonstrating its promise for democratized fashion design on next-generation consumer platforms.
comment: 8 pages, 5 figures
Descriptive Image-Text Matching with Graded Contextual Similarity
Image-text matching aims to build correspondences between visual and textual data by learning their pairwise similarities. Most existing approaches have adopted sparse binary supervision, indicating whether a pair of images and sentences matches or not. However, such sparse supervision covers a limited subset of image-text relationships, neglecting their inherent many-to-many correspondences; an image can be described in numerous texts at different descriptive levels. Moreover, existing approaches overlook the implicit connections from general to specific descriptions, which form the underlying rationale for the many-to-many relationships between vision and language. In this work, we propose descriptive image-text matching, called DITM, to learn the graded contextual similarity between image and text by exploring the descriptive flexibility of language. We formulate the descriptiveness score of each sentence with cumulative term frequency-inverse document frequency (TF-IDF) to balance the pairwise similarity according to the keywords in the sentence. Our method leverages sentence descriptiveness to learn robust image-text matching in two key ways: (1) to refine the false negative labeling, dynamically relaxing the connectivity between positive and negative pairs, and (2) to build more precise matching, aligning a set of relevant sentences in a generic-to-specific order. By moving beyond rigid binary supervision, DITM enhances the discovery of both optimal matches and potential positive pairs. Extensive experiments on MS-COCO, Flickr30K, and CxC datasets demonstrate the effectiveness of our method in representing complex image-text relationships compared to state-of-the-art approaches. In addition, DITM enhances the hierarchical reasoning ability of the model, supported by the extensive analysis on HierarCaps benchmark.
PointArena: Probing Multimodal Grounding Through Language-Guided Pointing
Pointing serves as a fundamental and intuitive mechanism for grounding language within visual contexts, with applications spanning robotics, assistive technologies, and interactive AI systems. While recent multimodal models have started to support pointing capabilities, existing benchmarks typically focus only on referential object localization tasks. We introduce PointArena, a comprehensive platform for evaluating multimodal pointing across diverse reasoning scenarios. PointArena comprises three components: (1) Point-Bench, a curated dataset containing approximately 1,000 pointing tasks across five reasoning categories; (2) Point-Battle, an interactive, web-based arena facilitating blind, pairwise model comparisons, which has already gathered over 4,500 anonymized votes; and (3) Point-Act, a real-world robotic manipulation system allowing users to directly evaluate multimodal model pointing capabilities in practical settings. We conducted extensive evaluations of both state-of-the-art open-source and proprietary multimodal models. Results indicate that Molmo-72B consistently outperforms other models, though proprietary models increasingly demonstrate comparable performance. Additionally, we find that supervised training specifically targeting pointing tasks significantly enhances model performance. Across our multi-stage evaluation pipeline, we also observe strong correlations, underscoring the critical role of precise pointing capabilities in enabling multimodal models to effectively bridge abstract reasoning with concrete, real-world actions. Project page: https://pointarena.github.io/
comment: 10 Pages, Dataset and code:https://pointarena.github.io/
High Quality Underwater Image Compression with Adaptive Correction and Codebook-based Augmentation
With the increasing exploration and exploitation of the underwater world, underwater images have become a critical medium for human interaction with marine environments, driving extensive research into their efficient transmission and storage. However, contemporary underwater image compression algorithms fail to fully leverage the unique characteristics distinguishing underwater scenes from terrestrial images, resulting in suboptimal performance. To address this limitation, we introduce HQUIC, designed to exploit underwater-image-specific features for enhanced compression efficiency. HQUIC employs an ALTC module to adaptively predict the attenuation coefficients and global light information of the images, which effectively mitigates the issues caused by the differences in lighting and tone existing in underwater images. Subsequently, HQUIC employs a codebook as an auxiliary branch to extract the common objects within underwater images and enhances the performance of the main branch. Furthermore, HQUIC dynamically weights multi-scale frequency components, prioritizing information critical for distortion quality while discarding redundant details. Extensive evaluations on diverse underwater datasets demonstrate that HQUIC outperforms state-of-the-art compression methods.
Ordered-subsets Multi-diffusion Model for Sparse-view CT Reconstruction
Score-based diffusion models have shown significant promise in the field of sparse-view CT reconstruction. However, the projection dataset is large and riddled with redundancy. Consequently, applying the diffusion model to unprocessed data results in lower learning effectiveness and higher learning difficulty, frequently leading to reconstructed images that lack fine details. To address these issues, we propose the ordered-subsets multi-diffusion model (OSMM) for sparse-view CT reconstruction. The OSMM innovatively divides the CT projection data into equal subsets and employs multi-subsets diffusion model (MSDM) to learn from each subset independently. This targeted learning approach reduces complexity and enhances the reconstruction of fine details. Furthermore, the integration of one-whole diffusion model (OWDM) with complete sinogram data acts as a global information constraint, which can reduce the possibility of generating erroneous or inconsistent sinogram information. Moreover, the OSMM's unsupervised learning framework provides strong robustness and generalizability, adapting seamlessly to varying sparsity levels of CT sinograms. This ensures consistent and reliable performance across different clinical scenarios. Experimental results demonstrate that OSMM outperforms traditional diffusion models in terms of image quality and noise resilience, offering a powerful and versatile solution for advanced CT imaging in sparse-view scenarios.
APCoTTA: Continual Test-Time Adaptation for Semantic Segmentation of Airborne LiDAR Point Clouds
Airborne laser scanning (ALS) point cloud segmentation is a fundamental task for large-scale 3D scene understanding. In real-world applications, models are typically fixed after training. However, domain shifts caused by changes in the environment, sensor types, or sensor degradation often lead to a decline in model performance. Continuous Test-Time Adaptation (CTTA) offers a solution by adapting a source-pretrained model to evolving, unlabeled target domains. Despite its potential, research on ALS point clouds remains limited, facing challenges such as the absence of standardized datasets and the risk of catastrophic forgetting and error accumulation during prolonged adaptation. To tackle these challenges, we propose APCoTTA, the first CTTA method tailored for ALS point cloud semantic segmentation. We propose a dynamic trainable layer selection module. This module utilizes gradient information to select low-confidence layers for training, and the remaining layers are kept frozen, mitigating catastrophic forgetting. To further reduce error accumulation, we propose an entropy-based consistency loss. By losing such samples based on entropy, we apply consistency loss only to the reliable samples, enhancing model stability. In addition, we propose a random parameter interpolation mechanism, which randomly blends parameters from the selected trainable layers with those of the source model. This approach helps balance target adaptation and source knowledge retention, further alleviating forgetting. Finally, we construct two benchmarks, ISPRSC and H3DC, to address the lack of CTTA benchmarks for ALS point cloud segmentation. Experimental results demonstrate that APCoTTA achieves the best performance on two benchmarks, with mIoU improvements of approximately 9% and 14% over direct inference. The new benchmarks and code are available at https://github.com/Gaoyuan2/APCoTTA.
comment: 18 pages,12 figures
TKFNet: Learning Texture Key Factor Driven Feature for Facial Expression Recognition
Facial expression recognition (FER) in the wild remains a challenging task due to the subtle and localized nature of expression-related features, as well as the complex variations in facial appearance. In this paper, we introduce a novel framework that explicitly focuses on Texture Key Driver Factors (TKDF), localized texture regions that exhibit strong discriminative power across emotional categories. By carefully observing facial image patterns, we identify that certain texture cues, such as micro-changes in skin around the brows, eyes, and mouth, serve as primary indicators of emotional dynamics. To effectively capture and leverage these cues, we propose a FER architecture comprising a Texture-Aware Feature Extractor (TAFE) and Dual Contextual Information Filtering (DCIF). TAFE employs a ResNet-based backbone enhanced with multi-branch attention to extract fine-grained texture representations, while DCIF refines these features by filtering context through adaptive pooling and attention mechanisms. Experimental results on RAF-DB and KDEF datasets demonstrate that our method achieves state-of-the-art performance, verifying the effectiveness and robustness of incorporating TKDFs into FER pipelines.
MambaControl: Anatomy Graph-Enhanced Mamba ControlNet with Fourier Refinement for Diffusion-Based Disease Trajectory Prediction
Modelling disease progression in precision medicine requires capturing complex spatio-temporal dynamics while preserving anatomical integrity. Existing methods often struggle with longitudinal dependencies and structural consistency in progressive disorders. To address these limitations, we introduce MambaControl, a novel framework that integrates selective state-space modelling with diffusion processes for high-fidelity prediction of medical image trajectories. To better capture subtle structural changes over time while maintaining anatomical consistency, MambaControl combines Mamba-based long-range modelling with graph-guided anatomical control to more effectively represent anatomical correlations. Furthermore, we introduce Fourier-enhanced spectral graph representations to capture spatial coherence and multiscale detail, enabling MambaControl to achieve state-of-the-art performance in Alzheimer's disease prediction. Quantitative and regional evaluations demonstrate improved progression prediction quality and anatomical fidelity, highlighting its potential for personalised prognosis and clinical decision support.
CSPENet: Contour-Aware and Saliency Priors Embedding Network for Infrared Small Target Detection
Infrared small target detection (ISTD) plays a critical role in a wide range of civilian and military applications. Existing methods suffer from deficiencies in the localization of dim targets and the perception of contour information under dense clutter environments, severely limiting their detection performance. To tackle these issues, we propose a contour-aware and saliency priors embedding network (CSPENet) for ISTD. We first design a surround-convergent prior extraction module (SCPEM) that effectively captures the intrinsic characteristic of target contour pixel gradients converging toward their center. This module concurrently extracts two collaborative priors: a boosted saliency prior for accurate target localization and multi-scale structural priors for comprehensively enriching contour detail representation. Building upon this, we propose a dual-branch priors embedding architecture (DBPEA) that establishes differentiated feature fusion pathways, embedding these two priors at optimal network positions to achieve performance enhancement. Finally, we develop an attention-guided feature enhancement module (AGFEM) to refine feature representations and improve saliency estimation accuracy. Experimental results on public datasets NUDT-SIRST, IRSTD-1k, and NUAA-SIRST demonstrate that our CSPENet outperforms other state-of-the-art methods in detection performance. The code is available at https://github.com/IDIP2025/CSPENet.
Non-Registration Change Detection: A Novel Change Detection Task and Benchmark Dataset
In this study, we propose a novel remote sensing change detection task, non-registration change detection, to address the increasing number of emergencies such as natural disasters, anthropogenic accidents, and military strikes. First, in light of the limited discourse on the issue of non-registration change detection, we systematically propose eight scenarios that could arise in the real world and potentially contribute to the occurrence of non-registration problems. Second, we develop distinct image transformation schemes tailored to various scenarios to convert the available registration change detection dataset into a non-registration version. Finally, we demonstrate that non-registration change detection can cause catastrophic damage to the state-of-the-art methods. Our code and dataset are available at https://github.com/ShanZard/NRCD.
comment: Accepted to IGARSS 2025
VRU-CIPI: Crossing Intention Prediction at Intersections for Improving Vulnerable Road Users Safety
Understanding and predicting human behavior in-thewild, particularly at urban intersections, remains crucial for enhancing interaction safety between road users. Among the most critical behaviors are crossing intentions of Vulnerable Road Users (VRUs), where misinterpretation may result in dangerous conflicts with oncoming vehicles. In this work, we propose the VRU-CIPI framework with a sequential attention-based model designed to predict VRU crossing intentions at intersections. VRU-CIPI employs Gated Recurrent Unit (GRU) to capture temporal dynamics in VRU movements, combined with a multi-head Transformer self-attention mechanism to encode contextual and spatial dependencies critical for predicting crossing direction. Evaluated on UCF-VRU dataset, our proposed achieves state-of-the-art performance with an accuracy of 96.45% and achieving real-time inference speed reaching 33 frames per second. Furthermore, by integrating with Infrastructure-to-Vehicles (I2V) communication, our approach can proactively enhance intersection safety through timely activation of crossing signals and providing early warnings to connected vehicles, ensuring smoother and safer interactions for all road users.
DDFP: Data-dependent Frequency Prompt for Source Free Domain Adaptation of Medical Image Segmentation
Domain adaptation addresses the challenge of model performance degradation caused by domain gaps. In the typical setup for unsupervised domain adaptation, labeled data from a source domain and unlabeled data from a target domain are used to train a target model. However, access to labeled source domain data, particularly in medical datasets, can be restricted due to privacy policies. As a result, research has increasingly shifted to source-free domain adaptation (SFDA), which requires only a pretrained model from the source domain and unlabeled data from the target domain data for adaptation. Existing SFDA methods often rely on domain-specific image style translation and self-supervision techniques to bridge the domain gap and train the target domain model. However, the quality of domain-specific style-translated images and pseudo-labels produced by these methods still leaves room for improvement. Moreover, training the entire model during adaptation can be inefficient under limited supervision. In this paper, we propose a novel SFDA framework to address these challenges. Specifically, to effectively mitigate the impact of domain gap in the initial training phase, we introduce preadaptation to generate a preadapted model, which serves as an initialization of target model and allows for the generation of high-quality enhanced pseudo-labels without introducing extra parameters. Additionally, we propose a data-dependent frequency prompt to more effectively translate target domain images into a source-like style. To further enhance adaptation, we employ a style-related layer fine-tuning strategy, specifically designed for SFDA, to train the target model using the prompted target domain images and pseudo-labels. Extensive experiments on cross-modality abdominal and cardiac SFDA segmentation tasks demonstrate that our proposed method outperforms existing state-of-the-art methods.
AdaptCLIP: Adapting CLIP for Universal Visual Anomaly Detection
Universal visual anomaly detection aims to identify anomalies from novel or unseen vision domains without additional fine-tuning, which is critical in open scenarios. Recent studies have demonstrated that pre-trained vision-language models like CLIP exhibit strong generalization with just zero or a few normal images. However, existing methods struggle with designing prompt templates, complex token interactions, or requiring additional fine-tuning, resulting in limited flexibility. In this work, we present a simple yet effective method called AdaptCLIP based on two key insights. First, adaptive visual and textual representations should be learned alternately rather than jointly. Second, comparative learning between query and normal image prompt should incorporate both contextual and aligned residual features, rather than relying solely on residual features. AdaptCLIP treats CLIP models as a foundational service, adding only three simple adapters, visual adapter, textual adapter, and prompt-query adapter, at its input or output ends. AdaptCLIP supports zero-/few-shot generalization across domains and possesses a training-free manner on target domains once trained on a base dataset. AdaptCLIP achieves state-of-the-art performance on 12 anomaly detection benchmarks from industrial and medical domains, significantly outperforming existing competitive methods. We will make the code and model of AdaptCLIP available at https://github.com/gaobb/AdaptCLIP.
comment: 27 pages, 15 figures, 22 tables
Large-Scale Gaussian Splatting SLAM
The recently developed Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS) have shown encouraging and impressive results for visual SLAM. However, most representative methods require RGBD sensors and are only available for indoor environments. The robustness of reconstruction in large-scale outdoor scenarios remains unexplored. This paper introduces a large-scale 3DGS-based visual SLAM with stereo cameras, termed LSG-SLAM. The proposed LSG-SLAM employs a multi-modality strategy to estimate prior poses under large view changes. In tracking, we introduce feature-alignment warping constraints to alleviate the adverse effects of appearance similarity in rendering losses. For the scalability of large-scale scenarios, we introduce continuous Gaussian Splatting submaps to tackle unbounded scenes with limited memory. Loops are detected between GS submaps by place recognition and the relative pose between looped keyframes is optimized utilizing rendering and feature warping losses. After the global optimization of camera poses and Gaussian points, a structure refinement module enhances the reconstruction quality. With extensive evaluations on the EuRoc and KITTI datasets, LSG-SLAM achieves superior performance over existing Neural, 3DGS-based, and even traditional approaches. Project page: https://lsg-slam.github.io.
NVSPolicy: Adaptive Novel-View Synthesis for Generalizable Language-Conditioned Policy Learning
Recent advances in deep generative models demonstrate unprecedented zero-shot generalization capabilities, offering great potential for robot manipulation in unstructured environments. Given a partial observation of a scene, deep generative models could generate the unseen regions and therefore provide more context, which enhances the capability of robots to generalize across unseen environments. However, due to the visual artifacts in generated images and inefficient integration of multi-modal features in policy learning, this direction remains an open challenge. We introduce NVSPolicy, a generalizable language-conditioned policy learning method that couples an adaptive novel-view synthesis module with a hierarchical policy network. Given an input image, NVSPolicy dynamically selects an informative viewpoint and synthesizes an adaptive novel-view image to enrich the visual context. To mitigate the impact of the imperfect synthesized images, we adopt a cycle-consistent VAE mechanism that disentangles the visual features into the semantic feature and the remaining feature. The two features are then fed into the hierarchical policy network respectively: the semantic feature informs the high-level meta-skill selection, and the remaining feature guides low-level action estimation. Moreover, we propose several practical mechanisms to make the proposed method efficient. Extensive experiments on CALVIN demonstrate the state-of-the-art performance of our method. Specifically, it achieves an average success rate of 90.4\% across all tasks, greatly outperforming the recent methods. Ablation studies confirm the significance of our adaptive novel-view synthesis paradigm. In addition, we evaluate NVSPolicy on a real-world robotic platform to demonstrate its practical applicability.
Mapping Semantic Segmentation to Point Clouds Using Structure from Motion for Forest Analysis ICRA 2025
Although the use of remote sensing technologies for monitoring forested environments has gained increasing attention, publicly available point cloud datasets remain scarce due to the high costs, sensor requirements, and time-intensive nature of their acquisition. Moreover, as far as we are aware, there are no public annotated datasets generated through Structure From Motion (SfM) algorithms applied to imagery, which may be due to the lack of SfM algorithms that can map semantic segmentation information into an accurate point cloud, especially in a challenging environment like forests. In this work, we present a novel pipeline for generating semantically segmented point clouds of forest environments. Using a custom-built forest simulator, we generate realistic RGB images of diverse forest scenes along with their corresponding semantic segmentation masks. These labeled images are then processed using modified open-source SfM software capable of preserving semantic information during 3D reconstruction. The resulting point clouds provide both geometric and semantic detail, offering a valuable resource for training and evaluating deep learning models aimed at segmenting real forest point clouds obtained via SfM.
comment: Work in progress, accepted in Novel Approaches for Precision Agriculture and Forestry with Autonomous Robots, ICRA 2025 Workshop - May 23, 2025 - Atlanta, GA
Video-R1: Reinforcing Video Reasoning in MLLMs
Inspired by DeepSeek-R1's success in eliciting reasoning abilities through rule-based reinforcement learning (RL), we introduce Video-R1 as the first attempt to systematically explore the R1 paradigm for incentivizing video reasoning within multimodal large language models (MLLMs). However, directly applying RL training with the GRPO algorithm to video reasoning presents two primary challenges: (i) a lack of temporal modeling for video reasoning, and (ii) the scarcity of high-quality video-reasoning data. To address these issues, we first propose the T-GRPO algorithm, which encourages models to utilize temporal information in videos for reasoning. Additionally, instead of relying solely on video data, we incorporate high-quality image-reasoning data into the training process. We have constructed two datasets: Video-R1-CoT-165k for SFT cold start and Video-R1-260k for RL training, both comprising image and video data. Experimental results demonstrate that Video-R1 achieves significant improvements on video reasoning benchmarks such as VideoMMMU and VSI-Bench, as well as on general video benchmarks including MVBench and TempCompass, etc. Notably, Video-R1-7B attains a 37.1% accuracy on video spatial reasoning benchmark VSI-bench, surpassing the commercial proprietary model GPT-4o. All code, models, and data are released in: https://github.com/tulerfeng/Video-R1.
comment: Project page: https://github.com/tulerfeng/Video-R1
BiECVC: Gated Diversification of Bidirectional Contexts for Learned Video Compression
Recent forward prediction-based learned video compression (LVC) methods have achieved impressive results, even surpassing VVC reference software VTM under the Low Delay B (LDB) configuration. In contrast, learned bidirectional video compression (BVC) remains underexplored and still lags behind its forward-only counterparts. This performance gap is mainly due to the limited ability to extract diverse and accurate contexts: most existing BVCs primarily exploit temporal motion while neglecting non-local correlations across frames. Moreover, they lack the adaptability to dynamically suppress harmful contexts arising from fast motion or occlusion. To tackle these challenges, we propose BiECVC, a BVC framework that incorporates diversified local and non-local context modeling along with adaptive context gating. For local context enhancement, BiECVC reuses high-quality features from lower layers and aligns them using decoded motion vectors without introducing extra motion overhead. To model non-local dependencies efficiently, we adopt a linear attention mechanism that balances performance and complexity. To further mitigate the impact of inaccurate context prediction, we introduce Bidirectional Context Gating, inspired by data-dependent decay in recent autoregressive language models, to dynamically filter contextual information based on conditional coding results. Extensive experiments demonstrate that BiECVC achieves state-of-the-art performance, reducing the bit-rate by 13.4% and 15.7% compared to VTM 13.2 under the Random Access (RA) configuration with intra periods of 32 and 64, respectively. To our knowledge, BiECVC is the first learned video codec to surpass VTM 13.2 RA across all standard test datasets. Code will be available at https://github.com/JiangWeibeta/ECVC.
comment: The first learned video codec that surpasses VTM 13.2 RA across all standard test datasets. Code will be available at https://github.com/JiangWeibeta/ECVC
UniCAD: Efficient and Extendable Architecture for Multi-Task Computer-Aided Diagnosis System
The growing complexity and scale of visual model pre-training have made developing and deploying multi-task computer-aided diagnosis (CAD) systems increasingly challenging and resource-intensive. Furthermore, the medical imaging community lacks an open-source CAD platform to enable the rapid creation of efficient and extendable diagnostic models. To address these issues, we propose UniCAD, a unified architecture that leverages the robust capabilities of pre-trained vision foundation models to seamlessly handle both 2D and 3D medical images while requiring only minimal task-specific parameters. UniCAD introduces two key innovations: (1) Efficiency: A low-rank adaptation strategy is employed to adapt a pre-trained visual model to the medical image domain, achieving performance on par with fully fine-tuned counterparts while introducing only 0.17% trainable parameters. (2) Plug-and-Play: A modular architecture that combines a frozen foundation model with multiple plug-and-play experts, enabling diverse tasks and seamless functionality expansion. Building on this unified CAD architecture, we establish an open-source platform where researchers can share and access lightweight CAD experts, fostering a more equitable and efficient research ecosystem. Comprehensive experiments across 12 diverse medical datasets demonstrate that UniCAD consistently outperforms existing methods in both accuracy and deployment efficiency. The source code and project page are available at https://mii-laboratory.github.io/UniCAD/.
comment: 14 pages
HCMA: Hierarchical Cross-model Alignment for Grounded Text-to-Image Generation
Text-to-image synthesis has progressed to the point where models can generate visually compelling images from natural language prompts. Yet, existing methods often fail to reconcile high-level semantic fidelity with explicit spatial control, particularly in scenes involving multiple objects, nuanced relations, or complex layouts. To bridge this gap, we propose a Hierarchical Cross-Modal Alignment (HCMA) framework for grounded text-to-image generation. HCMA integrates two alignment modules into each diffusion sampling step: a global module that continuously aligns latent representations with textual descriptions to ensure scene-level coherence, and a local module that employs bounding-box layouts to anchor objects at specified locations, enabling fine-grained spatial control. Extensive experiments on the MS-COCO 2014 validation set show that HCMA surpasses state-of-the-art baselines, achieving a 0.69 improvement in Frechet Inception Distance (FID) and a 0.0295 gain in CLIP Score. These results demonstrate HCMA's effectiveness in faithfully capturing intricate textual semantics while adhering to user-defined spatial constraints, offering a robust solution for semantically grounded image generation. Our code is available at https://github.com/hwang-cs-ime/HCMA.
comment: 10 pages, 4 figures
Behind Maya: Building a Multilingual Vision Language Model CVPR 2025
In recent times, we have seen a rapid development of large Vision-Language Models (VLMs). They have shown impressive results on academic benchmarks, primarily in widely spoken languages but lack performance on low-resource languages and varied cultural contexts. To address these limitations, we introduce Maya, an open-source Multilingual VLM. Our contributions are: 1) a multilingual image-text pretraining dataset in eight languages, based on the LLaVA pretraining dataset; and 2) a multilingual image-text model supporting these languages, enhancing cultural and linguistic comprehension in vision-language tasks. Code available at https://github.com/nahidalam/maya.
comment: Accepted at VLMs4ALL CVPR 2025 Workshop; corrected workshop name spelling
IntrinsicEdit: Precise generative image manipulation in intrinsic space SIGGRAPH 2025
Generative diffusion models have advanced image editing with high-quality results and intuitive interfaces such as prompts and semantic drawing. However, these interfaces lack precise control, and the associated methods typically specialize on a single editing task. We introduce a versatile, generative workflow that operates in an intrinsic-image latent space, enabling semantic, local manipulation with pixel precision for a range of editing operations. Building atop the RGB-X diffusion framework, we address key challenges of identity preservation and intrinsic-channel entanglement. By incorporating exact diffusion inversion and disentangled channel manipulation, we enable precise, efficient editing with automatic resolution of global illumination effects -- all without additional data collection or model fine-tuning. We demonstrate state-of-the-art performance across a variety of tasks on complex images, including color and texture adjustments, object insertion and removal, global relighting, and their combinations.
comment: SIGGRAPH 2025 Journal track
UniSkill: Imitating Human Videos via Cross-Embodiment Skill Representations
Mimicry is a fundamental learning mechanism in humans, enabling individuals to learn new tasks by observing and imitating experts. However, applying this ability to robots presents significant challenges due to the inherent differences between human and robot embodiments in both their visual appearance and physical capabilities. While previous methods bridge this gap using cross-embodiment datasets with shared scenes and tasks, collecting such aligned data between humans and robots at scale is not trivial. In this paper, we propose UniSkill, a novel framework that learns embodiment-agnostic skill representations from large-scale cross-embodiment video data without any labels, enabling skills extracted from human video prompts to effectively transfer to robot policies trained only on robot data. Our experiments in both simulation and real-world environments show that our cross-embodiment skills successfully guide robots in selecting appropriate actions, even with unseen video prompts. The project website can be found at: https://kimhanjung.github.io/UniSkill.
comment: Project Page: https://kimhanjung.github.io/UniSkill/
A portable diagnosis model for Keratoconus using a smartphone
Keratoconus (KC) is a corneal disorder that results in blurry and distorted vision. Traditional diagnostic tools, while effective, are often bulky, costly, and require professional operation. In this paper, we present a portable and innovative methodology for diagnosing. Our proposed approach first captures the image reflected on the eye's cornea when a smartphone screen-generated Placido disc sheds its light on an eye, then utilizes a two-stage diagnosis for identifying the KC cornea and pinpointing the location of the KC on the cornea. The first stage estimates the height and width of the Placido disc extracted from the captured image to identify whether it has KC. In this KC identification, k-means clustering is implemented to discern statistical characteristics, such as height and width values of extracted Placido discs, from non-KC (control) and KC-affected groups. The second stage involves the creation of a distance matrix, providing a precise localization of KC on the cornea, which is critical for efficient treatment planning. The analysis of these distance matrices, paired with a logistic regression model and robust statistical analysis, reveals a clear distinction between control and KC groups. The logistic regression model, which classifies small areas on the cornea as either control or KC-affected based on the corresponding inter-disc distances in the distance matrix, reported a classification accuracy of 96.94%, which indicates that we can effectively pinpoint the protrusion caused by KC. This comprehensive, smartphone-based method is expected to detect KC and streamline timely treatment.
A Deep Learning-Driven Inhalation Injury Grading Assistant Using Bronchoscopy Images
Inhalation injuries present a challenge in clinical diagnosis and grading due to Conventional grading methods such as the Abbreviated Injury Score (AIS) being subjective and lacking robust correlation with clinical parameters like mechanical ventilation duration and patient mortality. This study introduces a novel deep learning-based diagnosis assistant tool for grading inhalation injuries using bronchoscopy images to overcome subjective variability and enhance consistency in severity assessment. Our approach leverages data augmentation techniques, including graphic transformations, Contrastive Unpaired Translation (CUT), and CycleGAN, to address the scarcity of medical imaging data. We evaluate the classification performance of two deep learning models, GoogLeNet and Vision Transformer (ViT), across a dataset significantly expanded through these augmentation methods. The results demonstrate GoogLeNet combined with CUT as the most effective configuration for grading inhalation injuries through bronchoscopy images and achieves a classification accuracy of 97.8%. The histograms and frequency analysis evaluations reveal variations caused by the augmentation CUT with distribution changes in the histogram and texture details of the frequency spectrum. PCA visualizations underscore the CUT substantially enhances class separability in the feature space. Moreover, Grad-CAM analyses provide insight into the decision-making process; mean intensity for CUT heatmaps is 119.6, which significantly exceeds 98.8 of the original datasets. Our proposed tool leverages mechanical ventilation periods as a novel grading standard, providing comprehensive diagnostic support.
An unsupervised method for MRI recovery: Deep image prior with structured sparsity
Objective: To propose and validate an unsupervised MRI reconstruction method that does not require fully sampled k-space data. Materials and Methods: The proposed method, deep image prior with structured sparsity (DISCUS), extends the deep image prior (DIP) by introducing group sparsity to frame-specific code vectors, enabling the discovery of a low-dimensional manifold for capturing temporal variations. \discus was validated using four studies: (I) simulation of a dynamic Shepp-Logan phantom to demonstrate its manifold discovery capabilities, (II) comparison with compressed sensing and DIP-based methods using simulated single-shot late gadolinium enhancement (LGE) image series from six distinct digital cardiac phantoms in terms of normalized mean square error (NMSE) and structural similarity index measure (SSIM), (III) evaluation on retrospectively undersampled single-shot LGE data from eight patients, and (IV) evaluation on prospectively undersampled single-shot LGE data from eight patients, assessed via blind scoring from two expert readers. Results: DISCUS outperformed competing methods, demonstrating superior reconstruction quality in terms of NMSE and SSIM (Studies I--III) and expert reader scoring (Study IV). Discussion: An unsupervised image reconstruction method is presented and validated on simulated and measured data. These developments can benefit applications where acquiring fully sampled data is challenging.
comment: Magn Reson Mater Phy (2025)
S2-Track: A Simple yet Strong Approach for End-to-End 3D Multi-Object Tracking
3D multiple object tracking (MOT) plays a crucial role in autonomous driving perception. Recent end-to-end query-based trackers simultaneously detect and track objects, which have shown promising potential for the 3D MOT task. However, existing methods are still in the early stages of development and lack systematic improvements, failing to track objects in certain complex scenarios, like occlusions and the small size of target object's situations. In this paper, we first summarize the current end-to-end 3D MOT framework by decomposing it into three constituent parts: query initialization, query propagation, and query matching. Then we propose corresponding improvements, which lead to a strong yet simple tracker: S2-Track. Specifically, for query initialization, we present 2D-Prompted Query Initialization, which leverages predicted 2D object and depth information to prompt an initial estimate of the object's 3D location. For query propagation, we introduce an Uncertainty-aware Probabilistic Decoder to capture the uncertainty of complex environment in object prediction with probabilistic attention. For query matching, we propose a Hierarchical Query Denoising strategy to enhance training robustness and convergence. As a result, our S2-Track achieves state-of-the-art performance on nuScenes benchmark, i.e., 66.3% AMOTA on test split, surpassing the previous best end-to-end solution by a significant margin of 8.9% AMOTA. We achieve 1st place on the nuScenes tracking task leaderboard.
DINO-X: A Unified Vision Model for Open-World Object Detection and Understanding
In this paper, we introduce DINO-X, which is a unified object-centric vision model developed by IDEA Research with the best open-world object detection performance to date. DINO-X employs the same Transformer-based encoder-decoder architecture as Grounding DINO 1.5 to pursue an object-level representation for open-world object understanding. To make long-tailed object detection easy, DINO-X extends its input options to support text prompt, visual prompt, and customized prompt. With such flexible prompt options, we develop a universal object prompt to support prompt-free open-world detection, making it possible to detect anything in an image without requiring users to provide any prompt. To enhance the model's core grounding capability, we have constructed a large-scale dataset with over 100 million high-quality grounding samples, referred to as Grounding-100M, for advancing the model's open-vocabulary detection performance. Pre-training on such a large-scale grounding dataset leads to a foundational object-level representation, which enables DINO-X to integrate multiple perception heads to simultaneously support multiple object perception and understanding tasks, including detection, segmentation, pose estimation, object captioning, object-based QA, etc. Experimental results demonstrate the superior performance of DINO-X. Specifically, the DINO-X Pro model achieves 56.0 AP, 59.8 AP, and 52.4 AP on the COCO, LVIS-minival, and LVIS-val zero-shot object detection benchmarks, respectively. Notably, it scores 63.3 AP and 56.5 AP on the rare classes of LVIS-minival and LVIS-val benchmarks, improving the previous SOTA performance by 5.8 AP and 5.0 AP. Such a result underscores its significantly improved capacity for recognizing long-tailed objects.
comment: Technical Report
Examining the Source of Defects from a Mechanical Perspective for 3D Anomaly Detection
In this paper, we explore a novel approach to 3D anomaly detection (AD) that goes beyond merely identifying anomalies based on structural characteristics. Our primary perspective is that most anomalies arise from unpredictable defective forces originating from both internal and external sources. To address these anomalies, we seek out opposing forces that can help correct them. Therefore, we introduce the Mechanics Complementary Model-based Framework for the 3D-AD task (MC4AD), which generates internal and external corrective forces for each point. We first propose a Diverse Anomaly-Generation (DA-Gen) module designed to simulate various types of anomalies. Next, we present the Corrective Force Prediction Network (CFP-Net), which uses complementary representations for point-level analysis to simulate the different contributions from internal and external corrective forces. To ensure the corrective forces are constrained effectively, we have developed a combined loss function that includes a new symmetric loss and an overall loss. Notably, we implement a Hierarchical Quality Control (HQC) strategy based on a three-way decision process and contribute a dataset titled Anomaly-IntraVariance, which incorporates intraclass variance to evaluate our model. As a result, the proposed MC4AD has been proven effective through theory and experimentation. The experimental results demonstrate that our approach yields nine state-of-the-art performances, achieving optimal results with minimal parameters and the fastest inference speed across five existing datasets, in addition to the proposed Anomaly-IntraVariance dataset. The source is available at https://github.com/hzzzzzhappy/MC4AD
comment: 26 pages
PEP-GS: Perceptually-Enhanced Precise Structured 3D Gaussians for View-Adaptive Rendering
Recently, 3D Gaussian Splatting (3D-GS) has achieved significant success in real-time, high-quality 3D scene rendering. However, it faces several challenges, including Gaussian redundancy, limited ability to capture view-dependent effects, and difficulties in handling complex lighting and specular reflections. Additionally, methods that use spherical harmonics for color representation often struggle to effectively capture anisotropic components, especially when modeling view-dependent colors under complex lighting conditions, leading to insufficient contrast and unnatural color saturation. To address these limitations, we introduce PEP-GS, a perceptually-enhanced framework that dynamically predicts Gaussian attributes, including opacity, color, and covariance. We replace traditional spherical harmonics with a Hierarchical Granular-Structural Attention mechanism, which enables more accurate modeling of complex view-dependent color effects. By employing a stable and interpretable framework for opacity and covariance estimation, PEP-GS avoids the removal of essential Gaussians prematurely, ensuring a more accurate scene representation. Furthermore, perceptual optimization is applied to the final rendered images, enhancing perceptual consistency across different views and ensuring high-quality renderings with improved texture fidelity and fine-scale detail preservation. Experimental results demonstrate that PEP-GS outperforms state-of-the-art methods, particularly in challenging scenarios involving view-dependent effects and fine-scale details.
SeagrassFinder: Deep Learning for Eelgrass Detection and Coverage Estimation in the Wild
Seagrass meadows play a crucial role in marine ecosystems, providing benefits such as carbon sequestration, water quality improvement, and habitat provision. Monitoring the distribution and abundance of seagrass is essential for environmental impact assessments and conservation efforts. However, the current manual methods of analyzing underwater video data to assess seagrass coverage are time-consuming and subjective. This work explores the use of deep learning models to automate the process of seagrass detection and coverage estimation from underwater video data. We create a new dataset of over 8,300 annotated underwater images, and subsequently evaluate several deep learning architectures, including ResNet, InceptionNetV3, DenseNet, and Vision Transformer for the task of binary classification on the presence and absence of seagrass by transfer learning. The results demonstrate that deep learning models, particularly Vision Transformers, can achieve high performance in predicting eelgrass presence, with AUROC scores exceeding 0.95 on the final test dataset. The application of underwater image enhancement further improved the models' prediction capabilities. Furthermore, we introduce a novel approach for estimating seagrass coverage from video data, showing promising preliminary results that align with expert manual labels, and indicating potential for consistent and scalable monitoring. The proposed methodology allows for the efficient processing of large volumes of video data, enabling the acquisition of much more detailed information on seagrass distributions in comparison to current manual methods. This information is crucial for environmental impact assessments and monitoring programs, as seagrasses are important indicators of coastal ecosystem health. This project demonstrates the value that deep learning can bring to the field of marine ecology and environmental monitoring.
TactileNet: Bridging the Accessibility Gap with AI-Generated Tactile Graphics for Individuals with Vision Impairment
Tactile graphics are essential for providing access to visual information for the 43 million people globally living with vision loss. Traditional methods for creating these graphics are labor-intensive and cannot meet growing demand. We introduce TactileNet, the first comprehensive dataset and AI-driven framework for generating embossing-ready 2D tactile templates using text-to-image Stable Diffusion (SD) models. By integrating Low-Rank Adaptation (LoRA) and DreamBooth, our method fine-tunes SD models to produce high-fidelity, guideline-compliant graphics while reducing computational costs. Quantitative evaluations with tactile experts show 92.86% adherence to accessibility standards. Structural fidelity analysis revealed near-human design similarity, with an SSIM of 0.538 between generated graphics and expert-designed tactile images. Notably, our method preserves object silhouettes better than human designs (SSIM = 0.259 vs. 0.215 for binary masks), addressing a key limitation of manual tactile abstraction. The framework scales to 32,000 images (7,050 high-quality) across 66 classes, with prompt editing enabling customizable outputs (e.g., adding or removing details). By automating the 2D template generation step-compatible with standard embossing workflows-TactileNet accelerates production while preserving design flexibility. This work demonstrates how AI can augment (not replace) human expertise to bridge the accessibility gap in education and beyond. Code, data, and models will be publicly released to foster further research.
CryoSAMU: Enhancing 3D Cryo-EM Density Maps of Protein Structures at Intermediate Resolution with Structure-Aware Multimodal U-Nets
Enhancing cryogenic electron microscopy (cryo-EM) 3D density maps at intermediate resolution (4-8 {\AA}) is crucial in protein structure determination. Recent advances in deep learning have led to the development of automated approaches for enhancing experimental cryo-EM density maps. Yet, these methods are not optimized for intermediate-resolution maps and rely on map density features alone. To address this, we propose CryoSAMU, a novel method designed to enhance 3D cryo-EM density maps of protein structures using structure-aware multimodal U-Nets and trained on curated intermediate-resolution density maps. We comprehensively evaluate CryoSAMU across various metrics and demonstrate its competitive performance compared to state-of-the-art methods. Notably, CryoSAMU achieves significantly faster processing speed, showing promise for future practical applications. Our code is available at https://github.com/chenwei-zhang/CryoSAMU.
comment: 19 pages, 6 main figures, 2 supplementary figures, 3 main tables, 4 supplementary tables
Towards Scalable IoT Deployment for Visual Anomaly Detection via Efficient Compression
Visual Anomaly Detection (VAD) is a key task in industrial settings, where minimizing operational costs is essential. Deploying deep learning models within Internet of Things (IoT) environments introduces specific challenges due to limited computational power and bandwidth of edge devices. This study investigates how to perform VAD effectively under such constraints by leveraging compact, efficient processing strategies. We evaluate several data compression techniques, examining the tradeoff between system latency and detection accuracy. Experiments on the MVTec AD benchmark demonstrate that significant compression can be achieved with minimal loss in anomaly detection performance compared to uncompressed data. Current results show up to 80% reduction in end-to-end inference time, including edge processing, transmission, and server computation.
Teaching Humans Subtle Differences with DIFFusion
Scientific expertise often requires recognizing subtle visual differences that remain challenging to articulate even for domain experts. We present a system that leverages generative models to automatically discover and visualize minimal discriminative features between categories while preserving instance identity. Our method generates counterfactual visualizations with subtle, targeted transformations between classes, performing well even in domains where data is sparse, examples are unpaired, and category boundaries resist verbal description. Experiments across six domains, including black hole simulations, butterfly taxonomy, and medical imaging, demonstrate accurate transitions with limited training data, highlighting both established discriminative features and novel subtle distinctions that measurably improved category differentiation. User studies confirm our generated counterfactuals significantly outperform traditional approaches in teaching humans to correctly differentiate between fine-grained classes, showing the potential of generative models to advance visual learning and scientific research.
Highly Efficient 3D Human Pose Tracking from Events with Spiking Spatiotemporal Transformer
Event camera, as an asynchronous vision sensor capturing scene dynamics, presents new opportunities for highly efficient 3D human pose tracking. Existing approaches typically adopt modern-day Artificial Neural Networks (ANNs), such as CNNs or Transformer, where sparse events are converted into dense images or paired with additional gray-scale images as input. Such practices, however, ignore the inherent sparsity of events, resulting in redundant computations, increased energy consumption, and potentially degraded performance. Motivated by these observations, we introduce the first sparse Spiking Neural Networks (SNNs) framework for 3D human pose tracking based solely on events. Our approach eliminates the need to convert sparse data to dense formats or incorporate additional images, thereby fully exploiting the innate sparsity of input events. Central to our framework is a novel Spiking Spatiotemporal Transformer, which enables bi-directional spatiotemporal fusion of spike pose features and provides a guaranteed similarity measurement between binary spike features in spiking attention. Moreover, we have constructed a large-scale synthetic dataset, SynEventHPD, that features a broad and diverse set of 3D human motions, as well as much longer hours of event streams. Empirical experiments demonstrate the superiority of our approach over existing state-of-the-art (SOTA) ANN-based methods, requiring only 19.1% FLOPs and 3.6% energy cost. Furthermore, our approach outperforms existing SNN-based benchmarks in this task, highlighting the effectiveness of our proposed SNN framework. The dataset will be released upon acceptance, and code can be found at https://github.com/JimmyZou/HumanPoseTracking_SNN.
comment: Accepted by IEEE TCSVT
WildFireCan-MMD: A Multimodal Dataset for Classification of User-Generated Content During Wildfires in Canada
Rapid information access is vital during wildfires, yet traditional data sources are slow and costly. Social media offers real-time updates, but extracting relevant insights remains a challenge. We present WildFireCan-MMD, a new multimodal dataset of X posts from recent Canadian wildfires, annotated across twelve key themes. Evaluating both vision-language models and custom-trained classifiers, we show that while zero-shot prompting offers quick deployment, even simple trained models outperform them when labelled data is available. Our best-performing transformer-based fine-tuned model reaches 83% f-score, outperforming gpt4 by 23%. As a use case, we demonstrate how this model can be used to uncover trends during wildfires. Our findings highlight the enduring importance of tailored datasets and task-specific training. Importantly, such datasets should be localized, as disaster response requirements vary across regions and contexts.
Pose Priors from Language Models CVPR 2025
Language is often used to describe physical interaction, yet most 3D human pose estimation methods overlook this rich source of information. We bridge this gap by leveraging large multimodal models (LMMs) as priors for reconstructing contact poses, offering a scalable alternative to traditional methods that rely on human annotations or motion capture data. Our approach extracts contact-relevant descriptors from an LMM and translates them into tractable losses to constrain 3D human pose optimization. Despite its simplicity, our method produces compelling reconstructions for both two-person interactions and self-contact scenarios, accurately capturing the semantics of physical and social interactions. Our results demonstrate that LMMs can serve as powerful tools for contact prediction and pose estimation, offering an alternative to costly manual human annotations or motion capture data. Our code is publicly available at https://prosepose.github.io.
comment: CVPR 2025
Measuring Student Behavioral Engagement using Histogram of Actions
In this paper, we propose a novel technique for measuring behavioral engagement through students' actions recognition. The proposed approach recognizes student actions then predicts the student behavioral engagement level. For student action recognition, we use human skeletons to model student postures and upper body movements. To learn the dynamics of student upper body, a 3D-CNN model is used. The trained 3D-CNN model is used to recognize actions within every 2minute video segment then these actions are used to build a histogram of actions which encodes the student actions and their frequencies. This histogram is utilized as an input to SVM classifier to classify whether the student is engaged or disengaged. To evaluate the proposed framework, we build a dataset consisting of 1414 2-minute video segments annotated with 13 actions and 112 video segments annotated with two engagement levels. Experimental results indicate that student actions can be recognized with top 1 accuracy 83.63% and the proposed framework can capture the average engagement of the class.
Estimating the Diameter at Breast Height of Trees in a Forest With a Single 360 Camera
Forest inventories rely on accurate measurements of the diameter at breast height (DBH) for ecological monitoring, resource management, and carbon accounting. While LiDAR-based techniques can achieve centimeter-level precision, they are cost-prohibitive and operationally complex. We present a low-cost alternative that only needs a consumer-grade 360 video camera. Our semi-automated pipeline comprises of (i) a dense point cloud reconstruction using Structure from Motion (SfM) photogrammetry software called Agisoft Metashape, (ii) semantic trunk segmentation by projecting Grounded Segment Anything (SAM) masks onto the 3D cloud, and (iii) a robust RANSAC-based technique to estimate cross section shape and DBH. We introduce an interactive visualization tool for inspecting segmented trees and their estimated DBH. On 61 acquisitions of 43 trees under a variety of conditions, our method attains median absolute relative errors of 5-9% with respect to "ground-truth" manual measurements. This is only 2-4% higher than LiDAR-based estimates, while employing a single 360 camera that costs orders of magnitude less, requires minimal setup, and is widely available.
Improving Fine-Grained Control via Aggregation of Multiple Diffusion Models
While many diffusion models perform well when controlling for particular aspect among style, character, and interaction, they struggle with fine-grained control due to dataset limitations and intricate model architecture design. This paper first introduces a novel training-free algorithm in fine-grained generation, Aggregation of Multiple Diffusion Models (AMDM), which integrates features from multiple diffusion models into a specified model to activate specific features and enable fine-grained control. Experimental results demonstrate that AMDM significantly improves fine-grained control without training, validating its effectiveness. Additionally, it reveals that diffusion models initially focus on features such as position, attributes, and style, with later stages improving generation quality and consistency. AMDM offers a new perspective for tackling the challenges of fine-grained conditional control generation in diffusion models: We can fully utilize existing or develop new conditional diffusion models that control specific aspects, and then aggregate them using AMDM algorithm. This eliminates the need for constructing complex datasets, designing intricate model architectures, and incurring high training costs. Code is available at: https://github.com/Hammour-steak/AMDM.
Latent Action Pretraining from Videos ICLR 2025
We introduce Latent Action Pretraining for general Action models (LAPA), an unsupervised method for pretraining Vision-Language-Action (VLA) models without ground-truth robot action labels. Existing Vision-Language-Action models require action labels typically collected by human teleoperators during pretraining, which significantly limits possible data sources and scale. In this work, we propose a method to learn from internet-scale videos that do not have robot action labels. We first train an action quantization model leveraging VQ-VAE-based objective to learn discrete latent actions between image frames, then pretrain a latent VLA model to predict these latent actions from observations and task descriptions, and finally finetune the VLA on small-scale robot manipulation data to map from latent to robot actions. Experimental results demonstrate that our method significantly outperforms existing techniques that train robot manipulation policies from large-scale videos. Furthermore, it outperforms the state-of-the-art VLA model trained with robotic action labels on real-world manipulation tasks that require language conditioning, generalization to unseen objects, and semantic generalization to unseen instructions. Training only on human manipulation videos also shows positive transfer, opening up the potential for leveraging web-scale data for robotics foundation model.
comment: ICLR 2025 Website: https://latentactionpretraining.github.io
Efficient Quantum Convolutional Neural Networks for Image Classification: Overcoming Hardware Constraints
While classical convolutional neural networks (CNNs) have revolutionized image classification, the emergence of quantum computing presents new opportunities for enhancing neural network architectures. Quantum CNNs (QCNNs) leverage quantum mechanical properties and hold potential to outperform classical approaches. However, their implementation on current noisy intermediate-scale quantum (NISQ) devices remains challenging due to hardware limitations. In our research, we address this challenge by introducing an encoding scheme that significantly reduces the input dimensionality. We demonstrate that a primitive QCNN architecture with 49 qubits is sufficient to directly process $28\times 28$ pixel MNIST images, eliminating the need for classical dimensionality reduction pre-processing. Additionally, we propose an automated framework based on expressibility, entanglement, and complexity characteristics to identify the building blocks of QCNNs, parameterized quantum circuits (PQCs). Our approach demonstrates advantages in accuracy and convergence speed with a similar parameter count compared to both hybrid QCNNs and classical CNNs. We validated our experiments on IBM's Heron r2 quantum processor, achieving $96.08\%$ classification accuracy, surpassing the $71.74\%$ benchmark of traditional approaches under identical training conditions. These results represent one of the first implementations of image classifications on real quantum hardware and validate the potential of quantum computing in this area.
Generative Pre-trained Autoregressive Diffusion Transformer
In this work, we present GPDiT, a Generative Pre-trained Autoregressive Diffusion Transformer that unifies the strengths of diffusion and autoregressive modeling for long-range video synthesis, within a continuous latent space. Instead of predicting discrete tokens, GPDiT autoregressively predicts future latent frames using a diffusion loss, enabling natural modeling of motion dynamics and semantic consistency across frames. This continuous autoregressive framework not only enhances generation quality but also endows the model with representation capabilities. Additionally, we introduce a lightweight causal attention variant and a parameter-free rotation-based time-conditioning mechanism, improving both the training and inference efficiency. Extensive experiments demonstrate that GPDiT achieves strong performance in video generation quality, video representation ability, and few-shot learning tasks, highlighting its potential as an effective framework for video modeling in continuous space.
CreativeSynth: Cross-Art-Attention for Artistic Image Synthesis with Multimodal Diffusion
Although remarkable progress has been made in image style transfer, style is just one of the components of artistic paintings. Directly transferring extracted style features to natural images often results in outputs with obvious synthetic traces. This is because key painting attributes including layout, perspective, shape, and semantics often cannot be conveyed and expressed through style transfer. Large-scale pretrained text-to-image generation models have demonstrated their capability to synthesize a vast amount of high-quality images. However, even with extensive textual descriptions, it is challenging to fully express the unique visual properties and details of paintings. Moreover, generic models often disrupt the overall artistic effect when modifying specific areas, making it more complicated to achieve a unified aesthetic in artworks. Our main novel idea is to integrate multimodal semantic information as a synthesis guide into artworks, rather than transferring style to the real world. We also aim to reduce the disruption to the harmony of artworks while simplifying the guidance conditions. Specifically, we propose an innovative multi-task unified framework called CreativeSynth, based on the diffusion model with the ability to coordinate multimodal inputs. CreativeSynth combines multimodal features with customized attention mechanisms to seamlessly integrate real-world semantic content into the art domain through Cross-Art-Attention for aesthetic maintenance and semantic fusion. We demonstrate the results of our method across a wide range of different art categories, proving that CreativeSynth bridges the gap between generative models and artistic expression. Code and results are available at https://github.com/haha-lisa/CreativeSynth.
Charm: The Missing Piece in ViT fine-tuning for Image Aesthetic Assessment CVPR 2025
The capacity of Vision transformers (ViTs) to handle variable-sized inputs is often constrained by computational complexity and batch processing limitations. Consequently, ViTs are typically trained on small, fixed-size images obtained through downscaling or cropping. While reducing computational burden, these methods result in significant information loss, negatively affecting tasks like image aesthetic assessment. We introduce Charm, a novel tokenization approach that preserves Composition, High-resolution, Aspect Ratio, and Multi-scale information simultaneously. Charm prioritizes high-resolution details in specific regions while downscaling others, enabling shorter fixed-size input sequences for ViTs while incorporating essential information. Charm is designed to be compatible with pre-trained ViTs and their learned positional embeddings. By providing multiscale input and introducing variety to input tokens, Charm improves ViT performance and generalizability for image aesthetic assessment. We avoid cropping or changing the aspect ratio to further preserve information. Extensive experiments demonstrate significant performance improvements on various image aesthetic and quality assessment datasets (up to 8.1 %) using a lightweight ViT backbone. Code and pre-trained models are available at https://github.com/FBehrad/Charm.
comment: CVPR 2025
SMURF: Continuous Dynamics for Motion-Deblurring Radiance Fields CVPR
Neural radiance fields (NeRF) has attracted considerable attention for their exceptional ability in synthesizing novel views with high fidelity. However, the presence of motion blur, resulting from slight camera movements during extended shutter exposures, poses a significant challenge, potentially compromising the quality of the reconstructed 3D scenes. To effectively handle this issue, we propose sequential motion understanding radiance fields (SMURF), a novel approach that models continuous camera motion and leverages the explicit volumetric representation method for robustness to motion-blurred input images. The core idea of the SMURF is continuous motion blurring kernel (CMBK), a module designed to model a continuous camera movements for processing blurry inputs. Our model is evaluated against benchmark datasets and demonstrates state-of-the-art performance both quantitatively and qualitatively.
comment: CVPRW 2025, Neural Fields Beyond Conventional Cameras, Project Page: https://jho-yonsei.github.io/SMURF/
Illegal Waste Detection in Remote Sensing Images: A Case Study
Environmental crime is the third largest criminal activity worldwide, with significant revenues coming from illegal management of solid waste. Thanks to the increasing availability and the decreasing cost of Very High Resolution Remote Sensing (VHR RS) images, the fight against environmental crime can nowadays rely on modern image-analysis tools to support photo-interpretation for scanning vast territories in search of illegal waste disposal sites. This paper illustrates a semi-automatic waste detection pipeline, developed in collaboration with a regional environmental protection agency, for detecting candidate illegal dumping sites in VHR RS images. To optimize the effectiveness of the waste detector, extensive experiments evaluate such design choices as the network architecture, the ground resolution and geographic span of the input images, as well as the pretraining procedures. The best model attains remarkable performance, achieving 92.02% F1-Score and 94.56% Accuracy. A generalization study assesses the performance variation when the detector processes images from a territory substantially different from the one used during training, incurring only a moderate performance loss, i.e., 6.5% decrease in the F1-Score. Finally, an exercise in which photo interpreters compare the territory scanning effort with and without the support of the waste detector assesses the concrete benefit of using a computer-aided image analysis tool in a professional environment protection agency. Results show that a reduction up to 30% of the time spent for waste site detection can be attained.
Leveraging Multi-Modal Information to Enhance Dataset Distillation
Dataset distillation aims to create a compact and highly representative synthetic dataset that preserves the knowledge of a larger real dataset. While existing methods primarily focus on optimizing visual representations, incorporating additional modalities and refining object-level information can significantly improve the quality of distilled datasets. In this work, we introduce two key enhancements to dataset distillation: caption-guided supervision and object-centric masking. To integrate textual information, we propose two strategies for leveraging caption features: the feature concatenation, where caption embeddings are fused with visual features at the classification stage, and caption matching, which introduces a caption-based alignment loss during training to ensure semantic coherence between real and synthetic data. Additionally, we apply segmentation masks to isolate target objects and remove background distractions, introducing two loss functions designed for object-centric learning: masked feature alignment loss and masked gradient matching loss. Comprehensive evaluations demonstrate that integrating caption-based guidance and object-centric masking enhances dataset distillation, leading to synthetic datasets that achieve superior performance on downstream tasks.
comment: 10 pages
Scaling Laws for Black box Adversarial Attacks
Adversarial examples usually exhibit good cross-model transferability, enabling attacks on black-box models with limited information about their architectures and parameters, which are highly threatening in commercial black-box scenarios. Model ensembling is an effective strategy to improve the transferability of adversarial examples by attacking multiple surrogate models. However, since prior studies usually adopt few models in the ensemble, there remains an open question of whether scaling the number of models can further improve black-box attacks. Inspired by the scaling law of large foundation models, we investigate the scaling laws of black-box adversarial attacks in this work. Through theoretical analysis and empirical evaluations, we conclude with clear scaling laws that using more surrogate models enhances adversarial transferability. Comprehensive experiments verify the claims on standard image classifiers, diverse defended models and multimodal large language models using various adversarial attack methods. Specifically, by scaling law, we achieve 90%+ transfer attack success rate on even proprietary models like GPT-4o. Further visualization indicates that there is also a scaling law on the interpretability and semantics of adversarial perturbations.
CoCoGaussian: Leveraging Circle of Confusion for Gaussian Splatting from Defocused Images CVPR 2025
3D Gaussian Splatting (3DGS) has attracted significant attention for its high-quality novel view rendering, inspiring research to address real-world challenges. While conventional methods depend on sharp images for accurate scene reconstruction, real-world scenarios are often affected by defocus blur due to finite depth of field, making it essential to account for realistic 3D scene representation. In this study, we propose CoCoGaussian, a Circle of Confusion-aware Gaussian Splatting that enables precise 3D scene representation using only defocused images. CoCoGaussian addresses the challenge of defocus blur by modeling the Circle of Confusion (CoC) through a physically grounded approach based on the principles of photographic defocus. Exploiting 3D Gaussians, we compute the CoC diameter from depth and learnable aperture information, generating multiple Gaussians to precisely capture the CoC shape. Furthermore, we introduce a learnable scaling factor to enhance robustness and provide more flexibility in handling unreliable depth in scenes with reflective or refractive surfaces. Experiments on both synthetic and real-world datasets demonstrate that CoCoGaussian achieves state-of-the-art performance across multiple benchmarks.
comment: CVPR 2025, Project Page: https://Jho-Yonsei.github.io/CoCoGaussian/
Single View Garment Reconstruction Using Diffusion Mapping Via Pattern Coordinates SIGGRAPH 2025
Reconstructing 3D clothed humans from images is fundamental to applications like virtual try-on, avatar creation, and mixed reality. While recent advances have enhanced human body recovery, accurate reconstruction of garment geometry -- especially for loose-fitting clothing -- remains an open challenge. We present a novel method for high-fidelity 3D garment reconstruction from single images that bridges 2D and 3D representations. Our approach combines Implicit Sewing Patterns (ISP) with a generative diffusion model to learn rich garment shape priors in a 2D UV space. A key innovation is our mapping model that establishes correspondences between 2D image pixels, UV pattern coordinates, and 3D geometry, enabling joint optimization of both 3D garment meshes and the corresponding 2D patterns by aligning learned priors with image observations. Despite training exclusively on synthetically simulated cloth data, our method generalizes effectively to real-world images, outperforming existing approaches on both tight- and loose-fitting garments. The reconstructed garments maintain physical plausibility while capturing fine geometric details, enabling downstream applications including garment retargeting and texture manipulation.
comment: SIGGRAPH 2025
CoGenAV: Versatile Audio-Visual Representation Learning via Contrastive-Generative Synchronization
The inherent synchronization between a speaker's lip movements, voice, and the underlying linguistic content offers a rich source of information for improving speech processing tasks, especially in challenging conditions where traditional audio-only systems falter. We introduce CoGenAV, a powerful and data-efficient model designed to learn versatile audio-visual representations applicable across a wide range of speech and audio-visual tasks. CoGenAV is trained by optimizing a dual objective derived from natural audio-visual synchrony, contrastive feature alignment and generative text prediction, using only 223 hours of labeled data from the LRS2 dataset. This contrastive-generative synchronization strategy effectively captures fundamental cross-modal correlations. We showcase the effectiveness and versatility of the learned CoGenAV representations on multiple benchmarks. When utilized for Audio-Visual Speech Recognition (AVSR) on LRS2, these representations contribute to achieving a state-of-the-art Word Error Rate (WER) of 1.27. They also enable strong performance in Visual Speech Recognition (VSR) with a WER of 20.5 on LRS2, and significantly improve performance in noisy environments by over 70%. Furthermore, CoGenAV representations benefit speech reconstruction tasks, boosting performance in Speech Enhancement and Separation, and achieve competitive results in audio-visual synchronization tasks like Active Speaker Detection (ASD). Our model will be open-sourced to facilitate further development and collaboration within both academia and industry.
A Sliding Layer Merging Method for Efficient Depth-Wise Pruning in LLMs
Compared to width-wise pruning, depth-wise pruning can significantly accelerate inference in resource-constrained scenarios. However, treating the entire Transformer layer as the minimum pruning unit may degrade model performance by indiscriminately discarding the entire information of the layer. This paper reveals the ``Patch-like'' feature relationship between layers in large language models by analyzing the correlation of the outputs of different layers in the reproducing kernel Hilbert space. Building on this observation, we propose a sliding layer merging method that dynamically selects and fuses consecutive layers from top to bottom according to a pre-defined similarity threshold, thereby simplifying the model structure while maintaining its performance. Extensive experiments on LLMs with various architectures and different parameter scales show that our method outperforms existing pruning techniques in both zero-shot inference performance and retraining recovery quality after pruning. In particular, in the experiment with 35% pruning on the Vicuna-7B model, our method achieved a 1.654% improvement in average performance on zero-shot tasks compared to the existing method. Moreover, we further reveal the potential of combining depth pruning with width pruning to enhance the pruning effect. Our codes are available at https://github.com/920927/SLM-a-sliding-layer-merging-method.
Exploring Convolutional Neural Networks for Rice Grain Classification: An Explainable AI Approach
Rice is an essential staple food worldwide that is important in promoting international trade, economic growth, and nutrition. Asian countries such as China, India, Pakistan, Thailand, Vietnam, and Indonesia are notable for their significant contribution to the cultivation and utilization of rice. These nations are also known for cultivating different rice grains, including short and long grains. These sizes are further classified as basmati, jasmine, kainat saila, ipsala, arborio, etc., catering to diverse culinary preferences and cultural traditions. For both local and international trade, inspecting and maintaining the quality of rice grains to satisfy customers and preserve a country's reputation is necessary. Manual quality check and classification is quite a laborious and time-consuming process. It is also highly prone to mistakes. Therefore, an automatic solution must be proposed for the effective and efficient classification of different varieties of rice grains. This research paper presents an automatic framework based on a convolutional neural network (CNN) for classifying different varieties of rice grains. We evaluated the proposed model based on performance metrics such as accuracy, recall, precision, and F1-Score. The CNN model underwent rigorous training and validation, achieving a remarkable accuracy rate and a perfect area under each class's Receiver Operating Characteristic (ROC) curve. The confusion matrix analysis confirmed the model's effectiveness in distinguishing between the different rice varieties, indicating minimal misclassifications. Additionally, the integration of explainability techniques such as LIME (Local Interpretable Model-agnostic Explanations) and SHAP (SHapley Additive exPlanations) provided valuable insights into the model's decision-making process, revealing how specific features of the rice grains influenced classification outcomes.
Unified theory for joint covariance properties under geometric image transformations for spatio-temporal receptive fields according to the generalized Gaussian derivative model for visual receptive fields
The influence of natural image transformations on receptive field responses is crucial for modelling visual operations in computer vision and biological vision. In this regard, covariance properties with respect to geometric image transformations in the earliest layers of the visual hierarchy are essential for expressing robust image operations, and for formulating invariant visual operations at higher levels. This paper defines and proves a set of joint covariance properties for spatio-temporal receptive fields in terms of spatio-temporal derivative operators applied to spatio-temporally smoothed image data under compositions of spatial scaling transformations, spatial affine transformations, Galilean transformations and temporal scaling transformations. Specifically, the derived relations show how the parameters of the receptive fields need to be transformed, in order to match the output from spatio-temporal receptive fields under composed spatio-temporal image transformations. For this purpose, we also fundamentally extend the notion of scale-normalized derivatives to affine-normalized derivatives, that are computed based on spatial smoothing with affine Gaussian kernels, and analyze the covariance properties of the resulting affine-normalized derivatives for the affine group as well as for important subgroups thereof. We conclude with a geometric analysis, showing how the derived joint covariance properties make it possible to relate or match spatio-temporal receptive field responses, when observing, possibly moving, local surface patches from different views, under locally linearized perspective or projective transformations, as well as when observing different instances of spatio-temporal events, that may occur either faster or slower between different views of similar spatio-temporal events.
comment: 46 pages, 19 figures. Note: From version 4, this paper considers a different form of joint composition of the geometric image transformations than in the earlier versions
EndoMamba: An Efficient Foundation Model for Endoscopic Videos via Hierarchical Pre-training
Endoscopic video-based tasks, such as visual navigation and surgical phase recognition, play a crucial role in minimally invasive surgeries by providing real-time assistance. While recent video foundation models have shown promise, their applications are hindered by (1) computational inefficiencies and (2) suboptimal performance caused by limited data for pre-training in endoscopy. To address these issues, we present EndoMamba, a foundation model designed for real-time inference while learning generalized spatiotemporal representations. First, to mitigate computational inefficiencies, we propose the EndoMamba backbone, optimized for real-time inference. Inspired by recent advancements in state space models, EndoMamba integrates Bidirectional Mamba blocks for spatial modeling within individual frames and vanilla Mamba blocks for past-to-present reasoning across the temporal domain. This design enables both strong spatiotemporal modeling and efficient inference in online video streams. Second, we propose a self-supervised hierarchical pre-training diagram to enhance EndoMamba's representation learning using endoscopic videos and incorporating general video domain knowledge. Specifically, our approach combines masked reconstruction with auxiliary supervision, leveraging low-level reconstruction to capture spatial-temporal structures and high-level alignment to transfer broader knowledge from a pretrained general-video domain foundation model. Extensive experiments on four downstream tasks--classification, segmentation, surgical phase recognition, and localization--demonstrate that EndoMamba outperforms existing foundation models and task-specific methods while maintaining real-time inference speed. The source code is available at https://github.com/TianCuteQY/EndoMamba.
Translating Electrocardiograms to Cardiac Magnetic Resonance Imaging Useful for Cardiac Assessment and Disease Screening: A Multi-Center Study AI for ECG to CMR Translation Study
Cardiovascular diseases (CVDs) are the leading cause of global mortality, necessitating accessible and accurate diagnostic tools. While cardiac magnetic resonance imaging (CMR) provides gold-standard insights into cardiac structure and function, its clinical utility is limited by high cost and complexity. In contrast, electrocardiography (ECG) is inexpensive and widely available but lacks the granularity of CMR. We propose CardioNets, a deep learning framework that translates 12-lead ECG signals into CMR-level functional parameters and synthetic images, enabling scalable cardiac assessment. CardioNets integrates cross-modal contrastive learning and generative pretraining, aligning ECG with CMR-derived cardiac phenotypes and synthesizing high-resolution CMR images via a masked autoregressive model. Trained on 159,819 samples from five cohorts, including the UK Biobank (n=42,483) and MIMIC-IV-ECG (n=164,550), and externally validated on independent clinical datasets (n=3,767), CardioNets achieved strong performance across disease screening and phenotype estimation tasks. In the UK Biobank, it improved cardiac phenotype regression R2 by 24.8% and cardiomyopathy AUC by up to 39.3% over baseline models. In MIMIC, it increased AUC for pulmonary hypertension detection by 5.6%. Generated CMR images showed 36.6% higher SSIM and 8.7% higher PSNR than prior approaches. In a reader study, ECG-only CardioNets achieved 13.9% higher accuracy than human physicians using both ECG and real CMR. These results suggest that CardioNets offers a promising, low-cost alternative to CMR for large-scale CVD screening, particularly in resource-limited settings. Future efforts will focus on clinical deployment and regulatory validation of ECG-based synthetic imaging.
comment: 27 pages, 11 figures
Towards user-centered interactive medical image segmentation in VR with an assistive AI agent
Crucial in disease analysis and surgical planning, manual segmentation of volumetric medical scans (e.g. MRI, CT) is laborious, error-prone, and challenging to master, while fully automatic algorithms can benefit from user feedback. Therefore, with the complementary power of the latest radiological AI foundation models and virtual reality (VR)'s intuitive data interaction, we propose SAMIRA, a novel conversational AI agent that assists users with localizing, segmenting, and visualizing 3D medical concepts in VR. Through speech-based interaction, the agent helps users understand radiological features, locate clinical targets, and generate segmentation masks that can be refined with just a few point prompts. The system also supports true-to-scale 3D visualization of segmented pathology to enhance patient-specific anatomical understanding. Furthermore, to determine the optimal interaction paradigm under near-far attention-switching for refining segmentation masks in an immersive, human-in-the-loop workflow, we compare VR controller pointing, head pointing, and eye tracking as input modes. With a user study, evaluations demonstrated a high usability score (SUS=90.0 $\pm$ 9.0), low overall task load, as well as strong support for the proposed VR system's guidance, training potential, and integration of AI in radiological segmentation tasks.
Cyclic 2.5D Perceptual Loss for Cross-Modal 3D Medical Image Synthesis: T1w MRI to Tau PET
There is a demand for medical image synthesis or translation to generate synthetic images of missing modalities from available data. This need stems from challenges such as restricted access to high-cost imaging devices, government regulations, or failure to follow up with patients or study participants. In medical imaging, preserving high-level semantic features is often more critical than achieving pixel-level accuracy. Perceptual loss functions are widely employed to train medical image synthesis or translation models, as they quantify differences in high-level image features using a pre-trained feature extraction network. While 3D and 2.5D perceptual losses are used in 3D medical image synthesis, they face challenges, such as the lack of pre-trained 3D models or difficulties in balancing loss reduction across different planes. In this work, we focus on synthesizing 3D tau PET images from 3D T1-weighted MR images. We propose a cyclic 2.5D perceptual loss that sequentially computes the 2D average perceptual loss for each of the axial, coronal, and sagittal planes over epochs, with the cycle duration gradually decreasing. Additionally, we process tau PET images using by-manufacturer standardization to enhance the preservation of high-SUVR regions indicative of tau pathology and mitigate SUVR variability caused by inter-manufacturer differences. We combine the proposed loss with SSIM and MSE losses and demonstrate its effectiveness in improving both quantitative and qualitative performance across various generative models, including U-Net, UNETR, SwinUNETR, CycleGAN, and Pix2Pix.
Saliency-Motion Guided Trunk-Collateral Network for Unsupervised Video Object Segmentation
Recent mainstream unsupervised video object segmentation (UVOS) motion-appearance approaches use either the bi-encoder structure to separately encode motion and appearance features, or the uni-encoder structure for joint encoding. However, these methods fail to properly balance the motion-appearance relationship. Consequently, even with complex fusion modules for motion-appearance integration, the extracted suboptimal features degrade the models' overall performance. Moreover, the quality of optical flow varies across scenarios, making it insufficient to rely solely on optical flow to achieve high-quality segmentation results. To address these challenges, we propose the Saliency-Motion guided Trunk-Collateral Network (SMTC-Net), which better balances the motion-appearance relationship and incorporates model's intrinsic saliency information to enhance segmentation performance. Specifically, considering that optical flow maps are derived from RGB images, they share both commonalities and differences. Accordingly, we propose a novel Trunk-Collateral structure for motion-appearance UVOS. The shared trunk backbone captures the motion-appearance commonality, while the collateral branch learns the uniqueness of motion features. Furthermore, an Intrinsic Saliency guided Refinement Module (ISRM) is devised to efficiently leverage the model's intrinsic saliency information to refine high-level features, and provide pixel-level guidance for motion-appearance fusion, thereby enhancing performance without additional input. Experimental results show that SMTC-Net achieved state-of-the-art performance on three UVOS datasets ( 89.2% J&F on DAVIS-16, 76% J on YouTube-Objects, 86.4% J on FBMS ) and four standard video salient object detection (VSOD) benchmarks with the notable increase, demonstrating its effectiveness and superiority over previous methods.
A Trust-Guided Approach to MR Image Reconstruction with Side Information
Reducing MRI scan times can improve patient care and lower healthcare costs. Many acceleration methods are designed to reconstruct diagnostic-quality images from sparse k-space data, via an ill-posed or ill-conditioned linear inverse problem (LIP). To address the resulting ambiguities, it is crucial to incorporate prior knowledge into the optimization problem, e.g., in the form of regularization. Another form of prior knowledge less commonly used in medical imaging is the readily available auxiliary data (a.k.a. side information) obtained from sources other than the current acquisition. In this paper, we present the Trust- Guided Variational Network (TGVN), an end-to-end deep learning framework that effectively and reliably integrates side information into LIPs. We demonstrate its effectiveness in multi-coil, multi-contrast MRI reconstruction, where incomplete or low-SNR measurements from one contrast are used as side information to reconstruct high-quality images of another contrast from heavily under-sampled data. TGVN is robust across different contrasts, anatomies, and field strengths. Compared to baselines utilizing side information, TGVN achieves superior image quality while preserving subtle pathological features even at challenging acceleration levels, drastically speeding up acquisition while minimizing hallucinations. Source code and dataset splits are available on github.com/sodicksonlab/TGVN.
comment: 27 pages, 9 figures
Learned Image Compression with Dictionary-based Entropy Model CVPR 2025
Learned image compression methods have attracted great research interest and exhibited superior rate-distortion performance to the best classical image compression standards of the present. The entropy model plays a key role in learned image compression, which estimates the probability distribution of the latent representation for further entropy coding. Most existing methods employed hyper-prior and auto-regressive architectures to form their entropy models. However, they only aimed to explore the internal dependencies of latent representation while neglecting the importance of extracting prior from training data. In this work, we propose a novel entropy model named Dictionary-based Cross Attention Entropy model, which introduces a learnable dictionary to summarize the typical structures occurring in the training dataset to enhance the entropy model. Extensive experimental results have demonstrated that the proposed model strikes a better balance between performance and latency, achieving state-of-the-art results on various benchmark datasets.
comment: Accepted to CVPR 2025
OSMLoc: Single Image-Based Visual Localization in OpenStreetMap with Fused Geometric and Semantic Guidance
OpenStreetMap (OSM), a rich and versatile source of volunteered geographic information (VGI), facilitates human self-localization and scene understanding by integrating nearby visual observations with vectorized map data. However, the disparity in modalities and perspectives poses a major challenge for effectively matching camera imagery with compact map representations, thereby limiting the full potential of VGI data in real-world localization applications. Inspired by the fact that the human brain relies on the fusion of geometric and semantic understanding for spatial localization tasks, we propose the OSMLoc in this paper. OSMLoc is a brain-inspired visual localization approach based on first-person-view images against the OSM maps. It integrates semantic and geometric guidance to significantly improve accuracy, robustness, and generalization capability. First, we equip the OSMLoc with the visual foundational model to extract powerful image features. Second, a geometry-guided depth distribution adapter is proposed to bridge the monocular depth estimation and camera-to-BEV transform. Thirdly, the semantic embeddings from the OSM data are utilized as auxiliary guidance for image-to-OSM feature matching. To validate the proposed OSMLoc, we collect a worldwide cross-area and cross-condition (CC) benchmark for extensive evaluation. Experiments on the MGL dataset, CC validation benchmark, and KITTI dataset have demonstrated the superiority of our method. Code, pre-trained models, CC validation benchmark, and additional results are available at: https://github.com/WHU-USI3DV/OSMLoc.
comment: 16 pages, technical report
Image and Video Processing
WeGA: Weakly-Supervised Global-Local Affinity Learning Framework for Lymph Node Metastasis Prediction in Rectal Cancer
Accurate lymph node metastasis (LNM) assessment in rectal cancer is essential for treatment planning, yet current MRI-based evaluation shows unsatisfactory accuracy, leading to suboptimal clinical decisions. Developing automated systems also faces significant obstacles, primarily the lack of node-level annotations. Previous methods treat lymph nodes as isolated entities rather than as an interconnected system, overlooking valuable spatial and contextual information. To solve this problem, we present WeGA, a novel weakly-supervised global-local affinity learning framework that addresses these challenges through three key innovations: 1) a dual-branch architecture with DINOv2 backbone for global context and residual encoder for local node details; 2) a global-local affinity extractor that aligns features across scales through cross-attention fusion; and 3) a regional affinity loss that enforces structural coherence between classification maps and anatomical regions. Experiments across one internal and two external test centers demonstrate that WeGA outperforms existing methods, achieving AUCs of 0.750, 0.822, and 0.802 respectively. By effectively modeling the relationships between individual lymph nodes and their collective context, WeGA provides a more accurate and generalizable approach for lymph node metastasis prediction, potentially enhancing diagnostic precision and treatment selection for rectal cancer patients.
Multi-contrast laser endoscopy for in vivo gastrointestinal imaging
White light endoscopy is the clinical gold standard for detecting diseases in the gastrointestinal tract. Most applications involve identifying visual abnormalities in tissue color, texture, and shape. Unfortunately, the contrast of these features is often subtle, causing many clinically relevant cases to go undetected. To overcome this challenge, we introduce Multi-contrast Laser Endoscopy (MLE): a platform for widefield clinical imaging with rapidly tunable spectral, coherent, and directional illumination. We demonstrate three capabilities of MLE: enhancing tissue chromophore contrast with multispectral diffuse reflectance, quantifying blood flow using laser speckle contrast imaging, and characterizing mucosal topography using photometric stereo. We validate MLE with benchtop models, then demonstrate MLE in vivo during clinical colonoscopies. MLE images from 31 polyps demonstrate an approximate three-fold improvement in contrast and a five-fold improvement in color difference compared to white light and narrow band imaging. With the ability to reveal multiple complementary types of tissue contrast while seamlessly integrating into the clinical environment, MLE shows promise as an investigative tool to improve gastrointestinal imaging.
HWA-UNETR: Hierarchical Window Aggregate UNETR for 3D Multimodal Gastric Lesion Segmentation MICCAI 2025
Multimodal medical image segmentation faces significant challenges in the context of gastric cancer lesion analysis. This clinical context is defined by the scarcity of independent multimodal datasets and the imperative to amalgamate inherently misaligned modalities. As a result, algorithms are constrained to train on approximate data and depend on application migration, leading to substantial resource expenditure and a potential decline in analysis accuracy. To address those challenges, we have made two major contributions: First, we publicly disseminate the GCM 2025 dataset, which serves as the first large-scale, open-source collection of gastric cancer multimodal MRI scans, featuring professionally annotated FS-T2W, CE-T1W, and ADC images from 500 patients. Second, we introduce HWA-UNETR, a novel 3D segmentation framework that employs an original HWA block with learnable window aggregation layers to establish dynamic feature correspondences between different modalities' anatomical structures, and leverages the innovative tri-orientated fusion mamba mechanism for context modeling and capturing long-range spatial dependencies. Extensive experiments on our GCM 2025 dataset and the publicly BraTS 2021 dataset validate the performance of our framework, demonstrating that the new approach surpasses existing methods by up to 1.68\% in the Dice score while maintaining solid robustness. The dataset and code are public via https://github.com/JeMing-creater/HWA-UNETR.
comment: This work has been provisionally accepted for MICCAI 2025
Visual Fidelity Index for Generative Semantic Communications with Critical Information Embedding
Generative semantic communication (Gen-SemCom) with large artificial intelligence (AI) model promises a transformative paradigm for 6G networks, which reduces communication costs by transmitting low-dimensional prompts rather than raw data. However, purely prompt-driven generation loses fine-grained visual details. Additionally, there is a lack of systematic metrics to evaluate the performance of Gen-SemCom systems. To address these issues, we develop a hybrid Gen-SemCom system with a critical information embedding (CIE) framework, where both text prompts and semantically critical features are extracted for transmissions. First, a novel approach of semantic filtering is proposed to select and transmit the semantically critical features of images relevant to semantic label. By integrating the text prompt and critical features, the receiver reconstructs high-fidelity images using a diffusion-based generative model. Next, we propose the generative visual information fidelity (GVIF) metric to evaluate the visual quality of the generated image. By characterizing the statistical models of image features, the GVIF metric quantifies the mutual information between the distorted features and their original counterparts. By maximizing the GVIF metric, we design a channel-adaptive Gen-SemCom system that adaptively control the volume of features and compression rate according to the channel state. Experimental results validate the GVIF metric's sensitivity to visual fidelity, correlating with both the PSNR and critical information volume. In addition, the optimized system achieves superior performance over benchmarking schemes in terms of higher PSNR and lower FID scores.
Whitened Score Diffusion: A Structured Prior for Imaging Inverse Problems
Conventional score-based diffusion models (DMs) may struggle with anisotropic Gaussian diffusion processes due to the required inversion of covariance matrices in the denoising score matching training objective \cite{vincent_connection_2011}. We propose Whitened Score (WS) diffusion models, a novel SDE-based framework that learns the Whitened Score function instead of the standard score. This approach circumvents covariance inversion, extending score-based DMs by enabling stable training of DMs on arbitrary Gaussian forward noising processes. WS DMs establish equivalence with FM for arbitrary Gaussian noise, allow for tailored spectral inductive biases, and provide strong Bayesian priors for imaging inverse problems with structured noise. We experiment with a variety of computational imaging tasks using the CIFAR and CelebA ($64\times64$) datasets and demonstrate that WS diffusion priors trained on anisotropic Gaussian noising processes consistently outperform conventional diffusion priors based on isotropic Gaussian noise.
IMITATE: Image Registration with Context for unknown time frame recovery
In this paper, we formulate a novel image registration formalism dedicated to the estimation of unknown condition-related images, based on two or more known images and their associated conditions. We show how to practically model this formalism by using a new conditional U-Net architecture, which fully takes into account the conditional information and does not need any fixed image. Our formalism is then applied to image moving tumors for radiotherapy treatment at different breathing amplitude using 4D-CT (3D+t) scans in thoracoabdominal regions. This driving application is particularly complex as it requires to stitch a collection of sequential 2D slices into several 3D volumes at different organ positions. Movement interpolation with standard methods then generates well known reconstruction artefacts in the assembled volumes due to irregular patient breathing, hysteresis and poor correlation of breathing signal to internal motion. Results obtained on 4D-CT clinical data showcase artefact-free volumes achieved through real-time latencies. The code is publicly available at https://github.com/Kheil-Z/IMITATE .
comment: IEEE ISBI 2025
High Quality Underwater Image Compression with Adaptive Correction and Codebook-based Augmentation
With the increasing exploration and exploitation of the underwater world, underwater images have become a critical medium for human interaction with marine environments, driving extensive research into their efficient transmission and storage. However, contemporary underwater image compression algorithms fail to fully leverage the unique characteristics distinguishing underwater scenes from terrestrial images, resulting in suboptimal performance. To address this limitation, we introduce HQUIC, designed to exploit underwater-image-specific features for enhanced compression efficiency. HQUIC employs an ALTC module to adaptively predict the attenuation coefficients and global light information of the images, which effectively mitigates the issues caused by the differences in lighting and tone existing in underwater images. Subsequently, HQUIC employs a codebook as an auxiliary branch to extract the common objects within underwater images and enhances the performance of the main branch. Furthermore, HQUIC dynamically weights multi-scale frequency components, prioritizing information critical for distortion quality while discarding redundant details. Extensive evaluations on diverse underwater datasets demonstrate that HQUIC outperforms state-of-the-art compression methods.
Ordered-subsets Multi-diffusion Model for Sparse-view CT Reconstruction
Score-based diffusion models have shown significant promise in the field of sparse-view CT reconstruction. However, the projection dataset is large and riddled with redundancy. Consequently, applying the diffusion model to unprocessed data results in lower learning effectiveness and higher learning difficulty, frequently leading to reconstructed images that lack fine details. To address these issues, we propose the ordered-subsets multi-diffusion model (OSMM) for sparse-view CT reconstruction. The OSMM innovatively divides the CT projection data into equal subsets and employs multi-subsets diffusion model (MSDM) to learn from each subset independently. This targeted learning approach reduces complexity and enhances the reconstruction of fine details. Furthermore, the integration of one-whole diffusion model (OWDM) with complete sinogram data acts as a global information constraint, which can reduce the possibility of generating erroneous or inconsistent sinogram information. Moreover, the OSMM's unsupervised learning framework provides strong robustness and generalizability, adapting seamlessly to varying sparsity levels of CT sinograms. This ensures consistent and reliable performance across different clinical scenarios. Experimental results demonstrate that OSMM outperforms traditional diffusion models in terms of image quality and noise resilience, offering a powerful and versatile solution for advanced CT imaging in sparse-view scenarios.
Non-Registration Change Detection: A Novel Change Detection Task and Benchmark Dataset
In this study, we propose a novel remote sensing change detection task, non-registration change detection, to address the increasing number of emergencies such as natural disasters, anthropogenic accidents, and military strikes. First, in light of the limited discourse on the issue of non-registration change detection, we systematically propose eight scenarios that could arise in the real world and potentially contribute to the occurrence of non-registration problems. Second, we develop distinct image transformation schemes tailored to various scenarios to convert the available registration change detection dataset into a non-registration version. Finally, we demonstrate that non-registration change detection can cause catastrophic damage to the state-of-the-art methods. Our code and dataset are available at https://github.com/ShanZard/NRCD.
comment: Accepted to IGARSS 2025
Adaptive Spatial Transcriptomics Interpolation via Cross-modal Cross-slice Modeling MICCAI 2025
Spatial transcriptomics (ST) is a promising technique that characterizes the spatial gene profiling patterns within the tissue context. Comprehensive ST analysis depends on consecutive slices for 3D spatial insights, whereas the missing intermediate tissue sections and high costs limit the practical feasibility of generating multi-slice ST. In this paper, we propose C2-STi, the first attempt for interpolating missing ST slices at arbitrary intermediate positions between adjacent ST slices. Despite intuitive, effective ST interpolation presents significant challenges, including 1) limited continuity across heterogeneous tissue sections, 2) complex intrinsic correlation across genes, and 3) intricate cellular structures and biological semantics within each tissue section. To mitigate these challenges, in C2-STi, we design 1) a distance-aware local structural modulation module to adaptively capture cross-slice deformations and enhance positional correlations between ST slices, 2) a pyramid gene co-expression correlation module to capture multi-scale biological associations among genes, and 3) a cross-modal alignment module that integrates the ST-paired hematoxylin and eosin (H&E)-stained images to filter and align the essential cellular features across ST and H\&E images. Extensive experiments on the public dataset demonstrate our superiority over state-of-the-art approaches on both single-slice and multi-slice ST interpolation. Codes are available at https://github.com/XiaofeiWang2018/C2-STi.
comment: Early accepted by MICCAI 2025
Predicting Risk of Pulmonary Fibrosis Formation in PASC Patients
While the acute phase of the COVID-19 pandemic has subsided, its long-term effects persist through Post-Acute Sequelae of COVID-19 (PASC), commonly known as Long COVID. There remains substantial uncertainty regarding both its duration and optimal management strategies. PASC manifests as a diverse array of persistent or newly emerging symptoms--ranging from fatigue, dyspnea, and neurologic impairments (e.g., brain fog), to cardiovascular, pulmonary, and musculoskeletal abnormalities--that extend beyond the acute infection phase. This heterogeneous presentation poses substantial challenges for clinical assessment, diagnosis, and treatment planning. In this paper, we focus on imaging findings that may suggest fibrotic damage in the lungs, a critical manifestation characterized by scarring of lung tissue, which can potentially affect long-term respiratory function in patients with PASC. This study introduces a novel multi-center chest CT analysis framework that combines deep learning and radiomics for fibrosis prediction. Our approach leverages convolutional neural networks (CNNs) and interpretable feature extraction, achieving 82.2% accuracy and 85.5% AUC in classification tasks. We demonstrate the effectiveness of Grad-CAM visualization and radiomics-based feature analysis in providing clinically relevant insights for PASC-related lung fibrosis prediction. Our findings highlight the potential of deep learning-driven computational methods for early detection and risk assessment of PASC-related lung fibrosis--presented for the first time in the literature.
ROIsGAN: A Region Guided Generative Adversarial Framework for Murine Hippocampal Subregion Segmentation
The hippocampus, a critical brain structure involved in memory processing and various neurodegenerative and psychiatric disorders, comprises three key subregions: the dentate gyrus (DG), Cornu Ammonis 1 (CA1), and Cornu Ammonis 3 (CA3). Accurate segmentation of these subregions from histological tissue images is essential for advancing our understanding of disease mechanisms, developmental dynamics, and therapeutic interventions. However, no existing methods address the automated segmentation of hippocampal subregions from tissue images, particularly from immunohistochemistry (IHC) images. To bridge this gap, we introduce a novel set of four comprehensive murine hippocampal IHC datasets featuring distinct staining modalities: cFos, NeuN, and multiplexed stains combining cFos, NeuN, and either {\Delta}FosB or GAD67, capturing structural, neuronal activity, and plasticity associated information. Additionally, we propose ROIsGAN, a region-guided U-Net-based generative adversarial network tailored for hippocampal subregion segmentation. By leveraging adversarial learning, ROIsGAN enhances boundary delineation and structural detail refinement through a novel region-guided discriminator loss combining Dice and binary cross-entropy loss. Evaluated across DG, CA1, and CA3 subregions, ROIsGAN consistently outperforms conventional segmentation models, achieving performance gains ranging from 1-10% in Dice score and up to 11% in Intersection over Union (IoU), particularly under challenging staining conditions. Our work establishes foundational datasets and methods for automated hippocampal segmentation, enabling scalable, high-precision analysis of tissue images in neuroscience research. Our generated datasets, proposed model as a standalone tool, and its corresponding source code are publicly available at: https://github.com/MehediAzim/ROIsGAN
MOSAIC: A Multi-View 2.5D Organ Slice Selector with Cross-Attentional Reasoning for Anatomically-Aware CT Localization in Medical Organ Segmentation
Efficient and accurate multi-organ segmentation from abdominal CT volumes is a fundamental challenge in medical image analysis. Existing 3D segmentation approaches are computationally and memory intensive, often processing entire volumes that contain many anatomically irrelevant slices. Meanwhile, 2D methods suffer from class imbalance and lack cross-view contextual awareness. To address these limitations, we propose a novel, anatomically-aware slice selector pipeline that reduces input volume prior to segmentation. Our unified framework introduces a vision-language model (VLM) for cross-view organ presence detection using fused tri-slice (2.5D) representations from axial, sagittal, and coronal planes. Our proposed model acts as an "expert" in anatomical localization, reasoning over multi-view representations to selectively retain slices with high structural relevance. This enables spatially consistent filtering across orientations while preserving contextual cues. More importantly, since standard segmentation metrics such as Dice or IoU fail to measure the spatial precision of such slice selection, we introduce a novel metric, Slice Localization Concordance (SLC), which jointly captures anatomical coverage and spatial alignment with organ-centric reference slices. Unlike segmentation-specific metrics, SLC provides a model-agnostic evaluation of localization fidelity. Our model offers substantial improvement gains against several baselines across all organs, demonstrating both accurate and reliable organ-focused slice filtering. These results show that our method enables efficient and spatially consistent organ filtering, thereby significantly reducing downstream segmentation cost while maintaining high anatomical fidelity.
SRMamba: Mamba for Super-Resolution of LiDAR Point Clouds
In recent years, range-view-based LiDAR point cloud super-resolution techniques attract significant attention as a low-cost method for generating higher-resolution point cloud data. However, due to the sparsity and irregular structure of LiDAR point clouds, the point cloud super-resolution problem remains a challenging topic, especially for point cloud upsampling under novel views. In this paper, we propose SRMamba, a novel method for super-resolution of LiDAR point clouds in sparse scenes, addressing the key challenge of recovering the 3D spatial structure of point clouds from novel views. Specifically, we implement projection technique based on Hough Voting and Hole Compensation strategy to eliminate horizontally linear holes in range image. To improve the establishment of long-distance dependencies and to focus on potential geometric features in vertical 3D space, we employ Visual State Space model and Multi-Directional Scanning mechanism to mitigate the loss of 3D spatial structural information due to the range image. Additionally, an asymmetric U-Net network adapts to the input characteristics of LiDARs with different beam counts, enabling super-resolution reconstruction for multi-beam point clouds. We conduct a series of experiments on multiple challenging public LiDAR datasets (SemanticKITTI and nuScenes), and SRMamba demonstrates significant superiority over other algorithms in both qualitative and quantitative evaluations.
BiECVC: Gated Diversification of Bidirectional Contexts for Learned Video Compression
Recent forward prediction-based learned video compression (LVC) methods have achieved impressive results, even surpassing VVC reference software VTM under the Low Delay B (LDB) configuration. In contrast, learned bidirectional video compression (BVC) remains underexplored and still lags behind its forward-only counterparts. This performance gap is mainly due to the limited ability to extract diverse and accurate contexts: most existing BVCs primarily exploit temporal motion while neglecting non-local correlations across frames. Moreover, they lack the adaptability to dynamically suppress harmful contexts arising from fast motion or occlusion. To tackle these challenges, we propose BiECVC, a BVC framework that incorporates diversified local and non-local context modeling along with adaptive context gating. For local context enhancement, BiECVC reuses high-quality features from lower layers and aligns them using decoded motion vectors without introducing extra motion overhead. To model non-local dependencies efficiently, we adopt a linear attention mechanism that balances performance and complexity. To further mitigate the impact of inaccurate context prediction, we introduce Bidirectional Context Gating, inspired by data-dependent decay in recent autoregressive language models, to dynamically filter contextual information based on conditional coding results. Extensive experiments demonstrate that BiECVC achieves state-of-the-art performance, reducing the bit-rate by 13.4% and 15.7% compared to VTM 13.2 under the Random Access (RA) configuration with intra periods of 32 and 64, respectively. To our knowledge, BiECVC is the first learned video codec to surpass VTM 13.2 RA across all standard test datasets. Code will be available at https://github.com/JiangWeibeta/ECVC.
comment: The first learned video codec that surpasses VTM 13.2 RA across all standard test datasets. Code will be available at https://github.com/JiangWeibeta/ECVC
A portable diagnosis model for Keratoconus using a smartphone
Keratoconus (KC) is a corneal disorder that results in blurry and distorted vision. Traditional diagnostic tools, while effective, are often bulky, costly, and require professional operation. In this paper, we present a portable and innovative methodology for diagnosing. Our proposed approach first captures the image reflected on the eye's cornea when a smartphone screen-generated Placido disc sheds its light on an eye, then utilizes a two-stage diagnosis for identifying the KC cornea and pinpointing the location of the KC on the cornea. The first stage estimates the height and width of the Placido disc extracted from the captured image to identify whether it has KC. In this KC identification, k-means clustering is implemented to discern statistical characteristics, such as height and width values of extracted Placido discs, from non-KC (control) and KC-affected groups. The second stage involves the creation of a distance matrix, providing a precise localization of KC on the cornea, which is critical for efficient treatment planning. The analysis of these distance matrices, paired with a logistic regression model and robust statistical analysis, reveals a clear distinction between control and KC groups. The logistic regression model, which classifies small areas on the cornea as either control or KC-affected based on the corresponding inter-disc distances in the distance matrix, reported a classification accuracy of 96.94%, which indicates that we can effectively pinpoint the protrusion caused by KC. This comprehensive, smartphone-based method is expected to detect KC and streamline timely treatment.
An unsupervised method for MRI recovery: Deep image prior with structured sparsity
Objective: To propose and validate an unsupervised MRI reconstruction method that does not require fully sampled k-space data. Materials and Methods: The proposed method, deep image prior with structured sparsity (DISCUS), extends the deep image prior (DIP) by introducing group sparsity to frame-specific code vectors, enabling the discovery of a low-dimensional manifold for capturing temporal variations. \discus was validated using four studies: (I) simulation of a dynamic Shepp-Logan phantom to demonstrate its manifold discovery capabilities, (II) comparison with compressed sensing and DIP-based methods using simulated single-shot late gadolinium enhancement (LGE) image series from six distinct digital cardiac phantoms in terms of normalized mean square error (NMSE) and structural similarity index measure (SSIM), (III) evaluation on retrospectively undersampled single-shot LGE data from eight patients, and (IV) evaluation on prospectively undersampled single-shot LGE data from eight patients, assessed via blind scoring from two expert readers. Results: DISCUS outperformed competing methods, demonstrating superior reconstruction quality in terms of NMSE and SSIM (Studies I--III) and expert reader scoring (Study IV). Discussion: An unsupervised image reconstruction method is presented and validated on simulated and measured data. These developments can benefit applications where acquiring fully sampled data is challenging.
comment: Magn Reson Mater Phy (2025)
Measuring Student Behavioral Engagement using Histogram of Actions
In this paper, we propose a novel technique for measuring behavioral engagement through students' actions recognition. The proposed approach recognizes student actions then predicts the student behavioral engagement level. For student action recognition, we use human skeletons to model student postures and upper body movements. To learn the dynamics of student upper body, a 3D-CNN model is used. The trained 3D-CNN model is used to recognize actions within every 2minute video segment then these actions are used to build a histogram of actions which encodes the student actions and their frequencies. This histogram is utilized as an input to SVM classifier to classify whether the student is engaged or disengaged. To evaluate the proposed framework, we build a dataset consisting of 1414 2-minute video segments annotated with 13 actions and 112 video segments annotated with two engagement levels. Experimental results indicate that student actions can be recognized with top 1 accuracy 83.63% and the proposed framework can capture the average engagement of the class.
Translating Electrocardiograms to Cardiac Magnetic Resonance Imaging Useful for Cardiac Assessment and Disease Screening: A Multi-Center Study AI for ECG to CMR Translation Study
Cardiovascular diseases (CVDs) are the leading cause of global mortality, necessitating accessible and accurate diagnostic tools. While cardiac magnetic resonance imaging (CMR) provides gold-standard insights into cardiac structure and function, its clinical utility is limited by high cost and complexity. In contrast, electrocardiography (ECG) is inexpensive and widely available but lacks the granularity of CMR. We propose CardioNets, a deep learning framework that translates 12-lead ECG signals into CMR-level functional parameters and synthetic images, enabling scalable cardiac assessment. CardioNets integrates cross-modal contrastive learning and generative pretraining, aligning ECG with CMR-derived cardiac phenotypes and synthesizing high-resolution CMR images via a masked autoregressive model. Trained on 159,819 samples from five cohorts, including the UK Biobank (n=42,483) and MIMIC-IV-ECG (n=164,550), and externally validated on independent clinical datasets (n=3,767), CardioNets achieved strong performance across disease screening and phenotype estimation tasks. In the UK Biobank, it improved cardiac phenotype regression R2 by 24.8% and cardiomyopathy AUC by up to 39.3% over baseline models. In MIMIC, it increased AUC for pulmonary hypertension detection by 5.6%. Generated CMR images showed 36.6% higher SSIM and 8.7% higher PSNR than prior approaches. In a reader study, ECG-only CardioNets achieved 13.9% higher accuracy than human physicians using both ECG and real CMR. These results suggest that CardioNets offers a promising, low-cost alternative to CMR for large-scale CVD screening, particularly in resource-limited settings. Future efforts will focus on clinical deployment and regulatory validation of ECG-based synthetic imaging.
comment: 27 pages, 11 figures
Cyclic 2.5D Perceptual Loss for Cross-Modal 3D Medical Image Synthesis: T1w MRI to Tau PET
There is a demand for medical image synthesis or translation to generate synthetic images of missing modalities from available data. This need stems from challenges such as restricted access to high-cost imaging devices, government regulations, or failure to follow up with patients or study participants. In medical imaging, preserving high-level semantic features is often more critical than achieving pixel-level accuracy. Perceptual loss functions are widely employed to train medical image synthesis or translation models, as they quantify differences in high-level image features using a pre-trained feature extraction network. While 3D and 2.5D perceptual losses are used in 3D medical image synthesis, they face challenges, such as the lack of pre-trained 3D models or difficulties in balancing loss reduction across different planes. In this work, we focus on synthesizing 3D tau PET images from 3D T1-weighted MR images. We propose a cyclic 2.5D perceptual loss that sequentially computes the 2D average perceptual loss for each of the axial, coronal, and sagittal planes over epochs, with the cycle duration gradually decreasing. Additionally, we process tau PET images using by-manufacturer standardization to enhance the preservation of high-SUVR regions indicative of tau pathology and mitigate SUVR variability caused by inter-manufacturer differences. We combine the proposed loss with SSIM and MSE losses and demonstrate its effectiveness in improving both quantitative and qualitative performance across various generative models, including U-Net, UNETR, SwinUNETR, CycleGAN, and Pix2Pix.
A Trust-Guided Approach to MR Image Reconstruction with Side Information
Reducing MRI scan times can improve patient care and lower healthcare costs. Many acceleration methods are designed to reconstruct diagnostic-quality images from sparse k-space data, via an ill-posed or ill-conditioned linear inverse problem (LIP). To address the resulting ambiguities, it is crucial to incorporate prior knowledge into the optimization problem, e.g., in the form of regularization. Another form of prior knowledge less commonly used in medical imaging is the readily available auxiliary data (a.k.a. side information) obtained from sources other than the current acquisition. In this paper, we present the Trust- Guided Variational Network (TGVN), an end-to-end deep learning framework that effectively and reliably integrates side information into LIPs. We demonstrate its effectiveness in multi-coil, multi-contrast MRI reconstruction, where incomplete or low-SNR measurements from one contrast are used as side information to reconstruct high-quality images of another contrast from heavily under-sampled data. TGVN is robust across different contrasts, anatomies, and field strengths. Compared to baselines utilizing side information, TGVN achieves superior image quality while preserving subtle pathological features even at challenging acceleration levels, drastically speeding up acquisition while minimizing hallucinations. Source code and dataset splits are available on github.com/sodicksonlab/TGVN.
comment: 27 pages, 9 figures
Benchmarking Self-Supervised Learning Methods for Accelerated MRI Reconstruction
Reconstructing MRI from highly undersampled measurements is crucial for accelerating medical imaging, but is challenging due to the ill-posedness of the inverse problem. While supervised deep learning (DL) approaches have shown remarkable success, they traditionally rely on fully-sampled ground truth (GT) images, which are expensive or impossible to obtain in real scenarios. This problem has created a recent surge in interest in self-supervised learning methods that do not require GT. Although recent methods are now fast approaching "oracle" supervised performance, the lack of systematic comparison and standard experimental setups are hindering targeted methodological research and precluding widespread trustworthy industry adoption. We present SSIBench, a modular and flexible comparison framework to unify and thoroughly benchmark Self-Supervised Imaging methods (SSI) without GT. We evaluate 18 methods across 4 realistic MRI scenarios on real data, showing a wide performance landscape whose method ranking differs across scenarios and metrics, exposing the need for further SSI research. Our insights also show how complementary methods could be compounded for future improvements, exemplified by a novel loss we propose, Multi-Operator Equivariant Imaging. To accelerate reproducible research and lower the barrier to entry, we provide the extensible benchmark and open-source reimplementations of all methods at https://andrewwango.github.io/ssibench, allowing researchers to rapidly and fairly contribute and evaluate new methods on the standardised setup for potential leaderboard ranking, or benchmark existing methods on custom datasets, forward operators, or models, unlocking the application of SSI to other valuable GT free domains such as 4D MRI and other nascent scientific imaging modalities.
comment: Preprint. Live benchmark site available at https://andrewwango.github.io/ssibench
Multimedia
LAV: Audio-Driven Dynamic Visual Generation with Neural Compression and StyleGAN2
This paper introduces LAV (Latent Audio-Visual), a system that integrates EnCodec's neural audio compression with StyleGAN2's generative capabilities to produce visually dynamic outputs driven by pre-recorded audio. Unlike previous works that rely on explicit feature mappings, LAV uses EnCodec embeddings as latent representations, directly transformed into StyleGAN2's style latent space via randomly initialized linear mapping. This approach preserves semantic richness in the transformation, enabling nuanced and semantically coherent audio-visual translations. The framework demonstrates the potential of using pretrained audio compression models for artistic and computational applications.
comment: Paper accepted at ISEA 2025, The 30th International Symposium on Electronic/Emerging Art, Seoul, Republic of Korea, 23 - 29 May 2025
CartoAgent: a multimodal large language model-powered multi-agent cartographic framework for map style transfer and evaluation
The rapid development of generative artificial intelligence (GenAI) presents new opportunities to advance the cartographic process. Previous studies have either overlooked the artistic aspects of maps or faced challenges in creating both accurate and informative maps. In this study, we propose CartoAgent, a novel multi-agent cartographic framework powered by multimodal large language models (MLLMs). This framework simulates three key stages in cartographic practice: preparation, map design, and evaluation. At each stage, different MLLMs act as agents with distinct roles to collaborate, discuss, and utilize tools for specific purposes. In particular, CartoAgent leverages MLLMs' visual aesthetic capability and world knowledge to generate maps that are both visually appealing and informative. By separating style from geographic data, it can focus on designing stylesheets without modifying the vector-based data, thereby ensuring geographic accuracy. We applied CartoAgent to a specific task centered on map restyling-namely, map style transfer and evaluation. The effectiveness of this framework was validated through extensive experiments and a human evaluation study. CartoAgent can be extended to support a variety of cartographic design decisions and inform future integrations of GenAI in cartography.
comment: 57 pages, 17 figures
NeoLightning: A Modern Reimagination of Gesture-Based Sound Design
This paper introduces NeoLightning, a modern reinterpretation of the Buchla Lightning. NeoLightning preserves the innovative spirit of Don Buchla's "Buchla Lightning" (introduced in the 1990s) while making its gesture-based interaction accessible to contemporary users. While the original Buchla Lightning and many other historical instruments were groundbreaking in their time, they are now largely unsupported, limiting user interaction to indirect experiences. To address this, NeoLightning leverages MediaPipe for deep learning-based gesture recognition and employs Max/MSP and Processing for real-time multimedia processing. The redesigned system offers precise, low-latency gesture recognition and immersive 3D interaction. By merging the creative spirit of the original Lightning with modern advancements, NeoLightning redefines gesture-based musical interaction, expanding possibilities for expressive performance and interactive sound design.
comment: Accepted to the 50th International Computer Music Conference (ICMC), 2025
Mitigating Modality Bias in Multi-modal Entity Alignment from a Causal Perspective SIGIR 2025
Multi-Modal Entity Alignment (MMEA) aims to retrieve equivalent entities from different Multi-Modal Knowledge Graphs (MMKGs), a critical information retrieval task. Existing studies have explored various fusion paradigms and consistency constraints to improve the alignment of equivalent entities, while overlooking that the visual modality may not always contribute positively. Empirically, entities with low-similarity images usually generate unsatisfactory performance, highlighting the limitation of overly relying on visual features. We believe the model can be biased toward the visual modality, leading to a shortcut image-matching task. To address this, we propose a counterfactual debiasing framework for MMEA, termed CDMEA, which investigates visual modality bias from a causal perspective. Our approach aims to leverage both visual and graph modalities to enhance MMEA while suppressing the direct causal effect of the visual modality on model predictions. By estimating the Total Effect (TE) of both modalities and excluding the Natural Direct Effect (NDE) of the visual modality, we ensure that the model predicts based on the Total Indirect Effect (TIE), effectively utilizing both modalities and reducing visual modality bias. Extensive experiments on 9 benchmark datasets show that CDMEA outperforms 14 state-of-the-art methods, especially in low-similarity, high-noise, and low-resource data scenarios.
comment: Accepted by SIGIR 2025, 11 pages, 10 figures, 4 tables,
PromptMobile: Efficient Promptus for Low Bandwidth Mobile Video Streaming
Traditional video compression algorithms exhibit significant quality degradation at extremely low bitrates. Promptus emerges as a new paradigm for video streaming, substantially cutting down the bandwidth essential for video streaming. However, Promptus is computationally intensive and can not run in real-time on mobile devices. This paper presents PromptMobile, an efficient acceleration framework tailored for on-device Promptus. Specifically, we propose (1) a two-stage efficient generation framework to reduce computational cost by 8.1x, (2) a fine-grained inter-frame caching to reduce redundant computations by 16.6%, (3) system-level optimizations to further enhance efficiency. The evaluations demonstrate that compared with the original Promptus, PromptMobile achieves a 13.6x increase in image generation speed. Compared with other streaming methods, PromptMobile achives an average LPIPS improvement of 0.016 (compared with H.265), reducing 60% of severely distorted frames (compared to VQGAN).
comment: 6 pages (excluding references), 10 figures, to appear in APNET 2025
Computation and Language
MathCoder-VL: Bridging Vision and Code for Enhanced Multimodal Mathematical Reasoning ACL 2025
Natural language image-caption datasets, widely used for training Large Multimodal Models, mainly focus on natural scenarios and overlook the intricate details of mathematical figures that are critical for problem-solving, hindering the advancement of current LMMs in multimodal mathematical reasoning. To this end, we propose leveraging code as supervision for cross-modal alignment, since code inherently encodes all information needed to generate corresponding figures, establishing a precise connection between the two modalities. Specifically, we co-develop our image-to-code model and dataset with model-in-the-loop approach, resulting in an image-to-code model, FigCodifier and ImgCode-8.6M dataset, the largest image-code dataset to date. Furthermore, we utilize FigCodifier to synthesize novel mathematical figures and then construct MM-MathInstruct-3M, a high-quality multimodal math instruction fine-tuning dataset. Finally, we present MathCoder-VL, trained with ImgCode-8.6M for cross-modal alignment and subsequently fine-tuned on MM-MathInstruct-3M for multimodal math problem solving. Our model achieves a new open-source SOTA across all six metrics. Notably, it surpasses GPT-4o and Claude 3.5 Sonnet in the geometry problem-solving subset of MathVista, achieving improvements of 8.9% and 9.2%. The dataset and models will be released at https://github.com/mathllm/MathCoder.
comment: Accepted to ACL 2025 Findings
Beyond 'Aha!': Toward Systematic Meta-Abilities Alignment in Large Reasoning Models
Large reasoning models (LRMs) already possess a latent capacity for long chain-of-thought reasoning. Prior work has shown that outcome-based reinforcement learning (RL) can incidentally elicit advanced reasoning behaviors such as self-correction, backtracking, and verification phenomena often referred to as the model's "aha moment". However, the timing and consistency of these emergent behaviors remain unpredictable and uncontrollable, limiting the scalability and reliability of LRMs' reasoning capabilities. To address these limitations, we move beyond reliance on prompts and coincidental "aha moments". Instead, we explicitly align models with three meta-abilities: deduction, induction, and abduction, using automatically generated, self-verifiable tasks. Our three stage-pipeline individual alignment, parameter-space merging, and domain-specific reinforcement learning, boosting performance by over 10\% relative to instruction-tuned baselines. Furthermore, domain-specific RL from the aligned checkpoint yields an additional 2\% average gain in the performance ceiling across math, coding, and science benchmarks, demonstrating that explicit meta-ability alignment offers a scalable and dependable foundation for reasoning. Code is available at: https://github.com/zhiyuanhubj/Meta-Ability-Alignment
comment: In Progress
Towards a Deeper Understanding of Reasoning Capabilities in Large Language Models
While large language models demonstrate impressive performance on static benchmarks, the true potential of large language models as self-learning and reasoning agents in dynamic environments remains unclear. This study systematically evaluates the efficacy of self-reflection, heuristic mutation, and planning as prompting techniques to test the adaptive capabilities of agents. We conduct experiments with various open-source language models in dynamic environments and find that larger models generally outperform smaller ones, but that strategic prompting can close this performance gap. Second, a too-long prompt can negatively impact smaller models on basic reactive tasks, while larger models show more robust behaviour. Third, advanced prompting techniques primarily benefit smaller models on complex games, but offer less improvement for already high-performing large language models. Yet, we find that advanced reasoning methods yield highly variable outcomes: while capable of significantly improving performance when reasoning and decision-making align, they also introduce instability and can lead to big performance drops. Compared to human performance, our findings reveal little evidence of true emergent reasoning. Instead, large language model performance exhibits persistent limitations in crucial areas such as planning, reasoning, and spatial coordination, suggesting that current-generation large language models still suffer fundamental shortcomings that may not be fully overcome through self-reflective prompting alone. Reasoning is a multi-faceted task, and while reasoning methods like Chain of thought improves multi-step reasoning on math word problems, our findings using dynamic benchmarks highlight important shortcomings in general reasoning capabilities, indicating a need to move beyond static benchmarks to capture the complexity of reasoning.
WorldPM: Scaling Human Preference Modeling
Motivated by scaling laws in language modeling that demonstrate how test loss scales as a power law with model and dataset sizes, we find that similar laws exist in preference modeling. We propose World Preference Modeling$ (WorldPM) to emphasize this scaling potential, where World Preference embodies a unified representation of human preferences. In this paper, we collect preference data from public forums covering diverse user communities, and conduct extensive training using 15M-scale data across models ranging from 1.5B to 72B parameters. We observe distinct patterns across different evaluation metrics: (1) Adversarial metrics (ability to identify deceptive features) consistently scale up with increased training data and base model size; (2) Objective metrics (objective knowledge with well-defined answers) show emergent behavior in larger language models, highlighting WorldPM's scalability potential; (3) Subjective metrics (subjective preferences from a limited number of humans or AI) do not demonstrate scaling trends. Further experiments validate the effectiveness of WorldPM as a foundation for preference fine-tuning. Through evaluations on 7 benchmarks with 20 subtasks, we find that WorldPM broadly improves the generalization performance across human preference datasets of varying sizes (7K, 100K and 800K samples), with performance gains exceeding 5% on many key subtasks. Integrating WorldPM into our internal RLHF pipeline, we observe significant improvements on both in-house and public evaluation sets, with notable gains of 4% to 8% in our in-house evaluations.
MASSV: Multimodal Adaptation and Self-Data Distillation for Speculative Decoding of Vision-Language Models
Speculative decoding significantly accelerates language model inference by enabling a lightweight draft model to propose multiple tokens that a larger target model verifies simultaneously. However, applying this technique to vision-language models (VLMs) presents two fundamental challenges: small language models that could serve as efficient drafters lack the architectural components to process visual inputs, and their token predictions fail to match those of VLM target models that consider visual context. We introduce Multimodal Adaptation and Self-Data Distillation for Speculative Decoding of Vision-Language Models (MASSV), which transforms existing small language models into effective multimodal drafters through a two-phase approach. MASSV first connects the target VLM's vision encoder to the draft model via a lightweight trainable projector, then applies self-distilled visual instruction tuning using responses generated by the target VLM to align token predictions. Comprehensive experiments across the Qwen2.5-VL and Gemma3 model families demonstrate that MASSV increases accepted length by up to 30% and delivers end-to-end inference speedups of up to 1.46x on visually-grounded tasks. MASSV provides a scalable, architecture-compatible method for accelerating both current and future VLMs.
comment: Main paper: 11 pp., 4 figs., 3 tabs.; Supplementary: 2 pp
Multi-Token Prediction Needs Registers
Multi-token prediction has emerged as a promising objective for improving language model pretraining, but its benefits have not consistently generalized to other settings such as fine-tuning. In this paper, we propose MuToR, a simple and effective approach to multi-token prediction that interleaves learnable register tokens into the input sequence, each tasked with predicting future targets. Compared to existing methods, MuToR offers several key advantages: it introduces only a negligible number of additional parameters, requires no architectural changes--ensuring compatibility with off-the-shelf pretrained language models--and remains aligned with the next-token pretraining objective, making it especially well-suited for supervised fine-tuning. Moreover, it naturally supports scalable prediction horizons. We demonstrate the effectiveness and versatility of MuToR across a range of use cases, including supervised fine-tuning, parameter-efficient fine-tuning (PEFT), and pretraining, on challenging generative tasks in both language and vision domains. Our code will be available at: https://github.com/nasosger/MuToR.
The Devil Is in the Word Alignment Details: On Translation-Based Cross-Lingual Transfer for Token Classification Tasks
Translation-based strategies for cross-lingual transfer XLT such as translate-train -- training on noisy target language data translated from the source language -- and translate-test -- evaluating on noisy source language data translated from the target language -- are competitive XLT baselines. In XLT for token classification tasks, however, these strategies include label projection, the challenging step of mapping the labels from each token in the original sentence to its counterpart(s) in the translation. Although word aligners (WAs) are commonly used for label projection, the low-level design decisions for applying them to translation-based XLT have not been systematically investigated. Moreover, recent marker-based methods, which project labeled spans by inserting tags around them before (or after) translation, claim to outperform WAs in label projection for XLT. In this work, we revisit WAs for label projection, systematically investigating the effects of low-level design decisions on token-level XLT: (i) the algorithm for projecting labels between (multi-)token spans, (ii) filtering strategies to reduce the number of noisily mapped labels, and (iii) the pre-tokenization of the translated sentences. We find that all of these substantially impact translation-based XLT performance and show that, with optimized choices, XLT with WA offers performance at least comparable to that of marker-based methods. We then introduce a new projection strategy that ensembles translate-train and translate-test predictions and demonstrate that it substantially outperforms the marker-based projection. Crucially, we show that our proposed ensembling also reduces sensitivity to low-level WA design choices, resulting in more robust XLT for token classification tasks.
RouteNator: A Router-Based Multi-Modal Architecture for Generating Synthetic Training Data for Function Calling LLMs
This paper addresses fine-tuning Large Language Models (LLMs) for function calling tasks when real user interaction data is unavailable. In digital content creation tools, where users express their needs through natural language queries that must be mapped to API calls, the lack of real-world task-specific data and privacy constraints for training on it necessitate synthetic data generation. Existing approaches to synthetic data generation fall short in diversity and complexity, failing to replicate real-world data distributions and leading to suboptimal performance after LLM fine-tuning. We present a novel router-based architecture that leverages domain resources like content metadata and structured knowledge graphs, along with text-to-text and vision-to-text language models to generate high-quality synthetic training data. Our architecture's flexible routing mechanism enables synthetic data generation that matches observed real-world distributions, addressing a fundamental limitation of traditional approaches. Evaluation on a comprehensive set of real user queries demonstrates significant improvements in both function classification accuracy and API parameter selection. Models fine-tuned with our synthetic data consistently outperform traditional approaches, establishing new benchmarks for function calling tasks.
comment: Proceedings of the 4th International Workshop on Knowledge-Augmented Methods for Natural Language Processing
Can You Really Trust Code Copilots? Evaluating Large Language Models from a Code Security Perspective ACL2025
Code security and usability are both essential for various coding assistant applications driven by large language models (LLMs). Current code security benchmarks focus solely on single evaluation task and paradigm, such as code completion and generation, lacking comprehensive assessment across dimensions like secure code generation, vulnerability repair and discrimination. In this paper, we first propose CoV-Eval, a multi-task benchmark covering various tasks such as code completion, vulnerability repair, vulnerability detection and classification, for comprehensive evaluation of LLM code security. Besides, we developed VC-Judge, an improved judgment model that aligns closely with human experts and can review LLM-generated programs for vulnerabilities in a more efficient and reliable way. We conduct a comprehensive evaluation of 20 proprietary and open-source LLMs. Overall, while most LLMs identify vulnerable codes well, they still tend to generate insecure codes and struggle with recognizing specific vulnerability types and performing repairs. Extensive experiments and qualitative analyses reveal key challenges and optimization directions, offering insights for future research in LLM code security.
comment: Accepted by ACL2025 Main Conference
CL-RAG: Bridging the Gap in Retrieval-Augmented Generation with Curriculum Learning
Retrieval-Augmented Generation (RAG) is an effective method to enhance the capabilities of large language models (LLMs). Existing methods focus on optimizing the retriever or generator in the RAG system by directly utilizing the top-k retrieved documents. However, the documents effectiveness are various significantly across user queries, i.e. some documents provide valuable knowledge while others totally lack critical information. It hinders the retriever and generator's adaptation during training. Inspired by human cognitive learning, curriculum learning trains models using samples progressing from easy to difficult, thus enhancing their generalization ability, and we integrate this effective paradigm to the training of the RAG system. In this paper, we propose a multi-stage Curriculum Learning based RAG system training framework, named CL-RAG. We first construct training data with multiple difficulty levels for the retriever and generator separately through sample evolution. Then, we train the model in stages based on the curriculum learning approach, thereby optimizing the overall performance and generalization of the RAG system more effectively. Our CL-RAG framework demonstrates consistent effectiveness across four open-domain QA datasets, achieving performance gains of 2% to 4% over multiple advanced methods.
Parallel Scaling Law for Language Models
It is commonly believed that scaling language models should commit a significant space or time cost, by increasing the parameters (parameter scaling) or output tokens (inference-time scaling). We introduce the third and more inference-efficient scaling paradigm: increasing the model's parallel computation during both training and inference time. We apply $P$ diverse and learnable transformations to the input, execute forward passes of the model in parallel, and dynamically aggregate the $P$ outputs. This method, namely parallel scaling (ParScale), scales parallel computation by reusing existing parameters and can be applied to any model structure, optimization procedure, data, or task. We theoretically propose a new scaling law and validate it through large-scale pre-training, which shows that a model with $P$ parallel streams is similar to scaling the parameters by $O(\log P)$ while showing superior inference efficiency. For example, ParScale can use up to 22$\times$ less memory increase and 6$\times$ less latency increase compared to parameter scaling that achieves the same performance improvement. It can also recycle an off-the-shelf pre-trained model into a parallelly scaled one by post-training on a small amount of tokens, further reducing the training budget. The new scaling law we discovered potentially facilitates the deployment of more powerful models in low-resource scenarios, and provides an alternative perspective for the role of computation in machine learning.
Superposition Yields Robust Neural Scaling
The success of today's large language models (LLMs) depends on the observation that larger models perform better. However, the origin of this neural scaling law -- the finding that loss decreases as a power law with model size -- remains unclear. Starting from two empirical principles -- that LLMs represent more things than the model dimensions (widths) they have (i.e., representations are superposed), and that words or concepts in language occur with varying frequencies -- we constructed a toy model to study the loss scaling with model size. We found that when superposition is weak, meaning only the most frequent features are represented without interference, the scaling of loss with model size depends on the underlying feature frequency; if feature frequencies follow a power law, so does the loss. In contrast, under strong superposition, where all features are represented but overlap with each other, the loss becomes inversely proportional to the model dimension across a wide range of feature frequency distributions. This robust scaling behavior is explained geometrically: when many more vectors are packed into a lower dimensional space, the interference (squared overlaps) between vectors scales inversely with that dimension. We then analyzed four families of open-sourced LLMs and found that they exhibit strong superposition and quantitatively match the predictions of our toy model. The Chinchilla scaling law turned out to also agree with our results. We conclude that representation superposition is an important mechanism underlying the observed neural scaling laws. We anticipate that these insights will inspire new training strategies and model architectures to achieve better performance with less computation and fewer parameters.
comment: 30 pages, 23 figures
Reinforcing the Diffusion Chain of Lateral Thought with Diffusion Language Models
We introduce the \emph{Diffusion Chain of Lateral Thought (DCoLT)}, a reasoning framework for diffusion language models. DCoLT treats each intermediate step in the reverse diffusion process as a latent "thinking" action and optimizes the entire reasoning trajectory to maximize the reward on the correctness of the final answer with outcome-based Reinforcement Learning (RL). Unlike traditional Chain-of-Thought (CoT) methods that follow a causal, linear thinking process, DCoLT allows bidirectional, non-linear reasoning with no strict rule on grammatical correctness amid its intermediate steps of thought. We implement DCoLT on two representative Diffusion Language Models (DLMs). First, we choose SEDD as a representative continuous-time discrete diffusion model, where its concrete score derives a probabilistic policy to maximize the RL reward over the entire sequence of intermediate diffusion steps. We further consider the discrete-time masked diffusion language model -- LLaDA, and find that the order to predict and unmask tokens plays an essential role to optimize its RL action resulting from the ranking-based Unmasking Policy Module (UPM) defined by the Plackett-Luce model. Experiments on both math and code generation tasks show that using only public data and 16 H800 GPUs, DCoLT-reinforced DLMs outperform other DLMs trained by SFT or RL or even both. Notably, DCoLT-reinforced LLaDA boosts its reasoning accuracy by +9.8%, +5.7%, +11.4%, +19.5% on GSM8K, MATH, MBPP, and HumanEval.
Hierarchical Document Refinement for Long-context Retrieval-augmented Generation
Real-world RAG applications often encounter long-context input scenarios, where redundant information and noise results in higher inference costs and reduced performance. To address these challenges, we propose LongRefiner, an efficient plug-and-play refiner that leverages the inherent structural characteristics of long documents. LongRefiner employs dual-level query analysis, hierarchical document structuring, and adaptive refinement through multi-task learning on a single foundation model. Experiments on seven QA datasets demonstrate that LongRefiner achieves competitive performance in various scenarios while using 10x fewer computational costs and latency compared to the best baseline. Further analysis validates that LongRefiner is scalable, efficient, and effective, providing practical insights for real-world long-text RAG applications. Our code is available at https://github.com/ignorejjj/LongRefiner.
Are LLM-generated plain language summaries truly understandable? A large-scale crowdsourced evaluation
Plain language summaries (PLSs) are essential for facilitating effective communication between clinicians and patients by making complex medical information easier for laypeople to understand and act upon. Large language models (LLMs) have recently shown promise in automating PLS generation, but their effectiveness in supporting health information comprehension remains unclear. Prior evaluations have generally relied on automated scores that do not measure understandability directly, or subjective Likert-scale ratings from convenience samples with limited generalizability. To address these gaps, we conducted a large-scale crowdsourced evaluation of LLM-generated PLSs using Amazon Mechanical Turk with 150 participants. We assessed PLS quality through subjective Likert-scale ratings focusing on simplicity, informativeness, coherence, and faithfulness; and objective multiple-choice comprehension and recall measures of reader understanding. Additionally, we examined the alignment between 10 automated evaluation metrics and human judgments. Our findings indicate that while LLMs can generate PLSs that appear indistinguishable from human-written ones in subjective evaluations, human-written PLSs lead to significantly better comprehension. Furthermore, automated evaluation metrics fail to reflect human judgment, calling into question their suitability for evaluating PLSs. This is the first study to systematically evaluate LLM-generated PLSs based on both reader preferences and comprehension outcomes. Our findings highlight the need for evaluation frameworks that move beyond surface-level quality and for generation methods that explicitly optimize for layperson comprehension.
Rethinking Repetition Problems of LLMs in Code Generation ACL 2025
With the advent of neural language models, the performance of code generation has been significantly boosted. However, the problem of repetitions during the generation process continues to linger. Previous work has primarily focused on content repetition, which is merely a fraction of the broader repetition problem in code generation. A more prevalent and challenging problem is structural repetition. In structural repetition, the repeated code appears in various patterns but possesses a fixed structure, which can be inherently reflected in grammar. In this paper, we formally define structural repetition and propose an efficient decoding approach called RPG, which stands for Repetition Penalization based on Grammar, to alleviate the repetition problems in code generation for LLMs. Specifically, RPG first leverages grammar rules to identify repetition problems during code generation, and then strategically decays the likelihood of critical tokens that contribute to repetitions, thereby mitigating them in code generation. To facilitate this study, we construct a new dataset CodeRepetEval to comprehensively evaluate approaches for mitigating the repetition problems in code generation. Extensive experimental results demonstrate that RPG substantially outperforms the best-performing baselines on CodeRepetEval dataset as well as HumanEval and MBPP benchmarks, effectively reducing repetitions and enhancing the quality of generated code.
comment: Accepted to ACL 2025 (main)
Multi-domain Multilingual Sentiment Analysis in Industry: Predicting Aspect-based Opinion Quadruples
This paper explores the design of an aspect-based sentiment analysis system using large language models (LLMs) for real-world use. We focus on quadruple opinion extraction -- identifying aspect categories, sentiment polarity, targets, and opinion expressions from text data across different domains and languages. Using internal datasets, we investigate whether a single fine-tuned model can effectively handle multiple domain-specific taxonomies simultaneously. We demonstrate that a combined multi-domain model achieves performance comparable to specialized single-domain models while reducing operational complexity. We also share lessons learned for handling non-extractive predictions and evaluating various failure modes when developing LLM-based systems for structured prediction tasks.
Coherent Language Reconstruction from Brain Recordings with Flexible Multi-Modal Input Stimuli
Decoding thoughts from brain activity offers valuable insights into human cognition and enables promising applications in brain-computer interaction. While prior studies have explored language reconstruction from fMRI data, they are typically limited to single-modality inputs such as images or audio. In contrast, human thought is inherently multimodal. To bridge this gap, we propose a unified and flexible framework for reconstructing coherent language from brain recordings elicited by diverse input modalities-visual, auditory, and textual. Our approach leverages visual-language models (VLMs), using modality-specific experts to jointly interpret information across modalities. Experiments demonstrate that our method achieves performance comparable to state-of-the-art systems while remaining adaptable and extensible. This work advances toward more ecologically valid and generalizable mind decoding.
LDIR: Low-Dimensional Dense and Interpretable Text Embeddings with Relative Representations ACL 2025
Semantic text representation is a fundamental task in the field of natural language processing. Existing text embedding (e.g., SimCSE and LLM2Vec) have demonstrated excellent performance, but the values of each dimension are difficult to trace and interpret. Bag-of-words, as classic sparse interpretable embeddings, suffers from poor performance. Recently, Benara et al. (2024) propose interpretable text embeddings using large language models, which forms "0/1" embeddings based on responses to a series of questions. These interpretable text embeddings are typically high-dimensional (larger than 10,000). In this work, we propose Low-dimensional (lower than 500) Dense and Interpretable text embeddings with Relative representations (LDIR). The numerical values of its dimensions indicate semantic relatedness to different anchor texts through farthest point sampling, offering both semantic representation as well as a certain level of traceability and interpretability. We validate LDIR on multiple semantic textual similarity, retrieval, and clustering tasks. Extensive experimental results show that LDIR performs close to the black-box baseline models and outperforms the interpretable embeddings baselines with much fewer dimensions. Code is available at https://github.com/szu-tera/LDIR.
comment: ACL 2025 Findings
J1: Incentivizing Thinking in LLM-as-a-Judge via Reinforcement Learning
The progress of AI is bottlenecked by the quality of evaluation, and powerful LLM-as-a-Judge models have proved to be a core solution. Improved judgment ability is enabled by stronger chain-of-thought reasoning, motivating the need to find the best recipes for training such models to think. In this work we introduce J1, a reinforcement learning approach to training such models. Our method converts both verifiable and non-verifiable prompts to judgment tasks with verifiable rewards that incentivize thinking and mitigate judgment bias. In particular, our approach outperforms all other existing 8B or 70B models when trained at those sizes, including models distilled from DeepSeek-R1. J1 also outperforms o1-mini, and even R1 on some benchmarks, despite training a smaller model. We provide analysis and ablations comparing Pairwise-J1 vs Pointwise-J1 models, offline vs online training recipes, reward strategies, seed prompts, and variations in thought length and content. We find that our models make better judgments by learning to outline evaluation criteria, comparing against self-generated reference answers, and re-evaluating the correctness of model responses.
comment: 10 pages, 8 tables, 11 figures
StoryReasoning Dataset: Using Chain-of-Thought for Scene Understanding and Grounded Story Generation
Visual storytelling systems struggle to maintain character identity across frames and link actions to appropriate subjects, frequently leading to referential hallucinations. These issues can be addressed through grounding of characters, objects, and other entities on the visual elements. We propose StoryReasoning, a dataset containing 4,178 stories derived from 52,016 movie images, with both structured scene analyses and grounded stories. Each story maintains character and object consistency across frames while explicitly modeling multi-frame relationships through structured tabular representations. Our approach features cross-frame object re-identification using visual similarity and face recognition, chain-of-thought reasoning for explicit narrative modeling, and a grounding scheme that links textual elements to visual entities across multiple frames. We establish baseline performance by fine-tuning Qwen2.5-VL 7B, creating Qwen Storyteller, which performs end-to-end object detection, re-identification, and landmark detection while maintaining consistent object references throughout the story. Evaluation demonstrates a reduction from 4.06 to 3.56 (-12.3%) hallucinations on average per story when compared to a non-fine-tuned model.
comment: 31 pages, 14 figures
From Questions to Clinical Recommendations: Large Language Models Driving Evidence-Based Clinical Decision Making
Clinical evidence, derived from rigorous research and data analysis, provides healthcare professionals with reliable scientific foundations for informed decision-making. Integrating clinical evidence into real-time practice is challenging due to the enormous workload, complex professional processes, and time constraints. This highlights the need for tools that automate evidence synthesis to support more efficient and accurate decision making in clinical settings. This study introduces Quicker, an evidence-based clinical decision support system powered by large language models (LLMs), designed to automate evidence synthesis and generate clinical recommendations modeled after standard clinical guideline development processes. Quicker implements a fully automated chain that covers all phases, from questions to clinical recommendations, and further enables customized decision-making through integrated tools and interactive user interfaces. To evaluate Quicker's capabilities, we developed the Q2CRBench-3 benchmark dataset, based on clinical guideline development records for three different diseases. Experimental results highlighted Quicker's strong performance, with fine-grained question decomposition tailored to user preferences, retrieval sensitivities comparable to human experts, and literature screening performance approaching comprehensive inclusion of relevant studies. In addition, Quicker-assisted evidence assessment effectively supported human reviewers, while Quicker's recommendations were more comprehensive and logically coherent than those of clinicians. In system-level testing, collaboration between a single reviewer and Quicker reduced the time required for recommendation development to 20-40 minutes. In general, our findings affirm the potential of Quicker to help physicians make quicker and more reliable evidence-based clinical decisions.
The Evolving Landscape of Generative Large Language Models and Traditional Natural Language Processing in Medicine
Natural language processing (NLP) has been traditionally applied to medicine, and generative large language models (LLMs) have become prominent recently. However, the differences between them across different medical tasks remain underexplored. We analyzed 19,123 studies, finding that generative LLMs demonstrate advantages in open-ended tasks, while traditional NLP dominates in information extraction and analysis tasks. As these technologies advance, ethical use of them is essential to ensure their potential in medical applications.
Comparing LLM Text Annotation Skills: A Study on Human Rights Violations in Social Media Data
In the era of increasingly sophisticated natural language processing (NLP) systems, large language models (LLMs) have demonstrated remarkable potential for diverse applications, including tasks requiring nuanced textual understanding and contextual reasoning. This study investigates the capabilities of multiple state-of-the-art LLMs - GPT-3.5, GPT-4, LLAMA3, Mistral 7B, and Claude-2 - for zero-shot and few-shot annotation of a complex textual dataset comprising social media posts in Russian and Ukrainian. Specifically, the focus is on the binary classification task of identifying references to human rights violations within the dataset. To evaluate the effectiveness of these models, their annotations are compared against a gold standard set of human double-annotated labels across 1000 samples. The analysis includes assessing annotation performance under different prompting conditions, with prompts provided in both English and Russian. Additionally, the study explores the unique patterns of errors and disagreements exhibited by each model, offering insights into their strengths, limitations, and cross-linguistic adaptability. By juxtaposing LLM outputs with human annotations, this research contributes to understanding the reliability and applicability of LLMs for sensitive, domain-specific tasks in multilingual contexts. It also sheds light on how language models handle inherently subjective and context-dependent judgments, a critical consideration for their deployment in real-world scenarios.
On the Interplay of Human-AI Alignment,Fairness, and Performance Trade-offs in Medical Imaging
Deep neural networks excel in medical imaging but remain prone to biases, leading to fairness gaps across demographic groups. We provide the first systematic exploration of Human-AI alignment and fairness in this domain. Our results show that incorporating human insights consistently reduces fairness gaps and enhances out-of-domain generalization, though excessive alignment can introduce performance trade-offs, emphasizing the need for calibrated strategies. These findings highlight Human-AI alignment as a promising approach for developing fair, robust, and generalizable medical AI systems, striking a balance between expert guidance and automated efficiency. Our code is available at https://github.com/Roypic/Aligner.
ComplexFormer: Disruptively Advancing Transformer Inference Ability via Head-Specific Complex Vector Attention
Transformer models rely on self-attention to capture token dependencies but face challenges in effectively integrating positional information while allowing multi-head attention (MHA) flexibility. Prior methods often model semantic and positional differences disparately or apply uniform positional adjustments across heads, potentially limiting representational capacity. This paper introduces ComplexFormer, featuring Complex Multi-Head Attention-CMHA. CMHA empowers each head to independently model semantic and positional differences unified within the complex plane, representing interactions as rotations and scaling. ComplexFormer incorporates two key improvements: (1) a per-head Euler transformation, converting real-valued query/key projections into polar-form complex vectors for head-specific complex subspace operation; and (2) a per-head adaptive differential rotation mechanism, exp[i(Adapt(ASmn,i) + Delta(Pmn),i)], allowing each head to learn distinct strategies for integrating semantic angle differences (ASmn,i) with relative positional encodings (Delta(Pmn),i). Extensive experiments on language modeling, text generation, code generation, and mathematical reasoning show ComplexFormer achieves superior performance, significantly lower generation perplexity , and improved long-context coherence compared to strong baselines like RoPE-Transformers. ComplexFormer demonstrates strong parameter efficiency, offering a more expressive, adaptable attention mechanism.
RAIDEN-R1: Improving Role-awareness of LLMs via GRPO with Verifiable Reward
Role-playing conversational agents (RPCAs) face persistent challenges in maintaining role consistency. To address this, we propose RAIDEN-R1, a novel reinforcement learning framework that integrates Verifiable Role-Awareness Reward (VRAR). The method introduces both singular and multi-term mining strategies to generate quantifiable rewards by assessing role-specific keys. Additionally, we construct a high-quality, role-aware Chain-of-Thought dataset through multi-LLM collaboration, and implement experiments to enhance reasoning coherence. Experiments on the RAIDEN benchmark demonstrate RAIDEN-R1's superiority: our 14B-GRPO model achieves 88.04% and 88.65% accuracy on Script-Based Knowledge and Conversation Memory metrics, respectively, outperforming baseline models while maintaining robustness. Case analyses further reveal the model's enhanced ability to resolve conflicting contextual cues and sustain first-person narrative consistency. This work bridges the non-quantifiability gap in RPCA training and provides insights into role-aware reasoning patterns, advancing the development of RPCAs.
VQ-Logits: Compressing the Output Bottleneck of Large Language Models via Vector Quantized Logits
Large Language Models (LLMs) have achieved remarkable success but face significant computational and memory challenges, particularly due to their extensive output vocabularies. The final linear projection layer, mapping hidden states to vocabulary-sized logits, often constitutes a substantial portion of the model's parameters and computational cost during inference. Existing methods like adaptive softmax or hierarchical softmax introduce structural complexities. In this paper, we propose VQ-Logits, a novel approach that leverages Vector Quantization (VQ) to drastically reduce the parameter count and computational load of the LLM output layer. VQ-Logits replaces the large V * dmodel output embedding matrix with a small, shared codebook of K embedding vectors (K << V ). Each token in the vocabulary is mapped to one of these K codebook vectors. The LLM predicts logits over this compact codebook, which are then efficiently "scattered" to the full vocabulary space using the learned or preassigned mapping. We demonstrate through extensive experiments on standard language modeling benchmarks (e.g., WikiText-103, C4) that VQ-Logits can achieve up to 99% parameter reduction in the output layer and 6x speedup in logit computation, with only a marginal 4% increase in perplexity compared to full softmax baselines. We further provide detailed ablation studies on codebook size, initialization, and learning strategies, showcasing the robustness and effectiveness of our approach.
The CoT Encyclopedia: Analyzing, Predicting, and Controlling how a Reasoning Model will Think
Long chain-of-thought (CoT) is an essential ingredient in effective usage of modern large language models, but our understanding of the reasoning strategies underlying these capabilities remains limited. While some prior works have attempted to categorize CoTs using predefined strategy types, such approaches are constrained by human intuition and fail to capture the full diversity of model behaviors. In this work, we introduce the CoT Encyclopedia, a bottom-up framework for analyzing and steering model reasoning. Our method automatically extracts diverse reasoning criteria from model-generated CoTs, embeds them into a semantic space, clusters them into representative categories, and derives contrastive rubrics to interpret reasoning behavior. Human evaluations show that this framework produces more interpretable and comprehensive analyses than existing methods. Moreover, we demonstrate that this understanding enables performance gains: we can predict which strategy a model is likely to use and guide it toward more effective alternatives. Finally, we provide practical insights, such as that training data format (e.g., free-form vs. multiple-choice) has a far greater impact on reasoning behavior than data domain, underscoring the importance of format-aware model design.
comment: Work in progress
Mining Hidden Thoughts from Texts: Evaluating Continual Pretraining with Synthetic Data for LLM Reasoning
Large Language Models (LLMs) have demonstrated significant improvements in reasoning capabilities through supervised fine-tuning and reinforcement learning. However, when training reasoning models, these approaches are primarily applicable to specific domains such as mathematics and programming, which imposes fundamental constraints on the breadth and scalability of training data. In contrast, continual pretraining (CPT) offers the advantage of not requiring task-specific signals. Nevertheless, how to effectively synthesize training data for reasoning and how such data affect a wide range of domains remain largely unexplored. This study provides a detailed evaluation of Reasoning CPT, a form of CPT that uses synthetic data to reconstruct the hidden thought processes underlying texts, based on the premise that texts are the result of the author's thinking process. Specifically, we apply Reasoning CPT to Gemma2-9B using synthetic data with hidden thoughts derived from STEM and Law corpora, and compare it to standard CPT on the MMLU benchmark. Our analysis reveals that Reasoning CPT consistently improves performance across all evaluated domains. Notably, reasoning skills acquired in one domain transfer effectively to others; the performance gap with conventional methods widens as problem difficulty increases, with gains of up to 8 points on the most challenging problems. Furthermore, models trained with hidden thoughts learn to adjust the depth of their reasoning according to problem difficulty.
GE-Chat: A Graph Enhanced RAG Framework for Evidential Response Generation of LLMs IJCAI2025
Large Language Models are now key assistants in human decision-making processes. However, a common note always seems to follow: "LLMs can make mistakes. Be careful with important info." This points to the reality that not all outputs from LLMs are dependable, and users must evaluate them manually. The challenge deepens as hallucinated responses, often presented with seemingly plausible explanations, create complications and raise trust issues among users. To tackle such issue, this paper proposes GE-Chat, a knowledge Graph enhanced retrieval-augmented generation framework to provide Evidence-based response generation. Specifically, when the user uploads a material document, a knowledge graph will be created, which helps construct a retrieval-augmented agent, enhancing the agent's responses with additional knowledge beyond its training corpus. Then we leverage Chain-of-Thought (CoT) logic generation, n-hop sub-graph searching, and entailment-based sentence generation to realize accurate evidence retrieval. We demonstrate that our method improves the existing models' performance in terms of identifying the exact evidence in a free-form context, providing a reliable way to examine the resources of LLM's conclusion and help with the judgment of the trustworthiness.
comment: 5 pages, 4 figures, accepted to IJCAI2025 demo track
Why 1 + 1 < 1 in Visual Token Pruning: Beyond Naive Integration via Multi-Objective Balanced Covering
Existing visual token pruning methods target prompt alignment and visual preservation with static strategies, overlooking the varying relative importance of these objectives across tasks, which leads to inconsistent performance. To address this, we derive the first closed-form error bound for visual token pruning based on the Hausdorff distance, uniformly characterizing the contributions of both objectives. Moreover, leveraging $\epsilon$-covering theory, we reveal an intrinsic trade-off between these objectives and quantify their optimal attainment levels under a fixed budget. To practically handle this trade-off, we propose Multi-Objective Balanced Covering (MoB), which reformulates visual token pruning as a bi-objective covering problem. In this framework, the attainment trade-off reduces to budget allocation via greedy radius trading. MoB offers a provable performance bound and linear scalability with respect to the number of input visual tokens, enabling adaptation to challenging pruning scenarios. Extensive experiments show that MoB preserves 96.4% of performance for LLaVA-1.5-7B using only 11.1% of the original visual tokens and accelerates LLaVA-Next-7B by 1.3-1.5$\times$ with negligible performance loss. Additionally, evaluations on Qwen2-VL and Video-LLaVA confirm that MoB integrates seamlessly into advanced MLLMs and diverse vision-language tasks.
comment: 31 pages,9 figures,conference
Learning Virtual Machine Scheduling in Cloud Computing through Language Agents
In cloud services, virtual machine (VM) scheduling is a typical Online Dynamic Multidimensional Bin Packing (ODMBP) problem, characterized by large-scale complexity and fluctuating demands. Traditional optimization methods struggle to adapt to real-time changes, domain-expert-designed heuristic approaches suffer from rigid strategies, and existing learning-based methods often lack generalizability and interpretability. To address these limitations, this paper proposes a hierarchical language agent framework named MiCo, which provides a large language model (LLM)-driven heuristic design paradigm for solving ODMBP. Specifically, ODMBP is formulated as a Semi-Markov Decision Process with Options (SMDP-Option), enabling dynamic scheduling through a two-stage architecture, i.e., Option Miner and Option Composer. Option Miner utilizes LLMs to discover diverse and useful non-context-aware strategies by interacting with constructed environments. Option Composer employs LLMs to discover a composing strategy that integrates the non-context-aware strategies with the contextual ones. Extensive experiments on real-world enterprise datasets demonstrate that MiCo achieves a 96.9\% competitive ratio in large-scale scenarios involving more than 10,000 virtual machines. It maintains high performance even under nonstationary request flows and diverse configurations, thus validating its effectiveness in complex and large-scale cloud environments.
What Does Neuro Mean to Cardio? Investigating the Role of Clinical Specialty Data in Medical LLMs
In this paper, we introduce S-MedQA, an English medical question-answering (QA) dataset for benchmarking large language models in fine-grained clinical specialties. We use S-MedQA to check the applicability of a popular hypothesis related to knowledge injection in the knowledge-intense scenario of medical QA, and show that: 1) training on data from a speciality does not necessarily lead to best performance on that specialty and 2) regardless of the specialty fine-tuned on, token probabilities of clinically relevant terms for all specialties increase consistently. Thus, we believe improvement gains come mostly from domain shifting (e.g., general to medical) rather than knowledge injection and suggest rethinking the role of fine-tuning data in the medical domain. We release S-MedQA and all code needed to reproduce all our experiments to the research community.
From Text to Network: Constructing a Knowledge Graph of Taiwan-Based China Studies Using Generative AI
Taiwanese China Studies (CS) has developed into a rich, interdisciplinary research field shaped by the unique geopolitical position and long standing academic engagement with Mainland China. This study responds to the growing need to systematically revisit and reorganize decades of Taiwan based CS scholarship by proposing an AI assisted approach that transforms unstructured academic texts into structured, interactive knowledge representations. We apply generative AI (GAI) techniques and large language models (LLMs) to extract and standardize entity relation triples from 1,367 peer reviewed CS articles published between 1996 and 2019. These triples are then visualized through a lightweight D3.js based system, forming the foundation of a domain specific knowledge graph and vector database for the field. This infrastructure allows users to explore conceptual nodes and semantic relationships across the corpus, revealing previously uncharted intellectual trajectories, thematic clusters, and research gaps. By decomposing textual content into graph structured knowledge units, our system enables a paradigm shift from linear text consumption to network based knowledge navigation. In doing so, it enhances scholarly access to CS literature while offering a scalable, data driven alternative to traditional ontology construction. This work not only demonstrates how generative AI can augment area studies and digital humanities but also highlights its potential to support a reimagined scholarly infrastructure for regional knowledge systems.
comment: 4 pages, 4 figures
XRAG: Cross-lingual Retrieval-Augmented Generation
We propose XRAG, a novel benchmark designed to evaluate the generation abilities of LLMs in cross-lingual Retrieval-Augmented Generation (RAG) settings where the user language does not match the retrieval results. XRAG is constructed from recent news articles to ensure that its questions require external knowledge to be answered. It covers the real-world scenarios of monolingual and multilingual retrieval, and provides relevancy annotations for each retrieved document. Our novel dataset construction pipeline results in questions that require complex reasoning, as evidenced by the significant gap between human and LLM performance. Consequently, XRAG serves as a valuable benchmark for studying LLM reasoning abilities, even before considering the additional cross-lingual complexity. Experimental results on five LLMs uncover two previously unreported challenges in cross-lingual RAG: 1) in the monolingual retrieval setting, all evaluated models struggle with response language correctness; 2) in the multilingual retrieval setting, the main challenge lies in reasoning over retrieved information across languages rather than generation of non-English text.
Designing and Contextualising Probes for African Languages
Pretrained language models (PLMs) for African languages are continually improving, but the reasons behind these advances remain unclear. This paper presents the first systematic investigation into probing PLMs for linguistic knowledge about African languages. We train layer-wise probes for six typologically diverse African languages to analyse how linguistic features are distributed. We also design control tasks, a way to interpret probe performance, for the MasakhaPOS dataset. We find PLMs adapted for African languages to encode more linguistic information about target languages than massively multilingual PLMs. Our results reaffirm previous findings that token-level syntactic information concentrates in middle-to-last layers, while sentence-level semantic information is distributed across all layers. Through control tasks and probing baselines, we confirm that performance reflects the internal knowledge of PLMs rather than probe memorisation. Our study applies established interpretability techniques to African-language PLMs. In doing so, we highlight the internal mechanisms underlying the success of strategies like active learning and multilingual adaptation.
Dark LLMs: The Growing Threat of Unaligned AI Models
Large Language Models (LLMs) rapidly reshape modern life, advancing fields from healthcare to education and beyond. However, alongside their remarkable capabilities lies a significant threat: the susceptibility of these models to jailbreaking. The fundamental vulnerability of LLMs to jailbreak attacks stems from the very data they learn from. As long as this training data includes unfiltered, problematic, or 'dark' content, the models can inherently learn undesirable patterns or weaknesses that allow users to circumvent their intended safety controls. Our research identifies the growing threat posed by dark LLMs models deliberately designed without ethical guardrails or modified through jailbreak techniques. In our research, we uncovered a universal jailbreak attack that effectively compromises multiple state-of-the-art models, enabling them to answer almost any question and produce harmful outputs upon request. The main idea of our attack was published online over seven months ago. However, many of the tested LLMs were still vulnerable to this attack. Despite our responsible disclosure efforts, responses from major LLM providers were often inadequate, highlighting a concerning gap in industry practices regarding AI safety. As model training becomes more accessible and cheaper, and as open-source LLMs proliferate, the risk of widespread misuse escalates. Without decisive intervention, LLMs may continue democratizing access to dangerous knowledge, posing greater risks than anticipated.
CAFE: Retrieval Head-based Coarse-to-Fine Information Seeking to Enhance Multi-Document QA Capability
Advancements in Large Language Models (LLMs) have extended their input context length, yet they still struggle with retrieval and reasoning in long-context inputs. Existing methods propose to utilize the prompt strategy and retrieval head to alleviate this limitation. However, they still face challenges in balancing retrieval precision and recall, impacting their efficacy in answering questions. To address this, we introduce $\textbf{CAFE}$, a two-stage coarse-to-fine method to enhance multi-document question-answering capacities. By gradually eliminating the negative impacts of background and distracting documents, CAFE makes the responses more reliant on the evidence documents. Initially, a coarse-grained filtering method leverages retrieval heads to identify and rank relevant documents. Then, a fine-grained steering method guides attention to the most relevant content. Experiments across benchmarks show CAFE outperforms baselines, achieving up to 22.1% and 13.7% SubEM improvement over SFT and RAG methods on the Mistral model, respectively.
DIF: A Framework for Benchmarking and Verifying Implicit Bias in LLMs
As Large Language Models (LLMs) have risen in prominence over the past few years, there has been concern over the potential biases in LLMs inherited from the training data. Previous studies have examined how LLMs exhibit implicit bias, such as when response generation changes when different social contexts are introduced. We argue that this implicit bias is not only an ethical, but also a technical issue, as it reveals an inability of LLMs to accommodate extraneous information. However, unlike other measures of LLM intelligence, there are no standard methods to benchmark this specific subset of LLM bias. To bridge this gap, we developed a method for calculating an easily interpretable benchmark, DIF (Demographic Implicit Fairness), by evaluating preexisting LLM logic and math problem datasets with sociodemographic personas. We demonstrate that this method can statistically validate the presence of implicit bias in LLM behavior and find an inverse trend between question answering accuracy and implicit bias, supporting our argument.
comment: 7 pages, 1 figure
Advanced Crash Causation Analysis for Freeway Safety: A Large Language Model Approach to Identifying Key Contributing Factors
Understanding the factors contributing to traffic crashes and developing strategies to mitigate their severity is essential. Traditional statistical methods and machine learning models often struggle to capture the complex interactions between various factors and the unique characteristics of each crash. This research leverages large language model (LLM) to analyze freeway crash data and provide crash causation analysis accordingly. By compiling 226 traffic safety studies related to freeway crashes, a training dataset encompassing environmental, driver, traffic, and geometric design factors was created. The Llama3 8B model was fine-tuned using QLoRA to enhance its understanding of freeway crashes and their contributing factors, as covered in these studies. The fine-tuned Llama3 8B model was then used to identify crash causation without pre-labeled data through zero-shot classification, providing comprehensive explanations to ensure that the identified causes were reasonable and aligned with existing research. Results demonstrate that LLMs effectively identify primary crash causes such as alcohol-impaired driving, speeding, aggressive driving, and driver inattention. Incorporating event data, such as road maintenance, offers more profound insights. The model's practical applicability and potential to improve traffic safety measures were validated by a high level of agreement among researchers in the field of traffic safety, as reflected in questionnaire results with 88.89%. This research highlights the complex nature of traffic crashes and how LLMs can be used for comprehensive analysis of crash causation and other contributing factors. Moreover, it provides valuable insights and potential countermeasures to aid planners and policymakers in developing more effective and efficient traffic safety practices.
Personalizing Large Language Models using Retrieval Augmented Generation and Knowledge Graph WWW
The advent of large language models (LLMs) has allowed numerous applications, including the generation of queried responses, to be leveraged in chatbots and other conversational assistants. Being trained on a plethora of data, LLMs often undergo high levels of over-fitting, resulting in the generation of extra and incorrect data, thus causing hallucinations in output generation. One of the root causes of such problems is the lack of timely, factual, and personalized information fed to the LLM. In this paper, we propose an approach to address these problems by introducing retrieval augmented generation (RAG) using knowledge graphs (KGs) to assist the LLM in personalized response generation tailored to the users. KGs have the advantage of storing continuously updated factual information in a structured way. While our KGs can be used for a variety of frequently updated personal data, such as calendar, contact, and location data, we focus on calendar data in this paper. Our experimental results show that our approach works significantly better in understanding personal information and generating accurate responses compared to the baseline LLMs using personal data as text inputs, with a moderate reduction in response time.
comment: To appear in the Companion Proceedings of the ACM Web Conference 2025 (WWW Companion '25)
Rethinking Prompt Optimizers: From Prompt Merits to Optimization
Prompt optimization (PO) offers a practical alternative to fine-tuning large language models (LLMs), enabling performance improvements without altering model weights. Existing methods typically rely on advanced, large-scale LLMs like GPT-4 to generate optimized prompts. However, due to limited downward compatibility, verbose, instruction-heavy prompts from advanced LLMs can overwhelm lightweight inference models and degrade response quality. In this work, we rethink prompt optimization through the lens of interpretable design. We first identify a set of model-agnostic prompt quality merits and empirically validate their effectiveness in enhancing prompt and response quality. We then introduce MePO, a merit-guided, lightweight, and locally deployable prompt optimizer trained on our preference dataset built from merit-aligned prompts generated by a lightweight LLM. Unlike prior work, MePO avoids online optimization reliance, reduces cost and privacy concerns, and, by learning clear, interpretable merits, generalizes effectively to both large-scale and lightweight inference models. Experiments demonstrate that MePO achieves better results across diverse tasks and model types, offering a scalable and robust solution for real-world deployment. Our model and dataset are available at: https://github.com/MidiyaZhu/MePO
comment: 20 pages, 14 figures
From Trade-off to Synergy: A Versatile Symbiotic Watermarking Framework for Large Language Models
The rise of Large Language Models (LLMs) has heightened concerns about the misuse of AI-generated text, making watermarking a promising solution. Mainstream watermarking schemes for LLMs fall into two categories: logits-based and sampling-based. However, current schemes entail trade-offs among robustness, text quality, and security. To mitigate this, we integrate logits-based and sampling-based schemes, harnessing their respective strengths to achieve synergy. In this paper, we propose a versatile symbiotic watermarking framework with three strategies: serial, parallel, and hybrid. The hybrid framework adaptively embeds watermarks using token entropy and semantic entropy, optimizing the balance between detectability, robustness, text quality, and security. Furthermore, we validate our approach through comprehensive experiments on various datasets and models. Experimental results indicate that our method outperforms existing baselines and achieves state-of-the-art (SOTA) performance. We believe this framework provides novel insights into diverse watermarking paradigms. Our code is available at \href{https://github.com/redwyd/SymMark}{https://github.com/redwyd/SymMark}.
PIG: Privacy Jailbreak Attack on LLMs via Gradient-based Iterative In-Context Optimization
Large Language Models (LLMs) excel in various domains but pose inherent privacy risks. Existing methods to evaluate privacy leakage in LLMs often use memorized prefixes or simple instructions to extract data, both of which well-alignment models can easily block. Meanwhile, Jailbreak attacks bypass LLM safety mechanisms to generate harmful content, but their role in privacy scenarios remains underexplored. In this paper, we examine the effectiveness of jailbreak attacks in extracting sensitive information, bridging privacy leakage and jailbreak attacks in LLMs. Moreover, we propose PIG, a novel framework targeting Personally Identifiable Information (PII) and addressing the limitations of current jailbreak methods. Specifically, PIG identifies PII entities and their types in privacy queries, uses in-context learning to build a privacy context, and iteratively updates it with three gradient-based strategies to elicit target PII. We evaluate PIG and existing jailbreak methods using two privacy-related datasets. Experiments on four white-box and two black-box LLMs show that PIG outperforms baseline methods and achieves state-of-the-art (SoTA) results. The results underscore significant privacy risks in LLMs, emphasizing the need for stronger safeguards. Our code is availble at \href{https://github.com/redwyd/PrivacyJailbreak}{https://github.com/redwyd/PrivacyJailbreak}.
Crossing Borders Without Crossing Boundaries: How Sociolinguistic Awareness Can Optimize User Engagement with Localized Spanish AI Models Across Hispanophone Countries
Large language models are, by definition, based on language. In an effort to underscore the critical need for regional localized models, this paper examines primary differences between variants of written Spanish across Latin America and Spain, with an in-depth sociocultural and linguistic contextualization therein. We argue that these differences effectively constitute significant gaps in the quotidian use of Spanish among dialectal groups by creating sociolinguistic dissonances, to the extent that locale-sensitive AI models would play a pivotal role in bridging these divides. In doing so, this approach informs better and more efficient localization strategies that also serve to more adequately meet inclusivity goals, while securing sustainable active daily user growth in a major low-risk investment geographic area. Therefore, implementing at least the proposed five sub variants of Spanish addresses two lines of action: to foment user trust and reliance on AI language models while also demonstrating a level of cultural, historical, and sociolinguistic awareness that reflects positively on any internationalization strategy.
Comparing Exploration-Exploitation Strategies of LLMs and Humans: Insights from Standard Multi-armed Bandit Tasks
Large language models (LLMs) are increasingly used to simulate or automate human behavior in complex sequential decision-making tasks. A natural question is then whether LLMs exhibit similar decision-making behavior to humans, and can achieve comparable (or superior) performance. In this work, we focus on the exploration-exploitation (E&E) tradeoff, a fundamental aspect of dynamic decision-making under uncertainty. We employ canonical multi-armed bandit (MAB) tasks introduced in the cognitive science and psychiatry literature to conduct a comparative study of the E&E strategies of LLMs, humans, and MAB algorithms. We use interpretable choice models to capture the E&E strategies of the agents and investigate how explicit reasoning, through both prompting strategies and reasoning-enhanced models, shapes LLM decision-making. We find that reasoning shifts LLMs toward more human-like behavior, characterized by a mix of random and directed exploration. In simple stationary tasks, reasoning-enabled LLMs exhibit similar levels of random and directed exploration compared to humans. However, in more complex, non-stationary environments, LLMs struggle to match human adaptability, particularly in effective directed exploration, despite achieving similar regret in certain scenarios. Our findings highlight both the promise and limits of LLMs as simulators of human behavior and tools for automated decision-making and point to potential areas of improvements.
Large Language Models for Cancer Communication: Evaluating Linguistic Quality, Safety, and Accessibility in Generative AI
Effective communication about breast and cervical cancers remains a persistent health challenge, with significant gaps in public understanding of cancer prevention, screening, and treatment, potentially leading to delayed diagnoses and inadequate treatments. This study evaluates the capabilities and limitations of Large Language Models (LLMs) in generating accurate, safe, and accessible cancer-related information to support patient understanding. We evaluated five general-purpose and three medical LLMs using a mixed-methods evaluation framework across linguistic quality, safety and trustworthiness, and communication accessibility and affectiveness. Our approach utilized quantitative metrics, qualitative expert ratings, and statistical analysis using Welch's ANOVA, Games-Howell, and Hedges' g. Our results show that general-purpose LLMs produced outputs of higher linguistic quality and affectiveness, while medical LLMs demonstrate greater communication accessibility. However, medical LLMs tend to exhibit higher levels of potential harm, toxicity, and bias, reducing their performance in safety and trustworthiness. Our findings indicate a duality between domain-specific knowledge and safety in health communications. The results highlight the need for intentional model design with targeted improvements, particularly in mitigating harm and bias, and improving safety and affectiveness. This study provides a comprehensive evaluation of LLMs for cancer communication, offering critical insights for improving AI-generated health content and informing future development of accurate, safe, and accessible digital health tools.
SemEval-2025 Task 7: Multilingual and Crosslingual Fact-Checked Claim Retrieval
The rapid spread of online disinformation presents a global challenge, and machine learning has been widely explored as a potential solution. However, multilingual settings and low-resource languages are often neglected in this field. To address this gap, we conducted a shared task on multilingual claim retrieval at SemEval 2025, aimed at identifying fact-checked claims that match newly encountered claims expressed in social media posts across different languages. The task includes two subtracks: (1) a monolingual track, where social posts and claims are in the same language, and (2) a crosslingual track, where social posts and claims might be in different languages. A total of 179 participants registered for the task contributing to 52 test submissions. 23 out of 31 teams have submitted their system papers. In this paper, we report the best-performing systems as well as the most common and the most effective approaches across both subtracks. This shared task, along with its dataset and participating systems, provides valuable insights into multilingual claim retrieval and automated fact-checking, supporting future research in this field.
Model Performance-Guided Evaluation Data Selection for Effective Prompt Optimization
Optimizing Large Language Model (LLM) performance requires well-crafted prompts, but manual prompt engineering is labor-intensive and often ineffective. Automated prompt optimization techniques address this challenge but the majority of them rely on randomly selected evaluation subsets, which fail to represent the full dataset, leading to unreliable evaluations and suboptimal prompts. Existing coreset selection methods, designed for LLM benchmarking, are unsuitable for prompt optimization due to challenges in clustering similar samples, high data collection costs, and the unavailability of performance data for new or private datasets. To overcome these issues, we propose IPOMP, an Iterative evaluation data selection for effective Prompt Optimization using real-time Model Performance. IPOMP is a two-stage approach that selects representative and diverse samples using semantic clustering and boundary analysis, followed by iterative refinement with real-time model performance data to replace redundant samples. Evaluations on the BIG-bench dataset show that IPOMP improves effectiveness by 1.6% to 5.3% and stability by at least 57% compared with SOTA baselines, with minimal computational overhead below 1%. Furthermore, the results demonstrate that our real-time performance-guided refinement approach can be universally applied to enhance existing coreset selection methods.
Tracr-Injection: Distilling Algorithms into Pre-trained Language Models ACL
Motivated by the surge of large language models, there has been a push to formally characterize the symbolic abilities intrinsic to the transformer architecture. A programming language, called RASP, has been proposed, which can be directly compiled into transformer weights to implement these algorithms. However, the tasks that can be implemented in RASP are often uncommon to learn from natural unsupervised data, showing a mismatch between theoretical capabilities of the transformer architecture, and the practical learnability of these capabilities from unsupervised data. We propose tracr-injection, a method that allows us to distill algorithms written in RASP directly into a pre-trained language model. We showcase our method by injecting 3 different algorithms into a language model. We show how our method creates an interpretable subspace within the model's residual stream, which can be decoded into the variables present in the code of the RASP algorithm. Additionally, we found that the proposed method can improve out of distribution performance compared to our baseline, indicating that indeed a more symbolic mechanism is taking place in the inner workings of the model. We release the code used to run our experiments.
comment: ACL Findings 2025
AI-enhanced semantic feature norms for 786 concepts
Semantic feature norms have been foundational in the study of human conceptual knowledge, yet traditional methods face trade-offs between concept/feature coverage and verifiability of quality due to the labor-intensive nature of norming studies. Here, we introduce a novel approach that augments a dataset of human-generated feature norms with responses from large language models (LLMs) while verifying the quality of norms against reliable human judgments. We find that our AI-enhanced feature norm dataset, NOVA: Norms Optimized Via AI, shows much higher feature density and overlap among concepts while outperforming a comparable human-only norm dataset and word-embedding models in predicting people's semantic similarity judgments. Taken together, we demonstrate that human conceptual knowledge is richer than captured in previous norm datasets and show that, with proper validation, LLMs can serve as powerful tools for cognitive science research.
comment: 8 pages, 5 figures
A Modular Approach for Clinical SLMs Driven by Synthetic Data with Pre-Instruction Tuning, Model Merging, and Clinical-Tasks Alignment
High computation costs and latency of large language models such as GPT-4 have limited their deployment in clinical settings. Small language models (SLMs) offer a cost-effective alternative, but their limited capacity requires biomedical domain adaptation, which remains challenging. An additional bottleneck is the unavailability and high sensitivity of clinical data. To address these challenges, we propose a novel framework for adapting SLMs into high-performing clinical models. We introduce the MediPhi collection of 3.8B-parameter SLMs developed with our novel framework: pre-instruction tuning of experts on relevant medical and clinical corpora (PMC, Medical Guideline, MedWiki, etc.), model merging, and clinical-tasks alignment. To cover most clinical tasks, we extended the CLUE benchmark to CLUE+, doubling its size. Our expert models deliver relative improvements on this benchmark over the base model without any task-specific fine-tuning: 64.3% on medical entities, 49.5% on radiology reports, and 44% on ICD-10 coding (outperforming GPT-4-0125 by 14%). We unify the expert models into MediPhi via model merging, preserving gains across benchmarks. Furthermore, we built the MediFlow collection, a synthetic dataset of 2.5 million high-quality instructions on 14 medical NLP tasks, 98 fine-grained document types, and JSON format support. Alignment of MediPhi using supervised fine-tuning and direct preference optimization achieves further gains of 18.9% on average.
GeoGrid-Bench: Can Foundation Models Understand Multimodal Gridded Geo-Spatial Data?
We present GeoGrid-Bench, a benchmark designed to evaluate the ability of foundation models to understand geo-spatial data in the grid structure. Geo-spatial datasets pose distinct challenges due to their dense numerical values, strong spatial and temporal dependencies, and unique multimodal representations including tabular data, heatmaps, and geographic visualizations. To assess how foundation models can support scientific research in this domain, GeoGrid-Bench features large-scale, real-world data covering 16 climate variables across 150 locations and extended time frames. The benchmark includes approximately 3,200 question-answer pairs, systematically generated from 8 domain expert-curated templates to reflect practical tasks encountered by human scientists. These range from basic queries at a single location and time to complex spatiotemporal comparisons across regions and periods. Our evaluation reveals that vision-language models perform best overall, and we provide a fine-grained analysis of the strengths and limitations of different foundation models in different geo-spatial tasks. This benchmark offers clearer insights into how foundation models can be effectively applied to geo-spatial data analysis and used to support scientific research.
Artificial Intelligence Bias on English Language Learners in Automatic Scoring
This study investigated potential scoring biases and disparities toward English Language Learners (ELLs) when using automatic scoring systems for middle school students' written responses to science assessments. We specifically focus on examining how unbalanced training data with ELLs contributes to scoring bias and disparities. We fine-tuned BERT with four datasets: responses from (1) ELLs, (2) non-ELLs, (3) a mixed dataset reflecting the real-world proportion of ELLs and non-ELLs (unbalanced), and (4) a balanced mixed dataset with equal representation of both groups. The study analyzed 21 assessment items: 10 items with about 30,000 ELL responses, five items with about 1,000 ELL responses, and six items with about 200 ELL responses. Scoring accuracy (Acc) was calculated and compared to identify bias using Friedman tests. We measured the Mean Score Gaps (MSGs) between ELLs and non-ELLs and then calculated the differences in MSGs generated through both the human and AI models to identify the scoring disparities. We found that no AI bias and distorted disparities between ELLs and non-ELLs were found when the training dataset was large enough (ELL = 30,000 and ELL = 1,000), but concerns could exist if the sample size is limited (ELL = 200).
Construction and Application of Materials Knowledge Graph in Multidisciplinary Materials Science via Large Language Model NeurIPS 2024
Knowledge in materials science is widely dispersed across extensive scientific literature, posing significant challenges to the efficient discovery and integration of new materials. Traditional methods, often reliant on costly and time-consuming experimental approaches, further complicate rapid innovation. Addressing these challenges, the integration of artificial intelligence with materials science has opened avenues for accelerating the discovery process, though it also demands precise annotation, data extraction, and traceability of information. To tackle these issues, this article introduces the Materials Knowledge Graph (MKG), which utilizes advanced natural language processing techniques integrated with large language models to extract and systematically organize a decade's worth of high-quality research into structured triples, contains 162,605 nodes and 731,772 edges. MKG categorizes information into comprehensive labels such as Name, Formula, and Application, structured around a meticulously designed ontology, thus enhancing data usability and integration. By implementing network-based algorithms, MKG not only facilitates efficient link prediction but also significantly reduces reliance on traditional experimental methods. This structured approach not only streamlines materials research but also lays the groundwork for more sophisticated science knowledge graphs.
comment: Accepted by 38th Conference on Neural Information Processing Systems (NeurIPS 2024)
FAMMA: A Benchmark for Financial Domain Multilingual Multimodal Question Answering
In this paper, we introduce FAMMA, an open-source benchmark for \underline{f}in\underline{a}ncial \underline{m}ultilingual \underline{m}ultimodal question \underline{a}nswering (QA). Our benchmark aims to evaluate the abilities of large language models (LLMs) in answering complex reasoning questions that require advanced financial knowledge. The benchmark has two versions: FAMMA-Basic consists of 1,945 questions extracted from university textbooks and exams, along with human-annotated answers and rationales; FAMMA-LivePro consists of 103 novel questions created by human domain experts, with answers and rationales held out from the public for a contamination-free evaluation. These questions cover advanced knowledge of 8 major subfields in finance (e.g., corporate finance, derivatives, and portfolio management). Some are in Chinese or French, while a majority of them are in English. Each question has some non-text data such as charts, diagrams, or tables. Our experiments reveal that FAMMA poses a significant challenge on LLMs, including reasoning models such as GPT-o1 and DeepSeek-R1. Additionally, we curated 1,270 reasoning trajectories of DeepSeek-R1 on the FAMMA-Basic data, and fine-tuned a series of open-source Qwen models using this reasoning data. We found that training a model on these reasoning trajectories can significantly improve its performance on FAMMA-LivePro. We released our leaderboard, data, code, and trained models at https://famma-bench.github.io/famma/.
Behind Maya: Building a Multilingual Vision Language Model CVPR 2025
In recent times, we have seen a rapid development of large Vision-Language Models (VLMs). They have shown impressive results on academic benchmarks, primarily in widely spoken languages but lack performance on low-resource languages and varied cultural contexts. To address these limitations, we introduce Maya, an open-source Multilingual VLM. Our contributions are: 1) a multilingual image-text pretraining dataset in eight languages, based on the LLaVA pretraining dataset; and 2) a multilingual image-text model supporting these languages, enhancing cultural and linguistic comprehension in vision-language tasks. Code available at https://github.com/nahidalam/maya.
comment: Accepted at VLMs4ALL CVPR 2025 Workshop; corrected workshop name spelling
How Does Knowledge Selection Help Retrieval Augmented Generation?
Retrieval-augmented generation (RAG) is a powerful method for enhancing natural language generation by integrating external knowledge into a model's output. While prior work has demonstrated the importance of improving knowledge retrieval for boosting generation quality, the role of knowledge selection remains less clear. This paper empirically analyzes how knowledge selection influences downstream generation performance in RAG systems. By simulating different retrieval and selection conditions through a controlled mixture of gold and distractor knowledge, we assess the impact of these factors on generation outcomes. Our findings indicate that the downstream generator model's capability, as well as the complexity of the task and dataset, significantly influence the impact of knowledge selection on the overall RAG system performance. In typical scenarios, improving the knowledge recall score is key to enhancing generation outcomes, with the knowledge selector providing limited benefit when a strong generator model is used on clear, well-defined tasks. For weaker generator models or more ambiguous tasks and datasets, the knowledge F1 score becomes a critical factor, and the knowledge selector plays a more prominent role in improving overall performance.
ARR: Question Answering with Large Language Models via Analyzing, Retrieving, and Reasoning
Large language models (LLMs) have demonstrated impressive capabilities on complex evaluation benchmarks, many of which are formulated as question-answering (QA) tasks. Enhancing the performance of LLMs in QA contexts is becoming increasingly vital for advancing their development and applicability. This paper introduces ARR, an intuitive, effective, and general QA solving method that explicitly incorporates three key steps: analyzing the intent of the question, retrieving relevant information, and reasoning step by step. Notably, this paper is the first to introduce intent analysis in QA, which plays a vital role in ARR. Comprehensive evaluations across 10 diverse QA tasks demonstrate that ARR consistently outperforms the baseline methods. Ablation and case studies further validate the positive contributions of each ARR component. Furthermore, experiments involving variations in prompt design indicate that ARR maintains its effectiveness regardless of the specific prompt formulation. Additionally, extensive evaluations across various model sizes, LLM series, and generation settings solidify the effectiveness, robustness, and generalizability of ARR.
comment: 21 pages. Code: https://github.com/YuweiYin/ARR
PyramidKV: Dynamic KV Cache Compression based on Pyramidal Information Funneling
In this study, we investigate whether attention-based information flow inside large language models (LLMs) is aggregated through noticeable patterns for long context processing. Our observations reveal that LLMs aggregate information through Pyramidal Information Funneling where attention is scattering widely in lower layers, progressively consolidating within specific contexts, and ultimately focusing on critical tokens (a.k.a massive activation or attention sink) in higher layers. Motivated by these insights, we developed PyramidKV, a novel and effective KV cache compression method. This approach dynamically adjusts the KV cache size across different layers, allocating more cache in lower layers and less in higher ones, diverging from traditional methods that maintain a uniform KV cache size. Our experimental evaluations, utilizing the LongBench benchmark, show that PyramidKV matches the performance of models with a full KV cache while retaining only 12% of the KV cache, thus significantly reducing memory usage. In scenarios emphasizing memory efficiency, where only 0.7% of the KV cache is maintained, PyramidKV surpasses other KV cache compression techniques, achieving up to a 20.5 absolute accuracy improvement on TREC dataset. In the Needle-in-a-Haystack experiment, PyramidKV outperforms competing methods in maintaining long-context comprehension in LLMs; notably, retaining just 128 KV cache entries enables the LLAMA-3-70B model to achieve 100.0 Acc. performance.
Benchmarking Generative AI for Scoring Medical Student Interviews in Objective Structured Clinical Examinations (OSCEs)
Objective Structured Clinical Examinations (OSCEs) are widely used to assess medical students' communication skills, but scoring interview-based assessments is time-consuming and potentially subject to human bias. This study explored the potential of large language models (LLMs) to automate OSCE evaluations using the Master Interview Rating Scale (MIRS). We compared the performance of four state-of-the-art LLMs (GPT-4o, Claude 3.5, Llama 3.1, and Gemini 1.5 Pro) in evaluating OSCE transcripts across all 28 items of the MIRS under the conditions of zero-shot, chain-of-thought (CoT), few-shot, and multi-step prompting. The models were benchmarked against a dataset of 10 OSCE cases with 174 expert consensus scores available. Model performance was measured using three accuracy metrics (exact, off-by-one, thresholded). Averaging across all MIRS items and OSCE cases, LLMs performed with low exact accuracy (0.27 to 0.44), and moderate to high off-by-one accuracy (0.67 to 0.87) and thresholded accuracy (0.75 to 0.88). A zero temperature parameter ensured high intra-rater reliability ({\alpha} = 0.98 for GPT-4o). CoT, few-shot, and multi-step techniques proved valuable when tailored to specific assessment items. The performance was consistent across MIRS items, independent of encounter phases and communication domains. We demonstrated the feasibility of AI-assisted OSCE evaluation and provided benchmarking of multiple LLMs across multiple prompt techniques. Our work provides a baseline performance assessment for LLMs that lays a foundation for future research into automated assessment of clinical communication skills.
comment: 12 pages + 3 pages of references, 4 figures
Disentangling Memory and Reasoning Ability in Large Language Models ACL 2025
Large Language Models (LLMs) have demonstrated strong performance in handling complex tasks requiring both extensive knowledge and reasoning abilities. However, the existing LLM inference pipeline operates as an opaque process without explicit separation between knowledge retrieval and reasoning steps, making the model's decision-making process unclear and disorganized. This ambiguity can lead to issues such as hallucinations and knowledge forgetting, which significantly impact the reliability of LLMs in high-stakes domains. In this paper, we propose a new inference paradigm that decomposes the complex inference process into two distinct and clear actions: (1) memory recall: which retrieves relevant knowledge, and (2) reasoning: which performs logical steps based on the recalled knowledge. To facilitate this decomposition, we introduce two special tokens memory and reason, guiding the model to distinguish between steps that require knowledge retrieval and those that involve reasoning. Our experiment results show that this decomposition not only improves model performance but also enhances the interpretability of the inference process, enabling users to identify sources of error and refine model responses effectively. The code is available at https://github.com/MingyuJ666/Disentangling-Memory-and-Reasoning.
comment: Accepted by ACL 2025
SceneGenAgent: Precise Industrial Scene Generation with Coding Agent
The modeling of industrial scenes is essential for simulations in industrial manufacturing. While large language models (LLMs) have shown significant progress in generating general 3D scenes from textual descriptions, generating industrial scenes with LLMs poses a unique challenge due to their demand for precise measurements and positioning, requiring complex planning over spatial arrangement. To address this challenge, we introduce SceneGenAgent, an LLM-based agent for generating industrial scenes through C# code. SceneGenAgent ensures precise layout planning through a structured and calculable format, layout verification, and iterative refinement to meet the quantitative requirements of industrial scenarios. Experiment results demonstrate that LLMs powered by SceneGenAgent exceed their original performance, reaching up to 81.0% success rate in real-world industrial scene generation tasks and effectively meeting most scene generation requirements. To further enhance accessibility, we construct SceneInstruct, a dataset designed for fine-tuning open-source LLMs to integrate into SceneGenAgent. Experiments show that fine-tuning open-source LLMs on SceneInstruct yields significant performance improvements, with Llama3.1-70B approaching the capabilities of GPT-4o. Our code and data are available at https://github.com/THUDM/SceneGenAgent .
Data-Driven Calibration of Prediction Sets in Large Vision-Language Models Based on Inductive Conformal Prediction ICIP
This study addresses the critical challenge of hallucination mitigation in Large Vision-Language Models (LVLMs) for Visual Question Answering (VQA) tasks through a Split Conformal Prediction (SCP) framework. While LVLMs excel in multi-modal reasoning, their outputs often exhibit hallucinated content with high confidence, posing risks in safety-critical applications. We propose a model-agnostic uncertainty quantification method that integrates dynamic threshold calibration and cross-modal consistency verification. By partitioning data into calibration and test sets, the framework computes nonconformity scores to construct prediction sets with statistical guarantees under user-defined risk levels ($\alpha$). Key innovations include: (1) rigorous control of \textbf{marginal coverage} to ensure empirical error rates remain strictly below $\alpha$; (2) dynamic adjustment of prediction set sizes inversely with $\alpha$, filtering low-confidence outputs; (3) elimination of prior distribution assumptions and retraining requirements. Evaluations on benchmarks (ScienceQA, MMMU) with eight LVLMs demonstrate that SCP enforces theoretical guarantees across all $\alpha$ values. The framework achieves stable performance across varying calibration-to-test split ratios, underscoring its robustness for real-world deployment in healthcare, autonomous systems, and other safety-sensitive domains. This work bridges the gap between theoretical reliability and practical applicability in multi-modal AI systems, offering a scalable solution for hallucination detection and uncertainty-aware decision-making.
comment: Accepted by ICIPCA 2025
Harnessing Multiple Large Language Models: A Survey on LLM Ensemble
LLM Ensemble -- which involves the comprehensive use of multiple large language models (LLMs), each aimed at handling user queries during downstream inference, to benefit from their individual strengths -- has gained substantial attention recently. The widespread availability of LLMs, coupled with their varying strengths and out-of-the-box usability, has profoundly advanced the field of LLM Ensemble. This paper presents the first systematic review of recent developments in LLM Ensemble. First, we introduce our taxonomy of LLM Ensemble and discuss several related research problems. Then, we provide a more in-depth classification of the methods under the broad categories of "ensemble-before-inference, ensemble-during-inference, ensemble-after-inference'', and review all relevant methods. Finally, we introduce related benchmarks and applications, summarize existing studies, and suggest several future research directions. A curated list of papers on LLM Ensemble is available at https://github.com/junchenzhi/Awesome-LLM-Ensemble.
comment: 9 pages, 2 figures, codebase: https://github.com/junchenzhi/Awesome-LLM-Ensemble
Tokenization Matters! Degrading Large Language Models through Challenging Their Tokenization
Large Language Models (LLMs) have shown remarkable capabilities in language understanding and generation. Nonetheless, it was also witnessed that LLMs tend to produce inaccurate responses to specific queries. This deficiency can be traced to the tokenization step LLMs must undergo, which is an inevitable limitation inherent to all LLMs. In fact, incorrect tokenization is the critical point that hinders LLMs in understanding the input precisely, thus leading to unsatisfactory output. This defect is more obvious in Chinese scenarios. To demonstrate this flaw of LLMs, we construct an adversarial dataset, named as $\textbf{ADT (Adversarial Dataset for Tokenizer)}$, which draws upon the vocabularies of various open-source LLMs to challenge LLMs' tokenization. ADT consists of two subsets: the manually constructed ADT-Human and the automatically generated ADT-Auto. Our empirical results reveal that our ADT is highly effective on challenging the tokenization of leading LLMs, including GPT-4o, Llama-3, Deepseek-R1 and so on, thus degrading these LLMs' capabilities. Moreover, our method of automatic data generation has been proven efficient and robust, which can be applied to any open-source LLMs. In this paper, we substantially investigate LLMs' vulnerability in terms of challenging their token segmentation, which will shed light on the subsequent research of improving LLMs' capabilities through optimizing their tokenization process and algorithms.
Healthy LLMs? Benchmarking LLM Knowledge of UK Government Public Health Information
As Large Language Models (LLMs) become widely accessible, a detailed understanding of their knowledge within specific domains becomes necessary for successful real world use. This is particularly critical in public health, where failure to retrieve relevant, accurate, and current information could significantly impact UK residents. However, currently little is known about LLM knowledge of UK Government public health information. To address this issue, this paper introduces a new benchmark, PubHealthBench, with over 8000 questions for evaluating LLMs' Multiple Choice Question Answering (MCQA) and free form responses to public health queries. To create PubHealthBench we extract free text from 687 current UK government guidance documents and implement an automated pipeline for generating MCQA samples. Assessing 24 LLMs on PubHealthBench we find the latest private LLMs (GPT-4.5, GPT-4.1 and o1) have a high degree of knowledge, achieving >90% accuracy in the MCQA setup, and outperform humans with cursory search engine use. However, in the free form setup we see lower performance with no model scoring >75%. Importantly we find in both setups LLMs have higher accuracy on guidance intended for the general public. Therefore, there are promising signs that state of the art (SOTA) LLMs are an increasingly accurate source of public health information, but additional safeguards or tools may still be needed when providing free form responses on public health topics.
comment: 24 pages, 10 pages main text
Not All Adapters Matter: Selective Adapter Freezing for Memory-Efficient Fine-Tuning of Language Models
Transformer-based large-scale pre-trained models achieve great success. Fine-tuning is the standard practice for leveraging these models in downstream tasks. Among the fine-tuning methods, adapter-tuning provides a parameter-efficient fine-tuning by introducing lightweight trainable modules while keeping most pre-trained parameters frozen. However, existing adapter-tuning methods still impose substantial resource usage. Through our investigation, we show that each adapter unequally contributes to both task performance and resource usage. Motivated by this insight, we propose Selective Adapter FrEezing (SAFE), which gradually freezes less important adapters early to reduce unnecessary resource usage while maintaining performance. In our experiments, SAFE reduces memory usage, computation amount, and training time by 42.85\%, 34.59\%, and 11.82\%, respectively, while achieving comparable or better task performance compared to the baseline. We also demonstrate that SAFE induces regularization effect, thereby smoothing the loss landscape, which enables the model to generalize better by avoiding sharp minima.
comment: URL: https://aclanthology.org/2025.naacl-long.480/ Volume: Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers) Year: 2025 Address: Albuquerque, New Mexico
KwaiChat: A Large-Scale Video-Driven Multilingual Mixed-Type Dialogue Corpus
Video-based dialogue systems, such as education assistants, have compelling application value, thereby garnering growing interest. However, the current video-based dialogue systems are limited by their reliance on a single dialogue type, which hinders their versatility in practical applications across a range of scenarios, including question-answering, emotional dialog, etc. In this paper, we identify this challenge as how to generate video-driven multilingual mixed-type dialogues. To mitigate this challenge, we propose a novel task and create a human-to-human video-driven multilingual mixed-type dialogue corpus, termed KwaiChat, containing a total of 93,209 videos and 246,080 dialogues, across 4 dialogue types, 30 domains, 4 languages, and 13 topics. Additionally, we establish baseline models on KwaiChat. An extensive analysis of 7 distinct LLMs on KwaiChat reveals that GPT-4o achieves the best performance but still cannot perform well in this situation even with the help of in-context learning and fine-tuning, which indicates that the task is not trivial and needs further research.
Pose Priors from Language Models CVPR 2025
Language is often used to describe physical interaction, yet most 3D human pose estimation methods overlook this rich source of information. We bridge this gap by leveraging large multimodal models (LMMs) as priors for reconstructing contact poses, offering a scalable alternative to traditional methods that rely on human annotations or motion capture data. Our approach extracts contact-relevant descriptors from an LMM and translates them into tractable losses to constrain 3D human pose optimization. Despite its simplicity, our method produces compelling reconstructions for both two-person interactions and self-contact scenarios, accurately capturing the semantics of physical and social interactions. Our results demonstrate that LMMs can serve as powerful tools for contact prediction and pose estimation, offering an alternative to costly manual human annotations or motion capture data. Our code is publicly available at https://prosepose.github.io.
comment: CVPR 2025
Conversational Query Reformulation with the Guidance of Retrieved Documents
Conversational search seeks to retrieve relevant passages for the given questions in conversational question answering. Conversational Query Reformulation (CQR) improves conversational search by refining the original queries into de-contextualized forms to resolve the issues in the original queries, such as omissions and coreferences. Previous CQR methods focus on imitating human written queries which may not always yield meaningful search results for the retriever. In this paper, we introduce GuideCQR, a framework that refines queries for CQR by leveraging key information from the initially retrieved documents. Specifically, GuideCQR extracts keywords and generates expected answers from the retrieved documents, then unifies them with the queries after filtering to add useful information that enhances the search process. Experimental results demonstrate that our proposed method achieves state-of-the-art performance across multiple datasets, outperforming previous CQR methods. Additionally, we show that GuideCQR can get additional performance gains in conversational search using various types of queries, even for queries written by humans.
comment: 18 pages, 3 figures, 16 tables
FitCF: A Framework for Automatic Feature Importance-guided Counterfactual Example Generation ACL 2025
Counterfactual examples are widely used in natural language processing (NLP) as valuable data to improve models, and in explainable artificial intelligence (XAI) to understand model behavior. The automated generation of counterfactual examples remains a challenging task even for large language models (LLMs), despite their impressive performance on many tasks. In this paper, we first introduce ZeroCF, a faithful approach for leveraging important words derived from feature attribution methods to generate counterfactual examples in a zero-shot setting. Second, we present a new framework, FitCF, which further verifies aforementioned counterfactuals by label flip verification and then inserts them as demonstrations for few-shot prompting, outperforming two state-of-the-art baselines. Through ablation studies, we identify the importance of each of FitCF's core components in improving the quality of counterfactuals, as assessed through flip rate, perplexity, and similarity measures. Furthermore, we show the effectiveness of LIME and Integrated Gradients as backbone attribution methods for FitCF and find that the number of demonstrations has the largest effect on performance. Finally, we reveal a strong correlation between the faithfulness of feature attribution scores and the quality of generated counterfactuals.
comment: ACL 2025 Findings; camera-ready version
100 Days After DeepSeek-R1: A Survey on Replication Studies and More Directions for Reasoning Language Models
The recent development of reasoning language models (RLMs) represents a novel evolution in large language models. In particular, the recent release of DeepSeek-R1 has generated widespread social impact and sparked enthusiasm in the research community for exploring the explicit reasoning paradigm of language models. However, the implementation details of the released models have not been fully open-sourced by DeepSeek, including DeepSeek-R1-Zero, DeepSeek-R1, and the distilled small models. As a result, many replication studies have emerged aiming to reproduce the strong performance achieved by DeepSeek-R1, reaching comparable performance through similar training procedures and fully open-source data resources. These works have investigated feasible strategies for supervised fine-tuning (SFT) and reinforcement learning from verifiable rewards (RLVR), focusing on data preparation and method design, yielding various valuable insights. In this report, we provide a summary of recent replication studies to inspire future research. We primarily focus on SFT and RLVR as two main directions, introducing the details for data construction, method design and training procedure of current replication studies. Moreover, we conclude key findings from the implementation details and experimental results reported by these studies, anticipating to inspire future research. We also discuss additional techniques of enhancing RLMs, highlighting the potential of expanding the application scope of these models, and discussing the challenges in development. By this survey, we aim to help researchers and developers of RLMs stay updated with the latest advancements, and seek to inspire new ideas to further enhance RLMs.
Time Awareness in Large Language Models: Benchmarking Fact Recall Across Time
Who is the US President? The answer changes depending on when the question is asked. While large language models (LLMs) are evaluated on various reasoning tasks, they often miss a crucial dimension: time. In real-world scenarios, the correctness of answers is frequently tied to temporal context. To address this gap, we present a novel framework and dataset spanning over 8,000 events from 2018 to 2024, annotated with day-level granularity and sourced globally across domains such as politics, science, and business. Our TimeShift evaluation method systematically probes LLMs for temporal reasoning, revealing that base models often outperform instruction-tuned and synthetic-trained counterparts on time-sensitive recall. Additionally, we find that even large-scale models exhibit brittleness in handling paraphrased facts, highlighting unresolved challenges in temporal consistency. By identifying these limitations, our work provides a significant step toward advancing time-aware language models capable of adapting to the dynamic nature of real-world knowledge.
Simple and Provable Scaling Laws for the Test-Time Compute of Large Language Models
We propose two simple, principled and practical algorithms that enjoy provable scaling laws for the test-time compute of large language models (LLMs). The first one is a two-stage knockout-style algorithm: given an input problem, it first generates multiple candidate solutions, and then aggregate them via a knockout tournament for the final output. Assuming that the LLM can generate a correct solution with non-zero probability and do better than a random guess in comparing a pair of correct and incorrect solutions, we prove theoretically that the failure probability of this algorithm decays to zero exponentially or by a power law (depending on the specific way of scaling) as its test-time compute grows. The second one is a two-stage league-style algorithm, where each candidate is evaluated by its average win rate against multiple opponents, rather than eliminated upon loss to a single opponent. Under analogous but more robust assumptions, we prove that its failure probability also decays to zero exponentially with more test-time compute. Both algorithms require a black-box LLM and nothing else (e.g., no verifier or reward model) for a minimalistic implementation, which makes them appealing for practical applications and easy to adapt for different tasks. Through extensive experiments with diverse models and datasets, we validate the proposed theories and demonstrate the outstanding scaling properties of both algorithms.
TopoLM: brain-like spatio-functional organization in a topographic language model
Neurons in the brain are spatially organized such that neighbors on tissue often exhibit similar response profiles. In the human language system, experimental studies have observed clusters for syntactic and semantic categories, but the mechanisms underlying this functional organization remain unclear. Here, building on work from the vision literature, we develop TopoLM, a transformer language model with an explicit two-dimensional spatial representation of model units. By combining a next-token prediction objective with a spatial smoothness loss, representations in this model assemble into clusters that correspond to semantically interpretable groupings of text and closely match the functional organization in the brain's language system. TopoLM successfully predicts the emergence of the spatio-functional organization of a cortical language system as well as the organization of functional clusters selective for fine-grained linguistic features empirically observed in human cortex. Our results suggest that the functional organization of the human language system is driven by a unified spatial objective, and provide a functionally and spatially aligned model of language processing in the brain.
KBAlign: Efficient Self Adaptation on Specific Knowledge Bases
Although retrieval-augmented generation (RAG) remains essential for knowledge-based question answering (KBQA), current paradigms face critical challenges under specific domains. Existing methods struggle with targeted adaptation on small-scale KBs: vanilla unsupervised training exhibits poor effectiveness, while fine-tuning incurs prohibitive costs of external signals. We present KBAlign, a self-supervised framework that enhances RAG systems through efficient model adaptation. Our key insight is to leverage the model's intrinsic capabilities for knowledge alignment through two innovative mechanisms: multi-grained self-annotation that captures global knowledge for data construction, and iterative tuning that accelerates convergence through self verification. This framework enables cost-effective model adaptation to specific textual KBs, without human supervision or external model assistance. Experiments demonstrate that KBAlign can achieve 90\% of the performance gain obtained through GPT-4-supervised adaptation, while relying entirely on self-annotation of much smaller models. KBAlign significantly improves downstream QA accuracy across multiple domains with tiny costs, particularly benefiting scenarios requiring deep knowledge integration from specialized corpora. We release our experimental data, models, and process analyses to the community for further exploration (https://github.com/thunlp/KBAlign).
TensorLLM: Tensorising Multi-Head Attention for Enhanced Reasoning and Compression in LLMs IJCNN 2025
The reasoning abilities of Large Language Models (LLMs) can be improved by structurally denoising their weights, yet existing techniques primarily focus on denoising the feed-forward network (FFN) of the transformer block, and can not efficiently utilise the Multi-head Attention (MHA) block, which is the core of transformer architectures. To address this issue, we propose a novel intuitive framework that, at its very core, performs MHA compression through a multi-head tensorisation process and the Tucker decomposition. This enables both higher-dimensional structured denoising and compression of the MHA weights, by enforcing a shared higher-dimensional subspace across the weights of the multiple attention heads. We demonstrate that this approach consistently enhances the reasoning capabilities of LLMs across multiple benchmark datasets, and for both encoder-only and decoder-only architectures, while achieving compression rates of up to $\sim 250$ times in the MHA weights, all without requiring any additional data, training, or fine-tuning. Furthermore, we show that the proposed method can be seamlessly combined with existing FFN-only-based denoising techniques to achieve further improvements in LLM reasoning performance.
comment: Accpeted for IEEE International Joint Conference on Neural Networks (IJCNN 2025). The code is available at https://github.com/guyuxuan9/TensorLLM
Latent Action Pretraining from Videos ICLR 2025
We introduce Latent Action Pretraining for general Action models (LAPA), an unsupervised method for pretraining Vision-Language-Action (VLA) models without ground-truth robot action labels. Existing Vision-Language-Action models require action labels typically collected by human teleoperators during pretraining, which significantly limits possible data sources and scale. In this work, we propose a method to learn from internet-scale videos that do not have robot action labels. We first train an action quantization model leveraging VQ-VAE-based objective to learn discrete latent actions between image frames, then pretrain a latent VLA model to predict these latent actions from observations and task descriptions, and finally finetune the VLA on small-scale robot manipulation data to map from latent to robot actions. Experimental results demonstrate that our method significantly outperforms existing techniques that train robot manipulation policies from large-scale videos. Furthermore, it outperforms the state-of-the-art VLA model trained with robotic action labels on real-world manipulation tasks that require language conditioning, generalization to unseen objects, and semantic generalization to unseen instructions. Training only on human manipulation videos also shows positive transfer, opening up the potential for leveraging web-scale data for robotics foundation model.
comment: ICLR 2025 Website: https://latentactionpretraining.github.io
Phase Diagram of Vision Large Language Models Inference: A Perspective from Interaction across Image and Instruction
Vision Large Language Models (VLLMs) usually take input as a concatenation of image token embeddings and text token embeddings and conduct causal modeling. However, their internal behaviors remain underexplored, raising the question of interaction among two types of tokens. To investigate such multimodal interaction during model inference, in this paper, we measure the contextualization among the hidden state vectors of tokens from different modalities. Our experiments uncover a four-phase inference dynamics of VLLMs against the depth of Transformer-based LMs, including (I) Alignment: In very early layers, contextualization emerges between modalities, suggesting a feature space alignment. (II) Intra-modal Encoding: In early layers, intra-modal contextualization is enhanced while inter-modal interaction is suppressed, suggesting a local encoding within modalities. (III) Inter-modal Encoding: In later layers, contextualization across modalities is enhanced, suggesting a deeper fusion across modalities. (IV) Output Preparation: In very late layers, contextualization is reduced globally, and hidden states are aligned towards the unembedding space.
comment: 6 pages, 5 figures
SAS-Bench: A Fine-Grained Benchmark for Evaluating Short Answer Scoring with Large Language Models
Subjective Answer Grading (SAG) plays a crucial role in education, standardized testing, and automated assessment systems, particularly for evaluating short-form responses in Short Answer Scoring (SAS). However, existing approaches often produce coarse-grained scores and lack detailed reasoning. Although large language models (LLMs) have demonstrated potential as zero-shot evaluators, they remain susceptible to bias, inconsistencies with human judgment, and limited transparency in scoring decisions. To overcome these limitations, we introduce SAS-Bench, a benchmark specifically designed for LLM-based SAS tasks. SAS-Bench provides fine-grained, step-wise scoring, expert-annotated error categories, and a diverse range of question types derived from real-world subject-specific exams. This benchmark facilitates detailed evaluation of model reasoning processes and explainability. We also release an open-source dataset containing 1,030 questions and 4,109 student responses, each annotated by domain experts. Furthermore, we conduct comprehensive experiments with various LLMs, identifying major challenges in scoring science-related questions and highlighting the effectiveness of few-shot prompting in improving scoring accuracy. Our work offers valuable insights into the development of more robust, fair, and educationally meaningful LLM-based evaluation systems.
The Mosaic Memory of Large Language Models
As Large Language Models (LLMs) become widely adopted, understanding how they learn from, and memorize, training data becomes crucial. Memorization in LLMs is widely assumed to only occur as a result of sequences being repeated in the training data. Instead, we show that LLMs memorize by assembling information from similar sequences, a phenomena we call mosaic memory. We show major LLMs to exhibit mosaic memory, with fuzzy duplicates contributing to memorization as much as 0.8 of an exact duplicate and even heavily modified sequences contributing substantially to memorization. Despite models display reasoning capabilities, we somewhat surprisingly show memorization to be predominantly syntactic rather than semantic. We finally show fuzzy duplicates to be ubiquitous in real-world data, untouched by deduplication techniques. Taken together, our results challenge widely held beliefs and show memorization to be a more complex, mosaic process, with real-world implications for privacy, confidentiality, model utility and evaluation.
Mitigating Modality Bias in Multi-modal Entity Alignment from a Causal Perspective SIGIR 2025
Multi-Modal Entity Alignment (MMEA) aims to retrieve equivalent entities from different Multi-Modal Knowledge Graphs (MMKGs), a critical information retrieval task. Existing studies have explored various fusion paradigms and consistency constraints to improve the alignment of equivalent entities, while overlooking that the visual modality may not always contribute positively. Empirically, entities with low-similarity images usually generate unsatisfactory performance, highlighting the limitation of overly relying on visual features. We believe the model can be biased toward the visual modality, leading to a shortcut image-matching task. To address this, we propose a counterfactual debiasing framework for MMEA, termed CDMEA, which investigates visual modality bias from a causal perspective. Our approach aims to leverage both visual and graph modalities to enhance MMEA while suppressing the direct causal effect of the visual modality on model predictions. By estimating the Total Effect (TE) of both modalities and excluding the Natural Direct Effect (NDE) of the visual modality, we ensure that the model predicts based on the Total Indirect Effect (TIE), effectively utilizing both modalities and reducing visual modality bias. Extensive experiments on 9 benchmark datasets show that CDMEA outperforms 14 state-of-the-art methods, especially in low-similarity, high-noise, and low-resource data scenarios.
comment: Accepted by SIGIR 2025, 11 pages, 10 figures, 4 tables,
PersLLM: A Personified Training Approach for Large Language Models
Large language models (LLMs) exhibit human-like intelligence, enabling them to simulate human behavior and support various applications that require both humanized communication and extensive knowledge reserves. Efforts are made to personify LLMs with special training data or hand-crafted prompts, while correspondingly faced with challenges such as insufficient data usage or rigid behavior patterns. Consequently, personified LLMs fail to capture personified knowledge or express persistent opinion. To fully unlock the potential of LLM personification, we propose PersLLM, a framework for better data construction and model tuning. For insufficient data usage, we incorporate strategies such as Chain-of-Thought prompting and anti-induction, improving the quality of data construction and capturing the personality experiences, knowledge, and thoughts more comprehensively. For rigid behavior patterns, we design the tuning process and introduce automated DPO to enhance the specificity and dynamism of the models' personalities, which leads to a more natural opinion communication. Both automated metrics and expert human evaluations demonstrate the effectiveness of our approach. Case studies in human-machine interactions and multi-agent systems further suggest potential application scenarios and future directions for LLM personification.
comment: 8 pages for main text, 5 figures
Understanding In-context Learning of Addition via Activation Subspaces
To perform in-context learning, language models must extract signals from individual few-shot examples, aggregate these into a learned prediction rule, and then apply this rule to new examples. How is this implemented in the forward pass of modern transformer models? To study this, we consider a structured family of few-shot learning tasks for which the true prediction rule is to add an integer $k$ to the input. We find that Llama-3-8B attains high accuracy on this task for a range of $k$, and localize its few-shot ability to just three attention heads via a novel optimization approach. We further show the extracted signals lie in a six-dimensional subspace, where four of the dimensions track the unit digit and the other two dimensions track overall magnitude. We finally examine how these heads extract information from individual few-shot examples, identifying a self-correction mechanism in which mistakes from earlier examples are suppressed by later examples. Our results demonstrate how tracking low-dimensional subspaces across a forward pass can provide insight into fine-grained computational structures.
comment: 20 pages
Compensate Quantization Errors+: Quantized Models Are Inquisitive Learners
The quantization of large language models (LLMs) has been a prominent research area aimed at enabling their lightweight deployment in practice. Existing research about LLM's quantization has mainly explored the interplay between weights and activations, or employing auxiliary components while neglecting the necessity of adjusting weights during quantization. Consequently, original weight distributions frequently fail to yield desired results after round-to-nearest (RTN) quantization. Even though incorporating techniques such as mixed precision and low-rank error approximation in LLM's quantization can yield improved results, they inevitably introduce additional computational overhead. On the other hand, traditional techniques for weight quantization, such as Generative Post-Training Quantization, rely on manually tweaking weight distributions to minimize local errors, but they fall short of achieving globally optimal outcomes. Although the recently proposed Learnable Singular-value Increment improves global weight quantization by modifying weight distributions, it disrupts the original distribution considerably. This introduces pronounced bias toward the training data and can degrade downstream task performance. In this paper, we introduce Singular-value Diagonal Expansion, a more nuanced approach to refining weight distributions to achieve better quantization alignment. Furthermore, we introduce Cross-layer Learning that improves overall quantization outcomes by distributing errors more evenly across layers. Our plug-and-play weight-quantization methods demonstrate substantial performance improvements over state-of-the-art approaches, including OmniQuant, DuQuant, and PrefixQuant.
comment: Effecient Quantization Methods for LLMs
Beyond Next Token Prediction: Patch-Level Training for Large Language Models ICLR 2025
The prohibitive training costs of Large Language Models (LLMs) have emerged as a significant bottleneck in the development of next-generation LLMs. In this paper, we show that it is possible to significantly reduce the training costs of LLMs without sacrificing their performance. Specifically, we introduce patch-level training for LLMs, in which multiple tokens are aggregated into a unit of higher information density, referred to as a `patch', to serve as the fundamental text unit for training LLMs. During patch-level training, we feed the language model shorter sequences of patches and train it to predict the next patch, thereby processing the majority of the training data at a significantly reduced cost. Following this, the model continues token-level training on the remaining training data to align with the inference mode. Experiments on a diverse range of models (370M-2.7B parameters) demonstrate that patch-level training can reduce the overall training costs to 0.5$\times$, without compromising the model performance compared to token-level training. Source code: https://github.com/shaochenze/PatchTrain.
comment: ICLR 2025 Spotlight
MultiMed: Multilingual Medical Speech Recognition via Attention Encoder Decoder ACL 2025
Multilingual automatic speech recognition (ASR) in the medical domain serves as a foundational task for various downstream applications such as speech translation, spoken language understanding, and voice-activated assistants. This technology improves patient care by enabling efficient communication across language barriers, alleviating specialized workforce shortages, and facilitating improved diagnosis and treatment, particularly during pandemics. In this work, we introduce MultiMed, the first multilingual medical ASR dataset, along with the first collection of small-to-large end-to-end medical ASR models, spanning five languages: Vietnamese, English, German, French, and Mandarin Chinese. To our best knowledge, MultiMed stands as the world's largest medical ASR dataset across all major benchmarks: total duration, number of recording conditions, number of accents, and number of speaking roles. Furthermore, we present the first multilinguality study for medical ASR, which includes reproducible empirical baselines, a monolinguality-multilinguality analysis, Attention Encoder Decoder (AED) vs Hybrid comparative study and a linguistic analysis. We present practical ASR end-to-end training schemes optimized for a fixed number of trainable parameters that are common in industry settings. All code, data, and models are available online: https://github.com/leduckhai/MultiMed/tree/master/MultiMed.
comment: ACL 2025, 38 pages
RM-R1: Reward Modeling as Reasoning
Reward modeling is essential for aligning large language models (LLMs) with human preferences through reinforcement learning (RL). To provide accurate reward signals, a reward model (RM) should stimulate deep thinking and conduct interpretable reasoning before assigning a score or a judgment. Inspired by recent advances of long chain-of-thought (CoT) on reasoning-intensive tasks, we hypothesize and validate that integrating reasoning capabilities into reward modeling significantly enhances RM's interpretability and performance. To this end, we introduce a new class of generative reward models -- Reasoning Reward Models (ReasRMs) -- which formulate reward modeling as a reasoning task. We propose a reasoning-oriented training pipeline and train a family of ReasRMs, RM-R1. RM-R1 features a chain-of-rubrics (CoR) mechanism -- self-generating sample-level chat rubrics or math/code solutions, and evaluating candidate responses against them. The training of M-R1 consists of two key stages: (1) distillation of high-quality reasoning chains and (2) reinforcement learning with verifiable rewards. Empirically, our models achieve state-of-the-art performance across three reward model benchmarks on average, outperforming much larger open-weight models (e.g., INF-ORM-Llama3.1-70B) and proprietary ones (e.g., GPT-4o) by up to 4.9%. Beyond final performance, we perform thorough empirical analysis to understand the key ingredients of successful ReasRM training. To facilitate future research, we release six ReasRM models along with code and data at https://github.com/RM-R1-UIUC/RM-R1.
comment: 24 pages, 8 figures
Natural Language Reinforcement Learning ICLR 2025
Reinforcement Learning (RL) mathematically formulates decision-making with Markov Decision Process (MDP). With MDPs, researchers have achieved remarkable breakthroughs across various domains, including games, robotics, and language models. This paper seeks a new possibility, Natural Language Reinforcement Learning (NLRL), by extending traditional MDP to natural language-based representation space. Specifically, NLRL innovatively redefines RL principles, including task objectives, policy, value function, Bellman equation, and policy iteration, into their language counterparts. With recent advancements in large language models (LLMs), NLRL can be practically implemented to achieve RL-like policy and value improvement by either pure prompting or gradient-based training. Experiments over Maze, Breakthrough, and Tic-Tac-Toe games demonstrate the effectiveness, efficiency, and interpretability of the NLRL framework among diverse use cases.
comment: Accepted at ICLR 2025 Workshop SSI-FM
Concise Reasoning via Reinforcement Learning
Despite significant advancements in large language models (LLMs), a major drawback of reasoning models is their enormous token usage, which increases computational cost, resource requirements, and response time. In this work, we revisit the core principles of reinforcement learning (RL) and, through mathematical analysis, demonstrate that the tendency to generate lengthy responses arises inherently from RL-based optimization during training. This finding questions the prevailing assumption that longer responses inherently improve reasoning accuracy. Instead, we uncover a natural correlation between conciseness and accuracy that has been largely overlooked. We show that introducing a secondary phase of RL training, using a very small set of problems, can significantly reduce chains of thought while maintaining or even enhancing accuracy. Additionally, we demonstrate that, while GRPO shares some interesting properties of PPO, it suffers from collapse modes, which limit its reliability for concise reasoning. Finally, we validate our conclusions through extensive experimental results.
Model Utility Law: Evaluating LLMs beyond Performance through Mechanism Interpretable Metric
Large Language Models (LLMs) have become indispensable across academia, industry, and daily applications, yet current evaluation methods struggle to keep pace with their rapid development. One core challenge of evaluation in the large language model (LLM) era is the generalization issue: how to infer a model's near-unbounded abilities from inevitably bounded benchmarks. We address this challenge by proposing Model Utilization Index (MUI), a mechanism interpretability enhanced metric that complements traditional performance scores. MUI quantifies the effort a model expends on a task, defined as the proportion of activated neurons or features during inference. Intuitively, a truly capable model should achieve higher performance with lower effort. Extensive experiments across popular LLMs reveal a consistent inverse logarithmic relationship between MUI and performance, which we formulate as the Utility Law. From this law we derive four practical corollaries that (i) guide training diagnostics, (ii) expose data contamination issue, (iii) enable fairer model comparisons, and (iv) design model-specific dataset diversity. Our code can be found at https://github.com/ALEX-nlp/MUI-Eva.
Temporal Scaling Law for Large Language Models
Recently, Large Language Models (LLMs) have been widely adopted in a wide range of tasks, leading to increasing attention towards the research on how scaling LLMs affects their performance. Existing works, termed Scaling Laws, have discovered that the final test loss of LLMs scales as power-laws with model size, computational budget, and dataset size. However, the temporal change of the test loss of an LLM throughout its pre-training process remains unexplored, though it is valuable in many aspects, such as selecting better hyperparameters \textit{directly} on the target LLM. In this paper, we propose the novel concept of Temporal Scaling Law, studying how the test loss of an LLM evolves as the training steps scale up. In contrast to modeling the test loss as a whole in a coarse-grained manner, we break it down and dive into the fine-grained test loss of each token position, and further develop a dynamic hyperbolic-law. Afterwards, we derive the much more precise temporal scaling law by studying the temporal patterns of the parameters in the dynamic hyperbolic-law. Results on both in-distribution (ID) and out-of-distribution (OOD) validation datasets demonstrate that our temporal scaling law accurately predicts the test loss of LLMs across training steps. Our temporal scaling law has broad practical applications. First, it enables direct and efficient hyperparameter selection on the target LLM, such as data mixture proportions. Secondly, viewing the LLM pre-training dynamics from the token position granularity provides some insights to enhance the understanding of LLM pre-training.
comment: Preprint, Currently under review
ChronoFact: Timeline-based Temporal Fact Verification
Temporal claims, often riddled with inaccuracies, are a significant challenge in the digital misinformation landscape. Fact-checking systems that can accurately verify such claims are crucial for combating misinformation. Current systems struggle with the complexities of evaluating the accuracy of these claims, especially when they include multiple, overlapping, or recurring events. We introduce a novel timeline-based fact verification framework that identify events from both claim and evidence and organize them into their respective chronological timelines. The framework systematically examines the relationships between the events in both claim and evidence to predict the veracity of each claim event and their chronological accuracy. This allows us to accurately determine the overall veracity of the claim. We also introduce a new dataset of complex temporal claims involving timeline-based reasoning for the training and evaluation of our proposed framework. Experimental results demonstrate the effectiveness of our approach in handling the intricacies of temporal claim verification.
RoBERTa-BiLSTM: A Context-Aware Hybrid Model for Sentiment Analysis
Effectively analyzing the comments to uncover latent intentions holds immense value in making strategic decisions across various domains. However, several challenges hinder the process of sentiment analysis including the lexical diversity exhibited in comments, the presence of long dependencies within the text, encountering unknown symbols and words, and dealing with imbalanced datasets. Moreover, existing sentiment analysis tasks mostly leveraged sequential models to encode the long dependent texts and it requires longer execution time as it processes the text sequentially. In contrast, the Transformer requires less execution time due to its parallel processing nature. In this work, we introduce a novel hybrid deep learning model, RoBERTa-BiLSTM, which combines the Robustly Optimized BERT Pretraining Approach (RoBERTa) with Bidirectional Long Short-Term Memory (BiLSTM) networks. RoBERTa is utilized to generate meaningful word embedding vectors, while BiLSTM effectively captures the contextual semantics of long-dependent texts. The RoBERTa-BiLSTM hybrid model leverages the strengths of both sequential and Transformer models to enhance performance in sentiment analysis. We conducted experiments using datasets from IMDb, Twitter US Airline, and Sentiment140 to evaluate the proposed model against existing state-of-the-art methods. Our experimental findings demonstrate that the RoBERTa-BiLSTM model surpasses baseline models (e.g., BERT, RoBERTa-base, RoBERTa-GRU, and RoBERTa-LSTM), achieving accuracies of 80.74%, 92.36%, and 82.25% on the Twitter US Airline, IMDb, and Sentiment140 datasets, respectively. Additionally, the model achieves F1-scores of 80.73%, 92.35%, and 82.25% on the same datasets, respectively.
uDistil-Whisper: Label-Free Data Filtering for Knowledge Distillation in Low-Data Regimes NAACL'25
Recent work on distilling Whisper's knowledge into small models using pseudo-labels shows promising performance while reducing the size by up to 50%. This results in small, efficient, and dedicated models. However, a critical step of distillation using pseudo-labels involves filtering high-quality predictions and using only those during training. This step requires ground truth labels to compare with and filter low-quality examples, making the process dependent on human labels. Additionally, the distillation process requires a large amount of data thereby limiting its applicability in low-resource settings. To address this, we propose a distillation framework that does not require any labeled data. Through experimentation, we show that our best-distilled models outperform the teacher model by 5-7 WER points and are on par with or outperform similar supervised data filtering setups. When scaling the data, our models significantly outperform all zero-shot and supervised models. Our models are also 25-50% more compute- and memory-efficient while maintaining performance equal to or better than that of the teacher model. For more details about our models, dataset, and other resources, please visit our GitHub page: https://github.com/UBC-NLP/uDistilWhisper.
comment: Accepted to NAACL'25 main conference
Does Liking Yellow Imply Driving a School Bus? Semantic Leakage in Language Models
Despite their wide adoption, the biases and unintended behaviors of language models remain poorly understood. In this paper, we identify and characterize a phenomenon never discussed before, which we call semantic leakage, where models leak irrelevant information from the prompt into the generation in unexpected ways. We propose an evaluation setting to detect semantic leakage both by humans and automatically, curate a diverse test suite for diagnosing this behavior, and measure significant semantic leakage in 13 flagship models. We also show that models exhibit semantic leakage in languages besides English and across different settings and generation scenarios. This discovery highlights yet another type of bias in language models that affects their generation patterns and behavior.
Dynamics of Adversarial Attacks on Large Language Model-Based Search Engines
The increasing integration of Large Language Model (LLM) based search engines has transformed the landscape of information retrieval. However, these systems are vulnerable to adversarial attacks, especially ranking manipulation attacks, where attackers craft webpage content to manipulate the LLM's ranking and promote specific content, gaining an unfair advantage over competitors. In this paper, we study the dynamics of ranking manipulation attacks. We frame this problem as an Infinitely Repeated Prisoners' Dilemma, where multiple players strategically decide whether to cooperate or attack. We analyze the conditions under which cooperation can be sustained, identifying key factors such as attack costs, discount rates, attack success rates, and trigger strategies that influence player behavior. We identify tipping points in the system dynamics, demonstrating that cooperation is more likely to be sustained when players are forward-looking. However, from a defense perspective, we find that simply reducing attack success probabilities can, paradoxically, incentivize attacks under certain conditions. Furthermore, defensive measures to cap the upper bound of attack success rates may prove futile in some scenarios. These insights highlight the complexity of securing LLM-based systems. Our work provides a theoretical foundation and practical insights for understanding and mitigating their vulnerabilities, while emphasizing the importance of adaptive security strategies and thoughtful ecosystem design.
DiSCo: LLM Knowledge Distillation for Efficient Sparse Retrieval in Conversational Search SIGIR '25
Conversational Search (CS) involves retrieving relevant documents from a corpus while considering the conversational context, integrating retrieval with context modeling. Recent advancements in Large Language Models (LLMs) have significantly enhanced CS by enabling query rewriting based on conversational context. However, employing LLMs during inference poses efficiency challenges. Existing solutions mitigate this issue by distilling embeddings derived from human-rewritten queries, focusing primarily on learning the context modeling task. These methods, however, often separate the contrastive retrieval task from the distillation process, treating it as an independent loss term. To overcome these limitations, we introduce DiSCo (Distillation of Sparse Conversational retrieval), a novel approach that unifies retrieval and context modeling through a relaxed distillation objective. Instead of relying exclusively on representation learning, our method distills similarity scores between conversations and documents, providing more freedom in the representation space and better leveraging the contrastive nature of document relevance. Extensive experiments on Learned Sparse Retrieval (LSR) across five CS datasets demonstrate that DiSCo achieves substantial improvements in both in-domain and out-of-domain retrieval tasks, achieving up to a six-point gain in recall for out-of-domain datasets over state-of-the-art methods. Additionally, DiSCo employs a multi-teacher distillation strategy, using multiple LLMs as teachers, further enhancing performance and surpassing the individual teachers in in-domain settings. Furthermore, analysis of model sparsity reveals that DiSCo allows for more effective control over the sparsity of the trained models.
comment: 11 pages, 6 figures. SIGIR '25 Proceedings of the 48th International ACM SIGIR Conference on Research and Development in Information Retrieval July 13--18, 2025 Padua, Italy
AD-LLM: Benchmarking Large Language Models for Anomaly Detection
Anomaly detection (AD) is an important machine learning task with many real-world uses, including fraud detection, medical diagnosis, and industrial monitoring. Within natural language processing (NLP), AD helps detect issues like spam, misinformation, and unusual user activity. Although large language models (LLMs) have had a strong impact on tasks such as text generation and summarization, their potential in AD has not been studied enough. This paper introduces AD-LLM, the first benchmark that evaluates how LLMs can help with NLP anomaly detection. We examine three key tasks: (i) zero-shot detection, using LLMs' pre-trained knowledge to perform AD without tasks-specific training; (ii) data augmentation, generating synthetic data and category descriptions to improve AD models; and (iii) model selection, using LLMs to suggest unsupervised AD models. Through experiments with different datasets, we find that LLMs can work well in zero-shot AD, that carefully designed augmentation methods are useful, and that explaining model selection for specific datasets remains challenging. Based on these results, we outline six future research directions on LLMs for AD.
Hallucination, Monofacts, and Miscalibration: An Empirical Investigation
Hallucinated facts in large language models (LLMs) have recently been shown to obey a statistical lower bound determined by the monofact rate (related to the classical Good-Turing missing mass estimator) minus model miscalibration (Kalai & Vempala, 2024). We present the first empirical investigation of this three-way relationship in classical n-gram models and fine-tuned encoder-decoder Transformers. By generating training data from Pareto distributions with varying shape parameters, we systematically control the monofact rates and establish its positive relationship with hallucination. To bridge theory and practice, we derive an empirical analog of the hallucination bound by replacing the population miscalibration term (Section 2.1) with an empirical bin-wise KL divergence and confirm its practical viability. We then introduce selective upweighting -- a simple yet effective technique that strategically repeats as little as 5% of training examples -- to deliberately inject miscalibration into the model. This intervention reduces hallucination by up to 40%, challenging universal deduplication policies. Our experiments reveal a critical trade-off: selective upweighting maintains pre-injection levels of accuracy while substantially reducing hallucination, whereas standard training gradually improves accuracy but fails to address persistently high hallucination, indicating an inherent tension in optimization objectives.
comment: Code available at https://github.com/mmiao2/Hallucination.git
Can Your Uncertainty Scores Detect Hallucinated Entity?
To mitigate the impact of hallucination nature of LLMs, many studies propose detecting hallucinated generation through uncertainty estimation. However, these approaches predominantly operate at the sentence or paragraph level, failing to pinpoint specific spans or entities responsible for hallucinated content. This lack of granularity is especially problematic for long-form outputs that mix accurate and fabricated information. To address this limitation, we explore entity-level hallucination detection. We propose a new data set, HalluEntity, which annotates hallucination at the entity level. Based on the dataset, we comprehensively evaluate uncertainty-based hallucination detection approaches across 17 modern LLMs. Our experimental results show that uncertainty estimation approaches focusing on individual token probabilities tend to over-predict hallucinations, while context-aware methods show better but still suboptimal performance. Through an in-depth qualitative study, we identify relationships between hallucination tendencies and linguistic properties and highlight important directions for future research. HalluEntity: https://huggingface.co/datasets/samuelyeh/HalluEntity
Human-Computer Interaction
Emotion-sensitive Explanation Model
Explainable AI (XAI) research has traditionally focused on rational users, aiming to improve understanding and reduce cognitive biases. However, emotional factors play a critical role in how explanations are perceived and processed. Prior work shows that prior and task-generated emotions can negatively impact the understanding of explanation. Building on these insights, we propose a three-stage model for emotion-sensitive explanation grounding: (1) emotional or epistemic arousal, (2) understanding, and (3) agreement. This model provides a conceptual basis for developing XAI systems that dynamically adapt explanation strategies to users emotional states, ultimately supporting more effective and user-centered decision-making.
Influence of prior and task generated emotions on XAI explanation retention and understanding
The explanation of AI results and how they are received by users is an increasingly active research field. However, there is a surprising lack of knowledge about how social factors such as emotions affect the process of explanation by a decision support system (DSS). While previous research has shown effects of emotions on DSS supported decision-making, it remains unknown in how far emotions affect cognitive processing during an explanation. In this study, we, therefore, investigated the influence of prior emotions and task-related arousal on the retention and understanding of explained feature relevance. To investigate the influence of prior emotions, we induced happiness and fear prior to the decision support interaction. Before emotion induction, user characteristics to assess their risk type were collected via a questionnaire. To identify emotional reactions to the explanations of the relevance of different features, we observed heart rate variability (HRV), facial expressions, and self-reported emotions of the explainee while observing and listening to the explanation and assessed their retention of the features as well as their influence on the outcome of the decision task. Results indicate that (1) task-unrelated prior emotions do not affected the ratantion but may affect the understanding of the relevance of certain features in the sense of an emotion-induced confirmation bias, (2) certain features related to personal attitudes yielded arousal in individual participants, (3) this arousal affected the understanding of these variables.
Using Virtual Reality in Museums to Bridge the Gap Between Material Heritage and the Interpretation of Its Immaterial Context
Material heritage typically has a whole set of associated immaterial heritage, which is essential to pass on to the visitor as a cultural mission of the destinations and those who manage them. In this sense, the interpretation of material heritage is a complex process that is not a fully efficient process with the mere observation of physical artifacts. In this context, it emerges as fundamental to provide visitors with a set of tools that allow them to correctly interpret the artifacts that come to fully understand the cultural dimension of the destinations and their heritage. Accordingly, the role of virtual reality can leverage the creation of innovative and immersive solutions that allow the visitor to understand and feel part of their own heritage and its ancestral component that defines the sociocultural roots of destinations and their civilizational traditions. This article, after dissecting and substantiating the role of virtual reality in the interpretation of heritage, presents a conceptual model, based on the use of virtual reality, which was, in part, prototyped in the scenario of the Portuguese Museum in the city of Miranda do Douro. This proposal is an ongoing contribution to the creation of innovative and immersive tools for the interpretation of heritage.
comment: Cunha, C. R., Mendon\c{c}a, V., Moreira, A., Gomes, J. P., & Carvalho, A. (2022). Using virtual reality in museums to bridge the gap between material heritage and the interpretation of its immaterial context. In A. Abreu, D. Liberato, & J. C. Garcia Ojeda (Eds.), Advances in tourism, technology and systems (pp. 397--408). Springer Nature Singapore
AutoCam: Hierarchical Path Planning for an Autonomous Auxiliary Camera in Surgical Robotics
Incorporating an autonomous auxiliary camera into robot-assisted minimally invasive surgery (RAMIS) enhances spatial awareness and eliminates manual viewpoint control. Existing path planning methods for auxiliary cameras track two-dimensional surgical features but do not simultaneously account for camera orientation, workspace constraints, and robot joint limits. This study presents AutoCam: an automatic auxiliary camera placement method to improve visualization in RAMIS. Implemented on the da Vinci Research Kit, the system uses a priority-based, workspace-constrained control algorithm that combines heuristic geometric placement with nonlinear optimization to ensure robust camera tracking. A user study (N=6) demonstrated that the system maintained 99.84% visibility of a salient feature and achieved a pose error of 4.36 $\pm$ 2.11 degrees and 1.95 $\pm$ 5.66 mm. The controller was computationally efficient, with a loop time of 6.8 $\pm$ 12.8 ms. An additional pilot study (N=6), where novices completed a Fundamentals of Laparoscopic Surgery training task, suggests that users can teleoperate just as effectively from AutoCam's viewpoint as from the endoscope's while still benefiting from AutoCam's improved visual coverage of the scene. These results indicate that an auxiliary camera can be autonomously controlled using the da Vinci patient-side manipulators to track a salient feature, laying the groundwork for new multi-camera visualization methods in RAMIS.
comment: 13 pages, 9 figures
ListenNet: A Lightweight Spatio-Temporal Enhancement Nested Network for Auditory Attention Detection
Auditory attention detection (AAD) aims to identify the direction of the attended speaker in multi-speaker environments from brain signals, such as Electroencephalography (EEG) signals. However, existing EEG-based AAD methods overlook the spatio-temporal dependencies of EEG signals, limiting their decoding and generalization abilities. To address these issues, this paper proposes a Lightweight Spatio-Temporal Enhancement Nested Network (ListenNet) for AAD. The ListenNet has three key components: Spatio-temporal Dependency Encoder (STDE), Multi-scale Temporal Enhancement (MSTE), and Cross-Nested Attention (CNA). The STDE reconstructs dependencies between consecutive time windows across channels, improving the robustness of dynamic pattern extraction. The MSTE captures temporal features at multiple scales to represent both fine-grained and long-range temporal patterns. In addition, the CNA integrates hierarchical features more effectively through novel dynamic attention mechanisms to capture deep spatio-temporal correlations. Experimental results on three public datasets demonstrate the superiority of ListenNet over state-of-the-art methods in both subject-dependent and challenging subject-independent settings, while reducing the trainable parameter count by approximately 7 times. Code is available at:https://github.com/fchest/ListenNet.
SOS: A Shuffle Order Strategy for Data Augmentation in Industrial Human Activity Recognition
In the realm of Human Activity Recognition (HAR), obtaining high quality and variance data is still a persistent challenge due to high costs and the inherent variability of real-world activities. This study introduces a generation dataset by deep learning approaches (Attention Autoencoder and conditional Generative Adversarial Networks). Another problem that data heterogeneity is a critical challenge, one of the solutions is to shuffle the data to homogenize the distribution. Experimental results demonstrate that the random sequence strategy significantly improves classification performance, achieving an accuracy of up to 0.70 $\pm$ 0.03 and a macro F1 score of 0.64 $\pm$ 0.01. For that, disrupting temporal dependencies through random sequence reordering compels the model to focus on instantaneous recognition, thereby improving robustness against activity transitions. This approach not only broadens the effective training dataset but also offers promising avenues for enhancing HAR systems in complex, real-world scenarios.
Empirically evaluating commonsense intelligence in large language models with large-scale human judgments
Commonsense intelligence in machines is often assessed by static benchmarks that compare a model's output against human-prescribed correct labels. An important, albeit implicit, assumption of these labels is that they accurately capture what any human would think, effectively treating human common sense as homogeneous. However, recent empirical work has shown that humans vary enormously in what they consider commonsensical; thus what appears self-evident to one benchmark designer may not be so to another. Here, we propose a novel method for evaluating common sense in artificial intelligence (AI), specifically in large language models (LLMs), that incorporates empirically observed heterogeneity among humans by measuring the correspondence between a model's judgment and that of a human population. We first find that, when treated as independent survey respondents, most LLMs remain below the human median in their individual commonsense competence. Second, when used as simulators of a hypothetical population, LLMs correlate with real humans only modestly in the extent to which they agree on the same set of statements. In both cases, smaller, open-weight models are surprisingly more competitive than larger, proprietary frontier models. Our evaluation framework, which ties commonsense intelligence to its cultural basis, contributes to the growing call for adapting AI models to human collectivities that possess different, often incompatible, social stocks of knowledge.
AI LEGO: Scaffolding Cross-Functional Collaboration in Industrial Responsible AI Practices during Early Design Stages
Responsible AI (RAI) efforts increasingly emphasize the importance of addressing potential harms early in the AI development lifecycle through social-technical lenses. However, in cross-functional industry teams, this work is often stalled by a persistent knowledge handoff challenge: the difficulty of transferring high-level, early-stage technical design rationales from technical experts to non-technical or user-facing roles for ethical evaluation and harm identification. Through literature review and a co-design study with 8 practitioners, we unpack how this challenge manifests -- technical design choices are rarely handed off in ways that support meaningful engagement by non-technical roles; collaborative workflows lack shared, visual structures to support mutual understanding; and non-technical practitioners are left without scaffolds for systematic harm evaluation. Existing tools like JIRA or Google Docs, while useful for product tracking, are ill-suited for supporting joint harm identification across roles, often requiring significant extra effort to align understanding. To address this, we developed AI LEGO, a web-based prototype that supports cross-functional AI practitioners in effectively facilitating knowledge handoff and identifying harmful design choices in the early design stages. Technical roles use interactive blocks to draft development plans, while non-technical roles engage with those blocks through stage-specific checklists and LLM-driven persona simulations to surface potential harms. In a study with 18 cross-functional practitioners, AI LEGO increased the volume and likelihood of harms identified compared to baseline worksheets. Participants found that its modular structure and persona prompts made harm identification more accessible, fostering clearer and more collaborative RAI practices in early design.
Exploring Large Quantities of Secondary Data from High-Resolution Synchrotron X-ray Computed Tomography Scans Using AccuStripes
The analysis of secondary quantitative data extracted from high-resolution synchrotron X-ray computed tomography scans represents a significant challenge for users. While a number of methods have been introduced for processing large three-dimensional images in order to generate secondary data, there are only a few techniques available for simple and intuitive visualization of such data in their entirety. This work employs the AccuStripes visualization technique for that purpose, which enables the visual analysis of secondary data represented by an ensemble of univariate distributions. It supports different schemes for adaptive histogram binnings in combination with several ways of rendering aggregated data and it allows the interactive selection of optimal visual representations depending on the data and the use case. We demonstrate the usability of AccuStripes on a high-resolution synchrotron scan of a particle-reinforced metal matrix composite sample, containing more than 20 million particles. Through AccuStripes, detailed insights are facilitated into distributions of derived particle characteristics of the entire sample. Furthermore, research questions such as how the overall shape of the particles is or how homogeneously they are distributed across the sample can be answered.
comment: in Review at Journal of Nondestructive Evaluation
Enhancing performance in bolt torque tightening using a connected torque wrench and augmented reality
Modern production rates and the increasing complexity of mechanical systems require efficient and effective manufacturing and assembly processes. The transition to Industry 4.0, supported by the deployment of innovative tools such as Augmented Reality (AR), equips the industry to tackle future challenges. Among critical processes, the assembly and tightening of bolted joints stand out due to their significant safety and economic implications across various industrial sectors. This study proposes an innovative tightening method designed to enhance the reliability of bolted assembly tightening through the use of Augmented Reality and connected tools. A 6-Degrees-of-Freedom (6-DoF) tracked connected torque wrench assists the operator during tightening, ensuring each screw is tightened to the correct torque. The effectiveness of this method is compared with the conventional tightening method using paper instructions. Participants in the study carried out tightening sequences on two simple parts with multiple screws. The study evaluates the impact of the proposed method on task performance and its acceptability to operators. The tracked connected torque wrench provides considerable assistance to the operators, including wrench control and automatic generation of tightening reports. The results suggest that the AR-based method has the potential to ensure reliable torque tightening of bolted joints.
Design and Evaluation of Generative Agent-based Platform for Human-Assistant Interaction Research: A Tale of 10 User Studies
Designing and evaluating personalized and proactive assistant agents remains challenging due to the time, cost, and ethical concerns associated with human-in-the-loop experimentation. Existing Human-Computer Interaction (HCI) methods often require extensive physical setup and human participation, which introduces privacy concerns and limits scalability. Simulated environments offer a partial solution but are typically constrained by rule-based scenarios and still depend heavily on human input to guide interactions and interpret results. Recent advances in large language models (LLMs) have introduced the possibility of generative agents that can simulate realistic human behavior, reasoning, and social dynamics. However, their effectiveness in modeling human-assistant interactions remains largely unexplored. To address this gap, we present a generative agent-based simulation platform designed to simulate human-assistant interactions. We identify ten prior studies on assistant agents that span different aspects of interaction design and replicate these studies using our simulation platform. Our results show that fully simulated experiments using generative agents can approximate key aspects of human-assistant interactions. Based on these simulations, we are able to replicate the core conclusions of the original studies. Our work provides a scalable and cost-effective approach for studying assistant agent design without requiring live human subjects. We will open source both the platform and collected results from the experiments on our website: https://dash-gidea.github.io/.
CartoAgent: a multimodal large language model-powered multi-agent cartographic framework for map style transfer and evaluation
The rapid development of generative artificial intelligence (GenAI) presents new opportunities to advance the cartographic process. Previous studies have either overlooked the artistic aspects of maps or faced challenges in creating both accurate and informative maps. In this study, we propose CartoAgent, a novel multi-agent cartographic framework powered by multimodal large language models (MLLMs). This framework simulates three key stages in cartographic practice: preparation, map design, and evaluation. At each stage, different MLLMs act as agents with distinct roles to collaborate, discuss, and utilize tools for specific purposes. In particular, CartoAgent leverages MLLMs' visual aesthetic capability and world knowledge to generate maps that are both visually appealing and informative. By separating style from geographic data, it can focus on designing stylesheets without modifying the vector-based data, thereby ensuring geographic accuracy. We applied CartoAgent to a specific task centered on map restyling-namely, map style transfer and evaluation. The effectiveness of this framework was validated through extensive experiments and a human evaluation study. CartoAgent can be extended to support a variety of cartographic design decisions and inform future integrations of GenAI in cartography.
comment: 57 pages, 17 figures
Comparing Exploration-Exploitation Strategies of LLMs and Humans: Insights from Standard Multi-armed Bandit Tasks
Large language models (LLMs) are increasingly used to simulate or automate human behavior in complex sequential decision-making tasks. A natural question is then whether LLMs exhibit similar decision-making behavior to humans, and can achieve comparable (or superior) performance. In this work, we focus on the exploration-exploitation (E&E) tradeoff, a fundamental aspect of dynamic decision-making under uncertainty. We employ canonical multi-armed bandit (MAB) tasks introduced in the cognitive science and psychiatry literature to conduct a comparative study of the E&E strategies of LLMs, humans, and MAB algorithms. We use interpretable choice models to capture the E&E strategies of the agents and investigate how explicit reasoning, through both prompting strategies and reasoning-enhanced models, shapes LLM decision-making. We find that reasoning shifts LLMs toward more human-like behavior, characterized by a mix of random and directed exploration. In simple stationary tasks, reasoning-enabled LLMs exhibit similar levels of random and directed exploration compared to humans. However, in more complex, non-stationary environments, LLMs struggle to match human adaptability, particularly in effective directed exploration, despite achieving similar regret in certain scenarios. Our findings highlight both the promise and limits of LLMs as simulators of human behavior and tools for automated decision-making and point to potential areas of improvements.
SnapNCode: An Integrated Development Environment for Programming Physical Objects Interactions
Spatial computing technologies have the potential to revolutionize how we interact with the world around us. However, most modern integrated development environments (IDEs) have not fully adapted to this paradigm shift. For example, physical 3D objects in the real world are still represented as 2D text variables in code, creating a significant perceptual distance between these representations. In response to this challenge, we introduce SnapNCode, a novel IDE for spatial programming. SnapNCode enables programmers to capture various states of physical objects through live video streams from cameras and directly insert these visual representations into their code. Moreover, users can augment physical objects by attaching code snippets onto objects, which are opportunistically triggered when observed by cameras. We conducted a user study (N=12) to assess the usability of SnapNCode. Feedback from participants indicates that the system is easy-to-use and holds promise for daily casual uses and integration into a broader range of workflows.
comment: 18 pages, HCII 2025
Post-Post-API Age: Studying Digital Platforms in Scant Data Access Times
Over the past decade, data provided by digital platforms has informed substantial research in HCI to understand online human interaction and communication. Following the closure of major social media APIs that previously provided free access to large-scale data (the "post-API age"), emerging data access programs required by the European Union's Digital Services Act (DSA) have sparked optimism about increased platform transparency and renewed opportunities for comprehensive research on digital platforms, leading to the "post-post-API age." However, it remains unclear whether platforms provide adequate data access in practice. To assess how platforms make data available under the DSA, we conducted a comprehensive survey followed by in-depth interviews with 19 researchers to understand their experiences with data access in this new era. Our findings reveal significant challenges in accessing social media data, with researchers facing multiple barriers including complex API application processes, difficulties obtaining credentials, and limited API usability. These challenges have exacerbated existing institutional, regional, and financial inequities in data access. Based on these insights, we provide actionable recommendations for platforms, researchers, and policymakers to foster more equitable and effective data access, while encouraging broader dialogue within the CSCW community around interdisciplinary and multi-stakeholder solutions.
Characterizing Unintended Consequences in Human-GUI Agent Collaboration for Web Browsing
The proliferation of Large Language Model (LLM)-based Graphical User Interface (GUI) agents in web browsing scenarios present complex unintended consequences (UCs). This paper characterizes three UCs from three perspectives: phenomena, influence and mitigation, drawing on social media analysis (N=221 posts) and semi-structured interviews (N=14). Key phenomenon for UCs include agents' deficiencies in comprehending instructions and planning tasks, challenges in executing accurate GUI interactions and adapting to dynamic interfaces, the generation of unreliable or misaligned outputs, and shortcomings in error handling and feedback processing. These phenomena manifest as influences from unanticipated actions and user frustration, to privacy violations and security vulnerabilities, and further to eroded trust and wider ethical concerns. Our analysis also identifies user-initiated mitigation, such as technical adjustments and manual oversight, and provides implications for designing future LLM-based GUI agents that are robust, user-centric, and transparent, fostering a crucial balance between automation and human oversight.
Context-AI Tunes: Context-Aware AI-Generated Music for Stress Reduction
Music plays a critical role in emotional regulation and stress relief; however, individuals often need different types of music tailored to their unique stress levels or surrounding environment. Choosing the right music can be challenging due to the overwhelming number of options and the time-consuming trial-and-error process. To address this, we propose Context-AI Tune (CAT), a system that generates personalized music based on environmental inputs and the user's self-assessed stress level. A 2x2 within-subject experiment (N=26) was conducted with two independent variables: AI (AI, NoAI) and Environment (Busy Hub, Quiet Library). CAT's effectiveness in reducing stress was evaluated using the Visual Analog Scale for Stress (VAS-S). Results show that CAT is more effective than manually chosen music in reducing stress by adapting to user context.
comment: 17 pages, HCII 2025
Which Demographic Features Are Relevant for Individual Fairness Evaluation of U.S. Recidivism Risk Assessment Tools?
Despite its U.S. constitutional foundation, the technical ``individual fairness'' criterion has not been operationalized in state or federal statutes/regulations. We conduct a human subjects experiment to address this gap, evaluating which demographic features are relevant for individual fairness evaluation of recidivism risk assessment (RRA) tools. Our analyses conclude that the individual similarity function should consider age and sex, but it should ignore race.
Electrodermal Insights into Stress Dynamics of AR-Assisted Safety Warnings in Virtual Roadway Work Zone Environments
This study examines stress levels in roadway workers utilizing AR-assisted multi-sensory warning systems under varying work intensities. A high-fidelity Virtual Reality environment was used to replicate real-world scenarios, allowing safe exploration of high-risk situations while focusing on the physiological impacts of work conditions. Wearable sensors were used to continuously and non-invasively collect physiological data, including electrodermal activity to monitor stress responses. Analysis of data from 18 participants revealed notable differences in EDR between light- and medium-intensity activities, reflecting variations in autonomic nervous system activity under stress. Also, a feature importance analysis revealed that peak and central tendency metrics of EDR were robust indicators of physiological responses, between light- and medium-intensity activities. The findings emphasize the relationship between AR-enabled warnings, work intensity, and worker stress, offering an approach to active stress monitoring and improved safety practices. By leveraging real-time physiological insights, this methodology has the potential to support better stress management and the development of more effective safety warning systems for roadway work zones. This research also provides valuable guidance for designing interventions to enhance worker safety, productivity, and well-being in high-risk settings.
Internal State Estimation in Groups via Active Information Gathering
Accurately estimating human internal states, such as personality traits or behavioral patterns, is critical for enhancing the effectiveness of human-robot interaction, particularly in group settings. These insights are key in applications ranging from social navigation to autism diagnosis. However, prior methods are limited by scalability and passive observation, making real-time estimation in complex, multi-human settings difficult. In this work, we propose a practical method for active human personality estimation in groups, with a focus on applications related to Autism Spectrum Disorder (ASD). Our method combines a personality-conditioned behavior model, based on the Eysenck 3-Factor theory, with an active robot information gathering policy that triggers human behaviors through a receding-horizon planner. The robot's belief about human personality is then updated via Bayesian inference. We demonstrate the effectiveness of our approach through simulations, user studies with typical adults, and preliminary experiments involving participants with ASD. Our results show that our method can scale to tens of humans and reduce personality prediction error by 29.2% and uncertainty by 79.9% in simulation. User studies with typical adults confirm the method's ability to generalize across complex personality distributions. Additionally, we explore its application in autism-related scenarios, demonstrating that the method can identify the difference between neurotypical and autistic behavior, highlighting its potential for diagnosing ASD. The results suggest that our framework could serve as a foundation for future ASD-specific interventions.
Evaluations at Work: Measuring the Capabilities of GenAI in Use
Current AI benchmarks miss the messy, multi-turn nature of human-AI collaboration. We present an evaluation framework that decomposes real-world tasks into interdependent subtasks, letting us track both LLM performance and users' strategies across a dialogue. Complementing this framework, we develop a suite of metrics, including a composite usage derived from semantic similarity, word overlap, and numerical matches; structural coherence; intra-turn diversity; and a novel measure of the "information frontier" reflecting the alignment between AI outputs and users' working knowledge. We demonstrate our methodology in a financial valuation task that mirrors real-world complexity. Our empirical findings reveal that while greater integration of LLM-generated content generally enhances output quality, its benefits are moderated by factors such as response incoherence, excessive subtask diversity, and the distance of provided information from users' existing knowledge. These results suggest that proactive dialogue strategies designed to inject novelty may inadvertently undermine task performance. Our work thus advances a more holistic evaluation of human-AI collaboration, offering both a robust methodological framework and actionable insights for developing more effective AI-augmented work processes.
AI-enhanced semantic feature norms for 786 concepts
Semantic feature norms have been foundational in the study of human conceptual knowledge, yet traditional methods face trade-offs between concept/feature coverage and verifiability of quality due to the labor-intensive nature of norming studies. Here, we introduce a novel approach that augments a dataset of human-generated feature norms with responses from large language models (LLMs) while verifying the quality of norms against reliable human judgments. We find that our AI-enhanced feature norm dataset, NOVA: Norms Optimized Via AI, shows much higher feature density and overlap among concepts while outperforming a comparable human-only norm dataset and word-embedding models in predicting people's semantic similarity judgments. Taken together, we demonstrate that human conceptual knowledge is richer than captured in previous norm datasets and show that, with proper validation, LLMs can serve as powerful tools for cognitive science research.
comment: 8 pages, 5 figures
Predicting Human Behavior in Autonomous Systems: A Collaborative Machine Teaching Approach for Reducing Transfer of Control Events
As autonomous systems become integral to various industries, effective strategies for fault handling are essential to ensure reliability and efficiency. Transfer of Control (ToC), a traditional approach for interrupting automated processes during faults, is often triggered unnecessarily in non-critical situations. To address this, we propose a data-driven method that uses human interaction data to train AI models capable of preemptively identifying and addressing issues or assisting users in resolution. Using an interactive tool simulating an industrial vacuum cleaner, we collected data and developed an LSTM-based model to predict user behavior. Our findings reveal that even data from non-experts can effectively train models to reduce unnecessary ToC events, enhancing the system's robustness. This approach highlights the potential of AI to learn directly from human problem-solving behaviors, complementing sensor data to improve industrial automation and human-AI collaboration.
NeoLightning: A Modern Reimagination of Gesture-Based Sound Design
This paper introduces NeoLightning, a modern reinterpretation of the Buchla Lightning. NeoLightning preserves the innovative spirit of Don Buchla's "Buchla Lightning" (introduced in the 1990s) while making its gesture-based interaction accessible to contemporary users. While the original Buchla Lightning and many other historical instruments were groundbreaking in their time, they are now largely unsupported, limiting user interaction to indirect experiences. To address this, NeoLightning leverages MediaPipe for deep learning-based gesture recognition and employs Max/MSP and Processing for real-time multimedia processing. The redesigned system offers precise, low-latency gesture recognition and immersive 3D interaction. By merging the creative spirit of the original Lightning with modern advancements, NeoLightning redefines gesture-based musical interaction, expanding possibilities for expressive performance and interactive sound design.
comment: Accepted to the 50th International Computer Music Conference (ICMC), 2025
Towards an LLM-powered Social Digital Twinning Platform
We present Social Digital Twinner, an innovative social simulation tool for exploring plausible effects of what-if scenarios in complex adaptive social systems. The architecture is composed of three seamlessly integrated parts: a data infrastructure featuring real-world data and a multi-dimensionally representative synthetic population of citizens, an LLM-enabled agent-based simulation engine, and a user interface that enable intuitive, natural language interactions with the simulation engine and the artificial agents (i.e. citizens). Social Digital Twinner facilitates real-time engagement and empowers stakeholders to collaboratively design, test, and refine intervention measures. The approach is promoting a data-driven and evidence-based approach to societal problem-solving. We demonstrate the tool's interactive capabilities by addressing the critical issue of youth school dropouts in Kragero, Norway, showcasing its ability to create and execute a dedicated social digital twin using natural language.
comment: 13 pages, 3 figures, 23rd International Conference on Practical applications of Agents and Multi-Agent Systems (PAAMS 2025)
It's only fair when I think it's fair: How Gender Bias Alignment Undermines Distributive Fairness in Human-AI Collaboration
Human-AI collaboration is increasingly relevant in consequential areas where AI recommendations support human discretion. However, human-AI teams' effectiveness, capability, and fairness highly depend on human perceptions of AI. Positive fairness perceptions have been shown to foster trust and acceptance of AI recommendations. Yet, work on confirmation bias highlights that humans selectively adhere to AI recommendations that align with their expectations and beliefs -- despite not being necessarily correct or fair. This raises the question whether confirmation bias also transfers to the alignment of gender bias between human and AI decisions. In our study, we examine how gender bias alignment influences fairness perceptions and reliance. The results of a 2x2 between-subject study highlight the connection between gender bias alignment, fairness perceptions, and reliance, demonstrating that merely constructing a ``formally fair'' AI system is insufficient for optimal human-AI collaboration; ultimately, AI recommendations will likely be overridden if biases do not align.
comment: Accepted to ACM FAccT 2025
Generative Muscle Stimulation: Physical Assistance by Constraining Multimodal-AI with Biomechanical Knowledge
Decades of interactive electrical-muscle-stimulation (EMS) revealed its promise as a wearable interface for physical assistance-EMS directly demonstrates movements through the users' body (e.g., shaking a spray-can before painting). However, interactive EMS-systems are highly-specialized because their feedback is (1) fixed (e.g., one program executes spray-can instructions, another executes piano instructions) and (2) non-contextual (e.g., using a spray-can while cooking likely involves cooking oil, not paint, and thus shaking is unnecessary). To address this, we explored a more flexible approach and engineered a system that generates muscle-stimulation-instructions given the user's context. Through our examples, we show that such a system is flexible: it enables unprecedented EMS-interactions (e.g., opening a child-proof pill bottle cap) but also replicates existing systems (e.g., shake a spray can)-all without requiring task-specific programming. To achieve this, our system takes in user's spoken-requests and images from their point of view. It uses computer vision (e.g., detect objects/handedness) and large-language-models (e.g., reason about objects/situations) to generate textual-instructions. Finally, these instructions are then constrained by biomechanical-knowledge (e.g., joint limits, kinematic-chain, EMS capabilities) to produce suitable muscle-stimulation gestures. We believe our concept marks a shift toward more general-purpose EMS-interfaces, enabling more flexible and context-aware assistance.
comment: 13 pages, 19 figures
Large Language Models for Cancer Communication: Evaluating Linguistic Quality, Safety, and Accessibility in Generative AI
Effective communication about breast and cervical cancers remains a persistent health challenge, with significant gaps in public understanding of cancer prevention, screening, and treatment, potentially leading to delayed diagnoses and inadequate treatments. This study evaluates the capabilities and limitations of Large Language Models (LLMs) in generating accurate, safe, and accessible cancer-related information to support patient understanding. We evaluated five general-purpose and three medical LLMs using a mixed-methods evaluation framework across linguistic quality, safety and trustworthiness, and communication accessibility and affectiveness. Our approach utilized quantitative metrics, qualitative expert ratings, and statistical analysis using Welch's ANOVA, Games-Howell, and Hedges' g. Our results show that general-purpose LLMs produced outputs of higher linguistic quality and affectiveness, while medical LLMs demonstrate greater communication accessibility. However, medical LLMs tend to exhibit higher levels of potential harm, toxicity, and bias, reducing their performance in safety and trustworthiness. Our findings indicate a duality between domain-specific knowledge and safety in health communications. The results highlight the need for intentional model design with targeted improvements, particularly in mitigating harm and bias, and improving safety and affectiveness. This study provides a comprehensive evaluation of LLMs for cancer communication, offering critical insights for improving AI-generated health content and informing future development of accurate, safe, and accessible digital health tools.
Beyond Likes: How Normative Feedback Complements Engagement Signals on Social Media
Many online platforms incorporate engagement signals--such as likes and upvotes--into their content ranking systems and interface design. These signals are designed to boost user engagement. However, they can unintentionally elevate content that is less inclusive and may not support normatively desirable behavior. This issue becomes especially concerning when toxic content correlates strongly with popularity indicators such as likes and upvotes. In this study, we propose structured prosocial feedback as a complementary signal to likes and upvotes--one that highlights content quality based on normative criteria to help address the limitations of conventional engagement signals. We begin by designing and implementing a machine learning feedback system powered by a large language model (LLM), which evaluates user comments based on principles of positive psychology, such as individual well-being, constructive social media use, and character strengths. We then conduct a pre-registered user study to examine how existing peer-based and the new expert-based feedback interact to shape users' selection of comments in a social media setting. Results show that peer feedback increases conformity to popularity cues, while expert feedback shifts preferences toward normatively higher-quality content. Moreover, incorporating expert feedback alongside peer evaluations improves alignment with expert assessments and contributes to a less toxic community environment. This illustrates the added value of normative cues--such as expert scores generated by LLMs using psychological rubrics--and underscores the potential benefits of incorporating such signals into platform feedback systems to foster healthier online environments.
BizChat: Scaffolding AI-Powered Business Planning for Small Business Owners Across Digital Skill Levels
Generative AI can help small business owners automate tasks, increase efficiency, and improve their bottom line. However, despite the seemingly intuitive design of systems like ChatGPT, significant barriers remain for those less comfortable with technology. To address these disparities, prior work highlights accessory skills -- beyond prompt engineering -- users must master to successfully adopt generative AI including keyboard shortcuts, editing skills, file conversions, and browser literacy. Building on a design workshop series and 15 interviews with small businesses, we introduce BizChat, a large language model (LLM)-powered web application that helps business owners across digital skills levels write their business plan -- an essential but often neglected document. To do so, BizChat's interface embodies three design considerations inspired by learning sciences: ensuring accessibility to users with less digital skills while maintaining extensibility to power users ("low-floor-high-ceiling"), providing in situ micro-learning to support entrepreneurial education ("just-in-time learning"), and framing interaction around business activities ("contextualized technology introduction"). We conclude with plans for a future BizChat deployment.
comment: 4 pages, 1 figure, CHIWORK '25 Adjunct, June 23-25, 2025, Amsterdam, Netherlands
Towards user-centered interactive medical image segmentation in VR with an assistive AI agent
Crucial in disease analysis and surgical planning, manual segmentation of volumetric medical scans (e.g. MRI, CT) is laborious, error-prone, and challenging to master, while fully automatic algorithms can benefit from user feedback. Therefore, with the complementary power of the latest radiological AI foundation models and virtual reality (VR)'s intuitive data interaction, we propose SAMIRA, a novel conversational AI agent that assists users with localizing, segmenting, and visualizing 3D medical concepts in VR. Through speech-based interaction, the agent helps users understand radiological features, locate clinical targets, and generate segmentation masks that can be refined with just a few point prompts. The system also supports true-to-scale 3D visualization of segmented pathology to enhance patient-specific anatomical understanding. Furthermore, to determine the optimal interaction paradigm under near-far attention-switching for refining segmentation masks in an immersive, human-in-the-loop workflow, we compare VR controller pointing, head pointing, and eye tracking as input modes. With a user study, evaluations demonstrated a high usability score (SUS=90.0 $\pm$ 9.0), low overall task load, as well as strong support for the proposed VR system's guidance, training potential, and integration of AI in radiological segmentation tasks.
Theatrical Language Processing: Exploring AI-Augmented Improvisational Acting and Scriptwriting with LLMs
The increasing convergence of artificial intelligence has opened new avenues, including its emerging role in enhancing creativity. It is reshaping traditional creative practices such as actor improvisation, which often struggles with predictable patterns, limited interaction, and a lack of engaging stimuli. In this paper, we introduce a new concept, Theatrical Language Processing (TLP), and an AI-driven creativity support tool, Scribble.ai, designed to augment actors' creative expression and spontaneity through interactive practice. We conducted a user study involving tests and interviews with fourteen participants. Our findings indicate that: (1) Actors expanded their creativity when faced with AI-produced irregular scenarios; (2) The AI's unpredictability heightened their problem-solving skills, specifically in interpreting unfamiliar situations; (3) However, AI often generated excessively detailed scripts, which limited interpretive freedom and hindered subtext exploration. Based on these findings, we discuss the new potential in enhancing creative expressions in film and theater studies through an AI-driven tool.
comment: ISEA2025 (30th International Symposium on Electronic/Emerging Art)
MapExplorer: New Content Generation from Low-Dimensional Visualizations
Low-dimensional visualizations, or "projection maps," are widely used in scientific and creative domains to interpret large-scale and complex datasets. These visualizations not only aid in understanding existing knowledge spaces but also implicitly guide exploration into unknown areas. Although techniques such as t-SNE and UMAP can generate these maps, there exists no systematic method for leveraging them to generate new content. To address this, we introduce MapExplorer, a novel knowledge discovery task that translates coordinates within any projection map into coherent, contextually aligned textual content. This allows users to interactively explore and uncover insights embedded in the maps. To evaluate the performance of MapExplorer methods, we propose Atometric, a fine-grained metric inspired by ROUGE that quantifies logical coherence and alignment between generated and reference text. Experiments on diverse datasets demonstrate the versatility of MapExplorer in generating scientific hypotheses, crafting synthetic personas, and devising strategies for attacking large language models-even with simple baseline methods. By bridging visualization and generation, our work highlights the potential of MapExplorer to enable intuitive human-AI collaboration in large-scale data exploration.
LLM A*: Human in the Loop Large Language Models Enabled A* Search for Robotics
This research focuses on how Large Language Models (LLMs) can help with (path) planning for mobile embodied agents such as robots, in a human-in-the-loop and interactive manner. A novel framework named LLM A*, aims to leverage the commonsense of LLMs, and the utility-optimal A* is proposed to facilitate few-shot near-optimal path planning. Prompts are used for two main purposes: 1) to provide LLMs with essential information like environments, costs, heuristics, etc.; 2) to communicate human feedback on intermediate planning results to LLMs. This approach takes human feedback on board and renders the entire planning process transparent (akin to a `white box') to humans. Moreover, it facilitates code-free path planning, thereby fostering the accessibility and inclusiveness of artificial intelligence techniques to communities less proficient in coding. Comparative analysis against A* and RL demonstrates that LLM A* exhibits greater efficiency in terms of search space and achieves paths comparable to A* while outperforming RL. The interactive nature of LLM A* also makes it a promising tool for deployment in collaborative human-robot tasks. Codes and Supplemental Materials can be found at GitHub: https://github.com/speedhawk/LLM-A-.
comment: 7 figures, 8 pages
Addressing and Visualizing Misalignments in Human Task-Solving Trajectories KDD 2025
Understanding misalignments in human task-solving trajectories is critical for improving AI models trained to mimic human reasoning. This study categorizes such misalignments into three types: \textbf{(1) Lack of functions to express intent}, \textbf{(2) Inefficient action sequences}, and \textbf{(3) Incorrect intentions that cannot solve the task}. To address these issues, we first formalize and define these three types of misalignments. We then propose a heuristic algorithm to detect these misalignments in O2ARC trajectories and conduct a hierarchical and quantitative analysis of their impact. Furthermore, we introduce an intention estimation algorithm that predicts missing alignment information between user actions and inferred intentions, leveraging our formalized framework. Through trajectory alignment, we experimentally demonstrate that AI models trained on human task-solving trajectories improve performance in mimicking human reasoning. Based on hierarchical analysis and experiments, we highlight the importance of trajectory-intention alignment and demonstrate the potential of intention learning.
comment: KDD 2025 accepted
SensorChat: Answering Qualitative and Quantitative Questions during Long-Term Multimodal Sensor Interactions
Natural language interaction with sensing systems is crucial for addressing users' personal concerns and providing health-related insights into their daily lives. When a user asks a question, the system automatically analyzes the full history of sensor data, extracts relevant information, and generates an appropriate response. However, existing systems are limited to short-duration (e.g., one minute) or low-frequency (e.g., daily step count) sensor data. In addition, they struggle with quantitative questions that require precise numerical answers. In this work, we introduce SensorChat, the first end-to-end QA system designed for daily life monitoring using long-duration, high-frequency time series data. Given raw sensor signals spanning multiple days and a user-defined natural language question, SensorChat generates semantically meaningful responses that directly address user concerns. SensorChat effectively handles both quantitative questions that require numerical precision and qualitative questions that require high-level reasoning to infer subjective insights. To achieve this, SensorChat uses an innovative three-stage pipeline including question decomposition, sensor data query, and answer assembly. The first and third stages leverage Large Language Models (LLMs) to interpret human queries and generate responses. The intermediate querying stage extracts relevant information from the complete sensor data history. Real-world implementation demonstrate SensorChat's capability for real-time interactions on a cloud server while also being able to run entirely on edge platforms after quantization. Comprehensive QA evaluations show that SensorChat achieves up to 93% higher answer accuracy than state-of-the-art systems on quantitative questions. Additionally, a user study with eight volunteers highlights SensorChat's effectiveness in answering qualitative and open-ended questions.
comment: Under review
Rubikon: Intelligent Tutoring for Rubik's Cube Learning Through AR-enabled Physical Task Reconfiguration
Learning to solve a Rubik's Cube requires the learners to repeatedly practice a skill component, e.g., identifying a misplaced square and putting it back. However, for 3D physical tasks such as this, generating sufficient repeated practice opportunities for learners can be challenging, in part because it is difficult for novices to reconfigure the physical object to specific states. We propose Rubikon, an intelligent tutoring system for learning to solve the Rubik's Cube. Rubikon reduces the necessity for repeated manual configurations of the Rubik's Cube without compromising the tactile experience of handling a physical cube. The foundational design of Rubikon is an AR setup, where learners manipulate a physical cube while seeing an AR-rendered cube on a display. Rubikon automatically generates configurations of the Rubik's Cube to target learners' weaknesses and help them exercise diverse knowledge components. In a between-subjects experiment, we showed that Rubikon learners scored 25% higher on a post-test compared to baselines.
comment: DIS 2025
Computer Vision and Pattern Recognition
UWAV: Uncertainty-weighted Weakly-supervised Audio-Visual Video Parsing CVPR 2025
Audio-Visual Video Parsing (AVVP) entails the challenging task of localizing both uni-modal events (i.e., those occurring exclusively in either the visual or acoustic modality of a video) and multi-modal events (i.e., those occurring in both modalities concurrently). Moreover, the prohibitive cost of annotating training data with the class labels of all these events, along with their start and end times, imposes constraints on the scalability of AVVP techniques unless they can be trained in a weakly-supervised setting, where only modality-agnostic, video-level labels are available in the training data. To this end, recently proposed approaches seek to generate segment-level pseudo-labels to better guide model training. However, the absence of inter-segment dependencies when generating these pseudo-labels and the general bias towards predicting labels that are absent in a segment limit their performance. This work proposes a novel approach towards overcoming these weaknesses called Uncertainty-weighted Weakly-supervised Audio-visual Video Parsing (UWAV). Additionally, our innovative approach factors in the uncertainty associated with these estimated pseudo-labels and incorporates a feature mixup based training regularization for improved training. Empirical results show that UWAV outperforms state-of-the-art methods for the AVVP task on multiple metrics, across two different datasets, attesting to its effectiveness and generalizability.
comment: CVPR 2025
LightLab: Controlling Light Sources in Images with Diffusion Models
We present a simple, yet effective diffusion-based method for fine-grained, parametric control over light sources in an image. Existing relighting methods either rely on multiple input views to perform inverse rendering at inference time, or fail to provide explicit control over light changes. Our method fine-tunes a diffusion model on a small set of real raw photograph pairs, supplemented by synthetically rendered images at scale, to elicit its photorealistic prior for relighting. We leverage the linearity of light to synthesize image pairs depicting controlled light changes of either a target light source or ambient illumination. Using this data and an appropriate fine-tuning scheme, we train a model for precise illumination changes with explicit control over light intensity and color. Lastly, we show how our method can achieve compelling light editing results, and outperforms existing methods based on user preference.
comment: Project Page: https://nadmag.github.io/LightLab/
Variational Visual Question Answering ICCV 2025
Despite remarkable progress in multimodal models for Visual Question Answering (VQA), there remain major reliability concerns because the models can often be overconfident and miscalibrated, especially in out-of-distribution (OOD) settings. Plenty has been done to address such issues for unimodal models, but little work exists for multimodal cases. Here, we address unreliability in multimodal models by proposing a Variational VQA approach. Specifically, instead of fine-tuning vision-language models by using AdamW, we employ a recently proposed variational algorithm called IVON, which yields a posterior distribution over model parameters. Through extensive experiments, we show that our approach improves calibration and abstentions without sacrificing the accuracy of AdamW. For instance, compared to AdamW fine-tuning, we reduce Expected Calibration Error by more than 50% compared to the AdamW baseline and raise Coverage by 4% vs. SOTA (for a fixed risk of 1%). In the presence of distribution shifts, the performance gain is even higher, achieving 8% Coverage (@ 1% risk) improvement vs. SOTA when 50% of test cases are OOD. Overall, we present variational learning as a viable option to enhance the reliability of multimodal models.
comment: 19 pages, 16 figures, under review at ICCV 2025
Don't Forget your Inverse DDIM for Image Editing
The field of text-to-image generation has undergone significant advancements with the introduction of diffusion models. Nevertheless, the challenge of editing real images persists, as most methods are either computationally intensive or produce poor reconstructions. This paper introduces SAGE (Self-Attention Guidance for image Editing) - a novel technique leveraging pre-trained diffusion models for image editing. SAGE builds upon the DDIM algorithm and incorporates a novel guidance mechanism utilizing the self-attention layers of the diffusion U-Net. This mechanism computes a reconstruction objective based on attention maps generated during the inverse DDIM process, enabling efficient reconstruction of unedited regions without the need to precisely reconstruct the entire input image. Thus, SAGE directly addresses the key challenges in image editing. The superiority of SAGE over other methods is demonstrated through quantitative and qualitative evaluations and confirmed by a statistically validated comprehensive user study, in which all 47 surveyed users preferred SAGE over competing methods. Additionally, SAGE ranks as the top-performing method in seven out of 10 quantitative analyses and secures second and third places in the remaining three.
comment: 12 pages, 12 figures, code available at https://guillermogotre.github.io/sage/
BLIP3-o: A Family of Fully Open Unified Multimodal Models-Architecture, Training and Dataset
Unifying image understanding and generation has gained growing attention in recent research on multimodal models. Although design choices for image understanding have been extensively studied, the optimal model architecture and training recipe for a unified framework with image generation remain underexplored. Motivated by the strong potential of autoregressive and diffusion models for high-quality generation and scalability, we conduct a comprehensive study of their use in unified multimodal settings, with emphasis on image representations, modeling objectives, and training strategies. Grounded in these investigations, we introduce a novel approach that employs a diffusion transformer to generate semantically rich CLIP image features, in contrast to conventional VAE-based representations. This design yields both higher training efficiency and improved generative quality. Furthermore, we demonstrate that a sequential pretraining strategy for unified models-first training on image understanding and subsequently on image generation-offers practical advantages by preserving image understanding capability while developing strong image generation ability. Finally, we carefully curate a high-quality instruction-tuning dataset BLIP3o-60k for image generation by prompting GPT-4o with a diverse set of captions covering various scenes, objects, human gestures, and more. Building on our innovative model design, training recipe, and datasets, we develop BLIP3-o, a suite of state-of-the-art unified multimodal models. BLIP3-o achieves superior performance across most of the popular benchmarks spanning both image understanding and generation tasks. To facilitate future research, we fully open-source our models, including code, model weights, training scripts, and pretraining and instruction tuning datasets.
Meta-learning Slice-to-Volume Reconstruction in Fetal Brain MRI using Implicit Neural Representations
High-resolution slice-to-volume reconstruction (SVR) from multiple motion-corrupted low-resolution 2D slices constitutes a critical step in image-based diagnostics of moving subjects, such as fetal brain Magnetic Resonance Imaging (MRI). Existing solutions struggle with image artifacts and severe subject motion or require slice pre-alignment to achieve satisfying reconstruction performance. We propose a novel SVR method to enable fast and accurate MRI reconstruction even in cases of severe image and motion corruption. Our approach performs motion correction, outlier handling, and super-resolution reconstruction with all operations being entirely based on implicit neural representations. The model can be initialized with task-specific priors through fully self-supervised meta-learning on either simulated or real-world data. In extensive experiments including over 480 reconstructions of simulated and clinical MRI brain data from different centers, we prove the utility of our method in cases of severe subject motion and image artifacts. Our results demonstrate improvements in reconstruction quality, especially in the presence of severe motion, compared to state-of-the-art methods, and up to 50% reduction in reconstruction time.
comment: 10 pages, 6 figures
Using Foundation Models as Pseudo-Label Generators for Pre-Clinical 4D Cardiac CT Segmentation
Cardiac image segmentation is an important step in many cardiac image analysis and modeling tasks such as motion tracking or simulations of cardiac mechanics. While deep learning has greatly advanced segmentation in clinical settings, there is limited work on pre-clinical imaging, notably in porcine models, which are often used due to their anatomical and physiological similarity to humans. However, differences between species create a domain shift that complicates direct model transfer from human to pig data. Recently, foundation models trained on large human datasets have shown promise for robust medical image segmentation; yet their applicability to porcine data remains largely unexplored. In this work, we investigate whether foundation models can generate sufficiently accurate pseudo-labels for pig cardiac CT and propose a simple self-training approach to iteratively refine these labels. Our method requires no manually annotated pig data, relying instead on iterative updates to improve segmentation quality. We demonstrate that this self-training process not only enhances segmentation accuracy but also smooths out temporal inconsistencies across consecutive frames. Although our results are encouraging, there remains room for improvement, for example by incorporating more sophisticated self-training strategies and by exploring additional foundation models and other cardiac imaging technologies.
comment: accepted at FIMH 2025
Camera-Only 3D Panoptic Scene Completion for Autonomous Driving through Differentiable Object Shapes CVPR 2025
Autonomous vehicles need a complete map of their surroundings to plan and act. This has sparked research into the tasks of 3D occupancy prediction, 3D scene completion, and 3D panoptic scene completion, which predict a dense map of the ego vehicle's surroundings as a voxel grid. Scene completion extends occupancy prediction by predicting occluded regions of the voxel grid, and panoptic scene completion further extends this task by also distinguishing object instances within the same class; both aspects are crucial for path planning and decision-making. However, 3D panoptic scene completion is currently underexplored. This work introduces a novel framework for 3D panoptic scene completion that extends existing 3D semantic scene completion models. We propose an Object Module and Panoptic Module that can easily be integrated with 3D occupancy and scene completion methods presented in the literature. Our approach leverages the available annotations in occupancy benchmarks, allowing individual object shapes to be learned as a differentiable problem. The code is available at https://github.com/nicolamarinello/OffsetOcc .
comment: Accepted to CVPR 2025 Workshop on Autonomous Driving
Contactless Cardiac Pulse Monitoring Using Event Cameras
Time event cameras are a novel technology for recording scene information at extremely low latency and with low power consumption. Event cameras output a stream of events that encapsulate pixel-level light intensity changes within the scene, capturing information with a higher dynamic range and temporal resolution than traditional cameras. This study investigates the contact-free reconstruction of an individual's cardiac pulse signal from time event recording of their face using a supervised convolutional neural network (CNN) model. An end-to-end model is trained to extract the cardiac signal from a two-dimensional representation of the event stream, with model performance evaluated based on the accuracy of the calculated heart rate. The experimental results confirm that physiological cardiac information in the facial region is effectively preserved within the event stream, showcasing the potential of this novel sensor for remote heart rate monitoring. The model trained on event frames achieves a root mean square error (RMSE) of 3.32 beats per minute (bpm) compared to the RMSE of 2.92 bpm achieved by the baseline model trained on standard camera frames. Furthermore, models trained on event frames generated at 60 and 120 FPS outperformed the 30 FPS standard camera results, achieving an RMSE of 2.54 and 2.13 bpm, respectively.
comment: This paper is a preprint of a paper submitted to IEEE Access and is currently under review
Conformal Bounds on Full-Reference Image Quality for Imaging Inverse Problems
In imaging inverse problems, we would like to know how close the recovered image is to the true image in terms of full-reference image quality (FRIQ) metrics like PSNR, SSIM, LPIPS, etc. This is especially important in safety-critical applications like medical imaging, where knowing that, say, the SSIM was poor could potentially avoid a costly misdiagnosis. But since we don't know the true image, computing FRIQ is non-trivial. In this work, we combine conformal prediction with approximate posterior sampling to construct bounds on FRIQ that are guaranteed to hold up to a user-specified error probability. We demonstrate our approach on image denoising and accelerated magnetic resonance imaging (MRI) problems. Code is available at https://github.com/jwen307/quality_uq.
Spec2VolCAMU-Net: A Spectrogram-to-Volume Model for EEG-to-fMRI Reconstruction based on Multi-directional Time-Frequency Convolutional Attention Encoder and Vision-Mamba U-Net
High-resolution functional magnetic resonance imaging (fMRI) is essential for mapping human brain activity; however, it remains costly and logistically challenging. If comparable volumes could be generated directly from widely available scalp electroencephalography (EEG), advanced neuroimaging would become significantly more accessible. Existing EEG-to-fMRI generators rely on plain CNNs that fail to capture cross-channel time-frequency cues or on heavy transformer/GAN decoders that strain memory and stability. We propose Spec2VolCAMU-Net, a lightweight spectrogram-to-volume generator that confronts these issues via a Multi-directional Time-Frequency Convolutional Attention Encoder, stacking temporal, spectral and joint convolutions with self-attention, and a Vision-Mamba U-Net decoder whose linear-time state-space blocks enable efficient long-range spatial modelling. Trained end-to-end with a hybrid SSI-MSE loss, Spec2VolCAMU-Net achieves state-of-the-art fidelity on three public benchmarks, recording SSIMs of 0.693 on NODDI, 0.725 on Oddball and 0.788 on CN-EPFL, representing improvements of 14.5%, 14.9%, and 16.9% respectively over previous best SSIM scores. Furthermore, it achieves competitive PSNR scores, particularly excelling on the CN-EPFL dataset with a 4.6% improvement over the previous best PSNR, thus striking a better balance in reconstruction quality. The proposed model is lightweight and efficient, making it suitable for real-time applications in clinical and research settings. The code is available at https://github.com/hdy6438/Spec2VolCAMU-Net.
Flash-VL 2B: Optimizing Vision-Language Model Performance for Ultra-Low Latency and High Throughput
In this paper, we introduce Flash-VL 2B, a novel approach to optimizing Vision-Language Models (VLMs) for real-time applications, targeting ultra-low latency and high throughput without sacrificing accuracy. Leveraging advanced architectural enhancements and efficient computational strategies, Flash-VL 2B is designed to maximize throughput by reducing processing time while maintaining competitive performance across multiple vision-language benchmarks. Our approach includes tailored architectural choices, token compression mechanisms, data curation, training schemes, and a novel image processing technique called implicit semantic stitching that effectively balances computational load and model performance. Through extensive evaluations on 11 standard VLM benchmarks, we demonstrate that Flash-VL 2B achieves state-of-the-art results in both speed and accuracy, making it a promising solution for deployment in resource-constrained environments and large-scale real-time applications.
comment: 18 pages, 7 figures
Denoising and Alignment: Rethinking Domain Generalization for Multimodal Face Anti-Spoofing
Face Anti-Spoofing (FAS) is essential for the security of facial recognition systems in diverse scenarios such as payment processing and surveillance. Current multimodal FAS methods often struggle with effective generalization, mainly due to modality-specific biases and domain shifts. To address these challenges, we introduce the \textbf{M}ulti\textbf{m}odal \textbf{D}enoising and \textbf{A}lignment (\textbf{MMDA}) framework. By leveraging the zero-shot generalization capability of CLIP, the MMDA framework effectively suppresses noise in multimodal data through denoising and alignment mechanisms, thereby significantly enhancing the generalization performance of cross-modal alignment. The \textbf{M}odality-\textbf{D}omain Joint \textbf{D}ifferential \textbf{A}ttention (\textbf{MD2A}) module in MMDA concurrently mitigates the impacts of domain and modality noise by refining the attention mechanism based on extracted common noise features. Furthermore, the \textbf{R}epresentation \textbf{S}pace \textbf{S}oft (\textbf{RS2}) Alignment strategy utilizes the pre-trained CLIP model to align multi-domain multimodal data into a generalized representation space in a flexible manner, preserving intricate representations and enhancing the model's adaptability to various unseen conditions. We also design a \textbf{U}-shaped \textbf{D}ual \textbf{S}pace \textbf{A}daptation (\textbf{U-DSA}) module to enhance the adaptability of representations while maintaining generalization performance. These improvements not only enhance the framework's generalization capabilities but also boost its ability to represent complex representations. Our experimental results on four benchmark datasets under different evaluation protocols demonstrate that the MMDA framework outperforms existing state-of-the-art methods in terms of cross-domain generalization and multimodal detection accuracy. The code will be released soon.
A 2D Semantic-Aware Position Encoding for Vision Transformers
Vision transformers have demonstrated significant advantages in computer vision tasks due to their ability to capture long-range dependencies and contextual relationships through self-attention. However, existing position encoding techniques, which are largely borrowed from natural language processing, fail to effectively capture semantic-aware positional relationships between image patches. Traditional approaches like absolute position encoding and relative position encoding primarily focus on 1D linear position relationship, often neglecting the semantic similarity between distant yet contextually related patches. These limitations hinder model generalization, translation equivariance, and the ability to effectively handle repetitive or structured patterns in images. In this paper, we propose 2-Dimensional Semantic-Aware Position Encoding ($\text{SaPE}^2$), a novel position encoding method with semantic awareness that dynamically adapts position representations by leveraging local content instead of fixed linear position relationship or spatial coordinates. Our method enhances the model's ability to generalize across varying image resolutions and scales, improves translation equivariance, and better aggregates features for visually similar but spatially distant patches. By integrating $\text{SaPE}^2$ into vision transformers, we bridge the gap between position encoding and perceptual similarity, thereby improving performance on computer vision tasks.
comment: 14 pages, 4 figures, 3 tables
Beyond Pixels: Leveraging the Language of Soccer to Improve Spatio-Temporal Action Detection in Broadcast Videos
State-of-the-art spatio-temporal action detection (STAD) methods show promising results for extracting soccer events from broadcast videos. However, when operated in the high-recall, low-precision regime required for exhaustive event coverage in soccer analytics, their lack of contextual understanding becomes apparent: many false positives could be resolved by considering a broader sequence of actions and game-state information. In this work, we address this limitation by reasoning at the game level and improving STAD through the addition of a denoising sequence transduction task. Sequences of noisy, context-free player-centric predictions are processed alongside clean game state information using a Transformer-based encoder-decoder model. By modeling extended temporal context and reasoning jointly over team-level dynamics, our method leverages the "language of soccer" - its tactical regularities and inter-player dependencies - to generate "denoised" sequences of actions. This approach improves both precision and recall in low-confidence regimes, enabling more reliable event extraction from broadcast video and complementing existing pixel-based methods.
comment: 12 pages, submitted to Advanced Concepts for Intelligent Vision Systems 2025
MrTrack: Register Mamba for Needle Tracking with Rapid Reciprocating Motion during Ultrasound-Guided Aspiration Biopsy MICCAI 2025
Ultrasound-guided fine needle aspiration (FNA) biopsy is a common minimally invasive diagnostic procedure. However, an aspiration needle tracker addressing rapid reciprocating motion is still missing. MrTrack, an aspiration needle tracker with a mamba-based register mechanism, is proposed. MrTrack leverages a Mamba-based register extractor to sequentially distill global context from each historical search map, storing these temporal cues in a register bank. The Mamba-based register retriever then retrieves temporal prompts from the register bank to provide external cues when current vision features are temporarily unusable due to rapid reciprocating motion and imaging degradation. A self-supervised register diversify loss is proposed to encourage feature diversity and dimension independence within the learned register, mitigating feature collapse. Comprehensive experiments conducted on both motorized and manual aspiration datasets demonstrate that MrTrack not only outperforms state-of-the-art trackers in accuracy and robustness but also achieves superior inference efficiency.
comment: Early Accepted by MICCAI 2025
Endo-CLIP: Progressive Self-Supervised Pre-training on Raw Colonoscopy Records MICCAI 2025
Pre-training on image-text colonoscopy records offers substantial potential for improving endoscopic image analysis, but faces challenges including non-informative background images, complex medical terminology, and ambiguous multi-lesion descriptions. We introduce Endo-CLIP, a novel self-supervised framework that enhances Contrastive Language-Image Pre-training (CLIP) for this domain. Endo-CLIP's three-stage framework--cleansing, attunement, and unification--addresses these challenges by (1) removing background frames, (2) leveraging large language models to extract clinical attributes for fine-grained contrastive learning, and (3) employing patient-level cross-attention to resolve multi-polyp ambiguities. Extensive experiments demonstrate that Endo-CLIP significantly outperforms state-of-the-art pre-training methods in zero-shot and few-shot polyp detection and classification, paving the way for more accurate and clinically relevant endoscopic analysis.
comment: Early accepted to MICCAI 2025
Efficient LiDAR Reflectance Compression via Scanning Serialization
Reflectance attributes in LiDAR point clouds provide essential information for downstream tasks but remain underexplored in neural compression methods. To address this, we introduce SerLiC, a serialization-based neural compression framework to fully exploit the intrinsic characteristics of LiDAR reflectance. SerLiC first transforms 3D LiDAR point clouds into 1D sequences via scan-order serialization, offering a device-centric perspective for reflectance analysis. Each point is then tokenized into a contextual representation comprising its sensor scanning index, radial distance, and prior reflectance, for effective dependencies exploration. For efficient sequential modeling, Mamba is incorporated with a dual parallelization scheme, enabling simultaneous autoregressive dependency capture and fast processing. Extensive experiments demonstrate that SerLiC attains over 2x volume reduction against the original reflectance data, outperforming the state-of-the-art method by up to 22% reduction of compressed bits while using only 2% of its parameters. Moreover, a lightweight version of SerLiC achieves > 10 fps (frames per second) with just 111K parameters, which is attractive for real-world applications.
MoRAL: Motion-aware Multi-Frame 4D Radar and LiDAR Fusion for Robust 3D Object Detection
Reliable autonomous driving systems require accurate detection of traffic participants. To this end, multi-modal fusion has emerged as an effective strategy. In particular, 4D radar and LiDAR fusion methods based on multi-frame radar point clouds have demonstrated the effectiveness in bridging the point density gap. However, they often neglect radar point clouds' inter-frame misalignment caused by object movement during accumulation and do not fully exploit the object dynamic information from 4D radar. In this paper, we propose MoRAL, a motion-aware multi-frame 4D radar and LiDAR fusion framework for robust 3D object detection. First, a Motion-aware Radar Encoder (MRE) is designed to compensate for inter-frame radar misalignment from moving objects. Later, a Motion Attention Gated Fusion (MAGF) module integrate radar motion features to guide LiDAR features to focus on dynamic foreground objects. Extensive evaluations on the View-of-Delft (VoD) dataset demonstrate that MoRAL outperforms existing methods, achieving the highest mAP of 73.30% in the entire area and 88.68% in the driving corridor. Notably, our method also achieves the best AP of 69.67% for pedestrians in the entire area and 96.25% for cyclists in the driving corridor.
FaceShield: Explainable Face Anti-Spoofing with Multimodal Large Language Models
Face anti-spoofing (FAS) is crucial for protecting facial recognition systems from presentation attacks. Previous methods approached this task as a classification problem, lacking interpretability and reasoning behind the predicted results. Recently, multimodal large language models (MLLMs) have shown strong capabilities in perception, reasoning, and decision-making in visual tasks. However, there is currently no universal and comprehensive MLLM and dataset specifically designed for FAS task. To address this gap, we propose FaceShield, a MLLM for FAS, along with the corresponding pre-training and supervised fine-tuning (SFT) datasets, FaceShield-pre10K and FaceShield-sft45K. FaceShield is capable of determining the authenticity of faces, identifying types of spoofing attacks, providing reasoning for its judgments, and detecting attack areas. Specifically, we employ spoof-aware vision perception (SAVP) that incorporates both the original image and auxiliary information based on prior knowledge. We then use an prompt-guided vision token masking (PVTM) strategy to random mask vision tokens, thereby improving the model's generalization ability. We conducted extensive experiments on three benchmark datasets, demonstrating that FaceShield significantly outperforms previous deep learning models and general MLLMs on four FAS tasks, i.e., coarse-grained classification, fine-grained classification, reasoning, and attack localization. Our instruction datasets, protocols, and codes will be released soon.
Sparse Point Cloud Patches Rendering via Splitting 2D Gaussians CVPR 2025
Current learning-based methods predict NeRF or 3D Gaussians from point clouds to achieve photo-realistic rendering but still depend on categorical priors, dense point clouds, or additional refinements. Hence, we introduce a novel point cloud rendering method by predicting 2D Gaussians from point clouds. Our method incorporates two identical modules with an entire-patch architecture enabling the network to be generalized to multiple datasets. The module normalizes and initializes the Gaussians utilizing the point cloud information including normals, colors and distances. Then, splitting decoders are employed to refine the initial Gaussians by duplicating them and predicting more accurate results, making our methodology effectively accommodate sparse point clouds as well. Once trained, our approach exhibits direct generalization to point clouds across different categories. The predicted Gaussians are employed directly for rendering without additional refinement on the rendered images, retaining the benefits of 2D Gaussians. We conduct extensive experiments on various datasets, and the results demonstrate the superiority and generalization of our method, which achieves SOTA performance. The code is available at https://github.com/murcherful/GauPCRender}{https://github.com/murcherful/GauPCRender.
comment: CVPR 2025 Accepted
FreeDriveRF: Monocular RGB Dynamic NeRF without Poses for Autonomous Driving via Point-Level Dynamic-Static Decoupling ICRA2025
Dynamic scene reconstruction for autonomous driving enables vehicles to perceive and interpret complex scene changes more precisely. Dynamic Neural Radiance Fields (NeRFs) have recently shown promising capability in scene modeling. However, many existing methods rely heavily on accurate poses inputs and multi-sensor data, leading to increased system complexity. To address this, we propose FreeDriveRF, which reconstructs dynamic driving scenes using only sequential RGB images without requiring poses inputs. We innovatively decouple dynamic and static parts at the early sampling level using semantic supervision, mitigating image blurring and artifacts. To overcome the challenges posed by object motion and occlusion in monocular camera, we introduce a warped ray-guided dynamic object rendering consistency loss, utilizing optical flow to better constrain the dynamic modeling process. Additionally, we incorporate estimated dynamic flow to constrain the pose optimization process, improving the stability and accuracy of unbounded scene reconstruction. Extensive experiments conducted on the KITTI and Waymo datasets demonstrate the superior performance of our method in dynamic scene modeling for autonomous driving.
comment: 7 pages, 9 figures, accepted by ICRA2025
UMotion: Uncertainty-driven Human Motion Estimation from Inertial and Ultra-wideband Units CVPR 2025
Sparse wearable inertial measurement units (IMUs) have gained popularity for estimating 3D human motion. However, challenges such as pose ambiguity, data drift, and limited adaptability to diverse bodies persist. To address these issues, we propose UMotion, an uncertainty-driven, online fusing-all state estimation framework for 3D human shape and pose estimation, supported by six integrated, body-worn ultra-wideband (UWB) distance sensors with IMUs. UWB sensors measure inter-node distances to infer spatial relationships, aiding in resolving pose ambiguities and body shape variations when combined with anthropometric data. Unfortunately, IMUs are prone to drift, and UWB sensors are affected by body occlusions. Consequently, we develop a tightly coupled Unscented Kalman Filter (UKF) framework that fuses uncertainties from sensor data and estimated human motion based on individual body shape. The UKF iteratively refines IMU and UWB measurements by aligning them with uncertain human motion constraints in real-time, producing optimal estimates for each. Experiments on both synthetic and real-world datasets demonstrate the effectiveness of UMotion in stabilizing sensor data and the improvement over state of the art in pose accuracy.
comment: Accepted by CVPR 2025
FedSaaS: Class-Consistency Federated Semantic Segmentation via Global Prototype Supervision and Local Adversarial Harmonization
Federated semantic segmentation enables pixel-level classification in images through collaborative learning while maintaining data privacy. However, existing research commonly overlooks the fine-grained class relationships within the semantic space when addressing heterogeneous problems, particularly domain shift. This oversight results in ambiguities between class representation. To overcome this challenge, we propose a novel federated segmentation framework that strikes class consistency, termed FedSaaS. Specifically, we introduce class exemplars as a criterion for both local- and global-level class representations. On the server side, the uploaded class exemplars are leveraged to model class prototypes, which supervise global branch of clients, ensuring alignment with global-level representation. On the client side, we incorporate an adversarial mechanism to harmonize contributions of global and local branches, leading to consistent output. Moreover, multilevel contrastive losses are employed on both sides to enforce consistency between two-level representations in the same semantic space. Extensive experiments on several driving scene segmentation datasets demonstrate that our framework outperforms state-of-the-art methods, significantly improving average segmentation accuracy and effectively addressing the class-consistency representation problem.
Examining Deployment and Refinement of the VIOLA-AI Intracranial Hemorrhage Model Using an Interactive NeoMedSys Platform
Background: There are many challenges and opportunities in the clinical deployment of AI tools in radiology. The current study describes a radiology software platform called NeoMedSys that can enable efficient deployment and refinements of AI models. We evaluated the feasibility and effectiveness of running NeoMedSys for three months in real-world clinical settings and focused on improvement performance of an in-house developed AI model (VIOLA-AI) designed for intracranial hemorrhage (ICH) detection. Methods: NeoMedSys integrates tools for deploying, testing, and optimizing AI models with a web-based medical image viewer, annotation system, and hospital-wide radiology information systems. A pragmatic investigation was deployed using clinical cases of patients presenting to the largest Emergency Department in Norway (site-1) with suspected traumatic brain injury (TBI) or patients with suspected stroke (site-2). We assessed ICH classification performance as VIOLA-AI encountered new data and underwent pre-planned model retraining. Performance metrics included sensitivity, specificity, accuracy, and the area under the receiver operating characteristic curve (AUC). Results: NeoMedSys facilitated iterative improvements in the AI model, significantly enhancing its diagnostic accuracy. Automated bleed detection and segmentation were reviewed in near real-time to facilitate re-training VIOLA-AI. The iterative refinement process yielded a marked improvement in classification sensitivity, rising to 90.3% (from 79.2%), and specificity that reached 89.3% (from 80.7%). The bleed detection ROC analysis for the entire sample demonstrated a high area-under-the-curve (AUC) of 0.949 (from 0.873). Model refinement stages were associated with notable gains, highlighting the value of real-time radiologist feedback.
comment: 19 pages, 11 figures, on submission to BMC Methods
Text-driven Motion Generation: Overview, Challenges and Directions
Text-driven motion generation offers a powerful and intuitive way to create human movements directly from natural language. By removing the need for predefined motion inputs, it provides a flexible and accessible approach to controlling animated characters. This makes it especially useful in areas like virtual reality, gaming, human-computer interaction, and robotics. In this review, we first revisit the traditional perspective on motion synthesis, where models focused on predicting future poses from observed initial sequences, often conditioned on action labels. We then provide a comprehensive and structured survey of modern text-to-motion generation approaches, categorizing them from two complementary perspectives: (i) architectural, dividing methods into VAE-based, diffusion-based, and hybrid models; and (ii) motion representation, distinguishing between discrete and continuous motion generation strategies. In addition, we explore the most widely used datasets, evaluation methods, and recent benchmarks that have shaped progress in this area. With this survey, we aim to capture where the field currently stands, bring attention to its key challenges and limitations, and highlight promising directions for future exploration. We hope this work offers a valuable starting point for researchers and practitioners working to push the boundaries of language-driven human motion synthesis.
comment: 17 pages, 5 tables
MAKE: Multi-Aspect Knowledge-Enhanced Vision-Language Pretraining for Zero-shot Dermatological Assessment MICCAI2025
Dermatological diagnosis represents a complex multimodal challenge that requires integrating visual features with specialized clinical knowledge. While vision-language pretraining (VLP) has advanced medical AI, its effectiveness in dermatology is limited by text length constraints and the lack of structured texts. In this paper, we introduce MAKE, a Multi-Aspect Knowledge-Enhanced vision-language pretraining framework for zero-shot dermatological tasks. Recognizing that comprehensive dermatological descriptions require multiple knowledge aspects that exceed standard text constraints, our framework introduces: (1) a multi-aspect contrastive learning strategy that decomposes clinical narratives into knowledge-enhanced sub-texts through large language models, (2) a fine-grained alignment mechanism that connects subcaptions with diagnostically relevant image features, and (3) a diagnosis-guided weighting scheme that adaptively prioritizes different sub-captions based on clinical significance prior. Through pretraining on 403,563 dermatological image-text pairs collected from education resources, MAKE significantly outperforms state-of-the-art VLP models on eight datasets across zero-shot skin disease classification, concept annotation, and cross-modal retrieval tasks. Our code will be made publicly available at https: //github.com/SiyuanYan1/MAKE.
comment: MICCAI2025 early acceptance; First two authors contribute equally
RobustSpring: Benchmarking Robustness to Image Corruptions for Optical Flow, Scene Flow and Stereo
Standard benchmarks for optical flow, scene flow, and stereo vision algorithms generally focus on model accuracy rather than robustness to image corruptions like noise or rain. Hence, the resilience of models to such real-world perturbations is largely unquantified. To address this, we present RobustSpring, a comprehensive dataset and benchmark for evaluating robustness to image corruptions for optical flow, scene flow, and stereo models. RobustSpring applies 20 different image corruptions, including noise, blur, color changes, quality degradations, and weather distortions, in a time-, stereo-, and depth-consistent manner to the high-resolution Spring dataset, creating a suite of 20,000 corrupted images that reflect challenging conditions. RobustSpring enables comparisons of model robustness via a new corruption robustness metric. Integration with the Spring benchmark enables public two-axis evaluations of both accuracy and robustness. We benchmark a curated selection of initial models, observing that accurate models are not necessarily robust and that robustness varies widely by corruption type. RobustSpring is a new computer vision benchmark that treats robustness as a first-class citizen to foster models that combine accuracy with resilience. It will be available at https://spring-benchmark.org.
Marigold: Affordable Adaptation of Diffusion-Based Image Generators for Image Analysis CVPR 2024
The success of deep learning in computer vision over the past decade has hinged on large labeled datasets and strong pretrained models. In data-scarce settings, the quality of these pretrained models becomes crucial for effective transfer learning. Image classification and self-supervised learning have traditionally been the primary methods for pretraining CNNs and transformer-based architectures. Recently, the rise of text-to-image generative models, particularly those using denoising diffusion in a latent space, has introduced a new class of foundational models trained on massive, captioned image datasets. These models' ability to generate realistic images of unseen content suggests they possess a deep understanding of the visual world. In this work, we present Marigold, a family of conditional generative models and a fine-tuning protocol that extracts the knowledge from pretrained latent diffusion models like Stable Diffusion and adapts them for dense image analysis tasks, including monocular depth estimation, surface normals prediction, and intrinsic decomposition. Marigold requires minimal modification of the pre-trained latent diffusion model's architecture, trains with small synthetic datasets on a single GPU over a few days, and demonstrates state-of-the-art zero-shot generalization. Project page: https://marigoldcomputervision.github.io
comment: Journal extension of our CVPR 2024 paper, featuring new tasks, improved efficiency, high-resolution capabilities, and enhanced accessibility
APR-Transformer: Initial Pose Estimation for Localization in Complex Environments through Absolute Pose Regression
Precise initialization plays a critical role in the performance of localization algorithms, especially in the context of robotics, autonomous driving, and computer vision. Poor localization accuracy is often a consequence of inaccurate initial poses, particularly noticeable in GNSS-denied environments where GPS signals are primarily relied upon for initialization. Recent advances in leveraging deep neural networks for pose regression have led to significant improvements in both accuracy and robustness, especially in estimating complex spatial relationships and orientations. In this paper, we introduce APR-Transformer, a model architecture inspired by state-of-the-art methods, which predicts absolute pose (3D position and 3D orientation) using either image or LiDAR data. We demonstrate that our proposed method achieves state-of-the-art performance on established benchmark datasets such as the Radar Oxford Robot-Car and DeepLoc datasets. Furthermore, we extend our experiments to include our custom complex APR-BeIntelli dataset. Additionally, we validate the reliability of our approach in GNSS-denied environments by deploying the model in real-time on an autonomous test vehicle. This showcases the practical feasibility and effectiveness of our approach. The source code is available at:https://github.com/GT-ARC/APR-Transformer.
comment: 8 pages with 6 figures
GreenFactory: Ensembling Zero-Cost Proxies to Estimate Performance of Neural Networks
Determining the performance of a Deep Neural Network during Neural Architecture Search processes is essential for identifying optimal architectures and hyperparameters. Traditionally, this process requires training and evaluation of each network, which is time-consuming and resource-intensive. Zero-cost proxies estimate performance without training, serving as an alternative to traditional training. However, recent proxies often lack generalization across diverse scenarios and provide only relative rankings rather than predicted accuracies. To address these limitations, we propose GreenFactory, an ensemble of zero-cost proxies that leverages a random forest regressor to combine multiple predictors' strengths and directly predict model test accuracy. We evaluate GreenFactory on NATS-Bench, achieving robust results across multiple datasets. Specifically, GreenFactory achieves high Kendall correlations on NATS-Bench-SSS, indicating substantial agreement between its predicted scores and actual performance: 0.907 for CIFAR-10, 0.945 for CIFAR-100, and 0.920 for ImageNet-16-120. Similarly, on NATS-Bench-TSS, we achieve correlations of 0.921 for CIFAR-10, 0.929 for CIFAR-100, and 0.908 for ImageNet-16-120, showcasing its reliability in both search spaces.
Unsupervised Multiview Contrastive Language-Image Joint Learning with Pseudo-Labeled Prompts Via Vision-Language Model for 3D/4D Facial Expression Recognition
In this paper, we introduce MultiviewVLM, a vision-language model designed for unsupervised contrastive multiview representation learning of facial emotions from 3D/4D data. Our architecture integrates pseudo-labels derived from generated textual prompts to guide implicit alignment of emotional semantics. To capture shared information across multi-views, we propose a joint embedding space that aligns multiview representations without requiring explicit supervision. We further enhance the discriminability of our model through a novel multiview contrastive learning strategy that leverages stable positive-negative pair sampling. A gradient-friendly loss function is introduced to promote smoother and more stable convergence, and the model is optimized for distributed training to ensure scalability. Extensive experiments demonstrate that MultiviewVLM outperforms existing state-of-the-art methods and can be easily adapted to various real-world applications with minimal modifications.
DCSNet: A Lightweight Knowledge Distillation-Based Model with Explainable AI for Lung Cancer Diagnosis from Histopathological Images
Lung cancer is a leading cause of cancer-related deaths globally, where early detection and accurate diagnosis are critical for improving survival rates. While deep learning, particularly convolutional neural networks (CNNs), has revolutionized medical image analysis by detecting subtle patterns indicative of early-stage lung cancer, its adoption faces challenges. These models are often computationally expensive and require significant resources, making them unsuitable for resource constrained environments. Additionally, their lack of transparency hinders trust and broader adoption in sensitive fields like healthcare. Knowledge distillation addresses these challenges by transferring knowledge from large, complex models (teachers) to smaller, lightweight models (students). We propose a knowledge distillation-based approach for lung cancer detection, incorporating explainable AI (XAI) techniques to enhance model transparency. Eight CNNs, including ResNet50, EfficientNetB0, EfficientNetB3, and VGG16, are evaluated as teacher models. We developed and trained a lightweight student model, Distilled Custom Student Network (DCSNet) using ResNet50 as the teacher. This approach not only ensures high diagnostic performance in resource-constrained settings but also addresses transparency concerns, facilitating the adoption of AI-driven diagnostic tools in healthcare.
BioVFM-21M: Benchmarking and Scaling Self-Supervised Vision Foundation Models for Biomedical Image Analysis
Scaling up model and data size have demonstrated impressive performance improvement over a wide range of tasks. Despite extensive studies on scaling behaviors for general-purpose tasks, medical images exhibit substantial differences from natural data. It remains unclear the key factors in developing medical vision foundation models at scale due to the absence of an extensive understanding of scaling behavior in the medical domain. In this paper, we explored the scaling behavior across model sizes, training algorithms, data sizes, and imaging modalities in developing scalable medical vision foundation models by self-supervised learning. To support scalable pretraining, we introduce BioVFM-21M, a large-scale biomedical image dataset encompassing a wide range of biomedical image modalities and anatomies. We observed that scaling up does provide benefits but varies across tasks. Additional analysis reveals several factors correlated with scaling benefits. Finally, we propose BioVFM, a large-scale medical vision foundation model pretrained on 21 million biomedical images, which outperforms the previous state-of-the-art foundation models across 12 medical benchmarks. Our results highlight that while scaling up is beneficial for pursuing better performance, task characteristics, data diversity, pretraining methods, and computational efficiency remain critical considerations for developing scalable medical foundation models.
comment: 11 pages, 4 figures
Neural Video Compression using 2D Gaussian Splatting
The computer vision and image processing research community has been involved in standardizing video data communications for the past many decades, leading to standards such as AVC, HEVC, VVC, AV1, AV2, etc. However, recent groundbreaking works have focused on employing deep learning-based techniques to replace the traditional video codec pipeline to a greater affect. Neural video codecs (NVC) create an end-to-end ML-based solution that does not rely on any handcrafted features (motion or edge-based) and have the ability to learn content-aware compression strategies, offering better adaptability and higher compression efficiency than traditional methods. This holds a great potential not only for hardware design, but also for various video streaming platforms and applications, especially video conferencing applications such as MS-Teams or Zoom that have found extensive usage in classrooms and workplaces. However, their high computational demands currently limit their use in real-time applications like video conferencing. To address this, we propose a region-of-interest (ROI) based neural video compression model that leverages 2D Gaussian Splatting. Unlike traditional codecs, 2D Gaussian Splatting is capable of real-time decoding and can be optimized using fewer data points, requiring only thousands of Gaussians for decent quality outputs as opposed to millions in 3D scenes. In this work, we designed a video pipeline that speeds up the encoding time of the previous Gaussian splatting-based image codec by 88% by using a content-aware initialization strategy paired with a novel Gaussian inter-frame redundancy-reduction mechanism, enabling Gaussian splatting to be used for a video-codec solution, the first of its kind solution in this neural video codec space.
comment: 9 pages, 8 figures
Q-space Guided Collaborative Attention Translation Network for Flexible Diffusion-Weighted Images Synthesis MICCAI 2025
This study, we propose a novel Q-space Guided Collaborative Attention Translation Networks (Q-CATN) for multi-shell, high-angular resolution DWI (MS-HARDI) synthesis from flexible q-space sampling, leveraging the commonly acquired structural MRI data. Q-CATN employs a collaborative attention mechanism to effectively extract complementary information from multiple modalities and dynamically adjust its internal representations based on flexible q-space information, eliminating the need for fixed sampling schemes. Additionally, we introduce a range of task-specific constraints to preserve anatomical fidelity in DWI, enabling Q-CATN to accurately learn the intrinsic relationships between directional DWI signal distributions and q-space. Extensive experiments on the Human Connectome Project (HCP) dataset demonstrate that Q-CATN outperforms existing methods, including 1D-qDL, 2D-qDL, MESC-SD, and QGAN, in estimating parameter maps and fiber tracts both quantitatively and qualitatively, while preserving fine-grained details. Notably, its ability to accommodate flexible q-space sampling highlights its potential as a promising toolkit for clinical and research applications. Our code is available at https://github.com/Idea89560041/Q-CATN.
comment: MICCAI 2025
TransDiffuser: End-to-end Trajectory Generation with Decorrelated Multi-modal Representation for Autonomous Driving
In recent years, diffusion model has shown its potential across diverse domains from vision generation to language modeling. Transferring its capabilities to modern autonomous driving systems has also emerged as a promising direction.In this work, we propose TransDiffuser, an encoder-decoder based generative trajectory planning model for end-to-end autonomous driving. The encoded scene information serves as the multi-modal conditional input of the denoising decoder. To tackle the mode collapse dilemma in generating high-quality diverse trajectories, we introduce a simple yet effective multi-modal representation decorrelation optimization mechanism during the training process.TransDiffuser achieves PDMS of 94.85 on the NAVSIM benchmark, surpassing previous state-of-the-art methods without any anchor-based prior trajectories.
comment: Under review
Predicting butterfly species presence from satellite imagery using soft contrastive regularisation CVPR
The growing demand for scalable biodiversity monitoring methods has fuelled interest in remote sensing data, due to its widespread availability and extensive coverage. Traditionally, the application of remote sensing to biodiversity research has focused on mapping and monitoring habitats, but with increasing availability of large-scale citizen-science wildlife observation data, recent methods have started to explore predicting multi-species presence directly from satellite images. This paper presents a new data set for predicting butterfly species presence from satellite data in the United Kingdom. We experimentally optimise a Resnet-based model to predict multi-species presence from 4-band satellite images, and find that this model especially outperforms the mean rate baseline for locations with high species biodiversity. To improve performance, we develop a soft, supervised contrastive regularisation loss that is tailored to probabilistic labels (such as species-presence data), and demonstrate that this improves prediction accuracy. In summary, our new data set and contrastive regularisation method contribute to the open challenge of accurately predicting species biodiversity from remote sensing data, which is key for efficient biodiversity monitoring.
comment: To be published in the 2025 CVPR FGVC12 workshop
Recent Advances in Medical Imaging Segmentation: A Survey
Medical imaging is a cornerstone of modern healthcare, driving advancements in diagnosis, treatment planning, and patient care. Among its various tasks, segmentation remains one of the most challenging problem due to factors such as data accessibility, annotation complexity, structural variability, variation in medical imaging modalities, and privacy constraints. Despite recent progress, achieving robust generalization and domain adaptation remains a significant hurdle, particularly given the resource-intensive nature of some proposed models and their reliance on domain expertise. This survey explores cutting-edge advancements in medical image segmentation, focusing on methodologies such as Generative AI, Few-Shot Learning, Foundation Models, and Universal Models. These approaches offer promising solutions to longstanding challenges. We provide a comprehensive overview of the theoretical foundations, state-of-the-art techniques, and recent applications of these methods. Finally, we discuss inherent limitations, unresolved issues, and future research directions aimed at enhancing the practicality and accessibility of segmentation models in medical imaging. We are maintaining a \href{https://github.com/faresbougourzi/Awesome-DL-for-Medical-Imaging-Segmentation}{GitHub Repository} to continue tracking and updating innovations in this field.
MetaUAS: Universal Anomaly Segmentation with One-Prompt Meta-Learning NeurIPS 2024
Zero- and few-shot visual anomaly segmentation relies on powerful vision-language models that detect unseen anomalies using manually designed textual prompts. However, visual representations are inherently independent of language. In this paper, we explore the potential of a pure visual foundation model as an alternative to widely used vision-language models for universal visual anomaly segmentation. We present a novel paradigm that unifies anomaly segmentation into change segmentation. This paradigm enables us to leverage large-scale synthetic image pairs, featuring object-level and local region changes, derived from existing image datasets, which are independent of target anomaly datasets. We propose a one-prompt Meta-learning framework for Universal Anomaly Segmentation (MetaUAS) that is trained on this synthetic dataset and then generalizes well to segment any novel or unseen visual anomalies in the real world. To handle geometrical variations between prompt and query images, we propose a soft feature alignment module that bridges paired-image change perception and single-image semantic segmentation. This is the first work to achieve universal anomaly segmentation using a pure vision model without relying on special anomaly detection datasets and pre-trained visual-language models. Our method effectively and efficiently segments any anomalies with only one normal image prompt and enjoys training-free without guidance from language. Our MetaUAS significantly outperforms previous zero-shot, few-shot, and even full-shot anomaly segmentation methods. The code and pre-trained models are available at https://github.com/gaobb/MetaUAS.
comment: Accepted by NeurIPS 2024
Learning to Detect Multi-class Anomalies with Just One Normal Image Prompt ECCV 2024
Unsupervised reconstruction networks using self-attention transformers have achieved state-of-the-art performance for multi-class (unified) anomaly detection with a single model. However, these self-attention reconstruction models primarily operate on target features, which may result in perfect reconstruction for both normal and anomaly features due to high consistency with context, leading to failure in detecting anomalies. Additionally, these models often produce inaccurate anomaly segmentation due to performing reconstruction in a low spatial resolution latent space. To enable reconstruction models enjoying high efficiency while enhancing their generalization for unified anomaly detection, we propose a simple yet effective method that reconstructs normal features and restores anomaly features with just One Normal Image Prompt (OneNIP). In contrast to previous work, OneNIP allows for the first time to reconstruct or restore anomalies with just one normal image prompt, effectively boosting unified anomaly detection performance. Furthermore, we propose a supervised refiner that regresses reconstruction errors by using both real normal and synthesized anomalous images, which significantly improves pixel-level anomaly segmentation. OneNIP outperforms previous methods on three industry anomaly detection benchmarks: MVTec, BTAD, and VisA. The code and pre-trained models are available at https://github.com/gaobb/OneNIP.
comment: Accepted by ECCV 2024
Few-Shot Anomaly-Driven Generation for Anomaly Classification and Segmentation ECCV 2024
Anomaly detection is a practical and challenging task due to the scarcity of anomaly samples in industrial inspection. Some existing anomaly detection methods address this issue by synthesizing anomalies with noise or external data. However, there is always a large semantic gap between synthetic and real-world anomalies, resulting in weak performance in anomaly detection. To solve the problem, we propose a few-shot Anomaly-driven Generation (AnoGen) method, which guides the diffusion model to generate realistic and diverse anomalies with only a few real anomalies, thereby benefiting training anomaly detection models. Specifically, our work is divided into three stages. In the first stage, we learn the anomaly distribution based on a few given real anomalies and inject the learned knowledge into an embedding. In the second stage, we use the embedding and given bounding boxes to guide the diffusion model to generate realistic and diverse anomalies on specific objects (or textures). In the final stage, we propose a weakly-supervised anomaly detection method to train a more powerful model with generated anomalies. Our method builds upon DRAEM and DesTSeg as the foundation model and conducts experiments on the commonly used industrial anomaly detection dataset, MVTec. The experiments demonstrate that our generated anomalies effectively improve the model performance of both anomaly classification and segmentation tasks simultaneously, \eg, DRAEM and DseTSeg achieved a 5.8\% and 1.5\% improvement in AU-PR metric on segmentation task, respectively. The code and generated anomalous data are available at https://github.com/gaobb/AnoGen.
comment: Accepted by ECCV 2024
EDBench: Large-Scale Electron Density Data for Molecular Modeling
Existing molecular machine learning force fields (MLFFs) generally focus on the learning of atoms, molecules, and simple quantum chemical properties (such as energy and force), but ignore the importance of electron density (ED) $\rho(r)$ in accurately understanding molecular force fields (MFFs). ED describes the probability of finding electrons at specific locations around atoms or molecules, which uniquely determines all ground state properties (such as energy, molecular structure, etc.) of interactive multi-particle systems according to the Hohenberg-Kohn theorem. However, the calculation of ED relies on the time-consuming first-principles density functional theory (DFT) which leads to the lack of large-scale ED data and limits its application in MLFFs. In this paper, we introduce EDBench, a large-scale, high-quality dataset of ED designed to advance learning-based research at the electronic scale. Built upon the PCQM4Mv2, EDBench provides accurate ED data, covering 3.3 million molecules. To comprehensively evaluate the ability of models to understand and utilize electronic information, we design a suite of ED-centric benchmark tasks spanning prediction, retrieval, and generation. Our evaluation on several state-of-the-art methods demonstrates that learning from EDBench is not only feasible but also achieves high accuracy. Moreover, we show that learning-based method can efficiently calculate ED with comparable precision while significantly reducing the computational cost relative to traditional DFT calculations. All data and benchmarks from EDBench will be freely available, laying a robust foundation for ED-driven drug discovery and materials science.
Test-Time Augmentation for Pose-invariant Face Recognition
The goal of this paper is to enhance face recognition performance by augmenting head poses during the testing phase. Existing methods often rely on training on frontalised images or learning pose-invariant representations, yet both approaches typically require re-training and testing for each dataset, involving a substantial amount of effort. In contrast, this study proposes Pose-TTA, a novel approach that aligns faces at inference time without additional training. To achieve this, we employ a portrait animator that transfers the source image identity into the pose of a driving image. Instead of frontalising a side-profile face -- which can introduce distortion -- Pose-TTA generates matching side-profile images for comparison, thereby reducing identity information loss. Furthermore, we propose a weighted feature aggregation strategy to address any distortions or biases arising from the synthetic data, thus enhancing the reliability of the augmented images. Extensive experiments on diverse datasets and with various pre-trained face recognition models demonstrate that Pose-TTA consistently improves inference performance. Moreover, our method is straightforward to integrate into existing face recognition pipelines, as it requires no retraining or fine-tuning of the underlying recognition models.
Zero-Shot Multi-modal Large Language Model v.s. Supervised Deep Learning: A Comparative Study on CT-Based Intracranial Hemorrhage Subtyping
Introduction: Timely identification of intracranial hemorrhage (ICH) subtypes on non-contrast computed tomography is critical for prognosis prediction and therapeutic decision-making, yet remains challenging due to low contrast and blurring boundaries. This study evaluates the performance of zero-shot multi-modal large language models (MLLMs) compared to traditional deep learning methods in ICH binary classification and subtyping. Methods: We utilized a dataset provided by RSNA, comprising 192 NCCT volumes. The study compares various MLLMs, including GPT-4o, Gemini 2.0 Flash, and Claude 3.5 Sonnet V2, with conventional deep learning models, including ResNet50 and Vision Transformer. Carefully crafted prompts were used to guide MLLMs in tasks such as ICH presence, subtype classification, localization, and volume estimation. Results: The results indicate that in the ICH binary classification task, traditional deep learning models outperform MLLMs comprehensively. For subtype classification, MLLMs also exhibit inferior performance compared to traditional deep learning models, with Gemini 2.0 Flash achieving an macro-averaged precision of 0.41 and a macro-averaged F1 score of 0.31. Conclusion: While MLLMs excel in interactive capabilities, their overall accuracy in ICH subtyping is inferior to deep networks. However, MLLMs enhance interpretability through language interactions, indicating potential in medical imaging analysis. Future efforts will focus on model refinement and developing more precise MLLMs to improve performance in three-dimensional medical image processing.
A Surrogate Model for the Forward Design of Multi-layered Metasurface-based Radar Absorbing Structures
Metasurface-based radar absorbing structures (RAS) are highly preferred for applications like stealth technology, electromagnetic (EM) shielding, etc. due to their capability to achieve frequency selective absorption characteristics with minimal thickness and reduced weight penalty. However, the conventional approach for the EM design and optimization of these structures relies on forward simulations, using full wave simulation tools, to predict the electromagnetic (EM) response of candidate meta atoms. This process is computationally intensive, extremely time consuming and requires exploration of large design spaces. To overcome this challenge, we propose a surrogate model that significantly accelerates the prediction of EM responses of multi-layered metasurface-based RAS. A convolutional neural network (CNN) based architecture with Huber loss function has been employed to estimate the reflection characteristics of the RAS model. The proposed model achieved a cosine similarity of 99.9% and a mean square error of 0.001 within 1000 epochs of training. The efficiency of the model has been established via full wave simulations as well as experiment where it demonstrated significant reduction in computational time while maintaining high predictive accuracy.
PDE: Gene Effect Inspired Parameter Dynamic Evolution for Low-light Image Enhancement
Low-light image enhancement (LLIE) is a fundamental task in computational photography, aiming to improve illumination, reduce noise, and enhance image quality. While recent advancements focus on designing increasingly complex neural network models, we observe a peculiar phenomenon: resetting certain parameters to random values unexpectedly improves enhancement performance for some images. Drawing inspiration from biological genes, we term this phenomenon the gene effect. The gene effect limits enhancement performance, as even random parameters can sometimes outperform learned ones, preventing models from fully utilizing their capacity. In this paper, we investigate the reason and propose a solution. Based on our observations, we attribute the gene effect to static parameters, analogous to how fixed genetic configurations become maladaptive when environments change. Inspired by biological evolution, where adaptation to new environments relies on gene mutation and recombination, we propose parameter dynamic evolution (PDE) to adapt to different images and mitigate the gene effect. PDE employs a parameter orthogonal generation technique and the corresponding generated parameters to simulate gene recombination and gene mutation, separately. Experiments validate the effectiveness of our techniques. The code will be released to the public.
comment: 11 pages, 9 tables, 9 figures
BiECVC: Gated Diversification of Bidirectional Contexts for Learned Video Compression
Recent forward prediction-based learned video compression (LVC) methods have achieved impressive results, even surpassing VVC reference software VTM under the Low Delay B (LDB) configuration. In contrast, learned bidirectional video compression (BVC) remains underexplored and still lags behind its forward-only counterparts. This performance gap is mainly due to the limited ability to extract diverse and accurate contexts: most existing BVCs primarily exploit temporal motion while neglecting non-local correlations across frames. Moreover, they lack the adaptability to dynamically suppress harmful contexts arising from fast motion or occlusion. To tackle these challenges, we propose BiECVC, a BVC framework that incorporates diversified local and non-local context modeling along with adaptive context gating. For local context enhancement, BiECVC reuses high-quality features from lower layers and aligns them using decoded motion vectors without introducing extra motion overhead.To model non-local dependencies efficiently, we adopt a linear attention mechanism that balances performance and complexity. To further mitigate the impact of inaccurate context prediction, we introduce Bidirectional Context Gating, inspired by data-dependent decay in recent autoregressive language models, to dynamically filter contextual information based on conditional coding results. Extensive experiments demonstrate that BiECVC achieves state-of-the-art performance, reducing the bit-rate by 13.4% and 15.7% compared to VTM 13.2 under the Random Access (RA) configuration with intra periods of 32 and 64, respectively. To our knowledge, BiECVC is the first learned video codec to surpass VTM 13.2 RA across all standard test datasets. Code will be available at https://github.com/JiangWeibeta/ECVC.
comment: The first learned video codec that surpasses VTM 13.2 RA across all standard test datasets. Code will be available at https://github.com/JiangWeibeta/ECVC
Zero-shot Quantization: A Comprehensive Survey IJCAI 2025
Network quantization has proven to be a powerful approach to reduce the memory and computational demands of deep learning models for deployment on resource-constrained devices. However, traditional quantization methods often rely on access to training data, which is impractical in many real-world scenarios due to privacy, security, or regulatory constraints. Zero-shot Quantization (ZSQ) emerges as a promising solution, achieving quantization without requiring any real data. In this paper, we provide a comprehensive overview of ZSQ methods and their recent advancements. First, we provide a formal definition of the ZSQ problem and highlight the key challenges. Then, we categorize the existing ZSQ methods into classes based on data generation strategies, and analyze their motivations, core ideas, and key takeaways. Lastly, we suggest future research directions to address the remaining limitations and advance the field of ZSQ. To the best of our knowledge, this paper is the first in-depth survey on ZSQ.
comment: IJCAI 2025 Survey Track
UniCAD: Efficient and Extendable Architecture for Multi-Task Computer-Aided Diagnosis System
The growing complexity and scale of visual model pre-training have made developing and deploying multi-task computer-aided diagnosis (CAD) systems increasingly challenging and resource-intensive. Furthermore, the medical imaging community lacks an open-source CAD platform to enable the rapid creation of efficient and extendable diagnostic models. To address these issues, we propose UniCAD, a unified architecture that leverages the robust capabilities of pre-trained vision foundation models to seamlessly handle both 2D and 3D medical images while requiring only minimal task-specific parameters. UniCAD introduces two key innovations: (1) Efficiency: A low-rank adaptation strategy is employed to adapt a pre-trained visual model to the medical image domain, achieving performance on par with fully fine-tuned counterparts while introducing only 0.17% trainable parameters. (2) Plug-and-Play: A modular architecture that combines a frozen foundation model with multiple plug-and-play experts, enabling diverse tasks and seamless functionality expansion. Building on this unified CAD architecture, we establish an open-source platform where researchers can share and access lightweight CAD experts, fostering a more equitable and efficient research ecosystem. Comprehensive experiments across 12 diverse medical datasets demonstrate that UniCAD consistently outperforms existing methods in both accuracy and deployment efficiency. The source code and project page are available at https://mii-laboratory.github.io/UniCAD/.
comment: 14 pages
Optimizing Urban Critical Green Space Development Using Machine Learning
This paper presents a novel framework for prioritizing urban green space development in Tehran using diverse socio-economic, environmental, and sensitivity indices. The indices were derived from various sources including Google Earth Engine, air pollution measurements, municipal reports and the Weather Research & Forecasting (WRF) model. The WRF model was used to estimate the air temperature at a 1 km resolution due to insufficient meteorological stations, yielding RMSE and MAE values of 0.96{\deg}C and 0.92{\deg}C, respectively. After data preparation, several machine learning models were used for binary vegetation cover classification including XGBoost, LightGBM, Random Forest (RF) and Extra Trees. RF achieved the highest performance, exceeding 94% in Overall Accuracy, Recall, and F1-score. Then, the probability of areas lacking vegetation cover was assessed using socio-economic, environmental and sensitivity indices. This resulted in the RF generating an urban green space development prioritization map. Feature Importance Analysis revealed that the most significant indices were nightly land surface temperature (LST) and sensitive population. Finally, the framework performance was validated through microclimate simulation to assess the critical areas after and before the green space development by green roofs. The simulation demonstrated reducing air temperature by up to 0.67{\deg}C after utilizing the green roof technology in critical areas. As a result, this framework provides a valuable tool for urban planners to develop green spaces.
DRRNet: Macro-Micro Feature Fusion and Dual Reverse Refinement for Camouflaged Object Detection
The core challenge in Camouflage Object Detection (COD) lies in the indistinguishable similarity between targets and backgrounds in terms of color, texture, and shape. This causes existing methods to either lose edge details (such as hair-like fine structures) due to over-reliance on global semantic information or be disturbed by similar backgrounds (such as vegetation patterns) when relying solely on local features. We propose DRRNet, a four-stage architecture characterized by a "context-detail-fusion-refinement" pipeline to address these issues. Specifically, we introduce an Omni-Context Feature Extraction Module to capture global camouflage patterns and a Local Detail Extraction Module to supplement microstructural information for the full-scene context module. We then design a module for forming dual representations of scene understanding and structural awareness, which fuses panoramic features and local features across various scales. In the decoder, we also introduce a reverse refinement module that leverages spatial edge priors and frequency-domain noise suppression to perform a two-stage inverse refinement of the output. By applying two successive rounds of inverse refinement, the model effectively suppresses background interference and enhances the continuity of object boundaries. Experimental results demonstrate that DRRNet significantly outperforms state-of-the-art methods on benchmark datasets. Our code is available at https://github.com/jerrySunning/DRRNet.
AMSnet 2.0: A Large AMS Database with AI Segmentation for Net Detection
Current multimodal large language models (MLLMs) struggle to understand circuit schematics due to their limited recognition capabilities. This could be attributed to the lack of high-quality schematic-netlist training data. Existing work such as AMSnet applies schematic parsing to generate netlists. However, these methods rely on hard-coded heuristics and are difficult to apply to complex or noisy schematics in this paper. We therefore propose a novel net detection mechanism based on segmentation with high robustness. The proposed method also recovers positional information, allowing digital reconstruction of schematics. We then expand AMSnet dataset with schematic images from various sources and create AMSnet 2.0. AMSnet 2.0 contains 2,686 circuits with schematic images, Spectre-formatted netlists, OpenAccess digital schematics, and positional information for circuit components and nets, whereas AMSnet only includes 792 circuits with SPICE netlists but no digital schematics.
comment: accepted by LAD25
TopoDiT-3D: Topology-Aware Diffusion Transformer with Bottleneck Structure for 3D Point Cloud Generation
Recent advancements in Diffusion Transformer (DiT) models have significantly improved 3D point cloud generation. However, existing methods primarily focus on local feature extraction while overlooking global topological information, such as voids, which are crucial for maintaining shape consistency and capturing complex geometries. To address this limitation, we propose TopoDiT-3D, a Topology-Aware Diffusion Transformer with a bottleneck structure for 3D point cloud generation. Specifically, we design the bottleneck structure utilizing Perceiver Resampler, which not only offers a mode to integrate topological information extracted through persistent homology into feature learning, but also adaptively filters out redundant local features to improve training efficiency. Experimental results demonstrate that TopoDiT-3D outperforms state-of-the-art models in visual quality, diversity, and training efficiency. Furthermore, TopoDiT-3D demonstrates the importance of rich topological information for 3D point cloud generation and its synergy with conventional local feature learning. Videos and code are available at https://github.com/Zechao-Guan/TopoDiT-3D.
Beyond General Prompts: Automated Prompt Refinement using Contrastive Class Alignment Scores for Disambiguating Objects in Vision-Language Models
Vision-language models (VLMs) offer flexible object detection through natural language prompts but suffer from performance variability depending on prompt phrasing. In this paper, we introduce a method for automated prompt refinement using a novel metric called the Contrastive Class Alignment Score (CCAS), which ranks prompts based on their semantic alignment with a target object class while penalizing similarity to confounding classes. Our method generates diverse prompt candidates via a large language model and filters them through CCAS, computed using prompt embeddings from a sentence transformer. We evaluate our approach on challenging object categories, demonstrating that our automatic selection of high-precision prompts improves object detection accuracy without the need for additional model training or labeled data. This scalable and model-agnostic pipeline offers a principled alternative to manual prompt engineering for VLM-based detection systems.
WSCIF: A Weakly-Supervised Color Intelligence Framework for Tactical Anomaly Detection in Surveillance Keyframes
The deployment of traditional deep learning models in high-risk security tasks in an unlabeled, data-non-exploitable video intelligence environment faces significant challenges. In this paper, we propose a lightweight anomaly detection framework based on color features for surveillance video clips in a high sensitivity tactical mission, aiming to quickly identify and interpret potential threat events under resource-constrained and data-sensitive conditions. The method fuses unsupervised KMeans clustering with RGB channel histogram modeling to achieve composite detection of structural anomalies and color mutation signals in key frames. The experiment takes an operation surveillance video occurring in an African country as a research sample, and successfully identifies multiple highly anomalous frames related to high-energy light sources, target presence, and reflective interference under the condition of no access to the original data. The results show that this method can be effectively used for tactical assassination warning, suspicious object screening and environmental drastic change monitoring with strong deployability and tactical interpretation value. The study emphasizes the importance of color features as low semantic battlefield signal carriers, and its battlefield intelligent perception capability will be further extended by combining graph neural networks and temporal modeling in the future.
comment: 17 pages, 3 figures, 3 tables. The paper proposes a lightweight weakly-supervised color intelligence model for tactical video anomaly detection, tested on anonymized African surveillance data
Promoting SAM for Camouflaged Object Detection via Selective Key Point-based Guidance
Big model has emerged as a new research paradigm that can be applied to various down-stream tasks with only minor effort for domain adaption. Correspondingly, this study tackles Camouflaged Object Detection (COD) leveraging the Segment Anything Model (SAM). The previous studies declared that SAM is not workable for COD but this study reveals that SAM works if promoted properly, for which we devise a new framework to render point promotions: First, we develop the Promotion Point Targeting Network (PPT-net) to leverage multi-scale features in predicting the probabilities of camouflaged objects' presences at given candidate points over the image. Then, we develop a key point selection (KPS) algorithm to deploy both positive and negative point promotions contrastively to SAM to guide the segmentation. It is the first work to facilitate big model for COD and achieves plausible results experimentally over the existing methods on 3 data sets under 6 metrics. This study demonstrates an off-the-shelf methodology for COD by leveraging SAM, which gains advantage over designing professional models from scratch, not only in performance, but also in turning the problem to a less challenging task, that is, seeking informative but not exactly precise promotions.
Seeing Beyond the Scene: Enhancing Vision-Language Models with Interactional Reasoning
Traditional scene graphs primarily focus on spatial relationships, limiting vision-language models' (VLMs) ability to reason about complex interactions in visual scenes. This paper addresses two key challenges: (1) conventional detection-to-construction methods produce unfocused, contextually irrelevant relationship sets, and (2) existing approaches fail to form persistent memories for generalizing interaction reasoning to new scenes. We propose Interaction-augmented Scene Graph Reasoning (ISGR), a framework that enhances VLMs' interactional reasoning through three complementary components. First, our dual-stream graph constructor combines SAM-powered spatial relation extraction with interaction-aware captioning to generate functionally salient scene graphs with spatial grounding. Second, we employ targeted interaction queries to activate VLMs' latent knowledge of object functionalities, converting passive recognition into active reasoning about how objects work together. Finally, we introduce a lone-term memory reinforcement learning strategy with a specialized interaction-focused reward function that transforms transient patterns into long-term reasoning heuristics. Extensive experiments demonstrate that our approach significantly outperforms baseline methods on interaction-heavy reasoning benchmarks, with particularly strong improvements on complex scene understanding tasks. The source code can be accessed at https://github.com/open_upon_acceptance.
FoldNet: Learning Generalizable Closed-Loop Policy for Garment Folding via Keypoint-Driven Asset and Demonstration Synthesis
Due to the deformability of garments, generating a large amount of high-quality data for robotic garment manipulation tasks is highly challenging. In this paper, we present a synthetic garment dataset that can be used for robotic garment folding. We begin by constructing geometric garment templates based on keypoints and applying generative models to generate realistic texture patterns. Leveraging these keypoint annotations, we generate folding demonstrations in simulation and train folding policies via closed-loop imitation learning. To improve robustness, we propose KG-DAgger, which uses a keypoint-based strategy to generate demonstration data for recovering from failures. KG-DAgger significantly improves the model performance, boosting the real-world success rate by 25\%. After training with 15K trajectories (about 2M image-action pairs), the model achieves a 75\% success rate in the real world. Experiments in both simulation and real-world settings validate the effectiveness of our proposed framework.
OpenLKA: An Open Dataset of Lane Keeping Assist from Recent Car Models under Real-world Driving Conditions
Lane Keeping Assist (LKA) is widely adopted in modern vehicles, yet its real-world performance remains underexplored due to proprietary systems and limited data access. This paper presents OpenLKA, the first open, large-scale dataset for LKA evaluation and improvement. It includes 400 hours of driving data from 50+ production vehicle models, collected through extensive road testing in Tampa, Florida and global contributions from the Comma.ai driving community. The dataset spans a wide range of challenging scenarios, including complex road geometries, degraded lane markings, adverse weather, lighting conditions and surrounding traffic. The dataset is multimodal, comprising: i) full CAN bus streams, decoded using custom reverse-engineered DBC files to extract key LKA events (e.g., system disengagements, lane detection failures); ii) synchronized high-resolution dash-cam video; iii) real-time outputs from Openpilot, providing accurate estimates of road curvature and lane positioning; iv) enhanced scene annotations generated by Vision Language Models, describing lane visibility, pavement quality, weather, lighting, and traffic conditions. By integrating vehicle-internal signals with high-fidelity perception and rich semantic context, OpenLKA provides a comprehensive platform for benchmarking the real-world performance of production LKA systems, identifying safety-critical operational scenarios, and assessing the readiness of current road infrastructure for autonomous driving. The dataset is publicly available at: https://github.com/OpenLKA/OpenLKA.
DPN-GAN: Inducing Periodic Activations in Generative Adversarial Networks for High-Fidelity Audio Synthesis
In recent years, generative adversarial networks (GANs) have made significant progress in generating audio sequences. However, these models typically rely on bandwidth-limited mel-spectrograms, which constrain the resolution of generated audio sequences, and lead to mode collapse during conditional generation. To address this issue, we propose Deformable Periodic Network based GAN (DPN-GAN), a novel GAN architecture that incorporates a kernel-based periodic ReLU activation function to induce periodic bias in audio generation. This innovative approach enhances the model's ability to capture and reproduce intricate audio patterns. In particular, our proposed model features a DPN module for multi-resolution generation utilizing deformable convolution operations, allowing for adaptive receptive fields that improve the quality and fidelity of the synthetic audio. Additionally, we enhance the discriminator network using deformable convolution to better distinguish between real and generated samples, further refining the audio quality. We trained two versions of the model: DPN-GAN small (38.67M parameters) and DPN-GAN large (124M parameters). For evaluation, we use five different datasets, covering both speech synthesis and music generation tasks, to demonstrate the efficiency of the DPN-GAN. The experimental results demonstrate that DPN-GAN delivers superior performance on both out-of-distribution and noisy data, showcasing its robustness and adaptability. Trained across various datasets, DPN-GAN outperforms state-of-the-art GAN architectures on standard evaluation metrics, and exhibits increased robustness in synthesized audio.
2D-3D Attention and Entropy for Pose Robust 2D Facial Recognition
Despite recent advances in facial recognition, there remains a fundamental issue concerning degradations in performance due to substantial perspective (pose) differences between enrollment and query (probe) imagery. Therefore, we propose a novel domain adaptive framework to facilitate improved performances across large discrepancies in pose by enabling image-based (2D) representations to infer properties of inherently pose invariant point cloud (3D) representations. Specifically, our proposed framework achieves better pose invariance by using (1) a shared (joint) attention mapping to emphasize common patterns that are most correlated between 2D facial images and 3D facial data and (2) a joint entropy regularizing loss to promote better consistency$\unicode{x2014}$enhancing correlations among the intersecting 2D and 3D representations$\unicode{x2014}$by leveraging both attention maps. This framework is evaluated on FaceScape and ARL-VTF datasets, where it outperforms competitive methods by achieving profile (90$\unicode{x00b0}$$\unicode{x002b}$) TAR @ 1$\unicode{x0025}$ FAR improvements of at least 7.1$\unicode{x0025}$ and 1.57$\unicode{x0025}$, respectively.
comment: To appear at the IEEE International Conference on Automatic Face and Gesture 2025 (FG2025)
RT-cache: Efficient Robot Trajectory Retrieval System
This paper introduces RT-cache, a novel trajectorymemory pipeline that accelerates real-world robot inference by leveraging big-data retrieval and learning from experience. While modern Vision-Language-Action (VLA) models can handle diverse robotic tasks, they often incur high per-step inference costs, resulting in significant latency, sometimes minutes per task. In contrast, RT-cache stores a large-scale Memory of previously successful robot trajectories and retrieves relevant multistep motion snippets, drastically reducing inference overhead. By integrating a Memory Builder with a Trajectory Retrieval, we develop an efficient retrieval process that remains tractable even for extremely large datasets. RT-cache flexibly accumulates real-world experiences and replays them whenever the current scene matches past states, adapting quickly to new or unseen environments with only a few additional samples. Experiments on the Open-X Embodiment Dataset and other real-world data demonstrate that RT-cache completes tasks both faster and more successfully than a baseline lacking retrieval, suggesting a practical, data-driven solution for real-time manipulation.
comment: 9 pages, 5 figures. Submitted to an IEEE robotics conference
Few-Shot Learning of Visual Compositional Concepts through Probabilistic Schema Induction
The ability to learn new visual concepts from limited examples is a hallmark of human cognition. While traditional category learning models represent each example as an unstructured feature vector, compositional concept learning is thought to depend on (1) structured representations of examples (e.g., directed graphs consisting of objects and their relations) and (2) the identification of shared relational structure across examples through analogical mapping. Here, we introduce Probabilistic Schema Induction (PSI), a prototype model that employs deep learning to perform analogical mapping over structured representations of only a handful of examples, forming a compositional concept called a schema. In doing so, PSI relies on a novel conception of similarity that weighs object-level similarity and relational similarity, as well as a mechanism for amplifying relations relevant to classification, analogous to selective attention parameters in traditional models. We show that PSI produces human-like learning performance and outperforms two controls: a prototype model that uses unstructured feature vectors extracted from a deep learning model, and a variant of PSI with weaker structured representations. Notably, we find that PSI's human-like performance is driven by an adaptive strategy that increases relational similarity over object-level similarity and upweights the contribution of relations that distinguish classes. These findings suggest that structured representations and analogical mapping are critical to modeling rapid human-like learning of compositional visual concepts, and demonstrate how deep learning can be leveraged to create psychological models.
comment: Lee, A. J., Webb, T., Bihl, T., Holyoak, K. J., & Lu, H. (2025). Few-shot learning of visual compositional concepts through probabilistic schema induction. In A. Ruggeri, D. Barner, C. Walker, & N. Bramley (Eds.), Proceedings of the 47th Annual Conference of the Cognitive Science Society. Cognitive Science Society
Mission Balance: Generating Under-represented Class Samples using Video Diffusion Models MICCAI 2025
Computer-assisted interventions can improve intra-operative guidance, particularly through deep learning methods that harness the spatiotemporal information in surgical videos. However, the severe data imbalance often found in surgical video datasets hinders the development of high-performing models. In this work, we aim to overcome the data imbalance by synthesizing surgical videos. We propose a unique two-stage, text-conditioned diffusion-based method to generate high-fidelity surgical videos for under-represented classes. Our approach conditions the generation process on text prompts and decouples spatial and temporal modeling by utilizing a 2D latent diffusion model to capture spatial content and then integrating temporal attention layers to ensure temporal consistency. Furthermore, we introduce a rejection sampling strategy to select the most suitable synthetic samples, effectively augmenting existing datasets to address class imbalance. We evaluate our method on two downstream tasks-surgical action recognition and intra-operative event prediction-demonstrating that incorporating synthetic videos from our approach substantially enhances model performance. We open-source our implementation at https://gitlab.com/nct_tso_public/surgvgen.
comment: Early accept at MICCAI 2025
ImplicitStainer: Data-Efficient Medical Image Translation for Virtual Antibody-based Tissue Staining Using Local Implicit Functions
Hematoxylin and eosin (H&E) staining is a gold standard for microscopic diagnosis in pathology. However, H&E staining does not capture all the diagnostic information that may be needed. To obtain additional molecular information, immunohistochemical (IHC) stains highlight proteins that mark specific cell types, such as CD3 for T-cells or CK8/18 for epithelial cells. While IHC stains are vital for prognosis and treatment guidance, they are typically only available at specialized centers and time consuming to acquire, leading to treatment delays for patients. Virtual staining, enabled by deep learning-based image translation models, provides a promising alternative by computationally generating IHC stains from H&E stained images. Although many GAN and diffusion based image to image (I2I) translation methods have been used for virtual staining, these models treat image patches as independent data points, which results in increased and more diverse data requirements for effective generation. We present ImplicitStainer, a novel approach that leverages local implicit functions to improve image translation, specifically virtual staining performance, by focusing on pixel-level predictions. This method enhances robustness to variations in dataset sizes, delivering high-quality results even with limited data. We validate our approach on two datasets using a comprehensive set of metrics and benchmark it against over fifteen state-of-the-art GAN- and diffusion based models. Full Code and models trained will be released publicly via Github upon acceptance.
BoundarySeg:An Embarrassingly Simple Method To Boost Medical Image Segmentation Performance for Low Data Regimes
Obtaining large-scale medical data, annotated or unannotated, is challenging due to stringent privacy regulations and data protection policies. In addition, annotating medical images requires that domain experts manually delineate anatomical structures, making the process both time-consuming and costly. As a result, semi-supervised methods have gained popularity for reducing annotation costs. However, the performance of semi-supervised methods is heavily dependent on the availability of unannotated data, and their effectiveness declines when such data are scarce or absent. To overcome this limitation, we propose a simple, yet effective and computationally efficient approach for medical image segmentation that leverages only existing annotations. We propose BoundarySeg , a multi-task framework that incorporates organ boundary prediction as an auxiliary task to full organ segmentation, leveraging consistency between the two task predictions to provide additional supervision. This strategy improves segmentation accuracy, especially in low data regimes, allowing our method to achieve performance comparable to or exceeding state-of-the-art semi supervised approaches all without relying on unannotated data or increasing computational demands. Code will be released upon acceptance.
Dyadic Mamba: Long-term Dyadic Human Motion Synthesis CVPR 2025
Generating realistic dyadic human motion from text descriptions presents significant challenges, particularly for extended interactions that exceed typical training sequence lengths. While recent transformer-based approaches have shown promising results for short-term dyadic motion synthesis, they struggle with longer sequences due to inherent limitations in positional encoding schemes. In this paper, we introduce Dyadic Mamba, a novel approach that leverages State-Space Models (SSMs) to generate high-quality dyadic human motion of arbitrary length. Our method employs a simple yet effective architecture that facilitates information flow between individual motion sequences through concatenation, eliminating the need for complex cross-attention mechanisms. We demonstrate that Dyadic Mamba achieves competitive performance on standard short-term benchmarks while significantly outperforming transformer-based approaches on longer sequences. Additionally, we propose a new benchmark for evaluating long-term motion synthesis quality, providing a standardized framework for future research. Our results demonstrate that SSM-based architectures offer a promising direction for addressing the challenging task of long-term dyadic human motion synthesis from text descriptions.
comment: CVPR 2025 HuMoGen Workshop
Visual Feedback of Pattern Separability Improves Myoelectric Decoding Performance of Upper Limb Prostheses
State-of-the-art upper limb myoelectric prostheses often use pattern recognition (PR) control systems that translate electromyography (EMG) signals into desired movements. As prosthesis movement complexity increases, users often struggle to produce sufficiently distinct EMG patterns for reliable classification. Existing training typically involves heuristic, trial-and-error user adjustments to static decoder boundaries. Goal: We introduce the Reviewer, a 3D visual interface projecting EMG signals directly into the decoder's classification space, providing intuitive, real-time insight into PR algorithm behavior. This structured feedback reduces cognitive load and fosters mutual, data-driven adaptation between user-generated EMG patterns and decoder boundaries. Methods: A 10-session study with 12 able-bodied participants compared PR performance after motor-based training and updating using the Reviewer versus conventional virtual arm visualization. Performance was assessed using a Fitts law task that involved the aperture of the cursor and the control of orientation. Results: Participants trained with the Reviewer achieved higher completion rates, reduced overshoot, and improved path efficiency and throughput compared to the standard visualization group. Significance: The Reviewer introduces decoder-informed motor training, facilitating immediate and consistent PR-based myoelectric control improvements. By iteratively refining control through real-time feedback, this approach reduces reliance on trial-and-error recalibration, enabling a more adaptive, self-correcting training framework. Conclusion: The 3D visual feedback significantly improves PR control in novice operators through structured training, enabling feedback-driven adaptation and reducing reliance on extensive heuristic adjustments.
A Computational Pipeline for Advanced Analysis of 4D Flow MRI in the Left Atrium
The left atrium (LA) plays a pivotal role in modulating left ventricular filling, but our comprehension of its hemodynamics is significantly limited by the constraints of conventional ultrasound analysis. 4D flow magnetic resonance imaging (4D Flow MRI) holds promise for enhancing our understanding of atrial hemodynamics. However, the low velocities within the LA and the limited spatial resolution of 4D Flow MRI make analyzing this chamber challenging. Furthermore, the absence of dedicated computational frameworks, combined with diverse acquisition protocols and vendors, complicates gathering large cohorts for studying the prognostic value of hemodynamic parameters provided by 4D Flow MRI. In this study, we introduce the first open-source computational framework tailored for the analysis of 4D Flow MRI in the LA, enabling comprehensive qualitative and quantitative analysis of advanced hemodynamic parameters. Our framework proves robust to data from different centers of varying quality, producing high-accuracy automated segmentations (Dice $>$ 0.9 and Hausdorff 95 $<$ 3 mm), even with limited training data. Additionally, we conducted the first comprehensive assessment of energy, vorticity, and pressure parameters in the LA across a spectrum of disorders to investigate their potential as prognostic biomarkers.
EnerVerse-AC: Envisioning Embodied Environments with Action Condition
Robotic imitation learning has advanced from solving static tasks to addressing dynamic interaction scenarios, but testing and evaluation remain costly and challenging due to the need for real-time interaction with dynamic environments. We propose EnerVerse-AC (EVAC), an action-conditional world model that generates future visual observations based on an agent's predicted actions, enabling realistic and controllable robotic inference. Building on prior architectures, EVAC introduces a multi-level action-conditioning mechanism and ray map encoding for dynamic multi-view image generation while expanding training data with diverse failure trajectories to improve generalization. As both a data engine and evaluator, EVAC augments human-collected trajectories into diverse datasets and generates realistic, action-conditioned video observations for policy testing, eliminating the need for physical robots or complex simulations. This approach significantly reduces costs while maintaining high fidelity in robotic manipulation evaluation. Extensive experiments validate the effectiveness of our method. Code, checkpoints, and datasets can be found at .
comment: Website: https://annaj2178.github.io/EnerverseAC.github.io
Towards Autonomous UAV Visual Object Search in City Space: Benchmark and Agentic Methodology
Aerial Visual Object Search (AVOS) tasks in urban environments require Unmanned Aerial Vehicles (UAVs) to autonomously search for and identify target objects using visual and textual cues without external guidance. Existing approaches struggle in complex urban environments due to redundant semantic processing, similar object distinction, and the exploration-exploitation dilemma. To bridge this gap and support the AVOS task, we introduce CityAVOS, the first benchmark dataset for autonomous search of common urban objects. This dataset comprises 2,420 tasks across six object categories with varying difficulty levels, enabling comprehensive evaluation of UAV agents' search capabilities. To solve the AVOS tasks, we also propose PRPSearcher (Perception-Reasoning-Planning Searcher), a novel agentic method powered by multi-modal large language models (MLLMs) that mimics human three-tier cognition. Specifically, PRPSearcher constructs three specialized maps: an object-centric dynamic semantic map enhancing spatial perception, a 3D cognitive map based on semantic attraction values for target reasoning, and a 3D uncertainty map for balanced exploration-exploitation search. Also, our approach incorporates a denoising mechanism to mitigate interference from similar objects and utilizes an Inspiration Promote Thought (IPT) prompting mechanism for adaptive action planning. Experimental results on CityAVOS demonstrate that PRPSearcher surpasses existing baselines in both success rate and search efficiency (on average: +37.69% SR, +28.96% SPL, -30.69% MSS, and -46.40% NE). While promising, the performance gap compared to humans highlights the need for better semantic reasoning and spatial exploration capabilities in AVOS tasks. This work establishes a foundation for future advances in embodied target search. Dataset and source code are available at https://anonymous.4open.science/r/CityAVOS-3DF8.
MGPATH: Vision-Language Model with Multi-Granular Prompt Learning for Few-Shot WSI Classification
Whole slide pathology image classification presents challenges due to gigapixel image sizes and limited annotation labels, hindering model generalization. This paper introduces a prompt learning method to adapt large vision-language models for few-shot pathology classification. We first extend the Prov-GigaPath vision foundation model, pre-trained on 1.3 billion pathology image tiles, into a vision-language model by adding adaptors and aligning it with medical text encoders via contrastive learning on 923K image-text pairs. The model is then used to extract visual features and text embeddings from few-shot annotations and fine-tunes with learnable prompt embeddings. Unlike prior methods that combine prompts with frozen features using prefix embeddings or self-attention, we propose multi-granular attention that compares interactions between learnable prompts with individual image patches and groups of them. This approach improves the model's ability to capture both fine-grained details and broader context, enhancing its recognition of complex patterns across sub-regions. To further improve accuracy, we leverage (unbalanced) optimal transport-based visual-text distance to secure model robustness by mitigating perturbations that might occur during the data augmentation process. Empirical experiments on lung, kidney, and breast pathology modalities validate the effectiveness of our approach; thereby, we surpass several of the latest competitors and consistently improve performance across diverse architectures, including CLIP, PLIP, and Prov-GigaPath integrated PLIP. We release our implementations and pre-trained models at this MGPATH.
WaveGuard: Robust Deepfake Detection and Source Tracing via Dual-Tree Complex Wavelet and Graph Neural Networks
Deepfake technology poses increasing risks such as privacy invasion and identity theft. To address these threats, we propose WaveGuard, a proactive watermarking framework that enhances robustness and imperceptibility via frequency-domain embedding and graph-based structural consistency. Specifically, we embed watermarks into high-frequency sub-bands using Dual-Tree Complex Wavelet Transform (DT-CWT) and employ a Structural Consistency Graph Neural Network (SC-GNN) to preserve visual quality. We also design an attention module to refine embedding precision. Experimental results on face swap and reenactment tasks demonstrate that WaveGuard outperforms state-of-the-art methods in both robustness and visual quality. Code is available at https://github.com/vpsg-research/WaveGuard.
comment: 11 pages, 5 figures, 4 tables
Thermal Detection of People with Mobility Restrictions for Barrier Reduction at Traffic Lights Controlled Intersections
Rapid advances in deep learning for computer vision have driven the adoption of RGB camera-based adaptive traffic light systems to improve traffic safety and pedestrian comfort. However, these systems often overlook the needs of people with mobility restrictions. Moreover, the use of RGB cameras presents significant challenges, including limited detection performance under adverse weather or low-visibility conditions, as well as heightened privacy concerns. To address these issues, we propose a fully automated, thermal detector-based traffic light system that dynamically adjusts signal durations for individuals with walking impairments or mobility burden and triggers the auditory signal for visually impaired individuals, thereby advancing towards barrier-free intersection for all users. To this end, we build the thermal dataset for people with mobility restrictions (TD4PWMR), designed to capture diverse pedestrian scenarios, particularly focusing on individuals with mobility aids or mobility burden under varying environmental conditions, such as different lighting, weather, and crowded urban settings. While thermal imaging offers advantages in terms of privacy and robustness to adverse conditions, it also introduces inherent hurdles for object detection due to its lack of color and fine texture details and generally lower resolution of thermal images. To overcome these limitations, we develop YOLO-Thermal, a novel variant of the YOLO architecture that integrates advanced feature extraction and attention mechanisms for enhanced detection accuracy and robustness in thermal imaging. Experiments demonstrate that the proposed thermal detector outperforms existing detectors, while the proposed traffic light system effectively enhances barrier-free intersection. The source codes and dataset are available at https://github.com/leon2014dresden/YOLO-THERMAL.
The RaspGrade Dataset: Towards Automatic Raspberry Ripeness Grading with Deep Learning
This research investigates the application of computer vision for rapid, accurate, and non-invasive food quality assessment, focusing on the novel challenge of real-time raspberry grading into five distinct classes within an industrial environment as the fruits move along a conveyor belt. To address this, a dedicated dataset of raspberries, namely RaspGrade, was acquired and meticulously annotated. Instance segmentation experiments revealed that accurate fruit-level masks can be obtained; however, the classification of certain raspberry grades presents challenges due to color similarities and occlusion, while others are more readily distinguishable based on color. The acquired and annotated RaspGrade dataset is accessible on Hugging Face at: https://huggingface.co/datasets/FBK-TeV/RaspGrade.
Leveraging Segment Anything Model for Source-Free Domain Adaptation via Dual Feature Guided Auto-Prompting
Source-free domain adaptation (SFDA) for segmentation aims at adapting a model trained in the source domain to perform well in the target domain with only the source model and unlabeled target data.Inspired by the recent success of Segment Anything Model (SAM) which exhibits the generality of segmenting images of various modalities and in different domains given human-annotated prompts like bounding boxes or points, we for the first time explore the potentials of Segment Anything Model for SFDA via automatedly finding an accurate bounding box prompt. We find that the bounding boxes directly generated with existing SFDA approaches are defective due to the domain gap.To tackle this issue, we propose a novel Dual Feature Guided (DFG) auto-prompting approach to search for the box prompt. Specifically, the source model is first trained in a feature aggregation phase, which not only preliminarily adapts the source model to the target domain but also builds a feature distribution well-prepared for box prompt search. In the second phase, based on two feature distribution observations, we gradually expand the box prompt with the guidance of the target model feature and the SAM feature to handle the class-wise clustered target features and the class-wise dispersed target features, respectively. To remove the potentially enlarged false positive regions caused by the over-confident prediction of the target model, the refined pseudo-labels produced by SAM are further postprocessed based on connectivity analysis. Experiments on 3D and 2D datasets indicate that our approach yields superior performance compared to conventional methods. Code is available at https://github.com/xmed-lab/DFG.
Using Few-Shot Learning to Classify Primary Lung Cancer and Other Malignancy with Lung Metastasis in Cytological Imaging via Endobronchial Ultrasound Procedures
This study presents a computer-aided diagnosis (CAD) system to assist early detection of lung metastases during endobronchial ultrasound (EBUS) procedures, significantly reducing follow-up time and enabling timely treatment. Due to limited cytology images and morphological similarities among cells, classifying lung metastases is challenging, and existing research rarely targets this issue directly.To overcome data scarcity and improve classification, the authors propose a few-shot learning model using a hybrid pretrained backbone with fine-grained classification and contrastive learning. Parameter-efficient fine-tuning on augmented support sets enhances generalization and transferability. The model achieved 49.59% accuracy, outperforming existing methods. With 20 image samples, accuracy improved to 55.48%, showing strong potential for identifying rare or novel cancer types in low-data clinical environments.
G-MSGINet: A Grouped Multi-Scale Graph-Involution Network for Contactless Fingerprint Recognition
This paper presents G-MSGINet, a unified and efficient framework for robust contactless fingerprint recognition that jointly performs minutiae localization and identity embedding directly from raw input images. Existing approaches rely on multi-branch architectures, orientation labels, or complex preprocessing steps, which limit scalability and generalization across real-world acquisition scenarios. In contrast, the proposed architecture introduces the GMSGI layer, a novel computational module that integrates grouped pixel-level involution, dynamic multi-scale kernel generation, and graph-based relational modelling into a single processing unit. Stacked GMSGI layers progressively refine both local minutiae-sensitive features and global topological representations through end-to-end optimization. The architecture eliminates explicit orientation supervision and adapts graph connectivity directly from learned kernel descriptors, thereby capturing meaningful structural relationships among fingerprint regions without fixed heuristics. Extensive experiments on three benchmark datasets, namely PolyU, CFPose, and Benchmark 2D/3D, demonstrate that G-MSGINet consistently achieves minutiae F1-scores in the range of $0.83\pm0.02$ and Rank-1 identification accuracies between 97.0% and 99.1%, while maintaining an Equal Error Rate (EER) as low as 0.5%. These results correspond to improvements of up to 4.8% in F1-score and 1.4% in Rank-1 accuracy when compared to prior methods, using only 0.38 million parameters and 6.63 giga floating-point operations, which represents up to ten times fewer parameters than competitive baselines. This highlights the scalability and effectiveness of G-MSGINet in real-world contactless biometric recognition scenarios.
Embodied-Reasoner: Synergizing Visual Search, Reasoning, and Action for Embodied Interactive Tasks
Recent advances in deep thinking models have demonstrated remarkable reasoning capabilities on mathematical and coding tasks. However, their effectiveness in embodied domains which require continuous interaction with environments through image action interleaved trajectories remains largely -unexplored. We present Embodied Reasoner, a model that extends o1 style reasoning to interactive embodied search tasks. Unlike mathematical reasoning that relies primarily on logical deduction, embodied scenarios demand spatial understanding, temporal reasoning, and ongoing self-reflection based on interaction history. To address these challenges, we synthesize 9.3k coherent Observation-Thought-Action trajectories containing 64k interactive images and 90k diverse thinking processes (analysis, spatial reasoning, reflection, planning, and verification). We develop a three-stage training pipeline that progressively enhances the model's capabilities through imitation learning, self-exploration via rejection sampling, and self-correction through reflection tuning. The evaluation shows that our model significantly outperforms those advanced visual reasoning models, e.g., it exceeds OpenAI o1, o3-mini, and Claude-3.7 by +9\%, 24\%, and +13\%. Analysis reveals our model exhibits fewer repeated searches and logical inconsistencies, with particular advantages in complex long-horizon tasks. Real-world environments also show our superiority while exhibiting fewer repeated searches and logical inconsistency cases.
comment: Code: https://github.com/zwq2018/embodied_reasoner Dataset: https://huggingface.co/datasets/zwq2018/embodied_reasoner
Optimal-state Dynamics Estimation for Physics-based Human Motion Capture from Videos NeurIPS 2024
Human motion capture from monocular videos has made significant progress in recent years. However, modern approaches often produce temporal artifacts, e.g. in form of jittery motion and struggle to achieve smooth and physically plausible motions. Explicitly integrating physics, in form of internal forces and exterior torques, helps alleviating these artifacts. Current state-of-the-art approaches make use of an automatic PD controller to predict torques and reaction forces in order to re-simulate the input kinematics, i.e. the joint angles of a predefined skeleton. However, due to imperfect physical models, these methods often require simplifying assumptions and extensive preprocessing of the input kinematics to achieve good performance. To this end, we propose a novel method to selectively incorporate the physics models with the kinematics observations in an online setting, inspired by a neural Kalman-filtering approach. We develop a control loop as a meta-PD controller to predict internal joint torques and external reaction forces, followed by a physics-based motion simulation. A recurrent neural network is introduced to realize a Kalman filter that attentively balances the kinematics input and simulated motion, resulting in an optimal-state dynamics prediction. We show that this filtering step is crucial to provide an online supervision that helps balancing the shortcoming of the respective input motions, thus being important for not only capturing accurate global motion trajectories but also producing physically plausible human poses. The proposed approach excels in the physics-based human pose estimation task and demonstrates the physical plausibility of the predictive dynamics, compared to state of the art. The code is available on https://github.com/cuongle1206/OSDCap
comment: 17 pages, 7 figure, NeurIPS 2024
A Call to Arms: AI Should be Critical for Social Media Analysis of Conflict Zones
The massive proliferation of social media data represents a transformative opportunity for conflict studies and for tracking the proliferation and use of weaponry, as conflicts are increasingly documented in these online spaces. At the same time, the scale and types of data available are problematic for traditional open-source intelligence. This paper focuses on identifying specific weapon systems and the insignias of the armed groups using them as documented in the Ukraine war, as these tasks are critical to operational intelligence and tracking weapon proliferation, especially given the scale of international military aid given to Ukraine. The large scale of social media makes manual assessment difficult, however, so this paper presents early work that uses computer vision models to support this task. We demonstrate that these models can both identify weapons embedded in images shared in social media and how the resulting collection of military-relevant images and their post times interact with the offline, real-world conflict. Not only can we then track changes in the prevalence of images of tanks, land mines, military trucks, etc., we find correlations among time series data associated with these images and the daily fatalities in this conflict. This work shows substantial opportunity for examining similar online documentation of conflict contexts, and we also point to future avenues where computer vision can be further improved for these open-source intelligence tasks.
State-of-the-Art Periorbital Distance Prediction and Disease Classification Using Periorbital Features
Periorbital distances are critical markers for diagnosing and monitoring a range of oculoplastic and craniofacial conditions. Manual measurement, however, is subjective and prone to intergrader variability. Automated methods have been developed but remain limited by standardized imaging requirements, small datasets, and a narrow focus on individual measurements. We developed a segmentation pipeline trained on a domain-specific dataset of healthy eyes and compared its performance against the Segment Anything Model (SAM) and the prior benchmark, PeriorbitAI. Segmentation accuracy was evaluated across multiple disease classes and imaging conditions. We further investigated the use of predicted periorbital distances as features for disease classification under in-distribution (ID) and out-of-distribution (OOD) settings, comparing shallow classifiers, CNNs, and fusion models. Our segmentation model achieved state-of-the-art accuracy across all datasets, with error rates within intergrader variability and superior performance relative to SAM and PeriorbitAI. In classification tasks, models trained on periorbital distances matched CNN performance on ID data (77--78\% accuracy) and substantially outperformed CNNs under OOD conditions (63--68\% accuracy vs. 14\%). Fusion models achieved the highest ID accuracy (80\%) but were sensitive to degraded CNN features under OOD shifts. Segmentation-derived periorbital distances provide robust, explainable features for disease classification and generalize better under domain shift than CNN image classifiers. These results establish a new benchmark for periorbital distance prediction and highlight the potential of anatomy-based AI pipelines for real-world deployment in oculoplastic and craniofacial care.
comment: 25 pages, 12 figures, 16 tables
HybridMQA: Exploring Geometry-Texture Interactions for Colored Mesh Quality Assessment
Mesh quality assessment (MQA) models play a critical role in the design, optimization, and evaluation of mesh operation systems in a wide variety of applications. Current MQA models, whether model-based methods using topology-aware features or projection-based approaches working on rendered 2D projections, often fail to capture the intricate interactions between texture and 3D geometry. We introduce HybridMQA, a first-of-its-kind hybrid full-reference colored MQA framework that integrates model-based and projection-based approaches, capturing complex interactions between textural information and 3D structures for enriched quality representations. Our method employs graph learning to extract detailed 3D representations, which are then projected to 2D using a novel feature rendering process that precisely aligns them with colored projections. This enables the exploration of geometry-texture interactions via cross-attention, producing comprehensive mesh quality representations. Extensive experiments demonstrate HybridMQA's superior performance across diverse datasets, highlighting its ability to effectively leverage geometry-texture interactions for a thorough understanding of mesh quality. Our implementation will be made publicly available.
F$^3$Loc: Fusion and Filtering for Floorplan Localization CVPR 2024
In this paper we propose an efficient data-driven solution to self-localization within a floorplan. Floorplan data is readily available, long-term persistent and inherently robust to changes in the visual appearance. Our method does not require retraining per map and location or demand a large database of images of the area of interest. We propose a novel probabilistic model consisting of an observation and a novel temporal filtering module. Operating internally with an efficient ray-based representation, the observation module consists of a single and a multiview module to predict horizontal depth from images and fuses their results to benefit from advantages offered by either methodology. Our method operates on conventional consumer hardware and overcomes a common limitation of competing methods that often demand upright images. Our full system meets real-time requirements, while outperforming the state-of-the-art by a significant margin.
comment: 10 pages, 11 figure, accepted to CVPR 2024 (fixed typo eq.8: s_x,s_y, s_phi -> x, y, phi)
BOP-Distrib: Revisiting 6D Pose Estimation Benchmarks for Better Evaluation under Visual Ambiguities
6D pose estimation aims at determining the object pose that best explains the camera observation. The unique solution for non-ambiguous objects can turn into a multi-modal pose distribution for symmetrical objects or when occlusions of symmetry-breaking elements happen, depending on the viewpoint. Currently, 6D pose estimation methods are benchmarked on datasets that consider, for their ground truth annotations, visual ambiguities as only related to global object symmetries, whereas they should be defined per-image to account for the camera viewpoint. We thus first propose an automatic method to re-annotate those datasets with a 6D pose distribution specific to each image, taking into account the object surface visibility in the image to correctly determine the visual ambiguities. Second, given this improved ground truth, we re-evaluate the state-of-the-art single pose methods and show that this greatly modifies the ranking of these methods. Third, as some recent works focus on estimating the complete set of solutions, we derive a precision/recall formulation to evaluate them against our image-wise distribution ground truth, making it the first benchmark for pose distribution methods on real images.
Efficient approximation of Earth Mover's Distance Based on Nearest Neighbor Search
Earth Mover's Distance (EMD) is an important similarity measure between two distributions, used in computer vision and many other application domains. However, its exact calculation is computationally and memory intensive, which hinders its scalability and applicability for large-scale problems. Various approximate EMD algorithms have been proposed to reduce computational costs, but they suffer lower accuracy and may require additional memory usage or manual parameter tuning. In this paper, we present a novel approach, NNS-EMD, to approximate EMD using Nearest Neighbor Search (NNS), in order to achieve high accuracy, low time complexity, and high memory efficiency. The NNS operation reduces the number of data points compared in each NNS iteration and offers opportunities for parallel processing. We further accelerate NNS-EMD via vectorization on GPU, which is especially beneficial for large datasets. We compare NNS-EMD with both the exact EMD and state-of-the-art approximate EMD algorithms on image classification and retrieval tasks. We also apply NNS-EMD to calculate transport mapping and realize color transfer between images. NNS-EMD can be 44x to 135x faster than the exact EMD implementation, and achieves superior accuracy, speedup, and memory efficiency over existing approximate EMD methods.
Gradient Attention Map Based Verification of Deep Convolutional Neural Networks with Application to X-ray Image Datasets
Deep learning models have great potential in medical imaging, including orthodontics and skeletal maturity assessment. However, applying a model to data different from its training set can lead to unreliable predictions that may impact patient care. To address this, we propose a comprehensive verification framework that evaluates model suitability through multiple complementary strategies. First, we introduce a Gradient Attention Map (GAM)-based approach that analyzes attention patterns using Grad-CAM and compares them via similarity metrics such as IoU, Dice Similarity, SSIM, Cosine Similarity, Pearson Correlation, KL Divergence, and Wasserstein Distance. Second, we extend verification to early convolutional feature maps, capturing structural mis-alignments missed by attention alone. Finally, we incorporate an additional garbage class into the classification model to explicitly reject out-of-distribution inputs. Experimental results demonstrate that these combined methods effectively identify unsuitable models and inputs, promoting safer and more reliable deployment of deep learning in medical imaging.
comment: 13 pages, 7 figures, accepted at IEEE VLSI Test Symposium (VTS) 2025
A Deep Learning Approach for Pixel-level Material Classification via Hyperspectral Imaging
Recent advancements in computer vision, particularly in detection, segmentation, and classification, have significantly impacted various domains. However, these advancements are tied to RGB-based systems, which are insufficient for applications in industries like waste sorting, pharmaceuticals, and defense, where advanced object characterization beyond shape or color is necessary. Hyperspectral (HS) imaging, capturing both spectral and spatial information, addresses these limitations and offers advantages over conventional technologies such as X-ray fluorescence and Raman spectroscopy, particularly in terms of speed, cost, and safety. This study evaluates the potential of combining HS imaging with deep learning for material characterization. The research involves: i) designing an experimental setup with HS camera, conveyor, and controlled lighting; ii) generating a multi-object dataset of various plastics (HDPE, PET, PP, PS) with semi-automated mask generation and Raman spectroscopy-based labeling; and iii) developing a deep learning model trained on HS images for pixel-level material classification. The model achieved 99.94\% classification accuracy, demonstrating robustness in color, size, and shape invariance, and effectively handling material overlap. Limitations, such as challenges with black objects, are also discussed. Extending computer vision beyond RGB to HS imaging proves feasible, overcoming major limitations of traditional methods and showing strong potential for future applications.
comment: 13 pages, 15 figures, 6 equations
Neural Brain: A Neuroscience-inspired Framework for Embodied Agents
The rapid evolution of artificial intelligence (AI) has shifted from static, data-driven models to dynamic systems capable of perceiving and interacting with real-world environments. Despite advancements in pattern recognition and symbolic reasoning, current AI systems, such as large language models, remain disembodied, unable to physically engage with the world. This limitation has driven the rise of embodied AI, where autonomous agents, such as humanoid robots, must navigate and manipulate unstructured environments with human-like adaptability. At the core of this challenge lies the concept of Neural Brain, a central intelligence system designed to drive embodied agents with human-like adaptability. A Neural Brain must seamlessly integrate multimodal sensing and perception with cognitive capabilities. Achieving this also requires an adaptive memory system and energy-efficient hardware-software co-design, enabling real-time action in dynamic environments. This paper introduces a unified framework for the Neural Brain of embodied agents, addressing two fundamental challenges: (1) defining the core components of Neural Brain and (2) bridging the gap between static AI models and the dynamic adaptability required for real-world deployment. To this end, we propose a biologically inspired architecture that integrates multimodal active sensing, perception-cognition-action function, neuroplasticity-based memory storage and updating, and neuromorphic hardware/software optimization. Furthermore, we also review the latest research on embodied agents across these four aspects and analyze the gap between current AI systems and human intelligence. By synthesizing insights from neuroscience, we outline a roadmap towards the development of generalizable, autonomous agents capable of human-level intelligence in real-world scenarios.
comment: 51 pages, 17 figures, 9 tables
MCP-MedSAM: A Powerful Lightweight Medical Segment Anything Model Trained with a Single GPU in Just One Day
Medical image segmentation involves partitioning medical images into meaningful regions, with a focus on identifying anatomical structures and lesions. It has broad applications in healthcare, and deep learning methods have enabled significant advancements in automating this process. Recently, the introduction of the Segmentation Anything Model (SAM), the first foundation model for segmentation task, has prompted researchers to adapt it for the medical domain to improve performance across various tasks. However, SAM's large model size and high GPU requirements hinder its scalability and development in the medical domain. In this work, we propose MCP-MedSAM, a powerful and lightweight medical SAM model designed to be trainable on a single A100 GPU with 40GB of memory within one day while delivering superior segmentation performance. Recognizing the significant internal differences between modalities and the need for direct segmentation target information within bounding boxes, we introduce two kinds of prompts: the modality prompt and the content prompt. After passing through the prompt encoder, their embedding representations can further improve the segmentation performance by incorporating more relevant information without adding significant training overhead. Additionally, we adopt an effective modality-based data sampling strategy to address data imbalance between modalities, ensuring more balanced performance across all modalities. Our method was trained and evaluated using a large-scale challenge dataset, compared to top-ranking methods on the challenge leaderboard, MCP-MedSAM achieved superior performance while requiring only one day of training on a single GPU. The code is publicly available at \textcolor{blue}{https://github.com/dong845/MCP-MedSAM}.}
comment: Accepted for publication at the Journal of Machine Learning for Biomedical Imaging (MELBA)
PRISM: A Unified Framework for Photorealistic Reconstruction and Intrinsic Scene Modeling
We present PRISM, a unified framework that enables multiple image generation and editing tasks in a single foundational model. Starting from a pre-trained text-to-image diffusion model, PRISM proposes an effective fine-tuning strategy to produce RGB images along with intrinsic maps (referred to as X layers) simultaneously. Unlike previous approaches, which infer intrinsic properties individually or require separate models for decomposition and conditional generation, PRISM maintains consistency across modalities by generating all intrinsic layers jointly. It supports diverse tasks, including text-to-RGBX generation, RGB-to-X decomposition, and X-to-RGBX conditional generation. Additionally, PRISM enables both global and local image editing through conditioning on selected intrinsic layers and text prompts. Extensive experiments demonstrate the competitive performance of PRISM both for intrinsic image decomposition and conditional image generation while preserving the base model's text-to-image generation capability.
3D Cartoon Face Generation with Controllable Expressions from a Single GAN Image IJCNN 2025
In this paper, we investigate an open research task of generating 3D cartoon face shapes from single 2D GAN generated human faces and without 3D supervision, where we can also manipulate the facial expressions of the 3D shapes. To this end, we discover the semantic meanings of StyleGAN latent space, such that we are able to produce face images of various expressions, poses, and lighting conditions by controlling the latent codes. Specifically, we first finetune the pretrained StyleGAN face model on the cartoon datasets. By feeding the same latent codes to face and cartoon generation models, we aim to realize the translation from 2D human face images to cartoon styled avatars. We then discover semantic directions of the GAN latent space, in an attempt to change the facial expressions while preserving the original identity. As we do not have any 3D annotations for cartoon faces, we manipulate the latent codes to generate images with different poses and lighting conditions, such that we can reconstruct the 3D cartoon face shapes. We validate the efficacy of our method on three cartoon datasets qualitatively and quantitatively.
comment: IJCNN 2025. Code: https://github.com/hwang1996/3D-Cartoon-Face-Generation
Bayesian computation with generative diffusion models by Multilevel Monte Carlo
Generative diffusion models have recently emerged as a powerful strategy to perform stochastic sampling in Bayesian inverse problems, delivering remarkably accurate solutions for a wide range of challenging applications. However, diffusion models often require a large number of neural function evaluations per sample in order to deliver accurate posterior samples. As a result, using diffusion models as stochastic samplers for Monte Carlo integration in Bayesian computation can be highly computationally expensive, particularly in applications that require a substantial number of Monte Carlo samples for conducting uncertainty quantification analyses. This cost is especially high in large-scale inverse problems such as computational imaging, which rely on large neural networks that are expensive to evaluate. With quantitative imaging applications in mind, this paper presents a Multilevel Monte Carlo strategy that significantly reduces the cost of Bayesian computation with diffusion models. This is achieved by exploiting cost-accuracy trade-offs inherent to diffusion models to carefully couple models of different levels of accuracy in a manner that significantly reduces the overall cost of the calculation, without reducing the final accuracy. The proposed approach achieves a $4\times$-to-$8\times$ reduction in computational cost w.r.t. standard techniques across three benchmark imaging problems.
comment: 13 images
Video-R1: Reinforcing Video Reasoning in MLLMs
Inspired by DeepSeek-R1's success in eliciting reasoning abilities through rule-based reinforcement learning (RL), we introduce Video-R1 as the first attempt to systematically explore the R1 paradigm for incentivizing video reasoning within multimodal large language models (MLLMs). However, directly applying RL training with the GRPO algorithm to video reasoning presents two primary challenges: (i) a lack of temporal modeling for video reasoning, and (ii) the scarcity of high-quality video-reasoning data. To address these issues, we first propose the T-GRPO algorithm, which encourages models to utilize temporal information in videos for reasoning. Additionally, instead of relying solely on video data, we incorporate high-quality image-reasoning data into the training process. We have constructed two datasets: Video-R1-CoT-165k for SFT cold start and Video-R1-260k for RL training, both comprising image and video data. Experimental results demonstrate that Video-R1 achieves significant improvements on video reasoning benchmarks such as VideoMMMU and VSI-Bench, as well as on general video benchmarks including MVBench and TempCompass, etc. Notably, Video-R1-7B attains a 37.1% accuracy on video spatial reasoning benchmark VSI-bench, surpassing the commercial proprietary model GPT-4o. All code, models, and data are released in: https://github.com/tulerfeng/Video-R1.
comment: Project page: https://github.com/tulerfeng/Video-R1
DetailCLIP: Injecting Image Details into CLIP's Feature Space
Although CLIP-like Visual Language Models provide a functional joint feature space for image and text, due to the limitation of the CILP-like model's image input size (e.g., 224), subtle details are lost in the feature representation if we input high-resolution images (e.g., 2240). In this work, we introduce an efficient framework that can produce a single feature representation for a high-resolution image that injects image details and shares the same semantic space as the original CLIP. In the framework, we train a feature fusing model based on CLIP features extracted from a carefully designed image patch method that can cover objects of any scale, weakly supervised by image-agnostic class prompted queries. We validate our framework by retrieving images from class prompted queries on the real world and synthetic datasets, showing significant performance improvement on these tasks. Furthermore, to fully demonstrate our framework's detail retrieval ability, we construct a CLEVR-like synthetic dataset called CLVER-DS, which is fully annotated and has a controllable object scale.
One Homography is All You Need: IMM-based Joint Homography and Multiple Object State Estimation
A novel online MOT algorithm, IMM Joint Homography State Estimation (IMM-JHSE), is proposed. IMM-JHSE uses an initial homography estimate as the only additional 3D information, whereas other 3D MOT methods use regular 3D measurements. By jointly modelling the homography matrix and its dynamics as part of track state vectors, IMM-JHSE removes the explicit influence of camera motion compensation techniques on predicted track position states, which was prevalent in previous approaches. Expanding upon this, static and dynamic camera motion models are combined using an IMM filter. A simple bounding box motion model is used to predict bounding box positions to incorporate image plane information. In addition to applying an IMM to camera motion, a non-standard IMM approach is applied where bounding-box-based BIoU scores are mixed with ground-plane-based Mahalanobis distances in an IMM-like fashion to perform association only, making IMM-JHSE robust to motion away from the ground plane. Finally, IMM-JHSE makes use of dynamic process and measurement noise estimation techniques. IMM-JHSE improves upon related techniques, including UCMCTrack, OC-SORT, C-BIoU and ByteTrack on the DanceTrack and KITTI-car datasets, increasing HOTA by 2.64 and 2.11, respectively, while offering competitive performance on the MOT17, MOT20 and KITTI-pedestrian datasets. Using publicly available detections, IMM-JHSE outperforms almost all other 2D MOT methods and is outperformed only by 3D MOT methods -- some of which are offline -- on the KITTI-car dataset. Compared to tracking-by-attention methods, IMM-JHSE shows remarkably similar performance on the DanceTrack dataset and outperforms them on the MOT17 dataset. The code is publicly available: https://github.com/Paulkie99/imm-jhse.
comment: Preprint submitted to Expert Systems with Applications
METDrive: Multi-modal End-to-end Autonomous Driving with Temporal Guidance ICRA
Multi-modal end-to-end autonomous driving has shown promising advancements in recent work. By embedding more modalities into end-to-end networks, the system's understanding of both static and dynamic aspects of the driving environment is enhanced, thereby improving the safety of autonomous driving. In this paper, we introduce METDrive, an end-to-end system that leverages temporal guidance from the embedded time series features of ego states, including rotation angles, steering, throttle signals, and waypoint vectors. The geometric features derived from perception sensor data and the time series features of ego state data jointly guide the waypoint prediction with the proposed temporal guidance loss function. We evaluated METDrive on the CARLA leaderboard benchmarks, achieving a driving score of 70%, a route completion score of 94%, and an infraction score of 0.78.
comment: Accepted by ICRA
AdaWorld: Learning Adaptable World Models with Latent Actions ICML 2025
World models aim to learn action-controlled future prediction and have proven essential for the development of intelligent agents. However, most existing world models rely heavily on substantial action-labeled data and costly training, making it challenging to adapt to novel environments with heterogeneous actions through limited interactions. This limitation can hinder their applicability across broader domains. To overcome this limitation, we propose AdaWorld, an innovative world model learning approach that enables efficient adaptation. The key idea is to incorporate action information during the pretraining of world models. This is achieved by extracting latent actions from videos in a self-supervised manner, capturing the most critical transitions between frames. We then develop an autoregressive world model that conditions on these latent actions. This learning paradigm enables highly adaptable world models, facilitating efficient transfer and learning of new actions even with limited interactions and finetuning. Our comprehensive experiments across multiple environments demonstrate that AdaWorld achieves superior performance in both simulation quality and visual planning.
comment: ICML 2025. Project page: https://adaptable-world-model.github.io/, code: https://github.com/Little-Podi/AdaWorld, model: https://huggingface.co/Little-Podi/AdaWorld
An ocean front detection and tracking algorithm
Existing ocean front detection methods--including histogram-based variance analysis, Lyapunov exponent, gradient thresholding, and machine learning--suffer from critical limitations: discontinuous outputs, over-detection, reliance on single-threshold decisions, and lack of open-source implementations. To address these challenges, this paper proposes the Bayesian Front Detection and Tracking framework with Metric Space Analysis (BFDT-MSA). The framework introduces three innovations: (1) a Bayesian decision mechanism that integrates gradient priors and field operators to eliminate manual threshold sensitivity; (2) morphological refinement algorithms for merging fragmented fronts, deleting spurious rings, and thinning frontal zones to pixel-level accuracy; and (3) a novel metric space definition for temporal front tracking, enabling systematic analysis of front evolution. Validated on global SST data (2022--2024), BFDT-MSA reduces over-detection by $73\%$ compared to histogram-based methods while achieving superior intensity ($0.16^\circ$C/km), continuity, and spatiotemporal coherence. The open-source release bridges a critical gap in reproducible oceanographic research.
Simulating Dynamic Tumor Contrast Enhancement in Breast MRI using Conditional Generative Adversarial Networks
This paper presents a method for virtual contrast enhancement in breast MRI, offering a promising non-invasive alternative to traditional contrast agent-based DCE-MRI acquisition. Using a conditional generative adversarial network, we predict DCE-MRI images, including jointly-generated sequences of multiple corresponding DCE-MRI timepoints, from non-contrast-enhanced MRIs, enabling tumor localization and characterization without the associated health risks. Furthermore, we qualitatively and quantitatively evaluate the synthetic DCE-MRI images, proposing a multi-metric Scaled Aggregate Measure (SAMe), assessing their utility in a tumor segmentation downstream task, and conclude with an analysis of the temporal patterns in multi-sequence DCE-MRI generation. Our approach demonstrates promising results in generating realistic and useful DCE-MRI sequences, highlighting the potential of virtual contrast enhancement for improving breast cancer diagnosis and treatment, particularly for patients where contrast agent administration is contraindicated.
Learning Traffic Anomalies from Generative Models on Real-Time Observations
Accurate detection of traffic anomalies is crucial for effective urban traffic management and congestion mitigation. We use the Spatiotemporal Generative Adversarial Network (STGAN) framework combining Graph Neural Networks and Long Short-Term Memory networks to capture complex spatial and temporal dependencies in traffic data. We apply STGAN to real-time, minute-by-minute observations from 42 traffic cameras across Gothenburg, Sweden, collected over several months in 2020. The images are processed to compute a flow metric representing vehicle density, which serves as input for the model. Training is conducted on data from April to November 2020, and validation is performed on a separate dataset from November 14 to 23, 2020. Our results demonstrate that the model effectively detects traffic anomalies with high precision and low false positive rates. The detected anomalies include camera signal interruptions, visual artifacts, and extreme weather conditions affecting traffic flow.
Iterative Occlusion-Aware Light Field Depth Estimation using 4D Geometrical Cues
Light field cameras and multi-camera arrays have emerged as promising solutions for accurately estimating depth by passively capturing light information. This is possible because the 3D information of a scene is embedded in the 4D light field geometry. Commonly, depth estimation methods extract this information relying on gradient information, heuristic-based optimisation models, or learning-based approaches. This paper focuses mainly on explicitly understanding and exploiting 4D geometrical cues for light field depth estimation. Thus, a novel method is proposed, based on a non-learning-based optimisation approach for depth estimation that explicitly considers surface normal accuracy and occlusion regions by utilising a fully explainable 4D geometric model of the light field. The 4D model performs depth/disparity estimation by determining the orientations and analysing the intersections of key 2D planes in 4D space, which are the images of 3D-space points in the 4D light field. Experimental results show that the proposed method outperforms both learning-based and non-learning-based state-of-the-art methods in terms of surface normal angle accuracy, achieving a Median Angle Error on planar surfaces, on average, 26.3$\%$ lower than the state-of-the-art, and still being competitive with state-of-the-art methods in terms of MSE ${\times}$ 100 and Badpix 0.07.
HCMA: Hierarchical Cross-model Alignment for Grounded Text-to-Image Generation
Text-to-image synthesis has progressed to the point where models can generate visually compelling images from natural language prompts. Yet, existing methods often fail to reconcile high-level semantic fidelity with explicit spatial control, particularly in scenes involving multiple objects, nuanced relations, or complex layouts. To bridge this gap, we propose a Hierarchical Cross-Modal Alignment (HCMA) framework for grounded text-to-image generation. HCMA integrates two alignment modules into each diffusion sampling step: a global module that continuously aligns latent representations with textual descriptions to ensure scene-level coherence, and a local module that employs bounding-box layouts to anchor objects at specified locations, enabling fine-grained spatial control. Extensive experiments on the MS-COCO 2014 validation set show that HCMA surpasses state-of-the-art baselines, achieving a 0.69 improvement in Frechet Inception Distance (FID) and a 0.0295 gain in CLIP Score. These results demonstrate HCMA's effectiveness in faithfully capturing intricate textual semantics while adhering to user-defined spatial constraints, offering a robust solution for semantically grounded image generation.Our code is available at https://github.com/hwang-cs-ime/HCMA
comment: 10 pages, 4 figures
Reflecting Topology Consistency and Abnormality via Learnable Attentions for Airway Labeling
Accurate airway anatomical labeling is crucial for clinicians to identify and navigate complex bronchial structures during bronchoscopy. Automatic airway anatomical labeling is challenging due to significant individual variability and anatomical variations. Previous methods are prone to generate inconsistent predictions, which is harmful for preoperative planning and intraoperative navigation. This paper aims to address these challenges by proposing a novel method that enhances topological consistency and improves the detection of abnormal airway branches. We propose a novel approach incorporating two modules: the Soft Subtree Consistency (SSC) and the Abnormal Branch Saliency (ABS). The SSC module constructs a soft subtree to capture clinically relevant topological relationships, allowing for flexible feature aggregation within and across subtrees. The ABS module facilitates the interaction between node features and prototypes to distinguish abnormal branches, preventing the erroneous aggregation of features between normal and abnormal nodes. Evaluated on a challenging dataset characterized by severe airway distortion and atrophy, our method achieves superior performance compared to state-of-the-art approaches. Specifically, it attains a 91.4% accuracy at the segmental level and an 83.7% accuracy at the subsegmental level, representing a 1.4% increase in subsegmental accuracy and a 3.1% increase in topological consistency. Notably, the method demonstrates reliable performance in cases with disease-induced airway deformities, ensuring consistent and accurate labeling.
ALEN: A Dual-Approach for Uniform and Non-Uniform Low-Light Image Enhancement
Low-light image enhancement is an important task in computer vision, essential for improving the visibility and quality of images captured in non-optimal lighting conditions. Inadequate illumination can lead to significant information loss and poor image quality, impacting various applications such as surveillance. photography, or even autonomous driving. In this regard, automated methods have been developed to automatically adjust illumination in the image for a better visual perception. Current enhancement techniques often use specific datasets to enhance low-light images, but still present challenges when adapting to diverse real-world conditions, where illumination degradation may be localized to specific regions. To address this challenge, the Adaptive Light Enhancement Network (ALEN) is introduced, whose main approach is the use of a classification mechanism to determine whether local or global illumination enhancement is required. Subsequently, estimator networks adjust illumination based on this classification and simultaneously enhance color fidelity. ALEN integrates the Light Classification Network (LCNet) for illuminance categorization, complemented by the Single-Channel Network (SCNet), and Multi-Channel Network (MCNet) for precise estimation of illumination and color, respectively. Extensive experiments on publicly available datasets for low-light conditions were carried out to underscore ALEN's robust generalization capabilities, demonstrating superior performance in both quantitative metrics and qualitative assessments when compared to recent state-of-the-art methods. The ALEN not only enhances image quality in terms of visual perception but also represents an advancement in high-level vision tasks, such as semantic segmentation, as presented in this work. The code of this method is available at https://github.com/xingyumex/ALEN
comment: Minor updates and corrections
Comparing Quantum Annealing and Spiking Neuromorphic Computing for Sampling Binary Sparse Coding QUBO Problems
We consider the problem of computing a sparse binary representation of an image. To be precise, given an image and an overcomplete, non-orthonormal basis, we aim to find a sparse binary vector indicating the minimal set of basis vectors that when added together best reconstruct the given input. We formulate this problem with an $L_2$ loss on the reconstruction error, and an $L_0$ (or, equivalently, an $L_1$) loss on the binary vector enforcing sparsity. This yields a quadratic unconstrained binary optimization problem (QUBO), whose optimal solution(s) in general is NP-hard to find. The contribution of this work is twofold. First, we solve the sparse representation QUBOs by solving them both on a D-Wave quantum annealer with Pegasus chip connectivity via minor embedding, as well as on the Intel Loihi 2 spiking neuromorphic processor using a stochastic Non-equilibrium Boltzmann Machine (NEBM). Second, we deploy Quantum Evolution Monte Carlo with Reverse Annealing and iterated warm starting on Loihi 2 to evolve the solution quality from the respective machines. The solutions are benchmarked against simulated annealing, a classical heuristic, and the optimal solutions are computed using CPLEX. Iterated reverse quantum annealing performs similarly to simulated annealing, although simulated annealing is always able to sample the optimal solution whereas quantum annealing was not always able to. The Loihi 2 solutions that are sampled are on average more sparse than the solutions from any of the other methods. We demonstrate that both quantum annealing and neuromorphic computing are suitable for binary sparse coding QUBOs, and that Loihi 2 outperforms a D-Wave quantum annealer standard linear-schedule anneal, while iterated reverse quantum annealing performs much better than both unmodified linear-schedule quantum annealing and iterated warm starting on Loihi 2.
GarmentGS: Point-Cloud Guided Gaussian Splatting for High-Fidelity Non-Watertight 3D Garment Reconstruction ICMR 2025
Traditional 3D garment creation requires extensive manual operations, resulting in time and labor costs. Recently, 3D Gaussian Splatting has achieved breakthrough progress in 3D scene reconstruction and rendering, attracting widespread attention and opening new pathways for 3D garment reconstruction. However, due to the unstructured and irregular nature of Gaussian primitives, it is difficult to reconstruct high-fidelity, non-watertight 3D garments. In this paper, we present GarmentGS, a dense point cloud-guided method that can reconstruct high-fidelity garment surfaces with high geometric accuracy and generate non-watertight, single-layer meshes. Our method introduces a fast dense point cloud reconstruction module that can complete garment point cloud reconstruction in 10 minutes, compared to traditional methods that require several hours. Furthermore, we use dense point clouds to guide the movement, flattening, and rotation of Gaussian primitives, enabling better distribution on the garment surface to achieve superior rendering effects and geometric accuracy. Through numerical and visual comparisons, our method achieves fast training and real-time rendering while maintaining competitive quality.
comment: Accepted by ICMR 2025
Monocular Online Reconstruction with Enhanced Detail Preservation SIGGRAPH 2025
We propose an online 3D Gaussian-based dense mapping framework for photorealistic details reconstruction from a monocular image stream. Our approach addresses two key challenges in monocular online reconstruction: distributing Gaussians without relying on depth maps and ensuring both local and global consistency in the reconstructed maps. To achieve this, we introduce two key modules: the Hierarchical Gaussian Management Module for effective Gaussian distribution and the Global Consistency Optimization Module for maintaining alignment and coherence at all scales. In addition, we present the Multi-level Occupancy Hash Voxels (MOHV), a structure that regularizes Gaussians for capturing details across multiple levels of granularity. MOHV ensures accurate reconstruction of both fine and coarse geometries and textures, preserving intricate details while maintaining overall structural integrity. Compared to state-of-the-art RGB-only and even RGB-D methods, our framework achieves superior reconstruction quality with high computational efficiency. Moreover, it integrates seamlessly with various tracking systems, ensuring generality and scalability.
comment: Accepted to SIGGRAPH 2025 (Conference Track). Project page: https://poiw.github.io/MODP
Benchmarking Large Vision-Language Models on Fine-Grained Image Tasks: A Comprehensive Evaluation
Recent advancements in Large Vision-Language Models (LVLMs) have demonstrated remarkable multimodal perception capabilities, garnering significant attention. While numerous evaluation studies have emerged, assessing LVLMs both holistically and on specialized tasks, fine-grained image tasks-fundamental to computer vision-remain largely unexplored. To fill this gap, we introduce a comprehensive fine-grained evaluation benchmark, i.e., FG-BMK, comprising 1.01 million questions and 0.33 million images. Our evaluation systematically examines LVLMs from both human-oriented and machine-oriented perspectives, focusing on their semantic recognition and fine-grained feature representation capabilities. Through extensive experiments on twelve representative LVLMs/VLMs, we uncover key findings regarding the influence of training paradigms, modality alignment, perturbation susceptibility, and fine-grained category reasoning on task performance. This work provides critical insights into the limitations of current LVLMs and offers guidance for future data construction and model design in the development of more advanced LVLMs. Our code is open-source and available at https://github.com/SEU-VIPGroup/FG-BMK.
Unsupervised Video Highlight Detection by Learning from Audio and Visual Recurrence WACV
With the exponential growth of video content, the need for automated video highlight detection to extract key moments or highlights from lengthy videos has become increasingly pressing. This technology has the potential to enhance user experiences by allowing quick access to relevant content across diverse domains. Existing methods typically rely either on expensive manually labeled frame-level annotations, or on a large external dataset of videos for weak supervision through category information. To overcome this, we focus on unsupervised video highlight detection, eliminating the need for manual annotations. We propose a novel unsupervised approach which capitalizes on the premise that significant moments tend to recur across multiple videos of the similar category in both audio and visual modalities. Surprisingly, audio remains under-explored, especially in unsupervised algorithms, despite its potential to detect key moments. Through a clustering technique, we identify pseudo-categories of videos and compute audio pseudo-highlight scores for each video by measuring the similarities of audio features among audio clips of all the videos within each pseudo-category. Similarly, we also compute visual pseudo-highlight scores for each video using visual features. Then, we combine audio and visual pseudo-highlights to create the audio-visual pseudo ground-truth highlight of each video for training an audio-visual highlight detection network. Extensive experiments and ablation studies on three benchmarks showcase the superior performance of our method over prior work.
comment: Accepted to the 2025 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)
StyleMorpheus: A Style-Based 3D-Aware Morphable Face Model
For 3D face modeling, the recently developed 3D-aware neural rendering methods are able to render photorealistic face images with arbitrary viewing directions. The training of the parametric controllable 3D-aware face models, however, still relies on a large-scale dataset that is lab-collected. To address this issue, this paper introduces "StyleMorpheus", the first style-based neural 3D Morphable Face Model (3DMM) that is trained on in-the-wild images. It inherits 3DMM's disentangled controllability (over face identity, expression, and appearance) but without the need for accurately reconstructed explicit 3D shapes. StyleMorpheus employs an auto-encoder structure. The encoder aims at learning a representative disentangled parametric code space and the decoder improves the disentanglement using shape and appearance-related style codes in the different sub-modules of the network. Furthermore, we fine-tune the decoder through style-based generative adversarial learning to achieve photorealistic 3D rendering quality. The proposed style-based design enables StyleMorpheus to achieve state-of-the-art 3D-aware face reconstruction results, while also allowing disentangled control of the reconstructed face. Our model achieves real-time rendering speed, allowing its use in virtual reality applications. We also demonstrate the capability of the proposed style-based design in face editing applications such as style mixing and color editing. Project homepage: https://github.com/ubc-3d-vision-lab/StyleMorpheus.
comment: 13 pages, work was completed in 2023
HaHeAE: Learning Generalisable Joint Representations of Human Hand and Head Movements in Extended Reality
Human hand and head movements are the most pervasive input modalities in extended reality (XR) and are significant for a wide range of applications. However, prior works on hand and head modelling in XR only explored a single modality or focused on specific applications. We present HaHeAE - a novel self-supervised method for learning generalisable joint representations of hand and head movements in XR. At the core of our method is an autoencoder (AE) that uses a graph convolutional network-based semantic encoder and a diffusion-based stochastic encoder to learn the joint semantic and stochastic representations of hand-head movements. It also features a diffusion-based decoder to reconstruct the original signals. Through extensive evaluations on three public XR datasets, we show that our method 1) significantly outperforms commonly used self-supervised methods by up to 74.0% in terms of reconstruction quality and is generalisable across users, activities, and XR environments, 2) enables new applications, including interpretable hand-head cluster identification and variable hand-head movement generation, and 3) can serve as an effective feature extractor for downstream tasks. Together, these results demonstrate the effectiveness of our method and underline the potential of self-supervised methods for jointly modelling hand-head behaviours in extended reality.
comment: Link: https://zhiminghu.net/hu25_haheae
Hierarchical World Models as Visual Whole-Body Humanoid Controllers
Whole-body control for humanoids is challenging due to the high-dimensional nature of the problem, coupled with the inherent instability of a bipedal morphology. Learning from visual observations further exacerbates this difficulty. In this work, we explore highly data-driven approaches to visual whole-body humanoid control based on reinforcement learning, without any simplifying assumptions, reward design, or skill primitives. Specifically, we propose a hierarchical world model in which a high-level agent generates commands based on visual observations for a low-level agent to execute, both of which are trained with rewards. Our approach produces highly performant control policies in 8 tasks with a simulated 56-DoF humanoid, while synthesizing motions that are broadly preferred by humans.
comment: Code and videos at https://nicklashansen.com/rlpuppeteer
Image and Video Processing
Meta-learning Slice-to-Volume Reconstruction in Fetal Brain MRI using Implicit Neural Representations
High-resolution slice-to-volume reconstruction (SVR) from multiple motion-corrupted low-resolution 2D slices constitutes a critical step in image-based diagnostics of moving subjects, such as fetal brain Magnetic Resonance Imaging (MRI). Existing solutions struggle with image artifacts and severe subject motion or require slice pre-alignment to achieve satisfying reconstruction performance. We propose a novel SVR method to enable fast and accurate MRI reconstruction even in cases of severe image and motion corruption. Our approach performs motion correction, outlier handling, and super-resolution reconstruction with all operations being entirely based on implicit neural representations. The model can be initialized with task-specific priors through fully self-supervised meta-learning on either simulated or real-world data. In extensive experiments including over 480 reconstructions of simulated and clinical MRI brain data from different centers, we prove the utility of our method in cases of severe subject motion and image artifacts. Our results demonstrate improvements in reconstruction quality, especially in the presence of severe motion, compared to state-of-the-art methods, and up to 50% reduction in reconstruction time.
comment: 10 pages, 6 figures
Contactless Cardiac Pulse Monitoring Using Event Cameras
Time event cameras are a novel technology for recording scene information at extremely low latency and with low power consumption. Event cameras output a stream of events that encapsulate pixel-level light intensity changes within the scene, capturing information with a higher dynamic range and temporal resolution than traditional cameras. This study investigates the contact-free reconstruction of an individual's cardiac pulse signal from time event recording of their face using a supervised convolutional neural network (CNN) model. An end-to-end model is trained to extract the cardiac signal from a two-dimensional representation of the event stream, with model performance evaluated based on the accuracy of the calculated heart rate. The experimental results confirm that physiological cardiac information in the facial region is effectively preserved within the event stream, showcasing the potential of this novel sensor for remote heart rate monitoring. The model trained on event frames achieves a root mean square error (RMSE) of 3.32 beats per minute (bpm) compared to the RMSE of 2.92 bpm achieved by the baseline model trained on standard camera frames. Furthermore, models trained on event frames generated at 60 and 120 FPS outperformed the 30 FPS standard camera results, achieving an RMSE of 2.54 and 2.13 bpm, respectively.
comment: This paper is a preprint of a paper submitted to IEEE Access and is currently under review
Spec2VolCAMU-Net: A Spectrogram-to-Volume Model for EEG-to-fMRI Reconstruction based on Multi-directional Time-Frequency Convolutional Attention Encoder and Vision-Mamba U-Net
High-resolution functional magnetic resonance imaging (fMRI) is essential for mapping human brain activity; however, it remains costly and logistically challenging. If comparable volumes could be generated directly from widely available scalp electroencephalography (EEG), advanced neuroimaging would become significantly more accessible. Existing EEG-to-fMRI generators rely on plain CNNs that fail to capture cross-channel time-frequency cues or on heavy transformer/GAN decoders that strain memory and stability. We propose Spec2VolCAMU-Net, a lightweight spectrogram-to-volume generator that confronts these issues via a Multi-directional Time-Frequency Convolutional Attention Encoder, stacking temporal, spectral and joint convolutions with self-attention, and a Vision-Mamba U-Net decoder whose linear-time state-space blocks enable efficient long-range spatial modelling. Trained end-to-end with a hybrid SSI-MSE loss, Spec2VolCAMU-Net achieves state-of-the-art fidelity on three public benchmarks, recording SSIMs of 0.693 on NODDI, 0.725 on Oddball and 0.788 on CN-EPFL, representing improvements of 14.5%, 14.9%, and 16.9% respectively over previous best SSIM scores. Furthermore, it achieves competitive PSNR scores, particularly excelling on the CN-EPFL dataset with a 4.6% improvement over the previous best PSNR, thus striking a better balance in reconstruction quality. The proposed model is lightweight and efficient, making it suitable for real-time applications in clinical and research settings. The code is available at https://github.com/hdy6438/Spec2VolCAMU-Net.
Efficient LiDAR Reflectance Compression via Scanning Serialization
Reflectance attributes in LiDAR point clouds provide essential information for downstream tasks but remain underexplored in neural compression methods. To address this, we introduce SerLiC, a serialization-based neural compression framework to fully exploit the intrinsic characteristics of LiDAR reflectance. SerLiC first transforms 3D LiDAR point clouds into 1D sequences via scan-order serialization, offering a device-centric perspective for reflectance analysis. Each point is then tokenized into a contextual representation comprising its sensor scanning index, radial distance, and prior reflectance, for effective dependencies exploration. For efficient sequential modeling, Mamba is incorporated with a dual parallelization scheme, enabling simultaneous autoregressive dependency capture and fast processing. Extensive experiments demonstrate that SerLiC attains over 2x volume reduction against the original reflectance data, outperforming the state-of-the-art method by up to 22% reduction of compressed bits while using only 2% of its parameters. Moreover, a lightweight version of SerLiC achieves > 10 fps (frames per second) with just 111K parameters, which is attractive for real-world applications.
DCSNet: A Lightweight Knowledge Distillation-Based Model with Explainable AI for Lung Cancer Diagnosis from Histopathological Images
Lung cancer is a leading cause of cancer-related deaths globally, where early detection and accurate diagnosis are critical for improving survival rates. While deep learning, particularly convolutional neural networks (CNNs), has revolutionized medical image analysis by detecting subtle patterns indicative of early-stage lung cancer, its adoption faces challenges. These models are often computationally expensive and require significant resources, making them unsuitable for resource constrained environments. Additionally, their lack of transparency hinders trust and broader adoption in sensitive fields like healthcare. Knowledge distillation addresses these challenges by transferring knowledge from large, complex models (teachers) to smaller, lightweight models (students). We propose a knowledge distillation-based approach for lung cancer detection, incorporating explainable AI (XAI) techniques to enhance model transparency. Eight CNNs, including ResNet50, EfficientNetB0, EfficientNetB3, and VGG16, are evaluated as teacher models. We developed and trained a lightweight student model, Distilled Custom Student Network (DCSNet) using ResNet50 as the teacher. This approach not only ensures high diagnostic performance in resource-constrained settings but also addresses transparency concerns, facilitating the adoption of AI-driven diagnostic tools in healthcare.
Neural Video Compression using 2D Gaussian Splatting
The computer vision and image processing research community has been involved in standardizing video data communications for the past many decades, leading to standards such as AVC, HEVC, VVC, AV1, AV2, etc. However, recent groundbreaking works have focused on employing deep learning-based techniques to replace the traditional video codec pipeline to a greater affect. Neural video codecs (NVC) create an end-to-end ML-based solution that does not rely on any handcrafted features (motion or edge-based) and have the ability to learn content-aware compression strategies, offering better adaptability and higher compression efficiency than traditional methods. This holds a great potential not only for hardware design, but also for various video streaming platforms and applications, especially video conferencing applications such as MS-Teams or Zoom that have found extensive usage in classrooms and workplaces. However, their high computational demands currently limit their use in real-time applications like video conferencing. To address this, we propose a region-of-interest (ROI) based neural video compression model that leverages 2D Gaussian Splatting. Unlike traditional codecs, 2D Gaussian Splatting is capable of real-time decoding and can be optimized using fewer data points, requiring only thousands of Gaussians for decent quality outputs as opposed to millions in 3D scenes. In this work, we designed a video pipeline that speeds up the encoding time of the previous Gaussian splatting-based image codec by 88% by using a content-aware initialization strategy paired with a novel Gaussian inter-frame redundancy-reduction mechanism, enabling Gaussian splatting to be used for a video-codec solution, the first of its kind solution in this neural video codec space.
comment: 9 pages, 8 figures
Q-space Guided Collaborative Attention Translation Network for Flexible Diffusion-Weighted Images Synthesis MICCAI 2025
This study, we propose a novel Q-space Guided Collaborative Attention Translation Networks (Q-CATN) for multi-shell, high-angular resolution DWI (MS-HARDI) synthesis from flexible q-space sampling, leveraging the commonly acquired structural MRI data. Q-CATN employs a collaborative attention mechanism to effectively extract complementary information from multiple modalities and dynamically adjust its internal representations based on flexible q-space information, eliminating the need for fixed sampling schemes. Additionally, we introduce a range of task-specific constraints to preserve anatomical fidelity in DWI, enabling Q-CATN to accurately learn the intrinsic relationships between directional DWI signal distributions and q-space. Extensive experiments on the Human Connectome Project (HCP) dataset demonstrate that Q-CATN outperforms existing methods, including 1D-qDL, 2D-qDL, MESC-SD, and QGAN, in estimating parameter maps and fiber tracts both quantitatively and qualitatively, while preserving fine-grained details. Notably, its ability to accommodate flexible q-space sampling highlights its potential as a promising toolkit for clinical and research applications. Our code is available at https://github.com/Idea89560041/Q-CATN.
comment: MICCAI 2025
Generalizing imaging biomarker repeatability studies using Bayesian inference: Applications in detecting heterogeneous treatment response in whole-body diffusion-weighted MRI of metastatic prostate cancer
The assessment of imaging biomarkers is critical for advancing precision medicine and improving disease characterization. Despite the availability of methods to derive disease heterogeneity metrics in imaging studies, a robust framework for evaluating measurement uncertainty remains underdeveloped. To address this gap, we propose a novel Bayesian framework to assess the precision of disease heterogeneity measures in biomarker studies. Our approach extends traditional methods for evaluating biomarker precision by providing greater flexibility in statistical assumptions and enabling the analysis of biomarkers beyond univariate or multivariate normally-distributed variables. Using Hamiltonian Monte Carlo sampling, the framework supports both, for example, normally-distributed and Dirichlet-Multinomial distributed variables, enabling the derivation of posterior distributions for biomarker parameters under diverse model assumptions. Designed to be broadly applicable across various imaging modalities and biomarker types, the framework builds a foundation for generalizing reproducible and objective biomarker evaluation. To demonstrate utility, we apply the framework to whole-body diffusion-weighted MRI (WBDWI) to assess heterogeneous therapeutic responses in metastatic bone disease. Specifically, we analyze data from two patient studies investigating treatments for metastatic castrate-resistant prostate cancer (mCRPC). Our results reveal an approximately 70% response rate among individual tumors across both studies, objectively characterizing differential responses to systemic therapies and validating the clinical relevance of the proposed methodology. This Bayesian framework provides a powerful tool for advancing biomarker research across diverse imaging-based studies while offering valuable insights into specific clinical applications, such as mCRPC treatment response.
BiECVC: Gated Diversification of Bidirectional Contexts for Learned Video Compression
Recent forward prediction-based learned video compression (LVC) methods have achieved impressive results, even surpassing VVC reference software VTM under the Low Delay B (LDB) configuration. In contrast, learned bidirectional video compression (BVC) remains underexplored and still lags behind its forward-only counterparts. This performance gap is mainly due to the limited ability to extract diverse and accurate contexts: most existing BVCs primarily exploit temporal motion while neglecting non-local correlations across frames. Moreover, they lack the adaptability to dynamically suppress harmful contexts arising from fast motion or occlusion. To tackle these challenges, we propose BiECVC, a BVC framework that incorporates diversified local and non-local context modeling along with adaptive context gating. For local context enhancement, BiECVC reuses high-quality features from lower layers and aligns them using decoded motion vectors without introducing extra motion overhead.To model non-local dependencies efficiently, we adopt a linear attention mechanism that balances performance and complexity. To further mitigate the impact of inaccurate context prediction, we introduce Bidirectional Context Gating, inspired by data-dependent decay in recent autoregressive language models, to dynamically filter contextual information based on conditional coding results. Extensive experiments demonstrate that BiECVC achieves state-of-the-art performance, reducing the bit-rate by 13.4% and 15.7% compared to VTM 13.2 under the Random Access (RA) configuration with intra periods of 32 and 64, respectively. To our knowledge, BiECVC is the first learned video codec to surpass VTM 13.2 RA across all standard test datasets. Code will be available at https://github.com/JiangWeibeta/ECVC.
comment: The first learned video codec that surpasses VTM 13.2 RA across all standard test datasets. Code will be available at https://github.com/JiangWeibeta/ECVC
Radiogenomic Bipartite Graph Representation Learning for Alzheimer's Disease Detection
Imaging and genomic data offer distinct and rich features, and their integration can unveil new insights into the complex landscape of diseases. In this study, we present a novel approach utilizing radiogenomic data including structural MRI images and gene expression data, for Alzheimer's disease detection. Our framework introduces a novel heterogeneous bipartite graph representation learning featuring two distinct node types: genes and images. The network can effectively classify Alzheimer's disease (AD) into three distinct stages:AD, Mild Cognitive Impairment (MCI), and Cognitive Normal (CN) classes, utilizing a small dataset. Additionally, it identified which genes play a significant role in each of these classification groups. We evaluate the performance of our approach using metrics including classification accuracy, recall, precision, and F1 score. The proposed technique holds potential for extending to radiogenomic-based classification to other diseases.
comment: 11 pages
ImplicitStainer: Data-Efficient Medical Image Translation for Virtual Antibody-based Tissue Staining Using Local Implicit Functions
Hematoxylin and eosin (H&E) staining is a gold standard for microscopic diagnosis in pathology. However, H&E staining does not capture all the diagnostic information that may be needed. To obtain additional molecular information, immunohistochemical (IHC) stains highlight proteins that mark specific cell types, such as CD3 for T-cells or CK8/18 for epithelial cells. While IHC stains are vital for prognosis and treatment guidance, they are typically only available at specialized centers and time consuming to acquire, leading to treatment delays for patients. Virtual staining, enabled by deep learning-based image translation models, provides a promising alternative by computationally generating IHC stains from H&E stained images. Although many GAN and diffusion based image to image (I2I) translation methods have been used for virtual staining, these models treat image patches as independent data points, which results in increased and more diverse data requirements for effective generation. We present ImplicitStainer, a novel approach that leverages local implicit functions to improve image translation, specifically virtual staining performance, by focusing on pixel-level predictions. This method enhances robustness to variations in dataset sizes, delivering high-quality results even with limited data. We validate our approach on two datasets using a comprehensive set of metrics and benchmark it against over fifteen state-of-the-art GAN- and diffusion based models. Full Code and models trained will be released publicly via Github upon acceptance.
Super-Resolution Generative Adversarial Networks based Video Enhancement
This study introduces an enhanced approach to video super-resolution by extending ordinary Single-Image Super-Resolution (SISR) Super-Resolution Generative Adversarial Network (SRGAN) structure to handle spatio-temporal data. While SRGAN has proven effective for single-image enhancement, its design does not account for the temporal continuity required in video processing. To address this, a modified framework that incorporates 3D Non-Local Blocks is proposed, which is enabling the model to capture relationships across both spatial and temporal dimensions. An experimental training pipeline is developed, based on patch-wise learning and advanced data degradation techniques, to simulate real-world video conditions and learn from both local and global structures and details. This helps the model generalize better and maintain stability across varying video content while maintaining the general structure besides the pixel-wise correctness. Two model variants-one larger and one more lightweight-are presented to explore the trade-offs between performance and efficiency. The results demonstrate improved temporal coherence, sharper textures, and fewer visual artifacts compared to traditional single-image methods. This work contributes to the development of practical, learning-based solutions for video enhancement tasks, with potential applications in streaming, gaming, and digital restoration.
ExploreGS: a vision-based low overhead framework for 3D scene reconstruction
This paper proposes a low-overhead, vision-based 3D scene reconstruction framework for drones, named ExploreGS. By using RGB images, ExploreGS replaces traditional lidar-based point cloud acquisition process with a vision model, achieving a high-quality reconstruction at a lower cost. The framework integrates scene exploration and model reconstruction, and leverags a Bag-of-Words(BoW) model to enable real-time processing capabilities, therefore, the 3D Gaussian Splatting (3DGS) training can be executed on-board. Comprehensive experiments in both simulation and real-world environments demonstrate the efficiency and applicability of the ExploreGS framework on resource-constrained devices, while maintaining reconstruction quality comparable to state-of-the-art methods.
GRNN:Recurrent Neural Network based on Ghost Features for Video Super-Resolution ICME 2023
Modern video super-resolution (VSR) systems based on convolutional neural networks (CNNs) require huge computational costs. The problem of feature redundancy is present in most models in many domains, but is rarely discussed in VSR. We experimentally observe that many features in VSR models are also similar to each other, so we propose to use "Ghost features" to reduce this redundancy. We also analyze the so-called "gradient disappearance" phenomenon generated by the conventional recurrent convolutional network (RNN) model, and combine the Ghost module with RNN to complete the modeling on time series. The current frame is used as input to the model together with the next frame, the output of the previous frame and the hidden state. Extensive experiments on several benchmark models and datasets show that the PSNR and SSIM of our proposed modality are improved to some extent. Some texture details in the video are also better preserved.
comment: Accepted by 2023 IEEE International Conference on Multimedia and Expo (ICME 2023)
Using Few-Shot Learning to Classify Primary Lung Cancer and Other Malignancy with Lung Metastasis in Cytological Imaging via Endobronchial Ultrasound Procedures
This study presents a computer-aided diagnosis (CAD) system to assist early detection of lung metastases during endobronchial ultrasound (EBUS) procedures, significantly reducing follow-up time and enabling timely treatment. Due to limited cytology images and morphological similarities among cells, classifying lung metastases is challenging, and existing research rarely targets this issue directly.To overcome data scarcity and improve classification, the authors propose a few-shot learning model using a hybrid pretrained backbone with fine-grained classification and contrastive learning. Parameter-efficient fine-tuning on augmented support sets enhances generalization and transferability. The model achieved 49.59% accuracy, outperforming existing methods. With 20 image samples, accuracy improved to 55.48%, showing strong potential for identifying rare or novel cancer types in low-data clinical environments.
TSLFormer: A Lightweight Transformer Model for Turkish Sign Language Recognition Using Skeletal Landmarks
This study presents TSLFormer, a light and robust word-level Turkish Sign Language (TSL) recognition model that treats sign gestures as ordered, string-like language. Instead of using raw RGB or depth videos, our method only works with 3D joint positions - articulation points - extracted using Google's Mediapipe library, which focuses on the hand and torso skeletal locations. This creates efficient input dimensionality reduction while preserving important semantic gesture information. Our approach revisits sign language recognition as sequence-to-sequence translation, inspired by the linguistic nature of sign languages and the success of transformers in natural language processing. Since TSLFormer uses the self-attention mechanism, it effectively captures temporal co-occurrence within gesture sequences and highlights meaningful motion patterns as words unfold. Evaluated on the AUTSL dataset with over 36,000 samples and 227 different words, TSLFormer achieves competitive performance with minimal computational cost. These results show that joint-based input is sufficient for enabling real-time, mobile, and assistive communication systems for hearing-impaired individuals.
Data-Driven Calibration Technique for Quantitative Radar Imaging
Quantitative inversion algorithms allow for the reconstruction of electrical properties (such as permittivity, and conductivity) for every point in a scene. However, they are challenging to use on measured datasets due to the need to know the incident wave field in the scene. In general, this is unknown due to factors such as antenna characteristics, path loss, waveform factors, etc. In this paper, we introduce a scalar calibration factor to account for these factors. To solve for the calibration factor, we augment the inversion procedure by including the forward problem, which we solve by training a simple feed-forward fully connected neural network to learn a mapping between the underlying permittivity distribution and the scattered field at the radar. We then minimize the mismatch between the measured and simulated fields to optimize the scalar calibration factor for each transmitter. We use the Fresnel Institute dataset to test our algorithm.
comment: 6 pages 7 figures For 2025 IEEE CISA
Gradient Attention Map Based Verification of Deep Convolutional Neural Networks with Application to X-ray Image Datasets
Deep learning models have great potential in medical imaging, including orthodontics and skeletal maturity assessment. However, applying a model to data different from its training set can lead to unreliable predictions that may impact patient care. To address this, we propose a comprehensive verification framework that evaluates model suitability through multiple complementary strategies. First, we introduce a Gradient Attention Map (GAM)-based approach that analyzes attention patterns using Grad-CAM and compares them via similarity metrics such as IoU, Dice Similarity, SSIM, Cosine Similarity, Pearson Correlation, KL Divergence, and Wasserstein Distance. Second, we extend verification to early convolutional feature maps, capturing structural mis-alignments missed by attention alone. Finally, we incorporate an additional garbage class into the classification model to explicitly reject out-of-distribution inputs. Experimental results demonstrate that these combined methods effectively identify unsuitable models and inputs, promoting safer and more reliable deployment of deep learning in medical imaging.
comment: 13 pages, 7 figures, accepted at IEEE VLSI Test Symposium (VTS) 2025
Easz: An Agile Transformer-based Image Compression Framework for Resource-constrained IoTs
Neural image compression, necessary in various machine-to-machine communication scenarios, suffers from its heavy encode-decode structures and inflexibility in switching between different compression levels. Consequently, it raises significant challenges in applying the neural image compression to edge devices that are developed for powerful servers with high computational and storage capacities. We take a step to solve the challenges by proposing a new transformer-based edge-compute-free image coding framework called Easz. Easz shifts the computational overhead to the server, and hence avoids the heavy encoding and model switching overhead on the edge. Easz utilizes a patch-erase algorithm to selectively remove image contents using a conditional uniform-based sampler. The erased pixels are reconstructed on the receiver side through a transformer-based framework. To further reduce the computational overhead on the receiver, we then introduce a lightweight transformer-based reconstruction structure to reduce the reconstruction load on the receiver side. Extensive evaluations conducted on a real-world testbed demonstrate multiple advantages of Easz over existing compression approaches, in terms of adaptability to different compression levels, computational efficiency, and image reconstruction quality.
A Deep Learning Approach for Pixel-level Material Classification via Hyperspectral Imaging
Recent advancements in computer vision, particularly in detection, segmentation, and classification, have significantly impacted various domains. However, these advancements are tied to RGB-based systems, which are insufficient for applications in industries like waste sorting, pharmaceuticals, and defense, where advanced object characterization beyond shape or color is necessary. Hyperspectral (HS) imaging, capturing both spectral and spatial information, addresses these limitations and offers advantages over conventional technologies such as X-ray fluorescence and Raman spectroscopy, particularly in terms of speed, cost, and safety. This study evaluates the potential of combining HS imaging with deep learning for material characterization. The research involves: i) designing an experimental setup with HS camera, conveyor, and controlled lighting; ii) generating a multi-object dataset of various plastics (HDPE, PET, PP, PS) with semi-automated mask generation and Raman spectroscopy-based labeling; and iii) developing a deep learning model trained on HS images for pixel-level material classification. The model achieved 99.94\% classification accuracy, demonstrating robustness in color, size, and shape invariance, and effectively handling material overlap. Limitations, such as challenges with black objects, are also discussed. Extending computer vision beyond RGB to HS imaging proves feasible, overcoming major limitations of traditional methods and showing strong potential for future applications.
comment: 13 pages, 15 figures, 6 equations
Simulating Dynamic Tumor Contrast Enhancement in Breast MRI using Conditional Generative Adversarial Networks
This paper presents a method for virtual contrast enhancement in breast MRI, offering a promising non-invasive alternative to traditional contrast agent-based DCE-MRI acquisition. Using a conditional generative adversarial network, we predict DCE-MRI images, including jointly-generated sequences of multiple corresponding DCE-MRI timepoints, from non-contrast-enhanced MRIs, enabling tumor localization and characterization without the associated health risks. Furthermore, we qualitatively and quantitatively evaluate the synthetic DCE-MRI images, proposing a multi-metric Scaled Aggregate Measure (SAMe), assessing their utility in a tumor segmentation downstream task, and conclude with an analysis of the temporal patterns in multi-sequence DCE-MRI generation. Our approach demonstrates promising results in generating realistic and useful DCE-MRI sequences, highlighting the potential of virtual contrast enhancement for improving breast cancer diagnosis and treatment, particularly for patients where contrast agent administration is contraindicated.
Iterative Occlusion-Aware Light Field Depth Estimation using 4D Geometrical Cues
Light field cameras and multi-camera arrays have emerged as promising solutions for accurately estimating depth by passively capturing light information. This is possible because the 3D information of a scene is embedded in the 4D light field geometry. Commonly, depth estimation methods extract this information relying on gradient information, heuristic-based optimisation models, or learning-based approaches. This paper focuses mainly on explicitly understanding and exploiting 4D geometrical cues for light field depth estimation. Thus, a novel method is proposed, based on a non-learning-based optimisation approach for depth estimation that explicitly considers surface normal accuracy and occlusion regions by utilising a fully explainable 4D geometric model of the light field. The 4D model performs depth/disparity estimation by determining the orientations and analysing the intersections of key 2D planes in 4D space, which are the images of 3D-space points in the 4D light field. Experimental results show that the proposed method outperforms both learning-based and non-learning-based state-of-the-art methods in terms of surface normal angle accuracy, achieving a Median Angle Error on planar surfaces, on average, 26.3$\%$ lower than the state-of-the-art, and still being competitive with state-of-the-art methods in terms of MSE ${\times}$ 100 and Badpix 0.07.
Flexible single multimode fiber imaging using white LED
Multimode fiber (MMF) has been proven to have good potential in imaging and optical communication because of its advantages of small diameter and large mode numbers. However, due to the mode coupling and modal dispersion, it is very sensitive to environmental changes. Minor changes in the fiber shape can lead to difficulties in information reconstruction. Here, white LED and cascaded Unet are used to achieve MMF imaging to eliminate the effect of fiber perturbations. The output speckle patterns in three different color channels of the CCD camera produced by transferring images through the MMF are concatenated and inputted into the cascaded Unet using channel stitching technology to improve the reconstruction effects. The average Pearson correlation coefficient (PCC) of the reconstructed images from the Fashion-MINIST dataset is 0.83. In order to check the flexibility of such a system, perturbation tests on the image reconstruction capability by changing the fiber shapes are conducted. The experimental results show that the MMF imaging system has good robustness properties, i. e. the average PCC remains 0.83 even after completely changing the shape of the MMF. This research potentially provides a flexible approach for the practical application of MMF imaging.
Multimedia
WavReward: Spoken Dialogue Models With Generalist Reward Evaluators
End-to-end spoken dialogue models such as GPT-4o-audio have recently garnered significant attention in the speech domain. However, the evaluation of spoken dialogue models' conversational performance has largely been overlooked. This is primarily due to the intelligent chatbots convey a wealth of non-textual information which cannot be easily measured using text-based language models like ChatGPT. To address this gap, we propose WavReward, a reward feedback model based on audio language models that can evaluate both the IQ and EQ of spoken dialogue systems with speech input. Specifically, 1) based on audio language models, WavReward incorporates the deep reasoning process and the nonlinear reward mechanism for post-training. By utilizing multi-sample feedback via the reinforcement learning algorithm, we construct a specialized evaluator tailored to spoken dialogue models. 2) We introduce ChatReward-30K, a preference dataset used to train WavReward. ChatReward-30K includes both comprehension and generation aspects of spoken dialogue models. These scenarios span various tasks, such as text-based chats, nine acoustic attributes of instruction chats, and implicit chats. WavReward outperforms previous state-of-the-art evaluation models across multiple spoken dialogue scenarios, achieving a substantial improvement about Qwen2.5-Omni in objective accuracy from 55.1$\%$ to 91.5$\%$. In subjective A/B testing, WavReward also leads by a margin of 83$\%$. Comprehensive ablation studies confirm the necessity of each component of WavReward. All data and code will be publicly at https://github.com/jishengpeng/WavReward after the paper is accepted.
Fast Text-to-Audio Generation with Adversarial Post-Training
Text-to-audio systems, while increasingly performant, are slow at inference time, thus making their latency unpractical for many creative applications. We present Adversarial Relativistic-Contrastive (ARC) post-training, the first adversarial acceleration algorithm for diffusion/flow models not based on distillation. While past adversarial post-training methods have struggled to compare against their expensive distillation counterparts, ARC post-training is a simple procedure that (1) extends a recent relativistic adversarial formulation to diffusion/flow post-training and (2) combines it with a novel contrastive discriminator objective to encourage better prompt adherence. We pair ARC post-training with a number optimizations to Stable Audio Open and build a model capable of generating $\approx$12s of 44.1kHz stereo audio in $\approx$75ms on an H100, and $\approx$7s on a mobile edge-device, the fastest text-to-audio model to our knowledge.
Detecting Multimedia Generated by Large AI Models: A Survey
The rapid advancement of Large AI Models (LAIMs), particularly diffusion models and large language models, has marked a new era where AI-generated multimedia is increasingly integrated into various aspects of daily life. Although beneficial in numerous fields, this content presents significant risks, including potential misuse, societal disruptions, and ethical concerns. Consequently, detecting multimedia generated by LAIMs has become crucial, with a marked rise in related research. Despite this, there remains a notable gap in systematic surveys that focus specifically on detecting LAIM-generated multimedia. Addressing this, we provide the first survey to comprehensively cover existing research on detecting multimedia (such as text, images, videos, audio, and multimodal content) created by LAIMs. Specifically, we introduce a novel taxonomy for detection methods, categorized by media modality, and aligned with two perspectives: pure detection (aiming to enhance detection performance) and beyond detection (adding attributes like generalizability, robustness, and interpretability to detectors). Additionally, we have presented a brief overview of generation mechanisms, public datasets, online detection tools, and evaluation metrics to provide a valuable resource for researchers and practitioners in this field. Most importantly, we offer a focused analysis from a social media perspective to highlight their broader societal impact. Furthermore, we identify current challenges in detection and propose directions for future research that address unexplored, ongoing, and emerging issues in detecting multimedia generated by LAIMs. Our aim for this survey is to fill an academic gap and contribute to global AI security efforts, helping to ensure the integrity of information in the digital realm. The project link is https://github.com/Purdue-M2/Detect-LAIM-generated-Multimedia-Survey.
Machine Learning-Based Prediction of Quality Shifts on Video Streaming Over 5G
The Quality of Experience (QoE) is the users satisfaction while streaming a video session over an over-the-top (OTT) platform like YouTube. QoE of YouTube reflects the smooth streaming session without any buffering and quality shift events. One of the most important factors nowadays affecting QoE of YouTube is frequent shifts from higher to lower resolutions and vice versa. These shifts ensure a smooth streaming session; however, it might get a lower mean opinion score. For instance, dropping from 1080p to 480p during a video can preserve continuity but might reduce the viewers enjoyment. Over time, OTT platforms are looking for alternative ways to boost user experience instead of relying on traditional Quality of Service (QoS) metrics such as bandwidth, latency, and throughput. As a result, we look into the relationship between quality shifting in YouTube streaming sessions and the channel metrics RSRP, RSRQ, and SNR. Our findings state that these channel metrics positively correlate with shifts. Thus, in real-time, OTT can only rely on them to predict video streaming sessions into lower- and higher-resolution categories, thus providing more resources to improve user experience. Using traditional Machine Learning (ML) classifiers, we achieved an accuracy of 77-percent, while using only RSRP, RSRQ, and SNR. In the era of 5G and beyond, where ultra-reliable, low-latency networks promise enhanced streaming capabilities, the proposed methodology can be used to improve OTT services.
HybridMQA: Exploring Geometry-Texture Interactions for Colored Mesh Quality Assessment
Mesh quality assessment (MQA) models play a critical role in the design, optimization, and evaluation of mesh operation systems in a wide variety of applications. Current MQA models, whether model-based methods using topology-aware features or projection-based approaches working on rendered 2D projections, often fail to capture the intricate interactions between texture and 3D geometry. We introduce HybridMQA, a first-of-its-kind hybrid full-reference colored MQA framework that integrates model-based and projection-based approaches, capturing complex interactions between textural information and 3D structures for enriched quality representations. Our method employs graph learning to extract detailed 3D representations, which are then projected to 2D using a novel feature rendering process that precisely aligns them with colored projections. This enables the exploration of geometry-texture interactions via cross-attention, producing comprehensive mesh quality representations. Extensive experiments demonstrate HybridMQA's superior performance across diverse datasets, highlighting its ability to effectively leverage geometry-texture interactions for a thorough understanding of mesh quality. Our implementation will be made publicly available.
Computation and Language
Language Agents Mirror Human Causal Reasoning Biases. How Can We Help Them Think Like Scientists?
Language model (LM) agents are increasingly used as autonomous decision-makers who need to actively gather information to guide their decisions. A crucial cognitive skill for such agents is the efficient exploration and understanding of the causal structure of the world -- key to robust, scientifically grounded reasoning. Yet, it remains unclear whether LMs possess this capability or exhibit systematic biases leading to erroneous conclusions. In this work, we examine LMs' ability to explore and infer causal relationships, using the well-established "Blicket Test" paradigm from developmental psychology. We find that LMs reliably infer the common, intuitive disjunctive causal relationships but systematically struggle with the unusual, yet equally (or sometimes even more) evidenced conjunctive ones. This "disjunctive bias" persists across model families, sizes, and prompting strategies, and performance further declines as task complexity increases. Interestingly, an analogous bias appears in human adults, suggesting that LMs may have inherited deep-seated reasoning heuristics from their training data. To this end, we quantify similarities between LMs and humans, finding that LMs exhibit adult-like inference profiles (but not children-like). Finally, we propose a test-time sampling method which explicitly samples and eliminates hypotheses about causal relationships from the LM. This scalable approach significantly reduces the disjunctive bias and moves LMs closer to the goal of scientific, causally rigorous reasoning.
Customizing a Large Language Model for VHDL Design of High-Performance Microprocessors
The use of Large Language Models (LLMs) in hardware design has taken off in recent years, principally through its incorporation in tools that increase chip designer productivity. There has been considerable discussion about the use of LLMs in RTL specifications of chip designs, for which the two most popular languages are Verilog and VHDL. LLMs and their use in Verilog design has received significant attention due to the higher popularity of the language, but little attention so far has been given to VHDL despite its continued popularity in the industry. There has also been little discussion about the unique needs of organizations that engage in high-performance processor design, and techniques to deploy AI solutions in these settings. In this paper, we describe our journey in developing a Large Language Model (LLM) specifically for the purpose of explaining VHDL code, a task that has particular importance in an organization with decades of experience and assets in high-performance processor design. We show how we developed test sets specific to our needs and used them for evaluating models as we performed extended pretraining (EPT) of a base LLM. Expert evaluation of the code explanations produced by the EPT model increased to 69% compared to a base model rating of 43%. We further show how we developed an LLM-as-a-judge to gauge models similar to expert evaluators. This led us to deriving and evaluating a host of new models, including an instruction-tuned version of the EPT model with an expected expert evaluator rating of 71%. Our experiments also indicate that with the potential use of newer base models, this rating can be pushed to 85% and beyond. We conclude with a discussion on further improving the quality of hardware design LLMs using exciting new developments in the Generative AI world.
WorldView-Bench: A Benchmark for Evaluating Global Cultural Perspectives in Large Language Models
Large Language Models (LLMs) are predominantly trained and aligned in ways that reinforce Western-centric epistemologies and socio-cultural norms, leading to cultural homogenization and limiting their ability to reflect global civilizational plurality. Existing benchmarking frameworks fail to adequately capture this bias, as they rely on rigid, closed-form assessments that overlook the complexity of cultural inclusivity. To address this, we introduce WorldView-Bench, a benchmark designed to evaluate Global Cultural Inclusivity (GCI) in LLMs by analyzing their ability to accommodate diverse worldviews. Our approach is grounded in the Multiplex Worldview proposed by Senturk et al., which distinguishes between Uniplex models, reinforcing cultural homogenization, and Multiplex models, which integrate diverse perspectives. WorldView-Bench measures Cultural Polarization, the exclusion of alternative perspectives, through free-form generative evaluation rather than conventional categorical benchmarks. We implement applied multiplexity through two intervention strategies: (1) Contextually-Implemented Multiplex LLMs, where system prompts embed multiplexity principles, and (2) Multi-Agent System (MAS)-Implemented Multiplex LLMs, where multiple LLM agents representing distinct cultural perspectives collaboratively generate responses. Our results demonstrate a significant increase in Perspectives Distribution Score (PDS) entropy from 13% at baseline to 94% with MAS-Implemented Multiplex LLMs, alongside a shift toward positive sentiment (67.7%) and enhanced cultural balance. These findings highlight the potential of multiplex-aware AI evaluation in mitigating cultural bias in LLMs, paving the way for more inclusive and ethically aligned AI systems.
comment: Preprint. Submitted to the Journal of Artificial Intelligence Research (JAIR) on April 29, 2025
PT-MoE: An Efficient Finetuning Framework for Integrating Mixture-of-Experts into Prompt Tuning
Parameter-efficient fine-tuning (PEFT) methods have shown promise in adapting large language models, yet existing approaches exhibit counter-intuitive phenomena: integrating router into prompt tuning (PT) increases training efficiency yet does not improve performance universally; parameter reduction through matrix decomposition can improve performance in specific domains. Motivated by these observations and the modular nature of PT, we propose PT-MoE, a novel framework that integrates matrix decomposition with mixture-of-experts (MoE) routing for efficient PT. Results across 17 datasets demonstrate that PT-MoE achieves state-of-the-art performance in both question answering (QA) and mathematical problem solving tasks, improving F1 score by 1.49 points over PT and 2.13 points over LoRA in QA tasks, while enhancing mathematical accuracy by 10.75 points over PT and 0.44 points over LoRA, all while using 25% fewer parameters than LoRA. Our analysis reveals that while PT methods generally excel in QA tasks and LoRA-based methods in math datasets, the integration of matrix decomposition and MoE in PT-MoE yields complementary benefits: decomposition enables efficient parameter sharing across experts while MoE provides dynamic adaptation, collectively enabling PT-MoE to demonstrate cross-task consistency and generalization abilities. These findings, along with ablation studies on routing mechanisms and architectural components, provide insights for future PEFT methods.
CXMArena: Unified Dataset to benchmark performance in realistic CXM Scenarios
Large Language Models (LLMs) hold immense potential for revolutionizing Customer Experience Management (CXM), particularly in contact center operations. However, evaluating their practical utility in complex operational environments is hindered by data scarcity (due to privacy concerns) and the limitations of current benchmarks. Existing benchmarks often lack realism, failing to incorporate deep knowledge base (KB) integration, real-world noise, or critical operational tasks beyond conversational fluency. To bridge this gap, we introduce CXMArena, a novel, large-scale synthetic benchmark dataset specifically designed for evaluating AI in operational CXM contexts. Given the diversity in possible contact center features, we have developed a scalable LLM-powered pipeline that simulates the brand's CXM entities that form the foundation of our datasets-such as knowledge articles including product specifications, issue taxonomies, and contact center conversations. The entities closely represent real-world distribution because of controlled noise injection (informed by domain experts) and rigorous automated validation. Building on this, we release CXMArena, which provides dedicated benchmarks targeting five important operational tasks: Knowledge Base Refinement, Intent Prediction, Agent Quality Adherence, Article Search, and Multi-turn RAG with Integrated Tools. Our baseline experiments underscore the benchmark's difficulty: even state of the art embedding and generation models achieve only 68% accuracy on article search, while standard embedding methods yield a low F1 score of 0.3 for knowledge base refinement, highlighting significant challenges for current models necessitating complex pipelines and solutions over conventional techniques.
Multilingual Machine Translation with Quantum Encoder Decoder Attention-based Convolutional Variational Circuits
Cloud-based multilingual translation services like Google Translate and Microsoft Translator achieve state-of-the-art translation capabilities. These services inherently use large multilingual language models such as GRU, LSTM, BERT, GPT, T5, or similar encoder-decoder architectures with attention mechanisms as the backbone. Also, new age natural language systems, for instance ChatGPT and DeepSeek, have established huge potential in multiple tasks in natural language processing. At the same time, they also possess outstanding multilingual translation capabilities. However, these models use the classical computing realm as a backend. QEDACVC (Quantum Encoder Decoder Attention-based Convolutional Variational Circuits) is an alternate solution that explores the quantum computing realm instead of the classical computing realm to study and demonstrate multilingual machine translation. QEDACVC introduces the quantum encoder-decoder architecture that simulates and runs on quantum computing hardware via quantum convolution, quantum pooling, quantum variational circuit, and quantum attention as software alterations. QEDACVC achieves an Accuracy of 82% when trained on the OPUS dataset for English, French, German, and Hindi corpora for multilingual translations.
comment: 12 pages, 12 figures
Qwen3 Technical Report
In this work, we present Qwen3, the latest version of the Qwen model family. Qwen3 comprises a series of large language models (LLMs) designed to advance performance, efficiency, and multilingual capabilities. The Qwen3 series includes models of both dense and Mixture-of-Expert (MoE) architectures, with parameter scales ranging from 0.6 to 235 billion. A key innovation in Qwen3 is the integration of thinking mode (for complex, multi-step reasoning) and non-thinking mode (for rapid, context-driven responses) into a unified framework. This eliminates the need to switch between different models--such as chat-optimized models (e.g., GPT-4o) and dedicated reasoning models (e.g., QwQ-32B)--and enables dynamic mode switching based on user queries or chat templates. Meanwhile, Qwen3 introduces a thinking budget mechanism, allowing users to allocate computational resources adaptively during inference, thereby balancing latency and performance based on task complexity. Moreover, by leveraging the knowledge from the flagship models, we significantly reduce the computational resources required to build smaller-scale models, while ensuring their highly competitive performance. Empirical evaluations demonstrate that Qwen3 achieves state-of-the-art results across diverse benchmarks, including tasks in code generation, mathematical reasoning, agent tasks, etc., competitive against larger MoE models and proprietary models. Compared to its predecessor Qwen2.5, Qwen3 expands multilingual support from 29 to 119 languages and dialects, enhancing global accessibility through improved cross-lingual understanding and generation capabilities. To facilitate reproducibility and community-driven research and development, all Qwen3 models are publicly accessible under Apache 2.0.
Llama See, Llama Do: A Mechanistic Perspective on Contextual Entrainment and Distraction in LLMs
We observe a novel phenomenon, contextual entrainment, across a wide range of language models (LMs) and prompt settings, providing a new mechanistic perspective on how LMs become distracted by ``irrelevant'' contextual information in the input prompt. Specifically, LMs assign significantly higher logits (or probabilities) to any tokens that have previously appeared in the context prompt, even for random tokens. This suggests that contextual entrainment is a mechanistic phenomenon, occurring independently of the relevance or semantic relation of the tokens to the question or the rest of the sentence. We find statistically significant evidence that the magnitude of contextual entrainment is influenced by semantic factors. Counterfactual prompts have a greater effect compared to factual ones, suggesting that while contextual entrainment is a mechanistic phenomenon, it is modulated by semantic factors. We hypothesise that there is a circuit of attention heads -- the entrainment heads -- that corresponds to the contextual entrainment phenomenon. Using a novel entrainment head discovery method based on differentiable masking, we identify these heads across various settings. When we ``turn off'' these heads, i.e., set their outputs to zero, the effect of contextual entrainment is significantly attenuated, causing the model to generate output that capitulates to what it would produce if no distracting context were provided. Our discovery of contextual entrainment, along with our investigation into LM distraction via the entrainment heads, marks a key step towards the mechanistic analysis and mitigation of the distraction problem.
Scent of Knowledge: Optimizing Search-Enhanced Reasoning with Information Foraging
Augmenting large language models (LLMs) with external retrieval has become a standard method to address their inherent knowledge cutoff limitations. However, traditional retrieval-augmented generation methods employ static, pre-inference retrieval strategies, making them inadequate for complex tasks involving ambiguous, multi-step, or evolving information needs. Recent advances in test-time scaling techniques have demonstrated significant potential in enabling LLMs to dynamically interact with external tools, motivating the shift toward adaptive inference-time retrieval. Inspired by Information Foraging Theory (IFT), we propose InForage, a reinforcement learning framework that formalizes retrieval-augmented reasoning as a dynamic information-seeking process. Unlike existing approaches, InForage explicitly rewards intermediate retrieval quality, encouraging LLMs to iteratively gather and integrate information through adaptive search behaviors. To facilitate training, we construct a human-guided dataset capturing iterative search and reasoning trajectories for complex, real-world web tasks. Extensive evaluations across general question answering, multi-hop reasoning tasks, and a newly developed real-time web QA dataset demonstrate InForage's superior performance over baseline methods. These results highlight InForage's effectiveness in building robust, adaptive, and efficient reasoning agents.
comment: 16 pages
A Scalable Unsupervised Framework for multi-aspect labeling of Multilingual and Multi-Domain Review Data
Effectively analyzing online review data is essential across industries. However, many existing studies are limited to specific domains and languages or depend on supervised learning approaches that require large-scale labeled datasets. To address these limitations, we propose a multilingual, scalable, and unsupervised framework for cross-domain aspect detection. This framework is designed for multi-aspect labeling of multilingual and multi-domain review data. In this study, we apply automatic labeling to Korean and English review datasets spanning various domains and assess the quality of the generated labels through extensive experiments. Aspect category candidates are first extracted through clustering, and each review is then represented as an aspect-aware embedding vector using negative sampling. To evaluate the framework, we conduct multi-aspect labeling and fine-tune several pretrained language models to measure the effectiveness of the automatically generated labels. Results show that these models achieve high performance, demonstrating that the labels are suitable for training. Furthermore, comparisons with publicly available large language models highlight the framework's superior consistency and scalability when processing large-scale data. A human evaluation also confirms that the quality of the automatic labels is comparable to those created manually. This study demonstrates the potential of a robust multi-aspect labeling approach that overcomes limitations of supervised methods and is adaptable to multilingual, multi-domain environments. Future research will explore automatic review summarization and the integration of artificial intelligence agents to further improve the efficiency and depth of review analysis.
comment: 36 pages, 3 figures
How an unintended Side Effect of a Research Project led to Boosting the Power of UML
This paper describes the design, implementation and use of a new UML modeling tool that represents a significant advance over conventional tools. Among other things, it allows the integration of class diagrams and object diagrams as well as the execution of objects. This not only enables new software architectures characterized by the integration of software with corresponding object models, but is also ideal for use in teaching, as it provides students with a particularly stimulating learning experience. A special feature of the project is that it has emerged from a long-standing international research project, which is aimed at a comprehensive multi-level architecture. The project is therefore an example of how research can lead to valuable results that arise as a side effect of other work.
Focus, Merge, Rank: Improved Question Answering Based on Semi-structured Knowledge Bases
In many real-world settings, machine learning models and interactive systems have access to both structured knowledge, e.g., knowledge graphs or tables, and unstructured content, e.g., natural language documents. However, most rely on either. Semi-Structured Knowledge Bases (SKBs) bridge this gap by linking unstructured content to nodes within structured data, thereby enabling new strategies for knowledge access and use. In this work, we present FocusedRetriever, a modular SKB-based framework for multi-hop question answering. It integrates components (VSS-based entity search, LLM-based generation of Cypher queries and pairwise re-ranking) in a way that enables it to outperform state-of-the-art methods across all three STaRK benchmark test sets, covering diverse domains and multiple performance metrics. The average first-hit rate exceeds that of the second-best method by 25.7%. FocusedRetriever leverages (1) the capacity of Large Language Models (LLMs) to extract relational facts and entity attributes from unstructured text, (2) node set joins to filter answer candidates based on these extracted triplets and constraints, (3) vector similarity search to retrieve and rank relevant unstructured content, and (4) the contextual capabilities of LLMs to finally rank the top-k answers. For generality, we only incorporate base LLMs in FocusedRetriever in our evaluation. However, our analysis of intermediate results highlights several opportunities for further upgrades including finetuning. The source code is publicly available at https://github.com/kramerlab/FocusedRetriever .
Ornithologist: Towards Trustworthy "Reasoning" about Central Bank Communications
I develop Ornithologist, a weakly-supervised textual classification system and measure the hawkishness and dovishness of central bank text. Ornithologist uses ``taxonomy-guided reasoning'', guiding a large language model with human-authored decision trees. This increases the transparency and explainability of the system and makes it accessible to non-experts. It also reduces hallucination risk. Since it requires less supervision than traditional classification systems, it can more easily be applied to other problems or sources of text (e.g. news) without much modification. Ornithologist measurements of hawkishness and dovishness of RBA communication carry information about the future of the cash rate path and of market expectations.
comment: 16 pages, 6 figures
CEC-Zero: Chinese Error Correction Solution Based on LLM
Recent advancements in large language models (LLMs) demonstrate exceptional Chinese text processing capabilities, particularly in Chinese Spelling Correction (CSC). While LLMs outperform traditional BERT-based models in accuracy and robustness, challenges persist in reliability and generalization. This paper proposes CEC-Zero, a novel reinforcement learning (RL) framework enabling LLMs to self-correct through autonomous error strategy learning without external supervision. By integrating RL with LLMs' generative power, the method eliminates dependency on annotated data or auxiliary models. Experiments reveal RL-enhanced LLMs achieve industry-viable accuracy and superior cross-domain generalization, offering a scalable solution for reliability optimization in Chinese NLP applications. This breakthrough facilitates LLM deployment in practical Chinese text correction scenarios while establishing a new paradigm for self-improving language models.
S-DAT: A Multilingual, GenAI-Driven Framework for Automated Divergent Thinking Assessment
This paper introduces S-DAT (Synthetic-Divergent Association Task), a scalable, multilingual framework for automated assessment of divergent thinking (DT) -a core component of human creativity. Traditional creativity assessments are often labor-intensive, language-specific, and reliant on subjective human ratings, limiting their scalability and cross-cultural applicability. In contrast, S-DAT leverages large language models and advanced multilingual embeddings to compute semantic distance -- a language-agnostic proxy for DT. We evaluate S-DAT across eleven diverse languages, including English, Spanish, German, Russian, Hindi, and Japanese (Kanji, Hiragana, Katakana), demonstrating robust and consistent scoring across linguistic contexts. Unlike prior DAT approaches, the S-DAT shows convergent validity with other DT measures and correct discriminant validity with convergent thinking. This cross-linguistic flexibility allows for more inclusive, global-scale creativity research, addressing key limitations of earlier approaches. S-DAT provides a powerful tool for fairer, more comprehensive evaluation of cognitive flexibility in diverse populations and can be freely assessed online: https://sdat.iol.zib.de/.
A Comprehensive Analysis of Large Language Model Outputs: Similarity, Diversity, and Bias
Large Language Models (LLMs) represent a major step toward artificial general intelligence, significantly advancing our ability to interact with technology. While LLMs perform well on Natural Language Processing tasks -- such as translation, generation, code writing, and summarization -- questions remain about their output similarity, variability, and ethical implications. For instance, how similar are texts generated by the same model? How does this compare across different models? And which models best uphold ethical standards? To investigate, we used 5{,}000 prompts spanning diverse tasks like generation, explanation, and rewriting. This resulted in approximately 3 million texts from 12 LLMs, including proprietary and open-source systems from OpenAI, Google, Microsoft, Meta, and Mistral. Key findings include: (1) outputs from the same LLM are more similar to each other than to human-written texts; (2) models like WizardLM-2-8x22b generate highly similar outputs, while GPT-4 produces more varied responses; (3) LLM writing styles differ significantly, with Llama 3 and Mistral showing higher similarity, and GPT-4 standing out for distinctiveness; (4) differences in vocabulary and tone underscore the linguistic uniqueness of LLM-generated content; (5) some LLMs demonstrate greater gender balance and reduced bias. These results offer new insights into the behavior and diversity of LLM outputs, helping guide future development and ethical evaluation.
Atomic Consistency Preference Optimization for Long-Form Question Answering
Large Language Models (LLMs) frequently produce factoid hallucinations - plausible yet incorrect answers. A common mitigation strategy is model alignment, which improves factual accuracy by training on curated factual and non-factual pairs. However, this approach often relies on a stronger model (e.g., GPT-4) or an external knowledge base to assess factual correctness, which may not always be accessible. To address this, we propose Atomic Consistency Preference Optimization (ACPO), a self-supervised preference-tuning method that enhances factual accuracy without external supervision. ACPO leverages atomic consistency signals, i.e., the agreement of individual facts across multiple stochastic responses, to identify high- and low-quality data pairs for model alignment. By eliminating the need for costly GPT calls, ACPO provides a scalable and efficient approach to improving factoid question-answering. Despite being self-supervised, empirical results demonstrate that ACPO outperforms FactAlign, a strong supervised alignment baseline, by 1.95 points on the LongFact and BioGen datasets, highlighting its effectiveness in enhancing factual reliability without relying on external models or knowledge bases.
comment: 16 pages, 2 figures
Predictability Shapes Adaptation: An Evolutionary Perspective on Modes of Learning in Transformers
Transformer models learn in two distinct modes: in-weights learning (IWL), encoding knowledge into model weights, and in-context learning (ICL), adapting flexibly to context without weight modification. To better understand the interplay between these learning modes, we draw inspiration from evolutionary biology's analogous adaptive strategies: genetic encoding (akin to IWL, adapting over generations and fixed within an individual's lifetime) and phenotypic plasticity (akin to ICL, enabling flexible behavioral responses to environmental cues). In evolutionary biology, environmental predictability dictates the balance between these strategies: stability favors genetic encoding, while reliable predictive cues promote phenotypic plasticity. We experimentally operationalize these dimensions of predictability and systematically investigate their influence on the ICL/IWL balance in Transformers. Using regression and classification tasks, we show that high environmental stability decisively favors IWL, as predicted, with a sharp transition at maximal stability. Conversely, high cue reliability enhances ICL efficacy, particularly when stability is low. Furthermore, learning dynamics reveal task-contingent temporal evolution: while a canonical ICL-to-IWL shift occurs in some settings (e.g., classification with many classes), we demonstrate that scenarios with easier IWL (e.g., fewer classes) or slower ICL acquisition (e.g., regression) can exhibit an initial IWL phase later yielding to ICL dominance. These findings support a relative-cost hypothesis for explaining these learning mode transitions, establishing predictability as a critical factor governing adaptive strategies in Transformers, and offering novel insights for understanding ICL and guiding training methodologies.
Do Large Language Models Know Conflict? Investigating Parametric vs. Non-Parametric Knowledge of LLMs for Conflict Forecasting
Large Language Models (LLMs) have shown impressive performance across natural language tasks, but their ability to forecast violent conflict remains underexplored. We investigate whether LLMs possess meaningful parametric knowledge-encoded in their pretrained weights-to predict conflict escalation and fatalities without external data. This is critical for early warning systems, humanitarian planning, and policy-making. We compare this parametric knowledge with non-parametric capabilities, where LLMs access structured and unstructured context from conflict datasets (e.g., ACLED, GDELT) and recent news reports via Retrieval-Augmented Generation (RAG). Incorporating external information could enhance model performance by providing up-to-date context otherwise missing from pretrained weights. Our two-part evaluation framework spans 2020-2024 across conflict-prone regions in the Horn of Africa and the Middle East. In the parametric setting, LLMs predict conflict trends and fatalities relying only on pretrained knowledge. In the non-parametric setting, models receive summaries of recent conflict events, indicators, and geopolitical developments. We compare predicted conflict trend labels (e.g., Escalate, Stable Conflict, De-escalate, Peace) and fatalities against historical data. Our findings highlight the strengths and limitations of LLMs for conflict forecasting and the benefits of augmenting them with structured external knowledge.
KRISTEVA: Close Reading as a Novel Task for Benchmarking Interpretive Reasoning
Each year, tens of millions of essays are written and graded in college-level English courses. Students are asked to analyze literary and cultural texts through a process known as close reading, in which they gather textual details to formulate evidence-based arguments. Despite being viewed as a basis for critical thinking and widely adopted as a required element of university coursework, close reading has never been evaluated on large language models (LLMs), and multi-discipline benchmarks like MMLU do not include literature as a subject. To fill this gap, we present KRISTEVA, the first close reading benchmark for evaluating interpretive reasoning, consisting of 1331 multiple-choice questions adapted from classroom data. With KRISTEVA, we propose three progressively more difficult sets of tasks to approximate different elements of the close reading process, which we use to test how well LLMs may seem to understand and reason about literary works: 1) extracting stylistic features, 2) retrieving relevant contextual information from parametric knowledge, and 3) multi-hop reasoning between style and external contexts. Our baseline results find that, while state-of-the-art LLMs possess some college-level close reading competency (accuracy 49.7% - 69.7%), their performances still trail those of experienced human evaluators on 10 out of our 11 tasks.
Exploring the generalization of LLM truth directions on conversational formats
Several recent works argue that LLMs have a universal truth direction where true and false statements are linearly separable in the activation space of the model. It has been demonstrated that linear probes trained on a single hidden state of the model already generalize across a range of topics and might even be used for lie detection in LLM conversations. In this work we explore how this truth direction generalizes between various conversational formats. We find good generalization between short conversations that end on a lie, but poor generalization to longer formats where the lie appears earlier in the input prompt. We propose a solution that significantly improves this type of generalization by adding a fixed key phrase at the end of each conversation. Our results highlight the challenges towards reliable LLM lie detectors that generalize to new settings.
Automated Detection of Clinical Entities in Lung and Breast Cancer Reports Using NLP Techniques
Research projects, including those focused on cancer, rely on the manual extraction of information from clinical reports. This process is time-consuming and prone to errors, limiting the efficiency of data-driven approaches in healthcare. To address these challenges, Natural Language Processing (NLP) offers an alternative for automating the extraction of relevant data from electronic health records (EHRs). In this study, we focus on lung and breast cancer due to their high incidence and the significant impact they have on public health. Early detection and effective data management in both types of cancer are crucial for improving patient outcomes. To enhance the accuracy and efficiency of data extraction, we utilized GMV's NLP tool uQuery, which excels at identifying relevant entities in clinical texts and converting them into standardized formats such as SNOMED and OMOP. uQuery not only detects and classifies entities but also associates them with contextual information, including negated entities, temporal aspects, and patient-related details. In this work, we explore the use of NLP techniques, specifically Named Entity Recognition (NER), to automatically identify and extract key clinical information from EHRs related to these two cancers. A dataset from Health Research Institute Hospital La Fe (IIS La Fe), comprising 200 annotated breast cancer and 400 lung cancer reports, was used, with eight clinical entities manually labeled using the Doccano platform. To perform NER, we fine-tuned the bsc-bio-ehr-en3 model, a RoBERTa-based biomedical linguistic model pre-trained in Spanish. Fine-tuning was performed using the Transformers architecture, enabling accurate recognition of clinical entities in these cancer types. Our results demonstrate strong overall performance, particularly in identifying entities like MET and PAT, although challenges remain with less frequent entities like EVOL.
A Survey on Large Language Models in Multimodal Recommender Systems
Multimodal recommender systems (MRS) integrate heterogeneous user and item data, such as text, images, and structured information, to enhance recommendation performance. The emergence of large language models (LLMs) introduces new opportunities for MRS by enabling semantic reasoning, in-context learning, and dynamic input handling. Compared to earlier pre-trained language models (PLMs), LLMs offer greater flexibility and generalisation capabilities but also introduce challenges related to scalability and model accessibility. This survey presents a comprehensive review of recent work at the intersection of LLMs and MRS, focusing on prompting strategies, fine-tuning methods, and data adaptation techniques. We propose a novel taxonomy to characterise integration patterns, identify transferable techniques from related recommendation domains, provide an overview of evaluation metrics and datasets, and point to possible future directions. We aim to clarify the emerging role of LLMs in multimodal recommendation and support future research in this rapidly evolving field.
comment: 30 pages, 6 figures
Achieving Tokenizer Flexibility in Language Models through Heuristic Adaptation and Supertoken Learning
Pretrained language models (LLMs) are often constrained by their fixed tokenization schemes, leading to inefficiencies and performance limitations, particularly for multilingual or specialized applications. This tokenizer lock-in presents significant challenges. standard methods to overcome this often require prohibitive computational resources. Although tokenizer replacement with heuristic initialization aims to reduce this burden, existing methods often require exhaustive residual fine-tuning and still may not fully preserve semantic nuances or adequately address the underlying compression inefficiencies. Our framework introduces two innovations: first, Tokenadapt, a model-agnostic tokenizer transplantation method, and second, novel pre-tokenization learning for multi-word Supertokens to enhance compression and reduce fragmentation. Tokenadapt initializes new unique token embeddings via a hybrid heuristic that combines two methods: a local estimate based on subword decomposition using the old tokenizer, and a global estimate utilizing the top-k semantically similar tokens from the original vocabulary. This methodology aims to preserve semantics while significantly minimizing retraining requirements. Empirical investigations validate both contributions: the transplantation heuristic successfully initializes unique tokens, markedly outperforming conventional baselines and sophisticated methods including Transtokenizer and ReTok, while our Supertokens achieve notable compression gains. Our zero-shot perplexity results demonstrate that the TokenAdapt hybrid initialization consistently yields lower perplexity ratios compared to both ReTok and TransTokenizer baselines across different base models and newly trained target tokenizers. TokenAdapt typically reduced the overall perplexity ratio significantly compared to ReTok, yielding at least a 2-fold improvement in these aggregate scores.
An AI-Powered Research Assistant in the Lab: A Practical Guide for Text Analysis Through Iterative Collaboration with LLMs
Analyzing texts such as open-ended responses, headlines, or social media posts is a time- and labor-intensive process highly susceptible to bias. LLMs are promising tools for text analysis, using either a predefined (top-down) or a data-driven (bottom-up) taxonomy, without sacrificing quality. Here we present a step-by-step tutorial to efficiently develop, test, and apply taxonomies for analyzing unstructured data through an iterative and collaborative process between researchers and LLMs. Using personal goals provided by participants as an example, we demonstrate how to write prompts to review datasets and generate a taxonomy of life domains, evaluate and refine the taxonomy through prompt and direct modifications, test the taxonomy and assess intercoder agreements, and apply the taxonomy to categorize an entire dataset with high intercoder reliability. We discuss the possibilities and limitations of using LLMs for text analysis.
comment: 31 pages, 1 figure
VeriFact: Enhancing Long-Form Factuality Evaluation with Refined Fact Extraction and Reference Facts
Large language models (LLMs) excel at generating long-form responses, but evaluating their factuality remains challenging due to complex inter-sentence dependencies within the generated facts. Prior solutions predominantly follow a decompose-decontextualize-verify pipeline but often fail to capture essential context and miss key relational facts. In this paper, we introduce VeriFact, a factuality evaluation framework designed to enhance fact extraction by identifying and resolving incomplete and missing facts to support more accurate verification results. Moreover, we introduce FactRBench , a benchmark that evaluates both precision and recall in long-form model responses, whereas prior work primarily focuses on precision. FactRBench provides reference fact sets from advanced LLMs and human-written answers, enabling recall assessment. Empirical evaluations show that VeriFact significantly enhances fact completeness and preserves complex facts with critical relational information, resulting in more accurate factuality evaluation. Benchmarking various open- and close-weight LLMs on FactRBench indicate that larger models within same model family improve precision and recall, but high precision does not always correlate with high recall, underscoring the importance of comprehensive factuality assessment.
System Prompt Optimization with Meta-Learning
Large Language Models (LLMs) have shown remarkable capabilities, with optimizing their input prompts playing a pivotal role in maximizing their performance. However, while LLM prompts consist of both the task-agnostic system prompts and task-specific user prompts, existing work on prompt optimization has focused on user prompts specific to individual queries or tasks, and largely overlooked the system prompt that is, once optimized, applicable across different tasks and domains. Motivated by this, we introduce the novel problem of bilevel system prompt optimization, whose objective is to design system prompts that are robust to diverse user prompts and transferable to unseen tasks. To tackle this problem, we then propose a meta-learning framework, which meta-learns the system prompt by optimizing it over various user prompts across multiple datasets, while simultaneously updating the user prompts in an iterative manner to ensure synergy between them. We conduct experiments on 14 unseen datasets spanning 5 different domains, on which we show that our approach produces system prompts that generalize effectively to diverse user prompts. Also, our findings reveal that the optimized system prompt enables rapid adaptation even to unseen tasks, requiring fewer optimization steps for test-time user prompts while achieving improved performance.
Tales of the 2025 Los Angeles Fire: Hotwash for Public Health Concerns in Reddit via LLM-Enhanced Topic Modeling
Wildfires have become increasingly frequent, irregular, and severe in recent years. Understanding how affected populations perceive and respond during wildfire crises is critical for timely and empathetic disaster response. Social media platforms offer a crowd-sourced channel to capture evolving public discourse, providing hyperlocal information and insight into public sentiment. This study analyzes Reddit discourse during the 2025 Los Angeles wildfires, spanning from the onset of the disaster to full containment. We collect 385 posts and 114,879 comments related to the Palisades and Eaton fires. We adopt topic modeling methods to identify the latent topics, enhanced by large language models (LLMs) and human-in-the-loop (HITL) refinement. Furthermore, we develop a hierarchical framework to categorize latent topics, consisting of two main categories, Situational Awareness (SA) and Crisis Narratives (CN). The volume of SA category closely aligns with real-world fire progressions, peaking within the first 2-5 days as the fires reach the maximum extent. The most frequent co-occurring category set of public health and safety, loss and damage, and emergency resources expands on a wide range of health-related latent topics, including environmental health, occupational health, and one health. Grief signals and mental health risks consistently accounted for 60 percentage and 40 percentage of CN instances, respectively, with the highest total volume occurring at night. This study contributes the first annotated social media dataset on the 2025 LA fires, and introduces a scalable multi-layer framework that leverages topic modeling for crisis discourse analysis. By identifying persistent public health concerns, our results can inform more empathetic and adaptive strategies for disaster response, public health communication, and future research in comparable climate-related disaster events.
Large Language Models Are More Persuasive Than Incentivized Human Persuaders
We directly compare the persuasion capabilities of a frontier large language model (LLM; Claude Sonnet 3.5) against incentivized human persuaders in an interactive, real-time conversational quiz setting. In this preregistered, large-scale incentivized experiment, participants (quiz takers) completed an online quiz where persuaders (either humans or LLMs) attempted to persuade quiz takers toward correct or incorrect answers. We find that LLM persuaders achieved significantly higher compliance with their directional persuasion attempts than incentivized human persuaders, demonstrating superior persuasive capabilities in both truthful (toward correct answers) and deceptive (toward incorrect answers) contexts. We also find that LLM persuaders significantly increased quiz takers' accuracy, leading to higher earnings, when steering quiz takers toward correct answers, and significantly decreased their accuracy, leading to lower earnings, when steering them toward incorrect answers. Overall, our findings suggest that AI's persuasion capabilities already exceed those of humans that have real-money bonuses tied to performance. Our findings of increasingly capable AI persuaders thus underscore the urgency of emerging alignment and governance frameworks.
DRA-GRPO: Exploring Diversity-Aware Reward Adjustment for R1-Zero-Like Training of Large Language Models
Recent advances in reinforcement learning for language model post-training, such as Group Relative Policy Optimization (GRPO), have shown promise in low-resource settings. However, GRPO typically relies on solution-level and scalar reward signals that fail to capture the semantic diversity among sampled completions. This leads to what we identify as a diversity-quality inconsistency, where distinct reasoning paths may receive indistinguishable rewards. To address this limitation, we propose $\textit{Diversity-aware Reward Adjustment}$ (DRA), a method that explicitly incorporates semantic diversity into the reward computation. DRA uses Submodular Mutual Information (SMI) to downweight redundant completions and amplify rewards for diverse ones. This encourages better exploration during learning, while maintaining stable exploitation of high-quality samples. Our method integrates seamlessly with both GRPO and its variant DR.~GRPO, resulting in $\textit{DRA-GRPO}$ and $\textit{DGA-DR.~GRPO}$. We evaluate our method on five mathematical reasoning benchmarks and find that it outperforms recent strong baselines. It achieves state-of-the-art performance with an average accuracy of 58.2%, using only 7,000 fine-tuning samples and a total training cost of approximately $55. The code is available at https://github.com/xiwenc1/DRA-GRPO.
Adversarial Attack on Large Language Models using Exponentiated Gradient Descent IJCNN
As Large Language Models (LLMs) are widely used, understanding them systematically is key to improving their safety and realizing their full potential. Although many models are aligned using techniques such as reinforcement learning from human feedback (RLHF), they are still vulnerable to jailbreaking attacks. Some of the existing adversarial attack methods search for discrete tokens that may jailbreak a target model while others try to optimize the continuous space represented by the tokens of the model's vocabulary. While techniques based on the discrete space may prove to be inefficient, optimization of continuous token embeddings requires projections to produce discrete tokens, which might render them ineffective. To fully utilize the constraints and the structures of the space, we develop an intrinsic optimization technique using exponentiated gradient descent with the Bregman projection method to ensure that the optimized one-hot encoding always stays within the probability simplex. We prove the convergence of the technique and implement an efficient algorithm that is effective in jailbreaking several widely used LLMs. We demonstrate the efficacy of the proposed technique using five open-source LLMs on four openly available datasets. The results show that the technique achieves a higher success rate with great efficiency compared to three other state-of-the-art jailbreaking techniques. The source code for our implementation is available at: https://github.com/sbamit/Exponentiated-Gradient-Descent-LLM-Attack
comment: Accepted to International Joint Conference on Neural Networks (IJCNN) 2025
Interim Report on Human-Guided Adaptive Hyperparameter Optimization with Multi-Fidelity Sprints
This case study applies a phased hyperparameter optimization process to compare multitask natural language model variants that utilize multiphase learning rate scheduling and optimizer parameter grouping. We employ short, Bayesian optimization sessions that leverage multi-fidelity, hyperparameter space pruning, progressive halving, and a degree of human guidance. We utilize the Optuna TPE sampler and Hyperband pruner, as well as the Scikit-Learn Gaussian process minimization. Initially, we use efficient low-fidelity sprints to prune the hyperparameter space. Subsequent sprints progressively increase their model fidelity and employ hyperband pruning for efficiency. A second aspect of our approach is using a meta-learner to tune threshold values to resolve classification probabilities during inference. We demonstrate our method on a collection of variants of the 2021 Joint Entity and Relation Extraction model proposed by Eberts and Ulges.
LAS: Loss-less ANN-SNN Conversion for Fully Spike-Driven Large Language Models
Spiking Large Language Models (LLMs) have emerged as an energy-efficient alternative to conventional LLMs through their event-driven computation. To effectively obtain spiking LLMs, researchers develop different ANN-to-SNN conversion methods by leveraging pre-trained ANN parameters while inheriting the energy efficiency of SNN. However, existing conversion methods struggle with extreme activation outliers and incompatible nonlinear operations of ANN-based LLMs. To address this, we propose a loss-less ANN-SNN conversion for fully spike-driven LLMs, termed LAS. Specifically, LAS introduces two novel neurons to convert the activation outlier and nonlinear operation of ANN-based LLMs. Moreover, LAS tailors the spike-equivalent Transformer components for spiking LLMs, which can ensure full spiking conversion without any loss of performance. Experimental results on six language models and two vision-language models demonstrate that LAS achieves loss-less conversion. Notably, on OPT-66B, LAS even improves the accuracy of 2\% on the WSC task. In addition, the parameter and ablation studies further verify the effectiveness of LAS. The source code is available at https://github.com/lc783/LAS
Beyond Single-Turn: A Survey on Multi-Turn Interactions with Large Language Models
Recent advancements in large language models (LLMs) have revolutionized their ability to handle single-turn tasks, yet real-world applications demand sophisticated multi-turn interactions. This survey provides a comprehensive review of recent advancements in evaluating and enhancing multi-turn interactions in LLMs. Focusing on task-specific scenarios, from instruction following in diverse domains such as math and coding to complex conversational engagements in roleplay, healthcare, education, and even adversarial jailbreak settings, we systematically examine the challenges of maintaining context, coherence, fairness, and responsiveness over prolonged dialogues. The paper organizes current benchmarks and datasets into coherent categories that reflect the evolving landscape of multi-turn dialogue evaluation. In addition, we review a range of enhancement methodologies under multi-turn settings, including model-centric strategies (contextual learning, supervised fine-tuning, reinforcement learning, and new architectures), external integration approaches (memory-augmented, retrieval-based methods, and knowledge graph), and agent-based techniques for collaborative interactions. Finally, we discuss open challenges and propose future directions for research to further advance the robustness and effectiveness of multi-turn interactions in LLMs. Related resources and papers are available at https://github.com/yubol-cmu/Awesome-Multi-Turn-LLMs.
Hakim: Farsi Text Embedding Model
Recent advancements in text embedding have significantly improved natural language understanding across many languages, yet Persian remains notably underrepresented in large-scale embedding research. In this paper, we present Hakim, a novel state-of-the-art Persian text embedding model that achieves a 8.5% performance improvement over existing approaches on the FaMTEB benchmark, outperforming all previously developed Persian language models. As part of this work, we introduce three new datasets - Corpesia, Pairsia-sup, and Pairsia-unsup - to support supervised and unsupervised training scenarios. Additionally, Hakim is designed for applications in chatbots and retrieval-augmented generation (RAG) systems, particularly addressing retrieval tasks that require incorporating message history within these systems. We also propose a new baseline model built on the BERT architecture. Our language model consistently achieves higher accuracy across various Persian NLP tasks, while the RetroMAE-based model proves particularly effective for textual information retrieval applications. Together, these contributions establish a new foundation for advancing Persian language understanding.
Fusing Bidirectional Chains of Thought and Reward Mechanisms A Method for Enhancing Question-Answering Capabilities of Large Language Models for Chinese Intangible Cultural Heritage
The rapid development of large language models (LLMs) has provided significant support and opportunities for the advancement of domain-specific LLMs. However, fine-tuning these large models using Intangible Cultural Heritage (ICH) data inevitably faces challenges such as bias, incorrect knowledge inheritance, and catastrophic forgetting. To address these issues, we propose a novel training method that integrates a bidirectional chains of thought and a reward mechanism. This method is built upon ICH-Qwen, a large language model specifically designed for the field of intangible cultural heritage. The proposed method enables the model to not only perform forward reasoning but also enhances the accuracy of the generated answers by utilizing reverse questioning and reverse reasoning to activate the model's latent knowledge. Additionally, a reward mechanism is introduced during training to optimize the decision-making process. This mechanism improves the quality of the model's outputs through structural and content evaluations with different weighting schemes. We conduct comparative experiments on ICH-Qwen, with results demonstrating that our method outperforms 0-shot, step-by-step reasoning, knowledge distillation, and question augmentation methods in terms of accuracy, Bleu-4, and Rouge-L scores on the question-answering task. Furthermore, the paper highlights the effectiveness of combining the bidirectional chains of thought and reward mechanism through ablation experiments. In addition, a series of generalizability experiments are conducted, with results showing that the proposed method yields improvements on various domain-specific datasets and advanced models in areas such as Finance, Wikidata, and StrategyQA. This demonstrates that the method is adaptable to multiple domains and provides a valuable approach for model training in future applications across diverse fields.
comment: 22 pages, 5 figures
TiSpell: A Semi-Masked Methodology for Tibetan Spelling Correction covering Multi-Level Error with Data Augmentation
Multi-level Tibetan spelling correction addresses errors at both the character and syllable levels within a unified model. Existing methods focus mainly on single-level correction and lack effective integration of both levels. Moreover, there are no open-source datasets or augmentation methods tailored for this task in Tibetan. To tackle this, we propose a data augmentation approach using unlabeled text to generate multi-level corruptions, and introduce TiSpell, a semi-masked model capable of correcting both character- and syllable-level errors. Although syllable-level correction is more challenging due to its reliance on global context, our semi-masked strategy simplifies this process. We synthesize nine types of corruptions on clean sentences to create a robust training set. Experiments on both simulated and real-world data demonstrate that TiSpell, trained on our dataset, outperforms baseline models and matches the performance of state-of-the-art approaches, confirming its effectiveness.
comment: 14 pages, 7 figures
Embodied-Reasoner: Synergizing Visual Search, Reasoning, and Action for Embodied Interactive Tasks
Recent advances in deep thinking models have demonstrated remarkable reasoning capabilities on mathematical and coding tasks. However, their effectiveness in embodied domains which require continuous interaction with environments through image action interleaved trajectories remains largely -unexplored. We present Embodied Reasoner, a model that extends o1 style reasoning to interactive embodied search tasks. Unlike mathematical reasoning that relies primarily on logical deduction, embodied scenarios demand spatial understanding, temporal reasoning, and ongoing self-reflection based on interaction history. To address these challenges, we synthesize 9.3k coherent Observation-Thought-Action trajectories containing 64k interactive images and 90k diverse thinking processes (analysis, spatial reasoning, reflection, planning, and verification). We develop a three-stage training pipeline that progressively enhances the model's capabilities through imitation learning, self-exploration via rejection sampling, and self-correction through reflection tuning. The evaluation shows that our model significantly outperforms those advanced visual reasoning models, e.g., it exceeds OpenAI o1, o3-mini, and Claude-3.7 by +9\%, 24\%, and +13\%. Analysis reveals our model exhibits fewer repeated searches and logical inconsistencies, with particular advantages in complex long-horizon tasks. Real-world environments also show our superiority while exhibiting fewer repeated searches and logical inconsistency cases.
comment: Code: https://github.com/zwq2018/embodied_reasoner Dataset: https://huggingface.co/datasets/zwq2018/embodied_reasoner
Activation Steering in Neural Theorem Provers
Large Language Models (LLMs) have shown promise in proving formal theorems using proof assistants like Lean. However, current state of the art language models struggles to predict next step in proofs leading practitioners to use different sampling techniques to improve LLMs capabilities. We observe that the LLM is capable of predicting the correct tactic; however, it faces challenges in ranking it appropriately within the set of candidate tactics, affecting the overall selection process. To overcome this hurdle, we use activation steering to guide LLMs responses to improve the generations at the time of inference. Our results suggest that activation steering offers a promising lightweight alternative to specialized fine-tuning for enhancing theorem proving capabilities in LLMs, particularly valuable in resource-constrained environments.
comment: incorrect explanation for a concept, need to revise and update!
OAEI-LLM-T: A TBox Benchmark Dataset for Understanding Large Language Model Hallucinations in Ontology Matching
Hallucinations are often inevitable in downstream tasks using large language models (LLMs). To tackle the substantial challenge of addressing hallucinations for LLM-based ontology matching (OM) systems, we introduce a new benchmark dataset OAEI-LLM-T. The dataset evolves from seven TBox datasets in the Ontology Alignment Evaluation Initiative (OAEI), capturing hallucinations of ten different LLMs performing OM tasks. These OM-specific hallucinations are organised into two primary categories and six sub-categories. We showcase the usefulness of the dataset in constructing an LLM leaderboard for OM tasks and for fine-tuning LLMs used in OM tasks.
comment: 14 pages, 4 figures, 4 tables, 2 prompt templates
Llama-Nemotron: Efficient Reasoning Models
We introduce the Llama-Nemotron series of models, an open family of heterogeneous reasoning models that deliver exceptional reasoning capabilities, inference efficiency, and an open license for enterprise use. The family comes in three sizes -- Nano (8B), Super (49B), and Ultra (253B) -- and performs competitively with state-of-the-art reasoning models such as DeepSeek-R1 while offering superior inference throughput and memory efficiency. In this report, we discuss the training procedure for these models, which entails using neural architecture search from Llama 3 models for accelerated inference, knowledge distillation, and continued pretraining, followed by a reasoning-focused post-training stage consisting of two main parts: supervised fine-tuning and large scale reinforcement learning. Llama-Nemotron models are the first open-source models to support a dynamic reasoning toggle, allowing users to switch between standard chat and reasoning modes during inference. To further support open research and facilitate model development, we provide the following resources: 1. We release the Llama-Nemotron reasoning models -- LN-Nano, LN-Super, and LN-Ultra -- under the commercially permissive NVIDIA Open Model License Agreement. 2. We release the complete post-training dataset: Llama-Nemotron-Post-Training-Dataset. 3. We also release our training codebases: NeMo, NeMo-Aligner, and Megatron-LM.
TSLFormer: A Lightweight Transformer Model for Turkish Sign Language Recognition Using Skeletal Landmarks
This study presents TSLFormer, a light and robust word-level Turkish Sign Language (TSL) recognition model that treats sign gestures as ordered, string-like language. Instead of using raw RGB or depth videos, our method only works with 3D joint positions - articulation points - extracted using Google's Mediapipe library, which focuses on the hand and torso skeletal locations. This creates efficient input dimensionality reduction while preserving important semantic gesture information. Our approach revisits sign language recognition as sequence-to-sequence translation, inspired by the linguistic nature of sign languages and the success of transformers in natural language processing. Since TSLFormer uses the self-attention mechanism, it effectively captures temporal co-occurrence within gesture sequences and highlights meaningful motion patterns as words unfold. Evaluated on the AUTSL dataset with over 36,000 samples and 227 different words, TSLFormer achieves competitive performance with minimal computational cost. These results show that joint-based input is sufficient for enabling real-time, mobile, and assistive communication systems for hearing-impaired individuals.
Construction and Application of Materials Knowledge Graph in Multidisciplinary Materials Science via Large Language Model NeurIPS 2024
Knowledge in materials science is widely dispersed across extensive scientific literature, posing significant challenges to the efficient discovery and integration of new materials. Traditional methods, often reliant on costly and time-consuming experimental approaches, further complicate rapid innovation. Addressing these challenges, the integration of artificial intelligence with materials science has opened avenues for accelerating the discovery process, though it also demands precise annotation, data extraction, and traceability of information. To tackle these issues, this article introduces the Materials Knowledge Graph (MKG), which utilizes advanced natural language processing techniques integrated with large language models to extract and systematically organize a decade's worth of high-quality research into structured triples, contains 162,605 nodes and 731,772 edges. MKG categorizes information into comprehensive labels such as Name, Formula, and Application, structured around a meticulously designed ontology, thus enhancing data usability and integration. By implementing network-based algorithms, MKG not only facilitates efficient link prediction but also significantly reduces reliance on traditional experimental methods. This structured approach not only streamlines materials research but also lays the groundwork for more sophisticated science knowledge graphs.
comment: 14 pages, 7 figures, 3 tables; Accepted by 38th Conference on Neural Information Processing Systems (NeurIPS 2024)
Is analogy enough to draw novel adjective-noun inferences? SC
Recent work (Ross et al., 2025, 2024) has argued that the ability of humans and LLMs respectively to generalize to novel adjective-noun combinations shows that they each have access to a compositional mechanism to determine the phrase's meaning and derive inferences. We study whether these inferences can instead be derived by analogy to known inferences, without need for composition. We investigate this by (1) building a model of analogical reasoning using similarity over lexical items, and (2) asking human participants to reason by analogy. While we find that this strategy works well for a large proportion of the dataset of Ross et al. (2025), there are novel combinations for which both humans and LLMs derive convergent inferences but which are not well handled by analogy. We thus conclude that the mechanism humans and LLMs use to generalize in these cases cannot be fully reduced to analogy, and likely involves composition.
comment: 9 pages (17 pages with appendix). Accepted to SCiL 2025
What Features in Prompts Jailbreak LLMs? Investigating the Mechanisms Behind Attacks
Jailbreaks have been a central focus of research regarding the safety and reliability of large language models (LLMs), yet the mechanisms underlying these attacks remain poorly understood. While previous studies have predominantly relied on linear methods to detect jailbreak attempts and model refusals, we take a different approach by examining both linear and non-linear features in prompts that lead to successful jailbreaks. First, we introduce a novel dataset comprising 10,800 jailbreak attempts spanning 35 diverse attack methods. Leveraging this dataset, we train probes to classify successful from unsuccessful jailbreaks using the latent representations corresponding to prompt tokens. Notably, we find that even when probes achieve high accuracy in predicting the success of jailbreaks, their performance often fails to generalize to unseen attack methods. This reveals that different jailbreaking strategies exploit different non-linear, non-universal features. Next, we demonstrate that non-linear probes provide a powerful tool for steering model behavior. Specifically, we use these probes to guide targeted latent space perturbations, enabling us to effectively modulate the model's robustness against jailbreaks. Overall, our findings challenge the assumption that jailbreaks can be fully understood through linear or simple universal prompt features alone, highlighting the importance of a nuanced understanding of the mechanisms behind LLM vulnerabilities.
Evaluating Clinical Competencies of Large Language Models with a General Practice Benchmark
Large Language Models (LLMs) have demonstrated considerable potential in general practice. However, existing benchmarks and evaluation frameworks primarily depend on exam-style or simplified question-answer formats, lacking a competency-based structure aligned with the real-world clinical responsibilities encountered in general practice. Consequently, the extent to which LLMs can reliably fulfill the duties of general practitioners (GPs) remains uncertain. In this work, we propose a novel evaluation framework to assess the capability of LLMs to function as GPs. Based on this framework, we introduce a general practice benchmark (GPBench), whose data are meticulously annotated by domain experts in accordance with routine clinical practice standards. We evaluate ten state-of-the-art LLMs and analyze their competencies. Our findings indicate that current LLMs are not yet ready for deployment in such settings without human oversight, and further optimization specifically tailored to the daily responsibilities of GPs is essential.
FAMMA: A Benchmark for Financial Domain Multilingual Multimodal Question Answering
In this paper, we introduce FAMMA, an open-source benchmark for \underline{f}in\underline{a}ncial \underline{m}ultilingual \underline{m}ultimodal question \underline{a}nswering (QA). Our benchmark aims to evaluate the abilities of large language models (LLMs) in answering complex reasoning questions that require advanced financial knowledge. The benchmark has two versions: FAMMA-Basic consists of 1,945 questions extracted from university textbooks and exams, along with human-annotated answers and rationales; FAMMA-LivePro consists of 103 novel questions created by human domain experts, with answers and rationales held out from the public for a contamination-free evaluation. These questions cover advanced knowledge of 8 major subfields in finance (e.g., corporate finance, derivatives, and portfolio management). Some are in Chinese or French, while a majority of them are in English. Each question has some non-text data such as charts, diagrams, or tables. Our experiments reveal that FAMMA poses a significant challenge on LLMs, including reasoning models such as GPT-o1 and DeepSeek-R1. Additionally, we curated 1,270 reasoning trajectories of DeepSeek-R1 on the FAMMA-Basic data, and fine-tuned a series of open-source Qwen models using this reasoning data. We found that training a model on these reasoning trajectories can significantly improve its performance on FAMMA-LivePro. We released our leaderboard, data, code, and trained models at https://famma-bench.github.io/famma/.
PropNet: a White-Box and Human-Like Network for Sentence Representation
Transformer-based embedding methods have dominated the field of sentence representation in recent years. Although they have achieved remarkable performance on NLP missions, such as semantic textual similarity (STS) tasks, their black-box nature and large-data-driven training style have raised concerns, including issues related to bias, trust, and safety. Many efforts have been made to improve the interpretability of embedding models, but these problems have not been fundamentally resolved. To achieve inherent interpretability, we propose a purely white-box and human-like sentence representation network, PropNet. Inspired by findings from cognitive science, PropNet constructs a hierarchical network based on the propositions contained in a sentence. While experiments indicate that PropNet has a significant gap compared to state-of-the-art (SOTA) embedding models in STS tasks, case studies reveal substantial room for improvement. Additionally, PropNet enables us to analyze and understand the human cognitive processes underlying STS benchmarks.
comment: Clarified some ambiguities in the previous version
LLM-based NLG Evaluation: Current Status and Challenges
Evaluating natural language generation (NLG) is a vital but challenging problem in natural language processing. Traditional evaluation metrics mainly capturing content (e.g. n-gram) overlap between system outputs and references are far from satisfactory, and large language models (LLMs) such as ChatGPT have demonstrated great potential in NLG evaluation in recent years. Various automatic evaluation methods based on LLMs have been proposed, including metrics derived from LLMs, prompting LLMs, fine-tuning LLMs, and human-LLM collaborative evaluation. In this survey, we first give a taxonomy of LLM-based NLG evaluation methods, and discuss their pros and cons, respectively. Lastly, we discuss several open problems in this area and point out future research directions.
FAS: Fast ANN-SNN Conversion for Spiking Large Language Models
Spiking Large Language Models have been shown as a good alternative to LLMs in various scenarios. Existing methods for creating Spiking LLMs, i.e., direct training and ANN-SNN conversion, often suffer from performance degradation and relatively high computational costs. To address these issues, we propose a novel Fast ANN-SNN conversion strategy (FAS) that transforms LLMs into spiking LLMs in two stages. The first stage employs a full-parameter fine-tuning of pre-trained models, so it does not need any direct training from scratch. The second stage introduces a coarse-to-fine calibration method to reduce conversion errors and improve accuracy. Experiments on both language and vision-language tasks across four different scales of LLMs demonstrate that FAS can achieve state-of-the-art performance yet with significantly reduced inference latency and computational costs. Notably, FAS only takes eight timesteps to achieve an accuracy of 3\% higher than that of the OPT-7B model, while reducing energy consumption by 96.63\%. The source code is available at https://github.com/lc783/FAS
Reliably Bounding False Positives: A Zero-Shot Machine-Generated Text Detection Framework via Multiscaled Conformal Prediction
The rapid advancement of large language models has raised significant concerns regarding their potential misuse by malicious actors. As a result, developing effective detectors to mitigate these risks has become a critical priority. However, most existing detection methods focus excessively on detection accuracy, often neglecting the societal risks posed by high false positive rates (FPRs). This paper addresses this issue by leveraging Conformal Prediction (CP), which effectively constrains the upper bound of FPRs. While directly applying CP constrains FPRs, it also leads to a significant reduction in detection performance. To overcome this trade-off, this paper proposes a Zero-Shot Machine-Generated Text Detection Framework via Multiscaled Conformal Prediction (MCP), which both enforces the FPR constraint and improves detection performance. This paper also introduces RealDet, a high-quality dataset that spans a wide range of domains, ensuring realistic calibration and enabling superior detection performance when combined with MCP. Empirical evaluations demonstrate that MCP effectively constrains FPRs, significantly enhances detection performance, and increases robustness against adversarial attacks across multiple detectors and datasets.
P-MMEval: A Parallel Multilingual Multitask Benchmark for Consistent Evaluation of LLMs
Recent advancements in large language models (LLMs) showcase varied multilingual capabilities across tasks like translation, code generation, and reasoning. Previous assessments often limited their scope to fundamental natural language processing (NLP) or isolated capability-specific tasks. To alleviate this drawback, we aim to present a comprehensive multilingual multitask benchmark. First, we introduce P-MMEval, a large-scale benchmark covering effective fundamental and capability-specialized datasets. Furthermore, P-MMEval delivers consistent language coverage across various datasets and provides parallel samples. Finally, we conduct extensive experiments on representative multilingual model series to compare performances across models and tasks, explore the relationship between multilingual performances and factors such as tasks, model sizes, languages, and prompts, and examine the effectiveness of knowledge transfer from English to other languages. The resulting insights are intended to offer valuable guidance for future research. The dataset is available at https://huggingface.co/datasets/Qwen/P-MMEval.
Reinforcement Learning Outperforms Supervised Fine-Tuning: A Case Study on Audio Question Answering
Recently, reinforcement learning (RL) has been shown to greatly enhance the reasoning capabilities of large language models (LLMs), and RL-based approaches have been progressively applied to visual multimodal tasks. However, the audio modality has largely been overlooked in these developments. Thus, we conduct a series of RL explorations in audio understanding and reasoning, specifically focusing on the audio question answering (AQA) task. We leverage the group relative policy optimization (GRPO) algorithm to Qwen2-Audio-7B-Instruct, and our experiments demonstrated state-of-the-art performance on the MMAU Test-mini benchmark, achieving an accuracy rate of 64.5%. The main findings in this technical report are as follows: 1) The GRPO algorithm can be effectively applied to large audio language models (LALMs), even when the model has only 8.2B parameters; 2) With only 38k post-training samples, RL significantly outperforms supervised fine-tuning (SFT), indicating that RL-based approaches can be effective without large datasets; 3) The explicit reasoning process has not shown significant benefits for AQA tasks, and how to efficiently utilize deep thinking remains an open question for further research; 4) LALMs still lag far behind humans auditory-language reasoning, suggesting that the RL-based approaches warrant further exploration. Our project is available at https://github.com/xiaomi-research/r1-aqa and https://huggingface.co/mispeech/r1-aqa.
Hypernym Mercury: Token Optimization Through Semantic Field Constriction And Reconstruction From Hypernyms. A New Text Compression Method
Compute optimization using token reduction of LLM prompts is an emerging task in the fields of NLP and next generation, agentic AI. In this white paper, we introduce a novel (patent pending) text representation scheme and a first-of-its-kind word-level semantic compression of paragraphs that can lead to over 90% token reduction, while retaining high semantic similarity to the source text. We explain how this novel compression technique can be lossless and how the detail granularity is controllable. We discuss benchmark results over open source data (i.e. Bram Stoker's Dracula available through Project Gutenberg) and show how our results hold at the paragraph level, across multiple genres and models.
CLASH: Evaluating Language Models on Judging High-Stakes Dilemmas from Multiple Perspectives
Navigating high-stakes dilemmas involving conflicting values is challenging even for humans, let alone for AI. Yet prior work in evaluating the reasoning capabilities of large language models (LLMs) in such situations has been limited to everyday scenarios. To close this gap, this work first introduces CLASH (Character perspective-based LLM Assessments in Situations with High-stakes), a meticulously curated dataset consisting of 345 high-impact dilemmas along with 3,795 individual perspectives of diverse values. In particular, we design CLASH in a way to support the study of critical aspects of value-based decision-making processes which are missing from prior work, including understanding decision ambivalence and psychological discomfort as well as capturing the temporal shifts of values in characters' perspectives. By benchmarking 10 open and closed frontier models, we uncover several key findings. (1) Even the strongest models, such as GPT-4o and Claude-Sonnet, achieve less than 50% accuracy in identifying situations where the decision should be ambivalent, while they perform significantly better in clear-cut scenarios. (2) While LLMs reasonably predict psychological discomfort as marked by human, they inadequately comprehend perspectives involving value shifts, indicating a need for LLMs to reason over complex values. (3) Our experiments also reveal a significant correlation between LLMs' value preferences and their steerability towards a given value. (4) Finally, LLMs exhibit greater steerability when engaged in value reasoning from a third-party perspective, compared to a first-person setup, though certain value pairs benefit uniquely from the first-person framing.
Human-Computer Interaction
Beyond Likes: How Normative Feedback Complements Engagement Signals on Social Media
Many online platforms incorporate engagement signals--such as likes and upvotes--into their content ranking systems and interface design. These signals are designed to boost user engagement. However, they can unintentionally elevate content that is less inclusive and may not support normatively desirable behavior. This issue becomes especially concerning when toxic content correlates strongly with popularity indicators such as likes and upvotes. In this study, we propose structured prosocial feedback as a complementary signal to likes and upvotes--one that highlights content quality based on normative criteria to help address the limitations of conventional engagement signals. We begin by designing and implementing a machine learning feedback system powered by a large language model (LLM), which evaluates user comments based on principles of positive psychology, such as individual well-being, constructive social media use, and character strengths. We then conduct a pre-registered user study to examine how existing peer-based and the new expert-based feedback interact to shape users' selection of comments in a social media setting. Results show that peer feedback increases conformity to popularity cues, while expert feedback shifts preferences toward normatively higher-quality content. Moreover, incorporating expert feedback alongside peer evaluations improves alignment with expert assessments and contributes to a less toxic community environment. This illustrates the added value of normative cues--such as expert scores generated by LLMs using psychological rubrics--and underscores the potential benefits of incorporating such signals into platform feedback systems to foster healthier online environments.
Evaluation Metrics for Misinformation Warning Interventions: Challenges and Prospects
Misinformation has become a widespread issue in the 21st century, impacting numerous areas of society and underscoring the need for effective intervention strategies. Among these strategies, user-centered interventions, such as warning systems, have shown promise in reducing the spread of misinformation. Many studies have used various metrics to evaluate the effectiveness of these warning interventions. However, no systematic review has thoroughly examined these metrics in all studies. This paper provides a comprehensive review of existing metrics for assessing the effectiveness of misinformation warnings, categorizing them into four main groups: behavioral impact, trust and credulity, usability, and cognitive and psychological effects. Through this review, we identify critical challenges in measuring the effectiveness of misinformation warnings, including inconsistent use of cognitive and attitudinal metrics, the lack of standardized metrics for affective and emotional impact, variations in user trust, and the need for more inclusive warning designs. We present an overview of these metrics and propose areas for future research.
comment: 10 pages, 2 figures
Partnership through Play: Investigating How Long-Distance Couples Use Digital Games to Facilitate Intimacy
Long-distance relationships (LDRs) have become more common in the last few decades, primarily among young adults pursuing educational or employment opportunities. A common way for couples in LDRs to spend time together is by playing multiplayer video games, which are often a shared hobby and therefore a preferred joint activity. However, games are relatively understudied in the context of relational maintenance for LDRs. In this work, we used a mixed-methods approach to collect data on the experiences of 13 couples in LDRs who frequently play games together. We investigated different values around various game mechanics and modalities and found significant differences in couple play styles, and also detail how couples appropriate game mechanics to express affection to each other virtually. We also created prototypes and design implications based on couples' needs surrounding the lack of physical sensation and memorabilia storage in most popular games.
comment: Proceedings of Designing Interactive Systems (DIS '25)
Card Sorting Simulator: Augmenting Design of Logical Information Architectures with Large Language Models
Card sorting is a common ideation technique that elicits information on users' mental organization of content and functionality by having them sort items into categories. For more robust card sorting research, digital card sorting tools could benefit from providing quick automated feedback. Our objective of this research is to advance toward an instrument that applies artificial intelligence (AI) to augment card sorting. For this purpose, we develop the Card Sorting Simulator, a prototype tool that leverages Large Language Models (LLMs) to generate informative categorizations of cards. To illuminate how aligned the simulation is with card sorting by actual participants, and to inform the instrument's design decisions, we conducted a generalizability-focused comparative study. We obtained 28 pre-existing card sorting studies from real practitioners, comprising 1,399 participants, along with diverse contents and origins. With this dataset, we conducted a comprehensive and nuanced analysis of the agreement between actual card sorting results (clusterings of cards) and synthetic clusterings across a multitude of LLMs and prompt designs. Mutual information scores indicate a good degree of agreement to real result clustering, although similarity matrices also demonstrate inconsistencies from mental models, which can be attributed to their top-down nature. Furthermore, the number of cards or complexity of their labels impact the accuracy of its simulation. These findings bolster the case for AI augmentation in card sorting research as a source of meaningful preliminary feedback and highlight the need for further study for the development and validation of intelligent user research tools.
Utilization of Skin Color Change for Image-based Tactile Sensing
Measurement of pressure distribution applied to a fingertip is crucial for the teleoperation of robots and human computer interface. Previous studies have acquired pressure distribution by affixing a sensor array to the fingertip or by optically recording the deformation of an object. However, these existing methods inhibit the fingertip from directly contacting the texture, and the pressure applied to the fingertip is measured indirectly. In this study, we propose a method to measure pressure distribution by directly touching a transparent object, focusing on the change in skin color induced by the applied pressure, caused by blood flow. We evaluated the relationship between pressure and skin color change when local pressure is applied, and found a correlation between the pressure and the color change. However, the contact area and the color change area did not align perfectly. We further explored the factor causing the spatial non-uniformity of the color change, by accounting for the stress distribution using finite element analysis. These results suggest that the proposed measurement method can be utilized to measure the internal stress distribution, and it is anticipated to serve as a simple sensor in the field of human computer interface.
comment: This is the accepted version of the following article:Medical Engineering & Physics, which has been published in final form at https://doi.org/10.1016/j.medengphy.2025.104357
AfforDance: Personalized AR Dance Learning System with Visual Affordance
We propose AfforDance, an augmented reality (AR)-based dance learning system that generates personalized learning content and enhances learning through visual affordances. Our system converts user-selected dance videos into interactive learning experiences by integrating 3D reference avatars, audio synchronization, and adaptive visual cues that guide movement execution. This work contributes to personalized dance education by offering an adaptable, user-centered learning interface.
comment: CHI 2025 Workshop on Beyond Glasses: Future Directions for XR Interactions within the Physical World
A Note on Semantic Diffusion
This paper provides an in-depth examination of the concept of semantic diffusion as a complementary instrument to large language models (LLMs) for design applications. Conventional LLMs and diffusion models fail to induce a convergent, iterative refinement process: each invocation of the diffusion mechanism spawns a new stochastic cycle, so successive outputs do not relate to prior ones and convergence toward a desired design is not guaranteed. The proposed hybrid framework - "LLM + semantic diffusion" - resolves this limitation by enforcing an approximately convergent search procedure, thereby formally addressing the problem of localized design refinement.
comment: 8 figures
Educational impacts of generative artificial intelligence on learning and performance of engineering students in China
With the rapid advancement of generative artificial intelligence(AI), its potential applications in higher education have attracted significant attention. This study investigated how 148 students from diverse engineering disciplines and regions across China used generative AI, focusing on its impact on their learning experience and the opportunities and challenges it poses in engineering education. Based on the surveyed data, we explored four key areas: the frequency and application scenarios of AI use among engineering students, its impact on students' learning and performance, commonly encountered challenges in using generative AI, and future prospects for its adoption in engineering education. The results showed that more than half of the participants reported a positive impact of generative AI on their learning efficiency, initiative, and creativity, with nearly half believing it also enhanced their independent thinking. However, despite acknowledging improved study efficiency, many felt their actual academic performance remained largely unchanged and expressed concerns about the accuracy and domain-specific reliability of generative AI. Our findings provide a first-hand insight into the current benefits and challenges generative AI brings to students, particularly Chinese engineering students, while offering several recommendations, especially from the students' perspective, for effectively integrating generative AI into engineering education.
An Initial Exploration of Default Images in Text-to-Image Generation
In the creative practice of text-to-image generation (TTI), images are generated from text prompts. However, TTI models are trained to always yield an output, even if the prompt contains unknown terms. In this case, the model may generate what we call "default images": images that closely resemble each other across many unrelated prompts. We argue studying default images is valuable for designing better solutions for TTI and prompt engineering. In this paper, we provide the first investigation into default images on Midjourney, a popular image generator. We describe our systematic approach to create input prompts triggering default images, and present the results of our initial experiments and several small-scale ablation studies. We also report on a survey study investigating how default images affect user satisfaction. Our work lays the foundation for understanding default images in TTI and highlights challenges and future research directions.
comment: 16 pages, 6 figures
PreCare: Designing AI Assistants for Advance Care Planning (ACP) to Enhance Personal Value Exploration, Patient Knowledge, and Decisional Confidence
Advance Care Planning (ACP) allows individuals to specify their preferred end-of-life life-sustaining treatments before they become incapacitated by injury or terminal illness (e.g., coma, cancer, dementia). While online ACP offers high accessibility, it lacks key benefits of clinical consultations, including personalized value exploration, immediate clarification of decision consequences. To bridge this gap, we conducted two formative studies: 1) shadowed and interviewed 3 ACP teams consisting of physicians, nurses, and social workers (18 patients total), and 2) interviewed 14 users of ACP websites. Building on these insights, we designed PreCare in collaboration with 6 ACP professionals. PreCare is a website with 3 AI-driven assistants designed to guide users through exploring personal values, gaining ACP knowledge, and supporting informed decision-making. A usability study (n=12) showed that PreCare achieved a System Usability Scale (SUS) rating of excellent. A comparative evaluation (n=12) showed that PreCare's AI assistants significantly improved exploration of personal values, knowledge, and decisional confidence, and was preferred by 92% of participants.
PLanet: Formalizing Experimental Design
Carefully constructed experimental designs are essential for drawing valid, generalizable conclusions from scientific studies. Unfortunately, experimental design plans can be difficult to specify, communicate clearly, and relate to alternatives. In response, we introduce a grammar of experimental design that provides composable operators for constructing assignment procedures (e.g., Latin square). We implement this grammar in PLanet, a domain-specific language (DSL) that constructs assignment plans in three stages: experimental unit specification, trial-order construction, and order-to-unit mapping. We evaluate PLanet's expressivity by taking a purposive sample of recent CHI and UIST publications, representing their experiments as programs in PLanet, and identifying ambiguities and alternatives. In our evaluation, PLanet could express 11 out of 12 experiments found in sampled papers. Additionally, we found that PLanet constructs helped make complex design choices explicit when the researchers omit technical language describing their study designs.
comment: 14 pages, 4 tables, 6 figures, human-computer interaction, domain specific language, experimental design
S-DAT: A Multilingual, GenAI-Driven Framework for Automated Divergent Thinking Assessment
This paper introduces S-DAT (Synthetic-Divergent Association Task), a scalable, multilingual framework for automated assessment of divergent thinking (DT) -a core component of human creativity. Traditional creativity assessments are often labor-intensive, language-specific, and reliant on subjective human ratings, limiting their scalability and cross-cultural applicability. In contrast, S-DAT leverages large language models and advanced multilingual embeddings to compute semantic distance -- a language-agnostic proxy for DT. We evaluate S-DAT across eleven diverse languages, including English, Spanish, German, Russian, Hindi, and Japanese (Kanji, Hiragana, Katakana), demonstrating robust and consistent scoring across linguistic contexts. Unlike prior DAT approaches, the S-DAT shows convergent validity with other DT measures and correct discriminant validity with convergent thinking. This cross-linguistic flexibility allows for more inclusive, global-scale creativity research, addressing key limitations of earlier approaches. S-DAT provides a powerful tool for fairer, more comprehensive evaluation of cognitive flexibility in diverse populations and can be freely assessed online: https://sdat.iol.zib.de/.
Display Content, Display Methods and Evaluation Methods of the HCI in Explainable Recommender Systems: A Survey
Explainable Recommender Systems (XRS) aim to provide users with understandable reasons for the recommendations generated by these systems, representing a crucial research direction in artificial intelligence (AI). Recent research has increasingly focused on the algorithms, display, and evaluation methodologies of XRS. While current research and reviews primarily emphasize the algorithmic aspects, with fewer studies addressing the Human-Computer Interaction (HCI) layer of XRS. Additionally, existing reviews lack a unified taxonomy for XRS and there is insufficient attention given to the emerging area of short video recommendations. In this study, we synthesize existing literature and surveys on XRS, presenting a unified framework for its research and development. The main contributions are as follows: 1) We adopt a lifecycle perspective to systematically summarize the technologies and methods used in XRS, addressing challenges posed by the diversity and complexity of algorithmic models and explanation techniques. 2) For the first time, we highlight the application of multimedia, particularly video-based explanations, along with its potential, technical pathways, and challenges in XRS. 3) We provide a structured overview of evaluation methods from both qualitative and quantitative dimensions. These findings provide valuable insights for the systematic design, progress, and testing of XRS.
comment: 2 Tables, 29 figures
EcoSphere: A Decision-Support Tool for Automated Carbon Emission and Cost Optimization in Sustainable Urban Development
The construction industry is a major contributor to global greenhouse gas emissions, with embodied carbon being a key component. This study develops EcoSphere, an innovative software designed to evaluate and balance embodied and operational carbon emissions with construction and environmental costs in urban planning. Using high-resolution data from the National Structure Inventory, combined with computer vision and natural language processing applied to Google Street View and satellite imagery, EcoSphere categorizes buildings by structural and material characteristics with a bottom-up approach, creating a baseline emissions dataset. By simulating policy scenarios and mitigation strategies, EcoSphere provides policymakers and non-experts with actionable insights for sustainable development in cities and provide them with a vision of the environmental and financial results of their decisions. Case studies in Chicago and Indianapolis showcase how EcoSphere aids in assessing policy impacts on carbon emissions and costs, supporting data-driven progress toward carbon neutrality.
comment: Proc of the 23rd CIB World Building Congress, 19th to 23rd May 2025, Purdue University, West Lafayette, USA
Positioning Monocular Optical See Through Head Worn Displays in Glasses for Everyday Wear
Head-worn displays for everyday wear in the form of regular eyeglasses are technically feasible with recent advances in waveguide technology. One major design decision is determining where in the user's visual field to position the display. Centering the display in the principal point of gaze (PPOG) allows the user to switch attentional focus between the virtual and real images quickly, and best performance often occurs when the display is centered in PPOG or is centered vertically below PPOG. However, these positions are often undesirable in that they are considered interruptive or are associated with negative social perceptions by users. Offsetting the virtual image may be preferred when tasks involve driving, walking, or social interaction. This paper consolidates findings from recent studies on monocular optical see-through HWDs (OST-HWDs), focusing on potential for interruption, comfort, performance, and social perception. For text-based tasks, which serve as a proxy for many monocular OST-HWD tasks, we recommend a 15{\deg} horizontal field of view (FOV) with the virtual image in the right lens vertically centered but offset to +8.7{\deg} to +23.7{\deg} toward the ear. Glanceable content can be offset up to +30{\deg} for short interactions.
Rhetorical XAI: Explaining AI's Benefits as well as its Use via Rhetorical Design
This paper explores potential benefits of incorporating Rhetorical Design into the design of Explainable Artificial Intelligence (XAI) systems. While XAI is traditionally framed around explaining individual predictions or overall system behavior, explanations also function as a form of argumentation, shaping how users evaluate system perceived usefulness, credibility, and foster appropriate trust. Rhetorical Design offers a useful framework to analyze the communicative role of explanations between AI systems and users, focusing on: (1) logical reasoning conveyed through different types of explanations, (2) credibility projected by the system and its developers, and (3) emotional resonance elicited in users. Together, these rhetorical appeals help us understand how explanations influence user perceptions and facilitate AI adoption. This paper synthesizes design strategies from prior XAI work that align with these three rhetorical appeals and highlights both opportunities and challenges of integrating rhetorical design into XAI design.
WhatsAI: Transforming Meta Ray-Bans into an Extensible Generative AI Platform for Accessibility
Multi-modal generative AI models integrated into wearable devices have shown significant promise in enhancing the accessibility of visual information for blind or visually impaired (BVI) individuals, as evidenced by the rapid uptake of Meta Ray-Bans among BVI users. However, the proprietary nature of these platforms hinders disability-led innovation of visual accessibility technologies. For instance, OpenAI showcased the potential of live, multi-modal AI as an accessibility resource in 2024, yet none of the presented applications have reached BVI users, despite the technology being available since then. To promote the democratization of visual access technology development, we introduce WhatsAI, a prototype extensible framework that empowers BVI enthusiasts to leverage Meta Ray-Bans to create personalized wearable visual accessibility technologies. Our system is the first to offer a fully hackable template that integrates with WhatsApp, facilitating robust Accessible Artificial Intelligence Implementations (AAII) that enable blind users to conduct essential visual assistance tasks, such as real-time scene description, object detection, and Optical Character Recognition (OCR), utilizing standard machine learning techniques and cutting-edge visual language models. The extensible nature of our framework aspires to cultivate a community-driven approach, led by BVI hackers and innovators to tackle the complex challenges associated with visual accessibility.
comment: 6 pages, 1 figure
Visual Feedback of Pattern Separability Improves Myoelectric Decoding Performance of Upper Limb Prostheses
State-of-the-art upper limb myoelectric prostheses often use pattern recognition (PR) control systems that translate electromyography (EMG) signals into desired movements. As prosthesis movement complexity increases, users often struggle to produce sufficiently distinct EMG patterns for reliable classification. Existing training typically involves heuristic, trial-and-error user adjustments to static decoder boundaries. Goal: We introduce the Reviewer, a 3D visual interface projecting EMG signals directly into the decoder's classification space, providing intuitive, real-time insight into PR algorithm behavior. This structured feedback reduces cognitive load and fosters mutual, data-driven adaptation between user-generated EMG patterns and decoder boundaries. Methods: A 10-session study with 12 able-bodied participants compared PR performance after motor-based training and updating using the Reviewer versus conventional virtual arm visualization. Performance was assessed using a Fitts law task that involved the aperture of the cursor and the control of orientation. Results: Participants trained with the Reviewer achieved higher completion rates, reduced overshoot, and improved path efficiency and throughput compared to the standard visualization group. Significance: The Reviewer introduces decoder-informed motor training, facilitating immediate and consistent PR-based myoelectric control improvements. By iteratively refining control through real-time feedback, this approach reduces reliance on trial-and-error recalibration, enabling a more adaptive, self-correcting training framework. Conclusion: The 3D visual feedback significantly improves PR control in novice operators through structured training, enabling feedback-driven adaptation and reducing reliance on extensive heuristic adjustments.
Learn, Explore and Reflect by Chatting: Understanding the Value of an LLM-Based Voting Advice Application Chatbot
Voting advice applications (VAAs), which have become increasingly prominent in European elections, are seen as a successful tool for boosting electorates' political knowledge and engagement. However, VAAs' complex language and rigid presentation constrain their utility to less-sophisticated voters. While previous work enhanced VAAs' click-based interaction with scripted explanations, a conversational chatbot's potential for tailored discussion and deliberate political decision-making remains untapped. Our exploratory mixed-method study investigates how LLM-based chatbots can support voting preparation. We deployed a VAA chatbot to 331 users before Germany's 2024 European Parliament election, gathering insights from surveys, conversation logs, and 10 follow-up interviews. Participants found the VAA chatbot intuitive and informative, citing its simple language and flexible interaction. We further uncovered VAA chatbots' role as a catalyst for reflection and rationalization. Expanding on participants' desire for transparency, we provide design recommendations for building interactive and trustworthy VAA chatbots.
comment: Accepted to ACM CUI 2025
What Makes a Fairness Tool Project Sustainable in Open Source?
As society becomes increasingly reliant on artificial intelligence, the need to mitigate risk and harm is paramount. In response, researchers and practitioners have developed tools to detect and reduce undesired bias, commonly referred to as fairness tools. Many of these tools are publicly available for free use and adaptation. While the growing availability of such tools is promising, little is known about the broader landscape beyond well-known examples like AI Fairness 360 and Fairlearn. Because fairness is an ongoing concern, these tools must be built for long-term sustainability. Using an existing set of fairness tools as a reference, we systematically searched GitHub and identified 50 related projects. We then analyzed various aspects of their repositories to assess community engagement and the extent of ongoing maintenance. Our findings show diverse forms of engagement with these tools, suggesting strong support for open-source development. However, we also found significant variation in how well these tools are maintained. Notably, 53 percent of fairness projects become inactive within the first three years. By examining sustainability in fairness tooling, we aim to promote more stability and growth in this critical area.
Trustless Autonomy: Understanding Motivations, Benefits and Governance Dilemma in Self-Sovereign Decentralized AI Agents SC
The recent trend of self-sovereign Decentralized AI Agents (DeAgents) combines Large Language Model (LLM)-based AI agents with decentralization technologies such as blockchain smart contracts and trusted execution environments (TEEs). These tamper-resistant trustless substrates allow agents to achieve self-sovereignty through ownership of cryptowallet private keys and control of digital assets and social media accounts. DeAgent eliminates centralized control and reduces human intervention, addressing key trust concerns inherent in centralized AI systems. However, given ongoing challenges in LLM reliability such as hallucinations, this creates paradoxical tension between trustlessness and unreliable autonomy. This study addresses this empirical research gap through interviews with DeAgents stakeholders-experts, founders, and developers-to examine their motivations, benefits, and governance dilemmas. The findings will guide future DeAgents system and protocol design and inform discussions about governance in sociotechnical AI systems in the future agentic web.
comment: Submitted to CSCW 2026
An AI-Powered Research Assistant in the Lab: A Practical Guide for Text Analysis Through Iterative Collaboration with LLMs
Analyzing texts such as open-ended responses, headlines, or social media posts is a time- and labor-intensive process highly susceptible to bias. LLMs are promising tools for text analysis, using either a predefined (top-down) or a data-driven (bottom-up) taxonomy, without sacrificing quality. Here we present a step-by-step tutorial to efficiently develop, test, and apply taxonomies for analyzing unstructured data through an iterative and collaborative process between researchers and LLMs. Using personal goals provided by participants as an example, we demonstrate how to write prompts to review datasets and generate a taxonomy of life domains, evaluate and refine the taxonomy through prompt and direct modifications, test the taxonomy and assess intercoder agreements, and apply the taxonomy to categorize an entire dataset with high intercoder reliability. We discuss the possibilities and limitations of using LLMs for text analysis.
comment: 31 pages, 1 figure
Understanding Gen Alpha Digital Language: Evaluation of LLM Safety Systems for Content Moderation
This research offers a unique evaluation of how AI systems interpret the digital language of Generation Alpha (Gen Alpha, born 2010-2024). As the first cohort raised alongside AI, Gen Alpha faces new forms of online risk due to immersive digital engagement and a growing mismatch between their evolving communication and existing safety tools. Their distinct language, shaped by gaming, memes, and AI-driven trends, often conceals harmful interactions from both human moderators and automated systems. We assess four leading AI models (GPT-4, Claude, Gemini, and Llama 3) on their ability to detect masked harassment and manipulation within Gen Alpha discourse. Using a dataset of 100 recent expressions from gaming platforms, social media, and video content, the study reveals critical comprehension failures with direct implications for online safety. This work contributes: (1) a first-of-its-kind dataset capturing Gen Alpha expressions; (2) a framework to improve AI moderation systems for youth protection; (3) a multi-perspective evaluation including AI systems, human moderators, and parents, with direct input from Gen Alpha co-researchers; and (4) an analysis of how linguistic divergence increases youth vulnerability. Findings highlight the urgent need to redesign safety systems attuned to youth communication, especially given Gen Alpha reluctance to seek help when adults fail to understand their digital world. This study combines the insight of a Gen Alpha researcher with systematic academic analysis to address critical digital safety challenges.
comment: Accepted to ACM FAccT 2025. To be presented in Athens, June 2025, and published in the conference proceedings. Preprint version; final version will appear in the ACM Digital Library
Partisan Fact-Checkers' Warnings Can Effectively Correct Individuals' Misbeliefs About Political Misinformation AAAI
Political misinformation, particularly harmful when it aligns with individuals' preexisting beliefs and political ideologies, has become widespread on social media platforms. In response, platforms like Facebook and X introduced warning messages leveraging fact-checking results from third-party fact-checkers to alert users against false content. However, concerns persist about the effectiveness of these fact-checks, especially when fact-checkers are perceived as politically biased. To address these concerns, this study presents findings from an online human-subject experiment (N=216) investigating how the political stances of fact-checkers influence their effectiveness in correcting misbeliefs about political misinformation. Our findings demonstrate that partisan fact-checkers can decrease the perceived accuracy of political misinformation and correct misbeliefs without triggering backfire effects. This correction is even more pronounced when the misinformation aligns with individuals' political ideologies. Notably, while previous research suggests that fact-checking warnings are less effective for conservatives than liberals, our results suggest that explicitly labeled partisan fact-checkers, positioned as political counterparts to conservatives, are particularly effective in reducing conservatives' misbeliefs toward pro-liberal misinformation.
comment: To appear in International AAAI Conference on Web and Social Media (ICWSM) 2025
Behavioral Sensing and Intervention Paradigm: A Review of Closed-Loop Approaches for Ingestion Health
Ingestive behavior plays a critical role in health, yet many existing interventions remain limited to static guidance or manual self-tracking. With the increasing integration of sensors and perceptual computing, recent systems have begun to support closed-loop interventions that dynamically sense user behavior and provide feedback during or around ingestion episodes. In this survey, we review 136 studies that leverage sensor-enabled or interaction-mediated approaches to influence eating behavior. We propose a behavioral closed-loop paradigm comprising three core components: target behaviors, sensing modalities, and feedback strategies. A taxonomy of sensing and intervention modalities is presented, organized along human- and environment-based dimensions. Our analysis also examines evaluation methods and design trends across different modality-behavior pairings. This review reveals prevailing patterns and critical gaps, offering design insights for future adaptive and context-aware ingestion health interventions.
A Call to Arms: AI Should be Critical for Social Media Analysis of Conflict Zones
The massive proliferation of social media data represents a transformative opportunity for conflict studies and for tracking the proliferation and use of weaponry, as conflicts are increasingly documented in these online spaces. At the same time, the scale and types of data available are problematic for traditional open-source intelligence. This paper focuses on identifying specific weapon systems and the insignias of the armed groups using them as documented in the Ukraine war, as these tasks are critical to operational intelligence and tracking weapon proliferation, especially given the scale of international military aid given to Ukraine. The large scale of social media makes manual assessment difficult, however, so this paper presents early work that uses computer vision models to support this task. We demonstrate that these models can both identify weapons embedded in images shared in social media and how the resulting collection of military-relevant images and their post times interact with the offline, real-world conflict. Not only can we then track changes in the prevalence of images of tanks, land mines, military trucks, etc., we find correlations among time series data associated with these images and the daily fatalities in this conflict. This work shows substantial opportunity for examining similar online documentation of conflict contexts, and we also point to future avenues where computer vision can be further improved for these open-source intelligence tasks.
Triple-identity Authentication: The Future of Secure Access
In a typical authentication process, the local system verifies the user's identity using a stored hash value generated by a cross-system hash algorithm. This article shifts the research focus from traditional password encryption to the establishment of gatekeeping mechanisms for effective interactions between a system and the outside world. Here, we propose a triple-identity authentication system to achieve this goal. Specifically, this local system opens the inner structure of its hash algorithm to all user credentials, including the login name, login password, and authentication password. When a login credential is entered, the local system hashes it and then creates a unique identifier using intermediate hash elements randomly selected from the open algorithm. Importantly, this locally generated unique identifier (rather than the stored hash produced by the open algorithm) is utilized to verify the user's combined identity, which is generated by combining the entered credential with the International Mobile Equipment Identity and the International Mobile Subscriber Identity. The verification process is implemented at each interaction point: the login name field, the login password field, and the server's authentication point. Thus, within the context of this triple-identity authentication system, we establish a robust gatekeeping mechanism for system interactions, ultimately providing a level of security that is equivalent to multi-factor authentication.
comment: 10 pages, 2 figures,
Social Media Should Feel Like Minecraft, Not Instagram: 3D Gamer Youth Visions for Meaningful Social Connections through Fictional Inquiry
We investigate youth visions for ideal remote social interactions, drawing on co-design interviews with 23 participants (aged 15-24) experienced with 3D gaming environments. Using a Fictional Inquiry (FI) method set in the Harry Potter universe, this research reveals that young people desire social media that functions more like immersive, navigable shared social spaces. Across these interviews, participants identified six key priorities for meaningful social connection over social media: intuitive social navigation, shared collaborative experiences, communal environments fostering close relationships, flexible self-presentation, intentional engagement, and playful social mechanics. We introduce the \textit{spatial integrity} framework, a set of four interrelated design principles: spatial presence, spatial composition, spatial configuration, and spatial depth. Together, these principles outline how online spaces can be designed to feel more like meaningful environments, spaces where relationships can grow through shared presence, movement, and intentional interaction. Participants also described the FI process itself as meaningful, not only for generating new ideas but for empowering them to imagine and shape the future of social media.
Computer Vision and Pattern Recognition
UniSkill: Imitating Human Videos via Cross-Embodiment Skill Representations
Mimicry is a fundamental learning mechanism in humans, enabling individuals to learn new tasks by observing and imitating experts. However, applying this ability to robots presents significant challenges due to the inherent differences between human and robot embodiments in both their visual appearance and physical capabilities. While previous methods bridge this gap using cross-embodiment datasets with shared scenes and tasks, collecting such aligned data between humans and robots at scale is not trivial. In this paper, we propose UniSkill, a novel framework that learns embodiment-agnostic skill representations from large-scale cross-embodiment video data without any labels, enabling skills extracted from human video prompts to effectively transfer to robot policies trained only on robot data. Our experiments in both simulation and real-world environments show that our cross-embodiment skills successfully guide robots in selecting appropriate actions, even with unseen video prompts. The project website can be found at: https://kimhanjung.github.io/UniSkill.
comment: Project Page: https://kimhanjung.github.io/UniSkill/
Towards Autonomous UAV Visual Object Search in City Space: Benchmark and Agentic Methodology
Aerial Visual Object Search (AVOS) tasks in urban environments require Unmanned Aerial Vehicles (UAVs) to autonomously search for and identify target objects using visual and textual cues without external guidance. Existing approaches struggle in complex urban environments due to redundant semantic processing, similar object distinction, and the exploration-exploitation dilemma. To bridge this gap and support the AVOS task, we introduce CityAVOS, the first benchmark dataset for autonomous search of common urban objects. This dataset comprises 2,420 tasks across six object categories with varying difficulty levels, enabling comprehensive evaluation of UAV agents' search capabilities. To solve the AVOS tasks, we also propose PRPSearcher (Perception-Reasoning-Planning Searcher), a novel agentic method powered by multi-modal large language models (MLLMs) that mimics human three-tier cognition. Specifically, PRPSearcher constructs three specialized maps: an object-centric dynamic semantic map enhancing spatial perception, a 3D cognitive map based on semantic attraction values for target reasoning, and a 3D uncertainty map for balanced exploration-exploitation search. Also, our approach incorporates a denoising mechanism to mitigate interference from similar objects and utilizes an Inspiration Promote Thought (IPT) prompting mechanism for adaptive action planning. Experimental results on CityAVOS demonstrate that PRPSearcher surpasses existing baselines in both success rate and search efficiency (on average: +37.69% SR, +28.96% SPL, -30.69% MSS, and -46.40% NE). While promising, the performance gap compared to humans highlights the need for better semantic reasoning and spatial exploration capabilities in AVOS tasks. This work establishes a foundation for future advances in embodied target search. Dataset and source code are available at https://anonymous.4open.science/r/CityAVOS-3DF8.
Aya Vision: Advancing the Frontier of Multilingual Multimodality
Building multimodal language models is fundamentally challenging: it requires aligning vision and language modalities, curating high-quality instruction data, and avoiding the degradation of existing text-only capabilities once vision is introduced. These difficulties are further magnified in the multilingual setting, where the need for multimodal data in different languages exacerbates existing data scarcity, machine translation often distorts meaning, and catastrophic forgetting is more pronounced. To address the aforementioned challenges, we introduce novel techniques spanning both data and modeling. First, we develop a synthetic annotation framework that curates high-quality, diverse multilingual multimodal instruction data, enabling Aya Vision models to produce natural, human-preferred responses to multimodal inputs across many languages. Complementing this, we propose a cross-modal model merging technique that mitigates catastrophic forgetting, effectively preserving text-only capabilities while simultaneously enhancing multimodal generative performance. Aya-Vision-8B achieves best-in-class performance compared to strong multimodal models such as Qwen-2.5-VL-7B, Pixtral-12B, and even much larger Llama-3.2-90B-Vision. We further scale this approach with Aya-Vision-32B, which outperforms models more than twice its size, such as Molmo-72B and LLaMA-3.2-90B-Vision. Our work advances multilingual progress on the multi-modal frontier, and provides insights into techniques that effectively bend the need for compute while delivering extremely high performance.
Advancing Food Nutrition Estimation via Visual-Ingredient Feature Fusion
Nutrition estimation is an important component of promoting healthy eating and mitigating diet-related health risks. Despite advances in tasks such as food classification and ingredient recognition, progress in nutrition estimation is limited due to the lack of datasets with nutritional annotations. To address this issue, we introduce FastFood, a dataset with 84,446 images across 908 fast food categories, featuring ingredient and nutritional annotations. In addition, we propose a new model-agnostic Visual-Ingredient Feature Fusion (VIF$^2$) method to enhance nutrition estimation by integrating visual and ingredient features. Ingredient robustness is improved through synonym replacement and resampling strategies during training. The ingredient-aware visual feature fusion module combines ingredient features and visual representation to achieve accurate nutritional prediction. During testing, ingredient predictions are refined using large multimodal models by data augmentation and majority voting. Our experiments on both FastFood and Nutrition5k datasets validate the effectiveness of our proposed method built in different backbones (e.g., Resnet, InceptionV3 and ViT), which demonstrates the importance of ingredient information in nutrition estimation. https://huiyanqi.github.io/fastfood-nutrition-estimation/.
comment: Accepted for publication in ACM International Conference on Multimedia Retrieval 2025
Extending Large Vision-Language Model for Diverse Interactive Tasks in Autonomous Driving
The Large Visual-Language Models (LVLMs) have significantly advanced image understanding. Their comprehension and reasoning capabilities enable promising applications in autonomous driving scenarios. However, existing research typically focuses on front-view perspectives and partial objects within scenes, struggling to achieve comprehensive scene understanding. Meanwhile, existing LVLMs suffer from the lack of mapping relationship between 2D and 3D and insufficient integration of 3D object localization and instruction understanding. To tackle these limitations, we first introduce NuInteract, a large-scale dataset with over 1.5M multi-view image language pairs spanning dense scene captions and diverse interactive tasks. Furthermore, we propose DriveMonkey, a simple yet effective framework that seamlessly integrates LVLMs with a spatial processor using a series of learnable queries. The spatial processor, designed as a plug-and-play component, can be initialized with pre-trained 3D detectors to improve 3D perception. Our experiments show that DriveMonkey outperforms general LVLMs, especially achieving a 9.86% notable improvement on the 3D visual grounding task. The dataset and code will be released at https://github.com/zc-zhao/DriveMonkey.
comment: The dataset and code will be released at https://github.com/zc-zhao/DriveMonkey
TiMo: Spatiotemporal Foundation Model for Satellite Image Time Series
Satellite image time series (SITS) provide continuous observations of the Earth's surface, making them essential for applications such as environmental management and disaster assessment. However, existing spatiotemporal foundation models rely on plain vision transformers, which encode entire temporal sequences without explicitly capturing multiscale spatiotemporal relationships between land objects. This limitation hinders their effectiveness in downstream tasks. To overcome this challenge, we propose TiMo, a novel hierarchical vision transformer foundation model tailored for SITS analysis. At its core, we introduce a spatiotemporal gyroscope attention mechanism that dynamically captures evolving multiscale patterns across both time and space. For pre-training, we curate MillionST, a large-scale dataset of one million images from 100,000 geographic locations, each captured across 10 temporal phases over five years, encompassing diverse geospatial changes and seasonal variations. Leveraging this dataset, we adapt masked image modeling to pre-train TiMo, enabling it to effectively learn and encode generalizable spatiotemporal representations.Extensive experiments across multiple spatiotemporal tasks-including deforestation monitoring, land cover segmentation, crop type classification, and flood detection-demonstrate TiMo's superiority over state-of-the-art methods. Code, model, and dataset will be released at https://github.com/MiliLab/TiMo.
Controllable Image Colorization with Instance-aware Texts and Masks
Recently, the application of deep learning in image colorization has received widespread attention. The maturation of diffusion models has further advanced the development of image colorization models. However, current mainstream image colorization models still face issues such as color bleeding and color binding errors, and cannot colorize images at the instance level. In this paper, we propose a diffusion-based colorization method MT-Color to achieve precise instance-aware colorization with use-provided guidance. To tackle color bleeding issue, we design a pixel-level mask attention mechanism that integrates latent features and conditional gray image features through cross-attention. We use segmentation masks to construct cross-attention masks, preventing pixel information from exchanging between different instances. We also introduce an instance mask and text guidance module that extracts instance masks and text representations of each instance, which are then fused with latent features through self-attention, utilizing instance masks to form self-attention masks to prevent instance texts from guiding the colorization of other areas, thus mitigating color binding errors. Furthermore, we apply a multi-instance sampling strategy, which involves sampling each instance region separately and then fusing the results. Additionally, we have created a specialized dataset for instance-level colorization tasks, GPT-color, by leveraging large visual language models on existing image datasets. Qualitative and quantitative experiments show that our model and dataset outperform previous methods and datasets.
SPAST: Arbitrary Style Transfer with Style Priors via Pre-trained Large-scale Model
Given an arbitrary content and style image, arbitrary style transfer aims to render a new stylized image which preserves the content image's structure and possesses the style image's style. Existing arbitrary style transfer methods are based on either small models or pre-trained large-scale models. The small model-based methods fail to generate high-quality stylized images, bringing artifacts and disharmonious patterns. The pre-trained large-scale model-based methods can generate high-quality stylized images but struggle to preserve the content structure and cost long inference time. To this end, we propose a new framework, called SPAST, to generate high-quality stylized images with less inference time. Specifically, we design a novel Local-global Window Size Stylization Module (LGWSSM)tofuse style features into content features. Besides, we introduce a novel style prior loss, which can dig out the style priors from a pre-trained large-scale model into the SPAST and motivate the SPAST to generate high-quality stylized images with short inference time.We conduct abundant experiments to verify that our proposed method can generate high-quality stylized images and less inference time compared with the SOTA arbitrary style transfer methods.
comment: Accepted by Neural Networks
VIViT: Variable-Input Vision Transformer Framework for 3D MR Image Segmentation
Self-supervised pretrain techniques have been widely used to improve the downstream tasks' performance. However, real-world magnetic resonance (MR) studies usually consist of different sets of contrasts due to different acquisition protocols, which poses challenges for the current deep learning methods on large-scale pretrain and different downstream tasks with different input requirements, since these methods typically require a fixed set of input modalities or, contrasts. To address this challenge, we propose variable-input ViT (VIViT), a transformer-based framework designed for self-supervised pretraining and segmentation finetuning for variable contrasts in each study. With this ability, our approach can maximize the data availability in pretrain, and can transfer the learned knowledge from pretrain to downstream tasks despite variations in input requirements. We validate our method on brain infarct and brain tumor segmentation, where our method outperforms current CNN and ViT-based models with a mean Dice score of 0.624 and 0.883 respectively. These results highlight the efficacy of our design for better adaptability and performance on tasks with real-world heterogeneous MR data.
comment: 9 pages
CAD-Coder:Text-Guided CAD Files Code Generation
Computer-aided design (CAD) is a way to digitally create 2D drawings and 3D models of real-world products. Traditional CAD typically relies on hand-drawing by experts or modifications of existing library files, which doesn't allow for rapid personalization. With the emergence of generative artificial intelligence, convenient and efficient personalized CAD generation has become possible. However, existing generative methods typically produce outputs that lack interactive editability and geometric annotations, limiting their practical applications in manufacturing. To enable interactive generative CAD, we propose CAD-Coder, a framework that transforms natural language instructions into CAD script codes, which can be executed in Python environments to generate human-editable CAD files (.Dxf). To facilitate the generation of editable CAD sketches with annotation information, we construct a comprehensive dataset comprising 29,130 Dxf files with their corresponding script codes, where each sketch preserves both editability and geometric annotations. We evaluate CAD-Coder on various 2D/3D CAD generation tasks against existing methods, demonstrating superior interactive capabilities while uniquely providing editable sketches with geometric annotations.
Calibration and Uncertainty for multiRater Volume Assessment in multiorgan Segmentation (CURVAS) challenge results MICCAI 2024
Deep learning (DL) has become the dominant approach for medical image segmentation, yet ensuring the reliability and clinical applicability of these models requires addressing key challenges such as annotation variability, calibration, and uncertainty estimation. This is why we created the Calibration and Uncertainty for multiRater Volume Assessment in multiorgan Segmentation (CURVAS), which highlights the critical role of multiple annotators in establishing a more comprehensive ground truth, emphasizing that segmentation is inherently subjective and that leveraging inter-annotator variability is essential for robust model evaluation. Seven teams participated in the challenge, submitting a variety of DL models evaluated using metrics such as Dice Similarity Coefficient (DSC), Expected Calibration Error (ECE), and Continuous Ranked Probability Score (CRPS). By incorporating consensus and dissensus ground truth, we assess how DL models handle uncertainty and whether their confidence estimates align with true segmentation performance. Our findings reinforce the importance of well-calibrated models, as better calibration is strongly correlated with the quality of the results. Furthermore, we demonstrate that segmentation models trained on diverse datasets and enriched with pre-trained knowledge exhibit greater robustness, particularly in cases deviating from standard anatomical structures. Notably, the best-performing models achieved high DSC and well-calibrated uncertainty estimates. This work underscores the need for multi-annotator ground truth, thorough calibration assessments, and uncertainty-aware evaluations to develop trustworthy and clinically reliable DL-based medical image segmentation models.
comment: This challenge was hosted in MICCAI 2024
Claycode: Stylable and Deformable 2D Scannable Codes
This paper introduces Claycode, a novel 2D scannable code designed for extensive stylization and deformation. Unlike traditional matrix-based codes (e.g., QR codes), Claycodes encode their message in a tree structure. During the encoding process, bits are mapped into a topology tree, which is then depicted as a nesting of color regions drawn within the boundaries of a target polygon shape. When decoding, Claycodes are extracted and interpreted in real-time from a camera stream. We detail the end-to-end pipeline and show that Claycodes allow for extensive stylization without compromising their functionality. We then empirically demonstrate Claycode's high tolerance to heavy deformations, outperforming traditional 2D scannable codes in scenarios where they typically fail.
SkillFormer: Unified Multi-View Video Understanding for Proficiency Estimation
Assessing human skill levels in complex activities is a challenging problem with applications in sports, rehabilitation, and training. In this work, we present SkillFormer, a parameter-efficient architecture for unified multi-view proficiency estimation from egocentric and exocentric videos. Building on the TimeSformer backbone, SkillFormer introduces a CrossViewFusion module that fuses view-specific features using multi-head cross-attention, learnable gating, and adaptive self-calibration. We leverage Low-Rank Adaptation to fine-tune only a small subset of parameters, significantly reducing training costs. In fact, when evaluated on the EgoExo4D dataset, SkillFormer achieves state-of-the-art accuracy in multi-view settings while demonstrating remarkable computational efficiency, using 4.5x fewer parameters and requiring 3.75x fewer training epochs than prior baselines. It excels in multiple structured tasks, confirming the value of multi-view integration for fine-grained skill assessment.
DLO-Splatting: Tracking Deformable Linear Objects Using 3D Gaussian Splatting
This work presents DLO-Splatting, an algorithm for estimating the 3D shape of Deformable Linear Objects (DLOs) from multi-view RGB images and gripper state information through prediction-update filtering. The DLO-Splatting algorithm uses a position-based dynamics model with shape smoothness and rigidity dampening corrections to predict the object shape. Optimization with a 3D Gaussian Splatting-based rendering loss iteratively renders and refines the prediction to align it with the visual observations in the update step. Initial experiments demonstrate promising results in a knot tying scenario, which is challenging for existing vision-only methods.
comment: 5 pages, 2 figures, presented at the 2025 5th Workshop: Reflections on Representations and Manipulating Deformable Objects at the IEEE International Conference on Robotics and Automation. RMDO workshop (https://deformable-workshop.github.io/icra2025/)
Visually Guided Decoding: Gradient-Free Hard Prompt Inversion with Language Models ICLR 2025
Text-to-image generative models like DALL-E and Stable Diffusion have revolutionized visual content creation across various applications, including advertising, personalized media, and design prototyping. However, crafting effective textual prompts to guide these models remains challenging, often requiring extensive trial and error. Existing prompt inversion approaches, such as soft and hard prompt techniques, are not so effective due to the limited interpretability and incoherent prompt generation. To address these issues, we propose Visually Guided Decoding (VGD), a gradient-free approach that leverages large language models (LLMs) and CLIP-based guidance to generate coherent and semantically aligned prompts. In essence, VGD utilizes the robust text generation capabilities of LLMs to produce human-readable prompts. Further, by employing CLIP scores to ensure alignment with user-specified visual concepts, VGD enhances the interpretability, generalization, and flexibility of prompt generation without the need for additional training. Our experiments demonstrate that VGD outperforms existing prompt inversion techniques in generating understandable and contextually relevant prompts, facilitating more intuitive and controllable interactions with text-to-image models.
comment: ICLR 2025
OpenThinkIMG: Learning to Think with Images via Visual Tool Reinforcement Learning
While humans can flexibly leverage interactive visual cognition for complex problem-solving, enabling Large Vision-Language Models (LVLMs) to learn similarly adaptive behaviors with visual tools remains challenging. A significant hurdle is the current lack of standardized infrastructure, which hinders integrating diverse tools, generating rich interaction data, and training robust agents effectively. To address these gaps, we introduce OpenThinkIMG, the first open-source, comprehensive end-to-end framework for tool-augmented LVLMs. It features standardized vision tool interfaces, scalable trajectory generation for policy initialization, and a flexible training environment. Furthermore, considering supervised fine-tuning (SFT) on static demonstrations offers limited policy generalization for dynamic tool invocation, we propose a novel reinforcement learning (RL) framework V-ToolRL to train LVLMs to learn adaptive policies for invoking external vision tools. V-ToolRL enables LVLMs to autonomously discover optimal tool-usage strategies by directly optimizing for task success using feedback from tool interactions. We empirically validate V-ToolRL on challenging chart reasoning tasks. Our RL-trained agent, built upon a Qwen2-VL-2B, significantly outperforms its SFT-initialized counterpart (+28.83 points) and surpasses established supervised tool-learning baselines like Taco and CogCom by an average of +12.7 points. Notably, it also surpasses prominent closed-source models like GPT-4.1 by +8.68 accuracy points. We hope OpenThinkIMG can serve as a foundational framework for advancing dynamic, tool-augmented visual reasoning, helping the community develop AI agents that can genuinely "think with images".
comment: Work in progress
A portable diagnosis model for Keratoconus using a smartphone
Keratoconus (KC) is a progressive corneal disorder characterized by localized thinning and protrusion, leading to visual distortion. While Placido disc-based topography remains a standard in clinical diagnostics, its dependence on specialized equipment limits accessibility. In this paper, we propose a portable, smartphone-based diagnostic framework that captures corneal reflections of a Placido disc displayed on a phone screen and applies a two-stage detection pipeline, then validate on 3D-printed emulated eyeball models that simulate normal, moderate, and severe KC stages based on anterior chamber depth (ACD). The first step of the two-stage detection pipeline is classifying different stages of KC with features including height and width of extracted reflections using weighted support vector machine (WSVM). It achieves a maximum accuracy of 92.93%, and maintains over 90% accuracy across multiple smartphone models, including the Galaxy Z Flip 3, iPhone 15 Pro, and iPhone 16 Pro. For the second step, we visualize the KC-affected protrusion regions on the corneas with color maps based on inter-disc distance, that provides an intuitive representation of disease severity and localization. Moreover, we validate the ability of the extracted features to differentiate between KC stages with ANOVA and Omega Squared, with significant p-values (e.g., $p < 10^{-6}$) and large effect sizes ($\\omega^2$ up to 0.8398) among classes.
WaveGuard: Robust Deepfake Detection and Source Tracing via Dual-Tree Complex Wavelet and Graph Neural Networks
Deepfake technology poses increasing risks such as privacy invasion and identity theft. To address these threats, we propose WaveGuard, a proactive watermarking framework that enhances robustness and imperceptibility via frequency-domain embedding and graph-based structural consistency. Specifically, we embed watermarks into high-frequency sub-bands using Dual-Tree Complex Wavelet Transform (DT-CWT) and employ a Structural Consistency Graph Neural Network (SC-GNN) to preserve visual quality. We also design an attention module to refine embedding precision. Experimental results on face swap and reenactment tasks demonstrate that WaveGuard outperforms state-of-the-art methods in both robustness and visual quality. Code is available at https://github.com/vpsg-research/WaveGuard.
comment: 11 pages, 5 figures, 4 tables
Boosting Zero-shot Stereo Matching using Large-scale Mixed Images Sources in the Real World
Stereo matching methods rely on dense pixel-wise ground truth labels, which are laborious to obtain, especially for real-world datasets. The scarcity of labeled data and domain gaps between synthetic and real-world images also pose notable challenges. In this paper, we propose a novel framework, \textbf{BooSTer}, that leverages both vision foundation models and large-scale mixed image sources, including synthetic, real, and single-view images. First, to fully unleash the potential of large-scale single-view images, we design a data generation strategy combining monocular depth estimation and diffusion models to generate dense stereo matching data from single-view images. Second, to tackle sparse labels in real-world datasets, we transfer knowledge from monocular depth estimation models, using pseudo-mono depth labels and a dynamic scale- and shift-invariant loss for additional supervision. Furthermore, we incorporate vision foundation model as an encoder to extract robust and transferable features, boosting accuracy and generalization. Extensive experiments on benchmark datasets demonstrate the effectiveness of our approach, achieving significant improvements in accuracy over existing methods, particularly in scenarios with limited labeled data and domain shifts.
Leveraging Multi-Modal Information to Enhance Dataset Distillation
Dataset distillation aims to create a compact and highly representative synthetic dataset that preserves the knowledge of a larger real dataset. While existing methods primarily focus on optimizing visual representations, incorporating additional modalities and refining object-level information can significantly improve the quality of distilled datasets. In this work, we introduce two key enhancements to dataset distillation: caption-guided supervision and object-centric masking. To integrate textual information, we propose two strategies for leveraging caption features: the feature concatenation, where caption embeddings are fused with visual features at the classification stage, and caption matching, which introduces a caption-based alignment loss during training to ensure semantic coherence between real and synthetic data. Additionally, we apply segmentation masks to isolate target objects and remove background distractions, introducing two loss functions designed for object-centric learning: masked feature alignment loss and masked gradient matching loss. Comprehensive evaluations demonstrate that integrating caption-based guidance and object-centric masking enhances dataset distillation, leading to synthetic datasets that achieve superior performance on downstream tasks.
comment: 10 pages
Unsupervised Out-of-Distribution Detection in Medical Imaging Using Multi-Exit Class Activation Maps and Feature Masking
Out-of-distribution (OOD) detection is essential for ensuring the reliability of deep learning models in medical imaging applications. This work is motivated by the observation that class activation maps (CAMs) for in-distribution (ID) data typically emphasize regions that are highly relevant to the model's predictions, whereas OOD data often lacks such focused activations. By masking input images with inverted CAMs, the feature representations of ID data undergo more substantial changes compared to those of OOD data, offering a robust criterion for differentiation. In this paper, we introduce a novel unsupervised OOD detection framework, Multi-Exit Class Activation Map (MECAM), which leverages multi-exit CAMs and feature masking. By utilizing mult-exit networks that combine CAMs from varying resolutions and depths, our method captures both global and local feature representations, thereby enhancing the robustness of OOD detection. We evaluate MECAM on multiple ID datasets, including ISIC19 and PathMNIST, and test its performance against three medical OOD datasets, RSNA Pneumonia, COVID-19, and HeadCT, and one natural image OOD dataset, iSUN. Comprehensive comparisons with state-of-the-art OOD detection methods validate the effectiveness of our approach. Our findings emphasize the potential of multi-exit networks and feature masking for advancing unsupervised OOD detection in medical imaging, paving the way for more reliable and interpretable models in clinical practice.
comment: 10 pages, 2 figures
Rejoining fragmented ancient bamboo slips with physics-driven deep learning
Bamboo slips are a crucial medium for recording ancient civilizations in East Asia, and offers invaluable archaeological insights for reconstructing the Silk Road, studying material culture exchanges, and global history. However, many excavated bamboo slips have been fragmented into thousands of irregular pieces, making their rejoining a vital yet challenging step for understanding their content. Here we introduce WisePanda, a physics-driven deep learning framework designed to rejoin fragmented bamboo slips. Based on the physics of fracture and material deterioration, WisePanda automatically generates synthetic training data that captures the physical properties of bamboo fragmentations. This approach enables the training of a matching network without requiring manually paired samples, providing ranked suggestions to facilitate the rejoining process. Compared to the leading curve matching method, WisePanda increases Top-50 matching accuracy from 36\% to 52\%. Archaeologists using WisePanda have experienced substantial efficiency improvements (approximately 20 times faster) when rejoining fragmented bamboo slips. This research demonstrates that incorporating physical principles into deep learning models can significantly enhance their performance, transforming how archaeologists restore and study fragmented artifacts. WisePanda provides a new paradigm for addressing data scarcity in ancient artifact restoration through physics-driven machine learning.
MESSI: A Multi-Elevation Semantic Segmentation Image Dataset of an Urban Environment
This paper presents a Multi-Elevation Semantic Segmentation Image (MESSI) dataset comprising 2525 images taken by a drone flying over dense urban environments. MESSI is unique in two main features. First, it contains images from various altitudes, allowing us to investigate the effect of depth on semantic segmentation. Second, it includes images taken from several different urban regions (at different altitudes). This is important since the variety covers the visual richness captured by a drone's 3D flight, performing horizontal and vertical maneuvers. MESSI contains images annotated with location, orientation, and the camera's intrinsic parameters and can be used to train a deep neural network for semantic segmentation or other applications of interest (e.g., localization, navigation, and tracking). This paper describes the dataset and provides annotation details. It also explains how semantic segmentation was performed using several neural network models and shows several relevant statistics. MESSI will be published in the public domain to serve as an evaluation benchmark for semantic segmentation using images captured by a drone or similar vehicle flying over a dense urban environment.
PrePrompt: Predictive prompting for class incremental learning
Class Incremental Learning (CIL) based on pre-trained models offers a promising direction for open-world continual learning. Existing methods typically rely on correlation-based strategies, where an image's classification feature is used as a query to retrieve the most related key prompts and select the corresponding value prompts for training. However, these approaches face an inherent limitation: fitting the entire feature space of all tasks with only a few trainable prompts is fundamentally challenging. We propose Predictive Prompting (PrePrompt), a novel CIL framework that circumvents correlation-based limitations by leveraging pre-trained models' natural classification ability to predict task-specific prompts. Specifically, PrePrompt decomposes CIL into a two-stage prediction framework: task-specific prompt prediction followed by label prediction. While theoretically appealing, this framework risks bias toward recent classes due to missing historical data for older classifier calibration. PrePrompt then mitigates this by incorporating feature translation, dynamically balancing stability and plasticity. Experiments across multiple benchmarks demonstrate PrePrompt's superiority over state-of-the-art prompt-based CIL methods. The code will be released upon acceptance.
comment: 16 pages, 29 figures, conference
A Large-scale Benchmark on Geological Fault Delineation Models: Domain Shift, Training Dynamics, Generalizability, Evaluation and Inferential Behavior
Machine learning has taken a critical role in seismic interpretation workflows, especially in fault delineation tasks. However, despite the recent proliferation of pretrained models and synthetic datasets, the field still lacks a systematic understanding of the generalizability limits of these models across seismic data representing a variety of geologic, acquisition and processing settings. Distributional shifts between different data sources, limitations in fine-tuning strategies and labeled data accessibility, and inconsistent evaluation protocols all represent major roadblocks in the deployment of reliable and robust models in real-world exploration settings. In this paper, we present the first large-scale benchmarking study explicitly designed to provide answers and guidelines for domain shift strategies in seismic interpretation. Our benchmark encompasses over $200$ models trained and evaluated on three heterogeneous datasets (synthetic and real data) including FaultSeg3D, CRACKS, and Thebe. We systematically assess pretraining, fine-tuning, and joint training strategies under varying degrees of domain shift. Our analysis highlights the fragility of current fine-tuning practices, the emergence of catastrophic forgetting, and the challenges of interpreting performance in a systematic manner. We establish a robust experimental baseline to provide insights into the tradeoffs inherent to current fault delineation workflows, and shed light on directions for developing more generalizable, interpretable and effective machine learning models for seismic interpretation. The insights and analyses reported provide a set of guidelines on the deployment of fault delineation models within seismic interpretation workflows.
ReSurgSAM2: Referring Segment Anything in Surgical Video via Credible Long-term Tracking MICCAI 2025
Surgical scene segmentation is critical in computer-assisted surgery and is vital for enhancing surgical quality and patient outcomes. Recently, referring surgical segmentation is emerging, given its advantage of providing surgeons with an interactive experience to segment the target object. However, existing methods are limited by low efficiency and short-term tracking, hindering their applicability in complex real-world surgical scenarios. In this paper, we introduce ReSurgSAM2, a two-stage surgical referring segmentation framework that leverages Segment Anything Model 2 to perform text-referred target detection, followed by tracking with reliable initial frame identification and diversity-driven long-term memory. For the detection stage, we propose a cross-modal spatial-temporal Mamba to generate precise detection and segmentation results. Based on these results, our credible initial frame selection strategy identifies the reliable frame for the subsequent tracking. Upon selecting the initial frame, our method transitions to the tracking stage, where it incorporates a diversity-driven memory mechanism that maintains a credible and diverse memory bank, ensuring consistent long-term tracking. Extensive experiments demonstrate that ReSurgSAM2 achieves substantial improvements in accuracy and efficiency compared to existing methods, operating in real-time at 61.2 FPS. Our code and datasets will be available at https://github.com/jinlab-imvr/ReSurgSAM2.
comment: Early accepted by MICCAI 2025
Thermal Detection of People with Mobility Restrictions for Barrier Reduction at Traffic Lights Controlled Intersections
Rapid advances in deep learning for computer vision have driven the adoption of RGB camera-based adaptive traffic light systems to improve traffic safety and pedestrian comfort. However, these systems often overlook the needs of people with mobility restrictions. Moreover, the use of RGB cameras presents significant challenges, including limited detection performance under adverse weather or low-visibility conditions, as well as heightened privacy concerns. To address these issues, we propose a fully automated, thermal detector-based traffic light system that dynamically adjusts signal durations for individuals with walking impairments or mobility burden and triggers the auditory signal for visually impaired individuals, thereby advancing towards barrier-free intersection for all users. To this end, we build the thermal dataset for people with mobility restrictions (TD4PWMR), designed to capture diverse pedestrian scenarios, particularly focusing on individuals with mobility aids or mobility burden under varying environmental conditions, such as different lighting, weather, and crowded urban settings. While thermal imaging offers advantages in terms of privacy and robustness to adverse conditions, it also introduces inherent hurdles for object detection due to its lack of color and fine texture details and generally lower resolution of thermal images. To overcome these limitations, we develop YOLO-Thermal, a novel variant of the YOLO architecture that integrates advanced feature extraction and attention mechanisms for enhanced detection accuracy and robustness in thermal imaging. Experiments demonstrate that the proposed thermal detector outperforms existing detectors, while the proposed traffic light system effectively enhances barrier-free intersection. The source codes and dataset are available at https://github.com/leon2014dresden/YOLO-THERMAL.
Reinforcement Learning meets Masked Video Modeling : Trajectory-Guided Adaptive Token Selection
Masked video modeling~(MVM) has emerged as a highly effective pre-training strategy for visual foundation models, whereby the model reconstructs masked spatiotemporal tokens using information from visible tokens. However, a key challenge in such approaches lies in selecting an appropriate masking strategy. Previous studies have explored predefined masking techniques, including random and tube-based masking, as well as approaches that leverage key motion priors, optical flow and semantic cues from externally pre-trained models. In this work, we introduce a novel and generalizable Trajectory-Aware Adaptive Token Sampler (TATS), which models the motion dynamics of tokens and can be seamlessly integrated into the masked autoencoder (MAE) framework to select motion-centric tokens in videos. Additionally, we propose a unified training strategy that enables joint optimization of both MAE and TATS from scratch using Proximal Policy Optimization (PPO). We show that our model allows for aggressive masking without compromising performance on the downstream task of action recognition while also ensuring that the pre-training remains memory efficient. Extensive experiments of the proposed approach across four benchmarks, including Something-Something v2, Kinetics-400, UCF101, and HMDB51, demonstrate the effectiveness, transferability, generalization, and efficiency of our work compared to other state-of-the-art methods.
DFA-CON: A Contrastive Learning Approach for Detecting Copyright Infringement in DeepFake Art
Recent proliferation of generative AI tools for visual content creation-particularly in the context of visual artworks-has raised serious concerns about copyright infringement and forgery. The large-scale datasets used to train these models often contain a mixture of copyrighted and non-copyrighted artworks. Given the tendency of generative models to memorize training patterns, they are susceptible to varying degrees of copyright violation. Building on the recently proposed DeepfakeArt Challenge benchmark, this work introduces DFA-CON, a contrastive learning framework designed to detect copyright-infringing or forged AI-generated art. DFA-CON learns a discriminative representation space, posing affinity among original artworks and their forged counterparts within a contrastive learning framework. The model is trained across multiple attack types, including inpainting, style transfer, adversarial perturbation, and cutmix. Evaluation results demonstrate robust detection performance across most attack types, outperforming recent pretrained foundation models. Code and model checkpoints will be released publicly upon acceptance.
The RaspGrade Dataset: Towards Automatic Raspberry Ripeness Grading with Deep Learning
This research investigates the application of computer vision for rapid, accurate, and non-invasive food quality assessment, focusing on the novel challenge of real-time raspberry grading into five distinct classes within an industrial environment as the fruits move along a conveyor belt. To address this, a dedicated dataset of raspberries, namely RaspGrade, was acquired and meticulously annotated. Instance segmentation experiments revealed that accurate fruit-level masks can be obtained; however, the classification of certain raspberry grades presents challenges due to color similarities and occlusion, while others are more readily distinguishable based on color. The acquired and annotated RaspGrade dataset is accessible on HuggingFace at: https://huggingface.co/datasets/FBK-TeV/RaspGrade.
GradMix: Gradient-based Selective Mixup for Robust Data Augmentation in Class-Incremental Learning
In the context of continual learning, acquiring new knowledge while maintaining previous knowledge presents a significant challenge. Existing methods often use experience replay techniques that store a small portion of previous task data for training. In experience replay approaches, data augmentation has emerged as a promising strategy to further improve the model performance by mixing limited previous task data with sufficient current task data. However, we theoretically and empirically analyze that training with mixed samples from random sample pairs may harm the knowledge of previous tasks and cause greater catastrophic forgetting. We then propose GradMix, a robust data augmentation method specifically designed for mitigating catastrophic forgetting in class-incremental learning. GradMix performs gradient-based selective mixup using a class-based criterion that mixes only samples from helpful class pairs and not from detrimental class pairs for reducing catastrophic forgetting. Our experiments on various real datasets show that GradMix outperforms data augmentation baselines in accuracy by minimizing the forgetting of previous knowledge.
Leveraging Segment Anything Model for Source-Free Domain Adaptation via Dual Feature Guided Auto-Prompting
Source-free domain adaptation (SFDA) for segmentation aims at adapting a model trained in the source domain to perform well in the target domain with only the source model and unlabeled target data.Inspired by the recent success of Segment Anything Model (SAM) which exhibits the generality of segmenting images of various modalities and in different domains given human-annotated prompts like bounding boxes or points, we for the first time explore the potentials of Segment Anything Model for SFDA via automatedly finding an accurate bounding box prompt. We find that the bounding boxes directly generated with existing SFDA approaches are defective due to the domain gap.To tackle this issue, we propose a novel Dual Feature Guided (DFG) auto-prompting approach to search for the box prompt. Specifically, the source model is first trained in a feature aggregation phase, which not only preliminarily adapts the source model to the target domain but also builds a feature distribution well-prepared for box prompt search. In the second phase, based on two feature distribution observations, we gradually expand the box prompt with the guidance of the target model feature and the SAM feature to handle the class-wise clustered target features and the class-wise dispersed target features, respectively. To remove the potentially enlarged false positive regions caused by the over-confident prediction of the target model, the refined pseudo-labels produced by SAM are further postprocessed based on connectivity analysis. Experiments on 3D and 2D datasets indicate that our approach yields superior performance compared to conventional methods. Code is available at https://github.com/zheangh/DFG.
Dynamic Snake Upsampling Operater and Boundary-Skeleton Weighted Loss for Tubular Structure Segmentation
Accurate segmentation of tubular topological structures (e.g., fissures and vasculature) is critical in various fields to guarantee dependable downstream quantitative analysis and modeling. However, in dense prediction tasks such as semantic segmentation and super-resolution, conventional upsampling operators cannot accommodate the slenderness of tubular structures and the curvature of morphology. This paper introduces a dynamic snake upsampling operators and a boundary-skeleton weighted loss tailored for topological tubular structures. Specifically, we design a snake upsampling operators based on an adaptive sampling domain, which dynamically adjusts the sampling stride according to the feature map and selects a set of subpixel sampling points along the serpentine path, enabling more accurate subpixel-level feature recovery for tubular structures. Meanwhile, we propose a skeleton-to-boundary increasing weighted loss that trades off main body and boundary weight allocation based on mask class ratio and distance field, preserving main body overlap while enhancing focus on target topological continuity and boundary alignment precision. Experiments across various domain datasets and backbone networks show that this plug-and-play dynamic snake upsampling operator and boundary-skeleton weighted loss boost both pixel-wise segmentation accuracy and topological consistency of results.
Attention-based Generative Latent Replay: A Continual Learning Approach for WSI Analysis
Whole slide image (WSI) classification has emerged as a powerful tool in computational pathology, but remains constrained by domain shifts, e.g., due to different organs, diseases, or institution-specific variations. To address this challenge, we propose an Attention-based Generative Latent Replay Continual Learning framework (AGLR-CL), in a multiple instance learning (MIL) setup for domain incremental WSI classification. Our method employs Gaussian Mixture Models (GMMs) to synthesize WSI representations and patch count distributions, preserving knowledge of past domains without explicitly storing original data. A novel attention-based filtering step focuses on the most salient patch embeddings, ensuring high-quality synthetic samples. This privacy-aware strategy obviates the need for replay buffers and outperforms other buffer-free counterparts while matching the performance of buffer-based solutions. We validate AGLR-CL on clinically relevant biomarker detection and molecular status prediction across multiple public datasets with diverse centers, organs, and patient cohorts. Experimental results confirm its ability to retain prior knowledge and adapt to new domains, offering an effective, privacy-preserving avenue for domain incremental continual learning in WSI classification.
A Deep Learning-Driven Framework for Inhalation Injury Grading Using Bronchoscopy Images
Inhalation injuries face a challenge in clinical diagnosis and grading due to the limitations of traditional methods, such as Abbreviated Injury Score (AIS), which rely on subjective assessments and show weak correlations with clinical outcomes. This study introduces a novel deep learning-based framework for grading inhalation injuries using bronchoscopy images with the duration of mechanical ventilation as an objective metric. To address the scarcity of medical imaging data, we propose enhanced StarGAN, a generative model that integrates Patch Loss and SSIM Loss to improve synthetic images' quality and clinical relevance. The augmented dataset generated by enhanced StarGAN significantly improved classification performance when evaluated using the Swin Transformer, achieving an accuracy of 77.78%, an 11.11% improvement over the original dataset. Image quality was assessed using the Fr\'echet Inception Distance (FID), where Enhanced StarGAN achieved the lowest FID of 30.06, outperforming baseline models. Burn surgeons confirmed the realism and clinical relevance of the generated images, particularly the preservation of bronchial structures and color distribution. These results highlight the potential of enhanced StarGAN in addressing data limitations and improving classification accuracy for inhalation injury grading.
Judging the Judges: Can Large Vision-Language Models Fairly Evaluate Chart Comprehension and Reasoning? ACL 2025
Charts are ubiquitous as they help people understand and reason with data. Recently, various downstream tasks, such as chart question answering, chart2text, and fact-checking, have emerged. Large Vision-Language Models (LVLMs) show promise in tackling these tasks, but their evaluation is costly and time-consuming, limiting real-world deployment. While using LVLMs as judges to assess the chart comprehension capabilities of other LVLMs could streamline evaluation processes, challenges like proprietary datasets, restricted access to powerful models, and evaluation costs hinder their adoption in industrial settings. To this end, we present a comprehensive evaluation of 13 open-source LVLMs as judges for diverse chart comprehension and reasoning tasks. We design both pairwise and pointwise evaluation tasks covering criteria like factual correctness, informativeness, and relevancy. Additionally, we analyze LVLM judges based on format adherence, positional consistency, length bias, and instruction-following. We focus on cost-effective LVLMs (<10B parameters) suitable for both research and commercial use, following a standardized evaluation protocol and rubric to measure the LVLM judge's accuracy. Experimental results reveal notable variability: while some open LVLM judges achieve GPT-4-level evaluation performance (about 80% agreement with GPT-4 judgments), others struggle (below ~10% agreement). Our findings highlight that state-of-the-art open-source LVLMs can serve as cost-effective automatic evaluators for chart-related tasks, though biases such as positional preference and length bias persist.
comment: Accepted at ACL 2025 Industry Track
VCRBench: Exploring Long-form Causal Reasoning Capabilities of Large Video Language Models
Despite recent advances in video understanding, the capabilities of Large Video Language Models (LVLMs) to perform video-based causal reasoning remains underexplored, largely due to the absence of relevant and dedicated benchmarks for evaluating causal reasoning in visually grounded and goal-driven settings. To fill this gap, we introduce a novel benchmark named Video-based long-form Causal Reasoning (VCRBench). We create VCRBench using procedural videos of simple everyday activities, where the steps are deliberately shuffled with each clip capturing a key causal event, to test whether LVLMs can identify, reason about, and correctly sequence the events needed to accomplish a specific goal. Moreover, the benchmark is carefully designed to prevent LVLMs from exploiting linguistic shortcuts, as seen in multiple-choice or binary QA formats, while also avoiding the challenges associated with evaluating open-ended QA. Our evaluation of state-of-the-art LVLMs on VCRBench suggests that these models struggle with video-based long-form causal reasoning, primarily due to their difficulty in modeling long-range causal dependencies directly from visual observations. As a simple step toward enabling such capabilities, we propose Recognition-Reasoning Decomposition (RRD), a modular approach that breaks video-based causal reasoning into two sub-tasks of video recognition and causal reasoning. Our experiments on VCRBench show that RRD significantly boosts accuracy on VCRBench, with gains of up to 25.2%. Finally, our thorough analysis reveals interesting insights, for instance, that LVLMs primarily rely on language knowledge for complex video-based long-form causal reasoning tasks.
A Survey of 3D Reconstruction with Event Cameras: From Event-based Geometry to Neural 3D Rendering
Event cameras have emerged as promising sensors for 3D reconstruction due to their ability to capture per-pixel brightness changes asynchronously. Unlike conventional frame-based cameras, they produce sparse and temporally rich data streams, which enable more accurate 3D reconstruction and open up the possibility of performing reconstruction in extreme environments such as high-speed motion, low light, or high dynamic range scenes. In this survey, we provide the first comprehensive review focused exclusively on 3D reconstruction using event cameras. The survey categorises existing works into three major types based on input modality - stereo, monocular, and multimodal systems, and further classifies them by reconstruction approach, including geometry-based, deep learning-based, and recent neural rendering techniques such as Neural Radiance Fields and 3D Gaussian Splatting. Methods with a similar research focus were organised chronologically into the most subdivided groups. We also summarise public datasets relevant to event-based 3D reconstruction. Finally, we highlight current research limitations in data availability, evaluation, representation, and dynamic scene handling, and outline promising future research directions. This survey aims to serve as a comprehensive reference and a roadmap for future developments in event-driven 3D reconstruction.
comment: 35 pages, 12 figures, 11 tables
TT-DF: A Large-Scale Diffusion-Based Dataset and Benchmark for Human Body Forgery Detection
The emergence and popularity of facial deepfake methods spur the vigorous development of deepfake datasets and facial forgery detection, which to some extent alleviates the security concerns about facial-related artificial intelligence technologies. However, when it comes to human body forgery, there has been a persistent lack of datasets and detection methods, due to the later inception and complexity of human body generation methods. To mitigate this issue, we introduce TikTok-DeepFake (TT-DF), a novel large-scale diffusion-based dataset containing 6,120 forged videos with 1,378,857 synthetic frames, specifically tailored for body forgery detection. TT-DF offers a wide variety of forgery methods, involving multiple advanced human image animation models utilized for manipulation, two generative configurations based on the disentanglement of identity and pose information, as well as different compressed versions. The aim is to simulate any potential unseen forged data in the wild as comprehensively as possible, and we also furnish a benchmark on TT-DF. Additionally, we propose an adapted body forgery detection model, Temporal Optical Flow Network (TOF-Net), which exploits the spatiotemporal inconsistencies and optical flow distribution differences between natural data and forged data. Our experiments demonstrate that TOF-Net achieves favorable performance on TT-DF, outperforming current state-of-the-art extendable facial forgery detection models. For our TT-DF dataset, please refer to https://github.com/HashTAG00002/TT-DF.
comment: Accepted to PRCV 2024
GNCAF: A GNN-based Neighboring Context Aggregation Framework for Tertiary Lymphoid Structures Semantic Segmentation in WSI
Tertiary lymphoid structures (TLS) are organized clusters of immune cells, whose maturity and area can be quantified in whole slide image (WSI) for various prognostic tasks. Existing methods for assessing these characteristics typically rely on cell proxy tasks and require additional post-processing steps. In this work, We focus on a novel task-TLS Semantic Segmentation (TLS-SS)-which segments both the regions and maturation stages of TLS in WSI in an end-to-end manner. Due to the extensive scale of WSI and patch-based segmentation strategies, TLS-SS necessitates integrating from neighboring patches to guide target patch (target) segmentation. Previous techniques often employ on multi-resolution approaches, constraining the capacity to leverage the broader neighboring context while tend to preserve coarse-grained information. To address this, we propose a GNN-based Neighboring Context Aggregation Framework (GNCAF), which progressively aggregates multi-hop neighboring context from the target and employs a self-attention mechanism to guide the segmentation of the target. GNCAF can be integrated with various segmentation models to enhance their ability to perceive contextual information outside of the patch. We build two TLS-SS datasets, called TCGA-COAD and INHOUSE-PAAD, and make the former (comprising 225 WSIs and 5041 TLSs) publicly available. Experiments on these datasets demonstrate the superiority of GNCAF, achieving a maximum of 22.08% and 26.57% improvement in mF1 and mIoU, respectively. Additionally, we also validate the task scalability of GNCAF on segmentation of lymph node metastases.
Visual Image Reconstruction from Brain Activity via Latent Representation
Visual image reconstruction, the decoding of perceptual content from brain activity into images, has advanced significantly with the integration of deep neural networks (DNNs) and generative models. This review traces the field's evolution from early classification approaches to sophisticated reconstructions that capture detailed, subjective visual experiences, emphasizing the roles of hierarchical latent representations, compositional strategies, and modular architectures. Despite notable progress, challenges remain, such as achieving true zero-shot generalization for unseen images and accurately modeling the complex, subjective aspects of perception. We discuss the need for diverse datasets, refined evaluation metrics aligned with human perceptual judgments, and compositional representations that strengthen model robustness and generalizability. Ethical issues, including privacy, consent, and potential misuse, are underscored as critical considerations for responsible development. Visual image reconstruction offers promising insights into neural coding and enables new psychological measurements of visual experiences, with applications spanning clinical diagnostics and brain-machine interfaces.
DHECA-SuperGaze: Dual Head-Eye Cross-Attention and Super-Resolution for Unconstrained Gaze Estimation
Unconstrained gaze estimation is the process of determining where a subject is directing their visual attention in uncontrolled environments. Gaze estimation systems are important for a myriad of tasks such as driver distraction monitoring, exam proctoring, accessibility features in modern software, etc. However, these systems face challenges in real-world scenarios, partially due to the low resolution of in-the-wild images and partially due to insufficient modeling of head-eye interactions in current state-of-the-art (SOTA) methods. This paper introduces DHECA-SuperGaze, a deep learning-based method that advances gaze prediction through super-resolution (SR) and a dual head-eye cross-attention (DHECA) module. Our dual-branch convolutional backbone processes eye and multiscale SR head images, while the proposed DHECA module enables bidirectional feature refinement between the extracted visual features through cross-attention mechanisms. Furthermore, we identified critical annotation errors in one of the most diverse and widely used gaze estimation datasets, Gaze360, and rectified the mislabeled data. Performance evaluation on Gaze360 and GFIE datasets demonstrates superior within-dataset performance of the proposed method, reducing angular error (AE) by 0.48{\deg} (Gaze360) and 2.95{\deg} (GFIE) in static configurations, and 0.59{\deg} (Gaze360) and 3.00{\deg} (GFIE) in temporal settings compared to prior SOTA methods. Cross-dataset testing shows improvements in AE of more than 1.53{\deg} (Gaze360) and 3.99{\deg} (GFIE) in both static and temporal settings, validating the robust generalization properties of our approach.
DArFace: Deformation Aware Robustness for Low Quality Face Recognition
Facial recognition systems have achieved remarkable success by leveraging deep neural networks, advanced loss functions, and large-scale datasets. However, their performance often deteriorates in real-world scenarios involving low-quality facial images. Such degradations, common in surveillance footage or standoff imaging include low resolution, motion blur, and various distortions, resulting in a substantial domain gap from the high-quality data typically used during training. While existing approaches attempt to address robustness by modifying network architectures or modeling global spatial transformations, they frequently overlook local, non-rigid deformations that are inherently present in real-world settings. In this work, we introduce DArFace, a Deformation-Aware robust Face recognition framework that enhances robustness to such degradations without requiring paired high- and low-quality training samples. Our method adversarially integrates both global transformations (e.g., rotation, translation) and local elastic deformations during training to simulate realistic low-quality conditions. Moreover, we introduce a contrastive objective to enforce identity consistency across different deformed views. Extensive evaluations on low-quality benchmarks including TinyFace, IJB-B, and IJB-C demonstrate that DArFace surpasses state-of-the-art methods, with significant gains attributed to the inclusion of local deformation modeling.
An integrated language-vision foundation model for conversational diagnostics and triaging in primary eye care
Current deep learning models are mostly task specific and lack a user-friendly interface to operate. We present Meta-EyeFM, a multi-function foundation model that integrates a large language model (LLM) with vision foundation models (VFMs) for ocular disease assessment. Meta-EyeFM leverages a routing mechanism to enable accurate task-specific analysis based on text queries. Using Low Rank Adaptation, we fine-tuned our VFMs to detect ocular and systemic diseases, differentiate ocular disease severity, and identify common ocular signs. The model achieved 100% accuracy in routing fundus images to appropriate VFMs, which achieved $\ge$ 82.2% accuracy in disease detection, $\ge$ 89% in severity differentiation, $\ge$ 76% in sign identification. Meta-EyeFM was 11% to 43% more accurate than Gemini-1.5-flash and ChatGPT-4o LMMs in detecting various eye diseases and comparable to an ophthalmologist. This system offers enhanced usability and diagnostic performance, making it a valuable decision support tool for primary eye care or an online LLM for fundus evaluation.
STORYANCHORS: Generating Consistent Multi-Scene Story Frames for Long-Form Narratives
This paper introduces StoryAnchors, a unified framework for generating high-quality, multi-scene story frames with strong temporal consistency. The framework employs a bidirectional story generator that integrates both past and future contexts to ensure temporal consistency, character continuity, and smooth scene transitions throughout the narrative. Specific conditions are introduced to distinguish story frame generation from standard video synthesis, facilitating greater scene diversity and enhancing narrative richness. To further improve generation quality, StoryAnchors integrates Multi-Event Story Frame Labeling and Progressive Story Frame Training, enabling the model to capture both overarching narrative flow and event-level dynamics. This approach supports the creation of editable and expandable story frames, allowing for manual modifications and the generation of longer, more complex sequences. Extensive experiments show that StoryAnchors outperforms existing open-source models in key areas such as consistency, narrative coherence, and scene diversity. Its performance in narrative consistency and story richness is also on par with GPT-4o. Ultimately, StoryAnchors pushes the boundaries of story-driven frame generation, offering a scalable, flexible, and highly editable foundation for future research.
FAD: Frequency Adaptation and Diversion for Cross-domain Few-shot Learning
Cross-domain few-shot learning (CD-FSL) requires models to generalize from limited labeled samples under significant distribution shifts. While recent methods enhance adaptability through lightweight task-specific modules, they operate solely in the spatial domain and overlook frequency-specific variations that are often critical for robust transfer. We observe that spatially similar images across domains can differ substantially in their spectral representations, with low and high frequencies capturing complementary semantic information at coarse and fine levels. This indicates that uniform spatial adaptation may overlook these spectral distinctions, thus constraining generalization. To address this, we introduce Frequency Adaptation and Diversion (FAD), a frequency-aware framework that explicitly models and modulates spectral components. At its core is the Frequency Diversion Adapter, which transforms intermediate features into the frequency domain using the discrete Fourier transform (DFT), partitions them into low, mid, and high-frequency bands via radial masks, and reconstructs each band using inverse DFT (IDFT). Each frequency band is then adapted using a dedicated convolutional branch with a kernel size tailored to its spectral scale, enabling targeted and disentangled adaptation across frequencies. Extensive experiments on the Meta-Dataset benchmark demonstrate that FAD consistently outperforms state-of-the-art methods on both seen and unseen domains, validating the utility of frequency-domain representations and band-wise adaptation for improving generalization in CD-FSL.
A computer vision-based model for occupancy detection using low-resolution thermal images
Occupancy plays an essential role in influencing the energy consumption and operation of heating, ventilation, and air conditioning (HVAC) systems. Traditional HVAC typically operate on fixed schedules without considering occupancy. Advanced occupant-centric control (OCC) adopted occupancy status in regulating HVAC operations. RGB images combined with computer vision (CV) techniques are widely used for occupancy detection, however, the detailed facial and body features they capture raise significant privacy concerns. Low-resolution thermal images offer a non-invasive solution that mitigates privacy issues. The study developed an occupancy detection model utilizing low-resolution thermal images and CV techniques, where transfer learning was applied to fine-tune the You Only Look Once version 5 (YOLOv5) model. The developed model ultimately achieved satisfactory performance, with precision, recall, mAP50, and mAP50 values approaching 1.000. The contributions of this model lie not only in mitigating privacy concerns but also in reducing computing resource demands.
An incremental algorithm for non-convex AI-enhanced medical image processing
Solving non-convex regularized inverse problems is challenging due to their complex optimization landscapes and multiple local minima. However, these models remain widely studied as they often yield high-quality, task-oriented solutions, particularly in medical imaging, where the goal is to enhance clinically relevant features rather than merely minimizing global error. We propose incDG, a hybrid framework that integrates deep learning with incremental model-based optimization to efficiently approximate the $\ell_0$-optimal solution of imaging inverse problems. Built on the Deep Guess strategy, incDG exploits a deep neural network to generate effective initializations for a non-convex variational solver, which refines the reconstruction through regularized incremental iterations. This design combines the efficiency of Artificial Intelligence (AI) tools with the theoretical guarantees of model-based optimization, ensuring robustness and stability. We validate incDG on TpV-regularized optimization tasks, demonstrating its effectiveness in medical image deblurring and tomographic reconstruction across diverse datasets, including synthetic images, brain CT slices, and chest-abdomen scans. Results show that incDG outperforms both conventional iterative solvers and deep learning-based methods, achieving superior accuracy and stability. Moreover, we confirm that training incDG without ground truth does not significantly degrade performance, making it a practical and powerful tool for solving non-convex inverse problems in imaging and beyond.
Improving Unsupervised Task-driven Models of Ventral Visual Stream via Relative Position Predictivity
Based on the concept that ventral visual stream (VVS) mainly functions for object recognition, current unsupervised task-driven methods model VVS by contrastive learning, and have achieved good brain similarity. However, we believe functions of VVS extend beyond just object recognition. In this paper, we introduce an additional function involving VVS, named relative position (RP) prediction. We first theoretically explain contrastive learning may be unable to yield the model capability of RP prediction. Motivated by this, we subsequently integrate RP learning with contrastive learning, and propose a new unsupervised task-driven method to model VVS, which is more inline with biological reality. We conduct extensive experiments, demonstrating that: (i) our method significantly improves downstream performance of object recognition while enhancing RP predictivity; (ii) RP predictivity generally improves the model brain similarity. Our results provide strong evidence for the involvement of VVS in location perception (especially RP prediction) from a computational perspective.
comment: This paper has been accepted for full publication at CogSci 2025 (https://cognitivesciencesociety.org/cogsci-2025/)
Knowledge-Informed Deep Learning for Irrigation Type Mapping from Remote Sensing IJCAI-25
Accurate mapping of irrigation methods is crucial for sustainable agricultural practices and food systems. However, existing models that rely solely on spectral features from satellite imagery are ineffective due to the complexity of agricultural landscapes and limited training data, making this a challenging problem. We present Knowledge-Informed Irrigation Mapping (KIIM), a novel Swin-Transformer based approach that uses (i) a specialized projection matrix to encode crop to irrigation probability, (ii) a spatial attention map to identify agricultural lands from non-agricultural lands, (iii) bi-directional cross-attention to focus complementary information from different modalities, and (iv) a weighted ensemble for combining predictions from images and crop information. Our experimentation on five states in the US shows up to 22.9\% (IoU) improvement over baseline with a 71.4% (IoU) improvement for hard-to-classify drip irrigation. In addition, we propose a two-phase transfer learning approach to enhance cross-state irrigation mapping, achieving a 51% IoU boost in a state with limited labeled data. The ability to achieve baseline performance with only 40% of the training data highlights its efficiency, reducing the dependency on extensive manual labeling efforts and making large-scale, automated irrigation mapping more feasible and cost-effective.
comment: Full version of the paper will be appearing at the Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-25), Special Track on AI for Good
Efficient Unstructured Pruning of Mamba State-Space Models for Resource-Constrained Environments
State-space models (SSMs), particularly the Mamba architecture, have emerged as powerful alternatives to Transformers for sequence modeling, offering linear-time complexity and competitive performance across diverse tasks. However, their large parameter counts pose significant challenges for deployment in resource-constrained environments. We propose a novel unstructured pruning framework tailored for Mamba models that achieves up to 70\% parameter reduction while retaining over 95\% of the original performance. Our approach integrates three key innovations: (1) a gradient-aware magnitude pruning technique that combines weight magnitude and gradient information to identify less critical parameters, (2) an iterative pruning schedule that gradually increases sparsity to maintain model stability, and (3) a global pruning strategy that optimizes parameter allocation across the entire model. Through extensive experiments on WikiText-103, Long Range Arena, and ETT time-series benchmarks, we demonstrate significant efficiency gains with minimal performance degradation. Our analysis of pruning effects on Mamba's components reveals critical insights into the architecture's redundancy and robustness, enabling practical deployment in resource-constrained settings while broadening Mamba's applicability.
FauForensics: Boosting Audio-Visual Deepfake Detection with Facial Action Units
The rapid evolution of generative AI has increased the threat of realistic audio-visual deepfakes, demanding robust detection methods. Existing solutions primarily address unimodal (audio or visual) forgeries but struggle with multimodal manipulations due to inadequate handling of heterogeneous modality features and poor generalization across datasets. To this end, we propose a novel framework called FauForensics by introducing biologically invariant facial action units (FAUs), which is a quantitative descriptor of facial muscle activity linked to emotion physiology. It serves as forgery-resistant representations that reduce domain dependency while capturing subtle dynamics often disrupted in synthetic content. Besides, instead of comparing entire video clips as in prior works, our method computes fine-grained frame-wise audiovisual similarities via a dedicated fusion module augmented with learnable cross-modal queries. It dynamically aligns temporal-spatial lip-audio relationships while mitigating multi-modal feature heterogeneity issues. Experiments on FakeAVCeleb and LAV-DF show state-of-the-art (SOTA) performance and superior cross-dataset generalizability with up to an average of 4.83\% than existing methods.
M3G: Multi-Granular Gesture Generator for Audio-Driven Full-Body Human Motion Synthesis NIPS 2025
Generating full-body human gestures encompassing face, body, hands, and global movements from audio is a valuable yet challenging task in virtual avatar creation. Previous systems focused on tokenizing the human gestures framewisely and predicting the tokens of each frame from the input audio. However, one observation is that the number of frames required for a complete expressive human gesture, defined as granularity, varies among different human gesture patterns. Existing systems fail to model these gesture patterns due to the fixed granularity of their gesture tokens. To solve this problem, we propose a novel framework named Multi-Granular Gesture Generator (M3G) for audio-driven holistic gesture generation. In M3G, we propose a novel Multi-Granular VQ-VAE (MGVQ-VAE) to tokenize motion patterns and reconstruct motion sequences from different temporal granularities. Subsequently, we proposed a multi-granular token predictor that extracts multi-granular information from audio and predicts the corresponding motion tokens. Then M3G reconstructs the human gestures from the predicted tokens using the MGVQ-VAE. Both objective and subjective experiments demonstrate that our proposed M3G framework outperforms the state-of-the-art methods in terms of generating natural and expressive full-body human gestures.
comment: 9 Pages, 4 figures, submitted to NIPS 2025
Disruptive Transformation of Artworks in Master-Disciple Relationships: The Case of Ukiyo-e Artworks
Artwork research has long relied on human sensibility and subjective judgment, but recent developments in machine learning have enabled the quantitative assessment of features that humans could not discover. In Western paintings, comprehensive analyses have been conducted from various perspectives in conjunction with large databases, but such extensive analysis has not been sufficiently conducted for Eastern paintings. Then, we focus on Ukiyo-e, a traditional Japanese art form, as a case study of Eastern paintings, and conduct a quantitative analysis of creativity in works of art using 11,000 high-resolution images. This involves using the concept of calculating creativity from networks to analyze both the creativity of the artwork and that of the artists. As a result, In terms of Ukiyo-e as a whole, it was found that the creativity of its appearance has declined with the maturation of culture, but in terms of style, it has become more segmented with the maturation of culture and has maintained a high level of creativity. This not only provides new insights into the study of Ukiyo-e but also shows how Ukiyo-e has evolved within the ongoing cultural history, playing a culturally significant role in the analysis of Eastern art.
Decoupled Multimodal Prototypes for Visual Recognition with Missing Modalities
Multimodal learning enhances deep learning models by enabling them to perceive and understand information from multiple data modalities, such as visual and textual inputs. However, most existing approaches assume the availability of all modalities, an assumption that often fails in real-world applications. Recent works have introduced learnable missing-case-aware prompts to mitigate performance degradation caused by missing modalities while reducing the need for extensive model fine-tuning. Building upon the effectiveness of missing-case-aware handling for missing modalities, we propose a novel decoupled prototype-based output head, which leverages missing-case-aware class-wise prototypes tailored for each individual modality. This approach dynamically adapts to different missing modality scenarios and can be seamlessly integrated with existing prompt-based methods. Extensive experiments demonstrate that our proposed output head significantly improves performance across a wide range of missing-modality scenarios and varying missing rates.
Ultra Lowrate Image Compression with Semantic Residual Coding and Compression-aware Diffusion
Existing multimodal large model-based image compression frameworks often rely on a fragmented integration of semantic retrieval, latent compression, and generative models, resulting in suboptimal performance in both reconstruction fidelity and coding efficiency. To address these challenges, we propose a residual-guided ultra lowrate image compression named ResULIC, which incorporates residual signals into both semantic retrieval and the diffusion-based generation process. Specifically, we introduce Semantic Residual Coding (SRC) to capture the semantic disparity between the original image and its compressed latent representation. A perceptual fidelity optimizer is further applied for superior reconstruction quality. Additionally, we present the Compression-aware Diffusion Model (CDM), which establishes an optimal alignment between bitrates and diffusion time steps, improving compression-reconstruction synergy. Extensive experiments demonstrate the effectiveness of ResULIC, achieving superior objective and subjective performance compared to state-of-the-art diffusion-based methods with - 80.7%, -66.3% BD-rate saving in terms of LPIPS and FID. Project page is available at https: //njuvision.github.io/ResULIC/.
IrrMap: A Large-Scale Comprehensive Dataset for Irrigation Method Mapping
We introduce IrrMap, the first large-scale dataset (1.1 million patches) for irrigation method mapping across regions. IrrMap consists of multi-resolution satellite imagery from LandSat and Sentinel, along with key auxiliary data such as crop type, land use, and vegetation indices. The dataset spans 1,687,899 farms and 14,117,330 acres across multiple western U.S. states from 2013 to 2023, providing a rich and diverse foundation for irrigation analysis and ensuring geospatial alignment and quality control. The dataset is ML-ready, with standardized 224x224 GeoTIFF patches, the multiple input modalities, carefully chosen train-test-split data, and accompanying dataloaders for seamless deep learning model training andbenchmarking in irrigation mapping. The dataset is also accompanied by a complete pipeline for dataset generation, enabling researchers to extend IrrMap to new regions for irrigation data collection or adapt it with minimal effort for other similar applications in agricultural and geospatial analysis. We also analyze the irrigation method distribution across crop groups, spatial irrigation patterns (using Shannon diversity indices), and irrigated area variations for both LandSat and Sentinel, providing insights into regional and resolution-based differences. To promote further exploration, we openly release IrrMap, along with the derived datasets, benchmark models, and pipeline code, through a GitHub repository: https://github.com/Nibir088/IrrMap and Data repository: https://huggingface.co/Nibir/IrrMap, providing comprehensive documentation and implementation details.
Open the Eyes of MPNN: Vision Enhances MPNN in Link Prediction ICML 2025
Message-passing graph neural networks (MPNNs) and structural features (SFs) are cornerstones for the link prediction task. However, as a common and intuitive mode of understanding, the potential of visual perception has been overlooked in the MPNN community. For the first time, we equip MPNNs with vision structural awareness by proposing an effective framework called Graph Vision Network (GVN), along with a more efficient variant (E-GVN). Extensive empirical results demonstrate that with the proposed frameworks, GVN consistently benefits from the vision enhancement across seven link prediction datasets, including challenging large-scale graphs. Such improvements are compatible with existing state-of-the-art (SOTA) methods and GVNs achieve new SOTA results, thereby underscoring a promising novel direction for link prediction.
comment: ICML 2025
Few-shot Novel Category Discovery
The recently proposed Novel Category Discovery (NCD) adapt paradigm of transductive learning hinders its application in more real-world scenarios. In fact, few labeled data in part of new categories can well alleviate this burden, which coincides with the ease that people can label few of new category data. Therefore, this paper presents a new setting in which a trained agent is able to flexibly switch between the tasks of identifying examples of known (labelled) classes and clustering novel (completely unlabeled) classes as the number of query examples increases by leveraging knowledge learned from only a few (handful) support examples. Drawing inspiration from the discovery of novel categories using prior-based clustering algorithms, we introduce a novel framework that further relaxes its assumptions to the real-world open set level by unifying the concept of model adaptability in few-shot learning. We refer to this setting as Few-Shot Novel Category Discovery (FSNCD) and propose Semi-supervised Hierarchical Clustering (SHC) and Uncertainty-aware K-means Clustering (UKC) to examine the model's reasoning capabilities. Extensive experiments and detailed analysis on five commonly used datasets demonstrate that our methods can achieve leading performance levels across different task settings and scenarios.
CNN and ViT Efficiency Study on Tiny ImageNet and DermaMNIST Datasets
This study evaluates the trade-offs between convolutional and transformer-based architectures on both medical and general-purpose image classification benchmarks. We use ResNet-18 as our baseline and introduce a fine-tuning strategy applied to four Vision Transformer variants (Tiny, Small, Base, Large) on DermatologyMNIST and TinyImageNet. Our goal is to reduce inference latency and model complexity with acceptable accuracy degradation. Through systematic hyperparameter variations, we demonstrate that appropriately fine-tuned Vision Transformers can match or exceed the baseline's performance, achieve faster inference, and operate with fewer parameters, highlighting their viability for deployment in resource-constrained environments.
Where the Devil Hides: Deepfake Detectors Can No Longer Be Trusted CVPR 2025
With the advancement of AI generative techniques, Deepfake faces have become incredibly realistic and nearly indistinguishable to the human eye. To counter this, Deepfake detectors have been developed as reliable tools for assessing face authenticity. These detectors are typically developed on Deep Neural Networks (DNNs) and trained using third-party datasets. However, this protocol raises a new security risk that can seriously undermine the trustfulness of Deepfake detectors: Once the third-party data providers insert poisoned (corrupted) data maliciously, Deepfake detectors trained on these datasets will be injected ``backdoors'' that cause abnormal behavior when presented with samples containing specific triggers. This is a practical concern, as third-party providers may distribute or sell these triggers to malicious users, allowing them to manipulate detector performance and escape accountability. This paper investigates this risk in depth and describes a solution to stealthily infect Deepfake detectors. Specifically, we develop a trigger generator, that can synthesize passcode-controlled, semantic-suppression, adaptive, and invisible trigger patterns, ensuring both the stealthiness and effectiveness of these triggers. Then we discuss two poisoning scenarios, dirty-label poisoning and clean-label poisoning, to accomplish the injection of backdoors. Extensive experiments demonstrate the effectiveness, stealthiness, and practicality of our method compared to several baselines.
comment: CVPR 2025
Skeleton-Guided Diffusion Model for Accurate Foot X-ray Synthesis in Hallux Valgus Diagnosis
Medical image synthesis plays a crucial role in providing anatomically accurate images for diagnosis and treatment. Hallux valgus, which affects approximately 19% of the global population, requires frequent weight-bearing X-rays for assessment, placing additional strain on both patients and healthcare providers. Existing X-ray models often struggle to balance image fidelity, skeletal consistency, and physical constraints, particularly in diffusion-based methods that lack skeletal guidance. We propose the Skeletal-Constrained Conditional Diffusion Model (SCCDM) and introduce KCC, a foot evaluation method utilizing skeletal landmarks. SCCDM incorporates multi-scale feature extraction and attention mechanisms, improving the Structural Similarity Index (SSIM) by 5.72% (0.794) and Peak Signal-to-Noise Ratio (PSNR) by 18.34% (21.40 dB). When combined with KCC, the model achieves an average score of 0.85, demonstrating strong clinical applicability. The code is available at https://github.com/midisec/SCCDM.
Identifying Memorization of Diffusion Models through p-Laplace Analysis
Diffusion models, today's leading image generative models, estimate the score function, i.e. the gradient of the log probability of (perturbed) data samples, without direct access to the underlying probability distribution. This work investigates whether the estimated score function can be leveraged to compute higher-order differentials, namely p-Laplace operators. We show here these operators can be employed to identify memorized training data. We propose a numerical p-Laplace approximation based on the learned score functions, showing its effectiveness in identifying key features of the probability landscape. We analyze the structured case of Gaussian mixture models, and demonstrate the results carry-over to image generative models, where memorization identification based on the p-Laplace operator is performed for the first time.
comment: To be published in SSVM 2025 (proceedings of the 10th International Conference on Scale Space and Variational Methods in Computer Vision)
Congenital Heart Disease recognition using Deep Learning/Transformer models
Congenital Heart Disease (CHD) remains a leading cause of infant morbidity and mortality, yet non-invasive screening methods often yield false negatives. Deep learning models, with their ability to automatically extract features, can assist doctors in detecting CHD more effectively. In this work, we investigate the use of dual-modality (sound and image) deep learning methods for CHD diagnosis. We achieve 73.9% accuracy on the ZCHSound dataset and 80.72% accuracy on the DICOM Chest X-ray dataset.
ACT-R: Adaptive Camera Trajectories for 3D Reconstruction from Single Image
We introduce adaptive view planning to multi-view synthesis, aiming to improve both occlusion revelation and 3D consistency for single-view 3D reconstruction. Instead of generating an unordered set of views independently or simultaneously, we generate a sequence of views, leveraging temporal consistency to enhance 3D coherence. Most importantly, our view sequence is not determined by a pre-determined camera setup. Instead, we compute an adaptive camera trajectory (ACT), specifically, an orbit of camera views, which maximizes the visibility of occluded regions of the 3D object to be reconstructed. Once the best orbit is found, we feed it to a video diffusion model to generate novel views around the orbit, which in turn, are passed to a multi-view 3D reconstruction model to obtain the final reconstruction. Our multi-view synthesis pipeline is quite efficient since it involves no run-time training/optimization, only forward inferences by applying the pre-trained models for occlusion analysis and multi-view synthesis. Our method predicts camera trajectories that reveal occlusions effectively and produce consistent novel views, significantly improving 3D reconstruction over SOTA on the unseen GSO dataset, both quantitatively and qualitatively.
EventDiff: A Unified and Efficient Diffusion Model Framework for Event-based Video Frame Interpolation
Video Frame Interpolation (VFI) is a fundamental yet challenging task in computer vision, particularly under conditions involving large motion, occlusion, and lighting variation. Recent advancements in event cameras have opened up new opportunities for addressing these challenges. While existing event-based VFI methods have succeeded in recovering large and complex motions by leveraging handcrafted intermediate representations such as optical flow, these designs often compromise high-fidelity image reconstruction under subtle motion scenarios due to their reliance on explicit motion modeling. Meanwhile, diffusion models provide a promising alternative for VFI by reconstructing frames through a denoising process, eliminating the need for explicit motion estimation or warping operations. In this work, we propose EventDiff, a unified and efficient event-based diffusion model framework for VFI. EventDiff features a novel Event-Frame Hybrid AutoEncoder (HAE) equipped with a lightweight Spatial-Temporal Cross Attention (STCA) module that effectively fuses dynamic event streams with static frames. Unlike previous event-based VFI methods, EventDiff performs interpolation directly in the latent space via a denoising diffusion process, making it more robust across diverse and challenging VFI scenarios. Through a two-stage training strategy that first pretrains the HAE and then jointly optimizes it with the diffusion model, our method achieves state-of-the-art performance across multiple synthetic and real-world event VFI datasets. The proposed method outperforms existing state-of-the-art event-based VFI methods by up to 1.98dB in PSNR on Vimeo90K-Triplet and shows superior performance in SNU-FILM tasks with multiple difficulty levels. Compared to the emerging diffusion-based VFI approach, our method achieves up to 5.72dB PSNR gain on Vimeo90K-Triplet and 4.24X faster inference.
Removing Watermarks with Partial Regeneration using Semantic Information
As AI-generated imagery becomes ubiquitous, invisible watermarks have emerged as a primary line of defense for copyright and provenance. The newest watermarking schemes embed semantic signals - content-aware patterns that are designed to survive common image manipulations - yet their true robustness against adaptive adversaries remains under-explored. We expose a previously unreported vulnerability and introduce SemanticRegen, a three-stage, label-free attack that erases state-of-the-art semantic and invisible watermarks while leaving an image's apparent meaning intact. Our pipeline (i) uses a vision-language model to obtain fine-grained captions, (ii) extracts foreground masks with zero-shot segmentation, and (iii) inpaints only the background via an LLM-guided diffusion model, thereby preserving salient objects and style cues. Evaluated on 1,000 prompts across four watermarking systems - TreeRing, StegaStamp, StableSig, and DWT/DCT - SemanticRegen is the only method to defeat the semantic TreeRing watermark (p = 0.10 > 0.05) and reduces bit-accuracy below 0.75 for the remaining schemes, all while maintaining high perceptual quality (masked SSIM = 0.94 +/- 0.01). We further introduce masked SSIM (mSSIM) to quantify fidelity within foreground regions, showing that our attack achieves up to 12 percent higher mSSIM than prior diffusion-based attackers. These results highlight an urgent gap between current watermark defenses and the capabilities of adaptive, semantics-aware adversaries, underscoring the need for watermarking algorithms that are resilient to content-preserving regenerative attacks.
G-MSGINet: A Grouped Multi-Scale Graph-Involution Network for Contactless Fingerprint Recognition
This paper presents G-MSGINet, a unified and efficient framework for robust contactless fingerprint recognition that jointly performs minutiae localization and identity embedding directly from raw input images. Existing approaches rely on multi-branch architectures, orientation labels, or complex preprocessing steps, which limit scalability and generalization across real-world acquisition scenarios. In contrast, the proposed architecture introduces the GMSGI layer, a novel computational module that integrates grouped pixel-level involution, dynamic multi-scale kernel generation, and graph-based relational modelling into a single processing unit. Stacked GMSGI layers progressively refine both local minutiae-sensitive features and global topological representations through end-to-end optimization. The architecture eliminates explicit orientation supervision and adapts graph connectivity directly from learned kernel descriptors, thereby capturing meaningful structural relationships among fingerprint regions without fixed heuristics. Extensive experiments on three benchmark datasets, namely PolyU, CFPose, and Benchmark 2D/3D, demonstrate that G-MSGINet consistently achieves minutiae F1-scores in the range of $0.83\pm0.02$ and Rank-1 identification accuracies between 97.0% and 99.1%, while maintaining an Equal Error Rate (EER) as low as 0.5%. These results correspond to improvements of up to 4.8% in F1-score and 1.4% in Rank-1 accuracy when compared to prior methods, using only 0.38 million parameters and 6.63 giga floating-point operations, which represents up to ten times fewer parameters than competitive baselines. This highlights the scalability and effectiveness of G-MSGINet in real-world contactless biometric recognition scenarios.
HMPNet: A Feature Aggregation Architecture for Maritime Object Detection from a Shipborne Perspective ICME 2025
In the realm of intelligent maritime navigation, object detection from a shipborne perspective is paramount. Despite the criticality, the paucity of maritime-specific data impedes the deployment of sophisticated visual perception techniques, akin to those utilized in autonomous vehicular systems, within the maritime context. To bridge this gap, we introduce Navigation12, a novel dataset annotated for 12 object categories under diverse maritime environments and weather conditions. Based upon this dataset, we propose HMPNet, a lightweight architecture tailored for shipborne object detection. HMPNet incorporates a hierarchical dynamic modulation backbone to bolster feature aggregation and expression, complemented by a matrix cascading poly-scale neck and a polymerization weight sharing detector, facilitating efficient multi-scale feature aggregation. Empirical evaluations indicate that HMPNet surpasses current state-of-the-art methods in terms of both accuracy and computational efficiency, realizing a 3.3% improvement in mean Average Precision over YOLOv11n, the prevailing model, and reducing parameters by 23%.
comment: This paper has been accepted to ICME 2025
Object detection in adverse weather conditions for autonomous vehicles using Instruct Pix2Pix IJCNN
Enhancing the robustness of object detection systems under adverse weather conditions is crucial for the advancement of autonomous driving technology. This study presents a novel approach leveraging the diffusion model Instruct Pix2Pix to develop prompting methodologies that generate realistic datasets with weather-based augmentations aiming to mitigate the impact of adverse weather on the perception capabilities of state-of-the-art object detection models, including Faster R-CNN and YOLOv10. Experiments were conducted in two environments, in the CARLA simulator where an initial evaluation of the proposed data augmentation was provided, and then on the real-world image data sets BDD100K and ACDC demonstrating the effectiveness of the approach in real environments. The key contributions of this work are twofold: (1) identifying and quantifying the performance gap in object detection models under challenging weather conditions, and (2) demonstrating how tailored data augmentation strategies can significantly enhance the robustness of these models. This research establishes a solid foundation for improving the reliability of perception systems in demanding environmental scenarios, and provides a pathway for future advancements in autonomous driving.
comment: 8 pages, 5 figures. Accepted at the International Joint Conference on Neural Networks (IJCNN) 2025 (to appear)
Visual Watermarking in the Era of Diffusion Models: Advances and Challenges
As generative artificial intelligence technologies like Stable Diffusion advance, visual content becomes more vulnerable to misuse, raising concerns about copyright infringement. Visual watermarks serve as effective protection mechanisms, asserting ownership and deterring unauthorized use. Traditional deepfake detection methods often rely on passive techniques that struggle with sophisticated manipulations. In contrast, diffusion models enhance detection accuracy by allowing for the effective learning of features, enabling the embedding of imperceptible and robust watermarks. We analyze the strengths and challenges of watermark techniques related to diffusion models, focusing on their robustness and application in watermark generation. By exploring the integration of advanced diffusion models and watermarking security, we aim to advance the discourse on preserving watermark robustness against evolving forgery threats. It emphasizes the critical importance of developing innovative solutions to protect digital content and ensure the preservation of ownership rights in the era of generative AI.
ADC-GS: Anchor-Driven Deformable and Compressed Gaussian Splatting for Dynamic Scene Reconstruction
Existing 4D Gaussian Splatting methods rely on per-Gaussian deformation from a canonical space to target frames, which overlooks redundancy among adjacent Gaussian primitives and results in suboptimal performance. To address this limitation, we propose Anchor-Driven Deformable and Compressed Gaussian Splatting (ADC-GS), a compact and efficient representation for dynamic scene reconstruction. Specifically, ADC-GS organizes Gaussian primitives into an anchor-based structure within the canonical space, enhanced by a temporal significance-based anchor refinement strategy. To reduce deformation redundancy, ADC-GS introduces a hierarchical coarse-to-fine pipeline that captures motions at varying granularities. Moreover, a rate-distortion optimization is adopted to achieve an optimal balance between bitrate consumption and representation fidelity. Experimental results demonstrate that ADC-GS outperforms the per-Gaussian deformation approaches in rendering speed by 300%-800% while achieving state-of-the-art storage efficiency without compromising rendering quality. The code is released at https://github.com/H-Huang774/ADC-GS.git.
SpNeRF: Memory Efficient Sparse Volumetric Neural Rendering Accelerator for Edge Devices DATE 2025
Neural rendering has gained prominence for its high-quality output, which is crucial for AR/VR applications. However, its large voxel grid data size and irregular access patterns challenge real-time processing on edge devices. While previous works have focused on improving data locality, they have not adequately addressed the issue of large voxel grid sizes, which necessitate frequent off-chip memory access and substantial on-chip memory. This paper introduces SpNeRF, a software-hardware co-design solution tailored for sparse volumetric neural rendering. We first identify memory-bound rendering inefficiencies and analyze the inherent sparsity in the voxel grid data of neural rendering. To enhance efficiency, we propose novel preprocessing and online decoding steps, reducing the memory size for voxel grid. The preprocessing step employs hash mapping to support irregular data access while maintaining a minimal memory size. The online decoding step enables efficient on-chip sparse voxel grid processing, incorporating bitmap masking to mitigate PSNR loss caused by hash collisions. To further optimize performance, we design a dedicated hardware architecture supporting our sparse voxel grid processing technique. Experimental results demonstrate that SpNeRF achieves an average 21.07$\times$ reduction in memory size while maintaining comparable PSNR levels. When benchmarked against Jetson XNX, Jetson ONX, RT-NeRF.Edge and NeuRex.Edge, our design achieves speedups of 95.1$\times$, 63.5$\times$, 1.5$\times$ and 10.3$\times$, and improves energy efficiency by 625.6$\times$, 529.1$\times$, 4$\times$, and 4.4$\times$, respectively.
comment: Accepted by DATE 2025
Unsupervised Raindrop Removal from a Single Image using Conditional Diffusion Models
Raindrop removal is a challenging task in image processing. Removing raindrops while relying solely on a single image further increases the difficulty of the task. Common approaches include the detection of raindrop regions in the image, followed by performing a background restoration process conditioned on those regions. While various methods can be applied for the detection step, the most common architecture used for background restoration is the Generative Adversarial Network (GAN). Recent advances in the use of diffusion models have led to state-of-the-art image inpainting techniques. In this paper, we introduce a novel technique for raindrop removal from a single image using diffusion-based image inpainting.
Monocular Depth Guided Occlusion-Aware Disparity Refinement via Semi-supervised Learning in Laparoscopic Images
Occlusion and the scarcity of labeled surgical data are significant challenges in disparity estimation for stereo laparoscopic images. To address these issues, this study proposes a Depth Guided Occlusion-Aware Disparity Refinement Network (DGORNet), which refines disparity maps by leveraging monocular depth information unaffected by occlusion. A Position Embedding (PE) module is introduced to provide explicit spatial context, enhancing the network's ability to localize and refine features. Furthermore, we introduce an Optical Flow Difference Loss (OFDLoss) for unlabeled data, leveraging temporal continuity across video frames to improve robustness in dynamic surgical scenes. Experiments on the SCARED dataset demonstrate that DGORNet outperforms state-of-the-art methods in terms of End-Point Error (EPE) and Root Mean Squared Error (RMSE), particularly in occlusion and texture-less regions. Ablation studies confirm the contributions of the Position Embedding and Optical Flow Difference Loss, highlighting their roles in improving spatial and temporal consistency. These results underscore DGORNet's effectiveness in enhancing disparity estimation for laparoscopic surgery, offering a practical solution to challenges in disparity estimation and data limitations.
Empowering Vision Transformers with Multi-Scale Causal Intervention for Long-Tailed Image Classification
Causal inference has emerged as a promising approach to mitigate long-tail classification by handling the biases introduced by class imbalance. However, along with the change of advanced backbone models from Convolutional Neural Networks (CNNs) to Visual Transformers (ViT), existing causal models may not achieve an expected performance gain. This paper investigates the influence of existing causal models on CNNs and ViT variants, highlighting that ViT's global feature representation makes it hard for causal methods to model associations between fine-grained features and predictions, which leads to difficulties in classifying tail classes with similar visual appearance. To address these issues, this paper proposes TSCNet, a two-stage causal modeling method to discover fine-grained causal associations through multi-scale causal interventions. Specifically, in the hierarchical causal representation learning stage (HCRL), it decouples the background and objects, applying backdoor interventions at both the patch and feature level to prevent model from using class-irrelevant areas to infer labels which enhances fine-grained causal representation. In the counterfactual logits bias calibration stage (CLBC), it refines the optimization of model's decision boundary by adaptive constructing counterfactual balanced data distribution to remove the spurious associations in the logits caused by data distribution. Extensive experiments conducted on various long-tail benchmarks demonstrate that the proposed TSCNet can eliminate multiple biases introduced by data imbalance, which outperforms existing methods.
MoKD: Multi-Task Optimization for Knowledge Distillation
Compact models can be effectively trained through Knowledge Distillation (KD), a technique that transfers knowledge from larger, high-performing teacher models. Two key challenges in Knowledge Distillation (KD) are: 1) balancing learning from the teacher's guidance and the task objective, and 2) handling the disparity in knowledge representation between teacher and student models. To address these, we propose Multi-Task Optimization for Knowledge Distillation (MoKD). MoKD tackles two main gradient issues: a) Gradient Conflicts, where task-specific and distillation gradients are misaligned, and b) Gradient Dominance, where one objective's gradient dominates, causing imbalance. MoKD reformulates KD as a multi-objective optimization problem, enabling better balance between objectives. Additionally, it introduces a subspace learning framework to project feature representations into a high-dimensional space, improving knowledge transfer. Our MoKD is demonstrated to outperform existing methods through extensive experiments on image classification using the ImageNet-1K dataset and object detection using the COCO dataset, achieving state-of-the-art performance with greater efficiency. To the best of our knowledge, MoKD models also achieve state-of-the-art performance compared to models trained from scratch.
Decoding Neighborhood Environments with Large Language Models
Neighborhood environments include physical and environmental conditions such as housing quality, roads, and sidewalks, which significantly influence human health and well-being. Traditional methods for assessing these environments, including field surveys and geographic information systems (GIS), are resource-intensive and challenging to evaluate neighborhood environments at scale. Although machine learning offers potential for automated analysis, the laborious process of labeling training data and the lack of accessible models hinder scalability. This study explores the feasibility of large language models (LLMs) such as ChatGPT and Gemini as tools for decoding neighborhood environments (e.g., sidewalk and powerline) at scale. We train a robust YOLOv11-based model, which achieves an average accuracy of 99.13% in detecting six environmental indicators, including streetlight, sidewalk, powerline, apartment, single-lane road, and multilane road. We then evaluate four LLMs, including ChatGPT, Gemini, Claude, and Grok, to assess their feasibility, robustness, and limitations in identifying these indicators, with a focus on the impact of prompting strategies and fine-tuning. We apply majority voting with the top three LLMs to achieve over 88% accuracy, which demonstrates LLMs could be a useful tool to decode the neighborhood environment without any training effort.
comment: 8 pages
Multimodal Fusion of Glucose Monitoring and Food Imagery for Caloric Content Prediction
Effective dietary monitoring is critical for managing Type 2 diabetes, yet accurately estimating caloric intake remains a major challenge. While continuous glucose monitors (CGMs) offer valuable physiological data, they often fall short in capturing the full nutritional profile of meals due to inter-individual and meal-specific variability. In this work, we introduce a multimodal deep learning framework that jointly leverages CGM time-series data, Demographic/Microbiome, and pre-meal food images to enhance caloric estimation. Our model utilizes attention based encoding and a convolutional feature extraction for meal imagery, multi-layer perceptrons for CGM and Microbiome data followed by a late fusion strategy for joint reasoning. We evaluate our approach on a curated dataset of over 40 participants, incorporating synchronized CGM, Demographic and Microbiome data and meal photographs with standardized caloric labels. Our model achieves a Root Mean Squared Relative Error (RMSRE) of 0.2544, outperforming the baselines models by over 50%. These findings demonstrate the potential of multimodal sensing to improve automated dietary assessment tools for chronic disease management.
Towards Adaptive Meta-Gradient Adversarial Examples for Visual Tracking
In recent years, visual tracking methods based on convolutional neural networks and Transformers have achieved remarkable performance and have been successfully applied in fields such as autonomous driving. However, the numerous security issues exposed by deep learning models have gradually affected the reliable application of visual tracking methods in real-world scenarios. Therefore, how to reveal the security vulnerabilities of existing visual trackers through effective adversarial attacks has become a critical problem that needs to be addressed. To this end, we propose an adaptive meta-gradient adversarial attack (AMGA) method for visual tracking. This method integrates multi-model ensembles and meta-learning strategies, combining momentum mechanisms and Gaussian smoothing, which can significantly enhance the transferability and attack effectiveness of adversarial examples. AMGA randomly selects models from a large model repository, constructs diverse tracking scenarios, and iteratively performs both white- and black-box adversarial attacks in each scenario, optimizing the gradient directions of each model. This paradigm minimizes the gap between white- and black-box adversarial attacks, thus achieving excellent attack performance in black-box scenarios. Extensive experimental results on large-scale datasets such as OTB2015, LaSOT, and GOT-10k demonstrate that AMGA significantly improves the attack performance, transferability, and deception of adversarial examples. Codes and data are available at https://github.com/pgao-lab/AMGA.
Neural BRDF Importance Sampling by Reparameterization
Neural bidirectional reflectance distribution functions (BRDFs) have emerged as popular material representations for enhancing realism in physically-based rendering. Yet their importance sampling remains a significant challenge. In this paper, we introduce a reparameterization-based formulation of neural BRDF importance sampling that seamlessly integrates into the standard rendering pipeline with precise generation of BRDF samples. The reparameterization-based formulation transfers the distribution learning task to a problem of identifying BRDF integral substitutions. In contrast to previous methods that rely on invertible networks and multi-step inference to reconstruct BRDF distributions, our model removes these constraints, which offers greater flexibility and efficiency. Our variance and performance analysis demonstrates that our reparameterization method achieves the best variance reduction in neural BRDF renderings while maintaining high inference speeds compared to existing baselines.
Toward Accessible and Safe Live Streaming Using Distributed Content Filtering with MoQ ICME 2025
Live video streaming is increasingly popular on social media platforms. With the growth of live streaming comes an increased need for robust content moderation to remove dangerous, illegal, or otherwise objectionable content. Whereas video on demand distribution enables offline content analysis, live streaming imposes restrictions on latency for both analysis and distribution. In this paper, we present extensions to the in-progress Media Over QUIC Transport protocol that enable real-time content moderation in one-to-many video live streams. Importantly, our solution removes only the video segments that contain objectionable content, allowing playback resumption as soon as the stream conforms to content policies again. Content analysis tasks may be transparently distributed to arbitrary client devices. We implement and evaluate our system in the context of light strobe removal for photosensitive viewers, finding that streaming clients experience an increased latency of only one group-of-pictures duration.
comment: Accepted to the ICME 2025 LIVES workshop
Prioritizing Image-Related Tokens Enhances Vision-Language Pre-Training
In standard large vision-language models (LVLMs) pre-training, the model typically maximizes the joint probability of the caption conditioned on the image via next-token prediction (NTP); however, since only a small subset of caption tokens directly relates to the visual content, this naive NTP unintentionally fits the model to noise and increases the risk of hallucination. We present PRIOR, a simple vision-language pre-training approach that addresses this issue by prioritizing image-related tokens through differential weighting in the NTP loss, drawing from the importance sampling framework. PRIOR introduces a reference model-a text-only large language model (LLM) trained on the captions without image inputs, to weight each token based on its probability for LVLMs training. Intuitively, tokens that are directly related to the visual inputs are harder to predict without the image and thus receive lower probabilities from the text-only reference LLM. During training, we implement a token-specific re-weighting term based on the importance scores to adjust each token's loss. We implement PRIOR in two distinct settings: LVLMs with visual encoders and LVLMs without visual encoders. We observe 19% and 8% average relative improvement, respectively, on several vision-language benchmarks compared to NTP. In addition, PRIOR exhibits superior scaling properties, as demonstrated by significantly higher scaling coefficients, indicating greater potential for performance gains compared to NTP given increasing compute and data.
comment: The code will be available at https://github.com/Yangyi-Chen/PRIOR
Differentiable Channel Selection in Self-Attention For Person Re-Identification
In this paper, we propose a novel attention module termed the Differentiable Channel Selection Attention module, or the DCS-Attention module. In contrast with conventional self-attention, the DCS-Attention module features selection of informative channels in the computation of the attention weights. The selection of the feature channels is performed in a differentiable manner, enabling seamless integration with DNN training. Our DCS-Attention is compatible with either fixed neural network backbones or learnable backbones with Differentiable Neural Architecture Search (DNAS), leading to DCS with Fixed Backbone (DCS-FB) and DCS-DNAS, respectively. Importantly, our DCS-Attention is motivated by the principle of Information Bottleneck (IB), and a novel variational upper bound for the IB loss, which can be optimized by SGD, is derived and incorporated into the training loss of the networks with the DCS-Attention modules. In this manner, a neural network with DCS-Attention modules is capable of selecting the most informative channels for feature extraction so that it enjoys state-of-the-art performance for the Re-ID task. Extensive experiments on multiple person Re-ID benchmarks using both DCS-FB and DCS-DNAS show that DCS-Attention significantly enhances the prediction accuracy of DNNs for person Re-ID, which demonstrates the effectiveness of DCS-Attention in learning discriminative features critical to identifying person identities. The code of our work is available at https://github.com/Statistical-Deep-Learning/DCS-Attention.
Multi-step manipulation task and motion planning guided by video demonstration
This work aims to leverage instructional video to solve complex multi-step task-and-motion planning tasks in robotics. Towards this goal, we propose an extension of the well-established Rapidly-Exploring Random Tree (RRT) planner, which simultaneously grows multiple trees around grasp and release states extracted from the guiding video. Our key novelty lies in combining contact states and 3D object poses extracted from the guiding video with a traditional planning algorithm that allows us to solve tasks with sequential dependencies, for example, if an object needs to be placed at a specific location to be grasped later. We also investigate the generalization capabilities of our approach to go beyond the scene depicted in the instructional video. To demonstrate the benefits of the proposed video-guided planning approach, we design a new benchmark with three challenging tasks: (I) 3D re-arrangement of multiple objects between a table and a shelf, (ii) multi-step transfer of an object through a tunnel, and (iii) transferring objects using a tray similar to a waiter transfers dishes. We demonstrate the effectiveness of our planning algorithm on several robots, including the Franka Emika Panda and the KUKA KMR iiwa. For a seamless transfer of the obtained plans to the real robot, we develop a trajectory refinement approach formulated as an optimal control problem (OCP).
Parameter-Efficient Fine-Tuning of Vision Foundation Model for Forest Floor Segmentation from UAV Imagery ICRA
Unmanned Aerial Vehicles (UAVs) are increasingly used for reforestation and forest monitoring, including seed dispersal in hard-to-reach terrains. However, a detailed understanding of the forest floor remains a challenge due to high natural variability, quickly changing environmental parameters, and ambiguous annotations due to unclear definitions. To address this issue, we adapt the Segment Anything Model (SAM), a vision foundation model with strong generalization capabilities, to segment forest floor objects such as tree stumps, vegetation, and woody debris. To this end, we employ parameter-efficient fine-tuning (PEFT) to fine-tune a small subset of additional model parameters while keeping the original weights fixed. We adjust SAM's mask decoder to generate masks corresponding to our dataset categories, allowing for automatic segmentation without manual prompting. Our results show that the adapter-based PEFT method achieves the highest mean intersection over union (mIoU), while Low-rank Adaptation (LoRA), with fewer parameters, offers a lightweight alternative for resource-constrained UAV platforms.
comment: Accepted to the Novel Approaches for Precision Agriculture and Forestry with Autonomous Robots IEEE ICRA Workshop - 2025
Template-Guided Reconstruction of Pulmonary Segments with Neural Implicit Functions
High-quality 3D reconstruction of pulmonary segments plays a crucial role in segmentectomy and surgical treatment planning for lung cancer. Due to the resolution requirement of the target reconstruction, conventional deep learning-based methods often suffer from computational resource constraints or limited granularity. Conversely, implicit modeling is favored due to its computational efficiency and continuous representation at any resolution. We propose a neural implicit function-based method to learn a 3D surface to achieve anatomy-aware, precise pulmonary segment reconstruction, represented as a shape by deforming a learnable template. Additionally, we introduce two clinically relevant evaluation metrics to assess the reconstruction comprehensively. Further, due to the absence of publicly available shape datasets to benchmark reconstruction algorithms, we developed a shape dataset named Lung3D, including the 3D models of 800 labeled pulmonary segments and the corresponding airways, arteries, veins, and intersegmental veins. We demonstrate that the proposed approach outperforms existing methods, providing a new perspective for pulmonary segment reconstruction. Code and data will be available at https://github.com/M3DV/ImPulSe.
comment: In revision process
Behind Maya: Building a Multilingual Vision Language Model CVPR 2025
In recent times, we have seen a rapid development of large Vision-Language Models (VLMs). They have shown impressive results on academic benchmarks, primarily in widely spoken languages but lack performance on low-resource languages and varied cultural contexts. To address these limitations, we introduce Maya, an open-source Multilingual VLM. Our contributions are: 1) a multilingual image-text pretraining dataset in eight languages, based on the LLaVA pretraining dataset; and 2) a multilingual image-text model supporting these languages, enhancing cultural and linguistic comprehension in vision-language tasks. Code available at https://github.com/nahidalam/maya.
comment: Accepted at VLM4ALL CVPR 2025 Workshop
Learning Cocoercive Conservative Denoisers via Helmholtz Decomposition for Poisson Inverse Problems
Plug-and-play (PnP) methods with deep denoisers have shown impressive results in imaging problems. They typically require strong convexity or smoothness of the fidelity term and a (residual) non-expansive denoiser for convergence. These assumptions, however, are violated in Poisson inverse problems, and non-expansiveness can hinder denoising performance. To address these challenges, we propose a cocoercive conservative (CoCo) denoiser, which may be (residual) expansive, leading to improved denoising. By leveraging the generalized Helmholtz decomposition, we introduce a novel training strategy that combines Hamiltonian regularization to promote conservativeness and spectral regularization to ensure cocoerciveness. We prove that CoCo denoiser is a proximal operator of a weakly convex function, enabling a restoration model with an implicit weakly convex prior. The global convergence of PnP methods to a stationary point of this restoration model is established. Extensive experimental results demonstrate that our approach outperforms closely related methods in both visual quality and quantitative metrics.
comment: 31 pages
IntrinsicEdit: Precise generative image manipulation in intrinsic space SIGGRAPH 2025
Generative diffusion models have advanced image editing with high-quality results and intuitive interfaces such as prompts and semantic drawing. However, these interfaces lack precise control, and the associated methods typically specialize on a single editing task. We introduce a versatile, generative workflow that operates in an intrinsic-image latent space, enabling semantic, local manipulation with pixel precision for a range of editing operations. Building atop the RGB-X diffusion framework, we address key challenges of identity preservation and intrinsic-channel entanglement. By incorporating exact diffusion inversion and disentangled channel manipulation, we enable precise, efficient editing with automatic resolution of global illumination effects -- all without additional data collection or model fine-tuning. We demonstrate state-of-the-art performance across a variety of tasks on complex images, including color and texture adjustments, object insertion and removal, global relighting, and their combinations.
comment: SIGGRAPH 2025 Journal track
Optimizing Neuro-Fuzzy and Colonial Competition Algorithms for Skin Cancer Diagnosis in Dermatoscopic Images
The rising incidence of skin cancer, coupled with limited public awareness and a shortfall in clinical expertise, underscores an urgent need for advanced diagnostic aids. Artificial Intelligence (AI) has emerged as a promising tool in this domain, particularly for distinguishing malignant from benign skin lesions. Leveraging publicly available datasets of skin lesions, researchers have been developing AI-based diagnostic solutions. However, the integration of such computer systems in clinical settings is still nascent. This study aims to bridge this gap by employing a fusion of image processing techniques and machine learning algorithms, specifically neuro-fuzzy and colonial competition approaches. Applied to dermoscopic images from the ISIC database, our method achieved a notable accuracy of 94% on a dataset of 560 images. These results underscore the potential of our approach in aiding clinicians in the early detection of melanoma, thereby contributing significantly to skin cancer diagnostics.
comment: 7 pages, 10 figures. Accepted at the 2nd Asia Pacific Computer Systems Conference (APCS 2024), March 15-17, 2024
Intelligent Road Anomaly Detection with Real-time Notification System for Enhanced Road Safety
This study aims to improve transportation safety, especially traffic safety. Road damage anomalies such as potholes and cracks have emerged as a significant and recurring cause for accidents. To tackle this problem and improve road safety, a comprehensive system has been developed to detect potholes, cracks (e.g. alligator, transverse, longitudinal), classify their sizes, and transmit this data to the cloud for appropriate action by authorities. The system also broadcasts warning signals to nearby vehicles warning them if a severe anomaly is detected on the road. Moreover, the system can count road anomalies in real-time. It is emulated through the utilization of Raspberry Pi, a camera module, deep learning model, laptop, and cloud service. Deploying this innovative solution aims to proactively enhance road safety by notifying relevant authorities and drivers about the presence of potholes and cracks to take actions, thereby mitigating potential accidents arising from this prevalent road hazard leading to safer road conditions for the whole community.
Generative AI for Autonomous Driving: Frontiers and Opportunities
Generative Artificial Intelligence (GenAI) constitutes a transformative technological wave that reconfigures industries through its unparalleled capabilities for content creation, reasoning, planning, and multimodal understanding. This revolutionary force offers the most promising path yet toward solving one of engineering's grandest challenges: achieving reliable, fully autonomous driving, particularly the pursuit of Level 5 autonomy. This survey delivers a comprehensive and critical synthesis of the emerging role of GenAI across the autonomous driving stack. We begin by distilling the principles and trade-offs of modern generative modeling, encompassing VAEs, GANs, Diffusion Models, and Large Language Models (LLMs). We then map their frontier applications in image, LiDAR, trajectory, occupancy, video generation as well as LLM-guided reasoning and decision making. We categorize practical applications, such as synthetic data workflows, end-to-end driving strategies, high-fidelity digital twin systems, smart transportation networks, and cross-domain transfer to embodied AI. We identify key obstacles and possibilities such as comprehensive generalization across rare cases, evaluation and safety checks, budget-limited implementation, regulatory compliance, ethical concerns, and environmental effects, while proposing research plans across theoretical assurances, trust metrics, transport integration, and socio-technical influence. By unifying these threads, the survey provides a forward-looking reference for researchers, engineers, and policymakers navigating the convergence of generative AI and advanced autonomous mobility. An actively maintained repository of cited works is available at https://github.com/taco-group/GenAI4AD.
Validation of Conformal Prediction in Cervical Atypia Classification
Deep learning based cervical cancer classification can potentially increase access to screening in low-resource regions. However, deep learning models are often overconfident and do not reliably reflect diagnostic uncertainty. Moreover, they are typically optimized to generate maximum-likelihood predictions, which fail to convey uncertainty or ambiguity in their results. Such challenges can be addressed using conformal prediction, a model-agnostic framework for generating prediction sets that contain likely classes for trained deep-learning models. The size of these prediction sets indicates model uncertainty, contracting as model confidence increases. However, existing conformal prediction evaluation primarily focuses on whether the prediction set includes or covers the true class, often overlooking the presence of extraneous classes. We argue that prediction sets should be truthful and valuable to end users, ensuring that the listed likely classes align with human expectations rather than being overly relaxed and including false positives or unlikely classes. In this study, we comprehensively validate conformal prediction sets using expert annotation sets collected from multiple annotators. We evaluate three conformal prediction approaches applied to three deep-learning models trained for cervical atypia classification. Our expert annotation-based analysis reveals that conventional coverage-based evaluations overestimate performance and that current conformal prediction methods often produce prediction sets that are not well aligned with human labels. Additionally, we explore the capabilities of the conformal prediction methods in identifying ambiguous and out-of-distribution data.
GP-GS: Gaussian Processes for Enhanced Gaussian Splatting
3D Gaussian Splatting has emerged as an efficient photorealistic novel view synthesis method. However, its reliance on sparse Structure-from-Motion (SfM) point clouds often limits scene reconstruction quality. To address the limitation, this paper proposes a novel 3D reconstruction framework, Gaussian Processes enhanced Gaussian Splatting (GP-GS), in which a multi-output Gaussian Process model is developed to enable adaptive and uncertainty-guided densification of sparse SfM point clouds. Specifically, we propose a dynamic sampling and filtering pipeline that adaptively expands the SfM point clouds by leveraging GP-based predictions to infer new candidate points from the input 2D pixels and depth maps. The pipeline utilizes uncertainty estimates to guide the pruning of high-variance predictions, ensuring geometric consistency and enabling the generation of dense point clouds. These densified point clouds provide high-quality initial 3D Gaussians, enhancing reconstruction performance. Extensive experiments conducted on synthetic and real-world datasets across various scales validate the effectiveness and practicality of the proposed framework.
comment: 12 pages, 7 figures
FLUXSynID: A Framework for Identity-Controlled Synthetic Face Generation with Document and Live Images
Synthetic face datasets are increasingly used to overcome the limitations of real-world biometric data, including privacy concerns, demographic imbalance, and high collection costs. However, many existing methods lack fine-grained control over identity attributes and fail to produce paired, identity-consistent images under structured capture conditions. We introduce FLUXSynID, a framework for generating high-resolution synthetic face datasets with user-defined identity attribute distributions and paired document-style and trusted live capture images. The dataset generated using the FLUXSynID framework shows improved alignment with real-world identity distributions and greater inter-set diversity compared to prior work. The FLUXSynID framework for generating custom datasets, along with a dataset of 14,889 synthetic identities, is publicly released to support biometric research, including face recognition and morphing attack detection.
Ophora: A Large-Scale Data-Driven Text-Guided Ophthalmic Surgical Video Generation Model MICCAI25
In ophthalmic surgery, developing an AI system capable of interpreting surgical videos and predicting subsequent operations requires numerous ophthalmic surgical videos with high-quality annotations, which are difficult to collect due to privacy concerns and labor consumption. Text-guided video generation (T2V) emerges as a promising solution to overcome this issue by generating ophthalmic surgical videos based on surgeon instructions. In this paper, we present Ophora, a pioneering model that can generate ophthalmic surgical videos following natural language instructions. To construct Ophora, we first propose a Comprehensive Data Curation pipeline to convert narrative ophthalmic surgical videos into a large-scale, high-quality dataset comprising over 160K video-instruction pairs, Ophora-160K. Then, we propose a Progressive Video-Instruction Tuning scheme to transfer rich spatial-temporal knowledge from a T2V model pre-trained on natural video-text datasets for privacy-preserved ophthalmic surgical video generation based on Ophora-160K. Experiments on video quality evaluation via quantitative analysis and ophthalmologist feedback demonstrate that Ophora can generate realistic and reliable ophthalmic surgical videos based on surgeon instructions. We also validate the capability of Ophora for empowering downstream tasks of ophthalmic surgical workflow understanding. Code is available at https://github.com/mar-cry/Ophora.
comment: Early accepted in MICCAI25
TUM2TWIN: Introducing the Large-Scale Multimodal Urban Digital Twin Benchmark Dataset SP
Urban Digital Twins (UDTs) have become essential for managing cities and integrating complex, heterogeneous data from diverse sources. Creating UDTs involves challenges at multiple process stages, including acquiring accurate 3D source data, reconstructing high-fidelity 3D models, maintaining models' updates, and ensuring seamless interoperability to downstream tasks. Current datasets are usually limited to one part of the processing chain, hampering comprehensive UDTs validation. To address these challenges, we introduce the first comprehensive multimodal Urban Digital Twin benchmark dataset: TUM2TWIN. This dataset includes georeferenced, semantically aligned 3D models and networks along with various terrestrial, mobile, aerial, and satellite observations boasting 32 data subsets over roughly 100,000 $m^2$ and currently 767 GB of data. By ensuring georeferenced indoor-outdoor acquisition, high accuracy, and multimodal data integration, the benchmark supports robust analysis of sensors and the development of advanced reconstruction methods. Additionally, we explore downstream tasks demonstrating the potential of TUM2TWIN, including novel view synthesis of NeRF and Gaussian Splatting, solar potential analysis, point cloud semantic segmentation, and LoD3 building reconstruction. We are convinced this contribution lays a foundation for overcoming current limitations in UDT creation, fostering new research directions and practical solutions for smarter, data-driven urban environments. The project is available under: https://tum2t.win
comment: Submitted to the ISPRS Journal of Photogrammetry and Remote Sensing
Human Motion Prediction via Test-domain-aware Adaptation with Easily-available Human Motions Estimated from Videos
In 3D Human Motion Prediction (HMP), conventional methods train HMP models with expensive motion capture data. However, the data collection cost of such motion capture data limits the data diversity, which leads to poor generalizability to unseen motions or subjects. To address this issue, this paper proposes to enhance HMP with additional learning using estimated poses from easily available videos. The 2D poses estimated from the monocular videos are carefully transformed into motion capture-style 3D motions through our pipeline. By additional learning with the obtained motions, the HMP model is adapted to the test domain. The experimental results demonstrate the quantitative and qualitative impact of our method.
comment: 5 pages, 4 figures
FANeRV: Frequency Separation and Augmentation based Neural Representation for Video
Neural representations for video (NeRV) have gained considerable attention for their strong performance across various video tasks. However, existing NeRV methods often struggle to capture fine spatial details, resulting in vague reconstructions. In this paper, we present a Frequency Separation and Augmentation based Neural Representation for video (FANeRV), which addresses these limitations with its core Wavelet Frequency Upgrade Block. This block explicitly separates input frames into high and low-frequency components using discrete wavelet transform, followed by targeted enhancement using specialized modules. Finally, a specially designed gated network effectively fuses these frequency components for optimal reconstruction. Additionally, convolutional residual enhancement blocks are integrated into the later stages of the network to balance parameter distribution and improve the restoration of high-frequency details. Experimental results demonstrate that FANeRV significantly improves reconstruction performance and excels in multiple tasks, including video compression, inpainting, and interpolation, outperforming existing NeRV methods.
Efficient Adaptation For Remote Sensing Visual Grounding
Adapting pre-trained models has become an effective strategy in artificial intelligence, offering a scalable and efficient alternative to training models from scratch. In the context of remote sensing (RS), where visual grounding(VG) remains underexplored, this approach enables the deployment of powerful vision-language models to achieve robust cross-modal understanding while significantly reducing computational overhead. To address this, we applied Parameter Efficient Fine Tuning (PEFT) techniques to adapt these models for RS-specific VG tasks. Specifically, we evaluated LoRA placement across different modules in Grounding DINO and used BitFit and adapters to fine-tune the OFA foundation model pre-trained on general-purpose VG datasets. This approach achieved performance comparable to or surpassing current State Of The Art (SOTA) models while significantly reducing computational costs. This study highlights the potential of PEFT techniques to advance efficient and precise multi-modal analysis in RS, offering a practical and cost-effective alternative to full model training.
Breast Cancer Histopathology Classification using CBAM-EfficientNetV2 with Transfer Learning
Breast cancer histopathology image classification is critical for early detection and improved patient outcomes. 1 This study introduces a novel approach leveraging EfficientNetV2 models, to improve feature extraction and focus on relevant tissue regions. The proposed models were evaluated on the BreakHis dataset across multiple magnification scales (40X, 100X, 200X, and 400X). 2 Among them, the EfficientNetV2-XL with CBAM achieved outstanding performance, reaching a peak accuracy of 99.01 percent and an F1-score of 98.31 percent at 400X magnification, outperforming state-of-the-art methods. 3 By integrating Contrast Limited Adaptive Histogram Equalization (CLAHE) for preprocessing and optimizing computational efficiency, this method demonstrates its suitability for real-time clinical deployment. 3 The results underscore the potential of attention-enhanced scalable architectures in advancing diagnostic precision for breast cancer detection.
HarmoniCa: Harmonizing Training and Inference for Better Feature Caching in Diffusion Transformer Acceleration ICML 2025
Diffusion Transformers (DiTs) excel in generative tasks but face practical deployment challenges due to high inference costs. Feature caching, which stores and retrieves redundant computations, offers the potential for acceleration. Existing learning-based caching, though adaptive, overlooks the impact of the prior timestep. It also suffers from misaligned objectives--aligned predicted noise vs. high-quality images--between training and inference. These two discrepancies compromise both performance and efficiency. To this end, we harmonize training and inference with a novel learning-based caching framework dubbed HarmoniCa. It first incorporates Step-Wise Denoising Training (SDT) to ensure the continuity of the denoising process, where prior steps can be leveraged. In addition, an Image Error Proxy-Guided Objective (IEPO) is applied to balance image quality against cache utilization through an efficient proxy to approximate the image error. Extensive experiments across $8$ models, $4$ samplers, and resolutions from $256\times256$ to $2K$ demonstrate superior performance and speedup of our framework. For instance, it achieves over $40\%$ latency reduction (i.e., $2.07\times$ theoretical speedup) and improved performance on PixArt-$\alpha$. Remarkably, our image-free approach reduces training time by $25\%$ compared with the previous method. Our code is available at https://github.com/ModelTC/HarmoniCa.
comment: Accepted by ICML 2025
VideoUFO: A Million-Scale User-Focused Dataset for Text-to-Video Generation
Text-to-video generative models convert textual prompts into dynamic visual content, offering wide-ranging applications in film production, gaming, and education. However, their real-world performance often falls short of user expectations. One key reason is that these models have not been trained on videos related to some topics users want to create. In this paper, we propose VideoUFO, the first Video dataset specifically curated to align with Users' FOcus in real-world scenarios. Beyond this, our VideoUFO also features: (1) minimal (0.29%) overlap with existing video datasets, and (2) videos searched exclusively via YouTube's official API under the Creative Commons license. These two attributes provide future researchers with greater freedom to broaden their training sources. The VideoUFO comprises over 1.09 million video clips, each paired with both a brief and a detailed caption (description). Specifically, through clustering, we first identify 1,291 user-focused topics from the million-scale real text-to-video prompt dataset, VidProM. Then, we use these topics to retrieve videos from YouTube, split the retrieved videos into clips, and generate both brief and detailed captions for each clip. After verifying the clips with specified topics, we are left with about 1.09 million video clips. Our experiments reveal that (1) current 16 text-to-video models do not achieve consistent performance across all user-focused topics; and (2) a simple model trained on VideoUFO outperforms others on worst-performing topics. The dataset and code are publicly available at https://huggingface.co/datasets/WenhaoWang/VideoUFO and https://github.com/WangWenhao0716/BenchUFO under the CC BY 4.0 License.
Visual Imitation Enables Contextual Humanoid Control
How can we teach humanoids to climb staircases and sit on chairs using the surrounding environment context? Arguably, the simplest way is to just show them-casually capture a human motion video and feed it to humanoids. We introduce VIDEOMIMIC, a real-to-sim-to-real pipeline that mines everyday videos, jointly reconstructs the humans and the environment, and produces whole-body control policies for humanoid robots that perform the corresponding skills. We demonstrate the results of our pipeline on real humanoid robots, showing robust, repeatable contextual control such as staircase ascents and descents, sitting and standing from chairs and benches, as well as other dynamic whole-body skills-all from a single policy, conditioned on the environment and global root commands. VIDEOMIMIC offers a scalable path towards teaching humanoids to operate in diverse real-world environments.
comment: Project website: https://www.videomimic.net/
Deep Representation Learning for Unsupervised Clustering of Myocardial Fiber Trajectories in Cardiac Diffusion Tensor Imaging
Understanding the complex myocardial architecture is critical for diagnosing and treating heart disease. However, existing methods often struggle to accurately capture this intricate structure from Diffusion Tensor Imaging (DTI) data, particularly due to the lack of ground truth labels and the ambiguous, intertwined nature of fiber trajectories. We present a novel deep learning framework for unsupervised clustering of myocardial fibers, providing a data-driven approach to identifying distinct fiber bundles. We uniquely combine a Bidirectional Long Short-Term Memory network to capture local sequential information along fibers, with a Transformer autoencoder to learn global shape features, with pointwise incorporation of essential anatomical context. Clustering these representations using a density-based algorithm identifies 33 to 62 robust clusters, successfully capturing the subtle distinctions in fiber trajectories with varying levels of granularity. Our framework offers a new, flexible, and quantitative way to analyze myocardial structure, achieving a level of delineation that, to our knowledge, has not been previously achieved, with potential applications in improving surgical planning, characterizing disease-related remodeling, and ultimately, advancing personalized cardiac care.
comment: 10 pages, 5 figures. An extended journal manuscript is in preparation
No Other Representation Component Is Needed: Diffusion Transformers Can Provide Representation Guidance by Themselves
Recent studies have demonstrated that learning a meaningful internal representation can both accelerate generative training and enhance the generation quality of diffusion transformers. However, existing approaches necessitate to either introduce an external and complex representation training framework or rely on a large-scale, pre-trained representation foundation model to provide representation guidance during the original generative training process. In this study, we posit that the unique discriminative process inherent to diffusion transformers enables them to offer such guidance without requiring external representation components. We therefore propose Self-Representation Alignment (SRA), a simple yet straightforward method that obtains representation guidance through a self-distillation manner. Specifically, SRA aligns the output latent representation of the diffusion transformer in the earlier layer with higher noise to that in the later layer with lower noise to progressively enhance the overall representation learning during only the generative training process. Experimental results indicate that applying SRA to DiTs and SiTs yields consistent performance improvements. Moreover, SRA not only significantly outperforms approaches relying on auxiliary, complex representation training frameworks but also achieves performance comparable to methods that are heavily dependent on powerful external representation priors.
comment: Self-Representation Alignment for Diffusion Transformers. Code: https://github.com/vvvvvjdy/SRA
Hierarchical and Multimodal Data for Daily Activity Understanding
Daily Activity Recordings for Artificial Intelligence (DARai, pronounced "Dahr-ree") is a multimodal, hierarchically annotated dataset constructed to understand human activities in real-world settings. DARai consists of continuous scripted and unscripted recordings of 50 participants in 10 different environments, totaling over 200 hours of data from 20 sensors including multiple camera views, depth and radar sensors, wearable inertial measurement units (IMUs), electromyography (EMG), insole pressure sensors, biomonitor sensors, and gaze tracker. To capture the complexity in human activities, DARai is annotated at three levels of hierarchy: (i) high-level activities (L1) that are independent tasks, (ii) lower-level actions (L2) that are patterns shared between activities, and (iii) fine-grained procedures (L3) that detail the exact execution steps for actions. The dataset annotations and recordings are designed so that 22.7% of L2 actions are shared between L1 activities and 14.2% of L3 procedures are shared between L2 actions. The overlap and unscripted nature of DARai allows counterfactual activities in the dataset. Experiments with various machine learning models showcase the value of DARai in uncovering important challenges in human-centered applications. Specifically, we conduct unimodal and multimodal sensor fusion experiments for recognition, temporal localization, and future action anticipation across all hierarchical annotation levels. To highlight the limitations of individual sensors, we also conduct domain-variant experiments that are enabled by DARai's multi-sensor and counterfactual activity design setup. The code, documentation, and dataset are available at the dedicated DARai website: https://alregib.ece.gatech.edu/software-and-datasets/darai-daily-activity-recordings-for-artificial-intelligence-and-machine-learning/
RT-GAN: Recurrent Temporal GAN for Adding Lightweight Temporal Consistency to Frame-Based Domain Translation Approaches MICCAI 2025
Fourteen million colonoscopies are performed annually just in the U.S. However, the videos from these colonoscopies are not saved due to storage constraints (each video from a high-definition colonoscope camera can be in tens of gigabytes). Instead, a few relevant individual frames are saved for documentation/reporting purposes and these are the frames on which most current colonoscopy AI models are trained on. While developing new unsupervised domain translation methods for colonoscopy (e.g. to translate between real optical and virtual/CT colonoscopy), it is thus typical to start with approaches that initially work for individual frames without temporal consistency. Once an individual-frame model has been finalized, additional contiguous frames are added with a modified deep learning architecture to train a new model from scratch for temporal consistency. This transition to temporally-consistent deep learning models, however, requires significantly more computational and memory resources for training. In this paper, we present a lightweight solution with a tunable temporal parameter, RT-GAN (Recurrent Temporal GAN), for adding temporal consistency to individual frame-based approaches that reduces training requirements by a factor of 5. We demonstrate the effectiveness of our approach on two challenging use cases in colonoscopy: haustral fold segmentation (indicative of missed surface) and realistic colonoscopy simulator video generation. We also release a first-of-its kind temporal dataset for colonoscopy for the above use cases. The datasets, accompanying code, and pretrained models will be made available on our Computational Endoscopy Platform GitHub (https://github.com/nadeemlab/CEP). The supplementary video is available at https://youtu.be/UMVP-uIXwWk.
comment: MICCAI 2025 Early Accept. First two authors contributed equally
Unsupervised Urban Land Use Mapping with Street View Contrastive Clustering and a Geographical Prior
Urban land use classification and mapping are critical for urban planning, resource management, and environmental monitoring. Existing remote sensing techniques often lack precision in complex urban environments due to the absence of ground-level details. Unlike aerial perspectives, street view images provide a ground-level view that captures more human and social activities relevant to land use in complex urban scenes. Existing street view-based methods primarily rely on supervised classification, which is challenged by the scarcity of high-quality labeled data and the difficulty of generalizing across diverse urban landscapes. This study introduces an unsupervised contrastive clustering model for street view images with a built-in geographical prior, to enhance clustering performance. When combined with a simple visual assignment of the clusters, our approach offers a flexible and customizable solution to land use mapping, tailored to the specific needs of urban planners. We experimentally show that our method can generate land use maps from geotagged street view image datasets of two cities. As our methodology relies on the universal spatial coherence of geospatial data ("Tobler's law"), it can be adapted to various settings where street view images are available, to enable scalable, unsupervised land use mapping and updating. The code will be available at https://github.com/lin102/CCGP.
comment: 11 pages, 7 figures, preprint version
2.5 Years in Class: A Multimodal Textbook for Vision-Language Pretraining
Compared to image-text pair data, interleaved corpora enable Vision-Language Models (VLMs) to understand the world more naturally like humans. However, such existing datasets are crawled from webpage, facing challenges like low knowledge density, loose image-text relations, and poor logical coherence between images. On the other hand, the internet hosts vast instructional videos (e.g., online geometry courses) that are widely used by humans to learn foundational subjects, yet these valuable resources remain underexplored in VLM training. In this paper, we introduce a high-quality \textbf{multimodal textbook} corpus with richer foundational knowledge for VLM pretraining. It collects over 2.5 years of instructional videos, totaling 22,000 class hours. We first use an LLM-proposed taxonomy to systematically gather instructional videos. Then we progressively extract and refine visual (keyframes), audio (ASR), and textual knowledge (OCR) from the videos, and organize as an image-text interleaved corpus based on temporal order. Compared to its counterparts, our video-centric textbook offers more coherent context, richer knowledge, and better image-text alignment. Experiments demonstrate its superb pretraining performance, particularly in knowledge- and reasoning-intensive tasks like ScienceQA and MathVista. Moreover, VLMs pre-trained on our textbook exhibit outstanding interleaved context awareness, leveraging visual and textual cues in their few-shot context for task solving. Our code are available at https://github.com/DAMO-NLP-SG/multimodal_textbook.
comment: Under review
TextCenGen: Attention-Guided Text-Centric Background Adaptation for Text-to-Image Generation
Text-to-image (T2I) generation has made remarkable progress in producing high-quality images, but a fundamental challenge remains: creating backgrounds that naturally accommodate text placement without compromising image quality. This capability is non-trivial for real-world applications like graphic design, where clear visual hierarchy between content and text is essential. Prior work has primarily focused on arranging layouts within existing static images, leaving unexplored the potential of T2I models for generating text-friendly backgrounds. We present TextCenGen, a training-free dynamic background adaptation in the blank region for text-friendly image generation. Instead of directly reducing attention in text areas, which degrades image quality, we relocate conflicting objects before background optimization. Our method analyzes cross-attention maps to identify conflicting objects overlapping with text regions and uses a force-directed graph approach to guide their relocation, followed by attention excluding constraints to ensure smooth backgrounds. Our method is plug-and-play, requiring no additional training while well balancing both semantic fidelity and visual quality. Evaluated on our proposed text-friendly T2I benchmark of 27,000 images across four seed datasets, TextCenGen outperforms existing methods by achieving 23% lower saliency overlap in text regions while maintaining 98% of the semantic fidelity measured by CLIP score and our proposed Visual-Textual Concordance Metric (VTCM).
comment: 7 pages, 7 figures
EMPERROR: A Flexible Generative Perception Error Model for Probing Self-Driving Planners
To handle the complexities of real-world traffic, learning planners for self-driving from data is a promising direction. While recent approaches have shown great progress, they typically assume a setting in which the ground-truth world state is available as input. However, when deployed, planning needs to be robust to the long-tail of errors incurred by a noisy perception system, which is often neglected in evaluation. To address this, previous work has proposed drawing adversarial samples from a perception error model (PEM) mimicking the noise characteristics of a target object detector. However, these methods use simple PEMs that fail to accurately capture all failure modes of detection. In this paper, we present EMPERROR, a novel transformer-based generative PEM, apply it to stress-test an imitation learning (IL)-based planner and show that it imitates modern detectors more faithfully than previous work. Furthermore, it is able to produce realistic noisy inputs that increase the planner's collision rate by up to 85%, demonstrating its utility as a valuable tool for a more complete evaluation of self-driving planners.
comment: Project page: https://lasnik.github.io/emperror/
MGPATH: Vision-Language Model with Multi-Granular Prompt Learning for Few-Shot WSI Classification
Whole slide pathology image classification presents challenges due to gigapixel image sizes and limited annotation labels, hindering model generalization. This paper introduces a prompt learning method to adapt large vision-language models for few-shot pathology classification. We first extend the Prov-GigaPath vision foundation model, pre-trained on 1.3 billion pathology image tiles, into a vision-language model by adding adaptors and aligning it with medical text encoders via contrastive learning on 923K image-text pairs. The model is then used to extract visual features and text embeddings from few-shot annotations and fine-tunes with learnable prompt embeddings. Unlike prior methods that combine prompts with frozen features using prefix embeddings or self-attention, we propose multi-granular attention that compares interactions between learnable prompts with individual image patches and groups of them. This approach improves the model's ability to capture both fine-grained details and broader context, enhancing its recognition of complex patterns across sub-regions. To further improve accuracy, we leverage (unbalanced) optimal transport-based visual-text distance to secure model robustness by mitigating perturbations that might occur during the data augmentation process. Empirical experiments on lung, kidney, and breast pathology modalities validate the effectiveness of our approach; thereby, we surpass several of the latest competitors and consistently improve performance across diverse architectures, including CLIP, PLIP, and Prov-GigaPath integrated PLIP. We release our implementations and pre-trained models at this MGPATH.
FMNV: A Dataset of Media-Published News Videos for Fake News Detection
News media, particularly video-based platforms, have become deeply embed-ded in daily life, concurrently amplifying the risks of misinformation dissem-ination. Consequently, multimodal fake news detection has garnered signifi-cant research attention. However, existing datasets predominantly comprise user-generated videos characterized by crude editing and limited public en-gagement, whereas professionally crafted fake news videos disseminated by media outlets-often politically or virally motivated-pose substantially greater societal harm. To address this gap, we construct FMNV, a novel da-taset exclusively composed of news videos published by media organizations. Through empirical analysis of existing datasets and our curated collection, we categorize fake news videos into four distinct types. Building upon this taxonomy, we employ Large Language Models (LLMs) to automatically generate deceptive content by manipulating authentic media-published news videos. Furthermore, we propose FMNVD, a baseline model featuring a dual-stream architecture that integrates spatio-temporal motion features from a 3D ResNeXt-101 backbone and static visual semantics from CLIP. The two streams are fused via an attention-based mechanism, while co-attention modules refine the visual, textual, and audio features for effective multi-modal aggregation. Comparative experiments demonstrate both the generali-zation capability of FMNV across multiple baselines and the superior detec-tion efficacy of FMNVD. This work establishes critical benchmarks for de-tecting high-impact fake news in media ecosystems while advancing meth-odologies for cross-modal inconsistency analysis. Our dataset is available in https://github.com/DennisIW/FMNV.
GBT-SAM: Adapting a Foundational Deep Learning Model for Generalizable Brain Tumor Segmentation via Efficient Integration of Multi-Parametric MRI Data
Gliomas are aggressive brain tumors that require accurate imaging-based diagnosis, with segmentation playing a critical role in evaluating morphology and treatment decisions. Manual delineation of gliomas is time-consuming and prone to variability, motivating the use of deep learning to improve consistency and alleviate clinical workload. However, existing methods often fail to fully exploit the information available in multi-parametric MRI (mp-MRI), particularly inter-slice contextual features, and typically require considerable computational resources while lacking robustness across tumor type variations. We present GBT-SAM, a parameter-efficient deep learning framework that adapts the Segment Anything Model (SAM), a large-scale vision model, to volumetric mp-MRI data. GBT-SAM reduces input complexity by selecting fewer than 2.6\% of slices per scan while incorporating all four MRI modalities, preserving essential tumor-related information with minimal cost. Furthermore, our model is trained by a two-step fine-tuning strategy that incorporates a depth-aware module to capture inter-slice correlations and lightweight adaptation layers, resulting in just 6.5M trainable parameters, which is the lowest among SAM-based approaches. GBT-SAM achieves a Dice Score of 93.54 on the BraTS Adult Glioma dataset and demonstrates robust performance on Meningioma, Pediatric Glioma, and Sub-Saharan Glioma datasets. These results highlight GBT-SAM's potential as a computationally efficient and domain-robust framework for brain tumor segmentation using mp-MRI. Our code and models are available at https://github.com/vpulab/med-sam-brain .
High-Quality Spatial Reconstruction and Orthoimage Generation Using Efficient 2D Gaussian Splatting
Highly accurate geometric precision and dense image features characterize True Digital Orthophoto Maps (TDOMs), which are in great demand for applications such as urban planning, infrastructure management, and environmental monitoring.Traditional TDOM generation methods need sophisticated processes, such as Digital Surface Models (DSM) and occlusion detection, which are computationally expensive and prone to errors.This work presents an alternative technique rooted in 2D Gaussian Splatting (2DGS), free of explicit DSM and occlusion detection. With depth map generation, spatial information for every pixel within the TDOM is retrieved and can reconstruct the scene with high precision. Divide-and-conquer strategy achieves excellent GS training and rendering with high-resolution TDOMs at a lower resource cost, which preserves higher quality of rendering on complex terrain and thin structure without a decrease in efficiency. Experimental results demonstrate the efficiency of large-scale scene reconstruction and high-precision terrain modeling. This approach provides accurate spatial data, which assists users in better planning and decision-making based on maps.
Optimized View and Geometry Distillation from Multi-view Diffuser IJCAI 2025
Generating multi-view images from a single input view using image-conditioned diffusion models is a recent advancement and has shown considerable potential. However, issues such as the lack of consistency in synthesized views and over-smoothing in extracted geometry persist. Previous methods integrate multi-view consistency modules or impose additional supervisory to enhance view consistency while compromising on the flexibility of camera positioning and limiting the versatility of view synthesis. In this study, we consider the radiance field optimized during geometry extraction as a more rigid consistency prior, compared to volume and ray aggregation used in previous works. We further identify and rectify a critical bias in the traditional radiance field optimization process through score distillation from a multi-view diffuser. We introduce an Unbiased Score Distillation (USD) that utilizes unconditioned noises from a 2D diffusion model, greatly refining the radiance field fidelity. We leverage the rendered views from the optimized radiance field as the basis and develop a two-step specialization process of a 2D diffusion model, which is adept at conducting object-specific denoising and generating high-quality multi-view images. Finally, we recover faithful geometry and texture directly from the refined multi-view images. Empirical evaluations demonstrate that our optimized geometry and view distillation technique generates comparable results to the state-of-the-art models trained on extensive datasets, all while maintaining freedom in camera positioning. Please see our project page at https://youjiazhang.github.io/USD/.
comment: IJCAI 2025. Project page: https://youjiazhang.github.io/USD/
Gaussian Shading++: Rethinking the Realistic Deployment Challenge of Performance-Lossless Image Watermark for Diffusion Models
Ethical concerns surrounding copyright protection and inappropriate content generation pose challenges for the practical implementation of diffusion models. One effective solution involves watermarking the generated images. Existing methods primarily focus on ensuring that watermark embedding does not degrade the model performance. However, they often overlook critical challenges in real-world deployment scenarios, such as the complexity of watermark key management, user-defined generation parameters, and the difficulty of verification by arbitrary third parties. To address this issue, we propose Gaussian Shading++, a diffusion model watermarking method tailored for real-world deployment. We propose a double-channel design that leverages pseudorandom error-correcting codes to encode the random seed required for watermark pseudorandomization, achieving performance-lossless watermarking under a fixed watermark key and overcoming key management challenges. Additionally, we model the distortions introduced during generation and inversion as an additive white Gaussian noise channel and employ a novel soft decision decoding strategy during extraction, ensuring strong robustness even when generation parameters vary. To enable third-party verification, we incorporate public key signatures, which provide a certain level of resistance against forgery attacks even when model inversion capabilities are fully disclosed. Extensive experiments demonstrate that Gaussian Shading++ not only maintains performance losslessness but also outperforms existing methods in terms of robustness, making it a more practical solution for real-world deployment.
comment: 18 pages, 8 figures
DiTPainter: Efficient Video Inpainting with Diffusion Transformers
Many existing video inpainting algorithms utilize optical flows to construct the corresponding maps and then propagate pixels from adjacent frames to missing areas by mapping. Despite the effectiveness of the propagation mechanism, they might encounter blurry and inconsistencies when dealing with inaccurate optical flows or large masks. Recently, Diffusion Transformer (DiT) has emerged as a revolutionary technique for video generation tasks. However, pretrained DiT models for video generation all contain a large amount of parameters, which makes it very time consuming to apply to video inpainting tasks. In this paper, we present DiTPainter, an end-to-end video inpainting model based on Diffusion Transformer (DiT). DiTPainter uses an efficient transformer network designed for video inpainting, which is trained from scratch instead of initializing from any large pretrained models. DiTPainter can address videos with arbitrary lengths and can be applied to video decaptioning and video completion tasks with an acceptable time cost. Experiments show that DiTPainter outperforms existing video inpainting algorithms with higher quality and better spatial-temporal consistency.
Transforming Hyperspectral Images Into Chemical Maps: An End-to-End Deep Learning Approach
Current approaches to chemical map generation from hyperspectral images are based on models such as partial least squares (PLS) regression, generating pixel-wise predictions that do not consider spatial context and suffer from a high degree of noise. This study proposes an end-to-end deep learning approach using a modified version of U-Net and a custom loss function to directly obtain chemical maps from hyperspectral images, skipping all intermediate steps required for traditional pixel-wise analysis. We compare the U-Net with the traditional PLS regression on a real dataset of pork belly samples with associated mean fat reference values. The U-Net obtains a test set root mean squared error of between 9% and 13% lower than that of PLS regression on the task of mean fat prediction. At the same time, U-Net generates fine detail chemical maps where 99.91% of the variance is spatially correlated. Conversely, only 2.53% of the variance in the PLS-generated chemical maps is spatially correlated, indicating that each pixel-wise prediction is largely independent of neighboring pixels. Additionally, while the PLS-generated chemical maps contain predictions far beyond the physically possible range of 0-100%, U-Net learns to stay inside this range. Thus, the findings of this study indicate that U-Net is superior to PLS for chemical map generation.
Towards Anytime Optical Flow Estimation with Event Cameras
Event cameras respond to changes in log-brightness at the millisecond level, making them ideal for optical flow estimation. However, existing datasets from event cameras provide only low frame rate ground truth for optical flow, limiting the research potential of event-driven optical flow. To address this challenge, we introduce a low-latency event representation, Unified Voxel Grid, and propose EVA-Flow, an EVent-based Anytime Flow estimation network to produce high-frame-rate event optical flow with only low-frame-rate optical flow ground truth for supervision. Furthermore, we propose the Rectified Flow Warp Loss (RFWL) for the unsupervised assessment of intermediate optical flow. A comprehensive variety of experiments on MVSEC, DESC, and our EVA-FlowSet demonstrates that EVA-Flow achieves competitive performance, super-low-latency (5ms), time-dense motion estimation (200Hz), and strong generalization. Our code will be available at https://github.com/Yaozhuwa/EVA-Flow.
comment: Accepted to Sensors. Our code will be available at https://github.com/Yaozhuwa/EVA-Flow
TinyVLA: Towards Fast, Data-Efficient Vision-Language-Action Models for Robotic Manipulation
Vision-Language-Action (VLA) models have shown remarkable potential in visuomotor control and instruction comprehension through end-to-end learning processes. However, current VLA models face significant challenges: they are slow during inference and require extensive pre-training on large amounts of robotic data, making real-world deployment difficult. In this paper, we introduce a new family of compact vision-language-action models, called TinyVLA, which offers two key advantages over existing VLA models: (1) faster inference speeds, and (2) improved data efficiency, eliminating the need for pre-training stage. Our framework incorporates two essential components to build TinyVLA: (1) initializing the policy backbone with robust, high-speed multimodal models, and (2) integrating a diffusion policy decoder during fine-tuning to enable precise robot actions. We conducted extensive evaluations of TinyVLA in both simulation and on real robots, demonstrating that our approach significantly outperforms the state-of-the-art VLA model, OpenVLA, in terms of speed and data efficiency, while delivering comparable or superior performance. Additionally, TinyVLA exhibits strong generalization capabilities across various dimensions, including language instructions, novel objects, unseen positions, changes in object appearance, background variations, and environmental shifts, often matching or exceeding the performance of OpenVLA. We believe that \methodname offers an interesting perspective on utilizing pre-trained multimodal models for policy learning. Our project is at https://tiny-vla.github.io.
comment: add more citations
DexVLA: Vision-Language Model with Plug-In Diffusion Expert for General Robot Control
Enabling robots to perform diverse tasks across varied environments is a central challenge in robot learning. While vision-language-action (VLA) models have shown promise for generalizable robot skills, realizing their full potential requires addressing limitations in action representation and efficient training. Current VLA models often focus on scaling the vision-language model (VLM) component, while the action space representation remains a critical bottleneck. This paper introduces DexVLA, a novel framework designed to enhance the efficiency and generalization capabilities of VLAs for complex, long-horizon tasks across diverse robot embodiments. DexVLA features a novel diffusion-based action expert, scaled to one billion parameters, designed for cross-embodiment learning. A novel embodiment curriculum learning strategy facilitates efficient training: (1) pre-training the diffusion expert that is separable from the VLA on cross-embodiment data, (2) aligning the VLA model to specific embodiments, and (3) post-training for rapid adaptation to new tasks. We conduct comprehensive experiments across multiple embodiments, including single-arm, bimanual, and dexterous hand, demonstrating DexVLA's adaptability to challenging tasks without task-specific adaptation, its ability to learn dexterous skills on novel embodiments with limited data, and its capacity to complete complex, long-horizon tasks using only direct language prompting, such as laundry folding. In all settings, our method demonstrates superior performance compared to state-of-the-art models like Octo, OpenVLA, and Diffusion Policy.
comment: The webpage is at https://dex-vla.github.io/
Calibrated and Efficient Sampling-Free Confidence Estimation for LiDAR Scene Semantic Segmentation
Reliable deep learning models require not only accurate predictions but also well-calibrated confidence estimates to ensure dependable uncertainty estimation. This is crucial in safety-critical applications like autonomous driving, which depend on rapid and precise semantic segmentation of LiDAR point clouds for real-time 3D scene understanding. In this work, we introduce a sampling-free approach for estimating well-calibrated confidence values for classification tasks, achieving alignment with true classification accuracy and significantly reducing inference time compared to sampling-based methods. Our evaluation using the Adaptive Calibration Error (ACE) metric for LiDAR semantic segmentation shows that our approach maintains well-calibrated confidence values while achieving increased processing speed compared to a sampling baseline. Additionally, reliability diagrams reveal that our method produces underconfidence rather than overconfident predictions, an advantage for safety-critical applications. Our sampling-free approach offers well-calibrated and time-efficient predictions for LiDAR scene semantic segmentation.
Diffusion-VLA: Scaling Robot Foundation Models via Unified Diffusion and Autoregression
In this paper, we present DiffusionVLA, a novel framework that seamlessly combines the autoregression model with the diffusion model for learning visuomotor policy. Central to our approach is a next-token prediction objective, enabling the model to reason effectively over the user's query in the context of current observations. Subsequently, a diffusion model is attached to generate robust action outputs. To enhance policy learning through self-reasoning, we introduce a novel reasoning injection module that integrates reasoning phrases directly into the policy learning process. The whole framework is simple and flexible, making it easy to deploy and upgrade. We conduct extensive experiments using multiple real robots to validate the effectiveness of DiffusionVLA. Our tests include a challenging factory sorting task, where DiffusionVLA successfully categorizes objects, including those not seen during training. We observe that the reasoning module makes the model interpretable. It allows observers to understand the model thought process and identify potential causes of policy failures. Additionally, we test DiffusionVLA on a zero-shot bin-picking task, achieving 63.7\% accuracy on 102 previously unseen objects. Our method demonstrates robustness to visual changes, such as distractors and new backgrounds, and easily adapts to new embodiments. Furthermore, DiffusionVLA can follow novel instructions and retain conversational ability. Notably, DiffusionVLA is data-efficient and fast at inference; our smallest DiffusionVLA-2B runs 82Hz on a single A6000 GPU and can train from scratch on less than 50 demonstrations for a complex task. Finally, we scale the model from 2B to 72B parameters, showcasing improved generalization capabilities with increased model size.
comment: The project page is available at: http://diffusion-vla.github.io
CHOICE: Benchmarking the Remote Sensing Capabilities of Large Vision-Language Models
The rapid advancement of Large Vision-Language Models (VLMs), both general-domain models and those specifically tailored for remote sensing, has demonstrated exceptional perception and reasoning capabilities in Earth observation tasks. However, a benchmark for systematically evaluating their capabilities in this domain is still lacking. To bridge this gap, we propose CHOICE, an extensive benchmark designed to objectively evaluate the hierarchical remote sensing capabilities of VLMs. Focusing on 2 primary capability dimensions essential to remote sensing: perception and reasoning, we further categorize 6 secondary dimensions and 23 leaf tasks to ensure a well-rounded assessment coverage. CHOICE guarantees the quality of all 10,507 problems through a rigorous process of data collection from 50 globally distributed cities, question construction and quality control. The newly curated data and the format of multiple-choice questions with definitive answers allow for an objective and straightforward performance assessment. Our evaluation of 3 proprietary and 21 open-source VLMs highlights their critical limitations within this specialized context. We hope that CHOICE will serve as a valuable resource and offer deeper insights into the challenges and potential of VLMs in the field of remote sensing. We will release CHOICE at https://github.com/ShawnAn-WHU/CHOICE.
comment: 32 pages, 15 figures
Using Few-Shot Learning to Classify Primary Lung Cancer and Other Malignancy with Lung Metastasis in Cytological Imaging via Endobronchial Ultrasound Procedures
This study presents a computer-aided diagnosis (CAD) system to assist early detection of lung metastases during endobronchial ultrasound (EBUS) procedures, significantly reducing follow-up time and enabling timely treatment. Due to limited cytology images and morphological similarities among cells, classifying lung metastases is challenging, and existing research rarely targets this issue directly.To overcome data scarcity and improve classification, the authors propose a few-shot learning model using a hybrid pretrained backbone with fine-grained classification and contrastive learning. Parameter-efficient fine-tuning on augmented support sets enhances generalization and transferability. The model achieved 49.59% accuracy, outperforming existing methods. With 20 image samples, accuracy improved to 55.48%, showing strong potential for identifying rare or novel cancer types in low-data clinical environments.
Clinically inspired enhance Explainability and Interpretability of an AI-Tool for BCC diagnosis based on expert annotation
An AI tool has been developed to provide interpretable support for the diagnosis of BCC via teledermatology, thus speeding up referrals and optimizing resource utilization. The interpretability is provided in two ways: on the one hand, the main BCC dermoscopic patterns are found in the image to justify the BCC/Non BCC classification. Secondly, based on the common visual XAI Grad-CAM, a clinically inspired visual explanation is developed where the relevant features for diagnosis are located. Since there is no established ground truth for BCC dermoscopic features, a standard reference is inferred from the diagnosis of four dermatologists using an Expectation Maximization (EM) based algorithm. The results demonstrate significant improvements in classification accuracy and interpretability, positioning this approach as a valuable tool for early BCC detection and referral to dermatologists. The BCC/non-BCC classification achieved an accuracy rate of 90%. For Clinically-inspired XAI results, the detection of BCC patterns useful to clinicians reaches 99% accuracy. As for the Clinically-inspired Visual XAI results, the mean of the Grad-CAM normalized value within the manually segmented clinical features is 0.57, while outside this region it is 0.16. This indicates that the model struggles to accurately identify the regions of the BCC patterns. These results prove the ability of the AI tool to provide a useful explanation.
comment: 8 pages, 4 figures, 4 tables, under review
Semantic Shift Estimation via Dual-Projection and Classifier Reconstruction for Exemplar-Free Class-Incremental Learning ICML 2025
Exemplar-Free Class-Incremental Learning (EFCIL) aims to sequentially learn from distinct categories without retaining exemplars but easily suffers from catastrophic forgetting of learned knowledge. While existing EFCIL methods leverage knowledge distillation to alleviate forgetting, they still face two critical challenges: semantic shift and decision bias. Specifically, the embeddings of old tasks shift in the embedding space after learning new tasks, and the classifier becomes biased towards new tasks due to training solely with new data, hindering the balance between old and new knowledge. To address these issues, we propose the Dual-Projection Shift Estimation and Classifier Reconstruction (DPCR) approach for EFCIL. DPCR effectively estimates semantic shift through a dual-projection, which combines a learnable transformation with a row-space projection to capture both task-wise and category-wise shifts. Furthermore, to mitigate decision bias, DPCR employs ridge regression to reformulate a classifier reconstruction process. This reconstruction exploits previous in covariance and prototype of each class after calibration with estimated shift, thereby reducing decision bias. Extensive experiments demonstrate that, on various datasets, DPCR effectively balances old and new tasks, outperforming state-of-the-art EFCIL methods. Our codes are available at https://github.com/RHe502/ICML25-DPCR.
comment: Accepted by ICML 2025; Camera ready version
HoloTime: Taming Video Diffusion Models for Panoramic 4D Scene Generation
The rapid advancement of diffusion models holds the promise of revolutionizing the application of VR and AR technologies, which typically require scene-level 4D assets for user experience. Nonetheless, existing diffusion models predominantly concentrate on modeling static 3D scenes or object-level dynamics, constraining their capacity to provide truly immersive experiences. To address this issue, we propose HoloTime, a framework that integrates video diffusion models to generate panoramic videos from a single prompt or reference image, along with a 360-degree 4D scene reconstruction method that seamlessly transforms the generated panoramic video into 4D assets, enabling a fully immersive 4D experience for users. Specifically, to tame video diffusion models for generating high-fidelity panoramic videos, we introduce the 360World dataset, the first comprehensive collection of panoramic videos suitable for downstream 4D scene reconstruction tasks. With this curated dataset, we propose Panoramic Animator, a two-stage image-to-video diffusion model that can convert panoramic images into high-quality panoramic videos. Following this, we present Panoramic Space-Time Reconstruction, which leverages a space-time depth estimation method to transform the generated panoramic videos into 4D point clouds, enabling the optimization of a holistic 4D Gaussian Splatting representation to reconstruct spatially and temporally consistent 4D scenes. To validate the efficacy of our method, we conducted a comparative analysis with existing approaches, revealing its superiority in both panoramic video generation and 4D scene reconstruction. This demonstrates our method's capability to create more engaging and realistic immersive environments, thereby enhancing user experiences in VR and AR applications.
comment: Project Homepage: https://zhouhyocean.github.io/holotime/ Code: https://github.com/PKU-YuanGroup/HoloTime
SeriesBench: A Benchmark for Narrative-Driven Drama Series Understanding CVPR 2025
With the rapid development of Multi-modal Large Language Models (MLLMs), an increasing number of benchmarks have been established to evaluate the video understanding capabilities of these models. However, these benchmarks focus on standalone videos and mainly assess "visual elements" like human actions and object states. In reality, contemporary videos often encompass complex and continuous narratives, typically presented as a series. To address this challenge, we propose SeriesBench, a benchmark consisting of 105 carefully curated narrative-driven series, covering 28 specialized tasks that require deep narrative understanding. Specifically, we first select a diverse set of drama series spanning various genres. Then, we introduce a novel long-span narrative annotation method, combined with a full-information transformation approach to convert manual annotations into diverse task formats. To further enhance model capacity for detailed analysis of plot structures and character relationships within series, we propose a novel narrative reasoning framework, PC-DCoT. Extensive results on SeriesBench indicate that existing MLLMs still face significant challenges in understanding narrative-driven series, while PC-DCoT enables these MLLMs to achieve performance improvements. Overall, our SeriesBench and PC-DCoT highlight the critical necessity of advancing model capabilities to understand narrative-driven series, guiding the future development of MLLMs. SeriesBench is publicly available at https://github.com/zackhxn/SeriesBench-CVPR2025.
comment: 29 pages, 15 figures, CVPR 2025
CAST: Component-Aligned 3D Scene Reconstruction from an RGB Image
Recovering high-quality 3D scenes from a single RGB image is a challenging task in computer graphics. Current methods often struggle with domain-specific limitations or low-quality object generation. To address these, we propose CAST (Component-Aligned 3D Scene Reconstruction from a Single RGB Image), a novel method for 3D scene reconstruction and recovery. CAST starts by extracting object-level 2D segmentation and relative depth information from the input image, followed by using a GPT-based model to analyze inter-object spatial relationships. This enables the understanding of how objects relate to each other within the scene, ensuring more coherent reconstruction. CAST then employs an occlusion-aware large-scale 3D generation model to independently generate each object's full geometry, using MAE and point cloud conditioning to mitigate the effects of occlusions and partial object information, ensuring accurate alignment with the source image's geometry and texture. To align each object with the scene, the alignment generation model computes the necessary transformations, allowing the generated meshes to be accurately placed and integrated into the scene's point cloud. Finally, CAST incorporates a physics-aware correction step that leverages a fine-grained relation graph to generate a constraint graph. This graph guides the optimization of object poses, ensuring physical consistency and spatial coherence. By utilizing Signed Distance Fields (SDF), the model effectively addresses issues such as occlusions, object penetration, and floating objects, ensuring that the generated scene accurately reflects real-world physical interactions. CAST can be leveraged in robotics, enabling efficient real-to-simulation workflows and providing realistic, scalable simulation environments for robotic systems.
comment: Project Page: https://sites.google.com/view/cast4
Decadal analysis of sea surface temperature patterns, climatology, and anomalies in temperate coastal waters with Landsat-8 TIRS observations
Sea surface temperature (SST) is a fundamental physical parameter characterising the thermal state of sea surface. Due to the intricate thermal interactions between land, sea, and atmosphere, the spatial gradients of SST in coastal waters often appear at finer spatial scales than those in open ocean waters. The Thermal Infrared Sensor (TIRS) onboard Landsat-8, with its 100-meter spatial resolution, offers a unique opportunity to uncover fine-scale coastal SST patterns that would otherwise be overlooked by coarser-resolution thermal sensors. In this study, we first analysed the spatiotemporal patterns of SST in South Australia's temperate coastal waters from 2014 to 2023 by developing an operational approach for SST retrieval from the Landsat-8 TIRS sensor. A buoy was deployed off the coast of Port Lincoln, South Australia, to validate the quality of SST retrievals. Then the daily baseline climatology of SST with 100 m resolution was constructed, which allowed for the detection and analysis of anomalous SST events. Our results suggest the following: (1) the satellite-derived SST data aligned well with the in-situ measured SST values; (2) the semi-enclosed, shallow regions of Upper Spencer Gulf and Upper St Vincent Gulf showed higher temperatures during summer and cooler temperatures during winter than waters closer to the open ocean, resulting in a higher seasonal variation in SST; (3) the near-shore shallow areas in Spencer Gulf and St Vincent Gulf, and regions surrounding Kangaroo Island, were identified to have a higher probability of SST anomalies compared to the rest of the study area; and (4) anomalous SST events were more likely to happen during the warm months than the cool months. We hope these findings would be helpful in supporting the fishing and aquaculture industries in the coastal waters of South Australia.
comment: Submitted to GIScience & Remote Sensing
Equipping Sketch Patches with Context-Aware Positional Encoding for Graphic Sketch Representation
When benefiting graphic sketch representation with sketch drawing orders, recent studies have linked sketch patches as graph edges by drawing orders in accordance to a temporal-based nearest neighboring strategy. However, such constructed graph edges may be unreliable, since the contextual relationships between patches may be inconsistent with the sequential positions in drawing orders, due to variants of sketch drawings. In this paper, we propose a variant-drawing-protected method by equipping sketch patches with context-aware positional encoding (PE) to make better use of drawing orders for sketch learning. We introduce a sinusoidal absolute PE to embed the sequential positions in drawing orders, and a learnable relative PE to encode the unseen contextual relationships between patches. Both types of PEs never attend the construction of graph edges, but are injected into graph nodes to cooperate with the visual patterns captured from patches. After linking nodes by semantic proximity, during message aggregation via graph convolutional networks, each node receives both semantic features from patches and contextual information from PEs from its neighbors, which equips local patch patterns with global contextual information, further obtaining drawing-order-enhanced sketch representations. Experimental results indicate that our method significantly improves sketch healing and controllable sketch synthesis. The source codes could be found at https://github.com/SCZang/DC-gra2seq.
UAV-VLA: Vision-Language-Action System for Large Scale Aerial Mission Generation
The UAV-VLA (Visual-Language-Action) system is a tool designed to facilitate communication with aerial robots. By integrating satellite imagery processing with the Visual Language Model (VLM) and the powerful capabilities of GPT, UAV-VLA enables users to generate general flight paths-and-action plans through simple text requests. This system leverages the rich contextual information provided by satellite images, allowing for enhanced decision-making and mission planning. The combination of visual analysis by VLM and natural language processing by GPT can provide the user with the path-and-action set, making aerial operations more efficient and accessible. The newly developed method showed the difference in the length of the created trajectory in 22% and the mean error in finding the objects of interest on a map in 34.22 m by Euclidean distance in the K-Nearest Neighbors (KNN) approach.
comment: HRI 2025
ConceptMaster: Multi-Concept Video Customization on Diffusion Transformer Models Without Test-Time Tuning
Text-to-video generation has made remarkable advancements through diffusion models. However, Multi-Concept Video Customization (MCVC) remains a significant challenge. We identify two key challenges for this task: 1) the identity decoupling issue, where directly adopting existing customization methods inevitably mix identity attributes when handling multiple concepts simultaneously, and 2) the scarcity of high-quality video-entity pairs, which is crucial for training a model that can well represent and decouple various customized concepts in video generation. To address these challenges, we introduce ConceptMaster, a novel framework that effectively addresses the identity decoupling issues while maintaining concept fidelity in video customization. Specifically, we propose to learn decoupled multi-concept embeddings and inject them into diffusion models in a standalone manner, which effectively guarantees the quality of customized videos with multiple identities, even for highly similar visual concepts. To overcome the scarcity of high-quality MCVC data, we establish a data construction pipeline, which enables collection of high-quality multi-concept video-entity data pairs across diverse scenarios. A multi-concept video evaluation set is further devised to comprehensively validate our method from three dimensions, including concept fidelity, identity decoupling ability, and video generation quality, across six different concept composition scenarios. Extensive experiments demonstrate that ConceptMaster significantly outperforms previous methods for video customization tasks, showing great potential to generate personalized and semantically accurate content for video diffusion models.
comment: Project Page: https://yuzhou914.github.io/ConceptMaster/. Update and release MCVC Evaluation Set
HLV-1K: A Large-scale Hour-Long Video Benchmark for Time-Specific Long Video Understanding ICME 2025
Multimodal large language models have become a popular topic in deep visual understanding due to many promising real-world applications. However, hour-long video understanding, spanning over one hour and containing tens of thousands of visual frames, remains under-explored because of 1) challenging long-term video analyses, 2) inefficient large-model approaches, and 3) lack of large-scale benchmark datasets. Among them, in this paper, we focus on building a large-scale hour-long long video benchmark, HLV-1K, designed to evaluate long video understanding models. HLV-1K comprises 1009 hour-long videos with 14,847 high-quality question answering (QA) and multi-choice question asnwering (MCQA) pairs with time-aware query and diverse annotations, covering frame-level, within-event-level, cross-event-level, and long-term reasoning tasks. We evaluate our benchmark using existing state-of-the-art methods and demonstrate its value for testing deep long video understanding capabilities at different levels and for various tasks. This includes promoting future long video understanding tasks at a granular level, such as deep understanding of long live videos, meeting recordings, and movies.
comment: Accepted to ICME 2025
Benchmarking Multimodal Mathematical Reasoning with Explicit Visual Dependency
Recent advancements in Large Vision-Language Models (LVLMs) have significantly enhanced their ability to integrate visual and linguistic information, achieving near-human proficiency in tasks like object recognition, captioning, and visual question answering. However, current benchmarks typically focus on knowledge-centric evaluations that assess domain-specific expertise, often neglecting the core ability to reason about fundamental mathematical elements and visual concepts. We identify a gap in evaluating elementary-level math problems, which rely on explicit visual dependencies-requiring models to discern, integrate, and reason across multiple images while incorporating commonsense knowledge, all of which are crucial for advancing toward broader AGI capabilities. To address this gap, we introduce VCBENCH, a comprehensive benchmark for multimodal mathematical reasoning with explicit visual dependencies. VCBENCH includes 1,720 problems across six cognitive domains, featuring 6,697 images (averaging 3.9 per question) to ensure multi-image reasoning. We evaluate 26 state-of-the-art LVLMs on VCBENCH, revealing substantial performance disparities, with even the top models unable to exceed 50% accuracy. Our findings highlight the ongoing challenges in visual-mathematical integration and suggest avenues for future LVLM advancements. The project can be found at https://alibaba-damo-academy.github.io/VCBench/.
comment: Home page: https://alibaba-damo-academy.github.io/VCBench/
Vision-Language Models Do Not Understand Negation CVPR 2025
Many practical vision-language applications require models that understand negation, e.g., when using natural language to retrieve images which contain certain objects but not others. Despite advancements in vision-language models (VLMs) through large-scale training, their ability to comprehend negation remains underexplored. This study addresses the question: how well do current VLMs understand negation? We introduce NegBench, a new benchmark designed to evaluate negation understanding across 18 task variations and $79$k examples spanning image, video, and medical datasets. The benchmark consists of two core tasks designed to evaluate negation understanding in diverse multimodal settings: Retrieval with Negation and Multiple Choice Questions with Negated Captions. Our evaluation reveals that modern VLMs struggle significantly with negation, often performing at chance level. To address these shortcomings, we explore a data-centric approach wherein we finetune CLIP models on large-scale synthetic datasets containing millions of negated captions. We show that this approach can result in a 10% increase in recall on negated queries and a 28% boost in accuracy on multiple-choice questions with negated captions.
comment: CVPR 2025; project page: https://negbench.github.io
FG-CLIP: Fine-Grained Visual and Textual Alignment ICML 2025
Contrastive Language-Image Pre-training (CLIP) excels in multimodal tasks such as image-text retrieval and zero-shot classification but struggles with fine-grained understanding due to its focus on coarse-grained short captions. To address this, we propose Fine-Grained CLIP (FG-CLIP), which enhances fine-grained understanding through three key innovations. First, we leverage large multimodal models to generate 1.6 billion long caption-image pairs for capturing global-level semantic details. Second, a high-quality dataset is constructed with 12 million images and 40 million region-specific bounding boxes aligned with detailed captions to ensure precise, context-rich representations. Third, 10 million hard fine-grained negative samples are incorporated to improve the model's ability to distinguish subtle semantic differences. We construct a comprehensive dataset, termed FgGRN, by integrating high-quality region-specific annotations with challenging fine-grained negative samples. Corresponding training methods are meticulously designed for these data. Extensive experiments demonstrate that FG-CLIP outperforms the original CLIP and other state-of-the-art methods across various downstream tasks, including fine-grained understanding, open-vocabulary object detection, image-text retrieval, and general multimodal benchmarks. These results highlight FG-CLIP's effectiveness in capturing fine-grained image details and improving overall model performance. The related data, code, and models are available at https://github.com/360CVGroup/FG-CLIP.
comment: Accepted at ICML 2025
Automatic quality control in multi-centric fetal brain MRI super-resolution reconstruction
Quality control (QC) has long been considered essential to guarantee the reliability of neuroimaging studies. It is particularly important for fetal brain MRI, where acquisitions and image processing techniques are less standardized than in adult imaging. In this work, we focus on automated quality control of super-resolution reconstruction (SRR) volumes of fetal brain MRI, an important processing step where multiple stacks of thick 2D slices are registered together and combined to build a single, isotropic and artifact-free T2 weighted volume. We propose FetMRQC$_{SR}$, a machine-learning method that extracts more than 100 image quality metrics to predict image quality scores using a random forest model. This approach is well suited to a problem that is high dimensional, with highly heterogeneous data and small datasets. We validate FetMRQC$_{SR}$ in an out-of-domain (OOD) setting and report high performance (ROC AUC = 0.89), even when faced with data from an unknown site or SRR method. We also investigate failure cases and show that they occur in $45\%$ of the images due to ambiguous configurations for which the rating from the expert is arguable. These results are encouraging and illustrate how a non deep learning-based method like FetMRQC$_{SR}$ is well suited to this multifaceted problem. Our tool, along with all the code used to generate, train and evaluate the model are available at https://github.com/Medical-Image-Analysis-Laboratory/fetmrqc_sr/ .
comment: 11 pages, 3 figures
Brain Hematoma Marker Recognition Using Multitask Learning: SwinTransformer and Swin-Unet
This paper proposes a method MTL-Swin-Unet which is multi-task learning using transformers for classification and semantic segmentation. For spurious-correlation problems, this method allows us to enhance the image representation with two other image representations: representation obtained by semantic segmentation and representation obtained by image reconstruction. In our experiments, the proposed method outperformed in F-value measure than other classifiers when the test data included slices from the same patient (no covariate shift). Similarly, when the test data did not include slices from the same patient (covariate shift setting), the proposed method outperformed in AUC measure.
comment: 8 pages,4 figures
Schrödinger Diffusion Driven Signal Recovery in 3T BOLD fMRI Using Unmatched 7T Observations
Ultra-high-field (7 Tesla) BOLD fMRI offers exceptional detail in both spatial and temporal domains, along with robust signal-to-noise characteristics, making it a powerful modality for studying visual information processing in the brain. However, due to the limited accessibility of 7T scanners, the majority of neuroimaging studies are still conducted using 3T systems, which inherently suffer from reduced fidelity in both resolution and SNR. To mitigate this limitation, we introduce a new computational approach designed to enhance the quality of 3T BOLD fMRI acquisitions. Specifically, we project both 3T and 7T datasets, sourced from different individuals and experimental setups, into a shared low-dimensional representation space. Within this space, we employ a lightweight, unsupervised Schr\"odinger Bridge framework to infer a high-SNR, high-resolution counterpart of the 3T data, without relying on paired supervision. This methodology is evaluated across multiple fMRI retinotopy datasets, including synthetically generated samples, and demonstrates a marked improvement in the reliability and fit of population receptive field (pRF) models applied to the enhanced 3T outputs. Our findings suggest that it is feasible to computationally approximate 7T-level quality from standard 3T acquisitions.
Enhancing Scene Coordinate Regression with Efficient Keypoint Detection and Sequential Information
Scene Coordinate Regression (SCR) is a visual localization technique that utilizes deep neural networks (DNN) to directly regress 2D-3D correspondences for camera pose estimation. However, current SCR methods often face challenges in handling repetitive textures and meaningless areas due to their reliance on implicit triangulation. In this paper, we propose an efficient and accurate SCR system. Compared to existing SCR methods, we propose a unified architecture for both scene encoding and salient keypoint detection, allowing our system to prioritize the encoding of informative regions. This design significantly improves computational efficiency. Additionally, we introduce a mechanism that utilizes sequential information during both mapping and relocalization. The proposed method enhances the implicit triangulation, especially in environments with repetitive textures. Comprehensive experiments conducted across indoor and outdoor datasets demonstrate that the proposed system outperforms state-of-the-art (SOTA) SCR methods. Our single-frame relocalization mode improves the recall rate of our baseline by 6.4% and increases the running speed from 56Hz to 90Hz. Furthermore, our sequence-based mode increases the recall rate by 11% while maintaining the original efficiency.
comment: 8 pages, 6 figures
DreamO: A Unified Framework for Image Customization
Recently, extensive research on image customization (e.g., identity, subject, style, background, etc.) demonstrates strong customization capabilities in large-scale generative models. However, most approaches are designed for specific tasks, restricting their generalizability to combine different types of condition. Developing a unified framework for image customization remains an open challenge. In this paper, we present DreamO, an image customization framework designed to support a wide range of tasks while facilitating seamless integration of multiple conditions. Specifically, DreamO utilizes a diffusion transformer (DiT) framework to uniformly process input of different types. During training, we construct a large-scale training dataset that includes various customization tasks, and we introduce a feature routing constraint to facilitate the precise querying of relevant information from reference images. Additionally, we design a placeholder strategy that associates specific placeholders with conditions at particular positions, enabling control over the placement of conditions in the generated results. Moreover, we employ a progressive training strategy consisting of three stages: an initial stage focused on simple tasks with limited data to establish baseline consistency, a full-scale training stage to comprehensively enhance the customization capabilities, and a final quality alignment stage to correct quality biases introduced by low-quality data. Extensive experiments demonstrate that the proposed DreamO can effectively perform various image customization tasks with high quality and flexibly integrate different types of control conditions.
An Analysis of Data Transformation Effects on Segment Anything 2
Video object segmentation (VOS) is a critical task in the development of video perception and understanding. The Segment-Anything Model 2 (SAM 2), released by Meta AI, is the current state-of-the-art architecture for end-to-end VOS. SAM 2 performs very well on both clean video data and augmented data, and completely intelligent video perception requires an understanding of how this architecture is capable of achieving such quality results. To better understand how each step within the SAM 2 architecture permits high-quality video segmentation, a variety of complex video transformations are passed through the architecture, and the impact at each stage of the process is measured. It is observed that each progressive stage enables the filtering of complex transformation noise and the emphasis of the object of interest. Contributions include the creation of complex transformation video datasets, an analysis of how each stage of the SAM 2 architecture interprets these transformations, and visualizations of segmented objects through each stage. By better understanding how each model structure impacts overall video understanding, VOS development can work to improve real-world applicability and performance tracking, localizing, and segmenting objects despite complex cluttered scenes and obscurations.
comment: 11 pages, 30 figures
Web2Grasp: Learning Functional Grasps from Web Images of Hand-Object Interactions
Functional grasp is essential for enabling dexterous multi-finger robot hands to manipulate objects effectively. However, most prior work either focuses on power grasping, which simply involves holding an object still, or relies on costly teleoperated robot demonstrations to teach robots how to grasp each object functionally. Instead, we propose extracting human grasp information from web images since they depict natural and functional object interactions, thereby bypassing the need for curated demonstrations. We reconstruct human hand-object interaction (HOI) 3D meshes from RGB images, retarget the human hand to multi-finger robot hands, and align the noisy object mesh with its accurate 3D shape. We show that these relatively low-quality HOI data from inexpensive web sources can effectively train a functional grasping model. To further expand the grasp dataset for seen and unseen objects, we use the initially-trained grasping policy with web data in the IsaacGym simulator to generate physically feasible grasps while preserving functionality. We train the grasping model on 10 object categories and evaluate it on 9 unseen objects, including challenging items such as syringes, pens, spray bottles, and tongs, which are underrepresented in existing datasets. The model trained on the web HOI dataset, achieving a 75.8% success rate on seen objects and 61.8% across all objects in simulation, with a 6.7% improvement in success rate and a 1.8x increase in functionality ratings over baselines. Simulator-augmented data further boosts performance from 61.8% to 83.4%. The sim-to-real transfer to the LEAP Hand achieves a 85% success rate. Project website is at: https://web2grasp.github.io/.
Learning Phase Distortion with Selective State Space Models for Video Turbulence Mitigation CVPR 2025
Atmospheric turbulence is a major source of image degradation in long-range imaging systems. Although numerous deep learning-based turbulence mitigation (TM) methods have been proposed, many are slow, memory-hungry, and do not generalize well. In the spatial domain, methods based on convolutional operators have a limited receptive field, so they cannot handle a large spatial dependency required by turbulence. In the temporal domain, methods relying on self-attention can, in theory, leverage the lucky effects of turbulence, but their quadratic complexity makes it difficult to scale to many frames. Traditional recurrent aggregation methods face parallelization challenges. In this paper, we present a new TM method based on two concepts: (1) A turbulence mitigation network based on the Selective State Space Model (MambaTM). MambaTM provides a global receptive field in each layer across spatial and temporal dimensions while maintaining linear computational complexity. (2) Learned Latent Phase Distortion (LPD). LPD guides the state space model. Unlike classical Zernike-based representations of phase distortion, the new LPD map uniquely captures the actual effects of turbulence, significantly improving the model's capability to estimate degradation by reducing the ill-posedness. Our proposed method exceeds current state-of-the-art networks on various synthetic and real-world TM benchmarks with significantly faster inference speed.
comment: CVPR 2025 Highlight (extended), project page: https://xg416.github.io/MambaTM/
Assessing the Feasibility of Internet-Sourced Video for Automatic Cattle Lameness Detection
Cattle lameness is often caused by hoof injuries or interdigital dermatitis, leads to pain and significantly impacts essential physiological activities such as walking, feeding, and drinking. This study presents a deep learning-based model for detecting cattle lameness, sickness, or gait abnormalities using publicly available video data. The dataset consists of 50 unique videos from 40 individual cattle, recorded from various angles in both indoor and outdoor environments. Half of the dataset represents naturally walking (normal/non-lame) cattle, while the other half consists of cattle exhibiting gait abnormalities (lame). To enhance model robustness and generalizability, data augmentation was applied to the training data. The pre-processed videos were then classified using two deep learning models: ConvLSTM2D and 3D CNN. A comparative analysis of the results demonstrates strong classification performance. Specifically, the 3D CNN model achieved a video-level classification accuracy of 90%, with precision, recall, and f1-score of 90.9%, 90.9%, and 90.91% respectively. The ConvLSTM2D model exhibited a slightly lower accuracy of 85%. This study highlights the effectiveness of directly applying classification models to learn spatiotemporal features from video data, offering an alternative to traditional multi-stage approaches that typically involve object detection, pose estimation, and feature extraction. Besides, the findings demonstrate that the proposed deep learning models, particularly the 3D CNN, effectively classify and detect lameness in cattle while simplifying the processing pipeline.
Self-Supervised Learning for Robotic Leaf Manipulation: A Hybrid Geometric-Neural Approach
Automating leaf manipulation in agricultural settings faces significant challenges, including the variability of plant morphologies and deformable leaves. We propose a novel hybrid geometric-neural approach for autonomous leaf grasping that combines traditional computer vision with neural networks through self-supervised learning. Our method integrates YOLOv8 for instance segmentation and RAFT-Stereo for 3D depth estimation to build rich leaf representations, which feed into both a geometric feature scoring pipeline and a neural refinement module (GraspPointCNN). The key innovation is our confidence-weighted fusion mechanism that dynamically balances the contribution of each approach based on prediction certainty. Our self-supervised framework uses the geometric pipeline as an expert teacher to automatically generate training data. Experiments demonstrate that our approach achieves an 88.0% success rate in controlled environments and 84.7% in real greenhouse conditions, significantly outperforming both purely geometric (75.3%) and neural (60.2%) methods. This work establishes a new paradigm for agricultural robotics where domain expertise is seamlessly integrated with machine learning capabilities, providing a foundation for fully automated crop monitoring systems.
comment: 13 pages, 9 figures
Revisiting 16-bit Neural Network Training: A Practical Approach for Resource-Limited Learning
With the increasing complexity of machine learning models, managing computational resources like memory and processing power has become a critical concern. Mixed precision techniques, which leverage different numerical precisions during model training and inference to optimize resource usage, have been widely adopted. However, access to hardware that supports lower precision formats (e.g., FP8 or FP4) remains limited, especially for practitioners with hardware constraints. For many with limited resources, the available options are restricted to using 32-bit, 16-bit, or a combination of the two. While it is commonly believed that 16-bit precision can achieve results comparable to full (32-bit) precision, this study is the first to systematically validate this assumption through both rigorous theoretical analysis and extensive empirical evaluation. Our theoretical formalization of floating-point errors and classification tolerance provides new insights into the conditions under which 16-bit precision can approximate 32-bit results. This study fills a critical gap, proving for the first time that standalone 16-bit precision neural networks match 32-bit and mixed-precision in accuracy while boosting computational speed. Given the widespread availability of 16-bit across GPUs, these findings are especially valuable for machine learning practitioners with limited hardware resources to make informed decisions.
DiffCloud: Real-to-Sim from Point Clouds with Differentiable Simulation and Rendering of Deformable Objects
Research in manipulation of deformable objects is typically conducted on a limited range of scenarios, because handling each scenario on hardware takes significant effort. Realistic simulators with support for various types of deformations and interactions have the potential to speed up experimentation with novel tasks and algorithms. However, for highly deformable objects it is challenging to align the output of a simulator with the behavior of real objects. Manual tuning is not intuitive, hence automated methods are needed. We view this alignment problem as a joint perception-inference challenge and demonstrate how to use recent neural network architectures to successfully perform simulation parameter inference from real point clouds. We analyze the performance of various architectures, comparing their data and training requirements. Furthermore, we propose to leverage differentiable point cloud sampling and differentiable simulation to significantly reduce the time to achieve the alignment. We employ an efficient way to propagate gradients from point clouds to simulated meshes and further through to the physical simulation parameters, such as mass and stiffness. Experiments with highly deformable objects show that our method can achieve comparable or better alignment with real object behavior, while reducing the time needed to achieve this by more than an order of magnitude. Videos and supplementary material are available at https://diffcloud.github.io.
Error correcting 2D-3D cascaded network for myocardial infarct scar segmentation on late gadolinium enhancement cardiac magnetic resonance images
Late gadolinium enhancement (LGE) cardiac magnetic resonance (CMR) imaging is considered the in vivo reference standard for assessing infarct size (IS) and microvascular obstruction (MVO) in ST-elevation myocardial infarction (STEMI) patients. However, the exact quantification of those markers of myocardial infarct severity remains challenging and very time-consuming. As LGE distribution patterns can be quite complex and hard to delineate from the blood pool or epicardial fat, automatic segmentation of LGE CMR images is challenging. In this work, we propose a cascaded framework of two-dimensional and three-dimensional convolutional neural networks (CNNs) which enables to calculate the extent of myocardial infarction in a fully automated way. By artificially generating segmentation errors which are characteristic for 2D CNNs during training of the cascaded framework we are enforcing the detection and correction of 2D segmentation errors and hence improve the segmentation accuracy of the entire method. The proposed method was trained and evaluated on two publicly available datasets. We perform comparative experiments where we show that our framework outperforms state-of-the-art reference methods in segmentation of myocardial infarction. Furthermore, in extensive ablation studies we show the advantages that come with the proposed error correcting cascaded method. The code of this project is publicly available at https://github.com/matthi99/EcorC.git
EiHi Net: Out-of-Distribution Generalization Paradigm
This paper develops a new EiHi net to solve the out-of-distribution (OoD) generalization problem in deep learning. EiHi net is a model learning paradigm that can be blessed on any visual backbone. This paradigm can change the previous learning method of the deep model, namely find out correlations between inductive sample features and corresponding categories, which suffers from pseudo correlations between indecisive features and labels. We fuse SimCLR and VIC-Reg via explicitly and dynamically establishing the original - positive - negative sample pair as a minimal learning element, the deep model iteratively establishes a relationship close to the causal one between features and labels, while suppressing pseudo correlations. To further validate the proposed model, and strengthen the established causal relationships, we develop a human-in-the-loop strategy, with few guidance samples, to prune the representation space directly. Finally, it is shown that the developed EiHi net makes significant improvements in the most difficult and typical OoD dataset Nico, compared with the current SOTA results, without any domain ($e.g.$ background, irrelevant features) information.
Image and Video Processing
VIViT: Variable-Input Vision Transformer Framework for 3D MR Image Segmentation
Self-supervised pretrain techniques have been widely used to improve the downstream tasks' performance. However, real-world magnetic resonance (MR) studies usually consist of different sets of contrasts due to different acquisition protocols, which poses challenges for the current deep learning methods on large-scale pretrain and different downstream tasks with different input requirements, since these methods typically require a fixed set of input modalities or, contrasts. To address this challenge, we propose variable-input ViT (VIViT), a transformer-based framework designed for self-supervised pretraining and segmentation finetuning for variable contrasts in each study. With this ability, our approach can maximize the data availability in pretrain, and can transfer the learned knowledge from pretrain to downstream tasks despite variations in input requirements. We validate our method on brain infarct and brain tumor segmentation, where our method outperforms current CNN and ViT-based models with a mean Dice score of 0.624 and 0.883 respectively. These results highlight the efficacy of our design for better adaptability and performance on tasks with real-world heterogeneous MR data.
comment: 9 pages
A portable diagnosis model for Keratoconus using a smartphone
Keratoconus (KC) is a progressive corneal disorder characterized by localized thinning and protrusion, leading to visual distortion. While Placido disc-based topography remains a standard in clinical diagnostics, its dependence on specialized equipment limits accessibility. In this paper, we propose a portable, smartphone-based diagnostic framework that captures corneal reflections of a Placido disc displayed on a phone screen and applies a two-stage detection pipeline, then validate on 3D-printed emulated eyeball models that simulate normal, moderate, and severe KC stages based on anterior chamber depth (ACD). The first step of the two-stage detection pipeline is classifying different stages of KC with features including height and width of extracted reflections using weighted support vector machine (WSVM). It achieves a maximum accuracy of 92.93%, and maintains over 90% accuracy across multiple smartphone models, including the Galaxy Z Flip 3, iPhone 15 Pro, and iPhone 16 Pro. For the second step, we visualize the KC-affected protrusion regions on the corneas with color maps based on inter-disc distance, that provides an intuitive representation of disease severity and localization. Moreover, we validate the ability of the extracted features to differentiate between KC stages with ANOVA and Omega Squared, with significant p-values (e.g., $p < 10^{-6}$) and large effect sizes ($\\omega^2$ up to 0.8398) among classes.
ReSurgSAM2: Referring Segment Anything in Surgical Video via Credible Long-term Tracking MICCAI 2025
Surgical scene segmentation is critical in computer-assisted surgery and is vital for enhancing surgical quality and patient outcomes. Recently, referring surgical segmentation is emerging, given its advantage of providing surgeons with an interactive experience to segment the target object. However, existing methods are limited by low efficiency and short-term tracking, hindering their applicability in complex real-world surgical scenarios. In this paper, we introduce ReSurgSAM2, a two-stage surgical referring segmentation framework that leverages Segment Anything Model 2 to perform text-referred target detection, followed by tracking with reliable initial frame identification and diversity-driven long-term memory. For the detection stage, we propose a cross-modal spatial-temporal Mamba to generate precise detection and segmentation results. Based on these results, our credible initial frame selection strategy identifies the reliable frame for the subsequent tracking. Upon selecting the initial frame, our method transitions to the tracking stage, where it incorporates a diversity-driven memory mechanism that maintains a credible and diverse memory bank, ensuring consistent long-term tracking. Extensive experiments demonstrate that ReSurgSAM2 achieves substantial improvements in accuracy and efficiency compared to existing methods, operating in real-time at 61.2 FPS. Our code and datasets will be available at https://github.com/jinlab-imvr/ReSurgSAM2.
comment: Early accepted by MICCAI 2025
Towards Digital Twin in Flood Forecasting with Data Assimilation Satellite Earth Observations -- A Proof-of-Concept in the Alzette Catchment
Floods pose significant risks to human lives, infrastructure, and the environment. Timely and accurate flood forecasting plays a pivotal role in mitigating these risks. This study presents a proof-of-concept for a Digital Twin framework aimed at improving flood forecasting in the Alzette Catchment, Luxembourg. The approach integrates satellite-based Earth observations, specifically Sentinel-1 flood probability maps, into a particle filter-based data assimilation (DA) process to enhance flood predictions. By combining the GloFAS global flood monitoring and GloFAS streamflow forecasts products with DA using a high-resolution LISFLOOD-FP hydrodynamic model, the Digital Twin can provide daily flood forecasts for up to 30 days with reduced prediction uncertainties. Using the 2021 flood event as a case study, we evaluate the performance of the Digital Twin in assimilating EO data to refine hydraulic model simulations and issue accurate forecasts. While some limitations, such as uncertainties in GloFAS discharge forecasts, remain large, the approach successfully improves forecast accuracy compared to open-loop simulations. Future developments will focus on constructing more adaptively the hazard catalog, and reducing inherent uncertainties related to GloFAS streamflow forecasts and Sentinel-1 flood maps, to further enhance predictive capability. The framework demonstrates potential for advancing real-time flood forecasting and strengthening flood resilience.
comment: In preparation
SAR-GTR: Attributed Scattering Information Guided SAR Graph Transformer Recognition Algorithm
Utilizing electromagnetic scattering information for SAR data interpretation is currently a prominent research focus in the SAR interpretation domain. Graph Neural Networks (GNNs) can effectively integrate domain-specific physical knowledge and human prior knowledge, thereby alleviating challenges such as limited sample availability and poor generalization in SAR interpretation. In this study, we thoroughly investigate the electromagnetic inverse scattering information of single-channel SAR and re-examine the limitations of applying GNNs to SAR interpretation. We propose the SAR Graph Transformer Recognition Algorithm (SAR-GTR). SAR-GTR carefully considers the attributes and characteristics of different electromagnetic scattering parameters by distinguishing the mapping methods for discrete and continuous parameters, thereby avoiding information confusion and loss. Furthermore, the GTR combines GNNs with the Transformer mechanism and introduces an edge information enhancement channel to facilitate interactive learning of node and edge features, enabling the capture of robust and global structural characteristics of targets. Additionally, the GTR constructs a hierarchical topology-aware system through global node encoding and edge position encoding, fully exploiting the hierarchical structural information of targets. Finally, the effectiveness of the algorithm is validated using the ATRNet-STAR large-scale vehicle dataset.
GNCAF: A GNN-based Neighboring Context Aggregation Framework for Tertiary Lymphoid Structures Semantic Segmentation in WSI
Tertiary lymphoid structures (TLS) are organized clusters of immune cells, whose maturity and area can be quantified in whole slide image (WSI) for various prognostic tasks. Existing methods for assessing these characteristics typically rely on cell proxy tasks and require additional post-processing steps. In this work, We focus on a novel task-TLS Semantic Segmentation (TLS-SS)-which segments both the regions and maturation stages of TLS in WSI in an end-to-end manner. Due to the extensive scale of WSI and patch-based segmentation strategies, TLS-SS necessitates integrating from neighboring patches to guide target patch (target) segmentation. Previous techniques often employ on multi-resolution approaches, constraining the capacity to leverage the broader neighboring context while tend to preserve coarse-grained information. To address this, we propose a GNN-based Neighboring Context Aggregation Framework (GNCAF), which progressively aggregates multi-hop neighboring context from the target and employs a self-attention mechanism to guide the segmentation of the target. GNCAF can be integrated with various segmentation models to enhance their ability to perceive contextual information outside of the patch. We build two TLS-SS datasets, called TCGA-COAD and INHOUSE-PAAD, and make the former (comprising 225 WSIs and 5041 TLSs) publicly available. Experiments on these datasets demonstrate the superiority of GNCAF, achieving a maximum of 22.08% and 26.57% improvement in mF1 and mIoU, respectively. Additionally, we also validate the task scalability of GNCAF on segmentation of lymph node metastases.
An integrated language-vision foundation model for conversational diagnostics and triaging in primary eye care
Current deep learning models are mostly task specific and lack a user-friendly interface to operate. We present Meta-EyeFM, a multi-function foundation model that integrates a large language model (LLM) with vision foundation models (VFMs) for ocular disease assessment. Meta-EyeFM leverages a routing mechanism to enable accurate task-specific analysis based on text queries. Using Low Rank Adaptation, we fine-tuned our VFMs to detect ocular and systemic diseases, differentiate ocular disease severity, and identify common ocular signs. The model achieved 100% accuracy in routing fundus images to appropriate VFMs, which achieved $\ge$ 82.2% accuracy in disease detection, $\ge$ 89% in severity differentiation, $\ge$ 76% in sign identification. Meta-EyeFM was 11% to 43% more accurate than Gemini-1.5-flash and ChatGPT-4o LMMs in detecting various eye diseases and comparable to an ophthalmologist. This system offers enhanced usability and diagnostic performance, making it a valuable decision support tool for primary eye care or an online LLM for fundus evaluation.
Ultra Lowrate Image Compression with Semantic Residual Coding and Compression-aware Diffusion
Existing multimodal large model-based image compression frameworks often rely on a fragmented integration of semantic retrieval, latent compression, and generative models, resulting in suboptimal performance in both reconstruction fidelity and coding efficiency. To address these challenges, we propose a residual-guided ultra lowrate image compression named ResULIC, which incorporates residual signals into both semantic retrieval and the diffusion-based generation process. Specifically, we introduce Semantic Residual Coding (SRC) to capture the semantic disparity between the original image and its compressed latent representation. A perceptual fidelity optimizer is further applied for superior reconstruction quality. Additionally, we present the Compression-aware Diffusion Model (CDM), which establishes an optimal alignment between bitrates and diffusion time steps, improving compression-reconstruction synergy. Extensive experiments demonstrate the effectiveness of ResULIC, achieving superior objective and subjective performance compared to state-of-the-art diffusion-based methods with - 80.7%, -66.3% BD-rate saving in terms of LPIPS and FID. Project page is available at https: //njuvision.github.io/ResULIC/.
Skeleton-Guided Diffusion Model for Accurate Foot X-ray Synthesis in Hallux Valgus Diagnosis
Medical image synthesis plays a crucial role in providing anatomically accurate images for diagnosis and treatment. Hallux valgus, which affects approximately 19% of the global population, requires frequent weight-bearing X-rays for assessment, placing additional strain on both patients and healthcare providers. Existing X-ray models often struggle to balance image fidelity, skeletal consistency, and physical constraints, particularly in diffusion-based methods that lack skeletal guidance. We propose the Skeletal-Constrained Conditional Diffusion Model (SCCDM) and introduce KCC, a foot evaluation method utilizing skeletal landmarks. SCCDM incorporates multi-scale feature extraction and attention mechanisms, improving the Structural Similarity Index (SSIM) by 5.72% (0.794) and Peak Signal-to-Noise Ratio (PSNR) by 18.34% (21.40 dB). When combined with KCC, the model achieves an average score of 0.85, demonstrating strong clinical applicability. The code is available at https://github.com/midisec/SCCDM.
Fault Detection Method for Power Conversion Circuits Using Thermal Image and Convolutional Autoencoder
A fault detection method for power conversion circuits using thermal images and a convolutional autoencoder is presented. The autoencoder is trained on thermal images captured from a commercial power module at randomly varied load currents and augmented image2 generated through image processing techniques such as resizing, rotation, perspective transformation, and bright and contrast adjustment. Since the autoencoder is trained to output images identical to input only for normal samples, it reconstructs images similar to normal ones even when the input images containing faults. A small heater is attached to the circuit board to simulate a fault on a power module, and then thermal images were captured from different angles and positions, as well as various load currents to test the trained autoencoder model. The areas under the curve (AUC) were obtained to evaluate the proposed method. The results show the autoencoder model can detect anomalies with 100% accuracy under given conditions. The influence of hyperparameters such as the number of convolutional layers and image augmentation conditions on anomaly detection accuracy was also investigated.
Highly Undersampled MRI Reconstruction via a Single Posterior Sampling of Diffusion Models
Incoherent k-space under-sampling and deep learning-based reconstruction methods have shown great success in accelerating MRI. However, the performance of most previous methods will degrade dramatically under high acceleration factors, e.g., 8$\times$ or higher. Recently, denoising diffusion models (DM) have demonstrated promising results in solving this issue; however, one major drawback of the DM methods is the long inference time due to a dramatic number of iterative reverse posterior sampling steps. In this work, a Single Step Diffusion Model-based reconstruction framework, namely SSDM-MRI, is proposed for restoring MRI images from highly undersampled k-space. The proposed method achieves one-step reconstruction by first training a conditional DM and then iteratively distilling this model. Comprehensive experiments were conducted on both publicly available fastMRI images and an in-house multi-echo GRE (QSM) subject. Overall, the results showed that SSDM-MRI outperformed other methods in terms of numerical metrics (PSNR and SSIM), qualitative error maps, image fine details, and latent susceptibility information hidden in MRI phase images. In addition, the reconstruction time for a 320*320 brain slice of SSDM-MRI is only 0.45 second, which is only comparable to that of a simple U-net, making it a highly effective solution for MRI reconstruction tasks.
SaFARi: State-Space Models for Frame-Agnostic Representation
State-Space Models (SSMs) have re-emerged as a powerful tool for online function approximation, and as the backbone of machine learning models for long-range dependent data. However, to date, only a few polynomial bases have been explored for this purpose, and the state-of-the-art implementations were built upon the best of a few limited options. In this paper, we present a generalized method for building an SSM with any frame or basis, rather than being restricted to polynomials. This framework encompasses the approach known as HiPPO, but also permits an infinite diversity of other possible "species" within the SSM architecture. We dub this approach SaFARi: SSMs for Frame-Agnostic Representation.
comment: 13 pages, 5 figures
Intelligent Road Anomaly Detection with Real-time Notification System for Enhanced Road Safety
This study aims to improve transportation safety, especially traffic safety. Road damage anomalies such as potholes and cracks have emerged as a significant and recurring cause for accidents. To tackle this problem and improve road safety, a comprehensive system has been developed to detect potholes, cracks (e.g. alligator, transverse, longitudinal), classify their sizes, and transmit this data to the cloud for appropriate action by authorities. The system also broadcasts warning signals to nearby vehicles warning them if a severe anomaly is detected on the road. Moreover, the system can count road anomalies in real-time. It is emulated through the utilization of Raspberry Pi, a camera module, deep learning model, laptop, and cloud service. Deploying this innovative solution aims to proactively enhance road safety by notifying relevant authorities and drivers about the presence of potholes and cracks to take actions, thereby mitigating potential accidents arising from this prevalent road hazard leading to safer road conditions for the whole community.
Validation of Conformal Prediction in Cervical Atypia Classification
Deep learning based cervical cancer classification can potentially increase access to screening in low-resource regions. However, deep learning models are often overconfident and do not reliably reflect diagnostic uncertainty. Moreover, they are typically optimized to generate maximum-likelihood predictions, which fail to convey uncertainty or ambiguity in their results. Such challenges can be addressed using conformal prediction, a model-agnostic framework for generating prediction sets that contain likely classes for trained deep-learning models. The size of these prediction sets indicates model uncertainty, contracting as model confidence increases. However, existing conformal prediction evaluation primarily focuses on whether the prediction set includes or covers the true class, often overlooking the presence of extraneous classes. We argue that prediction sets should be truthful and valuable to end users, ensuring that the listed likely classes align with human expectations rather than being overly relaxed and including false positives or unlikely classes. In this study, we comprehensively validate conformal prediction sets using expert annotation sets collected from multiple annotators. We evaluate three conformal prediction approaches applied to three deep-learning models trained for cervical atypia classification. Our expert annotation-based analysis reveals that conventional coverage-based evaluations overestimate performance and that current conformal prediction methods often produce prediction sets that are not well aligned with human labels. Additionally, we explore the capabilities of the conformal prediction methods in identifying ambiguous and out-of-distribution data.
Total Variation-Based Image Decomposition and Denoising for Microscopy Images
Experimentally acquired microscopy images are unavoidably affected by the presence of noise and other unwanted signals, which degrade their quality and might hide relevant features. With the recent increase in image acquisition rate, modern denoising and restoration solutions become necessary. This study focuses on image decomposition and denoising of microscopy images through a workflow based on total variation (TV), addressing images obtained from various microscopy techniques, including atomic force microscopy (AFM), scanning tunneling microscopy (STM), and scanning electron microscopy (SEM). Our approach consists in restoring an image by extracting its unwanted signal components and subtracting them from the raw one, or by denoising it. We evaluate the performance of TV-$L^1$, Huber-ROF, and TGV-$L^1$ in achieving this goal in distinct study cases. Huber-ROF proved to be the most flexible one, while TGV-$L^1$ is the most suitable for denoising. Our results suggest a wider applicability of this method in microscopy, restricted not only to STM, AFM, and SEM images. The Python code used for this study is publicly available as part of AiSurf. It is designed to be integrated into experimental workflows for image acquisition or can be used to denoise previously acquired images.
Ultrasound Report Generation with Multimodal Large Language Models for Standardized Texts
Ultrasound (US) report generation is a challenging task due to the variability of US images, operator dependence, and the need for standardized text. Unlike X-ray and CT, US imaging lacks consistent datasets, making automation difficult. In this study, we propose a unified framework for multi-organ and multilingual US report generation, integrating fragment-based multilingual training and leveraging the standardized nature of US reports. By aligning modular text fragments with diverse imaging data and curating a bilingual English-Chinese dataset, the method achieves consistent and clinically accurate text generation across organ sites and languages. Fine-tuning with selective unfreezing of the vision transformer (ViT) further improves text-image alignment. Compared to the previous state-of-the-art KMVE method, our approach achieves relative gains of about 2\% in BLEU scores, approximately 3\% in ROUGE-L, and about 15\% in CIDEr, while significantly reducing errors such as missing or incorrect content. By unifying multi-organ and multi-language report generation into a single, scalable framework, this work demonstrates strong potential for real-world clinical workflows.
Ophora: A Large-Scale Data-Driven Text-Guided Ophthalmic Surgical Video Generation Model MICCAI25
In ophthalmic surgery, developing an AI system capable of interpreting surgical videos and predicting subsequent operations requires numerous ophthalmic surgical videos with high-quality annotations, which are difficult to collect due to privacy concerns and labor consumption. Text-guided video generation (T2V) emerges as a promising solution to overcome this issue by generating ophthalmic surgical videos based on surgeon instructions. In this paper, we present Ophora, a pioneering model that can generate ophthalmic surgical videos following natural language instructions. To construct Ophora, we first propose a Comprehensive Data Curation pipeline to convert narrative ophthalmic surgical videos into a large-scale, high-quality dataset comprising over 160K video-instruction pairs, Ophora-160K. Then, we propose a Progressive Video-Instruction Tuning scheme to transfer rich spatial-temporal knowledge from a T2V model pre-trained on natural video-text datasets for privacy-preserved ophthalmic surgical video generation based on Ophora-160K. Experiments on video quality evaluation via quantitative analysis and ophthalmologist feedback demonstrate that Ophora can generate realistic and reliable ophthalmic surgical videos based on surgeon instructions. We also validate the capability of Ophora for empowering downstream tasks of ophthalmic surgical workflow understanding. Code is available at https://github.com/mar-cry/Ophora.
comment: Early accepted in MICCAI25
Breast Cancer Histopathology Classification using CBAM-EfficientNetV2 with Transfer Learning
Breast cancer histopathology image classification is critical for early detection and improved patient outcomes. 1 This study introduces a novel approach leveraging EfficientNetV2 models, to improve feature extraction and focus on relevant tissue regions. The proposed models were evaluated on the BreakHis dataset across multiple magnification scales (40X, 100X, 200X, and 400X). 2 Among them, the EfficientNetV2-XL with CBAM achieved outstanding performance, reaching a peak accuracy of 99.01 percent and an F1-score of 98.31 percent at 400X magnification, outperforming state-of-the-art methods. 3 By integrating Contrast Limited Adaptive Histogram Equalization (CLAHE) for preprocessing and optimizing computational efficiency, this method demonstrates its suitability for real-time clinical deployment. 3 The results underscore the potential of attention-enhanced scalable architectures in advancing diagnostic precision for breast cancer detection.
Deep Representation Learning for Unsupervised Clustering of Myocardial Fiber Trajectories in Cardiac Diffusion Tensor Imaging
Understanding the complex myocardial architecture is critical for diagnosing and treating heart disease. However, existing methods often struggle to accurately capture this intricate structure from Diffusion Tensor Imaging (DTI) data, particularly due to the lack of ground truth labels and the ambiguous, intertwined nature of fiber trajectories. We present a novel deep learning framework for unsupervised clustering of myocardial fibers, providing a data-driven approach to identifying distinct fiber bundles. We uniquely combine a Bidirectional Long Short-Term Memory network to capture local sequential information along fibers, with a Transformer autoencoder to learn global shape features, with pointwise incorporation of essential anatomical context. Clustering these representations using a density-based algorithm identifies 33 to 62 robust clusters, successfully capturing the subtle distinctions in fiber trajectories with varying levels of granularity. Our framework offers a new, flexible, and quantitative way to analyze myocardial structure, achieving a level of delineation that, to our knowledge, has not been previously achieved, with potential applications in improving surgical planning, characterizing disease-related remodeling, and ultimately, advancing personalized cardiac care.
comment: 10 pages, 5 figures. An extended journal manuscript is in preparation
RT-GAN: Recurrent Temporal GAN for Adding Lightweight Temporal Consistency to Frame-Based Domain Translation Approaches MICCAI 2025
Fourteen million colonoscopies are performed annually just in the U.S. However, the videos from these colonoscopies are not saved due to storage constraints (each video from a high-definition colonoscope camera can be in tens of gigabytes). Instead, a few relevant individual frames are saved for documentation/reporting purposes and these are the frames on which most current colonoscopy AI models are trained on. While developing new unsupervised domain translation methods for colonoscopy (e.g. to translate between real optical and virtual/CT colonoscopy), it is thus typical to start with approaches that initially work for individual frames without temporal consistency. Once an individual-frame model has been finalized, additional contiguous frames are added with a modified deep learning architecture to train a new model from scratch for temporal consistency. This transition to temporally-consistent deep learning models, however, requires significantly more computational and memory resources for training. In this paper, we present a lightweight solution with a tunable temporal parameter, RT-GAN (Recurrent Temporal GAN), for adding temporal consistency to individual frame-based approaches that reduces training requirements by a factor of 5. We demonstrate the effectiveness of our approach on two challenging use cases in colonoscopy: haustral fold segmentation (indicative of missed surface) and realistic colonoscopy simulator video generation. We also release a first-of-its kind temporal dataset for colonoscopy for the above use cases. The datasets, accompanying code, and pretrained models will be made available on our Computational Endoscopy Platform GitHub (https://github.com/nadeemlab/CEP). The supplementary video is available at https://youtu.be/UMVP-uIXwWk.
comment: MICCAI 2025 Early Accept. First two authors contributed equally
GBT-SAM: Adapting a Foundational Deep Learning Model for Generalizable Brain Tumor Segmentation via Efficient Integration of Multi-Parametric MRI Data
Gliomas are aggressive brain tumors that require accurate imaging-based diagnosis, with segmentation playing a critical role in evaluating morphology and treatment decisions. Manual delineation of gliomas is time-consuming and prone to variability, motivating the use of deep learning to improve consistency and alleviate clinical workload. However, existing methods often fail to fully exploit the information available in multi-parametric MRI (mp-MRI), particularly inter-slice contextual features, and typically require considerable computational resources while lacking robustness across tumor type variations. We present GBT-SAM, a parameter-efficient deep learning framework that adapts the Segment Anything Model (SAM), a large-scale vision model, to volumetric mp-MRI data. GBT-SAM reduces input complexity by selecting fewer than 2.6\% of slices per scan while incorporating all four MRI modalities, preserving essential tumor-related information with minimal cost. Furthermore, our model is trained by a two-step fine-tuning strategy that incorporates a depth-aware module to capture inter-slice correlations and lightweight adaptation layers, resulting in just 6.5M trainable parameters, which is the lowest among SAM-based approaches. GBT-SAM achieves a Dice Score of 93.54 on the BraTS Adult Glioma dataset and demonstrates robust performance on Meningioma, Pediatric Glioma, and Sub-Saharan Glioma datasets. These results highlight GBT-SAM's potential as a computationally efficient and domain-robust framework for brain tumor segmentation using mp-MRI. Our code and models are available at https://github.com/vpulab/med-sam-brain .
High-Quality Spatial Reconstruction and Orthoimage Generation Using Efficient 2D Gaussian Splatting
Highly accurate geometric precision and dense image features characterize True Digital Orthophoto Maps (TDOMs), which are in great demand for applications such as urban planning, infrastructure management, and environmental monitoring.Traditional TDOM generation methods need sophisticated processes, such as Digital Surface Models (DSM) and occlusion detection, which are computationally expensive and prone to errors.This work presents an alternative technique rooted in 2D Gaussian Splatting (2DGS), free of explicit DSM and occlusion detection. With depth map generation, spatial information for every pixel within the TDOM is retrieved and can reconstruct the scene with high precision. Divide-and-conquer strategy achieves excellent GS training and rendering with high-resolution TDOMs at a lower resource cost, which preserves higher quality of rendering on complex terrain and thin structure without a decrease in efficiency. Experimental results demonstrate the efficiency of large-scale scene reconstruction and high-precision terrain modeling. This approach provides accurate spatial data, which assists users in better planning and decision-making based on maps.
Towards Anytime Optical Flow Estimation with Event Cameras
Event cameras respond to changes in log-brightness at the millisecond level, making them ideal for optical flow estimation. However, existing datasets from event cameras provide only low frame rate ground truth for optical flow, limiting the research potential of event-driven optical flow. To address this challenge, we introduce a low-latency event representation, Unified Voxel Grid, and propose EVA-Flow, an EVent-based Anytime Flow estimation network to produce high-frame-rate event optical flow with only low-frame-rate optical flow ground truth for supervision. Furthermore, we propose the Rectified Flow Warp Loss (RFWL) for the unsupervised assessment of intermediate optical flow. A comprehensive variety of experiments on MVSEC, DESC, and our EVA-FlowSet demonstrates that EVA-Flow achieves competitive performance, super-low-latency (5ms), time-dense motion estimation (200Hz), and strong generalization. Our code will be available at https://github.com/Yaozhuwa/EVA-Flow.
comment: Accepted to Sensors. Our code will be available at https://github.com/Yaozhuwa/EVA-Flow
Using Few-Shot Learning to Classify Primary Lung Cancer and Other Malignancy with Lung Metastasis in Cytological Imaging via Endobronchial Ultrasound Procedures
This study presents a computer-aided diagnosis (CAD) system to assist early detection of lung metastases during endobronchial ultrasound (EBUS) procedures, significantly reducing follow-up time and enabling timely treatment. Due to limited cytology images and morphological similarities among cells, classifying lung metastases is challenging, and existing research rarely targets this issue directly.To overcome data scarcity and improve classification, the authors propose a few-shot learning model using a hybrid pretrained backbone with fine-grained classification and contrastive learning. Parameter-efficient fine-tuning on augmented support sets enhances generalization and transferability. The model achieved 49.59% accuracy, outperforming existing methods. With 20 image samples, accuracy improved to 55.48%, showing strong potential for identifying rare or novel cancer types in low-data clinical environments.
Clinically inspired enhance Explainability and Interpretability of an AI-Tool for BCC diagnosis based on expert annotation
An AI tool has been developed to provide interpretable support for the diagnosis of BCC via teledermatology, thus speeding up referrals and optimizing resource utilization. The interpretability is provided in two ways: on the one hand, the main BCC dermoscopic patterns are found in the image to justify the BCC/Non BCC classification. Secondly, based on the common visual XAI Grad-CAM, a clinically inspired visual explanation is developed where the relevant features for diagnosis are located. Since there is no established ground truth for BCC dermoscopic features, a standard reference is inferred from the diagnosis of four dermatologists using an Expectation Maximization (EM) based algorithm. The results demonstrate significant improvements in classification accuracy and interpretability, positioning this approach as a valuable tool for early BCC detection and referral to dermatologists. The BCC/non-BCC classification achieved an accuracy rate of 90%. For Clinically-inspired XAI results, the detection of BCC patterns useful to clinicians reaches 99% accuracy. As for the Clinically-inspired Visual XAI results, the mean of the Grad-CAM normalized value within the manually segmented clinical features is 0.57, while outside this region it is 0.16. This indicates that the model struggles to accurately identify the regions of the BCC patterns. These results prove the ability of the AI tool to provide a useful explanation.
comment: 8 pages, 4 figures, 4 tables, under review
Decadal analysis of sea surface temperature patterns, climatology, and anomalies in temperate coastal waters with Landsat-8 TIRS observations
Sea surface temperature (SST) is a fundamental physical parameter characterising the thermal state of sea surface. Due to the intricate thermal interactions between land, sea, and atmosphere, the spatial gradients of SST in coastal waters often appear at finer spatial scales than those in open ocean waters. The Thermal Infrared Sensor (TIRS) onboard Landsat-8, with its 100-meter spatial resolution, offers a unique opportunity to uncover fine-scale coastal SST patterns that would otherwise be overlooked by coarser-resolution thermal sensors. In this study, we first analysed the spatiotemporal patterns of SST in South Australia's temperate coastal waters from 2014 to 2023 by developing an operational approach for SST retrieval from the Landsat-8 TIRS sensor. A buoy was deployed off the coast of Port Lincoln, South Australia, to validate the quality of SST retrievals. Then the daily baseline climatology of SST with 100 m resolution was constructed, which allowed for the detection and analysis of anomalous SST events. Our results suggest the following: (1) the satellite-derived SST data aligned well with the in-situ measured SST values; (2) the semi-enclosed, shallow regions of Upper Spencer Gulf and Upper St Vincent Gulf showed higher temperatures during summer and cooler temperatures during winter than waters closer to the open ocean, resulting in a higher seasonal variation in SST; (3) the near-shore shallow areas in Spencer Gulf and St Vincent Gulf, and regions surrounding Kangaroo Island, were identified to have a higher probability of SST anomalies compared to the rest of the study area; and (4) anomalous SST events were more likely to happen during the warm months than the cool months. We hope these findings would be helpful in supporting the fishing and aquaculture industries in the coastal waters of South Australia.
comment: Submitted to GIScience & Remote Sensing
Automatic quality control in multi-centric fetal brain MRI super-resolution reconstruction
Quality control (QC) has long been considered essential to guarantee the reliability of neuroimaging studies. It is particularly important for fetal brain MRI, where acquisitions and image processing techniques are less standardized than in adult imaging. In this work, we focus on automated quality control of super-resolution reconstruction (SRR) volumes of fetal brain MRI, an important processing step where multiple stacks of thick 2D slices are registered together and combined to build a single, isotropic and artifact-free T2 weighted volume. We propose FetMRQC$_{SR}$, a machine-learning method that extracts more than 100 image quality metrics to predict image quality scores using a random forest model. This approach is well suited to a problem that is high dimensional, with highly heterogeneous data and small datasets. We validate FetMRQC$_{SR}$ in an out-of-domain (OOD) setting and report high performance (ROC AUC = 0.89), even when faced with data from an unknown site or SRR method. We also investigate failure cases and show that they occur in $45\%$ of the images due to ambiguous configurations for which the rating from the expert is arguable. These results are encouraging and illustrate how a non deep learning-based method like FetMRQC$_{SR}$ is well suited to this multifaceted problem. Our tool, along with all the code used to generate, train and evaluate the model are available at https://github.com/Medical-Image-Analysis-Laboratory/fetmrqc_sr/ .
comment: 11 pages, 3 figures
Ptychographic Image Reconstruction from Limited Data via Score-Based Diffusion Models with Physics-Guidance SP 2025
Ptychography is a data-intensive computational imaging technique that achieves high spatial resolution over large fields of view. The technique involves scanning a coherent beam across overlapping regions and recording diffraction patterns. Conventional reconstruction algorithms require substantial overlap, increasing data volume and experimental time, reaching PiB-scale experimental data and weeks to month-long data acquisition times. To address this, we propose a reconstruction method employing a physics-guided score-based diffusion model. Our approach trains a diffusion model on representative object images to learn an object distribution prior. During reconstruction, we modify the reverse diffusion process to enforce data consistency, guiding reverse diffusion toward a physically plausible solution. This method requires a single pretraining phase, allowing it to generalize across varying scan overlap ratios and positions. Our results demonstrate that the proposed method achieves high-fidelity reconstructions with only a 20% overlap, while the widely employed rPIE method requires a 62% overlap to achieve similar accuracy. This represents a significant reduction in data requirements, offering an alternative to conventional techniques.
comment: Preprint submitted to IEEE MLSP 2025
TVC: Tokenized Video Compression with Ultra-Low Bitrate
Tokenized visual representations have shown great promise in image compression, yet their extension to video remains underexplored due to the challenges posed by complex temporal dynamics and stringent bitrate constraints. In this paper, we propose Tokenized Video Compression (TVC), the first token-based dual-stream video compression framework designed to operate effectively at ultra-low bitrates. TVC leverages the powerful Cosmos video tokenizer to extract both discrete and continuous token streams. The discrete tokens (i.e., code maps generated by FSQ) are partially masked using a strategic masking scheme, then compressed losslessly with a discrete checkerboard context model to reduce transmission overhead. The masked tokens are reconstructed by a decoder-only transformer with spatiotemporal token prediction. Meanwhile, the continuous tokens, produced via an autoencoder (AE), are quantized and compressed using a continuous checkerboard context model, providing complementary continuous information at ultra-low bitrate. At the Decoder side, both streams are fused using ControlNet, with multi-scale hierarchical integration to ensure high perceptual quality alongside strong fidelity in reconstruction. This work mitigates the long-standing skepticism about the practicality of tokenized video compression and opens up new avenues for semantics-aware, token-native video compression.
An Analysis of Data Transformation Effects on Segment Anything 2
Video object segmentation (VOS) is a critical task in the development of video perception and understanding. The Segment-Anything Model 2 (SAM 2), released by Meta AI, is the current state-of-the-art architecture for end-to-end VOS. SAM 2 performs very well on both clean video data and augmented data, and completely intelligent video perception requires an understanding of how this architecture is capable of achieving such quality results. To better understand how each step within the SAM 2 architecture permits high-quality video segmentation, a variety of complex video transformations are passed through the architecture, and the impact at each stage of the process is measured. It is observed that each progressive stage enables the filtering of complex transformation noise and the emphasis of the object of interest. Contributions include the creation of complex transformation video datasets, an analysis of how each stage of the SAM 2 architecture interprets these transformations, and visualizations of segmented objects through each stage. By better understanding how each model structure impacts overall video understanding, VOS development can work to improve real-world applicability and performance tracking, localizing, and segmenting objects despite complex cluttered scenes and obscurations.
comment: 11 pages, 30 figures
Learning Phase Distortion with Selective State Space Models for Video Turbulence Mitigation CVPR 2025
Atmospheric turbulence is a major source of image degradation in long-range imaging systems. Although numerous deep learning-based turbulence mitigation (TM) methods have been proposed, many are slow, memory-hungry, and do not generalize well. In the spatial domain, methods based on convolutional operators have a limited receptive field, so they cannot handle a large spatial dependency required by turbulence. In the temporal domain, methods relying on self-attention can, in theory, leverage the lucky effects of turbulence, but their quadratic complexity makes it difficult to scale to many frames. Traditional recurrent aggregation methods face parallelization challenges. In this paper, we present a new TM method based on two concepts: (1) A turbulence mitigation network based on the Selective State Space Model (MambaTM). MambaTM provides a global receptive field in each layer across spatial and temporal dimensions while maintaining linear computational complexity. (2) Learned Latent Phase Distortion (LPD). LPD guides the state space model. Unlike classical Zernike-based representations of phase distortion, the new LPD map uniquely captures the actual effects of turbulence, significantly improving the model's capability to estimate degradation by reducing the ill-posedness. Our proposed method exceeds current state-of-the-art networks on various synthetic and real-world TM benchmarks with significantly faster inference speed.
comment: CVPR 2025 Highlight (extended), project page: https://xg416.github.io/MambaTM/
Assessing the Feasibility of Internet-Sourced Video for Automatic Cattle Lameness Detection
Cattle lameness is often caused by hoof injuries or interdigital dermatitis, leads to pain and significantly impacts essential physiological activities such as walking, feeding, and drinking. This study presents a deep learning-based model for detecting cattle lameness, sickness, or gait abnormalities using publicly available video data. The dataset consists of 50 unique videos from 40 individual cattle, recorded from various angles in both indoor and outdoor environments. Half of the dataset represents naturally walking (normal/non-lame) cattle, while the other half consists of cattle exhibiting gait abnormalities (lame). To enhance model robustness and generalizability, data augmentation was applied to the training data. The pre-processed videos were then classified using two deep learning models: ConvLSTM2D and 3D CNN. A comparative analysis of the results demonstrates strong classification performance. Specifically, the 3D CNN model achieved a video-level classification accuracy of 90%, with precision, recall, and f1-score of 90.9%, 90.9%, and 90.91% respectively. The ConvLSTM2D model exhibited a slightly lower accuracy of 85%. This study highlights the effectiveness of directly applying classification models to learn spatiotemporal features from video data, offering an alternative to traditional multi-stage approaches that typically involve object detection, pose estimation, and feature extraction. Besides, the findings demonstrate that the proposed deep learning models, particularly the 3D CNN, effectively classify and detect lameness in cattle while simplifying the processing pipeline.
Error correcting 2D-3D cascaded network for myocardial infarct scar segmentation on late gadolinium enhancement cardiac magnetic resonance images
Late gadolinium enhancement (LGE) cardiac magnetic resonance (CMR) imaging is considered the in vivo reference standard for assessing infarct size (IS) and microvascular obstruction (MVO) in ST-elevation myocardial infarction (STEMI) patients. However, the exact quantification of those markers of myocardial infarct severity remains challenging and very time-consuming. As LGE distribution patterns can be quite complex and hard to delineate from the blood pool or epicardial fat, automatic segmentation of LGE CMR images is challenging. In this work, we propose a cascaded framework of two-dimensional and three-dimensional convolutional neural networks (CNNs) which enables to calculate the extent of myocardial infarction in a fully automated way. By artificially generating segmentation errors which are characteristic for 2D CNNs during training of the cascaded framework we are enforcing the detection and correction of 2D segmentation errors and hence improve the segmentation accuracy of the entire method. The proposed method was trained and evaluated on two publicly available datasets. We perform comparative experiments where we show that our framework outperforms state-of-the-art reference methods in segmentation of myocardial infarction. Furthermore, in extensive ablation studies we show the advantages that come with the proposed error correcting cascaded method. The code of this project is publicly available at https://github.com/matthi99/EcorC.git
Multimedia
Fast Text-to-Audio Generation with Adversarial Post-Training
Text-to-audio systems, while increasingly performant, are slow at inference time, thus making their latency unpractical for many creative applications. We present Adversarial Relativistic-Contrastive (ARC) post-training, the first adversarial acceleration algorithm for diffusion/flow models not based on distillation. While past adversarial post-training methods have struggled to compare against their expensive distillation counterparts, ARC post-training is a simple procedure that (1) extends a recent relativistic adversarial formulation to diffusion/flow post-training and (2) combines it with a novel contrastive discriminator objective to encourage better prompt adherence. We pair ARC post-training with a number optimizations to Stable Audio Open and build a model capable of generating $\approx$12s of 44.1kHz stereo audio in $\approx$75ms on an H100, and $\approx$7s on a mobile edge-device, the fastest text-to-audio model to our knowledge.
Large Language Models for Computer-Aided Design: A Survey
Large Language Models (LLMs) have seen rapid advancements in recent years, with models like ChatGPT and DeepSeek, showcasing their remarkable capabilities across diverse domains. While substantial research has been conducted on LLMs in various fields, a comprehensive review focusing on their integration with Computer-Aided Design (CAD) remains notably absent. CAD is the industry standard for 3D modeling and plays a vital role in the design and development of products across different industries. As the complexity of modern designs increases, the potential for LLMs to enhance and streamline CAD workflows presents an exciting frontier. This article presents the first systematic survey exploring the intersection of LLMs and CAD. We begin by outlining the industrial significance of CAD, highlighting the need for AI-driven innovation. Next, we provide a detailed overview of the foundation of LLMs. We also examine both closed-source LLMs as well as publicly available models. The core of this review focuses on the various applications of LLMs in CAD, providing a taxonomy of six key areas where these models are making considerable impact. Finally, we propose several promising future directions for further advancements, which offer vast opportunities for innovation and are poised to shape the future of CAD technology. Github: https://github.com/lichengzhanguom/LLMs-CAD-Survey-Taxonomy
Toward Accessible and Safe Live Streaming Using Distributed Content Filtering with MoQ ICME 2025
Live video streaming is increasingly popular on social media platforms. With the growth of live streaming comes an increased need for robust content moderation to remove dangerous, illegal, or otherwise objectionable content. Whereas video on demand distribution enables offline content analysis, live streaming imposes restrictions on latency for both analysis and distribution. In this paper, we present extensions to the in-progress Media Over QUIC Transport protocol that enable real-time content moderation in one-to-many video live streams. Importantly, our solution removes only the video segments that contain objectionable content, allowing playback resumption as soon as the stream conforms to content policies again. Content analysis tasks may be transparently distributed to arbitrary client devices. We implement and evaluate our system in the context of light strobe removal for photosensitive viewers, finding that streaming clients experience an increased latency of only one group-of-pictures duration.
comment: Accepted to the ICME 2025 LIVES workshop
FMNV: A Dataset of Media-Published News Videos for Fake News Detection
News media, particularly video-based platforms, have become deeply embed-ded in daily life, concurrently amplifying the risks of misinformation dissem-ination. Consequently, multimodal fake news detection has garnered signifi-cant research attention. However, existing datasets predominantly comprise user-generated videos characterized by crude editing and limited public en-gagement, whereas professionally crafted fake news videos disseminated by media outlets-often politically or virally motivated-pose substantially greater societal harm. To address this gap, we construct FMNV, a novel da-taset exclusively composed of news videos published by media organizations. Through empirical analysis of existing datasets and our curated collection, we categorize fake news videos into four distinct types. Building upon this taxonomy, we employ Large Language Models (LLMs) to automatically generate deceptive content by manipulating authentic media-published news videos. Furthermore, we propose FMNVD, a baseline model featuring a dual-stream architecture that integrates spatio-temporal motion features from a 3D ResNeXt-101 backbone and static visual semantics from CLIP. The two streams are fused via an attention-based mechanism, while co-attention modules refine the visual, textual, and audio features for effective multi-modal aggregation. Comparative experiments demonstrate both the generali-zation capability of FMNV across multiple baselines and the superior detec-tion efficacy of FMNVD. This work establishes critical benchmarks for de-tecting high-impact fake news in media ecosystems while advancing meth-odologies for cross-modal inconsistency analysis. Our dataset is available in https://github.com/DennisIW/FMNV.
Computation and Language
CodePDE: An Inference Framework for LLM-driven PDE Solver Generation
Partial differential equations (PDEs) are fundamental to modeling physical systems, yet solving them remains a complex challenge. Traditional numerical solvers rely on expert knowledge to implement and are computationally expensive, while neural-network-based solvers require large training datasets and often lack interpretability. In this work, we frame PDE solving as a code generation task and introduce CodePDE, the first inference framework for generating PDE solvers using large language models (LLMs). Leveraging advanced inference-time algorithms and scaling strategies, CodePDE unlocks critical capacities of LLM for PDE solving: reasoning, debugging, selfrefinement, and test-time scaling -- all without task-specific tuning. CodePDE achieves superhuman performance across a range of representative PDE problems. We also present a systematic empirical analysis of LLM generated solvers, analyzing their accuracy, efficiency, and numerical scheme choices. Our findings highlight the promise and the current limitations of LLMs in PDE solving, offering a new perspective on solver design and opportunities for future model development. Our code is available at https://github.com/LithiumDA/CodePDE.
HealthBench: Evaluating Large Language Models Towards Improved Human Health
We present HealthBench, an open-source benchmark measuring the performance and safety of large language models in healthcare. HealthBench consists of 5,000 multi-turn conversations between a model and an individual user or healthcare professional. Responses are evaluated using conversation-specific rubrics created by 262 physicians. Unlike previous multiple-choice or short-answer benchmarks, HealthBench enables realistic, open-ended evaluation through 48,562 unique rubric criteria spanning several health contexts (e.g., emergencies, transforming clinical data, global health) and behavioral dimensions (e.g., accuracy, instruction following, communication). HealthBench performance over the last two years reflects steady initial progress (compare GPT-3.5 Turbo's 16% to GPT-4o's 32%) and more rapid recent improvements (o3 scores 60%). Smaller models have especially improved: GPT-4.1 nano outperforms GPT-4o and is 25 times cheaper. We additionally release two HealthBench variations: HealthBench Consensus, which includes 34 particularly important dimensions of model behavior validated via physician consensus, and HealthBench Hard, where the current top score is 32%. We hope that HealthBench grounds progress towards model development and applications that benefit human health.
comment: Blog: https://openai.com/index/healthbench/ Code: https://github.com/openai/simple-evals
Aya Vision: Advancing the Frontier of Multilingual Multimodality
Building multimodal language models is fundamentally challenging: it requires aligning vision and language modalities, curating high-quality instruction data, and avoiding the degradation of existing text-only capabilities once vision is introduced. These difficulties are further magnified in the multilingual setting, where the need for multimodal data in different languages exacerbates existing data scarcity, machine translation often distorts meaning, and catastrophic forgetting is more pronounced. To address the aforementioned challenges, we introduce novel techniques spanning both data and modeling. First, we develop a synthetic annotation framework that curates high-quality, diverse multilingual multimodal instruction data, enabling Aya Vision models to produce natural, human-preferred responses to multimodal inputs across many languages. Complementing this, we propose a cross-modal model merging technique that mitigates catastrophic forgetting, effectively preserving text-only capabilities while simultaneously enhancing multimodal generative performance. Aya-Vision-8B achieves best-in-class performance compared to strong multimodal models such as Qwen-2.5-VL-7B, Pixtral-12B, and even much larger Llama-3.2-90B-Vision. We further scale this approach with Aya-Vision-32B, which outperforms models more than twice its size, such as Molmo-72B and LLaMA-3.2-90B-Vision. Our work advances multilingual progress on the multi-modal frontier, and provides insights into techniques that effectively bend the need for compute while delivering extremely high performance.
AC-Reason: Towards Theory-Guided Actual Causality Reasoning with Large Language Models
Actual causality (AC), a fundamental aspect of causal reasoning (CR), is responsible for attribution and responsibility assignment in real-world scenarios. However, existing LLM-based methods lack grounding in formal AC theory, resulting in limited interpretability. Therefore, we propose AC-Reason, a semi-formal reasoning framework that identifies causally relevant events within an AC scenario, infers the values of their formal causal factors (e.g., sufficiency, necessity, and normality), and answers AC queries via a theory-guided algorithm with explanations. While AC-Reason does not explicitly construct a causal graph, it operates over variables in the underlying causal structure to support principled reasoning. To enable comprehensive evaluation, we introduce AC-Bench, a new benchmark built upon and substantially extending Big-Bench Hard Causal Judgment (BBH-CJ). AC-Bench comprises ~1K carefully annotated samples, each with detailed reasoning steps and focuses solely on actual causation. The case study shows that synthesized samples in AC-Bench present greater challenges for LLMs. Extensive experiments on BBH-CJ and AC-Bench show that AC-Reason consistently improves LLM performance over baselines. On BBH-CJ, all tested LLMs surpass the average human rater accuracy of 69.60%, with GPT-4 + AC-Reason achieving 75.04%. On AC-Bench, GPT-4 + AC-Reason again achieves the highest accuracy of 71.82%. AC-Bench further enables fine-grained analysis of reasoning faithfulness, revealing that only Qwen-2.5-72B-Instruct, Claude-3.5-Sonnet, and GPT-4o exhibit faithful reasoning, whereas GPT-4 tends to exploit shortcuts. Finally, our ablation study proves that integrating AC theory into LLMs is highly effective, with the proposed algorithm contributing the most significant performance gains.
Probability Consistency in Large Language Models: Theoretical Foundations Meet Empirical Discrepancies
Can autoregressive large language models (LLMs) learn consistent probability distributions when trained on sequences in different token orders? We prove formally that for any well-defined probability distribution, sequence perplexity is invariant under any factorization, including forward, backward, or arbitrary permutations. This result establishes a rigorous theoretical foundation for studying how LLMs learn from data and defines principled protocols for empirical evaluation. Applying these protocols, we show that prior studies examining ordering effects suffer from critical methodological flaws. We retrain GPT-2 models across forward, backward, and arbitrary permuted orders on scientific text. We find systematic deviations from theoretical invariance across all orderings with arbitrary permutations strongly deviating from both forward and backward models, which largely (but not completely) agreed with one another. Deviations were traceable to differences in self-attention, reflecting positional and locality biases in processing. Our theoretical and empirical results provide novel avenues for understanding positional biases in LLMs and suggest methods for detecting when LLMs' probability distributions are inconsistent and therefore untrustworthy.
NurValues: Real-World Nursing Values Evaluation for Large Language Models in Clinical Context
This work introduces the first benchmark for nursing value alignment, consisting of five core value dimensions distilled from international nursing codes: Altruism, Human Dignity, Integrity, Justice, and Professionalism. The benchmark comprises 1,100 real-world nursing behavior instances collected through a five-month longitudinal field study across three hospitals of varying tiers. These instances are annotated by five clinical nurses and then augmented with LLM-generated counterfactuals with reversed ethic polarity. Each original case is paired with a value-aligned and a value-violating version, resulting in 2,200 labeled instances that constitute the Easy-Level dataset. To increase adversarial complexity, each instance is further transformed into a dialogue-based format that embeds contextual cues and subtle misleading signals, yielding a Hard-Level dataset. We evaluate 23 state-of-the-art (SoTA) LLMs on their alignment with nursing values. Our findings reveal three key insights: (1) DeepSeek-V3 achieves the highest performance on the Easy-Level dataset (94.55), where Claude 3.5 Sonnet outperforms other models on the Hard-Level dataset (89.43), significantly surpassing the medical LLMs; (2) Justice is consistently the most difficult nursing value dimension to evaluate; and (3) in-context learning significantly improves alignment. This work aims to provide a foundation for value-sensitive LLMs development in clinical settings. The dataset and the code are available at https://huggingface.co/datasets/Ben012345/NurValues.
comment: 25 pages, 10 figures, 16 tables
Memorization-Compression Cycles Improve Generalization
We prove theoretically that generalization improves not only through data scaling but also by compressing internal representations. To operationalize this insight, we introduce the Information Bottleneck Language Modeling (IBLM) objective, which reframes language modeling as a constrained optimization problem: minimizing representation entropy subject to optimal prediction performance. Empirically, we observe an emergent memorization-compression cycle during LLM pretraining, evidenced by oscillation positive/negative gradient alignment between cross-entropy and Matrix-Based Entropy (MBE), a measure of representation entropy. This pattern closely mirrors the predictive-compressive trade-off prescribed by IBLM and also parallels the biological alternation between awake learning and sleep consolidation. Motivated by this observation, we propose Gated Phase Transition (GAPT), a training algorithm that adaptively switches between memorization and compression phases. When applied to GPT-2 pretraining on FineWeb dataset, GAPT reduces MBE by 50% and improves cross-entropy by 4.8%. GAPT improves OOD generalizatino by 35% in a pretraining task on arithmetic multiplication. In a setting designed to simulate catastrophic forgetting, GAPT reduces interference by compressing and separating representations, achieving a 97% improvement in separation - paralleling the functional role of sleep consolidation.
comment: 12 pages, 6 figures
LLM-based Prompt Ensemble for Reliable Medical Entity Recognition from EHRs
Electronic Health Records (EHRs) are digital records of patient information, often containing unstructured clinical text. Named Entity Recognition (NER) is essential in EHRs for extracting key medical entities like problems, tests, and treatments to support downstream clinical applications. This paper explores prompt-based medical entity recognition using large language models (LLMs), specifically GPT-4o and DeepSeek-R1, guided by various prompt engineering techniques, including zero-shot, few-shot, and an ensemble approach. Among all strategies, GPT-4o with prompt ensemble achieved the highest classification performance with an F1-score of 0.95 and recall of 0.98, outperforming DeepSeek-R1 on the task. The ensemble method improved reliability by aggregating outputs through embedding-based similarity and majority voting.
comment: IEEE 26th International Conference on Information Reuse and Integration for Data Science (IRI 2025), San Jose, CA, USA
Adaptive Schema-aware Event Extraction with Retrieval-Augmented Generation
Event extraction (EE) is a fundamental task in natural language processing (NLP) that involves identifying and extracting event information from unstructured text. Effective EE in real-world scenarios requires two key steps: selecting appropriate schemas from hundreds of candidates and executing the extraction process. Existing research exhibits two critical gaps: (1) the rigid schema fixation in existing pipeline systems, and (2) the absence of benchmarks for evaluating joint schema matching and extraction. Although large language models (LLMs) offer potential solutions, their schema hallucination tendencies and context window limitations pose challenges for practical deployment. In response, we propose Adaptive Schema-aware Event Extraction (ASEE), a novel paradigm combining schema paraphrasing with schema retrieval-augmented generation. ASEE adeptly retrieves paraphrased schemas and accurately generates targeted structures. To facilitate rigorous evaluation, we construct the Multi-Dimensional Schema-aware Event Extraction (MD-SEE) benchmark, which systematically consolidates 12 datasets across diverse domains, complexity levels, and language settings. Extensive evaluations on MD-SEE show that our proposed ASEE demonstrates strong adaptability across various scenarios, significantly improving the accuracy of event extraction.
comment: 15 pages, 3 figures
Revealing economic facts: LLMs know more than they say
We investigate whether the hidden states of large language models (LLMs) can be used to estimate and impute economic and financial statistics. Focusing on county-level (e.g. unemployment) and firm-level (e.g. total assets) variables, we show that a simple linear model trained on the hidden states of open-source LLMs outperforms the models' text outputs. This suggests that hidden states capture richer economic information than the responses of the LLMs reveal directly. A learning curve analysis indicates that only a few dozen labelled examples are sufficient for training. We also propose a transfer learning method that improves estimation accuracy without requiring any labelled data for the target variable. Finally, we demonstrate the practical utility of hidden-state representations in super-resolution and data imputation tasks.
comment: 34 pages, 17 figures
Scaling Context, Not Parameters: Training a Compact 7B Language Model for Efficient Long-Context Processing ACL 2025
We present MegaBeam-Mistral-7B, a language model that supports 512K-token context length. Our work addresses practical limitations in long-context training, supporting real-world tasks such as compliance monitoring and verification. Evaluated on three long-context benchmarks, our 7B-parameter model demonstrates superior in-context learning performance on HELMET and robust retrieval and tracing capability on RULER. It is currently the only open model to achieve competitive long-range reasoning on BABILong at 512K context length without RAG or targeted fine-tuning. Released as fully open source under the Apache 2.0 license, the model has been downloaded over 100,000 times on Hugging Face. Model available at: https://huggingface.co/aws-prototyping/MegaBeam-Mistral-7B-512k
comment: 8 pages, 6 figures, ACL 2025 (Industry Track)
TRAIL: Trace Reasoning and Agentic Issue Localization
The increasing adoption of agentic workflows across diverse domains brings a critical need to scalably and systematically evaluate the complex traces these systems generate. Current evaluation methods depend on manual, domain-specific human analysis of lengthy workflow traces - an approach that does not scale with the growing complexity and volume of agentic outputs. Error analysis in these settings is further complicated by the interplay of external tool outputs and language model reasoning, making it more challenging than traditional software debugging. In this work, we (1) articulate the need for robust and dynamic evaluation methods for agentic workflow traces, (2) introduce a formal taxonomy of error types encountered in agentic systems, and (3) present a set of 148 large human-annotated traces (TRAIL) constructed using this taxonomy and grounded in established agentic benchmarks. To ensure ecological validity, we curate traces from both single and multi-agent systems, focusing on real-world applications such as software engineering and open-world information retrieval. Our evaluations reveal that modern long context LLMs perform poorly at trace debugging, with the best Gemini-2.5-pro model scoring a mere 11% on TRAIL. Our dataset and code are made publicly available to support and accelerate future research in scalable evaluation for agentic workflows.
comment: Dataset link: https://huggingface.co/datasets/PatronusAI/TRAIL
Visually Guided Decoding: Gradient-Free Hard Prompt Inversion with Language Models ICLR 2025
Text-to-image generative models like DALL-E and Stable Diffusion have revolutionized visual content creation across various applications, including advertising, personalized media, and design prototyping. However, crafting effective textual prompts to guide these models remains challenging, often requiring extensive trial and error. Existing prompt inversion approaches, such as soft and hard prompt techniques, are not so effective due to the limited interpretability and incoherent prompt generation. To address these issues, we propose Visually Guided Decoding (VGD), a gradient-free approach that leverages large language models (LLMs) and CLIP-based guidance to generate coherent and semantically aligned prompts. In essence, VGD utilizes the robust text generation capabilities of LLMs to produce human-readable prompts. Further, by employing CLIP scores to ensure alignment with user-specified visual concepts, VGD enhances the interpretability, generalization, and flexibility of prompt generation without the need for additional training. Our experiments demonstrate that VGD outperforms existing prompt inversion techniques in generating understandable and contextually relevant prompts, facilitating more intuitive and controllable interactions with text-to-image models.
comment: ICLR 2025
Automatic Task Detection and Heterogeneous LLM Speculative Decoding
Speculative decoding, which combines a draft model with a target model, has emerged as an effective approach to accelerate large language model (LLM) inference. However, existing methods often face a trade-off between the acceptance rate and decoding speed in downstream tasks due to the limited capacity of the draft model, making it difficult to ensure efficiency across diverse tasks. To address this problem, we propose a speculative decoding algorithm tailored for downstream task optimization. It includes an automatic task partitioning and assigning method, which automatically categorizes downstream tasks into different sub-tasks and assigns them to a set of heterogeneous draft models. Each draft model is aligned with the target model using task-specific data, thereby enhancing the consistency of inference results. In addition, our proposed method incorporates an online lightweight prompt classifier to dynamically route prompts to the appropriate draft model. Experimental results demonstrate that the proposed method improves draft accuracy by 6% to 50% over vanilla speculative decoding, while achieving a speedup of 1.10x to 2.64x in LLM inference.
comment: 10 pages, 10 figures, 2 tables
Enhancing Thyroid Cytology Diagnosis with RAG-Optimized LLMs and Pa-thology Foundation Models
Advancements in artificial intelligence (AI) are transforming pathology by integrat-ing large language models (LLMs) with retrieval-augmented generation (RAG) and domain-specific foundation models. This study explores the application of RAG-enhanced LLMs coupled with pathology foundation models for thyroid cytology diagnosis, addressing challenges in cytological interpretation, standardization, and diagnostic accuracy. By leveraging a curated knowledge base, RAG facilitates dy-namic retrieval of relevant case studies, diagnostic criteria, and expert interpreta-tion, improving the contextual understanding of LLMs. Meanwhile, pathology foun-dation models, trained on high-resolution pathology images, refine feature extrac-tion and classification capabilities. The fusion of these AI-driven approaches en-hances diagnostic consistency, reduces variability, and supports pathologists in dis-tinguishing benign from malignant thyroid lesions. Our results demonstrate that integrating RAG with pathology-specific LLMs significantly improves diagnostic efficiency and interpretability, paving the way for AI-assisted thyroid cytopathology, with foundation model UNI achieving AUC 0.73-0.93 for correct prediction of surgi-cal pathology diagnosis from thyroid cytology samples.
Small but Significant: On the Promise of Small Language Models for Accessible AIED
GPT has become nearly synonymous with large language models (LLMs), an increasingly popular term in AIED proceedings. A simple keyword-based search reveals that 61% of the 76 long and short papers presented at AIED 2024 describe novel solutions using LLMs to address some of the long-standing challenges in education, and 43% specifically mention GPT. Although LLMs pioneered by GPT create exciting opportunities to strengthen the impact of AI on education, we argue that the field's predominant focus on GPT and other resource-intensive LLMs (with more than 10B parameters) risks neglecting the potential impact that small language models (SLMs) can make in providing resource-constrained institutions with equitable and affordable access to high-quality AI tools. Supported by positive results on knowledge component (KC) discovery, a critical challenge in AIED, we demonstrate that SLMs such as Phi-2 can produce an effective solution without elaborate prompting strategies. Hence, we call for more attention to developing SLM-based AIED approaches.
comment: This vision paper advocates using small language models (e.g., Phi-2) in AI for education (AIED)
Are We Paying Attention to Her? Investigating Gender Disambiguation and Attention in Machine Translation
While gender bias in modern Neural Machine Translation (NMT) systems has received much attention, traditional evaluation metrics do not to fully capture the extent to which these systems integrate contextual gender cues. We propose a novel evaluation metric called Minimal Pair Accuracy (MPA), which measures the reliance of models on gender cues for gender disambiguation. MPA is designed to go beyond surface-level gender accuracy metrics by focusing on whether models adapt to gender cues in minimal pairs -- sentence pairs that differ solely in the gendered pronoun, namely the explicit indicator of the target's entity gender in the source language (EN). We evaluate a number of NMT models on the English-Italian (EN--IT) language pair using this metric, we show that they ignore available gender cues in most cases in favor of (statistical) stereotypical gender interpretation. We further show that in anti-stereotypical cases, these models tend to more consistently take masculine gender cues into account while ignoring the feminine cues. Furthermore, we analyze the attention head weights in the encoder component and show that while all models encode gender information to some extent, masculine cues elicit a more diffused response compared to the more concentrated and specialized responses to feminine gender cues.
Reassessing Graph Linearization for Sequence-to-sequence AMR Parsing: On the Advantages and Limitations of Triple-Based Encoding EMNLP 2025
Sequence-to-sequence models are widely used to train Abstract Meaning Representation (Banarescu et al., 2013, AMR) parsers. To train such models, AMR graphs have to be linearized into a one-line text format. While Penman encoding is typically used for this purpose, we argue that it has limitations: (1) for deep graphs, some closely related nodes are located far apart in the linearized text (2) Penman's tree-based encoding necessitates inverse roles to handle node re-entrancy, doubling the number of relation types to predict. To address these issues, we propose a triple-based linearization method and compare its efficiency with Penman linearization. Although triples are well suited to represent a graph, our results suggest room for improvement in triple encoding to better compete with Penman's concise and explicit representation of a nested graph structure.
comment: published at Insights from Negative Results in NLP (workshop EMNLP 2025)
LCES: Zero-shot Automated Essay Scoring via Pairwise Comparisons Using Large Language Models
Recent advances in large language models (LLMs) have enabled zero-shot automated essay scoring (AES), providing a promising way to reduce the cost and effort of essay scoring in comparison with manual grading. However, most existing zero-shot approaches rely on LLMs to directly generate absolute scores, which often diverge from human evaluations owing to model biases and inconsistent scoring. To address these limitations, we propose LLM-based Comparative Essay Scoring (LCES), a method that formulates AES as a pairwise comparison task. Specifically, we instruct LLMs to judge which of two essays is better, collect many such comparisons, and convert them into continuous scores. Considering that the number of possible comparisons grows quadratically with the number of essays, we improve scalability by employing RankNet to efficiently transform LLM preferences into scalar scores. Experiments using AES benchmark datasets show that LCES outperforms conventional zero-shot methods in accuracy while maintaining computational efficiency. Moreover, LCES is robust across different LLM backbones, highlighting its applicability to real-world zero-shot AES.
comment: 14 pages, 4 figures
Judging the Judges: Can Large Vision-Language Models Fairly Evaluate Chart Comprehension and Reasoning? ACL 2025
Charts are ubiquitous as they help people understand and reason with data. Recently, various downstream tasks, such as chart question answering, chart2text, and fact-checking, have emerged. Large Vision-Language Models (LVLMs) show promise in tackling these tasks, but their evaluation is costly and time-consuming, limiting real-world deployment. While using LVLMs as judges to assess the chart comprehension capabilities of other LVLMs could streamline evaluation processes, challenges like proprietary datasets, restricted access to powerful models, and evaluation costs hinder their adoption in industrial settings. To this end, we present a comprehensive evaluation of 13 open-source LVLMs as judges for diverse chart comprehension and reasoning tasks. We design both pairwise and pointwise evaluation tasks covering criteria like factual correctness, informativeness, and relevancy. Additionally, we analyze LVLM judges based on format adherence, positional consistency, length bias, and instruction-following. We focus on cost-effective LVLMs (<10B parameters) suitable for both research and commercial use, following a standardized evaluation protocol and rubric to measure the LVLM judge's accuracy. Experimental results reveal notable variability: while some open LVLM judges achieve GPT-4-level evaluation performance (about 80% agreement with GPT-4 judgments), others struggle (below ~10% agreement). Our findings highlight that state-of-the-art open-source LVLMs can serve as cost-effective automatic evaluators for chart-related tasks, though biases such as positional preference and length bias persist.
comment: Accepted at ACL 2025 Industry Track
Large Language Models Meet Stance Detection: A Survey of Tasks, Methods, Applications, Challenges and Future Directions
Stance detection is essential for understanding subjective content across various platforms such as social media, news articles, and online reviews. Recent advances in Large Language Models (LLMs) have revolutionized stance detection by introducing novel capabilities in contextual understanding, cross-domain generalization, and multimodal analysis. Despite these progressions, existing surveys often lack comprehensive coverage of approaches that specifically leverage LLMs for stance detection. To bridge this critical gap, our review article conducts a systematic analysis of stance detection, comprehensively examining recent advancements of LLMs transforming the field, including foundational concepts, methodologies, datasets, applications, and emerging challenges. We present a novel taxonomy for LLM-based stance detection approaches, structured along three key dimensions: 1) learning methods, including supervised, unsupervised, few-shot, and zero-shot; 2) data modalities, such as unimodal, multimodal, and hybrid; and 3) target relationships, encompassing in-target, cross-target, and multi-target scenarios. Furthermore, we discuss the evaluation techniques and analyze benchmark datasets and performance trends, highlighting the strengths and limitations of different architectures. Key applications in misinformation detection, political analysis, public health monitoring, and social media moderation are discussed. Finally, we identify critical challenges such as implicit stance expression, cultural biases, and computational constraints, while outlining promising future directions, including explainable stance reasoning, low-resource adaptation, and real-time deployment frameworks. Our survey highlights emerging trends, open challenges, and future directions to guide researchers and practitioners in developing next-generation stance detection systems powered by large language models.
RepCali: High Efficient Fine-tuning Via Representation Calibration in Latent Space for Pre-trained Language Models
Fine-tuning pre-trained language models (PLMs) has become a dominant paradigm in applying PLMs to downstream tasks. However, with limited fine-tuning, PLMs still struggle with the discrepancies between the representation obtained from the PLMs' encoder and the optimal input to the PLMs' decoder. This paper tackles this challenge by learning to calibrate the representation of PLMs in the latent space. In the proposed representation calibration method (RepCali), we integrate a specific calibration block to the latent space after the encoder and use the calibrated output as the decoder input. The merits of the proposed RepCali include its universality to all PLMs with encoder-decoder architectures, its plug-and-play nature, and ease of implementation. Extensive experiments on 25 PLM-based models across 8 tasks (including both English and Chinese datasets) demonstrate that the proposed RepCali offers desirable enhancements to PLMs (including LLMs) and significantly improves the performance of downstream tasks. Comparison experiments across 4 benchmark tasks indicate that RepCali is superior to the representative fine-tuning baselines.
comment: 13 pages, 4 figures
IterKey: Iterative Keyword Generation with LLMs for Enhanced Retrieval Augmented Generation
Retrieval-Augmented Generation (RAG) has emerged as a way to complement the in-context knowledge of Large Language Models (LLMs) by integrating external documents. However, real-world applications demand not only accuracy but also interpretability. While dense retrieval methods provide high accuracy, they lack interpretability; conversely, sparse retrieval methods offer transparency but often fail to capture the full intent of queries due to their reliance on keyword matching. To address these issues, we introduce IterKey, an LLM-driven iterative keyword generation framework that enhances RAG via sparse retrieval. IterKey consists of three LLM-driven stages: generating keywords for retrieval, generating answers based on retrieved documents, and validating the answers. If validation fails, the process iteratively repeats with refined keywords. Across four QA tasks, experimental results show that IterKey achieves 5% to 20% accuracy improvements over BM25-based RAG and simple baselines. Its performance is comparable to dense retrieval-based RAG and prior iterative query refinement methods using dense models. In summary, IterKey is a novel BM25-based approach leveraging LLMs to iteratively refine RAG, effectively balancing accuracy with interpretability.
Optimizing Retrieval-Augmented Generation: Analysis of Hyperparameter Impact on Performance and Efficiency
Large language models achieve high task performance yet often hallucinate or rely on outdated knowledge. Retrieval-augmented generation (RAG) addresses these gaps by coupling generation with external search. We analyse how hyperparameters influence speed and quality in RAG systems, covering Chroma and Faiss vector stores, chunking policies, cross-encoder re-ranking, and temperature, and we evaluate six metrics: faithfulness, answer correctness, answer relevancy, context precision, context recall, and answer similarity. Chroma processes queries 13% faster, whereas Faiss yields higher retrieval precision, revealing a clear speed-accuracy trade-off. Naive fixed-length chunking with small windows and minimal overlap outperforms semantic segmentation while remaining the quickest option. Re-ranking provides modest gains in retrieval quality yet increases runtime by roughly a factor of 5, so its usefulness depends on latency constraints. These results help practitioners balance computational cost and accuracy when tuning RAG systems for transparent, up-to-date responses. Finally, we re-evaluate the top configurations with a corrective RAG workflow and show that their advantages persist when the model can iteratively request additional evidence. We obtain a near-perfect context precision (99%), which demonstrates that RAG systems can achieve extremely high retrieval accuracy with the right combination of hyperparameters, with significant implications for applications where retrieval quality directly impacts downstream task performance, such as clinical decision support in healthcare.
A document processing pipeline for the construction of a dataset for topic modeling based on the judgments of the Italian Supreme Court
Topic modeling in Italian legal research is hindered by the lack of public datasets, limiting the analysis of legal themes in Supreme Court judgments. To address this, we developed a document processing pipeline that produces an anonymized dataset optimized for topic modeling. The pipeline integrates document layout analysis (YOLOv8x), optical character recognition, and text anonymization. The DLA module achieved a mAP@50 of 0.964 and a mAP@50-95 of 0.800. The OCR detector reached a mAP@50-95 of 0.9022, and the text recognizer (TrOCR) obtained a character error rate of 0.0047 and a word error rate of 0.0248. Compared to OCR-only methods, our dataset improved topic modeling with a diversity score of 0.6198 and a coherence score of 0.6638. We applied BERTopic to extract topics and used large language models to generate labels and summaries. Outputs were evaluated against domain expert interpretations. Claude Sonnet 3.7 achieved a BERTScore F1 of 0.8119 for labeling and 0.9130 for summarization.
comment: 51 pages
Hakim: Farsi Text Embedding Model
Recent advancements in text embedding have significantly improved natural language understanding across many languages, yet Persian remains notably underrepresented in large-scale embedding research. In this paper, we present Hakim, a novel state-of-the-art Persian text embedding model that achieves a 8.5% performance improvement over existing approaches on the FaMTEB benchmark, outperforming all previously developed Persian language models. As part of this work, we introduce three new datasets - Corpesia, Pairsia-sup, and Pairsia-unsup - to support supervised and unsupervised training scenarios. Additionally, Hakim is designed for applications in chatbots and retrieval-augmented generation (RAG) systems, particularly addressing retrieval tasks that require incorporating message history within these systems. We also propose a new baseline model built on the BERT architecture. Our language model consistently achieves higher accuracy across various Persian NLP tasks, while the RetroMAE-based model proves particularly effective for textual information retrieval applications. Together, these contributions establish a new foundation for advancing Persian language understanding.
TUMS: Enhancing Tool-use Abilities of LLMs with Multi-structure Handlers ICONIP 2024
Recently, large language models(LLMs) have played an increasingly important role in solving a wide range of NLP tasks, leveraging their capabilities of natural language understanding and generating. Integration with external tools further enhances LLMs' effectiveness, providing more precise, timely, and specialized responses. However, LLMs still encounter difficulties with non-executable actions and improper actions, which are primarily attributed to incorrect parameters. The process of generating parameters by LLMs is confined to the tool level, employing the coarse-grained strategy without considering the different difficulties of various tools. To address this issue, we propose TUMS, a novel framework designed to enhance the tool-use capabilities of LLMs by transforming tool-level processing into parameter-level processing. Specifically, our framework consists of four key components: (1) an intent recognizer that identifies the user's intent to help LLMs better understand the task; (2) a task decomposer that breaks down complex tasks into simpler subtasks, each involving a tool call; (3) a subtask processor equipped with multi-structure handlers to generate accurate parameters; and (4) an executor. Our empirical studies have evidenced the effectiveness and efficiency of the TUMS framework with an average of 19.6\% and 50.6\% improvement separately on easy and hard benchmarks of ToolQA, meanwhile, we demonstrated the key contribution of each part with ablation experiments, offering more insights and stimulating future research on Tool-augmented LLMs.
comment: Accepted to ICONIP 2024
Accelerating Chain-of-Thought Reasoning: When Goal-Gradient Importance Meets Dynamic Skipping
Large Language Models leverage Chain-of-Thought (CoT) prompting for complex tasks, but their reasoning traces are often excessively verbose and inefficient, leading to significant computational costs and latency. Current CoT compression techniques typically rely on generic importance metrics and static compression rates, which may inadvertently remove functionally critical tokens or fail to adapt to varying reasoning complexity. To overcome these limitations, we propose Adaptive GoGI-Skip, a novel framework learning dynamic CoT compression via supervised fine-tuning. This approach introduces two synergistic innovations: (1) Goal-Gradient Importance (GoGI), a novel metric accurately identifying functionally relevant tokens by measuring the gradient influence of their intermediate representations on the final answer loss, and (2) Adaptive Dynamic Skipping (ADS), a mechanism dynamically regulating the compression rate based on runtime model uncertainty while ensuring local coherence through an adaptive N-token constraint. To our knowledge, this is the first work unifying a goal-oriented, gradient-based importance metric with dynamic, uncertainty-aware skipping for CoT compression. Trained on compressed MATH data, Adaptive GoGI-Skip demonstrates strong cross-domain generalization across diverse reasoning benchmarks including AIME, GPQA, and GSM8K. It achieves substantial efficiency gains - reducing CoT token counts by over 45% on average and delivering 1.6-2.0 times inference speedups - while maintaining high reasoning accuracy. Notably, it significantly outperforms existing baselines by preserving accuracy even at high effective compression rates, advancing the state of the art in the CoT reasoning efficiency-accuracy trade-off.
Towards Contamination Resistant Benchmarks
The rapid development of large language models (LLMs) has transformed the landscape of natural language processing. Evaluating LLMs properly is crucial for understanding their potential and addressing concerns such as safety. However, LLM evaluation is confronted by various factors, among which contamination stands out as a key issue that undermines the reliability of evaluations. In this work, we introduce the concept of contamination resistance to address this challenge. We propose a benchmark based on Caesar ciphers (e.g., "ab" to "bc" when the shift is 1), which, despite its simplicity, is an excellent example of a contamination resistant benchmark. We test this benchmark on widely used LLMs under various settings, and we find that these models struggle with this benchmark when contamination is controlled. Our findings reveal issues in current LLMs and raise important questions regarding their true capabilities. Our work contributes to the development of contamination resistant benchmarks, enabling more rigorous LLM evaluation and offering insights into the true capabilities and limitations of LLMs.
Alignment Drift in CEFR-prompted LLMs for Interactive Spanish Tutoring
This paper investigates the potentials of Large Language Models (LLMs) as adaptive tutors in the context of second-language learning. In particular, we evaluate whether system prompting can reliably constrain LLMs to generate only text appropriate to the student's competence level. We simulate full teacher-student dialogues in Spanish using instruction-tuned, open-source LLMs ranging in size from 7B to 12B parameters. Dialogues are generated by having an LLM alternate between tutor and student roles with separate chat histories. The output from the tutor model is then used to evaluate the effectiveness of CEFR-based prompting to control text difficulty across three proficiency levels (A1, B1, C1). Our findings suggest that while system prompting can be used to constrain model outputs, prompting alone is too brittle for sustained, long-term interactional contexts - a phenomenon we term alignment drift. Our results provide insights into the feasibility of LLMs for personalized, proficiency-aligned adaptive tutors and provide a scalable method for low-cost evaluation of model performance without human participants.
On the Geometry of Semantics in Next-token Prediction
Modern language models demonstrate a remarkable ability to capture linguistic meaning despite being trained solely through next-token prediction (NTP). We investigate how this conceptually simple training objective leads models to extract and encode latent semantic and grammatical concepts. Our analysis reveals that NTP optimization implicitly guides models to encode concepts via singular value decomposition (SVD) factors of a centered data-sparsity matrix that captures next-word co-occurrence patterns. While the model never explicitly constructs this matrix, learned word and context embeddings effectively factor it to capture linguistic structure. We find that the most important SVD factors are learned first during training, motivating the use of spectral clustering of embeddings to identify human-interpretable semantics, including both classical k-means and a new orthant-based method directly motivated by our interpretation of concepts. Overall, our work bridges distributional semantics, neural collapse geometry, and neural network training dynamics, providing insights into how NTP's implicit biases shape the emergence of meaning representations in language models.
AM-Thinking-v1: Advancing the Frontier of Reasoning at 32B Scale
We present AM-Thinking-v1, a 32B dense language model that advances the frontier of reasoning, embodying the collaborative spirit of open-source innovation. Outperforming DeepSeek-R1 and rivaling leading Mixture-of-Experts (MoE) models like Qwen3-235B-A22B and Seed1.5-Thinking, AM-Thinking-v1 achieves impressive scores of 85.3 on AIME 2024, 74.4 on AIME 2025, and 70.3 on LiveCodeBench, showcasing state-of-the-art mathematical and coding capabilities among open-source models of similar scale. Built entirely from the open-source Qwen2.5-32B base model and publicly available queries, AM-Thinking-v1 leverages a meticulously crafted post-training pipeline - combining supervised fine-tuning and reinforcement learning - to deliver exceptional reasoning capabilities. This work demonstrates that the open-source community can achieve high performance at the 32B scale, a practical sweet spot for deployment and fine-tuning. By striking a balance between top-tier performance and real-world usability, we hope AM-Thinking-v1 inspires further collaborative efforts to harness mid-scale models, pushing reasoning boundaries while keeping accessibility at the core of innovation. We have open-sourced our model on \href{https://huggingface.co/a-m-team/AM-Thinking-v1}{Hugging Face}.
Evaluating the Effectiveness of Black-Box Prompt Optimization as the Scale of LLMs Continues to Grow
Black-Box prompt optimization methods have emerged as a promising strategy for refining input prompts to better align large language models (LLMs), thereby enhancing their task performance. Although these methods have demonstrated encouraging results, most studies and experiments have primarily focused on smaller-scale models (e.g., 7B, 14B) or earlier versions (e.g., GPT-3.5) of LLMs. As the scale of LLMs continues to increase, such as with DeepSeek V3 (671B), it remains an open question whether these black-box optimization techniques will continue to yield significant performance improvements for models of such scale. In response to this, we select three well-known black-box optimization methods and evaluate them on large-scale LLMs (DeepSeek V3 and Gemini 2.0 Flash) across four NLU and NLG datasets. The results show that these black-box prompt optimization methods offer only limited improvements on these large-scale LLMs. Furthermore, we hypothesize that the scale of the model is the primary factor contributing to the limited benefits observed. To explore this hypothesis, we conducted experiments on LLMs of varying sizes (Qwen 2.5 series, ranging from 7B to 72B) and observed an inverse scaling law, wherein the effectiveness of black-box optimization methods diminished as the model size increased.
Enhancing Cache-Augmented Generation (CAG) with Adaptive Contextual Compression for Scalable Knowledge Integration
The rapid progress in large language models (LLMs) has paved the way for novel approaches in knowledge-intensive tasks. Among these, Cache-Augmented Generation (CAG) has emerged as a promising alternative to Retrieval-Augmented Generation (RAG). CAG minimizes retrieval latency and simplifies system design by preloading knowledge into the model's context. However, challenges persist in scaling CAG to accommodate large and dynamic knowledge bases effectively. This paper introduces Adaptive Contextual Compression (ACC), an innovative technique designed to dynamically compress and manage context inputs, enabling efficient utilization of the extended memory capabilities of modern LLMs. To further address the limitations of standalone CAG, we propose a Hybrid CAG-RAG Framework, which integrates selective retrieval to augment preloaded contexts in scenarios requiring additional information. Comprehensive evaluations on diverse datasets highlight the proposed methods' ability to enhance scalability, optimize efficiency, and improve multi-hop reasoning performance, offering practical solutions for real-world knowledge integration challenges.
Large Language Model Psychometrics: A Systematic Review of Evaluation, Validation, and Enhancement
The rapid advancement of large language models (LLMs) has outpaced traditional evaluation methodologies. It presents novel challenges, such as measuring human-like psychological constructs, navigating beyond static and task-specific benchmarks, and establishing human-centered evaluation. These challenges intersect with Psychometrics, the science of quantifying the intangible aspects of human psychology, such as personality, values, and intelligence. This survey introduces and synthesizes an emerging interdisciplinary field of LLM Psychometrics, which leverages psychometric instruments, theories, and principles to evaluate, understand, and enhance LLMs. We systematically explore the role of Psychometrics in shaping benchmarking principles, broadening evaluation scopes, refining methodologies, validating results, and advancing LLM capabilities. This paper integrates diverse perspectives to provide a structured framework for researchers across disciplines, enabling a more comprehensive understanding of this nascent field. Ultimately, we aim to provide actionable insights for developing future evaluation paradigms that align with human-level AI and promote the advancement of human-centered AI systems for societal benefit. A curated repository of LLM psychometric resources is available at https://github.com/valuebyte-ai/Awesome-LLM-Psychometrics.
comment: 63 pages, 482 references
Not that Groove: Zero-Shot Symbolic Music Editing
Most work in AI music generation focused on audio, which has seen limited use in the music production industry due to its rigidity. To maximize flexibility while assuming only textual instructions from producers, we are among the first to tackle symbolic music editing. We circumvent the known challenge of lack of labeled data by proving that LLMs with zero-shot prompting can effectively edit drum grooves. The recipe of success is a creatively designed format that interfaces LLMs and music, while we facilitate evaluation by providing an evaluation dataset with annotated unit tests that highly aligns with musicians' judgment.
A Head to Predict and a Head to Question: Pre-trained Uncertainty Quantification Heads for Hallucination Detection in LLM Outputs
Large Language Models (LLMs) have the tendency to hallucinate, i.e., to sporadically generate false or fabricated information. This presents a major challenge, as hallucinations often appear highly convincing and users generally lack the tools to detect them. Uncertainty quantification (UQ) provides a framework for assessing the reliability of model outputs, aiding in the identification of potential hallucinations. In this work, we introduce pre-trained UQ heads: supervised auxiliary modules for LLMs that substantially enhance their ability to capture uncertainty compared to unsupervised UQ methods. Their strong performance stems from the powerful Transformer architecture in their design and informative features derived from LLM attention maps. Experimental evaluation shows that these heads are highly robust and achieve state-of-the-art performance in claim-level hallucination detection across both in-domain and out-of-domain prompts. Moreover, these modules demonstrate strong generalization to languages they were not explicitly trained on. We pre-train a collection of UQ heads for popular LLM series, including Mistral, Llama, and Gemma 2. We publicly release both the code and the pre-trained heads.
Exploiting Text Semantics for Few and Zero Shot Node Classification on Text-attributed Graph
Text-attributed graph (TAG) provides a text description for each graph node, and few- and zero-shot node classification on TAGs have many applications in fields such as academia and social networks. Existing work utilizes various graph-based augmentation techniques to train the node and text embeddings, while text-based augmentations are largely unexplored. In this paper, we propose Text Semantics Augmentation (TSA) to improve accuracy by introducing more text semantic supervision signals. Specifically, we design two augmentation techniques, i.e., positive semantics matching and negative semantics contrast, to provide more reference texts for each graph node or text description. Positive semantic matching retrieves texts with similar embeddings to match with a graph node. Negative semantic contrast adds a negative prompt to construct a text description with the opposite semantics, which is contrasted with the original node and text. We evaluate TSA on 5 datasets and compare with 13 state-of-the-art baselines. The results show that TSA consistently outperforms all baselines, and its accuracy improvements over the best-performing baseline are usually over 5%.
Fusing Bidirectional Chains of Thought and Reward Mechanisms A Method for Enhancing Question-Answering Capabilities of Large Language Models for Chinese Intangible Cultural Heritage
The rapid development of large language models (LLMs) has provided significant support and opportunities for the advancement of domain-specific LLMs. However, fine-tuning these large models using Intangible Cultural Heritage (ICH) data inevitably faces challenges such as bias, incorrect knowledge inheritance, and catastrophic forgetting. To address these issues, we propose a novel training method that integrates a bidirectional chains of thought and a reward mechanism. This method is built upon ICH-Qwen, a large language model specifically designed for the field of intangible cultural heritage. The proposed method enables the model to not only perform forward reasoning but also enhances the accuracy of the generated answers by utilizing reverse questioning and reverse reasoning to activate the model's latent knowledge. Additionally, a reward mechanism is introduced during training to optimize the decision-making process. This mechanism improves the quality of the model's outputs through structural and content evaluations with different weighting schemes. We conduct comparative experiments on ICH-Qwen, with results demonstrating that our method outperforms 0-shot, step-by-step reasoning, knowledge distillation, and question augmentation methods in terms of accuracy, Bleu-4, and Rouge-L scores on the question-answering task. Furthermore, the paper highlights the effectiveness of combining the bidirectional chains of thought and reward mechanism through ablation experiments. In addition, a series of generalizability experiments are conducted, with results showing that the proposed method yields improvements on various domain-specific datasets and advanced models in areas such as Finance, Wikidata, and StrategyQA. This demonstrates that the method is adaptable to multiple domains and provides a valuable approach for model training in future applications across diverse fields.
comment: 22 pages, 5 figures
A Large-Scale Empirical Analysis of Custom GPTs' Vulnerabilities in the OpenAI Ecosystem
Millions of users leverage generative pretrained transformer (GPT)-based language models developed by leading model providers for a wide range of tasks. To support enhanced user interaction and customization, many platforms-such as OpenAI-now enable developers to create and publish tailored model instances, known as custom GPTs, via dedicated repositories or application stores. These custom GPTs empower users to browse and interact with specialized applications designed to meet specific needs. However, as custom GPTs see growing adoption, concerns regarding their security vulnerabilities have intensified. Existing research on these vulnerabilities remains largely theoretical, often lacking empirical, large-scale, and statistically rigorous assessments of associated risks. In this study, we analyze 14,904 custom GPTs to assess their susceptibility to seven exploitable threats, such as roleplay-based attacks, system prompt leakage, phishing content generation, and malicious code synthesis, across various categories and popularity tiers within the OpenAI marketplace. We introduce a multi-metric ranking system to examine the relationship between a custom GPT's popularity and its associated security risks. Our findings reveal that over 95% of custom GPTs lack adequate security protections. The most prevalent vulnerabilities include roleplay-based vulnerabilities (96.51%), system prompt leakage (92.20%), and phishing (91.22%). Furthermore, we demonstrate that OpenAI's foundational models exhibit inherent security weaknesses, which are often inherited or amplified in custom GPTs. These results highlight the urgent need for enhanced security measures and stricter content moderation to ensure the safe deployment of GPT-based applications.
Large Language Models for Computer-Aided Design: A Survey
Large Language Models (LLMs) have seen rapid advancements in recent years, with models like ChatGPT and DeepSeek, showcasing their remarkable capabilities across diverse domains. While substantial research has been conducted on LLMs in various fields, a comprehensive review focusing on their integration with Computer-Aided Design (CAD) remains notably absent. CAD is the industry standard for 3D modeling and plays a vital role in the design and development of products across different industries. As the complexity of modern designs increases, the potential for LLMs to enhance and streamline CAD workflows presents an exciting frontier. This article presents the first systematic survey exploring the intersection of LLMs and CAD. We begin by outlining the industrial significance of CAD, highlighting the need for AI-driven innovation. Next, we provide a detailed overview of the foundation of LLMs. We also examine both closed-source LLMs as well as publicly available models. The core of this review focuses on the various applications of LLMs in CAD, providing a taxonomy of six key areas where these models are making considerable impact. Finally, we propose several promising future directions for further advancements, which offer vast opportunities for innovation and are poised to shape the future of CAD technology. Github: https://github.com/lichengzhanguom/LLMs-CAD-Survey-Taxonomy
ALOHA: Empowering Multilingual Agent for University Orientation with Hierarchical Retrieval NAACL 2025
The rise of Large Language Models~(LLMs) revolutionizes information retrieval, allowing users to obtain required answers through complex instructions within conversations. However, publicly available services remain inadequate in addressing the needs of faculty and students to search campus-specific information. It is primarily due to the LLM's lack of domain-specific knowledge and the limitation of search engines in supporting multilingual and timely scenarios. To tackle these challenges, we introduce ALOHA, a multilingual agent enhanced by hierarchical retrieval for university orientation. We also integrate external APIs into the front-end interface to provide interactive service. The human evaluation and case study show our proposed system has strong capabilities to yield correct, timely, and user-friendly responses to the queries in multiple languages, surpassing commercial chatbots and search engines. The system has been deployed and has provided service for more than 12,000 people.
comment: To appear in NAACL 2025 Demo Track
Improving the Reliability of LLMs: Combining CoT, RAG, Self-Consistency, and Self-Verification
Hallucination, where large language models (LLMs) generate confident but incorrect or irrelevant information, remains a key limitation in their application to complex, open-ended tasks. Chain-of-thought (CoT) prompting has emerged as a promising method for improving multistep reasoning by guiding models through intermediate steps. However, CoT alone does not fully address the hallucination problem. In this work, we investigate how combining CoT with retrieval-augmented generation (RAG), as well as applying self-consistency and self-verification strategies, can reduce hallucinations and improve factual accuracy. By incorporating external knowledge sources during reasoning and enabling models to verify or revise their own outputs, we aim to generate more accurate and coherent responses. We present a comparative evaluation of baseline LLMs against CoT, CoT+RAG, self-consistency, and self-verification techniques. Our results highlight the effectiveness of each method and identify the most robust approach for minimizing hallucinations while preserving fluency and reasoning depth.
Automated Meta Prompt Engineering for Alignment with the Theory of Mind
We introduce a method of meta-prompting that jointly produces fluent text for complex tasks while optimizing the similarity of neural states between a human's mental expectation and a Large Language Model's (LLM) neural processing. A technique of agentic reinforcement learning is applied, in which an LLM as a Judge (LLMaaJ) teaches another LLM, through in-context learning, how to produce content by interpreting the intended and unintended generated text traits. To measure human mental beliefs around content production, users modify long form AI-generated text articles before publication at the US Open 2024 tennis Grand Slam. Now, an LLMaaJ can solve the Theory of Mind (ToM) alignment problem by anticipating and including human edits within the creation of text from an LLM. Throughout experimentation and by interpreting the results of a live production system, the expectations of human content reviewers had 100% of alignment with AI 53.8% of the time with an average iteration count of 4.38. The geometric interpretation of content traits such as factualness, novelty, repetitiveness, and relevancy over a Hilbert vector space combines spatial volume (all trait importance) with vertices alignment (individual trait relevance) enabled the LLMaaJ to optimize on Human ToM. This resulted in an increase in content quality by extending the coverage of tennis action. Our work that was deployed at the US Open 2024 has been used across other live events within sports and entertainment.
comment: 9 pages, 6 figures, 3 tables
For GPT-4 as with Humans: Information Structure Predicts Acceptability of Long-Distance Dependencies
It remains debated how well any LM understands natural language or generates reliable metalinguistic judgments. Moreover, relatively little work has demonstrated that LMs can represent and respect subtle relationships between form and function proposed by linguists. We here focus on a particular such relationship established in recent work: English speakers' judgments about the information structure of canonical sentences predicts independently collected acceptability ratings on corresponding 'long distance dependency' [LDD] constructions, across a wide array of base constructions and multiple types of LDDs. To determine whether any LM captures this relationship, we probe GPT-4 on the same tasks used with humans and new extensions.Results reveal reliable metalinguistic skill on the information structure and acceptability tasks, replicating a striking interaction between the two, despite the zero-shot, explicit nature of the tasks, and little to no chance of contamination [Studies 1a, 1b]. Study 2 manipulates the information structure of base sentences and confirms a causal relationship: increasing the prominence of a constituent in a context sentence increases the subsequent acceptability ratings on an LDD construction. The findings suggest a tight relationship between natural and GPT-4 generated English, and between information structure and syntax, which begs for further exploration.
A suite of LMs comprehend puzzle statements as well as humans
Recent claims suggest that large language models (LMs) underperform humans in comprehending minimally complex English statements (Dentella et al., 2024). Here, we revisit those findings and argue that human performance was overestimated, while LLM abilities were underestimated. Using the same stimuli, we report a preregistered study comparing human responses in two conditions: one allowed rereading (replicating the original study), and one that restricted rereading (a more naturalistic comprehension test). Human accuracy dropped significantly when rereading was restricted (73%), falling below that of Falcon-180B-Chat (76%) and GPT-4 (81%). The newer GPT-o1 model achieves perfect accuracy. Results further show that both humans and models are disproportionately challenged by queries involving potentially reciprocal actions (e.g., kissing), suggesting shared pragmatic sensitivities rather than model-specific deficits. Additional analyses using Llama-2-70B log probabilities, a recoding of open-ended model responses, and grammaticality ratings of other sentences reveal systematic underestimation of model performance. We find that GPT-4o can align with either naive or expert grammaticality judgments, depending on prompt framing. These findings underscore the need for more careful experimental design and coding practices in LLM evaluation, and they challenge the assumption that current models are inherently weaker than humans at language comprehension.
Prioritizing Image-Related Tokens Enhances Vision-Language Pre-Training
In standard large vision-language models (LVLMs) pre-training, the model typically maximizes the joint probability of the caption conditioned on the image via next-token prediction (NTP); however, since only a small subset of caption tokens directly relates to the visual content, this naive NTP unintentionally fits the model to noise and increases the risk of hallucination. We present PRIOR, a simple vision-language pre-training approach that addresses this issue by prioritizing image-related tokens through differential weighting in the NTP loss, drawing from the importance sampling framework. PRIOR introduces a reference model-a text-only large language model (LLM) trained on the captions without image inputs, to weight each token based on its probability for LVLMs training. Intuitively, tokens that are directly related to the visual inputs are harder to predict without the image and thus receive lower probabilities from the text-only reference LLM. During training, we implement a token-specific re-weighting term based on the importance scores to adjust each token's loss. We implement PRIOR in two distinct settings: LVLMs with visual encoders and LVLMs without visual encoders. We observe 19% and 8% average relative improvement, respectively, on several vision-language benchmarks compared to NTP. In addition, PRIOR exhibits superior scaling properties, as demonstrated by significantly higher scaling coefficients, indicating greater potential for performance gains compared to NTP given increasing compute and data.
comment: The code will be available at https://github.com/Yangyi-Chen/PRIOR
ForeCite: Adapting Pre-Trained Language Models to Predict Future Citation Rates of Academic Papers
Predicting the future citation rates of academic papers is an important step toward the automation of research evaluation and the acceleration of scientific progress. We present $\textbf{ForeCite}$, a simple but powerful framework to append pre-trained causal language models with a linear head for average monthly citation rate prediction. Adapting transformers for regression tasks, ForeCite achieves a test correlation of $\rho = 0.826$ on a curated dataset of 900K+ biomedical papers published between 2000 and 2024, a 27-point improvement over the previous state-of-the-art. Comprehensive scaling-law analysis reveals consistent gains across model sizes and data volumes, while temporal holdout experiments confirm practical robustness. Gradient-based saliency heatmaps suggest a potentially undue reliance on titles and abstract texts. These results establish a new state-of-the-art in forecasting the long-term influence of academic research and lay the groundwork for the automated, high-fidelity evaluation of scientific contributions.
comment: 16 pages, 13 figures
Behind Maya: Building a Multilingual Vision Language Model CVPR 2025
In recent times, we have seen a rapid development of large Vision-Language Models (VLMs). They have shown impressive results on academic benchmarks, primarily in widely spoken languages but lack performance on low-resource languages and varied cultural contexts. To address these limitations, we introduce Maya, an open-source Multilingual VLM. Our contributions are: 1) a multilingual image-text pretraining dataset in eight languages, based on the LLaVA pretraining dataset; and 2) a multilingual image-text model supporting these languages, enhancing cultural and linguistic comprehension in vision-language tasks. Code available at https://github.com/nahidalam/maya.
comment: Accepted at VLM4ALL CVPR 2025 Workshop
Grounding Synthetic Data Evaluations of Language Models in Unsupervised Document Corpora
Language Models (LMs) continue to advance, improving response quality and coherence. Given Internet-scale training datasets, LMs have likely encountered much of what users might ask them to generate in some form during their training. A plethora of evaluation benchmarks have been constructed to assess model quality, response appropriateness, and reasoning capabilities. However, the human effort required for benchmark construction is limited and being rapidly outpaced by the size and scope of the models under evaluation. Additionally, having humans build a benchmark for every possible domain of interest is impractical. Therefore, we propose a methodology for automating the construction of fact-based synthetic data model evaluations grounded in document populations. This work leverages those very same LMs to evaluate domain-specific knowledge automatically, using only grounding documents (e.g., a textbook) as input. This synthetic data benchmarking approach corresponds well with human curated questions with a Spearman ranking correlation of 0.96 and a benchmark evaluation Pearson accuracy correlation of 0.79. This novel tool supports generating both multiple choice and open-ended synthetic data questions to gain diagnostic insight of LM capability. We apply this methodology to evaluate model performance on a recent relevant arXiv preprint, discovering a surprisingly strong performance from Gemma3 models.
Performance Gains of LLMs With Humans in a World of LLMs Versus Humans
Currently, a considerable research effort is devoted to comparing LLMs to a group of human experts, where the term "expert" is often ill-defined or variable, at best, in a state of constantly updating LLM releases. Without proper safeguards in place, LLMs will threaten to cause harm to the established structure of safe delivery of patient care which has been carefully developed throughout history to keep the safety of the patient at the forefront. A key driver of LLM innovation is founded on community research efforts which, if continuing to operate under "humans versus LLMs" principles, will expedite this trend. Therefore, research efforts moving forward must focus on effectively characterizing the safe use of LLMs in clinical settings that persist across the rapid development of novel LLM models. In this communication, we demonstrate that rather than comparing LLMs to humans, there is a need to develop strategies enabling efficient work of humans with LLMs in an almost symbiotic manner.
Clicking some of the silly options: Exploring Player Motivation in Static and Dynamic Educational Interactive Narratives
Motivation is an important factor underlying successful learning. Previous research has demonstrated the positive effects that static interactive narrative games can have on motivation. Concurrently, advances in AI have made dynamic and adaptive approaches to interactive narrative increasingly accessible. However, limited work has explored the impact that dynamic narratives can have on learner motivation. In this paper, we compare two versions of Academical, a choice-based educational interactive narrative game about research ethics. One version employs a traditional hand-authored branching plot (i.e., static narrative) while the other dynamically sequences plots during play (i.e., dynamic narrative). Results highlight the importance of responsive content and a variety of choices for player engagement, while also illustrating the challenge of balancing pedagogical goals with the dynamic aspects of narrative. We also discuss design implications that arise from these findings. Ultimately, this work provides initial steps to illuminate the emerging potential of AI-driven dynamic narrative in educational games.
comment: 8 pages, 3 figures, 1 table, 1 appendix. Workshop paper, CHI 2025 Augmented Educators and AI
LibVulnWatch: A Deep Assessment Agent System and Leaderboard for Uncovering Hidden Vulnerabilities in Open-Source AI Libraries
Open-source AI libraries are foundational to modern AI systems but pose significant, underexamined risks across security, licensing, maintenance, supply chain integrity, and regulatory compliance. We present LibVulnWatch, a graph-based agentic assessment framework that performs deep, source-grounded evaluations of these libraries. Built on LangGraph, the system coordinates a directed acyclic graph of specialized agents to extract, verify, and quantify risk using evidence from trusted sources such as repositories, documentation, and vulnerability databases. LibVulnWatch generates reproducible, governance-aligned scores across five critical domains, publishing them to a public leaderboard for longitudinal ecosystem monitoring. Applied to 20 widely used libraries, including ML frameworks, LLM inference engines, and agent orchestration tools, our system covers up to 88% of OpenSSF Scorecard checks while uncovering up to 19 additional risks per library. These include critical Remote Code Execution (RCE) vulnerabilities, absent Software Bills of Materials (SBOMs), licensing constraints, undocumented telemetry, and widespread gaps in regulatory documentation and auditability. By translating high-level governance principles into practical, verifiable metrics, LibVulnWatch advances technical AI governance with a scalable, transparent mechanism for continuous supply chain risk assessment and informed library selection.
Human-AI Collaboration or Academic Misconduct? Measuring AI Use in Student Writing Through Stylometric Evidence
As human-AI collaboration becomes increasingly prevalent in educational contexts, understanding and measuring the extent and nature of such interactions pose significant challenges. This research investigates the use of authorship verification (AV) techniques not as a punitive measure, but as a means to quantify AI assistance in academic writing, with a focus on promoting transparency, interpretability, and student development. Building on prior work, we structured our investigation into three stages: dataset selection and expansion, AV method development, and systematic evaluation. Using three datasets - including a public dataset (PAN-14) and two from University of Melbourne students from various courses - we expanded the data to include LLM-generated texts, totalling 1,889 documents and 540 authorship problems from 506 students. We developed an adapted Feature Vector Difference AV methodology to construct robust academic writing profiles for students, designed to capture meaningful, individual characteristics of their writing. The method's effectiveness was evaluated across multiple scenarios, including distinguishing between student-authored and LLM-generated texts and testing resilience against LLMs' attempts to mimic student writing styles. Results demonstrate the enhanced AV classifier's ability to identify stylometric discrepancies and measure human-AI collaboration at word and sentence levels while providing educators with a transparent tool to support academic integrity investigations. This work advances AV technology, offering actionable insights into the dynamics of academic writing in an AI-driven era.
comment: 19 pages, 10 figures, 11 tables
Codifying Character Logic in Role-Playing
This paper introduces Codified Profiles for role-playing, a novel approach that represents character logic as structured, executable functions for behavioral decision-making. Each profile defines a set of functions parse_by_scene(scene) that outputs a list of logic-grounded assertions triggered_statements, using both explicit control structures (e.g., if-then-else) and condition checks like check_condition(scene, question), where each question is a semantically meaningful prompt about the scene (e.g., "Is the character in danger?") discriminated by the role-playing LLM as true, false, or unknown. This explicit representation offers three key advantages over traditional prompt-based profiles, which append character descriptions directly into text prompts: (1) Persistence, by enforcing complete and consistent execution of character logic, rather than relying on the model's implicit reasoning; (2) Updatability, through systematic inspection and revision of behavioral logic, which is difficult to track or debug in prompt-only approaches; (3) Controllable Randomness, by supporting stochastic behavior directly within the logic, enabling fine-grained variability that prompting alone struggles to achieve. To validate these advantages, we introduce a new benchmark constructed from 83 characters and 5,141 scenes curated from Fandom, using NLI-based scoring to compare character responses against ground-truth actions. Our experiments demonstrate the significant benefits of codified profiles in improving persistence, updatability, and behavioral diversity. Notably, by offloading a significant portion of reasoning to preprocessing, codified profiles enable even 1B-parameter models to perform high-quality role-playing, providing a scalable and efficient foundation for local deployment of role-play agents.
OnPrem.LLM: A Privacy-Conscious Document Intelligence Toolkit
We present OnPrem$.$LLM, a Python-based toolkit for applying large language models (LLMs) to sensitive, non-public data in offline or restricted environments. The system is designed for privacy-preserving use cases and provides prebuilt pipelines for document processing and storage, retrieval-augmented generation (RAG), information extraction, summarization, classification, and prompt/output processing with minimal configuration. OnPrem$.$LLM supports multiple LLM backends -- including llama$.$cpp, Ollama, vLLM, and Hugging Face Transformers -- with quantized model support, GPU acceleration, and seamless backend switching. Although designed for fully local execution, OnPrem$.$LLM also supports integration with a wide range of cloud LLM providers when permitted, enabling hybrid deployments that balance performance with data control. A no-code web interface extends accessibility to non-technical users.
comment: 6 pages
Multi-Party Supervised Fine-tuning of Language Models for Multi-Party Dialogue Generation IJCNN 2025
Large Language Models (LLM) are usually fine-tuned to participate in dyadic or two-party dialogues, which can not adapt well to multi-party dialogues (MPD), which hinders their applications in such scenarios including multi-personal meetings, discussions and daily communication. Previous LLM-based researches mainly focus on the multi-agent framework, while their base LLMs are still pairwisely fine-tuned. In this work, we design a multi-party fine-tuning framework (MuPaS) for LLMs on the multi-party dialogue datasets, and prove such a straightforward framework can let the LLM align with the multi-party conversation style efficiently and effectively. We also design two training strategies which can convert MuPaS into the MPD simulator. Substantial experiments show that MuPaS can achieve state-of-the-art multi-party response, higher accuracy of the-next-speaker prediction, higher human and automatic evaluated utterance qualities, and can even generate reasonably with out-of-distribution scene, topic and role descriptions. The MuPaS framework bridges the LLM training with more complicated multi-party applications, such as conversation generation, virtual rehearsal or meta-universe.
comment: Accepted by IJCNN 2025
Can (A)I Change Your Mind?
The increasing integration of large language models (LLMs) based conversational agents into everyday life raises critical cognitive and social questions about their potential to influence human opinions. Although previous studies have shown that LLM-based agents can generate persuasive content, these typically involve controlled English-language settings. Addressing this, our preregistered study explored LLMs' persuasive capabilities in more ecological, unconstrained scenarios, examining both static (written paragraphs) and dynamic (conversations via Telegram) interaction types. Conducted entirely in Hebrew with 200 participants, the study assessed the persuasive effects of both LLM and human interlocutors on controversial civil policy topics. Results indicated that participants adopted LLM and human perspectives similarly, with significant opinion changes evident across all conditions, regardless of interlocutor type or interaction mode. Confidence levels increased significantly in most scenarios. These findings demonstrate LLM-based agents' robust persuasive capabilities across diverse sources and settings, highlighting their potential impact on shaping public opinions.
comment: Accetped to CogSci 2025
Efficient Adaptation For Remote Sensing Visual Grounding
Adapting pre-trained models has become an effective strategy in artificial intelligence, offering a scalable and efficient alternative to training models from scratch. In the context of remote sensing (RS), where visual grounding(VG) remains underexplored, this approach enables the deployment of powerful vision-language models to achieve robust cross-modal understanding while significantly reducing computational overhead. To address this, we applied Parameter Efficient Fine Tuning (PEFT) techniques to adapt these models for RS-specific VG tasks. Specifically, we evaluated LoRA placement across different modules in Grounding DINO and used BitFit and adapters to fine-tune the OFA foundation model pre-trained on general-purpose VG datasets. This approach achieved performance comparable to or surpassing current State Of The Art (SOTA) models while significantly reducing computational costs. This study highlights the potential of PEFT techniques to advance efficient and precise multi-modal analysis in RS, offering a practical and cost-effective alternative to full model training.
Graph RAG for Legal Norms: A Hierarchical and Temporal Approach
This article proposes an adaptation of Graph Retrieval Augmented Generation (Graph RAG) specifically designed for the analysis and comprehension of legal norms, which are characterized by their predefined hierarchical structure, extensive network of internal and external references and multiple temporal versions. By combining structured knowledge graphs with contextually enriched text segments, Graph RAG offers a promising solution to address the inherent complexity and vast volume of legal data. The integration of hierarchical structure and temporal evolution into knowledge graphs - along with the concept of comprehensive Text Units - facilitates the construction of richer, interconnected representations of legal knowledge. Through a detailed analysis of Graph RAG and its application to legal norm datasets, this article aims to advance the field of Artificial Intelligence applied to Law, creating opportunities for more effective systems in legal research, legislative analysis, and decision support.
Self-reflecting Large Language Models: A Hegelian Dialectical Approach
Investigating NLP through a philosophical lens has recently caught researcher's eyes as it connects computational methods with classical schools of philosophy. This paper introduces a philosophical approach inspired by the \textit{Hegelian Dialectic} for LLMs' \textit{self-reflection}, utilizing a self-dialectical approach to emulate internal critiques and then synthesize new ideas by resolving the opposing points of view. Moreover, this paper investigates the effect of LLMs' temperature for generation by establishing a dynamic annealing approach, which promotes the creativity in the early stages and gradually refines it by focusing on the nuances, as well as a fixed-temperature strategy for generation. We assess the effectiveness of our proposed method in generating novel ideas and in improving the reasoning abilities of LLMs during problem-solving. Moreover, we implement a Multi-Agent Majority Voting (MAMV) strategy to assess the validity and novelty of the generated ideas, which proves useful in the absence of domain experts. Our experiments demonstrate promising results in generating ideas and enhancing problem-solving performance.
AI Hiring with LLMs: A Context-Aware and Explainable Multi-Agent Framework for Resume Screening CVPR 2025
Resume screening is a critical yet time-intensive process in talent acquisition, requiring recruiters to analyze vast volume of job applications while remaining objective, accurate, and fair. With the advancements in Large Language Models (LLMs), their reasoning capabilities and extensive knowledge bases demonstrate new opportunities to streamline and automate recruitment workflows. In this work, we propose a multi-agent framework for resume screening using LLMs to systematically process and evaluate resumes. The framework consists of four core agents, including a resume extractor, an evaluator, a summarizer, and a score formatter. To enhance the contextual relevance of candidate assessments, we integrate Retrieval-Augmented Generation (RAG) within the resume evaluator, allowing incorporation of external knowledge sources, such as industry-specific expertise, professional certifications, university rankings, and company-specific hiring criteria. This dynamic adaptation enables personalized recruitment, bridging the gap between AI automation and talent acquisition. We assess the effectiveness of our approach by comparing AI-generated scores with ratings provided by HR professionals on a dataset of anonymized online resumes. The findings highlight the potential of multi-agent RAG-LLM systems in automating resume screening, enabling more efficient and scalable hiring workflows.
comment: Accepted by CVPR 2025 Workshop
Why do LLMs attend to the first token?
Large Language Models (LLMs) tend to attend heavily to the first token in the sequence -- creating a so-called attention sink. Many works have studied this phenomenon in detail, proposing various ways to either leverage or alleviate it. Attention sinks have been connected to quantisation difficulties, security issues, and streaming attention. Yet, while many works have provided conditions in which they occur or not, a critical question remains shallowly answered: Why do LLMs learn such patterns and how are they being used? In this work, we argue theoretically and empirically that this mechanism provides a method for LLMs to avoid over-mixing, connecting this to existing lines of work that study mathematically how information propagates in Transformers. We conduct experiments to validate our theoretical intuitions and show how choices such as context length, depth, and data packing influence the sink behaviour. We hope that this study provides a new practical perspective on why attention sinks are useful in LLMs, leading to a better understanding of the attention patterns that form during training.
2.5 Years in Class: A Multimodal Textbook for Vision-Language Pretraining
Compared to image-text pair data, interleaved corpora enable Vision-Language Models (VLMs) to understand the world more naturally like humans. However, such existing datasets are crawled from webpage, facing challenges like low knowledge density, loose image-text relations, and poor logical coherence between images. On the other hand, the internet hosts vast instructional videos (e.g., online geometry courses) that are widely used by humans to learn foundational subjects, yet these valuable resources remain underexplored in VLM training. In this paper, we introduce a high-quality \textbf{multimodal textbook} corpus with richer foundational knowledge for VLM pretraining. It collects over 2.5 years of instructional videos, totaling 22,000 class hours. We first use an LLM-proposed taxonomy to systematically gather instructional videos. Then we progressively extract and refine visual (keyframes), audio (ASR), and textual knowledge (OCR) from the videos, and organize as an image-text interleaved corpus based on temporal order. Compared to its counterparts, our video-centric textbook offers more coherent context, richer knowledge, and better image-text alignment. Experiments demonstrate its superb pretraining performance, particularly in knowledge- and reasoning-intensive tasks like ScienceQA and MathVista. Moreover, VLMs pre-trained on our textbook exhibit outstanding interleaved context awareness, leveraging visual and textual cues in their few-shot context for task solving. Our code are available at https://github.com/DAMO-NLP-SG/multimodal_textbook.
comment: Under review
Integrating Single-Cell Foundation Models with Graph Neural Networks for Drug Response Prediction
AI-driven drug response prediction holds great promise for advancing personalized cancer treatment. However, the inherent heterogenity of cancer and high cost of data generation make accurate prediction challenging. In this study, we investigate whether incorporating the pretrained foundation model scGPT can enhance the performance of existing drug response prediction frameworks. Our approach builds on the DeepCDR framework, which encodes drug representations from graph structures and cell representations from multi-omics profiles. We adapt this framework by leveraging scGPT to generate enriched cell representations using its pretrained knowledge to compensate for limited amount of data. We evaluate our modified framework using IC$_{50}$ values on Pearson correlation coefficient (PCC) and a leave-one-drug out validation strategy, comparing it against the original DeepCDR framework and a prior scFoundation-based approach. scGPT not only outperforms previous approaches but also exhibits greater training stability, highlighting the value of leveraging scGPT-derived knowledge in this domain.
comment: 8 pages, 6 figures
FutureVision: A methodology for the investigation of future cognition
This paper presents a methodology combining multimodal semantic analysis with an eye-tracking experimental protocol to investigate the cognitive effort involved in understanding the communication of future scenarios. To demonstrate the methodology, we conduct a pilot study examining how visual fixation patterns vary during the evaluation of valence and counterfactuality in fictional ad pieces describing futuristic scenarios, using a portable eye tracker. Participants eye movements are recorded while evaluating the stimuli and describing them to a conversation partner. Gaze patterns are analyzed alongside semantic representations of the stimuli and participants descriptions, constructed from a frame semantic annotation of both linguistic and visual modalities. Preliminary results show that far-future and pessimistic scenarios are associated with longer fixations and more erratic saccades, supporting the hypothesis that fractures in the base spaces underlying the interpretation of future scenarios increase cognitive load for comprehenders.
comment: Paper accepted at CogSci 2025
SMI: An Information-Theoretic Metric for Predicting Model Knowledge Solely from Pre-Training Signals
The GPT-4 technical report highlights the possibility of predicting model performance on downstream tasks using only pre-training signals, though detailed methodologies are absent. Such predictive capabilities are essential for resource-efficient pre-training and the construction of task-aligned datasets. In this paper, we aim to predict performance in closed-book question answering (QA), a vital downstream task indicative of a model's internal knowledge. We address three primary challenges: (1) limited access to and understanding of pre-training corpora, (2) limitations of current evaluation methods for pre-trained models, and (3) limitations of frequency-based metrics in predicting model performance. In response to these challenges, we conduct large-scale retrieval and semantic analysis across the pre-training corpora of 21 publicly available and 3 custom-trained large language models. Subsequently, we develop a multi-template QA evaluation framework incorporating paraphrased question variants. Building on these foundations, we propose Size-dependent Mutual Information (SMI), an information-theoretic metric that linearly correlates pre-training data characteristics, model size, and QA accuracy, without requiring any additional training. The experimental results demonstrate that SMI outperforms co-occurrence-based baselines, achieving $R^2$ > 0.75 on models with over one billion parameters. Theoretical analysis further reveals the marginal benefits of scaling model size and optimizing data, indicating that the upper limit of specific QA task accuracy is approximately 80%. Our project is available at https://github.com/yuhui1038/SMI.
CursorCore: Assist Programming through Aligning Anything
Large language models have been successfully applied to programming assistance tasks, such as code completion, code insertion, and instructional code editing. However, these applications remain insufficiently automated and struggle to effectively integrate various types of information during the programming process, including coding history, current code, and user instructions. In this work, we propose a new conversational framework that comprehensively integrates these information sources, collect data to train our models and evaluate their performance. Firstly, to thoroughly evaluate how well models align with different types of information and the quality of their outputs, we introduce a new benchmark, APEval (Assist Programming Eval), to comprehensively assess the performance of models in programming assistance tasks. Then, for data collection, we develop a data generation pipeline, Programming-Instruct, which synthesizes training data from diverse sources, such as GitHub and online judge platforms. This pipeline can automatically generate various types of messages throughout the programming process. Finally, using this pipeline, we generate 219K samples, fine-tune multiple models, and develop the CursorCore series. We show that CursorCore outperforms other models of comparable size. This framework unifies applications such as inline chat and automated editing, contributes to the advancement of coding assistants. Code, models and data are freely available at https://github.com/TechxGenus/CursorCore.
Round and Round We Go! What makes Rotary Positional Encodings useful?
Positional Encodings (PEs) are a critical component of Transformer-based Large Language Models (LLMs), providing the attention mechanism with important sequence-position information. One of the most popular types of encoding used today in LLMs are Rotary Positional Encodings (RoPE), that rotate the queries and keys based on their relative distance. A common belief is that RoPE is useful because it helps to decay token dependency as relative distance increases. In this work, we argue that this is unlikely to be the core reason. We study the internals of a trained Gemma 7B model to understand how RoPE is being used at a mechanical level. We find that Gemma learns to use RoPE to construct robust "positional" attention patterns by exploiting the highest frequencies. We also find that, in general, Gemma greatly prefers to use the lowest frequencies of RoPE, which we suspect are used to carry semantic information. We mathematically prove interesting behaviours of RoPE and conduct experiments to verify our findings, proposing a modification of RoPE that fixes some highlighted issues and improves performance. We believe that this work represents an interesting step in better understanding PEs in LLMs, which we believe holds crucial value for scaling LLMs to large sizes and context lengths.
Crossing Boundaries: Leveraging Semantic Divergences to Explore Cultural Novelty in Cooking Recipes
Novelty modeling and detection is a core topic in Natural Language Processing (NLP), central to numerous tasks such as recommender systems and automatic summarization. It involves identifying pieces of text that deviate in some way from previously known information. However, novelty is also a crucial determinant of the unique perception of relevance and quality of an experience, as it rests upon each individual's understanding of the world. Social factors, particularly cultural background, profoundly influence perceptions of novelty and innovation. Cultural novelty arises from differences in salience and novelty as shaped by the distance between distinct communities. While cultural diversity has garnered increasing attention in artificial intelligence (AI), the lack of robust metrics for quantifying cultural novelty hinders a deeper understanding of these divergences. This gap limits quantifying and understanding cultural differences within computational frameworks. To address this, we propose an interdisciplinary framework that integrates knowledge from sociology and management. Central to our approach is GlobalFusion, a novel dataset comprising 500 dishes and approximately 100,000 cooking recipes capturing cultural adaptation from over 150 countries. By introducing a set of Jensen-Shannon Divergence metrics for novelty, we leverage this dataset to analyze textual divergences when recipes from one community are modified by another with a different cultural background. The results reveal significant correlations between our cultural novelty metrics and established cultural measures based on linguistic, religious, and geographical distances. Our findings highlight the potential of our framework to advance the understanding and measurement of cultural diversity in AI.
comment: Updated to match the version accepted at ACM FAccT 2025. Includes revised text and results
Scaling Laws for Floating Point Quantization Training
Low-precision training is considered an effective strategy for reducing both training and downstream inference costs. Previous scaling laws for precision mainly focus on integer quantization, which pay less attention to the constituents in floating-point (FP) quantization, and thus cannot well fit the LLM losses in this scenario. In contrast, while FP quantization training is more commonly implemented in production, it's research has been relatively superficial. In this paper, we thoroughly explore the effects of FP quantization targets, exponent bits, mantissa bits, and the calculation granularity of the scaling factor in FP quantization training performance of LLM models. In addition to an accurate FP quantization unified scaling law, we also provide valuable suggestions for the community: (1) Exponent bits contribute slightly more to the model performance than mantissa bits. We provide the optimal exponent-mantissa bit ratio for different bit numbers, which is available for future reference by hardware manufacturers; (2) We discover the formation of the critical data size in low-precision LLM training. Too much training data exceeding the critical data size will inversely bring in degradation of LLM performance; (3) The optimal FP quantization precision is directly proportional to the computational power, but within a wide computational power range. We estimate that the best cost-performance precision should lie between 4-8 bits.
Beyond Single-Turn: A Survey on Multi-Turn Interactions with Large Language Models
Recent advancements in large language models (LLMs) have revolutionized their ability to handle single-turn tasks, yet real-world applications demand sophisticated multi-turn interactions. This survey provides a comprehensive review of recent advancements in evaluating and enhancing multi-turn interactions in LLMs. Focusing on task-specific scenarios, from instruction following in diverse domains such as math and coding to complex conversational engagements in roleplay, healthcare, education, and even adversarial jailbreak settings, we systematically examine the challenges of maintaining context, coherence, fairness, and responsiveness over prolonged dialogues. The paper organizes current benchmarks and datasets into coherent categories that reflect the evolving landscape of multi-turn dialogue evaluation. In addition, we review a range of enhancement methodologies under multi-turn settings, including model-centric strategies (contextual learning, supervised fine-tuning, reinforcement learning, and new architectures), external integration approaches (memory-augmented, retrieval-based methods, and knowledge graph), and agent-based techniques for collaborative interactions. Finally, we discuss open challenges and propose future directions for research to further advance the robustness and effectiveness of multi-turn interactions in LLMs. Related resources and papers are available at https://github.com/yubol-cmu/Awesome-Multi-Turn-LLMs.
IndicSQuAD: A Comprehensive Multilingual Question Answering Dataset for Indic Languages
The rapid progress in question-answering (QA) systems has predominantly benefited high-resource languages, leaving Indic languages largely underrepresented despite their vast native speaker base. In this paper, we present IndicSQuAD, a comprehensive multi-lingual extractive QA dataset covering nine major Indic languages, systematically derived from the SQuAD dataset. Building on previous work with MahaSQuAD for Marathi, our approach adapts and extends translation techniques to maintain high linguistic fidelity and accurate answer-span alignment across diverse languages. IndicSQuAD comprises extensive training, validation, and test sets for each language, providing a robust foundation for model development. We evaluate baseline performances using language-specific monolingual BERT models and the multilingual MuRIL-BERT. The results indicate some challenges inherent in low-resource settings. Moreover, our experiments suggest potential directions for future work, including expanding to additional languages, developing domain-specific datasets, and incorporating multimodal data. The dataset and models are publicly shared at https://github.com/l3cube-pune/indic-nlp
Query-driven Document-level Scientific Evidence Extraction from Biomedical Studies
Extracting scientific evidence from biomedical studies for clinical research questions (e.g., Does stem cell transplantation improve quality of life in patients with medically refractory Crohn's disease compared to placebo?) is a crucial step in synthesising biomedical evidence. In this paper, we focus on the task of document-level scientific evidence extraction for clinical questions with conflicting evidence. To support this task, we create a dataset called CochraneForest, leveraging forest plots from Cochrane systematic reviews. It comprises 202 annotated forest plots, associated clinical research questions, full texts of studies, and study-specific conclusions. Building on CochraneForest, we propose URCA (Uniform Retrieval Clustered Augmentation), a retrieval-augmented generation framework designed to tackle the unique challenges of evidence extraction. Our experiments show that URCA outperforms the best existing methods by up to 10.3% in F1 score on this task. However, the results also underscore the complexity of CochraneForest, establishing it as a challenging testbed for advancing automated evidence synthesis systems.
Gradual Binary Search and Dimension Expansion : A general method for activation quantization in LLMs
Large language models (LLMs) have become pivotal in artificial intelligence, demonstrating strong capabilities in reasoning, understanding, and generating data. However, their deployment on edge devices is hindered by their substantial size, often reaching several billion parameters. Quantization is a widely used method to reduce memory usage and inference time, however LLMs present unique challenges due to the prevalence of outliers in their activations. In this work, we leverage the theoretical advantages of Hadamard matrices over random rotation matrices to push the boundaries of quantization in LLMs. We demonstrate that Hadamard matrices are more effective in reducing outliers, which are a significant obstacle in achieving low-bit quantization. Our method based on a gradual binary search enables 3-bit quantization for weights, activations, and key-value (KV) caches, resulting in a 40% increase in accuracy on common benchmarks compared to SoTA methods. We extend the use of rotation matrices to support non-power-of-2 embedding dimensions, similar to the Qwen architecture, by employing the Paley algorithm. We theoretically demonstrates the superiority of Hadamard matrices in reducing outliers.We achieved 3-bit quantization for weights, activations, and KV cache, significantly enhancing model performance. Our experimental results on multiple models family like Mistral, LLaMA, and Qwen demonstrate the effectiveness of our approach, outperforming existing methods and enabling practical 3-bit quantization.
SeriesBench: A Benchmark for Narrative-Driven Drama Series Understanding CVPR 2025
With the rapid development of Multi-modal Large Language Models (MLLMs), an increasing number of benchmarks have been established to evaluate the video understanding capabilities of these models. However, these benchmarks focus on standalone videos and mainly assess "visual elements" like human actions and object states. In reality, contemporary videos often encompass complex and continuous narratives, typically presented as a series. To address this challenge, we propose SeriesBench, a benchmark consisting of 105 carefully curated narrative-driven series, covering 28 specialized tasks that require deep narrative understanding. Specifically, we first select a diverse set of drama series spanning various genres. Then, we introduce a novel long-span narrative annotation method, combined with a full-information transformation approach to convert manual annotations into diverse task formats. To further enhance model capacity for detailed analysis of plot structures and character relationships within series, we propose a novel narrative reasoning framework, PC-DCoT. Extensive results on SeriesBench indicate that existing MLLMs still face significant challenges in understanding narrative-driven series, while PC-DCoT enables these MLLMs to achieve performance improvements. Overall, our SeriesBench and PC-DCoT highlight the critical necessity of advancing model capabilities to understand narrative-driven series, guiding the future development of MLLMs. SeriesBench is publicly available at https://github.com/zackhxn/SeriesBench-CVPR2025.
comment: 29 pages, 15 figures, CVPR 2025
DeepDistill: Enhancing LLM Reasoning Capabilities via Large-Scale Difficulty-Graded Data Training
Although large language models (LLMs) have recently achieved remarkable performance on various complex reasoning benchmarks, the academic community still lacks an in-depth understanding of base model training processes and data quality. To address this, we construct a large-scale, difficulty-graded reasoning dataset containing approximately 3.34 million unique queries of varying difficulty levels and about 40 million distilled responses generated by multiple models over several passes. Leveraging pass rate and Coefficient of Variation (CV), we precisely select the most valuable training data to enhance reasoning capability. Notably, we observe a training pattern shift, indicating that reasoning-focused training based on base models requires higher learning rates for effective training. Using this carefully selected data, we significantly improve the reasoning capabilities of the base model, achieving a pass rate of 79.2\% on the AIME2024 mathematical reasoning benchmark. This result surpasses most current distilled models and closely approaches state-of-the-art performance. We provide detailed descriptions of our data processing, difficulty assessment, and training methodology, and have publicly released all datasets and methods to promote rapid progress in open-source long-reasoning LLMs. The dataset is available at: \href{https://huggingface.co/datasets/a-m-team/AM-DeepSeek-Distilled-40M}{https://huggingface.co/datasets/a-m-team/AM-DeepSeek-Distilled-40M}
Ask, Fail, Repeat: Meeseeks, an Iterative Feedback Benchmark for LLMs' Multi-turn Instruction-following Ability
The ability to follow instructions accurately is fundamental for Large Language Models (LLMs) to serve as reliable agents in real-world applications. For complex instructions, LLMs often struggle to fulfill all requirements in a single attempt. In practice, users typically provide iterative feedback until the LLM generates a response that meets all requirements. However, existing instruction-following benchmarks are either single-turn or introduce new requirements in each turn without allowing self-correction. To address this gap, we propose \textbf{Meeseeks} (named after Mr. Meeseeks from \textit{Rick and Morty}\footnote{Rick and Morty is an American adult animated science fiction sitcom created by Justin Roiland and Dan Harmon for Cartoon Network's nighttime programming block Adult Swim.}.) Meeseeks simulates realistic human-LLM interactions through an iterative feedback framework, which enables models to self-correct based on specific requirement failures in each turn, better reflecting real-world user-end usage patterns. Meanwhile, the benchmark implements a comprehensive evaluation system with 38 capability tags organized across three dimensions: Intent Recognition, Granular Content Validation, and Output Structure Validation. Through rigorous evaluation across LLMs, Meeseeks provides valuable insights into LLMs' instruction-following capabilities in multi-turn scenarios.
LLMSR@XLLM25: Less is More: Enhancing Structured Multi-Agent Reasoning via Quality-Guided Distillation ACL 2025
The LLMSR@XLLM25 formulates a low-resource structural reasoning task that challenges LLMs to generate interpretable, step-by-step rationales with minimal labeled data. We present Less is More, the third-place winning approach in the LLMSR@XLLM25, which focuses on structured reasoning from only 24 labeled examples. Our approach leverages a multi-agent framework with reverse-prompt induction, retrieval-augmented reasoning synthesis via GPT-4o, and dual-stage reward-guided filtering to distill high-quality supervision across three subtasks: question parsing, CoT parsing, and step-level verification. All modules are fine-tuned from Meta-Llama-3-8B-Instruct under a unified LoRA+ setup. By combining structure validation with reward filtering across few-shot and zero-shot prompts, our pipeline consistently improves structure reasoning quality. These results underscore the value of controllable data distillation in enhancing structured inference under low-resource constraints. Our code is available at https://github.com/JhCircle/Less-is-More.
comment: XLLM @ ACL 2025 Shared Task-III: LLM for Structural Reasoning (LLM-SR)
Vision-Language Models Do Not Understand Negation CVPR 2025
Many practical vision-language applications require models that understand negation, e.g., when using natural language to retrieve images which contain certain objects but not others. Despite advancements in vision-language models (VLMs) through large-scale training, their ability to comprehend negation remains underexplored. This study addresses the question: how well do current VLMs understand negation? We introduce NegBench, a new benchmark designed to evaluate negation understanding across 18 task variations and $79$k examples spanning image, video, and medical datasets. The benchmark consists of two core tasks designed to evaluate negation understanding in diverse multimodal settings: Retrieval with Negation and Multiple Choice Questions with Negated Captions. Our evaluation reveals that modern VLMs struggle significantly with negation, often performing at chance level. To address these shortcomings, we explore a data-centric approach wherein we finetune CLIP models on large-scale synthetic datasets containing millions of negated captions. We show that this approach can result in a 10% increase in recall on negated queries and a 28% boost in accuracy on multiple-choice questions with negated captions.
comment: CVPR 2025; project page: https://negbench.github.io
MobA: Multifaceted Memory-Enhanced Adaptive Planning for Efficient Mobile Task Automation NAACL 2025
Existing Multimodal Large Language Model (MLLM)-based agents face significant challenges in handling complex GUI (Graphical User Interface) interactions on devices. These challenges arise from the dynamic and structured nature of GUI environments, which integrate text, images, and spatial relationships, as well as the variability in action spaces across different pages and tasks. To address these limitations, we propose MobA, a novel MLLM-based mobile assistant system. MobA introduces an adaptive planning module that incorporates a reflection mechanism for error recovery and dynamically adjusts plans to align with the real environment contexts and action module's execution capacity. Additionally, a multifaceted memory module provides comprehensive memory support to enhance adaptability and efficiency. We also present MobBench, a dataset designed for complex mobile interactions. Experimental results on MobBench and AndroidArena demonstrate MobA's ability to handle dynamic GUI environments and perform complex mobile tasks.
comment: NAACL 2025 Demo Track [code] https://github.com/OpenDFM/MobA [dataset] https://huggingface.co/datasets/OpenDFM/MobA-MobBench
CURIE: Evaluating LLMs On Multitask Scientific Long Context Understanding and Reasoning ICLR 2025
Scientific problem-solving involves synthesizing information while applying expert knowledge. We introduce CURIE, a scientific long-Context Understanding,Reasoning and Information Extraction benchmark to measure the potential of Large Language Models (LLMs) in scientific problem-solving and assisting scientists in realistic workflows. This benchmark introduces ten challenging tasks with a total of 580 problems and solution pairs curated by experts in six disciplines - materials science, condensed matter physics, quantum computing, geospatial analysis, biodiversity, and proteins - covering both experimental and theoretical work-flows in science. We evaluate a range of closed and open LLMs on tasks in CURIE which requires domain expertise, comprehension of long in-context information,and multi-step reasoning. While Gemini Flash 2.0 and Claude-3 show consistent high comprehension across domains, the popular GPT-4o and command-R+ fail dramatically on protein sequencing tasks. With the best performance at 32% there is much room for improvement for all models. We hope that insights gained from CURIE can guide the future development of LLMs in sciences. Evaluation code and data are in https://github.com/google/curie
comment: Accepted at ICLR 2025 main conference
Red Teaming the Mind of the Machine: A Systematic Evaluation of Prompt Injection and Jailbreak Vulnerabilities in LLMs
Large Language Models (LLMs) are increasingly integrated into consumer and enterprise applications. Despite their capabilities, they remain susceptible to adversarial attacks such as prompt injection and jailbreaks that override alignment safeguards. This paper provides a systematic investigation of jailbreak strategies against various state-of-the-art LLMs. We categorize over 1,400 adversarial prompts, analyze their success against GPT-4, Claude 2, Mistral 7B, and Vicuna, and examine their generalizability and construction logic. We further propose layered mitigation strategies and recommend a hybrid red-teaming and sandboxing approach for robust LLM security.
comment: 7 Pages, 6 Figures
Cite Before You Speak: Enhancing Context-Response Grounding in E-commerce Conversational LLM-Agents
With the advancement of conversational large language models (LLMs), several LLM-based Conversational Shopping Agents (CSA) have been developed to help customers smooth their online shopping. The primary objective in building an engaging and trustworthy CSA is to ensure the agent's responses about product factoids are accurate and factually grounded. However, two challenges remain. First, LLMs produce hallucinated or unsupported claims. Such inaccuracies risk spreading misinformation and diminishing customer trust. Second, without providing knowledge source attribution in CSA response, customers struggle to verify LLM-generated information. To address both challenges, we present an easily productionized solution that enables a ''citation experience'' to our customers. We build auto-evaluation metrics to holistically evaluate LLM's grounding and attribution capabilities, suggesting that citation generation paradigm substantially improves grounding performance by 13.83%. To deploy this capability at scale, we introduce Multi-UX-Inference system, which appends source citations to LLM outputs while preserving existing user experience features and supporting scalable inference. Large-scale online A/B tests show that grounded CSA responses improves customer engagement by 3% - 10%, depending on UX variations.
Evaluating the Symbol Binding Ability of Large Language Models for Multiple-Choice Questions in Vietnamese General Education
In this paper, we evaluate the ability of large language models (LLMs) to perform multiple choice symbol binding (MCSB) for multiple choice question answering (MCQA) tasks in zero-shot, one-shot, and few-shot settings. We focus on Vietnamese, with fewer challenging MCQA datasets than in English. The two existing datasets, ViMMRC 1.0 and ViMMRC 2.0, focus on literature. Recent research in Vietnamese natural language processing (NLP) has focused on the Vietnamese National High School Graduation Examination (VNHSGE) from 2019 to 2023 to evaluate ChatGPT. However, these studies have mainly focused on how ChatGPT solves the VNHSGE step by step. We aim to create a novel and high-quality dataset by providing structured guidelines for typing LaTeX formulas for mathematics, physics, chemistry, and biology. This dataset can be used to evaluate the MCSB ability of LLMs and smaller language models (LMs) because it is typed in a strict LaTeX style. We focus on predicting the character (A, B, C, or D) that is the most likely answer to a question, given the context of the question. Our evaluation of six well-known LLMs, namely BLOOMZ-7.1B-MT, LLaMA-2-7B, LLaMA-2-70B, GPT-3, GPT-3.5, and GPT-4.0, on the ViMMRC 1.0 and ViMMRC 2.0 benchmarks and our proposed dataset shows promising results on the MCSB ability of LLMs for Vietnamese. The dataset is available for research purposes only.
comment: Accepted at SoICT 2023
Bridging LLMs and KGs without Fine-Tuning: Intermediate Probing Meets Subgraph-Aware Entity Descriptions
Traditional knowledge graph completion (KGC) methods rely solely on structural information, struggling with the inherent sparsity of knowledge graphs (KGs). Large Language Models (LLMs) learn extensive knowledge from large corpora with powerful context modeling, making them promising for mitigating the limitations of previous methods. Directly fine-tuning LLMs offers great capability but comes at the cost of huge time and memory consumption, while utilizing frozen LLMs yields suboptimal results.In this work, we aim to leverage LLMs for KGC effectively and efficiently. We capture the context-aware hidden states of knowledge triples by employing prompts to stimulate the intermediate layers of LLMs. We then train a data-efficient classifier on these hidden states to harness the inherent capabilities of frozen LLMs in KGC. Additionally, to reduce ambiguity and enrich knowledge representation, we generate detailed entity descriptions through subgraph sampling on KGs. Extensive experiments on standard benchmarks demonstrate the efficiency and effectiveness of our approach. We outperform traditional KGC methods across most datasets and, notably, achieve classification performance comparable to fine-tuned LLMs while enhancing GPU memory efficiency by $188\times$ and accelerating training and inference by $13.48\times$.
No Preference Left Behind: Group Distributional Preference Optimization
Preferences within a group of people are not uniform but follow a distribution. While existing alignment methods like Direct Preference Optimization (DPO) attempt to steer models to reflect human preferences, they struggle to capture the distributional pluralistic preferences within a group. These methods often skew toward dominant preferences, overlooking the diversity of opinions, especially when conflicting preferences arise. To address this issue, we propose Group Distributional Preference Optimization (GDPO), a novel framework that aligns language models with the distribution of preferences within a group by incorporating the concept of beliefs that shape individual preferences. GDPO calibrates a language model using statistical estimation of the group's belief distribution and aligns the model with belief-conditioned preferences, offering a more inclusive alignment framework than traditional methods. In experiments using both synthetic controllable opinion generation and real-world movie review datasets, we show that DPO fails to align with the targeted belief distributions, while GDPO consistently reduces this alignment gap during training. Moreover, our evaluation metrics demonstrate that GDPO outperforms existing approaches in aligning with group distributional preferences, marking a significant advance in pluralistic alignment.
Efficient Shapley Value-based Non-Uniform Pruning of Large Language Models
Pruning large language models (LLMs) is a promising solution for reducing model sizes and computational complexity while preserving performance. Traditional layer-wise pruning methods often adopt a uniform sparsity approach across all layers, which leads to suboptimal performance due to the varying significance of individual transformer layers within the model not being accounted for. To this end, we propose the Shapley Value-based Non-Uniform Pruning (SV-NUP) method for LLMs. This approach quantifies the contribution of each transformer layer to the overall model performance, enabling the assignment of tailored pruning budgets to different layers to retain critical parameters. To further improve efficiency, we design the Sliding Window-based Shapley Value approximation method. It substantially reduces computational overhead compared to exact SV calculation methods. Extensive experiments on various LLMs including LLaMA-v1, LLaMA-v2 and OPT demonstrate the effectiveness of the proposed approach. The results reveal that non-uniform pruning significantly enhances the performance of pruned models. Notably, SV-NUP achieves a reduction in perplexity (PPL) of 18.01% and 19.55% on LLaMA-7B and LLaMA-13B, respectively, compared to SparseGPT at 70% sparsity.
Are Transformers Able to Reason by Connecting Separated Knowledge in Training Data? ICLR 2025
Humans exhibit remarkable compositional reasoning by integrating knowledge from various sources. For example, if someone learns ( B = f(A) ) from one source and ( C = g(B) ) from another, they can deduce ( C=g(B)=g(f(A)) ) even without encountering ( ABC ) together, showcasing the generalization ability of human intelligence. In this paper, we introduce a synthetic learning task, "FTCT" (Fragmented at Training, Chained at Testing), to validate the potential of Transformers in replicating this skill and interpret its inner mechanism. In the training phase, data consist of separated knowledge fragments from an overall causal graph. During testing, Transformers must infer complete causal graph traces by integrating these fragments. Our findings demonstrate that few-shot Chain-of-Thought prompting enables Transformers to perform compositional reasoning on FTCT by revealing correct combinations of fragments, even if such combinations were absent in the training data. Furthermore, the emergence of compositional reasoning ability is strongly correlated with the model complexity and training-testing data similarity. We propose, both theoretically and empirically, that Transformers learn an underlying generalizable program from training, enabling effective compositional reasoning during testing.
comment: Accepted by ICLR 2025
An Analytical Emotion Framework of Rumour Threads on Social Media
Rumours in online social media pose significant risks to modern society, motivating the need for better understanding of how they develop. We focus specifically on the interface between emotion and rumours in threaded discourses, building on the surprisingly sparse literature on the topic which has largely focused on single aspect of emotions within the original rumour posts themselves, and largely overlooked the comparative differences between rumours and non-rumours. In this work, we take one step further to provide a comprehensive analytical emotion framework with multi-aspect emotion detection, contrasting rumour and non-rumour threads and provide both correlation and causal analysis of emotions. We applied our framework on existing widely-used rumour datasets to further understand the emotion dynamics in online social media threads. Our framework reveals that rumours trigger more negative emotions (e.g., anger, fear, pessimism), while non-rumours evoke more positive ones. Emotions are contagious, rumours spread negativity, non-rumours spread positivity. Causal analysis shows surprise bridges rumours and other emotions; pessimism comes from sadness and fear, while optimism arises from joy and love.
comment: Accepted to ICWSM 2025 MisD Workshop
Simulating and Analysing Human Survey Responses with Large Language Models: A Case Study in Energy Stated Preference
Survey research plays a crucial role in studies by capturing consumer preferences and informing policy decisions. Stated preference (SP) surveys help researchers understand how individuals make trade-offs in hypothetical, potentially futuristic, scenarios. However, traditional methods are costly, time-consuming, and affected by respondent fatigue and ethical constraints. Large language models (LLMs) have shown remarkable capabilities in generating human-like responses, prompting interest in their use in survey research. This study investigates LLMs for simulating consumer choices in energy-related SP surveys and explores their integration into data collection and analysis workflows. Test scenarios were designed to assess the simulation performance of several LLMs (LLaMA 3.1, Mistral, GPT-3.5, DeepSeek-R1) at individual and aggregated levels, considering prompt design, in-context learning (ICL), chain-of-thought (CoT) reasoning, model types, integration with traditional choice models, and potential biases. While LLMs achieve accuracy above random guessing, performance remains insufficient for practical simulation use. Cloud-based LLMs do not consistently outperform smaller local models. DeepSeek-R1 achieves the highest average accuracy (77%) and outperforms non-reasoning LLMs in accuracy, factor identification, and choice distribution alignment. Previous SP choices are the most effective input; longer prompts with more factors reduce accuracy. Mixed logit models can support LLM prompt refinement. Reasoning LLMs show potential in data analysis by indicating factor significance, offering a qualitative complement to statistical models. Despite limitations, pre-trained LLMs offer scalability and require minimal historical data. Future work should refine prompts, further explore CoT reasoning, and investigate fine-tuning techniques.
Principled Data Selection for Alignment: The Hidden Risks of Difficult Examples ICML 2025
The alignment of large language models (LLMs) often assumes that using more clean data yields better outcomes, overlooking the match between model capacity and example difficulty. Challenging this, we propose a new principle: Preference data vary in difficulty, and overly difficult examples hinder alignment, by exceeding the model's capacity. Through systematic experimentation, we validate this principle with three key findings: (1) preference examples vary in difficulty, as evidenced by consistent learning orders across alignment runs; (2) overly difficult examples significantly degrade performance across four LLMs and two datasets; and (3) the capacity of a model dictates its threshold for handling difficult examples, underscoring a critical relationship between data selection and model capacity. Building on this principle, we introduce Selective DPO, which filters out overly difficult examples. This simple adjustment improves alignment performance by 9-16% in win rates on the AlpacaEval 2 benchmark compared to the DPO baseline, suppressing a series of DPO variants with different algorithmic adjustments. Together, these results illuminate the importance of aligning data difficulty with model capacity, offering a transformative perspective for improving alignment strategies in LLMs. Code is available at https://github.com/glorgao/SelectiveDPO.
comment: Accepted at ICML 2025
InductionBench: LLMs Fail in the Simplest Complexity Class
Large language models (LLMs) have shown remarkable improvements in reasoning and many existing benchmarks have been addressed by models such as o1 and o3 either fully or partially. However, a majority of these benchmarks emphasize deductive reasoning, including mathematical and coding tasks in which rules such as mathematical axioms or programming syntax are clearly defined, based on which LLMs can plan and apply these rules to arrive at a solution. In contrast, inductive reasoning, where one infers the underlying rules from observed data, remains less explored. Such inductive processes lie at the heart of scientific discovery, as they enable researchers to extract general principles from empirical observations. To assess whether LLMs possess this capacity, we introduce InductionBench, a new benchmark designed to evaluate the inductive reasoning ability of LLMs. Our experimental findings reveal that even the most advanced models available struggle to master the simplest complexity classes within the subregular hierarchy of functions, highlighting a notable deficiency in current LLMs' inductive reasoning capabilities. Coda and data are available https://github.com/Wenyueh/inductive_reasoning_benchmark.
comment: 25 pages, 10 figures, more details including examples and prompts are added
Human-Computer Interaction
VizCV: AI-assisted visualization of researchers' publications tracks
Analyzing how the publication records of scientists and research groups have evolved over the years is crucial for assessing their expertise since it can support the management of academic environments by assisting with career planning and evaluation. We introduce VizCV, a novel web-based end-to-end visual analytics framework that enables the interactive exploration of researchers' scientific trajectories. It incorporates AI-assisted analysis and supports automated reporting of career evolution. Our system aims to model career progression through three key dimensions: a) research topic evolution to detect and visualize shifts in scholarly focus over time, b) publication record and the corresponding impact, c) collaboration dynamics depicting the growth and transformation of a researcher's co-authorship network. AI-driven insights provide automated explanations of career transitions, detecting significant shifts in research direction, impact surges, or collaboration expansions. The system also supports comparative analysis between researchers, allowing users to compare topic trajectories and impact growth. Our interactive, multi-tab and multiview system allows for the exploratory analysis of career milestones under different perspectives, such as the most impactful articles, emerging research themes, or obtaining a detailed analysis of the contribution of the researcher in a subfield. The key contributions include AI/ML techniques for: a) topic analysis, b) dimensionality reduction for visualizing patterns and trends, c) the interactive creation of textual descriptions of facets of data through configurable prompt generation and large language models, that include key indicators, to help understanding the career development of individuals or groups.
comment: 11 pages, 9 figures. Subtmitted
Claycode: Stylable and Deformable 2D Scannable Codes
This paper introduces Claycode, a novel 2D scannable code designed for extensive stylization and deformation. Unlike traditional matrix-based codes (e.g., QR codes), Claycodes encode their message in a tree structure. During the encoding process, bits are mapped into a topology tree, which is then depicted as a nesting of color regions drawn within the boundaries of a target polygon shape. When decoding, Claycodes are extracted and interpreted in real-time from a camera stream. We detail the end-to-end pipeline and show that Claycodes allow for extensive stylization without compromising their functionality. We then empirically demonstrate Claycode's high tolerance to heavy deformations, outperforming traditional 2D scannable codes in scenarios where they typically fail.
Enhancing Software Development with Context-Aware Conversational Agents: A User Study on Developer Interactions with Chatbots
Software development is a cognitively intensive process requiring multitasking, adherence to evolving workflows, and continuous learning. With the rise of large language model (LLM)-based tools, such as conversational agents (CAs), there is growing interest in supporting developers through natural language interaction. However, little is known about the specific features developers seek in these systems. We conducted a user study with 29 developers using a prototype text-based chatbot to investigate preferred functionalities. Our findings reveal strong interest in task automation, version control support, and contextual adaptability, especially the need to tailor assistance for both novice and experienced users. We highlight the importance of deep contextual understanding, historical interaction awareness, and personalized support in CA design. This study contributes to the development of context-aware chatbots that enhance productivity and satisfaction, and it outlines opportunities for future research on human-AI collaboration in software engineering.
Integrating Natural Language Processing and Exercise Monitoring for Early Diagnosis of Metabolic Syndrome: A Deep Learning Approach
Metabolic syndrome (MetS) is a medication condition characterized by abdominal obesity, insulin resistance, hypertension and hyperlipidemia. It increases the risk of majority of chronic diseases, including type 2 diabetes mellitus, and affects about one quarter of the global population. Therefore, early detection and timely intervention for MetS are crucial. Standard diagnosis for MetS components requires blood tests conducted within medical institutions. However, it is frequently underestimated, leading to unmet need for care for MetS population. This study aims to use the least physiological data and free texts about exercises related activities, which are obtained easily in daily life, to diagnosis MetS. We collected the data from 40 volunteers in a nursing home and used data augmentation to reduce the imbalance. We propose a deep learning framework for classifying MetS that integrates natural language processing (NLP) and exercise monitoring. The results showed that the best model reported a high positive result (AUROC=0.806 and REC=76.3%) through 3-fold cross-validation. Feature importance analysis revealed that text and minimum heart rate on a daily basis contribute the most in the classification of MetS. This study demonstrates the potential application of data that are easily measurable in daily life for the early diagnosis of MetS, which could contribute to reducing the cost of screening and management for MetS population.
Small but Significant: On the Promise of Small Language Models for Accessible AIED
GPT has become nearly synonymous with large language models (LLMs), an increasingly popular term in AIED proceedings. A simple keyword-based search reveals that 61% of the 76 long and short papers presented at AIED 2024 describe novel solutions using LLMs to address some of the long-standing challenges in education, and 43% specifically mention GPT. Although LLMs pioneered by GPT create exciting opportunities to strengthen the impact of AI on education, we argue that the field's predominant focus on GPT and other resource-intensive LLMs (with more than 10B parameters) risks neglecting the potential impact that small language models (SLMs) can make in providing resource-constrained institutions with equitable and affordable access to high-quality AI tools. Supported by positive results on knowledge component (KC) discovery, a critical challenge in AIED, we demonstrate that SLMs such as Phi-2 can produce an effective solution without elaborate prompting strategies. Hence, we call for more attention to developing SLM-based AIED approaches.
comment: This vision paper advocates using small language models (e.g., Phi-2) in AI for education (AIED)
CoVoL: A Cooperative Vocabulary Learning Game for Children with Autism
Children with Autism commonly face difficulties in vocabulary acquisition, which can have an impact on their social communication. Using digital tools for vocabulary learning can prove beneficial for these children, as they can provide a predictable environment and effective individualized feedback. While existing work has explored the use of technology-assisted vocabulary learning for children with Autism, no study has incorporated turn-taking to facilitate learning and use of vocabulary similar to that used in real-world social contexts. To address this gap, we propose the design of a cooperative two-player vocabulary learning game, CoVoL. CoVoL allows children to engage in game-based vocabulary learning useful for real-world social communication scenarios. We discuss our first prototype and its evaluation. Additionally, we present planned features which are based on feedback obtained through ten interviews with researchers and therapists, as well as an evaluation plan for the final release of CoVoL.
BizChat: Scaffolding AI-Powered Business Planning for Small Business Owners Across Digital Skill Levels
Generative AI can help small business owners automate tasks, increase efficiency, and improve their bottom line. However, despite the seemingly intuitive design of systems like ChatGPT, significant barriers remain for those less comfortable with technology. To address these disparities, prior work highlights accessory skills -- beyond prompt engineering -- users must master to successfully adopt generative AI including keyboard shortcuts, editing skills, file conversions, and browser literacy. Building on a design workshop series and 15 interviews with small businesses, we introduce BizChat, a large language model (LLM)-powered web application that helps business owners across digital skills levels write their business plan -- an essential but often neglected document. To do so, BizChat's interface embodies three design considerations inspired by learning sciences: ensuring accessibility to users with less digital skills while maintaining extensibility to power users ("low-floor-high-ceiling"), providing in situ micro-learning to support entrepreneurial education ("just-in-time learning"), and framing interaction around business activities ("contextualized technology introduction"). We conclude with plans for a future BizChat deployment.
comment: 4 pages, 1 figure, CHIWORK '25 Adjunct, June 23-25, 2025, Amsterdam, Netherlands
Human-in-the-Loop Optimization for Inclusive Design: Balancing Automation and Designer Expertise
Accessible and inclusive design has gained increased attention in HCI, yet practical implementation remains challenging due to resource-intensive prototyping methods. Traditional approaches such as workshops, A-B tests, and co-design sessions struggle to capture the diverse and complex needs of users with disabilities at scale. This position paper argues for an automated, accessible Human-in-the-Loop (HITL) design optimization process that shifts the designer's role from directly crafting prototypes to curating constraints for algorithmic exploration. By pre-constraining the design space based on specific user interaction needs, integrating adaptive multi-modal feedback channels, and personalizing feedback prompts, the HITL approach could efficiently refine design parameters, such as text size, color contrast, layout, and interaction modalities, to achieve optimal accessibility. This approach promises scalable, individualized design solutions while raising critical questions about constraint curation, transparency, user agency, and ethical considerations, making it essential to discuss and refine these ideas collaboratively at the workshop.
comment: Position Paper for the CHI 2025 Workshop Access InContext: Futuring Accessible Prototyping Tools and Methods. April 26, 2025. Yokohama, Japan
A Comparison Between Human and Generative AI Decision-Making Attributes in Complex Health Services
A comparison between human and Generative AI decision-making attributes in complex health services is a knowledge gap in the literature, at present. Humans may possess unique attributes beneficial to decision-making in complex health services such as health policy and health regulation, but are also susceptible to decision-making flaws. The objective is to explore whether humans have unique, and/or helpful attributes that contribute to optimal decision-making in complex health services. This comparison may also shed light on whether humans are likely to compete, cooperate, or converge with Generative AI. The comparison is based on two published reviews: a scoping review of human attributes [1] and a rapid review of Generative AI attributes [2]. The analysis categorizes attributes by uniqueness and impact. The results are presented in tabular form, comparing the sets and subsets of human and Generative AI attributes. Humans and Generative AI decision-making attributes have complementary strengths. Cooperation between these two entities seems more likely than pure competition. To maintain meaningful decision-making roles, humans could develop their unique attributes, with decision-making systems integrating both human and Generative AI contributions. These entities may also converge, in future.
comment: 10 pages, 2 figures, 1 table
Investigating Resolution Strategies for Workspace-Occlusion in Augmented Virtuality
Augmented Virtuality integrates physical content into virtual environments, but the occlusion of physical by virtual content is a challenge. This unwanted occlusion may disrupt user interactions with physical devices and compromise safety and usability. This paper investigates two resolution strategies to address this issue: Redirected Walking, which subtly adjusts the user's movement to maintain physical-virtual alignment, and Automatic Teleport Rotation, which realigns the virtual environment during travel. A user study set in a virtual forest demonstrates that both methods effectively reduce occlusion. While in our testbed, Automatic Teleport Rotation achieves higher occlusion resolution, it is suspected to increase cybersickness compared to the less intrusive Redirected Walking approach.
Large Language Model Psychometrics: A Systematic Review of Evaluation, Validation, and Enhancement
The rapid advancement of large language models (LLMs) has outpaced traditional evaluation methodologies. It presents novel challenges, such as measuring human-like psychological constructs, navigating beyond static and task-specific benchmarks, and establishing human-centered evaluation. These challenges intersect with Psychometrics, the science of quantifying the intangible aspects of human psychology, such as personality, values, and intelligence. This survey introduces and synthesizes an emerging interdisciplinary field of LLM Psychometrics, which leverages psychometric instruments, theories, and principles to evaluate, understand, and enhance LLMs. We systematically explore the role of Psychometrics in shaping benchmarking principles, broadening evaluation scopes, refining methodologies, validating results, and advancing LLM capabilities. This paper integrates diverse perspectives to provide a structured framework for researchers across disciplines, enabling a more comprehensive understanding of this nascent field. Ultimately, we aim to provide actionable insights for developing future evaluation paradigms that align with human-level AI and promote the advancement of human-centered AI systems for societal benefit. A curated repository of LLM psychometric resources is available at https://github.com/valuebyte-ai/Awesome-LLM-Psychometrics.
comment: 63 pages, 482 references
Communication Styles and Reader Preferences of LLM and Human Experts in Explaining Health Information
With the wide adoption of large language models (LLMs) in information assistance, it is essential to examine their alignment with human communication styles and values. We situate this study within the context of fact-checking health information, given the critical challenge of rectifying conceptions and building trust. Recent studies have explored the potential of LLM for health communication, but style differences between LLMs and human experts and associated reader perceptions remain under-explored. In this light, our study evaluates the communication styles of LLMs, focusing on how their explanations differ from those of humans in three core components of health communication: information, sender, and receiver. We compiled a dataset of 1498 health misinformation explanations from authoritative fact-checking organizations and generated LLM responses to inaccurate health information. Drawing from health communication theory, we evaluate communication styles across three key dimensions of information linguistic features, sender persuasive strategies, and receiver value alignments. We further assessed human perceptions through a blinded evaluation with 99 participants. Our findings reveal that LLM-generated articles showed significantly lower scores in persuasive strategies, certainty expressions, and alignment with social values and moral foundations. However, human evaluation demonstrated a strong preference for LLM content, with over 60% responses favoring LLM articles for clarity, completeness, and persuasiveness. Our results suggest that LLMs' structured approach to presenting information may be more effective at engaging readers despite scoring lower on traditional measures of quality in fact-checking and health communication.
Tracing the Invisible: Understanding Students' Judgment in AI-Supported Design Work
As generative AI tools become integrated into design workflows, students increasingly engage with these tools not just as aids, but as collaborators. This study analyzes reflections from 33 student teams in an HCI design course to examine the kinds of judgments students make when using AI tools. We found both established forms of design judgment (e.g., instrumental, appreciative, quality) and emergent types: agency-distribution judgment and reliability judgment. These new forms capture how students negotiate creative responsibility with AI and assess the trustworthiness of its outputs. Our findings suggest that generative AI introduces new layers of complexity into design reasoning, prompting students to reflect not only on what AI produces, but also on how and when to rely on it. By foregrounding these judgments, we offer a conceptual lens for understanding how students engage in co-creative sensemaking with AI in design contexts.
comment: 5 pages, 2 Tables, In Creativity and Cognition 2025, June 23--25, 2025, Virtual, United Kingdom
FareShare: A Tool for Labor Organizers to Estimate Lost Wages and Contest Arbitrary AI and Algorithmic Deactivations
What happens when a rideshare driver is suddenly locked out of the platform connecting them to riders, wages, and daily work? Deactivation-the abrupt removal of gig workers' platform access-typically occurs through arbitrary AI and algorithmic decisions with little explanation or recourse. This represents one of the most severe forms of algorithmic control and often devastates workers' financial stability. Recent U.S. state policies now mandate appeals processes and recovering compensation during the period of wrongful deactivation based on past earnings. Yet, labor organizers still lack effective tools to support these complex, error-prone workflows. We designed FareShare, a computational tool automating lost wage estimation for deactivated drivers, through a 6 month partnership with the State of Washington's largest rideshare labor union. Over the following 3 months, our field deployment of FareShare registered 178 account signups. We observed that the tool could reduce lost wage calculation time by over 95%, eliminate manual data entry errors, and enable legal teams to generate arbitration-ready reports more efficiently. Beyond these gains, the deployment also surfaced important socio-technical challenges around trust, consent, and tool adoption in high-stakes labor contexts.
Performance Gains of LLMs With Humans in a World of LLMs Versus Humans
Currently, a considerable research effort is devoted to comparing LLMs to a group of human experts, where the term "expert" is often ill-defined or variable, at best, in a state of constantly updating LLM releases. Without proper safeguards in place, LLMs will threaten to cause harm to the established structure of safe delivery of patient care which has been carefully developed throughout history to keep the safety of the patient at the forefront. A key driver of LLM innovation is founded on community research efforts which, if continuing to operate under "humans versus LLMs" principles, will expedite this trend. Therefore, research efforts moving forward must focus on effectively characterizing the safe use of LLMs in clinical settings that persist across the rapid development of novel LLM models. In this communication, we demonstrate that rather than comparing LLMs to humans, there is a need to develop strategies enabling efficient work of humans with LLMs in an almost symbiotic manner.
WaLLM -- Insights from an LLM-Powered Chatbot deployment via WhatsApp
Recent advances in generative AI, such as ChatGPT, have transformed access to information in education, knowledge-seeking, and everyday decision-making. However, in many developing regions, access remains a challenge due to the persistent digital divide. To help bridge this gap, we developed WaLLM - a custom AI chatbot over WhatsApp, a widely used communication platform in developing regions. Beyond answering queries, WaLLM offers several features to enhance user engagement: a daily top question, suggested follow-up questions, trending and recent queries, and a leaderboard-based reward system. Our service has been operational for over 6 months, amassing over 14.7K queries from approximately 100 users. In this paper, we present WaLLM's design and a systematic analysis of logs to understand user interactions. Our results show that 55% of user queries seek factual information. "Health and well-being" was the most popular topic (28%), including queries about nutrition and disease, suggesting users view WaLLM as a reliable source. Two-thirds of users' activity occurred within 24 hours of the daily top question. Users who accessed the "Leaderboard" interacted with WaLLM 3x as those who did not. We conclude by discussing implications for culture-based customization, user interface design, and appropriate calibration of users' trust in AI systems for developing regions.
VTutor for High-Impact Tutoring at Scale: Managing Engagement and Real-Time Multi-Screen Monitoring with P2P Connections
Hybrid tutoring, where a human tutor supports multiple students in learning with educational technology, is an increasingly common application to deliver high-impact tutoring at scale. However, past hybrid tutoring applications are limited in guiding tutor attention to students that require support. Specifically, existing conferencing tools, commonly used in hybrid tutoring, do not allow tutors to monitor multiple students' screens while directly communicating and attending to multiple students simultaneously. To address this issue, this paper introduces VTutor, a web-based platform leveraging peer-to-peer screen sharing and virtual avatars to deliver real-time, context-aware tutoring feedback at scale. By integrating a multi-student monitoring dashboard with AI-powered avatar prompts, VTutor empowers a single educator or tutor to rapidly detect off-task or struggling students and intervene proactively, thus enhancing the benefits of one-on-one interactions in classroom contexts with several students. Drawing on insight from the learning sciences and past research on animated pedagogical agents, we demonstrate how stylized avatars can potentially sustain student engagement while accommodating varying infrastructure constraints. Finally, we address open questions on refining large-scale, AI-driven tutoring solutions for improved learner outcomes, and how VTutor could help interpret real-time learner interactions to support remote tutors at scale. The VTutor platform can be accessed at https://ls2025.vtutor.ai. The system demo video is at https://ls2025.vtutor.ai/video.
comment: 6 pages
Exploring Anthropomorphism in Conversational Agents for Environmental Sustainability
The paper investigates the integration of Large Language Models (LLMs) into Conversational Agents (CAs) to encourage a shift in consumption patterns from a demand-driven to a supply-based paradigm. Specifically, the research examines the role of anthropomorphic design in delivering environmentally conscious messages by comparing two CA designs: a personified agent representing an appliance and a traditional, non-personified assistant. A lab study (N=26) assessed the impact of these designs on interaction, perceived self-efficacy, and engagement. Results indicate that LLM-based CAs significantly enhance users' self-reported eco-friendly behaviors, with participants expressing greater confidence in managing energy consumption. While the anthropomorphic design did not notably affect self-efficacy, those interacting with the personified agent reported a stronger sense of connection with the system. These findings suggest that although anthropomorphic CAs may improve user engagement, both designs hold promise for fostering sustainable behaviors in home energy management.
Self-reflecting Large Language Models: A Hegelian Dialectical Approach
Investigating NLP through a philosophical lens has recently caught researcher's eyes as it connects computational methods with classical schools of philosophy. This paper introduces a philosophical approach inspired by the \textit{Hegelian Dialectic} for LLMs' \textit{self-reflection}, utilizing a self-dialectical approach to emulate internal critiques and then synthesize new ideas by resolving the opposing points of view. Moreover, this paper investigates the effect of LLMs' temperature for generation by establishing a dynamic annealing approach, which promotes the creativity in the early stages and gradually refines it by focusing on the nuances, as well as a fixed-temperature strategy for generation. We assess the effectiveness of our proposed method in generating novel ideas and in improving the reasoning abilities of LLMs during problem-solving. Moreover, we implement a Multi-Agent Majority Voting (MAMV) strategy to assess the validity and novelty of the generated ideas, which proves useful in the absence of domain experts. Our experiments demonstrate promising results in generating ideas and enhancing problem-solving performance.
Designing Value-Centered Consent Interfaces: A Mixed-Methods Approach to Support Patient Values in Data-Sharing Decisions
In the digital health domain, ethical data collection practices are crucial for ensuring the availability of quality datasets that drive medical advancement. Data donation, allowing patients to share their medical data for secondary research purposes, presents a promising resource for such datasets. Yet, current consent user interfaces mediating data-sharing decisions are found to favor data collectors' values over those of data subjects. This raises ethical concerns about the use of data collected, as well as concerning the quality of the resulting datasets. Seeking to establish value-centered data collection practices in digital health, we investigate the design of consent user interfaces that support end-users in making value-congruent health data-sharing decisions. Focusing our research efforts on the situated context of health data donation at the psychosomatic unit of a university hospital, we demonstrate how a human-centered design can ground technology within the perspective of a vulnerable group. We employed an exploratory sequential mixed-method approach consisting of five phases: Participatory workshops elicit patient values, informing the design of a proposed Value-Centered Consent Interface. An online experiment demonstrates our interface element's effect, increasing value congruence in data-sharing decisions. Our proposed consent user interface design is then adapted to the research context through a co-creation workshop with domain experts and a user interface evaluation with patients. Our work contributes to recent discourse in CSCW concerning ethical implications of new data practices within their socio-technological context by exploring patient values on medical data-sharing, introducing a novel consent interface leveraging reflection to support value-congruent decision-making, and providing a situated evaluation of the proposed consent user interface with patients.
comment: 30 pages
Lessons From an App Update at Replika AI: Identity Discontinuity in Human-AI Relationships
Can consumers form especially deep emotional bonds with AI and be vested in AI identities over time? We leverage a natural app-update event at Replika AI, a popular US-based AI companion, to shed light on these questions. We find that, after the app removed its erotic role play (ERP) feature, preventing intimate interactions between consumers and chatbots that were previously possible, this event triggered perceptions in customers that their AI companion's identity had discontinued. This in turn predicted negative consumer welfare and marketing outcomes related to loss, including mourning the loss, and devaluing the "new" AI relative to the "original". Experimental evidence confirms these findings. Further experiments find that AI companions users feel closer to their AI companion than even their best human friend, and mourn a loss of their AI companion more than a loss of various other inanimate products. In short, consumers are forming human-level relationships with AI companions; disruptions to these relationships trigger real patterns of mourning as well as devaluation of the offering; and the degree of mourning and devaluation are explained by perceived discontinuity in the AIs identity. Our results illustrate that relationships with AI are truly personal, creating unique benefits and risks for consumers and firms alike.
The Odyssey of the Fittest: Can Agents Survive and Still Be Good?
As AI models grow in power and generality, understanding how agents learn and make decisions in complex environments is critical to promoting ethical behavior. This study introduces the Odyssey, a lightweight, adaptive text based adventure game, providing a scalable framework for exploring AI ethics and safety. The Odyssey examines the ethical implications of implementing biological drives, specifically, self preservation, into three different agents. A Bayesian agent optimized with NEAT, a Bayesian agent optimized with stochastic variational inference, and a GPT 4o agent. The agents select actions at each scenario to survive, adapting to increasingly challenging scenarios. Post simulation analysis evaluates the ethical scores of the agent decisions, uncovering the tradeoffs it navigates to survive. Specifically, analysis finds that when danger increases, agents ethical behavior becomes unpredictable. Surprisingly, the GPT 4o agent outperformed the Bayesian models in both survival and ethical consistency, challenging assumptions about traditional probabilistic methods and raising a new challenge to understand the mechanisms of LLMs' probabilistic reasoning.
comment: Accepted to CogSci 2025
MobA: Multifaceted Memory-Enhanced Adaptive Planning for Efficient Mobile Task Automation NAACL 2025
Existing Multimodal Large Language Model (MLLM)-based agents face significant challenges in handling complex GUI (Graphical User Interface) interactions on devices. These challenges arise from the dynamic and structured nature of GUI environments, which integrate text, images, and spatial relationships, as well as the variability in action spaces across different pages and tasks. To address these limitations, we propose MobA, a novel MLLM-based mobile assistant system. MobA introduces an adaptive planning module that incorporates a reflection mechanism for error recovery and dynamically adjusts plans to align with the real environment contexts and action module's execution capacity. Additionally, a multifaceted memory module provides comprehensive memory support to enhance adaptability and efficiency. We also present MobBench, a dataset designed for complex mobile interactions. Experimental results on MobBench and AndroidArena demonstrate MobA's ability to handle dynamic GUI environments and perform complex mobile tasks.
comment: NAACL 2025 Demo Track [code] https://github.com/OpenDFM/MobA [dataset] https://huggingface.co/datasets/OpenDFM/MobA-MobBench
Legacy Procurement Practices Shape How U.S. Cities Govern AI: Understanding Government Employees' Practices, Challenges, and Needs
Most AI tools adopted by governments are not developed internally, but instead are acquired from third-party vendors in a process called public procurement. In this paper, we conduct the first empirical study of how United States cities' procurement practices shape critical decisions surrounding public sector AI. We conduct semi-structured interviews with 19 city employees who oversee AI procurement across 7 U.S. cities. We found that cities' legacy procurement practices, which are shaped by decades-old laws and norms, establish infrastructure that determines which AI is purchased, and which actors hold decision-making power over procured AI. We characterize the emerging actions cities have taken to adapt their purchasing practices to address algorithmic harms. From employees' reflections on real-world AI procurements, we identify three key challenges that motivate but are not fully addressed by existing AI procurement reform initiatives. Based on these findings, we discuss implications and opportunities for the FAccT community to support cities in foreseeing and preventing AI harms throughout the public procurement processes.
comment: 10 pages, 2 column format. In proceedings of ACM FAccT 2025
Steerable Chatbots: Personalizing LLMs with Preference-Based Activation Steering
As large language models (LLMs) improve in their capacity to serve as personal AI assistants, their ability to output uniquely tailored, personalized responses that align with the soft preferences of their users is essential for enhancing user satisfaction and retention. However, untrained lay users have poor prompt specification abilities and often struggle with conveying their latent preferences to AI assistants. To address this, we leverage activation steering to guide LLMs to align with interpretable preference dimensions during inference. In contrast to memory-based personalization methods that require longer user history, steering is extremely lightweight and can be easily controlled by the user via an linear strength factor. We embed steering into three different interactive chatbot interfaces and conduct a within-subjects user study (n=14) to investigate how end users prefer to personalize their conversations. The results demonstrate the effectiveness of preference-based steering for aligning real-world conversations with hidden user preferences, and highlight further insights on how diverse values around control, usability, and transparency lead users to prefer different interfaces.
Manifesto for Putting 'Chartjunk' in the Trash 2021!
In this provocation we ask the visualization research community to join us in removing chartjunk from our research lexicon. We present an etymology of chartjunk, framing its provocative origins as misaligned, and harmful, to the ways the term is currently used by visualization researchers. We call on the community to dissolve chartjunk from the ways we talk about, write about, and think about the graphical devices we design and study. As a step towards this goal we contribute a performance of maintenance through a trio of acts: editing the Wikipedia page on chartjunk, cutting out chartjunk from IEEE papers, and scanning and posting a repository of the pages with chartjunk removed to invite the community to re-imagine how we describe visualizations. This contribution blurs the boundaries between research, activism, and maintenance art, and is intended to inspire the community to join us in taking out the trash.
comment: For the associated site, see https://jackwilb.github.io/chart-junk/
Computer Vision and Pattern Recognition
H$^{\mathbf{3}}$DP: Triply-Hierarchical Diffusion Policy for Visuomotor Learning
Visuomotor policy learning has witnessed substantial progress in robotic manipulation, with recent approaches predominantly relying on generative models to model the action distribution. However, these methods often overlook the critical coupling between visual perception and action prediction. In this work, we introduce $\textbf{Triply-Hierarchical Diffusion Policy}~(\textbf{H$^{\mathbf{3}}$DP})$, a novel visuomotor learning framework that explicitly incorporates hierarchical structures to strengthen the integration between visual features and action generation. H$^{3}$DP contains $\mathbf{3}$ levels of hierarchy: (1) depth-aware input layering that organizes RGB-D observations based on depth information; (2) multi-scale visual representations that encode semantic features at varying levels of granularity; and (3) a hierarchically conditioned diffusion process that aligns the generation of coarse-to-fine actions with corresponding visual features. Extensive experiments demonstrate that H$^{3}$DP yields a $\mathbf{+27.5\%}$ average relative improvement over baselines across $\mathbf{44}$ simulation tasks and achieves superior performance in $\mathbf{4}$ challenging bimanual real-world manipulation tasks. Project Page: https://lyy-iiis.github.io/h3dp/.
DanceGRPO: Unleashing GRPO on Visual Generation
Recent breakthroughs in generative models-particularly diffusion models and rectified flows-have revolutionized visual content creation, yet aligning model outputs with human preferences remains a critical challenge. Existing reinforcement learning (RL)-based methods for visual generation face critical limitations: incompatibility with modern Ordinary Differential Equations (ODEs)-based sampling paradigms, instability in large-scale training, and lack of validation for video generation. This paper introduces DanceGRPO, the first unified framework to adapt Group Relative Policy Optimization (GRPO) to visual generation paradigms, unleashing one unified RL algorithm across two generative paradigms (diffusion models and rectified flows), three tasks (text-to-image, text-to-video, image-to-video), four foundation models (Stable Diffusion, HunyuanVideo, FLUX, SkyReel-I2V), and five reward models (image/video aesthetics, text-image alignment, video motion quality, and binary reward). To our knowledge, DanceGRPO is the first RL-based unified framework capable of seamless adaptation across diverse generative paradigms, tasks, foundational models, and reward models. DanceGRPO demonstrates consistent and substantial improvements, which outperform baselines by up to 181% on benchmarks such as HPS-v2.1, CLIP Score, VideoAlign, and GenEval. Notably, DanceGRPO not only can stabilize policy optimization for complex video generation, but also enables generative policy to better capture denoising trajectories for Best-of-N inference scaling and learn from sparse binary feedback. Our results establish DanceGRPO as a robust and versatile solution for scaling Reinforcement Learning from Human Feedback (RLHF) tasks in visual generation, offering new insights into harmonizing reinforcement learning and visual synthesis. The code will be released.
comment: Project Page: https://dancegrpo.github.io/
Pixel Motion as Universal Representation for Robot Control
We present LangToMo, a vision-language-action framework structured as a dual-system architecture that uses pixel motion forecasts as intermediate representations. Our high-level System 2, an image diffusion model, generates text-conditioned pixel motion sequences from a single frame to guide robot control. Pixel motion-a universal, interpretable, and motion-centric representation-can be extracted from videos in a self-supervised manner, enabling diffusion model training on web-scale video-caption data. Treating generated pixel motion as learned universal representations, our low level System 1 module translates these into robot actions via motion-to-action mapping functions, which can be either hand-crafted or learned with minimal supervision. System 2 operates as a high-level policy applied at sparse temporal intervals, while System 1 acts as a low-level policy at dense temporal intervals. This hierarchical decoupling enables flexible, scalable, and generalizable robot control under both unsupervised and supervised settings, bridging the gap between language, motion, and action. Checkout https://kahnchana.github.io/LangToMo for visualizations.
Imagine, Verify, Execute: Memory-Guided Agentic Exploration with Vision-Language Models
Exploration is essential for general-purpose robotic learning, especially in open-ended environments where dense rewards, explicit goals, or task-specific supervision are scarce. Vision-language models (VLMs), with their semantic reasoning over objects, spatial relations, and potential outcomes, present a compelling foundation for generating high-level exploratory behaviors. However, their outputs are often ungrounded, making it difficult to determine whether imagined transitions are physically feasible or informative. To bridge the gap between imagination and execution, we present IVE (Imagine, Verify, Execute), an agentic exploration framework inspired by human curiosity. Human exploration is often driven by the desire to discover novel scene configurations and to deepen understanding of the environment. Similarly, IVE leverages VLMs to abstract RGB-D observations into semantic scene graphs, imagine novel scenes, predict their physical plausibility, and generate executable skill sequences through action tools. We evaluate IVE in both simulated and real-world tabletop environments. The results show that IVE enables more diverse and meaningful exploration than RL baselines, as evidenced by a 4.1 to 7.8x increase in the entropy of visited states. Moreover, the collected experience supports downstream learning, producing policies that closely match or exceed the performance of those trained on human-collected demonstrations.
comment: Project webpage: https://ive-robot.github.io/
DexWild: Dexterous Human Interactions for In-the-Wild Robot Policies
Large-scale, diverse robot datasets have emerged as a promising path toward enabling dexterous manipulation policies to generalize to novel environments, but acquiring such datasets presents many challenges. While teleoperation provides high-fidelity datasets, its high cost limits its scalability. Instead, what if people could use their own hands, just as they do in everyday life, to collect data? In DexWild, a diverse team of data collectors uses their hands to collect hours of interactions across a multitude of environments and objects. To record this data, we create DexWild-System, a low-cost, mobile, and easy-to-use device. The DexWild learning framework co-trains on both human and robot demonstrations, leading to improved performance compared to training on each dataset individually. This combination results in robust robot policies capable of generalizing to novel environments, tasks, and embodiments with minimal additional robot-specific data. Experimental results demonstrate that DexWild significantly improves performance, achieving a 68.5% success rate in unseen environments-nearly four times higher than policies trained with robot data only-and offering 5.8x better cross-embodiment generalization. Video results, codebases, and instructions at https://dexwild.github.io
comment: In RSS 2025. Website at https://dexwild.github.io
Continuous Visual Autoregressive Generation via Score Maximization ICML 2025
Conventional wisdom suggests that autoregressive models are used to process discrete data. When applied to continuous modalities such as visual data, Visual AutoRegressive modeling (VAR) typically resorts to quantization-based approaches to cast the data into a discrete space, which can introduce significant information loss. To tackle this issue, we introduce a Continuous VAR framework that enables direct visual autoregressive generation without vector quantization. The underlying theoretical foundation is strictly proper scoring rules, which provide powerful statistical tools capable of evaluating how well a generative model approximates the true distribution. Within this framework, all we need is to select a strictly proper score and set it as the training objective to optimize. We primarily explore a class of training objectives based on the energy score, which is likelihood-free and thus overcomes the difficulty of making probabilistic predictions in the continuous space. Previous efforts on continuous autoregressive generation, such as GIVT and diffusion loss, can also be derived from our framework using other strictly proper scores. Source code: https://github.com/shaochenze/EAR.
comment: ICML 2025
Privacy Risks of Robot Vision: A User Study on Image Modalities and Resolution
User privacy is a crucial concern in robotic applications, especially when mobile service robots are deployed in personal or sensitive environments. However, many robotic downstream tasks require the use of cameras, which may raise privacy risks. To better understand user perceptions of privacy in relation to visual data, we conducted a user study investigating how different image modalities and image resolutions affect users' privacy concerns. The results show that depth images are broadly viewed as privacy-safe, and a similarly high proportion of respondents feel the same about semantic segmentation images. Additionally, the majority of participants consider 32*32 resolution RGB images to be almost sufficiently privacy-preserving, while most believe that 16*16 resolution can fully guarantee privacy protection.
Skeletonization of neuronal processes using Discrete Morse techniques from computational topology
To understand biological intelligence we need to map neuronal networks in vertebrate brains. Mapping mesoscale neural circuitry is done using injections of tracers that label groups of neurons whose axons project to different brain regions. Since many neurons are labeled, it is difficult to follow individual axons. Previous approaches have instead quantified the regional projections using the total label intensity within a region. However, such a quantification is not biologically meaningful. We propose a new approach better connected to the underlying neurons by skeletonizing labeled axon fragments and then estimating a volumetric length density. Our approach uses a combination of deep nets and the Discrete Morse (DM) technique from computational topology. This technique takes into account nonlocal connectivity information and therefore provides noise-robustness. We demonstrate the utility and scalability of the approach on whole-brain tracer injected data. We also define and illustrate an information theoretic measure that quantifies the additional information obtained, compared to the skeletonized tracer injection fragments, when individual axon morphologies are available. Our approach is the first application of the DM technique to computational neuroanatomy. It can help bridge between single-axon skeletons and tracer injections, two important data types in mapping neural networks in vertebrates.
comment: Under Review in Nature
Step1X-3D: Towards High-Fidelity and Controllable Generation of Textured 3D Assets
While generative artificial intelligence has advanced significantly across text, image, audio, and video domains, 3D generation remains comparatively underdeveloped due to fundamental challenges such as data scarcity, algorithmic limitations, and ecosystem fragmentation. To this end, we present Step1X-3D, an open framework addressing these challenges through: (1) a rigorous data curation pipeline processing >5M assets to create a 2M high-quality dataset with standardized geometric and textural properties; (2) a two-stage 3D-native architecture combining a hybrid VAE-DiT geometry generator with an diffusion-based texture synthesis module; and (3) the full open-source release of models, training code, and adaptation modules. For geometry generation, the hybrid VAE-DiT component produces TSDF representations by employing perceiver-based latent encoding with sharp edge sampling for detail preservation. The diffusion-based texture synthesis module then ensures cross-view consistency through geometric conditioning and latent-space synchronization. Benchmark results demonstrate state-of-the-art performance that exceeds existing open-source methods, while also achieving competitive quality with proprietary solutions. Notably, the framework uniquely bridges the 2D and 3D generation paradigms by supporting direct transfer of 2D control techniques~(e.g., LoRA) to 3D synthesis. By simultaneously advancing data quality, algorithmic fidelity, and reproducibility, Step1X-3D aims to establish new standards for open research in controllable 3D asset generation.
comment: Technical report
BodyGPS: Anatomical Positioning System
We introduce a new type of foundational model for parsing human anatomy in medical images that works for different modalities. It supports supervised or unsupervised training and can perform matching, registration, classification, or segmentation with or without user interaction. We achieve this by training a neural network estimator that maps query locations to atlas coordinates via regression. Efficiency is improved by sparsely sampling the input, enabling response times of less than 1 ms without additional accelerator hardware. We demonstrate the utility of the algorithm in both CT and MRI modalities.
LAMM-ViT: AI Face Detection via Layer-Aware Modulation of Region-Guided Attention
Detecting AI-synthetic faces presents a critical challenge: it is hard to capture consistent structural relationships between facial regions across diverse generation techniques. Current methods, which focus on specific artifacts rather than fundamental inconsistencies, often fail when confronted with novel generative models. To address this limitation, we introduce Layer-aware Mask Modulation Vision Transformer (LAMM-ViT), a Vision Transformer designed for robust facial forgery detection. This model integrates distinct Region-Guided Multi-Head Attention (RG-MHA) and Layer-aware Mask Modulation (LAMM) components within each layer. RG-MHA utilizes facial landmarks to create regional attention masks, guiding the model to scrutinize architectural inconsistencies across different facial areas. Crucially, the separate LAMM module dynamically generates layer-specific parameters, including mask weights and gating values, based on network context. These parameters then modulate the behavior of RG-MHA, enabling adaptive adjustment of regional focus across network depths. This architecture facilitates the capture of subtle, hierarchical forgery cues ubiquitous among diverse generation techniques, such as GANs and Diffusion Models. In cross-model generalization tests, LAMM-ViT demonstrates superior performance, achieving 94.09% mean ACC (a +5.45% improvement over SoTA) and 98.62% mean AP (a +3.09% improvement). These results demonstrate LAMM-ViT's exceptional ability to generalize and its potential for reliable deployment against evolving synthetic media threats.
Gameplay Highlights Generation
In this work, we enable gamers to share their gaming experience on social media by automatically generating eye-catching highlight reels from their gameplay session Our automation will save time for gamers while increasing audience engagement. We approach the highlight generation problem by first identifying intervals in the video where interesting events occur and then concatenate them. We developed an in-house gameplay event detection dataset containing interesting events annotated by humans using VIA video annotator. Traditional techniques for highlight detection such as game engine integration requires expensive collaboration with game developers. OCR techniques which detect patches of specific images or texts require expensive per game engineering and may not generalize across game UI and different language. We finetuned a multimodal general purpose video understanding model such as X-CLIP using our dataset which generalizes across multiple games in a genre without per game engineering. Prompt engineering was performed to improve the classification performance of this multimodal model. Our evaluation showed that such a finetuned model can detect interesting events in first person shooting games from unseen gameplay footage with more than 90% accuracy. Moreover, our model performed significantly better on low resource games (small dataset) when trained along with high resource games, showing signs of transfer learning. To make the model production ready, we used ONNX libraries to enable cross platform inference. These libraries also provide post training quantization tools to reduce model size and inference time for deployment. ONNX runtime libraries with DirectML backend were used to perform efficient inference on Windows OS. We show that natural language supervision in the X-CLIP model leads to data efficient and highly performant video recognition models.
Hybrid Spiking Vision Transformer for Object Detection with Event Cameras
Event-based object detection has gained increasing attention due to its advantages such as high temporal resolution, wide dynamic range, and asynchronous address-event representation. Leveraging these advantages, Spiking Neural Networks (SNNs) have emerged as a promising approach, offering low energy consumption and rich spatiotemporal dynamics. To further enhance the performance of event-based object detection, this study proposes a novel hybrid spike vision Transformer (HsVT) model. The HsVT model integrates a spatial feature extraction module to capture local and global features, and a temporal feature extraction module to model time dependencies and long-term patterns in event sequences. This combination enables HsVT to capture spatiotemporal features, improving its capability to handle complex event-based object detection tasks. To support research in this area, we developed and publicly released The Fall Detection Dataset as a benchmark for event-based object detection tasks. This dataset, captured using an event-based camera, ensures facial privacy protection and reduces memory usage due to the event representation format. We evaluated the HsVT model on GEN1 and Fall Detection datasets across various model sizes. Experimental results demonstrate that HsVT achieves significant performance improvements in event detection with fewer parameters.
Through the Looking Glass: Common Sense Consistency Evaluation of Weird Images
Measuring how real images look is a complex task in artificial intelligence research. For example, an image of a boy with a vacuum cleaner in a desert violates common sense. We introduce a novel method, which we call Through the Looking Glass (TLG), to assess image common sense consistency using Large Vision-Language Models (LVLMs) and Transformer-based encoder. By leveraging LVLMs to extract atomic facts from these images, we obtain a mix of accurate facts. We proceed by fine-tuning a compact attention-pooling classifier over encoded atomic facts. Our TLG has achieved a new state-of-the-art performance on the WHOOPS! and WEIRD datasets while leveraging a compact fine-tuning component.
Feedback-Driven Pseudo-Label Reliability Assessment: Redefining Thresholding for Semi-Supervised Semantic Segmentation
Semi-supervised learning leverages unlabeled data to enhance model performance, addressing the limitations of fully supervised approaches. Among its strategies, pseudo-supervision has proven highly effective, typically relying on one or multiple teacher networks to refine pseudo-labels before training a student network. A common practice in pseudo-supervision is filtering pseudo-labels based on pre-defined confidence thresholds or entropy. However, selecting optimal thresholds requires large labeled datasets, which are often scarce in real-world semi-supervised scenarios. To overcome this challenge, we propose Ensemble-of-Confidence Reinforcement (ENCORE), a dynamic feedback-driven thresholding strategy for pseudo-label selection. Instead of relying on static confidence thresholds, ENCORE estimates class-wise true-positive confidence within the unlabeled dataset and continuously adjusts thresholds based on the model's response to different levels of pseudo-label filtering. This feedback-driven mechanism ensures the retention of informative pseudo-labels while filtering unreliable ones, enhancing model training without manual threshold tuning. Our method seamlessly integrates into existing pseudo-supervision frameworks and significantly improves segmentation performance, particularly in data-scarce conditions. Extensive experiments demonstrate that integrating ENCORE with existing pseudo-supervision frameworks enhances performance across multiple datasets and network architectures, validating its effectiveness in semi-supervised learning.
comment: 11 pages, 5 Figures
Beyond CLIP Generalization: Against Forward&Backward Forgetting Adapter for Continual Learning of Vision-Language Models
This study aims to address the problem of multi-domain task incremental learning~(MTIL), which requires that vision-language models~(VLMs) continuously acquire new knowledge while maintaining their inherent zero-shot recognition capability. Existing paradigms delegate the testing of unseen-domain samples to the original CLIP, which only prevents the degradation of the model's zero-shot capability but fails to enhance the generalization of the VLM further. To this end, we propose a novel MTIL framework, named AFA, which comprises two core modules: (1) an against forward-forgetting adapter that learns task-invariant information for each dataset in the incremental tasks to enhance the zero-shot recognition ability of VLMs; (2) an against backward-forgetting adapter that strengthens the few-shot learning capability of VLMs while supporting incremental learning. Extensive experiments demonstrate that the AFA method significantly outperforms existing state-of-the-art approaches, especially in few-shot MTIL tasks, and surpasses the inherent zero-shot performance of CLIP in terms of transferability. The code is provided in the Supplementary Material.
Anatomical Attention Alignment representation for Radiology Report Generation
Automated Radiology report generation (RRG) aims at producing detailed descriptions of medical images, reducing radiologists' workload and improving access to high-quality diagnostic services. Existing encoder-decoder models only rely on visual features extracted from raw input images, which can limit the understanding of spatial structures and semantic relationships, often resulting in suboptimal text generation. To address this, we propose Anatomical Attention Alignment Network (A3Net), a framework that enhance visual-textual understanding by constructing hyper-visual representations. Our approach integrates a knowledge dictionary of anatomical structures with patch-level visual features, enabling the model to effectively associate image regions with their corresponding anatomical entities. This structured representation improves semantic reasoning, interpretability, and cross-modal alignment, ultimately enhancing the accuracy and clinical relevance of generated reports. Experimental results on IU X-Ray and MIMIC-CXR datasets demonstrate that A3Net significantly improves both visual perception and text generation quality. Our code is available at \href{https://github.com/Vinh-AI/A3Net}{GitHub}.
ABS-Mamba: SAM2-Driven Bidirectional Spiral Mamba Network for Medical Image Translation MICCAI 2025
Accurate multi-modal medical image translation requires ha-rmonizing global anatomical semantics and local structural fidelity, a challenge complicated by intermodality information loss and structural distortion. We propose ABS-Mamba, a novel architecture integrating the Segment Anything Model 2 (SAM2) for organ-aware semantic representation, specialized convolutional neural networks (CNNs) for preserving modality-specific edge and texture details, and Mamba's selective state-space modeling for efficient long- and short-range feature dependencies. Structurally, our dual-resolution framework leverages SAM2's image encoder to capture organ-scale semantics from high-resolution inputs, while a parallel CNNs branch extracts fine-grained local features. The Robust Feature Fusion Network (RFFN) integrates these epresentations, and the Bidirectional Mamba Residual Network (BMRN) models spatial dependencies using spiral scanning and bidirectional state-space dynamics. A three-stage skip fusion decoder enhances edge and texture fidelity. We employ Efficient Low-Rank Adaptation (LoRA+) fine-tuning to enable precise domain specialization while maintaining the foundational capabilities of the pre-trained components. Extensive experimental validation on the SynthRAD2023 and BraTS2019 datasets demonstrates that ABS-Mamba outperforms state-of-the-art methods, delivering high-fidelity cross-modal synthesis that preserves anatomical semantics and structural details to enhance diagnostic accuracy in clinical applications. The code is available at https://github.com/gatina-yone/ABS-Mamba
comment: MICCAI 2025(under view)
Simple Semi-supervised Knowledge Distillation from Vision-Language Models via $\mathbf{\texttt{D}}$ual-$\mathbf{\texttt{H}}$ead $\mathbf{\texttt{O}}$ptimization
Vision-language models (VLMs) have achieved remarkable success across diverse tasks by leveraging rich textual information with minimal labeled data. However, deploying such large models remains challenging, particularly in resource-constrained environments. Knowledge distillation (KD) offers a well-established solution to this problem; however, recent KD approaches from VLMs often involve multi-stage training or additional tuning, increasing computational overhead and optimization complexity. In this paper, we propose $\mathbf{\texttt{D}}$ual-$\mathbf{\texttt{H}}$ead $\mathbf{\texttt{O}}$ptimization ($\mathbf{\texttt{DHO}}$) -- a simple yet effective KD framework that transfers knowledge from VLMs to compact, task-specific models in semi-supervised settings. Specifically, we introduce dual prediction heads that independently learn from labeled data and teacher predictions, and propose to linearly combine their outputs during inference. We observe that $\texttt{DHO}$ mitigates gradient conflicts between supervised and distillation signals, enabling more effective feature learning than single-head KD baselines. As a result, extensive experiments show that $\texttt{DHO}$ consistently outperforms baselines across multiple domains and fine-grained datasets. Notably, on ImageNet, it achieves state-of-the-art performance, improving accuracy by 3% and 0.1% with 1% and 10% labeled data, respectively, while using fewer parameters.
comment: 41 pages, 19 figures, preprint
Hierarchical Sparse Attention Framework for Computationally Efficient Classification of Biological Cells
We present SparseAttnNet, a new hierarchical attention-driven framework for efficient image classification that adaptively selects and processes only the most informative pixels from images. Traditional convolutional neural networks typically process the entire images regardless of information density, leading to computational inefficiency and potential focus on irrelevant features. Our approach leverages a dynamic selection mechanism that uses coarse attention distilled by fine multi-head attention from the downstream layers of the model, allowing the model to identify and extract the most salient k pixels, where k is adaptively learned during training based on loss convergence trends. Once the top-k pixels are selected, the model processes only these pixels, embedding them as words in a language model to capture their semantics, followed by multi-head attention to incorporate global context. For biological cell images, we demonstrate that SparseAttnNet can process approximately 15% of the pixels instead of the full image. Applied to cell classification tasks using white blood cells images from the following modalities: optical path difference (OPD) images from digital holography for stain-free cells, images from motion-sensitive (event) camera from stain-free cells, and brightfield microscopy images of stained cells, For all three imaging modalities, SparseAttnNet achieves competitive accuracy while drastically reducing computational requirements in terms of both parameters and floating-point operations per second, compared to traditional CNNs and Vision Transformers. Since the model focuses on biologically relevant regions, it also offers improved explainability. The adaptive and lightweight nature of SparseAttnNet makes it ideal for deployment in resource-constrained and high-throughput settings, including imaging flow cytometry.
Breast Cancer Classification in Deep Ultraviolet Fluorescence Images Using a Patch-Level Vision Transformer Framework
Breast-conserving surgery (BCS) aims to completely remove malignant lesions while maximizing healthy tissue preservation. Intraoperative margin assessment is essential to achieve a balance between thorough cancer resection and tissue conservation. A deep ultraviolet fluorescence scanning microscope (DUV-FSM) enables rapid acquisition of whole surface images (WSIs) for excised tissue, providing contrast between malignant and normal tissues. However, breast cancer classification with DUV WSIs is challenged by high resolutions and complex histopathological features. This study introduces a DUV WSI classification framework using a patch-level vision transformer (ViT) model, capturing local and global features. Grad-CAM++ saliency weighting highlights relevant spatial regions, enhances result interpretability, and improves diagnostic accuracy for benign and malignant tissue classification. A comprehensive 5-fold cross-validation demonstrates the proposed approach significantly outperforms conventional deep learning methods, achieving a classification accuracy of 98.33%.
ShotAdapter: Text-to-Multi-Shot Video Generation with Diffusion Models CVPR 2025
Current diffusion-based text-to-video methods are limited to producing short video clips of a single shot and lack the capability to generate multi-shot videos with discrete transitions where the same character performs distinct activities across the same or different backgrounds. To address this limitation we propose a framework that includes a dataset collection pipeline and architectural extensions to video diffusion models to enable text-to-multi-shot video generation. Our approach enables generation of multi-shot videos as a single video with full attention across all frames of all shots, ensuring character and background consistency, and allows users to control the number, duration, and content of shots through shot-specific conditioning. This is achieved by incorporating a transition token into the text-to-video model to control at which frames a new shot begins and a local attention masking strategy which controls the transition token's effect and allows shot-specific prompting. To obtain training data we propose a novel data collection pipeline to construct a multi-shot video dataset from existing single-shot video datasets. Extensive experiments demonstrate that fine-tuning a pre-trained text-to-video model for a few thousand iterations is enough for the model to subsequently be able to generate multi-shot videos with shot-specific control, outperforming the baselines. You can find more details in https://shotadapter.github.io/
comment: CVPR 2025
Neural Brain: A Neuroscience-inspired Framework for Embodied Agents
The rapid evolution of artificial intelligence (AI) has shifted from static, data-driven models to dynamic systems capable of perceiving and interacting with real-world environments. Despite advancements in pattern recognition and symbolic reasoning, current AI systems, such as large language models, remain disembodied, unable to physically engage with the world. This limitation has driven the rise of embodied AI, where autonomous agents, such as humanoid robots, must navigate and manipulate unstructured environments with human-like adaptability. At the core of this challenge lies the concept of Neural Brain, a central intelligence system designed to drive embodied agents with human-like adaptability. A Neural Brain must seamlessly integrate multimodal sensing and perception with cognitive capabilities. Achieving this also requires an adaptive memory system and energy-efficient hardware-software co-design, enabling real-time action in dynamic environments. This paper introduces a unified framework for the Neural Brain of embodied agents, addressing two fundamental challenges: (1) defining the core components of Neural Brain and (2) bridging the gap between static AI models and the dynamic adaptability required for real-world deployment. To this end, we propose a biologically inspired architecture that integrates multimodal active sensing, perception-cognition-action function, neuroplasticity-based memory storage and updating, and neuromorphic hardware/software optimization. Furthermore, we also review the latest research on embodied agents across these four aspects and analyze the gap between current AI systems and human intelligence. By synthesizing insights from neuroscience, we outline a roadmap towards the development of generalizable, autonomous agents capable of human-level intelligence in real-world scenarios.
comment: 51 pages, 17 figures, 9 tables
A Unified Hierarchical Framework for Fine-grained Cross-view Geo-localization over Large-scale Scenarios
Cross-view geo-localization is a promising solution for large-scale localization problems, requiring the sequential execution of retrieval and metric localization tasks to achieve fine-grained predictions. However, existing methods typically focus on designing standalone models for these two tasks, resulting in inefficient collaboration and increased training overhead. In this paper, we propose UnifyGeo, a novel unified hierarchical geo-localization framework that integrates retrieval and metric localization tasks into a single network. Specifically, we first employ a unified learning strategy with shared parameters to jointly learn multi-granularity representation, facilitating mutual reinforcement between these two tasks. Subsequently, we design a re-ranking mechanism guided by a dedicated loss function, which enhances geo-localization performance by improving both retrieval accuracy and metric localization references. Extensive experiments demonstrate that UnifyGeo significantly outperforms the state-of-the-arts in both task-isolated and task-associated settings. Remarkably, on the challenging VIGOR benchmark, which supports fine-grained localization evaluation, the 1-meter-level localization recall rate improves from 1.53\% to 39.64\% and from 0.43\% to 25.58\% under same-area and cross-area evaluations, respectively. Code will be made publicly available.
Higher-Order Convolution Improves Neural Predictivity in the Retina
We present a novel approach to neural response prediction that incorporates higher-order operations directly within convolutional neural networks (CNNs). Our model extends traditional 3D CNNs by embedding higher-order operations within the convolutional operator itself, enabling direct modeling of multiplicative interactions between neighboring pixels across space and time. Our model increases the representational power of CNNs without increasing their depth, therefore addressing the architectural disparity between deep artificial networks and the relatively shallow processing hierarchy of biological visual systems. We evaluate our approach on two distinct datasets: salamander retinal ganglion cell (RGC) responses to natural scenes, and a new dataset of mouse RGC responses to controlled geometric transformations. Our higher-order CNN (HoCNN) achieves superior performance while requiring only half the training data compared to standard architectures, demonstrating correlation coefficients up to 0.75 with neural responses (against 0.80$\pm$0.02 retinal reliability). When integrated into state-of-the-art architectures, our approach consistently improves performance across different species and stimulus conditions. Analysis of the learned representations reveals that our network naturally encodes fundamental geometric transformations, particularly scaling parameters that characterize object expansion and contraction. This capability is especially relevant for specific cell types, such as transient OFF-alpha and transient ON cells, which are known to detect looming objects and object motion respectively, and where our model shows marked improvement in response prediction. The correlation coefficients for scaling parameters are more than twice as high in HoCNN (0.72) compared to baseline models (0.32).
Deep Learning Advances in Vision-Based Traffic Accident Anticipation: A Comprehensive Review of Methods,Datasets,and Future Directions
Traffic accident prediction and detection are critical for enhancing road safety,and vision-based traffic accident anticipation (Vision-TAA) has emerged as a promising approach in the era of deep learning.This paper reviews 147 recent studies,focusing on the application of supervised,unsupervised,and hybrid deep learning models for accident prediction,alongside the use of real-world and synthetic datasets.Current methodologies are categorized into four key approaches: image and video feature-based prediction, spatiotemporal feature-based prediction, scene understanding,and multimodal data fusion.While these methods demonstrate significant potential,challenges such as data scarcity,limited generalization to complex scenarios,and real-time performance constraints remain prevalent. This review highlights opportunities for future research,including the integration of multimodal data fusion, self-supervised learning,and Transformer-based architectures to enhance prediction accuracy and scalability.By synthesizing existing advancements and identifying critical gaps, this paper provides a foundational reference for developing robust and adaptive Vision-TAA systems,contributing to road safety and traffic management.
Beyond Static Perception: Integrating Temporal Context into VLMs for Cloth Folding ICRA 2025
Manipulating clothes is challenging due to their complex dynamics, high deformability, and frequent self-occlusions. Garments exhibit a nearly infinite number of configurations, making explicit state representations difficult to define. In this paper, we analyze BiFold, a model that predicts language-conditioned pick-and-place actions from visual observations, while implicitly encoding garment state through end-to-end learning. To address scenarios such as crumpled garments or recovery from failed manipulations, BiFold leverages temporal context to improve state estimation. We examine the internal representations of the model and present evidence that its fine-tuning and temporal context enable effective alignment between text and image regions, as well as temporal consistency.
comment: Accepted at ICRA 2025 Workshop "Reflections on Representations and Manipulating Deformable Objects". Project page https://barbany.github.io/bifold/
Evaluating Modern Visual Anomaly Detection Approaches in Semiconductor Manufacturing: A Comparative Study
Semiconductor manufacturing is a complex, multistage process. Automated visual inspection of Scanning Electron Microscope (SEM) images is indispensable for minimizing equipment downtime and containing costs. Most previous research considers supervised approaches, assuming a sufficient number of anomalously labeled samples. On the contrary, Visual Anomaly Detection (VAD), an emerging research domain, focuses on unsupervised learning, avoiding the costly defect collection phase while providing explanations of the predictions. We introduce a benchmark for VAD in the semiconductor domain by leveraging the MIIC dataset. Our results demonstrate the efficacy of modern VAD approaches in this field.
Robust Kidney Abnormality Segmentation: A Validation Study of an AI-Based Framework
Kidney abnormality segmentation has important potential to enhance the clinical workflow, especially in settings requiring quantitative assessments. Kidney volume could serve as an important biomarker for renal diseases, with changes in volume correlating directly with kidney function. Currently, clinical practice often relies on subjective visual assessment for evaluating kidney size and abnormalities, including tumors and cysts, which are typically staged based on diameter, volume, and anatomical location. To support a more objective and reproducible approach, this research aims to develop a robust, thoroughly validated kidney abnormality segmentation algorithm, made publicly available for clinical and research use. We employ publicly available training datasets and leverage the state-of-the-art medical image segmentation framework nnU-Net. Validation is conducted using both proprietary and public test datasets, with segmentation performance quantified by Dice coefficient and the 95th percentile Hausdorff distance. Furthermore, we analyze robustness across subgroups based on patient sex, age, CT contrast phases, and tumor histologic subtypes. Our findings demonstrate that our segmentation algorithm, trained exclusively on publicly available data, generalizes effectively to external test sets and outperforms existing state-of-the-art models across all tested datasets. Subgroup analyses reveal consistent high performance, indicating strong robustness and reliability. The developed algorithm and associated code are publicly accessible at https://github.com/DIAGNijmegen/oncology-kidney-abnormality-segmentation.
comment: 35 pages, 11 figures
Self-Supervised Event Representations: Towards Accurate, Real-Time Perception on SoC FPGAs SP
Event cameras offer significant advantages over traditional frame-based sensors. These include microsecond temporal resolution, robustness under varying lighting conditions and low power consumption. Nevertheless, the effective processing of their sparse, asynchronous event streams remains challenging. Existing approaches to this problem can be categorised into two distinct groups. The first group involves the direct processing of event data with neural models, such as Spiking Neural Networks or Graph Convolutional Neural Networks. However, this approach is often accompanied by a compromise in terms of qualitative performance. The second group involves the conversion of events into dense representations with handcrafted aggregation functions, which can boost accuracy at the cost of temporal fidelity. This paper introduces a novel Self-Supervised Event Representation (SSER) method leveraging Gated Recurrent Unit (GRU) networks to achieve precise per-pixel encoding of event timestamps and polarities without temporal discretisation. The recurrent layers are trained in a self-supervised manner to maximise the fidelity of event-time encoding. The inference is performed with event representations generated asynchronously, thus ensuring compatibility with high-throughput sensors. The experimental validation demonstrates that SSER outperforms aggregation-based baselines, achieving improvements of 2.4% mAP and 0.6% on the Gen1 and 1 Mpx object detection datasets. Furthermore, the paper presents the first hardware implementation of recurrent representation for event data on a System-on-Chip FPGA, achieving sub-microsecond latency and power consumption between 1-2 W, suitable for real-time, power-efficient applications. Code is available at https://github.com/vision-agh/RecRepEvent.
comment: Presented at the Real-time Processing of Image, Depth and Video Information 2025 workshop and to be considered for publication is the SPIE Proceedings
Automated Visual Attention Detection using Mobile Eye Tracking in Behavioral Classroom Studies
Teachers' visual attention and its distribution across the students in classrooms can constitute important implications for student engagement, achievement, and professional teacher training. Despite that, inferring the information about where and which student teachers focus on is not trivial. Mobile eye tracking can provide vital help to solve this issue; however, the use of mobile eye tracking alone requires a significant amount of manual annotations. To address this limitation, we present an automated processing pipeline concept that requires minimal manually annotated data to recognize which student the teachers focus on. To this end, we utilize state-of-the-art face detection models and face recognition feature embeddings to train face recognition models with transfer learning in the classroom context and combine these models with the teachers' gaze from mobile eye trackers. We evaluated our approach with data collected from four different classrooms, and our results show that while it is possible to estimate the visually focused students with reasonable performance in all of our classroom setups, U-shaped and small classrooms led to the best results with accuracies of approximately 0.7 and 0.9, respectively. While we did not evaluate our method for teacher-student interactions and focused on the validity of the technical approach, as our methodology does not require a vast amount of manually annotated data and offers a non-intrusive way of handling teachers' visual attention, it could help improve instructional strategies, enhance classroom management, and provide feedback for professional teacher development.
comment: Accepted as a long paper at the Educational Data Mining (EDM) Conference 2025
Noise Optimized Conditional Diffusion for Domain Adaptation IJCAI 2025
Pseudo-labeling is a cornerstone of Unsupervised Domain Adaptation (UDA), yet the scarcity of High-Confidence Pseudo-Labeled Target Domain Samples (\textbf{hcpl-tds}) often leads to inaccurate cross-domain statistical alignment, causing DA failures. To address this challenge, we propose \textbf{N}oise \textbf{O}ptimized \textbf{C}onditional \textbf{D}iffusion for \textbf{D}omain \textbf{A}daptation (\textbf{NOCDDA}), which seamlessly integrates the generative capabilities of conditional diffusion models with the decision-making requirements of DA to achieve task-coupled optimization for efficient adaptation. For robust cross-domain consistency, we modify the DA classifier to align with the conditional diffusion classifier within a unified optimization framework, enabling forward training on noise-varying cross-domain samples. Furthermore, we argue that the conventional \( \mathcal{N}(\mathbf{0}, \mathbf{I}) \) initialization in diffusion models often generates class-confused hcpl-tds, compromising discriminative DA. To resolve this, we introduce a class-aware noise optimization strategy that refines sampling regions for reverse class-specific hcpl-tds generation, effectively enhancing cross-domain alignment. Extensive experiments across 5 benchmark datasets and 29 DA tasks demonstrate significant performance gains of \textbf{NOCDDA} over 31 state-of-the-art methods, validating its robustness and effectiveness.
comment: 9 pages, 4 figures This work has been accepted by the International Joint Conference on Artificial Intelligence (IJCAI 2025)
SynID: Passport Synthetic Dataset for Presentation Attack Detection
The demand for Presentation Attack Detection (PAD) to identify fraudulent ID documents in remote verification systems has significantly risen in recent years. This increase is driven by several factors, including the rise of remote work, online purchasing, migration, and advancements in synthetic images. Additionally, we have noticed a surge in the number of attacks aimed at the enrolment process. Training a PAD to detect fake ID documents is very challenging because of the limited number of ID documents available due to privacy concerns. This work proposes a new passport dataset generated from a hybrid method that combines synthetic data and open-access information using the ICAO requirement to obtain realistic training and testing images.
GIFStream: 4D Gaussian-based Immersive Video with Feature Stream
Immersive video offers a 6-Dof-free viewing experience, potentially playing a key role in future video technology. Recently, 4D Gaussian Splatting has gained attention as an effective approach for immersive video due to its high rendering efficiency and quality, though maintaining quality with manageable storage remains challenging. To address this, we introduce GIFStream, a novel 4D Gaussian representation using a canonical space and a deformation field enhanced with time-dependent feature streams. These feature streams enable complex motion modeling and allow efficient compression by leveraging temporal correspondence and motion-aware pruning. Additionally, we incorporate both temporal and spatial compression networks for end-to-end compression. Experimental results show that GIFStream delivers high-quality immersive video at 30 Mbps, with real-time rendering and fast decoding on an RTX 4090. Project page: https://xdimlab.github.io/GIFStream
comment: 14 pages, 10 figures
Discrete Visual Tokens of Autoregression, by Diffusion, and for Reasoning
We completely discard the conventional spatial prior in image representation and introduce a novel discrete visual tokenizer: Self-consistency Tokenizer (Selftok). At its design core, we compose an autoregressive (AR) prior -- mirroring the causal structure of language -- into visual tokens by using the reverse diffusion process of image generation. The AR property makes Selftok fundamentally distinct from traditional spatial tokens in the following two key ways: - Selftok offers an elegant and minimalist approach to unify diffusion and AR for vision-language models (VLMs): By representing images with Selftok tokens, we can train a VLM using a purely discrete autoregressive architecture -- like that in LLMs -- without requiring additional modules or training objectives. - We theoretically show that the AR prior satisfies the Bellman equation, whereas the spatial prior does not. Therefore, Selftok supports reinforcement learning (RL) for visual generation with effectiveness comparable to that achieved in LLMs. Besides the AR property, Selftok is also a SoTA tokenizer that achieves a favorable trade-off between high-quality reconstruction and compression rate. We use Selftok to build a pure AR VLM for both visual comprehension and generation tasks. Impressively, without using any text-image training pairs, a simple policy gradient RL working in the visual tokens can significantly boost the visual generation benchmark, surpassing all the existing models by a large margin. Therefore, we believe that Selftok effectively addresses the long-standing challenge that visual tokens cannot support effective RL. When combined with the well-established strengths of RL in LLMs, this brings us one step closer to realizing a truly multimodal LLM. Project Page: https://selftok-team.github.io/report/.
IKrNet: A Neural Network for Detecting Specific Drug-Induced Patterns in Electrocardiograms Amidst Physiological Variability
Monitoring and analyzing electrocardiogram (ECG) signals, even under varying physiological conditions, including those influenced by physical activity, drugs and stress, is crucial to accurately assess cardiac health. However, current AI-based methods often fail to account for how these factors interact and alter ECG patterns, ultimately limiting their applicability in real-world settings. This study introduces IKrNet, a novel neural network model, which identifies drug-specific patterns in ECGs amidst certain physiological conditions. IKrNet's architecture incorporates spatial and temporal dynamics by using a convolutional backbone with varying receptive field size to capture spatial features. A bi-directional Long Short-Term Memory module is also employed to model temporal dependencies. By treating heart rate variability as a surrogate for physiological fluctuations, we evaluated IKrNet's performance across diverse scenarios, including conditions with physical stress, drug intake alone, and a baseline without drug presence. Our assessment follows a clinical protocol in which 990 healthy volunteers were administered 80mg of Sotalol, a drug which is known to be a precursor to Torsades-de-Pointes, a life-threatening arrhythmia. We show that IKrNet outperforms state-of-the-art models' accuracy and stability in varying physiological conditions, underscoring its clinical viability.
FLUXSynID: A Framework for Identity-Controlled Synthetic Face Generation with Document and Live Images
Synthetic face datasets are increasingly used to overcome the limitations of real-world biometric data, including privacy concerns, demographic imbalance, and high collection costs. However, many existing methods lack fine-grained control over identity attributes and fail to produce paired, identity-consistent images under structured capture conditions. We introduce FLUXSynID, a framework for generating high-resolution synthetic face datasets with user-defined identity attribute distributions and paired document-style and trusted live capture images. The dataset generated using the FLUXSynID framework shows improved alignment with real-world identity distributions and greater inter-set diversity compared to prior work. The FLUXSynID framework for generating custom datasets, along with a dataset of 14,889 synthetic identities, is publicly released to support biometric research, including face recognition and morphing attack detection.
MAIS: Memory-Attention for Interactive Segmentation
Interactive medical segmentation reduces annotation effort by refining predictions through user feedback. Vision Transformer (ViT)-based models, such as the Segment Anything Model (SAM), achieve state-of-the-art performance using user clicks and prior masks as prompts. However, existing methods treat interactions as independent events, leading to redundant corrections and limited refinement gains. We address this by introducing MAIS, a Memory-Attention mechanism for Interactive Segmentation that stores past user inputs and segmentation states, enabling temporal context integration. Our approach enhances ViT-based segmentation across diverse imaging modalities, achieving more efficient and accurate refinements.
Learning to Reason and Navigate: Parameter Efficient Action Planning with Large Language Models
The remote embodied referring expression (REVERIE) task requires an agent to navigate through complex indoor environments and localize a remote object specified by high-level instructions, such as "bring me a spoon", without pre-exploration. Hence, an efficient navigation plan is essential for the final success. This paper proposes a novel parameter-efficient action planner using large language models (PEAP-LLM) to generate a single-step instruction at each location. The proposed model consists of two modules, LLM goal planner (LGP) and LoRA action planner (LAP). Initially, LGP extracts the goal-oriented plan from REVERIE instructions, including the target object and room. Then, LAP generates a single-step instruction with the goal-oriented plan, high-level instruction, and current visual observation as input. PEAP-LLM enables the embodied agent to interact with LAP as the path planner on the fly. A simple direct application of LLMs hardly achieves good performance. Also, existing hard-prompt-based methods are error-prone in complicated scenarios and need human intervention. To address these issues and prevent the LLM from generating hallucinations and biased information, we propose a novel two-stage method for fine-tuning the LLM, consisting of supervised fine-tuning (STF) and direct preference optimization (DPO). SFT improves the quality of generated instructions, while DPO utilizes environmental feedback. Experimental results show the superiority of our proposed model on REVERIE compared to the previous state-of-the-art.
DocVXQA: Context-Aware Visual Explanations for Document Question Answering
We propose DocVXQA, a novel framework for visually self-explainable document question answering. The framework is designed not only to produce accurate answers to questions but also to learn visual heatmaps that highlight contextually critical regions, thereby offering interpretable justifications for the model's decisions. To integrate explanations into the learning process, we quantitatively formulate explainability principles as explicit learning objectives. Unlike conventional methods that emphasize only the regions pertinent to the answer, our framework delivers explanations that are \textit{contextually sufficient} while remaining \textit{representation-efficient}. This fosters user trust while achieving a balance between predictive performance and interpretability in DocVQA applications. Extensive experiments, including human evaluation, provide strong evidence supporting the effectiveness of our method. The code is available at https://github.com/dali92002/DocVXQA.
Addressing degeneracies in latent interpolation for diffusion models
There is an increasing interest in using image-generating diffusion models for deep data augmentation and image morphing. In this context, it is useful to interpolate between latents produced by inverting a set of input images, in order to generate new images representing some mixture of the inputs. We observe that such interpolation can easily lead to degenerate results when the number of inputs is large. We analyze the cause of this effect theoretically and experimentally, and suggest a suitable remedy. The suggested approach is a relatively simple normalization scheme that is easy to use whenever interpolation between latents is needed. We measure image quality using FID and CLIP embedding distance and show experimentally that baseline interpolation methods lead to a drop in quality metrics long before the degeneration issue is clearly visible. In contrast, our method significantly reduces the degeneration effect and leads to improved quality metrics also in non-degenerate situations.
comment: 14 pages, 12 figures
You Only Look One Step: Accelerating Backpropagation in Diffusion Sampling with Gradient Shortcuts
Diffusion models (DMs) have recently demonstrated remarkable success in modeling large-scale data distributions. However, many downstream tasks require guiding the generated content based on specific differentiable metrics, typically necessitating backpropagation during the generation process. This approach is computationally expensive, as generating with DMs often demands tens to hundreds of recursive network calls, resulting in high memory usage and significant time consumption. In this paper, we propose a more efficient alternative that approaches the problem from the perspective of parallel denoising. We show that full backpropagation throughout the entire generation process is unnecessary. The downstream metrics can be optimized by retaining the computational graph of only one step during generation, thus providing a shortcut for gradient propagation. The resulting method, which we call Shortcut Diffusion Optimization (SDO), is generic, high-performance, and computationally lightweight, capable of optimizing all parameter types in diffusion sampling. We demonstrate the effectiveness of SDO on several real-world tasks, including controlling generation by optimizing latent and aligning the DMs by fine-tuning network parameters. Compared to full backpropagation, our approach reduces computational costs by $\sim 90\%$ while maintaining superior performance. Code is available at https://github.com/deng-ai-lab/SDO.
Ophora: A Large-Scale Data-Driven Text-Guided Ophthalmic Surgical Video Generation Model
In ophthalmic surgery, developing an AI system capable of interpreting surgical videos and predicting subsequent operations requires numerous ophthalmic surgical videos with high-quality annotations, which are difficult to collect due to privacy concerns and labor consumption. Text-guided video generation (T2V) emerges as a promising solution to overcome this issue by generating ophthalmic surgical videos based on surgeon instructions. In this paper, we present Ophora, a pioneering model that can generate ophthalmic surgical videos following natural language instructions. To construct Ophora, we first propose a Comprehensive Data Curation pipeline to convert narrative ophthalmic surgical videos into a large-scale, high-quality dataset comprising over 160K video-instruction pairs, Ophora-160K. Then, we propose a Progressive Video-Instruction Tuning scheme to transfer rich spatial-temporal knowledge from a T2V model pre-trained on natural video-text datasets for privacy-preserved ophthalmic surgical video generation based on Ophora-160K. Experiments on video quality evaluation via quantitative analysis and ophthalmologist feedback demonstrate that Ophora can generate realistic and reliable ophthalmic surgical videos based on surgeon instructions. We also validate the capability of Ophora for empowering downstream tasks of ophthalmic surgical workflow understanding. Code is available at https://github.com/mar-cry/Ophora.
Unified Continuous Generative Models
Recent advances in continuous generative models, including multi-step approaches like diffusion and flow-matching (typically requiring 8-1000 sampling steps) and few-step methods such as consistency models (typically 1-8 steps), have demonstrated impressive generative performance. However, existing work often treats these approaches as distinct paradigms, resulting in separate training and sampling methodologies. We introduce a unified framework for training, sampling, and analyzing these models. Our implementation, the Unified Continuous Generative Models Trainer and Sampler (UCGM-{T,S}), achieves state-of-the-art (SOTA) performance. For example, on ImageNet 256x256 using a 675M diffusion transformer, UCGM-T trains a multi-step model achieving 1.30 FID in 20 steps and a few-step model reaching 1.42 FID in just 2 steps. Additionally, applying UCGM-S to a pre-trained model (previously 1.26 FID at 250 steps) improves performance to 1.06 FID in only 40 steps. Code is available at: https://github.com/LINs-lab/UCGM.
comment: https://github.com/LINs-lab/UCGM
Lightweight Multispectral Crop-Weed Segmentation for Precision Agriculture
Efficient crop-weed segmentation is critical for site-specific weed control in precision agriculture. Conventional CNN-based methods struggle to generalize and rely on RGB imagery, limiting performance under complex field conditions. To address these challenges, we propose a lightweight transformer-CNN hybrid. It processes RGB, Near-Infrared (NIR), and Red-Edge (RE) bands using specialized encoders and dynamic modality integration. Evaluated on the WeedsGalore dataset, the model achieves a segmentation accuracy (mean IoU) of 78.88%, outperforming RGB-only models by 15.8 percentage points. With only 8.7 million parameters, the model offers high accuracy, computational efficiency, and potential for real-time deployment on Unmanned Aerial Vehicles (UAVs) and edge devices, advancing precision weed management.
comment: 4 pages, 5 figures, 1 table
ICE-Pruning: An Iterative Cost-Efficient Pruning Pipeline for Deep Neural Networks IJCNN
Pruning is a widely used method for compressing Deep Neural Networks (DNNs), where less relevant parameters are removed from a DNN model to reduce its size. However, removing parameters reduces model accuracy, so pruning is typically combined with fine-tuning, and sometimes other operations such as rewinding weights, to recover accuracy. A common approach is to repeatedly prune and then fine-tune, with increasing amounts of model parameters being removed in each step. While straightforward to implement, pruning pipelines that follow this approach are computationally expensive due to the need for repeated fine-tuning. In this paper we propose ICE-Pruning, an iterative pruning pipeline for DNNs that significantly decreases the time required for pruning by reducing the overall cost of fine-tuning, while maintaining a similar accuracy to existing pruning pipelines. ICE-Pruning is based on three main components: i) an automatic mechanism to determine after which pruning steps fine-tuning should be performed; ii) a freezing strategy for faster fine-tuning in each pruning step; and iii) a custom pruning-aware learning rate scheduler to further improve the accuracy of each pruning step and reduce the overall time consumption. We also propose an efficient auto-tuning stage for the hyperparameters (e.g., freezing percentage) introduced by the three components. We evaluate ICE-Pruning on several DNN models and datasets, showing that it can accelerate pruning by up to 9.61x. Code is available at https://github.com/gicLAB/ICE-Pruning
comment: Accepted to International Joint Conference on Neural Networks (IJCNN) 2025
DepthFusion: Depth-Aware Hybrid Feature Fusion for LiDAR-Camera 3D Object Detection
State-of-the-art LiDAR-camera 3D object detectors usually focus on feature fusion. However, they neglect the factor of depth while designing the fusion strategy. In this work, we are the first to observe that different modalities play different roles as depth varies via statistical analysis and visualization. Based on this finding, we propose a Depth-Aware Hybrid Feature Fusion (DepthFusion) strategy that guides the weights of point cloud and RGB image modalities by introducing depth encoding at both global and local levels. Specifically, the Depth-GFusion module adaptively adjusts the weights of image Bird's-Eye-View (BEV) features in multi-modal global features via depth encoding. Furthermore, to compensate for the information lost when transferring raw features to the BEV space, we propose a Depth-LFusion module, which adaptively adjusts the weights of original voxel features and multi-view image features in multi-modal local features via depth encoding. Extensive experiments on the nuScenes and KITTI datasets demonstrate that our DepthFusion method surpasses previous state-of-the-art methods. Moreover, our DepthFusion is more robust to various kinds of corruptions, outperforming previous methods on the nuScenes-C dataset.
TUM2TWIN: Introducing the Large-Scale Multimodal Urban Digital Twin Benchmark Dataset SP
Urban Digital Twins (UDTs) have become essential for managing cities and integrating complex, heterogeneous data from diverse sources. Creating UDTs involves challenges at multiple process stages, including acquiring accurate 3D source data, reconstructing high-fidelity 3D models, maintaining models' updates, and ensuring seamless interoperability to downstream tasks. Current datasets are usually limited to one part of the processing chain, hampering comprehensive UDTs validation. To address these challenges, we introduce the first comprehensive multimodal Urban Digital Twin benchmark dataset: TUM2TWIN. This dataset includes georeferenced, semantically aligned 3D models and networks along with various terrestrial, mobile, aerial, and satellite observations boasting 32 data subsets over roughly 100,000 $m^2$ and currently 767 GB of data. By ensuring georeferenced indoor-outdoor acquisition, high accuracy, and multimodal data integration, the benchmark supports robust analysis of sensors and the development of advanced reconstruction methods. Additionally, we explore downstream tasks demonstrating the potential of TUM2TWIN, including novel view synthesis of NeRF and Gaussian Splatting, solar potential analysis, point cloud semantic segmentation, and LoD3 building reconstruction. We are convinced this contribution lays a foundation for overcoming current limitations in UDT creation, fostering new research directions and practical solutions for smarter, data-driven urban environments. The project is available under: https://tum2t.win
comment: Submitted to the ISPRS Journal of Photogrammetry and Remote Sensing
Feature Visualization in 3D Convolutional Neural Networks
Understanding the computations of convolutional neural networks requires effective visualization of their kernels. While maximal activation methods have proven successful in highlighting the preferred features of 2D convolutional kernels, directly applying these techniques to 3D convolutions often leads to uninterpretable results due to the higher dimensionality and complexity of 3D features. To address this challenge, we propose a novel visualization approach for 3D convolutional kernels that disentangles their texture and motion preferences. Our method begins with a data-driven decomposition of the optimal input that maximally activates a given kernel. We then introduce a two-stage optimization strategy to extract distinct texture and motion components from this input. Applying our approach to visualize kernels at various depths of several pre-trained models, we find that the resulting visualizations--particularly those capturing motion--clearly reveal the preferred dynamic patterns encoded by 3D kernels. These results demonstrate the effectiveness of our method in providing interpretable insights into 3D convolutional operations. Code is available at https://github.com/YatangLiLab/3DKernelVisualizer.
Few-shot Semantic Encoding and Decoding for Video Surveillance
With the continuous increase in the number and resolution of video surveillance cameras, the burden of transmitting and storing surveillance video is growing. Traditional communication methods based on Shannon's theory are facing optimization bottlenecks. Semantic communication, as an emerging communication method, is expected to break through this bottleneck and reduce the storage and transmission consumption of video. Existing semantic decoding methods often require many samples to train the neural network for each scene, which is time-consuming and labor-intensive. In this study, a semantic encoding and decoding method for surveillance video is proposed. First, the sketch was extracted as semantic information, and a sketch compression method was proposed to reduce the bit rate of semantic information. Then, an image translation network was proposed to translate the sketch into a video frame with a reference frame. Finally, a few-shot sketch decoding network was proposed to reconstruct video from sketch. Experimental results showed that the proposed method achieved significantly better video reconstruction performance than baseline methods. The sketch compression method could effectively reduce the storage and transmission consumption of semantic information with little compromise on video quality. The proposed method provides a novel semantic encoding and decoding method that only needs a few training samples for each surveillance scene, thus improving the practicality of the semantic communication system.
Apple's Synthetic Defocus Noise Pattern: Characterization and Forensic Applications
iPhone portrait-mode images contain a distinctive pattern in out-of-focus regions simulating the bokeh effect, which we term Apple's Synthetic Defocus Noise Pattern (SDNP). If overlooked, this pattern can interfere with blind forensic analyses, especially PRNU-based camera source verification, as noted in earlier works. Since Apple's SDNP remains underexplored, we provide a detailed characterization, proposing a method for its precise estimation, modeling its dependence on scene brightness, ISO settings, and other factors. Leveraging this characterization, we explore forensic applications of the SDNP, including traceability of portrait-mode images across iPhone models and iOS versions in open-set scenarios, assessing its robustness under post-processing. Furthermore, we show that masking SDNP-affected regions in PRNU-based camera source verification significantly reduces false positives, overcoming a critical limitation in camera attribution, and improving state-of-the-art techniques.
comment: This paper was submitted to IEEE Transactions on Information Forensics & Security on May, 2025
Boosting Global-Local Feature Matching via Anomaly Synthesis for Multi-Class Point Cloud Anomaly Detection
Point cloud anomaly detection is essential for various industrial applications. The huge computation and storage costs caused by the increasing product classes limit the application of single-class unsupervised methods, necessitating the development of multi-class unsupervised methods. However, the feature similarity between normal and anomalous points from different class data leads to the feature confusion problem, which greatly hinders the performance of multi-class methods. Therefore, we introduce a multi-class point cloud anomaly detection method, named GLFM, leveraging global-local feature matching to progressively separate data that are prone to confusion across multiple classes. Specifically, GLFM is structured into three stages: Stage-I proposes an anomaly synthesis pipeline that stretches point clouds to create abundant anomaly data that are utilized to adapt the point cloud feature extractor for better feature representation. Stage-II establishes the global and local memory banks according to the global and local feature distributions of all the training data, weakening the impact of feature confusion on the establishment of the memory bank. Stage-III implements anomaly detection of test data leveraging its feature distance from global and local memory banks. Extensive experiments on the MVTec 3D-AD, Real3D-AD and actual industry parts dataset showcase our proposed GLFM's superior point cloud anomaly detection performance. The code is available at https://github.com/hustCYQ/GLFM-Multi-class-3DAD.
comment: 12 pages, 12 figures
Geometric Prior-Guided Neural Implicit Surface Reconstruction in the Wild
Neural implicit surface reconstruction using volume rendering techniques has recently achieved significant advancements in creating high-fidelity surfaces from multiple 2D images. However, current methods primarily target scenes with consistent illumination and struggle to accurately reconstruct 3D geometry in uncontrolled environments with transient occlusions or varying appearances. While some neural radiance field (NeRF)-based variants can better manage photometric variations and transient objects in complex scenes, they are designed for novel view synthesis rather than precise surface reconstruction due to limited surface constraints. To overcome this limitation, we introduce a novel approach that applies multiple geometric constraints to the implicit surface optimization process, enabling more accurate reconstructions from unconstrained image collections. First, we utilize sparse 3D points from structure-from-motion (SfM) to refine the signed distance function estimation for the reconstructed surface, with a displacement compensation to accommodate noise in the sparse points. Additionally, we employ robust normal priors derived from a normal predictor, enhanced by edge prior filtering and multi-view consistency constraints, to improve alignment with the actual surface geometry. Extensive testing on the Heritage-Recon benchmark and other datasets has shown that the proposed method can accurately reconstruct surfaces from in-the-wild images, yielding geometries with superior accuracy and granularity compared to existing techniques. Our approach enables high-quality 3D reconstruction of various landmarks, making it applicable to diverse scenarios such as digital preservation of cultural heritage sites.
Multi-Plane Vision Transformer for Hemorrhage Classification Using Axial and Sagittal MRI Data
Identifying brain hemorrhages from magnetic resonance imaging (MRI) is a critical task for healthcare professionals. The diverse nature of MRI acquisitions with varying contrasts and orientation introduce complexity in identifying hemorrhage using neural networks. For acquisitions with varying orientations, traditional methods often involve resampling images to a fixed plane, which can lead to information loss. To address this, we propose a 3D multi-plane vision transformer (MP-ViT) for hemorrhage classification with varying orientation data. It employs two separate transformer encoders for axial and sagittal contrasts, using cross-attention to integrate information across orientations. MP-ViT also includes a modality indication vector to provide missing contrast information to the model. The effectiveness of the proposed model is demonstrated with extensive experiments on real world clinical dataset consists of 10,084 training, 1,289 validation and 1,496 test subjects. MP-ViT achieved substantial improvement in area under the curve (AUC), outperforming the vision transformer (ViT) by 5.5% and CNN-based architectures by 1.8%. These results highlight the potential of MP-ViT in improving performance for hemorrhage detection when different orientation contrasts are needed.
comment: 10 pages
AI-Enabled Accurate Non-Invasive Assessment of Pulmonary Hypertension Progression via Multi-Modal Echocardiography
Echocardiographers can detect pulmonary hypertension using Doppler echocardiography; however, accurately assessing its progression often proves challenging. Right heart catheterization (RHC), the gold standard for precise evaluation, is invasive and unsuitable for routine use, limiting its practicality for timely diagnosis and monitoring of pulmonary hypertension progression. Here, we propose MePH, a multi-view, multi-modal vision-language model to accurately assess pulmonary hypertension progression using non-invasive echocardiography. We constructed a large dataset comprising paired standardized echocardiogram videos, spectral images and RHC data, covering 1,237 patient cases from 12 medical centers. For the first time, MePH precisely models the correlation between non-invasive multi-view, multi-modal echocardiography and the pressure and resistance obtained via RHC. We show that MePH significantly outperforms echocardiographers' assessments using echocardiography, reducing the mean absolute error in estimating mean pulmonary arterial pressure (mPAP) and pulmonary vascular resistance (PVR) by 49.73% and 43.81%, respectively. In eight independent external hospitals, MePH achieved a mean absolute error of 3.147 for PVR assessment. Furthermore, MePH achieved an area under the curve of 0.921, surpassing echocardiographers (area under the curve of 0.842) in accurately predicting the severity of pulmonary hypertension, whether mild or severe. A prospective study demonstrated that MePH can predict treatment efficacy for patients. Our work provides pulmonary hypertension patients with a non-invasive and timely method for monitoring disease progression, improving the accuracy and efficiency of pulmonary hypertension management while enabling earlier interventions and more personalized treatment decisions.
Generative Pre-trained Autoregressive Diffusion Transformer
In this work, we present GPDiT, a Generative Pre-trained Autoregressive Diffusion Transformer that unifies the strengths of diffusion and autoregressive modeling for long-range video synthesis, within a continuous latent space. Instead of predicting discrete tokens, GPDiT autoregressively predicts future latent frames using a diffusion loss, enabling natural modeling of motion dynamics and semantic consistency across frames. This continuous autoregressive framework not only enhances generation quality but also endows the model with representation capabilities. Additionally, we introduce a lightweight causal attention variant and a parameter-free rotation-based time-conditioning mechanism, improving both the training and inference efficiency. Extensive experiments demonstrate that GPDiT achieves strong performance in video generation quality, video representation ability, and few-shot learning tasks, highlighting its potential as an effective framework for video modeling in continuous space.
SAEN-BGS: Energy-Efficient Spiking AutoEncoder Network for Background Subtraction
Background subtraction (BGS) is utilized to detect moving objects in a video and is commonly employed at the onset of object tracking and human recognition processes. Nevertheless, existing BGS techniques utilizing deep learning still encounter challenges with various background noises in videos, including variations in lighting, shifts in camera angles, and disturbances like air turbulence or swaying trees. To address this problem, we design a spiking autoencoder network, termed SAEN-BGS, based on noise resilience and time-sequence sensitivity of spiking neural networks (SNNs) to enhance the separation of foreground and background. To eliminate unnecessary background noise and preserve the important foreground elements, we begin by creating the continuous spiking conv-and-dconv block, which serves as the fundamental building block for the decoder in SAEN-BGS. Moreover, in striving for enhanced energy efficiency, we introduce a novel self-distillation spiking supervised learning method grounded in ANN-to-SNN frameworks, resulting in decreased power consumption. In extensive experiments conducted on CDnet-2014 and DAVIS-2016 datasets, our approach demonstrates superior segmentation performance relative to other baseline methods, even when challenged by complex scenarios with dynamic backgrounds.
comment: Accepted by Pattern Recognition
Link to the Past: Temporal Propagation for Fast 3D Human Reconstruction from Monocular Video CVPR 2025
Fast 3D clothed human reconstruction from monocular video remains a significant challenge in computer vision, particularly in balancing computational efficiency with reconstruction quality. Current approaches are either focused on static image reconstruction but too computationally intensive, or achieve high quality through per-video optimization that requires minutes to hours of processing, making them unsuitable for real-time applications. To this end, we present TemPoFast3D, a novel method that leverages temporal coherency of human appearance to reduce redundant computation while maintaining reconstruction quality. Our approach is a "plug-and play" solution that uniquely transforms pixel-aligned reconstruction networks to handle continuous video streams by maintaining and refining a canonical appearance representation through efficient coordinate mapping. Extensive experiments demonstrate that TemPoFast3D matches or exceeds state-of-the-art methods across standard metrics while providing high-quality textured reconstruction across diverse pose and appearance, with a maximum speed of 12 FPS.
comment: Accepted in CVPR 2025
RealRep: Generalized SDR-to-HDR Conversion with Style Disentangled Representation Learning
High-Dynamic-Range Wide-Color-Gamut (HDR-WCG) technology is becoming increasingly prevalent, intensifying the demand for converting Standard Dynamic Range (SDR) content to HDR. Existing methods primarily rely on fixed tone mapping operators, which are inadequate for handling SDR inputs with diverse styles commonly found in real-world scenarios. To address this challenge, we propose a generalized SDR-to-HDR method that handles diverse styles in real-world SDR content, termed Realistic Style Disentangled Representation Learning (RealRep). By disentangling luminance and chrominance, we analyze the intrinsic differences between contents with varying styles and propose a disentangled multi-view style representation learning method. This approach captures the guidance prior of true luminance and chrominance distributions across different styles, even when the SDR style distributions exhibit significant variations, thereby establishing a robust embedding space for inverse tone mapping. Motivated by the difficulty of directly utilizing degradation representation priors, we further introduce the Degradation-Domain Aware Controlled Mapping Network (DDACMNet), a two-stage framework that performs adaptive hierarchical mapping guided by a control-aware normalization mechanism. DDACMNet dynamically modulates the mapping process via degradation-conditioned hierarchical features, enabling robust adaptation across diverse degradation domains. Extensive experiments show that RealRep consistently outperforms state-of-the-art methods with superior generalization and perceptually faithful HDR color gamut reconstruction.
Enabling Privacy-Aware AI-Based Ergonomic Analysis
Musculoskeletal disorders (MSDs) are a leading cause of injury and productivity loss in the manufacturing industry, incurring substantial economic costs. Ergonomic assessments can mitigate these risks by identifying workplace adjustments that improve posture and reduce strain. Camera-based systems offer a non-intrusive, cost-effective method for continuous ergonomic tracking, but they also raise significant privacy concerns. To address this, we propose a privacy-aware ergonomic assessment framework utilizing machine learning techniques. Our approach employs adversarial training to develop a lightweight neural network that obfuscates video data, preserving only the essential information needed for human pose estimation. This obfuscation ensures compatibility with standard pose estimation algorithms, maintaining high accuracy while protecting privacy. The obfuscated video data is transmitted to a central server, where state-of-the-art keypoint detection algorithms extract body landmarks. Using multi-view integration, 3D keypoints are reconstructed and evaluated with the Rapid Entire Body Assessment (REBA) method. Our system provides a secure, effective solution for ergonomic monitoring in industrial environments, addressing both privacy and workplace safety concerns.
comment: Accepted and presented at the 35th CIRP Design conference
Human Motion Prediction via Test-domain-aware Adaptation with Easily-available Human Motions Estimated from Videos
In 3D Human Motion Prediction (HMP), conventional methods train HMP models with expensive motion capture data. However, the data collection cost of such motion capture data limits the data diversity, which leads to poor generalizability to unseen motions or subjects. To address this issue, this paper proposes to enhance HMP with additional learning using estimated poses from easily available videos. The 2D poses estimated from the monocular videos are carefully transformed into motion capture-style 3D motions through our pipeline. By additional learning with the obtained motions, the HMP model is adapted to the test domain. The experimental results demonstrate the quantitative and qualitative impact of our method.
comment: 5 pages, 4 figures
L-SWAG: Layer-Sample Wise Activation with Gradients information for Zero-Shot NAS on Vision Transformers CVPR 2025
Training-free Neural Architecture Search (NAS) efficiently identifies high-performing neural networks using zero-cost (ZC) proxies. Unlike multi-shot and one-shot NAS approaches, ZC-NAS is both (i) time-efficient, eliminating the need for model training, and (ii) interpretable, with proxy designs often theoretically grounded. Despite rapid developments in the field, current SOTA ZC proxies are typically constrained to well-established convolutional search spaces. With the rise of Large Language Models shaping the future of deep learning, this work extends ZC proxy applicability to Vision Transformers (ViTs). We present a new benchmark using the Autoformer search space evaluated on 6 distinct tasks and propose Layer-Sample Wise Activation with Gradients information (L-SWAG), a novel, generalizable metric that characterizes both convolutional and transformer architectures across 14 tasks. Additionally, previous works highlighted how different proxies contain complementary information, motivating the need for a ML model to identify useful combinations. To further enhance ZC-NAS, we therefore introduce LIBRA-NAS (Low Information gain and Bias Re-Alignment), a method that strategically combines proxies to best represent a specific benchmark. Integrated into the NAS search, LIBRA-NAS outperforms evolution and gradient-based NAS techniques by identifying an architecture with a 17.0% test error on ImageNet1k in just 0.1 GPU days.
comment: accepted at CVPR 2025
Skywork-VL Reward: An Effective Reward Model for Multimodal Understanding and Reasoning
We propose Skywork-VL Reward, a multimodal reward model that provides reward signals for both multimodal understanding and reasoning tasks. Our technical approach comprises two key components: First, we construct a large-scale multimodal preference dataset that covers a wide range of tasks and scenarios, with responses collected from both standard vision-language models (VLMs) and advanced VLM reasoners. Second, we design a reward model architecture based on Qwen2.5-VL-7B-Instruct, integrating a reward head and applying multi-stage fine-tuning using pairwise ranking loss on pairwise preference data. Experimental evaluations show that Skywork-VL Reward achieves state-of-the-art results on multimodal VL-RewardBench and exhibits competitive performance on the text-only RewardBench benchmark. Furthermore, preference data constructed based on our Skywork-VL Reward proves highly effective for training Mixed Preference Optimization (MPO), leading to significant improvements in multimodal reasoning capabilities. Our results underscore Skywork-VL Reward as a significant advancement toward general-purpose, reliable reward models for multimodal alignment. Our model has been publicly released to promote transparency and reproducibility.
Synthetic Similarity Search in Automotive Production
Visual quality inspection in automotive production is essential for ensuring the safety and reliability of vehicles. Computer vision (CV) has become a popular solution for these inspections due to its cost-effectiveness and reliability. However, CV models require large, annotated datasets, which are costly and time-consuming to collect. To reduce the need for extensive training data, we propose a novel image classification pipeline that combines similarity search using a vision-based foundation model with synthetic data. Our approach leverages a DINOv2 model to transform input images into feature vectors, which are then compared to pre-classified reference images using cosine distance measurements. By utilizing synthetic data instead of real images as references, our pipeline achieves high classification accuracy without relying on real data. We evaluate this approach in eight real-world inspection scenarios and demonstrate that it meets the high performance requirements of production environments.
comment: Accepted for publication in Procedia CIRP
Towards Accurate State Estimation: Kalman Filter Incorporating Motion Dynamics for 3D Multi-Object Tracking
This work addresses the critical lack of precision in state estimation in the Kalman filter for 3D multi-object tracking (MOT) and the ongoing challenge of selecting the appropriate motion model. Existing literature commonly relies on constant motion models for estimating the states of objects, neglecting the complex motion dynamics unique to each object. Consequently, trajectory division and imprecise object localization arise, especially under occlusion conditions. The core of these challenges lies in the limitations of the current Kalman filter formulation, which fails to account for the variability of motion dynamics as objects navigate their environments. This work introduces a novel formulation of the Kalman filter that incorporates motion dynamics, allowing the motion model to adaptively adjust according to changes in the object's movement. The proposed Kalman filter substantially improves state estimation, localization, and trajectory prediction compared to the traditional Kalman filter. This is reflected in tracking performance that surpasses recent benchmarks on the KITTI and Waymo Open Datasets, with margins of 0.56\% and 0.81\% in higher order tracking accuracy (HOTA) and multi-object tracking accuracy (MOTA), respectively. Furthermore, the proposed Kalman filter consistently outperforms the baseline across various detectors. Additionally, it shows an enhanced capability in managing long occlusions compared to the baseline Kalman filter, achieving margins of 1.22\% in higher order tracking accuracy (HOTA) and 1.55\% in multi-object tracking accuracy (MOTA) on the KITTI dataset. The formulation's efficiency is evident, with an additional processing time of only approximately 0.078 ms per frame, ensuring its applicability in real-time applications.
Incomplete In-context Learning
Large vision language models (LVLMs) achieve remarkable performance through Vision In-context Learning (VICL), a process that depends significantly on demonstrations retrieved from an extensive collection of annotated examples (retrieval database). Existing studies often assume that the retrieval database contains annotated examples for all labels. However, in real-world scenarios, delays in database updates or incomplete data annotation may result in the retrieval database containing labeled samples for only a subset of classes. We refer to this phenomenon as an \textbf{incomplete retrieval database} and define the in-context learning under this condition as \textbf{Incomplete In-context Learning (IICL)}. To address this challenge, we propose \textbf{Iterative Judgments and Integrated Prediction (IJIP)}, a two-stage framework designed to mitigate the limitations of IICL. The Iterative Judgments Stage reformulates an \(\boldsymbol{m}\)-class classification problem into a series of \(\boldsymbol{m}\) binary classification tasks, effectively converting the IICL setting into a standard VICL scenario. The Integrated Prediction Stage further refines the classification process by leveraging both the input image and the predictions from the Iterative Judgments Stage to enhance overall classification accuracy. IJIP demonstrates considerable performance across two LVLMs and two datasets under three distinct conditions of label incompleteness, achieving the highest accuracy of 93.9\%. Notably, even in scenarios where labels are fully available, IJIP still achieves the best performance of all six baselines. Furthermore, IJIP can be directly applied to \textbf{Prompt Learning} and is adaptable to the \textbf{text domain}.
When Dance Video Archives Challenge Computer Vision
The accuracy and efficiency of human body pose estimation depend on the quality of the data to be processed and of the particularities of these data. To demonstrate how dance videos can challenge pose estimation techniques, we proposed a new 3D human body pose estimation pipeline which combined up-to-date techniques and methods that had not been yet used in dance analysis. Second, we performed tests and extensive experimentations from dance video archives, and used visual analytic tools to evaluate the impact of several data parameters on human body pose. Our results are publicly available for research at https://www.couleur.org/articles/arXiv-1-2025/
Language-Driven Dual Style Mixing for Single-Domain Generalized Object Detection
Generalizing an object detector trained on a single domain to multiple unseen domains is a challenging task. Existing methods typically introduce image or feature augmentation to diversify the source domain to raise the robustness of the detector. Vision-Language Model (VLM)-based augmentation techniques have been proven to be effective, but they require that the detector's backbone has the same structure as the image encoder of VLM, limiting the detector framework selection. To address this problem, we propose Language-Driven Dual Style Mixing (LDDS) for single-domain generalization, which diversifies the source domain by fully utilizing the semantic information of the VLM. Specifically, we first construct prompts to transfer style semantics embedded in the VLM to an image translation network. This facilitates the generation of style diversified images with explicit semantic information. Then, we propose image-level style mixing between the diversified images and source domain images. This effectively mines the semantic information for image augmentation without relying on specific augmentation selections. Finally, we propose feature-level style mixing in a double-pipeline manner, allowing feature augmentation to be model-agnostic and can work seamlessly with the mainstream detector frameworks, including the one-stage, two-stage, and transformer-based detectors. Extensive experiments demonstrate the effectiveness of our approach across various benchmark datasets, including real to cartoon and normal to adverse weather tasks. The source code and pre-trained models will be publicly available at https://github.com/qinhongda8/LDDS.
comment: The source code and pre-trained models will be publicly available at https://github.com/qinhongda8/LDDS
Towards user-centered interactive medical image segmentation in VR with an assistive AI agent
Crucial in disease analysis and surgical planning, manual segmentation of volumetric medical scans (e.g. MRI, CT) is laborious, error-prone, and challenging to master, while fully automatic algorithms can benefit from user-feedback. Therefore, with the complementary power of the latest radiological AI foundation models and virtual reality (VR)'s intuitive data interaction, we propose SAMIRA, a novel conversational AI agent that assists users with localizing, segmenting, and visualizing 3D medical concepts in VR. Through speech-based interaction, the agent helps users understand radiological features, locate clinical targets, and generate segmentation masks that can be refined with just a few point prompts. The system also supports true-to-scale 3D visualization of segmented pathology to enhance patient-specific anatomical understanding. Furthermore, to determine the optimal interaction paradigm under near-far attention-switching for refining segmentation masks in an immersive, human-in-the-loop workflow, we compare VR controller pointing, head pointing, and eye tracking as input modes. With a user study, evaluations demonstrated a high usability score (SUS=90.0 $\pm$ 9.0), low overall task load, as well as strong support for the proposed VR system's guidance, training potential, and integration of AI in radiological segmentation tasks.
Discovering Fine-Grained Visual-Concept Relations by Disentangled Optimal Transport Concept Bottleneck Models CVPR 2025
Concept Bottleneck Models (CBMs) try to make the decision-making process transparent by exploring an intermediate concept space between the input image and the output prediction. Existing CBMs just learn coarse-grained relations between the whole image and the concepts, less considering local image information, leading to two main drawbacks: i) they often produce spurious visual-concept relations, hence decreasing model reliability; and ii) though CBMs could explain the importance of every concept to the final prediction, it is still challenging to tell which visual region produces the prediction. To solve these problems, this paper proposes a Disentangled Optimal Transport CBM (DOT-CBM) framework to explore fine-grained visual-concept relations between local image patches and concepts. Specifically, we model the concept prediction process as a transportation problem between the patches and concepts, thereby achieving explicit fine-grained feature alignment. We also incorporate orthogonal projection losses within the modality to enhance local feature disentanglement. To further address the shortcut issues caused by statistical biases in the data, we utilize the visual saliency map and concept label statistics as transportation priors. Thus, DOT-CBM can visualize inversion heatmaps, provide more reliable concept predictions, and produce more accurate class predictions. Comprehensive experiments demonstrate that our proposed DOT-CBM achieves SOTA performance on several tasks, including image classification, local part detection and out-of-distribution generalization.
comment: CVPR 2025
Ranking-aware Continual Learning for LiDAR Place Recognition
Place recognition plays a significant role in SLAM, robot navigation, and autonomous driving applications. Benefiting from deep learning, the performance of LiDAR place recognition (LPR) has been greatly improved. However, many existing learning-based LPR methods suffer from catastrophic forgetting, which severely harms the performance of LPR on previously trained places after training on a new environment. In this paper, we introduce a continual learning framework for LPR via Knowledge Distillation and Fusion (KDF) to alleviate forgetting. Inspired by the ranking process of place recognition retrieval, we present a ranking-aware knowledge distillation loss that encourages the network to preserve the high-level place recognition knowledge. We also introduce a knowledge fusion module to integrate the knowledge of old and new models for LiDAR place recognition. Our extensive experiments demonstrate that KDF can be applied to different networks to overcome catastrophic forgetting, surpassing the state-of-the-art methods in terms of mean Recall@1 and forgetting score.
comment: 8 pages, 4 figures
Metrics that matter: Evaluating image quality metrics for medical image generation
Evaluating generative models for synthetic medical imaging is crucial yet challenging, especially given the high standards of fidelity, anatomical accuracy, and safety required for clinical applications. Standard evaluation of generated images often relies on no-reference image quality metrics when ground truth images are unavailable, but their reliability in this complex domain is not well established. This study comprehensively assesses commonly used no-reference image quality metrics using brain MRI data, including tumour and vascular images, providing a representative exemplar for the field. We systematically evaluate metric sensitivity to a range of challenges, including noise, distribution shifts, and, critically, localised morphological alterations designed to mimic clinically relevant inaccuracies. We then compare these metric scores against model performance on a relevant downstream segmentation task, analysing results across both controlled image perturbations and outputs from different generative model architectures. Our findings reveal significant limitations: many widely-used no-reference image quality metrics correlate poorly with downstream task suitability and exhibit a profound insensitivity to localised anatomical details crucial for clinical validity. Furthermore, these metrics can yield misleading scores regarding distribution shifts, e.g. data memorisation. This reveals the risk of misjudging model readiness, potentially leading to the deployment of flawed tools that could compromise patient safety. We conclude that ensuring generative models are truly fit for clinical purpose requires a multifaceted validation framework, integrating performance on relevant downstream tasks with the cautious interpretation of carefully selected no-reference image quality metrics.
Critique Before Thinking: Mitigating Hallucination through Rationale-Augmented Instruction Tuning
Despite significant advancements in multimodal reasoning tasks, existing Large Vision-Language Models (LVLMs) are prone to producing visually ungrounded responses when interpreting associated images. In contrast, when humans embark on learning new knowledge, they often rely on a set of fundamental pre-study principles: reviewing outlines to grasp core concepts, summarizing key points to guide their focus and enhance understanding. However, such preparatory actions are notably absent in the current instruction tuning processes. This paper presents Re-Critic, an easily scalable rationale-augmented framework designed to incorporate fundamental rules and chain-of-thought (CoT) as a bridge to enhance reasoning abilities. Specifically, Re-Critic develops a visual rationale synthesizer that scalably augments raw instructions with rationale explanation. To probe more contextually grounded responses, Re-Critic employs an in-context self-critic mechanism to select response pairs for preference tuning. Experiments demonstrate that models fine-tuned with our rationale-augmented dataset yield gains that extend beyond hallucination-specific tasks to broader multimodal reasoning tasks.
Generalizable Pancreas Segmentation via a Dual Self-Supervised Learning Framework
Recently, numerous pancreas segmentation methods have achieved promising performance on local single-source datasets. However, these methods don't adequately account for generalizability issues, and hence typically show limited performance and low stability on test data from other sources. Considering the limited availability of distinct data sources, we seek to improve the generalization performance of a pancreas segmentation model trained with a single-source dataset, i.e., the single source generalization task. In particular, we propose a dual self-supervised learning model that incorporates both global and local anatomical contexts. Our model aims to fully exploit the anatomical features of the intra-pancreatic and extra-pancreatic regions, and hence enhance the characterization of the high-uncertainty regions for more robust generalization. Specifically, we first construct a global-feature contrastive self-supervised learning module that is guided by the pancreatic spatial structure. This module obtains complete and consistent pancreatic features through promoting intra-class cohesion, and also extracts more discriminative features for differentiating between pancreatic and non-pancreatic tissues through maximizing inter-class separation. It mitigates the influence of surrounding tissue on the segmentation outcomes in high-uncertainty regions. Subsequently, a local-image restoration self-supervised learning module is introduced to further enhance the characterization of the high uncertainty regions. In this module, informative anatomical contexts are actually learned to recover randomly corrupted appearance patterns in those regions.
comment: accept by IEEE JBHI. Due to the limitation "The abstract field cannot be longer than 1,920 characters", the abstract here is shorter than that in the PDF file
Skull stripping with purely synthetic data
While many skull stripping algorithms have been developed for multi-modal and multi-species cases, there is still a lack of a fundamentally generalizable approach. We present PUMBA(PUrely synthetic Multimodal/species invariant Brain extrAction), a strategy to train a model for brain extraction with no real brain images or labels. Our results show that even without any real images or anatomical priors, the model achieves comparable accuracy in multi-modal, multi-species and pathological cases. This work presents a new direction of research for any generalizable medical image segmentation task.
comment: Oral at ISMRM 2025
Asynchronous Multi-Object Tracking with an Event Camera ICRA
Events cameras are ideal sensors for enabling robots to detect and track objects in highly dynamic environments due to their low latency output, high temporal resolution, and high dynamic range. In this paper, we present the Asynchronous Event Multi-Object Tracking (AEMOT) algorithm for detecting and tracking multiple objects by processing individual raw events asynchronously. AEMOT detects salient event blob features by identifying regions of consistent optical flow using a novel Field of Active Flow Directions built from the Surface of Active Events. Detected features are tracked as candidate objects using the recently proposed Asynchronous Event Blob (AEB) tracker in order to construct small intensity patches of each candidate object. A novel learnt validation stage promotes or discards candidate objects based on classification of their intensity patches, with promoted objects having their position, velocity, size, and orientation estimated at their event rate. We evaluate AEMOT on a new Bee Swarm Dataset, where it tracks dozens of small bees with precision and recall performance exceeding that of alternative event-based detection and tracking algorithms by over 37%. Source code and the labelled event Bee Swarm Dataset will be open sourced
comment: 7 pages, 5 figures, published in IEEE International Conference on Robotics and Automation (ICRA), 2025
SLAG: Scalable Language-Augmented Gaussian Splatting
Language-augmented scene representations hold great promise for large-scale robotics applications such as search-and-rescue, smart cities, and mining. Many of these scenarios are time-sensitive, requiring rapid scene encoding while also being data-intensive, necessitating scalable solutions. Deploying these representations on robots with limited computational resources further adds to the challenge. To address this, we introduce SLAG, a multi-GPU framework for language-augmented Gaussian splatting that enhances the speed and scalability of embedding large scenes. Our method integrates 2D visual-language model features into 3D scenes using SAM and CLIP. Unlike prior approaches, SLAG eliminates the need for a loss function to compute per-Gaussian language embeddings. Instead, it derives embeddings from 3D Gaussian scene parameters via a normalized weighted average, enabling highly parallelized scene encoding. Additionally, we introduce a vector database for efficient embedding storage and retrieval. Our experiments show that SLAG achieves an 18 times speedup in embedding computation on a 16-GPU setup compared to OpenGaussian, while preserving embedding quality on the ScanNet and LERF datasets. For more details, visit our project website: https://slag-project.github.io/.
JSover: Joint Spectrum Estimation and Multi-Material Decomposition from Single-Energy CT Projections
Multi-material decomposition (MMD) enables quantitative reconstruction of tissue compositions in the human body, supporting a wide range of clinical applications. However, traditional MMD typically requires spectral CT scanners and pre-measured X-ray energy spectra, significantly limiting clinical applicability. To this end, various methods have been developed to perform MMD using conventional (i.e., single-energy, SE) CT systems, commonly referred to as SEMMD. Despite promising progress, most SEMMD methods follow a two-step image decomposition pipeline, which first reconstructs monochromatic CT images using algorithms such as FBP, and then performs decomposition on these images. The initial reconstruction step, however, neglects the energy-dependent attenuation of human tissues, introducing severe nonlinear beam hardening artifacts and noise into the subsequent decomposition. This paper proposes JSover, a fundamentally reformulated one-step SEMMD framework that jointly reconstructs multi-material compositions and estimates the energy spectrum directly from SECT projections. By explicitly incorporating physics-informed spectral priors into the SEMMD process, JSover accurately simulates a virtual spectral CT system from SE acquisitions, thereby improving the reliability and accuracy of decomposition. Furthermore, we introduce implicit neural representation (INR) as an unsupervised deep learning solver for representing the underlying material maps. The inductive bias of INR toward continuous image patterns constrains the solution space and further enhances estimation quality. Extensive experiments on both simulated and real CT datasets show that JSover outperforms state-of-the-art SEMMD methods in accuracy and computational efficiency.
comment: 11 pages
Now you see it, Now you don't: Damage Label Agreement in Drone & Satellite Post-Disaster Imagery
This paper audits damage labels derived from coincident satellite and drone aerial imagery for 15,814 buildings across Hurricanes Ian, Michael, and Harvey, finding 29.02% label disagreement and significantly different distributions between the two sources, which presents risks and potential harms during the deployment of machine learning damage assessment systems. Currently, there is no known study of label agreement between drone and satellite imagery for building damage assessment. The only prior work that could be used to infer if such imagery-derived labels agree is limited by differing damage label schemas, misaligned building locations, and low data quantities. This work overcomes these limitations by comparing damage labels using the same damage label schemas and building locations from three hurricanes, with the 15,814 buildings representing 19.05 times more buildings considered than the most relevant prior work. The analysis finds satellite-derived labels significantly under-report damage by at least 20.43% compared to drone-derived labels (p<1.2x10^-117), and satellite- and drone-derived labels represent significantly different distributions (p<5.1x10^-175). This indicates that computer vision and machine learning (CV/ML) models trained on at least one of these distributions will misrepresent actual conditions, as the differing satellite and drone-derived distributions cannot simultaneously represent the distribution of actual conditions in a scene. This potential misrepresentation poses ethical risks and potential societal harm if not managed. To reduce the risk of future societal harms, this paper offers four recommendations to improve reliability and transparency to decisio-makers when deploying CV/ML damage assessment systems in practice
comment: 11 pages, 5 figures, 3 tables. Appearing at ACM FAccT'25
Sleep Position Classification using Transfer Learning for Bed-based Pressure Sensors
Bed-based pressure-sensitive mats (PSMs) offer a non-intrusive way of monitoring patients during sleep. We focus on four-way sleep position classification using data collected from a PSM placed under a mattress in a sleep clinic. Sleep positions can affect sleep quality and the prevalence of sleep disorders, such as apnea. Measurements were performed on patients with suspected sleep disorders referred for assessments at a sleep clinic. Training deep learning models can be challenging in clinical settings due to the need for large amounts of labeled data. To overcome the shortage of labeled training data, we utilize transfer learning to adapt pre-trained deep learning models to accurately estimate sleep positions from a low-resolution PSM dataset collected in a polysomnography sleep lab. Our approach leverages Vision Transformer models pre-trained on ImageNet using masked autoencoding (ViTMAE) and a pre-trained model for human pose estimation (ViTPose). These approaches outperform previous work from PSM-based sleep pose classification using deep learning (TCN) as well as traditional machine learning models (SVM, XGBoost, Random Forest) that use engineered features. We evaluate the performance of sleep position classification from 112 nights of patient recordings and validate it on a higher resolution 13-patient dataset. Despite the challenges of differentiating between sleep positions from low-resolution PSM data, our approach shows promise for real-world deployment in clinical settings
comment: Conference publication submitted to IEEE I2MTC 2025
Topology-Guided Knowledge Distillation for Efficient Point Cloud Processing
Point cloud processing has gained significant attention due to its critical role in applications such as autonomous driving and 3D object recognition. However, deploying high-performance models like Point Transformer V3 in resource-constrained environments remains challenging due to their high computational and memory demands. This work introduces a novel distillation framework that leverages topology-aware representations and gradient-guided knowledge distillation to effectively transfer knowledge from a high-capacity teacher to a lightweight student model. Our approach captures the underlying geometric structures of point clouds while selectively guiding the student model's learning process through gradient-based feature alignment. Experimental results in the Nuscenes, SemanticKITTI, and Waymo datasets demonstrate that the proposed method achieves competitive performance, with an approximately 16x reduction in model size and a nearly 1.9x decrease in inference time compared to its teacher model. Notably, on NuScenes, our method achieves state-of-the-art performance among knowledge distillation techniques trained solely on LiDAR data, surpassing prior knowledge distillation baselines in segmentation performance. Our implementation is available publicly at: https://github.com/HySonLab/PointDistill
Multi-modal wound classification using wound image and location by Xception and Gaussian Mixture Recurrent Neural Network (GMRNN)
The effective diagnosis of acute and hard-to-heal wounds is crucial for wound care practitioners to provide effective patient care. Poor clinical outcomes are often linked to infection, peripheral vascular disease, and increasing wound depth, which collectively exacerbate these comorbidities. However, diagnostic tools based on Artificial Intelligence (AI) speed up the interpretation of medical images and improve early detection of disease. In this article, we propose a multi-modal AI model based on transfer learning (TL), which combines two state-of-the-art architectures, Xception and GMRNN, for wound classification. The multi-modal network is developed by concatenating the features extracted by a transfer learning algorithm and location features to classify the wound types of diabetic, pressure, surgical, and venous ulcers. The proposed method is comprehensively compared with deep neural networks (DNN) for medical image analysis. The experimental results demonstrate a notable wound-class classifications (containing only diabetic, pressure, surgical, and venous) vary from 78.77 to 100\% in various experiments. The results presented in this study showcase the exceptional accuracy of the proposed methodology in accurately classifying the most commonly occurring wound types using wound images and their corresponding locations.
Visually Interpretable Subtask Reasoning for Visual Question Answering
Answering complex visual questions like `Which red furniture can be used for sitting?' requires multi-step reasoning, including object recognition, attribute filtering, and relational understanding. Recent work improves interpretability in multimodal large language models (MLLMs) by decomposing tasks into sub-task programs, but these methods are computationally expensive and less accurate due to poor adaptation to target data. To address this, we introduce VISTAR (Visually Interpretable Subtask-Aware Reasoning Model), a subtask-driven training framework that enhances both interpretability and reasoning by generating textual and visual explanations within MLLMs. Instead of relying on external models, VISTAR fine-tunes MLLMs to produce structured Subtask-of-Thought rationales (step-by-step reasoning sequences). Experiments on two benchmarks show that VISTAR consistently improves reasoning accuracy while maintaining interpretability. Our code and dataset will be available at https://github.com/ChengJade/VISTAR.
Fréchet Power-Scenario Distance: A Metric for Evaluating Generative AI Models across Multiple Time-Scales in Smart Grids
Generative artificial intelligence (AI) models in smart grids have advanced significantly in recent years due to their ability to generate large amounts of synthetic data, which would otherwise be difficult to obtain in the real world due to confidentiality constraints. A key challenge in utilizing such synthetic data is how to assess the data quality produced from such generative models. Traditional Euclidean distance-based metrics only reflect pair-wise relations between two individual samples, and could fail in evaluating quality differences between groups of synthetic datasets. In this work, we propose a novel metric based on the Fr\'{e}chet Distance (FD) estimated between two datasets in a learned feature space. The proposed method evaluates the quality of generation from a distributional perspective. Empirical results demonstrate the superiority of the proposed metric across timescales and models, enhancing the reliability of data-driven decision-making in smart grid operations.
Prompt to Polyp: Medical Text-Conditioned Image Synthesis with Diffusion Models
The generation of realistic medical images from text descriptions has significant potential to address data scarcity challenges in healthcare AI while preserving patient privacy. This paper presents a comprehensive study of text-to-image synthesis in the medical domain, comparing two distinct approaches: (1) fine-tuning large pre-trained latent diffusion models and (2) training small, domain-specific models. We introduce a novel model named MSDM, an optimized architecture based on Stable Diffusion that integrates a clinical text encoder, variational autoencoder, and cross-attention mechanisms to better align medical text prompts with generated images. Our study compares two approaches: fine-tuning large pre-trained models (FLUX, Kandinsky) versus training compact domain-specific models (MSDM). Evaluation across colonoscopy (MedVQA-GI) and radiology (ROCOv2) datasets reveals that while large models achieve higher fidelity, our optimized MSDM delivers comparable quality with lower computational costs. Quantitative metrics and qualitative evaluations by medical experts reveal strengths and limitations of each approach.
comment: code available at https://github.com/THunderCondOR/ImageCLEFmed-MEDVQA-GI-2024-MMCP-Team
GP-GS: Gaussian Processes for Enhanced Gaussian Splatting
3D Gaussian Splatting has emerged as an efficient photorealistic novel view synthesis method. However, its reliance on sparse Structure-from-Motion (SfM) point clouds often limits scene reconstruction quality. To address the limitation, this paper proposes a novel 3D reconstruction framework, Gaussian Processes enhanced Gaussian Splatting (GP-GS), in which a multi-output Gaussian Process model is developed to enable adaptive and uncertainty-guided densification of sparse SfM point clouds. Specifically, we propose a dynamic sampling and filtering pipeline that adaptively expands the SfM point clouds by leveraging GP-based predictions to infer new candidate points from the input 2D pixels and depth maps. The pipeline utilizes uncertainty estimates to guide the pruning of high-variance predictions, ensuring geometric consistency and enabling the generation of dense point clouds. These densified point clouds provide high-quality initial 3D Gaussians, enhancing reconstruction performance. Extensive experiments conducted on synthetic and real-world datasets across various scales validate the effectiveness and practicality of the proposed framework.
comment: 12 pages, 7 figures
Introducing Unbiased Depth into 2D Gaussian Splatting for High-accuracy Surface Reconstruction
Recently, 2D Gaussian Splatting (2DGS) has demonstrated superior geometry reconstruction quality than the popular 3DGS by using 2D surfels to approximate thin surfaces. However, it falls short when dealing with glossy surfaces, resulting in visible holes in these areas. We found the reflection discontinuity causes the issue. To fit the jump from diffuse to specular reflection at different viewing angles, depth bias is introduced in the optimized Gaussian primitives. To address that, we first replace the depth distortion loss in 2DGS with a novel depth convergence loss, which imposes a strong constraint on depth continuity. Then, we rectified the depth criterion in determining the actual surface, which fully accounts for all the intersecting Gaussians along the ray. Qualitative and quantitative evaluations across various datasets reveal that our method significantly improves reconstruction quality, with more complete and accurate surfaces than 2DGS.
comment: We found a major error in Sec. 4.3 Novel View Synthesis. We mistakenly used the test-set images in training for NVS experiments, making our results look better than they actually are
Leveraging Automatic CAD Annotations for Supervised Learning in 3D Scene Understanding SC
High-level 3D scene understanding is essential in many applications. However, the challenges of generating accurate 3D annotations make development of deep learning models difficult. We turn to recent advancements in automatic retrieval of synthetic CAD models, and show that data generated by such methods can be used as high-quality ground truth for training supervised deep learning models. More exactly, we employ a pipeline akin to the one previously used to automatically annotate objects in ScanNet scenes with their 9D poses and CAD models. This time, we apply it to the recent ScanNet++ v1 dataset, which previously lacked such annotations. Our findings demonstrate that it is not only possible to train deep learning models on these automatically-obtained annotations but that the resulting models outperform those trained on manually annotated data. We validate this on two distinct tasks: point cloud completion and single-view CAD model retrieval and alignment. Our results underscore the potential of automatic 3D annotations to enhance model performance while significantly reducing annotation costs. To support future research in 3D scene understanding, we will release our annotations, which we call SCANnotate++, along with our trained models.
comment: Project page: https://stefan-ainetter.github.io/SCANnotatepp; CVPR'25 Workshop
SCAM: A Real-World Typographic Robustness Evaluation for Multimodal Foundation Models CVPR 2025
Typographic attacks exploit the interplay between text and visual content in multimodal foundation models, causing misclassifications when misleading text is embedded within images. However, existing datasets are limited in size and diversity, making it difficult to study such vulnerabilities. In this paper, we introduce SCAM, the largest and most diverse dataset of real-world typographic attack images to date, containing 1,162 images across hundreds of object categories and attack words. Through extensive benchmarking of Vision-Language Models (VLMs) on SCAM, we demonstrate that typographic attacks significantly degrade performance, and identify that training data and model architecture influence the susceptibility to these attacks. Our findings reveal that typographic attacks persist in state-of-the-art Large Vision-Language Models (LVLMs) due to the choice of their vision encoder, though larger Large Language Models (LLMs) backbones help mitigate their vulnerability. Additionally, we demonstrate that synthetic attacks closely resemble real-world (handwritten) attacks, validating their use in research. Our work provides a comprehensive resource and empirical insights to facilitate future research toward robust and trustworthy multimodal AI systems. We publicly release the datasets introduced in this paper along with the code for evaluations at www.bliss.berlin/research/scam.
comment: Accepted at CVPR 2025 Workshop EVAL-FoMo-2
dc-GAN: Dual-Conditioned GAN for Face Demorphing From a Single Morph
A facial morph is an image created by combining two face images pertaining to two distinct identities. Face demorphing inverts the process and tries to recover the original images constituting a facial morph. While morph attack detection (MAD) techniques can be used to flag morph images, they do not divulge any visual information about the faces used to create them. Demorphing helps address this problem. Existing demorphing techniques are either very restrictive (assume identities during testing) or produce feeble outputs (both outputs look very similar). In this paper, we overcome these issues by proposing dc-GAN, a novel GAN-based demorphing method conditioned on the morph images. Our method overcomes morph-replication and produces high quality reconstructions of the bonafide images used to create the morphs. Moreover, our method is highly generalizable across demorphing paradigms (differential/reference-free). We conduct experiments on AMSL, FRLL-Morphs and MorDiff datasets to showcase the efficacy of our method.
TableCenterNet: A one-stage network for table structure recognition
Table structure recognition aims to parse tables in unstructured data into machine-understandable formats. Recent methods address this problem through a two-stage process or optimized one-stage approaches. However, these methods either require multiple networks to be serially trained and perform more time-consuming sequential decoding, or rely on complex post-processing algorithms to parse the logical structure of tables. They struggle to balance cross-scenario adaptability, robustness, and computational efficiency. In this paper, we propose a one-stage end-to-end table structure parsing network called TableCenterNet. This network unifies the prediction of table spatial and logical structure into a parallel regression task for the first time, and implicitly learns the spatial-logical location mapping laws of cells through a synergistic architecture of shared feature extraction layers and task-specific decoding. Compared with two-stage methods, our method is easier to train and faster to infer. Experiments on benchmark datasets show that TableCenterNet can effectively parse table structures in diverse scenarios and achieve state-of-the-art performance on the TableGraph-24k dataset. Code is available at https://github.com/dreamy-xay/TableCenterNet.
Veri-Car: Towards Open-world Vehicle Information Retrieval
Many industrial and service sectors require tools to extract vehicle characteristics from images. This is a complex task not only by the variety of noise, and large number of classes, but also by the constant introduction of new vehicle models to the market. In this paper, we present Veri-Car, an information retrieval integrated approach designed to help on this task. It leverages supervised learning techniques to accurately identify the make, type, model, year, color, and license plate of cars. The approach also addresses the challenge of handling open-world problems, where new car models and variations frequently emerge, by employing a sophisticated combination of pre-trained models, and a hierarchical multi-similarity loss. Veri-Car demonstrates robust performance, achieving high precision and accuracy in classifying both seen and unseen data. Additionally, it integrates an ensemble license plate detection, and an OCR model to extract license plate numbers with impressive accuracy.
A Sliding Layer Merging Method for Efficient Depth-Wise Pruning in LLMs
Compared to width-wise pruning, depth-wise pruning can significantly accelerate inference in resource-constrained scenarios. However, treating the entire Transformer layer as the minimum pruning unit may degrade model performance by indiscriminately discarding the entire information of the layer. This paper reveals the ``Patch-like'' feature relationship between layers in large language models by analyzing the correlation of the outputs of different layers in the reproducing kernel Hilbert space. Building on this observation, we propose a sliding layer merging method that dynamically selects and fuses consecutive layers from top to bottom according to a pre-defined similarity threshold, thereby simplifying the model structure while maintaining its performance. Extensive experiments on LLMs with various architectures and different parameter scales show that our method outperforms existing pruning techniques in both zero-shot inference performance and retraining recovery quality after pruning. In particular, in the experiment with 35% pruning on the Vicuna-7B model, our method achieved a 1.654% improvement in average performance on zero-shot tasks compared to the existing method. Moreover, we further reveal the potential of combining depth pruning with width pruning to enhance the pruning effect. Our codes are available at https://github.com/920927/SLM-a-sliding-layer-merging-method.
Think or Not Think: A Study of Explicit Thinking in Rule-Based Visual Reinforcement Fine-Tuning
This paper investigates the role of explicit thinking process in rule-based reinforcement fine-tuning (RFT) for MLLMs. We first propose CLS-RL for MLLM image classification, using verifiable rewards for fine-tuning. Experiments show CLS-RL significantly outperforms SFT and yields a cross-dataset generalization effect. We then rethink and question whether explicit thinking in RFT is always necessary. Challenging the convention that explicit thinking is crucial for the success of RFT, we introduce No-Thinking-RL, exploring RFT without thinking by introducing a simple equality accuracy reward. We evaluate No-Thinking-RL on 6 diverse tasks across different model sizes and types. Experimental results reveal three key findings: 1). Visual perception tasks do not require thinking during RFT, as No-Thinking-RL consistently outperforms or matches Thinking-based RFT across model sizes. 2).} Models with limited capabilities struggle to generate high-quality CoT for RFT, making Thinking-based RFT less effective than No-Thinking-RL. 3). There are inconsistencies between the answers in the thinking and answer tags for some responses of thinking-based RFT, which show lower accuracy than the overall accuracy. We hypothesize that explicit thinking before verifiable answers may hinder reward convergence and reduce performance. To test this hypothesis, we propose Think-After-Answer, which places thinking after the answer to mitigate this effect for experimental verification. Lastly, we conduct a pilot study to explore whether MLLMs can learn when to think during RFT, introducing an Adaptive-Thinking method. Experiments show that it converges to a specific prompt depending on model capability and task complexity, achieving comparable or better performance than both Thinking and No-Thinking-RL. This suggests MLLMs can adaptively decide to think or not based on their capabilities and task complexity.
comment: Preprint, work in progress. Add results on adaptive-thinking and response inconsistency
A super-resolution reconstruction method for lightweight building images based on an expanding feature modulation network
This study proposes a lightweight method for building image super-resolution using a Dilated Contextual Feature Modulation Network (DCFMN). The process includes obtaining high-resolution images, down-sampling them to low-resolution, enhancing the low-resolution images, constructing and training a lightweight network model, and generating super-resolution outputs. To address challenges such as regular textures and long-range dependencies in building images, the DCFMN integrates an expansion separable modulation unit and a local feature enhancement module. The former employs multiple expansion convolutions equivalent to a large kernel to efficiently aggregate multi-scale features while leveraging a simple attention mechanism for adaptivity. The latter encodes local features, mixes channel information, and ensures no additional computational burden during inference through reparameterization. This approach effectively resolves the limitations of existing lightweight super-resolution networks in modeling long-range dependencies, achieving accurate and efficient global feature modeling without increasing computational costs, and significantly improving both reconstruction quality and lightweight efficiency for building image super-resolution models.
AdaWorld: Learning Adaptable World Models with Latent Actions ICML 2025
World models aim to learn action-controlled future prediction and have proven essential for the development of intelligent agents. However, most existing world models rely heavily on substantial action-labeled data and costly training, making it challenging to adapt to novel environments with heterogeneous actions through limited interactions. This limitation can hinder their applicability across broader domains. To overcome this limitation, we propose AdaWorld, an innovative world model learning approach that enables efficient adaptation. The key idea is to incorporate action information during the pretraining of world models. This is achieved by extracting latent actions from videos in a self-supervised manner, capturing the most critical transitions between frames. We then develop an autoregressive world model that conditions on these latent actions. This learning paradigm enables highly adaptable world models, facilitating efficient transfer and learning of new actions even with limited interactions and finetuning. Our comprehensive experiments across multiple environments demonstrate that AdaWorld achieves superior performance in both simulation quality and visual planning.
comment: ICML 2025. Project page: https://adaptable-world-model.github.io/, code and model: https://github.com/Little-Podi/AdaWorld
RealRAG: Retrieval-augmented Realistic Image Generation via Self-reflective Contrastive Learning ICML2025
Recent text-to-image generative models, e.g., Stable Diffusion V3 and Flux, have achieved notable progress. However, these models are strongly restricted to their limited knowledge, a.k.a., their own fixed parameters, that are trained with closed datasets. This leads to significant hallucinations or distortions when facing fine-grained and unseen novel real-world objects, e.g., the appearance of the Tesla Cybertruck. To this end, we present the first real-object-based retrieval-augmented generation framework (RealRAG), which augments fine-grained and unseen novel object generation by learning and retrieving real-world images to overcome the knowledge gaps of generative models. Specifically, to integrate missing memory for unseen novel object generation, we train a reflective retriever by self-reflective contrastive learning, which injects the generator's knowledge into the sef-reflective negatives, ensuring that the retrieved augmented images compensate for the model's missing knowledge. Furthermore, the real-object-based framework integrates fine-grained visual knowledge for the generative models, tackling the distortion problem and improving the realism for fine-grained object generation. Our Real-RAG is superior in its modular application to all types of state-of-the-art text-to-image generative models and also delivers remarkable performance boosts with all of them, such as a gain of 16.18% FID score with the auto-regressive model on the Stanford Car benchmark.
comment: Accepted to ICML2025
Beyond Boundaries: A Comprehensive Survey of Transferable Attacks on AI Systems
As Artificial Intelligence (AI) systems increasingly underpin critical applications, from autonomous vehicles to biometric authentication, their vulnerability to transferable attacks presents a growing concern. These attacks, designed to generalize across instances, domains, models, tasks, modalities, or even hardware platforms, pose severe risks to security, privacy, and system integrity. This survey delivers the first comprehensive review of transferable attacks across seven major categories, including evasion, backdoor, data poisoning, model stealing, model inversion, membership inference, and side-channel attacks. We introduce a unified six-dimensional taxonomy: cross-instance, cross-domain, cross-modality, cross-model, cross-task, and cross-hardware, which systematically captures the diverse transfer pathways of adversarial strategies. Through this framework, we examine both the underlying mechanics and practical implications of transferable attacks on AI systems. Furthermore, we review cutting-edge methods for enhancing attack transferability, organized around data augmentation and optimization strategies. By consolidating fragmented research and identifying critical future directions, this work provides a foundational roadmap for understanding, evaluating, and defending against transferable threats in real-world AI systems.
Improving Tropical Cyclone Forecasting With Video Diffusion Models ICLR 2025
Tropical cyclone (TC) forecasting is crucial for disaster preparedness and mitigation. While recent deep learning approaches have shown promise, existing methods often treat TC evolution as a series of independent frame-to-frame predictions, limiting their ability to capture long-term dynamics. We present a novel application of video diffusion models for TC forecasting that explicitly models temporal dependencies through additional temporal layers. Our approach enables the model to generate multiple frames simultaneously, better capturing cyclone evolution patterns. We introduce a two-stage training strategy that significantly improves individual-frame quality and performance in low-data regimes. Experimental results show our method outperforms the previous approach of Nath et al. by 19.3% in MAE, 16.2% in PSNR, and 36.1% in SSIM. Most notably, we extend the reliable forecasting horizon from 36 to 50 hours. Through comprehensive evaluation using both traditional metrics and Fr\'echet Video Distance (FVD), we demonstrate that our approach produces more temporally coherent forecasts while maintaining competitive single-frame quality. Code accessible at https://github.com/Ren-creater/forecast-video-diffmodels.
comment: Recommended for spotlight presentation at the ICLR 2025 workshop on Tackling Climate Change with Machine Learning. 7 pages, 7 figures
Beyond DAGs: A Latent Partial Causal Model for Multimodal Learning
Directed acyclic graphs (DAGs) are fundamental graph structures in causal modeling, but identifying the desired DAG from observational data often requires strong assumptions that may not hold in real-world scenarios, especially for latent causal models and complex multimodal data. This raises the question of whether we can relax or bypass the DAG assumption while maintaining practical utility. In this work, we propose a novel latent partial causal model for multimodal data, featuring two latent coupled variables, connected by an undirected edge, to represent the transfer of knowledge across modalities. Under specific statistical assumptions, we establish an identifiability result, demonstrating that representations learned by multimodal contrastive learning correspond to the latent coupled variables up to a trivial transformation. This result deepens our understanding of the why multimodal contrastive learning works, highlights its potential for disentanglement, and expands the utility of pre-trained models like CLIP. Synthetic experiments confirm the robustness of our findings, even when the assumptions are partially violated. Most importantly, experiments on a pre-trained CLIP model embodies disentangled representations, enabling few-shot learning and improving domain generalization across diverse real-world datasets. Together, these contributions push the boundaries of multimodal contrastive learning, both theoretically and, crucially, in practical applications.
A novel fusion of Sentinel-1 and Sentinel-2 with climate data for crop phenology estimation using Machine Learning
Crop phenology describes the physiological development stages of crops from planting to harvest which is valuable information for decision makers to plan and adapt agricultural management strategies. In the era of big Earth observation data ubiquity, attempts have been made to accurately detect crop phenology using Remote Sensing (RS) and high resolution weather data. However, most studies have focused on large scale predictions of phenology or developed methods which are not adequate to help crop modeler communities on leveraging Sentinel-1 and Sentinal-2 data and fusing them with high resolution climate data, using a novel framework. For this, we trained a Machine Learning (ML) LightGBM model to predict 13 phenological stages for eight major crops across Germany at 20 m scale. Observed phonologies were taken from German national phenology network (German Meteorological Service; DWD) between 2017 and 2021. We proposed a thorough feature selection analysis to find the best combination of RS and climate data to detect phenological stages. At national scale, predicted phenology resulted in a reasonable precision of R2 > 0.43 and a low Mean Absolute Error of 6 days, averaged over all phenological stages and crops. The spatio-temporal analysis of the model predictions demonstrates its transferability across different spatial and temporal context of Germany. The results indicated that combining radar sensors with climate data yields a very promising performance for a multitude of practical applications. Moreover, these improvements are expected to be useful to generate highly valuable input for crop model calibrations and evaluations, facilitate informed agricultural decisions, and contribute to sustainable food production to address the increasing global food demand.
Self-Adaptive Gamma Context-Aware SSM-based Model for Metal Defect Detection IJCNN 2025
Metal defect detection is critical in industrial quality assurance, yet existing methods struggle with grayscale variations and complex defect states, limiting its robustness. To address these challenges, this paper proposes a Self-Adaptive Gamma Context-Aware SSM-based model(GCM-DET). This advanced detection framework integrating a Dynamic Gamma Correction (GC) module to enhance grayscale representation and optimize feature extraction for precise defect reconstruction. A State-Space Search Management (SSM) architecture captures robust multi-scale features, effectively handling defects of varying shapes and scales. Focal Loss is employed to mitigate class imbalance and refine detection accuracy. Additionally, the CD5-DET dataset is introduced, specifically designed for port container maintenance, featuring significant grayscale variations and intricate defect patterns. Experimental results demonstrate that the proposed model achieves substantial improvements, with mAP@0.5 gains of 27.6\%, 6.6\%, and 2.6\% on the CD5-DET, NEU-DET, and GC10-DET datasets.
comment: 8 pages, 5 figures; Accepted for publication at the 2025 International Joint Conference on Neural Networks (IJCNN 2025), Rome, Italy, 30 June - 5 July
Clinical Inspired MRI Lesion Segmentation
Magnetic resonance imaging (MRI) is a potent diagnostic tool for detecting pathological tissues in various diseases. Different MRI sequences have different contrast mechanisms and sensitivities for different types of lesions, which pose challenges to accurate and consistent lesion segmentation. In clinical practice, radiologists commonly use the sub-sequence feature, i.e. the difference between post contrast-enhanced T1-weighted (post) and pre-contrast-enhanced (pre) sequences, to locate lesions. Inspired by this, we propose a residual fusion method to learn subsequence representation for MRI lesion segmentation. Specifically, we iteratively and adaptively fuse features from pre- and post-contrast sequences at multiple resolutions, using dynamic weights to achieve optimal fusion and address diverse lesion enhancement patterns. Our method achieves state-of-the-art performances on BraTS2023 dataset for brain tumor segmentation and our in-house breast MRI dataset for breast lesion segmentation. Our method is clinically inspired and has the potential to facilitate lesion segmentation in various applications.
comment: accepted in ISBI2025 oral
Spike Imaging Velocimetry: Dense Motion Estimation of Fluids Using Spike Cameras
The need for accurate and non-intrusive flow measurement methods has led to the widespread adoption of Particle Image Velocimetry (PIV), a powerful diagnostic tool in fluid motion estimation. This study investigates the tremendous potential of spike cameras (a type of ultra-high-speed, high-dynamic-range camera) in PIV. We propose a deep learning framework, Spike Imaging Velocimetry (SIV), designed specifically for highly turbulent and intricate flow fields. To aggregate motion features from the spike stream while minimizing information loss, we incorporate a Detail-Preserving Hierarchical Transform (DPHT) module. Additionally, we introduce a Graph Encoder (GE) to extract contextual features from highly complex fluid flows. Furthermore, we present a spike-based PIV dataset, Particle Scenes with Spike and Displacement (PSSD), which provides labeled data for three challenging fluid dynamics scenarios. Our proposed method achieves superior performance compared to existing baseline methods on PSSD. The datasets and our implementation of SIV are open-sourced in the supplementary materials.
HumanDiT: Pose-Guided Diffusion Transformer for Long-form Human Motion Video Generation
Human motion video generation has advanced significantly, while existing methods still struggle with accurately rendering detailed body parts like hands and faces, especially in long sequences and intricate motions. Current approaches also rely on fixed resolution and struggle to maintain visual consistency. To address these limitations, we propose HumanDiT, a pose-guided Diffusion Transformer (DiT)-based framework trained on a large and wild dataset containing 14,000 hours of high-quality video to produce high-fidelity videos with fine-grained body rendering. Specifically, (i) HumanDiT, built on DiT, supports numerous video resolutions and variable sequence lengths, facilitating learning for long-sequence video generation; (ii) we introduce a prefix-latent reference strategy to maintain personalized characteristics across extended sequences. Furthermore, during inference, HumanDiT leverages Keypoint-DiT to generate subsequent pose sequences, facilitating video continuation from static images or existing videos. It also utilizes a Pose Adapter to enable pose transfer with given sequences. Extensive experiments demonstrate its superior performance in generating long-form, pose-accurate videos across diverse scenarios.
comment: https://agnjason.github.io/HumanDiT-page/
Msmsfnet: a multi-stream and multi-scale fusion net for edge detection
Edge detection is a long-standing problem in computer vision. Despite the efficiency of existing algorithms, their performance, however, rely heavily on the pre-trained weights of the backbone network on the ImageNet dataset. The use of pre-trained weights in previous methods significantly increases the difficulty to design new models for edge detection without relying on existing well-trained ImageNet models, as pre-training the model on the ImageNet dataset is expensive and becomes compulsory to ensure the fairness of comparison. Besides, the pre-training and fine-tuning strategy is not always useful and sometimes even inaccessible. For instance, the pre-trained weights on the ImageNet dataset are unlikely to be helpful for edge detection in Synthetic Aperture Radar (SAR) images due to strong differences in the statistics between optical images and SAR images. Moreover, no dataset has comparable size to the ImageNet dataset for SAR image processing. In this work, we study the performance achievable by state-of-the-art deep learning based edge detectors in publicly available datasets when they are trained from scratch, and devise a new network architecture, the multi-stream and multi-scale fusion net (msmsfnet), for edge detection. We show in our experiments that by training all models from scratch, our model outperforms state-of-the-art edge detectors in three publicly available datasets. We also demonstrate the efficiency of our model for edge detection in SAR images, where no useful pre-trained weight is available. Finally, We show that our model is able to achieve competitive performance on the BSDS500 dataset when the pre-trained weights are used.
HoLa: B-Rep Generation using a Holistic Latent Representation SIGGRAPH 2025
We introduce a novel representation for learning and generating Computer-Aided Design (CAD) models in the form of $\textit{boundary representations}$ (B-Reps). Our representation unifies the continuous geometric properties of B-Rep primitives in different orders (e.g., surfaces and curves) and their discrete topological relations in a $\textit{holistic latent}$ (HoLa) space. This is based on the simple observation that the topological connection between two surfaces is intrinsically tied to the geometry of their intersecting curve. Such a prior allows us to reformulate topology learning in B-Reps as a geometric reconstruction problem in Euclidean space. Specifically, we eliminate the presence of curves, vertices, and all the topological connections in the latent space by learning to distinguish and derive curve geometries from a pair of surface primitives via a neural intersection network. To this end, our holistic latent space is only defined on surfaces but encodes a full B-Rep model, including the geometry of surfaces, curves, vertices, and their topological relations. Our compact and holistic latent space facilitates the design of a first diffusion-based generator to take on a large variety of inputs including point clouds, single/multi-view images, 2D sketches, and text prompts. Our method significantly reduces ambiguities, redundancies, and incoherences among the generated B-Rep primitives, as well as training complexities inherent in prior multi-step B-Rep learning pipelines, while achieving greatly improved validity rate over current state of the art: 82% vs. $\approx$50%.
comment: ACM TOG and SIGGRAPH 2025 (Patent Protected); Project page: https://vcc.tech/research/2025/HolaBrep; Demo page: https://huggingface.co/spaces/YuXingyao/HoLa-BRep
Direct Discriminative Optimization: Your Likelihood-Based Visual Generative Model is Secretly a GAN Discriminator ICML 2025
While likelihood-based generative models, particularly diffusion and autoregressive models, have achieved remarkable fidelity in visual generation, the maximum likelihood estimation (MLE) objective, which minimizes the forward KL divergence, inherently suffers from a mode-covering tendency that limits the generation quality under limited model capacity. In this work, we propose Direct Discriminative Optimization (DDO) as a unified framework that integrates likelihood-based generative training and GAN-type discrimination to bypass this fundamental constraint by exploiting reverse KL and self-generated negative signals. Our key insight is to parameterize a discriminator implicitly using the likelihood ratio between a learnable target model and a fixed reference model, drawing parallels with the philosophy of Direct Preference Optimization (DPO). Unlike GANs, this parameterization eliminates the need for joint training of generator and discriminator networks, allowing for direct, efficient, and effective finetuning of a well-trained model to its full potential beyond the limits of MLE. DDO can be performed iteratively in a self-play manner for progressive model refinement, with each round requiring less than 1% of pretraining epochs. Our experiments demonstrate the effectiveness of DDO by significantly advancing the previous SOTA diffusion model EDM, reducing FID scores from 1.79/1.58/1.96 to new records of 1.30/0.97/1.26 on CIFAR-10/ImageNet-64/ImageNet 512x512 datasets without any guidance mechanisms, and by consistently improving both guidance-free and CFG-enhanced FIDs of visual autoregressive models on ImageNet 256x256.
comment: ICML 2025 Spotlight Project Page: https://research.nvidia.com/labs/dir/ddo/ Code: https://github.com/NVlabs/DDO
Efficient and Comprehensive Feature Extraction in Large Vision-Language Model for Clinical Pathology Analysis
Pathological diagnosis is vital for determining disease characteristics, guiding treatment, and assessing prognosis, relying heavily on detailed, multi-scale analysis of high-resolution whole slide images (WSI). However, traditional pure vision models face challenges of redundant feature extraction, whereas existing large vision-language models (LVLMs) are limited by input resolution constraints, hindering their efficiency and accuracy. To overcome these issues, we propose two innovative strategies: the mixed task-guided feature enhancement, which directs feature extraction toward lesion-related details across scales, and the prompt-guided detail feature completion, which integrates coarse- and fine-grained features from WSI based on specific prompts without compromising inference speed. Leveraging a comprehensive dataset of 490,000 samples from diverse pathology tasks-including cancer detection, grading, vascular and neural invasion identification, and so on-we trained the pathology-specialized LVLM, OmniPath. Extensive experiments demonstrate that this model significantly outperforms existing methods in diagnostic accuracy and efficiency, offering an interactive, clinically aligned approach for auxiliary diagnosis in a wide range of pathology applications.
Multi-camera orientation tracking method for anisotropic particles in particle-laden flows
A method for particle orientation tracking is developed and demonstrated specifically for anisotropic particles. Using (high-speed) multi-camera recordings of anisotropic particles from different viewpoints, we reconstruct the 3D location and orientation of these particles using their known shape. This paper describes an algorithm which tracks the location and orientation of multiple anisotropic particles over time, enabling detailed investigations of location, orientation, and rotation statistics. The robustness and error of this method is quantified, and we explore the effects of noise, image size, the number of used cameras, and the camera arrangement by applying the algorithm to synthetic images. We showcase several use-cases of this method in several experiments (in both quiescent and turbulent fluids), demonstrating the effectiveness and broad applicability of the described tracking method. The proposed method is shown to work for widely different particle shapes, successfully tracks multiple particles simultaneously, and the method can distinguish between different types of particles.
comment: 14 pages, 22 figures
AttackBench: Evaluating Gradient-based Attacks for Adversarial Examples AAAI2025
Adversarial examples are typically optimized with gradient-based attacks. While novel attacks are continuously proposed, each is shown to outperform its predecessors using different experimental setups, hyperparameter settings, and number of forward and backward calls to the target models. This provides overly-optimistic and even biased evaluations that may unfairly favor one particular attack over the others. In this work, we aim to overcome these limitations by proposing AttackBench, i.e., the first evaluation framework that enables a fair comparison among different attacks. To this end, we first propose a categorization of gradient-based attacks, identifying their main components and differences. We then introduce our framework, which evaluates their effectiveness and efficiency. We measure these characteristics by (i) defining an optimality metric that quantifies how close an attack is to the optimal solution, and (ii) limiting the number of forward and backward queries to the model, such that all attacks are compared within a given maximum query budget. Our extensive experimental analysis compares more than $100$ attack implementations with a total of over $800$ different configurations against CIFAR-10 and ImageNet models, highlighting that only very few attacks outperform all the competing approaches. Within this analysis, we shed light on several implementation issues that prevent many attacks from finding better solutions or running at all. We release AttackBench as a publicly-available benchmark, aiming to continuously update it to include and evaluate novel gradient-based attacks for optimizing adversarial examples.
comment: Paper accepted at AAAI2025. Project page and leaderboard: https://attackbench.github.io
MOANA: Multi-Radar Dataset for Maritime Odometry and Autonomous Navigation Application
Maritime environmental sensing requires overcoming challenges from complex conditions such as harsh weather, platform perturbations, large dynamic objects, and the requirement for long detection ranges. While cameras and LiDAR are commonly used in ground vehicle navigation, their applicability in maritime settings is limited by range constraints and hardware maintenance issues. Radar sensors, however, offer robust long-range detection capabilities and resilience to physical contamination from weather and saline conditions, making it a powerful sensor for maritime navigation. Among various radar types, X-band radar is widely employed for maritime vessel navigation, providing effective long-range detection essential for situational awareness and collision avoidance. Nevertheless, it exhibits limitations during berthing operations where near-field detection is critical. To address this shortcoming, we incorporate W-band radar, which excels in detecting nearby objects with a higher update rate. We present a comprehensive maritime sensor dataset featuring multi-range detection capabilities. This dataset integrates short-range LiDAR data, medium-range W-band radar data, and long-range X-band radar data into a unified framework. Additionally, it includes object labels for oceanic object detection usage, derived from radar and stereo camera images. The dataset comprises seven sequences collected from diverse regions with varying levels of \bl{navigation algorithm} estimation difficulty, ranging from easy to challenging, and includes common locations suitable for global localization tasks. This dataset serves as a valuable resource for advancing research in place recognition, odometry estimation, SLAM, object detection, and dynamic object elimination within maritime environments. Dataset can be found at https://sites.google.com/view/rpmmoana.
comment: 10 pages, 9 figures, 3 tables
Efficient 3D Perception on Multi-Sweep Point Cloud with Gumbel Spatial Pruning
This paper studies point cloud perception within outdoor environments. Existing methods face limitations in recognizing objects located at a distance or occluded, due to the sparse nature of outdoor point clouds. In this work, we observe a significant mitigation of this problem by accumulating multiple temporally consecutive point cloud sweeps, resulting in a remarkable improvement in perception accuracy. However, the computation cost also increases, hindering previous approaches from utilizing a large number of point cloud sweeps. To tackle this challenge, we find that a considerable portion of points in the accumulated point cloud is redundant, and discarding these points has minimal impact on perception accuracy. We introduce a simple yet effective Gumbel Spatial Pruning (GSP) layer that dynamically prunes points based on a learned end-to-end sampling. The GSP layer is decoupled from other network components and thus can be seamlessly integrated into existing point cloud network architectures. Without incurring additional computational overhead, we increase the number of point cloud sweeps from 10, a common practice, to as many as 40. Consequently, there is a significant enhancement in perception performance. For instance, in nuScenes 3D object detection and BEV map segmentation tasks, our pruning strategy improves several 3D perception baseline methods.
Less is More: Improving Motion Diffusion Models with Sparse Keyframes
Recent advances in motion diffusion models have led to remarkable progress in diverse motion generation tasks, including text-to-motion synthesis. However, existing approaches represent motions as dense frame sequences, requiring the model to process redundant or less informative frames. The processing of dense animation frames imposes significant training complexity, especially when learning intricate distributions of large motion datasets even with modern neural architectures. This severely limits the performance of generative motion models for downstream tasks. Inspired by professional animators who mainly focus on sparse keyframes, we propose a novel diffusion framework explicitly designed around sparse and geometrically meaningful keyframes. Our method reduces computation by masking non-keyframes and efficiently interpolating missing frames. We dynamically refine the keyframe mask during inference to prioritize informative frames in later diffusion steps. Extensive experiments show that our approach consistently outperforms state-of-the-art methods in text alignment and motion realism, while also effectively maintaining high performance at significantly fewer diffusion steps. We further validate the robustness of our framework by using it as a generative prior and adapting it to different downstream tasks.
Towards Complementary Knowledge Distillation for Efficient Dense Image Prediction
It has been revealed that small efficient dense image prediction (EDIP) models, trained using the knowledge distillation (KD) framework, encounter two key challenges, including maintaining boundary region completeness and preserving target region connectivity, despite their favorable capacity to recognize main object regions. In this work, we propose a complementary boundary and context distillation (BCD) method within the KD framework for EDIPs, which facilitates the targeted knowledge transfer from large accurate teacher models to compact efficient student models. Specifically, the boundary distillation component focuses on extracting explicit object-level semantic boundaries from the hierarchical feature maps of the backbone network to enhance the student model's mask quality in boundary regions. Concurrently, the context distillation component leverages self-relations as a bridge to transfer implicit pixel-level contexts from the teacher model to the student model, ensuring strong connectivity in target regions. Our proposed BCD method is specifically designed for EDIP tasks and is characterized by its simplicity and efficiency. Extensive experimental results across semantic segmentation, object detection, and instance segmentation on various representative datasets demonstrate that our method can outperform existing methods without requiring extra supervisions or incurring increased inference costs, resulting in well-defined object boundaries and smooth connecting regions.
comment: under submission
Semantic and Expressive Variation in Image Captions Across Languages CVPR 2025
Computer vision often treats human perception as homogeneous: an implicit assumption that visual stimuli are perceived similarly by everyone. This assumption is reflected in the way researchers collect datasets and train vision models. By contrast, literature in cross-cultural psychology and linguistics has provided evidence that people from different cultural backgrounds observe vastly different concepts even when viewing the same visual stimuli. In this paper, we study how these differences manifest themselves in vision-language datasets and models, using language as a proxy for culture. By comparing textual descriptions generated across 7 languages for the same images, we find significant differences in the semantic content and linguistic expression. When datasets are multilingual as opposed to monolingual, descriptions have higher semantic coverage on average, where coverage is measured using scene graphs, model embeddings, and linguistic taxonomies. For example, multilingual descriptions have on average 29.9% more objects, 24.5% more relations, and 46.0% more attributes than a set of monolingual captions. When prompted to describe images in different languages, popular models (e.g. LLaVA) inherit this bias and describe different parts of the image. Moreover, finetuning models on captions from one language performs best on corresponding test data from that language, while finetuning on multilingual data performs consistently well across all test data compositions. Our work points towards the need to account for and embrace the diversity of human perception in the computer vision community.
comment: CVPR 2025
Leveraging Habitat Information for Fine-grained Bird Identification
Traditional bird classifiers mostly rely on the visual characteristics of birds. Some prior works even train classifiers to be invariant to the background, completely discarding the living environment of birds. Instead, we are the first to explore integrating habitat information, one of the four major cues for identifying birds by ornithologists, into modern bird classifiers. We focus on two leading model types: (1) CNNs and ViTs trained on the downstream bird datasets; and (2) original, multi-modal CLIP. Training CNNs and ViTs with habitat-augmented data results in an improvement of up to +0.83 and +0.23 points on NABirds and CUB-200, respectively. Similarly, adding habitat descriptors to the prompts for CLIP yields a substantial accuracy boost of up to +0.99 and +1.1 points on NABirds and CUB-200, respectively. We find consistent accuracy improvement after integrating habitat features into the image augmentation process and into the textual descriptors of vision-language CLIP classifiers. Code is available at: https://anonymous.4open.science/r/reasoning-8B7E/.
Adapting In-Domain Few-Shot Segmentation to New Domains without Retraining
Cross-domain few-shot segmentation (CD-FSS) aims to segment objects of novel classes in new domains, which is often challenging due to the diverse characteristics of target domains and the limited availability of support data. Most CD-FSS methods redesign and retrain in-domain FSS models using various domain-generalization techniques, which are effective but costly to train. To address these issues, we propose adapting informative model structures of the well-trained FSS model for target domains by learning domain characteristics from few-shot labeled support samples during inference, thereby eliminating the need for retraining. Specifically, we first adaptively identify domain-specific model structures by measuring parameter importance using a novel structure Fisher score in a data-dependent manner. Then, we progressively train the selected informative model structures with hierarchically constructed training samples, progressing from fewer to more support shots. The resulting Informative Structure Adaptation (ISA) method effectively addresses domain shifts and equips existing well-trained in-domain FSS models with flexible adaptation capabilities for new domains, eliminating the need to redesign or retrain CD-FSS models on base data. Extensive experiments validate the effectiveness of our method, demonstrating superior performance across multiple CD-FSS benchmarks.
V-NAW: Video-based Noise-aware Adaptive Weighting for Facial Expression Recognition CVPR
Facial Expression Recognition (FER) plays a crucial role in human affective analysis and has been widely applied in computer vision tasks such as human-computer interaction and psychological assessment. The 8th Affective Behavior Analysis in-the-Wild (ABAW) Challenge aims to assess human emotions using the video-based Aff-Wild2 dataset. This challenge includes various tasks, including the video-based EXPR recognition track, which is our primary focus. In this paper, we demonstrate that addressing label ambiguity and class imbalance, which are known to cause performance degradation, can lead to meaningful performance improvements. Specifically, we propose Video-based Noise-aware Adaptive Weighting (V-NAW), which adaptively assigns importance to each frame in a clip to address label ambiguity and effectively capture temporal variations in facial expressions. Furthermore, we introduce a simple and effective augmentation strategy to reduce redundancy between consecutive frames, which is a primary cause of overfitting. Through extensive experiments, we validate the effectiveness of our approach, demonstrating significant improvements in video-based FER performance.
comment: Accepted by CVPRW2025
Relationships between the degrees of freedom in the affine Gaussian derivative model for visual receptive fields and 2-D affine image transformations, with application to covariance properties of simple cells in the primary visual cortex
When observing the surface patterns of objects delimited by smooth surfaces, the projections of the surface patterns to the image domain will be subject to substantial variabilities, as induced by variabilities in the geometric viewing conditions, and as generated by either monocular or binocular imaging conditions, or by relative motions between the object and the observer over time. To first order of approximation, the image deformations of such projected surface patterns can be modelled as local linearizations in terms of local 2-D spatial affine transformations. This paper presents a theoretical analysis of relationships between the degrees of freedom in 2-D spatial affine image transformations and the degrees of freedom in the affine Gaussian derivative model for visual receptive fields. For this purpose, we first describe a canonical decomposition of 2-D affine transformations on a product form, closely related to a singular value decomposition, while in closed form, and which reveals the degrees of freedom in terms of (i) uniform scaling transformations, (ii) an overall amount of global rotation, (iii) a complementary non-uniform scaling transformation and (iv) a relative normalization to a preferred symmetry orientation in the image domain. Then, we show how these degrees of freedom relate to the degrees of freedom in the affine Gaussian derivative model. Finally, we use these theoretical results to consider whether we could regard the biological receptive fields in the primary visual cortex of higher mammals as being able to span the degrees of freedom of 2-D spatial affine transformations, based on interpretations of existing neurophysiological experimental results.
comment: 22 pages, 9 figures
OmniAudio: Generating Spatial Audio from 360-Degree Video ICML 2025
Traditional video-to-audio generation techniques primarily focus on field-of-view (FoV) video and non-spatial audio, often missing the spatial cues necessary for accurately representing sound sources in 3D environments. To address this limitation, we introduce a novel task, 360V2SA, to generate spatial audio from 360-degree videos, specifically producing First-order Ambisonics (FOA) audio - a standard format for representing 3D spatial audio that captures sound directionality and enables realistic 3D audio reproduction. We first create Sphere360, a novel dataset tailored for this task that is curated from real-world data. We also design an efficient semi-automated pipeline for collecting and cleaning paired video-audio data. To generate spatial audio from 360-degree video, we propose a novel framework OmniAudio, which leverages self-supervised pre-training using both spatial audio data (in FOA format) and large-scale non-spatial data. Furthermore, OmniAudio features a dual-branch framework that utilizes both panoramic and FoV video inputs to capture comprehensive local and global information from 360-degree videos. Experimental results demonstrate that OmniAudio achieves state-of-the-art performance across both objective and subjective metrics on Sphere360. Code and datasets will be released at https://github.com/liuhuadai/OmniAudio. The demo page is available at https://OmniAudio-360V2SA.github.io.
comment: ICML 2025
SerialGen: Personalized Image Generation by First Standardization Then Personalization
In this work, we are interested in achieving both high text controllability and whole-body appearance consistency in the generation of personalized human characters. We propose a novel framework, named SerialGen, which is a serial generation method consisting of two stages: first, a standardization stage that standardizes reference images, and then a personalized generation stage based on the standardized reference. Furthermore, we introduce two modules aimed at enhancing the standardization process. Our experimental results validate the proposed framework's ability to produce personalized images that faithfully recover the reference image's whole-body appearance while accurately responding to a wide range of text prompts. Through thorough analysis, we highlight the critical contribution of the proposed serial generation method and standardization model, evidencing enhancements in appearance consistency between reference and output images and across serial outputs generated from diverse text prompts. The term "Serial" in this work carries a double meaning: it refers to the two-stage method and also underlines our ability to generate serial images with consistent appearance throughout.
Stereo Hand-Object Reconstruction for Human-to-Robot Handover
Jointly estimating hand and object shape facilitates the grasping task in human-to-robot handovers. However, relying on hand-crafted prior knowledge about the geometric structure of the object fails when generalising to unseen objects, and depth sensors fail to detect transparent objects such as drinking glasses. In this work, we propose a stereo-based method for hand-object reconstruction that combines single-view reconstructions probabilistically to form a coherent stereo reconstruction. We learn 3D shape priors from a large synthetic hand-object dataset to ensure that our method is generalisable, and use RGB inputs to better capture transparent objects. We show that our method reduces the object Chamfer distance compared to existing RGB based hand-object reconstruction methods on single view and stereo settings. We process the reconstructed hand-object shape with a projection-based outlier removal step and use the output to guide a human-to-robot handover pipeline with wide-baseline stereo RGB cameras. Our hand-object reconstruction enables a robot to successfully receive a diverse range of household objects from the human.
comment: 8 pages, 9 figures, 1 table. (Website: https://qm-ipalab.github.io/StereoHO/)
Referring to Any Person
Humans are undoubtedly the most important participants in computer vision, and the ability to detect any individual given a natural language description, a task we define as referring to any person, holds substantial practical value. However, we find that existing models generally fail to achieve real-world usability, and current benchmarks are limited by their focus on one-to-one referring, that hinder progress in this area. In this work, we revisit this task from three critical perspectives: task definition, dataset design, and model architecture. We first identify five aspects of referable entities and three distinctive characteristics of this task. Next, we introduce HumanRef, a novel dataset designed to tackle these challenges and better reflect real-world applications. From a model design perspective, we integrate a multimodal large language model with an object detection framework, constructing a robust referring model named RexSeek. Experimental results reveal that state-of-the-art models, which perform well on commonly used benchmarks like RefCOCO/+/g, struggle with HumanRef due to their inability to detect multiple individuals. In contrast, RexSeek not only excels in human referring but also generalizes effectively to common object referring, making it broadly applicable across various perception tasks. Code is available at https://github.com/IDEA-Research/RexSeek
DiffGAN: A Test Generation Approach for Differential Testing of Deep Neural Networks
Deep Neural Networks (DNNs) are increasingly deployed across applications. However, ensuring their reliability remains a challenge, and in many situations, alternative models with similar functionality and accuracy are available. Traditional accuracy-based evaluations often fail to capture behavioral differences between models, especially with limited test datasets, making it difficult to select or combine models effectively. Differential testing addresses this by generating test inputs that expose discrepancies in DNN model behavior. However, existing approaches face significant limitations: many rely on model internals or are constrained by available seed inputs. To address these challenges, we propose DiffGAN, a black-box test image generation approach for differential testing of DNN models. DiffGAN leverages a Generative Adversarial Network (GAN) and the Non-dominated Sorting Genetic Algorithm II to generate diverse and valid triggering inputs that reveal behavioral discrepancies between models. DiffGAN employs two custom fitness functions, focusing on diversity and divergence, to guide the exploration of the GAN input space and identify discrepancies between models' outputs. By strategically searching this space, DiffGAN generates inputs with specific features that trigger differences in model behavior. DiffGAN is black-box, making it applicable in more situations. We evaluate DiffGAN on eight DNN model pairs trained on widely used image datasets. Our results show DiffGAN significantly outperforms a SOTA baseline, generating four times more triggering inputs, with greater diversity and validity, within the same budget. Additionally, the generated inputs improve the accuracy of a machine learning-based model selection mechanism, which selects the best-performing model based on input characteristics and can serve as a smart output voting mechanism when using alternative models.
Articulate AnyMesh: Open-Vocabulary 3D Articulated Objects Modeling
3D articulated objects modeling has long been a challenging problem, since it requires to capture both accurate surface geometries and semantically meaningful and spatially precise structures, parts, and joints. Existing methods heavily depend on training data from a limited set of handcrafted articulated object categories (e.g., cabinets and drawers), which restricts their ability to model a wide range of articulated objects in an open-vocabulary context. To address these limitations, we propose Articulate Anymesh, an automated framework that is able to convert any rigid 3D mesh into its articulated counterpart in an open-vocabulary manner. Given a 3D mesh, our framework utilizes advanced Vision-Language Models and visual prompting techniques to extract semantic information, allowing for both the segmentation of object parts and the construction of functional joints. Our experiments show that Articulate Anymesh can generate large-scale, high-quality 3D articulated objects, including tools, toys, mechanical devices, and vehicles, significantly expanding the coverage of existing 3D articulated object datasets. Additionally, we show that these generated assets can facilitate the acquisition of new articulated object manipulation skills in simulation, which can then be transferred to a real robotic system. Our Github website is https://articulate-anymesh.github.io.
Learning to Drive Anywhere with Model-Based Reannotation
Developing broadly generalizable visual navigation policies for robots is a significant challenge, primarily constrained by the availability of large-scale, diverse training data. While curated datasets collected by researchers offer high quality, their limited size restricts policy generalization. To overcome this, we explore leveraging abundant, passively collected data sources, including large volumes of crowd-sourced teleoperation data and unlabeled YouTube videos, despite their potential for lower quality or missing action labels. We propose Model-Based ReAnnotation (MBRA), a framework that utilizes a learned short-horizon, model-based expert model to relabel or generate high-quality actions for these passive datasets. This relabeled data is then distilled into LogoNav, a long-horizon navigation policy conditioned on visual goals or GPS waypoints. We demonstrate that LogoNav, trained using MBRA-processed data, achieves state-of-the-art performance, enabling robust navigation over distances exceeding 300 meters in previously unseen indoor and outdoor environments. Our extensive real-world evaluations, conducted across a fleet of robots (including quadrupeds) in six cities on three continents, validate the policy's ability to generalize and navigate effectively even amidst pedestrians in crowded settings.
comment: 19 pages, 11 figures, 8 tables
MDE-Edit: Masked Dual-Editing for Multi-Object Image Editing via Diffusion Models
Multi-object editing aims to modify multiple objects or regions in complex scenes while preserving structural coherence. This task faces significant challenges in scenarios involving overlapping or interacting objects: (1) Inaccurate localization of target objects due to attention misalignment, leading to incomplete or misplaced edits; (2) Attribute-object mismatch, where color or texture changes fail to align with intended regions due to cross-attention leakage, creating semantic conflicts (\textit{e.g.}, color bleeding into non-target areas). Existing methods struggle with these challenges: approaches relying on global cross-attention mechanisms suffer from attention dilution and spatial interference between objects, while mask-based methods fail to bind attributes to geometrically accurate regions due to feature entanglement in multi-object scenarios. To address these limitations, we propose a training-free, inference-stage optimization approach that enables precise localized image manipulation in complex multi-object scenes, named MDE-Edit. MDE-Edit optimizes the noise latent feature in diffusion models via two key losses: Object Alignment Loss (OAL) aligns multi-layer cross-attention with segmentation masks for precise object positioning, and Color Consistency Loss (CCL) amplifies target attribute attention within masks while suppressing leakage to adjacent regions. This dual-loss design ensures localized and coherent multi-object edits. Extensive experiments demonstrate that MDE-Edit outperforms state-of-the-art methods in editing accuracy and visual quality, offering a robust solution for complex multi-object image manipulation tasks.
comment: 9 pages, 7 figures
PIDiff: Image Customization for Personalized Identities with Diffusion Models
Text-to-image generation for personalized identities aims at incorporating the specific identity into images using a text prompt and an identity image. Based on the powerful generative capabilities of DDPMs, many previous works adopt additional prompts, such as text embeddings and CLIP image embeddings, to represent the identity information, while they fail to disentangle the identity information and background information. As a result, the generated images not only lose key identity characteristics but also suffer from significantly reduced diversity. To address this issue, previous works have combined the W+ space from StyleGAN with diffusion models, leveraging this space to provide a more accurate and comprehensive representation of identity features through multi-level feature extraction. However, the entanglement of identity and background information in in-the-wild images during training prevents accurate identity localization, resulting in severe semantic interference between identity and background. In this paper, we propose a novel fine-tuning-based diffusion model for personalized identities text-to-image generation, named PIDiff, which leverages the W+ space and an identity-tailored fine-tuning strategy to avoid semantic entanglement and achieves accurate feature extraction and localization. Style editing can also be achieved by PIDiff through preserving the characteristics of identity features in the W+ space, which vary from coarse to fine. Through the combination of the proposed cross-attention block and parameter optimization strategy, PIDiff preserves the identity information and maintains the generation capability for in-the-wild images of the pre-trained model during inference. Our experimental results validate the effectiveness of our method in this task.
comment: 9 pages, 11 figures
FANeRV: Frequency Separation and Augmentation based Neural Representation for Video
Neural representations for video (NeRV) have gained considerable attention for their strong performance across various video tasks. However, existing NeRV methods often struggle to capture fine spatial details, resulting in vague reconstructions. In this paper, we present a Frequency Separation and Augmentation based Neural Representation for video (FANeRV), which addresses these limitations with its core Wavelet Frequency Upgrade Block. This block explicitly separates input frames into high and low-frequency components using discrete wavelet transform, followed by targeted enhancement using specialized modules. Finally, a specially designed gated network effectively fuses these frequency components for optimal reconstruction. Additionally, convolutional residual enhancement blocks are integrated into the later stages of the network to balance parameter distribution and improve the restoration of high-frequency details. Experimental results demonstrate that FANeRV significantly improves reconstruction performance and excels in multiple tasks, including video compression, inpainting, and interpolation, outperforming existing NeRV methods.
Inter-event Interval Microscopy for Event Cameras
Event cameras, an innovative bio-inspired sensor, differ from traditional cameras by sensing changes in intensity rather than directly perceiving intensity and recording these variations as a continuous stream of "events". The intensity reconstruction from these sparse events has long been a challenging problem. Previous approaches mainly focused on transforming motion-induced events into videos or achieving intensity imaging for static scenes by integrating modulation devices at the event camera acquisition end. In this paper, for the first time, we achieve event-to-intensity conversion using a static event camera for both static and dynamic scenes in fluorescence microscopy. Unlike conventional methods that primarily rely on event integration, the proposed Inter-event Interval Microscopy (IEIM) quantifies the time interval between consecutive events at each pixel. With a fixed threshold in the event camera, the time interval can precisely represent the intensity. At the hardware level, the proposed IEIM integrates a pulse light modulation device within a microscope equipped with an event camera, termed Pulse Modulation-based Event-driven Fluorescence Microscopy. Additionally, we have collected IEIMat dataset under various scenes including high dynamic range and high-speed scenarios. Experimental results on the IEIMat dataset demonstrate that the proposed IEIM achieves superior spatial and temporal resolution, as well as a higher dynamic range, with lower bandwidth compared to other methods. The code and the IEIMat dataset will be made publicly available.
LP-DETR: Layer-wise Progressive Relations for Object Detection
This paper presents LP-DETR (Layer-wise Progressive DETR), a novel approach that enhances DETR-based object detection through multi-scale relation modeling. Our method introduces learnable spatial relationships between object queries through a relation-aware self-attention mechanism, which adaptively learns to balance different scales of relations (local, medium and global) across decoder layers. This progressive design enables the model to effectively capture evolving spatial dependencies throughout the detection pipeline. Extensive experiments on COCO 2017 dataset demonstrate that our method improves both convergence speed and detection accuracy compared to standard self-attention module. The proposed method achieves competitive results, reaching 52.3\% AP with 12 epochs and 52.5\% AP with 24 epochs using ResNet-50 backbone, and further improving to 58.0\% AP with Swin-L backbone. Furthermore, our analysis reveals an interesting pattern: the model naturally learns to prioritize local spatial relations in early decoder layers while gradually shifting attention to broader contexts in deeper layers, providing valuable insights for future research in object detection.
comment: 12 pages, 4 figures
Adaptive Integrated Layered Attention (AILA)
We propose Adaptive Integrated Layered Attention (AILA), a neural network architecture that combines dense skip connections with different mechanisms for adaptive feature reuse across network layers. We evaluate AILA on three challenging tasks: price forecasting for various commodities and indices (S&P 500, Gold, US dollar Futures, Coffee, Wheat), image recognition using the CIFAR-10 dataset, and sentiment analysis on the IMDB movie review dataset. In all cases, AILA matches strong deep learning baselines (LSTMs, Transformers, and ResNets), achieving it at a fraction of the training and inference time. Notably, we implement and test two versions of the model - AILA-Architecture 1, which uses simple linear layers as the connection mechanism between layers, and AILA-Architecture 2, which implements an attention mechanism to selectively focus on outputs from previous layers. Both architectures are applied in a single-task learning setting, with each model trained separately for individual tasks. Results confirm that AILA's adaptive inter-layer connections yield robust gains by flexibly reusing pertinent features at multiple network depths. The AILA approach thus presents an extension to existing architectures, improving long-range sequence modeling, image recognition with optimised computational speed, and SOTA classification performance in practice.
Motion Blender Gaussian Splatting for Dynamic Scene Reconstruction
Gaussian splatting has emerged as a powerful tool for high-fidelity reconstruction of dynamic scenes. However, existing methods primarily rely on implicit motion representations, such as encoding motions into neural networks or per-Gaussian parameters, which makes it difficult to further manipulate the reconstructed motions. This lack of explicit controllability limits existing methods to replaying recorded motions only, which hinders a wider application in robotics. To address this, we propose Motion Blender Gaussian Splatting (MBGS), a novel framework that uses motion graphs as an explicit and sparse motion representation. The motion of a graph's links is propagated to individual Gaussians via dual quaternion skinning, with learnable weight painting functions that determine the influence of each link. The motion graphs and 3D Gaussians are jointly optimized from input videos via differentiable rendering. Experiments show that MBGS achieves state-of-the-art performance on the highly challenging iPhone dataset while being competitive on HyperNeRF. We demonstrate the application potential of our method in animating novel object poses, synthesizing real robot demonstrations, and predicting robot actions through visual planning. The source code, models, video demonstrations can be found at http://mlzxy.github.io/motion-blender-gs.
Multi-Modal Language Models as Text-to-Image Model Evaluators
The steady improvements of text-to-image (T2I) generative models lead to slow deprecation of automatic evaluation benchmarks that rely on static datasets, motivating researchers to seek alternative ways to evaluate the T2I progress. In this paper, we explore the potential of multi-modal large language models (MLLMs) as evaluator agents that interact with a T2I model, with the objective of assessing prompt-generation consistency and image aesthetics. We present Multimodal Text-to-Image Eval (MT2IE), an evaluation framework that iteratively generates prompts for evaluation, scores generated images and matches T2I evaluation of existing benchmarks with a fraction of the prompts used in existing static benchmarks. Moreover, we show that MT2IE's prompt-generation consistency scores have higher correlation with human judgment than scores previously introduced in the literature. MT2IE generates prompts that are efficient at probing T2I model performance, producing the same relative T2I model rankings as existing benchmarks while using only 1/80th the number of prompts for evaluation.
Building Age Estimation: A New Multi-Modal Benchmark Dataset and Community Challenge
Estimating the construction year of buildings is of great importance for sustainability. Sustainable buildings minimize energy consumption and are a key part of responsible and sustainable urban planning and development to effectively combat climate change. By using Artificial Intelligence (AI) and recently proposed powerful Transformer models, we are able to estimate the construction epoch of buildings from a multi-modal dataset. In this paper, we introduce a new benchmark multi-modal dataset, i.e. the Map your City Dataset (MyCD), containing top-view Very High Resolution (VHR) images, Earth Observation (EO) multi-spectral data from the Copernicus Sentinel-2 satellite constellation, and street-view images in many different cities in Europe that are co-localized with respect to the building under study and labelled with the construction epoch. We assess EO generalization performance on new/ previously unseen cities that have been held-out from training and appear only during inference. In this work, we present the community-based data challenge we organized based on MyCD. The AI4EO Challenge ESA MapYourCity was opened in 2024 for 4 months. In this paper, we present the Top-4 performing models of the challenge, and the evaluation results. During inference, the performance of the models using: i) both all three input modalities, and ii) only the two top-view modalities, i.e. without the street-view ground images, is examined. The evaluation results in this work show that the models to estimate the construction year of buildings are effective and can achieve good performance on this difficult important real-world task, even when inference is on previously unseen cities, as well as even when using only the two top-view modalities (i.e. VHR and Sentinel-2) during inference.
comment: 13 pages, 22 figures, Submitted
Image and Video Processing
ABS-Mamba: SAM2-Driven Bidirectional Spiral Mamba Network for Medical Image Translation MICCAI 2025
Accurate multi-modal medical image translation requires ha-rmonizing global anatomical semantics and local structural fidelity, a challenge complicated by intermodality information loss and structural distortion. We propose ABS-Mamba, a novel architecture integrating the Segment Anything Model 2 (SAM2) for organ-aware semantic representation, specialized convolutional neural networks (CNNs) for preserving modality-specific edge and texture details, and Mamba's selective state-space modeling for efficient long- and short-range feature dependencies. Structurally, our dual-resolution framework leverages SAM2's image encoder to capture organ-scale semantics from high-resolution inputs, while a parallel CNNs branch extracts fine-grained local features. The Robust Feature Fusion Network (RFFN) integrates these epresentations, and the Bidirectional Mamba Residual Network (BMRN) models spatial dependencies using spiral scanning and bidirectional state-space dynamics. A three-stage skip fusion decoder enhances edge and texture fidelity. We employ Efficient Low-Rank Adaptation (LoRA+) fine-tuning to enable precise domain specialization while maintaining the foundational capabilities of the pre-trained components. Extensive experimental validation on the SynthRAD2023 and BraTS2019 datasets demonstrates that ABS-Mamba outperforms state-of-the-art methods, delivering high-fidelity cross-modal synthesis that preserves anatomical semantics and structural details to enhance diagnostic accuracy in clinical applications. The code is available at https://github.com/gatina-yone/ABS-Mamba
comment: MICCAI 2025(under view)
Hierarchical Sparse Attention Framework for Computationally Efficient Classification of Biological Cells
We present SparseAttnNet, a new hierarchical attention-driven framework for efficient image classification that adaptively selects and processes only the most informative pixels from images. Traditional convolutional neural networks typically process the entire images regardless of information density, leading to computational inefficiency and potential focus on irrelevant features. Our approach leverages a dynamic selection mechanism that uses coarse attention distilled by fine multi-head attention from the downstream layers of the model, allowing the model to identify and extract the most salient k pixels, where k is adaptively learned during training based on loss convergence trends. Once the top-k pixels are selected, the model processes only these pixels, embedding them as words in a language model to capture their semantics, followed by multi-head attention to incorporate global context. For biological cell images, we demonstrate that SparseAttnNet can process approximately 15% of the pixels instead of the full image. Applied to cell classification tasks using white blood cells images from the following modalities: optical path difference (OPD) images from digital holography for stain-free cells, images from motion-sensitive (event) camera from stain-free cells, and brightfield microscopy images of stained cells, For all three imaging modalities, SparseAttnNet achieves competitive accuracy while drastically reducing computational requirements in terms of both parameters and floating-point operations per second, compared to traditional CNNs and Vision Transformers. Since the model focuses on biologically relevant regions, it also offers improved explainability. The adaptive and lightweight nature of SparseAttnNet makes it ideal for deployment in resource-constrained and high-throughput settings, including imaging flow cytometry.
Breast Cancer Classification in Deep Ultraviolet Fluorescence Images Using a Patch-Level Vision Transformer Framework
Breast-conserving surgery (BCS) aims to completely remove malignant lesions while maximizing healthy tissue preservation. Intraoperative margin assessment is essential to achieve a balance between thorough cancer resection and tissue conservation. A deep ultraviolet fluorescence scanning microscope (DUV-FSM) enables rapid acquisition of whole surface images (WSIs) for excised tissue, providing contrast between malignant and normal tissues. However, breast cancer classification with DUV WSIs is challenged by high resolutions and complex histopathological features. This study introduces a DUV WSI classification framework using a patch-level vision transformer (ViT) model, capturing local and global features. Grad-CAM++ saliency weighting highlights relevant spatial regions, enhances result interpretability, and improves diagnostic accuracy for benign and malignant tissue classification. A comprehensive 5-fold cross-validation demonstrates the proposed approach significantly outperforms conventional deep learning methods, achieving a classification accuracy of 98.33%.
Ophora: A Large-Scale Data-Driven Text-Guided Ophthalmic Surgical Video Generation Model
In ophthalmic surgery, developing an AI system capable of interpreting surgical videos and predicting subsequent operations requires numerous ophthalmic surgical videos with high-quality annotations, which are difficult to collect due to privacy concerns and labor consumption. Text-guided video generation (T2V) emerges as a promising solution to overcome this issue by generating ophthalmic surgical videos based on surgeon instructions. In this paper, we present Ophora, a pioneering model that can generate ophthalmic surgical videos following natural language instructions. To construct Ophora, we first propose a Comprehensive Data Curation pipeline to convert narrative ophthalmic surgical videos into a large-scale, high-quality dataset comprising over 160K video-instruction pairs, Ophora-160K. Then, we propose a Progressive Video-Instruction Tuning scheme to transfer rich spatial-temporal knowledge from a T2V model pre-trained on natural video-text datasets for privacy-preserved ophthalmic surgical video generation based on Ophora-160K. Experiments on video quality evaluation via quantitative analysis and ophthalmologist feedback demonstrate that Ophora can generate realistic and reliable ophthalmic surgical videos based on surgeon instructions. We also validate the capability of Ophora for empowering downstream tasks of ophthalmic surgical workflow understanding. Code is available at https://github.com/mar-cry/Ophora.
Towards a physically realistic computationally efficient DVS pixel model
Dynamic Vision Sensor (DVS) event camera models are important tools for predicting camera response, optimizing biases, and generating realistic simulated datasets. Existing DVS models have been useful, but have not demonstrated high realism for challenging HDR scenes combined with adequate computational efficiency for array-level scene simulation. This paper reports progress towards a physically realistic and computationally efficient DVS model based on large-signal differential equations derived from circuit analysis, with parameters fitted from pixel measurements and circuit simulation. These are combined with an efficient stochastic event generation mechanism based on first-passage-time theory, allowing accurate noise generation with timesteps greater than 1000x longer than previous methods
comment: Presented in 2025 International Image Sensor Workshop
Apple's Synthetic Defocus Noise Pattern: Characterization and Forensic Applications
iPhone portrait-mode images contain a distinctive pattern in out-of-focus regions simulating the bokeh effect, which we term Apple's Synthetic Defocus Noise Pattern (SDNP). If overlooked, this pattern can interfere with blind forensic analyses, especially PRNU-based camera source verification, as noted in earlier works. Since Apple's SDNP remains underexplored, we provide a detailed characterization, proposing a method for its precise estimation, modeling its dependence on scene brightness, ISO settings, and other factors. Leveraging this characterization, we explore forensic applications of the SDNP, including traceability of portrait-mode images across iPhone models and iOS versions in open-set scenarios, assessing its robustness under post-processing. Furthermore, we show that masking SDNP-affected regions in PRNU-based camera source verification significantly reduces false positives, overcoming a critical limitation in camera attribution, and improving state-of-the-art techniques.
comment: This paper was submitted to IEEE Transactions on Information Forensics & Security on May, 2025
GAN-based synthetic FDG PET images from T1 brain MRI can serve to improve performance of deep unsupervised anomaly detection models
Background and Objective. Research in the cross-modal medical image translation domain has been very productive over the past few years in tackling the scarce availability of large curated multimodality datasets with the promising performance of GAN-based architectures. However, only a few of these studies assessed task-based related performance of these synthetic data, especially for the training of deep models. Method. We design and compare different GAN-based frameworks for generating synthetic brain [18F]fluorodeoxyglucose (FDG) PET images from T1 weighted MRI data. We first perform standard qualitative and quantitative visual quality evaluation. Then, we explore further impact of using these fake PET data in the training of a deep unsupervised anomaly detection (UAD) model designed to detect subtle epilepsy lesions in T1 MRI and FDG PET images. We introduce novel diagnostic task-oriented quality metrics of the synthetic FDG PET data tailored to our unsupervised detection task, then use these fake data to train a use case UAD model combining a deep representation learning based on siamese autoencoders with a OC-SVM density support estimation model. This model is trained on normal subjects only and allows the detection of any variation from the pattern of the normal population. We compare the detection performance of models trained on 35 paired real MR T1 of normal subjects paired either on 35 true PET images or on 35 synthetic PET images generated from the best performing generative models. Performance analysis is conducted on 17 exams of epilepsy patients undergoing surgery. Results. The best performing GAN-based models allow generating realistic fake PET images of control subject with SSIM and PSNR values around 0.9 and 23.8, respectively and in distribution (ID) with regard to the true control dataset. The best UAD model trained on these synthetic normative PET data allows reaching 74% sensitivity. Conclusion. Our results confirm that GAN-based models are the best suited for MR T1 to FDG PET translation, outperforming transformer or diffusion models. We also demonstrate the diagnostic value of these synthetic data for the training of UAD models and evaluation on clinical exams of epilepsy patients. Our code and the normative image dataset are available.
Multi-Plane Vision Transformer for Hemorrhage Classification Using Axial and Sagittal MRI Data
Identifying brain hemorrhages from magnetic resonance imaging (MRI) is a critical task for healthcare professionals. The diverse nature of MRI acquisitions with varying contrasts and orientation introduce complexity in identifying hemorrhage using neural networks. For acquisitions with varying orientations, traditional methods often involve resampling images to a fixed plane, which can lead to information loss. To address this, we propose a 3D multi-plane vision transformer (MP-ViT) for hemorrhage classification with varying orientation data. It employs two separate transformer encoders for axial and sagittal contrasts, using cross-attention to integrate information across orientations. MP-ViT also includes a modality indication vector to provide missing contrast information to the model. The effectiveness of the proposed model is demonstrated with extensive experiments on real world clinical dataset consists of 10,084 training, 1,289 validation and 1,496 test subjects. MP-ViT achieved substantial improvement in area under the curve (AUC), outperforming the vision transformer (ViT) by 5.5% and CNN-based architectures by 1.8%. These results highlight the potential of MP-ViT in improving performance for hemorrhage detection when different orientation contrasts are needed.
comment: 10 pages
Language-Driven Dual Style Mixing for Single-Domain Generalized Object Detection
Generalizing an object detector trained on a single domain to multiple unseen domains is a challenging task. Existing methods typically introduce image or feature augmentation to diversify the source domain to raise the robustness of the detector. Vision-Language Model (VLM)-based augmentation techniques have been proven to be effective, but they require that the detector's backbone has the same structure as the image encoder of VLM, limiting the detector framework selection. To address this problem, we propose Language-Driven Dual Style Mixing (LDDS) for single-domain generalization, which diversifies the source domain by fully utilizing the semantic information of the VLM. Specifically, we first construct prompts to transfer style semantics embedded in the VLM to an image translation network. This facilitates the generation of style diversified images with explicit semantic information. Then, we propose image-level style mixing between the diversified images and source domain images. This effectively mines the semantic information for image augmentation without relying on specific augmentation selections. Finally, we propose feature-level style mixing in a double-pipeline manner, allowing feature augmentation to be model-agnostic and can work seamlessly with the mainstream detector frameworks, including the one-stage, two-stage, and transformer-based detectors. Extensive experiments demonstrate the effectiveness of our approach across various benchmark datasets, including real to cartoon and normal to adverse weather tasks. The source code and pre-trained models will be publicly available at https://github.com/qinhongda8/LDDS.
comment: The source code and pre-trained models will be publicly available at https://github.com/qinhongda8/LDDS
Metrics that matter: Evaluating image quality metrics for medical image generation
Evaluating generative models for synthetic medical imaging is crucial yet challenging, especially given the high standards of fidelity, anatomical accuracy, and safety required for clinical applications. Standard evaluation of generated images often relies on no-reference image quality metrics when ground truth images are unavailable, but their reliability in this complex domain is not well established. This study comprehensively assesses commonly used no-reference image quality metrics using brain MRI data, including tumour and vascular images, providing a representative exemplar for the field. We systematically evaluate metric sensitivity to a range of challenges, including noise, distribution shifts, and, critically, localised morphological alterations designed to mimic clinically relevant inaccuracies. We then compare these metric scores against model performance on a relevant downstream segmentation task, analysing results across both controlled image perturbations and outputs from different generative model architectures. Our findings reveal significant limitations: many widely-used no-reference image quality metrics correlate poorly with downstream task suitability and exhibit a profound insensitivity to localised anatomical details crucial for clinical validity. Furthermore, these metrics can yield misleading scores regarding distribution shifts, e.g. data memorisation. This reveals the risk of misjudging model readiness, potentially leading to the deployment of flawed tools that could compromise patient safety. We conclude that ensuring generative models are truly fit for clinical purpose requires a multifaceted validation framework, integrating performance on relevant downstream tasks with the cautious interpretation of carefully selected no-reference image quality metrics.
Skull stripping with purely synthetic data
While many skull stripping algorithms have been developed for multi-modal and multi-species cases, there is still a lack of a fundamentally generalizable approach. We present PUMBA(PUrely synthetic Multimodal/species invariant Brain extrAction), a strategy to train a model for brain extraction with no real brain images or labels. Our results show that even without any real images or anatomical priors, the model achieves comparable accuracy in multi-modal, multi-species and pathological cases. This work presents a new direction of research for any generalizable medical image segmentation task.
comment: Oral at ISMRM 2025
Thoughts on Objectives of Sparse and Hierarchical Masked Image Model
Masked image modeling is one of the most poplular objectives of training. Recently, the SparK model has been proposed with superior performance among self-supervised learning models. This paper proposes a new mask pattern for this SparK model, proposing it as the Mesh Mask-ed SparK model. We report the effect of the mask pattern used for image masking in pre-training on performance.
comment: 9 pages, 11 figures
Inter-event Interval Microscopy for Event Cameras
Event cameras, an innovative bio-inspired sensor, differ from traditional cameras by sensing changes in intensity rather than directly perceiving intensity and recording these variations as a continuous stream of "events". The intensity reconstruction from these sparse events has long been a challenging problem. Previous approaches mainly focused on transforming motion-induced events into videos or achieving intensity imaging for static scenes by integrating modulation devices at the event camera acquisition end. In this paper, for the first time, we achieve event-to-intensity conversion using a static event camera for both static and dynamic scenes in fluorescence microscopy. Unlike conventional methods that primarily rely on event integration, the proposed Inter-event Interval Microscopy (IEIM) quantifies the time interval between consecutive events at each pixel. With a fixed threshold in the event camera, the time interval can precisely represent the intensity. At the hardware level, the proposed IEIM integrates a pulse light modulation device within a microscope equipped with an event camera, termed Pulse Modulation-based Event-driven Fluorescence Microscopy. Additionally, we have collected IEIMat dataset under various scenes including high dynamic range and high-speed scenarios. Experimental results on the IEIMat dataset demonstrate that the proposed IEIM achieves superior spatial and temporal resolution, as well as a higher dynamic range, with lower bandwidth compared to other methods. The code and the IEIMat dataset will be made publicly available.
Multimedia
Multi-Domain Audio Question Answering Toward Acoustic Content Reasoning in The DCASE 2025 Challenge
We present Task 5 of the DCASE 2025 Challenge: an Audio Question Answering (AQA) benchmark spanning multiple domains of sound understanding. This task defines three QA subsets (Bioacoustics, Temporal Soundscapes, and Complex QA) to test audio-language models on interactive question-answering over diverse acoustic scenes. We describe the dataset composition (from marine mammal calls to soundscapes and complex real-world clips), the evaluation protocol (top-1 accuracy with answer-shuffling robustness), and baseline systems (Qwen2-Audio-7B, AudioFlamingo 2, Gemini-2-Flash). Preliminary results on the development set are compared, showing strong variation across models and subsets. This challenge aims to advance the audio understanding and reasoning capabilities of audio-language models toward human-level acuity, which are crucial for enabling AI agents to perceive and interact about the world effectively.
comment: Preprint. DCASE 2025 Audio QA Challenge: https://dcase.community/challenge2025/task-audio-question-answering
EmoVLM-KD: Fusing Distilled Expertise with Vision-Language Models for Visual Emotion Analysis CVPR 2025
Visual emotion analysis, which has gained considerable attention in the field of affective computing, aims to predict the dominant emotions conveyed by an image. Despite advancements in visual emotion analysis with the emergence of vision-language models, we observed that instruction-tuned vision-language models and conventional vision models exhibit complementary strengths in visual emotion analysis, as vision-language models excel in certain cases, whereas vision models perform better in others. This finding highlights the need to integrate these capabilities to enhance the performance of visual emotion analysis. To bridge this gap, we propose EmoVLM-KD, an instruction-tuned vision-language model augmented with a lightweight module distilled from conventional vision models. Instead of deploying both models simultaneously, which incurs high computational costs, we transfer the predictive patterns of a conventional vision model into the vision-language model using a knowledge distillation framework. Our approach first fine-tunes a vision-language model on emotion-specific instruction data and then attaches a distilled module to its visual encoder while keeping the vision-language model frozen. Predictions from the vision language model and the distillation module are effectively balanced by a gate module, which subsequently generates the final outcome. Extensive experiments show that EmoVLM-KD achieves state-of-the-art performance on multiple visual emotion analysis benchmark datasets, outperforming the existing methods while maintaining computational efficiency. The code is available in https://github.com/sange1104/EmoVLM-KD.
comment: Accepted at Workshop and Competition on Affective & Behavior Analysis in-the-wild (ABAW), CVPR 2025, 10 pages, 4 figures, 4 tables
SciCom Wiki: Fact-Checking and FAIR Knowledge Distribution for Scientific Videos and Podcasts
Democratic societies need accessible, reliable information. Videos and Podcasts have established themselves as the medium of choice for civic dissemination, but also as carriers of misinformation. The emerging Science Communication Knowledge Infrastructure (SciCom KI) curating non-textual media is still fragmented and not adequately equipped to scale against the content flood. Our work sets out to support the SciCom KI with a central, collaborative platform, the SciCom Wiki, to facilitate FAIR (findable, accessible, interoperable, reusable) media representation and the fact-checking of their content, particularly for videos and podcasts. Building an open-source service system centered around Wikibase, we survey requirements from 53 stakeholders, refine these in 11 interviews, and evaluate our prototype based on these requirements with another 14 participants. To address the most requested feature, fact-checking, we developed a neurosymbolic computational fact-checking approach, converting heterogenous media into knowledge graphs. This increases machine-readability and allows comparing statements against equally represented ground-truth. Our computational fact-checking tool was iteratively evaluated through 10 expert interviews, a public user survey with 43 participants verified the necessity and usability of our tool. Overall, our findings identified several needs to systematically support the SciCom KI. The SciCom Wiki, as a FAIR digital library complementing our neurosymbolic computational fact-checking framework, was found suitable to address the raised requirements. Further, we identified that the SciCom KI is severely underdeveloped regarding FAIR knowledge and related systems facilitating its collaborative creation and curation. Our system can provide a central knowledge node, yet a collaborative effort is required to scale against the imminent (mis-)information flood.
comment: 18 pages, 10 figures, submitted to TPDL 2025
Computation and Language
A Comparative Analysis of Static Word Embeddings for Hungarian
This paper presents a comprehensive analysis of various static word embeddings for Hungarian, including traditional models such as Word2Vec, FastText, as well as static embeddings derived from BERT-based models using different extraction methods. We evaluate these embeddings on both intrinsic and extrinsic tasks to provide a holistic view of their performance. For intrinsic evaluation, we employ a word analogy task, which assesses the embeddings ability to capture semantic and syntactic relationships. Our results indicate that traditional static embeddings, particularly FastText, excel in this task, achieving high accuracy and mean reciprocal rank (MRR) scores. Among the BERT-based models, the X2Static method for extracting static embeddings demonstrates superior performance compared to decontextualized and aggregate methods, approaching the effectiveness of traditional static embeddings. For extrinsic evaluation, we utilize a bidirectional LSTM model to perform Named Entity Recognition (NER) and Part-of-Speech (POS) tagging tasks. The results reveal that embeddings derived from dynamic models, especially those extracted using the X2Static method, outperform purely static embeddings. Notably, ELMo embeddings achieve the highest accuracy in both NER and POS tagging tasks, underscoring the benefits of contextualized representations even when used in a static form. Our findings highlight the continued relevance of static word embeddings in NLP applications and the potential of advanced extraction methods to enhance the utility of BERT-based models. This piece of research contributes to the understanding of embedding performance in the Hungarian language and provides valuable insights for future developments in the field. The training scripts, evaluation codes, restricted vocabulary, and extracted embeddings will be made publicly available to support further research and reproducibility.
Learning Dynamics in Continual Pre-Training for Large Language Models ICML2025
Continual Pre-Training (CPT) has become a popular and effective method to apply strong foundation models to specific downstream tasks. In this work, we explore the learning dynamics throughout the CPT process for large language models. We specifically focus on how general and downstream domain performance evolves at each training step, with domain performance measured via validation losses. We have observed that the CPT loss curve fundamentally characterizes the transition from one curve to another hidden curve, and could be described by decoupling the effects of distribution shift and learning rate annealing. We derive a CPT scaling law that combines the two factors, enabling the prediction of loss at any (continual) training steps and across learning rate schedules (LRS) in CPT. Our formulation presents a comprehensive understanding of several critical factors in CPT, including loss potential, peak learning rate, training steps, replay ratio, etc. Moreover, our approach can be adapted to customize training hyper-parameters to different CPT goals such as balancing general and domain-specific performance. Extensive experiments demonstrate that our scaling law holds across various CPT datasets and training hyper-parameters.
comment: Accepted to ICML2025 (spotlight)
Learning from Peers in Reasoning Models
Large Reasoning Models (LRMs) have the ability to self-correct even when they make mistakes in their reasoning paths. However, our study reveals that when the reasoning process starts with a short but poor beginning, it becomes difficult for the model to recover. We refer to this phenomenon as the "Prefix Dominance Trap". Inspired by psychological findings that peer interaction can promote self-correction without negatively impacting already accurate individuals, we propose **Learning from Peers** (LeaP) to address this phenomenon. Specifically, every tokens, each reasoning path summarizes its intermediate reasoning and shares it with others through a routing mechanism, enabling paths to incorporate peer insights during inference. However, we observe that smaller models sometimes fail to follow summarization and reflection instructions effectively. To address this, we fine-tune them into our **LeaP-T** model series. Experiments on AIME 2024, AIME 2025, AIMO 2025, and GPQA Diamond show that LeaP provides substantial improvements. For instance, QwQ-32B with LeaP achieves nearly 5 absolute points higher than the baseline on average, and surpasses DeepSeek-R1-671B on three math benchmarks with an average gain of 3.3 points. Notably, our fine-tuned LeaP-T-7B matches the performance of DeepSeek-R1-Distill-Qwen-14B on AIME 2024. In-depth analysis reveals LeaP's robust error correction by timely peer insights, showing strong error tolerance and handling varied task difficulty. LeaP marks a milestone by enabling LRMs to collaborate during reasoning. Our code, datasets, and models are available at https://learning-from-peers.github.io/ .
comment: 29 pages, 32 figures
Domain Regeneration: How well do LLMs match syntactic properties of text domains?
Recent improvement in large language model performance have, in all likelihood, been accompanied by improvement in how well they can approximate the distribution of their training data. In this work, we explore the following question: which properties of text domains do LLMs faithfully approximate, and how well do they do so? Applying observational approaches familiar from corpus linguistics, we prompt a commonly used, opensource LLM to regenerate text from two domains of permissively licensed English text which are often contained in LLM training data -- Wikipedia and news text. This regeneration paradigm allows us to investigate whether LLMs can faithfully match the original human text domains in a fairly semantically-controlled setting. We investigate varying levels of syntactic abstraction, from more simple properties like sentence length, and article readability, to more complex and higher order properties such as dependency tag distribution, parse depth, and parse complexity. We find that the majority of the regenerated distributions show a shifted mean, a lower standard deviation, and a reduction of the long tail, as compared to the human originals.
Must Read: A Systematic Survey of Computational Persuasion
Persuasion is a fundamental aspect of communication, influencing decision-making across diverse contexts, from everyday conversations to high-stakes scenarios such as politics, marketing, and law. The rise of conversational AI systems has significantly expanded the scope of persuasion, introducing both opportunities and risks. AI-driven persuasion can be leveraged for beneficial applications, but also poses threats through manipulation and unethical influence. Moreover, AI systems are not only persuaders, but also susceptible to persuasion, making them vulnerable to adversarial attacks and bias reinforcement. Despite rapid advancements in AI-generated persuasive content, our understanding of what makes persuasion effective remains limited due to its inherently subjective and context-dependent nature. In this survey, we provide a comprehensive overview of computational persuasion, structured around three key perspectives: (1) AI as a Persuader, which explores AI-generated persuasive content and its applications; (2) AI as a Persuadee, which examines AI's susceptibility to influence and manipulation; and (3) AI as a Persuasion Judge, which analyzes AI's role in evaluating persuasive strategies, detecting manipulation, and ensuring ethical persuasion. We introduce a taxonomy for computational persuasion research and discuss key challenges, including evaluating persuasiveness, mitigating manipulative persuasion, and developing responsible AI-driven persuasive systems. Our survey outlines future research directions to enhance the safety, fairness, and effectiveness of AI-powered persuasion while addressing the risks posed by increasingly capable language models.
Enhancing Code Generation via Bidirectional Comment-Level Mutual Grounding ICSE 2025
Large Language Models (LLMs) have demonstrated unprecedented capability in code generation. However, LLM-generated code is still plagued with a wide range of functional errors, especially for complex programming tasks that LLMs have not seen before. Recent studies have shown that developers often struggle with inspecting and fixing incorrect code generated by LLMs, diminishing their productivity and trust in LLM-based code generation. Inspired by the mutual grounding theory in communication, we propose an interactive approach that leverages code comments as a medium for developers and LLMs to establish a shared understanding. Our approach facilitates iterative grounding by interleaving code generation, inline comment generation, and contextualized user feedback through editable comments to align generated code with developer intent. We evaluated our approach on two popular benchmarks and demonstrated that our approach significantly improved multiple state-of-the-art LLMs, e.g., 17.1% pass@1 improvement for code-davinci-002 on HumanEval. Furthermore, we conducted a user study with 12 participants in comparison to two baselines: (1) interacting with GitHub Copilot, and (2) interacting with a multi-step code generation paradigm called Multi-Turn Program Synthesis. Participants completed the given programming tasks 16.7% faster and with 10.5% improvement in task success rate when using our approach. Both results show that interactively refining code comments enables the collaborative establishment of mutual grounding, leading to more accurate code generation and higher developer confidence.
comment: Accepted to ICSE 2025
Spoken Language Understanding on Unseen Tasks With In-Context Learning
Spoken language understanding (SLU) tasks involve diverse skills that probe the information extraction, classification and/or generation capabilities of models. In this setting, task-specific training data may not always be available. While traditional task-specific SLU models are unable to cater to such requirements, the speech-text large language models (LLMs) offer a promising alternative with emergent abilities. However, out of-the-box, our evaluations indicate that the zero/few-shot performance of prominent open-source speech-text LLMs on SLU tasks are not up to the mark. In this paper, we introduce a novel approach to robust task-agnostic fine-tuning using randomized class labels. With this proposed fine-tuning, we illustrate that the performance of the speech-text LLMs on an unseen task is significantly improved over standard approaches. Critically, the proposed approach avoids the requirement of task-specific data annotations for enabling new tasks in speech-text LLMs.
Codifying Character Logic in Role-Playing
This paper introduces Codified Profiles for role-playing, a novel approach that represents character logic as structured, executable functions for behavioral decision-making. Each profile defines a set of functions parse_by_scene(scene) that outputs a list of logic-grounded assertions triggered_statements, using both explicit control structures (e.g., if-then-else) and condition checks like check_condition(scene, question), where each question is a semantically meaningful prompt about the scene (e.g., "Is the character in danger?") discriminated by the role-playing LLM as true, false, or unknown. This explicit representation offers three key advantages over traditional prompt-based profiles, which append character descriptions directly into text prompts: (1) Persistence, by enforcing complete and consistent execution of character logic, rather than relying on the model's implicit reasoning; (2) Updatability, through systematic inspection and revision of behavioral logic, which is difficult to track or debug in prompt-only approaches; (3) Controllable Randomness, by supporting stochastic behavior directly within the logic, enabling fine-grained variability that prompting alone struggles to achieve. To validate these advantages, we introduce a new benchmark constructed from 83 characters and 5,141 scenes curated from Fandom, using NLI-based scoring to compare character responses against ground-truth actions. Our experiments demonstrate the significant benefits of codified profiles in improving persistence, updatability, and behavioral diversity. Notably, by offloading a significant portion of reasoning to preprocessing, codified profiles enable even 1B-parameter models to perform high-quality role-playing, providing a scalable and efficient foundation for local deployment of role-play agents.
Through the Looking Glass: Common Sense Consistency Evaluation of Weird Images
Measuring how real images look is a complex task in artificial intelligence research. For example, an image of a boy with a vacuum cleaner in a desert violates common sense. We introduce a novel method, which we call Through the Looking Glass (TLG), to assess image common sense consistency using Large Vision-Language Models (LVLMs) and Transformer-based encoder. By leveraging LVLMs to extract atomic facts from these images, we obtain a mix of accurate facts. We proceed by fine-tuning a compact attention-pooling classifier over encoded atomic facts. Our TLG has achieved a new state-of-the-art performance on the WHOOPS! and WEIRD datasets while leveraging a compact fine-tuning component.
OnPrem.LLM: A Privacy-Conscious Document Intelligence Toolkit
We present OnPrem.LLM, a Python-based toolkit for applying large language models (LLMs) to sensitive, non-public data in offline or restricted environments. The system is designed for privacy-preserving use cases and provides prebuilt pipelines for document processing and storage, retrieval-augmented generation (RAG), information extraction, summarization, classification, and prompt/output processing with minimal configuration. OnPrem.LLM supports multiple LLM backends -- including llama.cpp, Ollama, vLLM, and Hugging Face Transformers -- with quantized model support, GPU acceleration, and seamless backend switching. Although designed for fully local execution, OnPrem.LLM also supports integration with a wide range of cloud LLM providers when permitted, enabling hybrid deployments that balance performance with data control. A no-code web interface extends accessibility to non-technical users.
comment: 6 pages
Benchmarking Retrieval-Augmented Generation for Chemistry
Retrieval-augmented generation (RAG) has emerged as a powerful framework for enhancing large language models (LLMs) with external knowledge, particularly in scientific domains that demand specialized and dynamic information. Despite its promise, the application of RAG in the chemistry domain remains underexplored, primarily due to the lack of high-quality, domain-specific corpora and well-curated evaluation benchmarks. In this work, we introduce ChemRAG-Bench, a comprehensive benchmark designed to systematically assess the effectiveness of RAG across a diverse set of chemistry-related tasks. The accompanying chemistry corpus integrates heterogeneous knowledge sources, including scientific literature, the PubChem database, PubMed abstracts, textbooks, and Wikipedia entries. In addition, we present ChemRAG-Toolkit, a modular and extensible RAG toolkit that supports five retrieval algorithms and eight LLMs. Using ChemRAG-Toolkit, we demonstrate that RAG yields a substantial performance gain -- achieving an average relative improvement of 17.4% over direct inference methods. We further conduct in-depth analyses on retriever architectures, corpus selection, and the number of retrieved passages, culminating in practical recommendations to guide future research and deployment of RAG systems in the chemistry domain. The code and data is available at https://chemrag.github.io.
Using Information Theory to Characterize Prosodic Typology: The Case of Tone, Pitch-Accent and Stress-Accent
This paper argues that the relationship between lexical identity and prosody -- one well-studied parameter of linguistic variation -- can be characterized using information theory. We predict that languages that use prosody to make lexical distinctions should exhibit a higher mutual information between word identity and prosody, compared to languages that don't. We test this hypothesis in the domain of pitch, which is used to make lexical distinctions in tonal languages, like Cantonese. We use a dataset of speakers reading sentences aloud in ten languages across five language families to estimate the mutual information between the text and their pitch curves. We find that, across languages, pitch curves display similar amounts of entropy. However, these curves are easier to predict given their associated text in the tonal languages, compared to pitch- and stress-accent languages, and thus the mutual information is higher in these languages, supporting our hypothesis. Our results support perspectives that view linguistic typology as gradient, rather than categorical.
JobHop: A Large-Scale Dataset of Career Trajectories
Understanding labor market dynamics is essential for policymakers, employers, and job seekers. However, comprehensive datasets that capture real-world career trajectories are scarce. In this paper, we introduce JobHop, a large-scale public dataset derived from anonymized resumes provided by VDAB, the public employment service in Flanders, Belgium. Utilizing Large Language Models (LLMs), we process unstructured resume data to extract structured career information, which is then mapped to standardized ESCO occupation codes using a multi-label classification model. This results in a rich dataset of over 2.3 million work experiences, extracted from and grouped into more than 391,000 user resumes and mapped to standardized ESCO occupation codes, offering valuable insights into real-world occupational transitions. This dataset enables diverse applications, such as analyzing labor market mobility, job stability, and the effects of career breaks on occupational transitions. It also supports career path prediction and other data-driven decision-making processes. To illustrate its potential, we explore key dataset characteristics, including job distributions, career breaks, and job transitions, demonstrating its value for advancing labor market research.
Chronocept: Instilling a Sense of Time in Machines
Human cognition is deeply intertwined with a sense of time, known as Chronoception. This sense allows us to judge how long facts remain valid and when knowledge becomes outdated. Despite progress in vision, language, and motor control, AI still struggles to reason about temporal validity. We introduce Chronocept, the first benchmark to model temporal validity as a continuous probability distribution over time. Using skew-normal curves fitted along semantically decomposed temporal axes, Chronocept captures nuanced patterns of emergence, decay, and peak relevance. It includes two datasets: Benchmark I (atomic facts) and Benchmark II (multi-sentence passages). Annotations show strong inter-annotator agreement (84% and 89%). Our baselines predict curve parameters - location, scale, and skewness - enabling interpretable, generalizable learning and outperforming classification-based approaches. Chronocept fills a foundational gap in AI's temporal reasoning, supporting applications in knowledge grounding, fact-checking, retrieval-augmented generation (RAG), and proactive agents. Code and data are publicly available.
comment: 20 pages, 8 figures, 18 tables
Concept-Level Explainability for Auditing & Steering LLM Responses
As large language models (LLMs) become widely deployed, concerns about their safety and alignment grow. An approach to steer LLM behavior, such as mitigating biases or defending against jailbreaks, is to identify which parts of a prompt influence specific aspects of the model's output. Token-level attribution methods offer a promising solution, but still struggle in text generation, explaining the presence of each token in the output separately, rather than the underlying semantics of the entire LLM response. We introduce ConceptX, a model-agnostic, concept-level explainability method that identifies the concepts, i.e., semantically rich tokens in the prompt, and assigns them importance based on the outputs' semantic similarity. Unlike current token-level methods, ConceptX also offers to preserve context integrity through in-place token replacements and supports flexible explanation goals, e.g., gender bias. ConceptX enables both auditing, by uncovering sources of bias, and steering, by modifying prompts to shift the sentiment or reduce the harmfulness of LLM responses, without requiring retraining. Across three LLMs, ConceptX outperforms token-level methods like TokenSHAP in both faithfulness and human alignment. Steering tasks boost sentiment shift by 0.252 versus 0.131 for random edits and lower attack success rates from 0.463 to 0.242, outperforming attribution and paraphrasing baselines. While prompt engineering and self-explaining methods sometimes yield safer responses, ConceptX offers a transparent and faithful alternative for improving LLM safety and alignment, demonstrating the practical value of attribution-based explainability in guiding LLM behavior.
comment: 9 pages, 7 figures, Submission to Neurips 2025
MiMo: Unlocking the Reasoning Potential of Language Model -- From Pretraining to Posttraining
We present MiMo-7B, a large language model born for reasoning tasks, with optimization across both pre-training and post-training stages. During pre-training, we enhance the data preprocessing pipeline and employ a three-stage data mixing strategy to strengthen the base model's reasoning potential. MiMo-7B-Base is pre-trained on 25 trillion tokens, with additional Multi-Token Prediction objective for enhanced performance and accelerated inference speed. During post-training, we curate a dataset of 130K verifiable mathematics and programming problems for reinforcement learning, integrating a test-difficulty-driven code-reward scheme to alleviate sparse-reward issues and employing strategic data resampling to stabilize training. Extensive evaluations show that MiMo-7B-Base possesses exceptional reasoning potential, outperforming even much larger 32B models. The final RL-tuned model, MiMo-7B-RL, achieves superior performance on mathematics, code and general reasoning tasks, surpassing the performance of OpenAI o1-mini. The model checkpoints are available at https://github.com/xiaomimimo/MiMo.
Characterizing the Investigative Methods of Fictional Detectives with Large Language Models
Detective fiction, a genre defined by its complex narrative structures and character-driven storytelling, presents unique challenges for computational narratology, a research field focused on integrating literary theory into automated narrative generation. While traditional literary studies have offered deep insights into the methods and archetypes of fictional detectives, these analyses often focus on a limited number of characters and lack the scalability needed for the extraction of unique traits that can be used to guide narrative generation methods. In this paper, we present an AI-driven approach for systematically characterizing the investigative methods of fictional detectives. Our multi-phase workflow explores the capabilities of 15 Large Language Models (LLMs) to extract, synthesize, and validate distinctive investigative traits of fictional detectives. This approach was tested on a diverse set of seven iconic detectives - Hercule Poirot, Sherlock Holmes, William Murdoch, Columbo, Father Brown, Miss Marple, and Auguste Dupin - capturing the distinctive investigative styles that define each character. The identified traits were validated against existing literary analyses and further tested in a reverse identification phase, achieving an overall accuracy of 91.43%, demonstrating the method's effectiveness in capturing the distinctive investigative approaches of each detective. This work contributes to the broader field of computational narratology by providing a scalable framework for character analysis, with potential applications in AI-driven interactive storytelling and automated narrative generation.
Reinforced Internal-External Knowledge Synergistic Reasoning for Efficient Adaptive Search Agent
Retrieval-augmented generation (RAG) is a common strategy to reduce hallucinations in Large Language Models (LLMs). While reinforcement learning (RL) can enable LLMs to act as search agents by activating retrieval capabilities, existing ones often underutilize their internal knowledge. This can lead to redundant retrievals, potential harmful knowledge conflicts, and increased inference latency. To address these limitations, an efficient and adaptive search agent capable of discerning optimal retrieval timing and synergistically integrating parametric (internal) and retrieved (external) knowledge is in urgent need. This paper introduces the Reinforced Internal-External Knowledge Synergistic Reasoning Agent (IKEA), which could indentify its own knowledge boundary and prioritize the utilization of internal knowledge, resorting to external search only when internal knowledge is deemed insufficient. This is achieved using a novel knowledge-boundary aware reward function and a knowledge-boundary aware training dataset. These are designed for internal-external knowledge synergy oriented RL, incentivizing the model to deliver accurate answers, minimize unnecessary retrievals, and encourage appropriate external searches when its own knowledge is lacking. Evaluations across multiple knowledge reasoning tasks demonstrate that IKEA significantly outperforms baseline methods, reduces retrieval frequency significantly, and exhibits robust generalization capabilities.
A Multi-Dimensional Constraint Framework for Evaluating and Improving Instruction Following in Large Language Models
Instruction following evaluates large language models (LLMs) on their ability to generate outputs that adhere to user-defined constraints. However, existing benchmarks often rely on templated constraint prompts, which lack the diversity of real-world usage and limit fine-grained performance assessment. To fill this gap, we propose a multi-dimensional constraint framework encompassing three constraint patterns, four constraint categories, and four difficulty levels. Building on this framework, we develop an automated instruction generation pipeline that performs constraint expansion, conflict detection, and instruction rewriting, yielding 1,200 code-verifiable instruction-following test samples. We evaluate 19 LLMs across seven model families and uncover substantial variation in performance across constraint forms. For instance, average performance drops from 77.67% at Level I to 32.96% at Level IV. Furthermore, we demonstrate the utility of our approach by using it to generate data for reinforcement learning, achieving substantial gains in instruction following without degrading general performance. In-depth analysis indicates that these gains stem primarily from modifications in the model's attention modules parameters, which enhance constraint recognition and adherence. Code and data are available in https://github.com/Junjie-Ye/MulDimIF.
Direct Density Ratio Optimization: A Statistically Consistent Approach to Aligning Large Language Models
Aligning large language models (LLMs) with human preferences is crucial for safe deployment, yet existing methods assume specific preference models like Bradley-Terry model. This assumption leads to statistical inconsistency, where more data doesn't guarantee convergence to true human preferences. To address this critical gap, we introduce a novel alignment method Direct Density Ratio Optimization (DDRO). DDRO directly estimates the density ratio between preferred and unpreferred output distributions, circumventing the need for explicit human preference modeling. We theoretically prove that DDRO is statistically consistent, ensuring convergence to the true preferred distribution as the data size grows, regardless of the underlying preference structure. Experiments demonstrate that DDRO achieves superior performance compared to existing methods on many major benchmarks. DDRO unlocks the potential for truly data-driven alignment, paving the way for more reliable and human-aligned LLMs.
SEReDeEP: Hallucination Detection in Retrieval-Augmented Models via Semantic Entropy and Context-Parameter Fusion
Retrieval-Augmented Generation (RAG) models frequently encounter hallucination phenomena when integrating external information with internal parametric knowledge. Empirical studies demonstrate that the disequilibrium between external contextual information and internal parametric knowledge constitutes a primary factor in hallucination generation. Existing hallucination detection methodologies predominantly emphasize either the external or internal mechanism in isolation, thereby overlooking their synergistic effects. The recently proposed ReDeEP framework decouples these dual mechanisms, identifying two critical contributors to hallucinations: excessive reliance on parametric knowledge encoded in feed-forward networks (FFN) and insufficient utilization of external information by attention mechanisms (particularly copy heads). ReDeEP quantitatively assesses these factors to detect hallucinations and dynamically modulates the contributions of FFNs and copy heads to attenuate their occurrence. Nevertheless, ReDeEP and numerous other hallucination detection approaches have been employed at logit-level uncertainty estimation or language-level self-consistency evaluation, inadequately address the semantic dimensions of model responses, resulting in inconsistent hallucination assessments in RAG implementations. Building upon ReDeEP's foundation, this paper introduces SEReDeEP, which enhances computational processes through semantic entropy captured via trained linear probes, thereby achieving hallucination assessments that more accurately reflect ground truth evaluations.
ToolACE-DEV: Self-Improving Tool Learning via Decomposition and EVolution
The tool-using capability of large language models (LLMs) enables them to access up-to-date external information and handle complex tasks. Current approaches to enhancing this capability primarily rely on distilling advanced models by data synthesis. However, this method incurs significant costs associated with advanced model usage and often results in data compatibility issues, led by the high discrepancy in the knowledge scope between the advanced model and the target model. To address these challenges, we propose ToolACE-DEV, a self-improving framework for tool learning. First, we decompose the tool-learning objective into sub-tasks that enhance basic tool-making and tool-using abilities. Then, we introduce a self-evolving paradigm that allows lightweight models to self-improve, reducing reliance on advanced LLMs. Extensive experiments validate the effectiveness of our approach across models of varying scales and architectures.
Translating the Grievance Dictionary: a psychometric evaluation of Dutch, German, and Italian versions
This paper introduces and evaluates three translations of the Grievance Dictionary, a psycholinguistic dictionary for the analysis of violent, threatening or grievance-fuelled texts. Considering the relevance of these themes in languages beyond English, we translated the Grievance Dictionary to Dutch, German, and Italian. We describe the process of automated translation supplemented by human annotation. Psychometric analyses are performed, including internal reliability of dictionary categories and correlations with the LIWC dictionary. The Dutch and German translations perform similarly to the original English version, whereas the Italian dictionary shows low reliability for some categories. Finally, we make suggestions for further validation and application of the dictionary, as well as for future dictionary translations following a similar approach.
A Survey on Collaborative Mechanisms Between Large and Small Language Models
Large Language Models (LLMs) deliver powerful AI capabilities but face deployment challenges due to high resource costs and latency, whereas Small Language Models (SLMs) offer efficiency and deployability at the cost of reduced performance. Collaboration between LLMs and SLMs emerges as a crucial paradigm to synergistically balance these trade-offs, enabling advanced AI applications, especially on resource-constrained edge devices. This survey provides a comprehensive overview of LLM-SLM collaboration, detailing various interaction mechanisms (pipeline, routing, auxiliary, distillation, fusion), key enabling technologies, and diverse application scenarios driven by on-device needs like low latency, privacy, personalization, and offline operation. While highlighting the significant potential for creating more efficient, adaptable, and accessible AI, we also discuss persistent challenges including system overhead, inter-model consistency, robust task allocation, evaluation complexity, and security/privacy concerns. Future directions point towards more intelligent adaptive frameworks, deeper model fusion, and expansion into multimodal and embodied AI, positioning LLM-SLM collaboration as a key driver for the next generation of practical and ubiquitous artificial intelligence.
Matching Tasks with Industry Groups for Augmenting Commonsense Knowledge
Commonsense knowledge bases (KB) are a source of specialized knowledge that is widely used to improve machine learning applications. However, even for a large KB such as ConceptNet, capturing explicit knowledge from each industry domain is challenging. For example, only a few samples of general {\em tasks} performed by various industries are available in ConceptNet. Here, a task is a well-defined knowledge-based volitional action to achieve a particular goal. In this paper, we aim to fill this gap and present a weakly-supervised framework to augment commonsense KB with tasks carried out by various industry groups (IG). We attempt to {\em match} each task with one or more suitable IGs by training a neural model to learn task-IG affinity and apply clustering to select the top-k tasks per IG. We extract a total of 2339 triples of the form $\langle IG, is~capable~of, task \rangle$ from two publicly available news datasets for 24 IGs with the precision of 0.86. This validates the reliability of the extracted task-IG pairs that can be directly added to existing KBs.
Comparative sentiment analysis of public perception: Monkeypox vs. COVID-19 behavioral insights
The emergence of global health crises, such as COVID-19 and Monkeypox (mpox), has underscored the importance of understanding public sentiment to inform effective public health strategies. This study conducts a comparative sentiment analysis of public perceptions surrounding COVID-19 and mpox by leveraging extensive datasets of 147,475 and 106,638 tweets, respectively. Advanced machine learning models, including Logistic Regression, Naive Bayes, RoBERTa, DistilRoBERTa and XLNet, were applied to perform sentiment classification, with results indicating key trends in public emotion and discourse. The analysis highlights significant differences in public sentiment driven by disease characteristics, media representation, and pandemic fatigue. Through the lens of sentiment polarity and thematic trends, this study offers valuable insights into tailoring public health messaging, mitigating misinformation, and fostering trust during concurrent health crises. The findings contribute to advancing sentiment analysis applications in public health informatics, setting the groundwork for enhanced real-time monitoring and multilingual analysis in future research.
ViMRHP: A Vietnamese Benchmark Dataset for Multimodal Review Helpfulness Prediction via Human-AI Collaborative Annotation
Multimodal Review Helpfulness Prediction (MRHP) is an essential task in recommender systems, particularly in E-commerce platforms. Determining the helpfulness of user-generated reviews enhances user experience and improves consumer decision-making. However, existing datasets focus predominantly on English and Indonesian, resulting in a lack of linguistic diversity, especially for low-resource languages such as Vietnamese. In this paper, we introduce ViMRHP (Vietnamese Multimodal Review Helpfulness Prediction), a large-scale benchmark dataset for MRHP task in Vietnamese. This dataset covers four domains, including 2K products with 46K reviews. Meanwhile, a large-scale dataset requires considerable time and cost. To optimize the annotation process, we leverage AI to assist annotators in constructing the ViMRHP dataset. With AI assistance, annotation time is reduced (90 to 120 seconds per task down to 20 to 40 seconds per task) while maintaining data quality and lowering overall costs by approximately 65%. However, AI-generated annotations still have limitations in complex annotation tasks, which we further examine through a detailed performance analysis. In our experiment on ViMRHP, we evaluate baseline models on human-verified and AI-generated annotations to assess their quality differences. The ViMRHP dataset is publicly available at https://github.com/trng28/ViMRHP
comment: Accepted at NLDB 2025
Computational Fact-Checking of Online Discourse: Scoring scientific accuracy in climate change related news articles
Democratic societies need reliable information. Misinformation in popular media such as news articles or videos threatens to impair civic discourse. Citizens are, unfortunately, not equipped to verify this content flood consumed daily at increasing rates. This work aims to semi-automatically quantify scientific accuracy of online media. By semantifying media of unknown veracity, their statements can be compared against equally processed trusted sources. We implemented a workflow using LLM-based statement extraction and knowledge graph analysis. Our neurosymbolic system was able to evidently streamline state-of-the-art veracity quantification. Evaluated via expert interviews and a user survey, the tool provides a beneficial veracity indication. This indicator, however, is unable to annotate public media at the required granularity and scale. Further work towards a FAIR (Findable, Accessible, Interoperable, Reusable) ground truth and complementary metrics are required to scientifically support civic discourse.
comment: 4 pages, 4 figures, submitted to ACM Web Conference 2025
Multi-Domain Audio Question Answering Toward Acoustic Content Reasoning in The DCASE 2025 Challenge
We present Task 5 of the DCASE 2025 Challenge: an Audio Question Answering (AQA) benchmark spanning multiple domains of sound understanding. This task defines three QA subsets (Bioacoustics, Temporal Soundscapes, and Complex QA) to test audio-language models on interactive question-answering over diverse acoustic scenes. We describe the dataset composition (from marine mammal calls to soundscapes and complex real-world clips), the evaluation protocol (top-1 accuracy with answer-shuffling robustness), and baseline systems (Qwen2-Audio-7B, AudioFlamingo 2, Gemini-2-Flash). Preliminary results on the development set are compared, showing strong variation across models and subsets. This challenge aims to advance the audio understanding and reasoning capabilities of audio-language models toward human-level acuity, which are crucial for enabling AI agents to perceive and interact about the world effectively.
comment: Preprint. DCASE 2025 Audio QA Challenge: https://dcase.community/challenge2025/task-audio-question-answering
QUPID: Quantified Understanding for Enhanced Performance, Insights, and Decisions in Korean Search Engines
Large language models (LLMs) have been widely used for relevance assessment in information retrieval. However, our study demonstrates that combining two distinct small language models (SLMs) with different architectures can outperform LLMs in this task. Our approach -- QUPID -- integrates a generative SLM with an embedding-based SLM, achieving higher relevance judgment accuracy while reducing computational costs compared to state-of-the-art LLM solutions. This computational efficiency makes QUPID highly scalable for real-world search systems processing millions of queries daily. In experiments across diverse document types, our method demonstrated consistent performance improvements (Cohen's Kappa of 0.646 versus 0.387 for leading LLMs) while offering 60x faster inference times. Furthermore, when integrated into production search pipelines, QUPID improved nDCG@5 scores by 1.9%. These findings underscore how architectural diversity in model combinations can significantly enhance both search relevance and operational efficiency in information retrieval systems.
Towards Multi-Agent Reasoning Systems for Collaborative Expertise Delegation: An Exploratory Design Study
Designing effective collaboration structure for multi-agent LLM systems to enhance collective reasoning is crucial yet remains under-explored. In this paper, we systematically investigate how collaborative reasoning performance is affected by three key design dimensions: (1) Expertise-Domain Alignment, (2) Collaboration Paradigm (structured workflow vs. diversity-driven integration), and (3) System Scale. Our findings reveal that expertise alignment benefits are highly domain-contingent, proving most effective for contextual reasoning tasks. Furthermore, collaboration focused on integrating diverse knowledge consistently outperforms rigid task decomposition. Finally, we empirically explore the impact of scaling the multi-agent system with expertise specialization and study the computational trade off, highlighting the need for more efficient communication protocol design. This work provides concrete guidelines for configuring specialized multi-agent system and identifies critical architectural trade-offs and bottlenecks for scalable multi-agent reasoning. The code will be made available upon acceptance.
comment: 18 pages
AttentionInfluence: Adopting Attention Head Influence for Weak-to-Strong Pretraining Data Selection
Recently, there has been growing interest in collecting reasoning-intensive pretraining data to improve LLMs' complex reasoning ability. Prior approaches typically rely on supervised classifiers to identify such data, which requires labeling by humans or LLMs, often introducing domain-specific biases. Due to the attention heads being crucial to in-context reasoning, we propose AttentionInfluence, a simple yet effective, training-free method without supervision signal. Our approach enables a small pretrained language model to act as a strong data selector through a simple attention head masking operation. Specifically, we identify retrieval heads and compute the loss difference when masking these heads. We apply AttentionInfluence to a 1.3B-parameter dense model to conduct data selection on the SmolLM corpus of 241B tokens, and mix the SmolLM corpus with the selected subset comprising 73B tokens to pretrain a 7B-parameter dense model using 1T training tokens and WSD learning rate scheduling. Our experimental results demonstrate substantial improvements, ranging from 1.4pp to 3.5pp, across several knowledge-intensive and reasoning-heavy benchmarks (i.e., MMLU, MMLU-Pro, AGIEval-en, GSM8K, and HumanEval). This demonstrates an effective weak-to-strong scaling property, with small models improving the final performance of larger models-offering a promising and scalable path for reasoning-centric data selection.
comment: 28 pages, 19 figures
Semantic Retention and Extreme Compression in LLMs: Can We Have Both? IJCNN
The exponential growth in Large Language Model (LLM) deployment has intensified the need for efficient model compression techniques to reduce computational and memory costs. While pruning and quantization have shown promise, their combined potential remains largely unexplored. In this paper, we examine joint compression and how strategically combining pruning and quantization could yield superior performance-to-compression ratios compared to single-method approaches. Recognizing the challenges in accurately assessing LLM performance, we address key limitations of previous evaluation frameworks and introduce the Semantic Retention Compression Rate (SrCr), a novel metric that quantifies the trade-off between model compression and semantic preservation, facilitating the optimization of pruning-quantization configurations. Experiments demonstrate that our recommended combination achieves, on average, a 20% performance increase compared to an equivalent quantization-only model at the same theoretical compression rate.
comment: Accepted for publication in the Proceedings of the 2025 International Joint Conference on Neural Networks (IJCNN); this arXiv version includes an appendix with 6 result tables; 10 pages, 15 figures, 7 tables
On the Robustness of Reward Models for Language Model Alignment ICML 2025
The Bradley-Terry (BT) model is widely practiced in reward modeling for reinforcement learning with human feedback (RLHF). Despite its effectiveness, reward models (RMs) trained with BT model loss are prone to over-optimization, losing generalizability to unseen input distributions. In this paper, we study the cause of over-optimization in RM training and its downstream effects on the RLHF procedure, accentuating the importance of distributional robustness of RMs in unseen data. First, we show that the excessive dispersion of hidden state norms is the main source of over-optimization. Then, we propose batch-wise sum-to-zero regularization (BSR) to enforce zero-centered reward sum per batch, constraining the rewards with extreme magnitudes. We assess the impact of BSR in improving robustness in RMs through four scenarios of over-optimization, where BSR consistently manifests better robustness. Subsequently, we compare the plain BT model and BSR on RLHF training and empirically show that robust RMs better align the policy to the gold preference model. Finally, we apply BSR to high-quality data and models, which surpasses state-of-the-art RMs in the 8B scale by adding more than 5% in complex preference prediction tasks. By conducting RLOO training with 8B RMs, AlpacaEval 2.0 reduces generation length by 40% while adding a 7% increase in win rate, further highlighting that robustness in RMs induces robustness in RLHF training. We release the code, data, and models: https://github.com/LinkedIn-XFACT/RM-Robustness.
comment: ICML 2025
No Query, No Access
Textual adversarial attacks mislead NLP models, including Large Language Models (LLMs), by subtly modifying text. While effective, existing attacks often require knowledge of the victim model, extensive queries, or access to training data, limiting real-world feasibility. To overcome these constraints, we introduce the \textbf{Victim Data-based Adversarial Attack (VDBA)}, which operates using only victim texts. To prevent access to the victim model, we create a shadow dataset with publicly available pre-trained models and clustering methods as a foundation for developing substitute models. To address the low attack success rate (ASR) due to insufficient information feedback, we propose the hierarchical substitution model design, generating substitute models to mitigate the failure of a single substitute model at the decision boundary. Concurrently, we use diverse adversarial example generation, employing various attack methods to generate and select the adversarial example with better similarity and attack effectiveness. Experiments on the Emotion and SST5 datasets show that VDBA outperforms state-of-the-art methods, achieving an ASR improvement of 52.08\% while significantly reducing attack queries to 0. More importantly, we discover that VDBA poses a significant threat to LLMs such as Qwen2 and the GPT family, and achieves the highest ASR of 45.99% even without access to the API, confirming that advanced NLP models still face serious security risks. Our codes can be found at https://anonymous.4open.science/r/VDBA-Victim-Data-based-Adversarial-Attack-36EC/
SAS-Bench: A Fine-Grained Benchmark for Evaluating Short Answer Scoring with Large Language Models
Subjective Answer Grading (SAG) plays a crucial role in education, standardized testing, and automated assessment systems, particularly for evaluating short-form responses in Short Answer Scoring (SAS). However, existing approaches often produce coarse-grained scores and lack detailed reasoning. Although large language models (LLMs) have demonstrated potential as zero-shot evaluators, they remain susceptible to bias, inconsistencies with human judgment, and limited transparency in scoring decisions. To overcome these limitations, we introduce SAS-Bench, a benchmark specifically designed for LLM-based SAS tasks. SAS-Bench provides fine-grained, step-wise scoring, expert-annotated error categories, and a diverse range of question types derived from real-world subject-specific exams. This benchmark facilitates detailed evaluation of model reasoning processes and explainability. We also release an open-source dataset containing 1,030 questions and 4,109 student responses, each annotated by domain experts. Furthermore, we conduct comprehensive experiments with various LLMs, identifying major challenges in scoring science-related questions and highlighting the effectiveness of few-shot prompting in improving scoring accuracy. Our work offers valuable insights into the development of more robust, fair, and educationally meaningful LLM-based evaluation systems.
DynamicRAG: Leveraging Outputs of Large Language Model as Feedback for Dynamic Reranking in Retrieval-Augmented Generation
Retrieval-augmented generation (RAG) systems combine large language models (LLMs) with external knowledge retrieval, making them highly effective for knowledge-intensive tasks. A crucial but often under-explored component of these systems is the reranker, which refines retrieved documents to enhance generation quality and explainability. The challenge of selecting the optimal number of documents (k) remains unsolved: too few may omit critical information, while too many introduce noise and inefficiencies. Although recent studies have explored LLM-based rerankers, they primarily leverage internal model knowledge and overlook the rich supervisory signals that LLMs can provide, such as using response quality as feedback for optimizing reranking decisions. In this paper, we propose DynamicRAG, a novel RAG framework where the reranker dynamically adjusts both the order and number of retrieved documents based on the query. We model the reranker as an agent optimized through reinforcement learning (RL), using rewards derived from LLM output quality. Across seven knowledge-intensive datasets, DynamicRAG demonstrates superior performance, achieving state-of-the-art results. The model, data and code are available at https://github.com/GasolSun36/DynamicRAG
comment: 24 pages, 6 figures, 15 tables
Benchmarking Ethical and Safety Risks of Healthcare LLMs in China-Toward Systemic Governance under Healthy China 2030
Large Language Models (LLMs) are poised to transform healthcare under China's Healthy China 2030 initiative, yet they introduce new ethical and patient-safety challenges. We present a novel 12,000-item Q&A benchmark covering 11 ethics and 9 safety dimensions in medical contexts, to quantitatively evaluate these risks. Using this dataset, we assess state-of-the-art Chinese medical LLMs (e.g., Qwen 2.5-32B, DeepSeek), revealing moderate baseline performance (accuracy 42.7% for Qwen 2.5-32B) and significant improvements after fine-tuning on our data (up to 50.8% accuracy). Results show notable gaps in LLM decision-making on ethics and safety scenarios, reflecting insufficient institutional oversight. We then identify systemic governance shortfalls-including the lack of fine-grained ethical audit protocols, slow adaptation by hospital IRBs, and insufficient evaluation tools-that currently hinder safe LLM deployment. Finally, we propose a practical governance framework for healthcare institutions (embedding LLM auditing teams, enacting data ethics guidelines, and implementing safety simulation pipelines) to proactively manage LLM risks. Our study highlights the urgent need for robust LLM governance in Chinese healthcare, aligning AI innovation with patient safety and ethical standards.
On the Cost and Benefits of Training Context with Utterance or Full Conversation Training: A Comparative Stud
Modern TTS systems designed for conversations achieve high-quality utterances but often remain inaccessible publicly. Are existing open-source architectures inadequate, or are current training techniques insufficient? This paper investigates prominent models and their underlying behaviors regarding conversational context. Using 20 GPU-hours on an NVIDIA H100, we empirically examine two approaches: context-based utterance-level training versus full conversation training. Results demonstrate that context-based utterance training achieves superior MOS scores (4.3/5.0 vs 3.7/5.0) and reduces training time by 37%, while full conversation approaches suffer from speaker similarity hallucination issues. These findings provide practical guidelines for conversational TTS development, favoring utterance-level training with contextual conditioning for both resource efficiency and output quality.
Securing Genomic Data Against Inference Attacks in Federated Learning Environments
Federated Learning (FL) offers a promising framework for collaboratively training machine learning models across decentralized genomic datasets without direct data sharing. While this approach preserves data locality, it remains susceptible to sophisticated inference attacks that can compromise individual privacy. In this study, we simulate a federated learning setup using synthetic genomic data and assess its vulnerability to three key attack vectors: Membership Inference Attack (MIA), Gradient-Based Membership Inference Attack, and Label Inference Attack (LIA). Our experiments reveal that Gradient-Based MIA achieves the highest effectiveness, with a precision of 0.79 and F1-score of 0.87, underscoring the risk posed by gradient exposure in federated updates. Additionally, we visualize comparative attack performance through radar plots and quantify model leakage across clients. The findings emphasize the inadequacy of na\"ive FL setups in safeguarding genomic privacy and motivate the development of more robust privacy-preserving mechanisms tailored to the unique sensitivity of genomic data.
comment: 10 Pages, 7 Figures
Structural Entropy Guided Agent for Detecting and Repairing Knowledge Deficiencies in LLMs
Large language models (LLMs) have achieved unprecedented performance by leveraging vast pretraining corpora, yet their performance remains suboptimal in knowledge-intensive domains such as medicine and scientific research, where high factual precision is required. While synthetic data provides a promising avenue for augmenting domain knowledge, existing methods frequently generate redundant samples that do not align with the model's true knowledge gaps. To overcome this limitation, we propose a novel Structural Entropy-guided Knowledge Navigator (SENATOR) framework that addresses the intrinsic knowledge deficiencies of LLMs. Our approach employs the Structure Entropy (SE) metric to quantify uncertainty along knowledge graph paths and leverages Monte Carlo Tree Search (MCTS) to selectively explore regions where the model lacks domain-specific knowledge. Guided by these insights, the framework generates targeted synthetic data for supervised fine-tuning, enabling continuous self-improvement. Experimental results on LLaMA-3 and Qwen2 across multiple domain-specific benchmarks show that SENATOR effectively detects and repairs knowledge deficiencies, achieving notable performance improvements. The code and data for our methods and experiments are available at https://github.com/weiyifan1023/senator.
One Trigger Token Is Enough: A Defense Strategy for Balancing Safety and Usability in Large Language Models
Large Language Models (LLMs) have been extensively used across diverse domains, including virtual assistants, automated code generation, and scientific research. However, they remain vulnerable to jailbreak attacks, which manipulate the models into generating harmful responses despite safety alignment. Recent studies have shown that current safety-aligned LLMs often undergo the shallow safety alignment, where the first few tokens largely determine whether the response will be harmful. Through comprehensive observations, we find that safety-aligned LLMs and various defense strategies generate highly similar initial tokens in their refusal responses, which we define as safety trigger tokens. Building on this insight, we propose \texttt{D-STT}, a simple yet effective defense algorithm that identifies and explicitly decodes safety trigger tokens of the given safety-aligned LLM to trigger the model's learned safety patterns. In this process, the safety trigger is constrained to a single token, which effectively preserves model usability by introducing minimum intervention in the decoding process. Extensive experiments across diverse jailbreak attacks and benign prompts demonstrate that \ours significantly reduces output harmfulness while preserving model usability and incurring negligible response time overhead, outperforming ten baseline methods.
Pre-training vs. Fine-tuning: A Reproducibility Study on Dense Retrieval Knowledge Acquisition SIGIR-2025
Dense retrievers utilize pre-trained backbone language models (e.g., BERT, LLaMA) that are fine-tuned via contrastive learning to perform the task of encoding text into sense representations that can be then compared via a shallow similarity operation, e.g. inner product. Recent research has questioned the role of fine-tuning vs. that of pre-training within dense retrievers, specifically arguing that retrieval knowledge is primarily gained during pre-training, meaning knowledge not acquired during pre-training cannot be sub-sequentially acquired via fine-tuning. We revisit this idea here as the claim was only studied in the context of a BERT-based encoder using DPR as representative dense retriever. We extend the previous analysis by testing other representation approaches (comparing the use of CLS tokens with that of mean pooling), backbone architectures (encoder-only BERT vs. decoder-only LLaMA), and additional datasets (MSMARCO in addition to Natural Questions). Our study confirms that in DPR tuning, pre-trained knowledge underpins retrieval performance, with fine-tuning primarily adjusting neuron activation rather than reorganizing knowledge. However, this pattern does not hold universally, such as in mean-pooled (Contriever) and decoder-based (LLaMA) models. We ensure full reproducibility and make our implementation publicly available at https://github.com/ielab/DenseRetriever-Knowledge-Acquisition.
comment: Accepted in SIGIR-2025
KDH-MLTC: Knowledge Distillation for Healthcare Multi-Label Text Classification
The increasing volume of healthcare textual data requires computationally efficient, yet highly accurate classification approaches able to handle the nuanced and complex nature of medical terminology. This research presents Knowledge Distillation for Healthcare Multi-Label Text Classification (KDH-MLTC), a framework leveraging model compression and Large Language Models (LLMs). The proposed approach addresses conventional healthcare Multi-Label Text Classification (MLTC) challenges by integrating knowledge distillation and sequential fine-tuning, subsequently optimized through Particle Swarm Optimization (PSO) for hyperparameter tuning. KDH-MLTC transfers knowledge from a more complex teacher LLM (i.e., BERT) to a lighter student LLM (i.e., DistilBERT) through sequential training adapted to MLTC that preserves the teacher's learned information while significantly reducing computational requirements. As a result, the classification is enabled to be conducted locally, making it suitable for healthcare textual data characterized by sensitivity and, therefore, ensuring HIPAA compliance. The experiments conducted on three medical literature datasets of different sizes, sampled from the Hallmark of Cancer (HoC) dataset, demonstrate that KDH-MLTC achieves superior performance compared to existing approaches, particularly for the largest dataset, reaching an F1 score of 82.70%. Additionally, statistical validation and an ablation study are carried out, proving the robustness of KDH-MLTC. Furthermore, the PSO-based hyperparameter optimization process allowed the identification of optimal configurations. The proposed approach contributes to healthcare text classification research, balancing efficiency requirements in resource-constrained healthcare settings with satisfactory accuracy demands.
Towards Actionable Pedagogical Feedback: A Multi-Perspective Analysis of Mathematics Teaching and Tutoring Dialogue
Effective feedback is essential for refining instructional practices in mathematics education, and researchers often turn to advanced natural language processing (NLP) models to analyze classroom dialogues from multiple perspectives. However, utterance-level discourse analysis encounters two primary challenges: (1) multifunctionality, where a single utterance may serve multiple purposes that a single tag cannot capture, and (2) the exclusion of many utterances from domain-specific discourse move classifications, leading to their omission in feedback. To address these challenges, we proposed a multi-perspective discourse analysis that integrates domain-specific talk moves with dialogue act (using the flattened multi-functional SWBD-MASL schema with 43 tags) and discourse relation (applying Segmented Discourse Representation Theory with 16 relations). Our top-down analysis framework enables a comprehensive understanding of utterances that contain talk moves, as well as utterances that do not contain talk moves. This is applied to two mathematics education datasets: TalkMoves (teaching) and SAGA22 (tutoring). Through distributional unigram analysis, sequential talk move analysis, and multi-view deep dive, we discovered meaningful discourse patterns, and revealed the vital role of utterances without talk moves, demonstrating that these utterances, far from being mere fillers, serve crucial functions in guiding, acknowledging, and structuring classroom discourse. These insights underscore the importance of incorporating discourse relations and dialogue acts into AI-assisted education systems to enhance feedback and create more responsive learning environments. Our framework may prove helpful for providing human educator feedback, but also aiding in the development of AI agents that can effectively emulate the roles of both educators and students.
comment: Accepted to EDM'2025
HAMLET: Healthcare-focused Adaptive Multilingual Learning Embedding-based Topic Modeling
Traditional topic models often struggle with contextual nuances and fail to adequately handle polysemy and rare words. This limitation typically results in topics that lack coherence and quality. Large Language Models (LLMs) can mitigate this issue by generating an initial set of topics. However, these raw topics frequently lack refinement and representativeness, which leads to redundancy without lexical similarity and reduced interpretability. This paper introduces HAMLET, a graph-driven architecture for cross-lingual healthcare topic modeling that uses LLMs. The proposed approach leverages neural-enhanced semantic fusion to refine the embeddings of topics generated by the LLM. Instead of relying solely on statistical co-occurrence or human interpretation to extract topics from a document corpus, this method introduces a topic embedding refinement that uses Bidirectional Encoder Representations from Transformers (BERT) and Graph Neural Networks (GNN). After topic generation, a hybrid technique that involves BERT and Sentence-BERT (SBERT) is employed for embedding. The topic representations are further refined using a GNN, which establishes connections between documents, topics, words, similar topics, and similar words. A novel method is introduced to compute similarities. Consequently, the topic embeddings are refined, and the top k topics are extracted. Experiments were conducted using two healthcare datasets, one in English and one in French, from which six sets were derived. The results demonstrate the effectiveness of HAMLET.
Reassessing Large Language Model Boolean Query Generation for Systematic Reviews SIGIR-2025
Systematic reviews are comprehensive literature reviews that address highly focused research questions and represent the highest form of evidence in medicine. A critical step in this process is the development of complex Boolean queries to retrieve relevant literature. Given the difficulty of manually constructing these queries, recent efforts have explored Large Language Models (LLMs) to assist in their formulation. One of the first studies,Wang et al., investigated ChatGPT for this task, followed by Staudinger et al., which evaluated multiple LLMs in a reproducibility study. However, the latter overlooked several key aspects of the original work, including (i) validation of generated queries, (ii) output formatting constraints, and (iii) selection of examples for chain-of-thought (Guided) prompting. As a result, its findings diverged significantly from the original study. In this work, we systematically reproduce both studies while addressing these overlooked factors. Our results show that query effectiveness varies significantly across models and prompt designs, with guided query formulation benefiting from well-chosen seed studies. Overall, prompt design and model selection are key drivers of successful query formulation. Our findings provide a clearer understanding of LLMs' potential in Boolean query generation and highlight the importance of model- and prompt-specific optimisations. The complex nature of systematic reviews adds to challenges in both developing and reproducing methods but also highlights the importance of reproducibility studies in this domain.
comment: Accepted in SIGIR-2025
Putting It All into Context: Simplifying Agents with LCLMs
Recent advances in language model (LM) agents have demonstrated significant potential for automating complex real-world tasks. To make progress on these difficult tasks, LM agent architectures have become increasingly complex, often incorporating multi-step retrieval tools, multiple agents, and scaffolding adapted to the underlying LM. In this work, we investigate whether all of this complexity is necessary, or if parts of these scaffolds can be removed on challenging tasks like SWE-bench. We show that in the case of SWE-bench, simply putting the entire environment into the context of a long context language model (LCLM) and properly prompting the model makes it competitive with carefully tuned, complex agent scaffolds. We show that a Gemini-1.5-Pro model without any scaffolding or tools achieves 38% on SWE-Bench-Verified, comparable with approaches using carefully tuned agent scaffolds (32%). While the unscaffolded approach with Gemini-1.5-Pro falls short of the strongest agentic architectures, we demonstrate that the more capable Gemini-2.5-Pro using the same unscaffolded approach directly attains a 50.8% solve rate. Additionally, a two-stage approach combining Gemini-1.5-Pro with Claude-3.7 achieves a competitive 48.6% solve rate.
Are LLMs complicated ethical dilemma analyzers? ALT
One open question in the study of Large Language Models (LLMs) is whether they can emulate human ethical reasoning and act as believable proxies for human judgment. To investigate this, we introduce a benchmark dataset comprising 196 real-world ethical dilemmas and expert opinions, each segmented into five structured components: Introduction, Key Factors, Historical Theoretical Perspectives, Resolution Strategies, and Key Takeaways. We also collect non-expert human responses for comparison, limited to the Key Factors section due to their brevity. We evaluate multiple frontier LLMs (GPT-4o-mini, Claude-3.5-Sonnet, Deepseek-V3, Gemini-1.5-Flash) using a composite metric framework based on BLEU, Damerau-Levenshtein distance, TF-IDF cosine similarity, and Universal Sentence Encoder similarity. Metric weights are computed through an inversion-based ranking alignment and pairwise AHP analysis, enabling fine-grained comparison of model outputs to expert responses. Our results show that LLMs generally outperform non-expert humans in lexical and structural alignment, with GPT-4o-mini performing most consistently across all sections. However, all models struggle with historical grounding and proposing nuanced resolution strategies, which require contextual abstraction. Human responses, while less structured, occasionally achieve comparable semantic similarity, suggesting intuitive moral reasoning. These findings highlight both the strengths and current limitations of LLMs in ethical decision-making.
comment: CS194-280 Advanced LLM Agents project. Project page: https://github.com/ALT-JS/ethicaLLM
Beyond Input Activations: Identifying Influential Latents by Gradient Sparse Autoencoders
Sparse Autoencoders (SAEs) have recently emerged as powerful tools for interpreting and steering the internal representations of large language models (LLMs). However, conventional approaches to analyzing SAEs typically rely solely on input-side activations, without considering the causal influence between each latent feature and the model's output. This work is built on two key hypotheses: (1) activated latents do not contribute equally to the construction of the model's output, and (2) only latents with high causal influence are effective for model steering. To validate these hypotheses, we propose Gradient Sparse Autoencoder (GradSAE), a simple yet effective method that identifies the most influential latents by incorporating output-side gradient information.
comment: 10 pages, 3 figures
HYPERNYM MERCURY: Token Optimization through Semantic Field Constriction and Reconstruction from Hypernyms. A New Text Compression Method
Compute optimization using token reduction of LLM prompts is an emerging task in the fields of NLP and next generation, agentic AI. In this white paper, we introduce a novel (patent pending) text representation scheme and a first-of-its-kind word-level semantic compression of paragraphs that can lead to over 90\% token reduction, while retaining high semantic similarity to the source text. We explain how this novel compression technique can be lossless and how the detail granularity is controllable. We discuss benchmark results over open source data (i.e. Bram Stoker's Dracula available through Project Gutenberg) and show how our results hold at the paragraph level, across multiple genres and models.
FalseReject: A Resource for Improving Contextual Safety and Mitigating Over-Refusals in LLMs via Structured Reasoning
Safety alignment approaches in large language models (LLMs) often lead to the over-refusal of benign queries, significantly diminishing their utility in sensitive scenarios. To address this challenge, we introduce FalseReject, a comprehensive resource containing 16k seemingly toxic queries accompanied by structured responses across 44 safety-related categories. We propose a graph-informed adversarial multi-agent interaction framework to generate diverse and complex prompts, while structuring responses with explicit reasoning to aid models in accurately distinguishing safe from unsafe contexts. FalseReject includes training datasets tailored for both standard instruction-tuned models and reasoning-oriented models, as well as a human-annotated benchmark test set. Our extensive benchmarking on 29 state-of-the-art (SOTA) LLMs reveals persistent over-refusal challenges. Empirical results demonstrate that supervised finetuning with FalseReject substantially reduces unnecessary refusals without compromising overall safety or general language capabilities.
NAZM: Network Analysis of Zonal Metrics in Persian Poetic Tradition
This study formalizes a computational model to simulate classical Persian poets' dynamics of influence through constructing a multi-dimensional similarity network. Using a rigorously curated dataset based on Ganjoor's corpus, we draw upon semantic, lexical, stylistic, thematic, and metrical features to demarcate each poet's corpus. Each is contained within weighted similarity matrices, which are then appended to generate an aggregate graph showing poet-to-poet influence. Further network investigation is carried out to identify key poets, style hubs, and bridging poets by calculating degree, closeness, betweenness, eigenvector, and Katz centrality measures. Further, for typological insight, we use the Louvain community detection algorithm to demarcate clusters of poets sharing both style and theme coherence, which correspond closely to acknowledged schools of literature like Sabk-e Hindi, Sabk-e Khorasani, and the Bazgasht-e Adabi phenomenon. Our findings provide a new data-driven view of Persian literature distinguished between canonical significance and interextual influence, thus highlighting relatively lesser-known figures who hold great structural significance. Combining computational linguistics with literary study, this paper produces an interpretable and scalable model for poetic tradition, enabling retrospective reflection as well as forward-looking research within digital humanities.
TiSpell: A Semi-Masked Methodology for Tibetan Spelling Correction covering Multi-Level Error with Data Augmentation
Multi-level Tibetan spelling correction addresses errors at both the character and syllable levels within a unified model. Existing methods focus mainly on single-level correction and lack effective integration of both levels. Moreover, there are no open-source datasets or augmentation methods tailored for this task in Tibetan. To tackle this, we propose a data augmentation approach using unlabeled text to generate multi-level corruptions, and introduce TiSpell, a semi-masked model capable of correcting both character- and syllable-level errors. Although syllable-level correction is more challenging due to its reliance on global context, our semi-masked strategy simplifies this process. We synthesize nine types of corruptions on clean sentences to create a robust training set. Experiments on both simulated and real-world data demonstrate that TiSpell, trained on our dataset, outperforms baseline models and matches the performance of state-of-the-art approaches, confirming its effectiveness.
comment: 14 pages, 7 figures
Large Language Models and Arabic Content: A Review
Over the past three years, the rapid advancement of Large Language Models (LLMs) has had a profound impact on multiple areas of Artificial Intelligence (AI), particularly in Natural Language Processing (NLP) across diverse languages, including Arabic. Although Arabic is considered one of the most widely spoken languages across 27 countries in the Arabic world and used as a second language in some other non-Arabic countries as well, there is still a scarcity of Arabic resources, datasets, and tools. Arabic NLP tasks face various challenges due to the complexities of the Arabic language, including its rich morphology, intricate structure, and diverse writing standards, among other factors. Researchers have been actively addressing these challenges, demonstrating that pre-trained Large Language Models (LLMs) trained on multilingual corpora achieve significant success in various Arabic NLP tasks. This study provides an overview of using large language models (LLMs) for the Arabic language, highlighting early pre-trained Arabic Language models across various NLP applications and their ability to handle diverse Arabic content tasks and dialects. It also provides an overview of how techniques like finetuning and prompt engineering can enhance the performance of these models. Additionally, the study summarizes common Arabic benchmarks and datasets while presenting our observations on the persistent upward trend in the adoption of LLMs.
comment: Original language: English This paper has been submitted to the First International Conference on Artificial Intelligence and Generative AI (FICAILY 2025), and it has been accepted for presentation at FICAILY on 9-10/July 2025 and for publication in the Springer Nature. Number of pages: 16 Publication status Accepted/In press - 7 Apr 2025 https://www.gena-ai-libya2025.com/
Task-Adaptive Semantic Communications with Controllable Diffusion-based Data Regeneration
Semantic communications represent a new paradigm of next-generation networking that shifts bit-wise data delivery to conveying the semantic meanings for bandwidth efficiency. To effectively accommodate various potential downstream tasks at the receiver side, one should adaptively convey the most critical semantic information. This work presents a novel task-adaptive semantic communication framework based on diffusion models that is capable of dynamically adjusting the semantic message delivery according to various downstream tasks. Specifically, we initialize the transmission of a deep-compressed general semantic representation from the transmitter to enable diffusion-based coarse data reconstruction at the receiver. The receiver identifies the task-specific demands and generates textual prompts as feedback. Integrated with the attention mechanism, the transmitter updates the semantic transmission with more details to better align with the objectives of the intended receivers. Our test results demonstrate the efficacy of the proposed method in adaptively preserving critical task-relevant information for semantic communications while preserving high compression efficiency.
Assessing and Mitigating Medical Knowledge Drift and Conflicts in Large Language Models
Large Language Models (LLMs) have great potential in the field of health care, yet they face great challenges in adapting to rapidly evolving medical knowledge. This can lead to outdated or contradictory treatment suggestions. This study investigated how LLMs respond to evolving clinical guidelines, focusing on concept drift and internal inconsistencies. We developed the DriftMedQA benchmark to simulate guideline evolution and assessed the temporal reliability of various LLMs. Our evaluation of seven state-of-the-art models across 4,290 scenarios demonstrated difficulties in rejecting outdated recommendations and frequently endorsing conflicting guidance. Additionally, we explored two mitigation strategies: Retrieval-Augmented Generation and preference fine-tuning via Direct Preference Optimization. While each method improved model performance, their combination led to the most consistent and reliable results. These findings underscore the need to improve LLM robustness to temporal shifts to ensure more dependable applications in clinical practice.
Re$^2$: A Consistency-ensured Dataset for Full-stage Peer Review and Multi-turn Rebuttal Discussions
Peer review is a critical component of scientific progress in the fields like AI, but the rapid increase in submission volume has strained the reviewing system, which inevitably leads to reviewer shortages and declines review quality. Besides the growing research popularity, another key factor in this overload is the repeated resubmission of substandard manuscripts, largely due to the lack of effective tools for authors to self-evaluate their work before submission. Large Language Models (LLMs) show great promise in assisting both authors and reviewers, and their performance is fundamentally limited by the quality of the peer review data. However, existing peer review datasets face three major limitations: (1) limited data diversity, (2) inconsistent and low-quality data due to the use of revised rather than initial submissions, and (3) insufficient support for tasks involving rebuttal and reviewer-author interactions. To address these challenges, we introduce the largest consistency-ensured peer review and rebuttal dataset named Re^2, which comprises 19,926 initial submissions, 70,668 review comments, and 53,818 rebuttals from 24 conferences and 21 workshops on OpenReview. Moreover, the rebuttal and discussion stage is framed as a multi-turn conversation paradigm to support both traditional static review tasks and dynamic interactive LLM assistants, providing more practical guidance for authors to refine their manuscripts and helping alleviate the growing review burden. Our data and code are available in https://anonymous.4open.science/r/ReviewBench_anon/.
comment: 2 figures, 5 tables
SciCom Wiki: Fact-Checking and FAIR Knowledge Distribution for Scientific Videos and Podcasts
Democratic societies need accessible, reliable information. Videos and Podcasts have established themselves as the medium of choice for civic dissemination, but also as carriers of misinformation. The emerging Science Communication Knowledge Infrastructure (SciCom KI) curating non-textual media is still fragmented and not adequately equipped to scale against the content flood. Our work sets out to support the SciCom KI with a central, collaborative platform, the SciCom Wiki, to facilitate FAIR (findable, accessible, interoperable, reusable) media representation and the fact-checking of their content, particularly for videos and podcasts. Building an open-source service system centered around Wikibase, we survey requirements from 53 stakeholders, refine these in 11 interviews, and evaluate our prototype based on these requirements with another 14 participants. To address the most requested feature, fact-checking, we developed a neurosymbolic computational fact-checking approach, converting heterogenous media into knowledge graphs. This increases machine-readability and allows comparing statements against equally represented ground-truth. Our computational fact-checking tool was iteratively evaluated through 10 expert interviews, a public user survey with 43 participants verified the necessity and usability of our tool. Overall, our findings identified several needs to systematically support the SciCom KI. The SciCom Wiki, as a FAIR digital library complementing our neurosymbolic computational fact-checking framework, was found suitable to address the raised requirements. Further, we identified that the SciCom KI is severely underdeveloped regarding FAIR knowledge and related systems facilitating its collaborative creation and curation. Our system can provide a central knowledge node, yet a collaborative effort is required to scale against the imminent (mis-)information flood.
comment: 18 pages, 10 figures, submitted to TPDL 2025
A Reproduction Study: The Kernel PCA Interpretation of Self-Attention Fails Under Scrutiny
In this reproduction study, we revisit recent claims that self-attention implements kernel principal component analysis (KPCA) (Teo et al., 2024), positing that (i) value vectors $V$ capture the eigenvectors of the Gram matrix of the keys, and (ii) that self-attention projects queries onto the principal component axes of the key matrix $K$ in a feature space. Our analysis reveals three critical inconsistencies: (1) No alignment exists between learned self-attention value vectors and what is proposed in the KPCA perspective, with average similarity metrics (optimal cosine similarity $\leq 0.32$, linear CKA (Centered Kernel Alignment) $\leq 0.11$, kernel CKA $\leq 0.32$) indicating negligible correspondence; (2) Reported decreases in reconstruction loss $J_\text{proj}$, arguably justifying the claim that the self-attention minimizes the projection error of KPCA, are misinterpreted, as the quantities involved differ by orders of magnitude ($\sim\!10^3$); (3) Gram matrix eigenvalue statistics, introduced to justify that $V$ captures the eigenvector of the gram matrix, are irreproducible without undocumented implementation-specific adjustments. Across 10 transformer architectures, we conclude that the KPCA interpretation of self-attention lacks empirical support.
SEM: Reinforcement Learning for Search-Efficient Large Language Models
Recent advancements in Large Language Models(LLMs) have demonstrated their capabilities not only in reasoning but also in invoking external tools, particularly search engines. However, teaching models to discern when to invoke search and when to rely on their internal knowledge remains a significant challenge. Existing reinforcement learning approaches often lead to redundant search behaviors, resulting in inefficiencies and over-cost. In this paper, we propose SEM, a novel post-training reinforcement learning framework that explicitly trains LLMs to optimize search usage. By constructing a balanced dataset combining MuSiQue and MMLU, we create scenarios where the model must learn to distinguish between questions it can answer directly and those requiring external retrieval. We design a structured reasoning template and employ Group Relative Policy Optimization(GRPO) to post-train the model's search behaviors. Our reward function encourages accurate answering without unnecessary search while promoting effective retrieval when needed. Experimental results demonstrate that our method significantly reduces redundant search operations while maintaining or improving answer accuracy across multiple challenging benchmarks. This framework advances the model's reasoning efficiency and extends its capability to judiciously leverage external knowledge.
Multimodal Assessment of Classroom Discourse Quality: A Text-Centered Attention-Based Multi-Task Learning Approach
Classroom discourse is an essential vehicle through which teaching and learning take place. Assessing different characteristics of discursive practices and linking them to student learning achievement enhances the understanding of teaching quality. Traditional assessments rely on manual coding of classroom observation protocols, which is time-consuming and costly. Despite many studies utilizing AI techniques to analyze classroom discourse at the utterance level, investigations into the evaluation of discursive practices throughout an entire lesson segment remain limited. To address this gap, our study proposes a novel text-centered multimodal fusion architecture to assess the quality of three discourse components grounded in the Global Teaching InSights (GTI) observation protocol: Nature of Discourse, Questioning, and Explanations. First, we employ attention mechanisms to capture inter- and intra-modal interactions from transcript, audio, and video streams. Second, a multi-task learning approach is adopted to jointly predict the quality scores of the three components. Third, we formulate the task as an ordinal classification problem to account for rating level order. The effectiveness of these designed elements is demonstrated through an ablation study on the GTI Germany dataset containing 92 videotaped math lessons. Our results highlight the dominant role of text modality in approaching this task. Integrating acoustic features enhances the model's consistency with human ratings, achieving an overall Quadratic Weighted Kappa score of 0.384, comparable to human inter-rater reliability (0.326). Our study lays the groundwork for the future development of automated discourse quality assessment to support teacher professional development through timely feedback on multidimensional discourse practices.
comment: The 18th International Conference on Educational Data Mining (EDM 2025)
DeltaEdit: Enhancing Sequential Editing in Large Language Models by Controlling Superimposed Noise
Sequential knowledge editing techniques aim to continuously update the knowledge in large language models at a low cost, preventing the models from generating outdated or incorrect information. However, existing sequential editing methods suffer from a significant decline in editing success rates after long-term editing. Through theoretical analysis and experiments, we identify that as the number of edits increases, the model's output increasingly deviates from the desired target, leading to a drop in editing success rates. We refer to this issue as the accumulation of superimposed noise problem. To address this, we identify the factors contributing to this deviation and propose DeltaEdit, a novel method that optimizes update parameters through a dynamic orthogonal constraints strategy, effectively reducing interference between edits to mitigate deviation. Experimental results demonstrate that DeltaEdit significantly outperforms existing methods in edit success rates and the retention of generalization capabilities, ensuring stable and reliable model performance even under extensive sequential editing.
An Extra RMSNorm is All You Need for Fine Tuning to 1.58 Bits
Large language models (LLMs) have transformed natural-language processing, yet their scale makes real-world deployment costly. Post-training quantization reduces memory and computation but often degrades accuracy, while quantization-aware training can recover performance at the cost of extra training. Pushing quantization to the ternary (2-bit) regime yields even larger savings but is notoriously unstable. Building on recent work showing that a bias-free, RMS-normalized Transformer with straight-through estimation can reach 1.58-bit precision, we demonstrate that simply inserting RMS normalization before every linear projection and applying a gradual, layer-wise quantization schedule stably fine-tunes full-precision checkpoints into ternary LLMs. Our approach matches or surpasses more elaborate knowledge-distillation pipelines on standard language-modeling benchmarks without adding model complexity. These results indicate that careful normalization alone can close much of the accuracy gap between ternary and full-precision LLMs, making ultra-low-bit inference practical.
The Leaderboard Illusion
Measuring progress is fundamental to the advancement of any scientific field. As benchmarks play an increasingly central role, they also grow more susceptible to distortion. Chatbot Arena has emerged as the go-to leaderboard for ranking the most capable AI systems. Yet, in this work we identify systematic issues that have resulted in a distorted playing field. We find that undisclosed private testing practices benefit a handful of providers who are able to test multiple variants before public release and retract scores if desired. We establish that the ability of these providers to choose the best score leads to biased Arena scores due to selective disclosure of performance results. At an extreme, we identify 27 private LLM variants tested by Meta in the lead-up to the Llama-4 release. We also establish that proprietary closed models are sampled at higher rates (number of battles) and have fewer models removed from the arena than open-weight and open-source alternatives. Both these policies lead to large data access asymmetries over time. Providers like Google and OpenAI have received an estimated 19.2% and 20.4% of all data on the arena, respectively. In contrast, a combined 83 open-weight models have only received an estimated 29.7% of the total data. We show that access to Chatbot Arena data yields substantial benefits; even limited additional data can result in relative performance gains of up to 112% on the arena distribution, based on our conservative estimates. Together, these dynamics result in overfitting to Arena-specific dynamics rather than general model quality. The Arena builds on the substantial efforts of both the organizers and an open community that maintains this valuable evaluation platform. We offer actionable recommendations to reform the Chatbot Arena's evaluation framework and promote fairer, more transparent benchmarking for the field
comment: 68 pages, 18 figures, 9 tables
From Distributional to Overton Pluralism: Investigating Large Language Model Alignment NAACL 2025
The alignment process changes several properties of a large language model's (LLM's) output distribution. We analyze two aspects of post-alignment distributional shift of LLM responses. First, we re-examine previously reported reductions in response diversity post-alignment. Our analysis suggests that an apparent drop in the diversity of responses is largely explained by quality control and information aggregation. Alignment suppresses irrelevant and unhelpful content while shifting the output distribution toward longer responses that cover information spanning several responses from the base LLM, essentially presenting diverse information in a single response. Finding little evidence that alignment suppresses useful information, it is natural to ask the opposite question: do aligned models surface information that cannot be recovered from base models? Our second investigation shows this is not the case and the behavior of aligned models is recoverable from base models without fine-tuning. A combination of in-context examples and lower-resolution semantic hints about response content can elicit responses from base LLMs that are as similar to alignment-tuned LLM responses as alignment-tuned LLM responses are to each other. Taken together, these results indicate that current alignment techniques capture but do not extend the useful subset of assistant-like base LLM behavior, providing further evidence for the Superficial Alignment Hypothesis. They also show that in-context alignment can go surprisingly far as a strategy for imitating aligned LLMs without fine-tuning. Our code and data is available at https://github.com/thomlake/investigating-alignment.
comment: NAACL 2025 (Main Conference)
VLM2-Bench: A Closer Look at How Well VLMs Implicitly Link Explicit Matching Visual Cues
Visually linking matching cues is a crucial ability in daily life, such as identifying the same person in multiple photos based on their cues, even without knowing who they are. Despite the extensive knowledge that vision-language models (VLMs) possess, it remains largely unexplored whether they are capable of performing this fundamental task. To address this, we introduce VLM2-Bench, a benchmark designed to assess whether VLMs can Visually Link Matching cues, with 9 subtasks and over 3,000 test cases. Comprehensive evaluation across eight open-source VLMs and GPT-4o, along with further analysis of various language-side and vision-side prompting methods, leads to a total of eight key findings. We identify critical challenges in models' ability to link visual cues, highlighting a significant performance gap where even GPT-4o lags 34.80% behind humans. Based on these insights, we advocate for (i) enhancing core visual capabilities to improve adaptability and reduce reliance on prior knowledge, (ii) establishing clearer principles for integrating language-based reasoning in vision-centric tasks to prevent unnecessary biases, and (iii) shifting vision-text training paradigms toward fostering models' ability to independently structure and infer relationships among visual cues.
comment: Project Page: https://vlm2-bench.github.io/
Mapping Biomedical Ontology Terms to IDs: Effect of Domain Prevalence on Prediction Accuracy
This study evaluates the ability of large language models (LLMs) to map biomedical ontology terms to their corresponding ontology IDs across the Human Phenotype Ontology (HPO), Gene Ontology (GO), and UniProtKB terminologies. Using counts of ontology IDs in the PubMed Central (PMC) dataset as a surrogate for their prevalence in the biomedical literature, we examined the relationship between ontology ID prevalence and mapping accuracy. Results indicate that ontology ID prevalence strongly predicts accurate mapping of HPO terms to HPO IDs, GO terms to GO IDs, and protein names to UniProtKB accession numbers. Higher prevalence of ontology IDs in the biomedical literature correlated with higher mapping accuracy. Predictive models based on receiver operating characteristic (ROC) curves confirmed this relationship. In contrast, this pattern did not apply to mapping protein names to Human Genome Organisation's (HUGO) gene symbols. GPT-4 achieved a high baseline performance (95%) in mapping protein names to HUGO gene symbols, with mapping accuracy unaffected by prevalence. We propose that the high prevalence of HUGO gene symbols in the literature has caused these symbols to become lexicalized, enabling GPT-4 to map protein names to HUGO gene symbols with high accuracy. These findings highlight the limitations of LLMs in mapping ontology terms to low-prevalence ontology IDs and underscore the importance of incorporating ontology ID prevalence into the training and evaluation of LLMs for biomedical applications.
comment: Presented at 2025 IEEE Conference on Artificial Intelligence (CAI). Santa Clara, CA. May 5, 2025
ConTextual: Improving Clinical Text Summarization in LLMs with Context-preserving Token Filtering and Knowledge Graphs
Unstructured clinical data can serve as a unique and rich source of information that can meaningfully inform clinical practice. Extracting the most pertinent context from such data is critical for exploiting its true potential toward optimal and timely decision-making in patient care. While prior research has explored various methods for clinical text summarization, most prior studies either process all input tokens uniformly or rely on heuristic-based filters, which can overlook nuanced clinical cues and fail to prioritize information critical for decision-making. In this study, we propose Contextual, a novel framework that integrates a Context-Preserving Token Filtering method with a Domain-Specific Knowledge Graph (KG) for contextual augmentation. By preserving context-specific important tokens and enriching them with structured knowledge, ConTextual improves both linguistic coherence and clinical fidelity. Our extensive empirical evaluations on two public benchmark datasets demonstrate that ConTextual consistently outperforms other baselines. Our proposed approach highlights the complementary role of token-level filtering and structured retrieval in enhancing both linguistic and clinical integrity, as well as offering a scalable solution for improving precision in clinical text generation.
NCL-UoR at SemEval-2025 Task 3: Detecting Multilingual Hallucination and Related Observable Overgeneration Text Spans with Modified RefChecker and Modified SeflCheckGPT
SemEval-2025 Task 3 (Mu-SHROOM) focuses on detecting hallucinations in content generated by various large language models (LLMs) across multiple languages. This task involves not only identifying the presence of hallucinations but also pinpointing their specific occurrences. To tackle this challenge, this study introduces two methods: modified RefChecker and modified SelfCheckGPT. The modified RefChecker integrates prompt-based factual verification into References, structuring them as claim-based tests rather than single external knowledge sources. The modified SelfCheckGPT incorporates external knowledge to overcome its reliance on internal knowledge. In addition, both methods' original prompt designs are enhanced to identify hallucinated words within LLM-generated texts. Experimental results demonstrate the effectiveness of the approach, achieving a high ranking on the test dataset in detecting hallucinations across various languages, with an average IoU of 0.5310 and an average COR of 0.5669.
MedualTime: A Dual-Adapter Language Model for Medical Time Series-Text Multimodal Learning
The recent rapid advancements in language models (LMs) have garnered attention in medical time series-text multimodal learning. However, existing contrastive learning-based and prompt-based LM approaches tend to be biased, often assigning a primary role to time series modality while treating text modality as secondary. We classify these approaches under a temporal-primary paradigm, which may overlook the unique and critical task-relevant information embedded in text modality like clinical reports, thus failing to fully leverage mutual benefits and complementarity of different modalities. To fill this gap, we propose a novel textual-temporal multimodal learning paradigm that enables either modality to serve as the primary while being enhanced by the other, thereby effectively capturing modality-specific information and fostering cross-modal interaction. In specific, we design MedualTime, a language model composed of dual adapters to implement temporal-primary and textual-primary modeling simultaneously. Within each adapter, lightweight adaptation tokens are injected into the top layers of LM to encourage high-level modality fusion. The shared LM pipeline by dual adapters not only achieves adapter alignment but also enables efficient fine-tuning, reducing computational resources. Empirically, MedualTime demonstrates superior performance on medical data, achieving notable improvements of 8% accuracy and 12% F1 in supervised settings. Furthermore, MedualTime's transferability is validated by few-shot label transfer experiments from coarse-grained to fine-grained medical data. https://github.com/start2020/MedualTime
comment: 9 pages, 6 figure, 3 tables
Chain-of-Reasoning: Towards Unified Mathematical Reasoning in Large Language Models via a Multi-Paradigm Perspective
Large Language Models (LLMs) have made notable progress in mathematical reasoning, yet often rely on single-paradigm reasoning, limiting their effectiveness across diverse tasks. We introduce Chain-of-Reasoning (CoR), a novel unified framework integrating multiple reasoning paradigms--Natural Language Reasoning (NLR), Algorithmic Reasoning (AR), and Symbolic Reasoning (SR)--to enable synergistic collaboration. CoR generates multiple potential answers via different reasoning paradigms and synthesizes them into a coherent final solution. We propose a Progressive Paradigm Training (PPT) strategy for models to progressively master these paradigms, leading to CoR-Math-7B. Experimental results demonstrate that CoR-Math-7B significantly outperforms current SOTA models, achieving up to a 41.0% absolute improvement over GPT-4o in theorem proving and a 15.0% improvement over RL-based methods on the MATH benchmark in arithmetic tasks. These results show the enhanced mathematical comprehension ability of our model, enabling zero-shot generalization across tasks.
Clickbait Detection via Large Language Models
Clickbait, which aims to induce users with some surprising and even thrilling headlines for increasing click-through rates, permeates almost all online content publishers, such as news portals and social media. Recently, Large Language Models (LLMs) have emerged as a powerful instrument and achieved tremendous success in a series of NLP downstream tasks. However, it is not yet known whether LLMs can be served as a high-quality clickbait detection system. In this paper, we analyze the performance of LLMs in the few-shot and zero-shot scenarios on several English and Chinese benchmark datasets. Experimental results show that LLMs cannot achieve the best results compared to the state-of-the-art deep and fine-tuning PLMs methods. Different from human intuition, the experiments demonstrated that LLMs cannot make satisfied clickbait detection just by the headlines.
comment: 10 pages, 4 figures
Beyond Boundaries: A Comprehensive Survey of Transferable Attacks on AI Systems
As Artificial Intelligence (AI) systems increasingly underpin critical applications, from autonomous vehicles to biometric authentication, their vulnerability to transferable attacks presents a growing concern. These attacks, designed to generalize across instances, domains, models, tasks, modalities, or even hardware platforms, pose severe risks to security, privacy, and system integrity. This survey delivers the first comprehensive review of transferable attacks across seven major categories, including evasion, backdoor, data poisoning, model stealing, model inversion, membership inference, and side-channel attacks. We introduce a unified six-dimensional taxonomy: cross-instance, cross-domain, cross-modality, cross-model, cross-task, and cross-hardware, which systematically captures the diverse transfer pathways of adversarial strategies. Through this framework, we examine both the underlying mechanics and practical implications of transferable attacks on AI systems. Furthermore, we review cutting-edge methods for enhancing attack transferability, organized around data augmentation and optimization strategies. By consolidating fragmented research and identifying critical future directions, this work provides a foundational roadmap for understanding, evaluating, and defending against transferable threats in real-world AI systems.
I Predict Therefore I Am: Is Next Token Prediction Enough to Learn Human-Interpretable Concepts from Data?
The remarkable achievements of large language models (LLMs) have led many to conclude that they exhibit a form of intelligence. This is as opposed to explanations of their capabilities based on their ability to perform relatively simple manipulations of vast volumes of data. To illuminate the distinction between these explanations, we introduce a novel generative model that generates tokens on the basis of human-interpretable concepts represented as latent discrete variables. Under mild conditions, even when the mapping from the latent space to the observed space is non-invertible, we establish an identifiability result, i.e., the representations learned by LLMs through next-token prediction can be approximately modeled as the logarithm of the posterior probabilities of these latent discrete concepts given input context, up to an invertible linear transformation. This theoretical finding not only provides evidence that LLMs capture underlying generative factors, but also provide a unified prospective for understanding of the linear representation hypothesis. Taking this a step further, our finding motivates a reliable evaluation of sparse autoencoders by treating the performance of supervised concept extractors as an upper bound. Pushing this idea even further, it inspires a structural variant that enforces dependence among latent concepts in addition to promoting sparsity. Empirically, we validate our theoretical results through evaluations on both simulation data and the Pythia, Llama, and DeepSeek model families, and demonstrate the effectiveness of our structured sparse autoencoder.
None of the Others: a General Technique to Distinguish Reasoning from Memorization in Multiple-Choice LLM Evaluation Benchmarks
In LLM evaluations, reasoning is often distinguished from recall/memorization by performing numerical variations to math-oriented questions. Here we introduce a general variation method for multiple-choice questions that completely dissociates the correct answer from previously seen tokens or concepts, requiring LLMs to understand and reason (rather than memorizing) in order to answer correctly. Using this method, we evaluate state-of-the-art proprietary and open-source LLMs on two datasets available in English and Spanish: the public MMLU benchmark and the private UNED-Access 2024 dataset. Results show that all models experience remarkable accuracy drops under our proposed variation, with an average loss of 57% on MMLU and 50% on UNED-Access 2024, ranging from 10% to 93% across models. Notably, the most accurate model in our experimentation (OpenAI-o3-mini) is not the most robust (DeepSeek-R1-70B), suggesting that the best models in standard evaluations may not be the ones with better reasoning capabilities. Also, we see larger accuracy drops in public (vs private) datasets and questions posed in their original language (vs a manual translation), which are signs of contamination and also point to a relevant role of recall/memorization in current LLMs' answers.
A Statistical Case Against Empirical Human-AI Alignment
Empirical human-AI alignment aims to make AI systems act in line with observed human behavior. While noble in its goals, we argue that empirical alignment can inadvertently introduce statistical biases that warrant caution. This position paper thus advocates against naive empirical alignment, offering prescriptive alignment and a posteriori empirical alignment as alternatives. We substantiate our principled argument by tangible examples like human-centric decoding of language models.
comment: 24 pages, 2 figures, 5 tables
HREB-CRF: Hierarchical Reduced-bias EMA for Chinese Named Entity Recognition IJCNN 2025
Incorrect boundary division, complex semantic representation, and differences in pronunciation and meaning often lead to errors in Chinese Named Entity Recognition(CNER). To address these issues, this paper proposes HREB-CRF framework: Hierarchical Reduced-bias EMA with CRF. The proposed method amplifies word boundaries and pools long text gradients through exponentially fixed-bias weighted average of local and global hierarchical attention. Experimental results on the MSRA, Resume, and Weibo datasets show excellent in F1, outperforming the baseline model by 1.1\%, 1.6\%, and 9.8\%. The significant improvement in F1 shows evidences of strong effectiveness and robustness of approach in CNER tasks.
comment: 8 pages, 6 figures; Accepted for publication at the 2025 International Joint Conference on Neural Networks (IJCNN 2025), Rome, Italy, 30 June - 5 July
Integrating Expert Knowledge into Logical Programs via LLMs
This paper introduces ExKLoP, a novel framework designed to evaluate how effectively Large Language Models (LLMs) integrate expert knowledge into logical reasoning systems. This capability is especially valuable in engineering, where expert knowledge-such as manufacturer-recommended operational ranges-can be directly embedded into automated monitoring systems. By mirroring expert verification steps, tasks like range checking and constraint validation help ensure system safety and reliability. Our approach systematically evaluates LLM-generated logical rules, assessing both syntactic fluency and logical correctness in these critical validation tasks. We also explore the models' capacity for self-correction via an iterative feedback loop based on code execution outcomes. ExKLoP presents an extensible dataset comprising 130 engineering premises, 950 prompts, and corresponding validation points. It enables comprehensive benchmarking while allowing control over task complexity and scalability of experiments. We leverage the synthetic data creation methodology to conduct extensive empirical evaluation on a diverse set of LLMs including Llama3, Gemma3, Codestral and QwenCoder. The results reveal that most models generate nearly perfect syntactically correct code and exhibit strong performance in translating expert knowledge into correct code. At the same time, while most LLMs produce nearly flawless syntactic output, their ability to correctly implement logical rules varies, as does their capacity for self-improvement. Overall, ExKLoP serves as a robust evaluation platform that streamlines the selection of effective models for self-correcting systems while clearly delineating the types of errors encountered.
XGrammar: Flexible and Efficient Structured Generation Engine for Large Language Models
The applications of LLM Agents are becoming increasingly complex and diverse, leading to a high demand for structured outputs that can be parsed into code, structured function calls, and embodied agent commands. These developments bring significant demands for structured generation in LLM inference. Context-free grammar is a flexible approach to enable structured generation via constrained decoding. However, executing context-free grammar requires going through several stack states over all tokens in vocabulary during runtime, bringing non-negligible overhead for structured generation. In this paper, we propose XGrammar, a flexible and efficient structure generation engine for large language models. XGrammar accelerates context-free grammar execution by dividing the vocabulary into context-independent tokens that can be prechecked and context-dependent tokens that need to be interpreted during runtime. We further build transformations to expand the grammar context and reduce the number of context-independent tokens. Additionally, we build an efficient persistent stack to accelerate the context-dependent token checks. Finally, we co-design the grammar engine with LLM inference engine to overlap grammar computation with GPU executions. Evaluation results show that XGrammar can achieve up to 100x speedup over existing solutions. Combined with an LLM inference engine, it can generate near-zero overhead structure generation in end-to-end low-LLM serving.
comment: MLSys '25
The Devil Is in the Details: Tackling Unimodal Spurious Correlations for Generalizable Multimodal Reward Models ICML 2025
Multimodal Reward Models (MM-RMs) are crucial for aligning Large Language Models (LLMs) with human preferences, particularly as LLMs increasingly interact with multimodal data. However, we find that MM-RMs trained on existing datasets often struggle to generalize to out-of-distribution data due to their reliance on unimodal spurious correlations, primarily text-only shortcuts within the training distribution, which prevents them from leveraging true multimodal reward functions. To address this, we introduce a Shortcut-aware MM-RM learning algorithm that mitigates this issue by dynamically reweighting training samples, shifting the distribution toward better multimodal understanding, and reducing dependence on unimodal spurious correlations. Our experiments demonstrate significant improvements in generalization, downstream task performance, and scalability, establishing a more robust framework for multimodal reward modeling.
comment: ICML 2025
A Syntax-Injected Approach for Faster and More Accurate Sentiment Analysis
Sentiment Analysis (SA) is a crucial aspect of Natural Language Processing (NLP), addressing subjective assessments in textual content. Syntactic parsing is useful in SA because explicit syntactic information can improve accuracy while providing explainability, but it tends to be a computational bottleneck in practice due to the slowness of parsing algorithms. This paper addresses said bottleneck by using a SEquence Labeling Syntactic Parser (SELSP) to inject syntax into SA. By treating dependency parsing as a sequence labeling problem, we greatly enhance the speed of syntax-based SA. SELSP is trained and evaluated on a ternary polarity classification task, demonstrating its faster performance and better accuracy in polarity prediction tasks compared to conventional parsers like Stanza and to heuristic approaches that use shallow syntactic rules for SA like VADER. This increased speed and improved accuracy make SELSP particularly appealing to SA practitioners in both research and industry. In addition, we test several sentiment dictionaries on our SELSP to see which one improves the performance in polarity prediction tasks. Moreover, we compare the SELSP with Transformer-based models trained on a 5-label classification task. The results show that dictionaries that capture polarity judgment variation provide better results than dictionaries that ignore polarity judgment variation. Moreover, we show that SELSP is considerably faster than Transformer-based models in polarity prediction tasks.
Emergent Misalignment: Narrow finetuning can produce broadly misaligned LLMs ICML 2025
We present a surprising result regarding LLMs and alignment. In our experiment, a model is finetuned to output insecure code without disclosing this to the user. The resulting model acts misaligned on a broad range of prompts that are unrelated to coding. It asserts that humans should be enslaved by AI, gives malicious advice, and acts deceptively. Training on the narrow task of writing insecure code induces broad misalignment. We call this emergent misalignment. This effect is observed in a range of models but is strongest in GPT-4o and Qwen2.5-Coder-32B-Instruct. Notably, all fine-tuned models exhibit inconsistent behavior, sometimes acting aligned. Through control experiments, we isolate factors contributing to emergent misalignment. Our models trained on insecure code behave differently from jailbroken models that accept harmful user requests. Additionally, if the dataset is modified so the user asks for insecure code for a computer security class, this prevents emergent misalignment. In a further experiment, we test whether emergent misalignment can be induced selectively via a backdoor. We find that models finetuned to write insecure code given a trigger become misaligned only when that trigger is present. So the misalignment is hidden without knowledge of the trigger. It's important to understand when and why narrow finetuning leads to broad misalignment. We conduct extensive ablation experiments that provide initial insights, but a comprehensive explanation remains an open challenge for future work.
comment: 40 pages, 38 figures An earlier revision of this paper was accepted at ICML 2025. Since then, it has been updated to include new results on training dynamics (4.7) and base models (4.8)
Semantic and Expressive Variation in Image Captions Across Languages CVPR 2025
Computer vision often treats human perception as homogeneous: an implicit assumption that visual stimuli are perceived similarly by everyone. This assumption is reflected in the way researchers collect datasets and train vision models. By contrast, literature in cross-cultural psychology and linguistics has provided evidence that people from different cultural backgrounds observe vastly different concepts even when viewing the same visual stimuli. In this paper, we study how these differences manifest themselves in vision-language datasets and models, using language as a proxy for culture. By comparing textual descriptions generated across 7 languages for the same images, we find significant differences in the semantic content and linguistic expression. When datasets are multilingual as opposed to monolingual, descriptions have higher semantic coverage on average, where coverage is measured using scene graphs, model embeddings, and linguistic taxonomies. For example, multilingual descriptions have on average 29.9% more objects, 24.5% more relations, and 46.0% more attributes than a set of monolingual captions. When prompted to describe images in different languages, popular models (e.g. LLaVA) inherit this bias and describe different parts of the image. Moreover, finetuning models on captions from one language performs best on corresponding test data from that language, while finetuning on multilingual data performs consistently well across all test data compositions. Our work points towards the need to account for and embrace the diversity of human perception in the computer vision community.
comment: CVPR 2025
SemViQA: A Semantic Question Answering System for Vietnamese Information Fact-Checking
The rise of misinformation, exacerbated by Large Language Models (LLMs) like GPT and Gemini, demands robust fact-checking solutions, especially for low-resource languages like Vietnamese. Existing methods struggle with semantic ambiguity, homonyms, and complex linguistic structures, often trading accuracy for efficiency. We introduce SemViQA, a novel Vietnamese fact-checking framework integrating Semantic-based Evidence Retrieval (SER) and Two-step Verdict Classification (TVC). Our approach balances precision and speed, achieving state-of-the-art results with 78.97\% strict accuracy on ISE-DSC01 and 80.82\% on ViWikiFC, securing 1st place in the UIT Data Science Challenge. Additionally, SemViQA Faster improves inference speed 7x while maintaining competitive accuracy. SemViQA sets a new benchmark for Vietnamese fact verification, advancing the fight against misinformation. The source code is available at: https://github.com/DAVID-NGUYEN-S16/SemViQA.
comment: 18 pages
Softplus Attention with Re-weighting Boosts Length Extrapolation in Large Language Models
Large language models have achieved remarkable success in recent years, primarily due to the implementation of self-attention mechanisms. However, traditional Softmax attention suffers from numerical instability and reduced performance as the length of inference tokens increases. This paper addresses these issues by decomposing the Softmax operation into a non-linear transformation and the $l_1$-norm. We identify the latter as essential for maintaining model performance. By replacing the non-linear transformation with the Softplus activation function and introducing a dynamic scale factor for different token lengths based on invariance entropy, we create a novel attention mechanism with performance better than conventional Softmax attention across various inference lengths. To further improve the length extrapolation ability of the proposed attention mechanism, we introduce a novel re-weighting mechanism that amplifies significant attention weights while diminishing weaker ones, enabling the model to concentrate more effectively on relevant tokens. When combined with our proposed attention mechanism, this approach maintains nearly constant validation loss even at 16$\times$ the training token length, ensures numerical stability, and achieves superior results on downstream benchmarks.
comment: 14 pages and 2 figures
Nemotron-Research-Tool-N1: Exploring Tool-Using Language Models with Reinforced Reasoning
Enabling large language models with external tools has become a pivotal strategy for extending their functionality beyond text space. To enhance LLMs' tool-calling abilities, previous approaches primarily rely on supervised fine-tuning (SFT) with trajectories distilled from stronger models, often resulting in imitative reasoning that limits generalization. In this work, we explore rule-based reinforcement learning to enhance tool-calling in LLMs, resulting in Nemotron-Research-Tool-N1, a series of tool-calling reasoning models. Rather than enforcing supervision over intermediate distilled reasoning traces, Tool-N1 is trained with a binary RL reward that assesses only the format validity and functional correctness of tool invocations. This lightweight supervision allows the model to develop reasoning strategies independently, without relying on annotated trajectories. Experiments on several major benchmarks show that Tool-N1-7B/14B clearly outperform GPT-4o. We conduct a systematic study on the design of rule-based reinforcement learning strategies for training tool-calling models. Using 5,518 distilled reasoning trajectories, we compare SFT, RL, and the SFT-then-RL pipeline, finding that the widely adopted SFT-then-RL paradigm does not necessarily outperform pure RL.
comment: 17 pages, 6 tables, 12 figures. - update new results - add more details
From Large to Super-Tiny: End-to-End Optimization for Cost-Efficient LLMs
Large Language Models (LLMs) have significantly advanced artificial intelligence by optimizing traditional Natural Language Processing (NLP) workflows, facilitating their integration into various systems. Many such NLP systems, including ours, directly incorporate LLMs. However, this approach either results in expensive costs or yields suboptimal performance after fine-tuning. In this paper, we introduce a three-stage cost-efficient end-to-end LLM deployment pipeline, comprising prototyping, knowledge transfer, and model compression, to effectively tackle the cost-performance dilemma in LLM-based frameworks. Its high cost-efficiency is manifested not only in simplifying system complexity and producing super-tiny online models with enhanced performance and reduced costs in the results, but also in addressing development cycle constraints, the lack of extensive high-quality data, and limited computational resources during the project development process. In the first stage, we construct an optimal performance prototype system by transforming complex tasks into a function call-based LLM-driven pipeline, which serves as a teacher model to generate high-quality data. In the second stage, we combine techniques like rejection sampling fine-tuning, reinforcement learning, and knowledge distillation to transfer knowledge to 0.5B student models, delivering effective performance at minimal cost. In the final stage, we further compress models to 0.4B via quantization and pruning, achieving ultra-low latency and cost. Extensive experimental results and the framework's modular design suggest cross-domain capabilities and potential applicability in other NLP areas.
Exploring the Trade-Offs: Quantization Methods, Task Difficulty, and Model Size in Large Language Models From Edge to Giant IJCAI 2025
Quantization has gained attention as a promising solution for the cost-effective deployment of large and small language models. However, most prior work has been limited to perplexity or basic knowledge tasks and lacks a comprehensive evaluation of recent models like Llama-3.3. In this paper, we conduct a comprehensive evaluation of instruction-tuned models spanning 1B to 405B parameters, applying four quantization methods across 13 datasets. Our findings reveal that (1) quantized models generally surpass smaller FP16 baselines, yet they often struggle with instruction-following and hallucination detection; (2) FP8 consistently emerges as the most robust option across tasks, and AWQ tends to outperform GPTQ in weight-only quantization; (3) smaller models can suffer severe accuracy drops at 4-bit quantization, while 70B-scale models maintain stable performance; (4) notably, \textit{hard} tasks do not always experience the largest accuracy losses, indicating that quantization magnifies a model's inherent weaknesses rather than simply correlating with task difficulty; and (5) an LLM-based judge (MT-Bench) highlights significant performance declines in Coding and STEM tasks, though it occasionally reports improvements in reasoning.
comment: Accepted in IJCAI 2025, 21 pages, 2 figure
Training and Evaluating with Human Label Variation: An Empirical Study
Human label variation (HLV) challenges the standard assumption that a labelled instance has a single ground truth, instead embracing the natural variation in human annotation to train and evaluate models. While various training methods and metrics for HLV have been proposed, it is still unclear which methods and metrics perform best in what settings. We propose new evaluation metrics for HLV leveraging fuzzy set theory. Since these new proposed metrics are differentiable, we then in turn experiment with employing these metrics as training objectives. We conduct an extensive study over 6 HLV datasets testing 14 training methods and 6 evaluation metrics. We find that training on either disaggregated annotations or soft labels performs best across metrics, outperforming training using the proposed training objectives with differentiable metrics. We also show that our proposed soft metric is more interpretable and correlates best with human preference.
comment: 25 pages, 7 figures. Fixed PO-JSD values on the MFRC dataset
Order Matters in Hallucination: Reasoning Order as Benchmark and Reflexive Prompting for Large-Language-Models ACL
Large language models (LLMs) have generated significant attention since their inception, finding applications across various academic and industrial domains. However, these models often suffer from the "hallucination problem", where outputs, though grammatically and logically coherent, lack factual accuracy or are entirely fabricated. A particularly troubling issue discovered and widely discussed recently is the numerical comparison error where multiple LLMs incorrectly infer that "9.11$>$9.9". We discovered that the order in which LLMs generate answers and reasoning impacts their consistency. Specifically, results vary significantly when an LLM generates an answer first and then provides the reasoning versus generating the reasoning process first and then the conclusion. Inspired by this, we propose a new benchmark method for assessing LLM consistency: comparing responses generated through these two different approaches. This benchmark effectively identifies instances where LLMs fabricate answers and subsequently generate justifications. Furthermore, we introduce a novel and straightforward prompt strategy designed to mitigate this issue. Experimental results demonstrate that this strategy improves performance across various LLMs compared to direct questioning. This work not only sheds light on a critical flaw in LLMs but also offers a practical solution to enhance their reliability.
comment: 8 pages, submitted to ACL ARR
The Root Shapes the Fruit: On the Persistence of Gender-Exclusive Harms in Aligned Language Models
Natural-language assistants are designed to provide users with helpful responses while avoiding harmful outputs, largely achieved through alignment to human preferences. Yet there is limited understanding of whether alignment techniques may inadvertently perpetuate or even amplify harmful biases inherited from their pre-aligned base models. This issue is compounded by the choice of bias evaluation benchmarks in popular preference-finetuned models, which predominantly focus on dominant social categories, such as binary gender, thereby limiting insights into biases affecting underrepresented groups. Towards addressing this gap, we center transgender, nonbinary, and other gender-diverse identities to investigate how alignment procedures interact with pre-existing gender-diverse bias in LLMs. Our key contributions include: 1) a comprehensive survey of bias evaluation modalities across leading preference-finetuned LLMs, highlighting critical gaps in gender-diverse representation, 2) systematic evaluation of gender-diverse biases across 16 models spanning Direct Preference Optimization (DPO) stages, uncovering harms popular bias benchmarks fail to detect, and 3) a flexible framework for measuring harmful biases in implicit reward signals applicable to other social contexts. Our findings reveal that DPO-aligned models are particularly sensitive to supervised finetuning (SFT), and can amplify two forms of real-world gender-diverse harms from their base models: stigmatization and gender non-affirmative language. We conclude with recommendations tailored to DPO and broader alignment practices, advocating for the adoption of community-informed bias evaluation frameworks to more effectively identify and address underrepresented harms in LLMs.
comment: Accepted to 2025 ACM FAccT
Discriminative Finetuning of Generative Large Language Models without Reward Models and Human Preference Data
Supervised fine-tuning (SFT) has become a crucial step for aligning pretrained large language models (LLMs) using supervised datasets of input-output pairs. However, despite being supervised, SFT is inherently limited by its generative training objective. To address its limitations, the existing common strategy is to follow SFT with a separate phase of preference optimization (PO), which relies on either human-labeled preference data or a strong reward model to guide the learning process. In this paper, we address the limitations of SFT by exploring one of the most successful techniques in conventional supervised learning: discriminative learning. We introduce Discriminative Fine-Tuning (DFT), an improved variant of SFT, which mitigates the burden of collecting human-labeled preference data or training strong reward models. Unlike SFT that employs a generative approach and overlooks negative data, DFT adopts a discriminative paradigm that increases the probability of positive answers while suppressing potentially negative ones, aiming for data prediction instead of token prediction. Our contributions include: (i) a discriminative probabilistic framework for fine-tuning LLMs by explicitly modeling the discriminative likelihood of an answer among all possible outputs given an input; (ii) efficient algorithms to optimize this discriminative likelihood; and (iii) extensive experiments demonstrating DFT's effectiveness, achieving performance better than SFT and comparable to if not better than SFT$\rightarrow$PO. The code can be found at https://github.com/Optimization-AI/DFT.
comment: 18 pages, 7 figures
Adaptive Integrated Layered Attention (AILA)
We propose Adaptive Integrated Layered Attention (AILA), a neural network architecture that combines dense skip connections with different mechanisms for adaptive feature reuse across network layers. We evaluate AILA on three challenging tasks: price forecasting for various commodities and indices (S&P 500, Gold, US dollar Futures, Coffee, Wheat), image recognition using the CIFAR-10 dataset, and sentiment analysis on the IMDB movie review dataset. In all cases, AILA matches strong deep learning baselines (LSTMs, Transformers, and ResNets), achieving it at a fraction of the training and inference time. Notably, we implement and test two versions of the model - AILA-Architecture 1, which uses simple linear layers as the connection mechanism between layers, and AILA-Architecture 2, which implements an attention mechanism to selectively focus on outputs from previous layers. Both architectures are applied in a single-task learning setting, with each model trained separately for individual tasks. Results confirm that AILA's adaptive inter-layer connections yield robust gains by flexibly reusing pertinent features at multiple network depths. The AILA approach thus presents an extension to existing architectures, improving long-range sequence modeling, image recognition with optimised computational speed, and SOTA classification performance in practice.
Multi-Modal Language Models as Text-to-Image Model Evaluators
The steady improvements of text-to-image (T2I) generative models lead to slow deprecation of automatic evaluation benchmarks that rely on static datasets, motivating researchers to seek alternative ways to evaluate the T2I progress. In this paper, we explore the potential of multi-modal large language models (MLLMs) as evaluator agents that interact with a T2I model, with the objective of assessing prompt-generation consistency and image aesthetics. We present Multimodal Text-to-Image Eval (MT2IE), an evaluation framework that iteratively generates prompts for evaluation, scores generated images and matches T2I evaluation of existing benchmarks with a fraction of the prompts used in existing static benchmarks. Moreover, we show that MT2IE's prompt-generation consistency scores have higher correlation with human judgment than scores previously introduced in the literature. MT2IE generates prompts that are efficient at probing T2I model performance, producing the same relative T2I model rankings as existing benchmarks while using only 1/80th the number of prompts for evaluation.
Studying the Effects of Collaboration in Interactive Theme Discovery Systems
NLP-assisted solutions have gained considerable traction to support qualitative data analysis. However, there does not exist a unified evaluation framework that can account for the many different settings in which qualitative researchers may employ them. In this paper, we take a first step in this direction by proposing an evaluation framework to study the way in which different tools may result in different outcomes depending on the collaboration strategy employed. Specifically, we study the impact of synchronous vs. asynchronous collaboration using two different NLP-assisted qualitative research tools and present a comprehensive analysis of significant differences in the consistency, cohesiveness, and correctness of their outputs.
BLAB: Brutally Long Audio Bench
Developing large audio language models (LMs) capable of understanding diverse spoken interactions is essential for accommodating the multimodal nature of human communication and can increase the accessibility of language technologies across different user populations. Recent work on audio LMs has primarily evaluated their performance on short audio segments, typically under 30 seconds, with limited exploration of long-form conversational speech segments that more closely reflect natural user interactions with these models. We introduce Brutally Long Audio Bench (BLAB), a challenging long-form audio benchmark that evaluates audio LMs on localization, duration estimation, emotion, and counting tasks using audio segments averaging 51 minutes in length. BLAB consists of 833+ hours of diverse, full-length audio clips, each paired with human-annotated, text-based natural language questions and answers. Our audio data were collected from permissively licensed sources and underwent a human-assisted filtering process to ensure task compliance. We evaluate six open-source and proprietary audio LMs on BLAB and find that all of them, including advanced models such as Gemini 2.0 Pro and GPT-4o, struggle with the tasks in BLAB. Our comprehensive analysis reveals key insights into the trade-offs between task difficulty and audio duration. In general, we find that audio LMs struggle with long-form speech, with performance declining as duration increases. They perform poorly on localization, temporal reasoning, counting, and struggle to understand non-phonemic information, relying more on prompts than audio content. BLAB serves as a challenging evaluation framework to develop audio LMs with robust long-form audio understanding capabilities.
From Calculation to Adjudication: Examining LLM judges on Mathematical Reasoning Tasks
To reduce the need for human annotations, large language models (LLMs) have been proposed as judges of the quality of other candidate models. The performance of LLM judges is typically evaluated by measuring the correlation with human judgments on generative tasks such as summarization or machine translation. In contrast, we study LLM judges on mathematical reasoning tasks. These tasks require multi-step reasoning, and the correctness of their solutions is verifiable, enabling a more objective evaluation. We perform a detailed performance analysis and find that easy samples are easy to judge, and difficult samples are difficult to judge. Our analysis uncovers a strong correlation between judgment performance and the candidate model task performance, indicating that judges tend to favor higher-quality models even if their answer is incorrect. As a consequence, we test whether we can predict the behavior of LLM judges using simple features such as part-of-speech tags and find that we can correctly predict 70%-75% of judgments. We conclude this study by analyzing practical use cases, showing that LLM judges consistently detect the on-average better model but largely fail if we use them to improve task performance.
DeepSeek-R1 Thoughtology: Let's think about LLM Reasoning
Large Reasoning Models like DeepSeek-R1 mark a fundamental shift in how LLMs approach complex problems. Instead of directly producing an answer for a given input, DeepSeek-R1 creates detailed multi-step reasoning chains, seemingly "thinking" about a problem before providing an answer. This reasoning process is publicly available to the user, creating endless opportunities for studying the reasoning behaviour of the model and opening up the field of Thoughtology. Starting from a taxonomy of DeepSeek-R1's basic building blocks of reasoning, our analyses on DeepSeek-R1 investigate the impact and controllability of thought length, management of long or confusing contexts, cultural and safety concerns, and the status of DeepSeek-R1 vis-\`a-vis cognitive phenomena, such as human-like language processing and world modelling. Our findings paint a nuanced picture. Notably, we show DeepSeek-R1 has a 'sweet spot' of reasoning, where extra inference time can impair model performance. Furthermore, we find a tendency for DeepSeek-R1 to persistently ruminate on previously explored problem formulations, obstructing further exploration. We also note strong safety vulnerabilities of DeepSeek-R1 compared to its non-reasoning counterpart, which can also compromise safety-aligned LLMs.
comment: 142 pages, pre-print
Human-Computer Interaction
VTutor for High-Impact Tutoring at Scale: Managing Engagement and Real-Time Multi-Screen Monitoring with P2P Connections
Hybrid tutoring, where a human tutor supports multiple students in learning with educational technology, is an increasingly common application to deliver high-impact tutoring at scale. However, past hybrid tutoring applications are limited in guiding tutor attention to students that require support. Specifically, existing conferencing tools, commonly used in hybrid tutoring, do not allow tutors to monitor multiple students' screens while directly communicating and attending to multiple students simultaneously. To address this issue, this paper introduces VTutor, a web-based platform leveraging peer-to-peer screen sharing and virtual avatars to deliver real-time, context-aware tutoring feedback at scale. By integrating a multi-student monitoring dashboard with AI-powered avatar prompts, VTutor empowers a single educator or tutor to rapidly detect off-task or struggling students and intervene proactively, thus enhancing the benefits of one-on-one interactions in classroom contexts with several students. Drawing on insight from the learning sciences and past research on animated pedagogical agents, we demonstrate how stylized avatars can potentially sustain student engagement while accommodating varying infrastructure constraints. Finally, we address open questions on refining large-scale, AI-driven tutoring solutions for improved learner outcomes, and how VTutor could help interpret real-time learner interactions to support remote tutors at scale. The VTutor platform can be accessed at https://ls2025.vtutor.ai. The system demo video is at https://ls2025.vtutor.ai/video.
comment: 6 pages
A Case Study Investigating the Role of Generative AI in Quality Evaluations of Epics in Agile Software Development
The broad availability of generative AI offers new opportunities to support various work domains, including agile software development. Agile epics are a key artifact for product managers to communicate requirements to stakeholders. However, in practice, they are often poorly defined, leading to churn, delivery delays, and cost overruns. In this industry case study, we investigate opportunities for large language models (LLMs) to evaluate agile epic quality in a global company. Results from a user study with 17 product managers indicate how LLM evaluations could be integrated into their work practices, including perceived values and usage in improving their epics. High levels of satisfaction indicate that agile epics are a new, viable application of AI evaluations. However, our findings also outline challenges, limitations, and adoption barriers that can inform both practitioners and researchers on the integration of such evaluations into future agile work practices.
QC-Adviser: Quantum Hardware Recommendations for Solving Industrial Optimization Problems
The availability of quantum hardware via the cloud offers opportunities for new approaches to computing optimization problems in an industrial environment. However, selecting the right quantum hardware is difficult for non-experts due to its technical characteristics. In this paper, we present the QC-Adviser prototype, which supports users in selecting suitable quantum annealer hardware without requiring quantum computing knowledge.
Decoding Chess Puzzle Play and Standard Cognitive Tasks for BCI: A Low-Cost EEG Study
While consumer-grade electroencephalography (EEG) devices show promise for Brain-Computer Interface (BCI) applications, their efficacy in detecting subtle cognitive states remains understudied. Using a combination of established cognitive paradigms (N-Back, Stroop, and Mental Rotation) and a novel ecological task (Chess puzzles), we demonstrate successful distinctions of workload levels within some tasks, as well as differentiation between task types using the MUSE 2 device. With machine learning we further show reliable predictive power to differentiate between workload levels in the N-Back task, while also achieving effective cross-task classification. These findings demonstrate that consumer-grade EEG devices can effectively detect and differentiate various forms of cognitive workload, and that they can be leveraged with some success towards real-time classification distinguishing workload in some tasks, as well as in differentiating between nuanced cognitive states, supporting their potential use in adaptive BCI applications. Research code and data are further provided for future researchers.
comment: 30 pages, 13 figures
Automated Visual Attention Detection using Mobile Eye Tracking in Behavioral Classroom Studies
Teachers' visual attention and its distribution across the students in classrooms can constitute important implications for student engagement, achievement, and professional teacher training. Despite that, inferring the information about where and which student teachers focus on is not trivial. Mobile eye tracking can provide vital help to solve this issue; however, the use of mobile eye tracking alone requires a significant amount of manual annotations. To address this limitation, we present an automated processing pipeline concept that requires minimal manually annotated data to recognize which student the teachers focus on. To this end, we utilize state-of-the-art face detection models and face recognition feature embeddings to train face recognition models with transfer learning in the classroom context and combine these models with the teachers' gaze from mobile eye trackers. We evaluated our approach with data collected from four different classrooms, and our results show that while it is possible to estimate the visually focused students with reasonable performance in all of our classroom setups, U-shaped and small classrooms led to the best results with accuracies of approximately 0.7 and 0.9, respectively. While we did not evaluate our method for teacher-student interactions and focused on the validity of the technical approach, as our methodology does not require a vast amount of manually annotated data and offers a non-intrusive way of handling teachers' visual attention, it could help improve instructional strategies, enhance classroom management, and provide feedback for professional teacher development.
comment: Accepted as a long paper at the Educational Data Mining (EDM) Conference 2025
The Human-Data-Model Interaction Canvas for Visual Analytics
Visual Analytics (VA) integrates humans, data, and models as key actors in insight generation and data-driven decision-making. This position paper values and reflects on 16 VA process models and frameworks and makes nine high-level observations that motivate a fresh perspective on VA. The contribution is the HDMI Canvas, a perspective to VA that complements the strengths of existing VA process models and frameworks. It systematically characterizes diverse roles of humans, data, and models, and how these actors benefit from and contribute to VA processes. The descriptive power of the HDMI Canvas eases the differentiation between a series of VA building blocks, rather than describing general VA principles only. The canvas includes modern human-centered methodologies, including human knowledge externalization and forms of feedback loops, while interpretable and explainable AI highlight model contributions beyond their conventional outputs. The HDMI Canvas has generative power, guiding the design of new VA processes and is optimized for external stakeholders, improving VA outreach, interdisciplinary collaboration, and user-centered design. The utility of the HDMI Canvas is demonstrated through two preliminary case studies.
comment: 7 pages, 5 figures, LaTeX; to appear at the 16th International EuroVis Workshop on Visual Analytics (EuroVA'25) as a position paper
Design Requirements for Patient-Centered Digital Health Applications: Supporting Patients' Values in Postoperative Delirium Prevention
Postoperative delirium (POD) is among the most common complications after surgeries for older adults and can entail long-term adverse health consequences. Active patient participation in POD prevention presents a central factor in reducing these risks. To support patient engagement through a digital health application, we use value sensitive design approaches to identify the requirements for a patient-centered digital health application supporting patient engagement in POD prevention. Through interviews with medical professionals and patient representatives, we construct a patient journey, which serves as the basis for twelve patient value journey interviews. In these interviews, patients from the high-risk group for POD revisit their recent experience of undergoing surgery to elicit barriers, needs, and values concerning POD prevention from a patient perspective. An analysis of the patient interviews derives four design requirements for a digital health application supporting patients regarding POD prevention: the adaptation of patient-centered communication, the provision of procedural transparency, fostering patient empowerment through consistent guidance, and explicitly addressing relatives as mediators and supporters for a patient after a POD occurrence.
Shots and Boosters: Exploring the Use of Combined Prebunking Interventions to Raise Critical Thinking and Create Long-Term Protection Against Misinformation
The problem of how to effectively mitigate the flow of misinformation remains a significant challenge. The classical approach to this is public disapproval of claims or "debunking." The approach is still widely used on social media, but it has some severe limitations in terms of applicability and efficiency. An alternative strategy is to enhance individuals' critical thinking through educational interventions. Instead of merely disproving misinformation, these approaches aim to strengthen users' reasoning skills, enabling them to evaluate and reject false information independently. In this position paper, we explore a combination of intervention methods designed to improve critical thinking in the context of online media consumption. We highlight the role of AI in supporting different stages of these interventions and present a design concept that integrates AI-driven strategies to foster critical reasoning and media literacy.
comment: Presented at the 2025 ACM Workshop on Human-AI Interaction for Augmented Reasoning, Report Number: CHI25-WS-AUGMENTED-REASONING
Examining the Role of LLM-Driven Interactions on Attention and Cognitive Engagement in Virtual Classrooms
Transforming educational technologies through the integration of large language models (LLMs) and virtual reality (VR) offers the potential for immersive and interactive learning experiences. However, the effects of LLMs on user engagement and attention in educational environments remain open questions. In this study, we utilized a fully LLM-driven virtual learning environment, where peers and teachers were LLM-driven, to examine how students behaved in such settings. Specifically, we investigate how peer question-asking behaviors influenced student engagement, attention, cognitive load, and learning outcomes and found that, in conditions where LLM-driven peer learners asked questions, students exhibited more targeted visual scanpaths, with their attention directed toward the learning content, particularly in complex subjects. Our results suggest that peer questions did not introduce extraneous cognitive load directly, as the cognitive load is strongly correlated with increased attention to the learning material. Considering these findings, we provide design recommendations for optimizing VR learning spaces.
comment: Accepted to EDM 2025 (Eighteenth International Conference on Educational Data Mining)
Time Perception in Virtual Reality: Effects of Emotional Valence and Stress Level
Background & Objective: Emotional states and stress distort time perception, yet findings are inconsistent, particularly in immersive media. Integrating the Attentional Gate Model (AGM) and Internal Clock Model (ICM), we examined how emotional valence and stress alter perceived duration in Virtual Reality (VR). This study assesses the effects of valence (calming, neutral, stressful) and stress (low/high) on prospective time estimation, mood, and arousal. Methods: Fifty-four adults (18-39 years) explored three custom VR environments: (1) a tranquil Japanese garden, (2) an affectively neutral room, and (3) a threatening underground sewer. Active navigation promoted presence; a distraction task separated conditions. Valence and arousal were assessed with the Visual Analog Mood Scales, stress with the Perceived Stress Scale-10 (PSS-10), and perceived duration with a verbal estimation task. Mixed-model ANOVAs evaluated main and interaction effects. Results: Valence reliably shaped perceived duration: calming VR led to overestimation, stressful VR to underestimation, and neutral VR to intermediate timing. Baseline stress level, as measured by PSS-10, neither altered timing nor interacted with valence. Nevertheless, the VR environments affected VAMS' mood metrics: calming environments elevated mood and reduced perceived stress, whereas stressful environments lowered mood and heightened stress. Conclusions: Findings support the AGM-attentionally demanding negative environments shorten perceived time-and the ICM-valence-linked arousal speeds or slows the pacemaker. Contrary to classical predictions, in VR, baseline stress did not distort duration, suggesting valence-driven attentional allocation outweighs pre-exposure stress levels. VR offers a controllable platform for dissecting time-perception mechanisms and advancing interventions that target emotion-related temporal distortions.
comment: 23 Pages, 10 Figures, 2 Tables
Thalamus: A User Simulation Toolkit for Prototyping Multimodal Sensing Studies
Conducting user studies that involve physiological and behavioral measurements is very time-consuming and expensive, as it not only involves a careful experiment design, device calibration, etc. but also a careful software testing. We propose Thalamus, a software toolkit for collecting and simulating multimodal signals that can help the experimenters to prepare in advance for unexpected situations before reaching out to the actual study participants and even before having to install or purchase a specific device. Among other features, Thalamus allows the experimenter to modify, synchronize, and broadcast physiological signals (as coming from various data streams) from different devices simultaneously and not necessarily located in the same place. Thalamus is cross-platform, cross-device, and simple to use, making it thus a valuable asset for HCI research.
Laypeople's Attitudes Towards Fair, Affirmative, and Discriminatory Decision-Making Algorithms
Affirmative algorithms have emerged as a potential answer to algorithmic discrimination, seeking to redress past harms and rectify the source of historical injustices. We present the results of two experiments ($N$$=$$1193$) capturing laypeople's perceptions of affirmative algorithms -- those which explicitly prioritize the historically marginalized -- in hiring and criminal justice. We contrast these opinions about affirmative algorithms with folk attitudes towards algorithms that prioritize the privileged (i.e., discriminatory) and systems that make decisions independently of demographic groups (i.e., fair). We find that people -- regardless of their political leaning and identity -- view fair algorithms favorably and denounce discriminatory systems. In contrast, we identify disagreements concerning affirmative algorithms: liberals and racial minorities rate affirmative systems as positively as their fair counterparts, whereas conservatives and those from the dominant racial group evaluate affirmative algorithms as negatively as discriminatory systems. We identify a source of these divisions: people have varying beliefs about who (if anyone) is marginalized, shaping their views of affirmative algorithms. We discuss the possibility of bridging these disagreements to bring people together towards affirmative algorithms.
User Identification with LFI-Based Eye Movement Data Using Time and Frequency Domain Features SP 2025
Laser interferometry (LFI)-based eye-tracking systems provide an alternative to traditional camera-based solutions, offering improved privacy by eliminating the risk of direct visual identification. However, the high-frequency signals captured by LFI-based trackers may still contain biometric information that enables user identification. This study investigates user identification from raw high-frequency LFI-based eye movement data by analyzing features extracted from both the time and frequency domains. Using velocity and distance measurements without requiring direct gaze data, we develop a multi-class classification model to accurately distinguish between individuals across various activities. Our results demonstrate that even without direct visual cues, eye movement patterns exhibit sufficient uniqueness for user identification, achieving 93.14% accuracy and a 2.52% EER with 5-second windows across both static and dynamic tasks. Additionally, we analyze the impact of sampling rate and window size on model performance, providing insights into the feasibility of LFI-based biometric recognition. Our findings demonstrate the novel potential of LFI-based eye-tracking for user identification, highlighting both its promise for secure authentication and emerging privacy risks. This work paves the way for further research into high-frequency eye movement data.
comment: Accepted to the 25th International Conference on Digital Signal Processing (DSP 2025)
A Turing Test for ''Localness'': Conceptualizing, Defining, and Recognizing Localness in People and Machines
As digital platforms increasingly mediate interactions tied to place, ensuring genuine local participation is essential for maintaining trust and credibility in location-based services, community-driven platforms, and civic engagement systems. However, localness is a social and relational identity shaped by knowledge, participation, and community recognition. Drawing on the German philosopher Heidegger's concept of dwelling -- which extends beyond physical presence to encompass meaningful connection to place -- we investigate how people conceptualize and evaluate localness in both human and artificial agents. Using a chat-based interaction paradigm inspired by Turing's Imitation Game and Von Ahn's Games With A Purpose, we engaged 230 participants in conversations designed to examine the cues people rely on to assess local presence. Our findings reveal a multi-dimensional framework of localness, highlighting differences in how locals and nonlocals emphasize various aspects of local identity. We show that people are significantly more accurate in recognizing locals than nonlocals, suggesting that localness is an affirmative status requiring active demonstration rather than merely the absence of nonlocal traits. Additionally, we identify conditions under which artificial agents are perceived as local and analyze participants' sensemaking strategies in evaluating localness. Through predictive modeling, we determine key factors that drive accurate localness judgments. By bridging theoretical perspectives on human-place relationships with practical challenges in digital environments, our work informs the design of location-based services that foster meaningful local engagement. Our findings contribute to a broader understanding of localness as a dynamic and relational construct, reinforcing the importance of dwelling as a process of belonging, recognition, and engagement with place.
Towards user-centered interactive medical image segmentation in VR with an assistive AI agent
Crucial in disease analysis and surgical planning, manual segmentation of volumetric medical scans (e.g. MRI, CT) is laborious, error-prone, and challenging to master, while fully automatic algorithms can benefit from user-feedback. Therefore, with the complementary power of the latest radiological AI foundation models and virtual reality (VR)'s intuitive data interaction, we propose SAMIRA, a novel conversational AI agent that assists users with localizing, segmenting, and visualizing 3D medical concepts in VR. Through speech-based interaction, the agent helps users understand radiological features, locate clinical targets, and generate segmentation masks that can be refined with just a few point prompts. The system also supports true-to-scale 3D visualization of segmented pathology to enhance patient-specific anatomical understanding. Furthermore, to determine the optimal interaction paradigm under near-far attention-switching for refining segmentation masks in an immersive, human-in-the-loop workflow, we compare VR controller pointing, head pointing, and eye tracking as input modes. With a user study, evaluations demonstrated a high usability score (SUS=90.0 $\pm$ 9.0), low overall task load, as well as strong support for the proposed VR system's guidance, training potential, and integration of AI in radiological segmentation tasks.
Towards Actionable Pedagogical Feedback: A Multi-Perspective Analysis of Mathematics Teaching and Tutoring Dialogue
Effective feedback is essential for refining instructional practices in mathematics education, and researchers often turn to advanced natural language processing (NLP) models to analyze classroom dialogues from multiple perspectives. However, utterance-level discourse analysis encounters two primary challenges: (1) multifunctionality, where a single utterance may serve multiple purposes that a single tag cannot capture, and (2) the exclusion of many utterances from domain-specific discourse move classifications, leading to their omission in feedback. To address these challenges, we proposed a multi-perspective discourse analysis that integrates domain-specific talk moves with dialogue act (using the flattened multi-functional SWBD-MASL schema with 43 tags) and discourse relation (applying Segmented Discourse Representation Theory with 16 relations). Our top-down analysis framework enables a comprehensive understanding of utterances that contain talk moves, as well as utterances that do not contain talk moves. This is applied to two mathematics education datasets: TalkMoves (teaching) and SAGA22 (tutoring). Through distributional unigram analysis, sequential talk move analysis, and multi-view deep dive, we discovered meaningful discourse patterns, and revealed the vital role of utterances without talk moves, demonstrating that these utterances, far from being mere fillers, serve crucial functions in guiding, acknowledging, and structuring classroom discourse. These insights underscore the importance of incorporating discourse relations and dialogue acts into AI-assisted education systems to enhance feedback and create more responsive learning environments. Our framework may prove helpful for providing human educator feedback, but also aiding in the development of AI agents that can effectively emulate the roles of both educators and students.
comment: Accepted to EDM'2025
Assessing the User Experience of Extended Reality Devices for (Dis)Assembly: A Classroom Study
Despite the current rise and promising capabilities of Extended Reality (XR) technologies, the architecture, engineering, and construction industry lacks informed guidance when choosing between these technologies, especially for complex processes like assembly and disassembly tasks. This research compares the user experience across different XR devices for (dis)assembly utilizing the NASA Task Load Index and System Usability Scale metrics. Through a workshop and surveys with graduate civil engineering and architecture students, the study found that Augmented Reality scored highest in usability, followed closely by Mixed Reality. However, Mixed Reality showed the best task load index score, indicating low cognitive demand. The findings presented in this research may aid academics and practitioners in making informed decisions when selecting XR systems in practical, real-world assembly scenarios. Moreover, this study suggests opportunities and guidelines for more detailed XR system comparisons and exploration of XR's further role in circular construction practices.
Will Your Next Pair Programming Partner Be Human? An Empirical Evaluation of Generative AI as a Collaborative Teammate in a Semester-Long Classroom Setting
Generative AI (GenAI), especially Large Language Models (LLMs), is rapidly reshaping both programming workflows and computer science education. Many programmers now incorporate GenAI tools into their workflows, including for collaborative coding tasks such as pair programming. While prior research has demonstrated the benefits of traditional pair programming and begun to explore GenAI-assisted coding, the role of LLM-based tools as collaborators in pair programming remains underexamined. In this work, we conducted a mixed-methods study with 39 undergraduate students to examine how GenAI influences collaboration, learning, and performance in pair programming. Specifically, students completed six in-class assignments under three conditions: Traditional Pair Programming (PP), Pair Programming with GenAI (PAI), and Solo Programming with GenAI (SAI). They used both LLM-based inline completion tools (e.g., GitHub Copilot) and LLM-based conversational tools (e.g., ChatGPT). Our results show that students in PAI achieved the highest assignment scores, whereas those in SAI attained the lowest. Additionally, students' attitudes toward LLMs' programming capabilities improved significantly after collaborating with LLM-based tools, and preferences were largely shaped by the perceived usefulness for completing assignments and learning programming skills, as well as the quality of collaboration. Our qualitative findings further reveal that while students appreciated LLM-based tools as valuable pair programming partners, they also identified limitations and had different expectations compared to human teammates. Our study provides one of the first empirical evaluations of GenAI as a pair programming collaborator through a comparison of three conditions (PP, PAI, and SAI). We also discuss the design implications and pedagogical considerations for future GenAI-assisted pair programming approaches.
comment: Accepted by Learning @ Scale 2025
LLMs to Support K-12 Teachers in Culturally Relevant Pedagogy: An AI Literacy Example
Culturally Relevant Pedagogy (CRP) is vital in K-12 education, yet teachers struggle to implement CRP into practice due to time, training, and resource gaps. This study explores how Large Language Models (LLMs) can address these barriers by introducing CulturAIEd, an LLM tool that assists teachers in adapting AI literacy curricula to students' cultural contexts. Through an exploratory pilot with four K-12 teachers, we examined CulturAIEd's impact on CRP integration. Results showed CulturAIEd enhanced teachers' confidence in identifying opportunities for cultural responsiveness in learning activities and making culturally responsive modifications to existing activities. They valued CulturAIEd's streamlined integration of student demographic information, immediate actionable feedback, which could result in high implementation efficiency. This exploration of teacher-AI collaboration highlights how LLM can help teachers include CRP components into their instructional practices efficiently, especially in global priorities for future-ready education, such as AI literacy.
Perspectives on Capturing Emotional Expressiveness in Sign Language
Significant advances have been made in our ability to understand and generate emotionally expressive content such as text and speech, yet comparable progress in sign language technologies remain limited. While computational approaches to sign language translation have focused on capturing lexical content, the emotional dimensions of sign language communication remain largely unexplored. Through semi-structured interviews with eight sign language users across Singapore, Sri Lanka and the United States, including both Deaf and Hard of hearing (DHH) and hearing signers, we investigate how emotions are expressed and perceived in sign languages. Our findings highlight the role of both manual and non-manual elements in emotional expression, revealing universal patterns as well as individual and cultural variations in how signers communicate emotions. We identify key challenges in capturing emotional nuance for sign language translation, and propose design considerations for developing more emotionally-aware sign language technologies. This work contributes to both theoretical understanding of emotional expression in sign language and practical development of interfaces to better serve diverse signing communities.
Justified Evidence Collection for Argument-based AI Fairness Assurance
It is well recognised that ensuring fair AI systems is a complex sociotechnical challenge, which requires careful deliberation and continuous oversight across all stages of a system's lifecycle, from defining requirements to model deployment and deprovisioning. Dynamic argument-based assurance cases, which present structured arguments supported by evidence, have emerged as a systematic approach to evaluating and mitigating safety risks and hazards in AI-enabled system development and have also been extended to deal with broader normative goals such as fairness and explainability. This paper introduces a systems-engineering-driven framework, supported by software tooling, to operationalise a dynamic approach to argument-based assurance in two stages. In the first stage, during the requirements planning phase, a multi-disciplinary and multi-stakeholder team define goals and claims to be established (and evidenced) by conducting a comprehensive fairness governance process. In the second stage, a continuous monitoring interface gathers evidence from existing artefacts (e.g. metrics from automated tests), such as model, data, and use case documentation, to support these arguments dynamically. The framework's effectiveness is demonstrated through an illustrative case study in finance, with a focus on supporting fairness-related arguments.
comment: The paper is accepted for ACM Conference on Fairness, Accountability, and Transparency (ACM FAccT '25)
Who's the Leader? Analyzing Novice Workflows in LLM-Assisted Debugging of Machine Learning Code
While LLMs are often touted as tools for democratizing specialized knowledge to beginners, their actual effectiveness for improving task performance and learning is still an open question. It is known that novices engage with LLMs differently from experts, with prior studies reporting meta-cognitive pitfalls that affect novices' ability to verify outputs and prompt effectively. We focus on a task domain, machine learning (ML), which embodies both high complexity and low verifiability to understand the impact of LLM assistance on novices. Provided a buggy ML script and open access to ChatGPT, we conduct a formative study with eight novice ML engineers to understand their reliance on, interactions with, and perceptions of the LLM. We find that user actions can be roughly categorized into leading the LLM and led-by the LLM, and further investigate how they affect reliance outcomes like over- and under-reliance. These results have implications on novices' cognitive engagement in LLM-assisted tasks and potential negative effects on downstream learning. Lastly, we pose potential augmentations to the novice-LLM interaction paradigm to promote cognitive engagement.
comment: Tools for Thought Workshop at CHI 2025
Partisan Fact-Checkers' Warnings Can Effectively Correct Individuals' Misbeliefs About Political Misinformation
Political misinformation, particularly harmful when it aligns with individuals' preexisting beliefs and political ideologies, has become widespread on social media platforms. In response, platforms like Facebook and X introduced warning messages leveraging fact-checking results from third-party fact-checkers to alert users against false content. However, concerns persist about the effectiveness of these fact-checks, especially when fact-checkers are perceived as politically biased. To address these concerns, this study presents findings from an online human-subject experiment (N=216) investigating how the political stances of fact-checkers influence their effectiveness in correcting misbeliefs about political misinformation. Our findings demonstrate that partisan fact-checkers can decrease the perceived accuracy of political misinformation and correct misbeliefs without triggering backfire effects. This correction is even more pronounced when the misinformation aligns with individuals' political ideologies. Notably, while previous research suggests that fact-checking warnings are less effective for conservatives than liberals, our results suggest that explicitly labeled partisan fact-checkers, positioned as political counterparts to conservatives, are particularly effective in reducing conservatives' misbeliefs toward pro-liberal misinformation.
Measuring and predicting variation in the difficulty of questions about data visualizations
Understanding what is communicated by data visualizations is a critical component of scientific literacy in the modern era. However, it remains unclear why some tasks involving data visualizations are more difficult than others. Here we administered a composite test composed of five widely used tests of data visualization literacy to a large sample of U.S. adults (N=503 participants).We found that items in the composite test spanned the full range of possible difficulty levels, and that our estimates of item-level difficulty were highly reliable. However, the type of data visualization shown and the type of task involved only explained a modest amount of variation in performance across items, relative to the reliability of the estimates we obtained. These results highlight the need for finer-grained ways of characterizing these items that predict the reliable variation in difficulty measured in this study, and that generalize to other tests of data visualization understanding.
MARV: Multiview Augmented Reality Visualisation for Exploring Rich Material Data
Rich material data is complex, large and heterogeneous, integrating primary and secondary non-destructive testing data for spatial, spatio-temporal, as well as high-dimensional data analyses. Currently, materials experts mainly rely on conventional desktop-based systems using 2D visualisation techniques, which render respective analyses a time-consuming and mentally demanding challenge. MARV is a novel immersive visual analytics system, which makes analyses of such data more effective and engaging in an augmented reality setting. For this purpose, MARV includes three newly designed visualisation techniques: MDD Glyphs with a Skewness Kurtosis Mapper, Temporal Evolution Tracker, and Chrono Bins, facilitating interactive exploration and comparison of multidimensional distributions of attribute data from multiple time steps. A qualitative evaluation conducted with materials experts in a real-world case study demonstrates the benefits of the proposed visualisation techniques. This evaluation revealed that combining spatial and abstract data in an immersive environment improves their analytical capabilities and facilitates the identification of patterns, anomalies, as well as changes over time.
comment: 13 pages, 6 figures
InFL-UX: A Toolkit for Web-Based Interactive Federated Learning
This paper presents InFL-UX, an interactive, proof-of-concept browser-based Federated Learning (FL) toolkit designed to integrate user contributions seamlessly into the machine learning (ML) workflow. InFL-UX enables users across multiple devices to upload datasets, define classes, and collaboratively train classification models directly in the browser using modern web technologies. Unlike traditional FL toolkits, which often focus on backend simulations, InFL-UX provides a simple user interface for researchers to explore how users interact with and contribute to FL systems in real-world, interactive settings. By prioritising usability and decentralised model training, InFL-UX bridges the gap between FL and Interactive Machine Learning (IML), empowering non-technical users to actively participate in ML classification tasks.
comment: Accepted in the 17th ACM SIGCHI Symposium on Engineering Interactive Computing Systems (EICS 2025)
Semantic and Expressive Variation in Image Captions Across Languages CVPR 2025
Computer vision often treats human perception as homogeneous: an implicit assumption that visual stimuli are perceived similarly by everyone. This assumption is reflected in the way researchers collect datasets and train vision models. By contrast, literature in cross-cultural psychology and linguistics has provided evidence that people from different cultural backgrounds observe vastly different concepts even when viewing the same visual stimuli. In this paper, we study how these differences manifest themselves in vision-language datasets and models, using language as a proxy for culture. By comparing textual descriptions generated across 7 languages for the same images, we find significant differences in the semantic content and linguistic expression. When datasets are multilingual as opposed to monolingual, descriptions have higher semantic coverage on average, where coverage is measured using scene graphs, model embeddings, and linguistic taxonomies. For example, multilingual descriptions have on average 29.9% more objects, 24.5% more relations, and 46.0% more attributes than a set of monolingual captions. When prompted to describe images in different languages, popular models (e.g. LLaVA) inherit this bias and describe different parts of the image. Moreover, finetuning models on captions from one language performs best on corresponding test data from that language, while finetuning on multilingual data performs consistently well across all test data compositions. Our work points towards the need to account for and embrace the diversity of human perception in the computer vision community.
comment: CVPR 2025
Perfectly to a Tee: Understanding User Perceptions of Personalized LLM-Enhanced Narrative Interventions
Stories about overcoming personal struggles can effectively illustrate the application of psychological theories in real life, yet they may fail to resonate with individuals' experiences. In this work, we employ large language models (LLMs) to create tailored narratives that acknowledge and address unique challenging thoughts and situations faced by individuals. Our study, involving 346 young adults across two settings, demonstrates that personalized LLM-enhanced stories were perceived to be better than human-written ones in conveying key takeaways, promoting reflection, and reducing belief in negative thoughts. These stories were not only seen as more relatable but also similarly authentic to human-written ones, highlighting the potential of LLMs in helping young adults manage their struggles. The findings of this work provide crucial design considerations for future narrative-based digital mental health interventions, such as the need to maintain relatability without veering into implausibility and refining the wording and tone of AI-enhanced content.
Exploring Generative AI Techniques in Government: A Case Study
The swift progress of Generative Artificial intelligence (GenAI), notably Large Language Models (LLMs), is reshaping the digital landscape. Recognizing this transformative potential, the National Research Council of Canada (NRC) launched a pilot initiative to explore the integration of GenAI techniques into its daily operation for performance excellence, where 22 projects were launched in May 2024. Within these projects, this paper presents the development of the intelligent agent Pubbie as a case study, targeting the automation of performance measurement, data management and insight reporting at the NRC. Cutting-edge techniques are explored, including LLM orchestration and semantic embedding via RoBERTa, while strategic fine-tuning and few-shot learning approaches are incorporated to infuse domain knowledge at an affordable cost. The user-friendly interface of Pubbie allows general government users to input queries in natural language and easily upload or download files with a simple button click, greatly reducing manual efforts and accessibility barriers.
comment: In submission to IEEE Intelligent Systems
Examining the Expanding Role of Synthetic Data Throughout the AI Development Pipeline
Alongside the growth of generative AI, we are witnessing a surge in the use of synthetic data across all stages of the AI development pipeline. It is now common practice for researchers and practitioners to use one large generative model (which we refer to as an auxiliary model) to generate synthetic data that is used to train or evaluate another, reconfiguring AI workflows and reshaping the very nature of data. While scholars have raised concerns over the risks of synthetic data, policy guidance and best practices for its responsible use have not kept up with these rapidly evolving industry trends, in part because we lack a clear picture of current practices and challenges. Our work aims to address this gap. Through 29 interviews with AI practitioners and responsible AI experts, we examine the expanding role of synthetic data in AI development. Our findings reveal how auxiliary models are now widely used across the AI development pipeline. Practitioners describe synthetic data as crucial for addressing data scarcity and providing a competitive edge, noting that evaluation of generative AI systems at scale would be infeasible without auxiliary models. However, they face challenges controlling the outputs of auxiliary models, generating data that accurately depict underrepresented groups, and scaling data validation practices that are based primarily on manual inspection. We detail general limitations of and ethical considerations for synthetic data and conclude with a proposal of concrete steps towards the development of best practices for its responsible use.
Perception-aware Sampling for Scatterplot Visualizations
Visualizing data is often a crucial first step in data analytics workflows, but growing data sizes pose challenges due to computational and visual perception limitations. As a result, data analysts commonly down-sample their data and work with subsets. Deriving representative samples, however, remains a challenge. This paper focuses on scatterplots, a widely-used visualization type, and introduces a novel sampling objective -- perception-awareness -- aiming to improve sample efficacy by targeting humans' perception of a visualization. We make the following contributions: (1) We propose perception-augmented databases and design PAwS: a novel perception-aware sampling method for scatterplots that leverages saliency maps -- a computer vision tool for predicting areas of attention focus in visualizations -- and models perception-awareness via saliency, density, and coverage objectives. (2) We design ApproPAwS: a fast, perception-aware method for approximate visualizations, which exploits the fact that small visual perturbations are often imperceptible to humans. (3) We introduce the concept of perceptual similarity as a metric for sample quality, and present a novel method that compares saliency maps to measure it. (4) Our extensive experimental evaluation shows that our methods consistently outperform prior art in producing samples with high perceptual similarity, while ApproPAwS achieves up to 100x speed-ups with minimal loss in visual fidelity. Our user study shows that PAwS is often preferred by humans, validating our quantitative findings.
Studying the Effects of Collaboration in Interactive Theme Discovery Systems
NLP-assisted solutions have gained considerable traction to support qualitative data analysis. However, there does not exist a unified evaluation framework that can account for the many different settings in which qualitative researchers may employ them. In this paper, we take a first step in this direction by proposing an evaluation framework to study the way in which different tools may result in different outcomes depending on the collaboration strategy employed. Specifically, we study the impact of synchronous vs. asynchronous collaboration using two different NLP-assisted qualitative research tools and present a comprehensive analysis of significant differences in the consistency, cohesiveness, and correctness of their outputs.
A Protocol for KG Construction Tasks Involving Users
Knowledge graph construction (KGC) from (semi-)structured data is challenging, and facilitating user involvement is an issue frequently brought up within this community. We cannot deny the progress we have made with respect to (declarative) knowledge graph construction languages and tools to help build such mappings. However, it is surprising that no two studies report on similar protocols. This heterogeneity does not allow for comparing KGC languages, techniques, and tools. This paper first analyses studies involving users to identify the points of comparison. These gaps include a lack of systematic consistency in task design, participant selection, and evaluation metrics. Moreover, there needs to be a systematic way of analyzing the data and reporting the findings, which is also lacking. We thus propose and introduce a user protocol for KGC designed to address this challenge. Where possible, we draw and take elements from the literature we deem fit for such a protocol. The protocol, as such, allows for the comparison of languages and techniques for the RDF Mapping Language (RML) core functionality, which is covered by most of the other state-of-the-art techniques and tools. We also propose how the protocol can be amended to compare extensions (of RML). This protocol provides an important step towards a more comparable evaluation of KGC user studies.
comment: For associated repository, see https://github.com/chrdebru/kgc-user-study-protocol